ID
int64
0
2.65k
Language
stringclasses
1 value
Repository Name
stringclasses
14 values
File Name
stringlengths
2
48
File Path in Repository
stringlengths
11
111
File Path for Unit Test
stringlengths
16
116
Code
stringlengths
411
31.4k
Unit Test - (Ground Truth)
stringlengths
40
32.1k
2,100
cpp
tensorflow/tensorflow
matmul_utils
third_party/xla/xla/service/gpu/matmul_utils.cc
third_party/xla/xla/service/gpu/matmul_utils_test.cc
#ifndef XLA_SERVICE_GPU_MATMUL_UTILS_H_ #define XLA_SERVICE_GPU_MATMUL_UTILS_H_ #include <cstddef> #include <cstdint> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/autotuning.pb.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/shape.h" #include "xla/stream_executor/blas.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/gpu/gpu_blas_lt.h" #include "xla/xla_data.pb.h" #if TENSORFLOW_USE_ROCM #include "rocm/rocm_config.h" #endif namespace xla { namespace gpu { absl::StatusOr<std::vector<int64_t>> GetNonContractingDims( const Shape& shape, absl::Span<const int64_t> batch_dims, absl::Span<const int64_t> contracting_dims); const tsl::protobuf::RepeatedField<int64_t>& BatchDimensionsForOperand( const HloInstruction& dot, int operand_number); absl::StatusOr<int64_t> ContractingDimensionIndex(const HloInstruction& dot, int operand_number); absl::StatusOr<int64_t> NonContractingDimensionIndex(const HloInstruction& dot, int operand_number); absl::StatusOr<Shape> GetBatchRowColumnShape( const Shape& shape, absl::Span<const int64_t> batch_dims, absl::Span<const int64_t> row_dims, absl::Span<const int64_t> col_dims); absl::StatusOr<bool> CanFoldTransposeOperandIntoDot(const HloInstruction& dot, int64_t operand_idx); absl::StatusOr<bool> IsMatrixMultiplicationTooSmallForRewriting( const HloInstruction& dot, int64_t threshold); bool IsDotSupportedByClassicalEmitters(const HloInstruction& dot); struct MatrixLayout : public se::gpu::MatrixLayout { static absl::StatusOr<MatrixLayout> For(const Shape& shape); static absl::StatusOr<MatrixLayout> For(const Shape& shape, absl::Span<const int64_t> batch_dims, absl::Span<const int64_t> row_dims, absl::Span<const int64_t> col_dims); static absl::StatusOr<MatrixLayout> For(const Shape& shape, size_t lhs_num_batch_dims, size_t lhs_num_row_dims, size_t rhs_num_batch_dims, size_t rhs_num_col_dims); }; struct GemmConfig : public se::gpu::GemmConfig { static constexpr int64_t kHopperWorkspace = 32 * 1024 * 1024; static constexpr int64_t kDefaultWorkspace = 4 * 1024 * 1024; static absl::StatusOr<GemmConfig> For(const HloInstruction* gemm); static absl::StatusOr<GemmConfig> For( const Shape& lhs_shape, absl::Span<const int64_t> lhs_batch_dims, absl::Span<const int64_t> lhs_contracting_dims, const Shape& rhs_shape, absl::Span<const int64_t> rhs_batch_dims, absl::Span<const int64_t> rhs_contracting_dims, const Shape& output_shape, double alpha_real, double alpha_imag, double beta, PrecisionConfig::Algorithm precision_algorithm, std::optional<int64_t> algorithm, int64_t compute_precision, bool grad_x, bool grad_y); static absl::StatusOr<GemmConfig> For( const Shape& lhs_shape, absl::Span<const int64_t> lhs_batch_dims, absl::Span<const int64_t> lhs_contracting_dims, const Shape& rhs_shape, absl::Span<const int64_t> rhs_batch_dims, absl::Span<const int64_t> rhs_contracting_dims, const Shape& c_shape, const Shape* bias_shape_ptr, const Shape& output_shape, double alpha_real, double alpha_imag, double beta, PrecisionConfig::Algorithm precision_algorithm, std::optional<int64_t> algorithm, int64_t compute_precision, bool grad_x, bool grad_y); struct DescriptorsTuple { se::gpu::MatrixDescriptor lhs; se::gpu::MatrixDescriptor rhs; se::gpu::OutputMatrixDescriptor output; bool operands_swapped; }; absl::StatusOr<DescriptorsTuple> GetMatrixDescriptors( se::DeviceMemoryBase lhs_buf, se::DeviceMemoryBase rhs_buf, se::DeviceMemoryBase out_buf) const; }; absl::Status RunGemm( const GemmConfig& config, se::DeviceMemoryBase lhs_buffer, se::DeviceMemoryBase rhs_buffer, se::DeviceMemoryBase output_buffer, se::DeviceMemoryBase workspace_buffer, bool deterministic_ops, se::Stream* stream, std::optional<se::blas::AlgorithmType> algorithm = std::nullopt, se::blas::ProfileResult* profile_result = nullptr); namespace gpublas_lt { absl::StatusOr<bool> EpilogueAddsVectorBias( GemmBackendConfig_Epilogue epilogue); absl::StatusOr<bool> EpilogueHasAuxiliaryOutput( GemmBackendConfig_Epilogue epilogue); absl::StatusOr<se::gpu::BlasLt::Epilogue> AsBlasLtEpilogue( GemmBackendConfig_Epilogue epilogue); } struct TritonGemmConfig { constexpr TritonGemmConfig() = default; constexpr TritonGemmConfig(int block_m, int block_n, int block_k, int split_k, int num_stages, int num_warps, int num_ctas = 1) : block_m(block_m), block_n(block_n), block_k(block_k), split_k(split_k), num_stages(num_stages), num_warps(num_warps), num_ctas(num_ctas) {} int block_m = 0; int block_n = 0; int block_k = 0; int split_k = 0; int num_stages = 0; int num_warps = 0; int num_ctas = 0; private: auto ToTuple() const { return std::make_tuple(block_m, block_n, block_k, split_k, num_stages, num_warps, num_ctas); } public: static absl::StatusOr<TritonGemmConfig> FromProto( const AutotuneResult::TritonGemmKey& proto); AutotuneResult::TritonGemmKey ToProto() const; std::string ToString() const; bool operator==(const TritonGemmConfig& other) const { return ToTuple() == other.ToTuple(); } bool operator<(const TritonGemmConfig& other) const { return ToTuple() < other.ToTuple(); } template <typename H> friend H AbslHashValue(H h, const TritonGemmConfig& config) { return H::combine(std::move(h), config.ToTuple()); } }; } } #endif #include "xla/service/gpu/matmul_utils.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "xla/autotuning.pb.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/primitive_util.h" #include "xla/service/algorithm_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/blas.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/gpu/gpu_blas_lt.h" #include "xla/stream_executor/numeric_options.h" #include "xla/stream_executor/stream_executor.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { absl::StatusOr<std::vector<int64_t>> GetNonContractingDims( const Shape& shape, absl::Span<const int64_t> batch_dims, absl::Span<const int64_t> contracting_dims) { std::vector<int64_t> non_contracting_dims; for (int64_t dim = 0; dim < shape.rank(); ++dim) { bool is_batch = absl::c_count(batch_dims, dim) != 0; bool is_contracting = absl::c_count(contracting_dims, dim) != 0; TF_RET_CHECK(!(is_batch && is_contracting)); if (!(is_batch || is_contracting)) non_contracting_dims.push_back(dim); } TF_RET_CHECK(batch_dims.size() + contracting_dims.size() + non_contracting_dims.size() == shape.rank()); return non_contracting_dims; } const tsl::protobuf::RepeatedField<int64_t>& BatchDimensionsForOperand( const HloInstruction& dot, const int operand_number) { const DotDimensionNumbers& dimension_numbers = dot.dot_dimension_numbers(); if (operand_number == 0) { return dimension_numbers.lhs_batch_dimensions(); } return dimension_numbers.rhs_batch_dimensions(); } absl::StatusOr<int64_t> ContractingDimensionIndex(const HloInstruction& dot, const int operand_number) { const DotDimensionNumbers& dimension_numbers = dot.dot_dimension_numbers(); if (operand_number == 0) { TF_RET_CHECK(dimension_numbers.lhs_contracting_dimensions().size() == 1); return dimension_numbers.lhs_contracting_dimensions(0); } TF_RET_CHECK(dimension_numbers.rhs_contracting_dimensions().size() == 1); return dimension_numbers.rhs_contracting_dimensions(0); } absl::StatusOr<int64_t> NonContractingDimensionIndex(const HloInstruction& dot, const int operand_number) { TF_ASSIGN_OR_RETURN(int64_t contracting_dim, ContractingDimensionIndex(dot, operand_number)); TF_ASSIGN_OR_RETURN( std::vector<int64_t> non_contracting_dims, GetNonContractingDims(dot.operand(operand_number)->shape(), BatchDimensionsForOperand(dot, operand_number), {contracting_dim})); TF_RET_CHECK(non_contracting_dims.size() == 1); return non_contracting_dims.front(); } absl::StatusOr<Shape> GetBatchRowColumnShape( const Shape& shape, absl::Span<const int64_t> batch_dims, absl::Span<const int64_t> row_dims, absl::Span<const int64_t> col_dims) { TF_RET_CHECK(shape.has_layout()); std::vector<int64_t> minor_to_major; for (size_t i = 0; i < shape.rank();) { auto check_physically_sequential = [&](absl::Span<const int64_t> dims) -> absl::Status { for (auto it = dims.rbegin(); it != dims.rend(); ++it) { if (*it != shape.layout().minor_to_major()[i++]) return InvalidArgument("dims not physically_sequential"); } return absl::OkStatus(); }; int64_t dim = shape.layout().minor_to_major()[i]; if (!row_dims.empty() && dim == row_dims.back()) { minor_to_major.push_back(1); TF_RETURN_IF_ERROR(check_physically_sequential(row_dims)); } else if (!col_dims.empty() && dim == col_dims.back()) { minor_to_major.push_back(2); TF_RETURN_IF_ERROR(check_physically_sequential(col_dims)); } else if (!batch_dims.empty() && (dim == batch_dims.back())) { minor_to_major.push_back(0); TF_RETURN_IF_ERROR(check_physically_sequential(batch_dims)); } else { return InvalidArgument("dims not physically sequential"); } } if (col_dims.empty()) minor_to_major.push_back(2); if (row_dims.empty()) minor_to_major.push_back(1); if (batch_dims.empty()) minor_to_major.push_back(0); auto dim_size = [&](absl::Span<const int64_t> dims) { return absl::c_accumulate(dims, 1, [&](int64_t size, int64_t dim) { return size * shape.dimensions(dim); }); }; return ShapeUtil::MakeShapeWithDenseLayout( shape.element_type(), {dim_size(batch_dims), dim_size(row_dims), dim_size(col_dims)}, minor_to_major); } absl::StatusOr<MatrixLayout> MatrixLayout::For(const Shape& shape) { TF_RET_CHECK(shape.rank() == 3); TF_RET_CHECK(shape.has_layout()); int64_t batch_size = shape.dimensions(0); int64_t num_rows = shape.dimensions(1); int64_t num_cols = shape.dimensions(2); Order order{Order::kRowMajor}; int64_t leading_dim_stride = num_cols; int64_t batch_stride = num_rows * num_cols; absl::Span<const int64_t> minor_to_major = shape.layout().minor_to_major(); switch (64 * minor_to_major[2] + 8 * minor_to_major[1] + minor_to_major[0]) { case 012: break; case 021: order = Order::kColumnMajor; leading_dim_stride = num_rows; break; case 0102: leading_dim_stride = batch_size * num_cols; batch_stride = num_cols; break; case 0201: order = Order::kColumnMajor; leading_dim_stride = batch_size * num_rows; batch_stride = num_rows; break; default: return Unimplemented("batch in most minor dimension"); } if (batch_size == 1) { batch_stride = 0; } return MatrixLayout{se::gpu::MatrixLayout{shape.element_type(), num_rows, num_cols, order, batch_size, leading_dim_stride, batch_stride}}; } absl::StatusOr<MatrixLayout> MatrixLayout::For( const Shape& shape, absl::Span<const int64_t> batch_dims, absl::Span<const int64_t> row_dims, absl::Span<const int64_t> col_dims) { TF_ASSIGN_OR_RETURN( Shape batch_row_col_shape, GetBatchRowColumnShape(shape, batch_dims, row_dims, col_dims)); return MatrixLayout::For(batch_row_col_shape); } absl::StatusOr<MatrixLayout> MatrixLayout::For( const Shape& shape, size_t lhs_num_batch_dims, size_t lhs_num_row_dims, size_t rhs_num_batch_dims, size_t rhs_num_col_dims) { size_t num_batch_dims = std::max(lhs_num_batch_dims, rhs_num_batch_dims); TF_RET_CHECK(shape.rank() == num_batch_dims + lhs_num_row_dims + rhs_num_col_dims); std::vector<int64_t> dims(shape.rank()); absl::c_iota(dims, 0); auto batch_dims = absl::Span<const int64_t>(dims).first(num_batch_dims); auto row_dims = absl::Span<const int64_t>(dims).subspan(num_batch_dims, lhs_num_row_dims); auto col_dims = absl::Span<const int64_t>(dims).last(rhs_num_col_dims); return MatrixLayout::For(shape, batch_dims, row_dims, col_dims); } namespace { std::vector<int64_t> NormalizedRelativeOrder(absl::Span<const int64_t> dims) { std::vector<int64_t> indices(dims.size()); absl::c_iota(indices, 0); absl::c_sort(indices, [&](int64_t a, int64_t b) { return dims[a] < dims[b]; }); return indices; } } absl::StatusOr<bool> CanFoldTransposeOperandIntoDot(const HloInstruction& dot, int64_t operand_idx) { if (Cast<HloDotInstruction>(&dot)->sparse_operands()) { return false; } TF_RET_CHECK(dot.opcode() == HloOpcode::kDot); TF_RET_CHECK(dot.operand_count() > operand_idx); const HloInstruction& transpose = *dot.operand(operand_idx); TF_RET_CHECK(transpose.opcode() == HloOpcode::kTranspose); const DotDimensionNumbers& dot_dims = dot.dot_dimension_numbers(); auto transposed = [&](const auto& dims) { std::vector<int64_t> transposed_dims; transposed_dims.reserve(dims.size()); for (int64_t dim : dims) { transposed_dims.push_back(transpose.dimensions(dim)); } return transposed_dims; }; auto batch_dims = (operand_idx == 0) ? dot_dims.lhs_batch_dimensions() : dot_dims.rhs_batch_dimensions(); auto contracting_dims = (operand_idx == 0) ? dot_dims.lhs_contracting_dimensions() : dot_dims.rhs_contracting_dimensions(); TF_ASSIGN_OR_RETURN( std::vector<int64_t> non_contracting_dims, GetNonContractingDims(transpose.shape(), batch_dims, contracting_dims)); auto transposed_non_contracting_dims = transposed(non_contracting_dims); if (NormalizedRelativeOrder(non_contracting_dims) != NormalizedRelativeOrder(transposed_non_contracting_dims)) { return false; } return MatrixLayout::For(transpose.operand(0)->shape(), transposed(batch_dims), transposed(contracting_dims), transposed_non_contracting_dims) .ok(); } absl::StatusOr<GemmConfig> GemmConfig::For( const Shape& lhs_shape, absl::Span<const int64_t> lhs_batch_dims, absl::Span<const int64_t> lhs_contracting_dims, const Shape& rhs_shape, absl::Span<const int64_t> rhs_batch_dims, absl::Span<const int64_t> rhs_contracting_dims, const Shape& output_shape, double alpha_real, double alpha_imag, double beta, PrecisionConfig::Algorithm precision_algorithm, std::optional<int64_t> algorithm, int64_t compute_precision, bool grad_x, bool grad_y) { return GemmConfig::For(lhs_shape, lhs_batch_dims, lhs_contracting_dims, rhs_shape, rhs_batch_dims, rhs_contracting_dims, output_shape, nullptr, output_shape, alpha_real, alpha_imag, beta, precision_algorithm, algorithm, compute_precision, grad_x, grad_y); } absl::StatusOr<GemmConfig> GemmConfig::For( const Shape& lhs_shape, absl::Span<const int64_t> lhs_batch_dims, absl::Span<const int64_t> lhs_contracting_dims, const Shape& rhs_shape, absl::Span<const int64_t> rhs_batch_dims, absl::Span<const int64_t> rhs_contracting_dims, const Shape& c_shape, const Shape* bias_shape_ptr, const Shape& output_shape, double alpha_real, double alpha_imag, double beta, PrecisionConfig::Algorithm precision_algorithm, std::optional<int64_t> algorithm, int64_t compute_precision, bool grad_x, bool grad_y) { absl::Span<const int64_t> lhs_col_dims = lhs_contracting_dims; TF_ASSIGN_OR_RETURN( std::vector<int64_t> lhs_row_dims, GetNonContractingDims(lhs_shape, lhs_batch_dims, lhs_col_dims)); TF_ASSIGN_OR_RETURN( MatrixLayout lhs_layout, MatrixLayout::For(lhs_shape, lhs_batch_dims, lhs_row_dims, lhs_col_dims)); absl::Span<const int64_t> rhs_row_dims = rhs_contracting_dims; TF_ASSIGN_OR_RETURN( std::vector<int64_t> rhs_col_dims, GetNonContractingDims(rhs_shape, rhs_batch_dims, rhs_row_dims)); TF_ASSIGN_OR_RETURN( MatrixLayout rhs_layout, MatrixLayout::For(rhs_shape, rhs_batch_dims, rhs_row_dims, rhs_col_dims)); int64_t num_batch_dims = std::max(lhs_batch_dims.size(), rhs_batch_dims.size()); TF_RET_CHECK(output_shape.rank() == num_batch_dims + lhs_row_dims.size() + rhs_col_dims.size()); std::vector<int64_t> output_dims(output_shape.rank()); absl::c_iota(output_dims, 0); auto output_batch_dims = absl::Span<const int64_t>(output_dims).first(num_batch_dims); auto output_row_dims = absl::Span<const int64_t>(output_dims) .subspan(num_batch_dims, lhs_row_dims.size()); auto output_col_dims = absl::Span<const int64_t>(output_dims).last(rhs_col_dims.size()); TF_ASSIGN_OR_RETURN(MatrixLayout output_layout, MatrixLayout::For(output_shape, output_batch_dims, output_row_dims, output_col_dims)); Shape c_matrix_shape = c_shape; if (primitive_util::IsF8Type(lhs_shape.element_type()) && primitive_util::IsF8Type(output_shape.element_type()) && beta == 0.0) { #if GOOGLE_CUDA c_matrix_shape.set_element_type( bias_shape_ptr != nullptr ? bias_shape_ptr->element_type() : BF16); #endif } TF_ASSIGN_OR_RETURN(MatrixLayout c_layout, MatrixLayout::For(c_matrix_shape, output_batch_dims, output_row_dims, output_col_dims)); if (lhs_shape.element_type() != F8E4M3FN && lhs_shape.element_type() != F8E5M2) { TF_RET_CHECK(lhs_layout.num_cols == rhs_layout.num_rows); TF_RET_CHECK(output_layout.num_rows == lhs_layout.num_rows); TF_RET_CHECK(output_layout.num_cols == rhs_layout.num_cols); } TF_RET_CHECK(c_layout.num_rows == output_layout.num_rows); TF_RET_CHECK(c_layout.num_cols == output_layout.num_cols); TF_RET_CHECK((lhs_layout.batch_size == output_layout.batch_size) || (lhs_layout.batch_size == 1)); TF_RET_CHECK((rhs_layout.batch_size == output_layout.batch_size) || (rhs_layout.batch_size == 1)); switch (output_shape.element_type()) { case F8E4M3FN: case F8E5M2: case F8E4M3FNUZ: case F8E5M2FNUZ: case F16: case BF16: case F32: case F64: TF_RET_CHECK(alpha_imag == 0); break; case C64: case C128: break; case S32: TF_RET_CHECK(alpha_imag == 0); if (lhs_layout.dtype != PrimitiveType::S8 || rhs_layout.dtype != PrimitiveType::S8) { return Internal( "For int32 gemm output only int8 input is supported, got input: " "%s, %s", primitive_util::LowercasePrimitiveTypeName(lhs_layout.dtype), primitive_util::LowercasePrimitiveTypeName(rhs_layout.dtype)); } break; default: return Internal("Unexpected GEMM datatype: %s", primitive_util::LowercasePrimitiveTypeName( output_shape.element_type())); } return GemmConfig{lhs_layout, rhs_layout, c_layout, output_layout, {alpha_real, alpha_imag}, beta, compute_precision, precision_algorithm, algorithm, grad_x, grad_y}; } namespace { bool IsTf32Allowed(PrecisionConfig::Algorithm algorithm, int64_t compute_precision) { if (algorithm == PrecisionConfig::ALG_UNSET) { return compute_precision <= 1; } return algorithm_util::HasTf32InputType(algorithm); } } absl::StatusOr<GemmConfig> GemmConfig::For( const HloInstruction* gemm) { TF_ASSIGN_OR_RETURN(GpuBackendConfig gpu_config, gemm->backend_config<GpuBackendConfig>()); const GemmBackendConfig& config = gpu_config.gemm_backend_config(); std::optional<int64_t> algorithm; if (config.algorithm_case() != GemmBackendConfig::ALGORITHM_NOT_SET) { algorithm = config.selected_algorithm(); } else { algorithm = se::blas::kDefaultAlgorithm; } const Shape& lhs_shape = gemm->operand(0)->shape(); const Shape& rhs_shape = gemm->operand(1)->shape(); const DotDimensionNumbers& dot_dims = config.dot_dimension_numbers(); const Shape& output_shape = gemm->shape().IsTuple() ? gemm->shape().tuple_shapes(0) : gemm->shape(); bool has_matrix_bias = config.beta() != 0.; Shape c_shape = has_matrix_bias ? gemm->operand(2)->shape() : output_shape; std::optional<Shape> vector_bias_shape; TF_ASSIGN_OR_RETURN( bool has_vector_bias, xla::gpu::gpublas_lt::EpilogueAddsVectorBias(config.epilogue())); if (has_vector_bias) { int vector_bias_index = has_matrix_bias ? 3 : 2; if (primitive_util::IsF8Type(lhs_shape.element_type())) { vector_bias_index += 4; } vector_bias_shape = gemm->operand(vector_bias_index)->shape(); } auto attributes = gemm->frontend_attributes().map(); bool grad_x = (attributes["grad_x"] == "true"); bool grad_y = (attributes["grad_y"] == "true"); int64_t precision = se::blas::kDefaultComputePrecision; for (auto operand_precision : config.precision_config().operand_precision()) { precision = std::max(precision, static_cast<int64_t>(operand_precision)); } const PrecisionConfig::Algorithm precision_algorithm = config.precision_config().algorithm(); return GemmConfig::For( lhs_shape, dot_dims.lhs_batch_dimensions(), dot_dims.lhs_contracting_dimensions(), rhs_shape, dot_dims.rhs_batch_dimensions(), dot_dims.rhs_contracting_dimensions(), c_shape, vector_bias_shape ? &vector_bias_shape.value() : nullptr, output_shape, config.alpha_real(), config.alpha_imag(), config.beta(), precision_algorithm, algorithm, precision, grad_x, grad_y); } absl::StatusOr<GemmConfig::DescriptorsTuple> GemmConfig::GetMatrixDescriptors( se::DeviceMemoryBase lhs_buf, se::DeviceMemoryBase rhs_buf, se::DeviceMemoryBase out_buf) const { auto create_matrix_desc = [](const se::gpu::MatrixLayout& layout, se::DeviceMemoryBase data) -> absl::StatusOr<se::gpu::MatrixDescriptor> { TF_ASSIGN_OR_RETURN(se::blas::DataType type, se::gpu::AsBlasDataType(layout.dtype)); return se::gpu::MatrixDescriptor{ data, layout.leading_dim_stride, layout.batch_stride, type, (layout.order == se::gpu::MatrixLayout::Order::kColumnMajor ? se::blas::Transpose::kNoTranspose : se::blas::Transpose::kTranspose)}; }; se::gpu::MatrixLayout lhs = lhs_layout, rhs = rhs_layout, out = output_layout; bool must_swap_operands = MakeOutputColumnMajor(lhs, rhs, out); if (must_swap_operands) { std::swap(lhs_buf, rhs_buf); } TF_ASSIGN_OR_RETURN(se::gpu::OutputMatrixDescriptor out_desc, create_matrix_desc(out, out_buf)); out_desc.batch_size = out.batch_size; out_desc.m = out.num_rows; out_desc.n = out.num_cols; out_desc.k = lhs.num_cols; TF_ASSIGN_OR_RETURN(out_desc.compute_type, se::gpu::GetBlasComputationType( PrecisionConfig::ALG_UNSET, lhs.dtype, out.dtype, se::blas::kDefaultComputePrecision)); TF_ASSIGN_OR_RETURN(se::gpu::MatrixDescriptor lhs_desc, create_matrix_desc(lhs, lhs_buf)); TF_ASSIGN_OR_RETURN(se::gpu::MatrixDescriptor rhs_desc, create_matrix_desc(rhs, rhs_buf)); return DescriptorsTuple{lhs_desc, rhs_desc, out_desc, must_swap_operands}; } namespace { template <typename Scale, typename Input, typename Output> absl::Status DoGemmWithAlgorithm(const se::gpu::MatrixDescriptor& lhs, const se::gpu::MatrixDescriptor& rhs, const se::gpu::OutputMatrixDescriptor& output, se::DeviceMemoryBase workspace, Scale alpha, Scale beta, se::Stream* stream, PrecisionConfig::Algorithm precision_algorithm, se::blas::AlgorithmType algorithm, se::blas::ComputePrecision compute_precision, const se::NumericOptions& numeric_options, se::blas::ProfileResult* profile_result, se::blas::
#include "xla/service/gpu/matmul_utils.h" #include <cstdint> #include <memory> #include <vector> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_parser.h" #include "xla/shape.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using ::testing::ElementsAre; using ::tsl::testing::IsOkAndHolds; TEST(GetNonContractingDimsTest, Valid) { Shape shape = ParseShape("f32[1,2,3,4,5,6]").value(); EXPECT_THAT(GetNonContractingDims(shape, {4}, {1, 5}), IsOkAndHolds(ElementsAre(0, 2, 3))); } using CanFoldTransposeOperandIntoDotTest = HloTestBase; TEST_F(CanFoldTransposeOperandIntoDotTest, ArgTransposeFoldGemm) { const char* hlo_text = R"( HloModule ArgTransposeFoldGemm ENTRY AddDotsFunc { x = f32[3,2] parameter(0) y = f32[3,4] parameter(1) x_transposed = f32[2,3] transpose(x), dimensions={1, 0} ROOT dot_a = f32[2,4] dot(x_transposed, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_THAT(CanFoldTransposeOperandIntoDot(*dot, 0), IsOkAndHolds(true)); } TEST_F(CanFoldTransposeOperandIntoDotTest, BatchedArgRowColTransposeFoldGemm) { const char* hlo_text = R"( HloModule BatchedArgRowColTransposeFoldGemm ENTRY AddDotsFunc { x = f32[5,3,2] parameter(0) y = f32[5,3,4] parameter(1) x_transposed = f32[5,2,3] transpose(x), dimensions={0, 2, 1} ROOT dot_a = f32[5,2,4] dot(x_transposed, y), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_THAT(CanFoldTransposeOperandIntoDot(*dot, 0), IsOkAndHolds(true)); } TEST_F(CanFoldTransposeOperandIntoDotTest, BatchRowTransposeFoldGemm) { const char* hlo_text = R"( HloModule BatchRowTransposeFoldCheck ENTRY AddDotsFunc { x = f32[2,5,3] parameter(0) y = f32[5,3,4] parameter(1) x_transposed = f32[5,2,3] transpose(x), dimensions={1, 0, 2} ROOT dot_a = f32[5,2,4] dot(x_transposed, y), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_THAT(CanFoldTransposeOperandIntoDot(*dot, 0), IsOkAndHolds(true)); } TEST_F(CanFoldTransposeOperandIntoDotTest, BatchFromMinorDimTransposeDoesntFold) { const char* hlo_text = R"( HloModule BatchFromMinorDimTransposeDoesntFold ENTRY AddDotsFunc { x = f32[3,2,5] parameter(0) y = f32[5,3,4] parameter(1) x_transposed = f32[5,2,3] transpose(x), dimensions={2, 1, 0} ROOT dot_a = f32[5,2,4] dot(x_transposed, y), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_THAT(CanFoldTransposeOperandIntoDot(*dot, 0), IsOkAndHolds(false)); } TEST_F(CanFoldTransposeOperandIntoDotTest, TransposedNonContractingDimsDontFold) { const char* hlo_text = R"( HloModule TransposedNonContractingDimsDontFold ENTRY AddDotsFunc { x = f32[5,3,4]{2,1,0} parameter(1) y = f32[5,2,6,3]{3,1,2,0} parameter(0) y_transposed = f32[5,6,2,3]{3,2,1,0} transpose(y), dimensions={0, 2, 1, 3} ROOT dot_a = f32[5,4,6,2]{3,2,1,0} dot(x, y_transposed), lhs_contracting_dims={1}, rhs_contracting_dims={3}, lhs_batch_dims={0}, rhs_batch_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_THAT(CanFoldTransposeOperandIntoDot(*dot, 1), IsOkAndHolds(false)); } struct GetBatchRowColumnShapeTestParams { absl::string_view shape; std::vector<int64_t> batch_dims; std::vector<int64_t> row_dims; std::vector<int64_t> col_dims; absl::string_view expected_shape; }; using GetBatchRowColumnShapeTest = ::testing::TestWithParam<GetBatchRowColumnShapeTestParams>; TEST_P(GetBatchRowColumnShapeTest, ValidShape) { const GetBatchRowColumnShapeTestParams& params = GetParam(); Shape shape = ParseShape(params.shape).value(); EXPECT_THAT(GetBatchRowColumnShape(shape, params.batch_dims, params.row_dims, params.col_dims), IsOkAndHolds(ParseShape(params.expected_shape).value())); } INSTANTIATE_TEST_SUITE_P( GetBatchRowColumnShapeTests, GetBatchRowColumnShapeTest, ::testing::ValuesIn<GetBatchRowColumnShapeTestParams>({ {"f32[3,4]{1,0}", {}, {0}, {1}, "f32[1,3,4]{2,1,0}"}, {"f32[3,4]{0,1}", {}, {0}, {1}, "f32[1,3,4]{1,2,0}"}, {"f32[3,4]{1,0}", {}, {1}, {0}, "f32[1,4,3]{1,2,0}"}, {"f32[3,4,5]{2,1,0}", {0}, {1}, {2}, "f32[3,4,5]{2,1,0}"}, {"f32[3,4,5]{2,1,0}", {2}, {1}, {0}, "f32[5,4,3]{0,1,2}"}, {"f32[3,4,5,6,7,8]{5,2,4,1,3,0}", {0, 3}, {1, 4}, {2, 5}, "f32[18,28,40]{2,1,0}"}, })); TEST(GetBatchRowColumnShapeTest, BatchRowsColsInterleaved) { Shape shape = ParseShape("f32[3,4,5,6,7,8]{5,4,3,2,1,0}").value(); auto result = GetBatchRowColumnShape(shape, {0, 3}, {1, 4}, {2, 5}); EXPECT_FALSE(result.ok()); } TEST(GetBatchRowColumnShapeTest, WrongPhysicalOrder) { Shape shape = ParseShape("f32[3,4,5,6]{3,2,0,1}").value(); auto result = GetBatchRowColumnShape(shape, {0, 1}, {2}, {3}); EXPECT_FALSE(result.ok()); } using Order = MatrixLayout::Order; struct GetMatrixLayoutTestParams { absl::string_view shape; int64_t batch_size; int64_t num_rows; int64_t num_cols; Order order; int64_t leading_dim_stride; int64_t batch_stride; }; using GetMatrixLayoutTest = ::testing::TestWithParam<GetMatrixLayoutTestParams>; TEST_P(GetMatrixLayoutTest, ValidShape) { const GetMatrixLayoutTestParams& params = GetParam(); Shape shape = ParseShape(params.shape).value(); MatrixLayout result = MatrixLayout::For(shape).value(); EXPECT_EQ(result.batch_size, params.batch_size); EXPECT_EQ(result.num_rows, params.num_rows); EXPECT_EQ(result.num_cols, params.num_cols); EXPECT_EQ(result.order, params.order); EXPECT_EQ(result.leading_dim_stride, params.leading_dim_stride); EXPECT_EQ(result.batch_stride, params.batch_stride); } INSTANTIATE_TEST_SUITE_P( GetMatrixLayoutTests, GetMatrixLayoutTest, ::testing::ValuesIn<GetMatrixLayoutTestParams>({ {"f32[3,4,5]{2,1,0}", 3, 4, 5, Order::kRowMajor, 5, 20}, {"f32[3,4,5]{1,2,0}", 3, 4, 5, Order::kColumnMajor, 4, 20}, {"f32[3,4,5]{2,0,1}", 3, 4, 5, Order::kRowMajor, 15, 5}, {"f32[3,4,5]{1,0,2}", 3, 4, 5, Order::kColumnMajor, 12, 4}, })); TEST(GetMatrixLayoutTest, BatchInMostMinorPhysicalDimension) { Shape shape = ParseShape("f32[3,4,5]{0,2,1}").value(); EXPECT_FALSE(MatrixLayout::For(shape).ok()); } using GetMatrixSizeRewriteThresholdTest = HloTestBase; TEST_F(GetMatrixSizeRewriteThresholdTest, MatMulTooSmallForRewrite) { const char* hlo_text = R"( HloModule DotFuncModule ENTRY DotFunc { x = f32[100,30,3] parameter(0) y = f32[100,3,3] parameter(1) ROOT dot = f32[100,30,3] dot(x, y), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_THAT(IsMatrixMultiplicationTooSmallForRewriting(*dot, 100), IsOkAndHolds(true)); } TEST_F(GetMatrixSizeRewriteThresholdTest, MatMulSupportedByClassicalEmitters) { const char* hlo_text = R"( HloModule DotFuncModule ENTRY DotFunc { x = f32[100,30,3] parameter(0) y = f32[100,3,3] parameter(1) ROOT dot = f32[100,30,3] dot(x, y), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_TRUE(IsDotSupportedByClassicalEmitters(*dot)); } TEST_F(GetMatrixSizeRewriteThresholdTest, MatMulUnsupportedByClassicalEmitters) { const char* hlo_text = R"( HloModule DotFuncModule ENTRY DotFunc { x = s8[100,30,3] parameter(0) y = s8[100,3,3] parameter(1) ROOT dot = s32[100,30,3] dot(x, y), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_FALSE(IsDotSupportedByClassicalEmitters(*dot)); } TEST_F(GetMatrixSizeRewriteThresholdTest, MatMulLeftLargeEnoughForRewrite) { const char* hlo_text = R"( HloModule DotFuncModule ENTRY DotFunc { x = f32[50,2] parameter(0) y = f32[2,2] parameter(1) ROOT dot = f32[50,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_THAT(IsMatrixMultiplicationTooSmallForRewriting(*dot, 100), IsOkAndHolds(false)); } TEST_F(GetMatrixSizeRewriteThresholdTest, MatMulRightLargeEnoughForRewrite) { const char* hlo_text = R"( HloModule DotFuncModule ENTRY DotFunc { x = f32[2,2] parameter(0) y = f32[2,50] parameter(1) ROOT dot = f32[2,50] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_THAT(IsMatrixMultiplicationTooSmallForRewriting(*dot, 100), IsOkAndHolds(false)); } TEST_F(GetMatrixSizeRewriteThresholdTest, MatMulTogetherLargeEnoughForRewrite) { const char* hlo_text = R"( HloModule DotFuncModule ENTRY DotFunc { x = f32[4,16] parameter(0) y = f32[16,4] parameter(1) ROOT dot = f32[4,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_THAT(IsMatrixMultiplicationTooSmallForRewriting(*dot, 100), IsOkAndHolds(false)); } } } }
2,101
cpp
tensorflow/tensorflow
gpu_spmd_pipeline
third_party/xla/xla/service/gpu/gpu_spmd_pipeline.cc
third_party/xla/xla/service/gpu/gpu_spmd_pipeline_test.cc
#ifndef XLA_SERVICE_GPU_GPU_SPMD_PIPELINE_H_ #define XLA_SERVICE_GPU_GPU_SPMD_PIPELINE_H_ #include <optional> #include "absl/functional/function_ref.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/algebraic_simplifier.h" #include "xla/service/hlo_pass_pipeline.h" namespace xla { namespace gpu { void AddSPMDPasses( const HloModule* hlo_module, const AlgebraicSimplifierOptions& layout_insensitive_algsimp_opts, const se::GpuComputeCapability& compute_capability, HloPassPipeline& spmd_pipeline, std::optional<const absl::FunctionRef<void(HloPassPipeline&)>> auto_sharding_func = std::nullopt); } } #endif #include "xla/service/gpu/gpu_spmd_pipeline.h" #include <cstdint> #include <optional> #include "absl/functional/function_ref.h" #include "absl/log/check.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/hlo/transforms/hlo_constant_splitter.h" #include "xla/service/algebraic_simplifier.h" #include "xla/service/conditional_simplifier.h" #include "xla/service/gather_expander.h" #include "xla/service/gpu/gpu_algebraic_simplifier.h" #include "xla/service/hlo_constant_folding.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_pass_fix.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/service/reshape_mover.h" #include "xla/service/scatter_expander.h" #include "xla/service/sharding_propagation.h" #include "xla/service/sort_simplifier.h" #include "xla/service/spmd/collective_permute_motion.h" #include "xla/service/spmd/stateful_rng_spmd_partitioner.h" #include "xla/service/tuple_simplifier.h" #include "xla/service/while_loop_constant_sinking.h" #include "xla/service/while_loop_simplifier.h" #include "xla/stream_executor/device_description.h" namespace xla { namespace gpu { void AddSPMDPasses( const HloModule* hlo_module, const AlgebraicSimplifierOptions& layout_insensitive_algsimp_opts, const se::GpuComputeCapability& compute_capability, HloPassPipeline& spmd_pipeline, std::optional<const absl::FunctionRef<void(HloPassPipeline&)>> auto_sharding_func) { const int64_t num_partitions = hlo_module->config().num_partitions(); CHECK_GE(num_partitions, 1); HloPassPipeline& spmd_simplify = spmd_pipeline.AddPass<HloPassFix<HloPassPipeline>>("spmd-simplify"); spmd_simplify.AddPass<GpuAlgebraicSimplifier>(layout_insensitive_algsimp_opts, compute_capability); spmd_simplify.AddPass<SortSimplifier>(); spmd_simplify.AddPass<TupleSimplifier>(); spmd_simplify.AddPass<ScatterExpander>( ScatterExpander::kEliminateSimpleScatters); spmd_simplify.AddPass<GatherExpander>( GatherExpander::kEliminateSimpleGathers); spmd_simplify.AddPass<WhileLoopConstantSinking>(); spmd_simplify.AddPass<WhileLoopSimplifier>(); ReshapeMoverOptions reshape_mover_options; reshape_mover_options.reshape_of_1d_broadcast_is_cheap = true; spmd_simplify.AddPass<ReshapeMover>(reshape_mover_options); spmd_simplify.AddPass<HloPassFix<GpuAlgebraicSimplifier>>( layout_insensitive_algsimp_opts, compute_capability); spmd_simplify.AddPass<HloConstantFolding>(); spmd_simplify.AddPass<ConditionalSimplifier>(); spmd_pipeline.AddPass<HloConstantSplitter>(); spmd_simplify.AddPass<HloDCE>(); if (auto_sharding_func.has_value()) { (*auto_sharding_func)(spmd_pipeline); } spmd_pipeline.AddPass<ShardingPropagation>( true, false, hlo_module->config().allow_spmd_sharding_propagation_to_output()); spmd_pipeline.AddPass<spmd::StatefulRngSpmdPartitioner>( num_partitions, hlo_module->config().replica_count(), hlo_module->config() .debug_options() .xla_gpu_threshold_for_windowed_einsum_mib(), hlo_module->config() .debug_options() .xla_gpu_multi_streamed_windowed_einsum(), true, true); spmd_pipeline.AddPass<CollectivePermuteMotion>(); } } }
#include "xla/service/gpu/gpu_spmd_pipeline.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <gtest/gtest.h> #include "absl/log/check.h" #include "absl/log/log.h" #include "xla/client/executable_build_options.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/algebraic_simplifier.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_parser.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { class GpuSpmdPartitioningTest : public HloTestBase, public ::testing::WithParamInterface<bool> { public: absl::StatusOr<std::unique_ptr<HloModule>> PartitionComputation( const char* hlo_module, int64_t num_devices) { HloModuleConfig config = GetModuleConfigForTest( 1, num_devices); config.set_num_partitions(num_devices); TF_ASSIGN_OR_RETURN(auto module, ParseAndReturnVerifiedModule(hlo_module, config)); EXPECT_FALSE(config.debug_options().xla_use_shardonnay()) << "Shardonnay not supported yet"; HloPassPipeline spmd_pipeline("spmd-partitioner"); se::CudaComputeCapability ampere(8, 0); AlgebraicSimplifierOptions alg_simplifier_options; AddSPMDPasses(module.get(), alg_simplifier_options, ampere, spmd_pipeline, std::nullopt); TF_RETURN_IF_ERROR(spmd_pipeline.Run(module.get()).status()); XLA_VLOG_LINES(10, module->ToString()); return module; } protected: bool UseShardonnay() const { return GetParam(); } DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = HloTestBase::GetDebugOptionsForTest(); debug_options.set_xla_use_shardonnay(UseShardonnay()); return debug_options; } }; TEST_P(GpuSpmdPartitioningTest, DotWithEntryComputationLayout) { if (UseShardonnay()) { GTEST_SKIP() << "Shardonnay not supported yet"; } const char* const kHloModule = R"( HloModule module, entry_computation_layout={(f32[8,16]{0,1}, f32[16,24]{1,0}) ->f32[8,24]{1,0}} ENTRY main { %p0 = f32[8,16] parameter(0), sharding={devices=[1,8]<=[8]} %p1 = f32[16,24] parameter(1), sharding={devices=[8,1]<=[8]} ROOT %dot = f32[8,24] dot(%p0, %p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, PartitionComputation(kHloModule, 8)); EXPECT_EQ(module->config().entry_computation_layout().parameter_shape(0), ShapeUtil::MakeShapeWithDenseLayout(F32, {8, 2}, {0, 1})); EXPECT_EQ(module->config().entry_computation_layout().parameter_shape(1), ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 24}, {1, 0})); EXPECT_EQ(module->config().entry_computation_layout().result_shape(), ShapeUtil::MakeShapeWithDenseLayout(F32, {8, 24}, {1, 0})); } std::string TestParamToString( const ::testing::TestParamInfo<bool>& param_info) { return param_info.param ? "Shardonnay" : "GSPMD"; } INSTANTIATE_TEST_SUITE_P(All, GpuSpmdPartitioningTest, ::testing::Values(true, false), TestParamToString); } } }
2,102
cpp
tensorflow/tensorflow
custom_kernel_fusion_rewriter
third_party/xla/xla/service/gpu/transforms/custom_kernel_fusion_rewriter.cc
third_party/xla/xla/service/gpu/transforms/custom_kernel_fusion_rewriter_test.cc
#ifndef XLA_SERVICE_GPU_CUSTOM_KERNEL_FUSION_REWRITER_H_ #define XLA_SERVICE_GPU_CUSTOM_KERNEL_FUSION_REWRITER_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/service/gpu/kernels/custom_kernel_fusion_pattern.h" #include "xla/service/hlo_pass_interface.h" #include "xla/stream_executor/device_description.h" namespace xla::gpu { class CustomKernelFusionRewriter : public HloModulePass { public: explicit CustomKernelFusionRewriter( const se::DeviceDescription* device, const CustomKernelFusionPatternRegistry* patterns = CustomKernelFusionPatternRegistry::Default()); absl::string_view name() const override { return "custom-kernel-fusion-rewriter"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: const se::DeviceDescription* device_; const CustomKernelFusionPatternRegistry* patterns_; }; } #endif #include "xla/service/gpu/custom_kernel_fusion_rewriter.h" #include <cstdint> #include <optional> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/gpu/kernels/custom_kernel_fusion_pattern.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla::gpu { CustomKernelFusionRewriter::CustomKernelFusionRewriter( const se::DeviceDescription* device, const CustomKernelFusionPatternRegistry* patterns) : device_(device), patterns_(patterns) {} static std::optional<absl::flat_hash_set<HloInstruction*>> GetPatternReplacements(const CustomKernelFusionPattern::Match& match) { absl::flat_hash_set<HloInstruction*> requires_replacement; absl::flat_hash_set<HloInstruction*> instructions_set( match.instructions().begin(), match.instructions().end()); for (HloInstruction* instr : match.instructions()) { for (HloInstruction* user : instr->users()) { if (instr == match.root() || instructions_set.contains(user)) continue; if (match.HasReplacement(instr)) { requires_replacement.insert(instr); continue; } VLOG(3) << "Custom kernel fusion intermediate result " << instr->name() << " has users outside of a matched pattern: " << user->name(); return std::nullopt; } } return requires_replacement; } static absl::InlinedVector<HloInstruction*, 4> GetPatternCaptures( const CustomKernelFusionPattern::Match& match) { absl::InlinedVector<HloInstruction*, 4> captures; absl::flat_hash_set<HloInstruction*> instructions_set( match.instructions().begin(), match.instructions().end()); for (HloInstruction* instr : match.instructions()) { for (HloInstruction* operand : instr->operands()) { if (!instructions_set.contains(operand) && absl::c_find(captures, operand) == captures.end()) { captures.emplace_back(operand); } } } return captures; } static absl::StatusOr<HloComputation*> CreateFusionBody( HloModule* module, const CustomKernelFusionPattern::Match& match, absl::Span<HloInstruction* const> captures) { HloComputation::Builder builder(match.config().name()); absl::flat_hash_map<const HloInstruction*, HloInstruction*> instr_mapping; auto mapped_operands = [&](HloInstruction* instr) { absl::InlinedVector<HloInstruction*, 4> operands; for (HloInstruction* operand : instr->operands()) { operands.push_back(instr_mapping.at(operand)); } return operands; }; for (const HloInstruction* capture : captures) { int64_t index = instr_mapping.size(); instr_mapping[capture] = builder.AddInstruction(HloInstruction::CreateParameter( index, capture->shape(), absl::StrCat("p", index))); } for (HloInstruction* instr : match.instructions()) { instr_mapping[instr] = builder.AddInstruction( instr->CloneWithNewOperands(instr->shape(), mapped_operands(instr))); } HloInstruction* root = builder.last_added_instruction(); if (match.workspace_size_bytes() > 0) { auto workspace_shape = ShapeUtil::MakeShape(PrimitiveType::U8, {match.workspace_size_bytes()}); HloInstruction* workspace = builder.AddInstruction(HloInstruction::CreateCustomCall( workspace_shape, {}, CustomKernelFusionPattern::kWorkspace, "", CustomCallApiVersion::API_VERSION_TYPED_FFI)); builder.AddInstruction(HloInstruction::CreateTuple({root, workspace})); } return module->AddComputationAndUnifyNamesAndIds(builder.Build(), false); } static absl::StatusOr<HloInstruction*> CreateFusionInstruction( HloModule* module, const CustomKernelFusionPattern::Match& match, absl::Span<HloInstruction* const> captures, HloComputation* body) { HloInstruction* root = match.root(); HloComputation* parent = root->parent(); HloInstruction* fusion = parent->AddInstruction(HloInstruction::CreateFusion( body->root_instruction()->shape(), HloInstruction::FusionKind::kCustom, captures, body)); module->SetAndUniquifyInstrName(fusion, match.config().name()); GpuBackendConfig gpu_config; FusionBackendConfig& backend_config = *gpu_config.mutable_fusion_backend_config(); backend_config.set_kind("__custom_fusion"); *backend_config.mutable_custom_fusion_config() = match.config(); TF_RETURN_IF_ERROR(fusion->set_backend_config(std::move(gpu_config))); if (match.workspace_size_bytes() == 0) return fusion; return parent->AddInstruction( HloInstruction::CreateGetTupleElement(fusion, 0)); } absl::StatusOr<bool> CustomKernelFusionRewriter::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { std::vector<CustomKernelFusionPattern::Match> matches; for (HloComputation* computation : module->computations()) { for (HloInstruction* instr : computation->instructions()) { auto matched = patterns_->Match(*device_, instr); matches.insert(matches.end(), matched.begin(), matched.end()); } } if (matches.empty()) return false; for (const CustomKernelFusionPattern::Match& match : matches) { VLOG(2) << "Matched custom kernel fusion " << match.config().name() << "; root instruction: " << match.instructions().back()->name(); auto replacememts = GetPatternReplacements(match); if (!replacememts.has_value()) continue; auto captures = GetPatternCaptures(match); TF_ASSIGN_OR_RETURN(HloComputation * fusion_body, CreateFusionBody(module, match, captures)); TF_ASSIGN_OR_RETURN( HloInstruction * fusion, CreateFusionInstruction(module, match, captures, fusion_body)); VLOG(2) << "Added a fusion instruction: " << fusion->name() << " for custom kernel fusion " << match.config().name() << " (instruction count = " << match.instructions().size() << ")"; for (HloInstruction* instr : *replacememts) { VLOG(2) << "Replace matched instruction: " << instr->name() << " with a pattern replacement"; TF_ASSIGN_OR_RETURN( HloInstruction * replacement, match.BuildReplacement(instr, Cast<HloFusionInstruction>(fusion))); TF_RETURN_IF_ERROR( instr->ReplaceAllUsesWith(replacement, match.config().name())); VLOG(2) << "Replaced instruction: " << instr->name() << " with: " << replacement->name(); } VLOG(2) << "Replace custom kernel fusion root instruction " << match.root()->name() << "with " << fusion->name(); HloComputation* parent = match.root()->parent(); TF_RETURN_IF_ERROR(parent->ReplaceInstruction(match.root(), fusion)); } return true; } }
#include "xla/service/gpu/custom_kernel_fusion_rewriter.h" #include <cstdint> #include <optional> #include <utility> #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/kernels/custom_kernel_fusion_pattern.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/test.h" namespace xla::gpu { struct SimpleGemmPattern : public CustomKernelFusionPattern { explicit SimpleGemmPattern(int64_t workspace = 0) : workspace(workspace) {} std::optional<Match> TryMatch(const se::DeviceDescription& device, HloInstruction* instr) const override { if (auto* dot = DynCast<HloDotInstruction>(instr)) { CustomFusionConfig config; config.set_name("simple_gemm"); return Match{config, {instr}, workspace}; } return std::nullopt; } int64_t workspace; }; class CustomKernelFusionRewriterTest : public HloTestBase {}; TEST_F(CustomKernelFusionRewriterTest, SimpleGemm) { const char* hlo = R"( HloModule test ENTRY %main (p0: f16[15,19], p1: f16[19,17]) -> f16[15,17] { %p0 = f16[15,19]{1,0} parameter(0) %p1 = f16[19,17]{1,0} parameter(1) ROOT %r = f16[15,17]{1,0} dot(%p0, %p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; const char* expected = R"( ; CHECK: %simple_gemm {{.*}} { ; CHECK: [[P0:%[^ ]+]] = f16[15,19]{1,0} parameter(0) ; CHECK: [[P1:%[^ ]+]] = f16[19,17]{1,0} parameter(1) ; CHECK: ROOT [[DOT:%[^ ]+]] = f16[15,17]{1,0} dot([[P0]], [[P1]]), ; CHECK: lhs_contracting_dims={1}, rhs_contracting_dims={0} ; CHECK: } ; CHECK: ENTRY %main {{.*}} { ; CHECK: ROOT [[FUSION:%[^ ]+]] = f16[15,17]{1,0} fusion ; CHECK: kind=kCustom, calls=%simple_gemm, ; CHECK: backend_config={ ; CHECK: "kind":"__custom_fusion", ; CHECK: "custom_fusion_config":{"name":"simple_gemm"} ; CHECK: } ; CHECK: } )"; CustomKernelFusionPatternRegistry patterns; patterns.Emplace<SimpleGemmPattern>(); auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); CustomKernelFusionRewriter pass(&device, &patterns); RunAndFilecheckHloRewrite(hlo, std::move(pass), expected); } TEST_F(CustomKernelFusionRewriterTest, SimpleGemmWithWorkspace) { const char* hlo = R"( HloModule test ENTRY %main (p0: f16[15,19], p1: f16[19,17]) -> f16[15,17] { %p0 = f16[15,19]{1,0} parameter(0) %p1 = f16[19,17]{1,0} parameter(1) ROOT %r = f16[15,17]{1,0} dot(%p0, %p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; const char* expected = R"( ; CHECK: %simple_gemm {{.*}} { ; CHECK: [[P0:%[^ ]+]] = f16[15,19]{1,0} parameter(0) ; CHECK: [[P1:%[^ ]+]] = f16[19,17]{1,0} parameter(1) ; CHECK: [[DOT:%[^ ]+]] = f16[15,17]{1,0} dot([[P0]], [[P1]]), ; CHECK: lhs_contracting_dims={1}, rhs_contracting_dims={0} ; CHECK: [[WORKSPACE:%[^ ]+]] = u8[1024]{0} custom-call(), ; CHECK: custom_call_target="__custom_kernel_fusion$workspace" ; CHECK: ROOT [[TUPLE:%[^ ]+]] = (f16[15,17]{1,0}, u8[1024]{0}) ; CHECK: tuple([[DOT]], [[WORKSPACE]]) ; CHECK: } ; CHECK: ENTRY %main {{.*}} { ; CHECK: [[FUSION:%[^ ]+]] = (f16[15,17]{1,0}, u8[1024]{0}) fusion ; CHECK: kind=kCustom, calls=%simple_gemm, ; CHECK: backend_config={ ; CHECK: "kind":"__custom_fusion", ; CHECK: "custom_fusion_config":{"name":"simple_gemm"} ; CHECK: } ; CHECK: ROOT {{.*}} get-tuple-element([[FUSION]]), index=0 ; CHECK: } )"; CustomKernelFusionPatternRegistry patterns; patterns.Emplace<SimpleGemmPattern>(1024); auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); CustomKernelFusionRewriter pass(&device, &patterns); RunAndFilecheckHloRewrite(hlo, std::move(pass), expected); } }
2,103
cpp
tensorflow/tensorflow
copy_fusion
third_party/xla/xla/service/gpu/transforms/copy_fusion.cc
third_party/xla/xla/service/gpu/transforms/copy_fusion_test.cc
#ifndef XLA_SERVICE_GPU_COPY_FUSION_H_ #define XLA_SERVICE_GPU_COPY_FUSION_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace gpu { class CopyFusion : public HloModulePass { public: CopyFusion() = default; absl::string_view name() const override { return "copy_fusion"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: absl::StatusOr<bool> DoCopyFusion(HloComputation* computation); }; } } #endif #include "xla/service/gpu/copy_fusion.h" #include <cstdint> #include <queue> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/gpu_fusible.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/reduction_utils.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace xla { namespace gpu { bool OnlyElementwiseOpsReachableFromParams(HloComputation* fused_computation) { std::queue<const HloInstruction*> q; absl::flat_hash_set<const HloInstruction*> visited; for (auto param : fused_computation->parameter_instructions()) { q.push(param); visited.insert(param); } while (!q.empty()) { const HloInstruction* hlo = q.front(); q.pop(); for (auto user : hlo->users()) { if ((!user->IsElementwiseOnOperand(user->operand_index(hlo)) || user->opcode() == HloOpcode::kCopy) && user->opcode() != HloOpcode::kBitcast && user->opcode() != HloOpcode::kTuple) { return false; } if (visited.insert(user).second) { q.push(user); } } } return true; } absl::StatusOr<bool> CopyFusion::DoCopyFusion(HloComputation* computation) { bool changed = false; std::vector<HloInstruction*> defs_before_uses = computation->MakeInstructionPostOrder(); for (HloInstruction* hlo : defs_before_uses) { if (hlo->opcode() != HloOpcode::kFusion) { continue; } std::vector<HloInstruction*> copies; std::vector<HloInstruction*> other_users; HloComputation* fused_computation = hlo->fused_instructions_computation(); if (!OnlyElementwiseOpsReachableFromParams(fused_computation)) { continue; } HloInstruction* root = fused_computation->root_instruction(); if (IsReductionFromOrToContiguousDimensions(*root) || root->opcode() == HloOpcode::kScatter || (hlo->IsMultiOutputFusion() && absl::c_all_of(root->operands(), [](const HloInstruction* slice) { return slice->opcode() == HloOpcode::kSlice; }))) { continue; } for (auto user : hlo->users()) { HloInstruction* copy_user = user; if (copy_user->opcode() == HloOpcode::kGetTupleElement && copy_user->user_count() == 1) { if (IsReductionFromOrToContiguousDimensions( *(root->operand(copy_user->tuple_index())))) { other_users.push_back(user); continue; } copy_user = copy_user->users()[0]; } if (copy_user->opcode() == HloOpcode::kBitcast && copy_user->user_count() == 1) { copy_user = copy_user->users()[0]; } if (copy_user->opcode() == HloOpcode::kCopy && copy_user->shape() == copy_user->operand(0)->shape() && !copy_user->shape().IsTuple() && !copy_user->HasControlDependencies()) { copies.push_back(copy_user); } else { other_users.push_back(user); } } if (copies.empty()) { continue; } auto fusion_adaptor = HloFusionAdaptor::ForComputation(fused_computation); auto dynamic_update_slices = GetOutputDefiningDynamicUpdateSlices(fusion_adaptor->GetRoots()); if (!dynamic_update_slices.empty() && (root->opcode() != HloOpcode::kTuple || dynamic_update_slices.size() == root->shape().tuple_shapes_size())) { continue; } changed = true; HloInstruction::InstructionVector tuple_elements; int64_t num_outputs = hlo->IsMultiOutputFusion() ? root->operand_count() : int64_t{1}; tuple_elements.reserve(copies.size() + num_outputs); if (hlo->IsMultiOutputFusion()) { for (HloInstruction* operand : root->operands()) { tuple_elements.push_back(operand); } } else { tuple_elements.push_back(root); } for (auto copy : copies) { HloInstruction* user = copy; std::vector<HloInstruction*> operand_chain; operand_chain.push_back(user); while (user->operand(0) != hlo) { user = user->mutable_operand(0); operand_chain.push_back(user); } HloInstruction* clone_operand = root; if (hlo->IsMultiOutputFusion()) { clone_operand = root->mutable_operand(user->tuple_index()); CHECK_EQ(operand_chain.back()->opcode(), HloOpcode::kGetTupleElement); operand_chain.pop_back(); } for (int64_t i = operand_chain.size() - 1; i >= 0; --i) { HloInstruction* user = operand_chain[i]; clone_operand = fused_computation->AddInstruction( user->CloneWithNewOperands(user->shape(), {clone_operand})); } tuple_elements.push_back(clone_operand); } HloInstruction* new_root = fused_computation->AddInstruction( HloInstruction::CreateTuple(tuple_elements)); fused_computation->set_root_instruction(new_root, true); *hlo->mutable_shape() = new_root->shape(); if (root->opcode() == HloOpcode::kTuple) { TF_RETURN_IF_ERROR(fused_computation->RemoveInstruction(root)); } else { auto get_tuple_element_root = computation->AddInstruction( HloInstruction::CreateGetTupleElement(hlo, 0)); TF_RETURN_IF_ERROR(hlo->ReplaceAllUsesWithDifferentShape( other_users, get_tuple_element_root)); } for (int64_t i = 0; i < copies.size(); ++i) { auto get_tuple_element = computation->AddInstruction( HloInstruction::CreateGetTupleElement(hlo, num_outputs + i)); TF_RETURN_IF_ERROR( computation->ReplaceInstruction(copies[i], get_tuple_element)); } } return changed; } absl::StatusOr<bool> CopyFusion::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { return DoCopyFusion(module->entry_computation()); } } }
#include "xla/service/gpu/copy_fusion.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace gpu { namespace m = ::xla::match; class CopyFusionTest : public HloTestBase { public: CopyFusion cf_; }; const char kModulePrefix[] = R"( HloModule test_module scalar_add_computation { scalar_lhs.0 = f32[] parameter(0) scalar_rhs.0 = f32[] parameter(1) ROOT add.0 = f32[] add(scalar_lhs.0, scalar_rhs.0) } scalar_mul_computation { scalar_lhs.1 = f32[] parameter(0) scalar_rhs.1 = f32[] parameter(1) ROOT mul.1 = f32[] multiply(scalar_lhs.1, scalar_rhs.1) })"; TEST_F(CopyFusionTest, CopyFusionTransposeOfBroadcastedConstantTwoCopies) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation { two = f32[] constant(2.0) broadcast = f32[16,32]{1,0} broadcast(two), dimensions={} s.1 = f32[16,32]{1,0} sqrt(broadcast) ROOT c.1 = f32[32,16]{1,0} transpose(s.1), dimensions={1,0} } ENTRY main { fusion = f32[32,16]{1,0} fusion(), kind=kInput, calls=fused_computation copy.1 = f32[32,16]{1,0} copy(fusion) copy.2 = f32[32,16]{1,0} copy(fusion) ROOT t = (f32[32,16]{1,0}, f32[32,16]{1,0}) tuple(copy.2, copy.1) })")) .value(); ASSERT_TRUE(cf_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(root, GmockMatch(m::Tuple(m::GetTupleElement(m::Fusion(&fusion)), m::GetTupleElement()))); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Transpose(), m::Copy(), m::Copy()))); } TEST_F(CopyFusionTest, CopyFusionTransposeTwoCopies) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation { param_0.1 = f32[16,32]{1,0} parameter(0) s.1 = f32[16,32]{1,0} sqrt(param_0.1) ROOT c.1 = f32[32,16]{1,0} transpose(s.1), dimensions={1,0} } ENTRY main { p = f32[16,32]{1,0} parameter(0) fusion = f32[32,16]{1,0} fusion(p), kind=kInput, calls=fused_computation copy.1 = f32[32,16]{1,0} copy(fusion) copy.2 = f32[32,16]{1,0} copy(fusion) ROOT t = (f32[32,16]{1,0}, f32[32,16]{1,0}) tuple(copy.2, copy.1) })")) .value(); ASSERT_FALSE(cf_.Run(module.get()).value()); } TEST_F(CopyFusionTest, CopyFusionNegateAndTwoCopies) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation { p1.1 = f32[128,512,28,28]{3,2,1,0} parameter(0) mul = f32[128,512,28,28]{3,2,1,0} multiply(p1.1, p1.1) ROOT neg = f32[128,512,28,28]{3,2,1,0} negate(mul) } ENTRY entry { p0 = f32[128,512,28,28]{3,2,1,0} parameter(0) fusion = f32[128,512,28,28]{3,2,1,0} fusion(p0), kind=kInput, calls=fused_computation copy.1 = f32[128,512,28,28]{3,2,1,0} copy(fusion) copy.2 = f32[128,512,28,28]{3,2,1,0} copy(fusion) ROOT root = (f32[128,512,28,28]{3,2,1,0}, f32[128,512,28,28]{3,2,1,0}) tuple(copy.1, copy.2) })")) .value(); ASSERT_TRUE(cf_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(root, GmockMatch(m::Tuple(m::GetTupleElement(m::Fusion(&fusion)), m::GetTupleElement()))); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Negate(), m::Copy(), m::Copy()))); } TEST_F(CopyFusionTest, CopyFusionShouldNotRunWithReduce) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation { p1.1 = f32[128,512,28,28]{3,2,1,0} parameter(1) mul = f32[128,512,28,28]{3,2,1,0} multiply(p1.1, p1.1) const.1 = f32[] parameter(0) ROOT reduce.1 = f32[512]{0} reduce(mul, const.1), dimensions={0,2,3}, to_apply=scalar_add_computation } ENTRY entry { p0 = f32[] parameter(0) p1 = f32[128,512,28,28]{3,2,1,0} parameter(1) fusion = f32[512] fusion(p0, p1), kind=kInput, calls=fused_computation copy.1 = f32[512]{0} copy(fusion) copy.2 = f32[512]{0} copy(fusion) ROOT root = (f32[512]{0}, f32[512]{0}) tuple(copy.1, copy.2) })")) .value(); ASSERT_FALSE(cf_.Run(module.get()).value()); } TEST_F(CopyFusionTest, CopyFusionShouldRunWithUncopiedReduce) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation { two = f32[] constant(2.0) broadcast = f32[128,512,28,28]{3,2,1,0} broadcast(two) mul = f32[128,512,28,28]{3,2,1,0} multiply(broadcast, broadcast) const = f32[] constant(0.0) reduce = f32[512]{0} reduce(mul, const), dimensions={0,2,3}, to_apply=scalar_add_computation ROOT tuple = (f32[128,512,28,28]{3,2,1,0}, f32[512]{0}) tuple(mul, reduce) } ENTRY entry { fusion = (f32[128,512,28,28]{3,2,1,0}, f32[512]) fusion(), kind=kInput, calls=fused_computation gte = f32[128,512,28,28]{3,2,1,0} get-tuple-element(fusion), index=0 gte.2 = f32[512]{0} get-tuple-element(fusion), index=1 copy.1 = f32[128,512,28,28]{3,2,1,0} copy(gte) ROOT root = (f32[128,512,28,28]{3,2,1,0}, f32[512]{0}) tuple(copy.1, gte.2) })")) .value(); ASSERT_TRUE(cf_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(root, GmockMatch(m::Tuple(m::GetTupleElement(m::Fusion(&fusion)), m::GetTupleElement()))); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Multiply(), m::Reduce(), m::Copy()))); } TEST_F(CopyFusionTest, CopyFusionShouldNotFuseForSliceMultioutputFusion) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation { p1 = f32[128,512,28,28]{3,2,1,0} parameter(0) mul = f32[128,512,28,28]{3,2,1,0} multiply(p1, p1) slice1 = f32[128,100,28,28]{3,2,1,0} slice(mul), slice={[0:128],[0:100],[0:28],[0:28]} slice2 = f32[128,200,28,28]{3,2,1,0} slice(mul), slice={[0:128],[50:250],[0:28],[0:28]} ROOT tuple = (f32[128,100,28,28]{3,2,1,0}, f32[128,200,28,28]{3,2,1,0}) tuple(slice1, slice2) } ENTRY entry { p1 = f32[128,512,28,28]{3,2,1,0} parameter(0) ROOT fusion = (f32[128,100,28,28]{3,2,1,0}, f32[128,200,28,28]{3,2,1,0}) fusion(p1), kind=kInput, calls=fused_computation })")) .value(); ASSERT_FALSE(cf_.Run(module.get()).value()); } TEST_F(CopyFusionTest, CopyFusionShouldNotRunWithScatter) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation { p0 = f32[50,49,48,47,46]{4,3,2,1,0} parameter(0) scatter_indices = s64[10,9,8,7,5]{4,3,2,1,0} parameter(1) updates = f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} parameter(2) input_tensor = f32[50,49,48,47,46]{4,3,2,1,0} negate(p0) ROOT %scatter = f32[50,49,48,47,46]{4,3,2,1,0} scatter(input_tensor, scatter_indices, updates), update_window_dims={4,5,6,7,8}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1,2,3,4}, index_vector_dim=4, to_apply=scalar_add_computation } ENTRY entry { param.0 = f32[50,49,48,47,46]{4,3,2,1,0} parameter(0) param.1 = s64[10,9,8,7,5]{4,3,2,1,0} parameter(1) param.2 = f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} parameter(2) fusion = f32[50,49,48,47,46]{4,3,2,1,0} fusion(param.0, param.1, param.2), kind=kInput, calls=fused_computation ROOT copy = f32[50,49,48,47,46]{4,3,2,1,0} copy(fusion) })")) .value(); ASSERT_FALSE(cf_.Run(module.get()).value()); } TEST_F(CopyFusionTest, CopyFusionShouldNotRunOutsideEntryComputation) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation.549 { param_0.8511 = bf16[15,1,2,2048,48,128]{3,5,4,2,1,0} parameter(0) bitcast.52601 = bf16[15,1,2,48,128,2048]{5,4,3,2,1,0} bitcast(param_0.8511) slice = bf16[15,1,2,48,128,1]{5,4,3,2,1,0} slice(bitcast.52601), slice={[0:15:1], [0:1:1], [0:2:1], [0:48:1], [0:128:1], [0:1:1]} bitcast = bf16[15,1,2,48,128]{4,3,2,1,0} bitcast(slice) ROOT broadcast = bf16[15,1,2,48,128,2048]{5,4,3,2,1,0} broadcast(bitcast), dimensions={0,1,2,3,4} } condition { constant_6915 = s32[] constant(15) param.218 = (bf16[15,1,2,2048,48,128]{3,5,4,2,1,0}, s32[]) parameter(0) get-tuple-element.3714 = s32[] get-tuple-element(param.218), index=1 ROOT compare.1738 = pred[] compare(get-tuple-element.3714, constant_6915), direction=LT } body { tuple_param = (bf16[15,1,2,2048,48,128]{3,5,4,2,1,0}, s32[]) parameter(0) param_0 = bf16[15,1,2,2048,48,128]{3,5,4,2,1,0} get-tuple-element(tuple_param), index=0 param_1 = s32[] get-tuple-element(tuple_param), index=1 fusion.549 = bf16[15,1,2,48,128,2048]{5,4,3,2,1,0} fusion(param_0), kind=kLoop, calls=fused_computation.549 bitcast = bf16[15,1,2,2048,48,128]{3,5,4,2,1,0} bitcast(fusion.549) copy = bf16[15,1,2,2048,48,128]{3,5,4,2,1,0} copy(bitcast) constant_one = s32[] constant(1) add = s32[] add(param_1, constant_one), control-predecessors={fusion.549} ROOT tuple = (bf16[15,1,2,2048,48,128]{3,5,4,2,1,0}, s32[]) tuple(copy, add) } ENTRY main { param_0 = bf16[15,1,2,2048,48,128]{3,5,4,2,1,0} parameter(0) zero = s32[] constant(0) copy.0 = bf16[15,1,2,2048,48,128]{3,5,4,2,1,0} copy(param_0) copy.1 = s32[] copy(zero) tuple = tuple(copy.0, copy.1) ROOT while = (bf16[15,1,2,2048,48,128]{3,5,4,2,1,0}, s32[]) while(tuple), condition=condition, body=body, backend_config="{\"known_trip_count\":{\"n\":\"15\"}}" })")) .value(); ASSERT_FALSE(cf_.Run(module.get()).value()); } TEST_F(CopyFusionTest, CopyFusionShouldNotRunWithDynamicUpdateSliceInplace) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation { p.0 = f16[50,96,1024]{2,1,0} parameter(0) p.1 = f16[1,96,1024]{2,1,0} parameter(1) c.0 = s32[3]{0} constant({0, 0, 0}) ROOT %dynamic-update-slice = f16[50,96,1024]{2,1,0} dynamic-update-slice(p.0, p.1, c.0) } ENTRY entry { p0 = f16[50,96,1024]{2,1,0} parameter(0) p1 = f16[1,96,1024]{2,1,0} parameter(1) fusion = f16[50,96,1024]{2,1,0} fusion(p0, p1), kind=kInput, calls=fused_computation copy.1 = f16[50,96,1024]{2,1,0} copy(fusion) copy.2 = f16[50,96,1024]{2,1,0} copy(fusion) ROOT root = (f16[50,96,1024]{2,1,0}, f16[50,96,1024]{2,1,0}) tuple(copy.1, copy.2) })")) .value(); ASSERT_FALSE(cf_.Run(module.get()).value()); } TEST_F(CopyFusionTest, CopyFusionWithDynamicUpdateSliceNotInplace) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation { one = f32[] constant(1.0) zero = f32[] constant(0.0) p.0 = f16[50,96,1024]{2,1,0} broadcast(one), dimensions={} p.1 = f16[1,96,1024]{2,1,0} broadcast(zero), dimensions={} c.0 = s32[3]{0} constant({0, 0, 0}) dynamic-update-slice = f16[50,96,1024]{2,1,0} dynamic-update-slice(p.0, p.1, c.0) neg = f16[50,96,1024]{2,1,0} negate(dynamic-update-slice) ROOT tuple = (f16[50,96,1024]{2,1,0}, f16[50,96,1024]{2,1,0}) tuple(dynamic-update-slice, neg) } ENTRY entry { fusion = (f16[50,96,1024]{2,1,0}, f16[50,96,1024]{2,1,0}) fusion(), kind=kInput, calls=fused_computation gte.0 = f16[50,96,1024]{2,1,0} get-tuple-element(fusion), index=0 gte.1 = f16[50,96,1024]{2,1,0} get-tuple-element(fusion), index=1 bitcast = f16[1,50,96,1024]{3,2,1,0} bitcast(gte.0) copy = f16[1,50,96,1024]{3,2,1,0} copy(bitcast) ROOT root = (f16[1,50,96,1024]{3,2,1,0}, f16[50,96,1024]{2,1,0}) tuple(copy, gte.1) })")) .value(); ASSERT_TRUE(cf_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(root, GmockMatch(m::Tuple(m::GetTupleElement(m::Fusion(&fusion)), m::GetTupleElement()))); EXPECT_THAT( fusion->fused_expression_root(), GmockMatch(m::Tuple(m::DynamicUpdateSlice(), m::Negate(), m::Copy()))); } TEST_F(CopyFusionTest, CopyFusionTransposeAndThreeCopies) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation { two = f32[] constant(2.0) param_0.1 = f32[16,32]{1,0} broadcast(two), dimensions={} s.1 = f32[16,32]{1,0} sqrt(param_0.1) ROOT c.1 = f32[32,16]{1,0} transpose(s.1), dimensions={1,0} } ENTRY entry { fusion = f32[32,16]{1,0} fusion(), kind=kInput, calls=fused_computation copy.1 = f32[32,16]{1,0} copy(fusion) copy.2 = f32[32,16]{1,0} copy(fusion) copy.3 = f32[32,16]{1,0} copy(fusion) ROOT root = (f32[32,16]{1,0}, f32[32,16]{1,0}, f32[32,16]{1,0}) tuple(copy.1, copy.2, copy.3) })")) .value(); ASSERT_TRUE(cf_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(root, GmockMatch(m::Tuple(m::GetTupleElement(m::Fusion(&fusion)), m::GetTupleElement(), m::GetTupleElement()))); EXPECT_THAT( fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Transpose(), m::Copy(), m::Copy(), m::Copy()))); } TEST_F(CopyFusionTest, CopyFusionRunWithOnlyOneCopy) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation { p1.1 = f32[128,512,28,28]{3,2,1,0} parameter(0) mul = f32[128,512,28,28]{3,2,1,0} multiply(p1.1, p1.1) ROOT neg = f32[128,512,28,28]{3,2,1,0} negate(mul) } ENTRY entry { p0 = f32[128,512,28,28]{3,2,1,0} parameter(0) fusion = f32[128,512,28,28]{3,2,1,0} fusion(p0), kind=kInput, calls=fused_computation ROOT copy.1 = f32[128,512,28,28]{3,2,1,0} copy(fusion) })")) .value(); ASSERT_TRUE(cf_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(root, GmockMatch(m::GetTupleElement(m::Fusion(&fusion)))); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Negate(), m::Copy()))); } TEST_F(CopyFusionTest, CopyFusionNegateAndTwoCopiesAndTransposeCopy) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation { p1.1 = f32[128,512,28,28]{3,2,1,0} parameter(0) mul = f32[128,512,28,28]{3,2,1,0} multiply(p1.1, p1.1) ROOT neg = f32[128,512,28,28]{3,2,1,0} negate(mul) } ENTRY entry { p0 = f32[128,512,28,28]{3,2,1,0} parameter(0) fusion = f32[128,512,28,28]{3,2,1,0} fusion(p0), kind=kInput, calls=fused_computation copy.1 = f32[128,512,28,28]{3,2,1,0} copy(fusion) transpose = f32[128,512,28,28]{2,3,0,1} copy(fusion) bitcast = f32[512,128,28,28]{3,2,1,0} bitcast(transpose) copy.2 = f32[128,512,28,28]{3,2,1,0} copy(fusion) ROOT root = (f32[128,512,28,28]{3,2,1,0}, f32[512,128,28,28]{3,2,1,0}, f32[128,512,28,28]{3,2,1,0}) tuple(copy.1, bitcast, copy.2) })")) .value(); ASSERT_TRUE(cf_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(root, GmockMatch(m::Tuple(m::GetTupleElement(m::Fusion(&fusion)), m::Bitcast(), m::GetTupleElement()))); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Negate(), m::Copy(), m::Copy()))); } TEST_F(CopyFusionTest, CopyFusionRunWithOnlyOneNonTransposeCopy) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation { p1.1 = f32[128,512,28,28]{3,2,1,0} parameter(0) mul = f32[128,512,28,28]{3,2,1,0} multiply(p1.1, p1.1) ROOT neg = f32[128,512,28,28]{3,2,1,0} negate(mul) } ENTRY entry { p0 = f32[128,512,28,28]{3,2,1,0} parameter(0) fusion = f32[128,512,28,28]{3,2,1,0} fusion(p0), kind=kInput, calls=fused_computation copy.1 = f32[128,512,28,28]{3,2,1,0} copy(fusion) transpose.1 = f32[128,512,28,28]{2,3,0,1} copy(fusion) bitcast.1 = f32[512,128,28,28]{3,2,1,0} bitcast(transpose.1) transpose.2 = f32[128,512,28,28]{2,3,0,1} copy(fusion) bitcast.2 = f32[512,128,28,28]{3,2,1,0} bitcast(transpose.2) ROOT root = (f32[128,512,28,28]{3,2,1,0}, f32[512,128,28,28]{3,2,1,0}, f32[512,128,28,28]{3,2,1,0}) tuple(copy.1, bitcast.1, bitcast.2) })")) .value(); ASSERT_TRUE(cf_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(root, GmockMatch(m::Tuple(m::GetTupleElement(m::Fusion(&fusion)), m::Bitcast(), m::Bitcast()))); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Negate(), m::Copy()))); } TEST_F(CopyFusionTest, CopyFusionSkipTupleCopies) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation { p1.1 = f32[128,512,28,28]{3,2,1,0} parameter(0) mul = f32[128,512,28,28]{3,2,1,0} multiply(p1.1, p1.1) neg.1 = f32[128,512,28,28]{3,2,1,0} negate(mul) neg.2 = f32[128,512,28,28]{3,2,1,0} negate(mul) ROOT tuple = (f32[128,512,28,28]{3,2,1,0}, f32[128,512,28,28]{3,2,1,0}) tuple(neg.1, neg.2) } ENTRY entry { p0 = f32[128,512,28,28]{3,2,1,0} parameter(0) fusion = (f32[128,512,28,28]{3,2,1,0}, f32[128,512,28,28]{3,2,1,0}) fusion(p0), kind=kInput, calls=fused_computation copy.1 = (f32[128,512,28,28]{3,2,1,0}, f32[128,512,28,28]{3,2,1,0}) copy(fusion) copy.2 = (f32[128,512,28,28]{3,2,1,0}, f32[128,512,28,28]{3,2,1,0}) copy(fusion) ROOT root = ((f32[128,512,28,28]{3,2,1,0}, f32[128,512,28,28]{3,2,1,0}),(f32[128,512,28,28]{3,2,1,0}, f32[128,512,28,28]{3,2,1,0})) tuple(copy.1, copy.2) })")) .value(); ASSERT_FALSE(cf_.Run(module.get()).value()); } TEST_F(CopyFusionTest, CopyFusionTupleAndGetTuple) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation { p1.1 = f32[128,512,28,28]{3,2,1,0} parameter(0) mul = f32[128,512,28,28]{3,2,1,0} multiply(p1.1, p1.1) neg.1 = f32[128,512,28,28]{3,2,1,0} negate(mul) neg.2 = f32[128,512,28,28]{3,2,1,0} negate(mul) ROOT tuple = (f32[128,512,28,28]{3,2,1,0}, f32[128,512,28,28]{3,2,1,0}) tuple(neg.1, neg.2) } ENTRY entry { p0 = f32[128,512,28,28]{3,2,1,0} parameter(0) fusion = (f32[128,512,28,28]{3,2,1,0}, f32[128,512,28,28]{3,2,1,0}) fusion(p0), kind=kInput, calls=fused_computation gte.1 = f32[128,512,28,28]{3,2,1,0} get-tuple-element(fusion), index=0 gte.2 = f32[128,512,28,28]{3,2,1,0} get-tuple-element(fusion), index=1 copy.1 = f32[128,512,28,28]{3,2,1,0} copy(gte.1) copy.2 = f32[128,512,28,28]{3,2,1,0} copy(gte.2) ROOT root = (f32[128,512,28,28]{3,2,1,0}, f32[128,512,28,28]{3,2,1,0}) tuple(copy.1, copy.2) })")) .value(); ASSERT_TRUE(cf_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(root, GmockMatch(m::Tuple(m::GetTupleElement(m::Fusion(&fusion)), m::GetTupleElement()))); EXPECT_THAT( fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Negate(), m::Negate(), m::Copy(), m::Copy()))); } TEST_F(CopyFusionTest, CopyFusionWithFusionReturningTupleAndOtherUser) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation { p1.1 = f32[128,512,28,28]{3,2,1,0} parameter(0) mul = f32[128,512,28,28]{3,2,1,0} multiply(p1.1, p1.1) neg.1 = f32[128,512,28,28]{3,2,1,0} negate(mul) neg.2 = f32[128,512,28,28]{3,2,1,0} negate(mul) ROOT tuple = (f32[128,512,28,28]{3,2,1,0}, f32[128,512,28,28]{3,2,1,0}) tuple(neg.1, neg.2) } ENTRY entry { p0 = f32[128,512,28,28]{3,2,1,0} parameter(0) fusion = (f32[128,512,28,28]{3,2,1,0}, f32[128,512,28,28]{3,2,1,0}) fusion(p0), kind=kInput, calls=fused_computation gte.1 = f32[128,512,28,28]{3,2,1,0} get-tuple-element(fusion), index=0 gte.2 = f32[128,512,28,28]{3,2,1,0} get-tuple-element(fusion), index=1 copy.1 = f32[128,512,28,28]{3,2,1,0} copy(gte.1) copy.2 = f32[128,512,28,28]{3,2,1,0} copy(gte.2) transpose = f32[128,512,28,28]{2,3,0,1} copy(gte.1) bitcast = f32[512,128,28,28]{3,2,1,0} bitcast(transpose) ROOT root = (f32[128,512,28,28]{3,2,1,0}, f32[512,128,28,28]{3,2,1,0}, f32[128,512,28,28]{3,2,1,0}) tuple(copy.1, bitcast, copy.2) })")) .value(); ASSERT_TRUE(cf_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(root, GmockMatch(m::Tuple(m::Copy(), m::Bitcast(), m::GetTupleElement(m::Fusion(&fusion))))); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Negate(), m::Negate(), m::Copy()))); } } }
2,104
cpp
tensorflow/tensorflow
conv_layout_normalization
third_party/xla/xla/service/gpu/conv_layout_normalization.cc
third_party/xla/xla/service/gpu/conv_layout_normalization_test.cc
#ifndef XLA_SERVICE_GPU_CONV_LAYOUT_NORMALIZATION_H_ #define XLA_SERVICE_GPU_CONV_LAYOUT_NORMALIZATION_H_ #include <optional> #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" namespace xla { namespace gpu { absl::StatusOr<std::optional<HloInstruction*>> NormalizeLayoutForGpuCustomCalls( HloCustomCallInstruction*); } } #endif #include "xla/service/gpu/conv_layout_normalization.h" #include <cstdint> #include <optional> #include <vector> #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/hlo_creation_utils.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/util.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { absl::StatusOr<std::optional<HloInstruction*>> UpdateLayoutForCudnnConvolution( HloCustomCallInstruction* hlo) { HloInstruction* lhs = hlo->mutable_operand(0); HloInstruction* rhs = hlo->mutable_operand(1); const ConvolutionDimensionNumbers& dim_numbers = hlo->convolution_dimension_numbers(); auto transpose_dim = [&](int64_t dim, const Shape& unnormalized_shape) { return unnormalized_shape.rank() - FindIndex(unnormalized_shape.layout().minor_to_major(), dim) - 1; }; auto transpose_dims = [&](tsl::protobuf::RepeatedField<int64_t>& dims, const Shape& unnormalized_shape) { for (auto& dim : dims) { dim = transpose_dim(dim, unnormalized_shape); } }; const Shape& conv_output_shape = hlo->shape().IsTuple() ? hlo->shape().tuple_shapes(0) : hlo->shape(); Shape input_shape, filter_shape, output_shape; TF_ASSIGN_OR_RETURN( gpu::CudnnConvKind conv_kind, gpu::GetCudnnConvKind(Cast<HloCustomCallInstruction>(hlo))); switch (conv_kind) { case gpu::CudnnConvKind::kForward: case gpu::CudnnConvKind::kForwardActivation: case gpu::CudnnConvKind::kForwardGraph: { input_shape = lhs->shape(); filter_shape = rhs->shape(); output_shape = conv_output_shape; break; } case gpu::CudnnConvKind::kBackwardInput: { filter_shape = rhs->shape(); output_shape = lhs->shape(); input_shape = conv_output_shape; break; } case gpu::CudnnConvKind::kBackwardFilter: { input_shape = lhs->shape(); output_shape = rhs->shape(); filter_shape = conv_output_shape; break; } } ConvolutionDimensionNumbers new_dim_numbers = dim_numbers; new_dim_numbers.set_input_batch_dimension( transpose_dim(dim_numbers.input_batch_dimension(), input_shape)); new_dim_numbers.set_input_feature_dimension( transpose_dim(dim_numbers.input_feature_dimension(), input_shape)); transpose_dims(*new_dim_numbers.mutable_input_spatial_dimensions(), input_shape); new_dim_numbers.set_kernel_input_feature_dimension(transpose_dim( dim_numbers.kernel_input_feature_dimension(), filter_shape)); new_dim_numbers.set_kernel_output_feature_dimension(transpose_dim( dim_numbers.kernel_output_feature_dimension(), filter_shape)); transpose_dims(*new_dim_numbers.mutable_kernel_spatial_dimensions(), filter_shape); new_dim_numbers.set_output_batch_dimension( transpose_dim(dim_numbers.output_batch_dimension(), output_shape)); new_dim_numbers.set_output_feature_dimension( transpose_dim(dim_numbers.output_feature_dimension(), output_shape)); transpose_dims(*new_dim_numbers.mutable_output_spatial_dimensions(), output_shape); Shape normalized_shape; if (hlo->shape().IsTuple()) { TF_RET_CHECK(hlo->shape().tuple_shapes().back().rank() == 1) << "The last element in the tuple returned by a convolution Custom " "Call is expected to be an " "allocator of rank one"; std::vector<Shape> new_tuple_shape; for (const Shape& tuple_shape : hlo->shape().tuple_shapes()) { new_tuple_shape.emplace_back( ShapeUtil::MakeShapeWithDescendingLayoutAndSamePhysicalLayout( tuple_shape)); } normalized_shape = ShapeUtil::MakeTupleShape(new_tuple_shape); } else { normalized_shape = ShapeUtil::MakeShapeWithDescendingLayoutAndSamePhysicalLayout( hlo->shape()); } std::vector<HloInstruction*> normalized_operands; bool performed_normalization = false; for (int idx = 0; idx < hlo->operand_count(); idx++) { HloInstruction* op = hlo->mutable_operand(idx); const Shape& s = op->shape(); Shape s_reordered = ShapeUtil::MakeShapeWithDescendingLayoutAndSamePhysicalLayout(s); HloInstruction* normalized_op = op->mutable_operand(0); HloInstruction* new_op; if (normalized_op->shape() == s_reordered) { new_op = normalized_op; } else { new_op = MakeBitcastHlo(op, s_reordered); performed_normalization = true; } normalized_operands.push_back(new_op); } if (!performed_normalization && ShapeUtil::Equal(normalized_shape, hlo->shape()) && ConvolutionDimensionNumbersToString(new_dim_numbers) == ConvolutionDimensionNumbersToString(dim_numbers)) { return std::nullopt; } HloInstruction* normalized_conv = hlo->parent()->AddInstruction( HloInstruction::CreateCustomCall(normalized_shape, normalized_operands, hlo->custom_call_target()), &hlo->metadata()); normalized_conv->set_window(hlo->window()); normalized_conv->set_convolution_dimension_numbers(new_dim_numbers); normalized_conv->set_feature_group_count(hlo->feature_group_count()); normalized_conv->set_raw_backend_config_string( hlo->raw_backend_config_string()); *normalized_conv->mutable_precision_config() = hlo->precision_config(); normalized_conv->parent()->parent()->SetAndUniquifyInstrName(normalized_conv, hlo->name()); HloInstruction* bc_to_orig; if (normalized_conv->shape().IsTuple()) { std::vector<HloInstruction*> tuple_elements( normalized_conv->shape().tuple_shapes_size()); for (int i = 0; i < normalized_conv->shape().tuple_shapes_size(); ++i) { TF_ASSIGN_OR_RETURN(HloInstruction * normalized_out, MakeGetTupleElementHlo(normalized_conv, i)); tuple_elements[i] = MakeBitcastHlo(normalized_out, hlo->shape().tuple_shapes(i)); } bc_to_orig = MaybeMakeTuple(tuple_elements); } else { bc_to_orig = MakeBitcastHlo(normalized_conv, hlo->shape()); } return bc_to_orig; } } absl::StatusOr<std::optional<HloInstruction*>> NormalizeLayoutForGpuCustomCalls( HloCustomCallInstruction* hlo) { if (IsCustomCallToDnnConvolution(*hlo)) { TF_ASSIGN_OR_RETURN(std::optional<HloInstruction*> bc_to_orig, UpdateLayoutForCudnnConvolution(hlo)); return bc_to_orig; } return std::nullopt; } } }
#include "xla/error_spec.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/test_macros.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { namespace { using ConvolutionLayoutNormalizationTest = HloTestBase; TEST_F(ConvolutionLayoutNormalizationTest, BackwardInput) { const char* hlo = R"( HloModule TestModule %TestComputation1 (param_0: f32[1,20,257], param_1: f32[31,257,136]) -> (f32[1,23,136], u8[0]) { %param_0 = f32[1,20,257]{2,1,0} parameter(0) %copy.3 = f32[1,20,257]{1,2,0} copy(f32[1,20,257]{2,1,0} %param_0) %param_1 = f32[31,257,136]{2,1,0} parameter(1) %copy.4 = f32[31,257,136]{0,2,1} copy(f32[31,257,136]{2,1,0} %param_1) %custom-call.1 = (f32[1,23,136]{1,2,0}, u8[0]{0}) custom-call(f32[1,20,257]{1,2,0} %copy.3, f32[31,257,136]{0,2,1} %copy.4), window={size=31 stride=2 pad=23_23}, dim_labels=b0f_0oi->b0f, custom_call_target="__cudnn$convBackwardInput", backend_config={"cudnn_conv_backend_config":{conv_result_scale:1}} %get-tuple-element.2 = f32[1,23,136]{1,2,0} get-tuple-element((f32[1,23,136]{1,2,0}, u8[0]{0}) %custom-call.1), index=0 %copy.5 = f32[1,23,136]{2,1,0} copy(f32[1,23,136]{1,2,0} %get-tuple-element.2) %get-tuple-element.3 = u8[0]{0} get-tuple-element((f32[1,23,136]{1,2,0}, u8[0]{0}) %custom-call.1), index=1 ROOT %tuple.1 = (f32[1,23,136]{2,1,0}, u8[0]{0}) tuple(f32[1,23,136]{2,1,0} %copy.5, u8[0]{0} %get-tuple-element.3) } )"; MatchOptimizedHlo(hlo, R"( )"); } TEST_F(ConvolutionLayoutNormalizationTest, Forward) { const char* hlo = R"( HloModule TestModule ENTRY %TestComputation { %param_0 = f32[2,128,1,378]{3,2,1,0} parameter(0) %param_1 = f32[1,5,128,128]{1,0,2,3} parameter(1) ROOT %custom-call.1 = (f32[2,128,1,378]{3,2,1,0}, u8[0]{0}) custom-call(%param_0, %param_1), window={size=1x5 pad=0_0x2_2}, dim_labels=bf01_01io->bf01, custom_call_target="__cudnn$convForward", backend_config={"cudnn_conv_backend_config":{conv_result_scale:1}} } )"; MatchOptimizedHlo(hlo, R"( )"); } TEST_F(ConvolutionLayoutNormalizationTest, DISABLED_ON_GPU_ROCM(FusedConv3D)) { const char* hlo = R"( HloModule TestModule ENTRY TestComputation { %p0 = f32[8,4,5,5,1] parameter(0) %p1 = f32[3,3,3,1,32] parameter(1) %conv = f32[8,4,5,5,32] convolution(p0, p1), window={size=3x3x3 pad=1_1x1_1x1_1}, dim_labels=b012f_012io->b012f %bias = f32[32] parameter(2) %broadcasted_bias = f32[8,4,5,5,32] broadcast(%bias), dimensions={4} %add = f32[8,4,5,5,32] add(%conv, %broadcasted_bias) %zero = f32[] constant(0) %zeros = f32[8,4,5,5,32] broadcast(%zero), dimensions={} ROOT relu = f32[8,4,5,5,32] maximum(%zeros, %add) } )"; MatchOptimizedHlo(hlo, R"( )"); } } } }
2,105
cpp
tensorflow/tensorflow
gpu_schedule_postprocessing
null
null
#ifndef XLA_SERVICE_GPU_GPU_SCHEDULE_POSTPROCESSING_H_ #define XLA_SERVICE_GPU_GPU_SCHEDULE_POSTPROCESSING_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace gpu { class GpuSchedulePostprocessing : public HloModulePass { public: absl::string_view name() const override { return "gpu-schedule-postprocessing"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } } #endif #include "xla/service/gpu/gpu_schedule_postprocessing.h" #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/gpu/backend_configs.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using CustomCallInComputation = absl::flat_hash_map<const HloComputation*, bool>; bool MayInvokeCustomCall( const HloInstruction* hlo, const CustomCallInComputation& custom_call_in_computation) { if (hlo->opcode() == HloOpcode::kCustomCall) { return true; } return absl::c_any_of( hlo->called_computations(), [&](const HloComputation* callee) { return custom_call_in_computation.find(callee)->second; }); } absl::StatusOr<bool> IsRelevantAsynchronousStart(const HloInstruction* hlo) { if (!hlo_query::IsAsyncCollectiveStartOp(hlo, false)) { return false; } TF_ASSIGN_OR_RETURN(GpuBackendConfig gpu_config, hlo->backend_config<GpuBackendConfig>()); const CollectiveBackendConfig& collective_backend_config = gpu_config.collective_backend_config(); return !collective_backend_config.is_sync(); } absl::StatusOr<bool> IsRelevantAsynchronousDone(const HloInstruction* hlo) { return hlo_query::IsAsyncCollectiveDoneOp(hlo, false); } absl::StatusOr<bool> ProcessComputation( const HloSchedule& schedule, HloComputation* computation, CustomCallInComputation& custom_call_in_computation) { bool changed = false; bool has_custom_call = false; absl::flat_hash_set<HloInstruction*> async_starts; const HloInstructionSequence& sequence = schedule.sequence(computation); const std::vector<HloInstruction*>& all_instructions = sequence.instructions(); for (HloInstruction* hlo : all_instructions) { if (MayInvokeCustomCall(hlo, custom_call_in_computation)) { async_starts.clear(); has_custom_call = true; continue; } TF_ASSIGN_OR_RETURN(bool is_async_start, IsRelevantAsynchronousStart(hlo)); if (is_async_start) { async_starts.insert(hlo); continue; } TF_ASSIGN_OR_RETURN(bool is_async_done, IsRelevantAsynchronousDone(hlo)); if (is_async_done) { HloInstruction* async_start = hlo->mutable_operand(0); if (async_starts.contains(async_start)) { changed = true; TF_ASSIGN_OR_RETURN(GpuBackendConfig gpu_config, async_start->backend_config<GpuBackendConfig>()); CollectiveBackendConfig& collective_backend_config = *gpu_config.mutable_collective_backend_config(); collective_backend_config.set_no_parallel_custom_call(true); TF_RETURN_IF_ERROR(async_start->set_backend_config(gpu_config)); async_starts.erase(async_start); } } } custom_call_in_computation[computation] = has_custom_call; return changed; } } absl::StatusOr<bool> GpuSchedulePostprocessing::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { if (!module->has_schedule()) return false; HloSchedule& schedule = module->schedule(); bool changed = false; CustomCallInComputation custom_call_in_computation; std::vector<HloComputation*> all_computations = module->MakeComputationPostOrder(execution_threads); for (auto iter = all_computations.begin(); iter != all_computations.end(); ++iter) { HloComputation* computation = *iter; if (computation->IsFusionComputation()) { custom_call_in_computation[computation] = false; continue; } TF_ASSIGN_OR_RETURN( bool result, ProcessComputation(schedule, computation, custom_call_in_computation)); changed |= result; } return changed; } } }
#include "xla/service/gpu/gpu_schedule_postprocessing.h" #include <memory> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/hlo_parser.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using GpuSchedulePostprocessingTest = HloTestBase; TEST_F(GpuSchedulePostprocessingTest, SynchronousOpsNotChanged) { constexpr absl::string_view kHloString = R"( HloModule module, is_scheduled=true ENTRY entry { pf32 = f32[1] parameter(0) all-gather-start = (f32[1], f32[2]) all-gather-start(pf32), dimensions={0}, backend_config={"collective_backend_config":{"is_sync":true,"no_parallel_custom_call":false}} ROOT all-gather-done = f32[2] all-gather-done(all-gather-start) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kHloString))); GpuSchedulePostprocessing pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, pass.Run(module.get())); EXPECT_FALSE(changed); } TEST_F(GpuSchedulePostprocessingTest, P2POpsNotChanged) { constexpr absl::string_view kHloString = R"( HloModule module, is_scheduled=true ENTRY main { f0 = f32[] constant(0.0) init = f32[1, 1024, 1024] broadcast(f0), dimensions={} after-all = token[] after-all() recv = (f32[1, 1024, 1024], u32[], token[]) recv(after-all), channel_id=2, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}}" } recv-done = (f32[1, 1024, 1024], token[]) recv-done(recv), channel_id=2 ROOT recv-data = f32[1, 1024, 1024] get-tuple-element(recv-done), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kHloString))); GpuSchedulePostprocessing pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, pass.Run(module.get())); EXPECT_FALSE(changed); } TEST_F(GpuSchedulePostprocessingTest, AsynchronousOpsChanged) { constexpr absl::string_view kHloString = R"( HloModule module, is_scheduled=true ENTRY entry { pf32 = f32[1] parameter(0) pf32.2 = f32[1] custom-call(pf32), custom_call_target="my_custom_call" all-gather-start = (f32[1], f32[2]) all-gather-start(pf32.2), dimensions={0}, backend_config={"collective_backend_config":{"is_sync":false}} ROOT all-gather-done = f32[2] all-gather-done(all-gather-start) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kHloString))); GpuSchedulePostprocessing pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, pass.Run(module.get())); EXPECT_TRUE(changed); HloInstruction* start = FindInstruction(module.get(), "all-gather-start"); TF_ASSERT_OK_AND_ASSIGN(GpuBackendConfig gpu_config, start->backend_config<GpuBackendConfig>()); const CollectiveBackendConfig& collective_backend_config = gpu_config.collective_backend_config(); EXPECT_TRUE(collective_backend_config.no_parallel_custom_call()); } TEST_F(GpuSchedulePostprocessingTest, AsynchronousOpsWithParallelCustomcall) { constexpr absl::string_view kHloString = R"( HloModule module, is_scheduled=true ENTRY entry { pf32 = f32[1] parameter(0) all-gather-start = (f32[1], f32[2]) all-gather-start(pf32), dimensions={0}, backend_config={"collective_backend_config":{"is_sync":false}} pf32.2 = f32[1] custom-call(pf32), custom_call_target="my_custom_call" all-gather-done = f32[2] all-gather-done(all-gather-start) ROOT out = (f32[1], f32[2]) tuple(f32[1] pf32.2, f32[2] all-gather-done) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kHloString))); GpuSchedulePostprocessing pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, pass.Run(module.get())); EXPECT_FALSE(changed); HloInstruction* start = FindInstruction(module.get(), "all-gather-start"); TF_ASSERT_OK_AND_ASSIGN(GpuBackendConfig gpu_config, start->backend_config<GpuBackendConfig>()); const CollectiveBackendConfig& collective_backend_config = gpu_config.collective_backend_config(); EXPECT_FALSE(collective_backend_config.no_parallel_custom_call()); } TEST_F(GpuSchedulePostprocessingTest, AsynchronousOpsWithParallelNestedCustomcall) { constexpr absl::string_view kHloString = R"( HloModule module, is_scheduled=true foo { v = f32[1] parameter(0) ROOT ret = f32[1] custom-call(v), custom_call_target="my_custom_call" } ENTRY entry { pf32 = f32[1] parameter(0) all-gather-start = (f32[1], f32[2]) all-gather-start(pf32), dimensions={0}, backend_config={"collective_backend_config":{"is_sync":false}} pf32.2 = f32[1] call(f32[1] pf32), to_apply=foo all-gather-done = f32[2] all-gather-done(all-gather-start) ROOT out = (f32[1], f32[2]) tuple(f32[1] pf32.2, f32[2] all-gather-done) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kHloString))); GpuSchedulePostprocessing pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, pass.Run(module.get())); EXPECT_FALSE(changed); HloInstruction* start = FindInstruction(module.get(), "all-gather-start"); TF_ASSERT_OK_AND_ASSIGN(GpuBackendConfig gpu_config, start->backend_config<GpuBackendConfig>()); const CollectiveBackendConfig& collective_backend_config = gpu_config.collective_backend_config(); EXPECT_FALSE(collective_backend_config.no_parallel_custom_call()); } } } }
2,106
cpp
tensorflow/tensorflow
fusion_wrapper
third_party/xla/xla/service/gpu/transforms/fusion_wrapper.cc
third_party/xla/xla/service/gpu/transforms/fusion_wrapper_test.cc
#ifndef XLA_SERVICE_GPU_FUSION_WRAPPER_H_ #define XLA_SERVICE_GPU_FUSION_WRAPPER_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace gpu { class FusionWrapper : public HloModulePass { public: absl::string_view name() const override { return "fusion-wrapper"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } } #endif #include "xla/service/gpu/fusion_wrapper.h" #include <functional> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/gpu_fusible.h" #include "tsl/platform/errors.h" namespace xla { namespace gpu { absl::StatusOr<bool> FusionWrapper::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { auto instructions = module->entry_computation()->MakeInstructionPostOrder(); bool changed = false; std::function<absl::Status(HloInstruction*)> handle_instruction; handle_instruction = [&](HloInstruction* instruction) -> absl::Status { switch (instruction->opcode()) { case HloOpcode::kConditional: case HloOpcode::kWhile: for (auto* computation : instruction->called_computations()) { for (auto* inner_instruction : computation->MakeInstructionPostOrder()) { TF_RETURN_IF_ERROR(handle_instruction(inner_instruction)); } } break; case HloOpcode::kAbs: case HloOpcode::kAdd: case HloOpcode::kAnd: case HloOpcode::kAtan2: case HloOpcode::kBitcastConvert: case HloOpcode::kBroadcast: case HloOpcode::kCeil: case HloOpcode::kCbrt: case HloOpcode::kClamp: case HloOpcode::kClz: case HloOpcode::kCompare: case HloOpcode::kComplex: case HloOpcode::kConcatenate: case HloOpcode::kConvert: case HloOpcode::kCopy: case HloOpcode::kCos: case HloOpcode::kDivide: case HloOpcode::kDot: case HloOpcode::kDynamicSlice: case HloOpcode::kDynamicUpdateSlice: case HloOpcode::kErf: case HloOpcode::kExp: case HloOpcode::kExpm1: case HloOpcode::kFloor: case HloOpcode::kGather: case HloOpcode::kImag: case HloOpcode::kIota: case HloOpcode::kIsFinite: case HloOpcode::kLog: case HloOpcode::kLog1p: case HloOpcode::kMap: case HloOpcode::kMaximum: case HloOpcode::kMinimum: case HloOpcode::kMultiply: case HloOpcode::kNegate: case HloOpcode::kNot: case HloOpcode::kOr: case HloOpcode::kPad: case HloOpcode::kPopulationCount: case HloOpcode::kPower: case HloOpcode::kReal: case HloOpcode::kReshape: case HloOpcode::kReduce: case HloOpcode::kReducePrecision: case HloOpcode::kReduceWindow: case HloOpcode::kRemainder: case HloOpcode::kReverse: case HloOpcode::kRoundNearestAfz: case HloOpcode::kRoundNearestEven: case HloOpcode::kRsqrt: case HloOpcode::kScatter: case HloOpcode::kSelect: case HloOpcode::kShiftLeft: case HloOpcode::kShiftRightLogical: case HloOpcode::kShiftRightArithmetic: case HloOpcode::kSign: case HloOpcode::kSin: case HloOpcode::kSlice: case HloOpcode::kSqrt: case HloOpcode::kSubtract: case HloOpcode::kStochasticConvert: case HloOpcode::kTan: case HloOpcode::kTanh: case HloOpcode::kTranspose: case HloOpcode::kXor: { auto* computation = instruction->parent(); auto* fusion_instruction = computation->AddInstruction(HloInstruction::CreateFusion( instruction->shape(), ChooseFusionKind(*instruction, *instruction), instruction)); const absl::string_view wrapped_opcode = HloOpcodeString(instruction->opcode()); module->SetAndUniquifyInstrName( fusion_instruction, absl::StrCat("wrapped_", wrapped_opcode)); module->SetAndUniquifyComputationName( fusion_instruction->fused_instructions_computation(), absl::StrCat("wrapped_", wrapped_opcode, "_computation")); if (module->has_schedule()) { module->schedule().replace_instruction(computation, instruction, fusion_instruction); } TF_RETURN_IF_ERROR( fusion_instruction->CopyAllControlDepsFrom(instruction)); TF_RETURN_IF_ERROR(instruction->DropAllControlDeps()); TF_RETURN_IF_ERROR(instruction->ReplaceAllUsesWith(fusion_instruction)); TF_RETURN_IF_ERROR(computation->RemoveInstruction(instruction)); changed = true; break; } default: break; } return absl::OkStatus(); }; for (auto* instruction : instructions) { TF_RETURN_IF_ERROR(handle_instruction(instruction)); } return changed; } } }
#include "xla/service/gpu/fusion_wrapper.h" #include <optional> #include <gtest/gtest.h> #include "xla/tests/hlo_test_base.h" namespace xla { namespace gpu { namespace { class FusionWrapperTest : public HloTestBase {}; TEST_F(FusionWrapperTest, SimpleOp) { RunAndFilecheckHloRewrite(R"( HloModule TestModule ENTRY TestComputation { p0 = f16[30,41] parameter(0) p1 = f16[30,41] parameter(1) ROOT result = f16[60, 41] concatenate(p0, p1), dimensions={0} })", FusionWrapper(), R"( } TEST_F(FusionWrapperTest, Scatter) { RunAndFilecheckHloRewrite(R"( HloModule ScatterIntoScalar update_s32 { lhs = s32[] parameter(0) ROOT rhs = s32[] parameter(1) } ENTRY main { parameter.1 = s32[] parameter(0) parameter.2 = s32[0]{0} parameter(1) parameter.3 = s32[] parameter(2) ROOT scatter_ScatterIntoScalar = s32[] scatter(parameter.1, parameter.2, parameter.3), update_window_dims={}, inserted_window_dims={}, scatter_dims_to_operand_dims={}, index_vector_dim=0, to_apply=update_s32 })", FusionWrapper(), R"( } TEST_F(FusionWrapperTest, ControlDependency) { RunAndFilecheckHloRewrite(R"( HloModule TestModule fusion { ROOT param = f32[] parameter(0) } ENTRY main { param = f32[] parameter(0) fusion = f32[] fusion(param), kind=kLoop, calls=fusion constant_one = f32[] constant(1) ROOT add = f32[] add(param, constant_one), control-predecessors={fusion} })", FusionWrapper(), R"( } TEST_F(FusionWrapperTest, While) { RunAndFilecheckHloRewrite(R"( HloModule While %body { %parameter.5 = (f32[5]{0}) parameter(0) %constant_8 = f32[] constant(0) %broadcast.9 = f32[5]{0} broadcast(f32[] %constant_8), dimensions={} ROOT %tuple.2 = (f32[5]{0}) tuple(f32[5]{0} %broadcast.9) } %cond { %parameter.12 = (f32[5]{0}) parameter(0) ROOT %constant_1 = pred[] constant(false) } ENTRY %main (parameter.1: f32[5]) -> (f32[5]) { %parameter.1 = f32[5]{0} parameter(0) %copy.3 = f32[5]{0} copy(f32[5]{0} %parameter.1) %tuple = (f32[5]{0}) tuple(f32[5]{0} %copy.3) ROOT %while.19 = (f32[5]{0}) while((f32[5]{0}) %tuple), condition=%cond, body=%body })", FusionWrapper(), R"( } TEST_F(FusionWrapperTest, WhileInFusion) { RunAndFilecheckHloRewrite(R"( HloModule While %body { %parameter.5 = (f32[5]{0}) parameter(0) %constant_8 = f32[] constant(0) %broadcast.9 = f32[5]{0} broadcast(f32[] %constant_8), dimensions={} ROOT %tuple.2 = (f32[5]{0}) tuple(f32[5]{0} %broadcast.9) } %cond { %parameter.12 = (f32[5]{0}) parameter(0) ROOT %constant_1 = pred[] constant(false) } %fusion { %parameter.1 = f32[5]{0} parameter(0) %copy.3 = f32[5]{0} copy(f32[5]{0} %parameter.1) %tuple = (f32[5]{0}) tuple(f32[5]{0} %copy.3) ROOT %while.19 = (f32[5]{0}) while((f32[5]{0}) %tuple), condition=%cond, body=%body } ENTRY %main (parameter.1: f32[5]) -> (f32[5]) { %parameter.1 = f32[5]{0} parameter(0) ROOT %fusion = (f32[5]{0}) fusion(f32[5]{0} %parameter.1), kind=kLoop, calls=%fusion })", FusionWrapper(), std::nullopt); } } } }
2,107
cpp
tensorflow/tensorflow
stream_attribute_annotator
third_party/xla/xla/service/gpu/transforms/stream_attribute_annotator.cc
third_party/xla/xla/service/gpu/transforms/stream_attribute_annotator_test.cc
#ifndef XLA_SERVICE_GPU_STREAM_ATTRIBUTE_ANNOTATOR_H_ #define XLA_SERVICE_GPU_STREAM_ATTRIBUTE_ANNOTATOR_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla::gpu { class StreamAttributeAnnotator : public HloModulePass { public: absl::string_view name() const override { return "stream-attribute-annotator"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } #endif #include "xla/service/gpu/stream_attribute_annotator.h" #include <cstdint> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/gpu_fusible.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla::gpu { namespace { bool IsOnlyRootNonDefaultStream(HloComputation* computation) { HloInstruction* root = computation->root_instruction(); auto root_gpu_config = root->backend_config<GpuBackendConfig>(); if (!root_gpu_config.ok() || root->opcode() == HloOpcode::kTuple) { return false; } int64_t root_stream_id = root_gpu_config->operation_queue_id(); VLOG(2) << "Found fusion computation's root stream id to be " << root_stream_id; if (root_stream_id == Thunk::kDefaultExecutionStreamId.value()) { return false; } for (HloInstruction* instr : computation->MakeInstructionPostOrder()) { if (instr == root) { continue; } int64_t instr_stream_id = instr->backend_config<GpuBackendConfig>()->operation_queue_id(); if (instr_stream_id != Thunk::kDefaultExecutionStreamId.value() && instr_stream_id != root_stream_id) { return false; } } return true; } absl::StatusOr<bool> AnnotateStreamAttributesForInstruction( HloInstruction* instr, GpuBackendConfig& instr_gpu_config) { if (instr->called_computations().size() != 1) { return false; } HloComputation* called_comp = instr->called_computations()[0]; int64_t stream_id = instr_gpu_config.operation_queue_id(); if (!IsOnlyRootNonDefaultStream(called_comp) || stream_id != Thunk::kDefaultExecutionStreamId.value()) { return false; } auto comp_root_gpu_config = called_comp->root_instruction()->backend_config<GpuBackendConfig>(); instr_gpu_config.set_operation_queue_id( comp_root_gpu_config->operation_queue_id()); *instr_gpu_config.mutable_wait_on_operation_queues() = comp_root_gpu_config->wait_on_operation_queues(); TF_RETURN_IF_ERROR(instr->set_backend_config(instr_gpu_config)); return true; } absl::StatusOr<bool> AnnotateStreamAttributesForCopyStart( HloInstruction* instr, int64_t channel_id, GpuBackendConfig& instr_gpu_config) { if (instr_gpu_config.operation_queue_id() != Thunk::kDefaultExecutionStreamId.value()) { return false; } instr_gpu_config.set_operation_queue_id(channel_id); TF_RETURN_IF_ERROR(instr->set_backend_config(instr_gpu_config)); VLOG(3) << "Add copy-start's backend config: " << channel_id; return true; } absl::StatusOr<bool> WrapIntoFusionAndAnnotateStreamAttributes( HloInstruction* instruction, int64_t channel_id, GpuBackendConfig& instr_gpu_config) { auto* computation = instruction->parent(); auto* module = computation->parent(); auto* fusion_instruction = computation->AddInstruction(HloInstruction::CreateFusion( instruction->shape(), ChooseFusionKind(*instruction, *instruction), instruction)); const absl::string_view wrapped_opcode = HloOpcodeString(instruction->opcode()); module->SetAndUniquifyInstrName(fusion_instruction, absl::StrCat("wrapped_", wrapped_opcode)); module->SetAndUniquifyComputationName( fusion_instruction->fused_instructions_computation(), absl::StrCat("wrapped_", wrapped_opcode, "_computation")); if (module->has_schedule()) { module->schedule().replace_instruction(computation, instruction, fusion_instruction); } TF_RETURN_IF_ERROR(fusion_instruction->CopyAllControlDepsFrom(instruction)); TF_RETURN_IF_ERROR(instruction->DropAllControlDeps()); TF_RETURN_IF_ERROR(instruction->ReplaceAllUsesWith(fusion_instruction)); TF_RETURN_IF_ERROR(computation->RemoveInstruction(instruction)); instr_gpu_config.set_operation_queue_id(channel_id); TF_RETURN_IF_ERROR(fusion_instruction->set_backend_config(instr_gpu_config)); VLOG(3) << "Add async stream " << channel_id << " and wrapped instruction " << instruction->ToString(); VLOG(3) << " Fusion wrapper: " << fusion_instruction->ToString(); return true; } absl::StatusOr<bool> AnnotateStreamAttributesForUsers( HloInstruction* instr, GpuBackendConfig& instr_gpu_config) { bool changed = false; int64_t stream_id = instr_gpu_config.operation_queue_id(); if (stream_id == Thunk::kDefaultExecutionStreamId.value()) { return changed; } std::vector<HloInstruction*> all_consumers; for (auto user : instr->users()) { if (user->opcode() == HloOpcode::kGetTupleElement) { user = user->users()[0]; } all_consumers.push_back(user); } for (auto user : all_consumers) { TF_ASSIGN_OR_RETURN(GpuBackendConfig gpu_config, user->backend_config<GpuBackendConfig>()); auto it = absl::c_find(gpu_config.wait_on_operation_queues(), stream_id); if (it == gpu_config.wait_on_operation_queues().end() && gpu_config.operation_queue_id() != stream_id) { gpu_config.mutable_wait_on_operation_queues()->Add(stream_id); TF_RETURN_IF_ERROR(user->set_backend_config(gpu_config)); changed = true; } } return changed; } } absl::StatusOr<bool> StreamAttributeAnnotator::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { XLA_VLOG_LINES( 5, "StreamAttributeAnnotator::Run(), before:\n" + module->ToString()); bool changed = false; int64_t channel_id = hlo_query::NextChannelId(*module); for (const HloComputation* comp : module->MakeComputationPostOrder(execution_threads)) { for (HloInstruction* instr : comp->MakeInstructionPostOrder()) { auto instr_gpu_config = instr->backend_config<GpuBackendConfig>(); if (!instr_gpu_config.ok()) { continue; } if (instr->opcode() == HloOpcode::kFusion) { TF_ASSIGN_OR_RETURN(bool comp_result, AnnotateStreamAttributesForInstruction( instr, instr_gpu_config.value())); changed |= comp_result; } else if (instr->opcode() == HloOpcode::kCopyStart) { TF_ASSIGN_OR_RETURN(bool comp_result, AnnotateStreamAttributesForCopyStart( instr, channel_id, instr_gpu_config.value())); changed |= comp_result; continue; } else if (comp->IsAsyncComputation() && (instr->opcode() == HloOpcode::kDynamicSlice || instr->opcode() == HloOpcode::kDynamicUpdateSlice)) { TF_ASSIGN_OR_RETURN(bool comp_result, WrapIntoFusionAndAnnotateStreamAttributes( instr, channel_id, instr_gpu_config.value())); changed |= comp_result; continue; } TF_ASSIGN_OR_RETURN( bool user_result, AnnotateStreamAttributesForUsers(instr, instr_gpu_config.value())); changed |= user_result; } } XLA_VLOG_LINES( 5, "StreamAttributeAnnotator::Run(), after:\n" + module->ToString()); return changed; } }
#include "xla/service/gpu/stream_attribute_annotator.h" #include <cstdint> #include <memory> #include <string> #include <vector> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla::gpu { namespace { using StreamAttributeAnnotatorTest = HloTestBase; TEST_F(StreamAttributeAnnotatorTest, AllUsersAreAnnotated) { constexpr absl::string_view kHloString = R"( HloModule ModuleWithAsync ENTRY entry { p1_32 = f32[1] parameter(0) p2_32 = f32[1] parameter(1) add_32 = f32[1] add(p1_32, p2_32), backend_config={"operation_queue_id":"1", "wait_on_operation_queues":[]} exp_32 = f32[1] exponential(add_32) neg32 = f32[1] negate(add_32) ROOT add_out_32 = f32[1] add(neg32, exp_32) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); StreamAttributeAnnotator attr_annotator; bool changed; TF_ASSERT_OK_AND_ASSIGN(changed, attr_annotator.Run(module.get())); EXPECT_TRUE(changed); const HloInstruction* add = FindInstruction(module.get(), "add_32"); for (auto user : add->users()) { EXPECT_TRUE(user->has_backend_config()); TF_ASSERT_OK_AND_ASSIGN(GpuBackendConfig gpu_config, user->backend_config<GpuBackendConfig>()); EXPECT_EQ(gpu_config.wait_on_operation_queues()[0], 1); } } TEST_F(StreamAttributeAnnotatorTest, MultipleStreamsAreCombined) { constexpr absl::string_view kHloString = R"( HloModule ModuleWithAsync ENTRY entry { p1_32 = f32[1] parameter(0) p2_32 = f32[1] parameter(1) add_32 = f32[1] add(p1_32, p2_32), backend_config={"operation_queue_id":"1", "wait_on_operation_queues":[]} exp_32 = f32[1] exponential(p2_32), backend_config={"operation_queue_id":"2", "wait_on_operation_queues":[]} ROOT add_out_32 = f32[1] add(add_32, exp_32) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); StreamAttributeAnnotator attr_annotator; bool changed; TF_ASSERT_OK_AND_ASSIGN(changed, attr_annotator.Run(module.get())); EXPECT_TRUE(changed); const HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_TRUE(root->has_backend_config()); TF_ASSERT_OK_AND_ASSIGN(GpuBackendConfig gpu_config, root->backend_config<GpuBackendConfig>()); std::vector<int64_t> expected_stream_ids = {1, 2}; for (auto id : expected_stream_ids) { auto it = absl::c_find(gpu_config.wait_on_operation_queues(), id); EXPECT_NE(it, gpu_config.wait_on_operation_queues().end()); } } TEST_F(StreamAttributeAnnotatorTest, GTEUserIsAnnotated) { constexpr absl::string_view kHloString = R"( HloModule ModuleWithAsync ENTRY entry { p1_32 = f32[16,32] parameter(0) p2_32 = f32[32,16] parameter(1) custom-call.3 = (f32[16,16], s8[1028]{0}) custom-call(p1_32, p2_32), custom_call_target="__cublas$gemm", backend_config={"operation_queue_id":"1","wait_on_operation_queues":[],"gemm_backend_config":{"alpha_real":1,"alpha_imag":0,"beta":0,"dot_dimension_numbers":{"lhs_contracting_dimensions":["1"],"rhs_contracting_dimensions":["0"],"lhs_batch_dimensions":[],"rhs_batch_dimensions":[]},"precision_config":{"operand_precision":["DEFAULT","DEFAULT"]},"epilogue":"DEFAULT","grad_x":false,"grad_y":false}} get-tuple-element.24 = f32[16,16] get-tuple-element(custom-call.3), index=0 exp_32 = f32[16,16] exponential(get-tuple-element.24) ROOT neg32 = f32[16,16] negate(exp_32) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); StreamAttributeAnnotator attr_annotator; bool changed; TF_ASSERT_OK_AND_ASSIGN(changed, attr_annotator.Run(module.get())); EXPECT_TRUE(changed); const HloInstruction* exp = FindInstruction(module.get(), "exp_32"); EXPECT_TRUE(exp->has_backend_config()); TF_ASSERT_OK_AND_ASSIGN(GpuBackendConfig gpu_config, exp->backend_config<GpuBackendConfig>()); EXPECT_EQ(gpu_config.wait_on_operation_queues()[0], 1); } TEST_F(StreamAttributeAnnotatorTest, FusionIsAnnotated) { constexpr absl::string_view kHloString = R"( HloModule ModuleWithFusion fused_computation.1 { fusion_p0_32 = f32[16,16] parameter(0) fusion_p2_32 = f32[16,16] parameter(1) ROOT add = f32[16,16] add(fusion_p0_32, fusion_p2_32), backend_config={"operation_queue_id":"1","wait_on_operation_queues":[]} } ENTRY entry { p1_32 = f32[16,16] parameter(0) p2_32 = f32[16,16] parameter(1) ROOT fusion.1 = f32[16,16] fusion(p1_32, p2_32), kind=kLoop, calls=fused_computation.1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); StreamAttributeAnnotator attr_annotator; bool changed; TF_ASSERT_OK_AND_ASSIGN(changed, attr_annotator.Run(module.get())); EXPECT_TRUE(changed); const HloInstruction* fusion = FindInstruction(module.get(), "fusion.1"); EXPECT_TRUE(fusion->has_backend_config()); TF_ASSERT_OK_AND_ASSIGN(GpuBackendConfig gpu_config, fusion->backend_config<GpuBackendConfig>()); EXPECT_EQ(gpu_config.operation_queue_id(), 1); } TEST_F(StreamAttributeAnnotatorTest, CopyStartIsAnnotated) { constexpr absl::string_view kHloString = R"( HloModule offloading ENTRY %main (param_0: f32[1024], param_1: f32[1024]) -> f32[1024] { %param_1 = f32[1024]{0} parameter(1) %param_0 = f32[1024]{0} parameter(0) %res_3 = f32[1024]{0} add(f32[1024]{0} %param_0, f32[1024]{0} %param_1) %copy-start = (f32[1024]{0:S(5)}, f32[1024]{0}, u32[]) copy-start(f32[1024]{0} %res_3) %res_4 = f32[1024]{0} tanh(f32[1024]{0} %res_3) %copy-start.2 = (f32[1024]{0:S(5)}, f32[1024]{0}, u32[]) copy-start(f32[1024]{0} %res_4) %res_5 = f32[1024]{0} tanh(f32[1024]{0} %res_4) %copy-done = f32[1024]{0:S(5)} copy-done((f32[1024]{0:S(5)}, f32[1024]{0}, u32[]) %copy-start) %res_6 = f32[1024]{0} tanh(f32[1024]{0} %res_5) %copy-done.2 = f32[1024]{0:S(5)} copy-done((f32[1024]{0:S(5)}, f32[1024]{0}, u32[]) %copy-start.2) %copy-start.3 = (f32[1024]{0}, f32[1024]{0:S(5)}, u32[]) copy-start(f32[1024]{0:S(5)} %copy-done.2) %res_7 = f32[1024]{0} add(f32[1024]{0} %res_6, f32[1024]{0} %res_6) %copy-start.1 = (f32[1024]{0}, f32[1024]{0:S(5)}, u32[]) copy-start(f32[1024]{0:S(5)} %copy-done) %res_8 = f32[1024]{0} add(f32[1024]{0} %res_7, f32[1024]{0} %res_5) %copy-done.3 = f32[1024]{0} copy-done((f32[1024]{0}, f32[1024]{0:S(5)}, u32[]) %copy-start.3) %res_9 = f32[1024]{0} add(f32[1024]{0} %res_8, f32[1024]{0} %copy-done.3) %copy-done.1 = f32[1024]{0} copy-done((f32[1024]{0}, f32[1024]{0:S(5)}, u32[]) %copy-start.1) %res_10 = f32[1024]{0} add(f32[1024]{0} %res_9, f32[1024]{0} %copy-done.1) ROOT %res_11 = f32[1024]{0} tanh(f32[1024]{0} %res_10) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); StreamAttributeAnnotator attr_annotator; bool changed; TF_ASSERT_OK_AND_ASSIGN(changed, attr_annotator.Run(module.get())); EXPECT_TRUE(changed); for (std::string i : {"", ".1", ".2", ".3"}) { const HloInstruction* cp_start = FindInstruction(module.get(), "copy-start" + i); EXPECT_TRUE(cp_start->has_backend_config()); TF_ASSERT_OK_AND_ASSIGN(GpuBackendConfig gpu_config, cp_start->backend_config<GpuBackendConfig>()); EXPECT_EQ(gpu_config.operation_queue_id(), 1); } } TEST_F(StreamAttributeAnnotatorTest, DynamicUpdateSliceWrappedAndAnnotated) { constexpr absl::string_view kHloString = R"( HloModule ModuleWithAsyncDynamicUpdateSlice ENTRY entry (param_0: f32[256,128,128], param_1: f32[1,128,128]) -> f32[256,128,128] { param_0 = f32[256,128,128]{2,1,0:S(5)} parameter(0) param_1 = f32[1,128,128]{2,1,0} parameter(1) izero = s32[] constant(0) dynamic-update-slice-start.2 = ((f32[256,128,128]{2,1,0:S(5)}, f32[1,128,128]{2,1,0}, s32[], s32[], s32[]), f32[256,128,128]{2,1,0:S(5)}, u32[]) dynamic-update-slice-start(param_0, param_1, izero, izero, izero) ROOT dynamic-update-slice-done.2 = f32[256,128,128]{2,1,0:S(5)} dynamic-update-slice-done(dynamic-update-slice-start.2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); TF_ASSERT_OK_AND_ASSIGN(bool changed, StreamAttributeAnnotator().Run(module.get())); EXPECT_TRUE(changed); const HloInstruction* dus = FindInstruction(module.get(), HloOpcode::kDynamicUpdateSlice); const HloComputation* computation = dus->parent(); EXPECT_TRUE(computation->IsFusionComputation()); const HloInstruction* fusion = computation->FusionInstruction(); EXPECT_EQ(fusion->opcode(), HloOpcode::kFusion); EXPECT_TRUE(fusion->parent()->IsAsyncComputation()); EXPECT_TRUE(fusion->has_backend_config()); TF_ASSERT_OK_AND_ASSIGN(GpuBackendConfig gpu_config, fusion->backend_config<GpuBackendConfig>()); EXPECT_EQ(gpu_config.operation_queue_id(), 1); } TEST_F(StreamAttributeAnnotatorTest, DynamicSliceWrappedAndAnnotated) { constexpr absl::string_view kHloString = R"( HloModule ModuleWithAsyncDynamicSlice ENTRY entry (param_0: f32[256,128,128]) -> f32[1,128,128] { param_0 = f32[256,128,128]{2,1,0:S(5)} parameter(0) izero = s32[] constant(0) dynamic-slice-start.2 = ((f32[256,128,128]{2,1,0:S(5)}, s32[], s32[], s32[]), f32[1,128,128]{2,1,0}, u32[]) dynamic-slice-start(param_0, izero, izero, izero), dynamic_slice_sizes={1,128,128} ROOT dynamic-slice-done.2 = f32[1,128,128]{2,1,0} dynamic-slice-done(dynamic-slice-start.2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); TF_ASSERT_OK_AND_ASSIGN(bool changed, StreamAttributeAnnotator().Run(module.get())); EXPECT_TRUE(changed); const HloInstruction* ds = FindInstruction(module.get(), HloOpcode::kDynamicSlice); const HloComputation* computation = ds->parent(); EXPECT_TRUE(computation->IsFusionComputation()); const HloInstruction* fusion = computation->FusionInstruction(); EXPECT_EQ(fusion->opcode(), HloOpcode::kFusion); EXPECT_TRUE(fusion->parent()->IsAsyncComputation()); EXPECT_TRUE(fusion->has_backend_config()); TF_ASSERT_OK_AND_ASSIGN(GpuBackendConfig gpu_config, fusion->backend_config<GpuBackendConfig>()); EXPECT_EQ(gpu_config.operation_queue_id(), 1); } } }
2,108
cpp
tensorflow/tensorflow
dynamic_slice_fusion_rewriter
third_party/xla/xla/service/gpu/transforms/dynamic_slice_fusion_rewriter.cc
third_party/xla/xla/service/gpu/transforms/dynamic_slice_fusion_rewriter_test.cc
#ifndef XLA_SERVICE_GPU_DYNAMIC_SLICE_FUSION_REWRITER_H_ #define XLA_SERVICE_GPU_DYNAMIC_SLICE_FUSION_REWRITER_H_ #include <string> #include <utility> #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace gpu { class DynamicSliceFusionRewriter : public HloModulePass { public: absl::string_view name() const override { return "address-computation-fusion-rewriter"; } explicit DynamicSliceFusionRewriter(std::string platform_name) : platform_name_(std::move(platform_name)) {} using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: std::string platform_name_; }; } } #endif #include "xla/service/gpu/dynamic_slice_fusion_rewriter.h" #include <cstddef> #include <cstdint> #include <functional> #include <iterator> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/ffi/api/c_api.h" #include "xla/ffi/ffi_api.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/service/custom_call_target_registry.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/gpu/gpu_constants.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using DefUseDataflowPath = absl::InlinedVector<HloInstruction*, 2>; using DefUseDataflowPaths = absl::InlinedVector<DefUseDataflowPath, 4>; using UseDefDataflowPath = absl::InlinedVector<HloInstruction*, 4>; using UseDefDataflowPaths = absl::InlinedVector<HloInstruction*, 8>; using DataflowPathView = absl::Span<HloInstruction* const>; using DataflowPathsView = absl::Span<DataflowPathView>; using InstructionSet = absl::flat_hash_set<HloInstruction*>; bool IsNoOp(const HloInstruction* hlo) { return HloPredicateIsOp<HloOpcode::kBitcast, HloOpcode::kTuple, HloOpcode::kGetTupleElement>(hlo); } bool IsCustomCall(const HloInstruction* hlo, absl::string_view platform_name) { auto* custom_call = DynCast<HloCustomCallInstruction>(hlo); if (custom_call == nullptr) return false; if (custom_call->shape().IsTuple() && absl::c_any_of( custom_call->shape().tuple_shapes(), [&](const Shape& sub_shape) { return sub_shape.IsToken(); })) return false; const std::string call_target_name = custom_call->custom_call_target(); bool is_ffi_custom_call = custom_call->api_version() == CustomCallApiVersion::API_VERSION_TYPED_FFI; void* call_target = CustomCallTargetRegistry::Global()->Lookup( call_target_name, std::string(platform_name)); absl::StatusOr<ffi::HandlerRegistration> handler_registration = ffi::FindHandler(call_target_name, platform_name); bool found_custom_call = !is_ffi_custom_call && call_target != nullptr; bool found_ffi_handler = is_ffi_custom_call && handler_registration.ok(); return found_custom_call || found_ffi_handler; } bool IsAlignedSlice(const Shape& src_shape, const Shape& dst_shape, const HloSliceInstruction* slice) { if (!IsContiguousSlice(src_shape, dst_shape)) return false; auto strides = ShapeUtil::ByteStrides(dst_shape); if (!strides.has_value()) return false; for (auto dim : dst_shape.layout().minor_to_major()) { if ((strides.value()[dim] % kXlaAllocatedBufferAlignBytes) == 0) return true; if (dst_shape.dimensions(dim) < src_shape.dimensions(dim)) { return (slice != nullptr && ((strides.value()[dim] * slice->slice_starts(dim)) % kXlaAllocatedBufferAlignBytes == 0)); } } return true; } UseDefDataflowPaths GetSlicedOperandPaths(const HloInstruction* instr) { UseDefDataflowPaths sliced_operand_paths; InstructionSet processed_instrs; const auto& aliasing_pairs = Cast<HloCustomCallInstruction>(instr)->output_to_operand_aliasing(); absl::flat_hash_set<int64_t> aliased_operands; for (const auto& pair : aliasing_pairs) { aliased_operands.insert(pair.second.first); } for (const auto* operand : instr->operands()) { if (aliased_operands.contains(instr->operand_index(operand))) continue; UseDefDataflowPath maybe_sliced_operand_path; bool slice_found = false; auto maybe_slice_instr = HloFindIf({operand}, [&](const HloInstruction* cur) { if (processed_instrs.contains(cur)) return true; maybe_sliced_operand_path.push_back(const_cast<HloInstruction*>(cur)); if (IsOpcodeAnyOf<HloOpcode::kDynamicSlice, HloOpcode::kSlice>(cur)) { if (IsAlignedSlice(cur->operand(0)->shape(), cur->shape(), DynCast<HloSliceInstruction>(cur))) { slice_found = true; return slice_found; } } return !IsNoOp(cur); }); if (maybe_slice_instr == std::nullopt) continue; if (slice_found || processed_instrs.contains(maybe_slice_instr.value())) { sliced_operand_paths.insert(sliced_operand_paths.end(), maybe_sliced_operand_path.rbegin(), maybe_sliced_operand_path.rend()); processed_instrs.insert(maybe_sliced_operand_path.begin(), maybe_sliced_operand_path.end()); } } sliced_operand_paths.push_back(const_cast<HloInstruction*>(instr)); return sliced_operand_paths; } DefUseDataflowPaths GetSlicedUserPaths(const HloInstruction* instr) { DefUseDataflowPaths sliced_user_paths; InstructionSet processed_instrs; auto traverse_hlo_and_collect = [&](HloInstruction* start) { DefUseDataflowPath maybe_sliced_user_path; bool dus_found = false; auto maybe_dus_instr = HloFindIf( {start}, [&](const HloInstruction* cur) { if (processed_instrs.contains(cur)) return true; maybe_sliced_user_path.push_back(const_cast<HloInstruction*>(cur)); if (const auto slice_instr = DynCast<HloDynamicUpdateSliceInstruction>(cur)) { if (IsAlignedSlice(slice_instr->shape(), slice_instr->update()->shape(), nullptr)) { dus_found = true; return true; } } return cur->user_count() > 1 || !IsNoOp(cur); }, false); if (maybe_dus_instr == std::nullopt) return; if (dus_found || processed_instrs.contains(maybe_dus_instr.value())) { processed_instrs.insert(maybe_sliced_user_path.begin(), maybe_sliced_user_path.end()); sliced_user_paths.push_back(std::move(maybe_sliced_user_path)); } }; if (instr->shape().IsTuple()) { for (auto* user : instr->users()) { if (DynCast<HloGetTupleElementInstruction>(user)) { traverse_hlo_and_collect(user); } } } else { if (instr->user_count() == 1) { traverse_hlo_and_collect(instr->users().front()); } } return sliced_user_paths; } absl::InlinedVector<HloInstruction*, 4> GetPatternCaptures( DataflowPathView matches) { absl::InlinedVector<HloInstruction*, 4> captures; InstructionSet matched_instrs(matches.begin(), matches.end()); for (HloInstruction* instr : matches) { for (HloInstruction* operand : instr->operands()) { if (!matched_instrs.contains(operand) && absl::c_find(captures, operand) == captures.end()) { captures.emplace_back(operand); } } } return captures; } absl::Status CreateRootTuple( HloInstruction* hero, HloComputation::Builder& builder, DataflowPathsView sliced_user_paths, absl::flat_hash_map<const HloInstruction*, HloInstruction*>& instr_mapping) { unsigned tuple_size = hero->shape().tuple_shapes_size(); std::vector<HloInstruction*> sliced_elems(tuple_size, nullptr); for (auto& sliced_user_path : sliced_user_paths) { auto gte = Cast<HloGetTupleElementInstruction>(sliced_user_path.front()); sliced_elems[gte->tuple_index()] = sliced_user_path.back(); } std::vector<HloInstruction*> elements; for (size_t i = 0; i < tuple_size; ++i) { if (sliced_elems[i] != nullptr) { elements.push_back(instr_mapping[sliced_elems[i]]); continue; } auto* gte = builder.AddInstruction( HloInstruction::CreateGetTupleElement(instr_mapping[hero], i)); if (hero->shape().tuple_shapes(i).IsTuple()) { instr_mapping[gte] = gte; TF_RETURN_IF_ERROR(CreateRootTuple(gte, builder, {}, instr_mapping)); elements.push_back(builder.last_added_instruction()); } else { elements.push_back(gte); } } if (elements.size() > 1) builder.AddInstruction(HloInstruction::CreateTuple(elements)); return absl::OkStatus(); } absl::StatusOr<HloComputation*> CreateFusionBody( HloModule* module, DataflowPathView sliced_operand_paths, DataflowPathsView sliced_user_paths, DataflowPathView captures) { HloComputation::Builder builder("address-computation"); absl::flat_hash_map<const HloInstruction*, HloInstruction*> instr_mapping; auto mapped_operands = [&](HloInstruction* instr) { absl::InlinedVector<HloInstruction*, 4> operands; for (HloInstruction* operand : instr->operands()) { operands.push_back(instr_mapping.at(operand)); } return operands; }; for (const HloInstruction* capture : captures) { int64_t index = instr_mapping.size(); instr_mapping[capture] = builder.AddInstruction(HloInstruction::CreateParameter( index, capture->shape(), absl::StrCat("p", index))); } HloInstruction* hero; for (HloInstruction* instr : sliced_operand_paths) { instr_mapping[instr] = builder.AddInstruction( instr->CloneWithNewOperands(instr->shape(), mapped_operands(instr))); hero = instr; } for (auto& sliced_user_path : sliced_user_paths) { for (HloInstruction* instr : sliced_user_path) { instr_mapping[instr] = builder.AddInstruction( instr->CloneWithNewOperands(instr->shape(), mapped_operands(instr))); } } if (hero->shape().IsTuple() && hero->shape().tuple_shapes_size() > 0) { TF_RETURN_IF_ERROR( CreateRootTuple(hero, builder, sliced_user_paths, instr_mapping)); } return module->AddComputationAndUnifyNamesAndIds(builder.Build(), false); } absl::StatusOr<HloInstruction*> CreateFusionInstruction( HloModule* module, HloInstruction* orig, DataflowPathView captures, HloComputation* body, bool dynamic) { HloComputation* parent = orig->parent(); HloInstruction* fusion = parent->AddInstruction(HloInstruction::CreateFusion( body->root_instruction()->shape(), HloInstruction::FusionKind::kCustom, captures, body)); module->SetAndUniquifyInstrName(fusion, "address_computation"); GpuBackendConfig gpu_config; FusionBackendConfig& backend_config = *gpu_config.mutable_fusion_backend_config(); backend_config.set_kind("__custom_fusion"); CustomFusionConfig config; config.set_name(dynamic ? "dynamic_address_computation" : "address_computation"); *backend_config.mutable_custom_fusion_config() = config; TF_RETURN_IF_ERROR(fusion->set_backend_config(std::move(gpu_config))); return fusion; } } absl::StatusOr<bool> DynamicSliceFusionRewriter::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { absl::flat_hash_map<HloInstruction*, std::pair<UseDefDataflowPaths, DefUseDataflowPaths>> matches; for (HloComputation* computation : module->computations()) { if (computation->IsFusionComputation()) continue; for (HloInstruction* instr : computation->instructions()) { if (IsLegacyCublasMatmul(*instr) || (IsCustomCall(instr, platform_name_))) { UseDefDataflowPaths sliced_operand_paths = GetSlicedOperandPaths(instr); bool has_sliced_operand_paths = sliced_operand_paths.size() > 1; DefUseDataflowPaths sliced_user_paths = GetSlicedUserPaths(instr); bool has_sliced_user_paths = absl::c_any_of( sliced_user_paths, [&](auto& sliced_user_path) { return !sliced_user_path.empty(); }); if (absl::c_any_of(sliced_user_paths, [&](auto& sliced_user_path) { return DynCast<HloDynamicUpdateSliceInstruction>( sliced_user_path.back()) == nullptr; })) { return absl::InternalError( "Expect sliced user path to end with a DUS."); } if (has_sliced_operand_paths || has_sliced_user_paths) { matches[instr] = std::make_pair(std::move(sliced_operand_paths), std::move(sliced_user_paths)); } } } } if (matches.empty()) return false; for (auto& [hero, paths] : matches) { auto& [sliced_operand_paths, sliced_user_paths] = paths; std::vector<HloInstruction*> matched_instrs; absl::c_copy(sliced_operand_paths, std::back_inserter(matched_instrs)); std::vector<DataflowPathView> sliced_user_paths_view; for (auto& sliced_user_path : sliced_user_paths) { absl::c_copy(sliced_user_path, std::back_inserter(matched_instrs)); DataflowPathView sliced_user_path_view{&sliced_user_path.front(), sliced_user_path.size()}; sliced_user_paths_view.push_back(std::move(sliced_user_path_view)); } auto captures = GetPatternCaptures(matched_instrs); TF_ASSIGN_OR_RETURN( HloComputation * fusion_body, CreateFusionBody(module, sliced_operand_paths, DataflowPathsView(sliced_user_paths_view), captures)); bool has_dynamic_slices = absl::c_any_of(matched_instrs, [&](auto* instr) { return DynCast<HloDynamicIndexInstruction>(instr) != nullptr; }); TF_ASSIGN_OR_RETURN( HloInstruction * fusion, CreateFusionInstruction(module, hero, captures, fusion_body, has_dynamic_slices)); HloComputation* parent = hero->parent(); if (fusion->shape().IsTuple()) { TF_RETURN_IF_ERROR(parent->ReplaceInstructionWithDifferentShape( const_cast<HloInstruction*>(hero), fusion)); for (auto& sliced_user_path : sliced_user_paths) { auto old_gte = Cast<HloGetTupleElementInstruction>(sliced_user_path.front()); HloInstruction* gte = parent->AddInstruction(HloInstruction::CreateGetTupleElement( fusion, old_gte->tuple_index())); TF_RETURN_IF_ERROR( parent->ReplaceInstruction(sliced_user_path.back(), gte)); } } else { auto* instr_to_be_replaced = const_cast<HloInstruction*>(hero); if (sliced_user_paths.empty()) { if (hero->shape().IsTuple()) { if (hero->user_count() != 1 || !DynCast<HloGetTupleElementInstruction>(hero->users().front())) { return absl::InternalError( "Expect a single get-tuple-element user of the original " "tuple-shaped hero op when address computation fusion does " "not return a tuple"); } instr_to_be_replaced = hero->users().front(); } } else { instr_to_be_replaced = sliced_user_paths.front().back(); } TF_RETURN_IF_ERROR( parent->ReplaceInstruction(instr_to_be_replaced, fusion)); } } return true; } } }
#include "xla/service/gpu/dynamic_slice_fusion_rewriter.h" #include <cstddef> #include <cstdint> #include <functional> #include <optional> #include <utility> #include "absl/algorithm/container.h" #include "absl/status/status.h" #include "xla/client/lib/constants.h" #include "xla/client/xla_builder.h" #include "xla/ffi/ffi.h" #include "xla/ffi/ffi_api.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/service/buffer_value.h" #include "xla/service/custom_call_target_registry.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/hlo_memory_scheduler.h" #include "xla/service/hlo_module_config.h" #include "xla/service/service_executable_run_options.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/gpu/gpu_types.h" #include "xla/stream_executor/stream.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #define PLATFORM "GPU" namespace xla::gpu { class DynamicSliceFusionRewriterTest : public HloTestBase {}; TEST_F(DynamicSliceFusionRewriterTest, SimpleGemm) { const char* hlo = R"( HloModule test ENTRY %main.9 { %p0 = f16[2,8,8]{2,1,0} parameter(0) %p1 = f16[2,8,8]{2,1,0} parameter(1) %slice.13 = f16[1,8,8]{2,1,0} slice(%p0), slice={[1:2], [0:8], [0:8]} %bitcast.41 = f16[8,8]{1,0} bitcast(%slice.13) %slice.14 = f16[1,8,8]{2,1,0} slice(%p1), slice={[1:2], [0:8], [0:8]} %bitcast.42 = f16[8,8]{1,0} bitcast(%slice.14) ROOT %custom-call.1 = f16[8,8]{1,0} custom-call(%bitcast.41, %bitcast.42), custom_call_target="__cublas$gemm", backend_config={"gemm_backend_config":{ "alpha_real":1, "beta":0, "dot_dimension_numbers":{ "lhs_contracting_dimensions":["1"], "rhs_contracting_dimensions":["0"], "lhs_batch_dimensions":[], "rhs_batch_dimensions":[] }, "alpha_imag":0, "precision_config":{"operand_precision":["DEFAULT","DEFAULT"]}, "epilogue":"DEFAULT", "lhs_stride":"64", "rhs_stride":"64", "grad_x":false, "grad_y":false }} } )"; const char* expected = R"( ; CHECK: %address-computation {{.*}} { ; CHECK-DAG: [[P0:%[^ ]+]] = f16[2,8,8]{2,1,0} parameter(0) ; CHECK-DAG: [[P1:%[^ ]+]] = f16[2,8,8]{2,1,0} parameter(1) ; CHECK-DAG: [[S0:%[^ ]+]] = f16[1,8,8]{2,1,0} slice([[P0]]), slice={[1:2], [0:8], [0:8]} ; CHECK-DAG: [[B0:%[^ ]+]] = f16[8,8]{1,0} bitcast([[S0]]) ; CHECK-DAG: [[S1:%[^ ]+]] = f16[1,8,8]{2,1,0} slice([[P1]]), slice={[1:2], [0:8], [0:8]} ; CHECK-DAG: [[B1:%[^ ]+]] = f16[8,8]{1,0} bitcast([[S1]]) ; CHECK: ROOT [[CC:%[^ ]+]] = f16[8,8]{1,0} custom-call([[B0]], [[B1]]), ; CHECK: custom_call_target="__cublas$gemm" ; CHECK: } ; CHECK: ENTRY %main{{.*}} { ; CHECK: ROOT [[FUSION:%[^ ]+]] = f16[8,8]{1,0} fusion ; CHECK: kind=kCustom, calls=%address-computation, ; CHECK: backend_config={ ; CHECK: "kind":"__custom_fusion", ; CHECK: "custom_fusion_config":{"name":"address_computation"} ; CHECK: } ; CHECK: } )"; auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); RunAndFilecheckHloRewrite(hlo, DynamicSliceFusionRewriter(PLATFORM), expected); } TEST_F(DynamicSliceFusionRewriterTest, SimpleGemmWithWorkspace) { const char* hlo = R"( HloModule test ENTRY %main.9 { %p0 = f16[2,8,8]{2,1,0} parameter(0) %p1 = f16[2,8,8]{2,1,0} parameter(1) %slice.13 = f16[1,8,8]{2,1,0} slice(%p0), slice={[1:2], [0:8], [0:8]} %bitcast.41 = f16[8,8]{1,0} bitcast(%slice.13) %slice.14 = f16[1,8,8]{2,1,0} slice(%p1), slice={[1:2], [0:8], [0:8]} %bitcast.42 = f16[8,8]{1,0} bitcast(%slice.14) ROOT %custom-call.1 = (f16[8,8]{1,0}, s8[256]{0}) custom-call(%bitcast.41, %bitcast.42), custom_call_target="__cublas$gemm", backend_config={"gemm_backend_config":{ "alpha_real":1, "beta":0, "dot_dimension_numbers":{ "lhs_contracting_dimensions":["1"], "rhs_contracting_dimensions":["0"], "lhs_batch_dimensions":[], "rhs_batch_dimensions":[] }, "alpha_imag":0, "precision_config":{"operand_precision":["DEFAULT","DEFAULT"]}, "epilogue":"DEFAULT", "lhs_stride":"64", "rhs_stride":"64", "grad_x":false, "grad_y":false }} } )"; const char* expected = R"( ; CHECK: %address-computation {{.*}} { ; CHECK-DAG: [[P0:%[^ ]+]] = f16[2,8,8]{2,1,0} parameter(0) ; CHECK-DAG: [[P1:%[^ ]+]] = f16[2,8,8]{2,1,0} parameter(1) ; CHECK-DAG: [[S0:%[^ ]+]] = f16[1,8,8]{2,1,0} slice([[P0]]), slice={[1:2], [0:8], [0:8]} ; CHECK-DAG: [[B0:%[^ ]+]] = f16[8,8]{1,0} bitcast([[S0]]) ; CHECK-DAG: [[S1:%[^ ]+]] = f16[1,8,8]{2,1,0} slice([[P1]]), slice={[1:2], [0:8], [0:8]} ; CHECK-DAG: [[B1:%[^ ]+]] = f16[8,8]{1,0} bitcast([[S1]]) ; CHECK: [[CC:%[^ ]+]] = (f16[8,8]{1,0}, s8[256]{0}) custom-call([[B0]], [[B1]]), ; CHECK: custom_call_target="__cublas$gemm" ; CHECK: [[DOT:%[^ ]+]] = f16[8,8]{1,0} get-tuple-element([[CC]]), index=0 ; CHECK: [[WORKSPACE:%[^ ]+]] = s8[256]{0} get-tuple-element([[CC]]), index=1 ; CHECK: ROOT [[TUPLE:%[^ ]+]] = (f16[8,8]{1,0}, s8[256]{0}) ; CHECK: tuple([[DOT]], [[WORKSPACE]]) ; CHECK: } ; CHECK: ENTRY %main{{.*}} { ; CHECK: ROOT [[FUSION:%[^ ]+]] = (f16[8,8]{1,0}, s8[256]{0}) fusion ; CHECK: kind=kCustom, calls=%address-computation, ; CHECK: backend_config={ ; CHECK: "kind":"__custom_fusion", ; CHECK: "custom_fusion_config":{"name":"address_computation"} ; CHECK: } ; CHECK: } )"; auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); RunAndFilecheckHloRewrite(hlo, DynamicSliceFusionRewriter(PLATFORM), expected); } TEST_F(DynamicSliceFusionRewriterTest, SimpleGemmWorkspaceIgnored) { const char* hlo = R"( HloModule test ENTRY %main.9 { %p0 = f16[2,8,8]{2,1,0} parameter(0) %p1 = f16[2,8,8]{2,1,0} parameter(1) %slice.13 = f16[1,8,8]{2,1,0} slice(%p0), slice={[1:2], [0:8], [0:8]} %bitcast.41 = f16[8,8]{1,0} bitcast(%slice.13) %slice.14 = f16[1,8,8]{2,1,0} slice(%p1), slice={[1:2], [0:8], [0:8]} %bitcast.42 = f16[8,8]{1,0} bitcast(%slice.14) %custom-call.1 = (f16[8,8]{1,0}, s8[256]{0}) custom-call(%bitcast.41, %bitcast.42), custom_call_target="__cublas$gemm", backend_config={"gemm_backend_config":{ "alpha_real":1, "beta":0, "dot_dimension_numbers":{ "lhs_contracting_dimensions":["1"], "rhs_contracting_dimensions":["0"], "lhs_batch_dimensions":[], "rhs_batch_dimensions":[] }, "alpha_imag":0, "precision_config":{"operand_precision":["DEFAULT","DEFAULT"]}, "epilogue":"DEFAULT", "lhs_stride":"64", "rhs_stride":"64", "grad_x":false, "grad_y":false }} ROOT %get-tuple-element.0 = f16[8,8]{1,0} get-tuple-element(%custom-call.1), index=0 } )"; const char* expected = R"( ; CHECK: %address-computation {{.*}} { ; CHECK-DAG: [[P0:%[^ ]+]] = f16[2,8,8]{2,1,0} parameter(0) ; CHECK-DAG: [[P1:%[^ ]+]] = f16[2,8,8]{2,1,0} parameter(1) ; CHECK-DAG: [[S0:%[^ ]+]] = f16[1,8,8]{2,1,0} slice([[P0]]), slice={[1:2], [0:8], [0:8]} ; CHECK-DAG: [[B0:%[^ ]+]] = f16[8,8]{1,0} bitcast([[S0]]) ; CHECK-DAG: [[S1:%[^ ]+]] = f16[1,8,8]{2,1,0} slice([[P1]]), slice={[1:2], [0:8], [0:8]} ; CHECK-DAG: [[B1:%[^ ]+]] = f16[8,8]{1,0} bitcast([[S1]]) ; CHECK: [[CC:%[^ ]+]] = (f16[8,8]{1,0}, s8[256]{0}) custom-call([[B0]], [[B1]]), ; CHECK: custom_call_target="__cublas$gemm" ; CHECK: [[DOT:%[^ ]+]] = f16[8,8]{1,0} get-tuple-element([[CC]]), index=0 ; CHECK: [[WORKSPACE:%[^ ]+]] = s8[256]{0} get-tuple-element([[CC]]), index=1 ; CHECK: ROOT [[TUPLE:%[^ ]+]] = (f16[8,8]{1,0}, s8[256]{0}) ; CHECK: tuple([[DOT]], [[WORKSPACE]]) ; CHECK: } ; CHECK: ENTRY %main{{.*}} { ; CHECK: [[FUSION:%[^ ]+]] = (f16[8,8]{1,0}, s8[256]{0}) fusion ; CHECK: kind=kCustom, calls=%address-computation, ; CHECK: backend_config={ ; CHECK: "kind":"__custom_fusion", ; CHECK: "custom_fusion_config":{"name":"address_computation"} ; CHECK: } ; CHECK: ROOT [[DOT_MAIN:%[^ ]+]] = f16[8,8]{1,0} get-tuple-element([[FUSION]]), index=0 ; CHECK: } )"; auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); RunAndFilecheckHloRewrite(hlo, DynamicSliceFusionRewriter(PLATFORM), expected); } TEST_F(DynamicSliceFusionRewriterTest, SimpleGemmNotRoot) { const char* hlo = R"( HloModule test ENTRY %main.9 { %p0 = f16[2,8,8]{2,1,0} parameter(0) %p1 = f16[2,8,8]{2,1,0} parameter(1) %slice.13 = f16[1,8,8]{2,1,0} slice(%p0), slice={[1:2], [0:8], [0:8]} %bitcast.41 = f16[8,8]{1,0} bitcast(%slice.13) %slice.14 = f16[1,8,8]{2,1,0} slice(%p1), slice={[1:2], [0:8], [0:8]} %bitcast.42 = f16[8,8]{1,0} bitcast(%slice.14) %custom-call.1 = f16[8,8]{1,0} custom-call(%bitcast.41, %bitcast.42), custom_call_target="__cublas$gemm", backend_config={"gemm_backend_config":{ "alpha_real":1, "beta":0, "dot_dimension_numbers":{ "lhs_contracting_dimensions":["1"], "rhs_contracting_dimensions":["0"], "lhs_batch_dimensions":[], "rhs_batch_dimensions":[] }, "alpha_imag":0, "precision_config":{"operand_precision":["DEFAULT","DEFAULT"]}, "epilogue":"DEFAULT", "lhs_stride":"64", "rhs_stride":"64", "grad_x":false, "grad_y":false }} ROOT %res = f16[8,8]{1,0} add(%custom-call.1, %custom-call.1) } )"; const char* expected = R"( ; CHECK: %address-computation {{.*}} { ; CHECK-DAG: [[P0:%[^ ]+]] = f16[2,8,8]{2,1,0} parameter(0) ; CHECK-DAG: [[P1:%[^ ]+]] = f16[2,8,8]{2,1,0} parameter(1) ; CHECK-DAG: [[S0:%[^ ]+]] = f16[1,8,8]{2,1,0} slice([[P0]]), slice={[1:2], [0:8], [0:8]} ; CHECK-DAG: [[B0:%[^ ]+]] = f16[8,8]{1,0} bitcast([[S0]]) ; CHECK-DAG: [[S1:%[^ ]+]] = f16[1,8,8]{2,1,0} slice([[P1]]), slice={[1:2], [0:8], [0:8]} ; CHECK-DAG: [[B1:%[^ ]+]] = f16[8,8]{1,0} bitcast([[S1]]) ; CHECK: ROOT [[CC:%[^ ]+]] = f16[8,8]{1,0} custom-call([[B0]], [[B1]]), ; CHECK: custom_call_target="__cublas$gemm" ; CHECK: } ; CHECK: ENTRY %main{{.*}} { ; CHECK: [[FUSION:%[^ ]+]] = f16[8,8]{1,0} fusion ; CHECK: kind=kCustom, calls=%address-computation, ; CHECK: backend_config={ ; CHECK: "kind":"__custom_fusion", ; CHECK: "custom_fusion_config":{"name":"address_computation"} ; CHECK: } ; CHECK: ROOT {{.*}} = f16[8,8]{1,0} add([[FUSION]], [[FUSION]]) ; CHECK: } )"; auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); RunAndFilecheckHloRewrite(hlo, DynamicSliceFusionRewriter(PLATFORM), expected); } TEST_F(DynamicSliceFusionRewriterTest, SimpleGemmOperandHasMultipleUsers) { const char* hlo = R"( HloModule test ENTRY %main.9 { %p0 = f16[2,8,8]{2,1,0} parameter(0) %p1 = f16[4,8,8]{2,1,0} parameter(1) %slice.13 = f16[1,8,8]{2,1,0} slice(%p0), slice={[1:2], [0:8], [0:8]} %bitcast.41 = f16[8,8]{1,0} bitcast(%slice.13) %slice.14 = f16[1,8,8]{2,1,0} slice(%p1), slice={[2:3], [0:8], [0:8]} %bitcast.42 = f16[8,8]{1,0} bitcast(%slice.14) %custom-call.1 = f16[8,8]{1,0} custom-call(%bitcast.41, %bitcast.42), custom_call_target="__cublas$gemm", backend_config={"gemm_backend_config":{ "alpha_real":1, "beta":0, "dot_dimension_numbers":{ "lhs_contracting_dimensions":["1"], "rhs_contracting_dimensions":["0"], "lhs_batch_dimensions":[], "rhs_batch_dimensions":[] }, "alpha_imag":0, "precision_config":{"operand_precision":["DEFAULT","DEFAULT"]}, "epilogue":"DEFAULT", "lhs_stride":"64", "rhs_stride":"64", "grad_x":false, "grad_y":false }} ROOT %res = f16[8,8]{1,0} add(%custom-call.1, %bitcast.41) } )"; const char* expected = R"( ; CHECK: %address-computation {{.*}} { ; CHECK-DAG: [[P0:%[^ ]+]] = f16[2,8,8]{2,1,0} parameter(0) ; CHECK-DAG: [[P1:%[^ ]+]] = f16[4,8,8]{2,1,0} parameter(1) ; CHECK-DAG: [[S0:%[^ ]+]] = f16[1,8,8]{2,1,0} slice([[P0]]), slice={[1:2], [0:8], [0:8]} ; CHECK-DAG: [[B0:%[^ ]+]] = f16[8,8]{1,0} bitcast([[S0]]) ; CHECK-DAG: [[S1:%[^ ]+]] = f16[1,8,8]{2,1,0} slice([[P1]]), slice={[2:3], [0:8], [0:8]} ; CHECK-DAG: [[B1:%[^ ]+]] = f16[8,8]{1,0} bitcast([[S1]]) ; CHECK: ROOT [[CC:%[^ ]+]] = f16[8,8]{1,0} custom-call([[B0]], [[B1]]), ; CHECK: custom_call_target="__cublas$gemm" ; CHECK: } ; CHECK: ENTRY %main{{.*}} { ; CHECK-DAG: [[P0:%[^ ]+]] = f16[2,8,8]{2,1,0} parameter(0) ; CHECK-DAG: [[P1:%[^ ]+]] = f16[4,8,8]{2,1,0} parameter(1) ; CHECK-DAG: [[FUSION:%[^ ]+]] = f16[8,8]{1,0} fusion([[P0]], [[P1]]) ; CHECK-DAG: kind=kCustom, calls=%address-computation, ; CHECK-DAG: backend_config={ ; CHECK-DAG: "kind":"__custom_fusion", ; CHECK-DAG: "custom_fusion_config":{"name":"address_computation"} ; CHECK-DAG: } ; CHECK-DAG: [[S0:%[^ ]+]] = f16[1,8,8]{2,1,0} slice([[P0]]), slice={[1:2], [0:8], [0:8]} ; CHECK-DAG: [[B0:%[^ ]+]] = f16[8,8]{1,0} bitcast([[S0]]) ; CHECK: ROOT {{.*}} = f16[8,8]{1,0} add([[FUSION]], [[B0]]) ; CHECK: } )"; auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); RunAndFilecheckHloRewrite(hlo, DynamicSliceFusionRewriter(PLATFORM), expected); } TEST_F(DynamicSliceFusionRewriterTest, SimpleGemmOperandsHaveMultipleUsers) { const char* hlo = R"( HloModule test ENTRY %main.9 { %p0 = f16[2,8,8]{2,1,0} parameter(0) %p1 = f16[2,8,8]{2,1,0} parameter(1) %slice.13 = f16[1,8,8]{2,1,0} slice(%p0), slice={[1:2], [0:8], [0:8]} %bitcast.41 = f16[8,8]{1,0} bitcast(%slice.13) %slice.14 = f16[1,8,8]{2,1,0} slice(%p1), slice={[1:2], [0:8], [0:8]} %bitcast.42 = f16[8,8]{1,0} bitcast(%slice.14) %custom-call.0 = f16[8,8]{1,0} custom-call(%bitcast.41, %bitcast.42), custom_call_target="__cublas$gemm", backend_config={"gemm_backend_config":{ "alpha_real":1, "beta":0, "dot_dimension_numbers":{ "lhs_contracting_dimensions":["1"], "rhs_contracting_dimensions":["0"], "lhs_batch_dimensions":[], "rhs_batch_dimensions":[] }, "alpha_imag":0, "precision_config":{"operand_precision":["DEFAULT","DEFAULT"]}, "epilogue":"DEFAULT", "lhs_stride":"64", "rhs_stride":"64", "grad_x":false, "grad_y":false }} ROOT %custom-call.1 = f16[8,8]{1,0} custom-call(%bitcast.42, %bitcast.41), custom_call_target="__cublas$gemm", backend_config={"gemm_backend_config":{ "alpha_real":1, "beta":0, "dot_dimension_numbers":{ "lhs_contracting_dimensions":["1"], "rhs_contracting_dimensions":["0"], "lhs_batch_dimensions":[], "rhs_batch_dimensions":[] }, "alpha_imag":0, "precision_config":{"operand_precision":["DEFAULT","DEFAULT"]}, "epilogue":"DEFAULT", "lhs_stride":"64", "rhs_stride":"64", "grad_x":false, "grad_y":false }} } )"; const char* expected = R"( ; CHECK: %address-computation{{.*}} { ; CHECK-DAG: [[P0:%[^ ]+]] = f16[2,8,8]{2,1,0} parameter(0) ; CHECK-DAG: [[P1:%[^ ]+]] = f16[2,8,8]{2,1,0} parameter(1) ; CHECK-DAG: [[S0:%[^ ]+]] = f16[1,8,8]{2,1,0} slice([[P0]]), slice={[1:2], [0:8], [0:8]} ; CHECK-DAG: [[B0:%[^ ]+]] = f16[8,8]{1,0} bitcast([[S0]]) ; CHECK-DAG: [[S1:%[^ ]+]] = f16[1,8,8]{2,1,0} slice([[P1]]), slice={[1:2], [0:8], [0:8]} ; CHECK-DAG: [[B1:%[^ ]+]] = f16[8,8]{1,0} bitcast([[S1]]) ; CHECK: ROOT [[CC:%[^ ]+]] = f16[8,8]{1,0} custom-call([[B0]], [[B1]]), ; CHECK: custom_call_target="__cublas$gemm" ; CHECK: } ; CHECK: %address-computation{{.*}} { ; CHECK-DAG: [[P0:%[^ ]+]] = f16[2,8,8]{2,1,0} parameter(0) ; CHECK-DAG: [[P1:%[^ ]+]] = f16[2,8,8]{2,1,0} parameter(1) ; CHECK-DAG: [[S0:%[^ ]+]] = f16[1,8,8]{2,1,0} slice([[P0]]), slice={[1:2], [0:8], [0:8]} ; CHECK-DAG: [[B0:%[^ ]+]] = f16[8,8]{1,0} bitcast([[S0]]) ; CHECK-DAG: [[S1:%[^ ]+]] = f16[1,8,8]{2,1,0} slice([[P1]]), slice={[1:2], [0:8], [0:8]} ; CHECK-DAG: [[B1:%[^ ]+]] = f16[8,8]{1,0} bitcast([[S1]]) ; CHECK: ROOT [[CC:%[^ ]+]] = f16[8,8]{1,0} custom-call([[B0]], [[B1]]), ; CHECK: custom_call_target="__cublas$gemm" ; CHECK: } )"; auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); RunAndFilecheckHloRewrite(hlo, DynamicSliceFusionRewriter(PLATFORM), expected); } TEST_F(DynamicSliceFusionRewriterTest, SimpleGemmSlicingNotParameter) { const char* hlo = R"( HloModule test ENTRY %main.9 { %p0 = f16[4,8,8]{2,1,0} parameter(0) %p1 = f16[2,8,8]{2,1,0} parameter(1) %slice.12 = f16[2,8,8]{2,1,0} slice(%p0), slice={[0:2], [0:8], [0:8]} %slice.13 = f16[1,8,8]{2,1,0} slice(%slice.12), slice={[1:2], [0:8], [0:8]} %bitcast.41 = f16[8,8]{1,0} bitcast(%slice.13) %slice.14 = f16[1,8,8]{2,1,0} slice(%p1), slice={[1:2], [0:8], [0:8]} %bitcast.42 = f16[8,8]{1,0} bitcast(%slice.14) %custom-call.1 = f16[8,8]{1,0} custom-call(%bitcast.41, %bitcast.42), custom_call_target="__cublas$gemm", backend_config={"gemm_backend_config":{ "alpha_real":1, "beta":0, "dot_dimension_numbers":{ "lhs_contracting_dimensions":["1"], "rhs_contracting_dimensions":["0"], "lhs_batch_dimensions":[], "rhs_batch_dimensions":[] }, "alpha_imag":0, "precision_config":{"operand_precision":["DEFAULT","DEFAULT"]}, "epilogue":"DEFAULT", "lhs_stride":"64", "rhs_stride":"64", "grad_x":false, "grad_y":false }} ROOT %res = f16[8,8]{1,0} add(%custom-call.1, %custom-call.1) } )"; const char* expected = R"( ; CHECK: %address-computation {{.*}} { ; CHECK-DAG: [[P0:%[^ ]+]] = f16[2,8,8]{2,1,0} parameter(0) ; CHECK-DAG: [[P1:%[^ ]+]] = f16[2,8,8]{2,1,0} parameter(1) ; CHECK-DAG: [[S0:%[^ ]+]] = f16[1,8,8]{2,1,0} slice([[P0]]), slice={[1:2], [0:8], [0:8]} ; CHECK-DAG: [[B0:%[^ ]+]] = f16[8,8]{1,0} bitcast([[S0]]) ; CHECK-DAG: [[S1:%[^ ]+]] = f16[1,8,8]{2,1,0} slice([[P1]]), slice={[1:2], [0:8], [0:8]} ; CHECK-DAG: [[B1:%[^ ]+]] = f16[8,8]{1,0} bitcast([[S1]]) ; CHECK: ROOT [[CC:%[^ ]+]] = f16[8,8]{1,0} custom-call([[B0]], [[B1]]), ; CHECK: custom_call_target="__cublas$gemm" ; CHECK: } ; CHECK: ENTRY %main{{.*}} { ; CHECK-DAG: [[P0:%[^ ]+]] = f16[4,8,8]{2,1,0} parameter(0) ; CHECK-DAG: [[S0:%[^ ]+]] = f16[2,8,8]{2,1,0} slice([[P0]]), slice={[0:2], [0:8], [0:8]} ; CHECK-DAG: [[P1:%[^ ]+]] = f16[2,8,8]{2,1,0} parameter(1) ; CHECK: [[FUSION:%[^ ]+]] = f16[8,8]{1,0} fusion([[S0]], [[P1]]) ; CHECK: kind=kCustom, calls=%address-computation, ; CHECK: backend_config={ ; CHECK: "kind":"__custom_fusion", ; CHECK: "custom_fusion_config":{"name":"address_computation"} ; CHECK: } ; CHECK: ROOT {{.*}} = f16[8,8]{1,0} add([[FUSION]], [[FUSION]]) ; CHECK: } )"; auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); RunAndFilecheckHloRewrite(hlo, DynamicSliceFusionRewriter(PLATFORM), expected); } TEST_F(DynamicSliceFusionRewriterTest, SimpleGemmNotContiguousSlice) { const char* hlo = R"( HloModule test ENTRY %main.9 { %p0 = f16[2,8,8]{2,1,0} parameter(0) %p1 = f16[2,8,8]{2,1,0} parameter(1) %slice.13 = f16[1,4,6]{2,1,0} slice(%p0), slice={[1:2], [0:4], [0:6]} %bitcast.41 = f16[4,6]{1,0} bitcast(%slice.13) %slice.14 = f16[1,6,4]{2,1,0} slice(%p1), slice={[1:2], [0:6], [0:4]} %bitcast.42 = f16[6,4]{1,0} bitcast(%slice.14) ROOT %custom-call.1 = f16[4,4]{1,0} custom-call(%bitcast.41, %bitcast.42), custom_call_target="__cublas$gemm", backend_config={"gemm_backend_config":{ "alpha_real":1, "beta":0, "dot_dimension_numbers":{ "lhs_contracting_dimensions":["1"], "rhs_contracting_dimensions":["0"], "lhs_batch_dimensions":[], "rhs_batch_dimensions":[] }, "alpha_imag":0, "precision_config":{"operand_precision":["DEFAULT","DEFAULT"]}, "epilogue":"DEFAULT", "lhs_stride":"64", "rhs_stride":"64", "grad_x":false, "grad_y":false }} } )"; auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); RunAndFilecheckHloRewrite(hlo, DynamicSliceFusionRewriter(PLATFORM), std::nullopt); } TEST_F(DynamicSliceFusionRewriterTest, SimpleGemmNonNoOpInSliceChain) { const char* hlo = R"( HloModule test ENTRY %main.9 { %p0 = f16[2,8,8]{2,1,0} parameter(0) %p1 = f16[2,8,8]{2,1,0} parameter(1) %slice.13 = f16[1,8,8]{2,1,0} slice(%p0), slice={[0:1], [0:8], [0:8]} %slice.14 = f16[1,8,8]{2,1,0} slice(%p0), slice={[1:2], [0:8], [0:8]} %add.0 = f16[1,8,8]{2,1,0} add(%slice.13, %slice.14) %bitcast.41 = f16[8,8]{1,0} bitcast(%add.0) %slice.15 = f16[1,8,8]{2,1,0} slice(%p1), slice={[0:1], [0:8], [0:8]} %slice.16 = f16[1,8,8]{2,1,0} slice(%p1), slice={[1:2], [0:8], [0:8]} %add.1 = f16[1,8,8]{2,1,0} add(%slice.15, %slice.16) %bitcast.42 = f16[8,8]{1,0} bitcast(%add.1) ROOT %custom-call.1 = f16[8,8]{1,0} custom-call(%bitcast.41, %bitcast.42), custom_call_target="__cublas$gemm", backend_config={"gemm_backend_config":{ "alpha_real":1, "beta":0, "dot_dimension_numbers":{ "lhs_contracting_dimensions":["1"], "rhs_contracting_dimensions":["0"], "lhs_batch_dimensions":[], "rhs_batch_dimensions":[] }, "alpha_imag":0, "precision_config":{"operand_precision":["DEFAULT","DEFAULT"]}, "epilogue":"DEFAULT", "lhs_stride":"64", "rhs_stride":"64", "grad_x":false, "grad_y":false }} } )"; auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); RunAndFilecheckHloRewrite(hlo, DynamicSliceFusionRewriter(PLATFORM), std::nullopt); } TEST_F(DynamicSliceFusionRewriterTest, SimpleGemmDuplicateOperand) { const char* hlo = R"( HloModule test ENTRY %main { %p0 = (f32[100,100]{1,0}, f32[100,100]{1,0}) parameter(0) %get-tuple-element.240 = f32[100,100]{1,0} get-tuple-element(%p0), index=0 %get-tuple-element.241 = f32[100,100]{1,0} get-tuple-element(%p0), index=1 %concatenate.10 = f32[200,100]{1,0} concatenate(%get-tuple-element.240, %get-tuple-element.241), dimensions={0} %custom-call.16 = (f32[200,100]{1,0}, s8[120000]{0}) custom-call(%concatenate.10, %get-tuple-element.240), custom_call_target="__cublas$gemm", backend_config={ "gemm_backend_config":{ "alpha_real":1, "beta":0, "dot_dimension_numbers":{ "lhs_contracting_dimensions":["1"], "rhs_contracting_dimensions":["0"], "lhs_batch_dimensions":[], "rhs_batch_dimensions":[] }, "alpha_imag":0, "precision_config":{"operand_precision":["HIGHEST","HIGHEST"]}, "epilogue":"DEFAULT", "lhs_stride":"20000", "rhs_stride":"10000", "grad_x":false, "grad_y":false } } %get-tuple-element.97 = f32[200,100]{1,0} get-tuple-element(%custom-call.16), index=0 %slice.26 = f32[100,100]{1,0} slice(%get-tuple-element.97), slice={[0:100], [0:100]} ROOT %custom-call.17 = (f32[100,100]{1,0}, s8[80000]{0}) custom-call(%slice.26, %slice.26), custom_call_target="__cublas$gemm", backend_config={ "gemm_backend_config":{ "alpha_real":1, "beta":0, "dot_dimension_numbers":{ "lhs_contracting_dimensions":["1"], "rhs_contracting_dimensions":["0"], "lhs_batch_dimensions":[], "rhs_batch_dimensions":[] }, "alpha_imag":0, "precision_config":{"operand_precision":["HIGHEST","HIGHEST"]}, "epilogue":"DEFAULT", "lhs_stride":"10000", "rhs_stride":"10000", "grad_x":false, "grad_y":false } } })"; const char* expected = R"( ; CHECK: %address-computation {{.*}} { ; CHECK: [[P0:%[^ ]+]] = f32[200,100]{1,0} parameter(0) ; CHECK: [[S0:%[^ ]+]] = f32[100,100]{1,0} slice([[P0]]), slice={[0:100], [0:100]} ; CHECK-NOT: slice ; CHECK: [[CC:%[^ ]+]] = (f32[100,100]{1,0}, s8[80000]{0}) custom-call([[S0]], [[S0]]), ; CHECK: custom_call_target="__cublas$gemm" ; CHECK: } ; CHECK: ENTRY %main{{.*}} { ; CHECK: ROOT [[FUSION:%[^ ]+]] = (f32[100,100]{1,0}, s8[80000]{0}) fusion ; CHECK: kind=kCustom, calls=%address-computation, ; CHECK: backend_config={ ; CHECK: "kind":"__custom_fusion", ; CHECK: "custom_fusion_config":{"name":"address_computation"} ; CHECK: } ; CHECK: } )"; auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); RunAndFilecheckHloRewrite(hlo, DynamicSliceFusionRewriter(PLATFORM), expected); } TEST_F(DynamicSliceFusionRewriterTest, SimpleGemmReverseOperandOrder) { const char* hlo = R"( HloModule test ENTRY %main.9 { %p0 = f16[2,8,8]{2,1,0} parameter(1) %slice.13 = f16[1,8,8]{2,1,0} slice(%p0), slice={[0:1], [0:8], [0:8]} %bitcast.41 = f16[8,8]{1,0} bitcast(%slice.13) %p1 = f16[2,8,8]{2,1,0} parameter(0) %slice.14 = f16[1,8,8]{2,1,0} slice(%p1), slice={[1:2], [0:8], [0:8]} %bitcast.42 = f16[8,8]{1,0} bitcast(%slice.14) ROOT %custom-call.1 = f16[8,8]{1,0} custom-call(%bitcast.41, %bitcast.42), custom_call_target="__cublas$gemm", backend_config={"gemm_backend_config":{ "alpha_real":1, "beta":0, "dot_dimension_numbers":{ "lhs_contracting_dimensions":["1"], "rhs_contracting_dimensions":["0"], "lhs_batch_dimensions":[], "rhs_batch_dimensions":[] }, "alpha_imag":0, "precision_config":{"operand_precision":["DEFAULT","DEFAULT"]}, "epilogue":"DEFAULT", "lhs_stride":"64", "rhs_stride":"64", "grad_x":false, "grad_y":false }} } )"; const char* expected = R"( ; CHECK: %address-computation {{.*}} { ; CHECK-DAG: [[P0:%[^ ]+]] = f16[2,8,8]{2,1,0} parameter(0) ; CHECK-DAG: [[P1:%[^ ]+]] = f16[2,8,8]{2,1,0} parameter(1) ; CHECK-DAG: [[S0:%[^ ]+]] = f16[1,8,8]{2,1,0} slice([[P0]]), slice={[0:1], [0:8], [0:8]} ; CHECK-DAG: [[B0:%[^ ]+]] = f16[8,8]{1,0} bitcast([[S0]]) ; CHECK-DAG: [[S1:%[^ ]+]] = f16[1,8,8]{2,1,0} slice([[P1]]), slice={[1:2], [0:8], [0:8]} ; CHECK-DAG: [[B1:%[^ ]+]] = f16[8,8]{1,0} bitcast([[S1]]) ; CHECK: ROOT [[CC:%[^ ]+]] = f16[8,8]{1,0} custom-call([[B0]], [[B1]]), ; CHECK: custom_call_target="__cublas$gemm" ; CHECK: } ; CHECK: ENTRY %main{{.*}} { ; CHECK-DAG: [[A0:%[^ ]+]] = f16[2,8,8]{2,1,0} parameter(1) ; CHECK-DAG: [[A1:%[^ ]+]] = f16[2,8,8]{2,1,0} parameter(0) ; CHECK: ROOT [[FUSION:%[^ ]+]] = f16[8,8]{1,0} fusion([[A0]], [[A1]]) ; CHECK: kind=kCustom, calls=%address-computation, ; CHECK: backend_config={ ; CHECK: "kind":"__custom_fusion", ; CHECK: "custom_fusion_config":{"name":"address_computation"} ; CHECK: } ; CHECK: } )"; auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); RunAndFilecheckHloRewrite(hlo, DynamicSliceFusionRewriter(PLATFORM), expected); } TEST_F(DynamicSliceFusionRewriterTest, SimpleGemmReverseOperandOrder2) { const char* hlo = R"( HloModule test ENTRY %main.9 { %p0 = f16[2,8,8]{2,1,0} parameter(0) %slice.13 = f16[1,8,8]{2,1,0} slice(%p0), slice={[0:1], [0:8], [0:8]} %bitcast.41 = f16[8,8]{1,0} bitcast(%slice.13) %p1 = f16[2,8,8]{2,1,0} parameter(1) %slice.14 = f16[1,8,8]{2,1,0} slice(%p1), slice={[1:2], [0:8], [0:8]} %bitcast.42 = f16[8,8]{1,0} bitcast(%slice.14) ROOT %custom-call.1 = f16[8,8]{1,0} custom-call(%bitcast.42, %bitcast.41), custom_call_target="__cublas$gemm", backend_config={"gemm_backend_config":{ "alpha_real":1, "beta":0, "dot_dimension_numbers":{ "lhs_contracting_dimensions":["1"], "rhs_contracting_dimensions":["0"], "lhs_batch_dimensions":[], "rhs_batch_dimensions":[] }, "alpha_imag":0, "precision_config":{"operand_precision":["DEFAULT","DEFAULT"]}, "epilogue":"DEFAULT", "lhs_stride":"64", "rhs_stride":"64", "grad_x":false, "grad_y":false }} } )"; const char* expected = R"( ; CHECK: %address-computation {{.*}} { ; CHECK-DAG: [[P0:%[^ ]+]] = f16[2,8,8]{2,1,0} parameter(0) ; CHECK-DAG: [[P1:%[^ ]+]] = f16[2,8,8]{2,1,0} parameter(1) ; CHECK-DAG: [[S0:%[^ ]+]] = f16[1,8,8]{2,1,0} slice([[P0]]), slice={[1:2], [0:8], [0:8]} ; CHECK-DAG: [[B0:%[^ ]+]] = f16[8,8]{1,0} bitcast([[S0]]) ; CHECK-DAG: [[S1:%[^ ]+]] = f16[1,8,8]{2,1,0} slice([[P1]]), slice={[0:1], [0:8], [0:8]} ; CHECK-DAG: [[B1:%[^ ]+]] = f16[8,8]{1,0} bitcast([[S1]]) ; CHECK: ROOT [[CC:%[^ ]+]] = f16[8,8]{1,0} custom-call([[B0]], [[B1]]), ; CHECK: custom_call_target="__cublas$gemm" ; CHECK: } ; CHECK: ENTRY %main{{.*}} { ; CHECK-DAG: [[A0:%[^ ]+]] = f16[2,8,8]{2,1,0} parameter(1) ; CHECK-DAG: [[A1:%[^ ]+]] = f16[2,8,8]{2,1,0} parameter(0) ; CHECK: ROOT [[FUSION:%[^ ]+]] = f16[8,8]{1,0} fusion([[A0]], [[A1]]) ; CHECK: kind=kCustom, calls=%address-computation, ; CHECK: backend_config={ ; CHECK: "kind":"__custom_fusion", ; CHECK: "custom_fusion_config":{"name":"address_computation"} ; CHECK: } ; CHECK: }
2,109
cpp
tensorflow/tensorflow
dot_sparsity_rewriter
third_party/xla/xla/service/gpu/transforms/dot_sparsity_rewriter.cc
third_party/xla/xla/service/gpu/transforms/dot_sparsity_rewriter_test.cc
#ifndef XLA_SERVICE_GPU_DOT_SPARSITY_REWRITER_H_ #define XLA_SERVICE_GPU_DOT_SPARSITY_REWRITER_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace gpu { class DotSparsityRewriter : public HloModulePass { public: absl::string_view name() const override { return "dot_sparsity_rewriter"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } } #endif #include "xla/service/gpu/dot_sparsity_rewriter.h" #include <utility> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_creation_utils.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { class SparseDotRewriterImpl : public DfsHloRewriteVisitor { public: absl::Status HandleDot(HloInstruction* instr) override { HloDotInstruction* dot = Cast<HloDotInstruction>(instr); if (dot->sparse_operands() != 1 || dot->sparsity().front().index() != 1) { return absl::OkStatus(); } HloInstruction* lhs = dot->mutable_operand(0); HloInstruction* rhs = dot->mutable_operand(1); HloInstruction* meta = dot->mutable_operand(2); DotDimensionNumbers dnums = dot->dot_dimension_numbers(); std::swap(*dnums.mutable_lhs_batch_dimensions(), *dnums.mutable_rhs_batch_dimensions()); std::swap(*dnums.mutable_lhs_contracting_dimensions(), *dnums.mutable_rhs_contracting_dimensions()); PrecisionConfig precision_config = dot->precision_config(); std::swap(precision_config.mutable_operand_precision()->at(0), precision_config.mutable_operand_precision()->at(1)); SparsityDescriptor sparsity = dot->sparsity().front(); sparsity.set_index(0); TF_ASSIGN_OR_RETURN( HloInstruction * new_dot, MakeDotHlo(rhs, lhs, dnums, precision_config, dot->shape().element_type(), {std::move(sparsity)}, {meta})); dot->SetupDerivedInstruction(new_dot); int batch_dims = dnums.lhs_batch_dimensions().size(); int new_lhs_noncontracting = rhs->shape().rank() - batch_dims - dnums.lhs_contracting_dimensions().size(); int new_rhs_noncontracting = lhs->shape().rank() - batch_dims - dnums.rhs_contracting_dimensions().size(); int rank = dot->shape().rank(); DimensionVector dimensions(rank); for (int i = 0; i < batch_dims; ++i) { dimensions[i] = i; } for (int i = 0; i < new_lhs_noncontracting; ++i) { dimensions[i + batch_dims] = i + batch_dims + new_rhs_noncontracting; } for (int i = 0; i < new_rhs_noncontracting; ++i) { dimensions[i + batch_dims + new_lhs_noncontracting] = i + batch_dims; } TF_ASSIGN_OR_RETURN(HloInstruction * transpose, MakeTransposeHlo(new_dot, dimensions)); transpose->set_metadata(dot->metadata()); *transpose->mutable_shape()->mutable_layout() = dot->shape().layout(); return ReplaceInstruction(dot, transpose); } }; } absl::StatusOr<bool> DotSparsityRewriter::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { return SparseDotRewriterImpl().RunOnModule(module, execution_threads); } } }
#include "xla/service/gpu/dot_sparsity_rewriter.h" #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using ::testing::ElementsAre; class DotSparsityRewriterTest : public HloTestBase { public: DotSparsityRewriterTest() : HloTestBase(true) {} }; TEST_F(DotSparsityRewriterTest, SparseDotRhsToLhs) { const char* module_string = R"( HloModule m ENTRY e { lhs = f16[4,2,16,8,64] parameter(0) rhs = f16[2,4,8,32,128] parameter(1) meta = u16[2,4,8,4,128] parameter(2) ROOT dot = f16[4,2,16,128] dot(lhs, rhs, meta), lhs_contracting_dims={3,4}, rhs_contracting_dims={2,3}, lhs_batch_dims={0,1}, rhs_batch_dims={1,0}, sparsity=R.3@2:4 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); TF_ASSERT_OK_AND_ASSIGN(bool modified, DotSparsityRewriter().Run(module.get())); EXPECT_TRUE(modified); const HloTransposeInstruction* transpose = DynCast<HloTransposeInstruction>( module->entry_computation()->root_instruction()); ASSERT_TRUE(transpose != nullptr); EXPECT_THAT(transpose->dimensions(), ElementsAre(0, 1, 3, 2)); const HloDotInstruction* dot = DynCast<HloDotInstruction>(transpose->operand(0)); ASSERT_TRUE(dot != nullptr); const DotDimensionNumbers& dnums = dot->dot_dimension_numbers(); EXPECT_EQ(dnums.lhs_contracting_dimensions(0), 2); EXPECT_EQ(dnums.lhs_contracting_dimensions(1), 3); EXPECT_EQ(dnums.rhs_contracting_dimensions(0), 3); EXPECT_EQ(dnums.rhs_contracting_dimensions(1), 4); EXPECT_EQ(dnums.lhs_batch_dimensions(0), 1); EXPECT_EQ(dnums.lhs_batch_dimensions(1), 0); EXPECT_EQ(dnums.rhs_batch_dimensions(0), 0); EXPECT_EQ(dnums.rhs_batch_dimensions(1), 1); EXPECT_EQ(dot->sparse_operands(), 1); EXPECT_EQ(dot->sparsity().front().index(), 0); } } } }
2,110
cpp
tensorflow/tensorflow
gemm_algorithm_picker
third_party/xla/xla/service/gpu/autotuning/gemm_algorithm_picker.cc
third_party/xla/xla/service/gpu/autotuning/gemm_algorithm_picker_test.cc
#ifndef XLA_SERVICE_GPU_GEMM_ALGORITHM_PICKER_H_ #define XLA_SERVICE_GPU_GEMM_ALGORITHM_PICKER_H_ #include <functional> #include <optional> #include <string_view> #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/autotune_results.pb.h" #include "xla/autotuning.pb.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/gpu/autotuner_util.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_pass_interface.h" #include "xla/shape.h" #include "xla/stream_executor/blas.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/gpu/redzone_allocator.h" #include "xla/stream_executor/stream_executor.h" namespace xla { namespace gpu { class GemmAlgorithmPicker : public HloModulePass { public: explicit GemmAlgorithmPicker(AutotuneConfig config) : config_(config) {} absl::string_view name() const override { return "gemm-algorithm-picker"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: AutotuneConfig config_; }; } } #endif #include "xla/service/gpu/gemm_algorithm_picker.h" #include <cstddef> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/autotuning.pb.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/autotuner_compile_util.h" #include "xla/service/gpu/autotuner_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/buffer_comparator.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/gpu/stream_executor_util.h" #include "xla/service/gpu/variant_visitor.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/blas.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/gpu/redzone_allocator.h" #include "xla/tsl/util/proto/proto_utils.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" #include "tsl/profiler/lib/scoped_annotation.h" namespace xla { namespace gpu { namespace { using se::gpu::BlasLt; absl::StatusOr<BlasLt::Epilogue> AsBlasLtEpilogue( GemmBackendConfig_Epilogue epilogue) { switch (epilogue) { case GemmBackendConfig::DEFAULT: return BlasLt::Epilogue::kDefault; case GemmBackendConfig::RELU: return BlasLt::Epilogue::kReLU; case GemmBackendConfig::GELU: return BlasLt::Epilogue::kGELU; case GemmBackendConfig::GELU_AUX: return BlasLt::Epilogue::kGELUWithAux; case GemmBackendConfig::BIAS: return BlasLt::Epilogue::kBias; case GemmBackendConfig::BIAS_RELU: return BlasLt::Epilogue::kBiasThenReLU; case GemmBackendConfig::BIAS_GELU: return BlasLt::Epilogue::kBiasThenGELU; case GemmBackendConfig::BIAS_GELU_AUX: return BlasLt::Epilogue::kBiasThenGELUWithAux; default: return Internal("Unsupported Epilogue."); } } class GemmAutotuner { const AutotuneConfig& autotune_config_; RedzoneBuffers rz_buffers_; se::Stream* stream_ = nullptr; bool deterministic_ops_ = false; size_t solutions_limit_ = 0; public: explicit GemmAutotuner(const AutotuneConfig& autotune_config) : autotune_config_(autotune_config) {} absl::StatusOr<AutotuneResult> operator()(const HloInstruction* gemm, const AutotuneCacheKey& key) { if (autotune_config_.IsDeviceless()) { return AutotuneResult{}; } VLOG(3) << "Starting autotune of GemmThunk " << gemm->ToString(); TF_ASSIGN_OR_RETURN(stream_, autotune_config_.GetStream()); const DebugOptions& debug_options = gemm->GetModule()->config().debug_options(); deterministic_ops_ = debug_options.xla_gpu_deterministic_ops() || debug_options.xla_gpu_exclude_nondeterministic_ops(); solutions_limit_ = debug_options.xla_gpu_autotune_max_solutions(); TF_ASSIGN_OR_RETURN(auto gemm_config, GemmConfig::For(gemm)); absl::MutexLock gpu_lock(&GetGpuMutex(stream_->parent())); TF_ASSIGN_OR_RETURN(rz_buffers_, RedzoneBuffers::FromInstruction( *gemm, autotune_config_, debug_options, RedzoneBuffers::kAllInputsAllOutputs)); return IsCublasLtMatmul(*gemm) || IsCublasLtMatmulF8(*gemm) ? TuneGpuBlasLt(gemm, gemm_config) : TuneGpuBlas(gemm, gemm_config); } private: se::DeviceMemoryBase LhsBuffer() { return rz_buffers_.input_buffers().at(0); } se::DeviceMemoryBase RhsBuffer() { return rz_buffers_.input_buffers().at(1); } se::DeviceMemoryBase OutputBuffer() { return rz_buffers_.output_buffers().at(0); } const Shape& GetOutputShape(const HloInstruction* gemm) { return gemm->shape().IsTuple() ? gemm->shape().tuple_shapes(0) : gemm->shape(); } absl::StatusOr<AutotuneResult> TuneGpuBlasLt(const HloInstruction* gemm, const GemmConfig& gemm_config) { auto workspace_buffer = rz_buffers_.output_buffers().at(gemm->shape().tuple_shapes_size() - 1); GpuBackendConfig gpu_config = gemm->backend_config<GpuBackendConfig>().value(); const GemmBackendConfig& backend_config = gpu_config.gemm_backend_config(); bool has_matrix_bias = gemm_config.beta != 0.; TF_ASSIGN_OR_RETURN( bool has_vector_bias, gpublas_lt::EpilogueAddsVectorBias(backend_config.epilogue())); TF_ASSIGN_OR_RETURN( bool has_aux_output, gpublas_lt::EpilogueHasAuxiliaryOutput(backend_config.epilogue())); TF_ASSIGN_OR_RETURN(auto epilogue, AsBlasLtEpilogue(backend_config.epilogue())); se::DeviceMemoryBase a_scale_buffer, b_scale_buffer, c_scale_buffer, d_scale_buffer, d_amax_buffer, bias_buffer, aux_buffer; if (has_vector_bias) { bias_buffer = rz_buffers_.input_buffers().at(has_matrix_bias ? 3 : 2); } if (has_aux_output) { aux_buffer = rz_buffers_.output_buffers().at(1); } TF_ASSIGN_OR_RETURN(auto plan, BlasLt::GetMatmulPlan(stream_, gemm_config, epilogue)); TF_ASSIGN_OR_RETURN( auto algorithms, plan->GetAlgorithms( 128, workspace_buffer.size())); auto tuned_func = [&](const BlasLt::MatmulAlgorithm& algorithm) -> absl::StatusOr<se::blas::ProfileResult> { TF_RETURN_IF_ERROR(plan->ExecuteOnStream( stream_, LhsBuffer(), RhsBuffer(), OutputBuffer(), OutputBuffer(), bias_buffer, aux_buffer, a_scale_buffer, b_scale_buffer, c_scale_buffer, d_scale_buffer, d_amax_buffer, algorithm, workspace_buffer)); se::blas::ProfileResult profile_result; profile_result.set_warmup_run_executed(true); TF_RETURN_IF_ERROR(plan->ExecuteOnStream( stream_, LhsBuffer(), RhsBuffer(), OutputBuffer(), OutputBuffer(), bias_buffer, aux_buffer, a_scale_buffer, b_scale_buffer, c_scale_buffer, d_scale_buffer, d_amax_buffer, algorithm, workspace_buffer, &profile_result)); return std::move(profile_result); }; return GetBestAlgorithm<BlasLt::MatmulAlgorithm>( gemm, algorithms, gemm_config.beta, tuned_func); } absl::StatusOr<AutotuneResult> TuneGpuBlas(const HloInstruction* gemm, const GemmConfig& gemm_config) { auto workspace_buffer = rz_buffers_.output_buffers().at(1); std::vector<se::blas::AlgorithmType> algorithms; TF_ASSIGN_OR_RETURN(GemmConfig::DescriptorsTuple desc, gemm_config.GetMatrixDescriptors( LhsBuffer(), RhsBuffer(), OutputBuffer())); auto blas = stream_->parent()->AsBlas(); if (blas == nullptr) { return absl::InternalError("No BLAS support for stream"); } blas->GetBlasGemmAlgorithms(stream_, desc.lhs, desc.rhs, &desc.output, &gemm_config.alpha, &gemm_config.beta, &algorithms); AutotuneResult best_algorithm; auto tuned_func = [&](const se::blas::AlgorithmType& algorithm) -> absl::StatusOr<se::blas::ProfileResult> { static_cast<void>(RunGemm(gemm_config, LhsBuffer(), RhsBuffer(), OutputBuffer(), workspace_buffer, deterministic_ops_, stream_, algorithm)); se::blas::ProfileResult profile_result; profile_result.set_warmup_run_executed(true); TF_RETURN_IF_ERROR(RunGemm(gemm_config, LhsBuffer(), RhsBuffer(), OutputBuffer(), workspace_buffer, deterministic_ops_, stream_, algorithm, &profile_result)); return std::move(profile_result); }; TF_ASSIGN_OR_RETURN(best_algorithm, GetBestAlgorithm<se::blas::AlgorithmType>( gemm, algorithms, gemm_config.beta, tuned_func)); if (best_algorithm.has_gemm()) { int alg_idx = best_algorithm.gemm().algorithm(); best_algorithm.mutable_gemm()->set_algorithm(algorithms[alg_idx]); } return best_algorithm; } template <typename AlgoT, typename TunedFunc> absl::StatusOr<AutotuneResult> GetBestAlgorithm( const HloInstruction* gemm, absl::Span<const AlgoT> algorithms, double beta, TunedFunc&& run_benchmark) { static_assert(std::is_invocable_r_v<absl::StatusOr<se::blas::ProfileResult>, TunedFunc, const AlgoT&>, "Tuned function has incorrect prototype!"); if (!stream_->parent()->SynchronizeAllActivity()) { return Internal("Failed to synchronize GPU for autotuning."); } tsl::profiler::ScopedAnnotation annotation([&] { return absl::StrFormat("XlaAutotunerMeasurement:#hlo_op=%s#", gemm->name()); }); auto& hlo_module_config = gemm->GetModule()->mutable_config(); const auto& output_shape = GetOutputShape(gemm); se::DeviceMemoryBase reference_buffer; if (autotune_config_.should_check_correctness()) { TF_ASSIGN_OR_RETURN(reference_buffer, rz_buffers_.RedzoneAllocator().AllocateBytes( ShapeUtil::ByteSizeOf(output_shape))); } BufferComparator comparator(output_shape, hlo_module_config); std::vector<AutotuneResult> results; results.reserve(algorithms.size()); std::optional<int64_t> reference_algorithm; auto num = algorithms.size(); if (solutions_limit_ > 0) num = std::min(num, solutions_limit_); for (size_t i = 0; i < num; i++) { const AlgoT& algorithm = algorithms[i]; if (autotune_config_.should_reinit_output_buffer() && beta != 0) { int64_t rng_state = 0; InitializeBuffer(stream_, output_shape.element_type(), &rng_state, OutputBuffer()); } TF_ASSIGN_OR_RETURN(auto profile_result, run_benchmark(algorithm)); AutotuneResult& result = results.emplace_back(); result.mutable_gemm()->set_algorithm(profile_result.algorithm()); if (!profile_result.is_valid()) { result.mutable_failure()->set_kind(AutotuneResult::DISQUALIFIED); continue; } VLOG(2) << "gemm algorithm " << profile_result.algorithm() << " took " << profile_result.elapsed_time_in_ms() << "ms"; *result.mutable_run_time() = tsl::proto_utils::ToDurationProto( absl::Milliseconds(profile_result.elapsed_time_in_ms())); if (!autotune_config_.should_check_correctness()) { continue; } TF_ASSIGN_OR_RETURN( se::RedzoneAllocator::RedzoneCheckStatus rz_check_status, rz_buffers_.RedzoneAllocator().CheckRedzones()); if (!rz_check_status.ok()) { result.mutable_failure()->set_kind(AutotuneResult::REDZONE_MODIFIED); *result.mutable_failure()->mutable_msg() = rz_check_status.RedzoneFailureMsg(); LOG(ERROR) << "Detected out-of-bounds write in gemm buffer"; CHECK(!autotune_config_.should_crash_on_check_failure()); continue; } if (!reference_algorithm) { TF_RETURN_IF_ERROR(stream_->Memcpy(&reference_buffer, OutputBuffer(), OutputBuffer().size())); reference_algorithm = profile_result.algorithm(); } else { TF_ASSIGN_OR_RETURN( bool outputs_match, comparator.CompareEqual(stream_, OutputBuffer(), reference_buffer)); if (!outputs_match) { LOG(ERROR) << "Results mismatch between different GEMM algorithms. " << "This is likely a bug/unexpected loss of precision."; CHECK(!autotune_config_.should_crash_on_check_failure()); result.mutable_failure()->set_kind(AutotuneResult::WRONG_RESULT); result.mutable_failure()->mutable_reference_gemm()->set_algorithm( *reference_algorithm); } } } absl::StatusOr<AutotuneResult> best = PickBestResult(results, gemm->ToString(), hlo_module_config); if (best.ok()) { for (size_t i = 0; i < results.size(); ++i) { if (best->gemm().algorithm() == results[i].gemm().algorithm()) { best->mutable_gemm()->set_algorithm(i); return best; } } return Internal("unknown best algorithm"); } LOG(WARNING) << "Failed to find best cuBLAS algorithm, GEMM performance " "might be suboptimal: " << best.status(); return AutotuneResult{}; } }; absl::StatusOr<bool> RunOnInstruction(HloInstruction* gemm, const AutotuneConfig& config) { VLOG(3) << "Loading the autotune result of GemmThunk " << gemm->ToString(); GpuBackendConfig gpu_config = gemm->backend_config<GpuBackendConfig>().value(); GemmBackendConfig& backend_config = *gpu_config.mutable_gemm_backend_config(); if (backend_config.alpha_real() == 0.0 && backend_config.alpha_imag() == 0.0 && backend_config.beta() == 0.0) { VLOG(3) << "Skip degenerate gemm instruction auto tuning"; return false; } AutotuneCacheKey key(config.GetModelStr(), *gemm); GemmAutotuner autotuner(config); TF_ASSIGN_OR_RETURN(AutotuneResult algorithm, AutotunerUtil::Autotune( gemm, config, [&] { return autotuner(gemm, key); })); auto old_algorithm = backend_config.selected_algorithm(); bool update_algorithm = IsCublasLtMatmulF8(*gemm) || std::visit(VariantVisitor{[](const se::CudaComputeCapability& cc) { return !cc.IsAtLeast( se::CudaComputeCapability::AMPERE); }, [](const se::RocmComputeCapability&) { return true; }}, config.GetGpuComputeCapability()); if (update_algorithm) { int64_t new_algorithm{}; if (algorithm.has_gemm()) { new_algorithm = algorithm.gemm().algorithm(); } else { new_algorithm = se::blas::kDefaultAlgorithm; } if (new_algorithm == old_algorithm && backend_config.has_selected_algorithm()) { return false; } backend_config.set_selected_algorithm(new_algorithm); TF_RETURN_IF_ERROR(gemm->set_backend_config(gpu_config)); return true; } return false; } absl::StatusOr<bool> RunOnComputation(HloComputation* computation, AutotuneConfig config) { bool changed = false; for (HloInstruction* instr : computation->instructions()) { if (IsCublasGemm(*instr)) { TF_ASSIGN_OR_RETURN(bool result, RunOnInstruction(instr, config)); changed |= result; } } return changed; } } absl::StatusOr<bool> GemmAlgorithmPicker::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { XLA_SCOPED_LOGGING_TIMER( absl::StrCat("GemmAlgorithmPicker for ", module->name())); if (module->config().debug_options().xla_gpu_autotune_level() == 0) { VLOG(2) << "GEMM auto-tuning disabled, GemmAlgorithmPicker returning early"; return false; } bool changed = false; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { TF_ASSIGN_OR_RETURN(bool result, RunOnComputation(computation, config_)); changed |= result; } return changed; } } }
#include "xla/service/gpu/gemm_algorithm_picker.h" #include <cstdint> #include <variant> #include <vector> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/autotuner_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/gemm_rewriter.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/service/platform_util.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/platform.h" #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/protobuf/dnn.pb.h" namespace xla::gpu { namespace { namespace m = ::xla::match; class GemmAlgorithmPickerTest : public HloTestBase, public ::testing::WithParamInterface<bool> { public: GemmAlgorithmPickerTest() { AutotunerUtil::ClearAutotuneResults(); } DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = HloTestBase::GetDebugOptionsForTest(); debug_options.set_xla_gpu_enable_cublaslt(GetParam()); debug_options.set_xla_gpu_enable_triton_gemm(false); return debug_options; } void SetUp() override { const auto& gpu_cc = backend() .default_stream_executor() ->GetDeviceDescription() .gpu_compute_capability(); if (auto* procm = std::get_if<se::RocmComputeCapability>(&gpu_cc)) { if (GetDebugOptionsForTest().xla_gpu_enable_cublaslt() && !procm->has_hipblaslt()) { GTEST_SKIP() << "No gpublas-lt support on this architecture!"; } } } }; TEST_P(GemmAlgorithmPickerTest, SetAlgorithm) { auto comp = backend() .default_stream_executor() ->GetDeviceDescription() .cuda_compute_capability(); if (comp.IsAtLeast(se::CudaComputeCapability::AMPERE)) { GTEST_SKIP() << "Skipping this test for Ampere+ as it is supported and " "recommended with " "the Nvidia Volta+ GPUs."; } constexpr absl::string_view kHlo = R"( HloModule module ENTRY main { %arg0 = f32[100,100]{1,0} parameter(0) %arg1 = f32[100,100]{1,0} parameter(1) ROOT %dot = f32[100,100]{1,0} dot(arg0, arg1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; auto module_cfg = GetModuleConfigForTest(); TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kHlo, module_cfg)); se::Platform* platform = PlatformUtil::GetDefaultPlatform().value(); TF_ASSERT_OK_AND_ASSIGN(std::vector<se::StreamExecutor*> executors, PlatformUtil::GetStreamExecutors(platform)); ASSERT_GT(executors.size(), 0); se::StreamExecutor* stream_exec = executors[0]; bool changed = false; TF_ASSERT_OK_AND_ASSIGN( changed, RunHloPass( GemmRewriter( stream_exec->GetDeviceDescription().gpu_compute_capability(), 12040), m.get())); changed = false; DebugOptions opts; AutotuneConfig cfg{DeviceConfig{stream_exec, nullptr}, opts}; TF_ASSERT_OK_AND_ASSIGN(changed, RunHloPass(GemmAlgorithmPicker(cfg), m.get())); ASSERT_TRUE(changed); AutotuneResults results; TF_ASSERT_OK(AutotunerUtil::SerializeAutotuneResults(&results)); ASSERT_EQ(results.results_size(), 1); auto& result = *results.mutable_results(0)->mutable_result(); int64_t old_algo_id = result.algorithm().algo_id(); int64_t new_algo_id = old_algo_id + 1; result.mutable_gemm()->set_algorithm(new_algo_id); AutotunerUtil::ClearAutotuneResults(); TF_ASSERT_OK(AutotunerUtil::LoadAutotuneResults(results)); TF_ASSERT_OK_AND_ASSIGN(m, ParseAndReturnVerifiedModule(kHlo, module_cfg)); changed = false; TF_ASSERT_OK_AND_ASSIGN( changed, RunHloPass( GemmRewriter( stream_exec->GetDeviceDescription().gpu_compute_capability(), 12040), m.get())); changed = false; TF_ASSERT_OK_AND_ASSIGN(changed, RunHloPass(GemmAlgorithmPicker(cfg), m.get())); ASSERT_TRUE(changed); SCOPED_TRACE(m->ToString()); HloInstruction* dot; ASSERT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement(m::CustomCall(&dot), 0))); TF_ASSERT_OK_AND_ASSIGN(GpuBackendConfig gpu_config, dot->backend_config<GpuBackendConfig>()); const GemmBackendConfig& config = gpu_config.gemm_backend_config(); EXPECT_EQ(config.selected_algorithm(), new_algo_id); } TEST_P(GemmAlgorithmPickerTest, GetAlgorithmWithoutDevice) { auto comp = backend() .default_stream_executor() ->GetDeviceDescription() .cuda_compute_capability(); if (comp.IsAtLeast(se::CudaComputeCapability::AMPERE)) { GTEST_SKIP() << "Skipping this test for Ampere+ as it is supported and " "recommended with " "the Nvidia Volta+ GPUs."; } constexpr absl::string_view kHlo = R"( HloModule module ENTRY main { %arg0 = f32[100,100]{1,0} parameter(0) %arg1 = f32[100,100]{1,0} parameter(1) ROOT %dot = f32[100,100]{1,0} dot(arg0, arg1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; TF_ASSERT_OK_AND_ASSIGN( auto m, ParseAndReturnVerifiedModule(kHlo, GetModuleConfigForTest())); se::Platform* platform = PlatformUtil::GetDefaultPlatform().value(); TF_ASSERT_OK_AND_ASSIGN(std::vector<se::StreamExecutor*> executors, PlatformUtil::GetStreamExecutors(platform)); ASSERT_GT(executors.size(), 0); se::StreamExecutor* stream_exec = executors[0]; bool changed = false; TF_ASSERT_OK_AND_ASSIGN( changed, RunHloPass( GemmRewriter( stream_exec->GetDeviceDescription().gpu_compute_capability(), 12040), m.get())); changed = false; DebugOptions opts; AutotuneConfig cfg{DeviceConfig{stream_exec, nullptr}, opts}; TF_ASSERT_OK_AND_ASSIGN(changed, RunHloPass(GemmAlgorithmPicker(cfg), m.get())); ASSERT_TRUE(changed); AutotuneResults results; TF_ASSERT_OK(AutotunerUtil::SerializeAutotuneResults(&results)); ASSERT_EQ(results.results_size(), 1); auto& result = *results.mutable_results(0)->mutable_result(); int64_t old_algo_id = result.algorithm().algo_id(); int64_t new_algo_id = old_algo_id + 1; result.mutable_gemm()->set_algorithm(new_algo_id); AutotunerUtil::ClearAutotuneResults(); TF_ASSERT_OK(AutotunerUtil::LoadAutotuneResults(results)); auto module_cfg = GetModuleConfigForTest(); TF_ASSERT_OK_AND_ASSIGN(m, ParseAndReturnVerifiedModule(kHlo, module_cfg)); changed = false; DevicelessConfig deviceless_config{ stream_exec->GetDeviceDescription().model_str(), stream_exec->GetDeviceDescription().cuda_compute_capability()}; AutotuneConfig deviceless_cfg{deviceless_config, opts}; TF_ASSERT_OK_AND_ASSIGN( changed, RunHloPass( GemmRewriter( stream_exec->GetDeviceDescription().gpu_compute_capability(), 12040), m.get())); changed = false; TF_ASSERT_OK_AND_ASSIGN( changed, RunHloPass(GemmAlgorithmPicker(deviceless_cfg), m.get())) ASSERT_TRUE(changed); SCOPED_TRACE(m->ToString()); HloInstruction* dot; ASSERT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement(m::CustomCall(&dot), 0))); TF_ASSERT_OK_AND_ASSIGN(GpuBackendConfig gpu_config, dot->backend_config<GpuBackendConfig>()); const GemmBackendConfig& config = gpu_config.gemm_backend_config(); EXPECT_EQ(config.selected_algorithm(), new_algo_id); } INSTANTIATE_TEST_SUITE_P(GemmAlgorithmPickerTestSuite, GemmAlgorithmPickerTest, ::testing::Bool()); } }
2,111
cpp
tensorflow/tensorflow
variadic_op_splitter
third_party/xla/xla/service/gpu/transforms/variadic_op_splitter.cc
third_party/xla/xla/service/gpu/transforms/variadic_op_splitter_test.cc
#ifndef XLA_SERVICE_GPU_VARIADIC_OP_SPLITTER_H_ #define XLA_SERVICE_GPU_VARIADIC_OP_SPLITTER_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace gpu { class VariadicOpSplitter : public HloModulePass { public: absl::string_view name() const override { return "variadic-op-splitter"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } } #endif #include "xla/service/gpu/variadic_op_splitter.h" #include <cstdint> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/shape.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { constexpr int32_t kMaxParameters = 128; absl::StatusOr<bool> SplitConcatenate(HloInstruction* concat, HloComputation* comp) { auto operands = concat->operands(); std::vector<HloInstruction*> operands_to_split(operands.begin(), operands.end()); while (operands_to_split.size() > 1) { std::vector<HloInstruction*> new_operands; absl::Span<HloInstruction*> operands_span(operands_to_split); for (int64_t offset = 0; offset < operands_to_split.size(); offset += kMaxParameters) { if (offset > 0 && offset + kMaxParameters > operands_to_split.size()) { new_operands.insert(new_operands.end(), operands_to_split.begin() + offset, operands_to_split.end()); } else { Shape new_shape = concat->shape(); int64_t concat_dimension_size = 0; for (int64_t i = 0; i < kMaxParameters && offset + i < operands_to_split.size(); ++i) { concat_dimension_size += operands_to_split[i + offset]->shape().dimensions( concat->concatenate_dimension()); } new_shape.set_dimensions(concat->concatenate_dimension(), concat_dimension_size); auto new_concat = comp->AddInstruction(concat->CloneWithNewOperands( new_shape, operands_span.subspan(offset, kMaxParameters))); new_operands.push_back(new_concat); } } operands_to_split = new_operands; } TF_RETURN_IF_ERROR(comp->ReplaceInstruction(concat, operands_to_split[0])); return true; } std::vector<HloInstruction*> GetRelevantVariadicOps(HloComputation* comp) { std::vector<HloInstruction*> ops; for (HloInstruction* instr : comp->instructions()) { if (instr->opcode() == HloOpcode::kConcatenate && instr->operand_count() > kMaxParameters) { ops.push_back(instr); } } return ops; } } absl::StatusOr<bool> VariadicOpSplitter::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloComputation* comp : module->MakeNonfusionComputations(execution_threads)) { for (HloInstruction* op : GetRelevantVariadicOps(comp)) { TF_ASSIGN_OR_RETURN(bool result, SplitConcatenate(op, comp)); changed |= result; } } return changed; } } }
#include "xla/service/gpu/variadic_op_splitter.h" #include <cstdint> #include <vector> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/literal_util.h" #include "xla/service/hlo_parser.h" #include "xla/service/pattern_matcher.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "xla/xla_data.pb.h" namespace xla { namespace gpu { namespace { using match::Concatenate; class VariadicOpSplitterTest : public HloTestBase {}; TEST_F(VariadicOpSplitterTest, DontSplit) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { p0 = f16[30,41] parameter(0) p1 = f16[30,41] parameter(1) ROOT result = f16[60, 41] concatenate(p0, p1), dimensions={0} })") .value(); EXPECT_FALSE(VariadicOpSplitter().Run(module.get()).value()); } TEST_F(VariadicOpSplitterTest, SplitInto2) { auto builder = HloComputation::Builder(TestName()); auto operand = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<int32_t>({42}))); std::vector<HloInstruction*> concat_operands(255, operand); builder.AddInstruction(HloInstruction::CreateConcatenate( ShapeUtil::MakeShape(S32, {255}), concat_operands, 0)); auto module = CreateNewVerifiedModule(); auto entry_computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(VariadicOpSplitter().Run(module.get()).value()); EXPECT_TRUE(Match(entry_computation->root_instruction(), Concatenate().WithNumOperands(128).WithOperand( 0, Concatenate().WithNumOperands(128)))); } TEST_F(VariadicOpSplitterTest, SplitInto3) { auto builder = HloComputation::Builder(TestName()); auto operand = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<int32_t>({42}))); std::vector<HloInstruction*> concat_operands(256, operand); builder.AddInstruction(HloInstruction::CreateConcatenate( ShapeUtil::MakeShape(S32, {256}), concat_operands, 0)); auto module = CreateNewVerifiedModule(); auto entry_computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(VariadicOpSplitter().Run(module.get()).value()); EXPECT_TRUE(Match(entry_computation->root_instruction(), Concatenate(Concatenate().WithNumOperands(128), Concatenate().WithNumOperands(128)))); } } } }
2,112
cpp
tensorflow/tensorflow
execution_stream_assignment
third_party/xla/xla/service/gpu/execution_stream_assignment.cc
third_party/xla/xla/service/gpu/execution_stream_assignment_test.cc
#ifndef XLA_SERVICE_GPU_EXECUTION_STREAM_ASSIGNMENT_H_ #define XLA_SERVICE_GPU_EXECUTION_STREAM_ASSIGNMENT_H_ #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/gpu/runtime/thunk.h" namespace xla::gpu { class ExecutionStreamAssignment { public: explicit ExecutionStreamAssignment(const HloModule* module); absl::StatusOr<ExecutionStreamId> GetSyncExecutionStreamId( const HloInstruction* instruction) const; struct AsyncExecutionStreamIds { ExecutionStreamId source_stream_id; ExecutionStreamId destination_stream_id; }; absl::StatusOr<AsyncExecutionStreamIds> GetAsyncExecutionStreamIds( const HloAsyncInstruction* instruction) const; private: absl::flat_hash_map<HloInstruction*, ExecutionStreamId> sync_instructions_; absl::flat_hash_map<HloInstruction*, AsyncExecutionStreamIds> async_instructions_; }; inline bool operator==( const ExecutionStreamAssignment::AsyncExecutionStreamIds& first, const ExecutionStreamAssignment::AsyncExecutionStreamIds& second) { return first.source_stream_id == second.source_stream_id && first.destination_stream_id == second.destination_stream_id; } } #endif #include "xla/service/gpu/execution_stream_assignment.h" #include <deque> #include <memory> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/call_graph.h" #include "xla/service/gpu/runtime/thunk.h" namespace xla::gpu { ExecutionStreamAssignment::ExecutionStreamAssignment(const HloModule* module) { std::unique_ptr<CallGraph> call_graph = CallGraph::Build(module); ExecutionStreamId next_stream_id = ExecutionStreamId(1); struct Pending { Pending(HloComputation* node, ExecutionStreamId stream_id) : node(node), stream_id(stream_id) {} HloComputation* node; ExecutionStreamId stream_id; }; std::deque<Pending> queue; queue.emplace_back(module->entry_computation(), ExecutionStreamId(0)); auto enqueue_called_computations = [&](const CallSite& callsite, ExecutionStreamId stream) { if (GetInstructionCallContext(callsite.instruction()->opcode()) == CallContext::kEmbedded) { return; } for (HloComputation* computation : callsite.called_computations()) { queue.emplace_back(computation, stream); } }; while (!queue.empty()) { Pending pending = queue.front(); queue.pop_front(); for (HloInstruction* instruction : pending.node->instructions()) { if (instruction->IsAsynchronous()) continue; CHECK(sync_instructions_.try_emplace(instruction, pending.stream_id) .second); } for (const CallSite& callsite : call_graph->GetNode(pending.node).callsites()) { if (callsite.instruction()->IsAsynchronous()) { CHECK_EQ(callsite.instruction()->opcode(), HloOpcode::kAsyncStart); const ExecutionStreamId async_stream_id = next_stream_id++; enqueue_called_computations(callsite, async_stream_id); AsyncExecutionStreamIds streams; streams.source_stream_id = pending.stream_id; streams.destination_stream_id = async_stream_id; CHECK(async_instructions_.try_emplace(callsite.instruction(), streams) .second); } else { enqueue_called_computations(callsite, pending.stream_id); } } for (HloInstruction* instruction : pending.node->instructions()) { if (!instruction->IsAsynchronous()) continue; if (instruction->opcode() == HloOpcode::kAsyncStart) { CHECK(async_instructions_.find(instruction) != async_instructions_.end()); } else { HloInstruction* async_start = Cast<HloAsyncInstruction>(instruction)->async_chain_start(); AsyncExecutionStreamIds async_start_streams = async_instructions_.at(async_start); CHECK(async_instructions_.try_emplace(instruction, async_start_streams) .second); } } } } namespace { absl::Status StreamNotFoundError(const HloInstruction* instruction) { return absl::NotFoundError(absl::StrCat( "No ExecutionStreamId found for ", instruction->ToString(), "; this may happen if the Computation is not reachable from the module's " "entrypoint, or if it's only reachable through a embedded calls.")); } } absl::StatusOr<ExecutionStreamId> ExecutionStreamAssignment::GetSyncExecutionStreamId( const HloInstruction* instruction) const { CHECK(!instruction->IsAsynchronous()); auto stream = sync_instructions_.find(instruction); if (stream == sync_instructions_.end()) { return StreamNotFoundError(instruction); } return stream->second; } absl::StatusOr<ExecutionStreamAssignment::AsyncExecutionStreamIds> ExecutionStreamAssignment::GetAsyncExecutionStreamIds( const HloAsyncInstruction* instruction) const { auto streams = async_instructions_.find(instruction); if (streams == async_instructions_.end()) { return StreamNotFoundError(instruction); } return streams->second; } }
#include "xla/service/gpu/execution_stream_assignment.h" #include <memory> #include <string_view> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; using AsyncExecutionStreamIds = ::xla::gpu::ExecutionStreamAssignment::AsyncExecutionStreamIds; namespace xla::gpu { namespace { class ExecutionStreamAssignmentTest : public HloTestBase { protected: void ExpectExecutionStreamForSyncInstructions( const ExecutionStreamAssignment& assignment, HloComputation* computation, ExecutionStreamId stream) const { for (const HloInstruction* instruction : computation->instructions()) { if (instruction->IsAsynchronous()) continue; EXPECT_THAT(assignment.GetSyncExecutionStreamId(instruction), IsOkAndHolds(stream)); } } }; TEST_F(ExecutionStreamAssignmentTest, AsyncFusion) { const char* kModuleStr = R"( HloModule m leaf1 { p0 = f32[2,2] parameter(0) ROOT add = f32[2,2] add(p0, p0) } leaf2 { p0 = f32[2,2] parameter(0) ROOT add = f32[2,2] add(p0, p0) } ENTRY entry { p0 = f32[2,2] parameter(0) start1 = ((f32[2,2]), f32[2,2], s32[]) fusion-start(p0), kind=kLoop, calls=leaf1 start2 = ((f32[2,2]), f32[2,2], s32[]) fusion-start(p0), kind=kLoop, calls=leaf2 update1 = ((f32[2,2]), f32[2,2], s32[]) fusion-update(start1) update2 = ((f32[2,2]), f32[2,2], s32[]) fusion-update(start2) done1 = f32[2,2] fusion-done(update1) done2 = f32[2,2] fusion-done(update2) ROOT done = f32[2,2] add(done1, done2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kModuleStr)); ExecutionStreamAssignment assignment(module.get()); ExpectExecutionStreamForSyncInstructions( assignment, FindComputation(module.get(), "entry"), ExecutionStreamId(0)); for (std::string_view instruction : {"start1", "update1", "done1"}) { EXPECT_THAT(assignment.GetAsyncExecutionStreamIds(Cast<HloAsyncInstruction>( FindInstruction(module.get(), instruction))), IsOkAndHolds(AsyncExecutionStreamIds( ExecutionStreamId(0), ExecutionStreamId(1)))); } for (std::string_view instruction : {"start2", "update2", "done2"}) { EXPECT_THAT(assignment.GetAsyncExecutionStreamIds(Cast<HloAsyncInstruction>( FindInstruction(module.get(), instruction))), IsOkAndHolds(AsyncExecutionStreamIds( ExecutionStreamId(0), ExecutionStreamId(2)))); } ExpectExecutionStreamForSyncInstructions( assignment, Cast<HloAsyncInstruction>(FindInstruction(module.get(), "start1")) ->async_wrapped_computation(), ExecutionStreamId(1)); ExpectExecutionStreamForSyncInstructions( assignment, Cast<HloAsyncInstruction>(FindInstruction(module.get(), "start2")) ->async_wrapped_computation(), ExecutionStreamId(2)); } TEST_F(ExecutionStreamAssignmentTest, FusionComputations) { const char* kModuleStr = R"( HloModule m reduce { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fusion { p0 = f32[4] parameter(0) c0 = f32[] constant(0) ROOT reduce = f32[] reduce(p0, c0), dimensions={0}, to_apply=reduce } ENTRY entry { p0 = f32[4] parameter(0) ROOT done = f32[] fusion(p0), kind=kLoop, calls=fusion } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kModuleStr)); ExecutionStreamAssignment assignment(module.get()); ExpectExecutionStreamForSyncInstructions( assignment, FindComputation(module.get(), "entry"), ExecutionStreamId(0)); for (std::string_view computation : {"reduce", "fusion"}) { for (const HloInstruction* instruction : FindComputation(module.get(), computation)->instructions()) { EXPECT_THAT(assignment.GetSyncExecutionStreamId(instruction), StatusIs(absl::StatusCode::kNotFound)); } } } TEST_F(ExecutionStreamAssignmentTest, UnreachableComputation) { const char* kModuleStr = R"( HloModule m unreachable { p0 = f32[2,2] parameter(0) ROOT add = f32[2,2] add(p0, p0) } ENTRY entry { p0 = f32[2,2] parameter(0) ROOT add = f32[2,2] add(p0, p0) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kModuleStr)); ExecutionStreamAssignment assignment(module.get()); ExpectExecutionStreamForSyncInstructions( assignment, FindComputation(module.get(), "entry"), ExecutionStreamId(0)); for (const HloInstruction* instruction : FindComputation(module.get(), "unreachable")->instructions()) { EXPECT_THAT(assignment.GetSyncExecutionStreamId(instruction), StatusIs(absl::StatusCode::kNotFound)); } } } }
2,113
cpp
tensorflow/tensorflow
gpu_fusible
third_party/xla/xla/service/gpu/gpu_fusible.cc
third_party/xla/xla/service/gpu/gpu_fusible_test.cc
#ifndef XLA_SERVICE_GPU_GPU_FUSIBLE_H_ #define XLA_SERVICE_GPU_GPU_FUSIBLE_H_ #include <cstddef> #include <cstdint> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/instruction_fusion.h" #include "xla/stream_executor/device_description.h" namespace xla { namespace gpu { bool IfFusedReadsElementsMultipleTimes(const HloInstruction& instr); bool IsExpensiveToRepeat(const HloInstruction& instr); struct FusionInfoCache { public: void Invalidate(const HloInstruction* instr) { shared_memory_usage.erase(instr); num_unnested_reductions.erase(instr); } absl::flat_hash_map<const HloInstruction*, int64_t> shared_memory_usage; absl::flat_hash_map<const HloInstruction*, int64_t> num_unnested_reductions; }; std::vector<HloComputation*> GetFusibleComputations( const HloModule& module, const absl::flat_hash_set<absl::string_view>& execution_threads); int64_t SharedMemoryUsage(const HloInstruction& instr, FusionInfoCache* cache = nullptr); inline constexpr int64_t MaxOperandsAndOutputsPerFusion() { return 96; } bool IsPhysicallyTransposing(const HloInstruction& instr); bool TransposesMinorDimension(const HloInstruction* instr); bool IsReduceInputFusion(const HloInstruction& instr); bool IsInputFusibleReduction(const HloInstruction& instr); bool IsNestableVariadicReduction(const HloInstruction& instr); bool IsInputFusibleScatter(const HloInstruction& instr); FusionDecision FusionFitsInBudget(const HloInstruction& instr1, const HloInstruction& instr2, const se::DeviceDescription& device_info, bool is_consumer_producer_fusion = false, FusionInfoCache* cache = nullptr); bool CreatesHeavyComputation(const HloInstruction& producer, const HloInstruction& consumer); const HloInstruction* GetRealHeroForMultiOutputFusion( const HloInstruction& instr); FusionDecision FusionHeroesAreCompatible(const HloInstruction* hero1, const HloInstruction* hero2); FusionDecision ShapesCompatibleForMultiOutputFusion( const HloInstruction& instr1, const HloInstruction& instr2); FusionDecision CanEmitInputFusedScatter(const HloInstruction& producer, const HloInstruction& consumer); FusionDecision IsProducerConsumerFusible(const HloInstruction& producer, const HloInstruction& consumer); FusionDecision IsProducerMultiOutputFusible(const HloInstruction& producer); bool IsFusibleAsMultiOutputFusionRoot(const HloInstruction& instr); HloInstruction::FusionKind ChooseFusionKind(const HloInstruction& producer, const HloInstruction& consumer); bool IsConsumerTheOnlyNonRootUser(const HloInstruction& instr, const HloInstruction& consumer); size_t GetInstrCountOfFusible(const HloInstruction& instr); absl::InlinedVector<const HloInstruction*, 2> GetOutputsOfFusible( const HloInstruction& instr); size_t GetOutputSizeOfFusible(const HloInstruction& instr); std::vector<const HloInstruction*> GetFusionRoots( const HloComputation& computation); bool IsGenericTritonFusion(const HloInstruction& instr); bool MayPreventVectorization(const HloFusionAdaptor& fusion); } } #endif #include "xla/service/gpu/gpu_fusible.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <optional> #include <stack> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/permutation_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/reduction_utils.h" #include "xla/service/hlo_dataflow_analysis.h" #include "xla/service/instruction_fusion.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/util.h" namespace xla { namespace gpu { namespace { bool HasAnyTiledTransposeRoot(const HloComputation& computation) { return absl::c_any_of(GetFusionRoots(computation), [&](const HloInstruction* instr) { return GetDescriptionForTiledTransposeEmitter( *instr, FindNonTrivialHero(*instr)) .has_value(); }); } } bool IfFusedReadsElementsMultipleTimes(const HloInstruction& instr) { CHECK_NE(instr.opcode(), HloOpcode::kFusion) << "`instr` has to be unfused."; if (instr.opcode() == HloOpcode::kGather || instr.opcode() == HloOpcode::kBroadcast) { return ShapeUtil::ElementsIn(instr.shape()) > ShapeUtil::ElementsIn(instr.operand(0)->shape()); } if (instr.opcode() == HloOpcode::kReduceWindow) { for (const auto& dim : instr.window().dimensions()) { if (dim.size() > dim.stride()) { return true; } } } return false; } bool IsExpensiveToRepeat(const HloInstruction& instr) { CHECK_NE(instr.opcode(), HloOpcode::kFusion) << "`instr` has to be unfused."; constexpr int kMaxInputsPerOutput = 10; if (instr.opcode() == HloOpcode::kReduce && !IsReductionFromOrToContiguousDimensions(instr)) { int64_t reduction_ratio = ShapeUtil::ElementsIn(instr.operand(0)->shape()) / ShapeUtil::ElementsIn(instr.shape()); if (reduction_ratio > kMaxInputsPerOutput) return true; } if (instr.opcode() == HloOpcode::kReduceWindow) { int64_t reduction_ratio = 1; for (const auto& dim : instr.window().dimensions()) reduction_ratio *= dim.size(); if (reduction_ratio > kMaxInputsPerOutput) return true; } return false; } bool IsPhysicallyTransposing(const HloInstruction& instr) { if (instr.opcode() == HloOpcode::kFusion) { for (const HloInstruction* fused_instr : instr.fused_instructions()) { if (IsPhysicallyTransposing(*fused_instr)) { return true; } } } return instr.opcode() == HloOpcode::kCopy || (instr.opcode() == HloOpcode::kTranspose && !ShapeUtil::TransposeIsBitcast(instr.operand(0)->shape(), instr.shape(), instr.dimensions())); } namespace { std::pair<int64_t, int64_t> MostMinorNonTrivialDimension(const Shape& shape) { int64_t position_of_first_non_trivial_dim = 0; for (int64_t dim : shape.layout().minor_to_major()) { if (shape.dimensions()[dim] > 1) { return {dim, position_of_first_non_trivial_dim}; } ++position_of_first_non_trivial_dim; } return {-1, position_of_first_non_trivial_dim}; } } bool TransposesMinorDimension(const HloInstruction* instr) { switch (instr->opcode()) { case HloOpcode::kFusion: return absl::c_any_of(instr->fused_instructions(), TransposesMinorDimension); case HloOpcode::kCopy: { int64_t first_non_trivial_operand_dim = MostMinorNonTrivialDimension(instr->operand(0)->shape()).first; int64_t first_non_trivial_output_dim = MostMinorNonTrivialDimension(instr->shape()).first; return first_non_trivial_operand_dim != first_non_trivial_output_dim; } case HloOpcode::kTranspose: { auto position_in_minor_to_major = InversePermutation( instr->operand(0)->shape().layout().minor_to_major()); int64_t position_of_first_non_trivial_dim = MostMinorNonTrivialDimension(instr->operand(0)->shape()).second; for (int64_t output_dim : instr->shape().layout().minor_to_major()) { if (instr->shape().dimensions()[output_dim] == 1) { continue; } int64_t operand_dim = instr->dimensions().at(output_dim); return position_in_minor_to_major[operand_dim] > position_of_first_non_trivial_dim; } return false; } default: return false; } } bool IsReduceInputFusion(const HloInstruction& instr) { return instr.opcode() == HloOpcode::kFusion && absl::c_any_of(GetFusionRoots(*instr.called_computations()[0]), [](const HloInstruction* root) { return IsRealReductionHero(*root, FindNonTrivialHero(*root)); }); } bool IsInputFusibleReduction(const HloInstruction& instr) { return IsReduceInputFusion(instr) || IsReductionFromOrToContiguousDimensions(instr); } bool IsNestableVariadicReduction(const HloInstruction& instr) { return instr.shape().IsTuple() && ((instr.opcode() == HloOpcode::kReduce && !IsReductionFromOrToContiguousDimensions(instr)) || (instr.opcode() == HloOpcode::kFusion && instr.fusion_kind() == HloInstruction::FusionKind::kLoop && instr.fused_expression_root()->opcode() == HloOpcode::kReduce)); } bool IsInputFusibleTranspose(const HloInstruction& instr) { if (instr.opcode() == HloOpcode::kBitcast || instr.IsCustomFusion()) { return false; } if (instr.opcode() == HloOpcode::kFusion) { return HasAnyTiledTransposeRoot(*instr.fused_instructions_computation()); } return GetDescriptionForTiledTransposeEmitter(instr, instr).has_value(); } const HloInstruction* GetRealHeroForMultiOutputFusion( const HloInstruction& instr) { if (instr.opcode() != HloOpcode::kFusion) { return &instr; } auto fused_expression_root = instr.fused_expression_root(); if (!instr.IsMultiOutputFusion()) { const auto& hero = FindNonTrivialHero(*fused_expression_root); if (IsRealReductionHero(*fused_expression_root, hero) || GetDescriptionForTiledTransposeEmitter(*fused_expression_root, hero) .has_value()) { return &hero; } return fused_expression_root; } for (auto* inst : fused_expression_root->mutable_operands()) { const auto& hero = FindNonTrivialHero(*inst); if (IsRealReductionHero(*inst, hero) || GetDescriptionForTiledTransposeEmitter(*inst, hero).has_value()) { return &hero; } } return fused_expression_root->operands()[0]; } FusionDecision FusionHeroesAreCompatible(const HloInstruction* hero1, const HloInstruction* hero2) { auto hero1_is_unnested_reduce = IsReductionFromOrToContiguousDimensions(*hero1); auto tiled_transpose_hero1 = GetDescriptionForTiledTransposeEmitter(*hero1, *hero1); bool hero1_is_unnested_transpose = tiled_transpose_hero1.has_value(); bool hero2_is_unnested_reduce = IsReductionFromOrToContiguousDimensions(*hero2); auto tiled_transpose_hero2 = GetDescriptionForTiledTransposeEmitter(*hero2, *hero2); bool hero2_is_unnested_transpose = tiled_transpose_hero2.has_value(); if (hero1_is_unnested_reduce && hero2_is_unnested_reduce && !AreReductionsMultiOutputFusionCompatible(hero2, hero1)) { return "tiled reductions with different shapes"; } else if (hero1_is_unnested_transpose && hero2_is_unnested_transpose && !tiled_transpose_hero1->IsEquivalent(*tiled_transpose_hero2)) { return "tiled transposes with different shapes"; } else if ((hero1_is_unnested_transpose && hero2_is_unnested_reduce) || (hero1_is_unnested_reduce && hero2_is_unnested_transpose)) { return "MOF-fusion of a transpose and a reduction"; } if (hero1_is_unnested_transpose || hero2_is_unnested_transpose) { auto check_path_of_intermediate_ops = [](HloInstruction* param) { if (param->user_count() != 1) { return false; } HloInstruction* hlo = param->users()[0]; while (hlo->user_count() > 0) { if (!IsIntermediate(hlo)) { return false; } hlo = hlo->users()[0]; } return true; }; HloInstruction* fusion1 = hero1->parent()->FusionInstruction(); HloInstruction* fusion2 = hero2->parent()->FusionInstruction(); if (fusion1 != nullptr && fusion2 != nullptr) { if (hero1_is_unnested_transpose && fusion2->IsUserOf(fusion1)) { int64_t operand_idx = fusion2->operand_index(fusion1); auto hlo = fusion2->fused_parameter(operand_idx); if (!check_path_of_intermediate_ops(hlo)) { return "tiled transpose would become untiled"; } } else if (hero2_is_unnested_transpose && fusion1->IsUserOf(fusion2)) { int64_t operand_idx = fusion1->operand_index(fusion2); auto hlo = fusion1->fused_parameter(operand_idx); if (!check_path_of_intermediate_ops(hlo)) { return "tiled transpose would become untiled"; } } } } return {}; } FusionDecision ShapesCompatibleForMultiOutputFusion( const HloInstruction& instr1, const HloInstruction& instr2) { auto get_loop_shape = [&](const HloInstruction* element_instr) { const auto& hero = element_instr->parent()->IsFusionComputation() ? FindNonTrivialHero(*element_instr) : *element_instr; if (IsReductionFromOrToContiguousDimensions(*element_instr) || GetDescriptionForTiledTransposeEmitter(*element_instr, hero) .has_value()) { return hero.operand(0)->shape(); } return element_instr->shape(); }; const HloInstruction* hero1 = GetRealHeroForMultiOutputFusion(instr1); const HloInstruction* hero2 = GetRealHeroForMultiOutputFusion(instr2); if (auto compatible = FusionHeroesAreCompatible(hero1, hero2); !compatible) { return compatible; } const Shape& l1 = get_loop_shape(hero1); const Shape& l2 = get_loop_shape(hero2); bool accept_unequal_shape = !l1.IsTuple() && !l2.IsTuple(); if (!ShapeUtil::EqualIgnoringElementType(l1, l2) && (!accept_unequal_shape || !ShapeUtil::IsReshapeOrTransposeBitcast(l1, l2, true))) { return "different loop shapes"; } return {}; } bool IsInputFusibleScatter(const HloInstruction& instr) { if (instr.opcode() == HloOpcode::kScatter || (instr.opcode() == HloOpcode::kFusion && instr.fusion_kind() == HloInstruction::FusionKind::kInput && instr.fused_expression_root()->opcode() == HloOpcode::kScatter)) { return true; } return false; } bool IsInputFusible(const HloInstruction& instr) { return instr.IsFusible() && (IsInputFusibleReduction(instr) || IsInputFusibleScatter(instr) || IsInputFusibleTranspose(instr)); } bool IsUniversallyLoopFusible(const HloInstruction& instr) { if (instr.IsElementwise() && instr.operand_count() > 0 && instr.opcode() != HloOpcode::kCopy) { return true; } switch (instr.opcode()) { case HloOpcode::kCopy: return !GetDescriptionForTiledTransposeEmitter(instr, instr).has_value(); case HloOpcode::kFusion: return instr.fusion_kind() == HloInstruction::FusionKind::kLoop; case HloOpcode::kBitcast: case HloOpcode::kBroadcast: case HloOpcode::kConcatenate: case HloOpcode::kDynamicSlice: case HloOpcode::kDynamicUpdateSlice: case HloOpcode::kGather: case HloOpcode::kPad: case HloOpcode::kReduceWindow: case HloOpcode::kReshape: case HloOpcode::kReverse: case HloOpcode::kSlice: case HloOpcode::kTranspose: return true; default: return false; } } bool IsLoopFusibleAsConsumer(const HloInstruction& instr) { if (!instr.IsFusible()) return false; if (instr.opcode() == HloOpcode::kBitcast) return false; if (instr.opcode() == HloOpcode::kReduce) return true; if (!IsInputFusible(instr) && instr.opcode() == HloOpcode::kFusion && instr.fusion_kind() == HloInstruction::FusionKind::kInput) { return true; } return IsUniversallyLoopFusible(instr); } bool IsLoopFusibleAsProducer(const HloInstruction& instr) { if (!instr.IsFusible()) return false; switch (instr.opcode()) { case HloOpcode::kIota: case HloOpcode::kConstant: return true; case HloOpcode::kReduce: return !instr.shape().IsTuple(); default: return IsUniversallyLoopFusible(instr); } } static bool AllSatisfy(const HloInstruction& instr, const HloPredicate& predicate) { if (instr.opcode() != HloOpcode::kFusion) { return predicate(&instr); } return absl::c_all_of( instr.fused_instructions(), [&](const HloInstruction* i) { return i->opcode() == HloOpcode::kParameter || predicate(i); }); } FusionDecision CanEmitInputFusedScatter(const HloInstruction& producer, const HloInstruction& consumer) { if (IsInputFusibleScatter(producer)) { return "do not fuse into the output of scatter"; } if (!IsInputFusibleScatter(consumer)) { return {}; } const HloInstruction* inplace_operand; if (consumer.opcode() == HloOpcode::kFusion) { const HloInstruction* scatter = consumer.fused_expression_root(); CHECK_EQ(scatter->opcode(), HloOpcode::kScatter); CHECK_EQ(scatter->operand(0)->opcode(), HloOpcode::kParameter); inplace_operand = consumer.operand(scatter->operand(0)->parameter_number()); } else { inplace_operand = consumer.operand(0); } if (inplace_operand == &producer) { return "do not fuse into the in-place operand of scatter"; } if (absl::c_linear_search(producer.operands(), inplace_operand)) { return "Producer uses the in-place operand of a scatter"; } return {}; } FusionDecision IsProducerConsumerFusible(const HloInstruction& producer, const HloInstruction& consumer) { if (!IsLoopFusibleAsProducer(producer) && !IsInputFusibleTranspose(producer)) { return "the producer is not loop-fusible"; } if (IsInputFusibleReduction(producer)) { if (!producer.GetModule() ->config() .debug_options() .xla_gpu_enable_reduction_epilogue_fusion()) { return "Reduction epilogue fusion is not enabled."; } const HloInstruction& reduce_hero = producer.opcode() == HloOpcode::kFusion ? FindNonTrivialHero(*producer.fused_expression_root()) : producer; if (!ReductionIsRaceFree( reduce_hero.GetModule()->config(), GetReductionKindAndContiguousComponents(reduce_hero))) { return "Reduction output fusion only works for race free reductions"; } if (!AllSatisfy(consumer, [](const HloInstruction* hlo) { return IsIntermediate(hlo, 1); })) { return "Reductions from/to continuous dims epilogue not fusible"; } if (producer.user_count() > 1) { return "reduction output fusion only works for single user"; } } if (auto can_fuse = CanEmitInputFusedScatter(producer, consumer); !can_fuse) { return can_fuse; } if (!IsInputFusible(consumer) && !IsLoopFusibleAsConsumer(consumer)) { return "the consumer is not input-fusible and not loop-fusible"; } if (producer.IsMultiOutputFusion()) { return "the producer is not fusible as it is a multi-output fusion"; } if (producer.opcode() == HloOpcode::kConstant && (!ShapeUtil::IsEffectiveScalar(producer.shape()) || consumer.opcode() != HloOpcode::kFusion)) { return "not fusing constant"; } return InstructionFusion::ShouldFuseInPlaceOp(&producer, &consumer); } FusionDecision IsProducerMultiOutputFusible(const HloInstruction& producer) { if (producer.IsMultiOutputFusion()) { return "Producer is a multi-output fusion"; }
#include "xla/service/gpu/gpu_fusible.h" #include <memory> #include <vector> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_parser.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { using ::testing::ElementsAre; using GpuFusibleTest = HloTestBase; const char kModulePrefix[] = R"( HloModule test_module scalar_add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) })"; TEST_F(GpuFusibleTest, IsPhysicallyTransposing_ElementwiseProducer) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( ENTRY entry { p0 = f32[2,2,2]{2,1,0} parameter(0) c0 = f32[] constant(0) exp = f32[2,2,2]{2,1,0} exponential(p0) ROOT reduce = f32[2,2]{1,0} reduce(exp, c0), dimensions={2}, to_apply=scalar_add })")) .value(); SCOPED_TRACE(module->ToString()); const HloInstruction* exp = module->entry_computation()->root_instruction()->operand(0); ASSERT_EQ(exp->opcode(), HloOpcode::kExp); EXPECT_FALSE(IsPhysicallyTransposing(*exp)); } TEST_F(GpuFusibleTest, IsPhysicallyTransposing_MixedLayoutProducer) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( mixed_input_layouts_computation { p0.1 = f16[128,1024,32,32]{1,3,2,0} parameter(0) p1.1 = f16[128,1024,32,32]{3,2,1,0} parameter(1) copy = f16[128,1024,32,32]{1,3,2,0} copy(p1.1) c0 = f16[] constant(0) broadcast = f16[128,1024,32,32]{1,3,2,0} broadcast(c0), dimensions={} greater-than = pred[128,1024,32,32]{1,3,2,0} compare(copy, broadcast), direction=GT ROOT root = f16[128,1024,32,32]{1,3,2,0} select(greater-than, p0.1, broadcast) } fused_reduce { p0.2 = f16[128,1024,32,32]{1,3,2,0} parameter(0) convert = f32[128,1024,32,32]{1,3,2,0} convert(p0.2) c0.2 = f32[] constant(0) ROOT reduce = f32[1024]{0} reduce(convert, c0.2), dimensions={0,2,3}, to_apply=scalar_add } ENTRY entry { p0 = f16[128,1024,32,32]{1,3,2,0} parameter(0) p1 = f16[128,1024,32,32]{3,2,1,0} parameter(1) loop_fusion = f16[128,1024,32,32]{1,3,2,0} fusion(p0, p1), kind=kLoop, calls=mixed_input_layouts_computation reduce_fusion = f32[1024]{0} fusion(loop_fusion), kind=kInput, calls=fused_reduce ROOT root = (f32[1024]{0}, f16[128,1024,32,32]{1,3,2,0}) tuple(reduce_fusion, loop_fusion) })")) .value(); SCOPED_TRACE(module->ToString()); const HloInstruction* loop_fusion = module->entry_computation()->root_instruction()->operand(1); ASSERT_EQ(loop_fusion->fused_expression_root()->opcode(), HloOpcode::kSelect); EXPECT_TRUE(IsPhysicallyTransposing(*loop_fusion)); } TEST_F(GpuFusibleTest, IsPhysicallyTransposing_MixedLayoutProducerWithTrivialDim) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( mixed_input_layouts_computation { p0.1 = f16[128,1,32,32]{1,3,2,0} parameter(0) p1.1 = f16[128,1,32,32]{3,2,1,0} parameter(1) bitcast = f16[128,1,32,32]{1,3,2,0} bitcast(p1.1) c0 = f16[] constant(0) broadcast = f16[128,1,32,32]{1,3,2,0} broadcast(c0), dimensions={} greater-than = pred[128,1,32,32]{1,3,2,0} compare(bitcast, broadcast), direction=GT ROOT root = f16[128,1,32,32]{1,3,2,0} select(greater-than, p0.1, broadcast) } fused_reduce { p0.2 = f16[128,1,32,32]{1,3,2,0} parameter(0) convert = f32[128,1,32,32]{1,3,2,0} convert(p0.2) c0.2 = f32[] constant(0) ROOT reduce = f32[1]{0} reduce(convert, c0.2), dimensions={0,2,3}, to_apply=scalar_add } ENTRY entry { p0 = f16[128,1,32,32]{1,3,2,0} parameter(0) p1 = f16[128,1,32,32]{3,2,1,0} parameter(1) loop_fusion = f16[128,1,32,32]{1,3,2,0} fusion(p0, p1), kind=kLoop, calls=mixed_input_layouts_computation reduce_fusion = f32[1]{0} fusion(loop_fusion), kind=kInput, calls=fused_reduce ROOT root = (f32[1]{0}, f16[128,1,32,32]{1,3,2,0}) tuple(reduce_fusion, loop_fusion) })")) .value(); SCOPED_TRACE(module->ToString()); const HloInstruction* loop_fusion = module->entry_computation()->root_instruction()->operand(1); ASSERT_EQ(loop_fusion->fused_expression_root()->opcode(), HloOpcode::kSelect); EXPECT_FALSE(IsPhysicallyTransposing(*loop_fusion)); } TEST_F(GpuFusibleTest, IsPhysicallyTransposing_CopyProducer) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_reduce { p0.1 = f32[128,1024,32,32]{1,3,2,0} parameter(0) c0.1 = f32[] constant(0) ROOT reduce = f32[1024]{0} reduce(p0.1, c0.1), dimensions={0,2,3}, to_apply=scalar_add } ENTRY entry { p0 = f16[128,1024,32,32]{3,2,1,0} parameter(0) copy = f32[128,1024,32,32]{1,3,2,0} copy(p0) ROOT reduce_fusion = f32[1024]{0} fusion(copy), kind=kInput, calls=fused_reduce })")) .value(); SCOPED_TRACE(module->ToString()); const HloInstruction* copy = module->entry_computation()->root_instruction()->operand(0); ASSERT_EQ(copy->opcode(), HloOpcode::kCopy); EXPECT_TRUE(IsPhysicallyTransposing(*copy)); } TEST_F(GpuFusibleTest, IsPhysicallyTransposing_PhysicalTranspose) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_reduce { p0.1 = f32[1024,128,32,32]{3,2,1,0} parameter(0) c0.1 = f32[] constant(0) ROOT reduce = f32[1024]{0} reduce(p0.1, c0.1), dimensions={1,2,3}, to_apply=scalar_add } ENTRY entry { p0 = f16[128,1024,32,32]{3,2,1,0} parameter(0) copy = f32[1024,128,32,32]{3,2,1,0} transpose(p0), dimensions={1,0,2,3} ROOT reduce_fusion = f32[1024]{0} fusion(copy), kind=kInput, calls=fused_reduce })")) .value(); SCOPED_TRACE(module->ToString()); const HloInstruction* transpose = module->entry_computation()->root_instruction()->operand(0); ASSERT_EQ(transpose->opcode(), HloOpcode::kTranspose); EXPECT_TRUE(IsPhysicallyTransposing(*transpose)); } TEST_F(GpuFusibleTest, IsPhysicallyTransposing_LayoutChangingFusionProducer) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( layout_changing_computation { p0.1 = f16[128,1024,32,32]{3,2,1,0} parameter(0) p1.1 = f16[128,1024,32,32]{3,2,1,0} parameter(1) c0 = f16[] constant(0) broadcast = f16[128,1024,32,32]{3,2,1,0} broadcast(c0), dimensions={} greater-than = pred[128,1024,32,32]{3,2,1,0} compare(p1.1, broadcast), direction=GT select = f16[128,1024,32,32]{3,2,1,0} select(greater-than, p0.1, broadcast) ROOT root = f16[128,1024,32,32]{1,3,2,0} copy(select) } fused_reduce { p0.2 = f16[128,1024,32,32]{1,3,2,0} parameter(0) convert = f32[128,1024,32,32]{1,3,2,0} convert(p0.2) c0.2 = f32[] constant(0) ROOT reduce = f32[1024]{0} reduce(convert, c0.2), dimensions={0,2,3}, to_apply=scalar_add } ENTRY entry { p0 = f16[128,1024,32,32]{3,2,1,0} parameter(0) p1 = f16[128,1024,32,32]{3,2,1,0} parameter(1) loop_fusion = f16[128,1024,32,32]{1,3,2,0} fusion(p0, p1), kind=kLoop, calls=layout_changing_computation ROOT reduce_fusion = f32[1024]{0} fusion(loop_fusion), kind=kInput, calls=fused_reduce })")) .value(); SCOPED_TRACE(module->ToString()); const HloInstruction* loop_fusion = module->entry_computation()->root_instruction()->operand(0); ASSERT_EQ(loop_fusion->fused_expression_root()->opcode(), HloOpcode::kCopy); EXPECT_TRUE(IsPhysicallyTransposing(*loop_fusion)); } TEST_F(GpuFusibleTest, IsPhysicallyTransposing_ConsiderMaximumTrueRanksParamsOnly) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( broadcasting_computation { p0.1 = f32[128,1024,32,32]{1,3,2,0} parameter(0) p1.1 = f32[1,128,1,1]{3,2,1,0} parameter(1) reshape = f32[128]{0} reshape(p1.1) broadcast = f32[128,1024,32,32]{1,3,2,0} broadcast(reshape), dimensions={0} ROOT add = f32[128,1024,32,32]{1,3,2,0} add(p0.1, broadcast) } ENTRY entry { p0 = f32[128,1024,32,32]{1,3,2,0} parameter(0) p1 = f32[1,128,1,1]{3,2,1,0} parameter(1) loop_fusion = f32[128,1024,32,32]{1,3,2,0} fusion(p0, p1), kind=kLoop, calls=broadcasting_computation c0.2 = f32[] constant(0) ROOT reduce = f32[1024]{0} reduce(loop_fusion, c0.2), dimensions={0,2,3}, to_apply=scalar_add })")) .value(); SCOPED_TRACE(module->ToString()); const HloInstruction* loop_fusion = module->entry_computation()->root_instruction()->operand(0); ASSERT_EQ(loop_fusion->fused_expression_root()->opcode(), HloOpcode::kAdd); EXPECT_FALSE(IsPhysicallyTransposing(*loop_fusion)); } TEST_F(GpuFusibleTest, TransposesMinorDimension) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( ENTRY entry { default_layout = f32[10,20,30,40]{3,2,1,0} parameter(0) non_default_layout = f32[10,20,30,40]{1,2,3,0} parameter(1) transpose_minor_default = f32[10,20,40,30]{3,2,1,0} transpose(default_layout), dimensions={0,1,3,2} no_transpose_minor_default = f32[10,20,40,30]{2,3,1,0} transpose(default_layout), dimensions={0,1,3,2} transpose_major_default = f32[10,30,20,40]{3,2,1,0} transpose(default_layout), dimensions={0,2,1,3} transpose_minor_non_default = f32[10,30,20,40]{1,2,3,0} transpose(non_default_layout), dimensions={0,2,1,3} no_transpose_minor_non_default = f32[10,20,40,30]{1,2,0,3} transpose(non_default_layout), dimensions={0,1,3,2} transpose_major_non_default = f32[10,20,40,30]{1,2,3,0} transpose(non_default_layout), dimensions={0,1,3,2} ROOT r = tuple(transpose_minor_default, no_transpose_minor_default, transpose_major_default, transpose_minor_non_default, no_transpose_minor_non_default, transpose_major_non_default) })")); auto* tuple = (*module)->entry_computation()->root_instruction(); EXPECT_TRUE(TransposesMinorDimension(tuple->operand(0))); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(1))); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(2))); EXPECT_TRUE(TransposesMinorDimension(tuple->operand(3))); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(4))); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(5))); } TEST_F(GpuFusibleTest, TransposesMinorDimensionSkipTrivialDimensions) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( ENTRY entry { default_layout = f32[10,20,1,1]{3,2,1,0} parameter(0) non_default_layout = f32[10,20,1,1]{1,2,3,0} parameter(1) transpose_minor_default = f32[10,20,1,1]{3,2,1,0} transpose(default_layout), dimensions={0,1,3,2} transpose_nontrivial_minor_default = f32[10,1,20,1]{3,2,1,0} transpose(default_layout), dimensions={0,2,1,3} no_transpose_minor_default = f32[10,20,1,1]{2,3,1,0} transpose(default_layout), dimensions={0,1,3,2} transpose_one_major_default = f32[1,20,10,1]{3,2,1,0} transpose(default_layout), dimensions={2,1,0,3} transpose_two_major_default = f32[20,10,1,1]{3,2,1,0} transpose(default_layout), dimensions={1,0,2,3} transpose_minor_non_default = f32[10,1,20,1]{1,2,3,0} transpose(non_default_layout), dimensions={0,2,1,3} no_transpose_minor_non_default = f32[10,20,1,1]{1,2,0,3} transpose(non_default_layout), dimensions={0,1,3,2} transpose_major_non_default = f32[10,20,1,1]{1,2,3,0} transpose(non_default_layout), dimensions={0,1,3,2} ROOT r = tuple(transpose_minor_default, transpose_nontrivial_minor_default, no_transpose_minor_default, transpose_one_major_default, transpose_two_major_default, transpose_minor_non_default, no_transpose_minor_non_default, transpose_major_non_default) })")); auto* tuple = (*module)->entry_computation()->root_instruction(); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(0))); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(1))); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(2))); EXPECT_TRUE(TransposesMinorDimension(tuple->operand(3))); EXPECT_TRUE(TransposesMinorDimension(tuple->operand(4))); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(5))); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(6))); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(7))); } TEST_F(GpuFusibleTest, CopyTransposesMinorDimension) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( ENTRY entry { default_layout = f32[10,20,30,40]{3,2,1,0} parameter(0) non_default_layout = f32[10,20,30,40]{1,2,3,0} parameter(1) copy_transpose_minor_default = f32[10,20,30,40]{2,3,1,0} copy(default_layout) copy_no_transpose_minor_default = f32[10,20,30,40]{3,2,1,0} copy(default_layout) copy_transpose_minor_non_default = f32[10,20,30,40]{2,1,3,0} copy(non_default_layout) copy_no_transpose_minor_non_default = f32[10,20,30,40]{1,2,3,0} copy(non_default_layout) ROOT r = tuple(copy_transpose_minor_default, copy_no_transpose_minor_default, copy_transpose_minor_non_default, copy_no_transpose_minor_non_default) })")); auto* tuple = (*module)->entry_computation()->root_instruction(); EXPECT_TRUE(TransposesMinorDimension(tuple->operand(0))); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(1))); EXPECT_TRUE(TransposesMinorDimension(tuple->operand(2))); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(3))); } TEST_F(GpuFusibleTest, CopyTransposesMinorDimensionSkipTrivialDimensions) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( ENTRY entry { default_layout = f32[10,20,1,1]{3,2,1,0} parameter(0) non_default_layout = f32[10,20,1,1]{1,2,3,0} parameter(1) copy_transpose_minor_default = f32[10,20,1,1]{2,3,1,0} copy(default_layout) copy_no_transpose_minor_default = f32[10,20,1,1]{3,2,1,0} copy(default_layout) copy_transpose_minor_non_default = f32[10,20,1,1]{2,0,3,1} copy(non_default_layout) copy_no_transpose_minor_non_default = f32[10,20,1,1]{1,2,3,0} copy(non_default_layout) ROOT r = tuple(copy_transpose_minor_default, copy_no_transpose_minor_default, copy_transpose_minor_non_default, copy_no_transpose_minor_non_default) })")); auto* tuple = (*module)->entry_computation()->root_instruction(); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(0))); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(1))); EXPECT_TRUE(TransposesMinorDimension(tuple->operand(2))); EXPECT_FALSE(TransposesMinorDimension(tuple->operand(3))); } TEST_F(GpuFusibleTest, IsReduceInputFusion_ReductionToVector) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( ENTRY entry { c0 = f32[] parameter(0) p1 = f32[128,512,28,28]{3,2,1,0} parameter(1) ROOT reduce = f32[512]{0} reduce(p1, c0), dimensions={0,2,3}, to_apply=scalar_add })")) .value(); SCOPED_TRACE(module->ToString()); const HloInstruction* reduce = module->entry_computation()->root_instruction(); ASSERT_EQ(reduce->opcode(), HloOpcode::kReduce); EXPECT_FALSE(IsReduceInputFusion(*reduce)); EXPECT_TRUE(IsInputFusibleReduction(*reduce)); } TEST_F(GpuFusibleTest, IsReduceInputFusion_ElementalReduction) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( ENTRY entry { c0 = f32[] parameter(0) p1 = f32[8,512,5,16,1,1]{5,4,3,2,1,0} parameter(1) ROOT reduce = f32[512,5,1,1]{3,2,1,0} reduce(p1, c0), dimensions={3,0}, to_apply=scalar_add })")) .value(); SCOPED_TRACE(module->ToString()); const HloInstruction* reduce = module->entry_computation()->root_instruction(); ASSERT_EQ(reduce->opcode(), HloOpcode::kReduce); EXPECT_FALSE(IsReduceInputFusion(*reduce)); EXPECT_FALSE(IsInputFusibleReduction(*reduce)); } TEST_F(GpuFusibleTest, IsReduceInputFusion_SingleOutputInputReduceFusion) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_reduction { c0 = f32[] constant(0) p1 = f32[128,512,28,28]{3,2,1,0} parameter(0) ROOT reduce = f32[128,512]{1,0} reduce(p1, c0), dimensions={2,3}, to_apply=scalar_add } ENTRY entry { p0 = f32[128,512,28,28]{3,2,1,0} parameter(0) ROOT fusion = f32[128,512]{1,0} fusion(p0), kind=kInput, calls=fused_reduction })")) .value(); const HloInstruction* reduce = module->entry_computation()->root_instruction(); ASSERT_EQ(reduce->opcode(), HloOpcode::kFusion); EXPECT_TRUE(IsReduceInputFusion(*reduce)); EXPECT_TRUE(IsInputFusibleReduction(*reduce)); } TEST_F(GpuFusibleTest, IsReduceInputFusion_SingleOutputLoopReduceFusion) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_reduction { c0 = f32[] constant(0) p1 = f32[8,512,5,16,1,1]{5,4,3,2,1,0} parameter(0) ROOT reduce = f32[8,5,1,1]{3,2,1,0} reduce(p1, c0), dimensions={1,3}, to_apply=scalar_add } ENTRY entry { p0 = f32[8,512,5,16,1,1]{5,4,3,2,1,0} parameter(0) ROOT fusion = f32[8,5,1,1]{3,2,1,0} fusion(p0), kind=kLoop, calls=fused_reduction })")) .value(); const HloInstruction* reduce = module->entry_computation()->root_instruction(); ASSERT_EQ(reduce->opcode(), HloOpcode::kFusion); EXPECT_FALSE(IsReduceInputFusion(*reduce)); EXPECT_FALSE(IsInputFusibleReduction(*reduce)); } TEST_F(GpuFusibleTest, IsReduceInputFusion_MultiOutputInputReduceFusion) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_reduction { c0 = f32[] constant(0) p1 = f32[128,512,28,28]{3,2,1,0} parameter(0) reduce.0 = f32[128,512]{1,0} reduce(p1, c0), dimensions={2,3}, to_apply=scalar_add reduce.1 = f32[128,512]{1,0} reduce(p1, c0), dimensions={2,3}, to_apply=scalar_add ROOT root = (f32[128,512]{1,0}, f32[128,512]{1,0}) tuple(reduce.0, reduce.1) } ENTRY entry { p0 = f32[128,512,28,28]{3,2,1,0} parameter(0) ROOT fusion = (f32[128,512]{1,0}, f32[128,512]{1,0}) fusion(p0), kind=kInput, calls=fused_reduction })")) .value(); const HloInstruction* reduce = module->entry_computation()->root_instruction(); ASSERT_EQ(reduce->opcode(), HloOpcode::kFusion); EXPECT_TRUE(IsReduceInputFusion(*reduce)); EXPECT_TRUE(IsInputFusibleReduction(*reduce)); } TEST_F(GpuFusibleTest, IsReduceInputFusion_MultiOutputInputReduceFusionWithExtraOutputs) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_reduction { c0 = f32[] constant(0) p1 = f32[128,512,28,28]{3,2,1,0} parameter(0) reduce = f32[128,512]{1,0} reduce(p1, c0), dimensions={2,3}, to_apply=scalar_add mul = f32[128,512,28,28]{3,2,1,0} multiply(p1, p1) ROOT root = (f32[128,512]{1,0}, f32[128,512,28,28]{3,2,1,0}) tuple(reduce, mul) } ENTRY entry { p0 = f32[128,512,28,28]{3,2,1,0} parameter(0) ROOT fusion = (f32[128,512]{1,0}, f32[128,512,28,28]{3,2,1,0}) fusion(p0), kind=kInput, calls=fused_reduction })")) .value(); const HloInstruction* reduce = module->entry_computation()->root_instruction(); ASSERT_EQ(reduce->opcode(), HloOpcode::kFusion); EXPECT_TRUE(IsReduceInputFusion(*reduce)); EXPECT_TRUE(IsInputFusibleReduction(*reduce)); } TEST_F(GpuFusibleTest, IsReduceInputFusion_MultiOutputLoopReduceFusion) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_reduction { c0 = f32[] constant(0) p1 = f32[128,512,28,28]{3,2,1,0} parameter(0) reduce.0 = f32[512,28]{1,0} reduce(p1, c0), dimensions={0,2}, to_apply=scalar_add reduce.1 = f32[512,28]{1,0} reduce(p1, c0), dimensions={0,2}, to_apply=scalar_add ROOT root = (f32[512,28]{1,0}, f32[512,28]{1,0}) tuple(reduce.0, reduce.1) } ENTRY entry { p0 = f32[128,512,28,28]{3,2,1,0} parameter(0) ROOT fusion = (f32[512,28]{1,0}, f32[512,28]{1,0}) fusion(p0), kind=kLoop, calls=fused_reduction })")) .value(); const HloInstruction* reduce = module->entry_computation()->root_instruction(); ASSERT_EQ(reduce->opcode(), HloOpcode::kFusion); EXPECT_FALSE(IsReduceInputFusion(*reduce)); EXPECT_FALSE(IsInputFusibleReduction(*reduce)); } TEST_F(GpuFusibleTest, IsReduceInputFusion_MultiOutputLoopFusionReduceAndElementwiseOp) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_reduction { c0 = f32[] constant(0) p1 = f32[128,512,28,28]{3,2,1,0} parameter(0) reduce = f32[512,28]{1,0} reduce(p1, c0), dimensions={0,2}, to_apply=scalar_add mul = f32[128,512,28,28]{3,2,1,0} multiply(p1, p1) ROOT root = (f32[512,28]{1,0}, f32[128,512,28,28]{3,2,1,0}) tuple(reduce, mul) } ENTRY entry { p0 = f32[128,512,28,28]{3,2,1,0} parameter(0) ROOT fusion = (f32[512,28]{1,0}, f32[128,512,28,28]{3,2,1,0}) fusion(p0), kind=kLoop, calls=fused_reduction })")) .value(); const HloInstruction* reduce = module->entry_computation()->root_instruction(); ASSERT_EQ(reduce->opcode(), HloOpcode::kFusion); EXPECT_FALSE(IsReduceInputFusion(*reduce)); EXPECT_FALSE(IsInputFusibleReduction(*reduce)); } TEST_F(GpuFusibleTest, CustomFusionIsNotFusibleAsConsumer) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( HloModule m triton_fusion { p0 = f16[20,3]{1,0} parameter(0) p1 = f16[3,40]{1,0} parameter(1) dot = f16[20,40]{1,0} dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT c = f16[20,40]{0,1} copy(dot) } ENTRY e { p0 = f16[20,3]{1,0} parameter(0) n = f16[20,3]{1,0} negate(p0) p1 = f16[3,40]{1,0} parameter(1) ROOT r = f16[20,40]{0,1} fusion(n, p1), kind=kCustom, calls=triton_fusion })")); const HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_FALSE(IsFusibleAsMultiOutputFusionRoot(*root)); } TEST_F(GpuFusibleTest, FusionHeroesAreCompatible_TransposeFusionCompatible) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[64,32]{1,0} parameter(0) neg = f32[64,32]{1,0} negate(p0.1) ROOT transpose = f32[32,64]{1,0} transpose(neg), dimensions={1,0} } fused_computation_2 { p0.2 = f32[32,64]{1,0} parameter(0) neg = f32[32,64]{1,0} negate(p0.2) ROOT add = f32[32,64]{1,0} add(neg, neg) } ENTRY entry { p0 = f32[64,32]{1,0} parameter(0) fusion.1 = f32[32,64]{1,0} fusion(p0), kind=kLoop, calls=fused_computation_1 ROOT fusion.2 = f32[32,64]{1,0} fusion(fusion.1), kind=kLoop, calls=fused_computation_2 })")) .value(); const HloInstruction* fusion_1 = module->entry_computation()->root_instruction(); const HloInstruction* fusion_2 = fusion_1->operand(0); EXPECT_TRUE(FusionHeroesAreCompatible(fusion_1->fused_expression_root(), fusion_2->fused_expression_root())); EXPECT_TRUE(FusionHeroesAreCompatible(fusion_2->fused_expression_root(), fusion_1->fused_expression_root())); } TEST_F(GpuFusibleTest, FusionHeroesAreCompatible_TransposeFusionNotCompatible) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[64,32]{1,0} parameter(0) neg = f32[64,32]{1,0} negate(p0.1) ROOT transpose = f32[32,64]{1,0} transpose(neg), dimensions={1,0} } fused_computation_2 { p0.2 = f32[32,64]{1,0} parameter(0) broadcast = f32[32,64,4]{2,1,0} broadcast(p0.2), dimensions={0,1} ROOT add = f32[32,64,4]{2,1,0} add(broadcast, broadcast) } ENTRY entry { p0 = f32[64,32]{1,0} parameter(0) fusion.1 = f32[32,64]{1,0} fusion(p0), kind=kLoop, calls=fused_computation_1 ROOT fusion.2 = f32[32,64,4]{2,1,0} fusion(fusion.1), kind=kLoop, calls=fused_computation_2 })")) .value(); const HloInstruction* fusion_1 = module->entry_computation()->root_instruction(); const HloInstruction* fusion_2 = fusion_1->operand(0); EXPECT_FALSE(FusionHeroesAreCompatible(fusion_1->fused_expression_root(), fusion_2->fused_expression_root())); EXPECT_FALSE(FusionHeroesAreCompatible(fusion_2->fused_expression_root(), fusion_1->fused_expression_root())); } TEST_F(GpuFusibleTest, ShapesCompatibleForMultiOutputFusion_LoopFusions) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[6400]{0} parameter(0) ROOT mul = f32[6400]{0} multiply(p0.1, p0.1) } fused_computation_2 { p0.2 = f32[6400]{0} parameter(0) const.2 = f32[] constant(1) broadcast = f32[6400]{0} broadcast(const.2), dimensions={} ROOT div = f32[6400]{0} divide(p0.2, broadcast) } ENTRY entry { p0 = f32[6400]{0} parameter(0) fusion.1 = f32[6400]{0} fusion(p0), kind=kLoop, calls=fused_computation_1 fusion.2 = f32[6400]{0} fusion(p0), kind=kLoop, calls=fused_computation_2 ROOT root = (f32[6400]{0}, f32[6400]{0}) tuple(fusion.1, fusion.2) })")) .value(); const HloInstruction* fusion_1 = module->entry_computation()->root_instruction()->operand(0); const HloInstruction* fusion_2 = module->entry_computation()->root_instruction()->operand(1); EXPECT_TRUE(ShapesCompatibleForMultiOutputFusion(*fusion_1, *fusion_2)); } TEST_F(GpuFusibleTest, ShapesCompatibleForMultiOutputFusion_IgnoreFpPrecision) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[6400]{0} parameter(0) ROOT mul = f32[6400]{0} multiply(p0.1, p0.1) } fused_computation_2 { p0.2 = f32[6400]{0} parameter(0) ROOT convert = f16[6400]{0} convert(p0.2) } ENTRY entry { p0 = f32[6400]{0} parameter(0) fusion.1 = f32[6400]{0} fusion(p0), kind=kLoop, calls=fused_computation_1 fusion.2 = f16[6400]{0} fusion(p0), kind=kLoop, calls=fused_computation_2 ROOT root = (f32[6400]{0}, f16[6400]{0}) tuple(fusion.1, fusion.2) })")) .value(); const HloInstruction* fusion_1 = module->entry_computation()->root_instruction()->operand(0); const HloInstruction* fusion_2 = module->entry_computation()->root_instruction()->operand(1); EXPECT_TRUE(ShapesCompatibleForMultiOutputFusion(*fusion_1, *fusion_2)); } TEST_F(GpuFusibleTest, ShapesCompatibleForMultiOutputFusion_BitcastCompatible) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[6400]{0} parameter(0) ROOT mul = f32[6400]{0} multiply(p0.1, p0.1) } fused_computation_2 { p0.2 = f32[6400]{0} parameter(0) bitcast = f32[1,6400]{1,0} bitcast(p0.2) ROOT convert = f16[1,6400]{1,0} convert(bitcast) } ENTRY entry { p0 = f32[6400]{0} parameter(0) fusion.1 = f32[6400]{0} fusion(p0), kind=kLoop, calls=fused_computation_1 fusion.2 = f16[1,6400]{1,0} fusion(p0), kind=kLoop, calls=fused_computation_2 ROOT root = (f32[6400]{0}, f16[1,6400]{1,0}) tuple(fusion.1, fusion.2) })")) .value(); const HloInstruction* fusion_1 = module->entry_computation()->root_instruction()->operand(0); const HloInstruction* fusion_2 = module->entry_computation()->root_instruction()->operand(1); EXPECT_TRUE(ShapesCompatibleForMultiOutputFusion(*fusion_1, *fusion_2)); } TEST_F(GpuFusibleTest, ShapesCompatibleForMultiOutputFusion_Reduce) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[6400]{0} parameter(0) ROOT mul = f32[6400]{0} multiply(p0.1, p0.1) } ENTRY entry { p0 = f32[6400]{0} parameter(0) fusion.1 = f32[6400]{0} fusion(p0), kind=kLoop, calls=fused_computation_1 const.2 = f32[] constant(0) reduce = f32[] reduce(p0, const.2), dimensions={0}, to_apply=scalar_add ROOT root = (f32[6400]{0}, f32[]) tuple(fusion.1, reduce) })")) .value(); const HloInstruction* fusion = module->entry_computation()->root_instruction()->operand(0); const HloInstruction* reduce = module->entry_computation()->root_instruction()->operand(1); EXPECT_TRUE(ShapesCompatibleForMultiOutputFusion(*fusion, *reduce)); } TEST_F(GpuFusibleTest, ShapesCompatibleForMultiOutputFusion_Elementwise) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[6400]{0} parameter(0) ROOT mul = f32[6400]{0} multiply(p0.1, p0.1) } ENTRY entry { p0 = f32[6400]{0} parameter(0) fusion.1 = f32[6400]{0} fusion(p0), kind=kLoop, calls=fused_computation_1 const.2 = f32[] constant(1) broadcast = f32[6400]{0} broadcast(const.2), dimensions={} div = f32[6400]{0} divide(p0, broadcast) ROOT root = (f32[6400]{0}, f32[6400]{0}) tuple(fusion.1, div) })")) .value(); const HloInstruction* fusion = module->entry_computation()->root_instruction()->operand(0); const HloInstruction* div = module->entry_computation()->root_instruction()->operand(1); EXPECT_TRUE(ShapesCompatibleForMultiOutputFusion(*fusion, *div)); } TEST_F(GpuFusibleTest, ShapesCompatibleForMultiOutputFusion_MultiOutputLoopFusion) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} parameter(0) mul = f32[8,1,5,16,1,1]{5,4,3,2,1,0} multiply(p0.1, p0.1) exp = f32[8,1,5,16,1,1]{5,4,3,2,1,0} exponential(p0.1) ROOT tuple = (f32[8,1,5,16,1,1]{5,4,3,2,1,0}, f32[8,1,5,16,1,1]{5,4,3,2,1,0}) tuple(mul, exp) } fused_computation_2 { p0.2 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} parameter(0) const.2 = f32[] constant(0) broadcast = f32[8,1,5,16,1,1]{5,4,3,2,1,0} broadcast(const.2), dimensions={} ROOT add = f32[8,1,5,16,1,1]{5,4,3,2,1,0} add(p0.2, broadcast) } ENTRY entry { p0 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} parameter(0) fusion.1 = (f32[8,1,5,16,1,1]{5,4,3,2,1,0}, f32[8,1,5,16,1,1]{5,4,3,2,1,0}) fusion(p0), kind=kLoop, calls=fused_computation_1 fusion.2 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} fusion(p0), kind=kLoop, calls=fused_computation_2 gte0 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} get-tuple-element(fusion.1), index=0 gte1 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} get-tuple-element(fusion.1), index=1 ROOT root = (f32[8,1,5,16,1,1]{5,4,3,2,1,0}, f32[8,1,5,16,1,1]{5,4,3,2,1,0}, f32[8,1,5,16,1,1]{5,4,3,2,1,0}) tuple(gte0, gte1, fusion.2) })")) .value(); const HloInstruction* fusion_1 = module->entry_computation()->root_instruction()->operand(0)->operand(0); const HloInstruction* fusion_2 = module->entry_computation()->root_instruction()->operand(2); EXPECT_NE(fusion_1, fusion_2); EXPECT_TRUE(ShapesCompatibleForMultiOutputFusion(*fusion_1, *fusion_2)); } TEST_F(GpuFusibleTest, ShapesCompatibleForMultiOutputFu
2,114
cpp
tensorflow/tensorflow
gemm_fusion_autotuner
third_party/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc
third_party/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner_test.cc
#ifndef XLA_SERVICE_GPU_GEMM_FUSION_AUTOTUNER_H_ #define XLA_SERVICE_GPU_GEMM_FUSION_AUTOTUNER_H_ #include <cstdint> #include <memory> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/autotuning.pb.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/pjrt/distributed/key_value_store_interface.h" #include "xla/service/executable.h" #include "xla/service/gpu/autotuner_compile_util.h" #include "xla/service/gpu/autotuner_util.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/hlo_pass_interface.h" #include "xla/stream_executor/device_description.h" #include "xla/xla.pb.h" #include "tsl/platform/threadpool.h" namespace xla { namespace gpu { class GemmFusionAutotuner : public HloModulePass { public: explicit GemmFusionAutotuner(const AutotuneConfig& config, const int32_t toolkit_version, tsl::thread::ThreadPool* thread_pool, const MultiProcessKeyValueStore& key_value_store) : config_(config), toolkit_version_(toolkit_version), thread_pool_(thread_pool), key_value_store_(key_value_store) {} absl::string_view name() const override { return "triton-autotuner"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: const AutotuneConfig config_; const int32_t toolkit_version_; tsl::thread::ThreadPool* thread_pool_; MultiProcessKeyValueStore key_value_store_; }; class GemmFusionAutotunerImpl { public: GemmFusionAutotunerImpl(const AutotuneConfig config, const int32_t toolkit_version, const DebugOptions debug_options, tsl::thread::ThreadPool* thread_pool) : config_(std::move(config)), toolkit_version_(toolkit_version), debug_options_(std::move(debug_options)), thread_pool_(thread_pool) {} struct CuBlasConfig { bool operator<(const CuBlasConfig& other) const; }; struct CuDnnConfig { int64_t plan_id; bool operator<(const CuDnnConfig& other) const; }; using Config = std::variant<CuBlasConfig, CuDnnConfig, TritonGemmConfig>; using TilingConfigs = std::vector<std::pair<const HloFusionInstruction*, std::vector<Config>>>; struct ExecutableCandidate { Config config; std::unique_ptr<Executable> executable; }; absl::StatusOr<std::vector<Config>> GenerateConfigs( const HloFusionInstruction& fusion); absl::StatusOr<std::vector<TritonGemmConfig>> GenerateTritonConfigs( const HloDotInstruction& dot); absl::StatusOr<absl::flat_hash_map<const HloFusionInstruction*, std::vector<ExecutableCandidate>>> CompileAll(AutotunerCompileUtil& compile_util, const TilingConfigs& task); absl::StatusOr<std::vector<AutotuneResult>> Profile( AutotunerCompileUtil& compile_util, const HloFusionInstruction& fusion, absl::Span<const ExecutableCandidate> candidates); absl::Status Autotune( AutotunerCompileUtil& compile_util, const TilingConfigs& gemm_config_sets, absl::flat_hash_map<AutotuneCacheKey, uint64_t> fusion_count_map); const AutotuneConfig& GetConfig() const { return config_; } bool IsAutotuningEnabled() const; static std::string ToString(const Config& config); private: se::CudaComputeCapability GetComputeCapability() const { return std::get<se::CudaComputeCapability>( config_.GetGpuComputeCapability()); } std::vector<TritonGemmConfig> GetDefaultTritonConfigs() const; std::vector<TritonGemmConfig> GetExhaustiveTritonConfigs() const; const AutotuneConfig config_; const int32_t toolkit_version_; const DebugOptions debug_options_; tsl::thread::ThreadPool* thread_pool_; std::vector<TritonGemmConfig> triton_configs_; }; } } #endif #include "xla/service/gpu/gemm_fusion_autotuner.h" #include <algorithm> #include <array> #include <atomic> #include <cstdint> #include <iterator> #include <memory> #include <optional> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "third_party/gpus/cuda/include/cublas_v2.h" #include "xla/autotuning.pb.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/pjrt/distributed/key_value_store_interface.h" #include "xla/primitive_util.h" #include "xla/service/algorithm_util.h" #include "xla/service/dump.h" #include "xla/service/executable.h" #include "xla/service/float_normalization.h" #include "xla/service/gpu/autotuner_compile_util.h" #include "xla/service/gpu/autotuner_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/buffer_comparator.h" #include "xla/service/gpu/cudnn_fusion_compiler.h" #include "xla/service/gpu/fusion_wrapper.h" #include "xla/service/gpu/gemm_rewriter.h" #include "xla/service/gpu/gpu_float_support.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/instruction_fusion.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/gpu/priority_fusion.h" #include "xla/service/gpu/split_k_gemm_rewriter.h" #include "xla/service/gpu/stream_executor_util.h" #include "xla/service/hlo_module_config.h" #include "xla/service/shaped_buffer.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/gpu/redzone_allocator.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor_memory_allocator.h" #include "xla/tools/hlo_decomposer.h" #include "xla/tsl/util/proto/proto_utils.h" #include "xla/util.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/bits.h" #include "tsl/platform/blocking_counter.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" #include "tsl/profiler/lib/scoped_annotation.h" namespace xla { namespace gpu { using Config = GemmFusionAutotunerImpl::Config; using TilingConfigs = GemmFusionAutotunerImpl::TilingConfigs; using ProfilingOutput = AutotunerCompileUtil::ProfilingOutput; namespace { constexpr int kMinTileSize = 16; constexpr TritonGemmConfig kDefaultGemmTiling = {32, 32, 32, 1, 1, 4}; constexpr int kMaxWavesForSplitK = 5; constexpr std::array<int, 6> kBlockSizes = {16, 32, 64, 128, 256, 512}; constexpr std::array<int, 4> kNumStages = {1, 2, 3, 4}; constexpr std::array<int, 4> kNumWarps = {2, 4, 8, 16}; constexpr std::array<int, 5> kSplitK = {1, 2, 4, 8, 16}; constexpr std::array<int, 5> kNumCtas = {1, 2, 4, 8, 16}; using AutoTuneCacheKeyCount = absl::flat_hash_map<AutotuneCacheKey, uint64_t>; class GemmFusionAutotunerVisitor : public DfsHloRewriteVisitor { public: explicit GemmFusionAutotunerVisitor(const AutotuneConfig& config) : config_(config) {} absl::Status HandleFusion(HloInstruction* hlo) override { TF_ASSIGN_OR_RETURN(auto gpu_config, hlo->backend_config<GpuBackendConfig>()); FusionBackendConfig& backend_config = *gpu_config.mutable_fusion_backend_config(); if (backend_config.kind() != kTritonGemmFusionKind && backend_config.kind() != kCuDnnFusionKind) { return absl::OkStatus(); } VLOG(4) << "Processing " << hlo->ToString(); if (!backend_config.has_triton_gemm_config() && !backend_config.has_cudnn_fusion_config()) { TF_ASSIGN_OR_RETURN( AutotuneResult autotune_result, AutotunerUtil::Autotune( hlo, config_, [&]() -> absl::StatusOr<AutotuneResult> { if (config_.IsDeviceless()) { return absl::InternalError(absl::StrCat( "Expect autotune result cache hit for deviceless " "compilation (HLO: ", hlo->ToString(), ")")); } return absl::InternalError("Expect autotune result cache hit."); })); VLOG(4) << "Result: " << autotune_result.ShortDebugString(); if (autotune_result.has_triton()) { *backend_config.mutable_triton_gemm_config() = autotune_result.triton(); TF_RETURN_IF_ERROR(hlo->set_backend_config(gpu_config)); } else if (autotune_result.has_gemm()) { HloComputation* const computation = hlo->parent(); HloInstruction* const call = computation->AddInstruction( HloInstruction::CreateCall(hlo->shape(), hlo->operands(), hlo->fused_instructions_computation())); TF_RETURN_IF_ERROR(computation->ReplaceInstruction(hlo, call)); hlo = call; } else { CHECK(autotune_result.has_algorithm()); backend_config.set_kind(std::string(kCuDnnFusionKind)); backend_config.mutable_cudnn_fusion_config()->set_plan_id( autotune_result.algorithm().algo_id()); TF_RETURN_IF_ERROR(hlo->set_backend_config(gpu_config)); } } if (backend_config.has_triton_gemm_config()) { TF_ASSIGN_OR_RETURN( const TritonGemmConfig config, TritonGemmConfig::FromProto(backend_config.triton_gemm_config())); if (config.split_k > 1) { TF_RETURN_IF_ERROR(MakeDotSplitKBatch(hlo, config)); } } MarkAsChanged(); return absl::OkStatus(); } private: AutotuneConfig config_; }; class GemmConfigSetCollector : public ConstDfsHloVisitorWithDefault { public: explicit GemmConfigSetCollector(GemmFusionAutotunerImpl* impl) : impl_(impl) {} absl::StatusOr<TilingConfigs> CollectGemmConfigSets( const HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads = {}) { error_out_on_cache_miss_ = module->config() .debug_options() .xla_gpu_require_complete_aot_autotune_results(); gemm_config_sets_.clear(); for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { TF_RETURN_IF_ERROR(computation->Accept(this)); } return std::move(gemm_config_sets_); } AutoTuneCacheKeyCount GetFusionsCount() { return std::move(fusion_count_map_); } absl::Status HandleFusion(const HloInstruction* hlo) override { const HloFusionInstruction* fusion = Cast<HloFusionInstruction>(hlo); TF_ASSIGN_OR_RETURN(auto gpu_config, hlo->backend_config<GpuBackendConfig>()); const FusionBackendConfig& backend_config = gpu_config.fusion_backend_config(); AutotuneCacheKey key = AutotunerUtil::GetKey(hlo, impl_->GetConfig()); auto [iterator, inserted] = fusion_count_map_.insert({key, 1}); if (!inserted) { ++(iterator->second); } TF_ASSIGN_OR_RETURN(bool is_in_cache, AutotunerUtil::IsInCache(key, impl_->GetConfig())); if (is_in_cache || handled_fusions_.contains(key)) { return absl::OkStatus(); } bool missing_config = (backend_config.kind() == kTritonGemmFusionKind && !backend_config.has_triton_gemm_config()) || (backend_config.kind() == kCuDnnFusionKind && !backend_config.has_cudnn_fusion_config()); if (missing_config) { if (error_out_on_cache_miss_) { return absl::NotFoundError(absl::StrCat( "Complete autotuning results are required, but no cache result " "found for key: ", key.ToString())); } TF_ASSIGN_OR_RETURN(std::vector<Config> configs, impl_->GenerateConfigs(*fusion)); gemm_config_sets_.push_back({fusion, std::move(configs)}); } handled_fusions_.insert(key); return absl::OkStatus(); } absl::Status DefaultAction(const HloInstruction* hlo) override { return absl::OkStatus(); } private: bool error_out_on_cache_miss_; GemmFusionAutotunerImpl* impl_; TilingConfigs gemm_config_sets_; AutoTuneCacheKeyCount fusion_count_map_; absl::flat_hash_set<AutotuneCacheKey> handled_fusions_; }; struct TileSizeLimit { int block_m = 0; int block_n = 0; int block_k = 0; }; absl::StatusOr<TileSizeLimit> GetLimits(const HloDotInstruction& dot) { TF_ASSIGN_OR_RETURN(int64_t non_contracting_index_lhs, NonContractingDimensionIndex(dot, 0)); TF_ASSIGN_OR_RETURN(int64_t non_contracting_index_rhs, NonContractingDimensionIndex(dot, 1)); TF_ASSIGN_OR_RETURN(int64_t contracting_index, ContractingDimensionIndex(dot, 1)); const int max_m = tsl::NextPowerOfTwoS64( dot.operand(0)->shape().dimensions(non_contracting_index_lhs)); const int max_n = tsl::NextPowerOfTwoS64( dot.operand(1)->shape().dimensions(non_contracting_index_rhs)); const int max_k = tsl::NextPowerOfTwoS64( dot.operand(1)->shape().dimensions(contracting_index)); return TileSizeLimit{ std::max(max_m, kMinTileSize), std::max(max_n, kMinTileSize), std::max(max_k, kMinTileSize), }; } int GetLogEveryN() { return VLOG_IS_ON(3) ? 100 : 1000; } absl::StatusOr<std::unique_ptr<HloModule>> TritonGemmAutotuneExtractor( const TritonGemmConfig& config, const se::DeviceDescription& gpu_device_info, const HloFusionInstruction* fusion, DebugOptions debug_opts, bool allow_filtering_kernels_spilling_registers) { std::unique_ptr<HloModule> new_module = ExtractInstructionIntoNewModule(*fusion); debug_opts.clear_xla_gpu_enable_command_buffer(); if (!allow_filtering_kernels_spilling_registers) { debug_opts.set_xla_gpu_filter_kernels_spilling_registers_on_autotuning( false); } new_module->mutable_config().set_debug_options(debug_opts); HloComputation* entry_computation = new_module->entry_computation(); HloInstruction* cloned_dot_fusion = entry_computation->root_instruction(); TF_ASSIGN_OR_RETURN(auto gpu_config, cloned_dot_fusion->backend_config<GpuBackendConfig>()); FusionBackendConfig& backend_config = *gpu_config.mutable_fusion_backend_config(); *backend_config.mutable_triton_gemm_config() = config.ToProto(); TF_RETURN_IF_ERROR(cloned_dot_fusion->set_backend_config(gpu_config)); if (config.split_k > 1) { TF_RETURN_IF_ERROR(MakeDotSplitKBatch(cloned_dot_fusion, config)); GpuFloatSupport bf16_support(gpu_device_info.cuda_compute_capability(), BF16); FloatNormalization float_normalization(&bf16_support); TF_RETURN_IF_ERROR(float_normalization.Run(new_module.get()).status()); auto shape_size_function = [&](const Shape& shape) { constexpr int64_t kPointerSize = 8; return ShapeUtil::ByteSizeOf(shape, kPointerSize); }; GpuPriorityFusion priority_fusion( nullptr, gpu_device_info, GpuHloCostAnalysis::Options{shape_size_function, {}, true}); TF_RETURN_IF_ERROR(priority_fusion.Run(new_module.get()).status()); FusionWrapper fusion_wrapper; TF_RETURN_IF_ERROR(fusion_wrapper.Run(new_module.get()).status()); } return new_module; } absl::StatusOr<std::unique_ptr<HloModule>> CublasGemmAutotuneExtractor( const AutotuneConfig& config, const int32_t toolkit_version, const HloFusionInstruction* fusion, const DebugOptions& debug_opts) { const HloComputation* fusion_computation = fusion->called_computations().at(0); std::unique_ptr<HloModule> new_module = ExtractComputationIntoNewModule(*fusion_computation); new_module->mutable_config().set_debug_options(debug_opts); auto* dot = hlo_query::GetFirstInstructionWithOpcode( *new_module->entry_computation(), HloOpcode::kDot); if (dot->precision_config().algorithm() == PrecisionConfig::ALG_DOT_BF16_BF16_F32_X3 || dot->precision_config().algorithm() == PrecisionConfig::ALG_DOT_BF16_BF16_F32_X6) { dot->mutable_precision_config()->set_algorithm( PrecisionConfig::ALG_DOT_F32_F32_F32); } for (bool fp8 : {true, false}) { GemmRewriter rewriter(config.GetGpuComputeCapability(), toolkit_version, fp8); GpuInstructionFusion fusion_pass( false, config.GetExecutor()->GetDeviceDescription()); TF_RETURN_IF_ERROR(rewriter.Run(new_module.get()).status()); TF_RETURN_IF_ERROR(fusion_pass.Run(new_module.get()).status()); } return new_module; } absl::StatusOr<std::unique_ptr<HloModule>> FusionExtractor( const HloFusionInstruction& fusion, const DebugOptions& debug_opts) { std::unique_ptr<HloModule> module = ExtractInstructionIntoNewModule(fusion); module->mutable_config().set_debug_options(debug_opts); return module; } absl::StatusOr<std::unique_ptr<HloModule>> CuDnnFusionExtractor( const HloFusionInstruction& fusion, const DebugOptions& debug_opts, const int plan_id) { TF_ASSIGN_OR_RETURN(std::unique_ptr<HloModule> module, FusionExtractor(fusion, debug_opts)); GpuBackendConfig gpu_config; FusionBackendConfig& backend_config = *gpu_config.mutable_fusion_backend_config(); backend_config.set_kind(std::string(kCuDnnFusionKind)); backend_config.mutable_cudnn_fusion_config()->set_plan_id(plan_id); TF_RETURN_IF_ERROR( module->entry_computation()->root_instruction()->set_backend_config( gpu_config)); return module; } bool IsFusionKind(const HloInstruction& hlo, absl::string_view kind) { auto gpu_config = hlo.backend_config<GpuBackendConfig>(); if (!gpu_config.ok()) { return false; } return gpu_config->fusion_backend_config().kind() == kind; } int GetCuDnnPlanCount(const HloInstruction& hlo, const AutotuneConfig& autotune_config) { if (auto gpu_config = hlo.backend_config<GpuBackendConfig>(); !gpu_config.ok() || gpu_config->fusion_backend_config().has_cudnn_fusion_config()) { return {}; } return CuDnnFusionCompiler::GetAvailablePlanCount( *autotune_config.GetExecutor(), *DynCast<HloFusionInstruction>(&hlo)); } AutotuneResult FromConfig(const Config& config) { AutotuneResult res; if (std::holds_alternative<GemmFusionAutotunerImpl::CuBlasConfig>(config)) { res.mutable_gemm()->set_algorithm(CUBLAS_GEMM_DEFAULT); } else if (std::holds_alternative<GemmFusionAutotunerImpl::CuDnnConfig>( config)) { res.mutable_algorithm()->set_algo_id( std::get<GemmFusionAutotunerImpl::CuDnnConfig>(config).plan_id); } else if (std::holds_alternative<TritonGemmConfig>(config)) { *res.mutable_triton() = std::get<TritonGemmConfig>(config).ToProto(); } else { LOG(FATAL) << "Unsupported config type: " << config.index(); } return res; } absl::Status DumpOriginalFusion(AutotunerCompileUtil& util, const HloFusionInstruction& fusion, int fusion_id) { TF_ASSIGN_OR_RETURN(std::unique_ptr<HloModule> module, util.ExtractModule([&](const DebugOptions& debug_opts) { return FusionExtractor(fusion, debug_opts); })); module->set_name(std::string(fusion.name())); DumpToFileInDirOrStdout( *fusion.GetModule(), "", absl::StrCat("gemm_fusion_", fusion_id, ".", module->name(), ".txt"), module->ToString()); return absl::OkStatus(); } absl::Status DumpAutotunedFusion(const AutotuneConfig& autotune_config, const int32_t toolkit_version, AutotunerCompileUtil& util, const AutotuneResult result, const HloFusionInstruction* fusion, int fusion_id) { TritonGemmConfig triton_gemm_config; if (result.has_triton()) { TF_ASSIGN_OR_RETURN(triton_gemm_config, TritonGemmConfig::FromProto(result.triton())); } const se::DeviceDescription& device_desc = autotune_config.GetExecutor()->GetDeviceDescription(); TF_ASSIGN_OR_RETURN( std::unique_ptr<HloModule> module, util.ExtractModule([&](const DebugOptions& debug_opts) { if (result.has_algorithm()) { return CuDnnFusionExtractor(*fusion, debug_opts, result.algorithm().algo_id()); } else if (result.has_triton()) { return TritonGemmAutotuneExtractor( triton_gemm_config, device_desc, fusion, debug_opts, true); } else if (result.has_gemm()) { return CublasGemmAutotuneExtractor(autotune_config, toolkit_version, fusion, debug_opts); } else { LOG(FATAL) << "Unknown result type: " << result.DebugString(); } })); module->set_name(std::string(fusion->name())); DumpToFileInDirOrStdout( *fusion->GetModule(), "", absl::StrCat("gemm_fusion_", fusion_id, ".", module->name(), ".optimized.txt"), module->ToString()); return absl::OkStatus(); } std::string Serialize(const Config& config) { if (auto triton_config = std::get_if<TritonGemmConfig>(&config)) { tsl::protobuf::TextFormat::Printer printer; printer.SetSingleLineMode(true); std::string result; printer.PrintToString(triton_config->ToProto(), &result); return result; } return GemmFusionAutotunerImpl::ToString(config); } } bool GemmFusionAutotunerImpl::CuBlasConfig::operator<( const CuBlasConfig& other) const { return false; } bool GemmFusionAutotunerImpl::CuDnnConfig::operator<( const CuDnnConfig& other) const { return plan_id < other.plan_id; } bool GemmFusionAutotunerImpl::IsAutotuningEnabled() const { return debug_options_.xla_gpu_autotune_level() > 0 && !debug_options_.xla_gpu_deterministic_ops(); } std::string GemmFusionAutotunerImpl::ToString(const Config& config) { if (std::holds_alternative<TritonGemmConfig>(config)) { return std::get<TritonGemmConfig>(config).ToString(); } else if (std::holds_alternative<CuDnnConfig>(config)) { return absl::StrFormat("cuDNN plan %d", std::get<CuDnnConfig>(config).plan_id); } else if (std::holds_alternative<CuBlasConfig>(config)) { return "reference (cublas)"; } else { LOG(FATAL) << "Unsupported config type: " << config.index(); } } absl::StatusOr<std::vector<Config>> GemmFusionAutotunerImpl::GenerateConfigs( const HloFusionInstruction& fusion) { const HloDotInstruction* dot = Cast<HloDotInstruction>(hlo_query::GetFirstInstructionWithOpcode( *fusion.called_computations().at(0), HloOpcode::kDot)); std::vector<Config> configs; if (algorithm_util::IsSupportedByCublasOrCublasLt( dot->precision_config().algorithm()) && !dot->sparse_operands() && IsAutotuningEnabled()) { configs.push_back(CuBlasConfig{}); } bool is_hopper = !config_.IsDeviceless() && GetComputeCapability().IsAtLeastHopper(); bool is_cudnn_enabled = debug_options_.xla_gpu_cudnn_gemm_fusion_level() > 0 && is_hopper && GetDnnVersionInfoOrDefault(config_.GetExecutor()).major_version() >= 9; if ((IsFusionKind(fusion, kCuDnnFusionKind) && IsAutotuningEnabled()) || (IsFusionKind(fusion, kTritonGemmFusionKind) && is_cudnn_enabled && algorithm_util::IsSupportedByCudnn( dot->precision_config().algorithm()) && !dot->sparse_operands() && IsAutotuningEnabled())) { const int plan_count = GetCuDnnPlanCount(fusion, config_); for (int plan_id = 0; plan_id < plan_count; ++plan_id) { configs.push_back(CuDnnConfig{plan_id}); } } if (IsFusionKind(fusion, kCuDnnFusionKind)) { if (!IsAutotuningEnabled()) { configs.push_back(CuDnnConfig{-1}); } return configs; } TF_ASSIGN_OR_RETURN(std::vector<TritonGemmConfig> triton_configs, GenerateTritonConfigs(*dot)); for (TritonGemmConfig& config : triton_configs) { configs.push_back(std::move(config)); } return configs; } absl::StatusOr<std::vector<TritonGemmConfig>> GemmFusionAutotunerImpl::GenerateTritonConfigs(const HloDotInstruction& dot) { std::vector<const HloInstruction*> converts = HloFindAll({&dot}, [&](const HloInstruction* node) { return node->opcode() == HloOpcode::kConvert; }); int minBitWidth = primitive_util::BitWidth(dot.shape().element_type()); for (auto convert : converts) { auto in_type = convert->operand(0)->shape().element_type(); auto out_type = convert->shape().element_type(); minBitWidth = std::min({minBitWidth, primitive_util::BitWidth(in_type), primitive_util::BitWidth(out_type)}); } std::vector<TritonGemmConfig> result_configs; TF_ASSIGN_OR_RETURN(TileSizeLimit limits, GetLimits(dot)); if (triton_configs_.empty()) { triton_configs_ = !IsAutotuningEnabled() ? std::vector(1, kDefaultGemmTiling) : debug_options_.xla_gpu_exhaustive_tiling_search() ? GetExhaustiveTritonConfigs() : GetDefaultTritonConfigs(); } constexpr int kMinGemmElements = 32 * 32; bool small_dot = ShapeUtil::ElementsIn(dot.operand(0)->shape()) <= kMinGemmElements && ShapeUtil::ElementsIn(dot.operand(1)->shape()) <= kMinGemmElements; std::vector<TritonGemmConfig> triton_configs = small_dot ? std::vector(1, kDefaultGemmTiling) : triton_configs_; const int kCoreCount = !config_.IsDeviceless() ? config_.GetExecutor()->GetDeviceDescription().core_count() : 100; const int64_t kSufficientNumb
#include "xla/service/gpu/gemm_fusion_autotuner.h" #include <algorithm> #include <cstdint> #include <memory> #include <string> #include <utility> #include <variant> #include <vector> #include <gtest/gtest.h> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "third_party/gpus/cuda/include/cuda.h" #include "xla/autotuning.pb.h" #include "xla/error_spec.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/pjrt/distributed/key_value_store_interface.h" #include "xla/service/call_inliner.h" #include "xla/service/dump.h" #include "xla/service/executable.h" #include "xla/service/gpu/autotuner_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/gemm_fusion.h" #include "xla/service/gpu/gemm_rewriter.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/test_utils.h" #include "xla/tests/verified_hlo_module.h" #include "xla/tools/hlo_decomposer.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/cpu_info.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" namespace xla { namespace gpu { namespace { namespace m = ::xla::match; using HloExtractionTest = HloTestBase; TEST_F(HloExtractionTest, InstructionExtractionIsCorrect) { std::unique_ptr<VerifiedHloModule> module = ParseAndReturnVerifiedModule(R"( HloModule module triton_gemm_dot { p0 = s8[10,10] parameter(0) p1 = f32[10,10] parameter(1) c0 = f32[10,10] convert(p0) ROOT dot.0 = f32[10,10] dot(c0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY entry { p0 = s8[10,10] parameter(0) p1 = f32[10,10] parameter(1) s = f32[10,10] sqrt(p1) d = f32[10,10] fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot ROOT r = f32[10,10] add(d, s) })") .value(); std::unique_ptr<HloModule> extracted_module = ExtractInstructionIntoNewModule( *module->entry_computation()->root_instruction()->operand(0)); module.release(); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), GmockMatch(m::Fusion(m::Parameter(), m::Parameter()))); EXPECT_EQ(extracted_module->entry_computation()->instruction_count(), 3); TF_EXPECT_OK(VerifyHloModule(extracted_module.get(), true, false)); } TEST_F(HloExtractionTest, ComputationExtractionIsCorrect) { std::unique_ptr<VerifiedHloModule> module = ParseAndReturnVerifiedModule(R"( HloModule module triton_gemm_dot { p0 = s8[10,10] parameter(0) p1 = f32[10,10] parameter(1) c0 = f32[10,10] convert(p0) ROOT dot.0 = f32[10,10] dot(c0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY entry { p0 = s8[10,10] parameter(0) p1 = f32[10,10] parameter(1) s = f32[10,10] sqrt(p1) d = f32[10,10] fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot ROOT r = f32[10,10] add(d, s) })") .value(); std::unique_ptr<HloModule> extracted_module = ExtractComputationIntoNewModule(*module->entry_computation() ->root_instruction() ->operand(0) ->fused_instructions_computation()); module.release(); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), GmockMatch(m::Dot(m::Convert(m::Parameter()), m::Parameter()))); EXPECT_EQ(extracted_module->entry_computation()->instruction_count(), 4); TF_EXPECT_OK(VerifyHloModule(extracted_module.get(), true, false)); } class StatelessAutotunerTest : public HloTestBase { public: StatelessAutotunerTest() : HloTestBase(true, false) {} int32_t GetToolkitVersion() const { return CUDA_VERSION; } void SetUp() override { AutotunerUtil::ClearAutotuneResults(); HloTestBase::SetUp(); } void TearDown() override { AutotunerUtil::ClearAutotuneResults(); HloTestBase::TearDown(); } }; class GemmFusionAutotunerTest : public StatelessAutotunerTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = StatelessAutotunerTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_enable_triton_gemm(true); debug_options.set_xla_gpu_cublas_fallback(false); debug_options.set_xla_gpu_cudnn_gemm_fusion_level(0); return debug_options; } se::CudaComputeCapability GetCudaComputeCapability() { return backend() .default_stream_executor() ->GetDeviceDescription() .cuda_compute_capability(); } void CheckTritonAutotuning(absl::string_view hlo, absl::string_view expected) { HloPassPipeline pipeline("gemm_rewrite"); pipeline.AddPass<GemmFusion>(backend() .default_stream_executor() ->GetDeviceDescription() .cuda_compute_capability()); tsl::thread::ThreadPool thread_pool(tsl::Env::Default(), "", tsl::port::MaxParallelism()); DebugOptions opts; MultiProcessKeyValueStore key_value_store; pipeline.AddPass<GemmFusionAutotuner>( AutotuneConfig{DeviceConfig{backend().default_stream_executor(), backend().memory_allocator()}, opts}, GetToolkitVersion(), &thread_pool, key_value_store); RunAndFilecheckHloRewrite( hlo, std::move(pipeline), expected, [](const HloModule* m) { VLOG(5) << m->ToString(); const HloInstruction* dot_fusion = m->entry_computation()->root_instruction(); if (dot_fusion->opcode() == HloOpcode::kReduce) { dot_fusion = dot_fusion->operand(0); } CHECK_EQ(dot_fusion->opcode(), HloOpcode::kFusion); if (!dot_fusion->backend_config<GpuBackendConfig>() ->fusion_backend_config() .has_cudnn_fusion_config()) { CHECK_GT(dot_fusion->backend_config<GpuBackendConfig>() .value() .fusion_backend_config() .triton_gemm_config() .block_m(), 0); } }); } }; class GemmFusionAutotunerTestWithMorePreciseReduction : public GemmFusionAutotunerTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = GemmFusionAutotunerTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_triton_gemm_disable_reduced_precision_reduction( true); return debug_options; } }; absl::StatusOr<std::vector<TritonGemmConfig>> GetPossibleMatmulAutotuneConfigs( const HloDotInstruction& dot, const se::CudaComputeCapability& compute_capability, const int32_t toolkit_version, const DebugOptions& debug_options) { DevicelessConfig test_config{"", compute_capability}; AutotuneConfig autotune_config{test_config, debug_options}; GemmFusionAutotunerImpl autotuner(autotune_config, toolkit_version, debug_options, nullptr); return autotuner.GenerateTritonConfigs(dot); } TEST_F(GemmFusionAutotunerTest, AmpereUsesMoreThanTwoStages) { std::unique_ptr<VerifiedHloModule> module = ParseAndReturnVerifiedModule(R"( ENTRY e { p0 = f32[1024,1024] parameter(0) p1 = f32[1024,1024] parameter(1) ROOT r = f32[1024,1024] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })") .value(); const se::CudaComputeCapability compute_capability{ se::CudaComputeCapability::AMPERE, 0}; TF_ASSERT_OK_AND_ASSIGN( const std::vector<TritonGemmConfig> configs, GetPossibleMatmulAutotuneConfigs( *Cast<HloDotInstruction>( module->entry_computation()->root_instruction()), compute_capability, GetToolkitVersion(), GetDebugOptionsForTest())); EXPECT_TRUE(std::any_of( configs.begin(), configs.end(), [](const TritonGemmConfig& config) { return config.num_stages > 2; })); } TEST_F(GemmFusionAutotunerTest, SmallOutputCanUseLargeSplitK) { std::unique_ptr<VerifiedHloModule> module = ParseAndReturnVerifiedModule(R"( ENTRY e { p0 = f32[1024,1024] parameter(0) p1 = f32[1024,1024] parameter(1) ROOT r = f32[1024,1024] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })") .value(); const se::CudaComputeCapability compute_capability{ se::CudaComputeCapability::AMPERE, 0}; TF_ASSERT_OK_AND_ASSIGN( const std::vector<TritonGemmConfig> configs, GetPossibleMatmulAutotuneConfigs( *Cast<HloDotInstruction>( module->entry_computation()->root_instruction()), compute_capability, GetToolkitVersion(), GetDebugOptionsForTest())); EXPECT_TRUE(std::any_of( configs.begin(), configs.end(), [](const TritonGemmConfig& config) { return config.split_k >= 4; })); } TEST_F(GemmFusionAutotunerTest, LargeOutputDoesNotUseLargeSplitK) { std::unique_ptr<VerifiedHloModule> module = ParseAndReturnVerifiedModule(R"( ENTRY e { p0 = f32[20480,20480] parameter(0) p1 = f32[20480,20480] parameter(1) ROOT r = f32[20480,20480] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })") .value(); const se::CudaComputeCapability compute_capability{ se::CudaComputeCapability::AMPERE, 0}; TF_ASSERT_OK_AND_ASSIGN( const std::vector<TritonGemmConfig> configs, GetPossibleMatmulAutotuneConfigs( *Cast<HloDotInstruction>( module->entry_computation()->root_instruction()), compute_capability, GetToolkitVersion(), GetDebugOptionsForTest())); EXPECT_FALSE(std::any_of( configs.begin(), configs.end(), [](const TritonGemmConfig& config) { return config.split_k > 1; })); } TEST_F(GemmFusionAutotunerTest, Int8FusedGemm) { const std::string hlo = R"( HloModule module ENTRY e { x = s8[128,64] parameter(0) c = f16[128,64] convert(x) y = f16[64,6144] parameter(1) ROOT out = f16[128,6144] dot(c, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; CheckTritonAutotuning(hlo, R"( )"); EXPECT_TRUE(RunAndCompare(hlo, ErrorSpec{5e-3, 5e-3})); } TEST_F(GemmFusionAutotunerTest, Int8FusedGemm256) { const std::string hlo = R"( HloModule module ENTRY e { x = s8[128,256] parameter(0) c = f16[128,256] convert(x) y = f16[256,6144] parameter(1) ROOT out = f16[128,6144] dot(c, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; CheckTritonAutotuning(hlo, R"( )"); EXPECT_TRUE(RunAndCompare(hlo, ErrorSpec{1e-2, 1e-2})); } TEST_F(GemmFusionAutotunerTest, SelectsSplitK) { const std::string kHloText = R"( HloModule t ENTRY e { p0 = s8[7,8192] parameter(0) p0c = bf16[7,8192] convert(p0) p1 = bf16[8192,18] parameter(1) ROOT dot.0 = bf16[7,18] dot(p0c, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; MatchOptimizedHlo(kHloText, R"( ; CHECK: reduce ; CHECK: ENTRY ; CHECK-NEXT: parameter ; CHECK-NEXT: parameter ; CHECK-NEXT: kCustom ; CHECK-NEXT: kLoop )"); EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{4, 1e-1})); } TEST_F(GemmFusionAutotunerTestWithMorePreciseReduction, SelectsSplitK) { constexpr absl::string_view kHloText = R"( HloModule t ENTRY e { p0 = s8[7,8192] parameter(0) p0c = bf16[7,8192] convert(p0) p1 = bf16[8192,18] parameter(1) ROOT dot.0 = bf16[7,18] dot(p0c, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; MatchOptimizedHlo(kHloText, R"( ; CHECK: reduce ; CHECK: ENTRY ; CHECK-NEXT: parameter ; CHECK-NEXT: parameter ; CHECK-NEXT: kCustom ; CHECK-NEXT: kLoop )"); EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{1e-2, 1e-2})); } TEST_F(GemmFusionAutotunerTest, ApplySplitKWithoutAlteringTiling) { const std::string kHloText = R"( triton_dot { p0 = f16[55,120] parameter(0) p1 = f16[120,20] parameter(1) ROOT dot = f16[55,20] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = f16[55,120]{1,0} parameter(0) p1 = f16[120,20]{1,0} parameter(1) ROOT _ = f16[55,20] fusion(p0, p1), kind=kCustom, calls=triton_dot, backend_config={"fusion_backend_config":{kind: "__triton_gemm", triton_gemm_config: {"block_m":16,"block_n":64,"block_k":32,"split_k":3,"num_stages":1,"num_warps":2,"num_ctas":1}}} })"; MatchOptimizedHlo(kHloText, R"( ; CHECK: f16[3,55,20] ; CHECK: {"block_m":16,"block_n":64,"block_k":32,"split_k":3,"num_stages":1,"num_warps":2,"num_ctas":1} ; CHECK: f16[55,20]{1,0} {{(reduce|fusion)}} )"); EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{1e-3, 1e-3})); } TEST_F(GemmFusionAutotunerTest, DoNotRunAutotuningKernelSpillingRegisters) { const std::string kHloText = R"( HloModule m %triton_gemm_dot { %p1 = s8[4,12288]{1,0} parameter(1) %p0 = s8[12288,1536]{1,0} parameter(0) %convert.p0 = f16[12288,1536]{1,0} convert(s8[12288,1536]{1,0} %p0) %convert.p1 = f16[4,12288]{1,0} convert(s8[4,12288]{1,0} %p1) %dot = f16[4,1536]{1,0} dot(f16[4,12288]{1,0} %convert.p1, f16[12288,1536]{1,0} %convert.p0), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT %convert = s8[4,1536]{1,0} convert(f16[4,1536]{1,0} %dot) } ENTRY %e { %get-tuple-element.7020 = s8[12288,1536]{1,0} parameter(0) %convert = s8[4,12288]{1,0} parameter(1) ROOT %triton = s8[4,1536]{1,0} fusion(s8[12288,1536]{1,0} %get-tuple-element.7020, s8[4,12288]{1,0} %convert), kind=kCustom, calls=%triton_gemm_dot, backend_config={"fusion_backend_config":{"kind":"__triton_gemm","triton_gemm_config":{"block_m":"256","block_n":"256","block_k":"32","split_k":"1","num_stages":"1","num_warps":"16","num_ctas":"1"}}} })"; auto module = ParseAndReturnVerifiedModule(kHloText).value(); EXPECT_THAT( backend().compiler()->RunBackend(std::move(module), backend().default_stream_executor(), {nullptr, nullptr, {}, true}), ::testing::AnyOf( tsl::testing::StatusIs( tsl::error::CANCELLED, absl::StrFormat( "Compilation result discarded due to register spilling")), tsl::testing::StatusIs( tsl::error::RESOURCE_EXHAUSTED, absl::StrFormat("Register allocation failed")))); } TEST_F(GemmFusionAutotunerTest, DoNotFilterOutAutotuningKernelSpillingRegisters) { if (GetCudaComputeCapability().IsAtLeastHopper()) { GTEST_SKIP() << "Hopper and newer runs out of registers for such HLOs"; } const std::string kHloText = R"( HloModule m %triton_gemm_dot { %p1 = s8[4,12288]{1,0} parameter(1) %p0 = s8[12288,1536]{1,0} parameter(0) %convert.p0 = f16[12288,1536]{1,0} convert(s8[12288,1536]{1,0} %p0) %convert.p1 = f16[4,12288]{1,0} convert(s8[4,12288]{1,0} %p1) %dot = f16[4,1536]{1,0} dot(f16[4,12288]{1,0} %convert.p1, f16[12288,1536]{1,0} %convert.p0), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT %convert = s8[4,1536]{1,0} convert(f16[4,1536]{1,0} %dot) } ENTRY %e { %get-tuple-element.7020 = s8[12288,1536]{1,0} parameter(0) %convert = s8[4,12288]{1,0} parameter(1) ROOT %triton = s8[4,1536]{1,0} fusion(s8[12288,1536]{1,0} %get-tuple-element.7020, s8[4,12288]{1,0} %convert), kind=kCustom, calls=%triton_gemm_dot, backend_config={"fusion_backend_config":{"kind":"__triton_gemm","triton_gemm_config":{"block_m":"256","block_n":"256","block_k":"32","split_k":"1","num_stages":"1","num_warps":"16","num_ctas":"1"}}} })"; auto module = ParseAndReturnVerifiedModule(kHloText).value(); HloModuleConfig config = module->config(); DebugOptions debug_options = config.debug_options(); debug_options.set_xla_gpu_filter_kernels_spilling_registers_on_autotuning( false); config.set_debug_options(debug_options); module->set_config(config); std::unique_ptr<Executable> executable = backend() .compiler() ->RunBackend(std::move(module), backend().default_stream_executor(), {nullptr, nullptr, {}, true}) .value(); EXPECT_NE(executable, nullptr); } TEST_F(GemmFusionAutotunerTest, RunAutotuningKernelNotSpillingRegisters) { const std::string kHloText = R"( HloModule m %triton_gemm_dot { %p1 = f16[4,12288]{1,0} parameter(1) %p0 = s8[12288,1536]{1,0} parameter(0) %convert.10406 = f16[12288,1536]{1,0} convert(s8[12288,1536]{1,0} %p0) ROOT %dot = f16[4,1536]{1,0} dot(f16[4,12288]{1,0} %p1, f16[12288,1536]{1,0} %convert.10406), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY %e { %p0 = s8[12288,1536]{1,0} parameter(0) %p1 = f16[4,12288]{1,0} parameter(1) ROOT %triton_dot = f16[4,1536]{1,0} fusion(s8[12288,1536]{1,0} %p0, f16[4,12288]{1,0} %p1), kind=kCustom, calls=%triton_gemm_dot, backend_config={"fusion_backend_config":{"kind":"__triton_gemm","triton_gemm_config":{"block_m":"16","block_n":"32","block_k":"32","split_k":"1","num_stages":"1","num_warps":"2","num_ctas":"1"}}} })"; auto module = ParseAndReturnVerifiedModule(kHloText).value(); std::unique_ptr<Executable> executable = backend() .compiler() ->RunBackend(std::move(module), backend().default_stream_executor(), {nullptr, nullptr, {}, true}) .value(); EXPECT_NE(executable, nullptr); } using GemmFusionAutotunerDumpTest = GemmFusionAutotunerTest; TEST_F(GemmFusionAutotunerDumpTest, Fp8CublasltFallbackSupport) { const std::string kHloText = R"( HloModule o gemm_fusion { p0 = f8e4m3fn[64,6144]{1,0} parameter(0) p1 = f8e4m3fn[64,6144]{1,0} parameter(1) ROOT %dot.0 = f32[64,64]{1,0} dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY main { p0 = f8e4m3fn[64,6144]{1,0} parameter(0) p1 = f8e4m3fn[64,6144]{1,0} parameter(1) ROOT %dot.0 = f32[64,64]{1,0} fusion(p0, p1), kind=kCustom, calls=gemm_fusion, backend_config={"operation_queue_id":"0","wait_on_operation_queues":[],"fusion_backend_config":{"kind":"__triton_gemm"},"force_earliest_schedule":false} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); DebugOptions opts; AutotuneConfig autotune_config{ DeviceConfig{backend().default_stream_executor(), backend().memory_allocator()}, opts}; AutotuneCacheKey cache_key(autotune_config.GetModelStr(), *module->entry_computation()->root_instruction()); TF_ASSERT_OK_AND_ASSIGN(AutotuneResults autotune_results_override, ParseTextProto<AutotuneResults>(R"pb( version: 3 results { device: "..." hlo: "..." result { gemm { algorithm: -1 } run_time { nanos: 14 } } })pb")); autotune_results_override.mutable_results(0)->set_device( std::string(cache_key.GetModelStr())); autotune_results_override.mutable_results(0)->set_hlo( std::string(cache_key.GetHlo())); CHECK_OK(AutotunerUtil::LoadAutotuneResults(autotune_results_override)); HloPassPipeline pipeline("gemm_autotune"); tsl::thread::ThreadPool thread_pool(tsl::Env::Default(), "", tsl::port::MaxParallelism()); MultiProcessKeyValueStore key_value_store; pipeline.AddPass<GemmFusionAutotuner>(autotune_config, GetToolkitVersion(), &thread_pool, key_value_store); pipeline.AddPass<CallInliner>(); for (bool fp8_rewrite : {true, false}) { pipeline.AddPass<GemmRewriter>(autotune_config.GetGpuComputeCapability(), GetToolkitVersion(), fp8_rewrite); } TF_EXPECT_OK(HloTestBase::RunHloPass(&pipeline, module.get())); const bool is_at_least_hopper = std::holds_alternative<se::CudaComputeCapability>( autotune_config.GetGpuComputeCapability()) && std::get<se::CudaComputeCapability>( autotune_config.GetGpuComputeCapability()) .IsAtLeastHopper(); TF_ASSERT_OK_AND_ASSIGN( bool filecheck_matches, RunFileCheck(module->ToString(), is_at_least_hopper ? " : " EXPECT_TRUE(filecheck_matches); } TEST_F(GemmFusionAutotunerDumpTest, DumpingWorks) { HloModuleConfig config; DebugOptions options = GetDebugOptionsForTest(); options.set_xla_gpu_cublas_fallback(true); options.set_xla_gpu_dump_autotuned_gemm_fusions(true); std::string output_directory; if (!tsl::io::GetTestUndeclaredOutputsDir(&output_directory)) { output_directory = tsl::testing::TmpDir(); } options.set_xla_dump_to(output_directory); config.set_debug_options(options); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( fusion1 { p0 = f32[3333,3333] parameter(0) s = f32[3333,3333] sine(p0) p1 = f32[3333,3333] parameter(1) c = f32[3333,3333] cosine(p1) ROOT dot = f32[3333,3333] dot(s, c), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = f32[3333,3333] parameter(0) p1 = f32[3333,3333] parameter(1) ROOT rr = f32[3333,3333] fusion(p0, p1), kind=kCustom, calls=fusion1, backend_config={"fusion_backend_config": {kind: "__triton_gemm"}} })", config)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> optimized_module, GetOptimizedModule(std::move(module))); std::string dump; TF_EXPECT_OK(tsl::ReadFileToString( tsl::Env::Default(), tsl::io::JoinPath(output_directory, FilenameFor(*optimized_module, "", "gemm_fusion_0.rr.txt")), &dump)); EXPECT_TRUE(*RunFileCheck(dump, R"( CHECK: HloModule rr CHECK-NOT: cublas CHECK: __triton_gemm CHECK-NOT: block_m )")); dump.clear(); TF_EXPECT_OK(tsl::ReadFileToString( tsl::Env::Default(), tsl::io::JoinPath( output_directory, FilenameFor(*optimized_module, "", "gemm_fusion_0.rr.optimized.txt")), &dump)); EXPECT_TRUE(*RunFileCheck(dump, R"( CHECK: HloModule rr CHECK-NOT: triton CHECK: cublas )")); } TEST_F(GemmFusionAutotunerTest, AutotuneCuDnnFusion) { const std::string kHlo = R"( fusion1 { p0 = f32[3,28,32] parameter(0) p1 = f32[3,28,32] parameter(1) ROOT d = f32[3,32,32] dot(p0, p1), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY e { p0 = f32[3,28,32] parameter(0) p1 = f32[3,28,32] parameter(1) ROOT _ = f32[3,32,32] fusion(p0, p1), kind=kCustom, calls=fusion1, backend_config={"fusion_backend_config": {kind: "__cudnn$fusion"}} })"; CheckTritonAutotuning(kHlo, R"( )"); } class GemmFusionAutotunerLevelTest : public StatelessAutotunerTest, public ::testing::WithParamInterface<int> { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = StatelessAutotunerTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_autotune_level(GetParam()); debug_options.set_xla_gpu_cublas_fallback(false); return debug_options; } }; TEST_P(GemmFusionAutotunerLevelTest, AllAutotuningLevelsWorkCorrectly) { const std::string kHloText = R"( HloModule m ENTRY e { p0 = pred[64,10] parameter(0) p0c = f32[64,10] convert(p0) p1 = f32[10,128] parameter(1) ROOT r = f32[64,128] dot(p0c, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; MatchOptimizedHlo(kHloText, R"( ; CHECK: kind=kCustom ; CHECK-SAME: block_m )"); EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{1e-3, 1e-3})); } TEST_P(GemmFusionAutotunerLevelTest, Deviceless) { const std::string hlo = R"( HloModule module ENTRY e { x = s8[16,16] parameter(0) c = f16[16,16] convert(x) y = f16[16,16] parameter(1) ROOT out = f16[16,16] dot(c, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; HloPassPipeline pipeline("gemm_rewrite_deviceless"); pipeline.AddPass<GemmFusion>(backend() .default_stream_executor() ->GetDeviceDescription() .cuda_compute_capability()); tsl::thread::ThreadPool thread_pool(tsl::Env::Default(), "", tsl::port::MaxParallelism()); DebugOptions opts; MultiProcessKeyValueStore key_value_store; pipeline.AddPass<GemmFusionAutotuner>( AutotuneConfig{DevicelessConfig{backend() .default_stream_executor() ->GetDeviceDescription() .model_str(), backend() .default_stream_executor() ->GetDeviceDescription() .cuda_compute_capability()}, opts}, GetToolkitVersion(), &thread_pool, key_value_store); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo)); if (GetDebugOptionsForTest().xla_gpu_autotune_level() == 0) { TF_ASSERT_OK_AND_ASSIGN(bool changed, HloTestBase::RunHloPass(&pipeline, module.get())); EXPECT_TRUE(changed); TF_ASSERT_OK_AND_ASSIGN( bool filecheck_matches, RunFileCheck( module->ToString(HloPrintOptions{}.set_print_operand_shape(false)), R"( )")); EXPECT_TRUE(filecheck_matches); } else { EXPECT_THAT(HloTestBase::RunHloPass(&pipeline, module.get()), tsl::testing::StatusIs( tsl::error::INTERNAL, ::testing::HasSubstr( "Expect autotune result cache hit for deviceless"))); } } INSTANTIATE_TEST_SUITE_P(GemmFusionAutotunerLevelSweep, GemmFusionAutotunerLevelTest, ::testing::Range(0, 5)); class GemmFusionAutotunerExhaustiveTest : public GemmFusionAutotunerTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = GemmFusionAutotunerTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_exhaustive_tiling_search(true); return debug_options; } }; TEST_F(GemmFusionAutotunerExhaustiveTest, DISABLED_CompileOnly) { const std::string hlo = R"( HloModule module ENTRY e { x = s8[16,16] parameter(0) c = f16[16,16] convert(x) y = f16[16,16] parameter(1) ROOT out = f16[16,16] dot(c, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; CheckTritonAutotuning(hlo, R"( )"); } TEST_F(GemmFusionAutotunerExhaustiveTest, SkipsCrashingTileKConfig) { std::unique_ptr<VerifiedHloModule> module = ParseAndReturnVerifiedModule(R"( HloModule module ENTRY e { x = s8[33,33]{1,0} parameter(0) c = f16[33,33]{1,0} convert(x) y = f16[33,33]{1,0} parameter(1) ROOT out = f16[33,33]{1,0} dot(c, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )") .value(); const se::CudaComputeCapability compute_capability{ se::CudaComputeCapability::AMPERE, 0}; TF_ASSERT_OK_AND_ASSIGN( const std::vector<TritonGemmConfig> configs, GetPossibleMatmulAutotuneConfigs( *Cast<HloDotInstruction>( module->entry_computation()->root_instruction()), compute_capability, GetToolkitVersion(), GetDebugOptionsForTest())); EXPECT_TRUE(std::all_of( configs.begin(), configs.end(), [](const TritonGemmConfig& config) { return con
2,115
cpp
tensorflow/tensorflow
reduction_splitter
third_party/xla/xla/service/gpu/transforms/reduction_splitter.cc
third_party/xla/xla/service/gpu/transforms/reduction_splitter_test.cc
#ifndef XLA_SERVICE_GPU_REDUCTION_SPLITTER_H_ #define XLA_SERVICE_GPU_REDUCTION_SPLITTER_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace gpu { class ReductionSplitter : public HloModulePass { public: explicit ReductionSplitter(bool ignore_small_dims) : ignore_small_dims_(ignore_small_dims) {} absl::string_view name() const override { return "reduction-splitter"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: bool ignore_small_dims_; }; } } #endif #include "xla/service/gpu/reduction_splitter.h" #include <algorithm> #include <cstdint> #include <cstdlib> #include <memory> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/layout_util.h" #include "xla/service/gpu/reduction_utils.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { class ReductionSplitterVisitor : public DfsHloRewriteVisitor { public: explicit ReductionSplitterVisitor(bool ignore_small_dims) : ignore_small_dims_(ignore_small_dims) {} absl::Status HandleReduce(HloInstruction *reduce) override { VLOG(4) << "Input: " << reduce->ToString(); if (IsReductionFromOrToContiguousDimensions(*reduce)) { VLOG(4) << "Reduction with contiguous dimensions. Return."; return absl::OkStatus(); } if (reduce->dimensions().size() < 2) { return absl::OkStatus(); } if (!reduce->shape().IsArray()) { return absl::OkStatus(); } HloInstruction *operand = reduce->mutable_operand(0); const Shape &shape = operand->shape(); CHECK(shape == LayoutUtil::GetWithDefaultLayout(shape)) << "Default layout should be enforced on reduction operand"; for (int64_t i = 0; i < reduce->dimensions().size(); ++i) { for (int64_t j = i + 1; j < reduce->dimensions().size(); ++j) { CHECK(abs(reduce->dimensions(i) - reduce->dimensions(j)) > 1) << "Reduction dimensions must not be consecutive"; } } int64_t max_shape_dim = 0; int64_t max_reduce_dim = 0; const auto &input_shape = reduce->operand(0)->shape(); for (int64_t i = 0; i < reduce->dimensions().size(); ++i) { if (input_shape.dimensions(reduce->dimensions(i)) > max_shape_dim) { max_reduce_dim = reduce->dimensions(i); max_shape_dim = input_shape.dimensions(max_reduce_dim); } } if (ignore_small_dims_ && max_shape_dim <= 8) { return absl::OkStatus(); } VLOG(3) << "Splitting reduction " << reduce->name() << " at dimension " << max_reduce_dim; std::vector<int64_t> pre_reduce_dims; pre_reduce_dims.push_back(max_reduce_dim); std::vector<int64_t> pre_reduce_shape_dims(input_shape.dimensions().begin(), input_shape.dimensions().end()); pre_reduce_shape_dims.erase(pre_reduce_shape_dims.begin() + max_reduce_dim); Shape pre_reduce_shape = ShapeUtil::MakeShape( reduce->shape().element_type(), pre_reduce_shape_dims); std::unique_ptr<HloInstruction> pre_reduce = HloInstruction::CreateReduce( pre_reduce_shape, reduce->mutable_operand(0), reduce->mutable_operand(1), pre_reduce_dims, reduce->to_apply()); pre_reduce->set_metadata(reduce->metadata()); std::vector<int64_t> final_reduce_dims(reduce->dimensions().begin(), reduce->dimensions().end()); final_reduce_dims.erase( std::remove(final_reduce_dims.begin(), final_reduce_dims.end(), max_reduce_dim), final_reduce_dims.end()); for (int64_t i = 0; i < final_reduce_dims.size(); ++i) { if (final_reduce_dims[i] > max_reduce_dim) { final_reduce_dims[i]--; } } std::unique_ptr<HloInstruction> final_reduce = HloInstruction::CreateReduce( reduce->shape(), reduce->parent()->AddInstruction(std::move(pre_reduce)), reduce->mutable_operand(1), final_reduce_dims, reduce->to_apply()); return ReplaceWithNewInstruction(reduce, std::move(final_reduce)); } private: bool ignore_small_dims_; }; absl::StatusOr<bool> ReductionSplitter::Run( HloModule *module, const absl::flat_hash_set<absl::string_view> &execution_threads) { TF_ASSIGN_OR_RETURN(bool changed, ReductionSplitterVisitor(ignore_small_dims_) .RunOnModule(module, execution_threads)); return changed; } } }
#include "xla/service/gpu/reduction_splitter.h" #include <cstdint> #include <vector> #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/hlo_parser.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace gpu { namespace { namespace m = ::xla::match; class ReductionSplitterTest : public HloTestBase {}; TEST_F(ReductionSplitterTest, SplitReductionAtDimensionTwo) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test add_computation { x = f32[] parameter(0) y = f32[] parameter(1) ROOT add = f32[] add(x, y) } ENTRY entry_computation { param_0 = f16[6,16,512,64]{3,2,1,0} parameter(0) transpose.1781 = f16[6,512,16,64]{3,1,2,0} transpose(param_0), dimensions={0,2,1,3} convert.6986 = f32[6,512,16,64]{3,1,2,0} convert(transpose.1781) bitcast.2136 = f32[6,16,512,64]{3,2,1,0} bitcast(convert.6986) constant_11111 = f32[] constant(0) ROOT reduce.982 = f32[16,64]{1,0} reduce(bitcast.2136, constant_11111), dimensions={0,2}, to_apply=add_computation } )") .value(); ASSERT_TRUE( ReductionSplitter(true).Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* root_reduction = module->entry_computation()->root_instruction(); ASSERT_THAT(root_reduction, GmockMatch(m::Reduce(m::Reduce(), m::Constant()))); auto* pre_reduction = root_reduction->operand(0); EXPECT_THAT(pre_reduction->dimensions(), std::vector<int64_t>({2})); EXPECT_THAT(pre_reduction->shape(), ShapeUtil::MakeShape(F32, {6, 16, 64})); EXPECT_THAT(root_reduction->dimensions(), std::vector<int64_t>({0})); EXPECT_THAT(root_reduction->shape(), ShapeUtil::MakeShape(F32, {16, 64})); } TEST_F(ReductionSplitterTest, SplitReductionAtDimensionZero) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test add_computation { x = f32[] parameter(0) y = f32[] parameter(1) ROOT add = f32[] add(x, y) } ENTRY entry_computation { param_0 = f32[1024,16,512,64,128]{4,3,2,1,0} parameter(0) constant_11111 = f32[] constant(0) ROOT reduce.982 = f32[16,64]{1,0} reduce(param_0, constant_11111), dimensions={2,0,4}, to_apply=add_computation } )") .value(); ASSERT_TRUE( ReductionSplitter(false).Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* root_reduction = module->entry_computation()->root_instruction(); ASSERT_THAT(root_reduction, GmockMatch(m::Reduce(m::Reduce(), m::Constant()))); auto* pre_reduction = root_reduction->operand(0); EXPECT_THAT(pre_reduction->dimensions(), std::vector<int64_t>({0})); EXPECT_THAT(pre_reduction->shape(), ShapeUtil::MakeShape(F32, {16, 512, 64, 128})); EXPECT_THAT(root_reduction->dimensions(), std::vector<int64_t>({1, 3})); EXPECT_THAT(root_reduction->shape(), ShapeUtil::MakeShape(F32, {16, 64})); } TEST_F(ReductionSplitterTest, DontSplitReductionWithSmallDimensions) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test add_computation { x = f32[] parameter(0) y = f32[] parameter(1) ROOT add = f32[] add(x, y) } ENTRY entry_computation { param_0 = f32[16,8,1024,8]{3,2,1,0} parameter(0) constant_11111 = f32[] constant(0) ROOT reduce.982 = f32[16,1024]{1,0} reduce(param_0, constant_11111), dimensions={3,1}, to_apply=add_computation } )") .value(); EXPECT_FALSE( ReductionSplitter(true).Run(module.get()).value()); EXPECT_TRUE( ReductionSplitter(false).Run(module.get()).value()); } TEST_F(ReductionSplitterTest, DontSplitReductionsWithContiguousDimensions) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test add_computation { x = f32[] parameter(0) y = f32[] parameter(1) ROOT add = f32[] add(x, y) } ENTRY entry_computation { param_0 = f32[128,128,64,128]{3,2,1,0} parameter(0) constant_11111 = f32[] constant(0) ROOT reduce.982 = f32[128,64]{1,0} reduce(param_0, constant_11111), dimensions={3,0}, to_apply=add_computation } )") .value(); EXPECT_FALSE( ReductionSplitter(false).Run(module.get()).value()); } } } }
2,116
cpp
tensorflow/tensorflow
gpu_sort_rewriter
null
null
#ifndef XLA_SERVICE_GPU_GPU_SORT_REWRITER_H_ #define XLA_SERVICE_GPU_GPU_SORT_REWRITER_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace gpu { class GpuSortRewriter : public HloModulePass { public: absl::string_view name() const override { return "gpu-sort-rewriter"; } static int SortSizeThreshold() { return sort_size_threshold_; } static void SetSortSizeThresholdForTestingOnly(int threshold) { sort_size_threshold_ = threshold; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: absl::StatusOr<bool> RunOnInstruction(HloSortInstruction* sort_op); absl::StatusOr<bool> RunOnComputation(HloComputation* computation); static inline int sort_size_threshold_ = 33000; }; } } #endif #include "xla/service/gpu/gpu_sort_rewriter.h" #include <algorithm> #include <cstdint> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/gpu/runtime/cub_sort_thunk.h" #include "xla/service/stable_sort_expander.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { struct SortComputationAnalysis { int key_operand; bool descending; }; std::pair<int64_t, int64_t> ParametersFromCmpOperands( const HloCompareInstruction* cmp_op) { if (cmp_op == nullptr) { return std::pair<int64_t, int64_t>(-1, -1); } const HloParameterInstruction* param0 = DynCast<HloParameterInstruction>(cmp_op->operand(0)); const HloParameterInstruction* param1 = DynCast<HloParameterInstruction>(cmp_op->operand(1)); return (param0 && param1) ? std::make_pair(param0->parameter_number(), param1->parameter_number()) : std::pair<int64_t, int64_t>(-1, -1); } std::optional<SortComputationAnalysis> AnalyzeCompareOp( const HloInstruction* maybe_compare_op) { const HloCompareInstruction* compare = DynCast<HloCompareInstruction>(maybe_compare_op); if (compare == nullptr || compare->direction() == ComparisonDirection::kEq || compare->direction() == ComparisonDirection::kNe) { return std::nullopt; } auto [index0, index1] = ParametersFromCmpOperands(compare); if (index0 == -1 || index1 == -1) { return std::nullopt; } int first_index = std::min(index0, index1); if (first_index % 2 != 0 || std::max(index0, index1) != first_index + 1) { return std::nullopt; } bool descending = compare->direction() == ComparisonDirection::kGt || compare->direction() == ComparisonDirection::kGe; bool reverse = first_index != index0; return SortComputationAnalysis{first_index / 2, descending != reverse}; } std::optional<SortComputationAnalysis> AnalyzeComplexSortComputation( const HloSortInstruction& sort_op) { auto computation = sort_op.called_computations().front(); if (computation->num_parameters() != 4) { return std::nullopt; } int64_t iota_operand_index = StableSortExpander::IotaOperandIndexForStableSort(sort_op); if (iota_operand_index < 0) { return std::nullopt; } auto root = computation->root_instruction(); if (root->opcode() != HloOpcode::kSelect) { return std::nullopt; } auto iota_cmp = DynCast<HloCompareInstruction>(root->operand(1)); auto [iotap0, iotap1] = ParametersFromCmpOperands(iota_cmp); if (iota_cmp == nullptr || iota_cmp->direction() != ComparisonDirection::kLt || iotap0 != iota_operand_index * 2 || iotap1 != iota_operand_index * 2 + 1) { return std::nullopt; } auto eq_cmp = DynCast<HloCompareInstruction>(root->operand(0)); if (eq_cmp == nullptr || eq_cmp->direction() != ComparisonDirection::kEq) { return std::nullopt; } auto [p0, p1] = ParametersFromCmpOperands(eq_cmp); if (p0 < 0 || p1 < 0) { auto cmp = DynCast<HloCompareInstruction>(eq_cmp->operand(0)); auto cmp_reverse = DynCast<HloCompareInstruction>(eq_cmp->operand(1)); auto [a, b] = ParametersFromCmpOperands(cmp); auto [p, q] = ParametersFromCmpOperands(cmp_reverse); if (cmp == nullptr || cmp_reverse == nullptr || a < 0 || b < 0 || a != q || b != p || cmp->direction() != cmp_reverse->direction() || cmp->direction() == Comparison::Direction::kEq || cmp->direction() == Comparison::Direction::kNe) { return std::nullopt; } } return AnalyzeCompareOp(root->operand(2)); } std::optional<SortComputationAnalysis> AnalyzeSortOp( const HloSortInstruction& sort_op) { auto computation = sort_op.called_computations().front(); auto result = AnalyzeCompareOp(computation->root_instruction()); if (!result.has_value()) { result = AnalyzeComplexSortComputation(sort_op); } return result; } absl::StatusOr<std::unique_ptr<CubSortRunnerInterface>> CreateRunner( HloSortInstruction* sort_op, const SortComputationAnalysis& sort_config) { int value_index = 1 - sort_config.key_operand; return CubSortRunnerInterface::Create( sort_op->operand(sort_config.key_operand)->shape().element_type(), sort_op->operand_count() == 2 ? std::optional(sort_op->operand(value_index)->shape().element_type()) : std::nullopt); } bool IsCubCompatibleSort(HloSortInstruction* sort_op) { VLOG(1) << "Sort instruction: " << sort_op->name(); if (sort_op->operand_count() != 1 && sort_op->operand_count() != 2) { VLOG(2) << "Unsupported operand count: " << sort_op->operand_count(); return false; } const Shape& operand_shape = sort_op->operand(0)->shape(); if (sort_op->sort_dimension() != operand_shape.rank() - 1) { VLOG(2) << "Sort dimension should be the minor one"; return false; } if (Product(operand_shape.dimensions()) < GpuSortRewriter::SortSizeThreshold()) { VLOG(2) << "Tensor shape size is too small to see an improvement"; return false; } auto sort_config = AnalyzeSortOp(*sort_op); if (!sort_config.has_value()) { VLOG(2) << "Only simple compare computations are supported"; return false; } if (!CreateRunner(sort_op, *sort_config).ok()) { VLOG(2) << "Unsupported operand types (no compiled CUB kernels)"; return false; } VLOG(2) << "Sort operation is compatible"; return true; } HloInstruction* UnpackResultPair(HloSortInstruction* sort_op, HloInstruction* custom_call, bool swap) { HloComputation* parent = sort_op->parent(); HloInstruction* gte0 = parent->AddInstruction(HloInstruction::CreateGetTupleElement( sort_op->operand(0)->shape(), custom_call, swap ? 1 : 0)); HloInstruction* gte1 = parent->AddInstruction(HloInstruction::CreateGetTupleElement( sort_op->operand(1)->shape(), custom_call, swap ? 0 : 1)); return parent->AddInstruction(HloInstruction::CreateTuple({gte0, gte1})); } } absl::StatusOr<bool> GpuSortRewriter::RunOnInstruction( HloSortInstruction* sort_op) { SortComputationAnalysis sort_config = AnalyzeSortOp(*sort_op).value(); const Shape& operand_shape = sort_op->operand(0)->shape(); int64_t batch_size = Product(operand_shape.dimensions()) / operand_shape.dimensions(sort_op->sort_dimension()); TF_ASSIGN_OR_RETURN(auto runner, CreateRunner(sort_op, sort_config)); TF_ASSIGN_OR_RETURN( int64_t scratch_size, runner->GetScratchSize(Product(operand_shape.dimensions()), batch_size)); if (batch_size > 1) { scratch_size += sizeof(int) - scratch_size % sizeof(int); scratch_size += (batch_size + 1) * sizeof(int); } HloInstruction* keys = sort_op->mutable_operand(0); HloInstruction* values = nullptr; if (sort_op->operand_count() == 2) { values = sort_op->mutable_operand(1); if (sort_config.key_operand == 1) { std::swap(keys, values); } } std::vector<Shape> shapes{keys->shape()}; std::vector<HloInstruction*> operands{keys}; if (values != nullptr) { shapes.push_back(values->shape()); operands.push_back(values); } shapes.push_back(ShapeUtil::MakeShape(U8, {scratch_size})); Shape call_shape = ShapeUtil::MakeTupleShape(absl::MakeSpan(shapes)); HloInstruction* custom_call = sort_op->parent()->AddInstruction(HloInstruction::CreateCustomCall( call_shape, absl::MakeSpan(operands), kCubDeviceRadixSortTarget)); xla::SortOptions backend_config; backend_config.set_descending(sort_config.descending); TF_RETURN_IF_ERROR(custom_call->set_backend_config(backend_config)); HloInstruction* replacement; if (sort_op->operand_count() == 1) { replacement = sort_op->parent()->AddInstruction(HloInstruction::CreateGetTupleElement( sort_op->shape(), custom_call, 0)); } else { replacement = UnpackResultPair(sort_op, custom_call, sort_config.key_operand == 1); } TF_RETURN_IF_ERROR( sort_op->parent()->ReplaceInstruction(sort_op, replacement)); return true; } absl::StatusOr<bool> GpuSortRewriter::RunOnComputation( HloComputation* computation) { std::vector<HloSortInstruction*> sort_ops; for (auto* inst : computation->instructions()) { HloSortInstruction* sort = DynCast<HloSortInstruction>(inst); if (sort != nullptr && IsCubCompatibleSort(sort)) { sort_ops.push_back(sort); } } bool changed = false; for (auto* sort : sort_ops) { TF_ASSIGN_OR_RETURN(bool result, RunOnInstruction(sort)); changed |= result; } return changed; } absl::StatusOr<bool> GpuSortRewriter::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { XLA_VLOG_LINES(2, "GpuSortRewriter::Run(), before:\n" + module->ToString()); bool changed = false; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { TF_ASSIGN_OR_RETURN(bool result, RunOnComputation(computation)); changed |= result; } XLA_VLOG_LINES(2, "GpuSortRewriter::Run(), after:\n" + module->ToString()); return changed; } } }
#include "xla/service/gpu/gpu_sort_rewriter.h" #include <utility> #include <gtest/gtest.h> #include "xla/error_spec.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { namespace { namespace m = ::xla::match; class GpuSortRewriterTest : public HloTestBase { public: void SetUp() override { HloTestBase::SetUp(); GpuSortRewriter::SetSortSizeThresholdForTestingOnly(1000); } bool RunModuleAndPass(HloModule* module) { auto cloned = module->Clone(); bool changed = GpuSortRewriter().Run(module).value(); if (changed) { EXPECT_TRUE(RunAndCompare(std::move(cloned), ErrorSpec{0, 0})); } return changed; } void ExpectDirection(const HloInstruction* instruction, bool descending) { auto config = instruction->backend_config<xla::SortOptions>(); EXPECT_EQ(config->descending(), descending); } }; TEST_F(GpuSortRewriterTest, SortKeysLessThan) { constexpr char kHlo[] = R"( HloModule TestModule %compare { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %lt = pred[] compare(%lhs, %rhs), direction=LT } ENTRY %main { %input = f32[1000] parameter(0) ROOT %sort = f32[1000] sort(%input), dimensions={0}, to_apply=%compare })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHlo)); EXPECT_TRUE(RunModuleAndPass(module.get())); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall({kCubDeviceRadixSortTarget}, m::Parameter()), 0))); ExpectDirection(module->entry_computation()->root_instruction()->operand(0), false); } TEST_F(GpuSortRewriterTest, SortKeysGreaterThan) { constexpr char kHlo[] = R"( HloModule TestModule %compare { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %gt = pred[] compare(%lhs, %rhs), direction=GT } ENTRY %main { %input = f32[1000] parameter(0) ROOT %sort = f32[1000] sort(%input), dimensions={0}, to_apply=%compare })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHlo)); EXPECT_TRUE(RunModuleAndPass(module.get())); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall({kCubDeviceRadixSortTarget}, m::Parameter()), 0))); ExpectDirection(module->entry_computation()->root_instruction()->operand(0), true); } TEST_F(GpuSortRewriterTest, SortKeysGreaterThanSwapped) { constexpr char kHlo[] = R"( HloModule TestModule %compare { %lhs = f32[] parameter(1) %rhs = f32[] parameter(0) ROOT %gt = pred[] compare(%lhs, %rhs), direction=GT } ENTRY %main { %input = f32[1000] parameter(0) ROOT %sort = f32[1000] sort(%input), dimensions={0}, to_apply=%compare })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHlo)); EXPECT_TRUE(RunModuleAndPass(module.get())); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall({kCubDeviceRadixSortTarget}, m::Parameter()), 0))); ExpectDirection(module->entry_computation()->root_instruction()->operand(0), false); } TEST_F(GpuSortRewriterTest, SortPairs) { constexpr char kHlo[] = R"( HloModule TestModule %compare { %lhs_key = u32[] parameter(0) %rhs_key = u32[] parameter(1) %lhs_value = f32[] parameter(2) %rhs_value = f32[] parameter(3) ROOT %lt = pred[] compare(%lhs_key, %rhs_key), direction=LT } ENTRY %main { %input_keys = u32[1000] parameter(0) %input_values = f32[1000] parameter(1) ROOT %sort = (u32[1000], f32[1000]) sort(%input_keys, %input_values), dimensions={0}, to_apply=%compare })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHlo)); EXPECT_TRUE(RunModuleAndPass(module.get())); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(m::GetTupleElement(m::CustomCall(), 0), m::GetTupleElement(m::CustomCall(), 1)))); } TEST_F(GpuSortRewriterTest, SortPairsSwapped) { constexpr char kHlo[] = R"( HloModule TestModule %compare { %lhs_value = f32[] parameter(0) %rhs_value = f32[] parameter(1) %lhs_key = u32[] parameter(2) %rhs_key = u32[] parameter(3) ROOT %lt = pred[] compare(%lhs_key, %rhs_key), direction=LT } ENTRY %main { %input_values = f32[1000] parameter(0) %input_keys = u32[1000] parameter(1) ROOT %sort = (f32[1000], u32[1000]) sort(%input_values, %input_keys), dimensions={0}, to_apply=%compare })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHlo)); EXPECT_TRUE(RunModuleAndPass(module.get())); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(m::GetTupleElement(m::CustomCall(), 1), m::GetTupleElement(m::CustomCall(), 0)))); } TEST_F(GpuSortRewriterTest, NoRewriteManyTensors) { constexpr char kHlo[] = R"( HloModule TestModule %compare { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) %unused1 = f64[] parameter(2) %unused2 = f64[] parameter(3) %unused3 = u64[] parameter(4) %unused4 = u64[] parameter(5) ROOT %lt = pred[] compare(%lhs, %rhs), direction=LT } ENTRY %main { %input1 = f32[1000] parameter(0) %input2 = f64[1000] parameter(1) %input3 = u64[1000] parameter(2) ROOT %sort = (f32[1000], f64[1000], u64[1000]) sort(%input1, %input2, %input3), dimensions={0}, to_apply=%compare })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHlo)); EXPECT_FALSE(RunModuleAndPass(module.get())); } TEST_F(GpuSortRewriterTest, NoRewriteNonMinorSortDimension) { constexpr char kHlo[] = R"( HloModule TestModule %compare { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %lt = pred[] compare(%lhs, %rhs), direction=LT } ENTRY %main { %input = f32[1000,4] parameter(0) ROOT %sort = f32[1000,4] sort(%input), dimensions={0}, to_apply=%compare })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHlo)); EXPECT_FALSE(RunModuleAndPass(module.get())); } TEST_F(GpuSortRewriterTest, NoRewriteUnsupportedType) { constexpr char kHlo[] = R"( HloModule TestModule %compare { %lhs = pred[] parameter(0) %rhs = pred[] parameter(1) ROOT %lt = pred[] compare(%lhs, %rhs), direction=LT } ENTRY %main { %input = pred[1000] parameter(0) ROOT %sort = pred[1000] sort(%input), dimensions={0}, to_apply=%compare })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHlo)); EXPECT_FALSE(RunModuleAndPass(module.get())); } TEST_F(GpuSortRewriterTest, NoRewriteComplexComparer) { constexpr char kHlo[] = R"( HloModule TestModule %compare { %lhs = f32[] parameter(0) %lhs_scaled = f32[] multiply(%lhs, f32[] constant(2)) %rhs = f32[] parameter(1) ROOT %lt = pred[] compare(%lhs_scaled, %rhs), direction=LT } ENTRY %main { %input = f32[1000] parameter(0) ROOT %sort = f32[1000] sort(%input), dimensions={0}, to_apply=%compare })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHlo)); EXPECT_FALSE(RunModuleAndPass(module.get())); } TEST_F(GpuSortRewriterTest, NoRewriteMixedKeysValues) { constexpr char kHlo[] = R"( HloModule TestModule %compare { %lhs_key = u32[] parameter(0) %rhs_key = u32[] parameter(1) %lhs_value = u32[] parameter(2) %rhs_value = u32[] parameter(3) ROOT %mixed = pred[] compare(%rhs_key, %lhs_value), direction=LT } ENTRY %main { %input_keys = u32[1000] parameter(0) %input_values = u32[1000] parameter(1) ROOT %sort = (u32[1000], u32[1000]) sort(%input_keys, %input_values), dimensions={0}, to_apply=%compare })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHlo)); EXPECT_FALSE(RunModuleAndPass(module.get())); } TEST_F(GpuSortRewriterTest, NoRewriteSmallSize) { constexpr char kHlo[] = R"( HloModule TestModule %compare { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %lt = pred[] compare(%lhs, %rhs), direction=LT } ENTRY %main { %input = f32[100] parameter(0) ROOT %sort = f32[100] sort(%input), dimensions={0}, to_apply=%compare })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHlo)); EXPECT_FALSE(RunModuleAndPass(module.get())); } TEST_F(GpuSortRewriterTest, SortWithBatchDim) { constexpr char kHlo[] = R"( HloModule TestModule %compare { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %lt = pred[] compare(%lhs, %rhs), direction=LT } ENTRY %main { %input = f32[10,100] parameter(0) ROOT %sort = f32[10,100] sort(%input), dimensions={1}, to_apply=%compare })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHlo)); EXPECT_TRUE(RunModuleAndPass(module.get())); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall({kCubDeviceRadixSortTarget}, m::Parameter()), 0))); ExpectDirection(module->entry_computation()->root_instruction()->operand(0), false); } TEST_F(GpuSortRewriterTest, SortWithMultipleBatchDims) { constexpr char kHlo[] = R"( HloModule TestModule %compare { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %lt = pred[] compare(%lhs, %rhs), direction=LT } ENTRY %main { %input = f32[10,10,10] parameter(0) ROOT %sort = f32[10,10,10] sort(%input), dimensions={2}, to_apply=%compare })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHlo)); EXPECT_TRUE(RunModuleAndPass(module.get())); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall({kCubDeviceRadixSortTarget}, m::Parameter()), 0))); ExpectDirection(module->entry_computation()->root_instruction()->operand(0), false); } TEST_F(GpuSortRewriterTest, SortPairsIotaComparerSimple) { constexpr char kHlo[] = R"( HloModule TestModule %compare { %lhs = u16[] parameter(0) %rhs = u16[] parameter(1) %lhs_index = s32[] parameter(2) %rhs_index = s32[] parameter(3) cmp_indices = pred[] compare(%lhs_index, %rhs_index), direction=LT cmp_lr = pred[] compare(%lhs, %rhs), direction=GT cmp_eq = pred[] compare(%lhs, %rhs), direction=EQ ROOT %lt = pred[] select(cmp_eq, cmp_indices, cmp_lr) } ENTRY %main { %inputs = u16[1000] parameter(0) %iota = s32[1000] iota(), iota_dimension=0 ROOT %sort = (u16[1000], s32[1000]) sort(%inputs, %iota), dimensions={0}, to_apply=%compare })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHlo)); EXPECT_TRUE(RunModuleAndPass(module.get())); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(m::GetTupleElement(m::CustomCall(), 0), m::GetTupleElement(m::CustomCall(), 1)))); } TEST_F(GpuSortRewriterTest, SortPairsIotaComparerLikeStableSortExpander) { constexpr char kHlo[] = R"( HloModule TestModule %compare { %lhs = u16[] parameter(0) %rhs = u16[] parameter(1) %lhs_index = s32[] parameter(2) %rhs_index = s32[] parameter(3) cmp_indices = pred[] compare(%lhs_index, %rhs_index), direction=LT cmp_lr = pred[] compare(%lhs, %rhs), direction=GT cmp_rl = pred[] compare(%rhs, %lhs), direction=GT cmp_eq = pred[] compare(cmp_lr, cmp_rl), direction=EQ ROOT %lt = pred[] select(cmp_eq, cmp_indices, cmp_lr) } ENTRY %main { %inputs = u16[1000] parameter(0) %iota = s32[1000] iota(), iota_dimension=0 ROOT %sort = (u16[1000], s32[1000]) sort(%inputs, %iota), dimensions={0}, to_apply=%compare })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHlo)); EXPECT_TRUE(RunModuleAndPass(module.get())); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(m::GetTupleElement(m::CustomCall(), 0), m::GetTupleElement(m::CustomCall(), 1)))); } } } }
2,117
cpp
tensorflow/tensorflow
topk_kernel
third_party/xla/xla/service/gpu/kernels/topk_kernel.cc
third_party/xla/xla/service/gpu/kernels/topk_kernel_test.cc
#ifndef XLA_SERVICE_GPU_KERNELS_TOPK_KERNEL_H_ #define XLA_SERVICE_GPU_KERNELS_TOPK_KERNEL_H_ #include <stddef.h> #include "absl/status/status.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "xla/types.h" #include "xla/xla_data.pb.h" namespace xla::gpu { absl::Status RunTopk(se::Stream* stream, PrimitiveType dtype, se::DeviceMemoryBase data, size_t num_elements, se::DeviceMemoryBase top_elements, se::DeviceMemoryBase top_indices, size_t k, size_t batch_size); } #endif #include "xla/service/gpu/kernels/topk_kernel.h" #include <algorithm> #include <cstddef> #include <cstdint> #include "absl/numeric/bits.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "xla/primitive_util.h" #include "xla/service/gpu/kernels/topk_kernel_common.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/launch_dim.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/typed_kernel_factory.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla::gpu { namespace { size_t NumThreads(size_t n, size_t k, size_t batch_size) { size_t simultaneous_threads_per_block = 512 * (16 / k); size_t threads_per_block = std::min(simultaneous_threads_per_block, kTopKMaxThreadsPerBlock); size_t min_slice = absl::bit_floor(n / absl::bit_ceil(k)); return std::min(threads_per_block, min_slice); } template <typename T> absl::StatusOr<void*> GetKernel(int n, int k) { if (k <= 1) return GetTopKKernelForK<T, 1>(n); if (k <= 2) return GetTopKKernelForK<T, 2>(n); if (k <= 4) return GetTopKKernelForK<T, 4>(n); if (k <= 8) return GetTopKKernelForK<T, 8>(n); if (k <= 16) return GetTopKKernelForK<T, 16>(n); return absl::UnimplementedError(absl::StrCat("Unsupported K: ", k)); } template <typename T> absl::Status TypedTopK(se::Stream* stream, se::DeviceMemoryBase data, size_t num_elements, se::DeviceMemoryBase top_elements, se::DeviceMemoryBase top_indices, size_t k, size_t batch_size) { constexpr size_t max_kv_size = sizeof(uint64_t); int shmem_size = absl::bit_ceil(k) * max_kv_size * GetTopKWaveFrontSize<T>(); int num_threads = NumThreads(num_elements, k, batch_size); if (num_threads == 0) { return absl::FailedPreconditionError( "Invalid kernel parameters. This is likely a bug in the " "TopkSpecializer."); } se::StreamExecutor* executor = stream->parent(); se::DeviceMemory<T> data_typed(data); se::DeviceMemory<T> top_elements_typed(top_elements); se::DeviceMemory<uint32_t> top_indices_typed(top_indices); TF_ASSIGN_OR_RETURN(void* kernel_symbol, GetKernel<T>(num_elements, k)); TF_ASSIGN_OR_RETURN( auto kernel, (se::TypedKernelFactory<se::DeviceMemory<T>, size_t, se::DeviceMemory<T>, se::DeviceMemory<uint32_t>, size_t>::Create(executor, "topk", kernel_symbol))); TF_RETURN_IF_ERROR(stream->ThenLaunch( se::ThreadDim(num_threads, 1, 1), se::BlockDim(batch_size, 1, 1), shmem_size, kernel, data_typed, num_elements, top_elements_typed, top_indices_typed, k)); return absl::OkStatus(); } } absl::Status RunTopk(se::Stream* stream, PrimitiveType dtype, se::DeviceMemoryBase data, size_t num_elements, se::DeviceMemoryBase top_elements, se::DeviceMemoryBase top_indices, size_t k, size_t batch_size) { VLOG(2) << "TopK: " << primitive_util::LowercasePrimitiveTypeName(dtype) << ", n: " << num_elements << ", k: " << k << ", bs: " << batch_size; switch (dtype) { case PrimitiveType::F32: return TypedTopK<float>(stream, data, num_elements, top_elements, top_indices, k, batch_size); case PrimitiveType::BF16: return TypedTopK<bfloat16>(stream, data, num_elements, top_elements, top_indices, k, batch_size); default: return absl::UnimplementedError("GpuTopK not implemented for this dtype"); } } }
#include "xla/service/gpu/kernels/topk_kernel.h" #include <stddef.h> #include <stdint.h> #include <algorithm> #include <functional> #include <tuple> #include <vector> #include "absl/log/check.h" #include "absl/random/random.h" #include "absl/strings/substitute.h" #include "absl/time/time.h" #include "xla/stream_executor/device_memory_handle.h" #include "xla/stream_executor/gpu/gpu_init.h" #include "xla/stream_executor/gpu/gpu_timer.h" #include "xla/stream_executor/gpu/gpu_types.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/stream.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" namespace xla::gpu { namespace { using se::gpu::GpuStreamHandle; using ::testing::Combine; using ::testing::Values; template <typename T> std::vector<T> RandomVecRange(int num_elements, T start, T end) { std::vector<T> local; local.reserve(num_elements); thread_local absl::BitGen gen; for (int i = 0; i < num_elements; ++i) { local.push_back(absl::Uniform<T>(gen, start, end)); } return local; } template <typename T> std::vector<T> RandomVec(int num_elements) { return RandomVecRange(num_elements, static_cast<T>(0), static_cast<T>(num_elements)); } template <typename T> std::vector<T> RandomVecNegative(int num_elements) { return RandomVecRange(num_elements, -static_cast<T>(num_elements), static_cast<T>(0)); } PrimitiveType Get(float) { return PrimitiveType::F32; } PrimitiveType Get(bfloat16) { return PrimitiveType::BF16; } se::StreamExecutor* GetGpuExecutor() { auto* platform = se::PlatformManager::PlatformWithName(se::GpuPlatformName()).value(); return platform->ExecutorForDevice(0).value(); } using TopkTest = ::testing::TestWithParam<std::tuple<int, int, int, int>>; TEST_P(TopkTest, TopKFloat) { using T = float; auto* executor = GetGpuExecutor(); auto stream = executor->CreateStream().value(); const auto [n_kb, k, batch_size, offset] = GetParam(); const size_t n = n_kb * 1024 + offset; stream_executor::DeviceMemoryHandle input_buffer( executor, executor->AllocateArray<T>(n * batch_size)); stream_executor::DeviceMemoryHandle output_values( executor, executor->AllocateArray<T>(k * batch_size)); stream_executor::DeviceMemoryHandle output_indices( executor, executor->AllocateArray<uint32_t>(k * batch_size)); ASSERT_TRUE(!(input_buffer.memory().is_null() || output_values.memory().is_null() || output_indices.memory().is_null())); auto source = RandomVec<T>(n * batch_size); CHECK_OK(stream->Memcpy(input_buffer.memory_ptr(), source.data(), n * batch_size * sizeof(T))); ASSERT_TRUE(RunTopk(stream.get(), Get(T()), input_buffer.memory(), n, output_values.memory(), output_indices.memory(), k, batch_size) .ok()); std::vector<T> got(k); ASSERT_TRUE(stream->BlockHostUntilDone().ok()); for (int i = 0; i < batch_size; i++) { CHECK_OK(stream->Memcpy( got.data(), se::DeviceMemory<T>(output_values.memory()).GetSlice(k * i, k), k * sizeof(T))); std::vector<T> slice(source.data() + n * i, source.data() + n * (i + 1)); std::sort(slice.begin(), slice.end(), std::greater<T>()); slice.resize(k); EXPECT_THAT(got, ::testing::ElementsAreArray(slice)) << " k=" << k << ", batch_size=" << batch_size << " i=" << i; } } TEST_P(TopkTest, TopKPackedNegative) { using T = float; auto* executor = GetGpuExecutor(); auto stream = executor->CreateStream().value(); const auto [n_kb, k, batch_size, offset] = GetParam(); const size_t n = n_kb * 1024 + offset; stream_executor::DeviceMemoryHandle input_buffer( executor, executor->AllocateArray<T>(n * batch_size)); stream_executor::DeviceMemoryHandle output_values( executor, executor->AllocateArray<T>(k * batch_size)); stream_executor::DeviceMemoryHandle output_indices( executor, executor->AllocateArray<uint32_t>(k * batch_size)); ASSERT_TRUE(!(input_buffer.memory().is_null() || output_values.memory().is_null() || output_indices.memory().is_null())); auto source = RandomVecNegative<T>(n * batch_size); CHECK_OK(stream->Memcpy(input_buffer.memory_ptr(), source.data(), n * batch_size * sizeof(T))); ASSERT_TRUE(RunTopk(stream.get(), Get(T()), input_buffer.memory(), n, output_values.memory(), output_indices.memory(), k, batch_size) .ok()); std::vector<T> got(k); ASSERT_TRUE(stream->BlockHostUntilDone().ok()); for (int i = 0; i < batch_size; i++) { CHECK_OK(stream->Memcpy( got.data(), se::DeviceMemory<T>(output_values.memory()).GetSlice(k * i, k), k * sizeof(T))); std::vector<T> slice(source.data() + n * i, source.data() + n * (i + 1)); std::sort(slice.begin(), slice.end(), std::greater<T>()); slice.resize(k); EXPECT_THAT(got, ::testing::ElementsAreArray(slice)) << " k=" << k << ", batch_size=" << batch_size << " i=" << i; } } INSTANTIATE_TEST_SUITE_P(TopkTests, TopkTest, Combine( Values(1, 8, 12, 64, 128), Values(1, 2, 8, 16, 7, 12), Values(1, 16, 64, 128), Values(0, 7, 4)), [](const auto& info) { return absl::Substitute( "n$0KiB_k$1_batch_size$2_offset$3", std::get<0>(info.param), std::get<1>(info.param), std::get<2>(info.param), std::get<3>(info.param)); }); template <size_t K> void BM_SmallTopk(benchmark::State& state) { using T = float; size_t k = K; size_t batch_size = state.range(0); size_t n = state.range(1) * 1024; state.SetLabel( absl::Substitute("n=$0Ki k=$1 batch_size=$2", n / 1024, k, batch_size)); auto* executor = GetGpuExecutor(); auto stream = executor->CreateStream().value(); stream_executor::DeviceMemoryHandle input_buffer( executor, executor->AllocateArray<T>(n * batch_size)); stream_executor::DeviceMemoryHandle output_values( executor, executor->AllocateArray<T>(k * batch_size)); stream_executor::DeviceMemoryHandle output_indices( executor, executor->AllocateArray<uint32_t>(k * batch_size)); if (input_buffer.memory().is_null() || output_values.memory().is_null() || output_indices.memory().is_null()) { state.SkipWithError("Unable to allocate GPU memory: aborting benchmark"); return; } auto source = RandomVec<T>(n); for (size_t i = 0; i < batch_size; i++) { auto slice = se::DeviceMemory<T>(input_buffer.memory()).GetSlice(i * n, n); CHECK_OK(stream->Memcpy(&slice, source.data(), n * sizeof(T))); } for (auto _ : state) { CHECK_OK(RunTopk(stream.get(), Get(T()), input_buffer.memory(), n, output_values.memory(), output_indices.memory(), k, batch_size)); auto timer = se::gpu::GpuTimer::Create(stream.get(), true ); CHECK_OK(timer.status()); CHECK_OK(RunTopk(stream.get(), Get(T()), input_buffer.memory(), n, output_values.memory(), output_indices.memory(), k, batch_size)); auto timer_duration = timer.value().GetElapsedDuration(); CHECK_OK(timer_duration.status()); state.SetIterationTime(absl::ToDoubleSeconds(timer_duration.value())); } size_t items_processed = batch_size * n * state.iterations(); state.SetItemsProcessed(items_processed); state.SetBytesProcessed(items_processed * sizeof(T)); } BENCHMARK(BM_SmallTopk<1>)->RangePair(1, 1024, 16, 1024)->UseManualTime(); BENCHMARK(BM_SmallTopk<2>)->RangePair(1, 1024, 16, 1024)->UseManualTime(); BENCHMARK(BM_SmallTopk<4>)->RangePair(1, 1024, 16, 1024)->UseManualTime(); BENCHMARK(BM_SmallTopk<8>)->RangePair(1, 1024, 16, 1024)->UseManualTime(); BENCHMARK(BM_SmallTopk<16>)->RangePair(1, 1024, 16, 1024)->UseManualTime(); } }
2,118
cpp
tensorflow/tensorflow
cutlass_gemm_fusion
third_party/xla/xla/service/gpu/kernels/cutlass_gemm_fusion.cc
third_party/xla/xla/service/gpu/kernels/cutlass_gemm_fusion_test.cc
#ifndef XLA_SERVICE_GPU_KERNELS_CUTLASS_GEMM_FUSION_H_ #define XLA_SERVICE_GPU_KERNELS_CUTLASS_GEMM_FUSION_H_ #include <optional> #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/kernels/custom_kernel_fusion_pattern.h" #include "xla/stream_executor/device_description.h" namespace xla::gpu { class CutlassGemmPattern : public CustomKernelFusionPattern { public: std::optional<Match> TryMatch(const se::DeviceDescription& device, HloInstruction* instr) const override; }; class CutlassGemmWithDynamicUpdateSlicePattern : public CustomKernelFusionPattern { public: std::optional<Match> TryMatch(const se::DeviceDescription& device, HloInstruction* instr) const override; }; class CutlassGemmWithUpcastPattern : public CustomKernelFusionPattern { public: std::optional<Match> TryMatch(const se::DeviceDescription& device, HloInstruction* instr) const override; }; } #endif #include "xla/service/gpu/kernels/cutlass_gemm_fusion.h" #include <cstddef> #include <cstdint> #include <optional> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/kernels/custom_kernel.h" #include "xla/service/gpu/kernels/custom_kernel_fusion.h" #include "xla/service/gpu/kernels/custom_kernel_fusion_pattern.h" #include "xla/service/gpu/kernels/cutlass_gemm.h" #include "xla/service/gpu/kernels/cutlass_gemm_custom_kernel.h" #include "xla/service/pattern_matcher.h" #include "xla/shape.h" #include "xla/stream_executor/device_description.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla::gpu { namespace { namespace m = match; struct RootWithWorkspace { HloInstruction* root; HloInstruction* workspace; }; static RootWithWorkspace MatchRootWithWorkspace(HloInstruction* root) { RootWithWorkspace result; if (Match(root, m::Tuple(m::Op(&result.root), m::CustomCall(&result.workspace, {CustomKernelFusionPattern::kWorkspace})))) { return result; } return {root, nullptr}; } struct GemmWithUpcast { explicit GemmWithUpcast(HloDotInstruction* dot) : dot(dot) {} HloInstruction* dot; HloInstruction* lhs_upcast = nullptr; HloInstruction* rhs_upcast = nullptr; }; struct GemmWithDynamicSlice { explicit GemmWithDynamicSlice(HloDynamicUpdateSliceInstruction* update_slice) : update_slice(update_slice) {} std::vector<HloInstruction*> Instrs() { if (bitcast == nullptr) { return {dot, update_slice}; } return {dot, bitcast, update_slice}; } HloInstruction* dot = nullptr; HloInstruction* bitcast = nullptr; HloInstruction* update_slice = nullptr; }; } static absl::Status MatchRowMajorGemm(HloDotInstruction* dot) { if (dot->operand(0)->shape().dimensions_size() != 2 || dot->operand(1)->shape().dimensions_size() != 2) { return absl::InternalError("operands must have rank 2"); } auto& dot_dims = dot->dot_dimension_numbers(); if (dot_dims.lhs_contracting_dimensions().size() != 1 || dot_dims.lhs_contracting_dimensions()[0] != 1) { return absl::InternalError("lhs contracting dimensions must be 1"); } if (dot_dims.rhs_contracting_dimensions().size() != 1 || dot_dims.rhs_contracting_dimensions()[0] != 0) { return absl::InternalError("rhs contracting dimensions must be 0"); } return absl::OkStatus(); } static absl::Status MatchSimpleGemm( HloDotInstruction* dot, absl::Span<const PrimitiveType> support_dtypes) { TF_RETURN_IF_ERROR(MatchRowMajorGemm(dot)); for (PrimitiveType dtype : support_dtypes) { if (dot->operand(0)->shape().element_type() == dtype && dot->operand(1)->shape().element_type() == dtype && dot->shape().element_type() == dtype) { return absl::OkStatus(); } } return absl::InternalError("unsupported operands type"); } static absl::StatusOr<GemmWithUpcast> MatchGemmWithUpcast( HloDotInstruction* dot) { TF_RETURN_IF_ERROR(MatchRowMajorGemm(dot)); GemmWithUpcast match(dot); if (Match(const_cast<HloInstruction*>(dot->operand(0)), m::Convert(&match.lhs_upcast, m::Op()))) { return match; } if (Match(const_cast<HloInstruction*>(dot->operand(1)), m::Convert(&match.rhs_upcast, m::Op()))) { return match; } return absl::InternalError("unsupported gemm with upcasing"); } template <typename Pattern> auto OptionalBitcast(HloInstruction** optional_bitcast, Pattern pattern) { return m::AnyOf<HloInstruction>(m::Bitcast(optional_bitcast, pattern), std::move(pattern)); } static absl::StatusOr<GemmWithDynamicSlice> MatchGemmWithDynamicUpdateSlice( HloDynamicUpdateSliceInstruction* update_slice) { GemmWithDynamicSlice match(update_slice); if (!Match(const_cast<HloInstruction*>(update_slice->update()), OptionalBitcast(&match.bitcast, m::Dot(&match.dot, m::Op(), m::Op())))) { return absl::InternalError("failed to match update slice instr"); } TF_RETURN_IF_ERROR(MatchRowMajorGemm(Cast<HloDotInstruction>(match.dot))); return match; } static bool AreInstructionsOnTheSameStream( absl::Span<const HloInstruction* const> instructions) { absl::flat_hash_set<int64_t> stream_set; for (const HloInstruction* inst : instructions) { auto gpu_config = inst->backend_config<GpuBackendConfig>(); if (!gpu_config.ok()) { continue; } stream_set.insert(gpu_config->operation_queue_id()); if (stream_set.size() > 1) { return false; } } return true; }; std::optional<CustomKernelFusionPattern::Match> CutlassGemmPattern::TryMatch( const se::DeviceDescription& device, HloInstruction* instr) const { auto* dot = DynCast<HloDotInstruction>(instr); if (!dot) return std::nullopt; auto matched = MatchSimpleGemm(dot, {PrimitiveType::F32}); if (!matched.ok()) return std::nullopt; CustomFusionConfig config; config.set_name("cutlass_gemm"); return Match{config, {instr}}; } std::optional<CustomKernelFusionPattern::Match> CutlassGemmWithDynamicUpdateSlicePattern::TryMatch( const se::DeviceDescription& device, HloInstruction* instr) const { auto* update_slice = DynCast<HloDynamicUpdateSliceInstruction>(instr); if (!update_slice) return std::nullopt; auto matched = MatchGemmWithDynamicUpdateSlice(update_slice); if (!matched.ok() || !AreInstructionsOnTheSameStream(matched->Instrs())) return std::nullopt; CustomFusionConfig config; config.set_name("cutlass_gemm_with_dynamic_update_slice"); Match match(config, matched->Instrs()); match.AddReplacement(matched->dot, [=](HloFusionInstruction* fusion) { HloComputation* parent = fusion->parent(); auto* dus = Cast<HloDynamicUpdateSliceInstruction>(matched->update_slice); bool has_bitcast = matched->bitcast != nullptr; const Shape dus_shape = has_bitcast ? matched->bitcast->shape() : matched->dot->shape(); auto* slice = parent->AddInstruction(HloInstruction::CreateDynamicSlice( dus_shape, fusion, dus->index_operands(), dus_shape.dimensions())); return parent->AddInstruction( HloInstruction::CreateBitcast(matched->dot->shape(), slice)); }); return match; } std::optional<CustomKernelFusionPattern::Match> CutlassGemmWithUpcastPattern::TryMatch(const se::DeviceDescription& device, HloInstruction* instr) const { auto* dot = DynCast<HloDotInstruction>(instr); if (!dot) return std::nullopt; auto matched = MatchGemmWithUpcast(dot); if (!matched.ok()) return std::nullopt; DCHECK(matched->lhs_upcast == nullptr || matched->rhs_upcast == nullptr); CustomFusionConfig config; config.set_name("cutlass_gemm_with_upcast"); return matched->lhs_upcast ? Match{config, {matched->lhs_upcast, instr}} : Match{config, {matched->rhs_upcast, instr}}; } class CutlassGemmFusion : public CustomKernelFusion { public: absl::StatusOr<std::vector<CustomKernel>> LoadKernels( const se::DeviceDescription& device, const HloComputation* computation) const final { auto* dot = DynCast<HloDotInstruction>(computation->root_instruction()); if (dot == nullptr) { return absl::InternalError( "cutlass_gemm requires ROOT operation to be a dot"); } TF_RETURN_IF_ERROR(MatchSimpleGemm(dot, {PrimitiveType::F32})); auto dtype = dot->shape().element_type(); auto* lhs = Cast<HloParameterInstruction>(dot->operand(0)); auto* rhs = Cast<HloParameterInstruction>(dot->operand(1)); kernel::gemm_universal::ArgsIndices indices = { lhs->parameter_number(), rhs->parameter_number(), computation->num_parameters()}; auto& lhs_shape = lhs->shape(); auto& rhs_shape = rhs->shape(); size_t m = lhs_shape.dimensions(0); size_t k = lhs_shape.dimensions(1); size_t n = rhs_shape.dimensions(1); TF_ASSIGN_OR_RETURN( auto kernel, kernel::gemm_universal::GetCutlassGemmKernel( "cutlass_gemm", dtype, m, n, k, indices, {}, device)); return std::vector<CustomKernel>{std::move(kernel)}; } }; class CutlassGemmWithUpcastFusion : public CustomKernelFusion { public: absl::StatusOr<std::vector<CustomKernel>> LoadKernels( const se::DeviceDescription& device, const HloComputation* computation) const final { auto* dot = DynCast<HloDotInstruction>(computation->root_instruction()); if (dot == nullptr) { return absl::InternalError( "cutlass_gemm requires ROOT operation to be a dot"); } TF_ASSIGN_OR_RETURN(auto matched, MatchGemmWithUpcast(dot)); if (matched.lhs_upcast != nullptr) return absl::InternalError("only rhs upcasting is implemented"); auto dot_dtype = dot->shape().element_type(); auto upcast_dtype = matched.rhs_upcast->shape().element_type(); if (dot_dtype != PrimitiveType::BF16 || upcast_dtype != PrimitiveType::S8) return absl::InternalError("unsupported upcasting pattern"); return absl::UnimplementedError("requires CUTLASS 3.3.0"); } }; class CutlassGemmWithDynamicUpdateSliceFusion : public CustomKernelFusion { public: absl::StatusOr<std::vector<CustomKernel>> LoadKernels( const se::DeviceDescription& device, const HloComputation* computation) const final { auto [root, workspace] = MatchRootWithWorkspace(computation->root_instruction()); auto* dus = DynCast<HloDynamicUpdateSliceInstruction>(root); if (dus == nullptr) { return absl::InternalError( "cutlass_gemm_with_dynamic_update_slice requires ROOT operation to " "be a dynamic update slice"); } TF_ASSIGN_OR_RETURN(auto matched, MatchGemmWithDynamicUpdateSlice(dus)); TF_RETURN_IF_ERROR( MatchSimpleGemm(Cast<HloDotInstruction>(matched.dot), {PrimitiveType::F32, PrimitiveType::BF16})); auto dtype = matched.dot->shape().element_type(); auto* lhs = Cast<HloParameterInstruction>(matched.dot->operand(0)); auto* rhs = Cast<HloParameterInstruction>(matched.dot->operand(1)); auto* out = Cast<HloParameterInstruction>(matched.update_slice->operand(0)); kernel::gemm_universal::ArgsIndices args_indices = { lhs->parameter_number(), rhs->parameter_number(), out->parameter_number(), workspace != nullptr}; auto* offset = Cast<HloParameterInstruction>(matched.update_slice->operand(2)); kernel::gemm_universal::DynamicSliceIndices slices; slices.out = offset->parameter_number(); auto& lhs_shape = lhs->shape(); auto& rhs_shape = rhs->shape(); size_t m = lhs_shape.dimensions(0); size_t k = lhs_shape.dimensions(1); size_t n = rhs_shape.dimensions(1); TF_ASSIGN_OR_RETURN( auto kernel, kernel::gemm_universal::GetCutlassGemmKernel( "cutlass_gemm_with_dynamic_update_slice", dtype, m, n, k, args_indices, slices, device)); return std::vector<CustomKernel>{std::move(kernel)}; } }; } XLA_REGISTER_CUSTOM_FUSION_PATTERN( ::xla::gpu::CutlassGemmWithDynamicUpdateSlicePattern); XLA_REGISTER_CUSTOM_FUSION("cutlass_gemm", ::xla::gpu::CutlassGemmFusion); XLA_REGISTER_CUSTOM_FUSION("cutlass_gemm_with_upcast", ::xla::gpu::CutlassGemmWithUpcastFusion); XLA_REGISTER_CUSTOM_FUSION("cutlass_gemm_with_dynamic_update_slice", ::xla::gpu::CutlassGemmWithDynamicUpdateSliceFusion);
#include "xla/service/gpu/kernels/cutlass_gemm_fusion.h" #include <cstdint> #include <utility> #include "xla/array.h" #include "xla/array2d.h" #include "xla/array3d.h" #include "xla/error_spec.h" #include "xla/literal_util.h" #include "xla/service/gpu/custom_kernel_fusion_rewriter.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/kernels/custom_kernel_fusion_pattern.h" #include "xla/tests/hlo_test_base.h" #include "xla/types.h" #include "tsl/platform/test.h" namespace xla::gpu { class CutlassFusionTest : public HloTestBase {}; TEST_F(CutlassFusionTest, RowMajorGemm) { const char* hlo = R"( HloModule test ENTRY %main (p0: f32[15,19], p1: f32[19,17]) -> f32[15,17] { %p0 = f32[15,19]{1,0} parameter(0) %p1 = f32[19,17]{1,0} parameter(1) ROOT %r = f32[15,17]{1,0} dot(%p0, %p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; const char* expected = R"( ; CHECK: %cutlass_gemm {{.*}} { ; CHECK: [[P0:%[^ ]+]] = f32[15,19]{1,0} parameter(0) ; CHECK: [[P1:%[^ ]+]] = f32[19,17]{1,0} parameter(1) ; CHECK: ROOT [[DOT:%[^ ]+]] = f32[15,17]{1,0} dot([[P0]], [[P1]]), ; CHECK: lhs_contracting_dims={1}, rhs_contracting_dims={0} ; CHECK: } ; CHECK: ENTRY %main {{.*}} { ; CHECK: ROOT [[FUSION:%[^ ]+]] = f32[15,17]{1,0} fusion ; CHECK: kind=kCustom, calls=%cutlass_gemm, ; CHECK: backend_config={ ; CHECK: "kind":"__custom_fusion", ; CHECK: "custom_fusion_config":{"name":"cutlass_gemm"} ; CHECK: } ; CHECK: } )"; CustomKernelFusionPatternRegistry patterns; patterns.Emplace<CutlassGemmPattern>(); auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); CustomKernelFusionRewriter pass(&device, &patterns); RunAndFilecheckHloRewrite(hlo, std::move(pass), expected); } TEST_F(CutlassFusionTest, RowMajorGemmWithUpcast) { const char* hlo = R"( HloModule test ENTRY %main (p0: bf16[15,19], p1: s8[19,17]) -> bf16[15,17] { %p0 = bf16[15,19]{1,0} parameter(0) %p1 = s8[19,17]{1,0} parameter(1) %c1 = bf16[19,17]{1,0} convert(%p1) ROOT %r = bf16[15,17]{1,0} dot(%p0, %c1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; const char* expected = R"( ; CHECK: %cutlass_gemm_with_upcast {{.*}} { ; CHECK-DAG: [[P0:%[^ ]+]] = bf16[15,19]{1,0} parameter ; CHECK-DAG: [[P1:%[^ ]+]] = s8[19,17]{1,0} parameter ; CHECK: [[C1:%[^ ]+]] = bf16[19,17]{1,0} convert([[P1]]) ; CHECK: ROOT [[DOT:%[^ ]+]] = bf16[15,17]{1,0} dot([[P0]], [[C1]]), ; CHECK: lhs_contracting_dims={1}, rhs_contracting_dims={0} ; CHECK: } ; CHECK: ENTRY %main {{.*}} { ; CHECK: ROOT [[FUSION:%[^ ]+]] = bf16[15,17]{1,0} fusion ; CHECK: kind=kCustom, calls=%cutlass_gemm_with_upcast, ; CHECK: backend_config={ ; CHECK: "kind":"__custom_fusion", ; CHECK: "custom_fusion_config":{"name":"cutlass_gemm_with_upcast"} ; CHECK: } ; CHECK: } )"; CustomKernelFusionPatternRegistry patterns; patterns.Emplace<CutlassGemmWithUpcastPattern>(); auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); CustomKernelFusionRewriter pass(&device, &patterns); RunAndFilecheckHloRewrite(hlo, std::move(pass), expected); } TEST_F(CutlassFusionTest, RowMajorGemmWithDynamicUpdateSlice) { const char* hlo = R"( HloModule test ENTRY %main (p0: f32[2,2,2], p1: f32[2,2], i: s32[]) -> f32[2,2,2] { %p0 = f32[2,2,2]{2,1,0} parameter(0) %p1 = f32[2,2]{1,0} parameter(1) %i = s32[] parameter(2) %dot = f32[2,2]{1,0} dot(%p1, %p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} %bc = f32[1,2,2]{2,1,0} bitcast(%dot) ROOT %r = f32[2,2,2]{2,1,0} dynamic-update-slice(%p0, %bc, %i, %i, %i) } )"; const char* expected = R"( ; CHECK: %cutlass_gemm_with_dynamic_update_slice {{.*}} { ; CHECK-DAG: [[P0:%[^ ]+]] = f32[2,2]{1,0} parameter ; CHECK-DAG: [[P1:%[^ ]+]] = f32[2,2,2]{2,1,0} parameter ; CHECK-DAG: [[P2:%[^ ]+]] = s32[] parameter ; CHECK-DAG: [[DOT:%[^ ]+]] = f32[2,2]{1,0} dot([[P0]], [[P0]]) ; CHECK-DAG: [[CAST:%[^ ]+]] = f32[1,2,2]{2,1,0} bitcast([[DOT]]) ; CHECK: ROOT [[DUS:%[^ ]+]] = f32[2,2,2]{2,1,0} dynamic-update-slice( ; CHECK: [[P1]], [[CAST]], [[P2]], [[P2]], [[P2]] ; CHECK: ) ; CHECK: } ; CHECK: ENTRY %main {{.*}} { ; CHECK: ROOT [[FUSION:%[^ ]+]] = f32[2,2,2]{2,1,0} fusion ; CHECK: kind=kCustom, calls=%cutlass_gemm_with_dynamic_update_slice, ; CHECK: backend_config={ ; CHECK: "kind":"__custom_fusion", ; CHECK: "custom_fusion_config":{ ; CHECK: "name":"cutlass_gemm_with_dynamic_update_slice" ; CHECK: } ; CHECK: } ; CHECK: } )"; CustomKernelFusionPatternRegistry patterns; patterns.Emplace<CutlassGemmWithDynamicUpdateSlicePattern>(); auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); CustomKernelFusionRewriter pass(&device, &patterns); RunAndFilecheckHloRewrite(hlo, std::move(pass), expected); } TEST_F(CutlassFusionTest, RowMajorGemmWithDynamicUpdateSliceMultipleUses) { const char* hlo = R"( HloModule test ENTRY %main { %p0 = f32[2,2,2]{2,1,0} parameter(0) %p1 = f32[2,2]{1,0} parameter(1) %i = s32[] parameter(2) %dot = f32[2,2]{1,0} dot(%p1, %p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} %add = f32[2,2]{1,0} add(%dot, %dot) %cast = f32[1,2,2]{2,1,0} bitcast(%dot) %dus = f32[2,2,2]{2,1,0} dynamic-update-slice(%p0, %cast, %i, %i, %i) ROOT %r = (f32[2,2]{1,0}, f32[2,2,2]{2,1,0}) tuple(%add, %dus) } )"; const char* expected = R"( ; CHECK: %cutlass_gemm_with_dynamic_update_slice {{.*}} { ; CHECK-DAG: [[P0:%[^ ]+]] = f32[2,2]{1,0} parameter ; CHECK-DAG: [[P1:%[^ ]+]] = f32[2,2,2]{2,1,0} parameter ; CHECK-DAG: [[P2:%[^ ]+]] = s32[] parameter ; CHECK-DAG: [[DOT:%[^ ]+]] = f32[2,2]{1,0} dot([[P0]], [[P0]]) ; CHECK-DAG: [[CAST:%[^ ]+]] = f32[1,2,2]{2,1,0} bitcast([[DOT]]) ; CHECK: ROOT [[DUS:%[^ ]+]] = f32[2,2,2]{2,1,0} dynamic-update-slice( ; CHECK: [[P1]], [[CAST]], [[P2]], [[P2]], [[P2]] ; CHECK: ) ; CHECK: } ; CHECK: ENTRY %main {{.*}} { ; CHECK: [[OFFSET:%[^ ]+]] = s32[] parameter(2) ; CHECK: [[FUSION:%[^ ]+]] = f32[2,2,2]{2,1,0} fusion ; CHECK: kind=kCustom, calls=%cutlass_gemm_with_dynamic_update_slice, ; CHECK: backend_config={ ; CHECK: "kind":"__custom_fusion", ; CHECK: "custom_fusion_config":{ ; CHECK: "name":"cutlass_gemm_with_dynamic_update_slice" ; CHECK: } ; CHECK: } ; CHECK: [[SLICE:%[^ ]+]] = f32[1,2,2]{2,1,0} dynamic-slice( ; CHECK: [[FUSION]], [[OFFSET]], [[OFFSET]], [[OFFSET]]), ; CHECK: dynamic_slice_sizes={1,2,2} ; CHECK: [[CAST:%[^. ]+]] = f32[2,2]{1,0} bitcast([[SLICE]]) ; CHECK: [[ADD:%[^. ]+]] = f32[2,2]{1,0} add([[CAST]], [[CAST]]) ; CHECK: } )"; CustomKernelFusionPatternRegistry patterns; patterns.Emplace<CutlassGemmWithDynamicUpdateSlicePattern>(); auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); CustomKernelFusionRewriter pass(&device, &patterns); RunAndFilecheckHloRewrite(hlo, std::move(pass), expected); } TEST_F(CutlassFusionTest, RowMajorGemmWithDynamicUpdateSliceWithoutBitcast) { const char* hlo = R"( HloModule test ENTRY %main (p0: f32[4,2], p1: f32[2,2], i: s32[]) -> f32[4,2] { %p0 = f32[4,2]{1,0} parameter(0) %p1 = f32[2,2]{1,0} parameter(1) %i = s32[] parameter(2) %dot = f32[2,2]{1,0} dot(%p1, %p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT %r = f32[4,2]{1,0} dynamic-update-slice(%p0, %dot, %i, %i) } )"; const char* expected = R"( ; CHECK: %cutlass_gemm_with_dynamic_update_slice {{.*}} { ; CHECK-DAG: [[P1:%[^ ]+]] = f32[4,2]{1,0} parameter ; CHECK-DAG: [[P0:%[^ ]+]] = f32[2,2]{1,0} parameter ; CHECK-DAG: [[DOT:%[^ ]+]] = f32[2,2]{1,0} dot([[P0]], [[P0]]) ; CHECK-DAG: [[P2:%[^ ]+]] = s32[] parameter ; CHECK: ROOT [[DUS:%[^ ]+]] = f32[4,2]{1,0} dynamic-update-slice([[P1]], [[DOT]], [[P2]], [[P2]]) ; CHECK: } ; CHECK: ENTRY %main {{.*}} { ; CHECK: ROOT [[FUSION:%[^ ]+]] = f32[4,2]{1,0} fusion ; CHECK: kind=kCustom, calls=%cutlass_gemm_with_dynamic_update_slice, ; CHECK: backend_config={ ; CHECK: "kind":"__custom_fusion", ; CHECK: "custom_fusion_config":{ ; CHECK: "name":"cutlass_gemm_with_dynamic_update_slice" ; CHECK: } ; CHECK: } ; CHECK: } )"; CustomKernelFusionPatternRegistry patterns; patterns.Emplace<CutlassGemmWithDynamicUpdateSlicePattern>(); auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); CustomKernelFusionRewriter pass(&device, &patterns); RunAndFilecheckHloRewrite(hlo, std::move(pass), expected); } TEST_F(CutlassFusionTest, RowMajorGemmKernel) { ErrorSpec error_spec{1e-3, 1e-3}; const char* hlo_text_cublas = R"( HloModule cublas ENTRY e { arg0 = f32[100,784]{1,0} parameter(0) arg1 = f32[784,10]{1,0} parameter(1) gemm = (f32[100,10]{1,0}, s8[0]{0}) custom-call(arg0, arg1), custom_call_target="__cublas$gemm", backend_config={"gemm_backend_config":{"alpha_real":1,"beta":0,"dot_dimension_numbers":{"lhs_contracting_dimensions":[1],"rhs_contracting_dimensions":[0],"lhs_batch_dimensions":[],"rhs_batch_dimensions":[]},"alpha_imag":0,"precision_config":{"operand_precision":["DEFAULT","DEFAULT"]},"epilogue":"DEFAULT"}} ROOT get-tuple-element = f32[100,10]{1,0} get-tuple-element((f32[100,10]{1,0}, s8[0]{0}) gemm), index=0 })"; const char* hlo_text_custom_fusion = R"( HloModule cutlass cutlass_gemm { arg0 = f32[100,784]{1,0} parameter(0) arg1 = f32[784,10]{1,0} parameter(1) ROOT dot = f32[100,10]{1,0} dot(arg0, arg1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { arg0 = f32[100,784]{1,0} parameter(0) arg1 = f32[784,10]{1,0} parameter(1) ROOT _ = f32[100,10]{1,0} fusion(arg0, arg1), kind=kCustom, calls=cutlass_gemm, backend_config={"fusion_backend_config":{kind: "__custom_fusion", custom_fusion_config: {"name":"cutlass_gemm"}}} })"; EXPECT_TRUE(RunAndCompareTwoModules(hlo_text_cublas, hlo_text_custom_fusion, error_spec, false)); } TEST_F(CutlassFusionTest, RowMajorGemmWithUpcastKernel) { GTEST_SKIP() << "Requires CUTLASS 3.3.0+"; ErrorSpec error_spec{1e-3, 1e-3}; const char* hlo_text_cublas = R"( HloModule cublas ENTRY e { p0 = bf16[16,32]{1,0} parameter(0) p1 = s8[32,8]{1,0} parameter(1) c1 = bf16[32,8]{1,0} convert(p1) gemm = (bf16[16,8]{1,0}, s8[0]{0}) custom-call(p0, c1), custom_call_target="__cublas$gemm", backend_config={"gemm_backend_config":{"alpha_real":1,"beta":0,"dot_dimension_numbers":{"lhs_contracting_dimensions":[1],"rhs_contracting_dimensions":[0],"lhs_batch_dimensions":[],"rhs_batch_dimensions":[]},"alpha_imag":0,"precision_config":{"operand_precision":["DEFAULT","DEFAULT"]},"epilogue":"DEFAULT"}} ROOT get-tuple-element = bf16[16,8]{1,0} get-tuple-element(gemm), index=0 })"; const char* hlo_text_custom_fusion = R"( HloModule cutlass cutlass_gemm_with_upcast { p0 = bf16[16,32]{1,0} parameter(0) p1 = s8[32,8]{1,0} parameter(1) c1 = bf16[32,8]{1,0} convert(p1) ROOT dot = bf16[16,8]{1,0} dot(p0, c1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = bf16[16,32]{1,0} parameter(0) p1 = s8[32,8]{1,0} parameter(1) ROOT _ = bf16[16,8]{1,0} fusion(p0, p1), kind=kCustom, calls=cutlass_gemm_with_upcast, backend_config={"fusion_backend_config":{kind: "__custom_fusion", custom_fusion_config: {"name":"cutlass_gemm_with_upcast"}}} })"; EXPECT_TRUE(RunAndCompareTwoModules(hlo_text_cublas, hlo_text_custom_fusion, error_spec, false)); } TEST_F(CutlassFusionTest, RowMajorGemmWithDynamicUpdateSliceKernel) { ErrorSpec error_spec{1e-3, 1e-3}; const char* hlo_text_cublas = R"( HloModule cublas ENTRY e { p0 = bf16[2,8,8]{2,1,0} parameter(0) p1 = bf16[8,8]{1,0} parameter(1) p2 = s32[] parameter(2) p3 = s32[] parameter(3) gemm.tuple = (bf16[8,8]{1,0}, s8[0]{0}) custom-call(p1, p1), custom_call_target="__cublas$gemm", backend_config={"gemm_backend_config":{"alpha_real":1,"beta":0,"dot_dimension_numbers":{"lhs_contracting_dimensions":[1],"rhs_contracting_dimensions":[0],"lhs_batch_dimensions":[],"rhs_batch_dimensions":[]},"alpha_imag":0,"precision_config":{"operand_precision":["DEFAULT","DEFAULT"]},"epilogue":"DEFAULT"}} gemm = bf16[8,8]{1,0} get-tuple-element(gemm.tuple), index=0 cast = bf16[1,8,8]{2,1,0} bitcast(gemm) ROOT r = bf16[2,8,8]{2,1,0} dynamic-update-slice(p0, cast, p2, p3, p3) })"; const char* hlo_text_custom_fusion = R"( HloModule cutlass cutlass_gemm { p0.1 = bf16[8,8]{1,0} parameter(0) p1.1 = bf16[2,8,8]{2,1,0} parameter(1) p2 = s32[] parameter(2) p3 = s32[] parameter(3) dot.1 = bf16[8,8]{1,0} dot(p0.1, p0.1), lhs_contracting_dims={1}, rhs_contracting_dims={0} bc.1 = bf16[1,8,8]{2,1,0} bitcast(dot.1) r.1 = bf16[2,8,8]{2,1,0} dynamic-update-slice(p1.1, bc.1, p2, p3, p3) workspace = u8[1024]{0} custom-call(), custom_call_target="__custom_kernel_fusion$workspace", api_version=API_VERSION_TYPED_FFI ROOT tuple = (bf16[2,8,8]{2,1,0}, u8[1024]{0}) tuple(r.1, workspace) } ENTRY e { p0 = bf16[2,8,8]{2,1,0} parameter(0) p1 = bf16[8,8]{1,0} parameter(1) p2 = s32[] parameter(2) p3 = s32[] parameter(3) r.0 = (bf16[2,8,8]{2,1,0}, u8[1024]{0}) fusion(p1, p0, p2, p3), kind=kCustom, calls=%cutlass_gemm, backend_config={"fusion_backend_config":{"kind":"__custom_fusion","custom_fusion_config":{"name":"cutlass_gemm_with_dynamic_update_slice"}}} ROOT %get-tuple-element = bf16[2,8,8]{2,1,0} get-tuple-element(r.0), index=0 })"; Array3D<bfloat16> p0_arr(2, 8, 8); Array2D<bfloat16> p1_arr(8, 8); p1_arr.Each([](int64_t i, int64_t j, bfloat16* out) { *out = bfloat16{1.0f * i * j}; }); Array<int32_t> p2_arr({}, 1); Array<int32_t> p3_arr({}, 0); auto p0 = LiteralUtil::CreateFromArray(p0_arr); auto p1 = LiteralUtil::CreateFromArray(p1_arr); auto p2 = LiteralUtil::CreateFromArray(p2_arr); auto p3 = LiteralUtil::CreateFromArray(p3_arr); EXPECT_TRUE(RunAndCompareTwoModules(hlo_text_cublas, hlo_text_custom_fusion, {&p0, &p1, &p2, &p3}, error_spec, false)); } TEST_F(CutlassFusionTest, RowMajorGemmWithDynamicUpdateSliceKernelWithoutBitcast) { ErrorSpec error_spec{1e-3, 1e-3}; const char* hlo_text_cublas = R"( HloModule cublas ENTRY e { p0 = bf16[16,8]{1,0} parameter(0) p1 = bf16[8,8]{1,0} parameter(1) p2 = s32[] parameter(2) p3 = s32[] parameter(3) gemm.tuple = (bf16[8,8]{1,0}, s8[0]{0}) custom-call(p1, p1), custom_call_target="__cublas$gemm", backend_config={"gemm_backend_config":{"alpha_real":1,"beta":0,"dot_dimension_numbers":{"lhs_contracting_dimensions":[1],"rhs_contracting_dimensions":[0],"lhs_batch_dimensions":[],"rhs_batch_dimensions":[]},"alpha_imag":0,"precision_config":{"operand_precision":["DEFAULT","DEFAULT"]},"epilogue":"DEFAULT"}} gemm = bf16[8,8]{1,0} get-tuple-element(gemm.tuple), index=0 ROOT r = bf16[16,8]{1,0} dynamic-update-slice(p0, gemm, p2, p3) } )"; const char* hlo_text_custom_fusion = R"( HloModule cutlass cutlass_gemm { p0.1 = bf16[8,8]{1,0} parameter(0) p1.1 = bf16[16,8]{1,0} parameter(1) p2 = s32[] parameter(2) p3 = s32[] parameter(3) dot.1 = bf16[8,8]{1,0} dot(p0.1, p0.1), lhs_contracting_dims={1}, rhs_contracting_dims={0} r.1 = bf16[16,8]{1,0} dynamic-update-slice(p1.1, dot.1, p2, p3) workspace = u8[1024]{0} custom-call(), custom_call_target="__custom_kernel_fusion$workspace", api_version=API_VERSION_TYPED_FFI ROOT tuple = (bf16[16,8]{1,0}, u8[1024]{0}) tuple(r.1, workspace) } ENTRY e { p0 = bf16[16,8]{1,0} parameter(0) p1 = bf16[8,8]{1,0} parameter(1) p2 = s32[] parameter(2) p3 = s32[] parameter(3) r.0 = (bf16[16,8]{1,0}, u8[1024]{0}) fusion(p1, p0, p2, p3), kind=kCustom, calls=%cutlass_gemm, backend_config={"fusion_backend_config":{"kind":"__custom_fusion","custom_fusion_config":{"name":"cutlass_gemm_with_dynamic_update_slice"}}} ROOT %get-tuple-element = bf16[16,8]{1,0} get-tuple-element(r.0), index=0 })"; Array2D<bfloat16> p0_arr(16, 8); Array2D<bfloat16> p1_arr(8, 8); p1_arr.Each([](int64_t i, int64_t j, bfloat16* out) { *out = bfloat16{1.0f * i * j}; }); Array<int32_t> p2_arr({}, 0); Array<int32_t> p3_arr({}, 1); auto p0 = LiteralUtil::CreateFromArray(p0_arr); auto p1 = LiteralUtil::CreateFromArray(p1_arr); auto p2 = LiteralUtil::CreateFromArray(p2_arr); auto p3 = LiteralUtil::CreateFromArray(p3_arr); EXPECT_TRUE(RunAndCompareTwoModules(hlo_text_cublas, hlo_text_custom_fusion, {&p0, &p1, &p2, &p3}, error_spec, false)); } }
2,119
cpp
tensorflow/tensorflow
topk_custom_kernel
third_party/xla/xla/service/gpu/kernels/topk_custom_kernel.cc
third_party/xla/xla/service/gpu/kernels/topk_custom_kernel_test.cc
#ifndef XLA_SERVICE_GPU_KERNELS_TOPK_CUSTOM_KERNEL_H_ #define XLA_SERVICE_GPU_KERNELS_TOPK_CUSTOM_KERNEL_H_ #include <cstddef> #include <string> #include "absl/status/statusor.h" #include "xla/service/gpu/kernels/custom_kernel.h" #include "xla/xla_data.pb.h" namespace xla::gpu::kernel::topk { absl::StatusOr<CustomKernel> GetTopKKernel(std::string name, PrimitiveType dtype, size_t num_elements, size_t k, size_t batch_size); } #endif #include "xla/service/gpu/kernels/topk_custom_kernel.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <memory> #include <string> #include <utility> #include "absl/numeric/bits.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "xla/service/gpu/kernels/custom_kernel.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/kernel_spec.h" #include "xla/stream_executor/launch_dim.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" #if defined(GOOGLE_CUDA) || defined(TENSORFLOW_USE_ROCM) #include "xla/service/gpu/kernels/topk_kernel_common.h" #endif namespace xla::gpu::kernel::topk { #if defined(GOOGLE_CUDA) || defined(TENSORFLOW_USE_ROCM) namespace { using KernelArgsPacking = se::MultiKernelLoaderSpec::KernelArgsPacking; size_t EstimateOptimalNumThreads(size_t n, size_t k, size_t batch_size) { constexpr size_t kEstimatedThreadsPerBlock = 512; constexpr size_t kMaxKValue = 16; size_t simultaneous_threads_per_block = kEstimatedThreadsPerBlock * (kMaxKValue / k); size_t threads_per_block = std::min(simultaneous_threads_per_block, kTopKMaxThreadsPerBlock); size_t min_slice = absl::bit_floor(n / absl::bit_ceil(k)); return std::min(threads_per_block, min_slice); } template <typename T> absl::StatusOr<void*> GetKernel(int n, int k) { if (k <= 1) return GetTopKKernelForK<T, 1>(n); if (k <= 2) return GetTopKKernelForK<T, 2>(n); if (k <= 4) return GetTopKKernelForK<T, 4>(n); if (k <= 8) return GetTopKKernelForK<T, 8>(n); if (k <= 16) return GetTopKKernelForK<T, 16>(n); return absl::UnimplementedError(absl::StrCat("Unsupported K: ", k)); } template <typename T> KernelArgsPacking CreateTopKArgsPacking(size_t num_elements, size_t k) { using Packed = absl::StatusOr<std::unique_ptr<se::KernelArgsPackedArrayBase>>; return [=](const se::Kernel& kernel, const se::KernelArgs& args) -> Packed { auto* mem_args = se::Cast<se::KernelArgsDeviceMemoryArray>(&args); se::DeviceMemory<T> data(mem_args->device_memory_args()[0]); se::DeviceMemory<T> top_elements(mem_args->device_memory_args()[1]); se::DeviceMemory<uint32_t> top_indices(mem_args->device_memory_args()[2]); return se::PackKernelArgs(args.number_of_shared_bytes(), data, num_elements, top_elements, top_indices, k); }; } template <typename T> absl::StatusOr<CustomKernel> GetTypedTopK(std::string name, size_t num_elements, size_t k, size_t batch_size) { constexpr size_t kMaxKVSize = sizeof(uint64_t); int shmem_size = absl::bit_ceil(k) * kMaxKVSize * GetTopKWaveFrontSize<T>(); int num_threads = EstimateOptimalNumThreads(num_elements, k, batch_size); if (num_threads == 0) { return absl::FailedPreconditionError( "Invalid kernel parameters. This is likely a bug in the " "TopkSpecializer."); } auto packing = CreateTopKArgsPacking<T>(num_elements, k); se::MultiKernelLoaderSpec spec(5, std::move(packing)); TF_ASSIGN_OR_RETURN(void* kernel_symbol, GetKernel<T>(num_elements, k)); spec.AddInProcessSymbol(kernel_symbol, name); return CustomKernel(std::move(name), std::move(spec), se::BlockDim(batch_size, 1, 1), se::ThreadDim(num_threads, 1, 1), shmem_size); } } absl::StatusOr<CustomKernel> GetTopKKernel(std::string name, PrimitiveType dtype, size_t num_elements, size_t k, size_t batch_size) { switch (dtype) { case PrimitiveType::F32: return GetTypedTopK<float>(std::move(name), num_elements, k, batch_size); case PrimitiveType::BF16: return GetTypedTopK<bfloat16>(std::move(name), num_elements, k, batch_size); default: return absl::InvalidArgumentError( absl::StrCat("Unsupported GpuTopK data type: ", dtype)); } } #else absl::StatusOr<CustomKernel> GetTopKKernel(std::string name, PrimitiveType dtype, size_t num_elements, size_t k, size_t batch_size) { return absl::InternalError("XLA compiled without CUDA support"); } #endif }
#include "xla/service/gpu/kernels/topk_custom_kernel.h" #include <algorithm> #include <cstdint> #include <cstring> #include <functional> #include <tuple> #include <vector> #include <gtest/gtest.h> #include "absl/random/random.h" #include "absl/strings/ascii.h" #include "absl/strings/substitute.h" #include "xla/service/platform_util.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/kernel_factory.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::gpu::kernel::topk { using ::testing::Combine; using ::testing::Values; template <typename T> std::vector<T> RandomVecRange(int num_elements, T start, T end) { std::vector<T> local; local.reserve(num_elements); thread_local absl::BitGen gen; for (int i = 0; i < num_elements; ++i) { local.push_back(absl::Uniform<T>(gen, start, end)); } return local; } template <typename T> std::vector<T> RandomVec(int num_elements) { return RandomVecRange(num_elements, static_cast<T>(0), static_cast<T>(num_elements)); } template <typename T> std::vector<T> RandomVecNegative(int num_elements) { return RandomVecRange(num_elements, -static_cast<T>(num_elements), static_cast<T>(0)); } PrimitiveType Get(float) { return PrimitiveType::F32; } PrimitiveType Get(bfloat16) { return PrimitiveType::BF16; } using TopKKernelTest = ::testing::TestWithParam<std::tuple<int, int, int, int>>; TEST_P(TopKKernelTest, TopKFloat) { using T = float; auto name = absl::AsciiStrToUpper(PlatformUtil::CanonicalPlatformName("gpu").value()); se::Platform* platform = se::PlatformManager::PlatformWithName(name).value(); se::StreamExecutor* executor = platform->ExecutorForDevice(0).value(); auto stream = executor->CreateStream().value(); const auto [n_kb, k, batch_size, offset] = GetParam(); const size_t n = n_kb * 1024 + offset; se::DeviceMemory<T> input_buffer = executor->AllocateArray<T>(n * batch_size, 0); se::DeviceMemory<T> output_values = executor->AllocateArray<T>(k * batch_size, 0); se::DeviceMemory<uint32_t> output_indices = executor->AllocateArray<uint32_t>(k * batch_size, 0); auto source = RandomVec<T>(n * batch_size); TF_ASSERT_OK( stream->Memcpy(&input_buffer, source.data(), n * batch_size * sizeof(T))); TF_ASSERT_OK(stream->MemZero(&output_values, k * batch_size * sizeof(T))); TF_ASSERT_OK( stream->MemZero(&output_indices, k * batch_size * sizeof(uint32_t))); auto custom_kernel = GetTopKKernel("topk", PrimitiveType::F32, n, k, batch_size); TF_ASSERT_OK_AND_ASSIGN( auto kernel, se::KernelFactory::Create(executor, custom_kernel->kernel_spec())); se::KernelArgsDeviceMemoryArray arr( std::vector<se::DeviceMemoryBase>( {input_buffer, output_values, output_indices}), custom_kernel->shared_memory_bytes()); TF_ASSERT_OK(stream->Launch(custom_kernel->thread_dims(), custom_kernel->block_dims(), *kernel, arr)); std::vector<T> got(k); ASSERT_TRUE(stream->BlockHostUntilDone().ok()); for (int i = 0; i < batch_size; i++) { TF_ASSERT_OK(stream->Memcpy(got.data(), output_values.GetSlice(k * i, k), k * sizeof(T))); std::vector<T> slice(source.data() + n * i, source.data() + n * (i + 1)); std::sort(slice.begin(), slice.end(), std::greater<T>()); slice.resize(k); EXPECT_THAT(got, ::testing::ElementsAreArray(slice)) << " k=" << k << ", batch_size=" << batch_size << " i=" << i; } } TEST_P(TopKKernelTest, TopKPackedNegative) { using T = float; auto name = absl::AsciiStrToUpper(PlatformUtil::CanonicalPlatformName("gpu").value()); se::Platform* platform = se::PlatformManager::PlatformWithName(name).value(); se::StreamExecutor* executor = platform->ExecutorForDevice(0).value(); auto stream = executor->CreateStream().value(); const auto [n_kb, k, batch_size, offset] = GetParam(); const size_t n = n_kb * 1024 + offset; se::DeviceMemory<T> input_buffer = executor->AllocateArray<T>(n * batch_size, 0); se::DeviceMemory<T> output_values = executor->AllocateArray<T>(k * batch_size, 0); se::DeviceMemory<uint32_t> output_indices = executor->AllocateArray<uint32_t>(k * batch_size, 0); auto source = RandomVecNegative<T>(n * batch_size); TF_ASSERT_OK( stream->Memcpy(&input_buffer, source.data(), n * batch_size * sizeof(T))); TF_ASSERT_OK(stream->MemZero(&output_values, k * batch_size * sizeof(T))); TF_ASSERT_OK( stream->MemZero(&output_indices, k * batch_size * sizeof(uint32_t))); auto custom_kernel = GetTopKKernel("topk", PrimitiveType::F32, n, k, batch_size); TF_ASSERT_OK_AND_ASSIGN( auto kernel, se::KernelFactory::Create(executor, custom_kernel->kernel_spec())); se::KernelArgsDeviceMemoryArray arr( std::vector<se::DeviceMemoryBase>( {input_buffer, output_values, output_indices}), custom_kernel->shared_memory_bytes()); TF_ASSERT_OK(stream->Launch(custom_kernel->thread_dims(), custom_kernel->block_dims(), *kernel, arr)); std::vector<T> got(k); ASSERT_TRUE(stream->BlockHostUntilDone().ok()); for (int i = 0; i < batch_size; i++) { TF_ASSERT_OK(stream->Memcpy(got.data(), output_values.GetSlice(k * i, k), k * sizeof(T))); std::vector<T> slice(source.data() + n * i, source.data() + n * (i + 1)); std::sort(slice.begin(), slice.end(), std::greater<T>()); slice.resize(k); EXPECT_THAT(got, ::testing::ElementsAreArray(slice)) << " k=" << k << ", batch_size=" << batch_size << " i=" << i; } } INSTANTIATE_TEST_SUITE_P(TopKTests, TopKKernelTest, Combine( Values(1, 8, 12, 64, 128), Values(1, 2, 8, 16, 7, 12), Values(1, 16, 64, 128), Values(0, 7, 4)), [](const auto& info) { return absl::Substitute( "n$0KiB_k$1_batch_size$2_offset$3", std::get<0>(info.param), std::get<1>(info.param), std::get<2>(info.param), std::get<3>(info.param)); }); }
2,120
cpp
tensorflow/tensorflow
cutlass_gemm_custom_kernel
third_party/xla/xla/service/gpu/kernels/cutlass_gemm_custom_kernel.cc
third_party/xla/xla/service/gpu/kernels/cutlass_gemm_custom_kernel_test.cc
#ifndef XLA_SERVICE_GPU_KERNELS_CUTLASS_GEMM_CUSTOM_KERNEL_H_ #define XLA_SERVICE_GPU_KERNELS_CUTLASS_GEMM_CUSTOM_KERNEL_H_ #include <cstdint> #include <string> #include "absl/status/statusor.h" #include "xla/service/gpu/kernels/custom_kernel.h" #include "xla/service/gpu/kernels/cutlass_gemm.h" #include "xla/stream_executor/device_description.h" #include "xla/xla_data.pb.h" namespace xla::gpu::kernel::gemm_universal { absl::StatusOr<CustomKernel> GetCutlassGemmKernel( std::string name, PrimitiveType dtype, int32_t m, int32_t n, int32_t k, const ArgsIndices& indices, const DynamicSliceIndices& slices, const se::DeviceDescription& device); absl::StatusOr<CustomKernel> LoadCutlassGemmKernel( std::string name, const std::string& library_path, PrimitiveType dtype, int32_t m, int32_t n, int32_t k, const ArgsIndices& indices, const DynamicSliceIndices& slices, const se::DeviceDescription& device); } #endif #include "xla/service/gpu/kernels/cutlass_gemm_custom_kernel.h" #include <cstddef> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "third_party/gpus/cuda/include/cuda.h" #include "xla/service/gpu/kernels/custom_kernel.h" #include "xla/service/gpu/kernels/cutlass_gemm.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/kernel_spec.h" #include "xla/stream_executor/launch_dim.h" #include "xla/xla_data.pb.h" namespace xla::gpu::kernel::gemm_universal { static constexpr auto Default = Arch::kDefault; static constexpr auto Sm80 = Arch::kSm80; static constexpr auto Sm90 = Arch::kSm90; extern template struct Adaptor<F32xF32ToF32<Default>>; extern template struct DeviceKernel<F32xF32ToF32<Default>>; extern template struct Adaptor<Bf16xBf16ToBf16<Default>>; extern template struct DeviceKernel<Bf16xBf16ToBf16<Default>>; extern template struct Adaptor<Bf16xBf16ToBf16<Sm80>>; extern template struct DeviceKernel<Bf16xBf16ToBf16<Sm80>>; extern template struct Adaptor<Bf16xBf16ToBf16<Sm90>>; extern template struct DeviceKernel<Bf16xBf16ToBf16<Sm90>>; using KernelArgsPacking = se::MultiKernelLoaderSpec::KernelArgsPacking; template <typename Dim> static Dim As(Dim3 dim3) { return Dim(dim3.x, dim3.y, dim3.z); } template <typename Dim> static std::optional<Dim> As(std::optional<Dim3> dim3) { if (dim3.has_value()) return Dim(dim3->x, dim3->y, dim3->z); return std::nullopt; } static int32_t* SlicePtr(const se::KernelArgsDeviceMemoryArray* args, int64_t index) { const void* opaque = args->device_memory_ptr(index); return static_cast<int32_t*>(const_cast<void*>(opaque)); } template <typename Tag> KernelArgsPacking ArgsPacking(int32_t m, int32_t n, int32_t k, const ArgsIndices& indices, const DynamicSliceIndices& slices, int32_t device_sms, Adaptor<Tag> adaptor) { using Packed = absl::StatusOr<std::unique_ptr<se::KernelArgsPackedArrayBase>>; struct Params { alignas(128) std::byte storage[1024]; }; return [=](const se::Kernel& kernel, const se::KernelArgs& args) -> Packed { auto* mem_args = se::Cast<se::KernelArgsDeviceMemoryArray>(&args); Arguments arguments = {m, n, k}; arguments.lhs = const_cast<void*>(mem_args->device_memory_ptr(indices.lhs)); arguments.rhs = const_cast<void*>(mem_args->device_memory_ptr(indices.rhs)); arguments.out = const_cast<void*>(mem_args->device_memory_ptr(indices.out)); if (indices.has_workspace) { size_t num_mem_args = mem_args->device_memory_args().size(); arguments.workspace = const_cast<void*>(mem_args->device_memory_ptr(num_mem_args - 1)); } else { arguments.workspace = nullptr; } if (slices.out.has_value()) { arguments.slices.out = SlicePtr(mem_args, *slices.out); } if (!adaptor.CanImplement(arguments)) { return absl::InternalError(absl::StrCat( "CUTLASS kernel can not implement gemm for a given problem size", ": m=", m, ", n=", n, ", k=", k)); } auto threads = As<se::ThreadDim>(adaptor.ThreadDim()); auto shmem_bytes = adaptor.SharedMemoryBytes(); static int32_t sm_occupancy = kernel.GetMaxOccupiedBlocksPerCore(threads, shmem_bytes).value_or(1); if (sm_occupancy == 0) { LOG_FIRST_N(WARNING, 1) << "CUTLASS gemm kernel reported 0 occupancy: threads_per_block=" << (threads.x * threads.y * threads.z) << ", dynamic_shared_memory_bytes=" << shmem_bytes; } Params params; adaptor.Initialize(&params, arguments, device_sms, sm_occupancy); return se::PackKernelArgs<Params, DynamicSliceArguments>( args.number_of_shared_bytes(), params, arguments.slices); }; } template <typename Tag> static absl::StatusOr<CustomKernel> Load(std::string name, int32_t m, int32_t n, int32_t k, const ArgsIndices& indices, const DynamicSliceIndices& slices, const se::DeviceDescription& device, Adaptor<Tag> adaptor = {}, DeviceKernel<Tag> kernel = {}) { auto cluster_dim = As<se::ClusterDim>(adaptor.ClusterDim()); auto block_dim = As<se::BlockDim>(adaptor.BlockDim(m, n, k)); auto thread_dim = As<se::ThreadDim>(adaptor.ThreadDim()); auto shared_memory_bytes = adaptor.SharedMemoryBytes(); auto packing = ArgsPacking<Tag>(m, n, k, indices, slices, device.core_count(), adaptor); se::MultiKernelLoaderSpec spec(2, std::move(packing)); spec.AddInProcessSymbol(kernel.symbol(), name); if (cluster_dim.has_value()) { return CustomKernel(std::move(name), std::move(spec), block_dim, thread_dim, *cluster_dim, shared_memory_bytes); } else { return CustomKernel(std::move(name), std::move(spec), block_dim, thread_dim, shared_memory_bytes); } } absl::StatusOr<CustomKernel> GetCutlassGemmKernel( std::string name, PrimitiveType dtype, int32_t m, int32_t n, int32_t k, const ArgsIndices& indices, const DynamicSliceIndices& slices, const se::DeviceDescription& device) { auto& cuda_cc = std::get<se::CudaComputeCapability>(device.gpu_compute_capability()); switch (dtype) { case PrimitiveType::F32: return Load<F32xF32ToF32<Default>>(std::move(name), m, n, k, indices, slices, device); case PrimitiveType::BF16: #if CUDA_VERSION >= 12000 if (cuda_cc.IsAtLeastHopper()) { return Load<Bf16xBf16ToBf16<Sm90>>(std::move(name), m, n, k, indices, slices, device); } #endif if (cuda_cc.IsAtLeastAmpere()) { return Load<Bf16xBf16ToBf16<Sm80>>(std::move(name), m, n, k, indices, slices, device); } return Load<Bf16xBf16ToBf16<Default>>(std::move(name), m, n, k, indices, slices, device); default: return absl::InvalidArgumentError("Unsupported CUTLASS gemm data type"); } } absl::StatusOr<CustomKernel> LoadCutlassGemmKernel( std::string name, const std::string& library_path, PrimitiveType dtype, int32_t m, int32_t n, int32_t k, const ArgsIndices& indices, const DynamicSliceIndices& slices, const se::DeviceDescription& device) { auto adaptor = Adaptor<DlOpenedKernel>::Load(library_path); if (!adaptor.has_value()) { return absl::InternalError( absl::StrCat("Failed to load CUTLASS adaptor from a shared library: ", library_path)); } auto kernel = DeviceKernel<DlOpenedKernel>::Load(library_path); if (!kernel.has_value()) { return absl::InternalError(absl::StrCat( "Failed to load CUTLASS kernel from a shared library: ", library_path)); } return Load<DlOpenedKernel>(std::move(name), m, n, k, indices, slices, device, *adaptor, *kernel); } }
#include "xla/service/gpu/kernels/cutlass_gemm_custom_kernel.h" #include <cstdint> #include <cstring> #include <string> #include <vector> #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/kernel_factory.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/path.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::gpu::kernel::gemm_universal { TEST(CutlassGemmKernelTest, SimpleGemm) { se::Platform* platform = se::PlatformManager::PlatformWithName("CUDA").value(); se::StreamExecutor* executor = platform->ExecutorForDevice(0).value(); auto stream = executor->CreateStream().value(); auto custom_kernel = GetCutlassGemmKernel( "cutlass_gemm", PrimitiveType::F32, 4, 4, 4, {0, 1, 2}, {}, executor->GetDeviceDescription()); TF_ASSERT_OK_AND_ASSIGN( auto gemm, se::KernelFactory::Create(executor, custom_kernel->kernel_spec())); int64_t length = 4 * 4; int64_t byte_length = sizeof(float) * length; se::DeviceMemory<float> a = executor->AllocateArray<float>(length, 0); se::DeviceMemory<float> b = executor->AllocateArray<float>(length, 0); se::DeviceMemory<float> c = executor->AllocateArray<float>(length, 0); float value = 2.0; uint32_t pattern; std::memcpy(&pattern, &value, sizeof(pattern)); TF_ASSERT_OK(stream->Memset32(&a, pattern, byte_length)); TF_ASSERT_OK(stream->Memset32(&b, pattern, byte_length)); TF_ASSERT_OK(stream->MemZero(&c, byte_length)); se::KernelArgsDeviceMemoryArray arr( std::vector<se::DeviceMemoryBase>({a, b, c}), custom_kernel->shared_memory_bytes()); TF_ASSERT_OK(stream->Launch(custom_kernel->thread_dims(), custom_kernel->block_dims(), *gemm, arr)); std::vector<float> dst(length, -1.0f); TF_ASSERT_OK(stream->Memcpy(dst.data(), c, byte_length)); std::vector<float> expected(length, 16.0); ASSERT_EQ(dst, expected); } TEST(CutlassGemmKernelTest, LoadFromSharedLibrary) { std::string kernel_lib_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "service", "gpu", "kernels", "cutlass_gemm_kernel_f32xf32_to_f32.so"); se::Platform* platform = se::PlatformManager::PlatformWithName("CUDA").value(); se::StreamExecutor* executor = platform->ExecutorForDevice(0).value(); auto stream = executor->CreateStream().value(); auto custom_kernel = LoadCutlassGemmKernel( "cutlass_gemm", kernel_lib_path, PrimitiveType::F32, 4, 4, 4, {0, 1, 2}, {}, executor->GetDeviceDescription()); TF_ASSERT_OK_AND_ASSIGN( auto gemm, se::KernelFactory::Create(executor, custom_kernel->kernel_spec())); int64_t length = 4 * 4; int64_t byte_length = sizeof(float) * length; se::DeviceMemory<float> a = executor->AllocateArray<float>(length, 0); se::DeviceMemory<float> b = executor->AllocateArray<float>(length, 0); se::DeviceMemory<float> c = executor->AllocateArray<float>(length, 0); float value = 2.0; uint32_t pattern; std::memcpy(&pattern, &value, sizeof(pattern)); TF_ASSERT_OK(stream->Memset32(&a, pattern, byte_length)); TF_ASSERT_OK(stream->Memset32(&b, pattern, byte_length)); TF_ASSERT_OK(stream->MemZero(&c, byte_length)); se::KernelArgsDeviceMemoryArray arr( std::vector<se::DeviceMemoryBase>({a, b, c}), custom_kernel->shared_memory_bytes()); TF_ASSERT_OK(stream->Launch(custom_kernel->thread_dims(), custom_kernel->block_dims(), *gemm, arr)); std::vector<float> dst(length, -1.0f); TF_ASSERT_OK(stream->Memcpy(dst.data(), c, byte_length)); std::vector<float> expected(length, 16.0); ASSERT_EQ(dst, expected); } }
2,121
cpp
tensorflow/tensorflow
reduction_mlir
third_party/xla/xla/service/gpu/fusions/reduction_mlir.cc
third_party/xla/xla/service/gpu/fusions/reduction_mlir_test.cc
#ifndef XLA_SERVICE_GPU_FUSIONS_REDUCTION_MLIR_H_ #define XLA_SERVICE_GPU_FUSIONS_REDUCTION_MLIR_H_ #include <cstdint> #include <optional> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "llvm/ADT/SmallVector.h" #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/Value.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/fusions/mlir/computation_partitioner.h" #include "xla/service/gpu/fusions/mlir/mlir_fusion_emitter.h" #include "xla/service/gpu/fusions/reduction_base.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/service/gpu/reduction_utils.h" #include "xla/shape.h" namespace xla { namespace gpu { using HloValueMap = absl::flat_hash_map<const HloInstruction*, llvm::SmallVector<mlir::Value>>; class MlirReductionFusion : public MlirFusionEmitterBase { public: explicit MlirReductionFusion(const HloFusionAnalysis& analysis); std::optional<IndexingMap> ComputeThreadIdToOutputIndexing( int64_t root_index, mlir::MLIRContext* ctx) const override = 0; std::optional<IndexingMap> ComputeThreadIdToInputIndexing( int64_t root_index, int64_t hero_operand_index, mlir::MLIRContext* ctx) const override; LaunchDimensions launch_dimensions() const override; const ReductionGroups& GetGroups() const { return groups_; } protected: struct EmitterState; friend struct EmitterState; absl::Status EmitEntryFunction( const mlir_converter::PartitionedComputations& computations, const mlir_converter::CallTargetProvider& call_targets, mlir::func::FuncOp entry_function, const HloFusionInstruction& fusion) const override; std::vector<mlir_converter::EpilogueSpecification> GetEpilogues( const HloFusionInstruction& fusion, mlir::MLIRContext* mlir_context) const override; llvm::SmallVector<mlir::Value> EvaluateEpilogue( mlir::ImplicitLocOpBuilder& b, const HloValueMap& results, llvm::SmallVector<mlir::Value> outputs, EmitterState& state, int group_id, mlir::MLIRContext* ctx, mlir::Value vector_index = nullptr) const; virtual llvm::SmallVector<mlir::Value> EmitReduction( int group_id, EmitterState& state) const = 0; Shape GetReduceOperandShape() const { return first_reduce_->operand(0)->shape(); } virtual IndexingMap ComputeThreadIdToReductionInputIndexing( mlir::MLIRContext* ctx) const = 0; std::vector<std::vector<const HloInstruction*>> reduction_heroes_; std::vector<std::vector<const HloInstruction*>> reduction_roots_; std::vector<std::vector<const HloInstruction*>> side_output_roots_; const HloFusionAnalysis& analysis_; absl::InlinedVector<int64_t, 4> input_shape_; absl::InlinedVector<int64_t, 4> tile_sizes_per_thread_; absl::InlinedVector<int64_t, 4> tile_sizes_per_block_; absl::InlinedVector<int64_t, 4> num_threads_; absl::InlinedVector<int64_t, 4> num_blocks_; int64_t total_num_blocks_; int64_t total_num_threads_per_block_; int64_t vector_size_ = -1; ReductionDimensions reduction_dimensions_; ReductionGroups groups_; const HloInstruction* first_reduce_; }; class MlirRowReductionFusion : public MlirReductionFusion { public: explicit MlirRowReductionFusion(const HloFusionAnalysis& analysis); std::optional<IndexingMap> ComputeThreadIdToOutputIndexing( int64_t root_index, mlir::MLIRContext* ctx) const override; protected: int GetRowsPerWarp() const; llvm::SmallVector<mlir::Value> EmitReduction( int group_id, EmitterState& state) const override; IndexingMap ComputeThreadIdToReductionInputIndexing( mlir::MLIRContext* ctx) const override; }; class MlirColumnReductionFusion : public MlirReductionFusion { public: explicit MlirColumnReductionFusion(const HloFusionAnalysis& analysis); std::optional<IndexingMap> ComputeThreadIdToOutputIndexing( int64_t root_index, mlir::MLIRContext* ctx) const override; protected: llvm::SmallVector<mlir::Value> EmitReduction( int group_id, EmitterState& state) const override; IndexingMap ComputeThreadIdToReductionInputIndexing( mlir::MLIRContext* ctx) const override; int64_t num_warps_per_column_; int64_t num_blocks_per_row_; }; std::unique_ptr<MlirReductionFusion> CreateMlirReductionFusion( const HloFusionAnalysis& analysis); } } #endif #include "xla/service/gpu/fusions/reduction_mlir.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <functional> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/types/span.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/GPU/IR/GPUDialect.h" #include "mlir/Dialect/SCF/IR/SCF.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/Dialect/Vector/IR/VectorOps.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/Builders.h" #include "mlir/IR/ImplicitLocOpBuilder.h" #include "mlir/IR/Location.h" #include "mlir/IR/TypeRange.h" #include "mlir/IR/Value.h" #include "mlir/IR/ValueRange.h" #include "mlir/Support/LLVM.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/fusions/fusion_emitter.h" #include "xla/service/gpu/fusions/mlir/computation_partitioner.h" #include "xla/service/gpu/fusions/mlir/elemental_hlo_to_mlir.h" #include "xla/service/gpu/fusions/mlir/ir/xla_gpu_ops.h" #include "xla/service/gpu/fusions/mlir/type_util.h" #include "xla/service/gpu/fusions/reduction_base.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/indexing_analysis.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/service/gpu/reduction_utils.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" namespace xla { namespace gpu { namespace ma = mlir::arith; using llvm::SmallVector; using mlir::AffineExpr; using mlir::AffineMap; using mlir::ImplicitLocOpBuilder; using mlir::MLIRContext; using mlir::Value; using mlir::ValueRange; using mlir_converter::PartitionedComputations; LaunchDimensions MlirReductionFusion::launch_dimensions() const { size_t blocks_y = groups_.grouped_roots.size(); return {se::BlockDim(total_num_blocks_, static_cast<int64_t>(blocks_y), 1), se::ThreadDim(total_num_threads_per_block_, 1, 1)}; } MlirReductionFusion::MlirReductionFusion(const HloFusionAnalysis& analysis) : analysis_(analysis) { auto* hero_reduction = analysis.FindHeroReduction(); CHECK_NE(hero_reduction, nullptr); Shape input_shape = hero_reduction->operand(0)->shape(); reduction_dimensions_ = GetReductionKindAndContiguousComponents(*hero_reduction); VLOG(10) << reduction_dimensions_; CHECK(ReductionIsRaceFree(hero_reduction->GetModule()->config(), reduction_dimensions_)) << "Non-race-free reductions should have been decomposed. Did " "tree_reduction_rewriter run?"; groups_ = GroupDisjointReductions(analysis, true); first_reduce_ = hero_reduction; const auto& groups = GetGroups(); int num_groups = groups.grouped_roots.size(); side_output_roots_.resize(num_groups); reduction_heroes_.resize(num_groups); reduction_roots_.resize(num_groups); absl::flat_hash_set<const HloInstruction*> seen_heroes; for (auto [root_adaptor, hero_adaptor, is_reduction, group_id] : llvm::zip(analysis.fusion_roots(), analysis.fusion_heroes(), groups.is_reduction_root, groups.group_id_per_root)) { const HloInstruction* root = &root_adaptor.instruction(); const HloInstruction* hero = &hero_adaptor.instruction(); if (is_reduction) { if (seen_heroes.insert(hero).second) { reduction_heroes_[group_id].push_back(hero); } reduction_roots_[group_id].push_back(root); } else { side_output_roots_[group_id].push_back(root); } } } struct MlirReductionFusion::EmitterState { EmitterState(const MlirReductionFusion& owner, mlir::func::FuncOp entry_function, const HloFusionInstruction& fusion, const PartitionedComputations& computations, const mlir_converter::CallTargetProvider& call_target) : owner(owner), entry_function(entry_function), fusion(fusion), computations(computations), call_target(call_target), builder(entry_function.getLoc(), entry_function), computation(computations.FindPartitionedComputation( fusion.fused_instructions_computation())) { int index = 0; for (const auto& root : owner.analysis_.fusion_roots()) { fusion_result_index_starts[&root.instruction()] = index; index += root.shape().IsTuple() ? root.shape().tuple_shapes_size() : 1; } } HloValueMap EmitPerThreadReducedElements(int group_id, const HloValueMap& inits); mlir::func::FuncOp GetReducer(const HloInstruction* hero) const { return call_target(hero->called_computations()[0]->root_instruction()); } SmallVector<Value> AllocateSharedTiles( absl::Span<const HloInstruction* const> heroes, absl::Span<const int64_t> shape); SmallVector<Value> FusionParams() { return ValueRange(entry_function.getArguments().take_front( fusion.fused_parameters().size())); } int OutputIndex(const HloInstruction* root, int result_index) { return fusion_result_index_starts[root] + result_index; } const MlirReductionFusion& owner; mlir::func::FuncOp entry_function; const HloFusionInstruction& fusion; const PartitionedComputations& computations; const mlir_converter::CallTargetProvider& call_target; ImplicitLocOpBuilder builder; const mlir_converter::PartitionedComputation& computation; absl::flat_hash_map<const HloInstruction*, int> fusion_result_index_starts; SmallVector<Value> thread_and_block_ids; }; std::vector<mlir_converter::EpilogueSpecification> MlirReductionFusion::GetEpilogues(const HloFusionInstruction& fusion, MLIRContext* mlir_context) const { std::vector<mlir_converter::EpilogueSpecification> epilogues; epilogues.reserve(reduction_heroes_.size()); for (const auto& [heroes, roots] : llvm::zip(reduction_heroes_, reduction_roots_)) { epilogues.push_back( mlir_converter::EpilogueSpecification::FromOutputIndexing( analysis_, heroes, roots, *this, mlir_context)); } for (const auto& roots : side_output_roots_) { for (const auto* root : roots) { epilogues.push_back( mlir_converter::EpilogueSpecification::FromIdentityIndexing( root, root, mlir_context)); } } return epilogues; } absl::Status MlirReductionFusion::EmitEntryFunction( const PartitionedComputations& computations, const mlir_converter::CallTargetProvider& call_targets, mlir::func::FuncOp entry_function, const HloFusionInstruction& fusion) const { EmitterState state{*this, entry_function, fusion, computations, call_targets}; auto& b = state.builder; b.setInsertionPointToStart(entry_function.addEntryBlock()); state.thread_and_block_ids = EmitThreadAndBlockIds(b); if (reduction_heroes_.size() == 1) { b.create<mlir::func::ReturnOp>(EmitReduction(0, state)); return absl::OkStatus(); } SmallVector<int64_t> cases(reduction_heroes_.size() - 1); absl::c_iota(cases, 1); auto switch_op = b.create<mlir::scf::IndexSwitchOp>( entry_function.getResultTypes(), EmitBlockId(b, 1), cases, cases.size()); b.create<mlir::func::ReturnOp>(switch_op.getResults()); for (auto [id, region] : llvm::enumerate(switch_op->getRegions())) { b.setInsertionPointToStart(&region.emplaceBlock()); b.create<mlir::scf::YieldOp>(EmitReduction(id, state)); } return absl::OkStatus(); } IndexingMap MlirRowReductionFusion::ComputeThreadIdToReductionInputIndexing( mlir::MLIRContext* ctx) const { auto rank = input_shape_.size(); auto thread_offsets = DelinearizeInBoundsIndex(getAffineDimExpr(0, ctx), num_threads_); auto block_offsets = DelinearizeInBoundsIndex(getAffineDimExpr(3, ctx), num_blocks_); SmallVector<AffineExpr> results; results.resize(rank); for (int i = 0; i < rank; ++i) { results[i] = block_offsets[i] * tile_sizes_per_block_[i] + thread_offsets[i]; if (tile_sizes_per_thread_[i] > 1) { results[i] = results[i] + getAffineSymbolExpr(i, ctx) * num_threads_[i]; } } IndexingMap map{AffineMap::get(6, rank, results, ctx), DimVarsFromTensorSizes({total_num_threads_per_block_, 1, 1, total_num_blocks_, 1, 1}), RangeVarsFromTensorSizes(tile_sizes_per_thread_), {}}; for (auto [result, input_dim] : llvm::zip(results, input_shape_)) { map.AddConstraint(result, {0, input_dim - 1}); } return map; } HloValueMap MlirReductionFusion::EmitterState::EmitPerThreadReducedElements( int group_id, const HloValueMap& inits) { auto tile_indexing = owner.ComputeThreadIdToReductionInputIndexing(builder.getContext()); tile_indexing .GetMutableDimensionBound( KernelFusionInterface::kIndexingMapBlockIdxDims[1]) .upper = owner.reduction_heroes_.size(); tile_indexing.Simplify(); bool vectorize = owner.vector_size_ > 1; SmallVector<Value> iter_arg_inits; const auto& side_outputs = owner.side_output_roots_[group_id]; const auto& reductions = owner.reduction_heroes_[group_id]; absl::flat_hash_map<const HloInstruction*, int> iter_arg_starts; for (const auto& [hero, init] : inits) { iter_arg_starts[hero] = iter_arg_inits.size(); iter_arg_inits.append(init); } auto body_builder = [&](ValueRange iter_args, ValueRange dim_values, ValueRange symbol_values) -> SmallVector<Value> { auto tile_indices = mlir_converter::ApplyIndexing(tile_indexing, dim_values, symbol_values, builder); llvm::SmallVector<Value> results(iter_args.size(), nullptr); for (auto* reduction : reductions) { int arity = reduction->operand_count() / 2; int start = iter_arg_starts[reduction]; SmallVector<Value> reduce_args = iter_args.slice(start, arity); auto indices = mlir_converter::ApplyIndexing( GetBitcastMap(owner.input_shape_, reduction->operand(0)->shape(), builder.getContext()), tile_indices, {}, builder); reduce_args.append(ProvideParameterRange(computation, reduction, 0, arity, indices, call_target, entry_function, builder)); const auto& reducer = GetReducer(reduction); absl::c_copy( builder.create<PureCallOp>(reducer, reduce_args).getResults(), results.begin() + start); } struct SideOutput { llvm::SmallVector<Value> indices; Value scalar; }; llvm::SmallVector<SideOutput> side_output_values; for (auto* side_output : side_outputs) { auto indices = mlir_converter::ApplyIndexing( GetBitcastMap(owner.input_shape_, side_output->shape(), builder.getContext()), tile_indices, {}, builder); auto* root_tuple = fusion.fused_expression_root(); Value value = mlir_converter::ProvideParameter( computation, root_tuple, root_tuple->operand_index(side_output), indices, call_target, entry_function, builder)[0]; side_output_values.push_back({std::move(indices), value}); } for (const auto& [side_output, values] : llvm::zip(side_outputs, side_output_values)) { int offset = iter_arg_starts[side_output]; results[offset] = builder.create<mlir::tensor::InsertOp>( values.scalar, iter_args[offset], values.indices); } return results; }; auto results_vector = owner.EmitThreadLoopNest( builder, iter_arg_inits, tile_indexing, body_builder, vectorize); mlir::ValueRange results = results_vector; HloValueMap results_per_hero; for (const auto& [hero, init] : inits) { results_per_hero[hero] = results.slice(iter_arg_starts[hero], init.size()); } return results_per_hero; } SmallVector<Value> MlirReductionFusion::EmitterState::AllocateSharedTiles( absl::Span<const HloInstruction* const> heroes, absl::Span<const int64_t> shape) { SmallVector<Value> tiles; for (auto* hero : heroes) { for (int i = 0; i < hero->operand_count() / 2; ++i) { auto tile_shape = ShapeUtil::MakeShapeWithDescendingLayout( hero->operand(i)->shape().element_type(), shape); tiles.push_back(builder.create<AllocateSharedOp>( mlir_converter::TensorShapeToMlirType(tile_shape, builder))); } } return tiles; } std::optional<IndexingMap> MlirReductionFusion::ComputeThreadIdToInputIndexing( int64_t root_index, int64_t hero_operand_index, MLIRContext* ctx) const { const auto& hero = analysis_.fusion_hero(root_index).instruction(); if (groups_.is_reduction_root[root_index] && hero_operand_index >= hero.operand_count() / 2) { return std::nullopt; } if (!groups_.is_reduction_root[root_index]) { return ComposeIndexingMaps( *ComputeThreadIdToOutputIndexing(root_index, ctx), *ComputeOutputToInputIndexing( &analysis_.fusion_root(root_index).instruction(), 0, ctx) .indexing_maps[hero_operand_index] .begin()); } auto map = ComputeThreadIdToReductionInputIndexing(ctx); AddGroupIdConstraint(map, root_index, groups_); return map * GetBitcastMap(input_shape_, hero.operand(hero_operand_index)->shape(), ctx); } SmallVector<Value> MlirReductionFusion::EvaluateEpilogue( ImplicitLocOpBuilder& b, const HloValueMap& results, llvm::SmallVector<Value> outputs, EmitterState& state, int group_id, MLIRContext* ctx, Value vector_index) const { Value zero = b.create<ma::ConstantIndexOp>(0); const auto& epilogue = state.computations.epilogues()[group_id]; if (epilogue.roots.empty()) return outputs; llvm::SmallVector<Value> epilogue_input_symbols( epilogue.root_indexing.front().GetAffineMap().getNumSymbols(), zero); auto epilogue_input_indices = state.thread_and_block_ids; epilogue_input_indices.append(epilogue_input_symbols); if (!epilogue_input_symbols.empty() && vector_index) { epilogue_input_symbols.back() = epilogue_input_indices.back() = vector_index; } auto values = EmitEpilogue(group_id, state.computations, state.entry_function, results, epilogue_input_indices, b); int first_root_index = state.OutputIndex(epilogue.roots.front(), 0); auto thread_has_output = mlir_converter::CheckConstraints( *ComputeThreadIdToOutputIndexing(first_root_index, ctx), state.thread_and_block_ids, epilogue_input_symbols, b); for (auto [index, root] : llvm::enumerate(epilogue.roots)) { auto output_indices = mlir_converter::ApplyIndexing( epilogue.root_indexing[index], state.thread_and_block_ids, epilogue_input_symbols, b); for (auto [result_index, result] : llvm::enumerate(values.at(root))) { auto& output = outputs[state.OutputIndex(root, result_index)]; output = b.create<PredicatedInsertOp>(thread_has_output, result, output, output_indices); } } return outputs; } MlirRowReductionFusion::MlirRowReductionFusion( const HloFusionAnalysis& analysis) : MlirReductionFusion(analysis) { CHECK(reduction_dimensions_.is_row_reduction); Vector3 shape = reduction_dimensions_.dimensions; Vector3 reduction_tiling = { std::min(reduction_dimensions_ .dimensions[ReductionDimensions::kRowMajorReducedDimension], BatchedReductionRaceFreeBound()), 1, 16}; int64_t num_threads_y = 1; int64_t rows_per_warp = RowReductionGetRowsPerWarp( shape[ReductionDimensions::kRowMinorReducedDimension]); int64_t num_threads_x = [&] { if (rows_per_warp > 1) { return shape[ReductionDimensions::kRowMinorReducedDimension]; } int64_t max_block_size = MinThreadsXRowReduction(first_reduce_->GetModule()->config()); return std::min( max_block_size, RoundUpTo( CeilOfRatio(shape[ReductionDimensions::kRowMinorReducedDimension], reduction_tiling [ReductionDimensions::kRowMinorReducedDimension]), WarpSize())); }(); constexpr int64_t kThreadsPerBlockTarget = 256; if (num_threads_x * 2 <= kThreadsPerBlockTarget) { int64_t kept_size = reduction_dimensions_ .dimensions[ReductionDimensions::kRowKeptDimension]; if (kept_size * num_threads_x <= kThreadsPerBlockTarget) { num_threads_y = kept_size; while ((num_threads_x * num_threads_y) % 32) ++num_threads_y; } else { num_threads_y = kThreadsPerBlockTarget / num_threads_x; } } int vector_size = GetVectorSizeForMlir(analysis, reduction_dimensions_, num_threads_x); num_threads_ = absl::InlinedVector<int64_t, 4>{1, num_threads_y, num_threads_x}; input_shape_ = {shape[0], shape[1], shape[2] / vector_size}; tile_sizes_per_thread_ = { reduction_tiling[0], reduction_tiling[1], std::max<int64_t>(reduction_tiling[2] / vector_size, 1)}; for (int i = 0; i < num_threads_.size(); ++i) { tile_sizes_per_thread_[i] = std::min(tile_sizes_per_thread_[i], CeilOfRatio(input_shape_[i], num_threads_[i])); } if (rows_per_warp > 1) { tile_sizes_per_thread_[2] = 1; } if (vector_size != 1) { num_threads_.push_back(1); input_shape_.push_back(vector_size); tile_sizes_per_thread_.push_back(vector_size); } num_threads_.push_back(1); input_shape_.push_back(1); tile_sizes_per_thread_.push_back(1); tile_sizes_per_block_.resize(input_shape_.size()); num_blocks_.resize(input_shape_.size()); for (int64_t i = 0; i < input_shape_.size(); ++i) { tile_sizes_per_block_[i] = tile_sizes_per_thread_[i] * num_threads_[i]; CHECK_NE(tile_sizes_per_block_[i], 0); num_blocks_[i] = CeilOfRatio(input_shape_[i], tile_sizes_per_block_[i]); CHECK_NE(num_blocks_[i], 0); } total_num_blocks_ = Product(num_blocks_); total_num_threads_per_block_ = Product(num_threads_); vector_size_ = tile_sizes_per_thread_.back(); } std::optional<IndexingMap> MlirRowReductionFusion::ComputeThreadIdToOutputIndexing( int64_t root_index, MLIRContext* ctx) const { if (!groups_.is_reduction_root[root_index]) { auto map = ComposeIndexingMaps( ComputeThreadIdToReductionInputIndexing(ctx), GetBitcastMap(input_shape_, analysis_.fusion_root(root_index).shape(), ctx)); AddGroupIdConstraint(map, root_index, groups_); return map; } const auto& hero = analysis_.fusion_hero(root_index).instruction(); auto thread_ids = DelinearizeInBoundsIndex(mlir::getAffineDimExpr(0, ctx), num_threads_); auto block_offsets = GetBlockOffsetsForTiling( num_blocks_, tile_sizes_per_block_, input_shape_.size(), ctx); auto physical_shape = ShapeUtil::DeleteDimensions(hero.dimensions(), hero.operand(0)->shape()); std::vector<DimVar> dimension_ranges{ {{0, total_num_threads_per_block_ - 1}}, {}, {}, {{0, total_num_blocks_ - 1}}, {{0, static_cast<int64_t>(groups_.grouped_roots.size() - 1)}}, {}, }; constexpr int kRowKept = ReductionDimensions::kRowKeptDimension; constexpr int kRowMinorReduced = ReductionDimensions::kRowMinorReducedDimension; auto map = [&]() { IndexingMap linear_index( mlir::AffineMap::get( 6, 0, block_offsets.getResult(kRowKept) + thread_ids[kRowKept], ctx), dimension_ranges, {}, {}); int rows_per_warp = GetRowsPerWarp(); if (rows_per_warp > 1) { linear_index.AddConstraint( thread_ids[kRowMinorReduced] % (WarpSize() / rows_per_warp), {0, 0}); } else { linear_index.AddConstraint(thread_ids[kRowMinorReduced], {0, 0}); } return ComposeIndexingMaps( linear_index, GetBitcastMap({input_shape_[kRowKept]}, physical_shape, ctx)); }(); AddGroupIdConstraint(map, root_index, groups_); return map; } int MlirRowReductionFusion::GetRowsPerWarp() const { return RowReductionGetRowsPerWarp( input_shape_[ReductionDimensions::kRowMinorReducedDimension]); } llvm::SmallVector<mlir::Value> MlirRowReductionFusion::EmitReduction( int group_id, EmitterState& state) const { auto& b = state.builder; auto* ctx = state.entry_function.getContext(); int num_warps_row = num_threads_[ReductionDimensions::kRowMinorReducedDimension] / WarpSize(); Value zero = b.create<ma::ConstantIndexOp>(0); Value one = b.create<ma::ConstantIndexOp>(1); Value thread_id = state.thread_and_block_ids[0]; auto thread_indexing = GetBitcastMap({total_num_threads_per_block_}, ShapeUtil::MakeShapeWithDescendingLayout(U8, num_threads_), b.getContext()); auto thread_ids = mlir_converter::ApplyIndexing(thread_indexing, {thread_id}, {}, b); Value lane_id = b.create<mlir::gpu::LaneIdOp>(nullptr); Value warp_id = b.create<ma::DivUIOp>( thread_ids[ReductionDimensions::kRowMinorReducedDimension], b.create<ma::ConstantIndexOp>(WarpSize())); Value is_first_lane = b.create<ma::CmpIOp>(ma::CmpIPredicate::eq, lane_id, zero); int64_t vector_size = tile_sizes_per_thread_.back(); Value vector_size_cst = b.create<ma::ConstantIndexOp>(vector_size); std::vector<int64_t> shared_tile_size; if (GetRowsPerWarp() == 1 && num_warps_row > 1) { CHECK_EQ(vector_size, 1); shared_tile_size = {num_threads_[ReductionDimensions::kRowKeptDimension], num_warps_row}; } HloValueMap inits; const auto& reductions = reduction_heroes_[group_id]; for (auto* hero : reductions) { int arity = hero->operand_count() / 2; inits[hero] = ProvideParameterRange(state.computation, hero, arity, arity, {}, state.call_target, state.entry_function, b); } llvm::SmallVector<Value> outputs = mlir::ValueRange(state.entry_function.getArguments().drop_front( state.fusion.fused_parameters().size())); for (auto* side_output : side_output_roots_[group_id]) { inits[side_output].push_back(outputs[state.OutputIndex(side_output, 0)]); } auto accumulated = state.EmitPerThreadReducedElements(group_id, inits); for (auto root : side_output_roots_[group_id]) { outputs[state.OutputIndex(root, 0)] = accumulated[root].front(); } for (auto* reduction : reductions) { auto reducer = state.GetReducer(reduction); int max_dist = WarpSize() / 2 / GetRowsPerWarp(); auto& values = accumulated[reduction]; values = b.create<ShuffleReduceOp>(reducer, values, max_dist).getResults(); } if (shared
#include "xla/service/gpu/fusions/reduction_mlir.h" #include <optional> #include <gtest/gtest.h> #include "absl/strings/substitute.h" #include "xla/error_spec.h" #include "xla/service/gpu/fusions/mlir_emitter_test_base.h" #include "xla/service/gpu/model/indexing_test_utils.h" #include "tsl/lib/core/status_test_util.h" namespace xla { namespace gpu { namespace { using ::testing::ElementsAre; using ::testing::SizeIs; using MlirRowReductionTest = MlirEmitterTestBase<MlirRowReductionFusion>; using MlirColumnReductionTest = MlirEmitterTestBase<MlirColumnReductionFusion>; TEST_F(MlirRowReductionTest, VariadicRowReduce) { constexpr auto kHloString = R"( HloModule Test, is_scheduled=true Add { scalar_lhs.0 = f32[] parameter(0) scalar_rhs.0 = f32[] parameter(1) scalar_lhs.1 = f32[] parameter(2) scalar_rhs.1 = f32[] parameter(3) add.0 = f32[] add(scalar_lhs.0, scalar_lhs.1) add.1 = f32[] add(scalar_rhs.0, scalar_rhs.1) ROOT t = (f32[], f32[]) tuple(add.0, add.1) } fused_computation { param_0 = f32[2, 3, 2048] parameter(0) param_1 = f32[2, 3, 2048] parameter(1) param_2 = f32[] parameter(2) ROOT d.1 = (f32[2, 3], f32[2, 3]) reduce(param_0, param_1, param_2, param_2), dimensions={2}, to_apply=Add } ENTRY main { a = f32[2, 3, 2048] parameter(0) b = f32[2, 3, 2048] parameter(1) c = f32[] constant(0) ROOT fusion = (f32[2, 3], f32[2, 3]) fusion(a, b, c), kind=kInput, calls=fused_computation })"; auto module = ParseAndReturnVerifiedModule(kHloString).value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirRowReductionFusion fusion(analysis); EXPECT_THAT( fusion.ComputeThreadIdToInputIndexing(0, 0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3, s4] -> ( (d3 * 2 + d0 floordiv 128) floordiv 3, (d3 * 2 + d0 floordiv 128) mod 3, (d0 mod 128 + s2 * 128) * 2 + s3) domain: d0 in [0, 256) d1 in [0, 1) d2 in [0, 1) d3 in [0, 3) d4 in [0, 1) d5 in [0, 1) s0 in [0, 1) s1 in [0, 1) s2 in [0, 8) s3 in [0, 2) s4 in [0, 1) d0 mod 128 + s2 * 128 in [0, 1024) d3 * 2 + d0 floordiv 128 in [0, 6) )")); EXPECT_THAT( fusion.ComputeThreadIdToOutputIndexing(0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5) -> ((d3 * 2 + d0 floordiv 128) floordiv 3, (d3 * 2 + d0 floordiv 128) mod 3) domain: d0 in [0, 256) d1 in [0, 1) d2 in [0, 1) d3 in [0, 3) d4 in [0, 1) d5 in [0, 1) d0 mod 128 in [0, 1) d3 * 2 + d0 floordiv 128 in [0, 6) )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirRowReductionTest, RowReduceEpilogue) { constexpr auto kHloString = R"( HloModule Test, is_scheduled=true Add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } fused_computation { param_0 = f32[8,2048] parameter(0) param_1 = f32[] parameter(1) reduce = f32[8] reduce(param_0, param_1), dimensions={1}, to_apply=Add ROOT log = f32[8] log(reduce) } ENTRY main { a = f32[8,2048] parameter(0) c = f32[] constant(0) ROOT fusion = f32[8] fusion(a, c), kind=kInput, calls=fused_computation })"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirRowReductionTest, RowReduceMOFEpilogue) { constexpr auto kHloString = R"( HloModule Test, is_scheduled=true Add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } Mul { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT mul = f32[] multiply(lhs, rhs) } fused_computation { param_0 = f32[8,1024] parameter(0) param_1 = f32[] parameter(1) reduce1 = f32[8] reduce(param_0, param_1), dimensions={1}, to_apply=Add reduce2 = f32[8] reduce(param_0, param_1), dimensions={1}, to_apply=Mul log = f32[8] log(reduce1) abs = f32[8] abs(reduce1) neg = f32[8] negate(reduce2) ROOT tuple = (f32[8], f32[8], f32[8]) tuple(log, neg, abs) } ENTRY main { a = f32[8,1024] parameter(0) c = f32[] constant(0) ROOT fusion = (f32[8], f32[8], f32[8]) fusion(a, c), kind=kInput, calls=fused_computation })"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirRowReductionTest, RowReduceMOFGroups) { constexpr auto kHloString = R"( %add_f32 { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } %fused_computation { %param0 = f32[1024] parameter(0) %param1 = f32[1024] parameter(1) %constant0 = f32[] constant(0) %reduce1 = f32[] reduce(%param0, %constant0), dimensions={0}, to_apply=%add_f32 %reduce2 = f32[] reduce(%param1, %constant0), dimensions={0}, to_apply=%add_f32 ROOT %tuple = (f32[], f32[]) tuple(%reduce1, %reduce2) } ENTRY %cluster { %param0 = f32[1024] parameter(0) %param1 = f32[1024] parameter(1) ROOT %fusion = (f32[], f32[]) fusion(%param0, %param1), kind=kInput, calls=%fused_computation })"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirRowReductionTest, F64RowReduction) { constexpr auto kHloString = R"( HloModule Test, is_scheduled=true Add { lhs = f64[] parameter(0) rhs = f64[] parameter(1) ROOT add = f64[] add(lhs, rhs) } fused_computation { param_0 = f64[100,128] parameter(0) param_1 = f64[] parameter(1) ROOT reduce = f64[100] reduce(param_0, param_1), dimensions={1}, to_apply=Add } ENTRY main { a = f64[100,128] parameter(0) c = f64[] constant(0) ROOT fusion = f64[100] fusion(a, c), kind=kInput, calls=fused_computation })"; auto module = ParseAndReturnVerifiedModule(kHloString).value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirRowReductionFusion fusion(analysis); EXPECT_THAT( fusion.ComputeThreadIdToInputIndexing(0, 0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3] -> ( d3 * 8 + d0 floordiv 32, d0 mod 32 + s2 * 32) domain: d0 in [0, 256) d1 in [0, 1) d2 in [0, 1) d3 in [0, 13) d4 in [0, 1) d5 in [0, 1) s0 in [0, 1) s1 in [0, 1) s2 in [0, 4) s3 in [0, 1) d0 mod 32 + s2 * 32 in [0, 128) d3 * 8 + d0 floordiv 32 in [0, 100) )")); EXPECT_THAT( fusion.ComputeThreadIdToOutputIndexing(0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5) -> (d3 * 8 + d0 floordiv 32) domain: d0 in [0, 256) d1 in [0, 1) d2 in [0, 1) d3 in [0, 13) d4 in [0, 1) d5 in [0, 1) d0 mod 32 in [0, 1) d3 * 8 + d0 floordiv 32 in [0, 100) )")); TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirRowReductionTest, MultiRowReduction) { constexpr auto kHloString = R"( HloModule Test, is_scheduled=true Add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } fused_computation { param_0 = f32[1024,4] parameter(0) param_1 = f32[] parameter(1) ROOT reduce = f32[1024] reduce(param_0, param_1), dimensions={1}, to_apply=Add } ENTRY main { a = f32[1024,4] parameter(0) c = f32[] constant(0) ROOT fusion = f32[1024] fusion(a, c), kind=kInput, calls=fused_computation })"; auto module = ParseAndReturnVerifiedModule(kHloString).value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirRowReductionFusion fusion(analysis); EXPECT_THAT( fusion.ComputeThreadIdToInputIndexing(0, 0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3] -> ( d3 * 64 + d0 floordiv 4, d0 mod 4) domain: d0 in [0, 256) d1 in [0, 1) d2 in [0, 1) d3 in [0, 16) d4 in [0, 1) d5 in [0, 1) s0 in [0, 1) s1 in [0, 1) s2 in [0, 1) s3 in [0, 1) d0 mod 4 in [0, 4) d3 * 64 + d0 floordiv 4 in [0, 1024) )")); EXPECT_THAT( fusion.ComputeThreadIdToOutputIndexing(0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5) -> (d3 * 64 + d0 floordiv 4) domain: d0 in [0, 256) d1 in [0, 1) d2 in [0, 1) d3 in [0, 16) d4 in [0, 1) d5 in [0, 1) d0 mod 4 in [0, 1) d3 * 64 + d0 floordiv 4 in [0, 1024) )")); TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirRowReductionTest, NonPowerOfTwoRowReduction) { constexpr auto kHloString = R"( HloModule Test, is_scheduled=true Add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } fused_computation { param_0 = f32[100,568] parameter(0) param_1 = f32[] parameter(1) ROOT reduce = f32[100] reduce(param_0, param_1), dimensions={1}, to_apply=Add } ENTRY main { a = f32[100,568] parameter(0) c = f32[] constant(0) ROOT fusion = f32[100] fusion(a, c), kind=kInput, calls=fused_computation })"; TF_EXPECT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirRowReductionTest, NonTrivialEpilogue) { constexpr auto kHloString = R"( HloModule module add { p0 = f64[] parameter(0) p1 = f64[] parameter(1) ROOT add = f64[] add(p0, p1) } fusion { %p0 = f64[4] parameter(0) %p1 = f64[4] parameter(1) %c0 = f64[] constant(-inf) %reduce0 = f64[] reduce(p1, c0), dimensions={0}, to_apply=add %bc0 = f64[4] broadcast(reduce0), dimensions={} %compare0 = pred[4] compare(p1, bc0), direction=EQ %c1 = f64[] constant(0) %bc1 = f64[4] broadcast(c1), dimensions={} %select.3.1 = f64[4] select(compare0, p0, bc1) %reduce1 = f64[] reduce(select.3.1, c1), dimensions={0}, to_apply=add %convert0 = f64[4] convert(compare0) %reduce2 = f64[] reduce(convert0, c1), dimensions={0}, to_apply=add ROOT %tuple.1 = (f64[], f64[], f64[]) tuple(%reduce1, reduce0, reduce2) } ENTRY main { %p0 = f64[4] parameter(0) %p1 = f64[4] parameter(1) ROOT %fusion = (f64[], f64[], f64[]) fusion(%p0, %p1), kind=kInput, calls=fusion })"; auto module = ParseAndReturnVerifiedModule(kHloString).value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirRowReductionFusion fusion(analysis); EXPECT_THAT( fusion.ComputeThreadIdToInputIndexing(0, 0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3] -> ( (d0 floordiv 4) * 4 + d0 mod 4) domain: d0 in [0, 4) d1 in [0, 1) d2 in [0, 1) d3 in [0, 1) d4 in [0, 1) d5 in [0, 1) s0 in [0, 1) s1 in [0, 1) s2 in [0, 1) s3 in [0, 1) d0 mod 4 in [0, 4) )")); EXPECT_THAT( fusion.ComputeThreadIdToOutputIndexing(0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5) -> () domain: d0 in [0, 4) d1 in [0, 1) d2 in [0, 1) d3 in [0, 1) d4 in [0, 1) d5 in [0, 1) d0 mod 4 in [0, 1) )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirRowReductionTest, SideOutput) { constexpr auto kHloString = R"( HloModule Test, is_scheduled=true Add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } fused_computation { param_0 = f32[8,2048] parameter(0) param_1 = f32[] parameter(1) exp = f32[8,2048] exponential(param_0) reduce = f32[8] reduce(param_0, param_1), dimensions={1}, to_apply=Add ROOT t = (f32[8], f32[8,2048]) tuple(reduce, exp) } ENTRY main { a = f32[8,2048] parameter(0) c = f32[] constant(0) ROOT fusion = (f32[8], f32[8,2048]) fusion(a, c), kind=kInput, calls=fused_computation })"; auto module = ParseAndReturnVerifiedModule(kHloString).value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirRowReductionFusion fusion(analysis); EXPECT_THAT( fusion.ComputeThreadIdToInputIndexing(0, 0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3, s4] -> ( d3 * 2 + d0 floordiv 128, (d0 mod 128 + s2 * 128) * 2 + s3) domain: d0 in [0, 256) d1 in [0, 1) d2 in [0, 1) d3 in [0, 4) d4 in [0, 1) d5 in [0, 1) s0 in [0, 1) s1 in [0, 1) s2 in [0, 8) s3 in [0, 2) s4 in [0, 1) d0 mod 128 + s2 * 128 in [0, 1024) d3 * 2 + d0 floordiv 128 in [0, 8) )")); EXPECT_THAT( fusion.ComputeThreadIdToOutputIndexing(0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5) -> (d3 * 2 + d0 floordiv 128) domain: d0 in [0, 256) d1 in [0, 1) d2 in [0, 1) d3 in [0, 4) d4 in [0, 1) d5 in [0, 1) d0 mod 128 in [0, 1) d3 * 2 + d0 floordiv 128 in [0, 8) )")); TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirRowReductionTest, UnsignedSideOutput) { constexpr auto kHloString = R"( HloModule Test, is_scheduled=true Add { lhs = u32[] parameter(0) rhs = u32[] parameter(1) ROOT add = u32[] add(lhs, rhs) } fused_computation { param_0 = u32[8,2048] parameter(0) param_1 = u32[] parameter(1) add = u32[8,2048] add(param_0, param_0) reduce = u32[8] reduce(param_0, param_1), dimensions={1}, to_apply=Add ROOT t = (u32[8], u32[8,2048]) tuple(reduce, add) } ENTRY main { a = u32[8,2048] parameter(0) c = u32[] constant(0) ROOT fusion = (u32[8], u32[8,2048]) fusion(a, c), kind=kInput, calls=fused_computation })"; auto module = ParseAndReturnVerifiedModule(kHloString).value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirRowReductionFusion fusion(analysis); EXPECT_THAT( fusion.ComputeThreadIdToInputIndexing(0, 0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3, s4] -> ( d3 * 2 + d0 floordiv 128, (d0 mod 128 + s2 * 128) * 2 + s3) domain: d0 in [0, 256) d1 in [0, 1) d2 in [0, 1) d3 in [0, 4) d4 in [0, 1) d5 in [0, 1) s0 in [0, 1) s1 in [0, 1) s2 in [0, 8) s3 in [0, 2) s4 in [0, 1) d0 mod 128 + s2 * 128 in [0, 1024) d3 * 2 + d0 floordiv 128 in [0, 8) )")); EXPECT_THAT( fusion.ComputeThreadIdToOutputIndexing(0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5) -> (d3 * 2 + d0 floordiv 128) domain: d0 in [0, 256) d1 in [0, 1) d2 in [0, 1) d3 in [0, 4) d4 in [0, 1) d5 in [0, 1) d0 mod 128 in [0, 1) d3 * 2 + d0 floordiv 128 in [0, 8) )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirRowReductionTest, BroadcastSideOutput) { constexpr auto kHloString = R"( %add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } %fusion { %p0 = f32[6,6] parameter(0) %c0 = f32[] constant(0) %reduce = f32[] reduce(%p0, %c0), dimensions={0,1}, to_apply=%add %broadcast = f32[6,6] broadcast(%reduce), dimensions={} ROOT %tuple = (f32[6,6], f32[]) tuple(%broadcast, %reduce) } ENTRY main { %p0 = f32[6,6] parameter(0) ROOT %fusion = (f32[6,6], f32[]) fusion(%p0), kind=kInput, calls=%fusion })"; auto module = ParseAndReturnVerifiedModule(kHloString).value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirRowReductionFusion fusion(analysis); EXPECT_THAT( fusion.ComputeThreadIdToInputIndexing(0, 0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3] -> () domain: d0 in [0, 32) d1 in [0, 1) d2 in [0, 1) d3 in [0, 1) d4 in [0, 1) d5 in [0, 1) s0 in [0, 1) s1 in [0, 1) s2 in [0, 2) s3 in [0, 1) (d0 + s2 * 32) mod 6 in [0, 6) d0 + s2 * 32 in [0, 36) )")); EXPECT_THAT( fusion.ComputeThreadIdToOutputIndexing(0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3] -> ( (d0 + s2 * 32) floordiv 6, (d0 + s2 * 32) mod 6) domain: d0 in [0, 32) d1 in [0, 1) d2 in [0, 1) d3 in [0, 1) d4 in [0, 1) d5 in [0, 1) s0 in [0, 1) s1 in [0, 1) s2 in [0, 2) s3 in [0, 1) d0 + s2 * 32 in [0, 36) )")); TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirRowReductionTest, VariadicMOF) { constexpr auto kHloString = R"( %reducer1 { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } %reducer2 { p0 = f32[] parameter(0) p1 = f32[] parameter(1) p2 = f32[] parameter(2) p3 = f32[] parameter(3) add0 = f32[] add(p0, p2) add1 = f32[] add(p1, p3) ROOT tuple = (f32[], f32[]) tuple(add0, add1) } %fusion { %p0 = f32[6,6] parameter(0) %c0 = f32[] constant(0) %neg = f32[6,6] negate(%p0) %reduce1 = f32[] reduce(%neg, %c0), dimensions={0,1}, to_apply=%reducer1 %reduce2 = (f32[], f32[]) reduce(%p0, %p0, %c0, %c0), dimensions={0,1}, to_apply=%reducer2 ROOT %tuple = (f32[], (f32[], f32[]), f32[6,6]) tuple(%reduce1, %reduce2, %neg) } ENTRY main { %p0 = f32[6,6] parameter(0) ROOT %fusion = (f32[], (f32[], f32[]), f32[6,6]) fusion(%p0), kind=kInput, calls=%fusion })"; auto module = ParseAndReturnVerifiedModule(kHloString).value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirRowReductionFusion fusion(analysis); EXPECT_THAT( fusion.ComputeThreadIdToInputIndexing(0, 0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3] -> ( (d0 + s2 * 32) floordiv 6, (d0 + s2 * 32) mod 6) domain: d0 in [0, 32) d1 in [0, 1) d2 in [0, 1) d3 in [0, 1) d4 in [0, 1) d5 in [0, 1) s0 in [0, 1) s1 in [0, 1) s2 in [0, 2) s3 in [0, 1) d0 + s2 * 32 in [0, 36) )")); EXPECT_THAT( fusion.ComputeThreadIdToOutputIndexing(0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5) -> () domain: d0 in [0, 1) d1 in [0, 1) d2 in [0, 1) d3 in [0, 1) d4 in [0, 1) d5 in [0, 1) )")); TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirRowReductionTest, ThreadIndexingOutputLayout) { auto module = ParseAndReturnVerifiedModule(R"( HloModule module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fusion { %input = f32[100,64,512] parameter(0) %c0 = f32[] constant(0) ROOT reduce = f32[100,64]{0,1} reduce(%input, %c0), dimensions={2}, to_apply=add } ENTRY entry { %input = f32[100,64,512] parameter(0) ROOT %fusion = f32[100,64]{0,1} fusion(%input), kind=kInput, calls=fusion })") .value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirRowReductionFusion fusion(analysis); EXPECT_THAT( fusion.ComputeThreadIdToInputIndexing(0, 0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3, s4] -> ( (d3 * 8 + d0 floordiv 32) floordiv 64, (d3 * 8 + d0 floordiv 32) mod 64, (d0 mod 32 + s2 * 32) * 2 + s3) domain: d0 in [0, 256) d1 in [0, 1) d2 in [0, 1) d3 in [0, 800) d4 in [0, 1) d5 in [0, 1) s0 in [0, 1) s1 in [0, 1) s2 in [0, 8) s3 in [0, 2) s4 in [0, 1) d0 mod 32 + s2 * 32 in [0, 256) d3 * 8 + d0 floordiv 32 in [0, 6400) )")); EXPECT_THAT( fusion.ComputeThreadIdToOutputIndexing(0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5) -> ( (d3 * 8 + d0 floordiv 32) floordiv 64, (d3 * 8 + d0 floordiv 32) mod 64 ) domain: d0 in [0, 256) d1 in [0, 1) d2 in [0, 1) d3 in [0, 800) d4 in [0, 1) d5 in [0, 1) d0 mod 32 in [0, 1) d3 * 8 + d0 floordiv 32 in [0, 6400) )")); } TEST_F(MlirRowReductionTest, TwoGroups) { auto module = ParseAndReturnVerifiedModule(R"( add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fusion { %p0 = f32[2] parameter(0) %p1 = f32[2] parameter(1) %c0 = f32[] constant(-inf) %r0 = f32[] reduce(%p0, %c0), dimensions={0}, to_apply=add %c1 = f32[] constant(inf) %r1 = f32[] reduce(%p1, %c1), dimensions={0}, to_apply=add ROOT %tuple = (f32[], f32[]) tuple(%r0, %r1) } ENTRY entry { %p0 = f32[2] parameter(0) %p1 = f32[2] parameter(1) ROOT %fusion = (f32[], f32[]) fusion(%p0, %p1), kind=kInput, calls=fusion })") .value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirRowReductionFusion fusion(analysis); EXPECT_THAT(fusion.GetGroups().grouped_roots, ElementsAre(ElementsAre(&analysis.fusion_root(0).instruction()), ElementsAre(&analysis.fusion_root(1).instruction()))); } TEST_F(MlirRowReductionTest, OneGroup) { auto module = ParseAndReturnVerifiedModule(R"( %add { %p0 = c128[] parameter(0) %p1 = c128[] parameter(1) ROOT %add.35 = c128[] add(c128[] %p0, c128[] %p1) } %fusion { %p0 = c128[1,2] parameter(0) %c0 = c128[] constant((0, 0)) %reduce = c128[] reduce(%p0, %c0), dimensions={0,1}, to_apply=%add %real = f64[] real(c128[] %reduce) %imag = f64[] imag(c128[] %reduce) %negate = f64[] negate(f64[] %imag) ROOT %tuple.29 = (f64[], f64[]) tuple(f64[] %real, f64[] %negate) } ENTRY entry { %p0 = c128[1,2] parameter(0) ROOT %fusion = (f64[], f64[]) fusion(%p0), kind=kInput, calls=fusion })") .value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirRowReductionFusion mlir_fusion(analysis); EXPECT_THAT(mlir_fusion.GetGroups().grouped_roots, SizeIs(1)); } constexpr absl::string_view kColumnVectorizationTemplate = R"( add { b = $0[] parameter(1) a = $0[] parameter(0) ROOT out = $0[] add(a, b) } fusion { %p0 = $0[192,64,1536] parameter(0) %p1 = $0[] parameter(1) ROOT reduce = $0[192,1536] reduce(p0, p1), dimensions={1}, to_apply=add } ENTRY entry { %p0 = $0[192,64,1536] parameter(0) %p1 = $0[] parameter(1) ROOT %fusion = $0[192,1536] fusion(p0, p1), kind=kInput, calls=fusion })"; TEST_F(MlirColumnReductionTest, ColumnReduction) { constexpr auto kHloString = R"( HloModule Test, is_scheduled=true Add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } fused_computation { param_0 = f32[13,1051,321] parameter(0) param_1 = f32[] parameter(1) ROOT reduce = f32[13,321] reduce(param_0, param_1), dimensions={1}, to_apply=Add } ENTRY main { a = f32[13,1051,321] parameter(0) c = f32[] constant(0) ROOT fusion = f32[13,321] fusion(a, c), kind=kInput, calls=fused_computation })"; auto module = ParseAndReturnVerifiedModule(kHloString).value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirColumnReductionFusion fusion(analysis); EXPECT_THAT( fusion.ComputeThreadIdToInputIndexing(0, 0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0, s1] -> ( d3 floordiv 11, d0 floordiv 32 + s0 * 32, (d3 mod 11) * 32 + d0 mod 32 + s1 ) domain: d0 in [0, 1024) d1 in [0, 1) d2 in [0, 1) d3 in [0, 143) d4 in [0, 1) d5 in [0, 1) s0 in [0, 33) s1 in [0, 1) (d3 mod 11) * 32 + d0 mod 32 + s1 in [0, 321) d0 floordiv 32 + s0 * 32 in [0, 1051) )")); EXPECT_THAT( fusion.ComputeThreadIdToOutputIndexing(0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0] -> ( d3 floordiv 11, (d3 mod 11) * 32 + d0 floordiv 32 + s0 ) domain: d0 in [0, 1024) d1 in [0, 1) d2 in [0, 1) d3 in [0, 143) d4 in [0, 1) d5 in [0, 1) s0 in [0, 1) (d3 mod 11) * 32 + d0 floordiv 32 + s0 in [0, 321) d0 mod 32 in [0, 1) )")); TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirColumnReductionTest, SmallColumnReduction) { constexpr auto kHloString = R"( HloModule Test, is_scheduled=true Add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } fused_computation { param_0 = f32[3,128,4] parameter(0) param_1 = f32[] parameter(1) ROOT reduce = f32[3,4] reduce(param_0, param_1), dimensions={1}, to_apply=Add } ENTRY main { a = f32[3,128,4] parameter(0) c = f32[] constant(0) ROOT fusion = f32[3,4] fusion(a, c), kind=kInput, calls=fused_computation })"; EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirColumnReductionTest, MixedIndexing) { constexpr auto kHloString = R"( HloModule module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fusion { %param_0 = f32[64,128] parameter(0) %constant_0 = f32[] constant(0) %reduce.1 = f32[128] reduce(f32[64,128] %param_0, f32[] %constant_0), dimensions={0}, to_apply=%add %neg = f32[64,128] negate(f32[64,128] %param_0) %bitcast = f32[8,8,128]{2,1,0} bitcast(f32[64,128] %neg) %reduce.2 = f32[128] reduce(f32[8,8,128]{2,1,0} %bitcast, f32[] %constant_0), dimensions={0,1}, to_apply=%add ROOT %tuple.12 = (f32[128], f32[128]) tuple(f32[128] %reduce.1, f32[128] %reduce.2) } ENTRY entry { %param_0 = f32[64,128] parameter(0) ROOT %fusion = (f32[128], f32[128]) fusion(%param_0), kind=kInput, calls=fusion })"; EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirColumnReductionTest, ColumnReductionVectorization) { constexpr auto kHloString = R"( HloModule Test, is_scheduled=true Add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } fused_computation { param_0 = f32[2048,16384] parameter(0) param_1 = f32[] parameter(1) ROOT reduce = f32[16384] reduce(param_0, param_1), dimensions={0}, to_apply=Add } ENTRY main { a = f32[2048,16384] parameter(0) c = f32[] constant(0) ROOT fusion = f32[16384] fusion(a, c), kind=kInput, calls=fused_computation })"; auto module = ParseAndReturnVerifiedModule(kHloString).value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirCo
2,122
cpp
tensorflow/tensorflow
in_place_dynamic_update_slice_mlir
third_party/xla/xla/service/gpu/fusions/in_place_dynamic_update_slice_mlir.cc
third_party/xla/xla/service/gpu/fusions/in_place_dynamic_update_slice_mlir_test.cc
#ifndef XLA_SERVICE_GPU_FUSIONS_IN_PLACE_DYNAMIC_UPDATE_SLICE_MLIR_H_ #define XLA_SERVICE_GPU_FUSIONS_IN_PLACE_DYNAMIC_UPDATE_SLICE_MLIR_H_ #include <cstdint> #include <optional> #include <vector> #include "absl/status/status.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/fusions/mlir/computation_partitioner.h" #include "xla/service/gpu/fusions/mlir/mlir_fusion_emitter.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/indexing_map.h" namespace xla { namespace gpu { class MlirInPlaceDynamicUpdateSliceFusion : public MlirFusionEmitterBase { public: explicit MlirInPlaceDynamicUpdateSliceFusion( const HloFusionAnalysis& analysis) : analysis_(analysis), dus_ops_( GetOutputDefiningDynamicUpdateSlices(analysis.fusion_roots())) {} LaunchDimensions launch_dimensions() const override; std::optional<IndexingMap> ComputeThreadIdToOutputIndexing( int64_t root_index, mlir::MLIRContext* indexing_context) const override { return std::nullopt; } std::optional<IndexingMap> ComputeThreadIdToInputIndexing( int64_t root_index, int64_t hero_operand_index, mlir::MLIRContext* indexing_context) const override; protected: absl::Status EmitEntryFunction( const mlir_converter::PartitionedComputations& computations, const mlir_converter::CallTargetProvider& call_targets, mlir::func::FuncOp entry_function, const HloFusionInstruction& fusion) const override; std::vector<mlir_converter::EpilogueSpecification> GetEpilogues( const HloFusionInstruction& fusion, mlir::MLIRContext* mlir_context) const override; private: const HloFusionAnalysis& analysis_; std::vector<const HloInstruction*> dus_ops_; }; } } #endif #include "xla/service/gpu/fusions/in_place_dynamic_update_slice_mlir.h" #include <cstdint> #include <optional> #include <vector> #include "absl/log/log.h" #include "absl/status/status.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/ImplicitLocOpBuilder.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/Value.h" #include "mlir/IR/ValueRange.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/primitive_util.h" #include "xla/service/gpu/fusions/mlir/computation_partitioner.h" #include "xla/service/gpu/fusions/mlir/elemental_hlo_to_mlir.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/indexing_analysis.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/xla_data.pb.h" namespace xla { namespace gpu { namespace { using llvm::SmallVector; using mlir::ImplicitLocOpBuilder; using mlir::Value; using mlir::ValueRange; using mlir::arith::AddIOp; using mlir::func::ReturnOp; using mlir::tensor::InsertOp; using mlir_converter::ApplyIndexing; using mlir_converter::CallTargetProvider; using mlir_converter::ClampIndex; using mlir_converter::PartitionedComputations; using mlir_converter::ProvideParameter; constexpr int kDUSUpdateIndex = 1; } LaunchDimensions MlirInPlaceDynamicUpdateSliceFusion::launch_dimensions() const { const auto& update_shape = dus_ops_.front()->operand(kDUSUpdateIndex)->shape(); return CalculateLaunchDimensions(update_shape, analysis_.device_info()); } std::optional<IndexingMap> MlirInPlaceDynamicUpdateSliceFusion::ComputeThreadIdToInputIndexing( int64_t root_index, int64_t hero_operand_index, mlir::MLIRContext* indexing_context) const { if (hero_operand_index != kDUSUpdateIndex) { return std::nullopt; } auto launch_dims = launch_dimensions(); const auto& update_shape = dus_ops_.front()->operand(kDUSUpdateIndex)->shape(); return GetDefaultThreadIdIndexingMap(launch_dims, 1, update_shape, indexing_context); } std::vector<mlir_converter::EpilogueSpecification> MlirInPlaceDynamicUpdateSliceFusion::GetEpilogues( const HloFusionInstruction& fusion, mlir::MLIRContext* mlir_context) const { std::vector<mlir_converter::EpilogueSpecification> epilogues; for (const auto& [dus_op, root] : llvm::zip(dus_ops_, analysis_.fusion_roots())) { epilogues.push_back( mlir_converter::EpilogueSpecification::FromIdentityIndexing( dus_op, &root.instruction(), mlir_context)); } return epilogues; } absl::Status MlirInPlaceDynamicUpdateSliceFusion::EmitEntryFunction( const PartitionedComputations& computations, const CallTargetProvider& call_targets, mlir::func::FuncOp entry_function, const HloFusionInstruction& fusion) const { ImplicitLocOpBuilder b(entry_function.getLoc(), entry_function); b.setInsertionPointToStart(entry_function.addEntryBlock()); mlir::MLIRContext* mlir_context = entry_function.getContext(); auto indexing = *ComputeThreadIdToInputIndexing( 0, kDUSUpdateIndex, mlir_context); indexing.Simplify(); indexing.RemoveUnusedSymbols(); int num_inputs = fusion.fused_instructions_computation()->num_parameters(); auto output_tensor_args = entry_function.getArguments().drop_front(num_inputs); const auto& root_computation = computations.FindPartitionedComputation( fusion.fused_instructions_computation()); auto result_tensors = EmitThreadLoopNest( b, output_tensor_args, indexing, [&](ValueRange output_tensors, ValueRange dim_values, ValueRange symbol_values) -> llvm::SmallVector<Value> { auto input_indices = ApplyIndexing(indexing, dim_values, symbol_values, b); llvm::SmallVector<Value> results; for (auto [instr, root, output] : llvm::zip(dus_ops_, analysis_.fusion_roots(), output_tensors)) { const auto* dus_instr = Cast<HloDynamicUpdateSliceInstruction>(instr); const auto& update_shape = dus_instr->update()->shape(); SmallVector<Value> update_indices; auto start_indices = ProvideParameterRange( root_computation, dus_instr, dus_instr->first_index_operand_number(), update_shape.rank(), {}, call_targets, entry_function, b); for (int i = 0; i < update_shape.rank(); ++i) { int64_t update_size = update_shape.dimensions(i); auto start_index = ClampIndex( start_indices[i], primitive_util::IsUnsignedIntegralType( dus_instr ->operand(i + dus_instr->first_index_operand_number()) ->shape() .element_type()), dus_instr->shape().dimensions(i) - update_size, b); update_indices.push_back( b.create<AddIOp>(input_indices[i], start_index)); } auto updated_value = ProvideParameter(root_computation, dus_instr, kDUSUpdateIndex, input_indices, call_targets, entry_function, b); if (dus_instr->shape() != root.shape()) { update_indices = ApplyIndexing( GetBitcastMap(dus_instr->shape(), root.shape(), b.getContext()), update_indices, {}, b); } results.push_back( b.create<InsertOp>(updated_value[0], output, update_indices)); } return results; }); b.create<ReturnOp>(result_tensors); return absl::OkStatus(); } } }
#include "xla/service/gpu/fusions/in_place_dynamic_update_slice_mlir.h" #include <optional> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/error_spec.h" #include "xla/service/gpu/fusions/mlir_emitter_test_base.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/model/indexing_test_utils.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using MlirInPlaceDynamicUpdateSliceFusionTest = MlirEmitterTestBase<MlirInPlaceDynamicUpdateSliceFusion>; TEST_F(MlirInPlaceDynamicUpdateSliceFusionTest, ThreadIndexing) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule module fused_computation { in = f32[20,30] parameter(0) updates = f32[5,6] parameter(1) i0 = s32[] parameter(2) i1 = s32[] parameter(3) ROOT updated = f32[20,30] dynamic-update-slice(in, updates, i0, i1) } ENTRY entry { in = f32[20,30] parameter(0) updates = f32[5,6] parameter(1) i0 = s32[] constant(2) i1 = s32[] constant(3) ROOT fusion = f32[20,30] fusion(in, updates, i0, i1), kind=kLoop, calls=fused_computation } )")); thread_id_printer_.SetSymbolName(0, "chunk_id"); thread_id_printer_.SetSymbolName(1, "unroll_id"); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirInPlaceDynamicUpdateSliceFusion fusion(analysis); auto thread_id_update_indexing = fusion.ComputeThreadIdToInputIndexing( 0, 1, &mlir_context_); EXPECT_THAT(thread_id_update_indexing->ToString(thread_id_printer_), MatchIndexingString(R"( (th_x, th_y, th_z, bl_x, bl_y, bl_z)[chunk_id, unroll_id] -> ( th_x floordiv 6, th_x mod 6) domain: th_x in [0, 30) th_y in [0, 1) th_z in [0, 1) bl_x in [0, 1) bl_y in [0, 1) bl_z in [0, 1) chunk_id in [0, 1) unroll_id in [0, 1) )")); auto thread_id_dst_indexing = fusion.ComputeThreadIdToInputIndexing( 0, 0, &mlir_context_); EXPECT_THAT(thread_id_dst_indexing, ::testing::Eq(std::nullopt)); } TEST_F(MlirInPlaceDynamicUpdateSliceFusionTest, SimpleDUS) { auto kHloString = R"( HloModule module fused_computation { in = f32[20,30] parameter(0) updates = f32[5,6] parameter(1) i0 = s32[] parameter(2) i1 = s32[] parameter(3) ROOT updated = f32[20,30] dynamic-update-slice(in, updates, i0, i1) } ENTRY entry { in = f32[20,30] parameter(0) updates = f32[5,6] parameter(1) i0 = s32[] constant(2) i1 = s32[] constant(3) ROOT fusion = f32[20,30] fusion(in, updates, i0, i1), kind=kLoop, calls=fused_computation } )"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirInPlaceDynamicUpdateSliceFusionTest, OutOfBoundDUS) { auto kHloString = R"( HloModule module fused_computation { in = f32[7,8] parameter(0) updates = f32[2,3] parameter(1) i0 = s32[] parameter(2) i1 = s32[] parameter(3) ROOT updated = f32[7,8] dynamic-update-slice(in, updates, i0, i1) } ENTRY entry { in = f32[7,8] parameter(0) updates = f32[2,3] parameter(1) i0 = s32[] constant(-20) i1 = s32[] constant(30) ROOT fusion = f32[7,8] fusion(in, updates, i0, i1), kind=kLoop, calls=fused_computation } )"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirInPlaceDynamicUpdateSliceFusionTest, BitcastDus) { auto kHloString = R"( HloModule module fused_computation { in = f32[20,30] parameter(0) updates = f32[5,6] parameter(1) i0 = s32[] parameter(2) i1 = s32[] parameter(3) updated = f32[20,30] dynamic-update-slice(in, updates, i0, i1) ROOT bitcast = f32[600] bitcast(updated) } ENTRY entry { in = f32[20,30] parameter(0) updates = f32[5,6] parameter(1) i0 = s32[] constant(2) i1 = s32[] constant(3) ROOT fusion = f32[600] fusion(in, updates, i0, i1), kind=kLoop, calls=fused_computation } )"; EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirInPlaceDynamicUpdateSliceFusionTest, MOFDus) { auto kHloString = R"( HloModule module fused_computation { p0 = f32[10,11,12] parameter(0) p1 = f32[1,11,12] parameter(1) p2 = f32[8,11,12] parameter(2) p3 = f32[1,11,12] parameter(3) p4 = s32[] parameter(4) c0 = s32[] constant(0) cmp = pred[] compare(p4, c0), direction=EQ broadcast = pred[1,11,12] broadcast(cmp), dimensions={} select = f32[1,11,12] select(broadcast, p1, p3) dus0 = f32[10,11,12] dynamic-update-slice(p0, select, c0, c0, c0) dus1 = f32[8,11,12] dynamic-update-slice(p2, select, c0, c0, c0) ROOT tuple = (f32[10,11,12], f32[8,11,12]) tuple(dus0, dus1) } ENTRY entry { p0 = f32[10,11,12] parameter(0) p1 = f32[1,11,12] parameter(1) p2 = f32[8,11,12] parameter(2) p3 = f32[1,11,12] parameter(3) p4 = s32[] parameter(4) ROOT fusion_root_multiple = (f32[10,11,12], f32[8,11,12]) fusion(p0, p1, p2, p3, p4), kind=kLoop, calls=fused_computation } )"; EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirInPlaceDynamicUpdateSliceFusionTest, OperandSubgraphWithTwoRoots) { auto kHloString = R"( HloModule in_place_dus dus_fusion { param_0.8 = f32[512,512]{1,0} parameter(0) param_1.10 = f32[128,128]{1,0} parameter(1) param_3.32 = s32[] parameter(3) two = s32[] constant(2) param_3_mod_2 = s32[] remainder(param_3.32, two) one = s32[] constant(1) param_3_plus_one = s32[] add(param_3_mod_2, one) param_2.32 = s32[] parameter(2) param_2_plus_one = s32[] add(param_2.32, one) ROOT dynamic-update-slice.5.1 = f32[512,512]{1,0} dynamic-update-slice( param_0.8, param_1.10, param_2_plus_one, param_3_plus_one) } ENTRY entry { p0 = f32[512,512]{1,0} parameter(0) p1 = f32[128,128]{1,0} parameter(1) p2 = s32[] parameter(2) p3 = s32[] parameter(3) ROOT dus = f32[512,512]{1,0} fusion(p0, p1, p2, p3), kind=kLoop, calls=dus_fusion } )"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-6})); } } } }
2,123
cpp
tensorflow/tensorflow
concatenate_mlir
third_party/xla/xla/service/gpu/fusions/concatenate_mlir.cc
third_party/xla/xla/service/gpu/fusions/concatenate_mlir_test.cc
#ifndef XLA_SERVICE_GPU_FUSIONS_CONCATENATE_MLIR_H_ #define XLA_SERVICE_GPU_FUSIONS_CONCATENATE_MLIR_H_ #include <cstdint> #include <optional> #include <vector> #include "absl/status/status.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/fusions/mlir/computation_partitioner.h" #include "xla/service/gpu/fusions/mlir/mlir_fusion_emitter.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/indexing_map.h" namespace xla { namespace gpu { class MlirConcatenateFusion : public MlirFusionEmitterBase { public: explicit MlirConcatenateFusion(const HloFusionAnalysis& analysis) : analysis_(analysis) {} LaunchDimensions launch_dimensions() const override; std::optional<IndexingMap> ComputeThreadIdToOutputIndexing( int64_t root_index, mlir::MLIRContext* ctx) const override; std::optional<IndexingMap> ComputeThreadIdToInputIndexing( int64_t root_index, int64_t hero_operand_index, mlir::MLIRContext* ctx) const override; protected: absl::Status EmitEntryFunction( const mlir_converter::PartitionedComputations& computations, const mlir_converter::CallTargetProvider& call_targets, mlir::func::FuncOp entry_function, const HloFusionInstruction& fusion) const override; std::vector<mlir_converter::EpilogueSpecification> GetEpilogues( const HloFusionInstruction& fusion, mlir::MLIRContext* mlir_context) const override; private: const HloFusionAnalysis& analysis_; }; } } #endif #include "xla/service/gpu/fusions/concatenate_mlir.h" #include <cstdint> #include <iterator> #include <optional> #include <vector> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/IR/ImplicitLocOpBuilder.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/Value.h" #include "mlir/IR/ValueRange.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/fusions/concatenate.h" #include "xla/service/gpu/fusions/mlir/computation_partitioner.h" #include "xla/service/gpu/fusions/mlir/elemental_hlo_to_mlir.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/indexing_analysis.h" #include "xla/service/gpu/model/indexing_map.h" namespace xla { namespace gpu { using llvm::SmallVector; using mlir::Value; using mlir::ValueRange; LaunchDimensions MlirConcatenateFusion::launch_dimensions() const { return CalculateLaunchDimensions(GetLargestConcatOperandShape(analysis_), analysis_.device_info()); } std::optional<IndexingMap> MlirConcatenateFusion::ComputeThreadIdToOutputIndexing( int64_t root_index, mlir::MLIRContext* ctx) const { return std::nullopt; } std::optional<IndexingMap> MlirConcatenateFusion::ComputeThreadIdToInputIndexing( int64_t root_index, int64_t hero_operand_index, mlir::MLIRContext* ctx) const { return GetDefaultThreadIdIndexingMap(launch_dimensions(), 1, GetLargestConcatOperandShape(analysis_), ctx); } std::vector<mlir_converter::EpilogueSpecification> MlirConcatenateFusion::GetEpilogues(const HloFusionInstruction& fusion, mlir::MLIRContext* mlir_context) const { return {mlir_converter::EpilogueSpecification::FromIdentityIndexing( &analysis_.fusion_hero(0).instruction(), &analysis_.fusion_root(0).instruction(), mlir_context)}; } absl::Status MlirConcatenateFusion::EmitEntryFunction( const mlir_converter::PartitionedComputations& computations, const mlir_converter::CallTargetProvider& call_targets, mlir::func::FuncOp entry_function, const HloFusionInstruction& fusion) const { const auto& root_computation = computations.FindPartitionedComputation( fusion.fused_instructions_computation()); mlir::ImplicitLocOpBuilder builder(entry_function.getLoc(), entry_function); builder.setInsertionPointToStart(entry_function.addEntryBlock()); auto* ctx = entry_function.getContext(); int num_inputs = fusion.fused_instructions_computation()->num_parameters(); SmallVector<Value> input_tensors( entry_function.getArguments().take_front(num_inputs)); auto output_tensor_args = entry_function.getArguments().drop_front(num_inputs); SmallVector<Value> result_tensors{output_tensor_args.begin(), output_tensor_args.end()}; auto thread_id_to_input_map = ComputeThreadIdToInputIndexing( 0, 0, ctx) .value(); auto epilogue_indexing = ComputeEpilogueInputToOutputIndexing( analysis_.fusion_hero(0), analysis_.fusion_root(0), ctx); const auto* concat = &analysis_.fusion_hero(0).instruction(); for (auto [operand_index, operand] : llvm::enumerate(concat->operands())) { auto input_to_output_map = *ComputeInputToOutputIndexing(concat, operand_index, ctx) .indexing_maps.front() .begin(); auto thread_id_to_output_map = ComposeIndexingMaps( ComposeIndexingMaps(thread_id_to_input_map, input_to_output_map), epilogue_indexing); auto loop_nest_body_builder = [&, operand_index = operand_index]( ValueRange output_tensors, ValueRange dim_values, ValueRange symbol_values) -> SmallVector<Value> { auto input_indices = mlir_converter::ApplyIndexing( thread_id_to_input_map, dim_values, symbol_values, builder); auto result_scalar = mlir_converter::ProvideParameter( root_computation, concat, operand_index, input_indices, call_targets, entry_function, builder); absl::flat_hash_map<const HloInstruction*, llvm::SmallVector<Value>> hero_value{{concat, result_scalar}}; auto output_indices = mlir_converter::ApplyIndexing( thread_id_to_output_map, dim_values, symbol_values, builder); auto result_scalars = EmitEpilogue( 0, computations, entry_function, hero_value, output_indices, builder)[&analysis_.fusion_root(0).instruction()]; SmallVector<Value> result_tensors; result_tensors.reserve(output_tensor_args.size()); for (auto [tensor, value] : llvm::zip(output_tensors, result_scalars)) { result_tensors.push_back( builder .create<mlir::tensor::InsertOp>(value, tensor, output_indices) .getResult()); } return result_tensors; }; result_tensors = EmitThreadLoopNest(builder, result_tensors, thread_id_to_output_map, loop_nest_body_builder); } builder.create<mlir::func::ReturnOp>(result_tensors); return absl::OkStatus(); } } }
#include "xla/service/gpu/fusions/concatenate_mlir.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/error_spec.h" #include "xla/service/gpu/fusions/mlir_emitter_test_base.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/model/indexing_test_utils.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using MlirConcatenateFusionTest = MlirEmitterTestBase<MlirConcatenateFusion>; TEST_F(MlirConcatenateFusionTest, ThreadIdIndexing) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule module fused_computation { param0 = f32[200] parameter(0) param1 = f32[400] parameter(1) param2 = f32[300] parameter(2) ROOT concat = f32[900] concatenate(param0, param1, param2), dimensions={0} } ENTRY main { param0 = f32[200] parameter(0) param1 = f32[400] parameter(1) param2 = f32[300] parameter(2) ROOT fusion = f32[900] fusion(param0, param1, param2), calls=fused_computation, kind=kLoop } )")); thread_id_printer_.SetSymbolName(0, "chunk_id"); thread_id_printer_.SetSymbolName(1, "unroll_id"); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirConcatenateFusion fusion(analysis); constexpr auto kIndexing = R"( (th_x, th_y, th_z, bl_x, bl_y, bl_z)[chunk_id, unroll_id] -> ( (bl_x * 128 + th_x) mod 400) domain: th_x in [0, 128) th_y in [0, 1) th_z in [0, 1) bl_x in [0, 4) bl_y in [0, 1) bl_z in [0, 1) chunk_id in [0, 1) unroll_id in [0, 1) th_x + bl_x * 128 in [0, 400) )"; auto thread_id_to_output_indexing_0 = fusion.ComputeThreadIdToInputIndexing( 0, 0, &mlir_context_); EXPECT_THAT(thread_id_to_output_indexing_0->ToString(thread_id_printer_), MatchIndexingString(kIndexing)); auto thread_id_to_output_indexing_1 = fusion.ComputeThreadIdToInputIndexing( 0, 1, &mlir_context_); EXPECT_THAT(thread_id_to_output_indexing_1->ToString(thread_id_printer_), MatchIndexingString(kIndexing)); auto thread_id_to_output_indexing_2 = fusion.ComputeThreadIdToInputIndexing( 0, 2, &mlir_context_); EXPECT_THAT(thread_id_to_output_indexing_2->ToString(thread_id_printer_), MatchIndexingString(kIndexing)); } TEST_F(MlirConcatenateFusionTest, StandAloneConcatenate) { auto kHloString = R"( HloModule module fused_computation { param0 = f32[200] parameter(0) param1 = f32[400] parameter(1) param2 = f32[300] parameter(2) ROOT concat = f32[900] concatenate(param0, param1, param2), dimensions={0} } ENTRY main { param0 = f32[200] parameter(0) param1 = f32[400] parameter(1) param2 = f32[300] parameter(2) ROOT fusion = f32[900] fusion(param0, param1, param2), calls=fused_computation, kind=kLoop } )"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirConcatenateFusionTest, PrologueEpilogue) { auto kHloString = R"( HloModule module fused_computation { param0 = f32[64] parameter(0) param1 = f32[128] parameter(1) log = f32[64] log(param0) exp = f32[128] exponential(param1) concat = f32[192] concatenate(log, exp), dimensions={0} ROOT neg = f32[192] negate(concat) } ENTRY main { param0 = f32[64] parameter(0) param1 = f32[128] parameter(1) ROOT fusion = f32[192] fusion(param0, param1), calls=fused_computation, kind=kLoop } )"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirConcatenateFusionTest, EpilogueSideParameter) { auto kHloString = R"( HloModule module fused_computation { param0 = f32[64] parameter(0) param1 = f32[192] parameter(1) neg = f32[64] negate(param0) slice = f32[128] slice(param1), slice={[32:160]} exp = f32[128] exponential(slice) concat = f32[192] concatenate(neg, exp), dimensions={0} ROOT add = f32[192] add(concat, param1) } ENTRY main { param0 = f32[64] parameter(0) param1 = f32[192] parameter(1) ROOT fusion = f32[192] fusion(param0, param1), calls=fused_computation, kind=kLoop } )"; EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirConcatenateFusionTest, MajorDimension) { auto kHloString = R"( HloModule module fused_computation { param0 = f32[16,16] parameter(0) param1 = f32[16,16] parameter(1) ROOT concat = f32[32,16] concatenate(param0, param1), dimensions={0} } ENTRY main { param0 = f32[16,16] parameter(0) param1 = f32[16,16] parameter(1) ROOT %fusion = f32[32,16] fusion(param0, param1), kind=kInput, calls=fused_computation } )"; EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirConcatenateFusionTest, EpilogueBitcast) { auto kHloString = R"( HloModule Test fused_computation { p0 = pred[1] parameter(0) p1 = pred[1] parameter(1) p2 = pred[1] parameter(2) %concatenate.3.3 = pred[3] concatenate(p0, p1, p2), dimensions={0} %bitcast.57.1 = pred[1,1,3]{2,1,0} bitcast(pred[3]{0} %concatenate.3.3) ROOT %convert.36.1 = u32[1,1,3] convert(pred[1,1,3]{2,1,0} %bitcast.57.1) } ENTRY main { p0 = pred[1] parameter(0) p1 = pred[1] parameter(1) p2 = pred[1] parameter(2) ROOT fusion = u32[1,1,3] fusion(p0, p1, p2), kind=kInput, calls=fused_computation } )"; EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } } } }
2,124
cpp
tensorflow/tensorflow
loop_mlir
third_party/xla/xla/service/gpu/fusions/loop_mlir.cc
third_party/xla/xla/service/gpu/fusions/loop_mlir_test.cc
#ifndef XLA_SERVICE_GPU_FUSIONS_LOOP_MLIR_H_ #define XLA_SERVICE_GPU_FUSIONS_LOOP_MLIR_H_ #include <cstdint> #include <optional> #include "absl/status/status.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/fusions/loop.h" #include "xla/service/gpu/fusions/mlir/computation_partitioner.h" #include "xla/service/gpu/fusions/mlir/mlir_fusion_emitter.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/indexing_map.h" namespace xla { namespace gpu { class MlirLoopFusion : public MlirFusionEmitterBase { public: explicit MlirLoopFusion(const HloFusionAnalysis& analysis) : analysis_(analysis), config_(ComputeLoopFusionConfig(analysis)) {} LaunchDimensions launch_dimensions() const override; std::optional<IndexingMap> ComputeThreadIdToOutputIndexing( int64_t root_index, mlir::MLIRContext* ctx) const override; std::optional<IndexingMap> ComputeThreadIdToInputIndexing( int64_t root_index, int64_t hero_operand_index, mlir::MLIRContext* ctx) const override; protected: absl::Status EmitEntryFunction( const mlir_converter::PartitionedComputations& computations, const mlir_converter::CallTargetProvider& call_targets, mlir::func::FuncOp entry_function, const HloFusionInstruction& fusion) const override; private: const HloFusionAnalysis& analysis_; LaunchDimensionsConfig config_; }; } } #endif #include "xla/service/gpu/fusions/loop_mlir.h" #include <iterator> #include <optional> #include <vector> #include "absl/algorithm/container.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/ImplicitLocOpBuilder.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/Value.h" #include "mlir/IR/ValueRange.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/fusions/mlir/computation_partitioner.h" #include "xla/service/gpu/fusions/mlir/elemental_hlo_to_mlir.h" #include "xla/service/gpu/fusions/mlir/ir/xla_gpu_ops.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/indexing_analysis.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/shape.h" #include "xla/status_macros.h" #include "xla/xla_data.pb.h" namespace xla { namespace gpu { namespace { using llvm::SmallVector; using mlir::Value; using mlir::ValueRange; const Shape& GetIndexShape(const Shape& shape) { return shape.IsTuple() ? shape.tuple_shapes(0) : shape; } } std::optional<IndexingMap> MlirLoopFusion::ComputeThreadIdToOutputIndexing( int64_t root_index, mlir::MLIRContext* ctx) const { auto launch_dims = launch_dimensions(); return GetDefaultThreadIdIndexingMap( launch_dims, config_.unroll_factor, GetIndexShape(analysis_.fusion_root(root_index).shape()), ctx); } std::optional<IndexingMap> MlirLoopFusion::ComputeThreadIdToInputIndexing( int64_t root_index, int64_t hero_operand_index, mlir::MLIRContext* ctx) const { std::optional<IndexingMap> thread_id_to_output_indexing = ComputeThreadIdToOutputIndexing(root_index, ctx); if (!thread_id_to_output_indexing.has_value()) { return std::nullopt; } const HloInstruction* fusion_root = &analysis_.fusion_root(root_index).instruction(); auto output_to_input_indexing = ComputeOutputToInputIndexing(fusion_root, 0, ctx); IndexingMapSet output_to_input_indexing_set = output_to_input_indexing.indexing_maps[hero_operand_index]; CHECK_EQ(output_to_input_indexing_set.size(), 1); IndexingMap thread_id_to_input_indexing_map = ComposeIndexingMaps( *thread_id_to_output_indexing, *output_to_input_indexing_set.begin()); thread_id_to_input_indexing_map.Simplify(); return thread_id_to_input_indexing_map; } LaunchDimensions MlirLoopFusion::launch_dimensions() const { return CalculateLaunchDimensions( GetIndexShape(analysis_.fusion_root(0).shape()), analysis_.device_info(), config_); } absl::Status MlirLoopFusion::EmitEntryFunction( const mlir_converter::PartitionedComputations& computations, const mlir_converter::CallTargetProvider& call_targets, mlir::func::FuncOp entry_function, const HloFusionInstruction& fusion) const { mlir::ImplicitLocOpBuilder builder(entry_function.getLoc(), entry_function); builder.setInsertionPointToStart(entry_function.addEntryBlock()); auto indexing = ComputeThreadIdToOutputIndexing(0, entry_function.getContext()); TF_RET_CHECK(indexing) << "Indexing is never nullopt"; int num_inputs = fusion.fused_instructions_computation()->num_parameters(); auto output_tensor_args = entry_function.getArguments().drop_front(num_inputs); llvm::SmallVector<const Shape*> result_shapes; for (const HloInstructionAdaptor& root : analysis_.fusion_roots()) { if (root.shape().IsTuple()) { for (const auto& shape : root.shape().tuple_shapes()) { result_shapes.push_back(&shape); } } else { result_shapes.push_back(&root.shape()); } } auto body_builder = [&](ValueRange output_tensors, ValueRange dim_values, ValueRange symbol_values) -> SmallVector<Value> { llvm::SmallVector<Value> first_output_indices = mlir_converter::ApplyIndexing(*indexing, dim_values, symbol_values, builder); auto root_fn = call_targets( fusion.fused_instructions_computation()->root_instruction()); SmallVector<Value> operands( entry_function.getArguments().take_front(num_inputs)); absl::c_copy(first_output_indices, std::back_inserter(operands)); auto result_scalars = builder.create<PureCallOp>(root_fn, operands).getResults(); SmallVector<Value> result_tensors; result_tensors.reserve(output_tensor_args.size()); for (auto [root_shape, tensor, value] : llvm::zip(result_shapes, output_tensors, result_scalars)) { llvm::SmallVector<Value> output_indices = mlir_converter::ApplyIndexing( GetBitcastMap(*result_shapes.front(), *root_shape, builder.getContext()), first_output_indices, {}, builder); result_tensors.push_back(builder.create<mlir::tensor::InsertOp>( value, tensor, output_indices)); } return result_tensors; }; builder.create<mlir::func::ReturnOp>( EmitThreadLoopNest(builder, output_tensor_args, *indexing, body_builder)); return absl::OkStatus(); } } }
#include "xla/service/gpu/fusions/loop_mlir.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/error_spec.h" #include "xla/service/gpu/fusions/mlir_emitter_test_base.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/model/indexing_test_utils.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using MlirLoopFusionTest = MlirEmitterTestBase<MlirLoopFusion>; TEST_F(MlirLoopFusionTest, ThreadId_IndexingUnrolled) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule module neg { %input = f32[100,200,300] parameter(0) ROOT neg = f32[100,200,300] negate(%input) } ENTRY entry { %input = f32[100,200,300] parameter(0) ROOT %fusion = f32[100,200,300] fusion(%input), kind=kLoop, calls=neg } )")); thread_id_printer_.SetSymbolName(0, "chunk_id"); thread_id_printer_.SetSymbolName(1, "unroll_id"); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirLoopFusion fusion(analysis); auto thread_id_to_output_indexing = fusion.ComputeThreadIdToOutputIndexing(0, &mlir_context_); EXPECT_THAT(thread_id_to_output_indexing->ToString(thread_id_printer_), MatchIndexingString(R"( (th_x, th_y, th_z, bl_x, bl_y, bl_z)[chunk_id, unroll_id] -> ( ((bl_x * 128 + chunk_id * 129024 + th_x) floordiv 15000) mod 100, ((bl_x * 128 + chunk_id * 129024 + th_x) floordiv 75) mod 200, (th_x * 4 + bl_x * 512 + chunk_id * 516096) mod 300 + unroll_id ) domain: th_x in [0, 128) th_y in [0, 1) th_z in [0, 1) bl_x in [0, 1008) bl_y in [0, 1) bl_z in [0, 1) chunk_id in [0, 12) unroll_id in [0, 4) (th_x + bl_x * 128) * 4 + chunk_id * 516096 in [0, 5999997) )")); } TEST_F(MlirLoopFusionTest, ThreadId_IndexingNotUnrolled) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule module neg { %input = f32[20] parameter(0) ROOT neg = f32[20] negate(%input) } ENTRY entry { %input = f32[20] parameter(0) ROOT %fusion = f32[20] fusion(%input), kind=kLoop, calls=neg } )")); thread_id_printer_.SetSymbolName(0, "chunk_id"); thread_id_printer_.SetSymbolName(1, "unroll_id"); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirLoopFusion fusion(analysis); auto thread_id_to_output_indexing = fusion.ComputeThreadIdToOutputIndexing(0, &mlir_context_); EXPECT_THAT(thread_id_to_output_indexing->ToString(thread_id_printer_), MatchIndexingString(R"( (th_x, th_y, th_z, bl_x, bl_y, bl_z)[chunk_id, unroll_id] -> (th_x) domain: th_x in [0, 20) th_y in [0, 1) th_z in [0, 1) bl_x in [0, 1) bl_y in [0, 1) bl_z in [0, 1) chunk_id in [0, 1) unroll_id in [0, 1) )")); auto thread_id_to_input_indexing = fusion.ComputeThreadIdToInputIndexing( 0, 0, &mlir_context_); EXPECT_THAT(thread_id_to_input_indexing->ToString(thread_id_printer_), MatchIndexingString(R"( (th_x, th_y, th_z, bl_x, bl_y, bl_z)[chunk_id, unroll_id] -> (th_x) domain: th_x in [0, 20) th_y in [0, 1) th_z in [0, 1) bl_x in [0, 1) bl_y in [0, 1) bl_z in [0, 1) chunk_id in [0, 1) unroll_id in [0, 1) )")); } TEST_F(MlirLoopFusionTest, ThreadId_Broadcast) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule module bcast { %input = f32[20] parameter(0) ROOT bcast = f32[10, 20, 30] broadcast(%input), dimensions={1} } ENTRY entry { %input = f32[20] parameter(0) ROOT %fusion = f32[10, 20, 30] fusion(%input), kind=kLoop, calls=bcast } )")); thread_id_printer_.SetSymbolName(0, "chunk_id"); thread_id_printer_.SetSymbolName(1, "unroll_id"); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirLoopFusion fusion(analysis); auto thread_id_to_output_indexing = fusion.ComputeThreadIdToOutputIndexing(0, &mlir_context_); EXPECT_THAT(thread_id_to_output_indexing->ToString(thread_id_printer_), MatchIndexingString(R"( (th_x, th_y, th_z, bl_x, bl_y, bl_z)[chunk_id, unroll_id] -> ( ((bl_x * 128 + th_x) floordiv 600) mod 10, ((bl_x * 128 + th_x) floordiv 30) mod 20, (bl_x * 128 + th_x) mod 30 ) domain: th_x in [0, 128) th_y in [0, 1) th_z in [0, 1) bl_x in [0, 47) bl_y in [0, 1) bl_z in [0, 1) chunk_id in [0, 1) unroll_id in [0, 1) th_x + bl_x * 128 in [0, 6000) )")); auto thread_id_to_input_indexing = fusion.ComputeThreadIdToInputIndexing( 0, 0, &mlir_context_); EXPECT_THAT(thread_id_to_input_indexing->ToString(thread_id_printer_), MatchIndexingString(R"( (th_x, th_y, th_z, bl_x, bl_y, bl_z)[chunk_id, unroll_id] -> (((bl_x * 128 + th_x) floordiv 30) mod 20) domain: th_x in [0, 128) th_y in [0, 1) th_z in [0, 1) bl_x in [0, 47) bl_y in [0, 1) bl_z in [0, 1) chunk_id in [0, 1) unroll_id in [0, 1) th_x + bl_x * 128 in [0, 6000) )")); } TEST_F(MlirLoopFusionTest, Constant_Broadcast) { auto kHloString = R"( HloModule module bcast { zero = bf16[] constant(0) ROOT broadcast = bf16[2,16,48]{2,1,0} broadcast(zero), dimensions={} } ENTRY entry { ROOT %fusion = bf16[2,16,48]{2,1,0} fusion(), kind=kLoop, calls=bcast } )"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{0})); } TEST_F(MlirLoopFusionTest, NoCodeDuplication) { auto kHloString = R"( HloModule test_module %fused_computation (param: f32[6]) -> f32[2] { %param = f32[6]{0} parameter(0) %slice0.1 = f32[5]{0} slice(f32[6]{0} %param), slice={[0:5]} %slice0.2 = f32[5]{0} slice(f32[6]{0} %param), slice={[1:6]} %add0 = f32[5]{0} add(f32[5]{0} %slice0.1, f32[5]{0} %slice0.2) %slice1.1 = f32[4]{0} slice(f32[5]{0} %add0), slice={[0:4]} %slice1.2 = f32[4]{0} slice(f32[5]{0} %add0), slice={[1:5]} %add1 = f32[4]{0} add(f32[4]{0} %slice1.1, f32[4]{0} %slice1.2) %slice2.1 = f32[3]{0} slice(f32[4]{0} %add1), slice={[0:3]} %slice2.2 = f32[3]{0} slice(f32[4]{0} %add1), slice={[1:4]} %add2 = f32[3]{0} add(f32[3]{0} %slice2.1, f32[3]{0} %slice2.2) %slice3.1 = f32[2]{0} slice(f32[3]{0} %add2), slice={[0:2]} %slice3.2 = f32[2]{0} slice(f32[3]{0} %add2), slice={[1:3]} ROOT %add3 = f32[2]{0} add(f32[2]{0} %slice3.1, f32[2]{0} %slice3.2) } ENTRY entry_computation { p0 = f32[] parameter(0) add = f32[] add(p0, p0) broadcast = f32[6]{0} broadcast(add), dimensions={} ROOT %fusion = f32[2]{0} fusion(broadcast), kind=kLoop, calls=%fused_computation } )"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirLoopFusionTest, TwoUsersConsistentIndexing) { auto kHloString = R"( HloModule test_module %fused_computation (param: f32[6]) -> f32[2] { %p0 = f32[2]{0} parameter(0) %p1 = f32[2]{0} parameter(1) %add = f32[2] add(%p0, %p1) %sub = f32[2] subtract(%p0, %p1) %mul = f32[2] multiply(%add, %sub) %div = f32[2] divide(%add, %sub) ROOT %atan2 = f32[2] atan2(%mul, %div) } ENTRY entry_computation { p0 = f32[2] parameter(0) p1 = f32[2] parameter(1) ROOT %fusion = f32[2] fusion(p0, p1), kind=kLoop, calls=%fused_computation } )"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirLoopFusionTest, ComplexOps) { auto kHloString = R"( HloModule test_module %fused_computation { %p0 = f32[2]{0} parameter(0) %p1 = f32[2]{0} parameter(1) %p2 = c64[2]{0} parameter(2) %complex = c64[2] complex(%p0, %p1) %add = c64[2] add(%complex, %p2) %cst = c64[2]{0} constant({(2.0, 0.0), (0.0, 2.0)}) ROOT %mul = c64[2] multiply(%add, %cst) } ENTRY entry_computation { p0 = f32[2] parameter(0) p1 = f32[2] parameter(1) p2 = c64[2] parameter(2) ROOT %fusion = c64[2] fusion(p0, p1, p2), kind=kLoop, calls=%fused_computation } )"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirLoopFusionTest, IotaCopyBitcastBroadcastReshapeReverseTranspose) { auto kHloString = R"( HloModule test_module %fused_computation { %iota = f32[10,20,30] iota(), iota_dimension=2 %copy = f32[10,20,30] copy(%iota) %bitcast = s32[10,20,30] bitcast-convert(%copy) %broadcast = s32[2,10,3,20,5,30,7] broadcast(%bitcast), dimensions={1,3,5} %reshape = s32[20,60,150,7] reshape(%broadcast) %reverse = s32[20,60,150,7] reverse(%reshape), dimensions={2,3} ROOT %transpose = s32[60,20,7,150] transpose(%reverse), dimensions={1,0,3,2} } ENTRY entry_computation { ROOT %fusion = s32[60,20,7,150] fusion(), kind=kLoop, calls=%fused_computation } )"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirLoopFusionTest, VariadicReduce) { auto kHloString = R"( HloModule Test, is_scheduled=true Add { scalar_lhs.0 = f32[] parameter(0) scalar_lhs.1 = f32[] parameter(1) scalar_rhs.0 = f32[] parameter(2) scalar_rhs.1 = f32[] parameter(3) add = f32[] add(scalar_lhs.0, scalar_rhs.0) mul = f32[] multiply(scalar_lhs.1, scalar_rhs.1) ROOT t = (f32[], f32[]) tuple(add, mul) } fused_computation { param_0 = f32[3,4,5]{2,1,0} parameter(0) param_1 = f32[3,4,5]{2,1,0} parameter(1) param_2 = f32[] parameter(2) ROOT d.1 = (f32[4], f32[4]) reduce(f32[3,4,5]{2,1,0} param_0, f32[3,4,5]{2,1,0} %param_1, f32[] param_2, f32[] param_2), dimensions={0,2}, to_apply=Add } ENTRY main { a = f32[3,4,5]{2,1,0} parameter(0) b = f32[3,4,5]{2,1,0} parameter(1) c = f32[] constant(0) ROOT fusion = (f32[4]{0}, f32[4]{0}) fusion(a, b, c), kind=kLoop, calls=fused_computation } )"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirLoopFusionTest, MinimumMaximum) { auto kHloString = R"( HloModule Test fused_computation { param0 = f64[] parameter(0) param1 = f64[] parameter(1) minimum = f64[] minimum(f64[] param0, f64[] param1) maximum = f64[] maximum(f64[] param0, f64[] param1) ROOT tuple = (f64[], f64[]) tuple(minimum, maximum) } ENTRY main { param0 = f64[] parameter(0) param1 = f64[] parameter(1) ROOT fusion = (f64[], f64[]) fusion(f64[] param0, f64[] param1), kind=kLoop, calls=fused_computation } )"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirLoopFusionTest, TupleBitcast) { auto kHloString = R"( HloModule Test fused_computation { param0 = f64[8] parameter(0) param1 = f64[8] parameter(1) minimum = f64[8] minimum(param0, param1) maximum = f64[8] maximum(param0, param1) bc = f64[2, 4] bitcast(maximum) ROOT tuple = (f64[8], f64[2,4]) tuple(minimum, bc) } ENTRY main { param0 = f64[8] parameter(0) param1 = f64[8] parameter(1) ROOT fusion = (f64[8], f64[2,4]) fusion(param0, param1), kind=kLoop, calls=fused_computation } )"; EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirLoopFusionTest, NestedTuple) { auto kHloString = R"( add { scalar_lhs.0 = f32[] parameter(0) scalar_lhs.1 = f32[] parameter(1) scalar_rhs.0 = f32[] parameter(2) scalar_rhs.1 = f32[] parameter(3) add = f32[] add(scalar_lhs.0, scalar_rhs.0) mul = f32[] multiply(scalar_lhs.1, scalar_rhs.1) ROOT t = (f32[], f32[]) tuple(add, mul) } fused_computation { param_0 = f32[3,4,5]{2,1,0} parameter(0) param_1 = f32[3,4,5]{2,1,0} parameter(1) param_2 = f32[] parameter(2) param_3 = f32[4] parameter(3) reduce = (f32[4], f32[4]) reduce(f32[3,4,5]{2,1,0} param_0, f32[3,4,5]{2,1,0} %param_1, f32[] param_2, f32[] param_2), dimensions={0,2}, to_apply=add log = f32[4] log(param_3) ROOT tuple = ((f32[4], f32[4]), f32[4]) tuple(reduce, log) } ENTRY main { a = f32[3,4,5]{2,1,0} parameter(0) b = f32[3,4,5]{2,1,0} parameter(1) c = f32[] constant(0) d = f32[4] parameter(2) ROOT fusion = ((f32[4], f32[4]), f32[4]) fusion(a, b, c, d), kind=kLoop, calls=fused_computation } )"; EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirLoopFusionTest, DynamicSliceWith64BitInput) { constexpr auto kHloString = R"( %fused_computation { %p0 = s64[] parameter(0) %p1 = f64[5] parameter(1) ROOT slice = f64[4] dynamic-slice(%p1, %p0), dynamic_slice_sizes={4} } ENTRY main { %c = s64[] constant(-1000000000000) %p0 = f64[5] parameter(0) ROOT %fusion = f64[4]{0} fusion(%c, %p0), kind=kInput, calls=%fused_computation })"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } } } }
2,125
cpp
tensorflow/tensorflow
scatter_mlir
third_party/xla/xla/service/gpu/fusions/scatter_mlir.cc
third_party/xla/xla/service/gpu/fusions/scatter_mlir_test.cc
#ifndef XLA_SERVICE_GPU_FUSIONS_SCATTER_MLIR_H_ #define XLA_SERVICE_GPU_FUSIONS_SCATTER_MLIR_H_ #include <cstdint> #include <optional> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/MLIRContext.h" #include "mlir/Interfaces/DataLayoutInterfaces.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/fusions/loop.h" #include "xla/service/gpu/fusions/mlir/computation_partitioner.h" #include "xla/service/gpu/fusions/mlir/mlir_fusion_emitter.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/indexing_map.h" namespace xla { namespace gpu { class MlirScatterFusion : public MlirFusionEmitterBase { public: explicit MlirScatterFusion(const HloFusionAnalysis& analysis) : analysis_(analysis), config_(ComputeLoopFusionConfig(analysis)) {} LaunchDimensions launch_dimensions() const override; static bool IsSupported(const HloFusionAnalysis& analysis); std::optional<IndexingMap> ComputeThreadIdToOutputIndexing( int64_t root_index, mlir::MLIRContext* ctx) const override; std::optional<IndexingMap> ComputeThreadIdToInputIndexing( int64_t root_index, int64_t hero_operand_index, mlir::MLIRContext* ctx) const override; protected: absl::Status EmitEntryFunction( const mlir_converter::PartitionedComputations& computations, const mlir_converter::CallTargetProvider& call_targets, mlir::func::FuncOp entry_function, const HloFusionInstruction& fusion) const override; std::vector<mlir_converter::EpilogueSpecification> GetEpilogues( const HloFusionInstruction& fusion, mlir::MLIRContext* mlir_context) const override; private: const HloFusionAnalysis& analysis_; LaunchDimensionsConfig config_; }; } } #endif #include "xla/service/gpu/fusions/scatter_mlir.h" #include <cstdint> #include <optional> #include <vector> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "llvm/ADT/SmallVector.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/SCF/IR/SCF.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/ImplicitLocOpBuilder.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/Value.h" #include "mlir/IR/ValueRange.h" #include "mlir/Support/LLVM.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/primitive_util.h" #include "xla/service/gpu/fusions/mlir/computation_partitioner.h" #include "xla/service/gpu/fusions/mlir/elemental_hlo_to_mlir.h" #include "xla/service/gpu/fusions/mlir/ir/xla_gpu_ops.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/indexing_analysis.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/service/scatter_simplifier.h" #include "xla/shape.h" #include "xla/xla_data.pb.h" namespace xla { namespace gpu { namespace { namespace ma = ::mlir::arith; namespace scf = ::mlir::scf; using llvm::SmallVector; using mlir::Location; using mlir::OpBuilder; using mlir::Value; using mlir::ValueRange; using mlir::func::ReturnOp; using mlir::tensor::InsertOp; using mlir_converter::CallTargetProvider; using mlir_converter::PartitionedComputations; using mlir_converter::ProvideParameter; } bool MlirScatterFusion::IsSupported(const HloFusionAnalysis& analysis) { const auto* scatter = Cast<HloScatterInstruction>(&analysis.fusion_hero(0).instruction()); if (scatter->scatter_operand_count() != 1) { LOG(ERROR) << "Variadic scatter is not supported like in the legacy " "emitter, although it is possible to make it work when the " "indices are unique."; return false; } return true; } std::optional<IndexingMap> MlirScatterFusion::ComputeThreadIdToOutputIndexing( int64_t root_index, mlir::MLIRContext* ctx) const { return std::nullopt; } std::optional<IndexingMap> MlirScatterFusion::ComputeThreadIdToInputIndexing( int64_t root_index, int64_t hero_operand_index, mlir::MLIRContext* ctx) const { const auto* scatter = DynCast<HloScatterInstruction>(&analysis_.fusion_hero(0).instruction()); CHECK(ScatterSimplifier::IsSimplifiedScatter(scatter)) << "Non-simplified HLO Scatter is not supported."; int64_t scatter_operand_count = scatter->scatter_operand_count(); if (hero_operand_index < scatter_operand_count) { return std::nullopt; } Shape scatter_update_shape = scatter->scatter_updates().front()->shape(); IndexingMap scatter_update_map = GetDefaultThreadIdIndexingMap( launch_dimensions(), config_.unroll_factor, scatter_update_shape, ctx); if (hero_operand_index == scatter_operand_count) { Shape scatter_indices_shape = scatter->scatter_indices()->shape(); CHECK_EQ(scatter_indices_shape.rank(), 2) << scatter->ToString(); IndexingMap updates_to_indices_map{ mlir::AffineMap::get( scatter_update_shape.rank(), 1, {mlir::getAffineDimExpr(0, ctx), mlir::getAffineSymbolExpr(0, ctx)}, ctx), DimVarsFromTensorSizes(scatter_update_shape.dimensions()), RangeVarsFromTensorSizes({scatter_indices_shape.dimensions(1)}), {}}; auto scatter_indices_map = scatter_update_map * updates_to_indices_map; scatter_indices_map.Simplify(); return scatter_indices_map; } return scatter_update_map; } LaunchDimensions MlirScatterFusion::launch_dimensions() const { const auto& scatter = analysis_.fusion_hero(0).instruction(); auto& shape = scatter.operands().back()->shape(); return CalculateLaunchDimensions(shape, analysis_.device_info()); } std::vector<mlir_converter::EpilogueSpecification> MlirScatterFusion::GetEpilogues(const HloFusionInstruction& fusion, mlir::MLIRContext* mlir_context) const { return {mlir_converter::EpilogueSpecification::FromIdentityIndexing( &analysis_.fusion_hero(0).instruction(), &analysis_.fusion_root(0).instruction(), mlir_context)}; } mlir::Value EmitScatterComputation( const HloInstruction* scatter, ValueRange indices, Value update_elem, Value output_tensor, const mlir_converter::PartitionedComputation& root_computation, const mlir_converter::CallTargetProvider& call_targets, mlir::func::FuncOp entry_function, mlir::ImplicitLocOpBuilder& b) { constexpr int kScatterOperandIndex = 0; auto reducer = call_targets(scatter->called_computations()[0]->root_instruction()); if (scatter->unique_indices()) { auto operand_elem = ProvideParameter(root_computation, scatter, kScatterOperandIndex, indices, call_targets, entry_function, b)[0]; auto reduced_val = mlir_converter::InlineBlock( b, reducer.getBody().front(), {operand_elem, update_elem})[0]; return b.create<InsertOp>(reduced_val, output_tensor, indices); } auto atomic_rmw = b.create<AtomicRMWOp>(output_tensor, indices); mlir::OpBuilder body_builder = atomic_rmw.getBodyBuilder(); auto reduced_val = mlir_converter::InlineBlock( body_builder, reducer.getBody().front(), {atomic_rmw.getCurrentValue(), update_elem})[0]; body_builder.create<xla::gpu::YieldOp>(reducer->getLoc(), reduced_val); return atomic_rmw->getResult(0); } absl::Status MlirScatterFusion::EmitEntryFunction( const PartitionedComputations& computations, const CallTargetProvider& call_targets, mlir::func::FuncOp entry_function, const HloFusionInstruction& fusion) const { constexpr int kScatterOperandIndex = 0; constexpr int kScatterIndicesIndex = 1; constexpr int kScatterUpdateIndex = 2; const auto* scatter = &analysis_.fusion_hero(0).instruction(); const HloInstruction* scatter_operand = scatter->operand(kScatterOperandIndex); const HloInstruction* scatter_indices = scatter->operand(kScatterIndicesIndex); const HloInstruction* scatter_update = scatter->operand(kScatterUpdateIndex); mlir::MLIRContext* mlir_context = entry_function.getContext(); auto thread_id_to_update_map = ComputeThreadIdToInputIndexing( 0, kScatterUpdateIndex, mlir_context) .value(); thread_id_to_update_map.Simplify(); thread_id_to_update_map.RemoveUnusedSymbols(); const auto& root_computation = computations.FindPartitionedComputation( fusion.fused_instructions_computation()); mlir::ImplicitLocOpBuilder b(entry_function.getLoc(), entry_function); b.setInsertionPointToStart(entry_function.addEntryBlock()); SmallVector<Value> result_tensors{entry_function.getArguments().back()}; auto scatter_result = EmitThreadLoopNest( b, result_tensors, thread_id_to_update_map, [&](ValueRange output_tensors, ValueRange dim_values, ValueRange symbol_values) -> SmallVector<Value> { auto update_tensor_indices = mlir_converter::ApplyIndexing( thread_id_to_update_map, dim_values, symbol_values, b); auto update_elem = ProvideParameter( root_computation, scatter, kScatterUpdateIndex, update_tensor_indices, call_targets, entry_function, b)[0]; mlir::Value in_bounds = b.create<ma::ConstantIntOp>(1, b.getI1Type()); SmallVector<Value, 4> indices{ llvm::ArrayRef(update_tensor_indices).drop_front()}; for (int i = 0; i < scatter_indices->shape().dimensions(1); ++i) { SmallVector<Value, 4> indices_tensor_indices = { update_tensor_indices.front(), b.create<ma::ConstantIndexOp>(i)}; auto index = ProvideParameter( root_computation, scatter, kScatterIndicesIndex, indices_tensor_indices, call_targets, entry_function, b)[0]; if (primitive_util::IsUnsignedIntegralType( scatter->operand(kScatterIndicesIndex) ->shape() .element_type())) { index = b.create<ma::IndexCastUIOp>(b.getIndexType(), index); } else { index = b.create<ma::IndexCastOp>(b.getIndexType(), index); } Value ub = b.create<ma::ConstantIndexOp>( scatter_operand->shape().dimensions(i) - scatter_update->shape().dimensions(i + 1)); in_bounds = b.create<ma::AndIOp>( in_bounds, b.create<ma::CmpIOp>(ma::CmpIPredicate::ule, index, ub)); indices[i] = b.create<ma::AddIOp>(index, indices[i]); } Value output_tensor = output_tensors.front(); Value predicated_update = b.create<scf::IfOp>( in_bounds, [&](OpBuilder& then_builder, Location then_loc) -> void { Value updated_output = EmitScatterComputation( scatter, indices, update_elem, output_tensor, root_computation, call_targets, entry_function, b); b.create<scf::YieldOp>(updated_output); }, [&](OpBuilder& else_b, Location else_loc) { b.create<scf::YieldOp>(output_tensor); }) .getResult(0); return {predicated_update}; }); b.create<ReturnOp>(scatter_result); return absl::OkStatus(); } } }
#include "xla/service/gpu/fusions/scatter_mlir.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/error_spec.h" #include "xla/service/gpu/fusions/mlir_emitter_test_base.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/model/indexing_test_utils.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using MlirScatterFusionTest = MlirEmitterTestBase<MlirScatterFusion>; TEST_F(MlirScatterFusionTest, ThreadIdIndexing) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule module computation { %p0 = f32[] parameter(0) %p1 = f32[] parameter(1) %p2 = f32[] parameter(2) %p3 = f32[] parameter(3) ROOT %tuple = (f32[], f32[]) tuple(f32[] %p2, f32[] %p3) } scatter { %operand0 = f32[300,200] parameter(0) %operand1 = f32[300,200] parameter(1) %indices = s32[42,1] parameter(2) %update.1 = f32[42,10,20] parameter(3) %update.2 = f32[42,10,20]parameter(4) ROOT %scatter = (f32[300,200], f32[300,200]) scatter( f32[300,200] %operand0, f32[300,200] %operand1, s32[42,1] %indices, f32[42,10,20] %update.1, f32[42,10,20] %update.2 ), update_window_dims={1,2}, inserted_window_dims={}, scatter_dims_to_operand_dims={0}, index_vector_dim=1, to_apply=computation } ENTRY entry { %operand0 = f32[300,200] parameter(0) %operand1 = f32[300,200] parameter(1) %indices = s32[42,1] parameter(2) %update.1 = f32[42,10,20] parameter(3) %update.2 = f32[42,10,20]parameter(4) ROOT %fusion = (f32[300,200], f32[300,200]) fusion( %operand0, %operand1, %indices, %update.1, %update.2), kind=kLoop, calls=scatter } )")); thread_id_printer_.SetSymbolName(0, "chunk_id"); thread_id_printer_.SetSymbolName(1, "unroll_id"); thread_id_printer_.SetSymbolName(2, "index_id"); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirScatterFusion fusion(analysis); constexpr auto kUpdatesIndexing = R"( (th_x, th_y, th_z, bl_x, bl_y, bl_z)[chunk_id, unroll_id] -> ( ((bl_x * 128 + th_x) floordiv 200) mod 42, ((bl_x * 128 + th_x) floordiv 20) mod 10, (bl_x * 128 + th_x) mod 20 ) domain: th_x in [0, 128) th_y in [0, 1) th_z in [0, 1) bl_x in [0, 66) bl_y in [0, 1) bl_z in [0, 1) chunk_id in [0, 1) unroll_id in [0, 1) th_x + bl_x * 128 in [0, 8400) )"; EXPECT_THAT( fusion .ComputeThreadIdToInputIndexing( 0, 3, &mlir_context_) ->ToString(thread_id_printer_), MatchIndexingString(kUpdatesIndexing)); EXPECT_THAT( fusion .ComputeThreadIdToInputIndexing( 0, 4, &mlir_context_) ->ToString(thread_id_printer_), MatchIndexingString(kUpdatesIndexing)); EXPECT_THAT( fusion .ComputeThreadIdToInputIndexing( 1, 3, &mlir_context_) ->ToString(thread_id_printer_), MatchIndexingString(kUpdatesIndexing)); EXPECT_THAT( fusion .ComputeThreadIdToInputIndexing( 1, 4, &mlir_context_) ->ToString(thread_id_printer_), MatchIndexingString(kUpdatesIndexing)); constexpr auto kIndicesIndexing = R"( (th_x, th_y, th_z, bl_x, bl_y, bl_z)[chunk_id, unroll_id, index_id] -> (((bl_x * 128 + th_x) floordiv 200) mod 42, 0) domain: th_x in [0, 128) th_y in [0, 1) th_z in [0, 1) bl_x in [0, 66) bl_y in [0, 1) bl_z in [0, 1) chunk_id in [0, 1) unroll_id in [0, 1) index_id in [0, 1) th_x + bl_x * 128 in [0, 8400) )"; EXPECT_THAT( fusion .ComputeThreadIdToInputIndexing( 0, 2, &mlir_context_) ->ToString(thread_id_printer_), MatchIndexingString(kIndicesIndexing)); EXPECT_THAT( fusion .ComputeThreadIdToInputIndexing( 1, 2, &mlir_context_) ->ToString(thread_id_printer_), MatchIndexingString(kIndicesIndexing)); } TEST_F(MlirScatterFusionTest, Scatter_UniqueIndices) { auto kHloString = R"( HloModule module add { %p0 = f32[] parameter(0) %p1 = f32[] parameter(1) ROOT %sum = f32[] add(%p0, %p1) } scatter { %operand = f32[10,5] parameter(0) %indices = s32[8,1] parameter(1) %update = f32[8,1,2] parameter(2) ROOT %scatter = f32[10,5] scatter( f32[10,5] %operand, s32[8,1] %indices, f32[8,1,2] %update ), update_window_dims={1,2}, inserted_window_dims={}, scatter_dims_to_operand_dims={0}, index_vector_dim=1, unique_indices=true, to_apply=add } ENTRY entry { %c1 = f32[] constant(1) %c1_tensor = f32[10,5] broadcast(%c1), dimensions={} %indices = s32[8,1] constant({{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}}) %update = f32[8, 1, 2] parameter(0) ROOT %fusion = f32[10, 5] fusion( %c1_tensor, %indices, %update), kind=kLoop, calls=scatter } )"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirScatterFusionTest, Scatter_Unsigned) { auto kHloString = R"( HloModule module add { %p0 = f32[] parameter(0) %p1 = f32[] parameter(1) ROOT %sum = f32[] add(%p0, %p1) } scatter { %operand = f32[10,5] parameter(0) %indices = u32[24,1] parameter(1) %update = f32[24,2,3] parameter(2) ROOT %scatter = f32[10,5] scatter(%operand, %indices, %update), update_window_dims={1,2}, inserted_window_dims={}, scatter_dims_to_operand_dims={0}, index_vector_dim=1, to_apply=add } ENTRY entry { %c1 = f32[] constant(1) %c1_tensor = f32[10,5] broadcast(%c1), dimensions={} %indices = u32[24,1] parameter(0) %update = f32[24, 2, 3] parameter(1) ROOT %fusion = f32[10, 5] fusion(%c1_tensor, %indices, %update), kind=kLoop, calls=scatter } )"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirScatterFusionTest, Scatter_Add) { auto kHloString = R"( HloModule module add { %p0 = f32[] parameter(0) %p1 = f32[] parameter(1) ROOT %sum = f32[] add(%p0, %p1) } scatter { %operand = f32[10,5] parameter(0) %indices = s32[24,1] parameter(1) %update = f32[24,2,3] parameter(2) ROOT %scatter = f32[10,5] scatter( f32[10,5] %operand, s32[24,1] %indices, f32[24,2,3] %update ), update_window_dims={1,2}, inserted_window_dims={}, scatter_dims_to_operand_dims={0}, index_vector_dim=1, unique_indices=false, to_apply=add } ENTRY entry { %c1 = f32[] constant(1) %c1_tensor = f32[10,5] broadcast(%c1), dimensions={} %indices = s32[24,1] parameter(0) %update = f32[24, 2, 3] parameter(1) ROOT %fusion = f32[10, 5] fusion( %c1_tensor, %indices, %update), kind=kLoop, calls=scatter } )"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirScatterFusionTest, Scatter_Overwrite) { auto kHloString = R"( HloModule module overwrite { %p0 = f32[] parameter(0) ROOT %p1 = f32[] parameter(1) } scatter { %operand = f32[10,5] parameter(0) %indices = s32[3,1] parameter(1) %update = f32[3,2,3] parameter(2) ROOT %scatter = f32[10,5] scatter( f32[10,5] %operand, s32[3,1] %indices, f32[3,2,3] %update ), update_window_dims={1,2}, inserted_window_dims={}, scatter_dims_to_operand_dims={0}, index_vector_dim=1, unique_indices=false, to_apply=overwrite } ENTRY entry { %c1 = f32[] constant(1) %c1_tensor = f32[10,5] broadcast(%c1), dimensions={} %indices = s32[3,1] constant({ {0}, {3}, {6}}) %update = f32[3, 2, 3] parameter(0) ROOT %fusion = f32[10, 5] fusion( %c1_tensor, %indices, %update), kind=kLoop, calls=scatter } )"; TF_ASSERT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } } } }
2,126
cpp
tensorflow/tensorflow
copy
third_party/xla/xla/service/gpu/fusions/copy.cc
third_party/xla/xla/tests/copy_test.cc
#ifndef XLA_SERVICE_GPU_FUSIONS_COPY_H_ #define XLA_SERVICE_GPU_FUSIONS_COPY_H_ #include <utility> #include <vector> #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/fusions/fusion_emitter.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/ir_emitter_context.h" namespace xla { namespace gpu { class MemcpyFusion : public FusionInterface { public: MemcpyFusion(const HloFusionAnalysis& analysis, const BufferAssignment* buffer_assignment) : analysis_(analysis), buffer_assignment_(buffer_assignment) {} absl::StatusOr<FusionEmissionResult> Emit( IrEmitterContext& ir_emitter_context, const HloFusionInstruction& fusion) const final; private: const HloFusionAnalysis& analysis_; const BufferAssignment* buffer_assignment_; }; } } #endif #include "xla/service/gpu/fusions/copy.h" #include <memory> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/fusions/fusion_emitter.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/ir_emitter_context.h" #include "xla/service/gpu/runtime/copy_thunk.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { absl::StatusOr<FusionEmissionResult> MemcpyFusion::Emit( IrEmitterContext& ir_emitter_context, const HloFusionInstruction& fusion) const { std::vector<BufferAllocation::Slice> src_buffers; for (const HloInstructionAdaptor& root_adaptor : analysis_.fusion_roots()) { const HloInstruction* root = &root_adaptor.instruction(); const HloInstruction* src_instr = fusion.operand(root->operand(0)->parameter_number()); TF_ASSIGN_OR_RETURN(BufferAllocation::Slice slice, buffer_assignment_->GetUniqueSlice(src_instr, {})); src_buffers.push_back(slice); } std::vector<BufferAllocation::Slice> dst_buffers; TF_RETURN_IF_ERROR(ShapeUtil::ForEachSubshapeWithStatus( fusion.shape(), [&](const Shape& subshape, const ShapeIndex& index) { if (!subshape.IsArray()) { return absl::OkStatus(); } TF_ASSIGN_OR_RETURN(BufferAllocation::Slice slice, buffer_assignment_->GetUniqueSlice(&fusion, index)); dst_buffers.push_back(slice); return absl::OkStatus(); })); FusionEmissionResult result; for (int i = 0; i < src_buffers.size(); ++i) { if (src_buffers[i] != dst_buffers[i]) { result.thunks.emplace_back(std::make_unique<DeviceToDeviceCopyThunk>( Thunk::ThunkInfo::WithProfileAnnotation(&fusion), src_buffers[i], dst_buffers[i], src_buffers[i].size())); } } return result; } } }
#include <memory> #include <utility> #include "xla/array2d.h" #include "xla/client/xla_builder.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_macros.h" #include "xla/xla_data.pb.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/test.h" namespace xla { namespace { class CopyOpTest : public HloTestBase { protected: void TestCopyOp(const Literal& literal) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction(HloInstruction::CreateConstant(literal.Clone())); builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kCopy, constant)); auto computation = builder.Build(); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(std::move(computation)); Literal result = ExecuteAndTransfer(std::move(module), {}); EXPECT_TRUE(LiteralTestUtil::Equal(literal, result)); } void TestCopyConstantLayout021(size_t n1, size_t n2, size_t n3); void TestCopyConstantLayoutR4(size_t n1, size_t n2, size_t n3, size_t n4, absl::Span<const int64_t> permutation); }; XLA_TEST_F(CopyOpTest, CopyR0Bool) { TestCopyOp(LiteralUtil::CreateR0<bool>(true)); } XLA_TEST_F(CopyOpTest, CopyR1S0U32) { TestCopyOp(LiteralUtil::CreateR1<uint32_t>({})); } XLA_TEST_F(CopyOpTest, CopyR1S3U32) { TestCopyOp(LiteralUtil::CreateR1<uint32_t>({1, 2, 3})); } XLA_TEST_F(CopyOpTest, CopyR3F32_2x2x3) { TestCopyOp(LiteralUtil::CreateR3({{{1.0f, 2.0f, 3.0f}, {4.0f, 5.0f, 6.0f}}, {{1.1f, 2.1f, 3.1f}, {6.1f, 3.5f, 2.8f}}})); } XLA_TEST_F(CopyOpTest, CopyR4S32_2x2x3x2) { TestCopyOp(LiteralUtil::CreateR4( {{{{1, -2}, {-4, 5}, {6, 7}}, {{8, 9}, {10, 11}, {12, 13}}}, {{{10, 3}, {7, -2}, {3, 6}}, {{2, 5}, {-11, 5}, {-2, -5}}}})); } XLA_TEST_F(CopyOpTest, CopyR4S32_0x2x3x2) { TestCopyOp(LiteralUtil::CreateR4FromArray4D(Array4D<int32_t>(0, 2, 3, 2))); } XLA_TEST_F(CopyOpTest, CopyParameterScalar) { auto builder = HloComputation::Builder(TestName()); auto literal = LiteralUtil::CreateR0<float>(42.0); Shape shape = literal.shape(); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "param0")); builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kCopy, param0)); auto computation = builder.Build(); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(std::move(computation)); Literal result = ExecuteAndTransfer(std::move(module), {&literal}); LiteralTestUtil::ExpectR0Near<float>(42.0f, result, error_spec_); } XLA_TEST_F(CopyOpTest, CopyConstantR2Twice) { auto builder = HloComputation::Builder(TestName()); auto literal = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(std::move(literal))); auto copy = builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kCopy, constant)); builder.AddInstruction( HloInstruction::CreateUnary(copy->shape(), HloOpcode::kCopy, copy)); auto computation = builder.Build(); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(std::move(computation)); Literal result = ExecuteAndTransfer(std::move(module), {}); LiteralTestUtil::ExpectR2Near<float>({{1.0, 2.0}, {3.0, 4.0}}, result, error_spec_); } XLA_TEST_F(CopyOpTest, CopyConstantR2DifferentLayouts) { HloComputation::Builder builder(TestName()); Literal literal = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); Layout* literal_layout = literal.mutable_shape_do_not_use()->mutable_layout(); ASSERT_EQ(2, literal_layout->minor_to_major_size()); *literal_layout->mutable_minor_to_major() = { literal_layout->minor_to_major(1), literal_layout->minor_to_major(0)}; HloInstruction* constant = builder.AddInstruction( HloInstruction::CreateConstant(std::move(literal))); builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kCopy, constant)); std::unique_ptr<HloComputation> computation = builder.Build(); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(std::move(computation)); Literal result = ExecuteAndTransfer(std::move(module), {}); LiteralTestUtil::ExpectR2Near<float>({{1.0, 3.0}, {2.0, 4.0}}, result, error_spec_); } void CopyOpTest::TestCopyConstantLayout021(size_t n1, size_t n2, size_t n3) { Array3D<int32_t> a(n1, n2, n3); for (size_t i = 0; i < n1; ++i) { for (size_t j = 0; j < n2; ++j) { for (size_t k = 0; k < n3; ++k) { a(i, j, k) = i * n3 * n2 + j * n3 + k; } } } HloComputation::Builder builder(TestName()); Literal literal = LiteralUtil::CreateR3FromArray3D(a); HloInstruction* constant = builder.AddInstruction( HloInstruction::CreateConstant(std::move(literal))); builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kCopy, constant)); std::unique_ptr<HloComputation> computation = builder.Build(); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(std::move(computation)); ForceResultLayout(module.get(), LayoutUtil::MakeLayout({1, 2, 0})); Literal result = ExecuteAndTransfer(std::move(module), {}); LiteralTestUtil::ExpectR3EqualArray3D(a, result); } void CopyOpTest::TestCopyConstantLayoutR4( size_t n1, size_t n2, size_t n3, size_t n4, absl::Span<const int64_t> permutation) { Array4D<int32_t> a(n1, n2, n3, n4); for (size_t i = 0; i < n1; ++i) { for (size_t j = 0; j < n2; ++j) { for (size_t k = 0; k < n3; ++k) { for (size_t l = 0; l < n4; ++l) { a(i, j, k, l) = i * n4 * n3 * n2 + j * n4 * n3 + k * n4 + l; } } } } HloComputation::Builder builder(TestName()); Literal literal = LiteralUtil::CreateR4FromArray4D(a); HloInstruction* constant = builder.AddInstruction( HloInstruction::CreateConstant(std::move(literal))); builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kCopy, constant)); std::unique_ptr<HloComputation> computation = builder.Build(); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(std::move(computation)); ForceResultLayout(module.get(), LayoutUtil::MakeLayout(permutation)); Literal result = ExecuteAndTransfer(std::move(module), {}); LiteralTestUtil::ExpectR4EqualArray4D(a, result); } XLA_TEST_F(CopyOpTest, CopyConstantR3Layout021_SingleIncompleteTilePerLayer) { TestCopyConstantLayout021(2, 2, 3); } XLA_TEST_F(CopyOpTest, CopyConstantR3Layout021_SingleCompleteTilePerLayer) { TestCopyConstantLayout021(2, 32, 32); } XLA_TEST_F(CopyOpTest, CopyConstantR3Layout021_MultipleTilesPerLayer) { TestCopyConstantLayout021(2, 70, 35); } XLA_TEST_F(CopyOpTest, CopyConstantR4Layout0231_MultipleTilesPerLayer) { TestCopyConstantLayoutR4(2, 70, 7, 5, {0, 2, 3, 1}); } XLA_TEST_F(CopyOpTest, CopyConstantR4Layout0312_MultipleTilesPerLayer) { TestCopyConstantLayoutR4(2, 14, 5, 35, {0, 3, 1, 2}); } using CopyOpClientTest = ClientLibraryTestBase; XLA_TEST_F(CopyOpClientTest, Copy0x0) { Shape in_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {0, 0}, {0, 1}); Shape out_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {0, 0}, {1, 0}); auto empty = Literal::CreateFromShape(in_shape); XlaBuilder builder(TestName()); Parameter(&builder, 0, in_shape, "input"); auto input_data = client_->TransferToServer(empty).value(); auto actual = ExecuteAndTransfer(&builder, {input_data.get()}, &out_shape).value(); EXPECT_TRUE(LiteralTestUtil::Equal(empty, actual)); } } }
2,127
cpp
tensorflow/tensorflow
input_slices_mlir
third_party/xla/xla/service/gpu/fusions/input_slices_mlir.cc
third_party/xla/xla/service/gpu/fusions/input_slices_mlir_test.cc
#ifndef XLA_SERVICE_GPU_FUSIONS_INPUT_SLICES_MLIR_H_ #define XLA_SERVICE_GPU_FUSIONS_INPUT_SLICES_MLIR_H_ #include <cstdint> #include <optional> #include <vector> #include "absl/status/status.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/fusions/mlir/computation_partitioner.h" #include "xla/service/gpu/fusions/mlir/mlir_fusion_emitter.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/indexing_map.h" namespace xla { namespace gpu { class MlirInputSlicesFusion : public MlirFusionEmitterBase { public: explicit MlirInputSlicesFusion(const HloFusionAnalysis& analysis) : analysis_(analysis), unroll_factor_(CeilOfRatio( 8, analysis.input_output_info().smallest_output_dtype_bits)) {} LaunchDimensions launch_dimensions() const override; std::optional<IndexingMap> ComputeThreadIdToOutputIndexing( int64_t output_id, mlir::MLIRContext* ctx) const override; std::optional<IndexingMap> ComputeThreadIdToInputIndexing( int64_t root_index, int64_t hero_operand_index, mlir::MLIRContext* ctx) const override { return std::nullopt; } protected: absl::Status EmitEntryFunction( const mlir_converter::PartitionedComputations& computations, const mlir_converter::CallTargetProvider& call_targets, mlir::func::FuncOp entry_function, const HloFusionInstruction& fusion) const override; std::vector<mlir_converter::EpilogueSpecification> GetEpilogues( const HloFusionInstruction& fusion, mlir::MLIRContext* mlir_context) const override; private: const HloFusionAnalysis& analysis_; const int unroll_factor_; }; } } #endif #include "xla/service/gpu/fusions/input_slices_mlir.h" #include <cstdint> #include <iterator> #include <optional> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/SCF/IR/SCF.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/Builders.h" #include "mlir/IR/ImplicitLocOpBuilder.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/Value.h" #include "mlir/IR/ValueRange.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/fusions/mlir/computation_partitioner.h" #include "xla/service/gpu/fusions/mlir/elemental_hlo_to_mlir.h" #include "xla/service/gpu/fusions/mlir/ir/xla_gpu_ops.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/indexing_analysis.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/xla_data.pb.h" namespace xla { namespace gpu { using llvm::SmallVector; using mlir::Value; using mlir::ValueRange; std::optional<IndexingMap> MlirInputSlicesFusion::ComputeThreadIdToOutputIndexing( int64_t output_id, mlir::MLIRContext* ctx) const { auto launch_dims = launch_dimensions(); auto* slice = &analysis_.fusion_root(output_id).instruction(); const auto& shape = slice->operand(0)->shape(); return GetDefaultThreadIdIndexingMap(launch_dims, unroll_factor_, shape, ctx) * *ComputeInputToOutputIndexing(slice, 0, ctx) .indexing_maps.front() .begin(); } std::vector<mlir_converter::EpilogueSpecification> MlirInputSlicesFusion::GetEpilogues(const HloFusionInstruction& fusion, mlir::MLIRContext* mlir_context) const { std::vector<const HloInstruction*> roots; roots.reserve(analysis_.fusion_root_count()); for (const auto& root : analysis_.fusion_roots()) { roots.push_back(&root.instruction()); } return {mlir_converter::EpilogueSpecification::FromOutputIndexing( analysis_, roots, roots, *this, mlir_context)}; } LaunchDimensions MlirInputSlicesFusion::launch_dimensions() const { const auto& root = analysis_.fusion_root(0).instruction(); const auto& shape = root.operand(0)->shape(); return CalculateLaunchDimensions(shape, analysis_.device_info(), {unroll_factor_}); } absl::Status MlirInputSlicesFusion::EmitEntryFunction( const mlir_converter::PartitionedComputations& computations, const mlir_converter::CallTargetProvider& call_targets, mlir::func::FuncOp entry_function, const HloFusionInstruction& fusion) const { mlir::ImplicitLocOpBuilder builder(entry_function.getLoc(), entry_function); builder.setInsertionPointToStart(entry_function.addEntryBlock()); auto launch_dims = launch_dimensions(); const auto& shape = analysis_.fusion_root(0).instruction().operand(0)->shape(); auto input_indexing = GetDefaultThreadIdIndexingMap( launch_dims, unroll_factor_, shape, builder.getContext()); int num_inputs = fusion.fused_instructions_computation()->num_parameters(); auto output_tensor_args = entry_function.getArguments().drop_front(num_inputs); auto result_tensors = EmitThreadLoopNest( builder, output_tensor_args, input_indexing, [&](ValueRange output_tensors, ValueRange dim_values, ValueRange symbol_values) -> SmallVector<Value> { auto input_indices = mlir_converter::ApplyIndexing( input_indexing, dim_values, symbol_values, builder); SmallVector<Value> input_operands( entry_function.getArguments().take_front(num_inputs)); absl::c_copy(input_indices, std::back_inserter(input_operands)); SmallVector<Value> result_tensors; result_tensors.reserve(output_tensor_args.size()); absl::flat_hash_map<const HloInstruction*, mlir::Value> input_values; for (const HloInstructionAdaptor& root : analysis_.fusion_roots()) { const auto* arg = root.instruction().operand(0); if (auto& value = input_values[arg]; !value) { value = builder.create<PureCallOp>(call_targets(arg), input_operands) .getResult(0); } } for (auto [output_index, output] : llvm::enumerate(output_tensors)) { auto output_indexing = ComputeThreadIdToOutputIndexing( output_index, entry_function.getContext()); mlir::Value in_bounds = mlir_converter::CheckConstraints( *output_indexing, dim_values, symbol_values, builder); auto if_op = builder.create<mlir::scf::IfOp>( in_bounds, [&, output_index = output_index, output = output]( mlir::OpBuilder b, mlir::Location loc) { mlir::ImplicitLocOpBuilder then_builder(loc, b); auto output_indices = mlir_converter::ApplyIndexing( *output_indexing, dim_values, symbol_values, then_builder); const auto* arg = analysis_.fusion_root(output_index) .instruction() .operand(0); auto inserted = then_builder.create<mlir::tensor::InsertOp>( input_values[arg], output, output_indices); then_builder.create<mlir::scf::YieldOp>(inserted.getResult()); }, [&, output = output](mlir::OpBuilder else_builder, mlir::Location loc) { else_builder.create<mlir::scf::YieldOp>(loc, output); }); result_tensors.push_back(if_op.getResult(0)); } return result_tensors; }); builder.create<mlir::func::ReturnOp>(result_tensors); return absl::OkStatus(); } } }
#include "xla/service/gpu/fusions/input_slices_mlir.h" #include <gtest/gtest.h> #include "xla/error_spec.h" #include "xla/service/gpu/fusions/mlir_emitter_test_base.h" #include "xla/service/gpu/model/indexing_test_utils.h" namespace xla { namespace gpu { namespace { using MlirInputSlicesFusionTest = MlirEmitterTestBase<MlirInputSlicesFusion>; TEST_F(MlirInputSlicesFusionTest, ThreadIndexing) { auto module = ParseAndReturnVerifiedModule(R"( HloModule module fused_computation { %input = f32[4,5] parameter(0) slice0 = f32[3,3] slice(input), slice={[1:4],[0:3]} slice1 = f32[2,3] slice(input), slice={[0:2],[0:3]} ROOT tuple = (f32[3,3], f32[2,3]) tuple(slice0, slice1) } ENTRY entry { %input = f32[4,5] parameter(0) ROOT %fusion = (f32[3,3], f32[2,3]) fusion(%input), kind=kLoop, calls=fused_computation })") .value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); auto emitter = GetEmitter(analysis); auto thread_id_to_output_indexing_0 = emitter->ComputeThreadIdToOutputIndexing(0, &mlir_context_); thread_id_to_output_indexing_0->Simplify(); EXPECT_THAT(thread_id_to_output_indexing_0->ToString(thread_id_printer_), MatchIndexingString(R"( (th_x, th_y, th_z, bl_x, bl_y, bl_z)[s0, s1] -> ( th_x floordiv 5 - 1, th_x mod 5 ) domain: th_x in [5, 20) th_y in [0, 1) th_z in [0, 1) bl_x in [0, 1) bl_y in [0, 1) bl_z in [0, 1) s0 in [0, 1) s1 in [0, 1) th_x mod 5 in [0, 3) )")); auto thread_id_to_output_indexing_1 = emitter->ComputeThreadIdToOutputIndexing(1, &mlir_context_); thread_id_to_output_indexing_1->Simplify(); EXPECT_THAT(thread_id_to_output_indexing_1->ToString(thread_id_printer_), MatchIndexingString(R"( (th_x, th_y, th_z, bl_x, bl_y, bl_z)[s0, s1] -> ( th_x floordiv 5, th_x mod 5 ) domain: th_x in [0, 10) th_y in [0, 1) th_z in [0, 1) bl_x in [0, 1) bl_y in [0, 1) bl_z in [0, 1) s0 in [0, 1) s1 in [0, 1) th_x mod 5 in [0, 3) )")); } TEST_F(MlirInputSlicesFusionTest, SimpleInputSlices) { auto kHloString = R"( HloModule module fused_computation { %input = f32[2,4,5,7]{2,1,0,3} parameter(0) slice0 = f32[1,3,3,5]{2,1,0,3} slice(input), slice={[0:1],[1:4],[0:3],[2:7]} slice1 = f32[1,2,3,5]{2,1,0,3} slice(input), slice={[0:1],[0:2],[0:3],[2:7]} ROOT tuple = (f32[1,3,3,5]{2,1,0,3}, f32[1,2,3,5]{2,1,0,3}) tuple(slice0, slice1) } ENTRY entry { %input = f32[2,4,5,7]{2,1,0,3} parameter(0) ROOT %fusion = (f32[1,3,3,5]{2,1,0,3}, f32[1,2,3,5]{2,1,0,3}) fusion(%input), kind=kLoop, calls=fused_computation } )"; EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirInputSlicesFusionTest, SliceOfPad) { auto kHloString = R"( fusion { %p0 = f32[6] parameter(0) %c0 = f32[] constant(0) %pad0 = f32[12] pad(%p0, %c0), padding=0_1_1 %slice0 = f32[11] slice(%pad0), slice={[1:12]} %pad1 = f32[12] pad(%p0, %c0), padding=1_0_1 %slice1 = f32[11] slice(%pad1), slice={[1:12]} ROOT %tuple.9 = (f32[11], f32[11]) tuple(%slice0, %slice1) } ENTRY entry { input = f32[6] parameter(0) ROOT fusion = (f32[11], f32[11]) fusion(input), kind=kLoop, calls=fusion })"; EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirInputSlicesFusionTest, ZeroSlice) { auto kHloString = R"( fusion { %p0 = s32[0] parameter(0) %p1 = s32[2] parameter(1) %concatenate = s32[2] concatenate(p0, p1), dimensions={0} %slice = s32[0] slice(%concatenate), slice={[0:0]} %slice.1 = s32[2] slice(%concatenate), slice={[0:2]} ROOT %tuple = (s32[0], s32[2]) tuple(%slice, %slice.1) } ENTRY entry { %p0 = s32[0] parameter(0) %p1 = s32[2] parameter(1) ROOT fusion = (s32[0], s32[2]) fusion(%p0, %p1), kind=kLoop, calls=fusion })"; EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } } } }
2,128
cpp
tensorflow/tensorflow
cudnn
third_party/xla/xla/service/gpu/fusions/cudnn.cc
third_party/xla/xla/service/gpu/fusions/cudnn_test.cc
#ifndef XLA_SERVICE_GPU_FUSIONS_CUDNN_H_ #define XLA_SERVICE_GPU_FUSIONS_CUDNN_H_ #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/fusions/fusion_emitter.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/ir_emitter_context.h" namespace xla { namespace gpu { class CuDnnFusion : public FusionInterface { public: explicit CuDnnFusion(const HloFusionAnalysis&) {} absl::StatusOr<FusionEmissionResult> Emit( IrEmitterContext& ir_emitter_context, const HloFusionInstruction& fusion) const final; }; } } #endif #include "xla/service/gpu/fusions/cudnn.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/fusions/fusion_emitter.h" #include "xla/service/gpu/ir_emitter_context.h" #include "xla/service/gpu/kernel_arguments.h" #include "xla/service/gpu/kernel_reuse_cache.h" #include "xla/service/gpu/runtime/thunk.h" #include "tsl/platform/statusor.h" #if GOOGLE_CUDA #include "xla/service/gpu/runtime/cudnn_thunk.h" #endif namespace xla { namespace gpu { absl::StatusOr<FusionEmissionResult> CuDnnFusion::Emit( IrEmitterContext& ir_emitter_context, const HloFusionInstruction& fusion) const { #if GOOGLE_CUDA VLOG(3) << fusion.ToString(); TF_ASSIGN_OR_RETURN( auto kernel_arguments, KernelArguments::Create(ir_emitter_context.buffer_assignment(), &fusion)); FusionEmissionResult result; result.thunks.emplace_back(std::make_unique<CuDnnThunk>( GetComputationFingerprint(fusion.fused_instructions_computation(), {}), Thunk::ThunkInfo::WithProfileAnnotation(&fusion), kernel_arguments.args())); return result; #else return absl::UnimplementedError("cuDNN support requires CUDA"); #endif } } }
#include <array> #include <memory> #include <string> #include <tuple> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_replace.h" #include "absl/strings/substitute.h" #include "xla/comparison_util.h" #include "xla/debug_options_flags.h" #include "xla/error_spec.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/primitive_util.h" #include "xla/service/dump.h" #include "xla/service/executable.h" #include "xla/service/gpu/cudnn_fusion_compiler.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/service/gpu/stream_executor_util.h" #include "xla/service/gpu/tests/gpu_codegen_test.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/stream_executor/dnn.h" #include "xla/stream_executor/stream_executor.h" #include "xla/stream_executor/stream_executor_memory_allocator.h" #include "xla/tests/filecheck.h" #include "xla/tests/verified_hlo_module.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/path.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { class CuDnnFusionTest : public GpuCodegenTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = GpuCodegenTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_autotune_level(0); debug_options.set_xla_gpu_cudnn_gemm_fusion_level(1); return debug_options; } bool IsAtLeastHopperWithCuDnn9() { se::StreamExecutor* executor = backend().default_stream_executor(); return executor->GetDeviceDescription() .cuda_compute_capability() .IsAtLeastHopper() && GetDnnVersionInfoOrDefault(executor).major_version() >= 9; } bool IsAtLeastCuDnn91() { se::StreamExecutor* executor = backend().default_stream_executor(); const se::dnn::VersionInfo version = GetDnnVersionInfoOrDefault(executor); return (version.major_version() == 9 && version.minor_version() >= 1) || version.major_version() > 9; } protected: void SetUp() override { if (!IsAtLeastHopperWithCuDnn9()) { GTEST_SKIP() << "cuDNN GEMM fusion is not enabled before Hopper / cuDNN 9."; } } }; TEST_F(CuDnnFusionTest, DumpingWorks) { HloModuleConfig config; DebugOptions options = GetDebugOptionsForTest(); std::string output_directory; if (!tsl::io::GetTestUndeclaredOutputsDir(&output_directory)) { output_directory = tsl::testing::TmpDir(); } options.set_xla_dump_to(output_directory); config.set_debug_options(options); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( fd0 { p0 = f32[64,64] parameter(0) p1 = f32[64,64] parameter(1) ROOT d = f32[64,64] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = f32[64,64] parameter(0) p1 = f32[64,64] parameter(1) ROOT d0 = f32[64,64] fusion(p0, p1), kind=kCustom, calls=fd0, backend_config={"fusion_backend_config":{"kind":"__cudnn$fusion","cudnn_fusion_config":{"plan_id":"0"}}} })", config)); Thunk::BinaryMap dnn_compiled_graphs; CuDnnFusionCompiler cudnn_compiler(*backend().default_stream_executor(), dnn_compiled_graphs); TF_ASSERT_OK_AND_ASSIGN(bool changed, cudnn_compiler.Run(module.get())); EXPECT_TRUE(changed); std::string dump; TF_EXPECT_OK(tsl::ReadFileToString( tsl::Env::Default(), tsl::io::JoinPath(output_directory, FilenameFor(*module, "", "cudnn_fusion_d0.json")), &dump)); EXPECT_TRUE(*RunFileCheck(dump, R"( CHECK: "nodes": [ CHECK: "inputs": { CHECK: "A": "p0", CHECK: "B": "p1" CHECK: }, CHECK: "outputs": { CHECK: "C": "d" CHECK: }, CHECK: "tag": "MATMUL" CHECK: } CHECK: ], CHECK: "tensors": { CHECK: "d": { CHECK: "data_type": "FLOAT", CHECK: "dim": [1,64,64], CHECK: "stride": [1,64,1], CHECK: "uid": 3, CHECK: "uid_assigned": true CHECK: }, CHECK: "p0": { CHECK: "data_type": "FLOAT", CHECK: "dim": [1,64,64], CHECK: "stride": [1,64,1], CHECK: "uid": 1, CHECK: "uid_assigned": true CHECK: }, CHECK: "p1": { CHECK: "data_type": "FLOAT", CHECK: "dim": [1,64,64], CHECK: "stride": [1,64,1], CHECK: "uid": 2, CHECK: "uid_assigned": true CHECK: } )")); } using CuDnnFusionExecutionTest = CuDnnFusionTest; namespace m = ::xla::match; TEST_F(CuDnnFusionExecutionTest, WorkspaceAllocationWorks) { if (!IsAtLeastCuDnn91()) { GTEST_SKIP() << "This test case requests a workspace only with cuDNN 9.1+."; } const std::string kHloText = R"( fusion1 { p0 = f32[32,96] parameter(0) p1 = f32[96,64] parameter(1) ROOT r = f32[32,64] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = f32[32,96] parameter(0) p1 = f32[96,64] parameter(1) ROOT _ = f32[32,64] fusion(p0, p1), kind=kCustom, calls=fusion1, backend_config={"fusion_backend_config": {kind: "__cudnn$fusion"}} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); Thunk::BinaryMap dnn_compiled_graphs; CuDnnFusionCompiler cudnn_compiler(*backend().default_stream_executor(), dnn_compiled_graphs); TF_ASSERT_OK_AND_ASSIGN(bool changed, cudnn_compiler.Run(module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement(m::Fusion()))); EXPECT_THAT(module->entry_computation() ->root_instruction() ->operand(0) ->fused_instructions_computation() ->root_instruction(), GmockMatch(m::Tuple(m::Dot(), m::CustomCall()))); EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{1e-3, 1e-3})); } TEST_F(CuDnnFusionExecutionTest, NoTritonConfigIsAssignedAtZeroAutotuningLevel) { EXPECT_EQ(GetDebugOptionsForTest().xla_gpu_autotune_level(), 0); MatchOptimizedHlo(R"( fusion1 { p0 = f32[32,96] parameter(0) p1 = f32[96,64] parameter(1) ROOT r = f32[32,64] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = f32[32,96] parameter(0) p1 = f32[96,64] parameter(1) ROOT _ = f32[32,64] fusion(p0, p1), kind=kCustom, calls=fusion1, backend_config={"fusion_backend_config": {kind: "__cudnn$fusion"}} })", R"( CHECK-NOT: triton_gemm_config )"); } TEST_F(CuDnnFusionExecutionTest, DotF32ExecutesCorrectly) { EXPECT_TRUE(RunAndCompare(R"( fusion1 { p0 = f32[32,96] parameter(0) p1 = f32[96,64] parameter(1) ROOT r = f32[32,64] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = f32[32,96] parameter(0) p1 = f32[96,64] parameter(1) ROOT _ = f32[32,64] fusion(p0, p1), kind=kCustom, calls=fusion1, backend_config={"fusion_backend_config": {kind: "__cudnn$fusion"}} })", ErrorSpec{1e-3, 1e-3})); } TEST_F(CuDnnFusionExecutionTest, DotBF16WithCopyExecutesCorrectly) { EXPECT_TRUE(RunAndCompare(R"( fusion1 { p0 = bf16[96,512,64]{1,2,0} parameter(0) cp = bf16[96,512,64]{2,1,0} copy(p0) p1 = bf16[96,64,512]{2,1,0} parameter(1) ROOT d = bf16[96,512,512]{2,1,0} dot(cp, p1), lhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_batch_dims={0}, rhs_contracting_dims={1} } ENTRY e { p0 = bf16[96,512,64]{1,2,0} parameter(0) p1 = bf16[96,64,512]{2,1,0} parameter(1) ROOT r = bf16[96,512,512]{2,1,0} fusion(p0, p1), kind=kCustom, calls=fusion1, backend_config={"fusion_backend_config": {kind :"__cudnn$fusion"}} })", ErrorSpec{1e-2, 1e-3})); } TEST_F(CuDnnFusionExecutionTest, DotBF16BF16F32ExecutesCorrectly) { EXPECT_TRUE(RunAndCompare(R"( fusion1 { p0 = bf16[16,32,128] parameter(0) p1 = bf16[16,128,64] parameter(1) ROOT r = f32[16,32,64] dot(p0, p1), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={1} } ENTRY e { p0 = bf16[16,32,128] parameter(0) p1 = bf16[16,128,64] parameter(1) ROOT _ = f32[16,32,64] fusion(p0, p1), kind=kCustom, calls=fusion1, backend_config={"fusion_backend_config": {kind: "__cudnn$fusion"}} })", ErrorSpec{1e-6, 1e-6})); } TEST_F(CuDnnFusionExecutionTest, DotF32WithOutputSubtractionExecutesCorrectly) { EXPECT_TRUE(RunAndCompare(R"( fusion1 { p0 = f32[9,32,96] parameter(0) p1 = f32[9,96,64] parameter(1) d = f32[9,32,64] dot(p0, p1), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={1} p2 = f32[9,32,64] parameter(2) ROOT s = f32[9,32,64] subtract(p2, d) } ENTRY e { p0 = f32[9,32,96] parameter(0) p1 = f32[9,96,64] parameter(1) p2 = f32[9,32,64] parameter(2) ROOT _ = f32[9,32,64] fusion(p0, p1, p2), kind=kCustom, calls=fusion1, backend_config={"fusion_backend_config": {kind: "__cudnn$fusion"}} })", ErrorSpec{1e-3, 1e-3})); } TEST_F(CuDnnFusionExecutionTest, DotWithNonDefaultLayoutsExecutesCorrectly) { EXPECT_TRUE(RunAndCompare(R"( fusion1 { p0 = bf16[32,32]{0,1} parameter(0) p1 = bf16[32,32]{1,0} parameter(1) ROOT r = bf16[32,32]{0,1} dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY e { p0 = bf16[32,32]{0,1} parameter(0) p1 = bf16[32,32]{1,0} parameter(1) ROOT _ = bf16[32,32]{0,1} fusion(p0, p1), kind=kCustom, calls=fusion1, backend_config={"fusion_backend_config": {kind: "__cudnn$fusion"}} })", ErrorSpec{1e-4, 1e-4})); } TEST_F(CuDnnFusionExecutionTest, RHSFusionExecutesCorrectly) { EXPECT_TRUE(RunAndCompare(R"( fusion1 { p0 = bf16[5,32,96] parameter(0) p1 = s8[5,96,16] parameter(1) p1c = bf16[5,96,16] convert(p1) ROOT r = bf16[5,32,16] dot(p0, p1c), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={1} } ENTRY e { p0 = bf16[5,32,96] parameter(0) p1 = s8[5,96,16] parameter(1) ROOT _ = bf16[5,32,16] fusion(p0, p1), kind=kCustom, calls=fusion1, backend_config={"fusion_backend_config": {kind: "__cudnn$fusion"}} })", ErrorSpec{1e-3, 1e-3})); } TEST_F(CuDnnFusionExecutionTest, SkipNonDefaultPrecision) { EXPECT_FALSE(Run(R"( t { p0 = f32[27,23] parameter(0) p0c = s8[27,23] convert(p0) p0cc = f32[27,23] convert(p0c) p1 = f32[23,21] parameter(1) ROOT r = f32[27,21] dot(p0cc, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0}, operand_precision={HIGH, HIGH} } ENTRY e { p0 = f32[27,23] parameter(0) p1 = f32[23,21] parameter(1) ROOT r = f32[27,21] fusion(p0, p1), kind=kCustom, calls=t, backend_config={"fusion_backend_config": {kind: "__cudnn$fusion"}} })")); } TEST_F(CuDnnFusionExecutionTest, DotF16NegateNonDefaultDimensionsExecutesCorrectly) { EXPECT_TRUE(RunAndCompare(R"( fusion1 { p0 = f16[16,32,96] parameter(0) p0n = f16[16,32,96] negate(p0) p1 = f16[16,64,96] parameter(1) ROOT r = f16[16,32,64] dot(p0n, p1), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={2} } ENTRY e { p0 = f16[16,32,96] parameter(0) p1 = f16[16,64,96] parameter(1) ROOT _ = f16[16,32,64] fusion(p0, p1), kind=kCustom, calls=fusion1, backend_config={"fusion_backend_config": {kind: "__cudnn$fusion"}} })", ErrorSpec{1e-3, 1e-3})); } TEST_F(CuDnnFusionExecutionTest, DotS8BF16ExecutesCorrectly) { EXPECT_TRUE(RunAndCompare(R"( fusion1 { p0 = s8[5,32,96] parameter(0) p0c = bf16[5,32,96] convert(p0) p1 = bf16[5,96,16] parameter(1) ROOT r = bf16[5,32,16] dot(p0c, p1), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={1} } ENTRY e { p0 = s8[5,32,96] parameter(0) p1 = bf16[5,96,16] parameter(1) ROOT _ = bf16[5,32,16] fusion(p0, p1), kind=kCustom, calls=fusion1, backend_config={"fusion_backend_config": {kind: "__cudnn$fusion"}} })", ErrorSpec{1e-5, 1e-5})); } TEST_F(CuDnnFusionExecutionTest, IntegerMathExecutesCorrectly) { if (!IsAtLeastCuDnn91()) { GTEST_SKIP() << "Integer math requires cuDNN 9.1+."; } const std::string kHloText = R"( fusion1 { p0 = s8[16,16] parameter(0) p1 = s8[16,16] parameter(1) d = s32[16,16] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} p2 = s32[16,16] parameter(2) ROOT a = s32[16,16] add(d, p2) } ENTRY e { p0 = s8[16,16] parameter(0) p1 = s8[16,16] parameter(1) p2 = s32[16,16] parameter(2) ROOT r = s32[16,16] fusion(p0, p1, p2), kind=kCustom, calls=fusion1, backend_config={"fusion_backend_config": {"kind":"__cudnn$fusion"}} })"; EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{0, 0})); } class CuDnnFusionCommandBufferTest : public CuDnnFusionTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = CuDnnFusionTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_graph_min_graph_size(1); return debug_options; } }; TEST_F(CuDnnFusionCommandBufferTest, CommandBuffersAreSupported) { const std::string kHloText = R"( fd0 { p0 = f32[64,64]{1,0} parameter(0) p1 = f32[64,64]{1,0} parameter(1) ROOT d = f32[64,64]{1,0} dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } fd1 { p0 = f32[64,64]{1,0} parameter(0) p1 = f32[64,64]{1,0} parameter(1) ROOT d = f32[64,64]{1,0} dot(p0, p1), lhs_contracting_dims={0}, rhs_contracting_dims={1} } ENTRY e { p0 = f32[64,64]{1,0} parameter(0) p1 = f32[64,64]{1,0} parameter(1) d0 = f32[64,64]{1,0} fusion(p0, p1), kind=kCustom, calls=fd0, backend_config={"fusion_backend_config":{"kind":"__cudnn$fusion","cudnn_fusion_config":{"plan_id":"0"}}} a = f32[64,64]{1,0} add(d0, d0) ROOT d1 = f32[64,64]{1,0} fusion(a, d0), kind=kCustom, calls=fd1, backend_config={"fusion_backend_config":{"kind":"__cudnn$fusion","cudnn_fusion_config":{"plan_id":"0"}}} })"; se::StreamExecutorMemoryAllocator allocator( backend().default_stream_executor()); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<Executable> executable, backend().compiler()->RunBackend( GetOptimizedModule(kHloText).value(), backend().default_stream_executor(), &allocator)); absl::StatusOr<bool> filecheck_result = RunFileCheck(executable->module().ToString(), R"( ; CHECK: ENTRY ; CHECK-NEXT: parameter ; CHECK-NEXT: parameter ; CHECK: command_buffer ; CHECK-NOT: fusion )"); TF_ASSERT_OK(filecheck_result.status()); EXPECT_TRUE(filecheck_result.value()); EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{1e-3, 1e-3})); } class CuDnnFusionLevel2Test : public CuDnnFusionExecutionTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = CuDnnFusionExecutionTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_cudnn_gemm_fusion_level(2); return debug_options; } }; TEST_F(CuDnnFusionLevel2Test, BroadcastToDim2ExecutesCorrectly) { EXPECT_TRUE(RunAndCompare(R"( fusion1 { p0 = f16[16,32,128] parameter(0) p1 = f16[16,128,64] parameter(1) p2 = f16[16,32] parameter(2) p2b = f16[16,32,128] broadcast(p2), dimensions={0,1} a = f16[16,32,128] add(p0, p2b) ROOT r = f16[16,32,64] dot(a, p1), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={1} } ENTRY e { p0 = f16[16,32,128] parameter(0) p1 = f16[16,128,64] parameter(1) p2 = f16[16,32] parameter(2) ROOT _ = f16[16,32,64] fusion(p0, p1, p2), kind=kCustom, calls=fusion1, backend_config={"fusion_backend_config": {kind: "__cudnn$fusion"}} })", ErrorSpec{1e-3, 1e-3})); } TEST_F(CuDnnFusionLevel2Test, BroadcastToDim1ExecutesCorrectly) { EXPECT_TRUE(RunAndCompare(R"( fusion1 { p0 = f16[16,32,128] parameter(0) p1 = f16[16,128,64] parameter(1) p2 = f16[16,128] parameter(2) p2b = f16[16,32,128] broadcast(p2), dimensions={0,2} a = f16[16,32,128] add(p0, p2b) ROOT r = f16[16,32,64] dot(a, p1), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={1} } ENTRY e { p0 = f16[16,32,128] parameter(0) p1 = f16[16,128,64] parameter(1) p2 = f16[16,128] parameter(2) ROOT _ = f16[16,32,64] fusion(p0, p1, p2), kind=kCustom, calls=fusion1, backend_config={"fusion_backend_config": {kind: "__cudnn$fusion"}} })", ErrorSpec{1e-3, 1e-3})); } TEST_F(CuDnnFusionLevel2Test, BroadcastToDim0ExecutesCorrectly) { EXPECT_TRUE(RunAndCompare(R"( fusion1 { p0 = bf16[32,128] parameter(0) p0b = bf16[5,32,128] broadcast(p0), dimensions={1,2} p1 = bf16[5,128,64] parameter(1) ROOT r = f32[5,32,64] dot(p0b, p1), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={1} } ENTRY e { p0 = bf16[32,128] parameter(0) p1 = bf16[5,128,64] parameter(1) ROOT _ = f32[5,32,64] fusion(p0, p1), kind=kCustom, calls=fusion1, backend_config={"fusion_backend_config": {kind: "__cudnn$fusion"}} })", ErrorSpec{1e-3, 1e-3})); } TEST_F(CuDnnFusionLevel2Test, BroadcastTo2DimsExecutesCorrectly) { EXPECT_TRUE(RunAndCompare(R"( fusion1 { p0 = f16[16,32,128] parameter(0) p1 = f16[16,128,64] parameter(1) p2 = f16[128] parameter(2) p2b = f16[16,32,128] broadcast(p2), dimensions={2} a = f16[16,32,128] add(p0, p2b) ROOT r = f16[16,32,64] dot(a, p1), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={1} } ENTRY e { p0 = f16[16,32,128] parameter(0) p1 = f16[16,128,64] parameter(1) p2 = f16[128] parameter(2) ROOT _ = f16[16,32,64] fusion(p0, p1, p2), kind=kCustom, calls=fusion1, backend_config={"fusion_backend_config": {kind: "__cudnn$fusion"}} })", ErrorSpec{1e-3, 1e-3})); } TEST_F(CuDnnFusionLevel2Test, BroadcastTo3DimsExecutesCorrectly) { EXPECT_TRUE(RunAndCompare(R"( fusion1 { p0 = f16[16,32,128] parameter(0) p1 = f16[16,128,64] parameter(1) p2 = f16[] parameter(2) p2b = f16[16,32,128] broadcast(p2), dimensions={} a = f16[16,32,128] add(p0, p2b) ROOT r = f16[16,32,64] dot(a, p1), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={1} } ENTRY e { p0 = f16[16,32,128] parameter(0) p1 = f16[16,128,64] parameter(1) p2 = f16[] parameter(2) ROOT _ = f16[16,32,64] fusion(p0, p1, p2), kind=kCustom, calls=fusion1, backend_config={"fusion_backend_config": {kind: "__cudnn$fusion"}} })", ErrorSpec{1e-3, 1e-3})); } TEST_F(CuDnnFusionLevel2Test, ConstantExecutesCorrectly) { if (!IsAtLeastCuDnn91()) { GTEST_SKIP() << "Fused scalar constants require cuDNN 9.1+."; } EXPECT_TRUE(RunAndCompare(R"( fusion1 { x = bf16[16,32] parameter(0) y = bf16[32,16] parameter(1) x_const = bf16[] constant(-1) y_const = s32[] constant(-2) x_const_bcast = bf16[16,32] broadcast(x_const), dimensions={} y_const_bcast = s32[32,16] broadcast(y_const), dimensions={} y_const_convert = bf16[32,16] convert(y_const_bcast) x_add = bf16[16,32] minimum(x, x_const_bcast) y_add = bf16[32,16] minimum(y, y_const_convert) dot_a = f32[16,16] dot(x_add, y_add), lhs_contracting_dims={1}, rhs_contracting_dims={0} c = f32[] constant(0) c_bcast = f32[16,16] broadcast(c), dimensions={} ROOT out = f32[16,16] maximum(dot_a, c_bcast) } ENTRY e { p0 = bf16[16,32] parameter(0) p1 = bf16[32,16] parameter(1) ROOT _ = f32[16,16] fusion(p0, p1), kind=kCustom, calls=fusion1, backend_config={"fusion_backend_config": {kind: "__cudnn$fusion"}} })", ErrorSpec{1e-3, 1e-3})); } TEST_F(CuDnnFusionLevel2Test, ClampExecutesCorrectly) { if (!IsAtLeastCuDnn91()) { GTEST_SKIP() << "Clamp test requires cuDNN 9.1+."; } EXPECT_TRUE(RunAndCompare(R"( fusion1 { x = bf16[16,32] parameter(0) y = bf16[32,16] parameter(1) x_const_lower = bf16[] constant(3e-3) x_const_upper = bf16[] constant(1e-1) y_const_lower = bf16[] constant(3e-3) y_const_upper = bf16[] constant(1e-1) x_const_bcast_lower = bf16[16,32] broadcast(x_const_lower), dimensions={} x_const_bcast_upper = bf16[16,32] broadcast(x_const_upper), dimensions={} y_const_bcast_lower = bf16[32,16] broadcast(y_const_lower), dimensions={} y_const_bcast_upper = bf16[32,16] broadcast(y_const_upper), dimensions={} x_clamp = bf16[16,32] clamp(x_const_bcast_lower, x, x_const_bcast_upper) y_clamp = bf16[32,16] clamp(y_const_bcast_lower, y, y_const_bcast_upper) ROOT dot_a = f32[16,16] dot(x_clamp, y_clamp), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = bf16[16,32] parameter(0) p1 = bf16[32,16] parameter(1) ROOT _ = f32[16,16] fusion(p0, p1), kind=kCustom, calls=fusion1, backend_config={"fusion_backend_config": {kind: "__cudnn$fusion"}} })", ErrorSpec{1e-3, 1e-3})); } TEST_F(CuDnnFusionLevel2Test, DotF8ExecutesCorrectly) { EXPECT_TRUE(RunAndCompare(R"( fusion1 { x = f8e4m3fn[16,32] parameter(0) y = f8e4m3fn[32,16] parameter(1) dot = f32[16,16] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} x_scale = f32[] parameter(2) y_scale = f32[] parameter(3) combined_scale = f32[] multiply(x_scale, y_scale) scale_bcast = f32[16,16] broadcast(combined_scale), dimensions={} ROOT out = f32[16,16] multiply(dot, scale_bcast) } ENTRY e { p0 = f8e4m3fn[16,32] parameter(0) p1 = f8e4m3fn[32,16] parameter(1) x_scale = f32[] parameter(2) y_scale = f32[] parameter(3) ROOT _ = f32[16,16] fusion(p0, p1, x_scale, y_scale), kind=kCustom, calls=fusion1, backend_config={"fusion_backend_config": {kind: "__cudnn$fusion"}} })", ErrorSpec{1e-3, 1e-3})); } class CuDnnFusionLevel3Test : public CuDnnFusionExecutionTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = CuDnnFusionExecutionTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_cudnn_gemm_fusion_level(3); return debug_options; } }; TEST_F(CuDnnFusionLevel3Test, DotWithSplitNonContractingInputExecutesCorrectly) { EXPECT_TRUE(RunAndCompare(R"( fusion1 { p0 = s8[4,3,16,400]{2,1,3,0} parameter(0) cp0 = s8[4,3,16,400]{3,2,1,0} copy(p0) bc0 = s8[192,400]{1,0} bitcast(cp0) cvt0 = bf16[192,400]{1,0} convert(bc0) p1 = bf16[1,128,400]{2,1,0} parameter(1) bc1 = bf16[128,400]{1,0} reshape(p1) ROOT d = bf16[192,128]{1,0} dot(cvt0, bc1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY r { p0 = s8[4,3,16,400]{2,1,3,0} parameter(0) p1 = bf16[1,128,400]{2,1,0} parameter(1) ROOT r = bf16[192,128]{1,0} fusion(p0, p1), kind=kCustom, calls=fusion1, backend_config={"fusion_backend_config": {kind: "__cudnn$fusion"}} })", ErrorSpec{1, 1e-3})); } TEST_F(CuDnnFusionLevel3Test, DotWithSplitNonContractingInOutExecutesCorrectly) { EXPECT_TRUE(RunAndCompare(R"( fusion1 { p0 = s8[4,3,16,400]{2,1,3,0} parameter(0) cp0 = s8[4,3,16,400]{3,2,1,0} copy(p0) bc0 = s8[192,400]{1,0} bitcast(cp0) cvt0 = bf16[192,400]{1,0} convert(bc0) p1 = bf16[1,128,400]{2,1,0} parameter(1) bc1 = bf16[128,400]{1,0} reshape(p1) d = bf16[192,128]{1,0} dot(cvt0, bc1), lhs_contracting_dims={1}, rhs_contracting_dims={1} bc = bf16[4,3,16,128]{3,2,1,0} bitcast(d) ROOT cp = bf16[4,3,16,128]{2,1,3,0} copy(bc) } ENTRY r { p0 = s8[4,3,16,400]{2,1,3,0} parameter(0) p1 = bf16[1,128,400]{2,1,0} parameter(1) ROOT r = bf16[4,3,16,128]{2,1,3,0} fusion(p0, p1), kind=kCustom, calls=fusion1, backend_config={"fusion_backend_config": {kind: "__cudnn$fusion"}} })", ErrorSpec{1, 1e-3})); } class ElementwiseTest : public CuDnnFusionExecutionTest, public ::testing::WithParamInterface< std::tuple<PrimitiveType, HloOpcode, float>> {}; std::string ElementwiseTestParamsToString( const ::testing::TestParamInfo<std::tuple<PrimitiveType, HloOpcode, float>>& data) { PrimitiveType data_type; HloOpcode opcode; float tolerance; std::tie(data_type, opcode, tolerance) = data.param; return absl::StrCat( primitive_util::LowercasePrimitiveTypeName(data_type), "_", absl::StrReplaceAll(HloOpcodeString(opcode), {{"-", "_"}})); } using UnaryElementwiseTest = ElementwiseTest; TEST_P(UnaryElementwiseTest, ElementwiseFusionExecutesCorrectly) { PrimitiveType data_type; HloOpcode opcode; float tolerance; std::tie(data_type, opcode, tolerance) = GetParam(); const std::string kHloTemplate = R"( fusion_computation { p0 = f32[32,32] parameter(0) p1 = $0[32,32] parameter(1) f1.1 = $0[32,32] $1(p1) c.1 = f32[32,32] convert(f1.1) ROOT _ = f32[32,32] dot(p0, c.1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p1 = $0[32,32] parameter(1) p0 = f32[32,32] parameter(0) ROOT r = f32[32,32] fusion(p0, p1), kind=kCustom, calls=fusion_computation, backend_config={"fusion_backend_config":{"kind":"__cudnn$$fusion"}} })"; const std::string hlo_test = absl::Substitute( kHloTemplate, primitive_util::LowercasePrimitiveTypeName(data_type), HloOpcodeString(opcode)); EXPECT_TRUE(RunAndCompare(hlo_test, ErrorSpec{tolerance, tolerance})); } INSTANTIATE_TEST_SUITE_P( ElementwiseTestSuiteF32, UnaryElementwiseTest, ::testing::Combine(::testing::Values(F32), ::testing::ValuesIn( {HloOpcode::kAbs, HloOpcode::kCeil, HloOpcode::kCos, HloOpcode::kExp, HloOpcode::kFloor, HloOpcode::kLog, HloOpcode::kNegate, HloOpcode::kRsqrt, HloOpcode::kSin, HloOpcode::kSqrt, HloOpcode::kTan, HloOpcode::kTanh}), ::testing::Values(5e-4)), ElementwiseTestParamsToString); using BinaryElementwiseTest = ElementwiseTest; TEST_P(BinaryElementwiseTest, ElementwiseFusionExecutesCorrectly) { PrimitiveType data_type; HloOpcode opcode; float tolerance; std::tie(data_type, opcode, tolerance) = GetParam(); const std::string kHloTemplate = R"( fusion_computation { p0 = f32[32,32] parameter(0) p1 = $0[32,32] parameter(1) p2 = $0[32,32] parameter(2) f1.1 = $0[32,32] $1(p1, p2) c.1 = f32[32,32] convert(f1.1) ROOT _ = f32[32,32] dot(p0, c.1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = f32[32,32] parameter(0) p1 = $0[32,32] parameter(1) p2 = $0[32,32] parameter(2) ROOT r = f32[32,32] fusion(p0, p1, p2), kind=kCustom, calls=fusion_computation, backend_config={"fusion_backend_config":{"kind":"__cudnn$$fusion"}} })"; const std::string hlo_test = absl::Substitute( kHloTemplate, primitive_util::LowercasePrimitiveTypeName(data_type), HloOpcodeString(opcode)); EXPECT_TRUE(RunAndCompare(hlo_test, ErrorSpec{tolerance, tolerance})); } INSTANTIATE_TEST_SUITE_P( ElementwiseTestSuiteF32, BinaryElementwiseTest, ::testing::Combine( ::testing::Values(F32), ::testing::ValuesIn({HloOpcode::kAdd, HloOpcode::kDivide, HloOpcode::kMaximum, HloOpcode::kMinimum, HloOpcode::kMultiply, HloOpcode::kPower, HloOpcode::kSubtract}), ::testing::Values(3e-3)), ElementwiseTestParamsToString); class CompareTest : public CuDnnFusionExecutionTest, public ::testing::WithParamInterface< std::tuple<PrimitiveType, Comparison::Direction>> {}; std::string CompareTestParamsToString( const ::testing::TestParamInfo< std::tuple<PrimitiveType, Comparison::Direction>>& data) { PrimitiveType data_type; Comparison::Direction direction; std::tie(data_type, direction) = data.param; return absl::StrCat(primitive_util::LowercasePrimitiveTypeName(data_type), "_", ComparisonDirectionToString(direction)); } TEST_P(CompareTest, FusedComparisonExecutesCorrectly) { PrimitiveType data_type; Comparison::Direction direction; std::tie(data_type, direction) = GetParam(); const std::string kHloTemplate = R"( fusion_computation { p0 = f32[32,32] parameter(0) p1 = $0[32,32] parameter(1) p2 = $0[32,32] parameter(2) f1.1 = pred[32,32] compare(p1, p2), direction=$1 c.1 = f32[32,32] convert(f1.1) ROOT _ = f32[32,32] dot(p0, c.1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = f32[32,32] parameter(0) p1 = $0[32,32] parameter(1) p2 = $0[32,32] parameter(2) ROOT r = f32[32,32] fusion(p0, p1, p2), kind=kCustom, calls=fusion_computation, backend_config={"fusion_backend_config":{"kind":"__cudnn$$fusion"}} })"; const std::string hlo_test = absl::Substitute( kHloTemplate, primitive_util::LowercasePrimitiveTypeName(data_type), ComparisonDirectionToString(direction)); EXPECT_TRUE(RunAndCompare(hlo_test, ErrorSpec{1e-3, 1e-3})); } using cd = Comparison::Direction; INSTANTIATE_TEST_SUITE_P( CompareTestSuite, CompareTest, ::testing::Combine(::testing::Values(PRED, S8, S32, F16, F32), ::testing::Values(cd::kEq, cd::kNe, cd::kGe, cd::kGt, cd::kLe, cd::kLt)), CompareTestParamsToString); class SelectTest : public CuDnnFusionExecutionTest, public ::testing::WithParamInterface<PrimitiveType> {}; TEST_P(SelectTest, SelectFusionExecutesCorrectly) { if (!IsAtLeastCuDnn91()) { GTEST_SKIP() << "Select operation requires cuDNN 9.1+."; } const std::string kHloTemplate = R"( fusion_computation { p0 = f32[32,32] parameter(0) p1 = $0[32,32] parameter(1) p2 = $0[32,32] parameter(2) p3 = pred[32,32] parameter(3) s = $0[32,32] select(p3, p1, p2) c = f32[32,32] convert(s) ROOT r = f32[32,32] dot(p0, c), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = f32[32,32] parameter(0) p1 = $0[32,32] parameter(1) p2 = $0[32,32] parameter(2) p3 = pred[32,32] parameter(3) ROOT r = f32[32,32] fusion(p0, p1, p2, p3), kind=kCustom, calls=fusion_computation, backend_config={"fusion_backend_config":{"kind":"__cudnn$$fusion"}} })"; const std::string hlo_test = absl::Substitute( kHloTemplate, primitive_util::LowercasePrimitiveTypeName(GetParam())); EXPECT_TRUE(RunAndCompare(hlo_test, ErrorSpec{1e-4, 1e-4})); } constexpr std::array<PrimitiveType, 3> kSupportedDataTypes{F16, F32, BF16}; INSTANTIATE_TEST_SUITE_P(SelectTestSuite, SelectTest, ::testing::ValuesIn(kSupportedDataTypes)); class CuDnnFusionRewriteTest : public CuDnnFusionTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = CuDnnFusionTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_autotune_level( GetDebugOptionsFromFlags().xla_gpu_autotune_level()); debu
2,129
cpp
tensorflow/tensorflow
transpose_mlir
third_party/xla/xla/service/gpu/fusions/transpose_mlir.cc
third_party/xla/xla/service/gpu/fusions/transpose_mlir_test.cc
#ifndef XLA_SERVICE_GPU_FUSIONS_TRANSPOSE_MLIR_H_ #define XLA_SERVICE_GPU_FUSIONS_TRANSPOSE_MLIR_H_ #include <cstdint> #include <optional> #include <vector> #include "absl/status/status.h" #include "llvm/ADT/SmallVector.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/ImplicitLocOpBuilder.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/Value.h" #include "mlir/IR/ValueRange.h" #include "mlir/Support/LLVM.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/fusions/mlir/computation_partitioner.h" #include "xla/service/gpu/fusions/mlir/mlir_fusion_emitter.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/util.h" namespace xla { namespace gpu { class MlirTransposeFusion : public MlirFusionEmitterBase { public: explicit MlirTransposeFusion(const HloFusionAnalysis& analysis); LaunchDimensions launch_dimensions() const override; std::optional<IndexingMap> ComputeThreadIdToOutputIndexing( int64_t root_index, mlir::MLIRContext* mlir_context) const override; std::optional<IndexingMap> ComputeThreadIdToInputIndexing( int64_t root_index, int64_t hero_operand_index, mlir::MLIRContext* mlir_context) const override; protected: absl::Status EmitEntryFunction( const mlir_converter::PartitionedComputations& computations, const mlir_converter::CallTargetProvider& call_targets, mlir::func::FuncOp entry_function, const HloFusionInstruction& fusion) const override; std::vector<mlir_converter::EpilogueSpecification> GetEpilogues( const HloFusionInstruction& fusion, mlir::MLIRContext* mlir_context) const override; struct WriteResult { mlir::SmallVector<mlir::Value> updated_outputs; mlir::ValueRange shmem_tensors; }; WriteResult EmitWriteToShMemMlir( mlir::ImplicitLocOpBuilder& builder, mlir::func::FuncOp entry_function, const HloFusionInstruction& fusion, const mlir_converter::PartitionedComputation& root_computation, const mlir_converter::CallTargetProvider& call_target_provider, mlir::ValueRange output_args) const; void EmitReadFromShMemMlir( mlir::ImplicitLocOpBuilder& builder, mlir::func::FuncOp entry_function, const HloFusionInstruction& fusion, const mlir_converter::PartitionedComputations& computations, const WriteResult& written) const; private: const HloFusionAnalysis& analysis_; IndexingMap GetIndexing(bool input, const xla::Shape& shape, mlir::MLIRContext* ctx) const; IndexingMap GetSharedMemoryIndexing(bool read, mlir::MLIRContext* ctx) const; llvm::SmallVector<mlir::AffineExpr, 4> GetThreadOffsets( mlir::MLIRContext* ctx) const; TransposeDescription transpose_; Vector3 permutation_; std::vector<int64_t> input_shape_; std::vector<int64_t> block_sizes_; std::vector<int64_t> block_counts_; int vector_size_; int block_size_; std::vector<const HloInstruction*> shmem_transposes_; std::vector<const HloInstruction*> shmem_transpose_roots_; std::vector<int> shmem_transpose_root_indices_; std::vector<const HloInstruction*> side_output_roots_; std::vector<int> side_output_root_indices_; }; } } #endif #include "xla/service/gpu/fusions/transpose_mlir.h" #include <algorithm> #include <cstdint> #include <iterator> #include <optional> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/types/span.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/ImplicitLocOpBuilder.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/TypeRange.h" #include "mlir/IR/Value.h" #include "mlir/IR/ValueRange.h" #include "mlir/Support/LLVM.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/mlir/utils/type_util.h" #include "xla/permutation_util.h" #include "xla/primitive_util.h" #include "xla/service/gpu/fusions/fusion_emitter.h" #include "xla/service/gpu/fusions/mlir/computation_partitioner.h" #include "xla/service/gpu/fusions/mlir/elemental_hlo_to_mlir.h" #include "xla/service/gpu/fusions/mlir/ir/xla_gpu_ops.h" #include "xla/service/gpu/fusions/mlir/type_util.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/indexing_analysis.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" namespace xla { namespace gpu { namespace { using llvm::SmallVector; using mlir::AffineExpr; using mlir::MLIRContext; using mlir::RankedTensorType; using mlir::Value; using mlir::ValueRange; using mlir::func::FuncOp; using mlir::func::ReturnOp; using mlir::tensor::ExtractOp; using mlir::tensor::InsertOp; using mlir_converter::ApplyIndexing; constexpr int kNumRows = 4; constexpr int kBaseBlockSize = WarpSize(); constexpr int kNumThreadsPerBlock = 128; constexpr int kMaxVectorizedBytes = 4; } MlirTransposeFusion::MlirTransposeFusion(const HloFusionAnalysis& analysis) : analysis_(analysis), transpose_(analysis.tiled_transpose()), permutation_(transpose_.permutation), input_shape_(Permute(transpose_.dimensions, permutation_)) { ConstHloInstructionSet transposes_to_tile; int index = 0; int64_t shmem_usage = 0; int max_element_bytes = 0; for (auto [root, hero] : llvm::zip(analysis_.fusion_roots(), analysis_.fusion_heroes())) { if (auto transpose = GetDescriptionForTiledTransposeEmitter( root.instruction(), hero.instruction())) { transposes_to_tile.insert(&hero.instruction()); shmem_transpose_roots_.push_back(&root.instruction()); int size = primitive_util::ByteWidth(hero.shape().element_type()); max_element_bytes = std::max(max_element_bytes, size); shmem_usage += kBaseBlockSize * (kBaseBlockSize + 1) * size; shmem_transpose_root_indices_.push_back(index); } else { side_output_roots_.push_back(&root.instruction()); side_output_root_indices_.push_back(index); } ++index; } shmem_transposes_ = {transposes_to_tile.begin(), transposes_to_tile.end()}; auto compute_block_sizes = [this](int vector_size) { vector_size_ = vector_size; block_size_ = kBaseBlockSize * vector_size_; block_sizes_ = {1, 1, block_size_}; block_sizes_[permutation_[2]] = block_size_; block_counts_ = {CeilOfRatio(input_shape_[0], block_sizes_[0]), CeilOfRatio(input_shape_[1], block_sizes_[1]), CeilOfRatio(input_shape_[2], block_sizes_[2])}; }; compute_block_sizes(1); const auto& device = analysis_.device_info(); for (int vec_size = kMaxVectorizedBytes / max_element_bytes; vec_size > 1; vec_size /= 2) { int elems_per_thread = vec_size * vec_size; bool enough_work = Product(block_counts_) * kNumThreadsPerBlock >= elems_per_thread * device.core_count() * device.threads_per_core_limit(); bool enough_shmem = shmem_usage * elems_per_thread <= device.shared_memory_per_block(); bool aligned_dims = (input_shape_[2] % vec_size == 0) && (input_shape_[permutation_[2]] % vec_size == 0); if (enough_work && enough_shmem && aligned_dims) { compute_block_sizes(vec_size); break; } } } std::optional<IndexingMap> MlirTransposeFusion::ComputeThreadIdToOutputIndexing( int64_t root_index, MLIRContext* mlir_context) const { const auto& hero = analysis_.fusion_hero(root_index); if (hero.opcode() != HloOpcode::kTranspose) { auto map = ComposeIndexingMaps( GetIndexing(true, hero.shape(), mlir_context), GetBitcastMap(hero.shape(), analysis_.fusion_root(root_index).shape(), mlir_context)); map.Simplify(); return map; } return GetIndexing(false, hero.shape(), mlir_context); } std::optional<IndexingMap> MlirTransposeFusion::ComputeThreadIdToInputIndexing( int64_t root_index, int64_t hero_operand_index, MLIRContext* mlir_context) const { const auto& hero = analysis_.fusion_hero(root_index).instruction(); if (hero.opcode() != HloOpcode::kTranspose) { auto map = ComposeIndexingMaps( *ComputeThreadIdToOutputIndexing(root_index, mlir_context), *ComputeOutputToInputIndexing( &analysis_.fusion_root(root_index).instruction(), 0, mlir_context) .indexing_maps[hero_operand_index] .begin()); map.Simplify(); return map; } return GetIndexing(true, hero.operand(hero_operand_index)->shape(), mlir_context); } LaunchDimensions MlirTransposeFusion::launch_dimensions() const { return LaunchDimensions(Product(block_counts_), kNumThreadsPerBlock); } IndexingMap MlirTransposeFusion::GetSharedMemoryIndexing( bool read, mlir::MLIRContext* ctx) const { auto thread_offsets = Permute(GetThreadOffsets(ctx), read ? Vector3{0, 1, 2} : permutation_); return {mlir::AffineMap::get(6, 2, thread_offsets, ctx), DimVarsFromTensorSizes({kNumThreadsPerBlock, 1, 1, 1, 1, 1}), RangeVarsFromTensorSizes({block_size_ / kNumRows, vector_size_}), {}}; } MlirTransposeFusion::WriteResult MlirTransposeFusion::EmitWriteToShMemMlir( mlir::ImplicitLocOpBuilder& builder, FuncOp entry_function, const HloFusionInstruction& fusion, const mlir_converter::PartitionedComputation& root_computation, const mlir_converter::CallTargetProvider& call_target_provider, ValueRange output_args) const { MLIRContext* ctx = builder.getContext(); auto shmem_tensor_size = block_sizes_; ++shmem_tensor_size.back(); SmallVector<Value> inits; for (auto* transpose : shmem_transposes_) { auto elem_type = mlir_converter::PrimitiveTypeToMlirType( transpose->shape().element_type(), builder); inits.push_back(builder.create<AllocateSharedOp>( RankedTensorType::get(shmem_tensor_size, elem_type))); } int num_inputs = fusion.fused_instructions_computation()->num_parameters(); for (int index : side_output_root_indices_) { inits.push_back(entry_function.getArgument(num_inputs + index)); } IndexingMap write_indexing = GetSharedMemoryIndexing(false, ctx); auto body_builder = [&](ValueRange output_tensors, ValueRange dim_values, ValueRange symbol_values) -> SmallVector<Value> { auto input_indices = [&](const HloInstruction* instr) { return ApplyIndexing(GetIndexing(true, instr->shape(), ctx), dim_values, symbol_values, builder); }; SmallVector<Value> result_tensors; auto shmem_indices = ApplyIndexing(write_indexing, dim_values, symbol_values, builder); for (auto [transpose, output] : llvm::zip(shmem_transposes_, output_tensors)) { auto result_scalar = mlir_converter::ProvideParameter( root_computation, transpose, 0, input_indices(transpose->operand(0)), call_target_provider, entry_function, builder)[0]; result_tensors.push_back( builder.create<InsertOp>(result_scalar, output, shmem_indices)); } SmallVector<Value> side_outputs; SmallVector<SmallVector<Value>> side_output_indices; auto* root_tuple = fusion.fused_expression_root(); for (auto root : side_output_roots_) { side_output_indices.push_back(input_indices(root)); side_outputs.append(mlir_converter::ProvideParameter( root_computation, root_tuple, root_tuple->operand_index(root), side_output_indices.back(), call_target_provider, entry_function, builder)); } for (const auto& [value, indices, output] : llvm::zip(side_outputs, side_output_indices, output_tensors.take_back(side_output_roots_.size()))) { result_tensors.push_back( builder.create<InsertOp>(value, output, indices)); } return result_tensors; }; auto indexing = GetIndexing( true, shmem_transposes_.front()->operand(0)->shape(), ctx); auto written_vector = EmitThreadLoopNest(builder, inits, indexing, body_builder); ValueRange written = written_vector; auto shmem_tensors = written.take_front(shmem_transposes_.size()); WriteResult result; result.shmem_tensors = builder .create<SyncThreadsOp>(mlir::TypeRange(shmem_tensors), shmem_tensors) .getResults(); result.updated_outputs = output_args; for (auto [index, side_output_result] : llvm::zip(side_output_root_indices_, written.take_back(side_output_roots_.size()))) { result.updated_outputs[index] = side_output_result; } return result; } void MlirTransposeFusion::EmitReadFromShMemMlir( mlir::ImplicitLocOpBuilder& builder, FuncOp entry_function, const HloFusionInstruction& fusion, const mlir_converter::PartitionedComputations& computations, const WriteResult& written) const { auto* mlir_context = builder.getContext(); auto output_indexing = *ComputeThreadIdToOutputIndexing( shmem_transpose_root_indices_[0], mlir_context); auto shmem_read_indexing = GetSharedMemoryIndexing(true, mlir_context); auto result_tensors = EmitThreadLoopNest( builder, written.updated_outputs, output_indexing, [&](ValueRange output_tensors, ValueRange dim_values, ValueRange symbol_values) -> SmallVector<Value> { auto shmem_indices = ApplyIndexing(shmem_read_indexing, dim_values, symbol_values, builder); absl::flat_hash_map<const HloInstruction*, llvm::SmallVector<Value>> transpose_values; for (auto [transpose, shmem] : llvm::zip(shmem_transposes_, written.shmem_tensors)) { transpose_values[transpose].push_back( builder.create<ExtractOp>(shmem, shmem_indices)); } llvm::SmallVector<Value> epilogue_indices = dim_values; absl::c_copy(symbol_values, std::back_inserter(epilogue_indices)); auto result_scalars = EmitEpilogue(0, computations, entry_function, transpose_values, epilogue_indices, builder); SmallVector<Value> results = output_tensors; for (auto [root, indexing, root_index] : llvm::zip(shmem_transpose_roots_, computations.epilogues().front().root_indexing, shmem_transpose_root_indices_)) { llvm::SmallVector<Value> indices = ApplyIndexing(indexing, dim_values, symbol_values, builder); results[root_index] = builder.create<InsertOp>( result_scalars.at(root).front(), results[root_index], indices); } return results; }); builder.create<ReturnOp>(result_tensors); } std::vector<mlir_converter::EpilogueSpecification> MlirTransposeFusion::GetEpilogues(const HloFusionInstruction& fusion, MLIRContext* mlir_context) const { std::vector<mlir_converter::EpilogueSpecification> epilogues{ mlir_converter::EpilogueSpecification::FromOutputIndexing( analysis_, shmem_transposes_, shmem_transpose_roots_, *this, mlir_context)}; for (const auto* root : side_output_roots_) { epilogues.push_back( mlir_converter::EpilogueSpecification::FromIdentityIndexing( root, root, mlir_context)); } return epilogues; } absl::Status MlirTransposeFusion::EmitEntryFunction( const mlir_converter::PartitionedComputations& computations, const mlir_converter::CallTargetProvider& call_targets, mlir::func::FuncOp entry_function, const HloFusionInstruction& fusion) const { const auto& root_computation = computations.FindPartitionedComputation( fusion.fused_instructions_computation()); mlir::ImplicitLocOpBuilder builder(entry_function.getLoc(), entry_function); builder.setInsertionPointToStart(entry_function.addEntryBlock()); auto written = EmitWriteToShMemMlir( builder, entry_function, fusion, root_computation, call_targets, entry_function.getArguments().take_back(analysis_.fusion_roots().size())); EmitReadFromShMemMlir(builder, entry_function, fusion, computations, written); return absl::OkStatus(); } llvm::SmallVector<mlir::AffineExpr, 4> MlirTransposeFusion::GetThreadOffsets( mlir::MLIRContext* ctx) const { auto thread = mlir::getAffineDimExpr( KernelFusionInterface::kIndexingMapThreadIdxDims[0], ctx); auto loop = mlir::getAffineSymbolExpr(0, ctx); auto vector = mlir::getAffineSymbolExpr(1, ctx); int loop_stride = block_size_ * kNumRows; auto linear_index = loop * loop_stride + thread * vector_size_ + vector; return DelinearizeInBoundsIndex(linear_index, block_sizes_); } IndexingMap MlirTransposeFusion::GetIndexing(bool input, const xla::Shape& shape, mlir::MLIRContext* ctx) const { auto raw_id = mlir::getAffineDimExpr( KernelFusionInterface::kIndexingMapBlockIdxDims[0], ctx); auto block_ids = Permute(DelinearizeInBoundsIndex(raw_id, block_counts_), input ? Vector3{0, 1, 2} : permutation_); auto thread_offsets = GetThreadOffsets(ctx); llvm::SmallVector<AffineExpr, 3> offsets; for (auto [block_id, block_size, thread] : llvm::zip(block_ids, block_sizes_, thread_offsets)) { offsets.push_back(block_id * block_size + thread); } IndexingMap result{ mlir::AffineMap::get(6, 2, offsets, ctx), DimVarsFromTensorSizes( {kNumThreadsPerBlock, 1, 1, Product(block_counts_), 1, 1}), RangeVarsFromTensorSizes({block_size_ / kNumRows, vector_size_}), {}}; auto normalized_shape = input ? ShapeUtil::MakeShape(shape.element_type(), input_shape_) : ShapeUtil::MakeShape(shape.element_type(), transpose_.dimensions); for (auto [size, dim] : llvm::zip(normalized_shape.dimensions(), result.GetAffineMap().getResults())) { result.AddConstraint(dim, {0, size - 1}); } result = ComposeIndexingMaps(result, GetBitcastMap(normalized_shape, shape, ctx)); result.Simplify(); return result; } } }
#include "xla/service/gpu/fusions/transpose_mlir.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/error_spec.h" #include "xla/service/gpu/fusions/mlir_emitter_test_base.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/model/indexing_test_utils.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using MlirTransposeFusionTest = MlirEmitterTestBase<MlirTransposeFusion>; TEST_F(MlirTransposeFusionTest, ThreadIndexing021) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule module fusion { %input = f32[100,32,64] parameter(0) ROOT transpose = f32[100,64,32] transpose(%input), dimensions={0,2,1} } ENTRY entry { %input = f32[100,32,64] parameter(0) ROOT %fusion = f32[100,64,32] fusion(%input), kind=kInput, calls=fusion } )")); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirTransposeFusion fusion(analysis); EXPECT_THAT( fusion.ComputeThreadIdToInputIndexing(0, 0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0, s1] -> ( d3 floordiv 2, d0 floordiv 32 + s0 * 4, (d3 mod 2) * 32 + d0 mod 32 ) domain: d0 in [0, 128) d1 in [0, 1) d2 in [0, 1) d3 in [0, 200) d4 in [0, 1) d5 in [0, 1) s0 in [0, 8) s1 in [0, 1) )")); EXPECT_THAT( fusion.ComputeThreadIdToOutputIndexing(0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0, s1] -> ( d3 floordiv 2, (d3 mod 2) * 32 + s0 * 4 + d0 floordiv 32, d0 mod 32 ) domain: d0 in [0, 128) d1 in [0, 1) d2 in [0, 1) d3 in [0, 200) d4 in [0, 1) d5 in [0, 1) s0 in [0, 8) s1 in [0, 1) )")); } TEST_F(MlirTransposeFusionTest, ThreadIndexing201) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule module fusion { %input = f32[100,64,32] parameter(0) ROOT transpose = f32[32,100,64] transpose(%input), dimensions={2,0,1} } ENTRY entry { %input = f32[100,64,32] parameter(0) ROOT %fusion = f32[32,100,64] fusion(%input), kind=kInput, calls=fusion })")); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirTransposeFusion fusion(analysis); EXPECT_THAT( fusion.ComputeThreadIdToInputIndexing(0, 0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0, s1] -> ( d3 floordiv 2, (d3 * 32 + s0 * 4) mod 64 + d0 floordiv 32, d0 mod 32 ) domain: d0 in [0, 128) d1 in [0, 1) d2 in [0, 1) d3 in [0, 200) d4 in [0, 1) d5 in [0, 1) s0 in [0, 8) s1 in [0, 1) )")); EXPECT_THAT( fusion.ComputeThreadIdToOutputIndexing(0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0, s1] -> ( d0 floordiv 32 + s0 * 4, d3 floordiv 2, (d3 mod 2) * 32 + d0 mod 32 ) domain: d0 in [0, 128) d1 in [0, 1) d2 in [0, 1) d3 in [0, 200) d4 in [0, 1) d5 in [0, 1) s0 in [0, 8) s1 in [0, 1) )")); } TEST_F(MlirTransposeFusionTest, ThreadIndexingVectorized021) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule module fusion { %input = f16[8192,64,64] parameter(0) ROOT transpose = f16[8192,64,64] transpose(%input), dimensions={0,2,1} } ENTRY entry { %input = f16[8192,64,64] parameter(0) ROOT %fusion = f16[8192,64,64] fusion(%input), kind=kInput, calls=fusion } )")); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirTransposeFusion fusion(analysis); EXPECT_THAT( fusion.ComputeThreadIdToInputIndexing(0, 0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0, s1] -> ( d3, d0 floordiv 32 + s0 * 4, (d0 mod 32) * 2 + s1 ) domain: d0 in [0, 128) d1 in [0, 1) d2 in [0, 1) d3 in [0, 8192) d4 in [0, 1) d5 in [0, 1) s0 in [0, 16) s1 in [0, 2) )")); EXPECT_THAT( fusion.ComputeThreadIdToOutputIndexing(0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0, s1] -> ( d3, d0 floordiv 32 + s0 * 4, (d0 mod 32) * 2 + s1 ) domain: d0 in [0, 128) d1 in [0, 1) d2 in [0, 1) d3 in [0, 8192) d4 in [0, 1) d5 in [0, 1) s0 in [0, 16) s1 in [0, 2) )")); } TEST_F(MlirTransposeFusionTest, ThreadIndexingVectorized210) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule module fusion { %input = f16[64,64,8192] parameter(0) ROOT transpose = f16[8192,64,64] transpose(%input), dimensions={2,1,0} } ENTRY entry { %input = f16[64,64,8192] parameter(0) ROOT %fusion = f16[8192,64,64] fusion(%input), kind=kInput, calls=fusion })")); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirTransposeFusion fusion(analysis); EXPECT_THAT( fusion.ComputeThreadIdToInputIndexing(0, 0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0, s1] -> ( d0 floordiv 32 + s0 * 4, d3 floordiv 128, (d0 mod 32) * 2 + (d3 mod 128) * 64 + s1 ) domain: d0 in [0, 128) d1 in [0, 1) d2 in [0, 1) d3 in [0, 8192) d4 in [0, 1) d5 in [0, 1) s0 in [0, 16) s1 in [0, 2) )")); EXPECT_THAT( fusion.ComputeThreadIdToOutputIndexing(0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0, s1] -> ( (d3 mod 128) * 64 + s0 * 4 + d0 floordiv 32, d3 floordiv 128, (d0 mod 32) * 2 + s1 ) domain: d0 in [0, 128) d1 in [0, 1) d2 in [0, 1) d3 in [0, 8192) d4 in [0, 1) d5 in [0, 1) s0 in [0, 16) s1 in [0, 2) )")); } TEST_F(MlirTransposeFusionTest, FusedTranspose021) { auto kHloString = R"( HloModule Transpose %fused_computation { %p0 = f32[20,160,170] parameter(0) %exp = f32[20,160,170] exponential(%p0) %transpose = f32[20,170,160] transpose(%exp), dimensions={0,2,1} ROOT %abs = f32[20,170,160] abs(%transpose) } ENTRY main { %param = f32[20,160,170] parameter(0) ROOT %fusion = f32[20,170,160] fusion(%param), kind=kInput, calls=%fused_computation } )"; TF_EXPECT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirTransposeFusionTest, FusedTranspose210) { auto kHloString = R"( HloModule Transpose %fused_computation { %p0 = f32[20,160,170] parameter(0) %exp = f32[20,160,170] exponential(%p0) %transpose = f32[170,160,20] transpose(%exp), dimensions={2,1,0} ROOT %abs = f32[170,160,20] abs(%transpose) } ENTRY main { %param = f32[20,160,170] parameter(0) ROOT %fusion = f32[170,160,20] fusion(%param), kind=kInput, calls=%fused_computation } )"; TF_EXPECT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirTransposeFusionTest, Transpose021_Parameter) { auto kHloString = R"( HloModule Transpose %fused_computation { %p0 = f32[20,160,170] parameter(0) %transpose = f32[20,170,160] transpose(%p0), dimensions={0,2,1} ROOT %abs = f32[20,170,160] abs(%transpose) } ENTRY main { %param = f32[20,160,170] parameter(0) ROOT %fusion = f32[20,170,160] fusion(%param), kind=kInput, calls=%fused_computation } )"; TF_EXPECT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirTransposeFusionTest, Transpose021_NoEpilogue) { auto kHloString = R"( HloModule Transpose %fused_computation { %p0 = f32[20,160,170] parameter(0) ROOT %transpose = f32[20,170,160] transpose(%p0), dimensions={0,2,1} } ENTRY main { %param = f32[20,160,170] parameter(0) ROOT %fusion = f32[20,170,160] fusion(%param), kind=kInput, calls=%fused_computation } )"; TF_EXPECT_OK(EmitAndCheckIR(kHloString, R"( )")); EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirTransposeFusionTest, Transpose_4D) { auto kHloString = R"( HloModule Transpose %fused_computation { %param_0 = f64[2,24,6,4] parameter(0) ROOT %transpose= f64[6,4,2,24] transpose(f64[2,24,6,4] %param_0), dimensions={2,3,0,1} } ENTRY main { %param = f64[2,24,6,4] parameter(0) ROOT %fusion = f64[6,4,2,24] fusion(%param), kind=kInput, calls=%fused_computation } )"; TF_EXPECT_OK(EmitAndCheckIR(kHloString, " EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirTransposeFusionTest, Transpose_2D) { auto kHloString = R"( HloModule Transpose %fused_computation { %param_0 = f64[64, 64] parameter(0) ROOT %transpose= f64[64,64] transpose( %param_0), dimensions={1,0} } ENTRY main { %param = f64[64,64] parameter(0) ROOT %fusion = f64[64,64] fusion(%param), kind=kInput, calls=%fused_computation } )"; TF_EXPECT_OK(EmitAndCheckIR(kHloString, " EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirTransposeFusionTest, Transpose_2D_2) { auto kHloString = R"( HloModule m %fused_computation { %p0 = f32[17,2820]{0,1} parameter(0) %p1 = f32[30,17,94] parameter(1) %bitcast0 = f32[2,3,5,17,94] bitcast(f32[30,17,94] %p1) %transpose = f32[2,3,5,94,17] transpose(f32[2,3,5,17,94] %bitcast0), dimensions={0,1,2,4,3} %bitcast1 = f32[2820,17]{1,0} bitcast(f32[2,3,5,94,17] %transpose) %bitcast2 = f32[2820,17]{1,0} bitcast(f32[17,2820]{0,1} %p0) %neg = f32[2820,17]{1,0} negate(f32[2820,17] %bitcast2) ROOT %add = f32[2820,17]{1,0} add(f32[2820,17] %bitcast1, f32[2820,17]{1,0} %neg) } ENTRY main { %p1 = f32[30,17,94]{2,1,0} parameter(1) %p0 = f32[17,2820]{0,1} parameter(0) ROOT %fusion = f32[2820,17]{1,0} fusion(%p0, %p1), kind=kInput, calls=%fused_computation } )"; TF_EXPECT_OK(EmitAndCheckIR(kHloString, " EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirTransposeFusionTest, MultipleRootsForTranspose) { auto kHloString = R"( HloModule m %fused_computation { %iota.0 = s32[200,200] iota(), iota_dimension=1 %iota.1 = s32[200,200] iota(), iota_dimension=0 %compare = pred[200,200] compare(%iota.0, %iota.1), direction=GE %transpose = pred[200,200] transpose(%compare), dimensions={1,0} %copy = pred[200,200] copy(%transpose) %copy.1 = pred[200,200] copy(%transpose) ROOT %tuple = (pred[200,200], pred[200,200], pred[200,200]{1,0}) tuple(%transpose, %copy, %copy.1) } ENTRY main { ROOT %fusion = (pred[200,200]{1,0}, pred[200,200]{1,0}, pred[200,200]{1,0}) fusion(), kind=kInput, calls=%fused_computation } )"; TF_EXPECT_OK(EmitAndCheckIR(kHloString, " EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirTransposeFusionTest, PartialTile) { auto kHloString = R"( HloModule m fused_computation { %p0 = f64[24,2,6,4] parameter(0) ROOT %t = f64[6,4,2,24] transpose(%p0), dimensions={2,3,1,0} } ENTRY main { %p0 = f64[24,2,6,4] parameter(0) ROOT %fusion = f64[6,4,2,24] fusion(%p0), kind=kInput, calls=%fused_computation } )"; TF_EXPECT_OK(EmitAndCheckIR(kHloString, " EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirTransposeFusionTest, MixedIndexing) { auto kHloString = R"( HloModule m fused_computation { %p0 = f64[24,2,6,4] parameter(0) %bc = f64[24,2,24] bitcast(%p0) %t1 = f64[6,4,2,24] transpose(%p0), dimensions={2,3,1,0} %t2 = f64[24,2,24] transpose(%bc), dimensions={2,1,0} %p1 = f64[] parameter(1) %bc1 = f64[6,4,2,24] broadcast(%p1), dimensions={} %bc2 = f64[24,2,24] broadcast(%p1), dimensions={} %a1 = f64[6,4,2,24] add(%t1, %bc1) %a2 = f64[24,2,24] add(%t2, %bc2) ROOT %t = (f64[6,4,2,24], f64[24,2,24]) tuple(%a1, %a2) } ENTRY main { %p0 = f64[24,2,6,4] parameter(0) %p1 = f64[] parameter(1) ROOT %fusion = (f64[6,4,2,24], f64[24,2,24]) fusion(%p0, %p1), kind=kInput, calls=%fused_computation } )"; TF_EXPECT_OK(EmitAndCheckIR(kHloString, " EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirTransposeFusionTest, SideOutputs) { auto kHloString = R"( HloModule m fused_computation { %p0 = f64[24,2,36] parameter(0) %p1 = f64[36,2,24] parameter(1) %tr = f64[36,2,24] transpose(%p0), dimensions={2,1,0} %neg = f64[36,2,24] negate(%p1) %log = f64[24,2,36] log(%p0) ROOT %t = (f64[36,2,24], f64[36,2,24], f64[24,2,36]) tuple(%neg, %tr, %log) } ENTRY main { %p0 = f64[24,2,36] parameter(0) %p1 = f64[36,2,24] parameter(1) ROOT %fusion = (f64[36,2,24], f64[36,2,24], f64[24,2,36]) fusion(%p0, %p1), kind=kInput, calls=%fused_computation } )"; TF_EXPECT_OK(EmitAndCheckIR(kHloString, " EXPECT_TRUE(RunAndCompareNoHloPasses(kHloString, ErrorSpec{1e-3})); } TEST_F(MlirTransposeFusionTest, SameInputIndexingForRealHeroAndSideOutput) { auto module = ParseAndReturnVerifiedModule(R"( HloModule module fusion { %input = f32[100,32,64] parameter(0) %transpose = f32[100,64,32] transpose(%input), dimensions={0,2,1} %bitcast = f32[100,2048] bitcast(%input) ROOT %tuple = (f32[100,64,32], f32[100,2048]) tuple(%transpose, %bitcast) } ENTRY entry { %input = f32[100,32,64] parameter(0) ROOT %fusion = (f32[100,64,32], f32[100,2048]) fusion(%input), kind=kInput, calls=fusion })") .value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirTransposeFusion fusion(analysis); mlir::MLIRContext mlir_context; EXPECT_THAT( fusion.ComputeThreadIdToInputIndexing(0, 0, &mlir_context)->ToString(), fusion.ComputeThreadIdToInputIndexing(1, 0, &mlir_context)->ToString()); } TEST_F(MlirTransposeFusionTest, ThreadIndexingSideOutput) { auto module = ParseAndReturnVerifiedModule(R"( HloModule module fusion { %input0 = f32[100,32,64] parameter(0) %input1 = f32[100,32] parameter(1) %transpose = f32[100,64,32] transpose(%input0), dimensions={0,2,1} %broadcast = f32[100,32,64] broadcast(%input1), dimensions={0,1} ROOT %tuple = (f32[100,64,32], f32[100,32,64]) tuple(%transpose, %broadcast) } ENTRY entry { %input0 = f32[100,32,64] parameter(0) %input1 = f32[100,32] parameter(1) ROOT %fusion = (f32[100,64,32], f32[100,32,64]) fusion(%input0, %input1), kind=kInput, calls=fusion })") .value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); MlirTransposeFusion fusion(analysis); mlir::MLIRContext mlir_context; EXPECT_THAT( fusion.ComputeThreadIdToInputIndexing(1, 0, &mlir_context)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0, s1] -> ( d3 floordiv 2, d0 floordiv 32 + s0 * 4 ) domain: d0 in [0, 128) d1 in [0, 1) d2 in [0, 1) d3 in [0, 200) d4 in [0, 1) d5 in [0, 1) s0 in [0, 8) s1 in [0, 1) )")); EXPECT_THAT( fusion.ComputeThreadIdToOutputIndexing(1, &mlir_context)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0, s1] -> ( d3 floordiv 2, d0 floordiv 32 + s0 * 4, (d3 mod 2) * 32 + d0 mod 32 ) domain: d0 in [0, 128) d1 in [0, 1) d2 in [0, 1) d3 in [0, 200) d4 in [0, 1) d5 in [0, 1) s0 in [0, 8) s1 in [0, 1) )")); } TEST_F(MlirTransposeFusionTest, VectorizedTranspose021) { auto kHloString = R"( HloModule Transpose %fused_computation { %p0 = bf16[256,128,128] parameter(0) %transpose = bf16[256,128,128] transpose(%p0), dimensions={0,2,1} } ENTRY main { %param = bf16[256,128,128] parameter(0) ROOT %fusion = bf16[256,128,128] fusion(%param), kind=kInput, calls=%fused_computation } )"; TF_EXPECT_OK(EmitAndCheckIR( kHloString, " } TEST_F(MlirTransposeFusionTest, VectorizedTranspose210) { auto kHloString = R"( HloModule Transpose %fused_computation { %p0 = bf16[256,128,128] parameter(0) %transpose = bf16[128,128,256] transpose(%p0), dimensions={2,1,0} } ENTRY main { %param = bf16[256,128,128] parameter(0) ROOT %fusion = bf16[128,128,256] fusion(%param), kind=kInput, calls=%fused_computation } )"; TF_EXPECT_OK(EmitAndCheckIR( kHloString, " } TEST_F(MlirTransposeFusionTest, PreferLargeVectorSize021) { auto kHloString = R"( HloModule Transpose %fused_computation { %p0 = u8[256,256,256] parameter(0) %transpose = u8[256,256,256] transpose(%p0), dimensions={0,2,1} } ENTRY main { %param = u8[256,256,256] parameter(0) ROOT %fusion = u8[256,256,256] fusion(%param), kind=kInput, calls=%fused_computation } )"; TF_EXPECT_OK(EmitAndCheckIR( kHloString, " } TEST_F(MlirTransposeFusionTest, PreferLargeVectorSize210) { auto kHloString = R"( HloModule Transpose %fused_computation { %p0 = u8[256,256,256] parameter(0) %transpose = u8[256,256,256] transpose(%p0), dimensions={2,1,0} } ENTRY main { %param = u8[256,256,256] parameter(0) ROOT %fusion = u8[256,256,256] fusion(%param), kind=kInput, calls=%fused_computation } )"; TF_EXPECT_OK(EmitAndCheckIR( kHloString, " } } } }
2,130
cpp
tensorflow/tensorflow
loop
third_party/xla/xla/service/gpu/fusions/legacy/loop.cc
third_party/xla/xla/service/gpu/fusions/legacy/loop_test.cc
#ifndef XLA_SERVICE_GPU_FUSIONS_LOOP_H_ #define XLA_SERVICE_GPU_FUSIONS_LOOP_H_ #include <cstdint> #include <optional> #include <vector> #include "absl/status/status.h" #include "llvm/IR/IRBuilder.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/fusions/fusion_emitter.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/ir_emitter_context.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/service/llvm_ir/ir_array.h" namespace xla { namespace gpu { class LoopFusion : public KernelFusionEmitterBase { public: explicit LoopFusion(const HloFusionAnalysis& analysis); LaunchDimensions launch_dimensions() const override; std::optional<IndexingMap> ComputeThreadIdToOutputIndexing( int64_t root_index, mlir::MLIRContext* ctx) const override; std::optional<IndexingMap> ComputeThreadIdToInputIndexing( int64_t root_index, int64_t hero_operand_index, mlir::MLIRContext* ctx) const override; protected: absl::Status EmitKernel(IrEmitterContext& ir_emitter_context, const HloFusionInstruction& fusion, const LaunchDimensions& launch_dims, std::vector<llvm_ir::IrArray> inputs, std::vector<llvm_ir::IrArray> outputs, llvm::IRBuilder<>* builder) const override; private: const HloFusionAnalysis& analysis_; LaunchDimensionsConfig config_; }; LaunchDimensionsConfig ComputeLoopFusionConfig( const HloFusionAnalysis& analysis); } } #endif #include "xla/service/gpu/fusions/loop.h" #include <algorithm> #include <cstdint> #include <optional> #include <tuple> #include <utility> #include <vector> #include "absl/log/log.h" #include "absl/numeric/bits.h" #include "absl/status/status.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Type.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout_util.h" #include "xla/service/gpu/elemental_ir_emitter.h" #include "xla/service/gpu/gpu_fusible.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/ir_emitter_context.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/indexing_analysis.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/service/gpu/parallel_loop_emitter.h" #include "xla/service/llvm_ir/fused_ir_emitter.h" #include "xla/service/llvm_ir/ir_array.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "tsl/platform/macros.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { const Shape& GetElementShape(const HloFusionAnalysis& analysis) { const Shape* shape = &analysis.fusion_root(0).shape(); while (shape->IsTuple()) { shape = &shape->tuple_shapes(0); } return *shape; } int ComputeMaxUnrollFactor(int64_t num_elements) { constexpr int kMaxUnrollFactor = 4; for (int i = kMaxUnrollFactor; i > 1; i /= 2) { if (num_elements % i == 0) { return i; } } return 1; } std::pair<bool , int> RowVectorizationEnabled( const HloFusionAdaptor& fusion, int64_t out_rank) { auto roots = fusion.GetRoots(); const auto is_row_major = [](auto instr) { return LayoutUtil::IsMonotonicWithDim0Major(instr.shape().layout()); }; bool row_vectorized = roots.size() == 1 && !roots[0].shape().IsTuple() && is_row_major(roots[0]); if (!row_vectorized) { return {false, 0}; } int num_big_inputs = 0; bool some_row_broadcasting = false; HloBfsConsumersFirstTraversal( roots, fusion, [&](auto node) -> TraversalResult { if (!row_vectorized) { return TraversalResult::kInterrupt; } if (node.instruction().IsElementwise()) { return TraversalResult::kAdvance; } switch (node.opcode()) { case HloOpcode::kConstant: return TraversalResult::kSkip; case HloOpcode::kParameter: return TraversalResult::kAdvance; case HloOpcode::kBroadcast: { auto dims = node.instruction().dimensions(); if (dims.empty()) { return TraversalResult::kAdvance; } if (dims.size() == 1 && dims.front() == node.shape().rank() - 1) { some_row_broadcasting = true; return TraversalResult::kAdvance; } TF_FALLTHROUGH_INTENDED; } default: VLOG(2) << "Row vectorization not enabled due to: " << node.ToString(); row_vectorized = false; return TraversalResult::kInterrupt; } }, [&](auto argument) { if (argument.shape().rank() == out_rank) { ++num_big_inputs; } if (!is_row_major(argument)) { row_vectorized = false; } }); return std::make_pair(row_vectorized && some_row_broadcasting, num_big_inputs); } } LaunchDimensionsConfig ComputeLoopFusionConfig( const HloFusionAnalysis& analysis) { int unroll_factor = 1; const auto& element_shape = GetElementShape(analysis); int64_t num_elements = ShapeUtil::ElementsIn(element_shape); int64_t n_threads_max = analysis.device_info().threads_per_core_limit() * analysis.device_info().core_count(); if (num_elements >= n_threads_max && !MayPreventVectorization(analysis.fusion())) { unroll_factor = ComputeMaxUnrollFactor(num_elements); } CHECK(absl::has_single_bit(static_cast<uint64_t>(unroll_factor))); unroll_factor = std::max( unroll_factor, CeilOfRatio(8, analysis.input_output_info().smallest_output_dtype_bits)); CHECK(absl::has_single_bit(static_cast<uint64_t>(unroll_factor))); VLOG(2) << "Unroll factor: " << unroll_factor; bool row_vectorized; int num_big_inputs; std::tie(row_vectorized, num_big_inputs) = RowVectorizationEnabled(analysis.fusion(), element_shape.rank()); bool few_waves = !HloAnyOf( analysis.fusion().GetRoots(), analysis.fusion(), [&](auto instr) { if (instr.opcode() == HloOpcode::kParameter || instr.opcode() == HloOpcode::kConstant || HloInstruction::IsOpElementwise(instr.opcode())) { return false; } if (auto broadcast = DynCast<HloBroadcastInstruction>(&instr.instruction())) { if (broadcast->dimensions().empty() || (row_vectorized && num_big_inputs <= 3)) { return false; } } VLOG(2) << "few_waves not enabled due to: " << instr.instruction().ToString(); return true; }); LaunchDimensionsConfig launch_config{unroll_factor, few_waves, row_vectorized}; if (launch_config.row_vectorized && ThreadsPerBlockRowVectorized(element_shape, analysis.device_info(), launch_config) <= 0) { VLOG(2) << "Cancelling row_vectorization as the shape isn't supported."; launch_config.row_vectorized = false; launch_config.few_waves = false; } return launch_config; } LoopFusion::LoopFusion(const HloFusionAnalysis& analysis) : analysis_(analysis), config_(ComputeLoopFusionConfig(analysis)) {} std::optional<IndexingMap> LoopFusion::ComputeThreadIdToOutputIndexing( int64_t root_index, mlir::MLIRContext* ctx) const { auto launch_dims = launch_dimensions(); return GetDefaultThreadIdIndexingMap(launch_dims, config_.unroll_factor, GetElementShape(analysis_), ctx); } std::optional<IndexingMap> LoopFusion::ComputeThreadIdToInputIndexing( int64_t root_index, int64_t hero_operand_index, mlir::MLIRContext* ctx) const { std::optional<IndexingMap> thread_id_to_output_indexing = ComputeThreadIdToOutputIndexing(root_index, ctx); if (!thread_id_to_output_indexing.has_value()) { return std::nullopt; } const HloInstruction* fusion_root = &analysis_.fusion_root(root_index).instruction(); auto output_to_input_indexing = ComputeOutputToInputIndexing(fusion_root, 0, ctx); IndexingMapSet output_to_input_indexing_set = output_to_input_indexing.indexing_maps[hero_operand_index]; CHECK_EQ(output_to_input_indexing_set.size(), 1); IndexingMap thread_id_to_input_indexing_map = ComposeIndexingMaps( *thread_id_to_output_indexing, *output_to_input_indexing_set.begin()); thread_id_to_input_indexing_map.Simplify(); return thread_id_to_input_indexing_map; } absl::Status LoopFusion::EmitKernel(IrEmitterContext& ir_emitter_context, const HloFusionInstruction& fusion, const LaunchDimensions& launch_dims, std::vector<llvm_ir::IrArray> inputs, std::vector<llvm_ir::IrArray> outputs, llvm::IRBuilder<>* builder) const { GpuElementalIrEmitter elemental_emitter(ir_emitter_context, builder); FusedIrEmitter fused_emitter(elemental_emitter); for (int i = 0; i < fusion.fused_parameters().size(); i++) { fused_emitter.BindGenerator( *fusion.fused_parameter(i), [&, i](llvm_ir::IrArray::Index index) { return inputs[i].EmitReadArrayElement(index, builder); }); } TF_ASSIGN_OR_RETURN( auto element_generator, fused_emitter.GetGenerator(*fusion.fused_expression_root())); llvm::Type* index_type = GetIndexTypeForKernel(&fusion, launch_dims.launch_bound(), builder); return ParallelLoopEmitter(element_generator, outputs, launch_dims, builder, config_) .EmitLoop(fusion.name(), index_type); } LaunchDimensions LoopFusion::launch_dimensions() const { return CalculateLaunchDimensions(GetElementShape(analysis_), analysis_.device_info(), config_); } } }
#include <memory> #include <optional> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/statusor.h" #include "mlir/IR/MLIRContext.h" #include "xla/service/gpu/fusions/fusion_emitter.h" #include "xla/service/gpu/fusions/fusions.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/model/affine_map_printer.h" #include "xla/service/gpu/model/indexing_test_utils.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { class LoopTest : public HloTestBase { public: void SetUp() override { HloTestBase::SetUp(); printer_ = AffineMapPrinter({"th_x", "th_y", "th_z", "bl_x", "bl_y", "bl_z"}, {"chunk_id", "unroll_id"}); } protected: stream_executor::DeviceDescription device_info_ = TestGpuDeviceInfo::RTXA6000DeviceInfo(); AffineMapPrinter printer_; mlir::MLIRContext mlir_context_; }; absl::StatusOr<std::unique_ptr<KernelFusionInterface>> GetFusion( const HloFusionAnalysis& analysis) { auto emitter = GetFusionEmitter(PreBufferAssignmentFusionInfo{analysis}); auto fusion = dynamic_cast<KernelFusionInterface*>(emitter.get()); TF_RET_CHECK(fusion != nullptr); emitter.release(); return std::unique_ptr<KernelFusionInterface>{fusion}; } TEST_F(LoopTest, ThreadIndexingUnrolled) { auto module = ParseAndReturnVerifiedModule(R"( HloModule module neg { %input = f32[100,200,300] parameter(0) ROOT neg = f32[100,200,300] negate(%input) } ENTRY entry { %input = f32[100,200,300] parameter(0) ROOT %fusion = f32[100,200,300] fusion(%input), kind=kLoop, calls=neg })") .value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); TF_ASSERT_OK_AND_ASSIGN(auto loop_fusion, GetFusion(analysis)); auto thread_id_to_output_indexing = loop_fusion->ComputeThreadIdToOutputIndexing(0, &mlir_context_); EXPECT_THAT(thread_id_to_output_indexing->ToString(printer_), MatchIndexingString(R"( (th_x, th_y, th_z, bl_x, bl_y, bl_z)[chunk_id, unroll_id] -> ( ((bl_x * 128 + chunk_id * 129024 + th_x) floordiv 15000) mod 100, ((bl_x * 128 + chunk_id * 129024 + th_x) floordiv 75) mod 200, (th_x * 4 + bl_x * 512 + chunk_id * 516096) mod 300 + unroll_id ) domain: th_x in [0, 128) th_y in [0, 1) th_z in [0, 1) bl_x in [0, 1008) bl_y in [0, 1) bl_z in [0, 1) chunk_id in [0, 12) unroll_id in [0, 4) (th_x + bl_x * 128) * 4 + chunk_id * 516096 in [0, 5999997) )")); } TEST_F(LoopTest, ThreadIndexingNotUnrolled) { auto module = ParseAndReturnVerifiedModule(R"( HloModule module neg { %input = f32[20] parameter(0) ROOT neg = f32[20] negate(%input) } ENTRY entry { %input = f32[20] parameter(0) ROOT %fusion = f32[20] fusion(%input), kind=kLoop, calls=neg })") .value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); TF_ASSERT_OK_AND_ASSIGN(auto loop_fusion, GetFusion(analysis)); auto thread_id_to_output_indexing = loop_fusion->ComputeThreadIdToOutputIndexing(0, &mlir_context_); EXPECT_THAT(thread_id_to_output_indexing->ToString(printer_), MatchIndexingString(R"( (th_x, th_y, th_z, bl_x, bl_y, bl_z)[chunk_id, unroll_id] -> (th_x) domain: th_x in [0, 20) th_y in [0, 1) th_z in [0, 1) bl_x in [0, 1) bl_y in [0, 1) bl_z in [0, 1) chunk_id in [0, 1) unroll_id in [0, 1) )")); auto thread_id_to_input_indexing = loop_fusion->ComputeThreadIdToInputIndexing( 0, 0, &mlir_context_); EXPECT_THAT(thread_id_to_input_indexing->ToString(printer_), MatchIndexingString(R"( (th_x, th_y, th_z, bl_x, bl_y, bl_z)[chunk_id, unroll_id] -> (th_x) domain: th_x in [0, 20) th_y in [0, 1) th_z in [0, 1) bl_x in [0, 1) bl_y in [0, 1) bl_z in [0, 1) chunk_id in [0, 1) unroll_id in [0, 1) )")); } TEST_F(LoopTest, Broadcast) { auto module = ParseAndReturnVerifiedModule(R"( HloModule module bcast { %input = f32[20] parameter(0) ROOT bcast = f32[10, 20, 30] broadcast(%input), dimensions={1} } ENTRY entry { %input = f32[20] parameter(0) ROOT %fusion = f32[10, 20, 30] fusion(%input), kind=kLoop, calls=bcast })") .value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); TF_ASSERT_OK_AND_ASSIGN(auto loop_fusion, GetFusion(analysis)); auto thread_id_to_output_indexing = loop_fusion->ComputeThreadIdToOutputIndexing(0, &mlir_context_); EXPECT_THAT(thread_id_to_output_indexing->ToString(printer_), MatchIndexingString(R"( (th_x, th_y, th_z, bl_x, bl_y, bl_z)[chunk_id, unroll_id] -> ( ((bl_x * 128 + th_x) floordiv 600) mod 10, ((bl_x * 128 + th_x) floordiv 30) mod 20, (bl_x * 128 + th_x) mod 30) domain: th_x in [0, 128) th_y in [0, 1) th_z in [0, 1) bl_x in [0, 47) bl_y in [0, 1) bl_z in [0, 1) chunk_id in [0, 1) unroll_id in [0, 1) th_x + bl_x * 128 in [0, 6000) )")); auto thread_id_to_input_indexing = loop_fusion->ComputeThreadIdToInputIndexing( 0, 0, &mlir_context_); EXPECT_THAT(thread_id_to_input_indexing->ToString(printer_), MatchIndexingString(R"( (th_x, th_y, th_z, bl_x, bl_y, bl_z)[chunk_id, unroll_id] -> (((bl_x * 128 + th_x) floordiv 30) mod 20) domain: th_x in [0, 128) th_y in [0, 1) th_z in [0, 1) bl_x in [0, 47) bl_y in [0, 1) bl_z in [0, 1) chunk_id in [0, 1) unroll_id in [0, 1) th_x + bl_x * 128 in [0, 6000) )")); } } } }
2,131
cpp
tensorflow/tensorflow
input_slices
third_party/xla/xla/service/gpu/fusions/legacy/input_slices.cc
third_party/xla/xla/service/gpu/fusions/legacy/input_slices_test.cc
#ifndef XLA_SERVICE_GPU_FUSIONS_INPUT_SLICES_H_ #define XLA_SERVICE_GPU_FUSIONS_INPUT_SLICES_H_ #include <cstdint> #include <optional> #include <vector> #include "absl/status/status.h" #include "llvm/IR/IRBuilder.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/fusions/fusion_emitter.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/ir_emitter_context.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/indexing_analysis.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/service/llvm_ir/ir_array.h" #include "xla/util.h" namespace xla { namespace gpu { class InputSlicesFusion : public KernelFusionEmitterBase { public: explicit InputSlicesFusion(const HloFusionAnalysis& analysis) : analysis_(analysis), unroll_factor_(CeilOfRatio( 8, analysis.input_output_info().smallest_output_dtype_bits)) {} LaunchDimensions launch_dimensions() const override; std::optional<IndexingMap> ComputeThreadIdToOutputIndexing( int64_t output_id, mlir::MLIRContext* ctx) const override; std::optional<IndexingMap> ComputeThreadIdToInputIndexing( int64_t root_index, int64_t hero_operand_index, mlir::MLIRContext* ctx) const override { return std::nullopt; } protected: absl::Status EmitKernel(IrEmitterContext& ir_emitter_context, const HloFusionInstruction& fusion, const LaunchDimensions& launch_dims, std::vector<llvm_ir::IrArray> inputs, std::vector<llvm_ir::IrArray> outputs, llvm::IRBuilder<>* builder) const override; private: const HloFusionAnalysis& analysis_; const int unroll_factor_; }; } } #endif #include "xla/service/gpu/fusions/input_slices.h" #include <cstddef> #include <cstdint> #include <optional> #include <vector> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Value.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/elemental_ir_emitter.h" #include "xla/service/gpu/elemental_ir_emitter.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/ir_emitter_context.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/service/gpu/parallel_loop_emitter.h" #include "xla/service/llvm_ir/fused_ir_emitter.h" #include "xla/service/llvm_ir/ir_array.h" #include "xla/service/llvm_ir/kernel_support_library.h" #include "xla/service/llvm_ir/llvm_loop.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { absl::Status EmitElementForInputFusibleSlices( ElementalIrEmitter& elemental_emitter, const HloComputation* fused_computation, const std::vector<llvm_ir::IrArray>& inputs, const std::vector<llvm_ir::IrArray>& outputs, const llvm_ir::IrArray::Index& index, llvm::IRBuilder<>* builder) { VLOG(10) << "Emitting slice input fusion for " << fused_computation->ToString(); HloInstruction* slice_or_tuple = fused_computation->root_instruction(); auto slice_instructions = [&]() -> absl::Span<HloInstruction* const> { if (slice_or_tuple->opcode() == HloOpcode::kSlice) { return absl::Span<HloInstruction* const>(&slice_or_tuple, 1); } CHECK_EQ(slice_or_tuple->opcode(), HloOpcode::kTuple); return slice_or_tuple->operands(); }(); std::vector<llvm::Value*> input_ir_values; FusedIrEmitter fused_emitter(elemental_emitter); for (int i = 0; i < fused_computation->num_parameters(); i++) { fused_emitter.BindGenerator( *fused_computation->parameter_instruction(i), [&inputs, i, builder](llvm_ir::IrArray::Index index) { return inputs[i].EmitReadArrayElement(index, builder); }); } for (const HloInstruction* slice : slice_instructions) { auto input_generator = *fused_emitter.GetGenerator(*slice->operand(0)); input_ir_values.push_back(input_generator(index).value()); } KernelSupportLibrary ksl(builder, llvm_ir::UnrollMode::kDefaultUnroll); for (int64_t i = 0; i < slice_instructions.size(); ++i) { HloInstruction* slice = slice_instructions[i]; std::vector<llvm::Value*> index_within_ranges; for (size_t dim = 0; dim < slice->slice_starts().size(); ++dim) { CHECK_EQ(slice->slice_strides(dim), 1); auto larger_or_equal_than_start = builder->CreateICmpSGE( index.multidim()[dim], index.GetConstantWithIndexType(slice->slice_starts(dim))); llvm::Value* smaller_than_limit = builder->CreateICmpSLT( index.multidim()[dim], index.GetConstantWithIndexType(slice->slice_limits(dim))); llvm::Value* within_range = builder->CreateAnd(larger_or_equal_than_start, smaller_than_limit); index_within_ranges.push_back(within_range); } llvm::Value* guarding_cond = builder->CreateAnd(index_within_ranges); auto emit_slice_elem_func = [&] { const std::vector<llvm::Value*>& src_multidim = index.multidim(); std::vector<llvm::Value*> dst_multidim(src_multidim.size()); for (size_t dim = 0; dim < src_multidim.size(); ++dim) { dst_multidim[dim] = builder->CreateSub( src_multidim[dim], index.GetConstantWithIndexType(slice->slice_starts(dim))); } const llvm_ir::IrArray& src_ir_array = outputs[i]; llvm_ir::IrArray::Index slice_dst_index(dst_multidim, slice->shape(), index.GetType()); src_ir_array.EmitWriteArrayElement(slice_dst_index, input_ir_values[i], builder); }; ksl.If(absl::StrCat("slice", i), guarding_cond, emit_slice_elem_func); } return absl::OkStatus(); } absl::StatusOr<Shape> GetConsistentInputShapeForRootSlices( const HloComputation* fused_computation) { const HloInstruction& root = *fused_computation->root_instruction(); if (root.opcode() == HloOpcode::kSlice) { return root.operands()[0]->shape(); } CHECK_EQ(root.opcode(), HloOpcode::kTuple); const Shape& first_slice_operand_shape = root.operands()[0]->operands()[0]->shape(); for (size_t i = 1; i < root.operands().size(); ++i) { const HloInstruction* slice = root.operands()[i]; const Shape& operand_shape = slice->operands()[0]->shape(); if (!ShapeUtil::EqualIgnoringElementType(first_slice_operand_shape, operand_shape)) { return FailedPrecondition( "Fused slices do not have the same input shape, fused computation = " "%s.", root.parent()->name()); } } return first_slice_operand_shape; } } LaunchDimensions InputSlicesFusion::launch_dimensions() const { const auto& root = analysis_.fusion_root(0).instruction(); const auto& shape = root.operand(0)->shape(); return CalculateLaunchDimensions(shape, analysis_.device_info(), {unroll_factor_}); } std::optional<IndexingMap> InputSlicesFusion::ComputeThreadIdToOutputIndexing( int64_t output_id, mlir::MLIRContext* ctx) const { auto launch_dims = launch_dimensions(); const auto& shape = analysis_.fusion_root(output_id).shape(); return GetDefaultThreadIdIndexingMap(launch_dims, unroll_factor_, shape, ctx); } absl::Status InputSlicesFusion::EmitKernel( IrEmitterContext& ir_emitter_context, const HloFusionInstruction& fusion, const LaunchDimensions& launch_dims, std::vector<llvm_ir::IrArray> inputs, std::vector<llvm_ir::IrArray> outputs, llvm::IRBuilder<>* builder) const { TF_ASSIGN_OR_RETURN(Shape element_shape, GetConsistentInputShapeForRootSlices( fusion.fused_instructions_computation())); LaunchDimensionsConfig launch_config; launch_config.unroll_factor = unroll_factor_; GpuElementalIrEmitter elemental_emitter(ir_emitter_context, builder); return ParallelLoopEmitter( [&](const llvm_ir::IrArray::Index index) -> absl::Status { return EmitElementForInputFusibleSlices( elemental_emitter, fusion.fused_instructions_computation(), inputs, outputs, index, builder); }, element_shape, launch_dims, builder, launch_config) .EmitLoop( fusion.name(), GetIndexTypeForKernel(&fusion, launch_dims.launch_bound(), builder)); } } }
#include "xla/service/gpu/fusions/input_slices.h" #include <optional> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "mlir/IR/MLIRContext.h" #include "xla/service/gpu/fusions/fusions.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/model/affine_map_printer.h" #include "xla/service/gpu/model/indexing_test_utils.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace gpu { namespace { class InputSlicesTest : public HloTestBase { public: void SetUp() override { HloTestBase::SetUp(); printer_ = AffineMapPrinter({"th_x", "th_y", "th_z", "bl_x", "bl_y", "bl_z"}, {"chunk_id", "unroll_id"}); } protected: AffineMapPrinter printer_; mlir::MLIRContext mlir_context_; }; TEST_F(InputSlicesTest, ThreadIndexing) { auto module = ParseAndReturnVerifiedModule(R"( HloModule module fused_computation { %input = f32[2,3,5,7]{2,1,0,3} parameter(0) slice0 = f32[1,2,3,5]{2,1,0,3} slice(input), slice={[0:1],[1:3],[0:3],[2:7]} slice1 = f32[1,2,3,5]{2,1,0,3} slice(input), slice={[0:1],[0:2],[0:3],[2:7]} ROOT tuple = (f32[1,2,3,5]{2,1,0,3}, f32[1,2,3,5]{2,1,0,3}) tuple(slice0, slice1) } ENTRY entry { %input = f32[2,3,5,7]{2,1,0,3} parameter(0) ROOT %fusion = (f32[1,2,3,5]{2,1,0,3}, f32[1,2,3,5]{2,1,0,3}) fusion(%input), kind=kLoop, calls=fused_computation })") .value(); stream_executor::DeviceDescription device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto* root = module->entry_computation()->root_instruction(); auto analysis_fused = AnalyzeFusion(*root, device_info); auto emitter = GetFusionEmitter(PreBufferAssignmentFusionInfo{analysis_fused}); auto fusion = dynamic_cast<InputSlicesFusion*>(emitter.get()); ASSERT_NE(fusion, nullptr); auto thread_id_to_output_indexing = fusion->ComputeThreadIdToOutputIndexing(0, &mlir_context_); EXPECT_THAT(thread_id_to_output_indexing->ToString(printer_), MatchIndexingString(R"( (th_x, th_y, th_z, bl_x, bl_y, bl_z)[chunk_id, unroll_id] -> (0, ((bl_x * 128 + th_x) floordiv 3) mod 2, (bl_x * 128 + th_x) mod 3, ((bl_x * 128 + th_x) floordiv 6) mod 5) domain: th_x in [0, 128) th_y in [0, 1) th_z in [0, 1) bl_x in [0, 2) bl_y in [0, 1) bl_z in [0, 1) chunk_id in [0, 1) unroll_id in [0, 1) th_x + bl_x * 128 in [0, 30) )")); } } } }
2,132
cpp
tensorflow/tensorflow
triton
third_party/xla/xla/service/gpu/fusions/triton.cc
third_party/xla/xla/service/gpu/fusions/triton_test.cc
#ifndef XLA_SERVICE_GPU_FUSIONS_TRITON_H_ #define XLA_SERVICE_GPU_FUSIONS_TRITON_H_ #include <cstdint> #include <optional> #include <vector> #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/fusions/fusion_emitter.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/ir_emitter_context.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/tiled_hlo_computation.h" #include "xla/shape.h" namespace xla { namespace gpu { class TritonFusion : public FusionInterface { public: struct LaunchConfig { LaunchDimensions launch_dimensions; BlockLevelParameters block_level_parameters; }; explicit TritonFusion(const HloFusionAnalysis& analysis) : analysis_(analysis) {} absl::StatusOr<FusionEmissionResult> Emit( IrEmitterContext& ir_emitter_context, const HloFusionInstruction& fusion) const final; std::optional<LaunchConfig> launch_config() const; private: const HloFusionAnalysis& analysis_; }; } } #endif #include "xla/service/gpu/fusions/triton.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "llvm/ADT/STLExtras.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "mlir/Support/LLVM.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/fusions/fusion_emitter.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/ir_emitter_context.h" #include "xla/service/gpu/ir_emitter_triton.h" #include "xla/service/gpu/kernel_arguments.h" #include "xla/service/gpu/kernel_reuse_cache.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/gpu/model/tiled_hlo_computation.h" #include "xla/service/gpu/runtime/kernel_thunk.h" #include "xla/service/gpu/triton_fusion_analysis.h" #include "xla/service/llvm_ir/ir_array.h" #include "xla/service/llvm_ir/llvm_util.h" #include "xla/shape.h" #include "xla/status_macros.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { absl::StatusOr<FusionEmissionResult> TritonFusion::Emit( IrEmitterContext& ir_emitter_context, const HloFusionInstruction& fusion) const { llvm::IRBuilder builder(ir_emitter_context.llvm_module()->getContext()); VLOG(3) << fusion.ToString(); std::string suggested_kernel_name = std::string(fusion.name()); TF_ASSIGN_OR_RETURN( auto kernel_arguments, KernelArguments::Create(ir_emitter_context.buffer_assignment(), &fusion)); const HloComputation* hlo_computation = fusion.fused_instructions_computation(); auto generate = [&]() -> absl::StatusOr<KernelReuseCache::Entry> { VLOG(3) << "Generating: " << suggested_kernel_name; const std::string impl_fn_name = ir_emitter_context.name_uniquer()->GetUniqueName( llvm_ir::SanitizeFunctionName( absl::StrCat(suggested_kernel_name, "_impl"))); auto backend_config = fusion.backend_config<GpuBackendConfig>()->fusion_backend_config(); absl::string_view fusion_kind = backend_config.kind(); TritonWrapperResult triton_wrapper_result; LaunchDimensions launch_dimensions; if (fusion_kind == kTritonFusionKind) { std::optional<LaunchConfig> launch_config = *this->launch_config(); if (!launch_config.has_value()) { return absl::InvalidArgumentError(absl::StrCat( "Block level fusion config is required for Triton fusions: ", fusion.ToString())); } launch_dimensions = std::move(launch_config->launch_dimensions); TF_ASSIGN_OR_RETURN( triton_wrapper_result, TritonWrapper(impl_fn_name, &fusion, ir_emitter_context.gpu_compute_capability(), ir_emitter_context.gpu_device_info(), launch_config->block_level_parameters, ir_emitter_context.llvm_module(), *ir_emitter_context.mlir_context())); } else { CHECK_EQ(fusion_kind, kTritonGemmFusionKind); BlockLevelParameters block_level_parameters; if (!backend_config.has_triton_gemm_config()) { LOG(WARNING) << "Using fallback triton GEMM config for op " << fusion.name(); auto& triton_config = *backend_config.mutable_triton_gemm_config(); triton_config.set_block_m(64); triton_config.set_block_k(64); triton_config.set_block_n(64); triton_config.set_split_k(1); block_level_parameters.num_ctas = 1; block_level_parameters.num_stages = 1; block_level_parameters.num_warps = 2; } else { const auto& triton_config = backend_config.triton_gemm_config(); block_level_parameters.num_ctas = triton_config.num_ctas(); block_level_parameters.num_stages = triton_config.num_stages(); block_level_parameters.num_warps = triton_config.num_warps(); } TF_ASSIGN_OR_RETURN( triton_wrapper_result, TritonWrapper(impl_fn_name, &fusion, ir_emitter_context.gpu_compute_capability(), ir_emitter_context.gpu_device_info(), block_level_parameters, ir_emitter_context.llvm_module(), *ir_emitter_context.mlir_context())); TF_ASSIGN_OR_RETURN( TritonGemmConfig config, TritonGemmConfig::FromProto(backend_config.triton_gemm_config())); TF_ASSIGN_OR_RETURN(auto analysis, TritonFusionAnalysis::Execute( *hlo_computation, config.split_k)); TF_ASSIGN_OR_RETURN( launch_dimensions, GetMatMulLaunchDimensions(analysis, analysis_.fusion(), config)); } llvm::Function* impl_fn = ir_emitter_context.llvm_module()->getFunction(impl_fn_name); TF_RET_CHECK(impl_fn); llvm::Function* kernel; std::vector<llvm_ir::IrArray> inputs; std::vector<llvm_ir::IrArray> outputs; TF_ASSIGN_OR_RETURN( std::tie(kernel, inputs, outputs), BuildKernelPrototype(ir_emitter_context, suggested_kernel_name, kernel_arguments.args(), impl_fn->arg_size(), launch_dimensions, &builder)); llvm::Function* prototype_func = builder.GetInsertBlock()->getParent(); prototype_func->splice(prototype_func->begin(), impl_fn); for (const auto& [arg, ir_array] : llvm::zip(impl_fn->args(), inputs)) { arg.replaceAllUsesWith(ir_array.GetBasePointer()); } impl_fn->eraseFromParent(); return {{kernel->getName().str(), launch_dimensions, triton_wrapper_result.cluster_dim, triton_wrapper_result.shmem_bytes}}; }; auto [status_or_entry, was_cached] = ir_emitter_context.kernel_cache().GetWithStatus( hlo_computation, kernel_arguments.args(), "", generate); TF_ASSIGN_OR_RETURN(const KernelReuseCache::Entry* entry, status_or_entry); FusionEmissionResult result; result.thunks.emplace_back(std::make_unique<KernelThunk>( &fusion, entry->kernel_name, kernel_arguments.args(), entry->launch_dimensions, entry->cluster_dim, entry->shmem_bytes)); return result; } std::optional<TritonFusion::LaunchConfig> TritonFusion::launch_config() const { if (analysis_.fusion_backend_config().has_block_level_fusion_config()) { BlockLevelParameters block_level_parameters = BlockLevelParameters::FromBlockLevelFusionConfig( analysis_.fusion_backend_config().block_level_fusion_config()); int64_t num_blocks = 1; for (auto [dim_size, dim_tile_size] : llvm::zip(analysis_.fusion_root(0).shape().dimensions(), block_level_parameters.output_tile_sizes)) { num_blocks *= (dim_size + dim_tile_size - 1) / dim_tile_size; } LaunchConfig launch_config; launch_config.launch_dimensions = LaunchDimensions{ static_cast<uint64_t>(num_blocks), static_cast<uint64_t>(block_level_parameters.num_warps * WarpSize())}; launch_config.block_level_parameters = std::move(block_level_parameters); return launch_config; } return std::nullopt; } } }
#include "xla/service/gpu/fusions/triton.h" #include <optional> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/service/gpu/fusions/fusions.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using ::testing::ElementsAre; class TritonFusionTest : public HloTestBase {}; TEST_F(TritonFusionTest, TritonFusionWithBlockLevelFusionConfig_LaunchConfigIsCorrect) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule m fused_computation { param_0.2 = f32[125] parameter(0) ROOT broadcast.1 = f32[125,127] broadcast(param_0.2), dimensions={0} } fused_computation.1 { param_0.3 = f32[125,127] parameter(0) param_1.3 = f32[125,127] parameter(1) ROOT multiply.2 = f32[125,127] multiply(param_0.3, param_1.3) } ENTRY entry_computation { param_0.4 = f32[125] parameter(0) param_1 = f32[125,127] parameter(1) fusion = f32[125,127] fusion(param_0.4), kind=kLoop, calls=fused_computation ROOT fusion.1 = f32[125,127] fusion(fusion, param_1), kind=kCustom, calls=fused_computation.1, backend_config={"fusion_backend_config":{"kind":"__triton","block_level_fusion_config":{"output_tile_sizes":["3","127"],"num_warps":"4"}}} })")); stream_executor::DeviceDescription device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto* root = module->entry_computation()->root_instruction(); auto analysis_fused = AnalyzeProducerConsumerFusion(*root->operand(0), *root, device_info); auto emitter_fused = GetFusionEmitter(PreBufferAssignmentFusionInfo{analysis_fused}); auto triton_fusion = dynamic_cast<TritonFusion*>(emitter_fused.get()); ASSERT_NE(triton_fusion, nullptr); auto launch_config = triton_fusion->launch_config(); ASSERT_NE(launch_config, std::nullopt); EXPECT_EQ(launch_config->launch_dimensions.num_blocks(), 42); EXPECT_EQ(launch_config->launch_dimensions.num_threads_per_block(), 128); EXPECT_THAT(launch_config->block_level_parameters.output_tile_sizes, ElementsAre(3, 127)); } TEST_F(TritonFusionTest, TritonFusionWithoutBlockLevelFusionConfig_LaunchConfigIsNullopt) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule m fused_computation { param_0.2 = f32[125] parameter(0) ROOT broadcast.1 = f32[125,127] broadcast(param_0.2), dimensions={0} } fused_computation.1 { param_0.3 = f32[125,127] parameter(0) param_1.3 = f32[125,127] parameter(1) ROOT multiply.2 = f32[125,127] multiply(param_0.3, param_1.3) } ENTRY entry_computation { param_0.4 = f32[125] parameter(0) param_1 = f32[125,127] parameter(1) fusion = f32[125,127] fusion(param_0.4), kind=kLoop, calls=fused_computation ROOT fusion.1 = f32[125,127] fusion(fusion, param_1), kind=kCustom, calls=fused_computation.1, backend_config={"fusion_backend_config":{"kind":"__triton"}} })")); stream_executor::DeviceDescription device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto* root = module->entry_computation()->root_instruction(); auto analysis_fused = AnalyzeProducerConsumerFusion(*root->operand(0), *root, device_info); auto emitter_fused = GetFusionEmitter(PreBufferAssignmentFusionInfo{analysis_fused}); auto triton_fusion = dynamic_cast<TritonFusion*>(emitter_fused.get()); ASSERT_NE(triton_fusion, nullptr); EXPECT_EQ(triton_fusion->launch_config(), std::nullopt); } } } }
2,133
cpp
tensorflow/tensorflow
in_place_dynamic_update_slice
third_party/xla/xla/service/gpu/fusions/legacy/in_place_dynamic_update_slice.cc
third_party/xla/xla/service/gpu/fusions/legacy/in_place_dynamic_update_slice_test.cc
#ifndef XLA_SERVICE_GPU_FUSIONS_IN_PLACE_DYNAMIC_UPDATE_SLICE_H_ #define XLA_SERVICE_GPU_FUSIONS_IN_PLACE_DYNAMIC_UPDATE_SLICE_H_ #include <cstdint> #include <optional> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "llvm/IR/IRBuilder.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/fusions/fusion_emitter.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/ir_emitter_context.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/service/llvm_ir/ir_array.h" namespace xla { namespace gpu { class InPlaceDynamicUpdateSliceFusion : public KernelFusionEmitterBase { public: explicit InPlaceDynamicUpdateSliceFusion(const HloFusionAnalysis& analysis) : analysis_(analysis), dus_ops_( GetOutputDefiningDynamicUpdateSlices(analysis.fusion_roots())) {} LaunchDimensions launch_dimensions() const override; std::optional<IndexingMap> ComputeThreadIdToOutputIndexing( int64_t root_index, mlir::MLIRContext* ctx) const override { return std::nullopt; } std::optional<IndexingMap> ComputeThreadIdToInputIndexing( int64_t root_index, int64_t hero_operand_index, mlir::MLIRContext* indexing_context) const override; protected: absl::Status EmitKernel(IrEmitterContext& ir_emitter_context, const HloFusionInstruction& fusion, const LaunchDimensions& launch_dims, std::vector<llvm_ir::IrArray> inputs, std::vector<llvm_ir::IrArray> outputs, llvm::IRBuilder<>* builder) const override; const HloFusionAnalysis& analysis_; std::vector<const HloInstruction*> dus_ops_; }; } } #endif #include "xla/service/gpu/fusions/in_place_dynamic_update_slice.h" #include <optional> #include <utility> #include <vector> #include "absl/status/status.h" #include "llvm/ADT/STLExtras.h" #include "llvm/IR/IRBuilder.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/elemental_ir_emitter.h" #include "xla/service/gpu/ir_emitter_context.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/service/llvm_ir/dynamic_update_slice_util.h" #include "xla/service/llvm_ir/fused_ir_emitter.h" #include "xla/service/llvm_ir/ir_array.h" namespace xla { namespace gpu { namespace { constexpr int kDUSUpdateIndex = 1; } LaunchDimensions InPlaceDynamicUpdateSliceFusion::launch_dimensions() const { const auto& update_shape = dus_ops_.front()->operand(1)->shape(); return CalculateLaunchDimensions(update_shape, analysis_.device_info()); } std::optional<IndexingMap> InPlaceDynamicUpdateSliceFusion::ComputeThreadIdToInputIndexing( int64_t root_index, int64_t hero_operand_index, mlir::MLIRContext* mlir_context) const { if (hero_operand_index != kDUSUpdateIndex) { return std::nullopt; } auto launch_dims = launch_dimensions(); const auto& update_shape = dus_ops_.front()->operand(kDUSUpdateIndex)->shape(); return GetDefaultThreadIdIndexingMap(launch_dims, 1, update_shape, mlir_context); } absl::Status InPlaceDynamicUpdateSliceFusion::EmitKernel( IrEmitterContext& ir_emitter_context, const HloFusionInstruction& fusion, const LaunchDimensions& launch_dims, std::vector<llvm_ir::IrArray> inputs, std::vector<llvm_ir::IrArray> outputs, llvm::IRBuilder<>* builder) const { for (auto [op, output] : llvm::zip(dus_ops_, outputs)) { output = output.CastToShape(op->shape(), builder); } auto* fused_computation = fusion.fused_instructions_computation(); GpuElementalIrEmitter elemental_emitter(ir_emitter_context, builder); FusedIrEmitter fused_emitter(elemental_emitter); for (auto [index, input] : llvm::enumerate(inputs)) { auto fused_operand = fused_computation->parameter_instruction(index); fused_emitter.BindGenerator( *fused_operand, [input = input, builder, fused_operand](const llvm_ir::IrArray::Index& index) { return input.EmitReadArrayElement(index, builder, fused_operand->name()); }); } std::vector<std::pair<const HloInstruction*, const llvm_ir::IrArray>> dus_and_output_array; dus_and_output_array.reserve(dus_ops_.size()); for (auto [op, output] : llvm::zip(dus_ops_, outputs)) { dus_and_output_array.push_back(std::make_pair(op, output)); } return llvm_ir::EmitParallelFusedDynamicUpdateSliceInPlace( fused_computation, dus_and_output_array, &fused_emitter, launch_dims, builder); } } }
#include "xla/service/gpu/fusions/in_place_dynamic_update_slice.h" #include <optional> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "mlir/IR/MLIRContext.h" #include "xla/service/gpu/fusions/fusions.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/model/affine_map_printer.h" #include "xla/service/gpu/model/indexing_test_utils.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { class InPlaceDynamicUpdateSliceFusionTest : public HloTestBase { public: void SetUp() override { HloTestBase::SetUp(); printer_ = AffineMapPrinter({"th_x", "th_y", "th_z", "bl_x", "bl_y", "bl_z"}, {"chunk_id", "unroll_id"}); } protected: AffineMapPrinter printer_; mlir::MLIRContext mlir_context_; stream_executor::DeviceDescription device_info_ = TestGpuDeviceInfo::RTXA6000DeviceInfo(); }; TEST_F(InPlaceDynamicUpdateSliceFusionTest, ThreadIndexing) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule module fused_computation { in = f32[20,30] parameter(0) updates = f32[5,6] parameter(1) i0 = s32[] parameter(2) i1 = s32[] parameter(3) ROOT updated = f32[20,30] dynamic-update-slice(in, updates, i0, i1) } ENTRY entry { in = f32[20,30] parameter(0) updates = f32[5,6] parameter(1) i0 = s32[] constant(2) i1 = s32[] constant(3) ROOT fusion = f32[20,30] fusion(in, updates, i0, i1), kind=kLoop, calls=fused_computation } )")); auto* root = module->entry_computation()->root_instruction(); auto analysis_fused = AnalyzeFusion(*root, device_info_); auto emitter = GetFusionEmitter(PreBufferAssignmentFusionInfo{analysis_fused}); auto fusion = dynamic_cast<InPlaceDynamicUpdateSliceFusion*>(emitter.get()); ASSERT_NE(fusion, nullptr); auto thread_id_update_indexing = fusion->ComputeThreadIdToInputIndexing( 0, 1, &mlir_context_); EXPECT_THAT(thread_id_update_indexing->ToString(printer_), MatchIndexingString(R"( (th_x, th_y, th_z, bl_x, bl_y, bl_z)[chunk_id, unroll_id] -> ( th_x floordiv 6, th_x mod 6) domain: th_x in [0, 30) th_y in [0, 1) th_z in [0, 1) bl_x in [0, 1) bl_y in [0, 1) bl_z in [0, 1) chunk_id in [0, 1) unroll_id in [0, 1) )")); auto thread_id_dst_indexing = fusion->ComputeThreadIdToInputIndexing( 0, 0, &mlir_context_); EXPECT_THAT(thread_id_dst_indexing, ::testing::Eq(std::nullopt)); } TEST_F(InPlaceDynamicUpdateSliceFusionTest, ProduceConsumerFusion) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule m fused_computation.1 { param_0 = bf16[1,2,5,1,2] parameter(0) bitcast = bf16[1,5,1,2,2] bitcast(param_0) param_1 = bf16[1,1,1,2,2] parameter(1) param_2 = s32[] parameter(2) param_3 = s32[] parameter(3) ROOT dynamic-update-slice = bf16[1,5,1,2,2] dynamic-update-slice(bitcast, param_1, param_2, param_3, param_2, param_2, param_2) } ENTRY entry_computation { param_0.2 = bf16[1,2,5,1,2] parameter(3) param_1.2 = bf16[1,1,1,2,2] parameter(0) param_2.2 = s32[] parameter(1) param_3.2 = s32[] parameter(2) fusion = bf16[1,5,1,2,2] fusion(param_0.2, param_1.2, param_2.2, param_3.2), kind=kLoop, calls=fused_computation.1 ROOT bitcast.1 = bf16[1,2,5,1,2] bitcast(fusion) } )")); auto* root = module->entry_computation()->root_instruction(); auto analysis_fused = AnalyzeProducerConsumerFusion(*root->operand(0), *root, device_info_); auto emitter = GetFusionEmitter(PreBufferAssignmentFusionInfo{analysis_fused}); auto fusion = dynamic_cast<InPlaceDynamicUpdateSliceFusion*>(emitter.get()); ASSERT_NE(fusion, nullptr); EXPECT_EQ(fusion->launch_dimensions().launch_bound(), 4 ); } } } }
2,134
cpp
tensorflow/tensorflow
reduction
third_party/xla/xla/service/gpu/fusions/legacy/reduction.cc
third_party/xla/xla/service/gpu/fusions/legacy/reduction_test.cc
#ifndef XLA_SERVICE_GPU_FUSIONS_REDUCTION_H_ #define XLA_SERVICE_GPU_FUSIONS_REDUCTION_H_ #include <optional> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/status/status.h" #include "llvm/IR/IRBuilder.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/fusions/fusion_emitter.h" #include "xla/service/gpu/fusions/reduction_base.h" #include "xla/service/gpu/fusions/tiling_util.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/ir_emitter_context.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/llvm_ir/ir_array.h" #include "xla/shape.h" namespace xla { namespace gpu { class ReductionInfo { public: static ReductionInfo Create(const HloFusionAnalysis& analysis); const Tiling& GetTiling() const { return tiling_; } const ReductionGroups& GetGroups() const { return groups_; } Shape GetReduceOperandShape() const { return first_reduce_->operand(0)->shape(); } bool IsRowReduction() const { return is_row_reduction_; } bool IsRaceFree() const { return is_race_free_; } int GetRowsPerWarp() const; std::optional<IndexingMap> ComputeThreadIdToOutputIndexing( int64_t root_index, mlir::MLIRContext* ctx) const; std::optional<IndexingMap> ComputeThreadIdToInputIndexing( int64_t root_index, int64_t hero_operand_index, mlir::MLIRContext* ctx) const; LaunchDimensions launch_dimensions() const; private: ReductionInfo(const HloFusionAnalysis& analysis, Tiling tiling, bool is_row_reduction, bool is_race_free, ReductionGroups groups, const HloInstruction* first_reduce) : analysis_(analysis), tiling_(tiling), is_row_reduction_(is_row_reduction), is_race_free_(is_race_free), groups_(std::move(groups)), first_reduce_(first_reduce) {} const HloFusionAnalysis& analysis_; Tiling tiling_; bool is_row_reduction_; bool is_race_free_; ReductionGroups groups_; const HloInstruction* first_reduce_; }; class ReductionFusion : public KernelFusionEmitterBase { public: explicit ReductionFusion(const HloFusionAnalysis& analysis) : analysis_(analysis), reduction_info_(ReductionInfo::Create(analysis)) {} std::optional<IndexingMap> ComputeThreadIdToOutputIndexing( int64_t root_index, mlir::MLIRContext* ctx) const override { return reduction_info_.ComputeThreadIdToOutputIndexing(root_index, ctx); } std::optional<IndexingMap> ComputeThreadIdToInputIndexing( int64_t root_index, int64_t hero_operand_index, mlir::MLIRContext* ctx) const override { return reduction_info_.ComputeThreadIdToInputIndexing( root_index, hero_operand_index, ctx); } LaunchDimensions launch_dimensions() const override { return reduction_info_.launch_dimensions(); } const ReductionInfo& reduction_info() const { return reduction_info_; } protected: absl::StatusOr<FusionEmissionResult> EmitInitializers( IrEmitterContext& ir_emitter_context, const HloFusionInstruction& fusion) const override; absl::Status EmitKernel(IrEmitterContext& ir_emitter_context, const HloFusionInstruction& fusion, const LaunchDimensions& launch_dims, std::vector<llvm_ir::IrArray> inputs, std::vector<llvm_ir::IrArray> outputs, llvm::IRBuilder<>* builder) const override; private: const HloFusionAnalysis& analysis_; ReductionInfo reduction_info_; }; } } #endif #include "xla/service/gpu/fusions/reduction.h" #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/container/node_hash_map.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Twine.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/Casting.h" #include "mlir/Support/LLVM.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout_util.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/elemental_ir_emitter.h" #include "xla/service/gpu/fusions/fusion_emitter.h" #include "xla/service/gpu/fusions/reduction_base.h" #include "xla/service/gpu/fusions/thunk_util.h" #include "xla/service/gpu/fusions/tiling_util.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/ir_emitter_context.h" #include "xla/service/gpu/ir_emitter_nested.h" #include "xla/service/gpu/kernel_arguments.h" #include "xla/service/gpu/kernel_reuse_cache.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/parallel_loop_emitter.h" #include "xla/service/gpu/reduction_utils.h" #include "xla/service/gpu/runtime/kernel_thunk.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/service/gpu/target_util.h" #include "xla/service/llvm_ir/fused_ir_emitter.h" #include "xla/service/llvm_ir/ir_array.h" #include "xla/service/llvm_ir/kernel_support_library.h" #include "xla/service/llvm_ir/llvm_loop.h" #include "xla/service/llvm_ir/llvm_util.h" #include "xla/service/llvm_ir/loop_emitter.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_description.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using TypedPointer = std::pair<llvm::Value* const, llvm::Type* const>; using ReductionOutputMap = ConstHloInstructionMap<absl::Span<llvm_ir::IrArray const>>; using ExtraOutputGensMap = ConstHloInstructionMap<llvm_ir::ElementGenerator>; int GetNumOutputs(const Shape& shape) { if (shape.IsTuple()) { return shape.tuple_shapes_size(); } return 1; } const Shape& OutputShape(const Shape& output_shape, int output_index) { CHECK(output_index == 0 || output_shape.IsTuple()); return output_shape.IsTuple() ? output_shape.tuple_shapes(output_index) : output_shape; } llvm::Type* GetIndexType(const HloFusionInstruction& fusion, const Tiling& tiling, llvm::IRBuilder<>* builder) { return GetIndexTypeForKernel( &fusion, tiling.GetNumThreadsPerBlock() * tiling.GetNumBlocks(), builder); } llvm::Value* CastSharedToGlobal(llvm::IRBuilder<>* builder, llvm::Value* input, llvm::Type* element_type, llvm::Twine name) { return builder->CreateAddrSpaceCast( input, llvm::PointerType::get(element_type, 0), name); } class ReductionEmitter { public: ReductionEmitter(const HloFusionAnalysis& analysis, const ReductionInfo& reduction_codegen_info, IrEmitterContext& ir_emitter_context, const HloFusionInstruction& fusion, llvm::IRBuilder<>* builder) : builder_(builder), elemental_emitter_(ir_emitter_context, builder_), analysis_(analysis), reduction_codegen_info_(reduction_codegen_info), ir_emitter_context_(ir_emitter_context), fusion_(fusion), index_ty_(GetIndexType(fusion, reduction_codegen_info.GetTiling(), elemental_emitter_.builder())) { for (auto hero : analysis.fusion_heroes()) { if (hero.opcode() == HloOpcode::kReduce) { for (int i = 0; i < hero.instruction().operand_count() / 2; ++i) { CHECK(LayoutUtil::IsMonotonicWithDim0Major( hero.instruction().operand(i)->shape().layout())) << "reduction-layout-normalizer must run before code generation"; } } } } absl::StatusOr<FusionEmissionResult> EmitInitializers(); absl::Status EmitKernel(const LaunchDimensions& launch_dims, std::vector<llvm_ir::IrArray> inputs, std::vector<llvm_ir::IrArray> outputs); private: friend class ReductionGroupEmitter; absl::StatusOr<std::unique_ptr<Thunk>> BuildKernelThunkForFusion( const LaunchDimensions& launch_dimensions, absl::string_view discriminator, std::function<absl::Status(std::vector<llvm_ir::IrArray>, std::vector<llvm_ir::IrArray>)> kernel_builder_fn); absl::StatusOr<std::unique_ptr<Thunk>> BuildFusedInitializerThunk( const HloInstruction* fusion_root, BufferAllocation::Slice dest_slice, int output_index); absl::Status EmitIRForReduction( absl::Span<const HloInstruction* const> instr_index_group, FusedIrEmitter& fused_emitter, const ReductionOutputMap& result_ir_arrays, const Shape& input_shape); void MaybeEmitFenceForAMDGPU(); void EmitSyncThreads(); int ReducedDimensionSize() const { return reduction_codegen_info_.GetTiling().GetShape()[2]; } llvm::IRBuilder<>* builder_; GpuElementalIrEmitter elemental_emitter_; const HloFusionAnalysis& analysis_; const ReductionInfo& reduction_codegen_info_; IrEmitterContext& ir_emitter_context_; const HloFusionInstruction& fusion_; llvm::Type* index_ty_; }; class ReductionEmitter; class ReductionGroupEmitter { public: struct ReductionCalculationState { std::optional<llvm_ir::SharedMemoryTile> shared_cache; llvm::Value* initial_value; llvm::AllocaInst* partial_result_address; llvm::AllocaInst* input_address; llvm_ir::ElementGenerator input_gen; }; ReductionGroupEmitter( ReductionEmitter& reduction_emitter, absl::Span<const HloReduceInstruction* const> reduce_instr_index_group, const ReductionOutputMap& result_ir_arrays, FusedIrEmitter& fused_emitter); const ReductionCalculationState& GetCalculationStateFor( const HloInstruction* instruction, int operand_idx) const { const ReductionOpState& op_state = state_.at(instruction); CHECK_LT(operand_idx, op_state.size()); return op_state[operand_idx]; } void SetCalculationStateFor( const ReductionCalculationState& calculation_state, const HloInstruction* instruction, int operand_idx) { ReductionOpState& op_state = state_[instruction]; CHECK_EQ(operand_idx, op_state.size()); op_state.push_back(calculation_state); } void EmitReductionOutputForRowReduction( const TilingKernelInfo& tiling_kernel_info, const HloReduceInstruction* reduction, const std::vector<const HloInstruction*>& roots) const; void EmitReductionOutputForColumnReduction( const TilingKernelInfo& tiling_kernel_info, const HloReduceInstruction* reduction, const std::vector<const HloInstruction*>& roots) const; void EmitFullWarpShuffleDownLoopForReduce( const HloComputation* reducer, absl::Span<TypedPointer const> partial_result_addresses, int threads_per_block, int num_results_per_warp) const; void WriteReductionOutput(const TilingKernelInfo& tiling_kernel_info, const HloReduceInstruction* reduction, const std::vector<const HloInstruction*>& roots, absl::Span<TypedPointer const> values) const; llvm_ir::IrArray::Index GetOutputIndexForReduction( const TilingKernelInfo& tiling_kernel_info, const HloReduceInstruction* reduction, const HloInstruction* root, int output_idx) const; void GenerateElementForReducer(const HloReduceInstruction* reduction, const llvm_ir::IrArray::Index& index) const; absl::Status EmitExtraOutputsForReduce( const Shape& reduction_operand_shape, const llvm_ir::IrArray::Index& index, const ExtraOutputGensMap& extra_output_gens); private: ReductionEmitter& reduction_emitter_; const ReductionOutputMap& result_ir_arrays_; using ReductionOpState = absl::InlinedVector<ReductionCalculationState, 2>; absl::flat_hash_map<const HloInstruction*, ReductionOpState> state_; }; ReductionGroupEmitter::ReductionGroupEmitter( ReductionEmitter& reduction_emitter, absl::Span<const HloReduceInstruction* const> reduce_instr_index_group, const ReductionOutputMap& result_ir_arrays, FusedIrEmitter& fused_emitter) : reduction_emitter_(reduction_emitter), result_ir_arrays_(result_ir_arrays) { const ReductionInfo& reduction_info = reduction_emitter_.reduction_codegen_info_; VLOG(10) << "Emit prologue for reduction: " << reduction_emitter_.fusion_.ToString(); auto* builder = reduction_emitter_.builder_; for (const HloReduceInstruction* reduce_hlo : reduce_instr_index_group) { for (int op_result_idx = 0; op_result_idx < GetNumOutputs(reduce_hlo->shape()); op_result_idx++) { Shape result_shape = OutputShape(reduce_hlo->shape(), op_result_idx); llvm::Type* element_type = llvm_ir::PrimitiveTypeToIrType( result_shape.element_type(), builder->GetInsertBlock()->getModule()); llvm::AllocaInst* reduction_input_address = llvm_ir::EmitAllocaAtFunctionEntry( element_type, "reduction_input_address", builder); llvm::AllocaInst* result_address = llvm_ir::EmitAllocaAtFunctionEntry( element_type, "partial_reduction_result", builder); const HloInstruction* init_value = reduce_hlo->init_values()[op_result_idx]; llvm::Value* init_ir_value = (*fused_emitter.GetGenerator( *init_value))(llvm_ir::IrArray::Index(builder->getInt32Ty())) .value(); builder->CreateStore(init_ir_value, result_address); const Tiling& tiling = reduction_info.GetTiling(); auto shared_cache = [&]() -> std::optional<llvm_ir::SharedMemoryTile> { auto* module = reduction_emitter.ir_emitter_context_.llvm_module(); if (reduction_info.IsRowReduction()) { if (RowReductionGetRowsPerWarp( reduction_emitter_.ReducedDimensionSize()) > 1) { return std::nullopt; } auto block_size = tiling.GetThreadsPerBlock(); CHECK_EQ(block_size[ReductionDimensions::kRowMinorReducedDimension] % WarpSize(), 0); return llvm_ir::AllocateSharedMemoryTile( module, element_type, {block_size[ReductionDimensions::kRowKeptDimension], block_size[ReductionDimensions::kRowMinorReducedDimension] / WarpSize()}, "shared_cache"); } const auto& num_threads = tiling.GetThreadsPerBlock(); int n = num_threads[ReductionDimensions::kColReducedDimension]; CHECK_EQ(n, num_threads[ReductionDimensions::kColMinorKeptDimension]); return llvm_ir::AllocateSharedMemoryTile(module, element_type, {n, n + 1}, "shared_cache"); }(); llvm_ir::ElementGenerator input_gen = *fused_emitter.GetGenerator(*reduce_hlo->inputs()[op_result_idx]); SetCalculationStateFor({shared_cache, init_ir_value, result_address, reduction_input_address, input_gen}, reduce_hlo, op_result_idx); } } } void ReductionEmitter::MaybeEmitFenceForAMDGPU() { auto* module = builder_->GetInsertBlock()->getModule(); if (IsAMDGPU(module) && ir_emitter_context_.rocm_compute_capability().fence_before_barrier()) { builder_->CreateFence( llvm::AtomicOrdering::SequentiallyConsistent, builder_->getContext().getOrInsertSyncScopeID("workgroup")); } } void ReductionEmitter::EmitSyncThreads() { MaybeEmitFenceForAMDGPU(); EmitCallToTargetIntrinsic(TargetIntrinsicID::kBarrierId, {}, {}, builder_); } absl::StatusOr<std::unique_ptr<Thunk>> ReductionEmitter::BuildKernelThunkForFusion( const LaunchDimensions& launch_dimensions, absl::string_view discriminator, std::function<absl::Status(std::vector<llvm_ir::IrArray>, std::vector<llvm_ir::IrArray>)> kernel_builder_fn) { const HloComputation* fused_computation = fusion_.fused_instructions_computation(); std::string suggested_kernel_name = std::string(fusion_.name()); TF_ASSIGN_OR_RETURN(auto kernel_arguments, KernelArguments::Create( ir_emitter_context_.buffer_assignment(), &fusion_)); auto [status_or_entry, cached] = ir_emitter_context_.kernel_cache().GetWithStatus( fused_computation, kernel_arguments.args(), discriminator, [&]() -> absl::StatusOr<KernelReuseCache::Entry> { llvm::Function* kernel; std::vector<llvm_ir::IrArray> input_arrays; std::vector<llvm_ir::IrArray> output_arrays; TF_ASSIGN_OR_RETURN( std::tie(kernel, input_arrays, output_arrays), BuildKernelPrototype(ir_emitter_context_, suggested_kernel_name, kernel_arguments.args(), fusion_.operand_count(), launch_dimensions, builder_)); TF_RETURN_IF_ERROR(kernel_builder_fn(input_arrays, output_arrays)); return {{kernel->getName().str(), launch_dimensions, std::nullopt, 0}}; }); TF_ASSIGN_OR_RETURN(const KernelReuseCache::Entry* entry, status_or_entry); if (cached) { VLOG(3) << "Reuse: " << suggested_kernel_name << " -> " << entry->kernel_name; } return std::make_unique<KernelThunk>( &fusion_, entry->kernel_name, kernel_arguments.args(), launch_dimensions, entry->cluster_dim, entry->shmem_bytes); } absl::Status ReductionGroupEmitter::EmitExtraOutputsForReduce( const Shape& reduction_operand_shape, const llvm_ir::IrArray::Index& index, const ExtraOutputGensMap& extra_output_gens) { if (extra_output_gens.empty()) { return absl::OkStatus(); } auto* builder = reduction_emitter_.builder_; std::vector<std::pair<const HloInstruction*, llvm::Value*>> extra_output_ir_values; extra_output_ir_values.reserve(extra_output_gens.size()); auto get_index = [&](const HloInstruction* instr) { const Shape& s = instr->shape(); return ShapeUtil::EqualIgnoringElementType(reduction_operand_shape, s) ? index : index.SourceIndexOfBitcast(reduction_operand_shape, s, builder); }; for (const auto& [instr, generator] : extra_output_gens) { TF_ASSIGN_OR_RETURN(llvm::Value* const extra_output_ir_value, generator(get_index(instr))); extra_output_ir_values.emplace_back(instr, extra_output_ir_value); } for (const auto& [instr, generator] : extra_output_ir_values) { absl::Span<llvm_ir::IrArray const> result_ir = result_ir_arrays_.at(instr); CHECK_EQ(result_ir.size(), 1); result_ir[0].EmitWriteArrayElement(get_index(instr), generator, builder); } return absl::OkStatus(); } absl::StatusOr<std::unique_ptr<Thunk>> ReductionEmitter::BuildFusedInitializerThunk(const HloInstruction* fusion_root, BufferAllocation::Slice dest_slice, int output_index) { const HloReduceInstruction* reduce = DynCast<HloReduceInstruction>(fusion_root); TF_RET_CHECK(reduce); const HloInstruction* init_value = reduce->init_values()[0]; TF_ASSIGN_OR_RETURN( std::optional<std::unique_ptr<Thunk>> constant_init_thunk, BuildConstantInitializerThunk(ir_emitter_context_, fusion_root, init_value, dest_slice)); if (constant_init_thunk) { return *std::move(constant_init_thunk); } const Shape& dest_shape = fusion_root->shape(); LaunchDimensions launch_dimensions = CalculateLaunchDimensions( dest_shape, ir_emitter_context_.gpu_device_info()); const HloComputation* fused_computation = fusion_.fused_instructions_computation(); auto builder_fn = [&](std::vector<llvm_ir::IrArray> inputs, std::vector<llvm_ir::IrArray> outputs) -> absl::Status { FusedIrEmitter fused_emitter(elemental_emitter_); for (int i = 0; i < fused_computation->num_parameters(); i++) { fused_emitter.BindGenerator( *fused_computation->parameter_instruction(i), [builder = builder_, input = inputs[i]](llvm_ir::IrArray::Index index) { return input.EmitReadArrayElement(index, builder); }); } HloInstruction* instr = fused_computation->root_instruction(); if (instr->opcode() == HloOpcode::kTuple) { instr = instr->mutable_operand(output_index); } else { CHECK_EQ(0, output_index); } TF_RET_CHECK(instr->shape().IsArray()); TF_ASSIGN_OR_RETURN(auto generator, fused_emitter.GetGenerator(*instr->operand(1))); TF_RETURN_IF_ERROR(ParallelLoopEmitter(generator, {outputs[output_index]}, launch_dimensions, builder_) .EmitLoop(fusion_.name())); return absl::OkStatus(); }; return BuildKernelThunkForFusion(launch_dimensions, absl::StrCat("init_", output_index), builder_fn); } void ReductionGroupEmitter::EmitFullWarpShuffleDownLoopForReduce( const HloComputation* reducer, absl::Span<TypedPointer const> partial_result_addresses, int threads_per_block, int num_results_per_warp) const { CHECK_EQ(threads_per_block % 32, 0); CHECK_EQ(WarpSize() % num_results_per_warp, 0); auto* builder = reduction_emitter_.builder_; for (int distance = 16 / num_results_per_warp; distance >= 1; distance /= 2) { absl::InlinedVector<llvm::Value*, 2> reduction_params; for (auto acc : partial_result_addresses) { reduction_params.push_back(acc.first); } for (auto [partial_result_address, element_type] : partial_result_addresses) { int bit_width = llvm_ir::GetSizeInBits(element_type); llvm::Value* result_from_other_lane = llvm_ir::EmitAllocaAtFunctionEntry( element_type, "result_from_other_lane", builder); reduction_params.push_back(result_from_other_lane); llvm::Type* shuffled_value_type = element_type->isStructTy() ? builder->getIntNTy(bit_width) : element_type; llvm::Value* partial_result = builder->CreateLoad(shuffled_value_type, partial_result_address, "partial_reduction_result"); builder->CreateStore( EmitFullWarpShuffleDown( partial_result, builder->getInt32(distance), builder, reduction_emitter_.ir_emitter_context_.gpu_device_info()), result_from_other_lane); } absl::StatusOr<std::vector<llvm::Value*>> returned_scalars = CallNestedComputationWithScalarAddrs( builder, reduction_emitter_.ir_emitter_context_, *reducer, reduction_params); TF_CHECK_OK(returned_scalars.status()); for (int i = 0; i < returned_scalars->size(); i++) { builder->CreateStore(returned_scalars->at(i), partial_result_addresses[i].first); } } } llvm_ir::IrArray::Index ReductionGroupEmitter::GetOutputIndexForReduction( const TilingKernelInfo& tiling_kernel_info, const HloReduceInstruction* reduction, const HloInstruction* root, int output_idx) const { auto* builder = reduction_emitter_.builder_; auto* index_ty = reduction_emitter_.index_ty_; auto projected_index = [&]() -> llvm_ir::IrArray::Index { const auto& reduction_info = reduction_emitter_.reduction_codegen_info_; const auto& offset = tiling_kernel_info.tile_origin; const auto& shape = reduction_info.GetTiling().GetXlaShape(); const auto& thread_ids = tiling_kernel_info.thread_id_info.thread_ids; if (reduction_info.IsRowReduction()) { constexpr int kDim = ReductionDimensions::kRowKeptDimension; return {{builder->CreateAdd(offset[kDim], thread_ids[kDim])}, {shape.dimensions(kDim)}, index_ty}; } auto* major_idx = offset[ReductionDimensions::kColMajorKeptDimension]; auto* minor_idx = builder->CreateAdd( offset[ReductionDimensions::kColMinorKeptDimension], thread_ids[ReductionDimensions::kColReducedDimension]); return {{major_idx, minor_idx}, ShapeUtil::DeleteDimension( ReductionDimensions::kColReducedDimension, shape), index_ty}; }(); auto physical_shape = ShapeUtil::DeleteDimensions( reduction->dimensions(), reduction->operand(output_idx)->shape()); auto physical_index = projected_index.SourceIndexOfBitcast(physical_shape, builder); return llvm_ir::IrArray::Index(physical_index.multidim(), OutputShape(reduction->shape(), output_idx), index_ty) .SourceIndexOfBitcast(OutputShape(root->shape(), output_idx), builder); } void ReductionGroupEmitter::WriteReductionOutput( const TilingKernelInfo& tiling_kernel_info, const HloReduceInstruction* reduction, const std::vector<const HloInstruction*>& roots, const absl::Span<TypedPointer const> values) const { auto* builder = reduction_emitter_.builder_; const auto& reduction_info = reduction_emitter_.reduction_codegen_info_; const HloComputation* reducer = reduction->to_apply(); for (const auto& [oidx, typed_ptr] : llvm::enumerate(values)) { auto [output_ptr, type] = typed_ptr; for (auto root : roots) { llvm_ir::IrArray::Index output_index = GetOutputIndexForReduction(tiling_kernel_info, reduction, root, oidx); llvm::Value* output_address = result_ir_arrays_.at(root)[oidx].EmitArrayElementAddress(
#include "xla/service/gpu/fusions/reduction.h" #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/fusions/fusion_emitter.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/ir_emitter_context.h" #include "xla/service/gpu/model/indexing_analysis.h" #include "xla/service/gpu/model/indexing_test_utils.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace gpu { namespace { using ::testing::ElementsAre; using ::testing::SizeIs; class ReductionTest : public HloTestBase { protected: stream_executor::DeviceDescription device_info_ = TestGpuDeviceInfo::RTXA6000DeviceInfo(); mlir::MLIRContext mlir_context_; }; TEST_F(ReductionTest, ThreadIndexingRowReduction) { auto module = ParseAndReturnVerifiedModule(R"( HloModule module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fusion { %input = f32[100,64,512] parameter(0) %c0 = f32[] constant(0) ROOT reduce = f32[100,64] reduce(%input, %c0), dimensions={2}, to_apply=add } ENTRY entry { %input = f32[100,64,512] parameter(0) ROOT %fusion = f32[100,64] fusion(%input), kind=kInput, calls=fusion })") .value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); ReductionFusion fusion(analysis); EXPECT_THAT( fusion.ComputeThreadIdToInputIndexing(0, 0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3] -> ( (d3 * 8 + d0 floordiv 32) floordiv 64, (d3 * 8 + d0 floordiv 32) mod 64, (d0 mod 32 + s2 * 32) * 2 + s3 ) domain: d0 in [0, 256) d1 in [0, 1) d2 in [0, 1) d3 in [0, 800) d4 in [0, 1) d5 in [0, 1) s0 in [0, 1) s1 in [0, 1) s2 in [0, 8) s3 in [0, 2) d0 mod 32 + s2 * 32 in [0, 256) d3 * 8 + d0 floordiv 32 in [0, 6400) )")); EXPECT_THAT( fusion.ComputeThreadIdToOutputIndexing(0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5) -> ( (d3 * 8 + d0 floordiv 32) floordiv 64, (d3 * 8 + d0 floordiv 32) mod 64 ) domain: d0 in [0, 256) d1 in [0, 1) d2 in [0, 1) d3 in [0, 800) d4 in [0, 1) d5 in [0, 1) d0 mod 32 in [0, 1) d3 * 8 + d0 floordiv 32 in [0, 6400) )")); } TEST_F(ReductionTest, ThreadIndexingMultiRowReduction) { auto module = ParseAndReturnVerifiedModule(R"( HloModule module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fusion { %input = f32[100,64,4] parameter(0) %c0 = f32[] constant(0) ROOT reduce = f32[100,64] reduce(%input, %c0), dimensions={2}, to_apply=add } ENTRY entry { %input = f32[100,64,4] parameter(0) ROOT %fusion = f32[100,64] fusion(%input), kind=kInput, calls=fusion })") .value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); ReductionFusion fusion(analysis); EXPECT_THAT( fusion.ComputeThreadIdToInputIndexing(0, 0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0, s1, s2] -> ( d3 + (d0 floordiv 4) floordiv 64, (d0 floordiv 4) mod 64, d0 mod 4 ) domain: d0 in [0, 256) d1 in [0, 1) d2 in [0, 1) d3 in [0, 100) d4 in [0, 1) d5 in [0, 1) s0 in [0, 1) s1 in [0, 1) s2 in [0, 1) d0 mod 4 in [0, 4) d3 * 64 + d0 floordiv 4 in [0, 6400) )")); EXPECT_THAT( fusion.ComputeThreadIdToOutputIndexing(0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5) -> ( d3 + (d0 floordiv 4) floordiv 64, (d0 floordiv 4) mod 64 ) domain: d0 in [0, 256) d1 in [0, 1) d2 in [0, 1) d3 in [0, 100) d4 in [0, 1) d5 in [0, 1) d0 mod 4 in [0, 1) d3 * 64 + d0 floordiv 4 in [0, 6400) )")); } TEST_F(ReductionTest, ThreadIndexingColumnReduction) { auto module = ParseAndReturnVerifiedModule(R"( HloModule module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fusion { %input = f32[100,64,32] parameter(0) %c0 = f32[] constant(0) ROOT reduce = f32[100,32] reduce(%input, %c0), dimensions={1}, to_apply=add } ENTRY entry { %input = f32[100,64,32] parameter(0) ROOT %fusion = f32[100,32] fusion(%input), kind=kInput, calls=fusion })") .value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); ReductionFusion fusion(analysis); EXPECT_THAT( fusion.ComputeThreadIdToInputIndexing(0, 0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0, s1, s2] -> ( d3, d0 floordiv 32 + s1 * 32, d0 mod 32 ) domain: d0 in [0, 1024) d1 in [0, 1) d2 in [0, 1) d3 in [0, 100) d4 in [0, 1) d5 in [0, 1) s0 in [0, 1) s1 in [0, 128) s2 in [0, 1) d0 floordiv 32 + s1 * 32 in [0, 64) d0 mod 32 in [0, 32) )")); EXPECT_THAT( fusion.ComputeThreadIdToOutputIndexing(0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5) -> ( d3, d0 floordiv 32 ) domain: d0 in [0, 1024) d1 in [0, 1) d2 in [0, 1) d3 in [0, 100) d4 in [0, 1) d5 in [0, 1) d0 mod 32 in [0, 1) )")); } TEST_F(ReductionTest, ThreadIndexingOutputLayout) { auto module = ParseAndReturnVerifiedModule(R"( HloModule module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fusion { %input = f32[100,64,512] parameter(0) %c0 = f32[] constant(0) ROOT reduce = f32[100,64]{0,1} reduce(%input, %c0), dimensions={2}, to_apply=add } ENTRY entry { %input = f32[100,64,512] parameter(0) ROOT %fusion = f32[100,64]{0,1} fusion(%input), kind=kInput, calls=fusion })") .value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); ReductionFusion fusion(analysis); EXPECT_THAT( fusion.ComputeThreadIdToOutputIndexing(0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5) -> ( (d3 * 8 + d0 floordiv 32) floordiv 64, (d3 * 8 + d0 floordiv 32) mod 64 ) domain: d0 in [0, 256) d1 in [0, 1) d2 in [0, 1) d3 in [0, 800) d4 in [0, 1) d5 in [0, 1) d0 mod 32 in [0, 1) d3 * 8 + d0 floordiv 32 in [0, 6400) )")); } TEST_F(ReductionTest, ThreadIndexingSideOutput) { auto module = ParseAndReturnVerifiedModule(R"( HloModule module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fusion { %input = f32[100,64,512] parameter(0) %c0 = f32[] constant(0) %log = f32[100,64,512] log(%input) %reduce = f32[100,64] reduce(%input, %c0), dimensions={2}, to_apply=add ROOT tuple = (f32[100,64], f32[100,64,512]) tuple(%reduce, %log) } ENTRY entry { %input = f32[100,64,512] parameter(0) ROOT %fusion = (f32[100,64], f32[100,64,512]) fusion(%input), kind=kInput, calls=fusion })") .value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); ReductionFusion fusion(analysis); constexpr char kExpectedIndexing[] = R"( (d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3] -> ( d3 floordiv 8, (d3 mod 8) * 8 + d0 floordiv 32, (d0 mod 32) * 2 + s2 * 64 + s3 ) domain: d0 in [0, 256) d1 in [0, 1) d2 in [0, 1) d3 in [0, 800) d4 in [0, 1) d5 in [0, 1) s0 in [0, 1) s1 in [0, 1) s2 in [0, 8) s3 in [0, 2) )"; auto input_indexing = fusion.ComputeThreadIdToInputIndexing(1, 0, &mlir_context_); input_indexing->Simplify(); EXPECT_THAT(input_indexing->ToString(), MatchIndexingString(kExpectedIndexing)); auto output_indexing = fusion.ComputeThreadIdToOutputIndexing(1, &mlir_context_); output_indexing->Simplify(); EXPECT_THAT(output_indexing->ToString(), MatchIndexingString(kExpectedIndexing)); } TEST_F(ReductionTest, ThreadIndexingVectorized) { auto module = ParseAndReturnVerifiedModule(R"( HloModule module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fusion { %input = f32[1024, 8192] parameter(0) %c0 = f32[] constant(0) ROOT reduce = f32[1024]{0} reduce(f32[1024, 8192] %input, f32[] %c0), dimensions={1}, to_apply=add } ENTRY entry { %input = f32[1024, 8192] parameter(0) ROOT %fusion = f32[1024] fusion(%input), kind=kInput, calls=fusion })") .value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); ReductionFusion fusion(analysis); EXPECT_THAT( fusion.ComputeThreadIdToInputIndexing(0, 0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3] -> ( d3, (d0 + s2 * 512) * 2 + s3 ) domain: d0 in [0, 512) d1 in [0, 1) d2 in [0, 1) d3 in [0, 1024) d4 in [0, 1) d5 in [0, 1) s0 in [0, 1) s1 in [0, 1) s2 in [0, 8) s3 in [0, 2) d0 + s2 * 512 in [0, 4096) )")); } TEST_F(ReductionTest, ThreadIndexingBroadcastSideOutput) { auto module = ParseAndReturnVerifiedModule(R"( %add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } %fusion { %p0 = f32[6,6] parameter(0) %c0 = f32[] constant(0) %reduce = f32[] reduce(%p0, %c0), dimensions={0,1}, to_apply=%add %broadcast = f32[6,6] broadcast(%reduce), dimensions={} ROOT %tuple = (f32[6,6], f32[]) tuple(%broadcast, %reduce) } ENTRY main { %p0 = f32[6,6] parameter(0) ROOT %fusion = (f32[6,6], f32[]) fusion(%p0), kind=kInput, calls=%fusion })") .value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); ReductionFusion fusion(analysis); EXPECT_THAT( fusion.ComputeThreadIdToOutputIndexing(0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0, s1, s2] -> ( (d0 + s2 * 32) floordiv 6, (d0 + s2 * 32) mod 6 ) domain: d0 in [0, 32) d1 in [0, 1) d2 in [0, 1) d3 in [0, 1) d4 in [0, 1) d5 in [0, 1) s0 in [0, 1) s1 in [0, 1) s2 in [0, 16) d0 + s2 * 32 in [0, 36) )")); EXPECT_THAT( fusion.ComputeThreadIdToInputIndexing(0, 0, &mlir_context_)->ToString(), MatchIndexingString(R"( (d0, d1, d2, d3, d4, d5)[s0, s1, s2] -> () domain: d0 in [0, 32) d1 in [0, 1) d2 in [0, 1) d3 in [0, 1) d4 in [0, 1) d5 in [0, 1) s0 in [0, 1) s1 in [0, 1) s2 in [0, 16) (d0 + s2 * 32) mod 6 in [0, 6) d0 + s2 * 32 in [0, 36) )")); } TEST_F(ReductionTest, TwoGroups) { auto module = ParseAndReturnVerifiedModule(R"( add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fusion { %p0 = f32[2] parameter(0) %p1 = f32[2] parameter(1) %c0 = f32[] constant(-inf) %r0 = f32[] reduce(%p0, %c0), dimensions={0}, to_apply=add %c1 = f32[] constant(inf) %r1 = f32[] reduce(%p1, %c1), dimensions={0}, to_apply=add ROOT %tuple = (f32[], f32[]) tuple(%r0, %r1) } ENTRY entry { %p0 = f32[2] parameter(0) %p1 = f32[2] parameter(1) ROOT %fusion = (f32[], f32[]) fusion(%p0, %p1), kind=kInput, calls=fusion })") .value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); ReductionFusion fusion(analysis); EXPECT_THAT(fusion.reduction_info().GetGroups().grouped_roots, ElementsAre(ElementsAre(&analysis.fusion_root(0).instruction()), ElementsAre(&analysis.fusion_root(1).instruction()))); } TEST_F(ReductionTest, OneGroup) { auto module = ParseAndReturnVerifiedModule(R"( %add { %p0 = c128[] parameter(0) %p1 = c128[] parameter(1) ROOT %add.35 = c128[] add(c128[] %p0, c128[] %p1) } %fusion { %p0 = c128[1,2] parameter(0) %c0 = c128[] constant((0, 0)) %reduce = c128[] reduce(%p0, %c0), dimensions={0,1}, to_apply=%add %real = f64[] real(c128[] %reduce) %imag = f64[] imag(c128[] %reduce) %negate = f64[] negate(f64[] %imag) ROOT %tuple.29 = (f64[], f64[]) tuple(f64[] %real, f64[] %negate) } ENTRY entry { %p0 = c128[1,2] parameter(0) ROOT %fusion = (f64[], f64[]) fusion(%p0), kind=kInput, calls=fusion })") .value(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); ReductionFusion fusion(analysis); EXPECT_THAT(fusion.reduction_info().GetGroups().grouped_roots, SizeIs(2)); } } } }
2,135
cpp
tensorflow/tensorflow
elemental_hlo_to_mlir
third_party/xla/xla/service/gpu/fusions/mlir/elemental_hlo_to_mlir.cc
third_party/xla/xla/service/gpu/fusions/mlir/elemental_hlo_to_mlir_test.cc
#ifndef XLA_SERVICE_GPU_FUSIONS_MLIR_ELEMENTAL_HLO_TO_MLIR_H_ #define XLA_SERVICE_GPU_FUSIONS_MLIR_ELEMENTAL_HLO_TO_MLIR_H_ #include <functional> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "llvm/ADT/SmallVector.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/ImplicitLocOpBuilder.h" #include "mlir/IR/Value.h" #include "mlir/IR/ValueRange.h" #include "mlir/Support/LLVM.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/fusions/mlir/computation_partitioner.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/stream_executor/device_description.h" namespace xla { namespace gpu { namespace mlir_converter { using OperandProvider = std::function<absl::StatusOr<llvm::SmallVector<mlir::Value>>( const HloInstruction* instr, int index, mlir::ValueRange indices)>; llvm::SmallVector<mlir::Value> ProvideParameter( const PartitionedComputation& computation, const HloInstruction* instr, int operand_index, mlir::ValueRange indices, const CallTargetProvider& call_target_provider, mlir::func::FuncOp this_fn, mlir::ImplicitLocOpBuilder& builder, const PartitionedComputation::Subgraph* caller = nullptr); llvm::SmallVector<mlir::Value> ProvideParameterRange( const PartitionedComputation& computation, const HloInstruction* instr, int start, int num, mlir::ValueRange indices, const CallTargetProvider& call_target_provider, mlir::func::FuncOp this_fn, mlir::ImplicitLocOpBuilder& builder); bool IsHloOpSupported(const HloInstruction* instr, se::CudaComputeCapability compute_capability); bool IsHloConversionSupported(const HloComputation* computation, se::GpuComputeCapability compute_capability); bool IsHloConversionSupported(const HloFusionAdaptor& fusion, se::GpuComputeCapability compute_capability); absl::Status SubgraphToMlirFunction( const PartitionedComputation& computation, const PartitionedComputation::Subgraph& subgraph, mlir::func::FuncOp& func, const CallTargetProvider& call_target_provider); mlir::Value UnrealizedConversionCast(mlir::Type type, mlir::Value value, mlir::ImplicitLocOpBuilder& b); mlir::SmallVector<mlir::Value> UnrealizedConversionCast( mlir::TypeRange types, mlir::ValueRange values, mlir::ImplicitLocOpBuilder& b); mlir::Value ApplyAffineExpr(mlir::AffineExpr expr, mlir::ValueRange dims, mlir::ValueRange symbols, mlir::ImplicitLocOpBuilder& b); llvm::SmallVector<mlir::Value> ApplyIndexing(const IndexingMap& map, mlir::ValueRange dims, mlir::ValueRange symbols, mlir::ImplicitLocOpBuilder& b); mlir::Value CheckConstraints(const IndexingMap& map, mlir::ValueRange dims, mlir::ValueRange symbols, mlir::ImplicitLocOpBuilder& b); llvm::SmallVector<mlir::Value> EmitLoopNest( mlir::ImplicitLocOpBuilder& b, mlir::ValueRange dim_values, mlir::ValueRange iter_args_inits, const IndexingMap& indexing_map, mlir::function_ref<llvm::SmallVector<mlir::Value>( mlir::ValueRange iter_args, mlir::ValueRange dim_values, mlir::ValueRange symbol_values)> create_body, bool vectorize = false); absl::StatusOr<llvm::SmallVector<mlir::Value>> EmitLoopNestWithStatus( mlir::ImplicitLocOpBuilder& b, mlir::ValueRange dim_values, mlir::ValueRange iter_args_inits, const IndexingMap& indexing_map, mlir::function_ref<absl::StatusOr<llvm::SmallVector<mlir::Value>>( mlir::ValueRange iter_args, mlir::ValueRange dim_values, mlir::ValueRange symbol_values)> create_body); mlir::Value ClampIndex(mlir::Value index, bool is_unsigned, int64_t high, mlir::ImplicitLocOpBuilder& b); mlir::SmallVector<mlir::Value, 2> InlineBlock(mlir::OpBuilder& builder, mlir::Block& src_block, mlir::ValueRange mapped_args); } } } #endif #include "xla/service/gpu/fusions/mlir/elemental_hlo_to_mlir.h" #include <cstddef> #include <cstdint> #include <functional> #include <iterator> #include <utility> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/node_hash_map.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/MathExtras.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Affine/LoopUtils.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Complex/IR/Complex.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/SCF/IR/SCF.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/Dialect/Vector/IR/VectorOps.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/BuiltinAttributeInterfaces.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/BuiltinTypeInterfaces.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/IRMapping.h" #include "mlir/IR/ImplicitLocOpBuilder.h" #include "mlir/IR/TypeRange.h" #include "mlir/IR/Types.h" #include "mlir/IR/Value.h" #include "mlir/IR/ValueRange.h" #include "mlir/Interfaces/DataLayoutInterfaces.h" #include "mlir/Support/LLVM.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/mlir/utils/type_util.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" #include "xla/mlir_hlo/mhlo/transforms/map_mhlo_to_scalar_op.h" #include "xla/mlir_hlo/mhlo/utils/type_conversion.h" #include "xla/primitive_util.h" #include "xla/service/algorithm_util.h" #include "xla/service/gpu/fusions/mlir/computation_partitioner.h" #include "xla/service/gpu/fusions/mlir/ir/xla_gpu_ops.h" #include "xla/service/gpu/fusions/mlir/type_util.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/model/indexing_analysis.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/service/llvm_ir/llvm_util.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_description.h" #include "xla/translate/hlo_to_mhlo/hlo_utils.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace mlir_converter { namespace { using llvm::SmallVector; using llvm::SmallVectorImpl; using mlir::Block; using mlir::FloatType; using mlir::ImplicitLocOpBuilder; using mlir::IRMapping; using mlir::Location; using mlir::MLIRContext; using mlir::OpBuilder; using mlir::Value; using mlir::ValueRange; using mlir::arith::AndIOp; using mlir::arith::CmpIOp; using mlir::arith::CmpIPredicate; using mlir::arith::ConstantIndexOp; using mlir::arith::ConstantOp; using mlir::scf::IfOp; using mlir::scf::YieldOp; namespace arith = ::mlir::arith; namespace mhlo = ::mlir::mhlo; namespace scf = ::mlir::scf; static auto& kUnsupportedOps = *new absl::flat_hash_set<HloOpcode>{HloOpcode::kAddDependency, HloOpcode::kAfterAll, HloOpcode::kAllGather, HloOpcode::kAllGatherDone, HloOpcode::kAllGatherStart, HloOpcode::kAllReduce, HloOpcode::kAllReduceDone, HloOpcode::kAllReduceStart, HloOpcode::kAllToAll, HloOpcode::kAsyncDone, HloOpcode::kAsyncStart, HloOpcode::kAsyncUpdate, HloOpcode::kBatchNormGrad, HloOpcode::kBatchNormInference, HloOpcode::kBatchNormTraining, HloOpcode::kCholesky, HloOpcode::kCollectivePermute, HloOpcode::kCollectivePermuteDone, HloOpcode::kCollectivePermuteStart, HloOpcode::kCopyDone, HloOpcode::kCopyStart, HloOpcode::kCustomCall, HloOpcode::kDomain, HloOpcode::kDynamicReshape, HloOpcode::kFft, HloOpcode::kFusion, HloOpcode::kGetDimensionSize, HloOpcode::kOptimizationBarrier, HloOpcode::kInfeed, HloOpcode::kOutfeed, HloOpcode::kPartitionId, HloOpcode::kRecv, HloOpcode::kRecvDone, HloOpcode::kReduceScatter, HloOpcode::kReplicaId, HloOpcode::kRng, HloOpcode::kRngBitGenerator, HloOpcode::kRngGetAndUpdateState, HloOpcode::kScatter, HloOpcode::kSelectAndScatter, HloOpcode::kSend, HloOpcode::kSendDone, HloOpcode::kSetDimensionSize, HloOpcode::kSort, HloOpcode::kTopK, HloOpcode::kTriangularSolve, HloOpcode::kWhile, HloOpcode::kConditional, HloOpcode::kStochasticConvert, HloOpcode::kCall}; bool IsUnsupportedGather(const HloInstruction* instr) { if (instr->opcode() != HloOpcode::kGather) return false; auto* gather = Cast<HloGatherInstruction>(instr); const auto& dims = gather->gather_dimension_numbers(); int indices_rank = gather->operand(1)->shape().rank(); if (dims.index_vector_dim() != 1 || !dims.collapsed_slice_dims().empty() || indices_rank == 0 || indices_rank > 2) { return true; } for (auto [index, val] : llvm::enumerate(dims.start_index_map())) { if (index != val) return true; } for (auto [index, val] : llvm::enumerate(dims.offset_dims())) { if (index + 1 != val) return true; } return false; } absl::StatusOr<Value> GetSingleOperandValue( const OperandProvider& operand_provider, const HloInstruction* instr, int operand_index, ValueRange indices) { TF_ASSIGN_OR_RETURN(auto operand, operand_provider(instr, operand_index, indices)); TF_RET_CHECK(operand.size() == 1) << "Expected operand to be a single value."; return operand.front(); } absl::StatusOr<SmallVector<Value>> EmitReduce( const HloInstruction* instr, ValueRange indices, const OperandProvider& operand_provider, const CallTargetProvider& call_target_provider, ImplicitLocOpBuilder& b) { auto* mlir_context = b.getContext(); HloInstructionIndexing indexing = ComputeOutputToInputIndexing(instr, 0, mlir_context); const auto& indexing_map = *indexing.indexing_maps[0].begin(); SmallVector<Value> init_values; for (int i = instr->operand_count() / 2; i < instr->operand_count(); ++i) { TF_ASSIGN_OR_RETURN(init_values.emplace_back(), GetSingleOperandValue(operand_provider, instr, i, {})); } auto body = [&](ValueRange iter_args, ValueRange dim_values, ValueRange symbol_values) -> absl::StatusOr<SmallVector<Value>> { auto indices = ApplyIndexing(indexing_map, dim_values, symbol_values, b); SmallVector<Value> args{iter_args}; for (int i = 0; i < instr->operand_count() / 2; ++i) { TF_ASSIGN_OR_RETURN( args.emplace_back(), GetSingleOperandValue(operand_provider, instr, i, indices)); } auto reducer = call_target_provider( instr->called_computations().front()->root_instruction()); return b.create<mlir::func::CallOp>(reducer, args).getResults(); }; return EmitLoopNestWithStatus(b, indices, init_values, indexing_map, body); } absl::StatusOr<SmallVector<Value>> EmitReduceWindow( const HloInstruction* instr, mlir::Type result_element_type, ValueRange indices, const OperandProvider& operand_provider, const CallTargetProvider& call_target_provider, ImplicitLocOpBuilder& b) { MLIRContext* mlir_context = b.getContext(); HloInstructionIndexing indexing = ComputeOutputToInputIndexing(instr, 0, mlir_context); auto indexing_map = *indexing.indexing_maps[0].begin(); indexing_map.RescaleSymbols(); auto reduce_window = DynCast<HloReduceWindowInstruction>(instr); CHECK(reduce_window != nullptr); SmallVector<Value> init_values; for (auto [index, init_value] : llvm::enumerate(reduce_window->init_values())) { TF_ASSIGN_OR_RETURN( init_values.emplace_back(), GetSingleOperandValue(operand_provider, instr, reduce_window->input_count() + index, {})); } auto body = [&](ValueRange iter_args, ValueRange dim_values, ValueRange symbol_values) -> absl::StatusOr<SmallVector<Value>> { auto indices = ApplyIndexing(indexing_map, dim_values, symbol_values, b); SmallVector<Value> args{iter_args}; for (auto [index, input] : llvm::enumerate(reduce_window->inputs())) { TF_ASSIGN_OR_RETURN( args.emplace_back(), GetSingleOperandValue(operand_provider, instr, index, indices)); } auto reducer = call_target_provider( instr->called_computations().front()->root_instruction()); return b.create<mlir::func::CallOp>(reducer, args).getResults(); }; return EmitLoopNestWithStatus(b, indices, init_values, indexing_map, body); } absl::StatusOr<SmallVector<Value>> EmitConcat( const HloInstruction* instr, mlir::Type result_element_type, ValueRange indices, const OperandProvider& operand_provider, ImplicitLocOpBuilder& b) { int concat_dim = Cast<HloConcatenateInstruction>(instr)->concatenate_dimension(); int64_t offset = 0; IfOp outermost_if = nullptr; SmallVector<Value> operand_indices = indices; for (auto [index, operand] : llvm::enumerate(instr->operands())) { int64_t limit = offset + operand->shape().dimensions(concat_dim); auto ins = b.create<CmpIOp>(CmpIPredicate::ult, indices[concat_dim], b.create<ConstantIndexOp>(limit)); auto generate_operand = [&, index = index]() { operand_indices[concat_dim] = b.create<arith::SubIOp>( indices[concat_dim], b.create<ConstantIndexOp>(offset)); TF_ASSIGN_OR_RETURN(auto operand, operand_provider(instr, index, operand_indices)); b.create<YieldOp>(operand); return absl::OkStatus(); }; if (index < instr->operand_count() - 1) { auto if_op = b.create<IfOp>(mlir::TypeRange{result_element_type}, ins, true, true); if (outermost_if == nullptr) { outermost_if = if_op; } else { b.create<YieldOp>(if_op.getResults()); } b.setInsertionPointToStart(if_op.getBody(0)); TF_RETURN_IF_ERROR(generate_operand()); b.setInsertionPointToStart(if_op.getBody(1)); } else { TF_RETURN_IF_ERROR(generate_operand()); } offset = limit; } b.setInsertionPointAfter(outermost_if); return outermost_if.getResults(); } absl::StatusOr<llvm::SmallVector<Value>> EmitDynamicSlice( const HloInstruction* instr, ValueRange indices, const OperandProvider& operand_provider, ImplicitLocOpBuilder& b) { llvm::SmallVector<Value> input_indices(indices); const auto& input_shape = instr->operand(0)->shape(); for (int i = 0; i < input_shape.rank(); ++i) { TF_ASSIGN_OR_RETURN( auto offset, GetSingleOperandValue(operand_provider, instr, i + 1, {})); offset = ClampIndex(offset, primitive_util::IsUnsignedIntegralType( instr->operand(i + 1)->shape().element_type()), input_shape.dimensions(i) - instr->shape().dimensions(i), b); input_indices[i] = b.create<arith::AddIOp>(input_indices[i], offset); } return operand_provider(instr, 0, input_indices); } absl::StatusOr<llvm::SmallVector<Value>> EmitDynamicUpdateSlice( const HloInstruction* instr, mlir::Type result_element_type, ValueRange indices, const OperandProvider& operand_provider, ImplicitLocOpBuilder& b) { mlir::Value is_in_bounds = b.create<ConstantOp>(b.getIntegerAttr(b.getI1Type(), 1)); mlir::SmallVector<Value> update_indices; const auto& updates_shape = instr->operand(1)->shape(); for (int i = 0; i < instr->shape().rank(); ++i) { int64_t update_size = updates_shape.dimensions(i); TF_ASSIGN_OR_RETURN( auto start_index, GetSingleOperandValue(operand_provider, instr, i + 2, {})); start_index = ClampIndex(start_index, primitive_util::IsUnsignedIntegralType( instr->operand(i + 2)->shape().element_type()), instr->shape().dimensions(i) - update_size, b); auto end_index = b.create<arith::AddIOp>( start_index, b.create<ConstantOp>(b.getIndexAttr(update_size))); is_in_bounds = b.create<AndIOp>( is_in_bounds, b.create<CmpIOp>(CmpIPredicate::sge, indices[i], start_index)); is_in_bounds = b.create<AndIOp>( is_in_bounds, b.create<CmpIOp>(CmpIPredicate::slt, indices[i], end_index)); update_indices.push_back(b.create<arith::SubIOp>(indices[i], start_index)); } auto if_op = b.create<IfOp>(mlir::TypeRange{result_element_type}, is_in_bounds, true, true); b.setInsertionPointToStart(if_op.getBody(0)); TF_ASSIGN_OR_RETURN( auto updated_value, GetSingleOperandValue(operand_provider, instr, 1, update_indices)); b.create<YieldOp>(updated_value); b.setInsertionPointToStart(if_op.getBody(1)); TF_ASSIGN_OR_RETURN( auto original_value, GetSingleOperandValue(operand_provider, instr, 0, indices)); b.create<YieldOp>(original_value); b.setInsertionPointAfter(if_op); return if_op.getResults(); } absl::StatusOr<llvm::SmallVector<Value>> EmitGather( const HloInstruction* instr, ValueRange indices, const OperandProvider& operand_provider, ImplicitLocOpBuilder& b) { auto row = indices[0]; auto zero = b.create<ConstantIndexOp>(0); SmallVector<Value> operand_indices(instr->operand(0)->shape().rank(), zero); const auto& indices_shape = instr->operand(1)->shape(); int num_indices = indices_shape.rank() == 1 ? 1 : indices_shape.dimensions(1); for (int i = 0; i < num_indices; ++i) { auto i_val = i == 0 ? zero : b.create<ConstantIndexOp>(i); int64_t slice_size = instr->gather_slice_sizes()[i]; int64_t input_size = instr->operand(0)->shape().dimensions()[i]; TF_ASSIGN_OR_RETURN( auto input_index, operand_provider(instr, 1, indices_shape.rank() == 1 ? ValueRange{row} : ValueRange{row, i_val})); TF_RET_CHECK(input_index.size() == 1) << "Expected operand to be a single value."; operand_indices[i] = ClampIndex(input_index.front(), primitive_util::IsUnsignedIntegralType( instr->operand(1)->shape().element_type()), input_size - slice_size, b); } for (int i = 0; i < operand_indices.size(); ++i) { operand_indices[i] = b.createOrFold<arith::AddIOp>(operand_indices[i], indices[i + 1]); } return operand_provider(instr, 0, operand_indices); } SmallVector<SmallVector<Value>> GetInputIndices( const HloInstructionIndexing& indexing, ValueRange output_indices, ImplicitLocOpBuilder& b) { SmallVector<SmallVector<Value>> indices; for (auto& maps : indexing.indexing_maps) { CHECK_EQ(maps.size(), 1); CHECK(!maps.begin()->IsUndefined()); indices.push_back(ApplyIndexing(*maps.begin(), output_indices, {}, b)); } return indices; } absl::StatusOr<SmallVector<Value>> EmitPad( const HloInstruction* instr, mlir::Type result_element_type, ValueRange indices, const OperandProvider& operand_provider, ImplicitLocOpBuilder& b) { auto indexing = ComputeOutputToInputIndexing(instr, 0, b.getContext()); const auto& indexing_map = *indexing.indexing_maps[0].begin(); mlir::Value is_in_bounds = CheckConstraints(indexing_map, indices, {}, b); auto if_op = b.create<IfOp>(mlir::TypeRange{result_element_type}, is_in_bounds, true, true); b.setInsertionPointToStart(if_op.getBody(0)); TF_ASSIGN_OR_RETURN(auto input_value, GetSingleOperandValue( operand_provider, instr, 0, GetInputIndices(indexing, indices, b)[0 ])); b.create<YieldOp>(input_value); b.setInsertionPointToStart(if_op.getBody(1)); TF_ASSIGN_OR_RETURN(auto padding_value, GetSingleOperandValue(operand_provider, instr, 1, {})); b.create<YieldOp>(padding_value); b.setInsertionPointAfter(if_op); return if_op.getResults(); } absl::StatusOr<Value> EmitFloatCast(Value value, mlir::Type target_type, ImplicitLocOpBuilder& b) { if (value.getType().getIntOrFloatBitWidth() < target_type.getIntOrFloatBitWidth()) { return b.create<arith::ExtFOp>(target_type, value); } if (value.getType().getIntOrFloatBitWidth() > target_type.getIntOrFloatBitWidth()) { return b.create<arith::TruncFOp>(target_type, value); } return value; } absl::StatusOr<Value> EmitMulAdd(Value lhs, Value rhs, Value accumulator, mlir::Type result_element_type, mlir::Type accumulator_type, ImplicitLocOpBuilder& b) { if (mlir::isa<FloatType>(result_element_type)) { if (result_element_type.isBF16()) { lhs = b.create<arith::ExtFOp>(b.getF32Type(), lhs); rhs = b.create<arith::ExtFOp>(b.getF32Type(), rhs); } TF_ASSIGN_OR_RETURN( Value casted, EmitFloatCast(b.create<arith::MulFOp>(lhs, rhs), accumulator_type, b)); return b.create<arith::AddFOp>(accumulator, casted); } if (result_element_type.isInteger(1)) { return b.create<arith::OrIOp>(accumulator, b.create<arith::AndIOp>(lhs, rhs)); } return b.create<arith::AddIOp>(accumulator, b.create<arith::MulIOp>(lhs, rhs)); } absl::StatusOr<SmallVector<Value>> EmitDotLoop( const HloInstruction* instr, mlir::Type result_element_type, ValueRange indices, const OperandProvider& operand_provider, ImplicitLocOpBuilder& b) { HloInstructionIndexing indexing = ComputeOutputToInputIndexing(instr, 0, b.getContext()); const IndexingMap& lhs_indexing_map = *indexing.indexing_maps.at(0).begin(); const IndexingMap& rhs_indexing_map = *indexing.indexing_maps.at(1).begin(); const mlir::Type accumulator_type = result_element_type.isBF16() ? b.getF32Type() : result_element_type; Value accum_init_value = b.create<ConstantOp>(b.getZeroAttr(accumulator_type)).getResult(); size_t rhs_symbol_count = rhs_indexing_map.GetSymbolCount(); auto body = [&](ValueRange iter_args, ValueRange dim_values, ValueRange symbol_values) -> absl::StatusOr<SmallVector<Value>> { auto lhs_indices = ApplyIndexing(lhs_indexing_map, dim_values, symbol_values, b); auto rhs_indices = ApplyIndexing(rhs_indexing_map, dim_values, symbol_values.take_front(rhs_symbol_count), b); TF_ASSIGN_OR_RETURN(Value lhs_value, GetSingleOperandValue( operand_provider, instr, 0, lhs_indices)); TF_ASSIGN_OR_RETURN(Value rhs_value, GetSingleOperandValue( operand_provider, instr, 1, rhs_indices)); Value accum = iter_args[0]; TF_ASSIGN_OR_RETURN( accum, EmitMulAdd(lhs_value, rhs_value, accum, result_element_type, accumulator_type, b)); return {{accum}}; }; TF_ASSIGN_OR_RETURN(SmallVector<Value> results, EmitLoopNestWithStatus(b, indices, {accum_init_value}, lhs_indexing_map, body)); if (result_element_type.isBF16()) { results[0] = b.create<arith::TruncFOp>(b.getBF16Type(), results[0]); } return results; } absl::StatusOr<SmallVector<Value>> EmitDot( const HloInstruction* instr, mlir::Type result_element_type, ValueRange indices, const OperandProvider& operand_provider, ImplicitLocOpBuilder& b) { VLOG(1) << "EmitDot: " << instr->ToString() << " " << llvm_ir::DumpToString(result_element_type); if (!algorithm_util::IsSupportedByElementalIrEmitter( instr->precision_config().algorithm())) { return absl::InvalidArgumentError( absl::StrFormat("Algorithm not supported by the ElementalIrEmitter: %s", PrecisionConfig::Algorithm_Name( instr->precision_config().algorithm()))); } auto* dot = DynCast<HloDotInstruction>(instr); TF_RET_CHECK(dot != nullptr); if (dot->sparse_operands()) { return absl::UnimplementedError( "Sparse dot is supported by Triton emitter only."); } return EmitDotLoop(instr, result_element_type, indices, operand_provider, b); } absl::StatusOr<SmallVector<Value>> EmitConvolution( const HloInstruction* instr, mlir::Type result_element_type, ValueRange indices, const OperandProvider& operand_provider, ImplicitLocOpBuilder& b) { VLOG(1) << "EmitConvolution: " << instr->ToString() <<
#include "xla/service/gpu/fusions/mlir/elemental_hlo_to_mlir.h" #include <functional> #include <string> #include <vector> #include <gtest/gtest.h> #include "absl/status/status.h" #include "llvm/Support/raw_ostream.h" #include "mlir/AsmParser/AsmParser.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/DLTI/DLTI.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/LLVMIR/LLVMDialect.h" #include "mlir/Dialect/Math/IR/Math.h" #include "mlir/Dialect/SCF/IR/SCF.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/ImplicitLocOpBuilder.h" #include "mlir/IR/MLIRContext.h" #include "mlir/Pass/PassManager.h" #include "mlir/Transforms/Passes.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" #include "xla/service/gpu/fusions/mlir/computation_partitioner.h" #include "xla/service/gpu/fusions/mlir/ir/xla_gpu_ops.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/indexing_analysis.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/service/hlo_parser.h" #include "xla/service/llvm_ir/llvm_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/launch_dim.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace mlir_converter { namespace { class ElementalHloToMlirTest : public HloTestBase { public: ElementalHloToMlirTest() { context_.loadDialect<mlir::tensor::TensorDialect, mlir::func::FuncDialect, mlir::affine::AffineDialect, mlir::arith::ArithDialect, mlir::math::MathDialect, mlir::scf::SCFDialect, mlir::mhlo::MhloDialect, mlir::LLVM::LLVMDialect, mlir::DLTIDialect, xla::gpu::XlaGpuDialect>(); } absl::Status Run(const std::string& hlo, const std::string& filecheck_str, std::function<EpilogueSpecification(HloComputation* entry)> epilogue_spec_fn = nullptr) { auto hlo_module = ParseAndReturnVerifiedModule(hlo).value(); mlir::ImplicitLocOpBuilder builder(mlir::UnknownLoc::get(&context_), &context_); auto module = llvm_ir::CreateMlirModuleOp(builder.getLoc()); (*module)->setAttr( mlir::DLTIDialect::kDataLayoutAttrName, mlir::parseAttribute("#dlti.dl_spec<#dlti.dl_entry<index,32:i32>>", builder.getContext())); builder.setInsertionPointToStart(module->getBody()); auto* entry_computation = hlo_module->entry_computation(); std::vector<EpilogueSpecification> epilogue_spec; if (epilogue_spec_fn) { epilogue_spec.push_back(epilogue_spec_fn(entry_computation)); } PartitionedComputations partitioned_computations(entry_computation, &context_, epilogue_spec); auto fns = partitioned_computations.DeclareFunctions(module.get()); auto entry_func = fns[&partitioned_computations .FindPartitionedComputation(entry_computation) .GetRootSubgraph()]; auto& entry_pc = partitioned_computations.FindPartitionedComputation(entry_computation); auto call_targets = partitioned_computations.CreateCallTargetProvider(fns); TF_RETURN_IF_ERROR(SubgraphToMlirFunction( entry_pc, entry_pc.GetRootSubgraph(), entry_func, call_targets)); if (!partitioned_computations.epilogues().empty()) { const auto& epilogue = partitioned_computations.epilogues().front(); TF_RETURN_IF_ERROR(SubgraphToMlirFunction(entry_pc, epilogue, fns[&epilogue], call_targets)); } mlir::PassManager pm(&context_); pm.addPass(mlir::createCanonicalizerPass()); pm.addPass(mlir::createCSEPass()); TF_RET_CHECK(pm.run(module.get()).succeeded()); std::string out; llvm::raw_string_ostream stream(out); stream << module.get(); TF_ASSIGN_OR_RETURN(auto filecheck_result, RunFileCheck(out, filecheck_str)); TF_RET_CHECK(filecheck_result); return absl::OkStatus(); } mlir::MLIRContext context_; }; TEST_F(ElementalHloToMlirTest, Reduce) { TF_EXPECT_OK(Run(R"( add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT sum = f32[] add(p0, p1) } ENTRY main { p0 = f32[10,20,30,40] parameter(0) p1 = f32[] parameter(1) ROOT r = f32[10,30] reduce(p0, p1), dimensions={1,3}, to_apply=add })", R"( )")); } TEST_F(ElementalHloToMlirTest, ReduceUnsigned) { TF_EXPECT_OK(Run(R"( add { p0 = u32[] parameter(0) p1 = u32[] parameter(1) ROOT sum = u32[] add(p0, p1) } ENTRY main { p0 = u32[10,20,30,40] parameter(0) p1 = u32[] parameter(1) ROOT r = u32[10,30] reduce(p0, p1), dimensions={1,3}, to_apply=add })", R"( )")); } TEST_F(ElementalHloToMlirTest, ReduceWindow) { TF_EXPECT_OK(Run(R"( add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT sum = f32[] add(p0, p1) } ENTRY main { p0 = f32[42,12,8] parameter(0) p1 = f32[] parameter(1) ROOT r = f32[42,3,8] reduce-window(p0, p1), window={ size=1x1x7 stride=1x4x1 pad=0_0x0_0x3_3 }, to_apply=add })", R"( )")); } TEST_F(ElementalHloToMlirTest, ReduceWindowWithRescaling) { TF_EXPECT_OK(Run(R"( add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT sum = f32[] add(p0, p1) } ENTRY main { p0 = f32[42,12,8] parameter(0) p1 = f32[] parameter(1) ROOT r = f32[19,12,8] reduce-window(p0, p1), window={ size=8x1x1 stride=4x1x1 pad=0_0x0_0x0_0 lhs_dilate=2x1x1 }, to_apply=add })", R"( )")); } TEST_F(ElementalHloToMlirTest, Concatenate) { TF_EXPECT_OK(Run(R"( ENTRY main { p0 = f32[10,20,30] parameter(0) p1 = f32[10,15,30] parameter(1) p2 = f32[10,3,30] parameter(2) ROOT r = f32[10,38,30] concatenate(p0, p1, p2), dimensions={1} })", R"( )")); } TEST_F(ElementalHloToMlirTest, ConcatenateUnsigned) { TF_EXPECT_OK(Run(R"( ENTRY main { p0 = u32[10,20,30] parameter(0) p1 = u32[10,15,30] parameter(1) ROOT r = u32[10,35,30] concatenate(p0, p1), dimensions={1} })", R"( )")); } TEST_F(ElementalHloToMlirTest, Gather) { TF_EXPECT_OK(Run(R"( ENTRY main { operand = f32[33,34] parameter(0) indices = s32[1806,1] parameter(1) ROOT r = f32[1806,7,8] gather(operand, indices), offset_dims={1,2}, collapsed_slice_dims={}, start_index_map={0}, index_vector_dim=1, slice_sizes={7,8} })", R"( )")); } TEST_F(ElementalHloToMlirTest, GatherWithImplicitVectorDim) { TF_EXPECT_OK(Run(R"( ENTRY main { operand = f32[33,34] parameter(0) indices = s32[1806] parameter(1) ROOT r = f32[1806,7,8] gather(operand, indices), offset_dims={1,2}, collapsed_slice_dims={}, start_index_map={0}, index_vector_dim=1, slice_sizes={7,8} })", R"( )")); } TEST_F(ElementalHloToMlirTest, Pad) { TF_EXPECT_OK(Run(R"( ENTRY main { p0 = f32[4, 4] parameter(0) p1 = f32[] parameter(1) ROOT pad = f32[12, 16] pad(p0, p1), padding=1_4_1x4_8_0 })", R"( )")); } TEST_F(ElementalHloToMlirTest, PadUnsigned) { TF_EXPECT_OK(Run(R"( ENTRY main { p0 = u32[4, 4] parameter(0) p1 = u32[] parameter(1) ROOT pad = u32[12, 16] pad(p0, p1), padding=1_4_1x4_8_0 })", R"( )")); } TEST_F(ElementalHloToMlirTest, DotWithF32Type) { TF_EXPECT_OK(Run(R"( ENTRY main { p0 = f32[3, 4] parameter(0) p1 = f32[4, 5] parameter(1) ROOT dot = f32[3, 5] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })", R"( )")); } TEST_F(ElementalHloToMlirTest, DotWithBF16Type) { TF_EXPECT_OK(Run(R"( ENTRY main { p0 = bf16[3, 4] parameter(0) p1 = bf16[4, 5] parameter(1) ROOT dot = bf16[3, 5] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })", R"( )")); } TEST_F(ElementalHloToMlirTest, DotWithS32Type) { TF_EXPECT_OK(Run(R"( ENTRY main { p0 = s32[3, 4] parameter(0) p1 = s32[4, 5] parameter(1) ROOT dot = s32[3, 5] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })", R"( )")); } TEST_F(ElementalHloToMlirTest, DotWithU32Type) { TF_EXPECT_OK(Run(R"( ENTRY main { p0 = u32[3, 4] parameter(0) p1 = u32[4, 5] parameter(1) ROOT dot = u32[3, 5] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })", R"( )")); } TEST_F(ElementalHloToMlirTest, DotWithPredType) { TF_EXPECT_OK(Run(R"( ENTRY main { p0 = pred[3, 4] parameter(0) p1 = pred[4, 5] parameter(1) ROOT dot = pred[3, 5] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })", R"(
2,136
cpp
tensorflow/tensorflow
computation_partitioner
third_party/xla/xla/service/gpu/fusions/mlir/computation_partitioner.cc
third_party/xla/xla/service/gpu/fusions/mlir/computation_partitioner_test.cc
#ifndef XLA_SERVICE_GPU_FUSIONS_MLIR_COMPUTATION_PARTITIONER_H_ #define XLA_SERVICE_GPU_FUSIONS_MLIR_COMPUTATION_PARTITIONER_H_ #include <functional> #include <string> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/types/span.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Builders.h" #include "mlir/IR/ImplicitLocOpBuilder.h" #include "mlir/IR/MLIRContext.h" #include "mlir/Interfaces/DataLayoutInterfaces.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/fusions/fusion_emitter.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/model/indexing_map.h" namespace xla { namespace gpu { namespace mlir_converter { struct EpilogueSpecification { static EpilogueSpecification FromIdentityIndexing( const HloInstruction* hero, const HloInstruction* root, mlir::MLIRContext* mlir_context); static EpilogueSpecification FromOutputIndexing( const HloFusionAnalysis& analysis, const std::vector<const HloInstruction*>& heroes, const std::vector<const HloInstruction*>& roots, const KernelFusionInterface& fusion, mlir::MLIRContext* mlir_context); std::vector<const HloInstruction*> heroes; std::vector<const HloInstruction*> roots; std::vector<int64_t> index_ranges; std::vector<IndexingMap> root_indexing; }; class PartitionedComputation { public: explicit PartitionedComputation(const HloComputation* computation, mlir::MLIRContext* mlir_context, std::function<bool(const HloInstruction*)> is_subgraph_root = HloPredicateFalse); struct Subgraph { std::string name; absl::flat_hash_set<const HloInstruction*> instructions; std::vector<const HloInstruction*> roots; std::vector<int64_t> index_ranges; std::vector<IndexingMap> root_indexing; absl::flat_hash_map<const HloInstruction*, int> injected_value_starts; int num_injected_values = 0; std::string ToString(int indentation = 0) const; static Subgraph ForEpilogue(const EpilogueSpecification& epilogue); }; absl::Span<const Subgraph> subgraphs() const { return subgraphs_; } const HloComputation& computation() const { return *computation_; } const Subgraph& GetRootSubgraph() const { return FindSubgraph(computation_->root_instruction()); } const Subgraph& FindSubgraph(const HloInstruction* instr) const { return *instructions_to_subgraphs_.at(instr); } std::string ToString(int indentation = 0) const; private: const HloComputation* computation_; std::vector<Subgraph> subgraphs_; absl::flat_hash_map<const HloInstruction*, const Subgraph*> instructions_to_subgraphs_; }; using CallTargetProvider = std::function<mlir::func::FuncOp(const HloInstruction* instr)>; class PartitionedComputations { public: explicit PartitionedComputations( const HloComputation* fusion, mlir::MLIRContext* mlir_context, std::vector<EpilogueSpecification> epilogues = {}); const PartitionedComputation& FindPartitionedComputation( const HloComputation* computation) const { return *computation_to_partitioning_.at(computation); } const PartitionedComputation::Subgraph& FindSubgraph( const HloInstruction* instr) const; absl::Span<const PartitionedComputation> partitioned_computations() const { return partitioned_computations_; } const std::vector<PartitionedComputation::Subgraph>& epilogues() const { return epilogues_; } const HloComputation* fusion() const { return fusion_; } CallTargetProvider CreateCallTargetProvider( const absl::flat_hash_map<const PartitionedComputation::Subgraph*, mlir::func::FuncOp>& subgraph_to_func) const; absl::flat_hash_map<const PartitionedComputation::Subgraph*, mlir::func::FuncOp> DeclareFunctions(mlir::ModuleOp module) const; std::string ToString() const; private: std::vector<PartitionedComputation> partitioned_computations_; absl::flat_hash_map<const HloComputation*, const PartitionedComputation*> computation_to_partitioning_; const HloComputation* fusion_; std::vector<PartitionedComputation::Subgraph> epilogues_; }; mlir::func::FuncOp CreateSubgraphMlirFunction( const PartitionedComputation::Subgraph& subgraph, mlir::ImplicitLocOpBuilder& b); } } } #endif #include "xla/service/gpu/fusions/mlir/computation_partitioner.h" #include <cstdint> #include <functional> #include <iterator> #include <optional> #include <sstream> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/node_hash_map.h" #include "absl/log/check.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/types/span.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/LLVMIR/LLVMDialect.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/ImplicitLocOpBuilder.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/Types.h" #include "mlir/IR/Value.h" #include "mlir/Interfaces/DataLayoutInterfaces.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/fusions/mlir/type_util.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/model/indexing_analysis.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/service/llvm_ir/llvm_util.h" #include "xla/shape.h" namespace xla { namespace gpu { namespace mlir_converter { namespace { int Arity(const Shape& shape) { return shape.IsTuple() ? shape.tuple_shapes_size() : 1; } const Shape& TupleShape(const Shape& shape, int index) { return shape.IsTuple() ? shape.tuple_shapes(index) : shape; } } EpilogueSpecification EpilogueSpecification::FromIdentityIndexing( const HloInstruction* hero, const HloInstruction* root, mlir::MLIRContext* mlir_context) { EpilogueSpecification result; absl::c_copy(root->shape().dimensions(), std::back_inserter(result.index_ranges)); result.roots.push_back(root); result.root_indexing.push_back( CreateIdentityMap(root->shape(), mlir_context)); result.heroes.push_back(hero); return result; } EpilogueSpecification EpilogueSpecification::FromOutputIndexing( const HloFusionAnalysis& analysis, const std::vector<const HloInstruction*>& heroes, const std::vector<const HloInstruction*>& roots, const KernelFusionInterface& fusion, mlir::MLIRContext* mlir_context) { EpilogueSpecification result; absl::flat_hash_map<const HloInstruction*, const HloInstruction*> root_to_hero; for (auto [root, hero] : llvm::zip(analysis.fusion_roots(), analysis.fusion_heroes())) { root_to_hero[&root.instruction()] = &hero.instruction(); } absl::flat_hash_map<const HloInstruction*, int> root_to_index; for (auto [index, root] : llvm::enumerate(analysis.fusion_roots())) { root_to_index[&root.instruction()] = root_to_index.size(); } result.root_indexing.reserve(roots.size()); for (auto* root : roots) { auto indexing = fusion.ComputeThreadIdToOutputIndexing(root_to_index[root], mlir_context); if (result.index_ranges.empty()) { result.index_ranges.reserve(indexing->GetDimensionCount() + indexing->GetSymbolCount()); for (const auto& dim : indexing->GetDimensionBounds()) { result.index_ranges.push_back(dim.upper + 1); } for (const auto& sym : indexing->GetSymbolBounds()) { result.index_ranges.push_back(sym.upper + 1); } } auto* hero = root_to_hero[root]; auto epilogue_indexing = ComputeEpilogueInputToOutputIndexing( {*hero, &analysis.fusion()}, {*root, &analysis.fusion()}, mlir_context); result.root_indexing.push_back( ComposeIndexingMaps(*indexing, epilogue_indexing)); } result.heroes = heroes; result.roots = roots; return result; } std::string PartitionedComputation::Subgraph::ToString(int indentation) const { std::string indent(indentation, ' '); std::ostringstream ss; ss << indent << "SUBGRAPH " << name << " {\n"; for (auto* instr : (*instructions.begin())->parent()->MakeInstructionPostOrder()) { if (!instructions.contains(instr)) continue; ss << indent << " "; if (absl::c_linear_search(roots, instr)) { ss << "ROOT "; } ss << instr->ToString() << "\n"; } ss << indent << "}"; return ss.str(); } std::string PartitionedComputation::ToString(int indentation) const { std::ostringstream ss; ss << "PartitionedComputation " << computation_->name() << ":"; for (const Subgraph& subgraph : subgraphs_) { ss << "\n" << subgraph.ToString(indentation); } return ss.str(); } std::string PartitionedComputations::ToString() const { std::ostringstream ss; ss << "PartitionedComputations:"; for (const auto& partitioned_computation : partitioned_computations_) { ss << "\n" << partitioned_computation.ToString(); } return ss.str(); } template <typename C, typename F> bool AllIdentical(const C& c, F&& f) { auto begin = std::begin(c); auto end = std::end(c); if (begin == end || begin + 1 == end) { return true; } auto v = f(*begin); ++begin; for (; begin != end; ++begin) { if (f(*begin) != v) { return false; } } return true; } bool IsEvaluatedMoreThanOnce(const HloInstruction* instr) { return absl::c_any_of(instr->users(), [&](const HloInstruction* user) { if (user->opcode() == HloOpcode::kGather && absl::c_linear_search(user->OperandIndices(instr), 1) && instr->shape().rank() >= 2 && instr->shape().dimensions(1) > 1) { return true; } if (user->opcode() == HloOpcode::kConcatenate && user->OperandIndices(instr).size() > 1) { return true; } return false; }); } PartitionedComputation::PartitionedComputation( const HloComputation* computation, mlir::MLIRContext* mlir_context, std::function<bool(const HloInstruction*)> is_subgraph_root) : computation_(computation) { CHECK_NE(computation, nullptr); int next_function_id = 0; int next_indexing_id = 0; auto pre_order = computation->MakeInstructionPostOrder(); absl::c_reverse(pre_order); absl::flat_hash_map<const HloInstruction*, int> instr_indices; for (auto [i, instr] : llvm::enumerate(pre_order)) { instr_indices[instr] = i; } std::vector<std::pair<int, int>> ids(pre_order.size()); auto allocate_new_function = [&](const HloInstruction* instr) { ids[instr_indices[instr]] = {next_function_id++, next_indexing_id++}; }; for (auto [instr_index, instr] : llvm::enumerate(pre_order)) { bool is_root = instr->user_count() == 0 || is_subgraph_root(instr); bool users_have_consistent_indexing = AllIdentical( instr->users(), [&](const HloInstruction* user) { return ids[instr_indices[user]]; }); bool all_users_elementwise = absl::c_all_of(instr->users(), [&](const HloInstruction* user) { return HloInstruction::IsOpElementwise(user->opcode()); }); if (!is_root && users_have_consistent_indexing && all_users_elementwise) { ids[instr_index] = ids[instr_indices[instr->users().front()]]; } else if (is_root || instr->user_count() > 1 || IsEvaluatedMoreThanOnce(instr)) { allocate_new_function(instr); } else { ids[instr_index] = ids[instr_indices[instr->users().front()]]; ids[instr_index].second = next_indexing_id++; } } std::vector<std::vector<const HloInstruction*>> functions(next_function_id); for (auto [id, instr] : llvm::reverse(llvm::zip(ids, pre_order))) { functions[id.first].push_back(instr); } subgraphs_.reserve(functions.size()); for (auto&& [function_id, instructions] : llvm::enumerate(functions)) { auto is_different_function = [&, function_id = function_id](auto* user) { return ids[instr_indices[user]].first != function_id; }; std::vector<const HloInstruction*> roots; std::vector<IndexingMap> root_indexing; const xla::Shape* first_root_shape = nullptr; for (auto* instruction : instructions) { if (instruction->user_count() == 0 || absl::c_any_of(instruction->users(), is_different_function)) { roots.push_back(instruction); if (first_root_shape) { CHECK(!instruction->shape().IsTuple()) << "Internal tuples are not supported"; if (ShapeUtil::EqualIgnoringElementType(*first_root_shape, instruction->shape())) { root_indexing.push_back(root_indexing.front()); } else { root_indexing.push_back(GetBitcastMap( *first_root_shape, instruction->shape(), mlir_context)); } } else { first_root_shape = &instruction->shape(); while (first_root_shape->IsTuple()) { first_root_shape = &first_root_shape->tuple_shapes()[0]; } root_indexing.push_back( CreateIdentityMap(*first_root_shape, mlir_context)); } } } std::vector<int64_t> ranges{first_root_shape->dimensions().begin(), first_root_shape->dimensions().end()}; CHECK(!roots.empty()) << "No roots found"; std::string name = llvm_ir::SanitizeFunctionName(absl::StrCat( roots.front()->parent()->name(), "_", absl::StrJoin(roots, "_", [](std::string* out, const auto* root) { absl::StrAppend(out, root->name()); }))); subgraphs_.push_back( Subgraph{.name = std::move(name), .instructions = {instructions.begin(), instructions.end()}, .roots = std::move(roots), .index_ranges = std::move(ranges), .root_indexing = std::move(root_indexing)}); } for (const auto& subgraph : subgraphs_) { for (const auto* instruction : subgraph.instructions) { instructions_to_subgraphs_[instruction] = &subgraph; } } } PartitionedComputation::Subgraph PartitionedComputation::Subgraph::ForEpilogue( const EpilogueSpecification& epilogue) { if (epilogue.roots.empty()) return {}; const auto* computation = epilogue.heroes.front()->parent(); PartitionedComputation::Subgraph subgraph; subgraph.name = llvm_ir::SanitizeFunctionName( absl::StrCat(computation->name(), "__epilogue__", absl::StrJoin(epilogue.roots, "_", [](std::string* out, const auto* root) { absl::StrAppend(out, root->name()); }))); subgraph.roots = epilogue.roots; int index = 0; for (auto* hero : epilogue.heroes) { if (subgraph.injected_value_starts.insert({hero, index}).second) { index += Arity(hero->shape()); } } subgraph.num_injected_values = index; absl::flat_hash_set<const HloInstruction*> seen; std::function<void(const HloInstruction*)> visit; visit = [&](const HloInstruction* instruction) { if (subgraph.injected_value_starts.contains(instruction)) return; if (!seen.insert(instruction).second) return; for (auto [index, operand] : llvm::enumerate(instruction->operands())) { visit(operand); } }; visit(computation->root_instruction()); subgraph.instructions = std::move(seen); subgraph.index_ranges = epilogue.index_ranges; subgraph.root_indexing = epilogue.root_indexing; return subgraph; } PartitionedComputations::PartitionedComputations( const HloComputation* fusion, mlir::MLIRContext* mlir_context, std::vector<EpilogueSpecification> epilogues) : fusion_(fusion) { absl::flat_hash_set<const HloComputation*> seen; std::vector<const HloComputation*> computations; std::function<void(const HloComputation*)> visit; visit = [&](const HloComputation* computation) { if (!seen.insert(computation).second) return; computations.push_back(computation); for (auto* instr : computation->instructions()) { absl::c_for_each(instr->called_computations(), visit); } }; visit(fusion); absl::flat_hash_set<const HloInstruction*> roots; epilogues_.reserve(epilogues.size()); for (const auto& epilogue : epilogues) { epilogues_.push_back( PartitionedComputation::Subgraph::ForEpilogue(epilogue)); roots.insert(epilogue.heroes.begin(), epilogue.heroes.end()); for (auto* instruction : epilogue.heroes) { roots.insert(instruction->operands().begin(), instruction->operands().end()); } } auto is_root = [&](const HloInstruction* instruction) { return roots.contains(instruction); }; partitioned_computations_.reserve(computations.size()); for (auto* computation : computations) { computation_to_partitioning_[computation] = &partitioned_computations_.emplace_back( PartitionedComputation{computation, mlir_context, is_root}); } } absl::flat_hash_map<const PartitionedComputation::Subgraph*, mlir::func::FuncOp> PartitionedComputations::DeclareFunctions(mlir::ModuleOp module) const { absl::flat_hash_map<const PartitionedComputation::Subgraph*, mlir::func::FuncOp> mapping; mlir::ImplicitLocOpBuilder builder(module.getLoc(), module->getContext()); builder.setInsertionPointToEnd(module.getBody()); auto create_funcs = [&](absl::Span<const PartitionedComputation::Subgraph> subgraphs) { for (const auto& subgraph : subgraphs) { if (subgraph.roots.empty()) continue; auto func_op = CreateSubgraphMlirFunction(subgraph, builder); func_op->setAttr("llvm.linkage", mlir::LLVM::LinkageAttr::get( module->getContext(), mlir::LLVM::Linkage::Internal)); mapping[&subgraph] = func_op; } }; for (const auto& computation : partitioned_computations_) { create_funcs(computation.subgraphs()); } create_funcs(epilogues_); return mapping; } const PartitionedComputation::Subgraph& PartitionedComputations::FindSubgraph( const HloInstruction* instr) const { return FindPartitionedComputation(instr->parent()).FindSubgraph(instr); } CallTargetProvider PartitionedComputations::CreateCallTargetProvider( const absl::flat_hash_map<const PartitionedComputation::Subgraph*, mlir::func::FuncOp>& subgraph_to_func) const { return [&, this](const HloInstruction* instr) { const auto& subgraph = FindSubgraph(instr); CHECK(subgraph_to_func.contains(&subgraph)) << "No function found for subgraph with instruction " << instr->ToString(); return subgraph_to_func.at(&subgraph); }; } mlir::func::FuncOp CreateSubgraphMlirFunction( const PartitionedComputation::Subgraph& subgraph, mlir::ImplicitLocOpBuilder& b) { auto* computation = subgraph.roots.front()->parent(); llvm::SmallVector<mlir::Type> parameter_types; llvm::SmallVector<mlir::Type> result_types; auto element_type = [&](const auto& shape) { return PrimitiveTypeToMlirType(shape.element_type(), b); }; for (auto* root : subgraph.roots) { for (auto ty : ShapeToMlirTypes(root->shape(), b)) { result_types.push_back( mlir::cast<mlir::RankedTensorType>(ty).getElementType()); } } llvm::SmallVector<mlir::DictionaryAttr> arg_attrs; if (computation->IsFusionComputation() || computation->IsEntryComputation()) { for (auto* param : computation->parameter_instructions()) { parameter_types.push_back(TensorShapeToMlirType(param->shape(), b)); arg_attrs.emplace_back(); } for (int64_t size : subgraph.index_ranges) { parameter_types.push_back(b.getIndexType()); arg_attrs.emplace_back(mlir::DictionaryAttr::get( b.getContext(), {b.getNamedAttr("xla.range", b.getIndexArrayAttr({0, size - 1}))})); } int operand_offset = parameter_types.size(); parameter_types.resize(operand_offset + subgraph.num_injected_values); arg_attrs.resize(parameter_types.size()); for (auto [value, start] : subgraph.injected_value_starts) { for (int index = 0; index < Arity(value->shape()); ++index) { parameter_types[operand_offset + start + index] = element_type(TupleShape(value->shape(), index)); } } } else { for (auto* param : computation->parameter_instructions()) { parameter_types.push_back(element_type(param->shape())); } } auto ty = b.getFunctionType(parameter_types, result_types); auto func_op = b.create<mlir::func::FuncOp>( subgraph.name, ty, llvm::ArrayRef<mlir::NamedAttribute>{}, arg_attrs); func_op.setPrivate(); return func_op; } } } }
#include "xla/service/gpu/fusions/mlir/computation_partitioner.h" #include <string> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "llvm/Support/raw_ostream.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/Builders.h" #include "mlir/IR/ImplicitLocOpBuilder.h" #include "mlir/IR/Location.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/model/indexing_analysis.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace gpu { namespace mlir_converter { namespace { using ::testing::ElementsAre; using ::testing::SizeIs; using ::testing::UnorderedElementsAre; class ComputationPartitionerTest : public HloTestBase { protected: ComputationPartitionerTest() { mlir_context_.loadDialect<mlir::func::FuncDialect>(); } mlir::MLIRContext mlir_context_; }; std::string PrintAndErase(mlir::func::FuncOp func) { std::string out; llvm::raw_string_ostream os(out); os << func; func.erase(); return out; } TEST_F(ComputationPartitionerTest, PartitionDiamonds) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module fused_computation { %param = f32[6] parameter(0) %slice0.1 = f32[5] slice(f32[6]{0} %param), slice={[0:5]} %slice0.2 = f32[5] slice(f32[6]{0} %param), slice={[1:6]} %add0 = f32[5] add(f32[5]{0} %slice0.1, f32[5]{0} %slice0.2) %slice1.1 = f32[4] slice(f32[5]{0} %add0), slice={[0:4]} %slice1.2 = f32[4] slice(f32[5]{0} %add0), slice={[1:5]} %add1 = f32[4] add(f32[4]{0} %slice1.1, f32[4]{0} %slice1.2) %slice2.1 = f32[3] slice(f32[4]{0} %add1), slice={[0:3]} %slice2.2 = f32[3] slice(f32[4]{0} %add1), slice={[1:4]} %add2 = f32[3] add(f32[3]{0} %slice2.1, f32[3]{0} %slice2.2) %slice3.1 = f32[2] slice(f32[3]{0} %add2), slice={[0:2]} %slice3.2 = f32[2] slice(f32[3]{0} %add2), slice={[1:3]} ROOT %add3 = f32[2] add(f32[2]{0} %slice3.1, f32[2]{0} %slice3.2) })") .value(); auto* fusion = module->GetComputationWithName("fused_computation"); ASSERT_NE(fusion, nullptr); PartitionedComputation computation(fusion, &mlir_context_); constexpr auto kExpected = R"(PartitionedComputation fused_computation: SUBGRAPH fused_computation_add3 { %slice3.1 = f32[2]{0} slice(f32[3]{0} %add2), slice={[0:2]} %slice3.2 = f32[2]{0} slice(f32[3]{0} %add2), slice={[1:3]} ROOT %add3 = f32[2]{0} add(f32[2]{0} %slice3.1, f32[2]{0} %slice3.2) } SUBGRAPH fused_computation_add2 { %slice2.1 = f32[3]{0} slice(f32[4]{0} %add1), slice={[0:3]} %slice2.2 = f32[3]{0} slice(f32[4]{0} %add1), slice={[1:4]} ROOT %add2 = f32[3]{0} add(f32[3]{0} %slice2.1, f32[3]{0} %slice2.2) } SUBGRAPH fused_computation_add1 { %slice1.1 = f32[4]{0} slice(f32[5]{0} %add0), slice={[0:4]} %slice1.2 = f32[4]{0} slice(f32[5]{0} %add0), slice={[1:5]} ROOT %add1 = f32[4]{0} add(f32[4]{0} %slice1.1, f32[4]{0} %slice1.2) } SUBGRAPH fused_computation_add0 { %slice0.1 = f32[5]{0} slice(f32[6]{0} %param), slice={[0:5]} %slice0.2 = f32[5]{0} slice(f32[6]{0} %param), slice={[1:6]} ROOT %add0 = f32[5]{0} add(f32[5]{0} %slice0.1, f32[5]{0} %slice0.2) } SUBGRAPH fused_computation_param { ROOT %param = f32[6]{0} parameter(0) })"; EXPECT_EQ(computation.ToString(6), kExpected); } TEST_F(ComputationPartitionerTest, SimpleConcatenate) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module fused_computation { %param1 = f32[6] parameter(0) %param2 = f32[3] parameter(1) %neg = f32[6] negate(%param1) %exp = f32[3] exponential(%param2) ROOT %concat = f32[9] concatenate(%neg, %exp), dimensions={0} })") .value(); auto* fusion = module->GetComputationWithName("fused_computation"); ASSERT_NE(fusion, nullptr); PartitionedComputation computation(fusion, &mlir_context_); EXPECT_THAT(computation.subgraphs(), SizeIs(1)); } TEST_F(ComputationPartitionerTest, DiamondConcatenate) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module fused_computation { %param1 = f32[6] parameter(0) %param2 = f32[6] parameter(1) %log = f32[6] log(%param1) %add = f32[6] add(%log, %param2) %neg = f32[6] negate(%log) %exp = f32[6] exponential(%add) ROOT %concat = f32[12] concatenate(%neg, %exp), dimensions={0} })") .value(); auto* fusion = module->GetComputationWithName("fused_computation"); ASSERT_NE(fusion, nullptr); PartitionedComputation computation(fusion, &mlir_context_); constexpr auto kExpected = R"(PartitionedComputation fused_computation: SUBGRAPH fused_computation_concat { %neg = f32[6]{0} negate(f32[6]{0} %log) %param2 = f32[6]{0} parameter(1) %add = f32[6]{0} add(f32[6]{0} %log, f32[6]{0} %param2) %exp = f32[6]{0} exponential(f32[6]{0} %add) ROOT %concat = f32[12]{0} concatenate(f32[6]{0} %neg, f32[6]{0} %exp), dimensions={0} } SUBGRAPH fused_computation_log { %param1 = f32[6]{0} parameter(0) ROOT %log = f32[6]{0} log(f32[6]{0} %param1) })"; EXPECT_EQ(computation.ToString(6), kExpected); } TEST_F(ComputationPartitionerTest, TupleRoot) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module fused_computation { %p0 = f32[6] parameter(0) %p1 = f32[6] parameter(1) %add = f32[6] add(p0, p1) %sub = f32[6] subtract(p0, p1) ROOT %root = (f32[6], f32[6]) tuple(%add, %sub) })") .value(); auto* fusion = module->GetComputationWithName("fused_computation"); ASSERT_NE(fusion, nullptr); PartitionedComputation computation(fusion, &mlir_context_); constexpr auto kExpected = R"(PartitionedComputation fused_computation: SUBGRAPH fused_computation_root { %add = f32[6]{0} add(f32[6]{0} %p0, f32[6]{0} %p1) %sub = f32[6]{0} subtract(f32[6]{0} %p0, f32[6]{0} %p1) ROOT %root = (f32[6]{0}, f32[6]{0}) tuple(f32[6]{0} %add, f32[6]{0} %sub) } SUBGRAPH fused_computation_p1 { ROOT %p1 = f32[6]{0} parameter(1) } SUBGRAPH fused_computation_p0 { ROOT %p0 = f32[6]{0} parameter(0) })"; EXPECT_EQ(computation.ToString(6), kExpected); } TEST_F(ComputationPartitionerTest, Epilogue) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fused_computation { p0 = f32[4] parameter(0) c0 = f32[] constant(0) reduce = f32[] reduce(p0, c0), dimensions={0}, to_apply=add bitcast = f32[1] bitcast(reduce) abs = f32[1] abs(bitcast) log = f32[1] log(abs) sign = f32[1] sign(bitcast) ROOT tuple = (f32[1], f32[1]) tuple(log, sign) })") .value(); auto* fused_computation = module->GetComputationWithName("fused_computation"); EpilogueSpecification epilogue{ {fused_computation->GetInstructionWithName("reduce")}, {fused_computation->GetInstructionWithName("log"), fused_computation->GetInstructionWithName("sign")}, {1, 42}, {CreateIdentityMap( fused_computation->root_instruction()->shape().tuple_shapes(0), &mlir_context_)}}; PartitionedComputations fusion(fused_computation, &mlir_context_, {epilogue}); mlir::ImplicitLocOpBuilder builder(mlir::UnknownLoc::get(&mlir_context_), &mlir_context_); EXPECT_EQ( PrintAndErase( CreateSubgraphMlirFunction(fusion.epilogues().front(), builder)), "func.func private @fused_computation__epilogue__log_sign(tensor<4xf32>, " "index {xla.range = [0 : index, 0 : index]}, " "index {xla.range = [0 : index, 41 : index]}, " "f32) -> (f32, f32)"); } TEST_F(ComputationPartitionerTest, TransposeAsRoot) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module fused_computation { %p0 = f32[64, 32] parameter(0) %p1 = f32[64, 32] parameter(1) %add = f32[64, 32] add(p0, p1) %transpose = f32[32, 64] transpose(%add), dimensions={1, 0} %exp = f32[32, 64] exponential(%transpose) ROOT %root = f32[32, 64] tanh(%exp) })") .value(); auto* fusion = module->GetComputationWithName("fused_computation"); ASSERT_NE(fusion, nullptr); PartitionedComputation computation( fusion, &mlir_context_, [](const HloInstruction* instr) { return instr->opcode() == HloOpcode::kTranspose; }); ASSERT_THAT(computation.subgraphs(), SizeIs(2)); EXPECT_THAT(computation.GetRootSubgraph().roots, SizeIs(1)); EXPECT_THAT(computation.GetRootSubgraph().instructions, SizeIs(2)); } TEST_F(ComputationPartitionerTest, PartiallyMergable) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module fused_computation { %p0 = f32[10,10] parameter(0) %p1 = f32[10,10] parameter(1) %add = f32[10,10] add(%p0, %p1) %transpose = f32[10,10] transpose(%add), dimensions={1,0} ROOT %sub = f32[10,10] subtract(%add, %transpose) })") .value(); auto* fusion = module->GetComputationWithName("fused_computation"); ASSERT_NE(fusion, nullptr); PartitionedComputation computation(fusion, &mlir_context_); auto transpose = fusion->GetInstructionWithName("transpose"); auto sub = fusion->GetInstructionWithName("sub"); ASSERT_THAT(computation.subgraphs(), SizeIs(2)); EXPECT_THAT(computation.GetRootSubgraph().instructions, UnorderedElementsAre(transpose, sub)); } TEST_F(ComputationPartitionerTest, SubgraphSignatures) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module add { %p0 = f32[] parameter(0) %p1 = f32[] parameter(1) ROOT %add = f32[] add(%p0, %p1) } fusion { %p0 = f32[10,10]{0,1} parameter(0) %p1 = f32[10,10]{1,0} parameter(1) %c0 = f32[] constant(2) %bc = f32[10,10]{0,1} bitcast(%p1) %add = f32[10,10] add(%p0, %bc) ROOT %reduce = f32[10] reduce(%add, %c0), dimensions={1}, to_apply=add } ENTRY main { %p0 = f32[10,10] parameter(0) %p1 = f32[10,10] parameter(1) ROOT %fusion = f32[10] fusion(%p0, %p1), kind=kLoop, calls=fusion })") .value(); mlir::MLIRContext context; context.loadDialect<mlir::func::FuncDialect>(); mlir::ImplicitLocOpBuilder builder(mlir::UnknownLoc::get(&context), &context); PartitionedComputation fusion(module->GetComputationWithName("fusion"), &mlir_context_); EXPECT_EQ( PrintAndErase( CreateSubgraphMlirFunction(fusion.GetRootSubgraph(), builder)), "func.func private @fusion_reduce(tensor<10x10xf32, dense<[0, 1]> : " "tensor<2xi64>>, tensor<10x10xf32>, index {xla.range = [0 : index, 9 : " "index]}) -> f32"); PartitionedComputation add(module->GetComputationWithName("add"), &mlir_context_); EXPECT_EQ( PrintAndErase(CreateSubgraphMlirFunction(add.GetRootSubgraph(), builder)), "func.func private @add_add(f32, f32) -> f32"); } } } } }
2,137
cpp
tensorflow/tensorflow
mlir_fusion_emitter
third_party/xla/xla/service/gpu/fusions/mlir/mlir_fusion_emitter.cc
third_party/xla/xla/service/gpu/fusions/mlir/mlir_fusion_emitter_test.cc
#ifndef XLA_SERVICE_GPU_FUSIONS_MLIR_MLIR_FUSION_EMITTER_H_ #define XLA_SERVICE_GPU_FUSIONS_MLIR_MLIR_FUSION_EMITTER_H_ #include <functional> #include <string> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/ImplicitLocOpBuilder.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/IR/Value.h" #include "mlir/IR/ValueRange.h" #include "mlir/Pass/PassManager.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/mlir/tools/mlir_replay/public/compiler_trace.pb.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/fusions/fusion_emitter.h" #include "xla/service/gpu/fusions/mlir/computation_partitioner.h" #include "xla/service/gpu/ir_emitter_context.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/stream_executor/device_description.h" namespace xla { namespace gpu { class MlirFusionEmitterBase : public KernelFusionInterface { public: absl::StatusOr<FusionEmissionResult> Emit( IrEmitterContext& ir_emitter_context, const HloFusionInstruction& fusion) const final; absl::StatusOr<std::unique_ptr<llvm::Module>> CreateLLVMModule( mlir::MLIRContext& mlir_context, llvm::LLVMContext& llvm_context, const se::DeviceDescription& device, const HloFusionInstruction& fusion, const std::string& entry_function_name, const BufferAssignment* buffer_assignment) const; absl::StatusOr<mlir::OwningOpRef<mlir::ModuleOp>> CreateMLIRModule( mlir::MLIRContext& context, const HloFusionInstruction& fusion, const std::string& entry_function_name, const BufferAssignment* buffer_assignment, mlir::interpreter::MlirCompilationTrace* trace = nullptr) const; protected: virtual std::vector<mlir_converter::EpilogueSpecification> GetEpilogues( const HloFusionInstruction& fusion, mlir::MLIRContext* mlir_context) const { return {}; } virtual absl::Status EmitEntryFunction( const mlir_converter::PartitionedComputations& computations, const mlir_converter::CallTargetProvider& call_targets, mlir::func::FuncOp entry_function, const HloFusionInstruction& fusion) const = 0; absl::flat_hash_map<const HloInstruction*, mlir::ValueRange> EmitEpilogue( int epilogue_index, const mlir_converter::PartitionedComputations& computations, mlir::func::FuncOp entry_fn, const absl::flat_hash_map<const HloInstruction*, llvm::SmallVector<mlir::Value>>& injected, mlir::ValueRange output_indices, mlir::ImplicitLocOpBuilder& builder) const; llvm::SmallVector<mlir::Value> EmitThreadLoopNest( mlir::ImplicitLocOpBuilder& b, mlir::ValueRange outputs, const IndexingMap& indexing_map, const std::function<llvm::SmallVector<mlir::Value>( mlir::ValueRange outputs, mlir::ValueRange dim_values, mlir::ValueRange symbol_values)>& create_body, bool vectorize = false) const; mlir::Value EmitBlockId(mlir::ImplicitLocOpBuilder& builder, int dim) const; mlir::Value EmitThreadId(mlir::ImplicitLocOpBuilder& builder, int dim) const; llvm::SmallVector<mlir::Value> EmitThreadAndBlockIds( mlir::ImplicitLocOpBuilder& builder) const; private: absl::Status EmitMlir(mlir::ModuleOp module, mlir::func::FuncOp entry_function, const HloFusionInstruction& fusion) const; absl::Status RunPassPipeline( mlir::ModuleOp module, mlir::PassManager& pm, mlir::interpreter::MlirCompilationTrace* trace) const; }; } } #endif #include "xla/service/gpu/fusions/mlir/mlir_fusion_emitter.h" #include <cstdint> #include <functional> #include <iterator> #include <memory> #include <optional> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "llvm/ADT/SmallVector.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicsNVPTX.h" #include "llvm/Linker/Linker.h" #include "llvm/Support/Casting.h" #include "mlir/Conversion/AffineToStandard/AffineToStandard.h" #include "mlir/Conversion/ComplexToStandard/ComplexToStandard.h" #include "mlir/Conversion/ReconcileUnrealizedCasts/ReconcileUnrealizedCasts.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" #include "mlir/Dialect/ControlFlow/IR/ControlFlow.h" #include "mlir/Dialect/DLTI/DLTI.h" #include "mlir/Dialect/Func/Extensions/InlinerExtension.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/GPU/IR/GPUDialect.h" #include "mlir/Dialect/LLVMIR/LLVMDialect.h" #include "mlir/Dialect/LLVMIR/NVVMDialect.h" #include "mlir/Dialect/Math/IR/Math.h" #include "mlir/Dialect/MemRef/Transforms/Passes.h" #include "mlir/Dialect/SCF/IR/SCF.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/Dialect/Vector/IR/VectorOps.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/DialectRegistry.h" #include "mlir/IR/ImplicitLocOpBuilder.h" #include "mlir/IR/Location.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/IR/Types.h" #include "mlir/Interfaces/DataLayoutInterfaces.h" #include "mlir/Pass/PassManager.h" #include "mlir/Support/LLVM.h" #include "mlir/Target/LLVMIR/Dialect/Builtin/BuiltinToLLVMIRTranslation.h" #include "mlir/Target/LLVMIR/Dialect/LLVMIR/LLVMToLLVMIRTranslation.h" #include "mlir/Target/LLVMIR/Dialect/NVVM/NVVMToLLVMIRTranslation.h" #include "mlir/Target/LLVMIR/Export.h" #include "mlir/Transforms/Passes.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/mlir/tools/mlir_replay/public/compiler_trace.pb.h" #include "xla/mlir/tools/mlir_replay/public/compiler_trace_instrumentation.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" #include "xla/mlir_hlo/mhlo/transforms/passes.h" #include "xla/service/buffer_assignment.h" #include "xla/service/dump.h" #include "xla/service/gpu/fusions/fusion_emitter.h" #include "xla/service/gpu/fusions/mlir/computation_partitioner.h" #include "xla/service/gpu/fusions/mlir/elemental_hlo_to_mlir.h" #include "xla/service/gpu/fusions/mlir/ir/xla_gpu_ops.h" #include "xla/service/gpu/fusions/mlir/passes.h" #include "xla/service/gpu/fusions/mlir/type_util.h" #include "xla/service/gpu/ir_emitter_context.h" #include "xla/service/gpu/kernel_arguments.h" #include "xla/service/gpu/kernel_reuse_cache.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/service/gpu/runtime/kernel_thunk.h" #include "xla/service/gpu/target_util.h" #include "xla/service/llvm_ir/llvm_util.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_description.h" #include "xla/tsl/framework/mlir/status_scoped_diagnostic_handler.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using llvm::SmallVector; using mlir::Value; using mlir::ValueRange; void AddRanges(llvm::Function* func, const LaunchDimensions& launch_dims, llvm::Module* module) { for (auto& block : *func) { for (auto& instr : block) { if (auto* call = llvm::dyn_cast<llvm::CallInst>(&instr)) { if (auto* callee = call->getCalledFunction()) { switch (callee->getIntrinsicID()) { case llvm::Intrinsic::nvvm_read_ptx_sreg_tid_x: llvm_ir::AddRangeMetadata( 0, launch_dims.thread_counts_per_block().x, call, module); break; case llvm::Intrinsic::nvvm_read_ptx_sreg_tid_y: llvm_ir::AddRangeMetadata( 0, launch_dims.thread_counts_per_block().y, call, module); break; case llvm::Intrinsic::nvvm_read_ptx_sreg_tid_z: llvm_ir::AddRangeMetadata( 0, launch_dims.thread_counts_per_block().z, call, module); break; case llvm::Intrinsic::nvvm_read_ptx_sreg_ctaid_x: llvm_ir::AddRangeMetadata(0, launch_dims.block_counts().x, call, module); break; case llvm::Intrinsic::nvvm_read_ptx_sreg_ctaid_y: llvm_ir::AddRangeMetadata(0, launch_dims.block_counts().y, call, module); break; case llvm::Intrinsic::nvvm_read_ptx_sreg_ctaid_z: llvm_ir::AddRangeMetadata(0, launch_dims.block_counts().z, call, module); break; } } } } } } bool Needs64Bits(const Shape& shape) { return shape.IsArray() ? !IsInt32(ShapeUtil::ElementsIn(shape)) : absl::c_any_of(shape.tuple_shapes(), Needs64Bits); } bool Is64BitIndex(const HloInstruction* instr, int operand) { const auto& shape = instr->operand(operand)->shape(); return shape.element_type() == PrimitiveType::S64 || shape.element_type() == PrimitiveType::U64; } bool Needs64BitIndices(const HloComputation* computation) { for (auto* instr : computation->instructions()) { switch (instr->opcode()) { case HloOpcode::kDynamicSlice: case HloOpcode::kDynamicUpdateSlice: for (int i = 1; i < instr->operand_count(); ++i) { if (Is64BitIndex(instr, i)) return true; } break; case HloOpcode::kGather: case HloOpcode::kScatter: CHECK(instr->shape().IsArray()) << "Variadic scatter is unsupported."; if (Is64BitIndex(instr, 1)) return true; break; default: break; } if (Needs64Bits(instr->shape()) || absl::c_any_of(instr->called_computations(), Needs64BitIndices)) { return true; } } return false; } } Value MlirFusionEmitterBase::EmitBlockId(mlir::ImplicitLocOpBuilder& builder, int dim) const { const auto& counts = launch_dimensions().block_counts(); int64_t count = dim == 0 ? counts.x : dim == 1 ? counts.y : counts.z; auto block_id = builder.create<mlir::gpu::BlockIdOp>( static_cast<mlir::gpu::Dimension>(dim)); block_id->setAttr("xla.range", builder.getIndexArrayAttr({0, count - 1})); return block_id; } Value MlirFusionEmitterBase::EmitThreadId(mlir::ImplicitLocOpBuilder& builder, int dim) const { const auto& counts = launch_dimensions().thread_counts_per_block(); int64_t count = dim == 0 ? counts.x : dim == 1 ? counts.y : counts.z; auto thread_id = builder.create<mlir::gpu::ThreadIdOp>( static_cast<mlir::gpu::Dimension>(dim)); thread_id->setAttr("xla.range", builder.getIndexArrayAttr({0, count - 1})); return thread_id; } llvm::SmallVector<Value> MlirFusionEmitterBase::EmitThreadAndBlockIds( mlir::ImplicitLocOpBuilder& builder) const { auto& b = builder; return {EmitThreadId(b, 0), EmitThreadId(b, 1), EmitThreadId(b, 2), EmitBlockId(b, 0), EmitBlockId(b, 1), EmitBlockId(b, 2)}; } absl::StatusOr<FusionEmissionResult> MlirFusionEmitterBase::Emit( IrEmitterContext& ir_emitter_context, const HloFusionInstruction& fusion) const { VLOG(5) << "Fusion: " << fusion.fused_instructions_computation()->ToString(); TF_ASSIGN_OR_RETURN( auto args, KernelArguments::Create(ir_emitter_context.buffer_assignment(), &fusion)); auto launch_dims = launch_dimensions(); auto [status_or_entry, cached] = ir_emitter_context.kernel_cache().GetWithStatus( fusion.fused_instructions_computation(), args.args(), "", [&]() -> absl::StatusOr<KernelReuseCache::Entry> { std::string kernel_name = ir_emitter_context.name_uniquer()->GetUniqueName( llvm_ir::SanitizeFunctionName(std::string(fusion.name()))); if (ir_emitter_context.emit_kernels()) { TF_ASSIGN_OR_RETURN( auto module, CreateLLVMModule( *ir_emitter_context.mlir_context(), ir_emitter_context.llvm_module()->getContext(), ir_emitter_context.gpu_device_info(), fusion, kernel_name, &ir_emitter_context.buffer_assignment())); auto* kernel_func = module->getFunction(kernel_name); AddRanges(kernel_func, launch_dims, module.get()); auto* target = ir_emitter_context.llvm_module(); module->setDataLayout(target->getDataLayout()); module->setTargetTriple(target->getTargetTriple()); llvm::IRBuilder<> builder(module->getContext()); AnnotateFunctionAsGpuKernel(module.get(), kernel_func, &builder); TF_RETURN_IF_ERROR(AnnotateKernelLaunchDimensions( ir_emitter_context.gpu_device_info(), launch_dims, kernel_name, module.get())); CHECK(!llvm::Linker::linkModules( *target, std::move(module), llvm::Linker::Flags::OverrideFromSrc)); } else { VLOG(3) << "Skipped kernel compilation."; } return KernelReuseCache::Entry{kernel_name, launch_dims, std::nullopt, 0}; }); TF_ASSIGN_OR_RETURN(const KernelReuseCache::Entry* entry, status_or_entry); if (cached) { VLOG(3) << "Reuse: " << fusion.name() << " -> " << entry->kernel_name; } FusionEmissionResult result; result.thunks.emplace_back(std::make_unique<KernelThunk>( &fusion, entry->kernel_name, args.args(), launch_dims, entry->cluster_dim, entry->shmem_bytes)); return result; } absl::StatusOr<std::unique_ptr<llvm::Module>> MlirFusionEmitterBase::CreateLLVMModule( mlir::MLIRContext& mlir_context, llvm::LLVMContext& llvm_context, const se::DeviceDescription& device, const HloFusionInstruction& fusion, const std::string& entry_function_name, const BufferAssignment* buffer_assignment) const { bool is_amd = std::holds_alternative<se::RocmComputeCapability>( device.gpu_compute_capability()); HloModule* hlo_module = fusion.GetModule(); std::unique_ptr<mlir::interpreter::MlirCompilationTrace> trace = nullptr; if (DumpingEnabledForHloModule(*hlo_module) && DumpingEnabledForHloPass("mlir-fusion-emitter", hlo_module->config().debug_options())) { trace = std::make_unique<mlir::interpreter::MlirCompilationTrace>(); } TF_RET_CHECK(!is_amd) << "Unsupported device type: " << device.name(); TF_ASSIGN_OR_RETURN( auto module, CreateMLIRModule(mlir_context, fusion, entry_function_name, buffer_assignment)); mlir::PassManager pm(&mlir_context); pm.addPass(CreateEraseDeadFunctionsPass()); pm.addPass(mlir::createCSEPass()); pm.addPass(CreateLowerXlaGpuToScfPass()); pm.addPass(mlir::createInlinerPass({}, [&](mlir::OpPassManager& pm) { pm.addPass(mlir::createCSEPass()); })); pm.addPass(mlir::createCanonicalizerPass()); pm.addPass(mlir::createCSEPass()); pm.addPass(mlir::mhlo::createConvertToSignlessPass()); pm.addPass(CreatePropagateSliceIndicesPass()); pm.addPass(mlir::createLoopInvariantCodeMotionPass()); pm.addNestedPass<mlir::func::FuncOp>(CreateUnswitchLoopsPass()); pm.addPass(mlir::createLoopInvariantCodeMotionPass()); pm.addNestedPass<mlir::func::FuncOp>(CreateVectorizeLoadsAndStoresPass()); pm.addNestedPass<mlir::func::FuncOp>(CreateOptimizeLoopsPass()); pm.addNestedPass<mlir::func::FuncOp>(CreateConvertPureCallOpsPass()); pm.addPass(CreateLowerTensorsPass( is_amd, is_amd ? device.rocm_compute_capability().gcn_arch_name() : device.cuda_compute_capability().ToString())); pm.addPass(mlir::createConvertComplexToStandardPass()); pm.addPass(CreateMergePointersToSameSlicePass()); pm.addPass(mlir::createCanonicalizerPass()); pm.addPass(mlir::createCSEPass()); pm.addNestedPass<mlir::func::FuncOp>(CreateSimplifyArithPass()); pm.addPass(CreateSimplifyAffinePass()); pm.addPass(mlir::createLowerAffinePass()); pm.addPass(mlir::createLoopInvariantCodeMotionPass()); pm.addPass(mlir::createSymbolDCEPass()); pm.addPass(mlir::createCSEPass()); pm.addPass(CreateExpandFloatOpsPass( !device.cuda_compute_capability().IsAtLeastAmpere())); pm.addPass(CreateLowerToLLVMPass()); pm.addPass(mlir::createReconcileUnrealizedCastsPass()); auto pipeline_status = RunPassPipeline(module.get(), pm, trace.get()); if (trace) { DumpPerModuleProtobufToFile( *hlo_module, *trace, hlo_module->config().debug_options(), absl::StrCat(entry_function_name, ".mlir-trace")); } TF_RETURN_IF_ERROR(pipeline_status); auto llvm_module = mlir::translateModuleToLLVMIR(module.get(), llvm_context); TF_RET_CHECK(llvm_module != nullptr) << "Failed to translate module to LLVM IR."; return llvm_module; } absl::StatusOr<mlir::OwningOpRef<mlir::ModuleOp>> MlirFusionEmitterBase::CreateMLIRModule( mlir::MLIRContext& context, const HloFusionInstruction& fusion, const std::string& entry_function_name, const BufferAssignment* buffer_assignment, mlir::interpreter::MlirCompilationTrace* trace) const { context.loadDialect<mlir::DLTIDialect, mlir::tensor::TensorDialect, mlir::func::FuncDialect, mlir::affine::AffineDialect, mlir::arith::ArithDialect, mlir::cf::ControlFlowDialect, mlir::math::MathDialect, mlir::scf::SCFDialect, mlir::mhlo::MhloDialect, mlir::gpu::GPUDialect, mlir::vector::VectorDialect, mlir::NVVM::NVVMDialect, xla::gpu::XlaGpuDialect>(); mlir::DialectRegistry registry; mlir::func::registerInlinerExtension(registry); mlir::registerBuiltinDialectTranslation(registry); mlir::registerLLVMDialectTranslation(registry); mlir::registerNVVMDialectTranslation(registry); context.appendDialectRegistry(registry); mlir::OpBuilder builder(&context); auto loc = mlir::NameLoc::get(builder.getStringAttr(fusion.name())); mlir::OwningOpRef<mlir::ModuleOp> module = llvm_ir::CreateMlirModuleOp(loc); SmallVector<mlir::Type> param_types; std::optional<KernelArguments> args; if (buffer_assignment != nullptr) { TF_ASSIGN_OR_RETURN(args, KernelArguments::Create(*buffer_assignment, &fusion)); } int next_slice_index = 0; absl::flat_hash_map<BufferAllocation::Slice, std::optional<int>> slice_indices; auto get_arg_attrs = [&](int index) -> absl::StatusOr<mlir::Attribute> { if (!args) { return builder.getDictionaryAttr({builder.getNamedAttr( "xla.slice_index", builder.getIndexAttr(next_slice_index++))}); } const auto& arg = args->args()[index]; SmallVector<mlir::NamedAttribute> attrs; attrs.push_back(builder.getNamedAttr( "xla.slice_index", builder.getIndexAttr(arg.llvm_arg_index()))); attrs.push_back( builder.getNamedAttr(mlir::LLVM::LLVMDialect::getAlignAttrName(), builder.getIndexAttr(arg.alignment()))); attrs.push_back(builder.getNamedAttr( mlir::LLVM::LLVMDialect::getDereferenceableAttrName(), builder.getIndexAttr(arg.slice().size()))); if (!arg.written()) { attrs.push_back( builder.getNamedAttr("xla.invariant", builder.getUnitAttr())); } return builder.getDictionaryAttr(attrs); }; SmallVector<mlir::Attribute> arg_attrs; int arg_index = 0; for (auto* param : fusion.operands()) { param_types.push_back( mlir_converter::TensorShapeToMlirType(param->shape(), builder)); TF_ASSIGN_OR_RETURN(arg_attrs.emplace_back(), get_arg_attrs(arg_index++)); } auto result_types = mlir_converter::ShapeToMlirTypes(fusion.shape(), builder); param_types.append(result_types.begin(), result_types.end()); TF_RETURN_IF_ERROR(ShapeUtil::ForEachSubshapeWithStatus( fusion.shape(), [&](const auto& shape, const ShapeIndex& index) { if (shape.IsArray()) { TF_ASSIGN_OR_RETURN(arg_attrs.emplace_back(), get_arg_attrs(arg_index++)); } return absl::OkStatus(); })); builder.setInsertionPointToStart(module->getBody()); auto entry_func = builder.create<mlir::func::FuncOp>( loc, entry_function_name, mlir::FunctionType::get(&context, param_types, result_types), mlir::StringAttr{}, mlir::ArrayAttr::get(&context, arg_attrs), mlir::ArrayAttr{}); entry_func->setAttr("xla.entry", mlir::UnitAttr::get(&context)); TF_RETURN_IF_ERROR(EmitMlir(module.get(), entry_func, fusion)); mlir::PassManager pm(&context); pm.addNestedPass<mlir::func::FuncOp>(CreateSimplifyArithPass()); pm.addPass(mlir::createCanonicalizerPass()); pm.addPass(mlir::createCSEPass()); TF_RETURN_IF_ERROR(RunPassPipeline(module.get(), pm, trace)); return module; } SmallVector<Value> MlirFusionEmitterBase::EmitThreadLoopNest( mlir::ImplicitLocOpBuilder& b, ValueRange outputs, const IndexingMap& indexing_map, const std::function< SmallVector<Value>(ValueRange outputs_tensors, ValueRange dim_values, ValueRange symbol_values)>& create_body, bool vectorize) const { return mlir_converter::EmitLoopNest(b, EmitThreadAndBlockIds(b), outputs, indexing_map, create_body, vectorize); } absl::Status MlirFusionEmitterBase::EmitMlir( mlir::ModuleOp module, mlir::func::FuncOp entry_function, const HloFusionInstruction& fusion) const { std::vector<mlir_converter::EpilogueSpecification> epilogues = GetEpilogues(fusion, module->getContext()); mlir_converter::PartitionedComputations computations( fusion.fused_instructions_computation(), module->getContext(), epilogues); auto subgraph_to_mlir_fn = computations.DeclareFunctions(module); for (const auto& epilogue : epilogues) { for (auto* custom : epilogue.heroes) { if (custom->user_count() == 0) { subgraph_to_mlir_fn.extract(&computations.FindSubgraph(custom)) .mapped() .erase(); } } } auto* root = fusion.fused_instructions_computation()->root_instruction(); if (root->opcode() == HloOpcode::kTuple && !epilogues.empty()) { subgraph_to_mlir_fn.extract(&computations.FindSubgraph(root)) .mapped() .erase(); } auto call_targets = computations.CreateCallTargetProvider(subgraph_to_mlir_fn); for (const auto& comp : computations.partitioned_computations()) { for (const auto& subgraph : comp.subgraphs()) { if (subgraph_to_mlir_fn.contains(&subgraph)) { TF_RETURN_IF_ERROR(mlir_converter::SubgraphToMlirFunction( comp, subgraph, subgraph_to_mlir_fn[&subgraph], call_targets)); } } } for (const auto& epilogue : computations.epilogues()) { if (epilogue.roots.empty()) continue; TF_RETURN_IF_ERROR(mlir_converter::SubgraphToMlirFunction( computations.FindPartitionedComputation( fusion.fused_instructions_computation()), epilogue, subgraph_to_mlir_fn[&epilogue], call_targets)); } int index_bitwidth = Needs64BitIndices(fusion.fused_instructions_computation()) ? 64 : 32; mlir::OpBuilder b(module->getContext()); auto index_layout = mlir::DataLayoutEntryAttr::get( b.getIndexType(), b.getI32IntegerAttr(index_bitwidth)); module->setAttr( mlir::DLTIDialect::kDataLayoutAttrName, mlir::DataLayoutSpecAttr::get(module->getContext(), {index_layout})); return EmitEntryFunction(computations, call_targets, entry_function, fusion); } absl::flat_hash_map<const HloInstruction*, ValueRange> MlirFusionEmitterBase::EmitEpilogue( int epilogue_index, const mlir_converter::PartitionedComputations& computations, mlir::func::FuncOp entry_fn, const absl::flat_hash_map<const HloInstruction*, llvm::SmallVector<Value>>& injected, ValueRange output_indices, mlir::ImplicitLocOpBuilder& builder) const { const auto& epilogue = computations.epilogues().at(epilogue_index); if (epilogue.roots.empty()) { return {}; } auto epilogue_fn = mlir::cast<mlir::func::FuncOp>( entry_fn->getParentOfType<mlir::ModuleOp>().lookupSymbol(epilogue.name)); SmallVector<Value> operands = ValueRange(entry_fn.getArguments().take_front( computations.fusion()->num_parameters())); absl::c_copy(output_indices, std::back_inserter(operands)); int injected_offset = operands.size(); operands.resize(injected_offset + epilogue.num_injected_values); for (auto [injected_instruction, start] : epilogue.injected_value_starts) { absl::c_copy(injected.at(injected_instruction), operands.begin() + injected_offset + start); } ValueRange results = builder.create<PureCallOp>(epilogue_fn, operands).getResults(); absl::flat_hash_map<const HloInstruction*, ValueRange> results_per_root; for (auto* root : epilogue.roots) { int arity = root->shape().IsTuple() ? root->shape().tuple_shapes().size() : 1; results_per_root[root] = results.take_front(arity); results = results.drop_front(arity); } CHECK_EQ(results.size(), 0); return results_per_root; } absl::Status MlirFusionEmitterBase::RunPassPipeline( mlir::ModuleOp module, mlir::PassManager& pm, mlir::interpreter::MlirCompilationTrace* trace) const { if (VLOG_IS_ON(5)) { module.getContext()->disableMultithreading(); pm.enableIRPrinting(); } if (trace) { module.getContext()->disableMultithreading(); pm.addInstrumentation( std::make_unique<mlir::interpreter::MlirCompilerTraceInstrumentation>( *trace)); } tsl::StatusScopedDiagnosticHandler diagnostic_handler(module.getContext()); (void)pm.run(module); return diagnostic_handler.consumeStatus(); } } }
#include "xla/service/gpu/fusions/mlir/mlir_fusion_emitter.h" #include <cstdint> #include <optional> #include <string> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "llvm/IR/LLVMContext.h" #include "llvm/Support/raw_ostream.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" #include "mlir/Dialect/Complex/IR/Complex.h" #include "mlir/Dialect/Func/Extensions/InlinerExtension.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/GPU/IR/GPUDialect.h" #include "mlir/Dialect/LLVMIR/NVVMDialect.h" #include "mlir/Dialect/Math/IR/Math.h" #include "mlir/Dialect/SCF/IR/SCF.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/IR/ImplicitLocOpBuilder.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/ValueRange.h" #include "mlir/Pass/PassManager.h" #include "mlir/Target/LLVMIR/Dialect/Builtin/BuiltinToLLVMIRTranslation.h" #include "mlir/Target/LLVMIR/Dialect/LLVMIR/LLVMToLLVMIRTranslation.h" #include "mlir/Target/LLVMIR/Dialect/NVVM/NVVMToLLVMIRTranslation.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" #include "xla/service/gpu/fusions/mlir/computation_partitioner.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { class DummyCopyFusionEmitter : public MlirFusionEmitterBase { public: LaunchDimensions launch_dimensions() const final { return {1, 100}; } std::optional<IndexingMap> ComputeThreadIdToOutputIndexing( int64_t, mlir::MLIRContext*) const final { return std::nullopt; } std::optional<IndexingMap> ComputeThreadIdToInputIndexing( int64_t, int64_t, mlir::MLIRContext*) const final { return std::nullopt; } protected: absl::Status EmitEntryFunction( const mlir_converter::PartitionedComputations& computations, const mlir_converter::CallTargetProvider& call_targets, mlir::func::FuncOp entry_function, const HloFusionInstruction& fusion) const { mlir::ImplicitLocOpBuilder b(entry_function.getLoc(), entry_function); b.setInsertionPointToStart(entry_function.addEntryBlock()); auto thread_id = EmitThreadId(b, 0); auto value = b.create<mlir::tensor::ExtractOp>( entry_function.getArgument(0), mlir::ValueRange{thread_id}); auto result = b.create<mlir::tensor::InsertOp>( value, entry_function.getArgument(1), mlir::ValueRange{thread_id}); b.create<mlir::func::ReturnOp>(result->getResults()); return absl::OkStatus(); } }; class MlirFusionEmitterTest : public HloTestBase { protected: MlirFusionEmitterTest() { context_.loadDialect<mlir::tensor::TensorDialect, mlir::func::FuncDialect, mlir::affine::AffineDialect, mlir::arith::ArithDialect, mlir::complex::ComplexDialect, mlir::math::MathDialect, mlir::scf::SCFDialect, mlir::mhlo::MhloDialect, mlir::gpu::GPUDialect, mlir::NVVM::NVVMDialect>(); mlir::DialectRegistry registry; mlir::func::registerInlinerExtension(registry); mlir::registerBuiltinDialectTranslation(registry); mlir::registerLLVMDialectTranslation(registry); mlir::registerNVVMDialectTranslation(registry); context_.appendDialectRegistry(registry); } mlir::MLIRContext context_; stream_executor::DeviceDescription device_info_ = TestGpuDeviceInfo::RTXA6000DeviceInfo(); }; constexpr absl::string_view kModule = R"( fused_computation { ROOT %p0 = f32[100] parameter(0) } ENTRY main { %p0 = f32[100] parameter(0) ROOT fusion = f32[100] fusion(%p0), kind=kLoop, calls=fused_computation })"; TEST_F(MlirFusionEmitterTest, CreateMlirModule) { auto module = ParseAndReturnVerifiedModule(kModule).value(); DummyCopyFusionEmitter emitter; TF_ASSERT_OK_AND_ASSIGN( auto mlir_module, emitter.CreateMLIRModule( context_, *Cast<HloFusionInstruction>( module->entry_computation()->root_instruction()), "fusion", nullptr)); std::string out; llvm::raw_string_ostream stream(out); stream << *mlir_module; TF_ASSERT_OK_AND_ASSIGN(auto filecheck_result, RunFileCheck(out, R"( )")); EXPECT_TRUE(filecheck_result); } TEST_F(MlirFusionEmitterTest, CreateLLVMModule) { llvm::LLVMContext llvm_context; auto module = ParseAndReturnVerifiedModule(kModule).value(); DummyCopyFusionEmitter emitter; TF_ASSERT_OK_AND_ASSIGN( auto llvm_module, emitter.CreateLLVMModule( context_, llvm_context, device_info_, *Cast<HloFusionInstruction>( module->entry_computation()->root_instruction()), "fusion", nullptr)); std::string out; llvm::raw_string_ostream stream(out); stream << *llvm_module; TF_ASSERT_OK_AND_ASSIGN(auto filecheck_result, RunFileCheck(out, R"( )")); EXPECT_TRUE(filecheck_result); } } } }
2,138
cpp
tensorflow/tensorflow
affine_map_printer
third_party/xla/xla/service/gpu/model/affine_map_printer.cc
third_party/xla/xla/service/gpu/model/affine_map_printer_test.cc
#ifndef XLA_SERVICE_GPU_MODEL_AFFINE_MAP_PRINTER_H_ #define XLA_SERVICE_GPU_MODEL_AFFINE_MAP_PRINTER_H_ #include <cstdint> #include <ostream> #include <string> #include <string_view> #include "absl/types/span.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" namespace xla { namespace gpu { class AffineMapPrinter { public: AffineMapPrinter() = default; AffineMapPrinter(AffineMapPrinter&& other) = default; AffineMapPrinter& operator=(AffineMapPrinter&& other) = default; AffineMapPrinter(absl::Span<const std::string_view> dim_names, absl::Span<const std::string_view> symbol_names); void SetSymbolName(int64_t symbol_id, llvm::StringRef name); void SetDimensionName(int64_t dim_id, llvm::StringRef name); std::string GetSymbolName(int64_t symbol_id) const; std::string GetDimensionName(int64_t dim_id) const; void Print(std::ostream& out, mlir::AffineMap affine_map) const; std::string ToString(mlir::AffineMap affine_map) const; void Print(std::ostream& out, mlir::AffineExpr affine_expr) const; std::string ToString(mlir::AffineExpr affine_expr) const; private: void PrintExprImpl(mlir::AffineExpr affine_expr, bool add_parentheses, llvm::raw_ostream& os) const; llvm::DenseMap<unsigned, std::string> dim_id_to_name_; llvm::DenseMap<unsigned, std::string> symbol_id_to_name_; }; } } #endif #include "xla/service/gpu/model/affine_map_printer.h" #include <cstdint> #include <ostream> #include <string> #include <string_view> #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/raw_ostream.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/Support/LLVM.h" namespace xla { namespace gpu { namespace { using mlir::AffineBinaryOpExpr; using mlir::AffineConstantExpr; using mlir::AffineDimExpr; using mlir::AffineExpr; using mlir::AffineExprKind; using mlir::AffineMap; using mlir::AffineSymbolExpr; } AffineMapPrinter::AffineMapPrinter( absl::Span<const std::string_view> dim_names, absl::Span<const std::string_view> symbol_names) { dim_id_to_name_.reserve(dim_names.size()); for (const auto& [index, name] : llvm::enumerate(dim_names)) { dim_id_to_name_[index] = name; } symbol_id_to_name_.reserve(symbol_names.size()); for (const auto& [index, name] : llvm::enumerate(symbol_names)) { symbol_id_to_name_[index] = name; } } void AffineMapPrinter::Print(std::ostream& out, AffineMap affine_map) const { out << ToString(affine_map); } std::string AffineMapPrinter::ToString(AffineMap affine_map) const { std::string s; llvm::raw_string_ostream ss(s); if (dim_id_to_name_.empty() && symbol_id_to_name_.empty()) { affine_map.print(ss); return s; } int dim_count = affine_map.getNumDims(); ss << '('; for (int i = 0; i < dim_count - 1; ++i) { ss << GetDimensionName(i) << ", "; } if (dim_count >= 1) { ss << GetDimensionName(dim_count - 1); } ss << ')'; int symbol_count = affine_map.getNumSymbols(); if (symbol_count != 0) { ss << '['; for (unsigned i = 0; i < symbol_count - 1; ++i) { ss << GetSymbolName(i) << ", "; } if (affine_map.getNumSymbols() >= 1) { ss << GetSymbolName(symbol_count - 1); } ss << ']'; } ss << " -> ("; llvm::interleaveComma(affine_map.getResults(), ss, [&](AffineExpr expr) { PrintExprImpl(expr, false, ss); }); ss << ')'; return s; } void AffineMapPrinter::Print(std::ostream& out, mlir::AffineExpr affine_expr) const { out << ToString(affine_expr); } std::string AffineMapPrinter::ToString(mlir::AffineExpr affine_expr) const { std::string s; llvm::raw_string_ostream ss(s); PrintExprImpl(affine_expr, false, ss); return s; } void AffineMapPrinter::PrintExprImpl(const mlir::AffineExpr affine_expr, bool add_parentheses, llvm::raw_ostream& os) const { const char* binopSpelling = nullptr; switch (affine_expr.getKind()) { case AffineExprKind::SymbolId: { unsigned symbol_id = mlir::cast<AffineSymbolExpr>(affine_expr).getPosition(); os << GetSymbolName(symbol_id); return; } case AffineExprKind::DimId: { unsigned dim_id = mlir::cast<AffineDimExpr>(affine_expr).getPosition(); os << GetDimensionName(dim_id); return; } case AffineExprKind::Constant: os << mlir::cast<AffineConstantExpr>(affine_expr).getValue(); return; case AffineExprKind::Add: binopSpelling = " + "; break; case AffineExprKind::Mul: binopSpelling = " * "; break; case AffineExprKind::FloorDiv: binopSpelling = " floordiv "; break; case AffineExprKind::CeilDiv: binopSpelling = " ceildiv "; break; case AffineExprKind::Mod: binopSpelling = " mod "; break; } auto binOp = mlir::cast<AffineBinaryOpExpr>(affine_expr); AffineExpr lhsExpr = binOp.getLHS(); AffineExpr rhsExpr = binOp.getRHS(); if (binOp.getKind() != AffineExprKind::Add) { if (add_parentheses) { os << '('; } auto rhsConst = mlir::dyn_cast<AffineConstantExpr>(rhsExpr); if (rhsConst && binOp.getKind() == AffineExprKind::Mul && rhsConst.getValue() == -1) { os << "-"; PrintExprImpl(lhsExpr, true, os); if (add_parentheses) { os << ')'; } return; } PrintExprImpl(lhsExpr, true, os); os << binopSpelling; PrintExprImpl(rhsExpr, true, os); if (add_parentheses) { os << ')'; } return; } if (add_parentheses) { os << '('; } if (auto rhs = mlir::dyn_cast<AffineBinaryOpExpr>(rhsExpr)) { if (rhs.getKind() == AffineExprKind::Mul) { AffineExpr rrhsExpr = rhs.getRHS(); if (auto rrhs = mlir::dyn_cast<AffineConstantExpr>(rrhsExpr)) { if (rrhs.getValue() == -1) { PrintExprImpl(lhsExpr, false, os); os << " - "; if (rhs.getLHS().getKind() == AffineExprKind::Add) { PrintExprImpl(rhs.getLHS(), true, os); } else { PrintExprImpl(rhs.getLHS(), false, os); } if (add_parentheses) { os << ')'; } return; } if (rrhs.getValue() < -1) { PrintExprImpl(lhsExpr, false, os); os << " - "; PrintExprImpl(rhs.getLHS(), true, os); os << " * " << -rrhs.getValue(); if (add_parentheses) { os << ')'; } return; } } } } if (auto rhsConst = mlir::dyn_cast<AffineConstantExpr>(rhsExpr)) { if (rhsConst.getValue() < 0) { PrintExprImpl(lhsExpr, false, os); os << " - " << -rhsConst.getValue(); if (add_parentheses) { os << ')'; } return; } } PrintExprImpl(lhsExpr, false, os); os << " + "; PrintExprImpl(rhsExpr, false, os); if (add_parentheses) { os << ')'; } } void AffineMapPrinter::SetSymbolName(int64_t symbol_id, llvm::StringRef name) { symbol_id_to_name_[symbol_id] = name; } void AffineMapPrinter::SetDimensionName(int64_t dim_id, llvm::StringRef name) { dim_id_to_name_[dim_id] = name; } std::string AffineMapPrinter::GetSymbolName(int64_t symbol_id) const { auto it = symbol_id_to_name_.find(symbol_id); if (it == symbol_id_to_name_.end()) { return absl::StrCat("s", symbol_id); } return it->second; } std::string AffineMapPrinter::GetDimensionName(int64_t dim_id) const { auto it = dim_id_to_name_.find(dim_id); if (it == dim_id_to_name_.end()) { return absl::StrCat("d", dim_id); } return it->second; } } }
#include "xla/service/gpu/model/affine_map_printer.h" #include <gmock/gmock.h> #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/MLIRContext.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { namespace { using ::mlir::AffineExpr; using ::mlir::AffineMap; using ::mlir::bindDims; using ::mlir::bindSymbols; using ::testing::HasSubstr; class IndexingMapTest : public HloTestBase { public: mlir::MLIRContext mlir_context_; AffineMapPrinter printer_; }; TEST_F(IndexingMapTest, AffineMapPrinterTest) { AffineExpr d0, d1, s0, s1; bindDims(&mlir_context_, d0, d1); bindSymbols(&mlir_context_, s0, s1); auto map = AffineMap::get(2, 2, {d0 + d1.floorDiv(8), s0 + s1 % 16}, &mlir_context_); printer_.SetDimensionName(0, "offset"); printer_.SetSymbolName(1, "linear_index"); EXPECT_THAT(printer_.ToString(map), HasSubstr("(offset, d1)[s0, linear_index] -> " "(offset + d1 floordiv 8, s0 + linear_index mod 16)")); } } } }
2,139
cpp
tensorflow/tensorflow
indexing_map
third_party/xla/xla/service/gpu/model/indexing_map.cc
third_party/xla/xla/service/gpu/model/indexing_map_test.cc
#ifndef XLA_SERVICE_GPU_MODEL_INDEXING_MAP_H_ #define XLA_SERVICE_GPU_MODEL_INDEXING_MAP_H_ #include <algorithm> #include <cstddef> #include <cstdint> #include <limits> #include <optional> #include <ostream> #include <string> #include <utility> #include <vector> #include "absl/types/span.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/SmallVector.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/MLIRContext.h" #include "mlir/Support/LLVM.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/model/affine_map_printer.h" namespace xla { namespace gpu { struct Interval { std::string ToString() const; void Print(std::ostream& out) const; bool IsPoint() const { return lower == upper; } bool IsFeasible() const { return lower <= upper; } int64_t GetLoopTripCount() const; bool Contains(int64_t value) const { return value >= lower && value <= upper; } struct ComparisonResult { std::optional<bool> result; ComparisonResult operator!() const { if (result) return {!*result}; return {result}; } bool operator==(const ComparisonResult& other) const { return result == other.result; } bool operator==(bool other) const { return result && *result == other; } bool operator==(std::nullopt_t) const { return !result; } bool operator!=(std::nullopt_t) const { return result.has_value(); } bool operator*() const { return *result; } }; ComparisonResult Gt(const Interval& b) const; ComparisonResult Lt(const Interval& b) const { return b.Gt(*this); } ComparisonResult Ge(const Interval& b) const { return !b.Gt(*this); } ComparisonResult Le(const Interval& b) const { return !this->Gt(b); } ComparisonResult Eq(const Interval& b) const; ComparisonResult Ne(const Interval& b) const { return !this->Eq(b); } Interval Intersect(const Interval& rhs) const { Interval result{std::max(lower, rhs.lower), std::min(upper, rhs.upper)}; if (result.upper < result.lower) { result.upper = result.lower - 1; } return result; } Interval Union(const Interval& rhs) const { return {std::min(lower, rhs.lower), std::max(upper, rhs.upper)}; } Interval operator+(const Interval& rhs) const; Interval operator*(const Interval& rhs) const; Interval min(const Interval& rhs) const { return {std::min(lower, rhs.lower), std::min(upper, rhs.upper)}; } Interval max(const Interval& rhs) const { return {std::max(lower, rhs.lower), std::max(upper, rhs.upper)}; } bool operator==(const Interval& rhs) const { return lower == rhs.lower && upper == rhs.upper; } bool operator!=(const Interval& rhs) const { return !(*this == rhs); } int64_t lower = 0; int64_t upper = 0; }; std::ostream& operator<<(std::ostream& out, const Interval& range); template <typename H> H AbslHashValue(H h, const Interval& range) { return H::combine(std::move(h), range.lower, range.upper); } inline size_t hash_value(const Interval& range) { return llvm::hash_combine(range.lower, range.upper); } class RangeEvaluator { public: RangeEvaluator(absl::Span<const Interval> dim_ranges, absl::Span<const Interval> symbol_ranges, mlir::MLIRContext* mlir_context); bool IsAlwaysPositiveOrZero(mlir::AffineExpr expr); bool IsAlwaysNegativeOrZero(mlir::AffineExpr expr); Interval ComputeExpressionRange(mlir::AffineExpr expr); mlir::MLIRContext* GetMLIRContext() const { return mlir_context_; } private: mlir::MLIRContext* mlir_context_; llvm::DenseMap<mlir::AffineExpr, Interval> expression_ranges_cache_; }; struct DimVar { Interval bounds; }; bool operator==(const DimVar& lhs, const DimVar& rhs); inline bool operator!=(const DimVar& lhs, const DimVar& rhs) { return !(lhs == rhs); } template <typename H> H AbslHashValue(H h, const DimVar& dimension) { return H::combine(std::move(h), dimension.bounds); } struct RangeVar { Interval range; }; bool operator==(const RangeVar& lhs, const RangeVar& rhs); inline bool operator!=(const RangeVar& lhs, const RangeVar& rhs) { return !(lhs == rhs); } template <typename H> H AbslHashValue(H h, const RangeVar& range_var) { return H::combine(std::move(h), range_var.range); } struct RTVar { Interval feasible_values; const HloInstruction* hlo; mlir::AffineMap map; }; bool operator==(const RTVar& lhs, const RTVar& rhs); inline bool operator!=(const RTVar& lhs, const RTVar& rhs) { return !(lhs == rhs); } template <typename H> H AbslHashValue(H h, const RTVar& rt_var) { llvm::hash_code map_hash = llvm::hash_combine(rt_var.map); return H::combine(std::move(h), rt_var.feasible_values, rt_var.hlo, static_cast<size_t>(map_hash)); } std::vector<DimVar> DimVarsFromTensorSizes( absl::Span<const int64_t> tensor_sizes); std::vector<RangeVar> RangeVarsFromTensorSizes( absl::Span<const int64_t> tensor_sizes); class IndexingMap { public: IndexingMap( mlir::AffineMap affine_map, std::vector<DimVar> dimensions, std::vector<RangeVar> range_vars, std::vector<RTVar> rt_vars, absl::Span<std::pair<mlir::AffineExpr, Interval>> constraints = {}); IndexingMap(mlir::AffineMap affine_map, std::vector<DimVar> dimensions, std::vector<RangeVar> range_vars, std::vector<RTVar> rt_vars, const llvm::DenseMap<mlir::AffineExpr, Interval>& constraints); static IndexingMap GetUndefined() { return IndexingMap(); } static IndexingMap FromTensorSizes( mlir::AffineMap affine_map, absl::Span<const int64_t> dim_upper_bounds, absl::Span<const int64_t> symbol_upper_bounds); std::string ToString( const AffineMapPrinter& printer = AffineMapPrinter()) const; void Print(std::ostream& out, const AffineMapPrinter& printer) const; bool Simplify(); mlir::MLIRContext* GetMLIRContext() const; mlir::AffineMap GetAffineMap() const { return affine_map_; } mlir::AffineMap& GetMutableAffineMap() { return affine_map_; } RangeEvaluator GetRangeEvaluator() const; const DimVar& GetDimVars(int64_t id) const { return dim_vars_[id]; } const std::vector<DimVar>& GetDimVars() const { return dim_vars_; } int64_t GetDimVarsCount() const { return dim_vars_.size(); } const RangeVar& GetRangeVar(int64_t id) const { return range_vars_[id]; } const std::vector<RangeVar>& GetRangeVars() const { return range_vars_; } int64_t GetRangeVarsCount() const { return range_vars_.size(); } const RTVar& GetRTVar(int64_t id) const { return rt_vars_[id]; } const std::vector<RTVar>& GetRTVars() const { return rt_vars_; } int64_t GetRTVarsCount() const { return rt_vars_.size(); } const Interval& GetDimensionBound(int64_t dim_id) const; Interval& GetMutableDimensionBound(int64_t dim_id); std::vector<Interval> GetDimensionBounds() const; int64_t GetDimensionCount() const { return affine_map_.getNumDims(); } const Interval& GetSymbolBound(int64_t symbol_id) const; Interval& GetMutableSymbolBound(int64_t symbol_id); std::vector<Interval> GetSymbolBounds() const; int64_t GetSymbolCount() const { return affine_map_.getNumSymbols(); } const llvm::DenseMap<mlir::AffineExpr, Interval>& GetConstraints() const { return constraints_; } int64_t GetConstraintsCount() const { return constraints_.size(); } void AddConstraint(mlir::AffineExpr expr, Interval range); bool ConstraintsSatisfied( llvm::ArrayRef<mlir::AffineExpr> dim_const_exprs, llvm::ArrayRef<mlir::AffineExpr> symbol_const_exprs) const; llvm::SmallVector<int64_t, 4> Evaluate( llvm::ArrayRef<mlir::AffineExpr> dim_const_exprs, llvm::ArrayRef<mlir::AffineExpr> symbol_const_exprs) const; bool IsKnownEmpty() const { return is_known_empty_; } bool IsUndefined() const { return affine_map_ == mlir::AffineMap(); } llvm::SmallBitVector RemoveUnusedDimensions(); llvm::SmallBitVector RemoveUnusedSymbols(); llvm::SmallBitVector RemoveUnusedVars(); bool RescaleSymbols(); bool IsRangeVarSymbol(mlir::AffineSymbolExpr symbol) const; bool IsRTVarSymbol(mlir::AffineSymbolExpr symbol) const; IndexingMap GetSubMap(unsigned int result_index) const { return {affine_map_.getSubMap({result_index}), dim_vars_, range_vars_, rt_vars_, constraints_}; } private: IndexingMap() = default; bool SimplifyConstraintExprs(); bool SimplifyConstraintRanges(); bool MergeModConstraints(); bool ReplaceConstantRTVars(); bool CompressVars(const llvm::SmallBitVector& unused_dims, const llvm::SmallBitVector& unused_symbols); void ResetToKnownEmpty(); bool VerifyVariableIntervals(); bool VerifyConstraintIntervals(); mlir::AffineMap affine_map_; std::vector<DimVar> dim_vars_; std::vector<RangeVar> range_vars_; std::vector<RTVar> rt_vars_; llvm::DenseMap<mlir::AffineExpr, Interval> constraints_; bool is_known_empty_ = false; }; std::ostream& operator<<(std::ostream& out, const IndexingMap& indexing_map); bool operator==(const IndexingMap& lhs, const IndexingMap& rhs); inline bool operator!=(const IndexingMap& lhs, const IndexingMap& rhs) { return !(lhs == rhs); } IndexingMap operator*(const IndexingMap& lhs, const IndexingMap& rhs); IndexingMap ComposeIndexingMaps(const IndexingMap& first, const IndexingMap& second); void PrintRTVars(const std::vector<RTVar>& rt_vars, int first_rt_var_symbol_index, std::ostream& out, const AffineMapPrinter& printer); template <typename H> H AbslHashValue(H h, const IndexingMap& indexing_map) { llvm::hash_code affine_map_hash = llvm::hash_combine(indexing_map.GetAffineMap()); llvm::SmallVector<size_t> constraint_hashes; constraint_hashes.reserve(indexing_map.GetConstraintsCount()); for (const auto& [expr, interval] : indexing_map.GetConstraints()) { constraint_hashes.push_back(llvm::hash_combine(expr, interval)); } h = H::combine(std::move(h), static_cast<size_t>(affine_map_hash), indexing_map.GetDimVars(), indexing_map.GetRangeVars(), indexing_map.GetRTVars()); h = H::combine_unordered(std::move(h), constraint_hashes.begin(), constraint_hashes.end()); return h; } int64_t FloorDiv(int64_t dividend, int64_t divisor); int64_t CeilDiv(int64_t dividend, int64_t divisor); } } #endif #include "xla/service/gpu/model/indexing_map.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <functional> #include <limits> #include <numeric> #include <optional> #include <ostream> #include <sstream> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/base/optimization.h" #include "absl/types/span.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/raw_ostream.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/MLIRContext.h" #include "mlir/Support/LLVM.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/model/affine_map_printer.h" #include "tsl/platform/logging.h" #ifdef __has_builtin #define XLA_GPU_MODEL_HAS_BUILTIN(x) __has_builtin(x) #else #define XLA_GPU_MODEL_HAS_BUILTIN(x) 0 #endif #if !XLA_GPU_MODEL_HAS_BUILTIN(__builtin_add_overflow) || \ !XLA_GPU_MODEL_HAS_BUILTIN(__builtin_mul_overflow) #include "absl/numeric/int128.h" #endif namespace xla { namespace gpu { namespace { using llvm::ArrayRef; using llvm::SmallBitVector; using llvm::SmallVector; using mlir::AffineBinaryOpExpr; using mlir::AffineConstantExpr; using mlir::AffineDimExpr; using mlir::AffineExpr; using mlir::AffineExprKind; using mlir::AffineMap; using mlir::AffineSymbolExpr; using mlir::getAffineBinaryOpExpr; using mlir::getAffineConstantExpr; using mlir::getAffineDimExpr; using mlir::MLIRContext; AffineExpr GetLhs(AffineExpr e) { return mlir::cast<AffineBinaryOpExpr>(e).getLHS(); } AffineExpr GetRhs(AffineExpr e) { return mlir::cast<AffineBinaryOpExpr>(e).getRHS(); } AffineExpr MapSummands(AffineExpr expr, const std::function<AffineExpr(AffineExpr)>& fn) { if (expr.getKind() == AffineExprKind::Add) { auto add = mlir::dyn_cast<AffineBinaryOpExpr>(expr); auto lhs = MapSummands(add.getLHS(), fn); auto rhs = MapSummands(add.getRHS(), fn); if (lhs == add.getLHS() && rhs == add.getRHS()) { return add; } return lhs + rhs; } return fn(expr); } void VisitSummands(mlir::AffineExpr expr, const std::function<void(mlir::AffineExpr)>& visit) { if (expr.getKind() == AffineExprKind::Add) { VisitSummands(GetLhs(expr), visit); VisitSummands(GetRhs(expr), visit); } else { visit(expr); } } class AffineExprSimplifier { public: explicit AffineExprSimplifier(RangeEvaluator* range_evaluator) : range_evaluator_(range_evaluator) {} mlir::AffineMap Simplify(mlir::AffineMap affine_map); mlir::AffineExpr Simplify(mlir::AffineExpr expr); private: std::optional<int64_t> GetConstantRhs(mlir::AffineExpr expr, AffineExprKind kind); std::pair<mlir::AffineExpr, int64_t> ExtractMultiplier( mlir::AffineExpr expr) { if (auto mul = GetConstantRhs(expr, AffineExprKind::Mul)) { return {GetLhs(expr), *mul}; } return {expr, 1}; } mlir::AffineExpr RewriteMod(mlir::AffineBinaryOpExpr mod); mlir::AffineExpr RewriteFloorDiv(mlir::AffineBinaryOpExpr div); AffineExpr SimplifyModDiv(AffineExpr dividend, int64_t divisor); AffineExpr SimplifyDivDiv(AffineExpr dividend, int64_t divisor); AffineExpr SimplifySumDiv(AffineExpr dividend, int64_t divisor); mlir::AffineExpr SimplifyOnce(mlir::AffineExpr expr); mlir::AffineExpr SimplifyWithMlir(mlir::AffineExpr expr, int num_dims, int num_symbols); mlir::AffineMap SimplifyWithMlir(mlir::AffineMap map) { llvm::SmallVector<mlir::AffineExpr, 8> exprs; for (auto e : map.getResults()) { exprs.push_back( SimplifyWithMlir(e, map.getNumDims(), map.getNumSymbols())); } return mlir::AffineMap::get(map.getNumDims(), map.getNumSymbols(), exprs, map.getContext()); } RangeEvaluator* range_evaluator_; }; AffineExpr AffineExprSimplifier::RewriteMod(AffineBinaryOpExpr mod) { auto rhs = range_evaluator_->ComputeExpressionRange(mod.getRHS()); if (!rhs.IsPoint()) { return mod; } int64_t m = rhs.lower; if (m == 0) { return mlir::getAffineConstantExpr(0, mod.getContext()); } auto lhs_simplified = SimplifyOnce(mod.getLHS()); auto lhs = range_evaluator_->ComputeExpressionRange(lhs_simplified); if (0 <= lhs.lower && lhs.upper < rhs.lower) { return lhs_simplified; } if (auto mul = GetConstantRhs(lhs_simplified, AffineExprKind::Mul); mul && *mul > 0 && (m % *mul == 0)) { return (GetLhs(lhs_simplified) % (m / *mul)) * *mul; } auto zero = getAffineConstantExpr(0, mod.getContext()); int64_t extracted_constant = 0; auto new_lhs = MapSummands(lhs_simplified, [&](AffineExpr expr) { if (auto cst = mlir::dyn_cast<AffineConstantExpr>(expr)) { extracted_constant += cst.getValue(); return zero; } if (auto multiplier = GetConstantRhs(expr, AffineExprKind::Mul); multiplier && (*multiplier % m == 0)) { return zero; } return expr; }); new_lhs = new_lhs + (extracted_constant % m); Interval no_multiplier_range{0, 0}; std::optional<int64_t> multiplier_gcd = std::nullopt; VisitSummands(new_lhs, [&](AffineExpr expr) { if (auto multiplier = GetConstantRhs(expr, AffineExprKind::Mul)) { if (multiplier_gcd.has_value()) { multiplier_gcd = std::gcd(*multiplier_gcd, *multiplier); } else { multiplier_gcd = *multiplier; } } else { auto range = range_evaluator_->ComputeExpressionRange(expr); no_multiplier_range.lower += range.lower; no_multiplier_range.upper += range.upper; } }); mlir::AffineExpr extracted = getAffineConstantExpr(0, mod.getContext()); if (multiplier_gcd.has_value()) { if (m % *multiplier_gcd == 0 && no_multiplier_range.lower >= 0 && no_multiplier_range.upper < *multiplier_gcd) { new_lhs = MapSummands(new_lhs, [&](AffineExpr expr) { if (GetConstantRhs(expr, AffineExprKind::Mul)) { return expr; } extracted = extracted + expr; return zero; }); } } return new_lhs % mod.getRHS() + extracted; } AffineExpr AffineExprSimplifier::SimplifyModDiv(AffineExpr dividend, int64_t divisor) { if (auto mod = GetConstantRhs(dividend, AffineExprKind::Mod); mod && (*mod % divisor == 0)) { return GetLhs(dividend).floorDiv(divisor) % (*mod / divisor); } return nullptr; } AffineExpr AffineExprSimplifier::SimplifyDivDiv(AffineExpr dividend, int64_t divisor) { if (auto inner_divisor = GetConstantRhs(dividend, AffineExprKind::FloorDiv)) { return GetLhs(dividend).floorDiv(divisor * *inner_divisor); } return nullptr; } AffineExpr AffineExprSimplifier::SimplifySumDiv(AffineExpr dividend, int64_t divisor) { AffineExpr zero = getAffineConstantExpr(0, dividend.getContext()); AffineExpr extracted = zero; auto new_dividend = MapSummands(dividend, [&](AffineExpr expr) { if (auto multiplier = GetConstantRhs(expr, AffineExprKind::Mul)) { if (*multiplier % divisor == 0) { int64_t factor = *multiplier / divisor; extracted = extracted + GetLhs(expr) * factor; return zero; } } return expr; }); int64_t multiplier_divisor_gcd = divisor; Interval no_multiplier_range{0, 0}; std::optional<int64_t> inner_divisor = std::nullopt; int num_inner_divisors = 0; VisitSummands(new_dividend, [&](AffineExpr summand) { if (auto multiplier = GetConstantRhs(summand, AffineExprKind::Mul)) { multiplier_divisor_gcd = std::gcd(multiplier_divisor_gcd, *multiplier); } else { no_multiplier_range = no_multiplier_range + range_evaluator_->ComputeExpressionRange(summand); } if (auto divisor = GetConstantRhs(summand, AffineExprKind::FloorDiv)) { inner_divisor = divisor; ++num_inner_divisors; } }); if (no_multiplier_range.lower >= 0 && no_multiplier_range.upper < multiplier_divisor_gcd) { new_dividend = MapSummands(new_dividend, [&](AffineExpr summand) { if (auto mult = GetConstantRhs(summand, AffineExprKind::Mul)) { return GetLhs(summand) * (*mult / multiplier_divisor_gcd); } return zero; }); divisor /= multiplier_divisor_gcd; } if (num_inner_divisors == 1) { new_dividend = MapSummands(new_dividend, [&](AffineExpr summand) { if (auto inner_divisor = GetConstantRhs(summand, AffineExprKind::FloorDiv)) { return GetLhs(summand).floorDiv(*inner_divisor / *inner_divisor); } return summand * *inner_divisor; }); divisor *= *inner_divisor; } return new_dividend.floorDiv(divisor) + extracted; } AffineExpr AffineExprSimplifier::RewriteFloorDiv(AffineBinaryOpExpr div) { auto rhs_range = range_evaluator_->ComputeExpressionRange(div.getRHS()); if (!rhs_range.IsPoint() || rhs_range.lower <= 0) { return div; } int64_t d = rhs_range.lower; auto lhs_simplified = SimplifyOnce(div.getLHS()); if (auto result = SimplifyModDiv(lhs_simplified, d)) { return result; } if (auto result = SimplifyDivDiv(lhs_simplified, d)) { return result; } if (auto result = SimplifySumDiv(lhs_simplified, d)) { return result; } return div; } std::optional<int64_t> AffineExprSimplifier::GetConstantRhs( AffineExpr expr, AffineExprKind kind) { if (expr.getKind() != kind) { return std::nullopt; } auto bound = range_evaluator_->ComputeExpressionRange( mlir::cast<AffineBinaryOpExpr>(expr).getRHS()); if (!bound.IsPoint()) { return std::nullopt; } return bound.lower; } int CompareExprs(AffineExpr a, AffineExpr b) { if ((b.getKind() == AffineExprKind::Constant) != (a.getKind() == AffineExprKind::Constant)) { return a.getKind() == AffineExprKind::Constant ? 1 : -1; } if (a.getKin
#include "xla/service/gpu/model/indexing_map.h" #include <cstdint> #include <limits> #include <memory> #include <optional> #include <tuple> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/hash/hash_testing.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/model/affine_map_printer.h" #include "xla/service/gpu/model/indexing_test_utils.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/verified_hlo_module.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { namespace { using ::mlir::AffineMap; using ::testing::AnyOf; using ::testing::ElementsAre; class IndexingMapTest : public HloTestBase { public: mlir::MLIRContext mlir_context_; AffineMapPrinter printer_; }; std::vector<bool> ConvertToSTL(const llvm::SmallBitVector& bit_vector) { std::vector<bool> result; result.reserve(bit_vector.size()); for (int i = 0; i < bit_vector.size(); ++i) { result.push_back(bit_vector[i]); } return result; } TEST_F(IndexingMapTest, RTVar) { auto zero_dim_map = AffineMap::get(&mlir_context_); std::vector<RTVar> rt_vars{RTVar{Interval{0, 2}, nullptr, zero_dim_map}, RTVar({Interval{0, 7}, nullptr, zero_dim_map})}; IndexingMap indexing_map( ParseAffineMap("(d0, d1)[s0, s1, s2] -> (d1, d0, s0 + s1, s1)", &mlir_context_), {DimVar{{0, 99}}, DimVar{{0, 43}}}, {RangeVar{{-99, 99}}}, std::move(rt_vars)); printer_.SetSymbolName(0, "range"); printer_.SetSymbolName(1, "rt_0"); printer_.SetSymbolName(2, "rt_1"); EXPECT_THAT(indexing_map.ToString(printer_), MatchIndexingString(R"( (d0, d1)[range, rt_0, rt_1] -> (d1, d0, range + rt_0, rt_0) domain: d0 in [0, 100) d1 in [0, 44) range in [-99, 100) rt_0 in [0, 3) hlo: NULL () -> () rt_1 in [0, 8) hlo: NULL () -> () )")); } TEST_F(IndexingMapTest, Evaluation) { IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap("(d0, d1)[s0, s1] -> (d1, d0, s1, s0)", &mlir_context_), {4, 4}, {2, 2}); auto results = indexing_map.Evaluate( mlir::getAffineConstantExprs({1, 2}, &mlir_context_), mlir::getAffineConstantExprs({3, 4}, &mlir_context_)); EXPECT_THAT(results, ElementsAre(2, 1, 4, 3)); auto feasible = indexing_map.ConstraintsSatisfied( mlir::getAffineConstantExprs({1, 2}, &mlir_context_), mlir::getAffineConstantExprs({3, 4}, &mlir_context_)); EXPECT_TRUE(feasible); indexing_map.AddConstraint(ParseAffineExpr("s0 mod 4", &mlir_context_), Interval{0, 0}); auto infeasible = indexing_map.ConstraintsSatisfied( mlir::getAffineConstantExprs({1, 2}, &mlir_context_), mlir::getAffineConstantExprs({5, 4}, &mlir_context_)); EXPECT_FALSE(infeasible); } TEST_F(IndexingMapTest, Composition_Permutation) { IndexingMap producer = IndexingMap::FromTensorSizes( ParseAffineMap("(d0, d1)[s0, s1] -> (d1, d0, s1, s0)", &mlir_context_), {4, 4}, {2, 2}); IndexingMap consumer = IndexingMap::FromTensorSizes( ParseAffineMap("(d0)[s0] -> (d0, s0)", &mlir_context_), {4}, {4}); auto composed = ComposeIndexingMaps(consumer, producer); EXPECT_THAT(composed, MatchIndexingMap(R"( (d0)[s0, s1, s2] -> (s2, d0, s1, s0) domain: d0 in [0, 4) s0 in [0, 2) s1 in [0, 2) s2 in [0, 4) )")); } TEST_F(IndexingMapTest, Composition_RestrictedInterval) { IndexingMap producer = IndexingMap::FromTensorSizes( ParseAffineMap("(d0, d1)[s0, s1] -> (d1, d0, s1, s0)", &mlir_context_), {5, 6}, {7, 2}); IndexingMap consumer = IndexingMap::FromTensorSizes( ParseAffineMap("(d0)[s0] -> (d0, s0)", &mlir_context_), {10}, {8}); auto composed = ComposeIndexingMaps(consumer, producer); EXPECT_THAT(composed, MatchIndexingMap(R"( (d0)[s0, s1, s2] -> (s2, d0, s1, s0) domain: d0 in [0, 5) s0 in [0, 7) s1 in [0, 2) s2 in [0, 6) )")); } TEST_F(IndexingMapTest, Composition_ProducerAndConsumerHaveConstraints) { IndexingMap producer = IndexingMap::FromTensorSizes( ParseAffineMap("(d0, d1)[s0, s1] -> (d1, d0, s1, s0)", &mlir_context_), {50, 60}, {70, 20}); producer.AddConstraint(ParseAffineExpr("d0 mod 8", &mlir_context_), Interval{0, 0}); producer.AddConstraint(ParseAffineExpr("s0 mod 3", &mlir_context_), Interval{1, 1}); IndexingMap consumer = IndexingMap::FromTensorSizes( ParseAffineMap("(d0)[s0] -> (d0, s0)", &mlir_context_), {10}, {8}); consumer.AddConstraint(ParseAffineExpr("d0 + s0", &mlir_context_), Interval{0, 20}); consumer.AddConstraint(ParseAffineExpr("s0 mod 4", &mlir_context_), Interval{0, 0}); auto composed = ComposeIndexingMaps(consumer, producer); EXPECT_THAT(composed, MatchIndexingMap(R"( (d0)[s0, s1, s2] -> (s2, d0, s1, s0) domain: d0 in [0, 10) s0 in [0, 70) s1 in [0, 20) s2 in [0, 8) d0 + s2 in [0, 21) d0 mod 8 in [0, 1) s0 mod 3 in [1, 2) s2 mod 4 in [0, 1) )")); EXPECT_TRUE(composed.Simplify()); EXPECT_THAT(composed, MatchIndexingMap(R"( (d0)[s0, s1, s2] -> (s2, d0, s1, s0) domain: d0 in [0, 9) s0 in [1, 68) s1 in [0, 20) s2 in [0, 5) d0 mod 8 in [0, 1) s0 mod 3 in [1, 2) s2 mod 4 in [0, 1) )")); } TEST_F(IndexingMapTest, RemoveUnusedDimensions_ConstraintUsesDim) { IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap("(d0, d1)[s0, s1] -> (d1, s0, s1)", &mlir_context_), {50, 60}, {70, 20}); indexing_map.AddConstraint(ParseAffineExpr("s0 + d0", &mlir_context_), Interval{1, 100}); indexing_map.AddConstraint(ParseAffineExpr("s0 mod 3", &mlir_context_), Interval{0, 0}); indexing_map.RemoveUnusedDimensions(); EXPECT_THAT(indexing_map, MatchIndexingMap(R"( (d0, d1)[s0, s1] -> (d1, s0, s1) domain: d0 in [0, 50) d1 in [0, 60) s0 in [0, 70) s1 in [0, 20) d0 + s0 in [1, 101) s0 mod 3 in [0, 1) )")); } TEST_F(IndexingMapTest, RemoveUnusedDimensions_ConstraintUsesOnlyUnusedDim) { IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap("(d0, d1)[s0, s1] -> (s0, d1, s1)", &mlir_context_), {50, 60}, {70, 20}); indexing_map.AddConstraint(ParseAffineExpr("d0 mod 3", &mlir_context_), Interval{0, 0}); indexing_map.RemoveUnusedDimensions(); EXPECT_THAT(indexing_map, MatchIndexingMap(R"( (d0)[s0, s1] -> (s0, d0, s1) domain: d0 in [0, 60) s0 in [0, 70) s1 in [0, 20) )")); } TEST_F(IndexingMapTest, RemoveUnusedDimensions_ConstraintsWithManyDims) { IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap("(d0, d1, d2, d3, d4)[s0, s1] -> (s0 * 4 + d1 + d3 - 42)", &mlir_context_), {1, 2, 3, 4, 5}, {32, 64}); indexing_map.AddConstraint( ParseAffineExpr("s0 * 4 + d1 + d3", &mlir_context_), Interval{24, 459}); indexing_map.RemoveUnusedDimensions(); EXPECT_THAT(indexing_map, MatchIndexingMap(R"( (d0, d1)[s0, s1] -> (d0 + s0 * 4 + d1 - 42) domain: d0 in [0, 2) d1 in [0, 4) s0 in [0, 32) s1 in [0, 64) d0 + s0 * 4 + d1 in [24, 460) )")); } TEST_F(IndexingMapTest, RemoveUnusedVars_ConstraintsWithManyDims) { IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap( "(d0, d1, d2, d3, d4)[s0, s1, s2] -> (s0 * 4 + d1 + d3 - 42)", &mlir_context_), {1, 2, 3, 4, 5}, {32, 64, 96}); indexing_map.AddConstraint( ParseAffineExpr("s0 * 4 + d1 + d3", &mlir_context_), Interval{24, 459}); indexing_map.AddConstraint(ParseAffineExpr("s0 + s2", &mlir_context_), Interval{0, 512}); auto unused_vars = indexing_map.RemoveUnusedVars(); EXPECT_THAT(indexing_map, MatchIndexingMap(R"( (d0, d1)[s0, s1] -> (d0 + s0 * 4 + d1 - 42) domain: d0 in [0, 2) d1 in [0, 4) s0 in [0, 32) s1 in [0, 96) d0 + s0 * 4 + d1 in [24, 460) s0 + s1 in [0, 513) )")); EXPECT_THAT(ConvertToSTL(unused_vars), ::testing::ElementsAreArray( {true, false, true, false, true, false, true, false})); } TEST_F(IndexingMapTest, RemoveUnusedSymbols_ConstraintUsesSymbol) { IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap("(d0, d1)[s0, s1] -> (d1, d0, s1)", &mlir_context_), {50, 60}, {70, 20}); indexing_map.AddConstraint(ParseAffineExpr("s0 + s1", &mlir_context_), Interval{1, 100}); indexing_map.AddConstraint(ParseAffineExpr("s0 mod 3", &mlir_context_), Interval{0, 0}); indexing_map.RemoveUnusedSymbols(); EXPECT_THAT(indexing_map, MatchIndexingMap(R"( (d0, d1)[s0, s1] -> (d1, d0, s1) domain: d0 in [0, 50) d1 in [0, 60) s0 in [0, 70) s1 in [0, 20) s0 + s1 in [1, 101) s0 mod 3 in [0, 1) )")); } TEST_F(IndexingMapTest, RemoveUnusedSymbols_ConstraintUsesOnlyUnusedSymbols) { IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap("(d0, d1)[s0, s1] -> (d1, d0, s1)", &mlir_context_), {50, 60}, {70, 20}); indexing_map.AddConstraint(ParseAffineExpr("s0 mod 3", &mlir_context_), Interval{0, 0}); indexing_map.RemoveUnusedSymbols(); EXPECT_THAT(indexing_map, MatchIndexingMap(R"( (d0, d1)[s0] -> (d1, d0, s0) domain: d0 in [0, 50) d1 in [0, 60) s0 in [0, 20) )")); } TEST_F(IndexingMapTest, RemoveUnusedSymbols_ConstraintIsAConstantWithinRange) { IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap("(d0) -> (d0)", &mlir_context_), {50}, {}); indexing_map.AddConstraint(ParseAffineExpr("0", &mlir_context_), Interval{-10, 5}); EXPECT_THAT(indexing_map, MatchIndexingMap(R"( (d0) -> (d0) domain: d0 in [0, 50) )")); } TEST_F(IndexingMapTest, KnownEmpty_CreatingIndexingMapWithInfeasibleRange) { IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap("(d0) -> (d0)", &mlir_context_), {-1}, {}); EXPECT_THAT(indexing_map, MatchIndexingMap("KNOWN EMPTY")); } TEST_F(IndexingMapTest, KnownEmpty_AddingConstraintOutOfRange) { IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap("(d0) -> (d0)", &mlir_context_), {50}, {}); indexing_map.AddConstraint(ParseAffineExpr("0", &mlir_context_), Interval{10, 15}); EXPECT_THAT(indexing_map, MatchIndexingMap("KNOWN EMPTY")); } TEST_F(IndexingMapTest, KnownEmpty_Composition) { IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap("(d0) -> (d0)", &mlir_context_), {50}, {}); IndexingMap known_empty = IndexingMap::FromTensorSizes( ParseAffineMap("(d0) -> (0)", &mlir_context_), {0}, {}); EXPECT_THAT(known_empty, MatchIndexingMap("KNOWN EMPTY")); EXPECT_THAT(indexing_map * known_empty, MatchIndexingMap("KNOWN EMPTY")); EXPECT_THAT(known_empty * indexing_map, MatchIndexingMap("KNOWN EMPTY")); EXPECT_EQ((indexing_map * known_empty).GetAffineMap().getNumResults(), 1); EXPECT_EQ((known_empty * indexing_map).GetAffineMap().getNumResults(), 1); } TEST_F(IndexingMapTest, KnownEmpty_AddingConstraintOutOfRangeAfterSimplification) { IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap("(d0, d1)[s0, s1] -> (d1, d0, s1)", &mlir_context_), {50, 60}, {70, 20}); indexing_map.AddConstraint(ParseAffineExpr("s1 floordiv 20", &mlir_context_), Interval{2, 2}); EXPECT_THAT(indexing_map, MatchIndexingMap("KNOWN EMPTY")); } TEST_F(IndexingMapTest, RemoveUnusedSymbols_ConstraintsWithManySymbols) { IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap("(d0)[s0, s1, s2, s3, s4] -> (d0 * 4 + s1 + s3 - 42)", &mlir_context_), {32}, {1, 2, 3, 4, 5}); indexing_map.AddConstraint( ParseAffineExpr("d0 * 4 + s1 + s3", &mlir_context_), Interval{24, 459}); indexing_map.RemoveUnusedSymbols(); EXPECT_THAT(indexing_map, MatchIndexingMap(R"( (d0)[s0, s1] -> (d0 * 4 + s0 + s1 - 42) domain: d0 in [0, 32) s0 in [0, 2) s1 in [0, 4) d0 * 4 + s0 + s1 in [24, 460) )")); } TEST_F(IndexingMapTest, RemoveUnusedSymbols_ConstraintsWithRTVars) { auto zero_dim_map = AffineMap::get(&mlir_context_); IndexingMap indexing_map( ParseAffineMap("(d0)[s0, s1, s2, s3, s4] -> (d0 * 4 + s1 + s3 - 42)", &mlir_context_), {DimVar{{0, 31}}}, {RangeVar{{0, 0}}, RangeVar{{0, 1}}, RangeVar{{0, 2}}}, {RTVar{Interval{0, 3}, nullptr, zero_dim_map}, RTVar{Interval{0, 4}, nullptr, zero_dim_map}}); indexing_map.AddConstraint( ParseAffineExpr("d0 * 4 + s1 + s3", &mlir_context_), Interval{24, 459}); indexing_map.RemoveUnusedSymbols(); EXPECT_THAT(indexing_map, MatchIndexingMap(R"( (d0)[s0, s1] -> (d0 * 4 + s0 + s1 - 42) domain: d0 in [0, 32) s0 in [0, 2) s1 in [0, 4) hlo: NULL () -> () d0 * 4 + s0 + s1 in [24, 460) )")); } TEST_F(IndexingMapTest, ConstraintIntervalSimplification_Sum) { IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap("(d0) -> (d0)", &mlir_context_), {100}, {}); indexing_map.AddConstraint(ParseAffineExpr("(d0 mod 8) + 5", &mlir_context_), Interval{50, 54}); EXPECT_THAT(indexing_map.ToString(), MatchIndexingString(R"( (d0) -> (d0) domain: d0 in [0, 100) d0 mod 8 in [45, 50) )")); } TEST_F(IndexingMapTest, ConstraintIntervalSimplification_FloorDivPositiveDivisorPositiveBounds) { IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap("(d0) -> (d0)", &mlir_context_), {100}, {}); indexing_map.AddConstraint(ParseAffineExpr("d0 floordiv 8", &mlir_context_), Interval{5, 11}); EXPECT_THAT(indexing_map.ToString(), MatchIndexingString(R"( (d0) -> (d0) domain: d0 in [40, 96) )")); } TEST_F(IndexingMapTest, ConstraintIntervalSimplification_FloorDivPositiveDivisorNegativeBounds) { IndexingMap indexing_map = IndexingMap(ParseAffineMap("(d0)[s0] -> (d0)", &mlir_context_), {DimVar{{0, 99}}}, {RangeVar{{-99, 99}}}, {}); indexing_map.AddConstraint(ParseAffineExpr("s0 floordiv 3", &mlir_context_), Interval{-11, -5}); EXPECT_THAT(indexing_map.ToString(), MatchIndexingString(R"( (d0)[s0] -> (d0) domain: d0 in [0, 100) s0 in [-33, -12) )")); } TEST_F(IndexingMapTest, ConstraintIntervalSimplification_FloorDivNegativeDivisorNegativeBounds) { IndexingMap indexing_map = IndexingMap(ParseAffineMap("(d0)[s0] -> (d0)", &mlir_context_), {DimVar{{0, 99}}}, {RangeVar{{-99, 99}}}, {}); indexing_map.AddConstraint(ParseAffineExpr("s0 floordiv -3", &mlir_context_), Interval{-11, -5}); EXPECT_THAT(indexing_map.ToString(), MatchIndexingString(R"( (d0)[s0] -> (d0) domain: d0 in [0, 100) s0 in [15, 36) )")); } TEST_F(IndexingMapTest, ConstraintIntervalSimplification_MulPositiveMultiplierPositiveBounds) { IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap("(d0) -> (d0)", &mlir_context_), {100}, {}); indexing_map.AddConstraint(ParseAffineExpr("d0 * 8", &mlir_context_), Interval{14, 33}); EXPECT_THAT(indexing_map.ToString(), MatchIndexingString(R"( (d0) -> (d0) domain: d0 in [2, 5) )")); } TEST_F(IndexingMapTest, ConstraintIntervalSimplification_MulPositiveMultiplierNegativeBounds) { IndexingMap indexing_map = IndexingMap(ParseAffineMap("(d0)[s0] -> (d0)", &mlir_context_), {DimVar{{0, 99}}}, {RangeVar{{-99, 99}}}, {}); indexing_map.AddConstraint(ParseAffineExpr("s0 * 3", &mlir_context_), Interval{-11, -5}); EXPECT_THAT(indexing_map.ToString(), MatchIndexingString(R"( (d0)[s0] -> (d0) domain: d0 in [0, 100) s0 in [-3, -1) )")); } TEST_F(IndexingMapTest, ConstraintIntervalSimplification_MulNegativeMultiplierNegativeBounds) { IndexingMap indexing_map = IndexingMap(ParseAffineMap("(d0)[s0] -> (d0)", &mlir_context_), {DimVar{{0, 99}}}, {RangeVar{{-99, 99}}}, {}); indexing_map.AddConstraint(ParseAffineExpr("s0 * -3", &mlir_context_), Interval{-11, -5}); EXPECT_THAT(indexing_map.ToString(), MatchIndexingString(R"( (d0)[s0] -> (d0) domain: d0 in [0, 100) s0 in [2, 4) )")); } TEST_F(IndexingMapTest, ConstraintMerge_Mod) { IndexingMap indexing_map( ParseAffineMap("(d0)[s0, s1] -> (d0, s1, s0)", &mlir_context_), {DimVar{{0, 4}}}, {RangeVar{{-21, -1}}, RangeVar{{0, 10}}}, {}); indexing_map.AddConstraint(ParseAffineExpr("d0 mod 3", &mlir_context_), Interval{0, 0}); indexing_map.AddConstraint(ParseAffineExpr("s0 mod 2", &mlir_context_), Interval{0, 0}); indexing_map.AddConstraint(ParseAffineExpr("s0 mod 3", &mlir_context_), Interval{0, 0}); indexing_map.AddConstraint(ParseAffineExpr("s1 mod 5", &mlir_context_), Interval{1, 1}); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(indexing_map.ToString(), MatchIndexingString(R"( (d0)[s0, s1] -> (d0, s1, s0) domain: d0 in [0, 4) s0 in [-18, -5) s1 in [1, 7) d0 mod 3 in [0, 1) s0 mod 6 in [0, 1) s1 mod 5 in [1, 2) )")); } TEST_F(IndexingMapTest, AffineMapSimplification_ConstantDims) { IndexingMap indexing_map = IndexingMap(ParseAffineMap("(d0) -> (d0)", &mlir_context_), {DimVar{{5, 5}}}, {}, {}); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(indexing_map.ToString(printer_), MatchIndexingString(R"( (d0) -> (5) domain: d0 in [5, 6) )")); } TEST_F(IndexingMapTest, AffineMapSimplification_SumOrderRegression) { IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap("(d0, d1)[s0, s1] -> (((((d0 + (d0 mod 3)) floordiv 3) + " "(s0 + ((s0 + s0) mod 3))) + (((d0 + s0) mod 3) + 0)))", &mlir_context_), {10, 20}, {30, 40}); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_FALSE(indexing_map.Simplify()); } TEST_F(IndexingMapTest, AffineMapSimplification_DivsAndModsIfSmallerThanDivisor) { auto serialized_map = "(d0, d1) -> (d0 + d1 floordiv 16, d1 mod 16)"; IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap(serialized_map, &mlir_context_), {8, 16}, {}); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(indexing_map.ToString(printer_), MatchIndexingString(R"( (d0, d1) -> (d0, d1) domain: d0 in [0, 8) d1 in [0, 16) )")); } TEST_F(IndexingMapTest, AffineMapSimplification_DivsAndModsWithMultipliers) { auto serialized_map = "(d0, d1, d2) -> ((d0 * 100 + d1 * 10 + d2) floordiv 100, " "((d0 * 100 + d1 * 10 + d2) mod 100) floordiv 10, " "d2 mod 10)"; IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap(serialized_map, &mlir_context_), {9, 9, 9}, {}); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(indexing_map.ToString(printer_), MatchIndexingString(R"( (d0, d1, d2) -> (d0, d1, d2) domain: d0 in [0, 9) d1 in [0, 9) d2 in [0, 9) )")); } TEST_F(IndexingMapTest, AffineMapSimplification_DivsAndModsWithDivisibleMultipliers) { auto serialized_map = "(d0, d1, d2) -> ((d0 * 16 + d1 * 4 + d2) floordiv 8, " " (d0 * 16 + d1 * 4 + d2) mod 8)"; IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap(serialized_map, &mlir_context_), {10, 10, 10}, {}); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(indexing_map.ToString(printer_), MatchIndexingString(R"( (d0, d1, d2) -> (d0 * 2 + (d1 * 4 + d2) floordiv 8, (d1 * 4 + d2) mod 8) domain: d0 in [0, 10) d1 in [0, 10) d2 in [0, 10) )")); } TEST_F(IndexingMapTest, AffineMapSimplification_DivsAndModsWithReverse) { auto serialized_map = "(d0, d1) -> (-((d0 * -11 - d1 + 109) floordiv 11) + 9, " "d0 * 11 + d1 + ((d0 * -11 - d1 + 109) floordiv 11) * 11 - 99)"; IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap(serialized_map, &mlir_context_), {8, 9}, {}); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(indexing_map.ToString(printer_), MatchIndexingString(R"( (d0, d1) -> (d0, d1) domain: d0 in [0, 8) d1 in [0, 9) )")); } TEST_F(IndexingMapTest, AffineMapSimplification_SimplifyReshape) { auto serialized_map = "()[s0] -> ((s0 * 128) mod 715 + ((s0 * 128) floordiv 715) * 715)"; IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap(serialized_map, &mlir_context_), {}, {128}); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(indexing_map.ToString(printer_), MatchIndexingString(R"( ()[s0] -> (s0 * 128) domain: s0 in [0, 128) )")); } TEST_F(IndexingMapTest, AffineMapSimplification_SimplifyReshape2) { auto serialized_map = "(d0, d1) -> ((d0 mod 8) * 128 + d1 + (d0 floordiv 8) * 1024)"; IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap(serialized_map, &mlir_context_), {1024, 128}, {}); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(indexing_map.ToString(printer_), MatchIndexingString(R"( (d0, d1) -> (d0 * 128 + d1) domain: d0 in [0, 1024) d1 in [0, 128) )")); } TEST_F(IndexingMapTest, AffineMapSimplification_SimplifyReshape3) { auto serialized_map = "(d0, d1) -> (((d1 * 2 + d0 floordiv 64) mod 3) * 256 + (d0 mod 64) * 4 " "+ ((d1 * 128 + d0) floordiv 192) * 768)"; IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap(serialized_map, &mlir_context_), {128, 3072}, {}); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(indexing_map.ToString(printer_), MatchIndexingString(R"( (d0, d1) -> (d0 * 4 + d1 * 512) domain: d0 in [0, 128) d1 in [0, 3072) )")); } TEST_F(IndexingMapTest, AffineMapSimplification_ModWithNegativeMultiplerDoesNotGetSimplified) { auto serialized_map = "(d0) -> ((-d0) mod 2)"; IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap(serialized_map, &mlir_context_), {128}, {}); EXPECT_FALSE(indexing_map.Simplify()); EXPECT_THAT(indexing_map.ToString(printer_), MatchIndexingString(R"( (d0) -> ((-d0) mod 2) domain: d0 in [0, 128) )")); } TEST_F(IndexingMapTest, AffineMapSimplification_SimplifyBitcastAndBack) { auto serialized_map = "(d0, d1) -> ((d0 floordiv 1536) * 786432 + (((d0 * 2 + d1 floordiv " "64) floordiv 3) mod 1024) * 768 + ((d0 * 2 + d1 floordiv 64) mod 3) * " "256 + (d1 mod 64) * 4)"; IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap(serialized_map, &mlir_context_), {3072, 128}, {}); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(indexing_map.ToString(printer_), MatchIndexingString(R"( (d0, d1) -> (d0 * 512 + d1 * 4) domain: d0 in [0, 3072) d1 in [0, 128) )")); } TEST_F(IndexingMapTest, AffineMapSimplification_SimplifyReshape_Regression) { auto serialized_map = "()[s0] -> ((s0 * 128) mod 715 + ((s0 * 64) floordiv 715) * 715)"; IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap(serialized_map, &mlir_context_), {}, {128}); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(indexing_map.ToString(printer_), MatchIndexingString(R"( ()[s0] -> (((s0 * 64) floordiv 715) * 715 + (s0 * 128) mod 715) domain: s0 in [0, 128) )")); } TEST_F(IndexingMapTest, AffineMapSimplification_DivsInSequence) { auto serialized_map = "()[s0] -> (s0 - ((s0 floordiv 2) floordiv 7) * 14 + (s0 floordiv 14) * " "14)"; IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap(serialized_map, &mlir_context_), {}, {1234}); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(indexing_map.ToString(printer_), MatchIndexingString(R"( ()[s0] -> (s0) domain: s0 in [0, 1234) )")); } TEST_F(IndexingMapTest, AffineMapSimplification_DivDiv) { auto serialized_map = "()[s0, s1] -> ((s0 * 2 + s1 floordiv 64) floordiv 3)"; IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap(serialized_map, &mlir_context_), {}, {1234, 128}); EXPECT_TRUE(indexing_map.Simplify()); EXPECT_THAT(indexing_map.ToString(printer_), MatchIndexingString(R"( ()[s0, s1] -> ((s0 * 128 + s1) floordiv 192) domain: s0 in [0, 1234) s1 in [0, 128) )")); } TEST_F(IndexingMapTest, AffineMapSimplification_DivSumDiv) { auto serialized_map = "()[s0, s1] -> ((s0 floordiv 3 + s1 floordiv 3) floordiv 6)"; IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap(serialized_map, &mlir_context_), {}, {1234, 128}); EXPECT_FALSE(indexing_map.Simplify()); } TEST_F(IndexingMapTest, AffineMapSimplification_NegativeDiv) { auto serialized_map = "()[s0] -> ((s0 floordiv 2) floordiv -7)"; IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap(serialized_map, &mlir_context_), {}, {1234}); EXPECT_FALSE(indexing_map.Simplify()); } TEST_F(IndexingMapTest, AffineMapSimplification_ExtractFromMod) { auto serialized_map = "()[s0, s1, s2, s3] -> ((s0 *
2,140
cpp
tensorflow/tensorflow
gpu_performance_model_base
third_party/xla/xla/service/gpu/model/gpu_performance_model_base.cc
third_party/xla/xla/service/gpu/model/gpu_performance_model_base_test.cc
#ifndef XLA_SERVICE_GPU_MODEL_GPU_PERFORMANCE_MODEL_BASE_H_ #define XLA_SERVICE_GPU_MODEL_GPU_PERFORMANCE_MODEL_BASE_H_ #include <cstdint> #include <optional> #include <string> #include "absl/container/flat_hash_map.h" #include "absl/strings/str_format.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/fusion_analysis_cache.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/stream_executor/device_description.h" namespace xla { namespace gpu { struct EstimateRunTimeData { int64_t flops; int64_t bytes_read; int64_t bytes_written; absl::Duration read_time; absl::Duration write_time; absl::Duration compute_time; absl::Duration exec_time; std::string ToString() const { return absl::StrFormat( "EstimateRunTimeData{\n" " flops: %d\n" " bytes_read: %d\n" " bytes_written: %d\n" " read_time: %s\n" " write_time: %s\n" " compute_time: %s\n" " exec_time: %s\n" "}", flops, bytes_read, bytes_written, absl::FormatDuration(read_time), absl::FormatDuration(write_time), absl::FormatDuration(compute_time), absl::FormatDuration(exec_time)); } }; class GpuPerformanceModelCache { public: std::optional<EstimateRunTimeData> Get(const HloInstruction& instruction); std::optional<absl::Duration> Get(const HloInstruction& producer, const HloInstruction& consumer); void Set(const HloInstruction& instruction, const EstimateRunTimeData& runtime_data); void Set(const HloInstruction& producer, const HloInstruction& consumer, absl::Duration runtime); void Invalidate(const HloInstruction& instruction); private: absl::Mutex mutex_; absl::flat_hash_map<const HloInstruction*, EstimateRunTimeData> instruction_runtime_data_; absl::flat_hash_map< const HloInstruction*, absl::flat_hash_map<const HloInstruction*, absl::Duration>> fusion_runtime_data_; }; struct GpuPerformanceModelOptions { double memory_compute_parallelism = 1.0; HloFusionAnalysisCache* fusion_analysis_cache = nullptr; GpuPerformanceModelCache* gpu_performance_model_cache = nullptr; static GpuPerformanceModelOptions Default() { return GpuPerformanceModelOptions(); } static GpuPerformanceModelOptions PriorityFusion( HloFusionAnalysisCache* fusion_analysis_cache = nullptr, GpuPerformanceModelCache* gpu_performance_model_cache = nullptr) { GpuPerformanceModelOptions config; config.fusion_analysis_cache = fusion_analysis_cache; config.gpu_performance_model_cache = gpu_performance_model_cache; config.memory_compute_parallelism = 0.95; return config; } static GpuPerformanceModelOptions ForModule(const HloModule* module) { return module->config().debug_options().xla_gpu_enable_priority_fusion() ? PriorityFusion() : Default(); } }; class GpuPerformanceModelBase { public: struct RunTimes { absl::Duration time_unfused; absl::Duration time_fused; }; static constexpr absl::Duration kKernelLaunchOverhead = absl::Microseconds(1); static constexpr absl::Duration kNcclKernelLaunchOverhead = absl::Microseconds(5); static constexpr float kL2CacheSpeedup = 2.5; static constexpr float kL1CacheSpeedup = 8; static LaunchDimensions EstimateFusionLaunchDimensions( const HloFusionAnalysis& fusion_analysis); static int64_t GetOperandBytesAccessed( const GpuHloCostAnalysis* cost_analysis, const HloInstruction* instr, const HloInstruction* operand); static float GetOperandUtilization(const GpuHloCostAnalysis* cost_analysis, const HloInstruction* instr, const HloInstruction* operand); static float GetCommonUtilization(const GpuHloCostAnalysis* cost_analysis, const HloInstruction* producer, int64_t producer_idx_of_operand, const HloInstruction* consumer); static int64_t GetSharedOperandBytesAccessed( const GpuHloCostAnalysis* cost_analysis, const HloInstruction* producer, const HloInstruction* consumer, const HloInstruction* operand); static absl::Duration ReadTime(const se::DeviceDescription& gpu_device_info, int64_t num_blocks, int64_t n_bytes_net, int64_t n_bytes_total); static absl::Duration ReadTimeWithDRAMHeuristic( const se::DeviceDescription& gpu_device_info, int64_t num_blocks, int64_t n_bytes_net, int64_t n_bytes_total, PrimitiveType element_type, bool coalesced); static absl::Duration ProducerInputAccessTime( const GpuHloCostAnalysis* cost_analysis, const se::DeviceDescription& gpu_device_info, int64_t num_blocks, const HloInstruction* producer, const HloFusionAnalysis& fusion_analysis, const GpuPerformanceModelOptions& config, const HloInstruction* fused_consumer = nullptr); static absl::Duration WriteTime(const se::DeviceDescription& gpu_device_info, int64_t bytes_written); static absl::Duration ComputeTime( const se::DeviceDescription& gpu_device_info, int64_t flops, int64_t num_blocks, int64_t num_threads_per_block); static absl::Duration CombineComputeAndMemoryAccessTime( absl::Duration compute_time, absl::Duration memory_access_time, const GpuPerformanceModelOptions& config); static void VLogOperandRead(const HloInstruction* operand, int64_t n_bytes_total, int64_t n_bytes_net, bool coalesced); }; } } #endif #include "xla/service/gpu/model/gpu_performance_model_base.h" #include <algorithm> #include <cmath> #include <cstdint> #include <optional> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/fusions/fusion_emitter.h" #include "xla/service/gpu/fusions/fusions.h" #include "xla/service/gpu/fusions/triton.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/util.h" namespace xla { namespace gpu { namespace { bool FusionUsesParameterElementwiseFromRoot( const HloInstruction* fusion, int parameter_index, const GpuHloCostAnalysis* cost_analysis) { return cost_analysis->CommonElementwiseUtilization( fusion->fused_parameter(parameter_index), fusion->fused_expression_root()) == 1.f; } int GetCoalescingWasteFactor(PrimitiveType element_type, const se::DeviceDescription& gpu_device_info) { int64_t element_size_bytes = element_type == PrimitiveType::TUPLE || element_type == PrimitiveType::TOKEN ? 4 : ShapeUtil::ByteSizeOfPrimitiveType(element_type); return gpu_device_info.dram_to_l2_transaction_size_bytes() / element_size_bytes; } float AdjustBandwidth(const se::DeviceDescription& gpu_device_info, float bandwidth, int64_t num_blocks) { float per_block_bandwidth = gpu_device_info.clock_rate_ghz() * 1.0e9f * gpu_device_info.memory_transactions_per_clock(); float max_bandwidth = num_blocks * per_block_bandwidth; return std::min(bandwidth, max_bandwidth); } } std::optional<EstimateRunTimeData> GpuPerformanceModelCache::Get( const HloInstruction& instruction) { absl::MutexLock lock(&mutex_); auto it = instruction_runtime_data_.find(&instruction); if (it != instruction_runtime_data_.end()) { return it->second; } return std::nullopt; } std::optional<absl::Duration> GpuPerformanceModelCache::Get( const HloInstruction& producer, const HloInstruction& consumer) { absl::MutexLock lock(&mutex_); auto it = fusion_runtime_data_.find(&producer); if (it != fusion_runtime_data_.end()) { auto jt = it->second.find(&consumer); if (jt != it->second.end()) { return jt->second; } } return std::nullopt; } void GpuPerformanceModelCache::Set(const HloInstruction& instruction, const EstimateRunTimeData& runtime_data) { absl::MutexLock lock(&mutex_); instruction_runtime_data_[&instruction] = runtime_data; } void GpuPerformanceModelCache::Set(const HloInstruction& producer, const HloInstruction& consumer, absl::Duration runtime) { absl::MutexLock lock(&mutex_); fusion_runtime_data_[&producer][&consumer] = runtime; } void GpuPerformanceModelCache::Invalidate(const HloInstruction& instruction) { absl::MutexLock lock(&mutex_); instruction_runtime_data_.erase(&instruction); fusion_runtime_data_.erase(&instruction); for (auto* operand : instruction.operands()) { if (operand->opcode() == HloOpcode::kGetTupleElement) { operand = operand->mutable_operand(0); } auto it = fusion_runtime_data_.find(operand); if (it != fusion_runtime_data_.end()) { it->second.erase(&instruction); } } } LaunchDimensions GpuPerformanceModelBase::EstimateFusionLaunchDimensions( const HloFusionAnalysis& fusion_analysis) { auto emitter = GetFusionEmitter(PreBufferAssignmentFusionInfo{fusion_analysis}); if (const auto* kernel_emitter = dynamic_cast<const KernelFusionInterface*>(emitter.get())) { return kernel_emitter->launch_dimensions(); } if (const auto* triton_emitter = dynamic_cast<const TritonFusion*>(emitter.get())) { if (auto launch_config = triton_emitter->launch_config()) { return launch_config->launch_dimensions; } } VLOG(5) << "Using fallback launch dimensions estimate for " << fusion_analysis.fusion().ToString(); int64_t num_threads_per_block = 128; int64_t estimated_num_threads = ShapeUtil::ElementsInRecursive(fusion_analysis.fusion_root(0).shape()); int64_t num_blocks = CeilOfRatio(estimated_num_threads, num_threads_per_block); return LaunchDimensions(num_blocks, num_threads_per_block); } int64_t GpuPerformanceModelBase::GetOperandBytesAccessed( const GpuHloCostAnalysis* cost_analysis, const HloInstruction* instr, const HloInstruction* operand) { if (!instr->IsUserOf(operand)) { return 0; } return cost_analysis->operand_bytes_accessed(*instr, instr->operand_index(operand)); } float GpuPerformanceModelBase::GetOperandUtilization( const GpuHloCostAnalysis* cost_analysis, const HloInstruction* instr, const HloInstruction* operand) { if (operand->IsMultiOutputFusion()) { float res = 0.f; for (int64_t i = 0; i < instr->operand_count(); ++i) { if (instr->operand(i)->opcode() == HloOpcode::kGetTupleElement && instr->operand(i)->operand(0) == operand) { res += cost_analysis->operand_utilization(*instr, i); } } return res; } if (!instr->IsUserOf(operand)) { return 0.f; } return cost_analysis->operand_utilization(*instr, instr->operand_index(operand)); } float GpuPerformanceModelBase::GetCommonUtilization( const GpuHloCostAnalysis* cost_analysis, const HloInstruction* producer, int64_t producer_idx_of_operand, const HloInstruction* consumer) { const auto* operand = producer->operand(producer_idx_of_operand); if (!consumer || !consumer->IsUserOf(operand)) { return 0.f; } if (producer->IsElementwise() || (producer->opcode() == HloOpcode::kFusion && FusionUsesParameterElementwiseFromRoot(producer, producer_idx_of_operand, cost_analysis))) { if (consumer->opcode() == HloOpcode::kFusion) { int64_t consumer_idx_of_common_operand = consumer->operand_index(operand); float res = 0.f; std::vector<int64_t> consumer_indices_of_producer; if (producer->IsMultiOutputFusion()) { for (int64_t i = 0; i < consumer->operand_count(); ++i) { if (consumer->operand(i)->opcode() == HloOpcode::kGetTupleElement && consumer->operand(i)->operand(0) == producer) { consumer_indices_of_producer.push_back(i); } } } else { consumer_indices_of_producer.push_back( consumer->operand_index(producer)); } for (int64_t consumer_idx_of_producer : consumer_indices_of_producer) { res += cost_analysis->CommonElementwiseUtilization( consumer->fused_parameter(consumer_idx_of_common_operand), consumer->fused_parameter(consumer_idx_of_producer)); } return res; } else if (consumer->IsElementwise()) { return 1.f; } } return 0.f; } int64_t GpuPerformanceModelBase::GetSharedOperandBytesAccessed( const GpuHloCostAnalysis* cost_analysis, const HloInstruction* producer, const HloInstruction* consumer, const HloInstruction* operand) { float producer_utilization_by_consumer = GetOperandUtilization(cost_analysis, consumer, producer); int64_t bytes_accessed_by_producer = GetOperandBytesAccessed(cost_analysis, producer, operand); int64_t bytes_accessed_by_consumer = GetOperandBytesAccessed(cost_analysis, consumer, operand); float common_utilization = producer->IsUserOf(operand) ? GetCommonUtilization(cost_analysis, producer, producer->operand_index(operand), consumer) : 0.f; int64_t operand_size = cost_analysis->GetShapeSize(operand->shape()); int64_t common_bytes_accessed = std::llround(operand_size * common_utilization); return std::llround(bytes_accessed_by_producer * producer_utilization_by_consumer) + bytes_accessed_by_consumer - common_bytes_accessed; } absl::Duration GpuPerformanceModelBase::ReadTime( const se::DeviceDescription& gpu_device_info, int64_t num_blocks, int64_t n_bytes_net, int64_t n_bytes_total) { float bandwidth = gpu_device_info.memory_bandwidth(); if (n_bytes_net < gpu_device_info.l2_cache_size()) { bandwidth *= kL2CacheSpeedup; if (n_bytes_net < gpu_device_info.l1_cache_size_per_SM() * gpu_device_info.core_count()) { bandwidth *= kL1CacheSpeedup; } } bandwidth = AdjustBandwidth(gpu_device_info, bandwidth, num_blocks); return absl::Seconds(n_bytes_total / bandwidth); } absl::Duration GpuPerformanceModelBase::ReadTimeWithDRAMHeuristic( const se::DeviceDescription& gpu_device_info, int64_t num_blocks, int64_t n_bytes_net, int64_t n_bytes_total, PrimitiveType element_type, bool coalesced) { int waste_factor = coalesced ? 1 : GetCoalescingWasteFactor(element_type, gpu_device_info); float dram_bandwidth = gpu_device_info.memory_bandwidth() / waste_factor; float rest_bandwidth = gpu_device_info.memory_bandwidth(); if (n_bytes_net < gpu_device_info.l2_cache_size()) { rest_bandwidth *= kL2CacheSpeedup; if (n_bytes_net < gpu_device_info.l1_cache_size_per_SM() * gpu_device_info.core_count()) { rest_bandwidth *= kL1CacheSpeedup; } } else { rest_bandwidth /= waste_factor; } dram_bandwidth = AdjustBandwidth(gpu_device_info, dram_bandwidth, num_blocks); rest_bandwidth = AdjustBandwidth(gpu_device_info, rest_bandwidth, num_blocks); int64_t n_bytes_read_dram = std::min(n_bytes_net, n_bytes_total); int64_t n_bytes_read_cache = n_bytes_total - n_bytes_read_dram; return absl::Seconds(n_bytes_read_dram / dram_bandwidth) + absl::Seconds(n_bytes_read_cache / rest_bandwidth); } absl::Duration GpuPerformanceModelBase::ProducerInputAccessTime( const GpuHloCostAnalysis* cost_analysis, const se::DeviceDescription& gpu_device_info, int64_t num_blocks, const HloInstruction* producer, const HloFusionAnalysis& fusion_analysis, const GpuPerformanceModelOptions& config, const HloInstruction* fused_consumer) { absl::Duration ret = absl::ZeroDuration(); float producer_output_utilization = fused_consumer ? GetOperandUtilization(cost_analysis, fused_consumer, producer) : 1.f; for (int i = 0; i < producer->operand_count(); ++i) { int64_t operand_bytes_accessed = cost_analysis->operand_bytes_accessed(*producer, i); float operand_utilization = cost_analysis->operand_utilization(*producer, i); int64_t n_bytes_net = std::llround(operand_bytes_accessed / std::max(operand_utilization, 1.0f)); float common_utilization = GetCommonUtilization( cost_analysis, producer, i, fused_consumer); CHECK_LE(common_utilization, producer_output_utilization); float n_bytes_total = operand_bytes_accessed * (producer_output_utilization - common_utilization); ret += ReadTime(gpu_device_info, num_blocks, n_bytes_net, n_bytes_total); } return ret; } absl::Duration GpuPerformanceModelBase::WriteTime( const se::DeviceDescription& gpu_device_info, int64_t bytes_written) { return absl::Seconds(1.0f * bytes_written / gpu_device_info.memory_bandwidth()); } absl::Duration GpuPerformanceModelBase::ComputeTime( const se::DeviceDescription& gpu_device_info, int64_t flops, int64_t num_blocks, int64_t num_threads_per_block) { int64_t n_active_fpus_per_core = std::min<int64_t>(num_threads_per_block, gpu_device_info.fpus_per_core()); int64_t n_active_core = std::min<int64_t>(num_blocks, gpu_device_info.core_count()); int64_t fpu_count = n_active_core * n_active_fpus_per_core; int64_t flop_per_ns_per_fpu = gpu_device_info.clock_rate_ghz() * 2; int64_t flop_per_ns_effective = flop_per_ns_per_fpu * fpu_count; return absl::Nanoseconds(1.0f * flops / flop_per_ns_effective); } absl::Duration GpuPerformanceModelBase::CombineComputeAndMemoryAccessTime( absl::Duration compute_time, absl::Duration memory_access_time, const GpuPerformanceModelOptions& config) { return compute_time + memory_access_time - std::min(compute_time, memory_access_time) * config.memory_compute_parallelism; } void GpuPerformanceModelBase::VLogOperandRead(const HloInstruction* operand, int64_t n_bytes_total, int64_t n_bytes_net, bool coalesced) { VLOG(8) << "operand " << operand->name() << ", n_bytes_total: " << n_bytes_total << ", n_bytes_net: " << n_bytes_net << ", coalesced: " << coalesced; } } }
#include "xla/service/gpu/model/gpu_performance_model_base.h" #include <cstdint> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { class GpuPerformanceModelBaseTest : public HloTestBase { public: GpuHloCostAnalysis::ShapeSizeFunction ShapeSizeBytesFunction() const { return [&](const Shape& shape) { constexpr int64_t kPointerSize = 8; return ShapeUtil::ByteSizeOf(shape, kPointerSize); }; } GpuHloCostAnalysis::Options options_{ShapeSizeBytesFunction(), {}, true}; se::DeviceDescription device_info_{TestGpuDeviceInfo::RTXA6000DeviceInfo()}; GpuHloCostAnalysis analysis_{options_, &device_info_}; GpuPerformanceModelBaseTest() : HloTestBase() {} }; TEST_F(GpuPerformanceModelBaseTest, SharedOperandBytesAccessed_InPlaceDUS) { absl::string_view hlo_string = R"( HloModule m ENTRY entry_computation { param_0 = f32[8,16] parameter(0) param_1 = f32[4,4] parameter(1) c_0 = s32[] constant(0) log = f32[4,4] log(param_1) ROOT dynamic-update-slice = f32[8,16] dynamic-update-slice(param_0, log, c_0, c_0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); ASSERT_IS_OK(computation->Accept(&analysis_)); auto dus_consumer = computation->root_instruction(); auto log_producer = dus_consumer->mutable_operand(1); auto get_shared_operand_bytes_accessed = [&](const HloInstruction* operand) { return GpuPerformanceModelBase::GetSharedOperandBytesAccessed( &analysis_, log_producer, dus_consumer, operand); }; EXPECT_EQ(get_shared_operand_bytes_accessed(dus_consumer->operand(0)), 0); EXPECT_EQ(get_shared_operand_bytes_accessed(log_producer->operand(0)), 64); } TEST_F(GpuPerformanceModelBaseTest, SharedOperandBytesAccessed_DUS) { absl::string_view hlo_string = R"( HloModule m ENTRY entry_computation { param_0 = f32[8,16] parameter(0) param_1 = f32[4,4] parameter(1) c_0 = s32[] constant(0) log = f32[8,16] log(param_0) ROOT dynamic-update-slice = f32[8,16] dynamic-update-slice(log, param_1, c_0, c_0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); ASSERT_IS_OK(computation->Accept(&analysis_)); auto dus_consumer = computation->root_instruction(); auto log_producer = dus_consumer->mutable_operand(0); auto get_shared_operand_bytes_accessed = [&](const HloInstruction* operand) { return GpuPerformanceModelBase::GetSharedOperandBytesAccessed( &analysis_, log_producer, dus_consumer, operand); }; EXPECT_EQ(get_shared_operand_bytes_accessed(dus_consumer->operand(1)), 64); EXPECT_EQ(get_shared_operand_bytes_accessed(log_producer->operand(0)), 448); } TEST_F(GpuPerformanceModelBaseTest, ReduceBroadcastedDim_IncorrectBytesAccessed) { absl::string_view hlo_string = R"( HloModule m add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } f1 { p0 = f32[128] parameter(0) c0 = f32[] constant(0) broadcast = f32[128,256] broadcast(p0), dimensions={0} ROOT reduce = f32[128] reduce(broadcast, c0), dimensions={1}, to_apply=add } ENTRY entry_computation { param_0 = f32[128] parameter(0) param_1 = f32[4,4] parameter(1) ROOT fusion = f32[128] fusion(param_0), kind=kLoop, calls=f1 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); ASSERT_IS_OK(computation->Accept(&analysis_)); auto root = computation->root_instruction(); EXPECT_EQ(GpuPerformanceModelBase::GetOperandBytesAccessed(&analysis_, root, root->operand(0)), 131072); } TEST_F(GpuPerformanceModelBaseTest, ElementwiseBitcast_IncorrectBytesAccessed) { absl::string_view hlo_string = R"( HloModule m f1 { p0 = f32[128] parameter(0) bitcast.1 = f32[8,16] bitcast(p0) log = f32[128] log(p0) bitcast.2 = f32[8,16] bitcast(log) ROOT add = f32[8,16] add(bitcast.1, bitcast.2) } ENTRY entry_computation { param_0 = f32[128] parameter(0) ROOT fusion = f32[8,16] fusion(param_0), kind=kLoop, calls=f1 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); ASSERT_IS_OK(computation->Accept(&analysis_)); auto root = computation->root_instruction(); EXPECT_EQ(GpuPerformanceModelBase::GetOperandBytesAccessed(&analysis_, root, root->operand(0)), 1024); } TEST_F(GpuPerformanceModelBaseTest, EstimateFusionLaunchDimensions_LoopFusion) { absl::string_view hlo_string = R"( HloModule m f1 { p0 = f32[8,16,128] parameter(0) log = f32[8,16,128] log(p0) ROOT add = f32[8,16,128] add(p0, log) } ENTRY entry_computation { param_0 = f32[8,16,128] parameter(0) ROOT fusion = f32[8,16,128] fusion(param_0), kind=kLoop, calls=f1 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto fusion_analysis = AnalyzeFusion( *module->entry_computation()->root_instruction(), device_info_); auto launch_dimensions = GpuPerformanceModelBase::EstimateFusionLaunchDimensions(fusion_analysis); EXPECT_EQ(launch_dimensions.num_blocks(), 16); EXPECT_EQ(launch_dimensions.num_threads_per_block(), 1024); } TEST_F(GpuPerformanceModelBaseTest, EstimateFusionLaunchDimensions_TritonSoftMaxFusion) { absl::string_view hlo_string = R"( max { p1 = f32[] parameter(1) p0 = f32[] parameter(0) ROOT m = f32[] maximum(p0, p1) } triton_softmax_computation { p0 = f32[16,970] parameter(0) constant = f32[] constant(-inf) reduce = f32[16] reduce(p0, constant), dimensions={1}, to_apply=max broadcast = f32[16,970] broadcast(reduce), dimensions={0} ROOT subtract = f32[16,970] subtract(p0, broadcast) } ENTRY e { p0 = f32[16,970]{1,0} parameter(0) ROOT r = f32[16,970]{1,0} fusion(p0), kind=kCustom, calls=triton_softmax_computation, backend_config={"fusion_backend_config": {kind: "__triton","block_level_fusion_config":{"output_tile_sizes":["1","970"],"num_warps":"2"}}} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto fusion_analysis = AnalyzeFusion( *module->entry_computation()->root_instruction(), device_info_); auto launch_dimensions = GpuPerformanceModelBase::EstimateFusionLaunchDimensions(fusion_analysis); EXPECT_EQ(launch_dimensions.num_blocks(), 16); EXPECT_EQ(launch_dimensions.num_threads_per_block(), 64); } TEST_F(GpuPerformanceModelBaseTest, EstimateFusionLaunchDimensions_CudnnFusion) { absl::string_view hlo_string = R"( fusion1 { p0 = f32[32,96] parameter(0) p1 = f32[96,256] parameter(1) ROOT r = f32[32,256] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = f32[32,96] parameter(0) p1 = f32[96,256] parameter(1) ROOT _ = f32[32,256] fusion(p0, p1), kind=kCustom, calls=fusion1, backend_config={"fusion_backend_config": {kind: "__cudnn$fusion"}} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto fusion_analysis = AnalyzeFusion( *module->entry_computation()->root_instruction(), device_info_); auto launch_dimensions = GpuPerformanceModelBase::EstimateFusionLaunchDimensions(fusion_analysis); EXPECT_EQ(launch_dimensions.num_blocks(), 64); EXPECT_EQ(launch_dimensions.num_threads_per_block(), 128); } } } }
2,141
cpp
tensorflow/tensorflow
gpu_collective_performance_model
third_party/xla/xla/service/gpu/model/gpu_collective_performance_model.cc
third_party/xla/xla/service/gpu/model/gpu_collective_performance_model_test.cc
#ifndef XLA_SERVICE_GPU_MODEL_GPU_COLLECTIVE_PERFORMANCE_MODEL_H_ #define XLA_SERVICE_GPU_MODEL_GPU_COLLECTIVE_PERFORMANCE_MODEL_H_ #include <array> #include <cstdint> #include "absl/time/time.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/gpu/model/gpu_performance_model_base.h" #include "xla/stream_executor/device_description.h" #if GOOGLE_CUDA #include <dlfcn.h> #include "third_party/gpus/cuda/nvml/include/nvml.h" #define NVML_FUNCTOR(name, rettype, args) \ inline rettype(*xla_##name) args = nullptr; NVML_FUNCTOR(nvmlInit, nvmlReturn_t, ()) NVML_FUNCTOR(nvmlShutdown, nvmlReturn_t, ()) NVML_FUNCTOR(nvmlDeviceGetHandleByIndex, nvmlReturn_t, (unsigned int index, nvmlDevice_t* device)) NVML_FUNCTOR(nvmlDeviceGetNvLinkCapability, nvmlReturn_t, (nvmlDevice_t device, unsigned int link, nvmlNvLinkCapability_t capability, unsigned int* capResult)) #endif namespace xla { namespace gpu { class GpuPerformanceWithCollectiveModel : public GpuPerformanceModelBase { public: enum CollectiveAlgo { RING = 0, TREE, }; static constexpr std::array<double, 3> kLowLatencyMaxBandwidths = { 39.0 , 87.7 , 87.7 }; static constexpr std::array<double, 3> kPerChannelMaxRingLL128Bandwidths = { 20.0 , 20.0 , 36.7 , }; static constexpr double kSm60NvlinkBandwidth = 18.0; static constexpr double kSm70NvlinkBandwidth = 20.0; static constexpr double kSm80NvlinkBandwidth = 20.0; static constexpr double kSm90NvlinkBandwidth = 20.0; static constexpr double kPciBandwidth = 12.0; static constexpr double kRingAlgorithmDiscountFactor = 0.92; static constexpr std::array<double, 13> kIntraNodeSpeeds = { 40.0, 30.0, 20.0, 18.0, 15.0, 12.0, 10.0, 9.0, 7.0, 6.0, 5.0, 4.0, 3.0}; static constexpr std::array<double, 9> kIntraNodeSpeedsSm90 = { 60.0, 40.0, 30.0, 24.0, 20.0, 15.0, 12.0, 6.0, 3.0}; static constexpr int64_t kMaxNumChannelsRing = 16; static constexpr int64_t kLL128NumThreads = 640; static constexpr absl::Duration kNcclKernelLaunchOverhead = absl::Microseconds(5); static absl::Duration ComputeCollectiveTime( const HloInstruction& instr, const GpuHloCostAnalysis* cost_analysis, const se::DeviceDescription& gpu_device_info); static float GetNvlinkBw(se::CudaComputeCapability compute_capability); static bool InitNvml(); static bool ShutdownNvml(); static uint32_t CheckIfNvlinkSupportsP2P(); private: static absl::Duration ComputeAllreduceTime( const HloInstruction& instr, const GpuHloCostAnalysis* cost_analysis, const se::DeviceDescription& gpu_device_info); }; } } #endif #include "xla/service/gpu/model/gpu_collective_performance_model.h" #include <algorithm> #include <cstdint> #include <cstdlib> #include <vector> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/strings/numbers.h" #include "absl/time/time.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/hlo_dataflow_analysis.h" #include "xla/stream_executor/device_description.h" #include "xla/util.h" #if GOOGLE_CUDA #include "third_party/gpus/cuda/nvml/include/nvml.h" #endif namespace xla { namespace gpu { namespace { int64_t GetNcclMaxNumChannels( GpuPerformanceWithCollectiveModel::CollectiveAlgo algorithm) { int64_t max_nchannels = 0; switch (algorithm) { case GpuPerformanceWithCollectiveModel::RING: case GpuPerformanceWithCollectiveModel::TREE: max_nchannels = GpuPerformanceWithCollectiveModel::kMaxNumChannelsRing; break; } const char* env = std::getenv("NCCL_MAX_NCHANNELS"); if (env != nullptr) { int64_t max_nchannels_from_env; if (absl::SimpleAtoi(env, &max_nchannels_from_env)) { max_nchannels = std::min(max_nchannels_from_env, max_nchannels); } } return max_nchannels; } int64_t GetMinNumberOfChannels( GpuPerformanceWithCollectiveModel::CollectiveAlgo algorithm) { int64_t min_nchannels = 0; switch (algorithm) { case GpuPerformanceWithCollectiveModel::RING: case GpuPerformanceWithCollectiveModel::TREE: min_nchannels = 1; break; } const char* env = std::getenv("NCCL_MIN_NCHANNELS"); if (env != nullptr) { int64_t min_nchannels_from_env; if (absl::SimpleAtoi(env, &min_nchannels_from_env)) { min_nchannels = std::min(min_nchannels_from_env, min_nchannels); } } return min_nchannels; } int GetNumThreads(int warp_size, int min_num_threads, int max_num_threads, int default_num_threads) { int threads_from_env = default_num_threads; const char* env = std::getenv("NCCL_NTHREADS"); if (env != nullptr) { CHECK(absl::SimpleAtoi(env, &threads_from_env)); } int num_threads = threads_from_env; if (num_threads > 0) { if (num_threads % warp_size != 0) { num_threads = max_num_threads; } else if (num_threads > max_num_threads) { num_threads = max_num_threads; } else if (num_threads < min_num_threads) { num_threads = min_num_threads; } } else { num_threads = default_num_threads; } return num_threads; } float GetMaxSysBwFromGpu(const se::CudaComputeCapability cc, const double* bandwidths_table) { switch (cc.major) { case se::CudaComputeCapability::VOLTA: return bandwidths_table[0]; case se::CudaComputeCapability::AMPERE: return bandwidths_table[1]; case se::CudaComputeCapability::HOPPER: return bandwidths_table[2]; } return -1; } } float GpuPerformanceWithCollectiveModel::GetNvlinkBw( se::CudaComputeCapability compute_capability) { return compute_capability.IsAtLeast(se::CudaComputeCapability::HOPPER) ? kSm90NvlinkBandwidth : compute_capability.IsAtLeast(se::CudaComputeCapability::AMPERE) ? kSm80NvlinkBandwidth : compute_capability.IsAtLeast(se::CudaComputeCapability::VOLTA) ? kSm70NvlinkBandwidth : compute_capability.IsAtLeast(se::CudaComputeCapability::PASCAL_) ? kSm60NvlinkBandwidth : kSm80NvlinkBandwidth; } bool GpuPerformanceWithCollectiveModel::InitNvml() { #if GOOGLE_CUDA void* libhandle = dlopen("libnvidia-ml.so.1", RTLD_NOW); CHECK(libhandle != nullptr) << "Failed to open libnvidia-ml.so.1"; struct SymbolEntry { void** functor; char const* name; }; std::vector<SymbolEntry> symbols = { {(void**)&xla_nvmlInit, "nvmlInit_v2"}, {(void**)&xla_nvmlShutdown, "nvmlShutdown"}, {(void**)&xla_nvmlDeviceGetHandleByIndex, "nvmlDeviceGetHandleByIndex"}, {(void**)&xla_nvmlDeviceGetNvLinkCapability, "nvmlDeviceGetNvLinkCapability"}, }; for (SymbolEntry se : symbols) { *se.functor = dlsym(libhandle, se.name); } nvmlReturn_t init_result = xla_nvmlInit(); return init_result == NVML_SUCCESS; #else return false; #endif } bool GpuPerformanceWithCollectiveModel::ShutdownNvml() { #if GOOGLE_CUDA nvmlReturn_t shutdown_result = xla_nvmlShutdown(); return shutdown_result == NVML_SUCCESS; #else return false; #endif } uint32_t GpuPerformanceWithCollectiveModel::CheckIfNvlinkSupportsP2P() { #if GOOGLE_CUDA CHECK(InitNvml()) << "NVML init failed."; nvmlDevice_t nvml_device; nvmlReturn_t get_device_result = xla_nvmlDeviceGetHandleByIndex(0, &nvml_device); CHECK(get_device_result == NVML_SUCCESS); uint32_t supported_p2p = 0; nvmlReturn_t nvlink_cap_result = xla_nvmlDeviceGetNvLinkCapability( nvml_device, 0, NVML_NVLINK_CAP_P2P_SUPPORTED, &supported_p2p); CHECK(nvlink_cap_result == NVML_SUCCESS); CHECK(ShutdownNvml()) << "NVML shutdown failed."; return supported_p2p; #else return 0; #endif } absl::Duration GpuPerformanceWithCollectiveModel::ComputeAllreduceTime( const HloInstruction& instr, const GpuHloCostAnalysis* cost_analysis, const se::DeviceDescription& gpu_device_info) { absl::Duration total_time = kNcclKernelLaunchOverhead; stream_executor::CudaComputeCapability compute_cap = gpu_device_info.cuda_compute_capability(); int64_t size_of_speed_array = kIntraNodeSpeeds.size(); int64_t size_of_sm90_speed_array = kIntraNodeSpeedsSm90.size(); int num_speeds = compute_cap.major >= se::CudaComputeCapability::HOPPER ? size_of_sm90_speed_array : size_of_speed_array; const double* speeds = compute_cap.major >= se::CudaComputeCapability::HOPPER ? kIntraNodeSpeedsSm90.data() : kIntraNodeSpeeds.data(); int speed_index = 0; float max_sys_bw = GetMaxSysBwFromGpu(compute_cap, kLowLatencyMaxBandwidths.data()); CHECK_GT(max_sys_bw, 0); while ((speed_index < num_speeds - 1) && speeds[speed_index] > max_sys_bw) { speed_index++; } float bw_intra_node = speeds[speed_index]; int64_t num_devices = cost_analysis->NumOfDevices(instr); int64_t min_nchannels = std::max(num_devices, GetMinNumberOfChannels(CollectiveAlgo::RING)); int64_t num_channels = std::max(min_nchannels, GetNcclMaxNumChannels(CollectiveAlgo::RING)); int default_threads = (bw_intra_node * num_channels <= kPciBandwidth) ? 256 : kLL128NumThreads; int warp_size = gpu_device_info.threads_per_warp(); int num_threads = GetNumThreads(warp_size, kLL128NumThreads / 4, kLL128NumThreads, default_threads); absl::Duration compute_time_per_channel = ComputeTime( gpu_device_info, cost_analysis->flop_count(instr) / num_channels, num_channels, num_threads); total_time += compute_time_per_channel; uint32_t supported_p2p = CheckIfNvlinkSupportsP2P(); if (supported_p2p == 0) { VLOG(8) << "Nvlink doesn't support p2p communication. Model will " "continue using default system bandwidth."; } else { VLOG(8) << "Nvlink supports p2p communication, setting intra node " "bandwidth to nvlink bw."; bw_intra_node = GetNvlinkBw(compute_cap); } double bus_bandwidth = bw_intra_node * num_channels; double per_channel_ring_ll128_Bw = GetMaxSysBwFromGpu(compute_cap, kPerChannelMaxRingLL128Bandwidths.data()); bus_bandwidth = std::min(bus_bandwidth * kRingAlgorithmDiscountFactor, num_channels * per_channel_ring_ll128_Bw); double actual_bandwidth = bus_bandwidth * cost_analysis->ScalingRatio(instr); absl::Duration communication_time = absl::Milliseconds( cost_analysis->bytes_accessed(instr) / (1e6 * actual_bandwidth)); total_time += communication_time; return total_time; } absl::Duration GpuPerformanceWithCollectiveModel::ComputeCollectiveTime( const HloInstruction& instr, const GpuHloCostAnalysis* cost_analysis, const se::DeviceDescription& gpu_device_info) { if (cost_analysis->NumOfDevices(instr) == 1) { VLOG(8) << "Returning only kernel launch overhead for a single partition."; return kNcclKernelLaunchOverhead; } if (HloDataflowAnalysis::IsAsynchronousOperationDone(instr.opcode())) { VLOG(8) << "Returning 0 cost for async done op " << instr.name(); return absl::ZeroDuration(); } switch (instr.opcode()) { case HloOpcode::kAllReduce: case HloOpcode::kAllReduceStart: return ComputeAllreduceTime(instr, cost_analysis, gpu_device_info); default: { LOG(WARNING) << "Runtime estimate for " << instr.name() << " not implemented. Returning only the kernel launch time."; return kNcclKernelLaunchOverhead; } } } } }
#include <gtest/gtest.h> #include "xla/service/gpu/backend_configs.pb.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace gpu { namespace { using GpuPerformanceWithCollectiveModelTest = HloTestBase; TEST_F(GpuPerformanceWithCollectiveModelTest, TestNvmlLibraryLoading) { #if GOOGLE_CUDA EXPECT_TRUE(GpuPerformanceWithCollectiveModel::InitNvml()); nvmlDevice_t nvml_device; nvmlReturn_t get_device_result = xla_nvmlDeviceGetHandleByIndex(0, &nvml_device); EXPECT_TRUE(get_device_result == NVML_SUCCESS); EXPECT_TRUE(GpuPerformanceWithCollectiveModel::InitNvml()); #endif } } } }
2,142
cpp
tensorflow/tensorflow
fusion_analysis_cache
third_party/xla/xla/service/gpu/model/fusion_analysis_cache.cc
third_party/xla/xla/service/gpu/model/fusion_analysis_cache_test.cc
#ifndef XLA_SERVICE_GPU_MODEL_FUSION_ANALYSIS_CACHE_H_ #define XLA_SERVICE_GPU_MODEL_FUSION_ANALYSIS_CACHE_H_ #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/node_hash_map.h" #include "absl/synchronization/mutex.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/stream_executor/device_description.h" namespace xla::gpu { class HloFusionAnalysisCache { public: explicit HloFusionAnalysisCache( const stream_executor::DeviceDescription& device_info) : device_info_(device_info) {} const HloFusionAnalysis& Get(const HloInstruction& instruction); const HloFusionAnalysis& Get(const HloInstruction& producer, const HloInstruction& consumer); void Invalidate(const HloInstruction& instruction); void Clear(); private: const stream_executor::DeviceDescription& device_info_; absl::Mutex mutex_; absl::node_hash_map<int, HloFusionAnalysis> analyses_; absl::node_hash_map<std::pair<int, int>, HloFusionAnalysis> producer_consumer_analyses_; absl::flat_hash_map<int, std::vector<int>> consumers_for_producers_; absl::flat_hash_map<int, std::vector<int>> producers_for_consumers_; }; } #endif #include "xla/service/gpu/model/fusion_analysis_cache.h" #include <utility> #include "absl/synchronization/mutex.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/hlo_fusion_analysis.h" namespace xla::gpu { const HloFusionAnalysis& HloFusionAnalysisCache::Get( const HloInstruction& instruction) { { absl::MutexLock lock(&mutex_); auto it = analyses_.find(instruction.unique_id()); if (it != analyses_.end()) { return it->second; } } HloFusionAnalysis analysis = AnalyzeFusion(instruction, device_info_); absl::MutexLock lock(&mutex_); auto it = analyses_.find(instruction.unique_id()); if (it != analyses_.end()) { return it->second; } return analyses_.emplace(instruction.unique_id(), std::move(analysis)) .first->second; } const HloFusionAnalysis& HloFusionAnalysisCache::Get( const HloInstruction& producer, const HloInstruction& consumer) { std::pair<int, int> key{producer.unique_id(), consumer.unique_id()}; { absl::MutexLock lock(&mutex_); auto it = producer_consumer_analyses_.find(key); if (it != producer_consumer_analyses_.end()) { return it->second; } } HloFusionAnalysis analysis = AnalyzeProducerConsumerFusion(producer, consumer, device_info_); absl::MutexLock lock(&mutex_); auto it = producer_consumer_analyses_.find(key); if (it != producer_consumer_analyses_.end()) { return it->second; } producers_for_consumers_[consumer.unique_id()].push_back( producer.unique_id()); consumers_for_producers_[producer.unique_id()].push_back( consumer.unique_id()); return producer_consumer_analyses_.emplace(key, std::move(analysis)) .first->second; } void HloFusionAnalysisCache::Invalidate(const HloInstruction& instruction) { absl::MutexLock lock(&mutex_); analyses_.erase(instruction.unique_id()); if (auto consumers = consumers_for_producers_.extract(instruction.unique_id())) { for (const auto consumer : consumers.mapped()) { producer_consumer_analyses_.erase({instruction.unique_id(), consumer}); } } if (auto producers = producers_for_consumers_.extract(instruction.unique_id())) { for (const auto producer : producers.mapped()) { producer_consumer_analyses_.erase({producer, instruction.unique_id()}); } } } void HloFusionAnalysisCache::Clear() { absl::MutexLock lock(&mutex_); analyses_.clear(); producer_consumer_analyses_.clear(); consumers_for_producers_.clear(); producers_for_consumers_.clear(); } }
#include "xla/service/gpu/model/fusion_analysis_cache.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/hlo_parser.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla::gpu { namespace { class FusionAnalysisCacheTest : public HloTestBase { public: stream_executor::DeviceDescription device_{ TestGpuDeviceInfo::RTXA6000DeviceInfo()}; HloFusionAnalysisCache cache_{device_}; }; TEST_F(FusionAnalysisCacheTest, CachesAndInvalidates) { absl::string_view hlo_string = R"( HloModule m f { c0 = f32[] constant(0) b0 = f32[1000] broadcast(c0) ROOT n0 = f32[1000] negate(b0) } ENTRY e { ROOT r.1 = f32[1000] fusion(), kind=kLoop, calls=f })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(hlo_string)); auto* computation = module->GetComputationWithName("f"); auto* broadcast = computation->GetInstructionWithName("b0"); auto* negate = computation->GetInstructionWithName("n0"); auto* fusion = module->entry_computation()->root_instruction(); EXPECT_EQ(&cache_.Get(*fusion).fusion_root(0).instruction(), negate); computation->set_root_instruction(broadcast); EXPECT_EQ(&cache_.Get(*fusion).fusion_root(0).instruction(), negate) << "Analysis should be cached."; cache_.Invalidate(*fusion); EXPECT_EQ(&cache_.Get(*fusion).fusion_root(0).instruction(), broadcast) << "Analysis should have been recomputed"; } TEST_F(FusionAnalysisCacheTest, CachesAndInvalidatesProducerConsumerFusions) { absl::string_view hlo_string = R"( HloModule m add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } f { c0 = f32[] constant(0) b0 = f32[1000] broadcast(c0) ROOT r0 = f32[] reduce(b0, c0), dimensions={0}, to_apply=add } ENTRY e { f0 = f32[] fusion(), kind=kInput, calls=f ROOT n0 = f32[] negate(f0) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(hlo_string)); auto* fusion = module->entry_computation()->GetInstructionWithName("f0"); auto* neg = module->entry_computation()->GetInstructionWithName("n0"); auto* computation = module->GetComputationWithName("f"); auto* constant = computation->GetInstructionWithName("c0"); EXPECT_EQ(cache_.Get(*fusion, *neg).GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kReduction); computation->set_root_instruction(constant); EXPECT_EQ(cache_.Get(*fusion, *neg).GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kReduction) << "Analysis should be cached."; cache_.Invalidate(*fusion); EXPECT_EQ(cache_.Get(*fusion, *neg).GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kLoop) << "Analysis should have been recomputed"; } } }
2,143
cpp
tensorflow/tensorflow
symbolic_tiled_hlo_instruction
third_party/xla/xla/service/gpu/model/symbolic_tiled_hlo_instruction.cc
third_party/xla/xla/service/gpu/model/symbolic_tiled_hlo_instruction_test.cc
#ifndef XLA_SERVICE_GPU_MODEL_SYMBOLIC_TILED_HLO_INSTRUCTION_H_ #define XLA_SERVICE_GPU_MODEL_SYMBOLIC_TILED_HLO_INSTRUCTION_H_ #include <cstdint> #include <string> #include <utility> #include <vector> #include "absl/types/span.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/service/gpu/model/symbolic_tile.h" namespace xla { namespace gpu { class SymbolicTiledHloInstruction { public: SymbolicTiledHloInstruction(const HloInstruction* hlo, IndexingMap indexing_map, SymbolicTile symbolic_tile) : hlo_(hlo), indexing_map_(std::move(indexing_map)), symbolic_tile_(std::move(symbolic_tile)) {} std::vector<int64_t> TileOffsets( absl::Span<int64_t const> tile_parameters) const; std::vector<int64_t> TileSizes( absl::Span<int64_t const> tile_parameters) const; std::vector<int64_t> TileStrides( absl::Span<int64_t const> tile_parameters) const; const HloInstruction* hlo() const { return hlo_; } const IndexingMap& indexing_map() const { return indexing_map_; } const SymbolicTile& symbolic_tile() const { return symbolic_tile_; } const SymbolicTiledHloInstruction* operand(int64_t operand_id) const { return operands_[operand_id]; } SymbolicTiledHloInstruction* operand(int64_t operand_id) { return operands_[operand_id]; } const std::vector<SymbolicTiledHloInstruction*>& operands() const { return operands_; } void AppendOperand(SymbolicTiledHloInstruction* operand) { operands_.push_back(operand); } std::string ToString() const; private: const HloInstruction* hlo_; IndexingMap indexing_map_; SymbolicTile symbolic_tile_; std::vector<SymbolicTiledHloInstruction*> operands_; }; } } #endif #include "xla/service/gpu/model/symbolic_tiled_hlo_instruction.h" #include <cstdint> #include <sstream> #include <string> #include <vector> #include "absl/log/check.h" #include "absl/types/span.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Casting.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "xla/service/gpu/model/symbolic_tile.h" namespace xla { namespace gpu { namespace { using ::mlir::AffineExpr; using ::mlir::AffineMap; using ::mlir::SmallVector; std::vector<int64_t> EvaluateTileMap(AffineMap affine_map, absl::Span<int64_t const> parameters) { CHECK_EQ(affine_map.getNumSymbols(), parameters.size()); CHECK_EQ(affine_map.getNumDims(), 0); SmallVector<AffineExpr> symbol_replacements = llvm::to_vector( llvm::map_range(parameters, [affine_map](const int64_t v) -> AffineExpr { return mlir::getAffineConstantExpr(v, affine_map.getContext()); })); AffineMap simplified_affine_map = mlir::simplifyAffineMap(affine_map.replaceDimsAndSymbols( {}, symbol_replacements, 0, 0)); SmallVector<int64_t> results = llvm::to_vector(llvm::map_range( simplified_affine_map.getResults(), [](AffineExpr result) -> int64_t { return llvm::cast<mlir::AffineConstantExpr>(result).getValue(); })); return std::vector<int64_t>(results.begin(), results.end()); } } std::vector<int64_t> SymbolicTiledHloInstruction::TileOffsets( absl::Span<int64_t const> tile_parameters) const { return EvaluateTileMap(symbolic_tile_.offset_map(), tile_parameters); } std::vector<int64_t> SymbolicTiledHloInstruction::TileSizes( absl::Span<int64_t const> tile_parameters) const { return EvaluateTileMap(symbolic_tile_.size_map(), tile_parameters); } std::vector<int64_t> SymbolicTiledHloInstruction::TileStrides( absl::Span<int64_t const> tile_parameters) const { return EvaluateTileMap(symbolic_tile_.stride_map(), tile_parameters); } std::string SymbolicTiledHloInstruction::ToString() const { std::stringstream ss; ss << "\thlo: " << hlo_->ToString() << "\n"; ss << "\t" << symbolic_tile_.ToString() << "\n"; ss << "\tindexing map: " << indexing_map_.ToString() << "\n"; return ss.str(); } } }
#include "xla/service/gpu/model/symbolic_tiled_hlo_instruction.h" #include <cstdint> #include <optional> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/model/indexing_analysis.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/service/gpu/model/symbolic_tile.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/verified_hlo_module.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using ::testing::ElementsAre; using SymbolicTiledHloInstructionTest = HloTestBase; TEST_F(SymbolicTiledHloInstructionTest, TransposeTileSizesAreSupported) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( fused_computation { p0 = f32[16,32] parameter(0) p1 = f32[32,16] parameter(1) transpose = f32[32,16] transpose(p0), dimensions={1,0} ROOT subtract = f32[32,16] subtract(transpose, p1) } ENTRY main { p0 = f32[16,32] parameter(0) p1 = f32[32,16] parameter(1) ROOT root = f32[32,16] fusion(p0, p1), kind=kLoop, calls=fused_computation } )")); mlir::MLIRContext mlir_ctx; auto fusion = module->entry_computation()->root_instruction(); auto fusion_adaptor = HloFusionAdaptor::ForInstruction(fusion); auto output_to_input_indexing = ComputeGroupedOutputToInputIndexing( *fusion_adaptor, fusion_adaptor->GetRoots()[0], &mlir_ctx); HloInstruction* subtract = fusion->fused_expression_root(); HloInstruction* p0 = subtract->mutable_operand(0)->mutable_operand(0); HloInstruction* p1 = subtract->mutable_operand(1); IndexingMap p0_indexing = *output_to_input_indexing[fusion->operand(0)].begin(); std::optional<SymbolicTile> p0_symbolic_tile = SymbolicTile::FromIndexingMap(p0_indexing); ASSERT_TRUE(p0_symbolic_tile.has_value()); SymbolicTiledHloInstruction tiled_p0(p0, p0_indexing, *p0_symbolic_tile); ASSERT_TRUE(p0_symbolic_tile.has_value()); IndexingMap p1_indexing = *output_to_input_indexing[fusion->operand(1)].begin(); std::optional<SymbolicTile> p1_symbolic_tile = SymbolicTile::FromIndexingMap(p1_indexing); ASSERT_TRUE(p1_symbolic_tile.has_value()); SymbolicTiledHloInstruction tiled_p1(p1, p1_indexing, *p1_symbolic_tile); std::vector<int64_t> output_tile_sizes = {8, 4}; auto p0_tile_sizes = tiled_p0.TileSizes(output_tile_sizes); EXPECT_THAT(tiled_p0.TileSizes(output_tile_sizes), ElementsAre(4, 8)); EXPECT_THAT(tiled_p1.TileSizes(output_tile_sizes), ElementsAre(8, 4)); } } } }
2,144
cpp
tensorflow/tensorflow
hlo_op_profiles
third_party/xla/xla/service/gpu/model/hlo_op_profiles.cc
third_party/xla/xla/service/gpu/model/hlo_op_profiles_test.cc
#ifndef XLA_SERVICE_GPU_MODEL_HLO_OP_PROFILES_H_ #define XLA_SERVICE_GPU_MODEL_HLO_OP_PROFILES_H_ #include <cstdint> #include <memory> #include <string> #include <string_view> #include <utility> #include "absl/container/flat_hash_map.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/model/hlo_op_profile.pb.h" #include "xla/service/hlo.pb.h" #include "xla/stream_executor/device_description.h" #include "xla/types.h" #include "xla/xla_data.pb.h" namespace xla { namespace gpu { class HloOpProfiles { public: using HloOpProfile = absl::flat_hash_map<std::pair<HloOpcode, PrimitiveType>, int64_t>; using ProfilesNestedMap = absl::flat_hash_map<std::string, HloOpProfile>; static const HloOpProfiles& Singleton(); static std::string GetProfileName(const se::DeviceDescription* device_info); static std::unique_ptr<HloOpProfiles> Load( std::string_view profiles_text_proto, std::string_view default_profile_name); const HloOpProfile& GetProfile( const se::DeviceDescription* device_info) const; private: HloOpProfiles(ProfilesNestedMap profiles, std::string_view default_profile_name) : profiles_(std::move(profiles)), default_profile_(profiles_.at(default_profile_name)) {} ProfilesNestedMap profiles_; const HloOpProfile& default_profile_; }; } } #endif #include "xla/service/gpu/model/hlo_op_profiles.h" #include <memory> #include <string> #include <string_view> #include <utility> #include <variant> #include "absl/memory/memory.h" #include "absl/strings/str_cat.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/model/hlo_op_profiles_data.h" #include "xla/stream_executor/device_description.h" #include "tsl/platform/logging.h" #include "tsl/platform/protobuf.h" namespace xla { namespace gpu { const HloOpProfiles& HloOpProfiles::Singleton() { static const auto* hlo_op_profiles = HloOpProfiles::Load(kDeviceHloOpProfiles, "sm_86") .release(); return *hlo_op_profiles; } std::string HloOpProfiles::GetProfileName( const se::DeviceDescription* device_info) { if (device_info != nullptr) { if (auto* ptr = std::get_if<stream_executor::CudaComputeCapability>( &device_info->gpu_compute_capability())) return absl::StrCat("sm_", ptr->major, ptr->minor); } return "<unknown>"; } std::unique_ptr<HloOpProfiles> HloOpProfiles::Load( std::string_view profiles_text_proto, std::string_view default_profile_name) { ProfilesNestedMap profiles_map; DeviceHloInstructionProfiles all_device_profiles; CHECK(tsl::protobuf::TextFormat::ParseFromString( std::string(profiles_text_proto), &all_device_profiles)); for (const auto& device_profile : all_device_profiles.entries()) { for (const auto& entry : device_profile.second.entries()) { auto op_code = StringToHloOpcode(entry.instruction().opcode()).value(); auto element_type = entry.instruction().shape().element_type(); profiles_map[device_profile.first][std::make_pair( op_code, element_type)] = entry.clock_cycles(); } } return absl::WrapUnique( new HloOpProfiles(std::move(profiles_map), default_profile_name)); } const HloOpProfiles::HloOpProfile& HloOpProfiles::GetProfile( const se::DeviceDescription* device_info) const { auto it = profiles_.find(GetProfileName(device_info)); if (it != profiles_.end()) return it->second; return default_profile_; } } }
#include "xla/service/gpu/model/hlo_op_profiles.h" #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" namespace xla { namespace gpu { namespace { constexpr char kDeviceHloOpProfiles[] = R"pb( entries { key: "sm_90" value { entries { instruction { opcode: "divide" shape { element_type: F32 } } clock_cycles: 32 } } } entries { key: "sm_80" value { entries { instruction { opcode: "multiply" shape { element_type: F32 } } clock_cycles: 64 } } } )pb"; using HloOpProfilesTest = ::testing::Test; TEST_F(HloOpProfilesTest, GetProfile) { auto hlo_op_profiles = HloOpProfiles::Load(kDeviceHloOpProfiles, "sm_80"); auto device_info_sm_90 = TestGpuDeviceInfo::RTXA6000DeviceInfo( stream_executor::CudaComputeCapability(9, 0)); const auto& op_profile = hlo_op_profiles->GetProfile(&device_info_sm_90); ASSERT_TRUE(op_profile.contains( std::make_pair(HloOpcode::kDivide, PrimitiveType::F32))); EXPECT_EQ( op_profile.at(std::make_pair(HloOpcode::kDivide, PrimitiveType::F32)), 32); } TEST_F(HloOpProfilesTest, GetProfileDefault) { auto hlo_op_profiles = HloOpProfiles::Load(kDeviceHloOpProfiles, "sm_80"); auto device_info_sm_85 = TestGpuDeviceInfo::RTXA6000DeviceInfo( stream_executor::CudaComputeCapability(8, 5)); const auto& op_profile = hlo_op_profiles->GetProfile(&device_info_sm_85); ASSERT_TRUE(op_profile.contains( std::make_pair(HloOpcode::kMultiply, PrimitiveType::F32))); EXPECT_EQ( op_profile.at(std::make_pair(HloOpcode::kMultiply, PrimitiveType::F32)), 64); } } } }
2,145
cpp
tensorflow/tensorflow
hlo_op_profiler
third_party/xla/xla/service/gpu/model/hlo_op_profiler.cc
third_party/xla/xla/service/gpu/model/hlo_op_profiler_test.cc
#ifndef XLA_SERVICE_GPU_MODEL_HLO_OP_PROFILER_H_ #define XLA_SERVICE_GPU_MODEL_HLO_OP_PROFILER_H_ #include <memory> #include "absl/status/statusor.h" #include "absl/time/time.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/model/hlo_op_profile.pb.h" #include "xla/service/hlo_runner.h" #include "xla/stream_executor/device_description.h" #include "xla/xla_data.pb.h" namespace xla { namespace gpu { class HloOpProfiler { static std::unique_ptr<HloModule> MakeModuleForMeasurements( HloOpcode op, PrimitiveType data_type, int chain_length); absl::StatusOr<absl::Duration> MeasureOpChainDuration(HloOpcode op, PrimitiveType data_type, int chain_length); public: explicit HloOpProfiler(HloRunner& runner); absl::StatusOr<HloInstructionProfile> MeasureClockCyclesPerOp( HloOpcode op, PrimitiveType data_type); private: HloRunner& runner_; const se::DeviceDescription& dev_info_; absl::Duration min_duration_; }; } } #endif #include "xla/service/gpu/model/hlo_op_profiler.h" #include <cstdint> #include <memory> #include <random> #include <string> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "xla/debug_options_flags.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/primitive_util.h" #include "xla/service/executable.h" #include "xla/service/gpu/model/hlo_op_profile.pb.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_runner.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/test_utils.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" #ifdef GOOGLE_CUDA #include "xla/backends/profiler/gpu/cupti_collector.h" #include "xla/backends/profiler/gpu/cupti_tracer.h" #endif namespace xla { namespace gpu { #ifdef GOOGLE_CUDA class CuptiKernelTracer : public profiler::CuptiTraceCollector { public: CuptiKernelTracer() : profiler::CuptiTraceCollector({}), cupti_tracer_(profiler::CuptiTracer::GetCuptiTracerSingleton()) { CHECK(cupti_tracer_->IsAvailable()); profiler::CuptiTracerOptions options; options.cbids_selected.push_back( CUPTI_DRIVER_TRACE_CBID_cu64GLMapBufferObject); options.activities_selected.push_back(CUPTI_ACTIVITY_KIND_KERNEL); cupti_tracer_->Enable(options, this); } uint64_t getMedianKernelTimeNs() && { cupti_tracer_->Disable(); if (kernel_times_ns_.empty()) { LOG(ERROR) << "No kernel events"; return 0; } std::sort(kernel_times_ns_.begin(), kernel_times_ns_.end()); size_t i = kernel_times_ns_.size() / 2; if (kernel_times_ns_.size() % 2 != 0) { return kernel_times_ns_[i]; } return (kernel_times_ns_[i - 1] + kernel_times_ns_[i] + 1) / 2; } private: void AddEvent(profiler::CuptiTracerEvent&& event) override { if (event.type == profiler::CuptiTracerEventType::Kernel) { kernel_times_ns_.push_back(event.end_time_ns - event.start_time_ns); } VLOG(5) << "CuptiTracerEvent: " << event.name << ", " << event.end_time_ns - event.start_time_ns << "ns"; } void OnEventsDropped(const std::string& reason, uint32_t num_events) override { LOG(WARNING) << "Dropped " << num_events << " events: " << reason; } void Flush() override {} profiler::CuptiTracer* cupti_tracer_; std::vector<uint64_t> kernel_times_ns_; }; #else class CuptiKernelTracer { public: uint64_t getMedianKernelTimeNs() && { LOG(FATAL) << "Not built with --config=cuda"; } }; #endif std::unique_ptr<HloModule> HloOpProfiler::MakeModuleForMeasurements( HloOpcode op, PrimitiveType data_type, int chain_length) { constexpr int64_t kInputSize = 1; const Shape shape = ShapeUtil::MakeShape(data_type, {kInputSize}); HloModuleConfig config; config.set_debug_options(GetDebugOptionsFromFlags()); auto module = std::make_unique<HloModule>("module", config); HloComputation::Builder entry_builder("entry"); HloComputation::Builder fusion_builder("fusion"); HloInstruction* pf = fusion_builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "pf")); HloInstruction* last = pf; for (int i = 0; i < chain_length; ++i) { switch (HloOpcodeArity(op).value_or(0)) { case 1: last = fusion_builder.AddInstruction( HloInstruction::CreateUnary(shape, op, last)); break; case 2: last = fusion_builder.AddInstruction( HloInstruction::CreateBinary(shape, op, last, pf)); break; default: LOG(FATAL) << "Unsupported opcode: " << HloOpcodeString(op); } } HloComputation* subcomp = module->AddEmbeddedComputation(fusion_builder.Build()); HloInstruction* p0 = entry_builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "p0")); entry_builder.AddInstruction(HloInstruction::CreateFusion( shape, HloInstruction::FusionKind::kLoop, {p0}, subcomp)); module->AddEntryComputation(entry_builder.Build()); VLOG(9) << module->ToString(); return module; } absl::StatusOr<absl::Duration> HloOpProfiler::MeasureOpChainDuration( HloOpcode op, PrimitiveType data_type, int chain_length) { #ifndef GOOGLE_CUDA return FailedPrecondition("Not built with --config=cuda"); #endif std::unique_ptr<HloModule> module = MakeModuleForMeasurements(op, data_type, chain_length); std::minstd_rand0 engine; std::vector<Literal> args_small = MakeFakeArguments(module.get(), &engine, false) .value(); std::vector<Literal> args_large = MakeFakeArguments(module.get(), &engine, true) .value(); const absl::Time t_compile_start = absl::Now(); TF_ASSIGN_OR_RETURN(std::unique_ptr<Executable> ex, runner_.CreateExecutable(std::move(module), false)); if (absl::Now() - t_compile_start > absl::Seconds(10)) { return ResourceExhausted("Too slow compilation"); } TF_RETURN_IF_ERROR( runner_.ExecuteWithExecutable(ex.get(), args_small).status()); CuptiKernelTracer cupti_tracer; for (int i = 0; i < 10; ++i) { TF_RETURN_IF_ERROR( runner_.ExecuteWithExecutable(ex.get(), args_small).status()); TF_RETURN_IF_ERROR( runner_.ExecuteWithExecutable(ex.get(), args_large).status()); } return absl::Nanoseconds(std::move(cupti_tracer).getMedianKernelTimeNs()); } HloOpProfiler::HloOpProfiler(HloRunner& runner) : runner_(runner), dev_info_(runner.backend().stream_executors()[0]->GetDeviceDescription()), min_duration_(2 * MeasureOpChainDuration(HloOpcode::kNegate, F32, 0) .value_or(absl::ZeroDuration())) { VLOG(3) << "Minimum kernel duration: " << min_duration_; CHECK_GT(min_duration_, absl::ZeroDuration()) << "Failed to measure kernel runtime"; } absl::StatusOr<HloInstructionProfile> HloOpProfiler::MeasureClockCyclesPerOp( HloOpcode op, PrimitiveType data_type) { VLOG(2) << "Measuring " << HloOpcodeString(op) << " " << primitive_util::LowercasePrimitiveTypeName(data_type); constexpr int kMinOpChainLength = 16; constexpr int kMaxOpChainLength = 8192; absl::Duration duration = absl::ZeroDuration(); int chain_length = kMinOpChainLength; do { if (chain_length * 2 > kMaxOpChainLength) { return FailedPrecondition("%s is too fast to measure", HloOpcodeString(op)); } TF_ASSIGN_OR_RETURN(duration, MeasureOpChainDuration(op, data_type, chain_length)); VLOG(3) << chain_length << "\t" << duration; chain_length *= 2; } while (duration < min_duration_); TF_ASSIGN_OR_RETURN(absl::Duration double_duration, MeasureOpChainDuration(op, data_type, chain_length)); VLOG(3) << chain_length << "\t" << double_duration; const absl::Duration time_per_op = (double_duration - duration) * 2.0 / chain_length; const float clocks_per_nanosecond = dev_info_.clock_rate_ghz() * 2; const int64_t n_clocks = absl::ToInt64Nanoseconds(time_per_op) * clocks_per_nanosecond; VLOG(3) << time_per_op << " = " << n_clocks << " clock cycles"; HloInstructionProfile profile; profile.mutable_instruction()->mutable_opcode()->assign(HloOpcodeString(op)); profile.mutable_instruction()->mutable_shape()->set_element_type(data_type); profile.set_clock_cycles(n_clocks); return profile; } } }
#include "xla/service/gpu/model/hlo_op_profiler.h" #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_opcode.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace gpu { namespace { using HloOpProfilerTest = HloTestBase; TEST_F(HloOpProfilerTest, BasicMeasurementsAreCorrect) { #ifndef GOOGLE_CUDA GTEST_SKIP() << "Not built with --config=cuda"; #endif HloOpProfiler profiler(test_runner_); EXPECT_GT(profiler.MeasureClockCyclesPerOp(HloOpcode::kAdd, F32) .value() .clock_cycles(), 0); EXPECT_GT(profiler.MeasureClockCyclesPerOp(HloOpcode::kDivide, F64) .value() .clock_cycles(), 400); EXPECT_GT(profiler.MeasureClockCyclesPerOp(HloOpcode::kSqrt, C128) .value() .clock_cycles(), 1000); } } } }
2,146
cpp
tensorflow/tensorflow
coalescing_analysis
third_party/xla/xla/service/gpu/model/coalescing_analysis.cc
third_party/xla/xla/service/gpu/model/coalescing_analysis_test.cc
#ifndef XLA_SERVICE_GPU_MODEL_COALESCING_ANALYSIS_H_ #define XLA_SERVICE_GPU_MODEL_COALESCING_ANALYSIS_H_ #include "absl/container/flat_hash_map.h" #include "absl/types/span.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/fusions/fusion_emitter.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/model/indexing_map.h" namespace xla { namespace gpu { class CoalescingAnalysis { public: CoalescingAnalysis(const HloInstruction* instr, absl::Span<const HloInstruction* const> operands, const HloFusionAnalysis& fusion_analysis, KernelFusionInterface* fusion_interface = nullptr, mlir::MLIRContext* mlir_context = nullptr, bool use_heuristic = true); CoalescingAnalysis(const HloInstruction* producer, const HloInstruction* consumer, absl::Span<const HloInstruction* const> operands, const HloFusionAnalysis& fusion_analysis, KernelFusionInterface* fusion_interface = nullptr, mlir::MLIRContext* mlir_context = nullptr, bool use_heuristic = true); bool IsReadCoalesced(const HloInstruction* operand) const; private: bool ComputeCoalescingForAllOperands( const HloFusionAdaptor& fusion_adaptor, absl::Span<const HloInstruction* const> operands, const HloFusionAnalysis& fusion_analysis, KernelFusionInterface* fusion_interface, mlir::MLIRContext* mlir_context); absl::flat_hash_map<const HloInstruction*, bool> coalescing_per_operand_; bool is_coalesced_computed_by_heuristic_ = false; }; bool IsReadCoalescedHeuristic(HloFusionAnalysis::EmitterFusionKind fusion_kind, const HloInstruction* producer, const HloInstruction* consumer = nullptr); } } #endif #include "xla/service/gpu/model/coalescing_analysis.h" #include <algorithm> #include <cassert> #include <cstdint> #include <cstdlib> #include <optional> #include <stack> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/types/span.h" #include "llvm/ADT/STLExtras.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/MLIRContext.h" #include "mlir/Support/LLVM.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout.h" #include "xla/service/gpu/fusions/fusion_emitter.h" #include "xla/service/gpu/gpu_fusible.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/model/indexing_analysis.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/shape.h" #include "xla/shape_util.h" namespace xla { namespace gpu { bool IsReadCoalescedHeuristic(HloFusionAnalysis::EmitterFusionKind fusion_kind, const HloInstruction* producer, const HloInstruction* consumer) { if (fusion_kind != HloFusionAnalysis::EmitterFusionKind::kTranspose) { auto is_broadcast = [&](const HloInstruction* instr) { while (true) { if (instr->opcode() == HloOpcode::kBroadcast || instr->opcode() == HloOpcode::kIota) { return true; } if (instr->operand_count() != 1) return false; if (instr->opcode() != HloOpcode::kBitcast && !instr->IsElementwise()) { return false; } instr = instr->operand(0); } }; auto is_bad_transpose = [&](const HloInstruction* instr) { if (instr->opcode() == HloOpcode::kFusion) { for (auto* instr : instr->fused_instructions()) { if (TransposesMinorDimension(instr) && !is_broadcast(instr->operand(0))) { return true; } } return false; } return TransposesMinorDimension(instr) && !is_broadcast(instr->operand(0)); }; if (is_bad_transpose(producer)) return false; if (consumer && is_bad_transpose(consumer)) return false; } if (fusion_kind == HloFusionAnalysis::EmitterFusionKind::kReduction && IsInputFusibleReduction(*producer) && consumer && IsInputFusibleReduction(*consumer)) { return false; } return true; } namespace { using ::mlir::AffineBinaryOpExpr; using ::mlir::AffineConstantExpr; using ::mlir::AffineDimExpr; using ::mlir::AffineExpr; using ::mlir::AffineExprKind; using ::mlir::AffineMap; using ::mlir::AffineSymbolExpr; using ::mlir::getAffineConstantExpr; using ::mlir::MLIRContext; bool EstimateCoalescingViaMemoryTransactionsCount( absl::Span<const Interval> intervals, PrimitiveType element_type) { constexpr int64_t kBytesPerMemoryTransaction = 128; int64_t type_size = ShapeUtil::ByteSizeOfPrimitiveType(element_type); int memory_transactions = 0; int total_num_elements = 0; for (const auto& range : intervals) { int64_t num_elements = range.upper - range.lower + 1; memory_transactions += CeilDiv(num_elements * type_size, kBytesPerMemoryTransaction); total_num_elements += num_elements; } if (memory_transactions == 0) { return true; } int memory_transactions_lower_bound = CeilDiv(total_num_elements * type_size, kBytesPerMemoryTransaction); constexpr float kIsCoalescedThreshold = 0.9; return memory_transactions_lower_bound > memory_transactions * kIsCoalescedThreshold; } Shape GetLinearizedShape(const Shape& shape) { if (shape.rank() == 0) { return shape; } std::vector<int64_t> dims{ShapeUtil::ElementsIn(shape)}; auto result = Shape(shape.element_type(), dims, absl::InlinedVector<bool, 4>(dims.size(), false), {}); *result.mutable_layout() = xla::Layout({0}); return result; } std::optional<GroupedByOpIndexingMap> GetThreadIdToInputMemoryLayoutsMaps( const HloFusionAdaptor& fusion_adaptor, absl::Span<const HloInstruction* const> operands, const HloFusionAnalysis& fusion_analysis, KernelFusionInterface* fusion_interface, MLIRContext* mlir_context) { GroupedByOpIndexingMap result; for (const auto& [root_index, hero] : llvm::enumerate(fusion_analysis.fusion_heroes())) { for (const auto& [hero_operand_index, hero_operand] : llvm::enumerate(hero.GetOperands())) { if (hero_operand.shape().rank() == 0) { continue; } std::optional<IndexingMap> thread_id_to_hero_operand_map = fusion_interface->ComputeThreadIdToInputIndexing( root_index, hero_operand_index, mlir_context); if (!thread_id_to_hero_operand_map.has_value()) { return std::nullopt; } GroupedByOpIndexingMap instr_indexing_keyed_by_operands = ComputeGroupedOutputToInputIndexing(fusion_adaptor, hero_operand, mlir_context); for (const HloInstruction* operand : operands) { auto operand_indexing_maps_it = instr_indexing_keyed_by_operands.find(operand); if (operand_indexing_maps_it == instr_indexing_keyed_by_operands.end()) { continue; } const Shape& operand_shape = operand->shape(); IndexingMap operand_logical_to_physical_map = GetIndexingMapFromLogicalToPhysicalLayout(operand_shape, mlir_context); IndexingMap operand_physical_to_linearized_shape = GetBitcastMap( ShapeUtil::MakeShapeWithDescendingLayoutAndSamePhysicalLayout( operand_shape), GetLinearizedShape(operand_shape), mlir_context); IndexingMap operand_logical_to_linearized_physical_shape = operand_logical_to_physical_map * operand_physical_to_linearized_shape; operand_logical_to_linearized_physical_shape.Simplify(); for (const IndexingMap& operand_indexing_map : operand_indexing_maps_it->second) { if (operand_indexing_map.IsUndefined()) { result[operand] = {operand_indexing_map}; break; } IndexingMap logical_output_to_linearized_physical_input_map = operand_indexing_map * operand_logical_to_linearized_physical_shape; IndexingMap thread_id_to_linearized_physical_input_map = *thread_id_to_hero_operand_map * logical_output_to_linearized_physical_input_map; thread_id_to_linearized_physical_input_map.Simplify(); result[operand].insert(thread_id_to_linearized_physical_input_map); } } } } return result; } void AssignValuesToRTVars(IndexingMap* indexing_map) { if (indexing_map->GetRTVarsCount() == 0) { return; } MLIRContext* mlir_context = indexing_map->GetMLIRContext(); llvm::SmallVector<AffineExpr, 2> symbol_replacements; for (int64_t symbol_id = 0; symbol_id < indexing_map->GetRangeVarsCount(); ++symbol_id) { symbol_replacements.push_back( mlir::getAffineSymbolExpr(symbol_id, mlir_context)); } for (const RTVar& rt_var : indexing_map->GetRTVars()) { symbol_replacements.push_back(getAffineConstantExpr( (rt_var.feasible_values.lower + rt_var.feasible_values.upper) / 2, mlir_context)); } AffineMap thread_x_to_input_no_dim_symbols = indexing_map->GetAffineMap().replaceDimsAndSymbols( {}, symbol_replacements, indexing_map->GetDimVarsCount(), indexing_map->GetRangeVarsCount()); *indexing_map = IndexingMap{thread_x_to_input_no_dim_symbols, indexing_map->GetDimVars(), indexing_map->GetRangeVars(), {}}; indexing_map->Simplify(); indexing_map->RemoveUnusedSymbols(); } void AssignValuesToOuterLoopIVs(IndexingMap* indexing_map) { if (indexing_map->GetRangeVarsCount() <= 1) { return; } MLIRContext* mlir_context = indexing_map->GetMLIRContext(); llvm::SmallVector<AffineExpr, 2> symbol_replacements; for (int64_t symbol_id = 0; symbol_id < indexing_map->GetRangeVarsCount() - 1; ++symbol_id) { symbol_replacements.push_back(getAffineConstantExpr( indexing_map->GetRangeVar(symbol_id).range.lower, mlir_context)); } symbol_replacements.push_back(mlir::getAffineSymbolExpr(0, mlir_context)); AffineMap thread_x_to_input_no_dim_symbols = indexing_map->GetAffineMap().replaceDimsAndSymbols( {}, symbol_replacements, indexing_map->GetDimVarsCount(), 1); *indexing_map = IndexingMap{thread_x_to_input_no_dim_symbols, indexing_map->GetDimVars(), {indexing_map->GetRangeVars().back()}, {}}; indexing_map->Simplify(); indexing_map->RemoveUnusedSymbols(); } struct PartitionedExpr { explicit PartitionedExpr(MLIRContext* mlir_context) { AffineExpr zero = getAffineConstantExpr(0, mlir_context); func_of_d0 = zero; func_of_s0 = zero; } AffineExpr func_of_d0; AffineExpr func_of_s0; }; std::optional<PartitionedExpr> Partition(AffineExpr expr) { PartitionedExpr result(expr.getContext()); std::vector<AffineExpr> summands; std::stack<AffineExpr> dfs; dfs.push(expr); while (!dfs.empty()) { auto top = dfs.top(); dfs.pop(); auto sum = mlir::dyn_cast<AffineBinaryOpExpr>(top); if (sum && sum.getKind() == AffineExprKind::Add) { dfs.push(sum.getLHS()); dfs.push(sum.getRHS()); continue; } bool depends_on_thread_x = top.isFunctionOfDim(0); bool depends_on_range = top.isFunctionOfSymbol(0); if (depends_on_thread_x && depends_on_range) { return std::nullopt; } if (depends_on_thread_x) { result.func_of_d0 = top + result.func_of_d0; } if (depends_on_range) { result.func_of_s0 = top + result.func_of_s0; } } return result; } int64_t EvaluateAffineExpr(AffineExpr expr, const std::vector<int64_t>& dim_values, const std::vector<int64_t>& symbol_values = {}) { if (auto const_expr = mlir::dyn_cast<AffineConstantExpr>(expr)) { return const_expr.getValue(); } if (auto dim_expr = mlir::dyn_cast<AffineDimExpr>(expr)) { return dim_values[dim_expr.getPosition()]; } if (auto symbol_expr = mlir::dyn_cast<AffineSymbolExpr>(expr)) { return symbol_values[symbol_expr.getPosition()]; } auto binary_expr = mlir::cast<AffineBinaryOpExpr>(expr); int64_t lhs = EvaluateAffineExpr(binary_expr.getLHS(), dim_values, symbol_values); int64_t rhs = EvaluateAffineExpr(binary_expr.getRHS(), dim_values, symbol_values); switch (binary_expr.getKind()) { case AffineExprKind::Add: return lhs + rhs; case AffineExprKind::Mul: return lhs * rhs; case AffineExprKind::FloorDiv: return FloorDiv(lhs, rhs); case AffineExprKind::Mod: return lhs % rhs; default: LOG(FATAL) << "Unsupported expression"; } } void FindAllIndices(AffineExpr expr, int dim_id, int symbol_id, const std::vector<Interval>& dimension_ranges, const std::vector<Interval>& symbol_ranges, std::vector<int64_t>* dimensions, std::vector<int64_t>* symbols, std::vector<int64_t>* indices) { if (dim_id < dimension_ranges.size()) { Interval dim_range = dimension_ranges[dim_id]; for (int64_t dim_value = dim_range.lower; dim_value <= dim_range.upper; ++dim_value) { dimensions->push_back(dim_value); FindAllIndices(expr, dim_id + 1, symbol_id, dimension_ranges, symbol_ranges, dimensions, symbols, indices); dimensions->pop_back(); } return; } if (symbol_id < symbol_ranges.size()) { Interval symbol_range = symbol_ranges[symbol_id]; for (int64_t symbol_value = symbol_range.lower; symbol_value <= symbol_range.upper; ++symbol_value) { symbols->push_back(symbol_value); FindAllIndices(expr, dim_id, symbol_id + 1, dimension_ranges, symbol_ranges, dimensions, symbols, indices); symbols->pop_back(); } return; } indices->push_back(EvaluateAffineExpr(expr, *dimensions, *symbols)); } std::vector<Interval> FindIntervals( AffineExpr expr, const std::vector<Interval>& dimension_ranges, const std::vector<Interval>& symbol_ranges = {}) { std::vector<int64_t> dimensions, symbols; std::vector<int64_t> linear_indices; FindAllIndices(expr, 0, 0, dimension_ranges, symbol_ranges, &dimensions, &symbols, &linear_indices); std::sort(linear_indices.begin(), linear_indices.end()); linear_indices.erase( std::unique(linear_indices.begin(), linear_indices.end()), linear_indices.end()); std::vector<Interval> intervals; for (int i = 0, start, end; i < linear_indices.size();) { start = linear_indices[i++]; end = start; while (i < linear_indices.size() && linear_indices[i] == end + 1) { ++end; ++i; } intervals.push_back(Interval{start, end}); } return intervals; } std::vector<Interval> ExtendIntervals(const std::vector<Interval>& intervals, int64_t length) { std::vector<Interval> overlapped_intervals; for (int i = 0; i < intervals.size();) { int64_t lower = intervals[i].lower; int64_t upper = intervals[i].upper + length; ++i; while (i < intervals.size() && upper >= intervals[i].lower - 1) { upper = std::max(upper, intervals[i].upper + length); ++i; } overlapped_intervals.push_back(Interval{lower, upper}); } return overlapped_intervals; } std::vector<Interval> FindContiguousIntervals( const PartitionedExpr& partitioned_expr, const IndexingMap& indexing_map) { constexpr int64_t kNumThreadsPerWarp = 32; MLIRContext* mlir_context = indexing_map.GetMLIRContext(); AffineExpr thread_x = mlir::getAffineDimExpr(0, mlir_context); AffineExpr range = mlir::getAffineSymbolExpr(0, mlir_context); if (partitioned_expr.func_of_d0 == thread_x) { return {Interval{0, kNumThreadsPerWarp - 1}}; } if (auto mul = mlir::dyn_cast<AffineBinaryOpExpr>(partitioned_expr.func_of_d0); mul && mul.getKind() == AffineExprKind::Mul) { if (auto multiplier = mlir::dyn_cast<AffineConstantExpr>(mul.getRHS()); multiplier) { if (multiplier.getValue() == -1) { return {Interval{0, kNumThreadsPerWarp - 1}}; } if (partitioned_expr.func_of_s0 == range) { Interval range_interval = indexing_map.GetSymbolBound(0); int64_t num_elems = range_interval.GetLoopTripCount(); if (num_elems >= std::abs(multiplier.getValue())) { return {Interval{0, multiplier.getValue() * (kNumThreadsPerWarp - 1) + num_elems - 1}}; } std::vector<Interval> intervals; for (int i = 0, dm = 0; i < kNumThreadsPerWarp; ++i, dm += multiplier.getValue()) { intervals.push_back( {range_interval.lower + dm, range_interval.upper + dm}); } return intervals; } std::vector<Interval> intervals; for (int i = 0, dm = 0; i < kNumThreadsPerWarp; ++i, dm += multiplier.getValue()) { intervals.push_back({dm, dm}); } return intervals; } } auto intervals = FindIntervals(partitioned_expr.func_of_d0, {indexing_map.GetDimVars(0).bounds}); if (partitioned_expr.func_of_s0 != range) { return intervals; } Interval range_interval = indexing_map.GetSymbolBound(0); return ExtendIntervals(intervals, range_interval.GetLoopTripCount() - 1); } bool IsIndexingCoalesced(IndexingMap& thread_x_to_linearized_input, PrimitiveType element_type) { if (thread_x_to_linearized_input.IsUndefined()) { return false; } if (thread_x_to_linearized_input.GetAffineMap().getNumResults() == 0) { return true; } AssignValuesToRTVars(&thread_x_to_linearized_input); MLIRContext* mlir_context = thread_x_to_linearized_input.GetMLIRContext(); AffineExpr thread_x_dim = mlir::getAffineDimExpr( KernelFusionInterface::kIndexingMapThreadIdxDims[0], mlir_context); AffineExpr c0 = getAffineConstantExpr(0, mlir_context); IndexingMap thread_x_first_32_elements{ AffineMap::get(1, 0, {thread_x_dim, c0, c0, c0, c0, c0}, mlir_context), {DimVar{{0, 31}}}, {}, {}}; IndexingMap thread_x_to_input_sample = thread_x_first_32_elements * thread_x_to_linearized_input; thread_x_to_input_sample.Simplify(); thread_x_to_input_sample.RescaleSymbols(); thread_x_to_input_sample.RemoveUnusedSymbols(); if (thread_x_to_input_sample.IsKnownEmpty()) { return true; } AssignValuesToOuterLoopIVs(&thread_x_to_input_sample); auto partitioned_expr = Partition(thread_x_to_input_sample.GetAffineMap().getResult(0)); if (!partitioned_expr.has_value()) { return false; } if (thread_x_to_input_sample.GetConstraintsCount() > 1 || (thread_x_to_input_sample.GetConstraintsCount() == 1 && thread_x_to_input_sample.GetConstraints().begin()->first != partitioned_expr->func_of_d0 + partitioned_expr->func_of_s0)) { return false; } return EstimateCoalescingViaMemoryTransactionsCount( FindContiguousIntervals(*partitioned_expr, thread_x_to_input_sample), element_type); } } CoalescingAnalysis::CoalescingAnalysis( const HloInstruction* instr, absl::Span<const HloInstruction* const> operands, const HloFusionAnalysis& fusion_analysis, KernelFusionInterface* fusion_interface, MLIRContext* mlir_context, bool use_heuristic) { auto fusion_adaptor = HloFusionAdaptor::ForInstruction(instr); if (!use_heuristic && ComputeCoalescingForAllOperands( *fusion_adaptor, operands, fusion_analysis, fusion_interface, mlir_context)) { return; } is_coalesced_computed_by_heuristic_ = IsReadCoalescedHeuristic(fusion_analysis.GetEmitterFusionKind(), instr); } CoalescingAnalysis::CoalescingAnalysis( const HloInstruction* producer, const HloInstruction* consumer, absl::Span<const HloInstruction* const> operands, const HloFusionAnalysis& fusion_analysis, KernelFusionInterface* fusion_interface, MLIRContext* mlir_context, bool use_heuristic) { auto fusion_adaptor = HloFusionAdaptor::ForProducerConsumer(producer, consumer); if (!use_heuristic && ComputeCoalescingForAllOperands( *fusion_adaptor, operands, fusion_analysis, fusion_interface, mlir_context)) { return; } is_coalesced_computed_by_heuristic_ = IsReadCoalescedHeuristic( fusion_analysis.GetEmitterFusionKind(), producer, consumer); } bool CoalescingAnalysis::ComputeCoalescingForAllOperands( const HloFusionAdaptor& fusion_adaptor, absl::Span<const HloInstruction* const> operands, const HloFusionAnalysis& fusion_analysis, KernelFusionInterface* fusion_interface, MLIRContext* mlir_context) { std::optional<GroupedByOpIndexingMap> thread_id_to_input_memory_layouts = GetThreadIdToInputMemoryLayoutsMaps(fusion_adaptor, operands, fusion_analysis, fusion_interface, mlir_context); if (!thread_id_to_input_memory_layouts.has_value()) { return false; } for (const HloInstruction* operand : operands) { if (operand->shape().rank() == 0) { coalescing_per_operand_.insert({operand, true}); continue; } auto operand_indexing_maps = thread_id_to_input_memory_layouts->find(operand); if (operand_indexing_maps == thread_id_to_input_memory_layouts->end()) { coalescing_per_operand_.insert({operand, true}); continue; } for (IndexingMap operand_indexing_map : operand_indexing_maps->second) { bool is_coalesced = IsIndexingCoalesced(operand_indexing_map, operand->shape().element_type()); auto [it, inserted] = coalescing_per_operand_.insert({operand, is_coalesced}); if (!inserted) { it->second &= is_coalesced; } if (!is_coalesced) break; } } return true; } bool CoalescingAnalysis::IsReadCoalesced(const HloInstruction* operand) const { auto it = coalescing_per_operand_.find(operand); if (it == coalescing_per_operand_.end()) { return is_coalesced_computed_by_heuristic_; } return it->second; } } }
#include "xla/service/gpu/model/coalescing_analysis.h" #include <memory> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/fusions/fusion_emitter.h" #include "xla/service/gpu/fusions/fusions.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/hlo_module_config.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { namespace { using ::testing::ElementsAre; class CoalescingTest : public HloTestBase { public: std::vector<bool> IsReadCoalescedPerOperand(absl::string_view hlo_string) { auto module = ParseAndReturnVerifiedModule(hlo_string).value(); HloInstruction* root = module->entry_computation()->root_instruction(); return IsReadCoalescedPerOperand(root); } std::vector<bool> IsReadCoalescedPerOperand(const HloInstruction* root) { auto fusion_adaptor = HloFusionAdaptor::ForInstruction(root); auto analysis = AnalyzeFusion(*root, device_info_); auto emitter = GetFusionEmitter(PreBufferAssignmentFusionInfo{analysis}); auto fusion = dynamic_cast<KernelFusionInterface*>(emitter.get()); EXPECT_NE(fusion, nullptr); CoalescingAnalysis coalescing_analysis(root, root->operands(), analysis, fusion, &mlir_context_, false); std::vector<bool> results; for (const HloInstruction* operand : root->operands()) { results.push_back(coalescing_analysis.IsReadCoalesced(operand)); } return results; } bool IsReadCoalescedHeuristic(absl::string_view hlo_string) { auto module = ParseAndReturnVerifiedModule(hlo_string).value(); HloInstruction* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info_); return xla::gpu::IsReadCoalescedHeuristic(analysis.GetEmitterFusionKind(), root->operand(0), root); } protected: stream_executor::DeviceDescription device_info_ = TestGpuDeviceInfo::RTXA6000DeviceInfo(); mlir::MLIRContext mlir_context_; }; TEST_F(CoalescingTest, IdentityLayout) { absl::string_view ir = R"( HloModule m fusion { p0 = f32[100, 200] parameter(0) p1 = f32[100, 200] parameter(1) ROOT adthread_x = f32[100, 200] add(p0, p1) } ENTRY e { p0 = f32[100, 200] parameter(0) p1 = f32[100, 200] parameter(1) ROOT fusion = f32[100, 200] fusion(p0, p1), kind=kInput, calls=fusion } )"; EXPECT_THAT(IsReadCoalescedPerOperand(ir), ElementsAre(true, true)); } TEST_F(CoalescingTest, RhsTransposedLayout) { absl::string_view ir = R"( HloModule m fusion { p0 = f32[100, 200]{1, 0} parameter(0) p1 = f32[100, 200]{0, 1} parameter(1) ROOT exp = f32[100, 200]{1, 0} add(p0, p1) } ENTRY e { p0 = f32[100, 200]{1, 0} parameter(0) p1 = f32[100, 200]{0, 1} parameter(1) ROOT fusion = f32[100, 200]{1, 0} fusion(p0, p1), kind=kInput, calls=fusion } )"; EXPECT_THAT(IsReadCoalescedPerOperand(ir), ElementsAre(true, false)); } TEST_F(CoalescingTest, OutputTransposedLayout) { absl::string_view ir = R"( HloModule m fusion { p0 = f32[100, 200]{1, 0} parameter(0) p1 = f32[100, 200]{1, 0} parameter(1) ROOT exp = f32[100, 200]{0, 1} add(p0, p1) } ENTRY e { p0 = f32[100, 200]{1, 0} parameter(0) p1 = f32[100, 200]{1, 0} parameter(1) ROOT fusion = f32[100, 200]{0, 1} fusion(p0, p1), kind=kInput, calls=fusion } )"; EXPECT_THAT(IsReadCoalescedPerOperand(ir), ElementsAre(false, false)); } TEST_F(CoalescingTest, OutputAndLhsTransposedLayout) { absl::string_view ir = R"( HloModule m fusion { p0 = f32[100, 200]{1, 0} parameter(0) p1 = f32[100, 200]{0, 1} parameter(1) ROOT exp = f32[100, 200]{1, 0} add(p0, p1) } ENTRY e { p0 = f32[100, 200]{1, 0} parameter(0) p1 = f32[100, 200]{0, 1} parameter(1) ROOT fusion = f32[100, 200]{1, 0} fusion(p0, p1), kind=kInput, calls=fusion } )"; EXPECT_THAT(IsReadCoalescedPerOperand(ir), ElementsAre(true, false)); } TEST_F(CoalescingTest, Transpose) { absl::string_view ir = R"( HloModule module fusion { %input = f32[100, 64, 32] parameter(0) ROOT transpose = f32[32, 100, 64] transpose(%input), dimensions={2, 0, 1} } ENTRY entry { %input = f32[100, 64, 32] parameter(0) ROOT %fusion = f32[32, 100, 64] fusion(%input), kind=kLoop, calls=fusion })"; EXPECT_THAT(IsReadCoalescedPerOperand(ir), ElementsAre(true)); } TEST_F(CoalescingTest, TransposeOfBroadcastHeuristic) { absl::string_view ir = R"( HloModule module fusion { input = f32[32, 100, 64] parameter(0) ROOT slice = f32[32, 100, 1] slice(input), slice={[0:32:1], [0:100:1], [0:1:1]} } ENTRY entry { p0 = f32[32] parameter(0) broadcast = f32[100, 64, 32] broadcast(p0), dimensions={2} transpose = f32[32, 100, 64] transpose(broadcast), dimensions={2, 0, 1} ROOT %fusion = f32[32, 100, 1] fusion(transpose), kind=kLoop, calls=fusion })"; EXPECT_TRUE(IsReadCoalescedHeuristic(ir)); } TEST_F(CoalescingTest, TransposeOfIotaHeuristic) { absl::string_view ir = R"( HloModule module fusion { p0 = f32[32, 100, 64] parameter(0) ROOT slice = f32[32, 100, 1] slice(p0), slice={[0:32:1], [0:100:1], [0:1:1]} } ENTRY entry { iota = f32[100, 64, 32] iota(), iota_dimension=1 transpose = f32[32, 100, 64] transpose(iota), dimensions={2, 0, 1} ROOT %fusion = f32[32, 100, 1] fusion(transpose), kind=kLoop, calls=fusion })"; EXPECT_TRUE(IsReadCoalescedHeuristic(ir)); } TEST_F(CoalescingTest, TransposeOfAddHeuristic) { absl::string_view ir = R"( HloModule module fusion { p0 = f32[32, 100, 64] parameter(0) ROOT slice = f32[32, 100, 1] slice(p0), slice={[0:32:1], [0:100:1], [0:1:1]} } ENTRY entry { input = f32[100, 64, 32] parameter(0) add = f32[100, 64, 32] add(input, input) transpose = f32[32, 100, 64] transpose(add), dimensions={2, 0, 1} ROOT %fusion = f32[32, 100, 1] fusion(transpose), kind=kLoop, calls=fusion })"; EXPECT_FALSE(IsReadCoalescedHeuristic(ir)); } TEST_F(CoalescingTest, TransposeOnlyOuterDims) { absl::string_view ir = R"( HloModule module fusion { %input = f32[100, 32, 64] parameter(0) ROOT transpose = f32[32, 100, 64] transpose(%input), dimensions={1, 0, 2} } ENTRY entry { %input = f32[100, 32, 64] parameter(0) ROOT %fusion = f32[32, 100, 64] fusion(%input), kind=kLoop, calls=fusion })"; EXPECT_THAT(IsReadCoalescedPerOperand(ir), ElementsAre(true)); } TEST_F(CoalescingTest, PadOp) { absl::string_view ir = R"( HloModule module fusion { p0 = f32[997, 436] parameter(0) p1 = f32[] parameter(1) ROOT pad = f32[1024, 512] pad(p0, p1), padding=10_17x24_52 } ENTRY entry { p0 = f32[997, 436] parameter(0) p1 = f32[] parameter(1) ROOT %fusion = f32[1024, 512] fusion(p0, p1), kind=kLoop, calls=fusion })"; EXPECT_THAT(IsReadCoalescedPerOperand(ir), ElementsAre(true, true)); } TEST_F(CoalescingTest, RowReduction) { absl::string_view ir = R"( HloModule module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fusion { %input = f32[100,64,512] parameter(0) %c0 = f32[] constant(0) ROOT reduce = f32[100,64] reduce(%input, %c0), dimensions={2}, to_apply=add } ENTRY entry { %input = f32[100,64,512] parameter(0) ROOT %fusion = f32[100,64] fusion(%input), kind=kInput, calls=fusion })"; EXPECT_THAT(IsReadCoalescedPerOperand(ir), ElementsAre(true)); } TEST_F(CoalescingTest, MultiRowReduction) { absl::string_view ir = R"( HloModule module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fusion { %input = f32[100,64,4] parameter(0) %c0 = f32[] constant(0) ROOT reduce = f32[100,64] reduce(%input, %c0), dimensions={2}, to_apply=add } ENTRY entry { %input = f32[100,64,4] parameter(0) ROOT %fusion = f32[100,64] fusion(%input), kind=kInput, calls=fusion })"; EXPECT_THAT(IsReadCoalescedPerOperand(ir), ElementsAre(true)); } TEST_F(CoalescingTest, ColumnReduction) { absl::string_view ir = R"( HloModule module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fusion { %input = f32[100,64,32] parameter(0) %c0 = f32[] constant(0) ROOT reduce = f32[100,32] reduce(%input, %c0), dimensions={1}, to_apply=add } ENTRY entry { %input = f32[100,64,32] parameter(0) ROOT %fusion = f32[100,32] fusion(%input), kind=kInput, calls=fusion })"; EXPECT_THAT(IsReadCoalescedPerOperand(ir), ElementsAre(true)); } TEST_F(CoalescingTest, VariadicReduceViaLoopEmitter) { absl::string_view ir = R"( HloModule module max { p0 = s32[] parameter(0) p1 = s32[] parameter(1) p2 = s32[] parameter(2) p3 = s32[] parameter(3) max01 = s32[] maximum(p0, p1) max23 = s32[] maximum(p2, p3) ROOT max = (s32[], s32[]) tuple(max01, max23) } fusion { p0 = s32 [5696,10,4] parameter(0) p1 = s32 [5696,10,4] parameter(1) p2 = s32[] parameter(2) p3 = s32[] parameter(3) ROOT reduce = (s32[5696,4], s32[5696,4]) reduce(s32[5696,10,4] p0, s32[5696,10,4] p1, s32[] p2, s32[] p3), dimensions={1}, to_apply=max } ENTRY entry { p0 = s32 [5696,10,4] parameter(0) p1 = s32 [5696,10,4] parameter(1) p2 = s32[] parameter(2) p3 = s32[] parameter(3) ROOT f = (s32[5696,4], s32[5696,4]) fusion(p0, p1, p2, p3), kind=kInput, calls=fusion })"; EXPECT_THAT(IsReadCoalescedPerOperand(ir), ElementsAre(false, false, true, true)); } TEST_F(CoalescingTest, VariadicReduceViaReductionEmitter) { absl::string_view ir = R"( HloModule module max { p0 = s32[] parameter(0) p1 = s32[] parameter(1) p2 = s32[] parameter(2) p3 = s32[] parameter(3) max01 = s32[] maximum(p0, p1) max23 = s32[] maximum(p2, p3) ROOT max = (s32[], s32[]) tuple(max01, max23) } fusion { p0 = s32[32,40] parameter(0) p1 = s32[32,40] parameter(1) p2 = s32[] parameter(2) p3 = s32[] parameter(3) ROOT reduce = (s32[32], s32[32]) reduce(s32[32,40] p0, s32[32,40] p1, s32[] p2, s32[] p3), dimensions={1}, to_apply=max } ENTRY entry { p0 = s32[32,40] parameter(0) p1 = s32[32,40] parameter(1) p2 = s32[] parameter(2) p3 = s32[] parameter(3) ROOT f = (s32[32], s32[32]) fusion(p0, p1, p2, p3), kind=kInput, calls=fusion })"; EXPECT_THAT(IsReadCoalescedPerOperand(ir), ElementsAre(true, true, true, true)); } TEST_F(CoalescingTest, Gather) { absl::string_view ir = R"( HloModule module fusion { operand = f32[33, 76, 70] parameter(0) indices = s32[1806, 2] parameter(1) ROOT gather = f32[1806, 7, 8, 4] gather(operand, indices), offset_dims={1,2,3}, collapsed_slice_dims={}, start_index_map={0,1}, index_vector_dim=1, slice_sizes={7,8,4} } ENTRY entry { p0 = f32[33, 76, 70] parameter(0) p1 = s32[1806, 2] parameter(1) ROOT %fusion = f32[1806, 7, 8, 4] fusion(p0, p1), kind=kLoop, calls=fusion })"; EXPECT_THAT(IsReadCoalescedPerOperand(ir), ElementsAre(false, true)); } TEST_F(CoalescingTest, DynamicSlice) { absl::string_view ir = R"( HloModule module fusion { %src = s32[2,2,258] parameter(0) %of1 = s32[] parameter(1) %of2 = s32[] parameter(2) %of3 = s32[] parameter(3) ROOT %ds = s32[1,2,32] dynamic-slice(s32[2,2,258] %src, s32[] %of1, s32[] %of2, s32[] %of3), dynamic_slice_sizes={1, 2, 32} } ENTRY entry { %p0 = s32[2,2,258] parameter(0) %p1 = s32[] parameter(1) %p2 = s32[] parameter(2) %p3 = s32[] parameter(3) ROOT %fusion = s32[1,2,32] fusion(p0, p1, p2, p3), kind=kLoop, calls=fusion })"; EXPECT_THAT(IsReadCoalescedPerOperand(ir), ElementsAre(true, true, true, true)); } TEST_F(CoalescingTest, UnusedParameter) { Shape shape = ShapeUtil::MakeShape(F32, {100000}); auto module = std::make_unique<HloModule>("m", HloModuleConfig{}); HloComputation::Builder b("b"); auto p0 = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); auto p1 = b.AddInstruction(HloInstruction::CreateParameter(1, shape, "p1")); HloComputation::Builder sub_builder("subcomp"); HloInstruction* p0f = sub_builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "p0f")); HloInstruction* p1f = sub_builder.AddInstruction( HloInstruction::CreateParameter(1, shape, "p1f")); ASSERT_NE(p1f, nullptr); sub_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, p0f)); HloComputation* subcomp = module->AddEmbeddedComputation(sub_builder.Build()); auto fusion = HloInstruction::CreateFusion( shape, HloInstruction::FusionKind::kLoop, {p0, p1}, subcomp); b.AddInstruction(std::move(fusion)); module->AddEntryComputation(b.Build()); EXPECT_THAT(IsReadCoalescedPerOperand( module->entry_computation()->root_instruction()), ElementsAre(true, true)); } TEST_F(CoalescingTest, Param) { absl::string_view ir = R"( HloModule module fusion { %p0 = u32[48,2,1280] parameter(0) %p1 = u32[48,1,1280] parameter(1) %p2 = u32[48,1,1280] parameter(2) %concat = u32[48,2,1280] concatenate(u32[48,1,1280] %p1, u32[48,1,1280] %p2), dimensions={1} ROOT %shift = u32[48,2,1280] shift-right-logical( u32[48,2,1280] %concat, u32[48,2,1280] %p0) } ENTRY entry { %p0 = u32[48,2,1280] parameter(0) %p1 = u32[48,1,1280] parameter(1) %p2 = u32[48,1,1280] parameter(2) ROOT %fusion = u32[48,2,1280] fusion(p0, p1, p2), kind=kLoop, calls=fusion })"; EXPECT_THAT(IsReadCoalescedPerOperand(ir), ElementsAre(true, true, true)); } } } }
2,147
cpp
tensorflow/tensorflow
gpu_cost_model_stats_collection
third_party/xla/xla/service/gpu/model/gpu_cost_model_stats_collection.cc
third_party/xla/xla/service/gpu/model/gpu_cost_model_stats_collection_test.cc
#ifndef XLA_SERVICE_GPU_MODEL_GPU_COST_MODEL_STATS_COLLECTION_H_ #define XLA_SERVICE_GPU_MODEL_GPU_COST_MODEL_STATS_COLLECTION_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_pass_interface.h" #include "xla/stream_executor/device_description.h" namespace xla { namespace gpu { class GpuCostModelStatsCollection : public HloModulePass { public: explicit GpuCostModelStatsCollection( const se::DeviceDescription& d, const GpuHloCostAnalysis::Options& cost_analysis_options) : device_info_(d), cost_analysis_(cost_analysis_options, &device_info_) {} absl::string_view name() const override { return "gpu_cost_model_stats_collection"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: se::DeviceDescription device_info_; GpuHloCostAnalysis cost_analysis_; }; } } #endif #include "xla/service/gpu/model/gpu_cost_model_stats_collection.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/model/gpu_performance_model.h" #include "xla/service/gpu/model/gpu_performance_model_base.h" #include "tsl/platform/status.h" namespace xla { namespace gpu { absl::StatusOr<bool> GpuCostModelStatsCollection::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { for (auto* computation : module->MakeComputationPostOrder()) { TF_CHECK_OK(computation->Accept(&cost_analysis_)); for (auto* fusion_instr : computation->instructions()) { if (fusion_instr->opcode() != HloOpcode::kFusion) continue; GpuPerformanceModel::RecordEstimatedRunTime( fusion_instr, &cost_analysis_, GpuPerformanceModelOptions::ForModule(module)); } } return false; } } }
#include "xla/service/gpu/model/gpu_cost_model_stats_collection.h" #include <stdint.h> #include <memory> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/verified_hlo_module.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { class GpuCostModelStatsCollectionTest : public HloTestBase { HloCostAnalysis::ShapeSizeFunction ShapeSizeBytesFunction() const { return [&](const Shape& shape) { constexpr int64_t kPointerSize = 8; return ShapeUtil::ByteSizeOf(shape, kPointerSize); }; } public: GpuCostModelStatsCollection cost_model_stats_{ TestGpuDeviceInfo::RTXA6000DeviceInfo(), GpuHloCostAnalysis::Options{ShapeSizeBytesFunction(), {}, true}}; }; TEST_F(GpuCostModelStatsCollectionTest, FusinInEntryComputation) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module log { p = f32[16384]{0} parameter(0) ROOT l = f32[16384]{0} log(p) } ENTRY main { %p0 = f32[16384] parameter(0) ROOT %res = f32[16384]{0} fusion(p0), kind=kInput, calls=log } )")); EXPECT_FALSE(cost_model_stats_.Run(module.get()).value()); HloInstruction* root = module->entry_computation()->root_instruction(); TF_ASSERT_OK_AND_ASSIGN(auto gpu_config, root->backend_config<GpuBackendConfig>()); const FusionBackendConfig& backend_config = gpu_config.fusion_backend_config(); EXPECT_TRUE(backend_config.has_reification_cost()); EXPECT_GT(backend_config.reification_cost().end_to_end_cycles(), 0); } TEST_F(GpuCostModelStatsCollectionTest, FusinInWhileComputation) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module cond { p = f32[16384]{0} parameter(0) ROOT %constant.2 = pred[] constant(true) } log { p = f32[16384]{0} parameter(0) ROOT l = f32[16384]{0} log(p) } loop { %p0 = f32[16384] parameter(0) ROOT %res = f32[16384]{0} fusion(p0), kind=kInput, calls=log } ENTRY main { %p0 = f32[16384] parameter(0) ROOT %while = f32[16384] while(%p0), body=%loop, condition=%cond })")); EXPECT_FALSE(cost_model_stats_.Run(module.get()).value()); HloInstruction* root = module->entry_computation() ->root_instruction() ->while_body() ->root_instruction(); TF_ASSERT_OK_AND_ASSIGN(auto gpu_config, root->backend_config<GpuBackendConfig>()); const FusionBackendConfig& backend_config = gpu_config.fusion_backend_config(); EXPECT_TRUE(backend_config.has_reification_cost()); EXPECT_GT(backend_config.reification_cost().end_to_end_cycles(), 0); } } }
2,148
cpp
tensorflow/tensorflow
gpu_hlo_cost_analysis
third_party/xla/xla/service/gpu/model/gpu_hlo_cost_analysis.cc
third_party/xla/xla/service/gpu/model/gpu_hlo_cost_analysis_test.cc
#ifndef XLA_SERVICE_GPU_MODEL_GPU_HLO_COST_ANALYSIS_H_ #define XLA_SERVICE_GPU_MODEL_GPU_HLO_COST_ANALYSIS_H_ #include <cstddef> #include <cstdint> #include <memory> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/stream_executor/device_description.h" namespace xla { namespace gpu { class GpuHloCostAnalysis : public HloCostAnalysis { static constexpr int64_t kMaxBasicBlockSplitsPerFusion = 10; static constexpr int64_t kMaxIRSize = 10000; public: explicit GpuHloCostAnalysis( const Options& options, const se::DeviceDescription* device_info = nullptr) : HloCostAnalysis(options), device_info_(device_info) {} absl::Status Preprocess(const HloInstruction* hlo) override; float ScalingRatio(const HloInstruction& hlo) const; int64_t NumOfDevices(const HloInstruction& hlo) const; absl::Status HandleCustomCall(const HloInstruction* call) override; int64_t GetConvolutionFlops(const HloInstruction* convolution) override; absl::Status HandleElementwiseOp(const HloInstruction* hlo); absl::Status HandleElementwiseUnary(const HloInstruction* hlo) override; absl::Status HandleElementwiseBinary(const HloInstruction* hlo) override; absl::Status HandleConcatenate(const HloInstruction* hlo) override; absl::Status HandleAllReduce(const HloInstruction* allreduce) override; absl::Status HandleReduce(const HloInstruction* hlo) override; bool ProducerConsumerMergedTooLarge(const HloInstruction& producer, const HloInstruction& consumer); float IrSize(const HloInstruction& hlo) const; float CommonElementwiseUtilization(const HloInstruction* a, const HloInstruction* b) const; const se::DeviceDescription* device_info_; protected: std::unique_ptr<HloCostAnalysis> CreateNestedCostAnalysis() override; int64_t FusionParameterReadBytes(const HloInstruction* hlo) const override; absl::Status FusionCalculateUtilizations( const HloInstruction* fusion) override; size_t immediate_constant_max_elements() const override { return 8; } bool KeyToCopyFromSubcomputation(absl::string_view key) const override; float IrBasicBlockSplitCount(const HloInstruction& hlo) const; absl::flat_hash_map<const HloInstruction*, absl::flat_hash_set<const HloInstruction*>> elementwise_use_roots_; absl::flat_hash_map<const HloInstruction*, float> root_utilizations_; }; } } #endif #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include <algorithm> #include <cmath> #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/map_util.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/elemental_ir_emitter.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/gpu/model/hlo_op_profile.pb.h" #include "xla/service/gpu/model/hlo_op_profiles.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_module_config.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { static constexpr absl::string_view kIRSizeKey = HloCostAnalysis::kReserved0Key; static constexpr absl::string_view kBasicBlockSplitCountKey = HloCostAnalysis::kReserved1Key; static constexpr absl::string_view kCollAlgoScaleRatioKey = "Collective algorithm's scaling ratio"; static constexpr absl::string_view kCollNumDevicesKey = "Number of devices of a collective group"; absl::Status GpuHloCostAnalysis::Preprocess(const HloInstruction* hlo) { TF_RETURN_IF_ERROR(HloCostAnalysis::Preprocess(hlo)); current_properties_[kIRSizeKey] = 1; current_properties_[kBasicBlockSplitCountKey] = ElementalIrEmitter::OpInvalidatesCache(hlo); return absl::OkStatus(); } float GpuHloCostAnalysis::ScalingRatio(const HloInstruction& hlo) const { return GetPropertyForHlo(hlo, kCollAlgoScaleRatioKey, hlo_properties_); } int64_t GpuHloCostAnalysis::NumOfDevices(const HloInstruction& hlo) const { return GetPropertyForHlo(hlo, kCollNumDevicesKey, hlo_properties_); } int64_t GpuHloCostAnalysis::FusionParameterReadBytes( const HloInstruction* hlo) const { CHECK(hlo->IsFused() && (hlo->opcode() == HloOpcode::kParameter || hlo->opcode() == HloOpcode::kGetTupleElement)); float utilization = hlo_properties_.at(hlo)[kUtilizationKey]; if (!options_.count_multiple_input_accesses) { utilization = fmin(utilization, 1.0); } return std::llround(GetShapeSize(hlo->shape()) * utilization); } absl::Status GpuHloCostAnalysis::FusionCalculateUtilizations( const HloInstruction* fusion) { const HloInstruction* root = fusion->fused_expression_root(); std::vector<HloInstruction*> instructions = fusion->fused_instructions_computation()->MakeInstructionPostOrder(); absl::c_reverse(instructions); absl::flat_hash_map<const HloInstruction*, int64_t> root_ir_sizes; for (const HloInstruction* instr : instructions) { hlo_properties_[instr][kUtilizationKey] = 0; hlo_properties_[instr][kIRSizeKey] = 0; elementwise_use_roots_[instr].clear(); root_utilizations_[instr] = 0; } root_utilizations_[root] = 1.0; root_ir_sizes[root] = 1; elementwise_use_roots_[root].insert(root); current_properties_[kFlopsKey] = 0; current_properties_[kBasicBlockSplitCountKey] = 0; current_properties_[kIRSizeKey] = 0; for (const HloInstruction* instr : instructions) { VLOG(8) << instr->name() << ":"; VLOG(9) << "Elementwise use roots:"; Properties& instr_props = hlo_properties_[instr]; for (const HloInstruction* r : elementwise_use_roots_[instr]) { VLOG(9) << "\t" << r->name() << ": " << root_utilizations_[r]; instr_props[kUtilizationKey] += root_utilizations_[r]; instr_props[kIRSizeKey] += root_ir_sizes[r]; } float cur_instr_utilization = instr_props[kUtilizationKey]; VLOG(8) << "Total utilization: " << cur_instr_utilization; float cur_instr_times_emitted = instr_props[kIRSizeKey]; VLOG(8) << "Times emitted: " << cur_instr_times_emitted; current_properties_[kFlopsKey] += cur_instr_utilization * instr_props[kFlopsKey]; current_properties_[kIRSizeKey] += cur_instr_times_emitted; current_properties_[kBasicBlockSplitCountKey] += cur_instr_times_emitted * ElementalIrEmitter::OpInvalidatesCache(instr); for (int operand_idx = 0; operand_idx < instr->operand_count(); ++operand_idx) { const HloInstruction* operand = instr->operand(operand_idx); if ((instr->IsElementwise()) || instr->opcode() == HloOpcode::kTuple || instr->opcode() == HloOpcode::kGetTupleElement) { for (const HloInstruction* r : elementwise_use_roots_[instr]) { elementwise_use_roots_[operand].insert(r); } } else { elementwise_use_roots_[operand].insert(operand); float cur_operand_utilization = cur_instr_utilization * operand_utilization(*instr, operand_idx); int64_t operand_elements = ShapeUtil::ElementsInRecursive(operand->shape()); if (operand_elements == 0) { cur_operand_utilization = 0; } else { cur_operand_utilization = ceil(cur_operand_utilization * operand_elements) / operand_elements; } root_utilizations_[operand] += cur_operand_utilization; root_ir_sizes[operand] += cur_instr_times_emitted; } } } return absl::OkStatus(); } float GpuHloCostAnalysis::CommonElementwiseUtilization( const HloInstruction* a, const HloInstruction* b) const { float ret = 0; for (auto r : elementwise_use_roots_.at(a)) { if (elementwise_use_roots_.at(b).count(r)) { ret += root_utilizations_.at(r); } } return ret; } bool GpuHloCostAnalysis::ProducerConsumerMergedTooLarge( const HloInstruction& producer, const HloInstruction& consumer) { int64_t producer_replication = 1; if (consumer.opcode() == HloOpcode::kFusion) { producer_replication = IrSize(*consumer.fused_parameter(consumer.operand_index(&producer))); } VLOG(5) << producer.name() << " would be emitted by " << consumer.name() << " x" << producer_replication; int64_t n_splits = producer_replication * IrBasicBlockSplitCount(producer) + IrBasicBlockSplitCount(consumer); VLOG(5) << "Basic block split counts: " << IrBasicBlockSplitCount(producer) << ", " << IrBasicBlockSplitCount(consumer) << " -> " << n_splits; int64_t merged_ir_size = (IrSize(producer) * producer_replication + IrSize(consumer)); if (producer.GetModule() ->config() .debug_options() .xla_gpu_mlir_emitter_level() < 4) { if (n_splits > kMaxBasicBlockSplitsPerFusion) { return true; } merged_ir_size *= (1 << n_splits); } VLOG(5) << "IR sizes: " << IrSize(producer) << ", " << IrSize(consumer) << " -> " << merged_ir_size; return merged_ir_size > kMaxIRSize; } absl::Status GpuHloCostAnalysis::HandleCustomCall( const HloInstruction* custom_call) { if (IsCublasGemm(*custom_call)) { TF_ASSIGN_OR_RETURN(auto gpu_config, custom_call->backend_config<gpu::GpuBackendConfig>()); const gpu::GemmBackendConfig& gemm_config = gpu_config.gemm_backend_config(); const Shape& output_shape = custom_call->shape().IsTuple() ? custom_call->shape().tuple_shapes(0) : custom_call->shape(); current_properties_[kFlopsKey] = GetDotFlops(custom_call->operand(0)->shape(), output_shape, gemm_config.dot_dimension_numbers()); return absl::OkStatus(); } if (IsCustomCallToDnnConvolution(*custom_call)) { current_properties_[kFlopsKey] = GetConvolutionFlops(custom_call); if (custom_call->shape().IsTuple()) { float output_size = options_.shape_size(custom_call->shape().tuple_shapes(0)); current_properties_[kBytesAccessedKey] -= current_properties_.output_bytes_accessed(); current_properties_[kBytesAccessedKey] += output_size; current_properties_.set_output_bytes_accessed(output_size); } return absl::OkStatus(); } return HloCostAnalysis::HandleCustomCall(custom_call); } int64_t GpuHloCostAnalysis::GetConvolutionFlops( const HloInstruction* convolution) { auto lhs = convolution->operand(0); auto rhs = convolution->operand(1); const Shape& lhs_shape = lhs->shape(); const Shape& rhs_shape = rhs->shape(); const Shape& result_shape = [&]() -> const Shape& { const Shape& shape = convolution->shape(); if (IsCustomCallToDnnConvolution(*convolution) && convolution->shape().IsTuple()) { return shape.tuple_shapes(0); } return shape; }(); return HloCostAnalysis::GetConvolutionFlops(convolution, lhs_shape, rhs_shape, result_shape); } int64_t FlopsPerElement(const se::DeviceDescription* device_info, const PrimitiveType type, const HloOpcode opcode) { auto device_profile = HloOpProfiles::Singleton().GetProfile(device_info); constexpr int64_t kDefaultFlopsPerElement = 3; return FindOrDefault(device_profile, std::make_pair(opcode, type), kDefaultFlopsPerElement); } int64_t GetFlopsForElementwiseOp(const se::DeviceDescription* gpu_device_info, const HloOpcode op_code, const Shape& shape) { int64_t flop_per_element = FlopsPerElement(gpu_device_info, shape.element_type(), op_code); return flop_per_element * ShapeUtil::ElementsInRecursive(shape); } int64_t GetFlopsForElementwiseOp(const se::DeviceDescription* gpu_device_info, const HloInstruction* instr) { return GetFlopsForElementwiseOp(gpu_device_info, instr->opcode(), instr->shape()); } absl::Status GpuHloCostAnalysis::HandleAllReduce( const HloInstruction* allreduce) { const HloModuleConfig& config = allreduce->GetModule()->config(); TF_ASSIGN_OR_RETURN( CollectiveOpGroupMode group_mode, GetCollectiveOpGroupMode( allreduce->channel_id().has_value(), Cast<HloAllReduceInstruction>(allreduce)->use_global_device_ids())); int64_t num_devices = config.num_partitions(); int64_t num_replicas = config.replica_count(); TF_ASSIGN_OR_RETURN( std::vector<int64_t> participant_counts, GetPariticipantCountsForReplicaGroups( num_replicas, num_devices, allreduce->replica_groups(), group_mode)); int64_t num_ranks = 1; for (auto count : participant_counts) { num_ranks = std::max(num_ranks, count); } VLOG(5) << "Computing cost for " << num_ranks << " ranks in " << allreduce->ToString(); int64_t output_bytes_accessed = 0; ShapeUtil::ForEachSubshape( allreduce->shape(), [&](const Shape& subshape, const ShapeIndex&) { if (subshape.IsArray()) { output_bytes_accessed += GetShapeSize(subshape); } }); int64_t bytes_accessed = output_bytes_accessed; for (const HloInstruction* operand : allreduce->operands()) { bytes_accessed += GetShapeSize(operand->shape()); } current_properties_.set_output_bytes_accessed(output_bytes_accessed); current_properties_[kBytesAccessedKey] = bytes_accessed; current_properties_[kCollNumDevicesKey] = num_ranks; current_properties_[kFlopsKey] = GetFlopsForElementwiseOp( device_info_, allreduce->to_apply()->root_instruction()->opcode(), allreduce->shape()); int num_intra_steps = 2 * (num_ranks - 1); float scaling_ratio = (1.0 * num_ranks) / num_intra_steps; current_properties_[kCollAlgoScaleRatioKey] = scaling_ratio; return absl::OkStatus(); } absl::Status GpuHloCostAnalysis::HandleConcatenate(const HloInstruction* hlo) { int64_t flop_per_element = 6; int64_t dim = Cast<HloConcatenateInstruction>(hlo)->concatenate_dimension(); if (dim > 0 && hlo->operand(0)->shape().dimensions()[dim] & 31) { flop_per_element = 400; } current_properties_[kFlopsKey] = flop_per_element * ShapeUtil::ElementsInRecursive(hlo->shape()); return absl::OkStatus(); } absl::Status GpuHloCostAnalysis::HandleReduce(const HloInstruction* hlo) { TF_RETURN_IF_ERROR(HloCostAnalysis::HandleReduce(hlo)); const HloReduceInstruction* reduce = DynCast<HloReduceInstruction>(hlo); auto output_shape = reduce->shape().IsArray() ? reduce->shape() : reduce->shape().tuple_shapes(0); int64_t output_bytes_accessed = 0; ShapeUtil::ForEachLeafShape( reduce->shape(), [&](const Shape& sub_shape, const ShapeIndex& index) { output_bytes_accessed += GetShapeSize(sub_shape); }); current_properties_.set_output_bytes_accessed(output_bytes_accessed); int64_t bytes_accessed = output_bytes_accessed; for (int64_t input_operand_id = 0; input_operand_id < reduce->input_count(); ++input_operand_id) { bytes_accessed += current_properties_.operand_bytes_accessed(input_operand_id); } int64_t output_shape_size = ShapeUtil::ElementsIn(output_shape); for (int64_t init_operand_id = reduce->input_count(); init_operand_id < reduce->operand_count(); ++init_operand_id) { auto init_operand = reduce->operand(init_operand_id); int64_t operand_bytes_accessed = output_shape_size * GetShapeSize(init_operand->shape()); current_properties_.set_operand_bytes_accessed(init_operand_id, operand_bytes_accessed); current_properties_.set_operand_utilization(init_operand_id, output_shape_size); bytes_accessed += operand_bytes_accessed; } current_properties_[kBytesAccessedKey] = bytes_accessed; return absl::OkStatus(); } absl::Status GpuHloCostAnalysis::HandleElementwiseOp( const HloInstruction* hlo) { current_properties_[kFlopsKey] = GetFlopsForElementwiseOp(device_info_, hlo); return absl::OkStatus(); } absl::Status GpuHloCostAnalysis::HandleElementwiseUnary( const HloInstruction* hlo) { return HandleElementwiseOp(hlo); } absl::Status GpuHloCostAnalysis::HandleElementwiseBinary( const HloInstruction* hlo) { return HandleElementwiseOp(hlo); } std::unique_ptr<HloCostAnalysis> GpuHloCostAnalysis::CreateNestedCostAnalysis() { return std::make_unique<GpuHloCostAnalysis>(options_, device_info_); } bool GpuHloCostAnalysis::KeyToCopyFromSubcomputation( absl::string_view key) const { return !absl::StartsWith(key, kBytesAccessedKey) && !absl::StartsWith(key, kUtilizationKey) && !absl::StartsWith(key, kIRSizeKey) && !absl::StartsWith(key, kBasicBlockSplitCountKey); } float GpuHloCostAnalysis::IrBasicBlockSplitCount( const HloInstruction& hlo) const { return GetPropertyForHlo(hlo, kBasicBlockSplitCountKey, hlo_properties_); } float GpuHloCostAnalysis::IrSize(const HloInstruction& hlo) const { return GetPropertyForHlo(hlo, kIRSizeKey, hlo_properties_); } } }
#include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include <cstdint> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { class GpuHloCostAnalysisTest : public HloTestBase { HloCostAnalysis::ShapeSizeFunction ShapeSizeBytesFunction() const { return [&](const Shape& shape) { constexpr int64_t kPointerSize = 8; return ShapeUtil::ByteSizeOf(shape, kPointerSize); }; } public: HloCostAnalysis::Options options_{ShapeSizeBytesFunction(), {}, true}; GpuHloCostAnalysis analysis_{options_}; GpuHloCostAnalysisTest() : HloTestBase() {} }; TEST_F(GpuHloCostAnalysisTest, ConvCustomCall) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { p0 = s8[128,12,24,24,4]{4,3,2,1,0} parameter(0) p1 = s8[16,12,5,5,4]{4,3,2,1,0} parameter(1) p2 = f32[16]{0} parameter(2) conv1 = (s8[128,4,24,24,4]{4,3,2,1,0}, u8[0]{0}) custom-call(p0, p1, p2), window={size=5x5 pad=2_2x2_2}, dim_labels=bf01_oi01->bf01, custom_call_target="__cudnn$convBiasActivationForward" ROOT tuple = tuple(conv1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); HloComputation* comp = module->entry_computation(); const HloInstruction* conv1 = comp->GetInstructionWithName("conv1"); int op0_size = sizeof(int8_t) * 128 * 12 * 24 * 24 * 4; int op1_size = sizeof(int8_t) * 16 * 12 * 5 * 5 * 4; int op2_size = sizeof(float) * 16; int out_size = sizeof(int8_t) * 128 * 4 * 24 * 24 * 4; EXPECT_EQ(analysis_.operand_bytes_accessed(*conv1, 0), op0_size); EXPECT_EQ(analysis_.operand_bytes_accessed(*conv1, 1), op1_size); EXPECT_EQ(analysis_.operand_bytes_accessed(*conv1, 2), op2_size); EXPECT_EQ(analysis_.output_bytes_accessed(*conv1), out_size); EXPECT_EQ(analysis_.bytes_accessed(*conv1), op0_size + op1_size + op2_size + out_size); EXPECT_EQ(analysis_.flop_count(*conv1), 159694848); } TEST_F(GpuHloCostAnalysisTest, ReduceWindowWithOverlapsRepeatedReads) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true add { a0 = f32[] parameter(0) a1 = f32[] parameter(1) ROOT _ = f32[] add(a0, a1) } ENTRY entry { p0 = f32[8,8] parameter(0) c0 = f32[] constant(0) ROOT _ = f32[3,4] reduce-window(p0, c0), window={size=4x5 stride=2x1}, to_apply=add } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); int n_output_elements = 3 * 4; ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); EXPECT_EQ(analysis_.flop_count(), 3 * n_output_elements * (4 * 5 - 1)); EXPECT_EQ(analysis_.bytes_accessed(), sizeof(float) * (8 * 8 + 1 + n_output_elements)); EXPECT_EQ(analysis_.operand_bytes_accessed(*root, 0), sizeof(float) * n_output_elements * 4 * 5); EXPECT_EQ(analysis_.operand_bytes_accessed(*root, 1), sizeof(float) * 1); EXPECT_EQ(analysis_.output_bytes_accessed(*root), sizeof(float) * n_output_elements); } TEST_F(GpuHloCostAnalysisTest, BroadcastWithRepeats) { absl::string_view hlo_string = R"( HloModule m f { p1 = s8[] parameter(0) c1 = s8[] constant(0) a1 = s8[] add(p1, c1) b1 = s8[10000] broadcast(a1), dimensions={} b2 = s8[10000] broadcast(c1), dimensions={} ROOT r1 = s8[10000] add(b1, b2) } ENTRY e { p0 = s8[] parameter(0) ROOT r0 = s8[10000] fusion(p0), kind=kInput, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); EXPECT_EQ(analysis_.output_bytes_accessed(*root), 10000); EXPECT_EQ(analysis_.operand_bytes_accessed(*root, 0), 10000); EXPECT_EQ(analysis_.bytes_accessed(*root), 2 * 10000); EXPECT_EQ(analysis_.bytes_accessed(), 2 * 10000); } TEST_F(GpuHloCostAnalysisTest, WithoutRepeats) { absl::string_view hlo_string = R"( HloModule m f { p1 = s8[] parameter(0) a1 = s8[] add(p1, p1) b1 = s8[10000] broadcast(a1), dimensions={} a2 = s8[10000] add(b1, b1) slice1 = s8[8000] slice(a2), slice={[0:8000]} slice2 = s8[8000] slice(a2), slice={[2000:10000]} c = s8[10000] constant({...}) slicec1 = s8[8000] slice(c), slice={[0:8000]} slicec2 = s8[8000] slice(c), slice={[2000:10000]} a3 = s8[8000] add(slice1, slice2) a4 = s8[8000] add(slicec1, slicec2) ROOT a5 = s8[8000] add(a3, a4) } ENTRY e { p0 = s8[] parameter(0) ROOT r0 = s8[8000] fusion(p0), kind=kInput, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); options_.count_multiple_input_accesses = false; GpuHloCostAnalysis analysis{options_}; ASSERT_IS_OK(module->entry_computation()->Accept(&analysis)); EXPECT_EQ(analysis.output_bytes_accessed(*root), 8000); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 0), 1); EXPECT_EQ(analysis.bytes_accessed(*root), 1 + 8000 + 10000); EXPECT_EQ(analysis.bytes_accessed(), 1 + 8000 + 10000); } TEST_F(GpuHloCostAnalysisTest, BroadcastFlops) { absl::string_view hlo_string = R"( HloModule m f { i0 = f32[1024] iota(), iota_dimension=0 m0 = f32[1024] add(i0, i0) s0 = f32[1024] multiply(m0, m0) b0 = f32[1024,1024] broadcast(s0), dimensions={0} ROOT r0 = f32[1024,1024] negate(b0) } ENTRY e { ROOT r = f32[1024,1024] fusion(), kind=kInput, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); auto n_elements = 1024 * 1024; EXPECT_EQ(analysis_.output_bytes_accessed(*root), n_elements * 4); EXPECT_EQ(analysis_.bytes_accessed(*root), n_elements * 4); EXPECT_EQ(analysis_.bytes_accessed(), n_elements * 4); EXPECT_EQ(analysis_.flop_count(), n_elements * 3 * 3); EXPECT_EQ(analysis_.IrSize(*root), 5); } TEST_F(GpuHloCostAnalysisTest, Slice) { absl::string_view hlo_string = R"( HloModule m f { p1 = s8[100000000] parameter(0) i1 = s8[100000000] iota(), iota_dimension=0 a1 = s8[100000000] add(p1, i1) ROOT r1 = s8[1] slice(a1), slice={[0:1]} } ENTRY e { p0 = s8[100000000] parameter(0) ROOT r0 = s8[1] fusion(p0), kind=kInput, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); const HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); EXPECT_EQ(analysis_.output_bytes_accessed(*root), 1); EXPECT_EQ(analysis_.operand_bytes_accessed(*root, 0), 1); EXPECT_EQ(analysis_.bytes_accessed(*root), 2); EXPECT_EQ(analysis_.bytes_accessed(), 2); EXPECT_EQ(analysis_.IrSize(*root), 4); } TEST_F(GpuHloCostAnalysisTest, TwoSlices) { absl::string_view hlo_string = R"( HloModule m f { p1 = s8[100] parameter(0) i1 = s8[100] iota(), iota_dimension=0 a1 = s8[100] add(p1, i1) slice1 = s8[1] slice(a1), slice={[0:1]} slice2 = s8[1] slice(a1), slice={[3:4]} ROOT r = s8[1] add(slice1, slice2) } ENTRY e { p0 = s8[100] parameter(0) ROOT r0 = s8[1] fusion(p0), kind=kInput, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); const HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); EXPECT_EQ(analysis_.output_bytes_accessed(*root), 1); EXPECT_EQ(analysis_.operand_bytes_accessed(*root, 0), 2); EXPECT_EQ(analysis_.bytes_accessed(*root), 3); EXPECT_EQ(analysis_.bytes_accessed(), 3); EXPECT_EQ(analysis_.IrSize(*root), 9); } TEST_F(GpuHloCostAnalysisTest, MultipleTrivialUsers) { absl::string_view hlo_string = R"( HloModule m f { p0 = s8[] parameter(0) m0 = s8[] multiply(p0, p0) n0 = s8[] negate(p0) ROOT a0 = s8[] add(m0, n0) } ENTRY e { param0 = s8[] parameter(0) ROOT r0 = s8[] fusion(param0), kind=kInput, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); EXPECT_EQ(analysis_.output_bytes_accessed(*root), 1); EXPECT_EQ(analysis_.operand_bytes_accessed(*root, 0), 1); EXPECT_EQ(analysis_.bytes_accessed(*root), 1 + 1); EXPECT_EQ(analysis_.bytes_accessed(), 1 + 1); EXPECT_EQ(analysis_.IrSize(*root), 4); } TEST_F(GpuHloCostAnalysisTest, MixedUsers) { absl::string_view hlo_string = R"( HloModule m f { p0 = s8[10] parameter(0) n0 = s8[10] negate(p0) m0 = s8[10] multiply(n0, n0) a0 = s8[10] add(n0, n0) s0 = s8[5] slice(a0), slice={[0:5]} s1 = s8[2] slice(n0), slice={[4:6]} n1 = s8[2] negate(s1) ROOT c0 = s8[17] concatenate(s0, m0, n1), dimensions={0} } ENTRY e { param0 = s8[10] parameter(0) ROOT r0 = s8[17] fusion(param0), kind=kInput, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); EXPECT_EQ(analysis_.output_bytes_accessed(*root), 17); EXPECT_EQ(analysis_.operand_bytes_accessed(*root, 0), 17); EXPECT_EQ(analysis_.bytes_accessed(*root), 17 + 17); EXPECT_EQ(analysis_.bytes_accessed(), 17 + 17); EXPECT_EQ(analysis_.IrSize(*root->fused_parameter(0)), 3); EXPECT_EQ(analysis_.IrSize(*root->fused_parameter(0)), analysis_.IrSize(*root->fused_parameter(0)->users()[0])); EXPECT_EQ(analysis_.IrSize(*root), 12); } TEST_F(GpuHloCostAnalysisTest, FractionalUseRoundingUp) { absl::string_view hlo_string = R"( HloModule m add_s8 { lhs = s8[] parameter(0) rhs = s8[] parameter(1) ROOT add = s8[] add(lhs, rhs) } f { p0 = s8[] parameter(0) b0 = s8[10] broadcast(p0), dimensions={} c0 = s8[] constant(0) r0 = s8[] reduce(b0, c0), dimensions={0}, to_apply=add_s8 bitcast0 = s8[1] bitcast(r0) i0 = s8[5] iota(), iota_dimension=0 cat0 = s8[6] concatenate(bitcast0, i0), dimensions={0} p1 = s32[] parameter(1) ROOT s0 = s8[2] dynamic-slice(cat0, p1), dynamic_slice_sizes={2} } ENTRY e { p0 = s8[] parameter(0) p1 = s32[] parameter(1) ROOT r = s8[2] fusion(p0, p1), kind=kInput, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); EXPECT_EQ(analysis_.output_bytes_accessed(*root), 2); EXPECT_EQ(analysis_.operand_bytes_accessed(*root, 0), 10); EXPECT_EQ(analysis_.operand_bytes_accessed(*root, 1), 4); EXPECT_EQ(analysis_.bytes_accessed(*root), 2 + 10 + 4); EXPECT_EQ(analysis_.bytes_accessed(), 2 + 10 + 4); } TEST_F(GpuHloCostAnalysisTest, LargeConstant) { absl::string_view hlo_string = R"( HloModule m f { p0 = s8[1000] parameter(0) c0 = s8[1000] constant({...}) ROOT a0 = s8[1000] add(p0, c0) } ENTRY e { p0 = s8[1000] parameter(0) ROOT r = s8[1000] fusion(p0), kind=kInput, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); EXPECT_EQ(analysis_.output_bytes_accessed(*root), 1000); EXPECT_EQ(analysis_.operand_bytes_accessed(*root, 0), 1000); EXPECT_EQ(analysis_.bytes_accessed(*root), 3000); EXPECT_EQ(analysis_.bytes_accessed(), 3000); EXPECT_EQ(analysis_.IrSize(*root), 3); } TEST_F(GpuHloCostAnalysisTest, DynUpdateSliceUsingOperandData) { const char* hlo_fusion_module_str = R"( HloModule m f { to_update = s8[3,1,1,1] parameter(0) update = s8[1,1,1,1] constant(0) a = s32[] constant(0) dus = s8[3,1,1,1] dynamic-update-slice(to_update, update, a, a, a, a) ROOT _ = s8[3,1,1,1] negate(dus) } ENTRY _ { to_update = s8[3,1,1,1] parameter(0) ROOT _ = s8[3,1,1,1] fusion(to_update), kind=kLoop, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_fusion_module_str)); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); HloInstruction* fusion = module->entry_computation()->root_instruction(); ASSERT_EQ(fusion->opcode(), HloOpcode::kFusion); EXPECT_EQ(analysis_.operand_bytes_accessed(*fusion, 0), 3 - 1); EXPECT_EQ(analysis_.output_bytes_accessed(*fusion), 3); } TEST_F(GpuHloCostAnalysisTest, DynUpdateSliceNotUsingOperandData) { const char* hlo_fusion_module_str = R"( HloModule m f { to_update = s8[3,1,1,1] parameter(0) update = s8[1,1,1,1] constant(0) a = s32[] constant(0) ROOT dus = s8[3,1,1,1] dynamic-update-slice(to_update, update, a, a, a, a) } ENTRY _ { to_update = s8[3,1,1,1] parameter(0) ROOT _ = s8[3,1,1,1] fusion(to_update), kind=kLoop, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_fusion_module_str)); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); HloInstruction* fusion = module->entry_computation()->root_instruction(); ASSERT_EQ(fusion->opcode(), HloOpcode::kFusion); EXPECT_EQ(analysis_.operand_bytes_accessed(*fusion, 0), 0); EXPECT_EQ(analysis_.output_bytes_accessed(*fusion), 1); } TEST_F(GpuHloCostAnalysisTest, CommonElementwiseUseTwoParameters) { const char* hlo_fusion_module_str = R"( HloModule m add { p0 = s8[] parameter(0) p1 = s8[] parameter(1) ROOT _ = s8[] add(p0, p1) } f { p0 = s8[10] parameter(0) p1 = s8[10] parameter(1) a = s8[10] add(p0, p1) c0 = s8[] constant(0) r0 = s8[] reduce(a, c0), dimensions={0}, to_apply=add c1 = s8[] constant(100) r1 = s8[] reduce(a, c1), dimensions={0}, to_apply=add ROOT _ = s8[] add(r0, r1) } ENTRY _ { p0 = s8[10] parameter(0) p1 = s8[10] parameter(1) ROOT _ = s8[] fusion(p0, p1), kind=kLoop, calls=f })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_fusion_module_str)); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); HloInstruction* fusion = module->entry_computation()->root_instruction(); EXPECT_EQ(analysis_.CommonElementwiseUtilization(fusion->fused_parameter(0), fusion->fused_parameter(1)), 2.f); } TEST_F(GpuHloCostAnalysisTest, CommonElementwiseUseParameterAndRoot) { const char* hlo_fusion_module_str = R"( HloModule m f { p0 = s8[10] parameter(0) p1 = s8[] parameter(1) p1b = s8[10] broadcast(p1) a = s8[10] add(p0, p1b) ROOT _ = s8[10] negate(a) } ENTRY _ { p0 = s8[10] parameter(0) p1 = s8[] parameter(1) ROOT _ = s8[10] fusion(p0, p1), kind=kLoop, calls=f })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_fusion_module_str)); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); HloInstruction* fusion = module->entry_computation()->root_instruction(); EXPECT_EQ(analysis_.CommonElementwiseUtilization( fusion->fused_parameter(0), fusion->fused_expression_root()), 1.f); EXPECT_EQ(analysis_.CommonElementwiseUtilization( fusion->fused_parameter(1), fusion->fused_expression_root()), 0.f); } TEST_F(GpuHloCostAnalysisTest, CommonElementwiseUseParameterAndRootMultiOutputFusion) { const char* hlo_fusion_module_str = R"( HloModule m f { p0 = s8[10] parameter(0) p1 = s8[] parameter(1) p1b = s8[10] broadcast(p1) a = s8[10] add(p0, p1b) neg = s8[10] negate(a) ROOT _ = (s8[10], s8[10]) tuple(a, neg) } ENTRY _ { p0 = s8[10] parameter(0) p1 = s8[] parameter(1) ROOT _ = (s8[10], s8[10]) fusion(p0, p1), kind=kLoop, calls=f })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_fusion_module_str)); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); HloInstruction* fusion = module->entry_computation()->root_instruction(); EXPECT_EQ(analysis_.CommonElementwiseUtilization( fusion->fused_parameter(0), fusion->fused_expression_root()), 1.f); EXPECT_EQ(analysis_.CommonElementwiseUtilization( fusion->fused_parameter(1), fusion->fused_expression_root()), 0.f); } TEST_F(GpuHloCostAnalysisTest, Reduce) { absl::string_view hlo_string = R"( HloModule m add { param_0 = f32[] parameter(0) param_1 = f32[] parameter(1) ROOT add.0 = f32[] add(param_0, param_1) } ENTRY entry_computation { param_0.3 = f32[32,40]{1,0} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(param_0.3, constant), dimensions={1}, to_apply=add } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); const HloInstruction* reduce = module->entry_computation()->root_instruction(); int64_t input_bytes_accessed = 4 * 32 * 40; int64_t init_bytes_accessed = 4 * 32; int64_t output_bytes_accessed = 4 * 32; EXPECT_EQ(analysis_.operand_bytes_accessed(*reduce, 0), input_bytes_accessed); EXPECT_EQ(analysis_.operand_bytes_accessed(*reduce, 1), init_bytes_accessed); EXPECT_EQ(analysis_.output_bytes_accessed(*reduce), output_bytes_accessed); EXPECT_EQ(analysis_.bytes_accessed(*reduce), input_bytes_accessed + init_bytes_accessed + output_bytes_accessed); EXPECT_EQ(analysis_.flop_count(*reduce), 32 * 39 * 3); } TEST_F(GpuHloCostAnalysisTest, VariadicReduce) { absl::string_view hlo_string = R"( HloModule m add { param_0 = f32[] parameter(0) param_1 = f32[] parameter(1) param_2 = f32[] parameter(2) param_3 = f32[] parameter(3) add.0 = f32[] add(param_0, param_2) add.1 = f32[] add(param_1, param_3) ROOT t = (f32[], f32[]) tuple(add.0, add.1) } ENTRY entry_computation { param_0.3 = f32[32,40]{1,0} parameter(0) param_1.3 = f32[32,40]{1,0} parameter(1) param_2.2 = f32[] parameter(2) constant = f32[] constant(0) ROOT reduce = (f32[32]{0}, f32[32]{0}) reduce(param_0.3, param_1.3, param_2.2, constant), dimensions={1}, to_apply=add } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); const HloInstruction* reduce = module->entry_computation()->root_instruction(); int64_t input_bytes_accessed = 4 * 32 * 40; int64_t init_bytes_accessed = 4 * 32; int64_t output_bytes_accessed = 2 * 4 * 32; EXPECT_EQ(analysis_.operand_bytes_accessed(*reduce, 0), input_bytes_accessed); EXPECT_EQ(analysis_.operand_bytes_accessed(*reduce, 1), input_bytes_accessed); EXPECT_EQ(analysis_.operand_bytes_accessed(*reduce, 2), init_bytes_accessed); EXPECT_EQ(analysis_.operand_bytes_accessed(*reduce, 3), init_bytes_accessed); EXPECT_EQ(analysis_.output_bytes_accessed(*reduce), output_bytes_accessed); EXPECT_EQ(analysis_.bytes_accessed(*reduce), 2 * input_bytes_accessed + 2 * init_bytes_accessed + output_bytes_accessed); EXPECT_EQ(analysis_.flop_count(*reduce), 32 * 39 * 6); } } }
2,149
cpp
tensorflow/tensorflow
tiled_hlo_instruction
third_party/xla/xla/service/gpu/model/tiled_hlo_instruction.cc
third_party/xla/xla/service/gpu/model/tiled_hlo_instruction_test.cc
#ifndef XLA_SERVICE_GPU_MODEL_TILED_HLO_INSTRUCTION_H_ #define XLA_SERVICE_GPU_MODEL_TILED_HLO_INSTRUCTION_H_ #include <cstddef> #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/model/indexing_map.h" namespace xla { namespace gpu { class TiledHloInstruction { public: struct PtrHash { size_t operator()(const TiledHloInstruction* tiled_hlo) const; }; struct PtrEqual { bool operator()(const TiledHloInstruction* lhs, const TiledHloInstruction* rhs) const; }; static absl::StatusOr<std::unique_ptr<TiledHloInstruction>> Create( const HloInstruction* hlo, std::vector<int64_t> tile_sizes, std::vector<int64_t> tile_strides, IndexingMap block_id_to_tile_offsets_indexing); const HloInstruction* hlo() const { return hlo_; } const std::vector<int64_t>& tile_sizes() const { return tile_sizes_; } const std::vector<int64_t>& tile_strides() const { return tile_strides_; } const IndexingMap& block_id_to_tile_offsets_indexing() const { return block_id_to_tile_offsets_indexing_; } const TiledHloInstruction* operand(int64_t operand_id) const { return operands_[operand_id]; } const std::vector<TiledHloInstruction*>& operands() const { return operands_; } void AppendOperand(TiledHloInstruction* operand) { operands_.push_back(operand); } std::string ToString() const; template <typename Sink> friend void AbslStringify(Sink& sink, const TiledHloInstruction& tiled_hlo) { sink.Append(tiled_hlo.ToString()); } private: TiledHloInstruction(const HloInstruction* hlo, std::vector<int64_t> tile_sizes, std::vector<int64_t> tile_strides, IndexingMap block_id_to_tile_offsets_indexing) : hlo_(hlo), tile_sizes_(std::move(tile_sizes)), tile_strides_(std::move(tile_strides)), block_id_to_tile_offsets_indexing_( std::move(block_id_to_tile_offsets_indexing)) {} const HloInstruction* hlo_; std::vector<int64_t> tile_sizes_; std::vector<int64_t> tile_strides_; IndexingMap block_id_to_tile_offsets_indexing_; std::vector<TiledHloInstruction*> operands_; }; bool operator==(const TiledHloInstruction& lhs, const TiledHloInstruction& rhs); bool operator!=(const TiledHloInstruction& lhs, const TiledHloInstruction& rhs); template <typename H> H AbslHashValue(H h, const TiledHloInstruction& tiled_hlo_instruction) { return H::combine(std::move(h), tiled_hlo_instruction.hlo(), tiled_hlo_instruction.tile_sizes(), tiled_hlo_instruction.tile_strides(), tiled_hlo_instruction.block_id_to_tile_offsets_indexing()); } } } #endif #include "xla/service/gpu/model/tiled_hlo_instruction.h" #include <cstddef> #include <cstdint> #include <memory> #include <sstream> #include <string> #include <utility> #include <vector> #include "absl/hash/hash.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/util.h" namespace xla { namespace gpu { size_t TiledHloInstruction::PtrHash::operator()( const TiledHloInstruction* tiled_hlo) const { return absl::HashOf(*tiled_hlo); } bool TiledHloInstruction::PtrEqual::operator()( const TiledHloInstruction* lhs, const TiledHloInstruction* rhs) const { return *lhs == *rhs; } bool operator==(const TiledHloInstruction& lhs, const TiledHloInstruction& rhs) { return lhs.hlo() == rhs.hlo() && lhs.tile_sizes() == rhs.tile_sizes() && lhs.tile_strides() == rhs.tile_strides() && lhs.block_id_to_tile_offsets_indexing() == rhs.block_id_to_tile_offsets_indexing(); } bool operator!=(const TiledHloInstruction& lhs, const TiledHloInstruction& rhs) { return !(lhs == rhs); } absl::StatusOr<std::unique_ptr<TiledHloInstruction>> TiledHloInstruction::Create(const HloInstruction* hlo, std::vector<int64_t> tile_sizes, std::vector<int64_t> tile_strides, IndexingMap block_id_to_tile_offsets_indexing) { int rank = hlo->shape().rank(); if (tile_sizes.size() != rank) { return absl::InvalidArgumentError( absl::StrCat("Number of tile sizes must be equal to the rank of the " "hlo shape. tile_sizes = ", tile_sizes.size(), ", hlo = ", hlo->ToString())); } if (tile_strides.size() != rank) { return absl::InvalidArgumentError( absl::StrCat("Number of tile strides must be equal to the rank of the " "hlo shape. tile_sizes = ", tile_strides.size(), ", hlo = ", hlo->ToString())); } if (block_id_to_tile_offsets_indexing.GetDimensionCount() != 1 || block_id_to_tile_offsets_indexing.GetSymbolCount() != 0) { return absl::InvalidArgumentError(absl::StrCat( "block_id_to_tile_offsets_indexing must have 1 dim and 0 symbols. " "block_id_to_tile_offsets_indexing = ", block_id_to_tile_offsets_indexing.ToString())); } if (block_id_to_tile_offsets_indexing.GetAffineMap().getNumResults() != rank) { return absl::InvalidArgumentError(absl::StrCat( "block_id_to_tile_offsets_indexing must have the same number of " "results as the rank of the hlo shape. " "block_id_to_tile_offsets_indexing = ", block_id_to_tile_offsets_indexing.ToString(), ", hlo = ", hlo->ToString())); } return absl::WrapUnique(new TiledHloInstruction( hlo, std::move(tile_sizes), std::move(tile_strides), std::move(block_id_to_tile_offsets_indexing))); } std::string TiledHloInstruction::ToString() const { std::stringstream ss; ss << "\thlo: " << hlo_->ToString() << "\n"; ss << "\ttile_sizes: (" << absl::StrJoin(tile_sizes_, ", ") << ")\n"; ss << "\ttile_strides: (" << absl::StrJoin(tile_strides_, ", ") << ")\n"; ss << "\tblock_id_to_tile_offsets_indexing: " << block_id_to_tile_offsets_indexing_; return ss.str(); } } }
#include "xla/service/gpu/model/tiled_hlo_instruction.h" #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_set.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/service/gpu/model/indexing_test_utils.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { class TiledHloInstructionTest : public HloTestBase { public: mlir::MLIRContext mlir_context_; }; TEST_F(TiledHloInstructionTest, PtrHashAndPtrEqualWorkCorrectly) { std::unique_ptr<HloInstruction> hlo = HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(PrimitiveType::F32, {32, 64}), "p0"); IndexingMap block_id_to_tile_offsets_indexing = IndexingMap::FromTensorSizes( ParseAffineMap("(d0) -> (d0 floordiv 16, (d0 mod 16) * 16)", &mlir_context_), {8}, {}); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<TiledHloInstruction> tiled_hlo1, TiledHloInstruction::Create(hlo.get(), {16, 16}, {1, 1}, block_id_to_tile_offsets_indexing)); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<TiledHloInstruction> tiled_hlo2, TiledHloInstruction::Create(hlo.get(), {16, 16}, {1, 1}, block_id_to_tile_offsets_indexing)); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<TiledHloInstruction> tiled_hlo3, TiledHloInstruction::Create(hlo.get(), {16, 32}, {1, 1}, block_id_to_tile_offsets_indexing)); EXPECT_EQ(*tiled_hlo1, *tiled_hlo2); EXPECT_NE(*tiled_hlo1, *tiled_hlo3); absl::flat_hash_set<TiledHloInstruction*, TiledHloInstruction::PtrHash, TiledHloInstruction::PtrEqual> tiled_hlo_set = {tiled_hlo1.get(), tiled_hlo2.get(), tiled_hlo3.get()}; EXPECT_EQ(tiled_hlo_set.size(), 2); } TEST_F(TiledHloInstructionTest, TileSizesAndStridesShouldMatchHloShapeRank) { std::unique_ptr<HloInstruction> hlo = HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(PrimitiveType::F32, {32, 64}), "p0"); IndexingMap block_id_to_tile_offsets_indexing = IndexingMap::FromTensorSizes( ParseAffineMap("(d0) -> (d0 floordiv 16, (d0 mod 16) * 16)", &mlir_context_), {8}, {}); EXPECT_THAT( TiledHloInstruction::Create(hlo.get(), {16}, {1, 1}, block_id_to_tile_offsets_indexing) .status() .message(), ::testing::HasSubstr("Number of tile sizes must be equal to the rank")); EXPECT_THAT( TiledHloInstruction::Create(hlo.get(), {16, 16}, {1, 1, 1}, block_id_to_tile_offsets_indexing) .status() .message(), ::testing::HasSubstr("Number of tile strides must be equal to the rank")); } TEST_F(TiledHloInstructionTest, ShouldReturnErrorIfBlockIdToTileOffsetsIndexingIsInvalid) { std::unique_ptr<HloInstruction> hlo = HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(PrimitiveType::F32, {32, 64}), "p0"); IndexingMap block_id_to_tile_offsets_indexing1 = IndexingMap::FromTensorSizes( ParseAffineMap("(d0) -> (d0 floordiv 16)", &mlir_context_), {8}, {}); EXPECT_THAT( TiledHloInstruction::Create(hlo.get(), {16, 16}, {1, 1}, block_id_to_tile_offsets_indexing1) .status() .message(), ::testing::HasSubstr( "must have the same number of results as the rank of the hlo shape")); IndexingMap block_id_to_tile_offsets_indexing2 = IndexingMap::FromTensorSizes( ParseAffineMap("(d0)[s0] -> (d0 + s0, d0 floordiv 16)", &mlir_context_), {8}, {8}); EXPECT_THAT(TiledHloInstruction::Create(hlo.get(), {16, 16}, {1, 1}, block_id_to_tile_offsets_indexing2) .status() .message(), ::testing::HasSubstr("must have 1 dim and 0 symbols")); } } } }
2,150
cpp
tensorflow/tensorflow
gpu_indexing_performance_model
third_party/xla/xla/service/gpu/model/gpu_indexing_performance_model.cc
third_party/xla/xla/service/gpu/model/gpu_indexing_performance_model_test.cc
#ifndef XLA_SERVICE_GPU_MODEL_GPU_INDEXING_PERFORMANCE_MODEL_H_ #define XLA_SERVICE_GPU_MODEL_GPU_INDEXING_PERFORMANCE_MODEL_H_ #include <cstddef> #include <cstdint> #include <variant> #include <vector> #include "absl/status/statusor.h" #include "absl/types/span.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/fusion_analysis_cache.h" #include "xla/service/gpu/model/gpu_performance_model_base.h" #include "xla/service/gpu/model/hlo_op_profiles.h" #include "xla/service/gpu/model/symbolic_tile_analysis.h" #include "xla/service/gpu/model/tiled_hlo_computation.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/instruction_fusion.h" #include "xla/shape.h" #include "xla/stream_executor/device_description.h" namespace xla { namespace gpu { struct TiledRunTimeData { EstimateRunTimeData runtime_data; BlockLevelParameters block_level_parameters; }; using TiledRunTimeDataOrError = std::variant<TiledRunTimeData, FusionDecision>; class GpuPerformanceModelWithIndexingAnalysis : public GpuPerformanceModelBase { public: explicit GpuPerformanceModelWithIndexingAnalysis( const se::DeviceDescription* device_info, HloFusionAnalysisCache* fusion_analysis_cache, HloCostAnalysis::ShapeSizeFunction shape_size, mlir::MLIRContext* mlir_context) : hlo_op_profile_(&HloOpProfiles::Singleton().GetProfile(device_info)), device_info_(device_info), fusion_analysis_cache_(fusion_analysis_cache), shape_size_(shape_size), mlir_context_(mlir_context) {} EstimateRunTimeData EstimateRunTimeForFusion( const HloFusionAnalysis& fusion_analysis, bool is_coalesced = true); EstimateRunTimeData EstimateRunTimeForInstruction( const HloInstruction* producer); EstimateRunTimeData EstimateRunTimeForProducerConsumer( const HloInstruction* producer, const HloInstruction* consumer); RunTimes EstimateRunTimes( const HloInstruction* producer, absl::Span<const HloInstruction* const> fused_consumers = {}); EstimateRunTimeData EstimateRunTimeForTiledHloComputation( const HloFusionAdaptor& fusion_adaptor, const TiledHloComputation& tiled_hlo_computation, const LaunchDimensions& launch_dimensions); absl::StatusOr<EstimateRunTimeData> EstimateRunTimeForTiledFusion( const HloFusionAdaptor& fusion_adaptor, const LaunchDimensions& launch_dimensions, absl::Span<const int64_t> output_tile_sizes); absl::StatusOr<EstimateRunTimeData> EstimateRunTimeForTriton( const HloInstruction* producer, const HloInstruction* consumer = nullptr); absl::StatusOr<TiledRunTimeDataOrError> TryFindBestTilingForFusion( const HloFusionAdaptor& fusion_adaptor); private: int64_t FlopsPerElement(const HloInstruction* instr) const; int64_t GetShapeSizeRecursive(const Shape& shape) const; const HloOpProfiles::HloOpProfile* hlo_op_profile_; const se::DeviceDescription* device_info_; HloFusionAnalysisCache* fusion_analysis_cache_; HloCostAnalysis::ShapeSizeFunction shape_size_; mlir::MLIRContext* mlir_context_; }; } } #endif #include "xla/service/gpu/model/gpu_indexing_performance_model.h" #include <algorithm> #include <cstdint> #include <optional> #include <utility> #include <variant> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/fusions/triton.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/coalescing_analysis.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/gpu/model/gpu_performance_model_base.h" #include "xla/service/gpu/model/indexing_analysis.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/service/gpu/model/symbolic_tile_analysis.h" #include "xla/service/gpu/model/tiled_hlo_computation.h" #include "xla/service/instruction_fusion.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { int64_t GpuPerformanceModelWithIndexingAnalysis::FlopsPerElement( const HloInstruction* instr) const { GpuHloCostAnalysis::Options cost_analysis_options{ shape_size_, {}, true}; GpuHloCostAnalysis cost_analysis(cost_analysis_options, device_info_); TF_CHECK_OK( cost_analysis.RevisitInstruction(const_cast<HloInstruction*>(instr))); int64_t num_elements = [&] { if (instr->opcode() == HloOpcode::kReduce && instr->shape().IsTuple()) { return ShapeUtil::ElementsInRecursive(instr->shape().tuple_shapes(0)); } return ShapeUtil::ElementsInRecursive(instr->shape()); }(); return cost_analysis.flop_count(*instr) / num_elements; } int64_t GpuPerformanceModelWithIndexingAnalysis::GetShapeSizeRecursive( const Shape& shape) const { CHECK(shape.IsArray() || shape.IsTuple()); if (shape.IsArray()) { return shape_size_(shape); } int64_t total_size = 0; for (const auto& element_shape : shape.tuple_shapes()) { total_size += GetShapeSizeRecursive(element_shape); } return total_size; } int64_t GetIterationSpaceSize(const IndexingMap& indexing_map, const HloInstruction* instr) { if (indexing_map.IsUndefined()) { return ShapeUtil::ElementsInRecursive(instr->shape()); } if (indexing_map.IsKnownEmpty()) { return 0; } auto get_ranges_iteration_space_size = [](const std::vector<Interval>& ranges) { int64_t num_iters = 1; for (const Interval& range : ranges) { num_iters *= range.upper - range.lower + 1; } return num_iters; }; return get_ranges_iteration_space_size(indexing_map.GetSymbolBounds()) * get_ranges_iteration_space_size(indexing_map.GetDimensionBounds()); } EstimateRunTimeData GpuPerformanceModelWithIndexingAnalysis::EstimateRunTimeForFusion( const HloFusionAnalysis& fusion_analysis, bool is_coalesced) { auto& fusion_adaptor = fusion_analysis.fusion(); VLOG(5) << "EstimateRunTimeForFusion: " << fusion_adaptor.ToString(); auto roots = fusion_adaptor.GetRoots(); CHECK_EQ(roots.size(), 1) << "Indexing cost model doesn't support multi-output fusions."; auto root_shape = roots.front().shape(); LaunchDimensions launch_dimensions = EstimateFusionLaunchDimensions(fusion_analysis); int64_t num_blocks = launch_dimensions.num_blocks(); auto grouped_fusion_indexing = ComputeGroupedOutputToInputIndexing( fusion_adaptor, roots[0], mlir_context_); int64_t flops = 0; int64_t bytes_read = 0; absl::Duration read_time = absl::ZeroDuration(); for (const auto& [instr, indexing_maps] : grouped_fusion_indexing) { VLOG(10) << "instr: " << instr->name(); bool is_operand = !fusion_adaptor.ContainsInstruction(instr); auto element_type = instr->shape().element_type(); int64_t n_bytes_total = 0; for (const auto& indexing_map : indexing_maps) { VLOG(10) << indexing_map.ToString(); int64_t num_iters = GetIterationSpaceSize(indexing_map, instr); if (is_operand) { int64_t type_size = ShapeUtil::ByteSizeOfPrimitiveType(element_type); n_bytes_total += type_size * num_iters; } else { int64_t flops_per_element = FlopsPerElement(instr); flops += flops_per_element * num_iters; } } if (is_operand) { int64_t operand_size = shape_size_(instr->shape()); int64_t n_bytes_net = std::min(operand_size, n_bytes_total); bytes_read += n_bytes_total; VLogOperandRead(instr, n_bytes_total, n_bytes_net, is_coalesced); read_time += ReadTimeWithDRAMHeuristic(*device_info_, num_blocks, n_bytes_net, n_bytes_total, element_type, is_coalesced); } } int64_t bytes_written = GetShapeSizeRecursive(root_shape); absl::Duration compute_time = ComputeTime(*device_info_, flops, num_blocks, launch_dimensions.num_threads_per_block()); absl::Duration write_time = WriteTime(*device_info_, bytes_written); absl::Duration memory_access_time = read_time + write_time; absl::Duration exec_time = CombineComputeAndMemoryAccessTime( compute_time, memory_access_time, GpuPerformanceModelOptions::PriorityFusion()); EstimateRunTimeData runtime_data = {flops, bytes_read, bytes_written, read_time, write_time, compute_time, exec_time}; VLOG(3) << "Runtime data for HLO fusion: " << fusion_adaptor.ToString() << "\n" << launch_dimensions.ToString() << "\n" << runtime_data.ToString(); return runtime_data; } EstimateRunTimeData GpuPerformanceModelWithIndexingAnalysis::EstimateRunTimeForInstruction( const HloInstruction* producer) { if (producer->opcode() == HloOpcode::kBitcast) { return EstimateRunTimeData{0, 0, 0, absl::ZeroDuration(), absl::ZeroDuration(), absl::ZeroDuration(), absl::ZeroDuration()}; } auto fusion_analysis = AnalyzeFusion(*producer, *device_info_); bool is_coalesced = IsReadCoalescedHeuristic( fusion_analysis.GetEmitterFusionKind(), producer); return EstimateRunTimeForFusion(fusion_analysis, is_coalesced); } EstimateRunTimeData GpuPerformanceModelWithIndexingAnalysis::EstimateRunTimeForProducerConsumer( const HloInstruction* producer, const HloInstruction* consumer) { auto fusion_analysis = AnalyzeProducerConsumerFusion(*producer, *consumer, *device_info_); bool is_coalesced = IsReadCoalescedHeuristic( fusion_analysis.GetEmitterFusionKind(), producer, consumer); return EstimateRunTimeForFusion(fusion_analysis, is_coalesced); } GpuPerformanceModelWithIndexingAnalysis::RunTimes GpuPerformanceModelWithIndexingAnalysis::EstimateRunTimes( const HloInstruction* producer, absl::Span<const HloInstruction* const> fused_consumers) { auto producer_runtime = EstimateRunTimeForInstruction(producer); absl::Duration time_unfused = kKernelLaunchOverhead * (fused_consumers.size() + 1) + producer_runtime.exec_time; absl::Duration time_fused = kKernelLaunchOverhead * fused_consumers.size(); for (const auto& consumer : fused_consumers) { time_unfused += EstimateRunTimeForInstruction(consumer).exec_time; time_fused += EstimateRunTimeForProducerConsumer(producer, consumer).exec_time; } return {time_unfused, time_fused}; } EstimateRunTimeData GpuPerformanceModelWithIndexingAnalysis::EstimateRunTimeForTiledHloComputation( const HloFusionAdaptor& fusion_adaptor, const TiledHloComputation& tiled_hlo_computation, const LaunchDimensions& launch_dimensions) { absl::flat_hash_map<const HloInstruction*, int64_t> n_bytes_total_map; int64_t flops = 0; int64_t bytes_read = 0; for (const auto& tiled_hlo : tiled_hlo_computation.instructions()) { int64_t num_blocks = tiled_hlo->block_id_to_tile_offsets_indexing() .GetDimensionBound(0) .GetLoopTripCount(); int64_t num_elements = num_blocks * Product(tiled_hlo->tile_sizes()); const HloInstruction* hlo = tiled_hlo->hlo(); if (fusion_adaptor.ContainsInstruction(hlo)) { flops += FlopsPerElement(hlo) * num_elements; } else { int64_t element_type_size = ShapeUtil::ByteSizeOfPrimitiveType(hlo->shape().element_type()); int64_t tile_bytes_read = element_type_size * num_elements; bytes_read += tile_bytes_read; n_bytes_total_map[hlo] += tile_bytes_read; } } int64_t num_blocks = launch_dimensions.num_blocks(); absl::Duration read_time = absl::ZeroDuration(); for (const auto& [hlo, n_bytes_total] : n_bytes_total_map) { int64_t operand_size = shape_size_(hlo->shape()); int64_t n_bytes_net = std::min(operand_size, n_bytes_total); read_time += ReadTimeWithDRAMHeuristic( *device_info_, num_blocks, n_bytes_net, n_bytes_total, hlo->shape().element_type(), true); } int64_t bytes_written = GetShapeSizeRecursive(tiled_hlo_computation.GetRoot()->hlo()->shape()); absl::Duration compute_time = ComputeTime(*device_info_, flops, launch_dimensions.num_blocks(), launch_dimensions.num_threads_per_block()); absl::Duration write_time = WriteTime(*device_info_, bytes_written); absl::Duration memory_access_time = read_time + write_time; absl::Duration exec_time = CombineComputeAndMemoryAccessTime( compute_time, memory_access_time, GpuPerformanceModelOptions::PriorityFusion()); return EstimateRunTimeData{flops, bytes_read, bytes_written, read_time, write_time, compute_time, exec_time}; } absl::StatusOr<EstimateRunTimeData> GpuPerformanceModelWithIndexingAnalysis::EstimateRunTimeForTiledFusion( const HloFusionAdaptor& fusion_adaptor, const LaunchDimensions& launch_dimensions, absl::Span<const int64_t> tile_sizes) { SymbolicTileAnalysisOrError analysis_or_error = SymbolicTileAnalysis::AnalyzeFusion(fusion_adaptor, mlir_context_); if (const auto* fusion_decision = std::get_if<FusionDecision>(&analysis_or_error)) { return absl::FailedPreconditionError(absl::StrCat( "SymbolicTileAnalysis failed. ", fusion_decision->Explain())); } SymbolicTileAnalysis analysis = std::get<SymbolicTileAnalysis>(std::move(analysis_or_error)); TF_ASSIGN_OR_RETURN(TiledHloComputation tiled_hlo_computation, analysis.ComputeTiledHloInstructions(tile_sizes)); return EstimateRunTimeForTiledHloComputation( fusion_adaptor, tiled_hlo_computation, launch_dimensions); } absl::StatusOr<EstimateRunTimeData> GpuPerformanceModelWithIndexingAnalysis::EstimateRunTimeForTriton( const HloInstruction* producer, const HloInstruction* consumer) { const auto& fusion_analysis = (consumer == nullptr) ? fusion_analysis_cache_->Get(*producer) : fusion_analysis_cache_->Get(*producer, *consumer); auto launch_config = TritonFusion(fusion_analysis).launch_config(); if (!launch_config.has_value()) { return absl::InvalidArgumentError( "Could not get launch config for Triton fusion."); } return EstimateRunTimeForTiledFusion( fusion_analysis.fusion(), launch_config->launch_dimensions, launch_config->block_level_parameters.output_tile_sizes); } int64_t GetNumWarps(int64_t tile_size) { if (tile_size <= 512) return 1; if (tile_size <= 1024) return 2; if (tile_size <= 16384) return 4; if (tile_size <= 32768) return 8; if (tile_size <= 65536) return 16; return 32; } LaunchDimensions GetLaunchDimensionsForTiledFusion( const TiledHloComputation& tiled_hlo_computation) { const auto* tiled_root = tiled_hlo_computation.GetRoot(); int64_t num_blocks = tiled_root->block_id_to_tile_offsets_indexing() .GetDimensionBound(0) .GetLoopTripCount(); int64_t num_warps = GetNumWarps(Product(tiled_root->tile_sizes())); return {static_cast<uint64_t>(num_blocks), static_cast<uint64_t>(num_warps * WarpSize())}; } absl::StatusOr<TiledRunTimeDataOrError> GpuPerformanceModelWithIndexingAnalysis::TryFindBestTilingForFusion( const HloFusionAdaptor& fusion_adaptor) { SymbolicTileAnalysisOrError analysis_or_error = SymbolicTileAnalysis::AnalyzeFusion(fusion_adaptor, mlir_context_); if (const auto* fusion_decision = std::get_if<FusionDecision>(&analysis_or_error)) { return *fusion_decision; } SymbolicTileAnalysis analysis = std::get<SymbolicTileAnalysis>(std::move(analysis_or_error)); TF_ASSIGN_OR_RETURN(auto tilings, analysis.GetGoodTilings()); std::optional<TiledRunTimeData> best_tiled_run_time_data; for (const auto& tiling : tilings) { TF_ASSIGN_OR_RETURN(TiledHloComputation tiled_hlo_computation, analysis.ComputeTiledHloInstructions(tiling)); LaunchDimensions launch_dimensions = GetLaunchDimensionsForTiledFusion(tiled_hlo_computation); EstimateRunTimeData estimate_run_time_data = EstimateRunTimeForTiledHloComputation( fusion_adaptor, tiled_hlo_computation, launch_dimensions); if (!best_tiled_run_time_data.has_value() || estimate_run_time_data.exec_time < best_tiled_run_time_data->runtime_data.exec_time) { BlockLevelParameters block_level_parameters; block_level_parameters.output_tile_sizes = std::vector<int64_t>(tiling.begin(), tiling.end()); block_level_parameters.num_warps = launch_dimensions.num_threads_per_block() / WarpSize(); best_tiled_run_time_data = TiledRunTimeData{estimate_run_time_data, block_level_parameters}; } } if (!best_tiled_run_time_data.has_value()) { return FusionDecision("No valid tilings found."); } return *best_tiled_run_time_data; } } }
#include "xla/service/gpu/model/gpu_indexing_performance_model.h" #include <cstdint> #include <memory> #include <variant> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "absl/time/time.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/fusion_analysis_cache.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/gpu/model/gpu_performance_model_base.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using ::testing::ElementsAre; class GpuIndexingPerformanceModelTest : public HloTestBase { GpuHloCostAnalysis::ShapeSizeFunction ShapeSizeBytesFunction() const { return [&](const Shape& shape) { constexpr int64_t kPointerSize = 8; return ShapeUtil::ByteSizeOf(shape, kPointerSize); }; } public: mlir::MLIRContext mlir_context_; se::DeviceDescription device_info_{TestGpuDeviceInfo::RTXA6000DeviceInfo()}; HloFusionAnalysisCache fusion_analysis_cache_{device_info_}; GpuPerformanceModelWithIndexingAnalysis indexing_cost_model_{ &device_info_, &fusion_analysis_cache_, ShapeSizeBytesFunction(), &mlir_context_}; GpuIndexingPerformanceModelTest() : HloTestBase() {} }; TEST_F(GpuIndexingPerformanceModelTest, BroadcastElementwise) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule( R"( HloModule extracted ENTRY entry_computation { param_0 = f32[32]{0} parameter(0) broadcast = f32[32,1,768]{2,1,0} broadcast(param_0), dimensions={0} param_1 = f32[32,1,768]{2,1,0} parameter(1) ROOT multiply = f32[32,1,768]{2,1,0} multiply(broadcast, param_1) } )")); auto producer = module->entry_computation()->GetInstructionWithName("broadcast"); auto consumer = module->entry_computation()->GetInstructionWithName("multiply"); auto runtime_data = indexing_cost_model_.EstimateRunTimeForProducerConsumer( producer, consumer); EXPECT_EQ(runtime_data.flops, 73728); EXPECT_EQ(runtime_data.bytes_written, 98304); EXPECT_NEAR(absl::ToInt64Nanoseconds(runtime_data.write_time), 128, 2); EXPECT_NEAR(absl::ToInt64Nanoseconds(runtime_data.exec_time), 267, 2); } TEST_F(GpuIndexingPerformanceModelTest, Bitcast) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule( R"( HloModule m ENTRY entry_computation { param_0 = bf16[4,8,65,128]{3,2,1,0} parameter(0) ROOT bitcast = bf16[8,4,65,128]{3,2,0,1} bitcast(param_0) } )")); auto instruction = module->entry_computation()->GetInstructionWithName("bitcast"); auto runtime_data = indexing_cost_model_.EstimateRunTimeForInstruction(instruction); EXPECT_EQ(runtime_data.flops, 0); EXPECT_EQ(runtime_data.bytes_written, 0); EXPECT_EQ(runtime_data.write_time, absl::ZeroDuration()); EXPECT_EQ(runtime_data.exec_time, absl::ZeroDuration()); } TEST_F(GpuIndexingPerformanceModelTest, Reduce) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule( R"( HloModule m add { param_0 = f32[] parameter(0) param_1 = f32[] parameter(1) ROOT add.0 = f32[] add(param_0, param_1) } ENTRY entry_computation { param_0.3 = f32[32,40]{1,0} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(param_0.3, constant), dimensions={1}, to_apply=add } )")); auto instruction = module->entry_computation()->root_instruction(); auto runtime_data = indexing_cost_model_.EstimateRunTimeForInstruction(instruction); EXPECT_EQ(runtime_data.flops, 3744); EXPECT_EQ(runtime_data.bytes_written, 128); EXPECT_NEAR(absl::ToDoubleNanoseconds(runtime_data.write_time), 0, 1); EXPECT_NEAR(absl::ToDoubleNanoseconds(runtime_data.exec_time), 29, 1); } TEST_F(GpuIndexingPerformanceModelTest, VariadicReduce) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule( R"( HloModule m add { param_0 = f32[] parameter(0) param_1 = f32[] parameter(1) param_2 = f32[] parameter(2) param_3 = f32[] parameter(3) add.0 = f32[] add(param_0, param_2) add.1 = f32[] add(param_1, param_3) ROOT t = (f32[], f32[]) tuple(add.0, add.1) } ENTRY entry_computation { param_0.3 = f32[32,40]{1,0} parameter(0) param_1.3 = f32[32,40]{1,0} parameter(1) param_2.2 = f32[] parameter(2) constant = f32[] constant(0) ROOT reduce = (f32[32]{0}, f32[32]{0}) reduce(param_0.3, param_1.3, param_2.2, constant), dimensions={1}, to_apply=add } )")); auto instruction = module->entry_computation()->root_instruction(); auto runtime_data = indexing_cost_model_.EstimateRunTimeForInstruction(instruction); EXPECT_EQ(runtime_data.flops, 7488); EXPECT_EQ(runtime_data.bytes_written, 256); EXPECT_NEAR(absl::ToDoubleNanoseconds(runtime_data.write_time), 0, 1); EXPECT_NEAR(absl::ToDoubleNanoseconds(runtime_data.exec_time), 58, 1); } TEST_F(GpuIndexingPerformanceModelTest, TritonSoftmaxFusionInstructionIsSupported) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule m add { Arg_0 = f32[] parameter(0) Arg_1 = f32[] parameter(1) ROOT add = f32[] add(Arg_0, Arg_1) } triton_softmax_computation { param_0 = f32[512,911]{1,0} parameter(0) param_1 = f32[911]{0} parameter(1) broadcast_0 = f32[512,911]{1,0} broadcast(param_1), dimensions={1} multiply_0 = f32[512,911]{1,0} multiply(param_0, broadcast_0) constant_0 = f32[] constant(0) reduce_0 = f32[512]{0} reduce(multiply_0, constant_0), dimensions={1}, to_apply=add broadcast_4 = f32[512,911]{1,0} broadcast(reduce_0), dimensions={0} ROOT multiply = f32[512,911]{1,0} multiply(multiply_0, broadcast_4) } ENTRY main { param_0 = f32[512,911]{1,0} parameter(0) param_1 = f32[911]{0} parameter(1) ROOT triton_softmax = f32[512,911]{1,0} fusion(param_0, param_1), kind=kCustom, calls=triton_softmax_computation, backend_config={"fusion_backend_config": {"kind":"__triton","block_level_fusion_config":{"output_tile_sizes":["1","911"],"num_warps":"2"}}} } )")); TF_ASSERT_OK_AND_ASSIGN(auto runtime_data, indexing_cost_model_.EstimateRunTimeForTriton( module->entry_computation()->root_instruction())); constexpr int64_t kParam0SizeBytes = 512 * 911 * 4; constexpr int64_t kParam1SizeBytes = 911 * 4; constexpr int64_t kOutputSizeBytes = 512 * 911 * 4; constexpr int64_t kExpectedBytesRead = kParam0SizeBytes + 512 * kParam1SizeBytes; EXPECT_EQ(runtime_data.bytes_read, kExpectedBytesRead); EXPECT_EQ(runtime_data.bytes_written, kOutputSizeBytes); EXPECT_NEAR(absl::ToDoubleMicroseconds(runtime_data.exec_time), 5, 1); } TEST_F(GpuIndexingPerformanceModelTest, TritonSoftmaxProducerConsumerFusionIsSupported) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule m add { Arg_0 = f32[] parameter(0) Arg_1 = f32[] parameter(1) ROOT add = f32[] add(Arg_0, Arg_1) } fusion { param_0 = f32[512,911] parameter(0) param_1 = f32[911] parameter(1) broadcast = f32[512,911] broadcast(param_1), dimensions={1} ROOT multiply = f32[512,911] multiply(param_0, broadcast) } triton_softmax_computation { param_0 = f32[512,911] parameter(0) constant_0 = f32[] constant(0) reduce_0 = f32[512] reduce(param_0, constant_0), dimensions={1}, to_apply=add broadcast_4 = f32[512,911] broadcast(reduce_0), dimensions={0} ROOT multiply = f32[512,911] multiply(param_0, broadcast_4) } ENTRY main { param_0 = f32[512,911] parameter(0) param_1 = f32[911] parameter(1) fusion.1 = f32[512,911] fusion(param_0, param_1), kind=kLoop, calls=fusion ROOT triton_softmax = f32[512,911] fusion(fusion.1), kind=kCustom, calls=triton_softmax_computation, backend_config={"fusion_backend_config": {"kind":"__triton","block_level_fusion_config":{"output_tile_sizes":["1","911"],"num_warps":"2"}}} } )")); auto consumer = module->entry_computation()->root_instruction(); auto producer = consumer->operand(0); TF_ASSERT_OK_AND_ASSIGN( auto runtime_data, indexing_cost_model_.EstimateRunTimeForTriton(producer, consumer)); constexpr int64_t kParam0SizeBytes = 512 * 911 * 4; constexpr int64_t kParam1SizeBytes = 911 * 4; constexpr int64_t kOutputSizeBytes = 512 * 911 * 4; constexpr int64_t kExpectedBytesRead = kParam0SizeBytes + 512 * kParam1SizeBytes; EXPECT_EQ(runtime_data.bytes_read, kExpectedBytesRead); EXPECT_EQ(runtime_data.bytes_written, kOutputSizeBytes); EXPECT_NEAR(absl::ToDoubleMicroseconds(runtime_data.exec_time), 5, 1); } TEST_F(GpuIndexingPerformanceModelTest, EstimateBestTiling_TritonSoftmax_IsSupported) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule m add { Arg_0 = f32[] parameter(0) Arg_1 = f32[] parameter(1) ROOT add = f32[] add(Arg_0, Arg_1) } triton_softmax_computation { param_0 = f32[512,911]{1,0} parameter(0) param_1 = f32[911]{0} parameter(1) broadcast_0 = f32[512,911]{1,0} broadcast(param_1), dimensions={1} multiply_0 = f32[512,911]{1,0} multiply(param_0, broadcast_0) constant_0 = f32[] constant(0) reduce_0 = f32[512]{0} reduce(multiply_0, constant_0), dimensions={1}, to_apply=add broadcast_4 = f32[512,911]{1,0} broadcast(reduce_0), dimensions={0} ROOT multiply = f32[512,911]{1,0} multiply(multiply_0, broadcast_4) } ENTRY main { param_0 = f32[512,911]{1,0} parameter(0) param_1 = f32[911]{0} parameter(1) ROOT triton_softmax = f32[512,911]{1,0} fusion(param_0, param_1), kind=kCustom, calls=triton_softmax_computation, backend_config={"fusion_backend_config": {"kind":"__triton"}} } )")); auto fusion_adaptor = HloFusionAdaptor::ForInstruction( module->entry_computation()->root_instruction()); TF_ASSERT_OK_AND_ASSIGN( auto tiling_result, indexing_cost_model_.TryFindBestTilingForFusion(*fusion_adaptor)); ASSERT_TRUE(std::holds_alternative<TiledRunTimeData>(tiling_result)); auto tiled_runtime_data = std::get<TiledRunTimeData>(tiling_result); constexpr int64_t kParam0SizeBytes = 512 * 911 * 4; constexpr int64_t kParam1SizeBytes = 911 * 4; constexpr int64_t kOutputSizeBytes = 512 * 911 * 4; constexpr int64_t kExpectedBytesRead = kParam0SizeBytes + 128 * kParam1SizeBytes; EXPECT_THAT(tiled_runtime_data.block_level_parameters.output_tile_sizes, ElementsAre(4, 911)); EXPECT_EQ(tiled_runtime_data.block_level_parameters.num_warps, 4); EXPECT_EQ(tiled_runtime_data.runtime_data.bytes_read, kExpectedBytesRead); EXPECT_EQ(tiled_runtime_data.runtime_data.bytes_written, kOutputSizeBytes); EXPECT_NEAR( absl::ToDoubleMicroseconds(tiled_runtime_data.runtime_data.exec_time), 5, 1); } TEST_F( GpuIndexingPerformanceModelTest, EstimateRunTimeForTiledFusion_NumberOfTilesLargerThanInt32Max_IsSupported) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule softmax max_computation { arg_0 = f16[] parameter(0) arg_1 = f16[] parameter(1) ROOT maximum = f16[] maximum(arg_0, arg_1) } softmax { param_0 = f16[65538,32768]{1,0} parameter(0) constant_neg_inf = f16[] constant(-inf) reduce = f16[65538]{0} reduce(param_0, constant_neg_inf), dimensions={1}, to_apply=max_computation broadcast = f16[65538,32768]{1,0} broadcast(reduce), dimensions={0} ROOT subtract = f16[65538,32768]{1,0} subtract(param_0, broadcast) } ENTRY main { param_0 = f16[65538,32768]{1,0} parameter(0) ROOT fusion = f16[65538,32768]{1,0} fusion(param_0), kind=kCustom, calls=softmax } )")); auto fusion_adaptor = HloFusionAdaptor::ForInstruction( module->entry_computation()->root_instruction()); LaunchDimensions launch_dimensions{65538LL * 32768LL, 32}; TF_ASSERT_OK_AND_ASSIGN( auto runtime_data, indexing_cost_model_.EstimateRunTimeForTiledFusion( *fusion_adaptor, launch_dimensions, {1, 1})); EXPECT_NEAR(absl::ToDoubleSeconds(runtime_data.read_time), 183, 1); EXPECT_NEAR(absl::ToDoubleSeconds(runtime_data.compute_time), 39, 1); EXPECT_NEAR(absl::ToDoubleSeconds(runtime_data.exec_time), 185, 1); } } } }
2,151
cpp
tensorflow/tensorflow
analytical_latency_estimator
third_party/xla/xla/service/gpu/model/analytical_latency_estimator.cc
third_party/xla/xla/service/gpu/model/analytical_latency_estimator_test.cc
#ifndef XLA_SERVICE_GPU_MODEL_ANALYTICAL_LATENCY_ESTIMATOR_H_ #define XLA_SERVICE_GPU_MODEL_ANALYTICAL_LATENCY_ESTIMATOR_H_ #include <memory> #include <optional> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/latency_hiding_scheduler.h" #include "xla/stream_executor/device_description.h" #include "xla/xla.pb.h" namespace xla { namespace gpu { class AnalyticalLatencyEstimator : public LatencyEstimator { public: AnalyticalLatencyEstimator( const SchedulerConfig& config, std::unique_ptr<LatencyEstimator> latency_estimator, const se::DeviceDescription& gpu_info, HloCostAnalysis::ShapeSizeFunction shape_size_function, HloComputation* computation); TimeCost GetLatencyBetween(const HloGraphNode& from, const HloGraphNode& target) const override; TimeCost NodeCost(const HloInstruction* instr) const override; int CyclesPerMicrosecond() const override { return latency_estimator_->CyclesPerMicrosecond(); } static constexpr TimeCost kLowCost = 1.0; static constexpr TimeCost kLowLatency = 1.0; private: const SchedulerConfig config_; const se::DeviceDescription& gpu_info_; std::optional<GpuHloCostAnalysis> cost_analysis_; std::unique_ptr<LatencyEstimator> latency_estimator_; HloCostAnalysis::ShapeSizeFunction shape_size_function_; }; } } #endif #include "xla/service/gpu/model/analytical_latency_estimator.h" #include <memory> #include <utility> #include "absl/log/log.h" #include "absl/time/time.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/gpu/model/gpu_collective_performance_model.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/gpu/model/gpu_performance_model.h" #include "xla/service/gpu/model/gpu_performance_model_base.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/latency_hiding_scheduler.h" #include "xla/stream_executor/device_description.h" #include "tsl/platform/status.h" namespace xla { namespace gpu { LatencyEstimator::TimeCost AnalyticalLatencyEstimator::GetLatencyBetween( const HloGraphNode& from, const HloGraphNode& target) const { const HloOpcode from_op = from.GetInstr().opcode(); if (!config_.schedule_send_recvs && (from_op == HloOpcode::kSend || from_op == HloOpcode::kRecv)) { return kLowLatency; } if (IsAsyncPair(from, target)) { double coll_time = absl::ToDoubleMicroseconds( GpuPerformanceWithCollectiveModel::ComputeCollectiveTime( from.GetInstr(), &*cost_analysis_, gpu_info_)); VLOG(10) << "Analytical estimator calculated latency between " << from.GetInstr().name() << " and " << target.GetInstr().name() << " to be: " << coll_time << " us."; return coll_time; } return latency_estimator_->GetLatencyBetween(from, target); } LatencyEstimator::TimeCost AnalyticalLatencyEstimator::NodeCost( const HloInstruction* instr) const { if (hlo_query::IsAsyncCollectiveStartOp(instr, true) || hlo_query::IsAsyncCollectiveDoneOp(instr, true)) { return kLowCost; } absl::Duration total_estimated_time = GpuPerformanceModel::EstimateRunTimeForInstruction( instr, &*cost_analysis_, GpuPerformanceModelOptions::ForModule(instr->GetModule())) .exec_time; LatencyEstimator::TimeCost cost_in_us = absl::ToDoubleMicroseconds(total_estimated_time); VLOG(10) << "Analytical estimator calculated cost for: " << instr->name() << ". Cost: " << cost_in_us; return cost_in_us; } AnalyticalLatencyEstimator::AnalyticalLatencyEstimator( const SchedulerConfig& config, std::unique_ptr<LatencyEstimator> latency_estimator, const se::DeviceDescription& gpu_info, HloCostAnalysis::ShapeSizeFunction shape_size_function, HloComputation* computation) : config_(config), gpu_info_(gpu_info), latency_estimator_(std::move(latency_estimator)), shape_size_function_(shape_size_function) { cost_analysis_.emplace( GpuHloCostAnalysis::Options{shape_size_function_, {}, true}, &gpu_info_); TF_CHECK_OK(computation->Accept(&cost_analysis_.value())); } } }
#include "xla/service/gpu/model/analytical_latency_estimator.h" #include <algorithm> #include <cstdint> #include <functional> #include <memory> #include <utility> #include <vector> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/service/gpu/tests/gpu_codegen_test.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/latency_hiding_scheduler.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { namespace { int64_t GetInstructionIndexInSchedule( absl::Span<HloInstruction* const> schedule, absl::string_view hlo_name) { return std::find_if(schedule.begin(), schedule.end(), [hlo_name](HloInstruction* instruction) { return instruction->name() == hlo_name; }) - schedule.begin(); } SchedulerConfig GetDefaultSchedulerConfig() { SchedulerConfig scheduler_config; return scheduler_config; } absl::StatusOr<bool> RunScheduler( HloModule* module, const SchedulerConfig& sched_config, std::unique_ptr<LatencyEstimator> latency_estimator = std::make_unique<ApproximateLatencyEstimator>()) { HloCostAnalysis::ShapeSizeFunction shape_size_bytes = [&shape_size_bytes](const Shape& shape) -> int64_t { int64_t shape_size = 0; if (shape.IsTuple()) { for (auto& sub_shape : shape.tuple_shapes()) { shape_size += shape_size_bytes(sub_shape); } return shape_size; } return ShapeUtil::ByteSizeOfElements(shape); }; auto async_tracker = std::make_unique<AsyncTracker>(sched_config); auto scheduler_core = std::make_unique<DefaultSchedulerCore>( shape_size_bytes, async_tracker.get(), latency_estimator.get(), sched_config); TF_ASSIGN_OR_RETURN( bool value, LatencyHidingScheduler( std::move(latency_estimator), std::move(async_tracker), std::move(scheduler_core), shape_size_bytes) .Run(module)); return value; } class AnalyticalLatencyHidingSchedulerTest : public GpuCodegenTest { public: absl::StatusOr<std::unique_ptr<HloModule>> ParseHloText( absl::string_view hlo_string) { return ParseAndReturnVerifiedModule(hlo_string, GetModuleConfigForTest()); } se::CudaComputeCapability GetCudaComputeCapability() { return backend() .default_stream_executor() ->GetDeviceDescription() .cuda_compute_capability(); } HloCostAnalysis::ShapeSizeFunction ShapeSizeBytesFunction() const { return [&](const Shape& shape) { constexpr int64_t kPointerSize = 8; return ShapeUtil::ByteSizeOf(shape, kPointerSize); }; } }; TEST_F(AnalyticalLatencyHidingSchedulerTest, TestAnalyticalLatencyEstimator) { if (!GetCudaComputeCapability().IsAtLeast( se::CudaComputeCapability::PASCAL_)) { GTEST_SKIP() << "This test is for Pascal+ GPUs."; } const se::DeviceDescription dev_info = backend().default_stream_executor()->GetDeviceDescription(); absl::string_view hlo_string = R"( HloModule module, is_scheduled=true region_20.995 { Arg_1.997 = f32[] parameter(1) Arg_0.996 = f32[] parameter(0) ROOT add.589 = f32[] add(Arg_0.996, Arg_1.997) } ENTRY entry { p0 = f32[16,64,256]{2,1,0} parameter(0) p1 = f32[16,64,256]{2,1,0} parameter(1) p2 = f32[1024,2048,2048]{2,1,0} parameter(2) p3 = f32[2048,2048,2048]{2,1,0} parameter(3) all-reduce-start.1 = f32[1024,2048,2048]{2,1,0} all-reduce-start(p2), channel_id=8, replica_groups={{0}}, to_apply=region_20.995, backend_config="{\"is_sync\":false}" all-reduce-start.2 = f32[2048,2048,2048]{2,1,0} all-reduce-start(p3), channel_id=10, replica_groups={{0}}, to_apply=region_20.995, backend_config="{\"is_sync\":false}" all-reduce-done.1 = f32[1024,2048,2048]{2,1,0} all-reduce-done(all-reduce-start.1) all-reduce-done.2 = f32[2048,2048,2048]{2,1,0} all-reduce-done(all-reduce-start.2) conv0 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb ROOT tuple.2 = (f32[16,256,256]{2,1,0}, f32[1024,2048,2048]{2,1,0}, f32[2048,2048,2048]{2,1,0}) tuple(conv0, all-reduce-done.1, all-reduce-done.2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); hlo_module->mutable_config().set_num_partitions(8); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); auto scheduler_config = GetDefaultSchedulerConfig(); auto latency_estimator = std::make_unique<AnalyticalLatencyEstimator>( scheduler_config, std::make_unique<ApproximateLatencyEstimator>(), dev_info, ShapeSizeBytesFunction(), hlo_module->entry_computation()); EXPECT_TRUE(RunScheduler(hlo_module.get(), scheduler_config, std::move(latency_estimator)) .ok()); EXPECT_TRUE(hlo_module->has_entry_computation()); std::vector<HloInstruction*> new_instruction_schedule = module_schedule.sequence(hlo_module->entry_computation()).instructions(); int64_t ar2_index = GetInstructionIndexInSchedule(new_instruction_schedule, "all-reduce-start.2"); int64_t ar1_done_index = GetInstructionIndexInSchedule( new_instruction_schedule, "all-reduce-done.1"); int64_t conv0_index = GetInstructionIndexInSchedule(new_instruction_schedule, "conv0"); EXPECT_LT(ar1_done_index, ar2_index); EXPECT_LT(ar2_index, conv0_index); } } } }
2,152
cpp
tensorflow/tensorflow
symbolic_tile
third_party/xla/xla/service/gpu/model/symbolic_tile.cc
third_party/xla/xla/service/gpu/model/symbolic_tile_test.cc
#ifndef XLA_SERVICE_GPU_MODEL_SYMBOLIC_TILE_H_ #define XLA_SERVICE_GPU_MODEL_SYMBOLIC_TILE_H_ #include <optional> #include <ostream> #include <string> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/types/span.h" #include "llvm/ADT/DenseMap.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "xla/service/gpu/model/affine_map_printer.h" #include "xla/service/gpu/model/indexing_map.h" namespace xla { namespace gpu { class ConstraintExpression { public: using ConjointConstraints = llvm::DenseMap<mlir::AffineExpr, Interval>; static ConstraintExpression And(ConstraintExpression first, ConstraintExpression second); static ConstraintExpression Or(ConstraintExpression first, ConstraintExpression second); static ConstraintExpression GetUnsatisfiableConstraintExpression() { ConstraintExpression unsatisfiable; unsatisfiable.is_satisfiable_ = false; return unsatisfiable; } void Or(ConjointConstraints conjunction); void And(ConjointConstraints conjunction); bool is_satisfiable() const { return is_satisfiable_; } bool IsAlwaysSatisfied() const { return is_satisfiable_ && disjoint_conjoint_constraints_.empty(); } absl::Span<ConjointConstraints const> DisjointConjointConstraints() const { return disjoint_conjoint_constraints_; } std::string ToString( const AffineMapPrinter& printer = AffineMapPrinter()) const; void Print(std::ostream& out, const AffineMapPrinter& printer) const; private: bool is_satisfiable_ = true; std::vector<ConjointConstraints> disjoint_conjoint_constraints_; }; class SymbolicTile { public: static std::optional<SymbolicTile> FromIndexingMap(IndexingMap indexing_map); std::string RtVarsToString( const AffineMapPrinter& printer = AffineMapPrinter()) const; std::string ToString( const AffineMapPrinter& printer = AffineMapPrinter()) const; void Print(std::ostream& out, const AffineMapPrinter& printer) const; mlir::AffineMap offset_map() const; mlir::AffineMap size_map() const; mlir::AffineMap stride_map() const; const ConstraintExpression& constraints() const { CHECK(constraints_.is_satisfiable()); return constraints_; } bool is_satisfiable() const { return constraints_.is_satisfiable(); } const IndexingMap& tile_map() const { return tile_map_; } template <typename Sink> friend void AbslStringify(Sink& sink, const SymbolicTile& tile) { sink.Append(tile.ToString()); } private: IndexingMap tile_map_; ConstraintExpression constraints_; explicit SymbolicTile(IndexingMap tile_map, ConstraintExpression constraints) : tile_map_(std::move(tile_map)), constraints_(std::move(constraints)) {} }; } } #endif #include "xla/service/gpu/model/symbolic_tile.h" #include <algorithm> #include <cstdint> #include <iterator> #include <optional> #include <ostream> #include <sstream> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/strings/str_join.h" #include "absl/types/span.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Casting.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/MLIRContext.h" #include "mlir/Support/LLVM.h" #include "xla/service/gpu/model/affine_map_printer.h" #include "xla/service/gpu/model/indexing_map.h" namespace xla { namespace gpu { namespace { using ::mlir::AffineConstantExpr; using ::mlir::AffineDimExpr; using ::mlir::AffineExpr; using ::mlir::AffineExprKind; using ::mlir::AffineMap; using ::mlir::AffineSymbolExpr; using ::mlir::getAffineConstantExpr; using ::mlir::getAffineDimExpr; using ::mlir::MLIRContext; using ConjointConstraints = ConstraintExpression::ConjointConstraints; std::vector<AffineExpr> DimsToSymbols(std::vector<AffineExpr> expressions, const IndexingMap& indexing_map) { MLIRContext* mlir_context = indexing_map.GetMLIRContext(); for (AffineExpr& expression : expressions) { expression = expression.shiftSymbols(indexing_map.GetSymbolCount(), indexing_map.GetDimensionCount()); } llvm::DenseMap<AffineExpr, AffineExpr> dim_to_symbol_map; for (int i = 0; i < indexing_map.GetDimensionCount(); i++) { dim_to_symbol_map[getAffineDimExpr(i, mlir_context)] = getAffineSymbolExpr(i, mlir_context); } for (AffineExpr& expression : expressions) { expression = expression.replace(dim_to_symbol_map); } return expressions; } AffineMap SubstituteAllIndicesAndRangeVarSymbolsWithSameValue( AffineMap affine_map, AffineExpr value, int num_range_vars) { CHECK_LE(num_range_vars, affine_map.getNumSymbols()); MLIRContext* mlir_context = affine_map.getContext(); int64_t num_dims = affine_map.getNumDims(); int64_t num_symbols = affine_map.getNumSymbols(); llvm::DenseMap<AffineExpr, AffineExpr> indices; for (int64_t i = 0; i < num_dims; ++i) { indices[getAffineDimExpr(i, mlir_context)] = value; } for (int64_t i = 0; i < num_range_vars; ++i) { indices[getAffineSymbolExpr(i, mlir_context)] = value; } return simplifyAffineMap(affine_map.replace(indices, num_dims, num_symbols)); } struct SizeAndStrideExpression { AffineExpr size; AffineExpr stride; ConstraintExpression constraints; SizeAndStrideExpression( AffineExpr size, AffineExpr stride, ConstraintExpression constraints = ConstraintExpression()) : size(std::move(size)), stride(std::move(stride)), constraints(std::move(constraints)) {} }; std::optional<SizeAndStrideExpression> ExtractSizeAndStrideFromMod( AffineExpr lhs, AffineExpr modulus) { CHECK(modulus.getKind() == AffineExprKind::Constant); if (auto dim_expr = llvm::dyn_cast<mlir::AffineDimExpr>(lhs)) { AffineExpr size = dim_expr - mlir::getAffineBinaryOpExpr(AffineExprKind::FloorDiv, dim_expr - 1, modulus) * modulus; AffineExpr tile_size_expr = getAffineSymbolExpr(dim_expr.getPosition(), lhs.getContext()); Interval zero_interval{0, 0}; ConstraintExpression constraints; constraints.And( {{tile_size_expr % modulus, zero_interval}}); constraints.Or( {{modulus % tile_size_expr, zero_interval}}); return SizeAndStrideExpression( size, getAffineConstantExpr(1, lhs.getContext()), std::move(constraints)); } return std::nullopt; } std::optional<SizeAndStrideExpression> ExtractSizeAndStrideFromFloorDiv( AffineExpr num, AffineExpr den) { if (den.getKind() != AffineExprKind::Constant) { return std::nullopt; } if (auto dim_expr = llvm::dyn_cast<mlir::AffineDimExpr>(num)) { AffineExpr size = mlir::getAffineBinaryOpExpr(AffineExprKind::FloorDiv, dim_expr + (den - 1), den); return SizeAndStrideExpression( size, getAffineConstantExpr(1, num.getContext())); } return std::nullopt; } void DestructureSummationImpl(AffineExpr expr, std::vector<AffineExpr>& summands) { switch (expr.getKind()) { case AffineExprKind::Add: { const auto add = llvm::cast<mlir::AffineBinaryOpExpr>(expr); DestructureSummationImpl(add.getLHS(), summands); DestructureSummationImpl(add.getRHS(), summands); break; } default: summands.push_back(expr); break; } } std::vector<AffineExpr> DestructureSummation(AffineExpr expr) { std::vector<AffineExpr> summands; DestructureSummationImpl(expr, summands); return summands; } std::optional<SizeAndStrideExpression> ExtractSizeAndStride( AffineExpr strided_indexing, absl::Span<Interval const> dimension_intervals, absl::Span<Interval const> symbol_intervals); std::optional<std::vector<SizeAndStrideExpression>> ExtractSizesAndStridesFromMultivariateSummation( AffineExpr summation, absl::Span<Interval const> dimension_intervals, absl::Span<Interval const> symbol_intervals) { std::vector<AffineExpr> summands = DestructureSummation(summation); std::vector<SizeAndStrideExpression> sizes_and_strides; sizes_and_strides.reserve(summands.size()); for (AffineExpr summand : summands) { std::optional<SizeAndStrideExpression> maybe_size_and_stride = ExtractSizeAndStride(summand, dimension_intervals, symbol_intervals); if (!maybe_size_and_stride.has_value()) { VLOG(1) << "Couldn't extract size and stride from " << AffineMapPrinter().ToString(summand); return std::nullopt; } sizes_and_strides.push_back(*maybe_size_and_stride); } return sizes_and_strides; } AffineExpr CombineSizes( absl::Span<SizeAndStrideExpression const> sizes_and_strides) { CHECK(!sizes_and_strides.empty()); AffineExpr product = getAffineConstantExpr(1, sizes_and_strides[0].size.getContext()); for (const SizeAndStrideExpression& size_and_stride : sizes_and_strides) { product = product * size_and_stride.size; } return product; } AffineExpr IfNeqOne(AffineExpr eq_param, AffineExpr true_expr, AffineExpr false_expr, int64_t eq_param_inclusive_upper_bound) { AffineExpr b = getAffineConstantExpr(eq_param_inclusive_upper_bound, eq_param.getContext()); AffineExpr condition = mlir::getAffineBinaryOpExpr(AffineExprKind::FloorDiv, b + 1 - eq_param, b); return condition * false_expr + (1 - condition) * true_expr; } void SortByStride(std::vector<SizeAndStrideExpression>& sizes_and_strides) { absl::c_sort(sizes_and_strides, [](const SizeAndStrideExpression& sas1, const SizeAndStrideExpression& sas2) { int64_t stride1 = llvm::cast<AffineConstantExpr>(sas1.stride).getValue(); int64_t stride2 = llvm::cast<AffineConstantExpr>(sas2.stride).getValue(); return stride1 < stride2; }); } std::optional<int64_t> TryGetSizeExpressionRangeSize( AffineExpr size, absl::Span<Interval const> dimension_intervals) { CHECK(size.getKind() == AffineExprKind::Constant || size.getKind() == AffineExprKind::DimId); if (auto dimension = llvm::dyn_cast<AffineDimExpr>(size)) { const Interval& interval = dimension_intervals.at(dimension.getPosition()); if (interval.lower != 0) { VLOG(1) << "Attempted to combine strides but got dimension " << AffineMapPrinter().ToString(dimension) << " with lower bound " << interval.lower << " != 0"; return std::nullopt; } return interval.upper + 1; } return llvm::cast<AffineConstantExpr>(size).getValue(); }; std::optional<AffineExpr> CombineStrides( std::vector<SizeAndStrideExpression> sizes_and_strides, absl::Span<Interval const> dimension_intervals) { CHECK(!sizes_and_strides.empty()); for (const SizeAndStrideExpression& size_and_stride : sizes_and_strides) { if (size_and_stride.stride.getKind() != AffineExprKind::Constant) { VLOG(1) << "Attempted to combine non-constant stride: " << AffineMapPrinter().ToString(size_and_stride.stride); return std::nullopt; } if (size_and_stride.size.getKind() != AffineExprKind::Constant && size_and_stride.size.getKind() != AffineExprKind::DimId) { VLOG(1) << "Attempted to combine strides but got non-constant, " "non-dimension size " << AffineMapPrinter().ToString(size_and_stride.size); return std::nullopt; } } SortByStride(sizes_and_strides); for (auto [dim_id, size_and_stride] : llvm::enumerate(sizes_and_strides)) { int64_t stride = llvm::cast<AffineConstantExpr>(size_and_stride.stride).getValue(); if (dim_id > 0) { const SizeAndStrideExpression& previous_size_and_stride = sizes_and_strides[dim_id - 1]; std::optional<int64_t> previous_size_expression_range_size = TryGetSizeExpressionRangeSize(previous_size_and_stride.size, dimension_intervals); if (!previous_size_expression_range_size.has_value()) { return std::nullopt; } int64_t previous_stride = llvm::cast<AffineConstantExpr>(previous_size_and_stride.stride) .getValue(); if (*previous_size_expression_range_size * previous_stride != stride) { VLOG(1) << "Attempted to combine strides but stride did not grow " << "exactly as expected: got " << *previous_size_expression_range_size << " * " << previous_stride << " != " << stride; return std::nullopt; } } } MLIRContext* ctx = sizes_and_strides[0].stride.getContext(); AffineExpr nested_if = getAffineConstantExpr(0, ctx); for (auto size_and_stride_it = sizes_and_strides.rbegin(); size_and_stride_it != sizes_and_strides.rend(); ++size_and_stride_it) { AffineExpr size = size_and_stride_it->size; AffineExpr stride = size_and_stride_it->stride; std::optional<int64_t> size_expression_range_size = TryGetSizeExpressionRangeSize(size, dimension_intervals); if (!size_expression_range_size.has_value()) { return std::nullopt; } nested_if = IfNeqOne(size, stride, nested_if, *size_expression_range_size); } return nested_if; } std::optional<SizeAndStrideExpression> CombineSizesAndStrides( std::vector<SizeAndStrideExpression> sizes_and_strides, absl::Span<Interval const> dimension_intervals) { CHECK(!sizes_and_strides.empty()); if (VLOG_IS_ON(1)) { for (const SizeAndStrideExpression& size_and_stride : sizes_and_strides) { LOG(INFO) << "CombineSizesAndStrides:"; LOG(INFO) << "size: " << AffineMapPrinter().ToString(size_and_stride.size) << " stride: " << AffineMapPrinter().ToString(size_and_stride.stride); } } ConstraintExpression constraints; for (SizeAndStrideExpression& size_and_stride : sizes_and_strides) { constraints = ConstraintExpression::And( std::move(constraints), std::move(size_and_stride.constraints)); } AffineExpr size = CombineSizes(sizes_and_strides); std::optional<AffineExpr> stride = CombineStrides(std::move(sizes_and_strides), dimension_intervals); if (!stride.has_value()) { return std::nullopt; } return SizeAndStrideExpression(size, *stride, std::move(constraints)); } std::optional<SizeAndStrideExpression> ExtractSizeAndStride( AffineExpr strided_indexing, absl::Span<Interval const>
#include "xla/service/gpu/model/symbolic_tile.h" #include <cstdint> #include <optional> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/check.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Casting.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "xla/service/gpu/model/indexing_analysis.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/service/gpu/model/indexing_test_utils.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { namespace { using ::llvm::SmallVector; using ::mlir::AffineExpr; using ::mlir::AffineMap; using ::testing::ElementsAre; using ::testing::ExplainMatchResult; using ::testing::IsEmpty; using ::testing::Optional; using ::testing::SizeIs; using ConjointConstraints = ConstraintExpression::ConjointConstraints; MATCHER_P(MatchSymbolicTileString, symbolic_tile_string, "") { return ExplainMatchResult( true, ApproximateMatch(symbolic_tile_string, arg.ToString()), result_listener); } MATCHER_P(MatchConstraintExpressionString, constraint_expression_string, "") { return ExplainMatchResult( true, ApproximateMatch(constraint_expression_string, arg.ToString()), result_listener); } std::vector<int64_t> EvaluateMapAt(AffineMap affine_map, absl::Span<int64_t const> parameters) { CHECK_EQ(affine_map.getNumSymbols(), parameters.size()); CHECK_EQ(affine_map.getNumDims(), 0); SmallVector<AffineExpr> symbol_replacements = llvm::to_vector( llvm::map_range(parameters, [affine_map](const int64_t v) -> AffineExpr { return mlir::getAffineConstantExpr(v, affine_map.getContext()); })); AffineMap simplified_affine_map = mlir::simplifyAffineMap(affine_map.replaceDimsAndSymbols( {}, symbol_replacements, 0, 0)); SmallVector<int64_t> results = llvm::to_vector(llvm::map_range( simplified_affine_map.getResults(), [](AffineExpr result) -> int64_t { return llvm::cast<mlir::AffineConstantExpr>(result).getValue(); })); return std::vector<int64_t>(results.begin(), results.end()); } using SymbolicTileTest = IndexingTestBase; TEST_F(SymbolicTileTest, CanPropagateTileFromDotOutputToInputs) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m ENTRY e { p0 = f32[11, 17, 19] parameter(0) p1 = f32[11, 19, 23] parameter(1) ROOT dot = f32[11, 17, 23] dot(p0, p1), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={1} } )")); EXPECT_THAT( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[0].begin()), Optional(MatchSymbolicTileString(R"( Symbolic tile with offset_map: ()[s0, s1, s2] -> (0, 0, 0) size_map: ()[s0, s1, s2] -> (s0, s1, 19) stride_map: ()[s0, s1, s2] -> (1, 1, 1) )"))); } TEST_F(SymbolicTileTest, CanPropagateTileThroughTrivialReshape) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m ENTRY e { p0 = f32[11, 17, 19] parameter(0) ROOT reshape = f32[1, 11, 17, 19] reshape(p0) } )")); EXPECT_THAT( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[0].begin()), Optional(MatchSymbolicTileString(R"( Symbolic tile with offset_map: ()[s0, s1, s2, s3] -> (0, 0, 0) size_map: ()[s0, s1, s2, s3] -> (s1, s2, s3) stride_map: ()[s0, s1, s2, s3] -> (1, 1, 1) )"))); } TEST_F(SymbolicTileTest, CanPropagateTileThroughNonTrivialMergeReshapeFromOutputToInput) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m ENTRY e { p0 = f32[1,8,6,4]{3,2,1,0} parameter(0) ROOT reshape = f32[48,4]{1,0} reshape(p0) } )")); EXPECT_THAT( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[0].begin()), Optional(MatchSymbolicTileString(R"( Symbolic tile with offset_map: ()[s0, s1] -> (0, 0, 0, 0) size_map: ()[s0, s1] -> (1, (s0 + 5) floordiv 6, s0 - ((s0 - 1) floordiv 6) * 6, s1) stride_map: ()[s0, s1] -> (0, 1, 1, 1) constraints: 6 mod s0 in [0, 1) || s0 mod 6 in [0, 1) )"))); } TEST_F(SymbolicTileTest, CanPropagateTileThroughNonTrivialSplitReshapeFromOutputToInput) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m ENTRY e { p0 = f32[192,4]{1,0} parameter(0) ROOT reshape = f32[4,8,6,4]{3,2,1,0} reshape(p0) } )")); std::optional<SymbolicTile> symbolic_tile = SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[0].begin()); EXPECT_THAT(symbolic_tile, Optional(MatchSymbolicTileString(R"( Symbolic tile with offset_map: ()[s0, s1, s2, s3] -> (0, 0) size_map: ()[s0, s1, s2, s3] -> ((s0 * s1) * s2, s3) stride_map: ()[s0, s1, s2, s3] -> (((-s2 + 7) floordiv 6) * (((-s1 + 9) floordiv 8) * ((-((-s0 + 5) floordiv 4) + 1) * 48) + (-((-s1 + 9) floordiv 8) + 1) * 6) + -((-s2 + 7) floordiv 6) + 1, 1) )"))); EXPECT_THAT(EvaluateMapAt(symbolic_tile->stride_map(), {4, 8, 6, 4}), ElementsAre(1, 1)); EXPECT_THAT(EvaluateMapAt(symbolic_tile->stride_map(), {1, 1, 6, 4}), ElementsAre(1, 1)); EXPECT_THAT(EvaluateMapAt(symbolic_tile->stride_map(), {1, 8, 1, 4}), ElementsAre(6, 1)); EXPECT_THAT(EvaluateMapAt(symbolic_tile->stride_map(), {2, 1, 1, 4}), ElementsAre(48, 1)); EXPECT_THAT(EvaluateMapAt(symbolic_tile->stride_map(), {2, 8, 1, 4}), ElementsAre(6, 1)); EXPECT_THAT(EvaluateMapAt(symbolic_tile->stride_map(), {1, 1, 1, 4}), ElementsAre(0, 1)); } TEST_F(SymbolicTileTest, FailsToPropagateTileThroughNonTrivialReshape) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m ENTRY e { p0 = f32[12, 4, 19] parameter(0) ROOT reshape = f32[4, 12, 19] reshape(p0) } )")); EXPECT_EQ( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[0].begin()), std::nullopt); } TEST_F(SymbolicTileTest, CanPropagateTileThroughElementwiseOp) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m ENTRY e { p0 = f32[150] parameter(0) p1 = f32[150] parameter(1) ROOT add = f32[150] add(p0, p1) } )")); EXPECT_THAT( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[0].begin()), Optional(MatchSymbolicTileString(R"( Symbolic tile with offset_map: ()[s0] -> (0) size_map: ()[s0] -> (s0) stride_map: ()[s0] -> (1) )"))); } TEST_F(SymbolicTileTest, CanPropagateTileFromBroadcastOutputToInput) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m ENTRY e { p0 = f32[150] parameter(0) ROOT broadcast = f32[157,150] broadcast(p0), dimensions={1} } )")); EXPECT_THAT( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[0].begin()), Optional(MatchSymbolicTileString(R"( Symbolic tile with offset_map: ()[s0, s1] -> (0) size_map: ()[s0, s1] -> (s1) stride_map: ()[s0, s1] -> (1) )"))); } TEST_F(SymbolicTileTest, CanPropagateTileFromReduceOutputToInput) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m max { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT max = f32[] maximum(p0, p1) } ENTRY e { p0 = f32[125,150] parameter(0) c0 = f32[] constant(-inf) ROOT reduce = f32[150] reduce(p0, c0), dimensions={0}, to_apply=max } )")); EXPECT_THAT( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[0].begin()), Optional(MatchSymbolicTileString(R"( Symbolic tile with offset_map: ()[s0] -> (0, 0) size_map: ()[s0] -> (125, s0) stride_map: ()[s0] -> (1, 1) )"))); } TEST_F(SymbolicTileTest, CanPropagateTileThroughReverse) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m ENTRY e { p0 = f32[179] parameter(0) ROOT reverse = f32[179] reverse(p0), dimensions={0} } )")); EXPECT_THAT( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[0].begin()), Optional(MatchSymbolicTileString(R"( Symbolic tile with offset_map: ()[s0] -> (-s0 + 179) size_map: ()[s0] -> (s0) stride_map: ()[s0] -> (1) )"))); } TEST_F(SymbolicTileTest, CanPropagateTileFromSliceOutputToInput) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m ENTRY e { p0 = f32[120,142] parameter(0) ROOT slice = f32[10,21] slice(p0), slice={[40:60:2], [20:104:4]} } )")); EXPECT_THAT( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[0].begin()), Optional(MatchSymbolicTileString(R"( Symbolic tile with offset_map: ()[s0, s1] -> (40, 20) size_map: ()[s0, s1] -> (s0, s1) stride_map: ()[s0, s1] -> (2, 4) )"))); } TEST_F(SymbolicTileTest, CanPropagateTileThroughTranspose) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m ENTRY e { p0 = f32[21,10] parameter(0) ROOT transpose = f32[10,21] transpose(p0), dimensions={1,0} } )")); EXPECT_THAT( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[0].begin()), Optional(MatchSymbolicTileString(R"( Symbolic tile with offset_map: ()[s0, s1] -> (0, 0) size_map: ()[s0, s1] -> (s1, s0) stride_map: ()[s0, s1] -> (1, 1) )"))); } TEST_F(SymbolicTileTest, CanPropagateTileThroughConcatenate) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m ENTRY e { p0 = f32[2,5,7] parameter(0) p1 = f32[2,11,7] parameter(1) p2 = f32[2,17,7] parameter(2) ROOT concat = f32[2,33,7] concatenate(p0, p1, p2), dimensions={1} } )")); EXPECT_THAT( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[0].begin()), Optional(MatchSymbolicTileString(R"( Symbolic tile with offset_map: ()[s0, s1, s2] -> (0, 0, 0) size_map: ()[s0, s1, s2] -> (s0, s1, s2) stride_map: ()[s0, s1, s2] -> (1, 1, 1) )"))); EXPECT_THAT( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[1].begin()), Optional(MatchSymbolicTileString(R"( Symbolic tile with offset_map: ()[s0, s1, s2] -> (0, -5, 0) size_map: ()[s0, s1, s2] -> (s0, s1, s2) stride_map: ()[s0, s1, s2] -> (1, 1, 1) )"))); EXPECT_THAT( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[2].begin()), Optional(MatchSymbolicTileString(R"( Symbolic tile with offset_map: ()[s0, s1, s2] -> (0, -16, 0) size_map: ()[s0, s1, s2] -> (s0, s1, s2) stride_map: ()[s0, s1, s2] -> (1, 1, 1) )"))); } TEST_F(SymbolicTileTest, CanPropagateTileThroughPadOpWithoutInteriorPadding) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m ENTRY e { input = f32[4, 4] parameter(0) padding_value = f32[] parameter(1) ROOT pad = f32[8,8] pad(input, padding_value), padding=2_2_0x1_3_0 } )")); EXPECT_THAT( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[0].begin()), Optional(MatchSymbolicTileString(R"( Symbolic tile with offset_map: ()[s0, s1] -> (-2, -1) size_map: ()[s0, s1] -> (s0, s1) stride_map: ()[s0, s1] -> (1, 1) )"))); } TEST_F(SymbolicTileTest, CanPropagateTileThroughDynamicSlice) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m ENTRY e { %src = s32[2,2,258] parameter(0) %of1 = s32[] parameter(1) %of2 = s32[] parameter(2) %of3 = s32[] parameter(3) ROOT %ds = s32[1,2,32] dynamic-slice(s32[2,2,258] %src, s32[] %of1, s32[] %of2, s32[] %of3), dynamic_slice_sizes={1, 2, 32} } )")); ASSERT_EQ(input_indexing.indexing_maps.size(), 4); EXPECT_THAT( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[0].begin()), Optional(MatchSymbolicTileString(R"( Symbolic tile with offset_map: ()[s0, s1, s2, s3, s4] -> (s3, 0, s4) size_map: ()[s0, s1, s2] -> (1, s1, s2) stride_map: ()[s0, s1, s2] -> (0, 1, 1) rt_vars: s3 in [0, 2) hlo: %of1 = s32[] parameter(1) (d0, d1, d2) -> () s4 in [0, 227) hlo: %of3 = s32[] parameter(3) (d0, d1, d2) -> () )"))); for (int i = 1; i <= 3; i++) { EXPECT_THAT( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[i].begin()), Optional(MatchSymbolicTileString(R"( Symbolic tile with offset_map: ()[s0, s1, s2] -> () size_map: ()[s0, s1, s2] -> () stride_map: ()[s0, s1, s2] -> () )"))); } } TEST_F(SymbolicTileTest, CanPropagateTileThroughDynamicUpdateSlice) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m ENTRY e { %src = s32[20,30] parameter(0) %upd = s32[5,10] parameter(1) %of1 = s32[] parameter(2) %of2 = s32[] parameter(3) ROOT %dus = s32[20,30] dynamic-update-slice( s32[20,30] %src, s32[5,10] %upd, s32[] %of1, s32[] %of2) } )")); ASSERT_EQ(input_indexing.indexing_maps.size(), 4); EXPECT_THAT( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[0].begin()), Optional(MatchSymbolicTileString(R"( Symbolic tile with offset_map: ()[s0, s1] -> (0, 0) size_map: ()[s0, s1] -> (s0, s1) stride_map: ()[s0, s1] -> (1, 1) )"))); EXPECT_THAT( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[1].begin()), Optional(MatchSymbolicTileString(R"( Symbolic tile with offset_map: ()[s0, s1, s2, s3] -> (-s2, -s3) size_map: ()[s0, s1] -> (s0, s1) stride_map: ()[s0, s1] -> (1, 1) rt_vars: s2 in [0, 16) hlo: %of1 = s32[] parameter(2) (d0, d1) -> () s3 in [0, 21) hlo: %of2 = s32[] parameter(3) (d0, d1) -> () )"))); for (int i = 2; i <= 3; i++) { EXPECT_THAT( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[i].begin()), Optional(MatchSymbolicTileString(R"( Symbolic tile with offset_map: ()[s0, s1] -> () size_map: ()[s0, s1] -> () stride_map: ()[s0, s1] -> () )"))); } } TEST_F(SymbolicTileTest, CanPropagateTileThroughGather) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m ENTRY main { operand = f32[33,76,70] parameter(0) indices = s32[1806,2] parameter(1) ROOT r = f32[1806,7,8,4] gather(operand, indices), offset_dims={1,2,3}, collapsed_slice_dims={}, start_index_map={0,1}, index_vector_dim=1, slice_sizes={7,8,4} } )")); ASSERT_EQ(input_indexing.indexing_maps.size(), 2); EXPECT_THAT( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[0].begin()), Optional(MatchSymbolicTileString(R"( Symbolic tile with offset_map: ()[s0, s1, s2, s3, s4, s5] -> (s4, s5, 0) size_map: ()[s0, s1, s2, s3] -> (s1, s2, s3) stride_map: ()[s0, s1, s2, s3] -> (1, 1, 1) rt_vars: s4 in [0, 27) hlo: %indices = s32[1806,2]{1,0} parameter(1) (d0, d1, d2, d3) -> (d0, 0) s5 in [0, 69) hlo: %indices = s32[1806,2]{1,0} parameter(1) (d0, d1, d2, d3) -> (d0, 1) )"))); EXPECT_THAT( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[1].begin()), Optional(MatchSymbolicTileString(R"( Symbolic tile with offset_map: ()[s0, s1, s2, s3] -> (0, 0) size_map: ()[s0, s1, s2, s3] -> (s0, 2) stride_map: ()[s0, s1, s2, s3] -> (1, 1) )"))); } TEST_F(SymbolicTileTest, CanPropagateTileThroughSplitReshapeOfReverse) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m computation { p0 = f32[1,8,6,4]{3,2,1,0} parameter(0) reverse = f32[1,8,6,4]{3,2,1,0} reverse(p0), dimensions={1,2} ROOT reshape = f32[48,4]{1,0} reshape(reverse) } ENTRY e { p0 = f32[1,8,6,4]{3,2,1,0} parameter(0) ROOT fusion = f32[48,4]{1,0} fusion(p0), kind=kLoop, calls=computation } )")); EXPECT_THAT( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[0].begin()), Optional(MatchSymbolicTileString(R"( Symbolic tile with offset_map: ()[s0, s1] -> (0, -((s0 + 5) floordiv 6) + 8, -(s0 - ((s0 - 1) floordiv 6) * 6) + 6, 0) size_map: ()[s0, s1] -> (1, (s0 + 5) floordiv 6, s0 - ((s0 - 1) floordiv 6) * 6, s1) stride_map: ()[s0, s1] -> (0, 1, 1, 1) )"))); } TEST_F(SymbolicTileTest, FailsGracefullyAtPropagatingTileThroughSliceOfSplitReshape) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m computation { p0 = f32[1,8,6,4]{3,2,1,0} parameter(0) reshape = f32[48,4]{1,0} reshape(p0) ROOT slice = f32[5,2]{1,0} slice(reshape), slice={[18:43:5], [0:4:2]} } ENTRY e { p0 = f32[1,8,6,4]{3,2,1,0} parameter(0) ROOT fusion = f32[5,2]{1,0} fusion(p0), kind=kLoop, calls=computation } )")); EXPECT_EQ( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[0].begin()), std::nullopt); } TEST_F(SymbolicTileTest, FailsGracefullyAtPropagatingTileThroughMisalignedSliceOfSplitReshape) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m computation { p0 = f32[1,8,6,4]{3,2,1,0} parameter(0) reshape = f32[48,4]{1,0} reshape(p0) ROOT slice = f32[5,2]{1,0} slice(reshape), slice={[20:45:5], [0:4:2]} } ENTRY e { p0 = f32[1,8,6,4]{3,2,1,0} parameter(0) ROOT fusion = f32[5,2]{1,0} fusion(p0), kind=kLoop, calls=computation } )")); EXPECT_EQ( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[0].begin()), std::nullopt); } TEST_F(SymbolicTileTest, FailsGracefullyAtPropagatingTileThroughSliceOfSplitReshapeOnTranspose) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m computation { p0 = f32[1,6,8,4]{3,2,1,0} parameter(0) transpose = f32[1,8,6,4]{3,2,1,0} transpose(p0), dimensions={0,2,1,3} reshape = f32[48,4]{1,0} reshape(transpose) ROOT slice = f32[5,2]{1,0} slice(reshape), slice={[18:43:5], [0:4:2]} } ENTRY e { p0 = f32[1,6,8,4]{3,2,1,0} parameter(0) ROOT fusion = f32[5,2]{1,0} fusion(p0), kind=kLoop, calls=computation } )")); EXPECT_EQ( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[0].begin()), std::nullopt); } TEST_F(SymbolicTileTest, FailsGracefullyAtPropagatingTileThroughSliceOfSplitReshapeOfReverse) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m computation { p0 = f32[1,8,6,4]{3,2,1,0} parameter(0) reverse = f32[1,8,6,4]{3,2,1,0} reverse(p0), dimensions={1,2} reshape = f32[48,4]{1,0} reshape(reverse) ROOT slice = f32[5,2]{1,0} slice(reshape), slice={[18:43:5], [0:4:2]} } ENTRY e { p0 = f32[1,8,6,4]{3,2,1,0} parameter(0) ROOT fusion = f32[5,2]{1,0} fusion(p0), kind=kLoop, calls=computation } )")); EXPECT_EQ( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[0].begin()), std::nullopt); } TEST_F(SymbolicTileTest, FailsGracefullyAtPropagatingTileThroughReductionOfConcatenation) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m max_computation { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT maximum = f32[] maximum(p0, p1) } computation { p0 = f32[10,8]{1,0} parameter(0) p1 = f32[20,8]{1,0} parameter(1) concatenate = f32[30,8]{1,0} concatenate(p0, p1), dimensions={0} neg_inf = f32[] constant(-inf) ROOT reduce = f32[8] reduce(concatenate, neg_inf), dimensions={0}, to_apply=max_computation } ENTRY e { p0 = f32[10,8]{1,0} parameter(0) p1 = f32[20,8]{1,0} parameter(1) ROOT fusion = f32[8] fusion(p0, p1), kind=kLoop, calls=computation } )")); EXPECT_EQ( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[1].begin()), std::nullopt); } TEST_F(SymbolicTileTest, CanCombineCompatibleConstraints) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m ENTRY e { p0 = f32[1,8,6,4,8]{4,3,2,1,0} parameter(0) ROOT reshape = f32[48,32]{1,0} reshape(p0) } )")); EXPECT_THAT( SymbolicTile::FromIndexingMap(*input_indexing.indexing_maps[0].begin()), Optional(MatchSymbolicTileString(R"( Symbolic tile with offset_map: ()[s0, s1] -> (0, 0, 0, 0, 0) size_map: ()[s0, s1] -> (1, (s0 + 5) floordiv 6, s0 - ((s0 - 1) floordiv 6) * 6, (s1 + 7) floordiv 8, s1 - ((s1 - 1) floordiv 8) * 8) stride_map: ()[s0, s1] -> (0, 1, 1, 1, 1) constraints: 6 mod s0 in [0, 1) && 8 mod s1 in [0, 1) || 6 mod s0 in [0, 1) && s1 mod 8 in [0, 1) || 8 mod s1 in [0, 1) && s0 mod 6 in [0, 1) || s0 mod 6 in [0, 1) && s1 mod 8 in [0, 1) )"))); } TEST_F(SymbolicTileTest, CanDeriveTileWhenPreexistingConstraintsCanBeSimplifiedAway) { IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap("(d0, d1, d2)[s0] -> (d0 * 2048 + d1, s0)", &mlir_context_), {4, 2048, 50304}, {50304}); indexing_map.AddConstraint(ParseAffineExpr("d0 * 2048 + d1", &mlir_context_), Interval{0, 8191}); EXPECT_THAT(SymbolicTile::FromIndexingMap(indexing_map), Optional(MatchSymbolicTileString(R"( Symbolic tile with offset_map: ()[s0, s1, s2] -> (0, 0) size_map: ()[s0, s1, s2] -> (s0 * s1, 50304) stride_map: ()[s0, s1, s2] -> (((-s1 + 2049) floordiv 2048) * ((-((-s0 + 5) floordiv 4) + 1) * 2048) + -((-s1 + 2049) floordiv 2048) + 1, 1) )"))); } TEST_F(SymbolicTileTest, CanDeriveTileWhenTheIndexingMapHasSymbolsInASum) { IndexingMap indexing_map = IndexingMap::FromTensorSizes( ParseAffineMap("(d0, d1, d2)[s0] -> (d0, d1, d2 * 128 + s0)", &mlir_context_), {4, 2048, 393}, {128}); EXPECT_THAT(SymbolicTile::FromIndexingMap(indexing_map), Optional(MatchSymbolicTileString(R"( Symbolic tile with offset_map: ()[s0, s1, s2] -> (0, 0, 0) size_map: ()[s0, s1, s2] -> (s0, s1, s2 * 128) stride_map: ()[s0, s1, s2] -> (1, 1, 1) )"))); } class ConstraintExpressionTest : public IndexingTestBase { public: using ConstraintVector = std::vector<std::pair<std::string, Interval>>; ConjointConstraints GetConjointConstraints( ConstraintVector&& expr_and_interval_pairs) { ConjointConstraints conjunction; for (auto& [string_expr, interval] : expr_and_interval_pairs) { conjunction.insert( {ParseAffineExpr(string_expr, &mlir_context_), interval}); } return conjunction; } }; TEST_F(ConstraintExpressionTest, DefaultConstructedConstraintExpressionIsAlwaysSatisfied) { EXPECT_TRUE(ConstraintExpression().IsAlwaysSatisfied()); } TEST_F(ConstraintExpressionTest, PrettyPrintingTest) { EXPECT_THAT(ConstraintExpression(), MatchConstraintExpressionString("always satisfied")); EXPECT_THAT(ConstraintExpression::GetUnsatisfiableConstraintExpression(), MatchConstraintExpressionString("unsatisfiable")); ConjointConstraints conjunction_1 = GetConjointConstraints({{"d0", Interval{0, 5}}, {"d1", Interval{0, 5}}}); ConjointConstraints conjunction_2 = GetConjointConstraints({{"d2", Interval{0, 5}}}); ConstraintExpression constraints; constraints.Or(std::move(conjunction_1)); constraints.Or(std::move(conjunction_2)); EXPECT_THAT(constraints, MatchConstraintExpressionString( "d0 in [0, 6) && d1 in [0, 6) || d2 in [0, 6)")); } TEST_F(ConstraintExpressionTest, ConjunctionOfConstraintsOnTheSameExpressionAreIntersected) { ConstraintExpression constraints; constraints.And(GetConjointConstraints({{"d0", Interval{0, 5}}})); EXPECT_THAT(constraints, MatchConstraintExpressionString("d0 in [0, 6)")); constraints.And(GetConjointConstraints({{"d0", Interval{3, 6}}})); EXPECT_THAT(constraints, MatchConstraintExpressionString("d0 in [3, 6)")); constraints.And(GetConjointConstraints({{"d0", Interval{7, 8}}})); EXPECT_THAT(constraints, MatchConstraintExpressionString("unsatisfiable")); } TEST_F(ConstraintExpressionTest, UnsatisfiableConstraintExpressionHoldsNoConstraint) { ConstraintExpression unsatisfiable_constraint = ConstraintExpression::GetUnsatisfiableConstraintExpression(); EXPECT_FALSE(unsatisfiable_constraint.is_satisfiable()); EXPECT_THAT(unsatisfiable_constraint.DisjointConjointConstraints(), IsEmpty()); } TEST_F( ConstraintExpressionTest, CanSuccessfullyPerformConjunctionOfConstraintExpressionWithConjointConstraints) { ConjointConstraints conjunction_1 = GetConjointConstraints({{"d0", Interval{0, 5}}, {"d1", Interval{0, 5}}}); ConjointConstraints conjunction_2 = GetConjointConstraints({{"d2", Interval{0, 5}}}); ConstraintExpression constraints; constraints.And(std::move(conjunction_1)); constraints.And(std::move(conjunction_2)); EXPECT_TRUE(constraints.is_satisfiable()); const auto& conjunctions = constraints.DisjointConjointConstraints(); EXPECT_THAT(conjunctions, SizeIs(1)); EXPECT_THAT(conjunctions.front(), SizeIs(3)); } TEST_F( ConstraintExpressionTest, CorrectlyEliminatesConjunctionFromDisjunctionWhenItBecomesUnsatisfiable) { ConjointConstraints conjunction_1 = GetConjointConstraints({{"d0", Interval{0, 5}}}); ConjointConstraints conjunction_2 = GetConjointConstraints({{"d1", Interval{0, 5}}}); ConstraintExpression constraints; constraints.Or(std::move(conjunction_1)); constraints.Or(std::move(conjunction_2)); EXPECT_THAT(constraints, MatchConstraintExpressionString("d0 in [0, 6) || d1 in [0, 6)")); ConjointConstraints conjunction_3 = GetConjointConstraints({{"d0", Interval{6, 6}}}); constraints.And(std::move(conjunction_3)); EXPECT_THAT(constraints, MatchConstraintExpressionString("d0 in [6, 7) && d1 in [0, 6)")); ConjointConstraints conjunction_4 = GetConjointConstraints({{"d0", Interval{7, 7}}}); constraints.And(std::move(conjunction_4)); EXPECT_THAT(constraints, MatchConstraintExpressionString("unsatisfiable")); } TEST_F( ConstraintExpressionTest, CanSuccessfullyPerformDisjunctionOfConstraintExpressionWithConjointConstraints) { ConjointConstraints conjunction_1 = GetConjointConstraints({{"d0", Interval{0, 5}}, {"d1", Interval{0, 5}}}); ConjointConstraints conjunction_2 = GetConjointConstraints({{"d2", Interval{0, 5}}}); ConstraintExpression constraints; constraints.Or(std::move(conjunction_1)); constraints.Or(std::move(conjunction_2)); EXPECT_TRUE(constraints.is_satisfiable()); const auto& conjunctions = constraints.DisjointConjointConstraints();
2,153
cpp
tensorflow/tensorflow
tiled_hlo_computation
third_party/xla/xla/service/gpu/model/tiled_hlo_computation.cc
third_party/xla/xla/service/gpu/model/tiled_hlo_computation_test.cc
#ifndef XLA_SERVICE_GPU_MODEL_TILED_HLO_COMPUTATION_H_ #define XLA_SERVICE_GPU_MODEL_TILED_HLO_COMPUTATION_H_ #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "xla/iterator_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/model/tiled_hlo_instruction.h" #include "tsl/lib/gtl/iterator_range.h" namespace xla { namespace gpu { struct BlockLevelParameters { std::vector<int64_t> output_tile_sizes; int64_t num_warps = 1; int num_ctas = 1; int num_stages = 1; static BlockLevelParameters FromBlockLevelFusionConfig( const BlockLevelFusionConfig& config) { return BlockLevelParameters{ std::vector<int64_t>(config.output_tile_sizes().begin(), config.output_tile_sizes().end()), config.num_warps()}; } BlockLevelFusionConfig ToBlockLevelFusionConfig() const { BlockLevelFusionConfig config; config.mutable_output_tile_sizes()->Add(output_tile_sizes.begin(), output_tile_sizes.end()); config.set_num_warps(num_warps); return config; } }; class TiledHloComputation { public: static TiledHloComputation FromSortedTiledHloInstructions( std::vector<std::unique_ptr<TiledHloInstruction>> instructions) { return TiledHloComputation(std::move(instructions)); } tsl::gtl::iterator_range<UnwrappingIterator< std::vector<std::unique_ptr<TiledHloInstruction>>::const_iterator>> instructions() const { return {MakeUnwrappingIterator(instructions_.begin()), MakeUnwrappingIterator(instructions_.end())}; } const TiledHloInstruction* GetRoot() const { return instructions_.back().get(); } std::string ToString() const; private: explicit TiledHloComputation( std::vector<std::unique_ptr<TiledHloInstruction>> instructions) : instructions_(std::move(instructions)) {} std::vector<std::unique_ptr<TiledHloInstruction>> instructions_; }; } } #endif #include "xla/service/gpu/model/tiled_hlo_computation.h" #include <sstream> #include <string> #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/model/tiled_hlo_instruction.h" #include "xla/service/name_uniquer.h" namespace xla { namespace gpu { std::string TiledHloComputation::ToString() const { std::stringstream ss; NameUniquer name_uniquer("_"); absl::flat_hash_map<const TiledHloInstruction*, std::string> tile_names; for (const auto* tiled_hlo : instructions()) { std::string tile_name = name_uniquer.GetUniqueName( absl::StrCat(tiled_hlo->hlo()->name(), ".tile_0")); tile_names[tiled_hlo] = tile_name; absl::InlinedVector<std::string, 4> operand_names; for (const auto& operand : tiled_hlo->operands()) { operand_names.push_back(tile_names.at(operand)); } ss << tile_name << " = " << HloOpcodeString(tiled_hlo->hlo()->opcode()) << "(" << absl::StrJoin(operand_names, ", ") << ")\n"; ss << tiled_hlo->ToString() << "\n"; } return ss.str(); } } }
#include "xla/service/gpu/model/tiled_hlo_computation.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/service/gpu/backend_configs.pb.h" namespace xla { namespace gpu { namespace { using ::testing::ElementsAre; TEST(BlockLevelParametersTest, BlockLevelParametersCanBeParsedFromBlockLevelFusionConfig) { BlockLevelFusionConfig block_level_fusion_config; block_level_fusion_config.mutable_output_tile_sizes()->Add(18); block_level_fusion_config.mutable_output_tile_sizes()->Add(19); block_level_fusion_config.set_num_warps(12); BlockLevelParameters block_level_parameters = BlockLevelParameters::FromBlockLevelFusionConfig( block_level_fusion_config); EXPECT_THAT(block_level_parameters.output_tile_sizes, ElementsAre(18, 19)); EXPECT_THAT(block_level_parameters.num_warps, 12); } TEST(BlockLevelParametersTest, BlockLevelParametersCanBeConvertedToBlockLevelFusionConfig) { BlockLevelParameters block_level_parameters; block_level_parameters.output_tile_sizes = {18, 19}; block_level_parameters.num_warps = 12; BlockLevelFusionConfig block_level_fusion_config = block_level_parameters.ToBlockLevelFusionConfig(); EXPECT_THAT(block_level_fusion_config.output_tile_sizes(), ElementsAre(18, 19)); EXPECT_THAT(block_level_fusion_config.num_warps(), 12); } } } }
2,154
cpp
tensorflow/tensorflow
symbolic_tile_analysis
third_party/xla/xla/service/gpu/model/symbolic_tile_analysis.cc
third_party/xla/xla/service/gpu/model/symbolic_tile_analysis_test.cc
#ifndef XLA_SERVICE_GPU_MODEL_SYMBOLIC_TILE_ANALYSIS_H_ #define XLA_SERVICE_GPU_MODEL_SYMBOLIC_TILE_ANALYSIS_H_ #include <cstdint> #include <functional> #include <memory> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/model/affine_map_printer.h" #include "xla/service/gpu/model/symbolic_tile.h" #include "xla/service/gpu/model/symbolic_tiled_hlo_instruction.h" #include "xla/service/gpu/model/tiled_hlo_computation.h" #include "xla/service/instruction_fusion.h" namespace xla { namespace gpu { class SymbolicTileAnalysis; using SymbolicTileAnalysisOrError = std::variant<SymbolicTileAnalysis, FusionDecision>; class SymbolicTileAnalysis { public: using Tiling = absl::InlinedVector<int64_t, 4>; static SymbolicTileAnalysisOrError AnalyzeComputation( const HloComputation& computation, mlir::MLIRContext* ctx); static SymbolicTileAnalysisOrError AnalyzeFusion( const HloFusionAdaptor& fusion, mlir::MLIRContext* ctx); absl::StatusOr<TiledHloComputation> ComputeTiledHloInstructions( absl::Span<const int64_t> tile_parameters, bool constraints_are_known_satisfied = false) const; const SymbolicTiledHloInstruction* GetRoot() const { return symbolic_tiled_hlo_instructions_.back().get(); } const std::vector<std::unique_ptr<SymbolicTiledHloInstruction>>& GetSymbolicTiledHloComputation() const { return symbolic_tiled_hlo_instructions_; } const ConstraintExpression& GetConstraints() const { return constraints_; } absl::StatusOr<bool> ParametersSatisfyConstraints( absl::Span<const int64_t> tile_parameters) const; mlir::MLIRContext* GetMLIRContext() const { return context_; }; std::string ToString( const AffineMapPrinter& printer = AffineMapPrinter()) const; absl::StatusOr<std::vector<Tiling>> GetGoodTilings() const; private: SymbolicTileAnalysis(std::vector<std::unique_ptr<SymbolicTiledHloInstruction>> symbolic_tiled_hlo_instructions, ConstraintExpression constraints, mlir::MLIRContext* context) : symbolic_tiled_hlo_instructions_( std::move(symbolic_tiled_hlo_instructions)), constraints_(std::move(constraints)), context_(context) {} std::vector<std::unique_ptr<SymbolicTiledHloInstruction>> symbolic_tiled_hlo_instructions_; ConstraintExpression constraints_; mlir::MLIRContext* context_; }; namespace detail { std::vector<SymbolicTileAnalysis::Tiling> GetGoodTilings( absl::Span<const int64_t> dim_sizes, std::function<bool(absl::Span<const int64_t>)> is_valid); } } } #endif #include "xla/service/gpu/model/symbolic_tile_analysis.h" #include <algorithm> #include <cstdint> #include <functional> #include <memory> #include <optional> #include <sstream> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/numeric/bits.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/types/span.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Casting.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/model/affine_map_printer.h" #include "xla/service/gpu/model/indexing_analysis.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/service/gpu/model/symbolic_tile.h" #include "xla/service/gpu/model/symbolic_tiled_hlo_instruction.h" #include "xla/service/gpu/model/tiled_hlo_computation.h" #include "xla/service/gpu/model/tiled_hlo_instruction.h" #include "xla/service/instruction_fusion.h" #include "xla/service/name_uniquer.h" #include "xla/shape.h" #include "xla/status_macros.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using ::mlir::AffineExpr; using ::mlir::MLIRContext; IndexingMap ComputeBlockIdToOutputTileIndexing( absl::Span<const int64_t> dimensions, absl::Span<const int64_t> tile_sizes, mlir::MLIRContext* mlir_context) { CHECK_EQ(dimensions.size(), tile_sizes.size()); int64_t num_tiles = 1; std::vector<int64_t> outer_loop_bounds; outer_loop_bounds.reserve(dimensions.size()); for (auto [dim_size, tile_size] : llvm::zip(dimensions, tile_sizes)) { int64_t num_tiles_per_dim = (dim_size + tile_size - 1) / tile_size; num_tiles *= num_tiles_per_dim; outer_loop_bounds.push_back(num_tiles_per_dim); } mlir::AffineExpr program_id = mlir::getAffineDimExpr(0, mlir_context); auto tile_exprs = DelinearizeIndex(outer_loop_bounds, program_id, mlir_context); for (auto [tile_expr, tile_size] : llvm::zip(tile_exprs, tile_sizes)) { tile_expr = tile_expr * tile_size; } return IndexingMap::FromTensorSizes( mlir::AffineMap::get( 1, 0, tile_exprs, mlir_context), {num_tiles}, {}); } absl::StatusOr<IndexingMap> ComputeBlockIdToTileOffsetIndexing( const SymbolicTiledHloInstruction& tiled_hlo, const IndexingMap& block_id_to_root_tile_offset, mlir::MLIRContext* mlir_context) { IndexingMap block_id_to_tile_offset_indexing = ComposeIndexingMaps( block_id_to_root_tile_offset, tiled_hlo.indexing_map()); if (absl::c_any_of(block_id_to_tile_offset_indexing.GetSymbolBounds(), [](const Interval& symbol_bound) { return symbol_bound.lower != 0; })) { return absl::FailedPreconditionError( absl::StrCat("Symbol lower bound is not zero. ", block_id_to_tile_offset_indexing.ToString())); } std::vector<AffineExpr> symbol_lower_bounds( block_id_to_tile_offset_indexing.GetSymbolCount(), mlir::getAffineConstantExpr(0, mlir_context)); mlir::AffineMap simplified_affine_map = block_id_to_tile_offset_indexing.GetAffineMap().replaceDimsAndSymbols( {}, symbol_lower_bounds, block_id_to_tile_offset_indexing.GetDimVarsCount(), block_id_to_tile_offset_indexing.GetRangeVarsCount()); IndexingMap simplified_indexing_map = IndexingMap{ simplified_affine_map, block_id_to_tile_offset_indexing.GetDimVars(), block_id_to_tile_offset_indexing.GetRangeVars(), block_id_to_tile_offset_indexing.GetRTVars()}; simplified_indexing_map.Simplify(); simplified_indexing_map.RescaleSymbols(); simplified_indexing_map.RemoveUnusedSymbols(); return simplified_indexing_map; } } SymbolicTileAnalysisOrError SymbolicTileAnalysis::AnalyzeComputation( const HloComputation& computation, MLIRContext* ctx) { auto fusion = HloFusionAdaptor::ForComputation(&computation); return SymbolicTileAnalysis::AnalyzeFusion(*fusion, ctx); } SymbolicTileAnalysisOrError SymbolicTileAnalysis::AnalyzeFusion( const HloFusionAdaptor& fusion, MLIRContext* ctx) { std::vector<std::unique_ptr<SymbolicTiledHloInstruction>> tiled_hlo_instructions; absl::flat_hash_map<std::pair<const HloInstruction*, IndexingMap>, SymbolicTiledHloInstruction*> tiled_hlo_instructions_map; absl::flat_hash_map<SymbolicTiledHloInstruction*, int64_t> topological_order; std::function<std::variant<SymbolicTiledHloInstruction*, FusionDecision>( const HloInstructionAdaptor&, IndexingMap)> get_tiled_hlo_instruction; ConstraintExpression constraints; get_tiled_hlo_instruction = [&](const HloInstructionAdaptor& instruction_adaptor, IndexingMap indexing_map) -> std::variant<SymbolicTiledHloInstruction*, FusionDecision> { const HloInstruction* hlo = &instruction_adaptor.instruction(); auto key = std::make_pair(hlo, indexing_map); auto it = tiled_hlo_instructions_map.find(key); if (it != tiled_hlo_instructions_map.end()) { return it->second; } if (hlo->opcode() == HloOpcode::kDot || hlo->opcode() == HloOpcode::kConcatenate) { return FusionDecision{} << "Bailing out on " << hlo->ToString(); } if (!hlo->shape().IsArray()) { return FusionDecision{} << hlo->ToString() << " outputs more than a single array"; } auto symbolic_tile = SymbolicTile::FromIndexingMap(indexing_map); if (!symbolic_tile.has_value()) { return FusionDecision{} << "Failed to compute symbolic tile for " << indexing_map.ToString() << " for HLO " << hlo->ToString(); } if (!symbolic_tile->is_satisfiable()) { return FusionDecision{} << "Symbolic tile " << symbolic_tile->ToString() << " is not satisfiable for " << indexing_map.ToString() << " for HLO " << hlo->ToString(); } constraints = ConstraintExpression::And(std::move(constraints), symbolic_tile->constraints()); if (!constraints.is_satisfiable()) { return FusionDecision{} << "Fusion has unsatisfiable constraints"; } tiled_hlo_instructions.push_back( std::make_unique<SymbolicTiledHloInstruction>( hlo, std::move(indexing_map), std::move(*symbolic_tile))); auto tiled_hlo_instruction = tiled_hlo_instructions.back().get(); std::optional<HloInstructionIndexing> operands_indexing = ComputeOutputToInputIndexing(hlo, 0, ctx); if (!operands_indexing.has_value()) { return FusionDecision{} << "Failed to compute operands indexing for " << tiled_hlo_instruction->hlo()->ToString(); } if (fusion.ContainsInstruction(instruction_adaptor)) { for (auto [operand, operand_indexing_map_set] : llvm::zip(instruction_adaptor.GetOperands(), operands_indexing->indexing_maps)) { CHECK_EQ(operand_indexing_map_set.size(), 1); IndexingMap operand_indexing_map = ComposeIndexingMaps(tiled_hlo_instruction->indexing_map(), *operand_indexing_map_set.begin()); if (operand_indexing_map.IsUndefined()) { return FusionDecision{} << "Couldn't derive indexing map for instruction " << tiled_hlo_instruction->hlo()->ToString() << " and operand " << operand.instruction().ToString(); } operand_indexing_map.Simplify(); operand_indexing_map.RescaleSymbols(); operand_indexing_map.RemoveUnusedSymbols(); auto tiled_operand_or = get_tiled_hlo_instruction(operand, std::move(operand_indexing_map)); if (auto fusion_decison = std::get_if<FusionDecision>(&tiled_operand_or)) { return *fusion_decison; } tiled_hlo_instruction->AppendOperand( std::get<SymbolicTiledHloInstruction*>(tiled_operand_or)); } } topological_order[tiled_hlo_instruction] = topological_order.size(); tiled_hlo_instructions_map.emplace(key, tiled_hlo_instruction); return tiled_hlo_instruction; }; auto roots = fusion.GetRoots(); if (roots.size() > 1) { return FusionDecision{} << "Multi-output fusions are not supported. " << fusion.ToString(); } auto& root = roots[0]; auto tiled_root = get_tiled_hlo_instruction(root, CreateIdentityMap(root.shape(), ctx)); if (auto* fusion_decision = std::get_if<FusionDecision>(&tiled_root)) { return *fusion_decision; } absl::c_sort(tiled_hlo_instructions, [&](const auto& i1, const auto& i2) { return topological_order.at(i1.get()) < topological_order.at(i2.get()); }); return SymbolicTileAnalysis(std::move(tiled_hlo_instructions), std::move(constraints), ctx); } absl::StatusOr<bool> SymbolicTileAnalysis::ParametersSatisfyConstraints( absl::Span<const int64_t> tile_parameters) const { if (!constraints_.is_satisfiable()) { return absl::FailedPreconditionError( "SymbolicTileAnalysis's constraints are not satisfiable. " "This should never happen."); } if (constraints_.IsAlwaysSatisfied()) { return true; } llvm::SmallVector<AffineExpr> parameters = llvm::to_vector( llvm::map_range(tile_parameters, [this](const int64_t v) -> AffineExpr { return mlir::getAffineConstantExpr(v, context_); })); bool constraints_are_satisfied = false; for (const ConstraintExpression::ConjointConstraints& conjunction : constraints_.DisjointConjointConstraints()) { bool conjunction_is_satisfied = true; for (const auto& [constrained_expr, interval] : conjunction) { AffineExpr constrained_expr_value = constrained_expr.replaceSymbols(parameters); if (constrained_expr_value.getKind() != mlir::AffineExprKind::Constant) { return absl::InvalidArgumentError(absl::StrCat( "Failed to reduce ", AffineMapPrinter().ToString(constrained_expr), " to a constant with tile parameters ", absl::StrJoin(tile_parameters, ", "))); } int64_t constrained_value = llvm::cast<mlir::AffineConstantExpr>(constrained_expr_value) .getValue(); if (constrained_value < interval.lower || constrained_value > interval.upper) { conjunction_is_satisfied = false; break; } } constraints_are_satisfied |= conjunction_is_satisfied; } return constraints_are_satisfied; } absl::StatusOr<TiledHloComputation> SymbolicTileAnalysis::ComputeTiledHloInstructions( absl::Span<const int64_t> tile_parameters, bool constraints_are_known_satisfied) const { if (!constraints_are_known_satisfied) { TF_ASSIGN_OR_RETURN(bool constraints_are_satisfied, ParametersSatisfyConstraints(tile_parameters)); if (!constraints_are_satisfied) { return absl::InvalidArgumentError(absl::StrCat( "Tile parameters ", absl::StrJoin(tile_parameters, ", "), " do not satisfy the SymbolicTileAnalysis's constraints.")); } } IndexingMap block_id_to_root_tile_offset = ComputeBlockIdToOutputTileIndexing( GetRoot()->hlo()->shape().dimensions(), tile_parameters, context_); std::vector<std::unique_ptr<TiledHloInstruction>> tiled_hlo_instructions; absl::flat_hash_map<const SymbolicTiledHloInstruction*, TiledHloInstruction*> symbolic_to_tiled_hlo_map; absl::flat_hash_set<TiledHloInstruction*, TiledHloInstruction::PtrHash, TiledHloInstruction::PtrEqual> tiled_hlo_instructions_set; absl::flat_hash_map<TiledHloInstruction*, int64_t> topological_order; std::function<absl::StatusOr<TiledHloInstruction*>( const SymbolicTiledHloInstruction*)> get_tiled_hlo_instruction; get_tiled_hlo_instruction = [&](const SymbolicTiledHloInstruction* symbolic_tiled_hlo) -> absl::StatusOr<TiledHloInstruction*> { auto it1 = symbolic_to_tiled_hlo_map.find(symbolic_tiled_hlo); if (it1 != symbolic_to_tiled_hlo_map.end()) { return it1->second; } std::vector<int64_t> tile_sizes = symbolic_tiled_hlo->TileSizes(tile_parameters); std::vector<int64_t> tile_strides = symbolic_tiled_hlo->TileStrides(tile_parameters); TF_ASSIGN_OR_RETURN( IndexingMap block_id_to_block_offset_indexing, ComputeBlockIdToTileOffsetIndexing( *symbolic_tiled_hlo, block_id_to_root_tile_offset, context_)); TF_ASSIGN_OR_RETURN(std::unique_ptr<TiledHloInstruction> tiled_hlo_holder, TiledHloInstruction::Create( symbolic_tiled_hlo->hlo(), std::move(tile_sizes), std::move(tile_strides), std::move(block_id_to_block_offset_indexing))); auto it2 = tiled_hlo_instructions_set.find(tiled_hlo_holder.get()); if (it2 != tiled_hlo_instructions_set.end()) { return *it2; } tiled_hlo_instructions.push_back(std::move(tiled_hlo_holder)); TiledHloInstruction* tiled_hlo = tiled_hlo_instructions.back().get(); tiled_hlo_instructions_set.insert(tiled_hlo); symbolic_to_tiled_hlo_map[symbolic_tiled_hlo] = tiled_hlo; for (SymbolicTiledHloInstruction* operand : symbolic_tiled_hlo->operands()) { TF_ASSIGN_OR_RETURN(TiledHloInstruction * tiled_operand, get_tiled_hlo_instruction(operand)); tiled_hlo->AppendOperand(tiled_operand); } topological_order[tiled_hlo] = topological_order.size(); return tiled_hlo; }; TF_CHECK_OK(get_tiled_hlo_instruction(GetRoot()).status()); absl::c_sort(tiled_hlo_instructions, [&](const auto& i1, const auto& i2) { return topological_order.at(i1.get()) < topological_order.at(i2.get()); }); return TiledHloComputation::FromSortedTiledHloInstructions( std::move(tiled_hlo_instructions)); } std::string SymbolicTileAnalysis::ToString( const AffineMapPrinter& printer) const { std::stringstream ss; NameUniquer name_uniquer("_"); absl::flat_hash_map<SymbolicTiledHloInstruction*, std::string> tile_names; for (const auto& tiled_hlo : symbolic_tiled_hlo_instructions_) { std::string tile_name = name_uniquer.GetUniqueName( absl::StrCat(tiled_hlo->hlo()->name(), ".tile_0")); tile_names[tiled_hlo.get()] = tile_name; absl::InlinedVector<std::string, 4> operand_names; for (const auto& operand : tiled_hlo->operands()) { operand_names.push_back(tile_names.at(operand)); } ss << tile_name << " = " << HloOpcodeString(tiled_hlo->hlo()->opcode()) << "(" << absl::StrJoin(operand_names, ", ") << ")\n"; ss << tiled_hlo->ToString(); } return ss.str(); } namespace { std::vector<int64_t> PossibleTileSizesForOneDimension(int64_t dim_size) { CHECK_GE(dim_size, 1); std::vector<int64_t> result; result.reserve(absl::bit_width(static_cast<uint64_t>(dim_size))); for (int64_t tile_size = 1; tile_size < dim_size; tile_size *= 2) { result.push_back(tile_size); } result.push_back(dim_size); return result; } } namespace detail { std::vector<SymbolicTileAnalysis::Tiling> GetGoodTilings( absl::Span<const int64_t> dim_sizes, std::function<bool(absl::Span<const int64_t>)> is_valid) { CHECK(is_valid != nullptr); std::vector<SymbolicTileAnalysis::Tiling> tilings; tilings.push_back({}); for (int dim_size : dim_sizes) { std::vector<int64_t> possible_tile_sizes = PossibleTileSizesForOneDimension(dim_size); std::vector<SymbolicTileAnalysis::Tiling> extended_tilings; extended_tilings.reserve(tilings.size() * possible_tile_sizes.size()); for (const SymbolicTileAnalysis::Tiling& tiling : tilings) { for (int64_t tile_size : possible_tile_sizes) { SymbolicTileAnalysis::Tiling extended_tiling = tiling; extended_tiling.push_back(tile_size); extended_tilings.push_back(extended_tiling); } } tilings = std::move(extended_tilings); } tilings.erase( std::remove_if(tilings.begin(), tilings.end(), std::not_fn(is_valid)), tilings.end()); return tilings; } } absl::StatusOr<std::vector<SymbolicTileAnalysis::Tiling>> SymbolicTileAnalysis::GetGoodTilings() const { TF_RET_CHECK(!symbolic_tiled_hlo_instructions_.empty()); TF_RET_CHECK(symbolic_tiled_hlo_instructions_.back() != nullptr); const SymbolicTiledHloInstruction& instr = *symbolic_tiled_hlo_instructions_.back(); TF_RET_CHECK(instr.hlo() != nullptr); const Shape& shape = instr.hlo()->shape(); if (!absl::c_all_of(shape.dimensions(), [](int64_t dim_size) { return dim_size >= 1; })) { return absl::InvalidArgumentError(absl::StrFormat( "Shape %s has zero or negative dimensions.", shape.ToString())); } absl::Status status = absl::OkStatus(); std::vector<SymbolicTileAnalysis::Tiling> result = detail::GetGoodTilings( shape.dimensions(), [&](absl::Span<const int64_t> tile_sizes) { absl::StatusOr<bool> is_valid = ParametersSatisfyConstraints(tile_sizes); if (!is_valid.ok()) { status = is_valid.status(); return false; } return is_valid.value(); }); if (status.ok()) { return result; } return status; } } }
#include "xla/service/gpu/model/symbolic_tile_analysis.h" #include <cstdint> #include <memory> #include <optional> #include <utility> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/model/indexing_test_utils.h" #include "xla/service/gpu/model/symbolic_tile.h" #include "xla/service/gpu/model/tiled_hlo_computation.h" #include "xla/service/gpu/model/tiled_hlo_instruction.h" #include "xla/service/instruction_fusion.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/verified_hlo_module.h" #include "xla/util.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using detail::GetGoodTilings; using ::testing::ElementsAreArray; using ::testing::ExplainMatchResult; using ::testing::IsEmpty; using ::testing::Matcher; using ::testing::Not; using ::testing::SizeIs; using ::testing::status::IsOkAndHolds; using ::testing::status::StatusIs; using TilingVector = std::vector<SymbolicTileAnalysis::Tiling>; MATCHER_P3(MatchTiledHloInstructionImpl, tile_sizes, tile_strides, block_id_to_tile_offsets_indexing, "") { return ExplainMatchResult(ElementsAreArray(tile_sizes), arg.tile_sizes(), result_listener) && ExplainMatchResult(ElementsAreArray(tile_strides), arg.tile_strides(), result_listener) && ExplainMatchResult(MatchIndexingMap(block_id_to_tile_offsets_indexing), arg.block_id_to_tile_offsets_indexing(), result_listener); } Matcher<const TiledHloInstruction> MatchTiledHloInstruction( absl::Span<const int64_t> tile_sizes, absl::Span<const int64_t> tile_strides, absl::string_view block_id_to_tile_offsets_indexing) { return MatchTiledHloInstructionImpl(tile_sizes, tile_strides, block_id_to_tile_offsets_indexing); } class SymbolicTileAnalysisTest : public HloTestBase { public: std::optional<SymbolicTileAnalysis> TryAnalyzeModule(HloModule* module) { SymbolicTileAnalysisOrError analysis_or_error = SymbolicTileAnalysis::AnalyzeComputation( *module->entry_computation() ->root_instruction() ->fused_instructions_computation(), &mlir_context_); if (std::holds_alternative<SymbolicTileAnalysis>(analysis_or_error)) { return std::get<SymbolicTileAnalysis>(std::move(analysis_or_error)); } VLOG(1) << "Cannot analyze module: " << std::get<FusionDecision>(analysis_or_error).Explain(); return std::nullopt; } mlir::MLIRContext mlir_context_; }; TEST_F(SymbolicTileAnalysisTest, SimpleNormalizationDiamondIsSupported) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( max { p1 = f32[] parameter(1) p0 = f32[] parameter(0) ROOT m = f32[] maximum(p0, p1) } fusion { p0 = f32[2,97]{1,0} parameter(0) constant = f32[] constant(-inf) reduce = f32[2] reduce(p0, constant), dimensions={1}, to_apply=max broadcast = f32[2,97]{1,0} broadcast(reduce), dimensions={0} ROOT subtract = f32[2,97]{1,0} subtract(p0, broadcast) } ENTRY main { p0 = f32[2,97]{1,0} parameter(0) ROOT fusion = f32[2,97]{1,0} fusion(p0), kind=kLoop, calls=fusion })")); std::optional<SymbolicTileAnalysis> analysis = TryAnalyzeModule(module.get()); ASSERT_TRUE(analysis.has_value()); TF_ASSERT_OK_AND_ASSIGN( TiledHloComputation tiled_hlo_computation, analysis->ComputeTiledHloInstructions({1, 10})); const TiledHloInstruction* root = tiled_hlo_computation.GetRoot(); EXPECT_THAT(root->block_id_to_tile_offsets_indexing(), MatchIndexingMap(R"( (d0) -> (d0 floordiv 10, (d0 mod 10) * 10) domain: d0 in [0, 20) )")); auto p0_from_subtract0 = root->operand(0); auto p0_from_subtract1 = root->operand(1)->operand(0)->operand(0); EXPECT_THAT(*p0_from_subtract0, MatchTiledHloInstruction( {1, 10}, {1, 1}, R"( (d0) -> (d0 floordiv 10, (d0 mod 10) * 10) domain: d0 in [0, 20) )")); EXPECT_THAT(*p0_from_subtract1, MatchTiledHloInstruction( {1, 97}, {1, 1}, R"( (d0) -> (d0 floordiv 10, 0) domain: d0 in [0, 20) )")); } TEST_F(SymbolicTileAnalysisTest, ElementwiseDiamondCSEIsSupported) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( fusion { p0 = f32[2,97] parameter(0) exp = f32[2,97] exponential(p0) log = f32[2,97] log(p0) ROOT subtract = f32[2,97] subtract(exp, log) } ENTRY main { p0 = f32[2,97] parameter(0) ROOT fusion = f32[2,97] fusion(p0), kind=kLoop, calls=fusion })")); std::optional<SymbolicTileAnalysis> analysis = TryAnalyzeModule(module.get()); ASSERT_TRUE(analysis.has_value()); TF_ASSERT_OK_AND_ASSIGN( TiledHloComputation tiled_hlo_computation, analysis->ComputeTiledHloInstructions({1, 10})); const TiledHloInstruction* root = tiled_hlo_computation.GetRoot(); auto p0_from_subtract0 = root->operand(0)->operand(0); auto p0_from_subtract1 = root->operand(1)->operand(0); EXPECT_EQ(p0_from_subtract0, p0_from_subtract1); } TEST_F(SymbolicTileAnalysisTest, ProducerConsumerFusionIsSupported) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( max { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT m = f32[] maximum(p0, p1) } fusion.1 { p0 = f32[2,97] parameter(0) constant = f32[] constant(-inf) exp = f32[2,97] exponential(p0) ROOT reduce = f32[2] reduce(exp, constant), dimensions={1}, to_apply=max } fusion.2 { p0 = f32[2] parameter(0) p1 = f32[2,97] parameter(1) broadcast = f32[2,97]{1,0} broadcast(p0), dimensions={0} ROOT subtract = f32[2,97] subtract(p1, broadcast) } ENTRY main { p0 = f32[2,97] parameter(0) producer = f32[2] fusion(p0), kind=kLoop, calls=fusion.1 ROOT consumer = f32[2,97] fusion(producer, p0), kind=kLoop, calls=fusion.2 })")); const auto* consumer = module->entry_computation()->root_instruction(); const auto* producer = consumer->operand(0); auto fusion = HloFusionAdaptor::ForProducerConsumer(producer, consumer); SymbolicTileAnalysisOrError analysis_or_error = SymbolicTileAnalysis::AnalyzeFusion(*fusion, &mlir_context_); ASSERT_TRUE(std::holds_alternative<SymbolicTileAnalysis>(analysis_or_error)); SymbolicTileAnalysis analysis = std::get<SymbolicTileAnalysis>(std::move(analysis_or_error)); TF_ASSERT_OK_AND_ASSIGN( TiledHloComputation tiled_hlo_computation, analysis.ComputeTiledHloInstructions({1, 97})); const TiledHloInstruction* root = tiled_hlo_computation.GetRoot(); const TiledHloInstruction* p0_from_producer = root->operand(1)->operand(0)->operand(0)->operand(0); const TiledHloInstruction* p0_from_consumer = root->operand(0); EXPECT_EQ(p0_from_producer, p0_from_consumer); EXPECT_THAT(*p0_from_producer, MatchTiledHloInstruction( {1, 97}, {1, 1}, R"( (d0) -> (d0, 0) domain: d0 in [0, 2) )")); } TEST_F(SymbolicTileAnalysisTest, TransposeOffsetIndexingIsCorrect) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( fusion { p0 = f32[8,16,4] parameter(0) ROOT transpose = f32[4,8,16] transpose(p0), dimensions={2,0,1} } ENTRY main { p0 = f32[8,16,4] parameter(0) ROOT fusion = f32[4,8,16] fusion(p0), kind=kLoop, calls=fusion })")); std::optional<SymbolicTileAnalysis> analysis = TryAnalyzeModule(module.get()); ASSERT_TRUE(analysis.has_value()); TF_ASSERT_OK_AND_ASSIGN( TiledHloComputation tiled_hlo_computation, analysis->ComputeTiledHloInstructions({2, 4, 2})); const TiledHloInstruction* root = tiled_hlo_computation.GetRoot(); EXPECT_THAT(*root, MatchTiledHloInstruction( {2, 4, 2}, {1, 1, 1}, R"( (d0) -> ((d0 floordiv 16) * 2, ((d0 floordiv 8) mod 2) * 4, (d0 mod 8) * 2) domain: d0 in [0, 32) )")); EXPECT_THAT(*root->operand(0), MatchTiledHloInstruction( {4, 2, 2}, {1, 1, 1}, R"( (d0) -> (((d0 floordiv 8) mod 2) * 4, (d0 mod 8) * 2, (d0 floordiv 16) * 2) domain: d0 in [0, 32) )")); } TEST_F(SymbolicTileAnalysisTest, SliceOffsetIndexingIsCorrect) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( fusion { p0 = f32[8,16] parameter(0) slice.0 = f32[4,8] slice(p0), slice={[0:4], [2:10]} slice.1 = f32[4,8] slice(p0), slice={[3:7], [4:12]} ROOT add = f32[4,8] add(slice.0, slice.1) } ENTRY main { p0 = f32[8,16] parameter(0) ROOT fusion = f32[4,8] fusion(p0), kind=kLoop, calls=fusion })")); std::optional<SymbolicTileAnalysis> analysis = TryAnalyzeModule(module.get()); ASSERT_TRUE(analysis.has_value()); TF_ASSERT_OK_AND_ASSIGN( TiledHloComputation tiled_hlo_computation, analysis->ComputeTiledHloInstructions({2, 2})); const TiledHloInstruction* root = tiled_hlo_computation.GetRoot(); const TiledHloInstruction* p0_from_slice0 = root->operand(0)->operand(0); const TiledHloInstruction* p0_from_slice1 = root->operand(1)->operand(0); EXPECT_THAT(*root, MatchTiledHloInstruction( {2, 2}, {1, 1}, R"( (d0) -> ((d0 floordiv 4) * 2, (d0 mod 4) * 2) domain: d0 in [0, 8) )")); EXPECT_THAT(*p0_from_slice0, MatchTiledHloInstruction( {2, 2}, {1, 1}, R"( (d0) -> ((d0 floordiv 4) * 2, (d0 mod 4) * 2 + 2) domain: d0 in [0, 8) )")); EXPECT_THAT(*p0_from_slice1, MatchTiledHloInstruction( {2, 2}, {1, 1}, R"( (d0) -> ((d0 floordiv 4) * 2 + 3, (d0 mod 4) * 2 + 4) domain: d0 in [0, 8) )")); } TEST_F(SymbolicTileAnalysisTest, BailOutOnUnsupportedDot) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( fusion { p0 = f32[1,2]{1,0} parameter(0) p1 = f32[2,3]{1,0} parameter(1) ROOT dot = f32[1,3]{1,0} dot(p0, p1), lhs_batch_dims={}, rhs_batch_dims={}, lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY main { p0 = f32[1,2]{1,0} parameter(0) p1 = f32[2,3]{1,0} parameter(1) ROOT fusion = f32[1,3]{1,0} fusion(p0, p1), kind=kLoop, calls=fusion })")); EXPECT_FALSE(TryAnalyzeModule(module.get()).has_value()); } TEST_F(SymbolicTileAnalysisTest, DoesNotBailOutOnConstrainedReshape) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( fusion { p0 = f32[4,2]{1,0} parameter(0) ROOT reshape = f32[8] reshape(p0) } ENTRY main { p0 = f32[4,2]{1,0} parameter(0) ROOT fusion = f32[8] fusion(p0), kind=kLoop, calls=fusion })")); std::optional<SymbolicTileAnalysis> analysis = TryAnalyzeModule(module.get()); ASSERT_TRUE(analysis.has_value()); const ConstraintExpression& constraints = analysis->GetConstraints(); EXPECT_THAT(constraints.DisjointConjointConstraints(), SizeIs(2)); EXPECT_THAT(constraints.DisjointConjointConstraints().front(), SizeIs(1)); } TEST_F(SymbolicTileAnalysisTest, DoesNotBailOutOnConstrainedBitcast) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( fusion { p0 = f32[4,2]{1,0} parameter(0) ROOT bitcast = f32[8] bitcast(p0) } ENTRY main { p0 = f32[4,2]{1,0} parameter(0) ROOT fusion = f32[8] fusion(p0), kind=kLoop, calls=fusion })")); std::optional<SymbolicTileAnalysis> analysis = TryAnalyzeModule(module.get()); ASSERT_TRUE(analysis.has_value()); const ConstraintExpression& constraints = analysis->GetConstraints(); EXPECT_THAT(constraints.DisjointConjointConstraints(), SizeIs(2)); EXPECT_THAT(constraints.DisjointConjointConstraints().front(), SizeIs(1)); } TEST_F(SymbolicTileAnalysisTest, BailOutOnUnsupportedConcatenate) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( fusion { p0 = f32[1,3]{1,0} parameter(0) p1 = f32[1,3]{1,0} parameter(1) ROOT concatenate = f32[2,3] concatenate(p0, p1), dimensions={0} } ENTRY main { p0 = f32[1,3]{1,0} parameter(0) p1 = f32[1,3]{1,0} parameter(1) ROOT fusion = f32[2,3] fusion(p0, p1), kind=kLoop, calls=fusion })")); EXPECT_FALSE(TryAnalyzeModule(module.get()).has_value()); } TEST_F(SymbolicTileAnalysisTest, MultiOutputFusionIsNotSupported) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( fusion { p0 = f32[32] parameter(0) p1 = f32[32] parameter(1) add = f32[32] add(p0, p1) subtract = f32[32] subtract(p0, p1) ROOT tuple = (f32[32], f32[32]) tuple(add, subtract) } ENTRY main { p0 = f32[32] parameter(0) p1 = f32[32] parameter(1) ROOT fusion = (f32[32], f32[32]) fusion(p0, p1), kind=kLoop, calls=fusion })")); EXPECT_FALSE(TryAnalyzeModule(module.get()).has_value()); } TEST_F(SymbolicTileAnalysisTest, ConstraintSatisfactionIsEvaluatedCorrectly) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( fusion { p0 = f32[1,8,6,4,8]{4,3,2,1,0} parameter(0) ROOT bitcast = f32[48,32]{1,0} bitcast(p0) } ENTRY main { p0 = f32[1,8,6,4,8]{4,3,2,1,0} parameter(0) ROOT fusion = f32[48,32]{1,0} fusion(p0), kind=kLoop, calls=fusion })")); std::optional<SymbolicTileAnalysis> analysis = TryAnalyzeModule(module.get()); ASSERT_TRUE(analysis.has_value()); const ConstraintExpression& constraints = analysis->GetConstraints(); EXPECT_THAT(constraints.DisjointConjointConstraints(), SizeIs(4)); for (const ConstraintExpression::ConjointConstraints& conjunction : constraints.DisjointConjointConstraints()) EXPECT_THAT(conjunction, SizeIs(2)); std::vector<int64_t> possible_tile_parameters({6, 8}); EXPECT_THAT(analysis->ParametersSatisfyConstraints(possible_tile_parameters), IsOkAndHolds(true)); std::vector<int64_t> impossible_tile_parameters({6, 7}); EXPECT_THAT( analysis->ParametersSatisfyConstraints(impossible_tile_parameters), IsOkAndHolds(false)); EXPECT_THAT(analysis->ParametersSatisfyConstraints({6}), StatusIs(absl::StatusCode::kInvalidArgument)); TF_EXPECT_OK( analysis->ParametersSatisfyConstraints(possible_tile_parameters)); EXPECT_THAT(analysis->ComputeTiledHloInstructions(impossible_tile_parameters), StatusIs(absl::StatusCode::kInvalidArgument)); TF_EXPECT_OK(analysis->ComputeTiledHloInstructions( impossible_tile_parameters, true)); } TEST_F(SymbolicTileAnalysisTest, ConstraintsAreAggregatedCorrectly) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( fusion { p0 = f32[1,48,4,8]{3,2,1,0} parameter(0) p1 = f32[1,8,6,32]{3,2,1,0} parameter(1) bitcast_p0 = f32[48,32]{1,0} bitcast(p0) bitcast_p1 = f32[48,32]{1,0} bitcast(p1) ROOT add = f32[48,32]{1,0} add(bitcast_p0, bitcast_p1) } ENTRY main { p0 = f32[1,48,4,8]{3,2,1,0} parameter(0) p1 = f32[1,8,6,32]{3,2,1,0} parameter(1) ROOT fusion = f32[48,32]{1,0} fusion(p0, p1), kind=kLoop, calls=fusion })")); std::optional<SymbolicTileAnalysis> analysis = TryAnalyzeModule(module.get()); ASSERT_TRUE(analysis.has_value()); const ConstraintExpression& constraints = analysis->GetConstraints(); EXPECT_THAT(constraints.DisjointConjointConstraints(), SizeIs(4)); EXPECT_THAT(constraints.DisjointConjointConstraints().front(), SizeIs(2)); } bool AlwaysValid(absl::Span<const int64_t>) { return true; } TEST(GetGoodTilingsTest, ReturnsOneTilingWhenRankIsZero) { EXPECT_EQ(GetGoodTilings({}, AlwaysValid), TilingVector{SymbolicTileAnalysis::Tiling{}}); } TEST(GetGoodTilingsTest, ReturnsPowersOfTwoAndTheDimSizeForRankOne) { EXPECT_EQ(GetGoodTilings({1}, AlwaysValid), TilingVector{{1}}); EXPECT_EQ(GetGoodTilings({2}, AlwaysValid), TilingVector({{1}, {2}})); EXPECT_EQ(GetGoodTilings({3}, AlwaysValid), TilingVector({{1}, {2}, {3}})); EXPECT_EQ(GetGoodTilings({4}, AlwaysValid), TilingVector({{1}, {2}, {4}})); EXPECT_EQ(GetGoodTilings({5}, AlwaysValid), TilingVector({{1}, {2}, {4}, {5}})); EXPECT_EQ(GetGoodTilings({11}, AlwaysValid), TilingVector({{1}, {2}, {4}, {8}, {11}})); } TEST(GetGoodTilingsTest, CreatesCartesianProductForRankTwo) { EXPECT_EQ(GetGoodTilings({3, 4}, AlwaysValid), TilingVector({{1, 1}, {1, 2}, {1, 4}, {2, 1}, {2, 2}, {2, 4}, {3, 1}, {3, 2}, {3, 4}})); } TEST(GetGoodTilingsTest, CreatesCartesianProductForRankThree) { EXPECT_EQ(GetGoodTilings({3, 4, 2}, AlwaysValid), TilingVector({{1, 1, 1}, {1, 1, 2}, {1, 2, 1}, {1, 2, 2}, {1, 4, 1}, {1, 4, 2}, {2, 1, 1}, {2, 1, 2}, {2, 2, 1}, {2, 2, 2}, {2, 4, 1}, {2, 4, 2}, {3, 1, 1}, {3, 1, 2}, {3, 2, 1}, {3, 2, 2}, {3, 4, 1}, {3, 4, 2}})); } TEST(GetGoodTilingsTest, FiltersTheTilingsUsingThePredicate) { auto all_even = [](absl::Span<const int64_t> tile_sizes) { return absl::c_all_of(tile_sizes, [](int64_t tile_size) { return tile_size % 2 == 0; }); }; EXPECT_EQ(GetGoodTilings({3, 4}, all_even), TilingVector({{2, 2}, {2, 4}})); auto all_equal = [](absl::Span<const int64_t> tile_sizes) { return absl::c_all_of(tile_sizes, [&](int64_t tile_size) { return tile_size == tile_sizes.at(0); }); }; EXPECT_EQ(GetGoodTilings({3, 3, 3}, all_equal), TilingVector({{1, 1, 1}, {2, 2, 2}, {3, 3, 3}})); } TEST_F(SymbolicTileAnalysisTest, GetGoodTilingsWorksTakingConstraintsIntoAccount) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( fusion { p0 = f32[1,8,6,1]{3,2,1,0} parameter(0) ROOT bitcast = f32[48,1]{1,0} bitcast(p0) } ENTRY main { p0 = f32[1,8,6,1]{3,2,1,0} parameter(0) ROOT fusion = f32[48,1]{1,0} fusion(p0), kind=kLoop, calls=fusion })")); std::optional<SymbolicTileAnalysis> opt_analysis = TryAnalyzeModule(module.get()); ASSERT_TRUE(opt_analysis.has_value()); const SymbolicTileAnalysis& analysis = opt_analysis.value(); TF_ASSERT_OK_AND_ASSIGN( std::vector<SymbolicTileAnalysis::Tiling> good_tilings, analysis.GetGoodTilings()); EXPECT_EQ(good_tilings, std::vector<SymbolicTileAnalysis::Tiling>( {{1, 1}, {2, 1}, {48, 1}})); } void LogTilingsIfVlog1(absl::Span<const SymbolicTileAnalysis::Tiling> tilings) { if (VLOG_IS_ON(1)) { LOG(INFO) << "Tilings: {"; for (const SymbolicTileAnalysis::Tiling& tiling : tilings) { LOG(INFO) << "{" << absl::StrJoin(tiling, ",") << "},"; } LOG(INFO) << "}"; } } TEST_F(SymbolicTileAnalysisTest, GetGoodTilingsWorksForSoftmaxExample) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( HloModule m max_computation { param_0 = f32[] parameter(0) param_1 = f32[] parameter(1) ROOT maximum = f32[] maximum(param_0, param_1) } add_computation { param_0 = f32[] parameter(0) param_1 = f32[] parameter(1) ROOT add = f32[] add(param_0, param_1) } fused_computation { param_0 = f32[8192,50304] parameter(0) bitcast = f32[4,2048,50304] bitcast(param_0) constant = f32[] constant(-inf) reduce = f32[8192] reduce(param_0, constant), dimensions={1}, to_apply=max_computation bitcast.1 = f32[4,2048] bitcast(reduce) broadcast = f32[4,2048,50304] broadcast(bitcast.1), dimensions={0,1} subtract = f32[4,2048,50304] subtract(bitcast, broadcast) exponential = f32[4,2048,50304] exponential(subtract) constant.1 = f32[] constant(0) reduce.1 = f32[4,2048] reduce(exponential, constant.1), dimensions={2}, to_apply=add_computation log = f32[4,2048] log(reduce.1) broadcast.1 = f32[4,2048,50304] broadcast(log), dimensions={0,1} ROOT subtract.1 = f32[4,2048,50304] subtract(subtract, broadcast.1) } ENTRY entry_computation { param_0 = f32[8192,50304] parameter(0) ROOT fusion = f32[4,2048,50304] fusion(param_0), kind=kCustom, calls=fused_computation, backend_config={"fusion_backend_config":{"kind":"__triton"}} } )")); std::optional<SymbolicTileAnalysis> opt_analysis = TryAnalyzeModule(module.get()); ASSERT_TRUE(opt_analysis.has_value()); const SymbolicTileAnalysis& analysis = opt_analysis.value(); TF_ASSERT_OK_AND_ASSIGN( std::vector<SymbolicTileAnalysis::Tiling> good_tilings, analysis.GetGoodTilings()); EXPECT_THAT(good_tilings, Not(IsEmpty())); LogTilingsIfVlog1(good_tilings); } TEST_F(SymbolicTileAnalysisTest, GetGoodTilingsWorksForSoftmaxAndReduceExample) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( HloModule m max_computation { param_0 = f32[] parameter(0) param_1 = f32[] parameter(1) ROOT maximum = f32[] maximum(param_0, param_1) } add_computation { param_0 = f32[] parameter(0) param_1 = f32[] parameter(1) ROOT add = f32[] add(param_0, param_1) } fused_computation { param_0 = f32[8192,50304] parameter(0) param_1 = s32[4,2048] parameter(1) broadcast = s32[4,2048,50304] broadcast(param_1), dimensions={0,1} iota = s32[4,2048,50304] iota(), iota_dimension=2 compare = pred[4,2048,50304] compare(broadcast, iota), direction=EQ bitcast = f32[4,2048,50304] bitcast(param_0) constant = f32[] constant(-inf) reduce = f32[8192] reduce(param_0, constant), dimensions={1}, to_apply=max_computation bitcast.1 = f32[4,2048] bitcast(reduce) broadcast.1 = f32[4,2048,50304] broadcast(bitcast.1), dimensions={0,1} subtract = f32[4,2048,50304] subtract(bitcast, broadcast.1) exponential = f32[4,2048,50304] exponential(subtract) constant.1 = f32[] constant(0) reduce.1 = f32[4,2048] reduce(exponential, constant.1), dimensions={2}, to_apply=add_computation log = f32[4,2048] log(reduce.1) broadcast.2 = f32[4,2048,50304] broadcast(log), dimensions={0,1} subtract.1 = f32[4,2048,50304] subtract(subtract, broadcast.2) constant.2 = f32[] constant(0) broadcast.3 = f32[4,2048,50304] broadcast(constant.2), dimensions={} select = f32[4,2048,50304] select(compare, subtract.1, broadcast.3) bitcast.2 = f32[4,2048,393,128] bitcast(select) ROOT reduce.2 = f32[4,2048,393] reduce(bitcast.2, constant.2), dimensions={3}, to_apply=add_computation } ENTRY entry_computation { param_0 = f32[8192,50304] parameter(0) param_1 = s32[4,2048] parameter(1) ROOT fusion = f32[4,2048,393] fusion(param_0, param_1), kind=kCustom, calls=fused_computation, backend_config={"fusion_backend_config":{"kind":"__triton_softmax"}} } )")); std::optional<SymbolicTileAnalysis> opt_analysis = TryAnalyzeModule(module.get()); ASSERT_TRUE(opt_analysis.has_value()); const SymbolicTileAnalysis& analysis = opt_analysis.value(); TF_ASSERT_OK_AND_ASSIGN( std::vector<SymbolicTileAnalysis::Tiling> good_tilings, analysis.GetGoodTilings()); EXPECT_THAT(good_tilings, Not(IsEmpty())); LogTilingsIfVlog1(good_tilings); } TEST_F(SymbolicTileAnalysisTest, FusionWithNumberOfTilesLargerThanInt32MaxIsSupported) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( HloModule softmax fused_computation { param_0 = f16[65538,32768]{1,0} parameter(0) ROOT log = f16[65538,32768]{1,0} log(param_0) } ENTRY main { param_0 = f16[65538,32768]{1,0} parameter(0) ROOT fusion = f16[65538,32768]{1,0} fusion(param_0), kind=kLoop, calls=fused_computation } )")); std::optional<SymbolicTileAnalysis> analysis = TryAnalyzeModule(module.get()); ASSERT_TRUE(analysis.has_value()); TF_ASSERT_OK_AND_ASSIGN( TiledHloComputation tiled_hlo_computation, analysis->ComputeTiledHloInstructions({1, 1})); EXPECT_THAT(*tiled_hlo_computation.GetRoot(), MatchTiledHloInstruction( {1, 1}, {1, 1}, R"( (d0) -> (d0 floordiv 32768, d0 mod 32768) domain: d0 in [0, 2147549184) )")); } } } }
2,155
cpp
tensorflow/tensorflow
gpu_performance_model
third_party/xla/xla/service/gpu/model/gpu_performance_model.cc
third_party/xla/xla/service/gpu/model/gpu_performance_model_test.cc
#ifndef XLA_SERVICE_GPU_MODEL_GPU_PERFORMANCE_MODEL_H_ #define XLA_SERVICE_GPU_MODEL_GPU_PERFORMANCE_MODEL_H_ #include "absl/time/time.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/gpu/model/gpu_performance_model_base.h" namespace xla { namespace gpu { class GpuPerformanceModel : public GpuPerformanceModelBase { public: static EstimateRunTimeData EstimateRunTimeForInstruction( const HloInstruction* instr, const GpuHloCostAnalysis* cost_analysis, const GpuPerformanceModelOptions& config); static EstimateRunTimeData EstimateRunTimeForInstructionCached( const HloInstruction* instr, const GpuHloCostAnalysis* cost_analysis, const GpuPerformanceModelOptions& config); static absl::Duration EstimateRunTimeForFusion( const HloInstruction* producer, const HloInstruction* consumer, const EstimateRunTimeData& producer_runtime, const EstimateRunTimeData& consumer_runtime, const GpuHloCostAnalysis* cost_analysis, const GpuPerformanceModelOptions& config); static absl::Duration EstimateRunTimeForFusionCached( const HloInstruction* producer, const HloInstruction* consumer, const EstimateRunTimeData& producer_runtime, const EstimateRunTimeData& consumer_runtime, const GpuHloCostAnalysis* cost_analysis, const GpuPerformanceModelOptions& config); static absl::Duration EstimateUnfusedExecTime( const HloInstruction* producer, const EstimateRunTimeData& producer_runtime, const GpuHloCostAnalysis* cost_analysis, const GpuPerformanceModelOptions& config, absl::Span<const HloInstruction* const> fused_consumers); static absl::Duration EstimateFusedExecTime( const HloInstruction* producer, const EstimateRunTimeData& producer_runtime, const GpuHloCostAnalysis* cost_analysis, const GpuPerformanceModelOptions& config, absl::Span<const HloInstruction* const> fused_consumers, bool multi_output); static RunTimes EstimateRunTimes( const HloInstruction* producer, const GpuHloCostAnalysis* cost_analysis, const GpuPerformanceModelOptions& config, absl::Span<const HloInstruction* const> fused_consumers = {}, bool multi_output = false); static RunTimes EstimateRunTimesForPriorityFusion( const HloInstruction* producer, const GpuHloCostAnalysis* cost_analysis, const GpuPerformanceModelOptions& config, absl::Span<const HloInstruction* const> fused_consumers = {}, bool multi_output = false); static void RecordEstimatedRunTime(HloInstruction* instruction, const GpuHloCostAnalysis* cost_analysis, const GpuPerformanceModelOptions& config); }; } } #endif #include "xla/service/gpu/model/gpu_performance_model.h" #include <algorithm> #include <cmath> #include <cstdint> #include <optional> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "llvm/ADT/STLExtras.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/coalescing_analysis.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/gpu/model/gpu_performance_model_base.h" #include "xla/stream_executor/device_description.h" #include "xla/util.h" #include "tsl/platform/status.h" namespace xla { namespace gpu { EstimateRunTimeData GpuPerformanceModel::EstimateRunTimeForInstruction( const HloInstruction* instr, const GpuHloCostAnalysis* cost_analysis, const GpuPerformanceModelOptions& config) { VLOG(8) << "EstimateRunTimeForInstruction: " << instr->name(); const se::DeviceDescription* device_info = cost_analysis->device_info_; int64_t flops = cost_analysis->flop_count(*instr); int64_t bytes_written = cost_analysis->output_bytes_accessed(*instr); std::optional<HloFusionAnalysis> local_analysis; if (!config.fusion_analysis_cache) { local_analysis = AnalyzeFusion(*instr, *cost_analysis->device_info_); } const auto& fusion_analysis = config.fusion_analysis_cache ? config.fusion_analysis_cache->Get(*instr) : local_analysis.value(); LaunchDimensions launch_dimensions = EstimateFusionLaunchDimensions(fusion_analysis); int64_t num_blocks = launch_dimensions.num_blocks(); absl::Duration compute_time = ComputeTime(*device_info, flops, num_blocks, launch_dimensions.num_threads_per_block()); CoalescingAnalysis coalescing_analysis(instr, instr->operands(), fusion_analysis); absl::Duration read_time; int64_t bytes_read = 0; for (const auto [operand_id, operand] : llvm::enumerate(instr->operands())) { int64_t operand_size = cost_analysis->GetShapeSize(operand->shape()); int64_t n_bytes_total = GetOperandBytesAccessed(cost_analysis, instr, operand); int64_t n_bytes_net = std::min(operand_size, n_bytes_total); bytes_read += n_bytes_total; bool coalesced = coalescing_analysis.IsReadCoalesced(operand); VLogOperandRead(operand, n_bytes_total, n_bytes_net, coalesced); read_time += ReadTimeWithDRAMHeuristic( *device_info, num_blocks, n_bytes_net, n_bytes_total, operand->shape().element_type(), coalesced); } absl::Duration write_time = WriteTime(*device_info, bytes_written); absl::Duration exec_time = CombineComputeAndMemoryAccessTime( compute_time, read_time + write_time, config); EstimateRunTimeData runtime_data = {flops, bytes_read, bytes_written, read_time, write_time, compute_time, exec_time}; VLOG(3) << "Runtime data for HLO: " << instr->name() << "\n" << launch_dimensions.ToString() << "\n" << runtime_data.ToString(); return runtime_data; } EstimateRunTimeData GpuPerformanceModel::EstimateRunTimeForInstructionCached( const HloInstruction* instr, const GpuHloCostAnalysis* cost_analysis, const GpuPerformanceModelOptions& config) { if (config.gpu_performance_model_cache) { if (auto cached_result = config.gpu_performance_model_cache->Get(*instr)) { return *cached_result; } } auto runtime_data = EstimateRunTimeForInstruction(instr, cost_analysis, config); if (config.gpu_performance_model_cache) { config.gpu_performance_model_cache->Set(*instr, runtime_data); } return runtime_data; } absl::Duration GpuPerformanceModel::EstimateUnfusedExecTime( const HloInstruction* producer, const EstimateRunTimeData& producer_runtime, const GpuHloCostAnalysis* cost_analysis, const GpuPerformanceModelOptions& config, absl::Span<const HloInstruction* const> fused_consumers) { const se::DeviceDescription* device_info = cost_analysis->device_info_; absl::Duration time_unfused = kKernelLaunchOverhead * (fused_consumers.size() + 1) + producer_runtime.exec_time; for (const HloInstruction* fused_consumer : fused_consumers) { VLOG(8) << "Unfused consumer: " << fused_consumer->name(); float utilization_by_this_consumer = GetOperandUtilization(cost_analysis, fused_consumer, producer); std::optional<HloFusionAnalysis> local_analysis; if (!config.fusion_analysis_cache) { local_analysis = AnalyzeFusion(*fused_consumer, *device_info); } const auto& analysis_unfused = config.fusion_analysis_cache ? config.fusion_analysis_cache->Get(*fused_consumer) : local_analysis.value(); LaunchDimensions launch_dimensions_unfused = EstimateFusionLaunchDimensions(analysis_unfused); int64_t n_bytes_total = std::llround(producer_runtime.bytes_written * utilization_by_this_consumer); int64_t n_bytes_net = std::min(producer_runtime.bytes_written, n_bytes_total); auto read_time_unfused = ReadTime(*device_info, launch_dimensions_unfused.num_blocks(), n_bytes_net, n_bytes_total); VLOG(10) << " Read time unfused: " << read_time_unfused; time_unfused += read_time_unfused; } return time_unfused; } absl::Duration GpuPerformanceModel::EstimateRunTimeForFusion( const HloInstruction* producer, const HloInstruction* consumer, const EstimateRunTimeData& producer_runtime, const EstimateRunTimeData& consumer_runtime, const GpuHloCostAnalysis* cost_analysis, const GpuPerformanceModelOptions& config) { VLOG(8) << "EstimateRunTimeForFusion, producer: " << producer->name() << " consumer: " << consumer->name(); const se::DeviceDescription* device_info = cost_analysis->device_info_; float utilization_by_this_consumer = 0; for (int64_t i = 0; i < consumer->operand_count(); ++i) { if (consumer->operand(i) == producer || (consumer->operand(i)->opcode() == HloOpcode::kGetTupleElement && consumer->operand(i)->operand(0) == producer)) { utilization_by_this_consumer += cost_analysis->operand_utilization(*consumer, i); } } std::optional<HloFusionAnalysis> local_analysis_fused; if (!config.fusion_analysis_cache) { local_analysis_fused = AnalyzeProducerConsumerFusion(*producer, *consumer, *device_info); } const auto& fusion_analysis = config.fusion_analysis_cache ? config.fusion_analysis_cache->Get(*producer, *consumer) : local_analysis_fused.value(); LaunchDimensions launch_dimensions = EstimateFusionLaunchDimensions(fusion_analysis); int64_t flops = producer_runtime.flops * utilization_by_this_consumer + consumer_runtime.flops; absl::Duration compute_time = ComputeTime(*device_info, flops, launch_dimensions.num_blocks(), launch_dimensions.num_threads_per_block()); auto fusion_operands = fusion_analysis.fusion().GetParameters(); CoalescingAnalysis coalescing_analysis(producer, consumer, fusion_operands, fusion_analysis); absl::Duration read_time; int64_t bytes_read = 0; for (const auto* operand : fusion_operands) { int64_t operand_size = cost_analysis->GetShapeSize(operand->shape()); int64_t n_bytes_total = GetSharedOperandBytesAccessed( cost_analysis, producer, consumer, operand); int64_t n_bytes_net = std::min(operand_size, n_bytes_total); bytes_read += n_bytes_total; bool coalesced = coalescing_analysis.IsReadCoalesced(operand); VLogOperandRead(operand, n_bytes_total, n_bytes_net, coalesced); read_time += ReadTimeWithDRAMHeuristic( *device_info, launch_dimensions.num_blocks(), n_bytes_net, n_bytes_total, operand->shape().element_type(), coalesced); } auto exec_time = CombineComputeAndMemoryAccessTime( compute_time, read_time + consumer_runtime.write_time, config); VLOG(3) << "Runtime data for producer-consumer fusion:\n" << " producer: " << producer->name() << "\n" << " consumer: " << consumer->name() << "\n" << launch_dimensions.ToString() << "\n" << EstimateRunTimeData{flops, bytes_read, consumer_runtime.bytes_written, read_time, consumer_runtime.write_time, compute_time, exec_time} .ToString(); return exec_time; } absl::Duration GpuPerformanceModel::EstimateRunTimeForFusionCached( const HloInstruction* producer, const HloInstruction* consumer, const EstimateRunTimeData& producer_runtime, const EstimateRunTimeData& consumer_runtime, const GpuHloCostAnalysis* cost_analysis, const GpuPerformanceModelOptions& config) { if (config.gpu_performance_model_cache) { if (auto fusion_runtime = config.gpu_performance_model_cache->Get(*producer, *consumer)) { return *fusion_runtime; } } auto fusion_runtime = EstimateRunTimeForFusion(producer, consumer, producer_runtime, consumer_runtime, cost_analysis, config); if (config.gpu_performance_model_cache) { config.gpu_performance_model_cache->Set(*producer, *consumer, fusion_runtime); } return fusion_runtime; } absl::Duration GpuPerformanceModel::EstimateFusedExecTime( const HloInstruction* producer, const EstimateRunTimeData& producer_runtime, const GpuHloCostAnalysis* cost_analysis, const GpuPerformanceModelOptions& config, absl::Span<const HloInstruction* const> fused_consumers, bool multi_output) { const se::DeviceDescription* device_info = cost_analysis->device_info_; absl::Duration exec_time_fused = kKernelLaunchOverhead * fused_consumers.size(); for (auto [idx, fused_consumer] : llvm::enumerate(fused_consumers)) { VLOG(8) << "Fused consumer: " << fused_consumer->name(); float utilization_by_this_consumer = cost_analysis->operand_utilization( *fused_consumer, fused_consumer->operand_index(producer)); std::optional<HloFusionAnalysis> local_analysis_fused; if (!config.fusion_analysis_cache) { local_analysis_fused = AnalyzeProducerConsumerFusion( *producer, *fused_consumer, *device_info); } const auto& analysis_fused = config.fusion_analysis_cache ? config.fusion_analysis_cache->Get(*producer, *fused_consumer) : local_analysis_fused.value(); LaunchDimensions launch_dimensions_fused = EstimateFusionLaunchDimensions(analysis_fused); absl::Duration compute_time_by_this_consumer = ComputeTime( *device_info, producer_runtime.flops * utilization_by_this_consumer, launch_dimensions_fused.num_blocks(), launch_dimensions_fused.num_threads_per_block()); absl::Duration input_access_time_by_this_consumer = ProducerInputAccessTime( cost_analysis, *device_info, launch_dimensions_fused.num_blocks(), producer, analysis_fused, config, fused_consumer); VLOG(10) << " Compute time by consumer: " << compute_time_by_this_consumer; VLOG(10) << " Input access time by consumer: " << input_access_time_by_this_consumer; exec_time_fused += CombineComputeAndMemoryAccessTime( compute_time_by_this_consumer, input_access_time_by_this_consumer, config); } if (multi_output) { exec_time_fused += producer_runtime.write_time; } return exec_time_fused; } GpuPerformanceModel::RunTimes GpuPerformanceModel::EstimateRunTimesForPriorityFusion( const HloInstruction* producer, const GpuHloCostAnalysis* cost_analysis, const GpuPerformanceModelOptions& config, absl::Span<const HloInstruction* const> fused_consumers, bool multi_output) { EstimateRunTimeData producer_runtime = EstimateRunTimeForInstructionCached(producer, cost_analysis, config); absl::Duration time_unfused = kKernelLaunchOverhead * (fused_consumers.size() + 1) + producer_runtime.exec_time; absl::Duration time_fused = kKernelLaunchOverhead * fused_consumers.size(); for (auto fused_consumer : fused_consumers) { VLOG(8) << "Fused consumer: " << fused_consumer->name(); EstimateRunTimeData consumer_runtime = EstimateRunTimeForInstructionCached( fused_consumer, cost_analysis, config); time_unfused += consumer_runtime.exec_time; time_fused += EstimateRunTimeForFusionCached( producer, fused_consumer, producer_runtime, consumer_runtime, cost_analysis, config); } if (multi_output) { time_fused += producer_runtime.write_time; } if (VLOG_IS_ON(8)) { LOG(INFO) << "Consumer count: " << fused_consumers.size(); LOG(INFO) << "Unfused time: " << time_unfused; LOG(INFO) << "Fused time: " << time_fused; } return {time_unfused, time_fused}; } GpuPerformanceModel::RunTimes GpuPerformanceModel::EstimateRunTimes( const HloInstruction* producer, const GpuHloCostAnalysis* cost_analysis, const GpuPerformanceModelOptions& config, absl::Span<const HloInstruction* const> fused_consumers, bool multi_output) { VLOG(8) << "Producer: " << producer->name(); if (producer->opcode() == HloOpcode::kFusion) { VLOG(10) << producer->fused_instructions_computation()->ToString(); } EstimateRunTimeData producer_runtime = EstimateRunTimeForInstructionCached(producer, cost_analysis, config); absl::Duration time_unfused = EstimateUnfusedExecTime( producer, producer_runtime, cost_analysis, config, fused_consumers); absl::Duration time_fused = EstimateFusedExecTime(producer, producer_runtime, cost_analysis, config, fused_consumers, multi_output); if (VLOG_IS_ON(8)) { LOG(INFO) << "Consumer count: " << fused_consumers.size(); LOG(INFO) << "Unfused time: " << time_unfused; LOG(INFO) << "Fused time: " << time_fused; } return {time_unfused, time_fused}; } void GpuPerformanceModel::RecordEstimatedRunTime( HloInstruction* instruction, const GpuHloCostAnalysis* cost_analysis, const GpuPerformanceModelOptions& config) { DCHECK(Cast<const HloFusionInstruction>(instruction)) << "expected fusion"; DCHECK(cost_analysis != nullptr) << "expected cost analysis"; EstimateRunTimeData data = EstimateRunTimeForInstructionCached(instruction, cost_analysis, config); double cycles = absl::ToDoubleNanoseconds(data.exec_time) * cost_analysis->device_info_->clock_rate_ghz(); auto gpu_config = instruction->backend_config<GpuBackendConfig>(); TF_CHECK_OK(gpu_config.status()) << instruction->ToString(); auto reification_cost = gpu_config->mutable_fusion_backend_config()->mutable_reification_cost(); reification_cost->set_end_to_end_cycles(cycles); reification_cost->set_compute_time_us( absl::ToDoubleMicroseconds(data.compute_time)); reification_cost->set_memory_access_time_us( absl::ToDoubleMicroseconds(data.read_time + data.write_time)); reification_cost->set_exec_time_us( absl::ToDoubleMicroseconds(data.exec_time)); TF_CHECK_OK(instruction->set_backend_config(*gpu_config)); VLOG(8) << "RecordEstimatedRunTime: " << instruction->ToString(); } } }
#include "xla/service/gpu/model/gpu_performance_model.h" #include <cstdint> #include <memory> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/time/time.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/model/fusion_analysis_cache.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/gpu/model/gpu_indexing_performance_model.h" #include "xla/service/gpu/model/gpu_performance_model_base.h" #include "xla/service/hlo_module_config.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { class GpuPerformanceModelTest : public HloTestBase { GpuHloCostAnalysis::ShapeSizeFunction ShapeSizeBytesFunction() const { return [&](const Shape& shape) { constexpr int64_t kPointerSize = 8; return ShapeUtil::ByteSizeOf(shape, kPointerSize); }; } public: GpuPerformanceModel::RunTimes EstimateRunTimesDefault( const HloInstruction* producer, std::vector<HloInstruction*> fused_consumers = {}) { return GpuPerformanceModel::EstimateRunTimes( producer, &analysis_, GpuPerformanceModelOptions::Default(), fused_consumers); } GpuPerformanceModel::RunTimes EstimateRunTimesForPriorityFusion( const HloInstruction* producer, std::vector<HloInstruction*> fused_consumers = {}) { return GpuPerformanceModel::EstimateRunTimesForPriorityFusion( producer, &analysis_, GpuPerformanceModelOptions::PriorityFusion(), fused_consumers); } mlir::MLIRContext mlir_context_; GpuHloCostAnalysis::Options options_{ShapeSizeBytesFunction(), {}, true}; se::DeviceDescription device_info_{TestGpuDeviceInfo::RTXA6000DeviceInfo()}; HloFusionAnalysisCache fusion_analysis_cache_{device_info_}; GpuHloCostAnalysis analysis_{options_, &device_info_}; GpuPerformanceModelWithIndexingAnalysis indexing_cost_model_{ &device_info_, &fusion_analysis_cache_, ShapeSizeBytesFunction(), &mlir_context_}; GpuPerformanceModelTest() : HloTestBase() {} }; TEST_F(GpuPerformanceModelTest, LargeWrite) { absl::string_view hlo_string = R"( HloModule m f { c0 = f32[] constant(0) ROOT b0 = f32[10000000] broadcast(c0) } ENTRY e { ROOT r.1 = f32[10000000] fusion(), kind=kLoop, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); auto t = EstimateRunTimesDefault(root); EXPECT_NEAR(absl::ToInt64Microseconds(t.time_unfused), 53, 10); auto prio_t = EstimateRunTimesForPriorityFusion(root); EXPECT_NEAR(absl::ToInt64Microseconds(prio_t.time_unfused), 53, 10); auto indexing_t = indexing_cost_model_.EstimateRunTimes(root); EXPECT_NEAR(absl::ToInt64Microseconds(indexing_t.time_unfused), 53, 10); } TEST_F(GpuPerformanceModelTest, SmallReadWrite) { absl::string_view hlo_string = R"( HloModule m f { p0 = f32[1000] parameter(0) p1 = f32[1000] parameter(1) ROOT b0 = f32[1000] add(p0, p1) } ENTRY e { p0 = f32[1000] parameter(0) p1 = f32[1000] parameter(1) ROOT r.1 = f32[1000] fusion(p0, p1), kind=kLoop, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_IS_OK(root->Accept(&analysis_)); auto t = EstimateRunTimesDefault(root); EXPECT_NEAR(absl::ToInt64Microseconds(t.time_unfused), 1, 1); GpuPerformanceModel::RecordEstimatedRunTime( root, &analysis_, GpuPerformanceModelOptions::Default()); auto reification_cost = root->backend_config<GpuBackendConfig>() ->fusion_backend_config() .reification_cost(); EXPECT_NEAR(reification_cost.end_to_end_cycles(), 257.7, 0.1); EXPECT_NEAR(reification_cost.exec_time_us(), 0, 1); auto indexing_t = indexing_cost_model_.EstimateRunTimes(root); EXPECT_NEAR(absl::ToInt64Microseconds(indexing_t.time_unfused), 1, 1); } TEST_F(GpuPerformanceModelTest, LargeReadWrite) { absl::string_view hlo_string = R"( HloModule m f { p0 = f32[10000000] parameter(0) p1 = f32[10000000] parameter(1) ROOT a0 = f32[10000000] add(p0, p1) } ENTRY e { p0 = f32[10000000] parameter(0) p1 = f32[10000000] parameter(1) ROOT r.1 = f32[10000000] fusion(p0, p1), kind=kLoop, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_IS_OK(root->Accept(&analysis_)); auto t = EstimateRunTimesDefault(root); EXPECT_NEAR(absl::ToInt64Microseconds(t.time_unfused), 175, 30); GpuPerformanceModel::RecordEstimatedRunTime( root, &analysis_, GpuPerformanceModelOptions::Default()); auto reification_cost = root->backend_config<GpuBackendConfig>() ->fusion_backend_config() .reification_cost(); EXPECT_NEAR(reification_cost.end_to_end_cycles(), 220284, 100); EXPECT_NEAR(reification_cost.exec_time_us(), 156, 10); EXPECT_NEAR(reification_cost.compute_time_us(), 1, 1); EXPECT_NEAR(reification_cost.memory_access_time_us(), 156, 10); } TEST_F(GpuPerformanceModelTest, L1CacheEffect) { absl::string_view hlo_string = R"( HloModule m f { p0 = f32[10000] parameter(0) bc0 = f32[10000,1000] broadcast(p0), dimensions={0} b0 = f32[10000000] bitcast(bc0) p1 = f32[10000000] parameter(1) ROOT a0 = f32[10000000] add(b0, p1) } ENTRY e { p0 = f32[10000] parameter(0) p1 = f32[10000000] parameter(1) ROOT r.1 = f32[10000000] fusion(p0, p1), kind=kLoop, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_IS_OK(root->Accept(&analysis_)); auto t = EstimateRunTimesDefault(root); EXPECT_NEAR(absl::ToInt64Microseconds(t.time_unfused), 118, 12); } TEST_F(GpuPerformanceModelTest, L2CacheEffect) { absl::string_view hlo_string = R"( HloModule m f { p0 = f32[1000000] parameter(0) bc0 = f32[1000000,10] broadcast(p0), dimensions={0} b0 = f32[10000000] bitcast(bc0) p1 = f32[10000000] parameter(1) ROOT a0 = f32[10000000] add(b0, p1) } ENTRY e { p0 = f32[1000000] parameter(0) p1 = f32[10000000] parameter(1) ROOT r.1 = f32[10000000] fusion(p0, p1), kind=kLoop, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_IS_OK(root->Accept(&analysis_)); auto t = EstimateRunTimesDefault(root); EXPECT_NEAR(absl::ToInt64Microseconds(t.time_unfused), 123, 12); } TEST_F(GpuPerformanceModelTest, UnusedParameter) { Shape shape = ShapeUtil::MakeShape(F32, {100000}); auto module = std::make_unique<HloModule>("m", HloModuleConfig{}); HloComputation::Builder b("b"); auto p0 = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); auto p1 = b.AddInstruction(HloInstruction::CreateParameter(1, shape, "p1")); HloComputation::Builder sub_builder("subcomp"); HloInstruction* p0f = sub_builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "p0f")); HloInstruction* p1f = sub_builder.AddInstruction( HloInstruction::CreateParameter(1, shape, "p1f")); ASSERT_NE(p1f, nullptr); sub_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, p0f)); HloComputation* subcomp = module->AddEmbeddedComputation(sub_builder.Build()); auto fusion = HloInstruction::CreateFusion( shape, HloInstruction::FusionKind::kLoop, {p0, p1}, subcomp); b.AddInstruction(std::move(fusion)); module->AddEntryComputation(b.Build()); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); auto t = EstimateRunTimesDefault(root); EXPECT_NEAR(absl::ToInt64Microseconds(t.time_unfused), 1, 1); } TEST_F(GpuPerformanceModelTest, ComputeBoundReducesWithSameLaunchDimensions) { absl::string_view small_large_reduce_hlo = R"( HloModule testmodule max { p0 = f32[] parameter(0) p1 = f32[] parameter(1) log0 = f32[] log(p0) log1 = f32[] log(log0) log2 = f32[] log(log1) log3 = f32[] log(log2) log4 = f32[] log(log3) ROOT max = f32[] maximum(log4, p1) } ENTRY fusion { c = f32[] constant(-inf) p0 = f32[150,32,128] parameter(0) reduce.1 = f32[150,32] reduce(p0, c), dimensions={2}, to_apply=max ROOT reduce.2 = f32[150] reduce(reduce.1, c), dimensions={1}, to_apply=max } )"; absl::string_view large_small_reduce_hlo = R"( HloModule testmodule max { p0 = f32[] parameter(0) p1 = f32[] parameter(1) log0 = f32[] log(p0) log1 = f32[] log(log0) log2 = f32[] log(log1) log3 = f32[] log(log2) log4 = f32[] log(log3) ROOT max = f32[] maximum(log4, p1) } ENTRY fusion { c = f32[] constant(-inf) p0 = f32[150,128,32] parameter(0) reduce.1 = f32[150,128] reduce(p0, c), dimensions={2}, to_apply=max ROOT reduce.2 = f32[150] reduce(reduce.1, c), dimensions={1}, to_apply=max } )"; auto run = [&](absl::string_view hlo_text) -> absl::StatusOr<GpuPerformanceModel::RunTimes> { TF_ASSIGN_OR_RETURN(auto module, ParseAndReturnVerifiedModule(hlo_text)); GpuHloCostAnalysis analysis(options_, &device_info_); TF_RETURN_IF_ERROR(module->entry_computation()->Accept(&analysis)); auto* producer = module->entry_computation()->GetInstructionWithName("reduce.1"); std::vector<HloInstruction*> consumers{ module->entry_computation()->GetInstructionWithName("reduce.2")}; return EstimateRunTimesDefault(producer, consumers); }; TF_ASSERT_OK_AND_ASSIGN(auto large_small_reduce_runtime, run(small_large_reduce_hlo)); TF_ASSERT_OK_AND_ASSIGN(auto small_large_reduce_runtime, run(large_small_reduce_hlo)); EXPECT_NEAR(absl::ToInt64Microseconds(large_small_reduce_runtime.time_fused), absl::ToInt64Microseconds(small_large_reduce_runtime.time_fused), 2); } TEST_F(GpuPerformanceModelTest, FusingTransposeIntoReduceIsSlow) { constexpr absl::string_view kHlo = R"( HloModule testmodule max { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT max = f32[] maximum(p0, p1) } ENTRY fusion { c = f32[] constant(-inf) p0 = f32[1500,32,128] parameter(0) transpose.1 = f32[1500,128,32] transpose(p0), dimensions={0,2,1} ROOT reduce.1 = f32[1500,32] reduce(transpose.1, c), dimensions={1}, to_apply=max } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHlo)); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); auto* producer = module->entry_computation()->GetInstructionWithName("transpose.1"); std::vector<HloInstruction*> consumers{ module->entry_computation()->GetInstructionWithName("reduce.1")}; auto t = EstimateRunTimesForPriorityFusion(producer, consumers); EXPECT_NEAR(absl::ToInt64Microseconds(t.time_unfused), 105, 10); EXPECT_NEAR(absl::ToInt64Microseconds(t.time_fused), 514, 10); } TEST_F(GpuPerformanceModelTest, FusingTransposeMultiOutputFusionIntoReduceIsSlow) { constexpr absl::string_view kHlo = R"( HloModule testmodule max { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT max = f32[] maximum(p0, p1) } transpose_fusion { param0 = f32[1500,32,128] parameter(0) transpose.1 = f32[1500,128,32] transpose(param0), dimensions={0,2,1} ROOT res = (f32[1500,128,32]) tuple(transpose.1) } ENTRY fusion { c = f32[] constant(-inf) p0 = f32[1500,32,128] parameter(0) fusion = (f32[1500,128,32]) fusion(p0), kind=kInput, calls=transpose_fusion gte = f32[1500,128,32] get-tuple-element(fusion), index=0 ROOT reduce.1 = f32[1500,32] reduce(gte, c), dimensions={1}, to_apply=max } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHlo)); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); auto* producer = module->entry_computation()->GetInstructionWithName("fusion"); std::vector<HloInstruction*> consumers{ module->entry_computation()->GetInstructionWithName("reduce.1")}; auto t = EstimateRunTimesForPriorityFusion(producer, consumers); EXPECT_NEAR(absl::ToInt64Microseconds(t.time_unfused), 105, 10); EXPECT_NEAR(absl::ToInt64Microseconds(t.time_fused), 514, 10); } TEST_F(GpuPerformanceModelTest, FusingNonMinorTransposeIntoReduceIsFast) { constexpr absl::string_view kHlo = R"( HloModule testmodule max { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT max = f32[] maximum(p0, p1) } ENTRY fusion { c = f32[] constant(-inf) p0 = f32[1500,32,128]{1,2,0} parameter(0) transpose.1 = f32[1500,128,32]{2,0,1} transpose(p0), dimensions={0,2,1} ROOT reduce.1 = f32[1500,32] reduce(transpose.1, c), dimensions={1}, to_apply=max } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHlo)); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); auto* producer = module->entry_computation()->GetInstructionWithName("transpose.1"); std::vector<HloInstruction*> consumers{ module->entry_computation()->GetInstructionWithName("reduce.1")}; auto t = EstimateRunTimesDefault(producer, consumers); EXPECT_LT(t.time_fused, t.time_unfused); auto prio_t = EstimateRunTimesForPriorityFusion(producer, consumers); EXPECT_LT(prio_t.time_fused, prio_t.time_unfused); } TEST_F(GpuPerformanceModelTest, DusScalesWithUpdates) { constexpr absl::string_view kHlo = R"( HloModule testmodule max { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT max = f32[] maximum(p0, p1) } fusion.1 { p0 = f32[1073741824] parameter(0) p1 = f32[1024,1048576] parameter(1) p2 = s32[] parameter(2) c0 = f32[] constant(0) r = f32[1024] reduce(p1, c0), dimensions={1}, to_apply=max ROOT dus.1 = f32[1073741824] dynamic-update-slice(p0, r, p2) } fusion.2 { p0 = f32[1024] parameter(0) p1 = f32[1024,1048576] parameter(1) p2 = s32[] parameter(2) c0 = f32[] constant(0) r = f32[1024] reduce(p1, c0), dimensions={1}, to_apply=max ROOT dus.1 = f32[1024] dynamic-update-slice(p0, r, p2) } ENTRY main { p0 = f32[1073741824] parameter(0) p1 = f32[1024,1048576] parameter(1) p2 = s32[] parameter(2) p3 = f32[1024] parameter(3) dus1 = f32[1073741824] fusion(p0, p1, p2), kind=kInput, calls=fusion.1 dus2 = f32[1024] fusion(p3, p1, p2), kind=kInput, calls=fusion.2 ROOT tuple = (f32[1073741824], f32[1024]) tuple(dus1, dus2) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHlo)); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); auto* operand0 = module->entry_computation()->root_instruction()->operand(0); auto* operand1 = module->entry_computation()->root_instruction()->operand(1); auto t1 = EstimateRunTimesDefault(operand0); auto t2 = EstimateRunTimesDefault(operand1); EXPECT_NEAR(absl::ToInt64Microseconds(t1.time_unfused), absl::ToInt64Microseconds(t2.time_unfused), 10); auto prio_t1 = EstimateRunTimesForPriorityFusion(operand0); auto prio_t2 = EstimateRunTimesForPriorityFusion(operand1); EXPECT_NEAR(absl::ToInt64Microseconds(prio_t1.time_unfused), absl::ToInt64Microseconds(prio_t2.time_unfused), 10); } TEST_F(GpuPerformanceModelTest, EqualCostBeforeAndAfterFusion) { absl::string_view hlo_string = R"( HloModule m f1 { p0 = f32[4194304] parameter(0) p1 = f32[4194304] parameter(1) ROOT tmp_3 = f32[4194304] multiply(f32[4194304] p0, f32[4194304] p1) } e1 { p0 = f32[4194304] parameter(0) p1 = f32[4194304] parameter(1) f.1 = f32[4194304] fusion(f32[4194304] p0, f32[4194304] p1), kind=kLoop, calls=f1 ROOT r.1 = f32[4194304] tanh(f32[4194304] f.1) } f2 { p0 = f32[4194304] parameter(0) p1 = f32[4194304] parameter(1) mul = f32[4194304] multiply(f32[4194304] p0, f32[4194304] p1) ROOT res = f32[4194304] tanh(f32[4194304] mul) } ENTRY e2 { p0 = f32[4194304] parameter(0) p1 = f32[4194304] parameter(1) ROOT f.2 = f32[4194304] fusion(f32[4194304] p0, f32[4194304] p1), kind=kLoop, calls=f2 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloComputation* computation_without_fusion = module->GetComputationWithName("e1"); ASSERT_IS_OK(computation_without_fusion->Accept(&analysis_)); HloInstruction* consumer = computation_without_fusion->root_instruction(); const HloInstruction* producer = consumer->operand(0); auto t1 = EstimateRunTimesForPriorityFusion(producer, {consumer}); HloComputation* computation_with_fusion = module->GetComputationWithName("e2"); ASSERT_IS_OK(computation_with_fusion->Accept(&analysis_)); HloInstruction* root_with_fusion = computation_with_fusion->root_instruction(); auto t2 = EstimateRunTimesForPriorityFusion(root_with_fusion); EXPECT_EQ(t1.time_fused, t2.time_unfused); } TEST_F(GpuPerformanceModelTest, DoNotFuseDivideIntoSmallReduce) { constexpr absl::string_view kHlo = R"( HloModule testmodule add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } ENTRY fusion { c = f32[] constant(0) p0 = f32[3072] parameter(0) p1 = f32[] parameter(1) reduce = f32[] reduce(p0, c), dimensions={0}, to_apply=add ROOT divide = f32[] divide(reduce, p1) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHlo)); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); auto* producer = module->entry_computation()->GetInstructionWithName("reduce"); std::vector<HloInstruction*> consumers{ module->entry_computation()->GetInstructionWithName("divide")}; auto t = EstimateRunTimesForPriorityFusion(producer, consumers); EXPECT_LT(t.time_unfused, t.time_fused); } TEST_F(GpuPerformanceModelTest, PreferFusingExpensiveInstructionsIntoProducer) { constexpr absl::string_view kHlo = R"( HloModule testmodule add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fused_computation.0 { p0 = f32[4,8,8] parameter(0) bc = f32[1,4,1424,8,8] broadcast(p0), dimensions={1,3,4} p1 = f32[1,4,1424,8,8] parameter(1) ROOT sub = f32[1,4,1424,8,8] subtract(bc, p1) } fused_computation.1 { p0 = f32[1,4,1424,8,8] parameter(0) bc = f32[4,1424,8,8] bitcast(p0) c0 = f32[] constant(0) ROOT reduce = f32[4,8,8] reduce(bc, c0), to_apply=add, dimensions={1} } ENTRY fusion { p0 = f32[4,8,8] parameter(0) p1 = f32[1,4,1424,8,8] parameter(1) fusion.0 = f32[1,4,1424,8,8] fusion(p0, p1), kind=kLoop, calls=fused_computation.0 exp = f32[1,4,1424,8,8] exponential(fusion.0) ROOT fusion.1 = f32[4,8,8] fusion(exp), kind=kInput, calls=fused_computation.1 })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHlo)); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); auto* fusion_0 = module->entry_computation()->GetInstructionWithName("fusion.0"); auto* exp = module->entry_computation()->GetInstructionWithName("exp"); auto exp_consumer_runtimes = EstimateRunTimesForPriorityFusion(fusion_0, {exp}); auto exp_producer_runtimes = EstimateRunTimesForPriorityFusion(exp, exp->users()); auto exp_consumer_priority = exp_consumer_runtimes.time_unfused - exp_consumer_runtimes.time_fused; auto exp_producer_priority = exp_producer_runtimes.time_unfused - exp_producer_runtimes.time_fused; EXPECT_LT(exp_producer_priority, exp_consumer_priority); } TEST_F(GpuPerformanceModelTest, DontFuseExpensiveElementwiseIntoSmallReduce) { constexpr absl::string_view kHlo = R"( HloModule testmodule add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fused_computation.0 { p0 = f32[4,28672,32] parameter(0) tanh = f32[4,28672,32] tanh(p0) c1 = f32[] constant(72) broadcast = f32[4,28672,32] broadcast(c1), dimensions={} ROOT mul = f32[4,28672,32] multiply(tanh, broadcast) } ENTRY fusion { p0 = f32[4,28672,32] parameter(0) fusion = f32[4,28672,32] fusion(p0), kind=kLoop, calls=fused_computation.0 c0 = f32[] constant(0) ROOT reduce = f32[4,32] reduce(fusion, c0), to_apply=add, dimensions={1} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHlo)); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); auto* fusion = module->entry_computation()->GetInstructionWithName("fusion"); auto* reduce = module->entry_computation()->GetInstructionWithName("reduce"); auto t = EstimateRunTimesForPriorityFusion(fusion, {reduce}); EXPECT_LT(t.time_unfused, t.time_fused); } } } }
2,156
cpp
tensorflow/tensorflow
indexing_analysis
third_party/xla/xla/service/gpu/model/indexing_analysis.cc
third_party/xla/xla/service/gpu/model/indexing_analysis_test.cc
#ifndef XLA_SERVICE_GPU_MODEL_INDEXING_ANALYSIS_H_ #define XLA_SERVICE_GPU_MODEL_INDEXING_ANALYSIS_H_ #include <cstdint> #include <functional> #include <ostream> #include <string> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/types/span.h" #include "llvm/ADT/SmallVector.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/fusions/tiling_util.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/model/affine_map_printer.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/shape.h" namespace xla { namespace gpu { using IndexingMapSet = absl::flat_hash_set<IndexingMap>; struct HloInstructionIndexing { std::string ToString( const AffineMapPrinter& printer = AffineMapPrinter()) const; void Print(std::ostream& out, const AffineMapPrinter& printer) const; bool Simplify(); static HloInstructionIndexing FromIndexingMaps( absl::Span<const IndexingMap> indexing_maps); std::vector<IndexingMapSet> indexing_maps; }; std::ostream& operator<<(std::ostream& out, const HloInstructionIndexing& instr_indexing); HloInstructionIndexing ComputeOutputToInputIndexing(const HloInstruction* instr, int output_id, mlir::MLIRContext* ctx); HloInstructionIndexing ComputeInputToOutputIndexing(const HloInstruction* instr, int input_id, mlir::MLIRContext* ctx); IndexingMap ComputeEpilogueInputToOutputIndexing( HloInstructionAdaptor epilogue_parent, HloInstructionAdaptor epilogue_root, mlir::MLIRContext* mlir_context); using GroupedByOpIndexingMap = absl::flat_hash_map<const HloInstruction*, IndexingMapSet>; GroupedByOpIndexingMap ComputeGroupedOutputToInputIndexing( const HloFusionAdaptor& fusion_adaptor, HloInstructionAdaptor target_instr, mlir::MLIRContext* ctx); absl::flat_hash_map<const HloInstruction*, IndexingMapSet> GroupIndexingMapsByProducers(const HloInstructionIndexing& indexing, const HloInstruction* instr); bool FuseProducerConsumerOutputToInputIndexing( const HloInstruction* producer_instr, absl::flat_hash_map<const HloInstruction*, IndexingMapSet>* consumer_indexing, mlir::MLIRContext* mlir_context); IndexingMap GetBitcastMap(const Shape& input_shape, const Shape& output_shape, mlir::MLIRContext* mlir_context); IndexingMap GetBitcastMap(absl::Span<const int64_t> input_shape, const Shape& output_shape, mlir::MLIRContext* mlir_context); IndexingMap GetIndexingMapFromPhysicalLayoutToLogical( const Shape& shape, mlir::MLIRContext* mlir_context); IndexingMap GetIndexingMapFromLogicalToPhysicalLayout( const Shape& shape, mlir::MLIRContext* mlir_context); mlir::AffineMap GetBlockOffsetsForTiling( absl::Span<const int64_t> num_blocks, absl::Span<const int64_t> tile_sizes_per_block, int64_t rank, mlir::MLIRContext* mlir_context); mlir::AffineMap GetBlockOffsetsForTiling(const Tiling& tiling, mlir::MLIRContext* mlir_context); mlir::AffineMap GetThreadOffsetsForTiling( absl::Span<const int64_t> num_threads, absl::Span<const int64_t> tile_sizes_per_thread, int64_t rank, mlir::MLIRContext* mlir_context); mlir::AffineMap GetThreadOffsetsForTiling(const Tiling& tiling, mlir::MLIRContext* mlir_context); IndexingMap GetIndexingMapForTiling(const Tiling& tiling, mlir::MLIRContext* mlir_context); IndexingMap GetIndexingMapForTiling(mlir::AffineMap block_offsets, mlir::AffineMap thread_offsets, int64_t threads_per_block, int64_t num_blocks, absl::Span<const int64_t> thread_tile_sizes, absl::Span<const int64_t> tiled_shape); const Shape& GetOutputShape(const HloInstruction* instr, int64_t output_id); mlir::AffineExpr LinearizeShape( absl::Span<const int64_t> dims, absl::Span<const mlir::AffineExpr> dimension_exprs, mlir::MLIRContext* mlir_context); std::vector<mlir::AffineExpr> DelinearizeIndex(absl::Span<const int64_t> dims, mlir::AffineExpr linear_index, mlir::MLIRContext* mlir_context); IndexingMap CreateIdentityMap(const Shape& shape, mlir::MLIRContext* mlir_context); llvm::SmallVector<mlir::AffineExpr, 4> DelinearizeInBoundsIndex( mlir::AffineExpr linear, absl::Span<const int64_t> sizes); } } #endif #include "xla/service/gpu/model/indexing_analysis.h" #include <algorithm> #include <cassert> #include <cstddef> #include <cstdint> #include <functional> #include <iterator> #include <optional> #include <ostream> #include <sstream> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/types/span.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/MLIRContext.h" #include "mlir/Support/LLVM.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout.h" #include "xla/permutation_util.h" #include "xla/service/gather_simplifier.h" #include "xla/service/gpu/fusions/tiling_util.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/gpu/model/affine_map_printer.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" namespace xla { namespace gpu { namespace { using llvm::SmallVector; using mlir::AffineExpr; using mlir::AffineMap; using mlir::getAffineConstantExpr; using mlir::getAffineDimExpr; using mlir::getAffineSymbolExpr; using mlir::MLIRContext; HloInstructionIndexing CreateUnknownIndexing(int64_t count = 1) { HloInstructionIndexing indexing; indexing.indexing_maps = std::vector<absl::flat_hash_set<IndexingMap>>( count, {IndexingMap::GetUndefined()}); return indexing; } HloInstructionIndexing ComputeOutputToInputCwiseOpIndexing( const HloInstruction* instr, MLIRContext* mlir_context) { IndexingMap identity_map = CreateIdentityMap(instr->shape(), mlir_context); HloInstructionIndexing instr_indexing; instr_indexing.indexing_maps.resize(instr->operand_count()); int64_t operand_count = instr->operand_count(); for (int64_t operand_id = 0; operand_id < operand_count; ++operand_id) { instr_indexing.indexing_maps[operand_id].insert(identity_map); } return instr_indexing; } HloInstructionIndexing ComputeInputToOutputCwiseOpIndexing( const HloInstruction* instr, MLIRContext* mlir_context) { IndexingMap identity_map = CreateIdentityMap(instr->shape(), mlir_context); return HloInstructionIndexing::FromIndexingMaps({identity_map}); } HloInstructionIndexing ComputeOutputToInputBroadcastOpIndexing( const HloBroadcastInstruction* bcast, MLIRContext* mlir_context) { auto output_dims = bcast->shape().dimensions(); std::vector<AffineExpr> exprs; exprs.reserve(bcast->dimensions().size()); for (int64_t bcast_dim : bcast->dimensions()) { exprs.push_back(getAffineDimExpr(bcast_dim, mlir_context)); } IndexingMap indexing_map = IndexingMap::FromTensorSizes( AffineMap::get(output_dims.size(), 0, exprs, mlir_context), output_dims, {}); return HloInstructionIndexing::FromIndexingMaps({indexing_map}); } HloInstructionIndexing ComputeInputToOutputBroadcastOpIndexing( const HloBroadcastInstruction* bcast, MLIRContext* mlir_context) { absl::Span<const int64_t> bcast_dims = bcast->dimensions(); const Shape& input_shape = bcast->operand(0)->shape(); const Shape& output_shape = bcast->shape(); std::vector<int64_t> added_dims_sizes; std::vector<AffineExpr> exprs; exprs.reserve(output_shape.rank()); for (auto [output_dim_id, output_dim] : llvm::enumerate(output_shape.dimensions())) { auto bcast_dim = std::find(bcast_dims.begin(), bcast_dims.end(), output_dim_id); if (bcast_dim == bcast_dims.end()) { exprs.push_back( getAffineSymbolExpr(added_dims_sizes.size(), mlir_context)); added_dims_sizes.push_back(output_dim); continue; } exprs.push_back(getAffineDimExpr( std::distance(bcast_dims.begin(), bcast_dim), mlir_context)); } IndexingMap indexing_map = IndexingMap::FromTensorSizes( AffineMap::get(input_shape.rank(), added_dims_sizes.size(), exprs, mlir_context), input_shape.dimensions(), added_dims_sizes); return HloInstructionIndexing::FromIndexingMaps({indexing_map}); } HloInstructionIndexing ComputeOutputToInputConcatenateOpIndexing( const HloConcatenateInstruction* concat, MLIRContext* mlir_context) { const auto& operand_0_dims = concat->operand(0)->shape().dimensions(); mlir::MutableAffineMap affine_map = AffineMap::getMultiDimIdentityMap(operand_0_dims.size(), mlir_context); std::vector<DimVar> dim_vars = DimVarsFromTensorSizes(operand_0_dims); HloInstructionIndexing concat_indexing; concat_indexing.indexing_maps.resize(concat->operand_count()); int64_t concat_dim = concat->concatenate_dimension(); AffineExpr concat_dim_expr = getAffineDimExpr(concat_dim, mlir_context); int64_t offset = 0; for (const auto [operand_id, operand] : llvm::enumerate(concat->operands())) { affine_map.setResult(concat_dim, concat_dim_expr - offset); int64_t operand_concat_dim = operand->shape().dimensions()[concat_dim]; dim_vars[concat_dim] = DimVar{{offset, offset + operand_concat_dim - 1}}; concat_indexing.indexing_maps[operand_id].insert( IndexingMap(affine_map.getAffineMap(), dim_vars, {}, {})); offset += operand_concat_dim; } return concat_indexing; } HloInstructionIndexing ComputeInputToOutputConcatenateOpIndexing( const HloConcatenateInstruction* concat, int input_id, MLIRContext* mlir_context) { int64_t concat_dim = concat->concatenate_dimension(); int64_t offset = 0; for (int64_t operand_id = 0; operand_id < input_id; ++operand_id) { offset += concat->operand(operand_id)->shape().dimensions()[concat_dim]; } const auto& operand_dims = concat->operand(input_id)->shape().dimensions(); mlir::MutableAffineMap affine_map = AffineMap::getMultiDimIdentityMap(operand_dims.size(), mlir_context); affine_map.setResult(concat_dim, getAffineDimExpr(concat_dim, mlir_context) + offset); IndexingMap indexing_map = IndexingMap::FromTensorSizes(affine_map.getAffineMap(), operand_dims, {}); return HloInstructionIndexing::FromIndexingMaps({indexing_map}); } HloInstructionIndexing ComputeOutputToInputFusionOpIndexing( const HloFusionInstruction* fusion, int output_id, MLIRContext* mlir_context) { auto fusion_adaptor = HloFusionAdaptor::ForInstruction(fusion); auto grouped_indexing_maps = ComputeGroupedOutputToInputIndexing( *fusion_adaptor, fusion_adaptor->GetRoots()[output_id], mlir_context); HloInstructionIndexing fusion_indexing; fusion_indexing.indexing_maps.resize(fusion->operand_count()); for (auto [operand_id, operand] : llvm::enumerate(fusion->operands())) { fusion_indexing.indexing_maps[operand_id] = grouped_indexing_maps[operand]; } return fusion_indexing; } HloInstructionIndexing ComputeOutputToInputDotOpIndexing( const HloDotInstruction* dot, MLIRContext* mlir_context) { CHECK_NE(dot, nullptr); const DotDimensionNumbers& dim_numbers = dot->dot_dimension_numbers(); absl::Span<const int64_t> lhs_contracting_dims( dim_numbers.lhs_contracting_dimensions()); absl::Span<const int64_t> rhs_contracting_dims = dim_numbers.rhs_contracting_dimensions(); absl::Span<const int64_t> lhs_batch_dims = dim_numbers.lhs_batch_dimensions(); absl::Span<const int64_t> rhs_batch_dims = dim_numbers.rhs_batch_dimensions(); const Shape& lhs_shape = dot->operand(0)->shape(); const Shape& rhs_shape = dot->operand(1)->shape(); SmallVector<AffineExpr> lhs_exprs(lhs_shape.rank()); SmallVector<AffineExpr> rhs_exprs(rhs_shape.rank()); int64_t output_dim_id = 0; for (auto [lhs_batch_dim, rhs_batch_dim] : llvm::zip(lhs_batch_dims, rhs_batch_dims)) { AffineExpr output_dim_expr = getAffineDimExpr(output_dim_id, mlir_context); lhs_exprs[lhs_batch_dim] = output_dim_expr; rhs_exprs[rhs_batch_dim] = output_dim_expr; ++output_dim_id; } auto lhs_non_contracting_dims = GetNonContractingDims(lhs_shape, lhs_batch_dims, lhs_contracting_dims); assert(lhs_non_contracting_dims.ok()); for (int64_t lhs_non_contracting_dim : lhs_non_contracting_dims.value()) { lhs_exprs[lhs_non_contracting_dim] = getAffineDimExpr(output_dim_id++, mlir_context); } auto rhs_non_contracting_dims = GetNonContractingDims(rhs_shape, rhs_batch_dims, rhs_contracting_dims); assert(rhs_non_contracting_dims.ok()); for (int64_t rhs_non_contracting_dim : rhs_non_contracting_dims.value()) { rhs_exprs[rhs_non_contracting_dim] = getAffineDimExpr(output_dim_id++, mlir_context); } int64_t input_dim_id = 0; std::vector<int64_t> input_dim_sizes; input_dim_sizes.reserve(lhs_contracting_dims.size()); for (auto [lhs_contracting_dim, rhs_contracting_dim] : llvm::zip(lhs_contracting_dims, rhs_contracting_dims)) { AffineExpr input_dim_expr = getAffineSymbolExpr(input_dim_id, mlir_context); lhs_exprs[lhs_contracting_dim] = input_dim_expr; rhs_exprs[rhs_contracting_dim] = input_dim_expr; ++input_dim_id; input_dim_sizes.push_back(lhs_shape.dimensions(lhs_contracting_dim)); } IndexingMap lhs_indexing_map = IndexingMap::FromTensorSizes( AffineMap::get(dot->shape().rank(), input_dim_sizes.size(), lhs_exprs, mlir_context), dot->shape().dimensions(), input_dim_sizes); IndexingMap rhs_indexing_map = IndexingMap::FromTensorSizes( AffineMap::get(dot->shape().rank(), input_dim_sizes.size(), rhs_exprs, mlir_context), dot->shape().dimensions(), input_dim_sizes); return HloInstructionIndexing::FromIndexingMaps( {lhs_indexing_map, rhs_indexing_map}); } HloInstructionIndexing ComputeOutputToInputDynamicSliceOpIndexing( const HloDynamicSliceInstruction* dynamic_slice, MLIRContext* mlir_context) { const Shape& input_shape = dynamic_slice->operand(0)->shape(); const Shape& output_shape = dynamic_slice->shape(); int64_t rank = output_shape.rank(); const int64_t first_index_num = dynamic_slice->first_index_operand_number(); CHECK(dynamic_slice->operand(first_index_num)->shape().rank() == 0) << "b/118437727: Old form, not supported."; AffineMap empty_results_affine_map = AffineMap::get( rank, 0, {}, mlir_context); IndexingMap start_indices_map = IndexingMap::FromTensorSizes( empty_results_affine_map, output_shape.dimensions(), {}); std::vector<RTVar> offsets_rt_vars; offsets_rt_vars.reserve(rank); std::vector<AffineExpr> exprs; exprs.reserve(rank); for (auto [dim, slice_size] : llvm::enumerate(dynamic_slice->dynamic_slice_sizes())) { exprs.push_back(getAffineDimExpr(dim, mlir_context) + getAffineSymbolExpr(dim, mlir_context)); offsets_rt_vars.push_back( RTVar{Interval{0, input_shape.dimensions(dim) - slice_size}, dynamic_slice->operand(dim + first_index_num), empty_results_affine_map}); } std::vector<IndexingMap> indexing_maps(dynamic_slice->operand_count(), start_indices_map); indexing_maps.front() = IndexingMap{AffineMap::get(rank, rank, exprs, mlir_context), start_indices_map.GetDimVars(), {}, std::move(offsets_rt_vars)}; return HloInstructionIndexing::FromIndexingMaps(indexing_maps); } HloInstructionIndexing ComputeOutputToInputDynamicUpdateSliceOpIndexing( const HloDynamicUpdateSliceInstruction* dus, MLIRContext* mlir_context) { const Shape& update_shape = dus->update()->shape(); const Shape& output_shape = dus->shape(); int64_t rank = output_shape.rank(); std::vector<AffineExpr> identity; for (int64_t dim = 0; dim < rank; ++dim) { identity.push_back(getAffineDimExpr(dim, mlir_context)); } IndexingMap operand_map = IndexingMap::FromTensorSizes( AffineMap::get(rank, 0, identity, mlir_context), output_shape.dimensions(), {}); AffineMap empty_results_affine_map = AffineMap::get( rank, 0, {}, mlir_context); IndexingMap start_indices_map = IndexingMap::FromTensorSizes( empty_results_affine_map, output_shape.dimensions(), {}); std::vector<AffineExpr> exprs; exprs.reserve(rank); std::vector<RTVar> rt_vars; rt_vars.reserve(rank); for (auto [dim, slice_size] : llvm::enumerate(update_shape.dimensions())) { exprs.push_back(getAffineDimExpr(dim, mlir_context) - getAffineSymbolExpr(dim, mlir_context)); Interval feasible_values{0, output_shape.dimensions(dim) - slice_size}; rt_vars.push_back(RTVar{feasible_values, dus->operand(2 + dim), empty_results_affine_map}); } IndexingMap update_map{AffineMap::get(rank, rank, exprs, mlir_context), operand_map.GetDimVars(), {}, rt_vars}; std::vector<IndexingMap> indexing_maps(dus->operand_count(), start_indices_map); indexing_maps[0] = std::move(operand_map); indexing_maps[1] = std::move(update_map); return HloInstructionIndexing::FromIndexingMaps(indexing_maps); } HloInstructionIndexing ComputeOutputToInputGatherOpIndexing( const HloGatherInstruction* gather, MLIRContext* mlir_context) { CHECK(GatherSimplifier::IsSimplifiedGather(gather)) << "Non-simplified HLO Gather is not supported."; const Shape& operand_shape = gather->operand(0)->shape(); const Shape& indices_shape = gather->operand(1)->shape(); const GatherDimensionNumbers& dimension_numbers = gather->gather_dimension_numbers(); int64_t index_vector_length = indices_shape.dimensions(dimension_numbers.index_vector_dim()); const Shape& output_shape = gather->shape(); int64_t output_rank = output_shape.rank(); AffineExpr indices_id_dim = getAffineDimExpr(0, mlir_context); std::vector<DimVar> dim_vars = DimVarsFromTensorSizes(output_shape.dimensions()); IndexingMap indices_map{ AffineMap::get(output_rank, 1, {indices_id_dim, getAffineSymbolExpr(0, mlir_context)}, mlir_context), dim_vars, {RangeVar{{0, index_vector_length - 1}}}, {}}; std::vector<RTVar> rt_vars; std::vector<AffineExpr> exprs; exprs.reserve(operand_shape.rank()); for (auto [operand_dim_id, slice_size] : llvm::enumerate(gather->gather_slice_sizes())) { int64_t output_dim_id = dimension_numbers.offset_dims(operand_dim_id); exprs.push_back(getAffineDimExpr(output_dim_id, mlir_context)); if (operand_dim_id >= index_vector_length) continue; rt_vars.push_back(RTVar{ Interval{0, operand_shape.dimensions(operand_dim_id) - slice_size}, gather->operand(1), AffineMap::get(output_rank, 0, {indices_id_dim, getAffineConstantExpr(operand_dim_id, mlir_context)}, mlir_context)}); exprs.back() = exprs.back() + getAffineSymbolExpr(operand_dim_id, mlir_context); } IndexingMap operand_map = { AffineMap::get(output_rank, index_vector_length, exprs, mlir_context), std::move(dim_vars), {}, std::move(rt_vars)}; return HloInstructionIndexing::FromIndexingMaps({operand_map, indices_map}); } IndexingMap ComputeOutputToInputPadOpIndexingImpl( absl::Span<const int64_t> output_dims, absl::Span<const int64_t> padding_low, absl::Span<const int64_t> padding_high, absl::Span<const int64_t> padding_interior, MLIRContext* mlir_context) { int64_t output_rank = output_dims.size(); std::vector<AffineExpr> exprs; std::vector<std::pair<AffineExpr, Interval>> constraints; std::vector<DimVar> dim_vars; exprs.reserve(output_rank); constraints.reserve(output_rank); int64_t output_dim_id = 0; for (const auto [output_dim, pad_low, pad_high, pad_interior] : llvm::zip(output_dims, padding_low, padding_high, padding_interior)) { AffineExpr dim_expr = getAffineDimExpr(output_dim_id, mlir_context); dim_vars.push_back( {Interval{std::max(int64_t{0}, pad_low), std::min(output_dim - 1, output_dim - 1 - pad_high)}}); if (pad_interior == 0) { exprs.push_back(dim_expr - pad_low); } else { exprs.push_back((dim_expr - pad_low).floorDiv(pad_interior + 1)); constraints.push_back( {(dim_expr - pad_low) % (pad_interior + 1), Interval{0, 0}}); } ++output_dim_id; } return IndexingMap{ AffineMap::get(output_rank, 0, exprs, mlir_context), std::move(dim_vars), {}, {}, absl::MakeSpan(constraints)}; } HloInstructionIndexing ComputeOutputToInputPadOpIndexing( const HloPadInstruction* pad, MLIRContext* mlir_context) { const Shape& output_shape = pad->shape(); int64_t rank = output_shape.rank(); SmallVector<int64_t> padding_low, padding_high, padding_interior; padding_low.reserve(rank); padding_high.reserve(rank); padding_interior.reserve(rank); for (const auto& dim_config : pad->padding_config().dimensions()) { padding_low.push_back(dim_config.edge_padding_low()); padding_high.push_back(dim_config.edge_padding_high()); padding_interior.push_back(dim_config.interior_padding()); } IndexingMap input_indexing_map = ComputeOutputToInputPadOpIndexingImpl( output_shape.dimensions(), padding_low, padding_high, padding_interior, mlir_context); IndexingMap padding_value_indexing_map = IndexingMap::FromTensorSizes( AffineMap::get(output_shape.rank(), 0, {}, mlir_context), output_shape.dimensions(), {}); return HloInstructionIndexing::FromIndexingMaps( {input_indexing_map, padding_value_indexing_map}); } HloInstructionIndexing ComputeOutputToInputReduceOpIndexing( const HloReduceInstruction* reduce, int output_id, MLIRContext* mlir_context) { absl::flat_hash_set<int64_t> reduce_dims_ids(reduce->dimensions().begin(), reduce->dimensions().end()); const Shape& input_shape = reduce->operand(output_id)->shape(); const Shape& output_shape = GetOutputShape(reduce, 0); std::vector<int64_t> parallel_dims_sizes; int64_t output_dim_id = 0; std::vector<AffineExpr> exprs; exprs.reserve(input_shape.rank()); for (auto [input_dim_id, input_dim] : llvm::enumerate(input_shape.dimensions())) { if (reduce_dims_ids.contains(input_dim_id)) { exprs.push_back( getAffineSymbolExpr(parallel_dims_sizes.size(), mlir_context)); parallel_dims_sizes.push_back(input_dim); continue; } exprs.push_back(getAffineDimExpr(output_dim_id++, mlir_context)); } IndexingMap inputs_indexing_map = IndexingMap::FromTensorSizes( AffineMap::get(output_shape.rank(), reduce_dims_ids.size(), exprs, mlir_context), output_shape.dimensions(), parallel_dims_sizes); IndexingMap inits_indexing_map = IndexingMap::FromTensorSizes( AffineMap::get(output_shape.rank(), 0, {}, mlir_context), output_shape.dimensions(), {}); HloInstructionIndexing instr_indexing; instr_indexing.indexing_maps.resize(reduce->operand_count()); for (int64_t id = 0; id < reduce->input_count(); ++id) { instr_indexing.indexing_maps[id].insert(inputs_indexing_map); } for (int64_t id = reduce->input_count(); id < reduce->operand_count(); ++id) { instr_indexing.indexing_maps[id].insert(inits_indexing_map); } return instr_indexing; } HloInstructionIndexing ComputeInputToOutputReduceOpIndexing( const HloReduceInstruction* reduce, int input_id, MLIRContext* mlir_context) { const Shape& output_shape = GetOutputShape(reduce, 0); int64_t output_rank = output_shape.rank(); HloInstructionIndexing instr_indexing; int arity = reduce->input_count(); instr_indexing.indexing_maps.resize(arity); if (input_id >= arity) { std::vector<AffineExpr> inits_exprs; inits_exprs.reserve(output_rank); for (int sym = 0; sym < output_rank; ++sym) { inits_exprs.push_back(getAffineSymbolExpr(sym, mlir_context)); } IndexingMap inits_indexing_map = IndexingMap::FromTensorSizes( AffineMap::get(0, output_rank, inits_exprs, mlir_context), {}, output_shape.dimensions()); for (int64_t id = 0; id < arity; ++id) { instr_indexing.indexing_maps[id].insert(inits_indexing_map); } return instr_indexing; } const Shape& input_shape = reduce->operand(input_id)->shape(); std::vector<AffineExpr> inputs_exprs; inputs_exprs.reserve(output_rank); for (auto [input_dim_id, input_dim] : llvm::enumerate(input_shape.dimensions())) { if (!absl::c_linear_search(reduce->dimensions(), input_dim_id)) { inputs_exprs.push_back(getAffineDimExpr(inpu
#include "xla/service/gpu/model/indexing_analysis.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/fusions/tiling_util.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/model/indexing_test_utils.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { namespace { using ::testing::ElementsAre; using ::testing::Eq; using ::testing::ExplainMatchResult; using ::testing::IsEmpty; using ::testing::Pair; using ::testing::UnorderedElementsAre; MATCHER_P2(MatchInstrIndexing, operand_id, indexing_map_matchers, "") { return ExplainMatchResult(Eq(operand_id), arg.operand_id, result_listener) && ExplainMatchResult(indexing_map_matchers, arg.indexing_maps, result_listener); } using IndexingAnalysisTest = IndexingTestBase; TEST_F(IndexingAnalysisTest, FuseProducerConsumerOutputToInputIndexing) { auto root = ParseAndGetRoot(R"( HloModule m ENTRY e { p0 = f32[1000, 1000] parameter(0) transpose_p0 = f32[1000, 1000]{0, 1} transpose(p0), dimensions={1, 0} ROOT a0 = f32[1000, 1000] add(p0, transpose_p0) } )"); const HloInstruction* parameter = root->operand(0); const HloInstruction* transpose = root->operand(1); auto root_indexing = GetOutputToInputIndexing(root); auto grouped_by_key = GroupIndexingMapsByProducers(root_indexing, root); EXPECT_THAT( grouped_by_key, UnorderedElementsAre(Pair(parameter, ElementsAre(MatchIndexingMap(R"( (d0, d1) -> (d0, d1) domain: d0 in [0, 1000) d1 in [0, 1000) )"))), Pair(transpose, ElementsAre(MatchIndexingMap(R"( (d0, d1) -> (d0, d1) domain: d0 in [0, 1000) d1 in [0, 1000) )"))))); } TEST_F(IndexingAnalysisTest, ComputeGroupedOutputToInputIndexing) { auto root = ParseAndGetRoot(R"( HloModule m ENTRY e { p0 = f32[1000, 1000] parameter(0) transpose_p0 = f32[1000, 1000]{0, 1} transpose(p0), dimensions={1, 0} ROOT a0 = f32[1000, 1000] add(p0, transpose_p0) } )"); const HloInstruction* parameter = root->operand(0); const HloInstruction* transpose = root->operand(1); auto fusion_adaptor = HloFusionAdaptor::ForProducerConsumer(transpose, root); auto grouped_indexing = ComputeGroupedOutputToInputIndexing( *fusion_adaptor, fusion_adaptor->GetRoots()[0], &mlir_context_); EXPECT_THAT(grouped_indexing, UnorderedElementsAre( Pair(root, ElementsAre(MatchIndexingMap(R"( (d0, d1) -> (d0, d1) domain: d0 in [0, 1000) d1 in [0, 1000) )"))), Pair(transpose, ElementsAre(MatchIndexingMap(R"( (d0, d1) -> (d0, d1) domain: d0 in [0, 1000) d1 in [0, 1000) )"))), Pair(parameter, UnorderedElementsAre(MatchIndexingMap(R"( (d0, d1) -> (d0, d1) domain: d0 in [0, 1000) d1 in [0, 1000) )"), MatchIndexingMap(R"( (d0, d1) -> (d1, d0) domain: d0 in [0, 1000) d1 in [0, 1000) )"))))); } TEST_F(IndexingAnalysisTest, ComputeGroupedOutputToInputIndexing_VariadicReduce) { auto root = ParseAndGetRoot(R"( HloModule m add { param_0 = f32[] parameter(0) param_1 = f32[] parameter(1) param_2 = f32[] parameter(2) param_3 = f32[] parameter(3) add.0 = f32[] add(param_0, param_2) add.1 = f32[] add(param_1, param_3) ROOT t = (f32[], f32[]) tuple(add.0, add.1) } ENTRY entry_computation { param_0.3 = f32[32,40]{1,0} parameter(0) param_1.3 = f32[32,40]{1,0} parameter(1) param_2.2 = f32[] parameter(2) constant = f32[] constant(0) ROOT reduce = (f32[32]{0}, f32[32]{0}) reduce(param_0.3, param_1.3, param_2.2, constant), dimensions={1}, to_apply=add } )"); auto fusion_adaptor = HloFusionAdaptor::ForInstruction(root); auto grouped_indexing = ComputeGroupedOutputToInputIndexing( *fusion_adaptor, fusion_adaptor->GetRoots()[0], &mlir_context_); EXPECT_THAT(grouped_indexing, UnorderedElementsAre( Pair(root, ElementsAre(MatchIndexingMap(R"( (d0) -> (d0) domain: d0 in [0, 32) )"))), Pair(root->operand(0), ElementsAre(MatchIndexingMap(R"( (d0)[s0] -> (d0, s0) domain: d0 in [0, 32) s0 in [0, 40) )"))), Pair(root->operand(1), ElementsAre(MatchIndexingMap(R"( (d0)[s0] -> (d0, s0) domain: d0 in [0, 32) s0 in [0, 40) )"))), Pair(root->operand(2), ElementsAre(MatchIndexingMap(R"( (d0) -> () domain: d0 in [0, 32) )"))), Pair(root->operand(3), ElementsAre(MatchIndexingMap(R"( (d0) -> () domain: d0 in [0, 32) )"))))); } TEST_F(IndexingAnalysisTest, ComputeGroupedOutputToInputIndexing_SingleOp) { auto root = ParseAndGetRoot(R"( HloModule m ENTRY e { p0 = f32[1000, 1000] parameter(0) p1 = f32[1000, 1000] parameter(1) exp0 = f32[1000, 1000] exponential(p1) ROOT a0 = f32[1000, 1000] add(p0, exp0) } )"); HloComputation* entry_computation = root->parent(); const HloInstruction* exponential = entry_computation->GetInstructionWithName("exp0"); const HloInstruction* parameter = entry_computation->GetInstructionWithName("p1"); auto fusion_adaptor = HloFusionAdaptor::ForInstruction(exponential); HloInstructionAdaptor parameter_adaptor = fusion_adaptor->GetRoots()[0].GetOperand(0); auto grouped_indexing = ComputeGroupedOutputToInputIndexing( *fusion_adaptor, parameter_adaptor, &mlir_context_); EXPECT_THAT(grouped_indexing, UnorderedElementsAre(Pair( parameter, ElementsAre(MatchIndexingMap(R"( (d0, d1) -> (d0, d1) domain: d0 in [0, 1000) d1 in [0, 1000) )"))))); } TEST_F(IndexingAnalysisTest, ComputeGroupedOutputToInputIndexing_StartNotAtRoot) { auto root = ParseAndGetRoot(R"( HloModule m max { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT max = f32[] maximum(p0, p1) } f { p0 = f32[15, 20] parameter(0) p0_init = f32[] parameter(1) p0_bcast = f32[15, 32, 20, 64] broadcast(p0), dimensions={0, 2} ROOT reduce_2 = f32[15, 64] reduce(p0_bcast, p0_init), dimensions={1, 2}, to_apply=max } ENTRY e { p0 = f32[15, 20] parameter(0) p0_init = f32[] constant(-inf) ROOT fusion = f32[15, 64] fusion(p0, p0_init), kind=kLoop, calls=f } )"); auto fusion_adaptor = HloFusionAdaptor::ForInstruction(root); auto root_adaptor = fusion_adaptor->GetRoots()[0]; auto bcast = root_adaptor.GetOperand(0); auto parameter_0 = bcast.GetOperand(0); auto grouped_indexing = ComputeGroupedOutputToInputIndexing( *fusion_adaptor, bcast, &mlir_context_); EXPECT_THAT( grouped_indexing, UnorderedElementsAre( Pair(&bcast.instruction(), ElementsAre(MatchIndexingMap(R"( (d0, d1, d2, d3) -> (d0, d1, d2, d3) domain: d0 in [0, 15) d1 in [0, 32) d2 in [0, 20) d3 in [0, 64) )"))), Pair(&parameter_0.instruction(), ElementsAre(MatchIndexingMap(R"( (d0, d1, d2, d3) -> (d0, d2) domain: d0 in [0, 15) d1 in [0, 32) d2 in [0, 20) d3 in [0, 64) )"))))); } TEST_F(IndexingAnalysisTest, PhysicalLayoutTestOutputPermutation) { auto root = ParseAndGetRoot(R"( HloModule m ENTRY e { p0 = f32[10, 20, 30] parameter(0) ROOT add0 = f32[10, 20, 30]{1, 0, 2} exponential(p0) } )"); auto input_indexing = GetOutputToInputIndexing(root, 0, true); EXPECT_THAT(input_indexing.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap(R"( (d0, d1, d2) -> (d1, d2, d0) domain: d0 in [0, 30) d1 in [0, 10) d2 in [0, 20) )")))); auto output_indexing = GetInputToOutputIndexing(root, 0, true); EXPECT_THAT(output_indexing.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap(R"( (d0, d1, d2) -> (d2, d0, d1) domain: d0 in [0, 10) d1 in [0, 20) d2 in [0, 30) )")))); } TEST_F(IndexingAnalysisTest, CopyNothing) { auto root = ParseAndGetRoot(R"( HloModule m ENTRY e { p0 = f32[0, 0]{0,1} parameter(0) ROOT copy0 = f32[0, 0]{1,0} copy(p0) } )"); auto input_indexing = GetOutputToInputIndexing(root, 0); input_indexing.Simplify(); EXPECT_THAT(input_indexing.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap("KNOWN EMPTY")))); auto output_indexing = GetInputToOutputIndexing(root, 0); output_indexing.Simplify(); EXPECT_THAT(output_indexing.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap("KNOWN EMPTY")))); } TEST_F(IndexingAnalysisTest, ReshapeNothing) { auto root = ParseAndGetRoot(R"( HloModule m ENTRY e { p0 = f32[1,0,0] parameter(0) ROOT reshape = f32[0] reshape(p0) } )"); auto input_indexing = GetOutputToInputIndexing(root, 0); input_indexing.Simplify(); EXPECT_THAT(input_indexing.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap("KNOWN EMPTY")))); auto output_indexing = GetInputToOutputIndexing(root, 0); output_indexing.Simplify(); EXPECT_THAT(output_indexing.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap("KNOWN EMPTY")))); EXPECT_EQ( output_indexing.indexing_maps[0].begin()->GetAffineMap().getNumResults(), 1); } TEST_F(IndexingAnalysisTest, PhysicalLayoutTestInputPermutation) { auto root = ParseAndGetRoot(R"( HloModule m ENTRY e { p0 = f32[10, 20, 30]{1, 0, 2} parameter(0) ROOT add0 = f32[10, 20, 30] exponential(p0) } )"); auto input_indexing = GetOutputToInputIndexing(root, 0, true); EXPECT_THAT(input_indexing.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap(R"( (d0, d1, d2) -> (d2, d0, d1) domain: d0 in [0, 10) d1 in [0, 20) d2 in [0, 30) )")))); auto output_indexing = GetInputToOutputIndexing(root, 0, true); EXPECT_THAT(output_indexing.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap(R"( (d0, d1, d2) -> (d1, d2, d0) domain: d0 in [0, 30) d1 in [0, 10) d2 in [0, 20) )")))); } TEST_F(IndexingAnalysisTest, PhysicalLayoutTestInputAndOutputPermutation) { auto root = ParseAndGetRoot(R"( HloModule m ENTRY e { p0 = f32[10, 20, 30]{1, 0, 2} parameter(0) ROOT add0 = f32[10, 20, 30]{1, 0, 2} exponential(p0) } )"); auto input_indexing = GetOutputToInputIndexing(root, 0, true); EXPECT_THAT(input_indexing.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap(R"( (d0, d1, d2) -> (d0, d1, d2) domain: d0 in [0, 30) d1 in [0, 10) d2 in [0, 20) )")))); auto output_indexing = GetInputToOutputIndexing(root, 0, true); EXPECT_THAT(output_indexing.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap(R"( (d0, d1, d2) -> (d0, d1, d2) domain: d0 in [0, 30) d1 in [0, 10) d2 in [0, 20) )")))); } TEST_F(IndexingAnalysisTest, ElementwiseOp) { auto root = ParseAndGetRoot(R"( HloModule m ENTRY e { p0 = f32[10, 20] parameter(0) p1 = f32[10, 20] parameter(1) ROOT add0 = f32[10, 20] add(p0, p1) } )"); auto input_indexing = GetOutputToInputIndexing(root); EXPECT_THAT(input_indexing.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap(R"( (d0, d1) -> (d0, d1) domain: d0 in [0, 10) d1 in [0, 20) )")), ElementsAre(MatchIndexingMap(R"( (d0, d1) -> (d0, d1) domain: d0 in [0, 10) d1 in [0, 20) )")))); auto output_indexing_0 = GetInputToOutputIndexing(root, 0); EXPECT_THAT(output_indexing_0.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap(R"( (d0, d1) -> (d0, d1) domain: d0 in [0, 10) d1 in [0, 20) )")))); auto output_indexing_1 = GetInputToOutputIndexing(root, 1); EXPECT_THAT(output_indexing_1.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap(R"( (d0, d1) -> (d0, d1) domain: d0 in [0, 10) d1 in [0, 20) )")))); } TEST_F(IndexingAnalysisTest, Map) { auto root = ParseAndGetRoot(R"( HloModule m mapper { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add = f32[] add(a, b) } ENTRY e { p0 = f32[10, 20] parameter(0) p1 = f32[10, 20] parameter(1) ROOT add0 = f32[10, 20] map(%p0, %p1), dimensions={}, to_apply=mapper } )"); auto input_indexing = GetOutputToInputIndexing(root); EXPECT_THAT(input_indexing.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap(R"( (d0, d1) -> (d0, d1) domain: d0 in [0, 10) d1 in [0, 20) )")), ElementsAre(MatchIndexingMap(R"( (d0, d1) -> (d0, d1) domain: d0 in [0, 10) d1 in [0, 20) )")))); auto output_indexing_0 = GetInputToOutputIndexing(root, 0); EXPECT_THAT(output_indexing_0.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap(R"( (d0, d1) -> (d0, d1) domain: d0 in [0, 10) d1 in [0, 20) )")))); auto output_indexing_1 = GetInputToOutputIndexing(root, 1); EXPECT_THAT(output_indexing_1.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap(R"( (d0, d1) -> (d0, d1) domain: d0 in [0, 10) d1 in [0, 20) )")))); } TEST_F(IndexingAnalysisTest, BitcastIsReshape) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m ENTRY e { p0 = f32[4, 32] parameter(0) ROOT bitcast = f32[4, 8, 4] bitcast(p0) } )")); EXPECT_THAT(input_indexing.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap(R"( (d0, d1, d2) -> (d0, d1 * 4 + d2) domain: d0 in [0, 4) d1 in [0, 8) d2 in [0, 4) )")))); } TEST_F(IndexingAnalysisTest, BitcastIsTranspose) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m ENTRY e { p0 = f32[3, 12288, 6, 128] parameter(0) ROOT bitcast = f32[3, 6, 128, 12288] {2, 1, 3, 0} bitcast(p0) } )")); EXPECT_THAT(input_indexing.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap(R"( (d0, d1, d2, d3) -> (d0, d3, d1, d2) domain: d0 in [0, 3) d1 in [0, 6) d2 in [0, 128) d3 in [0, 12288) )")))); } TEST_F(IndexingAnalysisTest, BitcastIsTransposeReshapeTranspose) { auto root = ParseAndGetRoot(R"( HloModule m ENTRY e { p0 = f32[16, 17, 3] parameter(0) ROOT bitcast = f32[51, 16] {0, 1} bitcast(p0) } )"); auto input_indexing = GetOutputToInputIndexing(root); EXPECT_THAT(input_indexing.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap(R"( (d0, d1) -> (d1, d0 floordiv 3, d0 mod 3) domain: d0 in [0, 51) d1 in [0, 16) )")))); auto output_indexing = GetInputToOutputIndexing(root); EXPECT_THAT(output_indexing.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap(R"( (d0, d1, d2) -> (d1 * 3 + d2, d0) domain: d0 in [0, 16) d1 in [0, 17) d2 in [0, 3) )")))); } TEST_F(IndexingAnalysisTest, BroadcastOp) { auto root = ParseAndGetRoot(R"( HloModule m ENTRY e { p0 = f32[20] parameter(0) ROOT bc0 = f32[10, 20, 30] broadcast(p0), dimensions={1} } )"); auto input_indexing = GetOutputToInputIndexing(root); EXPECT_THAT(input_indexing.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap(R"( (d0, d1, d2) -> (d1) domain: d0 in [0, 10) d1 in [0, 20) d2 in [0, 30) )")))); auto output_indexing = GetInputToOutputIndexing(root); EXPECT_THAT(output_indexing.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap(R"( (d0)[s0, s1] -> (s0, d0, s1) domain: d0 in [0, 20) s0 in [0, 10) s1 in [0, 30) )")))); } TEST_F(IndexingAnalysisTest, ConstantOp) { auto root = ParseAndGetRoot(R"( HloModule m ENTRY e { ROOT c1 = bf16[17, 22] constant(1) } )"); auto input_indexing = GetOutputToInputIndexing(root); EXPECT_THAT(input_indexing.indexing_maps, IsEmpty()); } TEST_F(IndexingAnalysisTest, ConcatenateOp) { auto root = ParseAndGetRoot(R"( HloModule m ENTRY e { p0 = f32[2, 5, 7] parameter(0) p1 = f32[2, 11, 7] parameter(1) p2 = f32[2, 17, 7] parameter(2) ROOT concat = f32[2, 33, 7] concatenate( f32[2, 5, 7] p0, f32[2, 11, 7] p1, f32[2, 17, 7] p2), dimensions={1} } )"); auto input_indexing = GetOutputToInputIndexing(root); EXPECT_THAT(input_indexing.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap(R"( (d0, d1, d2) -> (d0, d1, d2) domain: d0 in [0, 2) d1 in [0, 5) d2 in [0, 7) )")), ElementsAre(MatchIndexingMap(R"( (d0, d1, d2) -> (d0, d1 - 5, d2) domain: d0 in [0, 2) d1 in [5, 16) d2 in [0, 7) )")), ElementsAre(MatchIndexingMap(R"( (d0, d1, d2) -> (d0, d1 - 16, d2) domain: d0 in [0, 2) d1 in [16, 33) d2 in [0, 7) )")))); auto output_indexing_0 = GetInputToOutputIndexing(root, 0); EXPECT_THAT(output_indexing_0.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap(R"( (d0, d1, d2) -> (d0, d1, d2) domain: d0 in [0, 2) d1 in [0, 5) d2 in [0, 7) )")))); auto output_indexing_1 = GetInputToOutputIndexing(root, 1); EXPECT_THAT(output_indexing_1.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap(R"( (d0, d1, d2) -> (d0, d1 + 5, d2) domain: d0 in [0, 2) d1 in [0, 11) d2 in [0, 7) )")))); auto output_indexing_2 = GetInputToOutputIndexing(root, 2); EXPECT_THAT(output_indexing_2.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap(R"( (d0, d1, d2) -> (d0, d1 + 16, d2) domain: d0 in [0, 2) d1 in [0, 17) d2 in [0, 7) )")))); } TEST_F(IndexingAnalysisTest, DynamicSliceOp) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m ENTRY e { %src = s32[2,2,258] parameter(0) %of1 = s32[] parameter(1) %of2 = s32[] parameter(2) %of3 = s32[] parameter(3) ROOT %ds = s32[1,2,32] dynamic-slice(s32[2,2,258] %src, s32[] %of1, s32[] %of2, s32[] %of3), dynamic_slice_sizes={1, 2, 32} } )")); EXPECT_THAT(input_indexing.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap(R"( (d0, d1, d2)[s0, s1, s2] -> (d0 + s0, d1 + s1, d2 + s2) domain: d0 in [0, 1) d1 in [0, 2) d2 in [0, 32) s0 in [0, 2) hlo: %of1 = s32[] parameter(1) (d0, d1, d2) -> () s1 in [0, 1) hlo: %of2 = s32[] parameter(2) (d0, d1, d2) -> () s2 in [0, 227) hlo: %of3 = s32[] parameter(3) (d0, d1, d2) -> () )")), ElementsAre(MatchIndexingMap(R"( (d0, d1, d2) -> () domain: d0 in [0, 1) d1 in [0, 2) d2 in [0, 32) )")), ElementsAre(MatchIndexingMap(R"( (d0, d1, d2) -> () domain: d0 in [0, 1) d1 in [0, 2) d2 in [0, 32) )")), ElementsAre(MatchIndexingMap(R"( (d0, d1, d2) -> () domain: d0 in [0, 1) d1 in [0, 2) d2 in [0, 32) )")))); } TEST_F(IndexingAnalysisTest, DynamicUpdateSliceOp) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m ENTRY e { %src = s32[20,30] parameter(0) %upd = s32[5,10] parameter(1) %of1 = s32[] parameter(2) %of2 = s32[] parameter(3) ROOT %dus = s32[20,30] dynamic-update-slice( s32[20,30] %src, s32[5,10] %upd, s32[] %of1, s32[] %of2) } )")); EXPECT_THAT(input_indexing.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap(R"( (d0, d1) -> (d0, d1) domain: d0 in [0, 20) d1 in [0, 30) )")), ElementsAre(MatchIndexingMap(R"( (d0, d1)[s0, s1] -> (d0 - s0, d1 - s1) domain: d0 in [0, 20) d1 in [0, 30) s0 in [0, 16) hlo: %of1 = s32[] parameter(2) (d0, d1) -> () s1 in [0, 21) hlo: %of2 = s32[] parameter(3) (d0, d1) -> () )")), ElementsAre(MatchIndexingMap(R"( (d0, d1) -> () domain: d0 in [0, 20) d1 in [0, 30) )")), ElementsAre(MatchIndexingMap(R"( (d0, d1) -> () domain: d0 in [0, 20) d1 in [0, 30) )")))); } TEST_F(IndexingAnalysisTest, FusionOpWithSingleBinaryOp) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( HloModule m f { p0 = f32[100] parameter(0) p1 = f32[100] parameter(1) ROOT a0 = f32[100] add(p0, p1) } ENTRY e { p0 = f32[100] parameter(0) p1 = f32[100] parameter(1) ROOT fusion = f32[100] fusion(p0, p1), kind=kLoop, calls=f } )")); EXPECT_THAT(input_indexing.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap(R"( (d0) -> (d0) domain: d0 in [0, 100) )")), ElementsAre(MatchIndexingMap(R"( (d0) -> (d0) domain: d0 in [0, 100) )")))); } TEST_F(IndexingAnalysisTest, FusionOpWithDot) { auto input_indexing = GetOutputToInputIndexing(ParseAndGetRoot(R"( f { p0 = s8[3,12288,6,128]{3,2,1,0} parameter(0) bitcast1 = s8[3,6,128,12288]{2,1,3,0} bitcast(p0) copy1 = s8[3,6,128,12288]{3,2,1,0} copy(bitcast1) bitcast2 = s8[2304,12288]{1,0} bitcast(copy1) convert1 = bf16[2304,12288]{1,0} convert(bitcast2) bitcast3 = bf16[2304,16,768]{2,1,0} bitcast(convert1) p3 = bf16[16,12288]{1,0} parameter(3) convert2 = f32[16,12288]{1,0} convert(p3) p4 = bf16[16,12288]{1,0} parameter(4) convert3 = f32[16,12288]{1,0} convert(p4) add1 = f32[16,12288]{1,0} add(convert2, convert3) p2 = bf16[16]{0} parameter(2) convert15 = f32[16]{0} convert(p2) rsqrt = f32[16]{0} rsqrt(convert15) convert4 = bf16[16]{0} convert(rsqrt) bcast1 = bf16[16,12288]{1,0} broadcast(convert4), dimensions={0} convert5 = f32[16,12288]{1,0} convert(bcast1) multiply1 = f32[16,12288]{1,0} multiply(add1, convert5) p1 = bf16[12288]{0} parameter(1) convert6 = f32[12288]{0} convert(p1) c1 = bf16[] constant(1) bcast2 = bf16[12288]{0} broadcast(c1), dimensions={} convert7 = f32[12288]{0} convert(bcast2) add2 = f32[12288]{0} add(convert6, convert7) convert8 = bf16[12288]{0} convert(add2) bcast3 = bf16[16,12288]{1,0} broadcast(convert8), dimensions={1} convert9 = f32[16,12288]{1,0} convert(bcast3) multiply2 = f32[16,12288]{1,0} multiply(multiply1, convert9) convert10 = bf16[16,12288]{1,0} convert(multiply2) bcast4 = bf16[16,16,768]{2,1,0} bitcast(convert10) dot = bf16[16,2304,16]{2,1,0} dot(bitcast3, bcast4), lhs_batch_dims={1}, lhs_contracting_dims={2}, rhs_batch_dims={1}, rhs_contracting_dims={2} bcast5 = bf16[16,3,6,128,16]{4,3,2,1,0} bitcast(dot) copy2 = bf16[16,3,6,128,16]{3,2,4,1,0} copy(bcast5) convert13 = f32[16,3,6,128,16]{3,2,4,1,0} convert(copy2) p5 = bf16[3,6,128]{2,1,0} parameter(5) bcast6 = bf16[3,6,128,16]{2,1,3,0} broadcast(p5), dimensions={0,1,2} convert11 = f32[3,6,128,16]{2,1,3,0} convert(bcast6) bcast7 = f32[16,3,6,128,16]{3,2,4,1,0} broadcast(convert11), dimensions={1,2,3,4} multiply3 = f32[16,3,6,128,16]{3,2,4,1,0} multiply(convert13, bcast7) convert12 = bf16[16,3,6,128,16]{3,2,4,1,0} convert(multiply3) ROOT bcast8 = bf16[16,16,3,1,6,128]{5,4,1,3,2,0} bitcast(convert12) } ENTRY e { p0 = s8[3,12288,6,128]{3,2,1,0} parameter(0) p1 = bf16[12288]{0} parameter(1) p2 = bf16[16]{0} parameter(2) p3 = bf16[16,12288]{1,0} parameter(3) p4 = bf16[16,12288]{1,0} parameter(4) p5 = bf16[3,6,128]{2,1,0} parameter(5) ROOT fusion = bf16[16,16,3,1,6,128]{5,4,1,3,2,0} fusion(p0, p1, p2, p3, p4, p5), kind=kLoop, calls=f } )")); EXPECT_THAT(input_indexing.indexing_maps, ElementsAre(ElementsAre(MatchIndexingMap(R"( (d0, d1, d2, d3, d4, d5)[s0] -> (d2, d0 * 768 + s0, d4, d5) domain: d0 in [0, 16) d1 in [0, 16) d2 in [0, 3) d3 in [0, 1) d4 in [0, 6) d5 in [0, 128) s0 in [0, 768) )")), ElementsAre(MatchIndexingMap(R"( (d0, d1, d2, d3, d4, d5)[s0] -> (d0 * 768 + s0) domain: d0 in [0, 16) d1 in [0, 16) d2 in [0, 3) d3 in [0, 1) d4 in [0, 6) d5 in [0, 128) s0 in [0, 768) )")), ElementsAre(MatchIndexingMap(R"( (d0, d1, d2, d3, d4, d5) -> (d1) domain: d0 in [0, 16) d1 in [0, 16) d2 in [0, 3) d3 in [0, 1) d4 in [0, 6) d5 in [0, 128) )")), ElementsAre(MatchIndexingMap
2,157
cpp
tensorflow/tensorflow
command_buffer_cmd
third_party/xla/xla/service/gpu/runtime/command_buffer_cmd.cc
third_party/xla/xla/service/gpu/runtime/command_buffer_cmd_test.cc
#ifndef XLA_SERVICE_GPU_RUNTIME_COMMAND_BUFFER_CMD_H_ #define XLA_SERVICE_GPU_RUNTIME_COMMAND_BUFFER_CMD_H_ #include <algorithm> #include <cstddef> #include <cstdint> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/ffi/api/c_api.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/service/buffer_assignment.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/gpu/buffer_allocations.h" #include "xla/service/gpu/kernels/custom_kernel.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/gpu/runtime/custom_call_thunk.h" #include "xla/service/gpu/runtime/nccl_api.h" #include "xla/service/gpu/runtime/nccl_clique_key.h" #include "xla/service/gpu/runtime/nccl_collective_thunk.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/stream_executor/command_buffer.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" namespace xla::gpu { class CommandBufferCmd { public: explicit CommandBufferCmd(ExecutionStreamId execution_stream_id) : execution_stream_id_(execution_stream_id) {} virtual ~CommandBufferCmd() = default; enum class MemoryAccess { kRead, kWrite }; struct BufferUsage { BufferUsage(BufferAllocation::Slice slice, MemoryAccess access) : slice(slice), access(access) {} template <typename H> friend H AbslHashValue(H h, const BufferUsage& buffer) { return H::combine(std::move(h), buffer.slice, buffer.access); } bool operator==(const BufferUsage& other) const { return slice == other.slice && access == other.access; } BufferAllocation::Slice slice; MemoryAccess access; }; using BufferUsageVector = absl::InlinedVector<BufferUsage, 4>; class State { public: virtual ~State() = default; }; class StateManager { public: virtual ~StateManager() = default; template <typename ConcreteState> ConcreteState* GetOrNull(const CommandBufferCmd* cmd) { static_assert(std::is_base_of_v<State, ConcreteState>); return static_cast<ConcreteState*>(GetOrNull(cmd)); } template <typename ConcreteState> ConcreteState* GetOrCreate( const CommandBufferCmd* cmd, absl::FunctionRef<std::unique_ptr<ConcreteState>()> create) { static_assert(std::is_base_of_v<State, ConcreteState>); return static_cast<ConcreteState*>(GetOrCreate( cmd, [&]() -> std::unique_ptr<State> { return create(); })); } template <typename ConcreteState> ConcreteState* GetOrCreate(const CommandBufferCmd* cmd) { static_assert(std::is_base_of_v<State, ConcreteState>); return static_cast<ConcreteState*>( GetOrCreate(cmd, [] { return std::make_unique<ConcreteState>(); })); } private: State* GetOrNull(const CommandBufferCmd* cmd); State* GetOrCreate(const CommandBufferCmd* cmd, absl::FunctionRef<std::unique_ptr<State>()> create); absl::flat_hash_map<const CommandBufferCmd*, std::unique_ptr<State>> state_; }; struct RecordParams { StateManager& state; se::CommandBuffer::ExecutionScopeId execution_scope_id = se::CommandBuffer::kDefaulExecutionScope; }; virtual absl::Status Prepare(const Thunk::PrepareParams& params, Thunk::ResourceRequests& resource_requests) { return absl::OkStatus(); } virtual absl::Status Initialize(const Thunk::InitializeParams& params, StateManager& state) { return absl::OkStatus(); } virtual absl::Status Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) = 0; virtual bool force_update() { return false; } virtual BufferUsageVector buffers() = 0; virtual bool IsNestedCommandBuffer() const { return false; } se::CommandBuffer::ExecutionScopeId GetExecutionScope( const RecordParams& record_params, ExecutionStreamId execution_stream_id) const; virtual se::CommandBuffer::ExecutionScopeId GetExecutionScope( const CommandBufferCmd::RecordParams& record_params) const; std::string_view profile_annotation() const { return profile_annotation_; } void set_profile_annotation(std::string_view profile_annotation) { profile_annotation_ = profile_annotation; } ExecutionStreamId execution_stream_id() const { return execution_stream_id_; } private: std::string profile_annotation_; ExecutionStreamId execution_stream_id_; }; class CommandBufferCmdSequence { public: enum class SynchronizationMode { kSerialize, kAutomatic }; enum class RecordMode { kExclusive, kConditional }; explicit CommandBufferCmdSequence(SynchronizationMode synchronization_mode = SynchronizationMode::kAutomatic); void Append(std::unique_ptr<CommandBufferCmd> cmd); template <typename T, typename... Args> void Emplace(Args... args) { Append(std::make_unique<T>(std::forward<Args>(args)...)); } absl::Status Prepare(const Thunk::PrepareParams& params, Thunk::ResourceRequests& resource_requests); absl::Status Initialize(const Thunk::InitializeParams& params, CommandBufferCmd::StateManager& state); absl::Status Record(const Thunk::ExecuteParams& execute_params, const CommandBufferCmd::RecordParams& record_params, se::CommandBuffer* command_buffer, RecordMode mode = RecordMode::kExclusive); const absl::flat_hash_set<CommandBufferCmd::BufferUsage>& buffers() const; const absl::flat_hash_set<BufferAllocation::Index>& allocs_indices() const; std::vector<bool> barriers() const; bool empty() const { return commands_.empty(); } size_t size() const { return commands_.size(); } bool force_update() const { return absl::c_any_of(commands_, [](const CommandInfo& cmd_info) { return cmd_info.cmd->force_update(); }); } private: struct CommandInfo { std::unique_ptr<CommandBufferCmd> cmd; bool requires_barrier; }; bool HasConflicts(ExecutionStreamId execution_stream_id, const CommandBufferCmd::BufferUsageVector& buffers); void TrackBuffers(ExecutionStreamId execution_stream_id, const CommandBufferCmd::BufferUsageVector& buffers); void ClearTrackedBuffers(ExecutionStreamId execution_stream_id); SynchronizationMode synchronization_mode_; std::vector<CommandInfo> commands_; absl::flat_hash_set<CommandBufferCmd::BufferUsage> buffers_; absl::flat_hash_set<BufferAllocation::Index> allocs_indices_; struct ReadWriteSet { absl::flat_hash_set<BufferAllocation::Slice> read; absl::flat_hash_set<BufferAllocation::Slice> write; }; absl::flat_hash_map<ExecutionStreamId, ReadWriteSet> read_write_sets_; }; class TracedCommandBuffer : public CommandBufferCmd::State { public: explicit TracedCommandBuffer(CommandBufferCmd::BufferUsageVector buffers, int64_t capacity = 16); absl::StatusOr<se::CommandBuffer*> GetOrTraceCommandBuffer( const BufferAllocations* buffer_allocation, se::StreamExecutor* executor, se::Stream* stream, absl::FunctionRef<absl::Status(se::Stream*)> trace); private: std::vector<BufferAllocation::Index> allocs_indices_; struct Entry { std::vector<se::DeviceMemoryBase> recorded_allocs; std::unique_ptr<se::CommandBuffer> command_buffer; }; int64_t capacity_; std::vector<Entry> entries_; }; class TracedCommandBufferCmd : public CommandBufferCmd { protected: explicit TracedCommandBufferCmd(ExecutionStreamId execution_stream_id); absl::Status AddTracedCommandBuffer( const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer, absl::FunctionRef<absl::Status(se::Stream*)> trace); }; class ComputationIdCmd : public CommandBufferCmd { public: enum class Kind { kReplica, kPartition }; ComputationIdCmd(ExecutionStreamId execution_stream_id, BufferAllocation::Slice dest, Kind kind); absl::Status Initialize(const Thunk::InitializeParams& params, StateManager& state) override; absl::Status Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) override; BufferUsageVector buffers() override; private: BufferAllocation::Slice dest_; Kind kind_; absl::Mutex mutex_; absl::flat_hash_map<se::StreamExecutor*, std::unique_ptr<se::Kernel>> memset_kernels_ ABSL_GUARDED_BY(mutex_); }; class LaunchCmd : public CommandBufferCmd { public: LaunchCmd(ExecutionStreamId execution_stream_id, std::string kernel_name, absl::Span<const BufferAllocation::Slice> args, absl::Span<const MemoryAccess> args_access, LaunchDimensions dims, int64_t shmem_bytes); absl::Status Initialize(const Thunk::InitializeParams& params, StateManager& state) override; absl::Status Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) override; BufferUsageVector buffers() override; private: std::string kernel_name_; std::vector<BufferAllocation::Slice> args_; std::vector<MemoryAccess> args_access_; LaunchDimensions dims_; int64_t shmem_bytes_; absl::Mutex mutex_; absl::flat_hash_map<se::StreamExecutor*, std::unique_ptr<se::Kernel>> kernels_ ABSL_GUARDED_BY(mutex_); }; class CustomKernelLaunchCmd : public CommandBufferCmd { public: CustomKernelLaunchCmd(ExecutionStreamId execution_stream_id, absl::Span<const BufferAllocation::Slice> args, absl::Span<const MemoryAccess> args_access, CustomKernel custom_kernel); absl::Status Initialize(const Thunk::InitializeParams& params, StateManager& state) override; absl::Status Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) override; BufferUsageVector buffers() override; private: std::vector<BufferAllocation::Slice> args_; std::vector<MemoryAccess> args_access_; CustomKernel custom_kernel_; absl::Mutex mutex_; absl::flat_hash_map<se::StreamExecutor*, std::unique_ptr<se::Kernel>> kernels_ ABSL_GUARDED_BY(mutex_); }; class MemcpyDeviceToDeviceCmd : public CommandBufferCmd { public: MemcpyDeviceToDeviceCmd(ExecutionStreamId execution_stream_id, BufferAllocation::Slice dst, BufferAllocation::Slice src, int64_t num_bytes); absl::Status Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) override; BufferUsageVector buffers() override; private: BufferAllocation::Slice dst_; BufferAllocation::Slice src_; int64_t num_bytes_; }; class MemzeroCmd : public CommandBufferCmd { public: MemzeroCmd(ExecutionStreamId execution_stream_id, BufferAllocation::Slice dst); absl::Status Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) override; BufferUsageVector buffers() override; private: BufferAllocation::Slice dst_; }; class Memset32Cmd : public CommandBufferCmd { public: Memset32Cmd(ExecutionStreamId execution_stream_id, BufferAllocation::Slice dst, uint32_t bit_pattern); absl::Status Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) override; BufferUsageVector buffers() override; private: BufferAllocation::Slice dst_; uint32_t bit_pattern_; }; class IfCmd : public CommandBufferCmd { public: IfCmd(ExecutionStreamId execution_stream_id, BufferAllocation::Slice pred, CommandBufferCmdSequence then_commands); absl::Status Initialize(const Thunk::InitializeParams& params, StateManager& state) override; absl::Status Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) override; bool force_update() override; BufferUsageVector buffers() override; private: BufferAllocation::Slice pred_; CommandBufferCmdSequence then_commands_; }; class IfElseCmd : public CommandBufferCmd { public: IfElseCmd(ExecutionStreamId execution_stream_id, BufferAllocation::Slice pred, CommandBufferCmdSequence then_commands, CommandBufferCmdSequence else_commands); absl::Status Initialize(const Thunk::InitializeParams& params, StateManager& state) override; absl::Status Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) override; bool force_update() override; BufferUsageVector buffers() override; private: BufferAllocation::Slice pred_; CommandBufferCmdSequence then_commands_; CommandBufferCmdSequence else_commands_; }; class CaseCmd : public CommandBufferCmd { public: CaseCmd(ExecutionStreamId execution_stream_id, BufferAllocation::Slice index, std::vector<CommandBufferCmdSequence> branches_commands); absl::Status Initialize(const Thunk::InitializeParams& params, StateManager& state) override; absl::Status Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) override; bool force_update() override; BufferUsageVector buffers() override; private: BufferAllocation::Slice index_; std::vector<CommandBufferCmdSequence> branches_commands_; }; class ForCmd : public CommandBufferCmd { public: ForCmd(ExecutionStreamId execution_stream_id, int32_t num_iterations, BufferAllocation::Slice loop_counter, CommandBufferCmdSequence body_commands); absl::Status Initialize(const Thunk::InitializeParams& params, StateManager& state) override; absl::Status Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) override; bool force_update() override; BufferUsageVector buffers() override; private: int32_t num_iterations_; BufferAllocation::Slice loop_counter_; CommandBufferCmdSequence body_commands_; }; class WhileCmd : public CommandBufferCmd { public: WhileCmd(ExecutionStreamId execution_stream_id, BufferAllocation::Slice pred, CommandBufferCmdSequence cond_commands, CommandBufferCmdSequence body_commands); absl::Status Initialize(const Thunk::InitializeParams& params, StateManager& state) override; absl::Status Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) override; bool force_update() override; BufferUsageVector buffers() override; private: BufferAllocation::Slice pred_; CommandBufferCmdSequence cond_commands_; CommandBufferCmdSequence body_commands_; }; class GemmCmd : public TracedCommandBufferCmd { public: GemmCmd(ExecutionStreamId execution_stream_id, GemmConfig config, const BufferAllocation::Slice& lhs_buffer, const BufferAllocation::Slice& rhs_buffer, const BufferAllocation::Slice& output_buffer, const BufferAllocation::Slice& workspace, bool deterministic); absl::Status Initialize(const Thunk::InitializeParams& params, StateManager& state) override; absl::Status Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) override; BufferUsageVector buffers() override; bool IsNestedCommandBuffer() const final { return true; } private: const GemmConfig config_; const BufferAllocation::Slice lhs_buffer_; const BufferAllocation::Slice rhs_buffer_; const BufferAllocation::Slice output_buffer_; const BufferAllocation::Slice workspace_; const bool deterministic_; }; class CublasLtCmd : public TracedCommandBufferCmd { public: CublasLtCmd(ExecutionStreamId execution_stream_id, GemmConfig gemm_config, se::gpu::BlasLt::Epilogue epilogue, int64_t algorithm_idx, BufferAllocation::Slice a_buffer, BufferAllocation::Slice b_buffer, BufferAllocation::Slice c_buffer, BufferAllocation::Slice d_buffer, BufferAllocation::Slice bias_buffer , BufferAllocation::Slice aux_buffer , BufferAllocation::Slice a_scale_buffer , BufferAllocation::Slice b_scale_buffer , BufferAllocation::Slice c_scale_buffer , BufferAllocation::Slice d_scale_buffer , BufferAllocation::Slice d_amax_buffer , BufferAllocation::Slice workspace_buffer); absl::Status Initialize(const Thunk::InitializeParams& params, StateManager& state) override; absl::Status Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) override; BufferUsageVector buffers() override; bool IsNestedCommandBuffer() const final { return true; } private: absl::StatusOr<se::gpu::BlasLt::MatmulPlan*> GetMatmulPlan( const stream_executor::Stream* stream); absl::StatusOr<se::gpu::BlasLt::MatmulAlgorithm> GetMatmulAlgorithm( const se::gpu::BlasLt::MatmulPlan* plan, int64_t max_workspace); absl::flat_hash_map<const stream_executor::Stream*, se::gpu::BlasLt::MatmulPlanPtr> matmul_plans_cache_; absl::flat_hash_map<const se::gpu::BlasLt::MatmulPlan*, se::gpu::BlasLt::MatmulAlgorithm> matmul_algorithm_cache_; const GemmConfig gemm_config_; const se::gpu::BlasLt::Epilogue epilogue_; const int64_t algorithm_idx_; const BufferAllocation::Slice a_buffer_; const BufferAllocation::Slice b_buffer_; const BufferAllocation::Slice c_buffer_; const BufferAllocation::Slice d_buffer_; const BufferAllocation::Slice bias_buffer_; const BufferAllocation::Slice aux_buffer_; const BufferAllocation::Slice a_scale_buffer_; const BufferAllocation::Slice b_scale_buffer_; const BufferAllocation::Slice c_scale_buffer_; const BufferAllocation::Slice d_scale_buffer_; const BufferAllocation::Slice d_amax_buffer_; const BufferAllocation::Slice workspace_buffer_; }; class CuDnnCmd : public TracedCommandBufferCmd { public: CuDnnCmd(ExecutionStreamId execution_stream_id, absl::Span<const BufferAllocation::Slice> args, std::shared_ptr<se::dnn::LazyDnnGraph> graph); absl::Status Initialize(const Thunk::InitializeParams& params, StateManager& state) override; absl::Status Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) override; BufferUsageVector buffers() override; bool IsNestedCommandBuffer() const final { return true; } private: std::vector<BufferAllocation::Slice> args_; con
#include "xla/service/gpu/runtime/command_buffer_cmd.h" #include <array> #include <cstdint> #include <vector> #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "absl/strings/ascii.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/buffer_allocations.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/service/platform_util.h" #include "xla/service/service_executable_run_options.h" #include "xla/stream_executor/command_buffer.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/gpu/gpu_test_kernels.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/stream_executor.h" #include "xla/stream_executor/stream_executor_memory_allocator.h" #include "xla/types.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" namespace xla::gpu { using BufferUsage = CommandBufferCmd::BufferUsage; using BufferUsageVector = CommandBufferCmd::BufferUsageVector; using MemoryAccess = CommandBufferCmd::MemoryAccess; static se::StreamExecutor* GpuExecutor() { auto name = absl::AsciiStrToUpper(PlatformUtil::CanonicalPlatformName("gpu").value()); auto* platform = se::PlatformManager::PlatformWithName(name).value(); return platform->ExecutorForDevice(0).value(); } static constexpr auto s0 = ExecutionStreamId(0); static constexpr auto s1 = ExecutionStreamId(1); struct TestOnlyCommandBufferCmd : public CommandBufferCmd { TestOnlyCommandBufferCmd(ExecutionStreamId execution_stream_id, BufferUsageVector buffer_usage) : CommandBufferCmd(execution_stream_id), buffer_usage(buffer_usage) {} absl::Status Record(const Thunk::ExecuteParams&, const RecordParams&, se::CommandBuffer*) override { return absl::OkStatus(); } BufferUsageVector buffers() override { return buffer_usage; } BufferUsageVector buffer_usage; }; TEST(CommandBufferCmdTest, SerializeExecution) { BufferAllocation alloc0(0, 1024, 0); auto slice0 = BufferAllocation::Slice(&alloc0, 0, 100); auto slice1 = BufferAllocation::Slice(&alloc0, 50, 100); auto use0 = BufferUsage(slice0, MemoryAccess::kRead); auto use1 = BufferUsage(slice1, MemoryAccess::kRead); CommandBufferCmdSequence commands( CommandBufferCmdSequence::SynchronizationMode::kSerialize); commands.Emplace<TestOnlyCommandBufferCmd>(s0, BufferUsageVector{use0}); commands.Emplace<TestOnlyCommandBufferCmd>(s0, BufferUsageVector{use1}); ASSERT_EQ(commands.barriers().size(), 2); EXPECT_EQ(commands.barriers().at(0), false); EXPECT_EQ(commands.barriers().at(1), true); } TEST(CommandBufferCmdTest, NoReadBarrier) { BufferAllocation alloc0(0, 1024, 0); auto slice0 = BufferAllocation::Slice(&alloc0, 0, 100); auto slice1 = BufferAllocation::Slice(&alloc0, 50, 100); auto use0 = BufferUsage(slice0, MemoryAccess::kRead); auto use1 = BufferUsage(slice1, MemoryAccess::kRead); CommandBufferCmdSequence commands; commands.Emplace<TestOnlyCommandBufferCmd>(s0, BufferUsageVector{use0}); commands.Emplace<TestOnlyCommandBufferCmd>(s0, BufferUsageVector{use1}); ASSERT_EQ(commands.barriers().size(), 2); EXPECT_EQ(commands.barriers().at(0), false); EXPECT_EQ(commands.barriers().at(1), false); } TEST(CommandBufferCmdTest, NoWriteBarrier) { BufferAllocation alloc0(0, 1024, 0); auto slice0 = BufferAllocation::Slice(&alloc0, 0, 100); auto slice1 = BufferAllocation::Slice(&alloc0, 200, 100); auto use0 = BufferUsage(slice0, MemoryAccess::kWrite); auto use1 = BufferUsage(slice1, MemoryAccess::kWrite); CommandBufferCmdSequence commands; commands.Emplace<TestOnlyCommandBufferCmd>(s0, BufferUsageVector{use0}); commands.Emplace<TestOnlyCommandBufferCmd>(s0, BufferUsageVector{use1}); ASSERT_EQ(commands.barriers().size(), 2); EXPECT_EQ(commands.barriers().at(0), false); EXPECT_EQ(commands.barriers().at(1), false); } TEST(CommandBufferCmdTest, WriteConflictBarrier) { BufferAllocation alloc0(0, 1024, 0); auto slice0 = BufferAllocation::Slice(&alloc0, 0, 100); auto slice1 = BufferAllocation::Slice(&alloc0, 50, 100); auto use0 = BufferUsage(slice0, MemoryAccess::kRead); auto use1 = BufferUsage(slice0, MemoryAccess::kRead); auto use2 = BufferUsage(slice1, MemoryAccess::kWrite); CommandBufferCmdSequence commands; commands.Emplace<TestOnlyCommandBufferCmd>(s0, BufferUsageVector{use0}); commands.Emplace<TestOnlyCommandBufferCmd>(s0, BufferUsageVector{use1}); commands.Emplace<TestOnlyCommandBufferCmd>(s0, BufferUsageVector{use2}); ASSERT_EQ(commands.barriers().size(), 3); EXPECT_EQ(commands.barriers().at(0), false); EXPECT_EQ(commands.barriers().at(1), false); EXPECT_EQ(commands.barriers().at(2), true); } TEST(CommandBufferCmdTest, NoWriteConflictsAcrossStreams) { BufferAllocation alloc0(0, 1024, 0); auto slice0 = BufferAllocation::Slice(&alloc0, 0, 100); auto slice1 = BufferAllocation::Slice(&alloc0, 50, 100); auto use0 = BufferUsage(slice0, MemoryAccess::kRead); auto use1 = BufferUsage(slice1, MemoryAccess::kWrite); CommandBufferCmdSequence commands; commands.Emplace<TestOnlyCommandBufferCmd>(s0, BufferUsageVector{use0}); commands.Emplace<TestOnlyCommandBufferCmd>(s1, BufferUsageVector{use1}); ASSERT_EQ(commands.barriers().size(), 2); EXPECT_EQ(commands.barriers().at(0), false); EXPECT_EQ(commands.barriers().at(1), false); } TEST(CommandBufferCmdTest, MemcpyCmd) { se::StreamExecutor* executor = GpuExecutor(); auto stream = executor->CreateStream().value(); int64_t length = 4; int64_t byte_length = sizeof(int32_t) * length; se::DeviceMemory<int32_t> a = executor->AllocateArray<int32_t>(length, 0); se::DeviceMemory<int32_t> b = executor->AllocateArray<int32_t>(length, 0); TF_ASSERT_OK(stream->Memset32(&a, 42, byte_length)); TF_ASSERT_OK(stream->MemZero(&b, byte_length)); BufferAllocation alloc_a(0, byte_length, 0); BufferAllocation alloc_b(1, byte_length, 0); BufferAllocation::Slice slice_a(&alloc_a, 0, byte_length); BufferAllocation::Slice slice_b(&alloc_b, 0, byte_length); CommandBufferCmdSequence commands; commands.Emplace<MemcpyDeviceToDeviceCmd>(s0, slice_b, slice_a, byte_length); ServiceExecutableRunOptions run_options; se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations({a, b}, 0, &allocator); CommandBufferCmd::StateManager state; Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); CommandBufferCmd::RecordParams record_params = {state}; auto command_buffer = executor->CreateCommandBuffer(se::CommandBuffer::Mode::kPrimary).value(); TF_ASSERT_OK(commands.Record(params, record_params, command_buffer.get())); TF_ASSERT_OK(executor->Submit(stream.get(), *command_buffer)); std::vector<int32_t> dst(4, 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), b, byte_length)); ASSERT_EQ(dst, std::vector<int32_t>(4, 42)); } TEST(CommandBufferCmdTest, BarrierCmd) { se::StreamExecutor* executor = GpuExecutor(); auto stream = executor->CreateStream().value(); int64_t length = 4; int64_t byte_length = sizeof(int32_t) * length; se::DeviceMemory<int32_t> a = executor->AllocateArray<int32_t>(length, 0); se::DeviceMemory<int32_t> b = executor->AllocateArray<int32_t>(length, 0); se::DeviceMemory<int32_t> c = executor->AllocateArray<int32_t>(length, 0); se::DeviceMemory<int32_t> d = executor->AllocateArray<int32_t>(length, 0); se::DeviceMemory<int32_t> e = executor->AllocateArray<int32_t>(length, 0); TF_ASSERT_OK(stream->Memset32(&a, 42, byte_length)); TF_ASSERT_OK(stream->MemZero(&b, byte_length)); TF_ASSERT_OK(stream->MemZero(&c, byte_length)); TF_ASSERT_OK(stream->MemZero(&d, byte_length)); TF_ASSERT_OK(stream->MemZero(&e, byte_length)); BufferAllocation alloc_a(0, byte_length, 0); BufferAllocation alloc_b(1, byte_length, 0); BufferAllocation alloc_c(2, byte_length, 0); BufferAllocation alloc_d(3, byte_length, 0); BufferAllocation alloc_e(4, byte_length, 0); BufferAllocation::Slice slice_a(&alloc_a, 0, byte_length); BufferAllocation::Slice slice_b(&alloc_b, 0, byte_length); BufferAllocation::Slice slice_c(&alloc_c, 0, byte_length); BufferAllocation::Slice slice_d(&alloc_d, 0, byte_length); BufferAllocation::Slice slice_e(&alloc_e, 0, byte_length); CommandBufferCmdSequence commands; commands.Emplace<MemcpyDeviceToDeviceCmd>(s0, slice_b, slice_a, byte_length); commands.Emplace<BarrierCmd>(s1, s0); commands.Emplace<MemcpyDeviceToDeviceCmd>(s1, slice_c, slice_b, byte_length); commands.Emplace<BarrierCmd>(s0, s1); commands.Emplace<MemcpyDeviceToDeviceCmd>(s0, slice_d, slice_c, byte_length); commands.Emplace<BarrierCmd>(s1, s0); commands.Emplace<MemcpyDeviceToDeviceCmd>(s1, slice_e, slice_d, byte_length); ServiceExecutableRunOptions run_options; se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations({a, b, c, d, e}, 0, &allocator); CommandBufferCmd::StateManager state; Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); CommandBufferCmd::RecordParams record_params = {state}; auto command_buffer = executor->CreateCommandBuffer(se::CommandBuffer::Mode::kPrimary).value(); TF_ASSERT_OK(commands.Record(params, record_params, command_buffer.get())); TF_ASSERT_OK(executor->Submit(stream.get(), *command_buffer)); std::vector<int32_t> dst_b(4, 0); std::vector<int32_t> dst_c(4, 0); std::vector<int32_t> dst_d(4, 0); std::vector<int32_t> dst_e(4, 0); TF_ASSERT_OK(stream->Memcpy(dst_b.data(), b, byte_length)); TF_ASSERT_OK(stream->Memcpy(dst_c.data(), c, byte_length)); TF_ASSERT_OK(stream->Memcpy(dst_d.data(), d, byte_length)); TF_ASSERT_OK(stream->Memcpy(dst_e.data(), e, byte_length)); ASSERT_EQ(dst_b, std::vector<int32_t>(4, 42)); ASSERT_EQ(dst_c, std::vector<int32_t>(4, 42)); ASSERT_EQ(dst_d, std::vector<int32_t>(4, 42)); ASSERT_EQ(dst_e, std::vector<int32_t>(4, 42)); } TEST(CommandBufferCmdTest, LaunchCmd) { se::StreamExecutor* executor = GpuExecutor(); auto stream = executor->CreateStream().value(); int64_t length = 4; int64_t byte_length = sizeof(int32_t) * length; se::DeviceMemory<int32_t> a = executor->AllocateArray<int32_t>(length, 0); se::DeviceMemory<int32_t> b = executor->AllocateArray<int32_t>(length, 0); TF_ASSERT_OK(stream->Memset32(&a, 42, byte_length)); TF_ASSERT_OK(stream->MemZero(&b, byte_length)); BufferAllocation alloc_a(0, byte_length, 0); BufferAllocation alloc_b(1, byte_length, 0); BufferAllocation::Slice slice_a(&alloc_a, 0, byte_length); BufferAllocation::Slice slice_b(&alloc_b, 0, byte_length); auto args = {slice_a, slice_a, slice_b}; auto args_access = {MemoryAccess::kRead, MemoryAccess::kRead, MemoryAccess::kWrite}; CommandBufferCmdSequence commands; commands.Emplace<LaunchCmd>(s0, "add", args, args_access, LaunchDimensions(1, 4), 0); Thunk::ExecutableSource source = { #if defined(GOOGLE_CUDA) se::gpu::internal::kAddI32Kernel, {} #elif defined(TENSORFLOW_USE_ROCM) {}, se::gpu::internal::kAddI32KernelModule #endif }; CommandBufferCmd::StateManager state; TF_ASSERT_OK(commands.Initialize({executor, source}, state)); ServiceExecutableRunOptions run_options; se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations({a, b}, 0, &allocator); Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); CommandBufferCmd::RecordParams record_params = {state}; auto command_buffer = executor->CreateCommandBuffer(se::CommandBuffer::Mode::kPrimary).value(); TF_ASSERT_OK(commands.Record(params, record_params, command_buffer.get())); TF_ASSERT_OK(executor->Submit(stream.get(), *command_buffer)); std::vector<int32_t> dst(4, 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), b, byte_length)); ASSERT_EQ(dst, std::vector<int32_t>(4, 42 + 42)); } TEST(CommandBufferCmdStateManageTest, GetOrCreateState) { struct TestState : public CommandBufferCmd::State { int32_t value = 0; }; CommandBufferCmd* cmd = reinterpret_cast<CommandBufferCmd*>(0x1234567); CommandBufferCmd::StateManager state_manager; auto* state0 = state_manager.GetOrNull<TestState>(cmd); ASSERT_EQ(state0, nullptr); auto* state1 = state_manager.GetOrCreate<TestState>(cmd); ASSERT_EQ(state1->value, 0); state1->value += 42; auto* state2 = state_manager.GetOrCreate<TestState>(cmd); ASSERT_EQ(state2->value, 42); ASSERT_EQ(state1, state2); } TEST(TracedCommandBuffer, GetOrUpdateCommandBuffer) { auto run_traced_test = [](int trace_cache_size) { se::StreamExecutor* executor = GpuExecutor(); auto stream = executor->CreateStream().value(); BufferAllocation alloc0(0, 1024, 0); BufferAllocation alloc1(1, 1024, 0); CommandBufferCmd::BufferUsageVector buffers = { {BufferAllocation::Slice(&alloc0, 0, 1024), MemoryAccess::kRead}, {BufferAllocation::Slice(&alloc1, 0, 1024), MemoryAccess::kWrite}}; TracedCommandBuffer traced_cmd_buffer(buffers, trace_cache_size); se::DeviceMemoryBase mem0(reinterpret_cast<void*>(0x01234567)); se::DeviceMemoryBase mem1(reinterpret_cast<void*>(0x12345670)); se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations({mem0, mem1}, 0, &allocator); int64_t num_calls = 0; auto trace = [&](se::Stream*) { num_calls++; return absl::OkStatus(); }; TF_ASSERT_OK_AND_ASSIGN(auto* command_buffer0, traced_cmd_buffer.GetOrTraceCommandBuffer( &allocations, executor, stream.get(), trace)); TF_ASSERT_OK_AND_ASSIGN(auto* command_buffer1, traced_cmd_buffer.GetOrTraceCommandBuffer( &allocations, executor, stream.get(), trace)); ASSERT_EQ(command_buffer0, command_buffer1); EXPECT_EQ(num_calls, 1); se::DeviceMemoryBase mem2(reinterpret_cast<void*>(0x23456701)); allocations = BufferAllocations({mem0, mem2}, 0, &allocator); TF_ASSERT_OK_AND_ASSIGN(auto* command_buffer2, traced_cmd_buffer.GetOrTraceCommandBuffer( &allocations, executor, stream.get(), trace)); ASSERT_NE(command_buffer0, command_buffer2); EXPECT_EQ(num_calls, 2); allocations = BufferAllocations({mem0, mem1}, 0, &allocator); TF_ASSERT_OK_AND_ASSIGN(auto* command_buffer3, traced_cmd_buffer.GetOrTraceCommandBuffer( &allocations, executor, stream.get(), trace)); ASSERT_EQ(command_buffer0, command_buffer3); EXPECT_EQ(num_calls, 2); allocations = BufferAllocations({mem0, mem0}, 0, &allocator); TF_ASSERT_OK_AND_ASSIGN(auto* command_buffer4, traced_cmd_buffer.GetOrTraceCommandBuffer( &allocations, executor, stream.get(), trace)); ASSERT_NE(command_buffer4, command_buffer3); ASSERT_NE(command_buffer4, command_buffer2); EXPECT_EQ(num_calls, 3); allocations = BufferAllocations({mem0, mem1}, 0, &allocator); TF_ASSERT_OK_AND_ASSIGN(auto* command_buffer5, traced_cmd_buffer.GetOrTraceCommandBuffer( &allocations, executor, stream.get(), trace)); ASSERT_EQ(command_buffer0, command_buffer5); EXPECT_EQ(num_calls, 3); }; run_traced_test(2); run_traced_test(3); } static void BM_GetOrTraceCommandBuffer(benchmark::State& state) { se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); BufferAllocation alloc0(0, 1024, 0); BufferAllocation alloc1(1, 1024, 0); CommandBufferCmd::BufferUsageVector buffers = { {BufferAllocation::Slice(&alloc0, 0, 1024), MemoryAccess::kRead}, {BufferAllocation::Slice(&alloc1, 0, 1024), MemoryAccess::kWrite}}; se::DeviceMemoryBase mem0(reinterpret_cast<void*>(0x01234567)); se::DeviceMemoryBase mem1(reinterpret_cast<void*>(0x12345670)); se::StreamExecutorMemoryAllocator allocator(executor); std::array<BufferAllocations, 4> allocations = { BufferAllocations({mem0, mem1}, 0, &allocator), BufferAllocations({mem1, mem0}, 0, &allocator), BufferAllocations({mem0, mem0}, 0, &allocator), BufferAllocations({mem1, mem1}, 0, &allocator), }; int32_t index = 0; TracedCommandBuffer traced_cmd_buffer(buffers); auto trace = [](se::Stream*) { return absl::OkStatus(); }; absl::FunctionRef<absl::Status(se::Stream*)> trace_ref(trace); for (auto s : state) { TF_CHECK_OK(traced_cmd_buffer .GetOrTraceCommandBuffer(&allocations[index++ % 4], executor, stream.get(), trace_ref) .status()); } } BENCHMARK(BM_GetOrTraceCommandBuffer); }
2,158
cpp
tensorflow/tensorflow
command_buffer_thunk
third_party/xla/xla/service/gpu/runtime/command_buffer_thunk.cc
third_party/xla/xla/service/gpu/runtime/command_buffer_thunk_test.cc
#ifndef XLA_SERVICE_GPU_RUNTIME_COMMAND_BUFFER_THUNK_H_ #define XLA_SERVICE_GPU_RUNTIME_COMMAND_BUFFER_THUNK_H_ #include <cstdint> #include <memory> #include <optional> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/synchronization/mutex.h" #include "xla/service/gpu/runtime/command_buffer_cmd.h" #include "xla/service/gpu/runtime/sequential_thunk.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/stream_executor/command_buffer.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/stream_executor.h" namespace xla::gpu { class CommandBufferThunk : public Thunk { public: CommandBufferThunk(CommandBufferCmdSequence commands, ThunkInfo thunk_info, std::unique_ptr<SequentialThunk> thunks = nullptr); const std::unique_ptr<SequentialThunk>& thunks() const { return thunks_; } absl::Status Prepare(const PrepareParams& params, ResourceRequests& resource_requests) override; absl::Status Initialize(const InitializeParams& params) override; absl::Status ExecuteOnStream(const ExecuteParams& params) override; absl::StatusOr<se::DeviceMemoryBase> GetCommandBufferAllocationAddress( const ExecuteParams& params, int64_t index); private: struct ExecutorCommandBuffer { explicit ExecutorCommandBuffer( std::unique_ptr<se::CommandBuffer> command_buffer); bool ShouldUpdateCommandBuffer(const CommandBufferCmdSequence& commands, const Thunk::ExecuteParams& params) ABSL_EXCLUSIVE_LOCKS_REQUIRED(mutex); absl::Mutex mutex; std::unique_ptr<se::CommandBuffer> command_buffer ABSL_GUARDED_BY(mutex); CommandBufferCmd::StateManager state ABSL_GUARDED_BY(mutex); std::vector<se::DeviceMemoryBase> recorded_allocs ABSL_GUARDED_BY(mutex); int64_t num_executions ABSL_GUARDED_BY(mutex) = 0; }; struct State { absl::Mutex mutex; absl::flat_hash_map<se::StreamExecutor*, std::shared_ptr<ExecutorCommandBuffer>> command_buffers ABSL_GUARDED_BY(mutex); }; absl::StatusOr<std::shared_ptr<ExecutorCommandBuffer>> GetOrCreateCommandBuffer(se::StreamExecutor* executor); struct GlobalState; static GlobalState* GetGlobalState(); static void TrackCommandBuffers(std::weak_ptr<State> state); static void EvictCommandBuffers(); CommandBufferCmdSequence commands_; std::unique_ptr<SequentialThunk> thunks_; std::shared_ptr<State> state_; }; } #endif #include "xla/service/gpu/runtime/command_buffer_thunk.h" #include <algorithm> #include <cstdint> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/buffer_allocations.h" #include "xla/service/gpu/runtime/annotation.h" #include "xla/service/gpu/runtime/command_buffer_cmd.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/stream_executor/command_buffer.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/stream_executor.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" #include "tsl/profiler/lib/profiler_lock.h" #include "tsl/profiler/lib/traceme.h" #include "tsl/profiler/lib/traceme_encode.h" namespace xla::gpu { using tsl::profiler::TraceMe; using tsl::profiler::TraceMeEncode; CommandBufferThunk::ExecutorCommandBuffer::ExecutorCommandBuffer( std::unique_ptr<se::CommandBuffer> command_buffer) : command_buffer(std::move(command_buffer)) {} CommandBufferThunk::CommandBufferThunk(CommandBufferCmdSequence commands, ThunkInfo thunk_info, std::unique_ptr<SequentialThunk> thunks) : Thunk(Thunk::kCommandBuffer, std::move(thunk_info)), commands_(std::move(commands)), thunks_(std::move(thunks)), state_(std::make_shared<State>()) { EvictCommandBuffers(); TrackCommandBuffers(state_); } bool CommandBufferThunk::ExecutorCommandBuffer::ShouldUpdateCommandBuffer( const CommandBufferCmdSequence& commands, const Thunk::ExecuteParams& params) { if (commands.force_update()) { return true; } bool should_update = false; const BufferAllocations* allocs = params.buffer_allocations; for (BufferAllocation::Index index : commands.allocs_indices()) { se::DeviceMemoryBase alloc = allocs->GetDeviceAddress(index); if (recorded_allocs.size() <= index) { recorded_allocs.resize(index + 1); should_update = true; } if (!recorded_allocs[index].IsSameAs(alloc)) { recorded_allocs[index] = alloc; should_update = true; } } return should_update; } absl::Status CommandBufferThunk::Prepare(const PrepareParams& params, ResourceRequests& resource_requests) { if (commands_.empty()) return absl::OkStatus(); TF_RETURN_IF_ERROR(commands_.Prepare(params, resource_requests)); if (thunks_) { TF_RETURN_IF_ERROR(thunks_->Prepare(params, resource_requests)); } return absl::OkStatus(); } absl::Status CommandBufferThunk::Initialize(const InitializeParams& params) { if (commands_.empty()) return absl::OkStatus(); TF_ASSIGN_OR_RETURN(std::shared_ptr<ExecutorCommandBuffer> cmd_buffer, GetOrCreateCommandBuffer(params.executor)); absl::MutexLock lock(&cmd_buffer->mutex); TF_RETURN_IF_ERROR(commands_.Initialize(params, cmd_buffer->state)); if (thunks_) { TF_RETURN_IF_ERROR(thunks_->Initialize(params)); } Thunk::ExecuteParams execute_params( params.buffer_allocations, params.stream, params.command_buffer_trace_stream, params.collective_params, params.collective_cliques, nullptr, nullptr, nullptr, nullptr, params.ffi_execution_context); if (cmd_buffer->command_buffer->state() == se::CommandBuffer::State::kCreate && cmd_buffer->ShouldUpdateCommandBuffer(commands_, execute_params)) { VLOG(3) << "Initialize command buffer on device #" << params.executor->device_ordinal() << " by recoding command buffer cmd sequence" << "; num_commands=" << commands_.size(); TraceMe trace([&] { return TraceMeEncode("command_buffer::initialize", {{"device", params.executor->device_ordinal()}, {"num_commands", commands_.size()}}); }); uint64_t start_micros = tsl::Env::Default()->NowMicros(); CommandBufferCmd::RecordParams record_params = {cmd_buffer->state}; TF_RETURN_IF_ERROR(commands_.Record(execute_params, record_params, cmd_buffer->command_buffer.get())); uint64_t end_micros = tsl::Env::Default()->NowMicros(); VLOG(3) << "Initialized command buffer on device #" << params.executor->device_ordinal() << " in " << (end_micros - start_micros) << " μs; num_commands=" << commands_.size(); cmd_buffer->num_executions = 0; } return absl::OkStatus(); } absl::Status CommandBufferThunk::ExecuteOnStream(const ExecuteParams& params) { if (commands_.empty()) return absl::OkStatus(); if (tsl::profiler::ProfilerLock::HasActiveSession() && thunks_) { VLOG(1) << "Execute command buffer thunk as a regular thunk sequence " "because we detected active profiling session"; TF_RETURN_IF_ERROR(thunks_->ExecuteOnStream(params)); return absl::OkStatus(); } se::StreamExecutor* executor = params.stream->parent(); TF_ASSIGN_OR_RETURN(std::shared_ptr<ExecutorCommandBuffer> cmd_buffer, GetOrCreateCommandBuffer(executor)); absl::MutexLock lock(&cmd_buffer->mutex); if (cmd_buffer->ShouldUpdateCommandBuffer(commands_, params)) { VLOG(3) << "Update command buffer on device #" << executor->device_ordinal() << " by recoding command buffer cmd sequence" << " after " << cmd_buffer->num_executions << " executions since last update" << "; num_commands=" << commands_.size(); TraceMe trace([&] { cmd_buffer->mutex.AssertHeld(); return TraceMeEncode("command_buffer::update", {{"device", executor->device_ordinal()}, {"num_commands", commands_.size()}, {"num_executions", cmd_buffer->num_executions}}); }); uint64_t start_micros = tsl::Env::Default()->NowMicros(); CommandBufferCmd::RecordParams record_params = {cmd_buffer->state}; TF_RETURN_IF_ERROR(commands_.Record(params, record_params, cmd_buffer->command_buffer.get())); uint64_t end_micros = tsl::Env::Default()->NowMicros(); VLOG(3) << "Updated command buffer in " << (end_micros - start_micros) << " μs; num_commands=" << commands_.size(); cmd_buffer->num_executions = 0; } ++cmd_buffer->num_executions; VLOG(3) << "Execute command buffer on device #" << executor->device_ordinal() << "; num_executions=" << cmd_buffer->num_executions; TraceMe trace([&] { cmd_buffer->mutex.AssertHeld(); return TraceMeEncode("command_buffer::execute", {{"device", executor->device_ordinal()}, {"num_commands", commands_.size()}, {"num_executions", cmd_buffer->num_executions}}); }); return executor->Submit(params.stream, *cmd_buffer->command_buffer); } absl::StatusOr<std::shared_ptr<CommandBufferThunk::ExecutorCommandBuffer>> CommandBufferThunk::GetOrCreateCommandBuffer(se::StreamExecutor* executor) { absl::MutexLock lock(&state_->mutex); if (auto it = state_->command_buffers.find(executor); it != state_->command_buffers.end()) { return it->second; } TF_ASSIGN_OR_RETURN( auto command_buffer, executor->CreateCommandBuffer(se::CommandBuffer::Mode::kPrimary)); auto emplaced = state_->command_buffers.emplace( executor, std::make_shared<ExecutorCommandBuffer>(std::move(command_buffer))); return emplaced.first->second; } struct CommandBufferThunk::GlobalState { absl::Mutex mutex; std::vector<std::weak_ptr<CommandBufferThunk::State>> state ABSL_GUARDED_BY(mutex); }; CommandBufferThunk::GlobalState* CommandBufferThunk::GetGlobalState() { static auto* global_state = new GlobalState(); return global_state; } void CommandBufferThunk::TrackCommandBuffers( std::weak_ptr<CommandBufferThunk::State> state) { auto* global_state = GetGlobalState(); absl::MutexLock global_state_lock(&global_state->mutex); global_state->state.push_back(state); } void CommandBufferThunk::EvictCommandBuffers() { TraceMe trace([&] { return "EvictCommandBuffers"; }); auto* global_state = GetGlobalState(); absl::MutexLock global_state_lock(&global_state->mutex); VLOG(3) << "Evict command buffer thunk command buffers; tracked thunks = " << global_state->state.size(); global_state->state.erase( std::remove_if(global_state->state.begin(), global_state->state.end(), [](auto& weak_ptr) { return weak_ptr.expired(); }), global_state->state.end()); int64_t num_evicted = 0; for (auto& weak_ptr : global_state->state) { auto ptr = weak_ptr.lock(); if (!ptr) continue; absl::MutexLock state_lock(&ptr->mutex); num_evicted += ptr->command_buffers.size(); ptr->command_buffers.clear(); } if (num_evicted > 0) { VLOG(3) << "Evicted " << num_evicted << " command buffer thunk command buffers"; } } }
#include "xla/service/gpu/runtime/command_buffer_thunk.h" #include <algorithm> #include <cstdint> #include <memory> #include <optional> #include <thread> #include <utility> #include <vector> #include "absl/status/statusor.h" #include "absl/strings/ascii.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/buffer_allocations.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/gpu/runtime/command_buffer_cmd.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/service/platform_util.h" #include "xla/service/service_executable_run_options.h" #include "xla/shape_util.h" #include "xla/stream_executor/blas.h" #include "xla/stream_executor/command_buffer.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/gpu/gpu_test_kernels.h" #include "xla/stream_executor/gpu/gpu_types.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/kernel_spec.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/stream_executor.h" #include "xla/stream_executor/stream_executor_memory_allocator.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #ifdef GOOGLE_CUDA #include "third_party/gpus/cuda/include/cuda.h" #endif namespace xla::gpu { using MemoryAccess = CommandBufferCmd::MemoryAccess; using KernelArgsPacking = se::MultiKernelLoaderSpec::KernelArgsPacking; static se::StreamExecutor* GpuExecutor() { auto name = absl::AsciiStrToUpper(PlatformUtil::CanonicalPlatformName("gpu").value()); auto* platform = se::PlatformManager::PlatformWithName(name).value(); return platform->ExecutorForDevice(0).value(); } static Thunk::ExecutableSource ExecutableSource() { Thunk::ExecutableSource source = { #if defined(GOOGLE_CUDA) se::gpu::internal::kAddI32Kernel, {} #elif defined(TENSORFLOW_USE_ROCM) {}, se::gpu::internal::kAddI32KernelModule #endif }; return source; } static KernelArgsPacking CreateDefaultArgsPacking() { using Packed = absl::StatusOr<std::unique_ptr<se::KernelArgsPackedArrayBase>>; return [=](const se::Kernel& kernel, const se::KernelArgs& args) -> Packed { auto* mem_args = se::Cast<se::KernelArgsDeviceMemoryArray>(&args); return se::PackKernelArgs(mem_args->device_memory_args(), args.number_of_shared_bytes()); }; } static bool IsAtLeastCuda12300() { #if defined(TENSORFLOW_USE_ROCM) return false; #endif #if CUDA_VERSION >= 12030 return true; #endif return false; } static constexpr auto s0 = ExecutionStreamId(0); static constexpr auto s1 = ExecutionStreamId(1); TEST(CommandBufferThunkTest, MemcpyCmd) { se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); int64_t length = 4; int64_t byte_length = sizeof(int32_t) * length; se::DeviceMemory<int32_t> a = executor->AllocateArray<int32_t>(length, 0); se::DeviceMemory<int32_t> b = executor->AllocateArray<int32_t>(length, 0); TF_ASSERT_OK(stream->Memset32(&a, 42, byte_length)); TF_ASSERT_OK(stream->MemZero(&b, byte_length)); BufferAllocation alloc_a(0, byte_length, 0); BufferAllocation alloc_b(1, byte_length, 0); BufferAllocation::Slice slice_a(&alloc_a, 0, byte_length); BufferAllocation::Slice slice_b(&alloc_b, 0, byte_length); CommandBufferCmdSequence commands; commands.Emplace<MemcpyDeviceToDeviceCmd>(s0, slice_b, slice_a, byte_length); CommandBufferThunk thunk(std::move(commands), Thunk::ThunkInfo()); se::StreamExecutorMemoryAllocator allocator(executor); ServiceExecutableRunOptions run_options; BufferAllocations allocations({a, b}, 0, &allocator); Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::vector<int32_t> dst(4, 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), b, byte_length)); ASSERT_EQ(dst, std::vector<int32_t>(4, 42)); TF_ASSERT_OK(stream->MemZero(&b, byte_length)); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::fill(dst.begin(), dst.end(), 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), b, byte_length)); ASSERT_EQ(dst, std::vector<int32_t>(4, 42)); } TEST(CommandBufferThunkTest, MemzeroCmd) { se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); int64_t length = 4; int64_t byte_length = sizeof(int32_t) * length; se::DeviceMemory<int32_t> a = executor->AllocateArray<int32_t>(length, 0); TF_ASSERT_OK(stream->Memset32(&a, 42, byte_length)); BufferAllocation alloc_a(0, byte_length, 0); BufferAllocation::Slice slice_a(&alloc_a, 0, byte_length); CommandBufferCmdSequence commands; commands.Emplace<MemzeroCmd>(s0, slice_a); CommandBufferThunk thunk(std::move(commands), Thunk::ThunkInfo()); ServiceExecutableRunOptions run_options; se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations({a}, 0, &allocator); Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::vector<int32_t> dst(4, 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), a, byte_length)); ASSERT_EQ(dst, std::vector<int32_t>(4, 0)); } TEST(CommandBufferThunkTest, Memset32Cmd) { se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); int64_t length = 4; int64_t byte_length = sizeof(int32_t) * length; se::DeviceMemory<int32_t> a = executor->AllocateArray<int32_t>(length, 0); TF_ASSERT_OK(stream->Memset32(&a, 42, byte_length)); BufferAllocation alloc_a(0, byte_length, 0); BufferAllocation::Slice slice_a(&alloc_a, 0, byte_length); CommandBufferCmdSequence commands; commands.Emplace<Memset32Cmd>(s0, slice_a, int32_t{84}); CommandBufferThunk thunk(std::move(commands), Thunk::ThunkInfo()); ServiceExecutableRunOptions run_options; se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations({a}, 0, &allocator); Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::vector<int32_t> dst(4, 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), a, byte_length)); ASSERT_EQ(dst, std::vector<int32_t>(4, 84)); } TEST(CommandBufferThunkTest, Memset32CmdOnDifferentStreams) { se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); se::DeviceMemory<int32_t> a = executor->AllocateArray<int32_t>(2, 0); TF_ASSERT_OK(stream->MemZero(&a, 2 * sizeof(int32_t))); BufferAllocation alloc(0, a.size(), 0); BufferAllocation::Slice slice0(&alloc, 0 * sizeof(int32_t), sizeof(int32_t)); BufferAllocation::Slice slice1(&alloc, 1 * sizeof(int32_t), sizeof(int32_t)); CommandBufferCmdSequence commands; commands.Emplace<Memset32Cmd>(s0, slice0, int32_t{12}); commands.Emplace<Memset32Cmd>(s1, slice1, int32_t{34}); CommandBufferThunk thunk(std::move(commands), Thunk::ThunkInfo()); ServiceExecutableRunOptions run_options; se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations({a}, 0, &allocator); Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::vector<int32_t> dst(2, 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), a, a.size())); ASSERT_EQ(dst, std::vector<int32_t>({12, 34})); } TEST(CommandBufferThunkTest, LaunchCmd) { se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); int64_t length = 4; int64_t byte_length = sizeof(int32_t) * length; se::DeviceMemory<int32_t> a = executor->AllocateArray<int32_t>(length, 0); se::DeviceMemory<int32_t> b = executor->AllocateArray<int32_t>(length, 0); TF_ASSERT_OK(stream->Memset32(&a, 42, byte_length)); TF_ASSERT_OK(stream->MemZero(&b, byte_length)); BufferAllocation alloc_a(0, byte_length, 0); BufferAllocation alloc_b(1, byte_length, 0); BufferAllocation::Slice slice_a(&alloc_a, 0, byte_length); BufferAllocation::Slice slice_b(&alloc_b, 0, byte_length); auto args = {slice_a, slice_a, slice_b}; auto args_access = {MemoryAccess::kRead, MemoryAccess::kRead, MemoryAccess::kWrite}; CommandBufferCmdSequence commands; commands.Emplace<LaunchCmd>(s0, "add", args, args_access, LaunchDimensions(1, 4), 0); CommandBufferThunk thunk(std::move(commands), Thunk::ThunkInfo()); ServiceExecutableRunOptions run_options; se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations({a, b}, 0, &allocator); Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); Thunk::ExecutableSource source = ExecutableSource(); TF_ASSERT_OK( thunk.Initialize({executor, source, &allocations, stream.get()})); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::vector<int32_t> dst(4, 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), b, byte_length)); ASSERT_EQ(dst, std::vector<int32_t>(4, 42 + 42)); se::DeviceMemory<int32_t> c = executor->AllocateArray<int32_t>(length, 0); TF_ASSERT_OK(stream->MemZero(&c, byte_length)); allocations = BufferAllocations({a, c}, 0, &allocator); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::fill(dst.begin(), dst.end(), 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), c, byte_length)); ASSERT_EQ(dst, std::vector<int32_t>(4, 42 + 42)); TF_ASSERT_OK(stream->MemZero(&c, byte_length)); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::fill(dst.begin(), dst.end(), 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), c, byte_length)); ASSERT_EQ(dst, std::vector<int32_t>(4, 42 + 42)); } TEST(CommandBufferThunkTest, CustomAddKernelLaunchCmd) { se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); auto packing = CreateDefaultArgsPacking(); se::MultiKernelLoaderSpec spec(3, std::move(packing)); spec.AddInProcessSymbol(se::gpu::internal::GetAddI32Kernel(), "add"); auto custom_kernel = CustomKernel("add", std::move(spec), se::BlockDim(), se::ThreadDim(4, 1, 1), 0); int64_t length = 4; int64_t byte_length = sizeof(int32_t) * length; se::DeviceMemory<int32_t> a = executor->AllocateArray<int32_t>(length, 0); se::DeviceMemory<int32_t> b = executor->AllocateArray<int32_t>(length, 0); TF_ASSERT_OK(stream->Memset32(&a, 42, byte_length)); TF_ASSERT_OK(stream->MemZero(&b, byte_length)); BufferAllocation alloc_a(0, byte_length, 0); BufferAllocation alloc_b(1, byte_length, 0); BufferAllocation::Slice slice_a(&alloc_a, 0, byte_length); BufferAllocation::Slice slice_b(&alloc_b, 0, byte_length); auto args = {slice_a, slice_a, slice_b}; auto args_access = {MemoryAccess::kRead, MemoryAccess::kRead, MemoryAccess::kWrite}; CommandBufferCmdSequence commands; commands.Emplace<LaunchCmd>(s0, "add", args, args_access, LaunchDimensions(1, 4), 0); CommandBufferThunk thunk(std::move(commands), Thunk::ThunkInfo()); ServiceExecutableRunOptions run_options; se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations({a, b}, 0, &allocator); Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); Thunk::ExecutableSource source = ExecutableSource(); TF_ASSERT_OK( thunk.Initialize({executor, source, &allocations, stream.get()})); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::vector<int32_t> dst(4, 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), b, byte_length)); ASSERT_EQ(dst, std::vector<int32_t>(4, 42 + 42)); se::DeviceMemory<int32_t> c = executor->AllocateArray<int32_t>(length, 0); TF_ASSERT_OK(stream->MemZero(&c, byte_length)); allocations = BufferAllocations({a, c}, 0, &allocator); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::fill(dst.begin(), dst.end(), 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), c, byte_length)); ASSERT_EQ(dst, std::vector<int32_t>(4, 42 + 42)); TF_ASSERT_OK(stream->MemZero(&c, byte_length)); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::fill(dst.begin(), dst.end(), 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), c, byte_length)); ASSERT_EQ(dst, std::vector<int32_t>(4, 42 + 42)); } TEST(CommandBufferThunkTest, GemmCmd) { if (!IsAtLeastCuda12300()) { GTEST_SKIP() << "CUDA graph tracing is not supported"; } se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); int64_t lhs_length = sizeof(float) * 2 * 4; int64_t rhs_length = sizeof(float) * 4 * 3; int64_t out_length = sizeof(float) * 2 * 3; se::DeviceMemory<float> lhs = executor->AllocateArray<float>(2 * 4); std::vector<float> lhs_arr{1, 2, 3, 4, 5, 6, 7, 8}; TF_ASSERT_OK(stream->Memcpy(&lhs, lhs_arr.data(), lhs_length)); se::DeviceMemory<float> rhs = executor->AllocateArray<float>(4 * 3); std::vector<float> rhs_arr(12, 1); TF_ASSERT_OK(stream->Memcpy(&rhs, rhs_arr.data(), rhs_length)); se::DeviceMemory<float> out = executor->AllocateArray<float>(2 * 3); TF_ASSERT_OK(stream->MemZero(&out, out_length)); se::DeviceMemory<float> workspace = executor->AllocateArray<float>(1024 * 1024); TF_ASSERT_OK(stream->MemZero(&workspace, 1024 * 1024)); BufferAllocation alloc_lhs(0, lhs_length, 0); BufferAllocation alloc_rhs(1, rhs_length, 0); BufferAllocation alloc_out(2, out_length, 0); BufferAllocation alloc_workspace(3, 1024 * 1024, 0); BufferAllocation::Slice slice_lhs(&alloc_lhs, 0, lhs_length); BufferAllocation::Slice slice_rhs(&alloc_rhs, 0, rhs_length); BufferAllocation::Slice slice_out(&alloc_out, 0, out_length); BufferAllocation::Slice slice_workspace(&alloc_workspace, 0, 1024 * 1024); auto config = GemmConfig::For(ShapeUtil::MakeShape(PrimitiveType::F32, {2, 4}), {}, {1}, ShapeUtil::MakeShape(PrimitiveType::F32, {4, 3}), {}, {0}, ShapeUtil::MakeShape(PrimitiveType::F32, {2, 3}), 1.0, 0.0, 0.0, PrecisionConfig::ALG_UNSET, std::nullopt, se::blas::kDefaultComputePrecision, false, false); ASSERT_TRUE(config.ok()); CommandBufferCmdSequence commands; commands.Emplace<GemmCmd>(s0, config.value(), slice_lhs, slice_rhs, slice_out, slice_workspace, true); CommandBufferThunk thunk(std::move(commands), Thunk::ThunkInfo()); ServiceExecutableRunOptions run_options; se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations({lhs, rhs, out, workspace}, 0, &allocator); Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); Thunk::ExecutableSource source = {"", {}}; TF_ASSERT_OK(thunk.Initialize( {executor, source, &allocations, stream.get(), stream.get()})); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::vector<float> dst(6, 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), out, out_length)); ASSERT_EQ(dst, std::vector<float>({10, 10, 10, 26, 26, 26})); se::DeviceMemory<float> updated_out = executor->AllocateArray<float>(2 * 3); TF_ASSERT_OK(stream->MemZero(&updated_out, out_length)); allocations = BufferAllocations({lhs, rhs, updated_out, workspace}, 0, &allocator); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::fill(dst.begin(), dst.end(), 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), updated_out, out_length)); ASSERT_EQ(dst, std::vector<float>({10, 10, 10, 26, 26, 26})); TF_ASSERT_OK(stream->MemZero(&updated_out, out_length)); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::fill(dst.begin(), dst.end(), 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), updated_out, out_length)); ASSERT_EQ(dst, std::vector<float>({10, 10, 10, 26, 26, 26})); } TEST(CommandBufferThunkTest, CublasLtCmd) { if (!IsAtLeastCuda12300()) { GTEST_SKIP() << "CUDA graph tracing is not supported"; } se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream1, executor->CreateStream()); TF_ASSERT_OK_AND_ASSIGN(auto stream2, executor->CreateStream()); int64_t a_length = sizeof(float) * 2 * 4; int64_t b_length = sizeof(float) * 4 * 3; int64_t c_length = sizeof(float) * 2 * 3; int64_t d_length = sizeof(float) * 2 * 3; BufferAllocation alloc_a(0, a_length, 0); BufferAllocation alloc_b(1, b_length, 0); BufferAllocation alloc_c(2, c_length, 0); BufferAllocation alloc_d(3, d_length, 0); BufferAllocation alloc_workspace(4, 1024 * 1024, 0); BufferAllocation::Slice slice_a(&alloc_a, 0, a_length); BufferAllocation::Slice slice_b(&alloc_b, 0, b_length); BufferAllocation::Slice slice_c(&alloc_c, 0, c_length); BufferAllocation::Slice slice_d(&alloc_d, 0, d_length); BufferAllocation::Slice slice_workspace(&alloc_workspace, 0, 1024 * 1024); auto config = GemmConfig::For( ShapeUtil::MakeShape(PrimitiveType::F32, {2, 4}), {}, {1}, ShapeUtil::MakeShape(PrimitiveType::F32, {4, 3}), {}, {0}, ShapeUtil::MakeShape(PrimitiveType::F32, {2, 3}), nullptr, ShapeUtil::MakeShape(PrimitiveType::F32, {2, 3}), 1.0, 0, 1.0, PrecisionConfig::ALG_UNSET, std::nullopt, se::blas::kDefaultComputePrecision, false, false); ASSERT_TRUE(config.ok()); CommandBufferCmdSequence commands; commands.Emplace<CublasLtCmd>( s0, config.value(), se::gpu::BlasLt::Epilogue::kDefault, 0, slice_a, slice_b, slice_c, slice_d, BufferAllocation::Slice(), BufferAllocation::Slice(), BufferAllocation::Slice(), BufferAllocation::Slice(), BufferAllocation::Slice(), BufferAllocation::Slice(), BufferAllocation::Slice(), slice_workspace); CommandBufferThunk thunk(std::move(commands), Thunk::ThunkInfo()); std::vector<float> a_arr_1{1, 2, 3, 4, 5, 6, 7, 8}; std::vector<float> a_arr_2{2, 3, 4, 5, 6, 7, 8, 9}; std::vector<float> result_1{11, 11, 11, 27, 27, 27}; std::vector<float> result_2{15, 15, 15, 31, 31, 31}; auto run_cublaslt_test = [&](std::unique_ptr<se::Stream>& stream, std::vector<float> a_arr, std::vector<float> result) { se::DeviceMemory<float> a = executor->AllocateArray<float>(2 * 4); TF_ASSERT_OK(stream->Memcpy(&a, a_arr.data(), a_length)); se::DeviceMemory<float> b = executor->AllocateArray<float>(4 * 3); std::vector<float> b_arr(12, 1); TF_ASSERT_OK(stream->Memcpy(&b, b_arr.data(), b_length)); se::DeviceMemory<float> c = executor->AllocateArray<float>(2 * 3); std::vector<float> c_arr(6, 1); TF_ASSERT_OK(stream->Memcpy(&c, c_arr.data(), c_length)); se::DeviceMemory<float> d = executor->AllocateArray<float>(2 * 3); TF_ASSERT_OK(stream->MemZero(&d, d_length)); se::DeviceMemory<float> workspace = executor->AllocateArray<float>(1024 * 1024); TF_ASSERT_OK(stream->MemZero(&workspace, 1024 * 1024)); ServiceExecutableRunOptions run_options; se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations({a, b, c, d, workspace}, 0, &allocator); Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); Thunk::ExecutableSource source = {"", {}}; TF_ASSERT_OK(thunk.Initialize( {executor, source, &allocations, stream.get(), stream.get()})); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::vector<float> dst(6, 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), d, d_length)); ASSERT_EQ(dst, result); se::DeviceMemory<float> updated_d = executor->AllocateArray<float>(2 * 3); TF_ASSERT_OK(stream->MemZero(&updated_d, d_length)); allocations = BufferAllocations({a, b, c, updated_d, workspace}, 0, &allocator); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::fill(dst.begin(), dst.end(), 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), updated_d, d_length)); ASSERT_EQ(dst, result); TF_ASSERT_OK(stream->MemZero(&updated_d, d_length)); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::fill(dst.begin(), dst.end(), 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), updated_d, d_length)); ASSERT_EQ(dst, result); }; std::thread t1(run_cublaslt_test, std::ref(stream1), a_arr_1, result_1); std::thread t2(run_cublaslt_test, std::ref(stream2), a_arr_2, result_2); t1.join(); t2.join(); } TEST(CommandBufferThunkTest, MultipleLaunchCmd) { se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); int64_t length = 4; int64_t byte_length = sizeof(int32_t) * length; se::DeviceMemory<int32_t> a = executor->AllocateArray<int32_t>(length, 0); se::DeviceMemory<int32_t> b = executor->AllocateArray<int32_t>(length, 0); se::DeviceMemory<int32_t> c = executor->AllocateArray<int32_t>(length, 0); se::DeviceMemory<int32_t> d = executor->AllocateArray<int32_t>(length, 0); TF_ASSERT_OK(stream->Memset32(&a, 42, byte_length)); TF_ASSERT_OK(stream->MemZero(&b, byte_length)); TF_ASSERT_OK(stream->Memset32(&c, 21, byte_length)); TF_ASSERT_OK(stream->MemZero(&d, byte_length)); BufferAllocation alloc_a(0, byte_length, 0); BufferAllocation alloc_b(1, byte_length, 0); BufferAllocation alloc_c(2, byte_length, 0); BufferAllocation alloc_d(3, byte_length, 0); BufferAllocation::Slice slice_a(&alloc_a, 0, byte_length); BufferAllocation::Slice slice_b(&alloc_b, 0, byte_length); BufferAllocation::Slice slice_c(&alloc_c, 0, byte_length); BufferAllocation::Slice slice_d(&alloc_d, 0, byte_length); auto args = {slice_a, slice_a, slice_b}; auto args_1 = {slice_c, slice_c, slice_d}; auto args_access = {MemoryAccess::kRead, MemoryAccess::kRead, MemoryAccess::kWrite}; CommandBufferCmdSequence commands; commands.Emplace<LaunchCmd>(s0, "add", args, args_access, LaunchDimensions(1, 4), 0); commands.Emplace<LaunchCmd>(s0, "add", args_1, args_access, LaunchDimensions(1, 4), 0); CommandBufferThunk thunk(std::move(commands), Thunk::ThunkInfo()); ServiceExecutableRunOptions run_options; se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations({a, b, c, d}, 0, &allocator); Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); Thunk::ExecutableSource source = ExecutableSource(); TF_ASSERT_OK( thunk.Initialize({executor, source, &allocations, stream.get()})); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::vector<int32_t> dst(4, 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), b, byte_length)); ASSERT_EQ(dst, std::vector<int32_t>(4, 42 + 42)); std::fill(dst.begin(), dst.end(), 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), d, byte_length)); ASSERT_EQ(dst, std::vector<int32_t>(4, 21 + 21)); BufferAllocation alloc_e(3, byte_length, 0); BufferAllocation::Slice slice_e(&alloc_e, 0, byte_length); se::DeviceMemory<int32_t> e = executor->AllocateArray<int32_t>(length, 0); TF_ASSERT_OK(stream->MemZero(&e, byte_length)); allocations = BufferAllocations({a, b, c, e}, 0, &allocator); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::fill(dst.begin(), dst.end(), 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), b, byte_length)); ASSERT_EQ(dst, std::vector<int32_t>(4, 42 + 42)); std::fill(dst.begin(), dst.end(), 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), e, byte_length)); ASSERT_EQ(dst, std::vector<int32_t>(4, 21 + 21)); TF_ASSERT_OK(stream->MemZero(&e, byte_length)); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::fill(dst.begin(), dst.end(), 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), b, byte_length)); ASSERT_EQ(dst, std::vector<int32_t>(4, 42 + 42));
2,159
cpp
tensorflow/tensorflow
nccl_clique_key
third_party/xla/xla/service/gpu/runtime/nccl_clique_key.cc
third_party/xla/xla/service/gpu/runtime/nccl_clique_key_test.cc
#ifndef XLA_SERVICE_GPU_RUNTIME_NCCL_CLIQUE_KEY_H_ #define XLA_SERVICE_GPU_RUNTIME_NCCL_CLIQUE_KEY_H_ #include <array> #include <cstdint> #include <functional> #include <optional> #include <string> #include <string_view> #include <vector> #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/service/global_device_id.h" #include "tsl/lib/gtl/int_type.h" namespace xla::gpu { TSL_LIB_GTL_DEFINE_INT_TYPE(NcclStreamId, uint64_t); enum class AsyncStreamKind : int64_t { kCollective = 0, kP2P0 = 1, kP2P1 = 2, }; constexpr static int64_t kAsyncStreamTotal = static_cast<int64_t>(AsyncStreamKind::kP2P1) + 1; inline NcclStreamId GetStreamId( bool is_async, AsyncStreamKind stream_kind = AsyncStreamKind::kCollective) { return NcclStreamId(is_async ? static_cast<uint64_t>(stream_kind) + 1 : 0); } class NcclCliqueKey { public: explicit NcclCliqueKey( std::vector<GlobalDeviceId> devices, NcclStreamId stream_id = NcclStreamId(0), AsyncStreamKind stream_kind = AsyncStreamKind::kCollective); absl::Span<const GlobalDeviceId> devices() const; NcclStreamId stream_id() const; std::optional<int64_t> rank(GlobalDeviceId id) const; bool IsSubsetOf(const NcclCliqueKey& other) const; AsyncStreamKind stream_kind() const { return stream_kind_; } std::string ToString() const; template <typename H> friend H AbslHashValue(H h, const NcclCliqueKey& k); friend bool operator==(const NcclCliqueKey& a, const NcclCliqueKey& b); friend bool operator<(const NcclCliqueKey& a, const NcclCliqueKey& b); friend bool operator>(const NcclCliqueKey& a, const NcclCliqueKey& b); private: std::vector<GlobalDeviceId> devices_; NcclStreamId stream_id_; AsyncStreamKind stream_kind_; }; template <typename H> H AbslHashValue(H h, const NcclCliqueKey& k) { return H::combine(std::move(h), k.devices_, k.stream_id_); } bool operator==(const NcclCliqueKey& a, const NcclCliqueKey& b); bool operator<(const NcclCliqueKey& a, const NcclCliqueKey& b); class NcclCliqueId { public: static constexpr int32_t kSize = 128; static absl::StatusOr<NcclCliqueId> FromString(std::string_view str); NcclCliqueId(); explicit NcclCliqueId(char bytes[kSize]); absl::Span<const char> data() const; std::string ToString() const; template <typename H> friend H AbslHashValue(H h, const NcclCliqueId& id); private: std::array<char, kSize> data_; }; template <typename H> H AbslHashValue(H h, const NcclCliqueId& id) { return H::combine(std::move(h), id.data()); } using NcclCliqueIdCallback = std::function<absl::StatusOr<NcclCliqueId>(const NcclCliqueKey&)>; } #endif #include "xla/service/gpu/runtime/nccl_clique_key.h" #include <algorithm> #include <cstdint> #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "xla/service/global_device_id.h" namespace xla::gpu { NcclCliqueKey::NcclCliqueKey(std::vector<GlobalDeviceId> devices, NcclStreamId stream_id, AsyncStreamKind stream_kind) : devices_(std::move(devices)), stream_id_(stream_id), stream_kind_(stream_kind) {} absl::Span<const GlobalDeviceId> NcclCliqueKey::devices() const { return devices_; } NcclStreamId NcclCliqueKey::stream_id() const { return stream_id_; } std::optional<int64_t> NcclCliqueKey::rank(GlobalDeviceId id) const { if (auto it = absl::c_find(devices_, id); it != devices_.end()) { return it - devices_.begin(); } return std::nullopt; } bool NcclCliqueKey::IsSubsetOf(const NcclCliqueKey& other) const { return stream_id_ == other.stream_id_ && absl::c_all_of(devices_, [&](GlobalDeviceId id) { return absl::c_linear_search(other.devices_, id); }); } std::string NcclCliqueKey::ToString() const { return absl::StrFormat("devices=[%s]; stream=%d", GlobalDeviceIdsToString(devices_), stream_id_.value()); } bool operator==(const NcclCliqueKey& a, const NcclCliqueKey& b) { return a.devices_ == b.devices_ && a.stream_id_ == b.stream_id_; } bool operator<(const NcclCliqueKey& a, const NcclCliqueKey& b) { if (a.devices_.size() < b.devices_.size()) return true; if (b.devices_.size() < a.devices_.size()) return false; if (a.devices_ < b.devices_) return true; if (b.devices_ < a.devices_) return false; return a.stream_id_.value() < b.stream_id_.value(); } bool operator>(const NcclCliqueKey& a, const NcclCliqueKey& b) { if (a.devices_.size() > b.devices_.size()) return true; if (b.devices_.size() > a.devices_.size()) return false; if (a.devices_ > b.devices_) return true; if (b.devices_ > a.devices_) return false; return a.stream_id_.value() < b.stream_id_.value(); } NcclCliqueId::NcclCliqueId() { std::fill(data_.begin(), data_.end(), 0); } NcclCliqueId::NcclCliqueId(char bytes[kSize]) { std::copy(bytes, bytes + kSize, data_.data()); } absl::StatusOr<NcclCliqueId> NcclCliqueId::FromString(std::string_view str) { if (str.size() != kSize) { return absl::InvalidArgumentError( absl::StrFormat("Invalid NCCL clique id size: %d , expected %d bytes", str.size(), kSize)); } char bytes[kSize]; std::copy(str.data(), str.data() + kSize, bytes); return NcclCliqueId(bytes); } absl::Span<const char> NcclCliqueId::data() const { return data_; } std::string NcclCliqueId::ToString() const { return std::string(data_.data(), data_.size()); } }
#include "xla/service/gpu/runtime/nccl_clique_key.h" #include <cstdint> #include <functional> #include "absl/container/btree_map.h" #include "xla/service/global_device_id.h" #include "tsl/platform/test.h" namespace xla::gpu { TEST(NcclCliqueKeyTest, IsSubsetOf) { GlobalDeviceId id0 = GlobalDeviceId(0); GlobalDeviceId id1 = GlobalDeviceId(1); GlobalDeviceId id2 = GlobalDeviceId(2); GlobalDeviceId id3 = GlobalDeviceId(3); NcclCliqueKey key0({id0, id1}, NcclStreamId(0)); NcclCliqueKey key1({id0, id1, id2, id3}, NcclStreamId(0)); NcclCliqueKey key2({id0, id1, id2, id3}, NcclStreamId(1)); NcclCliqueKey key3({id1, id2, id3}, NcclStreamId(0)); EXPECT_TRUE(key0.IsSubsetOf(key1)); EXPECT_FALSE(key0.IsSubsetOf(key2)); EXPECT_FALSE(key0.IsSubsetOf(key3)); } TEST(NcclCliqueKeyTest, Compare) { GlobalDeviceId id0 = GlobalDeviceId(0); GlobalDeviceId id1 = GlobalDeviceId(1); GlobalDeviceId id2 = GlobalDeviceId(2); GlobalDeviceId id3 = GlobalDeviceId(3); NcclCliqueKey key0({id0, id1}, NcclStreamId(0)); NcclCliqueKey key1({id1, id2, id3}, NcclStreamId(0)); EXPECT_LT(key0, key1); EXPECT_GT(key1, key0); } TEST(NcclCliqueKeyTest, BtreeIterationOrder) { GlobalDeviceId id0 = GlobalDeviceId(0); GlobalDeviceId id1 = GlobalDeviceId(1); GlobalDeviceId id2 = GlobalDeviceId(2); GlobalDeviceId id3 = GlobalDeviceId(3); NcclCliqueKey key0({id0, id2}, NcclStreamId(0)); NcclCliqueKey key1({id0, id1, id2, id3}, NcclStreamId(0)); absl::btree_map<NcclCliqueKey, int64_t, std::greater<NcclCliqueKey>> map; map[key0] = 0; map[key1] = 1; EXPECT_EQ(map.begin()->first, key1); } }
2,160
cpp
tensorflow/tensorflow
for_all_thunks
third_party/xla/xla/service/gpu/runtime/for_all_thunks.cc
third_party/xla/xla/service/gpu/runtime/for_all_thunks_test.cc
#ifndef XLA_SERVICE_GPU_RUNTIME_FOR_ALL_THUNKS_H_ #define XLA_SERVICE_GPU_RUNTIME_FOR_ALL_THUNKS_H_ #include "absl/functional/function_ref.h" #include "xla/service/gpu/runtime/thunk.h" namespace xla::gpu { void ForAllThunks(absl::FunctionRef<void(const Thunk*)> fn, const Thunk* thunk); void ForAllThunks(absl::FunctionRef<void(const Thunk*)> fn, const ThunkSequence* thunks); } #endif #include "xla/service/gpu/runtime/for_all_thunks.h" #include <memory> #include <optional> #include "absl/functional/function_ref.h" #include "xla/service/gpu/runtime/command_buffer_thunk.h" #include "xla/service/gpu/runtime/conditional_thunk.h" #include "xla/service/gpu/runtime/dynamic_slice_thunk.h" #include "xla/service/gpu/runtime/sequential_thunk.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/service/gpu/runtime/while_thunk.h" #include "tsl/platform/casts.h" namespace xla::gpu { void ForAllThunks(absl::FunctionRef<void(const Thunk*)> fn, const Thunk* thunk) { fn(thunk); switch (thunk->kind()) { case Thunk::kAddressComputation: ForAllThunks(fn, tensorflow::down_cast<const DynamicSliceThunk*>(thunk) ->embedded_thunk()); break; case Thunk::kCommandBuffer: if (const std::unique_ptr<SequentialThunk>& sequence = tensorflow::down_cast<const CommandBufferThunk*>(thunk)->thunks(); sequence != nullptr) { ForAllThunks(fn, sequence.get()); } break; case Thunk::kConditional: for (const std::unique_ptr<SequentialThunk>& branch : tensorflow::down_cast<const ConditionalThunk*>(thunk) ->branch_thunks()) { ForAllThunks(fn, branch.get()); } break; case Thunk::kSequential: ForAllThunks( fn, &tensorflow::down_cast<const SequentialThunk*>(thunk)->thunks()); break; case Thunk::kWhile: ForAllThunks(fn, tensorflow::down_cast<const WhileThunk*>(thunk) ->condition_thunk_sequence()); ForAllThunks(fn, tensorflow::down_cast<const WhileThunk*>(thunk) ->body_thunk_sequence()); break; case Thunk::kCholesky: case Thunk::kConvolution: case Thunk::kConvolutionReorder: case Thunk::kCopy: case Thunk::kCopyDone: case Thunk::kCubSort: case Thunk::kCublasLtMatmul: case Thunk::kCustomCall: case Thunk::kCustomKernel: case Thunk::kCuDnn: case Thunk::kFft: case Thunk::kFusedMHA: case Thunk::kGemm: case Thunk::kInfeed: case Thunk::kKernel: case Thunk::kMemset32BitValue: case Thunk::kMemzero: case Thunk::kNcclAllGather: case Thunk::kNcclAllGatherStart: case Thunk::kNcclAllGatherDone: case Thunk::kNcclAllReduce: case Thunk::kNcclAllReduceStart: case Thunk::kNcclAllReduceDone: case Thunk::kNcclCollectiveBroadcast: case Thunk::kNcclCollectiveBroadcastStart: case Thunk::kNcclCollectiveBroadcastDone: case Thunk::kNcclCollectivePermute: case Thunk::kNcclCollectivePermuteStart: case Thunk::kNcclCollectivePermuteDone: case Thunk::kNcclReduceScatter: case Thunk::kNcclReduceScatterStart: case Thunk::kNcclReduceScatterDone: case Thunk::kNcclAllToAll: case Thunk::kNcclAllToAllStart: case Thunk::kNcclAllToAllDone: case Thunk::kNcclSend: case Thunk::kNcclSendDone: case Thunk::kNcclRecv: case Thunk::kNcclRecvDone: case Thunk::kNorm: case Thunk::kOutfeed: case Thunk::kPartitionId: case Thunk::kRecv: case Thunk::kRecvDone: case Thunk::kReplicaId: case Thunk::kSend: case Thunk::kSendDone: case Thunk::kTriangularSolve: case Thunk::kWaitForStreams: break; } } void ForAllThunks(absl::FunctionRef<void(const Thunk*)> fn, const ThunkSequence* thunks) { for (const std::unique_ptr<Thunk>& thunk : *thunks) { ForAllThunks(fn, thunk.get()); } } }
#include "xla/service/gpu/runtime/for_all_thunks.h" #include <memory> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/runtime/command_buffer_cmd.h" #include "xla/service/gpu/runtime/command_buffer_thunk.h" #include "xla/service/gpu/runtime/conditional_thunk.h" #include "xla/service/gpu/runtime/dynamic_slice_thunk.h" #include "xla/service/gpu/runtime/sequential_thunk.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/service/gpu/runtime/while_thunk.h" namespace xla::gpu { namespace { using ::testing::IsSupersetOf; using ::testing::UnorderedElementsAre; std::vector<const Thunk*> GetAllThunks(Thunk* root) { std::vector<const Thunk*> thunks; ForAllThunks([&](const Thunk* thunk) { thunks.push_back(thunk); }, root); return thunks; } struct DummyThunk : public Thunk { DummyThunk() : Thunk(Thunk::Kind::kGemm, Thunk::ThunkInfo()) {} absl::Status ExecuteOnStream(const ExecuteParams& params) override { return absl::OkStatus(); } }; TEST(ForAllThunksTest, SingleThunk) { DummyThunk thunk; EXPECT_THAT(GetAllThunks(&thunk), UnorderedElementsAre(&thunk)); } TEST(ForAllThunksTest, DynamicSliceThunk) { auto thunk = std::make_unique<DummyThunk>(); Thunk* thunk_ptr = thunk.get(); auto thunk_sequence = std::make_unique<ThunkSequence>(); thunk_sequence->push_back(std::move(thunk)); DynamicSliceThunk dynamic_slice_thunk( Thunk::ThunkInfo(), std::move(thunk_sequence), {}, {}, {}, {}, {}, {}); EXPECT_THAT(GetAllThunks(&dynamic_slice_thunk), IsSupersetOf<const Thunk*>({thunk_ptr, &dynamic_slice_thunk})); } TEST(ForAllThunksTest, CommandBufferThunk) { auto thunk = std::make_unique<DummyThunk>(); Thunk* thunk_ptr = thunk.get(); ThunkSequence thunk_sequence; thunk_sequence.push_back(std::move(thunk)); auto sequential_thunk = std::make_unique<SequentialThunk>( Thunk::ThunkInfo(), std::move(thunk_sequence)); Thunk* sequential_thunk_ptr = sequential_thunk.get(); CommandBufferThunk command_buffer_thunk(CommandBufferCmdSequence(), Thunk::ThunkInfo(), std::move(sequential_thunk)); EXPECT_THAT(GetAllThunks(&command_buffer_thunk), UnorderedElementsAre(thunk_ptr, &command_buffer_thunk, sequential_thunk_ptr)); } TEST(ForAllThunksTest, ConditionalThunk) { auto thunk = std::make_unique<DummyThunk>(); Thunk* thunk_ptr = thunk.get(); ThunkSequence thunk_sequence; thunk_sequence.push_back(std::move(thunk)); auto sequential_thunk = std::make_unique<SequentialThunk>( Thunk::ThunkInfo(), std::move(thunk_sequence)); SequentialThunk* sequential_thunk_ptr = sequential_thunk.get(); ConditionalThunkConfig config; config.branch_thunks.push_back(std::move(sequential_thunk)); ConditionalThunk conditional_thunk(Thunk::ThunkInfo(), std::move(config), BufferAllocation::Slice()); EXPECT_THAT(GetAllThunks(&conditional_thunk), UnorderedElementsAre(thunk_ptr, sequential_thunk_ptr, &conditional_thunk)); } TEST(ForAllThunksTest, WhileThunk) { auto condition_thunk = std::make_unique<DummyThunk>(); Thunk* condition_thunk_ptr = condition_thunk.get(); ThunkSequence condition_thunk_sequence; condition_thunk_sequence.push_back(std::move(condition_thunk)); auto body_thunk = std::make_unique<DummyThunk>(); Thunk* body_thunk_ptr = body_thunk.get(); ThunkSequence body_thunk_sequence; body_thunk_sequence.push_back(std::move(body_thunk)); WhileThunk while_thunk( Thunk::ThunkInfo(), BufferAllocation::Slice(), std::make_unique<SequentialThunk>(Thunk::ThunkInfo(), std::move(condition_thunk_sequence)), std::make_unique<SequentialThunk>(Thunk::ThunkInfo(), std::move(body_thunk_sequence))); EXPECT_THAT(GetAllThunks(&while_thunk), IsSupersetOf<const Thunk*>( {condition_thunk_ptr, body_thunk_ptr, &while_thunk})); } } }
2,161
cpp
tensorflow/tensorflow
dynamic_slice_thunk
third_party/xla/xla/service/gpu/runtime/dynamic_slice_thunk.cc
third_party/xla/xla/service/gpu/runtime/dynamic_slice_thunk_test.cc
#ifndef XLA_SERVICE_GPU_RUNTIME_DYNAMIC_SLICE_THUNK_H_ #define XLA_SERVICE_GPU_RUNTIME_DYNAMIC_SLICE_THUNK_H_ #include <cstdint> #include <memory> #include <optional> #include <variant> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/runtime/sequential_thunk.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/shape.h" #include "xla/stream_executor/memory_allocation.h" #include "xla/stream_executor/stream_executor.h" namespace xla { namespace gpu { class DynamicSliceThunk : public Thunk { public: struct LoopIter {}; using Offset = std::variant<uint64_t, LoopIter, BufferAllocation::Slice>; DynamicSliceThunk( ThunkInfo thunk_info, std::unique_ptr<ThunkSequence> embedded_thunk, std::vector<std::optional<BufferAllocation::Slice>> arguments, std::vector<std::unique_ptr<BufferAllocation>> fake_allocations_, std::vector<std::optional<std::vector<Offset>>> offsets, std::vector<std::optional<Shape>> orig_shapes, std::vector<std::optional<Shape>> sliced_shapes, std::vector<std::optional<uint64_t>> offset_byte_sizes); DynamicSliceThunk(const DynamicSliceThunk&) = delete; DynamicSliceThunk& operator=(const DynamicSliceThunk&) = delete; const Thunk* embedded_thunk() const { return embedded_thunk_.get(); } absl::Status Prepare(const PrepareParams& params, ResourceRequests& resource_requests) override; absl::Status Initialize(const InitializeParams& params) override; absl::Status ExecuteOnStream(const ExecuteParams& params) override; private: std::unique_ptr<SequentialThunk> embedded_thunk_; std::vector<std::unique_ptr<BufferAllocation>> fake_allocations_; struct SliceDef { std::optional<BufferAllocation::Slice> embedded_thunk_argument; std::optional<std::vector<Offset>> offsets; std::optional<Shape> orig_shape; std::optional<Shape> sliced_shape; std::optional<uint64_t> offset_byte_size; }; std::vector<SliceDef> slices_; absl::Mutex mutex_; absl::flat_hash_map<se::StreamExecutor*, std::unique_ptr<se::MemoryAllocation>> offsets_allocs_ ABSL_GUARDED_BY(mutex_); int64_t offsets_allocs_size_ = 0; std::vector<int64_t> offsets_allocs_base_; }; } } #endif #include "xla/service/gpu/runtime/dynamic_slice_thunk.h" #include <algorithm> #include <cstdint> #include <memory> #include <optional> #include <utility> #include <variant> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "llvm/ADT/STLExtras.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/buffer_allocations.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/runtime/sequential_thunk.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/service/gpu/runtime/while_thunk.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/memory_allocation.h" #include "xla/stream_executor/stream.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { DynamicSliceThunk::DynamicSliceThunk( ThunkInfo thunk_info, std::unique_ptr<ThunkSequence> embedded_thunk, std::vector<std::optional<BufferAllocation::Slice>> arguments, std::vector<std::unique_ptr<BufferAllocation>> fake_allocations, std::vector<std::optional<std::vector<Offset>>> offsets, std::vector<std::optional<Shape>> orig_shapes, std::vector<std::optional<Shape>> sliced_shapes, std::vector<std::optional<uint64_t>> offset_byte_sizes) : Thunk(Kind::kAddressComputation, thunk_info), embedded_thunk_(std::make_unique<SequentialThunk>( ThunkInfo(), std::move(*embedded_thunk))), fake_allocations_(std::move(fake_allocations)) { for (auto [arg, offsets, orig_shape, sliced_shape, offset_byte_size] : llvm::zip_equal(arguments, offsets, orig_shapes, sliced_shapes, offset_byte_sizes)) { slices_.push_back(SliceDef{ std::move(arg), std::move(offsets), std::move(orig_shape), std::move(sliced_shape), std::move(offset_byte_size), }); } for (SliceDef& slice : slices_) { offsets_allocs_base_.push_back(offsets_allocs_size_); if (slice.sliced_shape.has_value()) { offsets_allocs_size_ += slice.sliced_shape->rank() * sizeof(int64_t); } } } absl::Status DynamicSliceThunk::Prepare(const PrepareParams& params, ResourceRequests& resource_requests) { for (SliceDef& slice : slices_) { if (slice.offsets.has_value()) { TF_RET_CHECK(slice.embedded_thunk_argument.has_value()); TF_RET_CHECK(slice.orig_shape.has_value()); TF_RET_CHECK(slice.sliced_shape.has_value()); TF_RET_CHECK(slice.offset_byte_size.has_value()); TF_RET_CHECK(slice.orig_shape->IsArray()); TF_RET_CHECK(slice.sliced_shape->IsArray()); TF_RET_CHECK(slice.offsets->size() == slice.orig_shape->rank()); TF_RET_CHECK(slice.sliced_shape->rank() == slice.orig_shape->rank()); } } TF_RETURN_IF_ERROR(embedded_thunk_->Prepare(params, resource_requests)); return absl::OkStatus(); } absl::Status DynamicSliceThunk::Initialize(const InitializeParams& params) { TF_RETURN_IF_ERROR(embedded_thunk_->Initialize(params)); absl::MutexLock lock(&mutex_); if (offsets_allocs_.contains(params.executor)) return absl::OkStatus(); VLOG(2) << "Allocate " << offsets_allocs_size_ << " bytes for transferring offsets on executor: " << params.executor; TF_ASSIGN_OR_RETURN( std::unique_ptr<se::MemoryAllocation> allocation, params.executor->HostMemoryAllocate(offsets_allocs_size_)); offsets_allocs_.emplace(params.executor, std::move(allocation)); return absl::OkStatus(); } absl::Status DynamicSliceThunk::ExecuteOnStream(const ExecuteParams& params) { se::Stream& stream = *params.stream; const BufferAllocations& orig_allocations = *params.buffer_allocations; absl::InlinedVector<se::DeviceMemoryBase, 8> slice_buffers( slices_.size(), se::DeviceMemoryBase()); int64_t* offsets_alloc = [&] { absl::MutexLock lock(&mutex_); return reinterpret_cast<int64_t*>( offsets_allocs_.at(stream.parent())->opaque()); }(); auto offset_value = [&](int64_t arg_idx, int64_t offset_idx) -> int64_t& { return offsets_alloc[offsets_allocs_base_.at(arg_idx) + offset_idx]; }; VLOG(2) << "Execute address computation thunk: slices=" << slices_.size(); for (auto [argument_idx, slice] : llvm::enumerate(slices_)) { if (!slice.embedded_thunk_argument.has_value()) { continue; } se::DeviceMemoryBase argument_buffer = orig_allocations.GetDeviceAddress(*slice.embedded_thunk_argument); if (!slice.offsets.has_value()) { slice_buffers[argument_idx] = argument_buffer; continue; } const Shape& src_shape = *slice.orig_shape; const Shape& dst_shape = *slice.sliced_shape; TF_RET_CHECK(IsContiguousSlice(*slice.orig_shape, *slice.sliced_shape)); absl::InlinedVector<int64_t, 4> slice_starts; slice_starts.reserve(dst_shape.rank()); int64_t num_transfers = 0; for (auto [offset_idx, values] : llvm::enumerate(llvm::zip( *slice.offsets, src_shape.dimensions(), dst_shape.dimensions()))) { auto [offset, src_dim, dst_dim] = values; if (uint64_t* const_offset = std::get_if<uint64_t>(&offset)) { VLOG(2) << " - arg " << argument_idx << "[" << offset_idx << "]: constant offset = " << *const_offset; offset_value(argument_idx, offset_idx) = *const_offset; } else if (std::holds_alternative<LoopIter>(offset)) { TF_ASSIGN_OR_RETURN(int64_t iter, WhileThunk::CurrentLoopIteration()); VLOG(2) << " - arg " << argument_idx << "[" << offset_idx << "]: loop iteration offset = " << iter; offset_value(argument_idx, offset_idx) = iter; } else { auto alloc_slice = std::get<BufferAllocation::Slice>(offset); VLOG(2) << " - arg " << argument_idx << "[" << offset_idx << "]: transfer offset from device " << alloc_slice.ToString(); se::DeviceMemoryBase offset_src = orig_allocations.GetDeviceAddress(alloc_slice); int64_t* offset_dst = &offset_value(argument_idx, offset_idx); TF_RETURN_IF_ERROR( stream.Memcpy(offset_dst, offset_src, *slice.offset_byte_size)); ++num_transfers; } } if (num_transfers > 0) { VLOG(2) << "Wait for completion of " << num_transfers << " transfer"; TF_RETURN_IF_ERROR(stream.BlockHostUntilDone()); } for (auto [offset_idx, values] : llvm::enumerate( llvm::zip(src_shape.dimensions(), dst_shape.dimensions()))) { auto [src_dim, dst_dim] = values; int64_t start_index = std::min(std::max(offset_value(argument_idx, offset_idx), 0L), src_dim - dst_dim); slice_starts.push_back(start_index); } int64_t new_size = ShapeUtil::ByteSizeOf(dst_shape); int64_t new_offset = 0; for (auto [start, stride] : llvm::zip(slice_starts, *ShapeUtil::ByteStrides(src_shape))) { new_offset += start * stride; } VLOG(2) << "Create sliced argument " << argument_idx << " of shape " << slice.sliced_shape->ToString() << " by slicing argument of shape " << slice.orig_shape->ToString() << " at offset " << new_offset << " with " << new_size; slice_buffers[argument_idx] = argument_buffer.GetByteSlice(new_offset, new_size); } BufferAllocations slice_allocations(slice_buffers, orig_allocations.device_ordinal(), orig_allocations.memory_allocator()); Thunk::ExecuteParams new_params = Thunk::ExecuteParams::CloneWithNewAllocations(params, slice_allocations); TF_RETURN_IF_ERROR(embedded_thunk_->ExecuteOnStream(new_params)); return absl::OkStatus(); } } }
#include "xla/service/gpu/runtime/dynamic_slice_thunk.h" #include <algorithm> #include <cstdint> #include <functional> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/status/statusor.h" #include "absl/strings/ascii.h" #include "xla/ffi/ffi.h" #include "xla/ffi/ffi_api.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/buffer_allocations.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/gpu/runtime/custom_call_thunk.h" #include "xla/service/gpu/runtime/gemm_thunk.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/service/platform_util.h" #include "xla/service/service_executable_run_options.h" #include "xla/shape_util.h" #include "xla/stream_executor/blas.h" #include "xla/stream_executor/command_buffer.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/gpu/gpu_types.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "xla/stream_executor/stream_executor_memory_allocator.h" #include "xla/types.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #if GOOGLE_CUDA #define PLATFORM "CUDA" #elif TENSORFLOW_USE_ROCM #define PLATFORM "ROCM" #endif namespace xla::gpu { namespace { static se::StreamExecutor* GpuExecutor() { auto name = absl::AsciiStrToUpper(PlatformUtil::CanonicalPlatformName("gpu").value()); auto* platform = se::PlatformManager::PlatformWithName(name).value(); return platform->ExecutorForDevice(0).value(); } } TEST(DynamicSliceThunkTest, SlicedGemm) { se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); int64_t lhs_length = sizeof(float) * 2 * 4; int64_t rhs_length = sizeof(float) * 3 * 1; int64_t out_length = sizeof(float) * 1 * 1; int64_t offset_length = sizeof(int64_t); std::vector<std::unique_ptr<BufferAllocation>> fake_allocations(4); fake_allocations.push_back( std::make_unique<BufferAllocation>(0, rhs_length, 0)); BufferAllocation::Slice slice_lhs_fake(fake_allocations.back().get(), 0, rhs_length); BufferAllocation alloc_lhs(0, lhs_length, 0); BufferAllocation::Slice slice_lhs(&alloc_lhs, 0, lhs_length); fake_allocations.push_back( std::make_unique<BufferAllocation>(1, rhs_length, 0)); BufferAllocation::Slice slice_rhs(fake_allocations.back().get(), 0, rhs_length); fake_allocations.push_back( std::make_unique<BufferAllocation>(2, out_length, 0)); BufferAllocation::Slice slice_out(fake_allocations.back().get(), 0, out_length); fake_allocations.push_back(std::make_unique<BufferAllocation>( 3, 1024 * 1024, 0)); BufferAllocation::Slice slice_workspace(fake_allocations.back().get(), 0, 1024 * 1024); BufferAllocation alloc_lhs_offset_0(4, offset_length, 0); BufferAllocation::Slice slice_lhs_offset_0(&alloc_lhs_offset_0, 0, offset_length); BufferAllocation alloc_lhs_offset_1(5, offset_length, 0); BufferAllocation::Slice slice_lhs_offset_1(&alloc_lhs_offset_1, 0, offset_length); auto config = GemmConfig::For(ShapeUtil::MakeShape(PrimitiveType::F32, {1, 3}), {}, {1}, ShapeUtil::MakeShape(PrimitiveType::F32, {3, 1}), {}, {0}, ShapeUtil::MakeShape(PrimitiveType::F32, {1, 1}), 1.0, 0.0, 0.0, PrecisionConfig::ALG_UNSET, std::nullopt, se::blas::kDefaultComputePrecision, false, false); ASSERT_TRUE(config.ok()); ThunkSequence seq; seq.emplace_back(std::make_unique<GemmThunk>( Thunk::ThunkInfo(), config.value(), slice_lhs_fake, slice_rhs, slice_out, slice_workspace, true)); std::vector<DynamicSliceThunk::Offset> lhs_offsets{slice_lhs_offset_0, slice_lhs_offset_1}; DynamicSliceThunk thunk( Thunk::ThunkInfo(), std::make_unique<ThunkSequence>(std::move(seq)), {slice_lhs, slice_rhs, slice_out, slice_workspace}, std::move(fake_allocations), {lhs_offsets, std::nullopt, std::nullopt, std::nullopt}, {ShapeUtil::MakeShape(PrimitiveType::F32, {2, 4}), std::nullopt, std::nullopt, std::nullopt}, {ShapeUtil::MakeShape(PrimitiveType::F32, {1, 3}), std::nullopt, std::nullopt, std::nullopt}, {sizeof(int64_t), std::nullopt, std::nullopt, std::nullopt}); se::DeviceMemory<float> lhs = executor->AllocateArray<float>(2 * 4); std::vector<float> lhs_arr{1, 2, 3, 4, 5, 6, 7, 8}; TF_ASSERT_OK(stream->Memcpy(&lhs, lhs_arr.data(), lhs_length)); se::DeviceMemory<float> rhs = executor->AllocateArray<float>(3 * 1); std::vector<float> rhs_arr(3, 1); TF_ASSERT_OK(stream->Memcpy(&rhs, rhs_arr.data(), rhs_length)); se::DeviceMemory<float> out = executor->AllocateArray<float>(1 * 1); TF_ASSERT_OK(stream->MemZero(&out, out_length)); se::DeviceMemory<float> workspace = executor->AllocateArray<float>(1024 * 1024); TF_ASSERT_OK(stream->MemZero(&workspace, 1024 * 1024)); se::DeviceMemory<int64_t> lhs_offset_0 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> lhs_offset_1 = executor->AllocateArray<int64_t>(1); std::vector<int64_t> lhs_offset_arr{0, 1}; TF_ASSERT_OK( stream->Memcpy(&lhs_offset_0, &lhs_offset_arr[0], offset_length)); TF_ASSERT_OK( stream->Memcpy(&lhs_offset_1, &lhs_offset_arr[1], offset_length)); ServiceExecutableRunOptions run_options; se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations( {lhs, rhs, out, workspace, lhs_offset_0, lhs_offset_1}, 0, &allocator); Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); Thunk::ExecutableSource source = {"", {}}; TF_ASSERT_OK(thunk.Initialize( {executor, source, &allocations, stream.get(), stream.get()})); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::vector<float> dst(1, 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), out, out_length)); ASSERT_EQ(dst, std::vector<float>({9})); } TEST(DynamicSliceThunkTest, SlicedNonContiguousGemm) { se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); int64_t lhs_length = sizeof(float) * 2 * 4; int64_t rhs_length = sizeof(float) * 4 * 3; int64_t out_length = sizeof(float) * 2 * 2; int64_t offset_length = sizeof(int64_t); int64_t slice_length = sizeof(float) * 2 * 2; std::vector<std::unique_ptr<BufferAllocation>> fake_allocations(4); fake_allocations.push_back(std::make_unique<BufferAllocation>( 0, slice_length, 0)); BufferAllocation::Slice slice_lhs_fake(fake_allocations.back().get(), 0, slice_length); fake_allocations.push_back(std::make_unique<BufferAllocation>( 1, slice_length, 0)); BufferAllocation::Slice slice_rhs_fake(fake_allocations.back().get(), 0, slice_length); BufferAllocation alloc_lhs(0, lhs_length, 0); BufferAllocation::Slice slice_lhs(&alloc_lhs, 0, lhs_length); BufferAllocation alloc_rhs(1, rhs_length, 0); BufferAllocation::Slice slice_rhs(&alloc_rhs, 0, rhs_length); fake_allocations.push_back( std::make_unique<BufferAllocation>(2, out_length, 0)); BufferAllocation::Slice slice_out(fake_allocations.back().get(), 0, out_length); fake_allocations.push_back(std::make_unique<BufferAllocation>( 3, 1024 * 1024, 0)); BufferAllocation::Slice slice_workspace(fake_allocations.back().get(), 0, 1024 * 1024); BufferAllocation alloc_lhs_offset_0(4, offset_length, 0); BufferAllocation::Slice slice_lhs_offset_0(&alloc_lhs_offset_0, 0, offset_length); BufferAllocation alloc_lhs_offset_1(5, offset_length, 0); BufferAllocation::Slice slice_lhs_offset_1(&alloc_lhs_offset_1, 0, offset_length); BufferAllocation alloc_rhs_offset_0(6, offset_length, 0); BufferAllocation::Slice slice_rhs_offset_0(&alloc_rhs_offset_0, 0, offset_length); BufferAllocation alloc_rhs_offset_1(7, offset_length, 0); BufferAllocation::Slice slice_rhs_offset_1(&alloc_rhs_offset_1, 0, offset_length); auto config = GemmConfig::For(ShapeUtil::MakeShape(PrimitiveType::F32, {2, 2}), {}, {1}, ShapeUtil::MakeShape(PrimitiveType::F32, {2, 2}), {}, {0}, ShapeUtil::MakeShape(PrimitiveType::F32, {2, 2}), 1.0, 0.0, 0.0, PrecisionConfig::ALG_UNSET, std::nullopt, se::blas::kDefaultComputePrecision, false, false); ASSERT_TRUE(config.ok()); ThunkSequence seq; seq.emplace_back(std::make_unique<GemmThunk>( Thunk::ThunkInfo(), config.value(), slice_lhs_fake, slice_rhs_fake, slice_out, slice_workspace, true)); std::vector<DynamicSliceThunk::Offset> lhs_offsets{slice_lhs_offset_0, slice_lhs_offset_1}; std::vector<DynamicSliceThunk::Offset> rhs_offsets{slice_rhs_offset_0, slice_rhs_offset_1}; DynamicSliceThunk thunk( Thunk::ThunkInfo(), std::make_unique<ThunkSequence>(std::move(seq)), {slice_lhs, slice_rhs, slice_out, slice_workspace}, std::move(fake_allocations), {lhs_offsets, rhs_offsets, std::nullopt, std::nullopt}, {ShapeUtil::MakeShape(PrimitiveType::F32, {2, 4}), ShapeUtil::MakeShape(PrimitiveType::F32, {4, 3}), std::nullopt, std::nullopt}, {ShapeUtil::MakeShape(PrimitiveType::F32, {2, 2}), ShapeUtil::MakeShape(PrimitiveType::F32, {2, 2}), std::nullopt, std::nullopt}, {sizeof(int64_t), sizeof(int64_t), std::nullopt, std::nullopt}); se::DeviceMemory<float> lhs = executor->AllocateArray<float>(2 * 4); std::vector<float> lhs_arr{1, 2, 3, 4, 5, 6, 7, 8}; TF_ASSERT_OK(stream->Memcpy(&lhs, lhs_arr.data(), lhs_length)); se::DeviceMemory<float> rhs = executor->AllocateArray<float>(4 * 3); std::vector<float> rhs_arr(12, 1); TF_ASSERT_OK(stream->Memcpy(&rhs, rhs_arr.data(), rhs_length)); se::DeviceMemory<float> out = executor->AllocateArray<float>(2 * 2); TF_ASSERT_OK(stream->MemZero(&out, out_length)); se::DeviceMemory<float> workspace = executor->AllocateArray<float>(1024 * 1024); TF_ASSERT_OK(stream->MemZero(&workspace, 1024 * 1024)); se::DeviceMemory<int64_t> lhs_offset_0 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> lhs_offset_1 = executor->AllocateArray<int64_t>(1); std::vector<int64_t> lhs_offset_arr{0, 1}; TF_ASSERT_OK( stream->Memcpy(&lhs_offset_0, &lhs_offset_arr[0], offset_length)); TF_ASSERT_OK( stream->Memcpy(&lhs_offset_1, &lhs_offset_arr[1], offset_length)); se::DeviceMemory<int64_t> rhs_offset_0 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> rhs_offset_1 = executor->AllocateArray<int64_t>(1); std::vector<int64_t> rhs_offset_arr{2, 1}; TF_ASSERT_OK( stream->Memcpy(&rhs_offset_0, &rhs_offset_arr[0], offset_length)); TF_ASSERT_OK( stream->Memcpy(&rhs_offset_1, &rhs_offset_arr[1], offset_length)); ServiceExecutableRunOptions run_options; se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations({lhs, rhs, out, workspace, lhs_offset_0, lhs_offset_1, rhs_offset_0, rhs_offset_1}, 0, &allocator); Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); Thunk::ExecutableSource source = {"", {}}; TF_ASSERT_OK(thunk.Initialize( {executor, source, &allocations, stream.get(), stream.get()})); ASSERT_FALSE(thunk.ExecuteOnStream(params).ok()); } TEST(DynamicSliceThunkTest, MulipleSlicedOperandsGemm) { se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); int64_t length = sizeof(float) * 2 * 4; int64_t out_length = sizeof(float) * 1; int64_t offset_length = sizeof(int64_t); int64_t slice_length = sizeof(float) * 3; std::vector<std::unique_ptr<BufferAllocation>> fake_allocations(4); fake_allocations.push_back(std::make_unique<BufferAllocation>( 0, slice_length, 0)); BufferAllocation::Slice slice_lhs_fake(fake_allocations.back().get(), 0, slice_length); fake_allocations.push_back(std::make_unique<BufferAllocation>( 1, slice_length, 0)); BufferAllocation::Slice slice_rhs_fake(fake_allocations.back().get(), 0, slice_length); BufferAllocation alloc_lhs(0, length, 0); BufferAllocation::Slice slice_lhs(&alloc_lhs, 0, length); BufferAllocation alloc_rhs(1, length, 0); BufferAllocation::Slice slice_rhs(&alloc_rhs, 0, length); fake_allocations.push_back( std::make_unique<BufferAllocation>(2, out_length, 0)); BufferAllocation::Slice slice_out(fake_allocations.back().get(), 0, out_length); fake_allocations.push_back(std::make_unique<BufferAllocation>( 3, 1024 * 1024, 0)); BufferAllocation::Slice slice_workspace(fake_allocations.back().get(), 0, 1024 * 1024); BufferAllocation alloc_lhs_offset_0(4, offset_length, 0); BufferAllocation::Slice slice_lhs_offset_0(&alloc_lhs_offset_0, 0, offset_length); BufferAllocation alloc_lhs_offset_1(5, offset_length, 0); BufferAllocation::Slice slice_lhs_offset_1(&alloc_lhs_offset_1, 0, offset_length); BufferAllocation alloc_rhs_offset_0(6, offset_length, 0); BufferAllocation::Slice slice_rhs_offset_0(&alloc_rhs_offset_0, 0, offset_length); BufferAllocation alloc_rhs_offset_1(7, offset_length, 0); BufferAllocation::Slice slice_rhs_offset_1(&alloc_rhs_offset_1, 0, offset_length); auto config = GemmConfig::For(ShapeUtil::MakeShape(PrimitiveType::F32, {1, 3}), {}, {1}, ShapeUtil::MakeShape(PrimitiveType::F32, {3, 1}), {}, {0}, ShapeUtil::MakeShape(PrimitiveType::F32, {1, 1}), 1.0, 0.0, 0.0, PrecisionConfig::ALG_UNSET, std::nullopt, se::blas::kDefaultComputePrecision, false, false); ASSERT_TRUE(config.ok()); ThunkSequence seq; seq.emplace_back(std::make_unique<GemmThunk>( Thunk::ThunkInfo(), config.value(), slice_lhs_fake, slice_rhs_fake, slice_out, slice_workspace, true)); std::vector<DynamicSliceThunk::Offset> lhs_offsets{slice_lhs_offset_0, slice_lhs_offset_1}; std::vector<DynamicSliceThunk::Offset> rhs_offsets{slice_rhs_offset_0, slice_rhs_offset_1}; DynamicSliceThunk thunk( Thunk::ThunkInfo(), std::make_unique<ThunkSequence>(std::move(seq)), {slice_lhs, slice_rhs, slice_out, slice_workspace}, std::move(fake_allocations), {lhs_offsets, rhs_offsets, std::nullopt, std::nullopt}, {ShapeUtil::MakeShape(PrimitiveType::F32, {2, 4}), ShapeUtil::MakeShape(PrimitiveType::F32, {8, 1}), std::nullopt, std::nullopt}, {ShapeUtil::MakeShape(PrimitiveType::F32, {1, 3}), ShapeUtil::MakeShape(PrimitiveType::F32, {3, 1}), std::nullopt, std::nullopt}, {sizeof(int64_t), sizeof(int64_t), std::nullopt, std::nullopt}); std::vector<float> arr{1, 2, 3, 4, 5, 6, 7, 8}; se::DeviceMemory<float> lhs = executor->AllocateArray<float>(2 * 4); TF_ASSERT_OK(stream->Memcpy(&lhs, arr.data(), length)); se::DeviceMemory<float> rhs = executor->AllocateArray<float>(8); std::vector<float> rhs_arr(8, 1); TF_ASSERT_OK(stream->Memcpy(&rhs, arr.data(), length)); se::DeviceMemory<float> out = executor->AllocateArray<float>(1); TF_ASSERT_OK(stream->MemZero(&out, out_length)); se::DeviceMemory<float> workspace = executor->AllocateArray<float>(1024 * 1024); TF_ASSERT_OK(stream->MemZero(&workspace, 1024 * 1024)); se::DeviceMemory<int64_t> lhs_offset_0 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> lhs_offset_1 = executor->AllocateArray<int64_t>(1); std::vector<int64_t> lhs_offset_arr{0, 1}; TF_ASSERT_OK( stream->Memcpy(&lhs_offset_0, &lhs_offset_arr[0], offset_length)); TF_ASSERT_OK( stream->Memcpy(&lhs_offset_1, &lhs_offset_arr[1], offset_length)); se::DeviceMemory<int64_t> rhs_offset_0 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> rhs_offset_1 = executor->AllocateArray<int64_t>(1); std::vector<int64_t> rhs_offset_arr{2, 0}; TF_ASSERT_OK( stream->Memcpy(&rhs_offset_0, &rhs_offset_arr[0], offset_length)); TF_ASSERT_OK( stream->Memcpy(&rhs_offset_1, &rhs_offset_arr[1], offset_length)); ServiceExecutableRunOptions run_options; se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations({lhs, rhs, out, workspace, lhs_offset_0, lhs_offset_1, rhs_offset_0, rhs_offset_1}, 0, &allocator); Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); Thunk::ExecutableSource source = {"", {}}; TF_ASSERT_OK(thunk.Initialize( {executor, source, &allocations, stream.get(), stream.get()})); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::vector<float> dst(1, 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), out, out_length)); ASSERT_EQ(dst, std::vector<float>({2 * 3 + 3 * 4 + 4 * 5})); } static absl::Status Memcpy(se::Stream* stream, ffi::AnyBuffer src, ffi::Result<ffi::AnyBuffer> dst) { return stream->MemcpyD2D( &dst->data, src.data, absl::c_accumulate(src.dimensions, 1.0, std::multiplies<int64_t>()) * sizeof(float)); } XLA_FFI_DEFINE_HANDLER(kMemcpy, Memcpy, ffi::Ffi::Bind() .Ctx<ffi::Stream>() .Arg<ffi::AnyBuffer>() .Ret<ffi::AnyBuffer>() ); XLA_FFI_REGISTER_HANDLER(ffi::GetXlaFfiApi(), "__xla_test$$memcpy", PLATFORM, kMemcpy); TEST(DynamicSliceThunkTest, SlicedMemcpy) { se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); int64_t src_count = 8 * 8 * 10 * 8; int64_t dst_count = 8 * 8; int64_t src_length = sizeof(int32_t) * src_count; int64_t dst_length = sizeof(int32_t) * dst_count; int64_t offset_length = sizeof(int64_t); int64_t slice_length = sizeof(int32_t) * dst_count; std::vector<std::unique_ptr<BufferAllocation>> fake_allocations(2); fake_allocations.push_back(std::make_unique<BufferAllocation>( 0, slice_length, 0)); BufferAllocation::Slice slice_src_fake(fake_allocations.back().get(), 0, slice_length); BufferAllocation alloc_src(0, src_length, 0); BufferAllocation::Slice slice_src(&alloc_src, 0, src_length); fake_allocations.push_back( std::make_unique<BufferAllocation>(1, dst_length, 0)); BufferAllocation::Slice slice_dst(fake_allocations.back().get(), 0, dst_length); BufferAllocation alloc_offset_0(2, offset_length, 0); BufferAllocation::Slice slice_offset_0(&alloc_offset_0, 0, offset_length); BufferAllocation alloc_offset_1(3, offset_length, 0); BufferAllocation::Slice slice_offset_1(&alloc_offset_1, 0, offset_length); BufferAllocation alloc_offset_2(4, offset_length, 0); BufferAllocation::Slice slice_offset_2(&alloc_offset_2, 0, offset_length); BufferAllocation alloc_offset_3(5, offset_length, 0); BufferAllocation::Slice slice_offset_3(&alloc_offset_3, 0, offset_length); auto registration = xla::ffi::FindHandler("__xla_test$$memcpy", PLATFORM); ASSERT_TRUE(registration.ok()); std::vector<std::optional<CustomCallThunk::Slice>> operands{ CustomCallThunk::Slice{slice_src_fake, ShapeUtil::MakeShape(PrimitiveType::S32, {8, 8})}}; std::vector<std::optional<CustomCallThunk::Slice>> results{ CustomCallThunk::Slice{slice_dst, ShapeUtil::MakeShape(PrimitiveType::S32, {8, 8})}}; ThunkSequence seq; seq.emplace_back(std::make_unique<CustomCallThunk>( Thunk::ThunkInfo(), registration->bundle, operands, results, CustomCallThunk::AttributesMap(), nullptr)); std::vector<DynamicSliceThunk::Offset> slice_offsets{ slice_offset_0, slice_offset_1, slice_offset_2, slice_offset_3}; DynamicSliceThunk thunk( Thunk::ThunkInfo(), std::make_unique<ThunkSequence>(std::move(seq)), {slice_src, slice_dst}, std::move(fake_allocations), {slice_offsets, std::nullopt}, {ShapeUtil::MakeShape(PrimitiveType::S32, {8, 8, 10, 8}), std::nullopt}, {ShapeUtil::MakeShape(PrimitiveType::S32, {1, 1, 8, 8}), std::nullopt}, {sizeof(int64_t), std::nullopt}); se::DeviceMemory<int32_t> src = executor->AllocateArray<int32_t>(src_count); std::vector<int32_t> src_arr(src_count, 0); for (unsigned i = 0; i < src_count; ++i) src_arr[i] = i; TF_ASSERT_OK(stream->Memcpy(&src, src_arr.data(), src_length)); se::DeviceMemory<int32_t> dst = executor->AllocateArray<int32_t>(dst_count); TF_ASSERT_OK(stream->MemZero(&dst, dst_length)); se::DeviceMemory<int64_t> offset_0 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> offset_1 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> offset_2 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> offset_3 = executor->AllocateArray<int64_t>(1); std::vector<int64_t> offset_arr{3, 5, 2, 0}; TF_ASSERT_OK(stream->Memcpy(&offset_0, &offset_arr[0], offset_length)); TF_ASSERT_OK(stream->Memcpy(&offset_1, &offset_arr[1], offset_length)); TF_ASSERT_OK(stream->Memcpy(&offset_2, &offset_arr[2], offset_length)); TF_ASSERT_OK(stream->Memcpy(&offset_3, &offset_arr[3], offset_length)); ServiceExecutableRunOptions run_options; se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations( {src, dst, offset_0, offset_1, offset_2, offset_3}, 0, &allocator); Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); Thunk::ExecutableSource source = {"", {}}; TF_ASSERT_OK(thunk.Initialize( {executor, source, &allocations, stream.get(), stream.get()})); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::vector<int32_t> out(dst_count, 0); TF_ASSERT_OK(stream->Memcpy(out.data(), dst, dst_length)); std::vector<int32_t> ref(dst_count, 0); int64_t offset_val = offset_arr[3] + 8 * (offset_arr[2] + 10 * (offset_arr[1] + 8 * offset_arr[0])); std::copy(src_arr.begin() + offset_val, src_arr.begin() + offset_val + dst_count, ref.begin()); ASSERT_EQ(out, ref); } TEST(DynamicSliceThunkTest, SlicedOutputMemcpy) { se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); int64_t src_count = 8 * 8 * 10 * 2; int64_t dst_count = 2 * 2 * 2 * 2; int64_t slice_count = 2 * 2; int64_t src_length = sizeof(int32_t) * src_count; int64_t dst_length = sizeof(int32_t) * dst_count; int64_t offset_length = sizeof(int64_t); int64_t slice_length = sizeof(int32_t) * slice_count; std::vector<std::unique_ptr<BufferAllocation>> fake_allocations(2); fake_allocations.push_back(std::make_unique<BufferAllocation>( 0, slice_length, 0)); BufferAllocation::Slice slice_src_fake(fake_allocations.back().get(), 0, slice_length); fake_allocations.push_back(std::make_unique<BufferAllocation>( 1, slice_length, 0)); BufferAllocation::Slice slice_dst_fake(fake_allocations.back().get(), 0, slice_length); BufferAllocation alloc_src(0, src_length, 0); BufferAllocation::Slice slice_src(&alloc_src, 0, src_length); BufferAllocation alloc_dst(1, dst_length, 0); BufferAllocation::Slice slice_dst(&alloc_dst, 0, dst_length); BufferAllocation alloc_src_offset_0(2, offset_length, 0); BufferAllocation::Slice slice_src_offset_0(&alloc_src_offset_0, 0, offset_length); BufferAllocation alloc_src_offset_1(3, offset_length, 0); BufferAllocation::Slice slice_src_offset_1(&alloc_src_offset_1, 0, offset_length); BufferAllocation alloc_src_offset_2(4, offset_length, 0); BufferAllocation::Slice slice_src_offset_2(&alloc_src_offset_2, 0, offset_length); BufferAllocation alloc_src_offset_3(5, offset_length, 0); BufferAllocation::Slice slice_src_offset_3(&alloc_src_offset_3, 0, offset_length); BufferAllocation alloc_dst_offset_0(6, offset_length, 0); BufferAllocation::Slice slice_dst_offset_0(&alloc_dst_offset_0, 0, offset_length); BufferAllocation alloc_dst_offset_1(7, offset_length, 0); BufferAllocation::Slice slice_dst_offset_1(&alloc_dst_offset_1
2,162
cpp
tensorflow/tensorflow
cycle_detector
third_party/xla/xla/mlir_hlo/utils/cycle_detector.cc
third_party/xla/xla/mlir_hlo/utils/cycle_detector_test.cc
#ifndef MLIR_HLO_UTILS_CYCLE_DETECTOR_H #define MLIR_HLO_UTILS_CYCLE_DETECTOR_H #include <optional> #include <vector> #include "llvm/ADT/DenseMap.h" namespace mlir { template <typename T> class OrderedSet { public: bool Insert(T value) { bool new_insertion = value_to_index_.insert({value, value_sequence_.size()}).second; if (new_insertion) { value_sequence_.push_back(value); } return new_insertion; } void Erase(T value) { auto it = value_to_index_.find(value); value_to_index_[value_sequence_.back()] = it->second; std::swap(value_sequence_[it->second], value_sequence_.back()); value_sequence_.pop_back(); value_to_index_.erase(it); } void Reserve(size_t new_size) { value_to_index_.reserve(new_size); value_sequence_.reserve(new_size); } void Clear() { value_to_index_.clear(); value_sequence_.clear(); } bool Contains(T value) const { return value_to_index_.count(value); } size_t Size() const { return value_sequence_.size(); } const std::vector<T>& GetSequence() const { return value_sequence_; } private: std::vector<T> value_sequence_; llvm::DenseMap<T, int> value_to_index_; }; class GraphCycles { public: explicit GraphCycles(int32_t num_nodes); ~GraphCycles(); bool InsertEdge(int32_t x, int32_t y); void RemoveEdge(int32_t x, int32_t y); bool HasEdge(int32_t x, int32_t y) const; std::optional<int32_t> ContractEdge(int32_t a, int32_t b); bool IsReachable(int32_t x, int32_t y); std::vector<int32_t> SuccessorsCopy(int32_t node) const; std::vector<int32_t> AllNodesInPostOrder() const; struct Rep; private: GraphCycles(const GraphCycles&) = delete; GraphCycles& operator=(const GraphCycles&) = delete; Rep* rep_; }; } #endif #include "utils/cycle_detector.h" #include <algorithm> #include <optional> #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SmallVector.h" namespace mlir { namespace { using NodeSet = llvm::DenseSet<int32_t>; using OrderedNodeSet = OrderedSet<int32_t>; template <typename T> struct VecStruct { using type = llvm::SmallVector<T, 4>; }; template <typename T> using Vec = typename VecStruct<T>::type; struct Node { int32_t rank; bool visited; void* data; OrderedNodeSet in; OrderedNodeSet out; }; } struct GraphCycles::Rep { Vec<Node*> nodes; Vec<int32_t> freeNodes; Vec<int32_t> deltaf; Vec<int32_t> deltab; Vec<int32_t> list; Vec<int32_t> merged; Vec<int32_t> stack; }; GraphCycles::GraphCycles(int32_t numNodes) : rep_(new Rep) { rep_->nodes.reserve(numNodes); for (int32_t i = 0; i < numNodes; ++i) { Node* n = new Node; n->visited = false; n->data = nullptr; n->rank = rep_->nodes.size(); rep_->nodes.push_back(n); } } GraphCycles::~GraphCycles() { for (Vec<Node*>::size_type i = 0, e = rep_->nodes.size(); i < e; ++i) { delete rep_->nodes[i]; } delete rep_; } bool GraphCycles::HasEdge(int32_t x, int32_t y) const { return rep_->nodes[x]->out.Contains(y); } void GraphCycles::RemoveEdge(int32_t x, int32_t y) { rep_->nodes[x]->out.Erase(y); rep_->nodes[y]->in.Erase(x); } static bool forwardDfs(GraphCycles::Rep* r, int32_t n, int32_t upperBound); static void backwardDfs(GraphCycles::Rep* r, int32_t n, int32_t lowerBound); static void reorder(GraphCycles::Rep* r); static void sort(const Vec<Node*>&, Vec<int32_t>* delta); static void moveToList(GraphCycles::Rep* r, Vec<int32_t>* src, Vec<int32_t>* dst); static void clearVisitedBits(GraphCycles::Rep* r, const Vec<int32_t>& nodes); bool GraphCycles::InsertEdge(int32_t x, int32_t y) { if (x == y) return false; Rep* r = rep_; Node* nx = r->nodes[x]; if (!nx->out.Insert(y)) { return true; } Node* ny = r->nodes[y]; ny->in.Insert(x); if (nx->rank <= ny->rank) { return true; } if (forwardDfs(r, y, nx->rank)) { nx->out.Erase(y); ny->in.Erase(x); clearVisitedBits(r, r->deltaf); return false; } backwardDfs(r, x, ny->rank); reorder(r); return true; } static bool forwardDfs(GraphCycles::Rep* r, int32_t n, int32_t upperBound) { r->deltaf.clear(); r->stack.clear(); r->stack.push_back(n); while (!r->stack.empty()) { n = r->stack.back(); r->stack.pop_back(); Node* nn = r->nodes[n]; if (nn->visited) continue; nn->visited = true; r->deltaf.push_back(n); for (auto w : nn->out.GetSequence()) { Node* nw = r->nodes[w]; if (nw->rank == upperBound) { return true; } if (!nw->visited && nw->rank < upperBound) { r->stack.push_back(w); } } } return false; } static void backwardDfs(GraphCycles::Rep* r, int32_t n, int32_t lowerBound) { r->deltab.clear(); r->stack.clear(); r->stack.push_back(n); while (!r->stack.empty()) { n = r->stack.back(); r->stack.pop_back(); Node* nn = r->nodes[n]; if (nn->visited) continue; nn->visited = true; r->deltab.push_back(n); for (auto w : nn->in.GetSequence()) { Node* nw = r->nodes[w]; if (!nw->visited && lowerBound < nw->rank) { r->stack.push_back(w); } } } } static void reorder(GraphCycles::Rep* r) { sort(r->nodes, &r->deltab); sort(r->nodes, &r->deltaf); r->list.clear(); moveToList(r, &r->deltab, &r->list); moveToList(r, &r->deltaf, &r->list); r->merged.resize(r->deltab.size() + r->deltaf.size()); std::merge(r->deltab.begin(), r->deltab.end(), r->deltaf.begin(), r->deltaf.end(), r->merged.begin()); for (Vec<int32_t>::size_type i = 0, e = r->list.size(); i < e; ++i) { r->nodes[r->list[i]]->rank = r->merged[i]; } } static void sort(const Vec<Node*>& nodes, Vec<int32_t>* delta) { struct ByRank { const Vec<Node*>* nodes; bool operator()(int32_t a, int32_t b) const { return (*nodes)[a]->rank < (*nodes)[b]->rank; } }; ByRank cmp; cmp.nodes = &nodes; std::sort(delta->begin(), delta->end(), cmp); } static void moveToList(GraphCycles::Rep* r, Vec<int32_t>* src, Vec<int32_t>* dst) { for (Vec<int32_t>::size_type i = 0, e = src->size(); i < e; i++) { int32_t w = (*src)[i]; (*src)[i] = r->nodes[w]->rank; r->nodes[w]->visited = false; dst->push_back(w); } } static void clearVisitedBits(GraphCycles::Rep* r, const Vec<int32_t>& nodes) { for (Vec<int32_t>::size_type i = 0, e = nodes.size(); i < e; i++) { r->nodes[nodes[i]]->visited = false; } } bool GraphCycles::IsReachable(int32_t x, int32_t y) { if (x == y) return true; Rep* r = rep_; Node* nx = r->nodes[x]; Node* ny = r->nodes[y]; if (nx->rank >= ny->rank) { return false; } bool reachable = forwardDfs(r, x, ny->rank); clearVisitedBits(r, r->deltaf); return reachable; } std::optional<int32_t> GraphCycles::ContractEdge(int32_t a, int32_t b) { assert(HasEdge(a, b)); RemoveEdge(a, b); if (IsReachable(a, b)) { InsertEdge(a, b); return {}; } if (rep_->nodes[b]->in.Size() + rep_->nodes[b]->out.Size() > rep_->nodes[a]->in.Size() + rep_->nodes[a]->out.Size()) { std::swap(a, b); } Node* nb = rep_->nodes[b]; OrderedNodeSet out = std::move(nb->out); OrderedNodeSet in = std::move(nb->in); for (int32_t y : out.GetSequence()) { rep_->nodes[y]->in.Erase(b); } for (int32_t y : in.GetSequence()) { rep_->nodes[y]->out.Erase(b); } rep_->freeNodes.push_back(b); rep_->nodes[a]->out.Reserve(rep_->nodes[a]->out.Size() + out.Size()); for (int32_t y : out.GetSequence()) { InsertEdge(a, y); } rep_->nodes[a]->in.Reserve(rep_->nodes[a]->in.Size() + in.Size()); for (int32_t y : in.GetSequence()) { InsertEdge(y, a); } return a; } std::vector<int32_t> GraphCycles::SuccessorsCopy(int32_t node) const { return rep_->nodes[node]->out.GetSequence(); } namespace { void sortInPostOrder(const Vec<Node*>& nodes, std::vector<int32_t>* toSort) { std::sort(toSort->begin(), toSort->end(), [&](int32_t a, int32_t b) { return nodes[a]->rank > nodes[b]->rank; }); } } std::vector<int32_t> GraphCycles::AllNodesInPostOrder() const { llvm::DenseSet<int32_t> freeNodesSet; for (int32_t n : rep_->freeNodes) freeNodesSet.insert(n); std::vector<int32_t> allNodes; allNodes.reserve(rep_->nodes.size() - freeNodesSet.size()); for (size_t i = 0, e = rep_->nodes.size(); i < e; i++) { if (!freeNodesSet.count(i)) { allNodes.push_back(i); } } sortInPostOrder(rep_->nodes, &allNodes); return allNodes; } }
#include "utils/cycle_detector.h" #include "xla/test.h" class GraphCyclesTest : public ::testing::Test { public: GraphCyclesTest() : g_(100) {} bool AddEdge(int x, int y) { return g_.InsertEdge(x, y); } void AddMultiples() { for (int x = 1; x < 25; x++) { EXPECT_TRUE(AddEdge(x, 2 * x)) << x; EXPECT_TRUE(AddEdge(x, 3 * x)) << x; } } mlir::GraphCycles g_; }; TEST_F(GraphCyclesTest, NoCycle) { AddMultiples(); } TEST_F(GraphCyclesTest, SimpleCycle) { AddMultiples(); EXPECT_FALSE(AddEdge(8, 4)); } TEST_F(GraphCyclesTest, IndirectCycle) { AddMultiples(); EXPECT_TRUE(AddEdge(16, 9)); EXPECT_FALSE(AddEdge(9, 2)); } TEST_F(GraphCyclesTest, RemoveEdge) { EXPECT_TRUE(AddEdge(1, 2)); EXPECT_TRUE(AddEdge(2, 3)); EXPECT_TRUE(AddEdge(3, 4)); EXPECT_TRUE(AddEdge(4, 5)); g_.RemoveEdge(2, 3); EXPECT_FALSE(g_.HasEdge(2, 3)); } TEST_F(GraphCyclesTest, IsReachable) { EXPECT_TRUE(AddEdge(1, 2)); EXPECT_TRUE(AddEdge(2, 3)); EXPECT_TRUE(AddEdge(3, 4)); EXPECT_TRUE(AddEdge(4, 5)); EXPECT_TRUE(g_.IsReachable(1, 5)); EXPECT_FALSE(g_.IsReachable(5, 1)); } TEST_F(GraphCyclesTest, ContractEdge) { ASSERT_TRUE(AddEdge(1, 2)); ASSERT_TRUE(AddEdge(1, 3)); ASSERT_TRUE(AddEdge(2, 3)); ASSERT_TRUE(AddEdge(2, 4)); ASSERT_TRUE(AddEdge(3, 4)); EXPECT_FALSE(g_.ContractEdge(1, 3).has_value()); EXPECT_TRUE(g_.HasEdge(1, 3)); EXPECT_EQ(*g_.ContractEdge(1, 2), 2); EXPECT_TRUE(g_.HasEdge(2, 3)); EXPECT_TRUE(g_.HasEdge(2, 4)); EXPECT_TRUE(g_.HasEdge(3, 4)); EXPECT_EQ(*g_.ContractEdge(2, 3), 2); EXPECT_TRUE(g_.HasEdge(2, 4)); }
2,163
cpp
tensorflow/tensorflow
hlo_sharding_util
third_party/xla/xla/hlo/utils/hlo_sharding_util.cc
third_party/xla/xla/hlo/utils/hlo_sharding_util_test.cc
#ifndef XLA_HLO_UTILS_HLO_SHARDING_UTIL_H_ #define XLA_HLO_UTILS_HLO_SHARDING_UTIL_H_ #include <cstdint> #include <map> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/service/call_graph.h" #include "xla/service/dot_as_convolution_util.h" #include "xla/shape.h" #include "xla/util.h" namespace xla { namespace hlo_sharding_util { struct GatherScatterParallelDims { absl::InlinedVector<int64_t, 1> indices_parallel_dims; absl::InlinedVector<int64_t, 1> operand_parallel_dims; std::vector<int64_t> index_parallel_in_dim; }; bool IsSubTilingOrEqualSharding(const Shape& shape, const HloSharding& potential_subsharding, const HloSharding& sharding); bool IsShardingMoreSpecific(const HloSharding& lhs, const HloSharding& rhs); bool MergeSharding(const HloSharding& to_merge, HloSharding* dst, bool may_combine_partial_sharding); bool MergeShardingIfCompatible(const HloSharding& to_merge, int64_t minimum_tiles, HloSharding* dst); HloSharding FindCommonSharding( absl::Span<const HloSharding> shardings, std::optional<HloSharding> default_sharding = std::nullopt); std::optional<int64_t> SelectDominantDevice( const std::map<int64_t, int64_t>& device_map, int64_t* top_count); void AssignComputationDevice(HloComputation* computation, int64_t device); std::optional<int64_t> GetMostOccurringDevice( absl::Span<HloInstruction* const> instructions); std::optional<int64_t> GetDominantDevice( absl::Span<HloComputation* const> computations, double dominant_factor); HloSharding TransposeSharding(const HloSharding& sharding, absl::Span<const int64_t> dimensions); std::optional<HloSharding> ReshapeSharding(const Shape& source_shape, const Shape& target_shape, const HloSharding& sharding); HloSharding PropagateShardingThroughReshape(const Shape& source_shape, const Shape& target_shape, const HloSharding& sharding); HloSharding ReverseSharding(const HloSharding& sharding, absl::Span<const int64_t> dimensions); HloSharding ReshapeToTileDimension(const HloSharding& sharding, int64_t dim, absl::Span<const int64_t> dims); bool ContainsTileSharding(const HloModule& module); HloSharding GatherOutputShardingFromIndexIndexPassthroughDimensions( const HloSharding& index_sharding, const HloInstruction* hlo); HloSharding GatherIndexShardingFromOutputIndexPassthroughDimensions( const HloSharding& output_sharding, const HloInstruction* hlo); HloSharding GatherEffectiveOutputSharding(const HloInstruction& hlo); HloSharding ScatterIndexShardingFromUpdateIndexPassthroughDimensions( const HloSharding& update_sharding, const HloScatterInstruction* scatter); HloSharding ScatterUpdateShardingFromIndexIndexPassthroughDimensions( const HloSharding& index_sharding, const HloScatterInstruction* scatter); HloSharding ScatterEffectiveIndexSharding(const HloSharding& index_sharding, const HloScatterInstruction& scatter); HloSharding ScatterEffectiveDataSharding(const HloSharding& data_sharding, const HloScatterInstruction& scatter); std::optional<HloSharding> GatherOutputShardingFromOperandOperandPassthroughDimensions( const HloSharding& operand_sharding, const HloInstruction& hlo); std::optional<HloSharding> GatherOutputShardingFromOperandOperandPassthroughDimensions( const Shape& operand_shape, const HloSharding& operand_sharding, const HloInstruction& hlo, absl::Span<const int64_t> slice_sizes); std::optional<HloSharding> GatherOperandShardingFromOutputParallelDimensions( const HloSharding& output_sharding, const HloScatterInstruction& scatter, const CallGraph& call_graph); std::optional<HloSharding> GatherOperandShardingFromOutput( const HloSharding& output_sharding, const HloInstruction& hlo, const CallGraph& call_graph); std::vector<int64_t> GetScatterSliceSize(const Shape& operand_shape, const Shape& update_shape, const ScatterDimensionNumbers& dnums); std::optional<HloSharding> ScatterOutputShardingFromUpdate( const HloSharding& update_sharding, const HloScatterInstruction& scatter); std::optional<HloSharding> ScatterUpdateShardingFromOutput( const HloSharding& per_output_sharding, const HloScatterInstruction& scatter, const CallGraph& call_graph); std::optional<HloSharding> ScatterUpdateShardingFromOutputOperandPassthroughDimensions( const HloSharding& output_sharding, const HloInstruction& hlo); std::optional<HloSharding> ScatterUpdateShardingFromOutputOperandPassthroughDimensions( const Shape& output_shape, const HloSharding& output_sharding, const HloInstruction& hlo, absl::Span<const int64_t> slice_sizes); std::optional<HloSharding> ScatterUpdateShardingFromOutputParallelDimensions( const HloSharding& output_sharding, const HloScatterInstruction& scatter, const CallGraph& call_graph); HloSharding GatherOutputOrScatterUpdateShardingFromIndicesParallelDimensions( const HloSharding& indices_sharding, const int64_t output_or_update_shape_rank, absl::Span<const int64_t> indices_parallel_dims, absl::Span<const int64_t> output_or_update_parallel_dims); absl::StatusOr<std::pair<std::unique_ptr<HloInstruction>, HloOpcode>> IdentityValueAndHloOpcodeForScatterReduceComputation( const HloScatterInstruction& scatter); std::vector<int64_t> DevicesForSharding( const HloSharding& sharding, absl::Span<const int64_t> available_devices); HloSharding PartiallyReplicateTiledShardingOnDims( const HloSharding& sharding, absl::Span<const int64_t> dims_to_replicate); HloSharding PartiallyReplicateTiledShardingOnAllDimsExcept( const HloSharding& sharding, absl::Span<const int64_t> dims_to_keep); HloSharding ReplicateAllDataDims(const HloSharding& sharding, int64_t data_rank = -1); HloSharding RemoveShapeDimensions(const HloSharding& sharding, absl::Span<const int64_t> dims_to_remove); std::optional<HloSharding> TransposeShardingWithCollapsedDims( const HloSharding& source, absl::Span<int64_t const> src_to_tgt, absl::Span<int64_t const> tgt_to_src); std::optional<int64_t> GetDimensionForIota(const HloInstruction* maybe_iota, const CallGraph& call_graph); std::optional<GatherScatterParallelDims> GetGatherParallelBatchDims( const HloInstruction& hlo, const CallGraph& call_graph); std::optional<GatherScatterParallelDims> GetScatterParallelBatchDims( const HloInstruction& hlo, const CallGraph& call_graph); absl::InlinedVector<int64_t, 1> GetGatherParallelOutputDims( const HloInstruction& hlo, const GatherScatterParallelDims& parallel_dim); absl::InlinedVector<int64_t, 1> GetScatterParallelUpdateDims( const HloInstruction& hlo, const GatherScatterParallelDims& parallel_dim); absl::InlinedVector<int64_t, 1> GetGatherOperandPassthroughOperandDims( const Shape& operand_shape, const HloInstruction& hlo, absl::Span<const int64_t> slice_sizes); absl::InlinedVector<int64_t, 1> GetScatterOperandPassthroughOperandDims( const Shape& operand_shape, const HloSharding& operand_sharding, const HloInstruction& hlo, absl::Span<const int64_t> slice_sizes); absl::InlinedVector<int64_t, 1> GetGatherOperandPassthroughOutputDims( const Shape& output_shape, const Shape& operand_shape, const HloInstruction& hlo, absl::Span<const int64_t> slice_sizes); absl::InlinedVector<int64_t, 1> GetScatterOperandPassthroughUpdateDims( const Shape& update_shape, const Shape& operand_shape, const HloSharding& operand_sharding, const HloInstruction& hlo, absl::Span<const int64_t> slice_sizes); absl::InlinedVector<int64_t, 1> GetGatherScatterIndexPassthroughIndexDims( const int64_t indices_rank, const int64_t index_vector_dim); absl::InlinedVector<int64_t, 1> GetGatherScatterIndexPassthroughOutputOrUpdateDims( const int64_t output_or_update_rank, absl::Span<const int64_t> offset_or_window_dims); HloSharding InferGatherScatterParallelShardingFromOperandSharding( const HloSharding& operand_sharding, const Shape& operand_shape, const Shape& shape, absl::Span<const int64_t> output_aligned_operand_parallel_dims, absl::Span<const int64_t> output_parallel_dims); absl::InlinedVector<int64_t, 1> IndexAlignedOperandParallelDims( const GatherScatterParallelDims& parallel_dims); struct GroupedSharding { GroupedSharding(std::vector<std::vector<int64_t>> device_groups, DimensionVector group_dims, DimensionVector group_dim_sizes, int64_t data_rank, HloSharding grouped_sharding, bool subgroup_manual = false) : device_groups(std::move(device_groups)), group_dims(std::move(group_dims)), group_dim_sizes(std::move(group_dim_sizes)), data_rank(data_rank), sharding(std::move(grouped_sharding)), subgroup_manual(subgroup_manual) {} std::string ToString() const; std::vector<std::vector<int64_t>> device_groups; DimensionVector group_dims; DimensionVector group_dim_sizes; int64_t data_rank; HloSharding sharding; bool subgroup_manual; }; GroupedSharding GroupShardingOnDims(const HloSharding& sharding, absl::Span<const int64_t> group_dims, absl::Span<const int64_t> group_dim_shards, bool subgroup_manual = false); GroupedSharding GroupShardingOnDims(const HloSharding& sharding, absl::Span<const int64_t> group_dims, bool subgroup_manual = false); GroupedSharding GroupShardingOnAllDimsExcept( const HloSharding& sharding, absl::Span<const int64_t> non_group_dims, bool subgroup_manual = false); GroupedSharding GroupShardingOnReplicatedDim( const HloSharding& sharding, int64_t num_groups, int64_t num_tiles, int64_t data_rank, absl::Span<const int64_t> replicable_dims = {}); GroupedSharding GetGroupedReplicatedSharding(const int64_t num_groups, const int64_t num_tiles, const int64_t data_rank); GroupedSharding GetManualSubgroupSharding(const HloSharding& sharding); std::optional<GroupedSharding> PartialReplicatedGroupShardingWithAssignedDeviceGroups( const HloSharding& sharding, int64_t num_shards, const std::vector<std::vector<int64_t>>& device_groups); HloSharding UngroupSharding(const GroupedSharding& grouped_sharding); bool DeviceGroupsAreMatch(GroupedSharding& lhs, GroupedSharding& rhs, bool ignore_group_order = true); HloSharding SplitShardingDimension(const HloSharding& sharding, int64_t dimension, int64_t new_dim_size); HloSharding MergeShardingDimension(const HloSharding& sharding, int64_t dimension); std::shared_ptr<const HloSharding> CreateTupleSharding( const Shape& shape, absl::Span<const HloInstruction* const> elements); bool IsSortOperandShardingMovable(const HloInstruction* sort_operand, int64_t sort_dim); std::optional<GatherScatterParallelDims> GetGatherScatterBatchParallelDims( const HloInstruction* indices, absl::Span<const int64_t> slice_sizes, int64_t index_vector_dim, absl::Span<const int64_t> index_map, const CallGraph& call_graph); std::optional<HloSharding> GetOutputSharding(const HloInstruction* instruction); Shape UntileShape(const HloSharding& sharding, const Shape& shape); Shape UntileLeafShape(const HloSharding& sharding, const Shape& shape); Shape TileShape(const HloSharding& sharding, const Shape& shape); Shape TileLeafShape(const HloSharding& sharding, const Shape& shape); absl::Status CanonicalizeLayoutAfterShardingPropagation( HloModule* module, bool update_output_layout, bool update_parameters_layout); bool IsSpatiallyPartitioned(const HloSharding& sharding); inline bool IsSpatiallyPartitioned(const HloInstruction* hlo) { return hlo->has_sharding() && IsSpatiallyPartitioned(hlo->sharding()); } std::optional<HloSharding> ReturnImprovedShardingImpl( HloSharding from, const HloSharding* to_improved, const Shape& to_improved_shape, bool may_combine_partial_sharding, bool allow_aggressive_resharding = false); HloSharding InferDotOperandSharding( const HloInstruction* dot, int64_t operand_index, const dot_as_convolution_util::DotConvolutionDimsInfo& dnums, bool consider_other_operand, bool may_combine_partial_sharding); } } #endif #include "xla/hlo/utils/hlo_sharding_util.h" #include <algorithm> #include <cmath> #include <cstdint> #include <cstdlib> #include <iterator> #include <map> #include <memory> #include <numeric> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/btree_set.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/types/span.h" #include "xla/array.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/ir/tile_assignment.h" #include "xla/literal_util.h" #include "xla/map_util.h" #include "xla/protobuf_util.h" #include "xla/service/call_graph.h" #include "xla/service/dot_as_convolution_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace hlo_sharding_util { bool IsSubTilingOrEqualSharding(const Shape& potential_sharded_shape, const HloSharding& potential_subsharding, const HloSharding& sharding) { if (potential_subsharding.IsManual() || sharding.IsManual()) { return false; } if (sharding.IsTileMaximal()) { return true; } if (potential_subsharding.IsTileMaximal()) { return false; } const int32_t tiled_data_rank = potential_subsharding.TiledDataRank(); if (tiled_data_rank != sharding.TiledDataRank() || tiled_data_rank != potential_sharded_shape.dimensions_size()) { return false; } DimensionVector potential_base_tile(tiled_data_rank); DimensionVector base_tile(tiled_data_rank); bool shortcut = true; int64_t diff_dim_counter = 0; DimensionVector reshape_dims( potential_subsharding.tile_assignment().dimensions().begin(), potential_subsharding.tile_assignment().dimensions().end()); for (int64_t i = 0; i < tiled_data_rank; ++i) { const auto shape_i = potential_sharded_shape.dimensions(i); const auto p_tile_dim_i = potential_subsharding.tile_assignment().dim(i); const auto s_tile_dim_i = sharding.tile_assignment().dim(i); if (p_tile_dim_i < s_tile_dim_i) { return false; } potential_base_tile[i] = CeilOfRatio(shape_i, p_tile_dim_i); base_tile[i] = CeilOfRatio(shape_i, s_tile_dim_i); if (s_tile_dim_i != 1 && (p_tile_dim_i % s_tile_dim_i != 0 || base_tile[i] % potential_base_tile[i] != 0 || shape_i <= (p_tile_dim_i - 1) * potential_base_tile[i] || shape_i <= (s_tile_dim_i - 1) * base_tile[i])) { shortcut = false; } if (shortcut && p_tile_dim_i != s_tile_dim_i) { reshape_dims[i + diff_dim_counter] = s_tile_dim_i; reshape_dims.insert(reshape_dims.begin() + i + diff_dim_counter + 1, p_tile_dim_i / s_tile_dim_i); diff_dim_counter++; } } if (shortcut) { if (!sharding.HasPartialReplication()) { return potential_subsharding == sharding; } std::vector<int> perm(reshape_dims.size()); absl::c_iota(perm, 0); for (int64_t i = 0; i < tiled_data_rank; ++i) { if (potential_subsharding.tile_assignment().dim(i) != sharding.tile_assignment().dim(i)) { auto element = perm[i + 1]; perm.erase(perm.begin() + i + 1); perm.push_back(element); } } auto reshaped_ta = potential_subsharding.tile_assignment() .Reshape(reshape_dims) .Transpose(perm) .Reshape(sharding.tile_assignment().dimensions()); return HloSharding::PartialTile(reshaped_ta).tile_assignment() == sharding.tile_assignment(); } auto storage = std::make_unique<int32_t[]>( sharding.tile_assignment().num_elements() * tiled_data_rank); int32_t* storage_cursor = storage.get(); absl::flat_has
#include "xla/hlo/utils/hlo_sharding_util.h" #include <cstdint> #include <initializer_list> #include <optional> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/log/log.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/array.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/ir/tile_assignment.h" #include "xla/service/dot_as_convolution_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace hlo_sharding_util { namespace { TEST(HloShardingUtilTest, MergeShardingIfCompatible1) { HloSharding to_merge = HloSharding::PartialTile(TileAssignment({1, 4, 2, 16}, {16, 8}, {1, 0})); HloSharding dst = HloSharding::PartialTile(TileAssignment({4, 1, 1, 32})); EXPECT_TRUE(MergeShardingIfCompatible(to_merge, dst.NumTiles() + 1, &dst)); EXPECT_EQ(dst, HloSharding::PartialTile( TileAssignment({4, 4, 2, 4}, {4, 4, 8}, {0, 2, 1}))); } TEST(HloShardingUtilTest, MergeShardingIfCompatible2) { HloSharding to_merge = HloSharding::PartialTile(TileAssignment({1, 2, 4, 16}, {16, 8}, {1, 0})); HloSharding dst = HloSharding::PartialTile(TileAssignment({4, 1, 1, 32})); EXPECT_TRUE(MergeShardingIfCompatible(to_merge, dst.NumTiles() + 1, &dst)); EXPECT_EQ(dst, HloSharding::PartialTile( TileAssignment({4, 2, 4, 4}, {4, 4, 8}, {0, 2, 1}))); } TEST(HloShardingUtilTest, MergeShardingIfCompatible3) { HloSharding to_merge = HloSharding::PartialTile(TileAssignment({4, 2, 1, 16}, {16, 8}, {1, 0})); HloSharding dst = HloSharding::PartialTile(TileAssignment({1, 1, 4, 32})); EXPECT_TRUE(MergeShardingIfCompatible(to_merge, dst.NumTiles() + 1, &dst)); EXPECT_EQ(dst, HloSharding::PartialTile( TileAssignment({4, 2, 4, 4}, {16, 8}, {1, 0}))); } TEST(HloShardingUtilTest, MergeShardingIfCompatible4) { HloSharding to_merge = HloSharding::PartialTile(TileAssignment({1, 4, 2, 16}, {16, 8}, {1, 0})); HloSharding dst = HloSharding::PartialTile(TileAssignment({4, 1, 1, 32}, {4, 32}, {1, 0})); EXPECT_TRUE(MergeShardingIfCompatible(to_merge, dst.NumTiles() + 1, &dst)); EXPECT_EQ(dst, HloSharding::PartialTile( TileAssignment({4, 4, 2, 4}, {4, 32}, {1, 0}))); } TEST(HloShardingUtilTest, MergeShardingIfCompatible5) { HloSharding to_merge = HloSharding::PartialTile(TileAssignment({1, 4, 2, 16}, {16, 8}, {1, 0})); HloSharding dst = HloSharding::PartialTile(TileAssignment({4, 1, 1, 32}, {32, 4}, {1, 0})); EXPECT_FALSE(MergeShardingIfCompatible(to_merge, dst.NumTiles() + 1, &dst)); } TEST(HloShardingUtilTest, MergeShardingIfCompatible6) { HloSharding to_merge = HloSharding::PartialTile(TileAssignment({1, 4, 2, 16})); HloSharding dst = HloSharding::PartialTile(TileAssignment({4, 1, 1, 32})); EXPECT_FALSE(MergeShardingIfCompatible(to_merge, dst.NumTiles() + 1, &dst)); } TEST(HloShardingUtilTest, MergeShardingIfCompatible7) { HloSharding to_merge = HloSharding::PartialTile( TileAssignment({2, 1, 2, 2}, {2, 2, 2}, {2, 1, 0})); HloSharding dst = HloSharding::PartialTile(TileAssignment({1, 2, 1, 4})); EXPECT_TRUE(MergeShardingIfCompatible(to_merge, dst.NumTiles() + 1, &dst)); EXPECT_EQ(dst, HloSharding::Tile(TileAssignment({2, 2, 2}, {2, 2, 2}, {2, 0, 1}))); } TEST(HloShardingUtilTest, MergeShardingIfCompatible8) { HloSharding to_merge = HloSharding::PartialTile(TileAssignment({2, 1, 4})); HloSharding dst = HloSharding::PartialTile(TileAssignment({1, 4, 2}, {2, 2, 2}, {2, 1, 0})); EXPECT_TRUE(MergeShardingIfCompatible(to_merge, dst.NumTiles() + 1, &dst)); EXPECT_EQ(dst, HloSharding::Tile(TileAssignment({2, 4}, {2, 2, 2}, {0, 2, 1}))); } TEST(HloShardingUtilTest, TransposeShardingReplicated) { EXPECT_EQ(TransposeSharding(HloSharding::Replicate(), {0, 1, 2}), HloSharding::Replicate()); } TEST(HloShardingUtilTest, TransposeShardingTiled) { HloSharding input = HloSharding::IotaTile({1, 2, 1, 2}); HloSharding output = HloSharding::IotaTile({2, 1, 2, 1}, {2, 2}, {1, 0}); EXPECT_EQ(TransposeSharding(input, {3, 0, 1, 2}), output); } TEST(HloShardingUtilTest, TransposeShardingWithCollapsedDimsSubgroupManual) { HloSharding input = HloSharding::Subgroup(TileAssignment({1, 2, 4}), {OpSharding::MANUAL}); HloSharding output = HloSharding::Subgroup(TileAssignment({1, 1, 2, 4}), {OpSharding::MANUAL}); EXPECT_EQ(TransposeShardingWithCollapsedDims(input, {-1, 2}, {-1, -1, 1}), output); } TEST(HloShardingUtilTest, ReshapeShardingMaximal) { Shape input_shape = ShapeUtil::MakeShape(F32, {2, 3, 5}); Shape output_shape = ShapeUtil::MakeShape(F32, {3, 5, 2}); HloSharding sharding = HloSharding::AssignDevice(7); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), sharding); } TEST(HloShardingUtilTest, ReshapeShardingTiledInvalid) { Shape input_shape = ShapeUtil::MakeShape(F32, {2, 3, 5}); Shape output_shape = ShapeUtil::MakeShape(F32, {3, 5, 2}); HloSharding sharding = HloSharding::IotaTile({1, 2, 1}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, sharding); EXPECT_FALSE(result.has_value()); } TEST(HloShardingUtilTest, ReshapeShardingTiledMerge) { Shape input_shape = ShapeUtil::MakeShape(F32, {4, 5, 7}); Shape output_shape = ShapeUtil::MakeShape(F32, {20, 7}); HloSharding input_sharding = HloSharding::IotaTile({2, 1, 1}); HloSharding output_sharding = HloSharding::IotaTile({2, 1}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, ReshapeShardingTiledSplit) { Shape input_shape = ShapeUtil::MakeShape(F32, {16, 7}); Shape output_shape = ShapeUtil::MakeShape(F32, {4, 4, 7}); HloSharding input_sharding = HloSharding::IotaTile({2, 1}); HloSharding output_sharding = HloSharding::IotaTile({2, 1, 1}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, ReshapeShardingTiledSplit2) { Shape input_shape = ShapeUtil::MakeShape(F32, {16, 7}); Shape output_shape = ShapeUtil::MakeShape(F32, {4, 4, 7}); HloSharding input_sharding = HloSharding::IotaTile({16, 1}); HloSharding output_sharding = HloSharding::IotaTile({4, 4, 1}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, ReshapeShardingTiledSplit3) { Shape input_shape = ShapeUtil::MakeShape(F32, {36}); Shape output_shape = ShapeUtil::MakeShape(F32, {6, 6}); HloSharding input_sharding = HloSharding::IotaTile({4}); HloSharding output_sharding = HloSharding::PartialTile(TileAssignment({2, 1, 2})); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, ReshapeShardingTiledSplitThenMerge) { Shape input_shape = ShapeUtil::MakeShape(F32, {16, 4, 7}); Shape output_shape = ShapeUtil::MakeShape(F32, {4, 16, 7}); HloSharding input_sharding = HloSharding::IotaTile({2, 1, 1}); HloSharding output_sharding = HloSharding::IotaTile({2, 1, 1}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, ReshapeShardingTiledArbitraryMinorDimensions) { Shape input_shape = ShapeUtil::MakeShape(F32, {16, 7, 5, 3}); Shape output_shape = ShapeUtil::MakeShape(F32, {4, 15, 2, 14}); HloSharding sharding = HloSharding::IotaTile({2, 1, 1, 1}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), sharding); } TEST(HloShardingUtilTest, ReshapeShardingTiledTrivialDimensions) { Shape input_shape = ShapeUtil::MakeShape(F32, {3, 1, 5, 7}); Shape output_shape = ShapeUtil::MakeShape(F32, {3, 5, 1, 7}); HloSharding input_sharding = HloSharding::IotaTile({1, 1, 2, 1}); HloSharding output_sharding = HloSharding::IotaTile({1, 2, 1, 1}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, ReshapeShardingTrivialDimensionInsertedToEnd) { Shape input_shape = ShapeUtil::MakeShape(F32, {8, 16}); Shape output_shape = ShapeUtil::MakeShape(F32, {8, 16, 1}); HloSharding input_sharding = HloSharding::IotaTile({2, 1}); HloSharding output_sharding = HloSharding::IotaTile({2, 1, 1}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, NoopReshapeShardingEmptyTile) { Shape shape = ShapeUtil::MakeShape(F32, {7, 1, 1}); HloSharding sharding = HloSharding::IotaTile({2, 1, 1}); std::optional<HloSharding> result = ReshapeSharding(shape, shape, sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), sharding); } TEST(HloShardingUtilTest, ReshapeShardingScalar) { Shape input_shape = ShapeUtil::MakeShape(F32, {1, 1, 1}); Shape output_shape = ShapeUtil::MakeShape(F32, {}); HloSharding sharding = HloSharding::IotaTile({2, 1, 1}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, sharding); EXPECT_FALSE(result.has_value()); } TEST(HloShardingUtilTest, ReshapeShardingSuffixShapeSizeOne1) { Shape input_shape = ShapeUtil::MakeShape(F32, {64, 1, 1}); Shape output_shape = ShapeUtil::MakeShape(F32, {64, 1}); HloSharding input_sharding = HloSharding::IotaTile({4, 1, 1}); HloSharding output_sharding = HloSharding::IotaTile({4, 1}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); result = ReshapeSharding(output_shape, input_shape, output_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), input_sharding); } TEST(HloShardingUtilTest, ReshapeShardingSuffixShapeSizeOne2) { Shape input_shape = ShapeUtil::MakeShape(F32, {64, 1, 1}); Shape output_shape = ShapeUtil::MakeShape(F32, {64, 1}); HloSharding input_sharding = HloSharding::IotaTile({4, 2, 8}); HloSharding output_sharding = HloSharding::PartialTile(TileAssignment({4, 2, 8})); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, ReshapeShardingSuffixShapeSizeOne3) { Shape input_shape = ShapeUtil::MakeShape(F32, {64, 1}); Shape output_shape = ShapeUtil::MakeShape(F32, {64, 1, 1}); HloSharding input_sharding = HloSharding::IotaTile({4, 2}); HloSharding output_sharding = HloSharding::IotaTile({4, 2, 1}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, ReshapeShardingPrefixShapeSizeOne1) { Shape input_shape = ShapeUtil::MakeShape(F32, {1, 1, 64}); Shape output_shape = ShapeUtil::MakeShape(F32, {1, 64}); HloSharding input_sharding = HloSharding::IotaTile({1, 1, 4}); HloSharding output_sharding = HloSharding::IotaTile({1, 4}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); result = ReshapeSharding(output_shape, input_shape, output_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), input_sharding); } TEST(HloShardingUtilTest, ReshapeShardingPrefixShapeSizeOne2) { Shape input_shape = ShapeUtil::MakeShape(F32, {1, 1, 64}); Shape output_shape = ShapeUtil::MakeShape(F32, {1, 64}); HloSharding input_sharding = HloSharding::IotaTile({2, 1, 1}); HloSharding output_sharding = HloSharding::IotaTile({2, 1}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); result = ReshapeSharding(output_shape, input_shape, output_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), input_sharding); } TEST(HloShardingUtilTest, ReshapeShardingTranspose1) { Shape input_shape = ShapeUtil::MakeShape(F32, {6, 2, 5}); Shape output_shape = ShapeUtil::MakeShape(F32, {4, 3, 5}); HloSharding sharding = HloSharding::IotaTile({2, 1, 5}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), sharding); } TEST(HloShardingUtilTest, ReshapeShardingTranspose2) { Shape input_shape = ShapeUtil::MakeShape(F32, {2, 3, 5, 7, 11}); Shape output_shape = ShapeUtil::MakeShape(F32, {10, 21, 11}); HloSharding input_sharding = HloSharding::IotaTile({2, 1, 1, 1, 13}); HloSharding output_sharding = HloSharding::IotaTile({2, 1, 13}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, ReshapeShardingTranspose3) { Shape input_shape = ShapeUtil::MakeShape(F32, {2, 3, 5}); Shape output_shape = ShapeUtil::MakeShape(F32, {3, 10}); HloSharding input_sharding = HloSharding::IotaTile({1, 1, 5}); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_FALSE(result.has_value()); } TEST(HloShardingUtilTest, ReshapeShardingTranspose4) { Shape input_shape = ShapeUtil::MakeShape(F32, {2, 3, 5, 7, 11, 13, 17, 19}); Shape output_shape = ShapeUtil::MakeShape(F32, {3, 2, 55, 91, 19, 17}); HloSharding input_sharding = HloSharding::IotaTile({1, 1, 5, 1, 1, 13, 1, 1}); HloSharding output_sharding = HloSharding::PartialTile(TileAssignment({1, 1, 5, 1, 1, 1, 13})); std::optional<HloSharding> result = ReshapeSharding(input_shape, output_shape, input_sharding); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), output_sharding); } TEST(HloShardingUtilTest, ReshapeToTileDimension2D) { std::vector<HloSharding> shardings = {HloSharding::IotaTile({2, 2}), HloSharding::Tile({{0, 1}, {2, 3}})}; for (const HloSharding& sharding : shardings) { EXPECT_EQ(ReshapeToTileDimension(sharding, 0, {0, 1}) .tile_assignment(), TileAssignment((absl::Span<const int64_t>){4, 1})); EXPECT_EQ(ReshapeToTileDimension(sharding, 1, {0, 1}) .tile_assignment(), TileAssignment({1, 4}, {2, 2}, {1, 0})); } } TEST(HloShardingUtilTest, ReshapeToTileDimension3D_Case1) { std::vector<HloSharding> shardings = { HloSharding::IotaTile({2, 2, 2}), HloSharding::Tile({{{0, 1}, {2, 3}}, {{4, 5}, {6, 7}}})}; for (const HloSharding& sharding : shardings) { EXPECT_EQ(ReshapeToTileDimension(sharding, 0, {0, 1, 2}) .tile_assignment(), TileAssignment({8, 1, 1})); EXPECT_EQ(ReshapeToTileDimension(sharding, 1, {0, 1, 2}) .tile_assignment(), TileAssignment({1, 8, 1}, {2, 2, 2}, {1, 0, 2})); EXPECT_EQ(ReshapeToTileDimension(sharding, 2, {0, 1, 2}) .tile_assignment(), TileAssignment({1, 1, 8}, {4, 2}, {1, 0})); EXPECT_EQ(ReshapeToTileDimension(sharding, 2, {1, 2}) .tile_assignment(), TileAssignment({2, 1, 4}, {2, 2, 2}, {0, 2, 1})); EXPECT_EQ(ReshapeToTileDimension(sharding, 0, {0, 2}) .tile_assignment(), TileAssignment({4, 2, 1}, {2, 2, 2}, {1, 0, 2})); EXPECT_EQ(ReshapeToTileDimension(sharding, 2, {0, 2}) .tile_assignment(), TileAssignment({1, 2, 4}, {2, 2, 2}, {1, 2, 0})); } } TEST(HloShardingUtilTest, ReshapeToTileDimension3D_Case2) { std::vector<HloSharding> shardings = { HloSharding::IotaTile({2, 2, 2}, {4, 2}, {1, 0}), HloSharding::Tile({{{0, 2}, {4, 6}}, {{1, 3}, {5, 7}}})}; for (const HloSharding& sharding : shardings) { EXPECT_EQ(ReshapeToTileDimension(sharding, 0, {0, 1, 2}) .tile_assignment(), TileAssignment({8, 1, 1}, {4, 2}, {1, 0})); EXPECT_EQ(ReshapeToTileDimension(sharding, 1, {0, 1, 2}) .tile_assignment(), TileAssignment({1, 8, 1}, {2, 2, 2}, {0, 2, 1})); EXPECT_EQ(ReshapeToTileDimension(sharding, 2, {0, 1, 2}) .tile_assignment(), TileAssignment({1, 1, 8}, {2, 4}, {1, 0})); } } TEST(HloShardingUtilTest, ReshapeToTileDimension4D) { HloSharding sharding1 = HloSharding::IotaTile({2, 3, 5, 7}); HloSharding sharding2 = HloSharding::Tile(sharding1.tile_assignment().array()); std::vector<HloSharding> shardings = {sharding1, sharding2}; for (const HloSharding& sharding : shardings) { EXPECT_EQ(ReshapeToTileDimension(sharding, 1, {0, 1}) .tile_assignment(), TileAssignment({1, 6, 5, 7}, {2, 3, 5, 7}, {2, 3, 1, 0})); EXPECT_EQ(ReshapeToTileDimension(sharding, 1, {1, 2}) .tile_assignment(), TileAssignment({2, 15, 1, 7}, {2, 3, 5, 7}, {0, 3, 1, 2})); EXPECT_EQ(ReshapeToTileDimension(sharding, 1, {1, 3}) .tile_assignment(), TileAssignment({2, 21, 5, 1}, {2, 3, 5, 7}, {0, 2, 1, 3})); EXPECT_EQ(ReshapeToTileDimension(sharding, 1, {0, 1, 2}) .tile_assignment(), TileAssignment({1, 30, 1, 7}, {2, 3, 5, 7}, {3, 1, 0, 2})); EXPECT_EQ(ReshapeToTileDimension(sharding, 1, {0, 1, 3}) .tile_assignment(), TileAssignment({1, 42, 5, 1}, {2, 3, 5, 7}, {2, 1, 0, 3})); EXPECT_EQ(ReshapeToTileDimension(sharding, 1, {1, 2, 3}) .tile_assignment(), TileAssignment({2, 105, 1, 1}, {2, 3, 5, 7}, {0, 1, 2, 3})); EXPECT_EQ(ReshapeToTileDimension(sharding, 1, {0, 1, 2, 3}) .tile_assignment(), TileAssignment({1, 210, 1, 1}, {2, 3, 5, 7}, {1, 0, 2, 3})); } } TEST(HloShardingUtilTest, PropagateReshapeShardingTranspose1) { Shape input_shape = ShapeUtil::MakeShape(F32, {6, 4}); Shape output_shape = ShapeUtil::MakeShape(F32, {2, 2, 3, 2}); HloSharding input_sharding = HloSharding::IotaTile({6, 1}); HloSharding output_sharding = HloSharding::PartialTile(TileAssignment({2, 1, 1, 1, 3})); HloSharding result = PropagateShardingThroughReshape( input_shape, output_shape, input_sharding); EXPECT_EQ(result, output_sharding); } TEST(HloShardingUtilTest, PropagateReshapeShardingTranspose2) { Shape input_shape = ShapeUtil::MakeShape(F32, {6, 4}); Shape output_shape = ShapeUtil::MakeShape(F32, {4, 6}); HloSharding input_sharding = HloSharding::IotaTile({6, 1}); HloSharding output_sharding = HloSharding::PartialTile(TileAssignment({2, 1, 3})); HloSharding result = PropagateShardingThroughReshape( input_shape, output_shape, input_sharding); EXPECT_EQ(result, output_sharding); } TEST(HloShardingUtilTest, PropagateReshapeShardingTranspose3) { Shape input_shape = ShapeUtil::MakeShape(F32, {4, 6, 5}); Shape output_shape = ShapeUtil::MakeShape(F32, {2, 2, 2, 5, 3}); HloSharding input_sharding = HloSharding::IotaTile({2, 6, 1}); HloSharding output_sharding = HloSharding::PartialTile(TileAssignment({2, 1, 2, 1, 1, 3})); HloSharding result = PropagateShardingThroughReshape( input_shape, output_shape, input_sharding); EXPECT_EQ(result, output_sharding); } TEST(HloShardingUtilTest, PropagateReshapeShardingTiledSplitPartialMatch) { Shape input_shape = ShapeUtil::MakeShape(F32, {14, 16}); Shape output_shape = ShapeUtil::MakeShape(F32, {2, 7, 4, 4}); HloSharding input_sharding = HloSharding::IotaTile({4, 8}); HloSharding output_sharding = HloSharding::PartialTile(TileAssignment({1, 1, 4, 2, 4}, {4, 8}, {1, 0})); HloSharding result = PropagateShardingThroughReshape( input_shape, output_shape, input_sharding); EXPECT_EQ(result, output_sharding); } TEST(HloShardingUtilTest, PropagateReshapeShardingTiledMergeSplitPartialMatch) { Shape input_shape = ShapeUtil::MakeShape(F32, {2, 2, 14, 16}); Shape output_shape = ShapeUtil::MakeShape(F32, {4, 2, 7, 4, 4}); HloSharding input_sharding = HloSharding::IotaTile({2, 2, 4, 8}); HloSharding output_sharding = HloSharding::PartialTile( TileAssignment({4, 1, 1, 4, 2, 4}, {2, 2, 4, 8}, {0, 1, 3, 2})); HloSharding result = PropagateShardingThroughReshape( input_shape, output_shape, input_sharding); EXPECT_EQ(result, output_sharding); } TEST(HloShardingUtilTest, PropagateReshapeShardingTiledSplitPartialMatchManual) { Shape input_shape = ShapeUtil::MakeShape(F32, {14, 16}); Shape output_shape = ShapeUtil::MakeShape(F32, {2, 7, 4, 4}); HloSharding input_sharding = HloSharding::Subgroup(TileAssignment({4, 8, 2}), {OpSharding::MANUAL}); HloSharding output_sharding = HloSharding::Subgroup( TileAssignment({1, 1, 4, 2, 4, 2}, {4, 8, 2}, {1, 0, 2}), {OpSharding::REPLICATED, OpSharding::MANUAL}); HloSharding result = PropagateShardingThroughReshape( input_shape, output_shape, input_sharding); EXPECT_EQ(result, output_sharding); } TEST(HloShardingUtilTest, MergeManualSubgroupSharding) { TileAssignment tile_assignment({16, 4}); std::vector<OpSharding::Type> subgroup_types = {OpSharding::MANUAL, OpSharding::REPLICATED}; HloSharding dst = HloSharding::Subgroup(tile_assignment, subgroup_types); HloSharding to_merge = dst; EXPECT_FALSE(MergeShardingIfCompatible(to_merge, dst.NumTiles() + 1, &dst)); } TEST(HloShardingUtilTest, GetManualSubgroupSharding_ManualOnly) { TileAssignment tile_assignment({1, 2, 2}); std::vector<OpSharding::Type> subgroup_types = {OpSharding::MANUAL}; HloSharding sharding = HloSharding::Subgroup(tile_assignment, subgroup_types); GroupedSharding group_sharding = GetManualSubgroupSharding(sharding); EXPECT_EQ(group_sharding.sharding.tile_assignment(), TileAssignment((absl::Span<const int64_t>){1, 2})); EXPECT_THAT(group_sharding.device_groups[0], ::testing::ElementsAreArray({0, 2})); EXPECT_THAT(group_sharding.device_groups[1], ::testing::ElementsAreArray({1, 3})); } TEST(HloShardingUtilTest, GetManualSubgroupSharding_ManualAndReplicted) { TileAssignment tile_assignment({1, 2, 2, 2}); std::vector<OpSharding::Type> subgroup_types = {OpSharding::REPLICATED, OpSharding::MANUAL}; HloSharding sharding = HloSharding::Subgroup(tile_assignment, subgroup_types); GroupedSharding group_sharding = GetManualSubgroupSharding(sharding); EXPECT_EQ(group_sharding.sharding.ToString(), "{devices=[1,2,2]<=[4] last_tile_dim_replicate}"); EXPECT_THAT(group_sharding.device_groups[0], ::testing::ElementsAreArray({0, 2, 4, 6})); EXPECT_THAT(group_sharding.device_groups[1], ::testing::ElementsAreArray({1, 3, 5, 7})); } TEST(HloShardingUtilTest, GetManualSubgroupSharding_ReplicatedAndManual) { TileAssignment tile_assignment({1, 2, 2, 2}); std::vector<OpSharding::Type> subgroup_types = {OpSharding::MANUAL, OpSharding::REPLICATED}; HloSharding sharding = HloSharding::Subgroup(tile_assignment, subgroup_types); GroupedSharding group_sharding = GetManualSubgroupSharding(sharding); EXPECT_EQ(group_sharding.sharding.ToString(), "{devices=[1,2,2]<=[4] last_tile_dim_replicate}"); EXPECT_THAT(group_sharding.device_groups[0], ::testing::ElementsAreArray({0, 1, 4, 5})); EXPECT_THAT(group_sharding.device_groups[1], ::testing::ElementsAreArray({2, 3, 6, 7})); } TEST(HloShardingUtilTest, UngroupSharding_ManualOnly) { HloSharding sharding = HloSharding::IotaTile({1, 2}); std::vector<std::vector<int64_t>> device_groups = {{0, 2}, {1, 3}}; DimensionVector group_dims = {2}; DimensionVector group_dim_sizes = {2}; auto grouped = GroupedSharding( std::move(device_groups), std::move(group_dims), std::move(group_dim_sizes), sharding.tile_assignment().num_dimensions(), sharding, true); HloSharding ungroup_sharding = UngroupSharding(grouped); EXPECT_EQ(ungroup_sharding.ToString(), "{devices=[1,2,2]0,1,2,3 last_tile_dims={manual}}"); } TEST(HloShardingUtilTest, UngroupSharding_ReplicatedAndManual) { HloSharding sharding = HloSharding::PartialTile(TileAssignment({1, 2, 2})); std::vector<std::vector<int64_t>> device_groups = {{0, 2, 4, 6}, {1, 3, 5, 7}}; DimensionVector group_dims = {3}; DimensionVector group_dim_sizes = {2}; auto grouped = GroupedSharding(std::move(device_groups), std::move(group_dims), std::move(group_dim_sizes), sharding.tile_assignment().num_dimensions() - 1, sharding, true); HloSharding ungroup_sharding = UngroupSharding(grouped); VLOG(1) << "ungroup_sharding: " << ungroup_sharding.ToString(); EXPECT_EQ( ungroup_sharding.ToString(), "{devices=[1,2,2,2]0,2,1,3,4,6,5,7 last_tile_dims={manual, replicated}}"); } TEST(HloShardingUtilTest, UngroupSharding_ManualAndReplicated) { HloSharding sharding = HloSharding::PartialTile(TileAssignment({1, 2, 2})); std::vector<std::vector<int64_t>> device_groups = {{0, 1, 4, 5}, {2, 3, 6, 7}}; DimensionVector group_dims = {2}; DimensionVector group_dim_sizes = {2}; auto grouped = GroupedSharding(std::move(device_groups), std::move(group_dims), std::move(group_dim_sizes), sharding.tile_assignment().num_dimensions() - 1, sharding, true); HloSharding ungroup_sharding = UngroupSharding(grouped); VLOG(1) << "ungroup_sharding: " << ungroup_sharding.ToString(); EXPECT_EQ( ungroup_sharding.ToString(), "{devices=[1,2,2,2]0,1,2,3,4,5,6,7 last_tile_dims={manual, replicated}}"); } TEST(HloShardingUtilTest, UngroupSharding_Replicated) { HloSharding sharding = HloSharding::Replicate(); DimensionVector group_dims = {3}; DimensionVector group_dim_sizes = {2}; std::vector<std::vector<int64_t>> device_groups = {{0, 1}, {2, 3}}; auto grouped = GroupedSharding(std::move(device_groups), std::move(group_dims), std::move(group_dim_sizes), 2, sharding, true); HloSharding ungroup_sharding = UngroupSharding(grouped); VLOG(1) << "ungroup_sharding: " << ungroup_sharding.ToString(); EXPECT_EQ(ungroup_sharding.ToString(), "{devices=[1,1,2,2]0,1,2,3 last_tile_dims={manual, replicated}}"); } TEST(HloShardingUtilTest, UngroupSharding_Replicated2) { HloSharding sharding = HloSharding::Replicate(); DimensionVector group_dims = {2}; DimensionVector group_dim_sizes = {2}; std::vector<std::vector<int64_t>> device_groups = {{0, 2}, {1, 3}}; auto grouped = GroupedSharding(std::move(device_groups), std::move(group_dims), std::move(group_dim_sizes), 2, sharding, true); HloSharding ungroup_sharding = UngroupSharding(grouped); VLOG(1) << "ungroup_sharding: " << ungroup_sharding.ToString(); EXPECT_EQ(ungroup_sharding.ToString(), "{devices=[1,1,2,2]0,2,1,3 last_tile_dims={manual, replicated}}"); } TEST(HloShardingUtilTest, GroupedAndUngroupedReplicatedSharding) { GroupedSharding group_sharding = GetGroupedReplicatedSharding( 3, 12, 2); EXPECT_EQ(UngroupSharding(group_sharding), HloSharding::Replicate()); } TEST(HloShardingUtilTest, GroupedAndUngroupedIotaSharding) { std::vector<std::vector<int64_t>> device_groups = {{0, 1, 2, 3, 4, 5}, {6, 7, 8, 9, 10, 11}}; GroupedSharding group_sharding = GroupedSharding( device_groups, {0}, {2}, 2, HloSharding::IotaTile({1, 2, 3}, {2, 3}, {1, 0})); EXPECT_EQ(UngroupSharding(group_sharding), HloSharding::IotaTile({2, 2, 3}, {2, 2, 3}, {0, 2, 1})); } TEST(HloShardingUtilTest, GroupedAndUngroupedShardingWithUnsortedGroupDims) { HloSharding sharding = HloSharding::IotaTile({4, 3, 5, 7}); GroupedSharding group_sharding = GroupShardingOnDims(sharding, {2, 0}, {1, 2}); EXPECT_EQ(group_sharding.sharding, HloSharding::IotaTile({2, 3, 1, 7})); EXPECT_EQ(UngroupSharding(group_sharding), sharding); } TEST(HloShardingUtilTest, UngroupShardingWithUnsortedGroupDims) { GroupedSharding group_sharding({{0}, {1}, {2}, {3}}, {1, 0}, {2, 2}, 4, HloSharding::Replicate()); EXPECT_EQ(UngroupSharding(group_sharding), HloSharding::IotaTile({2, 2, 1, 1}, {2, 2}, {1, 0})); } TEST(HloShardingUtilTest, DeviceGroupsDoesNotMatch) { HloSharding sharding = HloSharding::PartialTile( TileAssignment((absl::Span<const int64_t>){2, 2})); DimensionVector group_dim_sizes = {2}; std::vector<std::vector<int64_t>> lhs_device_groups = {{0, 2, 4, 6}, {1, 3, 5, 7}}; DimensionVector lhs_group_dims = {3}; auto lhs = GroupedSharding(std::move(lhs_device_groups), std::move(lhs_group_dims), group_dim_sizes, 2, sharding, true); std::vector<std::vector<int64_t>> rhs_device_groups = {{0, 1, 4, 5}, {2, 3, 6, 7}}; DimensionVector
2,164
cpp
tensorflow/tensorflow
hlo_live_range
third_party/xla/xla/hlo/utils/hlo_live_range.cc
third_party/xla/xla/hlo/utils/hlo_live_range_test.cc
#ifndef XLA_HLO_UTILS_HLO_LIVE_RANGE_H_ #define XLA_HLO_UTILS_HLO_LIVE_RANGE_H_ #include <cstdint> #include <memory> #include <string> #include "absl/container/flat_hash_map.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/dfs_hlo_visitor.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_value.h" namespace xla { class HloLiveRange { public: static absl::StatusOr<std::unique_ptr<HloLiveRange>> Run( const HloSchedule& schedule, const HloAliasAnalysis& alias_analysis, const HloComputation* computation, bool module_scoped_analysis = true); using LogicalTime = int64_t; struct TimeBound { LogicalTime start; LogicalTime end; HloPosition end_position; bool friend operator==(const TimeBound& a, const TimeBound& b) { return a.start == b.start && a.end == b.end; } bool friend operator!=(const TimeBound& a, const TimeBound& b) { return !(a == b); } }; std::string ToString() const; const HloInstructionSequence& flattened_instruction_sequence() const { return flattened_instruction_sequence_; } const absl::flat_hash_map<const HloInstruction*, LogicalTime>& instruction_schedule() const { return instruction_schedule_; } const absl::flat_hash_map<const HloValue*, TimeBound>& buffer_live_ranges() const { return buffer_live_ranges_; } absl::flat_hash_map<const HloValue*, TimeBound>& buffer_live_ranges() { return buffer_live_ranges_; } const absl::flat_hash_map<const HloComputation*, TimeBound>& computation_span_times() const { return computation_span_times_; } LogicalTime schedule_end_time() const { return flattened_instruction_sequence_.size(); } bool total_order_scheduled() const { return total_order_scheduled_; } private: explicit HloLiveRange(const HloSchedule& schedule, const HloAliasAnalysis& alias_analysis, bool module_scoped_analysis) : schedule_(schedule), alias_analysis_(alias_analysis), module_scoped_analysis_(module_scoped_analysis) {} void FlattenSchedule(const HloComputation& computation, const HloComputation* async_context = nullptr); TimeBound GetLastPosition(const HloValue& value, LogicalTime definition_end_time) const; LogicalTime GetLastUsageTime(const HloValue& value) const; void CalculateBufferStartEndMap(); void NormalizeAliasedBuffers(); LogicalTime ComputePeakMemoryMoment() const; const HloSchedule& schedule_; const HloAliasAnalysis& alias_analysis_; bool module_scoped_analysis_; bool total_order_scheduled_ = true; HloInstructionSequence flattened_instruction_sequence_; absl::flat_hash_map<const HloInstruction*, LogicalTime> instruction_schedule_; absl::flat_hash_map<const HloComputation*, TimeBound> computation_span_times_; absl::flat_hash_map<const HloValue*, TimeBound> buffer_live_ranges_; absl::flat_hash_map<const HloComputation*, const HloComputation*> computations_in_async_context_; }; } #endif #include "xla/hlo/utils/hlo_live_range.h" #include <algorithm> #include <cstdint> #include <memory> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "xla/hlo/ir/dfs_hlo_visitor.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_buffer.h" #include "xla/service/hlo_value.h" #include "xla/shape_util.h" #include "tsl/platform/logging.h" namespace xla { absl::StatusOr<std::unique_ptr<HloLiveRange>> HloLiveRange::Run( const HloSchedule& schedule, const HloAliasAnalysis& alias_analysis, const HloComputation* computation, bool module_scoped_analysis) { std::unique_ptr<HloLiveRange> hlo_live_range( new HloLiveRange(schedule, alias_analysis, module_scoped_analysis)); hlo_live_range->FlattenSchedule(*computation); hlo_live_range->CalculateBufferStartEndMap(); hlo_live_range->NormalizeAliasedBuffers(); return std::move(hlo_live_range); } void HloLiveRange::NormalizeAliasedBuffers() { absl::flat_hash_map<HloBuffer::Id, std::vector<std::pair<TimeBound*, HloValue::Id>>> live_ranges_by_buffer; for (auto& entry : buffer_live_ranges_) { const HloValue& value = *entry.first; const HloBuffer& buffer = alias_analysis_.GetBufferContainingValue(value); live_ranges_by_buffer[buffer.id()].push_back({&entry.second, value.id()}); } for (auto& entry : live_ranges_by_buffer) { auto& aliased_live_ranges = entry.second; absl::c_sort( aliased_live_ranges, [](std::pair<const TimeBound*, HloValue::Id> a, std::pair<const TimeBound*, HloValue::Id> b) { return std::forward_as_tuple(a.first->start, a.first->end, a.second) < std::forward_as_tuple(b.first->start, b.first->end, b.second); }); for (int64_t i = 0; i + 1 < aliased_live_ranges.size(); ++i) { TimeBound& live_range1 = *aliased_live_ranges[i].first; TimeBound& live_range2 = *aliased_live_ranges[i + 1].first; live_range2.end = std::max(live_range1.end, live_range2.end); live_range1.end = std::min(live_range1.end, live_range2.start); } } } void HloLiveRange::FlattenSchedule(const HloComputation& computation, const HloComputation* async_context) { auto it = schedule_.sequences().find(computation.unique_id()); if (it == schedule_.sequences().end()) { total_order_scheduled_ = false; return; } if (computation_span_times_.contains(&computation)) return; if (async_context != nullptr) { computations_in_async_context_[&computation] = async_context; } LogicalTime start_time = flattened_instruction_sequence_.size(); const HloInstructionSequence& instruction_sequence = it->second; for (HloInstruction* instruction : instruction_sequence.instructions()) { if (module_scoped_analysis_) { if (instruction->opcode() == HloOpcode::kCall || instruction->opcode() == HloOpcode::kConditional || instruction->opcode() == HloOpcode::kAsyncStart) { for (const HloComputation* called_computation : instruction->called_computations()) { FlattenSchedule(*called_computation, instruction->opcode() == HloOpcode::kAsyncStart ? called_computation : async_context); } } else if (instruction->opcode() == HloOpcode::kWhile) { FlattenSchedule(*instruction->while_condition(), async_context); FlattenSchedule(*instruction->while_body(), async_context); } } LogicalTime time = flattened_instruction_sequence_.size(); CHECK(instruction_schedule_.insert({instruction, time}).second); flattened_instruction_sequence_.push_back(instruction); } LogicalTime end_time = flattened_instruction_sequence_.size(); computation_span_times_[&computation] = {start_time, end_time}; } HloLiveRange::TimeBound HloLiveRange::GetLastPosition( const HloValue& value, HloLiveRange::LogicalTime definition_end_time) const { LogicalTime end_time = definition_end_time; const HloPosition* end_position = &value.defining_position(); for (const HloPosition& position : absl::Span<const HloPosition>(value.positions()).subspan(1)) { const HloInstruction* position_inst = position.instruction; LogicalTime position_time; if (position_inst->IsRoot()) { auto it = computation_span_times_.find(position_inst->parent()); if (it == computation_span_times_.end()) continue; position_time = it->second.end; } else { auto it = instruction_schedule_.find(position_inst); if (it == instruction_schedule_.end()) continue; position_time = it->second; } if (position_time > end_time) { end_time = position_time; end_position = &position; } } return {-1, end_time, *end_position}; } HloLiveRange::LogicalTime HloLiveRange::GetLastUsageTime( const HloValue& value) const { LogicalTime end_time = -1; for (const HloUse& use : value.GetUses()) { const HloInstruction* used = use.instruction; if (module_scoped_analysis_ && used->opcode() == HloOpcode::kCall) continue; if (module_scoped_analysis_ && used->opcode() == HloOpcode::kWhile) { used = used->while_body()->parameter_instruction(0); VLOG(1) << "Moved value " << value.ToShortString() << " to while param: " << used->ToString(); } auto it = instruction_schedule_.find(used); if (it != instruction_schedule_.end()) { end_time = std::max(end_time, it->second); } } return end_time; } void HloLiveRange::CalculateBufferStartEndMap() { for (const auto& entry : instruction_schedule_) { const HloInstruction& instruction = *entry.first; const HloComputation* computation = instruction.parent(); LogicalTime start_time = (instruction.opcode() == HloOpcode::kParameter) ? computation_span_times_[computation].start : entry.second; LogicalTime definition_end_time = instruction.IsRoot() ? computation_span_times_[computation].end : entry.second; auto async_context_it = computations_in_async_context_.find(computation); if (async_context_it != computations_in_async_context_.end()) { const HloComputation* async_context = async_context_it->second; CHECK(async_context->IsAsyncComputation()); auto async_done = async_context->AsyncStart()->async_chain_done(); auto async_done_it = instruction_schedule_.find(async_done); CHECK(async_done_it != instruction_schedule_.end()); definition_end_time = std::max(definition_end_time, async_done_it->second); VLOG(2) << "Setting the definition end time for op in async context: " << definition_end_time; } const InstructionValueSet& value_set_tree = alias_analysis_.dataflow_analysis().GetInstructionValueSet( &instruction); for (const auto& entry : value_set_tree) { for (const HloValue* value : entry.second.values()) { if (value->defining_instruction() != &instruction) continue; TimeBound live_range = GetLastPosition(*value, definition_end_time); live_range.start = start_time; const HloModule& module = *computation->parent(); if (instruction.opcode() == HloOpcode::kParameter && computation == module.entry_computation() && !module.input_output_alias_config().ParameterHasAlias( instruction.parameter_number(), value->index())) { live_range.end = schedule_end_time(); } else { live_range.end = std::max(live_range.end, GetLastUsageTime(*value)); } CHECK_LE(live_range.start, live_range.end) << instruction.ToString(); CHECK(buffer_live_ranges_.insert({value, live_range}).second); } } } } int64_t HloLiveRange::ComputePeakMemoryMoment() const { std::vector<std::tuple<int64_t , bool , const HloValue*>> events; for (const HloValue* value : alias_analysis_.dataflow_analysis().values()) { auto it = buffer_live_ranges_.find(value); if (it != buffer_live_ranges_.end()) { events.emplace_back(it->second.start, false, value); events.emplace_back(it->second.end + 1, true, value); } } std::sort(events.begin(), events.end()); int64_t memory_usage = 0; int64_t peak_usage = 0; std::optional<int64_t> peak_time; for (const auto& event : events) { int64_t time; bool is_end; const HloValue* value; std::tie(time, is_end, value) = event; auto buffer_size = ShapeUtil::ByteSizeOf(value->instruction()->shape(), 8); if (is_end) { memory_usage -= buffer_size; } else { memory_usage += buffer_size; } if (peak_usage < memory_usage) { peak_usage = memory_usage; peak_time = time; } } return peak_time.value_or(0); } std::string HloLiveRange::ToString() const { std::string output; absl::StrAppendFormat(&output, "HloLiveRange (max %d):\n", schedule_end_time()); absl::StrAppendFormat(&output, " InstructionSequence:\n"); auto& instructions = flattened_instruction_sequence().instructions(); for (int64_t i = 0; i < instructions.size(); ++i) { absl::StrAppendFormat(&output, " %d:%s\n", i, instructions[i]->name()); } absl::StrAppendFormat(&output, " BufferLiveRange:\n"); for (const HloValue* value : alias_analysis_.dataflow_analysis().values()) { auto it = buffer_live_ranges_.find(value); if (it != buffer_live_ranges_.end()) { absl::StrAppendFormat( &output, " %s%s:%d-%d\n", value->instruction()->name(), value->index().ToString(), it->second.start, it->second.end); } } int64_t peak_moment = ComputePeakMemoryMoment(); absl::StrAppendFormat(&output, " Live ranges at %lld (peak):\n", peak_moment); for (const HloValue* value : alias_analysis_.dataflow_analysis().values()) { auto it = buffer_live_ranges_.find(value); if (it != buffer_live_ranges_.end()) { if (it->second.start <= peak_moment && peak_moment <= it->second.end) { int64_t bytes = ShapeUtil::ByteSizeOf(value->instruction()->shape(), 8); absl::StrAppendFormat(&output, " %s: %lld bytes\n", value->instruction()->name(), bytes); } } } return output; } }
#include "xla/hlo/utils/hlo_live_range.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_value.h" #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using TimeBound = HloLiveRange::TimeBound; class HloLiveRangeTest : public HloTestBase { protected: HloLiveRangeTest() : module_(CreateNewVerifiedModule()) {} ~HloLiveRangeTest() override {} void Analyze(const HloSchedule& schedule) { alias_analysis_ = HloAliasAnalysis::Run(module_.get()).value(); hlo_live_range_ = HloLiveRange::Run(schedule, *alias_analysis_, module_->entry_computation()) .value(); } std::unique_ptr<HloModule> module_; std::unique_ptr<HloLiveRange> hlo_live_range_; std::unique_ptr<HloAliasAnalysis> alias_analysis_; Shape f32scalar_ = ShapeUtil::MakeShape(xla::F32, {}); Shape f32vec4_ = ShapeUtil::MakeShape(F32, {4}); const HloValue* BufferAt(const HloInstruction* instruction, const ShapeIndex& index) const { return &alias_analysis_->dataflow_analysis().GetUniqueValueAt(instruction, index); } HloLiveRange::TimeBound LiveRangeAt(const HloInstruction* instruction, const ShapeIndex& index = {}) const { auto* value = BufferAt(instruction, index); return hlo_live_range_->buffer_live_ranges().at(value); } void CheckSchedule() const { const auto& flattened_instructions = hlo_live_range_->flattened_instruction_sequence().instructions(); EXPECT_EQ(flattened_instructions.size(), hlo_live_range_->instruction_schedule().size()); for (const auto& inst_and_time : hlo_live_range_->instruction_schedule()) { EXPECT_EQ(flattened_instructions.at(inst_and_time.second), inst_and_time.first) << "(flattened_inst[" << inst_and_time.second << "] = " << flattened_instructions.at(inst_and_time.second)->name() << ") != (inst_schedule[" << inst_and_time.second << "] = " << inst_and_time.first->name() << ")"; } } }; TEST_F(HloLiveRangeTest, Multiply) { auto builder = HloComputation::Builder(TestName()); auto paramA = builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec4_, "paramA")); auto paramX = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec4_, "paramX")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec4_, HloOpcode::kMultiply, paramA, paramX)); module_->AddEntryComputation(builder.Build()); HloSchedule schedule(module_.get()); schedule.set_sequence(module_->entry_computation(), {paramA, paramX, mul}); Analyze(schedule); CheckSchedule(); EXPECT_EQ(LiveRangeAt(paramA), TimeBound({0, 3})); EXPECT_EQ(LiveRangeAt(paramX), TimeBound({0, 3})); EXPECT_EQ(LiveRangeAt(mul), TimeBound({2, 3})); } TEST_F(HloLiveRangeTest, MultiplyAdd) { auto builder = HloComputation::Builder(TestName()); auto paramA = builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec4_, "paramA")); auto paramX = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec4_, "paramX")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec4_, HloOpcode::kMultiply, paramA, paramX)); auto paramY = builder.AddInstruction( HloInstruction::CreateParameter(2, f32vec4_, "paramY")); auto add = builder.AddInstruction( HloInstruction::CreateBinary(f32vec4_, HloOpcode::kAdd, mul, paramY)); module_->AddEntryComputation(builder.Build()); HloSchedule schedule(module_.get()); schedule.set_sequence(module_->entry_computation(), {paramA, paramX, mul, paramY, add}); Analyze(schedule); CheckSchedule(); EXPECT_EQ(LiveRangeAt(paramA), TimeBound({0, 5})); EXPECT_EQ(LiveRangeAt(paramX), TimeBound({0, 5})); EXPECT_EQ(LiveRangeAt(paramY), TimeBound({0, 5})); EXPECT_EQ(LiveRangeAt(mul), TimeBound({2, 4})); EXPECT_EQ(LiveRangeAt(add), TimeBound({4, 5})); } TEST_F(HloLiveRangeTest, LiveOutBuffers) { auto builder = HloComputation::Builder(TestName()); auto paramA = builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec4_, "paramA")); auto paramX = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec4_, "paramX")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec4_, HloOpcode::kMultiply, paramA, paramX)); auto paramY = builder.AddInstruction( HloInstruction::CreateParameter(2, f32vec4_, "paramY")); auto add = builder.AddInstruction( HloInstruction::CreateBinary(f32vec4_, HloOpcode::kAdd, mul, paramY)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({mul, add})); module_->AddEntryComputation(builder.Build()); HloSchedule schedule(module_.get()); schedule.set_sequence(module_->entry_computation(), {paramA, paramX, mul, paramY, add, tuple}); Analyze(schedule); CheckSchedule(); EXPECT_EQ(LiveRangeAt(paramA), TimeBound({0, 6})); EXPECT_EQ(LiveRangeAt(paramX), TimeBound({0, 6})); EXPECT_EQ(LiveRangeAt(paramY), TimeBound({0, 6})); EXPECT_EQ(LiveRangeAt(mul), TimeBound({2, 6})); EXPECT_EQ(LiveRangeAt(add), TimeBound({4, 6})); } TEST_F(HloLiveRangeTest, InstructionScheduledAfterRoot) { auto builder = HloComputation::Builder(TestName()); auto paramA = builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec4_, "paramA")); auto paramX = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec4_, "paramX")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec4_, HloOpcode::kMultiply, paramA, paramX)); auto paramY = builder.AddInstruction( HloInstruction::CreateParameter(2, f32vec4_, "paramY")); auto add = builder.AddInstruction( HloInstruction::CreateBinary(f32vec4_, HloOpcode::kAdd, mul, paramY)); auto add2 = builder.AddInstruction( HloInstruction::CreateBinary(f32vec4_, HloOpcode::kAdd, mul, paramY)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({mul, add})); module_->AddEntryComputation(builder.Build()); HloSchedule schedule(module_.get()); schedule.set_sequence(module_->entry_computation(), {paramA, paramX, mul, paramY, add, tuple, add2}); Analyze(schedule); CheckSchedule(); EXPECT_EQ(LiveRangeAt(paramA), TimeBound({0, 7})); EXPECT_EQ(LiveRangeAt(paramX), TimeBound({0, 7})); EXPECT_EQ(LiveRangeAt(paramY), TimeBound({0, 7})); EXPECT_EQ(LiveRangeAt(mul), TimeBound({2, 7})); EXPECT_EQ(LiveRangeAt(add), TimeBound({4, 7})); EXPECT_EQ(LiveRangeAt(tuple), TimeBound({5, 7})); EXPECT_EQ(LiveRangeAt(add2), TimeBound({6, 6})); } TEST_F(HloLiveRangeTest, AliasedParameter) { auto builder = HloComputation::Builder(TestName()); auto paramA = builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec4_, "paramA")); auto paramX = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec4_, "paramX")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec4_, HloOpcode::kMultiply, paramA, paramX)); auto paramY = builder.AddInstruction( HloInstruction::CreateParameter(2, f32vec4_, "paramY")); auto add = builder.AddInstruction( HloInstruction::CreateBinary(f32vec4_, HloOpcode::kAdd, mul, paramY)); module_->AddEntryComputation(builder.Build()); TF_ASSERT_OK(module_->input_output_alias_config().SetUpAlias({}, 0, {})); HloSchedule schedule(module_.get()); schedule.set_sequence(module_->entry_computation(), {paramA, paramX, mul, paramY, add}); Analyze(schedule); CheckSchedule(); EXPECT_EQ(LiveRangeAt(paramA), TimeBound({0, 2})); EXPECT_EQ(LiveRangeAt(paramX), TimeBound({0, 5})); EXPECT_EQ(LiveRangeAt(paramY), TimeBound({0, 5})); EXPECT_EQ(LiveRangeAt(mul), TimeBound({2, 4})); EXPECT_EQ(LiveRangeAt(add), TimeBound({4, 5})); } TEST_F(HloLiveRangeTest, While) { Shape shape = ShapeUtil::MakeShape(xla::F32, {2, 3}); Shape scalar_shape = ShapeUtil::MakeShape(xla::F32, {}); Shape tuple_shape = ShapeUtil::MakeTupleShape({shape, scalar_shape}); auto cond_builder = HloComputation::Builder("WhileCond"); HloInstruction* cond_param = cond_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "cond_param")); HloInstruction* cond_iter = cond_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape, cond_param, 1)); HloInstruction* cond_limit = cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(50.f))); HloInstruction* cond_lt = cond_builder.AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), cond_iter, cond_limit, ComparisonDirection::kLt)); HloComputation* cond_computation = module_->AddEmbeddedComputation(cond_builder.Build()); auto body_builder = HloComputation::Builder("WhileBody"); HloInstruction* body_param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "body_param")); HloInstruction* body_iter = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape, body_param, 1)); HloInstruction* body_data = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, body_param, 0)); HloInstruction* body_iter_increment = body_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.f))); HloInstruction* body_iter_next = body_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, body_iter, body_iter_increment)); HloInstruction* body_data_increment = body_builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{1.f, 2.f, 3.f}, {4.f, 5.f, 6.f}}))); HloInstruction* body_data_mul = body_builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kMultiply, body_data, body_data)); HloInstruction* body_data_add = body_builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, body_data, body_data_increment)); HloInstruction* body_data_next = body_builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, body_data_add, body_data_mul)); HloInstruction* body_out = body_builder.AddInstruction( HloInstruction::CreateTuple({body_data_next, body_iter_next})); HloComputation* body_computation = module_->AddEmbeddedComputation(body_builder.Build()); auto builder = HloComputation::Builder(TestName()); HloInstruction* data = builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "param_iter")); HloInstruction* iter = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "param_data")); HloInstruction* tuple = builder.AddInstruction(HloInstruction::CreateTuple({data, iter})); HloInstruction* while_op = builder.AddInstruction(HloInstruction::CreateWhile( tuple_shape, cond_computation, body_computation, tuple)); HloComputation* entry_computation = module_->AddEntryComputation(builder.Build()); HloSchedule schedule(module_.get()); schedule.set_sequence(cond_computation, {cond_param, cond_iter, cond_limit, cond_lt}); schedule.set_sequence(body_computation, {body_param, body_iter, body_data, body_iter_increment, body_iter_next, body_data_increment, body_data_mul, body_data_add, body_data_next, body_out}); schedule.set_sequence(entry_computation, {iter, data, tuple, while_op}); Analyze(schedule); CheckSchedule(); EXPECT_EQ(LiveRangeAt(iter).end, LiveRangeAt(cond_iter).start); EXPECT_EQ(LiveRangeAt(cond_iter).end, LiveRangeAt(body_iter).start); EXPECT_EQ(LiveRangeAt(body_iter).end, LiveRangeAt(body_iter_next).start); } TEST_F(HloLiveRangeTest, Determinism) { std::string hlo_string = R"( HloModule While, is_scheduled=true %WhileBody { %body_param = (f32[2,3]{1,0}, f32[], f32[2,3]{1,0}) parameter(0) %get-tuple-element.2 = f32[2,3]{1,0} get-tuple-element(%body_param), index=0 %constant.2 = f32[2,3]{1,0} constant({ { 1, 2, 3 }, { 4, 5, 6 } }) %add.1 = f32[2,3]{1,0} add(f32[2,3]{1,0} %get-tuple-element.2, f32[2,3]{1,0} %constant.2) %multiply = f32[2,3]{1,0} multiply(f32[2,3]{1,0} %get-tuple-element.2, f32[2,3]{1,0} %get-tuple-element.2) %add.2 = f32[2,3]{1,0} add(f32[2,3]{1,0} %add.1, f32[2,3]{1,0} %multiply) %get-tuple-element.1 = f32[] get-tuple-element(%body_param), index=1 %constant.1 = f32[] constant(1) %add = f32[] add(f32[] %get-tuple-element.1, f32[] %constant.1) %get-tuple-element.3 = f32[2,3]{1,0} get-tuple-element(%body_param), index=2 %add.3 = f32[2,3]{1,0} add(f32[2,3]{1,0} %get-tuple-element.3, f32[2,3]{1,0} %constant.2) ROOT %tuple = (f32[2,3]{1,0}, f32[], f32[2,3]{1,0}) tuple(f32[2,3]{1,0} %add.2, f32[] %add, f32[2,3]{1,0} %add.3) } %WhileCond { %cond_param = (f32[2,3]{1,0}, f32[], f32[2,3]{1,0}) parameter(0) %get-tuple-element = f32[] get-tuple-element(%cond_param), index=1 %constant = f32[] constant(50) ROOT %compare = pred[] compare(f32[] %get-tuple-element, f32[] %constant), direction=LT } ENTRY %While { %param_iter = f32[2,3]{1,0} parameter(0) %param_data = f32[] parameter(1) %tuple.1 = (f32[2,3]{1,0}, f32[], f32[2,3]{1,0}) tuple(f32[2,3]{1,0} %param_iter, f32[] %param_data, f32[2,3]{1,0} %param_iter) %while = (f32[2,3]{1,0}, f32[], f32[2,3]{1,0}) while(%tuple.1), condition=%WhileCond, body=%WhileBody ROOT %get-tuple-element.4 = f32[2,3]{1,0} get-tuple-element(%while), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(module_, ParseAndReturnVerifiedModule(hlo_string)); const HloSchedule& schedule = module_->schedule(); const int32_t num_runs = 20; std::vector<std::unique_ptr<HloLiveRange>> hlo_live_ranges; std::unique_ptr<HloAliasAnalysis> alias_analysis = HloAliasAnalysis::Run(module_.get()).value(); for (int i = 0; i < num_runs; ++i) { hlo_live_ranges.push_back(HloLiveRange::Run(schedule, *alias_analysis, module_->entry_computation()) .value()); } absl::flat_hash_map<const HloValue*, HloLiveRange::TimeBound>& buffer_live_ranges_0 = hlo_live_ranges[0]->buffer_live_ranges(); for (const auto& iter : buffer_live_ranges_0) { for (size_t i = 1; i < num_runs; i++) { absl::flat_hash_map<const HloValue*, HloLiveRange::TimeBound>& buffer_live_ranges_i = hlo_live_ranges[i]->buffer_live_ranges(); auto found_iter = buffer_live_ranges_i.find(iter.first); EXPECT_TRUE(found_iter != buffer_live_ranges_i.end()) << "value does not exist: " << iter.first->ToString(); EXPECT_EQ(found_iter->second.start, iter.second.start) << "value " << iter.first->ToString() << " has different start: " << found_iter->second.start << " vs " << iter.second.start; EXPECT_EQ(found_iter->second.end, iter.second.end) << "value " << iter.first->ToString() << " has different end: " << found_iter->second.end << " vs " << iter.second.end; } } } TEST_F(HloLiveRangeTest, AsyncCall) { std::string hlo_string = R"( HloModule AsyncCall, is_scheduled=true, entry_computation_layout={(f32[4096]{0},f32[4096]{0})->f32[4096]{0}} %called_computation (param_0: f32[4096], param_1: f32[4096]) -> f32[4096] { %param_0 = f32[4096]{0} parameter(0) %param_1 = f32[4096]{0} parameter(1) %negate_2 = f32[4096]{0} negate(f32[4096]{0} %param_0) %negate_3 = f32[4096]{0} negate(f32[4096]{0} %param_1) ROOT %result.1 = f32[4096]{0} add(f32[4096]{0} %negate_2, f32[4096]{0} %negate_3) } %async_wrapped (async_param: f32[4096], async_param.1: f32[4096]) -> f32[4096] { %async_param = f32[4096]{0} parameter(0) %async_param.1 = f32[4096]{0} parameter(1) ROOT %call = f32[4096]{0} call(f32[4096]{0} %async_param, f32[4096]{0} %async_param.1), to_apply=%called_computation } ENTRY %main (a: f32[4096], b: f32[4096]) -> f32[4096] { %a = f32[4096]{0} parameter(0) %b = f32[4096]{0} parameter(1) %negate_0 = f32[4096]{0} negate(f32[4096]{0} %a) %negate_1 = f32[4096]{0} negate(f32[4096]{0} %b) %async-start = ((f32[4096]{0}, f32[4096]{0}), f32[4096]{0}, u32[]) async-start(f32[4096]{0} %negate_0, f32[4096]{0} %negate_1), calls=%async_wrapped %add_0 = f32[4096]{0} add(f32[4096]{0} %negate_0, f32[4096]{0} %negate_1) %async-done = f32[4096]{0} async-done(((f32[4096]{0}, f32[4096]{0}), f32[4096]{0}, u32[]) %async-start) ROOT %add_1 = f32[4096]{0} add(f32[4096]{0} %add_0, f32[4096]{0} %async-done) } )"; TF_ASSERT_OK_AND_ASSIGN(module_, ParseAndReturnVerifiedModule(hlo_string)); const HloSchedule& schedule = module_->schedule(); Analyze(schedule); CheckSchedule(); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloAliasAnalysis> aa, HloAliasAnalysis::Run(module_.get())); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloLiveRange> hlo_live_range, HloLiveRange::Run(module_->schedule(), *aa, module_->entry_computation())); absl::flat_hash_map<std::string, std::pair<int32_t, int32_t>> inst_ranges; for (auto& [value, time_bound] : hlo_live_range->buffer_live_ranges()) { inst_ranges[value->instruction()->name()] = {time_bound.start, time_bound.end}; } EXPECT_EQ(inst_ranges["a"], std::make_pair(0, 16)); EXPECT_EQ(inst_ranges["b"], std::make_pair(0, 16)); EXPECT_EQ(inst_ranges["add_0"], std::make_pair(13, 15)); EXPECT_EQ(inst_ranges["add_1"], std::make_pair(15, 16)); EXPECT_EQ(inst_ranges["negate_0"], std::make_pair(2, 14)); EXPECT_EQ(inst_ranges["negate_1"], std::make_pair(3, 14)); } TEST_F(HloLiveRangeTest, Call) { std::string hlo_string = R"( HloModule Call, is_scheduled=true %called_computation (param_0: f32[4096]) -> f32[4096] { %param_0 = f32[4096]{0} parameter(0) ROOT %negate_0 = f32[4096]{0} negate(f32[4096]{0} %param_0) } ENTRY %main (a: f32[4096]) -> f32[4096] { %a = f32[4096]{0} parameter(0) %b = f32[4096]{0} negate(%a) %c = f32[4096]{0} call(%b), to_apply=%called_computation %d = f32[4096]{0} negate(%c) ROOT %e = f32[4096]{0} add(%c, %d) })"; TF_ASSERT_OK_AND_ASSIGN(module_, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloAliasAnalysis> aa, HloAliasAnalysis::Run(module_.get())); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloLiveRange> hlo_live_range, HloLiveRange::Run(module_->schedule(), *aa, module_->entry_computation())); absl::flat_hash_map<std::string, std::pair<int32_t, int32_t>> inst_ranges; for (auto& [value, time_bound] : hlo_live_range->buffer_live_ranges()) { inst_ranges[value->instruction()->name()] = {time_bound.start, time_bound.end}; } EXPECT_EQ(inst_ranges["a"], std::make_pair(0, 7)); EXPECT_EQ(inst_ranges["b"], std::make_pair(1, 3)); EXPECT_EQ(inst_ranges["negate_0"], std::make_pair(3, 6)); EXPECT_EQ(inst_ranges["d"], std::make_pair(5, 6)); EXPECT_EQ(inst_ranges["e"], std::make_pair(6, 7)); } } }
2,165
cpp
tensorflow/tensorflow
hlo_query
third_party/xla/xla/hlo/utils/hlo_query.cc
third_party/xla/xla/hlo/utils/hlo_query_test.cc
#ifndef XLA_HLO_UTILS_HLO_QUERY_H_ #define XLA_HLO_UTILS_HLO_QUERY_H_ #include <cstdint> #include "absl/container/flat_hash_set.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" namespace xla { namespace hlo_query { bool IsCollectiveCommunicationOp(HloOpcode op); bool IsAsyncCollectiveStartOp(const HloInstruction* instruction, bool include_send_recv = false); bool IsAsyncCollectiveDoneOp(const HloInstruction* instruction, bool include_send_recv = false); bool IsConstantR0F32(HloInstruction* instruction, float* out); bool AllOperandsAreParametersOrConstants(const HloInstruction& instruction); bool AllOperandsAreParametersOrConstantsWithSingleUser( const HloInstruction& instruction); bool AllOperandsAreParameters(const HloInstruction& instruction); bool AllOperandsAreConstants(const HloInstruction& instruction); bool IsScalarConstant(const HloInstruction* instruction); bool IsBroadcastedConstantOrScalar(const HloInstruction& instr); bool IsBroadcastOfScalarConstant(const HloInstruction& instr); bool IsBroadcastOfParameter(const HloInstruction& instr); HloInstruction* GetFirstInstructionWithOpcode(const HloComputation& computation, HloOpcode opcode); template <typename Fn> void ForEachInstructionWithOpcode(HloComputation& computation, HloOpcode opcode, Fn&& fn) { for (HloInstruction* instr : computation.instructions()) { if (instr->opcode() == opcode) { fn(instr); } } } template <typename Fn> void ForEachInstructionWithOpcode(HloModule& module, HloOpcode opcode, Fn&& fn) { for (HloComputation* computation : module.computations()) { ForEachInstructionWithOpcode(*computation, opcode, fn); } } bool ContainsInstrWithOpcode(const HloComputation* comp, const absl::flat_hash_set<HloOpcode>& opcodes); HloInstruction* GetMatchingOperand(const HloPredicate& matcher, HloInstruction* instruction); bool MatchBinaryInstructionOperand(const HloPredicate& matcher, HloInstruction* instruction, HloInstruction** matching_operand, HloInstruction** other_operand); bool MatchBinaryInstructionOperandOpcode(HloOpcode opcode, HloInstruction* instruction, HloInstruction** matching_operand, HloInstruction** other_operand); bool ContainsLayoutConstrainedCollective(const HloModule& module, HloOpcode op); inline bool ContainsLayoutConstrainedAllReduce(const HloModule& module) { return ContainsLayoutConstrainedCollective(module, HloOpcode::kAllReduce); } int64_t NextChannelId(const HloModule& module); bool HasX64TransformedHostTransfer(const HloModule& module); HloInstruction* GetUniqueGteInstruction(const HloInstruction* operand, int64_t index); } } #endif #include "xla/hlo/utils/hlo_query.h" #include <algorithm> #include <cstdint> #include "absl/algorithm/container.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/service/pattern_matcher.h" #include "xla/shape_util.h" namespace xla { namespace hlo_query { bool IsCollectiveCommunicationOp(HloOpcode op) { return op == HloOpcode::kAllReduce || op == HloOpcode::kAllGather || op == HloOpcode::kAllToAll || op == HloOpcode::kCollectivePermute || op == HloOpcode::kCollectiveBroadcast || op == HloOpcode::kReduceScatter || op == HloOpcode::kAllReduceStart || op == HloOpcode::kAllGatherStart || op == HloOpcode::kCollectivePermuteStart; } bool IsAsyncCollectiveStartOp(const HloInstruction* instruction, bool include_send_recv) { HloOpcode op = instruction->opcode(); if (op == HloOpcode::kAsyncStart) { return IsCollectiveCommunicationOp(instruction->async_wrapped_opcode()); } return op == HloOpcode::kAllReduceStart || op == HloOpcode::kAllGatherStart || op == HloOpcode::kCollectivePermuteStart || (include_send_recv && (op == HloOpcode::kSend || op == HloOpcode::kRecv)); } bool IsAsyncCollectiveDoneOp(const HloInstruction* instruction, bool include_send_recv) { HloOpcode op = instruction->opcode(); if (op == HloOpcode::kAsyncDone) { return IsCollectiveCommunicationOp(instruction->async_wrapped_opcode()); } return op == HloOpcode::kAllReduceDone || op == HloOpcode::kAllGatherDone || op == HloOpcode::kCollectivePermuteDone || (include_send_recv && (op == HloOpcode::kSendDone || op == HloOpcode::kRecvDone)); } bool IsConstantR0F32(HloInstruction* instruction, float* out) { if (instruction->opcode() == HloOpcode::kConstant && ShapeUtil::IsScalarWithElementType(instruction->shape(), F32)) { *out = instruction->literal().Get<float>({}); return true; } return false; } bool AllOperandsAreParametersOrConstants(const HloInstruction& instruction) { for (const auto& operand : instruction.operands()) { if (operand->opcode() != HloOpcode::kParameter && operand->opcode() != HloOpcode::kConstant) { return false; } } return true; } bool AllOperandsAreParametersOrConstantsWithSingleUser( const HloInstruction& instruction) { for (const auto& operand : instruction.operands()) { if (operand->opcode() != HloOpcode::kParameter && operand->opcode() != HloOpcode::kConstant) { return false; } if (operand->user_count() > 1) { return false; } } return true; } bool AllOperandsAreParameters(const HloInstruction& instruction) { for (const auto& operand : instruction.operands()) { if (operand->opcode() != HloOpcode::kParameter) { return false; } } return true; } bool AllOperandsAreConstants(const HloInstruction& instruction) { for (const auto& operand : instruction.operands()) { if (operand->opcode() != HloOpcode::kConstant) { return false; } } return true; } HloInstruction* GetMatchingOperand(const HloPredicate& matcher, HloInstruction* instruction) { for (HloInstruction* op : instruction->operands()) { if (matcher(op)) { return op; } } return nullptr; } bool MatchBinaryInstructionOperand(const HloPredicate& matcher, HloInstruction* instruction, HloInstruction** matching_operand, HloInstruction** other_operand) { CHECK_EQ(instruction->operand_count(), 2); if (matcher(instruction->operand(0))) { *matching_operand = instruction->mutable_operand(0); *other_operand = instruction->mutable_operand(1); return true; } if (matcher(instruction->operand(1))) { *matching_operand = instruction->mutable_operand(1); *other_operand = instruction->mutable_operand(0); return true; } return false; } bool MatchBinaryInstructionOperandOpcode(HloOpcode opcode, HloInstruction* instruction, HloInstruction** matching_operand, HloInstruction** other_operand) { return MatchBinaryInstructionOperand( [opcode](const HloInstruction* instruction) { return instruction->opcode() == opcode; }, instruction, matching_operand, other_operand); } bool IsScalarConstant(const HloInstruction* instruction) { return instruction->IsConstant() && ShapeUtil::IsScalar(instruction->shape()); } bool IsBroadcastedConstantOrScalar(const HloInstruction& instr) { return instr.IsConstant() || ShapeUtil::IsScalar(instr.shape()) || (HloOpcode::kBroadcast == instr.opcode() && (instr.operand(0)->IsConstant() || ShapeUtil::IsScalar(instr.operand(0)->shape()))); } bool IsBroadcastOfScalarConstant(const HloInstruction& instr) { return instr.opcode() == HloOpcode::kBroadcast && IsScalarConstant(instr.operand(0)); } bool IsBroadcastOfParameter(const HloInstruction& instr) { return instr.opcode() == HloOpcode::kBroadcast && instr.operand(0)->opcode() == HloOpcode::kParameter; } HloInstruction* GetFirstInstructionWithOpcode(const HloComputation& computation, const HloOpcode opcode) { auto instructions = computation.instructions(); auto it = absl::c_find_if(instructions, [&](HloInstruction* instr) { return instr->opcode() == opcode; }); return it == instructions.end() ? nullptr : *it; } bool ContainsInstrWithOpcode(const HloComputation* comp, const absl::flat_hash_set<HloOpcode>& opcodes) { for (const auto* instr : comp->instructions()) { if (opcodes.count(instr->opcode())) { return true; } for (const HloComputation* subcomp : instr->called_computations()) { if (ContainsInstrWithOpcode(subcomp, opcodes)) { return true; } } } return false; } bool ContainsLayoutConstrainedCollective(const HloModule& module, HloOpcode op) { CHECK(IsCollectiveCommunicationOp(op)); for (auto computation : module.computations()) { for (auto hlo : computation->instructions()) { if (hlo->opcode() == op && DynCast<HloCollectiveInstruction>(hlo)->constrain_layout()) { return true; } } } return false; } int64_t NextChannelId(const HloModule& module) { int64_t next_channel_id = 1; for (const HloComputation* comp : module.computations()) { for (const HloInstruction* hlo : comp->instructions()) { const HloChannelInstruction* channel_instr = DynCast<HloChannelInstruction>(hlo); if (channel_instr && channel_instr->channel_id()) { next_channel_id = std::max(next_channel_id, *channel_instr->channel_id() + 1); } } } return next_channel_id; } bool HasX64TransformedHostTransfer(const HloModule& module) { for (auto computation : module.computations()) { for (auto hlo : computation->instructions()) { if (hlo->opcode() == HloOpcode::kSend) { auto send = DynCast<HloSendInstruction>(hlo); if (send->is_host_transfer() && send->operand(0)->shape().IsTuple()) { return true; } } else if (hlo->opcode() == HloOpcode::kRecv) { auto recv = DynCast<HloRecvInstruction>(hlo); if (recv->is_host_transfer() && recv->shape().tuple_shapes(0).IsTuple()) { return true; } } } } return false; } HloInstruction* GetUniqueGteInstruction(const HloInstruction* operand, int64_t index) { HloInstruction* gte = nullptr; for (HloInstruction* instr : operand->parent()->MakeInstructionPostOrder()) { if (!Match(instr, match::GetTupleElement().WithTupleIndex(index))) { continue; } if (instr->operand(0) != operand) { continue; } if (gte != nullptr) { return nullptr; } gte = instr; } return gte; } } }
#include "xla/hlo/utils/hlo_query.h" #include <memory> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_parser.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using HloQueryTest = HloTestBase; template <typename Hlo> int CountInstructions(Hlo& module, HloOpcode opcode) { int counter = 0; hlo_query::ForEachInstructionWithOpcode( module, opcode, [&counter](auto& instr) { counter++; }); return counter; } TEST_F(HloQueryTest, GetInstructionWithOpCodeReturnsMatchingInstructionForModule) { constexpr absl::string_view kHloString = R"( HloModule m computation.0 { param.0 = f32[32]{0} parameter(0) ROOT _ = f32[32]{0} rsqrt(param.0) } ENTRY main { param.0 = f32[32]{0} parameter(0) param.1 = f32[32]{0} parameter(1) param.2 = f32[32]{0} parameter(2) param.3 = f32[32]{0} parameter(3) add.0 = f32[32]{0} add(param.0,param.1) add.1 = f32[32]{0} add(param.1,param.2) sub.0 = f32[32]{0} subtract(param.0,param.1) mul.0 = f32[32]{0} multiply(param.0,param.1) mul.1 = f32[32]{0} multiply(param.1,param.2) mul.2 = f32[32]{0} multiply(param.2,param.3) comp.0 = call(param.0), to_apply=computation.0 ROOT _ = (f32[32],f32[32],f32[32],f32[32],f32[32],f32[32],f32[32]) tuple(comp.0,add.0,add.1,sub.0,mul.0,mul.1,mul.2) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule(kHloString)); EXPECT_EQ(CountInstructions(*module, HloOpcode::kAdd), 2); EXPECT_EQ(CountInstructions(*module, HloOpcode::kSubtract), 1); EXPECT_EQ(CountInstructions(*module, HloOpcode::kMultiply), 3); } TEST_F(HloQueryTest, GetInstructionWithOpCodeReturnsMatchingInstructionForComputation) { constexpr absl::string_view kHloString = R"( HloModule m computation.0 { param.0 = f32[32]{0} parameter(0) param.1 = f32[32]{0} parameter(1) param.2 = f32[32]{0} parameter(2) param.3 = f32[32]{0} parameter(3) add.0 = f32[32]{0} add(param.0,param.1) add.1 = f32[32]{0} add(param.1,param.2) sub.0 = f32[32]{0} subtract(param.0,param.1) mul.0 = f32[32]{0} multiply(param.0,param.1) mul.1 = f32[32]{0} multiply(param.1,param.2) ROOT mul.2 = f32[32]{0} multiply(param.2,param.3) } ENTRY main { param.0 = f32[32]{0} parameter(0) param.1 = f32[32]{0} parameter(1) param.2 = f32[32]{0} parameter(2) param.3 = f32[32]{0} parameter(3) add.0 = f32[32]{0} add(param.0,param.1) sub.0 = f32[32]{0} subtract(param.0,param.1) mul.0 = f32[32]{0} multiply(param.0,param.1) comp.0 = f32[32]{0} call(param.0,param.1,param.2), to_apply=computation.0 ROOT _ = (f32[32],f32[32],f32[32],f32[32]) tuple(add.0,sub.0,mul.0,comp.0) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule(kHloString)); HloComputation* computation = module->GetComputationWithName("computation.0"); EXPECT_EQ(CountInstructions(*computation, HloOpcode::kAdd), 2); EXPECT_EQ(CountInstructions(*computation, HloOpcode::kSubtract), 1); EXPECT_EQ(CountInstructions(*computation, HloOpcode::kMultiply), 3); } TEST_F(HloQueryTest, GetUniqueGteTest) { constexpr absl::string_view kHloString = R"( HloModule m ENTRY main { param.0 = (f32[32]{0}, f32[32]{0}, f32[32]{0}, f32[32]{0}) parameter(0) gte1 = f32[32]{0} get-tuple-element(param.0), index=0 gte2 = f32[32]{0} get-tuple-element(param.0), index=1 dup_gte2 = f32[32]{0} get-tuple-element(param.0), index=1 gte3 = f32[32]{0} get-tuple-element(param.0), index=2 ROOT gte4 = f32[32]{0} get-tuple-element(param.0), index=3 })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule(kHloString)); HloInstruction* param = module->entry_computation()->parameter_instruction(0); HloInstruction* gte1 = hlo_query::GetUniqueGteInstruction(param, 0); EXPECT_NE(gte1, nullptr); HloInstruction* gte2 = hlo_query::GetUniqueGteInstruction(param, 1); EXPECT_EQ(gte2, nullptr); } } }
2,166
cpp
tensorflow/tensorflow
auto_sharding_solver
third_party/xla/xla/hlo/experimental/auto_sharding/auto_sharding_solver.cc
third_party/xla/xla/hlo/experimental/auto_sharding/auto_sharding_solver_test.cc
#ifndef XLA_HLO_EXPERIMENTAL_AUTO_SHARDING_AUTO_SHARDING_SOLVER_H_ #define XLA_HLO_EXPERIMENTAL_AUTO_SHARDING_AUTO_SHARDING_SOLVER_H_ #include <string> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding.pb.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_strategy.h" #include "ortools/linear_solver/linear_solver.h" namespace xla { namespace spmd { struct AutoShardingSolverOutput { std::vector<NodeStrategyIdx> s_val; std::vector<EdgeStrategyIdx> e_val; double cost = -1.0; absl::flat_hash_set<LivenessIdx> peak_times; bool operator==(const AutoShardingSolverOutput& other) const; }; struct AutoShardingSolverResult { public: AutoShardingSolverResult(absl::StatusOr<AutoShardingSolverOutput> status, bool skip_auto_sharding) : status(status), skip_auto_sharding(skip_auto_sharding) {} bool operator==(const AutoShardingSolverResult& other) const; absl::StatusOr<AutoShardingSolverOutput> status; bool skip_auto_sharding; }; AutoShardingSolverResult CallORToolsSolver( const AutoShardingSolverRequest& request); enum AutoShardingViolationCode { kAliasViolationCode, kFollowerViolationCode, kInfiniteCostViolationCode, kMemoryViolationCode, kMaxDeparturesViolationCode, }; struct CostComponents { double communication_cost = 0.0; double computation_cost = 0.0; double resharding_cost = 0.0; double overbudget_cost = 0.0; double makespan_cost = 0.0; double cost() const; bool operator==(const CostComponents& other) const; }; struct AutoShardingEvaluation { absl::flat_hash_set<AutoShardingViolationCode> violation_codes; CostComponents total; CostComponents lower_bound; double total_departures = 0.0; double total_makespan = 0.0; bool operator==(const AutoShardingEvaluation& other) const; }; AutoShardingEvaluation Evaluate(const AutoShardingSolverRequest& request, const AutoShardingSolverResult& result); std::vector<std::string> Rationalize(const AutoShardingSolverRequest& request, const AutoShardingSolverResult& result, const AutoShardingSolverResult& subopt); operations_research::MPVariable* CreateMakespanVar( const AutoShardingSolverRequest& request, const std::vector<std::vector<operations_research::MPVariable*>>& e, operations_research::MPSolver& solver); double EvaluateMakespan(const AutoShardingSolverRequest& request, const AutoShardingSolverResult& result, AutoShardingEvaluation& evaluation); AutoShardingSolverRequest ScaleRequest( const AutoShardingSolverRequest& request); bool CheckDominance(const AutoShardingSolverRequest& request, const std::vector<EdgeIdx>& src_edges, const std::vector<EdgeIdx>& dst_edges, const std::vector<AliasIdx>& src_aliases, const std::vector<AliasIdx>& dst_aliases, NodeIdx node_idx, NodeStrategyIdx first, NodeStrategyIdx second); class StrategyShaver { public: explicit StrategyShaver(const AutoShardingSolverRequest& request); NodeStrategies FindShavedStrategies() const; private: const AutoShardingSolverRequest& request_; std::vector<std::vector<EdgeIdx>> src_edge_map_; std::vector<std::vector<EdgeIdx>> dst_edge_map_; std::vector<std::vector<AliasIdx>> src_alias_map_; std::vector<std::vector<AliasIdx>> dst_alias_map_; std::vector<std::vector<NodeIdx>> followers_; }; absl::Status ValidateRequest(const AutoShardingSolverRequest& request); } } #endif #include "xla/hlo/experimental/auto_sharding/auto_sharding_solver.h" #include <algorithm> #include <cmath> #include <cstddef> #include <cstdint> #include <functional> #include <limits> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/container/btree_set.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding.pb.h" #ifdef PLATFORM_GOOGLE #include "file/base/options.h" #endif #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_memory.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_strategy.h" #include "xla/status_macros.h" #include "xla/util.h" #include "tsl/platform/fingerprint.h" #include "tsl/platform/hash.h" #include "tsl/platform/types.h" #include "ortools/linear_solver/linear_solver.h" #include "ortools/linear_solver/linear_solver.pb.h" #ifdef PLATFORM_GOOGLE #include "file/base/helpers.h" #include "util/task/status.pb.h" #endif namespace xla { namespace spmd { using ::operations_research::MPConstraint; using ::operations_research::MPSolver; using ::operations_research::MPVariable; constexpr double kMaxCostEpsilon = 1.0001; bool AutoShardingSolverOutput::operator==( const AutoShardingSolverOutput& other) const { return s_val == other.s_val && e_val == other.e_val && cost == other.cost && peak_times == other.peak_times; } bool AutoShardingSolverResult::operator==( const AutoShardingSolverResult& other) const { return status == other.status && skip_auto_sharding == other.skip_auto_sharding; } void PrintLargestInstructions( const std::vector<NodeStrategyIdx>& chosen_strategy, const AutoShardingSolverRequest& request) { if (!request.node_intervals().empty()) return; std::vector<std::pair<LivenessIdx, double>> time_memory_usage; for (LivenessIdx time_idx = 0; time_idx < request.live_size(); ++time_idx) { double mem = 0.0; for (NodeIdx node_idx : request.live(time_idx).nodes()) { mem += request.memory_costs(node_idx).costs(chosen_strategy[node_idx]); } time_memory_usage.push_back({time_idx, mem}); } struct { bool operator()(std::pair<LivenessIdx, double> a, std::pair<LivenessIdx, double> b) const { return a.second > b.second; } } MemLarger; std::sort(time_memory_usage.begin(), time_memory_usage.end(), MemLarger); LOG(INFO) << "using m[] and L[], max memory usage: " << time_memory_usage.front().second / (1024 * 1024 * 1024) << " GB at time " << time_memory_usage.front().first; size_t k = 3; k = std::min(k, time_memory_usage.size()); std::vector<std::pair<NodeIdx, double>> instruction_mem; absl::flat_hash_set<NodeIdx> instruction_set; for (auto usage_idx = 0; usage_idx < k; ++usage_idx) { LivenessIdx time_idx = time_memory_usage.at(usage_idx).first; for (NodeIdx node_idx : request.live(time_idx).nodes()) { double mem = request.memory_costs(node_idx).costs(chosen_strategy[node_idx]); if (mem > 100 * 1024 * 1024 && instruction_set.find(node_idx) == instruction_set.end()) { instruction_mem.push_back({node_idx, mem}); instruction_set.insert(node_idx); } } } std::sort(instruction_mem.begin(), instruction_mem.end(), MemLarger); size_t top_tensors = 10; top_tensors = std::min(top_tensors, instruction_mem.size()); VLOG(1) << "Top " << top_tensors << " largest tensors:"; for (size_t i = 0; i < top_tensors; ++i) { VLOG(1) << "instruction name: " << request.instruction_names(instruction_mem.at(i).first) << " memory usage: " << instruction_mem.at(i).second / (1024 * 1024 * 1024) << "GB"; } } void AddSalt(const std::string& name, const double saltiplier, double* coeff) { if (saltiplier <= 0.0) return; const tsl::uint64 hash = tsl::Hash64(name); double salt = saltiplier * hash / std::numeric_limits<tsl::uint64>::max(); *coeff = *coeff * (1.0 + salt) + salt; } AutoShardingSolverResult SolveAndExtractSolution( const AutoShardingSolverRequest& request, const std::vector<std::vector<MPVariable*>>& s, const std::vector<std::vector<MPVariable*>>& e, const MPVariable* overbudget_var, const MPVariable* makespan_var, MPSolver& solver); double MinimumMemoryBudgetRequired(const AutoShardingSolverRequest& request) { double min_memory_budget_required_estimate = 0.0; for (LivenessIdx time_idx = 0; time_idx < request.live_size(); ++time_idx) { double min_memory_budget_required_estimate_local = 0.0; for (NodeIdx node_idx : request.live(time_idx).nodes()) { const auto& m = request.memory_costs(node_idx).costs(); const double fixed_memory_cost = *std::min_element(m.begin(), m.end()); min_memory_budget_required_estimate_local += fixed_memory_cost; } min_memory_budget_required_estimate = std::max(min_memory_budget_required_estimate, min_memory_budget_required_estimate_local); } return min_memory_budget_required_estimate; } double MaxCoeff( const tsl::protobuf::RepeatedPtrField<AutoShardingSolverRequest_Costs>& cost_mat) { double max_coeff = 0.0; for (auto& costs : cost_mat) { for (auto& cost : costs.costs()) { if (cost < kInfinityCost) { max_coeff = std::max(max_coeff, cost); } } } return max_coeff; } void ScaleCoeffs( double scaling_factor, tsl::protobuf::RepeatedPtrField<AutoShardingSolverRequest_Costs>* cost_mat) { for (auto& costs : *cost_mat) { for (auto& cost : *costs.mutable_costs()) { if (cost < kInfinityCost) { cost = floor(cost * scaling_factor); } } } } AutoShardingSolverRequest ScaleRequest( const AutoShardingSolverRequest& request) { if (!request.has_coeff_limit()) return request; VLOG(0) << "Scaling request by coefficient limit: " << request.coeff_limit().coeff(); double max_coeff = 0.0; max_coeff = std::max(max_coeff, MaxCoeff(request.communication_costs())); max_coeff = std::max(max_coeff, MaxCoeff(request.computation_costs())); max_coeff = std::max(max_coeff, MaxCoeff(request.resharding_costs())); if (max_coeff <= request.coeff_limit().coeff()) return request; const double scaling_factor = request.coeff_limit().coeff() / max_coeff; AutoShardingSolverRequest scaled_request = request; ScaleCoeffs(scaling_factor, scaled_request.mutable_communication_costs()); ScaleCoeffs(scaling_factor, scaled_request.mutable_computation_costs()); ScaleCoeffs(scaling_factor, scaled_request.mutable_resharding_costs()); return scaled_request; } std::optional<std::pair<int64_t, int64_t>> ReduceMemoryTerms( const AutoShardingSolverRequest& request, MPSolver& solver, int64_t num_lives, int64_t num_primitives, const std::function< tsl::protobuf::RepeatedField<int64_t>(int64_t)>& live, const tsl::protobuf::RepeatedPtrField< AutoShardingSolverRequest_Pair>& intervals, const tsl::protobuf::RepeatedPtrField< AutoShardingSolverRequest_Group>& groups, const tsl::protobuf::RepeatedPtrField< AutoShardingSolverRequest_Costs>& memory_costs, std::string_view prim_type, std::vector<std::vector<MPVariable*>>& prim_vars, std::vector<std::pair<int64_t, int64_t>>& reduced_intervals, std::vector<MPVariable*>& group_vars, absl::flat_hash_set<int64_t>& reduced_times) { std::optional<std::pair<int64_t, int64_t>> num_terms = std::nullopt; std::vector<absl::btree_set<int64_t>> reduced_groups; if (groups.empty()) { for (const auto& interval : intervals) { if (interval.first() > interval.second()) continue; num_lives = std::max(num_lives, interval.second() + 1); } auto Intervals = [intervals](int64_t prim_idx) -> std::pair<int64_t, int64_t> { return {intervals.at(prim_idx).first(), intervals.at(prim_idx).second()}; }; MemoryTermReducer reducer; num_terms = intervals.empty() ? reducer.Reduce(num_lives, num_primitives, live) : reducer.Reduce(num_lives, num_primitives, std::move(Intervals)); reduced_intervals = reducer.GetReducedIntervals(); reduced_groups = reducer.GetReducedGroups(); } else { for (const auto& interval : intervals) { reduced_intervals.push_back({interval.first(), interval.second()}); } for (const auto& group : groups) { reduced_groups.push_back({group.prims().begin(), group.prims().end()}); } } solver.MakeIntVarArray(reduced_groups.size(), 0.0, MPSolver::infinity(), absl::StrCat("group_", prim_type), &group_vars); for (int64_t group_idx = 0; group_idx < group_vars.size(); ++group_idx) { MPConstraint* constraint = solver.MakeRowConstraint( -MPSolver::infinity(), 0.0, absl::StrCat("group_", prim_type, "[", group_idx, "]")); constraint->SetCoefficient(group_vars[group_idx], -1.0); for (const int64_t prim_idx : reduced_groups[group_idx]) { for (int64_t j = 0; j < prim_vars[prim_idx].size(); ++j) { double memory_cost = memory_costs.at(prim_idx).costs(j); memory_cost /= request.memory_budget() / 100.0; const double accumulated_coefficient = constraint->GetCoefficient(prim_vars[prim_idx][j]); constraint->SetCoefficient(prim_vars[prim_idx][j], accumulated_coefficient + memory_cost); } } } const absl::flat_hash_set<int64_t> times = MemoryTermReducer::GetReducedTimes( num_primitives, reduced_intervals, reduced_groups); reduced_times.insert(times.begin(), times.end()); return num_terms; } void AddMemoryTerms( const AutoShardingSolverRequest& request, MPSolver& solver, int64_t num_primitives, const std::vector<std::pair<int64_t, int64_t>>& intervals, const tsl::protobuf::RepeatedPtrField< AutoShardingSolverRequest_Costs>& memory_costs, const MPVariable* overbudget_var, const absl::flat_hash_set<int64_t>& reduced_times, std::vector<std::vector<MPVariable*>>& prim_vars, std::vector<MPVariable*>& group_vars, absl::flat_hash_map<LivenessIdx, MPConstraint*>& constraints) { for (int64_t prim_idx = 0; prim_idx < intervals.size(); ++prim_idx) { for (int64_t time_idx = intervals[prim_idx].first; time_idx <= intervals[prim_idx].second; ++time_idx) { if (!reduced_times.contains(time_idx)) continue; if (!constraints.contains(time_idx)) { MPConstraint* constraint = solver.MakeRowConstraint( -MPSolver::infinity(), 100.0, absl::StrCat("mem[", time_idx, "]")); if (overbudget_var) constraint->SetCoefficient(overbudget_var, -100.0); constraints[time_idx] = constraint; } MPConstraint* constraint = constraints[time_idx]; if (prim_idx >= num_primitives) { constraint->SetCoefficient(group_vars[prim_idx - num_primitives], 1.0); continue; } for (int64_t j = 0; j < prim_vars[prim_idx].size(); ++j) { double memory_cost = memory_costs.at(prim_idx).costs(j); memory_cost /= request.memory_budget() / 100.0; const double accumulated_coefficient = constraint->GetCoefficient(prim_vars[prim_idx][j]); constraint->SetCoefficient(prim_vars[prim_idx][j], accumulated_coefficient + memory_cost); } } } } AutoShardingSolverResult CallORToolsSolver( const AutoShardingSolverRequest& unscaled_request) { const absl::Time start_time = absl::Now(); const AutoShardingSolverRequest& request = ScaleRequest(unscaled_request); const size_t num_edges = request.edges_size(); const int num_workers = 32; std::unique_ptr<MPSolver> solver(std::make_unique<MPSolver>("", MPSolver::SAT_INTEGER_PROGRAMMING)); CHECK(solver); solver->MutableObjective()->SetMinimization(); std::string solver_parameter_str; #ifdef PLATFORM_GOOGLE if (solver->ProblemType() == operations_research::MPSolver::SAT_INTEGER_PROGRAMMING) { solver_parameter_str = request.deterministic_mode() ? absl::StrCat( "share_binary_clauses:false,random_seed:1,interleave_" "search:true,num_workers:", num_workers) : absl::StrCat("num_workers:", num_workers); solver->SetSolverSpecificParametersAsString(solver_parameter_str); } #endif std::vector<std::vector<MPVariable*>> s(request.num_nodes()); std::vector<std::vector<MPVariable*>> e(num_edges); MPVariable* overbudget_var = nullptr; MPVariable* makespan_var = nullptr; size_t unique_nodes = 0; for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { if (request.s_follow(node_idx) < 0) { unique_nodes += 1; solver->MakeBoolVarArray(request.s_len(node_idx), absl::StrCat("s[", node_idx, "]"), &s[node_idx]); } } for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { if (request.s_follow(node_idx) >= 0) { CHECK_EQ(request.s_len(node_idx), request.s_len(request.s_follow(node_idx))); s[node_idx] = s[request.s_follow(node_idx)]; } } size_t unique_edges = 0; std::vector<EdgeIdx> e_follow(num_edges, -1); absl::flat_hash_map<std::pair<NodeIdx, NodeIdx>, EdgeIdx> edge_map; for (EdgeIdx edge_idx = 0; edge_idx < num_edges; ++edge_idx) { const auto& raw_edge = request.edges(edge_idx); const std::pair<NodeIdx, NodeIdx> edge(raw_edge.first(), raw_edge.second()); auto followed_edge = edge; if (int f = request.s_follow(edge.first); f >= 0) followed_edge.first = f; if (int f = request.s_follow(edge.second); f >= 0) followed_edge.second = f; if (const auto& it = edge_map.find(followed_edge); it != edge_map.end()) { e[edge_idx] = e[it->second]; e_follow[edge_idx] = it->second; continue; } unique_edges += 1; solver->MakeBoolVarArray( request.s_len(edge.first) * request.s_len(edge.second), absl::StrCat("e[", edge.first, ",", edge.second, "]"), &e[edge_idx]); edge_map.insert({followed_edge, edge_idx}); } if (request.memory_budget() > 0 && request.has_overbudget_coeff()) { overbudget_var = solver->MakeNumVar(0.0, MPSolver::infinity(), "overbudget"); } if (request.has_makespan_coeff()) { makespan_var = CreateMakespanVar(request, e, *solver); } absl::flat_hash_set<MPVariable*> infinity_vars; for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { for (NodeStrategyIdx j = 0; j < s[node_idx].size(); ++j) { double accumulated_coefficient = solver->MutableObjective()->GetCoefficient(s[node_idx][j]); double coefficient = request.computation_costs(node_idx).costs(j) + request.communication_costs(node_idx).costs(j); if (coefficient >= kInfinityCost) { infinity_vars.insert(s[node_idx][j]); continue; } AddSalt(absl::StrCat(node_idx, "S", j), request.saltiplier(), &coefficient); solver->MutableObjective()->SetCoefficient( s[node_idx][j], accumulated_coefficient + coefficient); } } for (EdgeIdx edge_idx = 0; edge_idx < num_edges; ++edge_idx) { for (EdgeStrategyIdx j = 0; j < e[edge_idx].size(); ++j) { double accumulated_coefficient = solver->MutableObjective()->GetCoefficient(e[edge_idx][j]); double coefficient = request.resharding_costs(edge_idx).costs(j); if (coefficient >= kInfinityCost) { infinity_vars.insert(e[edge_idx][j]); continue; } AddSalt(absl::StrCat(edge_idx, "E", j), request.saltiplier(), &coefficient); solver->MutableObjective()->SetCoefficient( e[edge_idx][j], accumulated_coefficient + coefficient); } } LOG(INFO) << "Number of infinity terms: " << infinity_vars.size(); const NodeStrategies shaved_strategies = StrategyShaver(request).FindShavedStrategies(); for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { if (s[node_idx].empty() || request.s_follow(node_idx) >= 0) continue; bool all_infinity = true; for (NodeStrategyIdx j = 0; j < s[node_idx].size(); ++j) { if (infinity_vars.contains(s[node_idx][j]) || shaved_strategies.contains({node_idx, j})) { MPConstraint* constraint = solver->MakeRowConstraint( 0.0, 0.0, absl::StrCat("infinitycost: s[", node_idx, "][", j, "] = 0")); constraint->SetCoefficient(s[node_idx][j], 1.0); } else { all_infinity = false; } } if (all_infinity) { LOG(FATAL) << "All of s[" << node_idx << "][*] have infinity costs"; } } for (EdgeIdx edge_idx = 0; edge_idx < num_edges; ++edge_idx) { if (e[edge_idx].empty() || e_follow[edge_idx] >= 0) continue; bool all_infinity = true; for (EdgeStrategyIdx j = 0; j < e[edge_idx].size(); ++j) { if (infinity_vars.contains(e[edge_idx][j])) { MPConstraint* constraint = solver->MakeRowConstraint( 0.0, 0.0, absl::StrCat("infinitycost: e[", edge_idx, "][", j, "] = 0")); constraint->SetCoefficient(e[edge_idx][j], 1.0); } else { all_infinity = false; } } if (all_infinity) { auto err_msg = absl::StrCat("All of e[", request.edges(edge_idx).first(), "][", request.edges(edge_idx).second(), "][*] have infinity costs"); if (request.crash_at_infinity_costs_check()) { LOG(FATAL) << err_msg; } else { LOG(WARNING) << err_msg; return AutoShardingSolverResult(absl::InternalError(err_msg), false); } } } for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { if (request.s_follow(node_idx) >= 0) continue; MPConstraint* constraint = solver->MakeRowConstraint( 1.0, 1.0, absl::StrCat("sum(s[", node_idx, "][j] for j = [0 .. ", s[node_idx].size(), ")) = 1")); for (NodeStrategyIdx j = 0; j < s[node_idx].size(); ++j) { constraint->SetCoefficient(s[node_idx][j], 1.0); } } if (request.memory_budget() > 0) { auto LiveNodes = [request](int64_t live_idx) -> tsl::protobuf::RepeatedField<int64_t> { return request.live(live_idx).nodes(); }; auto LiveEdges = [request](int64_t live_idx) -> tsl::protobuf::RepeatedField<int64_t> { return request.live_edges(live_idx).edges(); }; std::vector<std::pair<int64_t, int64_t>> reduced_intervals_nodes, reduced_intervals_edges; absl::flat_hash_set<int64_t> reduced_times; std::vector<MPVariable*> group_node_vars, group_edge_vars; const absl::Time term_reduction_start_time = absl::Now(); auto num_node_terms = ReduceMemoryTerms( request, *solver, request.live_size(), request.num_nodes(), std::move(LiveNodes), request.node_intervals(), request.node_groups(), request.memory_costs(), "node", s, reduced_intervals_nodes, group_node_vars, reduced_times); auto num_edge_terms = ReduceMemoryTerms( request, *solver, request.live_edges_size(), request.edges_size(), std::move(LiveEdges), request.edge_intervals(), request.edge_groups(), request.memory_edge_costs(), "edge", e, reduced_intervals_edges, group_edge_vars, reduced_times); const absl::Time term_reduction_end_time = absl::Now(); if (num_node_terms && num_edge_terms) { const auto term_reduction_duration = term_reduction_end_time - term_reduction_start_time; LOG(INFO) << "Memory Term Reducer took " << absl::ToInt64Milliseconds(term_reduction_duration) << " ms and reduced the number of terms from " << num_node_terms->first + num_edge_terms->first << " to " << num_node_terms->second + num_edge_terms->second; } absl::flat_hash_map<LivenessIdx, MPConstraint*> constraints; AddMemoryTerms(request, *solver, request.num_nodes(), reduced_intervals_nodes, request.memory_costs(), overbudget_var,
#include "xla/hlo/experimental/auto_sharding/auto_sharding_solver.h" #include <cstdint> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding.pb.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_strategy.h" namespace xla { namespace spmd { namespace { using CostMatrix = std::vector<std::vector<double>>; using NodeMatrix = std::vector<std::vector<int64_t>>; using EdgeMatrix = std::vector<std::vector<int64_t>>; void AddCosts(proto2::RepeatedPtrField<AutoShardingSolverRequest_Costs>* costs, const CostMatrix& cost_matrix) { for (const auto& cost_row : cost_matrix) { AutoShardingSolverRequest_Costs cost; cost.mutable_costs()->Add(cost_row.begin(), cost_row.end()); costs->Add(std::move(cost)); } } void AddNodes(proto2::RepeatedPtrField<AutoShardingSolverRequest_Nodes>* nodes, const NodeMatrix& node_matrix) { for (const auto& node_row : node_matrix) { AutoShardingSolverRequest_Nodes node; node.mutable_nodes()->Add(node_row.begin(), node_row.end()); nodes->Add(std::move(node)); } } void AddEdges(proto2::RepeatedPtrField<AutoShardingSolverRequest_Edges>* edges, const EdgeMatrix& edge_matrix) { for (const auto& edge_row : edge_matrix) { AutoShardingSolverRequest_Edges edge; edge.mutable_edges()->Add(edge_row.begin(), edge_row.end()); edges->Add(std::move(edge)); } } void AddIntervals( proto2::RepeatedPtrField<AutoShardingSolverRequest_Pair>* pairs, const std::vector<std::pair<int64_t, int64_t>>& intervals) { for (const auto& interval : intervals) { AutoShardingSolverRequest_Pair pair; pair.set_first(interval.first); pair.set_second(interval.second); pairs->Add(std::move(pair)); } } void AddGroups( proto2::RepeatedPtrField<AutoShardingSolverRequest_Group>* groups, const std::vector<std::vector<int64_t>>& reduced_groups) { for (const auto& reduced_group : reduced_groups) { AutoShardingSolverRequest_Group group; group.mutable_prims()->Add(reduced_group.begin(), reduced_group.end()); groups->Add(std::move(group)); } } AutoShardingSolverRequest DefaultAutoShardingSolverRequest() { const auto s_len = {4, 3, 4, 4, 3}; const auto s_follow = {-1, -1, -1, 2, -1}; AutoShardingSolverRequest_Pair edge1, edge2; edge1.set_first(0); edge1.set_second(2); edge2.set_first(1); edge2.set_second(2); const auto edges = {edge1, edge2}; const NodeMatrix live = {{1, 0}, {1, 0}, {1, 2, 0}, {1, 2, 3, 0}, {1, 3, 0}}; const CostMatrix c = {{10, 11, 12, 13}, {20, 21, 22}, {30, 31, 32, 33}, {40, 41, 42, 43}, {50, 51, 52}}; const CostMatrix d = {{100, 110, 120, 130}, {200, 210, 220}, {300, 310, 320, 330}, {400, 410, 420, 430}, {500, 510, 520}}; const CostMatrix m = {{100000, 110000, 990000, 130000}, {200000, 210000, 220000}, {300000, 310000, 320000, 330000}, {400000, 410000, 420000, 430000}, {500000, 510000, 520000}}; const CostMatrix p = {{1.0, 0.0, 1.0, 1.0}, {1.0, 0.0, 1.0}, {1.0, 0.0, 1.0, 1.0}, {1.0, 0.0, 1.0, 1.0}, {1.0, 0.0, 1.0}}; const CostMatrix r = {{1000, 1100, 1200, 1300, 2000, 2100, 2200, 2300, 3000, 3100, 3200, 3300, 4000, 4100, 4200, 4300}, {5000, 5100, 5200, 5300, 6000, 6100, 6200, 6300, 7000, 7100, 7200, 7300}}; const CostMatrix t = {{73000, 72000, 71000, 70000, 63000, 62000, 61000, 60000, 53000, 52000, 51000, 50000, 43000, 42000, 41000, 40000}, {33000, 32000, 31000, 30000, 23000, 22000, 21000, 20000, 13000, 12000, 11000, 10000}}; AutoShardingSolverRequest_Pair alias; alias.set_first(1); alias.set_second(4); const auto aliases = {alias}; const CostMatrix v = {{0, 1, 1, 1, 0, 1, 1, 1, 0}}; const std::vector<std::string> instruction_names = {"A", "B", "C", "D", "E"}; AutoShardingSolverRequest request; request.set_num_nodes(5); request.set_memory_budget(1500000); request.mutable_s_len()->Add(s_len.begin(), s_len.end()); request.mutable_s_follow()->Add(s_follow.begin(), s_follow.end()); request.mutable_edges()->Add(edges.begin(), edges.end()); AddNodes(request.mutable_live(), live); AddCosts(request.mutable_computation_costs(), c); AddCosts(request.mutable_communication_costs(), d); AddCosts(request.mutable_memory_costs(), m); AddCosts(request.mutable_departure_costs(), p); AddCosts(request.mutable_resharding_costs(), r); AddCosts(request.mutable_duration_costs(), t); request.mutable_aliases()->Add(aliases.begin(), aliases.end()); AddCosts(request.mutable_value_costs(), v); request.mutable_instruction_names()->Add(instruction_names.begin(), instruction_names.end()); return request; } AutoShardingSolverRequest AutoShardingSolverRequestWithEquivalences() { const auto s_len = {4, 3, 7, 7, 3}; const auto s_follow = {-1, -1, -1, 2, -1}; AutoShardingSolverRequest_Pair edge1, edge2; edge1.set_first(0); edge1.set_second(2); edge2.set_first(1); edge2.set_second(2); const auto edges = {edge1, edge2}; const NodeMatrix live = {{1, 0}, {1, 0}, {1, 2, 0}, {1, 2, 3, 0}, {1, 3, 0}}; const CostMatrix c = {{10, 10, 10, 10}, {20, 20, 20}, {30, 30, 31, 30, 30, 30, 30}, {40, 40, 40, 40, 40, 40, 40}, {50, 50, 50}}; const CostMatrix d = {{100, 100, 100, 100}, {200, 200, 200}, {300, 300, 300, 300, 300, 300, 300}, {400, 400, 400, 400, 400, 400, 410}, {500, 500, 500}}; const CostMatrix m = {{10000, 10000, 10000, 10000}, {20000, 20000, 20000}, {30000, 30000, 30000, 31000, 30000, 30000, 30000}, {40000, 40000, 40000, 40000, 40000, 40000, 40000}, {50000, 50000, 50000}}; const CostMatrix p = {{1.0, 0.0, 1.0, 1.0}, {1.0, 0.0, 1.0}, {1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0}, {1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0}, {1.0, 0.0, 1.0}}; const CostMatrix r = {{1000, 1000, 1000, 1000, 1000, 1000, 1000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 3000, 3000, 3000, 3000, 3100, 3000, 3000, 4000, 4000, 4000, 4000, 4000, 4000, 4000}, {5000, 5000, 5000, 5000, 5000, 5000, 5000, 6000, 6000, 6000, 6000, 6000, 6000, 6000, 7000, 7000, 7000, 7000, 7000, 7000, 7000}}; const CostMatrix t = {{70000, 70000, 70000, 70000, 70000, 70000, 70000, 60000, 60000, 60000, 60000, 60000, 60000, 60000, 50000, 50000, 50000, 50000, 50000, 50000, 50000, 40000, 40000, 40000, 40000, 40000, 40000, 40000}, {30000, 30000, 30000, 30000, 30000, 30000, 30000, 20000, 20000, 20000, 20000, 20000, 20000, 20000, 10000, 10000, 10000, 10000, 10000, 10000, 10000}}; AutoShardingSolverRequest_Pair alias; alias.set_first(2); alias.set_second(4); const auto aliases = {alias}; const CostMatrix v = {{0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0}}; const std::vector<std::string> instruction_names = {"A", "B", "C", "D", "E"}; AutoShardingSolverRequest request; request.set_num_nodes(5); request.set_memory_budget(1500000); request.mutable_s_len()->Add(s_len.begin(), s_len.end()); request.mutable_s_follow()->Add(s_follow.begin(), s_follow.end()); request.mutable_edges()->Add(edges.begin(), edges.end()); AddNodes(request.mutable_live(), live); AddCosts(request.mutable_computation_costs(), c); AddCosts(request.mutable_communication_costs(), d); AddCosts(request.mutable_memory_costs(), m); AddCosts(request.mutable_departure_costs(), p); AddCosts(request.mutable_resharding_costs(), r); AddCosts(request.mutable_duration_costs(), t); request.mutable_aliases()->Add(aliases.begin(), aliases.end()); AddCosts(request.mutable_value_costs(), v); request.mutable_instruction_names()->Add(instruction_names.begin(), instruction_names.end()); return request; } TEST(CallORToolsSolverTest, SolvesOptimally) { const AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const AutoShardingSolverResult result = CallORToolsSolver(request); const std::vector<NodeStrategyIdx> s_val = {0, 0, 0, 0, 0}; const std::vector<EdgeStrategyIdx> e_val = {0, 0}; const double objective_value = 7650.0; const AutoShardingSolverOutput expected_output = {s_val, e_val, objective_value}; const AutoShardingSolverResult expected_result = {expected_output, false}; EXPECT_EQ(result, expected_result); } TEST(CallORToolsSolverTest, SolvesOverbudget) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.set_memory_budget(100000); request.mutable_overbudget_coeff()->set_coeff(10.0); const AutoShardingSolverResult result = CallORToolsSolver(request); const std::vector<NodeStrategyIdx> s_val = {0, 0, 0, 0, 0}; const std::vector<EdgeStrategyIdx> e_val = {0, 0}; const double objective_value = 9007650.0; const AutoShardingSolverOutput expected_output = {s_val, e_val, objective_value}; const AutoShardingSolverResult expected_result = {expected_output, false}; EXPECT_EQ(result, expected_result); } TEST(CallORToolsSolverTest, SolvesMaxDepartures) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.mutable_max_departures()->set_coeff(3.0); const AutoShardingSolverResult result = CallORToolsSolver(request); const std::vector<NodeStrategyIdx> s_val = {0, 0, 1, 1, 0}; const std::vector<EdgeStrategyIdx> e_val = {1, 1}; const double objective_value = 7872.0; const AutoShardingSolverOutput expected_output = {s_val, e_val, objective_value}; const AutoShardingSolverResult expected_result = {expected_output, false}; EXPECT_EQ(result, expected_result); } TEST(CallORToolsSolverTest, AvoidsInfiniteNodeCosts) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.mutable_computation_costs(0)->set_costs(0, kInfinityCost); request.mutable_computation_costs(0)->set_costs(1, kInfinityCost); request.mutable_computation_costs(0)->set_costs(2, kInfinityCost); const AutoShardingSolverResult result = CallORToolsSolver(request); const std::vector<NodeStrategyIdx> s_val = {3, 0, 0, 0, 0}; const std::vector<EdgeStrategyIdx> e_val = {12, 0}; const double objective_value = 10683.0; const AutoShardingSolverOutput expected_output = {s_val, e_val, objective_value}; const AutoShardingSolverResult expected_result = {expected_output, false}; EXPECT_EQ(result, expected_result); } TEST(CallORToolsSolverTest, AvoidsInfiniteEdgeCosts) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.mutable_resharding_costs(0)->set_costs(0, kInfinityCost); const AutoShardingSolverResult result = CallORToolsSolver(request); const std::vector<NodeStrategyIdx> s_val = {0, 0, 1, 1, 0}; const std::vector<EdgeStrategyIdx> e_val = {1, 1}; const double objective_value = 7872.0; const AutoShardingSolverOutput expected_output = {s_val, e_val, objective_value}; const AutoShardingSolverResult expected_result = {expected_output, false}; EXPECT_EQ(result, expected_result); } TEST(CallORToolsSolverTest, HandlesFollowedEdges) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); AutoShardingSolverRequest_Pair edge; edge.set_first(1); edge.set_second(3); *request.mutable_edges()->Add() = edge; const CostMatrix r = {{5000, 5100, 5200, 5300, 6000, 6100, 6200, 6300, 7000, 7100, 7200, 7300}}; AddCosts(request.mutable_resharding_costs(), r); const CostMatrix t = {{50000, 51000, 52000, 53000, 60000, 61000, 62000, 63000, 70000, 71000, 72000, 73000}}; AddCosts(request.mutable_duration_costs(), t); const AutoShardingSolverResult result = CallORToolsSolver(request); const std::vector<NodeStrategyIdx> s_val = {0, 0, 0, 0, 0}; const std::vector<EdgeStrategyIdx> e_val = {0, 0, 0}; const double objective_value = 12650.0; const AutoShardingSolverOutput expected_output = {s_val, e_val, objective_value}; const AutoShardingSolverResult expected_result = {expected_output, false}; EXPECT_EQ(result, expected_result); } TEST(CallORToolsSolverTest, UsesHint) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const auto s_hint = {1, 0, 0, 0, 0}; request.mutable_s_hint()->Add(s_hint.begin(), s_hint.end()); const AutoShardingSolverResult result = CallORToolsSolver(request); const std::vector<NodeStrategyIdx> s_val = {0, 0, 0, 0, 0}; const std::vector<EdgeStrategyIdx> e_val = {0, 0}; const double objective_value = 7650.0; const AutoShardingSolverOutput expected_output = {s_val, e_val, objective_value}; const AutoShardingSolverResult expected_result = {expected_output, false}; EXPECT_EQ(result, expected_result); } TEST(CallORToolsSolverTest, HonorsMaxCost) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.mutable_max_cost()->set_coeff(7600.0); const AutoShardingSolverResult result = CallORToolsSolver(request); EXPECT_TRUE(absl::IsInternal(result.status.status())); } TEST(CallORToolsSolverTest, HandlesMemoryEdgeCosts) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const EdgeMatrix live_edges = {{}, {0}, {0, 1}, {1}, {}}; const CostMatrix memory_edge_costs = {{1000000, 1100, 1200, 1300, 2000, 2100, 2200, 2300, 3000, 3100, 3200, 3300, 4000, 4100, 4200, 4300}, {5000000, 5100, 5200, 5300, 6000, 6100, 6200, 6300, 7000, 7100, 7200, 7300}}; AddEdges(request.mutable_live_edges(), live_edges); AddCosts(request.mutable_memory_edge_costs(), memory_edge_costs); request.set_enable_memory_edge_costs(true); const AutoShardingSolverResult result = CallORToolsSolver(request); const std::vector<NodeStrategyIdx> s_val = {0, 0, 1, 1, 0}; const std::vector<EdgeStrategyIdx> e_val = {1, 1}; const double objective_value = 7872.0; const AutoShardingSolverOutput expected_output = {s_val, e_val, objective_value}; const AutoShardingSolverResult expected_result = {expected_output, false}; EXPECT_EQ(result, expected_result); } TEST(CallORToolsSolverTest, HandlesIntervals) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<std::pair<int64_t, int64_t>> node_intervals = {{0, 4}, {0, 4}, {2, 3}, {3, 4}, {100, -1}}; const std::vector<std::pair<int64_t, int64_t>> edge_intervals = {{1, 2}, {2, 3}}; const CostMatrix memory_edge_costs = {{1000000, 1100, 1200, 1300, 2000, 2100, 2200, 2300, 3000, 3100, 3200, 3300, 4000, 4100, 4200, 4300}, {5000000, 5100, 5200, 5300, 6000, 6100, 6200, 6300, 7000, 7100, 7200, 7300}}; request.clear_live(); AddIntervals(request.mutable_node_intervals(), node_intervals); AddIntervals(request.mutable_edge_intervals(), edge_intervals); AddCosts(request.mutable_memory_edge_costs(), memory_edge_costs); request.set_enable_memory_edge_costs(true); const AutoShardingSolverResult result = CallORToolsSolver(request); const std::vector<NodeStrategyIdx> s_val = {0, 0, 1, 1, 0}; const std::vector<EdgeStrategyIdx> e_val = {1, 1}; const double objective_value = 7872.0; const AutoShardingSolverOutput expected_output = {s_val, e_val, objective_value}; const AutoShardingSolverResult expected_result = {expected_output, false}; EXPECT_EQ(result, expected_result); } TEST(CallORToolsSolverTest, HandlesReducedIntervalsAndGroups) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<std::pair<int64_t, int64_t>> node_intervals = {{5, -1}, {5, -1}, {2, 3}, {3, 4}, {100, -1}, {0, 4}}; const std::vector<std::pair<int64_t, int64_t>> edge_intervals = {{1, 2}, {2, 3}}; const std::vector<std::vector<int64_t>> node_groups = {{0, 1}}; const std::vector<std::vector<int64_t>> edge_groups = {}; const CostMatrix memory_edge_costs = {{1000000, 1100, 1200, 1300, 2000, 2100, 2200, 2300, 3000, 3100, 3200, 3300, 4000, 4100, 4200, 4300}, {5000000, 5100, 5200, 5300, 6000, 6100, 6200, 6300, 7000, 7100, 7200, 7300}}; request.clear_live(); AddIntervals(request.mutable_node_intervals(), node_intervals); AddIntervals(request.mutable_edge_intervals(), edge_intervals); AddGroups(request.mutable_node_groups(), node_groups); AddGroups(request.mutable_edge_groups(), edge_groups); AddCosts(request.mutable_memory_edge_costs(), memory_edge_costs); request.set_enable_memory_edge_costs(true); const AutoShardingSolverResult result = CallORToolsSolver(request); const std::vector<NodeStrategyIdx> s_val = {0, 0, 1, 1, 0}; const std::vector<EdgeStrategyIdx> e_val = {1, 1}; const double objective_value = 7872.0; const AutoShardingSolverOutput expected_output = {s_val, e_val, objective_value}; const AutoShardingSolverResult expected_result = {expected_output, false}; EXPECT_EQ(result, expected_result); } TEST(CallORToolsSolverTest, SolvesWithEquivalences) { const AutoShardingSolverRequest request = AutoShardingSolverRequestWithEquivalences(); const AutoShardingSolverResult result = CallORToolsSolver(request); const std::vector<NodeStrategyIdx> s_val = {0, 0, 5, 5, 1}; const std::vector<EdgeStrategyIdx> e_val = {5, 5}; const double objective_value = 7650.0; const AutoShardingSolverOutput expected_output = {s_val, e_val, objective_value}; const AutoShardingSolverResult expected_result = {expected_output, false}; EXPECT_EQ(result, expected_result); } TEST(AutoShardingEvaluatorTest, NoViolations) { const AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<NodeStrategyIdx> s_val = {3, 1, 2, 2, 1}; const std::vector<EdgeStrategyIdx> e_val = {14, 6}; const double objective_value = 12149.0; const AutoShardingSolverOutput output = {s_val, e_val, objective_value}; const AutoShardingSolverResult result = {output, false}; const AutoShardingEvaluation evaluation = Evaluate(request, result); AutoShardingEvaluation expected_evaluation; expected_evaluation.total.computation_cost = 159.0; expected_evaluation.total.communication_cost = 1590.0; expected_evaluation.total.resharding_cost = 10400.0; expected_evaluation.lower_bound.computation_cost = 150.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.total_departures = 3.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(AutoShardingEvaluatorTest, EvaluatesOverbudget) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.set_memory_budget(100000); request.mutable_overbudget_coeff()->set_coeff(10.0); const std::vector<NodeStrategyIdx> s_val = {2 , 1, 2, 2, 1}; const std::vector<EdgeStrategyIdx> e_val = {10, 6}; const double objective_value = 11138.0; const AutoShardingSolverOutput output = {s_val, e_val, objective_value}; const AutoShardingSolverResult result = {output, false}; const AutoShardingEvaluation evaluation = Evaluate(request, result); AutoShardingEvaluation expected_evaluation; expected_evaluation.total.computation_cost = 158.0; expected_evaluation.total.communication_cost = 1580.0; expected_evaluation.total.resharding_cost = 9400.0; expected_evaluation.total.overbudget_cost = 18400000.0; expected_evaluation.lower_bound.computation_cost = 150.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.lower_bound.overbudget_cost = 9000000.0; expected_evaluation.total_departures = 3.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(AutoShardingEvaluatorTest, EvaluatesOverbudgetWithIntervals) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<std::pair<int64_t, int64_t>> node_intervals = {{0, 4}, {0, 4}, {2, 3}, {3, 4}, {100, -1}}; request.set_memory_budget(100000); request.mutable_overbudget_coeff()->set_coeff(10.0); request.clear_live(); AddIntervals(request.mutable_node_intervals(), node_intervals); const std::vector<NodeStrategyIdx> s_val = {2 , 1, 2, 2, 1}; const std::vector<EdgeStrategyIdx> e_val = {10, 6}; const double objective_value = 11138.0; const AutoShardingSolverOutput output = {s_val, e_val, objective_value}; const AutoShardingSolverResult result = {output, false}; const AutoShardingEvaluation evaluation = Evaluate(request, result); AutoShardingEvaluation expected_evaluation; expected_evaluation.total.computation_cost = 158.0; expected_evaluation.total.communication_cost = 1580.0; expected_evaluation.total.resharding_cost = 9400.0; expected_evaluation.total.overbudget_cost = 18400000.0; expected_evaluation.lower_bound.computation_cost = 150.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.lower_bound.overbudget_cost = 9000000.0; expected_evaluation.total_departures = 3.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(AutoShardingEvaluatorTest, EvaluatesOverbudgetWithReducedIntervalsAndGroups) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<std::pair<int64_t, int64_t>> node_intervals = {{5, -1}, {5, -1}, {2, 3}, {3, 4}, {100, -1}, {0, 4}}; const std::vector<std::vector<int64_t>> node_groups = {{0, 1}}; request.set_memory_budget(100000); request.mutable_overbudget_coeff()->set_coeff(10.0); request.clear_live(); AddIntervals(request.mutable_node_intervals(), node_intervals); AddGroups(request.mutable_node_groups(), node_groups); const std::vector<NodeStrategyIdx> s_val = {2 , 1, 2, 2, 1}; const std::vector<EdgeStrategyIdx> e_val = {10, 6}; const double objective_value = 11138.0; const AutoShardingSolverOutput output = {s_val, e_val, objective_value}; const AutoShardingSolverResult result = {output, false}; const AutoShardingEvaluation evaluation = Evaluate(request, result); AutoShardingEvaluation expected_evaluation; expected_evaluation.total.computation_cost = 158.0; expected_evaluation.total.communication_cost = 1580.0; expected_evaluation.total.resharding_cost = 9400.0; expected_evaluation.total.overbudget_cost = 18400000.0; expected_evaluation.lower_bound.computation_cost = 150.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.lower_bound.overbudget_cost = 9000000.0; expected_evaluation.total_departures = 3.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(AutoShardingEvaluatorTest, ViolatesFollower) { const AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<NodeStrategyIdx> s_val = {3, 1, 2, 1 , 1}; const std::vector<EdgeStrategyIdx> e_val = {14, 6}; const double objective_value = 12138.0; const AutoShardingSolverOutput output = {s_val, e_val, objective_value}; const AutoShardingSolverResult result = {output, false}; const AutoShardingEvaluation evaluation = Evaluate(request, result); AutoShardingEvaluation expected_evaluation; expected_evaluation.violation_codes = {kFollowerViolationCode}; expected_evaluation.total.computation_cost = 158.0; expected_evaluation.total.communication_cost = 1580.0; expected_evaluation.total.resharding_cost = 10400.0; expected_evaluation.lower_bound.computation_cost = 150.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.total_departures = 2.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(AutoShardingEvaluatorTest, ViolatesAlias) { const AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<NodeStrategyIdx> s_val = {3, 1, 2, 2, 0 }; const std::vector<EdgeStrategyIdx> e_val = {14, 6}; const double objective_value = 12138.0; const AutoShardingSolverOutput output = {s_val, e_val, objective_value}; const AutoShardingSolverResult result = {output, false}; const AutoShardingEvaluation evaluation = Evaluate(request, result); AutoShardingEvaluation expected_evaluation; expected_evaluation.violation_codes = {kAliasViolationCode}; expected_evaluation.total.computation_cost = 158.0; expected_evaluation.total.communication_cost = 1580.0; expected_evaluation.total.resharding_cost = 10400.0; expected_evaluation.lower_bound.computation_cost = 150.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.total_departures = 4.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(AutoShardingEvaluatorTest, ViolatesMemory) { const AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<NodeStrategyIdx> s_val = {2 , 1, 2, 2, 1}; const std::vector<EdgeStrategyIdx> e_val = {10, 6}; const double objective_value = 11138.0; const AutoShardingSolverOutput output = {s_val, e_val, objective_value}; const AutoShardingSolverResult result = {output, false}; const AutoShardingEvaluation evaluation = Evaluate(request, result); AutoShardingEvaluation expected_evaluation; expected_evaluation.violation_codes = {kMemoryViolationCode}; expected_evaluation.total.computation_cost = 158.0; expected_evaluation.total.communication_cost = 1580.0; expected_evaluation.total.resharding_cost = 9400.0; expected_evaluation.lower_bound.computation_cost = 150.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.total_departures = 3.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(AutoShardingEvaluatorTest, ViolatesInfiniteCostForNode) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.mutable_computation_costs(0)->set_costs(0, kInfinityCost); request.mutable_computation_costs(0)->set_costs(1, kInfinityCost); request.mutable_computation_costs(0)->set_costs(2, kInfinityCost); const std::vector<NodeStrategyIdx> s_val = {0 , 1, 2, 2, 1}; const std::vector<EdgeStrategyIdx> e_val = {2, 6}; const double objective_value = 1e+20; const AutoShardingSolverOutput output = {s_val, e_val, objective_value}; const AutoShardingSolverResult result = {output, false}; const AutoShardingEvaluation evaluation = Evaluate(request, result); AutoShardingEvaluation expected_evaluation; expected_evaluation.violation_codes = {kInfiniteCostViolationCode}; expected_evaluation.total.computation_cost = 1e+20; expected_evaluation.total.communication_cost = 1560.0; expected_evaluation.total.resharding_cost = 7400.0; expected_evaluation.lower_bound.computation_cost = 153.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.total_departures = 3.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(AutoShardingEvaluatorTest, ViolatesInfiniteCostForEdge) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.mutable_resharding_costs(0)->set_costs(2, kInfinityCost); const std::vector<NodeStrategyIdx> s_val = {0, 1, 2, 2, 1}; const std::vector<EdgeStrategyIdx> e_val = {2 , 6}; const double objective_value = 1e+20; const AutoShardingSolverOutput output = {s_val, e_val, objective_value}; const AutoShardingSolverResult result = {output, false}; const AutoShardingEvaluation evaluation = Evaluate(request, result); AutoShardingEvaluation expected_evaluation; expected_evaluation.violation_codes = {kInfiniteCostViolationCode}; expected_evaluation.total.computation_cost = 156.0; expected_evaluation.total.communication_cost = 1560.0; expected_evaluation.total.resharding_cost = 1e+20; expected_evaluation.lower_bound.computation_cost = 150.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.total_departures = 3.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(AutoShardingEvaluatorTest, ViolatesMaxDepartures) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.mutable_max_departures()->set_coeff(2.0); const std::vector<NodeStrategyIdx> s_val = {3, 1, 2, 2, 1}; const std::vector<EdgeStrategyIdx> e_val = {14, 6}; const double objective_value = 12149.0; const AutoShardingSolverOutput output = {s_val, e_val, objective_value}; const AutoShardingSolverResult result = {output, false}; const AutoShardingEvaluation evaluation = Evaluate(request, r
2,167
cpp
tensorflow/tensorflow
auto_sharding
third_party/xla/xla/hlo/experimental/auto_sharding/auto_sharding.cc
third_party/xla/xla/hlo/experimental/auto_sharding/auto_sharding_test.cc
#ifndef XLA_HLO_EXPERIMENTAL_AUTO_SHARDING_AUTO_SHARDING_H_ #define XLA_HLO_EXPERIMENTAL_AUTO_SHARDING_AUTO_SHARDING_H_ #include <cstddef> #include <cstdint> #include <memory> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/container/btree_set.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/array.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_cost_graph.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_option.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_solver.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_strategy.h" #include "xla/hlo/experimental/auto_sharding/cluster_environment.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/utils/hlo_live_range.h" #include "xla/service/call_graph.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_pass_interface.h" #include "xla/shape.h" namespace xla { class DummyAutoSharding : public HloModulePass { public: DummyAutoSharding() = default; ~DummyAutoSharding() override = default; absl::string_view name() const override { return "dummy_auto_sharding"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; enum class AutoShardingResult { kModuleUnchanged, kModuleChangedShardingPerformed, kModuleUnchangedNoShardingPerformed }; class AutoShardingImplementation { public: explicit AutoShardingImplementation(const AutoShardingOption& option); ~AutoShardingImplementation() = default; absl::StatusOr<AutoShardingResult> RunAutoSharding( HloModule* module, const absl::flat_hash_set<std::string>& replicated_small_tensors, const absl::flat_hash_set<absl::string_view>& execution_threads, const absl::flat_hash_map<std::string, const HloInstruction*>& sharding_propagation_solution = {}); std::pair<absl::flat_hash_map<std::string, std::vector<HloSharding>>, bool> SaveAndRemoveShardingAnnotation( HloModule* module, const absl::flat_hash_set<const HloInstruction*>& instructions_to_shard, const absl::flat_hash_set<std::string>& replicated_small_tensors, const absl::flat_hash_set<absl::string_view>& execution_threads); absl::Status CanonicalizeLayouts(HloModule* module); double GetSolverOptimalObjectiveValue() { return solver_optimal_objective_value_; } private: AutoShardingOption option_; double solver_optimal_objective_value_ = -1.0; }; class AutoSharding : public HloModulePass { public: explicit AutoSharding(const AutoShardingOption& option); ~AutoSharding() override = default; absl::string_view name() const override { return "auto_sharding"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; double GetSolverOptimalObjectiveValue() { return solver_optimal_objective_value_; } std::vector<int64_t> GetChosenDeviceMeshShape() { return chosen_mesh_shape_; } private: AutoShardingOption option_; double solver_optimal_objective_value_ = -1.0; std::vector<int64_t> chosen_mesh_shape_; }; namespace spmd { HloSharding Tile(const Shape& shape, absl::Span<const int64_t> tensor_dims, absl::Span<const int64_t> mesh_dims, const Array<int64_t>& device_mesh); std::vector<double> CommunicationReshardingCostVector( const StrategyGroup* strategy_group, const Shape& shape, const HloSharding& required_sharding, const ClusterEnvironment& cluster_env); std::vector<double> MemoryReshardingCostVector( const StrategyGroup* strategy_group, const Shape& operand_shape, const HloSharding& required_sharding, const ClusterEnvironment& cluster_env); std::vector<double> FollowInsCostVector(int64_t source_len, int64_t index); std::unique_ptr<StrategyGroup> CreateLeafStrategyGroup( size_t instruction_id, const HloInstruction* ins, const StrategyMap& strategy_map, StrategyGroups& strategy_groups); void SetInNodesWithInstruction(std::unique_ptr<StrategyGroup>& strategy_group, const HloInstruction* ins, const StrategyMap& strategy_map); void RemoveDuplicatedStrategy(std::unique_ptr<StrategyGroup>& strategy_group); absl::Status FilterStrategy(const HloInstruction* ins, const Shape& shape, std::unique_ptr<StrategyGroup>& strategy_group, const ClusterEnvironment& cluster_env, const InstructionBatchDimMap& batch_map, const AutoShardingOption& option); absl::Status HandleDot(std::unique_ptr<StrategyGroup>& strategy_group, StrategyGroups& strategy_groups, StrategyMap& strategy_map, const HloInstruction* ins, size_t instruction_id, const HloInstructionSequence& instruction_sequence, const HloCostAnalysis& hlo_cost_analysis, const ClusterEnvironment& cluster_env, const InstructionBatchDimMap& batch_map, const AutoShardingOption& option, const CallGraph& call_graph); absl::Status HandleConv(std::unique_ptr<StrategyGroup>& strategy_group, StrategyGroups& strategy_groups, StrategyMap& strategy_map, const HloInstruction* ins, size_t instruction_id, const HloInstructionSequence& instruction_sequence, const HloCostAnalysis& hlo_cost_analysis, const ClusterEnvironment& cluster_env, const InstructionBatchDimMap& batch_map, const AutoShardingOption& option, const CallGraph& call_graph); void AnnotateShardingWithSimpleHeuristic(HloModule* module, const std::string& heuristic, const AliasMap& alias_map, const ClusterEnvironment& cluster_env); AliasMap BuildAliasMap(const HloModule* module); AliasSet BuildAliasSet(const HloModule* module, const StrategyMap& strategy_map); absl::Status CheckAliasSetCompatibility(const AliasSet& alias_set, const StrategyGroups& strategy_groups, const HloInstructionSequence& sequence, bool crash_on_error); absl::Status GenerateReduceScatter( const HloInstructionSequence& sequence, const AliasMap& alias_map, const InstructionDepthMap& depth_map, const StrategyMap& strategy_map, const CostGraph& cost_graph, absl::Span<const int64_t> s_val, const ClusterEnvironment& cluster_env, const AutoShardingOption& option); bool HasReduceScatterOpportunity( const HloInstruction* inst, const StrategyMap& strategy_map, const CostGraph& cost_graph, absl::Span<const int64_t> s_val, const StableHashSet<const HloInstruction*>& modified); HloSharding GetReduceScatterOutput(const HloInstruction* ins, const ShardingStrategy& strategy, const ClusterEnvironment& cluster_env); AutoShardingSolverResult Solve( const HloModule& hlo_module, const HloLiveRange& hlo_live_range, const StrategyMap& strategy_map, const StrategyGroups& strategy_groups, const CostGraph& cost_graph, const AliasSet& alias_set, const std::vector<std::pair<LivenessIdx, LivenessIdx>>& node_intervals, const std::vector<std::pair<LivenessIdx, LivenessIdx>>& edge_intervals, const std::vector<absl::btree_set<int64_t>>& node_groups, const std::vector<absl::btree_set<int64_t>>& edge_groups, const AutoShardingOption& option, absl::string_view request_prefix, const absl::flat_hash_map<std::string, const HloInstruction*>& sharding_propagation_solution = {}); void PopulateTemporalValues(const CostGraph& cost_graph, AutoShardingSolverRequest& request); void AddReplicatedStrategy( const HloInstruction* ins, const Shape& shape, const ClusterEnvironment& cluster_env, const StrategyMap& strategy_map, std::unique_ptr<StrategyGroup>& strategy_group, double replicated_penalty, absl::flat_hash_set<int64_t> operands_to_consider_all_strategies_for = {}); void CheckMemoryCosts(StrategyGroup* strategy_group, const Shape& shape); std::pair<int64_t, bool> ChooseOperandToFollow( const StrategyMap& strategy_map, const InstructionDepthMap& depth_map, const AliasMap& alias_map, int64_t max_depth, const HloInstruction* ins); void FillAllStrategiesForArray( std::unique_ptr<StrategyGroup>& strategy_group, const HloInstruction* ins, const Shape& shape, const ClusterEnvironment& cluster_env, const StrategyMap& strategy_map, const AutoShardingOption& option, double replicated_penalty, const InstructionBatchDimMap& batch_dim_map, const CallGraph& call_graph, bool only_allow_divisible, bool create_replicated_strategies, bool create_partially_replicated_strategies); absl::StatusOr<std::unique_ptr<StrategyGroup>> CreateAllStrategiesGroup( const HloInstruction* ins, const Shape& shape, size_t instruction_id, StrategyGroups& strategy_groups, const ClusterEnvironment& cluster_env, const StrategyMap& strategy_map, const AutoShardingOption& option, double replicated_penalty, const InstructionBatchDimMap& batch_dim_map, const CallGraph& call_graph, bool only_allow_divisible, bool create_replicated_strategies, bool create_partially_replicated_strategies); std::unique_ptr<StrategyGroup> CreateElementwiseOperatorStrategies( size_t instruction_id, const HloInstruction* ins, const StrategyMap& strategy_map, const ClusterEnvironment& cluster_env, const InstructionDepthMap& depth_map, const AliasMap& alias_map, const StableHashMap<int64_t, std::vector<ShardingStrategy>>& pretrimmed_strategy_map, int64_t max_depth, StrategyGroups& strategy_groups, AssociativeDotPairs& associative_dot_pairs); std::unique_ptr<StrategyGroup> HandleManuallyShardedInstruction( const HloInstruction* ins, const Shape& shape, size_t instruction_id, StrategyGroups& strategy_groups, StrategyMap& strategy_map); std::unique_ptr<StrategyGroup> HandlePartialReduce( const HloInstruction* ins, size_t instruction_id, StrategyGroups& strategy_groups, const ClusterEnvironment& cluster_env, StrategyMap& strategy_map, const CallGraph& call_graph); std::unique_ptr<StrategyGroup> CreateLeafStrategyGroupWithoutInNodes( size_t instruction_id, StrategyGroups& strategy_groups); std::unique_ptr<StrategyGroup> CreateReshapeStrategies( size_t instruction_id, const HloInstruction* ins, const StrategyMap& strategy_map, const ClusterEnvironment& cluster_env, bool only_allow_divisible, double replicated_penalty, const InstructionBatchDimMap& batch_dim_map, const AutoShardingOption& option, StrategyGroups& strategy_groups, const CallGraph& call_graph); std::unique_ptr<StrategyGroup> CreateTupleStrategyGroup(size_t instruction_id); void EnumerateAll1DPartition(const HloInstruction* ins, const Shape& shape, const Array<int64_t>& device_mesh, const ClusterEnvironment& cluster_env, const StrategyMap& strategy_map, std::unique_ptr<StrategyGroup>& strategy_group, bool only_allow_divisible, const std::string& suffix, const CallGraph& call_graph); void EnumerateAllPartition(const HloInstruction* ins, const Shape& shape, const Array<int64_t>& device_mesh, const ClusterEnvironment& cluster_env, const StrategyMap& strategy_map, std::unique_ptr<StrategyGroup>& strategy_group, const InstructionBatchDimMap& batch_dim_map, bool only_allow_divisible, const CallGraph& call_graph, int64_t partition_dimensions, const std::vector<int64_t>& tensor_dims = {}); absl::StatusOr<std::unique_ptr<StrategyGroup>> FollowReduceStrategy( const HloInstruction* ins, const Shape& output_shape, const HloInstruction* operand, const HloInstruction* unit, size_t instruction_id, StrategyMap& strategy_map, StrategyGroups& strategy_groups, const ClusterEnvironment& cluster_env, bool allow_mixed_mesh_shape, bool crash_at_error); void GenerateOutfeedStrategy(const HloInstruction* ins, const Shape& shape, const ClusterEnvironment& cluster_env, const StrategyMap& strategy_map, std::unique_ptr<StrategyGroup>& strategy_group, double replicated_penalty); std::pair<ReshardingCosts, ReshardingCosts> GenerateReshardingCostsAndMissingShardingsForAllOperands( const HloInstruction* ins, const HloSharding& output_sharding, const StrategyMap& strategy_map, const ClusterEnvironment& cluster_env, const CallGraph& call_graph, std::vector<std::optional<HloSharding>>& input_shardings); std::unique_ptr<StrategyGroup> MaybeFollowInsStrategyGroup( const StrategyGroup* src_strategy_group, const Shape& shape, size_t instruction_id, bool have_memory_cost, StrategyGroups& strategy_groups, const ClusterEnvironment& cluster_env, const StableHashMap<NodeIdx, std::vector<ShardingStrategy>>& pretrimmed_strategy_map); void RemoveShardingsWhereSmallDimsShardedAcrossManyDevices( const Shape& shape, StrategyGroup* strategy_group, bool instruction_has_user_sharding); void ScaleCostsWithExecutionCounts(StrategyGroup* strategy_group, int64_t execution_count); void TrimOrGenerateStrategiesBasedOnExistingSharding( const Shape& output_shape, StrategyGroup* strategy_group, const StrategyMap& strategy_map, const std::vector<HloInstruction*>& instructions, const HloSharding& existing_sharding, const ClusterEnvironment& cluster_env, StableHashMap<int64_t, std::vector<ShardingStrategy>>& pretrimmed_strategy_map, const CallGraph& call_graph, bool strict); absl::StatusOr<std::tuple<StrategyMap, StrategyGroups, AssociativeDotPairs>> BuildStrategyAndCost( const HloInstructionSequence& sequence, const HloModule* module, const absl::flat_hash_set<const HloInstruction*>& instructions_to_shard, const absl::flat_hash_map<const HloInstruction*, int64_t>& instruction_execution_counts, const InstructionDepthMap& depth_map, const InstructionBatchDimMap& batch_dim_map, const AliasMap& alias_map, const ClusterEnvironment& cluster_env, AutoShardingOption& option, const CallGraph& call_graph, const HloCostAnalysis& hlo_cost_analysis, bool trying_multiple_mesh_shapes); int64_t MemoryBudgetLowerBound( const HloModule& module, const absl::flat_hash_set<const HloInstruction*>& instructions_to_shard, const LivenessSet& liveness_set, const HloAliasAnalysis& alias_analysis, int64_t num_devices, const absl::flat_hash_map<std::string, std::vector<HloSharding>>& preserved_shardings); } } #endif #include "xla/hlo/experimental/auto_sharding/auto_sharding.h" #include <algorithm> #include <climits> #include <cstddef> #include <cstdint> #include <cstdlib> #include <functional> #include <iterator> #include <limits> #include <memory> #include <numeric> #include <optional> #include <queue> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/btree_set.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "xla/array.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_cost_graph.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_memory.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_option.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_solver.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_strategy.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_util.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_wrapper.h" #include "xla/hlo/experimental/auto_sharding/cluster_environment.h" #include "xla/hlo/experimental/auto_sharding/matrix.h" #include "xla/hlo/experimental/auto_sharding/metrics.h" #include "xla/hlo/experimental/auto_sharding/profiling_result.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/transforms/hlo_constant_splitter.h" #include "xla/hlo/utils/hlo_live_range.h" #include "xla/hlo/utils/hlo_sharding_util.h" #include "xla/service/buffer_value.h" #include "xla/service/call_graph.h" #include "xla/service/computation_layout.h" #include "xla/service/dump.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_buffer.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_memory_scheduler.h" #include "xla/service/hlo_value.h" #include "xla/service/optimize_input_output_buffer_alias.h" #include "xla/service/sharding_propagation.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace spmd { namespace { constexpr double kSaltiplier = 0.0; } std::vector<double> CommunicationReshardingCostVector( const StrategyGroup* strategy_group, const Shape& operand_shape, const HloSharding& required_sharding, const ClusterEnvironment& cluster_env) { CHECK(!strategy_group->is_tuple) << "Only works with strategy vector."; std::vector<double> ret; ret.reserve(strategy_group->strategies.size()); auto required_sharding_for_resharding = required_sharding.IsTileMaximal() ? HloSharding::Replicate() : required_sharding; for (const auto& x : strategy_group->strategies) { ret.push_back(cluster_env.ReshardingCost(operand_shape, x.output_sharding, required_sharding_for_resharding)); } return ret; } double ComputeMemoryReshardingCost(const Shape& shape, const HloSharding& src_sharding, const HloSharding& dst_sharding, const Array<int64_t>& device_mesh) { int64_t src_n_dim = NumTileDimensions(src_sharding); int64_t dst_n_dim = NumTileDimensions(dst_sharding); int64_t src_sharded_bytes = GetShardedInstructionSize( shape, device_mesh.num_elements(), src_sharding); double result = std::max( src_sharded_bytes, GetShardedInstructionSize( shape, device_mesh.num_elements(), dst_sharding)); if (src_n_dim != dst_n_dim && src_n_dim != -1 && dst_n_dim != -1) { absl::StatusOr<Shape> inter_shape = ComputeIntermediateShape( src_sharding, dst_sharding, shape, device_mesh); if (inter_shape.ok()) { std::optional<HloSharding> src_inter_sharding = hlo_sharding_util::ReshapeSharding(shape, *inter_shape, src_sharding); std::optional<HloSharding> dst_inter_sharding = hlo_sharding_util::ReshapeSharding(shape, *inter_shape, dst_sharding); if (!src_inter_sharding.has_value() || !dst_inter_sharding.has_value()) { src_inter_sharding = HloSharding::Replicate(); dst_inter_sharding = HloSharding::Replicate(); } result = std::max( result, static_cast<double>(std::max( GetShardedInstructionSize( *inter_shape, device_mesh.num_elements(), src_inter_sharding), GetShardedInstructionSize(*inter_shape, device_mesh.num_elements(), dst_inter_sharding)))); } } return result - src_sharded_bytes; } std::vector<double> MemoryReshardingCostVector( const StrategyGroup* strategy_group, const Shape& operand_shape, const HloSharding& required_sharding, const ClusterEnvironment& cluster_env) { CHECK(!strategy_group->is_tuple) << "Only works with strategy vector."; std::vector<double> ret; ret.reserve(strategy_group->strategies.size()); auto required_sharding_for_resharding = required_sharding.IsTileMaximal() ? HloSharding::Replicate() : required_sharding; CHECK_OK(required_sharding.Validate(operand_shape)) << strategy_group->ToString(); for (const auto& x : strategy_group->strategies) { ret.push_back(ComputeMemoryReshardingCost(operand_shape, x.output_sharding, required_sharding_for_resharding, cluster_env.device_mesh_)); } return ret; } std::unique_ptr<StrategyGroup> CreateLeafStrategyGroupWithoutInNodes( const size_t instruction_id, StrategyGroups& strategy_groups) { auto strategy_group = std::make_unique<StrategyGroup>(); strategy_group->is_tuple = false; strategy_group->node_idx = strategy_groups.size(); strategy_groups.push_back(strategy_group.get()); strategy_group->instruction_id = instruction_id; return strategy_group; } std::unique_ptr<StrategyGroup> CreateLeafStrategyGroup( const size_t instruction_id, const HloInstruction* ins, const StrategyMap& strategy_map, StrategyGroups& strategy_groups) { auto strategy_group = CreateLeafStrategyGroupWithoutInNodes(instruction_id, strategy_groups); for (int64_t i = 0; i < ins->operand_count(); ++i) { strategy_group->in_nodes.push_back(strategy_map.at(ins->operand(i)).get()); } return strategy_group; } std::unique_ptr<StrategyGroup> CreateTupleStrategyGroup( const size_t instruction_id) { auto strategy_group = std::make_unique<StrategyGroup>(); strategy_group->is_tuple = true; strategy_group->node_idx = -1; strategy_group->instruction_id = instruction_id; return strategy_group; } std::pair<ReshardingCosts, ReshardingCosts> GenerateReshardingCostsAndMissingShardingsForAllOperands( const HloInstruction* ins, const HloSharding& output_sharding, const StrategyMap& strategy_map, const ClusterEnvironment& cluster_env, const CallGraph& call_graph, std::vector<std::optional<HloSharding>>& input_shardings) { ReshardingCosts communication_resharding_costs; ReshardingCosts memory_resharding_costs; if (input_shardings.empty() && ins->operand_count() > 0) { input_shardings.resize(ins->operand_count()); } for (int64_t k = 0; k < ins->operand_count(); ++k) { auto operand = ins->operand(k); if (operand->shape().IsToken() || operand->shape().rank() == 0) { communication_resharding_costs.push_back(std::vector<double>( strategy_map.at(operand)->strategies.size(), 0.0)); memory_resharding_costs.push_back(std::vector<double>( strategy_map.at(operand)->strategies.size(), 0.0)); if (!input_shardings[k].has_value()) { input_shardings[k] = HloSharding::Replicate(); } } else { std::optional<HloSharding> cur_input_sharding; CHECK_EQ(input_shardings.size(), ins->operand_count()); if (input_shardings[k].has_value()) { cur_input_sharding = input_shardings[k]; } else { cur_input_sharding = GetInputSharding( ins, k, output_sharding, call_graph, cluster_env.NumDevices()); } bool is_sharding_default_replicated = false; if (!cur_input_sharding.has_value()) { if ((ins->opcode() == HloOpcode::kGather && k == 0) || (ins->opcode() == HloOpcode::kScatter && k != 0)) { is_sharding_default_replicated = true; cur_input_sharding = HloSharding::Replicate(); } else if (ins->opcode() == HloOpcode::kCustomCall) { is_sharding_default_replicated = true; cur_input_sharding = HloSharding::Replicate(); } else if (ins->opcode() == HloOpcode::kRngBitGenerator) { cur_input_sharding = HloSharding::Replicate(); } } CHECK(cur_input_sharding.has_value()); if (!input_shardings[k].has_value()) { input_shardings[k] = cur_input_sharding; } auto operand_strategies = strategy_map.at(operand).get(); auto operand_shape = operand->shape(); if (ins->opcode() == HloOpcode::kGather && k == 0 && is_sharding_default_replicated) { VLOG(2) << "Zeroing out operand 0 resharding costs for gather sharding " << output_sharding.ToString(); communication_resharding_costs.push_back( std::vector<double>(operand_strategies->strategies.size(), 0)); memory_resharding_costs.push_back( std::vector<double>(operand_strategies->strategies.size(), 0)); input_shardings[k] = std::nullopt; } else { communication_resharding_costs.push_back( CommunicationReshardingCostVector( operand_strategies, ins->operand(k)->shape(), *cur_input_sharding, cluster_env)); memory_resharding_costs.push_back(MemoryReshardingCostVector( operand_strategies, ins->operand(k)->shape(), *cur_input_sharding, cluster_env)); } } } return std::make_pair(communication_resharding_costs, memory_resharding_costs); } std::tuple<ReshardingCosts, ReshardingCosts, std::vector<std::optional<HloSharding>>> GenerateReshardingCostsAndShardingsForAllOperands( const HloInstruction* ins, const HloSharding& output_sharding, const StrategyMap& strategy_map, const ClusterEnvironment& cluster_env, const CallGraph& call_graph) { std::vector<std::optional<HloSharding>> input_shardings_optional; std::pair<ReshardingCosts, ReshardingCosts> resharding_costs = GenerateReshardingCostsAndMissingShardingsForAllOperands( ins, output_sharding, strategy_map, cluster_env, call_graph, input_shardings_optional); for (const auto& sharding_optional : input_shardings_optional) { CHECK(sharding_optional.has_value()); } return {resharding_costs.first, resharding_costs.second, input_shardings_optional}; } void FollowArrayOrTokenStrategyGroup( const StrategyGroup& src_strategy_group, const Shape& shape, const size_t instruction_id, const bool have_memory_cost, const ClusterEnvironment& cluster_env, const StableHashMap<NodeIdx, std::vector<ShardingStrategy>>& pretrimmed_strategy_map, StrategyGroup& strategy_group) { CHECK(shape.IsArray()
#include "xla/hlo/experimental/auto_sharding/auto_sharding.h" #include <cstddef> #include <cstdint> #include <memory> #include <numeric> #include <string> #include <tuple> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_option.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_strategy.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_util.h" #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/utils/hlo_live_range.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/buffer_value.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_memory_scheduler.h" #include "xla/service/hlo_parser.h" #include "xla/service/hlo_value.h" #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace op = xla::testing::opcode_matchers; namespace xla { namespace spmd { namespace { using ::testing::Contains; using ::testing::Each; using ::testing::ElementsAre; using ::testing::ElementsAreArray; using ::testing::Eq; using ::testing::FieldsAre; using ::testing::IsEmpty; using ::testing::IsFalse; using ::testing::IsTrue; using ::testing::Not; using ::testing::Pair; using ::testing::ResultOf; using ::testing::UnorderedElementsAre; using DummyAutoShardingTest = HloTestBase; TEST_F(DummyAutoShardingTest, ReplicatedShardingDummy) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %elementwise { %param0 = f32[5,7,11,13]{3,2,1,0} parameter(0) %param1 = f32[5,7,11,13]{3,2,1,0} parameter(1) %add = f32[5,7,11,13]{3,2,1,0} add(%param0, %param1) ROOT %copy = f32[5,7,11,13]{3,2,1,0} copy(%add) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); TF_ASSERT_OK_AND_ASSIGN(bool changed, DummyAutoSharding().Run(module.get())); EXPECT_TRUE(changed); auto* instruction = FindInstruction(module.get(), "param0"); ASSERT_NE(instruction, nullptr); EXPECT_THAT(instruction, op::Sharding("{replicated}")); } class AutoShardingTest : public HloTestBase { protected: const absl::string_view kDotHloString = R"( HloModule module ENTRY matmul { parameter.1 = f32[32,64]{1,0} parameter(0) parameter.2 = f32[64,128]{1,0} parameter(1) ROOT root = f32[32,128]{1,0} dot(parameter.1, parameter.2), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; const absl::string_view kAddHloString = R"( HloModule module ENTRY %elementwise { %param0 = f32[16,32,64]{2,1,0} parameter(0) %param1 = f32[16,32,64]{2,1,0} parameter(1) ROOT root = f32[16,32,64]{2,1,0} add(%param0, %param1) })"; void RunMatMulAutoShardingWithOptions( AutoShardingOption option, size_t expected_num_tiles, size_t expected_sharded_dimensions = 1) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kDotHloString)); RunAutoShardingWithOptions(module.get(), option, expected_num_tiles, expected_sharded_dimensions); } void RunAddAutoShardingWithOptions(AutoShardingOption option, size_t expected_num_tiles, size_t expected_sharded_dimensions = 1) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kAddHloString)); RunAutoShardingWithOptions(module.get(), option, expected_num_tiles, expected_sharded_dimensions); } void RunAutoShardingWithOptions(HloModule* module, AutoShardingOption option, size_t expected_num_tiles, size_t expected_sharded_dimensions = 1) { TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module)); EXPECT_TRUE(changed); auto* root = FindInstruction(module, "root"); ASSERT_NE(root, nullptr); EXPECT_EQ(root->sharding().NumTiles(), expected_num_tiles); EXPECT_EQ(VectorGreaterThanOneElementCount( root->sharding().tile_assignment().dimensions(), root->sharding().ReplicateOnLastTileDim()), expected_sharded_dimensions); } void RunMatMulAutoShardingWithOptionsExpectFail(AutoShardingOption option) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kDotHloString)); RunAutoShardingWithOptionsExpectFail(module.get(), option); } void RunAutoShardingWithOptionsExpectFail(HloModule* module, AutoShardingOption option) { EXPECT_FALSE(AutoSharding(option).Run(module).ok()); } void RunMatMulAutoShardingWithOptionsNoDeviceIds( AutoShardingOption option, std::vector<int64_t> expected_tile, bool expeted_last_dim_replicate = false) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kDotHloString)); RunAutoShardingWithOptionsNoDeviceIds(module.get(), option, expected_tile, expeted_last_dim_replicate); } void RunAutoShardingWithOptionsNoDeviceIds(HloModule* module, AutoShardingOption option, std::vector<int64_t> expected_tile, bool expeted_last_dim_replicate) { TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module)); EXPECT_TRUE(changed); HloInstruction* root = FindInstruction(module, "root"); ASSERT_NE(root, nullptr); EXPECT_EQ(root->sharding().ReplicateOnLastTileDim(), expeted_last_dim_replicate); EXPECT_THAT(root->sharding().tile_assignment().dimensions(), ElementsAreArray(expected_tile)); } }; TEST_F(AutoShardingTest, MemoryBudgetTest) { auto compute_memory_budget_lower_bound = [](const HloModule& module, int64_t num_devices, const absl::flat_hash_map<std::string, std::vector<HloSharding>>& preserved_shardings = {}) -> absl::StatusOr<int64_t> { auto size_fn = [](const BufferValue& buffer) { return spmd::GetBytes(buffer.shape()); }; TF_ASSIGN_OR_RETURN(HloSchedule schedule, ScheduleModule(&module, size_fn, ComputationSchedulerToModuleScheduler( DFSMemoryScheduler), {})); const HloComputation* entry_computation = module.entry_computation(); std::unique_ptr<HloAliasAnalysis> alias_analysis = HloAliasAnalysis::Run(&module).value(); TF_ASSIGN_OR_RETURN( std::unique_ptr<HloLiveRange> hlo_live_range, HloLiveRange::Run(schedule, *alias_analysis, entry_computation)); absl::flat_hash_map<const HloValue*, HloLiveRange::TimeBound>& buffer_live_ranges = hlo_live_range->buffer_live_ranges(); spmd::LivenessSet liveness_set(hlo_live_range->schedule_end_time() + 1); for (const auto& [hlo_value, live_range] : buffer_live_ranges) { for (spmd::LivenessIdx i = live_range.start; i <= live_range.end; ++i) { liveness_set[i].push_back(hlo_value); } } absl::flat_hash_set<const HloInstruction*> instructions_to_shard( module.entry_computation()->instructions().begin(), module.entry_computation()->instructions().end()); return spmd::MemoryBudgetLowerBound(module, instructions_to_shard, liveness_set, *alias_analysis, num_devices, preserved_shardings); }; constexpr absl::string_view kHloString = R"( HloModule module ENTRY %elementwise { %param0 = f32[16384,16384]{0,1} parameter(0) %param1 = f32[16384,16384]{0,1} parameter(1) %add = f32[16384,16384]{0,1} add(%param0, %param1) ROOT %copy = f32[16384,16384]{0,1} copy(%add) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloString)); TF_ASSERT_OK_AND_ASSIGN(HloSharding partial_sharding, ParseSharding("{devices=[64,1]<=[64]}")); TF_ASSERT_OK_AND_ASSIGN( int64_t partial_mesh_64x1_budget_lower_bound, compute_memory_budget_lower_bound(*module, 64)); for (HloInstruction* ins : module->entry_computation()->instructions()) { ins->set_sharding(partial_sharding); } TF_ASSERT_OK_AND_ASSIGN( int64_t full_mesh_64x8_budget_lower_bound, compute_memory_budget_lower_bound(*module, 512)); CHECK_LT(full_mesh_64x8_budget_lower_bound, partial_mesh_64x1_budget_lower_bound) << "The memory budget lower bound per device should be lower with a " "larger number of devices. Instead, the bound was " << partial_mesh_64x1_budget_lower_bound << " bytes for 64 devices and " << full_mesh_64x8_budget_lower_bound << " bytes for 512 devices."; } TEST_F(AutoShardingTest, DISABLED_ElementWiseOperator) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %elementwise { %param0 = f32[128,128]{0,1} parameter(0) %param1 = f32[128,128]{0,1} parameter(1) %add = f32[128,128]{0,1} add(%param0, %param1) ROOT %copy = f32[128,128]{0,1} copy(%add) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); auto* instruction = FindInstruction(module.get(), "param0"); ASSERT_NE(instruction, nullptr); EXPECT_THAT(instruction, op::Sharding("{devices=[2,2]0,2,1,3}")); } TEST_F(AutoShardingTest, Unsupported3DShardingTest) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %elementwise { %param0 = f32[32,32,32,32] parameter(0) %param1 = f32[32,32,32,32] parameter(1) %add = f32[32,32,32,32] add(%param0, %param1), sharding={devices=[2,2,1,2]<=[8]} ROOT %copy = f32[32,32,32,32] copy(%add) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 4}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; EXPECT_DEATH(auto status = AutoSharding(option).Run(module.get()), ".*too many axes.*"); } TEST_F(AutoShardingTest, NDIterativeSolveTest) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %elementwise { param = s32[512,3084]{1,0} parameter(0), sharding={devices=[256,1]0,1,2,3,4,5,6,7,16,17,18,19,20,21,22,23,8,9,10,11,12,13,14,15,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255} sharding_call = s32[512,3084]{1,0} custom-call(param), custom_call_target="Sharding", sharding={devices=[256,1]<=[256]} ROOT slice = s32[512,2048]{1,0} slice(sharding_call), slice={[0:512], [0:2048]} })"; AutoShardingOption option; option.enable = true; option.solve_nd_sharding_iteratively = true; option.preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings; option.device_mesh_shape = {16, 16}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); HloInstruction* slice = FindInstruction(module.get(), "slice"); EXPECT_NE(slice, nullptr); EXPECT_THAT(slice, op::Sharding("{devices=[256,1]<=[256]}")); } TEST_F(AutoShardingTest, SliceDeviceMeshTest) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %elementwise { param = s32[512,3084]{1,0} parameter(0) slice = s32[512,2048]{1,0} slice(param), slice={[0:512], [0:2048]} ROOT copy = s32[512,2048]{1,0} copy(slice) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); TF_ASSERT_OK_AND_ASSIGN( bool changed, AutoSharding( {.enable = true, .device_mesh_shape = {2, 2}, .device_mesh_alpha = {1.0, 1.0}, .device_mesh_beta = {0.01, 1.0}}) .Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); const HloInstruction* slice = FindInstruction(module.get(), "slice"); ASSERT_NE(slice, nullptr); EXPECT_THAT( slice, AnyOf(op::Sharding("{devices=[4,1]0,1,2,3}"), op::Sharding("{devices=[2,1,2]0,1,2,3 last_tile_dim_replicate}"), op::Sharding("{devices=[2,1,2]0,2,1,3 last_tile_dim_replicate}"))); } TEST_F(AutoShardingTest, SliceMixedUserShardingTest) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %elementwise { param = s32[512,3084]{1,0} parameter(0), sharding={devices=[4,1]0,2,1,3} slice = s32[512,2048]{1,0} slice(param), slice={[0:512], [0:2048]} ROOT copy = s32[512,2048]{1,0} copy(slice) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); TF_ASSERT_OK_AND_ASSIGN( bool changed, AutoSharding( { .enable = true, .preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings, .solve_nd_sharding_iteratively = true, .device_mesh_shape = {2, 2}, .device_mesh_ids = {0, 2, 1, 3}, .device_mesh_alpha = {1.0, 1.0}, .device_mesh_beta = {0.01, 1.0}}) .Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); std::vector<HloInstruction*> instructions = module->entry_computation()->MakeInstructionPostOrder(); EXPECT_THAT(instructions, Each(ResultOf( [](const HloInstruction* ins) { return ins->has_sharding(); }, IsTrue()))); EXPECT_THAT(instructions, Each(op::Sharding("{devices=[4,1]0,2,1,3}"))); } TEST_F(AutoShardingTest, SlicedTensorDimensionShardedTest) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %slicemodule { param = s32[512,3084]{1,0} parameter(0), sharding={devices=[1,4]0,2,1,3} slice = s32[512,2048]{1,0} slice(param), slice={[0:512], [0:2048]}, sharding={devices=[1,4]0,2,1,3} ROOT copy = s32[512,2048]{1,0} copy(slice) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); TF_ASSERT_OK_AND_ASSIGN( bool changed, AutoSharding( { .enable = true, .preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings, .solve_nd_sharding_iteratively = true, .device_mesh_shape = {2, 2}, .device_mesh_ids = {0, 2, 1, 3}, .device_mesh_alpha = {1.0, 1.0}, .device_mesh_beta = {0.01, 1.0}}) .Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); std::vector<HloInstruction*> instructions = module->entry_computation()->MakeInstructionPostOrder(); EXPECT_THAT(instructions, Not(Contains(ResultOf( [](const HloInstruction* ins) { return ins->opcode(); }, Eq(HloOpcode::kReshape))))); } TEST_F(AutoShardingTest, UserShardingTest) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %elementwise { concatenate.76306 = bf16[1,4096,8,256]{3,2,1,0} parameter(0) constant.15158 = bf16[] constant(0) pad.70 = bf16[1,4352,8,256]{3,2,1,0} pad(concatenate.76306, constant.15158), padding=0_0x0_256x0_0x0_0, sharding={devices=[1,1,128,1]<=[128]} ROOT copy.45 = bf16[1,4352,8,256]{3,2,1,0} copy(pad.70) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); TF_ASSERT_OK_AND_ASSIGN( bool changed, AutoSharding( AutoShardingOption{ .enable = true, .preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings, .device_mesh_shape = {128, 1}, .device_mesh_alpha = {1.0, 1.0}, .device_mesh_beta = {0.01, 1.0}}) .Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); } TEST_F(AutoShardingTest, AllowShardingsSmallDimsAcrossManyDevicesTest) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %elementwise { parameter.1 = bf16[8,1024]{1,0} parameter(0), sharding={devices=[16,16]<=[256]} add.1 = bf16[8,1024]{1,0} add(parameter.1, parameter.1) ROOT copy.45 = bf16[8,1024]{1,0} copy(add.1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); TF_ASSERT_OK_AND_ASSIGN( bool changed, AutoSharding( AutoShardingOption{ .enable = true, .preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings, .device_mesh_shape = {128, 1}, .device_mesh_alpha = {1.0, 1.0}, .device_mesh_beta = {0.01, 1.0}, .allow_shardings_small_dims_across_many_devices = true}) .Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); const HloInstruction* add1 = FindInstruction(module.get(), "add.1"); EXPECT_THAT(add1, op::Sharding("{devices=[16,16]<=[256]}")); TF_ASSERT_OK_AND_ASSIGN(module, ParseAndReturnVerifiedModule(kHloString)); TF_ASSERT_OK_AND_ASSIGN( changed, AutoSharding( AutoShardingOption{ .enable = true, .preserve_shardings = AutoShardingOption::PreserveShardingsType::kKeepAllShardings, .device_mesh_shape = {128, 1}, .device_mesh_alpha = {1.0, 1.0}, .device_mesh_beta = {0.01, 1.0}, .allow_shardings_small_dims_across_many_devices = false}) .Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); add1 = FindInstruction(module.get(), "add.1"); EXPECT_THAT(add1, Not(op::Sharding("{devices=[16,16]<=[256]}"))); } TEST_F(AutoShardingTest, RngBitGeneratorArrayInput) { constexpr absl::string_view kHloString = R"( HloModule rng_bit_generator ENTRY %RngBitGenerator (p0: u64[2]) -> (u64[2], u32[16,16]) { %p0 = u64[2]{0} parameter(0) ROOT %rand = (u64[2]{0}, u32[16,16]{1,0}) rng-bit-generator(u64[2]{0} %p0), algorithm=rng_three_fry })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {1.0, 1.0}; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); auto* instruction = FindInstruction(module.get(), "p0"); ASSERT_NE(instruction, nullptr); EXPECT_THAT(instruction, op::Sharding("{replicated}")); } TEST_F(AutoShardingTest, SPMDShardToFullShapeWithConstantTest) { constexpr absl::string_view kHloString = R"( HloModule rng_bit_generator add.6.clone { y.13 = bf16[]{:T(256)} parameter(1) x.13 = bf16[]{:T(256)} parameter(0) ROOT add.9011 = bf16[]{:T(256)} add(x.13, y.13) } ENTRY main { input.1 = bf16[512,512]{1,0} parameter(0) constant.1 = bf16[] constant(16.7) broadcast.1 = bf16[128,128]{1,0} broadcast(constant.1), dimensions={} broadcast.2 = bf16[512,512]{1,0} broadcast(constant.1), dimensions={} custom-call.1 = bf16[512,512]{1,0} custom-call(input.1), custom_call_target="Sharding", sharding={devices=[4,4]<=[16]} custom-call.2 = bf16[128,128]{1,0} custom-call(custom-call.1), custom_call_target="SPMDFullToShardShape", sharding={manual} all-reduce.1 = bf16[128,128]{1,0} all-reduce(custom-call.2), channel_id=621, replica_groups={{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15}}, use_global_device_ids=true, to_apply=add.6.clone, frontend_attributes={from-cross-replica-sharding="true"}, backend_config={"flag_configs":[],"barrier_config":{"barrier_type":"CUSTOM","id":"9"},"scoped_memory_configs":[],"compute_type":"COMPUTE_TYPE_DEFAULT","device_type":"DEVICE_TYPE_INVALID","used_scoped_memory_configs":[]} add.1 = bf16[128,128]{1,0} add(bf16[128,128]{1,0} all-reduce.1, bf16[128,128]{1,0} broadcast.1) custom-call.3 = bf16[512,512]{1,0} custom-call(add.1), custom_call_target="SPMDShardToFullShape", sharding={devices=[4,1,4]<=[16]last_tile_dim_replicate} add.2 = bf16[512,512]{1,0} add(bf16[512,512]{1,0} custom-call.3, bf16[512,512]{1,0} broadcast.2) ROOT copy.1 = bf16[512,512]{1,0} copy(add.2) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.preserve_shardings = AutoShardingOption::PreserveShardingsType::kRemoveAllShardings; option.enable = true; option.device_mesh_shape = {4, 4}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {1.0, 1.0}; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); const HloInstruction* custom_call2 = FindInstruction(module.get(), "custom-call.2"); ASSERT_NE(custom_call2, nullptr); EXPECT_THAT(custom_call2, op::Sharding("{manual}")); const HloInstruction* custom_call3 = FindInstruction(module.get(), "custom-call.3"); ASSERT_NE(custom_call3, nullptr); EXPECT_THAT(custom_call3, op::Sharding("{devices=[4,1,4]<=[16]last_tile_dim_replicate}")); const HloInstruction* custom_call1 = custom_call2->operand(0); ASSERT_NE(custom_call1, nullptr); EXPECT_THAT(custom_call1, op::Sharding("{devices=[4,4]<=[16]}")); std::vector<const HloInstruction*> instructions( module->entry_computation()->instructions().begin(), module->entry_computation()->instructions().end()); EXPECT_THAT( module->entry_computation()->instructions(), Contains(ResultOf( "opcode", [](const HloInstruction* ins) { return ins->opcode(); }, Eq(HloOpcode::kConstant))) .Times(2)); } TEST_F(AutoShardingTest, SPMDShardToFullShapeMultipleValidMeshShapeTest) { constexpr absl::string_view kHloString = R"( HloModule rng_bit_generator add.6.clone { y.13 = bf16[]{:T(256)} parameter(1) x.13 = bf16[]{:T(256)} parameter(0) ROOT add.9011 = bf16[]{:T(256)} add(x.13, y.13) } ENTRY main { input.1 = bf16[512,512]{1,0} parameter(0) custom-call.1 = bf16[512,512]{1,0} custom-call(input.1), custom_call_target="Sharding", sharding={devices=[4,4]<=[16]} custom-call.2 = bf16[128,128]{1,0} custom-call(custom-call.1), custom_call_target="SPMDFullToShardShape", sharding={manual} all-reduce.1 = bf16[128,128]{1,0} all-reduce(custom-call.2), channel_id=621, replica_groups={{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15}}, use_global_device_ids=true, to_apply=add.6.clone, frontend_attributes={from-cross-replica-sharding="true"}, backend_config={"flag_configs":[],"barrier_config":{"barrier_type":"CUSTOM","id":"9"},"scoped_memory_configs":[],"compute_type":"COMPUTE_TYPE_DEFAULT","device_type":"DEVICE_TYPE_INVALID","used_scoped_memory_configs":[]} reshape.1 = bf16[64,2,128]{2,1,0} reshape(bf16[128,128]{1,0} all-reduce.1) reshape.2 = bf16[64,256]{1,0} reshape(bf16[64,2,128]{2,1,0} reshape.1) custom-call.3 = bf16[512,512]{1,0} custom-call(reshape.2), custom_call_target="SPMDShardToFullShape", sharding={devices=[8,2]<=[16]} ROOT copy.1 = copy(custom-call.3) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.preserve_shardings = AutoShardingOption::PreserveShardingsType::kRemoveAllShardings; option.enable = true; option.try_multiple_mesh_shapes = false; option.device_mesh_shape = {4, 4}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {1.0, 1.0}; EXPECT_DEATH(auto status = AutoSharding(option).Run(module.get()), "Auto-sharding cannot infer a single appropriate mesh shape for " "this HLO, and AutoShardingption::try_multiple_mesh_shapes is " "set to false. Please re-run with the option set to true."); } TEST_F(AutoShardingTest, RngBitGeneratorTupleInput) { constexpr absl::string_view kHloString = R"( HloModule rng_bit_generator ENTRY %RngBitGenerator { param.0 = u32[2]{0:T(128)} parameter(0) param.1 = u32[2]{0:T(128)} parameter(1) tuple.3 = (u32[2]{0:T(128)}, u32[2]{0:T(128)}) tuple(param.0, param.1) ROOT rng-bit-generator = u32[100,100]{1,0:T(8,128)} rng-bit-generator(tuple.3), algorithm=rng_default })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(10) << module->ToString(); EXPECT_TRUE(changed); auto* param0 = FindInstruction(module.get(), "param.0"); auto* param1 = FindInstruction(module.get(), "param.1"); ASSERT_NE(param0, nullptr); ASSERT_NE(param0, nullptr); EXPECT_THAT(param0, op::Sharding("{replicated}")); EXPECT_THAT(param1, op::Sharding("{replicated}")); } TEST_F(AutoShardingTest, DotLHSTwoNonContractingDims) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %entry { %param0 = f32[4,256,64]{2,1,0} parameter(0) %param1 = f32[64,32]{0,1} parameter(1) %dot = f32[4,256,32]{2,1,0} dot(f32[4,256,64]{2,1,0} %param0, f32[64,32]{0,1} %param1), lhs_contracting_dims={2}, rhs_contracting_dims={0} ROOT %copy = f32[4,256,32]{2,1,0} copy(%dot) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; option.allow_mixed_mesh_shape = false; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(2) << module->ToString(); EXPECT_TRUE(changed); auto* param0 = FindInstruction(module.get(), "param0"); auto* param1 = FindInstruction(module.get(), "param1"); auto* dot = FindInstruction(module.get(), "dot"); ASSERT_NE(param0, nullptr); ASSERT_NE(param1, nullptr); ASSERT_NE(dot, nullptr); EXPECT_THAT( std::make_tuple(param0, param1, dot), AnyOf( FieldsAre( op::Sharding( "{devices=[1,2,1,2]0,1,2,3 last_tile_dim_replicate}"), op::Sharding("{devices=[1,2,2]0,2,1,3 last_tile_dim_replicate}"), op::Sharding("{devices=[1,2,2]0,1,2,3}")), FieldsAre( op::Sharding( "{devices=[1,2,1,2]0,2,1,3 last_tile_dim_replicate}"), op::Sharding("{devices=[1,2,2]0,1,2,3 last_tile_dim_replicate}"), op::Sharding("{devices=[1,2,2]0,2,1,3}")), FieldsAre( op::Sharding( "{devices=[2,1,1,2]0,1,2,3 last_tile_dim_replicate}"), op::Sharding("{devices=[1,2,2]0,2,1,3 last_tile_dim_replicate}"), op::Sharding("{devices=[2,1,2]0,1,2,3}")), FieldsAre( op::Sharding( "{devices=[2,1,1,2]0,2,1,3 last_tile_dim_replicate}"), op::Sharding("{devices=[1,2,2]0,1,2,3 last_tile_dim_replicate}"), op::Sharding("{devices=[2,1,2]0,2,1,3}")))); } TEST_F(AutoShardingTest, DotRHSTwoNonContractingDims) { constexpr absl::string_view kHloString = R"( HloModule module ENTRY %entry { %param0 = f32[4,256,32]{2,1,0} parameter(0) %param1 = f32[4,256,4,8]{1,3,2,0} parameter(1) %dot = f32[32,4,8]{2,1,0} dot(f32[4,256,32]{2,1,0} %param0, f32[4,256,4,8]{1,3,2,0} %param1), lhs_contracting_dims={0,1}, rhs_contracting_dims={0,1} ROOT %copy = f32[32,4,8]{2,1,0} copy(%dot) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloString)); AutoShardingOption option; option.enable = true; option.device_mesh_shape = {2, 2}; option.device_mesh_ids = {0, 1, 2, 3}; option.device_mesh_alpha = {1.0, 1.0}; option.device_mesh_beta = {0.01, 1.0}; option.allow_mixed_mesh_shape = false; TF_ASSERT_OK_AND_ASSIGN(bool changed, AutoSharding(option).Run(module.get())); VLOG(2) << module->ToString(); EXPECT_TRUE(changed); auto* param0 = FindInstruction(module.get(), "param0"); auto* param1 = FindInstruction(module.get(), "param1"); auto* dot = FindInst
2,168
cpp
tensorflow/tensorflow
auto_sharding_memory
third_party/xla/xla/hlo/experimental/auto_sharding/auto_sharding_memory.cc
third_party/xla/xla/hlo/experimental/auto_sharding/auto_sharding_memory_test.cc
#ifndef XLA_HLO_EXPERIMENTAL_AUTO_SHARDING_AUTO_SHARDING_MEMORY_H_ #define XLA_HLO_EXPERIMENTAL_AUTO_SHARDING_AUTO_SHARDING_MEMORY_H_ #include <cstdint> #include <functional> #include <limits> #include <utility> #include <vector> #include "absl/container/btree_set.h" #include "absl/container/flat_hash_set.h" #include "tsl/platform/protobuf.h" namespace xla { namespace spmd { class MemoryTermReducer { public: std::pair<int64_t, int64_t> Reduce( int64_t num_lives, int64_t num_primitives, const std::function< tsl::protobuf::RepeatedField<int64_t>(int64_t)>& live, int64_t max_iterations = std::numeric_limits<int64_t>::max()); std::pair<int64_t, int64_t> Reduce( int64_t num_lives, int64_t num_primitives, const std::function<std::pair<int64_t, int64_t>(int64_t)>& intervals, int64_t max_iterations = std::numeric_limits<int64_t>::max()); const std::vector<std::vector<int64_t>>& GetReducedLive() const; const std::vector<std::pair<int64_t, int64_t>>& GetReducedIntervals() const; const std::vector<absl::btree_set<int64_t>>& GetReducedGroups() const; absl::flat_hash_set<int64_t> GetReducedTimes(int64_t num_primitives); static absl::flat_hash_set<int64_t> GetReducedTimes( int64_t num_primitives, const std::vector<std::pair<int64_t, int64_t>>& reduced_intervals, const std::vector<absl::btree_set<int64_t>>& reduced_groups); private: void Reduce(int64_t num_lives, int64_t num_primitives, int64_t max_iterations); std::vector<std::vector<int64_t>> reduced_live_; std::vector<std::pair<int64_t, int64_t>> reduced_intervals_; std::vector<absl::btree_set<int64_t>> reduced_groups_; }; } } #endif #include "xla/hlo/experimental/auto_sharding/auto_sharding_memory.h" #include <algorithm> #include <cstdint> #include <functional> #include <limits> #include <optional> #include <utility> #include <vector> #include "absl/container/btree_map.h" #include "absl/container/btree_set.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "tsl/platform/protobuf.h" namespace xla { namespace spmd { namespace { using PrimIdx = int64_t; using LiveIdx = int64_t; using GroupIdx = int64_t; using PrimPair = std::pair<PrimIdx, PrimIdx>; using Interval = std::pair<LiveIdx, LiveIdx>; using ActivePrim = std::pair<Interval, PrimIdx>; bool IsValid(const Interval& interval) { return interval.first <= interval.second; } int64_t length(const Interval& interval) { return interval.second - interval.first + 1; } } std::pair<int64_t, int64_t> MemoryTermReducer::Reduce( int64_t num_lives, int64_t num_primitives, const std::function< tsl::protobuf::RepeatedField<int64_t>(int64_t)>& live, int64_t max_iterations) { LOG(INFO) << "Memory Term Reducer beginning to reduce number of terms ..."; reduced_live_.clear(); reduced_intervals_.clear(); reduced_groups_.clear(); int64_t num_terms = 0; reduced_intervals_.reserve(num_primitives); for (PrimIdx prim_idx = 0; prim_idx < num_primitives; ++prim_idx) { reduced_intervals_.push_back({std::numeric_limits<LiveIdx>::max(), 0}); } for (LiveIdx live_idx = 0; live_idx < num_lives; ++live_idx) { for (const PrimIdx prim_idx : live(live_idx)) { Interval& interval = reduced_intervals_[prim_idx]; interval.first = std::min(interval.first, live_idx); interval.second = std::max(interval.second, live_idx); ++num_terms; } } Reduce(num_lives, num_primitives, max_iterations); int64_t num_reduced_terms = 0; reduced_live_.resize(num_lives); for (PrimIdx prim_idx = 0; prim_idx < reduced_intervals_.size(); ++prim_idx) { const Interval& interval = reduced_intervals_[prim_idx]; for (LiveIdx live_idx = interval.first; live_idx <= interval.second; ++live_idx) { reduced_live_[live_idx].push_back(prim_idx); ++num_reduced_terms; } } for (const auto& group : reduced_groups_) num_reduced_terms += group.size(); LOG(INFO) << "Memory Term Reducer finished reducing the number of terms."; return {num_terms, num_reduced_terms}; } std::pair<int64_t, int64_t> MemoryTermReducer::Reduce( int64_t num_lives, int64_t num_primitives, const std::function<std::pair<int64_t, int64_t>(int64_t)>& intervals, int64_t max_iterations) { LOG(INFO) << "Memory Term Reducer beginning to reduce number of terms ..."; reduced_live_.clear(); reduced_intervals_.clear(); reduced_groups_.clear(); int64_t num_terms = 0; reduced_intervals_.reserve(num_primitives); for (PrimIdx prim_idx = 0; prim_idx < num_primitives; ++prim_idx) { reduced_intervals_.push_back(intervals(prim_idx)); const Interval& interval = reduced_intervals_.back(); if (IsValid(interval)) num_terms += length(interval); } Reduce(num_lives, num_primitives, max_iterations); int64_t num_reduced_terms = 0; for (PrimIdx prim_idx = 0; prim_idx < reduced_intervals_.size(); ++prim_idx) { const Interval& interval = reduced_intervals_[prim_idx]; if (IsValid(interval)) num_reduced_terms += length(interval); } for (const auto& group : reduced_groups_) num_reduced_terms += group.size(); LOG(INFO) << "Memory Term Reducer finished reducing the number of terms."; return {num_terms, num_reduced_terms}; } void MemoryTermReducer::Reduce(int64_t num_lives, int64_t num_primitives, int64_t max_iterations) { std::vector<absl::btree_set<PrimIdx>> enter(num_lives), evict(num_lives); for (PrimIdx prim_idx = 0; prim_idx < num_primitives; ++prim_idx) { const Interval& interval = reduced_intervals_[prim_idx]; if (!IsValid(interval)) continue; enter[interval.first].insert(prim_idx); evict[interval.second].insert(prim_idx); } auto Splits = [this](PrimIdx large_idx, PrimIdx small_idx) -> bool { const Interval& large = reduced_intervals_[large_idx]; const Interval& small = reduced_intervals_[small_idx]; return large.first < small.first && large.second > small.second; }; auto CalcOverlap = [this, Splits]( int64_t prim0_idx, int64_t prim1_idx) -> std::optional<Interval> { if (prim0_idx == prim1_idx) return std::nullopt; const Interval& interval0 = reduced_intervals_[prim0_idx]; const Interval& interval1 = reduced_intervals_[prim1_idx]; if (!IsValid(interval0) || !IsValid(interval1)) return std::nullopt; if (Splits(prim0_idx, prim1_idx)) return std::nullopt; if (Splits(prim1_idx, prim0_idx)) return std::nullopt; return Interval(std::max(interval0.first, interval1.first), std::min(interval0.second, interval1.second)); }; auto MergeIntoGroup = [num_primitives, this]( PrimIdx prim_idx, absl::btree_set<PrimIdx>& reduced_group) { if (prim_idx < num_primitives) { reduced_group.insert(prim_idx); } else { const auto& group = reduced_groups_[prim_idx - num_primitives]; reduced_group.insert(group.begin(), group.end()); } }; auto CalcNumTerms = [num_primitives, this]( PrimIdx prim_idx, std::optional<Interval> overlap = std::nullopt) { int64_t num_terms = length(reduced_intervals_[prim_idx]); if (overlap) num_terms -= length(*overlap); if (prim_idx >= num_primitives && num_terms > 0) { num_terms += reduced_groups_[prim_idx - num_primitives].size(); } return num_terms; }; auto UpdatePrimitive = [this, &enter, &evict]( PrimIdx prim_idx, const Interval& overlap) mutable { Interval& interval = reduced_intervals_[prim_idx]; enter[interval.first].erase(prim_idx); evict[interval.second].erase(prim_idx); if (auto& t = interval.first; t == overlap.first) t = overlap.second + 1; if (auto& t = interval.second; t == overlap.second) t = overlap.first - 1; if (!IsValid(interval)) return; enter[interval.first].insert(prim_idx); evict[interval.second].insert(prim_idx); }; auto SweepAndMerge = [&num_lives, &enter, &evict, &CalcOverlap, &CalcNumTerms, &MergeIntoGroup, &UpdatePrimitive, this]() -> bool { absl::btree_set<ActivePrim> actives; absl::btree_multimap<int64_t, PrimPair> overlaps; for (LiveIdx live_idx = 0; live_idx < num_lives; ++live_idx) { for (const PrimIdx prim_idx : enter[live_idx]) { actives.insert({reduced_intervals_[prim_idx], prim_idx}); } for (const PrimIdx prim_idx : evict[live_idx]) { auto active = actives.find({reduced_intervals_[prim_idx], prim_idx}); if (++active == actives.end()) continue; std::optional<Interval> overlap = CalcOverlap(prim_idx, active->second); if (!overlap) continue; overlaps.insert({-length(*overlap), {prim_idx, active->second}}); } for (const PrimIdx prim_idx : evict[live_idx]) { actives.erase({reduced_intervals_[prim_idx], prim_idx}); } } bool changed = false; for (const auto& [_, prim_pair] : overlaps) { const PrimIdx prim0_idx = prim_pair.first, prim1_idx = prim_pair.second; const std::optional<Interval> overlap = CalcOverlap(prim0_idx, prim1_idx); if (!overlap) continue; absl::btree_set<PrimIdx> reduced_group; MergeIntoGroup(prim0_idx, reduced_group); MergeIntoGroup(prim1_idx, reduced_group); if (CalcNumTerms(prim0_idx) + CalcNumTerms(prim1_idx) <= CalcNumTerms(prim0_idx, overlap) + CalcNumTerms(prim1_idx, overlap) + length(*overlap) + reduced_group.size()) { continue; } enter[overlap->first].insert(reduced_intervals_.size()); evict[overlap->second].insert(reduced_intervals_.size()); reduced_intervals_.push_back({overlap->first, overlap->second}); reduced_groups_.push_back(reduced_group); UpdatePrimitive(prim0_idx, *overlap); UpdatePrimitive(prim1_idx, *overlap); changed = true; } return changed; }; for (int64_t iteration = 0; iteration < max_iterations; ++iteration) { if (!SweepAndMerge()) break; } for (GroupIdx group_idx = reduced_groups_.size() - 1; group_idx >= 0; --group_idx) { if (IsValid(reduced_intervals_[num_primitives + group_idx])) continue; reduced_intervals_.erase(reduced_intervals_.begin() + num_primitives + group_idx); reduced_groups_.erase(reduced_groups_.begin() + group_idx); } } const std::vector<std::vector<int64_t>>& MemoryTermReducer::GetReducedLive() const { return reduced_live_; } const std::vector<std::pair<int64_t, int64_t>>& MemoryTermReducer::GetReducedIntervals() const { return reduced_intervals_; } const std::vector<absl::btree_set<int64_t>>& MemoryTermReducer::GetReducedGroups() const { return reduced_groups_; } absl::flat_hash_set<int64_t> MemoryTermReducer::GetReducedTimes( int64_t num_primitives) { return GetReducedTimes(num_primitives, reduced_intervals_, reduced_groups_); } absl::flat_hash_set<int64_t> MemoryTermReducer::GetReducedTimes( int64_t num_primitives, const std::vector<std::pair<int64_t, int64_t>>& reduced_intervals, const std::vector<absl::btree_set<int64_t>>& reduced_groups) { std::vector<std::pair<int64_t, int64_t>> intervals; for (int64_t reduced_interval_idx = 0; reduced_interval_idx < reduced_intervals.size(); ++reduced_interval_idx) { const Interval& reduced_interval = reduced_intervals[reduced_interval_idx]; if (reduced_interval_idx < num_primitives) { intervals.push_back(reduced_interval); continue; } const GroupIdx group_idx = reduced_interval_idx - num_primitives; for (const PrimIdx prim_idx : reduced_groups[group_idx]) { Interval& interval = intervals[prim_idx]; if (!IsValid(interval)) { interval.first = reduced_interval.first; interval.second = reduced_interval.second; continue; } interval.first = std::min(interval.first, reduced_interval.first); interval.second = std::max(interval.second, reduced_interval.second); } } absl::btree_set<std::pair<int64_t, bool>> times; for (const Interval& interval : intervals) { if (!IsValid(interval)) continue; times.insert({interval.first, false}); times.insert({interval.second, true}); } int64_t last_entering_time = -1; absl::flat_hash_set<int64_t> reduced_times; for (const auto& time : times) { if ( time.second) { reduced_times.insert(last_entering_time); } else { last_entering_time = time.first; } } reduced_times.insert(last_entering_time); return reduced_times; } } }
#include "xla/hlo/experimental/auto_sharding/auto_sharding_memory.h" #include <cstdint> #include <functional> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/container/btree_set.h" #include "absl/container/flat_hash_set.h" namespace xla { namespace spmd { namespace { std::function<tsl::protobuf::RepeatedField<int64_t>(int64_t)> Convert(const std::vector<std::vector<int64_t>>& live) { return [live](int64_t live_idx) { return ::proto2::RepeatedField<int64_t>(live[live_idx].begin(), live[live_idx].end()); }; } std::function<std::pair<int64_t, int64_t>(int64_t)> Convert( const std::vector<std::pair<int64_t, int64_t>>& intervals) { return [intervals](int64_t prim_idx) { return intervals[prim_idx]; }; } TEST(AutoShardingMemoryTest, WithoutOverlap) { const int num_primitives = 2; const std::vector<std::vector<int64_t>> live = {{0 }, {0 }, {0 }, { 1}, { 1}, { 1}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{0 }, {0 }, {0 }, { 1}, { 1}, { 1}}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 2}, {3, 5}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {}; const std::pair<int64_t, int64_t> expected_num_terms = {6, 6}; const absl::flat_hash_set<int64_t> expected_reduced_times = {0, 3}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, PartialOverlap) { const int num_primitives = 2; const std::vector<std::vector<int64_t>> live = {{0 }, {0, 1}, {0, 1}, {0, 1}, {0, 1}, { 1}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{0 }, { 2}, { 2}, { 2}, { 2}, { 1 }}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 0}, {5, 5}, {1, 4}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}}; const std::pair<int64_t, int64_t> expected_num_terms = {10, 8}; const absl::flat_hash_set<int64_t> expected_reduced_times = {1}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, PartialOverlapReversed) { const int num_primitives = 2; const std::vector<std::vector<int64_t>> live = {{ 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0 }}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{ 1 }, { 2}, { 2}, { 2}, { 2}, {0 }}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{5, 5}, {0, 0}, {1, 4}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}}; const std::pair<int64_t, int64_t> expected_num_terms = {10, 8}; const absl::flat_hash_set<int64_t> expected_reduced_times = {1}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, DoesNotSplitPrimitive) { const int num_primitives = 2; const std::vector<std::vector<int64_t>> live = {{0 }, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0 }}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{0 }, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0 }}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 5}, {1, 4}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {}; const std::pair<int64_t, int64_t> expected_num_terms = {10, 10}; const absl::flat_hash_set<int64_t> expected_reduced_times = {1}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, OnePrimitiveVanishes) { const int num_primitives = 2; const std::vector<std::vector<int64_t>> live = {{0 }, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{0 }, { 2}, { 2}, { 2}, { 2}, { 2}}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 0}, {6, 0}, {1, 5}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}}; const std::pair<int64_t, int64_t> expected_num_terms = {11, 8}; const absl::flat_hash_set<int64_t> expected_reduced_times = {1}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, BothPrimitivesVanish) { const int num_primitives = 2; const std::vector<std::vector<int64_t>> live = {{0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{2}, {2}, {2}, {2}, {2}, {2}}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{6, -1}, {6, -1}, {0, 5}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}}; const std::pair<int64_t, int64_t> expected_num_terms = {12, 8}; const absl::flat_hash_set<int64_t> expected_reduced_times = {0}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, OneGroupingPreventsAnother) { const int num_primitives = 3; const std::vector<std::vector<int64_t>> live = {{0, 1 }, {0, 1 }, {0, 1 }, {0, 1 }, {0, 1, 2}, { 1, 2}, { 1, 2}, { 1, 2}, { 2}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{ 3}, { 3}, { 3}, { 3}, { 2, 3}, {1, 2 }, {1, 2 }, {1, 2 }, { 2 }}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{5, -1}, {5, 7}, {4, 8}, {0, 4}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}}; const std::pair<int64_t, int64_t> expected_num_terms = {18, 15}; const absl::flat_hash_set<int64_t> expected_reduced_times = {4}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, TwoGroups) { const int num_primitives = 3; const std::vector<std::vector<int64_t>> live = {{0, 1 }, {0, 1 }, {0, 1 }, {0, 2}, {0, 2}, {0, 2}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{3}, {3}, {3}, {4}, {4}, {4}}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{6, 2}, {3, -1}, {6, 2}, {0, 2}, {3, 5}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}, {0, 2}}; const std::pair<int64_t, int64_t> expected_num_terms = {12, 10}; const absl::flat_hash_set<int64_t> expected_reduced_times = {0, 3}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, TwoGroupsMutuallyExclusive) { const int num_primitives = 4; const std::vector<std::vector<int64_t>> live = {{0 }, {0, 1 }, {0, 1 }, {0, 1 }, { 2, 3}, { 2, 3}, { 2, 3}, { 3}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{0 }, { 4}, { 4}, { 4}, { 5}, { 5}, { 5}, { 3 }}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 0}, {4, 0}, {7, 3}, {7, 7}, {1, 3}, {4, 6}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}, {2, 3}}; const std::pair<int64_t, int64_t> expected_num_terms = {14, 12}; const absl::flat_hash_set<int64_t> expected_reduced_times = {1, 4}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, MergingPrimitivesWouldNotReduceTerms) { const int num_primitives = 2; const std::vector<std::vector<int64_t>> live = {{0, 1}, {0, 1}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{0, 1}, {0, 1}}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 1}, {0, 1}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {}; const std::pair<int64_t, int64_t> expected_num_terms = {4, 4}; const absl::flat_hash_set<int64_t> expected_reduced_times = {0}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, AllPrimitivesVanish) { const int num_primitives = 3; const std::vector<std::vector<int64_t>> live = {{0, 1, 2}, {0, 1, 2}, {0, 1, 2}, {0, 1, 2}, {0, 1, 2}, {0, 1, 2}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{3}, {3}, {3}, {3}, {3}, {3}}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{6, -1}, {6, -1}, {6, -1}, {0, 5}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1, 2}}; const std::pair<int64_t, int64_t> expected_num_terms = {18, 9}; const absl::flat_hash_set<int64_t> expected_reduced_times = {0}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, MergingGroupsWouldNotReduceTerms) { const int num_primitives = 4; const std::vector<std::vector<int64_t>> live = {{0, 1 }, {0, 1 }, {0, 1 }, {0, 1, 2, 3}, {0, 1, 2, 3}, {0, 1, 2, 3}, {0, 1, 2, 3}, { 2, 3}, { 2, 3}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{4 }, {4 }, {4 }, {4, 5}, {4, 5}, {4, 5}, {4, 5}, { 5}, { 5}}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{7, -1}, {7, -1}, {9, 2}, {9, 2}, {0, 6}, {3, 8}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}, {2, 3}}; const std::pair<int64_t, int64_t> expected_num_terms = {26, 17}; const absl::flat_hash_set<int64_t> expected_reduced_times = {3}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, ExampleFromDocumentation) { const int num_primitives = 4; const std::vector<std::vector<int64_t>> live = {{0 }, {0, 1 }, {0, 1 }, {0, 1 }, {0, 1 }, {0, 1, 2, 3}, {0, 1, 2, 3}, {0, 1, 2, 3}, {0, 1, 2, 3}, {0, 1, 2, 3}, { 2, 3}, { 2, 3}, { 2, 3}, { 3}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{0 }, { 4}, { 4}, { 4}, { 4}, { 6}, { 6}, { 6}, { 6}, { 6}, { 5}, { 5}, { 5}, { 3 }}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 0}, {10, 0}, {13, 4}, {13, 13}, {1, 4}, {10, 12}, {5, 9}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}, {2, 3}, {0, 1, 2, 3}}; const std::pair<int64_t, int64_t> expected_num_terms = {36, 22}; const absl::flat_hash_set<int64_t> expected_reduced_times = {5}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, MergesWithRightmost) { const int num_primitives = 3; const std::vector<std::vector<int64_t>> live = {{0, 2}, {0, 2}, {0, 2}, { 1, 2}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{ 3}, { 3}, { 3}, {1, 2 }}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{3, -1}, {3, 3}, {3, 3}, {0, 2}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 2}}; const std::pair<int64_t, int64_t> expected_num_terms = {8, 7}; const absl::flat_hash_set<int64_t> expected_reduced_times = {0, 3}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, ExampleFromDocumentationUsingIntervals) { const int num_primitives = 4; const std::vector<std::pair<int64_t, int64_t>> intervals = {{0, 9}, {1, 9}, {5, 12}, {5, 13}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(14, num_primitives, Convert(intervals)); const std::vector<std::vector<int64_t>> expected_reduced_live = {}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 0}, {10, 0}, {13, 4}, {13, 13}, {1, 4}, {10, 12}, {5, 9}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}, {2, 3}, {0, 1, 2, 3}}; const std::pair<int64_t, int64_t> expected_num_terms = {36, 22}; const absl::flat_hash_set<int64_t> expected_reduced_times = {5}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, InvalidIntervals) { const int num_primitives = 3; const std::vector<std::pair<int64_t, int64_t>> intervals = {{0, 4}, {9223372036854775807, 0}, {9223372036854775807, 0}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(5, num_primitives, Convert(intervals)); const std::vector<std::vector<int64_t>> expected_reduced_live = {}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 4}, {9223372036854775807, 0}, {9223372036854775807, 0}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {}; const std::pair<int64_t, int64_t> expected_num_terms = {5, 5}; const absl::flat_hash_set<int64_t> expected_reduced_times = {0}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, OneIterationOnly) { const int num_primitives = 4; const std::vector<std::pair<int64_t, int64_t>> intervals = {{0, 9}, {1, 9}, {5, 12}, {5, 13}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(14, num_primitives, Convert(intervals), 1); const std::vector<std::vector<int64_t>> expected_reduced_live = {}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 0}, {10, 0}, {13, 4}, {13, 13}, {1, 9}, {5, 12}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}, {2, 3}}; const std::pair<int64_t, int64_t> expected_num_terms = {36, 23}; const absl::flat_hash_set<int64_t> expected_reduced_times = {5}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, StairsBottomLeft) { const int num_primitives = 4; const std::vector<std::pair<int64_t, int64_t>> intervals = {{0, 13}, {0, 10}, {0, 7}, {0, 4}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(14, num_primitives, Convert(intervals), 1); const std::vector<std::vector<int64_t>> expected_reduced_live = {}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{11, 13}, {11, -1}, {5, 7}, {5, -1}, {0, 10}, {0, 4}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}, {2, 3}}; const std::pair<int64_t, int64_t> expected_num_terms = {38, 26}; const absl::flat_hash_set<int64_t> expected_reduced_times = {0}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, StairsTopLeft) { const int num_primitives = 4; const std::vector<std::pair<int64_t, int64_t>> intervals = {{0, 4}, {0, 7}, {0, 10}, {0, 13}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(14, num_primitives, Convert(intervals), 1); const std::vector<std::vector<int64_t>> expected_reduced_live = {}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{5, -1}, {5, 7}, {11, -1}, {11, 13}, {0, 10}, {0, 4}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{2, 3}, {0, 1}}; const std::pair<int64_t, int64_t> expected_num_terms = {38, 26}; const absl::flat_hash_set<int64_t> expected_reduced_times = {0}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, StairsTopRight) { const int num_primitives = 4; const std::vector<std::pair<int64_t, int64_t>> intervals = {{9, 13}, {6, 13}, {3, 13}, {0, 13}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(14, num_primitives, Convert(intervals), 1); const std::vector<std::vector<int64_t>> expected_reduced_live = {}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{14, 8}, {6, 8}, {14, 2}, {0, 2}, {3, 13}, {9, 13}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{2, 3}, {0, 1}}; const std::pair<int64_t, int64_t> expected_num_terms = {38, 26}; const absl::flat_hash_set<int64_t> expected_reduced_times = {9}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, StairsBottomRight) { const int num_primitives = 4; const std::vector<std::pair<int64_t, int64_t>> intervals = {{0, 13}, {3, 13}, {6, 13}, {9, 13}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(14, num_primitives, Convert(intervals), 1); const std::vector<std::vector<int64_t>> expected_reduced_live = {}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 2}, {14, 2}, {6, 8}, {14, 8}, {3, 13}, {9, 13}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}, {2, 3}}; const std::pair<int64_t, int64_t> expected_num_terms = {38, 26}; const absl::flat_hash_set<int64_t> expected_reduced_times = {9}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } } } }
2,169
cpp
tensorflow/tensorflow
hlo_schedule
third_party/xla/xla/hlo/ir/hlo_schedule.cc
third_party/xla/xla/service/hlo_schedule_test.cc
#ifndef XLA_HLO_IR_HLO_SCHEDULE_H_ #define XLA_HLO_IR_HLO_SCHEDULE_H_ #include <algorithm> #include <ostream> #include <string> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" namespace xla { class HloModule; class HloInstructionSequence { public: HloInstructionSequence() = default; explicit HloInstructionSequence( absl::Span<HloInstruction* const> instructions) { for (HloInstruction* instruction : instructions) { push_back(instruction); } } void push_back(HloInstruction* instruction) { instruction_sequence_.push_back(instruction); id_sequence_.push_back(instruction->unique_id()); } void remove_instruction(HloInstruction* instruction) { auto instruction_it = std::find(instruction_sequence_.begin(), instruction_sequence_.end(), instruction); if (instruction_it != instruction_sequence_.end()) { auto id_it = std::find(id_sequence_.begin(), id_sequence_.end(), instruction->unique_id()); instruction_sequence_.erase(instruction_it); id_sequence_.erase(id_it); } } void replace_instruction(HloInstruction* old_instruction, HloInstruction* new_instruction) { auto instruction_it = std::find(instruction_sequence_.begin(), instruction_sequence_.end(), old_instruction); auto id_it = std::find(id_sequence_.begin(), id_sequence_.end(), old_instruction->unique_id()); CHECK(instruction_it != instruction_sequence_.end()) << "Do not find instruction id " << old_instruction->unique_id(); CHECK(id_it != id_sequence_.end()); *instruction_it = new_instruction; *id_it = new_instruction->unique_id(); } void insert_instruction(HloInstruction* instruction, int64_t index) { CHECK(0 <= index && index < size()) << "Index out of bounds"; instruction_sequence_.insert(instruction_sequence_.begin() + index, instruction); id_sequence_.insert(id_sequence_.begin() + index, instruction->unique_id()); } void clear() { instruction_sequence_.clear(); id_sequence_.clear(); } int64_t size() const { return instruction_sequence_.size(); } const std::vector<HloInstruction*>& instructions() const { return instruction_sequence_; } const std::vector<int>& ids() const { return id_sequence_; } private: std::vector<HloInstruction*> instruction_sequence_; std::vector<int> id_sequence_; }; class HloSchedule { public: explicit HloSchedule(const HloModule* module) : module_(module) {} static absl::StatusOr<HloSchedule> CreateFromProto( const HloModule* module, const HloScheduleProto& proto); absl::StatusOr<HloScheduleProto> ToProto() const; const HloInstructionSequence& sequence( const HloComputation* computation) const; HloInstructionSequence& GetOrCreateSequence( const HloComputation* computation); void set_sequence(const HloComputation* computation, absl::Span<HloInstruction* const> sequence); void set_sequence(const HloComputation* computation, HloInstructionSequence sequence); const absl::flat_hash_map<int64_t, HloInstructionSequence>& sequences() const { return sequences_; } absl::flat_hash_map<std::string, int64_t> num_sequences_by_execution_thread() const; bool is_computation_scheduled(const HloComputation* computation) const { return sequences_.contains(computation->unique_id()); } void remove_computation(const HloComputation* computation) { auto it = sequences_.find(computation->unique_id()); if (it == sequences_.end()) return; sequences_.erase(it); execution_threads_.erase(computation->unique_id()); } void remove_instruction(const HloComputation* computation, HloInstruction* instruction) { sequences_[computation->unique_id()].remove_instruction(instruction); } void replace_instruction(const HloComputation* computation, HloInstruction* old_instruction, HloInstruction* new_instruction) { sequences_[computation->unique_id()].replace_instruction(old_instruction, new_instruction); } absl::Status Update( const absl::flat_hash_set<absl::string_view>& execution_threads = {}); absl::Status Verify() const; std::string ToString() const; bool empty() const { return sequences_.empty(); } const HloModule* module() const { return module_; } private: absl::Status UpdateComputationSchedule(const HloComputation* computation); const HloModule* module_; absl::flat_hash_map<int64_t, HloInstructionSequence> sequences_; absl::flat_hash_map<int64_t, std::string> execution_threads_; }; std::ostream& operator<<(std::ostream& out, const HloSchedule& schedule); } #endif #include "xla/hlo/ir/hlo_schedule.h" #include <cstdint> #include <ostream> #include <queue> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/map_util.h" #include "xla/status_macros.h" #include "xla/util.h" #include "tsl/lib/gtl/map_util.h" namespace xla { absl::StatusOr<HloSchedule> HloSchedule::CreateFromProto( const HloModule* module, const HloScheduleProto& proto) { absl::flat_hash_map<int64_t, const HloComputation*> id_to_computation; for (const HloComputation* computation : module->computations()) { id_to_computation[computation->unique_id()] = computation; } HloSchedule schedule(module); for (const auto& id_sequence : proto.sequences()) { int64_t computation_id = id_sequence.first; auto comp_it = id_to_computation.find(computation_id); if (comp_it == id_to_computation.end()) { continue; } const HloComputation* computation = comp_it->second; absl::flat_hash_map<int64_t, HloInstruction*> id_to_instruction; for (HloInstruction* instruction : computation->instructions()) { id_to_instruction[instruction->unique_id()] = instruction; } HloInstructionSequence& sequence = schedule.GetOrCreateSequence(computation); for (const int64_t instruction_id : id_sequence.second.instruction_ids()) { auto instr_it = id_to_instruction.find(instruction_id); TF_RET_CHECK(instr_it != id_to_instruction.end()) << "No instruction exists in HLO computation " << computation->name() << " with id " << instruction_id; sequence.push_back(instr_it->second); } } TF_RETURN_IF_ERROR(schedule.Verify()); return std::move(schedule); } absl::StatusOr<HloScheduleProto> HloSchedule::ToProto() const { TF_RETURN_IF_ERROR(Verify()); HloScheduleProto proto; for (const auto& id_sequence : sequences_) { int64_t computation_id = id_sequence.first; const HloInstructionSequence& sequence = id_sequence.second; HloScheduleProto::InstructionSequence& proto_sequence = (*proto.mutable_sequences())[computation_id]; proto_sequence.mutable_instruction_ids()->Reserve(sequence.size()); for (const int64_t id : sequence.ids()) { proto_sequence.add_instruction_ids(id); } } return std::move(proto); } void HloSchedule::set_sequence(const HloComputation* computation, absl::Span<HloInstruction* const> sequence) { set_sequence(computation, HloInstructionSequence(sequence)); } void HloSchedule::set_sequence(const HloComputation* computation, HloInstructionSequence sequence) { CHECK(computation->parent() == module_); sequences_[computation->unique_id()] = std::move(sequence); execution_threads_[computation->unique_id()] = std::string(computation->execution_thread()); } HloInstructionSequence& HloSchedule::GetOrCreateSequence( const HloComputation* computation) { auto it = sequences_.find(computation->unique_id()); if (it == sequences_.end()) { CHECK(computation->parent() == module_); execution_threads_[computation->unique_id()] = std::string(computation->execution_thread()); return sequences_[computation->unique_id()]; } else { return it->second; } } const HloInstructionSequence& HloSchedule::sequence( const HloComputation* computation) const { return sequences_.at(computation->unique_id()); } absl::Status HloSchedule::UpdateComputationSchedule( const HloComputation* computation) { absl::flat_hash_map<int, HloInstruction*> id_to_instruction; for (HloInstruction* instruction : computation->instructions()) { InsertOrDie(&id_to_instruction, instruction->unique_id(), instruction); } absl::flat_hash_set<int> ids_in_schedule; for (int id : sequences_.at(computation->unique_id()).ids()) { InsertOrDie(&ids_in_schedule, id); } absl::flat_hash_map<const HloInstruction*, std::vector<HloInstruction*>> new_instruction_uses; absl::flat_hash_map<const HloInstruction*, int> unscheduled_operand_count; std::queue<HloInstruction*> worklist; for (HloInstruction* instruction : computation->instructions()) { if (!ids_in_schedule.contains(instruction->unique_id())) { if (instruction->operands().empty()) { worklist.push(instruction); } else { for (const HloInstruction* operand : instruction->operands()) { new_instruction_uses[operand].push_back(instruction); } unscheduled_operand_count[instruction] = instruction->operand_count(); } } } HloInstructionSequence new_sequence; auto schedule_worklist = [&]() { while (!worklist.empty()) { HloInstruction* instruction = worklist.front(); worklist.pop(); new_sequence.push_back(instruction); std::vector<HloInstruction*>* new_users = tsl::gtl::FindOrNull(new_instruction_uses, instruction); if (new_users != nullptr) { for (HloInstruction* new_user : *new_users) { unscheduled_operand_count.at(new_user)--; CHECK_GE(unscheduled_operand_count.at(new_user), 0); if (unscheduled_operand_count.at(new_user) == 0) { worklist.push(new_user); } } } } }; schedule_worklist(); for (int id : sequences_.at(computation->unique_id()).ids()) { auto it = id_to_instruction.find(id); if (it == id_to_instruction.end()) { continue; } worklist.push(it->second); schedule_worklist(); } set_sequence(computation, std::move(new_sequence)); return absl::OkStatus(); } absl::Status HloSchedule::Update( const absl::flat_hash_set<absl::string_view>& execution_threads) { std::vector<HloComputation*> nonfusion_computations = module_->MakeNonfusionComputations(execution_threads); for (const HloComputation* computation : nonfusion_computations) { if (!is_computation_scheduled(computation)) { GetOrCreateSequence(computation); TF_RETURN_IF_ERROR(UpdateComputationSchedule(computation)); } } auto sum_of_sequences_for_threads = [&]() -> int64_t { if (execution_threads.empty()) { return sequences_.size(); } int64_t sequences_num_for_threads = 0; for (const auto& [thread_name, sequence_num] : num_sequences_by_execution_thread()) { sequences_num_for_threads += execution_threads.contains(thread_name) ? sequence_num : 0; } return sequences_num_for_threads; }; int64_t sequence_sum = sum_of_sequences_for_threads(); if (sequence_sum > nonfusion_computations.size()) { absl::flat_hash_set<int64_t> nonfusion_computations_ids; for (const HloComputation* computation : nonfusion_computations) { nonfusion_computations_ids.insert(computation->unique_id()); } for (auto it = sequences_.begin(); it != sequences_.end();) { std::string sequence_thread_name = tsl::gtl::FindWithDefault( execution_threads_, it->first, HloInstruction::kMainExecutionThread); bool is_thread_included = execution_threads.empty() || execution_threads.contains(sequence_thread_name); if (!nonfusion_computations_ids.contains(it->first) && is_thread_included) { execution_threads_.erase(it->first); sequences_.erase(it++); } else { ++it; } } } sequence_sum = sum_of_sequences_for_threads(); CHECK_EQ(sequence_sum, nonfusion_computations.size()); for (const HloComputation* computation : nonfusion_computations) { TF_RETURN_IF_ERROR(UpdateComputationSchedule(computation)); } TF_RETURN_IF_ERROR(Verify()); return absl::OkStatus(); } absl::flat_hash_map<std::string, int64_t> HloSchedule::num_sequences_by_execution_thread() const { absl::flat_hash_map<std::string, int64_t> sequence_num_by_execution_threads; for (const auto& id_sequence_item : sequences_) { ++sequence_num_by_execution_threads[tsl::gtl::FindWithDefault( execution_threads_, id_sequence_item.first, HloInstruction::kMainExecutionThread)]; } return sequence_num_by_execution_threads; } absl::Status HloSchedule::Verify() const { VLOG(2) << "VerifySchedule()"; XLA_VLOG_LINES(2, ToString()); absl::flat_hash_map<std::string, int64_t> sequence_num_by_execution_threads = num_sequences_by_execution_thread(); for (const auto& [thread_name, sequence_size] : sequence_num_by_execution_threads) { std::vector<HloComputation*> nonfusion_computations = module_->MakeNonfusionComputations({thread_name}); TF_RET_CHECK(nonfusion_computations.size() == sequence_size) << "For thread " << thread_name << ", schedule has " << sequence_size << " sequences, but module has " << nonfusion_computations.size() << " non-fusion computations for thread " << thread_name; for (const HloComputation* computation : nonfusion_computations) { TF_RET_CHECK(sequences_.contains(computation->unique_id())) << "Computation " << computation->name() << " missing from HLO schedule."; } for (const HloComputation* computation : nonfusion_computations) { absl::flat_hash_map<const HloInstruction*, int> instruction_position; int pos = 0; for (const HloInstruction* instruction : sequence(computation).instructions()) { TF_RET_CHECK(instruction_position.insert({instruction, pos}).second) << "Instruction " << instruction->name() << " appears more than once in the schedule"; pos++; } TF_RET_CHECK(instruction_position.size() == computation->instruction_count()) << "Schedule for computation " << computation->name() << " has " << instruction_position.size() << " instructions, expected " << computation->instruction_count(); for (const HloInstruction* instruction : computation->instructions()) { TF_RET_CHECK(instruction_position.contains(instruction)) << "Instruction " << instruction->name() << " is not in schedule"; } for (const HloInstruction* instruction : computation->instructions()) { for (const HloInstruction* operand : instruction->operands()) { TF_RET_CHECK(instruction_position.at(operand) < instruction_position.at(instruction)) << "Instruction " << instruction->name() << " is not scheduled after its operand " << operand->name(); } for (const HloInstruction* pred : instruction->control_predecessors()) { TF_RET_CHECK(instruction_position.at(pred) < instruction_position.at(instruction)) << "Instruction " << instruction->name() << " is not scheduled after its control predecessor " << pred->name(); } } } } return absl::OkStatus(); } namespace { const HloComputation* IdToComputation(const HloModule* module, int64_t id) { for (const HloComputation* computation : module->computations()) { if (computation->unique_id() == id) { return computation; } } return nullptr; } } std::string HloSchedule::ToString() const { std::vector<std::string> pieces; pieces.push_back("HloSchedule"); std::vector<int64_t> sorted_ids; for (const auto& id_sequence : sequences_) { sorted_ids.push_back(id_sequence.first); } absl::c_sort(sorted_ids); for (const int64_t id : sorted_ids) { const HloComputation* computation = IdToComputation(module_, id); const HloInstructionSequence& sequence = sequences_.at(id); if (computation == nullptr) { pieces.push_back(absl::StrFormat( "computation with id %d (no longer in HLO module):", id)); for (int id : sequence.ids()) { pieces.push_back(absl::StrCat(" ", id)); } } else { pieces.push_back(absl::StrFormat("computation %s:", computation->name())); for (const HloInstruction* instruction : sequence.instructions()) { pieces.push_back(absl::StrCat(" ", instruction->name())); } } } return absl::StrJoin(pieces, "\n"); } std::ostream& operator<<(std::ostream& out, const HloSchedule& schedule) { return out << schedule.ToString(); } }
#include "xla/hlo/ir/hlo_schedule.h" #include <memory> #include <string> #include <vector> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/log/log.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_memory_scheduler.h" #include "xla/service/hlo_ordering.h" #include "xla/shape_util.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class HloScheduleTest : public HloTestBase {}; TEST_F(HloScheduleTest, UpdateScheduleUnchangedModule) { const std::string module_str = R"( HloModule UpdateScheduleUnchanged ENTRY main { a = f32[] parameter(0) b = f32[] parameter(1) c = f32[] constant(42.0) sum = f32[] add(a, b) neg = f32[] negate(c) ROOT root = f32[] multiply(sum, neg) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule(module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape()); })); const auto& entry_schedule = schedule.sequence(module->entry_computation()).instructions(); EXPECT_EQ(entry_schedule.size(), 6); TF_ASSERT_OK(schedule.Update()); TF_ASSERT_OK(schedule.Verify()); EXPECT_EQ(entry_schedule, schedule.sequence(module->entry_computation()).instructions()); } TEST_F(HloScheduleTest, UpdateScheduleWithNewInstructions) { const std::string module_str = R"( HloModule UpdateScheduleWithNewInstructions ENTRY main { a = f32[] parameter(0) b = f32[] parameter(1) c = f32[] constant(42.0) sum = f32[] add(a, b) neg = f32[] negate(c) ROOT root = f32[] multiply(sum, neg) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule(module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape()); })); HloComputation* entry = module->entry_computation(); const Shape shape = entry->root_instruction()->shape(); HloInstruction* constant = entry->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0))); HloInstruction* sub = entry->AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kSubtract, constant, entry->root_instruction())); entry->set_root_instruction(sub); auto in_schedule = [&](const HloInstruction* hlo) { return absl::c_linear_search(schedule.sequence(entry).instructions(), hlo); }; EXPECT_EQ(schedule.sequence(entry).size(), 6); EXPECT_FALSE(in_schedule(constant)); EXPECT_FALSE(in_schedule(sub)); ASSERT_IS_NOT_OK(schedule.Verify()); TF_ASSERT_OK(schedule.Update()); TF_ASSERT_OK(schedule.Verify()); EXPECT_EQ(schedule.sequence(entry).size(), 8); EXPECT_TRUE(in_schedule(constant)); EXPECT_TRUE(in_schedule(sub)); } TEST_F(HloScheduleTest, UpdateScheduleWithAddedAndDeletedInstruction) { const std::string module_str = R"( HloModule UpdateScheduleWithAddedAndDeletedInstruction ENTRY main { a = f32[] parameter(0) b = f32[] parameter(1) c = f32[] constant(42.0) sum = f32[] add(a, b) neg = f32[] negate(c) ROOT root = f32[] multiply(sum, neg) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule(module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape()); })); HloComputation* entry = module->entry_computation(); HloInstruction* constant = entry->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0))); HloInstruction* new_root = entry->AddInstruction( HloInstruction::CreateBinary(constant->shape(), HloOpcode::kSubtract, constant, entry->parameter_instruction(0))); entry->set_root_instruction(new_root); HloDCE dce; TF_ASSERT_OK(dce.Run(module.get()).status()); EXPECT_EQ(schedule.sequence(entry).size(), 6); ASSERT_IS_NOT_OK(schedule.Verify()); TF_ASSERT_OK(schedule.Update()); TF_ASSERT_OK(schedule.Verify()); EXPECT_EQ(schedule.sequence(entry).size(), 4); } TEST_F(HloScheduleTest, UpdateScheduleWithCompletelyReplacedModule) { const std::string module_str = R"( HloModule UpdateScheduleWithCompletelyReplacedModule ENTRY main { a = f32[] constant(42.0) b = f32[] constant(123.0) ROOT sum = f32[] add(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule(module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape()); })); HloComputation* entry = module->entry_computation(); HloInstruction* constant = entry->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); HloInstruction* new_root = entry->AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kNegate, constant)); entry->set_root_instruction(new_root); HloDCE dce; TF_ASSERT_OK(dce.Run(module.get()).status()); EXPECT_EQ(schedule.sequence(entry).size(), 3); ASSERT_IS_NOT_OK(schedule.Verify()); TF_ASSERT_OK(schedule.Update()); TF_ASSERT_OK(schedule.Verify()); EXPECT_EQ(schedule.sequence(entry).size(), 2); } TEST_F(HloScheduleTest, UpdateScheduleWithMultipleComputations) { const std::string module_str = R"( HloModule UpdateScheduleWithMultipleComputations %Body (param.1: (s32[], token[])) -> (s32[], token[]) { %param.1 = (s32[], token[]) parameter(0) %get-tuple-element.1 = s32[] get-tuple-element((s32[], token[]) %param.1), index=0 %constant.1 = s32[] constant(1) %add = s32[] add(s32[] %get-tuple-element.1, s32[] %constant.1) %get-tuple-element.2 = token[] get-tuple-element((s32[], token[]) %param.1), index=1 %after-all = token[] after-all(token[] %get-tuple-element.2) ROOT %tuple = (s32[], token[]) tuple(s32[] %add, token[] %after-all) } %Cond (param: (s32[], token[])) -> pred[] { %param = (s32[], token[]) parameter(0) %get-tuple-element = s32[] get-tuple-element((s32[], token[]) %param), index=0 %constant = s32[] constant(42) ROOT %less-than = pred[] compare(s32[] %get-tuple-element, s32[] %constant), direction=LT } ENTRY %WhileLoop () -> s32[] { %zero = s32[] constant(0) %init_token = token[] after-all() %init_tuple = (s32[], token[]) tuple(s32[] %zero, token[] %init_token) %while = (s32[], token[]) while((s32[], token[]) %init_tuple), condition=%Cond, body=%Body ROOT %root = s32[] get-tuple-element((s32[], token[]) %while), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule(module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape(), sizeof(void*)); })); const HloInstruction* xla_while = module->entry_computation()->root_instruction()->operand(0); HloComputation* body = xla_while->while_body(); HloComputation* cond = xla_while->while_condition(); cond->set_root_instruction(cond->AddInstruction( HloInstruction::CreateUnary(ShapeUtil::MakeShape(PRED, {}), HloOpcode::kNot, cond->root_instruction()))); body->set_root_instruction(body->parameter_instruction(0)); HloDCE dce; TF_ASSERT_OK(dce.Run(module.get()).status()); EXPECT_EQ(schedule.sequence(body).size(), 7); EXPECT_EQ(schedule.sequence(cond).size(), 4); ASSERT_IS_NOT_OK(schedule.Verify()); TF_ASSERT_OK(schedule.Update()); TF_ASSERT_OK(schedule.Verify()); EXPECT_EQ(schedule.sequence(body).size(), 1); EXPECT_EQ(schedule.sequence(cond).size(), 5); } TEST_F(HloScheduleTest, UpdateScheduleComputationRemoved) { const std::string module_str = R"( HloModule UpdateScheduleWithMultipleComputations %Body (param.1: (s32[], token[])) -> (s32[], token[]) { %param.1 = (s32[], token[]) parameter(0) %get-tuple-element.1 = s32[] get-tuple-element((s32[], token[]) %param.1), index=0 %constant.1 = s32[] constant(1) %add = s32[] add(s32[] %get-tuple-element.1, s32[] %constant.1) %get-tuple-element.2 = token[] get-tuple-element((s32[], token[]) %param.1), index=1 %after-all = token[] after-all(token[] %get-tuple-element.2) ROOT %tuple = (s32[], token[]) tuple(s32[] %add, token[] %after-all) } %Cond (param: (s32[], token[])) -> pred[] { %param = (s32[], token[]) parameter(0) %get-tuple-element = s32[] get-tuple-element((s32[], token[]) %param), index=0 %constant = s32[] constant(42) ROOT %less-than = pred[] compare(s32[] %get-tuple-element, s32[] %constant), direction=LT } ENTRY %WhileLoop () -> s32[] { %zero = s32[] constant(0) %init_token = token[] after-all() %init_tuple = (s32[], token[]) tuple(s32[] %zero, token[] %init_token) %while = (s32[], token[]) while((s32[], token[]) %init_tuple), condition=%Cond, body=%Body ROOT %root = s32[] get-tuple-element((s32[], token[]) %while), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule(module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape(), sizeof(void*)); })); HloInstruction* xla_while = module->entry_computation()->root_instruction()->mutable_operand(0); HloInstruction* init = xla_while->mutable_operand(0); TF_ASSERT_OK(xla_while->ReplaceAllUsesWith(init)); HloDCE dce; ASSERT_EQ(module->computation_count(), 3); TF_ASSERT_OK(dce.Run(module.get()).status()); ASSERT_EQ(module->computation_count(), 1); ASSERT_IS_NOT_OK(schedule.Verify()); TF_ASSERT_OK(schedule.Update()); TF_ASSERT_OK(schedule.Verify()); } TEST_F(HloScheduleTest, UpdateScheduleComputationRemovedWithMultiThreads) { const std::string module_str = R"( HloModule UpdateScheduleWithMultipleComputations %Body (param.1: (s32[], token[])) -> (s32[], token[]) { %param.1 = (s32[], token[]) parameter(0) %get-tuple-element.1 = s32[] get-tuple-element((s32[], token[]) %param.1), index=0 %constant.1 = s32[] constant(1) %add = s32[] add(s32[] %get-tuple-element.1, s32[] %constant.1) %get-tuple-element.2 = token[] get-tuple-element((s32[], token[]) %param.1), index=1 %after-all = token[] after-all(token[] %get-tuple-element.2) ROOT %tuple = (s32[], token[]) tuple(s32[] %add, token[] %after-all) } %Cond (param: (s32[], token[])) -> pred[] { %param = (s32[], token[]) parameter(0) %get-tuple-element = s32[] get-tuple-element((s32[], token[]) %param), index=0 %constant = s32[] constant(42) ROOT %less-than = pred[] compare(s32[] %get-tuple-element, s32[] %constant), direction=LT } %async_builder { %p0 = f32[10] parameter(0) %p1 = f32[10] parameter(1) ROOT %foo = add(%p0, %p1) }, execution_thread="parallel_thread" ENTRY %WhileLoop () -> (s32[], f32[10]) { %p0 = f32[10] parameter(0) %p1 = f32[10] parameter(1) %zero = s32[] constant(0) %init_token = token[] after-all() %init_tuple = (s32[], token[]) tuple(s32[] %zero, token[] %init_token) %while = (s32[], token[]) while((s32[], token[]) %init_tuple), condition=%Cond, body=%Body %async-start = ((f32[10], f32[10]), f32[10], s32[]) async-start(f32[10] %p0, f32[10] %p1), async_execution_thread="parallel_thread",calls=%async_builder %async-done = f32[10]{0} async-done(((f32[10], f32[10]), f32[10], s32[]) %async-start), async_execution_thread="parallel_thread", calls=%async_builder %main_res = s32[] get-tuple-element((s32[], token[]) %while), index=0 ROOT %res = tuple(%main_res, %async-done) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule(module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf( buffer.shape(), sizeof(void*)); }, {}, {HloInstruction::kMainExecutionThread})); HloInstruction* xla_while = module->entry_computation() ->root_instruction() ->mutable_operand(0) ->mutable_operand(0); HloInstruction* init = xla_while->mutable_operand(0); TF_ASSERT_OK(xla_while->ReplaceAllUsesWith(init)); HloDCE dce; ASSERT_EQ(module->computation_count(), 4); TF_ASSERT_OK(dce.Run(module.get()).status()); ASSERT_EQ(module->computation_count(), 2); ASSERT_IS_NOT_OK(schedule.Verify()); TF_ASSERT_OK(schedule.Update({HloInstruction::kMainExecutionThread})); TF_ASSERT_OK(schedule.Verify()); ASSERT_EQ(module->MakeNonfusionComputations({"parallel_thread"}).size(), 1); ASSERT_FALSE(schedule.is_computation_scheduled( module->MakeNonfusionComputations({"parallel_thread"}).front())); } TEST_F(HloScheduleTest, UpdateScheduleAddComputation) { const std::string module_str = R"( HloModule UpdateScheduleWithMultipleComputations %Body (param.1: (s32[], token[])) -> (s32[], token[]) { %param.1 = (s32[], token[]) parameter(0) %get-tuple-element.1 = s32[] get-tuple-element((s32[], token[]) %param.1), index=0 %constant.1 = s32[] constant(1) %add = s32[] add(s32[] %get-tuple-element.1, s32[] %constant.1) %get-tuple-element.2 = token[] get-tuple-element((s32[], token[]) %param.1), index=1 %after-all = token[] after-all(token[] %get-tuple-element.2) ROOT %tuple = (s32[], token[]) tuple(s32[] %add, token[] %after-all) } %Cond (param: (s32[], token[])) -> pred[] { %param = (s32[], token[]) parameter(0) %get-tuple-element = s32[] get-tuple-element((s32[], token[]) %param), index=0 %constant = s32[] constant(42) ROOT %less-than = pred[] compare(s32[] %get-tuple-element, s32[] %constant), direction=LT } %async_builder { %p0 = f32[10] parameter(0) %p1 = f32[10] parameter(1) ROOT %foo = add(%p0, %p1) }, execution_thread="parallel_thread" ENTRY %WhileLoop () -> (s32[], f32[10]) { %p0 = f32[10] parameter(0) %p1 = f32[10] parameter(1) %zero = s32[] constant(0) %init_token = token[] after-all() %init_tuple = (s32[], token[]) tuple(s32[] %zero, token[] %init_token) %while = (s32[], token[]) while((s32[], token[]) %init_tuple), condition=%Cond, body=%Body %async-start = ((f32[10], f32[10]), f32[10], s32[]) async-start(f32[10] %p0, f32[10] %p1), async_execution_thread="parallel_thread",calls=%async_builder %async-done = f32[10]{0} async-done(((f32[10], f32[10]), f32[10], s32[]) %async-start), async_execution_thread="parallel_thread", calls=%async_builder %main_res = s32[] get-tuple-element((s32[], token[]) %while), index=0 ROOT %res = tuple(%main_res, %async-done) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule(module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf( buffer.shape(), sizeof(void*)); }, {}, {HloInstruction::kMainExecutionThread})); HloComputation* entry_computation = module->entry_computation(); HloComputation::Builder comp_builder("fusion_computation"); HloInstruction* entry_comp_parameter_0 = entry_computation->parameter_instruction(0); HloInstruction* entry_comp_parameter_1 = entry_computation->parameter_instruction(1); std::vector<HloInstruction*> instructions_in_new_computation; HloInstruction* added_instruction = entry_computation->AddInstruction(HloInstruction::CreateBinary( entry_comp_parameter_0->shape(), HloOpcode::kMultiply, entry_comp_parameter_0, entry_comp_parameter_1)); instructions_in_new_computation.push_back(added_instruction); HloInstruction* call = entry_computation->CreateCallInstruction(instructions_in_new_computation); Shape completion_sflag_shape = ShapeUtil::MakeScalarShape(U32); TF_ASSERT_OK_AND_ASSIGN( HloInstruction * async_done, entry_computation->CreateAsyncInstructions( call, {completion_sflag_shape}, entry_computation->execution_thread(), true, true)); HloInstruction* result_2 = entry_computation->root_instruction()->mutable_operand(1); HloInstruction* modified_result_2 = entry_computation->AddInstruction(HloInstruction::CreateBinary( result_2->shape(), HloOpcode::kAdd, async_done, result_2)); TF_ASSERT_OK(result_2->ReplaceAllUsesWith(modified_result_2)); auto added_computation_name = async_done->operand(0)->called_computations()[0]->name(); ASSERT_FALSE(schedule.is_computation_scheduled( module->GetComputationWithName(added_computation_name))); ASSERT_IS_NOT_OK(schedule.Verify()); TF_ASSERT_OK(schedule.Update({HloInstruction::kMainExecutionThread})); TF_ASSERT_OK(schedule.Verify()); ASSERT_TRUE(schedule.is_computation_scheduled( module->GetComputationWithName(added_computation_name))); } } }
2,170
cpp
tensorflow/tensorflow
tile_assignment
third_party/xla/xla/hlo/ir/tile_assignment.cc
third_party/xla/xla/tests/tile_assignment_test.cc
#ifndef XLA_HLO_IR_TILE_ASSIGNMENT_H_ #define XLA_HLO_IR_TILE_ASSIGNMENT_H_ #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include "absl/algorithm/container.h" #include "absl/types/span.h" #include "xla/array.h" #include "xla/printer.h" namespace xla { class TileAssignment; class IotaTileAssignment { public: static IotaTileAssignment Create(absl::Span<const int64_t> dims); static IotaTileAssignment Create(absl::Span<const int64_t> dims, absl::Span<const int64_t> reshape_dims, absl::Span<const int> transpose_perm); ~IotaTileAssignment() = default; IotaTileAssignment(const IotaTileAssignment& other); IotaTileAssignment(IotaTileAssignment&& other) = default; IotaTileAssignment& operator=(const IotaTileAssignment& other); IotaTileAssignment& operator=(IotaTileAssignment&& other) = default; bool operator==(const IotaTileAssignment& other) const { return dims() == other.dims() && reshape_dims() == other.reshape_dims() && transpose_perm() == other.transpose_perm(); } int64_t value_at(absl::Span<const int64_t> index) const; int64_t ndims() const { return ndims_; } absl::Span<const int64_t> dims() const { return absl::MakeSpan(dims_ptr(), ndims_); } int64_t dim(int n) const { return dims_ptr()[n]; } absl::Span<const int64_t> reshape_dims() const { return absl::MakeSpan(reshape_dims_ptr(), reshape_ndims_); } absl::Span<const int> transpose_perm() const { return absl::MakeSpan(transpose_perm_ptr(), reshape_ndims_); } int64_t num_elements() const { return absl::c_accumulate(dims(), 1LL, std::multiplies<int64_t>()); } std::optional<IotaTileAssignment> Transpose(absl::Span<const int> perm) const; void Print(Printer* printer) const; std::string ToString() const; Array<int64_t> ToArray() const; private: friend class TileAssignment; static constexpr int kPerDimBytes = sizeof(int64_t); static constexpr int kPerReshapeDimBytes = sizeof(int64_t) + sizeof(int); explicit IotaTileAssignment(absl::Span<const int64_t> dims, absl::Span<const int64_t> reshape_dims, absl::Span<const int> transpose_perm); explicit IotaTileAssignment(int ndims, int reshape_ndims); int64_t* dims_ptr() { return reinterpret_cast<int64_t*>(storage_.get()); } const int64_t* dims_ptr() const { return reinterpret_cast<const int64_t*>(storage_.get()); } const int64_t* reshape_dims_ptr() const { return dims_ptr() + ndims_; } int64_t* reshape_dims_ptr() { return const_cast<int64_t*>( const_cast<const IotaTileAssignment*>(this)->reshape_dims_ptr()); } const int* transpose_perm_ptr() const { return reinterpret_cast<const int*>(reshape_dims_ptr() + reshape_ndims_); } int* transpose_perm_ptr() { return const_cast<int*>( const_cast<const IotaTileAssignment*>(this)->transpose_perm_ptr()); } int size_bytes() const { return ndims_ * kPerDimBytes + reshape_ndims_ * kPerReshapeDimBytes; } bool next_index(absl::Span<int64_t> index) const { DCHECK_EQ(index.size(), ndims_); for (int64_t i = ndims_ - 1; i >= 0; --i) { index[i]++; if (index[i] < dims_ptr()[i]) { return true; } index[i] = 0; } return false; } int32_t ndims_; int32_t reshape_ndims_; std::unique_ptr<char[]> storage_; }; class TileAssignment { public: TileAssignment() : array_(ReplicatedArray()) {} explicit TileAssignment(std::shared_ptr<const Array<int64_t>> array) : shared_array_(std::move(array)), array_(shared_array_.get()) {} explicit TileAssignment(int64_t device_id) : TileAssignment(std::make_shared<const Array<int64_t>>( std::initializer_list<int64_t>{1}, device_id)) {} explicit TileAssignment(IotaTileAssignment iota) : iota_(std::move(iota)) {} explicit TileAssignment(absl::Span<const int64_t> dims) : iota_(IotaTileAssignment::Create(dims)) {} explicit TileAssignment(absl::Span<const int64_t> dims, absl::Span<const int64_t> reshape_dims, absl::Span<const int> transpose_perm) : iota_(IotaTileAssignment::Create(dims, reshape_dims, transpose_perm)) {} bool operator==(const TileAssignment& other) const; bool operator!=(const TileAssignment& other) const { return !operator==(other); } template <typename... Dims> typename std::enable_if_t<array_impl::pack_is_integral<Dims...>::value, int64_t> operator()(Dims... dims) const { DCHECK_EQ(sizeof...(dims), num_dimensions()); std::array<int64_t, sizeof...(dims)> indexes{ {static_cast<int64_t>(dims)...}}; return operator()(indexes); } int64_t operator()(absl::Span<const int64_t> indexes) const; absl::Span<const int64_t> dimensions() const; int64_t num_dimensions() const; int64_t dim(int64_t n) const; int64_t num_elements() const; int64_t first() const; void Each( absl::FunctionRef<void(absl::Span<const int64_t>, int64_t)> f) const; absl::Status EachStatus( absl::FunctionRef<absl::Status(absl::Span<const int64_t>, int64_t)> f) const; [[nodiscard]] TileAssignment Reshape( absl::Span<const int64_t> new_dimensions) const; [[nodiscard]] TileAssignment Transpose(absl::Span<const int> perm) const; void Print(Printer* printer) const; std::string ToString() const; bool UsesDevice(int64_t device) const; const std::optional<IotaTileAssignment>& iota() const { return iota_; } const Array<int64_t>& array() const; const std::shared_ptr<const Array<int64_t>>& shared_array() const; std::shared_ptr<Array<int64_t>> shared_array_clone() const; template <typename H> friend H AbslHashValue(H h, const TileAssignment& tile) { return H::combine(std::move(h), tile.array()); } private: friend class HloSharding; explicit TileAssignment(IotaTileAssignment iota, std::shared_ptr<const Array<int64_t>> shared_array) : iota_(std::move(iota)), shared_array_(std::move(shared_array)), array_(shared_array_.get()) {} void MaybeMaterializeFullArray() const; static const Array<int64_t>* ReplicatedArray() { static auto* array = new Array<int64_t>({0}); return array; } std::optional<IotaTileAssignment> iota_; mutable std::shared_ptr<const Array<int64_t>> shared_array_; mutable const Array<int64_t>* array_ = nullptr; }; } #endif #include "xla/hlo/ir/tile_assignment.h" #include <cstdint> #include <cstring> #include <memory> #include <optional> #include <string> #include <utility> #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/types/span.h" #include "xla/array.h" #include "xla/util.h" namespace xla { namespace { void CanonicalizeIotaDims(absl::Span<int64_t>& dims, absl::Span<int>& perm) { DCHECK_EQ(dims.size(), perm.size()); if (dims.size() <= 1) { return; } absl::InlinedVector<int, 6> old_to_new_dims(dims.size()); while (true) { bool changed = false; int new_ndims = 0; for (int i = 0; i < dims.size(); ++i) { if (dims[i] == 1) { old_to_new_dims[i] = -1; } else { old_to_new_dims[i] = new_ndims; ++new_ndims; } } if (new_ndims != dims.size()) { for (int i = 0, new_idx = 0; i < dims.size(); ++i) { int new_dim = old_to_new_dims[i]; if (new_dim >= 0) { dims[new_dim] = dims[i]; } int new_perm_dim = old_to_new_dims[perm[i]]; if (new_perm_dim >= 0) { perm[new_idx] = new_perm_dim; ++new_idx; DCHECK_LE(new_idx, new_ndims); } } perm = perm.subspan(0, new_ndims); dims = dims.subspan(0, new_ndims); } for (int i = 1, base = 0, n = dims.size(); i < n; ++i) { const int base_dim = perm[base]; const int dim = perm[i]; if (base_dim + (i - base) == dim) { dims[base_dim] *= dims[dim]; dims[dim] = 1; changed = true; } else { base = i; } } if (!changed) { break; } } } enum class TransposeKind { kNoop, kReshape, kTranspose, }; TransposeKind GetTransposeKind(absl::Span<const int64_t> dims, absl::Span<const int> perm) { TransposeKind kind = TransposeKind::kNoop; int prev_non_one_dim = -1; for (int i = 0; i < perm.size(); ++i) { const auto& d = perm[i]; if (dims[d] == 1) { if (d != i && dims[i] != 1) kind = TransposeKind::kReshape; continue; } if (d <= prev_non_one_dim) return TransposeKind::kTranspose; prev_non_one_dim = d; } return kind; } std::pair<absl::InlinedVector<int64_t, 6>, absl::InlinedVector<int, 6>> FullyDecanonicalize(absl::Span<const int64_t> reshape_dims, absl::Span<const int> transpose_perm) { absl::InlinedVector<int64_t, 6> new_reshape_dims; absl::InlinedVector<int, 6> old_to_new_dims(reshape_dims.size() + 1); for (int i = 0, n = reshape_dims.size(); i < n; ++i) { int64_t dim_size = reshape_dims[i]; while (dim_size % 2 == 0) { new_reshape_dims.push_back(2); dim_size /= 2; } for (int i = 3; i * i <= dim_size; i += 2) { while (dim_size % i == 0) { new_reshape_dims.push_back(i); dim_size /= i; } } if (dim_size > 1) { CHECK_GT(dim_size, 2); new_reshape_dims.push_back(dim_size); } old_to_new_dims[i + 1] = new_reshape_dims.size(); } absl::InlinedVector<int, 6> new_transpose_perm; new_transpose_perm.reserve(new_reshape_dims.size()); for (int i = 0; i < transpose_perm.size(); ++i) { const int old_dim = transpose_perm[i]; for (int j = old_to_new_dims[old_dim], n = old_to_new_dims[old_dim + 1]; j < n; ++j) { new_transpose_perm.push_back(j); } } return std::make_pair(std::move(new_reshape_dims), std::move(new_transpose_perm)); } } IotaTileAssignment IotaTileAssignment::Create( absl::Span<const int64_t> dims) { return IotaTileAssignment(dims, {Product(dims)}, {0}); } IotaTileAssignment IotaTileAssignment::Create( absl::Span<const int64_t> dims, absl::Span<const int64_t> reshape_dims, absl::Span<const int> transpose_perm) { absl::InlinedVector<int64_t, 6> canonicalized_dims(reshape_dims.begin(), reshape_dims.end()); absl::InlinedVector<int, 6> canonicalized_perm(transpose_perm.begin(), transpose_perm.end()); auto dims_span = absl::MakeSpan(canonicalized_dims); auto perm_span = absl::MakeSpan(canonicalized_perm); CanonicalizeIotaDims(dims_span, perm_span); if (dims_span.empty()) { canonicalized_dims[0] = 1; dims_span = absl::MakeSpan(canonicalized_dims.data(), 1); canonicalized_perm[0] = 0; perm_span = absl::MakeSpan(canonicalized_perm.data(), 1); } return IotaTileAssignment(dims, dims_span, perm_span); } Array<int64_t> IotaTileAssignment::ToArray() const { Array<int64_t> array(reshape_dims()); array.FillIota(0); array.TransposeDimensions(transpose_perm()); array.Reshape(dims()); return array; } IotaTileAssignment::IotaTileAssignment(const IotaTileAssignment& other) : IotaTileAssignment(other.ndims_, other.reshape_ndims_) { std::memcpy(storage_.get(), other.storage_.get(), size_bytes()); } IotaTileAssignment& IotaTileAssignment::operator=( const IotaTileAssignment& other) { const int new_size = other.size_bytes(); if (size_bytes() != new_size) { storage_.reset(new char[new_size]); } ndims_ = other.ndims_; reshape_ndims_ = other.reshape_ndims_; std::memcpy(storage_.get(), other.storage_.get(), new_size); return *this; } IotaTileAssignment::IotaTileAssignment(absl::Span<const int64_t> dims, absl::Span<const int64_t> reshape_dims, absl::Span<const int> transpose_perm) : IotaTileAssignment(dims.size(), reshape_dims.size()) { DCHECK_EQ(reshape_dims.size(), transpose_perm.size()); std::memcpy(dims_ptr(), dims.data(), ndims_ * sizeof(int64_t)); DCHECK_EQ(num_elements(), Product(reshape_dims)); std::memcpy(reshape_dims_ptr(), reshape_dims.data(), reshape_ndims_ * sizeof(int64_t)); std::memcpy(transpose_perm_ptr(), transpose_perm.data(), reshape_ndims_ * sizeof(int)); } IotaTileAssignment::IotaTileAssignment(int ndims, int reshape_ndims) : ndims_(ndims), reshape_ndims_(reshape_ndims), storage_(new char[size_bytes()]) {} std::optional<IotaTileAssignment> IotaTileAssignment::Transpose( absl::Span<const int> perm) const { DCHECK_EQ(ndims_, perm.size()); auto dims = this->dims(); const TransposeKind kind = GetTransposeKind(dims, perm); if (kind == TransposeKind::kNoop) return *this; absl::InlinedVector<int64_t, 6> new_dims(ndims_); for (int64_t i = 0; i < ndims_; ++i) { new_dims[i] = dims[perm[i]]; } if (kind == TransposeKind::kReshape) { return IotaTileAssignment::Create(new_dims, reshape_dims(), transpose_perm()); } if (reshape_ndims_ == 1) { return IotaTileAssignment::Create(new_dims, dims, perm); } bool is_pure_transpose = true; absl::InlinedVector<int64_t, 6> non_one_dims; absl::InlinedVector<int, 6> one_to_non_one(ndims_); non_one_dims.reserve(ndims_); auto reshape_dims = this->reshape_dims(); auto transpose_perm = this->transpose_perm(); for (int i = 0; i < ndims_; ++i) { const int64_t dim = dims[i]; if (dim == 1) { one_to_non_one[i] = -1; continue; } if (non_one_dims.size() >= reshape_ndims_ || reshape_dims[transpose_perm[non_one_dims.size()]] != dim) { is_pure_transpose = false; } one_to_non_one[i] = non_one_dims.size(); non_one_dims.push_back(dims[i]); } if (is_pure_transpose) { CHECK_EQ(reshape_ndims_, non_one_dims.size()); absl::InlinedVector<int, 6> new_perm; new_perm.reserve(non_one_dims.size()); for (int i = 0; i < ndims_; ++i) { if (dims[perm[i]] == 1) continue; new_perm.push_back(transpose_perm[one_to_non_one[perm[i]]]); } CHECK_EQ(reshape_ndims_, new_perm.size()); return IotaTileAssignment::Create(new_dims, reshape_dims, new_perm); } auto [decanonicalized_reshape_dims, decanonicalized_transpose_perm] = FullyDecanonicalize(reshape_dims, transpose_perm); CHECK_LE(non_one_dims.size(), decanonicalized_reshape_dims.size()); absl::InlinedVector<absl::InlinedVector<int, 2>, 6> grouped_reshape_dims( non_one_dims.size()); int transpose_perm_idx = 0; for (int i = 0, n = non_one_dims.size(), dn = decanonicalized_reshape_dims.size(); i < n && transpose_perm_idx < dn; ++i) { int reshape_dim_idx = decanonicalized_transpose_perm[transpose_perm_idx]; int64_t cand = decanonicalized_reshape_dims[reshape_dim_idx]; int64_t target = non_one_dims[i]; while (target % cand == 0) { target /= cand; grouped_reshape_dims[i].push_back(reshape_dim_idx); if (++transpose_perm_idx >= dn) { break; } reshape_dim_idx = decanonicalized_transpose_perm[transpose_perm_idx]; cand = decanonicalized_reshape_dims[reshape_dim_idx]; } if (target != 1) { return std::nullopt; } } absl::InlinedVector<int, 6> flattened_transpose_perm; flattened_transpose_perm.reserve(reshape_ndims_); for (int i = 0; i < perm.size(); ++i) { const int dim = perm[i]; if (one_to_non_one[dim] < 0) { continue; } auto& group = grouped_reshape_dims[one_to_non_one[dim]]; flattened_transpose_perm.insert(flattened_transpose_perm.end(), group.begin(), group.end()); } CHECK_EQ(flattened_transpose_perm.size(), decanonicalized_transpose_perm.size()); return IotaTileAssignment::Create(new_dims, decanonicalized_reshape_dims, flattened_transpose_perm); } void IotaTileAssignment::Print(Printer* printer) const { printer->Append("devices=["); AppendJoin(printer, dims(), ","); printer->Append("]<=["); AppendJoin(printer, reshape_dims(), ","); printer->Append("]"); if (reshape_ndims_ > 1) { printer->Append("T("); AppendJoin(printer, transpose_perm(), ","); printer->Append(")"); } } std::string IotaTileAssignment::ToString() const { StringPrinter printer; Print(&printer); return std::move(printer).ToString(); } int64_t IotaTileAssignment::value_at(absl::Span<const int64_t> index) const { DCHECK_EQ(index.size(), ndims_); int64_t linear_index = index[0]; auto dims = this->dims(); for (int64_t i = 1; i < ndims_; ++i) { linear_index *= dims[i]; linear_index += index[i]; } auto reshape_dims = this->reshape_dims(); auto transpose_perm = this->transpose_perm(); absl::InlinedVector<int64_t, 6> reshape_index(reshape_ndims_); for (int64_t i = reshape_ndims_ - 1; i >= 0; --i) { int dim = transpose_perm[i]; int dim_size = reshape_dims[dim]; reshape_index[dim] = linear_index % dim_size; linear_index /= dim_size; } int64_t value = reshape_index[0]; for (int64_t i = 1; i < reshape_ndims_; ++i) { value *= reshape_dims[i]; value += reshape_index[i]; } return value; } bool TileAssignment::operator==(const TileAssignment& other) const { if (iota_ && other.iota_) { return *iota_ == *other.iota_; } return array() == other.array(); } int64_t TileAssignment::operator()(absl::Span<const int64_t> indexes) const { return array_ ? (*array_)(indexes) : iota_->value_at(indexes); } absl::Span<const int64_t> TileAssignment::dimensions() const { return array_ ? array_->dimensions() : iota_->dims(); } int64_t TileAssignment::num_dimensions() const { return array_ ? array_->num_dimensions() : iota_->ndims(); } int64_t TileAssignment::dim(int64_t n) const { return array_ ? array_->dim(n) : iota_->dim(n); } int64_t TileAssignment::num_elements() const { return array_ ? array_->num_elements() : iota_->num_elements(); } int64_t TileAssignment::first() const { return array_ ? *array_->begin() : 0; } void TileAssignment::Each( absl::FunctionRef<void(absl::Span<const int64_t>, int64_t)> f) const { MaybeMaterializeFullArray(); array_->Each(f); } absl::Status TileAssignment::EachStatus( absl::FunctionRef<absl::Status(absl::Span<const int64_t>, int64_t)> f) const { MaybeMaterializeFullArray(); return array_->EachStatus(f); } [[nodiscard]] TileAssignment TileAssignment::Reshape( absl::Span<const int64_t> new_dimensions) const { if (iota_) { CHECK_EQ(Product(new_dimensions), iota_->num_elements()); return TileAssignment( IotaTileAssignment(new_dimensions, iota_->reshape_dims(), iota_->transpose_perm()), nullptr); } auto reshaped = std::make_shared<Array<int64_t>>(*array_); reshaped->Reshape(new_dimensions); return TileAssignment(std::move(reshaped)); } [[nodiscard]] TileAssignment TileAssignment::Transpose( absl::Span<const int> perm) const { const TransposeKind kind = GetTransposeKind(dimensions(), perm); if (kind == TransposeKind::kNoop) { return *this; } if (iota_) { auto transposed = iota_->Transpose(perm); if (transposed) { return TileAssignment(std::move(*transposed)); } } auto cloned_array = shared_array_clone(); cloned_array->TransposeDimensions(perm); return TileAssignment(std::move(cloned_array)); } void TileAssignment::Print(Printer* printer) const { if (iota_) { iota_->Print(printer); } else { printer->Append("devices=["); AppendJoin(printer, array().dimensions(), ","); printer->Append("]"); AppendJoin(printer, array(), ","); } } std::string TileAssignment::ToString() const { StringPrinter printer; Print(&printer); return std::move(printer).ToString(); } bool TileAssignment::UsesDevice(int64_t device) const { return iota_ ? device < iota_->num_elements() : absl::c_linear_search(array(), device); } const Array<int64_t>& TileAssignment::array() const { MaybeMaterializeFullArray(); return *array_; } const std::shared_ptr<const Array<int64_t>>& TileAssignment::shared_array() const { MaybeMaterializeFullArray(); return shared_array_; } std::shared_ptr<Array<int64_t>> TileAssignment::shared_array_clone() const { MaybeMaterializeFullArray(); return std::make_shared<Array<int64_t>>(*array_); } void TileAssignment::MaybeMaterializeFullArray() const { if (array_ == nullptr) { DCHECK(shared_array_ == nullptr); DCHECK(iota_.has_value()); auto full = std::make_shared<Array<int64_t>>(iota_->ToArray()); shared_array_ = std::move(full); array_ = shared_array_.get(); } } }
#include "xla/hlo/ir/tile_assignment.h" #include <memory> #include <vector> #include "absl/hash/hash.h" #include "xla/array3d.h" #include "xla/test.h" namespace xla { namespace { using ::testing::ElementsAre; std::vector<int64_t> ToVectorUsingEach(const TileAssignment& tile) { std::vector<int64_t> result; result.reserve(tile.num_elements()); tile.Each([&](absl::Span<const int64_t> index, int64_t device) { result.push_back(device); }); return result; } TEST(TileAssignmentTest, Replicated) { TileAssignment tile; EXPECT_EQ(tile.num_dimensions(), 1); EXPECT_EQ(tile.dim(0), 0); } TEST(TileAssignmentTest, Maximal) { TileAssignment tile(5); EXPECT_EQ(tile.num_dimensions(), 1); EXPECT_EQ(tile.dim(0), 1); EXPECT_EQ(tile(0), 5); EXPECT_EQ(tile({0}), 5); EXPECT_FALSE(tile.iota()); EXPECT_TRUE(tile.UsesDevice(5)); EXPECT_EQ(tile.first(), 5); EXPECT_FALSE(tile.UsesDevice(0)); EXPECT_THAT(ToVectorUsingEach(tile), ElementsAre(5)); } TEST(TileAssignmentTest, V1V2Equivalence) { Array3D<int64_t> array( {{{0, 8, 4, 12}, {1, 9, 5, 13}}, {{2, 10, 6, 14}, {3, 11, 7, 15}}}); TileAssignment v1(std::make_shared<const Array<int64_t>>(array)); TileAssignment v2({2, 2, 4}, {2, 2, 4}, {2, 1, 0}); EXPECT_EQ(v1, v2); EXPECT_EQ(v2, v1); EXPECT_EQ(v1.first(), 0); EXPECT_EQ(v2.first(), 0); EXPECT_NE(v1.iota().has_value(), v2.iota().has_value()); EXPECT_EQ(absl::HashOf(v1), absl::HashOf(v2)); } TEST(TileAssignmentTest, CopyConstruction) { TileAssignment tile({2, 2, 4}, {2, 2, 4}, {2, 1, 0}); TileAssignment copied(tile); EXPECT_EQ(tile, copied); EXPECT_EQ(tile.iota().has_value(), copied.iota().has_value()); EXPECT_EQ(absl::HashOf(tile), absl::HashOf(copied)); } TEST(TileAssignmentTest, CopyAssignment) { TileAssignment tile({2, 2, 4}, {2, 2, 4}, {2, 1, 0}); TileAssignment copied = tile; EXPECT_EQ(tile, copied); EXPECT_EQ(tile.iota().has_value(), copied.iota().has_value()); EXPECT_EQ(absl::HashOf(tile), absl::HashOf(copied)); } class FormattedTileAssignmentTest : public ::testing::TestWithParam<bool> { protected: bool ShouldConvertToV1() { return GetParam(); } }; TEST_P(FormattedTileAssignmentTest, TrivialIotaTile) { TileAssignment tile({4, 4, 2}); EXPECT_EQ(tile.ToString(), "devices=[4,4,2]<=[32]"); if (ShouldConvertToV1()) { tile = TileAssignment(tile.shared_array()); } EXPECT_EQ(tile, TileAssignment({4, 4, 2})); EXPECT_EQ(tile.num_dimensions(), 3); EXPECT_EQ(tile.dim(0), 4); EXPECT_EQ(tile.dim(1), 4); EXPECT_EQ(tile.dim(2), 2); EXPECT_EQ(tile(0, 0, 0), 0); EXPECT_EQ(tile({3, 2, 1}), 29); EXPECT_EQ(tile.iota().has_value(), !ShouldConvertToV1()); EXPECT_TRUE(tile.UsesDevice(0)); EXPECT_TRUE(tile.UsesDevice(31)); EXPECT_FALSE(tile.UsesDevice(32)); EXPECT_THAT( ToVectorUsingEach(tile), ElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31)); } TEST_P(FormattedTileAssignmentTest, TransposedIotaTile) { TileAssignment tile({4, 4, 2}, {2, 4, 4}, {2, 1, 0}); EXPECT_EQ(tile.ToString(), "devices=[4,4,2]<=[2,4,4]T(2,1,0)"); if (ShouldConvertToV1()) { tile = TileAssignment(tile.shared_array()); } EXPECT_EQ(tile, TileAssignment({4, 4, 2}, {2, 4, 4}, {2, 1, 0})); EXPECT_EQ(tile.num_dimensions(), 3); EXPECT_EQ(tile.dim(0), 4); EXPECT_EQ(tile.dim(1), 4); EXPECT_EQ(tile.dim(2), 2); EXPECT_EQ(tile(0, 0, 0), 0); EXPECT_EQ(tile({3, 2, 1}), 27); EXPECT_EQ(tile.iota().has_value(), !ShouldConvertToV1()); EXPECT_TRUE(tile.UsesDevice(0)); EXPECT_TRUE(tile.UsesDevice(31)); EXPECT_FALSE(tile.UsesDevice(32)); EXPECT_THAT( ToVectorUsingEach(tile), ElementsAre(0, 16, 4, 20, 8, 24, 12, 28, 1, 17, 5, 21, 9, 25, 13, 29, 2, 18, 6, 22, 10, 26, 14, 30, 3, 19, 7, 23, 11, 27, 15, 31)); } TEST_P(FormattedTileAssignmentTest, NonCanonicalTransposedIotaTile) { TileAssignment tile({4, 8}, {2, 4, 4}, {1, 2, 0}); EXPECT_EQ(tile.ToString(), "devices=[4,8]<=[2,16]T(1,0)"); if (ShouldConvertToV1()) { tile = TileAssignment(tile.shared_array()); } EXPECT_EQ(tile, TileAssignment({4, 8}, {2, 16}, {1, 0})); EXPECT_EQ(tile.num_dimensions(), 2); EXPECT_EQ(tile.dim(0), 4); EXPECT_EQ(tile.dim(1), 8); EXPECT_EQ(tile(0, 0), 0); EXPECT_EQ(tile({3, 2}), 13); EXPECT_EQ(tile.iota().has_value(), !ShouldConvertToV1()); EXPECT_TRUE(tile.UsesDevice(0)); EXPECT_TRUE(tile.UsesDevice(31)); EXPECT_FALSE(tile.UsesDevice(32)); EXPECT_THAT( ToVectorUsingEach(tile), ElementsAre(0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31)); } TEST_P(FormattedTileAssignmentTest, ReshapeTrivalIotaTile) { TileAssignment tile({4, 4, 2}); if (ShouldConvertToV1()) { tile = TileAssignment(tile.shared_array()); } TileAssignment reshaped = tile.Reshape({2, 8, 2}); EXPECT_NE(reshaped, tile); EXPECT_EQ(reshaped, TileAssignment({2, 8, 2})); EXPECT_EQ(reshaped.num_dimensions(), 3); EXPECT_EQ(reshaped.dim(0), 2); EXPECT_EQ(reshaped.dim(1), 8); EXPECT_EQ(reshaped.dim(2), 2); EXPECT_EQ(reshaped(0, 0, 0), 0); EXPECT_EQ(reshaped({1, 3, 1}), 23); EXPECT_EQ(reshaped.iota().has_value(), !ShouldConvertToV1()); EXPECT_TRUE(reshaped.UsesDevice(0)); EXPECT_TRUE(reshaped.UsesDevice(31)); EXPECT_FALSE(reshaped.UsesDevice(32)); EXPECT_THAT( ToVectorUsingEach(reshaped), ElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31)); } TEST_P(FormattedTileAssignmentTest, ReshapeTransposedIotaTile) { TileAssignment tile({4, 4, 2}, {2, 4, 4}, {2, 1, 0}); if (ShouldConvertToV1()) { tile = TileAssignment(tile.shared_array()); } TileAssignment reshaped = tile.Reshape({2, 2, 4, 2}); EXPECT_NE(reshaped, tile); EXPECT_EQ(reshaped, TileAssignment({2, 2, 4, 2}, {2, 4, 4}, {2, 1, 0})); EXPECT_EQ(reshaped.num_dimensions(), 4); EXPECT_EQ(reshaped.dim(0), 2); EXPECT_EQ(reshaped.dim(1), 2); EXPECT_EQ(reshaped.dim(2), 4); EXPECT_EQ(reshaped.dim(3), 2); EXPECT_EQ(reshaped(0, 0, 0, 0), 0); EXPECT_EQ(reshaped({1, 1, 2, 1}), 27); EXPECT_EQ(reshaped.iota().has_value(), !ShouldConvertToV1()); EXPECT_TRUE(reshaped.UsesDevice(0)); EXPECT_TRUE(reshaped.UsesDevice(31)); EXPECT_FALSE(reshaped.UsesDevice(32)); EXPECT_THAT( ToVectorUsingEach(reshaped), ElementsAre(0, 16, 4, 20, 8, 24, 12, 28, 1, 17, 5, 21, 9, 25, 13, 29, 2, 18, 6, 22, 10, 26, 14, 30, 3, 19, 7, 23, 11, 27, 15, 31)); } TEST_P(FormattedTileAssignmentTest, TransposeTrivalIotaTile) { TileAssignment tile({4, 4, 2}); if (ShouldConvertToV1()) { tile = TileAssignment(tile.shared_array()); } TileAssignment xposed = tile.Transpose({2, 0, 1}); EXPECT_NE(xposed, tile); EXPECT_EQ(xposed, TileAssignment({2, 4, 4}, {16, 2}, {1, 0})); EXPECT_EQ(xposed.num_dimensions(), 3); EXPECT_EQ(xposed.dim(0), 2); EXPECT_EQ(xposed.dim(1), 4); EXPECT_EQ(xposed.dim(2), 4); EXPECT_EQ(xposed(0, 0, 0), 0); EXPECT_EQ(xposed({1, 3, 1}), 27); EXPECT_EQ(xposed.iota().has_value(), !ShouldConvertToV1()); EXPECT_TRUE(xposed.UsesDevice(0)); EXPECT_TRUE(xposed.UsesDevice(31)); EXPECT_FALSE(xposed.UsesDevice(32)); EXPECT_THAT( ToVectorUsingEach(xposed), ElementsAre(0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31)); } TEST_P(FormattedTileAssignmentTest, TransposeTransposedIotaTile) { TileAssignment tile({4, 4, 2}, {2, 4, 4}, {2, 1, 0}); if (ShouldConvertToV1()) { tile = TileAssignment(tile.shared_array()); } TileAssignment xposed = tile.Transpose({0, 2, 1}); EXPECT_NE(xposed, tile); EXPECT_EQ(xposed, TileAssignment({4, 2, 4}, {8, 4}, {1, 0})); EXPECT_EQ(xposed.num_dimensions(), 3); EXPECT_EQ(xposed.dim(0), 4); EXPECT_EQ(xposed.dim(1), 2); EXPECT_EQ(xposed.dim(2), 4); EXPECT_EQ(xposed(0, 0, 0), 0); EXPECT_EQ(xposed({3, 0, 3}), 15); EXPECT_EQ(xposed.iota().has_value(), !ShouldConvertToV1()); EXPECT_TRUE(xposed.UsesDevice(0)); EXPECT_TRUE(xposed.UsesDevice(31)); EXPECT_FALSE(xposed.UsesDevice(32)); EXPECT_THAT( ToVectorUsingEach(xposed), ElementsAre(0, 4, 8, 12, 16, 20, 24, 28, 1, 5, 9, 13, 17, 21, 25, 29, 2, 6, 10, 14, 18, 22, 26, 30, 3, 7, 11, 15, 19, 23, 27, 31)); } TEST_P(FormattedTileAssignmentTest, TransposeIotaTileWithDegernateDims) { TileAssignment tile({4, 4, 1}, {4, 4}, {1, 0}); if (ShouldConvertToV1()) { tile = TileAssignment(tile.shared_array()); } TileAssignment xposed = tile.Transpose({1, 2, 0}); EXPECT_NE(xposed, tile); EXPECT_EQ(xposed, TileAssignment({4, 1, 4})); EXPECT_EQ(xposed.num_dimensions(), 3); EXPECT_EQ(xposed.dim(0), 4); EXPECT_EQ(xposed.dim(1), 1); EXPECT_EQ(xposed.dim(2), 4); EXPECT_EQ(xposed(0, 0, 0), 0); EXPECT_EQ(xposed({2, 0, 3}), 11); EXPECT_EQ(xposed.iota().has_value(), !ShouldConvertToV1()); EXPECT_TRUE(xposed.UsesDevice(0)); EXPECT_TRUE(xposed.UsesDevice(15)); EXPECT_FALSE(xposed.UsesDevice(16)); EXPECT_THAT( ToVectorUsingEach(xposed), ElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)); } TEST_P(FormattedTileAssignmentTest, TransposeIotaTileSplittingCanonicalizedReshapeDims) { TileAssignment tile({8, 2, 16}, {16, 16}, {1, 0}); if (ShouldConvertToV1()) { tile = TileAssignment(tile.shared_array()); } TileAssignment xposed = tile.Transpose({0, 2, 1}); EXPECT_NE(xposed, tile); EXPECT_EQ(xposed, TileAssignment({8, 16, 2}, {16, 8, 2}, {1, 0, 2})); EXPECT_EQ(xposed.num_dimensions(), 3); EXPECT_EQ(xposed.dim(0), 8); EXPECT_EQ(xposed.dim(1), 16); EXPECT_EQ(xposed.dim(2), 2); EXPECT_EQ(xposed(0, 0, 0), 0); EXPECT_EQ(xposed({2, 7, 1}), 117); EXPECT_EQ(xposed.iota().has_value(), !ShouldConvertToV1()); EXPECT_TRUE(xposed.UsesDevice(0)); EXPECT_TRUE(xposed.UsesDevice(255)); EXPECT_FALSE(xposed.UsesDevice(256)); EXPECT_THAT( ToVectorUsingEach(xposed), ElementsAre( 0, 1, 16, 17, 32, 33, 48, 49, 64, 65, 80, 81, 96, 97, 112, 113, 128, 129, 144, 145, 160, 161, 176, 177, 192, 193, 208, 209, 224, 225, 240, 241, 2, 3, 18, 19, 34, 35, 50, 51, 66, 67, 82, 83, 98, 99, 114, 115, 130, 131, 146, 147, 162, 163, 178, 179, 194, 195, 210, 211, 226, 227, 242, 243, 4, 5, 20, 21, 36, 37, 52, 53, 68, 69, 84, 85, 100, 101, 116, 117, 132, 133, 148, 149, 164, 165, 180, 181, 196, 197, 212, 213, 228, 229, 244, 245, 6, 7, 22, 23, 38, 39, 54, 55, 70, 71, 86, 87, 102, 103, 118, 119, 134, 135, 150, 151, 166, 167, 182, 183, 198, 199, 214, 215, 230, 231, 246, 247, 8, 9, 24, 25, 40, 41, 56, 57, 72, 73, 88, 89, 104, 105, 120, 121, 136, 137, 152, 153, 168, 169, 184, 185, 200, 201, 216, 217, 232, 233, 248, 249, 10, 11, 26, 27, 42, 43, 58, 59, 74, 75, 90, 91, 106, 107, 122, 123, 138, 139, 154, 155, 170, 171, 186, 187, 202, 203, 218, 219, 234, 235, 250, 251, 12, 13, 28, 29, 44, 45, 60, 61, 76, 77, 92, 93, 108, 109, 124, 125, 140, 141, 156, 157, 172, 173, 188, 189, 204, 205, 220, 221, 236, 237, 252, 253, 14, 15, 30, 31, 46, 47, 62, 63, 78, 79, 94, 95, 110, 111, 126, 127, 142, 143, 158, 159, 174, 175, 190, 191, 206, 207, 222, 223, 238, 239, 254, 255)); } TEST_P(FormattedTileAssignmentTest, TransposeIotaTileSplittingBothCanonicalizedReshapeDimsAndTileDims) { TileAssignment tile({14, 3, 5}, {6, 5, 7}, {2, 0, 1}); if (ShouldConvertToV1()) { tile = TileAssignment(tile.shared_array()); } TileAssignment xposed = tile.Transpose({1, 0, 2}); EXPECT_NE(xposed, tile); EXPECT_EQ(xposed, TileAssignment({3, 14, 5}, {2, 3, 5, 7}, {1, 3, 0, 2})); EXPECT_EQ(xposed.num_dimensions(), 3); EXPECT_EQ(xposed.dim(0), 3); EXPECT_EQ(xposed.dim(1), 14); EXPECT_EQ(xposed.dim(2), 5); EXPECT_EQ(xposed(0, 0, 0), 0); EXPECT_EQ(xposed({2, 11, 3}), 201); EXPECT_EQ(xposed.iota().has_value(), !ShouldConvertToV1()); EXPECT_TRUE(xposed.UsesDevice(0)); EXPECT_TRUE(xposed.UsesDevice(209)); EXPECT_FALSE(xposed.UsesDevice(210)); EXPECT_THAT( ToVectorUsingEach(xposed), ElementsAre( 0, 7, 14, 21, 28, 105, 112, 119, 126, 133, 1, 8, 15, 22, 29, 106, 113, 120, 127, 134, 2, 9, 16, 23, 30, 107, 114, 121, 128, 135, 3, 10, 17, 24, 31, 108, 115, 122, 129, 136, 4, 11, 18, 25, 32, 109, 116, 123, 130, 137, 5, 12, 19, 26, 33, 110, 117, 124, 131, 138, 6, 13, 20, 27, 34, 111, 118, 125, 132, 139, 35, 42, 49, 56, 63, 140, 147, 154, 161, 168, 36, 43, 50, 57, 64, 141, 148, 155, 162, 169, 37, 44, 51, 58, 65, 142, 149, 156, 163, 170, 38, 45, 52, 59, 66, 143, 150, 157, 164, 171, 39, 46, 53, 60, 67, 144, 151, 158, 165, 172, 40, 47, 54, 61, 68, 145, 152, 159, 166, 173, 41, 48, 55, 62, 69, 146, 153, 160, 167, 174, 70, 77, 84, 91, 98, 175, 182, 189, 196, 203, 71, 78, 85, 92, 99, 176, 183, 190, 197, 204, 72, 79, 86, 93, 100, 177, 184, 191, 198, 205, 73, 80, 87, 94, 101, 178, 185, 192, 199, 206, 74, 81, 88, 95, 102, 179, 186, 193, 200, 207, 75, 82, 89, 96, 103, 180, 187, 194, 201, 208, 76, 83, 90, 97, 104, 181, 188, 195, 202, 209)); } TEST_P(FormattedTileAssignmentTest, TransposeIotaTileGroupingCanonicalizedReshapeDims) { TileAssignment tile({1, 4, 16}, {4, 4, 4}, {1, 0, 2}); if (ShouldConvertToV1()) { tile = TileAssignment(tile.shared_array()); } TileAssignment xposed = tile.Transpose({2, 0, 1}); EXPECT_NE(xposed, tile); EXPECT_EQ(xposed, TileAssignment({16, 1, 4}, {4, 4, 4}, {0, 2, 1})); EXPECT_EQ(xposed.num_dimensions(), 3); EXPECT_EQ(xposed.dim(0), 16); EXPECT_EQ(xposed.dim(1), 1); EXPECT_EQ(xposed.dim(2), 4); EXPECT_EQ(xposed(0, 0, 0), 0); EXPECT_EQ(xposed({7, 0, 3}), 31); EXPECT_EQ(xposed.iota().has_value(), !ShouldConvertToV1()); EXPECT_TRUE(xposed.UsesDevice(0)); EXPECT_TRUE(xposed.UsesDevice(63)); EXPECT_FALSE(xposed.UsesDevice(64)); EXPECT_THAT(ToVectorUsingEach(xposed), ElementsAre(0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15, 16, 20, 24, 28, 17, 21, 25, 29, 18, 22, 26, 30, 19, 23, 27, 31, 32, 36, 40, 44, 33, 37, 41, 45, 34, 38, 42, 46, 35, 39, 43, 47, 48, 52, 56, 60, 49, 53, 57, 61, 50, 54, 58, 62, 51, 55, 59, 63)); } TEST_P(FormattedTileAssignmentTest, TransposeNoopIotaTile) { TileAssignment tile({4, 4}, {4, 4}, {1, 0}); if (ShouldConvertToV1()) { tile = TileAssignment(tile.shared_array()); } TileAssignment xposed = tile.Transpose({0, 1}); EXPECT_EQ(xposed, tile); EXPECT_EQ(xposed.num_dimensions(), 2); EXPECT_EQ(xposed.dim(0), 4); EXPECT_EQ(xposed.dim(1), 4); EXPECT_EQ(xposed(0, 0), 0); EXPECT_EQ(xposed({2, 3}), 14); EXPECT_EQ(xposed.iota().has_value(), !ShouldConvertToV1()); EXPECT_TRUE(xposed.UsesDevice(0)); EXPECT_TRUE(xposed.UsesDevice(15)); EXPECT_FALSE(xposed.UsesDevice(16)); EXPECT_THAT( ToVectorUsingEach(xposed), ElementsAre(0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15)); } TEST_P(FormattedTileAssignmentTest, TransposeNoopIotaTileWithDegernateDims) { TileAssignment tile({1, 4, 1, 1, 4, 1}, {4, 4}, {1, 0}); if (ShouldConvertToV1()) { tile = TileAssignment(tile.shared_array()); } TileAssignment xposed = tile.Transpose({1, 5, 0, 4, 3, 2}); EXPECT_NE(xposed, tile); EXPECT_EQ(xposed.num_dimensions(), 6); EXPECT_EQ(xposed.dim(0), 4); EXPECT_EQ(xposed.dim(1), 1); EXPECT_EQ(xposed.dim(2), 1); EXPECT_EQ(xposed.dim(3), 4); EXPECT_EQ(xposed.dim(4), 1); EXPECT_EQ(xposed.dim(5), 1); EXPECT_EQ(xposed(0, 0, 0, 0, 0, 0), 0); EXPECT_EQ(xposed({2, 0, 0, 3, 0, 0}), 14); EXPECT_EQ(xposed.iota().has_value(), !ShouldConvertToV1()); EXPECT_TRUE(xposed.UsesDevice(0)); EXPECT_TRUE(xposed.UsesDevice(15)); EXPECT_FALSE(xposed.UsesDevice(16)); EXPECT_THAT( ToVectorUsingEach(xposed), ElementsAre(0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15)); } INSTANTIATE_TEST_SUITE_P(All, FormattedTileAssignmentTest, ::testing::Bool()); } }
2,171
cpp
tensorflow/tensorflow
hlo_reachability
third_party/xla/xla/hlo/ir/hlo_reachability.cc
third_party/xla/xla/service/hlo_reachability_test.cc
#ifndef XLA_HLO_IR_HLO_REACHABILITY_H_ #define XLA_HLO_IR_HLO_REACHABILITY_H_ #include <memory> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/types.h" namespace xla { class HloReachabilityMap { public: using Index = size_t; explicit HloReachabilityMap( absl::Span<const HloInstruction* const> instructions); static std::unique_ptr<HloReachabilityMap> Build( const HloComputation* computation); static std::unique_ptr<HloReachabilityMap> BuildWithRestrictions( const HloComputation* computation, absl::FunctionRef<void(const HloInstruction*, std::vector<HloInstruction*>*)> add_dependencies); bool SetReachabilityToUnion(absl::Span<const HloInstruction* const> inputs, const HloInstruction* instruction); void FastSetReachabilityToUnion( absl::Span<const HloInstruction* const> inputs, const HloInstruction* instruction); void FastSetReachabilityToUnion(absl::Span<const Index> input_indices, Index index); Index GetIndex(const HloInstruction* instruction) const { return indices_.at(GetKey(instruction)); } void SetReachable(const HloInstruction* a, const HloInstruction* b) { SetReachable(GetIndex(a), GetIndex(b)); } void SetReachable(Index a, Index b) { bit_sets_[b].Set(a); } void UpdateReachabilityThroughInstruction(const HloInstruction* instruction); bool IsReachable(const HloInstruction* a, const HloInstruction* b) const { return IsReachable(GetIndex(a), GetIndex(b)); } bool IsReachable(Index a, Index b) const { return bit_sets_[b].Get(a); } bool IsConnected(const HloInstruction* a, const HloInstruction* b) const { return IsConnected(GetIndex(a), GetIndex(b)); } bool IsConnected(Index a, Index b) const { return IsReachable(a, b) || IsReachable(b, a); } bool IsPresent(const HloInstruction* instruction) const { return indices_.contains(GetKey(instruction)); } void Replace(const HloInstruction* original, const HloInstruction* replacement); private: class BitSet { public: BitSet() = default; explicit BitSet(size_t size) : size_(size), vector_((size + kBits - 1) / kBits, 0) {} bool Get(Index index) const { DCHECK(index >= 0 && index < size_); return vector_[index / kBits] & (1ull << (index % kBits)); } void Set(Index index) { DCHECK(index >= 0 && index < size_); vector_[index / kBits] |= 1ull << (index % kBits); } void operator|=(const BitSet& other) { if (this == &other) return; DCHECK(size_ == other.size_); const Word* a = vector_.data(); const Word* b = other.vector_.data(); Word* __restrict out = vector_.data(); size_t num_words = vector_.size(); for (size_t i = 0; i < num_words; ++i) { out[i] = a[i] | b[i]; } } void SetToZero() { absl::c_fill(vector_, 0); } bool operator==(const BitSet& other) const { return vector_ == other.vector_; } bool operator!=(const BitSet& other) const { return !(*this == other); } private: using Word = uint64_t; static constexpr size_t kBits = 64; size_t size_; std::vector<Word> vector_; }; friend class HloReachabilityMapBitSetBenchmark; using Key = std::pair<int, int>; static Key GetKey(const HloInstruction* instruction) { return {instruction->GetModule()->unique_id(), instruction->unique_id()}; } void SetReachabilityToUnionHelper( absl::Span<const HloInstruction* const> inputs, Index index); void SetReachabilityToUnionHelper(absl::Span<const Index> input_indices, Index index); absl::flat_hash_map<Key, Index> indices_; std::vector<BitSet> bit_sets_; BitSet tmp_bit_set_; }; } #endif #include "xla/hlo/ir/hlo_reachability.h" #include <memory> #include <queue> #include <vector> #include "absl/algorithm/container.h" #include "xla/hlo/ir/hlo_instruction.h" namespace xla { HloReachabilityMap::HloReachabilityMap( absl::Span<const HloInstruction* const> instructions) : bit_sets_(instructions.size(), BitSet(instructions.size())) { indices_.reserve(instructions.size()); for (size_t i = 0; i < instructions.size(); ++i) { bit_sets_[i].Set(i); indices_[GetKey(instructions[i])] = i; } } bool HloReachabilityMap::SetReachabilityToUnion( absl::Span<const HloInstruction* const> inputs, const HloInstruction* instruction) { Index index = GetIndex(instruction); BitSet& bit_set = bit_sets_[index]; tmp_bit_set_ = bit_set; SetReachabilityToUnionHelper(inputs, index); return bit_set != tmp_bit_set_; } void HloReachabilityMap::FastSetReachabilityToUnion( absl::Span<const HloInstruction* const> inputs, const HloInstruction* instruction) { SetReachabilityToUnionHelper(inputs, GetIndex(instruction)); } void HloReachabilityMap::FastSetReachabilityToUnion( absl::Span<const Index> input_indices, Index index) { SetReachabilityToUnionHelper(input_indices, index); } void HloReachabilityMap::SetReachabilityToUnionHelper( absl::Span<const HloInstruction* const> inputs, Index index) { absl::InlinedVector<Index, 16> input_indices; input_indices.reserve(inputs.size()); for (const HloInstruction* input : inputs) { input_indices.push_back(GetIndex(input)); } SetReachabilityToUnionHelper(input_indices, index); } void HloReachabilityMap::SetReachabilityToUnionHelper( absl::Span<const Index> input_indices, Index index) { BitSet& bit_set = bit_sets_[index]; if (!absl::c_linear_search(input_indices, index)) { bit_set.SetToZero(); } bit_set.Set(index); for (Index input_index : input_indices) { if (input_index != index) { bit_set |= bit_sets_[input_index]; } } } void HloReachabilityMap::Replace(const HloInstruction* original, const HloInstruction* replacement) { if (GetKey(original) != GetKey(replacement)) { indices_[GetKey(replacement)] = GetIndex(original); indices_.erase(GetKey(original)); } } std::unique_ptr<HloReachabilityMap> HloReachabilityMap::BuildWithRestrictions( const HloComputation* computation, absl::FunctionRef<void(const HloInstruction*, std::vector<HloInstruction*>*)> add_dependencies) { const auto& all = computation->MakeInstructionPostOrder(); auto result = std::make_unique<HloReachabilityMap>(all); std::vector<HloInstruction*> inputs; for (const HloInstruction* hlo : all) { inputs.clear(); add_dependencies(hlo, &inputs); result->FastSetReachabilityToUnion(inputs, hlo); } return result; } std::unique_ptr<HloReachabilityMap> HloReachabilityMap::Build( const HloComputation* computation) { HloComputation::ChannelDependencies channel_dependencies = computation->ComputeChannelDependencies(); std::vector<HloInstruction*> instructions = computation->MakeInstructionPostOrder(channel_dependencies); auto result = std::make_unique<HloReachabilityMap>(instructions); auto get_bit_set = [&](const HloInstruction* instruction) -> BitSet& { return result->bit_sets_[result->GetIndex(instruction)]; }; for (const HloInstruction* instruction : instructions) { BitSet& bit_set = get_bit_set(instruction); auto add_dependencies = [&](const HloInstruction* instruction) { for (const HloInstruction* operand : instruction->operands()) { bit_set |= get_bit_set(operand); } for (const HloInstruction* predecessor : instruction->control_predecessors()) { bit_set |= get_bit_set(predecessor); } }; add_dependencies(instruction); auto it = channel_dependencies.find(instruction); if (it != channel_dependencies.end()) { absl::c_for_each(it->second, add_dependencies); } } return result; } void HloReachabilityMap::UpdateReachabilityThroughInstruction( const HloInstruction* instruction) { std::queue<const HloInstruction*> worklist; worklist.push(instruction); std::vector<HloInstruction*> inputs; while (!worklist.empty()) { const HloInstruction* item = worklist.front(); worklist.pop(); inputs.assign(item->operands().begin(), item->operands().end()); inputs.insert(inputs.end(), item->control_predecessors().begin(), item->control_predecessors().end()); if (SetReachabilityToUnion(inputs, item)) { for (const HloInstruction* user : item->users()) { worklist.push(user); } for (const HloInstruction* succ : item->control_successors()) { worklist.push(succ); } } } } }
#include "xla/hlo/ir/hlo_reachability.h" #include <memory> #include <set> #include <string_view> #include "absl/random/random.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/computation_placer.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/test_benchmark.h" namespace xla { namespace { class HloReachabilityTest : public HloTestBase {}; TEST_F(HloReachabilityTest, Reachability) { auto builder = HloComputation::Builder(TestName()); auto a = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0f))); auto b = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0f))); auto c = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0f))); auto d = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0f))); auto e = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0f))); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); HloReachabilityMap reachability({a, b, c, d, e}); reachability.SetReachable(a, a); EXPECT_TRUE(reachability.SetReachabilityToUnion({a}, b)); EXPECT_TRUE(reachability.SetReachabilityToUnion({a}, c)); EXPECT_TRUE(reachability.SetReachabilityToUnion({b, c}, d)); EXPECT_TRUE(reachability.SetReachabilityToUnion({c}, e)); EXPECT_TRUE(reachability.IsReachable(a, a)); EXPECT_TRUE(reachability.IsReachable(a, b)); EXPECT_TRUE(reachability.IsReachable(a, c)); EXPECT_TRUE(reachability.IsReachable(a, d)); EXPECT_TRUE(reachability.IsReachable(a, e)); EXPECT_FALSE(reachability.IsReachable(b, a)); EXPECT_TRUE(reachability.IsReachable(b, b)); EXPECT_FALSE(reachability.IsReachable(b, c)); EXPECT_TRUE(reachability.IsReachable(b, d)); EXPECT_FALSE(reachability.IsReachable(b, e)); EXPECT_FALSE(reachability.IsReachable(e, a)); EXPECT_FALSE(reachability.IsReachable(e, b)); EXPECT_FALSE(reachability.IsReachable(e, c)); EXPECT_FALSE(reachability.IsReachable(e, d)); EXPECT_TRUE(reachability.IsReachable(e, e)); EXPECT_FALSE(reachability.SetReachabilityToUnion({a}, b)); EXPECT_FALSE(reachability.SetReachabilityToUnion({b, c}, d)); } TEST_F(HloReachabilityTest, NonTrivialReachability) { Shape r0f32 = ShapeUtil::MakeShape(F32, {}); auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0f))); auto add = builder.AddInstruction(HloInstruction::CreateBinary( r0f32, HloOpcode::kAdd, constant1, constant2)); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(r0f32, HloOpcode::kNegate, constant2)); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(r0f32, HloOpcode::kExp, negate)); auto mul = builder.AddInstruction( HloInstruction::CreateBinary(r0f32, HloOpcode::kMultiply, add, exp)); auto copy = builder.AddInstruction( HloInstruction::CreateUnary(r0f32, HloOpcode::kCopy, exp)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build(mul)); TF_CHECK_OK(add->AddControlDependencyTo(exp)); auto reachability = HloReachabilityMap::Build(computation); EXPECT_TRUE(reachability->IsReachable(constant1, constant1)); EXPECT_FALSE(reachability->IsReachable(constant1, constant2)); EXPECT_TRUE(reachability->IsReachable(constant1, add)); EXPECT_FALSE(reachability->IsReachable(constant1, negate)); EXPECT_TRUE(reachability->IsReachable(constant1, exp)); EXPECT_TRUE(reachability->IsReachable(constant1, mul)); EXPECT_TRUE(reachability->IsReachable(constant1, copy)); EXPECT_FALSE(reachability->IsReachable(constant2, constant1)); EXPECT_TRUE(reachability->IsReachable(constant2, constant2)); EXPECT_TRUE(reachability->IsReachable(constant2, add)); EXPECT_TRUE(reachability->IsReachable(constant2, negate)); EXPECT_TRUE(reachability->IsReachable(constant2, exp)); EXPECT_TRUE(reachability->IsReachable(constant2, mul)); EXPECT_TRUE(reachability->IsReachable(constant2, copy)); EXPECT_FALSE(reachability->IsReachable(exp, constant1)); EXPECT_FALSE(reachability->IsReachable(exp, constant2)); EXPECT_FALSE(reachability->IsReachable(exp, add)); EXPECT_FALSE(reachability->IsReachable(exp, negate)); EXPECT_TRUE(reachability->IsReachable(exp, exp)); EXPECT_TRUE(reachability->IsReachable(exp, mul)); EXPECT_TRUE(reachability->IsReachable(exp, copy)); EXPECT_FALSE(reachability->IsReachable(mul, constant1)); EXPECT_FALSE(reachability->IsReachable(mul, constant2)); EXPECT_FALSE(reachability->IsReachable(mul, add)); EXPECT_FALSE(reachability->IsReachable(mul, negate)); EXPECT_FALSE(reachability->IsReachable(mul, exp)); EXPECT_TRUE(reachability->IsReachable(mul, mul)); EXPECT_FALSE(reachability->IsReachable(mul, copy)); EXPECT_TRUE(reachability->IsConnected(constant1, copy)); EXPECT_TRUE(reachability->IsConnected(copy, constant1)); EXPECT_FALSE(reachability->IsConnected(negate, add)); EXPECT_FALSE(reachability->IsConnected(add, negate)); ASSERT_IS_OK(add->RemoveControlDependencyTo(exp)); reachability->UpdateReachabilityThroughInstruction(exp); EXPECT_TRUE(reachability->IsReachable(constant1, constant1)); EXPECT_FALSE(reachability->IsReachable(constant1, constant2)); EXPECT_TRUE(reachability->IsReachable(constant1, add)); EXPECT_FALSE(reachability->IsReachable(constant1, negate)); EXPECT_FALSE(reachability->IsReachable(constant1, exp)); EXPECT_TRUE(reachability->IsReachable(constant1, mul)); EXPECT_FALSE(reachability->IsReachable(constant1, copy)); ASSERT_IS_OK(constant2->ReplaceUseWith(negate, constant1)); reachability->UpdateReachabilityThroughInstruction(negate); EXPECT_FALSE(reachability->IsReachable(constant2, constant1)); EXPECT_TRUE(reachability->IsReachable(constant2, constant2)); EXPECT_TRUE(reachability->IsReachable(constant2, add)); EXPECT_FALSE(reachability->IsReachable(constant2, negate)); EXPECT_FALSE(reachability->IsReachable(constant2, exp)); EXPECT_TRUE(reachability->IsReachable(constant2, mul)); EXPECT_FALSE(reachability->IsReachable(constant2, copy)); } TEST_F(HloReachabilityTest, ChannelReachability) { const Shape shape = ShapeUtil::MakeShape(F32, {5, 7}); HloComputation::Builder builder("ChannelReachability"); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "param")); auto token0 = builder.AddInstruction(HloInstruction::CreateToken()); auto send = builder.AddInstruction(HloInstruction::CreateSend(param, token0, 1)); auto send_done = builder.AddInstruction(HloInstruction::CreateSendDone(send)); auto token1 = builder.AddInstruction(HloInstruction::CreateToken()); auto recv = builder.AddInstruction(HloInstruction::CreateRecv(shape, token1, 1)); auto recv_done = builder.AddInstruction(HloInstruction::CreateRecvDone(recv)); auto module = CreateNewVerifiedModule(); module->mutable_config().set_use_spmd_partitioning(false); module->mutable_config().set_static_device_assignment(DeviceAssignment(1, 2)); auto computation = module->AddEntryComputation(builder.Build(recv_done)); auto reachability = HloReachabilityMap::Build(computation); EXPECT_FALSE(reachability->IsReachable(param, recv_done)); EXPECT_FALSE(reachability->IsReachable(send, recv)); EXPECT_FALSE(reachability->IsReachable(send_done, recv)); } TEST_F(HloReachabilityTest, ReplaceInstructions) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test ENTRY entry { p0 = f32[28,28]{1,0} parameter(0) ROOT add = f32[28,28]{1,0} add(p0, p0) })") .value(); auto computation = module->entry_computation(); auto reachability = HloReachabilityMap::Build(computation); auto* add = module->entry_computation()->root_instruction(); auto* p0 = add->operand(0); EXPECT_TRUE(reachability->IsReachable(p0, add)); reachability->Replace(add, add); EXPECT_TRUE(reachability->IsReachable(p0, add)); auto* fusion = computation->AddInstruction(HloInstruction::CreateFusion( add->shape(), HloInstruction::FusionKind::kLoop, add)); EXPECT_FALSE(reachability->IsPresent(fusion)); EXPECT_TRUE(reachability->IsReachable(p0, add)); reachability->Replace(add, fusion); EXPECT_FALSE(reachability->IsPresent(add)); EXPECT_TRUE(reachability->IsReachable(p0, fusion)); } } class HloReachabilityMapBitSetBenchmark { public: explicit HloReachabilityMapBitSetBenchmark(int size) : a_(size), b_(size) { absl::BitGen gen; for (int i = 0; i < size; ++i) { if (absl::Bernoulli(gen, 0.5)) a_.Set(i); if (absl::Bernoulli(gen, 0.5)) b_.Set(i); } } void Union() { a_ |= b_; } private: HloReachabilityMap::BitSet a_; HloReachabilityMap::BitSet b_; }; namespace { void BM_HloReachabilityBitSetUnion(benchmark::State& state) { HloReachabilityMapBitSetBenchmark bm(state.range(0)); for (auto s : state) { bm.Union(); } } #define BM_ARGS Arg(1)->Arg(64)->Arg(128)->Arg(256)->Range(512, 256 * 1024) BENCHMARK(BM_HloReachabilityBitSetUnion)->BM_ARGS; class HloReachabilityBenchmark { public: HloReachabilityBenchmark(int size, std::string_view name) : name_(name) { Shape r0f32 = ShapeUtil::MakeShape(F32, {}); auto builder = HloComputation::Builder(name); HloInstruction* constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0f))); HloInstruction* prev = constant; for (int i = 1; i < size; ++i) { prev = builder.AddInstruction( HloInstruction::CreateUnary(r0f32, HloOpcode::kExp, prev)); } HloModuleConfig hlo_config; module_ = std::make_unique<HloModule>(name_, hlo_config); computation_ = module_->AddEntryComputation(builder.Build(prev)); } std::unique_ptr<HloReachabilityMap> Build() { return HloReachabilityMap::Build(computation_); } private: std::unique_ptr<HloModule> module_; HloComputation* computation_; const std::string name_; }; void BM_HloReachabilityBuild(benchmark::State& state) { HloReachabilityBenchmark bm(state.range(0), state.name()); for (auto s : state) { benchmark::DoNotOptimize(bm.Build()); } } BENCHMARK(BM_HloReachabilityBuild)->BM_ARGS; } }
2,172
cpp
tensorflow/tensorflow
hlo_computation
third_party/xla/xla/hlo/ir/hlo_computation.cc
third_party/xla/xla/service/hlo_computation_test.cc
#ifndef XLA_HLO_IR_HLO_COMPUTATION_H_ #define XLA_HLO_IR_HLO_COMPUTATION_H_ #include <cstdint> #include <list> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/functional/function_ref.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/dfs_hlo_visitor.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/ptrvec.h" #include "xla/iterator_util.h" #include "xla/printer.h" #include "xla/service/hlo.pb.h" #include "xla/service/name_uniquer.h" #include "xla/shape_tree.h" #include "xla/util.h" #include "xla/xla_data.pb.h" namespace xla { class HloModule; class HloComputation { public: using InstructionList = std::vector<HloInstructionInfo>; class Builder { public: explicit Builder(absl::string_view name) : name_(name) {} Builder(Builder&& b) = default; virtual ~Builder() = default; std::unique_ptr<HloComputation> Build( HloInstruction* root_instruction = nullptr); virtual HloInstruction* AddInstruction( std::unique_ptr<HloInstruction> instruction) { auto* added_instruction = instruction.get(); instructions_.push_back(std::move(instruction)); return added_instruction; } HloInstruction* AddInstruction(std::unique_ptr<HloInstruction> instruction, std::optional<absl::string_view> new_name) { instruction->SetAndSanitizeName(new_name.value()); return AddInstruction(std::move(instruction)); } absl::StatusOr<HloInstruction*> AddParameter( std::unique_ptr<HloInstruction> parameter) { if (!parameter_numbers_.insert(parameter->parameter_number()).second) { return Internal("Duplicate parameter number %d", parameter->parameter_number()); } return AddInstruction(std::move(parameter)); } absl::Status ForEachInstruction( absl::FunctionRef<absl::Status(const HloInstruction*)> func) const { for (const auto& instruction : instructions_) { TF_RETURN_IF_ERROR(func(instruction.get())); } return absl::OkStatus(); } HloInstruction* last_added_instruction() const { return instructions_.empty() ? nullptr : instructions_.back().get(); } private: const std::string name_; std::vector<std::unique_ptr<HloInstruction>> instructions_; absl::flat_hash_set<int> parameter_numbers_; Builder(const Builder&) = delete; Builder& operator=(const Builder&) = delete; }; class MetadataBuilder { public: MetadataBuilder(HloComputation* computation, const OpMetadata& metadata) : computation_(computation), metadata_(metadata) {} HloInstruction* AddInstruction( std::unique_ptr<HloInstruction> instruction) { instruction->set_metadata(metadata_); return computation_->AddInstruction(std::move(instruction)); } private: HloComputation* computation_; OpMetadata metadata_; }; class CachingPostOrder { public: explicit CachingPostOrder(const HloComputation* computation) : computation_(computation), recompute_(true) {} const std::vector<HloInstruction*>& PostOrder() { if (recompute_) { cached_post_order_ = computation_->MakeInstructionPostOrder(); recompute_ = false; } return cached_post_order_; } void RecordChange(bool changed) { recompute_ |= changed; } private: const HloComputation* computation_; bool recompute_; std::vector<HloInstruction*> cached_post_order_; }; ~HloComputation(); HloInstruction* AddInstruction(std::unique_ptr<HloInstruction> instruction, absl::string_view new_name = ""); HloInstruction* AddInstruction(std::unique_ptr<HloInstruction> instruction, const OpMetadata* metadata); HloInstruction* AddInstruction(std::unique_ptr<HloInstruction> instruction, const OpMetadata* metadata, const FrontendAttributes* frontend_attributes); HloInstruction* ReplaceParameter(int64_t param_no, std::unique_ptr<HloInstruction> instruction); absl::Status RemoveParameter(int64_t param_no); absl::Status RemoveUnusedParametersFromFusedComputation(); absl::Status RemoveUnusedParametersFromAnyComputation(); HloInstruction* AddParameter(std::unique_ptr<HloInstruction> instruction); HloInstruction* AddEntryComputationParameter( std::unique_ptr<HloInstruction> instruction); absl::Status ReplaceEntryComputationParameter( int64_t param_no, HloInstruction* old_instruction, std::unique_ptr<HloInstruction> instruction); absl::Status RemoveInstruction(HloInstruction* instruction); absl::Status ForceRemoveInstruction(HloInstruction* instruction); absl::Status RemoveInstructionAndUnusedOperands( HloInstruction* instruction, std::optional<absl::FunctionRef<void(HloInstruction*)>> cleanup = std::nullopt, bool ignore_control_dependencies = false); void set_root_instruction(HloInstruction* new_root_instruction, bool accept_different_shape = false); HloInstruction* root_instruction() const { return root_instruction_; } int64_t num_parameters() const { return param_instructions_.size(); } HloInstruction* parameter_instruction(int64_t param_no) const { CHECK_GE(param_no, 0); CHECK_LT(param_no, static_cast<int64_t>(param_instructions_.size())) << "Computation " << name() << " has no parameter number " << param_no; return param_instructions_[param_no]; } const HloInstruction::InstructionVector& parameter_instructions() const { return param_instructions_; } absl::string_view name() const { return name_; } void SetAndSanitizeName(absl::string_view name) { name_ = NameUniquer::GetSanitizedName(name); } void UniquifyName(NameUniquer* name_uniquer); void Print(Printer* printer) const { return Print(printer, HloPrintOptions::Default()); } void Print(Printer* printer, const HloPrintOptions& options) const; void Print(Printer* printer, const HloPrintOptions& options, absl::Span<const HloInstruction* const> instruction_order) const; std::string ToString() const; std::string ToString(const HloPrintOptions& options) const; std::string ToString( const HloPrintOptions& options, absl::Span<const HloInstruction* const> instruction_order) const; absl::Cord ToCord() const { return ToCord(HloPrintOptions::Default()); } absl::Cord ToCord(const HloPrintOptions& options) const; absl::Cord ToCord( const HloPrintOptions& options, absl::Span<const HloInstruction* const> instruction_order) const; HloComputationProto ToProto() const; static absl::StatusOr<std::unique_ptr<HloComputation>> CreateFromProto( const HloComputationProto& proto, const absl::flat_hash_map<int64_t, HloComputation*>& computation_map, bool prohibit_empty_literal = true); template <typename H> friend H AbslHashValue(H h, const HloComputation& computation) { auto instructions = computation.MakeInstructionPostOrder(); for (auto* instruction : instructions) { h = H::combine(std::move(h), *instruction); } return H::combine(std::move(h), instructions.size()); } using InstructionSequence = tsl::gtl::iterator_range< UnwrappingIterator<HloInstructionList::iterator>>; using ConstInstructionSequence = tsl::gtl::iterator_range< UnwrappingIterator<HloInstructionList::const_iterator>>; tsl::gtl::iterator_range<xla::HloInstructionUnwrappingConstIterator> instructions() const { const int end = instructions_.size(); return {HloInstructionUnwrappingConstIterator( HloInstructionConstIterator(&instructions_, 0, end)), HloInstructionUnwrappingConstIterator( HloInstructionConstIterator(&instructions_, end, end))}; } tsl::gtl::iterator_range<xla::HloInstructionUnwrappingIterator> instructions() { const int end = instructions_.size(); return {HloInstructionUnwrappingIterator( HloInstructionIterator(&instructions_, 0, end)), HloInstructionUnwrappingIterator( HloInstructionIterator(&instructions_, end, end))}; } tsl::gtl::iterator_range<HloInstructionIterator> instructions_with_info() { const int end = instructions_.size(); return {HloInstructionIterator(&instructions_, 0, end), HloInstructionIterator(&instructions_, end, end)}; } tsl::gtl::iterator_range<HloInstructionConstIterator> instructions_with_info() const { const int end = instructions_.size(); return {HloInstructionConstIterator(&instructions_, 0, end), HloInstructionConstIterator(&instructions_, end, end)}; } using ChannelDependencies = absl::flat_hash_map<const HloInstruction*, absl::InlinedVector<HloInstruction*, 1>>; std::vector<HloInstruction*> MakeInstructionPostOrder() const; std::vector<HloInstruction*> MakeInstructionPostOrderFrom( HloInstruction&) const; std::vector<HloInstruction*> MakeInstructionPostOrder( const ChannelDependencies& channel_dependencies) const; std::vector<HloInstruction*> MakeInstructionPostOrderWithReshapeFirst() const; void ForEachInstructionPostOrder( absl::FunctionRef<void(HloInstruction*)> func) const; int64_t instruction_count() const { return instruction_count_; } std::vector<HloComputation*> MakeEmbeddedComputationsList() const; HloInstruction* CreateFusionInstruction( absl::Span<HloInstruction* const> instructions_to_fuse, HloInstruction::FusionKind fusion_kind); HloInstruction* CreateCallInstruction( absl::Span<HloInstruction* const> instructions_to_call); absl::StatusOr<HloInstruction*> CreateAsyncInstructions( HloInstruction* instruction, absl::Span<const Shape> context_shapes, absl::string_view async_execution_thread = HloInstruction::kMainExecutionThread, bool replace = true, bool override_names = false); absl::StatusOr<HloInstruction*> DeepCopyInstruction( HloInstruction* instruction, const ShapeTree<bool>* indices_to_copy = nullptr, ShapeTree<HloInstruction*>* copies_added = nullptr); absl::StatusOr<HloInstruction*> DeepCopyInstructionWithCustomCopier( HloInstruction* instruction, absl::FunctionRef<HloInstruction*(HloInstruction* leaf, const ShapeIndex& leaf_index, HloComputation* computation)> copy_leaf); ProgramShape ComputeProgramShape(bool include_ids = true) const; bool Equal( const HloComputation& other, bool is_layout_sensitive, std::optional< absl::FunctionRef<bool(const HloComputation*, const HloComputation*)>> computations_comparator = std::nullopt) const { return EqualInternal(other, is_layout_sensitive, computations_comparator, false, false); } bool EqualIgnoringChannelIdValues( const HloComputation& other, bool is_layout_sensitive, std::optional< absl::FunctionRef<bool(const HloComputation*, const HloComputation*)>> computations_comparator = std::nullopt) const { return EqualInternal(other, is_layout_sensitive, computations_comparator, true, false); } bool EqualIgnoringExecutionThread( const HloComputation& other, bool is_layout_sensitive, bool ignore_channel_id_values, std::optional< absl::FunctionRef<bool(const HloComputation*, const HloComputation*)>> computations_comparator = std::nullopt) const { return EqualInternal(other, is_layout_sensitive, computations_comparator, ignore_channel_id_values, true); } bool operator==(const HloComputation& other) const { return Equal(other, true); } bool operator!=(const HloComputation& other) const { return !(*this == other); } absl::Status ReplaceWithNewInstruction( HloInstruction* old_instruction, std::unique_ptr<HloInstruction> new_instruction); absl::Status ReplaceWithNewEntryComputationParameter( HloInstruction* old_instruction, std::unique_ptr<HloInstruction> new_instruction); absl::StatusOr<bool> ReplaceInstruction(HloInstruction* old_instruction, HloInstruction* new_instruction, bool preserve_sharding, bool relay_control_dependency = false, bool remove_unused_operands = true); absl::Status ReplaceInstruction(HloInstruction* old_instruction, HloInstruction* new_instruction); absl::StatusOr<bool> ReplaceInstructionWithDifferentShape( HloInstruction* old_instruction, HloInstruction* new_instruction, bool preserve_sharding, bool relay_control_dependency = false, bool remove_unused_operands = true); absl::Status ReplaceInstructionWithDifferentShape( HloInstruction* old_instruction, HloInstruction* new_instruction); void set_parent(HloModule* module) { parent_ = module; } const HloModule* parent() const { return parent_; } HloModule* parent() { return parent_; } template <typename HloInstructionPtr> absl::Status Accept(DfsHloVisitorBase<HloInstructionPtr>* visitor) const; absl::Status AcceptWithOperandOrder( DfsHloVisitor* visitor, const HloInstruction::CompareFunction& operand_order) const; template <typename HloInstructionPtr> absl::Status AcceptOrdered(DfsHloVisitorBase<HloInstructionPtr>* visitor, absl::Span<HloInstruction* const> order) const; std::unique_ptr<HloComputation> Clone(const std::string& suffix = "clone", HloCloneContext* context = nullptr); std::unique_ptr<HloComputation> CloneWithReplacements( const absl::flat_hash_map<const HloInstruction*, std::unique_ptr<HloInstruction>>* replacements, absl::Span<const HloInstruction* const> extra_parameters = {}, HloCloneContext* context = nullptr, const std::string& suffix = "clone", const HloInstruction* new_root = nullptr); std::unique_ptr<HloComputation> CloneInContext( HloCloneContext& context, const absl::flat_hash_map<const HloInstruction*, std::unique_ptr<HloInstruction>>* replacements = nullptr, absl::Span<const HloInstruction* const> extra_parameters = {}, const std::string& suffix = "clone", const HloInstruction* new_root = nullptr) const; std::unique_ptr<HloComputation> CloneWithReplacementPairs( std::pair<const HloInstruction*, std::unique_ptr<HloInstruction>> r1, HloCloneContext* context = nullptr, const std::string& suffix = "clone"); std::unique_ptr<HloComputation> CloneWithReplacementPairs( std::pair<const HloInstruction*, std::unique_ptr<HloInstruction>> r1, std::pair<const HloInstruction*, std::unique_ptr<HloInstruction>> r2, HloCloneContext* context = nullptr, const std::string& suffix = "clone"); std::unique_ptr<HloComputation> CloneWithReplacementPairs( std::pair<const HloInstruction*, std::unique_ptr<HloInstruction>> r1, std::pair<const HloInstruction*, std::unique_ptr<HloInstruction>> r2, std::pair<const HloInstruction*, std::unique_ptr<HloInstruction>> r3, HloCloneContext* context = nullptr, const std::string& suffix = "clone"); bool IsSafelyRemovable(const HloInstruction* instruction, bool ignore_control_dependency =
#include "xla/hlo/ir/hlo_computation.h" #include <memory> #include <set> #include <string> #include <string_view> #include <vector> #include <gmock/gmock.h> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal.h" #include "xla/service/hlo_parser.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace m = match; namespace op = xla::testing::opcode_matchers; using ::testing::ElementsAre; using ::testing::UnorderedElementsAre; class HloComputationTest : public HloTestBase { protected: HloComputationTest() {} std::unique_ptr<HloComputation> CreateNegateComputation() { auto builder = HloComputation::Builder("Negate"); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32_, "param0")); builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kNegate, param)); return builder.Build(); } std::unique_ptr<HloComputation> CreateMapComputation( HloComputation* map_computation) { auto builder = HloComputation::Builder("Map"); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32_, "param0")); builder.AddInstruction( HloInstruction::CreateMap(r0f32_, {param}, map_computation)); return builder.Build(); } Shape r0f32_ = ShapeUtil::MakeShape(F32, {}); }; TEST_F(HloComputationTest, GetEmbeddedComputationsEmpty) { auto module = CreateNewVerifiedModule(); auto negate_computation = module->AddEntryComputation(CreateNegateComputation()); EXPECT_TRUE(negate_computation->MakeEmbeddedComputationsList().empty()); } TEST_F(HloComputationTest, GetEmbeddedComputationsOneComputation) { auto module = CreateNewVerifiedModule(); auto negate_computation = module->AddEmbeddedComputation(CreateNegateComputation()); auto map_computation = module->AddEntryComputation(CreateMapComputation(negate_computation)); EXPECT_TRUE(negate_computation->MakeEmbeddedComputationsList().empty()); EXPECT_THAT(map_computation->MakeEmbeddedComputationsList(), ElementsAre(negate_computation)); } TEST_F(HloComputationTest, GetEmbeddedComputationsDiamond) { auto module = CreateNewVerifiedModule(); auto negate_computation = module->AddEmbeddedComputation(CreateNegateComputation()); auto map1_computation = module->AddEmbeddedComputation(CreateMapComputation(negate_computation)); auto map2_computation = module->AddEmbeddedComputation(CreateMapComputation(negate_computation)); auto builder = HloComputation::Builder(TestName()); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32_, "param0")); auto map1 = builder.AddInstruction( HloInstruction::CreateMap(r0f32_, {param}, map1_computation)); auto map2 = builder.AddInstruction( HloInstruction::CreateMap(r0f32_, {param}, map2_computation)); builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, map1, map2)); auto computation = module->AddEntryComputation(builder.Build()); auto embedded_computations = computation->MakeEmbeddedComputationsList(); EXPECT_EQ(3, embedded_computations.size()); EXPECT_EQ(negate_computation, *embedded_computations.begin()); EXPECT_THAT(embedded_computations, UnorderedElementsAre(negate_computation, map1_computation, map2_computation)); } TEST_F(HloComputationTest, PostOrderSingleton) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_THAT(computation->MakeInstructionPostOrder(), ElementsAre(constant)); } TEST_F(HloComputationTest, PostOrderSimple) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto negate1 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kNegate, constant)); auto negate2 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kNegate, negate1)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_THAT(computation->MakeInstructionPostOrder(), ElementsAre(constant, negate1, negate2)); } TEST_F(HloComputationTest, PostOrderDisconnectedInstructions) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto constant3 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto constant4 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_THAT(computation->MakeInstructionPostOrder(), UnorderedElementsAre(constant1, constant2, constant3, constant4)); } TEST_F(HloComputationTest, PostOrderWithReshapeFirst) { const std::string& hlo_string = R"( HloModule test ENTRY %entry { parameter.0 = f32[3] parameter(0) broadcast.0 = f32[1, 3] broadcast(f32[3] parameter.0), dimensions={1} reshape.0 = f32[3, 1] reshape(f32[3] parameter.0) ROOT tuple.0 = (f32[1, 3], f32[3, 1]) tuple(f32[1, 3] broadcast.0, f32[3, 1] reshape.0) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); HloComputation* entry_computation = FindComputation(hlo_module.get(), "entry"); HloInstruction* parameter_0 = FindInstruction(hlo_module.get(), "parameter.0"); HloInstruction* broadcast_0 = FindInstruction(hlo_module.get(), "broadcast.0"); HloInstruction* reshape_0 = FindInstruction(hlo_module.get(), "reshape.0"); HloInstruction* tuple_0 = FindInstruction(hlo_module.get(), "tuple.0"); EXPECT_THAT(entry_computation->MakeInstructionPostOrder(), ElementsAre(parameter_0, broadcast_0, reshape_0, tuple_0)); EXPECT_THAT(entry_computation->MakeInstructionPostOrderWithReshapeFirst(), ElementsAre(parameter_0, reshape_0, broadcast_0, tuple_0)); } TEST_F(HloComputationTest, PostOrderWithMultipleRoots) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto constant3 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto add1 = builder.AddInstruction(HloInstruction::CreateBinary( r0f32_, HloOpcode::kAdd, constant1, constant2)); auto add2 = builder.AddInstruction(HloInstruction::CreateBinary( r0f32_, HloOpcode::kAdd, constant2, constant3)); auto add3 = builder.AddInstruction(HloInstruction::CreateBinary( r0f32_, HloOpcode::kAdd, constant1, constant3)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); auto post_order = computation->MakeInstructionPostOrder(); EXPECT_EQ(6, post_order.size()); EXPECT_THAT(post_order, UnorderedElementsAre(constant1, constant2, constant3, add1, add2, add3)); } TEST_F(HloComputationTest, VisitWithMultipleRoots) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto constant3 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); builder.AddInstruction(HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, constant1, constant2)); builder.AddInstruction(HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, constant2, constant3)); builder.AddInstruction(HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, constant1, constant3)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); class TestVisitor : public DfsHloVisitorWithDefault { public: explicit TestVisitor(HloComputation* computation) : computation_(computation) {} absl::Status DefaultAction(HloInstruction* hlo_instruction) override { EXPECT_FALSE(visited_set_.contains(hlo_instruction)); visited_set_.insert(hlo_instruction); last_visited_ = hlo_instruction; return absl::OkStatus(); } absl::Status FinishVisit(HloInstruction* root) override { EXPECT_EQ(computation_->root_instruction(), root); ++finish_visit_calls_; return absl::OkStatus(); } HloComputation* computation_; absl::flat_hash_set<HloInstruction*> visited_set_; int64_t finish_visit_calls_ = 0; HloInstruction* last_visited_ = nullptr; }; TestVisitor visitor(computation); EXPECT_IS_OK(computation->Accept(&visitor)); EXPECT_EQ(6, visitor.visited_set_.size()); EXPECT_EQ(1, visitor.finish_visit_calls_); EXPECT_EQ(computation->root_instruction(), visitor.last_visited_); } TEST_F(HloComputationTest, DeepCopyArray) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({1.0, 2.0, 3.0}))); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); auto copy = computation->DeepCopyInstruction(constant).value(); EXPECT_THAT(copy, GmockMatch(m::Copy(m::Op().Is(constant)))); } TEST_F(HloComputationTest, DeepCopyTuple) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({1.0, 2.0, 3.0}))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0))); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({constant1, constant2})); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); auto tuple_copy = computation->DeepCopyInstruction(tuple).value(); EXPECT_THAT(tuple_copy, GmockMatch(m::Tuple( m::Copy(m::GetTupleElement(m::Op().Is(tuple))), m::Copy(m::GetTupleElement(m::Op().Is(tuple)))))); EXPECT_EQ(0, tuple_copy->operand(0)->operand(0)->tuple_index()); EXPECT_EQ(1, tuple_copy->operand(1)->operand(0)->tuple_index()); } TEST_F(HloComputationTest, DeepCopyArrayAtIndices) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({1.0, 2.0, 3.0}))); auto computation = builder.Build(); { ShapeTree<bool> indices_to_copy(constant->shape(), true); EXPECT_THAT( computation->DeepCopyInstruction(constant, &indices_to_copy).value(), GmockMatch(m::Copy(m::Op().Is(constant)))); } { ShapeTree<bool> indices_to_copy(constant->shape(), false); EXPECT_EQ( computation->DeepCopyInstruction(constant, &indices_to_copy).value(), constant); } } TEST_F(HloComputationTest, DeepCopyTupleAtIndices) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({1.0, 2.0, 3.0}))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0))); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({constant1, constant2})); auto computation = builder.Build(); { ShapeTree<bool> indices_to_copy(tuple->shape(), true); ShapeTree<HloInstruction*> copies_added(tuple->shape(), nullptr); HloInstruction* deep_copy = computation->DeepCopyInstruction(tuple, &indices_to_copy, &copies_added) .value(); EXPECT_THAT(deep_copy, GmockMatch(m::Tuple( m::Copy(m::GetTupleElement(m::Op().Is(tuple))) .Is(copies_added.element({0})), m::Copy(m::GetTupleElement(m::Op().Is(tuple))) .Is(copies_added.element({1}))))); } { ShapeTree<bool> indices_to_copy(tuple->shape(), false); ShapeTree<HloInstruction*> copies_added(tuple->shape(), nullptr); HloInstruction* deep_copy = computation->DeepCopyInstruction(tuple, &indices_to_copy, &copies_added) .value(); EXPECT_THAT(deep_copy, GmockMatch(m::Tuple(m::GetTupleElement(m::Op().Is(tuple)), m::GetTupleElement(m::Op().Is(tuple))))); EXPECT_TRUE(copies_added.element({}) == nullptr); EXPECT_TRUE(copies_added.element({0}) == nullptr); EXPECT_TRUE(copies_added.element({1}) == nullptr); } { ShapeTree<bool> indices_to_copy(tuple->shape(), false); *indices_to_copy.mutable_element({0}) = true; ShapeTree<HloInstruction*> copies_added(tuple->shape(), nullptr); HloInstruction* deep_copy = computation->DeepCopyInstruction(tuple, &indices_to_copy, &copies_added) .value(); EXPECT_THAT(deep_copy, GmockMatch(m::Tuple( m::Copy(m::GetTupleElement(m::Op().Is(tuple))), m::GetTupleElement(m::Op().Is(tuple))))); EXPECT_TRUE(copies_added.element({}) == nullptr); EXPECT_TRUE(copies_added.element({0}) != nullptr); EXPECT_TRUE(copies_added.element({1}) == nullptr); } } TEST_F(HloComputationTest, DeepCopyToken) { auto builder = HloComputation::Builder(TestName()); auto token = builder.AddInstruction(HloInstruction::CreateToken()); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); auto copy = computation->DeepCopyInstruction(token).value(); EXPECT_THAT(copy, GmockMatch(m::AfterAll())); } TEST_F(HloComputationTest, DeepCopyTokenTuple) { auto builder = HloComputation::Builder(TestName()); auto token = builder.AddInstruction(HloInstruction::CreateToken()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0))); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({token, constant})); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); auto copy = computation->DeepCopyInstruction(tuple).value(); EXPECT_THAT(copy, GmockMatch(m::Tuple( m::GetTupleElement(m::Op().Is(tuple)), m::Copy(m::GetTupleElement(m::Op().Is(tuple)))))); } TEST_F(HloComputationTest, CycleDetection) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kNegate, constant)); auto add = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, negate, negate)); auto module = CreateNewUnverifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); ASSERT_IS_OK(add->AddControlDependencyTo(negate)); auto instructions = computation->MakeInstructionPostOrder(); EXPECT_EQ(3, instructions.size()); FunctionVisitor visitor( [](HloInstruction* instruction) { return absl::OkStatus(); }); auto visit_status = computation->Accept(&visitor); ASSERT_FALSE(visit_status.ok()); ASSERT_THAT(visit_status.message(), ::testing::ContainsRegex("cycle is detecte")); } TEST_F(HloComputationTest, RemoveInstructionWithDuplicateOperand) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto dead_negate = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kNegate, constant)); auto dead_add = builder.AddInstruction(HloInstruction::CreateBinary( r0f32_, HloOpcode::kAdd, dead_negate, dead_negate)); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kNegate, constant)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(4, computation->instruction_count()); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Negate(m::Op().Is(constant)))); EXPECT_EQ(negate, computation->root_instruction()); ASSERT_IS_OK(computation->RemoveInstructionAndUnusedOperands(dead_add)); EXPECT_EQ(2, computation->instruction_count()); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Negate(m::Op().Is(constant)))); EXPECT_EQ(negate, computation->root_instruction()); } TEST_F(HloComputationTest, RemoveSeveralUnusedFusionParameters) { const char* const kHloModule = R"( HloModule test f { p0 = f32[] parameter(0) p1 = f32[] parameter(1) p2 = f32[] parameter(2) add = f32[] add(p0, p2) ROOT neg = f32[] negate(p1) } ENTRY main { param0 = f32[] parameter(0) param1 = f32[] parameter(1) param2 = f32[] parameter(2) ROOT res = f32[] fusion(param0, param1, param2), kind=kLoop, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule(kHloModule)); auto root = module->entry_computation()->root_instruction(); auto dead_add = FindInstruction(module.get(), "add"); ASSERT_IS_OK(root->fused_instructions_computation() ->RemoveInstructionAndUnusedOperands(dead_add)); root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Fusion(m::Parameter(1)))); EXPECT_THAT(root->fused_expression_root(), GmockMatch(m::Negate(m::Parameter(0)))); } TEST_F(HloComputationTest, ReplaceParameter) { const char* const kHloModule = R"( HloModule ModuleWithWhile body { p_body = (f32[2], s32[]) parameter(0) val = f32[2] get-tuple-element(p_body), index=0 const = s32[] constant(-1) ROOT root = (f32[2], s32[]) tuple(val, const) } condition { p_cond = (f32[2], s32[]) parameter(0) gte = s32[] get-tuple-element(p_cond), index=1 const = s32[] constant(42) ROOT result = pred[] compare(gte, const), direction=EQ } ENTRY entry { param.1 = s32[] parameter(0) const = f32[2] constant({0,1}) while_init = (f32[2], s32[]) tuple(const, param.1) while = (f32[2], s32[]) while(while_init), condition=condition, body=body ROOT out = s32[] get-tuple-element(while), index=1 })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule(kHloModule)); HloComputation* body = module->GetComputationWithName("body"); Shape new_param_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(S32, {2}), ShapeUtil::MakeShape(S32, {})}); body->ReplaceParameter( 0, HloInstruction::CreateParameter(0, new_param_shape, "new_p_body")); EXPECT_TRUE(ShapeUtil::Equal(body->parameter_instruction(0)->shape(), new_param_shape)); } TEST_F(HloComputationTest, CloneWithControlDependency) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0f))); auto add = builder.AddInstruction(HloInstruction::CreateBinary( r0f32_, HloOpcode::kAdd, constant1, constant2)); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32_, "param0")); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kNegate, param)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build(add)); TF_CHECK_OK(negate->AddControlDependencyTo(add)); auto clone = computation->Clone(); auto cloned_add = clone->root_instruction(); EXPECT_EQ(cloned_add->opcode(), HloOpcode::kAdd); auto predecessors = cloned_add->control_predecessors(); EXPECT_EQ(1, predecessors.size()); EXPECT_EQ(HloOpcode::kNegate, predecessors[0]->opcode()); auto successors = predecessors[0]->control_successors(); EXPECT_THAT(successors, ::testing::ElementsAre(cloned_add)); } TEST_F(HloComputationTest, CloneWithReplacements) { auto builder = HloComputation::Builder(TestName()); Shape r0s64 = ShapeUtil::MakeShape(S64, {}); Shape r0s32 = ShapeUtil::MakeShape(S32, {}); Shape r0u32 = ShapeUtil::MakeShape(U32, {}); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32_, "p.0.lhs")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(1, r0f32_, "p.0.rhs")); auto param2 = builder.AddInstruction(HloInstruction::CreateParameter(2, r0s64, "p.1")); auto lt = builder.AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), param0, param1, ComparisonDirection::kLt)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build(lt)); absl::flat_hash_map<const HloInstruction*, std::unique_ptr<HloInstruction>> replacements; replacements.emplace(param2, HloInstruction::CreateParameter(2, r0s32, "p.1")); auto param3 = HloInstruction::CreateParameter(3, r0u32, "p.2"); std::vector<const HloInstruction*> extra_parameters{param3.get()}; auto clone = computation->CloneWithReplacements(&replacements, extra_parameters); ASSERT_EQ(clone->num_parameters(), 4); EXPECT_TRUE( ShapeUtil::Equal(clone->parameter_instruction(0)->shape(), r0f32_)); EXPECT_TRUE( ShapeUtil::Equal(clone->parameter_instruction(1)->shape(), r0f32_)); EXPECT_TRUE( ShapeUtil::Equal(clone->parameter_instruction(2)->shape(), r0s32)); EXPECT_TRUE( ShapeUtil::Equal(clone->parameter_instruction(3)->shape(), r0u32)); } TEST_F(HloComputationTest, CloneInContext) { HloComputation::Builder builder(TestName()); Shape r0s64 = ShapeUtil::MakeShape(S64, {}); Shape r0s32 = ShapeUtil::MakeShape(S32, {}); Shape r0u32 = ShapeUtil::MakeShape(U32, {}); HloInstruction* param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32_, "p.0.lhs")); HloInstruction* param1 = builder.AddInstruction( HloInstruction::CreateParameter(1, r0f32_, "p.0.rhs")); HloInstruction* param2 = builder.AddInstruction(HloInstruction::CreateParameter(2, r0s64, "p.1")); HloInstruction* lt = builder.AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), param0, param1, ComparisonDirection::kLt)); std::unique_ptr<VerifiedHloModule> module = CreateNewVerifiedModule(); const HloComputation& computation = *module->AddEntryComputation(builder.Build(lt)); absl::flat_hash_map<const HloInstruction*, std::unique_ptr<HloInstruction>> replacements; replacements.emplace(param2, HloInstruction::CreateParameter(2, r0s32, "p.1")); std::unique_ptr<HloInstruction> param3 = HloInstruction::CreateParameter(3, r0u32, "p.2"); std::vector<const HloInstruction*> extra_parameters = {param3.get()}; HloCloneContext clone_context(module.get()); std::unique_ptr<HloComputation> clone = computation.CloneInContext( clone_context, &replacements, extra_parameters); ASSERT_EQ(clone->num_parameters(), 4); EXPECT_TRUE( ShapeUtil::Equal(clone->parameter_instruction(0)->shape(), r0f32_)); EXPECT_TRUE( ShapeUtil::Equal(clone->parameter_instruction(1)->shape(), r0f32_)); EXPECT_TRUE( ShapeUtil::Equal(clone->parameter_instruction(2)->shape(), r0s32)); EXPECT_TRUE( ShapeUtil::Equal(clone->parameter_instruction(3)->shape(), r0u32)); } TEST_F(HloComputationTest, Stringification) { const Shape s1 = ShapeUtil::MakeShape(F32, {5, 10}); const Shape s2 = ShapeUtil::MakeShape(F32, {20, 10}); const Shape s2t = ShapeUtil::MakeShape(F32, {10, 20}); const Shape sout = ShapeUtil::MakeShape(F32, {5, 20}); HloComputation::Builder builder("TransposeDot"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter(0, s1, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter(1, s2, "y")); HloInstruction* reshape = builder.AddInstruction(HloInstruction::CreateTranspose(s2t, y, {1, 0})); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); PrecisionConfig precision_config; precision_config.mutable_operand_precision()->Resize( 2, PrecisionConfig::DEFAULT); builder.AddInstruction( HloInstruction::CreateDot(sout, x, reshape, dot_dnums, precision_config)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); computation->SetExecutionThread("MainThread"); auto options = HloPrintOptions().set_print_metadata(false); const std::string expected_computation = R"(%TransposeDot (x: f32[5,10], y: f32[20,10]) -> f32[5,20] { %x = f32[5,10]{1,0} parameter(0) %y = f32[20,10]{1,0} parameter(1) %transpose = f32[10,20]{1,0} transpose(f32[20,10]{1,0} %y), dimensions={1,0} ROOT %dot = f32[5,20]{1,0} dot(f32[5,10]{1,0} %x, f32[10,20]{1,0} %transpose), lhs_contracting_dims={1}, rhs_contracting_dims={0} }, execution_thread="MainThread")"; EXPECT_EQ(computation->ToString(options), expected_computation); } TEST_F(HloComputationTest, StringificationIndent) { const Shape s1 = ShapeUtil::MakeShape(F32, {5, 10}); const Shape s2 = ShapeUtil::MakeShape(F32, {20, 10}); const Shape s2t = ShapeUtil::MakeShape(F32, {10, 20}); const Shape sout = ShapeUtil::MakeShape(F32, {5, 20}); HloComputation::Builder builder("TransposeDot"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter(0, s1, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter(1, s2, "y")); HloInstruction* reshape = builder.AddInstruction(HloInstruction::CreateTranspose(s2t, y, {1, 0})); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); PrecisionConfig precision_config; precision_config.mutable_operand_precision()->Resize( 2, PrecisionConfig::DEFAULT); builder.AddInstruction( HloInstruction::CreateDot(sout, x, reshape, dot_dnums, precision_config)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); computation->SetExecutionThread("MainThread"); auto options = HloPrintOptions().set_print_metadata(false).set_indent_amount(2); const std::string expected_computation = R"( %TransposeDot (x: f32[5,10], y: f32[20,10]) -> f32[5,20] { %x = f32[5,10]{1,0} parameter(0) %y = f32[20,10]{1,0} parameter(1) %transpose = f32[10,20]{1,0} transpose(f32[20,10]{1,0} %y), dimensions={1,0} ROOT %dot = f32[5,20]{1,0} dot(f32[5,10]{1,0} %x, f32[10,20]{1,0} %transpose), lhs_contracting_dims={1}, rhs_contracting_dims={0} }, execution_thread="MainThread")"; EXPECT_EQ(computation->ToString(options), expected_computation); } TEST_F(HloComputationTest, StringificationCanonical) { const Shape s1 = ShapeUtil::Mak
2,173
cpp
tensorflow/tensorflow
hlo_input_output_alias_config
third_party/xla/xla/hlo/ir/hlo_input_output_alias_config.cc
third_party/xla/xla/service/hlo_input_output_alias_config_test.cc
#ifndef XLA_HLO_IR_HLO_INPUT_OUTPUT_ALIAS_CONFIG_H_ #define XLA_HLO_IR_HLO_INPUT_OUTPUT_ALIAS_CONFIG_H_ #include <cstdint> #include <optional> #include <ostream> #include <string> #include <tuple> #include <utility> #include "absl/container/btree_set.h" #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "xla/service/hlo.pb.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" namespace xla { class HloModule; class HloInputOutputAliasConfig { public: enum AliasKind { kMayAlias, kMustAlias, }; struct Alias { Alias(int64_t parameter_number, ShapeIndex parameter_index, AliasKind kind = kMayAlias) : parameter_number(parameter_number), parameter_index(std::move(parameter_index)), kind(kind) {} int64_t parameter_number; ShapeIndex parameter_index; AliasKind kind; bool must_alias() const { return kind == kMustAlias; } std::string ToString() const { return absl::StrFormat("(%lld, %s, %s)", parameter_number, parameter_index.ToString(), kind == kMustAlias ? "must-alias" : "may-alias"); } }; HloInputOutputAliasConfig() = default; explicit HloInputOutputAliasConfig(Shape output_shape) : alias_(std::move(output_shape)) {} absl::Status SetUpAlias(const ShapeIndex& output_index, int64_t param_number, const ShapeIndex& param_index, AliasKind must_alias = kMayAlias); bool ParameterHasAlias(int64_t param_number, const ShapeIndex& param_index) const { return GetAliasedOutput(param_number, param_index).has_value(); } bool OutputHasAlias(const ShapeIndex& output_index) const; HloInputOutputAliasProto ToProto() const; static absl::StatusOr<HloInputOutputAliasConfig> CreateFromProto( Shape output_shape, const HloInputOutputAliasProto& proto); std::optional<ShapeIndex> GetAliasedOutput( int64_t param_number, const ShapeIndex& param_index) const; std::optional<Alias> GetAliasedParameter( const ShapeIndex& output_index) const; bool ParameterMustAlias(int64_t param_number, const ShapeIndex& param_index) const; using AliasFn = absl::FunctionRef<void(const ShapeIndex& output_index, const Alias&)>; void ForEachAlias(AliasFn fn) const; using AliasFnWithStatus = absl::FunctionRef<absl::Status( const ShapeIndex& output_index, const Alias&)>; absl::Status Verify(const HloModule& module, absl::FunctionRef<int64_t(const Shape&)> size_func) const; absl::Status ForEachAliasWithStatus(AliasFnWithStatus fn) const; const Shape& shape() const; std::string ToString() const; std::string ToShortString() const; private: ShapeTree<std::optional<Alias>> alias_; }; class HloBufferDonorConfig { public: struct BufferDonor { BufferDonor(int64_t param_number, ShapeIndex param_index) : param_number(param_number), param_index(std::move(param_index)) {} int64_t param_number; ShapeIndex param_index; bool operator==(const BufferDonor& other) const { return param_number == other.param_number && param_index == other.param_index; } bool operator<(const BufferDonor& other) const { return std::forward_as_tuple(param_number, param_index) < std::forward_as_tuple(other.param_number, other.param_index); } bool operator>(const BufferDonor& other) const { return other < *this; } bool operator<=(const BufferDonor& other) const { return !(*this > other); } bool operator>=(const BufferDonor& other) const { return !(*this < other); } template <typename H> friend H AbslHashValue(H h, const BufferDonor& donor) { return H::combine(std::move(h), donor.param_number, donor.param_index); } }; HloBufferDonorConfig() = default; absl::Status AddBufferDonor(int64_t param_number, const ShapeIndex& param_index); absl::Status RemoveBufferDonor(int64_t param_number, const ShapeIndex& param_index); bool ParameterIsBufferDonor(int64_t param_number, const ShapeIndex& param_index) const; HloBufferDonorProto ToProto() const; static absl::StatusOr<HloBufferDonorConfig> CreateFromProto( const HloBufferDonorProto& proto); absl::Status Verify(const HloModule& module) const; const absl::btree_set<BufferDonor>& buffer_donor() const { return buffer_donor_; } std::string ToString() const; std::string ToShortString() const; private: absl::btree_set<BufferDonor> buffer_donor_; }; std::ostream& operator<<(std::ostream& out, const HloInputOutputAliasConfig& config); std::ostream& operator<<(std::ostream& out, const HloBufferDonorConfig& config); } #endif #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include <cstdint> #include <optional> #include <ostream> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/layout_util.h" #include "xla/service/hlo.pb.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace xla { bool HloInputOutputAliasConfig::OutputHasAlias( const ShapeIndex& output_index) const { return alias_.element(output_index).has_value(); } absl::Status HloInputOutputAliasConfig::SetUpAlias( const ShapeIndex& output_index, int64_t param_number, const ShapeIndex& param_index, HloInputOutputAliasConfig::AliasKind must_alias) { TF_RET_CHECK(ShapeUtil::IndexIsValid(alias_.shape(), output_index)) << "Trying to set up alias at " << output_index.ToString() << " which is an invalid index for shape " << ShapeUtil::HumanString(alias_.shape()); TF_RET_CHECK(param_number >= 0) << param_number; TF_RET_CHECK(!alias_.element(output_index)) << absl::StrFormat( "Trying to set up output alias for param %lld at %s but failed: output " "index %s is already aliased with param %lld at %s", param_number, param_index.ToString(), output_index.ToString(), alias_.element(output_index)->parameter_number, alias_.element(output_index)->parameter_index.ToString()); (*alias_.mutable_element(output_index)) = Alias(param_number, param_index, must_alias); VLOG(4) << "Set up alias between output index " << output_index.ToString() << " and parameter " << param_number << " at index " << param_index.ToString(); return absl::OkStatus(); } HloInputOutputAliasProto HloInputOutputAliasConfig::ToProto() const { HloInputOutputAliasProto result; alias_.ForEachElement( [&](const ShapeIndex& index, const std::optional<Alias>& data) { if (data) { HloInputOutputAliasProto::AliasEntryProto entry; for (int64_t i : index) { entry.add_output_shape_index(i); } entry.set_parameter_number(data->parameter_number); for (int64_t i : data->parameter_index) { entry.add_parameter_shape_index(i); } if (data->must_alias()) { entry.set_kind(Kind::MUST_ALIAS); } else { entry.set_kind(Kind::MAY_ALIAS); } result.add_entries()->Swap(&entry); } }); return result; } absl::StatusOr<HloInputOutputAliasConfig> HloInputOutputAliasConfig::CreateFromProto( Shape output_shape, const HloInputOutputAliasProto& proto) { HloInputOutputAliasConfig result(std::move(output_shape)); for (const HloInputOutputAliasProto::AliasEntryProto& entry : proto.entries()) { ShapeIndex output_index(entry.output_shape_index().begin(), entry.output_shape_index().end()); int64_t param_number = entry.parameter_number(); ShapeIndex param_index(entry.parameter_shape_index().begin(), entry.parameter_shape_index().end()); AliasKind kind = entry.kind() == Kind::MAY_ALIAS ? kMayAlias : kMustAlias; TF_RETURN_IF_ERROR( result.SetUpAlias(output_index, param_number, param_index, kind)); } return result; } const Shape& HloInputOutputAliasConfig::shape() const { return alias_.shape(); } std::string HloInputOutputAliasConfig::ToString() const { std::vector<std::string> pieces; pieces.push_back("HloInputOutputAliasConfig"); pieces.push_back( absl::StrFormat(" Output shape: %s", alias_.shape().ToString())); ForEachAlias([&](const ShapeIndex& output_index, const Alias& alias) { pieces.push_back(absl::StrFormat( " OutputIndex %s is %saliased with parameter %lld at %s:", output_index.ToString(), alias.kind == kMustAlias ? "must-" : "may-", alias.parameter_number, alias.parameter_index.ToString())); }); return absl::StrJoin(pieces, "\n"); } std::string HloInputOutputAliasConfig::ToShortString() const { std::vector<std::string> pieces; for (const auto& p : alias_) { const ShapeIndex& index = p.first; if (std::optional<Alias> alias = p.second) { pieces.push_back( absl::StrFormat("%s: %s", index.ToString(), alias->ToString())); } } return absl::StrJoin(pieces, ", "); } bool HloInputOutputAliasConfig::ParameterMustAlias( int64_t param_number, const ShapeIndex& param_index) const { bool result = false; alias_.ForEachElement( [&](const xla::ShapeIndex&, std::optional<Alias> alias) { if (alias && alias->parameter_number == param_number && alias->parameter_index == param_index && alias->must_alias()) { result = true; } }); return result; } std::optional<ShapeIndex> HloInputOutputAliasConfig::GetAliasedOutput( int64_t param_number, const ShapeIndex& param_index) const { for (auto it = alias_.rbegin(); it != alias_.rend(); ++it) { if (it->second.has_value() && it->second->parameter_number == param_number && it->second->parameter_index == param_index) { return it->first; } } return std::nullopt; } std::optional<HloInputOutputAliasConfig::Alias> HloInputOutputAliasConfig::GetAliasedParameter( const ShapeIndex& output_index) const { CHECK(ShapeUtil::IndexIsValid(alias_.shape(), output_index)) << ToString() << " " << alias_.shape().ToString() << " " << output_index; return alias_.element(output_index); } void HloInputOutputAliasConfig::ForEachAlias(AliasFn fn) const { alias_.ForEachElement( [&](const ShapeIndex& output_index, std::optional<Alias> aliased) { if (aliased) { fn(output_index, *aliased); } }); } absl::Status HloInputOutputAliasConfig::ForEachAliasWithStatus( AliasFnWithStatus fn) const { return alias_.ForEachElementWithStatus( [&](const ShapeIndex& output_index, std::optional<Alias> aliased) { if (aliased) { TF_RETURN_IF_ERROR(fn(output_index, *aliased)); } return absl::OkStatus(); }); } absl::Status HloInputOutputAliasConfig::Verify( const HloModule& module, absl::FunctionRef<int64_t(const Shape&)> size_func) const { std::vector<ShapeTree<bool>> param_has_seen; const HloComputation* entry = module.entry_computation(); for (int64_t i = 0; i < entry->num_parameters(); ++i) { HloInstruction* param = entry->parameter_instruction(i); param_has_seen.emplace_back(param->shape()); } return ForEachAliasWithStatus([&](const ShapeIndex& output_index, const Alias& alias) -> absl::Status { TF_RET_CHECK(0 <= alias.parameter_number); TF_RET_CHECK(entry->num_parameters() > alias.parameter_number); const Shape& param_shape = module.entry_computation_layout().parameter_shape( alias.parameter_number); const Shape& output_shape = module.entry_computation_layout().result_shape(); TF_RET_CHECK(ShapeUtil::IndexIsValid(param_shape, alias.parameter_index)); TF_RET_CHECK(ShapeUtil::IndexIsValid(output_shape, output_index)); const Shape& param_subshape = ShapeUtil::GetSubshape(param_shape, alias.parameter_index); const Shape& output_subshape = ShapeUtil::GetSubshape(output_shape, output_index); TF_RET_CHECK(LayoutUtil::IsDenseArray(param_subshape)); TF_RET_CHECK(LayoutUtil::IsDenseArray(output_subshape)); if (size_func(param_subshape) != size_func(output_subshape)) { return Internal( "Expected aliased input %lld at index %s and output at index %s to " "have the same size. Input sub-shape is %s with size %lld, output " "sub-shape is %s with size %lld", alias.parameter_number, alias.parameter_index.ToString(), output_index.ToString(), ShapeUtil::HumanStringWithLayout(param_subshape), size_func(param_subshape), ShapeUtil::HumanStringWithLayout(output_subshape), size_func(output_subshape)); } TF_RET_CHECK(param_has_seen[alias.parameter_number].element( alias.parameter_index) == false); *(param_has_seen[alias.parameter_number].mutable_element( alias.parameter_index)) = true; return absl::OkStatus(); }); } std::ostream& operator<<(std::ostream& out, const HloInputOutputAliasConfig& config) { out << config.ToString(); return out; } absl::Status HloBufferDonorConfig::AddBufferDonor( int64_t param_number, const ShapeIndex& param_index) { TF_RET_CHECK(param_number >= 0) << param_number; VLOG(4) << "Register the parameter " << param_number << " at index " << param_index.ToString() << " as a buffer donor."; buffer_donor_.emplace(BufferDonor(param_number, param_index)); return absl::OkStatus(); } absl::Status HloBufferDonorConfig::RemoveBufferDonor( int64_t param_number, const ShapeIndex& param_index) { TF_RET_CHECK(param_number >= 0) << param_number; buffer_donor_.erase(BufferDonor(param_number, param_index)); return absl::OkStatus(); } HloBufferDonorProto HloBufferDonorConfig::ToProto() const { HloBufferDonorProto result; for (const auto& donor : buffer_donor_) { HloBufferDonorProto::BufferDonorEntryProto entry; entry.set_parameter_number(donor.param_number); for (int64_t i : donor.param_index) { entry.add_parameter_shape_index(i); } result.add_entries()->Swap(&entry); } return result; } absl::StatusOr<HloBufferDonorConfig> HloBufferDonorConfig::CreateFromProto( const HloBufferDonorProto& proto) { HloBufferDonorConfig result; for (const HloBufferDonorProto::BufferDonorEntryProto& entry : proto.entries()) { int64_t param_number = entry.parameter_number(); ShapeIndex param_index(entry.parameter_shape_index().begin(), entry.parameter_shape_index().end()); TF_RETURN_IF_ERROR(result.AddBufferDonor(param_number, param_index)); } return result; } std::string HloBufferDonorConfig::ToString() const { std::vector<std::string> pieces; pieces.push_back("HloBufferDonorConfig"); for (const auto& donor : buffer_donor_) { pieces.push_back(absl::StrFormat( " Parameter %lld at %s is registered as a buffer donor.", donor.param_number, donor.param_index.ToString())); } return absl::StrJoin(pieces, "\n"); } std::string HloBufferDonorConfig::ToShortString() const { std::vector<std::string> pieces; pieces.reserve(buffer_donor_.size()); for (const auto& donor : buffer_donor_) { pieces.push_back(absl::StrFormat("(%lld, %s)", donor.param_number, donor.param_index.ToString())); } return absl::StrJoin(pieces, ", "); } bool HloBufferDonorConfig::ParameterIsBufferDonor( int64_t param_number, const ShapeIndex& param_index) const { auto it = buffer_donor_.find(BufferDonor(param_number, param_index)); return it != buffer_donor_.end(); } absl::Status HloBufferDonorConfig::Verify(const HloModule& module) const { const HloComputation* entry = module.entry_computation(); const auto& alias_config = module.input_output_alias_config(); for (const auto& donor : buffer_donor_) { TF_RET_CHECK(donor.param_number >= 0); TF_RET_CHECK(donor.param_number < entry->num_parameters()); const Shape& param_shape = module.entry_computation_layout().parameter_shape(donor.param_number); TF_RET_CHECK(ShapeUtil::IndexIsValid(param_shape, donor.param_index)); const Shape& param_subshape = ShapeUtil::GetSubshape(param_shape, donor.param_index); TF_RET_CHECK(LayoutUtil::IsDenseArray(param_subshape)); if (alias_config.ParameterHasAlias(donor.param_number, donor.param_index)) { return Internal( "Input %lld at index %s is registered as a buffer donor. However, it " "is also in the input output alias config.", donor.param_number, donor.param_index.ToString()); } } return absl::OkStatus(); } std::ostream& operator<<(std::ostream& out, const HloBufferDonorConfig& config) { out << config.ToString(); return out; } }
#include "xla/hlo/ir/hlo_input_output_alias_config.h" #include <memory> #include <string> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_memory_scheduler.h" #include "xla/service/hlo_ordering.h" #include "xla/shape_util.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/types.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class HloInputOutputAliasConfigTest : public HloTestBase { protected: void expect_aliased(const ShapeIndex& output_index, int64_t param_number, const ShapeIndex& param_index, const HloInputOutputAliasConfig& config) { std::optional<ShapeIndex> aliased_output = config.GetAliasedOutput(param_number, param_index); EXPECT_TRUE(aliased_output); EXPECT_EQ(aliased_output.value(), output_index); std::optional<HloInputOutputAliasConfig::Alias> aliased_param = config.GetAliasedParameter(output_index); EXPECT_TRUE(aliased_param); EXPECT_EQ(aliased_param->parameter_number, param_number); EXPECT_EQ(aliased_param->parameter_index, param_index); } void expect_not_aliased(const ShapeIndex& output_index, int64_t param_number, const ShapeIndex& param_index, const HloInputOutputAliasConfig& config) { std::optional<ShapeIndex> aliased_output = config.GetAliasedOutput(param_number, param_index); EXPECT_FALSE(aliased_output && aliased_output == output_index); std::optional<HloInputOutputAliasConfig::Alias> aliased_param = config.GetAliasedParameter(output_index); EXPECT_FALSE(aliased_param && aliased_param->parameter_number == param_number && aliased_param->parameter_index == param_index); } }; TEST_F(HloInputOutputAliasConfigTest, SimpleAliasing) { const std::string module_str = R"( HloModule TEST ENTRY main { a = f32[] parameter(0) b = f32[] parameter(1) ROOT root = (f32[], f32[]) tuple(%a, %b) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); HloInputOutputAliasConfig config( module->entry_computation()->root_instruction()->shape()); TF_ASSERT_OK(config.SetUpAlias( {0}, 1, {})); expect_aliased({0}, 1, {}, config); expect_not_aliased({1}, 1, {}, config); expect_not_aliased({0}, 0, {}, config); } TEST_F(HloInputOutputAliasConfigTest, SimpleAliasingWithTupleInput) { const std::string module_str = R"( HloModule TEST ENTRY main { param = (f32[], f32[]) parameter(0) gte1 = f32[] get-tuple-element(%param), index=0 gte2 = f32[] get-tuple-element(%param), index=1 ROOT root = (f32[], f32[]) tuple(%gte1, %gte2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); HloInputOutputAliasConfig config( module->entry_computation()->root_instruction()->shape()); TF_ASSERT_OK(config.SetUpAlias( {0}, 0, {0})); TF_ASSERT_OK(config.SetUpAlias( {1}, 0, {1})); expect_aliased({0}, 0, {0}, config); expect_aliased({1}, 0, {1}, config); expect_not_aliased({1}, 1, {}, config); expect_not_aliased({0}, 0, {}, config); } TEST_F(HloInputOutputAliasConfigTest, InputDoNotAliasTwice) { const std::string module_str = R"( HloModule TEST ENTRY main { a = f32[] parameter(0) b = f32[] parameter(1) ROOT root = (f32[], f32[]) tuple(%a, %b) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); HloInputOutputAliasConfig config( module->entry_computation()->root_instruction()->shape()); TF_ASSERT_OK(config.SetUpAlias( {0}, 0, {})); TF_ASSERT_OK(config.SetUpAlias( {1}, 0, {})); ASSERT_IS_NOT_OK(config.Verify(*module, [](const Shape& shape) { return ShapeUtil::ByteSizeOf(shape); })); } TEST_F(HloInputOutputAliasConfigTest, SizesMustMatch) { const std::string module_str = R"( HloModule TEST ENTRY main { a = f32[] parameter(0) b = f32[4096] parameter(1) ROOT root = (f32[], f32[4096]) tuple(%a, %b) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); HloInputOutputAliasConfig config( module->entry_computation()->root_instruction()->shape()); TF_ASSERT_OK(config.SetUpAlias( {1}, 0, {})); ASSERT_IS_NOT_OK(config.Verify(*module, [](const Shape& shape) { return ShapeUtil::ByteSizeOf(shape); })); } TEST_F(HloInputOutputAliasConfigTest, OutputDoNotAliasTwice) { const std::string module_str = R"( HloModule TEST ENTRY main { a = f32[] parameter(0) b = f32[] parameter(1) ROOT root = (f32[], f32[]) tuple(%a, %b) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); HloInputOutputAliasConfig config( module->entry_computation()->root_instruction()->shape()); TF_ASSERT_OK(config.SetUpAlias( {0}, 0, {})); ASSERT_IS_NOT_OK(config.SetUpAlias( {0}, 1, {})); } class HloBufferDonorConfigTest : public HloTestBase {}; TEST_F(HloBufferDonorConfigTest, SimpleBufferDonor) { const std::string module_str = R"( HloModule TEST ENTRY main { a = f32[] parameter(0) b = f32[] parameter(1) ROOT root = (f32[], f32[]) tuple(%a, %b) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); HloBufferDonorConfig config; TF_ASSERT_OK(config.AddBufferDonor(0, {})); EXPECT_TRUE(config.ParameterIsBufferDonor(0, {})); EXPECT_FALSE(config.ParameterIsBufferDonor(1, {})); TF_ASSERT_OK(config.AddBufferDonor(1, {})); EXPECT_TRUE(config.ParameterIsBufferDonor(0, {})); EXPECT_TRUE(config.ParameterIsBufferDonor(1, {})); TF_ASSERT_OK(config.RemoveBufferDonor(0, {})); EXPECT_FALSE(config.ParameterIsBufferDonor(0, {})); EXPECT_TRUE(config.ParameterIsBufferDonor(1, {})); TF_ASSERT_OK(config.Verify(*module)); TF_ASSERT_OK(config.AddBufferDonor(2, {})); ASSERT_IS_NOT_OK(config.Verify(*module)); } TEST_F(HloBufferDonorConfigTest, SimpleBufferDonorWithTupleInput) { const std::string module_str = R"( HloModule TEST ENTRY main { param = (f32[], f32[]) parameter(0) gte1 = f32[] get-tuple-element(%param), index=0 gte2 = f32[] get-tuple-element(%param), index=1 ROOT root = (f32[], f32[]) tuple(%gte1, %gte2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); HloBufferDonorConfig config; TF_ASSERT_OK(config.AddBufferDonor(0, {0})); EXPECT_TRUE(config.ParameterIsBufferDonor(0, {0})); EXPECT_FALSE(config.ParameterIsBufferDonor(0, {1})); EXPECT_FALSE(config.ParameterIsBufferDonor(0, {})); EXPECT_FALSE(config.ParameterIsBufferDonor(1, {})); TF_ASSERT_OK(config.AddBufferDonor(0, {1})); EXPECT_TRUE(config.ParameterIsBufferDonor(0, {0})); EXPECT_TRUE(config.ParameterIsBufferDonor(0, {1})); EXPECT_FALSE(config.ParameterIsBufferDonor(0, {})); EXPECT_FALSE(config.ParameterIsBufferDonor(1, {})); TF_ASSERT_OK(config.Verify(*module)); TF_ASSERT_OK(config.AddBufferDonor(0, {2})); ASSERT_IS_NOT_OK(config.Verify(*module)); } TEST_F(HloBufferDonorConfigTest, BufferDonorInputOutputAliasOverlap) { const std::string module_str = R"( HloModule TEST ENTRY main { param = (f32[], f32[]) parameter(0) gte1 = f32[] get-tuple-element(%param), index=0 gte2 = f32[] get-tuple-element(%param), index=1 ROOT root = (f32[], f32[]) tuple(%gte1, %gte2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); HloBufferDonorConfig config; TF_ASSERT_OK(config.AddBufferDonor(0, {0})); TF_ASSERT_OK(config.Verify(*module)); TF_ASSERT_OK(module->input_output_alias_config().SetUpAlias({0}, 0, {0})); ASSERT_IS_NOT_OK(config.Verify(*module)); } } }
2,174
cpp
tensorflow/tensorflow
backend_config
third_party/xla/xla/hlo/ir/backend_config.cc
third_party/xla/xla/hlo/ir/backend_config_test.cc
#ifndef XLA_HLO_IR_BACKEND_CONFIG_H_ #define XLA_HLO_IR_BACKEND_CONFIG_H_ #include <memory> #include <string> #include <utility> #include "absl/base/thread_annotations.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/synchronization/mutex.h" #include "tsl/platform/protobuf.h" namespace xla { absl::StatusOr<std::string> BackendConfigToRawString( const tsl::protobuf::Message& proto); std::unique_ptr<tsl::protobuf::Message> CloneBackendConfigProto( const tsl::protobuf::Message* proto); class BackendConfigWrapper { public: BackendConfigWrapper() = default; explicit BackendConfigWrapper(std::string raw_string) : raw_string_(std::move(raw_string)) {} explicit BackendConfigWrapper(const tsl::protobuf::Message& proto) : proto_(CloneBackendConfigProto(&proto)) {} BackendConfigWrapper(const BackendConfigWrapper& other) { absl::MutexLock other_lock{&other.mutex_}; proto_ = CloneBackendConfigProto(other.proto_.get()); raw_string_ = other.raw_string_; } BackendConfigWrapper& operator=(BackendConfigWrapper&& other); bool operator==(const BackendConfigWrapper& other) const; bool operator!=(const BackendConfigWrapper& other) const { return !(*this == other); } const std::string& GetRawString() const { absl::WriterMutexLock lock{&mutex_}; return GetRawStringWithoutMutex(); } absl::Status GetProto(tsl::protobuf::Message* output_proto) const; bool empty() const { absl::MutexLock lock{&mutex_}; return proto_ == nullptr && raw_string_.empty(); } private: const std::string& GetRawStringWithoutMutex() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(mutex_); mutable absl::Mutex mutex_; mutable std::unique_ptr<tsl::protobuf::Message> proto_ ABSL_GUARDED_BY(mutex_); mutable std::string raw_string_ ABSL_GUARDED_BY(mutex_); }; } #endif #include "xla/hlo/ir/backend_config.h" #include <memory> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/synchronization/mutex.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/human_readable_json.h" #include "tsl/platform/protobuf.h" namespace xla { std::unique_ptr<tsl::protobuf::Message> CloneBackendConfigProto( const tsl::protobuf::Message* proto) { if (proto == nullptr) { return nullptr; } std::unique_ptr<tsl::protobuf::Message> result(proto->New()); result->CopyFrom(*proto); return result; } absl::StatusOr<std::string> BackendConfigToRawString( const tsl::protobuf::Message& proto) { return tsl::ProtoToHumanReadableJson(proto, true); } const std::string& BackendConfigWrapper::GetRawStringWithoutMutex() const { if (proto_ && raw_string_.empty()) { raw_string_ = BackendConfigToRawString(*proto_).value(); } static const std::string* kEmptyString = new std::string(); return raw_string_.empty() ? *kEmptyString : raw_string_; } absl::Status BackendConfigWrapper::GetProto( tsl::protobuf::Message* output_proto) const { output_proto->Clear(); absl::WriterMutexLock lock{&mutex_}; if (proto_ != nullptr) { if (proto_->GetDescriptor() != output_proto->GetDescriptor()) { return Internal("Mismatched backend config descriptors."); } output_proto->CopyFrom(*proto_); return absl::OkStatus(); } if (raw_string_.empty()) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(tsl::HumanReadableJsonToProto(raw_string_, output_proto)); proto_ = CloneBackendConfigProto(output_proto); return absl::OkStatus(); } BackendConfigWrapper& BackendConfigWrapper::operator=( BackendConfigWrapper&& other) { std::unique_ptr<tsl::protobuf::Message> temp_proto; std::string temp_string; { absl::MutexLock other_lock{&other.mutex_}; temp_proto = std::move(other.proto_); temp_string = std::move(other.raw_string_); } absl::MutexLock this_lock{&mutex_}; proto_ = std::move(temp_proto); raw_string_ = std::move(temp_string); return *this; } bool BackendConfigWrapper::operator==(const BackendConfigWrapper& other) const { tsl::protobuf::Message* this_proto = nullptr; { absl::MutexLock this_lock{&mutex_}; this_proto = proto_.get(); } const std::string* other_raw_string = nullptr; { absl::MutexLock other_lock{&other.mutex_}; if (this_proto != nullptr && other.proto_ != nullptr) { using ::tsl::protobuf::util::MessageDifferencer; return MessageDifferencer::Equals(*this_proto, *other.proto_); } other_raw_string = &other.GetRawStringWithoutMutex(); } return GetRawString() == *other_raw_string; } }
#include "xla/hlo/ir/backend_config.h" #include <memory> #include <string> #include <thread> #include <utility> #include <vector> #include "absl/strings/string_view.h" #include "absl/synchronization/notification.h" #include "xla/service/gpu/backend_configs.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/test.h" namespace xla { namespace { const int kNumThreads = 100; const int kNumRepetitions = 100; constexpr absl::string_view kRawString = R"({"operation_queue_id":"0","wait_on_operation_queues":[],"fusion_backend_config":{"kind":"__triton_gemm","triton_gemm_config":{"block_m":"256","block_n":"256","block_k":"32","split_k":"1","num_stages":"1","num_warps":"16","num_ctas":"1"}},"force_earliest_schedule":false})"; template <typename Input, typename CheckFn> void RunThreaded(Input input, CheckFn check_fn) { for (int i = 0; i < kNumRepetitions; ++i) { BackendConfigWrapper source(input); absl::Notification all_threads_created; std::vector<std::unique_ptr<std::thread>> threads; for (int i = 0; i < kNumThreads; ++i) { threads.emplace_back(std::make_unique<std::thread>([&] { all_threads_created.WaitForNotification(); check_fn(source); })); } all_threads_created.Notify(); for (int i = 0; i < kNumThreads; ++i) { threads[i]->join(); } } } TEST(BackendConfigWrapperTest, ConcurrentGetProto) { RunThreaded(std::string{kRawString}, [](BackendConfigWrapper& source) { gpu::GpuBackendConfig proto; TF_EXPECT_OK(source.GetProto(&proto)); EXPECT_TRUE(proto.has_fusion_backend_config()); BackendConfigWrapper wrapped(proto); EXPECT_TRUE(wrapped == source); }); } TEST(BackendConfigWrapperTest, ConcurrentGetRawString) { BackendConfigWrapper source_json(std::string{kRawString}); gpu::GpuBackendConfig proto; TF_EXPECT_OK(source_json.GetProto(&proto)); RunThreaded(proto, [](BackendConfigWrapper& source) { std::string raw_string = source.GetRawString(); EXPECT_EQ(raw_string, kRawString); BackendConfigWrapper wrapped(raw_string); EXPECT_TRUE(wrapped == source); }); } TEST(BackendConfigWrapperTest, AssignmentToNonEmptyIsOK) { BackendConfigWrapper a(std::string{kRawString}); BackendConfigWrapper b(std::string{kRawString}); a = std::move(b); EXPECT_TRUE(a == BackendConfigWrapper(std::string{kRawString})); } TEST(BackendConfigWrapperTest, AssignmentDoesNotDeadlock) { BackendConfigWrapper source; BackendConfigWrapper& ref = source; source = std::move(ref); } TEST(BackendConfigWrapperTest, SelfComparisonDoesNotDeadlock) { BackendConfigWrapper source(std::string{kRawString}); EXPECT_TRUE(source == source); } TEST(BackendConfigWrapperTest, ComparisonDoesNotDeadlock) { BackendConfigWrapper source_json(std::string{kRawString}); gpu::GpuBackendConfig proto; TF_EXPECT_OK(source_json.GetProto(&proto)); RunThreaded(std::string{kRawString}, [&proto](BackendConfigWrapper& source) { BackendConfigWrapper other_first(proto); EXPECT_TRUE(other_first == source); BackendConfigWrapper other_second(proto); EXPECT_TRUE(source == other_second); }); } } }
2,175
cpp
tensorflow/tensorflow
hlo_opcode
third_party/xla/xla/hlo/ir/hlo_opcode.cc
third_party/xla/xla/service/hlo_opcode_test.cc
#ifndef XLA_HLO_IR_HLO_OPCODE_H_ #define XLA_HLO_IR_HLO_OPCODE_H_ #include <cstdint> #include <iosfwd> #include <optional> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" namespace xla { #define HLO_OPCODE_LIST(V) \ \ V(kAbs, "abs", 1) \ V(kAdd, "add", 2) \ V(kAddDependency, "add-dependency", 2) \ V(kAfterAll, "after-all", kHloOpcodeIsVariadic) \ V(kAllGather, "all-gather", kHloOpcodeIsVariadic) \ V(kAllGatherDone, "all-gather-done", 1) \ V(kAllGatherStart, "all-gather-start", kHloOpcodeIsVariadic) \ V(kAllReduce, "all-reduce", kHloOpcodeIsVariadic) \ V(kAllReduceDone, "all-reduce-done", 1) \ V(kAllReduceStart, "all-reduce-start", kHloOpcodeIsVariadic) \ V(kAllToAll, "all-to-all", kHloOpcodeIsVariadic) \ V(kAnd, "and", 2) \ V(kAsyncDone, "async-done", 1) \ V(kAsyncStart, "async-start", kHloOpcodeIsVariadic) \ V(kAsyncUpdate, "async-update", 1) \ V(kAtan2, "atan2", 2) \ V(kBatchNormGrad, "batch-norm-grad", 5) \ V(kBatchNormInference, "batch-norm-inference", 5) \ V(kBatchNormTraining, "batch-norm-training", 3) \ V(kBitcast, "bitcast", 1) \ V(kBitcastConvert, "bitcast-convert", 1) \ V(kBroadcast, "broadcast", 1) \ V(kCall, "call", kHloOpcodeIsVariadic) \ V(kCbrt, "cbrt", 1) \ V(kCeil, "ceil", 1) \ V(kCholesky, "cholesky", 1) \ V(kClamp, "clamp", 3) \ V(kClz, "count-leading-zeros", 1) \ V(kCollectiveBroadcast, "collective-broadcast", kHloOpcodeIsVariadic) \ V(kCollectivePermute, "collective-permute", kHloOpcodeIsVariadic) \ V(kCollectivePermuteDone, "collective-permute-done", 1) \ V(kCollectivePermuteStart, "collective-permute-start", kHloOpcodeIsVariadic) \ V(kCompare, "compare", 2) \ V(kComplex, "complex", 2) \ V(kConcatenate, "concatenate", kHloOpcodeIsVariadic) \ V(kConditional, "conditional", kHloOpcodeIsVariadic) \ V(kConstant, "constant", 0) \ V(kConvert, "convert", 1) \ V(kConvolution, "convolution", 2) \ V(kCopy, "copy", 1) \ V(kCopyDone, "copy-done", 1) \ V(kCopyStart, "copy-start", 1) \ V(kCos, "cosine", 1) \ V(kCustomCall, "custom-call", kHloOpcodeIsVariadic) \ V(kDivide, "divide", 2) \ V(kDomain, "domain", 1) \ V(kDot, "dot", kHloOpcodeIsVariadic) \ V(kDynamicReshape, "dynamic-reshape", kHloOpcodeIsVariadic) \ V(kDynamicSlice, "dynamic-slice", kHloOpcodeIsVariadic) \ V(kDynamicUpdateSlice, "dynamic-update-slice", kHloOpcodeIsVariadic) \ V(kErf, "erf", 1) \ V(kExp, "exponential", 1) \ V(kExpm1, "exponential-minus-one", 1) \ V(kFft, "fft", 1) \ V(kFloor, "floor", 1) \ V(kFusion, "fusion", kHloOpcodeIsVariadic) \ V(kGather, "gather", 2) \ V(kGetDimensionSize, "get-dimension-size", 1) \ V(kGetTupleElement, "get-tuple-element", 1) \ V(kImag, "imag", 1) \ V(kInfeed, "infeed", 1) \ V(kIota, "iota", 0) \ V(kIsFinite, "is-finite", 1) \ V(kLog, "log", 1) \ V(kLog1p, "log-plus-one", 1) \ V(kLogistic, "logistic", 1) \ V(kMap, "map", kHloOpcodeIsVariadic) \ V(kMaximum, "maximum", 2) \ V(kMinimum, "minimum", 2) \ V(kMultiply, "multiply", 2) \ V(kNegate, "negate", 1) \ V(kNot, "not", 1) \ V(kOptimizationBarrier, "opt-barrier", 1) \ V(kOr, "or", 2) \ V(kOutfeed, "outfeed", 2) \ V(kPad, "pad", 2) \ V(kParameter, "parameter", 0) \ V(kPartitionId, "partition-id", 0) \ V(kPopulationCount, "popcnt", 1) \ V(kPower, "power", 2) \ V(kReal, "real", 1) \ V(kRecv, "recv", 1) \ V(kRecvDone, "recv-done", 1) \ V(kReduce, "reduce", kHloOpcodeIsVariadic) \ V(kReducePrecision, "reduce-precision", 1) \ V(kReduceScatter, "reduce-scatter", kHloOpcodeIsVariadic) \ V(kReduceWindow, "reduce-window", kHloOpcodeIsVariadic) \ V(kRemainder, "remainder", 2) \ V(kReplicaId, "replica-id", 0) \ V(kReshape, "reshape", 1) \ V(kReverse, "reverse", 1) \ V(kRng, "rng", kHloOpcodeIsVariadic) \ V(kRngBitGenerator, "rng-bit-generator", 1) \ V(kRngGetAndUpdateState, "rng-get-and-update-state", 0) \ V(kRoundNearestAfz, "round-nearest-afz", 1) \ V(kRoundNearestEven, "round-nearest-even", 1) \ V(kRsqrt, "rsqrt", 1) \ V(kScatter, "scatter", kHloOpcodeIsVariadic) \ V(kSelect, "select", 3) \ V(kSelectAndScatter, "select-and-scatter", 3) \ V(kSend, "send", 2) \ V(kSendDone, "send-done", 1) \ V(kSetDimensionSize, "set-dimension-size", 2) \ V(kShiftLeft, "shift-left", 2) \ V(kShiftRightArithmetic, "shift-right-arithmetic", 2) \ V(kShiftRightLogical, "shift-right-logical", 2) \ V(kSign, "sign", 1) \ V(kSin, "sine", 1) \ V(kSlice, "slice", 1) \ V(kSort, "sort", kHloOpcodeIsVariadic) \ V(kSqrt, "sqrt", 1) \ V(kStochasticConvert, "stochastic-convert", 2) \ V(kSubtract, "subtract", 2) \ V(kTan, "tan", 1) \ V(kTanh, "tanh", 1) \ V(kTopK, "topk", 1) \ V(kTranspose, "transpose", 1) \ V(kTriangularSolve, "triangular-solve", 2) \ V(kTuple, "tuple", kHloOpcodeIsVariadic) \ V(kWhile, "while", 1) \ V(kXor, "xor", 2) \ enum class HloOpcode : uint8_t { #define DECLARE_ENUM(enum_name, opcode_name, ...) enum_name, HLO_OPCODE_LIST(DECLARE_ENUM) #undef DECLARE_ENUM }; enum { kHloOpcodeIsVariadic = -1, }; absl::string_view HloOpcodeString(HloOpcode opcode); absl::StatusOr<HloOpcode> StringToHloOpcode(absl::string_view opcode_name); inline std::ostream& operator<<(std::ostream& os, HloOpcode opcode) { return os << HloOpcodeString(opcode); } bool HloOpcodeIsComparison(HloOpcode opcode); bool HloOpcodeIsVariadic(HloOpcode opcode); std::optional<int> HloOpcodeArity(HloOpcode opcode); bool HloOpcodeIsAsync(HloOpcode opcode); inline bool HloOpcodeIsBinaryCommutative(HloOpcode opcode) { switch (opcode) { case HloOpcode::kAdd: case HloOpcode::kMultiply: case HloOpcode::kMaximum: case HloOpcode::kMinimum: case HloOpcode::kAnd: case HloOpcode::kOr: case HloOpcode::kXor: return true; default: return false; } } inline constexpr uint32_t HloOpcodeCount() { #define HLO_COUNT_ONE(...) +1 #define HLO_XLIST_LENGTH(list) list(HLO_COUNT_ONE) return HLO_XLIST_LENGTH(HLO_OPCODE_LIST); } static_assert(HloOpcodeCount() < 256, "HloOpcode is a uint8_t. You need to increase its size before " "adding new op codes."); } #endif #include "xla/hlo/ir/hlo_opcode.h" #include <optional> #include <string> #include "absl/container/flat_hash_map.h" #include "xla/util.h" namespace xla { absl::string_view HloOpcodeString(HloOpcode opcode) { switch (opcode) { #define CASE_OPCODE_STRING(enum_name, opcode_name, ...) \ case HloOpcode::enum_name: \ return opcode_name; HLO_OPCODE_LIST(CASE_OPCODE_STRING) #undef CASE_OPCODE_STRING } } absl::StatusOr<HloOpcode> StringToHloOpcode(absl::string_view opcode_name) { static auto* opcode_map = new absl::flat_hash_map<std::string, HloOpcode>({ #define STRING_TO_OPCODE_ENTRY(enum_name, opcode_name, ...) \ {opcode_name, HloOpcode::enum_name}, HLO_OPCODE_LIST(STRING_TO_OPCODE_ENTRY) #undef STRING_TO_OPCODE_ENTRY }); auto it = opcode_map->find(opcode_name); if (it == opcode_map->end()) { return InvalidArgument("Unknown opcode: %s", opcode_name); } return it->second; } bool HloOpcodeIsComparison(HloOpcode opcode) { return opcode == HloOpcode::kCompare; } bool HloOpcodeIsVariadic(HloOpcode opcode) { switch (opcode) { #define CASE_IS_VARIADIC(enum_name, opcode_name, arity, ...) \ case HloOpcode::enum_name: \ return arity == kHloOpcodeIsVariadic; HLO_OPCODE_LIST(CASE_IS_VARIADIC) #undef CASE_IS_VARIADIC } } std::optional<int> HloOpcodeArity(HloOpcode opcode) { switch (opcode) { #define CASE_ARITY(enum_name, opcode_name, arity, ...) \ case HloOpcode::enum_name: \ return arity == kHloOpcodeIsVariadic ? std::nullopt \ : std::make_optional(arity); HLO_OPCODE_LIST(CASE_ARITY) #undef CASE_ARITY } } bool HloOpcodeIsAsync(HloOpcode opcode) { return opcode == HloOpcode::kAsyncStart || opcode == HloOpcode::kAsyncUpdate || opcode == HloOpcode::kAsyncDone; } }
#include "xla/hlo/ir/hlo_opcode.h" #include "xla/test.h" #include "xla/types.h" namespace xla { namespace { TEST(HloOpcodeTest, StringifyMultiply) { ASSERT_EQ("multiply", HloOpcodeString(HloOpcode::kMultiply)); } TEST(HloOpcodeTest, OpcodeProperties) { #define SOME_LIST(X) \ X(One) \ X(Two) \ X(Three) EXPECT_EQ(3, HLO_XLIST_LENGTH(SOME_LIST)); #undef SOME_LIST for (int i = 0; i < HloOpcodeCount(); ++i) { auto opcode = static_cast<HloOpcode>(i); EXPECT_EQ(opcode, StringToHloOpcode(HloOpcodeString(opcode)).value()); switch (opcode) { case HloOpcode::kCompare: EXPECT_TRUE(HloOpcodeIsComparison(opcode)); break; default: EXPECT_FALSE(HloOpcodeIsComparison(opcode)); } switch (opcode) { case HloOpcode::kAfterAll: case HloOpcode::kAllGather: case HloOpcode::kAllGatherStart: case HloOpcode::kAllReduce: case HloOpcode::kAsyncStart: case HloOpcode::kReduceScatter: case HloOpcode::kAllReduceStart: case HloOpcode::kAllToAll: case HloOpcode::kCall: case HloOpcode::kCollectiveBroadcast: case HloOpcode::kCollectivePermute: case HloOpcode::kCollectivePermuteStart: case HloOpcode::kConcatenate: case HloOpcode::kConditional: case HloOpcode::kCustomCall: case HloOpcode::kDot: case HloOpcode::kDynamicSlice: case HloOpcode::kDynamicUpdateSlice: case HloOpcode::kDynamicReshape: case HloOpcode::kFusion: case HloOpcode::kMap: case HloOpcode::kReduce: case HloOpcode::kRng: case HloOpcode::kScatter: case HloOpcode::kSort: case HloOpcode::kTuple: case HloOpcode::kReduceWindow: EXPECT_TRUE(HloOpcodeIsVariadic(opcode)); break; default: EXPECT_FALSE(HloOpcodeIsVariadic(opcode)); } } } } }
2,176
cpp
tensorflow/tensorflow
hlo_module_metadata
third_party/xla/xla/hlo/ir/hlo_module_metadata.cc
third_party/xla/xla/service/hlo_module_metadata_test.cc
#ifndef XLA_HLO_IR_HLO_MODULE_METADATA_H_ #define XLA_HLO_IR_HLO_MODULE_METADATA_H_ #include <functional> #include <optional> #include <string> #include <vector> #include "xla/service/hlo.pb.h" #include "xla/status_macros.h" #include "xla/util.h" #include "tsl/platform/env.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/statusor.h" namespace xla { class HloModuleMetadata { public: explicit HloModuleMetadata(tsl::Env* env) : env_(env) {} const HloModuleMetadataProto& proto() const { return module_metadata_; } void RecordPassStart(); absl::Status RecordPassEnd(); const std::optional<HloModuleMetadataProto>& prepartitioning_metadata() const { return prepartitioning_metadata_; } void set_prepartitioning_metadata( const HloModuleMetadata& prepartitioning_metadata); void set_module_group_name(const std::string& name) { module_metadata_.set_module_group_name(name); } void set_canonical_module_id(int64_t id) { module_metadata_.set_canonical_module_id(id); } void add_partitioned_module_id(int64_t id) { module_metadata_.add_partitioned_module_ids(id); } absl::Status set_custom_metadata(const ::tsl::protobuf::Message& message); absl::StatusOr<int64_t> current_pass_id() { TF_ASSIGN_OR_RETURN(HloPassMetadata * pass_metadata, GetCurrentHloPassMetadata()); return pass_metadata->pass_id(); } absl::Status set_current_pass_name(const std::string& pass_name) { return MutateCurrentHloPassMetadata( [&pass_name](HloPassMetadata* pass_metadata) { pass_metadata->set_pass_name(pass_name); }); } absl::Status set_current_pass_pipeline_name( const std::string& pipeline_name) { return MutateCurrentHloPassMetadata( [&pipeline_name](HloPassMetadata* pass_metadata) { pass_metadata->set_pipeline_name(pipeline_name); }); } absl::Status add_current_pass_dump_filename( const std::string& dump_filename) { return MutateCurrentHloPassMetadata( [&dump_filename](HloPassMetadata* pass_metadata) { pass_metadata->add_dump_filenames(dump_filename); }); } absl::Status set_current_pass_module_changed(bool module_changed) { return MutateCurrentHloPassMetadata( [&module_changed](HloPassMetadata* pass_metadata) { pass_metadata->set_module_changed(module_changed); }); } absl::Status set_current_pass_module_id(int64_t module_id) { return MutateCurrentHloPassMetadata( [&module_id](HloPassMetadata* pass_metadata) { pass_metadata->set_module_id(module_id); }); } absl::Status add_current_pass_module_group_module_id(int64_t module_id) { return MutateCurrentHloPassMetadata( [&module_id](HloPassMetadata* pass_metadata) { pass_metadata->add_module_group_module_ids(module_id); }); } private: absl::StatusOr<HloPassMetadata*> GetCurrentHloPassMetadata(); absl::Status MutateCurrentHloPassMetadata( absl::FunctionRef<void(HloPassMetadata*)> mutator); HloModuleMetadataProto module_metadata_; tsl::Env* env_; int64_t next_pass_id_ = 1; std::vector<HloPassMetadata*> running_passes_; std::optional<HloModuleMetadataProto> prepartitioning_metadata_ = std::nullopt; }; } #endif #include "xla/hlo/ir/hlo_module_metadata.h" #include <algorithm> #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "xla/util.h" #include "tsl/platform/env.h" #include "tsl/platform/protobuf.h" namespace xla { absl::StatusOr<HloPassMetadata*> HloModuleMetadata::GetCurrentHloPassMetadata() { if (running_passes_.empty()) { return NotFound( "HloPassMetadata for currently running pass not found, either because " "the pass did not call RecordPassStart or because a pass is " "creating/switching modules without using " "HloModuleGroup::ReplaceModule."); } return running_passes_.back(); } absl::Status HloModuleMetadata::MutateCurrentHloPassMetadata( absl::FunctionRef<void(HloPassMetadata*)> mutator) { TF_ASSIGN_OR_RETURN(HloPassMetadata * pass_metadata, GetCurrentHloPassMetadata()); mutator(pass_metadata); return absl::OkStatus(); } void HloModuleMetadata::RecordPassStart() { HloPassMetadata* pass_metadata = module_metadata_.add_pass_metadata(); pass_metadata->set_pass_id(next_pass_id_++); pass_metadata->set_start_timestamp_usec(env_->NowMicros()); running_passes_.push_back(pass_metadata); } absl::Status HloModuleMetadata::RecordPassEnd() { TF_ASSIGN_OR_RETURN(HloPassMetadata * pass_metadata, GetCurrentHloPassMetadata()); pass_metadata->set_end_timestamp_usec(env_->NowMicros()); running_passes_.pop_back(); return absl::OkStatus(); } void HloModuleMetadata::set_prepartitioning_metadata( const HloModuleMetadata& prepartitioning_metadata) { module_metadata_.set_original_module_id( prepartitioning_metadata.proto().canonical_module_id()); prepartitioning_metadata_ = prepartitioning_metadata.proto(); prepartitioning_metadata_->clear_pass_metadata(); absl::flat_hash_set<HloPassMetadata*> running_passes( prepartitioning_metadata.running_passes_.begin(), prepartitioning_metadata.running_passes_.end()); for (const HloPassMetadata& pass_metadata : prepartitioning_metadata.proto().pass_metadata()) { if (running_passes.contains(&pass_metadata)) { HloPassMetadata* added_pass_metadata = module_metadata_.add_pass_metadata(); *added_pass_metadata = pass_metadata; running_passes_.push_back(added_pass_metadata); next_pass_id_ = std::max(next_pass_id_, static_cast<int64_t>(added_pass_metadata->pass_id()) + 1); } else { *prepartitioning_metadata_->add_pass_metadata() = pass_metadata; } } } absl::Status HloModuleMetadata::set_custom_metadata( const ::tsl::protobuf::Message& message) { TF_ASSIGN_OR_RETURN(HloPassMetadata * pass_metadata, GetCurrentHloPassMetadata()); if (!pass_metadata->mutable_custom_metadata()->PackFrom(message)) { LOG(WARNING) << "failed to pack custom metadata for " << pass_metadata->pass_id(); return Internal("failed to pack custom metadata"); }; return absl::OkStatus(); } }
#include "xla/hlo/ir/hlo_module_metadata.h" #include "xla/test.h" #include "xla/test_helpers.h" namespace xla { namespace { using ::testing::ElementsAre; using ::testing::Property; using ::testing::StrEq; class TestEnv : public tsl::EnvWrapper { public: TestEnv() : EnvWrapper(Env::Default()) {} uint64_t NowMicros() const override { return current_micros_; } void SetCurrentMicros(uint64_t micros) { current_micros_ = micros; } private: uint64_t current_micros_ = 1; }; TEST(HloModuleMetadata, RecordsPassStart) { TestEnv env; HloModuleMetadata module_metadata(&env); env.SetCurrentMicros(1234); module_metadata.RecordPassStart(); EXPECT_THAT( module_metadata.proto().pass_metadata(), ElementsAre(Property(&HloPassMetadata::start_timestamp_usec, 1234))); } TEST(HloModuleMetadata, RecordsPassEnd) { TestEnv env; HloModuleMetadata module_metadata(&env); module_metadata.RecordPassStart(); env.SetCurrentMicros(4321); EXPECT_IS_OK(module_metadata.RecordPassEnd()); EXPECT_THAT( module_metadata.proto().pass_metadata(), ElementsAre(Property(&HloPassMetadata::end_timestamp_usec, 4321))); } TEST(HloModuleMetadata, RecordsPassEndInNestedMetadata) { TestEnv env; HloModuleMetadata module_metadata(&env); module_metadata.RecordPassStart(); module_metadata.RecordPassStart(); env.SetCurrentMicros(111); EXPECT_IS_OK(module_metadata.RecordPassEnd()); EXPECT_THAT(module_metadata.proto().pass_metadata(), ElementsAre(Property(&HloPassMetadata::end_timestamp_usec, 0), Property(&HloPassMetadata::end_timestamp_usec, 111))); env.SetCurrentMicros(222); EXPECT_IS_OK(module_metadata.RecordPassEnd()); EXPECT_THAT(module_metadata.proto().pass_metadata(), ElementsAre(Property(&HloPassMetadata::end_timestamp_usec, 222), Property(&HloPassMetadata::end_timestamp_usec, 111))); } TEST(HloModuleMetadata, RecordPassEndReturnsNotFound) { HloModuleMetadata module_metadata(tsl::Env::Default()); EXPECT_EQ(module_metadata.RecordPassEnd().code(), tsl::error::NOT_FOUND); module_metadata.RecordPassStart(); EXPECT_IS_OK(module_metadata.RecordPassEnd()); EXPECT_EQ(module_metadata.RecordPassEnd().code(), tsl::error::NOT_FOUND); } TEST(HloModuleMetadata, SetsHloPassMetadataFields) { HloModuleMetadata module_metadata(tsl::Env::Default()); module_metadata.RecordPassStart(); EXPECT_IS_OK(module_metadata.set_current_pass_name("fake name")); EXPECT_THAT( module_metadata.proto().pass_metadata(), ElementsAre(Property(&HloPassMetadata::pass_name, StrEq("fake name")))); } TEST(HloModuleMetadata, SetsHloPassMetadataFieldsInNestedMetadata) { HloModuleMetadata module_metadata(tsl::Env::Default()); module_metadata.RecordPassStart(); module_metadata.RecordPassStart(); EXPECT_IS_OK(module_metadata.set_current_pass_name("fake name")); EXPECT_THAT( module_metadata.proto().pass_metadata(), ElementsAre(Property(&HloPassMetadata::pass_name, StrEq("")), Property(&HloPassMetadata::pass_name, StrEq("fake name")))); } TEST(HloModuleMetadata, SetterReturnsNotFound) { HloModuleMetadata module_metadata(tsl::Env::Default()); EXPECT_EQ(module_metadata.set_current_pass_name("fake name").code(), tsl::error::NOT_FOUND); } TEST(HloModuleMetadata, CopiesRunningPrepartitioningPasses) { HloModuleMetadata old_module_metadata(tsl::Env::Default()); old_module_metadata.RecordPassStart(); EXPECT_IS_OK(old_module_metadata.set_current_pass_name("outer pass")); old_module_metadata.RecordPassStart(); EXPECT_IS_OK(old_module_metadata.set_current_pass_name("finished pass")); EXPECT_IS_OK(old_module_metadata.RecordPassEnd()); old_module_metadata.RecordPassStart(); EXPECT_IS_OK(old_module_metadata.set_current_pass_name("inner pass")); HloModuleMetadata new_module_metadata(tsl::Env::Default()); new_module_metadata.set_prepartitioning_metadata(old_module_metadata); EXPECT_THAT( new_module_metadata.proto().pass_metadata(), ElementsAre(Property(&HloPassMetadata::pass_name, StrEq("outer pass")), Property(&HloPassMetadata::pass_name, StrEq("inner pass")))); EXPECT_THAT(new_module_metadata.prepartitioning_metadata()->pass_metadata(), ElementsAre(Property(&HloPassMetadata::pass_name, StrEq("finished pass")))); } } }
2,177
cpp
tensorflow/tensorflow
hlo_module_group
third_party/xla/xla/hlo/ir/hlo_module_group.cc
third_party/xla/xla/service/hlo_module_group_test.cc
#ifndef XLA_HLO_IR_HLO_MODULE_GROUP_H_ #define XLA_HLO_IR_HLO_MODULE_GROUP_H_ #include <iosfwd> #include <memory> #include <string> #include <vector> #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo.pb.h" namespace xla { class HloModuleGroup { public: explicit HloModuleGroup(absl::string_view name) : name_(name) {} explicit HloModuleGroup(std::unique_ptr<HloModule> module); HloModuleGroup(absl::string_view name, absl::Span<std::unique_ptr<HloModule>> modules); HloModuleGroup(absl::string_view name, std::vector<std::unique_ptr<HloModule>>&& modules); HloModuleGroup(const HloModuleGroup& other) = delete; HloModuleGroup(HloModuleGroup&& other) = default; HloModuleGroup& operator=(const HloModuleGroup& other) = delete; HloModuleGroup& operator=(HloModuleGroup&& other) = default; const std::vector<HloModule*>& modules() const { return module_ptrs_; } HloModule& module(int index) const { return *module_ptrs_.at(index); } void push_back(std::unique_ptr<HloModule> module); void ReplaceModule(int index, std::unique_ptr<HloModule> module); std::vector<std::unique_ptr<HloModule>> ConsumeModules(); std::string name() const { return name_; } std::string ToString() const; void Cleanup() { for (auto& module : modules_) { module->Cleanup(); } } template <typename H> friend H AbslHashValue(H h, const HloModuleGroup& group) { for (auto& module : group.modules_) { h = H::combine(std::move(h), *module); } return H::combine(std::move(h), group.modules_.size()); } HloModuleGroupProto ToProto() const; static absl::StatusOr<HloModuleGroup> CreateFromProto( const HloModuleGroupProto& proto, absl::Span<const HloModuleConfig> module_configs); int size() const { return modules_.size(); } bool empty() const { return modules_.empty(); } absl::string_view cache_key() const { return cache_key_; } void set_cache_key(absl::string_view cache_key) { cache_key_ = std::string(cache_key); } private: std::string name_; std::vector<std::unique_ptr<HloModule>> modules_; std::vector<HloModule*> module_ptrs_; std::string cache_key_; }; std::ostream& operator<<(std::ostream& out, const HloModuleGroup& group); } #endif #include "xla/hlo/ir/hlo_module_group.h" #include <memory> #include <ostream> #include <sstream> #include <string> #include <utility> #include <vector> namespace xla { HloModuleGroup::HloModuleGroup(std::unique_ptr<HloModule> module) : name_(module->name()) { push_back(std::move(module)); } HloModuleGroup::HloModuleGroup(absl::string_view name, absl::Span<std::unique_ptr<HloModule>> modules) : name_(name) { for (auto& module : modules) { push_back(std::move(module)); } } HloModuleGroup::HloModuleGroup( absl::string_view name, std::vector<std::unique_ptr<HloModule>>&& modules) : name_(name) { for (auto& module : modules) { push_back(std::move(module)); } } std::vector<std::unique_ptr<HloModule>> HloModuleGroup::ConsumeModules() { std::vector<std::unique_ptr<HloModule>> ret_modules = std::move(modules_); modules_.clear(); module_ptrs_.clear(); return ret_modules; } std::string HloModuleGroup::ToString() const { std::ostringstream s; s << "HloModuleGroup " << name() << "\n\n"; for (const HloModule* module : modules()) { s << module->ToString() << "\n"; } return s.str(); } HloModuleGroupProto HloModuleGroup::ToProto() const { HloModuleGroupProto proto; proto.set_name(name()); for (const HloModule* module : modules()) { *proto.add_hlo_modules() = module->ToProto(); } return proto; } absl::StatusOr<HloModuleGroup> HloModuleGroup::CreateFromProto( const HloModuleGroupProto& proto, absl::Span<const HloModuleConfig> module_configs) { TF_RET_CHECK(!proto.name().empty()) << "Module group name cannot be empty"; TF_RET_CHECK(proto.hlo_modules_size() > 0) << "Module group must have at least one HLO module"; TF_RET_CHECK(proto.hlo_modules_size() == module_configs.size()); std::vector<std::unique_ptr<HloModule>> modules; for (int i = 0; i < proto.hlo_modules_size(); ++i) { const HloModuleProto& module_proto = proto.hlo_modules(i); TF_ASSIGN_OR_RETURN( std::unique_ptr<HloModule> module, HloModule::CreateFromProto(module_proto, module_configs[i])); modules.push_back(std::move(module)); } return HloModuleGroup(proto.name(), absl::MakeSpan(modules)); } void HloModuleGroup::push_back(std::unique_ptr<HloModule> module) { module->metadata()->set_module_group_name(name()); modules_.push_back(std::move(module)); module_ptrs_.push_back(modules_.back().get()); } void HloModuleGroup::ReplaceModule(int index, std::unique_ptr<HloModule> module) { modules_.at(index)->MoveMetadataToModule(module.get()); modules_.at(index) = std::move(module); module_ptrs_.at(index) = modules_.at(index).get(); } std::ostream& operator<<(std::ostream& out, const HloModuleGroup& group) { out << group.ToString(); return out; } }
#include "xla/hlo/ir/hlo_module_group.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_module_group_metadata.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" namespace xla { namespace { namespace op = ::xla::testing::opcode_matchers; using ::testing::Property; using ::testing::StrEq; class HloModuleGroupTest : public HloTestBase { protected: HloModuleGroupTest() = default; }; TEST_F(HloModuleGroupTest, SingleModule) { const std::string text = R"( HloModule simple_module ENTRY %entry (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(text)); HloModuleGroup group(std::move(module)); EXPECT_EQ(group.modules().size(), 1); EXPECT_THAT( group.module(0).entry_computation()->instructions(), ::testing::ElementsAre(op::Parameter(), op::Parameter(), op::Add())); TF_ASSERT_OK_AND_ASSIGN(HloModuleGroup group_copy, HloModuleGroup::CreateFromProto( group.ToProto(), {group.module(0).config()})); EXPECT_EQ(group_copy.modules().size(), 1); EXPECT_THAT( group_copy.module(0).entry_computation()->instructions(), ::testing::ElementsAre(op::Parameter(), op::Parameter(), op::Add())); std::vector<std::unique_ptr<HloModule>> modules = group.ConsumeModules(); EXPECT_EQ(modules.size(), 1); EXPECT_EQ(group.modules().size(), 0); } TEST_F(HloModuleGroupTest, MultipleModules) { const std::string text_0 = R"( HloModule module0 ENTRY %entry (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } )"; const std::string text_1 = R"( HloModule module1 ENTRY %entry (a: f32[]) -> f32[] { ROOT %a = f32[] parameter(0) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module_0, ParseAndReturnVerifiedModule(text_0)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module_1, ParseAndReturnVerifiedModule(text_1)); std::vector<std::unique_ptr<HloModule>> modules; modules.push_back(std::move(module_0)); modules.push_back(std::move(module_1)); HloModuleGroup group(TestName(), absl::MakeSpan(modules)); EXPECT_EQ(group.modules().size(), 2); EXPECT_THAT( group.module(0).entry_computation()->instructions(), ::testing::ElementsAre(op::Parameter(), op::Parameter(), op::Add())); EXPECT_THAT(group.module(1).entry_computation()->instructions(), ::testing::ElementsAre(op::Parameter())); TF_ASSERT_OK_AND_ASSIGN(HloModuleGroup group_copy, HloModuleGroup::CreateFromProto( group.ToProto(), {group.module(0).config(), group.module(1).config()})); EXPECT_EQ(group_copy.modules().size(), 2); } TEST_F(HloModuleGroupTest, BuildModuleGroupByPushBack) { const std::string text_0 = R"( HloModule module0 ENTRY %entry (x: f32[], y: f32[]) -> f32[] { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } )"; const std::string text_1 = R"( HloModule module1 ENTRY %entry (a: f32[]) -> f32[] { ROOT %a = f32[] parameter(0) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module_0, ParseAndReturnVerifiedModule(text_0)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module_1, ParseAndReturnVerifiedModule(text_1)); HloModuleGroup group(TestName()); group.push_back(std::move(module_0)); group.push_back(std::move(module_1)); EXPECT_EQ(group.modules().size(), 2); EXPECT_THAT( group.module(0).entry_computation()->instructions(), ::testing::ElementsAre(op::Parameter(), op::Parameter(), op::Add())); EXPECT_THAT(group.module(1).entry_computation()->instructions(), ::testing::ElementsAre(op::Parameter())); } TEST_F(HloModuleGroupTest, ModuleGroupCompanionOrder) { constexpr char text[] = R"( HloModule module_%d while_cond { param = s32[] parameter(0) ROOT p = pred[] constant(true) } while_body { param = s32[] parameter(0) token.s = token[] after-all() token.r = token[] after-all() send = (s32[], u32[], token[]) send(param, token.s), channel_id=%d send-done = token[] send-done(send), channel_id=%d recv = (s32[], u32[], token[]) recv(token.r), channel_id=%d recv-done = (s32[], token[]) recv-done(recv), channel_id=%d ROOT data = s32[] get-tuple-element(recv-done), index=0 } ENTRY entry { while_init = s32[] constant(1) ROOT while = s32[] while(while_init), condition=while_cond, body=while_body } )"; const int64_t kTrialCount = 5; const int64_t kDeviceCount = 10; std::vector<int64_t> companion_order; for (int64_t t = 0; t < kTrialCount; ++t) { HloModuleGroup group(TestName()); for (int64_t i = 0; i < kDeviceCount; ++i) { const int64_t send_channel = i; const int64_t recv_channel = i == 0 ? kDeviceCount - 1 : i - 1; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(absl::StrFormat( text, i, send_channel, send_channel, recv_channel, recv_channel))); group.push_back(std::move(module)); } ASSERT_EQ(group.modules().size(), kDeviceCount); TF_ASSERT_OK_AND_ASSIGN(auto metadata, HloModuleGroupMetadata::Build(group.modules())); ASSERT_EQ(metadata->companion_sets().size(), 1); std::vector<int64_t> module_ids; const auto& companion_sets = *metadata->companion_sets()[0]; module_ids.reserve(companion_sets.size()); for (HloInstruction* companion : companion_sets) { module_ids.push_back(metadata->GetModuleId(companion->GetModule())); } if (t == 0) { companion_order = module_ids; } else { EXPECT_TRUE(absl::c_equal(companion_order, module_ids)); } } } TEST_F(HloModuleGroupTest, ReplaceModuleMetadata) { auto old_module = CreateNewVerifiedModule(); int old_module_id = old_module->unique_id(); old_module->metadata()->RecordPassStart(); TF_EXPECT_OK(old_module->metadata()->set_current_pass_name("fake pass")); HloModuleGroup group(std::move(old_module)); EXPECT_EQ(group.module(0).metadata()->proto().module_group_name(), group.name()); auto new_module = CreateNewVerifiedModule(); group.ReplaceModule(0, std::move(new_module)); EXPECT_NE(group.module(0).unique_id(), old_module_id); const HloModuleMetadataProto& module_metadata = group.module(0).metadata()->proto(); EXPECT_EQ(module_metadata.canonical_module_id(), old_module_id); const HloPassMetadata& pass_metadata = *module_metadata.pass_metadata().rbegin(); EXPECT_THAT(pass_metadata, Property(&HloPassMetadata::pass_name, StrEq("fake pass"))); } } }
2,178
cpp
tensorflow/tensorflow
hlo_sharding
third_party/xla/xla/hlo/ir/hlo_sharding.cc
third_party/xla/xla/service/hlo_sharding_test.cc
#ifndef XLA_HLO_IR_HLO_SHARDING_H_ #define XLA_HLO_IR_HLO_SHARDING_H_ #include <cstdint> #include <map> #include <memory> #include <optional> #include <ostream> #include <sstream> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/log/check.h" #include "absl/types/span.h" #include "xla/array.h" #include "xla/hlo/ir/tile_assignment.h" #include "xla/shape_tree.h" #include "xla/xla_data.pb.h" namespace xla { class HloSharding { public: static HloSharding Replicate(absl::Span<const OpMetadata> metadata = {}) { return HloSharding(false, true, false, metadata); } static HloSharding Manual(absl::Span<const OpMetadata> metadata = {}) { return HloSharding(true, false, false, metadata); } static HloSharding Unknown(absl::Span<const OpMetadata> metadata = {}) { return HloSharding(false, false, true, metadata); } static HloSharding AssignDevice(int64_t device_id, absl::Span<const OpMetadata> metadata = {}); static HloSharding Tile(TileAssignment tile_assignment, absl::Span<const OpMetadata> metadata = {}) { return HloSharding(tile_assignment, false, metadata); } static HloSharding Tile(Array<int64_t> tile_assignment, absl::Span<const OpMetadata> metadata = {}) { return HloSharding(TileAssignment(std::make_shared<const Array<int64_t>>( std::move(tile_assignment))), false, metadata); } static HloSharding IotaTile(absl::Span<const int64_t> tile_assignment_dims, absl::Span<const OpMetadata> metadata = {}) { return HloSharding(TileAssignment(tile_assignment_dims), false, metadata); } static HloSharding IotaTile(absl::Span<const int64_t> tile_assignment_dims, absl::Span<const int64_t> reshape_dims, absl::Span<const int> transpose_perm, absl::Span<const OpMetadata> metadata = {}) { return HloSharding( TileAssignment(tile_assignment_dims, reshape_dims, transpose_perm), false, metadata); } static HloSharding PartialTile( const TileAssignment& tile_assignment_last_dim_replicate, absl::Span<const OpMetadata> metadata = {}); static HloSharding PartialTile( Array<int64_t> tile_assignment_last_dim_replicate, absl::Span<const OpMetadata> metadata = {}) { return PartialTile(TileAssignment(std::make_shared<const Array<int64_t>>( std::move(tile_assignment_last_dim_replicate))), metadata); } static HloSharding Subgroup(const TileAssignment& tile_assignment, absl::Span<const OpSharding::Type> subgroup_types, absl::Span<const OpMetadata> metadata = {}); static HloSharding Subgroup(Array<int64_t> tile_assignment, absl::Span<const OpSharding::Type> subgroup_types, absl::Span<const OpMetadata> metadata = {}) { return Subgroup( TileAssignment(std::make_shared<const Array<int64_t>>(tile_assignment)), subgroup_types, metadata); } static HloSharding Tile1D(const Shape& input_shape, int64_t num_tiles, absl::Span<const OpMetadata> metadata = {}); static HloSharding Tuple(const ShapeTree<HloSharding>& sub_shardings); static HloSharding Tuple(const Shape& tuple_shape, absl::Span<const HloSharding> shardings); static HloSharding SingleTuple(const Shape& tuple_shape, const HloSharding& sharding); static HloSharding Single(const Shape& shape, const HloSharding& sharding); static absl::StatusOr<HloSharding> FromProto(const OpSharding& proto); static bool IsReservedDevice(int64_t device) { return device < 0; } OpSharding ToProto() const; void Print(Printer* printer, bool include_metadata = false) const; std::string ToString(bool include_metadata = false) const; absl::Status Validate(const Shape& shape, std::optional<int64_t> num_devices = {}) const; bool IsTuple() const { return tuple_; } bool IsReplicated() const { if (!IsTuple()) { return replicated_; } return absl::c_all_of( tuple_elements_, [](const HloSharding& s) { return s.IsReplicated(); }); } bool IsReplicatedLeaf() const { DCHECK(!IsTuple()); return replicated_; } bool IsTileMaximal() const { if (!IsTuple()) { return maximal_; } return absl::c_all_of(tuple_elements_, [](const HloSharding& s) { return s.IsTileMaximal(); }); } bool IsTileMaximalLeaf() const { DCHECK(!IsTuple()); return maximal_; } bool IsManual() const { if (!IsTuple()) { return manual_; } return absl::c_all_of(tuple_elements_, [](const HloSharding& s) { return s.IsManual(); }); } bool IsManualLeaf() const { DCHECK(!IsTuple()); return manual_; } bool IsUnknown() const { if (!IsTuple()) { return unknown_; } return absl::c_all_of(tuple_elements_, [](const HloSharding& s) { return s.IsUnknown(); }); } bool IsUnknownLeaf() const { DCHECK(!IsTuple()); return unknown_; } bool IsShardGroup() const { if (!IsTuple()) { return shard_group_.shard_group_id != -1 && (shard_group_.shard_like || shard_group_.shard_as); } return !tuple_elements_.empty() && absl::c_all_of(tuple_elements_, [](const HloSharding& s) { return s.IsShardGroup(); }); } bool IsShardAs() const { if (!IsTuple()) { return shard_group_.shard_group_id != -1 && shard_group_.shard_as; } return !tuple_elements_.empty() && absl::c_all_of(tuple_elements_, [](const HloSharding& s) { return s.IsShardAs(); }); } bool IsShardLike() const { if (!IsTuple()) { return shard_group_.shard_group_id != -1 && shard_group_.shard_like; } return !tuple_elements_.empty() && absl::c_all_of(tuple_elements_, [](const HloSharding& s) { return s.IsShardLike(); }); } bool IsManualSubgroup() const { if (!IsTuple()) { return absl::c_linear_search(subgroup_types_, OpSharding::MANUAL); } return absl::c_all_of(tuple_elements_, [](const HloSharding& s) { return s.IsManualSubgroup(); }); } bool IsTiled() const { return !IsTileMaximal() && !IsManual() && !IsUnknown(); } bool IsTiledLeaf() const { return !IsTileMaximalLeaf() && !IsManualLeaf() && !IsUnknownLeaf(); } bool ReplicateOnLastTileDim() const { return replicate_on_last_tile_dim_; } bool HasPartialReplication() const { return replicate_on_last_tile_dim_ || absl::c_linear_search(subgroup_types_, OpSharding::REPLICATED); } bool UsesDevice(int64_t device) const; std::map<int64_t, int64_t> UsedDevices(int64_t* count) const; std::vector<int64_t> TileIndexForDevice(int64_t device) const; int64_t DeviceForTileIndex(absl::Span<const int64_t> index) const; std::vector<int64_t> TileOffsetForDevice(const Shape& shape, int64_t device) const; std::vector<int64_t> TileLimitForDevice(const Shape& shape, int64_t device) const; std::optional<int64_t> UniqueDevice() const; int64_t GetUniqueDevice() const; bool HasUniqueDevice() const { return UniqueDevice().has_value(); } absl::StatusOr<ShapeTree<HloSharding>> AsShapeTree(const Shape& shape) const; ShapeTree<HloSharding> GetAsShapeTree(const Shape& shape) const { return AsShapeTree(shape).value(); } HloSharding GetSubSharding(const Shape& shape, const ShapeIndex& index) const; absl::StatusOr<HloSharding> GetTupleSharding(const Shape& shape) const; HloSharding NormalizeTupleSharding(const Shape& shape) const; std::optional<HloSharding> ExtractSingleSharding() const; HloSharding WithoutMetadata() const; HloSharding WithMetadata(absl::Span<const OpMetadata> metadata, bool overwrite) const; bool operator==(const HloSharding& other) const { return replicated_ == other.replicated_ && maximal_ == other.maximal_ && manual_ == other.manual_ && unknown_ == other.unknown_ && tile_assignment_ == other.tile_assignment_ && tuple_elements_ == other.tuple_elements_ && replicate_on_last_tile_dim_ == other.replicate_on_last_tile_dim_ && subgroup_types_ == other.subgroup_types_ && shard_group_ == other.shard_group_; } bool operator!=(const HloSharding& other) const { return !(*this == other); } template <typename H> friend H AbslHashValue(H h, const HloSharding& sharding) { if (sharding.tuple_) { return H::combine(std::move(h), sharding.tuple_elements_); } return H::combine(std::move(h), sharding.replicated_, sharding.manual_, sharding.unknown_, sharding.tile_assignment_.array(), sharding.replicate_on_last_tile_dim_, sharding.shard_group_.ToString()); } const TileAssignment& tile_assignment() const { return tile_assignment_; } const std::vector<OpSharding::Type>& subgroup_types() const { return subgroup_types_; } std::vector<HloSharding>& tuple_elements() { return tuple_elements_; } const std::vector<HloSharding>& tuple_elements() const { return tuple_elements_; } Shape TileShape(const Shape& shape) const; Shape TileShape(const Shape& shape, int64_t device) const; int64_t TotalNumTiles() const; int64_t NumTiles() const; int64_t NumTilesLeaf() const; int64_t NumTiles(absl::Span<const int64_t> dims) const; std::vector<OpMetadata>& metadata() { return metadata_; } const std::vector<OpMetadata>& metadata() const { return metadata_; } int64_t SubgroupReplicationDim() const { auto it = absl::c_find(subgroup_types_, OpSharding::REPLICATED); if (it != subgroup_types_.end()) { return (it - subgroup_types_.begin()) + TiledDataRank(); } if (replicate_on_last_tile_dim_) { return tile_assignment_.num_dimensions() - 1; } return -1; } int64_t SubgroupManualDim() const { auto it = absl::c_find(subgroup_types_, OpSharding::MANUAL); if (it != subgroup_types_.end()) { return (it - subgroup_types_.begin()) + TiledDataRank(); } return -1; } int64_t TiledDataRank() const { CHECK(IsTiled()); int64_t rank = tile_assignment_.num_dimensions(); if (ReplicateOnLastTileDim()) { rank--; } rank -= subgroup_types_.size(); return rank; } int64_t TiledDataRankLeaf() const { DCHECK(!IsTuple()); CHECK(IsTiledLeaf()); int64_t rank = tile_assignment_.num_dimensions(); if (ReplicateOnLastTileDim()) { rank--; } rank -= subgroup_types_.size(); return rank; } static int64_t RequiredLeaves(const Shape& shape); struct ShardGroup { ShardGroup(int64_t shard_group_id, bool shard_as, bool shard_like) : shard_group_id(shard_group_id), shard_as(shard_as), shard_like(shard_like) {} bool operator==(const ShardGroup& rhs) const { return shard_group_id == rhs.shard_group_id && shard_as == rhs.shard_as && shard_like == rhs.shard_like; } std::string ToString() const { std::ostringstream result; if (shard_as) { result << "shard_as " << shard_group_id; } else if (shard_like) { result << "shard_like " << shard_group_id; } return result.str(); } int64_t shard_group_id = 0; bool shard_as; bool shard_like; }; static ShardGroup NotShardGroup() { return ShardGroup( -1, false, false); } static ShardGroup ShardAs(int64_t shard_group_id) { return ShardGroup(shard_group_id, true, false); } static ShardGroup ShardLike(int64_t shard_group_id) { return ShardGroup(shard_group_id, false, true); } HloSharding& SetShardGroup(const ShardGroup& shard_group) { shard_group_ = shard_group; return *this; } HloSharding& SetShardGroupFromProto(const OpSharding& proto) { ShardGroup shard_group = NotShardGroup(); if (proto.is_shard_group()) { if (proto.shard_group_type() == OpSharding::AS) { shard_group = ShardAs(proto.shard_group_id()); } else { shard_group = ShardLike(proto.shard_group_id()); } } SetShardGroup(shard_group); return *this; } HloSharding& ClearShardGroup() { shard_group_ = NotShardGroup(); return *this; } const ShardGroup& GetShardGroup() const { return shard_group_; } private: explicit HloSharding(bool manual, bool replicated, bool unknown, absl::Span<const OpMetadata> metadata) : metadata_(metadata.begin(), metadata.end()), replicated_(replicated), maximal_(replicated), tuple_(false), manual_(manual), unknown_(unknown), replicate_on_last_tile_dim_(false) {} explicit HloSharding(int64_t device_id, absl::Span<const OpMetadata> metadata) : tile_assignment_(device_id), metadata_(metadata.begin(), metadata.end()), replicated_(false), maximal_(true), tuple_(false), manual_(false), unknown_(false), replicate_on_last_tile_dim_(false) {} explicit HloSharding(TileAssignment tile_assignment, bool replicate_on_last_tile_dim, absl::Span<const OpMetadata> metadata = {}) : tile_assignment_(std::move(tile_assignment)), metadata_(metadata.begin(), metadata.end()), replicated_(false), maximal_(false), tuple_(false), manual_(false), unknown_(false), replicate_on_last_tile_dim_(replicate_on_last_tile_dim) {} explicit HloSharding(TileAssignment tile_assignment, absl::Span<const OpSharding::Type> subgroup_types, absl::Span<const OpMetadata> metadata = {}) : tile_assignment_(std::move(tile_assignment)), metadata_(metadata.begin(), metadata.end()), subgroup_types_(subgroup_types.begin(), subgroup_types.end()), replicated_(false), maximal_(false), tuple_(false), manual_(false), unknown_(false), replicate_on_last_tile_dim_(false) {} explicit HloSharding(std::vector<HloSharding> tuple_shardings) : tuple_elements_(std::move(tuple_shardings)), replicated_(false), maximal_(false), tuple_(true), manual_(false), unknown_(false), replicate_on_last_tile_dim_(false) {} explicit HloSharding(const HloSharding& other, TileAssignment tile_assignment) : tile_assignment_(std::move(tile_assignment)), tuple_elements_(other.tuple_elements_), metadata_(other.metadata_), subgroup_types_(other.subgroup_types_), replicated_(other.replicated_), maximal_(other.maximal_), tuple_(other.tuple_), manual_(other.manual_), unknown_(other.unknown_), replicate_on_last_tile_dim_(other.replicate_on_last_tile_dim_) { CHECK(tile_assignment_ == other.tile_assignment_) << tile_assignment_.ToString() << " v.s. " << other.tile_assignment_.ToString(); } friend class HloShardingTestHelper; absl::Status CheckLeafCount(const Shape& shape) const; absl::Status ValidateTuple(const Shape& shape, std::optional<int64_t> num_devices) const; absl::Status ValidateNonTuple(const Shape& shape, std::optional<int64_t> num_devices) const; TileAssignment tile_assignment_; std::vector<HloSharding> tuple_elements_; std::vector<OpMetadata> metadata_; std::vector<OpSharding::Type> subgroup_types_; bool replicated_ : 1; bool maximal_ : 1; bool tuple_ : 1; bool manual_ : 1; bool unknown_ : 1; bool replicate_on_last_tile_dim_ : 1; ShardGroup shard_group_ = NotShardGroup(); }; std::ostream& operator<<(std::ostream& out, const HloSharding& sharding); } #endif #include "xla/hlo/ir/hlo_sharding.h" #include <algorithm> #include <array> #include <cstdint> #include <iterator> #include <map> #include <memory> #include <optional> #include <ostream> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_op_metadata.h" #include "xla/overflow_util.h" #include "xla/printer.h" #include "xla/status_macros.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/protobuf.h" namespace xla { namespace { using absl::StrCat; bool GroupMinorIotaDimsSorted(absl::Span<const int64_t> dims, absl::Span<const int> perm, int64_t group_size, absl::InlinedVector<int64_t, 6>& new_dims, absl::InlinedVector<int, 6>& new_perm) { DCHECK_GT(group_size, 1); int grouped_dims = 0; std::optional<std::pair<int, int64_t>> split_dim_and_size; for (int i = perm.size() - 1; i >= 0; --i) { const int dim = perm[i]; const int64_t dim_size = dims[dim]; if (dim_size <= group_size) { if (group_size % dim_size != 0) { return false; } group_size /= dim_size; ++grouped_dims; } else { if (dim_size % group_size != 0) { return false; } split_dim_and_size.emplace(dim, dim_size / group_size); ++grouped_dims; group_size = 1; break; } } if (!split_dim_and_size) { new_dims.assign(dims.begin(), dims.end()); new_perm.assign(perm.begin(), perm.end()); std::stable_sort(new_perm.end() - grouped_dims, new_perm.end()); return true; } new_dims.resize(dims.size() + 1); new_perm.resize(perm.size() + 1); const int split_i = split_dim_and_size->first; for (int i = 0; i < split_i; ++i) { new_dims[i] = dims[i]; } new_dims[split_i] = split_dim_and_size->second; new_dims[split_i + 1] = dims[split_i] / split_dim_and_size->second; for (int i = split_i + 2; i < new_perm.size(); ++i) { new_dims[i] = dims[i - 1]; } int perm_split = 0; for (int i = 0; i < perm.size(); ++i) { const int perm_dim = perm[i]; new_perm[i] = perm_dim <= split_i ? perm_dim : (perm_dim + 1); if (perm_dim == split_i) { perm_split = i; break; } } new_perm[perm_split + 1] = new_perm[perm_split] + 1; for (int i = perm_split + 2; i < new_perm.size(); ++i) { const int perm_dim = perm[i - 1]; new_perm[i] = perm_dim <= split_i ? perm_dim : (perm_dim + 1); } std::stable_sort(new_perm.end() - grouped_dims, new_perm.end()); return true; } } HloSharding HloSharding::AssignDevice(int64_t device_id, absl::Span<const OpMetadata> metadata) { return HloSharding(device_id, metadata); } HloSharding HloSharding::Tile1D(const Shape& input_shape, int64_t num_tiles, absl::Span<const OpMetadata> metadata) { CHECK_EQ(1, input_shape.rank()); CHECK_GT(num_tiles,
#include <algorithm> #include <set> #include <sstream> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/hash/hash.h" #include "xla/protobuf_util.h" #include "xla/service/hlo_parser.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" namespace xla { namespace { Array<int64_t> MakeArray(absl::Span<const int64_t> dimensions, absl::Span<const int64_t> contents) { Array<int64_t> a(dimensions); std::copy(contents.begin(), contents.end(), a.begin()); return a; } OpMetadata GetMetadata(const std::string& op_name) { OpMetadata metadata; metadata.set_op_name(op_name); return metadata; } std::vector<OpMetadata> SingleMetadata() { return {GetMetadata("a")}; } std::vector<OpMetadata> ListMetadata() { return {GetMetadata("b"), GetMetadata("c")}; } class HloShardingTest : public HloTestBase {}; TEST_F(HloShardingTest, Replicate) { HloSharding sharding = HloSharding::Replicate(); EXPECT_TRUE(sharding.IsReplicated()); EXPECT_TRUE(sharding.IsTileMaximal()); EXPECT_TRUE(sharding.UsesDevice(0)); EXPECT_TRUE(sharding.UsesDevice(65535)); HloSharding other = HloSharding::Replicate(); EXPECT_EQ(other, sharding); EXPECT_IS_OK(sharding.Validate(ShapeUtil::MakeShape(U32, {4}), 2)); EXPECT_FALSE(sharding.HasUniqueDevice()); } TEST_F(HloShardingTest, DevicePlacement) { HloSharding sharding = HloSharding::AssignDevice(5); EXPECT_FALSE(sharding.IsReplicated()); EXPECT_TRUE(sharding.IsTileMaximal()); EXPECT_FALSE(sharding.UsesDevice(0)); EXPECT_TRUE(sharding.UsesDevice(5)); EXPECT_EQ(5, sharding.GetUniqueDevice()); HloSharding other = HloSharding::Replicate(); EXPECT_NE(other, sharding); EXPECT_IS_OK(sharding.Validate(ShapeUtil::MakeShape(U32, {4}), 6)); EXPECT_IS_NOT_OK( sharding.Validate(ShapeUtil::MakeShape(U32, {4}), 5)); ShapeTree<HloSharding> shape_tree = sharding.GetAsShapeTree(ShapeUtil::MakeShape(U32, {4})); EXPECT_EQ(shape_tree.element({}), sharding); EXPECT_TRUE(shape_tree.IsLeaf({})); } TEST_F(HloShardingTest, ProtoRoundTrip) { OpSharding proto; proto.set_type(OpSharding::TUPLE); auto* tiled = proto.add_tuple_shardings(); tiled->set_type(OpSharding::OTHER); tiled->add_tile_assignment_devices(0); tiled->add_tile_assignment_devices(1); tiled->add_tile_assignment_dimensions(1); tiled->add_tile_assignment_dimensions(2); *tiled->add_metadata() = GetMetadata("a"); *tiled->add_metadata() = GetMetadata("b"); auto* replicated = proto.add_tuple_shardings(); replicated->set_type(OpSharding::REPLICATED); *replicated->add_metadata() = GetMetadata("c"); auto* manual = proto.add_tuple_shardings(); manual->set_type(OpSharding::MANUAL); HloSharding sharding = HloSharding::FromProto(proto).value(); EXPECT_TRUE(protobuf_util::ProtobufEquals(proto, sharding.ToProto())); } TEST_F(HloShardingTest, IotaProtoRoundTrip) { OpSharding proto; proto.set_type(OpSharding::TUPLE); auto* tiled = proto.add_tuple_shardings(); tiled->set_type(OpSharding::OTHER); tiled->add_tile_assignment_dimensions(6); tiled->add_tile_assignment_dimensions(1); tiled->add_iota_reshape_dims(3); tiled->add_iota_reshape_dims(2); tiled->add_iota_transpose_perm(1); tiled->add_iota_transpose_perm(0); *tiled->add_metadata() = GetMetadata("a"); *tiled->add_metadata() = GetMetadata("b"); auto* replicated = proto.add_tuple_shardings(); replicated->set_type(OpSharding::REPLICATED); *replicated->add_metadata() = GetMetadata("c"); auto* manual = proto.add_tuple_shardings(); manual->set_type(OpSharding::MANUAL); HloSharding sharding = HloSharding::FromProto(proto).value(); EXPECT_TRUE(protobuf_util::ProtobufEquals(proto, sharding.ToProto())); } TEST_F(HloShardingTest, Tile) { { HloSharding sharding = HloSharding::Tile(MakeArray({2, 2}, {0, 0, 2, 3})); EXPECT_IS_NOT_OK(sharding.Validate(ShapeUtil::MakeShape(F32, {4, 6}), 4)); } { HloSharding sharding = HloSharding::Tile(MakeArray({2, 2}, {0, 1, 2, 3})); EXPECT_IS_NOT_OK(sharding.Validate(ShapeUtil::MakeShape(U32, {4, 6}), 2)); } { HloSharding sharding = HloSharding::Tile(MakeArray({2, 2}, {0, 1, 2, 3})); EXPECT_IS_NOT_OK(sharding.Validate(ShapeUtil::MakeShape(U32, {4, 6}), 5)); } { Shape shape = ShapeUtil::MakeShape(U32, {4, 5}); HloSharding sharding = HloSharding::Tile(MakeArray({2, 2}, {0, 3, 2, 1})); EXPECT_IS_OK(sharding.Validate(ShapeUtil::MakeShape(F32, {3, 5}), 4)); EXPECT_EQ(0, sharding.DeviceForTileIndex({0, 0})); EXPECT_EQ(3, sharding.DeviceForTileIndex({0, 1})); EXPECT_EQ(2, sharding.DeviceForTileIndex({1, 0})); EXPECT_EQ(1, sharding.DeviceForTileIndex({1, 1})); EXPECT_EQ(sharding.TileOffsetForDevice(shape, 0), (std::vector<int64_t>{0, 0})); EXPECT_EQ(sharding.TileOffsetForDevice(shape, 3), (std::vector<int64_t>{0, 3})); EXPECT_EQ(sharding.TileOffsetForDevice(shape, 2), (std::vector<int64_t>{2, 0})); EXPECT_EQ(sharding.TileOffsetForDevice(shape, 1), (std::vector<int64_t>{2, 3})); EXPECT_FALSE(sharding.HasUniqueDevice()); } } TEST_F(HloShardingTest, V1V2TileEquivalence) { { HloSharding v1 = HloSharding::Tile(MakeArray({2, 2}, {0, 1, 2, 3})); HloSharding v2 = HloSharding::IotaTile({2, 2}); EXPECT_EQ(v1, v2); EXPECT_EQ(absl::HashOf(v1), absl::HashOf(v2)); } { HloSharding v1 = HloSharding::Tile(MakeArray({2, 2}, {0, 2, 1, 3})); HloSharding v2 = HloSharding::IotaTile({2, 2}, {2, 2}, {1, 0}); EXPECT_EQ(v1, v2); EXPECT_EQ(absl::HashOf(v1), absl::HashOf(v2)); } { HloSharding v1 = HloSharding::Tile(MakeArray({2, 2, 2}, {0, 2, 4, 6, 1, 3, 5, 7})); HloSharding v2 = HloSharding::IotaTile({2, 2, 2}, {2, 2, 2}, {2, 0, 1}); EXPECT_EQ(v1, v2); EXPECT_EQ(absl::HashOf(v1), absl::HashOf(v2)); } } TEST_F(HloShardingTest, V1V2PartialTileEquivalence) { { HloSharding v1 = HloSharding::PartialTile(MakeArray({2, 2}, {0, 1, 2, 3})); HloSharding v2 = HloSharding::PartialTile( TileAssignment((absl::Span<const int64_t>){2, 2})); EXPECT_EQ(v1, v2); EXPECT_EQ(absl::HashOf(v1), absl::HashOf(v2)); } { HloSharding v1 = HloSharding::PartialTile(MakeArray({2, 2}, {0, 2, 1, 3})); HloSharding v2 = HloSharding::PartialTile(TileAssignment({2, 2}, {2, 2}, {1, 0})); EXPECT_EQ(v1, v2); EXPECT_EQ(absl::HashOf(v1), absl::HashOf(v2)); } { HloSharding v1 = HloSharding::PartialTile( MakeArray({2, 2, 2}, {0, 2, 4, 6, 1, 3, 5, 7})); HloSharding v2 = HloSharding::PartialTile( TileAssignment({2, 2, 2}, {2, 2, 2}, {2, 0, 1})); EXPECT_EQ(v1, v2); EXPECT_EQ(absl::HashOf(v1), absl::HashOf(v2)); } } TEST_F(HloShardingTest, V1V2SubgroupEquivalence) { { HloSharding v1 = HloSharding::Subgroup(MakeArray({2, 2}, {0, 1, 2, 3}), {OpSharding::MANUAL, OpSharding::REPLICATED}); HloSharding v2 = HloSharding::Subgroup(TileAssignment((absl::Span<const int64_t>){2, 2}), {OpSharding::MANUAL, OpSharding::REPLICATED}); EXPECT_EQ(v1, v2); EXPECT_EQ(absl::HashOf(v1), absl::HashOf(v2)); } { HloSharding v1 = HloSharding::Subgroup(MakeArray({2, 2}, {0, 2, 1, 3}), {OpSharding::MANUAL, OpSharding::REPLICATED}); HloSharding v2 = HloSharding::Subgroup(TileAssignment({2, 2}, {2, 2}, {1, 0}), {OpSharding::MANUAL, OpSharding::REPLICATED}); EXPECT_EQ(v1, v2); EXPECT_EQ(absl::HashOf(v1), absl::HashOf(v2)); } { HloSharding v1 = HloSharding::Subgroup(MakeArray({2, 2, 2}, {0, 2, 4, 6, 1, 3, 5, 7}), {OpSharding::MANUAL, OpSharding::REPLICATED}); HloSharding v2 = HloSharding::Subgroup(TileAssignment({2, 2, 2}, {2, 2, 2}, {2, 0, 1}), {OpSharding::MANUAL, OpSharding::REPLICATED}); EXPECT_EQ(v1, v2); EXPECT_EQ(absl::HashOf(v1), absl::HashOf(v2)); } } TEST_F(HloShardingTest, EmptySingleTuple) { HloSharding sharding = HloSharding::SingleTuple(ShapeUtil::MakeTupleShape({}), HloSharding::AssignDevice(0)); EXPECT_TRUE(sharding.ExtractSingleSharding()); } TEST_F(HloShardingTest, EmptySingleTupleIsNotShardGroup) { HloSharding sharding = HloSharding::SingleTuple(ShapeUtil::MakeTupleShape({}), HloSharding::AssignDevice(0)); EXPECT_FALSE(sharding.IsShardGroup()); EXPECT_FALSE(sharding.IsShardAs()); EXPECT_FALSE(sharding.IsShardLike()); } TEST_F(HloShardingTest, NestedTuple) { Shape nested_tuple_shape = ShapeUtil::MakeTupleShape({ ShapeUtil::MakeShape(F32, {}), ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {3})}), ShapeUtil::MakeShape(F32, {4, 6}), }); HloSharding tiled_sharding = HloSharding::Tile(Array<int64_t>({{0, 1}})); OpSharding proto; proto.set_type(OpSharding::TUPLE); *proto.add_tuple_shardings() = HloSharding::Replicate().ToProto(); *proto.add_tuple_shardings() = HloSharding::AssignDevice(0).ToProto(); *proto.add_tuple_shardings() = tiled_sharding.ToProto(); HloSharding tuple_sharding = HloSharding::FromProto(proto).value(); ShapeTree<HloSharding> shape_tree = tuple_sharding.GetAsShapeTree(nested_tuple_shape); EXPECT_EQ(shape_tree.element({0}), HloSharding::Replicate()); EXPECT_EQ(shape_tree.element({1, 0}), HloSharding::AssignDevice(0)); EXPECT_EQ(shape_tree.element({2}), tiled_sharding); EXPECT_IS_OK(tuple_sharding.Validate(nested_tuple_shape, 2)); EXPECT_IS_NOT_OK(tuple_sharding.Validate(ShapeUtil::MakeTupleShape({}), 5)); EXPECT_IS_NOT_OK(tuple_sharding.Validate(ShapeUtil::MakeShape(F32, {}), 5)); } TEST_F(HloShardingTest, NormalizeTrivialSubgroupToManual) { HloSharding sharding = HloSharding::Subgroup(MakeArray({1, 2, 1}, {0, 1}), {OpSharding::MANUAL, OpSharding::REPLICATED}); EXPECT_TRUE(sharding.IsManual()); } TEST_F(HloShardingTest, Hash) { auto hash_compare_equal = [](const HloSharding& a, const HloSharding& b) { if (absl::HashOf(a) != absl::HashOf(b)) { return false; } return a == b; }; { HloSharding sharding1 = HloSharding::Replicate(); HloSharding sharding2 = HloSharding::Replicate(); EXPECT_TRUE(hash_compare_equal(sharding1, sharding2)); } { HloSharding sharding1 = HloSharding::AssignDevice(1); HloSharding sharding2 = HloSharding::AssignDevice(1); EXPECT_TRUE(hash_compare_equal(sharding1, sharding2)); } { HloSharding sharding1 = HloSharding::AssignDevice(1); HloSharding sharding2 = HloSharding::AssignDevice(2); EXPECT_FALSE(hash_compare_equal(sharding1, sharding2)); } { HloSharding sharding1 = HloSharding::Tile(MakeArray({2, 2}, {0, 3, 2, 1})); HloSharding sharding2 = HloSharding::Tile(MakeArray({2, 2}, {0, 3, 2, 1})); EXPECT_TRUE(hash_compare_equal(sharding1, sharding2)); } { HloSharding sharding1 = HloSharding::IotaTile({3, 4}); HloSharding sharding2 = HloSharding::Tile( MakeArray({3, 4}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11})); EXPECT_TRUE(hash_compare_equal(sharding1, sharding2)); } HloSharding default_sharding = HloSharding::Replicate(); { ShapeTree<HloSharding> shape_tree(ShapeUtil::MakeTupleShape({}), default_sharding); HloSharding sharding1 = HloSharding::Replicate(); HloSharding sharding2 = HloSharding::Tuple(shape_tree); EXPECT_FALSE(hash_compare_equal(sharding1, sharding2)); } { ShapeTree<HloSharding> shape_tree(ShapeUtil::MakeTupleShape({}), default_sharding); HloSharding sharding1 = HloSharding::Tuple(shape_tree); HloSharding sharding2 = HloSharding::Tuple(shape_tree); EXPECT_TRUE(hash_compare_equal(sharding1, sharding2)); } { ShapeTree<HloSharding> shape_tree1( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {4})}), default_sharding); *shape_tree1.mutable_element({0}) = HloSharding::Replicate(); ShapeTree<HloSharding> shape_tree2( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {4})}), default_sharding); *shape_tree2.mutable_element({0}) = HloSharding::AssignDevice(0); HloSharding sharding1 = HloSharding::Tuple(shape_tree1); HloSharding sharding2 = HloSharding::Tuple(shape_tree2); EXPECT_FALSE(hash_compare_equal(sharding1, sharding2)); } { ShapeTree<HloSharding> shape_tree1( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {4})}), default_sharding); *shape_tree1.mutable_element({0}) = HloSharding::AssignDevice(0); ShapeTree<HloSharding> shape_tree2( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {4})}), default_sharding); *shape_tree2.mutable_element({0}) = HloSharding::AssignDevice(0); HloSharding sharding1 = HloSharding::Tuple(shape_tree1); HloSharding sharding2 = HloSharding::Tuple(shape_tree2); EXPECT_TRUE(hash_compare_equal(sharding1, sharding2)); } } using ShardingWithMetadataParamType = std::tuple<std::vector<OpMetadata>, std::string>; TEST_F(HloShardingTest, ToStringReplicatedTest) { HloSharding sharding = HloSharding::Replicate(); EXPECT_EQ(sharding.ToString(), "{replicated}"); } class HloReplicateShardingWithMetadataTest : public ::testing::TestWithParam<ShardingWithMetadataParamType> {}; TEST_P(HloReplicateShardingWithMetadataTest, ToStringTest) { HloSharding sharding = HloSharding::Replicate(std::get<0>(GetParam())); EXPECT_EQ(sharding.ToString(false), "{replicated}"); EXPECT_EQ(sharding.ToString(true), std::get<1>(GetParam())); } INSTANTIATE_TEST_SUITE_P( ToString, HloReplicateShardingWithMetadataTest, ::testing::Values( std::make_tuple(std::vector<OpMetadata>(), "{replicated}"), std::make_tuple(SingleMetadata(), "{replicated metadata={op_name=\"a\"}}"), std::make_tuple( ListMetadata(), "{replicated metadata={{op_name=\"b\"}, {op_name=\"c\"}}}"))); TEST_F(HloShardingTest, ToStringAssignDeviceTest) { HloSharding sharding = HloSharding::AssignDevice(7); EXPECT_EQ(sharding.ToString(), "{maximal device=7}"); } class HloAssignDeviceShardingWithMetadataTest : public ::testing::TestWithParam<ShardingWithMetadataParamType> {}; TEST_P(HloAssignDeviceShardingWithMetadataTest, ToStringTest) { HloSharding sharding = HloSharding::AssignDevice(7, std::get<0>(GetParam())); EXPECT_EQ(sharding.ToString(false), "{maximal device=7}"); EXPECT_EQ(sharding.ToString(true), std::get<1>(GetParam())); } INSTANTIATE_TEST_SUITE_P( ToString, HloAssignDeviceShardingWithMetadataTest, ::testing::Values( std::make_tuple(std::vector<OpMetadata>(), "{maximal device=7}"), std::make_tuple(SingleMetadata(), "{maximal device=7 metadata={op_name=\"a\"}}"), std::make_tuple( ListMetadata(), "{maximal device=7 metadata={{op_name=\"b\"}, {op_name=\"c\"}}}"))); TEST_F(HloShardingTest, ToStringTiledTest) { HloSharding sharding = HloSharding::Tile(Array3D<int64_t>({{{2, 3}}, {{5, 7}}})); EXPECT_EQ(sharding.ToString(), "{devices=[2,1,2]2,3,5,7}"); } TEST_F(HloShardingTest, ToStringIotaTiledTest) { HloSharding sharding = HloSharding::IotaTile({3, 4}, {2, 2, 3}, {2, 1, 0}); EXPECT_EQ(sharding.ToString(), "{devices=[3,4]<=[2,2,3]T(2,1,0)}"); } class HloTiledShardingWithMetadataTest : public ::testing::TestWithParam<ShardingWithMetadataParamType> {}; TEST_P(HloTiledShardingWithMetadataTest, ToStringTest) { HloSharding sharding = HloSharding::Tile( Array3D<int64_t>({{{2, 3}}, {{5, 7}}}), std::get<0>(GetParam())); EXPECT_EQ(sharding.ToString(false), "{devices=[2,1,2]2,3,5,7}"); EXPECT_EQ(sharding.ToString(true), std::get<1>(GetParam())); } INSTANTIATE_TEST_SUITE_P( ToString, HloTiledShardingWithMetadataTest, ::testing::Values( std::make_tuple(std::vector<OpMetadata>(), "{devices=[2,1,2]2,3,5,7}"), std::make_tuple(SingleMetadata(), "{devices=[2,1,2]2,3,5,7 metadata={op_name=\"a\"}}"), std::make_tuple(ListMetadata(), "{devices=[2,1,2]2,3,5,7 metadata={{op_name=\"b\"}, " "{op_name=\"c\"}}}"))); TEST_F(HloShardingTest, ToStringTupleTest) { HloSharding sharding = HloSharding::Tuple( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {3, 5}), ShapeUtil::MakeShape(U32, {7, 25}), ShapeUtil::MakeShape(S32, {9, 11})}), {HloSharding::Replicate(), HloSharding::Tile(Array2D<int64_t>({{3, 5}})), HloSharding::AssignDevice(3)}); EXPECT_EQ(sharding.ToString(), "{{replicated}, {devices=[1,2]3,5}, {maximal device=3}}"); } TEST_F(HloShardingTest, ToStringTupleWithMetadataTest) { auto metadata = SingleMetadata(); HloSharding sharding = HloSharding::Tuple( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {3, 5}), ShapeUtil::MakeShape(U32, {7, 25}), ShapeUtil::MakeShape(S32, {9, 11})}), {HloSharding::Replicate({GetMetadata("d")}), HloSharding::Tile(Array2D<int64_t>({{3, 5}})), HloSharding::AssignDevice(3, {GetMetadata("e")})}); EXPECT_EQ(sharding.ToString(false), "{{replicated}, {devices=[1,2]3,5}, {maximal device=3}}"); EXPECT_EQ(sharding.ToString(true), "{{replicated metadata={op_name=\"d\"}}, {devices=[1,2]3,5}, " "{maximal device=3 metadata={op_name=\"e\"}}}"); } TEST_F(HloShardingTest, OstreamTest) { HloSharding sharding = HloSharding::Tile(Array4D<int64_t>({{{{0, 1}, {2, 3}}}})); std::ostringstream oss; oss << sharding; EXPECT_EQ(oss.str(), "{devices=[1,1,2,2]0,1,2,3}"); } class HloParseShardingWithMetadataTest : public ::testing::TestWithParam<std::vector<OpMetadata>> {}; TEST_P(HloParseShardingWithMetadataTest, ParseHloString) { auto check = [](const HloSharding& sharding) { TF_ASSERT_OK_AND_ASSIGN( auto parsed_sharding, ParseSharding(sharding.ToString(true))); EXPECT_EQ(sharding, parsed_sharding); }; check(HloSharding::Replicate(GetParam())); check(HloSharding::AssignDevice(2, GetParam())); check(HloSharding::Tile(Array4D<int64_t>({{{{0}, {1}}}}), GetParam())); check(HloSharding::Tuple(ShapeUtil::MakeTupleShape({}), {HloSharding::Replicate(GetParam())})); { auto tuple_shape = ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {3, 1, 5, 7}), ShapeUtil::MakeShape(F32, {3, 5, 7}), ShapeUtil::MakeShape(F32, {3, 7})}); check(HloSharding::Tuple( tuple_shape, {HloSharding::Tile(Array4D<int64_t>({{{{0}, {1}}}})), HloSharding::Replicate(GetParam()), HloSharding::AssignDevice(1)})); } { auto tuple_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {3, 1, 5, 7}), ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {3, 5, 7}), ShapeUtil::MakeShape(F32, {3, 7})})}); std::vector<HloSharding> leaf_shardings = { HloSharding::Tile(Array4D<int64_t>({{{{0}, {1}}}})), HloSharding::Replicate(), HloSharding::AssignDevice(1, GetParam())}; ShapeTree<HloSharding> sharding_tree(tuple_shape, HloSharding::Replicate()); auto it = leaf_shardings.begin(); for (auto& index_to_sharding : sharding_tree.leaves()) { index_to_sharding.second = *it++; } check(HloSharding::Tuple(sharding_tree)); } } INSTANTIATE_TEST_SUITE_P(ParseHloString, HloParseShardingWithMetadataTest, ::testing::Values(std::vector<OpMetadata>(), SingleMetadata(), ListMetadata())); TEST_F(HloShardingTest, WithMetadataNoOverwrite) { { HloSharding sharding = HloSharding::Replicate(); auto sharding_new_metadata = sharding.WithMetadata(SingleMetadata(), false); ASSERT_EQ(sharding_new_metadata.metadata().size(), 1); EXPECT_TRUE(protobuf_util::ProtobufEquals( sharding_new_metadata.metadata().front(), SingleMetadata().front())); } { HloSharding sharding = HloSharding::AssignDevice(7, SingleMetadata()); auto sharding_new_metadata = sharding.WithMetadata(ListMetadata(), false); ASSERT_EQ(sharding_new_metadata.metadata().size(), 1); EXPECT_TRUE(protobuf_util::ProtobufEquals( sharding.metadata().front(), sharding_new_metadata.metadata().front())); } { HloSharding sharding = HloSharding::Tuple( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {3, 5}), ShapeUtil::MakeShape(U32, {7, 25}), ShapeUtil::MakeShape(S32, {9, 11})}), {HloSharding::Replicate(SingleMetadata()), HloSharding::Tile(Array2D<int64_t>({{3, 5}})), HloSharding::AssignDevice(3, SingleMetadata())}); auto sharding_new_metadata = sharding.WithMetadata(ListMetadata(), false); EXPECT_TRUE(sharding_new_metadata.metadata().empty()); ASSERT_TRUE(sharding_new_metadata.IsTuple()); ASSERT_EQ(sharding_new_metadata.tuple_elements().size(), 3); ASSERT_EQ(sharding_new_metadata.tuple_elements()[0].metadata().size(), 1); EXPECT_TRUE(protobuf_util::ProtobufEquals( sharding_new_metadata.tuple_elements()[0].metadata().front(), SingleMetadata().front())); ASSERT_EQ(sharding_new_metadata.tuple_elements()[1].metadata().size(), 2); for (int i = 0; i < 2; ++i) { EXPECT_TRUE(protobuf_util::ProtobufEquals( sharding_new_metadata.tuple_elements()[1].metadata()[i], ListMetadata()[i])); } ASSERT_EQ(sharding_new_metadata.tuple_elements()[2].metadata().size(), 1); EXPECT_TRUE(protobuf_util::ProtobufEquals( sharding_new_metadata.tuple_elements()[2].metadata().front(), SingleMetadata().front())); } } TEST_F(HloShardingTest, WithMetadataOverwrite) { { HloSharding sharding = HloSharding::Replicate(); auto sharding_new_metadata = sharding.WithMetadata(SingleMetadata(), true); ASSERT_EQ(sharding_new_metadata.metadata().size(), 1); EXPECT_TRUE(protobuf_util::ProtobufEquals( sharding_new_metadata.metadata().front(), SingleMetadata().front())); } { HloSharding sharding = HloSharding::AssignDevice(7, SingleMetadata()); auto sharding_new_metadata = sharding.WithMetadata(ListMetadata(), true); ASSERT_EQ(sharding_new_metadata.metadata().size(), 2); for (int i = 0; i < 2; ++i) { EXPECT_TRUE(protobuf_util::ProtobufEquals( sharding_new_metadata.metadata()[i], ListMetadata()[i])); } } { HloSharding sharding = HloSharding::Tuple( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {3, 5}), ShapeUtil::MakeShape(U32, {7, 25}), ShapeUtil::MakeShape(S32, {9, 11})}), {HloSharding::Replicate(SingleMetadata()), HloSharding::Tile(Array2D<int64_t>({{3, 5}})), HloSharding::AssignDevice(3, SingleMetadata())}); auto sharding_new_metadata = sharding.WithMetadata(ListMetadata(), true); EXPECT_TRUE(sharding_new_metadata.metadata().empty()); ASSERT_TRUE(sharding_new_metadata.IsTuple()); ASSERT_EQ(sharding_new_metadata.tuple_elements().size(), 3); for (const auto& sub_sharding : sharding_new_metadata.tuple_elements()) { ASSERT_EQ(sub_sharding.metadata().size(), 2); for (int i = 0; i < 2; ++i) { EXPECT_TRUE(protobuf_util::ProtobufEquals(sub_sharding.metadata()[i], ListMetadata()[i])); } } } } TEST_F(HloShardingTest, WithoutMetadata) { { HloSharding sharding = HloSharding::Replicate(); auto sharding_no_metadata = sharding.WithoutMetadata(); EXPECT_TRUE(sharding_no_metadata.metadata().empty()); } { HloSharding sharding = HloSharding::AssignDevice(7, SingleMetadata()); auto sharding_no_metadata = sharding.WithoutMetadata(); EXPECT_TRUE(sharding_no_metadata.metadata().empty()); } { HloSharding sharding = HloSharding::Tuple( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {3, 5}), ShapeUtil::MakeShape(U32, {7, 25}), ShapeUtil::MakeShape(S32, {9, 11})}), {HloSharding::Replicate(SingleMetadata()), HloSharding::Tile(Array2D<int64_t>({{3, 5}})), HloSharding::AssignDevice(3, ListMetadata())}); auto sharding_no_metadata = sharding.WithoutMetadata(); EXPECT_TRUE(sharding_no_metadata.metadata().empty()); ASSERT_TRUE(sharding_no_metadata.IsTuple()); EXPECT_EQ(sharding_no_metadata.tuple_elements().size(), 3); for (const auto& sub_sharding : sharding_no_metadata.tuple_elements()) { EXPECT_TRUE(sub_sharding.metadata().empty()); } } } } }
2,179
cpp
tensorflow/tensorflow
hlo_dfs_reachability
third_party/xla/xla/hlo/ir/hlo_dfs_reachability.cc
third_party/xla/xla/service/hlo_dfs_reachability_test.cc
#ifndef XLA_HLO_IR_HLO_DFS_REACHABILITY_H_ #define XLA_HLO_IR_HLO_DFS_REACHABILITY_H_ #include <cstddef> #include <memory> #include "llvm/ADT/DenseMap.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" namespace xla { class HloDfsReachability { public: bool IsPresent(const HloInstruction* instruction) const; bool IsReachable(const HloInstruction* from, const HloInstruction* to) const; bool IsConnected(const HloInstruction* a, const HloInstruction* b) const; static std::unique_ptr<HloDfsReachability> Build( const HloComputation* computation); private: llvm::DenseMap<const HloInstruction*, size_t> instruction_to_idx_; }; } #endif #include "xla/hlo/ir/hlo_dfs_reachability.h" #include <cstddef> #include <memory> #include <vector> #include "absl/algorithm/container.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/SmallVector.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" namespace xla { bool HloDfsReachability::IsPresent(const HloInstruction* instruction) const { return instruction_to_idx_.contains(instruction); } bool HloDfsReachability::IsReachable(const HloInstruction* from, const HloInstruction* to) const { if (from == to) { return true; } if (to->operand_count() == 0 && from->control_predecessors().empty()) { return false; } size_t target_node_idx = instruction_to_idx_.at(from); size_t dfs_root_idx = instruction_to_idx_.at(to); if (dfs_root_idx < target_node_idx) { return false; } llvm::SmallVector<const HloInstruction*> stack{to}; llvm::BitVector visited_idxs(1 + (dfs_root_idx - target_node_idx)); visited_idxs.set(dfs_root_idx - target_node_idx); auto check_and_enqueue = [&](const HloInstruction* instr) { if (instr == from) { return true; } size_t instr_idx = instruction_to_idx_.at(instr); if (instr_idx < target_node_idx) { return false; } size_t visited_idx = instr_idx - target_node_idx; if (visited_idxs.test(visited_idx)) { return false; } visited_idxs.set(visited_idx); stack.push_back(instr); return false; }; while (!stack.empty()) { const HloInstruction* instr = stack.pop_back_val(); if (absl::c_any_of(instr->operands(), check_and_enqueue) || absl::c_any_of(instr->control_predecessors(), check_and_enqueue)) { return true; } } return false; } bool HloDfsReachability::IsConnected(const HloInstruction* a, const HloInstruction* b) const { return IsReachable(a, b) || IsReachable(b, a); } std::unique_ptr<HloDfsReachability> HloDfsReachability::Build( const HloComputation* computation) { auto res = std::make_unique<HloDfsReachability>(); HloComputation::ChannelDependencies empty_channel_dependencies; std::vector<HloInstruction*> instructions = computation->MakeInstructionPostOrder(empty_channel_dependencies); res->instruction_to_idx_.reserve(instructions.size()); for (size_t i = 0; i < instructions.size(); ++i) { res->instruction_to_idx_[instructions[i]] = i; } return res; } }
#include "xla/hlo/ir/hlo_dfs_reachability.h" #include <cstddef> #include <set> #include <string_view> #include "absl/random/random.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/test_benchmark.h" namespace xla { namespace { class HloDfsReachabilityTest : public HloTestBase {}; TEST_F(HloDfsReachabilityTest, NonTrivialReachability) { Shape r0f32 = ShapeUtil::MakeShape(F32, {}); auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0f))); auto add = builder.AddInstruction(HloInstruction::CreateBinary( r0f32, HloOpcode::kAdd, constant1, constant2)); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(r0f32, HloOpcode::kNegate, constant2)); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(r0f32, HloOpcode::kExp, negate)); auto mul = builder.AddInstruction( HloInstruction::CreateBinary(r0f32, HloOpcode::kMultiply, add, exp)); auto copy = builder.AddInstruction( HloInstruction::CreateUnary(r0f32, HloOpcode::kCopy, exp)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build(mul)); TF_CHECK_OK(add->AddControlDependencyTo(exp)); auto reachability = HloDfsReachability::Build(computation); EXPECT_TRUE(reachability->IsReachable(constant1, constant1)); EXPECT_FALSE(reachability->IsReachable(constant1, constant2)); EXPECT_TRUE(reachability->IsReachable(constant1, add)); EXPECT_FALSE(reachability->IsReachable(constant1, negate)); EXPECT_TRUE(reachability->IsReachable(constant1, exp)); EXPECT_TRUE(reachability->IsReachable(constant1, mul)); EXPECT_TRUE(reachability->IsReachable(constant1, copy)); EXPECT_FALSE(reachability->IsReachable(constant2, constant1)); EXPECT_TRUE(reachability->IsReachable(constant2, constant2)); EXPECT_TRUE(reachability->IsReachable(constant2, add)); EXPECT_TRUE(reachability->IsReachable(constant2, negate)); EXPECT_TRUE(reachability->IsReachable(constant2, exp)); EXPECT_TRUE(reachability->IsReachable(constant2, mul)); EXPECT_TRUE(reachability->IsReachable(constant2, copy)); EXPECT_FALSE(reachability->IsReachable(exp, constant1)); EXPECT_FALSE(reachability->IsReachable(exp, constant2)); EXPECT_FALSE(reachability->IsReachable(exp, add)); EXPECT_FALSE(reachability->IsReachable(exp, negate)); EXPECT_TRUE(reachability->IsReachable(exp, exp)); EXPECT_TRUE(reachability->IsReachable(exp, mul)); EXPECT_TRUE(reachability->IsReachable(exp, copy)); EXPECT_FALSE(reachability->IsReachable(mul, constant1)); EXPECT_FALSE(reachability->IsReachable(mul, constant2)); EXPECT_FALSE(reachability->IsReachable(mul, add)); EXPECT_FALSE(reachability->IsReachable(mul, negate)); EXPECT_FALSE(reachability->IsReachable(mul, exp)); EXPECT_TRUE(reachability->IsReachable(mul, mul)); EXPECT_FALSE(reachability->IsReachable(mul, copy)); EXPECT_TRUE(reachability->IsConnected(constant1, copy)); EXPECT_TRUE(reachability->IsConnected(copy, constant1)); EXPECT_FALSE(reachability->IsConnected(negate, add)); EXPECT_FALSE(reachability->IsConnected(add, negate)); } TEST_F(HloDfsReachabilityTest, ChannelReachability) { const Shape shape = ShapeUtil::MakeShape(F32, {5, 7}); HloComputation::Builder builder("ChannelReachability"); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "param")); auto token0 = builder.AddInstruction(HloInstruction::CreateToken()); auto send = builder.AddInstruction(HloInstruction::CreateSend(param, token0, 1)); auto send_done = builder.AddInstruction(HloInstruction::CreateSendDone(send)); auto token1 = builder.AddInstruction(HloInstruction::CreateToken()); auto recv = builder.AddInstruction(HloInstruction::CreateRecv(shape, token1, 1)); auto recv_done = builder.AddInstruction(HloInstruction::CreateRecvDone(recv)); auto module = CreateNewVerifiedModule(); module->mutable_config().set_use_spmd_partitioning(false); module->mutable_config().set_static_device_assignment(DeviceAssignment(1, 2)); auto computation = module->AddEntryComputation(builder.Build(recv_done)); auto reachability = HloDfsReachability::Build(computation); EXPECT_FALSE(reachability->IsReachable(param, recv_done)); EXPECT_FALSE(reachability->IsReachable(send, recv)); EXPECT_FALSE(reachability->IsReachable(send_done, recv)); } class HloDfsReachabilityBenchmark { public: HloDfsReachabilityBenchmark(int size, std::string_view name) : name_(name) { Shape r0f32 = ShapeUtil::MakeShape(F32, {}); auto builder = HloComputation::Builder(name); HloInstruction* constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0f))); HloInstruction* prev = constant; for (int i = 1; i < size; ++i) { prev = builder.AddInstruction( HloInstruction::CreateUnary(r0f32, HloOpcode::kExp, prev)); } HloModuleConfig hlo_config; module_ = std::make_unique<HloModule>(name_, hlo_config); computation_ = module_->AddEntryComputation(builder.Build(prev)); } std::unique_ptr<HloDfsReachability> Build() { return HloDfsReachability::Build(computation_); } const HloComputation* computation() { return computation_; } private: std::unique_ptr<HloModule> module_; HloComputation* computation_; const std::string name_; }; void BM_HloDfsReachabilityBuild(benchmark::State& state) { int num_nodes = state.range(0); HloDfsReachabilityBenchmark bm(num_nodes, state.name()); while (state.KeepRunningBatch(num_nodes)) { benchmark::DoNotOptimize(bm.Build()); } } void BM_HloDfsReachabilityCheck(benchmark::State& state) { size_t size = state.range(0); HloDfsReachabilityBenchmark bm(size, state.name()); auto reachability = bm.Build(); auto instrs = bm.computation()->MakeInstructionPostOrder(); size_t i = 0; for (auto s : state) { size_t from = i % size; size_t to = (++i + size / 2) % size; reachability->IsReachable(instrs[from], instrs[to]); } } #define BM_ARGS Arg(1)->Arg(64)->Arg(128)->Arg(256)->Range(512, 256 * 1024) BENCHMARK(BM_HloDfsReachabilityBuild)->BM_ARGS; BENCHMARK(BM_HloDfsReachabilityCheck)->BM_ARGS; } }
2,180
cpp
tensorflow/tensorflow
hlo_module
third_party/xla/xla/hlo/ir/hlo_module.cc
third_party/xla/xla/service/hlo_module_test.cc
#ifndef XLA_HLO_IR_HLO_MODULE_H_ #define XLA_HLO_IR_HLO_MODULE_H_ #include <atomic> #include <functional> #include <memory> #include <optional> #include <random> #include <string> #include <string_view> #include <utility> #include <variant> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/dynamic_parameter_binding.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module_metadata.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/iterator_util.h" #include "xla/printer.h" #include "xla/service/compilation_environments.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_module_config.h" #include "xla/service/name_uniquer.h" #include "xla/xla.pb.h" #include "tsl/lib/gtl/iterator_range.h" #include "tsl/platform/logging.h" namespace xla { using LayoutCanonicalizationCallback = std::function<absl::StatusOr<std::pair<std::vector<Shape>, Shape>>( const HloModule& module)>; template <typename T> class CopyOnWrite { public: static_assert(!std::is_const_v<T>); explicit CopyOnWrite( std::variant<std::unique_ptr<T>, std::shared_ptr<const T>> ptr) : ownership_(std::move(ptr)), ptr_([&]() -> decltype(ptr_) { if (auto* owned = std::get_if<std::unique_ptr<T>>(&ownership_)) { return owned->get(); } return std::get<std::shared_ptr<const T>>(ownership_).get(); }()) {} const T& get() const { return *ptr_; } T& get_mutable() { if (auto* owned = std::get_if<std::unique_ptr<T>>(&ownership_)) { return **owned; } auto& shared = std::get<std::shared_ptr<const T>>(ownership_); DeepCopyToNewUnique(T(*shared)); return const_cast<T&>(*ptr_); } void set(T&& value) { if (auto* owned = std::get_if<std::unique_ptr<T>>(&ownership_)) { **owned = std::forward<T>(value); } else { DeepCopyToNewUnique(std::forward<T>(value)); } } const std::shared_ptr<const T>& FreezeAndShare() const { if (auto* owned = std::get_if<std::unique_ptr<T>>(&ownership_)) { ownership_ = std::shared_ptr<const T>(std::move(*owned)); } return std::get<std::shared_ptr<const T>>(ownership_); } private: void DeepCopyToNewUnique(T&& value) { auto owned = std::make_unique<T>(std::forward<T>(value)); ptr_ = owned.get(); ownership_ = std::move(owned); } mutable std::variant<std::unique_ptr<T>, std::shared_ptr<const T>> ownership_; const T* ptr_; }; class HloModule { public: HloModule(const std::string& name, HloModuleConfig config); HloModule(const std::string& name, HloModuleConfig config, std::unique_ptr<CompilationEnvironments> comp_envs); HloModule(const std::string& name, std::variant<std::unique_ptr<HloModuleConfig>, std::shared_ptr<const HloModuleConfig>> config, std::unique_ptr<CompilationEnvironments> comp_envs); virtual ~HloModule() = default; HloComputation* AddEntryComputation( std::unique_ptr<HloComputation> computation); HloComputation* AddEntryComputationWithLayouts( std::unique_ptr<HloComputation> computation); void ReplaceEntryComputation(HloComputation* entry_computation); HloComputation* AddEmbeddedComputation( std::unique_ptr<HloComputation> computation); absl::Status RemoveEmbeddedComputation(HloComputation* to_remove); absl::Status RemoveUnusedComputations(); void MarkFusionDuplications( const absl::flat_hash_map<HloComputation*, HloComputation*>& replacements); void ReplaceComputations( const absl::flat_hash_map<HloComputation*, HloComputation*>& replacements); const std::string& name() const { return name_; } void set_name(std::string name) { name_ = std::move(name); } void MoveComputationsFrom(HloModule* module, bool make_names_unique = false); std::unique_ptr<HloModule> Clone(const std::string& suffix = "clone") const; std::unique_ptr<HloModule> Clone(const HloModuleConfig& config, const std::string& suffix = "clone") const; std::unique_ptr<HloModule> Clone( std::shared_ptr<const HloModuleConfig> config, const std::string& suffix = "clone") const; HloComputation* DeepCloneComputation(HloComputation* computation, HloCloneContext* context = nullptr); HloComputation* entry_computation() const { CHECK_NE(nullptr, entry_computation_); return entry_computation_; } bool has_entry_computation() const { return entry_computation_ != nullptr; } const Shape& result_shape() const { CHECK_NE(nullptr, entry_computation_); return entry_computation()->root_instruction()->shape(); } ComputationLayout compute_computation_layout() const { return ComputationLayout(entry_computation()->ComputeProgramShape(), false); } ComputationLayout* mutable_entry_computation_layout() { return config_.get_mutable().mutable_entry_computation_layout(); } const ComputationLayout& entry_computation_layout() const { return config_.get().entry_computation_layout(); } void set_frontend_attributes(FrontendAttributes frontend_attributes) { frontend_attributes_ = std::move(frontend_attributes); } void add_frontend_attributes(FrontendAttributes frontend_attributes) { frontend_attributes_.mutable_map()->insert( frontend_attributes.map().begin(), frontend_attributes.map().end()); } const FrontendAttributes& frontend_attributes() const { return frontend_attributes_; } void set_use_auto_spmd_partitioning(bool use) { use_auto_spmd_partitioning_ = use; } bool use_auto_spmd_partitioning() const { return use_auto_spmd_partitioning_; } void set_layout_canonicalization_callback( LayoutCanonicalizationCallback callback) { layout_canonicalization_callback_ = std::move(callback); } LayoutCanonicalizationCallback layout_canonicalization_callback() const { return layout_canonicalization_callback_; } template <typename H> friend H AbslHashValue(H h, const HloModule& module) { h = H::combine(std::move(h), module.entry_computation_layout()); auto computations = module.MakeComputationSorted(); for (auto* computation : computations) { h = H::combine(std::move(h), *computation); } return H::combine(std::move(h), computations.size()); } tsl::gtl::iterator_range<UnwrappingIterator< std::vector<std::unique_ptr<HloComputation>>::const_iterator>> computations() const { return {MakeUnwrappingIterator(computations_.begin()), MakeUnwrappingIterator(computations_.end())}; } tsl::gtl::iterator_range<UnwrappingIterator< std::vector<std::unique_ptr<HloComputation>>::iterator>> computations() { return {MakeUnwrappingIterator(computations_.begin()), MakeUnwrappingIterator(computations_.end())}; } tsl::gtl::iterator_range<FilteringUnwrappingIterator< std::vector<std::unique_ptr<HloComputation>>::const_iterator, std::function<bool(const HloComputation*)>>> computations( const absl::flat_hash_set<absl::string_view>& execution_threads) const { std::function<bool(const HloComputation*)> pred = [execution_threads](const HloComputation* computation) { if (execution_threads.empty()) { return true; } return execution_threads.contains(computation->execution_thread()); }; return MakeFilteringUnwrappingIteratorRange(computations_.begin(), computations_.end(), pred); } HloComputation* GetComputationWithName(absl::string_view name); int64_t computation_count() const { return computations_.size(); } HloComputation* mutable_computation(int64_t idx) { CHECK(idx >= 0 && idx < computations_.size()); return computations_[idx].get(); } int64_t instruction_count() const; void Cleanup() { for (auto& comp : computations_) { comp->Cleanup(); } } std::vector<HloComputation*> MakeComputationPostOrder() const { return MakeComputationPostOrder({}); } std::vector<HloComputation*> MakeComputationPostOrder( const absl::flat_hash_set<absl::string_view>& execution_threads) const; std::vector<HloComputation*> MakeComputationPostOrder( const absl::flat_hash_set<absl::string_view>& execution_threads, const absl::flat_hash_set<HloComputation*>& allow_list) const; std::vector<HloComputation*> MakeComputationSorted() const { return MakeComputationSorted({}); } std::vector<HloComputation*> MakeComputationSorted( const absl::flat_hash_set<absl::string_view>& execution_threads) const; std::vector<HloComputation*> MakeNonfusionComputations() const { return MakeNonfusionComputations({}); } std::vector<HloComputation*> MakeNonfusionComputations( const absl::flat_hash_set<absl::string_view>& execution_threads) const; std::vector<HloComputation*> MakeNonfusionComputationsSorted() const { return MakeNonfusionComputationsSorted({}); } std::vector<HloComputation*> MakeNonfusionComputationsSorted( const absl::flat_hash_set<absl::string_view>& execution_threads) const; HloModuleConfig& mutable_config() { return config_.get_mutable(); } const HloModuleConfig& config() const { return config_.get(); } void set_config(HloModuleConfig config) { config_.set(std::move(config)); } const std::shared_ptr<const HloModuleConfig>& shared_config() const { return config_.FreezeAndShare(); } bool is_dynamic() const { return is_dynamic_; } void set_is_dynamic(bool is_dynamic) { is_dynamic_ = is_dynamic; } void Print(Printer* printer) const { return Print(printer, HloPrintOptions::Default()); } void Print(Printer* printer, const HloPrintOptions& options) const; std::string ToString() const { return ToString(HloPrintOptions::Default()); } std::string ToString(const HloPrintOptions& options) const; absl::Cord ToCord() const { return ToCord(HloPrintOptions::Default()); } absl::Cord ToCord(const HloPrintOptions& options) const; HloModuleProto ToProto() const; static absl::StatusOr<std::unique_ptr<HloModule>> CreateFromProto( const HloModuleProto& proto, const HloModuleConfig& module_config, bool prohibit_empty_literal = true); HloModuleProtoWithConfig ToProtoWithConfig() const; static absl::StatusOr<std::unique_ptr<HloModule>> CreateFromProtoWithConfig( const HloModuleProtoWithConfig& proto, bool prohibit_empty_literal = true); static absl::StatusOr<HloModuleConfig> CreateModuleConfigFromProto( const HloModuleProto& module, const DebugOptions& debug_options, const ExecutionOptions* execution_options = nullptr); static absl::StatusOr<HloModuleConfig> CreateModuleConfigFromShape( const ProgramShape& program_shape, const DebugOptions& debug_options, const ExecutionOptions* execution_options = nullptr); HloInstruction* OutlineExpressionFromComputation( absl::Span<HloInstruction* const> instructions_to_outline, const std::string& outlined_computation_name, HloComputation* computation); uint64_t RandomNew64() const; NameUniquer& instruction_name_uniquer() { return instruction_name_uniquer_; } int NewUniqueInstructionId() { int result = next_unique_id_; next_unique_id_++; return result; } HloInputOutputAliasConfig& input_output_alias_config() { return input_output_alias_config_; } const HloInputOutputAliasConfig& input_output_alias_config() const { return input_output_alias_config_; } void set_input_output_alias_config(HloInputOutputAliasConfig config) { input_output_alias_config_ = std::move(config); } HloBufferDonorConfig& buffer_donor_config() { return buffer_donor_config_; } const HloBufferDonorConfig& buffer_donor_config() const { return buffer_donor_config_; } void set_buffer_donor_config(HloBufferDonorConfig config) { buffer_donor_config_ = std::move(config); } int unique_id() const { return unique_id_; } absl::Status set_schedule(HloSchedule schedule); void clear_schedule() { schedule_.reset(); } bool has_schedule() const { return schedule_.has_value(); } const HloSchedule& schedule() const { return *schedule_; } HloSchedule& schedule() { return *schedule_; } HloComputation* AddComputationAndUnifyNamesAndIds( std::unique_ptr<HloComputation> computation, bool is_entry) { computation->ClearUniqueIdInternal(); for (auto* instruction : computation->instructions()) { instruction->ClearUniqueIdInternal(); } return AddComputationInternal(std::move(computation), is_entry, true, true); } void SetAndUniquifyInstrName(HloInstruction* instr, absl::string_view name) { instr->SetAndSanitizeName(name); instr->UniquifyName(&instruction_name_uniquer_); } void SetAndUniquifyComputationName(HloComputation* computation, absl::string_view name) { computation->SetAndSanitizeName(name); computation->UniquifyName(&computation_name_uniquer_); } absl::Status CheckUniqueNamesAndIdsForComputationsAndInstructions() const; bool has_spmd_parameters_shardings() const { return spmd_parameters_shardings_.has_value(); } const std::vector<HloSharding>& spmd_parameters_shardings() const { CHECK(spmd_parameters_shardings_.has_value()); return *spmd_parameters_shardings_; } void set_spmd_parameters_shardings( const std::vector<HloSharding>& shardings) { spmd_parameters_shardings_ = shardings; } bool has_spmd_output_sharding() const { return spmd_output_sharding_.has_value(); } const HloSharding& spmd_output_sharding() const { CHECK(spmd_output_sharding_.has_value()); return *spmd_output_sharding_; } void set_spmd_output_sharding(const HloSharding& sharding) { spmd_output_sharding_ = sharding; } struct CrossProgramPrefetchInfo { int64_t parameter; ShapeIndex index; std::optional<int64_t> alt_memory_offset; }; void AddCrossProgramPrefetch( int64_t parameter, const ShapeIndex& index, std::optional<int64_t> alt_memory_offset = std::nullopt) { cross_program_prefetches_.emplace_back( CrossProgramPrefetchInfo{parameter, index, alt_memory_offset}); } absl::Status SetCrossProgramPrefetchOffset(int64_t prefetch_index, int64_t offset) { TF_RET_CHECK(prefetch_index < cross_program_prefetches_.size()); auto& [parameter, index, optional_offset] = cross_program_prefetches_[prefetch_index]; TF_RET_CHECK(!optional_offset.has_value()); optional_offset = offset; return absl::OkStatus(); } absl::Span<const CrossProgramPrefetchInfo> CrossProgramPrefetches() const { return cross_program_prefetches_; } const HloModuleMetadata& metadata() const { return metadata_; } HloModuleMetadata* metadata() { return &metadata_; } void MoveMetadataToModule(HloModule* module) { module->metadata_ = std::move(metadata_); } int64_t profile_version() const { return profile_version_; } void set_profile_version(int64_t profile_version) { profile_version_ = profile_version; } void add_profile_info(const HloModuleProto::ProfileInfo& profile_info) { profile_info_list_.push_back(profile_info); } void set_profile_info( const std::vector<HloModuleProto::ProfileInfo>& profile_info) { profile_info_list_ = profile_info; } const std::vector<HloModuleProto::ProfileInfo>& profile_info() const { return profile_info_list_; } void set_autofdo_profile_key(HloModuleProto::ProfileType profile_type, absl::string_view profile_key) { autofdo_profile_keys_[profile_type] = std::string(profile_key); } void set_autofdo_profile_keys( const absl::flat_hash_map<HloModuleProto::ProfileType, std::string>& profile_keys) { for (const auto& [profile_type, profile_key] : profile_keys) { autofdo_profile_keys_[profile_type] = profile_key; } } const absl::flat_hash_map<HloModuleProto::ProfileType, std::string>& autofdo_profile_keys() const { return autofdo_profile_keys_; } bool has_module_autofdo_profiles() const { return !autofdo_profile_keys_.empty(); } void set_relative_speedup(double relative_speedup) { relative_speedup_ = relative_speedup; } void set_autofdo_fingerprint(absl::string_view fingerprint) { autofdo_fingerprint_ = std::string(fingerprint); } std::string autofdo_fingerprint() const { return autofdo_fingerprint_; } CompilationEnvironments& comp_envs() const { return *comp_envs_; } std::string GetFingerprint128(const HloPrintOptions& options = HloPrintOptions::ModuleFingerprint()) const; struct StackFrame { std::string_view file_name; std::string_view function_name; int line = 0; int column = 0; int parent_frame_id = 0; bool empty() const { return line == 0 && column == 0 && file_name.empty() && function_name.empty(); } }; StackFrame get_stack_frame(int id) const; private: HloComputation* AddComputationInternal( std::unique_ptr<HloComputation> computation, bool is_entry, bool uniquify_identifiers, bool preserve_entry_layouts); std::string name_; CopyOnWrite<HloModuleConfig> config_; HloComputation* entry_computation_ = nullptr; std::vector<std::unique_ptr<HloComputation>> computations_; mutable std::mt19937_64 rng_{42}; mutable absl::Mutex rng_mutex_; NameUniquer computation_name_uniquer_{"."}; NameUniquer instruction_name_uniquer_{"."}; int next_unique_id_ = 0; static std::atomic<int> next_unique_module_id_; const int unique_id_; std::optional<HloSchedule> schedule_; HloInputOutputAliasConfig input_output_alias_config_; HloBufferDonorConfig buffer_donor_config_; FrontendAttributes frontend_attributes_; std::optional<std::vector<HloSharding>> spmd_parameters_shardings_; std::optional<HloSharding> spmd_output_sharding_; std::vector<CrossProgramPrefetchInfo> cross_program_prefetches_; HloModuleMetadata metadata_; bool is_dynamic_ = false; int64_t profile_version_ = 0; std::vector<HloModuleProto::ProfileInfo> profile_info_list_; double relative_speedup_; std::string autofdo_fingerprint_; absl::flat_hash_map<HloModuleProto::ProfileType, std::string> autofdo_profile_keys_; bool use_auto_spmd_partitioning_ = false; LayoutCanonicalizationCallback layout_canonicalization_callback_; std::unique_ptr<CompilationEnvironments> comp_envs_ = std::make_unique<CompilationEnvironments>(); std::optional<StackFrameIndexProto> stack_frame_index_; }; } #endif /* Copyright 2017 The OpenXLA Authors. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http: Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITI
#include "xla/hlo/ir/hlo_module.h" #include <algorithm> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal.h" #include "xla/service/computation_placer.h" #include "xla/service/hlo_memory_scheduler.h" #include "xla/service/test_compilation_environment.pb.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/lib/strings/proto_serialization.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { std::unique_ptr<tsl::protobuf::Message> ProcessNewEnv( std::unique_ptr<tsl::protobuf::Message> msg) { std::unique_ptr<test::TestCompilationEnvironment1> env( tensorflow::down_cast<test::TestCompilationEnvironment1*>(msg.release())); if (!env) { env = std::make_unique<test::TestCompilationEnvironment1>(); env->set_some_flag(100); } return env; } namespace { namespace op = ::xla::testing::opcode_matchers; class HloModuleTest : public HloTestBase { protected: static void SetUpTestSuite() { CompilationEnvironments::RegisterProcessNewEnvFn( test::TestCompilationEnvironment1::descriptor(), ProcessNewEnv); } std::unique_ptr<HloComputation> CreateConstantComputation() { auto builder = HloComputation::Builder("Constant"); builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); return builder.Build(); } std::unique_ptr<HloComputation> CreateCallComputation( absl::Span<HloComputation* const> computations) { auto builder = HloComputation::Builder("Call"); for (auto computation : computations) { builder.AddInstruction( HloInstruction::CreateCall(r0f32_, {}, computation)); } return builder.Build(); } Shape r0f32_ = ShapeUtil::MakeShape(F32, {}); }; TEST_F(HloModuleTest, OneComputationPostOrder) { auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(CreateConstantComputation()); EXPECT_THAT(module->MakeComputationPostOrder(), ::testing::ElementsAre(computation)); } TEST_F(HloModuleTest, TwoComputationsPostOrder) { auto module = CreateNewVerifiedModule(); auto computation1 = module->AddEntryComputation(CreateConstantComputation()); auto computation2 = module->AddEmbeddedComputation(CreateConstantComputation()); EXPECT_THAT(module->MakeComputationPostOrder(), ::testing::UnorderedElementsAre(computation1, computation2)); EXPECT_EQ(computation1->name(), "Constant"); EXPECT_EQ(computation2->name(), "Constant.1"); } TEST_F(HloModuleTest, CloneTest) { auto module = CreateNewVerifiedModule(); auto computation1 = module->AddEmbeddedComputation(CreateConstantComputation()); auto computation2 = module->AddEmbeddedComputation(CreateCallComputation({computation1})); auto computation3 = module->AddEmbeddedComputation(CreateCallComputation({computation1})); module->AddEntryComputation( CreateCallComputation({computation2, computation3})); auto env = std::make_unique<test::TestCompilationEnvironment1>(); env->set_some_flag(10); TF_ASSERT_OK(module->comp_envs().AddEnv(std::move(env))); auto post_order = module->MakeComputationPostOrder(); auto cloned_module = module->Clone("copy"); auto post_order_copied = cloned_module->MakeComputationPostOrder(); EXPECT_EQ(cloned_module->comp_envs() .GetEnv<test::TestCompilationEnvironment1>() .some_flag(), 10); EXPECT_EQ(post_order.size(), post_order_copied.size()); for (auto origin = post_order.begin(), copied = post_order_copied.begin(); origin != post_order.end() && copied != post_order_copied.end(); ++origin, ++copied) { EXPECT_EQ(absl::StrCat((*origin)->name(), ".copy"), (*copied)->name()); } } TEST_F(HloModuleTest, CloneFrontendAttributes) { auto module = CreateNewVerifiedModule(); FrontendAttributes frontend_attributes; frontend_attributes.mutable_map()->emplace("attribute1", "attribute1_value"); module->set_frontend_attributes(frontend_attributes); std::unique_ptr<HloModule> clone = module->Clone(); bool areEqual = std::equal( frontend_attributes.map().begin(), frontend_attributes.map().end(), clone->frontend_attributes().map().begin(), [](const auto& kv1, const auto& kv2) { return kv1.first == kv2.first && kv1.second == kv2.second; }); EXPECT_TRUE(areEqual); } TEST_F(HloModuleTest, CloneHasFusion) { auto module = CreateNewVerifiedModule(); HloComputation* fused_computation; { auto b = HloComputation::Builder("Fused"); auto x = b.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "x")); b.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, x, x)); fused_computation = module->AddEmbeddedComputation(b.Build()); } { auto b = HloComputation::Builder("Entry"); auto input = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); b.AddInstruction( HloInstruction::CreateFusion(r0f32_, HloInstruction::FusionKind::kInput, {input}, fused_computation)); module->AddEntryComputation(b.Build()); } auto post_order = module->MakeComputationPostOrder(); auto cloned_module = module->Clone("copy"); auto post_order_copied = cloned_module->MakeComputationPostOrder(); EXPECT_EQ(post_order.size(), post_order_copied.size()); for (auto origin = post_order.begin(), copied = post_order_copied.begin(); origin != post_order.end() && copied != post_order_copied.end(); ++origin, ++copied) { if ((*origin)->name() == "Fused") { EXPECT_EQ(absl::StrCat((*origin)->name(), ".clone"), (*copied)->name()); } else { EXPECT_EQ(absl::StrCat((*origin)->name(), ".copy"), (*copied)->name()); } } } TEST_F(HloModuleTest, CloneCustomCallComputationToApply) { const char* const hlo_string = R"( HloModule a_module add_s32 { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY entry () -> s32[] { %c1 = s32[] constant(1) %c2 = s32[] constant(2) ROOT %custom-call = s32[] custom-call(s32[] %c1, %c2), custom_call_target="foo", backend_config="this string is opaque", to_apply=add_s32 })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); std::unique_ptr<HloModule> cloned_module = module->Clone(); HloComputation* cloned_computation = cloned_module->GetComputationWithName("add_s32.clone"); HloInstruction* cloned_custom_call = cloned_module->entry_computation()->GetInstructionWithName("custom-call"); EXPECT_TRUE(cloned_computation->IsCustomCallComputation()); EXPECT_EQ(cloned_computation->CustomCallInstruction(), cloned_custom_call); } TEST_F(HloModuleTest, CloneCustomCallComputationCalledComputations) { const char* const hlo_string = R"( HloModule a_module add_s32_0 { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } add_s32_1 { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY entry () -> s32[] { %c1 = s32[] constant(1) %c2 = s32[] constant(2) ROOT %custom-call = s32[] custom-call(s32[] %c1, %c2), custom_call_target="foo", backend_config="this string is opaque", called_computations={%add_s32_0, %add_s32_1} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); std::unique_ptr<HloModule> cloned_module = module->Clone(); HloComputation* cloned_computation_0 = cloned_module->GetComputationWithName("add_s32_0.clone"); HloComputation* cloned_computation_1 = cloned_module->GetComputationWithName("add_s32_1.clone"); HloInstruction* cloned_custom_call = cloned_module->entry_computation()->GetInstructionWithName("custom-call"); EXPECT_TRUE(cloned_computation_0->IsCustomCallComputation()); EXPECT_EQ(cloned_computation_0->CustomCallInstruction(), cloned_custom_call); EXPECT_TRUE(cloned_computation_1->IsCustomCallComputation()); EXPECT_EQ(cloned_computation_1->CustomCallInstruction(), cloned_custom_call); } TEST_F(HloModuleTest, CloneFusionComputation) { const char* const hlo_string = R"( HloModule a_module fused_computation () -> s32[] { ROOT %result = s32[] parameter(0) } ENTRY main { %c = s32[] constant(1) ROOT %fusion = s32[] fusion(%c), kind=kLoop, calls=fused_computation } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); std::unique_ptr<HloModule> cloned_module = module->Clone(); HloComputation* cloned_computation = cloned_module->GetComputationWithName("fused_computation.clone"); HloInstruction* cloned_fusion_instr = cloned_module->entry_computation()->GetInstructionWithName("fusion"); EXPECT_TRUE(cloned_computation->IsFusionComputation()); EXPECT_EQ(cloned_computation->FusionInstruction(), cloned_fusion_instr); } TEST_F(HloModuleTest, DiamondComputationsPostOrder) { auto module = CreateNewVerifiedModule(); auto computation1 = module->AddEmbeddedComputation(CreateConstantComputation()); auto computation2 = module->AddEmbeddedComputation(CreateCallComputation({computation1})); auto computation3 = module->AddEmbeddedComputation(CreateCallComputation({computation1})); auto computation4 = module->AddEntryComputation( CreateCallComputation({computation2, computation3})); auto post_order = module->MakeComputationPostOrder(); EXPECT_THAT(post_order, ::testing::UnorderedElementsAre(computation1, computation2, computation3, computation4)); EXPECT_EQ(post_order.back(), computation4); EXPECT_EQ(post_order.front(), computation1); } TEST_F(HloModuleTest, LargeConstantToString) { auto module = CreateNewVerifiedModule(); auto builder = HloComputation::Builder("Constant"); std::vector<float> values(16, 42.0); builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<float>(values))); module->AddEntryComputation(builder.Build()); EXPECT_EQ( "HloModule LargeConstantToString, " "entry_computation_layout={()->f32[16]{0}}\n\nENTRY %Constant () -> " "f32[16] {\n ROOT %constant = f32[16]{0} constant({...})\n}\n\n", module->ToString(HloPrintOptions().set_print_large_constants(false))); EXPECT_EQ( "HloModule LargeConstantToString, " "entry_computation_layout={()->f32[16]{0}}\n\nENTRY %Constant () -> " "f32[16] {\n ROOT %constant = f32[16]{0} constant({42, 42, 42, 42, 42, " "42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42})\n}\n\n", module->ToString(HloPrintOptions().set_print_large_constants(true))); } TEST_F(HloModuleTest, UniqueModuleId) { auto module_a = CreateNewVerifiedModule(); auto module_b = CreateNewVerifiedModule(); EXPECT_NE(module_a->unique_id(), module_b->unique_id()); } TEST_F(HloModuleTest, ProtoSerializationWithoutSchedule) { const std::string text = R"( HloModule axpy_module ENTRY %axpy.v5 (alpha: f32[], x: f32[2,4], y: f32[2,4]) -> f32[2,4] { %alpha = f32[] parameter(0) %x = f32[2,4]{1,0} parameter(1) %y = f32[2,4]{1,0} parameter(2) %broadcast = f32[2,4]{1,0} broadcast(f32[] %alpha), dimensions={} %multiply = f32[2,4]{1,0} multiply(f32[2,4]{1,0} %broadcast, f32[2,4]{1,0} %x) ROOT %add = f32[2,4]{1,0} add(f32[2,4]{1,0} %multiply, f32[2,4]{1,0} %y) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); ASSERT_FALSE(module->has_schedule()); TF_ASSERT_OK_AND_ASSIGN( auto module_copy, HloModule::CreateFromProto(module->ToProto(), module->config())); ASSERT_FALSE(module_copy->has_schedule()); } TEST_F(HloModuleTest, ProtoSerializationWithSchedule) { const std::string text = R"( HloModule axpy_module, is_scheduled=true ENTRY %axpy.v5 (alpha: f32[], x: f32[2,4], y: f32[2,4]) -> f32[2,4] { %alpha = f32[] parameter(0) %x = f32[2,4]{1,0} parameter(1) %y = f32[2,4]{1,0} parameter(2) %broadcast = f32[2,4]{1,0} broadcast(f32[] %alpha), dimensions={} %multiply = f32[2,4]{1,0} multiply(f32[2,4]{1,0} %broadcast, f32[2,4]{1,0} %x) ROOT %add = f32[2,4]{1,0} add(f32[2,4]{1,0} %multiply, f32[2,4]{1,0} %y) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); ASSERT_TRUE(module->has_schedule()); TF_ASSERT_OK_AND_ASSIGN( auto module_copy, HloModule::CreateFromProto(module->ToProto(), module->config())); ASSERT_TRUE(module_copy->has_schedule()); TF_ASSERT_OK(module_copy->schedule().Verify()); EXPECT_EQ(module_copy->schedule().sequences().size(), 1); ASSERT_TRUE(module_copy->schedule().is_computation_scheduled( module_copy->entry_computation())); EXPECT_THAT( module_copy->schedule() .sequence(module_copy->entry_computation()) .instructions(), ::testing::ElementsAre(op::Parameter(), op::Parameter(), op::Parameter(), op::Broadcast(), op::Multiply(), op::Add())); } TEST_F(HloModuleTest, ProtoSerializationPreservesIds) { const std::string text = R"(HloModule ReduceR3ToR2_module add_F32.v3 { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY ReduceR3ToR2.v3 { input = f32[8,16,256]{2,1,0} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[8,16]{1,0} reduce(input, constant), dimensions={2}, to_apply=add_F32.v3 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); HloComputation* entry = module->entry_computation(); HloInstruction* root = entry->root_instruction(); HloComputation* reduction = root->to_apply(); HloComputation* reduction_clone = module->AddEmbeddedComputation(reduction->Clone()); root->set_to_apply(reduction_clone); TF_ASSERT_OK(module->RemoveEmbeddedComputation(reduction)); HloInstruction* negate = entry->AddInstruction( HloInstruction::CreateUnary(root->shape(), HloOpcode::kNegate, root)); entry->set_root_instruction(negate); auto size_fn = [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape()); }; HloMemoryScheduler scheduler(size_fn); TF_ASSERT_OK(scheduler.Run(module.get()).status()); ASSERT_TRUE(module->has_schedule()); TF_ASSERT_OK_AND_ASSIGN( auto module_copy, HloModule::CreateFromProto(module->ToProto(), module->config())); EXPECT_NE(module->unique_id(), module_copy->unique_id()); auto computation_copy = module_copy->computations(); auto computation_copy_it = computation_copy.begin(); for (const HloComputation* computation_orig : module->computations()) { const HloComputation* computation_copy = *computation_copy_it++; EXPECT_EQ(computation_orig->unique_id(), computation_copy->unique_id()) << absl::StrFormat( "ID of original computation %s != ID of deserialized " "computation %s: %d != %d", computation_orig->name(), computation_copy->name(), computation_orig->unique_id(), computation_copy->unique_id()); auto instruction_copy_it = computation_copy->instructions().begin(); for (const HloInstruction* instruction_orig : computation_orig->instructions()) { const HloInstruction* instruction_copy = *instruction_copy_it++; EXPECT_EQ(instruction_orig->unique_id(), instruction_copy->unique_id()) << absl::StrFormat( "ID of original instruction %s != ID of deserialized " "instruction %s: %d != %d", instruction_orig->name(), instruction_copy->name(), instruction_orig->unique_id(), instruction_copy->unique_id()); } } int next_id = module_copy->NewUniqueInstructionId(); for (const HloComputation* computation : module_copy->computations()) { for (const HloInstruction* instruction : computation->instructions()) { EXPECT_GT(next_id, instruction->unique_id()); } } } TEST_F(HloModuleTest, VerifyReplaceComputationsWithReduceScatter) { const std::string text = R"( HloModule reduce-scatter %sum (a: f32[], b: f32[]) -> f32[] { %a = f32[] parameter(0) %b = f32[] parameter(1) ROOT %add = f32[] add(f32[] a, f32[] b) } ENTRY main { %param = f32[16,8,128]{2,1,0} parameter(0) ROOT %rs = f32[4,8,128]{2,1,0} reduce-scatter(f32[16,8,128]{2,1,0} %param), replica_groups={}, to_apply=%sum, dimensions={0} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); HloComputation* new_comp; { auto b = HloComputation::Builder("Fused"); auto p0 = b.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "p0")); auto p1 = b.AddInstruction(HloInstruction::CreateParameter(1, r0f32_, "p1")); b.AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(F32, {}), HloOpcode::kMultiply, p0, p1)); new_comp = module->AddEmbeddedComputation(b.Build()); } HloComputation* entry = module->entry_computation(); HloInstruction* root = entry->root_instruction(); EXPECT_EQ(root->to_apply()->root_instruction()->opcode(), HloOpcode::kAdd); absl::flat_hash_map<HloComputation*, HloComputation*> replacement; replacement[root->to_apply()] = new_comp; module->ReplaceComputations(replacement); EXPECT_EQ(root->to_apply(), new_comp); } TEST_F(HloModuleTest, VerifyReplaceComputationsWithSortOp) { const std::string text = R"( HloModule sort compare { p.0.lhs = f32[] parameter(0) p.0.rhs = f32[] parameter(1) p.1.lhs = f32[] parameter(2) p.1.rhs = f32[] parameter(3) ROOT lt = pred[] compare(p.0.lhs, p.0.rhs), direction=LT } ENTRY top { p.0 = f32[32] parameter(0) p.1 = f32[32] parameter(1) ROOT %sort.148.1589 = (f32[32], f32[32]) sort(p.0, p.1), dimensions={0}, to_apply=compare } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); HloComputation* new_comp; { auto b = HloComputation::Builder("Fused"); auto p0 = b.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "p0")); auto p1 = b.AddInstruction(HloInstruction::CreateParameter(1, r0f32_, "p1")); b.AddInstruction(HloInstruction::CreateParameter(2, r0f32_, "p2")); b.AddInstruction(HloInstruction::CreateParameter(3, r0f32_, "p3")); b.AddInstruction(HloInstruction::CreateCompare( ShapeUtil::MakeShape(PRED, {}), p0, p1, ComparisonDirection::kGt)); new_comp = module->AddEmbeddedComputation(b.Build()); } HloComputation* entry = module->entry_computation(); HloInstruction* root = entry->root_instruction(); EXPECT_EQ(root->to_apply()->root_instruction()->opcode(), HloOpcode::kCompare); EXPECT_EQ(root->to_apply()->root_instruction()->comparison_direction(), ComparisonDirection::kLt); absl::flat_hash_map<HloComputation*, HloComputation*> replacement; replacement[root->to_apply()] = new_comp; module->ReplaceComputations(replacement); EXPECT_EQ(root->to_apply(), new_comp); } TEST_F(HloModuleTest, OneComputationAllAllowed) { auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(CreateConstantComputation()); absl::flat_hash_set<HloComputation*> allowList = {computation}; EXPECT_THAT( module->MakeComputationPostOrder({}, allowList), ::testing::ElementsAre(computation)); } TEST_F(HloModuleTest, OneComputationAllFiltered) { auto module = CreateNewVerifiedModule(); module->AddEntryComputation(CreateConstantComputation()); absl::flat_hash_set<HloComputation*> allowList = {}; module->MakeComputationPostOrder({}, allowList); EXPECT_THAT( module->MakeComputationPostOrder({}, allowList), ::testing::IsEmpty()); } TEST_F(HloModuleTest, DiamondComputationsPostOrderAllAllowed) { auto module = CreateNewVerifiedModule(); auto computation1 = module->AddEmbeddedComputation(CreateConstantComputation()); auto computation2 = module->AddEmbeddedComputation(CreateCallComputation({computation1})); auto computation3 = module->AddEmbeddedComputation(CreateCallComputation({computation1})); auto computation4 = module->AddEntryComputation( CreateCallComputation({computation2, computation3})); absl::flat_hash_set<HloComputation*> allowList = {computation1, computation2, computation3, computation4}; auto post_order = module->MakeComputationPostOrder({}, allowList); EXPECT_THAT(post_order, ::testing::UnorderedElementsAre(computation1, computation2, computation3, computation4)); EXPECT_EQ(post_order.back(), computation4); EXPECT_EQ(post_order.front(), computation1); } TEST_F(HloModuleTest, DiamondComputationsPostOrderMiddleFiltered) { auto module = CreateNewVerifiedModule(); auto computation1 = module->AddEmbeddedComputation(CreateConstantComputation()); auto computation2 = module->AddEmbeddedComputation(CreateCallComputation({computation1})); auto computation3 = module->AddEmbeddedComputation(CreateCallComputation({computation1})); auto computation4 = module->AddEntryComputation( CreateCallComputation({computation2, computation3})); absl::flat_hash_set<HloComputation*> allowList = {computation1, computation4}; auto post_order = module->MakeComputationPostOrder({}, allowList); EXPECT_THAT(post_order, ::testing::UnorderedElementsAre(computation1, computation4)); } TEST_F(HloModuleTest, DiamondComputationsPostOrderAllFiltered) { auto module = CreateNewVerifiedModule(); auto computation1 = module->AddEmbeddedComputation(CreateConstantComputation()); auto computation2 = module->AddEmbeddedComputation(CreateCallComputation({computation1})); auto computation3 = module->AddEmbeddedComputation(CreateCallComputation({computation1})); module->AddEntryComputation( CreateCallComputation({computation2, computation3})); absl::flat_hash_set<HloComputation*> allowList = {}; auto post_order = module->MakeComputationPostOrder({}, allowList); EXPECT_THAT( module->MakeComputationPostOrder({}, allowList), ::testing::IsEmpty()); } TEST_F(HloModuleTest, TwoComputationsFilterexecution_threads) { HloComputation::Builder builder(TestName()); constexpr char kParallelThreadName[] = "parallel_thread"; auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.1f))); auto add = builder.AddInstruction(HloInstruction::CreateBinary( r0f32_, HloOpcode::kAdd, constant1, constant2)); auto module = CreateNewVerifiedModule(); auto* main_thread_computation = module->AddEntryComputation(builder.Build()); TF_ASSERT_OK_AND_ASSIGN( auto* async_done, main_thread_computation->CreateAsyncInstructions( add, {ShapeUtil::MakeScalarShape(U32)}, kParallelThreadName)); auto* parallel_thread_computation = async_done->async_wrapped_computation(); EXPECT_THAT( module->MakeComputationPostOrder({HloInstruction::kMainExecutionThread}), ::testing::ElementsAre(main_thread_computation)); EXPECT_THAT(module->MakeComputationPostOrder(), ::testing::ElementsAre(parallel_thread_computation, main_thread_computation)); EXPECT_THAT(module->MakeComputationPostOrder({kParallelThreadName}), ::testing::ElementsAre(parallel_thread_computation)); int num_all_computations = 0; for ([[maybe_unused]] const HloComputation* comp : module->computations({})) { ++num_all_computations; } EXPECT_EQ(num_all_computations, 2); int num_main_computations = 0; for (const HloComputation* comp : module->computations({HloInstruction::kMainExecutionThread})) { ++num_main_computations; EXPECT_EQ(comp->execution_thread(), HloInstruction::kMainExecutionThread); } EXPECT_EQ(num_main_computations, 1); int num_parallel_computations = 0; for (const HloComputation* comp : module->computations({kParallelThreadName})) { ++num_parallel_computations; EXPECT_EQ(comp->execution_thread(), kParallelThreadName); } EXPECT_EQ(num_parallel_computations, 1); } TEST_F(HloModuleTest, HloModuleWithConfigSerializationEquality) { const std::string computation_text = R"(HloModule ReduceR3ToR2_module add_F32.v3 { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY ReduceR3ToR2.v3 { input = f32[8,16,256]{2,1,0} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[8,16]{1,0} reduce(input, constant), dimensions={2}, to_apply=add_F32.v3 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(computation_text)); xla::HloModuleProtoWithConfig proto = module->ToProtoWithConfig(); std::string serialized_module; ASSERT_TRUE(tsl::SerializeToStringDeterministic(proto, &serialized_module)); std::string original_debug_str = proto.DebugString(); RecordProperty("serialized_module", original_debug_str); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> reconstructed_module, HloModule::CreateFromProtoWithConfig(proto)); xla::HloModuleProtoWithConfig reconstructed_module_proto = reconstructed_module->ToProtoWithConfig(); google::protobuf::util::MessageDifferencer diff; diff.set_message_field_comparison( google::protobuf::util::MessageDifferencer::EQUIVALENT); auto module_descriptor = HloModuleProto::GetDescriptor(); auto unique_id_field = module_descriptor->FindFieldByName("id"); diff.IgnoreField(unique_id_field); EXPECT_TRUE(diff.Compare(proto, reconstructed_module_proto)); } static ShardableValueUpdatePairProto MakeShardPair(int offset) { ShardableValueUpdatePairProto pear; pear.set_input_parameter_number(offset + 1); for (int64_t i = 0; i < 5; ++i) { pear.add_parameter_shape_index(offset + i); } for (int64_t j = 0; j < 3; ++j) { pear.add_output_shape_index(offset + j); } return pear; } static HloModuleConfigProto::BoolList MakeOneHotBoolList(unsigned num_vals, unsigned hot_idx) { HloModuleConfigProto::BoolList list; for (unsigned i = 0; i < num_vals; ++i) { list.add_vals(i == hot_idx); } return list; } static absl::StatusOr<HloModuleConfigProto> MakeTestModuleConfigProto() { HloModuleConfigProto proto; proto.set_seed(0xdeadbeef); proto.set_launch_id(0xfeed100); proto.set_replica_count(3); proto.set_num_partitions(2); for (int x = 0; x < 6; ++x) { proto.add_param_requires_broadcast_via_collectives(x & 1); } proto.set_use_spmd_partitioning(true); proto.set_use_auto_spmd_partitioning(true); for (unsigned x = 0; x < 4; ++x) { proto.add_auto_spmd_partitioning_mesh_ids(10 - x); proto.add_auto_spmd_partitioning_mesh_ids(x); } proto.set_deduplicate_hlo(true); proto.set_intra_op_parallelism_threads(42); proto.set_device_type("Google Test framework"); *proto.mutable_debug_options() = DefaultDebugOptionsIgnoringFlags(); { DeviceAssignmentProto device_assignment_proto; DeviceAssignment device_assignment(3, 2); device_assignment.Serialize(&device_assignment_proto); proto.mutable_static_device_assignment()->Swap(&device_assignment_proto); } for (int k = 0; k < 3; ++k) { *proto.add_shardable_value_update_pairs() = MakeShardPair(k); } proto.set_alias_passthrough_params(true); proto.set_content_aware_computation_sorting(true); proto.set_fusion_config_collection(HloModuleConfigProto::PER_NODE); for (int idx = 0; idx < 4; ++idx) { bool reverse = (idx & 1) == 0; *proto.add_fusion_config() = MakeOneHotBoolList(6, (reverse) ? 6 - idx : idx); } for (int idx = 0; idx < 4; ++idx) { HloModuleConfigProto::Int64List int_list; for (int x = 1; x <= 3; ++x) { int_list.add_vals(x * x * idx); } proto.mutable_dot_config()->insert( {absl::StrCat("Node", idx, "dot"), std::move(int_list)}); } for (int idx
2,181
cpp
tensorflow/tensorflow
dynamic_parameter_binding
third_party/xla/xla/hlo/ir/dynamic_parameter_binding.cc
third_party/xla/xla/service/dynamic_parameter_binding_test.cc
#ifndef XLA_HLO_IR_DYNAMIC_PARAMETER_BINDING_H_ #define XLA_HLO_IR_DYNAMIC_PARAMETER_BINDING_H_ #include <cstdint> #include <functional> #include <optional> #include <ostream> #include <string> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/shape_util.h" namespace xla { class HloModule; class DynamicParameterBinding { public: struct DynamicSizeParameter { int64_t parameter_num; ShapeIndex parameter_index; }; struct DynamicDimension { int64_t parameter_num; ShapeIndex parameter_index; int64_t dimension; template <typename H> friend H AbslHashValue(H h, const DynamicDimension& m) { return H::combine(std::move(h), m.parameter_num, m.parameter_index, m.dimension); } friend bool operator==(const DynamicDimension& lhs, const DynamicDimension& rhs) { return lhs.parameter_num == rhs.parameter_num && lhs.parameter_index == rhs.parameter_index && lhs.dimension == rhs.dimension; } }; absl::Status Bind(const DynamicSizeParameter& dynamic_parameter, const DynamicDimension& dynamic_dimension); std::optional<DynamicSizeParameter> GetBinding( const DynamicDimension& dynamic_dimension) const; using BindingFn = std::function<absl::Status(const DynamicSizeParameter& dynamic_parameter, const DynamicDimension& dynamic_dimension)>; absl::Status ForEachBinding(BindingFn fn) const; std::string ToString() const; absl::Status Verify(const HloComputation& computation) const; bool empty() const { return bindings_.empty(); } private: absl::flat_hash_map<DynamicDimension, DynamicSizeParameter> bindings_; }; std::ostream& operator<<(std::ostream& out, const DynamicParameterBinding& binding); } #endif #include "xla/hlo/ir/dynamic_parameter_binding.h" #include <optional> #include <ostream> #include <string> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "tsl/platform/errors.h" namespace xla { absl::Status DynamicParameterBinding::Bind( const DynamicSizeParameter& dynamic_parameter, const DynamicDimension& dynamic_dimension) { auto result = bindings_.emplace(dynamic_dimension, dynamic_parameter); TF_RET_CHECK(result.second); return absl::OkStatus(); } std::optional<DynamicParameterBinding::DynamicSizeParameter> DynamicParameterBinding::GetBinding( const DynamicDimension& dynamic_dimension) const { auto param_iter = bindings_.find(dynamic_dimension); if (param_iter == bindings_.end()) { return std::nullopt; } return param_iter->second; } std::string DynamicParameterBinding::ToString() const { std::vector<std::string> pieces; pieces.push_back("DynamicParameterBinding: "); for (const auto& binding : bindings_) { const DynamicDimension& dynamic_dimension = binding.first; const DynamicSizeParameter& dynamic_param = binding.second; pieces.push_back(absl::StrFormat( " -- Input param number %lld at %s has dim %lld as dynamic" " dimension, which is represented by param number %lld at " "%s", dynamic_dimension.parameter_num, dynamic_dimension.parameter_index.ToString(), dynamic_dimension.dimension, dynamic_param.parameter_num, dynamic_param.parameter_index.ToString())); } return absl::StrJoin(pieces, "\n"); } absl::Status DynamicParameterBinding::ForEachBinding(BindingFn fn) const { for (const auto& binding : bindings_) { TF_RETURN_IF_ERROR(fn(binding.second, binding.first)); } return absl::OkStatus(); } absl::Status DynamicParameterBinding::Verify( const HloComputation& computation) const { return ForEachBinding([&](const DynamicSizeParameter& dynamic_parameter, const DynamicDimension& dynamic_dimension) -> absl::Status { TF_RET_CHECK(dynamic_parameter.parameter_num >= 0 && dynamic_parameter.parameter_num < computation.num_parameters()); TF_RET_CHECK(dynamic_dimension.parameter_num < computation.num_parameters()); TF_RET_CHECK(ShapeUtil::IndexIsValid( computation.parameter_instruction(dynamic_parameter.parameter_num) ->shape(), dynamic_parameter.parameter_index)); TF_RET_CHECK(ShapeUtil::IndexIsValid( computation.parameter_instruction(dynamic_dimension.parameter_num) ->shape(), dynamic_dimension.parameter_index)); TF_RET_CHECK( dynamic_dimension.dimension < ShapeUtil::GetSubshape( computation.parameter_instruction(dynamic_dimension.parameter_num) ->shape(), dynamic_dimension.parameter_index) .rank()); return absl::OkStatus(); }); } std::ostream& operator<<(std::ostream& out, const DynamicParameterBinding& binding) { out << binding.ToString(); return out; } }
#include "xla/hlo/ir/dynamic_parameter_binding.h" #include <memory> #include <optional> #include <string> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using DynamicParameterBindingTest = HloTestBase; TEST_F(DynamicParameterBindingTest, SimpleBinding) { const std::string module_str = R"( HloModule TEST ENTRY main { a = f32[] parameter(0) b = f32[10] parameter(1) ROOT root = (f32[], f32[10]) tuple(%a, %b) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); DynamicParameterBinding binding; TF_EXPECT_OK( binding.Bind(DynamicParameterBinding::DynamicSizeParameter{0, {}}, DynamicParameterBinding::DynamicDimension{1, {}, 0})); auto test = [&](const DynamicParameterBinding& binding) { std::optional<DynamicParameterBinding::DynamicSizeParameter> param = binding.GetBinding( DynamicParameterBinding::DynamicDimension{1, {}, 0}); EXPECT_TRUE(param); EXPECT_EQ(param->parameter_num, 0); EXPECT_EQ(param->parameter_index, ShapeIndex({})); TF_EXPECT_OK(binding.Verify(*module->entry_computation())); }; test(binding); } TEST_F(DynamicParameterBindingTest, TupleBinding) { const std::string module_str = R"( HloModule TEST ENTRY main { param = (f32[], f32[10]) parameter(0) gte1 = f32[] get-tuple-element(%param), index=0 gte2 = f32[10] get-tuple-element(%param), index=1 ROOT root = (f32[], f32[10]) tuple(%gte1, %gte2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); DynamicParameterBinding binding; TF_EXPECT_OK( binding.Bind(DynamicParameterBinding::DynamicSizeParameter{0, {0}}, DynamicParameterBinding::DynamicDimension{0, {1}, 0})); auto test = [&](const DynamicParameterBinding& binding) { std::optional<DynamicParameterBinding::DynamicSizeParameter> param = binding.GetBinding( DynamicParameterBinding::DynamicDimension{0, {1}, 0}); EXPECT_TRUE(param); EXPECT_EQ(param->parameter_num, 0); EXPECT_EQ(param->parameter_index, ShapeIndex({0})); TF_EXPECT_OK(binding.Verify(*module->entry_computation())); }; test(binding); } TEST_F(DynamicParameterBindingTest, TupleBindingWithMultiDimension) { const std::string module_str = R"( HloModule TEST ENTRY main { param = (f32[], f32[10, 10]) parameter(0) gte1 = f32[] get-tuple-element(%param), index=0 gte2 = f32[10, 10] get-tuple-element(%param), index=1 ROOT root = (f32[], f32[10, 10]) tuple(%gte1, %gte2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); DynamicParameterBinding binding; TF_EXPECT_OK( binding.Bind(DynamicParameterBinding::DynamicSizeParameter{0, {0}}, DynamicParameterBinding::DynamicDimension{0, {1}, 0})); TF_EXPECT_OK( binding.Bind(DynamicParameterBinding::DynamicSizeParameter{0, {0}}, DynamicParameterBinding::DynamicDimension{0, {1}, 1})); auto test = [&](const DynamicParameterBinding& binding) { std::optional<DynamicParameterBinding::DynamicSizeParameter> param = binding.GetBinding( DynamicParameterBinding::DynamicDimension{0, {1}, 0}); EXPECT_TRUE(param); EXPECT_EQ(param->parameter_num, 0); EXPECT_EQ(param->parameter_index, ShapeIndex({0})); std::optional<DynamicParameterBinding::DynamicSizeParameter> param2 = binding.GetBinding( DynamicParameterBinding::DynamicDimension{0, {1}, 0}); EXPECT_TRUE(param2); EXPECT_EQ(param2->parameter_num, 0); EXPECT_EQ(param2->parameter_index, ShapeIndex({0})); TF_EXPECT_OK(binding.Verify(*module->entry_computation())); }; test(binding); } } }
2,182
cpp
tensorflow/tensorflow
hlo_instruction
third_party/xla/xla/hlo/ir/hlo_instruction.cc
third_party/xla/xla/service/hlo_instruction_test.cc
#ifndef XLA_HLO_IR_HLO_INSTRUCTION_H_ #define XLA_HLO_IR_HLO_INSTRUCTION_H_ #include <cstddef> #include <cstdint> #include <functional> #include <iosfwd> #include <map> #include <memory> #include <optional> #include <ostream> #include <set> #include <string> #include <type_traits> #include <utility> #include <vector> #include "absl/base/attributes.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/backend_config.h" #include "xla/hlo/ir/collective_device_list.h" #include "xla/hlo/ir/dfs_hlo_visitor.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_domain_metadata.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/ir/ptrvec.h" #include "xla/layout.h" #include "xla/literal.h" #include "xla/printer.h" #include "xla/service/hlo.pb.h" #include "xla/service/mapped_ptr_container_sorter.h" #include "xla/service/name_uniquer.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/xla_data.pb.h" #include "tsl/lib/gtl/iterator_range.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/protobuf.h" namespace xla { class HloComputation; class HloModule; absl::string_view PrintName(absl::string_view name, bool print_ids); class HloPrintOptions { public: enum class PrintSubcomputationMode { kOff, kNameOnly, kFullBodies, kNonSequentialBodies, }; constexpr HloPrintOptions() : print_operand_index_annotation_interval_(5), print_subcomputation_mode_(PrintSubcomputationMode::kNameOnly), indent_amount_(0), print_large_constants_(false), print_only_essential_constants_(false), print_metadata_(true), print_metadata_only_op_name_(false), print_backend_config_(true), print_infeed_outfeed_config_(true), compact_operands_(false), include_layout_in_shapes_(true), print_result_shape_(true), print_operand_shape_(true), print_operand_names_(true), print_program_shape_(true), print_percent_(true), print_control_dependencies_(true), canonicalize_instruction_names_(false), is_in_nested_computation_(false), print_ids_(true), canonicalize_computations_(false), print_extra_attributes_(true), syntax_sugar_async_ops_(true), print_name_after_closing_brace_(false) {} static const HloPrintOptions& Default() { ABSL_CONST_INIT static const HloPrintOptions options; return options; } static HloPrintOptions ShortParsable() { return HloPrintOptions() .set_print_large_constants(true) .set_print_subcomputation_mode(PrintSubcomputationMode::kNameOnly) .set_print_metadata(false) .set_print_backend_config(false) .set_print_operand_shape(false) .set_print_operand_index_annotation_interval(0) .set_print_program_shape(false) .set_print_percent(false) .set_print_control_dependencies(false); } static HloPrintOptions Canonical() { return HloPrintOptions() .set_print_subcomputation_mode(PrintSubcomputationMode::kFullBodies) .set_print_metadata(false) .set_print_backend_config(false) .set_compact_operands(false) .set_print_operand_names(false) .set_print_operand_shape(true) .set_print_operand_index_annotation_interval(0) .set_print_program_shape(false) .set_print_percent(false) .set_print_control_dependencies(false) .set_canonicalize_instruction_names(true); } static HloPrintOptions Fingerprint() { return Canonical() .set_print_infeed_outfeed_config(false) .set_print_only_essential_constants(true) .set_print_ids(false) .set_canonicalize_computations(true); } static HloPrintOptions ModuleFingerprint() { return Fingerprint() .set_print_operand_shape(false); } HloPrintOptions& set_print_large_constants(bool value) { print_large_constants_ = value; return *this; } HloPrintOptions& set_print_only_essential_constants(bool value) { print_only_essential_constants_ = value; return *this; } HloPrintOptions& set_print_subcomputation_mode( PrintSubcomputationMode value) { print_subcomputation_mode_ = value; return *this; } HloPrintOptions& set_print_metadata(bool value) { print_metadata_ = value; return *this; } HloPrintOptions& set_print_metadata_only_op_name(bool value) { print_metadata_only_op_name_ = value; return *this; } HloPrintOptions& set_print_backend_config(bool value) { print_backend_config_ = value; return *this; } HloPrintOptions& set_print_infeed_outfeed_config(bool value) { print_infeed_outfeed_config_ = value; return *this; } HloPrintOptions& set_print_result_shape(bool value) { print_result_shape_ = value; return *this; } HloPrintOptions& set_print_operand_shape(bool value) { print_operand_shape_ = value; return *this; } HloPrintOptions& set_print_operand_index_annotation_interval(int64_t value) { print_operand_index_annotation_interval_ = value; return *this; } HloPrintOptions& set_print_operand_names(bool value) { print_operand_names_ = value; return *this; } HloPrintOptions& set_print_ids(bool value) { print_ids_ = value; return *this; } HloPrintOptions& set_print_extra_attributes(bool value) { print_extra_attributes_ = value; return *this; } HloPrintOptions& set_print_program_shape(bool value) { print_program_shape_ = value; return *this; } HloPrintOptions& set_print_percent(bool value) { print_percent_ = value; return *this; } HloPrintOptions& set_print_control_dependencies(bool value) { print_control_dependencies_ = value; return *this; } HloPrintOptions& set_syntax_sugar_async_ops(bool value) { syntax_sugar_async_ops_ = value; return *this; } HloPrintOptions& set_compact_operands(bool value) { compact_operands_ = value; return *this; } HloPrintOptions& set_include_layout_in_shapes(bool value) { include_layout_in_shapes_ = value; return *this; } HloPrintOptions& set_canonicalize_instruction_names(bool value) { canonicalize_instruction_names_ = value; return *this; } HloPrintOptions& set_canonicalize_computations(bool value) { canonicalize_computations_ = value; return *this; } HloPrintOptions& set_indent_amount(int value) { indent_amount_ = value; return *this; } HloPrintOptions& set_is_in_nested_computation(bool value) { is_in_nested_computation_ = value; return *this; } HloPrintOptions& set_print_name_after_closing_brace(bool value) { print_name_after_closing_brace_ = value; return *this; } bool print_large_constants() const { return print_large_constants_; } bool print_only_essential_constants() const { return print_only_essential_constants_; } PrintSubcomputationMode print_subcomputation_mode() const { return print_subcomputation_mode_; } bool print_metadata() const { return print_metadata_; } bool print_metadata_only_op_name() const { return print_metadata_only_op_name_; } bool print_backend_config() const { return print_backend_config_; } bool print_infeed_outfeed_config() const { return print_infeed_outfeed_config_; } bool compact_operands() const { return compact_operands_; } bool include_layout_in_shapes() const { return include_layout_in_shapes_; } bool print_result_shape() const { return print_result_shape_; } bool print_operand_shape() const { return print_operand_shape_; } bool print_operand_names() const { return print_operand_names_; } int64_t print_operand_index_annotation_interval() const { return print_operand_index_annotation_interval_; } bool print_ids() const { return print_ids_; } bool print_program_shape() const { return print_program_shape_; } bool print_percent() const { return print_percent_; } bool print_control_dependencies() const { return print_control_dependencies_; } bool print_extra_attributes() const { return print_extra_attributes_; } bool syntax_sugar_async_ops() const { return syntax_sugar_async_ops_; } bool canonicalize_instruction_names() const { return canonicalize_instruction_names_; } bool canonicalize_computations() const { return canonicalize_computations_; } int indent_amount() const { return indent_amount_; } int is_in_nested_computation() const { return is_in_nested_computation_; } int print_name_after_closing_brace() const { return print_name_after_closing_brace_; } private: int64_t print_operand_index_annotation_interval_; PrintSubcomputationMode print_subcomputation_mode_; int indent_amount_; bool print_large_constants_; bool print_only_essential_constants_; bool print_metadata_; bool print_metadata_only_op_name_; bool print_backend_config_; bool print_infeed_outfeed_config_; bool compact_operands_; bool include_layout_in_shapes_; bool print_result_shape_; bool print_operand_shape_; bool print_operand_names_; bool print_program_shape_; bool print_percent_; bool print_control_dependencies_; bool canonicalize_instruction_names_; bool is_in_nested_computation_; bool print_ids_; bool canonicalize_computations_; bool print_extra_attributes_; bool syntax_sugar_async_ops_; bool print_name_after_closing_brace_; }; class CanonicalNameMap { public: const std::string& LookupOrInsert(int unique_id) { std::string& canonical_name = canonical_name_map_[unique_id]; if (canonical_name.empty()) { absl::StrAppend(&canonical_name, "tmp_", canonical_name_map_.size() - 1); } return canonical_name; } void Reserve(size_t size) { canonical_name_map_.reserve(size); } private: absl::flat_hash_map<int, std::string> canonical_name_map_; }; class HloInstruction; class HloInstructionInfo { public: HloInstruction* get() const { return inst_; } HloInstruction& operator*() { return *inst_; } HloInstruction* operator->() { return inst_; } const HloInstruction& operator*() const { return *inst_; } const HloInstruction* operator->() const { return inst_; } HloOpcode opcode() const { return opcode_; } HloInstruction* inst() const { return inst_; } private: friend class HloComputation; HloOpcode opcode_; HloInstruction* inst_; }; namespace mapped_ptr_container_sorter_internal { template <typename T> struct PtrGetter<const HloInstructionInfo&, const T*> { static const T* Get(const HloInstructionInfo& p) { return p.get(); } }; } using HloInstructionList = std::vector<HloInstructionInfo>; template <typename UnderlyingList> class HloInstructionIteratorBase { public: using iterator_category = std::input_iterator_tag; using value_type = HloInstructionInfo; using difference_type = ptrdiff_t; using pointer = value_type*; using reference = value_type&; HloInstructionIteratorBase(UnderlyingList* list, int begin_index, int end_index) : list_(list), current_(begin_index), end_index_(end_index) { if (current_ < end_index_ && (*list_)[current_].inst() == nullptr) { ++*this; } } HloInstruction* get() const { return (*list_)[current_].inst(); } auto operator*() -> HloInstructionInfo { return (*list_)[current_]; } HloInstructionIteratorBase& operator++() { int next = current_; do { ++next; } while (next < end_index_ && (*list_)[next].inst() == nullptr); current_ = next; return *this; } HloInstructionIteratorBase operator++(int) { HloInstructionIteratorBase temp(list_, current_, end_index_); operator++(); return temp; } friend bool operator==(const HloInstructionIteratorBase& a, const HloInstructionIteratorBase& b) { return a.current_ == b.current_; } friend bool operator!=(const HloInstructionIteratorBase& a, const HloInstructionIteratorBase& b) { return !(a == b); } private: UnderlyingList* list_; int current_; int end_index_; }; using HloInstructionIterator = HloInstructionIteratorBase<HloInstructionList>; using HloInstructionConstIterator = HloInstructionIteratorBase<const HloInstructionList>; template <typename WrappedIter> class HloInstructionUnwrappingIteratorBase { public: using iterator_category = std::input_iterator_tag; using value_type = HloInstruction*; using difference_type = ptrdiff_t; using pointer = value_type*; using reference = value_type&; explicit HloInstructionUnwrappingIteratorBase(WrappedIter iter) : iter_(std::move(iter)) {} auto operator*() -> value_type { return iter_.get(); } HloInstructionUnwrappingIteratorBase& operator++() { ++iter_; return *this; } HloInstructionUnwrappingIteratorBase operator++(int) { HloInstructionUnwrappingIteratorBase temp(iter_); operator++(); return temp; } friend bool operator==(const HloInstructionUnwrappingIteratorBase& a, const HloInstructionUnwrappingIteratorBase& b) { return a.iter_ == b.iter_; } friend bool operator!=(const HloInstructionUnwrappingIteratorBase& a, const HloInstructionUnwrappingIteratorBase& b) { return !(a == b); } private: WrappedIter iter_; }; using HloInstructionUnwrappingIterator = HloInstructionUnwrappingIteratorBase<HloInstructionIterator>; using HloInstructionUnwrappingConstIterator = HloInstructionUnwrappingIteratorBase<HloInstructionConstIterator>; class HloInstruction { public: enum class FusionKind { kLoop, kInput, kOutput, kCustom, }; inline static constexpr char kMainExecutionThread[] = "main"; inline static constexpr char kHostThread[] = "host"; virtual ~HloInstruction() { DetachFromOperandsAndUsers(); } void DetachFromOperandsAndUsers(); HloInstruction* AddInstruction( std::unique_ptr<HloInstruction> derived_instruction); static absl::StatusOr<std::unique_ptr<HloInstruction>> CreateFromProto( const HloInstructionProto& proto, const absl::flat_hash_map<int64_t, HloInstruction*>& instruction_map, const absl::flat_hash_map<int64_t, HloComputation*>& computation_map = {}, bool prohibit_empty_literal = true); static std::unique_ptr<HloInstruction> CreateParameter( int64_t parameter_number, const Shape& shape, absl::string_view name); static std::unique_ptr<HloInstruction> CreateConstant(Literal literal); static std::unique_ptr<HloInstruction> CreateIota(const Shape& shape, int64_t iota_dimension); static std::unique_ptr<HloInstruction> CreateTopK(const Shape& shape, HloInstruction* input, int64_t k, bool largest); static std::unique_ptr<HloInstruction> CreateGetTupleElement( const Shape& shape, HloInstruction* operand, int64_t index); static std::unique_ptr<HloInstruction> CreateGetTupleElement( HloInstruction* operand, int64_t index); static std::unique_ptr<HloInstruction> CreateRng( const Shape& shape, RandomDistribution distribution, absl::Span<HloInstruction* const> parameters); static std::unique_ptr<HloInstruction> CreateRngBitGenerator( const Shape& shape, HloInstruction* state, RandomAlgorithm algorithm); static std::unique_ptr<HloInstruction> CreateRngGetAndUpdateState( const Shape& shape, int64_t delta); static std::unique_ptr<HloInstruction> CreateUnary(const Shape& shape, HloOpcode opcode, HloInstruction* operand); static std::unique_ptr<HloInstruction> CreateBinary(const Shape& shape, HloOpcode opcode, HloInstruction* lhs, HloInstruction* rhs); static std::unique_ptr<HloInstruction> CreateTernary(const Shape& shape, HloOpcode opcode, HloInstruction* lhs, HloInstruction* rhs, HloInstruction* ehs); static std::unique_ptr<HloInstruction> CreateVariadic( const Shape& shape, HloOpcode opcode, absl::Span<HloInstruction* const> operands); static std::unique_ptr<HloInstruction> CreateMap( const Shape& shape, absl::Span<HloInstruction* const> operands, HloComputation* map_computation); static std::unique_ptr<HloInstruction> CreateConvolve( const Shape& shape, HloInstruction* lhs, HloInstruction* rhs, int64_t feature_group_count, int64_t batch_group_count, const Window& window, const ConvolutionDimensionNumbers& dimension_numbers, const PrecisionConfig& precision_config); static std::unique_ptr<HloInstruction> CreateFft( const Shape& shape, HloInstruction* operand, FftType fft_type, absl::Span<const int64_t> fft_length); static std::unique_ptr<HloInstruction> CreateAsyncStart( const Shape& shape, absl::Span<HloInstruction* const> operands, HloComputation* async_computation, absl::string_view async_execution_thread = kMainExecutionThread); static std::unique_ptr<HloInstruction> CreateAsyncUpdate( const Shape& shape, HloInstruction* operand); static std::unique_ptr<HloInstruction> CreateAsyncDone( const Shape& shape, HloInstruction* operand); static std::unique_ptr<HloInstruction> CreateCopyStart( const Shape& shape, HloInstruction* operand, std::optional<int> cross_program_prefetch_index = std::nullopt); static std::un
#include "xla/hlo/ir/hlo_instruction.h" #include <optional> #include <set> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/protobuf_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "xla/window_util.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" namespace xla { namespace { namespace m = ::xla::match; using ::testing::ElementsAre; using ::testing::UnorderedElementsAre; class HloInstructionTest : public HloTestBase { protected: Shape r0f32_ = ShapeUtil::MakeShape(F32, {}); }; class OpAndUserCollectingVisitor : public DfsHloVisitorWithDefault { public: absl::Status DefaultAction(HloInstruction* hlo_instruction) override { return Unimplemented("not implemented %s", HloOpcodeString(hlo_instruction->opcode())); } absl::Status HandleParameter(HloInstruction* parameter) override { EXPECT_FALSE(count_.contains(parameter)); count_[parameter] = GetCountsForNode(parameter); return absl::OkStatus(); } absl::Status HandleConstant(HloInstruction* constant) override { EXPECT_FALSE(count_.contains(constant)); count_[constant] = GetCountsForNode(constant); return absl::OkStatus(); } absl::Status HandleAdd(HloInstruction* add) override { auto lhs = add->operand(0); auto rhs = add->operand(1); EXPECT_FALSE(count_.contains(add)); EXPECT_TRUE(count_.contains(lhs)); EXPECT_TRUE(count_.contains(rhs)); count_[add] = GetCountsForNode(add); return absl::OkStatus(); } absl::Status HandleNegate(HloInstruction* negate) override { auto operand = negate->operand(0); EXPECT_FALSE(count_.contains(negate)); EXPECT_TRUE(count_.contains(operand)); count_[negate] = GetCountsForNode(negate); return absl::OkStatus(); } absl::Status HandleMap(HloInstruction* map) override { EXPECT_FALSE(count_.contains(map)); for (HloInstruction* arg : map->operands()) { EXPECT_TRUE(count_.contains(arg)); } count_[map] = GetCountsForNode(map); return absl::OkStatus(); } absl::Status HandleReduce(HloInstruction* reduce) override { auto arg = reduce->operand(0); auto init_value = reduce->operand(1); EXPECT_FALSE(count_.contains(reduce)); EXPECT_TRUE(count_.contains(arg)); EXPECT_TRUE(count_.contains(init_value)); count_[reduce] = GetCountsForNode(reduce); return absl::OkStatus(); } int64_t NumOperands(const HloInstruction* node) { auto count_iterator = count_.find(node); EXPECT_NE(count_.end(), count_iterator); return count_iterator->second.operand_count; } int64_t NumUsers(const HloInstruction* node) { auto count_iterator = count_.find(node); EXPECT_NE(count_.end(), count_iterator); return count_iterator->second.user_count; } private: struct NumOpsAndUsers { int64_t operand_count; int64_t user_count; }; NumOpsAndUsers GetCountsForNode(const HloInstruction* node) { NumOpsAndUsers counts{node->operand_count(), node->user_count()}; return counts; } absl::flat_hash_map<const HloInstruction*, NumOpsAndUsers> count_; }; TEST_F(HloInstructionTest, BasicProperties) { auto parameter = HloInstruction::CreateParameter(1, r0f32_, "foo"); EXPECT_EQ(HloOpcode::kParameter, parameter->opcode()); EXPECT_TRUE(ShapeUtil::IsScalarWithElementType(parameter->shape(), F32)); EXPECT_FALSE(ShapeUtil::IsScalarWithElementType(parameter->shape(), S32)); EXPECT_FALSE(parameter->operand_count()); } TEST_F(HloInstructionTest, UserWithTwoOperands) { HloComputation::Builder builder(TestName()); auto foo = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "foo")); auto bar = builder.AddInstruction(HloInstruction::CreateParameter(1, r0f32_, "bar")); auto add = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, foo, bar)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_THAT(add->operands(), UnorderedElementsAre(foo, bar)); EXPECT_THAT(foo->users(), UnorderedElementsAre(add)); EXPECT_THAT(bar->users(), UnorderedElementsAre(add)); OpAndUserCollectingVisitor visitor; ASSERT_IS_OK(add->Accept(&visitor)); EXPECT_EQ(2, visitor.NumOperands(add)); EXPECT_EQ(0, visitor.NumUsers(add)); EXPECT_EQ(1, visitor.NumUsers(foo)); EXPECT_EQ(1, visitor.NumUsers(bar)); } TEST_F(HloInstructionTest, MultipleUsers) { HloComputation::Builder builder(TestName()); auto foo = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "foo")); auto bar = builder.AddInstruction(HloInstruction::CreateParameter(1, r0f32_, "bar")); auto exp1 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, foo)); auto exp2 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, foo)); auto add = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, foo, bar)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_EQ(3, foo->user_count()); EXPECT_EQ(1, bar->user_count()); EXPECT_EQ(0, exp1->user_count()); EXPECT_EQ(0, exp2->user_count()); EXPECT_EQ(0, add->user_count()); OpAndUserCollectingVisitor visitor; ASSERT_IS_OK(add->Accept(&visitor)); EXPECT_EQ(2, visitor.NumOperands(add)); EXPECT_EQ(3, visitor.NumUsers(foo)); } TEST_F(HloInstructionTest, RepeatedUser) { HloComputation::Builder builder(TestName()); auto foo = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "foo")); auto add = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, foo, foo)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_EQ(1, foo->user_count()); EXPECT_EQ(2, add->operand_count()); } TEST_F(HloInstructionTest, MultipleUsersAndOperands) { HloComputation::Builder builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32_, "param0")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(1, r0f32_, "param1")); auto c0 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto addleft = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, param0, c0)); auto addright = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, c0, param1)); auto addtotal = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, addleft, addright)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); OpAndUserCollectingVisitor visitor; ASSERT_IS_OK(addtotal->Accept(&visitor)); EXPECT_EQ(2, visitor.NumUsers(c0)); EXPECT_EQ(2, visitor.NumOperands(addleft)); EXPECT_EQ(2, visitor.NumOperands(addright)); EXPECT_EQ(2, visitor.NumOperands(addtotal)); } TEST_F(HloInstructionTest, MultipleUsersAndOperandsWithUnaryOps) { HloComputation::Builder builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32_, "param0")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(1, r0f32_, "param1")); auto c0 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto neg1 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kNegate, c0)); auto addleft = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, param0, neg1)); auto addright = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, neg1, param1)); auto addtotal = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, addleft, addright)); auto neg2 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kNegate, addtotal)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); OpAndUserCollectingVisitor visitor; ASSERT_IS_OK(neg2->Accept(&visitor)); EXPECT_EQ(1, visitor.NumUsers(c0)); EXPECT_EQ(2, visitor.NumUsers(neg1)); EXPECT_EQ(2, visitor.NumOperands(addleft)); EXPECT_EQ(2, visitor.NumOperands(addright)); EXPECT_EQ(2, visitor.NumOperands(addtotal)); EXPECT_EQ(1, visitor.NumOperands(neg2)); EXPECT_EQ(0, visitor.NumUsers(neg2)); } TEST_F(HloInstructionTest, TrivialMap) { Shape r0f32 = ShapeUtil::MakeShape(F32, {}); Shape f32a100x10 = ShapeUtil::MakeShape(F32, {100, 10}); auto module = CreateNewVerifiedModule(); auto embedded_builder = HloComputation::Builder("f32+1"); auto param = embedded_builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32, "x")); auto value = embedded_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); embedded_builder.AddInstruction( HloInstruction::CreateBinary(r0f32, HloOpcode::kAdd, param, value)); auto add_f32 = module->AddEmbeddedComputation(embedded_builder.Build()); HloComputation::Builder builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, f32a100x10, "p")); auto map = builder.AddInstruction( HloInstruction::CreateMap(f32a100x10, {param0}, add_f32)); module->AddEntryComputation(builder.Build()); OpAndUserCollectingVisitor visitor; ASSERT_IS_OK(map->Accept(&visitor)); EXPECT_EQ(1, visitor.NumUsers(param0)); EXPECT_EQ(0, visitor.NumUsers(map)); EXPECT_EQ(1, visitor.NumOperands(map)); } TEST_F(HloInstructionTest, TrivialReduce) { Shape r0f32 = ShapeUtil::MakeShape(F32, {}); Shape f32v100 = ShapeUtil::MakeShape(F32, {100}); Shape f32a100x10 = ShapeUtil::MakeShape(F32, {100, 10}); auto embedded_builder = HloComputation::Builder("f32+f32"); auto paramx = embedded_builder.AddInstruction( HloInstruction::CreateParameter(0, r0f32, "x")); auto paramy = embedded_builder.AddInstruction( HloInstruction::CreateParameter(1, r0f32, "y")); embedded_builder.AddInstruction( HloInstruction::CreateBinary(r0f32, HloOpcode::kAdd, paramx, paramy)); auto module = CreateNewVerifiedModule(); auto add_f32 = module->AddEmbeddedComputation(embedded_builder.Build()); HloComputation::Builder builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, f32a100x10, "p")); auto const0 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0f))); builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto reduce = builder.AddInstruction( HloInstruction::CreateReduce(f32v100, param0, const0, {1}, add_f32)); module->AddEntryComputation(builder.Build()); OpAndUserCollectingVisitor visitor; ASSERT_IS_OK(reduce->Accept(&visitor)); EXPECT_EQ(1, visitor.NumUsers(param0)); EXPECT_EQ(1, visitor.NumUsers(const0)); EXPECT_EQ(0, visitor.NumUsers(reduce)); EXPECT_EQ(2, visitor.NumOperands(reduce)); } TEST_F(HloInstructionTest, ReplaceUseInBinaryOps) { HloComputation::Builder builder(TestName()); auto foo = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "foo")); auto bar = builder.AddInstruction(HloInstruction::CreateParameter(1, r0f32_, "bar")); auto add_foobar = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, foo, bar)); auto add_foofoo = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, foo, foo)); builder.AddInstruction(HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, add_foobar, add_foofoo)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_EQ(2, foo->user_count()); EXPECT_EQ(1, bar->user_count()); ASSERT_IS_OK(foo->ReplaceUseWith(add_foofoo, bar)); EXPECT_EQ(1, foo->user_count()); EXPECT_EQ(2, bar->user_count()); EXPECT_THAT(foo->users(), UnorderedElementsAre(add_foobar)); EXPECT_THAT(add_foobar->operands(), ElementsAre(foo, bar)); EXPECT_THAT(bar->users(), UnorderedElementsAre(add_foobar, add_foofoo)); EXPECT_THAT(add_foobar->operands(), ElementsAre(foo, bar)); EXPECT_THAT(add_foofoo->operands(), ElementsAre(bar, bar)); } TEST_F(HloInstructionTest, ReplaceUseInVariadicOp) { HloComputation::Builder builder(TestName()); auto foo = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "foo")); auto bar = builder.AddInstruction(HloInstruction::CreateParameter(1, r0f32_, "bar")); auto baz = builder.AddInstruction(HloInstruction::CreateParameter(2, r0f32_, "baz")); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({foo, bar, baz, foo})); auto add_foobar = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, foo, bar)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_EQ(2, foo->user_count()); EXPECT_THAT(foo->users(), UnorderedElementsAre(tuple, add_foobar)); ASSERT_IS_OK(foo->ReplaceUseWith(tuple, bar)); EXPECT_THAT(foo->users(), UnorderedElementsAre(add_foobar)); EXPECT_THAT(tuple->operands(), ElementsAre(bar, bar, baz, bar)); } TEST_F(HloInstructionTest, ReplaceUseInUnaryOp) { HloComputation::Builder builder(TestName()); auto foo = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "foo")); auto bar = builder.AddInstruction(HloInstruction::CreateParameter(1, r0f32_, "bar")); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, foo)); auto log = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kLog, foo)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_EQ(2, foo->user_count()); EXPECT_THAT(foo->users(), UnorderedElementsAre(exp, log)); EXPECT_EQ(0, bar->user_count()); ASSERT_IS_OK(foo->ReplaceUseWith(exp, bar)); EXPECT_EQ(1, foo->user_count()); EXPECT_THAT(foo->users(), UnorderedElementsAre(log)); EXPECT_THAT(log->operands(), ElementsAre(foo)); EXPECT_EQ(1, bar->user_count()); EXPECT_EQ(*bar->users().begin(), exp); EXPECT_EQ(1, exp->operands().size()); EXPECT_EQ(*exp->operands().begin(), bar); } TEST_F(HloInstructionTest, ReplaceAllUsesWithInBinaryOps) { HloComputation::Builder builder(TestName()); auto foo = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "foo")); auto bar = builder.AddInstruction(HloInstruction::CreateParameter(1, r0f32_, "bar")); auto add_foobar = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, foo, bar)); auto add_foofoo = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, foo, foo)); builder.AddInstruction(HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, add_foobar, add_foofoo)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_EQ(2, foo->user_count()); EXPECT_EQ(1, bar->user_count()); ASSERT_IS_OK(foo->ReplaceAllUsesWith(bar)); EXPECT_EQ(0, foo->user_count()); EXPECT_EQ(2, bar->user_count()); EXPECT_THAT(bar->users(), UnorderedElementsAre(add_foobar, add_foofoo)); } TEST_F(HloInstructionTest, ReplaceAllUsesInMultipleOps) { HloComputation::Builder builder(TestName()); auto foo = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "foo")); auto bar = builder.AddInstruction(HloInstruction::CreateParameter(1, r0f32_, "bar")); auto add_foobar = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, foo, bar)); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, foo)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({foo, bar})); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_EQ(3, foo->user_count()); EXPECT_EQ(2, bar->user_count()); ASSERT_IS_OK(foo->ReplaceAllUsesWith(bar)); EXPECT_EQ(0, foo->user_count()); EXPECT_EQ(3, bar->user_count()); EXPECT_THAT(bar->users(), UnorderedElementsAre(add_foobar, exp, tuple)); } class NodeCollectorAndPostProcessor : public DfsHloVisitorWithDefault { public: NodeCollectorAndPostProcessor() {} absl::Status Postprocess(HloInstruction* hlo) override { post_processed_nodes_.push_back(hlo); return absl::OkStatus(); } absl::Status DefaultAction(HloInstruction* hlo_instruction) override { visited_nodes_.push_back(hlo_instruction); return absl::OkStatus(); } const std::vector<const HloInstruction*>& visited_nodes() { return visited_nodes_; } const std::vector<const HloInstruction*>& post_processed_nodes() { return post_processed_nodes_; } private: std::vector<const HloInstruction*> visited_nodes_; std::vector<const HloInstruction*> post_processed_nodes_; }; bool Distinct(const std::vector<const HloInstruction*>& vec) { std::set<const HloInstruction*> distinct_nodes(vec.begin(), vec.end()); return distinct_nodes.size() == vec.size(); } TEST_F(HloInstructionTest, PostProcessAllVisitedNodes) { HloComputation::Builder builder(TestName()); auto foo = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "foo")); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, foo)); auto log = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kLog, foo)); auto add = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, exp, log)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); NodeCollectorAndPostProcessor visitor; ASSERT_IS_OK(add->Accept(&visitor)); EXPECT_EQ(visitor.visited_nodes(), visitor.post_processed_nodes()); EXPECT_TRUE(Distinct(visitor.visited_nodes())); } TEST_F(HloInstructionTest, PostProcessAllVisitedNodesMultiComputation) { const std::string& hlo_string = R"( HloModule axpy_module calculate_alpha { c.1 = f32[] constant(1) c.2 = f32[] constant(2) c.3 = f32[] add(c.1, c.2) c.4 = f32[] constant(4) ROOT ret = f32[] multiply(c.4, c.3) } ENTRY axpy_computation { p.0 = f32[10] parameter(0) p.1 = f32[10] parameter(1) add.0 = f32[10] add(p.0, p.1) alpha = f32[] call(), to_apply=calculate_alpha broadcast = f32[10] broadcast(alpha), dimensions={} p.2 = f32[10] parameter(2) y = f32[10] multiply(broadcast, p.2) x = f32[10] subtract(y, add.0) p.3 = f32[10] parameter(3) ROOT add.1 = f32[10] add(x, p.3) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* add1 = FindInstruction(module.get(), "add.1"); EXPECT_EQ(add1, module->entry_computation()->root_instruction()); NodeCollectorAndPostProcessor visitor; ASSERT_IS_OK(add1->Accept(&visitor, true, false, true)); EXPECT_EQ(visitor.visited_nodes(), visitor.post_processed_nodes()); EXPECT_TRUE(Distinct(visitor.visited_nodes())); } TEST_F(HloInstructionTest, SingletonFusionOp) { HloComputation::Builder builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, constant)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto* fusion = computation->CreateFusionInstruction( {exp}, HloInstruction::FusionKind::kLoop); EXPECT_THAT(fusion->operands(), ElementsAre(constant)); EXPECT_THAT(constant->users(), ElementsAre(fusion)); } TEST_F(HloInstructionTest, BinaryFusionOp) { HloComputation::Builder builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.1f))); auto add = builder.AddInstruction(HloInstruction::CreateBinary( r0f32_, HloOpcode::kAdd, constant1, constant2)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto* fusion = computation->CreateFusionInstruction( {add}, HloInstruction::FusionKind::kLoop); EXPECT_THAT(fusion->operands(), ElementsAre(constant1, constant2)); EXPECT_THAT(constant1->users(), ElementsAre(fusion)); EXPECT_THAT(constant2->users(), ElementsAre(fusion)); } TEST_F(HloInstructionTest, ChainFusionOp) { HloComputation::Builder builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto exp1 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, constant)); auto exp2 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, exp1)); auto exp3 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, exp2)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto* fusion = computation->CreateFusionInstruction( {exp3, exp2, exp1}, HloInstruction::FusionKind::kLoop); EXPECT_THAT(fusion->operands(), ElementsAre(constant)); EXPECT_THAT(constant->users(), ElementsAre(fusion)); } TEST_F(HloInstructionTest, PreserveMetadataInFusionAndClone) { HloComputation::Builder builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto exp1 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, constant)); auto exp2 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, exp1)); OpMetadata metadata; metadata.set_op_name("tf_op"); exp1->set_metadata(metadata); exp2->set_metadata(metadata); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto* fusion = computation->CreateFusionInstruction( {exp2, exp1}, HloInstruction::FusionKind::kLoop); EXPECT_TRUE(protobuf_util::ProtobufEquals(metadata, fusion->metadata())); EXPECT_TRUE(protobuf_util::ProtobufEquals( metadata, fusion->fused_expression_root()->metadata())); EXPECT_TRUE(protobuf_util::ProtobufEquals( metadata, fusion->fused_expression_root()->operand(0)->metadata())); std::string new_name = "foobarfoo"; auto cloned = fusion->CloneWithNewOperands(fusion->shape(), {}, new_name); EXPECT_TRUE(protobuf_util::ProtobufEquals(metadata, fusion->metadata())); size_t index = cloned->name().rfind(new_name); EXPECT_TRUE(index != std::string::npos); } TEST_F(HloInstructionTest, BinaryCallOp) { HloComputation::Builder builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.1f))); auto add = builder.AddInstruction(HloInstruction::CreateBinary( r0f32_, HloOpcode::kAdd, constant1, constant2)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto* call = computation->CreateCallInstruction({add}); EXPECT_THAT(call->operands(), ElementsAre(constant1, constant2)); EXPECT_THAT(constant1->users(), ElementsAre(call)); EXPECT_THAT(constant2->users(), ElementsAre(call)); } TEST_F(HloInstructionTest, ChainCallOp) { HloComputation::Builder builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto exp1 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, constant)); auto exp2 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, exp1)); auto exp3 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, exp2)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto* call = computation->CreateCallInstruction({exp3, exp2, exp1}); EXPECT_THAT(call->operands(), ElementsAre(constant)); EXPECT_THAT(constant->users(), ElementsAre(call)); } TEST_F(HloInstructionTest, MultiOutputCallOp) { HloComputation::Builder builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.1f))); auto exp1 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, constant)); auto exp2 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, exp1)); auto exp3 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, exp2)); auto exp4 = builder.AddInstruction( HloInstruction::CreateUnary(r0f32_, HloOpcode::kExp, constant)); auto add = builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, exp3, exp4)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto* call = computation->CreateCallInstruction({exp3, exp2, exp1}); call->AppendInstructionIntoCalledComputation(exp4, true); EXPECT_THAT(call->operands(), ElementsAre(constant)); EXPECT_EQ(add->operand(0)->opcode(), HloOpcode::kGetTupleElement); EXPECT_THAT(add->operand(0)->operands(), ElementsAre(call)); EXPECT_EQ(add->operand(1)->opcode(), HloOpcode::kGetTupleElement); EXPECT_THAT(add->operand(1)->operands(), ElementsAre(call)); } TEST_F(HloInstructionTest, AsyncOp) { HloComputation::Builder builder(TestName()); auto
2,183
cpp
tensorflow/tensorflow
hlo_evaluator
third_party/xla/xla/hlo/evaluator/hlo_evaluator.cc
third_party/xla/xla/hlo/evaluator/hlo_evaluator_test.cc
#ifndef XLA_HLO_EVALUATOR_HLO_EVALUATOR_H_ #define XLA_HLO_EVALUATOR_HLO_EVALUATOR_H_ #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "Eigen/Core" #include "xla/comparison_util.h" #include "xla/hlo/ir/dfs_hlo_visitor.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/shape.h" #include "xla/status_macros.h" #include "tsl/platform/errors.h" #define _USE_MATH_DEFINES #include <functional> #include <memory> #include <optional> #include "absl/container/flat_hash_map.h" #include "absl/container/node_hash_map.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/array2d.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/call_graph.h" #include "xla/service/dynamic_dimension_inference.h" #include "xla/service/shape_inference.h" #include "xla/service/tuple_points_to_analysis.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" namespace xla { struct ParsedStaticWhileLoop { int64_t trip_count = -1; int64_t induction_var_index = -1; int64_t induction_var_init_value = -1; int64_t step_size = -1; int64_t loop_bound = -1; }; struct ParsedWhileLoop { std::optional<ParsedStaticWhileLoop> static_while_loop; bool is_dynamic() const { return !static_while_loop.has_value(); } }; constexpr ParsedWhileLoop kParsedDynamicWhileLoop = ParsedWhileLoop(); std::optional<ParsedWhileLoop> PatternMatchParseWhileLoop( const HloInstruction* while_op); class HloEvaluator : public ConstDfsHloVisitorWithDefault { public: explicit HloEvaluator(int64_t max_loop_iterations = -1); virtual std::unique_ptr<HloEvaluator> CreateEmbedded( int64_t max_loop_iterations) { auto result = std::make_unique<HloEvaluator>(max_loop_iterations); result->set_custom_call_handler(custom_call_handler_); return result; } virtual void OnEvaluateComputation(const HloComputation& computation) {} absl::StatusOr<Literal> Evaluate( const HloModule& module, absl::Span<const Literal* const> arg_literals) { return Evaluate(*module.entry_computation(), arg_literals); } template <typename Dummy = void> absl::StatusOr<Literal> Evaluate(const HloModule& module, absl::Span<const Literal> arg_literals) { return Evaluate(*module.entry_computation(), arg_literals); } absl::StatusOr<Literal> Evaluate( const HloComputation& computation, absl::Span<const Literal* const> arg_literals); template <typename Dummy = void> absl::StatusOr<Literal> Evaluate(const HloComputation& computation, absl::Span<const Literal> arg_literals) { std::vector<const Literal*> arg_literal_ptrs; for (const auto& l : arg_literals) { arg_literal_ptrs.push_back(&l); } return Evaluate(computation, arg_literal_ptrs); } absl::StatusOr<Literal> Evaluate( const HloInstruction* instruction, bool recursively_evaluate_nonconstant_operands = false); bool TryEvaluate(const HloInstruction* instruction, Literal* result, bool recursively_evaluate_nonconstant_operands = false); absl::StatusOr<Literal> EvaluateWithSubstitutions( const HloInstruction* instruction, const absl::flat_hash_map<const HloInstruction*, const Literal*>& substitutions); absl::StatusOr<Literal> EvaluateElementwiseBinaryOp(HloOpcode opcode, const Literal& lhs, const Literal& rhs); absl::StatusOr<Literal> EvaluateElementwiseUnaryOp(HloOpcode opcode, const Literal& operand); absl::StatusOr<Literal> EvaluateElementwiseTernaryOp(HloOpcode opcode, const Literal& lhs, const Literal& rhs, const Literal& ehs); absl::StatusOr<Literal> EvaluateElementwiseCompareOp( ComparisonDirection direction, const Literal& lhs, const Literal& rhs); absl::StatusOr<Literal> EvaluateDotOp(const DotDimensionNumbers& dim_numbers, const PrecisionConfig& precision_config, const Literal& lhs, const Literal& rhs); void set_dynamic_dimension_inference( DynamicDimensionInference* dynamic_dimension_inference) { dynamic_dimension_inference_ = dynamic_dimension_inference; } DynamicDimensionInference* dynamic_dimension_inference() { return dynamic_dimension_inference_; } void set_use_fast_path(bool value) { use_fast_path_ = value; } void set_reduce_use_fast_path(bool value) { use_fast_path_reduce_ = value; } using CustomCallHandler = std::function<absl::StatusOr<Literal>( const HloInstruction* custom_call, absl::Span<const Literal*> operands)>; void set_custom_call_handler(CustomCallHandler handler) { custom_call_handler_ = std::move(handler); } using TraceMACHandler = std::function<void( int64_t result_index, int64_t lhs_index, int64_t rhs_index)>; void set_trace_mac_handler(TraceMACHandler handler) { trace_mac_handler_ = std::move(handler); } static std::unique_ptr<Array2D<Eigen::half>> MatmulArray2D( const Array2D<Eigen::half>& lhs, const Array2D<Eigen::half>& rhs); static std::unique_ptr<Array2D<float>> MatmulArray2D( const Array2D<float>& lhs, const Array2D<float>& rhs); static std::unique_ptr<Array2D<double>> MatmulArray2D( const Array2D<double>& lhs, const Array2D<double>& rhs); static std::unique_ptr<Array2D<std::complex<float>>> MatmulArray2D( const Array2D<std::complex<float>>& lhs, const Array2D<std::complex<float>>& rhs); static std::unique_ptr<Array2D<std::complex<double>>> MatmulArray2D( const Array2D<std::complex<double>>& lhs, const Array2D<std::complex<double>>& rhs); static std::unique_ptr<Array2D<int32_t>> MatmulArray2D( const Array2D<int32_t>& lhs, const Array2D<int32_t>& rhs); protected: absl::Status EvaluateInternal( const HloInstruction* instruction, const ShapeIndex& shape_index = {}, bool recursively_evaluate_nonconstant_operands = false); absl::Status EvaluateParameterFromCallerArgument( const HloInstruction* parameter, const ShapeIndex& shape_index); std::vector<int64_t> GetS64Indices( absl::Span<HloInstruction* const> start_indices); static DimensionVector MakeDimMultipliers(const Shape& shape); template <typename ReturnT, typename ElementwiseT> friend class HloEvaluatorTypedVisitor; absl::Status DefaultAction(const HloInstruction* hlo) override { return hlo->Visit(typed_visitors_[hlo->shape().element_type()].get()); } absl::Status Preprocess(const HloInstruction* hlo) override; absl::Status Postprocess(const HloInstruction* hlo) override; absl::Status HandleBitcast(const HloInstruction* bitcast) override; absl::Status HandleBitcastConvert(const HloInstruction* convert) override; absl::Status HandleGetDimensionSize( const HloInstruction* get_dimension_size) override; absl::Status HandleSetDimensionSize( const HloInstruction* set_dimension_size) override; absl::Status HandleParameter(const HloInstruction* parameter) override; absl::Status HandleInfeed(const HloInstruction* infeed) override; absl::Status HandleConstant(const HloInstruction* constant) override; absl::Status HandleConcatenate(const HloInstruction* concatenate) override; absl::Status HandleReshape(const HloInstruction* reshape) override; absl::Status HandleTranspose(const HloInstruction* transpose) override; absl::Status HandleIsFinite(const HloInstruction* is_finite) override; absl::Status HandleCompare(const HloInstruction* compare) override; absl::Status HandleTuple(const HloInstruction* tuple) override; absl::Status HandleFft(const HloInstruction* fft) override; absl::Status HandleGather(const HloInstruction* gather) override; absl::Status HandleScatter(const HloInstruction* hlo) override; absl::Status HandleGetTupleElement( const HloInstruction* get_tuple_element) override; absl::Status HandleAsyncStart(const HloInstruction* async_start) override; absl::Status HandleAsyncUpdate(const HloInstruction* async_update) override; absl::Status HandleAsyncDone(const HloInstruction* async_done) override; absl::Status HandleCopy(const HloInstruction* copy) override; absl::Status HandleCopyStart(const HloInstruction* copy_start) override; absl::Status HandleCopyDone(const HloInstruction* copy_done) override; absl::Status HandleConditional(const HloInstruction* conditional) override; absl::Status HandleConvert(const HloInstruction* convert) override; absl::Status HandleCall(const HloInstruction* call) override; absl::Status HandleDynamicSlice(const HloInstruction* dynamic_slice) override; absl::Status HandleDynamicUpdateSlice(const HloInstruction* dus) override; absl::Status HandleFusion(const HloInstruction* fusion) override; absl::Status HandleWhile(const HloInstruction* while_hlo) override; absl::Status HandleSelect(const HloInstruction* select) override; absl::Status HandleBroadcast(const HloInstruction* broadcast) override; absl::Status HandleAfterAll(const HloInstruction* after_all) override; absl::Status HandleAddDependency( const HloInstruction* add_dependency) override; absl::Status HandleReverse(const HloInstruction* reverse) override; absl::Status HandleSelectAndScatter( const HloInstruction* select_and_scatter) override; absl::Status HandleSlice(const HloInstruction* slice) override; absl::Status HandleSort(const HloInstruction* sort) override; absl::Status HandleStochasticConvert( const HloInstruction* stochastic_convert) override; absl::Status HandleReal(const HloInstruction* real) override; absl::Status HandleImag(const HloInstruction* imag) override; absl::Status HandleComplex(const HloInstruction* complex) override; absl::Status HandleReduce(const HloInstruction* hlo) override; absl::Status HandleReduceWindow(const HloInstruction* hlo) override; absl::Status HandleMap(const HloInstruction* map) override; absl::Status HandleCustomCall(const HloInstruction* custom_call) override; absl::Status HandleBatchNormGrad( const HloInstruction* batch_norm_grad) override { return Unimplemented("BatchNormGrad HLO is unsupported by the evaluator."); } absl::Status HandleBatchNormInference( const HloInstruction* batch_norm_inference) override { return Unimplemented( "BatchNormInference HLO is unsupported by the evaluator."); } absl::Status HandleBatchNormTraining( const HloInstruction* batch_norm_training) override { return Unimplemented( "BatchNormTraining HLO is unsupported by the evaluator."); } absl::Status HandleOutfeed(const HloInstruction* outfeed) override { return Unimplemented("Outfeed HLO is unsupported by the evaluator."); } const Literal& GetEvaluatedLiteralFor(const HloInstruction* hlo) { if (hlo->IsConstant()) { return hlo->literal(); } if (hlo->opcode() == HloOpcode::kParameter && !arg_literals_.empty()) { return *arg_literals_.at(hlo->parameter_number()); } auto it = evaluated_.find(hlo); CHECK(it != evaluated_.end()) << "could not find evaluated value for: " << hlo->ToString(); return it->second; } bool IsAlreadyEvaluated(const HloInstruction* hlo, const ShapeIndex& shape_index = {}) { if (hlo->IsConstant()) { return true; } if (hlo->opcode() == HloOpcode::kParameter && !arg_literals_.empty()) { return true; } auto it = evaluated_.find(hlo); if (it == evaluated_.end()) { return false; } return it->second.IsDetermined(shape_index); } absl::node_hash_map<const HloInstruction*, Literal> evaluated_; ShapeIndex visitor_shape_index_; bool enable_partial_evaluation_ = false; std::unique_ptr<CallGraph> call_graph_cache_; std::unique_ptr<TuplePointsToAnalysis> tuple_points_to_analysis_cache_; bool use_fast_path_ = false; bool use_fast_path_reduce_ = true; private: template <typename ReturnT, typename NativeT> static absl::StatusOr<Literal> ElementWiseUnaryOpImpl( const HloInstruction* instruction, const std::function<ReturnT(NativeT)>& unary_op, const Literal& operand_literal) { const Shape& shape = instruction->shape(); const auto* operand = instruction->operand(0); TF_RET_CHECK(ShapeUtil::SameDimensions(shape, operand->shape())); Literal result(shape); TF_RETURN_IF_ERROR(result.PopulateParallel<ReturnT>( [&](absl::Span<const int64_t> multi_index, int) { return unary_op(operand_literal.Get<NativeT>(multi_index)); })); return std::move(result); } std::unique_ptr<ConstDfsHloVisitor> typed_visitors_[PrimitiveType_ARRAYSIZE]; std::vector<const Literal*> arg_literals_; int64_t max_loop_iterations_ = 0; uint64_t seed_ = 0; std::minstd_rand0 engine_; DynamicDimensionInference* dynamic_dimension_inference_ = nullptr; CustomCallHandler custom_call_handler_; TraceMACHandler trace_mac_handler_; HloEvaluator(const HloEvaluator&) = delete; HloEvaluator& operator=(const HloEvaluator&) = delete; }; std::unique_ptr<Array2D<float>> MatmulArray2D(const Array2D<float>& lhs, const Array2D<float>& rhs); } #endif #include "xla/hlo/evaluator/hlo_evaluator.h" #include <algorithm> #include <atomic> #include <cmath> #include <complex> #include <cstddef> #include <cstdint> #include <cstdlib> #include <cstring> #include <functional> #include <iterator> #include <limits> #include <memory> #include <numeric> #include <optional> #include <random> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/internal/endian.h" #include "absl/cleanup/cleanup.h" #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/functional/function_ref.h" #include "absl/memory/memory.h" #include "absl/numeric/bits.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "Eigen/Core" #include "xla/array2d.h" #include "xla/comparison_util.h" #include "xla/hlo/evaluator/hlo_evaluator_typed_visitor.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/index_util.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/primitive_util.h" #include "xla/service/call_graph.h" #include "xla/service/compilation_environments.h" #include "xla/service/cpu/runtime_single_threaded_matmul.h" #include "xla/service/hlo_module_config.h" #include "xla/service/logical_buffer.h" #include "xla/service/pattern_matcher.h" #include "xla/service/shape_inference.h" #include "xla/service/tuple_points_to_analysis.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/cpu_info.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using primitive_util::NativeTypeOf; template <typename OperandT> absl::StatusOr<Literal> Compare(const Shape& shape, Comparison comparison, LiteralSlice lhs_literal, LiteralSlice rhs_literal) { auto populate = [&](auto compare_op) -> absl::StatusOr<Literal> { Literal result(shape); TF_RETURN_IF_ERROR(result.PopulateParallel<bool>( [&](absl::Span<const int64_t> multi_index, int ) { auto lhs = lhs_literal.Get<OperandT>(multi_index); auto rhs = rhs_literal.Get<OperandT>(multi_index); if constexpr (is_specialized_floating_point_v<OperandT>) { if (comparison.IsTotalOrder()) { return compare_op(ToSignMagnitude(lhs), ToSignMagnitude(rhs)); } } return compare_op(lhs, rhs); })); return std::move(result); }; switch (comparison.GetDirection()) { case ComparisonDirection::kEq: return populate([](auto lhs, auto rhs) { return lhs == rhs; }); case ComparisonDirection::kNe: return populate([](auto lhs, auto rhs) { return lhs != rhs; }); case ComparisonDirection::kGe: if constexpr (!is_complex_v<OperandT>) { return populate([](auto lhs, auto rhs) { return lhs >= rhs; }); } break; case ComparisonDirection::kGt: if constexpr (!is_complex_v<OperandT>) { return populate([](auto lhs, auto rhs) { return lhs > rhs; }); } break; case ComparisonDirection::kLe: if constexpr (!is_complex_v<OperandT>) { return populate([](auto lhs, auto rhs) { return lhs <= rhs; }); } break; case ComparisonDirection::kLt: if constexpr (!is_complex_v<OperandT>) { return populate([](auto lhs, auto rhs) { return lhs < rhs; }); } break; } LOG(FATAL) << "unhandled direction for conversion to Comparison: " << comparison.ToString(); } std::optional<bool> GetInstructionStaticValueAsBool( const HloInstruction* instruction) { HloEvaluator evaluator; absl::StatusOr<Literal> static_value = evaluator.Evaluate( instruction, true); if (static_value.ok()) { return static_value->GetFirstElement<bool>(); } return std::nullopt; } template <PrimitiveType kType> struct PopulateParallelImpl { using NativeT = NativeTypeOf<kType>; static absl::Status Run( Literal& literal, absl::FunctionRef<Literal(absl::Span<const int64_t>, int)> literal_generator) { return literal.PopulateParallel<NativeT>( [&literal_generator](absl::Span<const int64_t> output_index, int thread_id) { return literal_generator(output_index, thread_id) .template Get<NativeT>({}); }); } }; template <PrimitiveType kType> struct PopulateImpl { using NativeT = NativeTypeOf<kType>; static absl::Status Run( Literal& literal, absl::FunctionRef<Literal(absl::Span<const int64_t>)> literal_generator) { return literal.Populate<NativeT>( [&literal_generator](absl::Span<const int64_t> output_index) { return literal_generator(output_index).template Get<NativeT>({}); }); } }; template <template <PrimitiveType> typename Trait, typename F> absl::Status Apply(Literal& literal, F&& literal_generator) { return primitive_util::PrimitiveTypeSwitch<absl::Status>( [&, literal_generator = std::forward<F>(literal_generator)]( auto primitive_type_constant) -> absl::Status { if constexpr (primitive_util::IsArrayType(primitive_type_constant)) { return Trait<primitive_type_constant>::Run( literal, std::move(literal_generator)); } LOG(FATAL) << "Unhandled primitive type " << literal.shape().element_type(); }, literal.shape().element_type()); } constexpr absl::string_view kEvalErrorDetailUrl = "EvalErrorDetailUrl"; enum class EvalErrorDetail : uint32_t { kDynamicValueDependence = 0, }; std::optional<EvalErrorDetail> ParseEvalErrorDetail(const absl::Status& error) { auto error_detail = error.GetPayload(kEvalErrorDetailUrl); if (!error_detail.has_value() && error_detail->empty()) { return std::nullopt; } return static_cast<EvalErrorDetail>( absl::little_endian::Load32(error_detail->Flatten().data())); } absl::Status MakeEvalErrorDueToParamOrInfeed( const HloInstruction& eval_instruction) { absl::Status error = absl::FailedPreconditionError(absl::StrCat( "Failed to evaluate instruction (", eval_instruction.name(), ") since it depends on infeed or parameters to its parent computation (", eval_instruction.parent()->name(), ").")); std::string error_payload; error_payload.resize(sizeof(EvalErrorDetail)); absl::little_endian::Store32( const_cast<char*>(error_payload.data()), static_cast<uint32_t>(EvalErrorDetail::kDynamicValueDependence)); error.SetPayload(kEvalErrorDetailUrl, absl::Cord(error_payload)); return error; } struct DynamicOrStaticInteger { std::optional<int64_t> static_value; bool is_dynamic() const { return !static_value.has_value(); } std::string ToString() const { return is_dynamic() ? std::string("DYNAMIC") : absl::StrCat(*static_value); } }; std::optional<DynamicOrStaticInteger> GetInstructionValueAsInteger( const HloInstruction* instruction) { HloEvaluator evaluator; absl::StatusOr<Literal> static_value = evaluator.Evaluate( instruction, true); if (static_value.ok()) { if (instruction->shape().element_type() == PrimitiveType::PRED) { return DynamicOrStaticInteger{ static_cast<int64_t>(static_value->GetFirstElement<bool
#include "xla/hlo/evaluator/hlo_evaluator.h" #include <array> #include <complex> #include <cstdint> #include <initializer_list> #include <limits> #include <memory> #include <numeric> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/array2d.h" #include "xla/array3d.h" #include "xla/array4d.h" #include "xla/client/xla_builder.h" #include "xla/comparison_util.h" #include "xla/debug_options_flags.h" #include "xla/error_spec.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/permutation_util.h" #include "xla/primitive_util.h" #include "xla/service/dynamic_dimension_inference.h" #include "xla/service/hlo_element_type_converter.h" #include "xla/service/hlo_module_config.h" #include "xla/service/shape_inference.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_utils.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" namespace xla { namespace { static std::array<bool, 2> use_bf16_params{true, false}; class HloEvaluatorTest : public HloTestBase { public: HloEvaluatorTest() : use_bfloat16_(false) { InitializeFftData(); } absl::StatusOr<Literal> Evaluate( absl::Span<const Literal* const> arg_literals = {}) { if (use_bfloat16_) { HloElementTypeConverter(F32, BF16).Run(m_.get()).value(); } return evaluator_.Evaluate(*m_->entry_computation(), arg_literals); } Literal EvaluateWithModule( HloModule* module, absl::Span<const Literal* const> arg_literals = {}) { if (use_bfloat16_) { HloElementTypeConverter(F32, BF16).Run(m_.get()).value(); } return evaluator_.Evaluate(*module->entry_computation(), arg_literals) .value(); } void TestUnaryOp(HloOpcode opcode, Literal expected, Literal input, float aabs = 0) { HloComputation::Builder b(TestName()); auto c1 = b.AddInstruction(HloInstruction::CreateConstant(std::move(input))); b.AddInstruction(HloInstruction::CreateUnary(expected.shape(), opcode, c1)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto element_type = expected.shape().element_type(); if (element_type == F32 || element_type == F64) { ErrorSpec error(aabs); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, error)); } else { EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } } void TestBinaryOp(HloOpcode opcode, Literal expected, Literal lhs, Literal rhs) { HloComputation::Builder b(TestName()); auto c1 = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs))); auto c2 = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs))); b.AddInstruction( HloInstruction::CreateBinary(expected.shape(), opcode, c1, c2)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } void TestTernaryOp(HloOpcode opcode, Literal expected, Literal src0, Literal src1, Literal src2) { HloComputation::Builder b(TestName()); auto operand0 = b.AddInstruction(HloInstruction::CreateConstant(std::move(src0))); auto operand1 = b.AddInstruction(HloInstruction::CreateConstant(std::move(src1))); auto operand2 = b.AddInstruction(HloInstruction::CreateConstant(std::move(src2))); b.AddInstruction(HloInstruction::CreateTernary( expected.shape(), opcode, operand0, operand1, operand2)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } void TestEvaluateInstruction(HloInstruction* instruction, const Literal& expected) { TF_ASSERT_OK_AND_ASSIGN(Literal result, evaluator_.Evaluate(instruction)); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } void TestEvaluationFailure(HloInstruction* instruction) { absl::StatusOr<Literal> result = evaluator_.Evaluate(instruction); EXPECT_TRUE(!result.ok()); } void TestRecursivelyEvaluateInstruction(HloInstruction* instruction, const Literal& expected) { TF_ASSERT_OK_AND_ASSIGN( Literal result, evaluator_.Evaluate( instruction, true)); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } void TestRecursiveEvaluationFailure(HloInstruction* instruction) { absl::StatusOr<Literal> result = evaluator_.Evaluate( instruction, true); EXPECT_TRUE(!result.ok()); } std::unique_ptr<HloComputation> MaxComputationScalarF32() { HloComputation::Builder max_computation("max"); Shape scalar_shape = ShapeUtil::MakeShape(F32, {}); auto param_lhs = max_computation.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "lhs")); auto param_rhs = max_computation.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "rhs")); max_computation.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kMaximum, param_lhs, param_rhs)); return max_computation.Build(); } void ReduceWindowMaxIotaTest(int window_size, int padding, int stride, int window_dilation, int base_dilation, const Literal& expected) { HloComputation::Builder b(TestName()); auto arg_array = std::make_unique<Array2D<float>>(4, 4); arg_array->FillIota(0); auto arg_literal = LiteralUtil::CreateR2FromArray2D<float>(*arg_array); HloInstruction* arg_instruction = b.AddInstruction( HloInstruction::CreateConstant(std::move(arg_literal))); auto init_value = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.f))); auto max_func = m_->AddEmbeddedComputation(MaxComputationScalarF32()); Window window; WindowDimension dim; dim.set_size(window_size); dim.set_stride(stride); dim.set_padding_low(padding); dim.set_padding_high(padding); dim.set_window_dilation(window_dilation); dim.set_base_dilation(base_dilation); *window.add_dimensions() = dim; *window.add_dimensions() = dim; int dim0 = expected.shape().dimensions(0); int dim1 = expected.shape().dimensions(1); Shape shape = ShapeUtil::MakeShape(F32, {dim0, dim1}); b.AddInstruction(HloInstruction::CreateReduceWindow( shape, arg_instruction, init_value, window, max_func)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } protected: explicit HloEvaluatorTest(bool use_bfloat16) : use_bfloat16_(use_bfloat16) { InitializeFftData(); } void InitializeFftData(); HloEvaluator evaluator_; const bool use_bfloat16_; std::unique_ptr<HloModule> m_ = CreateNewVerifiedModule(); ErrorSpec fft_error_ = ErrorSpec(1e-4, 1e-5); Literal fft_c64x2x4x8_; Literal fft_c64x2x4x8_1d_; Literal fft_c64x2x4x8_2d_; Literal fft_c64x2x4x8_3d_; }; class HloEvaluatorBf16Test : public ::testing::WithParamInterface<bool>, public HloEvaluatorTest { protected: HloEvaluatorBf16Test() : HloEvaluatorTest(GetParam()) {} }; INSTANTIATE_TEST_SUITE_P(HloEvaluatorTest_Instantiation, HloEvaluatorBf16Test, ::testing::ValuesIn(use_bf16_params)); TEST_P(HloEvaluatorBf16Test, DoesClamp) { auto low = LiteralUtil::CreateR2<float>({{0.f, 2.f}, {2.f, 4.f}}); auto value = LiteralUtil::CreateR2<float>({{0.f, 5.f}, {0.f, 4.f}}); auto high = LiteralUtil::CreateR2<float>({{2.f, 4.f}, {4.f, 4.f}}); Shape shape = low.shape(); HloComputation::Builder b(TestName()); auto c1 = b.AddInstruction(HloInstruction::CreateConstant(std::move(low))); auto c2 = b.AddInstruction(HloInstruction::CreateConstant(std::move(value))); auto c3 = b.AddInstruction(HloInstruction::CreateConstant(std::move(high))); b.AddInstruction( HloInstruction::CreateTernary(shape, HloOpcode::kClamp, c1, c2, c3)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<float>({{0, 4}, {2, 4}}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, DoesClampInt64) { auto ones = [](int bits) { return (int64_t{1} << bits) - 1; }; auto low = LiteralUtil::CreateR2<int64_t>({{0, ones(54)}, {ones(54), ones(58)}}); auto value = LiteralUtil::CreateR2<int64_t>({{0, ones(56)}, {0, ones(58)}}); auto high = LiteralUtil::CreateR2<int64_t>( {{ones(54), ones(55)}, {ones(56), ones(58)}}); Shape shape = low.shape(); HloComputation::Builder b(TestName()); auto c1 = b.AddInstruction(HloInstruction::CreateConstant(std::move(low))); auto c2 = b.AddInstruction(HloInstruction::CreateConstant(std::move(value))); auto c3 = b.AddInstruction(HloInstruction::CreateConstant(std::move(high))); b.AddInstruction( HloInstruction::CreateTernary(shape, HloOpcode::kClamp, c1, c2, c3)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<int64_t>({{0, ones(55)}, {ones(54), ones(58)}}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, DISABLED_DoesClampSpecialBroadcast) { auto low = LiteralUtil::CreateR0<float>(0.f); auto value = LiteralUtil::CreateR2<float>({{-1.f, 0.f}, {1.f, 2.f}}); auto high = LiteralUtil::CreateR0<float>(1.f); Shape shape = value.shape(); HloComputation::Builder b(TestName()); auto c1 = b.AddInstruction(HloInstruction::CreateConstant(std::move(low))); auto c2 = b.AddInstruction(HloInstruction::CreateConstant(std::move(value))); auto c3 = b.AddInstruction(HloInstruction::CreateConstant(std::move(high))); b.AddInstruction( HloInstruction::CreateTernary(shape, HloOpcode::kClamp, c1, c2, c3)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<float>({{0, 0}, {1, 1}}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, DoesSelect) { auto pred = LiteralUtil::CreateR2<bool>({{true, false}, {false, true}}); auto on_true = LiteralUtil::CreateR2<float>({{2.f, 4.f}, {4.f, 4.f}}); auto on_false = LiteralUtil::CreateR2<float>({{0.f, 5.f}, {0.f, 4.f}}); Shape shape = on_true.shape(); HloComputation::Builder b(TestName()); auto c1 = b.AddInstruction(HloInstruction::CreateConstant(std::move(pred))); auto c2 = b.AddInstruction(HloInstruction::CreateConstant(std::move(on_true))); auto c3 = b.AddInstruction(HloInstruction::CreateConstant(std::move(on_false))); b.AddInstruction( HloInstruction::CreateTernary(shape, HloOpcode::kSelect, c1, c2, c3)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({})); auto expected = LiteralUtil::CreateR2<float>({{2, 5}, {0, 4}}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, DoesAdd) { auto lhs = LiteralUtil::CreateR2<int64_t>({{1, 0}, {-100, 4}}); auto rhs = LiteralUtil::CreateR2<int64_t>({{2, 4}, {4, 4}}); auto expected = LiteralUtil::CreateR2<int64_t>({{3, 4}, {-96, 8}}); TestBinaryOp(HloOpcode::kAdd, std::move(expected), std::move(lhs), std::move(rhs)); } TEST_P(HloEvaluatorBf16Test, DoesAnd) { auto lhs = LiteralUtil::CreateR2<int64_t>({{1, 0}, {-100, 4}}); auto rhs = LiteralUtil::CreateR2<int64_t>({{2, 4}, {4, 4}}); auto expected = LiteralUtil::CreateR2<int64_t>({{0, 0}, {4, 4}}); TestBinaryOp(HloOpcode::kAnd, std::move(expected), std::move(lhs), std::move(rhs)); } TEST_F(HloEvaluatorTest, DoesOr) { auto lhs = LiteralUtil::CreateR2<int64_t>({{1, 0}, {-100, 4}}); auto rhs = LiteralUtil::CreateR2<int64_t>({{2, 4}, {4, 4}}); auto expected = LiteralUtil::CreateR2<int64_t>({{3, 4}, {-100, 4}}); TestBinaryOp(HloOpcode::kOr, std::move(expected), std::move(lhs), std::move(rhs)); } TEST_F(HloEvaluatorTest, DoesXor) { auto lhs = LiteralUtil::CreateR2<int64_t>({{1, 0}, {-100, 4}}); auto rhs = LiteralUtil::CreateR2<int64_t>({{2, 4}, {4, 4}}); auto expected = LiteralUtil::CreateR2<int64_t>({{3, 4}, {-104, 0}}); TestBinaryOp(HloOpcode::kXor, std::move(expected), std::move(lhs), std::move(rhs)); } TEST_F(HloEvaluatorTest, DoesMultiply) { auto lhs = LiteralUtil::CreateR2<int32_t>({{-1, 0}, {-100, 4}}); auto rhs = LiteralUtil::CreateR2<int32_t>( {{std::numeric_limits<int32_t>::min(), 4}, {4, 4}}); auto expected = LiteralUtil::CreateR2<int32_t>( {{std::numeric_limits<int32_t>::min(), 0}, {-400, 16}}); TestBinaryOp(HloOpcode::kMultiply, std::move(expected), std::move(lhs), std::move(rhs)); } TEST_F(HloEvaluatorTest, DoesDivideInt64) { auto lhs = LiteralUtil::CreateR2<int64_t>({{1, 0}, {-100, 4}}); auto rhs = LiteralUtil::CreateR2<int64_t>({{2, 4}, {4, 4}}); auto expected = LiteralUtil::CreateR2<int64_t>({{0, 0}, {-25, 1}}); TestBinaryOp(HloOpcode::kDivide, std::move(expected), std::move(lhs), std::move(rhs)); } TEST_F(HloEvaluatorTest, DoesClampS64) { auto low = LiteralUtil::CreateR1<int64_t>( {-8616761059752331528LL, 6780561065411491190LL, -8616761059752331528LL}); auto value = LiteralUtil::CreateR1<int64_t>( {-6780561065411491190LL, 6780561065411491180LL, 4241131823772864090LL}); auto high = LiteralUtil::CreateR1<int64_t>( {-6780561065411491180LL, 8616761059752331528LL, 3832151243857508051LL}); auto expected = LiteralUtil::CreateR1<int64_t>( {-6780561065411491190LL, 6780561065411491190LL, 3832151243857508051LL}); TestTernaryOp(HloOpcode::kClamp, std::move(expected), std::move(low), std::move(value), std::move(high)); } TEST_P(HloEvaluatorBf16Test, DoesDivideDouble) { auto lhs = LiteralUtil::CreateR2<double>({{1.0, 0.0}, {-100.0, 4.0}}); auto rhs = LiteralUtil::CreateR2<double>({{2.2, 4.0}, {4.0, 4.0}}); auto expected = LiteralUtil::CreateR2<double>({{0.45454545454545453, 0}, {-25, 1}}); TestBinaryOp(HloOpcode::kDivide, std::move(expected), std::move(lhs), std::move(rhs)); } TEST_F(HloEvaluatorTest, DoesAbsR2) { auto operand = LiteralUtil::CreateR2<int64_t>({{1, -20}, {-100, 4}}); auto expected = LiteralUtil::CreateR2<int64_t>({{1, 20}, {100, 4}}); TestUnaryOp(HloOpcode::kAbs, std::move(expected), std::move(operand)); } TEST_P(HloEvaluatorBf16Test, DoesAbsR0) { auto operand = LiteralUtil::CreateR0<float>(-1.0f); auto expected = LiteralUtil::CreateR0<float>(1.0f); TestUnaryOp(HloOpcode::kAbs, std::move(expected), std::move(operand)); } TEST_P(HloEvaluatorBf16Test, DoesAbsR1WithZeroSize) { auto operand = LiteralUtil::CreateR1<float>({}); auto expected = LiteralUtil::CreateR1<float>({}); TestUnaryOp(HloOpcode::kAbs, std::move(expected), std::move(operand)); } TEST_F(HloEvaluatorTest, DoesAbsC128) { auto x = LiteralUtil::CreateR0<complex128>({1, 2}); auto expected_real = LiteralUtil::CreateR0<double>(2.23607); TestUnaryOp(HloOpcode::kAbs, std::move(expected_real), std::move(x), 3e-06); } TEST_F(HloEvaluatorTest, DoesNegateR2) { auto operand = LiteralUtil::CreateR2<int32_t>( {{0, std::numeric_limits<int32_t>::min()}, {-1, 4}}); auto expected = LiteralUtil::CreateR2<int32_t>( {{0, std::numeric_limits<int>::min()}, {1, -4}}); TestUnaryOp(HloOpcode::kNegate, std::move(expected), std::move(operand)); } TEST_P(HloEvaluatorBf16Test, DoesCosR2) { auto operand = LiteralUtil::CreateR2<float>({{0, M_PI}, {-M_PI, 2 * M_PI}}); auto expected = LiteralUtil::CreateR2<float>({{1, -1}, {-1, 1}}); TestUnaryOp(HloOpcode::kCos, std::move(expected), std::move(operand), use_bfloat16_ ? 0.031250 : 9.5367431640625E-7); } TEST_P(HloEvaluatorBf16Test, DoesSinR2) { auto operand = LiteralUtil::CreateR2<float>({{0, M_PI}, {-M_PI, 2 * M_PI}}); auto expected = LiteralUtil::CreateR2<float>({{0, 0}, {0, 0}}); TestUnaryOp(HloOpcode::kSin, std::move(expected), std::move(operand), use_bfloat16_ ? 0.031250 : 9.5367431640625E-7); } TEST_P(HloEvaluatorBf16Test, DoesTanR2) { auto operand = LiteralUtil::CreateR2<float>({{0, M_PI}, {-M_PI, 2 * M_PI}}); auto expected = LiteralUtil::CreateR2<float>({{0, 0}, {0, 0}}); TestUnaryOp(HloOpcode::kTan, std::move(expected), std::move(operand), use_bfloat16_ ? 0.031250 : 9.5367431640625E-7); } TEST_F(HloEvaluatorTest, DoesNotR2) { auto operand = LiteralUtil::CreateR2<int32_t>({{0, std::numeric_limits<int>::min()}, {-1, std::numeric_limits<int>::max()}}); auto expected = LiteralUtil::CreateR2<int32_t>({{-1, std::numeric_limits<int>::max()}, {0, std::numeric_limits<int>::min()}}); TestUnaryOp(HloOpcode::kNot, std::move(expected), std::move(operand)); } TEST_F(HloEvaluatorTest, DoesRealC128) { auto x = LiteralUtil::CreateR1<complex128>({{1, 0}, {-100, 4}}); auto expected_real = LiteralUtil::CreateR1<double>({1, -100}); TestUnaryOp(HloOpcode::kReal, std::move(expected_real), std::move(x)); } TEST_F(HloEvaluatorTest, DoesImagC128) { auto x = LiteralUtil::CreateR1<complex128>({{1, 0}, {-100, 4}}); auto expected_imag = LiteralUtil::CreateR1<double>({0, 4}); TestUnaryOp(HloOpcode::kImag, std::move(expected_imag), std::move(x)); } TEST_P(HloEvaluatorBf16Test, DoesImagF32AndBf16) { auto x = LiteralUtil::CreateR1<float>({1, -100}); auto expected_imag = LiteralUtil::CreateR1<float>({0, 0}); TestUnaryOp(HloOpcode::kImag, std::move(expected_imag), std::move(x)); } TEST_F(HloEvaluatorTest, DoesImagF64) { auto x = LiteralUtil::CreateR1<double>({1, -100}); auto expected_imag = LiteralUtil::CreateR1<double>({0, 0}); TestUnaryOp(HloOpcode::kImag, std::move(expected_imag), std::move(x)); } TEST_F(HloEvaluatorTest, DoesTraverseInstructions) { auto lhs = LiteralUtil::CreateR2<int64_t>({{1, 0}, {-100, 4}}); auto rhs = LiteralUtil::CreateR2<int64_t>({{2, 4}, {4, 4}}); auto rhs2 = LiteralUtil::CreateR2<int64_t>({{1, -20}, {-100, 4}}); std::vector<const Literal*> args = {&lhs, &rhs, &rhs2}; Shape shape = ShapeUtil::MakeShape(S64, {2, 2}); HloComputation::Builder b(TestName()); auto param_lhs = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "lhs")); auto param_rhs = b.AddInstruction(HloInstruction::CreateParameter(1, shape, "rhs")); auto lhs_instruction = b.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, param_lhs, param_rhs)); auto param_rhs2 = b.AddInstruction(HloInstruction::CreateParameter(2, shape, "rhs2")); b.AddInstruction(HloInstruction::CreateBinary(shape, HloOpcode::kAdd, lhs_instruction, param_rhs2)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate(args)); auto expected = LiteralUtil::CreateR2<int64_t>({{4, -16}, {-196, 12}}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, DoesReshape) { HloComputation::Builder b(TestName()); const int64_t dimensions[] = {11, 8, 7, 5, 9}; TF_ASSERT_OK_AND_ASSIGN(auto literal, LiteralUtil::CreateRandomLiteral<F32>( ShapeUtil::MakeShape(F32, dimensions), 0.0, 1.0)); auto literal_clone = literal.Clone(); HloInstruction* literal_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(literal))); Shape shape = ShapeUtil::MakeShape(F32, {8, 7, 11, 9, 5}); const int64_t permutation[] = {1, 2, 0, 4, 3}; b.AddInstruction( HloInstruction::CreateTranspose(shape, literal_instruction, permutation)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({})); using NativeT = typename primitive_util::PrimitiveTypeToNative<F32>::type; result.EachCell<NativeT>( [&](absl::Span<const int64_t> indices, NativeT value) { std::vector<int64_t> rindexes = PermuteInverse(indices, permutation); EXPECT_NEAR(value, literal_clone.Get<NativeT>(rindexes), 0.031250); }); } TEST_F(HloEvaluatorTest, DoesBroadcast) { HloComputation::Builder b(TestName()); auto input_literal = LiteralUtil::CreateR2<int32_t>({{1, 2}, {3, 4}, {5, 6}}); auto output_literal = LiteralUtil::CreateR3<int32_t>( {{{1, 2}, {3, 4}, {5, 6}}, {{1, 2}, {3, 4}, {5, 6}}}); HloInstruction* literal_instruction = b.AddInstruction( HloInstruction::CreateConstant(std::move(input_literal))); b.AddInstruction(HloInstruction::CreateBroadcast( output_literal.shape(), literal_instruction, {1, 2})); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({})); EXPECT_TRUE(LiteralTestUtil::Equal(result, output_literal)); } TEST_F(HloEvaluatorTest, DoesBroadcastScalar) { HloComputation::Builder b(TestName()); auto input_literal = LiteralUtil::CreateR0<int32_t>(111); auto output_literal = LiteralUtil::CreateR2<int32_t>( {{111, 111}, {111, 111}, {111, 111}, {111, 111}, {111, 111}, {111, 111}}); HloInstruction* literal_instruction = b.AddInstruction( HloInstruction::CreateConstant(std::move(input_literal))); b.AddInstruction(HloInstruction::CreateBroadcast( output_literal.shape(), literal_instruction, {})); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({})); EXPECT_TRUE(LiteralTestUtil::Equal(result, output_literal)); } TEST_F(HloEvaluatorTest, DoesConcatenateSimple) { HloComputation::Builder b(TestName()); HloInstruction* operand1 = b.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<int64_t>({{-1, -2}, {100, 200}}))); HloInstruction* operand2 = b.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<int64_t>({{-2, -3}, {-100, -200}}))); std::vector<HloInstruction*> operands = {operand1, operand2}; Shape shape = ShapeUtil::MakeShape(S64, {4, 2}); b.AddInstruction(HloInstruction::CreateConcatenate(shape, operands, 0)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<int64_t>( {{-1, -2}, {100, 200}, {-2, -3}, {-100, -200}}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, ConcatenateHandlesShapeWithZeroElement) { HloComputation::Builder b(TestName()); HloInstruction* operand1 = b.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<int64_t>({100, 200}))); HloInstruction* operand2 = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<int64_t>({}))); std::vector<HloInstruction*> operands = {operand1, operand2}; Shape shape = ShapeUtil::MakeShape(S64, {2}); b.AddInstruction(HloInstruction::CreateConcatenate(shape, operands, 0)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR1<int64_t>({100, 200}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, ConvertWithSameLayout) { HloComputation::Builder b(TestName()); auto input_literal = LiteralUtil::CreateR2<int32_t>({{1, 2}, {3, 4}, {5, 6}}); auto expected = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}, {5.0, 6.0}}); ASSERT_TRUE(LayoutUtil::LayoutsInShapesEqual(input_literal.shape(), expected.shape())); HloInstruction* constant = b.AddInstruction( HloInstruction::CreateConstant(std::move(input_literal))); b.AddInstruction(HloInstruction::CreateConvert(expected.shape(), constant)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); EXPECT_TRUE(LiteralTestUtil::Equal(result, expected)); } TEST_P(HloEvaluatorBf16Test, ConvertWithDifferentLayout) { HloComputation::Builder b(TestName()); auto input_literal = LiteralUtil::CreateR2WithLayout<int32_t>( {{1, 2}, {3, 4}, {5, 6}}, LayoutUtil::MakeLayout({0, 1})); auto expected = LiteralUtil::CreateR2WithLayout<float>( {{1.0, 2.0}, {3.0, 4.0}, {5.0, 6.0}}, LayoutUtil::MakeLayout({1, 0})); ASSERT_FALSE(LayoutUtil::LayoutsInShapesEqual(input_literal.shape(), expected.shape())); HloInstruction* constant = b.AddInstruction( HloInstruction::CreateConstant(std::move(input_literal))); b.AddInstruction(HloInstruction::CreateConvert(expected.shape(), constant)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); EXPECT_TRUE(LiteralTestUtil::Equal(result, expected)); } PaddingConfig CreatePaddingConfig( std::initializer_list<std::array<int64_t, 3>> padding_dimensions) { PaddingConfig padding_config; for (auto& paddings_per_dim : padding_dimensions) { auto dimension = padding_config.add_dimensions(); dimension->set_edge_padding_low(paddings_per_dim[0]); dimension->set_edge_padding_high(paddings_per_dim[1]); dimension->set_interior_padding(paddings_per_dim[2]); } return padding_config; } TEST_F(HloEvaluatorTest, Pad2DIntegerArrayWithZeroDimension) { auto operand = LiteralUtil::CreateR2<int32_t>({{}, {}}); HloComputation::Builder b(TestName()); auto operand_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(operand))); constexpr int32_t kPadValue = 10; auto pad_value = LiteralUtil::CreateR0<int32_t>(kPadValue); auto padding_value_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(pad_value))); auto padding_config = CreatePaddingConfig({{{1, 0, 2}}, {{0, 2, 1}}}); Shape shape = ShapeUtil::MakeShape(S32, {5, 2}); b.AddInstruction(HloInstruction::CreatePad( shape, operand_instruction, padding_value_instruction, padding_config)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<int32_t>( {{10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, Pad4DFloatArrayWithInteriorPadding) { HloComputation::Builder b(TestName()); Array4D<float> input_array(3, 2, 1, 1, {1, 2, 3, 4, 5, 6}); auto input = LiteralUtil::CreateR4FromArray4D<float>(input_array); HloInstruction* input_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(input))); constexpr float kPadValue = 1.5; auto pad_value = LiteralUtil::CreateR0<float>(kPadValue); HloInstruction* pad_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(pad_value))); Shape shape = ShapeUtil::MakeShape(F32, {8, 5, 1, 1}); auto r4_padding_on_dim0_dim1 = CreatePaddingConfig({{{1, 0, 2}}, {{0, 2, 1}}, {{0, 0, 0}}, {{0, 0, 0}}}); b.AddInstruction(HloInstruction::CreatePad( shape, input_instruction, pad_instruction, r4_padding_on_dim0_dim1)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected_array = std::make_unique<Array4D<float>>(8, 5, 1, 1); expected_array->Fill(kPadValue); (*expected_array)(1, 0, 0, 0) = 1.0f; (*expected_array)(1, 2, 0, 0) = 2.0f; (*expected_array)(4, 0, 0, 0) = 3.0f; (*expected_array)(4, 2, 0, 0) = 4.0f; (*expected_array)(7, 0, 0, 0) = 5.0f; (*expected_array)(7, 2, 0, 0) = 6.0f; auto expected = LiteralUtil::CreateR4FromArray4D<float>(*expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, NegativePadding2D) { HloComputation::Builder b(TestName()); auto input_array = std::make_unique<Array2D<float>>(4, 3); input_array->FillUnique(1.0f); auto input = LiteralUtil::CreateR2FromArray2D<float>(*input_array); HloInstruction* input_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(input))); auto pad_value_instruction = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.718f))); auto r2_padding_on_dim0_dim1 = CreatePaddingConfig({{{-1, -2, 0}}, {{-2, 4, 0}}}); Shape shape = ShapeUtil::MakeShape(F32, {1, 5}); b.AddInstruction(HloInstruction::CreatePad(shape, input_instruction, pad_value_instruction, r2_padding_on_dim0_dim1)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected_array = std::make_unique<Array2D<float>>(1, 5); (*expected_array)(0, 0) = 7.0f; (*expected_array)(0, 1) = 2.718f; (*expected_array)(0, 2) = 2.718f; (*expected_array)(0, 3) = 2.718f; (*expected_array)(0, 4) = 2.718f; auto expected = LiteralUtil::CreateR2FromArray2D<float>(*expected_array); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, ErrorSpec(0.031250))); } TEST_P(HloEvaluatorBf16Tes
2,184
cpp
tensorflow/tensorflow
hlo_constant_splitter
third_party/xla/xla/hlo/transforms/hlo_constant_splitter.cc
third_party/xla/xla/hlo/transforms/hlo_constant_splitter_test.cc
#ifndef XLA_HLO_TRANSFORMS_HLO_CONSTANT_SPLITTER_H_ #define XLA_HLO_TRANSFORMS_HLO_CONSTANT_SPLITTER_H_ #include "absl/container/flat_hash_set.h" #include "absl/functional/function_ref.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class HloConstantSplitter : public HloModulePass { public: explicit HloConstantSplitter( bool split_expressions = false, absl::FunctionRef<bool(const HloInstruction*)> extra_constraints = [](const HloInstruction* instruction) { return true; }) : split_expressions_(split_expressions), extra_constraints_(extra_constraints) {} absl::string_view name() const override { return "hlo-constant-splitter"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: bool split_expressions_; absl::FunctionRef<bool(const HloInstruction*)> extra_constraints_; }; } #endif #include "xla/hlo/transforms/hlo_constant_splitter.h" #include <iterator> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { bool IsSupportedConstant(const HloInstruction* instruction, bool split_expressions) { return instruction->opcode() == HloOpcode::kConstant || (split_expressions && instruction->opcode() == HloOpcode::kIota); } bool IsSupportedConstantExpression(const HloInstruction* instruction) { if (instruction->HasSideEffect()) { return false; } if (instruction->IsElementwise()) { return true; } switch (instruction->opcode()) { case HloOpcode::kBroadcast: case HloOpcode::kSlice: return true; default: return false; } } absl::StatusOr<bool> DuplicateConstantExpressionPerUser( HloComputation* computation, HloInstruction* to_clone, HloInstruction* user) { absl::InlinedVector<std::pair<const HloInstruction*, int>, 8> worklist( 1, std::make_pair(to_clone, 0)); absl::InlinedVector<const HloInstruction*, 8> to_clone_vec; absl::flat_hash_set<const HloInstruction*> visited; bool changed = false; VLOG(10) << "Duplicating: " << to_clone->ToString() << " for user " << user->ToString(); while (!worklist.empty()) { auto& [to_clone_i, index] = worklist.back(); if (index >= to_clone_i->operand_count()) { to_clone_vec.push_back(to_clone_i); worklist.pop_back(); continue; } int64_t prev_idx = index++; if (visited.insert(to_clone_i->operands()[prev_idx]).second) { VLOG(10) << "Adding operand to worklist: " << to_clone_i->operands()[prev_idx]->ToString(); worklist.push_back(std::make_pair(to_clone_i->operands()[prev_idx], 0)); } } absl::flat_hash_map<const HloInstruction*, HloInstruction*> cloned_instructions_map; for (auto* i : to_clone_vec) { absl::InlinedVector<HloInstruction*, 4> new_operand_vector; for (auto* op : i->operands()) { auto it = cloned_instructions_map.find(op); CHECK(it != cloned_instructions_map.end()) << "Expected already cloned instruction for operand: " << op->ToString() << " Instruction to clone: " << i->ToString(); new_operand_vector.push_back(it->second); } HloInstruction* cloned_instr = computation->AddInstruction( i->CloneWithNewOperands(i->shape(), new_operand_vector)); cloned_instructions_map[i] = cloned_instr; if (i == to_clone) { TF_RETURN_IF_ERROR(to_clone->ReplaceUseWith(user, cloned_instr)); changed = true; } } return changed; } } absl::StatusOr<bool> HloConstantSplitter::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloComputation* computation : module->computations(execution_threads)) { absl::flat_hash_set<HloInstruction*> constants_set; std::vector<HloInstruction*> constants_list; std::vector<HloInstruction*> worklist; for (HloInstruction* instruction : computation->MakeInstructionPostOrder()) { VLOG(10) << "Considering: " << instruction->ToString(); if (IsSupportedConstant(instruction, split_expressions_) && extra_constraints_(instruction)) { VLOG(10) << "Adding to constant list: " << instruction->ToString(); constants_set.insert(instruction); constants_list.push_back(instruction); } } int64_t previous_total_constants = 0; while (constants_list.size() != previous_total_constants) { VLOG(10) << "Previous total: " << previous_total_constants << " current constants: " << constants_list.size(); previous_total_constants = constants_list.size(); worklist.clear(); worklist.insert(worklist.end(), constants_list.begin(), constants_list.end()); while (!worklist.empty()) { auto* i = worklist.back(); worklist.pop_back(); bool is_constant = true; for (auto* ops : i->operands()) { if (!constants_set.contains(ops)) { is_constant = false; break; } } if (is_constant) { if (constants_set.insert(i).second) { constants_list.push_back(i); } if (split_expressions_) { for (auto* u : i->users()) { if (IsSupportedConstantExpression(u) && !constants_set.contains(u)) { worklist.push_back(u); } } } } } } if (VLOG_IS_ON(5)) { VLOG(5) << "For computation: " << computation->ToString(); for (HloInstruction* instruction : constants_list) { VLOG(5) << "Is a constant: " << instruction->ToString(); } } for (HloInstruction* instruction : constants_list) { if (IsSupportedConstant(instruction, split_expressions_) && instruction->user_count() <= 1) { continue; } absl::InlinedVector<HloInstruction*, 8> users; users.reserve(instruction->user_count()); for (HloInstruction* user : instruction->users()) { if (instruction->opcode() == HloOpcode::kConstant || !constants_set.contains(user)) { users.push_back(user); } } for (auto* u : users) { TF_ASSIGN_OR_RETURN(bool duplicated, DuplicateConstantExpressionPerUser( computation, instruction, u)); changed |= duplicated; } } } return changed; } }
#include "xla/hlo/transforms/hlo_constant_splitter.h" #include <cstdint> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_parser.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using HloConstantSplitterTest = HloTestBase; TEST_F(HloConstantSplitterTest, SplitConstants) { const char* module_str = R"( HloModule test_module ENTRY entry_computation { param = (f32[], f32[]) parameter(0), sharding={{maximal device=0}, {maximal device=0}} gte0 = f32[] get-tuple-element(param), index=0 gte1 = f32[] get-tuple-element(param), index=1 constant = f32[] constant(94.1934) add1 = f32[] add(constant, gte0) add2 = f32[] add(constant, gte1) ROOT root = (f32[], f32[], f32[]) tuple(constant, add1, add2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(module_str)); TF_ASSERT_OK(HloConstantSplitter().Run(module.get()).status()); for (HloComputation* computation : module->computations()) { for (HloInstruction* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kConstant) { EXPECT_LE(instruction->user_count(), 1); } } } } TEST_F(HloConstantSplitterTest, OnlySplitConstantsAllowedBySeedConstraints) { const char* module_str = R"( HloModule test_module ENTRY entry_computation { param = (f32[], f32[]) parameter(0), sharding={{maximal device=0}, {maximal device=0}} gte0 = f32[] get-tuple-element(param), index=0 gte1 = f32[] get-tuple-element(param), index=1 constant1 = f32[] constant(1) add0 = f32[] add(constant1, gte0) add1 = f32[] add(constant1, add0) constant2 = f32[] constant(2) add2 = f32[] multiply(constant2, gte1) ROOT root = (f32[], f32[], f32[]) tuple(constant2, add1, add2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(module_str)); TF_ASSERT_OK(HloConstantSplitter( false, [](const HloInstruction* instruction) { return instruction->name() != "constant1"; }) .Run(module.get()) .status()); for (HloComputation* computation : module->computations()) { for (HloInstruction* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kConstant && instruction->name() != "constant1") { EXPECT_LE(instruction->user_count(), 1); } } } const HloInstruction* constant1 = FindInstruction(module.get(), "constant1"); ASSERT_NE(constant1, nullptr); EXPECT_EQ(constant1->user_count(), 2); } TEST_F(HloConstantSplitterTest, PreservingConstantsWithZeroUsers) { const char* module_str = R"( HloModule test_module ENTRY entry_computation { param = (f32[], f32[]) parameter(0), sharding={{maximal device=0}, {maximal device=0}} gte0 = f32[] get-tuple-element(param), index=0 gte1 = f32[] get-tuple-element(param), index=1 constant1 = f32[] constant(94.1934) constant2 = f32[] constant(9.1934) ROOT root = (f32[], f32[]) tuple(gte0, gte1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(module_str)); HloConstantSplitter pass = HloConstantSplitter(); const auto status_or = HloTestBase::RunHloPass(&pass, module.get()); TF_ASSERT_OK(status_or.status()); EXPECT_FALSE(status_or.value()); } TEST_F(HloConstantSplitterTest, SplittingExpressionsWithBroadcast) { const char* module_str = R"( HloModule test_module ENTRY entry_computation { gte0 = f32[1024] parameter(0) gte1 = f32[1024] parameter(1) constant1 = f32[1024] iota(), iota_dimension=0 constant2 = f32[] constant(9.1934) constant3 = f32[] constant(0.0) constant4 = f32[] constant(1.0) b = f32[1024] broadcast(constant2), dimensions={} b2 = f32[1024] broadcast(constant3), dimensions={} b3 = f32[1024] broadcast(constant4), dimensions={} cmp = pred[1024] compare(constant1, b), direction=LT s = f32[1024] select(cmp, b2, b3) a1 = f32[1024] add(s, gte0) a2 = f32[1024] add(s, gte1) ROOT root = (f32[1024], f32[1024]) tuple(a1, a2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(module_str)); HloConstantSplitter pass = HloConstantSplitter(true); const auto status_or = HloTestBase::RunHloPass(&pass, module.get()); TF_ASSERT_OK(status_or.status()); EXPECT_TRUE(status_or.value()); HloDCE dce; TF_ASSERT_OK(dce.Run(module.get()).status()); XLA_VLOG_LINES(1, module->entry_computation()->ToString()); EXPECT_EQ(module->entry_computation()->instruction_count(), 23); } TEST_F(HloConstantSplitterTest, SplittingExpressionsWithSlice) { const char* module_str = R"( HloModule test_module ENTRY entry_computation { iota.0 = u32[64] iota(), iota_dimension=0 slice.0 = u32[32] slice(iota.0), slice={[0:32]} broadcast.0 = u32[16,32] broadcast(slice.0), dimensions={1} broadcast.1 = u32[32,32] broadcast(slice.0), dimensions={1} p.0 = u32[16,32] parameter(0) p.1 = u32[32,32] parameter(1) add.0 = u32[16,32] add(p.0, broadcast.0) add.1 = u32[32,32] add(p.1, broadcast.1) ROOT root = (u32[16,32], u32[32,32]) tuple(add.0, add.1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(module_str)); HloConstantSplitter pass = HloConstantSplitter(true); const auto status_or = HloTestBase::RunHloPass(&pass, module.get()); TF_ASSERT_OK(status_or.status()); EXPECT_TRUE(status_or.value()); HloDCE dce; TF_ASSERT_OK(dce.Run(module.get()).status()); XLA_VLOG_LINES(1, module->entry_computation()->ToString()); EXPECT_EQ(module->entry_computation()->instruction_count(), 11); } TEST_F(HloConstantSplitterTest, NoSplittingSideEffectExpressions) { const char* module_str = R"( HloModule test_module ENTRY entry_computation { gte0 = f32[1024] parameter(0) gte1 = f32[1024] parameter(1) constant1 = f32[1024] iota(), iota_dimension=0 constant2 = f32[] constant(9.1934) constant3 = f32[] constant(0.0) constant4 = f32[] constant(0.0) constant5 = f32[] constant(1.0) b = f32[1024] broadcast(constant2), dimensions={} b2 = f32[1024] broadcast(constant3), dimensions={} rng = f32[] rng(constant4, constant5), distribution=rng_uniform b3 = f32[1024] broadcast(rng), dimensions={} cmp = pred[1024] compare(constant1, b), direction=LT s = f32[1024] select(cmp, b2, b3) a1 = f32[1024] add(s, gte0) a2 = f32[1024] add(s, gte1) ROOT root = (f32[1024], f32[1024]) tuple(a1, a2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(module_str)); HloConstantSplitter pass = HloConstantSplitter(true); const int64_t count_before = module->entry_computation()->instruction_count(); TF_ASSERT_OK_AND_ASSIGN(bool changed, HloTestBase::RunHloPass(&pass, module.get())); HloDCE dce; TF_ASSERT_OK(dce.Run(module.get()).status()); const int64_t count_after_dce = module->entry_computation()->instruction_count(); EXPECT_TRUE(changed); EXPECT_EQ(count_before, count_after_dce); int64_t rng_count = 0; for (HloInstruction* instruction : module->entry_computation()->instructions()) { if (instruction->opcode() == HloOpcode::kRng) { rng_count++; } } EXPECT_EQ(rng_count, 1); } TEST_F(HloConstantSplitterTest, InstructionsWithOneUser) { const char* module_str = R"( HloModule test_module, entry_computation_layout={(f32[1024]{0:T(512)})->f32[1024]{0:T(512)}} reduce.add { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add = f32[] add(a, b) } ENTRY entry_computation { constant1 = f32[] constant(1.1) b1 = f32[1024]{0} broadcast(constant1), dimensions={} iota.1 = f32[1024]{0} iota(), iota_dimension=0 add.1 = f32[1024]{0} add(b1, iota.1) p0 = f32[1024]{0} parameter(0), sharding={devices=[4]0,1,2,3} custom-call.0 = f32[256]{0} custom-call(p0), custom_call_target="SPMDFullToShardShape", sharding={manual} constant0 = f32[] constant(0) reduce.1 = f32[] reduce(custom-call.0, constant0), dimensions={0}, to_apply=reduce.add b3 = f32[1024]{0} broadcast(reduce.1), dimensions={} add.2 = f32[1024]{0} add(add.1, b3) custom-call.1 = f32[4096]{0} custom-call(add.2), custom_call_target="SPMDShardToFullShape", sharding={devices=[4]0,1,2,3} reshape = f32[4,1024]{1,0} reshape(custom-call.1) reduce.2 = f32[1024]{0} reduce(reshape, constant0), dimensions={0}, to_apply=reduce.add iota.2 = f32[1024]{0} iota(), iota_dimension=0 mul = f32[1024]{0} multiply(b1, iota.2) ROOT sub = f32[1024]{0} subtract(reduce.2, mul), sharding={devices=[4]0,1,2,3} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(module_str)); HloConstantSplitter pass = HloConstantSplitter(true); TF_ASSERT_OK_AND_ASSIGN(bool changed, HloTestBase::RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); int64_t broadcast_count_before_dce = 0, broadcast_count_after_dce = 0; for (HloInstruction* instruction : module->entry_computation()->instructions()) { if (instruction->opcode() == HloOpcode::kBroadcast) { broadcast_count_before_dce++; } } EXPECT_EQ(broadcast_count_before_dce, 4); HloDCE dce; TF_ASSERT_OK(dce.Run(module.get()).status()); for (HloInstruction* instruction : module->entry_computation()->instructions()) { if (instruction->opcode() == HloOpcode::kBroadcast) { broadcast_count_after_dce++; } } EXPECT_EQ(broadcast_count_after_dce, 3); } } }
2,185
cpp
tensorflow/tensorflow
hlo_control_flow_flattening
third_party/xla/xla/tools/hlo_control_flow_flattening.cc
third_party/xla/xla/tools/hlo_control_flow_flattening_test.cc
#ifndef XLA_TOOLS_HLO_CONTROL_FLOW_FLATTENING_H_ #define XLA_TOOLS_HLO_CONTROL_FLOW_FLATTENING_H_ #include <limits> #include <string> #include <utility> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/call_graph.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class HloControlFlowFlattening : public HloModulePass { public: struct Options { int while_execution_count = 1; int max_outer_loop_count = std::numeric_limits<int>::max(); int max_loop_count = std::numeric_limits<int>::max(); bool remove_infeed_outfeed = true; bool flatten_while_loop = true; bool remove_comm = true; bool remove_host_transfer = false; }; explicit HloControlFlowFlattening(const Options& options) : while_execution_count_(options.while_execution_count), max_outer_loop_count_(options.max_outer_loop_count), max_loop_count_(options.max_loop_count), remove_infeed_outfeed_(options.remove_infeed_outfeed), flatten_while_loop_(options.flatten_while_loop), remove_host_transfer_(options.remove_host_transfer), remove_comm_(options.remove_comm) {} ~HloControlFlowFlattening() override = default; absl::string_view name() const override { return "control-flow-flattening"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: absl::Status RemoveInfeed(HloInstruction* infeed_hlo) const; absl::Status RemoveOutfeed(HloInstruction* outfeed_hlo) const; absl::Status FlattenWhileLoop(HloInstruction* while_hlo, const CallGraph& call_graph) const; absl::Status RemoveId(HloInstruction* hlo) const; int while_execution_count_; int max_outer_loop_count_; int max_loop_count_; bool remove_infeed_outfeed_; bool flatten_while_loop_; bool remove_host_transfer_; protected: virtual absl::StatusOr<HloInstruction*> RemoveCollective( HloInstruction* hlo) const; virtual absl::StatusOr<std::pair<HloInstruction*, HloInstruction*>> RemoveSendAndSendDone( HloInstruction* send_done, absl::flat_hash_set<HloInstruction*>* additional_removed) const; virtual absl::StatusOr<std::pair<HloInstruction*, HloInstruction*>> RemoveRecvAndRecvDone( HloInstruction* recv_done, absl::flat_hash_set<HloInstruction*>* additional_removed) const; bool remove_comm_; }; int GetLoopBound(const HloInstruction& while_hlo, const int default_loop_count, const int max_loop_count); int GetLoopBoundWithOuterLoopMax(const HloInstruction& while_hlo, const CallGraph& call_graph, const int default_loop_count, const int max_outer_loop_count, const int max_loop_count); } #endif #include "xla/tools/hlo_control_flow_flattening.h" #include <algorithm> #include <cstdint> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/call_graph.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/hlo_dce.h" #include "xla/service/tuple_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { HloInstruction* CreateConstant(const Shape& shape, HloComputation* computation) { if (shape.IsTuple()) { std::vector<HloInstruction*> tuple_arguments(shape.tuple_shapes_size()); for (int index = 0; index < shape.tuple_shapes_size(); ++index) { tuple_arguments[index] = CreateConstant(shape.tuple_shapes(index), computation); } return computation->AddInstruction( HloInstruction::CreateTuple(tuple_arguments)); } else { return computation->AddInstruction( HloInstruction::CreateConstant(Literal::CreateFromShape(shape))); } } void PrintSubexpression(HloInstruction* inst, int depth) { if (depth == 0) { return; } for (auto* operand : inst->operands()) { PrintSubexpression(operand, depth - 1); } VLOG(2) << inst->ToString(); } bool IsConstantScalarInt(const HloInstruction* inst) { return inst->opcode() == HloOpcode::kConstant && ShapeUtil::IsEffectiveScalar(inst->shape()) && inst->shape().IsInteger(); } bool IsNotContainedInLoop(const HloInstruction& while_hlo, const CallGraph& call_graph) { const HloComputation* computation = while_hlo.parent(); while (!computation->IsEntryComputation()) { auto& node = call_graph.GetNode(computation); CHECK_EQ(node.caller_callsites().size(), 1) << "The module is not flattened!"; auto& callsite = node.caller_callsites()[0]; if (callsite.instruction()->opcode() == HloOpcode::kWhile) { return false; } computation = callsite.instruction()->parent(); } return true; } } int GetLoopBound(const HloInstruction& while_hlo, const int default_loop_count, const int max_loop_count) { HloInstruction* condition = while_hlo.while_condition()->root_instruction(); if (condition->opcode() == HloOpcode::kCompare) { int64_t value = 0; Comparison::Direction cmp = condition->comparison_direction(); if ((cmp == Comparison::Direction::kLt || cmp == Comparison::Direction::kLe || cmp == Comparison::Direction::kNe) && IsConstantScalarInt(condition->operand(1))) { value = *condition->operand(1)->literal().GetFirstInteger(); } else if ((cmp == Comparison::Direction::kGt || cmp == Comparison::Direction::kGe || cmp == Comparison::Direction::kNe) && IsConstantScalarInt(condition->operand(0))) { value = *condition->operand(0)->literal().GetFirstInteger(); } if (value > 0) { return std::min(value, static_cast<int64_t>(max_loop_count)); } } return default_loop_count; } int GetLoopBoundWithOuterLoopMax(const HloInstruction& while_hlo, const CallGraph& call_graph, const int default_loop_count, const int max_outer_loop_count, const int max_loop_count) { int loop_bound = GetLoopBound(while_hlo, default_loop_count, max_loop_count); if (loop_bound > max_outer_loop_count) { if (IsNotContainedInLoop(while_hlo, call_graph)) { return max_outer_loop_count; } } return loop_bound; } absl::Status HloControlFlowFlattening::FlattenWhileLoop( HloInstruction* while_hlo, const CallGraph& call_graph) const { CHECK_EQ(while_hlo->opcode(), HloOpcode::kWhile); HloComputation* computation = while_hlo->parent(); HloInstruction* initialization = computation->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int>(0))); HloInstruction* old_tuple = while_hlo->mutable_operand(0); HloInstruction* new_tuple = TupleUtil::AppendSuffix(old_tuple, {initialization}); int new_tuple_size = new_tuple->shape().tuple_shapes().size(); TF_RETURN_IF_ERROR(while_hlo->ReplaceOperandWithDifferentShape(0, new_tuple)); auto change_op_shape = [&](HloInstruction* instruction) { Shape* shape = instruction->mutable_shape(); CHECK(shape->IsTuple()); CHECK_EQ(shape->tuple_shapes().size(), new_tuple_size - 1); Shape* subshape = shape->add_tuple_shapes(); return ShapeUtil::PopulateShape(S32, {}, subshape); }; auto replace_non_gte_users = [](HloInstruction* new_tuple) -> absl::StatusOr<HloInstruction*> { CHECK(new_tuple->shape().IsTuple()); HloInstruction* prefix = nullptr; std::vector<HloInstruction*> users(new_tuple->users()); for (HloInstruction* user : users) { if (user->opcode() == HloOpcode::kGetTupleElement) { continue; } if (prefix == nullptr) { prefix = TupleUtil::ExtractPrefix( new_tuple, new_tuple->shape().tuple_shapes_size() - 1); } TF_RETURN_IF_ERROR(new_tuple->ReplaceUseWithDifferentShape(user, prefix)); } return prefix; }; { HloComputation* condition = while_hlo->while_condition(); TF_RETURN_IF_ERROR(change_op_shape(condition->parameter_instruction(0))); TF_RETURN_IF_ERROR( replace_non_gte_users(condition->parameter_instruction(0)).status()); if (VLOG_IS_ON(2)) { VLOG(2) << "Loop condition in " << while_hlo->parent()->name(); PrintSubexpression(condition->root_instruction(), 3); } const int loop_bound = GetLoopBoundWithOuterLoopMax( *while_hlo, call_graph, while_execution_count_, max_outer_loop_count_, max_loop_count_); VLOG(1) << "loop_bound = " << loop_bound; HloInstruction* limit = condition->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int>(loop_bound))); Shape shape = initialization->shape(); HloInstruction* induction_variable = condition->AddInstruction(HloInstruction::CreateGetTupleElement( shape, condition->parameter_instruction(0), new_tuple_size - 1)); HloInstruction* compare = condition->AddInstruction(HloInstruction::CreateCompare( ShapeUtil::MakeShape(PRED, {}), induction_variable, limit, ComparisonDirection::kLt)); TF_RETURN_IF_ERROR( condition->ReplaceInstruction(condition->root_instruction(), compare)); } { HloComputation* body = while_hlo->while_body(); TF_RETURN_IF_ERROR(change_op_shape(body->parameter_instruction(0))); TF_RETURN_IF_ERROR( replace_non_gte_users(body->parameter_instruction(0)).status()); HloInstruction* old_root = body->root_instruction(); Shape shape = initialization->shape(); HloInstruction* induction_variable = body->AddInstruction(HloInstruction::CreateGetTupleElement( shape, body->parameter_instruction(0), new_tuple_size - 1)); HloInstruction* increment = body->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int>(1))); induction_variable = body->AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, induction_variable, increment)); HloInstruction* new_root = TupleUtil::AppendSuffix(old_root, {induction_variable}); body->set_root_instruction(new_root, true); } std::vector<HloInstruction*> while_users(while_hlo->users().begin(), while_hlo->users().end()); TF_RETURN_IF_ERROR(change_op_shape(while_hlo)); TF_ASSIGN_OR_RETURN(HloInstruction * prefix, replace_non_gte_users(while_hlo)); if (while_hlo->parent()->root_instruction() == while_hlo) { if (prefix == nullptr) { prefix = TupleUtil::ExtractPrefix(while_hlo, new_tuple_size - 1); } while_hlo->parent()->set_root_instruction(prefix, true); } return absl::OkStatus(); } absl::Status HloControlFlowFlattening::RemoveInfeed( HloInstruction* infeed_hlo) const { CHECK_EQ(infeed_hlo->opcode(), HloOpcode::kInfeed); HloComputation* computation = infeed_hlo->parent(); CHECK_EQ(infeed_hlo->shape().tuple_shapes_size(), 2); const Shape& infeed_shape = ShapeUtil::GetSubshape(infeed_hlo->shape(), {0}); HloInstruction* custom_call = computation->AddInstruction( HloInstruction::CreateCustomCall(infeed_shape, {}, kNopCustomCallTarget)); auto new_tuple = HloInstruction::CreateTuple( {custom_call, infeed_hlo->mutable_operand(0)}); TF_RETURN_IF_ERROR( computation->ReplaceWithNewInstruction(infeed_hlo, std::move(new_tuple))); custom_call->SetAndSanitizeName(infeed_hlo->name()); return absl::OkStatus(); } absl::StatusOr<std::pair<HloInstruction*, HloInstruction*>> HloControlFlowFlattening::RemoveRecvAndRecvDone( HloInstruction* recv_done, absl::flat_hash_set<HloInstruction*>* additional_removed) const { CHECK_EQ(recv_done->opcode(), HloOpcode::kRecvDone); CHECK_EQ(recv_done->operand_count(), 1); HloInstruction* recv = recv_done->mutable_operand(0); CHECK_EQ(recv->opcode(), HloOpcode::kRecv); HloComputation* computation = recv_done->parent(); CHECK_EQ(recv_done->shape().tuple_shapes_size(), 2); HloModule* module = computation->parent(); HloInstruction* custom_call_recv = computation->AddInstruction(HloInstruction::CreateCustomCall( recv->shape(), recv->operands(), kNopCustomCallTarget)); std::string original_recv_name(recv->name()); if (module->has_schedule() && module->schedule().is_computation_scheduled(computation)) { module->schedule().replace_instruction(computation, recv, custom_call_recv); } TF_RETURN_IF_ERROR(computation->ReplaceInstruction(recv, custom_call_recv)); custom_call_recv->SetAndSanitizeName(original_recv_name); std::string original_recv_done_name(recv_done->name()); HloInstruction* custom_call_recv_done = computation->AddInstruction( HloInstruction::CreateCustomCall( recv_done->shape(), recv_done->operands(), kNopCustomCallTarget), recv_done->name()); if (module->has_schedule() && module->schedule().is_computation_scheduled(computation)) { module->schedule().replace_instruction(computation, recv_done, custom_call_recv_done); } TF_RETURN_IF_ERROR( computation->ReplaceInstruction(recv_done, custom_call_recv_done)); custom_call_recv_done->SetAndSanitizeName(original_recv_done_name); return std::make_pair(custom_call_recv, custom_call_recv_done); } absl::Status HloControlFlowFlattening::RemoveOutfeed( HloInstruction* outfeed_hlo) const { CHECK_EQ(outfeed_hlo->opcode(), HloOpcode::kOutfeed); HloComputation* computation = outfeed_hlo->parent(); HloInstruction* custom_call = computation->AddInstruction(HloInstruction::CreateCustomCall( outfeed_hlo->shape(), outfeed_hlo->operands(), kNopReturnTokenCustomCallTarget)); Cast<HloCustomCallInstruction>(custom_call) ->set_custom_call_has_side_effect(true); custom_call->set_sharding(HloSharding::Manual()); TF_RETURN_IF_ERROR(computation->ReplaceInstruction(outfeed_hlo, custom_call)); custom_call->SetAndSanitizeName(outfeed_hlo->name()); return absl::OkStatus(); } absl::StatusOr<std::pair<HloInstruction*, HloInstruction*>> HloControlFlowFlattening::RemoveSendAndSendDone( HloInstruction* send_done, absl::flat_hash_set<HloInstruction*>* additional_removed) const { CHECK_EQ(send_done->opcode(), HloOpcode::kSendDone); CHECK_EQ(send_done->operand_count(), 1); HloInstruction* send = send_done->mutable_operand(0); CHECK_EQ(send->opcode(), HloOpcode::kSend); HloComputation* computation = send_done->parent(); HloModule* module = computation->parent(); HloInstruction* custom_call_send = computation->AddInstruction(HloInstruction::CreateCustomCall( send->shape(), send->operands(), kNopCustomCallTarget)); std::string original_send_name(send->name()); if (module->has_schedule() && module->schedule().is_computation_scheduled(computation)) { module->schedule().replace_instruction(computation, send, custom_call_send); } TF_RETURN_IF_ERROR(computation->ReplaceInstruction(send, custom_call_send)); custom_call_send->SetAndSanitizeName(original_send_name); HloInstruction* custom_call_send_done = computation->AddInstruction(HloInstruction::CreateCustomCall( send_done->shape(), send_done->operands(), kNopReturnTokenCustomCallTarget)); std::string original_send_done_name(send_done->name()); Cast<HloCustomCallInstruction>(custom_call_send_done) ->set_custom_call_has_side_effect(true); if (module->has_schedule() && module->schedule().is_computation_scheduled(computation)) { module->schedule().replace_instruction(computation, send_done, custom_call_send_done); } TF_RETURN_IF_ERROR( computation->ReplaceInstruction(send_done, custom_call_send_done)); custom_call_send_done->SetAndSanitizeName(original_send_done_name); return std::make_pair(custom_call_send, custom_call_send_done); } absl::StatusOr<HloInstruction*> HloControlFlowFlattening::RemoveCollective( HloInstruction* hlo) const { HloComputation* computation = hlo->parent(); HloInstruction* custom_call = computation->AddInstruction(HloInstruction::CreateCustomCall( hlo->shape(), hlo->operands(), kNopCustomCallTarget)); custom_call->CopyBackendConfigFrom(hlo); HloModule* module = computation->parent(); if (module->has_schedule() && module->schedule().is_computation_scheduled(computation)) { module->schedule().replace_instruction(computation, hlo, custom_call); } std::string original_op_name(hlo->name()); TF_RETURN_IF_ERROR(computation->ReplaceInstruction(hlo, custom_call)); custom_call->SetAndSanitizeName(original_op_name); return custom_call; } absl::Status HloControlFlowFlattening::RemoveId(HloInstruction* hlo) const { HloComputation* computation = hlo->parent(); HloInstruction* zero = CreateConstant(hlo->shape(), computation); std::string original_op_name(hlo->name()); TF_RETURN_IF_ERROR(computation->ReplaceInstruction(hlo, zero)); zero->SetAndSanitizeName(original_op_name); return absl::OkStatus(); } absl::StatusOr<bool> HloControlFlowFlattening::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { auto call_graph = CallGraph::Build(module); bool changed = false; absl::flat_hash_set<HloInstruction*> removed; for (HloComputation* computation : module->computations(execution_threads)) { if (computation->IsAsyncComputation()) { continue; } for (HloInstruction* instruction : computation->MakeInstructionPostOrder()) { if (removed.contains(instruction)) { continue; } if (flatten_while_loop_ && instruction->opcode() == HloOpcode::kWhile) { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR(FlattenWhileLoop(instruction, *call_graph)); changed = true; } else if (remove_infeed_outfeed_ && instruction->opcode() == HloOpcode::kInfeed) { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR(RemoveInfeed(instruction)); changed = true; } else if (remove_infeed_outfeed_ && instruction->opcode() == HloOpcode::kOutfeed) { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR(RemoveOutfeed(instruction)); changed = true; } else if (instruction->opcode() == HloOpcode::kSendDone) { auto send_done_instruction = DynCast<HloSendDoneInstruction>(instruction); CHECK(send_done_instruction); if (remove_comm_ || (remove_host_transfer_ && send_done_instruction->is_host_transfer())) { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR( RemoveSendAndSendDone(instruction, &removed).status()); changed = true; } } else if (instruction->opcode() == HloOpcode::kRecvDone) { auto recv_done_instruction = DynCast<HloRecvDoneInstruction>(instruction); CHECK(recv_done_instruction); if (remove_comm_ || (remove_host_transfer_ && recv_done_instruction->is_host_transfer())) { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR( RemoveRecvAndRecvDone(instruction, &removed).status()); changed = true; } } else if (remove_comm_ && IsCollective(instruction) && !instruction->parent()->IsFusionComputation() && (instruction->opcode() != HloOpcode::kAsyncStart && instruction->opcode() != HloOpcode::kAsyncUpdate)) { if (instruction->opcode() == HloOpcode::kAsyncDone) { while (instruction->opcode() == HloOpcode::kAsyncDone || instruction->opcode() == HloOpcode::kAsyncUpdate || instruction->opcode() == HloOpcode::kAsyncStart) { HloInstruction* operand = instruction->mutable_operand(0); VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR(RemoveCollective(instruction).status()); instruction = operand; } } else { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR(RemoveCollective(instruction).status()); } changed = true; } else if (remove_comm_ && (instruction->opcode() == HloOpcode::kPartitionId || instruction->opcode() == HloOpcode::kReplicaId || (instruction->opcode() == HloOpcode::kCustomCall && instruction->custom_call_target() == "SliceId"))) { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR(RemoveId(instruction)); changed = true; } } } HloDCE hlo_dce; TF_ASSIGN_OR_RETURN(bool dce_changed, hlo_dce.Run(module, execution_threads)); changed |= dce_changed; if (changed && module->has_schedule()) { TF_RETURN_IF_ERROR(module->schedule().Update()); } XLA_VLOG_LINES(3, module->ToString()); return changed; } }
#include "xla/tools/hlo_control_flow_flattening.h" #include <memory> #include <utility> #include "absl/strings/str_replace.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/despecializer.h" #include "xla/service/hlo_verifier.h" #include "xla/service/spmd/spmd_partitioner.h" #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; class HloControlFlowFlatteningTest : public HloTestBase { public: absl::StatusOr<std::unique_ptr<HloModule>> PartitionComputation( std::unique_ptr<VerifiedHloModule> hlo_module, int64_t num_devices = 2) { spmd::SpmdPartitionerOptions options; auto collective_ops_creator = spmd::GetDefaultCollectiveOpsCreator(num_devices, 1); collective_ops_creator.create_cross_partition_all_gather = nullptr; HloModuleConfig config = GetModuleConfigForTest(); config.set_use_spmd_partitioning(true); config.set_num_partitions(num_devices); HloPassPipeline pass("spmd-partitioning"); pass.AddPass<HloVerifier>(false, false); pass.AddPass<spmd::SpmdPartitioner>(num_devices, 1, options, collective_ops_creator); pass.AddPass<HloVerifier>(false, false); TF_RETURN_IF_ERROR(pass.Run(hlo_module.get()).status()); return absl::StatusOr<std::unique_ptr<HloModule>>(std::move(hlo_module)); } }; constexpr int kDefaultMaxLoopCount = 1000; TEST_F(HloControlFlowFlatteningTest, WhileRoot) { absl::string_view hlo_string = R"( HloModule While While.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } While.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(100) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY While { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[], s32[3]{0}) while(tuple.1), condition=While.condition, body=While.body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto root = module->entry_computation()->root_instruction(); auto while_op = module->entry_computation()->GetInstructionWithName("while"); EXPECT_THAT(root, op::Tuple(op::GetTupleElement(while_op, 0), op::GetTupleElement(while_op, 1))); EXPECT_THAT(while_op, op::While(op::Tuple(op::GetTupleElement(), op::GetTupleElement(), op::Constant()))); auto condition = while_op->while_condition(); EXPECT_THAT( condition->root_instruction(), op::Compare(op::GetTupleElement(op::Parameter(0), 2), op::Constant())); auto body = while_op->while_body(); EXPECT_THAT(body->root_instruction(), op::Tuple(op::GetTupleElement(), op::GetTupleElement(), op::Add(op::GetTupleElement(op::Parameter(0), 2), op::Constant()))); } TEST_F(HloControlFlowFlatteningTest, WhileConditionCallComputation) { absl::string_view hlo_string = R"( HloModule While While.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } While.condition.called { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] custom-call(), custom_call_target="AllocateBuffer", custom_call_has_side_effect=true less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT ROOT tuple.2 = (pred[]) tuple(less-than) } While.condition { loop_var.3 = (s32[], s32[3]{0}) parameter(0) call = (pred[]) call(loop_var.3), to_apply=While.condition.called ROOT get-tuple-element.4 = pred[] get-tuple-element(call), index=0 } ENTRY While { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[], s32[3]{0}) while(tuple.1), condition=While.condition, body=While.body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); XLA_VLOG_LINES(3, "Loaded HLO module: " + module->ToString()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto root = module->entry_computation()->root_instruction(); auto while_op = module->entry_computation()->GetInstructionWithName("while"); EXPECT_THAT(root, op::Tuple(op::GetTupleElement(while_op, 0), op::GetTupleElement(while_op, 1))); EXPECT_THAT(while_op, op::While(op::Tuple(op::GetTupleElement(), op::GetTupleElement(), op::Constant()))); auto condition = while_op->while_condition(); EXPECT_THAT( condition->root_instruction(), op::Compare(op::GetTupleElement(op::Parameter(0), 2), op::Constant())); auto body = while_op->while_body(); EXPECT_THAT(body->root_instruction(), op::Tuple(op::GetTupleElement(), op::GetTupleElement(), op::Add(op::GetTupleElement(op::Parameter(0), 2), op::Constant()))); } TEST_F(HloControlFlowFlatteningTest, WhileRootScheduled) { absl::string_view hlo_string = R"( HloModule While, is_scheduled=true While.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } While.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(100) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY While { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[], s32[3]{0}) while(tuple.1), condition=While.condition, body=While.body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto root = module->entry_computation()->root_instruction(); auto while_op = module->entry_computation()->GetInstructionWithName("while"); EXPECT_THAT(root, op::Tuple(op::GetTupleElement(while_op, 0), op::GetTupleElement(while_op, 1))); EXPECT_THAT(while_op, op::While(op::Tuple(op::GetTupleElement(), op::GetTupleElement(), op::Constant()))); auto condition = while_op->while_condition(); EXPECT_THAT( condition->root_instruction(), op::Compare(op::GetTupleElement(op::Parameter(0), 2), op::Constant())); } TEST_F(HloControlFlowFlatteningTest, WhileUser) { absl::string_view hlo_string = R"( HloModule While While.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } While.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(100) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } FusedComputation { param = (s32[], s32[3]{0}) parameter(0) get-tuple-element.4 = s32[] get-tuple-element(param), index=0 get-tuple-element.5 = s32[3]{0} get-tuple-element(param), index=1 broadcast = s32[3]{0} broadcast(get-tuple-element.4), dimensions={} ROOT add = s32[3]{0} add(broadcast, get-tuple-element.5) } ENTRY While { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) while = (s32[], s32[3]{0}) while(tuple.1), condition=While.condition, body=While.body ROOT fusion = s32[3]{0} fusion(while), kind=kLoop, calls=FusedComputation } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto fusion = module->entry_computation()->root_instruction(); auto while_op = module->entry_computation()->GetInstructionWithName("while"); EXPECT_THAT(fusion, op::Fusion(op::Tuple(op::GetTupleElement(while_op, 0), op::GetTupleElement(while_op, 1)))); } TEST_F(HloControlFlowFlatteningTest, Infeed) { absl::string_view hlo_string = R"( HloModule Infeed ENTRY Infeed { after-all = token[] after-all() ROOT infeed.23 = ((bf16[3]{0}, s32[12,5]{0,1}), token[]) infeed(after-all) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto custom_call = module->entry_computation()->GetInstructionWithName("infeed.23"); EXPECT_THAT(custom_call, op::CustomCall()); auto tuple = module->entry_computation()->root_instruction(); EXPECT_THAT(tuple, op::Tuple(custom_call, op::AfterAll())); } TEST_F(HloControlFlowFlatteningTest, InfeedPreserveLayout) { absl::string_view hlo_string = R"( HloModule Infeed ENTRY Infeed { after-all = token[] after-all() ROOT infeed = ((bf16[3]{0}, s32[12,5]{0,1:T(8,128)}), token[]) infeed(after-all) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); Shape root_shape = module->entry_computation()->root_instruction()->shape(); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto tuple = module->entry_computation()->root_instruction(); EXPECT_THAT(tuple, op::Tuple(op::CustomCall(), op::AfterAll())); EXPECT_EQ(tuple->shape(), root_shape); } TEST_F(HloControlFlowFlatteningTest, OutfeedCustomCallIsPartitionable) { absl::string_view hlo_string = R"( HloModule Outfeed ENTRY Outfeed { param = (bf16[3]{0}, s32[12,5]{0,1}) parameter(0) after-all = token[] after-all() ROOT outfeed.23 = token[] outfeed(param, after-all) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening(HloControlFlowFlattening::Options{ 3, 3, 3, true}); EXPECT_TRUE(flattening.Run(module.get()).value()); auto custom_call = module->entry_computation()->root_instruction(); EXPECT_EQ(custom_call->name(), "outfeed.23"); EXPECT_TRUE(custom_call->has_sharding()); TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, PartitionComputation(std::move(module))); } TEST_F(HloControlFlowFlatteningTest, Outfeed) { absl::string_view hlo_string = R"( HloModule Outfeed ENTRY Outfeed { param = (bf16[3]{0}, s32[12,5]{0,1}) parameter(0) after-all = token[] after-all() ROOT outfeed.23 = token[] outfeed(param, after-all) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto custom_call = module->entry_computation()->root_instruction(); EXPECT_EQ(custom_call->name(), "outfeed.23"); EXPECT_THAT(custom_call, op::CustomCall(op::Parameter(0), op::AfterAll())); } TEST_F(HloControlFlowFlatteningTest, AllReduce) { absl::string_view hlo_string = R"( HloModule AllReduce sum { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } ENTRY AllReduce { param0 = f32[3]{0} parameter(0) param1 = f32[12,5]{0,1} parameter(1) ROOT all-reduce = (bf16[3]{0}, bf16[12,5]{0,1}) all-reduce(param0, param1), to_apply=sum, replica_groups={} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::Parameter(0), op::Parameter(1))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "all-reduce"); } TEST_F(HloControlFlowFlatteningTest, AllReduceStartAndDone) { absl::string_view hlo_string = R"( HloModule CRS add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY CRS { input = f32[8]{0} parameter(0) crs = f32[8]{0} all-reduce-start(input), replica_groups={}, to_apply=add ROOT done = f32[8]{0} all-reduce-done(crs) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall(op::Parameter(0)))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "done"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "crs"); } TEST_F(HloControlFlowFlatteningTest, AllGather) { absl::string_view hlo_string = R"( HloModule AllGather ENTRY AllGather { input = f32[128,32]{0,1} parameter(0) ROOT ag = f32[128,128]{0,1} all-gather(input), replica_groups={}, dimensions={1} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::Parameter(0))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "ag"); } TEST_F(HloControlFlowFlatteningTest, AllToAll) { absl::string_view hlo_string = R"( HloModule AllToAll ENTRY AllToAll { input = f32[128,32]{0,1} parameter(0) ROOT a2a = (f32[128,32]{0,1}) all-to-all(input), replica_groups={} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::Parameter(0))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "a2a"); } TEST_F(HloControlFlowFlatteningTest, CollectivePermute) { absl::string_view hlo_string = R"( HloModule CollectivePermute ENTRY CollectivePermute { input = f32[128,32]{0,1} parameter(0) ROOT collective-permute = f32[128,32]{0,1} collective-permute(input), source_target_pairs={{0,1},{1,2},{2,3}} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::Parameter(0))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "collective-permute"); } TEST_F(HloControlFlowFlatteningTest, ReplicaIdSucceedsWithChange) { absl::string_view hlo_string = R"( HloModule ReplicaId ENTRY ReplicaId { ROOT replica-id.18600 = u32[]{:T(128)} replica-id() } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening(HloControlFlowFlattening::Options{}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Constant()); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "replica-id.18600"); } TEST_F(HloControlFlowFlatteningTest, CollectivePermuteInPlaceUpdate) { absl::string_view hlo_string = R"( HloModule CollectivePermuteInPlaceUpdate ENTRY CollectivePermuteInPlaceUpdate { input = f32[128,32]{0,1} parameter(0) constant = f32[] constant(1) output = f32[128,128]{0,1} broadcast(constant), dimensions={} constant.1 = s32[] constant(0) tuple.1 = (s32[], s32[]) tuple(constant.1, constant.1) constant.2 = s32[] constant(64) tuple.2 = (s32[], s32[]) tuple(constant.1, constant.2) ROOT collective-permute = f32[128,128]{0,1} collective-permute(input, output, tuple.1, tuple.2), source_target_pairs={{0,1},{1,2},{2,3}}, slice_sizes={{128,32}} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::Parameter(0), op::Broadcast(op::Constant()), op::Tuple(op::Constant(), op::Constant()), op::Tuple(op::Constant(), op::Constant()))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "collective-permute"); } TEST_F(HloControlFlowFlatteningTest, CollectivePermuteStartAndDone) { absl::string_view hlo_string = R"( HloModule CollectivePermuteStartAndDone ENTRY CollectivePermuteStartAndDone { input = f32[128,32]{0,1} parameter(0) collective-permute-start.1 = (f32[128,32]{0,1}, f32[128,32]{0,1}, u32[], u32[]) collective-permute-start(input), source_target_pairs={{0,1},{1,2},{2,3}} ROOT collective-permute-done.1 = f32[128,32]{0,1} collective-permute-done(collective-permute-start.1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall(op::Parameter(0)))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "collective-permute-done.1"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "collective-permute-start.1"); } TEST_F(HloControlFlowFlatteningTest, Recv) { absl::string_view hlo_string = R"( HloModule Recv ENTRY %Recv () -> (f32[], token[]) { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15 ROOT %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15 %constant = f32[] constant(2.1) %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0), channel_id=16, control-predecessors={%recv} %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); ControlDepRemover control_remover; HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); TF_ASSERT_OK(control_remover.Run(module.get()).status()); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall())); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "recv-done"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "recv"); } TEST_F(HloControlFlowFlatteningTest, RecvHostTransfer) { absl::string_view hlo_string = R"( HloModule Recv ENTRY %Recv () -> (f32[], token[]) { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15, is_host_transfer=true ROOT %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15, is_host_transfer=true %constant = f32[] constant(2.1) %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0), channel_id=16, control-predecessors={%recv} %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); ControlDepRemover control_remover; HloControlFlowFlattening flattening(HloControlFlowFlattening::Options{ 3, 3, 3, true, true, false, true}); TF_ASSERT_OK(control_remover.Run(module.get()).status()); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall())); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "recv-done"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "recv"); } TEST_F(HloControlFlowFlatteningTest, Send) { absl::string_view hlo_string = R"( HloModule Send ENTRY %Send () -> token[] { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15 %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15 %constant = f32[] constant(2.1) %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0), channel_id=16, control-predecessors={%recv} ROOT %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); ControlDepRemover control_remover; HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); TF_ASSERT_OK(control_remover.Run(module.get()).status()); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall())); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "send-done"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "send"); } TEST_F(HloControlFlowFlatteningTest, SendHostTransfer) { absl::string_view hlo_string = R"( HloModule Send ENTRY %Send () -> token[] { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15 %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15 %constant = f32[] constant(2.1) %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0), channel_id=16, is_host_transfer=true, control-predecessors={%recv} ROOT %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16, is_host_transfer=true } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); ControlDepRemover control_remover; HloControlFlowFlattening flattening(HloControlFlowFlattening::Options{ 3, 3, 3, true, true, false, true}); TF_ASSERT_OK(control_remover.Run(module.get()).status()); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall())); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "send-done"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "send"); } TEST_F(HloControlFlowFlatteningTest, AllGatherStartAndDone) { absl::string_view hlo_string = R"( HloModule AllGatherStartAndDone ENTRY AllGatherStartAndDone { %input = f32[8,256,256] parameter(0) %ag-start = (f32[8,256,256], f32[16,256,256]) all-gather-start( f32[8,256,256] %input), replica_groups={{0,1}}, dimensions={0}, metadata={op_type="AllGather" op_name="ag0"} ROOT %ag-done = f32[16,256,256] all-gather-done( (f32[8,256,256], f32[16,256,256]) %ag-start), metadata={op_type="AllGather" op_name="ag0"} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall(op::Parameter(0)))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "ag-done"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "ag-start"); } TEST_F(HloControlFlowFlatteningTest, CollectiveFusion) { absl::string_view hlo_template = R"( HloModule collective-fusion, is_scheduled=true %sum (a: f32[], b: f32[]) -> f32[] { %a = f32[] parameter(0) %b = f32[] parameter(1) ROOT %add = f32[] add(f32[] a, f32[] b) } %all-gather { %constant.3 = f32[] constant(0) %broadcast = f32[full_size,8,128]{2,1,0} broadcast(%constant.3), dimensions={} %input.0 = f32[4,8,128]{2,1,0} parameter(0) %input.1 = f32[4,8,128]{2,1,0} parameter(1) %replica-id.1 = u32[] replica-id() %constant.4 = u32[] constant(4)
2,186
cpp
tensorflow/tensorflow
xla_compile_lib
null
null
#ifndef XLA_TOOLS_XLA_COMPILE_LIB_H_ #define XLA_TOOLS_XLA_COMPILE_LIB_H_ #include <memory> #include <optional> #include <string> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/compiler.h" #include "xla/service/symbol_repository.h" #include "xla/service/xla_compile_result.pb.h" #include "xla/util.h" namespace xla { absl::StatusOr<std::string> CompileExecutable( std::unique_ptr<HloModule> hlo_module, BackendType backend, std::optional<Compiler::TargetConfig> target_config, CompilationResult& result); absl::Status WriteResultFile(absl::string_view result_output_file, TimerStats& stats, CompilationResult& compilation_result); absl::StatusOr<std::unique_ptr<HloModule>> LoadModule( absl::string_view module_path); struct XlaCompileOptions { std::string module_path; std::string output_path; std::string platform; std::string result_output_file; struct SymbolRepoOptions { std::string symbol_repo; std::string symbol_id; std::string optimized_symbol_id; bool wait_for_uploads = false; }; struct GpuOptions { std::string gpu_target_config_path; bool use_attached_device = false; std::string autotune_results_path; }; SymbolRepoOptions repo_options; GpuOptions gpu_options; }; absl::Status XlaCompileMain(const XlaCompileOptions& compile_options); } #endif #include "xla/tools/xla_compile_lib.h" #include <cmath> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "google/protobuf/duration.pb.h" #include "absl/cleanup/cleanup.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/DialectRegistry.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Parser/Parser.h" #include "stablehlo/dialect/Register.h" #include "xla/client/xla_computation.h" #include "xla/debug_options_flags.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_module_group.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" #include "xla/pjrt/mlir_to_hlo.h" #include "xla/service/compiler.h" #include "xla/service/cpu/cpu_compiler.h" #include "xla/service/cpu/cpu_executable.h" #include "xla/service/executable.h" #include "xla/service/export_hlo.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_module_config.h" #include "xla/service/symbol_repository.h" #include "xla/service/xla_compile_result.pb.h" #include "xla/shape.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/stream_executor.h" #include "xla/stream_executor/stream_executor_memory_allocator.h" #include "xla/tools/hlo_module_loader.h" #include "xla/util.h" #include "tsl/platform/env.h" #include "tsl/platform/env_time.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/status.h" #include "tsl/platform/status_to_from_proto.h" #include "tsl/platform/statusor.h" #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #include "xla/service/gpu/autotuner_util.h" #include "xla/service/gpu/executable.pb.h" #include "xla/service/gpu/gpu_symbol_repository.h" #include "xla/stream_executor/gpu/gpu_init.h" #endif #if GOOGLE_CUDA #include "xla/service/gpu/nvptx_compiler.h" #elif TENSORFLOW_USE_ROCM #include "xla/service/gpu/amdgpu_compiler.h" #endif namespace xla { static absl::StatusOr<std::string> AotCompileCpuExecutable( std::unique_ptr<HloModule> hlo_module) { cpu::CpuCompiler cpu_compiler; auto module_group = std::make_unique<HloModuleGroup>(std::move(hlo_module)); TF_ASSIGN_OR_RETURN( std::vector<std::unique_ptr<Executable>> executables, cpu_compiler.Compile(std::move(module_group), {{nullptr}}, {nullptr})); TF_ASSIGN_OR_RETURN(std::unique_ptr<AotCompilationResult> aot_result, cpu_compiler.Export(executables[0].get())); return aot_result->SerializeAsString(); } static absl::StatusOr<std::string> CompileGpuExecutable( std::unique_ptr<HloModule> hlo_module, std::optional<Compiler::TargetConfig> target_config, CompilationResult& result) { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM const bool aot = target_config.has_value(); #if GOOGLE_CUDA auto gpu_compiler = gpu::NVPTXCompiler(); #elif TENSORFLOW_USE_ROCM auto gpu_compiler = gpu::AMDGPUCompiler(); #endif auto module_group = std::make_unique<HloModuleGroup>(std::move(hlo_module)); if (aot) { AotCompilationOptions aot_options(gpu_compiler.PlatformId()); aot_options.set_target_config(*target_config); aot_options.set_run_backend_only(true); TF_ASSIGN_OR_RETURN( std::vector<std::unique_ptr<AotCompilationResult>> aot_results, gpu_compiler.CompileAheadOfTime(std::move(module_group), aot_options)); TF_ASSIGN_OR_RETURN(std::string compile_result, aot_results[0]->SerializeAsString()); *result.mutable_hlo_module() = aot_results[0]->optimized_module()->ToProto(); return compile_result; } Compiler::CompileOptions compile_options; TF_RETURN_IF_ERROR(stream_executor::ValidateGPUMachineManager()); TF_ASSIGN_OR_RETURN( stream_executor::StreamExecutor * stream_executor, stream_executor::GPUMachineManager()->ExecutorForDevice(0)); auto allocator = std::make_unique<stream_executor::StreamExecutorMemoryAllocator>( stream_executor); compile_options.device_allocator = allocator.get(); TF_ASSIGN_OR_RETURN( std::vector<std::unique_ptr<Executable>> executables, gpu_compiler.Compile(std::move(module_group), {{stream_executor}}, compile_options)); *result.mutable_hlo_module() = executables[0]->module().ToProto(); return executables[0]->module().ToString(); #else LOG(ERROR) << "Neither ROCm nor CUDA present; returning empty."; return ""; #endif } absl::StatusOr<std::string> CompileExecutable( std::unique_ptr<HloModule> hlo_module, BackendType backend, std::optional<Compiler::TargetConfig> target_config, CompilationResult& result) { if (backend == BackendType::kCpu) { return AotCompileCpuExecutable(std::move(hlo_module)); } return CompileGpuExecutable(std::move(hlo_module), std::move(target_config), result); } absl::Status WriteResultFile(const absl::string_view result_output_file, TimerStats& stats, CompilationResult& compilation_result) { if (result_output_file.empty()) { return absl::OkStatus(); } absl::MutexLock ml(&stats.stats_mutex); const double secs = std::floor(stats.cumulative_secs); const double nanos = (stats.cumulative_secs - secs) * tsl::EnvTime::kSecondsToNanos; google::protobuf::Duration duration; duration.set_seconds(secs); duration.set_nanos(nanos); *compilation_result.mutable_perf_stats()->mutable_compilation_duration() = duration; *compilation_result.mutable_perf_stats()->mutable_total_duration() = duration; return tsl::WriteBinaryProto( tsl::Env::Default(), std::string(result_output_file), compilation_result); } absl::StatusOr<std::unique_ptr<HloModule>> LoadModule( const absl::string_view module_path) { auto format = std::string(tsl::io::Extension(module_path)); if (format == "hlo" || format == "txt" || format == "pb") { return LoadModuleFromFile( std::string(module_path), format, hlo_module_loader_details::Config(), [&](HloModuleConfig* c) {}, nullptr); } std::string module_string; TF_RETURN_IF_ERROR(tsl::ReadFileToString( tsl::Env::Default(), std::string(module_path), &module_string)); mlir::DialectRegistry dialects; dialects.insert<mlir::arith::ArithDialect>(); dialects.insert<mlir::mhlo::MhloDialect>(); dialects.insert<mlir::func::FuncDialect>(); mlir::stablehlo::registerAllDialects(dialects); auto threading = mlir::MLIRContext::Threading::DISABLED; auto ctx = std::make_unique<mlir::MLIRContext>(dialects, threading); mlir::OwningOpRef<mlir::ModuleOp> module = mlir::parseSourceString<mlir::ModuleOp>(module_string, ctx.get()); XlaComputation xla_computation; TF_RETURN_IF_ERROR( MlirToXlaComputation(*module, xla_computation, false, false)); HloModuleProto hlo_module_proto = xla_computation.proto(); TF_ASSIGN_OR_RETURN(ProgramShape shape, xla_computation.GetProgramShape()); DebugOptions debug_options = GetDebugOptionsFromFlags(); HloModuleConfig config(shape); config.set_debug_options(debug_options); return HloModule::CreateFromProto(hlo_module_proto, config); } static absl::StatusOr<std::unique_ptr<HloModuleAndMetadata>> ReadModuleFromSymbolRepo(absl::string_view symbol_repo, absl::string_view symbol_reference, BackendType backend) { std::unique_ptr<HloModuleAndMetadata> mod; TF_ASSIGN_OR_RETURN( mod, LookupSymbolInRepository(symbol_repo, symbol_reference, backend)); if (mod == nullptr) { return absl::NotFoundError( absl::StrCat("Could not find ", symbol_reference, " in ", symbol_repo)); } return mod; } static absl::StatusOr<bool> LoadAutotuneDataFromModule( HloModuleAndMetadata* mod, BackendType backend) { if (backend == BackendType::kGpu) { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM if (auto* data = static_cast<gpu::GpuBackendSpecificData*>( mod->backend_specific_data.get()); data != nullptr && data->autotune_results.has_value()) { TF_RETURN_IF_ERROR( gpu::AutotunerUtil::LoadAutotuneResults(*data->autotune_results)); return true; } #endif } return false; } static std::unique_ptr<Compiler::TargetConfig> ReadTargetConfigFromModule( HloModuleAndMetadata* mod, BackendType backend) { if (backend == BackendType::kGpu) { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM if (auto* data = static_cast<gpu::GpuBackendSpecificData*>( mod->backend_specific_data.get()); data != nullptr) { return std::move(mod->target_config); } #endif } return nullptr; } absl::Status XlaCompileMain(const XlaCompileOptions& options) { std::unique_ptr<HloModule> hlo_module; std::unique_ptr<Compiler::TargetConfig> target_config; if (options.platform != "cpu" && options.platform != "gpu") { return absl::UnimplementedError( absl::StrCat("platform", options.platform, " is not supported")); } const BackendType backend = (options.platform == "gpu" ? BackendType::kGpu : BackendType::kCpu); absl::string_view symbol_repo = options.repo_options.symbol_repo; if (absl::string_view symbol_id = options.repo_options.symbol_id; !symbol_id.empty()) { TF_ASSIGN_OR_RETURN( std::unique_ptr<HloModuleAndMetadata> mod, ReadModuleFromSymbolRepo(symbol_repo, symbol_id, backend)); hlo_module = std::move(mod->hlo_module); target_config = ReadTargetConfigFromModule(mod.get(), backend); } else { TF_ASSIGN_OR_RETURN(hlo_module, LoadModule(options.module_path)); } #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM bool found_autotune = false; #endif if (absl::string_view optimized_symbol_id = options.repo_options.optimized_symbol_id; !optimized_symbol_id.empty()) { TF_ASSIGN_OR_RETURN( std::unique_ptr<HloModuleAndMetadata> optimized_mod, ReadModuleFromSymbolRepo(symbol_repo, optimized_symbol_id, backend)); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM TF_ASSIGN_OR_RETURN(found_autotune, LoadAutotuneDataFromModule( optimized_mod.get(), backend)); #endif } xla::TimerStats stats; xla::ScopedLoggingTimer timer("compilation", true, "xla_compile_main.cc", 1, &stats); CompilationResult compilation_result; absl::Cleanup cleanup([&] { timer.StopAndLog(); if (!options.result_output_file.empty()) { TF_QCHECK_OK(WriteResultFile(options.result_output_file, stats, compilation_result)); } }); std::optional<Compiler::TargetConfig> cfg = std::nullopt; if (backend == BackendType::kGpu) { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM if (absl::string_view gpu_target_config_path = options.gpu_options.gpu_target_config_path; !gpu_target_config_path.empty()) { std::string gpu_target_config_string; TF_RETURN_IF_ERROR(tsl::ReadFileToString( tsl::Env::Default(), std::string(gpu_target_config_path), &gpu_target_config_string)); stream_executor::GpuTargetConfigProto gpu_target_config_proto; if (!tsl::protobuf::TextFormat::ParseFromString( gpu_target_config_string, &gpu_target_config_proto)) { return FailedPrecondition("Failed to parse GpuTargetConfigProto"); } target_config = std::make_unique<Compiler::TargetConfig>(gpu_target_config_proto); if (absl::string_view autotune_results_path = options.gpu_options.autotune_results_path; !found_autotune && !autotune_results_path.empty()) { TF_RETURN_IF_ERROR(gpu::AutotunerUtil::LoadAutotuneResultsFromFile( autotune_results_path)); } } cfg = (options.gpu_options.use_attached_device) ? std::nullopt : std::make_optional(*std::move(target_config)); #endif } auto result = CompileExecutable(std::move(hlo_module), backend, std::move(cfg), compilation_result); *compilation_result.mutable_status() = tsl::StatusToProto(result.status()); if (!result.ok()) { return result.status(); } TF_RETURN_IF_ERROR(tsl::WriteStringToFile(tsl::Env::Default(), options.output_path, *result)); if (options.repo_options.wait_for_uploads) { MaybeWaitForUploads(); } return absl::OkStatus(); } }
#include "xla/tools/xla_compile_lib.h" #include <memory> #include <optional> #include <string> #include <utility> #include "google/protobuf/duration.pb.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/platform_util.h" #include "xla/service/symbol_repository.h" #include "xla/service/xla_compile_result.pb.h" #include "xla/stream_executor/device_description.pb.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/test_macros.h" #include "xla/util.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/env_time.h" #include "tsl/platform/path.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/protobuf/error_codes.pb.h" #include "tsl/protobuf/status.pb.h" namespace xla { namespace { using ::testing::IsEmpty; using ::testing::IsNull; using ::testing::Not; using ::tsl::testing::IsOk; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; #if XLA_TEST_BACKEND_CPU static constexpr absl::string_view kPlatformName = "Host"; #elif XLA_TEST_BACKEND_GPU static constexpr absl::string_view kPlatformName = #if TENSORFLOW_USE_ROCM "ROCM"; #else "CUDA"; #endif #endif class XlaCompileLibTest : public HloTestBase { protected: XlaCompileLibTest() : HloTestBase(*PlatformUtil::GetPlatform(std::string(kPlatformName)), GetReferencePlatform()) {} void SetUp() override { const std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "data", "add.hlo"); std::string hlo; TF_ASSERT_OK(tsl::ReadFileToString(tsl::Env::Default(), hlo_path, &hlo)); TF_ASSERT_OK_AND_ASSIGN(module_, ParseAndReturnVerifiedModule(hlo)); } std::unique_ptr<HloModule> module_; }; TEST_F(XlaCompileLibTest, DISABLED_ON_GPU(CompilesForCpu)) { CompilationResult result; EXPECT_THAT(CompileExecutable(std::move(module_), BackendType::kCpu, std::nullopt, result), IsOkAndHolds(Not(IsEmpty()))); } TEST_F(XlaCompileLibTest, DISABLED_ON_CPU(CompilesForGpuWithDevice)) { CompilationResult result; EXPECT_THAT(CompileExecutable(std::move(module_), BackendType::kGpu, std::nullopt, result), IsOkAndHolds(Not(IsEmpty()))); EXPECT_TRUE(result.has_hlo_module()) << result.DebugString(); } TEST_F(XlaCompileLibTest, DISABLED_ON_CPU(CompilesForGpuWithoutDevice)) { const std::string target_config_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "service", "xla_aot_compile_test_gpu_target_config.prototxt"); stream_executor::GpuTargetConfigProto target_config; TF_ASSERT_OK(tsl::ReadTextProto(tsl::Env::Default(), target_config_path, &target_config)); CompilationResult result; EXPECT_THAT(CompileExecutable(std::move(module_), BackendType::kGpu, std::nullopt, result), IsOkAndHolds(Not(IsEmpty()))); EXPECT_TRUE(result.has_hlo_module()) << result.DebugString(); } TEST_F(XlaCompileLibTest, DISABLED_ON_GPU(ErrorsOnUnexpectedPlatform)) { XlaCompileOptions options; options.platform = "tpu"; EXPECT_THAT(XlaCompileMain(options), StatusIs(tsl::error::UNIMPLEMENTED)); } TEST_F(XlaCompileLibTest, DISABLED_ON_GPU(WriteResultFilePropagatesErrors)) { TimerStats stats; CompilationResult result; EXPECT_THAT(WriteResultFile("/does/not/exist", stats, result), Not(IsOk())); } TEST_F(XlaCompileLibTest, DISABLED_ON_GPU(WriteResultFileWritesTheFile)) { std::string result_output_file; ASSERT_TRUE(tsl::Env::Default()->LocalTempFilename(&result_output_file)); TimerStats stats; { absl::MutexLock ml(&stats.stats_mutex); stats.cumulative_secs = 5.5; stats.max_secs = 5.5; } CompilationResult result; google::protobuf::Duration duration; duration.set_seconds(5); duration.set_nanos(0.5 * tsl::EnvTime::kSecondsToNanos); *result.mutable_perf_stats()->mutable_compilation_duration() = duration; *result.mutable_perf_stats()->mutable_total_duration() = duration; TF_ASSERT_OK(WriteResultFile(result_output_file, stats, result)); CompilationResult got_result; TF_ASSERT_OK(tsl::ReadBinaryProto(tsl::Env::Default(), result_output_file, &got_result)); EXPECT_EQ(5, got_result.perf_stats().compilation_duration().seconds()); EXPECT_EQ(0.5 * tsl::EnvTime::kSecondsToNanos, got_result.perf_stats().compilation_duration().nanos()); EXPECT_EQ(5, got_result.perf_stats().total_duration().seconds()); EXPECT_EQ(0.5 * tsl::EnvTime::kSecondsToNanos, got_result.perf_stats().total_duration().nanos()); } TEST_F(XlaCompileLibTest, LoadModuleErrors) { EXPECT_THAT(LoadModule("/does/not/exist"), Not(IsOk())); } TEST_F(XlaCompileLibTest, LoadModuleLoadsTextFormat) { const std::string module_file = tsl::io::JoinPath(tsl::testing::TmpDir(), "module.txt"); TF_ASSERT_OK(tsl::WriteStringToFile(tsl::Env::Default(), module_file, module_->ToString())); EXPECT_THAT(LoadModule(module_file), IsOkAndHolds(Not(IsNull()))); } TEST_F(XlaCompileLibTest, DISABLED_ON_GPU(MainForCpu)) { const std::string module_file = tsl::io::JoinPath(tsl::testing::TmpDir(), "module.txt"); TF_ASSERT_OK(tsl::WriteStringToFile(tsl::Env::Default(), module_file, module_->ToString())); const std::string output_path = tsl::io::JoinPath(tsl::testing::TmpDir(), "cpu_output"); const std::string result_file = tsl::io::JoinPath(tsl::testing::TmpDir(), "cpu_result.pb"); XlaCompileOptions options; options.module_path = module_file; options.output_path = output_path; options.platform = "cpu"; options.result_output_file = result_file; TF_EXPECT_OK(XlaCompileMain(options)); CompilationResult result; TF_ASSERT_OK(tsl::ReadBinaryProto(tsl::Env::Default(), result_file, &result)); EXPECT_TRUE(result.has_status()); EXPECT_EQ(result.status().code(), tensorflow::error::OK); } TEST_F(XlaCompileLibTest, DISABLED_ON_CPU(MainForGpu)) { const std::string module_file = tsl::io::JoinPath(tsl::testing::TmpDir(), "module.txt"); TF_ASSERT_OK(tsl::WriteStringToFile(tsl::Env::Default(), module_file, module_->ToString())); const std::string output_path = tsl::io::JoinPath(tsl::testing::TmpDir(), "gpu_output"); const std::string result_file = tsl::io::JoinPath(tsl::testing::TmpDir(), "gpu_result.pb"); XlaCompileOptions options; options.module_path = module_file; options.output_path = output_path; options.platform = "gpu"; options.result_output_file = result_file; options.gpu_options.use_attached_device = true; TF_EXPECT_OK(XlaCompileMain(options)); CompilationResult result; TF_ASSERT_OK(tsl::ReadBinaryProto(tsl::Env::Default(), result_file, &result)); EXPECT_TRUE(result.has_status()); EXPECT_EQ(result.status().code(), tensorflow::error::OK); } } }
2,187
cpp
tensorflow/tensorflow
hlo_decomposer
third_party/xla/xla/tools/hlo_decomposer.cc
third_party/xla/xla/tools/hlo_decomposer_test.cc
#ifndef XLA_TOOLS_HLO_DECOMPOSER_H_ #define XLA_TOOLS_HLO_DECOMPOSER_H_ #include <memory> #include <vector> #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" namespace xla { absl::StatusOr<std::vector<std::unique_ptr<HloModule>>> DecomposeHloModule( const HloModule& module, bool deduplicate_modules); std::unique_ptr<HloModule> ExtractInstructionIntoNewModule( const HloInstruction& hlo); std::unique_ptr<HloModule> ExtractInstructionIntoNewModule( const std::vector<HloInstruction*>& instructions); std::unique_ptr<HloModule> ExtractProducerConsumerIntoNewModule( const HloInstruction& producer, const HloInstruction& consumer); std::unique_ptr<HloModule> ExtractComputationIntoNewModule( const HloComputation& computation); } #endif #include "xla/tools/hlo_decomposer.h" #include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/call_graph.h" #include "xla/service/compilation_environments.h" #include "tsl/platform/statusor.h" namespace xla { namespace { bool ShouldIsolateOpcode(HloOpcode opcode) { switch (opcode) { case HloOpcode::kConstant: case HloOpcode::kGetTupleElement: case HloOpcode::kParameter: case HloOpcode::kTuple: return false; default: return true; } } absl::StatusOr<std::vector<std::unique_ptr<HloModule>>> Decompose( const HloModule& module) { std::vector<std::unique_ptr<HloModule>> modules; absl::flat_hash_set<const HloComputation*> computations_to_visit{ module.entry_computation()}; absl::flat_hash_set<const HloComputation*> visited_computations; while (!computations_to_visit.empty()) { const HloComputation* computation = *computations_to_visit.begin(); computations_to_visit.erase(computations_to_visit.begin()); visited_computations.insert(computation); for (const HloInstruction* instruction : computation->instructions()) { if (GetInstructionCallContext(instruction->opcode()) != CallContext::kEmbedded) { for (const HloComputation* called_computation : instruction->called_computations()) { if (!visited_computations.contains(called_computation)) { computations_to_visit.insert(called_computation); } } } if (ShouldIsolateOpcode(instruction->opcode())) { modules.push_back(ExtractInstructionIntoNewModule(*instruction)); } } } return modules; } } absl::StatusOr<std::vector<std::unique_ptr<HloModule>>> DecomposeHloModule( const HloModule& module, bool deduplicate_modules) { std::vector<std::unique_ptr<HloModule>> modules; absl::flat_hash_set<std::string> module_fingerprints; auto should_add_module = [&](const HloModule* module) { if (!deduplicate_modules) { return true; } const std::string fingerprint = module->GetFingerprint128(); if (module_fingerprints.contains(fingerprint)) { return false; } module_fingerprints.insert(fingerprint); return true; }; TF_ASSIGN_OR_RETURN(std::vector<std::unique_ptr<HloModule>> isolated_modules, Decompose(module)); for (auto& module : isolated_modules) { if (should_add_module(module.get())) { modules.push_back(std::move(module)); } } return modules; } std::unique_ptr<HloModule> ExtractInstructionIntoNewModule( const std::vector<HloInstruction*>& instructions) { CHECK(!instructions.empty()); HloInstruction& first_instruction = *instructions[0]; auto new_hlo_module = std::make_unique<HloModule>( first_instruction.GetModule()->name() + "_collective_ops", HloModuleConfig{}, std::make_unique<CompilationEnvironments>( first_instruction.GetModule()->comp_envs())); int parameter_number = 0; HloComputation::Builder builder("entry_computation"); HloCloneContext clone_context(new_hlo_module.get()); std::vector<HloInstruction*> new_instructions; for (auto* hlo : instructions) { std::vector<HloInstruction*> new_operands; for (const HloInstruction* operand : hlo->operands()) { std::unique_ptr<HloInstruction> new_parameter = HloInstruction::CreateParameter(parameter_number, operand->shape(), operand->name()); ++parameter_number; new_operands.push_back(builder.AddInstruction(std::move(new_parameter))); } std::unique_ptr<HloInstruction> new_instruction = hlo->CloneWithNewOperands(hlo->shape(), new_operands, &clone_context); new_instructions.push_back( builder.AddInstruction(std::move(new_instruction))); } std::unique_ptr<HloInstruction> tuple_instruction = HloInstruction::CreateTuple(new_instructions); builder.AddInstruction(std::move(tuple_instruction)); new_hlo_module->AddEntryComputationWithLayouts(builder.Build()); return new_hlo_module; } std::unique_ptr<HloModule> ExtractInstructionIntoNewModule( const HloInstruction& hlo) { auto new_hlo_module = std::make_unique<HloModule>( std::string(hlo.name()), HloModuleConfig{}, std::make_unique<CompilationEnvironments>(hlo.GetModule()->comp_envs())); int parameter_number = 0; HloComputation::Builder builder("entry_computation"); HloCloneContext clone_context(new_hlo_module.get()); std::vector<HloInstruction*> new_operands; for (const HloInstruction* operand : hlo.operands()) { std::unique_ptr<HloInstruction> new_parameter = HloInstruction::CreateParameter(parameter_number, operand->shape(), operand->name()); ++parameter_number; new_operands.push_back(builder.AddInstruction(std::move(new_parameter))); } std::unique_ptr<HloInstruction> new_instruction = hlo.CloneWithNewOperands(hlo.shape(), new_operands, &clone_context); builder.AddInstruction(std::move(new_instruction)); new_hlo_module->AddEntryComputationWithLayouts(builder.Build()); return new_hlo_module; } std::unique_ptr<HloModule> ExtractProducerConsumerIntoNewModule( const HloInstruction& producer, const HloInstruction& consumer) { auto new_hlo_module = std::make_unique<HloModule>("extracted", HloModuleConfig{}, std::make_unique<CompilationEnvironments>( consumer.GetModule()->comp_envs())); int parameter_number = 0; HloComputation::Builder builder("entry_computation"); HloCloneContext clone_context(new_hlo_module.get()); absl::InlinedVector<HloInstruction*, 8> producer_operands; for (const HloInstruction* operand : producer.operands()) { HloInstruction* new_parameter = builder.AddInstruction(HloInstruction::CreateParameter( parameter_number, operand->shape(), operand->name())); ++parameter_number; producer_operands.push_back(new_parameter); } HloInstruction* new_producer = builder.AddInstruction(producer.CloneWithNewOperands( producer.shape(), producer_operands, &clone_context)); absl::flat_hash_map<const HloInstruction*, HloInstruction*> operand_map; operand_map.emplace(&producer, new_producer); absl::InlinedVector<HloInstruction*, 8> consumer_operands; for (const HloInstruction* operand : consumer.operands()) { auto it = operand_map.find(operand); if (it != operand_map.end()) { consumer_operands.push_back(it->second); } else { HloInstruction* new_parameter = builder.AddInstruction(HloInstruction::CreateParameter( parameter_number, operand->shape(), operand->name())); ++parameter_number; consumer_operands.push_back(new_parameter); } } builder.AddInstruction(consumer.CloneWithNewOperands( consumer.shape(), consumer_operands, &clone_context)); new_hlo_module->AddEntryComputationWithLayouts(builder.Build()); return new_hlo_module; } std::unique_ptr<HloModule> ExtractComputationIntoNewModule( const HloComputation& computation) { auto new_hlo_module = std::make_unique<HloModule>("extracted", HloModuleConfig{}, std::make_unique<CompilationEnvironments>( computation.parent()->comp_envs())); HloCloneContext clone_context(new_hlo_module.get()); new_hlo_module->AddEntryComputationWithLayouts( computation.CloneInContext(clone_context)); return new_hlo_module; } }
#include "xla/tools/hlo_decomposer.h" #include <memory> #include <vector> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class HloDecomposerTest : public HloTestBase { protected: std::unique_ptr<HloModule> GetModule() { absl::string_view kHlo = R"( HloModule test_module, entry_computation_layout={(bf16[1024,8192]{1,0}, f32[8192]{0}, f32[16384]{0})->(bf16[1024]{0}, bf16[1024]{0}, f32[16384]{0}, f32[16384]{0})} add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add.1 = f32[] add(p0, p1) } fused_computation.1 { param_1.3 = f32[8192]{0} parameter(1) broadcast.2 = f32[1024,8192]{1,0} broadcast(param_1.3), dimensions={1} param_0.3 = bf16[1024,8192]{1,0} parameter(0) convert.5 = f32[1024,8192]{1,0} convert(param_0.3) multiply.2 = f32[1024,8192]{1,0} multiply(broadcast.2, convert.5) c0_1 = f32[] constant(0) reduce.1 = f32[1024]{0} reduce(multiply.2, c0_1), dimensions={1}, to_apply=add ROOT convert.4 = bf16[1024]{0} convert(reduce.1) } fused_computation.2 { p0.0 = bf16[1024,8192]{1,0} parameter(0) c.0 = f32[1024,8192]{1,0} convert(p0.0) co0_1.1 = f32[] constant(0) p.0 = f32[8192]{0} parameter(1) b.0 = f32[1024,8192]{1,0} broadcast(p.0), dimensions={1} m.0 = f32[1024,8192]{1,0} multiply(b.0, c.0) r.0 = f32[1024]{0} reduce(m.0, co0_1.1), dimensions={1}, to_apply=add ROOT c.1 = bf16[1024]{0} convert(r.0) } exp { param_0.5 = f32[16384]{0} parameter(0) m.4 = f32[16384]{0} multiply(param_0.5, param_0.5) e = f32[16384]{0} exponential(m.4) l.clone.1 = f32[16384]{0} log(m.4) ROOT tuple = (f32[16384]{0}, f32[16384]{0}) tuple(e, l.clone.1) } ENTRY main { p0.1 = bf16[1024,8192]{1,0} parameter(0) p1.1 = f32[8192]{0} parameter(1) fusion.1 = bf16[1024]{0} fusion(p0.1, p1.1), kind=kInput, calls=fused_computation.1 fusion.2 = bf16[1024]{0} fusion(p0.1, p1.1), kind=kInput, calls=fused_computation.2 p2 = f32[16384]{0} parameter(2) e.1 = (f32[16384]{0}, f32[16384]{0}) fusion(p2), kind=kInput, calls=exp get-tuple-element.1 = f32[16384]{0} get-tuple-element(e.1), index=1 get-tuple-element = f32[16384]{0} get-tuple-element(e.1), index=0 ROOT result = (bf16[1024]{0}, bf16[1024]{0}, f32[16384]{0}, f32[16384]{0}) tuple(fusion.1, fusion.2, get-tuple-element.1, get-tuple-element) })"; return ParseAndReturnVerifiedModule(kHlo).value(); } void FindAndCompare(const std::vector<std::unique_ptr<HloModule>>& modules, absl::string_view module_name, absl::string_view pattern) { auto iter = absl::c_find_if(modules, [&](const std::unique_ptr<HloModule>& module) { return module->name() == module_name; }); EXPECT_NE(iter, modules.end()) << "No module named " << module_name; if (iter == modules.end()) { return; } EXPECT_TRUE(*RunFileCheck((*iter)->ToString(), pattern)); } }; TEST_F(HloDecomposerTest, DecomposeNoDedup) { auto module = GetModule(); TF_ASSERT_OK_AND_ASSIGN( auto decomposed, DecomposeHloModule(*module, false)); EXPECT_EQ(decomposed.size(), 3); FindAndCompare(decomposed, "fusion.1", R"( CHECK: %add{{.*}} { CHECK: %fused_computation.1 CHECK: ENTRY CHECK-THEN: %parameter.0 = bf16[1024,8192]{1,0} parameter(0) CHECK-THEN: %parameter.1 = f32[8192]{0} parameter(1) CHECK-THEN: ROOT %fusion.1 )"); FindAndCompare(decomposed, "fusion.2", R"( CHECK: %add{{.*}} { CHECK: %fused_computation.2 CHECK: ENTRY CHECK-THEN: %parameter.0 = bf16[1024,8192]{1,0} parameter(0) CHECK-THEN: %parameter.1 = f32[8192]{0} parameter(1) CHECK-THEN: ROOT %fusion.2 )"); FindAndCompare(decomposed, "e.1", R"( CHECK: %exp{{.*}} { CHECK: ENTRY CHECK-THEN: %parameter.0 = f32[16384]{0} parameter(0) CHECK-THEN: ROOT %e.1 )"); } TEST_F(HloDecomposerTest, DecomposeDedup) { auto module = GetModule(); TF_ASSERT_OK_AND_ASSIGN( auto decomposed, DecomposeHloModule(*module, true)); EXPECT_EQ(decomposed.size(), 2); FindAndCompare(decomposed, "fusion.1", R"( CHECK: %add{{.*}} { CHECK: %fused_computation.1 CHECK: ENTRY CHECK-THEN: %parameter.0 = bf16[1024,8192]{1,0} parameter(0) CHECK-THEN: %parameter.1 = f32[8192]{0} parameter(1) CHECK-THEN: ROOT %fusion.1 )"); FindAndCompare(decomposed, "e.1", R"( CHECK: %exp{{.*}} { CHECK: ENTRY CHECK-THEN: %parameter.0 = f32[16384]{0} parameter(0) CHECK-THEN: ROOT %e.1 )"); } } }
2,188
cpp
tensorflow/tensorflow
hlo_slicer
third_party/xla/xla/tools/hlo_slicer.cc
third_party/xla/xla/tools/hlo_slicer_test.cc
#ifndef XLA_TOOLS_HLO_SLICER_H_ #define XLA_TOOLS_HLO_SLICER_H_ #include <functional> #include <memory> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" namespace xla { using FrontierSelector = std::function<bool(const HloInstruction*)>; class SliceOutput { public: SliceOutput(absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>> sliced_instructions, absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>> frontier_instructions, const HloInstruction* nearest_common_ancestor_root = nullptr) : sliced_instructions_(sliced_instructions), frontier_instructions_(frontier_instructions), nearest_common_ancestor_root_(nearest_common_ancestor_root) {} explicit SliceOutput( absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>> sliced_instructions) : sliced_instructions_(sliced_instructions) {} SliceOutput() = default; const absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>>& sliced_instructions() const { return sliced_instructions_; } const absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>>& frontier_instructions() const { return frontier_instructions_; } int NumSlicedInstructions() const { return CountMapOfSet(sliced_instructions_); } int NumFrontierInstructions() const { return CountMapOfSet(frontier_instructions_); } const HloInstruction* nearest_common_ancestor_root() const { return nearest_common_ancestor_root_; } static absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>> IntersectSlicedInstructions(SliceOutput slice_a, SliceOutput slice_b) { absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>> intersect_sliced_instructions; auto& sliced_instructions_a = slice_a.sliced_instructions(); auto& sliced_instructions_b = slice_b.sliced_instructions(); for (auto& [computation, instructions] : sliced_instructions_a) { for (auto& instruction : instructions) { if (sliced_instructions_b.contains(computation) && sliced_instructions_b.at(computation).contains(instruction)) { intersect_sliced_instructions[computation].insert(instruction); } } } return intersect_sliced_instructions; } static absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>> UnionSlicedInstructions(SliceOutput slice_a, SliceOutput slice_b) { absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>> union_sliced_instructions; auto& sliced_instructions_a = slice_a.sliced_instructions(); auto& sliced_instructions_b = slice_b.sliced_instructions(); for (auto& sliced_instructions : {sliced_instructions_a, sliced_instructions_b}) { for (auto& [computation, instructions] : sliced_instructions) { for (auto& instruction : instructions) { union_sliced_instructions[computation].insert(instruction); } } } return union_sliced_instructions; } private: absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>> sliced_instructions_; absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>> frontier_instructions_; const HloInstruction* nearest_common_ancestor_root_; int CountMapOfSet( const absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>>& to_count) const { int count = 0; for (const auto& [key, set] : to_count) { count += set.size(); } return count; } }; SliceOutput SliceModule( const HloModule* hlo_module, absl::Span<const HloInstruction*> slice_starting_instructions, FrontierSelector frontier_selector = nullptr, bool ignore_control_dependency = false, bool forward_slice = true, bool nearest_common_ancestor_as_root = false); struct SlicingConfiguration { enum class ForwardSlicingConfig { kRoot, kNca }; ForwardSlicingConfig forward_slicing = ForwardSlicingConfig::kRoot; bool backward_slicing = false; bool remove_sharding = false; bool reduce_tuple_parameter = false; int slicing_group = -1; }; std::vector<std::unique_ptr<HloModule>> SliceModuleAndExtract( const HloModule* hlo_module, absl::Span<const HloInstruction*> slice_starting_instructions, const SlicingConfiguration& slicing_configuration); } #endif #include "xla/tools/hlo_slicer.h" #include <deque> #include <memory> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/call_graph.h" #include "xla/service/hlo_verifier.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tools/hlo_extractor.h" #include "tsl/platform/status.h" namespace xla { namespace { void ReduceTupleParameterHelper(HloModule* hlo_module, HloInstruction* tuple_parameter) { for (HloInstruction* user_inst : tuple_parameter->users()) { if (user_inst->opcode() != HloOpcode::kGetTupleElement) { return; } } VLOG(1) << "Parameter instruction to be reduced: " << tuple_parameter->ToString() << " shape size: " << tuple_parameter->shape().tuple_shapes_size() << " users size: " << tuple_parameter->users().size(); std::vector<Shape> used_shapes; for (HloInstruction* user_inst : tuple_parameter->users()) { used_shapes.push_back(user_inst->shape()); } Shape new_tuple_shape = ShapeUtil::MakeTupleShape(absl::MakeSpan(used_shapes)); tuple_parameter->mutable_shape()->mutable_tuple_shapes()->clear(); for (const auto& shape : used_shapes) { tuple_parameter->mutable_shape()->mutable_tuple_shapes()->push_back(shape); } for (int i = 0; i < tuple_parameter->users().size(); ++i) { tuple_parameter->users()[i]->set_tuple_index(i); } hlo_module->mutable_config().SetComputationLayoutIfExists( hlo_module->entry_computation()->ComputeProgramShape()); } void ReduceTupleParameter(HloModule* hlo_module) { std::vector<HloInstruction*> tuple_parameters; for (HloInstruction* parameter : hlo_module->entry_computation()->parameter_instructions()) { if (parameter->shape().IsTuple()) { tuple_parameters.push_back(parameter); } } for (HloInstruction* tuple_parameter : tuple_parameters) { ReduceTupleParameterHelper(hlo_module, tuple_parameter); } } HloInstruction* FindShardingInstruction(HloModule* hlo_module) { for (HloComputation* computation : hlo_module->computations()) { for (HloInstruction* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kCustomCall && instruction->custom_call_target() == "Sharding") { CHECK_EQ(instruction->operand_count(), 1); return instruction; } } } return nullptr; } void RemoveSharding(HloModule* hlo_module) { while (HloInstruction* custom_call_instruction = FindShardingInstruction(hlo_module)) { for (HloInstruction* user_instruction : custom_call_instruction->users()) { CHECK_OK(custom_call_instruction->ReplaceUseWith( user_instruction, custom_call_instruction->mutable_operand(0))); } custom_call_instruction->DetachFromOperandsAndUsers(); CHECK_OK(custom_call_instruction->parent()->RemoveInstruction( custom_call_instruction)); VLOG(1) << "Removed sharding custom-call: " << custom_call_instruction->ToString(); HloVerifier verifier(false, true); TF_CHECK_OK(verifier.Run(hlo_module).status()); } } void IntraComputationSlicing( const HloComputation* computation, absl::flat_hash_set<const HloInstruction*>& sliced_instructions, absl::flat_hash_set<const HloInstruction*>& frontier_instructions, bool forward_slice, FrontierSelector frontier_selector, bool ignore_control_dependency) { std::deque<const HloInstruction*> worklist(sliced_instructions.begin(), sliced_instructions.end()); while (!worklist.empty()) { const HloInstruction* inst = worklist.back(); worklist.pop_back(); if (frontier_selector && !frontier_selector(inst)) { frontier_instructions.insert(inst); continue; } std::vector<HloInstruction*> instructions_to_propagate = forward_slice ? std::vector<HloInstruction*>(inst->users().begin(), inst->users().end()) : std::vector<HloInstruction*>(inst->operands().begin(), inst->operands().end()); if (!ignore_control_dependency) { if (forward_slice) { instructions_to_propagate.insert(instructions_to_propagate.end(), inst->control_successors().begin(), inst->control_successors().end()); } else { instructions_to_propagate.insert(instructions_to_propagate.end(), inst->control_predecessors().begin(), inst->control_predecessors().end()); } } for (auto next_inst : instructions_to_propagate) { if (!sliced_instructions.contains(next_inst)) { worklist.push_front(next_inst); sliced_instructions.insert(next_inst); } } } } SliceOutput SliceModuleHelper( const HloModule* hlo_module, absl::Span<const HloInstruction*> slice_starting_instructions, FrontierSelector frontier_selector, bool ignore_control_dependency, bool forward_slice, bool nearest_common_ancestor_as_root) { absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>> sliced_computation_instructions_map; for (auto inst : slice_starting_instructions) { sliced_computation_instructions_map[inst->parent()].insert(inst); } absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloInstruction*>> frontier_computation_instructions_map; std::unique_ptr<CallGraph> call_graph = CallGraph::Build(hlo_module); std::vector<HloComputation*> post_order_computations = hlo_module->MakeComputationPostOrder(); std::vector<HloComputation*> computations_to_traverse = forward_slice ? post_order_computations : std::vector<HloComputation*>(post_order_computations.rbegin(), post_order_computations.rend()); absl::flat_hash_set<const HloComputation*> nearest_common_ancestor_computations; if (nearest_common_ancestor_as_root) { std::vector<const HloComputation*> starting_computations; for (const auto& [computation, instructions] : sliced_computation_instructions_map) { starting_computations.push_back(computation); } nearest_common_ancestor_computations = call_graph->NearestCommonAncestorComputations(starting_computations); CHECK(!nearest_common_ancestor_computations.empty()); } for (auto computation : computations_to_traverse) { if (sliced_computation_instructions_map.contains(computation)) { auto slicing_starting_instructions = std::vector<const HloInstruction*>( sliced_computation_instructions_map[computation].begin(), sliced_computation_instructions_map[computation].end()); IntraComputationSlicing( computation, sliced_computation_instructions_map[computation], frontier_computation_instructions_map[computation], forward_slice, frontier_selector, ignore_control_dependency); if (forward_slice) { if (nearest_common_ancestor_as_root && nearest_common_ancestor_computations.contains(computation)) { const HloInstruction* nearest_common_ancestor_instruction = *(call_graph->NearestCommonAncestorInstructions( slicing_starting_instructions)) .begin(); CHECK_NE(nearest_common_ancestor_instruction, nullptr); return SliceOutput{sliced_computation_instructions_map, frontier_computation_instructions_map, nearest_common_ancestor_instruction}; } if (!sliced_computation_instructions_map[computation].contains( computation->root_instruction()) || frontier_computation_instructions_map[computation].contains( computation->root_instruction())) { continue; } for (auto caller_inst : call_graph->GetComputationCallers(computation)) { sliced_computation_instructions_map[caller_inst->parent()].insert( caller_inst); } } if (!forward_slice) { for (const auto& callsite : call_graph->GetNode(computation).callsites()) { if (sliced_computation_instructions_map[computation].contains( callsite.instruction())) { for (auto callee : callsite.called_computations()) { sliced_computation_instructions_map[callee].insert( callee->root_instruction()); } } } } } } return SliceOutput{sliced_computation_instructions_map, frontier_computation_instructions_map}; } } SliceOutput SliceModule( const HloModule* hlo_module, absl::Span<const HloInstruction*> slice_starting_instructions, FrontierSelector frontier_selector, bool ignore_control_dependency, bool forward_slice, bool nearest_common_ancestor_as_root) { if (forward_slice) { if (!nearest_common_ancestor_as_root) { return SliceModuleHelper(hlo_module, slice_starting_instructions, frontier_selector, ignore_control_dependency, true, false); } else { CHECK(forward_slice) << "Option `nearest_common_ancestor_as_root` can " "only be enabled when " "forward slicing"; CHECK((frontier_selector == nullptr)) << "Option `nearest_common_ancestor_as_root` can not be specified " "with `frontier_selector`"; SliceOutput forward_slice_output = SliceModuleHelper(hlo_module, slice_starting_instructions, nullptr, ignore_control_dependency, true, true); std::vector<const HloInstruction*> nearest_common_ancestor( {forward_slice_output.nearest_common_ancestor_root()}); CHECK_EQ(nearest_common_ancestor.size(), 1); SliceOutput backward_slice_output = SliceModuleHelper(hlo_module, absl::MakeSpan(nearest_common_ancestor), nullptr, ignore_control_dependency, false, false); return SliceOutput{SliceOutput::IntersectSlicedInstructions( forward_slice_output, backward_slice_output), backward_slice_output.frontier_instructions(), forward_slice_output.nearest_common_ancestor_root()}; } } else { return SliceModuleHelper(hlo_module, slice_starting_instructions, frontier_selector, ignore_control_dependency, false, false); } } std::vector<std::unique_ptr<HloModule>> SliceModuleAndExtract( const HloModule* hlo_module, absl::Span<const HloInstruction*> slice_starting_instructions, const SlicingConfiguration& slicing_configuration) { std::vector<std::unique_ptr<HloModule>> sliced_modules; int slicing_group = slicing_configuration.slicing_group; CHECK(slicing_group >= 1 || slicing_group == -1); std::vector<absl::Span<const HloInstruction*>> grouped_instructions; if (slicing_group == -1) { grouped_instructions = {slice_starting_instructions}; } else { for (int i = 0; i < slice_starting_instructions.size(); i += slicing_group) { grouped_instructions.push_back( slice_starting_instructions.subspan(i, slicing_group)); } } for (const auto& grouped_slice_starting_instructions : grouped_instructions) { SliceOutput forward_slice_output; if (slicing_configuration.forward_slicing == SlicingConfiguration::ForwardSlicingConfig::kRoot) { forward_slice_output = SliceModule( hlo_module, grouped_slice_starting_instructions, nullptr, false, true, false); } else if (slicing_configuration.forward_slicing == SlicingConfiguration::ForwardSlicingConfig::kNca) { forward_slice_output = SliceModule( hlo_module, grouped_slice_starting_instructions, nullptr, false, true, true); } VLOG(1) << "[Num of forward sliced insts]: " << forward_slice_output.NumSlicedInstructions(); SliceOutput backw
#include "xla/tools/hlo_slicer.h" #include <memory> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/check.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace op = testing::opcode_matchers; using HloSlicerTest = HloTestBase; TEST_F(HloSlicerTest, SingleComputationForwardSlice) { const std::string& hlo_string = R"( HloModule axpy_module ENTRY axpy_computation { p.0 = f32[10] parameter(0) p.1 = f32[10] parameter(1) add.0 = f32[10] add(p.0, p.1) alpha = f32[] constant(1) broadcast = f32[10] broadcast(alpha), dimensions={} p.2 = f32[10] parameter(2) y = f32[10] multiply(broadcast, p.2) x = f32[10] subtract(y, add.0) p.3 = f32[10] parameter(3) ROOT add.1 = f32[10] add(x, p.3) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); auto p2 = FindInstruction(hlo_module.get(), "p.2"); EXPECT_THAT(p2, op::Parameter()); auto p3 = FindInstruction(hlo_module.get(), "p.3"); EXPECT_THAT(p3, op::Parameter()); auto x = FindInstruction(hlo_module.get(), "x"); EXPECT_THAT(x, op::Subtract()); auto y = FindInstruction(hlo_module.get(), "y"); EXPECT_THAT(y, op::Multiply()); auto add0 = FindInstruction(hlo_module.get(), "add.0"); EXPECT_THAT(add0, op::Add()); auto add1 = FindInstruction(hlo_module.get(), "add.1"); EXPECT_THAT(add1, op::Add()); auto entry_comp = FindComputation(hlo_module.get(), "axpy_computation"); EXPECT_NE(entry_comp, nullptr); auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return true; }; { std::vector<const HloInstruction*> relevant_instructions({p2, x}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_EQ(sliced_instructions[entry_comp].size(), 4); EXPECT_TRUE(sliced_instructions[entry_comp].contains(p2)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(x)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(y)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(add1)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 0); } { std::vector<const HloInstruction*> relevant_instructions({add0, p3}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_EQ(sliced_instructions[entry_comp].size(), 4); EXPECT_TRUE(sliced_instructions[entry_comp].contains(add0)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(x)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(p3)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(add1)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 0); } } TEST_F(HloSlicerTest, MultipleComputationForwardSlice) { const std::string& hlo_string = R"( HloModule test calculate_alpha { constant.5 = s32[] constant(2) constant.6 = s32[] constant(3) ROOT ret = s32[] subtract(constant.5, constant.6) } While.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get_tuple_element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(23) add.3 = s32[] add(get_tuple_element.1, constant.1) get_tuple_element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get_tuple_element.2, get_tuple_element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add.3, multiply) } While.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get_tuple_element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(100) ROOT less_than = pred[] compare(get_tuple_element.3, constant.2), direction=LT } ENTRY Test { p.1 = s32[] parameter(0) p.2 = s32[] parameter(1) add.1 = s32[] add(p.1, p.2) constant.3 = s32[] call(), to_apply=calculate_alpha constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) while.1 = (s32[], s32[3]{0}) while(tuple.1), condition=While.condition, body=While.body loop_count = s32[] get-tuple-element(while.1), index=0 ROOT add.2 = s32[] add(loop_count, add.1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); auto add1 = FindInstruction(hlo_module.get(), "add.1"); EXPECT_THAT(add1, op::Add()); auto while1 = FindInstruction(hlo_module.get(), "while.1"); EXPECT_THAT(while1, op::While()); auto loop_count = FindInstruction(hlo_module.get(), "loop_count"); EXPECT_THAT(loop_count, op::GetTupleElement()); auto add2 = FindInstruction(hlo_module.get(), "add.2"); EXPECT_THAT(add2, op::Add()); auto gte1 = FindInstruction(hlo_module.get(), "get_tuple_element.1"); EXPECT_THAT(gte1, op::GetTupleElement()); auto gte2 = FindInstruction(hlo_module.get(), "get_tuple_element.2"); EXPECT_THAT(gte2, op::GetTupleElement()); auto constant5 = FindInstruction(hlo_module.get(), "constant.5"); EXPECT_THAT(constant5, op::Constant()); auto tuple1 = FindInstruction(hlo_module.get(), "tuple.1"); EXPECT_THAT(tuple1, op::Tuple()); auto entry_comp = FindComputation(hlo_module.get(), "Test"); EXPECT_NE(entry_comp, nullptr); auto while_cond_comp = FindComputation(hlo_module.get(), "While.condition"); EXPECT_NE(while_cond_comp, nullptr); auto while_body_comp = FindComputation(hlo_module.get(), "While.body"); EXPECT_NE(while_body_comp, nullptr); auto calculate_alpha_comp = FindComputation(hlo_module.get(), "calculate_alpha"); EXPECT_NE(calculate_alpha_comp, nullptr); auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return true; }; { std::vector<const HloInstruction*> relevant_instructions({add1, while1}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_EQ(sliced_instructions[entry_comp].size(), 4); EXPECT_TRUE(sliced_instructions[entry_comp].contains(add2)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(add1)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(while1)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(loop_count)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 0); } { std::vector<const HloInstruction*> relevant_instructions({constant5}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 2); EXPECT_TRUE(sliced_instructions.contains(entry_comp)); EXPECT_TRUE(sliced_instructions.contains(calculate_alpha_comp)); EXPECT_FALSE(sliced_instructions[entry_comp].contains(add1)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 0); } { std::vector<const HloInstruction*> relevant_instructions({gte2}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 2); EXPECT_TRUE(sliced_instructions.contains(entry_comp)); EXPECT_TRUE(sliced_instructions.contains(while_body_comp)); EXPECT_FALSE(sliced_instructions.contains(while_cond_comp)); EXPECT_FALSE(sliced_instructions[entry_comp].contains(tuple1)); EXPECT_FALSE(sliced_instructions[entry_comp].contains(add1)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(add2)); EXPECT_FALSE(sliced_instructions[while_body_comp].contains(gte1)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 0); } } TEST_F(HloSlicerTest, SingleComputationForwardFrontier) { const std::string& hlo_string = R"( HloModule axpy_module ENTRY axpy_computation { p.0 = f32[10] parameter(0) p.1 = f32[10] parameter(1) add.0 = f32[10] add(p.0, p.1) alpha = f32[] constant(1) broadcast = f32[10] broadcast(alpha), dimensions={} p.2 = f32[10] parameter(2) y = f32[10] multiply(broadcast, p.2) x = f32[10] subtract(y, add.0) p.3 = f32[10] parameter(3) p.4 = f32[10] parameter(4) p.5 = f32[10] parameter(5) sub.1 = f32[10] subtract(p.4, p.5) add.2 = f32[10] add(p.3, sub.1) ROOT add.1 = f32[10] add(x, add.2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); auto broadcast = FindInstruction(hlo_module.get(), "broadcast"); EXPECT_THAT(broadcast, op::Broadcast()); auto x = FindInstruction(hlo_module.get(), "x"); EXPECT_THAT(x, op::Subtract()); auto y = FindInstruction(hlo_module.get(), "y"); EXPECT_THAT(y, op::Multiply()); auto add0 = FindInstruction(hlo_module.get(), "add.0"); EXPECT_THAT(add0, op::Add()); auto p5 = FindInstruction(hlo_module.get(), "p.5"); EXPECT_THAT(p5, op::Parameter()); auto sub1 = FindInstruction(hlo_module.get(), "sub.1"); EXPECT_THAT(sub1, op::Subtract()); auto entry_comp = FindComputation(hlo_module.get(), "axpy_computation"); EXPECT_NE(entry_comp, nullptr); { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kSubtract; }; std::vector<const HloInstruction*> relevant_instructions({broadcast, add0}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_result.NumSlicedInstructions(), 4); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_TRUE(sliced_instructions[entry_comp].contains(add0)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(broadcast)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(y)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(x)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 1); auto frontier_instructions = sliced_result.frontier_instructions(); EXPECT_TRUE(frontier_instructions[entry_comp].contains(x)); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kSubtract; }; std::vector<const HloInstruction*> relevant_instructions({add0, y, p5}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_result.NumSlicedInstructions(), 5); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_TRUE(sliced_instructions[entry_comp].contains(add0)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(y)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(x)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(p5)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(sub1)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 2); auto frontier_instructions = sliced_result.frontier_instructions(); EXPECT_TRUE(frontier_instructions[entry_comp].contains(x)); EXPECT_TRUE(frontier_instructions[entry_comp].contains(sub1)); } } TEST_F(HloSlicerTest, MultipleComputationForwardFrontier) { const std::string& hlo_string = R"( HloModule axpy_module calculate_alpha { c.0 = f32[] constant(1) c.1 = f32[] constant(2) c.2 = f32[] add(c.0, c.1) c.3 = f32[] constant(4) ROOT ret = f32[] multiply(c.2, c.3) } ENTRY axpy_computation { p.0 = f32[] parameter(0) alpha = f32[] call(), to_apply=calculate_alpha ROOT add = f32[] add(p.0, alpha) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); auto entry_comp = FindComputation(hlo_module.get(), "axpy_computation"); EXPECT_NE(entry_comp, nullptr); auto calculate_alpha_comp = FindComputation(hlo_module.get(), "calculate_alpha"); EXPECT_NE(calculate_alpha_comp, nullptr); auto ret = FindInstruction(hlo_module.get(), "ret"); EXPECT_THAT(ret, op::Multiply()); auto c2 = FindInstruction(hlo_module.get(), "c.2"); EXPECT_THAT(c2, op::Add()); auto c3 = FindInstruction(hlo_module.get(), "c.3"); EXPECT_THAT(c3, op::Constant()); auto alpha = FindInstruction(hlo_module.get(), "alpha"); EXPECT_THAT(alpha, op::Call()); { auto hlo_selector = [&ret](const HloInstruction* hlo_inst) -> bool { return hlo_inst != ret; }; std::vector<const HloInstruction*> relevant_instructions({c2}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_result.NumSlicedInstructions(), 2); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_TRUE(sliced_instructions.contains(calculate_alpha_comp)); EXPECT_EQ(sliced_instructions[calculate_alpha_comp].size(), 2); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c2)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(ret)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 1); auto frontier_instructions = sliced_result.frontier_instructions(); EXPECT_TRUE(frontier_instructions.contains(calculate_alpha_comp)); EXPECT_TRUE(frontier_instructions[calculate_alpha_comp].contains(ret)); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kCall; }; std::vector<const HloInstruction*> relevant_instructions({c2}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 2); EXPECT_TRUE(sliced_instructions.contains(calculate_alpha_comp)); EXPECT_EQ(sliced_instructions[calculate_alpha_comp].size(), 2); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c2)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(ret)); EXPECT_TRUE(sliced_instructions.contains(entry_comp)); EXPECT_EQ(sliced_instructions[entry_comp].size(), 1); EXPECT_TRUE(sliced_instructions[entry_comp].contains(alpha)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 1); auto frontier_instructions = sliced_result.frontier_instructions(); EXPECT_TRUE(frontier_instructions.contains(entry_comp)); EXPECT_TRUE(frontier_instructions[entry_comp].contains(alpha)); } } TEST_F(HloSlicerTest, SingleComputationBackwardSliceAndFrontier) { const std::string& hlo_string = R"( HloModule axpy_module ENTRY axpy_computation { p.0 = f32[10] parameter(0) p.1 = f32[10] parameter(1) add.0 = f32[10] add(p.0, p.1) alpha = f32[] constant(1) broadcast = f32[10] broadcast(alpha), dimensions={} p.2 = f32[10] parameter(2) y = f32[10] multiply(broadcast, p.2) x = f32[10] subtract(y, add.0) p.3 = f32[10] parameter(3) ROOT add.1 = f32[10] add(x, p.3) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); auto alpha = FindInstruction(hlo_module.get(), "alpha"); EXPECT_THAT(alpha, op::Constant()); auto p0 = FindInstruction(hlo_module.get(), "p.0"); EXPECT_THAT(p0, op::Parameter()); auto p1 = FindInstruction(hlo_module.get(), "p.1"); EXPECT_THAT(p1, op::Parameter()); auto p2 = FindInstruction(hlo_module.get(), "p.2"); EXPECT_THAT(p2, op::Parameter()); auto p3 = FindInstruction(hlo_module.get(), "p.3"); EXPECT_THAT(p3, op::Parameter()); auto broadcast = FindInstruction(hlo_module.get(), "broadcast"); EXPECT_THAT(broadcast, op::Broadcast()); auto x = FindInstruction(hlo_module.get(), "x"); EXPECT_THAT(x, op::Subtract()); auto y = FindInstruction(hlo_module.get(), "y"); EXPECT_THAT(y, op::Multiply()); auto add0 = FindInstruction(hlo_module.get(), "add.0"); EXPECT_THAT(add0, op::Add()); auto entry_comp = FindComputation(hlo_module.get(), "axpy_computation"); EXPECT_NE(entry_comp, nullptr); auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return true; }; { std::vector<const HloInstruction*> relevant_instructions({y}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector, false, false); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_EQ(sliced_instructions[entry_comp].size(), 4); EXPECT_TRUE(sliced_instructions[entry_comp].contains(y)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(broadcast)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(p2)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(alpha)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 0); } { std::vector<const HloInstruction*> relevant_instructions({add0, y}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector, false, false); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_EQ(sliced_instructions[entry_comp].size(), 7); EXPECT_TRUE(sliced_instructions[entry_comp].contains(y)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(broadcast)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(p2)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(alpha)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(add0)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(p0)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(p1)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 0); } auto broadcast_slicer = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kBroadcast; }; { std::vector<const HloInstruction*> relevant_instructions({y}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), broadcast_slicer, false, false); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_EQ(sliced_instructions[entry_comp].size(), 3); EXPECT_TRUE(sliced_instructions[entry_comp].contains(y)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(p2)); EXPECT_TRUE(sliced_instructions[entry_comp].contains(broadcast)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 1); auto frontier_instructions = sliced_result.frontier_instructions(); EXPECT_TRUE(frontier_instructions[entry_comp].contains(broadcast)); } } TEST_F(HloSlicerTest, MultipleComputationBackwardSliceAndFrontier) { const std::string& hlo_string = R"( HloModule axpy_module calculate_alpha { c.0 = f32[] constant(1) c.1 = f32[] constant(2) c.2 = f32[] add(c.0, c.1) c.3 = f32[] constant(4) ROOT ret = f32[] multiply(c.2, c.3) } ENTRY axpy_computation { p.0 = f32[] parameter(0) alpha = f32[] call(), to_apply=calculate_alpha ROOT add = f32[] add(p.0, alpha) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); auto entry_comp = FindComputation(hlo_module.get(), "axpy_computation"); EXPECT_NE(entry_comp, nullptr); auto calculate_alpha_comp = FindComputation(hlo_module.get(), "calculate_alpha"); EXPECT_NE(calculate_alpha_comp, nullptr); auto ret = FindInstruction(hlo_module.get(), "ret"); EXPECT_THAT(ret, op::Multiply()); auto c0 = FindInstruction(hlo_module.get(), "c.0"); EXPECT_THAT(c0, op::Constant()); auto c1 = FindInstruction(hlo_module.get(), "c.1"); EXPECT_THAT(c1, op::Constant()); auto c2 = FindInstruction(hlo_module.get(), "c.2"); EXPECT_THAT(c2, op::Add()); auto c3 = FindInstruction(hlo_module.get(), "c.3"); EXPECT_THAT(c3, op::Constant()); auto alpha = FindInstruction(hlo_module.get(), "alpha"); EXPECT_THAT(alpha, op::Call()); { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return true; }; std::vector<const HloInstruction*> relevant_instructions({c2}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector, false, false); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_result.NumSlicedInstructions(), 3); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_TRUE(sliced_instructions.contains(calculate_alpha_comp)); EXPECT_EQ(sliced_instructions[calculate_alpha_comp].size(), 3); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c0)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c1)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c2)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 0); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return true; }; std::vector<const HloInstruction*> relevant_instructions({alpha}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), hlo_selector, false, false); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_instructions.size(), 2); EXPECT_TRUE(sliced_instructions.contains(calculate_alpha_comp)); EXPECT_EQ(sliced_instructions[calculate_alpha_comp].size(), 5); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c0)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c1)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c2)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c3)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(ret)); EXPECT_TRUE(sliced_instructions.contains(entry_comp)); EXPECT_EQ(sliced_instructions[entry_comp].size(), 1); EXPECT_TRUE(sliced_instructions[entry_comp].contains(alpha)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 0); } { auto add_slicer = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kAdd; }; std::vector<const HloInstruction*> relevant_instructions({ret}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), add_slicer, false, false); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_result.NumSlicedInstructions(), 3); EXPECT_EQ(sliced_instructions.size(), 1); EXPECT_TRUE(sliced_instructions.contains(calculate_alpha_comp)); EXPECT_EQ(sliced_instructions[calculate_alpha_comp].size(), 3); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(ret)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c3)); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(c2)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 1); auto frontier_instructions = sliced_result.frontier_instructions(); EXPECT_TRUE(frontier_instructions.contains(calculate_alpha_comp)); EXPECT_TRUE(frontier_instructions[calculate_alpha_comp].contains(c2)); } { auto mul_slicer = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kMultiply; }; std::vector<const HloInstruction*> relevant_instructions({alpha}); auto sliced_result = SliceModule( hlo_module.get(), absl::MakeSpan(relevant_instructions), mul_slicer, false, false); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_result.NumSlicedInstructions(), 2); EXPECT_EQ(sliced_instructions.size(), 2); EXPECT_TRUE(sliced_instructions.contains(calculate_alpha_comp)); EXPECT_EQ(sliced_instructions[calculate_alpha_comp].size(), 1); EXPECT_TRUE(sliced_instructions[calculate_alpha_comp].contains(ret)); EXPECT_TRUE(sliced_instructions.contains(entry_comp)); EXPECT_EQ(sliced_instructions[entry_comp].size(), 1); EXPECT_TRUE(sliced_instructions[entry_comp].contains(alpha)); EXPECT_EQ(sliced_result.NumFrontierInstructions(), 1); auto frontier_instructions = sliced_result.frontier_instructions(); EXPECT_TRUE(frontier_instructions.contains(calculate_alpha_comp)); EXPECT_TRUE(frontier_instructions[calculate_alpha_comp].contains(ret)); } } TEST_F(HloSlicerTest, ForwardSlicingNearestCommonAncestor) { const std::string& hlo_string = R"( HloModule module ENTRY computation { p.0 = f32[10] parameter(0) p.1 = f32[10] parameter(1) add.0 = f32[10] add(p.0, p.1) p.2 = f32[10] parameter(2) mul.0 = f32[10] multiply(p.1, p.2) sub.0 = f32[10] subtract(add.0, mul.0) add.1 = f32[10] add(add.0, p.2) ROOT add.2 = f32[10] add(sub.0, add.1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); auto p0 = FindInstruction(hlo_module.get(), "p.0"); auto p2 = FindInstruction(hlo_module.get(), "p.2"); auto mul0 = FindInstruction(hlo_module.get(), "mul.0"); auto add0 = FindInstruction(hlo_module.get(), "add.0"); auto sub0 = FindInstruction(hlo_module.get(), "sub.0"); auto add1 = FindInstruction(hlo_module.get(), "add.1"); const HloComputation* computation = hlo_module->entry_computation(); { std::vector<const HloInstruction*> relevant_instructions({p0}); auto sliced_result = SliceModule(hlo_module.get(), absl::MakeSpan(relevant_instructions), nullptr, false, true, true); EXPECT_NE(sliced_result.nearest_common_ancestor_root(), nullptr); EXPECT_EQ(sliced_result.nearest_common_ancestor_root(), p0); EXPECT_EQ(sliced_result.NumSlicedInstructions(), 1); } { std::vector<const HloInstruction*> relevant_instructions({p0, p2}); auto sliced_result = SliceModule(hlo_module.get(), absl::MakeSpan(relevant_instructions), nullptr, false, true, true); EXPECT_NE(sliced_result.nearest_common_ancestor_root(), nullptr); EXPECT_TRUE(sliced_result.nearest_common_ancestor_root() == sub0 || sliced_result.nearest_common_ancestor_root() == add1); EXPECT_TRUE(sliced_result.sliced_instructions().contains(computation)); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_TRUE(sliced_instructions[computation].contains(add0)); } { std::vector<const HloInstruction*> relevant_instructions({p0, mul0}); auto sliced_result = SliceModule(hlo_module.get(), absl::MakeSpan(relevant_instructions), nullptr, false, true, true); EXPECT_NE(sliced_result.nearest_common_ancestor_root(), nullptr); EXPECT_EQ(sliced_result.nearest_common_ancestor_root(), sub0); EXPECT_EQ(sliced_result.NumSlicedInstructions(), 4); EXPECT_TRUE(sliced_result.sliced_instructions().contains(computation)); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_TRUE(sliced_instructions[computation].contains(p0)); EXPECT_TRUE(sliced_instructions[computation].contains(add0)); EXPECT_TRUE(sliced_instructions[computation].contains(mul0)); EXPECT_TRUE(sliced_instructions[computation].contains(sub0)); } } TEST_F(HloSlicerTest, MultipleComputationForwardSlicingNearestCommonAncestor) { const std::string& hlo_string = R"( HloModule axpy_module calculate_alpha { c.0 = f32[] constant(1) c.1 = f32[] constant(2) ROOT ret.0 = f32[] multiply(c.0, c.1) } calculate_y { c.2 = f32[] constant(2) c.3 = f32[] constant(3) ROOT ret.1 = f32[] add(c.2, c.3) } ENTRY axpy_computation { alpha = f32[] call(), to_apply=calculate_alpha y = f32[] call(), to_apply=calculate_y add.0 = f32[] add(alpha, y) p.0 = f32[] parameter(0) ROOT add.1 = f32[] add(add.0, p.0) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); auto c0 = FindInstruction(hlo_module.get(), "c.0"); auto ret0 = FindInstruction(hlo_module.get(), "ret.0"); auto c2 = FindInstruction(hlo_module.get(), "c.2"); auto ret1 = FindInstruction(hlo_module.get(), "ret.1"); auto alpha = FindInstruction(hlo_module.get(), "alpha"); auto y = FindInstruction(hlo_module.get(), "y"); auto add0 = FindInstruction(hlo_module.get(), "add.0"); const HloComputation* computation = hlo_module->entry_computation(); const HloComputation* calculate_alpha = FindComputation(hlo_module.get(), "calculate_alpha"); const HloComputation* calculate_y = FindComputation(hlo_module.get(), "calculate_y"); { std::vector<const HloInstruction*> relevant_instructions({c0, c2}); auto sliced_result = SliceModule(hlo_module.get(), absl::MakeSpan(relevant_instructions), nullptr, false, true, true); EXPECT_NE(sliced_result.nearest_common_ancestor_root(), nullptr); EXPECT_EQ(sliced_result.nearest_common_ancestor_root(), add0); EXPECT_EQ(sliced_result.sliced_instructions().size(), 3); EXPECT_TRUE(sliced_result.sliced_instructions().contains(computation)); EXPECT_TRUE(sliced_result.sliced_instructions().contains(calculate_alpha)); EXPECT_TRUE(sliced_result.sliced_instructions().contains(calculate_y)); auto sliced_instructions = sliced_result.sliced_instructions(); EXPECT_EQ(sliced_result.NumSlicedInstructions(), 7); EXPECT_TRUE(sliced_instructions[calculate_alpha].contains(c0)); EXPECT_TRUE(sliced_instructions[calculate_alpha].contains(ret0)); EXPECT_TRUE(sliced_instructions[calculate_y].conta
2,189
cpp
tensorflow/tensorflow
run_hlo_module
third_party/xla/xla/tools/run_hlo_module.cc
third_party/xla/xla/tools/run_hlo_module_test.cc
#ifndef XLA_TOOLS_RUN_HLO_MODULE_H_ #define XLA_TOOLS_RUN_HLO_MODULE_H_ #include <functional> #include <memory> #include <random> #include <string> #include "absl/status/status.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_runner.h" #include "xla/tools/run_hlo_module.pb.h" #include "tsl/platform/status.h" namespace xla { class BufferAssignmentProto; struct RunHloModuleOptions { std::string platform; std::string reference_platform{"default"}; bool print_literals{false}; bool flatten_control_flow{false}; bool run_test_hlo_passes{true}; bool run_reference_hlo_passes{true}; bool use_large_float_range{false}; bool treat_gte_as_data_formatting{false}; float abs_error_bound{1e-3}; float rel_error_bound{1e-3}; std::string input_format; bool use_buffer_assignment_from_proto{false}; std::string input_compilation_environments; int iterations{1}; std::string output_literals_file; std::string input_literals_file; bool random_init_input_literals{true}; bool force_fake_data{false}; bool isolate_instructions{false}; }; absl::Status RunAndCompare( std::unique_ptr<HloModule> test_module, const BufferAssignmentProto* buffer_assignment_proto, HloRunnerInterface* test_runner, HloRunnerInterface* reference_runner, std::minstd_rand0* engine, const RunHloModuleOptions& options, xla::RunHloModuleIterationLiterals* iteration_literals_proto = nullptr, std::function<absl::Status(const HloModule&, HloRunnerInterface*, HloModule*)> reference_module_modifier_hook = {}, std::function<void(HloModuleConfig*)> config_modifier_hook = {}); absl::Status RunAndCompare( const std::string& hlo_filename, HloRunnerInterface* test_runner, HloRunnerInterface* reference_runner, std::minstd_rand0* engine, const RunHloModuleOptions& options, xla::RunHloModuleIterationLiterals* iteration_literals_proto = nullptr, std::function<absl::Status(const HloModule&, HloRunnerInterface*, HloModule*)> reference_module_modifier_hook = {}, std::function<void(HloModuleConfig*)> config_modifier_hook = {}, std::function<absl::Status(const RunHloModuleOptions& options, HloModule& module)> compilation_env_modifier_hook = {}); void ReadInputLiteralsFromFile(const std::string& file_path, xla::RunHloModuleLiterals* input_literals_proto); } #endif #include "xla/tools/run_hlo_module.h" #include <functional> #include <iomanip> #include <iostream> #include <map> #include <memory> #include <optional> #include <random> #include <sstream> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_replace.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/error_spec.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/literal_comparison.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_verifier.h" #include "xla/tests/test_utils.h" #include "xla/tools/hlo_control_flow_flattening.h" #include "xla/tools/hlo_decomposer.h" #include "xla/tools/hlo_module_loader.h" #include "xla/tools/prepare_reference_module.h" #include "xla/tools/run_hlo_module.pb.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace { enum class ModuleResult { kMatched, kRan, kSkipped, kDidntRun, kOtherError, kCompilationError, kRuntimeError, kMismatch, }; constexpr absl::string_view ModuleResultToString(ModuleResult result) { switch (result) { case ModuleResult::kMatched: return "MATCHED"; case ModuleResult::kRan: return "RAN"; case ModuleResult::kSkipped: return "SKIPPED"; case ModuleResult::kDidntRun: return "DIDN'T RUN"; case ModuleResult::kOtherError: return "OTHER ERROR"; case ModuleResult::kCompilationError: return "COMPILATION ERROR"; case ModuleResult::kRuntimeError: return "RUNTIME ERROR"; case ModuleResult::kMismatch: return "MISMATCH"; } } void WriteLiteralToTempFile(const LiteralSlice& literal, const std::string& name) { auto* env = tsl::Env::Default(); std::string binary_filename; std::string text_filename; std::string outdir; if (tsl::io::GetTestUndeclaredOutputsDir(&outdir)) { std::string filename = tsl::io::JoinPath( outdir, absl::StrFormat("tempfile-%d-%s", env->NowMicros(), name)); binary_filename = absl::StrCat(filename, ".pb"); text_filename = absl::StrCat(filename, ".txt"); } else { binary_filename = tsl::io::GetTempFilename(absl::StrCat(name, ".pb")); text_filename = tsl::io::GetTempFilename(absl::StrCat(name, ".txt")); } TF_CHECK_OK(tsl::WriteBinaryProto(env, binary_filename, literal.ToProto())); TF_CHECK_OK(tsl::WriteStringToFile(env, text_filename, literal.ToString())); LOG(ERROR) << "wrote Literal to " << name << " binary: " << binary_filename << " text: " << text_filename; } void OnMiscompare(const LiteralSlice& expected, const LiteralSlice& actual, const LiteralSlice& mismatches, const ShapeIndex& , const literal_comparison::ErrorBuckets& ) { LOG(INFO) << "expected: " << ShapeUtil::HumanString(expected.shape()) << " " << literal_comparison::ToStringTruncated(expected); LOG(INFO) << "actual: " << ShapeUtil::HumanString(actual.shape()) << " " << literal_comparison::ToStringTruncated(actual); LOG(INFO) << "Dumping literals to temp files..."; WriteLiteralToTempFile(expected, "expected"); WriteLiteralToTempFile(actual, "actual"); WriteLiteralToTempFile(mismatches, "mismatches"); } absl::StatusOr<Literal> ExecuteWithRunner( std::unique_ptr<HloModule> module, const BufferAssignmentProto* buffer_assignment_proto, absl::Span<const Literal> args, HloRunnerInterface* runner, bool run_hlo_passes) { TF_RETURN_WITH_CONTEXT_IF_ERROR( VerifyHloModule(module.get(), false, true), absl::StrCat("(on ", runner->Name(), ")")); std::cerr << "Running HLO module with runner " << runner->Name() << "...\n"; XLA_VLOG_LINES(1, module->ToString()); const auto start = std::chrono::high_resolution_clock::now(); ExecutionProfile profile; auto result_status = (buffer_assignment_proto == nullptr) ? runner->Execute(std::move(module), args, run_hlo_passes, &profile) : runner->ExecuteWithBufferAssignment(std::move(module), buffer_assignment_proto, args, run_hlo_passes, &profile); const auto end = std::chrono::high_resolution_clock::now(); std::chrono::duration<double> diff = end - start; std::cerr << "... compiled and ran in " << diff.count() << "s.\n"; double run_time = static_cast<double>(profile.compute_time_ns()) / 1e9; std::cerr << "execution time for runner " << runner->Name() << ": " << run_time << "s.\n"; TF_RETURN_WITH_CONTEXT_IF_ERROR( result_status.status(), absl::StrCat("Failed to execute on ", runner->Name())); return std::move(result_status).value(); } absl::Status RunAndCompareInternal( std::unique_ptr<HloModule> test_module, const BufferAssignmentProto* buffer_assignment_proto, HloRunnerInterface* test_runner, HloRunnerInterface* reference_runner, std::minstd_rand0* engine, const RunHloModuleOptions& options, xla::RunHloModuleIterationLiterals* iteration_literals_proto, std::function<absl::Status(const HloModule&, HloRunnerInterface*, HloModule*)> reference_module_modifier_hook, std::function<void(HloModuleConfig*)> config_modifier_hook, ModuleResult* test_run_result, ModuleResult* reference_run_result) { auto copy_result_on_failure = [](auto status, ModuleResult result, ModuleResult* out_result) { if (!status.ok() && out_result != nullptr) { *out_result = result; } return status; }; if (!config_modifier_hook) { config_modifier_hook = [](HloModuleConfig* config) { config->set_seed(42); }; } if (options.flatten_control_flow) { HloControlFlowFlattening control_flow_flattening( HloControlFlowFlattening::Options{1}); TF_RETURN_IF_ERROR( copy_result_on_failure(control_flow_flattening.Run(test_module.get()), ModuleResult::kCompilationError, test_run_result) .status()); } TF_ASSIGN_OR_RETURN( auto args, copy_result_on_failure( MakeFakeArguments(test_module.get(), engine, options.use_large_float_range, options.treat_gte_as_data_formatting), ModuleResult::kOtherError, test_run_result)); if (iteration_literals_proto != nullptr && iteration_literals_proto->arguments_size() != 0) { if (iteration_literals_proto->arguments_size() != args.size()) { if (test_run_result != nullptr) { *test_run_result = ModuleResult::kOtherError; } return xla::InvalidArgument( "Failed to use input literals as arguments; mismatched " "number of expected arguments."); } else { for (int i = 0; i < args.size(); ++i) { if (!literal_comparison::EqualShapes( xla::Shape(args[i].shape()), xla::Shape(iteration_literals_proto->arguments(i).shape())) .ok()) { if (test_run_result != nullptr) { *test_run_result = ModuleResult::kOtherError; } return xla::InvalidArgument( "Failed to use input literals for argument %d " "because of a shape mismatch.", i); } TF_ASSIGN_OR_RETURN( args[i], copy_result_on_failure(xla::Literal::CreateFromProto( iteration_literals_proto->arguments(i)), ModuleResult::kOtherError, test_run_result)); } } } if (options.print_literals) { for (int i = 0; i < args.size(); ++i) { std::cout << "\n** Argument " << i << " **\n" << args[i].ToString() << "\n"; } } if (iteration_literals_proto != nullptr && iteration_literals_proto->arguments_size() == 0) { for (int i = 0; i < args.size(); ++i) { *iteration_literals_proto->add_arguments() = args[i].ToProto(); } } std::unique_ptr<HloModule> reference_module; if (reference_runner != nullptr) { TF_ASSIGN_OR_RETURN( reference_module, copy_result_on_failure( PrepareReferenceModule(*test_module, test_runner, config_modifier_hook, reference_module_modifier_hook), ModuleResult::kCompilationError, reference_run_result)); } TF_ASSIGN_OR_RETURN( auto test_result, copy_result_on_failure( ExecuteWithRunner(std::move(test_module), buffer_assignment_proto, args, test_runner, options.run_test_hlo_passes), ModuleResult::kRuntimeError, test_run_result)); if (test_run_result != nullptr) { *test_run_result = ModuleResult::kRan; } if (options.print_literals) { std::cout << "\n** Result with test runner " << test_runner->Name() << " **\n" << test_result.ToString() << "\n"; } if (iteration_literals_proto != nullptr) { LiteralProto test_result_proto = test_result.ToProto(); iteration_literals_proto->mutable_result()->Swap(&test_result_proto); } if (reference_module == nullptr) { std::cerr << "Skipping reference runner\n"; return absl::OkStatus(); } if (const HloInstruction* root_instruction = reference_module->entry_computation()->root_instruction(); root_instruction->opcode() == HloOpcode::kCustomCall) { std::cerr << "Skipping reference runner for a custom call " << root_instruction->custom_call_target() << "\n"; if (reference_run_result != nullptr) { *reference_run_result = ModuleResult::kSkipped; } return absl::OkStatus(); } TF_ASSIGN_OR_RETURN( auto reference_result, copy_result_on_failure( ExecuteWithRunner(std::move(reference_module), nullptr, args, reference_runner, options.run_reference_hlo_passes), ModuleResult::kRuntimeError, reference_run_result)); if (reference_run_result != nullptr) { *reference_run_result = ModuleResult::kRan; } if (options.print_literals) { std::cout << "\n** Result with reference runner " << reference_runner->Name() << " **\n" << reference_result.ToString() << "\n"; } if (iteration_literals_proto != nullptr) { LiteralProto reference_result_proto = reference_result.ToProto(); iteration_literals_proto->mutable_reference_result()->Swap( &reference_result_proto); } ErrorSpec error_spec(static_cast<float>(options.abs_error_bound), static_cast<float>(options.rel_error_bound)); absl::Status comparison_status = literal_comparison::Near(reference_result, test_result, error_spec, true, &OnMiscompare); const ModuleResult comparison_result = comparison_status.ok() ? ModuleResult::kMatched : ModuleResult::kMismatch; if (test_run_result != nullptr) { *test_run_result = comparison_result; } if (reference_run_result != nullptr) { *reference_run_result = comparison_result; } return comparison_status; } struct ChunkResult { std::string module_name; ModuleResult test_result = ModuleResult::kDidntRun; ModuleResult reference_result = ModuleResult::kDidntRun; absl::Status status; bool operator<(const ChunkResult& other) const { if (test_result != other.test_result) { return test_result < other.test_result; } return reference_result < other.reference_result; } }; std::string BuildResultsTable(absl::Span<const ChunkResult> chunk_results, size_t num_modules) { constexpr int kStatusWidth = 21; constexpr int kNameWidth = 30; constexpr int kThreeColumnsWidth = 5 + 2 * kStatusWidth + kNameWidth; constexpr int kTableWidth = kThreeColumnsWidth + 30; std::ostringstream strstr; auto print_row = [&](absl::string_view reference, absl::string_view test, absl::string_view module_name, absl::string_view error) { std::string formatted_error = absl::StrReplaceAll( error, {{"\n", absl::StrCat("\n", std::string(kThreeColumnsWidth, ' '), "|")}}); strstr << " " << std::left << std::setw(kStatusWidth) << reference << "| " << std::setw(kStatusWidth) << test << "| " << std::setw(kNameWidth) << module_name << "| " << formatted_error << "\n"; }; auto print_line = [&](int line_width) { strstr << std::string(line_width, '-') << "\n"; }; print_row("Reference", "Test", "Module", "Status"); print_line(kTableWidth); std::map<std::pair<ModuleResult, ModuleResult>, int> result_counts; for (const ChunkResult& chunk_result : chunk_results) { const std::pair<ModuleResult, ModuleResult> result_pair( chunk_result.reference_result, chunk_result.test_result); ++result_counts[result_pair]; print_row(ModuleResultToString(chunk_result.reference_result), ModuleResultToString(chunk_result.test_result), chunk_result.module_name, chunk_result.status.ToString()); } print_line(kTableWidth); print_row("Reference", "Test", "Module", "Status"); print_line(kTableWidth); strstr << "\n\n"; print_line(kThreeColumnsWidth); print_row("Reference", "Test", "Total count", ""); print_line(kThreeColumnsWidth); for (const auto& [result, count] : result_counts) { print_row(ModuleResultToString(result.first), ModuleResultToString(result.second), absl::StrCat(count), ""); } print_line(kThreeColumnsWidth); if (chunk_results.size() < num_modules) { strstr << "\n(did not " << (num_modules - chunk_results.size()) << " modules due to earlier failures)\n\n"; } return strstr.str(); } absl::Status RunIsolatedAndCompare( std::unique_ptr<HloModule> test_module, const BufferAssignmentProto* buffer_assignment_proto, HloRunnerInterface* test_runner, HloRunnerInterface* reference_runner, std::minstd_rand0* engine, const RunHloModuleOptions& options, xla::RunHloModuleIterationLiterals* iteration_literals_proto, std::function<absl::Status(const HloModule&, HloRunnerInterface*, HloModule*)> reference_module_modifier_hook, std::function<void(HloModuleConfig*)> config_modifier_hook) { CHECK(test_module); CHECK(iteration_literals_proto == nullptr) << "Cannot run decomposed module if input literals are provided."; if (options.run_test_hlo_passes || (options.run_reference_hlo_passes && !options.reference_platform.empty())) { LOG(WARNING) << "!!! Warning !!! When running decomposed module, running HLO " "passes is likely not what you want. If you have unoptimized " "HLO, first convert it to the optimized e.g. using the " "hlo-opt tool, and then isolate without HLO passes."; } std::vector<ChunkResult> chunk_results; TF_ASSIGN_OR_RETURN( std::vector<std::unique_ptr<HloModule>> modules, DecomposeHloModule(*test_module, true)); absl::Status status = absl::OkStatus(); for (std::unique_ptr<HloModule>& module : modules) { const std::string module_name = module->name(); ModuleResult test_module_result = ModuleResult::kDidntRun; ModuleResult reference_module_result = ModuleResult::kDidntRun; absl::Status chunk_status = RunAndCompareInternal( std::move(module), buffer_assignment_proto, test_runner, reference_runner, engine, options, iteration_literals_proto, reference_module_modifier_hook, config_modifier_hook, &test_module_result, &reference_module_result); chunk_results.push_back({std::move(module_name), test_module_result, reference_module_result, chunk_status}); status.Update(chunk_status); } absl::c_sort(chunk_results); std::cout << BuildResultsTable(chunk_results, modules.size()); return status; } } absl::Status RunAndCompare( std::unique_ptr<HloModule> test_module, const BufferAssignmentProto* buffer_assignment_proto, HloRunnerInterface* test_runner, HloRunnerInterface* reference_runner, std::minstd_rand0* engine, const RunHloModuleOptions& options, xla::RunHloModuleIterationLiterals* iteration_literals_proto, std::function<absl::Status(const HloModule&, HloRunnerInterface*, HloModule*)> reference_module_modifier_hook, std::function<void(HloModuleConfig*)> config_modifier_hook) { if (options.isolate_instructions) { return RunIsolatedAndCompare( std::move(test_module), buffer_assignment_proto, test_runner, reference_runner, engine, options, iteration_literals_proto, reference_module_modifier_hook, config_modifier_hook); } return RunAndCompareInternal( std::move(test_module), buffer_assignment_proto, test_runner, reference_runner, engine, options, iteration_literals_proto, reference_module_modifier_hook, config_modifier_hook, nullptr, nullptr); } absl::Status RunAndCompare( const std::string& hlo_filename, HloRunnerInterface* test_runner, HloRunnerInterface* reference_runner, std::minstd_rand0* engine, const RunHloModuleOptions& options, xla::RunHloModuleIterationLiterals* iteration_literals_proto, std::function<absl::Status(const HloModule&, HloRunnerInterface*, HloModule*)> reference_module_modifier_hook, std::function<void(HloModuleConfig*)> config_modifier_hook, std::function<absl::Status(const RunHloModuleOptions& options, HloModule& module)> compilation_env_modifier_hook) { std::string input_format = options.input_format; if (input_format.empty()) { input_format = std::string(tsl::io::Extension(hlo_filename)); } BufferAssignmentProto buffer_assignment_proto; TF_ASSIGN_OR_RETURN( auto test_module, LoadModuleFromFile( hlo_filename, input_format, hlo_module_loader_details::Config(), config_modifier_hook, options.use_buffer_assignment_from_proto ? &buffer_assignment_proto : nullptr)); HloVerifier verifier( HloVerifierOpts{}.WithLayoutSensitive(false).WithAllowMixedPrecision( true)); TF_RETURN_IF_ERROR(verifier.Run(test_module.get()).status()); if (compilation_env_modifier_hook) { TF_CHECK_OK(compilation_env_modifier_hook(options, *test_module)) << "Could not adjust the compilation environment for user provided " "hlo module."; } if (options.print_literals) { std::cout << "\n** Buffer assignment proto **\n" << buffer_assignment_proto.DebugString() << "\n"; } std::unique_ptr<RunHloModuleIterationLiterals> iteration_literals_proto_local; if (iteration_literals_proto == nullptr) { if (!options.force_fake_data && !options.isolate_instructions && (input_format == "pb" || input_format == "pbtxt")) { LOG(INFO) << "Using input data from the user-provided snapshot."; TF_ASSIGN_OR_RETURN(iteration_literals_proto_local, LoadInputFromFile(hlo_filename, input_format)); iteration_literals_proto = iteration_literals_proto_local.get(); } else if (input_format == "pb" || input_format == "pbtxt") { LOG(INFO) << "Ignoring input data from snapshot and using fake data instead."; } } return RunAndCompare( std::move(test_module), options.use_buffer_assignment_from_proto ? &buffer_assignment_proto : nullptr, test_runner, reference_runner, engine, options, iteration_literals_proto, reference_module_modifier_hook, config_modifier_hook); } void ReadInputLiteralsFromFile(const std::string& file_path, RunHloModuleLiterals* input_literals_proto) { if (!tsl::ReadTextOrBinaryProto(tsl::Env::Default(), file_path, input_literals_proto) .ok() || input_literals_proto->iterations().empty()) { xla::RunHloModuleIterationLiterals iteration_literals_proto; if (!tsl::ReadTextOrBinaryProto(tsl::Env::Default(), file_path, &iteration_literals_proto) .ok()) { LOG(QFATAL) << "Failed to deserialize input literals from file " << file_path << "\n"; } input_literals_proto->clear_iterations(); *input_literals_proto->add_iterations() = iteration_literals_proto; } } }
#include "xla/tools/run_hlo_module.h" #include <string> #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/tools/run_hlo_module.pb.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" namespace xla { namespace { RunHloModuleIterationLiterals GetTestProto() { RunHloModuleIterationLiterals result; *result.add_arguments() = LiteralUtil::CreateR1<float>({0.1, 0.2}).ToProto(); *result.add_arguments() = LiteralUtil::CreateR1<float>({0.3, 0.4}).ToProto(); *result.mutable_result() = LiteralUtil::CreateR1<float>({0.5, 0.6}).ToProto(); *result.mutable_reference_result() = LiteralUtil::CreateR1<float>({0.5, 0.6}).ToProto(); return result; } TEST(ReadInputLiteralsFromFile, ReadRunHloModuleLiteralsBinaryProto) { std::string file_path; auto env = tsl::Env::Default(); EXPECT_TRUE(env->LocalTempFilename(&file_path)); auto proto = GetTestProto(); RunHloModuleLiterals wrapped_proto; *wrapped_proto.add_iterations() = proto; TF_ASSERT_OK(tsl::WriteBinaryProto(env, file_path, wrapped_proto)); RunHloModuleLiterals result; ReadInputLiteralsFromFile(file_path, &result); EXPECT_EQ(result.SerializeAsString(), wrapped_proto.SerializeAsString()); } TEST(ReadInputLiteralsFromFile, ReadRunHloModuleLiteralsTextProto) { std::string file_path; auto env = tsl::Env::Default(); EXPECT_TRUE(env->LocalTempFilename(&file_path)); auto proto = GetTestProto(); RunHloModuleLiterals wrapped_proto; *wrapped_proto.add_iterations() = proto; TF_ASSERT_OK(tsl::WriteTextProto(env, file_path, wrapped_proto)); RunHloModuleLiterals result; ReadInputLiteralsFromFile(file_path, &result); EXPECT_EQ(result.SerializeAsString(), wrapped_proto.SerializeAsString()); } TEST(ReadInputLiteralsFromFile, ReadRunHloModuleIterationLiteralsBinaryProto) { std::string file_path; auto env = tsl::Env::Default(); EXPECT_TRUE(env->LocalTempFilename(&file_path)); auto proto = GetTestProto(); TF_ASSERT_OK(tsl::WriteBinaryProto(env, file_path, proto)); RunHloModuleLiterals result; ReadInputLiteralsFromFile(file_path, &result); EXPECT_EQ(result.iterations_size(), 1); EXPECT_EQ(result.iterations(0).SerializeAsString(), proto.SerializeAsString()); } TEST(ReadInputLiteralsFromFile, ReadRunHloModuleIterationLiteralsTextProto) { std::string file_path; auto env = tsl::Env::Default(); EXPECT_TRUE(env->LocalTempFilename(&file_path)); auto proto = GetTestProto(); TF_ASSERT_OK(tsl::WriteTextProto(env, file_path, proto)); RunHloModuleLiterals result; ReadInputLiteralsFromFile(file_path, &result); EXPECT_EQ(result.iterations_size(), 1); EXPECT_EQ(result.iterations(0).SerializeAsString(), proto.SerializeAsString()); } } }
2,190
cpp
tensorflow/tensorflow
hlo_expand
third_party/xla/xla/tools/hlo_expand.cc
third_party/xla/xla/tools/tests/hlo_expand_test.cc
#ifndef XLA_TOOLS_HLO_EXPAND_H_ #define XLA_TOOLS_HLO_EXPAND_H_ #include <string> #include <vector> #include "xla/service/hlo_pass_pipeline.h" #include "xla/tsl/util/command_line_flags.h" namespace xla { struct HloExpandConfig { bool help{false}; std::string input_format; std::string output_file; std::string output_format; bool batch_norm_expander{false}; bool expand_all{false}; bool rng_bit_generator_expander{false}; bool batch_norm_grad_expander{false}; bool batch_norm_inference_expander{false}; bool batch_norm_training_expander{false}; bool cholesky_expander{false}; bool rng_expander{false}; bool rng_bit_generator_philox_expander{false}; bool rng_bit_generator_three_fry_expander{false}; bool triangular_solve_expander{false}; bool spmd_expander{false}; bool verify_hlo{false}; }; void AddPassesToPipeline(xla::HloExpandConfig& config, xla::HloPassPipeline& pipeline, const xla::HloModuleConfig& hlo_module_config); std::vector<tsl::Flag> GetFlags(xla::HloExpandConfig& config); void ParseCompoundFlags(xla::HloExpandConfig& config); } #endif #include "xla/tools/hlo_expand.h" #include <vector> #include "xla/service/batchnorm_expander.h" #include "xla/service/cholesky_expander.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/service/hlo_verifier.h" #include "xla/service/rng_bit_generator_expander.h" #include "xla/service/rng_expander.h" #include "xla/service/sharding_propagation.h" #include "xla/service/spmd/stateful_rng_spmd_partitioner.h" #include "xla/service/triangular_solve_expander.h" #include "xla/tsl/util/command_line_flags.h" #include "xla/xla_data.pb.h" namespace xla { void AddPassesToPipeline(HloExpandConfig& config, HloPassPipeline& pipeline, const HloModuleConfig& hlo_module_config) { if (config.batch_norm_grad_expander || config.batch_norm_inference_expander || config.batch_norm_training_expander) { pipeline.AddPass<xla::BatchNormExpander>( config.batch_norm_training_expander, config.batch_norm_inference_expander, config.batch_norm_grad_expander); } if (config.cholesky_expander) { pipeline.AddPass<xla::CholeskyExpander>(); } if (config.rng_expander) { pipeline.AddPass<xla::RngExpander>(); } if (config.rng_bit_generator_philox_expander) { pipeline.AddPass<xla::RngBitGeneratorExpander>( xla::RandomAlgorithm::RNG_PHILOX); } if (config.rng_bit_generator_three_fry_expander) { pipeline.AddPass<xla::RngBitGeneratorExpander>( xla::RandomAlgorithm::RNG_THREE_FRY); } if (config.triangular_solve_expander) { pipeline.AddPass<xla::TriangularSolveExpander>(); } if (config.spmd_expander) { pipeline.AddPass<ShardingPropagation>( true, false, hlo_module_config.allow_spmd_sharding_propagation_to_output(), hlo_module_config.allow_spmd_sharding_propagation_to_parameters()); pipeline.AddPass<spmd::StatefulRngSpmdPartitioner>( hlo_module_config.num_partitions(), hlo_module_config.replica_count(), hlo_module_config.debug_options() .xla_gpu_threshold_for_windowed_einsum_mib()); } if (config.verify_hlo) { pipeline.AddPass<xla::HloVerifier>(false, false); } } std::vector<tsl::Flag> GetFlags(HloExpandConfig& config) { return { tsl::Flag("h", &config.help, "Alias of --help"), tsl::Flag("help", &config.help, "Display available options"), tsl::Flag( "input_format", &config.input_format, "The format of the input file. If this flag is not specified, it's" "inferred from the file extension instead. Valid values:\n " "* hlo|txt : HLO textual format\n" "* pb : xla::HloProto in binary proto format\n" "* pbtxt : xla::HloProto in text proto format"), tsl::Flag("o", &config.output_file, "Alias of --output_file="), tsl::Flag("output_file", &config.output_file, "Full output file path"), tsl::Flag("output_format", &config.output_format, "The format of the output file. Defaults to input_format. " "Valid values:\n" "* hlo|txt : HLO textual format\n" "* pb : xla::HloProto in binary proto format\n" "* pbtxt : xla::HloProto in text proto format"), tsl::Flag("batch_norm_expander", &config.batch_norm_expander, "Overrides and expands batch_norm_grad, batch_norm_inference, " "and batch_norm_training ops"), tsl::Flag("batch_norm_grad_expander", &config.batch_norm_grad_expander, "Expands batch_norm_grad op"), tsl::Flag("batch_norm_inference_expander", &config.batch_norm_inference_expander, "Expands batch_norm_inference_grad op"), tsl::Flag("batch_norm_training_expander", &config.batch_norm_training_expander, "Expands batch_norm_training_grad op"), tsl::Flag("cholesky_expander", &config.cholesky_expander, "Expands cholesky op"), tsl::Flag("spmd_expander", &config.spmd_expander, "Expands SPMD sharding"), tsl::Flag("expand_all", &config.expand_all, "Overrides and expands all supported passes below"), tsl::Flag("rng_expander", &config.rng_expander, "Expands rng op"), tsl::Flag( "rng_bit_generator_expander", &config.rng_bit_generator_expander, "Overrides and expands rng_bit_generator op on all prng algorithms"), tsl::Flag("rng_bit_generator_philox_expander", &config.rng_bit_generator_philox_expander, "Expands rng_bit_generator op using philox prng algorithm"), tsl::Flag("rng_bit_generator_three_fry_expander", &config.rng_bit_generator_three_fry_expander, "Expands rng_bit_generator op using three_fry prng algorithm"), tsl::Flag("triangular_solve_expander", &config.triangular_solve_expander, "Expands triangular_solve op"), tsl::Flag("verify_hlo", &config.verify_hlo, "Run HLO verifier after passes"), }; } void ParseCompoundFlags(HloExpandConfig& config) { config.batch_norm_grad_expander |= config.expand_all || config.batch_norm_expander; config.batch_norm_inference_expander |= config.expand_all || config.batch_norm_expander; config.batch_norm_training_expander |= config.expand_all || config.batch_norm_expander; config.cholesky_expander |= config.expand_all; config.rng_bit_generator_philox_expander |= config.expand_all || config.rng_bit_generator_expander; config.rng_bit_generator_three_fry_expander |= config.expand_all || config.rng_bit_generator_expander; config.rng_expander |= config.expand_all; config.triangular_solve_expander |= config.expand_all; } }
#include <string> #include <vector> #include <gmock/gmock.h> #include "tsl/platform/path.h" #include "tsl/platform/subprocess.h" #include "tsl/platform/test.h" namespace xla { namespace { class HloExpandTest : public ::testing::Test { protected: void HloOpt(std::vector<std::string>& additional_flags) { std::string hlo_opt_bin = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "hlo-expand"); tsl::SubProcess proc; std::vector<std::string> argv = {hlo_opt_bin}; argv.insert(argv.end(), additional_flags.begin(), additional_flags.end()); proc.SetProgram(hlo_opt_bin, argv); proc.SetChannelAction(tsl::CHAN_STDOUT, tsl::ACTION_PIPE); proc.SetChannelAction(tsl::CHAN_STDERR, tsl::ACTION_PIPE); EXPECT_TRUE(proc.Start()); stdout_output_ = stderr_output_ = ""; int status = proc.Communicate(nullptr, &stdout_output_, &stderr_output_); #if defined(_WIN32) || defined(_WIN64) exited_normally_ = (status == 0); exit_status_ = status; #else exited_normally_ = WIFEXITED(status); exit_status_ = exited_normally_ ? WEXITSTATUS(status) : -1; #endif } std::string stdout_output_; std::string stderr_output_; bool exited_normally_ = false; int exit_status_ = -1; }; TEST_F(HloExpandTest, CholeskyHlo) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "cholesky.hlo"); std::vector<std::string> additional_flags = {"--input_format=hlo", hlo_path}; HloOpt(additional_flags); const std::string& expected_hlo_string = R"(HloModule main, entry_computation_layout={()->f64[3,3]{1,0}} ENTRY %main.3 () -> f64[3,3] { %constant.1 = f64[3,3]{1,0} constant({ { 1, 2, 3 }, { 2, 20, 26 }, { 3, 26, 70 } }) ROOT %cholesky.2 = f64[3,3]{1,0} cholesky(f64[3,3]{1,0} %constant.1), lower=true })"; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 0); EXPECT_THAT(stdout_output_, testing::HasSubstr(expected_hlo_string)); } TEST_F(HloExpandTest, SpmdHlo) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "spmd.hlo"); std::vector<std::string> additional_flags = {"--spmd_expander", hlo_path}; HloOpt(additional_flags); const std::string& expected_hlo_string = R"(HloModule module, entry_computation_layout={(f32[24,64]{1,0}, f32[39296,64]{1,0})->f32[24,19648]{1,0}}, num_partitions=2 ENTRY %entry_spmd (param: f32[24,64], param.1: f32[39296,64]) -> f32[24,19648] { %param = f32[24,64]{1,0} parameter(0), sharding={replicated} %lhs.copy.1 = f32[24,64]{1,0} copy(f32[24,64]{1,0} %param) %param.1 = f32[39296,64]{1,0} parameter(1), sharding={replicated} %constant = s32[2]{0} constant({0, 19648}) %partition-id = u32[] partition-id() %dynamic-slice = s32[1]{0} dynamic-slice(s32[2]{0} %constant, u32[] %partition-id), dynamic_slice_sizes={1} %reshape = s32[] reshape(s32[1]{0} %dynamic-slice) %constant.1 = s32[] constant(0) %dynamic-slice.1 = f32[19648,64]{1,0} dynamic-slice(f32[39296,64]{1,0} %param.1, s32[] %reshape, s32[] %constant.1), dynamic_slice_sizes={19648,64} %rhs.copy.1 = f32[19648,64]{1,0} copy(f32[19648,64]{1,0} %dynamic-slice.1) ROOT %dot.1 = f32[24,19648]{1,0} dot(f32[24,64]{1,0} %lhs.copy.1, f32[19648,64]{1,0} %rhs.copy.1), lhs_contracting_dims={1}, rhs_contracting_dims={1} })"; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 0); EXPECT_THAT(stdout_output_, testing::HasSubstr(expected_hlo_string)); } TEST_F(HloExpandTest, CholeskyExpanderHlo) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "cholesky.hlo"); std::vector<std::string> additional_flags = {"--input_format=hlo", hlo_path, "--expand_all"}; HloOpt(additional_flags); const std::string& expected_hlo_string = "%xla.cholesky_f64"; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 0); EXPECT_THAT(stdout_output_, testing::HasSubstr(expected_hlo_string)); } TEST_F(HloExpandTest, InvalidArgc) { std::vector<std::string> additional_flags = {"--input_format=hlo", "foo", "bar", "baz"}; HloOpt(additional_flags); const std::string& expected_string = "Cannot parse more than one argument. See usage below:"; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, InvalidInputFileExtension) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "foo.bar"); std::vector<std::string> additional_flags = {hlo_path}; HloOpt(additional_flags); const std::string& expected_string = "input_format must be specified as [hlo|pb|pbtxt|txt]."; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, InvalidInputFormat) { std::vector<std::string> additional_flags = {"--input_format=foo"}; HloOpt(additional_flags); const std::string& expected_string = "input_format must be specified as [hlo|pb|pbtxt|txt]."; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, InvalidOutputFileExtension) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "cholesky.hlo"); std::string output_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "foo.bar"); std::vector<std::string> additional_flags = {"--input_format=", hlo_path, "--output_file=" + output_path}; HloOpt(additional_flags); const std::string& expected_string = "output_format must be specified as [hlo|pb|pbtxt]."; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, InvalidOutputFormat) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "cholesky.hlo"); std::vector<std::string> additional_flags = {"--input_format=", hlo_path, "--output_format=foo"}; HloOpt(additional_flags); const std::string& expected_string = "output_format must be specified as [hlo|pb|pbtxt]."; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, InvalidFile) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "foo.bar"); std::vector<std::string> additional_flags = {"--input_format=hlo", hlo_path}; HloOpt(additional_flags); const std::string& expected_string = "Try: hlo-expand --help"; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, UnsupportedOutputFormat) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "cholesky.hlo"); std::vector<std::string> additional_flags = {"--input_format=hlo", "--output_format=pb", hlo_path}; HloOpt(additional_flags); const std::string& expected_string = "Printing to stdout must specify supported " "output_format=[hlo|pbtxt|txt]."; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } TEST_F(HloExpandTest, VerificationFailure) { std::string hlo_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "tests", "invalid_concat.hlo"); std::vector<std::string> additional_flags = {"--verify_hlo", hlo_path}; HloOpt(additional_flags); const std::string& expected_string = "Cannot concatenate arrays that differ in dimensions"; EXPECT_TRUE(exited_normally_); EXPECT_EQ(exit_status_, 1); EXPECT_THAT(stderr_output_, testing::HasSubstr(expected_string)); } } }
2,191
cpp
tensorflow/tensorflow
hlo_extractor
third_party/xla/xla/tools/hlo_extractor.cc
third_party/xla/xla/tools/hlo_extractor_test.cc
#ifndef XLA_TOOLS_HLO_EXTRACTOR_H_ #define XLA_TOOLS_HLO_EXTRACTOR_H_ #include <cstdint> #include <functional> #include <memory> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" namespace xla { using ExtractSelector = std::function<bool(const HloInstruction*)>; enum class ReplaceType { kReplaceParam, kReplaceConst, kReplaceZeroBroadcast, kReplaceRandomBroadcast }; using ReplaceTypeSelector = std::function<ReplaceType(const HloInstruction*)>; std::unique_ptr<HloModule> ExtractModule( const HloInstruction* instruction, int64_t height = -1, ExtractSelector extract_selector = nullptr, ReplaceTypeSelector replace_type_selector = nullptr, bool cross_computation = false); } #endif #include "xla/tools/hlo_extractor.h" #ifndef _WIN32 #include <unistd.h> #endif #include <cstdint> #include <deque> #include <memory> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/compilation_environments.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_verifier.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/test_utils.h" #include "tsl/platform/status.h" namespace xla { namespace { class ExtractionVisitor : public ConstDfsHloVisitorWithDefault { public: explicit ExtractionVisitor( const HloInstruction* root_instruction, absl::flat_hash_set<const HloInstruction*>* boundary, ExtractSelector extract_selector, ReplaceTypeSelector replace_type_selector) : root_instruction_(root_instruction), old_module_(root_instruction->GetModule()), module_(std::make_unique<HloModule>( "extracted", config_, std::make_unique<CompilationEnvironments>( old_module_->comp_envs()))), clone_context_(module_.get()), boundary_(boundary), extract_selector_(extract_selector), replace_type_selector_(replace_type_selector) { for (auto computation : old_module_->computations()) { old_computations_to_builders_.insert( {computation, std::make_unique<HloComputation::Builder>(computation->name())}); } for (auto computation : old_module_->computations()) { parameter_numbers_[computation] = 0; } } absl::Status HandleParameter(const HloInstruction* parameter) override { return ReplaceWithParameter(parameter); } absl::Status DefaultAction(const HloInstruction* hlo) override { if ((boundary_ != nullptr && boundary_->contains(hlo) > 0) || (extract_selector_ != nullptr && !extract_selector_(hlo))) { if (replace_type_selector_ != nullptr) { switch (replace_type_selector_(hlo)) { case ReplaceType::kReplaceConst: return ReplaceWithConstant(hlo); case ReplaceType::kReplaceParam: CHECK(hlo->parent() == root_instruction_->parent()) << "Replacing instructions at non-entry computation with " "parameters is not supported."; return ReplaceWithParameter(hlo); case ReplaceType::kReplaceZeroBroadcast: return ReplaceWithConstantBroadcast( hlo, ReplaceType::kReplaceZeroBroadcast); case ReplaceType::kReplaceRandomBroadcast: return ReplaceWithConstantBroadcast( hlo, ReplaceType::kReplaceRandomBroadcast); default: QCHECK(false) << "Unsupported replacement type"; } } return ReplaceWithParameter(hlo); } std::vector<HloInstruction*> new_operands; for (auto operand : hlo->operands()) { new_operands.push_back(clone_context_.GetInstruction(operand)); } auto instruction = hlo->CloneWithNewOperands(hlo->shape(), new_operands, &clone_context_); auto it = old_computations_to_builders_.find(hlo->parent()); CHECK(it != old_computations_to_builders_.end()); auto builder = it->second.get(); builder->AddInstruction(std::move(instruction)); if (hlo->IsRoot() && hlo != root_instruction_) { CHECK(clone_context_.FindComputation(hlo->parent()) == nullptr); auto new_computation = module_->AddEmbeddedComputation(builder->Build()); clone_context_.MapComputation(hlo->parent(), new_computation); } return absl::OkStatus(); } absl::Status FinishVisit(const HloInstruction* ) override { auto new_entry_computation = module_->AddEntryComputation( old_computations_to_builders_.at(root_instruction_->parent())->Build()); clone_context_.MapComputation(root_instruction_->parent(), new_entry_computation); for (auto computation : old_module_->MakeComputationPostOrder()) { for (auto old_instruction : computation->MakeInstructionPostOrder()) { if (auto new_instruction = clone_context_.FindInstruction(old_instruction)) { new_instruction->SetAndSanitizeName(old_instruction->name()); } } } for (HloInstruction* instruction : extra_created_instructions_) { module_->SetAndUniquifyInstrName(instruction, instruction->name()); } return absl::OkStatus(); } HloModule* module() { return module_.get(); } std::unique_ptr<HloModule> ConsumeModule() { return std::move(module_); } private: absl::Status ReplaceWithConstant(const HloInstruction* hlo) { absl::StatusOr<Literal> literal_status = MakeFakeLiteral(hlo->shape()); TF_CHECK_OK(literal_status.status()); auto new_const = HloInstruction::CreateConstant(std::move(literal_status.value())); clone_context_.MapInstruction(hlo, new_const.get()); auto it = old_computations_to_builders_.find(hlo->parent()); CHECK(it != old_computations_to_builders_.end()); auto builder = it->second.get(); builder->AddInstruction(std::move(new_const)); return absl::OkStatus(); } absl::Status ReplaceWithParameter(const HloInstruction* hlo) { CHECK(parameter_numbers_.contains(hlo->parent())); auto new_parameter = HloInstruction::CreateParameter( parameter_numbers_.at(hlo->parent())++, hlo->shape(), hlo->name()); clone_context_.MapInstruction(hlo, new_parameter.get()); CHECK(old_computations_to_builders_.contains(hlo->parent())); auto builder = old_computations_to_builders_[hlo->parent()].get(); builder->AddInstruction(std::move(new_parameter)); return absl::OkStatus(); } HloInstruction* ReplaceWithConstantBroadcastHelper( const Shape& shape, HloComputation::Builder* builder, ReplaceType replace_type) { if (shape.IsTuple()) { std::vector<HloInstruction*> tuple_operands; for (const auto& subshape : shape.tuple_shapes()) { tuple_operands.push_back(ReplaceWithConstantBroadcastHelper( subshape, builder, replace_type)); } auto zero_tuple = builder->AddInstruction(HloInstruction::CreateTuple(tuple_operands)); extra_created_instructions_.push_back(zero_tuple); return zero_tuple; } else { Shape constant_shape = ShapeUtil::MakeShape(shape.element_type(), {}); HloInstruction* constant_instruction; CHECK(replace_type == ReplaceType::kReplaceZeroBroadcast || replace_type == ReplaceType::kReplaceRandomBroadcast); if (replace_type == ReplaceType::kReplaceZeroBroadcast) { constant_instruction = builder->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(constant_shape.element_type()))); } else { absl::StatusOr<Literal> literal_status = MakeFakeLiteral(constant_shape); TF_CHECK_OK(literal_status.status()); constant_instruction = builder->AddInstruction( HloInstruction::CreateConstant(std::move(literal_status.value()))); } extra_created_instructions_.push_back(constant_instruction); auto broadcast_constant_instruction = builder->AddInstruction( HloInstruction::CreateBroadcast(shape, constant_instruction, {})); extra_created_instructions_.push_back(broadcast_constant_instruction); return broadcast_constant_instruction; } } absl::Status ReplaceWithConstantBroadcast(const HloInstruction* hlo, ReplaceType replace_type) { CHECK(replace_type == ReplaceType::kReplaceZeroBroadcast || replace_type == ReplaceType::kReplaceRandomBroadcast); CHECK(old_computations_to_builders_.contains(hlo->parent())); auto builder = old_computations_to_builders_[hlo->parent()].get(); HloInstruction* zero_broadcast = ReplaceWithConstantBroadcastHelper(hlo->shape(), builder, replace_type); clone_context_.MapInstruction(hlo, zero_broadcast); return absl::OkStatus(); } const HloInstruction* root_instruction_; HloModule* old_module_; HloModuleConfig config_; std::unique_ptr<HloModule> module_; HloCloneContext clone_context_; absl::flat_hash_map<const HloComputation*, std::unique_ptr<HloComputation::Builder>> old_computations_to_builders_; absl::flat_hash_map<const HloComputation*, int> parameter_numbers_; absl::flat_hash_set<const HloInstruction*>* boundary_; ExtractSelector extract_selector_; ReplaceTypeSelector replace_type_selector_; std::vector<HloInstruction*> extra_created_instructions_; }; void ComputeBoundary(const HloInstruction* root, int64_t limit, absl::flat_hash_set<const HloInstruction*>* boundary) { std::deque<const HloInstruction*> worklist; absl::flat_hash_map<const HloInstruction*, int64_t> visited; worklist.push_back(root); visited.emplace(root, 0); while (!worklist.empty()) { auto hlo = worklist.front(); worklist.pop_front(); int64_t hops = visited[hlo]; if (hops > limit) { boundary->insert(hlo); continue; } for (const HloInstruction* operand : hlo->operands()) { if (visited.count(operand)) { continue; } worklist.push_back(operand); visited.emplace(operand, hops + 1); } } } } std::unique_ptr<HloModule> ExtractModule( const HloInstruction* instruction, int64_t height, ExtractSelector extract_selector, ReplaceTypeSelector replace_type_selector, bool cross_computation) { QCHECK(height == -1 || !cross_computation) << "Boundary cannnot be calculated across the computations."; absl::flat_hash_set<const HloInstruction*> boundary; if (height != -1) { ComputeBoundary(instruction, height, &boundary); } ExtractionVisitor visitor(instruction, &boundary, extract_selector, replace_type_selector); TF_CHECK_OK(instruction->Accept(&visitor, true, false, cross_computation)); ExtractionVisitor cleanup_visitor( visitor.module()->entry_computation()->root_instruction(), nullptr, nullptr, nullptr); TF_CHECK_OK(visitor.module()->entry_computation()->root_instruction()->Accept( &cleanup_visitor, true, false, false)); HloVerifier verifier(false, true); TF_CHECK_OK(verifier.Run(cleanup_visitor.module()).status()); return cleanup_visitor.ConsumeModule(); } }
#include "xla/tools/hlo_extractor.h" #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace op = testing::opcode_matchers; using HloExtractorTest = HloTestBase; TEST_F(HloExtractorTest, ExtractTopLevel) { const std::string& hlo_string = R"( HloModule test ENTRY %entry { param.0 = f32[4]{0} parameter(0) negate = f32[4]{0} negate(f32[4]{0} param.0) ROOT exp = f32[4]{0} exponential(f32[4]{0} negate) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "exp")); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Exp(op::Negate(op::Parameter(0)))); } { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "exp"), 0); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Exp(op::Parameter(0))); } { auto extracted_module = ExtractModule( FindInstruction(hlo_module.get(), "negate"), 0); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Negate(op::Parameter(0))); } } TEST_F(HloExtractorTest, ExtractDag) { const std::string& hlo_string = R"( HloModule test ENTRY %entry { param.0 = f32[4]{0} parameter(0) tanh = f32[4]{0} tanh(f32[4]{0} param.0) negate = f32[4]{0} negate(f32[4]{0} tanh) exp = f32[4]{0} exponential(f32[4]{0} negate) ROOT add = f32[4]{0} add(f32[4]{0} negate, f32[4]{0} exp) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "exp")); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Exp(op::Negate(op::Tanh(op::Parameter(0))))); } { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), 0); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Parameter(0), op::Parameter(1))); } { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Negate(op::Parameter(0)), op::Exp(op::Negate(op::Parameter(0))))); } { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), 2); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Negate(op::Tanh(op::Parameter(0))), op::Exp(op::Negate(op::Tanh(op::Parameter(0)))))); } } TEST_F(HloExtractorTest, ExtractWithConstant) { const std::string& hlo_string = R"( HloModule test ENTRY %entry { p = f32[4]{0} parameter(0) tanh = f32[4]{0} tanh(p) c = f32[4]{0} constant({1, 2, 3, 4}) ROOT add = f32[4]{0} add(tanh, c) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), 0); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Parameter(0), op::Parameter(1))); } { auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Tanh(op::Parameter(0)), op::Constant())); } } TEST_F(HloExtractorTest, ExtractFromMultipleComputation) { const std::string& hlo_string = R"( HloModule axpy_module calculate_alpha { c.1 = f32[] constant(1) c.2 = f32[] constant(2) add.0 = f32[] add(c.1, c.2) c.3 = f32[] constant(4) ROOT ret = f32[] subtract(add.0, c.3) } ENTRY axpy_computation { alpha = f32[] call(), to_apply=calculate_alpha broadcast = f32[10] broadcast(alpha), dimensions={} x = f32[10] parameter(0) ax = f32[10] multiply(broadcast, x) y = f32[10] parameter(1) ROOT add.1 = f32[10] add(ax, y) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* inst = FindInstruction(hlo_module.get(), "add.0"); EXPECT_THAT(inst, op::Add()); auto extract_selector = [&inst](const HloInstruction* hlo_inst) { return hlo_inst != inst; }; { auto replace_type_selector = [](const HloInstruction* hlo_inst) { return ReplaceType::kReplaceConst; }; auto extracted_module = ExtractModule(hlo_module->entry_computation()->root_instruction(), -1, extract_selector, replace_type_selector, true); EXPECT_EQ(extracted_module->computation_count(), 2); auto calculate_alpha_root_instruction = FindComputation(extracted_module.get(), "calculate_alpha") ->root_instruction(); EXPECT_THAT(calculate_alpha_root_instruction, op::Subtract(op::Constant(), op::Constant())); } { auto replace_type_selector = [](const HloInstruction* hlo_inst) { return ReplaceType::kReplaceZeroBroadcast; }; auto extracted_module = ExtractModule(hlo_module->entry_computation()->root_instruction(), -1, extract_selector, replace_type_selector, true); EXPECT_EQ(extracted_module->computation_count(), 2); auto calculate_alpha_root_instruction = FindComputation(extracted_module.get(), "calculate_alpha") ->root_instruction(); EXPECT_THAT(calculate_alpha_root_instruction, op::Subtract(op::Broadcast(op::Constant()), op::Constant())); } } TEST_F(HloExtractorTest, HloSelector) { const std::string& hlo_string = R"( HloModule axpy_module calculate_alpha { c.1 = f32[] constant(1) c.2 = f32[] constant(2) c.3 = f32[] add(c.1, c.2) c.4 = f32[] constant(4) ROOT ret = f32[] multiply(c.4, c.3) } ENTRY axpy_computation { p.0 = f32[10] parameter(0) p.1 = f32[10] parameter(1) add.0 = f32[10] add(p.0, p.1) alpha = f32[] call(), to_apply=calculate_alpha broadcast = f32[10] broadcast(alpha), dimensions={} p.2 = f32[10] parameter(2) y = f32[10] multiply(broadcast, p.2) x = f32[10] subtract(y, add.0) p.3 = f32[10] parameter(3) ROOT add = f32[10] add(x, p.3) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* inst = FindInstruction(hlo_module.get(), HloOpcode::kSubtract); EXPECT_NE(inst, nullptr); EXPECT_THAT(inst, op::Subtract(op::Multiply(), op::Add())); { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kCall; }; auto extracted_module = ExtractModule(inst, -1, hlo_selector); EXPECT_EQ(extracted_module->computation_count(), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Subtract(op::Multiply(op::Broadcast(op::Parameter()), op::Parameter()), op::Add(op::Parameter(), op::Parameter()))); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kBroadcast; }; auto extracted_module = ExtractModule(inst, 2, hlo_selector); EXPECT_EQ(extracted_module->computation_count(), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Subtract(op::Multiply(op::Parameter(), op::Parameter()), op::Add(op::Parameter(), op::Parameter()))); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kBroadcast; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceConst; }; auto extracted_module = ExtractModule(inst, 2, hlo_selector, replace_type_selector); EXPECT_EQ(extracted_module->computation_count(), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Subtract(op::Multiply(op::Constant(), op::Parameter()), op::Add(op::Parameter(), op::Parameter()))); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kAdd; }; auto extracted_module = ExtractModule(inst, -1, hlo_selector); EXPECT_EQ(extracted_module->computation_count(), 2); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Subtract(op::Multiply(), op::Parameter())); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kSubtract; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceConst; }; auto extracted_module = ExtractModule(hlo_module->entry_computation()->root_instruction(), 2, hlo_selector, replace_type_selector); EXPECT_EQ(extracted_module->computation_count(), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Constant(), op::Parameter())); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { if (hlo_inst->opcode() != HloOpcode::kBroadcast && hlo_inst->opcode() != HloOpcode::kAdd) { return true; } return false; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { if (hlo_inst->opcode() == HloOpcode::kBroadcast) { return ReplaceType::kReplaceConst; } return ReplaceType::kReplaceParam; }; auto extracted_module = ExtractModule(inst, 2, hlo_selector, replace_type_selector); EXPECT_EQ(extracted_module->computation_count(), 1); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Subtract(op::Multiply(op::Constant(), op::Parameter()), op::Parameter())); } } TEST_F(HloExtractorTest, ReplaceTupleWithConstant) { const std::string& hlo_string = R"( HloModule test ENTRY %entry { param.0 = f32[4]{0} parameter(0) tuple.0 = (f32[4]{0}, f32[4]{0}) rng-bit-generator(f32[4]{0} param.0), algorithm=rng_default negate = f32[4]{0} negate(f32[4]{0} param.0) tuple.1 = ((f32[4]{0}, f32[4]{0}), f32[4]{0}) tuple(tuple.0, negate) element = f32[4]{0} get-tuple-element(((f32[4]{0}, f32[4]{0}), f32[4]{0}) tuple.1), index=1 ROOT add = f32[4]{0} add(element, param.0) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kTuple; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceConst; }; auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), -1, hlo_selector, replace_type_selector); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::GetTupleElement(op::Constant()), op::Parameter())); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kGetTupleElement; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceZeroBroadcast; }; auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), -1, hlo_selector, replace_type_selector); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Broadcast(), op::Parameter())); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kGetTupleElement; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceRandomBroadcast; }; auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), -1, hlo_selector, replace_type_selector); EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), op::Add(op::Broadcast(), op::Parameter())); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kTuple; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceZeroBroadcast; }; auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), -1, hlo_selector, replace_type_selector); EXPECT_THAT( extracted_module->entry_computation()->root_instruction(), op::Add(op::GetTupleElement(op::Tuple(op::Tuple(), op::Broadcast())), op::Parameter())); } { auto hlo_selector = [](const HloInstruction* hlo_inst) -> bool { return hlo_inst->opcode() != HloOpcode::kTuple; }; auto replace_type_selector = [](const HloInstruction* hlo_inst) -> ReplaceType { return ReplaceType::kReplaceRandomBroadcast; }; auto extracted_module = ExtractModule(FindInstruction(hlo_module.get(), "add"), -1, hlo_selector, replace_type_selector); EXPECT_THAT( extracted_module->entry_computation()->root_instruction(), op::Add(op::GetTupleElement(op::Tuple(op::Tuple(), op::Broadcast())), op::Parameter())); } } } }
2,192
cpp
tensorflow/tensorflow
hlo_module_loader
third_party/xla/xla/tools/hlo_module_loader.cc
third_party/xla/xla/tools/hlo_module_loader_test.cc
#ifndef XLA_TOOLS_HLO_MODULE_LOADER_H_ #define XLA_TOOLS_HLO_MODULE_LOADER_H_ #include <functional> #include <memory> #include <string> #include <string_view> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/tools/run_hlo_module.pb.h" namespace xla { namespace hlo_module_loader_details { struct Config { Config() {} int64_t num_replicas = 1; int64_t num_partitions = 1; }; } std::string StripLogHeaders(std::string_view hlo_string); absl::StatusOr<std::unique_ptr<HloModule>> LoadModuleFromData( const std::string& data, std::string_view format, const hlo_module_loader_details::Config& ovr_config = hlo_module_loader_details::Config(), const std::function<void(HloModuleConfig*)>& config_modifier_hook = {}, BufferAssignmentProto* buffer_assignment_proto = nullptr); absl::StatusOr<std::unique_ptr<HloModule>> LoadModuleFromFile( const std::string& path, std::string format = "", const hlo_module_loader_details::Config& ovr_config = hlo_module_loader_details::Config(), const std::function<void(HloModuleConfig*)>& config_modifier_hook = {}, BufferAssignmentProto* buffer_assignment_proto = nullptr); absl::StatusOr<std::unique_ptr<RunHloModuleIterationLiterals>> LoadInputFromData(const std::string& data, std::string_view format); absl::StatusOr<std::unique_ptr<RunHloModuleIterationLiterals>> LoadInputFromFile(const std::string& path, std::string format = ""); } #endif #include "xla/tools/hlo_module_loader.h" #include <functional> #include <memory> #include <string> #include <string_view> #include <utility> #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "xla/debug_options_flags.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_parser.h" #include "tsl/platform/env.h" #include "tsl/platform/logging.h" #include "tsl/platform/path.h" #include "tsl/platform/protobuf.h" namespace xla { namespace { absl::Status OverrideConfig(const hlo_module_loader_details::Config& ovr_config, HloModuleConfig* config) { config->set_replica_count(ovr_config.num_replicas); config->set_num_partitions(ovr_config.num_partitions); return absl::OkStatus(); } } std::string StripLogHeaders(std::string_view hlo_string) { static RE2* matcher = new RE2( "[IWEF]\\d{4} " "\\d{2}:\\d{2}:\\d{2}\\.\\d+\\s+\\d+\\s+[^:]+:\\d+\\]\\s?(.*)"); std::string_view matches[4]; std::vector<std::string> lines = absl::StrSplit(hlo_string, '\n'); for (auto& line : lines) { if (matcher->Match(line, 0, line.size(), RE2::ANCHOR_START, matches, 4)) { line = std::string(matches[1]); } } return absl::StrJoin(lines, "\n", [](std::string* out, const std::string& line) { absl::StrAppend(out, line); }); } absl::StatusOr<std::unique_ptr<HloModule>> LoadModuleFromData( const std::string& data, std::string_view format, const hlo_module_loader_details::Config& ovr_config, const std::function<void(HloModuleConfig*)>& config_modifier_hook, BufferAssignmentProto* buffer_assignment_proto) { DebugOptions debug_options = GetDebugOptionsFromFlags(); std::unique_ptr<HloModule> module; if (format == "hlo" || format == "txt") { std::string hlo_string = StripLogHeaders(data); HloModuleConfig config; config.set_debug_options(debug_options); TF_RETURN_IF_ERROR(OverrideConfig(ovr_config, &config)); if (config_modifier_hook) { config_modifier_hook(&config); } TF_ASSIGN_OR_RETURN(module, ParseAndReturnUnverifiedModule(hlo_string, config)); } else { HloSnapshot proto; if (format == "pb") { if (!proto.ParseFromString(data) && !proto.mutable_hlo()->ParseFromString(data) && !proto.mutable_hlo()->mutable_hlo_module()->ParseFromString(data)) { return InvalidArgument("Failed to parse input as HLO protobuf binary"); } if (buffer_assignment_proto != nullptr) { if (proto.hlo().has_buffer_assignment()) { *buffer_assignment_proto = proto.hlo().buffer_assignment(); } else { return InvalidArgument( "Expected buffer assignment in HLO protobuf binary."); } } } else if (format == "pbtxt") { if (!tsl::protobuf::TextFormat::ParseFromString(data, &proto) && !tsl::protobuf::TextFormat::ParseFromString(data, proto.mutable_hlo()) && !tsl::protobuf::TextFormat::ParseFromString( data, proto.mutable_hlo()->mutable_hlo_module())) { return InvalidArgument("Failed to parse input as HLO protobuf text"); } } else { return InvalidArgument( "Invalid format from file extension: '%s'. Expected: hlo, txt, pb, " "or pbtxt", format); } TF_ASSIGN_OR_RETURN(HloModuleConfig config, HloModule::CreateModuleConfigFromProto( proto.hlo().hlo_module(), debug_options)); TF_RETURN_IF_ERROR(OverrideConfig(ovr_config, &config)); if (config_modifier_hook) { config_modifier_hook(&config); } TF_ASSIGN_OR_RETURN( module, HloModule::CreateFromProto(proto.hlo().hlo_module(), config)); } return std::move(module); } absl::StatusOr<std::unique_ptr<HloModule>> LoadModuleFromFile( const std::string& path, std::string format, const hlo_module_loader_details::Config& ovr_config, const std::function<void(HloModuleConfig*)>& config_modifier_hook, BufferAssignmentProto* buffer_assignment_proto) { std::string data; if (format.empty()) { format = std::string(tsl::io::Extension(path)); } TF_RETURN_IF_ERROR(tsl::ReadFileToString(tsl::Env::Default(), path, &data)); return LoadModuleFromData(data, format, ovr_config, config_modifier_hook, buffer_assignment_proto); } absl::StatusOr<std::unique_ptr<RunHloModuleIterationLiterals>> LoadInputFromData(const std::string& data, std::string_view format) { HloSnapshot proto; if (format == "pb") { if (!proto.ParseFromString(data) && !proto.mutable_hlo()->ParseFromString(data) && !proto.mutable_hlo()->mutable_hlo_module()->ParseFromString(data)) { return InvalidArgument("Failed to parse input as HLO protobuf binary"); } } else if (format == "pbtxt") { if (!tsl::protobuf::TextFormat::ParseFromString(data, &proto) && !tsl::protobuf::TextFormat::ParseFromString(data, proto.mutable_hlo()) && !tsl::protobuf::TextFormat::ParseFromString( data, proto.mutable_hlo()->mutable_hlo_module())) { return InvalidArgument("Failed to parse input as HLO protobuf text"); } } else { return InvalidArgument( "Invalid format from file extension: '%s'. Expected: pb, " "or pbtxt", format); } auto iteration_literals_proto = std::make_unique<RunHloModuleIterationLiterals>(); for (const auto& i : proto.arguments()) { *iteration_literals_proto->add_arguments() = i; } return std::move(iteration_literals_proto); } absl::StatusOr<std::unique_ptr<RunHloModuleIterationLiterals>> LoadInputFromFile(const std::string& path, std::string format) { std::string data; if (format.empty()) { format = std::string(tsl::io::Extension(path)); } TF_RETURN_IF_ERROR(tsl::ReadFileToString(tsl::Env::Default(), path, &data)); return LoadInputFromData(data, format); } }
#include "xla/tools/hlo_module_loader.h" #include <string> #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/test.h" namespace xla { namespace { class HloModuleLoaderTest : public HloTestBase {}; TEST_F(HloModuleLoaderTest, StripsLogHeaders) { const std::string& hlo_string = R"( I0521 12:04:45.883483 1509 service.cc:186] HloModule test_log_stripping I0521 12:04:45.883483 1509 service.cc:186] I0521 12:04:45.883483 1509 service.cc:186] ENTRY entry { I0521 12:04:45.883483 1509 service.cc:186] p0 = f32[4]{0} parameter(0) I0521 12:04:45.883483 1509 service.cc:186] p1 = f32[4]{0} parameter(1) I0521 12:04:45.883483 1509 service.cc:186] add = f32[4]{0} add(p0, p1) I0521 12:04:45.883483 1509 service.cc:186] ROOT rooty = (f32[4]{0}, f32[4]{0}) tuple(p1, add) I0521 12:04:45.883483 1509 service.cc:186] } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, LoadModuleFromData(hlo_string, "txt")); EXPECT_NE(FindInstruction(hlo_module.get(), "p0"), nullptr); EXPECT_NE(FindInstruction(hlo_module.get(), "p1"), nullptr); EXPECT_NE(FindInstruction(hlo_module.get(), "add"), nullptr); EXPECT_NE(FindInstruction(hlo_module.get(), "rooty"), nullptr); } } }
2,193
cpp
tensorflow/tensorflow
functional_hlo_runner
third_party/xla/xla/tools/multihost_hlo_runner/functional_hlo_runner.cc
third_party/xla/xla/tools/multihost_hlo_runner/functional_hlo_runner_test.cc
#ifndef XLA_TOOLS_MULTIHOST_HLO_RUNNER_FUNCTIONAL_HLO_RUNNER_H_ #define XLA_TOOLS_MULTIHOST_HLO_RUNNER_FUNCTIONAL_HLO_RUNNER_H_ #include <functional> #include <memory> #include <optional> #include <random> #include <string> #include <string_view> #include <vector> #include "absl/container/btree_map.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/literal.h" #include "xla/pjrt/distributed/distributed.h" #include "xla/pjrt/gpu/se_gpu_pjrt_client.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/xla.pb.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { struct PjRtEnvironment { std::unique_ptr<xla::PjRtClient> client; std::unique_ptr<xla::DistributedRuntimeService> service; std::shared_ptr<xla::KeyValueStoreInterface> kv_store; std::shared_ptr<xla::DistributedRuntimeClient> distributed_client; }; absl::StatusOr<PjRtEnvironment> GetPjRtClient(absl::string_view device_type, absl::string_view address, int node_id, int num_nodes, bool enable_mock_nccl, absl::Duration init_timeout); enum class InputFormat { kText, kProtoText, kProtoBinary, kSnapshotProtoBinary, }; class ProfilerInterface { public: virtual ~ProfilerInterface() = default; virtual void CreateSession() = 0; virtual void UploadSession() = 0; }; bool AbslParseFlag(absl::string_view text, InputFormat* input_format, std::string* error); std::string AbslUnparseFlag(InputFormat input_format); class FunctionalHloRunner { public: FunctionalHloRunner() = delete; using LiteralVec = std::vector<Literal>; using ShapeVec = std::vector<Shape>; using PerDeviceLiteralVecType = absl::btree_map<int, LiteralVec>; using PerDeviceShapeVecType = absl::btree_map<int, ShapeVec>; using PerDeviceIndexVecType = absl::btree_map<int, std::vector<int>>; enum class LogOutputMode { kLogOutput, kNotLogOutput }; enum class HloPassesMode { kRunXLABackendOnly, kDisableAllHloPasses, kStandardCompile }; enum class SpmdMode { kUseSpmdPartitioning, kNotUseSpmdPartitioning }; enum class SpmdPartitionedMode { kIsSpmdPartitionedModule, kIsNotSpmdPartitionedModule }; enum class XlaTextDumpMode { kDumpAsText, kNotDumpAsText }; enum class XlaProtoDumpMode { kDumpAsProto, kNotDumpAsProto }; enum class ModuleArgumentMode { kUseDeviceIdAsInput, kUseRandomInputs, kUseSharedRandomInputs, kUseZerosAsInput, kUninitialized, }; enum class ModuleOutputMode { kReturnOutputs, kNotReturnOutputs, kReturnDevice0Outputs }; struct PreprocessingOptions { SpmdPartitionedMode spmd_partitioned_mode = SpmdPartitionedMode::kIsNotSpmdPartitionedModule; std::optional<int> while_execution_count = std::nullopt; bool remove_infeed_outfeed = true; bool flatten_while_loop() const { return while_execution_count.has_value(); } bool is_spmd_partitioned_module() const { return spmd_partitioned_mode == SpmdPartitionedMode::kIsSpmdPartitionedModule; } }; struct RawCompileOptions { HloPassesMode hlo_passes_mode = HloPassesMode::kStandardCompile; SpmdMode spmd_mode = SpmdMode::kNotUseSpmdPartitioning; std::optional<ExecutionOptions> execution_options = std::nullopt; std::optional<int> num_replicas = 1; std::optional<int> num_partitions = 1; std::optional<int> num_slices = std::nullopt; std::string xla_dump_to = ""; XlaTextDumpMode xla_text_dump_mode = XlaTextDumpMode::kNotDumpAsText; XlaProtoDumpMode xla_proto_dump_mode = XlaProtoDumpMode::kNotDumpAsProto; }; struct RunningOptions { ModuleArgumentMode module_argument_mode = ModuleArgumentMode::kUseRandomInputs; ModuleOutputMode module_output_mode = ModuleOutputMode::kReturnOutputs; size_t num_repeats = 1; bool recreate_buffers_between_repeats = false; LogOutputMode log_input_output_mode = LogOutputMode::kNotLogOutput; const MultiSliceConfig* multi_slice_config = nullptr; ProfilerInterface* profiler = nullptr; std::optional<bool> untuple_result = std::nullopt; bool log_input_output() const { return log_input_output_mode == LogOutputMode::kLogOutput; } }; struct HloModuleAndArguments { std::unique_ptr<HloModule> hlo_module; std::vector<Literal> arguments; }; struct ReplicasAndPartitions { int replicas = 1; int partitions = 1; }; static absl::StatusOr<std::unique_ptr<PjRtClient>> CreateHostClient(); static absl::StatusOr<std::unique_ptr<PjRtClient>> CreateGpuClient( GpuClientOptions options); static absl::StatusOr<std::unique_ptr<PjRtClient>> CreateMockGpuClient( int num_nodes = 1); static absl::StatusOr<ExecutionOptions> LoadExecutionOptions( absl::string_view path); static absl::StatusOr<CompileOptions> CreateCompileOptions( const PjRtClient& client, const FunctionalHloRunner::RawCompileOptions& raw_options, int task_id = 0, int num_nodes = 1, std::shared_ptr<xla::KeyValueStoreInterface> kv_store = nullptr); static absl::Status LoadAndRunAndDump( PjRtClient& client, const DebugOptions& debug_options, const xla::FunctionalHloRunner::PreprocessingOptions& preproc_options, const xla::FunctionalHloRunner::RawCompileOptions& raw_compile_options, const xla::FunctionalHloRunner::RunningOptions& running_options, absl::string_view hlo_text, InputFormat input_format, std::string dump_output_to = "", int task_id = 0, int num_nodes = 1, std::shared_ptr<xla::KeyValueStoreInterface> kv_store = nullptr); static absl::StatusOr<PerDeviceLiteralVecType> LoadAndRun( PjRtClient& client, const DebugOptions& debug_options, const PreprocessingOptions& preproc_options, const CompileOptions& compile_options, const RunningOptions& running_options, absl::string_view hlo_text, InputFormat input_format, const PerDeviceLiteralVecType& arguments = {}); static absl::Status LoadAndCompile( PjRtClient& client, const DebugOptions& debug_options, const PreprocessingOptions& preproc_options, const RawCompileOptions& raw_compile_options, std::string_view hlo_file, InputFormat input_format, int task_id = 0, int num_nodes = 1, std::shared_ptr<xla::KeyValueStoreInterface> kv_store = nullptr); static absl::StatusOr<PerDeviceLiteralVecType> CompileAndRun( PjRtClient& client, const DebugOptions& debug_options, const PreprocessingOptions& preproc_options, const CompileOptions& compile_options, const RunningOptions& running_options, HloModule* hlo_module, const PerDeviceLiteralVecType& arguments = {}); static absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> Compile( PjRtClient& client, HloModule* hlo_module, const DebugOptions& debug_options, const PreprocessingOptions& preproc_options, const CompileOptions& compile_options); static absl::StatusOr<std::unique_ptr<PjRtExecutable>> Compile( PjRtClient& client, HloModule* hlo_module, const DebugOptions& debug_options, const PreprocessingOptions& preproc_options, const CompileOptions& compile_options, const PjRtTopologyDescription& topology); static absl::StatusOr<PerDeviceLiteralVecType> Run( PjRtClient& client, PjRtLoadedExecutable* executable, const PerDeviceLiteralVecType& arguments, const RunningOptions& running_options, std::minstd_rand0* engine = nullptr); static absl::StatusOr<std::unique_ptr<HloModule>> ReadModuleFromHloTextFile( absl::string_view hlo_file); static absl::StatusOr<std::unique_ptr<HloModule>> ReadModuleFromBinaryProtoFile(absl::string_view hlo_file); static absl::StatusOr<std::unique_ptr<HloModule>> ReadModuleFromTextProtoFile( absl::string_view hlo_file); static absl::StatusOr<HloModuleAndArguments> ReadModuleFromSnapshotBinaryProtoFile(absl::string_view hlo_file); static absl::StatusOr<HloModuleAndArguments> LoadHloModuleAndArguments( absl::string_view hlo_file, InputFormat input_format); static absl::StatusOr<std::unique_ptr<HloModule>> ReadModuleFromString( absl::string_view hlo_text); static absl::StatusOr<std::unique_ptr<HloModule>> ReadModuleFromProto( const HloModuleProto& proto); static absl::Status PrepareHloModuleForCompilation( HloModule* hlo_module, const DebugOptions& debug_options, const PreprocessingOptions& preproc_options); static CompileOptions CompleteCompileOptions(const HloModule& hlo_module, CompileOptions compile_options); static absl::Status DumpOutput( const FunctionalHloRunner::PerDeviceLiteralVecType& output, absl::string_view dump_output_to, int task_id); private: static ReplicasAndPartitions GetReplicasAndPartitions( const std::optional<ExecutionOptions>& execution_options, int device_count, const std::optional<int>& num_replicas, const std::optional<int>& num_partitions, int num_slices = 1); static ExecutableBuildOptions CreateExecutableBuildOptionsFromExecutionOptions( const ExecutionOptions& execution_options); static absl::Span<PjRtDevice* const> GetLocalDevices( const PjRtClient& client); static absl::StatusOr<std::vector<std::vector<std::unique_ptr<PjRtBuffer>>>> CreateArgumentsOnDevice(PjRtClient& client, const PjRtLoadedExecutable* executable, const RunningOptions& running_options, bool flatten_arguments = false, std::minstd_rand0* engine = nullptr); static absl::StatusOr<std::vector<std::vector<std::unique_ptr<PjRtBuffer>>>> CreateUninitializedArgumentsOnDevice(PjRtClient& client, const PjRtLoadedExecutable* executable, const RunningOptions& running_options, bool flatten_arguments = false); static absl::StatusOr<std::vector<std::vector<std::unique_ptr<PjRtBuffer>>>> CopyArgumentsToDevice(PjRtClient& client, const PjRtLoadedExecutable* executable, const PerDeviceLiteralVecType& arguments, bool log_input, bool flattened_arguments, bool clone_device0_arguments = false); static absl::StatusOr<PerDeviceLiteralVecType> RunInternal( PjRtClient& client, PjRtLoadedExecutable* executable, std::function<absl::StatusOr< std::vector<std::vector<std::unique_ptr<PjRtBuffer>>>>(bool)> create_argument_buffers_on_device, const RunningOptions& running_options); static absl::StatusOr<PerDeviceLiteralVecType> FetchAndLogOutput( PjRtClient& client, const std::vector<std::vector<std::unique_ptr<PjRtBuffer>>>& output_buffers, ModuleOutputMode module_output_mode, bool log_output); static ReplicasAndPartitions GetReplicasAndPartitionsInternal( const std::optional<ExecutionOptions>& execution_options, int device_count, const std::optional<int>& num_replicas, const std::optional<int>& num_partitions, int num_slices = 1); }; bool AbslParseFlag(absl::string_view text, FunctionalHloRunner::ModuleArgumentMode* argument_mode, std::string* error); std::string AbslUnparseFlag( FunctionalHloRunner::ModuleArgumentMode argument_mode); bool AbslParseFlag(absl::string_view text, FunctionalHloRunner::ModuleOutputMode* output_mode, std::string* error); std::string AbslUnparseFlag(FunctionalHloRunner::ModuleOutputMode output_mode); void AddShardingAnnotationsToSpmdPartitionedModule(HloModule* hlo_module); } #endif #include "xla/tools/multihost_hlo_runner/functional_hlo_runner.h" #include <cstddef> #include <cstdint> #include <functional> #include <memory> #include <optional> #include <random> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/btree_map.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "xla/client/executable_build_options.h" #include "xla/client/xla_computation.h" #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/layout.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/pjrt/cpu/cpu_client.h" #include "xla/pjrt/distributed/client.h" #include "xla/pjrt/distributed/distributed.h" #include "xla/pjrt/distributed/key_value_store_interface.h" #include "xla/pjrt/distributed/service.h" #include "xla/pjrt/gpu/se_gpu_pjrt_client.h" #include "xla/pjrt/host_memory_spaces.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_compiler.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/pjrt/pjrt_future.h" #include "xla/primitive_util.h" #include "xla/service/computation_layout.h" #include "xla/service/computation_placer.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_parser.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/tests/test_utils.h" #include "xla/tools/hlo_control_flow_flattening.h" #include "xla/util.h" #include "xla/xla.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { static absl::StatusOr<std::unique_ptr<xla::PjRtClient>> GetPjRtClient( absl::string_view device_type, absl::string_view address, int node_id, int num_nodes, bool enable_mock_nccl, absl::Duration init_timeout, std::unique_ptr<xla::DistributedRuntimeService>& service, std::shared_ptr<xla::KeyValueStoreInterface>& kv_store, std::shared_ptr<xla::DistributedRuntimeClient>& distributed_client) { if (device_type == "host") { CHECK_EQ(num_nodes, 1); return xla::FunctionalHloRunner::CreateHostClient(); } if (device_type != "gpu") { return absl::UnimplementedError(device_type); } if (enable_mock_nccl) { CHECK_GT(num_nodes, 1); return xla::FunctionalHloRunner::CreateMockGpuClient(num_nodes); } else { if (num_nodes == 1) { return xla::FunctionalHloRunner::CreateGpuClient({}); } else { TF_RET_CHECK(!address.empty()); TF_RET_CHECK(node_id >= 0) << "Node id is expected to be in range [0, num_nodes)"; TF_RET_CHECK(node_id < num_nodes) << "Node id is expected to be in range [0, num_nodes)"; CHECK_GT(address.length(), 0); if (node_id == 0) { std::string coordinator_bind_address = "[::]:" + std::string(address).substr(address.rfind(':') + 1); xla::CoordinationServiceImpl::Options options; options.num_nodes = num_nodes; auto status_or = xla::GetDistributedRuntimeService( coordinator_bind_address, options); TF_QCHECK_OK(status_or.status()); service = std::move(status_or.value()); } xla::DistributedRuntimeClient::Options options; options.node_id = node_id; options.init_timeout = init_timeout; distributed_client = GetDistributedRuntimeClient(std::string(address), options); TF_QCHECK_OK(distributed_client->Connect()); kv_store = GetDistributedKeyValueStore(distributed_client, "gpu:"); GpuClientOptions gpu_client_options; gpu_client_options.node_id = node_id; gpu_client_options.num_nodes = num_nodes; gpu_client_options.kv_store = kv_store; return xla::FunctionalHloRunner::CreateGpuClient( std::move(gpu_client_options)); } } } absl::StatusOr<PjRtEnvironment> GetPjRtClient(absl::string_view device_type, absl::string_view address, int node_id, int num_nodes, bool enable_mock_nccl, absl::Duration init_timeout) { PjRtEnvironment env; TF_ASSIGN_OR_RETURN(env.client, GetPjRtClient(device_type, address, node_id, num_nodes, enable_mock_nccl, init_timeout, env.service, env.kv_store, env.distributed_client)); return env; } namespace { absl::StatusOr<std::unique_ptr<HloModule>> HloTextToModule( absl::string_view hlo_text) { return ParseAndReturnUnverifiedModule(hlo_text); } absl::StatusOr<std::unique_ptr<HloModule>> HloProtoToModule( const HloModuleProto& proto) { TF_ASSIGN_OR_RETURN( HloModuleConfig config, HloModule::CreateModuleConfigFromProto(proto, DebugOptions())); TF_ASSIGN_OR_RETURN(std::unique_ptr<HloModule> module, HloModule::CreateFromProto(proto, config)); return std::move(module); } template <typename ElementType> void PopulateWithSameValue(Literal* literal, ElementType val) { for (ElementType& element : literal->data<ElementType>()) { element = static_cast<ElementType>(val); } } absl::StatusOr<Literal> MakeFakeLiteralWithSameValue(const Shape& shape, int value) { if (shape.IsArray()) { Shape new_shape = shape; new_shape.mutable_layout()->clear_tiles(); return primitive_util::PrimitiveTypeSwitch<absl::StatusOr<Literal>>( [&](auto type) -> absl::StatusOr<Literal> { if constexpr (primitive_util::IsArrayType(type)) { using NativeT = primitive_util::NativeTypeOf<type>; Literal literal(new_shape); PopulateWithSameValue( &literal, static_cast<NativeT>(type == PRED ? (value % 2) == 0 : value)); return literal; } return Unimplemented( "Unsupported type for fake literal generation: %s", ShapeUtil::HumanString(shape)); }, new_shape.element_type()); } else if (shape.IsTuple()) { std::vector<Literal> subliterals; for (const Shape& subshape : shape.tuple_shapes()) { TF_ASSIGN_OR_RETURN(Literal subliteral, MakeFakeLiteralWithSameValue(subshape, value)); subliterals.push_back(std::move(subliteral)); } return LiteralUtil::MakeTupleOwned(std::move(subliterals)); } return InvalidArgument("Unsupported type for fake literal generation: %s", ShapeUtil::HumanString(shape)); } } bool AbslParseFlag(absl::string_view text, InputFormat* input_format, std::string* error) { if (text == "text") { *input_format = InputFormat::kText; return true; } if (text == "proto_text") { *input_format = InputFormat::kProtoText; return true; } if (text == "proto_binary") { *input_format = InputFormat::kProtoBinary; return true; } if (text == "snapshot_proto_binary") { *input_format = InputFormat::kSnapshotProtoBinary; return true; } *error = "unknown value for enumeration"; return false; } std::string AbslUnparseFlag(InputFormat input_format) { switch (input_format) { case InputFormat::kText: return "text"; case InputFormat::kProtoText: return "proto_text"; case InputFormat::kProtoBinary: return "proto_binary"; case InputFormat::kSnapshotProtoBinary: return "snapshot_proto_binary"; default: return absl::StrCat(input_format); } } bool AbslParseFlag(absl::string_view text, FunctionalHloRunner::ModuleArgumentMode* argument_mode, std::string* error) { if (text == "use_device_id_as_input") { *argument_mode = FunctionalHloRunner::ModuleArgumentMode::kUseDeviceIdAsInput; return true; } if (text == "use_random_inputs") { *argument_mode = FunctionalHloRunner::ModuleArgumentMode::kUseRandomInputs; return true; } if (text == "use_shared_random_inputs") { *argument_mode = FunctionalHloRunner::ModuleArgumentMode::kUseSharedRandomInputs; return true; } if (text == "use_zeros_as_input") { *argument_mode = FunctionalHloRunner::ModuleArgumentMode::kUseZerosAsInput; return true; } if (text == "uninitialized") { *argument_mode = FunctionalHloRunner::ModuleArgumentMode::kUninitialized; return true; } *error = "Unrecognized module argument mode specified. Expect " "\"use_device_id_as_input\", \"use_random_inputs\", or " "\"use_shared_random_inputs\"."; return false; } std::string AbslUnparseFlag( FunctionalHloRunner::ModuleArgumentMode argument_mode) { switch (argument_mode) { case FunctionalHloRunner::ModuleArgumentMode::kUseDeviceIdAsInput: return "use_device_id_as_input"; case FunctionalHloRunner::ModuleArgumentMode::kUseRandomInputs: return "use_random_inputs"; case FunctionalHloRunner::ModuleArgumentMode::kUseSharedRandomInputs: return "use_shared_random_inputs"; case FunctionalHloRunner::ModuleArgumentMode::kUseZerosAsInput: return "use_zeros_as_input"; case FunctionalHloRunner::ModuleArgumentMode::kUninitialized: return "uninitialized"; default: LOG(FATAL) << "Unexpected argument mode."; } } bool AbslParseFlag(absl::string_view text, FunctionalHloRunner::ModuleOutputMode* output_mode, std::string* error) { if (text == "return_outputs") { *output_mode = FunctionalHloRunner::ModuleOutputMode::kReturnOutputs; return true; } if (text == "not_return_outputs") { *output_mode = FunctionalHloRunner::ModuleOutputMode::kNotReturnOutputs; return true; } if (text == "return_device_0_outputs") { *output_mode = FunctionalHloRunner::ModuleOutputMode::kReturnDevice0Outputs; return true; } *error = "Unrecognized module output mode specified. Expect \"return_outputs\", " "\"not_return_outputs\", or \"return_device_0_outputs\"."; return false; } std::string AbslUnparseFlag(FunctionalHloRunner::ModuleOutputMode output_mode) { switch (output_mode) { case FunctionalHloRunner::ModuleOutputMode::kReturnOutputs: return "return_outputs"; case FunctionalHloRunner::ModuleOutputMode::kNotReturnOutputs: return "not_return_outputs"; case FunctionalHloRunner::ModuleOutputMode::kReturnDevice0Outputs: return "return_device_0_outputs"; default: LOG(FATAL) << "Unexpected output mode."; } } void AddShardingAnnotationsToSpmdPartitionedModule(HloModule* hlo_module) { auto set_manual_sharding = [](HloInstruction* hlo) { if (!hlo->has_sharding()) { hlo->set_sharding( HloSharding::Manual().NormalizeTupleSharding(hlo->shape())); } }; for (int64_t i = 0; i < hlo_module->entry_computation()->num_parameters(); ++i) { HloInstruction* param = hlo_module->entry_computation()->parameter_instruction(i); set_manual_sharding(param); } HloInstruction* entry_root = hlo_module->entry_computation()->root_instruction(); set_manual_sharding(entry_root); } absl::StatusOr<std::unique_ptr<PjRtClient>> FunctionalHloRunner::CreateHostClient() { return GetTfrtCpuClient(CpuClientOptions()); } absl::StatusOr<std::unique_ptr<PjRtClient>> FunctionalHloRunner::CreateGpuClient(GpuClientOptions options) { if (options.node_id < 0 || options.node_id >= options.num_nodes) { return absl::InvalidArgumentError( "Node id is expected to be in range [0, num_nodes)"); } return GetStreamExecutorGpuClient(options); } absl::StatusOr<std::unique_ptr<PjRtClient>> FunctionalHloRunner::CreateMockGpuClient(int num_nodes) { GpuClientOptions options; options.num_nodes = num_nodes; options.enable_mock_nccl = true; return GetStreamExecutorGpuClient(options); } absl::StatusOr<ExecutionOptions> FunctionalHloRunner::LoadExecutionOptions( absl::string_view path) { ExecutionOptions execution_options; TF_RETURN_IF_ERROR(tsl::ReadTextOrBinaryProto( tsl::Env::Default(), std::string(path), &execution_options)); return execution_options; } absl::StatusOr<CompileOptions> FunctionalHloRunner::CreateCompileOptions( const PjRtClient& client, const FunctionalHloRunner::RawCompileOptions& raw_options, int task_id, int num_nodes, std::shared_ptr<xla::KeyValueStoreInterface> kv_store) { CompileOptions compile_options; if (raw_options.execution_options.has_value()) { compile_options.executable_build_options = CreateExecutabl
#include "xla/tools/multihost_hlo_runner/functional_hlo_runner.h" #include <memory> #include <string> #include <vector> #include <gtest/gtest.h> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/str_format.h" #include "absl/time/time.h" #include "xla/debug_options_flags.h" #include "xla/pjrt/distributed/key_value_store_interface.h" #include "xla/pjrt/distributed/service.h" #include "xla/pjrt/pjrt_client.h" #include "xla/tests/filecheck.h" #include "xla/tsl/util/command_line_flags.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/file_system.h" #include "tsl/platform/path.h" #include "tsl/platform/statusor.h" #include "tsl/platform/subprocess.h" #include "tsl/platform/test.h" namespace xla { namespace { using ::testing::SizeIs; bool IsTestingCpu() { #ifdef XLA_TEST_BACKEND_CPU return true; #endif return false; } std::string GetHloPath(std::string file_name) { return tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "tools", "multihost_hlo_runner", "data", file_name); } absl::StatusOr<std::unique_ptr<xla::PjRtClient>> GetPjRtClient() { if (IsTestingCpu()) { return xla::FunctionalHloRunner::CreateHostClient(); } return xla::FunctionalHloRunner::CreateGpuClient({}); } using FunctionalHloRunnerTest = ::testing::Test; TEST_F(FunctionalHloRunnerTest, SingleDeviceHlo) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::PjRtClient> client, GetPjRtClient()); xla::DebugOptions debug_options; FunctionalHloRunner::PreprocessingOptions preproc_options; FunctionalHloRunner::RawCompileOptions raw_compile_options; raw_compile_options.num_replicas = 1; raw_compile_options.num_partitions = 1; FunctionalHloRunner::RunningOptions running_options; TF_EXPECT_OK(FunctionalHloRunner::LoadAndRunAndDump( *client, debug_options, preproc_options, raw_compile_options, running_options, {GetHloPath("single_device.hlo")}, InputFormat::kText)); } TEST_F(FunctionalHloRunnerTest, Sharded2Devices) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::PjRtClient> client, GetPjRtClient()); constexpr int kRequiredDeviceCount = 2; const int kDeviceCount = client->device_count(); if (kDeviceCount < kRequiredDeviceCount) { GTEST_SKIP() << "Requires " << kRequiredDeviceCount << " devices, but found only " << kDeviceCount; return; } xla::DebugOptions debug_options; FunctionalHloRunner::PreprocessingOptions preproc_options; FunctionalHloRunner::RawCompileOptions raw_compile_options; raw_compile_options.spmd_mode = FunctionalHloRunner::SpmdMode::kUseSpmdPartitioning; raw_compile_options.num_replicas = 1; raw_compile_options.num_partitions = 2; FunctionalHloRunner::RunningOptions running_options; TF_EXPECT_OK(FunctionalHloRunner::LoadAndRunAndDump( *client, debug_options, preproc_options, raw_compile_options, running_options, {GetHloPath("sharded_2_devices.hlo")}, InputFormat::kText)); } TEST_F(FunctionalHloRunnerTest, UseZerosAsInputs) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::PjRtClient> client, GetPjRtClient()); constexpr int kRequiredDeviceCount = 2; const int kDeviceCount = client->device_count(); if (kDeviceCount < kRequiredDeviceCount) { GTEST_SKIP() << "Requires " << kRequiredDeviceCount << " devices, but found only " << kDeviceCount; return; } xla::DebugOptions debug_options; FunctionalHloRunner::PreprocessingOptions preproc_options; FunctionalHloRunner::RawCompileOptions raw_compile_options; raw_compile_options.spmd_mode = FunctionalHloRunner::SpmdMode::kUseSpmdPartitioning; raw_compile_options.num_replicas = 1; raw_compile_options.num_partitions = 2; FunctionalHloRunner::RunningOptions running_options; running_options.module_argument_mode = FunctionalHloRunner::ModuleArgumentMode::kUseZerosAsInput; TF_EXPECT_OK(FunctionalHloRunner::LoadAndRunAndDump( *client, debug_options, preproc_options, raw_compile_options, running_options, {GetHloPath("sharded_2_devices.hlo")}, InputFormat::kText)); } TEST_F(FunctionalHloRunnerTest, UseUninitializedInputs) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::PjRtClient> client, GetPjRtClient()); constexpr int kRequiredDeviceCount = 2; const int kDeviceCount = client->device_count(); if (kDeviceCount < kRequiredDeviceCount) { GTEST_SKIP() << "Requires " << kRequiredDeviceCount << " devices, but found only " << kDeviceCount; return; } xla::DebugOptions debug_options; FunctionalHloRunner::PreprocessingOptions preproc_options; FunctionalHloRunner::RawCompileOptions raw_compile_options; raw_compile_options.spmd_mode = FunctionalHloRunner::SpmdMode::kUseSpmdPartitioning; raw_compile_options.num_replicas = 1; raw_compile_options.num_partitions = 2; FunctionalHloRunner::RunningOptions running_options; running_options.module_argument_mode = FunctionalHloRunner::ModuleArgumentMode::kUninitialized; TF_EXPECT_OK(FunctionalHloRunner::LoadAndRunAndDump( *client, debug_options, preproc_options, raw_compile_options, running_options, {GetHloPath("sharded_2_devices.hlo")}, InputFormat::kText)); } TEST_F(FunctionalHloRunnerTest, UseUninitializedInputsWithTupledArguments) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::PjRtClient> client, GetPjRtClient()); xla::DebugOptions debug_options; FunctionalHloRunner::PreprocessingOptions preproc_options; FunctionalHloRunner::RawCompileOptions raw_compile_options; raw_compile_options.spmd_mode = FunctionalHloRunner::SpmdMode::kUseSpmdPartitioning; raw_compile_options.num_replicas = 1; raw_compile_options.num_partitions = 1; FunctionalHloRunner::RunningOptions running_options; running_options.module_argument_mode = FunctionalHloRunner::ModuleArgumentMode::kUninitialized; TF_EXPECT_OK(FunctionalHloRunner::LoadAndRunAndDump( *client, debug_options, preproc_options, raw_compile_options, running_options, {GetHloPath("single_device_tupled.hlo")}, InputFormat::kText)); } TEST_F(FunctionalHloRunnerTest, CanCompileWithoutHavingEnoughGpus) { tsl::Env* env = tsl::Env::Default(); std::string dump_dir; ASSERT_TRUE(env->LocalTempFilename(&dump_dir)); tsl::FileSystem* fs = nullptr; TF_ASSERT_OK(env->GetFileSystemForFile(dump_dir, &fs)); xla::DebugOptions debug_options; FunctionalHloRunner::PreprocessingOptions preproc_options; FunctionalHloRunner::RawCompileOptions raw_compile_options; raw_compile_options.spmd_mode = FunctionalHloRunner::SpmdMode::kUseSpmdPartitioning; raw_compile_options.num_replicas = 1; raw_compile_options.num_partitions = 16; raw_compile_options.xla_dump_to = dump_dir; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::PjRtClient> client, GetPjRtClient()); TF_EXPECT_OK(FunctionalHloRunner::LoadAndCompile( *client, debug_options, preproc_options, raw_compile_options, GetHloPath("sharded_16_devices.hlo"), InputFormat::kText)); { std::vector<std::string> after_opt_hlo_paths; TF_ASSERT_OK( fs->GetMatchingPaths(fs->JoinPath(dump_dir, "*after_optimizations.txt"), &after_opt_hlo_paths)); ASSERT_THAT(after_opt_hlo_paths, SizeIs(1)); std::string after_opt_hlo; TF_ASSERT_OK( tsl::ReadFileToString(env, after_opt_hlo_paths[0], &after_opt_hlo)); absl::StatusOr<bool> file_check_result = RunFileCheck(after_opt_hlo, R"( )"); TF_ASSERT_OK(file_check_result.status()); EXPECT_TRUE(file_check_result.value()); } { std::vector<std::string> ir_paths; TF_ASSERT_OK(fs->GetMatchingPaths(fs->JoinPath(dump_dir, "*ir-no-opt.ll"), &ir_paths)); ASSERT_THAT(ir_paths, SizeIs(1)); } } static const char* binary_name; constexpr int kNumNodes = 3; TEST_F(FunctionalHloRunnerTest, ShardedAutotuningWorks) { if (IsTestingCpu()) { GTEST_SKIP() << "GPU-only test."; } tsl::SubProcess child[kNumNodes]; for (int node_id = 0; node_id < kNumNodes; ++node_id) { std::vector<std::string> argv; argv.push_back(binary_name); argv.push_back("--xla_gpu_shard_autotuning"); argv.push_back(absl::StrFormat("--node_id=%d", node_id)); child[node_id].SetProgram(binary_name, argv); child[node_id].SetChannelAction(tsl::CHAN_STDOUT, tsl::ACTION_PIPE); child[node_id].SetChannelAction(tsl::CHAN_STDERR, tsl::ACTION_PIPE); ASSERT_TRUE(child[node_id].Start()) << "node " << node_id; } for (int node_id = 0; node_id < kNumNodes; ++node_id) { std::string stdout_str; std::string stderr_str; int child_status = child[node_id].Communicate(nullptr, &stdout_str, &stderr_str); ASSERT_EQ(child_status, 0) << " node " << node_id << "\nstdout:\n" << stdout_str << "\nstderr:\n" << stderr_str; } } absl::Status ShardedAutotuningWorksTestBody(const int node_id) { tsl::setenv("CUDA_VISIBLE_DEVICES", std::to_string(node_id).data(), true); TF_ASSIGN_OR_RETURN( PjRtEnvironment env, xla::GetPjRtClient("gpu", "127.0.0.1:12345", node_id, kNumNodes, false, absl::Seconds(120))); CHECK(env.kv_store != nullptr); TF_RETURN_IF_ERROR(FunctionalHloRunner::LoadAndCompile( *env.client, GetDebugOptionsFromFlags(), FunctionalHloRunner::PreprocessingOptions{}, FunctionalHloRunner::RawCompileOptions{}, GetHloPath("multiple_gemm_fusions.hlo"), InputFormat::kText)); if (node_id == 0) { TF_ASSIGN_OR_RETURN(std::string results0, env.kv_store->Get("gemm_fusion_autotuning_results_1_0", absl::Seconds(1))); CHECK(absl::StrContains(results0, "run_time")); TF_ASSIGN_OR_RETURN(std::string results1, env.kv_store->Get("gemm_fusion_autotuning_results_1_1", absl::Seconds(1))); CHECK(absl::StrContains(results1, "run_time")); CHECK_NE(results0, results1); TF_ASSIGN_OR_RETURN(std::string results2, env.kv_store->Get("gemm_fusion_autotuning_results_1_2", absl::Seconds(1))); CHECK(!absl::StrContains(results2, "run_time")); } return absl::OkStatus(); } TEST_F(FunctionalHloRunnerTest, CanRunWithMockCollectives) { if (IsTestingCpu()) { GTEST_SKIP() << "GPU-only test"; } xla::DebugOptions debug_options; FunctionalHloRunner::PreprocessingOptions preproc_options; FunctionalHloRunner::RawCompileOptions raw_compile_options; raw_compile_options.spmd_mode = FunctionalHloRunner::SpmdMode::kUseSpmdPartitioning; raw_compile_options.num_replicas = 1; raw_compile_options.num_partitions = 16; FunctionalHloRunner::RunningOptions running_options; running_options.module_argument_mode = FunctionalHloRunner::ModuleArgumentMode::kUseZerosAsInput; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::PjRtClient> client, FunctionalHloRunner::CreateMockGpuClient(16)); TF_EXPECT_OK(FunctionalHloRunner::LoadAndRunAndDump( *client, debug_options, preproc_options, raw_compile_options, running_options, {GetHloPath("sharded_16_devices.hlo")}, InputFormat::kText)); } } } int main(int argc, char* argv[]) { xla::binary_name = argv[0]; int node_id = -1; std::vector<tsl::Flag> flag_list = { tsl::Flag("node_id", &node_id, "Node ID for ShardedAutotuningWorks test."), }; xla::AppendDebugOptionsFlags(&flag_list); std::string usage = tsl::Flags::Usage(argv[0], flag_list); tsl::Flags::Parse(&argc, argv, flag_list); if (node_id >= 0) { return !xla::ShardedAutotuningWorksTestBody(node_id).ok(); } testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }
2,194
cpp
tensorflow/tensorflow
hlo_bisect_state
third_party/xla/xla/tools/hlo_bisect/hlo_bisect_state.cc
third_party/xla/xla/tools/hlo_bisect/hlo_bisect_state_test.cc
#ifndef XLA_TOOLS_HLO_BISECT_HLO_BISECT_STATE_H_ #define XLA_TOOLS_HLO_BISECT_HLO_BISECT_STATE_H_ #include <memory> #include <string> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/literal.h" namespace xla { namespace bisect { class BugCheckerInterface { public: virtual ~BugCheckerInterface() {} virtual absl::StatusOr<bool> Run(const HloModule& module) = 0; virtual absl::flat_hash_map<std::string, Literal> GetResults() = 0; }; class HloBisectState { public: explicit HloBisectState(std::unique_ptr<HloModule> module, BugCheckerInterface* bug_checker) : module_(std::move(module)), bug_checker_(bug_checker) {} absl::StatusOr<bool> ShouldProcess(); absl::StatusOr<bool> TrimEntryComputation(); std::unique_ptr<xla::HloModule>&& GetResult(); private: absl::StatusOr<bool> RunModule(const HloModule& module); absl::StatusOr<bool> TrimByOutputs(); absl::StatusOr<bool> TrimByInstructions(); absl::StatusOr<bool> TrimByUsingConstants(); absl::Status ExpectModuleIsBuggy(); std::unique_ptr<xla::HloModule> module_; BugCheckerInterface* bug_checker_; absl::flat_hash_set<std::string> foldable_instructions_; absl::flat_hash_map<std::string, Literal> foldable_instructions_values_; }; } } #endif #include "xla/tools/hlo_bisect/hlo_bisect_state.h" #include <iterator> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_dce.h" #include "xla/tests/test_utils.h" #include "xla/util.h" namespace xla { namespace bisect { namespace { std::vector<HloInstruction*> GetModifiedInstructionPostOrder( HloComputation* computation) { std::vector<HloInstruction*> instructions( computation->parameter_instructions().begin(), computation->parameter_instructions().end()); absl::c_copy_if(computation->MakeInstructionPostOrder(), std::back_inserter(instructions), [&](const HloInstruction* instr) { return instr->opcode() != HloOpcode::kParameter; }); return instructions; } absl::Status MorphModuleWithOutputs(HloModule* module, absl::Span<HloInstruction* const> outputs) { HloComputation* entry_computation = module->entry_computation(); HloInstruction* new_root = outputs.size() == 1 ? outputs[0] : entry_computation->AddInstruction( HloInstruction::CreateTuple(outputs)); entry_computation->set_root_instruction(new_root, true); *module->mutable_entry_computation_layout() = module->compute_computation_layout(); HloDCE dce; absl::StatusOr<bool> dce_result = dce.Run(module); return dce_result.status(); } absl::Status MorphModuleWithInstructions( HloModule* module, absl::Span<HloInstruction* const> instructions) { ConstHloInstructionSet in_range_instructions(instructions.begin(), instructions.end()); auto keep_result = [&](const HloInstruction* instruction) { return instruction->opcode() != HloOpcode::kParameter && !absl::c_any_of(instruction->users(), [&](const HloInstruction* user) { return in_range_instructions.count(user) != 0; }); }; std::vector<HloInstruction*> outputs; absl::c_copy_if(instructions, std::back_inserter(outputs), keep_result); return MorphModuleWithOutputs(module, outputs); } absl::Status MorphModuleWithInstructions(HloModule* module, size_t num_instructions) { std::vector<HloInstruction*> ordered_instructions = GetModifiedInstructionPostOrder(module->entry_computation()); HloInstruction* const* instructions_begin = &ordered_instructions.front(); return MorphModuleWithInstructions( module, absl::MakeSpan(instructions_begin, num_instructions)); } absl::Status MorphModuleWithLiterals( HloModule* module, absl::flat_hash_map<std::string, Literal> literal_map) { HloComputation* entry_computation = module->entry_computation(); absl::flat_hash_map<HloInstruction*, Literal> replace_map; for (HloInstruction* instruction : entry_computation->instructions()) { auto it = literal_map.find(instruction->name()); if (it != literal_map.end()) { replace_map.emplace(instruction, std::move(it->second)); } } for (auto& [instruction, literal] : replace_map) { if (!instruction->IsDead()) { HloInstruction* new_instruction = entry_computation->AddInstruction( HloInstruction::CreateConstant(std::move(literal))); absl::Status replace_status = entry_computation->ReplaceInstruction(instruction, new_instruction); TF_RETURN_IF_ERROR(replace_status); } } xla::HloDCE dce; absl::StatusOr<bool> dce_status = dce.Run(module); return dce_status.status(); } bool InstructionNotReplaceableWithConstant(HloInstruction* instruction) { return instruction->shape().is_dynamic() || instruction->opcode() == HloOpcode::kConstant || instruction->opcode() == HloOpcode::kTuple || instruction->opcode() == HloOpcode::kParameter; } } absl::StatusOr<bool> HloBisectState::ShouldProcess() { return RunModule(*module_); } absl::StatusOr<bool> HloBisectState::TrimEntryComputation() { bool changed_in_loop = false; bool changed = false; for (int iter = 0; changed || iter < 2; iter++) { if (iter % 2 == 0) { VLOG(2) << "Trimming by outputs, iteration " << iter; TF_ASSIGN_OR_RETURN(changed, TrimByOutputs()); } else { VLOG(2) << "Trimming by instructions, iteration " << iter; TF_ASSIGN_OR_RETURN(changed, TrimByInstructions()); } changed_in_loop |= changed; } VLOG(2) << "Trimming by replacing instructions with literals"; TF_ASSIGN_OR_RETURN(changed, TrimByUsingConstants()); VLOG(2) << "Final module: " << module_->ToString(); return changed || changed_in_loop; } std::unique_ptr<xla::HloModule>&& HloBisectState::GetResult() { return std::move(module_); } absl::StatusOr<bool> HloBisectState::RunModule(const HloModule& module) { VLOG(3) << "Modified module: " << module.ToString(); absl::StatusOr<bool> bug_result = bug_checker_->Run(module); TF_RETURN_IF_ERROR(bug_result.status()); VLOG(3) << "Bug checker result: " << bug_result.value(); if (!bug_result.value()) { for (HloInstruction* instr : module.entry_computation()->instructions()) { foldable_instructions_.emplace(instr->name()); } for (auto& [key, value] : bug_checker_->GetResults()) { foldable_instructions_values_[key] = std::move(value); } } return bug_result; } absl::StatusOr<bool> HloBisectState::TrimByOutputs() { HloInstruction* root_instruction = module_->entry_computation()->root_instruction(); if (root_instruction->opcode() != HloOpcode::kTuple || root_instruction->operand_count() < 2) { return false; } auto run_modified = [&](int64_t start, int64_t end) -> absl::StatusOr<bool> { std::unique_ptr<HloModule> new_module = module_->Clone(""); HloInstruction* const* new_operands = new_module->entry_computation()->root_instruction()->operands().begin(); TF_RETURN_IF_ERROR(MorphModuleWithOutputs( new_module.get(), absl::MakeSpan(new_operands + start, end - start + 1))); return RunModule(*new_module); }; int64_t bisect_low = 0; int64_t bisect_high = root_instruction->operand_count() - 1; while (bisect_low < bisect_high) { int64_t cur = bisect_low + (bisect_high - bisect_low) / 2; VLOG(2) << "Number of outputs: " << (cur - bisect_low + 1) << " [" << bisect_low << ".." << cur << "]"; TF_ASSIGN_OR_RETURN(bool has_bug, run_modified(bisect_low, cur)); if (has_bug) { bisect_high = cur; } else { TF_ASSIGN_OR_RETURN(has_bug, run_modified(cur + 1, bisect_high)); if (has_bug) { bisect_low = cur + 1; } else { break; } } } bool changed = (bisect_high - bisect_low) < (root_instruction->operand_count() - 1); if (changed) { TF_RETURN_IF_ERROR(MorphModuleWithOutputs( module_.get(), absl::MakeSpan(root_instruction->operands().begin() + bisect_low, bisect_high - bisect_low + 1))); TF_RETURN_IF_ERROR(ExpectModuleIsBuggy()); } return changed; } absl::StatusOr<bool> HloBisectState::TrimByInstructions() { HloComputation* computation = module_->entry_computation(); int64_t upper_bound = computation->instruction_count() - computation->root_instruction()->shape().IsTuple(); int64_t bisect_low = computation->num_parameters() - 1; int64_t bisect_high = upper_bound; while (bisect_low + 1 < bisect_high) { int64_t cur = bisect_low + (bisect_high - bisect_low) / 2; VLOG(2) << "Number of instructions: " << cur << " (of " << computation->instruction_count() << ")"; std::unique_ptr<HloModule> new_module = module_->Clone(""); TF_RETURN_IF_ERROR(MorphModuleWithInstructions(new_module.get(), cur)); TF_ASSIGN_OR_RETURN(bool has_bug, RunModule(*new_module)); if (has_bug) { bisect_high = cur; } else { bisect_low = cur; } } if (bisect_high == computation->num_parameters()) { return Internal( "The checker fails on an empty computation! Something is not right. " "Can't bisect."); } bool changed = bisect_high < upper_bound; if (changed) { TF_RETURN_IF_ERROR(MorphModuleWithInstructions(module_.get(), bisect_high)); TF_RETURN_IF_ERROR(ExpectModuleIsBuggy()); } return changed; } absl::StatusOr<bool> HloBisectState::TrimByUsingConstants() { absl::flat_hash_map<std::string, Literal> literal_map; int64_t random_literals_count = 0; for (HloInstruction* instr : module_->entry_computation()->instructions()) { if (InstructionNotReplaceableWithConstant(instr)) { continue; } if (foldable_instructions_values_.contains(instr->name())) { auto it = foldable_instructions_values_.extract(instr->name()); literal_map.insert(std::move(it)); } else if (foldable_instructions_.contains(instr->name())) { absl::StatusOr<Literal> literal_status = MakeFakeLiteral(instr->shape()); TF_RETURN_IF_ERROR(literal_status.status()); literal_map[instr->name()] = std::move(literal_status).value(); ++random_literals_count; } } VLOG(2) << "Number of literals: " << literal_map.size() << " (random: " << random_literals_count << ")"; std::unique_ptr<HloModule> new_module = module_->Clone(""); TF_RETURN_IF_ERROR( MorphModuleWithLiterals(new_module.get(), std::move(literal_map))); TF_ASSIGN_OR_RETURN(bool has_bug, RunModule(*new_module)); if (has_bug) { std::swap(module_, new_module); } return has_bug; } absl::Status HloBisectState::ExpectModuleIsBuggy() { TF_ASSIGN_OR_RETURN(bool has_bug, RunModule(*module_)); if (has_bug) { return absl::OkStatus(); } const int retry_count = 5; int bug_count = 0; for (int i = 0; i < retry_count; i++) { TF_ASSIGN_OR_RETURN(has_bug, bug_checker_->Run(*module_)); if (has_bug) { bug_count++; } } if (bug_count != 0) { return InternalStrCat("The checker is non deterministic! (only ", bug_count, " failures seen in ", (retry_count + 1), " runs)"); } return Internal("We \"lost\" the bug while bisecting!"); } } }
#include "xla/tools/hlo_bisect/hlo_bisect_state.h" #include <initializer_list> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace bisect { namespace { namespace m = match; using HloBisectStateTest = HloTestBase; class TestBugSearch : public BugCheckerInterface { public: TestBugSearch(std::initializer_list<HloOpcode> opcodes) : opcodes_(opcodes) {} absl::StatusOr<bool> Run(const HloModule& module) override { auto has_opcode = [&](HloOpcode opcode) { return absl::c_any_of(module.entry_computation()->instructions(), [opcode](const HloInstruction* instr) { return instr->opcode() == opcode; }); }; return absl::c_all_of(opcodes_, has_opcode); } absl::flat_hash_map<std::string, Literal> GetResults() override { return {}; } private: std::vector<HloOpcode> opcodes_; }; Literal CreateLiteral(float value) { Literal result = Literal::CreateFromShape(ShapeUtil::MakeShape(F32, {})); result.PopulateWithValue(value); return result; } TEST_F(HloBisectStateTest, TrimByOutputs) { const char* kModuleStr = R"( HloModule test_module ENTRY test_computation { p1 = s32[8] parameter(0) p2 = s32[8] parameter(1) a = s32[8] add(p1, p2) b = s32[8] multiply(p1, p2) c = s32[8] subtract(p1, p2) ROOT sum = tuple(a, b, c) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); TestBugSearch bug_checker({HloOpcode::kMultiply}); HloBisectState bisect(std::move(module), &bug_checker); TF_ASSERT_OK_AND_ASSIGN(bool changed, bisect.TrimEntryComputation()); EXPECT_TRUE(changed); auto reduced_module = std::move(bisect).GetResult(); EXPECT_THAT(reduced_module->entry_computation()->root_instruction(), GmockMatch(m::Multiply(m::Parameter(0), m::Parameter(1)))); } TEST_F(HloBisectStateTest, TrimByInstructions) { const char* kModuleStr = R"( HloModule axpy_module ENTRY axpy_computation { alpha = f32[] parameter(0) broadcast = f32[10] broadcast(alpha), dimensions={} x = f32[10] parameter(1) ax = f32[10] multiply(broadcast, x) y = f32[10] parameter(2) ROOT add = f32[10] add(ax, y) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); TestBugSearch bug_checker({HloOpcode::kMultiply, HloOpcode::kBroadcast}); HloBisectState bisect(std::move(module), &bug_checker); TF_ASSERT_OK_AND_ASSIGN(bool changed, bisect.TrimEntryComputation()); EXPECT_TRUE(changed); auto reduced_module = std::move(bisect).GetResult(); EXPECT_THAT( reduced_module->entry_computation()->root_instruction(), GmockMatch(m::Multiply(m::Broadcast(m::Parameter(0)), m::Parameter(1)))); } TEST_F(HloBisectStateTest, TrimByUsingRandomConstants) { const char* kModuleStr = R"( HloModule test_module ENTRY test_computation { p1 = f32[4] parameter(0) p2 = f32[4] parameter(1) a = f32[4] multiply(p1, p2) b = f32[4] add(p1, p2) ROOT result = f32[4] power(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); TestBugSearch bug_checker({HloOpcode::kPower}); HloBisectState bisect(std::move(module), &bug_checker); TF_ASSERT_OK_AND_ASSIGN(bool changed, bisect.TrimEntryComputation()); EXPECT_TRUE(changed); auto reduced_module = std::move(bisect).GetResult(); EXPECT_THAT(reduced_module->entry_computation()->root_instruction(), GmockMatch(m::Power(m::Constant(), m::Constant()))); } TEST_F(HloBisectStateTest, TrimByUsingReferenceConstants) { class TestBugSearchWithReferenceConstants : public TestBugSearch { public: TestBugSearchWithReferenceConstants() : TestBugSearch({HloOpcode::kPower}) {} absl::flat_hash_map<std::string, Literal> GetResults() override { absl::flat_hash_map<std::string, Literal> results; results["a"] = CreateLiteral(2.0f); results["b"] = CreateLiteral(3.0f); return results; } }; const char* kModuleStr = R"( HloModule test_module ENTRY test_computation { p1 = f32[] parameter(0) p2 = f32[] parameter(1) a = f32[] multiply(p1, p2) b = f32[] add(p1, p2) ROOT result = f32[] power(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); TestBugSearchWithReferenceConstants bug_checker; HloBisectState bisect(std::move(module), &bug_checker); TF_ASSERT_OK_AND_ASSIGN(bool changed, bisect.TrimEntryComputation()); EXPECT_TRUE(changed); auto reduced_module = std::move(bisect).GetResult(); EXPECT_THAT(reduced_module->entry_computation()->root_instruction(), GmockMatch(m::Power(m::Constant(), m::Constant()))); } TEST_F(HloBisectStateTest, TrimByOutputsLostBug) { class CustomBugSearch : public TestBugSearch { public: CustomBugSearch() : TestBugSearch({HloOpcode::kConstant}) {} absl::StatusOr<bool> Run(const HloModule& module) override { TF_ASSIGN_OR_RETURN(bool has_constants, TestBugSearch::Run(module)); int program_size = module.entry_computation()->instruction_count(); return program_size == 5 && !has_constants; } }; const char* kModuleStr = R"( HloModule test_module ENTRY test_computation { p1 = s32[8] parameter(0) p2 = s32[8] parameter(1) a = s32[8] add(p1, p2) b = s32[8] multiply(p1, p2) ROOT sum = tuple(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); CustomBugSearch bug_checker; HloBisectState bisect(std::move(module), &bug_checker); TF_ASSERT_OK_AND_ASSIGN(bool changed, bisect.TrimEntryComputation()); EXPECT_FALSE(changed); } } } }
2,195
cpp
tensorflow/tensorflow
execution_context
third_party/xla/xla/ffi/execution_context.cc
third_party/xla/xla/ffi/execution_context_test.cc
#ifndef XLA_FFI_EXECUTION_CONTEXT_H_ #define XLA_FFI_EXECUTION_CONTEXT_H_ #include <algorithm> #include <cstdint> #include <functional> #include <memory> #include <string_view> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "tsl/lib/gtl/int_type.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla::ffi { class ExecutionContext { public: template <typename T> using Deleter = std::function<void(T*)>; TSL_LIB_GTL_DEFINE_INT_TYPE(TypeId, int64_t); static absl::StatusOr<TypeId> RegisterExternalTypeId(std::string_view name); absl::Status Insert(TypeId type_id, void* data, Deleter<void> deleter = nullptr); template <typename T> absl::Status Insert(T* data, Deleter<T> deleter = nullptr); template <typename T, typename... Args> absl::Status Emplace(Args&&... args); template <typename T> absl::StatusOr<T*> Lookup() const { TF_ASSIGN_OR_RETURN(auto user_data, LookupUserData(GetTypeId<T>())); return static_cast<T*>(user_data->data()); } absl::StatusOr<void*> Lookup(TypeId type_id) const { TF_ASSIGN_OR_RETURN(auto user_data, LookupUserData(type_id)); return user_data->data(); } private: class UserData { public: UserData(void* data, Deleter<void> deleter); ~UserData(); UserData(UserData&) = delete; UserData& operator=(const UserData&) = delete; void* data() const { return data_; } private: void* data_; Deleter<void> deleter_; }; static TypeId GetNextTypeId(); template <typename T> static TypeId GetTypeId() { static const TypeId id = GetNextTypeId(); return id; } absl::Status InsertUserData(TypeId type_id, std::unique_ptr<UserData> data); absl::StatusOr<UserData*> LookupUserData(TypeId type_id) const; absl::flat_hash_map<TypeId, std::unique_ptr<UserData>> user_data_; }; template <typename T> absl::Status ExecutionContext::Insert(T* data, Deleter<T> deleter) { return InsertUserData(GetTypeId<T>(), std::make_unique<UserData>( data, [deleter = std::move(deleter)](void* data) { if (deleter) deleter(static_cast<T*>(data)); })); } template <typename T, typename... Args> absl::Status ExecutionContext::Emplace(Args&&... args) { return InsertUserData(GetTypeId<T>(), std::make_unique<UserData>( new T(std::forward<Args>(args)...), [](void* data) { delete static_cast<T*>(data); })); } } #endif #include "xla/ffi/execution_context.h" #include <atomic> #include <cstdint> #include <memory> #include <string> #include <string_view> #include <utility> #include "absl/base/attributes.h" #include "absl/base/const_init.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" namespace xla::ffi { ABSL_CONST_INIT absl::Mutex type_registry_mutex(absl::kConstInit); using TypeRegistry = absl::flat_hash_map<std::string, ExecutionContext::TypeId>; static TypeRegistry& StaticTypeRegistry() { static auto* registry = new TypeRegistry(); return *registry; } ExecutionContext::TypeId ExecutionContext::GetNextTypeId() { static auto* counter = new std::atomic<int64_t>(1); return TypeId(counter->fetch_add(1)); } ExecutionContext::UserData::UserData(void* data, Deleter<void> deleter) : data_(data), deleter_(std::move(deleter)) {} ExecutionContext::UserData::~UserData() { if (deleter_) deleter_(data_); } absl::StatusOr<ExecutionContext::TypeId> ExecutionContext::RegisterExternalTypeId(std::string_view name) { absl::MutexLock lock(&type_registry_mutex); auto& registry = StaticTypeRegistry(); auto emplaced = registry.emplace(name, TypeId(0)); if (!emplaced.second) { return absl::AlreadyExistsError( absl::StrCat("Type id ", emplaced.first->second.value(), " already registered for type name ", name)); } return emplaced.first->second = GetNextTypeId(); } absl::Status ExecutionContext::Insert(TypeId type_id, void* data, Deleter<void> deleter) { return InsertUserData(type_id, std::make_unique<UserData>(data, std::move(deleter))); } absl::Status ExecutionContext::InsertUserData(TypeId type_id, std::unique_ptr<UserData> data) { if (!data) return absl::InvalidArgumentError("User data must be not null"); auto emplaced = user_data_.emplace(type_id, std::move(data)); if (!emplaced.second) { return absl::AlreadyExistsError( absl::StrCat("User data with type id ", type_id.value(), " already exists in execution context")); } return absl::OkStatus(); } absl::StatusOr<ExecutionContext::UserData*> ExecutionContext::LookupUserData( TypeId type_id) const { auto it = user_data_.find(type_id); if (it == user_data_.end()) { return absl::NotFoundError(absl::StrCat("User data with type id ", type_id.value(), " not found in execution context")); } return it->second.get(); } }
#include "xla/ffi/execution_context.h" #include <cstdint> #include <string> #include "absl/status/status.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::ffi { struct I32UserData { explicit I32UserData(int32_t value) : value(value) {} int32_t value; }; struct StrUserData { explicit StrUserData(std::string value) : value(value) {} std::string value; }; TEST(ExecutionContextTest, EmplaceUserData) { ExecutionContext context; TF_ASSERT_OK(context.Emplace<I32UserData>(42)); TF_ASSERT_OK(context.Emplace<StrUserData>("hello")); TF_ASSERT_OK_AND_ASSIGN(auto* i32_data, context.Lookup<I32UserData>()); TF_ASSERT_OK_AND_ASSIGN(auto* str_data, context.Lookup<StrUserData>()); ASSERT_NE(i32_data, nullptr); ASSERT_NE(str_data, nullptr); ASSERT_EQ(i32_data->value, 42); ASSERT_EQ(str_data->value, "hello"); } TEST(ExecutionContextTest, InsertUserOwned) { I32UserData user_data(42); ExecutionContext context; TF_ASSERT_OK(context.Insert(&user_data)); TF_ASSERT_OK_AND_ASSIGN(auto* i32_data, context.Lookup<I32UserData>()); ASSERT_EQ(i32_data, &user_data); } TEST(ExecutionContextTest, InsertUserOwnedWithTypeId) { TF_ASSERT_OK_AND_ASSIGN( ExecutionContext::TypeId type_id, ExecutionContext::RegisterExternalTypeId("I32UserData")); I32UserData user_data(42); ExecutionContext context; TF_ASSERT_OK(context.Insert(type_id, &user_data)); TF_ASSERT_OK_AND_ASSIGN(auto* i32_data, context.Lookup(type_id)); ASSERT_EQ(i32_data, &user_data); } TEST(ExecutionContextTest, UserDataNotFound) { ExecutionContext context; auto i32_data = context.Lookup<I32UserData>(); ASSERT_EQ(i32_data.status().code(), absl::StatusCode::kNotFound); } }
2,196
cpp
tensorflow/tensorflow
literal_test_util
third_party/xla/xla/tests/literal_test_util.cc
third_party/xla/xla/tests/literal_test_util_test.cc
#ifndef XLA_TESTS_LITERAL_TEST_UTIL_H_ #define XLA_TESTS_LITERAL_TEST_UTIL_H_ #include <initializer_list> #include <memory> #include <optional> #include <random> #include <string> #include "absl/base/attributes.h" #include "absl/types/span.h" #include "xla/array2d.h" #include "xla/array3d.h" #include "xla/array4d.h" #include "xla/error_spec.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/test.h" namespace xla { class LiteralTestUtil { public: [[nodiscard]] static ::testing::AssertionResult EqualShapes( const Shape& expected, const Shape& actual); [[nodiscard]] static ::testing::AssertionResult EqualShapesAndLayouts( const Shape& expected, const Shape& actual); [[nodiscard]] static ::testing::AssertionResult Equal( const LiteralSlice& expected, const LiteralSlice& actual); template <typename NativeT> static void ExpectR0Equal(NativeT expected, const LiteralSlice& actual); template <typename NativeT> static void ExpectR1Equal(absl::Span<const NativeT> expected, const LiteralSlice& actual); template <typename NativeT> static void ExpectR2Equal( std::initializer_list<std::initializer_list<NativeT>> expected, const LiteralSlice& actual); template <typename NativeT> static void ExpectR3Equal( std::initializer_list< std::initializer_list<std::initializer_list<NativeT>>> expected, const LiteralSlice& actual); template <typename NativeT> static void ExpectR2EqualArray2D(const Array2D<NativeT>& expected, const LiteralSlice& actual); template <typename NativeT> static void ExpectR3EqualArray3D(const Array3D<NativeT>& expected, const LiteralSlice& actual); template <typename NativeT> static void ExpectR4EqualArray4D(const Array4D<NativeT>& expected, const LiteralSlice& actual); [[nodiscard]] static ::testing::AssertionResult Near( const LiteralSlice& expected, const LiteralSlice& actual, const ErrorSpec& error_spec, std::optional<bool> detailed_message = std::nullopt); template <typename NativeT> static void ExpectR0Near(NativeT expected, const LiteralSlice& actual, const ErrorSpec& error); template <typename NativeT> static void ExpectR1Near(absl::Span<const NativeT> expected, const LiteralSlice& actual, const ErrorSpec& error); template <typename NativeT> static void ExpectR2Near( std::initializer_list<std::initializer_list<NativeT>> expected, const LiteralSlice& actual, const ErrorSpec& error); template <typename NativeT> static void ExpectR3Near( std::initializer_list< std::initializer_list<std::initializer_list<NativeT>>> expected, const LiteralSlice& actual, const ErrorSpec& error); template <typename NativeT> static void ExpectR4Near( std::initializer_list<std::initializer_list< std::initializer_list<std::initializer_list<NativeT>>>> expected, const LiteralSlice& actual, const ErrorSpec& error); template <typename NativeT> static void ExpectR2NearArray2D(const Array2D<NativeT>& expected, const LiteralSlice& actual, const ErrorSpec& error); template <typename NativeT> static void ExpectR3NearArray3D(const Array3D<NativeT>& expected, const LiteralSlice& actual, const ErrorSpec& error); template <typename NativeT> static void ExpectR4NearArray4D(const Array4D<NativeT>& expected, const LiteralSlice& actual, const ErrorSpec& error); [[nodiscard]] static ::testing::AssertionResult NearOrEqual( const LiteralSlice& expected, const LiteralSlice& actual, const std::optional<ErrorSpec>& error); private: LiteralTestUtil(const LiteralTestUtil&) = delete; LiteralTestUtil& operator=(const LiteralTestUtil&) = delete; }; template <typename NativeT> void LiteralTestUtil::ExpectR0Equal(NativeT expected, const LiteralSlice& actual) { EXPECT_TRUE(Equal(LiteralUtil::CreateR0<NativeT>(expected), actual)); } template <typename NativeT> void LiteralTestUtil::ExpectR1Equal( absl::Span<const NativeT> expected, const LiteralSlice& actual) { EXPECT_TRUE(Equal(LiteralUtil::CreateR1<NativeT>(expected), actual)); } template <typename NativeT> void LiteralTestUtil::ExpectR2Equal( std::initializer_list<std::initializer_list<NativeT>> expected, const LiteralSlice& actual) { EXPECT_TRUE(Equal(LiteralUtil::CreateR2<NativeT>(expected), actual)); } template <typename NativeT> void LiteralTestUtil::ExpectR3Equal( std::initializer_list<std::initializer_list<std::initializer_list<NativeT>>> expected, const LiteralSlice& actual) { EXPECT_TRUE(Equal(LiteralUtil::CreateR3<NativeT>(expected), actual)); } template <typename NativeT> void LiteralTestUtil::ExpectR2EqualArray2D( const Array2D<NativeT>& expected, const LiteralSlice& actual) { EXPECT_TRUE(Equal(LiteralUtil::CreateR2FromArray2D(expected), actual)); } template <typename NativeT> void LiteralTestUtil::ExpectR3EqualArray3D( const Array3D<NativeT>& expected, const LiteralSlice& actual) { EXPECT_TRUE(Equal(LiteralUtil::CreateR3FromArray3D(expected), actual)); } template <typename NativeT> void LiteralTestUtil::ExpectR4EqualArray4D( const Array4D<NativeT>& expected, const LiteralSlice& actual) { EXPECT_TRUE(Equal(LiteralUtil::CreateR4FromArray4D(expected), actual)); } template <typename NativeT> void LiteralTestUtil::ExpectR0Near(NativeT expected, const LiteralSlice& actual, const ErrorSpec& error) { EXPECT_TRUE(Near(LiteralUtil::CreateR0<NativeT>(expected), actual, error)); } template <typename NativeT> void LiteralTestUtil::ExpectR1Near( absl::Span<const NativeT> expected, const LiteralSlice& actual, const ErrorSpec& error) { EXPECT_TRUE(Near(LiteralUtil::CreateR1<NativeT>(expected), actual, error)); } template <typename NativeT> void LiteralTestUtil::ExpectR2Near( std::initializer_list<std::initializer_list<NativeT>> expected, const LiteralSlice& actual, const ErrorSpec& error) { EXPECT_TRUE(Near(LiteralUtil::CreateR2<NativeT>(expected), actual, error)); } template <typename NativeT> void LiteralTestUtil::ExpectR3Near( std::initializer_list<std::initializer_list<std::initializer_list<NativeT>>> expected, const LiteralSlice& actual, const ErrorSpec& error) { EXPECT_TRUE(Near(LiteralUtil::CreateR3<NativeT>(expected), actual, error)); } template <typename NativeT> void LiteralTestUtil::ExpectR4Near( std::initializer_list<std::initializer_list< std::initializer_list<std::initializer_list<NativeT>>>> expected, const LiteralSlice& actual, const ErrorSpec& error) { EXPECT_TRUE(Near(LiteralUtil::CreateR4<NativeT>(expected), actual, error)); } template <typename NativeT> void LiteralTestUtil::ExpectR2NearArray2D( const Array2D<NativeT>& expected, const LiteralSlice& actual, const ErrorSpec& error) { EXPECT_TRUE(Near(LiteralUtil::CreateR2FromArray2D(expected), actual, error)); } template <typename NativeT> void LiteralTestUtil::ExpectR3NearArray3D( const Array3D<NativeT>& expected, const LiteralSlice& actual, const ErrorSpec& error) { EXPECT_TRUE(Near(LiteralUtil::CreateR3FromArray3D(expected), actual, error)); } template <typename NativeT> void LiteralTestUtil::ExpectR4NearArray4D( const Array4D<NativeT>& expected, const LiteralSlice& actual, const ErrorSpec& error) { EXPECT_TRUE(Near(LiteralUtil::CreateR4FromArray4D(expected), actual, error)); } } #endif #include "xla/tests/literal_test_util.h" #include "absl/strings/str_format.h" #include "xla/literal_comparison.h" #include "tsl/platform/env.h" #include "tsl/platform/path.h" #include "tsl/platform/test.h" namespace xla { namespace { void WriteLiteralToTempFile(const LiteralSlice& literal, const std::string& name) { std::string outdir; if (!tsl::io::GetTestUndeclaredOutputsDir(&outdir)) { outdir = tsl::testing::TmpDir(); } auto* env = tsl::Env::Default(); std::string filename = tsl::io::JoinPath( outdir, absl::StrFormat("tempfile-%d-%s", env->NowMicros(), name)); TF_CHECK_OK(tsl::WriteBinaryProto(env, absl::StrCat(filename, ".pb"), literal.ToProto())); TF_CHECK_OK(tsl::WriteStringToFile(env, absl::StrCat(filename, ".txt"), literal.ToString())); LOG(ERROR) << "wrote Literal to " << name << " file: " << filename << ".{pb,txt}"; } void OnMiscompare(const LiteralSlice& expected, const LiteralSlice& actual, const LiteralSlice& mismatches, const ShapeIndex& , const literal_comparison::ErrorBuckets& ) { LOG(INFO) << "expected: " << ShapeUtil::HumanString(expected.shape()) << " " << literal_comparison::ToStringTruncated(expected); LOG(INFO) << "actual: " << ShapeUtil::HumanString(actual.shape()) << " " << literal_comparison::ToStringTruncated(actual); LOG(INFO) << "Dumping literals to temp files..."; WriteLiteralToTempFile(expected, "expected"); WriteLiteralToTempFile(actual, "actual"); WriteLiteralToTempFile(mismatches, "mismatches"); } ::testing::AssertionResult StatusToAssertion(const absl::Status& s) { if (s.ok()) { return ::testing::AssertionSuccess(); } return ::testing::AssertionFailure() << s.message(); } } ::testing::AssertionResult LiteralTestUtil::EqualShapes( const Shape& expected, const Shape& actual) { return StatusToAssertion(literal_comparison::EqualShapes(expected, actual)); } ::testing::AssertionResult LiteralTestUtil::EqualShapesAndLayouts( const Shape& expected, const Shape& actual) { if (expected.ShortDebugString() != actual.ShortDebugString()) { return ::testing::AssertionFailure() << "want: " << expected.ShortDebugString() << " got: " << actual.ShortDebugString(); } return ::testing::AssertionSuccess(); } ::testing::AssertionResult LiteralTestUtil::Equal( const LiteralSlice& expected, const LiteralSlice& actual) { return StatusToAssertion(literal_comparison::Equal(expected, actual)); } ::testing::AssertionResult LiteralTestUtil::Near( const LiteralSlice& expected, const LiteralSlice& actual, const ErrorSpec& error_spec, std::optional<bool> detailed_message) { return StatusToAssertion(literal_comparison::Near( expected, actual, error_spec, detailed_message, &OnMiscompare)); } ::testing::AssertionResult LiteralTestUtil::NearOrEqual( const LiteralSlice& expected, const LiteralSlice& actual, const std::optional<ErrorSpec>& error) { if (error.has_value()) { VLOG(1) << "Expects near"; return StatusToAssertion(literal_comparison::Near( expected, actual, *error, std::nullopt, &OnMiscompare)); } VLOG(1) << "Expects equal"; return StatusToAssertion(literal_comparison::Equal(expected, actual)); } }
#include "xla/tests/literal_test_util.h" #include <vector> #include "absl/strings/str_join.h" #include "xla/literal.h" #include "xla/test_helpers.h" #include "tsl/platform/env.h" #include "tsl/platform/logging.h" #include "tsl/platform/path.h" #include "tsl/platform/test.h" namespace xla { namespace { TEST(LiteralTestUtilTest, ComparesEqualTuplesEqual) { Literal literal = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<int32_t>(42), LiteralUtil::CreateR0<int32_t>(64), }); EXPECT_TRUE(LiteralTestUtil::Equal(literal, literal)); } TEST(LiteralTestUtilTest, ComparesEqualComplex64TuplesEqual) { Literal literal = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex64>({42.0, 64.0}), LiteralUtil::CreateR0<complex64>({64.0, 42.0}), }); EXPECT_TRUE(LiteralTestUtil::Equal(literal, literal)); } TEST(LiteralTestUtilTest, ComparesEqualComplex128TuplesEqual) { Literal literal = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex128>({42.0, 64.0}), LiteralUtil::CreateR0<complex128>({64.0, 42.0}), }); EXPECT_TRUE(LiteralTestUtil::Equal(literal, literal)); } TEST(LiteralTestUtilTest, ComparesUnequalComplex64TuplesUnequal) { Literal literal0 = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex64>({42.0, 64.0}), LiteralUtil::CreateR0<complex64>({64.0, 42.0}), }); Literal literal1 = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex64>({64.0, 42.0}), LiteralUtil::CreateR0<complex64>({42.0, 64.0}), }); Literal literal2 = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex64>({42.42, 64.0}), LiteralUtil::CreateR0<complex64>({64.0, 42.0}), }); Literal literal3 = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex64>({42.0, 64.0}), LiteralUtil::CreateR0<complex64>({64.0, 42.42}), }); EXPECT_FALSE(LiteralTestUtil::Equal(literal0, literal1)); EXPECT_FALSE(LiteralTestUtil::Equal(literal0, literal2)); EXPECT_FALSE(LiteralTestUtil::Equal(literal0, literal3)); EXPECT_FALSE(LiteralTestUtil::Equal(literal2, literal3)); } TEST(LiteralTestUtilTest, ComparesUnequalComplex128TuplesUnequal) { Literal literal0 = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex128>({42.0, 64.0}), LiteralUtil::CreateR0<complex128>({64.0, 42.0}), }); Literal literal1 = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex128>({64.0, 42.0}), LiteralUtil::CreateR0<complex128>({42.0, 64.0}), }); Literal literal2 = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex128>({42.42, 64.0}), LiteralUtil::CreateR0<complex128>({64.0, 42.0}), }); Literal literal3 = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<complex128>({42.0, 64.0}), LiteralUtil::CreateR0<complex128>({64.0, 42.42}), }); EXPECT_FALSE(LiteralTestUtil::Equal(literal0, literal1)); EXPECT_FALSE(LiteralTestUtil::Equal(literal0, literal2)); EXPECT_FALSE(LiteralTestUtil::Equal(literal0, literal3)); EXPECT_FALSE(LiteralTestUtil::Equal(literal2, literal3)); } TEST(LiteralTestUtilTest, ComparesUnequalTuplesUnequal) { auto unequal_things_are_equal = [] { Literal lhs = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<int32_t>(42), LiteralUtil::CreateR0<int32_t>(64), }); Literal rhs = LiteralUtil::MakeTupleFromSlices({ LiteralUtil::CreateR0<int32_t>(64), LiteralUtil::CreateR0<int32_t>(42), }); CHECK(LiteralTestUtil::Equal(lhs, rhs)) << "LHS and RHS are unequal"; }; ASSERT_DEATH(unequal_things_are_equal(), "LHS and RHS are unequal"); } TEST(LiteralTestUtilTest, ExpectNearFailurePlacesResultsInTemporaryDirectory) { auto dummy_lambda = [] { auto two = LiteralUtil::CreateR0<float>(2); auto four = LiteralUtil::CreateR0<float>(4); ErrorSpec error(0.001); CHECK(LiteralTestUtil::Near(two, four, error)) << "two is not near four"; }; tsl::Env* env = tsl::Env::Default(); std::string outdir; if (!tsl::io::GetTestUndeclaredOutputsDir(&outdir)) { outdir = tsl::testing::TmpDir(); } std::string pattern = tsl::io::JoinPath(outdir, "tempfile-*.pb"); std::vector<std::string> files; TF_CHECK_OK(env->GetMatchingPaths(pattern, &files)); for (const auto& f : files) { TF_CHECK_OK(env->DeleteFile(f)) << f; } ASSERT_DEATH(dummy_lambda(), "two is not near four"); std::vector<std::string> results; TF_CHECK_OK(env->GetMatchingPaths(pattern, &results)); LOG(INFO) << "results: [" << absl::StrJoin(results, ", ") << "]"; EXPECT_EQ(3, results.size()); for (const std::string& result : results) { LiteralProto literal_proto; TF_CHECK_OK( tsl::ReadBinaryProto(tsl::Env::Default(), result, &literal_proto)); Literal literal = Literal::CreateFromProto(literal_proto).value(); if (result.find("expected") != std::string::npos) { EXPECT_EQ("f32[] 2", literal.ToString()); } else if (result.find("actual") != std::string::npos) { EXPECT_EQ("f32[] 4", literal.ToString()); } else if (result.find("mismatches") != std::string::npos) { EXPECT_EQ("pred[] true", literal.ToString()); } else { FAIL() << "unknown file in temporary directory: " << result; } } } TEST(LiteralTestUtilTest, NotEqualHasValuesInMessage) { auto expected = LiteralUtil::CreateR1<int32_t>({1, 2, 3}); auto actual = LiteralUtil::CreateR1<int32_t>({4, 5, 6}); ::testing::AssertionResult result = LiteralTestUtil::Equal(expected, actual); EXPECT_THAT(result.message(), ::testing::HasSubstr("Expected literal:\ns32[3] {1, 2, 3}")); EXPECT_THAT(result.message(), ::testing::HasSubstr("Actual literal:\ns32[3] {4, 5, 6}")); } TEST(LiteralTestUtilTest, NearComparatorR1) { auto a = LiteralUtil::CreateR1<float>( {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}); auto b = LiteralUtil::CreateR1<float>( {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}); EXPECT_TRUE(LiteralTestUtil::Near(a, b, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, NearComparatorR1Complex64) { auto a = LiteralUtil::CreateR1<complex64>({{0.0, 1.0}, {0.1, 1.1}, {0.2, 1.2}, {0.3, 1.3}, {0.4, 1.4}, {0.5, 1.5}, {0.6, 1.6}, {0.7, 1.7}, {0.8, 1.8}}); auto b = LiteralUtil::CreateR1<complex64>({{0.0, 1.0}, {0.1, 1.1}, {0.2, 1.2}, {0.3, 1.3}, {0.4, 1.4}, {0.5, 1.5}, {0.6, 1.6}, {0.7, 1.7}, {0.8, 1.8}}); auto c = LiteralUtil::CreateR1<complex64>({{0.0, 1.0}, {0.1, 1.1}, {0.2, 1.2}, {0.3, 1.3}, {0.4, 1.4}, {0.5, 1.5}, {0.6, 1.6}, {0.7, 1.7}, {0.9, 1.8}}); auto d = LiteralUtil::CreateR1<complex64>({{0.0, 1.0}, {0.1, 1.1}, {0.2, 1.2}, {0.3, 1.3}, {0.4, 1.4}, {0.5, 1.5}, {0.6, 1.6}, {0.7, 1.7}, {0.8, 1.9}}); EXPECT_TRUE(LiteralTestUtil::Near(a, b, ErrorSpec{0.0001})); EXPECT_FALSE(LiteralTestUtil::Near(a, c, ErrorSpec{0.0001})); EXPECT_FALSE(LiteralTestUtil::Near(a, d, ErrorSpec{0.0001})); EXPECT_FALSE(LiteralTestUtil::Near(c, d, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, NearComparatorR1Complex128) { auto a = LiteralUtil::CreateR1<complex128>({{0.0, 1.0}, {0.1, 1.1}, {0.2, 1.2}, {0.3, 1.3}, {0.4, 1.4}, {0.5, 1.5}, {0.6, 1.6}, {0.7, 1.7}, {0.8, 1.8}}); auto b = LiteralUtil::CreateR1<complex128>({{0.0, 1.0}, {0.1, 1.1}, {0.2, 1.2}, {0.3, 1.3}, {0.4, 1.4}, {0.5, 1.5}, {0.6, 1.6}, {0.7, 1.7}, {0.8, 1.8}}); auto c = LiteralUtil::CreateR1<complex128>({{0.0, 1.0}, {0.1, 1.1}, {0.2, 1.2}, {0.3, 1.3}, {0.4, 1.4}, {0.5, 1.5}, {0.6, 1.6}, {0.7, 1.7}, {0.9, 1.8}}); auto d = LiteralUtil::CreateR1<complex128>({{0.0, 1.0}, {0.1, 1.1}, {0.2, 1.2}, {0.3, 1.3}, {0.4, 1.4}, {0.5, 1.5}, {0.6, 1.6}, {0.7, 1.7}, {0.8, 1.9}}); EXPECT_TRUE(LiteralTestUtil::Near(a, b, ErrorSpec{0.0001})); EXPECT_FALSE(LiteralTestUtil::Near(a, c, ErrorSpec{0.0001})); EXPECT_FALSE(LiteralTestUtil::Near(a, d, ErrorSpec{0.0001})); EXPECT_FALSE(LiteralTestUtil::Near(c, d, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, NearComparatorR1Nan) { auto a = LiteralUtil::CreateR1<float>( {0.0, 0.1, 0.2, 0.3, NAN, 0.5, 0.6, 0.7, 0.8}); auto b = LiteralUtil::CreateR1<float>( {0.0, 0.1, 0.2, 0.3, NAN, 0.5, 0.6, 0.7, 0.8}); EXPECT_TRUE(LiteralTestUtil::Near(a, b, ErrorSpec{0.0001})); } TEST(LiteralTestUtil, NearComparatorDifferentLengths) { auto a = LiteralUtil::CreateR1<float>( {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}); auto b = LiteralUtil::CreateR1<float>({0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}); EXPECT_FALSE(LiteralTestUtil::Near(a, b, ErrorSpec{0.0001})); EXPECT_FALSE(LiteralTestUtil::Near(b, a, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, ExpectNearDoubleOutsideFloatValueRange) { auto two_times_float_max = LiteralUtil::CreateR0<double>(2.0 * std::numeric_limits<float>::max()); ErrorSpec error(0.001); EXPECT_TRUE( LiteralTestUtil::Near(two_times_float_max, two_times_float_max, error)); } TEST(LiteralTestUtilTest, DynamicEqualityR1) { auto literal1 = Literal(ShapeUtil::MakeShape(U32, {10})); literal1.PopulateR1<uint32_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal1.SetDynamicSize(0, 5); auto literal2 = Literal(ShapeUtil::MakeShape(U32, {10})); literal2.PopulateR1<uint32_t>({1, 2, 3, 4, 5, 99, 99, 99, 99, 99}); literal2.SetDynamicSize(0, 5); EXPECT_TRUE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, DynamicEqualityR2Dim) { auto literal1 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal1.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(0, 2); auto literal2 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal2.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}, {99, 99, 99}}); literal2.SetDynamicSize(0, 2); EXPECT_TRUE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, DynamicEqualityR2Dim1) { auto literal1 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal1.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(1, 2); auto literal2 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal2.PopulateR2<uint32_t>({{1, 2, 99}, {4, 5, 99}, {7, 8, 99}}); literal2.SetDynamicSize(1, 2); EXPECT_TRUE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, DynamicNearEqualityR1) { auto literal1 = Literal(ShapeUtil::MakeShape(F32, {10})); literal1.PopulateR1<float>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal1.SetDynamicSize(0, 5); auto literal2 = Literal(ShapeUtil::MakeShape(F32, {10})); literal2.PopulateR1<float>({1, 2, 3, 4, 5, 99, 99, 99, 99, 99}); literal2.SetDynamicSize(0, 5); ErrorSpec error(0.001); EXPECT_TRUE(LiteralTestUtil::Near(literal1, literal2, error)); } TEST(LiteralTestUtilTest, DynamicNearEqualityR2Dim) { auto literal1 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal1.PopulateR2<float>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(0, 2); auto literal2 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal2.PopulateR2<float>({{1, 2, 3}, {4, 5, 6}, {99, 99, 99}}); literal2.SetDynamicSize(0, 2); ErrorSpec error(0.001); EXPECT_TRUE(LiteralTestUtil::Near(literal1, literal2, error)); } TEST(LiteralTestUtilTest, DynamicNearEqualityR2Dim1) { auto literal1 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal1.PopulateR2<float>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(1, 2); auto literal2 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal2.PopulateR2<float>({{1, 2, 99}, {4, 5, 99}, {7, 8, 99}}); literal2.SetDynamicSize(1, 2); ErrorSpec error(0.001); EXPECT_TRUE(LiteralTestUtil::Near(literal1, literal2, error)); } TEST(LiteralTestUtilTest, UnequalDynamicDimensionsR1) { auto literal1 = Literal(ShapeUtil::MakeShape(U32, {10})); literal1.PopulateR1<uint32_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal1.SetDynamicSize(0, 5); auto literal2 = Literal(ShapeUtil::MakeShape(U32, {10})); literal2.PopulateR1<uint32_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal2.SetDynamicSize(0, 6); EXPECT_FALSE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, UnequalDynamicDimensionsR1_F32) { auto literal1 = Literal(ShapeUtil::MakeShape(F32, {10})); literal1.PopulateR1<float>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal1.SetDynamicSize(0, 5); auto literal2 = Literal(ShapeUtil::MakeShape(F32, {10})); literal2.PopulateR1<float>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal2.SetDynamicSize(0, 6); EXPECT_FALSE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, ExpectedIsDynamicActualIsNotR1) { auto literal1 = Literal(ShapeUtil::MakeShape(U32, {10})); literal1.PopulateR1<uint32_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal1.SetDynamicSize(0, 5); auto literal2 = Literal(ShapeUtil::MakeShape(U32, {10})); literal2.PopulateR1<uint32_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); EXPECT_FALSE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, ExpectedIsDynamicActualIsNotR1_F32) { auto literal1 = Literal(ShapeUtil::MakeShape(F32, {10})); literal1.PopulateR1<float>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal1.SetDynamicSize(0, 5); auto literal2 = Literal(ShapeUtil::MakeShape(F32, {10})); literal2.PopulateR1<float>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); EXPECT_FALSE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, ActualIsDynamicExpectedIsNotR1) { auto literal1 = Literal(ShapeUtil::MakeShape(U32, {10})); literal1.PopulateR1<uint32_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); auto literal2 = Literal(ShapeUtil::MakeShape(U32, {10})); literal2.PopulateR1<uint32_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal2.SetDynamicSize(0, 5); EXPECT_FALSE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, ActualIsDynamicExpectedIsNotR1_F32) { auto literal1 = Literal(ShapeUtil::MakeShape(F32, {10})); literal1.PopulateR1<float>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); auto literal2 = Literal(ShapeUtil::MakeShape(F32, {10})); literal2.PopulateR1<float>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); literal2.SetDynamicSize(0, 5); EXPECT_FALSE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, UnequalDynamicDimensionsR2Dim0) { auto literal1 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal1.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(0, 2); auto literal2 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal2.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal2.SetDynamicSize(0, 3); EXPECT_FALSE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, UnequalDynamicDimensionsR2Dim0_F32) { auto literal1 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal1.PopulateR2<float>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(0, 2); auto literal2 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal2.PopulateR2<float>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal2.SetDynamicSize(0, 3); EXPECT_FALSE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, UnequalDynamicDimensionsR2Dim1) { auto literal1 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal1.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(1, 2); auto literal2 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal2.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal2.SetDynamicSize(1, 3); EXPECT_FALSE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, UnequalDynamicDimensionsR2Dim1_F32) { auto literal1 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal1.PopulateR2<float>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(1, 2); auto literal2 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal2.PopulateR2<float>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal2.SetDynamicSize(1, 3); EXPECT_FALSE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, UnequalDynamicDimensionsR2DifferentDimensions) { auto literal1 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal1.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(1, 2); auto literal2 = Literal(ShapeUtil::MakeShape(U32, {3, 3})); literal2.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal2.SetDynamicSize(0, 2); EXPECT_FALSE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, UnequalDynamicDimensionsR2DifferentDimensions_F32) { auto literal1 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal1.PopulateR2<float>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal1.SetDynamicSize(1, 2); auto literal2 = Literal(ShapeUtil::MakeShape(F32, {3, 3})); literal2.PopulateR2<float>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); literal2.SetDynamicSize(0, 2); EXPECT_FALSE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, DynamicTuplesAreEqual) { auto literal1 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(U32, {5}), ShapeUtil::MakeShape(U32, {5})})); auto literal2 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(U32, {5}), ShapeUtil::MakeShape(U32, {5})})); MutableBorrowingLiteral(&literal1, {0}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal1, {1}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); literal1.SetDynamicSize(0, {0}, 5); MutableBorrowingLiteral(&literal2, {0}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal2, {1}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); literal2.SetDynamicSize(0, {0}, 5); EXPECT_TRUE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, DynamicTuplesAreNear) { auto literal1 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}), ShapeUtil::MakeShape(F32, {5})})); auto literal2 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}), ShapeUtil::MakeShape(F32, {5})})); MutableBorrowingLiteral(&literal1, {0}) .PopulateR1<float>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal1, {1}) .PopulateR1<float>({1, 2, 3, 4, 5}); literal1.SetDynamicSize(0, {0}, 5); MutableBorrowingLiteral(&literal2, {0}) .PopulateR1<float>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal2, {1}) .PopulateR1<float>({1, 2, 3, 4, 5}); literal2.SetDynamicSize(0, {0}, 5); EXPECT_TRUE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, DynamicTuplesAreEqualWithinDynamicBounds) { auto literal1 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(U32, {5}), ShapeUtil::MakeShape(U32, {5})})); auto literal2 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(U32, {5}), ShapeUtil::MakeShape(U32, {5})})); MutableBorrowingLiteral(&literal1, {0}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal1, {1}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); literal1.SetDynamicSize(0, {0}, 3); MutableBorrowingLiteral(&literal2, {0}) .PopulateR1<uint32_t>({1, 2, 3, 99, 99}); MutableBorrowingLiteral(&literal2, {1}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); literal2.SetDynamicSize(0, {0}, 3); EXPECT_TRUE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, DynamicTuplesAreNearWithinDynamicBounds) { auto literal1 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}), ShapeUtil::MakeShape(F32, {5})})); auto literal2 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}), ShapeUtil::MakeShape(F32, {5})})); MutableBorrowingLiteral(&literal1, {0}) .PopulateR1<float>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal1, {1}) .PopulateR1<float>({1, 2, 3, 4, 5}); literal1.SetDynamicSize(0, {0}, 3); MutableBorrowingLiteral(&literal2, {0}) .PopulateR1<float>({1, 2, 3, 99, 99}); MutableBorrowingLiteral(&literal2, {1}) .PopulateR1<float>({1, 2, 3, 4, 5}); literal2.SetDynamicSize(0, {0}, 3); EXPECT_TRUE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, DynamicTuplesHaveDifferentDynamicSizes) { auto literal1 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(U32, {5}), ShapeUtil::MakeShape(U32, {5})})); auto literal2 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(U32, {5}), ShapeUtil::MakeShape(U32, {5})})); MutableBorrowingLiteral(&literal1, {0}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal1, {1}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); literal1.SetDynamicSize(0, {0}, 5); MutableBorrowingLiteral(&literal2, {0}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal2, {1}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); literal2.SetDynamicSize(0, {0}, 4); EXPECT_FALSE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, DynamicTuplesHaveDifferentDynamicSizes_F32) { auto literal1 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}), ShapeUtil::MakeShape(F32, {5})})); auto literal2 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}), ShapeUtil::MakeShape(F32, {5})})); MutableBorrowingLiteral(&literal1, {0}) .PopulateR1<float>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal1, {1}) .PopulateR1<float>({1, 2, 3, 4, 5}); literal1.SetDynamicSize(0, {0}, 5); MutableBorrowingLiteral(&literal2, {0}) .PopulateR1<float>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal2, {1}) .PopulateR1<float>({1, 2, 3, 4, 5}); literal2.SetDynamicSize(0, {0}, 4); EXPECT_FALSE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } TEST(LiteralTestUtilTest, OneTupleDynamicOneIsNot) { auto literal1 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(U32, {5}), ShapeUtil::MakeShape(U32, {5})})); auto literal2 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(U32, {5}), ShapeUtil::MakeShape(U32, {5})})); MutableBorrowingLiteral(&literal1, {0}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal1, {1}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); literal1.SetDynamicSize(0, {0}, 5); MutableBorrowingLiteral(&literal2, {0}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal2, {1}) .PopulateR1<uint32_t>({1, 2, 3, 4, 5}); EXPECT_FALSE(LiteralTestUtil::Equal(literal1, literal2)); } TEST(LiteralTestUtilTest, OneTupleDynamicOneIsNot_F32) { auto literal1 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}), ShapeUtil::MakeShape(F32, {5})})); auto literal2 = Literal(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}), ShapeUtil::MakeShape(F32, {5})})); MutableBorrowingLiteral(&literal1, {0}) .PopulateR1<float>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal1, {1}) .PopulateR1<float>({1, 2, 3, 4, 5}); literal1.SetDynamicSize(0, {0}, 5); MutableBorrowingLiteral(&literal2, {0}) .PopulateR1<float>({1, 2, 3, 4, 5}); MutableBorrowingLiteral(&literal2, {1}) .PopulateR1<float>({1, 2, 3, 4, 5}); EXPECT_FALSE(LiteralTestUtil::Near(literal1, literal2, ErrorSpec{0.0001})); } } }
2,197
cpp
tensorflow/tensorflow
host_tracer
third_party/xla/xla/backends/profiler/cpu/host_tracer.cc
third_party/xla/xla/backends/profiler/cpu/host_tracer_test.cc
#ifndef XLA_BACKENDS_PROFILER_CPU_HOST_TRACER_H_ #define XLA_BACKENDS_PROFILER_CPU_HOST_TRACER_H_ #include <memory> #include "tsl/profiler/lib/profiler_interface.h" namespace xla { namespace profiler { struct HostTracerOptions { int trace_level = 2; }; std::unique_ptr<tsl::profiler::ProfilerInterface> CreateHostTracer( const HostTracerOptions& options); } } #endif #include "xla/backends/profiler/cpu/host_tracer.h" #include <memory> #include <string> #include <utility> #include <vector> #include "absl/log/log.h" #include "absl/status/status.h" #include "tsl/platform/errors.h" #include "tsl/profiler/backends/cpu/host_tracer_utils.h" #include "tsl/profiler/backends/cpu/threadpool_listener.h" #include "tsl/profiler/backends/cpu/traceme_recorder.h" #include "tsl/profiler/lib/profiler_collection.h" #include "tsl/profiler/lib/profiler_interface.h" #include "tsl/profiler/protobuf/xplane.pb.h" #include "tsl/profiler/utils/time_utils.h" #include "tsl/profiler/utils/xplane_schema.h" #include "tsl/profiler/utils/xplane_utils.h" namespace xla { namespace profiler { namespace { class HostTracer : public tsl::profiler::ProfilerInterface { public: explicit HostTracer(int host_trace_level); ~HostTracer() override; absl::Status Start() override; absl::Status Stop() override; absl::Status CollectData( tensorflow::profiler::XSpace* space) override; private: const int host_trace_level_; bool recording_ = false; uint64_t start_timestamp_ns_ = 0; tsl::profiler::TraceMeRecorder::Events events_; }; HostTracer::HostTracer(int host_trace_level) : host_trace_level_(host_trace_level) {} HostTracer::~HostTracer() { Stop().IgnoreError(); } absl::Status HostTracer::Start() { if (recording_) { return tsl::errors::Internal("TraceMeRecorder already started"); } start_timestamp_ns_ = tsl::profiler::GetCurrentTimeNanos(); recording_ = tsl::profiler::TraceMeRecorder::Start(host_trace_level_); if (!recording_) { return tsl::errors::Internal("Failed to start TraceMeRecorder"); } return absl::OkStatus(); } absl::Status HostTracer::Stop() { if (!recording_) { return tsl::errors::Internal("TraceMeRecorder not started"); } events_ = tsl::profiler::TraceMeRecorder::Stop(); recording_ = false; return absl::OkStatus(); } absl::Status HostTracer::CollectData( tensorflow::profiler::XSpace* space) { VLOG(2) << "Collecting data to XSpace from HostTracer."; if (recording_) { return tsl::errors::Internal("TraceMeRecorder not stopped"); } if (events_.empty()) { return absl::OkStatus(); } tensorflow::profiler::XPlane* plane = tsl::profiler::FindOrAddMutablePlaneWithName( space, tsl::profiler::kHostThreadsPlaneName); ConvertCompleteEventsToXPlane(start_timestamp_ns_, std::exchange(events_, {}), plane); return absl::OkStatus(); } } std::unique_ptr<tsl::profiler::ProfilerInterface> CreateHostTracer( const HostTracerOptions& options) { if (options.trace_level == 0) return nullptr; std::vector<std::unique_ptr<tsl::profiler::ProfilerInterface>> profilers; profilers.push_back(std::make_unique<HostTracer>(options.trace_level)); profilers.push_back( std::make_unique<tsl::profiler::ThreadpoolProfilerInterface>()); return std::make_unique<tsl::profiler::ProfilerCollection>( std::move(profilers)); } } }
#include "xla/backends/profiler/cpu/host_tracer.h" #include <cstdint> #include <memory> #include <optional> #include <ostream> #include <string> #include <gtest/gtest.h> #include "absl/types/optional.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/blocking_counter.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" #include "tsl/platform/types.h" #include "tsl/profiler/lib/profiler_interface.h" #include "tsl/profiler/lib/traceme.h" #include "tsl/profiler/protobuf/xplane.pb.h" #include "tsl/profiler/utils/tf_xplane_visitor.h" #include "tsl/profiler/utils/timespan.h" #include "tsl/profiler/utils/xplane_schema.h" #include "tsl/profiler/utils/xplane_visitor.h" namespace xla { namespace profiler { namespace { using ::tsl::Env; using ::tsl::Thread; using ::tsl::ThreadOptions; using ::tsl::profiler::StatType; using ::tsl::profiler::Timespan; using ::tsl::profiler::TraceMe; using ::tsl::profiler::XEventVisitor; using ::tsl::profiler::XLineVisitor; using ::tsl::profiler::XPlaneVisitor; using ::tsl::profiler::XStatVisitor; TEST(HostTracerTest, CollectsTraceMeEventsAsXSpace) { tsl::uint32 thread_id; std::string thread_name = "MyThreadName"; tensorflow::profiler::XSpace space; std::unique_ptr<Thread> traced_thread( Env::Default()->StartThread(ThreadOptions(), thread_name, [&] { ASSERT_TRUE(Env::Default()->GetCurrentThreadName(&thread_name)); thread_id = Env::Default()->GetCurrentThreadId(); auto tracer = CreateHostTracer({}); TF_ASSERT_OK(tracer->Start()); { TraceMe traceme("hello"); } { TraceMe traceme("world"); } { TraceMe traceme("contains#inside"); } { TraceMe traceme("good#key1=value1#"); } { TraceMe traceme("morning#key1=value1,key2=value2#"); } { TraceMe traceme("incomplete#key1=value1,key2#"); } { TraceMe traceme("Iterator::XXX::YYY::ParallelMap"); } TF_ASSERT_OK(tracer->Stop()); TF_ASSERT_OK(tracer->CollectData(&space)); })); traced_thread.reset(); ASSERT_NO_FATAL_FAILURE(); ASSERT_EQ(space.planes_size(), 1); const auto& plane = space.planes(0); XPlaneVisitor xplane(&plane); ASSERT_EQ(plane.name(), ::tsl::profiler::kHostThreadsPlaneName); ASSERT_EQ(plane.lines_size(), 1); ASSERT_EQ(plane.event_metadata_size(), 7); ASSERT_EQ(plane.stat_metadata_size(), 4); const auto& line = plane.lines(0); EXPECT_EQ(line.id(), thread_id); EXPECT_EQ(line.name(), thread_name); ASSERT_EQ(line.events_size(), 7); const auto& events = line.events(); XEventVisitor e0(&xplane, &line, &events[0]); EXPECT_EQ(e0.Name(), "hello"); ASSERT_EQ(events[0].stats_size(), 0); XEventVisitor e1(&xplane, &line, &events[1]); EXPECT_EQ(e1.Name(), "world"); ASSERT_EQ(events[1].stats_size(), 0); XEventVisitor e2(&xplane, &line, &events[2]); EXPECT_EQ(e2.Name(), "contains#inside"); ASSERT_EQ(events[2].stats_size(), 0); XEventVisitor e3(&xplane, &line, &events[3]); EXPECT_EQ(e3.Name(), "good"); ASSERT_EQ(events[3].stats_size(), 1); { std::optional<std::string> value; e3.ForEachStat([&](const XStatVisitor& stat) { if (stat.Name() == "key1") value = stat.ToString(); }); ASSERT_TRUE(value); EXPECT_EQ(*value, "value1"); } XEventVisitor e4(&xplane, &line, &events[4]); EXPECT_EQ(e4.Name(), "morning"); ASSERT_EQ(events[4].stats_size(), 2); { std::optional<std::string> value1, value2; e4.ForEachStat([&](const XStatVisitor& stat) { if (stat.Name() == "key1") { value1 = stat.ToString(); } else if (stat.Name() == "key2") { value2 = stat.ToString(); } }); ASSERT_TRUE(value1 && value2); EXPECT_EQ(*value1, "value1"); EXPECT_EQ(*value2, "value2"); } XEventVisitor e5(&xplane, &line, &events[5]); EXPECT_EQ(e5.Name(), "incomplete"); ASSERT_EQ(events[5].stats_size(), 1); { std::optional<std::string> value1, value2; e5.ForEachStat([&](const XStatVisitor& stat) { if (stat.Name() == "key1") { value1 = stat.ToString(); } else if (stat.Name() == "key2") { value2 = stat.ToString(); } }); ASSERT_TRUE(value1 && !value2); EXPECT_EQ(*value1, "value1"); } XEventVisitor e6(&xplane, &line, &events[6]); EXPECT_EQ(e6.Name(), "Iterator::XXX::YYY::ParallelMap"); EXPECT_EQ(e6.DisplayName(), "Iterator::ParallelMap"); } TEST(HostTracerTest, CollectEventsFromThreadPool) { auto thread_pool = std::make_unique<tsl::thread::ThreadPool>(Env::Default(), "HostTracerTest", 1); tsl::BlockingCounter counter(1); auto tracer = CreateHostTracer({}); TF_EXPECT_OK(tracer->Start()); thread_pool->Schedule([&counter] { TraceMe traceme("hello"); counter.DecrementCount(); }); counter.Wait(); thread_pool.reset(); TF_EXPECT_OK(tracer->Stop()); tensorflow::profiler::XSpace space; TF_EXPECT_OK(tracer->CollectData(&space)); EXPECT_THAT(space.planes(), testing::SizeIs(1)); XPlaneVisitor xplane = tsl::profiler::CreateTfXPlaneVisitor(&space.planes(0)); bool has_record_event = false; bool has_start_region_event = false; bool has_end_region_event = false; int64_t record_region_id = 0; int64_t start_region_id = 0; Timespan region_timespan; Timespan traceme_timespan; xplane.ForEachLine([&](const XLineVisitor& line) { line.ForEachEvent([&](const XEventVisitor& event) { if (event.Name() == tsl::profiler::kThreadpoolListenerRecord) { has_record_event = true; const auto& stat = event.GetStat(StatType::kProducerId); EXPECT_TRUE(stat.has_value()); record_region_id = stat->IntOrUintValue(); } else if (event.Name() == tsl::profiler::kThreadpoolListenerStartRegion) { has_start_region_event = true; const auto& stat = event.GetStat(StatType::kConsumerId); EXPECT_TRUE(stat.has_value()); start_region_id = stat->IntOrUintValue(); region_timespan = event.GetTimespan(); } else if (event.Name() == tsl::profiler::kThreadpoolListenerStopRegion) { has_end_region_event = true; region_timespan = Timespan::FromEndPoints(region_timespan.begin_ps(), event.GetTimespan().end_ps()); } else if (event.Name() == "hello") { traceme_timespan = event.GetTimespan(); } }); }); EXPECT_TRUE(has_record_event); EXPECT_TRUE(has_start_region_event); EXPECT_TRUE(has_end_region_event); EXPECT_EQ(record_region_id, start_region_id); EXPECT_TRUE(region_timespan.Includes(traceme_timespan)); } } } }
2,198
cpp
tensorflow/tensorflow
plugin_tracer_impl
third_party/xla/xla/backends/profiler/plugin/plugin_tracer_impl.cc
third_party/xla/xla/backends/profiler/plugin/plugin_tracer_impl_test.cc
#ifndef XLA_BACKENDS_PROFILER_PLUGIN_PLUGIN_TRACER_IMPL_H_ #define XLA_BACKENDS_PROFILER_PLUGIN_PLUGIN_TRACER_IMPL_H_ #include <cstddef> #include <cstdint> #include <memory> #include <optional> #include <vector> #include "xla/backends/profiler/plugin/profiler_c_api.h" #include "tsl/profiler/lib/profiler_interface.h" #include "tsl/profiler/protobuf/xplane.pb.h" struct PLUGIN_Profiler { std::optional<tensorflow::profiler::XSpace> space; std::unique_ptr<std::vector<uint8_t>> buffer; size_t byte_size; std::unique_ptr<tsl::profiler::ProfilerInterface> impl; bool stopped; }; namespace xla { namespace profiler { PLUGIN_Profiler_Error* PLUGIN_Profiler_Create( PLUGIN_Profiler_Create_Args* args); PLUGIN_Profiler_Error* PLUGIN_Profiler_Destroy( PLUGIN_Profiler_Destroy_Args* args); PLUGIN_Profiler_Error* PLUGIN_Profiler_Start(PLUGIN_Profiler_Start_Args* args); PLUGIN_Profiler_Error* PLUGIN_Profiler_Stop(PLUGIN_Profiler_Stop_Args* args); PLUGIN_Profiler_Error* PLUGIN_Profiler_CollectData( PLUGIN_Profiler_CollectData_Args* args); } } #endif #include "xla/backends/profiler/plugin/plugin_tracer_impl.h" #include <cstddef> #include <cstdint> #include <memory> #include <vector> #include "xla/backends/profiler/plugin/profiler_c_api.h" #include "xla/backends/profiler/plugin/profiler_error.h" #include "tsl/platform/logging.h" #include "tsl/profiler/lib/profiler_collection.h" #include "tsl/profiler/lib/profiler_factory.h" #include "tsl/profiler/protobuf/profiler_options.pb.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace xla { namespace profiler { PLUGIN_Profiler_Error* PLUGIN_Profiler_Create( PLUGIN_Profiler_Create_Args* args) { VLOG(1) << "Creating plugin profiler"; auto profiler = std::make_unique<PLUGIN_Profiler>(); profiler->stopped = true; tensorflow::ProfileOptions options; options.ParseFromArray(args->options, args->options_size); profiler->impl = std::make_unique<tsl::profiler::ProfilerCollection>( tsl::profiler::CreateProfilers(options)); args->profiler = profiler.release(); return nullptr; } PLUGIN_Profiler_Error* PLUGIN_Profiler_Destroy( PLUGIN_Profiler_Destroy_Args* args) { VLOG(1) << "Destroying plugin profiler"; if (args->profiler != nullptr) { delete args->profiler; } return nullptr; } PLUGIN_Profiler_Error* PLUGIN_Profiler_Start(PLUGIN_Profiler_Start_Args* args) { VLOG(1) << "Starting profiler"; if (!args->profiler->stopped) { VLOG(1) << "Profiler is already started"; return nullptr; } args->profiler->byte_size = 0; PLUGIN_PROFILER_RETURN_IF_ERROR(args->profiler->impl->Start()); args->profiler->stopped = false; return nullptr; } PLUGIN_Profiler_Error* PLUGIN_Profiler_Stop(PLUGIN_Profiler_Stop_Args* args) { VLOG(1) << "Stopping profiler"; if (args->profiler->stopped) { VLOG(1) << "Profiler is already stopped"; return nullptr; } PLUGIN_PROFILER_RETURN_IF_ERROR(args->profiler->impl->Stop()); args->profiler->stopped = false; return nullptr; } PLUGIN_Profiler_Error* PLUGIN_Profiler_CollectData( PLUGIN_Profiler_CollectData_Args* args) { VLOG(1) << "Collecting data from profiler"; tensorflow::profiler::XSpace space; if (!args->profiler->space) { VLOG(1) << "TpuProfiler CollectData"; PLUGIN_PROFILER_RETURN_IF_ERROR(args->profiler->impl->CollectData(&space)); args->profiler->byte_size = space.ByteSizeLong(); VLOG(2) << "TpuProfiler CollectData: Number of XPlanes: " << space.planes_size(); } const size_t profiler_data_size = space.ByteSizeLong(); if (args->buffer == nullptr) { args->profiler->buffer = std::make_unique<std::vector<uint8_t>>(profiler_data_size + 1); space.SerializeToArray(args->profiler->buffer->data(), profiler_data_size); args->buffer_size_in_bytes = args->profiler->buffer->size(); args->buffer = args->profiler->buffer->data(); return nullptr; } return nullptr; } } }
#include "xla/backends/profiler/plugin/plugin_tracer_impl.h" #include <cstdint> #include <memory> #include <optional> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "xla/backends/profiler/plugin/plugin_tracer.h" #include "xla/backends/profiler/plugin/profiler_c_api.h" #include "xla/backends/profiler/plugin/profiler_error.h" #include "tsl/platform/logging.h" #include "tsl/profiler/lib/profiler_factory.h" #include "tsl/profiler/lib/profiler_interface.h" #include "tsl/profiler/protobuf/profiler_options.pb.h" #include "tsl/profiler/protobuf/xplane.pb.h" #include "tsl/profiler/utils/xplane_builder.h" #include "tsl/profiler/utils/xplane_visitor.h" namespace xla { namespace profiler { using tensorflow::ProfileOptions; using tsl::profiler::ProfilerInterface; using tsl::profiler::XPlaneBuilder; class PluginTracerImpl : public ProfilerInterface { public: explicit PluginTracerImpl(const ProfileOptions& options) : options_(options) {} absl::Status Start() override { LOG(INFO) << "Starting Tracer"; return absl::OkStatus(); } absl::Status Stop() override { LOG(INFO) << "Stopping Tracer"; return absl::OkStatus(); } absl::Status CollectData(tensorflow::profiler::XSpace* space) override { LOG(INFO) << "Collecting data"; tensorflow::profiler::XPlane* plane = space->add_planes(); XPlaneBuilder builder(plane); builder.SetName("GpuBackendTracer"); tensorflow::profiler::XStatMetadata* metadata = builder.GetOrCreateStatMetadata((int64_t)0); metadata->set_name("ProfileOptions"); builder.AddStatValue(*metadata, options_.SerializeAsString()); return absl::OkStatus(); } private: ProfileOptions options_; }; std::unique_ptr<ProfilerInterface> CreatePluginTracer( const ProfileOptions& options) { return std::make_unique<PluginTracerImpl>(options); } static auto register_test_tracer = [] { RegisterProfilerFactory(&CreatePluginTracer); return 0; }(); TEST(PluginTracerTest, TestPluginWithPluginTracer) { PLUGIN_Profiler_Api api; api.create = &PLUGIN_Profiler_Create; api.start = &PLUGIN_Profiler_Start; api.stop = &PLUGIN_Profiler_Stop; api.collect_data = &PLUGIN_Profiler_CollectData; api.destroy = &PLUGIN_Profiler_Destroy; api.error_destroy = &PLUGIN_Profiler_Error_Destroy; api.error_message = &PLUGIN_Profiler_Error_Message; api.error_get_code = &PLUGIN_Profiler_Error_GetCode; api.struct_size = PLUGIN_Profiler_Api_STRUCT_SIZE; ProfileOptions options; options.set_repository_path("TestRepositoryPath"); options.set_device_tracer_level(2); PluginTracer tracer(&api, options); tensorflow::profiler::XSpace xspace; EXPECT_TRUE(tracer.Start().ok()); EXPECT_TRUE(tracer.Stop().ok()); EXPECT_TRUE(tracer.CollectData(&xspace).ok()); ASSERT_THAT(xspace.planes(), testing::SizeIs(1)); ASSERT_THAT(xspace.planes(0).stats(), testing::SizeIs(1)); tsl::profiler::XPlaneVisitor visitor(&xspace.planes(0)); std::optional<tsl::profiler::XStatVisitor> stat = visitor.GetStat(0, *visitor.GetStatMetadata(0)); ASSERT_TRUE(stat.has_value()); EXPECT_EQ(stat->Name(), "ProfileOptions"); EXPECT_EQ(stat->StrOrRefValue(), options.SerializeAsString()); } } }
2,199
cpp
tensorflow/tensorflow
cupti_error_manager
third_party/xla/xla/backends/profiler/gpu/cupti_error_manager.cc
third_party/xla/xla/backends/profiler/gpu/cupti_error_manager_test.cc
#ifndef XLA_BACKENDS_PROFILER_GPU_CUPTI_ERROR_MANAGER_H_ #define XLA_BACKENDS_PROFILER_GPU_CUPTI_ERROR_MANAGER_H_ #include <stddef.h> #include <stdint.h> #include <atomic> #include <functional> #include <memory> #include <string> #include <vector> #include "xla/backends/profiler/gpu/cupti_interface.h" #include "tsl/platform/mutex.h" #include "tsl/platform/thread_annotations.h" namespace xla { namespace profiler { class CuptiErrorManager : public xla::profiler::CuptiInterface { public: explicit CuptiErrorManager(std::unique_ptr<CuptiInterface> interface); bool Disabled() const override { return disabled_.load(); } CUptiResult ActivityDisable(CUpti_ActivityKind kind) override; CUptiResult ActivityEnable(CUpti_ActivityKind kind) override; CUptiResult ActivityFlushAll(uint32_t flag) override; CUptiResult ActivityGetNextRecord(uint8_t* buffer, size_t valid_buffer_size_bytes, CUpti_Activity** record) override; CUptiResult ActivityGetNumDroppedRecords(CUcontext context, uint32_t stream_id, size_t* dropped) override; CUptiResult ActivityConfigureUnifiedMemoryCounter( CUpti_ActivityUnifiedMemoryCounterConfig* config, uint32_t count) override; CUptiResult ActivityRegisterCallbacks( CUpti_BuffersCallbackRequestFunc func_buffer_requested, CUpti_BuffersCallbackCompleteFunc func_buffer_completed) override; CUptiResult ActivityUsePerThreadBuffer() override; CUptiResult GetDeviceId(CUcontext context, uint32_t* device_id) override; CUptiResult GetTimestamp(uint64_t* timestamp) override; CUptiResult Finalize() override; CUptiResult EnableCallback(uint32_t enable, CUpti_SubscriberHandle subscriber, CUpti_CallbackDomain domain, CUpti_CallbackId callback_id) override; CUptiResult EnableDomain(uint32_t enable, CUpti_SubscriberHandle subscriber, CUpti_CallbackDomain domain) override; CUptiResult Subscribe(CUpti_SubscriberHandle* subscriber, CUpti_CallbackFunc callback, void* userdata) override; CUptiResult Unsubscribe(CUpti_SubscriberHandle subscriber) override; CUptiResult GetResultString(CUptiResult result, const char** str) override; CUptiResult GetContextId(CUcontext context, uint32_t* context_id) override; CUptiResult GetStreamIdEx(CUcontext context, CUstream stream, uint8_t per_thread_stream, uint32_t* stream_id) override; void CleanUp() override; private: typedef std::function<CUptiResult()> UndoFunction; void RegisterUndoFunction(const UndoFunction& func); void UndoAndDisable(); std::string ResultString(CUptiResult result) const; std::unique_ptr<CuptiInterface> interface_; std::vector<UndoFunction> undo_stack_ TF_GUARDED_BY(undo_stack_mu_); tsl::mutex undo_stack_mu_; std::atomic<int> disabled_; bool undo_disabled_; CuptiErrorManager(const CuptiErrorManager&) = delete; void operator=(const CuptiErrorManager&) = delete; }; } } #endif #include "xla/backends/profiler/gpu/cupti_error_manager.h" #include <utility> #include "absl/debugging/leak_check.h" #include "tsl/platform/logging.h" namespace xla { namespace profiler { using tsl::mutex_lock; CuptiErrorManager::CuptiErrorManager(std::unique_ptr<CuptiInterface> interface) : interface_(std::move(interface)), disabled_(0), undo_disabled_(false) {} #define IGNORE_CALL_IF_DISABLED \ if (disabled_) { \ LOG(ERROR) << "cupti" << __func__ << ": ignored due to a previous error."; \ return CUPTI_ERROR_DISABLED; \ } \ VLOG(1) << "cupti" << __func__; #define ALLOW_ERROR(e, ERROR) \ if (e == ERROR) { \ VLOG(1) << "cupti" << __func__ << ": error " << static_cast<int>(e) \ << ": " << ResultString(e) << " (allowed)"; \ return e; \ } #define LOG_AND_DISABLE_IF_ERROR(e) \ if (e != CUPTI_SUCCESS) { \ LOG(ERROR) << "cupti" << __func__ << ": error " << static_cast<int>(e) \ << ": " << ResultString(e); \ UndoAndDisable(); \ } void CuptiErrorManager::RegisterUndoFunction( const CuptiErrorManager::UndoFunction& func) { mutex_lock lock(undo_stack_mu_); undo_stack_.push_back(func); } CUptiResult CuptiErrorManager::ActivityDisable(CUpti_ActivityKind kind) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->ActivityDisable(kind); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::ActivityEnable(CUpti_ActivityKind kind) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->ActivityEnable(kind); if (error == CUPTI_SUCCESS) { auto f = std::bind(&CuptiErrorManager::ActivityDisable, this, kind); RegisterUndoFunction(f); } LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::ActivityFlushAll(uint32_t flag) { CUptiResult error = interface_->ActivityFlushAll(flag); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::ActivityGetNextRecord( uint8_t* buffer, size_t valid_buffer_size_bytes, CUpti_Activity** record) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->ActivityGetNextRecord( buffer, valid_buffer_size_bytes, record); ALLOW_ERROR(error, CUPTI_ERROR_MAX_LIMIT_REACHED); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::ActivityGetNumDroppedRecords(CUcontext context, uint32_t stream_id, size_t* dropped) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->ActivityGetNumDroppedRecords(context, stream_id, dropped); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::ActivityConfigureUnifiedMemoryCounter( CUpti_ActivityUnifiedMemoryCounterConfig* config, uint32_t count) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->ActivityConfigureUnifiedMemoryCounter(config, count); return error; } CUptiResult CuptiErrorManager::ActivityRegisterCallbacks( CUpti_BuffersCallbackRequestFunc func_buffer_requested, CUpti_BuffersCallbackCompleteFunc func_buffer_completed) { IGNORE_CALL_IF_DISABLED; absl::LeakCheckDisabler disabler; CUptiResult error = interface_->ActivityRegisterCallbacks( func_buffer_requested, func_buffer_completed); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::ActivityUsePerThreadBuffer() { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->ActivityUsePerThreadBuffer(); return error; } CUptiResult CuptiErrorManager::GetDeviceId(CUcontext context, uint32_t* device_id) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->GetDeviceId(context, device_id); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::GetTimestamp(uint64_t* timestamp) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->GetTimestamp(timestamp); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::Finalize() { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->Finalize(); ALLOW_ERROR(error, CUPTI_ERROR_API_NOT_IMPLEMENTED); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::EnableCallback(uint32_t enable, CUpti_SubscriberHandle subscriber, CUpti_CallbackDomain domain, CUpti_CallbackId callback_id) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->EnableCallback(enable, subscriber, domain, callback_id); if (error == CUPTI_SUCCESS) { if (enable == 1) { auto f = std::bind(&CuptiErrorManager::EnableCallback, this, 0 , subscriber, domain, callback_id); RegisterUndoFunction(f); } } LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::EnableDomain(uint32_t enable, CUpti_SubscriberHandle subscriber, CUpti_CallbackDomain domain) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->EnableDomain(enable, subscriber, domain); if (error == CUPTI_SUCCESS) { if (enable == 1) { auto f = std::bind(&CuptiErrorManager::EnableDomain, this, 0 , subscriber, domain); RegisterUndoFunction(f); } } LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::Subscribe(CUpti_SubscriberHandle* subscriber, CUpti_CallbackFunc callback, void* userdata) { IGNORE_CALL_IF_DISABLED; absl::LeakCheckDisabler disabler; CUptiResult error = interface_->Subscribe(subscriber, callback, userdata); if (error == CUPTI_SUCCESS) { auto f = std::bind(&CuptiErrorManager::Unsubscribe, this, *subscriber); RegisterUndoFunction(f); } LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::Unsubscribe(CUpti_SubscriberHandle subscriber) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->Unsubscribe(subscriber); LOG_AND_DISABLE_IF_ERROR(error); return error; } void CuptiErrorManager::UndoAndDisable() { if (undo_disabled_) { return; } mutex_lock lock(undo_stack_mu_); undo_disabled_ = true; while (!undo_stack_.empty()) { LOG(ERROR) << "CuptiErrorManager is disabling profiling automatically."; undo_stack_.back()(); undo_stack_.pop_back(); } undo_disabled_ = false; disabled_ = 1; } CUptiResult CuptiErrorManager::GetResultString(CUptiResult result, const char** str) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->GetResultString(result, str); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::GetContextId(CUcontext context, uint32_t* context_id) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->GetContextId(context, context_id); LOG_AND_DISABLE_IF_ERROR(error); return error; } CUptiResult CuptiErrorManager::GetStreamIdEx(CUcontext context, CUstream stream, uint8_t per_thread_stream, uint32_t* stream_id) { IGNORE_CALL_IF_DISABLED; CUptiResult error = interface_->GetStreamIdEx(context, stream, per_thread_stream, stream_id); LOG_AND_DISABLE_IF_ERROR(error); return error; } void CuptiErrorManager::CleanUp() { if (undo_disabled_) { return; } mutex_lock lock(undo_stack_mu_); undo_disabled_ = true; while (!undo_stack_.empty()) { undo_stack_.pop_back(); } undo_disabled_ = false; } std::string CuptiErrorManager::ResultString(CUptiResult error) const { const char* error_message = nullptr; if (interface_->GetResultString(error, &error_message) == CUPTI_SUCCESS && error_message != nullptr) { return error_message; } return ""; } } }
#if GOOGLE_CUDA #include "xla/backends/profiler/gpu/cupti_error_manager.h" #include <cstdint> #include <memory> #include <utility> #include "absl/memory/memory.h" #include "xla/backends/profiler/gpu/cuda_test.h" #include "xla/backends/profiler/gpu/cupti_interface.h" #include "xla/backends/profiler/gpu/cupti_tracer.h" #include "xla/backends/profiler/gpu/cupti_wrapper.h" #include "xla/backends/profiler/gpu/mock_cupti.h" #include "tsl/platform/test.h" #include "tsl/profiler/utils/time_utils.h" namespace xla { namespace profiler { namespace test { using xla::profiler::CuptiInterface; using xla::profiler::CuptiTracer; using xla::profiler::CuptiTracerCollectorOptions; using xla::profiler::CuptiTracerOptions; using xla::profiler::CuptiWrapper; using ::testing::_; using ::testing::Invoke; using ::testing::Return; using ::testing::Sequence; using ::testing::StrictMock; class TestableCuptiTracer : public CuptiTracer { public: explicit TestableCuptiTracer(CuptiInterface* cupti_interface) : CuptiTracer(cupti_interface) {} }; class CuptiErrorManagerTest : public ::testing::Test { protected: CuptiErrorManagerTest() {} void SetUp() override { ASSERT_GT(CuptiTracer::NumGpus(), 0) << "No devices found"; auto mock_cupti = std::make_unique<StrictMock<MockCupti>>(); mock_ = mock_cupti.get(); cupti_error_manager_ = std::make_unique<CuptiErrorManager>(std::move(mock_cupti)); cupti_tracer_ = std::make_unique<TestableCuptiTracer>(cupti_error_manager_.get()); cupti_wrapper_ = std::make_unique<CuptiWrapper>(); CuptiTracerCollectorOptions collector_options; collector_options.num_gpus = CuptiTracer::NumGpus(); uint64_t start_gputime_ns = CuptiTracer::GetTimestamp(); uint64_t start_walltime_ns = tsl::profiler::GetCurrentTimeNanos(); cupti_collector_ = CreateCuptiCollector( collector_options, start_walltime_ns, start_gputime_ns); } void EnableProfiling(const CuptiTracerOptions& option) { cupti_tracer_->Enable(option, cupti_collector_.get()); } void DisableProfiling() { cupti_tracer_->Disable(); } bool CuptiDisabled() const { return cupti_error_manager_->Disabled(); } void RunGpuApp() { MemCopyH2D(); PrintfKernel(10); Synchronize(); MemCopyD2H(); } StrictMock<MockCupti>* mock_; std::unique_ptr<TestableCuptiTracer> cupti_tracer_ = nullptr; std::unique_ptr<CuptiInterface> cupti_error_manager_; std::unique_ptr<CuptiWrapper> cupti_wrapper_; std::unique_ptr<xla::profiler::CuptiTraceCollector> cupti_collector_; }; TEST_F(CuptiErrorManagerTest, GpuTraceActivityEnableTest) { Sequence s1; EXPECT_CALL(*mock_, Subscribe(_, _, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::Subscribe)); EXPECT_CALL(*mock_, EnableCallback(1, _, _, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::EnableCallback)); EXPECT_CALL(*mock_, ActivityUsePerThreadBuffer()) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::ActivityUsePerThreadBuffer)); EXPECT_CALL(*mock_, ActivityRegisterCallbacks(_, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::ActivityRegisterCallbacks)); EXPECT_CALL(*mock_, ActivityEnable(CUPTI_ACTIVITY_KIND_KERNEL)) .InSequence(s1) .WillOnce(Return(CUPTI_ERROR_UNKNOWN)); EXPECT_CALL(*mock_, GetResultString(CUPTI_ERROR_UNKNOWN, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::GetResultString)); EXPECT_CALL(*mock_, EnableCallback(0, _, _, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::EnableCallback)); EXPECT_CALL(*mock_, Unsubscribe(_)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::Unsubscribe)); EXPECT_FALSE(CuptiDisabled()); CuptiTracerOptions options; options.activities_selected.push_back(CUPTI_ACTIVITY_KIND_KERNEL); options.cbids_selected.push_back(CUPTI_DRIVER_TRACE_CBID_cuLaunchKernel); EnableProfiling(options); EXPECT_TRUE(CuptiDisabled()); RunGpuApp(); EXPECT_TRUE(CuptiDisabled()); DisableProfiling(); EXPECT_TRUE(CuptiDisabled()); } TEST_F(CuptiErrorManagerTest, GpuTraceAutoEnableTest) { EXPECT_FALSE(CuptiDisabled()); Sequence s1; EXPECT_CALL(*mock_, Subscribe(_, _, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::Subscribe)); EXPECT_CALL(*mock_, EnableDomain(1, _, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::EnableDomain)); EXPECT_CALL(*mock_, ActivityUsePerThreadBuffer()) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::ActivityUsePerThreadBuffer)); EXPECT_CALL(*mock_, ActivityRegisterCallbacks(_, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::ActivityRegisterCallbacks)); EXPECT_CALL(*mock_, ActivityEnable(CUPTI_ACTIVITY_KIND_MEMCPY)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::ActivityEnable)); EXPECT_CALL(*mock_, ActivityEnable(CUPTI_ACTIVITY_KIND_MEMCPY2)) .InSequence(s1) .WillOnce(Return(CUPTI_ERROR_UNKNOWN)); EXPECT_CALL(*mock_, GetResultString(CUPTI_ERROR_UNKNOWN, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::GetResultString)); EXPECT_CALL(*mock_, ActivityDisable(CUPTI_ACTIVITY_KIND_MEMCPY)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::ActivityDisable)); EXPECT_CALL(*mock_, EnableDomain(0, _, _)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::EnableDomain)); EXPECT_CALL(*mock_, Unsubscribe(_)) .InSequence(s1) .WillOnce(Invoke(cupti_wrapper_.get(), &CuptiWrapper::Unsubscribe)); EXPECT_FALSE(CuptiDisabled()); CuptiTracerOptions options; options.activities_selected.push_back(CUPTI_ACTIVITY_KIND_MEMCPY); options.activities_selected.push_back(CUPTI_ACTIVITY_KIND_MEMCPY2); options.activities_selected.push_back(CUPTI_ACTIVITY_KIND_KERNEL); EnableProfiling(options); EXPECT_TRUE(CuptiDisabled()); RunGpuApp(); EXPECT_TRUE(CuptiDisabled()); DisableProfiling(); EXPECT_TRUE(CuptiDisabled()); } } } } #endif