ID
int64
0
2.65k
Language
stringclasses
1 value
Repository Name
stringclasses
14 values
File Name
stringlengths
2
48
File Path in Repository
stringlengths
11
111
File Path for Unit Test
stringlengths
16
116
Code
stringlengths
411
31.4k
Unit Test - (Ground Truth)
stringlengths
40
32.1k
1,800
cpp
tensorflow/tensorflow
basic_string_array
third_party/xla/xla/python/pjrt_ifrt/basic_string_array.cc
third_party/xla/xla/python/pjrt_ifrt/basic_string_array_test.cc
#ifndef XLA_PYTHON_PJRT_IFRT_BASIC_STRING_ARRAY_H_ #define XLA_PYTHON_PJRT_IFRT_BASIC_STRING_ARRAY_H_ #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <vector> #include "absl/base/attributes.h" #include "absl/base/thread_annotations.h" #include "absl/container/inlined_vector.h" #include "absl/hash/hash.h" #include "absl/log/check.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "llvm/Support/ExtensibleRTTI.h" #include "xla/pjrt/pjrt_layout.h" #include "xla/python/ifrt/array.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/tsl/concurrency/ref_count.h" namespace xla { namespace ifrt { class BasicStringArrayLayout : public PjRtLayout { public: BasicStringArrayLayout() = default; BasicStringArrayLayout(const BasicStringArrayLayout& other) = delete; ~BasicStringArrayLayout() override = default; std::string Serialize() const override; std::string ToString() const override; bool operator==(const PjRtLayout& other) const override; protected: void Hash(absl::HashState state) const override; }; class BasicStringArray final : public llvm::RTTIExtends<BasicStringArray, Array> { public: using Buffer = absl::Span<const absl::string_view>; static constexpr int kBuffersInlineSize = 1; using Buffers = absl::InlinedVector<Buffer, kBuffersInlineSize>; using OnDoneWithBuffer = std::function<void()>; static absl::StatusOr<tsl::RCReference<BasicStringArray>> Create( Client* client, Shape shape, std::shared_ptr<const Sharding> sharding, Future<Buffers> buffers, OnDoneWithBuffer on_done_with_buffer); ~BasicStringArray() override; absl::StatusOr<tsl::RCReference<Array>> FullyReplicatedShard( ArrayCopySemantics semantics) override; Client* client() const override { DCHECK(this); return client_; } DType dtype() const override { DCHECK(this); return DType(DType::kString); } const Shape& shape() const override { DCHECK(this); return shape_; } const Sharding& sharding() const override { DCHECK(this); return *sharding_; } std::shared_ptr<const Sharding> shared_ptr_sharding() const override { DCHECK(this); return sharding_; } absl::StatusOr<std::unique_ptr<PjRtLayout>> layout() const override; absl::StatusOr<std::vector<tsl::RCReference<Array>>> DisassembleIntoSingleDeviceArrays(ArrayCopySemantics semantics) override; ABSL_MUST_USE_RESULT Future<> CopyToHostBuffer( void* data, std::optional<absl::Span<const int64_t>> byte_strides, ArrayCopySemantics semantics) override; absl::StatusOr<tsl::RCReference<Array>> Copy( std::optional<xla::ifrt::DeviceList> devices, std::optional<xla::ifrt::MemoryKind> memory_kind, ArrayCopySemantics semantics); Future<> GetReadyFuture() const override; Future<> Delete() override; bool IsDeleted() const override; std::string DebugString() const override; Future<Buffers> buffers() const { return buffers_; } static char ID; private: template <typename T, typename... Args> friend tsl::RCReference<T> tsl::MakeRef(Args&&... args); BasicStringArray(Client* client, Shape shape, std::shared_ptr<const Sharding> sharding, Future<Buffers> buffers, Future<> ready_future, OnDoneWithBuffer on_done_with_buffer); void DeleteInternal() ABSL_LOCKS_EXCLUDED(mu_); Client* client_; Shape shape_; std::shared_ptr<const Sharding> sharding_; Future<Buffers> buffers_; Future<> ready_future_; mutable absl::Mutex mu_; OnDoneWithBuffer on_done_with_buffer_ ABSL_GUARDED_BY(mu_); bool is_deleted_ ABSL_GUARDED_BY(mu_) = false; }; } } #endif #include "xla/python/pjrt_ifrt/basic_string_array.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/hash/hash.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/pjrt/pjrt_layout.h" #include "xla/python/ifrt/array.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/tsl/concurrency/ref_count.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { std::string BasicStringArrayLayout::Serialize() const { return std::string(); } std::string BasicStringArrayLayout::ToString() const { return "BasicStringArrayLayout: Dense, major-to-minor."; } bool BasicStringArrayLayout::operator==(const PjRtLayout& other) const { auto* other_basic_string_array_layout = dynamic_cast<const xla::ifrt::BasicStringArrayLayout*>(&other); if (other_basic_string_array_layout == nullptr) { return false; } return true; } void BasicStringArrayLayout::Hash(absl::HashState state) const { } char BasicStringArray::ID = 0; absl::StatusOr<tsl::RCReference<BasicStringArray>> BasicStringArray::Create( Client* client, Shape shape, std::shared_ptr<const Sharding> sharding, Future<Buffers> buffers, OnDoneWithBuffer on_done_with_buffer) { if (!buffers.IsValid()) { return absl::InvalidArgumentError("Got buffers_ future is invalid"); } auto buffers_promise = Future<Buffers>::CreatePromise(); auto buffers_future = Future<Buffers>(buffers_promise); auto ready_promise = Future<>::CreatePromise(); auto ready_future = Future<>(ready_promise); auto buffer_validator = [buffers_promise = std::move(buffers_promise), ready_promise = std::move(ready_promise), sharding = sharding](absl::StatusOr<Buffers> buffers) mutable { if (!buffers.ok()) { buffers_promise.Set(buffers.status()); ready_promise.Set(buffers.status()); return; } if (sharding->devices().size() != (*buffers).size()) { auto error = absl::FailedPreconditionError(absl::StrCat( "Number of buffers: ", (*buffers).size(), " does not match the number of devices in sharding: ", sharding->devices().size())); buffers_promise.Set(error); ready_promise.Set(error); return; } buffers_promise.Set(std::move(buffers)); ready_promise.Set(absl::OkStatus()); }; buffers.OnReady(std::move(buffer_validator)); return tsl::MakeRef<BasicStringArray>( client, std::move(shape), std::move(sharding), std::move(buffers_future), std::move(ready_future), std::move(on_done_with_buffer)); } BasicStringArray::BasicStringArray(Client* client, Shape shape, std::shared_ptr<const Sharding> sharding, Future<Buffers> buffers, Future<> ready_future, OnDoneWithBuffer on_done_with_buffer) : client_(client), shape_(std::move(shape)), sharding_(std::move(sharding)), buffers_(std::move(buffers)), ready_future_(std::move(ready_future)), on_done_with_buffer_(std::move(on_done_with_buffer)) {} BasicStringArray::~BasicStringArray() { DeleteInternal(); } Future<> BasicStringArray::Delete() { DeleteInternal(); return Future<>(absl::OkStatus()); } bool BasicStringArray::IsDeleted() const { absl::MutexLock lock(&mu_); return is_deleted_; } void BasicStringArray::DeleteInternal() { absl::MutexLock lock(&mu_); if (is_deleted_) { return; } if (on_done_with_buffer_) { std::move(on_done_with_buffer_)(); } is_deleted_ = true; } Future<> BasicStringArray::GetReadyFuture() const { DCHECK(this); absl::MutexLock lock(&mu_); if (is_deleted_) { return Future<>( absl::FailedPreconditionError("Array has already been deleted")); } return ready_future_; } absl::StatusOr<std::vector<tsl::RCReference<Array>>> BasicStringArray::DisassembleIntoSingleDeviceArrays( ArrayCopySemantics semantics) { DCHECK(this); absl::MutexLock lock(&mu_); if (is_deleted_) { return absl::FailedPreconditionError("Array has already been deleted"); } int num_shards = sharding_->devices().size(); std::vector<Promise<Buffers>> buffer_promises; buffer_promises.reserve(num_shards); std::vector<Future<Buffers>> buffer_futures; buffer_futures.reserve(num_shards); struct PerShardBufferBackingStore { void CopyFrom(absl::Span<const absl::string_view> input_buffer) { strings.reserve(input_buffer.size()); string_views.reserve(input_buffer.size()); for (absl::string_view buf : input_buffer) { strings.push_back(std::string(buf.data(), buf.size())); string_views.push_back(strings.back()); } } std::vector<std::string> strings; std::vector<absl::string_view> string_views; }; std::vector<std::shared_ptr<PerShardBufferBackingStore>> per_shard_buffer_backing_stores; per_shard_buffer_backing_stores.reserve(num_shards); std::vector<OnDoneWithBuffer> on_done_with_buffer_callbacks; on_done_with_buffer_callbacks.reserve(num_shards); for (int i = 0; i < num_shards; ++i) { buffer_promises.push_back(Future<Buffers>::CreatePromise()); buffer_futures.push_back(Future<Buffers>(buffer_promises.back())); auto backing_store = std::make_shared<PerShardBufferBackingStore>(); per_shard_buffer_backing_stores.push_back(backing_store); on_done_with_buffer_callbacks.push_back( [backing_store = std::move(backing_store)]() {}); } buffers_.OnReady([buffer_promises = std::move(buffer_promises), per_shard_buffer_backing_stores = std::move(per_shard_buffer_backing_stores)]( absl::StatusOr<Buffers> buffers) mutable { if (!buffers.ok()) { for (auto& promise : buffer_promises) { promise.Set(buffers.status()); } per_shard_buffer_backing_stores.clear(); return; } auto num_shards = buffers->size(); for (int i = 0; i < num_shards; ++i) { per_shard_buffer_backing_stores[i]->CopyFrom((*buffers)[i]); Buffers buffers; buffers.push_back(per_shard_buffer_backing_stores[i]->string_views); buffer_promises[i].Set(std::move(buffers)); } }); TF_ASSIGN_OR_RETURN(auto shapes_and_shadings, sharding_->Disassemble(shape_)); std::vector<tsl::RCReference<Array>> arrays; arrays.reserve(num_shards); for (int i = 0; i < num_shards; ++i) { TF_ASSIGN_OR_RETURN(auto array, BasicStringArray::Create( client_, std::move(shapes_and_shadings[i].first), std::move(shapes_and_shadings[i].second), std::move(buffer_futures[i]), std::move(on_done_with_buffer_callbacks[i]))); arrays.push_back(array); } return arrays; } Future<> BasicStringArray::CopyToHostBuffer( void* data, std::optional<absl::Span<const int64_t>> byte_strides, ArrayCopySemantics semantics) { DCHECK(this); return Future<>(absl::UnimplementedError("Not implemented")); } absl::StatusOr<tsl::RCReference<Array>> BasicStringArray::Copy( std::optional<xla::ifrt::DeviceList> devices, std::optional<xla::ifrt::MemoryKind> memory_kind, ArrayCopySemantics semantics) { DCHECK(this); absl::MutexLock lock(&mu_); if (is_deleted_) { return absl::FailedPreconditionError("Array has already been deleted"); } TF_ASSIGN_OR_RETURN(auto new_sharding, sharding().WithDeviceAssignment(devices, memory_kind)); if (new_sharding->devices().size() != sharding_->devices().size()) { return absl::InvalidArgumentError(absl::StrCat( "Number of devices in new sharding: ", new_sharding->devices().size(), " does not match the number of devices in the current sharding: ", sharding_->devices().size())); } struct BufferBackingStore { void AddShardData(absl::Span<const absl::string_view> input_buffer) { auto& shard_strings = strings.emplace_back(); shard_strings.reserve(input_buffer.size()); auto& shard_string_views = string_views.emplace_back(); shard_string_views.reserve(input_buffer.size()); for (absl::string_view buf : input_buffer) { shard_strings.push_back(std::string(buf.data(), buf.size())); shard_string_views.push_back(shard_strings.back()); } } std::vector<std::vector<std::string>> strings; std::vector<std::vector<absl::string_view>> string_views; }; auto backing_store = std::make_shared<BufferBackingStore>(); auto on_done_with_buffer = [backing_store]() {}; auto buffers_promise = Future<Buffers>::CreatePromise(); auto buffers_future = Future<Buffers>(buffers_promise); auto copier = [backing_store = std::move(backing_store), buffers_promise = std::move(buffers_promise)]( absl::StatusOr<Buffers> input_buffers) mutable { if (!input_buffers.ok()) { buffers_promise.Set(input_buffers.status()); return; } Buffers buffers; buffers.reserve(input_buffers->size()); for (auto& input_buffer : *input_buffers) { backing_store->AddShardData(input_buffer); buffers.push_back(backing_store->string_views.back()); } buffers_promise.Set(std::move(buffers)); }; buffers_.OnReady(std::move(copier)); return BasicStringArray::Create(client_, shape_, std::move(new_sharding), std::move(buffers_future), std::move(on_done_with_buffer)); } absl::StatusOr<tsl::RCReference<Array>> BasicStringArray::FullyReplicatedShard( ArrayCopySemantics semantics) { absl::MutexLock lock(&mu_); if (is_deleted_) { return absl::FailedPreconditionError("Array has already been deleted"); } if (!sharding_->IsFullyReplicated()) { return absl::FailedPreconditionError("This array is not fully replicated"); } struct BufferBackingStore { void CopyFrom(absl::Span<const absl::string_view> input_buffer) { strings.reserve(input_buffer.size()); string_views.reserve(input_buffer.size()); for (absl::string_view buf : input_buffer) { strings.push_back(std::string(buf.data(), buf.size())); string_views.push_back(strings.back()); } } std::vector<std::string> strings; std::vector<absl::string_view> string_views; }; auto backing_store = std::make_shared<BufferBackingStore>(); auto on_done_with_buffer = [backing_store]() {}; auto buffers_promise = Future<Buffers>::CreatePromise(); auto buffers_future = Future<Buffers>(buffers_promise); auto copier = [backing_store = std::move(backing_store), buffers_promise = std::move(buffers_promise)]( absl::StatusOr<Buffers> input_buffers) mutable { if (!input_buffers.ok()) { buffers_promise.Set(input_buffers.status()); return; } auto& input_buffer = (*input_buffers)[0]; backing_store->CopyFrom(input_buffer); Buffers buffers; buffers.push_back(backing_store->string_views); buffers_promise.Set(std::move(buffers)); }; buffers_.OnReady(std::move(copier)); return BasicStringArray::Create( client_, shape_, SingleDeviceSharding::Create(sharding_->devices().at(0), MemoryKind()), std::move(buffers_future), std::move(on_done_with_buffer)); } absl::StatusOr<std::unique_ptr<PjRtLayout>> BasicStringArray::layout() const { absl::MutexLock lock(&mu_); if (is_deleted_) { return absl::FailedPreconditionError("Array has already been deleted"); } return std::make_unique<BasicStringArrayLayout>(); } std::string BasicStringArray::DebugString() const { DCHECK(this); return absl::StrFormat( "BasicStringArray(shape=%s; sharding=%s; layout=major-to-minor-dense)", shape_.DebugString(), sharding_->DebugString()); } } }
#include "xla/python/pjrt_ifrt/basic_string_array.h" #include <cstdint> #include <memory> #include <numeric> #include <optional> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/notification.h" #include "absl/types/span.h" #include "llvm/Support/Casting.h" #include "xla/layout.h" #include "xla/pjrt/pjrt_future.h" #include "xla/pjrt/pjrt_layout.h" #include "xla/python/ifrt/array.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/python/ifrt/test_util.h" #include "xla/tsl/concurrency/ref_count.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace ifrt { namespace { using ::testing::HasSubstr; using ::tsl::testing::StatusIs; absl::StatusOr<tsl::RCReference<BasicStringArray>> CreateTestArray( Client* client, Future<BasicStringArray::Buffers> buffers, BasicStringArray::OnDoneWithBuffer on_done_with_buffer) { Shape shape({1}); Device* device = client->addressable_devices().at(0); std::shared_ptr<const Sharding> sharding = SingleDeviceSharding::Create(device, MemoryKind()); return BasicStringArray::Create(client, shape, sharding, std::move(buffers), std::move(on_done_with_buffer)); } std::pair<BasicStringArray::Buffers, BasicStringArray::OnDoneWithBuffer> MakeBuffersAndOnDoneWithBuffer( absl::Span<const absl::string_view> input_strings) { BasicStringArray::Buffers buffers; auto string_holder = std::make_shared<std::vector<std::string>>(); string_holder->reserve(input_strings.size()); auto string_view_holder = std::make_shared<std::vector<absl::string_view>>(); string_view_holder->reserve(input_strings.size()); for (const auto str : input_strings) { string_holder->push_back(std::string(str)); } for (const auto& str : *string_holder) { string_view_holder->push_back(absl::string_view(str)); } buffers.push_back(*string_view_holder); BasicStringArray::OnDoneWithBuffer on_done_with_buffer = [string_holder = std::move(string_holder), string_view_holder = std::move(string_view_holder)]() {}; return std::make_pair(std::move(buffers), std::move(on_done_with_buffer)); } absl::StatusOr<std::pair<tsl::RCReference<BasicStringArray>, Promise<BasicStringArray::Buffers>>> CreateNonReadyTestArray( Client* client, Device* const device, BasicStringArray::OnDoneWithBuffer on_done_with_buffer) { auto buffers_promise = Future<BasicStringArray::Buffers>::CreatePromise(); auto buffers_future = Future<BasicStringArray::Buffers>(buffers_promise); Shape shape({1}); std::shared_ptr<const Sharding> sharding = SingleDeviceSharding::Create(device, MemoryKind()); TF_ASSIGN_OR_RETURN(auto array, BasicStringArray::Create(client, shape, sharding, std::move(buffers_future), std::move(on_done_with_buffer))); return std::make_pair(std::move(array), std::move(buffers_promise)); } TEST(BasicStringArrayLayoutTest, Serialize) { BasicStringArrayLayout layout; EXPECT_TRUE(layout.Serialize().empty()); } TEST(BasicStringArrayLayoutTest, ToString) { BasicStringArrayLayout layout; auto output_str = layout.ToString(); EXPECT_THAT(output_str, HasSubstr("major-to-minor")); } TEST(BasicStringArrayLayoutTest, Equality) { BasicStringArrayLayout layout_1; BasicStringArrayLayout layout_2; const PjRtLayout& layout_3 = layout_2; EXPECT_EQ(layout_1, layout_3); xla::PjRtXlaLayout layout_6((xla::Layout())); const PjRtLayout& layout_7 = layout_6; EXPECT_FALSE(layout_7 == layout_1); } TEST(BasicStringArrayTest, CreateSuccess) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); BasicStringArray::Buffers buffers; buffers.push_back({"abc", "def"}); TF_EXPECT_OK(CreateTestArray(client.get(), Future<BasicStringArray::Buffers>(buffers), nullptr)); } TEST(BasicStringArrayTest, CreateFailureWithInvalidFuture) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); EXPECT_THAT(CreateTestArray(client.get(), Future<BasicStringArray::Buffers>(), nullptr), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(BasicStringArrayTest, Destruction) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); BasicStringArray::Buffers buffers; buffers.push_back({"abc", "def"}); absl::Notification on_done_with_buffer_called; BasicStringArray::OnDoneWithBuffer on_done_with_buffer = [&on_done_with_buffer_called]() { on_done_with_buffer_called.Notify(); }; auto array_creation_status_promise = PjRtFuture<>::CreatePromise(); tsl::Env::Default()->SchedClosure(([&]() { auto array = CreateTestArray(client.get(), Future<BasicStringArray::Buffers>(buffers), std::move(on_done_with_buffer)); array_creation_status_promise.Set(array.status()); })); TF_ASSERT_OK(Future<>(array_creation_status_promise).Await()); on_done_with_buffer_called.WaitForNotification(); } TEST(BasicStringArrayTest, InvalidBuffersAreHandledCorrectly) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto devices = client->addressable_devices(); ASSERT_GE(devices.size(), 1); auto shard0_data = std::make_shared<std::vector<absl::string_view>>(); shard0_data->push_back("abc"); auto shard1_data = std::make_shared<std::vector<absl::string_view>>(); shard1_data->push_back("def"); BasicStringArray::Buffers buffers; buffers.push_back(*shard0_data); buffers.push_back(*shard1_data); auto on_done_with_buffer = [shard0_data = std::move(shard0_data), shard1_data = std::move(shard1_data)]() {}; TF_ASSERT_OK_AND_ASSIGN( auto ret, CreateNonReadyTestArray(client.get(), devices[0], std::move(on_done_with_buffer))); auto array = ret.first; auto promise = ret.second; auto basic_string_array = llvm::dyn_cast<BasicStringArray>(array.get()); tsl::Env::Default()->SchedClosure([&]() { promise.Set(buffers); }); EXPECT_THAT(basic_string_array->GetReadyFuture().Await(), StatusIs(absl::StatusCode::kFailedPrecondition)); EXPECT_THAT(basic_string_array->buffers().Await(), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST(BasicStringArrayTest, Delete) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); BasicStringArray::Buffers buffers; buffers.push_back({"abc", "def"}); absl::Notification on_done_with_buffer_called; BasicStringArray::OnDoneWithBuffer on_done_with_buffer = [&on_done_with_buffer_called]() { on_done_with_buffer_called.Notify(); }; TF_ASSERT_OK_AND_ASSIGN( auto array, CreateTestArray(client.get(), Future<BasicStringArray::Buffers>(buffers), std::move(on_done_with_buffer))); tsl::Env::Default()->SchedClosure([&]() { array->Delete(); }); on_done_with_buffer_called.WaitForNotification(); EXPECT_TRUE(array->IsDeleted()); } TEST(GetReadyFutureTest, SuccessCase) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto promise = Future<BasicStringArray::Buffers>::CreatePromise(); auto buffers_future = Future<BasicStringArray::Buffers>(promise); TF_ASSERT_OK_AND_ASSIGN(auto array, CreateTestArray(client.get(), buffers_future, nullptr)); auto ready_future = array->GetReadyFuture(); EXPECT_FALSE(ready_future.IsKnownReady()); BasicStringArray::Buffers buffers; buffers.push_back({"abc", "def"}); tsl::Env::Default()->SchedClosure([&]() { promise.Set(buffers); }); TF_EXPECT_OK(ready_future.Await()); } TEST(GetReadyFutureTest, FailureCases) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto promise = Future<BasicStringArray::Buffers>::CreatePromise(); auto buffers_future = Future<BasicStringArray::Buffers>(promise); TF_ASSERT_OK_AND_ASSIGN(auto array, CreateTestArray(client.get(), buffers_future, nullptr)); auto ready_future = array->GetReadyFuture(); EXPECT_FALSE(ready_future.IsKnownReady()); tsl::Env::Default()->SchedClosure( [&]() { promise.Set(absl::InternalError("injected error")); }); EXPECT_THAT(ready_future.Await(), StatusIs(absl::StatusCode::kInternal)); } TEST(MakeArrayFromHostBufferTest, SuccessCase) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); Shape shape({1}); Device* device = client->addressable_devices().at(0); std::shared_ptr<const Sharding> sharding = SingleDeviceSharding::Create(device, MemoryKind()); auto string_views = std::make_shared<std::vector<absl::string_view>>(); string_views->push_back("abc"); string_views->push_back("def"); const void* data = string_views->data(); auto on_done_with_host_buffer = [string_views = std::move(string_views)]() {}; TF_ASSERT_OK(client->MakeArrayFromHostBuffer( data, DType(DType::kString), shape, std::nullopt, std::move(sharding), Client::HostBufferSemantics::kImmutableOnlyDuringCall, std::move(on_done_with_host_buffer))); } TEST(MakeArrayFromHostBufferTest, FailureCases) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); Shape shape({1}); Device* device = client->addressable_devices().at(0); std::shared_ptr<const Sharding> single_device_sharding = SingleDeviceSharding::Create(device, MemoryKind()); auto string_views = std::make_shared<std::vector<absl::string_view>>(); string_views->push_back("abc"); string_views->push_back("def"); const void* data = string_views->data(); auto on_done_with_host_buffer = [string_views = std::move(string_views)]() {}; EXPECT_THAT( client->MakeArrayFromHostBuffer( data, DType(DType::kString), shape, std::optional<absl::Span<const int64_t>>({8}), single_device_sharding, Client::HostBufferSemantics::kImmutableOnlyDuringCall, on_done_with_host_buffer), StatusIs(absl::StatusCode::kInvalidArgument)); std::shared_ptr<const Sharding> opaque_sharding = OpaqueSharding::Create(DeviceList({device}), MemoryKind()); EXPECT_THAT(client->MakeArrayFromHostBuffer( data, DType(DType::kString), shape, std::nullopt, opaque_sharding, Client::HostBufferSemantics::kImmutableOnlyDuringCall, on_done_with_host_buffer), StatusIs(absl::StatusCode::kInvalidArgument)); for (Client::HostBufferSemantics host_buffer_semantics : {Client::HostBufferSemantics::kImmutableUntilTransferCompletes, Client::HostBufferSemantics::kImmutableZeroCopy, Client::HostBufferSemantics::kMutableZeroCopy}) { SCOPED_TRACE( absl::StrCat("host_buffer_semantics: ", host_buffer_semantics)); EXPECT_THAT(client->MakeArrayFromHostBuffer( data, DType(DType::kString), shape, std::nullopt, single_device_sharding, host_buffer_semantics, on_done_with_host_buffer), StatusIs(absl::StatusCode::kInvalidArgument)); } } absl::StatusOr<tsl::RCReference<Array>> MakeSingleDeviceStringTestArray( absl::Span<const std::string> contents, Client* client, Device* const device) { Shape shape({1}); std::shared_ptr<const Sharding> sharding = SingleDeviceSharding::Create(device, MemoryKind()); auto string_views = std::make_shared<std::vector<absl::string_view>>(); for (const auto& content : contents) { string_views->push_back(content); } const void* data = string_views->data(); auto on_done_with_host_buffer = [string_views = std::move(string_views)]() {}; return client->MakeArrayFromHostBuffer( data, DType(DType::kString), shape, std::nullopt, std::move(sharding), Client::HostBufferSemantics::kImmutableOnlyDuringCall, std::move(on_done_with_host_buffer)); } absl::StatusOr<tsl::RCReference<Array>> MakeSingleDeviceFloatTestArray( Client* client, Device* const device) { DType dtype(DType::kF32); Shape shape({2, 3}); auto data = std::make_unique<std::vector<float>>(6); std::iota(data->begin(), data->end(), 0); std::shared_ptr<const Sharding> sharding = SingleDeviceSharding::Create(device, MemoryKind()); return client->MakeArrayFromHostBuffer( data->data(), dtype, shape, std::nullopt, sharding, Client::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr); } absl::StatusOr<tsl::RCReference<Array>> MakeShardedStringTestArray( Client* client, absl::Span<const std::string> data, bool is_fully_replicated) { if (data.size() < 2) { return absl::InvalidArgumentError(absl::StrCat( "Input data has too few strings. Need at least 2. got: ", data.size())); } auto devices = client->addressable_devices(); if (devices.size() < 2) { return absl::InvalidArgumentError(absl::StrCat( "Test client has too few devices. Need 2, got:", devices.size())); } std::shared_ptr<const Sharding> sharding = ConcreteEvenSharding::Create( DeviceList({devices[0], devices[1]}), MemoryKind(), Shape({2, 1}), Shape({1}), is_fully_replicated); std::vector<tsl::RCReference<Array>> arrays; for (int i = 0; i < 2; ++i) { TF_ASSIGN_OR_RETURN(auto array, MakeSingleDeviceStringTestArray( {data[i]}, client, devices[i])); arrays.push_back(std::move(array)); } return client->AssembleArrayFromSingleDeviceArrays( Shape({2, 1}), std::move(sharding), absl::MakeSpan(arrays), ArrayCopySemantics::kAlwaysCopy); } TEST(AssembleArrayFromSingleDeviceArraysTest, SuccessWithReadySingleDeviceArrays) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); const std::vector<std::string> per_shard_contents({"shard 0", "shard 1"}); TF_ASSERT_OK_AND_ASSIGN( auto array, MakeShardedStringTestArray(client.get(), per_shard_contents, false)); auto basic_string_array = llvm::dyn_cast<BasicStringArray>(array.get()); ASSERT_NE(basic_string_array, nullptr); TF_ASSERT_OK_AND_ASSIGN(auto buffers, basic_string_array->buffers().Await()); EXPECT_EQ(buffers.size(), 2); for (int i = 0; i < buffers.size(); ++i) { SCOPED_TRACE(absl::StrCat("buffer #", i)); auto buffer = buffers[i]; EXPECT_THAT(buffer, testing::ElementsAre(per_shard_contents[i])); } } TEST(AssembleArrayFromSingleDeviceArraysTest, FailsWithNonStringArrays) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto devices = client->addressable_devices(); ASSERT_GE(devices.size(), 2); std::shared_ptr<const Sharding> opaque_sharding = OpaqueSharding::Create( DeviceList({devices[0], devices[1]}), MemoryKind()); std::vector<tsl::RCReference<Array>> arrays(2); TF_ASSERT_OK_AND_ASSIGN( arrays[0], MakeSingleDeviceFloatTestArray(client.get(), devices[0])); TF_ASSERT_OK_AND_ASSIGN( arrays[1], MakeSingleDeviceStringTestArray({"string_array_contents"}, client.get(), devices[1])); EXPECT_THAT(client->AssembleArrayFromSingleDeviceArrays( Shape({2}), std::move(opaque_sharding), absl::MakeSpan(arrays), ArrayCopySemantics::kAlwaysCopy), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(AssembleArrayFromSingleDeviceArraysTest, FailsWithNonSingleDeviceStringArrays) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto devices = client->addressable_devices(); ASSERT_GE(devices.size(), 2); std::shared_ptr<const Sharding> opaque_sharding = OpaqueSharding::Create( DeviceList({devices[0], devices[1]}), MemoryKind()); std::vector<tsl::RCReference<Array>> arrays(2); const std::vector<std::string> per_shard_contents({"abc", "def"}); TF_ASSERT_OK_AND_ASSIGN( arrays[0], MakeShardedStringTestArray(client.get(), per_shard_contents, false)); TF_ASSERT_OK_AND_ASSIGN( arrays[1], MakeSingleDeviceStringTestArray({"string_array_contents"}, client.get(), devices[1])); EXPECT_THAT(client->AssembleArrayFromSingleDeviceArrays( Shape({2}), std::move(opaque_sharding), absl::MakeSpan(arrays), ArrayCopySemantics::kAlwaysCopy), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(AssembleArrayFromSingleDeviceArraysTest, FromNonReadySingleDeviceArraysSuccess) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto devices = client->addressable_devices(); ASSERT_GE(devices.size(), 2); std::shared_ptr<const Sharding> opaque_sharding = OpaqueSharding::Create( DeviceList({devices[0], devices[1]}), MemoryKind()); std::vector<tsl::RCReference<Array>> arrays; std::vector<Promise<BasicStringArray::Buffers>> promises; arrays.reserve(2); auto buf_and_on_done_with_buffer = MakeBuffersAndOnDoneWithBuffer({"abc"}); auto buffers0 = buf_and_on_done_with_buffer.first; auto on_done_with_buffer0 = buf_and_on_done_with_buffer.second; TF_ASSERT_OK_AND_ASSIGN( auto ret, CreateNonReadyTestArray(client.get(), devices[0], std::move(on_done_with_buffer0))); arrays.push_back(std::move(ret.first)); promises.push_back(std::move(ret.second)); buf_and_on_done_with_buffer = MakeBuffersAndOnDoneWithBuffer({"def"}); auto buffers1 = buf_and_on_done_with_buffer.first; auto on_done_with_buffer1 = buf_and_on_done_with_buffer.second; TF_ASSERT_OK_AND_ASSIGN( ret, CreateNonReadyTestArray(client.get(), devices[1], std::move(on_done_with_buffer1))); arrays.push_back(std::move(ret.first)); promises.push_back(std::move(ret.second)); TF_ASSERT_OK_AND_ASSIGN( auto array, client->AssembleArrayFromSingleDeviceArrays( Shape({1}), std::move(opaque_sharding), absl::MakeSpan(arrays), ArrayCopySemantics::kAlwaysCopy)); tsl::Env::Default()->SchedClosure(([&]() mutable { promises[0].Set(buffers0); promises[1].Set(buffers1); })); auto basic_string_array = llvm::dyn_cast<BasicStringArray>(array.get()); ASSERT_NE(basic_string_array, nullptr); auto buffers_future = basic_string_array->buffers(); TF_ASSERT_OK_AND_ASSIGN(auto buffers, buffers_future.Await()); EXPECT_EQ(buffers.size(), 2); EXPECT_THAT(buffers[0], testing::ElementsAre("abc")); EXPECT_THAT(buffers[1], testing::ElementsAre("def")); } TEST(AssembleArrayFromSingleDeviceArraysTest, FromNonReadySingleDeviceArraysFailure) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto devices = client->addressable_devices(); ASSERT_GE(devices.size(), 2); std::shared_ptr<const Sharding> opaque_sharding = OpaqueSharding::Create( DeviceList({devices[0], devices[1]}), MemoryKind()); std::vector<tsl::RCReference<Array>> arrays; std::vector<Promise<BasicStringArray::Buffers>> promises; arrays.reserve(2); TF_ASSERT_OK_AND_ASSIGN( auto ret, CreateNonReadyTestArray(client.get(), devices[0], nullptr)); arrays.push_back(std::move(ret.first)); promises.push_back(std::move(ret.second)); TF_ASSERT_OK_AND_ASSIGN( ret, CreateNonReadyTestArray(client.get(), devices[1], nullptr)); arrays.push_back(std::move(ret.first)); promises.push_back(std::move(ret.second)); TF_ASSERT_OK_AND_ASSIGN( auto array, client->AssembleArrayFromSingleDeviceArrays( Shape({1}), std::move(opaque_sharding), absl::MakeSpan(arrays), ArrayCopySemantics::kAlwaysCopy)); absl::Notification done_readying_single_device_arrays; tsl::Env::Default()->SchedClosure(([&]() mutable { promises[0].Set(absl::InternalError("injected from the test")); promises[1].Set(absl::InternalError("injected from the test")); done_readying_single_device_arrays.Notify(); })); auto basic_string_array = llvm::dyn_cast<BasicStringArray>(array.get()); ASSERT_NE(basic_string_array, nullptr); auto buffers_future = basic_string_array->buffers(); EXPECT_THAT(buffers_future.Await(), StatusIs(absl::StatusCode::kInternal, HasSubstr("injected from the test"))); done_readying_single_device_arrays.WaitForNotification(); } TEST(DisassembleArrayIntoSingleDeviceArrays, SingleDeviceArrayDisassembleSuccess) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto [buffers, on_done_with_buffer] = MakeBuffersAndOnDoneWithBuffer({"abc"}); TF_ASSERT_OK_AND_ASSIGN( auto array, CreateTestArray(client.get(), Future<BasicStringArray::Buffers>(buffers), std::move(on_done_with_buffer))); TF_ASSERT_OK_AND_ASSIGN(auto disassembled_arrays, array->DisassembleIntoSingleDeviceArrays( ArrayCopySemantics::kAlwaysCopy)); ASSERT_EQ(disassembled_arrays.size(), 1); auto basic_string_array = llvm::dyn_cast<BasicStringArray>(disassembled_arrays[0].get()); TF_ASSERT_OK_AND_ASSIGN(auto new_buffers, basic_string_array->buffers().Await()); ASSERT_EQ(buffers.size(), 1); EXPECT_THAT(buffers[0], testing::ElementsAre("abc")); } TEST(DisassembleArrayIntoSingleDeviceArrays, ShardedArrayDisassembleSuccess) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); const std::vector<std::string> per_shard_contents({"abc", "def"}); TF_ASSERT_OK_AND_ASSIGN( auto array, MakeShardedStringTestArray(client.get(), per_shard_contents, false)); TF_ASSERT_OK_AND_ASSIGN(auto disassembled_arrays, array->DisassembleIntoSingleDeviceArrays( ArrayCopySemantics::kAlwaysCopy)); ASSERT_EQ(disassembled_arrays.size(), 2); for (int i = 0; i < disassembled_arrays.size(); ++i) { SCOPED_TRACE(absl::StrCat("dissembled array: ", i)); auto basic_string_array = llvm::dyn_cast<BasicStringArray>(disassembled_arrays[i].get()); TF_ASSERT_OK_AND_ASSIGN(auto buffer, basic_string_array->buffers().Await()); ASSERT_EQ(buffer.size(), 1); EXPECT_THAT(buffer[0], testing::ElementsAre(per_shard_contents[i])); } } TEST(DisassembleArrayIntoSingleDeviceArrays, FailsIfTheArrayHasBeenDeleted) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto [buffers, on_done_with_buffer] = MakeBuffersAndOnDoneWithBuffer({"abc"}); TF_ASSERT_OK_AND_ASSIGN( auto array, CreateTestArray(client.get(), Future<BasicStringArray::Buffers>(buffers), std::move(on_done_with_buffer))); array->Delete(); EXPECT_THAT( array->DisassembleIntoSingleDeviceArrays(ArrayCopySemantics::kAlwaysCopy), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST(CopyTest, SuccessSingleDeviceShardedArray) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto devices = client->addressable_devices(); ASSERT_GE(devices.size(), 2); auto [buffers, on_done_with_buffer] = MakeBuffersAndOnDoneWithBuffer({"abc"}); std::vector<tsl::RCReference<Array>> arrays; TF_ASSERT_OK_AND_ASSIGN( arrays.emplace_back(), CreateTestArray(client.get(), Future<BasicStringArray::Buffers>(buffers), std::move(on_done_with_buffer))); TF_ASSERT_OK_AND_ASSIGN( auto new_arrays, client->CopyArrays(absl::MakeSpan(arrays), DeviceList({devices[1]}), MemoryKind(), ArrayCopySemantics::kAlwaysCopy)); auto new_basic_string_array = llvm::dyn_cast<BasicStringArray>(new_arrays[0].get()); TF_ASSERT_OK_AND_ASSIGN(auto new_buffers, new_basic_string_array->buffers().Await()); ASSERT_EQ(new_buffers.size(), 1); EXPECT_THAT(new_buffers[0], testing::ElementsAre("abc")); } TEST(CopyTest, SuccessMultiDeviceShardedArray) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto devices = client->addressable_devices(); ASSERT_GE(devices.size(), 4); const std::vector<std::string> per_shard_contents({"shard 0", "shard 1"}); std::vector<tsl::RCReference<Array>> arrays; TF_ASSERT_OK_AND_ASSIGN( arrays.emplace_back(), MakeShardedStringTestArray(client.get(), per_shard_contents, false)); TF_ASSERT_OK_AND_ASSIGN( auto new_arrays, client->CopyArrays(absl::MakeSpan(arrays), DeviceList({devices[2], devices[3]}), MemoryKind(), ArrayCopySemantics::kAlwaysCopy)); auto new_basic_string_array = llvm::dyn_cast<BasicStringArray>(new_arrays[0].get()); TF_ASSERT_OK_AND_ASSIGN(auto new_buffers, new_basic_string_array->buffers().Await()); ASSERT_EQ(new_buffers.size(), 2); EXPECT_THAT(new_buffers[0], testing::ElementsAre("shard 0")); EXPECT_THAT(new_buffers[1], testing::ElementsAre("shard 1")); } TEST(CopyTest, FailsAfterDeletion) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto devices = client->addressable_devices(); ASSERT_GE(devices.size(), 2); auto [buffers, on_done_with_buffer] = MakeBuffersAndOnDoneWithBuffer({"abc"}); std::vector<tsl::RCReference<Array>> arrays; TF_ASSERT_OK_AND_ASSIGN( arrays.emplace_back(), CreateTestArray(client.get(), Future<BasicStringArray::Buffers>(buffers), std::move(on_done_with_buffer))); arrays[0]->Delete(); EXPECT_THAT( client->CopyArrays(absl::MakeSpan(arrays), DeviceList({devices[1]}), MemoryKind(), ArrayCopySemantics::kAlwaysCopy), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST(CopyTest, FailsWithDifferentNumbersDevices) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto devices = client->addressable_devices(); ASSERT_GE(devices.size(), 2); auto [buffers, on_done_with_buffer] = MakeBuffersAndOnDoneWithBuffer({"abc"}); std::vector<tsl::RCReference<Array>> arrays; TF_ASSERT_OK_AND_ASSIGN( arrays.emplace_back(), CreateTestArray(client.get(), Future<BasicStringArray::Buffers>(buffers), std::move(on_done_with_buffer))); EXPECT_THAT(client->CopyArrays(absl::MakeSpan(arrays), DeviceList({devices[0], devices[1]}), MemoryKind(), ArrayCopySemantics::kAlwaysCopy), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(CopyTest, NonReadySourceArraySuccessfullyBecomesReadyAfterCopy) { TF_ASSERT_OK_AND_ASSIGN(auto client, test_util::GetClient()); auto devices = client->addressable_devices(); ASSERT_GE(devices.size(), 2); auto buf_and_on_done_with_buff
1,801
cpp
tensorflow/tensorflow
pjrt_attribute_map_util
third_party/xla/xla/python/pjrt_ifrt/pjrt_attribute_map_util.cc
third_party/xla/xla/python/pjrt_ifrt/pjrt_attribute_map_util_test.cc
#ifndef XLA_PYTHON_PJRT_IFRT_PJRT_ATTRIBUTE_MAP_UTIL_H_ #define XLA_PYTHON_PJRT_IFRT_PJRT_ATTRIBUTE_MAP_UTIL_H_ #include <string> #include "absl/container/flat_hash_map.h" #include "xla/pjrt/pjrt_common.h" #include "xla/python/ifrt/attribute_map.h" namespace xla { namespace ifrt { AttributeMap FromPjRtDeviceAttributeMap( absl::flat_hash_map<std::string, xla::PjRtValueType> attributes); absl::flat_hash_map<std::string, xla::PjRtValueType> ToPjRtDeviceAttributeMap( AttributeMap attributes); } } #endif #include "xla/python/pjrt_ifrt/pjrt_attribute_map_util.h" #include <cstdint> #include <string> #include <type_traits> #include <utility> #include <variant> #include <vector> #include "absl/container/flat_hash_map.h" #include "xla/pjrt/pjrt_common.h" #include "xla/python/ifrt/attribute_map.h" namespace xla { namespace ifrt { AttributeMap FromPjRtDeviceAttributeMap( absl::flat_hash_map<std::string, xla::PjRtValueType> attributes) { AttributeMap::Map result; result.reserve(attributes.size()); for (auto& item : attributes) { std::visit( [&](auto& value) { using T = std::decay_t<decltype(value)>; const auto& key = item.first; if constexpr (std::is_same_v<T, std::string>) { result.insert({key, AttributeMap::StringValue(std::move(value))}); } else if constexpr (std::is_same_v<T, bool>) { result.insert({key, AttributeMap::BoolValue(value)}); } else if constexpr (std::is_same_v<T, int64_t>) { result.insert({key, AttributeMap::Int64Value(value)}); } else if constexpr (std::is_same_v<T, std::vector<int64_t>>) { result.insert( {key, AttributeMap::Int64ListValue(std::move(value))}); } else if constexpr (std::is_same_v<T, float>) { result.insert({key, AttributeMap::FloatValue(value)}); } }, item.second); } return AttributeMap(std::move(result)); } absl::flat_hash_map<std::string, xla::PjRtValueType> ToPjRtDeviceAttributeMap( AttributeMap attributes) { absl::flat_hash_map<std::string, xla::PjRtValueType> result; result.reserve(attributes.map().size()); for (auto& item : attributes.map()) { std::visit( [&](auto& value) { using T = std::decay_t<decltype(value)>; const auto& key = item.first; if constexpr (std::is_same_v<T, AttributeMap::StringValue>) { result.insert({key, std::move(value.value)}); } else if constexpr (std::is_same_v<T, AttributeMap::BoolValue>) { result.insert({key, value.value}); } else if constexpr (std::is_same_v<T, AttributeMap::Int64Value>) { result.insert({key, value.value}); } else if constexpr (std::is_same_v<T, AttributeMap::Int64ListValue>) { result.insert({key, std::move(value.value)}); } else if constexpr (std::is_same_v<T, AttributeMap::FloatValue>) { result.insert({key, value.value}); } }, item.second); } return result; } } }
#include "xla/python/pjrt_ifrt/pjrt_attribute_map_util.h" #include <cstdint> #include <string> #include <vector> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "xla/pjrt/pjrt_common.h" #include "xla/python/ifrt/attribute_map.h" namespace xla { namespace ifrt { namespace { TEST(PjRtAttributeMapUtilTest, FromPjRtDeviceAttributeMap) { absl::flat_hash_map<std::string, PjRtValueType> pjrt_map({ {"string", xla::PjRtValueType(std::string("value"))}, {"bool", xla::PjRtValueType(true)}, {"int64", xla::PjRtValueType(int64_t{123})}, {"int64_list", xla::PjRtValueType(std::vector<int64_t>({int64_t{1}, int64_t{2}}))}, {"float", xla::PjRtValueType(1.23f)}, }); EXPECT_EQ(FromPjRtDeviceAttributeMap(pjrt_map).map(), AttributeMap::Map({ {"string", AttributeMap::StringValue("value")}, {"bool", AttributeMap::BoolValue(true)}, {"int64", AttributeMap::Int64Value(123)}, {"int64_list", AttributeMap::Int64ListValue({int64_t{1}, int64_t{2}})}, {"float", AttributeMap::FloatValue(1.23f)}, })); } TEST(PjRtAttributeMapUtilTest, ToPjRtDeviceAttributeMap) { AttributeMap map({ {"string", AttributeMap::StringValue("value")}, {"bool", AttributeMap::BoolValue(true)}, {"int64", AttributeMap::Int64Value(123)}, {"int64_list", AttributeMap::Int64ListValue({int64_t{1}, int64_t{2}})}, {"float", AttributeMap::FloatValue(1.23f)}, }); EXPECT_EQ( ToPjRtDeviceAttributeMap(map), (absl::flat_hash_map<std::string, xla::PjRtValueType>({ {"string", xla::PjRtValueType(std::string("value"))}, {"bool", xla::PjRtValueType(true)}, {"int64", xla::PjRtValueType(int64_t{123})}, {"int64_list", xla::PjRtValueType(std::vector<int64_t>({int64_t{1}, int64_t{2}}))}, {"float", xla::PjRtValueType(1.23f)}, }))); } } } }
1,802
cpp
tensorflow/tensorflow
pjrt_client
third_party/xla/xla/pjrt/pjrt_client.cc
third_party/xla/xla/pjrt/pjrt_client_test.cc
#ifndef XLA_PJRT_PJRT_CLIENT_H_ #define XLA_PJRT_PJRT_CLIENT_H_ #include <cstddef> #include <cstdint> #include <cstdlib> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/base/attributes.h" #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/synchronization/notification.h" #include "absl/types/span.h" #include "mlir/IR/BuiltinOps.h" #include "xla/client/xla_computation.h" #include "xla/layout.h" #include "xla/literal.h" #include "xla/pjrt/pjrt_common.h" #include "xla/pjrt/pjrt_compiler.h" #include "xla/pjrt/pjrt_device_description.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/pjrt/pjrt_future.h" #include "xla/pjrt/pjrt_layout.h" #include "xla/service/computation_placer.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tsl/framework/allocator.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" namespace xla { enum PjRtRuntimeType { kStreamExecutor, kTfrt }; inline constexpr absl::string_view PjRtRuntimeTypeString(PjRtRuntimeType type) { switch (type) { case kStreamExecutor: return "stream_executor"; case kTfrt: return "tfrt"; } } class PjRtClient; class PjRtDevice; class PjRtMemorySpace { public: virtual ~PjRtMemorySpace() = default; virtual PjRtClient* client() const = 0; virtual absl::Span<PjRtDevice* const> devices() const = 0; virtual int id() const = 0; virtual absl::string_view kind() const = 0; virtual int kind_id() const = 0; virtual absl::string_view DebugString() const = 0; virtual absl::string_view ToString() const = 0; }; class PjRtDevice { public: virtual ~PjRtDevice() = default; virtual PjRtClient* client() const = 0; virtual bool IsAddressable() const = 0; virtual const PjRtDeviceDescription& description() const { LOG(FATAL) << "PjRtDeviceDescription not available (must override " "PjRtDevice::description)."; } ABSL_DEPRECATED("Use global_device_id() instead") virtual int id() const { return global_device_id().value(); } virtual PjRtGlobalDeviceId global_device_id() const { return PjRtGlobalDeviceId(description().id()); } virtual PjRtLocalDeviceId local_device_id() const { return PjRtLocalDeviceId(local_hardware_id_typed().value()); } virtual PjRtLocalHardwareId local_hardware_id_typed() const = 0; virtual int process_index() const { return description().process_index(); } ABSL_DEPRECATED("Use local_hardware_id_typed() instead") virtual int local_hardware_id() const { return local_hardware_id_typed().value(); } virtual absl::string_view device_kind() const { return description().device_kind(); } virtual absl::string_view DebugString() const { return description().DebugString(); } virtual absl::string_view ToString() const { return description().ToString(); } virtual const absl::flat_hash_map<std::string, PjRtDeviceAttribute>& Attributes() const { return description().Attributes(); } virtual std::unique_ptr<ScopedAsyncTrackingEvent> CreateAsyncTrackingEvent( absl::string_view description) const = 0; virtual absl::Status TransferToInfeed(const LiteralSlice& literal) = 0; virtual absl::Status TransferFromOutfeed(MutableBorrowingLiteral literal) = 0; virtual absl::StatusOr<tsl::AllocatorStats> GetAllocatorStats() const { return Unimplemented("GetAllocatorStats is not supported"); } virtual absl::Span<PjRtMemorySpace* const> memory_spaces() const = 0; virtual absl::StatusOr<PjRtMemorySpace*> default_memory_space() const = 0; virtual absl::StatusOr<PjRtMemorySpace*> memory_space_by_kind( absl::string_view memory_space_kind) const { return Unimplemented("memory_space_by_kind not implemented"); } virtual absl::StatusOr<std::intptr_t> GetStreamForExternalReadyEvents() const { return Unimplemented( "PjRtDevice::GetStreamForExternalReadyEvents only implemented for " "GPU"); } virtual absl::StatusOr<bool> PoisonExecution(int32_t launch_id, absl::Status error) { return Unimplemented("PoisonExecution is not supported"); } }; class PjRtBuffer; struct PjRtCrossHostRecvDescriptors { absl::InlinedVector<std::string, 1> serialized_descriptors; }; using PjRtCrossHostSendCancelNotifier = std::function<void( absl::string_view serialized_descriptor, absl::Status reason, std::function<void(absl::Status)> on_canceled)>; struct PjRtCrossHostRecvState { std::vector<PjRtCrossHostRecvDescriptors> descriptors; PjRtCrossHostSendCancelNotifier cancel_notifier; }; using PjRtCrossHostRecvNotifier = std::function<void(absl::StatusOr<PjRtCrossHostRecvState>)>; class PjRtChunk { public: static PjRtChunk AllocateDefault(size_t size) { return PjRtChunk(malloc(size), size, [](void* ptr) { free(ptr); }); } PjRtChunk() = default; PjRtChunk(void* data, size_t size, std::function<void(void*)> deleter) : data_(static_cast<uint8_t*>(data)), size_(size), deleter_(std::move(deleter)) {} ~PjRtChunk() { if (data_) { deleter_(data_); } } PjRtChunk(PjRtChunk&& other) : data_(other.data_), size_(other.size_), deleter_(std::move(other.deleter_)) { other.data_ = nullptr; } PjRtChunk& operator=(PjRtChunk&& other) { if (data_) { deleter_(data_); } data_ = other.data_; size_ = other.size_; deleter_ = std::move(other.deleter_); other.data_ = nullptr; return *this; } PjRtChunk(const PjRtChunk&) = delete; PjRtChunk& operator=(const PjRtChunk&) = delete; uint8_t* data() { return data_; } const uint8_t* data() const { return data_; } int64_t size() const { return size_; } std::function<void(void*)> deleter() const { return deleter_; } void release() { data_ = nullptr; size_ = 0; deleter_ = nullptr; } private: uint8_t* data_ = nullptr; size_t size_ = 0; std::function<void(void*)> deleter_; }; class CopyToDeviceStream { public: CopyToDeviceStream(int64_t total_bytes, int64_t granule_bytes) : total_bytes_(total_bytes), granule_bytes_(granule_bytes) {} virtual ~CopyToDeviceStream(); virtual PjRtFuture<> AddChunk(PjRtChunk chunk) = 0; int64_t total_bytes() const { return total_bytes_; } int64_t granule_size_in_bytes() const { return granule_bytes_; } int64_t current_bytes() const ABSL_LOCKS_EXCLUDED(mu_) { absl::MutexLock lock(&mu_); return current_bytes_; } bool IsComplete() const ABSL_LOCKS_EXCLUDED(mu_) { absl::MutexLock lock(&mu_); return IsCompleteLocked(); } bool empty() const { return current_bytes() == 0; } protected: bool IsCompleteLocked() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(mu_) { return current_bytes_ == total_bytes_; } int64_t total_bytes_; int64_t granule_bytes_; int64_t current_bytes_ ABSL_GUARDED_BY(mu_) = 0; mutable absl::Mutex mu_; }; class PjRtHostMemoryForDeviceManager { public: virtual ~PjRtHostMemoryForDeviceManager(); virtual absl::StatusOr<PjRtChunk> ToDeviceLayout( const void* src_data, size_t src_size, const Shape& host_shape, const Shape& device_shape) = 0; virtual absl::Status ToHostLayout(const void* src_data, size_t src_size, const Shape& src_shape, void* dst_data, size_t dst_size, const Shape& dst_shape) = 0; }; class PjRtLoadedExecutable; struct PjRtPluginAttributes { int64_t pjrt_c_api_major_version; int64_t pjrt_c_api_minor_version; absl::flat_hash_map<std::string, PjRtValueType> attributes; }; class PjRtClient { public: PjRtClient() = default; explicit PjRtClient(std::unique_ptr<PjRtHostMemoryForDeviceManager> host_memory_for_device_manager) : host_memory_for_device_manager_( std::move(host_memory_for_device_manager)) {} virtual ~PjRtClient() = default; virtual int process_index() const = 0; virtual int device_count() const = 0; virtual int addressable_device_count() const = 0; virtual absl::Span<PjRtDevice* const> devices() const = 0; virtual absl::Span<PjRtDevice* const> addressable_devices() const = 0; virtual absl::StatusOr<PjRtDevice*> LookupDevice( PjRtGlobalDeviceId global_device_id) const = 0; virtual absl::StatusOr<PjRtDevice*> LookupAddressableDevice( PjRtLocalDeviceId local_device_id) const = 0; virtual absl::Span<PjRtMemorySpace* const> memory_spaces() const = 0; virtual PjRtPlatformId platform_id() const = 0; virtual absl::string_view platform_name() const = 0; virtual absl::string_view platform_version() const = 0; virtual std::optional<PjRtPluginAttributes> plugin_attributes() const { return std::nullopt; } virtual PjRtRuntimeType runtime_type() const = 0; virtual absl::StatusOr<DeviceAssignment> GetDefaultDeviceAssignment( int num_replicas, int num_partitions) const = 0; virtual absl::StatusOr<DeviceAssignment> GetDefaultDeviceAssignment( int num_replicas, std::optional<int> num_replicas_per_slice, int num_partitions, const MultiSliceConfig* multi_slice_config) const { return Unimplemented("Multi slice device assignment is not supported."); } virtual absl::StatusOr<Layout> GetDefaultLayout( PrimitiveType element_type, absl::Span<const int64_t> dims) = 0; virtual absl::StatusOr<std::unique_ptr<HloCostAnalysis>> GetHloCostAnalysis() const = 0; virtual absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> Compile( const XlaComputation& computation, CompileOptions options) = 0; virtual absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> Compile( mlir::ModuleOp module, CompileOptions options) = 0; virtual absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> DeserializeExecutable(absl::string_view serialized, std::optional<CompileOptions> options) = 0; virtual absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> LoadSerializedExecutable(absl::string_view serialized, std::optional<CompileOptions> options, const LoadOptions& load_options) { return Unimplemented("Loading serialized executable not supported."); } virtual absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> Load( std::unique_ptr<PjRtExecutable> executable, const LoadOptions& load_options) { return Unimplemented("Loading executable not supported."); } virtual absl::StatusOr<std::unique_ptr<PjRtBuffer>> CreateUninitializedBuffer( const Shape& shape, PjRtDevice* device) = 0; virtual absl::StatusOr<std::unique_ptr<PjRtBuffer>> CreateErrorBuffer( absl::Status error, const Shape& shape, PjRtMemorySpace* memory) { return Unimplemented("CreateErrorBuffer not supported."); } ABSL_DEPRECATED( "Use CreateErrorBuffer(absl::Status, Shape, PjRtMemorySpace*)") virtual absl::StatusOr<std::unique_ptr<PjRtBuffer>> CreateErrorBuffer( absl::Status error, const Shape& shape, PjRtDevice* device) { auto default_memory_space = device->default_memory_space(); if (!default_memory_space.ok()) { return default_memory_space.status(); } return CreateErrorBuffer(std::move(error), shape, *default_memory_space); } virtual absl::StatusOr<const PjRtTopologyDescription*> GetTopologyDescription() const { return Unimplemented("GetTopologyDescription not supported on platform %s", platform_name()); } class AsyncHostToDeviceTransferManager { public: virtual ~AsyncHostToDeviceTransferManager() = default; virtual size_t buffer_count() const = 0; virtual PjRtDevice* device() const = 0; virtual std::unique_ptr<PjRtBuffer> RetrieveBuffer(int buffer_index) = 0; virtual absl::Status TransferLiteralToBuffer( int buffer_index, const LiteralSlice& literal, absl::AnyInvocable<void() &&> on_done) = 0; virtual size_t buffer_size(int buffer_index) const = 0; virtual absl::Status TransferRawDataToBuffer( int buffer_index, absl::string_view data, absl::AnyInvocable<void() &&> on_done) = 0; virtual absl::Status TransferRawDataToSubBuffer( int buffer_index, const void* data, int64_t offset, int64_t transfer_size, bool is_last_transfer, absl::AnyInvocable<void() &&> on_done) = 0; virtual void SetBufferError(int buffer_index, absl::Status error) = 0; using TransferMetadata = absl::flat_hash_map<std::string, std::string>; v
#include "xla/pjrt/pjrt_client_test.h" #include <cstdint> #include <functional> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/status/statusor.h" #include "absl/synchronization/blocking_counter.h" #include "absl/types/span.h" #include "xla/client/xla_builder.h" #include "xla/client/xla_computation.h" #include "xla/pjrt/pjrt_client.h" #include "xla/service/hlo_parser.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/literal_test_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class TestClientFactory { public: void Register( std::function<absl::StatusOr<std::unique_ptr<PjRtClient>>()> factory) { absl::MutexLock lock(&mu_); CHECK(!factory_); factory_ = std::move(factory); } std::function<absl::StatusOr<std::unique_ptr<PjRtClient>>()> Get() const { absl::MutexLock lock(&mu_); return factory_; } private: mutable absl::Mutex mu_; std::function<absl::StatusOr<std::unique_ptr<PjRtClient>>()> factory_ ABSL_GUARDED_BY(mu_); }; TestClientFactory& GetGlobalTestClientFactory() { static auto* const factory = new TestClientFactory; return *factory; } absl::StatusOr<std::unique_ptr<PjRtClient>> GetClient() { return GetGlobalTestClientFactory().Get()(); } } void RegisterTestClientFactory( std::function<absl::StatusOr<std::unique_ptr<PjRtClient>>()> factory) { GetGlobalTestClientFactory().Register(std::move(factory)); } namespace { std::unique_ptr<PjRtLoadedExecutable> MakeIncrementProgram( PjRtClient* client, bool alias, int device, bool tuplize_arg = false) { Shape shape = ShapeUtil::MakeShape(S32, {4}); XlaBuilder builder("inc"); if (tuplize_arg) { shape = ShapeUtil::MakeTupleShape({shape}); } auto inp = Parameter(&builder, 0, shape, "inp"); if (tuplize_arg) { inp = GetTupleElement(inp, 0); } auto one = ConstantR0<int32_t>(&builder, 1); auto inc = Add(inp, one); if (alias) { builder.SetUpAlias({}, 0, {}); } XlaComputation computation = builder.Build(inc).value(); DeviceAssignment assignment(1, 1); assignment(0, 0) = device; CompileOptions options; options.parameter_is_tupled_arguments = tuplize_arg; options.executable_build_options.set_device_assignment(assignment); return client->Compile(computation, options).value(); } class PjRtClientTest : public ::testing::TestWithParam<ExecuteOptions::ExecutionMode> {}; TEST_P(PjRtClientTest, Execute) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); auto executable = MakeIncrementProgram(client.get(), false, 0); std::vector<int32_t> data(4, 0); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); ExecuteOptions options; options.execution_mode = GetParam(); TF_ASSERT_OK_AND_ASSIGN(auto results, executable->Execute({{buffer.get()}}, options)); ASSERT_EQ(results.size(), 1); ASSERT_EQ(results[0].size(), 1); TF_ASSERT_OK_AND_ASSIGN(auto literal, results[0][0]->ToLiteralSync()); std::vector<int32_t> expected(4, 1); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } TEST_P(PjRtClientTest, ExecuteWithImmutableUntilTransferCompletes) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); auto executable = MakeIncrementProgram(client.get(), false, 0); std::vector<int32_t> data(4, 0); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableUntilTransferCompletes, nullptr, client->addressable_devices()[0])); ExecuteOptions options; options.execution_mode = GetParam(); TF_ASSERT_OK_AND_ASSIGN(auto results, executable->Execute({{buffer.get()}}, options)); ASSERT_EQ(results.size(), 1); ASSERT_EQ(results[0].size(), 1); TF_ASSERT_OK_AND_ASSIGN(auto literal, results[0][0]->ToLiteralSync()); std::vector<int32_t> expected(4, 1); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } TEST_P(PjRtClientTest, ExecuteWithTupleZeroCopy) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); auto executable = MakeIncrementProgram(client.get(), false, 0, true); std::vector<int32_t> data(4, 0); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableZeroCopy, [&data]() { std::fill(data.begin(), data.end(), 1); }, client->addressable_devices()[0])); ExecuteOptions options; options.execution_mode = GetParam(); TF_ASSERT_OK_AND_ASSIGN(auto results, executable->Execute({{buffer.get()}}, options)); buffer.reset(); ASSERT_EQ(results.size(), 1); ASSERT_EQ(results[0].size(), 1); TF_ASSERT_OK_AND_ASSIGN(auto literal, results[0][0]->ToLiteralSync()); std::vector<int32_t> expected(4, 1); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } TEST_P(PjRtClientTest, ExecuteWithDonation) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); auto executable = MakeIncrementProgram(client.get(), true, 0); std::vector<int32_t> data(4, 0); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableZeroCopy, nullptr, client->addressable_devices()[0])); ExecuteOptions options; options.execution_mode = GetParam(); TF_ASSERT_OK_AND_ASSIGN(auto results, executable->Execute({{buffer.get()}}, options)); ASSERT_EQ(results.size(), 1); ASSERT_EQ(results[0].size(), 1); TF_ASSERT_OK_AND_ASSIGN(auto literal, results[0][0]->ToLiteralSync()); std::vector<int32_t> expected(4, 1); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } TEST_P(PjRtClientTest, ExecuteWithDonationAbort) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); if (client->platform_id() == CpuId()) { return; } auto executable = MakeIncrementProgram(client.get(), true, 0); std::vector<int32_t> data(4, 0); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableZeroCopy, nullptr, client->addressable_devices()[0])); auto external_reference = buffer->AcquireExternalReference(); ExecuteOptions options; options.execution_mode = GetParam(); auto resultsor = executable->Execute({{buffer.get()}}, options); ASSERT_FALSE(resultsor.ok()); EXPECT_THAT(resultsor.status().message(), ::testing::HasSubstr( "Donation requested for buffer with external reference")); } TEST_P(PjRtClientTest, ExecuteWithConcurrentUsage) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); auto executable = MakeIncrementProgram(client.get(), false, 0); std::vector<int32_t> data(4, 0); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); ExecuteOptions options; options.execution_mode = GetParam(); constexpr int kNumThreads = 4; tsl::thread::ThreadPool thread_pool( tsl::Env::Default(), "ExecuteWithConcurrentUsage", kNumThreads); constexpr int kConcurrency = 16; absl::BlockingCounter blocking_counter(kConcurrency); std::vector<std::unique_ptr<PjRtBuffer>> results(kConcurrency); for (int i = 0; i < kConcurrency; ++i) { thread_pool.Schedule([&, &result = results[i]]() { auto results = executable->Execute({{buffer.get()}}, options).value(); CHECK_EQ(results.size(), 1); CHECK_EQ(results[0].size(), 1); result = std::move(results[0][0]); blocking_counter.DecrementCount(); }); } blocking_counter.Wait(); std::vector<int32_t> expected(4, 1); for (const auto& result : results) { TF_ASSERT_OK_AND_ASSIGN(auto literal, result->ToLiteralSync()); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } } TEST_P(PjRtClientTest, ExecuteWithConcurrentUsageAndDonation) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); auto executable = MakeIncrementProgram(client.get(), false, 0); auto executable_with_donation = MakeIncrementProgram(client.get(), true, 0); std::vector<int32_t> data(4, 0); std::vector<int32_t> expected(4, 1); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableZeroCopy, nullptr, client->addressable_devices()[0])); ExecuteOptions options; options.execution_mode = GetParam(); constexpr int kNumThreads = 4; tsl::thread::ThreadPool thread_pool(tsl::Env::Default(), "ExecuteWithConcurrentUsageAndDonation", kNumThreads); constexpr int kConcurrentUsage = 16; absl::BlockingCounter blocking_counter(kConcurrentUsage + 1); for (int i = 0; i < kConcurrentUsage; ++i) { thread_pool.Schedule([&]() { auto results_or = executable->Execute({{buffer.get()}}, options); if (results_or.ok()) { auto& results = *results_or; CHECK_EQ(results.size(), 1); CHECK_EQ(results[0].size(), 1); auto literal = results[0][0]->ToLiteralSync().value(); CHECK(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } blocking_counter.DecrementCount(); }); } std::unique_ptr<PjRtBuffer> result; thread_pool.Schedule([&]() { auto results = executable_with_donation->Execute({{buffer.get()}}, options).value(); CHECK_EQ(results.size(), 1); CHECK_EQ(results[0].size(), 1); result = std::move(results[0][0]); blocking_counter.DecrementCount(); }); blocking_counter.Wait(); TF_ASSERT_OK_AND_ASSIGN(auto literal, result->ToLiteralSync()); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } INSTANTIATE_TEST_SUITE_P( PjRtClientTestSuite, PjRtClientTest, ::testing::Values(ExecuteOptions::ExecutionMode::kSynchronous, ExecuteOptions::ExecutionMode::kAsynchronous)); TEST(PjRtClientTest, CopyToDevice) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); ASSERT_GT(client->addressable_devices().size(), 1); std::vector<int32_t> data(4, 0); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); auto* device_1 = client->addressable_devices()[1]; TF_ASSERT_OK_AND_ASSIGN(auto result, buffer->CopyToDevice(device_1)); TF_ASSERT_OK_AND_ASSIGN(auto literal, result->ToLiteralSync()); std::vector<int32_t> expected(4, 0); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } TEST(PjRtClientTest, CopyToDeviceAsync) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); ASSERT_GT(client->addressable_devices().size(), 1); std::vector<int32_t> data(4, 0); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); auto* device_1 = client->addressable_devices()[1]; constexpr int kNumThreads = 4; tsl::thread::ThreadPool thread_pool(tsl::Env::Default(), "CopyToDeviceAsync", kNumThreads); constexpr int kConcurrentCopy = 16; std::vector<std::unique_ptr<PjRtBuffer>> results(kConcurrentCopy); for (int i = 0; i < kConcurrentCopy; ++i) { TF_ASSERT_OK_AND_ASSIGN(results[i], buffer->CopyToDevice(device_1)); } buffer.reset(); for (const auto& result : results) { ASSERT_TRUE(result); TF_ASSERT_OK_AND_ASSIGN(auto literal, result->ToLiteralSync()); std::vector<int32_t> expected(4, 0); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } } TEST(PjRtClientTest, CopyToDeviceAsyncExternalCpuOnly) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); ASSERT_GT(client->addressable_devices().size(), 1); if (client->platform_id() != CpuId()) return; std::vector<int32_t> data(4, 0); auto* data_ptr = data.data(); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->CreateViewOfDeviceBuffer( data_ptr, shape, client->addressable_devices()[0], [data = std::move(data)]() mutable { data.clear(); data.shrink_to_fit(); })); auto* device_1 = client->addressable_devices()[1]; constexpr int kNumThreads = 4; tsl::thread::ThreadPool thread_pool(tsl::Env::Default(), "CopyToDeviceAsyncExternal", kNumThreads); constexpr int kConcurrentCopy = 16; std::vector<std::unique_ptr<PjRtBuffer>> results(kConcurrentCopy); for (int i = 0; i < kConcurrentCopy; ++i) { TF_ASSERT_OK_AND_ASSIGN(results[i], buffer->CopyToDevice(device_1)); } buffer.reset(); for (const auto& result : results) { ASSERT_TRUE(result); TF_ASSERT_OK_AND_ASSIGN(auto literal, result->ToLiteralSync()); std::vector<int32_t> expected(4, 0); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } } absl::StatusOr<std::unique_ptr<PjRtBuffer>> MakeFloatBuffer( PjRtClient* client, const std::vector<float>& data, absl::Span<const int64_t> dimensions) { Shape shape = ShapeUtil::MakeShape(F32, {2, 2}); return client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0]); } TEST(PjRtClientTest, DuplicateDonationError) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); constexpr char kProgram[] = R"(HloModule DuplicateDonationError, input_output_alias={ {0}: (1, {}, must-alias), {1}: (2, {}, must-alias) } ENTRY DuplicateDonationError() -> (f32[2, 2], f32[2, 2]) { %input0 = f32[2, 2] parameter(0) %input1 = f32[2, 2] parameter(1) %input2 = f32[2, 2] parameter(2) %input3 = f32[2, 2] parameter(3) %tmp1 = f32[2, 2] add(%input0, %input1) %tmp2 = f32[2, 2] add(%input2, %input3) ROOT %result = (f32[2, 2], f32[2, 2]) tuple(%tmp1, %tmp2) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnUnverifiedModule(kProgram, {})); XlaComputation xla_computation(hlo_module->ToProto()); TF_ASSERT_OK_AND_ASSIGN(auto pjrt_executable, client->Compile(xla_computation, {})); std::vector<float> data(4, 0); TF_ASSERT_OK_AND_ASSIGN(auto buffer0, MakeFloatBuffer(client.get(), data, {2, 2})); TF_ASSERT_OK_AND_ASSIGN(auto buffer1, MakeFloatBuffer(client.get(), data, {2, 2})); TF_ASSERT_OK_AND_ASSIGN(auto buffer2, MakeFloatBuffer(client.get(), data, {2, 2})); { auto result = pjrt_executable->Execute({{ buffer0.get(), buffer1.get(), buffer1.get(), buffer0.get(), }}, {}); ASSERT_FALSE(result.ok()); EXPECT_THAT(result.status().message(), ::testing::HasSubstr("f(donate(a), donate(a))")); } { auto result = pjrt_executable->Execute({{ buffer1.get(), buffer1.get(), buffer2.get(), buffer0.get(), }}, {}); ASSERT_FALSE(result.ok()); EXPECT_THAT(result.status().message(), ::testing::HasSubstr("f(a, donate(a))")); } { auto result = pjrt_executable->Execute({{ buffer0.get(), buffer1.get(), buffer2.get(), buffer2.get(), }}, {}); ASSERT_FALSE(result.ok()); EXPECT_THAT(result.status().message(), ::testing::HasSubstr("f(donate(a), a)")); } } TEST(PjRtClientTest, GetDefaultLayout) {} } }
1,803
cpp
tensorflow/tensorflow
array_util
third_party/xla/xla/python/ifrt_proxy/common/array_util.cc
third_party/xla/xla/python/ifrt_proxy/common/array_util_test.cc
#ifndef XLA_PYTHON_IFRT_PROXY_COMMON_ARRAY_UTIL_H_ #define XLA_PYTHON_IFRT_PROXY_COMMON_ARRAY_UTIL_H_ #include <optional> #include <vector> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/shape.h" namespace xla { namespace ifrt { namespace proxy { absl::StatusOr<std::vector<int64_t>> DefaultByteStrides(DType dtype, const Shape& shape); class ArrayMemRegion { public: using ByteStrides = std::optional<absl::Span<const int64_t>>; static absl::StatusOr<ArrayMemRegion> FromMinimalMemRegion( absl::string_view mem_region, DType dtype, const Shape& shape, ByteStrides byte_strides); static absl::StatusOr<ArrayMemRegion> FromZerothElementPointer( const void* zeroth_element, DType dtype, const Shape& shape, ByteStrides byte_strides); absl::string_view mem_region() const; void* zeroth_element() const; private: ArrayMemRegion(void* mem_region_start, size_t nbytes) : mem_region_start_(mem_region_start), nbytes_(nbytes) {} void* const mem_region_start_; const size_t nbytes_; }; } } } #endif #include "xla/python/ifrt_proxy/common/array_util.h" #include <string> #include <vector> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/shape.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace proxy { namespace { std::string StridesAsStr(const ArrayMemRegion::ByteStrides& strides) { if (!strides.has_value()) return "strides{nullopt}"; return absl::StrCat("strides{", absl::StrJoin(*strides, ","), "}"); } } absl::StatusOr<std::vector<int64_t>> DefaultByteStrides(const DType dtype, const Shape& shape) { if (!dtype.byte_size().has_value()) { return absl::InvalidArgumentError( absl::StrCat("Unsupported data type to query byte-strides for: ", dtype.DebugString())); } std::vector<int64_t> result(shape.dims().size()); int64_t stride = *dtype.byte_size(); for (int i = static_cast<int>(shape.dims().size()) - 1; i >= 0; --i) { result[i] = stride; stride *= shape.dims()[i]; } return result; } absl::StatusOr<ArrayMemRegion> ArrayMemRegion::FromZerothElementPointer( const void* zeroth_element, const DType dtype, const Shape& shape, ByteStrides byte_strides) { if (!dtype.byte_size().has_value()) { return absl::InvalidArgumentError( absl::StrCat("Unsupported data type to construct ArrayMemRegion: ", dtype.DebugString())); } void* const mem_region_start = const_cast<void*>(zeroth_element); if (!byte_strides.has_value() || (byte_strides->empty() && shape.dims().empty())) { return ArrayMemRegion(mem_region_start, dtype.byte_size().value() * shape.num_elements()); } if (shape.num_elements() == 0) { return ArrayMemRegion(mem_region_start, 0); } if (shape.dims().size() != byte_strides->size()) { return absl::InvalidArgumentError( absl::StrCat("Shape has different dimensions from byte_strides: ", shape.DebugString(), " vs ", StridesAsStr(byte_strides))); } uint64_t last_element_byte_offset = 0; for (int i = 0; i < byte_strides->size(); ++i) { int stride = (*byte_strides)[i]; if (shape.dims()[i] < 0) { return absl::InvalidArgumentError( absl::StrCat("A shape dimension is negative: ", shape.DebugString())); } else if (shape.dims()[i] == 1) { continue; } else if (stride <= 0) { return absl::UnimplementedError( absl::StrCat("Negative or zero strides are not fully supported: ", StridesAsStr(byte_strides))); } else if (stride % dtype.byte_size().value() != 0) { return absl::UnimplementedError(absl::StrCat( "byte_stride[", i, "] is not a multiple of the data-type's size: ", StridesAsStr(byte_strides), ", dtype=", dtype.DebugString())); } else { DCHECK_GT(shape.dims()[i], 0); last_element_byte_offset += (stride * (shape.dims()[i] - 1)); } } return ArrayMemRegion(mem_region_start, last_element_byte_offset + dtype.byte_size().value()); } absl::StatusOr<ArrayMemRegion> ArrayMemRegion::FromMinimalMemRegion( absl::string_view mem_region, const DType dtype, const Shape& shape, ByteStrides byte_strides) { TF_ASSIGN_OR_RETURN( auto result, FromZerothElementPointer(mem_region.data(), dtype, shape, byte_strides)); if (result.mem_region().size() != mem_region.size()) { return absl::InvalidArgumentError( absl::StrCat("Incorrect size ", result.mem_region().size(), " vs ", mem_region.size(), "; is provided memory region minimal? ", dtype.DebugString(), " ", shape.DebugString(), " ", StridesAsStr(byte_strides))); } CHECK_EQ(result.mem_region().data(), mem_region.data()); return result; } absl::string_view ArrayMemRegion::mem_region() const { return absl::string_view(static_cast<char*>(mem_region_start_), nbytes_); } void* ArrayMemRegion::zeroth_element() const { return mem_region_start_; } } } }
#include "xla/python/ifrt_proxy/common/array_util.h" #include <cstddef> #include <cstdint> #include <optional> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/shape.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace proxy { namespace { using ::testing::ElementsAre; using ::testing::Not; using ::testing::TestWithParam; using ::tsl::testing::IsOk; using ::tsl::testing::IsOkAndHolds; constexpr DType::Kind kF64 = DType::Kind::kF64; constexpr DType::Kind kS32 = DType::Kind::kS32; constexpr DType::Kind kString = DType::Kind::kString; using Strides = std::vector<int64_t>; TEST(DefaultByteStrides, ErrorsIfBadDtype) { EXPECT_THAT(DefaultByteStrides(DType(kString), Shape({1})), Not(IsOk())); } TEST(DefaultByteStrides, HappyCase) { EXPECT_THAT(DefaultByteStrides(DType(kF64), Shape({4, 3, 5})), IsOkAndHolds(ElementsAre(120, 40, 8))); } struct TC { const std::string test_name; const DType::Kind dtype_kind; const std::vector<int64_t> shape; const std::optional<std::vector<int64_t>> byte_strides; const std::optional<size_t> expected_size; }; std::string PrintToString(const TC& tc) { return tc.test_name; } class ArrayMemRegionSuccess : public TestWithParam<TC> {}; INSTANTIATE_TEST_SUITE_P( Tests, ArrayMemRegionSuccess, testing::Values( TC{"DefaultF64", kF64, {4, 3, 5}, std::nullopt}, TC{"MajorToMinorStridesF64", kF64, {4, 3, 5}, Strides({120, 40, 8})}, TC{"NotMajorToMinorF64", kF64, {3, 4, 5}, Strides({40, 120, 8})}, TC{"TransposedF64", kF64, {5, 3, 4}, Strides({8, 40, 120})}, TC{"DefaultS32", kS32, {4, 3, 5}, std::nullopt}, TC{"MajorToMinorStridesS32", kS32, {4, 3, 5}, Strides({60, 20, 4})}, TC{"NotMajorToMinorS32", kS32, {3, 4, 5}, Strides({20, 60, 4})}, TC{"TransposedS32", kS32, {5, 3, 4}, Strides({4, 20, 60})}, TC{"ScalarF64DefaultStrides", kF64, {}, std::nullopt}, TC{"ScalarF64EmptyStrides", kF64, {}, Strides({})}, TC{"NoColsDefaultStrides", kF64, {5, 0}, std::nullopt}, TC{"NoColsStridesNonZero", kF64, {5, 0}, Strides({40, 4})}, TC{"NoColsStridesZero", kF64, {5, 0}, Strides({0, 0})}, TC{"NoRowsDefaultStrides", kF64, {0, 5}, std::nullopt}, TC{"NoRowsStridesNonZero", kF64, {0, 5}, Strides({40, 4})}, TC{"NoRowsStridesZero", kF64, {0, 5}, Strides({0, 0})}, TC{"SingleElementArbitraryStrides", kF64, {1, 1}, Strides({100, 100})}, TC{"OneRowArbitraryColStride", kF64, {1, 5}, Strides({100, 8})}, TC{"OneColArbitraryRowStride", kF64, {5, 1}, Strides({8, 100})}, TC{"OneRowZeroColStride", kF64, {1, 5}, Strides({0, 8})}, TC{"OneColZeroRowStride", kF64, {5, 1}, Strides({8, 0})}, TC{"NonCompactSingleDimension", kS32, {5}, Strides({16}), 68}, TC{"NonCompactDim0", kS32, {4, 3, 5}, Strides({120, 20, 4}), 420}, TC{"PaddedElements", kS32, {4, 3, 5}, Strides({120, 40, 8}), 476}), testing::PrintToStringParamName()); TEST_P(ArrayMemRegionSuccess, TestCase) { const TC tc = GetParam(); const DType dtype(tc.dtype_kind); const Shape shape(tc.shape); const size_t expected_size = tc.expected_size.value_or( dtype.byte_size().value() * shape.num_elements()); std::string data(expected_size, 'a'); TF_ASSERT_OK_AND_ASSIGN(auto mem_region1, ArrayMemRegion::FromZerothElementPointer( data.data(), dtype, shape, tc.byte_strides)); EXPECT_EQ(mem_region1.zeroth_element(), data.data()); EXPECT_EQ(mem_region1.mem_region().data(), data.data()); EXPECT_EQ(mem_region1.mem_region().size(), data.size()); TF_ASSERT_OK_AND_ASSIGN( auto mem_region2, ArrayMemRegion::FromMinimalMemRegion(data, dtype, shape, tc.byte_strides)); EXPECT_EQ(mem_region2.zeroth_element(), data.data()); EXPECT_EQ(mem_region2.mem_region().data(), data.data()); EXPECT_EQ(mem_region2.mem_region().size(), data.size()); } class ArrayMemRegionFailure : public TestWithParam<TC> {}; INSTANTIATE_TEST_SUITE_P( Tests, ArrayMemRegionFailure, testing::Values( TC{"OneString", kString, {}, std::nullopt}, TC{"ManyStrings", kString, {5}, std::nullopt}, TC{"NegativeByteStrides", kS32, {4, 3, 5}, Strides({-60, -20, -4})}, TC{"ZeroByteStride", kS32, {5, 5}, Strides({0, 0})}, TC{"SmallerByteStrideThanDataType", kS32, {5, 5}, Strides({1, 1})}, TC{"ByteStrideIndivisibleByDataType", kS32, {5, 5}, Strides({7, 7})}, TC{"NegativeShapeDimension", kS32, {-5, -5}, Strides({20, 4})}), testing::PrintToStringParamName()); TEST_P(ArrayMemRegionFailure, TestCase) { const TC tc = GetParam(); const DType dtype(tc.dtype_kind); const Shape shape(tc.shape); char const* kSomeAddr = reinterpret_cast<char*>(1UL << 48); auto mem_region1 = ArrayMemRegion::FromZerothElementPointer( kSomeAddr, dtype, shape, tc.byte_strides); EXPECT_THAT(mem_region1.status(), Not(IsOk())); const size_t kSomeSize = 1024; auto mem_region2 = ArrayMemRegion::FromMinimalMemRegion( absl::string_view(kSomeAddr, kSomeSize), dtype, shape, tc.byte_strides); EXPECT_THAT(mem_region2.status(), Not(IsOk())); } TEST(ArrayMemRegion, FromBadMemRegionSizeFails) { const DType kDType(kS32); const Shape kShape({5, 5}); const size_t kDataBytes = kDType.byte_size().value() * kShape.num_elements(); const size_t kExtraSuffixBytes = 10; std::string data_with_extra_suffix(kDataBytes + kExtraSuffixBytes, 'a'); TF_ASSERT_OK_AND_ASSIGN( auto mem_region1, ArrayMemRegion::FromZerothElementPointer( data_with_extra_suffix.data(), kDType, kShape, std::nullopt)); EXPECT_EQ(mem_region1.mem_region().data(), data_with_extra_suffix.data()); EXPECT_EQ(mem_region1.zeroth_element(), data_with_extra_suffix.data()); EXPECT_LT(mem_region1.mem_region().size(), data_with_extra_suffix.size()); EXPECT_EQ(mem_region1.mem_region().size(), kDataBytes); auto mem_region2 = ArrayMemRegion::FromMinimalMemRegion( data_with_extra_suffix, kDType, kShape, std::nullopt); EXPECT_THAT(mem_region2.status(), Not(IsOk())); std::string data_without_some_bytes(kDataBytes - kExtraSuffixBytes, 'a'); auto mem_region3 = ArrayMemRegion::FromMinimalMemRegion( data_without_some_bytes, kDType, kShape, std::nullopt); EXPECT_THAT(mem_region3.status(), Not(IsOk())); } } } } }
1,804
cpp
tensorflow/tensorflow
grpc_client_session
third_party/xla/xla/python/ifrt_proxy/client/grpc_client_session.cc
third_party/xla/xla/python/ifrt_proxy/client/grpc_client_session_test.cc
#ifndef XLA_PYTHON_IFRT_PROXY_CLIENT_GRPC_CLIENT_SESSION_H_ #define XLA_PYTHON_IFRT_PROXY_CLIENT_GRPC_CLIENT_SESSION_H_ #include <functional> #include <memory> #include "absl/base/call_once.h" #include "absl/base/thread_annotations.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/synchronization/notification.h" #include "grpcpp/client_context.h" #include "grpcpp/support/client_callback.h" #include "grpcpp/support/sync_stream.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt_proxy/client/client_session.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.grpc.pb.h" #include "xla/python/ifrt_proxy/common/ifrt_service.pb.h" #include "tsl/platform/threadpool.h" #include "tsl/platform/unbounded_work_queue.h" namespace xla { namespace ifrt { namespace proxy { class GrpcClientSession : public ClientSession { public: using StreamTerminatedCallback = std::function<void(absl::Status)>; static std::shared_ptr<GrpcClientSession> Create( std::shared_ptr<grpc::GrpcIfrtService::StubInterface> stub, GrpcIfrtSessionMetadata metadata, StreamTerminatedCallback stream_terminated_cb); Future<std::shared_ptr<IfrtResponse>> Enqueue( std::unique_ptr<IfrtRequest> request) override; using ResponseCallback = std::function<void(absl::StatusOr<std::shared_ptr<IfrtResponse>>)>; absl::Status Enqueue(std::unique_ptr<IfrtRequest> req, ResponseCallback callback); void Finish(const absl::Status& client_status) override; GrpcClientSession(const GrpcClientSession&) = delete; GrpcClientSession& operator=(const GrpcClientSession&) = delete; ~GrpcClientSession() override; private: class ResponseCallbackTable; GrpcClientSession(std::shared_ptr<grpc::GrpcIfrtService::StubInterface> stub, std::unique_ptr<::grpc::ClientContext> context, StreamTerminatedCallback stream_terminated_cb); void ReadLoop(); const std::unique_ptr<ResponseCallbackTable> response_callbacks_; std::unique_ptr<tsl::thread::ThreadPool> reader_thread_; absl::Notification reader_thread_stopped_; bool writes_stopped_ ABSL_GUARDED_BY(writer_mu_) = false; absl::Mutex writer_mu_; absl::once_flag finish_once_; const std::shared_ptr<grpc::GrpcIfrtService::StubInterface> stub_; const std::unique_ptr<::grpc::ClientContext> context_; const std::unique_ptr< ::grpc::ClientReaderWriterInterface<IfrtRequest, IfrtResponse>> stream_; const StreamTerminatedCallback stream_terminated_cb_; std::unique_ptr<tsl::UnboundedWorkQueue> user_futures_work_queue_; }; std::shared_ptr<grpc::GrpcIfrtService::StubInterface> CreateGrpcStub( absl::string_view server_address); } } } #endif #include "xla/python/ifrt_proxy/client/grpc_client_session.h" #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include "absl/base/call_once.h" #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/functional/bind_front.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/synchronization/notification.h" #include "grpc/grpc.h" #include "grpcpp/channel.h" #include "grpcpp/client_context.h" #include "grpcpp/create_channel.h" #include "grpcpp/security/credentials.h" #include "grpcpp/support/channel_arguments.h" #include "xla/pjrt/distributed/util.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt_proxy/client/client_session.h" #include "xla/python/ifrt_proxy/common/grpc_credentials.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.grpc.pb.h" #include "xla/python/ifrt_proxy/common/ifrt_service.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/threadpool.h" #include "tsl/platform/unbounded_work_queue.h" namespace xla { namespace ifrt { namespace proxy { using OpId = int64_t; class GrpcClientSession::ResponseCallbackTable { public: absl::Status Add(OpId op_id, ResponseCallback callback) { absl::MutexLock l(&mu_); const bool inserted = table_.insert({op_id, std::move(callback)}).second; if (!inserted) { return absl::AlreadyExistsError( absl::StrCat("Op id ", op_id, " already exists")); } return absl::OkStatus(); } std::optional<ResponseCallback> Pop(OpId op_id) { absl::MutexLock l(&mu_); auto it = table_.find(op_id); if (it == table_.end()) { return std::nullopt; } auto cb = std::move(it->second); table_.erase(it); return std::move(cb); } absl::flat_hash_map<OpId, ResponseCallback> PopAll() { absl::flat_hash_map<OpId, ResponseCallback> result; absl::MutexLock l(&mu_); result = std::move(table_); table_ = absl::flat_hash_map<OpId, ResponseCallback>(); return result; } private: absl::Mutex mu_; absl::flat_hash_map<OpId, ResponseCallback> table_ ABSL_GUARDED_BY(mu_); }; std::shared_ptr<GrpcClientSession> GrpcClientSession::Create( std::shared_ptr<grpc::GrpcIfrtService::StubInterface> stub, GrpcIfrtSessionMetadata metadata, StreamTerminatedCallback stream_terminated_cb) { auto context = std::make_unique<::grpc::ClientContext>(); context->AddMetadata("ifrt-proxy-grpc-ifrt-session-metadata-bin", metadata.SerializeAsString()); std::shared_ptr<GrpcClientSession> result(new GrpcClientSession( std::move(stub), std::move(context), std::move(stream_terminated_cb))); return result; } GrpcClientSession::GrpcClientSession( std::shared_ptr<grpc::GrpcIfrtService::StubInterface> stub, std::unique_ptr<::grpc::ClientContext> context, StreamTerminatedCallback stream_terminated_cb) : response_callbacks_(std::make_unique<ResponseCallbackTable>()), reader_thread_(std::make_unique<tsl::thread::ThreadPool>( tsl::Env::Default(), "ifrt_proxy_client_grpc_reader", 1)), stub_(std::move(stub)), context_(std::move(context)), stream_(stub_->IfrtSession(context_.get())), stream_terminated_cb_(std::move(stream_terminated_cb)), user_futures_work_queue_(std::make_unique<tsl::UnboundedWorkQueue>( tsl::Env::Default(), "GrpcClientSessionUserFuturesWorkQueue")) { reader_thread_->Schedule( absl::bind_front(&GrpcClientSession::ReadLoop, this)); } Future<std::shared_ptr<IfrtResponse>> GrpcClientSession::Enqueue( std::unique_ptr<IfrtRequest> request) { auto promise = Future<std::shared_ptr<IfrtResponse>>::CreatePromise(); absl::Status status = Enqueue( std::move(request), [promise, queue = user_futures_work_queue_.get()]( absl::StatusOr<std::shared_ptr<IfrtResponse>> response) mutable { queue->Schedule([promise = std::move(promise), response = std::move(response)]() mutable -> void { promise.Set(std::move(response)); }); }); if (!status.ok()) { user_futures_work_queue_->Schedule([promise, status]() mutable -> void { promise.Set(std::move(status)); }); } return Future<std::shared_ptr<IfrtResponse>>(std::move(promise)); } absl::Status GrpcClientSession::Enqueue(std::unique_ptr<IfrtRequest> req, ResponseCallback callback) { const OpId op_id = req->request_metadata().op_id(); absl::MutexLock l(&writer_mu_); if (writes_stopped_) { return absl::FailedPreconditionError( "GrpcClientSession: writes no longer allowed."); } TF_RETURN_IF_ERROR(response_callbacks_->Add(op_id, std::move(callback))); if (!stream_->Write(*req)) { CHECK(response_callbacks_->Pop(op_id).has_value()); return absl::UnknownError("GrpcClientSession: writing to stream failed."); } return absl::OkStatus(); } void GrpcClientSession::ReadLoop() { while (true) { auto read_buffer = std::make_unique<IfrtResponse>(); if (!stream_->Read(read_buffer.get())) { LOG(INFO) << "GrpcClientSession: reader loop is exiting."; break; } const OpId op_id = read_buffer->response_metadata().op_id(); std::optional<ResponseCallback> callback = response_callbacks_->Pop(op_id); if (callback.has_value()) { VLOG(1) << "GrpcClientSession: Issuing callback for " << op_id; (*callback)(std::move(read_buffer)); VLOG(1) << "GrpcClientSession: Done with callback for " << op_id; } else { LOG(ERROR) << "Received response with no remaining registered callback: " << read_buffer->DebugString(); } } reader_thread_stopped_.Notify(); Finish(absl::OkStatus()); } void GrpcClientSession::Finish(const absl::Status& client_status) { LOG(INFO) << "GrpcClientSession: Finish() called with client status " << client_status; absl::call_once(finish_once_, [&] { context_->TryCancel(); LOG(INFO) << "GrpcClientSession: Waiting for reader thread to stop."; reader_thread_stopped_.WaitForNotification(); auto finish_stream_and_get_server_status = [&]() -> absl::Status { LOG(INFO) << "GrpClientSession: Attempting to call stream->Finish()"; absl::MutexLock l(&writer_mu_); LOG(INFO) << "GrpClientSession: Attempting to call stream->Finish(), " "mutex acquired"; absl::Status server_status = xla::FromGrpcStatus(stream_->Finish()); LOG(INFO) << "GrpClientSession: stream->Finish() returned server status " << server_status; CHECK(!writes_stopped_); writes_stopped_ = true; return server_status; }; absl::Status combined_status = finish_stream_and_get_server_status(); combined_status.Update(client_status); auto all_callbacks = response_callbacks_->PopAll(); for (auto& [_, cb] : all_callbacks) { if (combined_status.ok()) { cb(absl::AbortedError("Finish(OK) called.")); } else { cb(combined_status); } } LOG(INFO) << "GrpClientSession::Finish(): calling terminated cb with " << combined_status; stream_terminated_cb_(combined_status); }); } GrpcClientSession::~GrpcClientSession() { GrpcClientSession::Finish(absl::CancelledError("~GrpcClientSession called.")); reader_thread_.reset(); LOG(INFO) << "Deleting GrpcClientSession.user_futures_work_queue_ ..."; user_futures_work_queue_.reset(); LOG(INFO) << "Deleted GrpcClientSession.user_futures_work_queue_."; } std::shared_ptr<grpc::GrpcIfrtService::StubInterface> CreateGrpcStub( absl::string_view server_address) { ::grpc::ChannelArguments args; args.SetInt(GRPC_ARG_MAX_SEND_MESSAGE_LENGTH, -1); args.SetInt(GRPC_ARG_MAX_RECEIVE_MESSAGE_LENGTH, -1); std::shared_ptr<::grpc::Channel> channel = ::grpc::CreateCustomChannel( std::string(server_address), GetClientCredentials(), args); VLOG(0) << " Established channel."; CHECK(channel != nullptr); std::shared_ptr<grpc::GrpcIfrtService::StubInterface> stub = grpc::GrpcIfrtService::NewStub(channel); VLOG(0) << " Created stub."; CHECK(stub != nullptr); return stub; } } } }
#include "xla/python/ifrt_proxy/client/grpc_client_session.h" #include <atomic> #include <deque> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/log/log_sink_registry.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" #include "absl/synchronization/notification.h" #include "absl/time/time.h" #include "grpc/support/time.h" #include "grpcpp/channel.h" #include "grpcpp/create_channel.h" #include "grpcpp/server_builder.h" #include "grpcpp/server_context.h" #include "grpcpp/support/status.h" #include "grpcpp/support/sync_stream.h" #include "xla/python/ifrt_proxy/client/version.h" #include "xla/python/ifrt_proxy/common/grpc_credentials.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.grpc.pb.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.pb.h" #include "xla/python/ifrt_proxy/common/ifrt_service.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace ifrt { namespace proxy { namespace { using ::testing::Not; using ::tsl::testing::IsOk; constexpr int kOp1 = 1; constexpr int kOp2 = 2; constexpr absl::Duration kSufficientTime = absl::Seconds(5); GrpcIfrtSessionMetadata Metadata() { GrpcIfrtSessionMetadata metadata; metadata.mutable_version()->set_protocol_version(kClientMaxVersion); return metadata; } absl::Status TestError() { return absl::UnknownError("test error"); } class Queue { public: void Push(absl::Status t) { absl::MutexLock l(&mu_); queue_.push_back(std::move(t)); } std::optional<absl::Status> PopOrTimeout( absl::Duration timeout = kSufficientTime) { absl::MutexLock l(&mu_); auto cond = [this]() ABSL_SHARED_LOCKS_REQUIRED(mu_) -> bool { return !queue_.empty(); }; mu_.AwaitWithTimeout(absl::Condition(&cond), timeout); if (queue_.empty()) { return std::nullopt; } absl::Status result = std::move(queue_.front()); queue_.pop_front(); return result; } absl::Status Pop(absl::Duration timeout = kSufficientTime) { auto result = PopOrTimeout(timeout); CHECK(result.has_value()) << "Timeout!"; return *result; } void PopAllDuringDestruction() { absl::MutexLock l(&mu_); allow_non_empty_destruction_ = true; } ~Queue() { absl::MutexLock l(&mu_); if (!allow_non_empty_destruction_) CHECK(queue_.empty()) << " " << this; } private: absl::Mutex mu_; std::deque<absl::Status> queue_ ABSL_GUARDED_BY(mu_); bool allow_non_empty_destruction_ ABSL_GUARDED_BY(mu_) = false; }; void ExpectHeadAndTail( std::vector<std::variant<absl::StatusOr<Queue*>, absl::Status>> var_list) { std::vector<absl::Status> status_list; for (const auto& v : var_list) { if (std::holds_alternative<absl::StatusOr<Queue*>>(v)) { status_list.push_back(std::get<absl::StatusOr<Queue*>>(v).status()); } else { status_list.push_back(std::get<absl::Status>(v)); } } bool seen_not_ok = false; std::string str; for (const auto& s : status_list) { absl::StrAppend(&str, "\n", s.ToString(), "\n-----\n"); } for (const auto& s : status_list) { if (!s.ok()) seen_not_ok = true; if (seen_not_ok) { EXPECT_THAT(s, Not(IsOk())) << str; } } } using ServerStream = ::grpc::ServerReaderWriter<IfrtResponse, IfrtRequest>; using SessionAction = bool; constexpr SessionAction kContinueSession = true; constexpr SessionAction kStopSession = false; using OnSessionStart = std::function<SessionAction()>; using OnReqReceived = std::function<SessionAction(const IfrtRequest&, ServerStream*)>; class SimpleIfrtService : public grpc::GrpcIfrtService::Service { public: SimpleIfrtService(OnReqReceived on_req_received, OnSessionStart on_session_start) : on_req_received_(std::move(on_req_received)), on_session_start_(std::move(on_session_start)) {} ::grpc::Status IfrtSession(::grpc::ServerContext* context, ServerStream* stream) override { if (on_session_start_ && on_session_start_() == kStopSession) { return ::grpc::Status::OK; } { absl::MutexLock l(&mu_); CHECK(contexts_.insert(context).second); } while (true) { IfrtRequest request; LOG(INFO) << "Server: waiting on Read()."; if (!stream->Read(&request)) { LOG(INFO) << "Server: Read() returned false."; break; } LOG(INFO) << "Server: Read() returned true."; if (!on_req_received_) { IfrtResponse response; response.mutable_response_metadata()->set_op_id( request.request_metadata().op_id()); stream->Write(response); } else if (on_req_received_(request, stream) == kStopSession) { break; } } { absl::MutexLock l(&mu_); CHECK_EQ(contexts_.erase(context), 1); } LOG(INFO) << "Finishing IFRT session"; return ::grpc::Status::OK; } void CancelAllServerSessions() { absl::MutexLock l(&mu_); for (const auto& context : contexts_) { context->TryCancel(); } } private: const OnReqReceived on_req_received_; const OnSessionStart on_session_start_; absl::Mutex mu_; absl::flat_hash_set<::grpc::ServerContext*> contexts_ ABSL_GUARDED_BY(mu_); }; class ClientAndServer { public: explicit ClientAndServer(OnReqReceived on_req_received = nullptr, OnSessionStart on_session_start = nullptr) { std::string address = absl::StrCat("localhost:", tsl::testing::PickUnusedPortOrDie()); ::grpc::ServerBuilder builder; builder.AddListeningPort(address, GetServerCredentials()); ifrt_service_ = std::make_unique<SimpleIfrtService>(on_req_received, on_session_start); builder.RegisterService(ifrt_service_.get()); server_ = builder.BuildAndStart(); LOG(INFO) << "Server started and listening on " << address; absl::FlushLogSinks(); std::shared_ptr<::grpc::Channel> channel = ::grpc::CreateChannel(address, GetClientCredentials()); channel->WaitForConnected(gpr_time_add( gpr_now(GPR_CLOCK_REALTIME), gpr_time_from_seconds(10, GPR_TIMESPAN))); LOG(INFO) << "conn_state = " << channel->GetState(false); auto stub = grpc::GrpcIfrtService::NewStub(channel); CHECK(stub != nullptr); client_session_ = GrpcClientSession::Create( std::move(stub), Metadata(), [this](absl::Status s) { client_finished_q_.Push(s); client_finished_notification_.Notify(); }); client_finished_q_.PopAllDuringDestruction(); } void StopServer() { ifrt_service_->CancelAllServerSessions(); server_->Shutdown(); server_->Wait(); } ~ClientAndServer() { StopServer(); client_session_->Finish(absl::CancelledError("~ClientAndServer")); client_finished_notification_.WaitForNotificationWithTimeout( kSufficientTime); CHECK(client_finished_notification_.HasBeenNotified()); } GrpcClientSession* client_session() { return client_session_.get(); } Queue* client_finished_q() { return &client_finished_q_; } absl::StatusOr<Queue*> SendSimpleRequest(int op_id) { owned_queues_.push_back(std::make_unique<Queue>()); Queue* q = owned_queues_.back().get(); auto req = std::make_unique<IfrtRequest>(); req->mutable_request_metadata()->set_op_id(op_id); TF_RETURN_IF_ERROR(client_session_->Enqueue( std::move(req), [q](absl::StatusOr<GrpcClientSession::Response> resp) { q->Push(resp.status()); })); return q; } private: std::vector<std::unique_ptr<Queue>> owned_queues_; Queue client_finished_q_; absl::Notification client_finished_notification_; std::shared_ptr<GrpcClientSession> client_session_; std::unique_ptr<::grpc::Server> server_; std::unique_ptr<SimpleIfrtService> ifrt_service_; }; TEST(GrpcClientSessionTest, HappyCaseOneRequestWithServerTermination) { ClientAndServer cs; TF_ASSERT_OK_AND_ASSIGN(Queue * response_q, cs.SendSimpleRequest(kOp1)); EXPECT_THAT(response_q->Pop(), IsOk()); EXPECT_EQ(cs.client_finished_q()->PopOrTimeout(), std::nullopt); cs.StopServer(); EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, HappyCaseTwoRequestsWithClientFinish) { ClientAndServer cs; TF_ASSERT_OK_AND_ASSIGN(Queue * response_q_1, cs.SendSimpleRequest(kOp1)); TF_ASSERT_OK_AND_ASSIGN(Queue * response_q_2, cs.SendSimpleRequest(kOp2)); EXPECT_THAT(response_q_1->Pop(), IsOk()); EXPECT_THAT(response_q_2->Pop(), IsOk()); EXPECT_EQ(cs.client_finished_q()->PopOrTimeout(), std::nullopt); cs.client_session()->Finish(TestError()); EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, ServerFinishesDuringFirstRead) { ClientAndServer cs( [](auto, auto) { return kStopSession; }); TF_ASSERT_OK_AND_ASSIGN(Queue * response_q_1, cs.SendSimpleRequest(kOp1)); EXPECT_THAT(response_q_1->Pop(), Not(IsOk())); absl::StatusOr<Queue*> response_q_2 = cs.SendSimpleRequest(kOp2); EXPECT_THAT(response_q_2.status(), Not(IsOk())); EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, ServerFinishesDuringConstruction) { ClientAndServer cs(nullptr, []() { return kStopSession; }); absl::StatusOr<Queue*> response_q_1 = cs.SendSimpleRequest(kOp1); absl::StatusOr<Queue*> response_q_2 = cs.SendSimpleRequest(kOp2); ExpectHeadAndTail({response_q_1, response_q_2}); if (response_q_1.ok()) EXPECT_THAT(response_q_1.value()->Pop(), Not(IsOk())); if (response_q_2.ok()) EXPECT_THAT(response_q_2.value()->Pop(), Not(IsOk())); EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, ClientFinishesAfterServerConsumesFirstRequest) { std::atomic<GrpcClientSession*> session_ptr; ClientAndServer cs( [session_ptr = &session_ptr](auto, auto) { session_ptr->load()->Finish(TestError()); return kContinueSession; }); session_ptr.store(cs.client_session()); TF_ASSERT_OK_AND_ASSIGN(Queue * response_q_1, cs.SendSimpleRequest(kOp1)); EXPECT_THAT(response_q_1->Pop(), Not(IsOk())); absl::StatusOr<Queue*> response_q_2 = cs.SendSimpleRequest(kOp2); EXPECT_THAT(response_q_2.status(), Not(IsOk())); EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, ClientFinishesAfterServerWritesFirstResponse) { std::atomic<GrpcClientSession*> session_ptr; ClientAndServer cs( [session_ptr = &session_ptr](const IfrtRequest& r, ServerStream* s) { IfrtResponse response; response.mutable_response_metadata()->set_op_id( r.request_metadata().op_id()); s->Write(response); session_ptr->load()->Finish(TestError()); return kContinueSession; }); session_ptr.store(cs.client_session()); TF_ASSERT_OK_AND_ASSIGN(Queue * response_q_1, cs.SendSimpleRequest(kOp1)); absl::StatusOr<Queue*> response_q_2 = cs.SendSimpleRequest(kOp2); response_q_1->Pop().IgnoreError(); if (response_q_2.ok()) { EXPECT_THAT(response_q_2.value()->Pop(), Not(IsOk())); } EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, ClientFinishesDuringServerConstruction) { std::atomic<GrpcClientSession*> session_ptr; absl::Notification init_done; ClientAndServer cs(nullptr, [session_ptr = &session_ptr, init_done = &init_done]() { init_done->WaitForNotification(); session_ptr->load()->Finish(TestError()); return kContinueSession; }); session_ptr.store(cs.client_session()); init_done.Notify(); absl::StatusOr<Queue*> response_q_1 = cs.SendSimpleRequest(kOp1); absl::StatusOr<Queue*> response_q_2 = cs.SendSimpleRequest(kOp2); if (response_q_1.ok()) { EXPECT_THAT(response_q_1.value()->Pop(), Not(IsOk())); } if (response_q_2.ok()) { EXPECT_THAT(response_q_2.value()->Pop(), Not(IsOk())); } ExpectHeadAndTail({response_q_1, response_q_2}); EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, MethodsAfterFinishReturnError) { ClientAndServer cs; TF_ASSERT_OK_AND_ASSIGN(Queue * response_q_1, cs.SendSimpleRequest(kOp1)); cs.client_session()->Finish(TestError()); EXPECT_THAT(cs.SendSimpleRequest(kOp2), Not(IsOk())); response_q_1->PopAllDuringDestruction(); } TEST(GrpcClientSessionTest, ReceivingBadIfrtResponseDoesNotCrash) { ClientAndServer cs( [](const IfrtRequest& r, ServerStream* s) mutable { IfrtResponse resp; resp.mutable_response_metadata()->set_op_id(kOp2); s->Write(resp); resp.mutable_response_metadata()->set_op_id( r.request_metadata().op_id()); s->Write(resp); return kContinueSession; }); TF_ASSERT_OK_AND_ASSIGN(Queue * response_q, cs.SendSimpleRequest(kOp1)); EXPECT_THAT(response_q->Pop(), IsOk()); } TEST(GrpcClientSessionTest, BadInitialChannelFailsPromptly) { std::string address = absl::StrCat("localhost:", tsl::testing::PickUnusedPortOrDie()); std::shared_ptr<::grpc::Channel> channel = ::grpc::CreateChannel(address, GetClientCredentials()); std::unique_ptr<grpc::GrpcIfrtService::StubInterface> stub = grpc::GrpcIfrtService::NewStub(channel); EXPECT_TRUE(stub != nullptr); auto session_finished = std::make_shared<Queue>(); auto session = GrpcClientSession::Create( std::move(stub), Metadata(), [session_finished](absl::Status s) { session_finished->Push(s); }); EXPECT_THAT(session_finished->Pop(), Not(IsOk())); } } } } }
1,805
cpp
tensorflow/tensorflow
executable
third_party/xla/xla/backends/interpreter/executable.cc
third_party/xla/xla/python/ifrt_proxy/client/executable_test.cc
#ifndef XLA_BACKENDS_INTERPRETER_EXECUTABLE_H_ #define XLA_BACKENDS_INTERPRETER_EXECUTABLE_H_ #include <memory> #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/backends/interpreter/executable_base.h" #include "xla/hlo/evaluator/hlo_evaluator.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/executable.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_execution_profile.h" #include "xla/service/hlo_module_config.h" #include "xla/service/service_executable_run_options.h" #include "xla/service/shaped_buffer.h" #include "xla/stream_executor/stream_executor.h" #include "xla/types.h" #include "xla/xla_data.pb.h" namespace xla { namespace interpreter { class InterpreterExecutable : public InterpreterExecutableBase { public: InterpreterExecutable( std::unique_ptr<HloModule> hlo_module, std::unique_ptr<HloEvaluator> evaluator, std::optional<DynamicDimensionInference> dynamic_dymension_inference); static int64_t ShapeSizeBytes(const Shape& shape); protected: absl::StatusOr<Literal> Evaluate( const ServiceExecutableRunOptions* run_options, const HloComputation& computation, absl::Span<const Literal> arg_literals) override ABSL_LOCKS_EXCLUDED(evaluator_lock_); std::unique_ptr<HloEvaluator> evaluator_ ABSL_PT_GUARDED_BY(evaluator_lock_); mutable absl::Mutex evaluator_lock_; private: std::optional<DynamicDimensionInference> dynamic_dimension_inference_; InterpreterExecutable(const InterpreterExecutable&) = delete; InterpreterExecutable& operator=(const InterpreterExecutable&) = delete; }; } } #endif #include "xla/backends/interpreter/executable.h" #include <algorithm> #include <cstring> #include <memory> #include <string> #include <utility> #include <vector> #include "xla/backends/interpreter/executable_base.h" #include "xla/backends/interpreter/executor.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/literal.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/service/transfer_manager.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/stream_executor.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" namespace xla { namespace interpreter { InterpreterExecutable::InterpreterExecutable( std::unique_ptr<HloModule> hlo_module, std::unique_ptr<HloEvaluator> evaluator, std::optional<DynamicDimensionInference> dynamic_dymension_inference) : InterpreterExecutableBase(std::move(hlo_module)), evaluator_(std::move(evaluator)), dynamic_dimension_inference_(std::move(dynamic_dymension_inference)) { if (dynamic_dimension_inference_.has_value()) { evaluator_->set_dynamic_dimension_inference( &dynamic_dimension_inference_.value()); } } absl::StatusOr<Literal> InterpreterExecutable::Evaluate( const ServiceExecutableRunOptions* run_options, const HloComputation& computation, absl::Span<const Literal> arg_literals) { absl::MutexLock lock(&evaluator_lock_); evaluator_->ResetVisitStates(); return evaluator_->Evaluate(computation, arg_literals); } int64_t InterpreterExecutable::ShapeSizeBytes(const Shape& shape) { if (shape.IsOpaque()) { return sizeof(void*); } return ShapeUtil::ByteSizeOf(shape, sizeof(void*)); } } }
#include "xla/python/ifrt_proxy/client/executable.h" #include <cstdint> #include <memory> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/types/span.h" #include "llvm/Support/Casting.h" #include "xla/layout_util.h" #include "xla/pjrt/pjrt_common.h" #include "xla/pjrt/pjrt_layout.h" #include "xla/python/ifrt/array.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/executable.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/mock.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/python/ifrt_proxy/client/array.h" #include "xla/python/ifrt_proxy/client/client_session.h" #include "xla/python/ifrt_proxy/client/host_buffer.h" #include "xla/python/ifrt_proxy/client/mock_client_session.h" #include "xla/python/ifrt_proxy/client/mock_host_buffer.h" #include "xla/python/ifrt_proxy/client/rpc_helper.h" #include "xla/python/ifrt_proxy/client/version.h" #include "xla/python/ifrt_proxy/common/ifrt_service.pb.h" #include "xla/python/ifrt_proxy/common/types.h" #include "xla/tsl/concurrency/ref_count.h" #include "tsl/platform/casts.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" using ::testing::_; using ::testing::ElementsAre; using ::testing::Optional; using ::testing::Pointee; using ::testing::Return; using ::testing::SizeIs; using ::testing::StrEq; using ::tsl::protobuf::TextFormat; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; #if defined(PLATFORM_GOOGLE) using ::testing::EquivToProto; using ::testing::proto::Partially; #endif namespace xla { namespace ifrt { namespace proxy { namespace { IfrtProxyVersion Version() { IfrtProxyVersion version; version.set_protocol_version(kClientMinVersion); return version; } class LoadedExecutableTest : public ::testing::Test { protected: void SetUp() override { session_ = std::make_shared<MockClientSession>(); rpc_helper_ = std::make_shared<RpcHelper>(Version(), session_); host_buffer_store_ = std::make_shared<MockClientHostBufferStore>(); rpc_helper_->set_host_buffer_store(host_buffer_store_); EXPECT_CALL(*session_, Enqueue(_)) .WillRepeatedly(Return(Future<ClientSession::Response>( absl::InternalError("Request has no mock handlers")))); } std::shared_ptr<MockClientSession> session_; std::shared_ptr<RpcHelper> rpc_helper_; std::shared_ptr<ClientHostBufferStore> host_buffer_store_; }; #if defined(PLATFORM_GOOGLE) TEST_F(LoadedExecutableTest, Metadata) { IfrtResponse response; ASSERT_TRUE(TextFormat::ParseFromString( R"pb( loaded_executable_metadata_response { parameter_shardings { shardings { type: REPLICATED } shardings { type: OTHER tile_shape { element_type: BF16 dimensions: [ 2, 2 ] } tile_assignment_dimensions: [ 0, 1 ] } } output_shardings { shardings { type: REPLICATED } } parameter_layouts_list { layouts { minor_to_major: 0 } layouts { minor_to_major: [ 1, 0 ] } } output_layouts_list { layouts { minor_to_major: [ 1, 0 ] } } output_memory_kinds { memory_kind_lists { memory_kinds: [ "foo" ] } } } )pb", &response)); EXPECT_CALL(*session_, Enqueue(Pointee(Partially(EquivToProto( R"pb(loaded_executable_metadata_request { loaded_executable_handle: 1234 })pb"))))) .WillOnce(MockClientSessionReturnResponse(response)); MockClient client; LoadedExecutable executable( &client, rpc_helper_, 1234, "foo", 2, {}, {}, "fingerprint", Future<>(absl::OkStatus()), {}, {}); EXPECT_THAT( executable.GetParameterShardings(), Optional(ElementsAre( EquivToProto(R"pb(type: REPLICATED)pb"), EquivToProto(R"pb(type: OTHER tile_shape { element_type: BF16 dimensions: [ 2, 2 ] } tile_assignment_dimensions: [ 0, 1 ])pb")))); EXPECT_THAT(executable.GetOutputShardings(), Optional(ElementsAre(EquivToProto(R"pb(type: REPLICATED)pb")))); ASSERT_OK_AND_ASSIGN(auto parameter_layouts, executable.GetParameterLayouts()); EXPECT_EQ(parameter_layouts.size(), 2); EXPECT_EQ( tensorflow::down_cast<xla::PjRtXlaLayout*>(parameter_layouts[0].get()) ->xla_layout(), xla::LayoutUtil::MakeDescendingLayout(1)); EXPECT_EQ( tensorflow::down_cast<xla::PjRtXlaLayout*>(parameter_layouts[1].get()) ->xla_layout(), xla::LayoutUtil::MakeDescendingLayout(2)); ASSERT_OK_AND_ASSIGN(auto output_layouts, executable.GetOutputLayouts()); EXPECT_EQ(output_layouts.size(), 1); EXPECT_EQ(tensorflow::down_cast<xla::PjRtXlaLayout*>(output_layouts[0].get()) ->xla_layout(), xla::LayoutUtil::MakeDescendingLayout(2)); EXPECT_THAT(executable.GetOutputMemoryKinds(), IsOkAndHolds(ElementsAre(ElementsAre("foo")))); } #endif #if defined(PLATFORM_GOOGLE) TEST_F(LoadedExecutableTest, Execute) { MockDevice device; ON_CALL(device, Id()).WillByDefault(Return(DeviceId(1))); MockClient client; ON_CALL(client, LookupDevice(DeviceId(1))).WillByDefault(Return(&device)); LoadedExecutable executable( &client, rpc_helper_, 1234, "foo", 2, {}, {}, "fingerprint", Future<>(absl::OkStatus()), {}, {}); IfrtResponse response; ASSERT_TRUE(TextFormat::ParseFromString(R"pb( loaded_executable_execute_response { status_handle: 2000 outputs { dtype { kind: KIND_F32 } shape { dims: [ 4, 4 ] } array_handle: 3000 } outputs { dtype { kind: KIND_F16 } shape { dims: [ 8 ] } array_handle: 3001 } } )pb", &response)); { auto* outputs = response.mutable_loaded_executable_execute_response() ->mutable_outputs(); TF_ASSERT_OK_AND_ASSIGN( *(*outputs)[0].mutable_sharding(), SingleDeviceSharding::Create(&device, MemoryKind())->ToProto()); TF_ASSERT_OK_AND_ASSIGN( *(*outputs)[1].mutable_sharding(), SingleDeviceSharding::Create(&device, MemoryKind())->ToProto()); } EXPECT_CALL(*session_, Enqueue(Pointee(Partially(EquivToProto( R"pb(loaded_executable_execute_request { loaded_executable_handle: 1234 args_handles: [ 1000, 1001 ] device_ids: [ 1 ] })pb"))))) .WillOnce(MockClientSessionReturnResponse(response)); ASSERT_TRUE(TextFormat::ParseFromString(R"pb( response_metadata { status { code: 2 # UNKNOWN message: "injected error" } } )pb", &response)); EXPECT_CALL(*session_, Enqueue(Pointee(Partially(EquivToProto(R"pb(check_future_request { future_handle: 2000 })pb"))))) .WillOnce(MockClientSessionReturnResponse(response)); DeviceList devices({&device}); std::vector<tsl::RCReference<xla::ifrt::Array>> args; for (const uint64_t handle : {1000, 1001}) { args.push_back(tsl::MakeRef<Array>( &client, rpc_helper_, DType(DType::kF32), Shape({2, 2}), OpaqueSharding::Create(devices, MemoryKind()), ArrayHandle{handle})); } TF_ASSERT_OK_AND_ASSIGN( auto result, executable.Execute( absl::MakeSpan(args), xla::ifrt::LoadedExecutable::ExecuteOptions(), devices)); EXPECT_THAT(result.status.Await(), StatusIs(absl::StatusCode::kUnknown, "injected error")); ASSERT_THAT(result.outputs, SizeIs(2)); const auto output0 = result.outputs[0]; EXPECT_EQ(output0->dtype(), DType(DType::kF32)); EXPECT_EQ(output0->shape(), Shape({4, 4})); EXPECT_EQ(llvm::cast<Array>(output0.get())->handle().handle, 3000); const auto output1 = result.outputs[1]; EXPECT_EQ(output1->dtype(), DType(DType::kF16)); EXPECT_EQ(output1->shape(), Shape({8})); EXPECT_EQ(llvm::cast<Array>(output1.get())->handle().handle, 3001); } #endif #if defined(PLATFORM_GOOGLE) TEST_F(LoadedExecutableTest, Delete) { MockClient client; LoadedExecutable executable( &client, rpc_helper_, 1234, "foo", 2, {}, {}, "fingerprint", Future<>(absl::OkStatus()), {}, {}); { IfrtResponse response; ASSERT_TRUE(TextFormat::ParseFromString( R"pb( loaded_executable_delete_response { future_handle: 2000 } )pb", &response)); EXPECT_CALL(*session_, Enqueue(Pointee(Partially(EquivToProto( R"pb(loaded_executable_delete_request { loaded_executable_handle: 1234 })pb"))))) .WillOnce(MockClientSessionReturnResponse(response)); ASSERT_TRUE(TextFormat::ParseFromString( R"pb( response_metadata { status { code: 2 # UNKNOWN message: "injected error" } } )pb", &response)); EXPECT_CALL( *session_, Enqueue(Pointee(Partially(EquivToProto(R"pb(check_future_request { future_handle: 2000 })pb"))))) .WillOnce(MockClientSessionReturnResponse(response)); Future<> result = executable.Delete(); EXPECT_THAT(result.Await(), StatusIs(absl::StatusCode::kUnknown, StrEq("injected error"))); } { IfrtResponse response; ASSERT_TRUE(TextFormat::ParseFromString( R"pb( loaded_executable_is_deleted_response { is_deleted: true } )pb", &response)); EXPECT_CALL(*session_, Enqueue(Pointee(Partially(EquivToProto( R"pb(loaded_executable_is_deleted_request { loaded_executable_handle: 1234 })pb"))))) .WillOnce(MockClientSessionReturnResponse(response)); EXPECT_TRUE(executable.IsDeleted()); } IfrtResponse response; ASSERT_TRUE(TextFormat::ParseFromString( R"pb( loaded_executable_destruct_response {} )pb", &response)); EXPECT_CALL(*session_, Enqueue(Pointee(Partially(EquivToProto( R"pb(loaded_executable_destruct_request { loaded_executable_handle: 1234 })pb"))))) .WillOnce(MockClientSessionReturnResponse(response)); } #endif } } } }
1,806
cpp
tensorflow/tensorflow
client
third_party/xla/xla/pjrt/distributed/client.cc
third_party/xla/xla/tests/client_test.cc
#ifndef XLA_CLIENT_CLIENT_H_ #define XLA_CLIENT_CLIENT_H_ #include <memory> #include <string> #include <utility> #include <vector> #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/client/xla_computation.h" #include "xla/literal.h" #include "xla/service/hlo.pb.h" #include "xla/service/service.h" #include "xla/types.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" namespace xla { class Client { public: explicit Client(Service* stub); virtual ~Client(); using XlaComputationInstance = xla::XlaComputationInstance; absl::StatusOr<ExecutionHandle> Compile( const XlaComputation& computation, absl::Span<const Shape> argument_shapes, const ExecutionOptions* execution_options = nullptr); absl::StatusOr<std::unique_ptr<GlobalData>> Execute( const ExecutionHandle& handle, absl::Span<GlobalData* const> arguments, ExecutionProfile* execution_profile = nullptr ); absl::StatusOr<std::unique_ptr<GlobalData>> Execute( const XlaComputation& computation, absl::Span<GlobalData* const> arguments, const ExecutionOptions* execution_options = nullptr, ExecutionProfile* execution_profile = nullptr); absl::StatusOr<std::vector<std::unique_ptr<GlobalData>>> ExecuteParallel( absl::Span<const XlaComputationInstance> computations); absl::StatusOr<std::vector<DeviceHandle>> GetDeviceHandles( int64_t device_count); absl::StatusOr<Literal> Transfer(const GlobalData& data, const Shape* shape_with_layout = nullptr); absl::StatusOr<std::unique_ptr<GlobalData>> TransferToServer( const LiteralSlice& literal, const DeviceHandle* device_handle = nullptr); absl::Status TransferToInfeed(const LiteralSlice& literal, int64_t replica_id = 0, const DeviceHandle* device_handle = nullptr); absl::StatusOr<Literal> TransferFromOutfeed( const Shape* shape_with_layout, int64_t replica_id = 0, const DeviceHandle* device_handle = nullptr); absl::Status ResetDevice(); absl::StatusOr<Literal> ExecuteAndTransfer( const XlaComputation& computation, absl::Span<GlobalData* const> arguments, const ExecutionOptions* execution_options = nullptr, ExecutionProfile* execution_profile = nullptr); absl::StatusOr<Literal> ComputeConstant( const XlaComputation& computation, const Layout* output_layout = nullptr) const; absl::Status Unregister(const GlobalData& data); absl::StatusOr<std::vector<std::unique_ptr<GlobalData>>> DeconstructTuple( const GlobalData& data); absl::StatusOr<Shape> GetShape(const GlobalData& data); absl::StatusOr<std::unique_ptr<ProgramShape>> GetComputationShape( const XlaComputation& computation); absl::StatusOr<ChannelHandle> CreateChannelHandle(); absl::StatusOr<ChannelHandle> CreateHostToDeviceChannelHandle(); absl::StatusOr<ChannelHandle> CreateDeviceToHostChannelHandle(); absl::StatusOr<XlaComputation> LoadSnapshot(const HloSnapshot& module); Service* stub() { return stub_; } private: absl::StatusOr<ChannelHandle> CreateChannelHandleByType( ChannelHandle::ChannelType type); Service* stub_; Client(const Client&) = delete; Client& operator=(const Client&) = delete; }; } #endif #include "xla/client/client.h" #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "xla/client/xla_computation.h" #include "xla/debug_options_flags.h" #include "xla/execution_options_util.h" #include "xla/literal.h" #include "xla/status_macros.h" #include "xla/types.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/protobuf.h" namespace xla { Client::Client(Service* stub) : stub_(stub) {} Client::~Client() = default; absl::StatusOr<Literal> Client::Transfer(const GlobalData& data, const Shape* shape_with_layout) { return stub_->TransferToClient(data, shape_with_layout); } absl::StatusOr<std::unique_ptr<GlobalData>> Client::TransferToServer( const LiteralSlice& literal, const DeviceHandle* device_handle) { return stub_->TransferToServer(literal, device_handle); } absl::Status Client::TransferToInfeed(const LiteralSlice& literal, int64_t replica_id, const DeviceHandle* device_handle) { return stub_->TransferToInfeed(literal, replica_id, device_handle); } absl::StatusOr<Literal> Client::TransferFromOutfeed( const Shape* shape_with_layout, int64_t replica_id, const DeviceHandle* device_handle) { return stub_->TransferFromOutfeed(shape_with_layout, replica_id, device_handle); } absl::Status Client::ResetDevice() { return stub_->ResetDevice(); } absl::StatusOr<Literal> Client::ExecuteAndTransfer( const XlaComputation& computation, absl::Span<GlobalData* const> arguments, const ExecutionOptions* execution_options, ExecutionProfile* execution_profile) { TF_ASSIGN_OR_RETURN( std::unique_ptr<GlobalData> data, Execute(computation, arguments, execution_options, execution_profile)); std::optional<Shape> shape_with_output_layout; if (execution_options && execution_options->has_shape_with_output_layout()) { shape_with_output_layout = Shape(execution_options->shape_with_output_layout()); } return Transfer(*data, shape_with_output_layout.has_value() ? &(*shape_with_output_layout) : nullptr); } absl::StatusOr<Literal> Client::ComputeConstant( const XlaComputation& computation, const Layout* output_layout) const { return stub_->ComputeConstantGraph(computation, output_layout); } absl::StatusOr<XlaComputation> Client::LoadSnapshot(const HloSnapshot& module) { TF_RET_CHECK(module.has_hlo() && module.hlo().has_hlo_module()); return XlaComputation(module.hlo().hlo_module()); } absl::StatusOr<ExecutionHandle> Client::Compile( const XlaComputation& computation, absl::Span<const Shape> argument_shapes, const ExecutionOptions* execution_options) { std::optional<ExecutionOptions> opts; if (!execution_options) { opts = CreateDefaultExecutionOptions(); } return stub_->Compile(computation, argument_shapes, execution_options ? *execution_options : *opts); } absl::StatusOr<std::unique_ptr<GlobalData>> Client::Execute( const ExecutionHandle& handle, absl::Span<GlobalData* const> arguments, ExecutionProfile* execution_profile) { return stub_->Execute(handle, arguments, execution_profile); } absl::StatusOr<std::unique_ptr<GlobalData>> Client::Execute( const XlaComputation& computation, absl::Span<GlobalData* const> arguments, const ExecutionOptions* execution_options, ExecutionProfile* execution_profile) { std::optional<ExecutionOptions> options_storage; if (!execution_options || execution_options->device_handles().empty()) { if (execution_options) { options_storage.emplace(*execution_options); } else { options_storage.emplace(CreateDefaultExecutionOptions()); } execution_options = &*options_storage; TF_ASSIGN_OR_RETURN(auto device_handles, GetDeviceHandles(1)); TF_RET_CHECK(!device_handles.empty()); *options_storage->add_device_handles() = std::move(device_handles[0]); } std::vector<XlaComputationInstance> computation_instances = { XlaComputationInstance{ computation, std::vector<GlobalData*>(arguments.begin(), arguments.end()), *execution_options, execution_profile}}; VLOG(1) << "Making ExecuteParallel request: " << execution_options->DebugString(); TF_ASSIGN_OR_RETURN(auto results, ExecuteParallel(computation_instances)); VLOG(1) << "ExecuteParallel request done."; for (int64_t i = 0, end = results.size(); i < end; i++) { TF_ASSIGN_OR_RETURN(const Shape& shape, GetShape(*results[i])); if (!ShapeUtil::IsEmptyTuple(shape)) { VLOG(3) << "Fetching result from device " << i << ": " << ShapeUtil::HumanString(shape); return std::move(results[i]); } } TF_RET_CHECK(!results.empty()); VLOG(1) << "Defaulting to device 0 result"; return std::move(results[0]); } absl::StatusOr<std::vector<std::unique_ptr<GlobalData>>> Client::ExecuteParallel(absl::Span<const XlaComputationInstance> computations) { return stub_->ExecuteGraphParallel(computations); } absl::StatusOr<std::vector<DeviceHandle>> Client::GetDeviceHandles( int64_t device_count) { if (device_count < 1) { return InvalidArgument("device_count must be greater than 0"); } return stub_->GetDeviceHandles(device_count); } absl::Status Client::Unregister(const GlobalData& data) { return stub_->Unregister(data.handle()); } absl::StatusOr<std::vector<std::unique_ptr<GlobalData>>> Client::DeconstructTuple(const GlobalData& data) { return stub_->DeconstructTuple(data); } absl::StatusOr<std::unique_ptr<ProgramShape>> Client::GetComputationShape( const XlaComputation& computation) { TF_ASSIGN_OR_RETURN(const auto& result, computation.GetProgramShape()); return std::make_unique<ProgramShape>(result); } absl::StatusOr<Shape> Client::GetShape(const GlobalData& data) { return stub_->GetShape(data); } absl::StatusOr<ChannelHandle> Client::CreateChannelHandleByType( ChannelHandle::ChannelType type) { return stub_->CreateChannelHandle(type); } absl::StatusOr<ChannelHandle> Client::CreateChannelHandle() { return CreateChannelHandleByType(ChannelHandle::DEVICE_TO_DEVICE); } absl::StatusOr<ChannelHandle> Client::CreateHostToDeviceChannelHandle() { return CreateChannelHandleByType(ChannelHandle::HOST_TO_DEVICE); } absl::StatusOr<ChannelHandle> Client::CreateDeviceToHostChannelHandle() { return CreateChannelHandleByType(ChannelHandle::DEVICE_TO_HOST); } }
#include <memory> #include <vector> #include "absl/status/statusor.h" #include "xla/client/global_data.h" #include "xla/client/local_client.h" #include "xla/client/xla_builder.h" #include "xla/client/xla_computation.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/test_helpers.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_macros.h" #include "xla/tests/test_utils.h" #include "xla/xla_data.pb.h" #include "tsl/platform/test.h" namespace xla { namespace { class ClientTest : public ClientLibraryTestBase {}; XLA_TEST_F(ClientTest, ExecuteWithLayout) { XlaBuilder b(TestName()); std::vector<std::vector<int64_t>> layouts = {{0, 1}, {1, 0}}; for (const std::vector<int64_t>& execute_layout : layouts) { for (const std::vector<int64_t>& transfer_layout : layouts) { Add(ConstantR2<int32_t>(&b, {{1, 2}, {3, 4}}), ConstantR2<int32_t>(&b, {{10, 20}, {30, 40}})); TF_ASSERT_OK_AND_ASSIGN(auto computation, b.Build()); ExecutionOptions execution_options = execution_options_; *execution_options.mutable_shape_with_output_layout() = ShapeUtil::MakeShapeWithDenseLayout(S32, {2, 2}, execute_layout) .ToProto(); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<GlobalData> data, client_->Execute(computation, {}, &execution_options)); Literal expected_literal = LiteralUtil::CreateR2WithLayout<int32_t>( {{11, 22}, {33, 44}}, LayoutUtil::MakeLayout(transfer_layout)); TF_ASSERT_OK_AND_ASSIGN( auto computed, client_->Transfer(*data, &expected_literal.shape())); ASSERT_TRUE(LiteralTestUtil::EqualShapesAndLayouts( expected_literal.shape(), computed.shape())); EXPECT_TRUE(LiteralTestUtil::Equal(expected_literal, computed)); } } } XLA_TEST_F(ClientTest, ExecuteWithTupleLayout) { XlaBuilder b(TestName()); Tuple(&b, {ConstantR2<int32_t>(&b, {{1, 2}, {3, 4}}), ConstantR2<int32_t>(&b, {{10, 20}, {30, 40}})}); TF_ASSERT_OK_AND_ASSIGN(auto computation, b.Build()); ExecutionOptions execution_options = execution_options_; *execution_options.mutable_shape_with_output_layout() = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShapeWithDenseLayout(S32, {2, 2}, {0, 1}), ShapeUtil::MakeShapeWithDenseLayout(S32, {2, 2}, {1, 0})}) .ToProto(); TF_ASSERT_OK_AND_ASSIGN( auto result, client_->ExecuteAndTransfer(computation, {}, &execution_options)); LiteralTestUtil::ExpectR2Equal<int32_t>({{1, 2}, {3, 4}}, LiteralSlice(result, {0})); LiteralTestUtil::ExpectR2Equal<int32_t>({{10, 20}, {30, 40}}, LiteralSlice(result, {1})); EXPECT_TRUE(result.shape().IsTuple()); EXPECT_EQ(2, ShapeUtil::TupleElementCount(result.shape())); EXPECT_TRUE(ShapeUtil::Equal( ShapeUtil::GetTupleElementShape(result.shape(), 0), ShapeUtil::MakeShapeWithDenseLayout(S32, {2, 2}, {0, 1}))); EXPECT_TRUE(ShapeUtil::Equal( ShapeUtil::GetTupleElementShape(result.shape(), 1), ShapeUtil::MakeShapeWithDenseLayout(S32, {2, 2}, {1, 0}))); } XLA_TEST_F(ClientTest, DISABLED_ON_INTERPRETER(DISABLED_ON_GPU(ExecuteParallel))) { XlaComputation add_with_one_arg, mul_with_two_args, dot_with_one_arg; Shape shape = ShapeUtil::MakeShape(S32, {2, 2}); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<GlobalData> const_arg, client_->TransferToServer( LiteralUtil::CreateR2<int32_t>({{5, 6}, {7, 8}}))); XlaBuilder b(TestName() + ".add"); Add(Parameter(&b, 0, shape, "param_0"), ConstantR2<int32_t>(&b, {{1, 2}, {3, 4}})); TF_ASSERT_OK_AND_ASSIGN(add_with_one_arg, b.Build()); std::vector<XlaComputationInstance> computation_instances; TF_ASSERT_OK_AND_ASSIGN(std::vector<xla::DeviceHandle> devices, client_->GetDeviceHandles(1)); ASSERT_EQ(devices.size(), 1); ExecutionOptions options = execution_options_; *options.add_device_handles() = devices[0]; computation_instances.push_back(XlaComputationInstance( add_with_one_arg, {const_arg.get()}, options, nullptr)); TF_ASSERT_OK_AND_ASSIGN(auto results, client_->ExecuteParallel(computation_instances)); auto expected_result = LiteralUtil::CreateR2<int32_t>({{6, 8}, {10, 12}}); TF_ASSERT_OK_AND_ASSIGN( auto result_literal, client_->Transfer(*results[0], &expected_result.shape())); EXPECT_TRUE(LiteralTestUtil::Equal(expected_result, result_literal)); } } }
1,807
cpp
tensorflow/tensorflow
grpc_server
third_party/xla/xla/python/ifrt_proxy/server/grpc_server.cc
third_party/xla/xla/python/ifrt_proxy/server/grpc_server_test.cc
#ifndef XLA_PYTHON_IFRT_PROXY_SERVER_GRPC_SERVER_H_ #define XLA_PYTHON_IFRT_PROXY_SERVER_GRPC_SERVER_H_ #include <memory> #include <string> #include <utility> #include "absl/functional/any_invocable.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "grpcpp/server.h" #include "xla/python/ifrt/client.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.grpc.pb.h" namespace xla { namespace ifrt { namespace proxy { class GrpcServer { public: static absl::StatusOr<std::unique_ptr<GrpcServer>> Create( absl::string_view address, std::unique_ptr<grpc::GrpcIfrtService::Service> impl); static absl::StatusOr<std::unique_ptr<GrpcServer>> CreateFromIfrtClientFactory( absl::string_view address, absl::AnyInvocable<absl::StatusOr<std::shared_ptr<xla::ifrt::Client>>()> backend_ifrt_client_factory); ~GrpcServer(); std::string address() const { return address_; } void Wait() { server_->Wait(); } private: GrpcServer(absl::string_view address, std::unique_ptr<grpc::GrpcIfrtService::Service> impl, std::unique_ptr<::grpc::Server> server) : address_(address), impl_(std::move(impl)), server_(std::move(server)) {} const std::string address_; std::unique_ptr<grpc::GrpcIfrtService::Service> impl_; std::unique_ptr<::grpc::Server> server_; }; } } } #endif #include "xla/python/ifrt_proxy/server/grpc_server.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include "absl/functional/any_invocable.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "grpc/grpc.h" #include "grpcpp/completion_queue.h" #include "grpcpp/grpcpp.h" #include "grpcpp/server_builder.h" #include "xla/python/ifrt/client.h" #include "xla/python/ifrt_proxy/common/grpc_credentials.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.grpc.pb.h" #include "xla/python/ifrt_proxy/server/grpc_service_impl.h" #include "xla/python/ifrt_proxy/server/host_buffer.h" #include "xla/python/ifrt_proxy/server/ifrt_backend.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace proxy { GrpcServer::~GrpcServer() { server_->Shutdown(); server_->Wait(); } absl::StatusOr<std::unique_ptr<GrpcServer>> GrpcServer::Create( absl::string_view address, std::unique_ptr<grpc::GrpcIfrtService::Service> impl) { if (impl == nullptr) { return absl::InvalidArgumentError( "Service implementation cannot be a nullptr."); } ::grpc::ServerBuilder builder; builder.AddChannelArgument(GRPC_ARG_MAX_SEND_MESSAGE_LENGTH, -1); builder.AddChannelArgument(GRPC_ARG_MAX_RECEIVE_MESSAGE_LENGTH, -1); builder.RegisterService(impl.get()); builder.AddListeningPort(std::string(address), GetServerCredentials()); auto server = builder.BuildAndStart(); if (server == nullptr) { return absl::UnavailableError( absl::StrCat("Failed to initialize gRPC server at address:", address)); } return absl::WrapUnique<GrpcServer>( new GrpcServer(address, std::move(impl), std::move(server))); } absl::StatusOr<std::unique_ptr<GrpcServer>> GrpcServer::CreateFromIfrtClientFactory( absl::string_view address, absl::AnyInvocable<absl::StatusOr<std::shared_ptr<xla::ifrt::Client>>()> backend_ifrt_client_factory) { if (backend_ifrt_client_factory == nullptr) { return absl::InvalidArgumentError( "backend_ifrt_client_factory cannot be nullptr."); } auto service = std::make_unique<GrpcServiceImpl>( [ifrt_client_factory = std::move(backend_ifrt_client_factory)]( IfrtProxyVersion version, uint64_t session_id, std::shared_ptr<HostBufferStore> host_buffer_store) mutable -> absl::StatusOr<std::unique_ptr<BackendInterface>> { TF_ASSIGN_OR_RETURN(auto ifrt_client, ifrt_client_factory()); return IfrtBackend::Create(version, session_id, std::move(ifrt_client), std::move(host_buffer_store)); }); return Create(address, std::move(service)); } } } }
#include "xla/python/ifrt_proxy/server/grpc_server.h" #include <memory> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.grpc.pb.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace ifrt { namespace proxy { namespace { using ::testing::Not; using ::tsl::testing::IsOk; using ::tsl::testing::StatusIs; class FakeIfrtService : public grpc::GrpcIfrtService::Service {}; TEST(GrpcServerTest, CreationTest) { auto addr = absl::StrCat("[::1]:", tsl::testing::PickUnusedPortOrDie()); auto grpc_service_impl = std::make_unique<FakeIfrtService>(); ASSERT_THAT(GrpcServer::Create(addr, std::move(grpc_service_impl)), IsOk()); } TEST(GrpcServerTest, CreationFailsIfImplIsNullptr) { auto addr = absl::StrCat("[::1]:", tsl::testing::PickUnusedPortOrDie()); EXPECT_THAT(GrpcServer::Create(addr, nullptr), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(GrpcServerTest, CreationFailsWithInvalidAddress) { auto grpc_service_impl = std::make_unique<FakeIfrtService>(); EXPECT_THAT(GrpcServer::Create("invalid-address", std::move(grpc_service_impl)), Not(IsOk())); } TEST(GrpcServerTest, RetrievingServerAddressWorks) { auto addr = absl::StrCat("[::1]:", tsl::testing::PickUnusedPortOrDie()); auto grpc_service_impl = std::make_unique<FakeIfrtService>(); TF_ASSERT_OK_AND_ASSIGN( auto grpc_server, GrpcServer::Create(addr, std::move(grpc_service_impl))); EXPECT_EQ(grpc_server->address(), addr); } } } } }
1,808
cpp
tensorflow/tensorflow
version
third_party/xla/xla/python/ifrt_proxy/server/version.cc
third_party/xla/xla/python/ifrt_proxy/server/version_test.cc
#ifndef XLA_PYTHON_IFRT_PROXY_SERVER_VERSION_H_ #define XLA_PYTHON_IFRT_PROXY_SERVER_VERSION_H_ #include "absl/status/statusor.h" namespace xla { namespace ifrt { namespace proxy { inline constexpr int kServerMinVersion = 1; inline constexpr int kServerMaxVersion = 3; absl::StatusOr<int> ChooseVersion(int client_min_version, int client_max_version, int server_min_version = kServerMinVersion, int server_max_version = kServerMaxVersion); } } } #endif #include "xla/python/ifrt_proxy/server/version.h" #include <algorithm> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" namespace xla { namespace ifrt { namespace proxy { absl::StatusOr<int> ChooseVersion(int client_min_version, int client_max_version, int server_min_version, int server_max_version) { const int version = std::min(server_max_version, client_max_version); if (version < server_min_version || version < client_min_version) { return absl::InvalidArgumentError(absl::StrCat( "IFRT Proxy client and server failed to agree on the " "protocol version; supported versions: client = [", client_min_version, ", ", client_max_version, "], server = [", server_min_version, ", ", server_max_version, "]")); } return version; } } } }
#include "xla/python/ifrt_proxy/server/version.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tsl/platform/status_matchers.h" namespace xla { namespace ifrt { namespace proxy { namespace { using ::tsl::testing::IsOk; using ::tsl::testing::StatusIs; struct Param { int client_min_version; int client_max_version; int server_min_version; int server_max_version; }; class CompatibleVersionTest : public ::testing::TestWithParam<Param> {}; TEST_P(CompatibleVersionTest, Verify) { const Param& param = GetParam(); EXPECT_THAT(ChooseVersion(param.client_min_version, param.client_max_version, param.server_min_version, param.server_max_version), IsOk()); } INSTANTIATE_TEST_SUITE_P(CompatibleVersionTest, CompatibleVersionTest, ::testing::Values(Param{1, 1, 1, 1}, Param{1, 2, 2, 2}, Param{2, 2, 1, 2}, Param{1, 3, 3, 4})); class IncompatibleVersionTest : public ::testing::TestWithParam<Param> {}; TEST_P(IncompatibleVersionTest, Verify) { const Param& param = GetParam(); EXPECT_THAT(ChooseVersion(param.client_min_version, param.client_max_version, param.server_min_version, param.server_max_version), StatusIs(absl::StatusCode::kInvalidArgument)); } INSTANTIATE_TEST_SUITE_P(IncompatibleVersionTest, IncompatibleVersionTest, ::testing::Values(Param{1, 2, 3, 3}, Param{1, 3, 4, 6}, Param{1, 1, 2, 2})); } } } }
1,809
cpp
tensorflow/tensorflow
ifrt_backend
third_party/xla/xla/python/ifrt_proxy/server/ifrt_backend.cc
third_party/xla/xla/python/ifrt_proxy/server/ifrt_backend_test.cc
#ifndef XLA_PYTHON_IFRT_PROXY_SERVER_IFRT_BACKEND_H_ #define XLA_PYTHON_IFRT_PROXY_SERVER_IFRT_BACKEND_H_ #include <cstdint> #include <functional> #include <memory> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/status/statusor.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/python/ifrt/array.h" #include "xla/python/ifrt/client.h" #include "xla/python/ifrt/executable.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt/host_callback.h" #include "xla/python/ifrt_proxy/common/ifrt_service.pb.h" #include "xla/python/ifrt_proxy/server/host_buffer.h" #include "xla/python/ifrt_proxy/server/host_callback.h" #include "xla/tsl/concurrency/ref_count.h" #include "tsl/platform/threadpool.h" namespace xla { namespace ifrt { namespace proxy { class BackendInterface { public: virtual ~BackendInterface() = default; using Response = std::shared_ptr<IfrtResponse>; virtual Future<Response> Process(std::unique_ptr<IfrtRequest> request) = 0; }; class IfrtBackend final : public BackendInterface { public: static absl::StatusOr<std::unique_ptr<IfrtBackend>> Create( IfrtProxyVersion version, uint64_t session_id, std::shared_ptr<xla::ifrt::Client> ifrt_client, std::shared_ptr<HostBufferStore> host_buffer_store); ~IfrtBackend() override; const IfrtProxyVersion& version() const { return version_; } Future<Response> Process(std::unique_ptr<IfrtRequest> request) override; private: class HandleGenerator { public: uint64_t New(); void BulkNew(absl::Span<uint64_t> handles); private: absl::Mutex mu_; uint64_t current_ ABSL_GUARDED_BY(mu_) = 1; }; IfrtBackend(IfrtProxyVersion version, uint64_t session_id, std::shared_ptr<xla::ifrt::Client> ifrt_client, std::shared_ptr<HostBufferStore> host_buffer_store); Future<Response> AsyncExecute( std::function<absl::StatusOr<Response>()> handle_fn, tsl::thread::ThreadPool* thread_pool = nullptr); absl::StatusOr<Response> HandleInit(std::unique_ptr<IfrtRequest> request); Future<Response> HandleCheckFutureRequest( std::unique_ptr<IfrtRequest> request); Future<Response> HandleCheckValueReadyRequest( std::unique_ptr<IfrtRequest> request); absl::StatusOr<Response> HandleMakeArrayFromHostBufferRequest( std::unique_ptr<IfrtRequest> request); absl::StatusOr<Response> HandleAssembleArrayFromSingleDeviceArraysRequest( std::unique_ptr<IfrtRequest> request); absl::StatusOr<Response> HandleRemapArraysRequest( std::unique_ptr<IfrtRequest> request); Future<Response> HandleCopyToHostBufferRequest( std::unique_ptr<IfrtRequest> request); absl::StatusOr<Response> HandleDisassembleIntoSingleDeviceArraysRequest( std::unique_ptr<IfrtRequest> request); absl::StatusOr<Response> HandleCopyArraysRequest( std::unique_ptr<IfrtRequest> request); absl::StatusOr<Response> HandleReshardRequest( std::unique_ptr<IfrtRequest> request); absl::StatusOr<Response> HandleFullyReplicatedShardRequest( std::unique_ptr<IfrtRequest> request); absl::StatusOr<Response> HandleDeleteArrayRequest( std::unique_ptr<IfrtRequest> request); absl::StatusOr<Response> HandleIsArrayDeletedRequest( std::unique_ptr<IfrtRequest> request); absl::StatusOr<Response> HandleDestructArrayRequest( std::unique_ptr<IfrtRequest> request); Future<Response> HandleCompileRequest(std::unique_ptr<IfrtRequest> request); Future<Response> HandleLoadedExecutableMetadataRequest( std::unique_ptr<IfrtRequest> request); absl::StatusOr<Response> HandleLoadedExecutableExecuteRequest( std::unique_ptr<IfrtRequest> request); absl::StatusOr<Response> HandleLoadedExecutableDeleteRequest( std::unique_ptr<IfrtRequest> request); absl::StatusOr<Response> HandleLoadedExecutableIsDeletedRequest( std::unique_ptr<IfrtRequest> request); absl::StatusOr<Response> HandleLoadedExecutableDestructRequest( std::unique_ptr<IfrtRequest> request); Future<Response> HandleLoadedHostCallbackPollRequest( std::unique_ptr<IfrtRequest> request); absl::StatusOr<Response> HandleLoadedHostCallbackReturnRequest( std::unique_ptr<IfrtRequest> request); absl::StatusOr<Response> HandleGetDefaultDeviceAssignmentRequest( std::unique_ptr<IfrtRequest> request); absl::StatusOr<std::shared_ptr<xla::ifrt::LoadedExecutable>> GetLoadedExecutable(uint64_t handle); absl::StatusOr<tsl::RCReference<xla::ifrt::Array>> GetArray(uint64_t handle); absl::StatusOr<tsl::RCReference<xla::ifrt::Array>> GetArrayLocked( uint64_t handle) ABSL_SHARED_LOCKS_REQUIRED(arrays_mutex_); HandleGenerator handle_generator_; const IfrtProxyVersion version_; const uint64_t session_id_; const std::shared_ptr<xla::ifrt::Client> client_; const std::shared_ptr<HostBufferStore> host_buffer_store_; absl::Mutex futures_mutex_; absl::flat_hash_map<uint64_t, Future<>> futures_ ABSL_GUARDED_BY(futures_mutex_); absl::Mutex arrays_mutex_; absl::flat_hash_map<uint64_t, tsl::RCReference<xla::ifrt::Array>> arrays_ ABSL_GUARDED_BY(arrays_mutex_); absl::Mutex executables_mutex_; absl::flat_hash_map<uint64_t, std::shared_ptr<xla::ifrt::LoadedExecutable>> executables_ ABSL_GUARDED_BY(executables_mutex_); absl::Mutex host_callback_queues_mutex_; absl::flat_hash_map<uint64_t, std::shared_ptr<RemoteLoadedHostCallbackQueue>> host_callback_queues_ ABSL_GUARDED_BY(host_callback_queues_mutex_); absl::Mutex host_callback_executions_mutex_; absl::flat_hash_map<uint64_t, RemoteLoadedHostCallbackQueue::ExecutionRequest> host_callback_executions_ ABSL_GUARDED_BY(host_callback_executions_mutex_); absl::Mutex in_flight_count_mutex_; int64_t in_flight_count_ ABSL_GUARDED_BY(in_flight_count_mutex_) = 0; tsl::thread::ThreadPool compile_thread_pool_; }; } } } #endif #include "xla/python/ifrt_proxy/server/ifrt_backend.h" #include <cstdint> #include <cstring> #include <functional> #include <memory> #include <numeric> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/cleanup/cleanup.h" #include "absl/container/flat_hash_map.h" #include "absl/functional/bind_front.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "llvm/Support/Casting.h" #include "xla/layout.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_layout.h" #include "xla/python/ifrt/array.h" #include "xla/python/ifrt/compiler.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/executable.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt/host_callback.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/program.h" #include "xla/python/ifrt/program_serdes.h" #include "xla/python/ifrt/remap_plan.h" #include "xla/python/ifrt/serdes.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/python/ifrt/value.h" #include "xla/python/ifrt_proxy/common/array_util.h" #include "xla/python/ifrt_proxy/common/ifrt_service.pb.h" #include "xla/python/ifrt_proxy/common/proto_util.h" #include "xla/python/ifrt_proxy/common/types.h" #include "xla/python/ifrt_proxy/common/types.pb.h" #include "xla/python/ifrt_proxy/server/host_buffer.h" #include "xla/python/ifrt_proxy/server/host_callback.h" #include "xla/python/ifrt_proxy/server/version.h" #include "xla/python/pjrt_ifrt/xla_compiler.h" #include "xla/status_macros.h" #include "xla/tsl/concurrency/ref_count.h" #include "xla/xla_data.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/status_to_from_proto.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" namespace xla { namespace ifrt { namespace proxy { IfrtBackend::IfrtBackend(IfrtProxyVersion version, uint64_t session_id, std::shared_ptr<xla::ifrt::Client> ifrt_client, std::shared_ptr<HostBufferStore> host_buffer_store) : version_(std::move(version)), session_id_(session_id), client_(std::move(ifrt_client)), host_buffer_store_(std::move(host_buffer_store)), compile_thread_pool_( tsl::Env::Default(), []() { tsl::ThreadOptions options; options.stack_size = 240 * 1024; return options; }(), "IfrtBackend", 32) {} absl::StatusOr<std::unique_ptr<IfrtBackend>> IfrtBackend::Create( IfrtProxyVersion version, uint64_t session_id, std::shared_ptr<xla::ifrt::Client> ifrt_client, std::shared_ptr<HostBufferStore> host_buffer_store) { if (ifrt_client == nullptr) { return absl::InvalidArgumentError("ifrt_client cannot be a nullptr."); } if (version.protocol_version() < kServerMinVersion || version.protocol_version() > kServerMaxVersion) { return absl::FailedPreconditionError(absl::StrCat( "Protocol version ", version.protocol_version(), " is unsupported by IFRT Proxy server; supported versions: [", kServerMinVersion, ",", kServerMaxVersion, "]")); } return absl::WrapUnique<IfrtBackend>( new IfrtBackend(std::move(version), session_id, std::move(ifrt_client), std::move(host_buffer_store))); } IfrtBackend::~IfrtBackend() { { absl::MutexLock lock(&host_callback_queues_mutex_); for (const auto& [key, queue] : host_callback_queues_) { queue->Close(); } } absl::flat_hash_map<uint64_t, RemoteLoadedHostCallbackQueue::ExecutionRequest> host_callback_executions; { absl::MutexLock lock(&host_callback_executions_mutex_); host_callback_executions.swap(host_callback_executions_); } for (auto& [handle, execution_request] : host_callback_executions) { std::move(execution_request) .status.Set(absl::CancelledError("IFRT backend has shut down")); } { auto done = [this]() ABSL_SHARED_LOCKS_REQUIRED(in_flight_count_mutex_) { return in_flight_count_ == 0; }; absl::MutexLock lock(&in_flight_count_mutex_, absl::Condition(&done)); } } Future<BackendInterface::Response> IfrtBackend::Process( std::unique_ptr<IfrtRequest> request) { switch (request->request_case()) { case IfrtRequest::RequestCase::kInitRequest: return Future<Response>(HandleInit(std::move(request))); case IfrtRequest::RequestCase::kCheckFutureRequest: return HandleCheckFutureRequest(std::move(request)); case IfrtRequest::RequestCase::kMakeArrayFromHostBufferRequest: return Future<Response>( HandleMakeArrayFromHostBufferRequest(std::move(request))); case IfrtRequest::RequestCase::kAssembleArrayFromSingleDeviceArraysRequest: return Future<Response>( HandleAssembleArrayFromSingleDeviceArraysRequest(std::move(request))); case IfrtRequest::RequestCase::kRemapArraysRequest: return Future<Response>(HandleRemapArraysRequest(std::move(request))); case IfrtRequest::RequestCase::kCopyToHostBufferRequest: return HandleCopyToHostBufferRequest(std::move(request)); case IfrtRequest::RequestCase::kDisassembleIntoSingleDeviceArraysRequest: return Future<Response>( HandleDisassembleIntoSingleDeviceArraysRequest(std::move(request))); case IfrtRequest::RequestCase::kCheckValueReadyRequest: return Future<Response>(HandleCheckValueReadyRequest(std::move(request))); case IfrtRequest::RequestCase::kCopyArraysRequest: return Future<Response>(HandleCopyArraysRequest(std::move(request))); case IfrtRequest::RequestCase::kReshardRequest: return Future<Response>(HandleReshardRequest(std::move(request))); case IfrtRequest::RequestCase::kFullyReplicatedShardRequest: return Future<Response>( HandleFullyReplicatedShardRequest(std::move(request))); case IfrtRequest::RequestCase::kDeleteArrayRequest: return Future<Response>(HandleDeleteArrayRequest(std::move(request))); case IfrtRequest::RequestCase::kIsArrayDeletedRequest: return Future<Response>(HandleIsArrayDeletedRequest(std::move(request))); case IfrtRequest::RequestCase::kDestructArrayRequest: return Future<Response>(HandleDestructArrayRequest(std::move(request))); case IfrtRequest::RequestCase::kCompileRequest: return Future<Response>(HandleCompileRequest(std::move(request))); case IfrtRequest::RequestCase::kLoadedExecutableMetadataRequest: return HandleLoadedExecutableMetadataRequest(std::move(request)); case IfrtRequest::RequestCase::kLoadedExecutableExecuteRequest: return Future<Response>( HandleLoadedExecutableExecuteRequest(std::move(request))); case IfrtRequest::RequestCase::kLoadedExecutableDeleteRequest: return Future<Response>( HandleLoadedExecutableDeleteRequest(std::move(request))); case IfrtRequest::RequestCase::kLoadedExecutableIsDeletedRequest: return Future<Response>( HandleLoadedExecutableIsDeletedRequest(std::move(request))); case IfrtRequest::RequestCase::kLoadedExecutableDestructRequest: return Future<Response>( HandleLoadedExecutableDestructRequest(std::move(request))); case IfrtRequest::RequestCase::kLoadedHostCallbackPollRequest: return HandleLoadedHostCallbackPollRequest(std::move(request)); case IfrtRequest::RequestCase::kLoadedHostCallbackReturnRequest: return Future<Response>( HandleLoadedHostCallbackReturnRequest(std::move(request))); case IfrtRequest::RequestCase::kGetDefaultDeviceAssignmentRequest: return Future<Response>( HandleGetDefaultDeviceAssignmentRequest(std::move(request))); default: return Future<Response>(absl::UnimplementedError(absl::StrCat( "Got unimplemented request type: ", request->request_case()))); } } uint64_t IfrtBackend::HandleGenerator::New() { absl::MutexLock lock(&mu_); return current_++; } void IfrtBackend::HandleGenerator::BulkNew(absl::Span<uint64_t> handles) { absl::MutexLock lock(&mu_); std::iota(handles.begin(), handles.end(), current_); current_ += handles.size(); } Future<BackendInterface::Response> IfrtBackend::AsyncExecute( std::function<absl::StatusOr<Response>()> handle_fn, tsl::thread::ThreadPool* thread_pool) { { absl::MutexLock lock(&in_flight_count_mutex_); ++in_flight_count_; } auto promise = Future<Response>::CreatePromise(); auto f = [this, promise, handle_fn = std::move(handle_fn)]() mutable { promise.Set(handle_fn()); { absl::MutexLock lock(&in_flight_count_mutex_); --in_flight_count_; } }; if (thread_pool != nullptr) { thread_pool->Schedule(std::move(f)); } else { tsl::Env::Default()->SchedClosure(std::move(f)); } return Future<Response>(std::move(promise)); } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleInit( std::unique_ptr<IfrtRequest> request) { std::unique_ptr<IfrtResponse> response = NewIfrtResponse(request->request_metadata().op_id()); auto* init_resp = response->mutable_init_response(); init_resp->set_session_id(session_id_); init_resp->set_platform_name(AsProtoStringData(client_->platform_name())); init_resp->set_platform_version( AsProtoStringData(client_->platform_version())); init_resp->set_platform_id(client_->platform_id()); init_resp->set_runtime_type(AsProtoStringData(client_->runtime_type())); init_resp->set_process_index(client_->process_index()); for (auto* device : client_->devices()) { InitResponse::Device* d = init_resp->add_devices(); d->set_id(device->Id().value()); d->set_device_kind(AsProtoStringData(device->Kind())); if (auto default_memory = device->DefaultMemory(); default_memory.ok()) { d->set_default_memory_id((*default_memory)->Id().value()); } for (const auto* memory : device->Memories()) { d->add_memory_ids(memory->Id().value()); } d->set_debug_string(AsProtoStringData(device->DebugString())); d->set_to_string(AsProtoStringData(device->ToString())); for (const auto& [name, attr] : device->Attributes()) { TF_ASSIGN_OR_RETURN((*d->mutable_attributes())[name], ToVariantProto(attr)); } } for (auto* addressable_device : client_->addressable_devices()) { init_resp->add_addressable_device_ids(addressable_device->Id().value()); } absl::flat_hash_map<int, xla::ifrt::Memory*> memories; for (auto* device : client_->devices()) { for (xla::ifrt::Memory* memory : device->Memories()) { const auto [it, inserted] = memories.insert({memory->Id().value(), memory}); if (!inserted && it->second != memory) { return absl::FailedPreconditionError(absl::StrCat( "Two memories cannot have the same id: ", memory->ToString(), " vs. ", it->second->ToString())); } } } for (const auto& [id, memory] : memories) { auto* m = init_resp->add_memories(); m->set_id(id); m->set_memory_space_kind(AsProtoStringData(*memory->Kind().memory_kind())); for (const auto* device : memory->Devices()) { m->add_device_ids(device->Id().value()); } m->set_debug_string(AsProtoStringData(memory->DebugString())); m->set_to_string(AsProtoStringData(memory->ToString())); } return response; } Future<BackendInterface::Response> IfrtBackend::HandleCheckFutureRequest( std::unique_ptr<IfrtRequest> request) { const CheckFutureRequest& check_request = request->check_future_request(); Future<> future; { absl::MutexLock lock(&futures_mutex_); const auto it = futures_.find(check_request.future_handle()); if (it == futures_.end()) { return Future<Response>(absl::NotFoundError(absl::StrCat( "Unknown future handle: ", check_request.future_handle()))); } future = std::move(it->second); futures_.erase(it); } auto promise = Future<BackendInterface::Response>::CreatePromise(); future.OnReady([op_id = request->request_metadata().op_id(), promise, hold = future](absl::Status status) mutable { if (!status.ok()) { promise.Set(std::move(status)); return; } auto ifrt_resp = NewIfrtResponse(op_id); ifrt_resp->mutable_check_future_response(); promise.Set(std::move(ifrt_resp)); }); return Future<BackendInterface::Response>(std::move(promise)); } Future<BackendInterface::Response> IfrtBackend::HandleCheckValueReadyRequest( std::unique_ptr<IfrtRequest> request) { std::vector<tsl::RCReference<xla::ifrt::Value>> values; values.reserve(request->check_value_ready_request().value_handles_size()); for (const auto& value_handle : request->check_value_ready_request().value_handles()) { auto array = GetArray(value_handle); if (!array.ok()) { return Future<Response>(array.status()); } values.push_back(*std::move(array)); } auto ifrt_response_promise = Future<BackendInterface::Response>::CreatePromise(); Future<BackendInterface::Response> ifrt_response_future( ifrt_response_promise); client_->GetReadyFuture(values).OnReady( [op_id = request->request_metadata().op_id(), promise = std::move(ifrt_response_promise)]( absl::Status status) mutable -> void { if (!status.ok()) { promise.Set(std::move(status)); return; } auto ifrt_response = NewIfrtResponse(op_id); ifrt_response->mutable_check_value_ready_response(); promise.Set(std::move(ifrt_response)); }); return ifrt_response_future; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleMakeArrayFromHostBufferRequest( std::unique_ptr<IfrtRequest> request) { if (!request->has_make_array_from_host_buffer_request()) { return absl::InternalError( "MakeArrayFromHostBuffer got an IfrtRequest with no " "MakeArrayFromHostBufferRequest in it."); } auto* make_array_request = request->mutable_make_array_from_host_buffer_request(); TF_ASSIGN_OR_RETURN( auto sharding, Sharding::FromProto( absl::bind_front(&Client::LookupDevice, client_.get()), make_array_request->sharding())); const auto byte_strides = [&]() -> std::optional<std::vector<int64_t>> { if (!make_array_request->has_byte_strides()) return std::nullopt; return FromByteStridesProto(make_array_request->byte_strides()); }(); TF_ASSIGN_OR_RETURN(const auto shape, Shape::FromProto(make_array_request->shape())); TF_ASSIGN_OR_RETURN(const auto dtype, DType::FromProto(make_array_request->dtype())); const uint64_t host_buffer_handle = make_array_request->host_buffer_handle(); absl::Cleanup cleanup = [&] { CHECK_OK(host_buffer_store_->Delete(host_buffer_handle)); }; TF_ASSIGN_OR_RETURN(std::shared_ptr<const std::string> host_buffer, host_buffer_store_->Lookup(host_buffer_handle)); std::move(cleanup).Invoke(); TF_ASSIGN_OR_RETURN(const auto mem_region, ArrayMemRegion::FromMinimalMemRegion( *host_buffer, dtype, shape, byte_strides)); TF_ASSIGN_OR_RETURN( auto array, client_->MakeArrayFromHostBuffer( mem_region.zeroth_element(), dtype, std::move(shape), std::move(byte_strides), std::move(sharding), xla::ifrt::Client::HostBufferSemantics:: kImmutableUntilTransferCompletes, [hold = std::move(host_buffer)]() mutable { hold.reset(); })); uint64_t handle = handle_generator_.New(); { absl::MutexLock lock(&arrays_mutex_); arrays_.insert({handle, std::move(array)}); } std::unique_ptr<IfrtResponse> response = NewIfrtResponse(request->request_metadata().op_id()); auto* make_array_resp = response->mutable_make_array_from_host_buffer_response(); make_array_resp->set_array_handle(handle); return response; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleAssembleArrayFromSingleDeviceArraysRequest( std::unique_ptr<IfrtRequest> request) { const auto& assemble_request = request->assemble_array_from_single_device_arrays_request(); std::vector<tsl::RCReference<xla::ifrt::Array>> arrays; { absl::ReaderMutexLock lock(&arrays_mutex_); for (const uint64_t handle : assemble_request.single_device_array_handles()) { TF_ASSIGN_OR_RETURN(arrays.emplace_back(), GetArrayLocked(handle)); } } TF_ASSIGN_OR_RETURN(Shape shape, Shape::FromProto(assemble_request.shape())); TF_ASSIGN_OR_RETURN( auto sharding, Sharding::FromProto( absl::bind_front(&Client::LookupDevice, client_.get()), assemble_request.sharding())); TF_ASSIGN_OR_RETURN(auto semantics, FromArrayCopySemanticsProto( assemble_request.copy_semantics())); TF_ASSIGN_OR_RETURN(auto array, client_->AssembleArrayFromSingleDeviceArrays( std::move(shape), std::move(sharding), absl::MakeSpan(arrays), semantics)); auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); uint64_t handle = handle_generator_.New(); ifrt_resp->mutable_assemble_array_from_single_device_arrays_response() ->set_array_handle(handle); { absl::MutexLock lock(&arrays_mutex_); arrays_.insert({handle, std::move(array)}); } return ifrt_resp; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleRemapArraysRequest(std::unique_ptr<IfrtRequest> request) { const auto& remap_request = request->remap_arrays_request(); std::vector<tsl::RCReference<xla::ifrt::Array>> arrays; { absl::ReaderMutexLock lock(&arrays_mutex_); for (const uint64_t handle : remap_request.array_handles()) { TF_ASSIGN_OR_RETURN(arrays.emplace_back(), GetArrayLocked(handle)); } } TF_ASSIGN_OR_RETURN( RemapPlan plan, RemapPlan::FromProto( absl::bind_front(&Client::LookupDevice, client_.get()), remap_request.plan())); TF_ASSIGN_OR_RETURN(auto semantics, FromArrayCopySemanticsProto( remap_request.copy_semantics())); TF_ASSIGN_OR_RETURN( auto out_arrays, client_->RemapArrays(plan, absl::MakeSpan(arrays), semantics)); int64_t num_arrays = out_arrays.size(); auto response = NewIfrtResponse(request->request_metadata().op_id()); auto* handles = response->mutable_remap_arrays_response()->mutable_array_handles(); handles->Reserve(num_arrays); uint64_t* handles_buf = handles->AddNAlreadyReserved(num_arrays); handle_generator_.BulkNew(absl::MakeSpan(handles_buf, num_arrays)); { absl::MutexLock lock(&arrays_mutex_); for (int i = 0; i < num_arrays; ++i) { arrays_.insert({handles_buf[i], out_arrays[i]}); } } return response; } Future<BackendInterface::Response> IfrtBackend::HandleCopyToHostBufferRequest( std::unique_ptr<IfrtRequest> request) { const CopyToHostBufferRequest& copy_to_host = request->copy_to_host_buffer_request(); auto array = GetArray(copy_to_host.array_handle()); if (!array.ok()) { return Future<Response>(array.status()); } std::optional<int> element_size = (*array)->dtype().byte_size(); if (element_size == std::nullopt) { return Future<Response>( absl::InternalError("Array element size is unknown.")); } int64_t host_buffer_size = (*array)->shape().num_elements() * element_size.value(); auto host_buffer = std::make_unique<std::string>(); host_buffer->resize(host_buffer_size); const auto byte_strides = [&]() -> std::optional<std::vector<int64_t>> { if (!copy_to_host.has_byte_strides()) { return std::nullopt; } return FromByteStridesProto(copy_to_host.byte_strides()); }(); const auto mem_region = ArrayMemRegion::FromMinimalMemRegion( absl::string_view(*host_buffer), (*array)->dtype(), (*array)->shape(), byte_strides); if (!mem_region.ok()) { return Future<Response>(mem_region.status()); } Future<> copy_status = (*array)->CopyToHostBuffer(mem_region->zeroth_element(), byte_strides, ArrayCopySemantics::kAlwaysCopy); auto resp_promise = Future<BackendInterface::Response>::CreatePromise(); Future<BackendInterface::Response> resp_future(resp_promise); auto on_ready = [this, op_id = request->request_metadata().op_id(), host_buffer = std::move(host_buffer), host_buffer_handle = copy_to_host.host_buffer_handle()]( absl::Status status) mutable -> absl::StatusOr<std::unique_ptr<IfrtResponse>> { TF_RETURN_IF_ERROR(status); TF_RETURN_IF_ERROR( host_buffer_store_->Store(host_buffer_handle, *std::move(host_buffer))); std::unique_ptr<IfrtResponse> response = NewIfrtResponse(op_id); response->mutable_copy_to_host_buffer_response(); return response; }; copy_status.OnReady( [promise = std::move(resp_promise), on_ready = std::move(on_ready)]( absl::Status status) mutable { promise.Set(on_ready(status)); }); return resp_future; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleDisassembleIntoSingleDeviceArraysRequest( std::unique_ptr<IfrtRequest> request) { TF_ASSIGN_OR_RETURN( auto array, GetArray(request->disassemble_into_single_device_arrays_request() .array_handle())); TF_ASSIGN_OR_RETURN(auto single_device_arrays, array->DisassembleIntoSingleDeviceArrays( xla::ifrt::ArrayCopySemantic
#include "xla/python/ifrt_proxy/server/ifrt_backend.h" #include <sys/types.h> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ExtensibleRTTI.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/pjrt/host_callback.h" #include "xla/pjrt/pjrt_common.h" #include "xla/pjrt/pjrt_device_description.h" #include "xla/pjrt/pjrt_layout.h" #include "xla/python/ifrt/array.h" #include "xla/python/ifrt/compiler.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/executable.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt/host_callback.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/mock.h" #include "xla/python/ifrt/program.h" #include "xla/python/ifrt/serdes.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/python/ifrt_proxy/common/ifrt_service.pb.h" #include "xla/python/ifrt_proxy/common/types.pb.h" #include "xla/python/ifrt_proxy/server/host_buffer.h" #include "xla/python/ifrt_proxy/server/host_callback.h" #include "xla/python/ifrt_proxy/server/version.h" #include "xla/python/pjrt_ifrt/xla_compiler.h" #include "xla/service/computation_placer.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/test.h" #include "xla/tsl/concurrency/ref_count.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/status_to_from_proto.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/protobuf/error_codes.pb.h" #include "tsl/protobuf/status.pb.h" namespace xla { namespace ifrt { namespace proxy { namespace { using ::testing::_; using ::testing::ByMove; using ::testing::DoAll; using ::testing::ElementsAreArray; using ::testing::HasSubstr; using ::testing::Invoke; using ::testing::Not; using ::testing::NotNull; using ::testing::Optional; using ::testing::Pointee; using ::testing::Return; using ::testing::ReturnRef; using ::testing::SizeIs; using ::testing::StrEq; using ::tsl::protobuf::TextFormat; using ::tsl::testing::IsOk; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; #if defined(PLATFORM_GOOGLE) using ::testing::EquivToProto; using ::testing::proto::IgnoringRepeatedFieldOrdering; using ::testing::proto::Partially; #endif constexpr uint64_t kSessionId = 12345; class IfrtBackendTest : public ::testing::TestWithParam<int> { protected: IfrtProxyVersion Version() { IfrtProxyVersion version; version.set_protocol_version(GetParam()); return version; } }; std::unique_ptr<IfrtRequest> NewIfrtRequest(uint64_t op_id) { auto ifrt_request = std::make_unique<IfrtRequest>(); auto* request_metadata = ifrt_request->mutable_request_metadata(); request_metadata->set_op_id(op_id); return ifrt_request; } TEST_P(IfrtBackendTest, CreationFailsWithNullIfrtClient) { EXPECT_THAT(IfrtBackend::Create(Version(), kSessionId, nullptr, nullptr), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST_P(IfrtBackendTest, SuccessfulCreation) { auto ifrt_client = std::make_unique<MockClient>(); ASSERT_THAT(IfrtBackend::Create(Version(), kSessionId, std::move(ifrt_client), std::make_shared<HostBufferStore>()), IsOk()); } TEST_P(IfrtBackendTest, ShutdownSucceeds) { auto ifrt_client = std::make_unique<MockClient>(); TF_ASSERT_OK_AND_ASSIGN( auto ifrt_backend, IfrtBackend::Create(Version(), kSessionId, std::move(ifrt_client), std::make_shared<HostBufferStore>())); } TEST_P(IfrtBackendTest, ProcessFailsWithNoRequestSet) { auto ifrt_client = std::make_unique<MockClient>(); TF_ASSERT_OK_AND_ASSIGN( auto ifrt_backend, IfrtBackend::Create(Version(), kSessionId, std::move(ifrt_client), std::make_shared<HostBufferStore>())); auto request = std::make_unique<IfrtRequest>(); auto process_status = ifrt_backend->Process(std::move(request)).Await(); ASSERT_THAT(process_status, Not(IsOk())); } INSTANTIATE_TEST_SUITE_P( IfrtBackendTestWithAllVersions, IfrtBackendTest, testing::Range(kServerMinVersion, kServerMaxVersion + 1), [](const testing::TestParamInfo<IfrtBackendTest::ParamType>& info) { return absl::StrCat(info.param); }); struct TestProgram : llvm::RTTIExtends<TestProgram, Program> { static char ID; }; [[maybe_unused]] char TestProgram::ID = 0; class TestProgramSerDes : public llvm::RTTIExtends<TestProgramSerDes, SerDes> { public: absl::string_view type_name() const override { return "xla::ifrt::proxy::TestProgram"; } absl::StatusOr<std::string> Serialize(Serializable& serializable) override { CHECK(llvm::isa<TestProgram>(serializable)); return ""; } absl::StatusOr<std::unique_ptr<Serializable>> Deserialize( const std::string& serialized, std::unique_ptr<DeserializeOptions> options) override { return std::make_unique<TestProgram>(); } static char ID; }; [[maybe_unused]] char TestProgramSerDes::ID = 0; struct TestCompileOptions : llvm::RTTIExtends<TestCompileOptions, CompileOptions> { static char ID; }; [[maybe_unused]] char TestCompileOptions::ID = 0; class TestCompileOptionsSerDes : public llvm::RTTIExtends<TestCompileOptionsSerDes, SerDes> { public: absl::string_view type_name() const override { return "xla::ifrt::proxy::TestCompileOptions"; } absl::StatusOr<std::string> Serialize(Serializable& serializable) override { CHECK(llvm::isa<TestCompileOptions>(serializable)); return ""; } absl::StatusOr<std::unique_ptr<Serializable>> Deserialize( const std::string& serialized, std::unique_ptr<DeserializeOptions> options) override { return std::make_unique<TestCompileOptions>(); } static char ID; }; [[maybe_unused]] char TestCompileOptionsSerDes::ID = 0; class IfrtBackendHandlerTest : public IfrtBackendTest { protected: static void SetUpTestSuite() { RegisterSerDes<TestProgram>(std::make_unique<TestProgramSerDes>()); RegisterSerDes<TestCompileOptions>( std::make_unique<TestCompileOptionsSerDes>()); } void SetUp() override { auto mock_client = std::make_unique<xla::ifrt::MockClient>(); std::vector<xla::ifrt::Device*> raw_device_ptrs; for (int i = 0; i < 2; ++i) { auto mock_device = std::make_unique<xla::ifrt::MockDevice>(); ON_CALL(*mock_device, Id()).WillByDefault(Return(DeviceId(i))); raw_device_ptrs.push_back(mock_device.get()); mock_devices_.push_back(std::move(mock_device)); } ON_CALL(*mock_client, devices()).WillByDefault(Return(raw_device_ptrs)); ON_CALL(*mock_client, LookupDevice(_)) .WillByDefault( Invoke([this](DeviceId id) -> absl::StatusOr<xla::ifrt::Device*> { if (id.value() < 0 || id.value() >= mock_devices_.size()) { return absl::NotFoundError( absl::StrCat("Unknown device id: ", id.value())); } return mock_devices_[id.value()].get(); })); mock_client_ = mock_client.get(); EXPECT_CALL(*mock_client_, GetDefaultCompiler) .WillRepeatedly(Return(&mock_compiler_)); host_buffer_store_ = std::make_shared<HostBufferStore>(); TF_ASSERT_OK_AND_ASSIGN( backend_, IfrtBackend::Create(Version(), kSessionId, std::move(mock_client), host_buffer_store_)); } absl::StatusOr<std::shared_ptr<IfrtResponse>> CallBackend( std::unique_ptr<IfrtRequest> request) { auto response_future = backend_->Process(std::move(request)); return std::move(response_future).Await(); } uint64_t NewOpId() { absl::MutexLock lock(&mu_); return current_op_id_++; } uint64_t NewHostBufferHandle() { return current_host_buffer_handle_++; } absl::StatusOr<uint64_t> MakeTestArray(tsl::RCReference<Array> mock_array) { EXPECT_CALL(*mock_client_, MakeArrayFromHostBuffer(_, _, _, _, _, _, _)) .WillOnce(Return(std::move(mock_array))); auto ifrt_request = NewIfrtRequest(NewOpId()); { const uint64_t host_buffer_handle = NewHostBufferHandle(); TF_RETURN_IF_ERROR( host_buffer_store_->Store(host_buffer_handle, "01234567")); auto* make_array = ifrt_request->mutable_make_array_from_host_buffer_request(); make_array->mutable_dtype()->set_kind(DTypeProto::KIND_S32); make_array->mutable_shape()->add_dims(2); make_array->set_host_buffer_handle(host_buffer_handle); TF_ASSIGN_OR_RETURN(auto* device, mock_client_->LookupDevice(DeviceId(1))); TF_ASSIGN_OR_RETURN( *make_array->mutable_sharding(), SingleDeviceSharding::Create(device, MemoryKind())->ToProto()); } TF_ASSIGN_OR_RETURN(auto make_array_response, CallBackend(std::move(ifrt_request))); TF_RETURN_IF_ERROR(tsl::StatusFromProto( make_array_response->response_metadata().status())); return make_array_response->make_array_from_host_buffer_response() .array_handle(); } absl::StatusOr<CompileResponse> CompileTestLoadedExecutable( absl::StatusOr<std::unique_ptr<LoadedExecutable>> loaded_executable) { auto request = NewIfrtRequest(NewOpId()); CompileRequest* compile_request = request->mutable_compile_request(); TestProgram program; TF_ASSIGN_OR_RETURN(*compile_request->mutable_program(), Serialize(program)); TestCompileOptions compile_options; TF_ASSIGN_OR_RETURN(*compile_request->mutable_compile_options(), Serialize(compile_options)); EXPECT_CALL(mock_compiler_, Compile(_, _)) .WillOnce(Return(ByMove(std::move(loaded_executable)))); TF_ASSIGN_OR_RETURN(std::shared_ptr<IfrtResponse> response, CallBackend(std::move(request))); TF_RET_CHECK(response->has_compile_response()); return response->compile_response(); } absl::Status CheckFuture(uint64_t handle) { auto request = NewIfrtRequest(NewOpId()); request->mutable_check_future_request()->set_future_handle(handle); TF_ASSIGN_OR_RETURN(std::shared_ptr<IfrtResponse> response, CallBackend(std::move(request))); return tsl::StatusFromProto(response->response_metadata().status()); } xla::ifrt::MockClient* mock_client_; xla::ifrt::MockCompiler mock_compiler_; std::vector<std::unique_ptr<xla::ifrt::MockDevice>> mock_devices_; std::shared_ptr<HostBufferStore> host_buffer_store_; private: absl::Mutex mu_; uint64_t current_op_id_ ABSL_GUARDED_BY(mu_) = 1; uint64_t current_host_buffer_handle_ = 1; std::unique_ptr<IfrtBackend> backend_; }; #if defined(PLATFORM_GOOGLE) TEST_P(IfrtBackendHandlerTest, Init) { EXPECT_CALL(*mock_client_, platform_name()) .WillRepeatedly(Return("ifrt_backend")); EXPECT_CALL(*mock_client_, platform_version()).WillRepeatedly(Return("n/a")); EXPECT_CALL(*mock_client_, platform_id()).WillRepeatedly(Return(42)); EXPECT_CALL(*mock_client_, process_index()).WillRepeatedly(Return(1)); EXPECT_CALL(*mock_client_, runtime_type()) .WillRepeatedly(Return("ifrt-service")); std::vector<std::vector<xla::ifrt::Device*>> mock_memory_devices; mock_memory_devices.reserve(mock_devices_.size()); for (const auto& mock_device : mock_devices_) { mock_memory_devices.push_back({mock_device.get()}); } std::vector<MockMemory> mock_memories(mock_devices_.size()); MemoryKind kind("mock"); for (int i = 0; i < mock_memories.size(); ++i) { MockMemory& memory = mock_memories[i]; EXPECT_CALL(memory, Devices()) .WillRepeatedly(Return(mock_memory_devices[i])); EXPECT_CALL(memory, Id()).WillRepeatedly(Return(MemoryId(i))); EXPECT_CALL(memory, Kind()).WillRepeatedly(ReturnRef(kind)); } std::vector<std::vector<Memory*>> device_memories; device_memories.reserve(mock_devices_.size()); for (int i = 0; i < mock_devices_.size(); ++i) { device_memories.push_back({&mock_memories[i]}); } using AttributeMap = absl::flat_hash_map<std::string, xla::PjRtDeviceAttribute>; std::vector<AttributeMap> device_attributes(mock_devices_.size()); for (int i = 0; i < mock_devices_.size(); ++i) { device_attributes[i].insert({"name", absl::StrCat("device", i)}); MockDevice& mock_device = *mock_devices_[i]; EXPECT_CALL(mock_device, Kind()).WillRepeatedly(Return("mock")); EXPECT_CALL(mock_device, Memories()) .WillRepeatedly(Return(device_memories[i])); EXPECT_CALL(mock_device, DefaultMemory()) .WillRepeatedly(Return(&mock_memories[i])); EXPECT_CALL(mock_device, Attributes()) .WillRepeatedly(ReturnRef(device_attributes[i])); } auto request = NewIfrtRequest(NewOpId()); request->mutable_init_request(); EXPECT_THAT(CallBackend(std::move(request)), IsOkAndHolds(Pointee( Partially(IgnoringRepeatedFieldOrdering(EquivToProto(R"pb( init_response { session_id: 12345 platform_name: "ifrt_backend" platform_version: "n/a" platform_id: 42 process_index: 1 runtime_type: "ifrt-service" devices { id: 0 device_kind: "mock" default_memory_id: 0 memory_ids: [ 0 ] attributes { key: "name" value { string_value: "device0" } } } devices { id: 1 device_kind: "mock" default_memory_id: 1 memory_ids: [ 1 ] attributes { key: "name" value { string_value: "device1" } } } memories { id: 0 memory_space_kind: "mock" device_ids: [ 0 ] } memories { id: 1 memory_space_kind: "mock" device_ids: [ 1 ] } } )pb")))))); } #endif TEST_P(IfrtBackendHandlerTest, DisassembleIntoSingleDeviceArraysSucceeds) { std::vector<tsl::RCReference<xla::ifrt::Array>> single_device_arrays; single_device_arrays.push_back(tsl::MakeRef<xla::ifrt::MockArray>()); single_device_arrays.push_back(tsl::MakeRef<xla::ifrt::MockArray>()); tsl::RCReference<xla::ifrt::MockArray> source_mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); EXPECT_CALL(*source_mock_array, DisassembleIntoSingleDeviceArrays(_)) .WillOnce(Return(std::move(single_device_arrays))); TF_ASSERT_OK_AND_ASSIGN(auto array_handle, MakeTestArray(std::move(source_mock_array))); auto disassemble_request = NewIfrtRequest(NewOpId()); disassemble_request->mutable_disassemble_into_single_device_arrays_request() ->set_array_handle(array_handle); TF_ASSERT_OK_AND_ASSIGN(auto disassemble_response, CallBackend(std::move(disassemble_request))); EXPECT_THAT( disassemble_response->disassemble_into_single_device_arrays_response() .single_device_array_handles(), SizeIs(2)); } TEST_P(IfrtBackendHandlerTest, MakeArrayFromHostBufferSuccess) { const uint64_t kHostBufferHandle = 1234; ASSERT_THAT( host_buffer_store_->Store(kHostBufferHandle, std::string(480, 'a')), IsOk()); auto ifrt_request = NewIfrtRequest(NewOpId()); { auto* make_array = ifrt_request->mutable_make_array_from_host_buffer_request(); ASSERT_TRUE( TextFormat::ParseFromString(R"pb( dtype { kind: KIND_F64 } shape { dims: [ 5, 3, 4 ] } byte_strides { strides: [ 8, 40, 120 ] } )pb", make_array)); make_array->set_host_buffer_handle(kHostBufferHandle); TF_ASSERT_OK_AND_ASSIGN(auto* device, mock_client_->LookupDevice(DeviceId(1))); TF_ASSERT_OK_AND_ASSIGN( *make_array->mutable_sharding(), SingleDeviceSharding::Create(device, MemoryKind())->ToProto()); } const Shape expected_shape({5, 3, 4}); const std::vector<int64_t> expected_byte_strides_vec = {8, 40, 120}; const std::optional<absl::Span<const int64_t>> expected_byte_strides = absl::Span<const int64_t>(expected_byte_strides_vec); tsl::RCReference<xla::ifrt::MockArray> mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); EXPECT_CALL(*mock_client_, MakeArrayFromHostBuffer(_, DType(DType::kF64), expected_shape, expected_byte_strides, _, _, _)) .WillOnce(Return(std::move(mock_array))); TF_ASSERT_OK_AND_ASSIGN(auto response, CallBackend(std::move(ifrt_request))); EXPECT_NE(response->make_array_from_host_buffer_response().array_handle(), 0); } TEST_P(IfrtBackendHandlerTest, AssembleArrayFromSingleDeviceArrays) { auto ifrt_request = NewIfrtRequest(NewOpId()); { ASSERT_TRUE(TextFormat::ParseFromString( R"pb( shape { dims: [ 2, 2 ] } copy_semantics: ARRAY_COPY_SEMANTICS_ALWAYS_COPY )pb", ifrt_request ->mutable_assemble_array_from_single_device_arrays_request())); TF_ASSERT_OK_AND_ASSIGN(auto* device, mock_client_->LookupDevice(DeviceId(1))); TF_ASSERT_OK_AND_ASSIGN( *ifrt_request ->mutable_assemble_array_from_single_device_arrays_request() ->mutable_sharding(), SingleDeviceSharding::Create(device, MemoryKind())->ToProto()); } std::vector<tsl::RCReference<xla::ifrt::MockArray>> single_device_arrays; for (int i = 0; i < 2; ++i) { auto array = tsl::MakeRef<xla::ifrt::MockArray>(); single_device_arrays.push_back(array); TF_ASSERT_OK_AND_ASSIGN(uint64_t array_handle, MakeTestArray(array)); ifrt_request->mutable_assemble_array_from_single_device_arrays_request() ->add_single_device_array_handles(array_handle); } tsl::RCReference<xla::ifrt::MockArray> result = tsl::MakeRef<xla::ifrt::MockArray>(); const Shape expected_shape({2, 2}); EXPECT_CALL(*mock_client_, AssembleArrayFromSingleDeviceArrays( expected_shape, _, ElementsAreArray(single_device_arrays), _)) .WillOnce(Return(std::move(result))); TF_ASSERT_OK_AND_ASSIGN(auto response, CallBackend(std::move(ifrt_request))); EXPECT_NE(response->assemble_array_from_single_device_arrays_response() .array_handle(), 0); } TEST_P(IfrtBackendHandlerTest, CopyToHostSuccess) { Shape shape({5, 3, 4}); tsl::RCReference<xla::ifrt::MockArray> array = tsl::MakeRef<xla::ifrt::MockArray>(); ON_CALL(*array, shape()).WillByDefault(ReturnRef(shape)); ON_CALL(*array, dtype()).WillByDefault(Return(DType(DType::kF64))); TF_ASSERT_OK_AND_ASSIGN(auto array_handle, MakeTestArray(array)); auto ifrt_request = NewIfrtRequest(NewOpId()); auto* copy_to_host = ifrt_request->mutable_copy_to_host_buffer_request(); ASSERT_TRUE( TextFormat::ParseFromString(R"pb( byte_strides { strides: [ 8, 40, 120 ] } )pb", copy_to_host)); copy_to_host->set_array_handle(array_handle); const uint64_t host_buffer_handle = NewHostBufferHandle(); copy_to_host->set_host_buffer_handle(host_buffer_handle); const std::vector<int64_t> expected_byte_strides_vec = {8, 40, 120}; const std::optional<absl::Span<const int64_t>> expected_byte_strides = absl::Span<const int64_t>(expected_byte_strides_vec); EXPECT_CALL(*array, CopyToHostBuffer(_, expected_byte_strides, _)) .WillOnce(Return(Future<>(absl::OkStatus()))); TF_ASSERT_OK_AND_ASSIGN(auto response, CallBackend(std::move(ifrt_request))); EXPECT_THAT(host_buffer_store_->Lookup(host_buffer_handle), IsOkAndHolds(Pointee(SizeIs(480)))); } TEST_P(IfrtBackendHandlerTest, CopyToHostFailsWithNonExistentArrays) { auto ifrt_request = NewIfrtRequest(NewOpId()); ASSERT_TRUE(TextFormat::ParseFromString( R"pb( byte_strides { strides: [ 8, 40, 120 ] } )pb", ifrt_request->mutable_copy_to_host_buffer_request())); ifrt_request->mutable_copy_to_host_buffer_request()->set_array_handle(0); EXPECT_THAT(CallBackend(std::move(ifrt_request)), StatusIs(absl::StatusCode::kNotFound)); } TEST_P(IfrtBackendHandlerTest, DisassembleIntoSingleArrayFailsWhenBackendRuntimeFails) { constexpr absl::string_view kDisassembleErrorMessage = "Some test-injected error message that is unlikely to match other error " "messages - 1234"; tsl::RCReference<xla::ifrt::MockArray> source_mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); EXPECT_CALL(*source_mock_array, DisassembleIntoSingleDeviceArrays(_)) .WillOnce(Return(absl::UnknownError(kDisassembleErrorMessage))); TF_ASSERT_OK_AND_ASSIGN(auto array_handle, MakeTestArray(std::move(source_mock_array))); auto disassemble_request = NewIfrtRequest(NewOpId()); disassemble_request->mutable_disassemble_into_single_device_arrays_request() ->set_array_handle(array_handle); ASSERT_THAT( CallBackend(std::move(disassemble_request)), StatusIs(absl::StatusCode::kUnknown, StrEq(kDisassembleErrorMessage))); } TEST_P(IfrtBackendHandlerTest, CopyArrays) { std::vector<tsl::RCReference<xla::ifrt::Array>> src_arrays; src_arrays.push_back(tsl::MakeRef<xla::ifrt::MockArray>()); std::vector<tsl::RCReference<xla::ifrt::Array>> copied_arrays; copied_arrays.push_back(tsl::MakeRef<xla::ifrt::MockArray>()); DeviceList::Devices ds; TF_ASSERT_OK_AND_ASSIGN(ds.emplace_back(), mock_client_->LookupDevice(DeviceId(1))); DeviceList devices(std::move(ds)); MemoryKind memory_kind("device"); EXPECT_CALL( *mock_client_, CopyArrays(ElementsAreArray(src_arrays), Optional(devices), Optional(memory_kind), ArrayCopySemantics::kAlwaysCopy)) .WillOnce(Return( std::vector<tsl::RCReference<xla::ifrt::Array>>(copied_arrays))); auto ifrt_request = NewIfrtRequest(NewOpId()); auto* copy_arrays_request = ifrt_request->mutable_copy_arrays_request(); for (const auto& src_array : src_arrays) { TF_ASSERT_OK_AND_ASSIGN(auto src_array_handle, MakeTestArray(src_array)); copy_arrays_request->add_array_handles(src_array_handle); } for (const auto& device : devices.devices()) { copy_arrays_request->add_device_ids(device->Id().value()); } copy_arrays_request->set_memory_kind(std::string(*memory_kind.memory_kind())); copy_arrays_request->set_copy_semantics( proto::ARRAY_COPY_SEMANTICS_ALWAYS_COPY); TF_ASSERT_OK_AND_ASSIGN(auto response, CallBackend(std::move(ifrt_request))); EXPECT_THAT(tsl::StatusFromProto(response->response_metadata().status()), IsOk()); EXPECT_THAT(response->copy_arrays_response().array_handles(), SizeIs(copied_arrays.size())); } TEST_P(IfrtBackendHandlerTest, ReshardSuccess) { auto src_mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); TF_ASSERT_OK_AND_ASSIGN(auto* device, mock_client_->LookupDevice(DeviceId(0))); auto src_sharding = SingleDeviceSharding::Create(device, MemoryKind()); ON_CALL(*src_mock_array, sharding()).WillByDefault(ReturnRef(*src_sharding)); TF_ASSERT_OK_AND_ASSIGN(auto src_array_handle, MakeTestArray(std::move(src_mock_array))); auto copied_mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); EXPECT_CALL(*mock_client_, CopyArrays(_, _, _, _)) .WillOnce(Return(std::vector<tsl::RCReference<xla::ifrt::Array>>( {copied_mock_array}))); auto ifrt_request = NewIfrtRequest(NewOpId()); auto* reshard_request = ifrt_request->mutable_reshard_request(); reshard_request->set_array_handle(src_array_handle); reshard_request->set_copy_semantics(proto::ARRAY_COPY_SEMANTICS_ALWAYS_COPY); TF_ASSERT_OK_AND_ASSIGN(auto* new_device, mock_client_->LookupDevice(DeviceId(1))); TF_ASSERT_OK_AND_ASSIGN( *ifrt_request->mutable_reshard_request()->mutable_sharding(), SingleDeviceSharding::Create(new_device, MemoryKind())->ToProto()); TF_ASSERT_OK_AND_ASSIGN(auto response, CallBackend(std::move(ifrt_request))); EXPECT_THAT(tsl::StatusFromProto(response->response_metadata().status()), IsOk()); EXPECT_NE(response->reshard_response().array_handle(), 0); } TEST_P(IfrtBackendHandlerTest, ReshardFailsWhenTheBackendFails) { auto mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); TF_ASSERT_OK_AND_ASSIGN(auto* device, mock_client_->LookupDevice(DeviceId(1))); auto sharding = SingleDeviceSharding::Create(device, MemoryKind()); ON_CALL(*mock_array, sharding()).WillByDefault(ReturnRef(*sharding)); TF_ASSERT_OK_AND_ASSIGN(auto array_handle, MakeTestArray(std::move(mock_array))); EXPECT_CALL(*mock_client_, CopyArrays(_, _, _, _)) .WillOnce(Return(absl::UnknownError("injected error"))); auto ifrt_request = NewIfrtRequest(NewOpId()); auto* reshard_request = ifrt_request->mutable_reshard_request(); reshard_request->set_array_handle(array_handle); reshard_request->set_copy_semantics(proto::ARRAY_COPY_SEMANTICS_ALWAYS_COPY); TF_ASSERT_OK_AND_ASSIGN(auto* new_device, mock_client_->LookupDevice(DeviceId(1))); TF_ASSERT_OK_AND_ASSIGN( *ifrt_request->mutable_reshard_request()->mutable_sharding(), SingleDeviceSharding::Create(new_device, MemoryKind())->ToProto()); EXPECT_THAT(CallBackend(std::move(ifrt_request)), StatusIs(absl::StatusCode::kUnknown, StrEq("injected error"))); } TEST_P(IfrtBackendHandlerTest, ReshardFailsWithNonExistentArrayHandle) { auto ifrt_request = NewIfrtRequest(NewOpId()); auto* reshard_request = ifrt_request->mutable_reshard_request(); reshard_request->set_array_handle(0); reshard_request->set_copy_semantics(proto::ARRAY_COPY_SEMANTICS_ALWAYS_COPY); reshard_request->mutable_sharding(); EXPECT_THAT(CallBackend(std::move(ifrt_request)), StatusIs(absl::StatusCode::kNotFound)); } TEST_P(IfrtBackendHandlerTest, FullyReplicatedShardSuccess) { auto fully_replicated_mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); auto resultant_array = tsl::MakeRef<xla::ifrt::MockArray>(); EXPECT_CALL(*fully_replicated_mock_array, FullyReplicatedShard(_)) .WillOnce(Return(std::move(resultant_array))); TF_ASSERT_OK_AND_ASSIGN( auto fully_replicated_array_handle, MakeTestArray(std::move(fully_replicated_mock_array))); auto ifrt_request = NewIfrtRequest(NewOpId()); auto* fully_replicated_shard_request = ifrt_request->mutable_fully_replicated_shard_request(); fully_replicated_shard_request->set_array_handle( fully_replicated_array_handle); fully_replicated_shard_request->set_copy_semantics( proto::ARRAY_COPY_SEMANTICS_ALWAYS_COPY); TF_ASSERT_OK_AND_ASSIGN(auto response, CallBackend(std::move(ifrt_request))); EXPECT_NE(response->fully_replicated_shard_response().array_handle(), 0); } TEST_P(IfrtBackendHandlerTest, FullyReplicatedShardFailure) { auto fully_replicated_mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); EXPECT_CALL(*fully_replicated_mock_array, FullyReplicatedShard(_)) .WillOnce(Return(absl::UnknownError("injected error"))); TF_ASSERT_OK_AND_ASSIGN( auto fully_replicated_array_handle, MakeTestArray(std::move(fully_replicated_mock_array))); auto ifrt_request = NewIfrtRequest(NewOpId()); auto* fully_replicated_shard_request = ifrt_request->mutable_fully_replicated_shard_request(); fully_replicated_shard_request->set_array_handle( fully_replicated_array_handle); fully_replicated_shard_request->set_copy_semantics( proto::ARRAY_COPY_SEMANTICS_ALWAYS_COPY); EXPECT_THAT(CallBackend(std::move(ifrt_request)), StatusIs(absl::StatusCode::kUnknown, StrEq("injected error"))); } TEST_P(IfrtBackendHandlerTest, FullyReplicatedShardFailsWithNonExistentArrayHandle) { auto ifrt_request = NewIfrtRequest(NewOpId()); auto* fully_replicated_shard_request = ifrt_request->mutable_fully_replicated_shard_request(); fully_replicated_shard_request->set_array_handle(0); fully_replicated_shard_request->set_copy_semantics( proto::ARRAY_COPY_SEMANTICS_ALWAYS_COPY); EXPECT_THAT(CallBackend(std::move(ifrt_request)), StatusIs(absl::StatusCode::kNotFound)); } TEST_P(IfrtBackendHandlerTest, CheckArrayReadyRequestRelaysTheResultFromBackend) { auto mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); TF_ASSERT_OK_AND_ASSIGN(auto array_handle, MakeTestArray(std::move(mock_array))); EXPECT_CALL(*mock_client_, GetReadyFuture(_)) .WillOnce(Return(Future<>(absl::OkStatus()))) .WillOnce(Return(Future<>(absl::UnknownError("injected error")))); { auto ifrt_request = NewIfrtRequest(NewOpId()); ifrt_
1,810
cpp
tensorflow/tensorflow
grpc_service_impl
third_party/xla/xla/python/ifrt_proxy/server/grpc_service_impl.cc
third_party/xla/xla/python/ifrt_proxy/server/grpc_service_impl_test.cc
#ifndef XLA_PYTHON_IFRT_PROXY_SERVER_GRPC_SERVICE_IMPL_H_ #define XLA_PYTHON_IFRT_PROXY_SERVER_GRPC_SERVICE_IMPL_H_ #include <atomic> #include <cstdint> #include <memory> #include <utility> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/functional/any_invocable.h" #include "absl/log/die_if_null.h" #include "absl/status/statusor.h" #include "absl/synchronization/mutex.h" #include "grpcpp/server_context.h" #include "grpcpp/support/status.h" #include "grpcpp/support/sync_stream.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.grpc.pb.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.pb.h" #include "xla/python/ifrt_proxy/common/ifrt_service.pb.h" #include "xla/python/ifrt_proxy/server/host_buffer.h" #include "xla/python/ifrt_proxy/server/ifrt_backend.h" namespace xla { namespace ifrt { namespace proxy { class GrpcServiceImpl : public grpc::GrpcIfrtService::Service { public: using BackendFactory = absl::AnyInvocable<absl::StatusOr<std::unique_ptr<BackendInterface>>( IfrtProxyVersion version, uint64_t session_id, std::shared_ptr<xla::ifrt::proxy::HostBufferStore> host_buffer_store)>; explicit GrpcServiceImpl(BackendFactory backend_factory) : backend_factory_(ABSL_DIE_IF_NULL(std::move(backend_factory))) {} ::grpc::Status GetVersion(::grpc::ServerContext* context, const GrpcGetVersionRequest* request, GrpcGetVersionResponse* response) override; ::grpc::Status IfrtSession( ::grpc::ServerContext* context, ::grpc::ServerReaderWriter<IfrtResponse, IfrtRequest>* stream) override; ::grpc::Status HostBufferStore( ::grpc::ServerContext* context, ::grpc::ServerReader<GrpcHostBufferStoreRequest>* stream, GrpcHostBufferStoreResponse* response) override; ::grpc::Status HostBufferLookup( ::grpc::ServerContext* context, const GrpcHostBufferLookupRequest* request, ::grpc::ServerWriter<GrpcHostBufferLookupResponse>* stream) override; ::grpc::Status HostBufferDelete( ::grpc::ServerContext* context, const GrpcHostBufferDeleteRequest* request, GrpcHostBufferDeleteResponse* response) override; bool Test_InsertHostBufferStore( uint64_t session_id, std::shared_ptr<xla::ifrt::proxy::HostBufferStore> store); bool Test_DeleteHostBufferStore(uint64_t session_id); private: absl::StatusOr<std::shared_ptr<xla::ifrt::proxy::HostBufferStore>> GetHostBufferStore(uint64_t session_id) ABSL_LOCKS_EXCLUDED(host_buffer_store_mu_); BackendFactory backend_factory_; std::atomic<uint64_t> next_session_id_ = 1; absl::Mutex host_buffer_store_mu_; absl::flat_hash_map<uint64_t, std::shared_ptr<xla::ifrt::proxy::HostBufferStore>> host_buffer_stores_ ABSL_GUARDED_BY(host_buffer_store_mu_); }; } } } #endif #include "xla/python/ifrt_proxy/server/grpc_service_impl.h" #include <atomic> #include <cstdint> #include <memory> #include <string> #include <utility> #include "absl/cleanup/cleanup.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "grpcpp/server_context.h" #include "grpcpp/support/status.h" #include "grpcpp/support/sync_stream.h" #include "xla/pjrt/distributed/util.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.pb.h" #include "xla/python/ifrt_proxy/common/proto_util.h" #include "xla/python/ifrt_proxy/server/host_buffer.h" #include "xla/python/ifrt_proxy/server/version.h" namespace xla { namespace ifrt { namespace proxy { ::grpc::Status GrpcServiceImpl::GetVersion(::grpc::ServerContext* context, const GrpcGetVersionRequest* request, GrpcGetVersionResponse* response) { auto protocol_version = ChooseVersion(request->min_version().protocol_version(), request->max_version().protocol_version()); if (!protocol_version.ok()) { return xla::ToGrpcStatus(protocol_version.status()); } response->mutable_version()->set_protocol_version(*protocol_version); return ::grpc::Status::OK; } ::grpc::Status GrpcServiceImpl::IfrtSession( ::grpc::ServerContext* context, ::grpc::ServerReaderWriter<IfrtResponse, IfrtRequest>* stream) { GrpcIfrtSessionMetadata metadata; { const auto it = context->client_metadata().find( "ifrt-proxy-grpc-ifrt-session-metadata-bin"); if (it == context->client_metadata().end()) { return ::grpc::Status(::grpc::StatusCode::INVALID_ARGUMENT, "Missing metadata for GrpcIfrtService.IfrtSession: " "ifrt-proxy-grpc-ifrt-session-metadata-bin"); } if (!metadata.ParseFromString(AsProtoStringData( absl::string_view(it->second.data(), it->second.size())))) { return ::grpc::Status(::grpc::StatusCode::INVALID_ARGUMENT, "Unable to parse GrpcIfrtSessionMetadata"); } } const uint64_t session_id = next_session_id_.fetch_add(1, std::memory_order_relaxed); VLOG(0) << "Starting a new IFRT session with session_id=" << session_id; auto host_buffer_store = std::make_shared<xla::ifrt::proxy::HostBufferStore>(); { absl::MutexLock l(&host_buffer_store_mu_); CHECK(host_buffer_stores_.insert({session_id, host_buffer_store}).second); } absl::Cleanup cleanup = [&] { absl::MutexLock l(&host_buffer_store_mu_); CHECK_GT(host_buffer_stores_.erase(session_id), 0); }; auto backend = backend_factory_(metadata.version(), session_id, std::move(host_buffer_store)); if (!backend.ok()) { LOG(INFO) << "Creating IFRT backend " << session_id << " failed: " << backend.status(); return xla::ToGrpcStatus(backend.status()); } absl::Mutex writer_mu; bool first_request_read = false; while (true) { auto request = std::make_unique<IfrtRequest>(); if (!stream->Read(request.get())) { break; } if (!first_request_read) { VLOG(0) << "First request read for session " << session_id; first_request_read = true; } const uint64_t op_id = request->request_metadata().op_id(); auto response = (*backend)->Process(std::move(request)); response.OnReady( [op_id, stream, &writer_mu](absl::StatusOr<std::shared_ptr<IfrtResponse>> response) { absl::MutexLock l(&writer_mu); if (response.ok()) { stream->Write(**response); } else { stream->Write(*NewIfrtResponse(op_id, response.status())); } }); } backend->reset(); VLOG(0) << "Finishing IFRT session " << session_id; return ::grpc::Status::OK; } ::grpc::Status GrpcServiceImpl::HostBufferStore( ::grpc::ServerContext* context, ::grpc::ServerReader<GrpcHostBufferStoreRequest>* stream, GrpcHostBufferStoreResponse* response) { const auto it = context->client_metadata().find( "ifrt-proxy-grpc-host-buffer-store-metadata-bin"); if (it == context->client_metadata().end()) { return ::grpc::Status( ::grpc::StatusCode::INTERNAL, "Missing gRPC metadata for GrpcHostBufferService.Store"); } GrpcHostBufferStoreMetadata metadata; if (!metadata.ParseFromString(AsProtoStringData( absl::string_view(it->second.data(), it->second.size())))) { return ::grpc::Status(::grpc::StatusCode::DATA_LOSS, "Unable to parse GrpcHostBufferStoreMetadata"); } std::string data; data.reserve(metadata.buffer_size()); GrpcHostBufferStoreRequest request; while (stream->Read(&request)) { data.append(request.data()); } if (data.size() != metadata.buffer_size()) { return ::grpc::Status( ::grpc::StatusCode::DATA_LOSS, absl::StrCat("Potential data loss for host buffers: expected ", metadata.buffer_size(), " bytes but got ", data.size(), " bytes")); } auto store = GetHostBufferStore(metadata.session_id()); if (!store.ok()) { return xla::ToGrpcStatus(store.status()); } return xla::ToGrpcStatus((*store)->Store(metadata.handle(), std::move(data))); } ::grpc::Status GrpcServiceImpl::HostBufferLookup( ::grpc::ServerContext* context, const GrpcHostBufferLookupRequest* request, ::grpc::ServerWriter<GrpcHostBufferLookupResponse>* stream) { static constexpr int64_t kChunkSize = 1024 * 1024; auto store = GetHostBufferStore(request->session_id()); if (!store.ok()) { return xla::ToGrpcStatus(store.status()); } auto data = (*store)->Lookup(request->handle()); if (!data.ok()) { return xla::ToGrpcStatus(data.status()); } GrpcHostBufferLookupResponse response; if (!(*data)->empty()) { for (int64_t offset = 0; offset < (*data)->size(); offset += kChunkSize) { #if defined(PLATFORM_GOOGLE) response.set_alias_data( absl::string_view(**data).substr(offset, kChunkSize)); #else response.set_data((*data)->substr(offset, kChunkSize)); #endif stream->Write(response); response.Clear(); } } else { stream->Write(response); } return ::grpc::Status::OK; } ::grpc::Status GrpcServiceImpl::HostBufferDelete( ::grpc::ServerContext* context, const GrpcHostBufferDeleteRequest* request, GrpcHostBufferDeleteResponse* response) { auto store = GetHostBufferStore(request->session_id()); if (!store.ok()) { return xla::ToGrpcStatus(store.status()); } return xla::ToGrpcStatus((*store)->Delete(request->handle())); } bool GrpcServiceImpl::Test_InsertHostBufferStore( uint64_t session_id, std::shared_ptr<xla::ifrt::proxy::HostBufferStore> store) { absl::MutexLock l(&host_buffer_store_mu_); return host_buffer_stores_.insert({session_id, std::move(store)}).second; } bool GrpcServiceImpl::Test_DeleteHostBufferStore(uint64_t session_id) { absl::MutexLock l(&host_buffer_store_mu_); return host_buffer_stores_.erase(session_id) > 0; } absl::StatusOr<std::shared_ptr<xla::ifrt::proxy::HostBufferStore>> GrpcServiceImpl::GetHostBufferStore(uint64_t session_id) { absl::MutexLock l(&host_buffer_store_mu_); const auto it = host_buffer_stores_.find(session_id); if (it == host_buffer_stores_.end()) { return absl::NotFoundError( absl::StrCat("Session id ", session_id, " does not exist")); } return it->second; } } } }
#include "xla/python/ifrt_proxy/server/grpc_service_impl.h" #include <cstdint> #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "grpcpp/server.h" #include "grpcpp/server_builder.h" #include "grpcpp/support/channel_arguments.h" #include "grpcpp/support/status.h" #include "xla/python/ifrt_proxy/client/grpc_host_buffer.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.grpc.pb.h" #include "xla/python/ifrt_proxy/common/ifrt_service.pb.h" #include "xla/python/ifrt_proxy/server/grpc_server.h" #include "xla/python/ifrt_proxy/server/host_buffer.h" #include "xla/python/ifrt_proxy/server/version.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/test.h" namespace xla { namespace ifrt { namespace proxy { namespace { using ::tsl::testing::IsOk; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; IfrtProxyVersion Version() { IfrtProxyVersion version; version.set_protocol_version(kServerMaxVersion); return version; } absl::StatusOr<std::unique_ptr<GrpcServer>> MakeGrpcServer() { auto addr = absl::StrCat("[::1]:", tsl::testing::PickUnusedPortOrDie()); return GrpcServer::CreateFromIfrtClientFactory(addr, []() { return absl::UnimplementedError( "IFRT client creation fails. This test is not expected to " "instantiate any IFRT client"); }); } TEST(GrpcServiceImplTest, CanBeUsedToSetupAnGrpcServer) { ASSERT_THAT(MakeGrpcServer(), IsOk()); } class GrpcIfrtServiceImplHostBufferTest : public testing::TestWithParam<int64_t> { protected: GrpcIfrtServiceImplHostBufferTest() : impl_([](IfrtProxyVersion version, uint64_t session_id, std::shared_ptr<HostBufferStore> host_buffer_store) { return absl::UnimplementedError( "IFRT backend creation is not implemented"); }) { ::grpc::ServerBuilder builder; builder.RegisterService(&impl_); server_ = builder.BuildAndStart(); stub_ = grpc::GrpcIfrtService::NewStub( server_->InProcessChannel(::grpc::ChannelArguments())); } std::string GetTestData() const { std::string data; for (int i = 0; i < GetParam(); ++i) { data.push_back(i % 7); } return data; } GrpcServiceImpl impl_; std::unique_ptr<::grpc::Server> server_; std::shared_ptr<grpc::GrpcIfrtService::Stub> stub_; }; TEST_P(GrpcIfrtServiceImplHostBufferTest, StoreAndLookupStringView) { static constexpr uint64_t kSessionId = 1; auto store = std::make_shared<HostBufferStore>(); ASSERT_TRUE(impl_.Test_InsertHostBufferStore(kSessionId, store)); GrpcClientHostBufferStore client(stub_, Version(), kSessionId); constexpr uint64_t kHandle = 2; const std::string data = GetTestData(); absl::string_view source(data); ASSERT_THAT(client.Store(kHandle, source).Await(), IsOk()); EXPECT_THAT(client.Lookup(kHandle).Await(), IsOkAndHolds(data)); EXPECT_TRUE(impl_.Test_DeleteHostBufferStore(kSessionId)); } TEST_P(GrpcIfrtServiceImplHostBufferTest, StoreAndLookupCord) { static constexpr uint64_t kSessionId = 1; auto store = std::make_shared<HostBufferStore>(); ASSERT_TRUE(impl_.Test_InsertHostBufferStore(kSessionId, store)); GrpcClientHostBufferStore client(stub_, Version(), kSessionId); constexpr uint64_t kHandle = 2; const std::string data = GetTestData(); absl::Cord source(data); ASSERT_THAT(client.Store(kHandle, source).Await(), IsOk()); EXPECT_THAT(client.Lookup(kHandle).Await(), IsOkAndHolds(data)); EXPECT_TRUE(impl_.Test_DeleteHostBufferStore(kSessionId)); } TEST_P(GrpcIfrtServiceImplHostBufferTest, Lookup) { static constexpr uint64_t kSessionId = 1; auto store = std::make_shared<HostBufferStore>(); ASSERT_TRUE(impl_.Test_InsertHostBufferStore(kSessionId, store)); GrpcClientHostBufferStore client(stub_, Version(), kSessionId); constexpr uint64_t kHandle = 2; const std::string data = GetTestData(); ASSERT_THAT(store->Store(kHandle, data), IsOk()); EXPECT_THAT(client.Lookup(kHandle).Await(), IsOkAndHolds(data)); EXPECT_TRUE(impl_.Test_DeleteHostBufferStore(kSessionId)); } TEST_P(GrpcIfrtServiceImplHostBufferTest, Delete) { static constexpr uint64_t kSessionId = 1; auto store = std::make_shared<HostBufferStore>(); ASSERT_TRUE(impl_.Test_InsertHostBufferStore(kSessionId, store)); GrpcClientHostBufferStore client(stub_, Version(), kSessionId); constexpr uint64_t kHandle = 2; const std::string data = GetTestData(); ASSERT_THAT(store->Store(kHandle, data), IsOk()); ASSERT_THAT(client.Delete(kHandle).Await(), IsOk()); EXPECT_THAT(client.Lookup(kHandle).Await(), StatusIs(absl::StatusCode::kNotFound)); EXPECT_TRUE(impl_.Test_DeleteHostBufferStore(kSessionId)); } INSTANTIATE_TEST_SUITE_P( DataSize, GrpcIfrtServiceImplHostBufferTest, testing::Values(0, 16, 3 * 1024 * 1024)); } } } }
1,811
cpp
tensorflow/tensorflow
host_buffer
third_party/xla/xla/python/ifrt_proxy/server/host_buffer.cc
third_party/xla/xla/python/ifrt_proxy/server/host_buffer_test.cc
#ifndef XLA_PYTHON_IFRT_PROXY_SERVER_HOST_BUFFER_H_ #define XLA_PYTHON_IFRT_PROXY_SERVER_HOST_BUFFER_H_ #include <memory> #include <string> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/synchronization/mutex.h" namespace xla { namespace ifrt { namespace proxy { class HostBufferStore { public: absl::Status Store(uint64_t handle, std::string data); absl::StatusOr<std::shared_ptr<const std::string>> Lookup(uint64_t handle); absl::Status Delete(uint64_t handle); private: absl::Mutex mu_; absl::flat_hash_map<uint64_t, std::shared_ptr<const std::string>> buffers_ ABSL_GUARDED_BY(mu_); }; } } } #endif #include "xla/python/ifrt_proxy/server/host_buffer.h" #include <memory> #include <string> #include <utility> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" namespace xla { namespace ifrt { namespace proxy { absl::Status HostBufferStore::Store(uint64_t handle, std::string data) { absl::MutexLock lock(&mu_); const bool inserted = buffers_.insert({handle, std::make_shared<std::string>(std::move(data))}) .second; if (!inserted) { return absl::AlreadyExistsError( absl::StrCat("Host buffer handle ", handle, " already exists")); } return absl::OkStatus(); } absl::StatusOr<std::shared_ptr<const std::string>> HostBufferStore::Lookup( uint64_t handle) { absl::MutexLock lock(&mu_); const auto it = buffers_.find(handle); if (it == buffers_.end()) { return absl::NotFoundError( absl::StrCat("Host buffer handle ", handle, " not found")); } return it->second; } absl::Status HostBufferStore::Delete(uint64_t handle) { absl::MutexLock lock(&mu_); if (buffers_.erase(handle) == 0) { return absl::NotFoundError( absl::StrCat("Host buffer handle ", handle, " not found")); } return absl::OkStatus(); } } } }
#include "xla/python/ifrt_proxy/server/host_buffer.h" #include <cstdint> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tsl/platform/status_matchers.h" namespace xla { namespace ifrt { namespace proxy { namespace { using ::testing::Pointee; using ::tsl::testing::IsOk; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; TEST(HostBufferStoreTest, ReadAfterWrite) { HostBufferStore store; const uint64_t kHandle = 1; ASSERT_THAT(store.Store(kHandle, "foo"), IsOk()); EXPECT_THAT(store.Lookup(kHandle), IsOkAndHolds(Pointee(std::string("foo")))); ASSERT_THAT(store.Delete(kHandle), IsOk()); EXPECT_THAT(store.Lookup(kHandle), StatusIs(absl::StatusCode::kNotFound)); } TEST(HostBufferStoreTest, UnknownHandle) { HostBufferStore store; const uint64_t kHandle = 1; EXPECT_THAT(store.Lookup(kHandle), StatusIs(absl::StatusCode::kNotFound)); EXPECT_THAT(store.Delete(kHandle), StatusIs(absl::StatusCode::kNotFound)); } } } } }
1,812
cpp
tensorflow/tensorflow
host_callback
third_party/xla/xla/pjrt/host_callback.cc
third_party/xla/xla/pjrt/host_callback_test.cc
#ifndef XLA_PJRT_HOST_CALLBACK_H_ #define XLA_PJRT_HOST_CALLBACK_H_ #include <atomic> #include <cstdint> #include <deque> #include <functional> #include <memory> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/synchronization/mutex.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/pjrt/pjrt_future.h" #include "xla/shape.h" #include "tsl/platform/logging.h" namespace xla { bool ThisThreadIsInsideHostCallback(); void EnterHostCallback(); void LeaveHostCallback(); class ThreadSafePjRtChunkQueue { public: void Push(PjRtChunk chunk) { absl::MutexLock lock(&mu_); if (promises_.empty()) { queue_.push_back(std::move(chunk)); return; } auto pop_promise = promises_.front(); pop_promise.Set(std::move(chunk)); promises_.pop_front(); } PjRtFuture<PjRtChunk> Pop() { absl::MutexLock lock(&mu_); if (queue_.empty()) { auto promise = PjRtFuture<PjRtChunk>::CreatePromise(); promises_.push_back(promise); return PjRtFuture<PjRtChunk>(std::move(promise)); } auto chunk = PjRtFuture<PjRtChunk>(std::move(queue_.front())); queue_.pop_front(); return chunk; } private: absl::Mutex mu_; std::deque<PjRtChunk> queue_ ABSL_GUARDED_BY(mu_); std::deque<PjRtFuture<PjRtChunk>::Promise> promises_ ABSL_GUARDED_BY(mu_); }; struct HostCallbackArgInfo { uint16_t channel_id; Shape shape; }; struct HostCallback { std::vector<HostCallbackArgInfo> operands; std::vector<HostCallbackArgInfo> results; std::function<absl::Status(void**, void**)> callback; }; class HostCallbackContext { public: HostCallbackContext( HostCallback host_callback, bool use_major_to_minor_data_layout_for_callbacks, PjRtHostMemoryForDeviceManager* host_memory_for_device_manager) : host_callback_(std::move(host_callback)), use_major_to_minor_data_layout_for_callbacks_( use_major_to_minor_data_layout_for_callbacks), host_memory_for_device_manager_(host_memory_for_device_manager), args_(host_callback_.operands.size()), result_channels_(host_callback_.results.size()), ready_count_(args_.size()) { if (!use_major_to_minor_data_layout_for_callbacks_) { CHECK(host_memory_for_device_manager_); } for (auto& channel : result_channels_) { channel = std::make_unique<ThreadSafePjRtChunkQueue>(); } } absl::Status OnSend(int arg_num, const PjRtTransferMetadata& metadata, PjRtChunk data); void Receive(int res_num, const PjRtTransferMetadata& metadata, std::unique_ptr<CopyToDeviceStream> stream); const HostCallback& host_callback() const { return host_callback_; } private: HostCallback host_callback_; bool use_major_to_minor_data_layout_for_callbacks_; PjRtHostMemoryForDeviceManager* host_memory_for_device_manager_ = nullptr; std::vector<PjRtChunk> args_; std::vector<std::unique_ptr<ThreadSafePjRtChunkQueue>> result_channels_; std::atomic<int> ready_count_; }; struct HostCallbackStates { std::vector<std::vector<std::unique_ptr<HostCallbackContext>>> contexts; std::vector<std::vector<SendCallback>> send_callbacks; std::vector<std::vector<RecvCallback>> recv_callbacks; }; std::unique_ptr<HostCallbackContext> CreateHostCallbackStateAndAppendSendRecvCallbacks( HostCallback host_callback, PjRtHostMemoryForDeviceManager* host_memory_for_device_manager, std::vector<SendCallback>& send_callbacks, std::vector<RecvCallback>& recv_callbacks, bool use_major_to_minor_data_layout_for_callbacks); } #endif #include "xla/pjrt/host_callback.h" #include <cstddef> #include <memory> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/shape_util.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" namespace xla { static thread_local int on_send_guard = 0; void EnterHostCallback() { ++on_send_guard; } void LeaveHostCallback() { --on_send_guard; } bool ThisThreadIsInsideHostCallback() { return on_send_guard > 0; } absl::Status HostCallbackContext::OnSend(int arg_num, const PjRtTransferMetadata& metadata, PjRtChunk data) { if (!use_major_to_minor_data_layout_for_callbacks_) { const auto& arg_info = host_callback_.operands.at(arg_num); const auto& host_shape = arg_info.shape; const auto& device_shape = metadata.device_shape; size_t host_size = ShapeUtil::ByteSizeOf(host_shape); DCHECK_GE(data.size(), host_size); auto delinearized = PjRtChunk::AllocateDefault(host_size); TF_CHECK_OK(host_memory_for_device_manager_->ToHostLayout( data.data(), data.size(), device_shape, delinearized.data(), delinearized.size(), host_shape)); data = std::move(delinearized); } args_.at(arg_num) = std::move(data); DCHECK_GE(ready_count_.load(), 1); if (ready_count_.fetch_sub(1) != 1) { return absl::OkStatus(); } ready_count_.store(args_.size()); std::vector<void*> arg_ptrs; arg_ptrs.reserve(args_.size()); for (auto& arg : args_) { arg_ptrs.push_back(arg.data()); } std::vector<PjRtChunk> results; std::vector<void*> result_ptrs; results.reserve(result_channels_.size()); result_ptrs.reserve(result_channels_.size()); for (int i = 0; i < result_channels_.size(); ++i) { const auto& host_shape = host_callback_.results.at(i).shape; size_t host_size = ShapeUtil::ByteSizeOf(host_shape); results.push_back(PjRtChunk::AllocateDefault(host_size)); result_ptrs.push_back(results.back().data()); } EnterHostCallback(); auto status = host_callback_.callback(result_ptrs.data(), arg_ptrs.data()); LeaveHostCallback(); for (auto& arg : args_) { arg = PjRtChunk{}; } for (int i = 0; i < result_channels_.size(); ++i) { auto& result_channel = result_channels_[i]; result_channel->Push(std::move(results[i])); } return status; } void HostCallbackContext::Receive(int res_num, const PjRtTransferMetadata& metadata, std::unique_ptr<CopyToDeviceStream> stream) { auto& result_channel = result_channels_.at(res_num); result_channel->Pop().OnReady( [this, res_num, metadata, stream = std::move(stream)](absl::StatusOr<PjRtChunk> chunk) mutable { TF_CHECK_OK(chunk.status()); if (!use_major_to_minor_data_layout_for_callbacks_) { const auto& host_shape = host_callback_.results.at(res_num).shape; const auto& device_shape = metadata.device_shape; auto statusor_linearized = host_memory_for_device_manager_->ToDeviceLayout( chunk->data(), chunk->size(), host_shape, device_shape); chunk = std::move(statusor_linearized.value()); } stream->AddChunk(*std::move(chunk)).OnReady([](absl::Status s) { TF_CHECK_OK(s); }); }); } std::unique_ptr<HostCallbackContext> CreateHostCallbackStateAndAppendSendRecvCallbacks( HostCallback host_callback, PjRtHostMemoryForDeviceManager* host_memory_for_device_manager, std::vector<SendCallback>& send_callbacks, std::vector<RecvCallback>& recv_callbacks, bool use_major_to_minor_data_layout_for_callbacks) { auto context = std::make_unique<HostCallbackContext>( std::move(host_callback), use_major_to_minor_data_layout_for_callbacks, host_memory_for_device_manager); const auto& hb = context->host_callback(); for (int arg_num = 0; arg_num < hb.operands.size(); ++arg_num) { const auto& operand_info = hb.operands[arg_num]; send_callbacks.push_back(SendCallback{ operand_info.channel_id, [arg_num, context = context.get()]( const PjRtTransferMetadata& metadata, PjRtChunk input, size_t total_size_in_bytes, bool done) { return context->OnSend(arg_num, metadata, std::move(input)); }}); } for (int res_num = 0; res_num < hb.results.size(); ++res_num) { const auto& result_info = hb.results[res_num]; recv_callbacks.push_back(RecvCallback{ result_info.channel_id, [res_num, context = context.get()]( const PjRtTransferMetadata& metadata, std::unique_ptr<CopyToDeviceStream> stream) { context->Receive(res_num, metadata, std::move(stream)); }}); } return context; } }
#include "xla/pjrt/host_callback.h" #include <cstring> #include <memory> #include <utility> #include <gtest/gtest.h> #include "absl/status/status.h" #include "xla/pjrt/pjrt_client.h" #include "xla/tests/literal_test_util.h" #include "tsl/lib/core/status_test_util.h" namespace xla { namespace { class TestPjRtHostMemoryForDeviceManager : public PjRtHostMemoryForDeviceManager { public: ~TestPjRtHostMemoryForDeviceManager() override = default; absl::StatusOr<PjRtChunk> ToDeviceLayout(const void* src_data, size_t src_size, const Shape& host_shape, const Shape& device_shape) override { auto chunk = PjRtChunk::AllocateDefault(src_size); std::memcpy(chunk.data(), src_data, src_size); return chunk; } absl::Status ToHostLayout(const void* src_data, size_t src_size, const Shape& src_shape, void* dst_data, size_t dst_size, const Shape& dst_shape) override { CHECK_EQ(src_size, dst_size); std::memcpy(dst_data, src_data, src_size); return absl::OkStatus(); } }; class TestStream : public CopyToDeviceStream { public: TestStream(int64_t total_bytes, int64_t granule_bytes, PjRtChunk& chunk, absl::Notification& done) : CopyToDeviceStream(total_bytes, granule_bytes), chunk_(chunk), done_(done) {} PjRtFuture<> AddChunk(PjRtChunk chunk) override { CHECK(!done_.HasBeenNotified()); chunk_ = std::move(chunk); done_.Notify(); return PjRtFuture<>(absl::OkStatus()); } private: PjRtChunk& chunk_; absl::Notification& done_; }; TEST(HostCallbackTest, Basic) { HostCallback host_callback; Shape shape = ShapeUtil::MakeShape(F32, {2, 2}); size_t byte_size = ShapeUtil::ByteSizeOf(shape); host_callback.operands = {HostCallbackArgInfo{1, shape}}; host_callback.results = {HostCallbackArgInfo{2, shape}}; host_callback.callback = [byte_size](void** outputs, void** inputs) { std::memcpy(outputs[0], inputs[0], byte_size); return absl::OkStatus(); }; HostCallbackStates states; auto& send_callbacks = states.send_callbacks.emplace_back(); auto& recv_callbacks = states.recv_callbacks.emplace_back(); TestPjRtHostMemoryForDeviceManager test_host_memory_for_device_manager; auto context = CreateHostCallbackStateAndAppendSendRecvCallbacks( std::move(host_callback), &test_host_memory_for_device_manager, send_callbacks, recv_callbacks, false); PjRtTransferMetadata metadata; metadata.device_shape = shape; auto literal = LiteralUtil::CreateR2({{1.0f, 2.0f}, {3.0f, 4.0f}}); auto chunk = PjRtChunk::AllocateDefault(byte_size); ASSERT_EQ(chunk.size(), literal.size_bytes()); std::memcpy(chunk.data(), literal.untyped_data(), literal.size_bytes()); TF_ASSERT_OK(context->OnSend(0, metadata, std::move(chunk))); PjRtChunk received_chunk; absl::Notification done; auto stream = std::make_unique<TestStream>(byte_size, 8, received_chunk, done); context->Receive(0, metadata, std::move(stream)); done.WaitForNotification(); BorrowingLiteral borrowing_literal( reinterpret_cast<const char*>(received_chunk.data()), shape); EXPECT_TRUE(LiteralTestUtil::Equal(literal, borrowing_literal)); } TEST(HostCallbackTest, NonBlockingRecv) { HostCallback host_callback; Shape shape = ShapeUtil::MakeShape(F32, {2, 2}); size_t byte_size = ShapeUtil::ByteSizeOf(shape); host_callback.operands = {HostCallbackArgInfo{1, shape}}; host_callback.results = {HostCallbackArgInfo{2, shape}}; host_callback.callback = [byte_size](void** outputs, void** inputs) { std::memcpy(outputs[0], inputs[0], byte_size); return absl::OkStatus(); }; HostCallbackStates states; auto& send_callbacks = states.send_callbacks.emplace_back(); auto& recv_callbacks = states.recv_callbacks.emplace_back(); TestPjRtHostMemoryForDeviceManager test_host_memory_for_device_manager; auto context = CreateHostCallbackStateAndAppendSendRecvCallbacks( std::move(host_callback), &test_host_memory_for_device_manager, send_callbacks, recv_callbacks, false); PjRtTransferMetadata metadata; metadata.device_shape = shape; auto literal = LiteralUtil::CreateR2({{1.0f, 2.0f}, {3.0f, 4.0f}}); auto chunk = PjRtChunk::AllocateDefault(byte_size); ASSERT_EQ(chunk.size(), literal.size_bytes()); std::memcpy(chunk.data(), literal.untyped_data(), literal.size_bytes()); absl::Notification done; PjRtChunk received_chunk; auto stream = std::make_unique<TestStream>(byte_size, 8, received_chunk, done); context->Receive(0, metadata, std::move(stream)); TF_ASSERT_OK(context->OnSend(0, metadata, std::move(chunk))); done.WaitForNotification(); BorrowingLiteral borrowing_literal( reinterpret_cast<const char*>(received_chunk.data()), shape); EXPECT_TRUE(LiteralTestUtil::Equal(literal, borrowing_literal)); } } }
1,813
cpp
tensorflow/tensorflow
array_spec
third_party/xla/xla/python/ifrt/array_spec.cc
third_party/xla/xla/python/ifrt/array_spec_test.cc
#ifndef XLA_PYTHON_IFRT_ARRAY_SPEC_H_ #define XLA_PYTHON_IFRT_ARRAY_SPEC_H_ #include <memory> #include <string> #include "absl/log/log.h" #include "absl/status/statusor.h" #include "xla/python/ifrt/array_spec.pb.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" namespace xla { namespace ifrt { struct ArraySpec { DType dtype; Shape shape; std::shared_ptr<const Sharding> sharding; static absl::StatusOr<ArraySpec> FromProto( DeviceList::LookupDeviceFunc lookup_device, const ArraySpecProto& proto); absl::StatusOr<ArraySpecProto> ToProto() const; std::string DebugString() const; }; } } #endif #include "xla/python/ifrt/array_spec.h" #include <string> #include <utility> #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "xla/python/ifrt/array_spec.pb.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { absl::StatusOr<ArraySpec> ArraySpec::FromProto( DeviceList::LookupDeviceFunc lookup_device, const ArraySpecProto& proto) { TF_ASSIGN_OR_RETURN(auto dtype, DType::FromProto(proto.dtype())); TF_ASSIGN_OR_RETURN(auto shape, Shape::FromProto(proto.shape())); TF_ASSIGN_OR_RETURN(auto sharding, Sharding::FromProto(lookup_device, proto.sharding())); return ArraySpec{dtype, std::move(shape), std::move(sharding)}; } absl::StatusOr<ArraySpecProto> ArraySpec::ToProto() const { ArraySpecProto proto; *proto.mutable_dtype() = dtype.ToProto(); *proto.mutable_shape() = shape.ToProto(); TF_ASSIGN_OR_RETURN(*proto.mutable_sharding(), sharding->ToProto()); return proto; } std::string ArraySpec::DebugString() const { return absl::StrCat("ArraySpec(dtype=", dtype.DebugString(), ",shape=", shape.DebugString(), ",sharding=", sharding->DebugString(), ")"); } } }
#include "xla/python/ifrt/array_spec.h" #include <gtest/gtest.h> #include "absl/status/statusor.h" #include "llvm/Support/Casting.h" #include "xla/python/ifrt/array_spec.pb.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/python/ifrt/sharding_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { class ArraySpecTest : public test_util::ShardingTest {}; TEST_P(ArraySpecTest, ToFromProto) { auto device_list = GetDevices({0, 1}); DType dtype(DType::kS32); Shape shape({4, 2}); Shape shard_shape({2, 2}); ArraySpec spec{dtype, shape, ConcreteEvenSharding::Create(device_list, MemoryKind(), shape, shard_shape)}; auto lookup_device_func = [&](DeviceId device_id) -> absl::StatusOr<Device*> { return client()->LookupDevice(device_id); }; TF_ASSERT_OK_AND_ASSIGN(const ArraySpecProto proto, spec.ToProto()); TF_ASSERT_OK_AND_ASSIGN(const ArraySpec array_spec_copy, ArraySpec::FromProto(lookup_device_func, proto)); EXPECT_EQ(array_spec_copy.dtype, dtype); EXPECT_EQ(array_spec_copy.shape, shape); const auto* sharding = llvm::dyn_cast<ConcreteEvenSharding>(array_spec_copy.sharding.get()); ASSERT_NE(sharding, nullptr); EXPECT_EQ(sharding->devices(), spec.sharding->devices()); EXPECT_EQ(sharding->memory_kind(), spec.sharding->memory_kind()); EXPECT_EQ(sharding->shape(), shape); EXPECT_EQ(sharding->shard_shape(), shard_shape); } INSTANTIATE_TEST_SUITE_P(NumDevices, ArraySpecTest, testing::Values(test_util::ShardingTestParam{ 2, 2})); } } }
1,814
cpp
tensorflow/tensorflow
serdes
third_party/xla/xla/python/ifrt/serdes.cc
third_party/xla/xla/python/ifrt/serdes_test.cc
#ifndef XLA_PYTHON_IFRT_SERDES_H_ #define XLA_PYTHON_IFRT_SERDES_H_ #include <memory> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ExtensibleRTTI.h" #include "xla/python/ifrt/serdes.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { struct DeserializeOptions : llvm::RTTIExtends<DeserializeOptions, llvm::RTTIRoot> { static char ID; }; class Serializable : public llvm::RTTIExtends<Serializable, llvm::RTTIRoot> { public: static char ID; using DeserializeOptions = ::xla::ifrt::DeserializeOptions; }; class SerDes : public llvm::RTTIExtends<SerDes, llvm::RTTIRoot> { public: virtual absl::string_view type_name() const = 0; virtual absl::StatusOr<std::string> Serialize(Serializable& serializable) = 0; virtual absl::StatusOr<std::unique_ptr<Serializable>> Deserialize( const std::string& serialized, std::unique_ptr<DeserializeOptions> options) = 0; static char ID; }; void RegisterSerDes(const void* type_id, std::unique_ptr<SerDes> serdes); template <typename T> void RegisterSerDes(std::unique_ptr<SerDes> serdes) { static_assert(std::is_base_of_v<Serializable, T>, "Types must implement `xla::ifrt::Serializable` to have a " "serdes implementation"); RegisterSerDes(T::classID(), std::move(serdes)); } namespace serdes_internal { absl::StatusOr<std::unique_ptr<Serializable>> DeserializeUnchecked( const Serialized& serialized, std::unique_ptr<DeserializeOptions> options); } absl::StatusOr<Serialized> Serialize(Serializable& serializable); template <typename InterfaceType> absl::StatusOr<std::unique_ptr<InterfaceType>> Deserialize( const Serialized& serialized, std::unique_ptr<typename InterfaceType::DeserializeOptions> options) { TF_ASSIGN_OR_RETURN(auto result, serdes_internal::DeserializeUnchecked( serialized, std::move(options))); if (!llvm::isa<InterfaceType>(result.get())) { return absl::InternalError( "Unexpected Serializable type after deserialization"); } return std::unique_ptr<InterfaceType>( static_cast<InterfaceType*>(result.release())); } } } #endif #include "xla/python/ifrt/serdes.h" #include <memory> #include <string> #include <utility> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "xla/python/ifrt/serdes.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { struct Registry { absl::Mutex mu; absl::flat_hash_map<const void*, SerDes*> type_id_to_serdes ABSL_GUARDED_BY(mu); absl::flat_hash_map<absl::string_view, SerDes*> name_to_serdes ABSL_GUARDED_BY(mu); }; Registry* registry() { static auto* r = new Registry(); return r; } } char Serializable::ID = 0; char DeserializeOptions::ID = 0; char SerDes::ID = 0; void RegisterSerDes(const void* type_id, std::unique_ptr<SerDes> serdes) { Registry* const r = registry(); absl::MutexLock l(&r->mu); CHECK(r->type_id_to_serdes.insert({type_id, serdes.get()}).second) << "xla::ifrt::SerDes cannot be registered more than once for the same " "type id: " << type_id; const absl::string_view name = serdes->type_name(); CHECK(r->name_to_serdes.insert({name, serdes.get()}).second) << "xla::ifrt::SerDes cannot be registered more than once for the same " "name: " << name; serdes.release(); } absl::StatusOr<Serialized> Serialize(Serializable& serializable) { SerDes* serdes; { Registry* const r = registry(); absl::MutexLock l(&r->mu); auto it = r->type_id_to_serdes.find(serializable.dynamicClassID()); if (it == r->type_id_to_serdes.end()) { return absl::UnimplementedError( "Serialize call failed. Serializable has no associated SerDes " "implementation"); } serdes = it->second; } TF_ASSIGN_OR_RETURN(std::string data, serdes->Serialize(serializable)); Serialized proto; proto.set_type_name(std::string(serdes->type_name())); proto.set_data(std::move(data)); return proto; } namespace serdes_internal { absl::StatusOr<std::unique_ptr<Serializable>> DeserializeUnchecked( const Serialized& serialized, std::unique_ptr<DeserializeOptions> options) { SerDes* serdes; { Registry* const r = registry(); absl::MutexLock l(&r->mu); auto it = r->name_to_serdes.find(serialized.type_name()); if (it == r->name_to_serdes.end()) { return absl::UnimplementedError(absl::StrCat( "Deserialize call failed. Serializable has no associated SerDes ", "implementation. type_name: ", serialized.type_name())); } serdes = it->second; } return serdes->Deserialize(serialized.data(), std::move(options)); } } } }
#include "xla/python/ifrt/serdes.h" #include <memory> #include <string> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ExtensibleRTTI.h" #include "xla/python/ifrt/serdes.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { using ::tsl::testing::StatusIs; struct TestNumberDeserializeOptions; struct TestNumber : llvm::RTTIExtends<TestNumber, Serializable> { using DeserializeOptions = TestNumberDeserializeOptions; int number; explicit TestNumber(int number) : number(number) {} static char ID; }; [[maybe_unused]] char TestNumber::ID = 0; struct TestNumberDeserializeOptions : llvm::RTTIExtends<TestNumberDeserializeOptions, DeserializeOptions> { absl::Status injected_failure; static char ID; }; [[maybe_unused]] char TestNumberDeserializeOptions::ID = 0; class TestNumberSerDes : public llvm::RTTIExtends<TestNumberSerDes, SerDes> { public: absl::string_view type_name() const override { return "xla::ifrt::TestNumber"; } absl::StatusOr<std::string> Serialize(Serializable& serializable) override { const TestNumber& obj = llvm::cast<TestNumber>(serializable); return absl::StrCat(obj.number); } absl::StatusOr<std::unique_ptr<Serializable>> Deserialize( const std::string& serialized, std::unique_ptr<DeserializeOptions> options) override { if (options != nullptr) { auto* deserialize_options = llvm::cast<TestNumberDeserializeOptions>(options.get()); TF_RETURN_IF_ERROR(deserialize_options->injected_failure); } int number; if (!absl::SimpleAtoi(serialized, &number)) { return absl::DataLossError("Unable to parse serialized TestNumber"); } return std::make_unique<TestNumber>(number); } static char ID; }; [[maybe_unused]] char TestNumberSerDes::ID = 0; class TestNumberTest : public testing::Test { protected: static void SetUpTestSuite() { RegisterSerDes<TestNumber>(std::make_unique<TestNumberSerDes>()); } }; TEST_F(TestNumberTest, RoundTrip) { auto obj = std::make_unique<TestNumber>(1234); TF_ASSERT_OK_AND_ASSIGN(Serialized serialized, Serialize(*obj)); TF_ASSERT_OK_AND_ASSIGN( auto deserialized, Deserialize<TestNumber>(serialized, nullptr)); EXPECT_EQ(obj->number, deserialized->number); } TEST_F(TestNumberTest, WithOptions) { auto obj = std::make_unique<TestNumber>(1234); TF_ASSERT_OK_AND_ASSIGN(Serialized serialized, Serialize(*obj)); auto options = std::make_unique<TestNumberDeserializeOptions>(); options->injected_failure = absl::InternalError("injected failure"); EXPECT_THAT(Deserialize<TestNumber>(serialized, std::move(options)), StatusIs(absl::StatusCode::kInternal, "injected failure")); } } } }
1,815
cpp
tensorflow/tensorflow
memory
third_party/xla/xla/python/ifrt/memory.cc
third_party/xla/xla/python/ifrt/memory_test.cc
#ifndef XLA_PYTHON_IFRT_MEMORY_H_ #define XLA_PYTHON_IFRT_MEMORY_H_ #include <optional> #include <string> #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "llvm/Support/ExtensibleRTTI.h" #include "xla/python/ifrt/device.h" namespace xla { namespace ifrt { class MemoryKind { public: MemoryKind() = default; explicit MemoryKind(std::optional<absl::string_view> memory_kind); bool operator==(const MemoryKind& other) const { if (!memory_kind_.has_value() && !other.memory_kind_.has_value()) { return true; } if (memory_kind_.has_value() && other.memory_kind_.has_value() && memory_kind_->data() == other.memory_kind_->data()) { return true; } return false; } bool operator!=(const MemoryKind& other) const { return !(*this == other); } template <typename H> friend H AbslHashValue(H h, const MemoryKind& memory_kind) { return H::combine(std::move(h), memory_kind.memory_kind_); } std::optional<absl::string_view> memory_kind() const { return memory_kind_; } std::string DebugString() const; private: std::optional<absl::string_view> memory_kind_; }; MemoryKind CanonicalizeMemoryKind(MemoryKind memory_kind, Device* device); TSL_LIB_GTL_DEFINE_INT_TYPE(MemoryId, int32_t); class Memory : public llvm::RTTIExtends<Memory, llvm::RTTIRoot> { public: Memory() = default; Memory(const Memory&) = delete; Memory(Memory&&) = delete; Memory& operator=(const Memory&) = delete; Memory& operator=(Memory&&) = delete; virtual MemoryId Id() const = 0; virtual const MemoryKind& Kind() const = 0; virtual absl::string_view ToString() const = 0; virtual absl::string_view DebugString() const = 0; virtual absl::Span<Device* const> Devices() const = 0; static char ID; }; } } #endif #include "xla/python/ifrt/memory.h" #include <optional> #include <string> #include <utility> #include "absl/container/node_hash_set.h" #include "xla/pjrt/pjrt_client.h" #include "xla/python/ifrt/device.h" namespace xla { namespace ifrt { namespace { struct MemoryKindsSet { absl::Mutex mu; absl::node_hash_set<std::string> memory_kinds_set ABSL_GUARDED_BY(mu); }; } MemoryKind::MemoryKind(std::optional<absl::string_view> memory_kind) { static auto* const global_set = new MemoryKindsSet(); if (!memory_kind.has_value()) { return; } absl::MutexLock lock(&global_set->mu); auto it = global_set->memory_kinds_set.find(*memory_kind); if (it == global_set->memory_kinds_set.end()) { memory_kind_ = *global_set->memory_kinds_set.insert(std::string(*memory_kind)).first; } else { memory_kind_ = *it; } } std::string MemoryKind::DebugString() const { if (memory_kind_.has_value()) { return std::string(*memory_kind_); } return "(default)"; } MemoryKind CanonicalizeMemoryKind(MemoryKind memory_kind, Device* device) { if (memory_kind.memory_kind().has_value()) { return memory_kind; } auto default_memory = device->DefaultMemory(); if (default_memory.ok()) { return (*default_memory)->Kind(); } return MemoryKind(); } char Memory::ID = 0; } }
#include "xla/python/ifrt/memory.h" #include <memory> #include <optional> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" using ::testing::Optional; namespace xla { namespace ifrt { namespace { TEST(MemoryKindTest, EqualityForUnspecified) { MemoryKind memory_kind1; MemoryKind memory_kind2; EXPECT_EQ(memory_kind1, memory_kind2); } TEST(MemoryKindTest, EqualityForSameString) { MemoryKind memory_kind1("abc"); MemoryKind memory_kind2("abc"); EXPECT_EQ(memory_kind1, memory_kind2); } TEST(MemoryKindTest, EqualityForSameStringContent) { MemoryKind memory_kind1("abc"); MemoryKind memory_kind2(absl::StrCat("ab", "c")); EXPECT_EQ(memory_kind1, memory_kind2); } TEST(MemoryKindTest, InequalityForDifferentStringContent) { MemoryKind memory_kind1("abc"); MemoryKind memory_kind2("def"); EXPECT_NE(memory_kind1, memory_kind2); } TEST(MemoryKindTest, InequalityBetweenSpecifiedAndUnspecified) { { MemoryKind memory_kind1("abc"); MemoryKind memory_kind2; EXPECT_NE(memory_kind1, memory_kind2); } { MemoryKind memory_kind1; MemoryKind memory_kind2("abc"); EXPECT_NE(memory_kind1, memory_kind2); } } TEST(MemoryKindTest, MemorySafety) { auto memory_kind_str = std::make_unique<std::string>("abc"); MemoryKind memory_kind(*memory_kind_str); memory_kind_str.reset(); EXPECT_THAT(memory_kind.memory_kind(), Optional(absl::string_view("abc"))); } TEST(MemoryKindTest, EqualityForUnspecifiedAndNullopt) { MemoryKind memory_kind1; MemoryKind memory_kind2(std::nullopt); EXPECT_EQ(memory_kind1, memory_kind2); } } } }
1,816
cpp
tensorflow/tensorflow
index_domain
third_party/xla/xla/python/ifrt/index_domain.cc
third_party/xla/xla/python/ifrt/index_domain_test.cc
#ifndef XLA_PYTHON_IFRT_INDEX_DOMAIN_H_ #define XLA_PYTHON_IFRT_INDEX_DOMAIN_H_ #include <cstdint> #include <ostream> #include <string> #include <utility> #include "xla/python/ifrt/index.h" #include "xla/python/ifrt/shape.h" namespace xla { namespace ifrt { class IndexDomain { public: IndexDomain(Index origin, Shape shape) : origin_(std::move(origin)), shape_(std::move(shape)) {} explicit IndexDomain(Shape shape) : origin_(Index::Zeros(shape.dims().size())), shape_(std::move(shape)) {} IndexDomain(const IndexDomain&) = default; IndexDomain(IndexDomain&&) = default; IndexDomain& operator=(const IndexDomain&) = default; IndexDomain& operator=(IndexDomain&&) = default; const Index& origin() const { return origin_; } const Shape& shape() const { return shape_; } bool operator==(const IndexDomain& other) const { return origin_ == other.origin_ && shape_ == other.shape_; } bool operator!=(const IndexDomain& other) const { return origin_ != other.origin_ || shape_ != other.shape_; } IndexDomain operator+(const Index& offset) const { return IndexDomain(origin_ + offset, shape_); } IndexDomain operator-(const Index& offset) const { return IndexDomain(origin_ - offset, shape_); } IndexDomain& operator+=(const Index& offset) { origin_ += offset; return *this; } IndexDomain& operator-=(const Index& offset) { origin_ -= offset; return *this; } std::string DebugString() const; private: Index origin_; Shape shape_; }; std::ostream& operator<<(std::ostream& os, const IndexDomain& index_domain); } } #endif #include "xla/python/ifrt/index_domain.h" #include <ostream> #include <string> #include "absl/strings/str_cat.h" namespace xla { namespace ifrt { std::string IndexDomain::DebugString() const { return absl::StrCat("IndexDomain(origin=", origin_.DebugString(), ",shape=", shape_.DebugString(), ")"); } std::ostream& operator<<(std::ostream& os, const IndexDomain& index_domain) { return os << index_domain.DebugString(); } } }
#include "xla/python/ifrt/index_domain.h" #include <memory> #include <utility> #include <vector> #include <gtest/gtest.h> namespace xla { namespace ifrt { namespace { TEST(IndexDomainTest, Construction) { IndexDomain a(Index({1, 2}), Shape({3, 4})); EXPECT_EQ(a.origin(), Index({1, 2})); EXPECT_EQ(a.shape(), Shape({3, 4})); IndexDomain b(Shape({3, 4})); EXPECT_EQ(b.origin(), Index({0, 0})); EXPECT_EQ(b.shape(), Shape({3, 4})); } TEST(IndexDomainTest, Operations) { IndexDomain a(Index({1, 2}), Shape({3, 4})); Index b({1, 2}); EXPECT_EQ(a + b, IndexDomain(Index({2, 4}), Shape({3, 4}))); { IndexDomain c = a; EXPECT_EQ(c += b, IndexDomain(Index({2, 4}), Shape({3, 4}))); } EXPECT_EQ(a - b, IndexDomain(Index({0, 0}), Shape({3, 4}))); { IndexDomain c = a; EXPECT_EQ(c -= b, IndexDomain(Index({0, 0}), Shape({3, 4}))); } } } } }
1,817
cpp
tensorflow/tensorflow
dtype
third_party/xla/xla/python/ifrt/dtype.cc
third_party/xla/xla/python/ifrt/dtype_test.cc
#ifndef XLA_PYTHON_IFRT_DTYPE_H_ #define XLA_PYTHON_IFRT_DTYPE_H_ #include <optional> #include <ostream> #include <string> #include "absl/status/statusor.h" #include "xla/python/ifrt/dtype.pb.h" namespace xla { namespace ifrt { class DType { public: enum Kind { kInvalid = 0, kPred = 1, kS2 = 26, kS4 = 21, kS8 = 2, kS16 = 3, kS32 = 4, kS64 = 5, kU2 = 27, kU4 = 22, kU8 = 6, kU16 = 7, kU32 = 8, kU64 = 9, kF16 = 10, kF32 = 11, kF64 = 12, kBF16 = 16, kC64 = 15, kC128 = 18, kToken = 17, kF8E4M3FN = 20, kF8E4M3B11FNUZ = 23, kF8E4M3FNUZ = 25, kF8E5M2 = 19, kF8E5M2FNUZ = 24, kString = 99, }; explicit DType(Kind kind) : kind_(kind) {} DType(const DType&) = default; DType(DType&&) = default; DType& operator=(const DType&) = default; DType& operator=(DType&&) = default; Kind kind() const { return kind_; } bool operator==(const DType& other) const { return kind_ == other.kind_; } bool operator!=(const DType& other) const { return kind_ != other.kind_; } template <typename H> friend H AbslHashValue(H h, const DType& value) { return H::combine(std::move(h), value.kind()); } std::optional<int> byte_size() const; std::optional<int> bit_size() const; static absl::StatusOr<DType> FromProto(const DTypeProto& proto); DTypeProto ToProto() const; std::string DebugString() const; private: Kind kind_; }; std::ostream& operator<<(std::ostream& os, const DType& dtype); } } #endif #include "xla/python/ifrt/dtype.h" #include <optional> #include <ostream> #include <string> #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "xla/python/ifrt/dtype.pb.h" namespace xla { namespace ifrt { std::optional<int> DType::byte_size() const { switch (kind_) { case kPred: case kS8: case kU8: return 1; case kS16: case kU16: case kF16: case kBF16: return 2; case kS32: case kU32: case kF32: return 4; case kS64: case kU64: case kF64: case kC64: return 8; case kC128: return 16; default: return std::nullopt; } } std::optional<int> DType::bit_size() const { switch (kind_) { case kPred: case kS8: case kU8: return 8; case kS16: case kU16: case kF16: case kBF16: return 16; case kS32: case kU32: case kF32: return 32; case kS64: case kU64: case kF64: case kC64: return 64; case kC128: return 128; default: return std::nullopt; } } absl::StatusOr<DType> DType::FromProto(const DTypeProto& dtype_proto) { switch (dtype_proto.kind()) { case DTypeProto::KIND_PRED: return DType(DType::Kind::kPred); case DTypeProto::KIND_TOKEN: return DType(DType::Kind::kToken); #define CASE(X) \ case DTypeProto::KIND_##X: \ return DType(DType::Kind::k##X); CASE(S4); CASE(S8); CASE(S16); CASE(S32); CASE(S64); CASE(U4); CASE(U8); CASE(U16); CASE(U32); CASE(U64); CASE(F16); CASE(F32); CASE(F64); CASE(BF16); CASE(C64); CASE(C128); CASE(F8E4M3FN); CASE(F8E4M3B11FNUZ); CASE(F8E4M3FNUZ); CASE(F8E5M2); CASE(F8E5M2FNUZ); #undef CASE case DTypeProto::KIND_STRING: return DType(DType::Kind::kString); default: return DType(DType::Kind::kInvalid); } } DTypeProto DType::ToProto() const { DTypeProto dtype_proto; switch (kind()) { case DType::Kind::kPred: dtype_proto.set_kind(DTypeProto::KIND_PRED); break; case DType::Kind::kToken: dtype_proto.set_kind(DTypeProto::KIND_TOKEN); break; #define CASE(X) \ case DType::Kind::k##X: \ dtype_proto.set_kind(DTypeProto::KIND_##X); \ break; CASE(S4); CASE(S8); CASE(S16); CASE(S32); CASE(S64); CASE(U4); CASE(U8); CASE(U16); CASE(U32); CASE(U64); CASE(F16); CASE(F32); CASE(F64); CASE(BF16); CASE(C64); CASE(C128); CASE(F8E4M3FN); CASE(F8E4M3B11FNUZ); CASE(F8E4M3FNUZ); CASE(F8E5M2); CASE(F8E5M2FNUZ); #undef CASE case DType::Kind::kString: dtype_proto.set_kind(DTypeProto::KIND_STRING); break; default: dtype_proto.set_kind(DTypeProto::KIND_UNSPECIFIED); break; } return dtype_proto; } std::string DType::DebugString() const { switch (kind_) { case kInvalid: return "INVALID"; case kPred: return "PRED"; case kS8: return "S8"; case kS16: return "S16"; case kS32: return "S32"; case kS64: return "S64"; case kU8: return "U8"; case kU16: return "U16"; case kU32: return "U32"; case kU64: return "U64"; case kF16: return "F16"; case kF32: return "F32"; case kF64: return "F64"; case kBF16: return "BF16"; case kC64: return "C64"; case kC128: return "C128"; case kToken: return "TOKEN"; case kString: return "STRING"; default: return absl::StrCat("UNKNOWN(", static_cast<int>(kind_), ")"); } } std::ostream& operator<<(std::ostream& os, const DType& dtype) { return os << dtype.DebugString(); } } }
#include "xla/python/ifrt/dtype.h" #include <gtest/gtest.h> #include "xla/python/ifrt/dtype.pb.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace ifrt { namespace { TEST(DTypeTest, FromToFromProto) { for (int i = 0; i < DTypeProto::Kind_descriptor()->value_count(); ++i) { DTypeProto proto; proto.set_kind(static_cast<DTypeProto::Kind>( DTypeProto::Kind_descriptor()->value(i)->number())); TF_ASSERT_OK_AND_ASSIGN(DType dtype, DType::FromProto(proto)); TF_ASSERT_OK_AND_ASSIGN(DType dtype_copy, DType::FromProto(dtype.ToProto())); EXPECT_EQ(dtype_copy, dtype); } } } } }
1,818
cpp
tensorflow/tensorflow
remap_plan
third_party/xla/xla/python/ifrt/remap_plan.cc
third_party/xla/xla/python/ifrt/remap_plan_test.cc
#ifndef XLA_PYTHON_IFRT_REMAP_PLAN_H_ #define XLA_PYTHON_IFRT_REMAP_PLAN_H_ #include <cstdint> #include <memory> #include <string> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/python/ifrt/array_spec.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/remap_plan.pb.h" namespace xla { namespace ifrt { struct RemapPlan { struct Interval { int64_t start; int64_t end; int64_t step; bool operator==(const Interval& other) const { return start == other.start && end == other.end && step == other.step; } std::string DebugString() const; }; struct Mapping { int in_array; int out_array; std::vector<Interval> from; std::vector<Interval> to; bool operator==(const Mapping& other) const { return in_array == other.in_array && out_array == other.out_array && from == other.from && to == other.to; } std::string DebugString() const; }; std::vector<ArraySpec> input_specs; std::vector<ArraySpec> output_specs; std::shared_ptr<std::vector<Mapping>> mappings; absl::Status Validate() const; static absl::StatusOr<RemapPlan> FromProto( DeviceList::LookupDeviceFunc lookup_device, const RemapPlanProto& proto); absl::StatusOr<RemapPlanProto> ToProto() const; std::string DebugString() const; }; } } #endif #include "xla/python/ifrt/remap_plan.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/types/span.h" #include "xla/python/ifrt/array_spec.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/remap_plan.pb.h" #include "xla/status_macros.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { absl::StatusOr<RemapPlan::Mapping> MappingFromProto( const RemapPlanProto::MappingProto& mapping_proto) { RemapPlan::Mapping mapping; mapping.in_array = mapping_proto.in_array(); mapping.out_array = mapping_proto.out_array(); const int64_t num_intervals = mapping_proto.from_start_size(); TF_RET_CHECK(mapping_proto.from_end_size() == num_intervals); TF_RET_CHECK(mapping_proto.from_step_size() == num_intervals); TF_RET_CHECK(mapping_proto.to_start_size() == num_intervals); TF_RET_CHECK(mapping_proto.to_end_size() == num_intervals); TF_RET_CHECK(mapping_proto.to_step_size() == num_intervals); mapping.from.reserve(num_intervals); mapping.to.reserve(num_intervals); for (int64_t i = 0; i < num_intervals; ++i) { mapping.from.push_back( RemapPlan::Interval{mapping_proto.from_start(i), mapping_proto.from_end(i), mapping_proto.from_step(i)}); mapping.to.push_back( RemapPlan::Interval{mapping_proto.to_start(i), mapping_proto.to_end(i), mapping_proto.to_step(i)}); } return mapping; } absl::StatusOr<RemapPlanProto::MappingProto> MappingToProto( const RemapPlan::Mapping& mapping) { TF_RET_CHECK(mapping.from.size() == mapping.to.size()); RemapPlanProto::MappingProto proto; proto.set_in_array(mapping.in_array); proto.set_out_array(mapping.out_array); const int64_t num_intervals = mapping.from.size(); proto.mutable_from_start()->Reserve(num_intervals); proto.mutable_from_end()->Reserve(num_intervals); proto.mutable_from_step()->Reserve(num_intervals); proto.mutable_to_start()->Reserve(num_intervals); proto.mutable_to_end()->Reserve(num_intervals); proto.mutable_to_step()->Reserve(num_intervals); for (int64_t i = 0; i < mapping.from.size(); ++i) { proto.add_from_start(mapping.from[i].start); proto.add_from_end(mapping.from[i].end); proto.add_from_step(mapping.from[i].step); proto.add_to_start(mapping.to[i].start); proto.add_to_end(mapping.to[i].end); proto.add_to_step(mapping.to[i].step); } return proto; } absl::Status CheckRange(int64_t num_shards, const RemapPlan::Interval& interval) { if (interval.start < 0 || interval.start > num_shards - 1) { return InvalidArgument("start must be in [0, %d], but is %d", num_shards - 1, interval.start); } if (interval.end < 0 || interval.end > num_shards) { return InvalidArgument("end must be in [0, %d], but is %d", num_shards, interval.end); } if (interval.step <= 0) { return InvalidArgument("step must be positive, but is %d", interval.step); } return absl::OkStatus(); } int64_t GetNumberOfSteps(const RemapPlan::Interval& interval) { return (interval.end - interval.start + interval.step - 1) / interval.step; } } std::string RemapPlan::Interval::DebugString() const { return absl::StrCat("[", start, ":", end, ":", step, "]"); } std::string RemapPlan::Mapping::DebugString() const { auto format_intervals = [](absl::Span<const RemapPlan::Interval> intervals) { return absl::StrCat( "[", absl::StrJoin( intervals, ",", [](std::string* out, const RemapPlan::Interval& interval) { absl::StrAppend(out, interval.DebugString()); }), "]"); }; return absl::StrCat("Mapping(in_array=", in_array, ",", "out_array=", out_array, ",from=", format_intervals(from), ",to=", format_intervals(to), ")"); } absl::Status RemapPlan::Validate() const { const int num_inputs = input_specs.size(); if (num_inputs == 0) { return InvalidArgument("Must have at least one input"); } for (int i = 0; i < num_inputs; ++i) { if (input_specs[i].dtype != input_specs.front().dtype) { return InvalidArgument( "Input must have the same dtype: %s (input 0) vs. %s (input " "%d)", input_specs.front().dtype.DebugString(), input_specs[i].dtype.DebugString(), i); } } const int num_outputs = output_specs.size(); for (int i = 0; i < num_outputs; ++i) { if (output_specs[i].dtype != input_specs.front().dtype) { return InvalidArgument( "Input and output must have the same dtype: %s (input 0) vs. %s " "(output %d)", output_specs.front().dtype.DebugString(), output_specs[i].dtype.DebugString(), i); } } std::vector<std::vector<bool>> in_used_buffers_list(num_inputs); for (int i = 0; i < num_inputs; ++i) { in_used_buffers_list[i].resize( input_specs[i].sharding->devices().size(), false); } std::vector<DeviceList::Devices> out_assigned_devices_list(num_outputs); for (int i = 0; i < num_outputs; ++i) { out_assigned_devices_list[i].resize( output_specs[i].sharding->devices().size(), nullptr); } for (int64_t i = 0; i < mappings->size(); ++i) { const RemapPlan::Mapping& mapping = (*mappings)[i]; if (mapping.in_array < 0 || mapping.in_array >= num_inputs) { return InvalidArgument( "mappings[%d].in_array must be in [0, %d], but is %d", i, num_inputs - 1, mapping.in_array); } if (mapping.out_array < 0 || mapping.out_array >= num_outputs) { return InvalidArgument( "mappings[%d].out_array must be in [0, %d], but is %d", i, num_outputs - 1, mapping.out_array); } if (mapping.from.size() != mapping.to.size()) { return InvalidArgument( "mappings[%d].from and mappings[%d].to must have the same number of " "intervals, but has %d and %d intervals", i, i, mapping.from.size(), mapping.to.size()); } std::vector<bool>& in_used_buffers = in_used_buffers_list[mapping.in_array]; const DeviceList& in_devices = input_specs[mapping.in_array].sharding->devices(); DeviceList::Devices& out_assigned_devices = out_assigned_devices_list[mapping.out_array]; const int64_t in_shards_count = in_used_buffers.size(); const int64_t out_shards_count = out_assigned_devices.size(); for (int s = 0; s < mapping.from.size(); ++s) { const RemapPlan::Interval& in_interval = mapping.from[s]; const RemapPlan::Interval& out_interval = mapping.to[s]; TF_RETURN_IF_ERROR(CheckRange(in_shards_count, in_interval)); TF_RETURN_IF_ERROR(CheckRange(out_shards_count, out_interval)); if (GetNumberOfSteps(in_interval) != GetNumberOfSteps(out_interval)) { return InvalidArgument( "mappings[%d].from[%d] and mappings[%d].to[%d] must have the same " "number of steps, but were %d and %d " "(%s vs. %s)", i, s, i, s, GetNumberOfSteps(in_interval), GetNumberOfSteps(out_interval), in_interval.DebugString(), out_interval.DebugString()); } int64_t in_shard = in_interval.start; int64_t out_shard = out_interval.start; while (in_shard < in_interval.end) { if (in_used_buffers[in_shard]) { return InvalidArgument("Input array %d shard %d is already used", mapping.in_array, in_shard); } in_used_buffers[in_shard] = true; if (out_assigned_devices[out_shard] != nullptr) { return InvalidArgument("Output array %d shard %d is already assigned", mapping.out_array, out_shard); } out_assigned_devices[out_shard] = in_devices[in_shard]; in_shard += in_interval.step; out_shard += out_interval.step; } } } for (int i = 0; i < num_outputs; ++i) { for (int out_shard = 0; out_shard < output_specs[i].sharding->devices().size(); ++out_shard) { if (out_assigned_devices_list[i][out_shard] == nullptr) { return InvalidArgument("Output array %d shard %d is unassigned", i, out_shard); } } if (out_assigned_devices_list[i] != output_specs[i].sharding->devices().devices()) { return InvalidArgument( "Output array %d devices and sharding devices do not match: " "Expected %s, but got %s", i, output_specs[i].sharding->devices().DebugString(), DeviceList(std::move(out_assigned_devices_list[i])).DebugString()); } } return absl::OkStatus(); } absl::StatusOr<RemapPlan> RemapPlan::FromProto( DeviceList::LookupDeviceFunc lookup_device, const RemapPlanProto& proto) { RemapPlan plan; plan.input_specs.reserve(proto.input_specs_size()); for (const auto& input_spec_proto : proto.input_specs()) { TF_ASSIGN_OR_RETURN(ArraySpec input_spec, ArraySpec::FromProto(lookup_device, input_spec_proto)); plan.input_specs.push_back(std::move(input_spec)); } plan.output_specs.reserve(proto.output_specs_size()); for (const auto& output_spec_proto : proto.output_specs()) { TF_ASSIGN_OR_RETURN(ArraySpec output_spec, ArraySpec::FromProto(lookup_device, output_spec_proto)); plan.output_specs.push_back(std::move(output_spec)); } plan.mappings = std::make_shared<std::vector<Mapping>>(); plan.mappings->reserve(proto.mappings_size()); for (const auto& mapping_proto : proto.mappings()) { TF_ASSIGN_OR_RETURN(auto mapping, MappingFromProto(mapping_proto)); plan.mappings->push_back(std::move(mapping)); } return plan; } absl::StatusOr<RemapPlanProto> RemapPlan::ToProto() const { RemapPlanProto proto; proto.mutable_input_specs()->Reserve(input_specs.size()); for (const auto& input_spec : input_specs) { TF_ASSIGN_OR_RETURN(*proto.add_input_specs(), input_spec.ToProto()); } proto.mutable_output_specs()->Reserve(output_specs.size()); for (const auto& output_spec : output_specs) { TF_ASSIGN_OR_RETURN(*proto.add_output_specs(), output_spec.ToProto()); } proto.mutable_mappings()->Reserve(mappings->size()); for (const auto& mapping : *mappings) { TF_ASSIGN_OR_RETURN(*proto.add_mappings(), MappingToProto(mapping)); } return proto; } std::string RemapPlan::DebugString() const { auto format_array_specs = [](absl::Span<const ArraySpec> array_specs) { return absl::StrCat( "[", absl::StrJoin(array_specs, ",", [](std::string* out, const ArraySpec& spec) { absl::StrAppend(out, spec.DebugString()); }), "]"); }; auto format_mappings = [](absl::Span<const Mapping> mappings) { return absl::StrCat( "[", absl::StrJoin(mappings, ",", [](std::string* out, const Mapping& mapping) { absl::StrAppend(out, mapping.DebugString()); }), "]"); }; return absl::StrCat( "RemapPlan(output_specs=", format_array_specs(output_specs), ",", "mappings=", format_mappings(*mappings), ")"); } } }
#include "xla/python/ifrt/remap_plan.h" #include <memory> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/functional/bind_front.h" #include "absl/status/status.h" #include "llvm/Support/Casting.h" #include "xla/python/ifrt/array_spec.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/python/ifrt/sharding_test_util.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace ifrt { namespace { using ::testing::ElementsAreArray; using ::testing::HasSubstr; using ::testing::SizeIs; using ::tsl::testing::StatusIs; class RemapPlanTest : public test_util::ShardingTest {}; TEST_P(RemapPlanTest, ToFromProto) { RemapPlan plan; Shape shape({20, 20}); Shape shard_shape({5, 20}); DeviceList devices = GetDevices({0, 1, 2, 3}); std::shared_ptr<const Sharding> sharding = ConcreteEvenSharding::Create(devices, MemoryKind(), shape, shard_shape); plan.input_specs.reserve(2); plan.input_specs.push_back(ArraySpec{DType(DType::kF32), shape, sharding}); plan.input_specs.push_back(ArraySpec{DType(DType::kF32), shape, sharding}); plan.output_specs.reserve(2); plan.output_specs.push_back(ArraySpec{ DType(DType::kF32), shape, sharding}); plan.output_specs.push_back(ArraySpec{ DType(DType::kF32), shape, sharding}); plan.mappings = std::make_shared<std::vector<RemapPlan::Mapping>>(); plan.mappings->reserve(2); plan.mappings->push_back(RemapPlan::Mapping{ 0, 1, {RemapPlan::Interval{0, 2, 1}, RemapPlan::Interval{2, 4, 1}}, {RemapPlan::Interval{1, 4, 2}, RemapPlan::Interval{0, 4, 2}}}); plan.mappings->push_back(RemapPlan::Mapping{ 1, 0, {RemapPlan::Interval{0, 4, 2}, RemapPlan::Interval{1, 4, 2}}, {RemapPlan::Interval{0, 2, 1}, RemapPlan::Interval{2, 4, 1}}}); TF_ASSERT_OK_AND_ASSIGN(RemapPlanProto plan_proto, plan.ToProto()); TF_ASSERT_OK_AND_ASSIGN( RemapPlan plan_copy, RemapPlan::FromProto(absl::bind_front(&Client::LookupDevice, client()), plan_proto)); EXPECT_THAT(*plan_copy.mappings, ElementsAreArray(*plan.mappings)); EXPECT_THAT(plan_copy.output_specs, SizeIs(2)); for (const auto& spec : plan_copy.input_specs) { EXPECT_EQ(spec.dtype, DType(DType::kF32)); EXPECT_EQ(spec.shape, shape); const auto* sharding_copy = llvm::dyn_cast<ConcreteEvenSharding>(spec.sharding.get()); ASSERT_NE(sharding_copy, nullptr); EXPECT_EQ(sharding_copy->devices(), devices); EXPECT_EQ(sharding_copy->shape(), shape); EXPECT_EQ(sharding_copy->shard_shape(), shard_shape); } for (const auto& spec : plan_copy.output_specs) { EXPECT_EQ(spec.dtype, DType(DType::kF32)); EXPECT_EQ(spec.shape, shape); const auto* sharding_copy = llvm::dyn_cast<ConcreteEvenSharding>(spec.sharding.get()); ASSERT_NE(sharding_copy, nullptr); EXPECT_EQ(sharding_copy->devices(), devices); EXPECT_EQ(sharding_copy->shape(), shape); EXPECT_EQ(sharding_copy->shard_shape(), shard_shape); } } TEST_P(RemapPlanTest, InvalidInputDtype) { RemapPlan plan; plan.input_specs.push_back( ArraySpec{DType(DType::kS32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); plan.input_specs.push_back( ArraySpec{DType(DType::kF32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); EXPECT_THAT(plan.Validate(), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("Input must have the same dtype"))); } TEST_P(RemapPlanTest, InvalidOutputDtype) { RemapPlan plan; plan.input_specs.push_back( ArraySpec{DType(DType::kS32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); plan.output_specs.push_back( ArraySpec{DType(DType::kF32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); EXPECT_THAT(plan.Validate(), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("Input and output must have the same dtype"))); } TEST_P(RemapPlanTest, InvalidInputArrayIndex) { RemapPlan plan; plan.input_specs.push_back( ArraySpec{DType(DType::kS32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); plan.output_specs.push_back( ArraySpec{DType(DType::kS32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); plan.mappings = std::make_shared<std::vector<RemapPlan::Mapping>>(); plan.mappings->push_back( RemapPlan::Mapping{1, 0, {RemapPlan::Interval{0, 1, 1}}, {RemapPlan::Interval{0, 1, 1}}}); EXPECT_THAT( plan.Validate(), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("mappings[0].in_array must be in [0, 0], but is 1"))); } TEST_P(RemapPlanTest, InvalidOutputArrayIndex) { RemapPlan plan; plan.input_specs.push_back( ArraySpec{DType(DType::kS32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); plan.output_specs.push_back( ArraySpec{DType(DType::kS32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); plan.mappings = std::make_shared<std::vector<RemapPlan::Mapping>>(); plan.mappings->push_back( RemapPlan::Mapping{0, 1, {RemapPlan::Interval{0, 1, 1}}, {RemapPlan::Interval{0, 1, 1}}}); EXPECT_THAT( plan.Validate(), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("mappings[0].out_array must be in [0, 0], but is 1"))); } TEST_P(RemapPlanTest, InvalidIntervalCount) { RemapPlan plan; plan.input_specs.push_back( ArraySpec{DType(DType::kS32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); plan.output_specs.push_back( ArraySpec{DType(DType::kS32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); plan.mappings = std::make_shared<std::vector<RemapPlan::Mapping>>(); plan.mappings->push_back(RemapPlan::Mapping{ 0, 0, {RemapPlan::Interval{0, 1, 1}, RemapPlan::Interval{0, 1, 1}}, {RemapPlan::Interval{0, 1, 1}}}); EXPECT_THAT( plan.Validate(), StatusIs( absl::StatusCode::kInvalidArgument, HasSubstr("mappings[0].from and mappings[0].to must have the same " "number of intervals, but has 2 and 1 intervals"))); } TEST_P(RemapPlanTest, InvalidShardIndex) { auto run = [&](RemapPlan::Interval from, RemapPlan::Interval to) { RemapPlan plan; plan.input_specs.push_back( ArraySpec{DType(DType::kS32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); plan.output_specs.push_back( ArraySpec{DType(DType::kS32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); plan.mappings = std::make_shared<std::vector<RemapPlan::Mapping>>(); plan.mappings->push_back(RemapPlan::Mapping{0, 0, {from}, {to}}); return plan.Validate(); }; EXPECT_THAT(run(RemapPlan::Interval{-1, 1, 1}, RemapPlan::Interval{0, 1, 1}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("start must be in [0, 0], but is -1"))); EXPECT_THAT(run(RemapPlan::Interval{1, 1, 1}, RemapPlan::Interval{0, 1, 1}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("start must be in [0, 0], but is 1"))); EXPECT_THAT(run(RemapPlan::Interval{0, 1, 1}, RemapPlan::Interval{-1, 1, 1}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("start must be in [0, 0], but is -1"))); EXPECT_THAT(run(RemapPlan::Interval{0, 1, 1}, RemapPlan::Interval{1, 1, 1}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("start must be in [0, 0], but is 1"))); EXPECT_THAT(run(RemapPlan::Interval{0, -1, 1}, RemapPlan::Interval{0, 1, 1}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("end must be in [0, 1], but is -1"))); EXPECT_THAT(run(RemapPlan::Interval{0, 2, 1}, RemapPlan::Interval{0, 1, 1}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("end must be in [0, 1], but is 2"))); EXPECT_THAT(run(RemapPlan::Interval{0, 1, 1}, RemapPlan::Interval{0, -1, 1}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("end must be in [0, 1], but is -1"))); EXPECT_THAT(run(RemapPlan::Interval{0, 1, 1}, RemapPlan::Interval{0, 2, 1}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("end must be in [0, 1], but is 2"))); EXPECT_THAT(run(RemapPlan::Interval{0, 1, 0}, RemapPlan::Interval{0, 1, 1}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("step must be positive, but is 0"))); EXPECT_THAT(run(RemapPlan::Interval{0, 1, 1}, RemapPlan::Interval{0, 1, -1}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("step must be positive, but is -1"))); } TEST_P(RemapPlanTest, AlreadyUsedInputShard) { RemapPlan plan; plan.input_specs.push_back( ArraySpec{DType(DType::kS32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); plan.output_specs.push_back( ArraySpec{DType(DType::kS32), Shape({4, 3}), ConcreteEvenSharding::Create(GetDevices({0, 1}), MemoryKind(), Shape({4, 3}), Shape({2, 3}))}); plan.mappings = std::make_shared<std::vector<RemapPlan::Mapping>>(); plan.mappings->push_back(RemapPlan::Mapping{ 0, 0, {RemapPlan::Interval{0, 1, 1}, RemapPlan::Interval{0, 1, 1}}, {RemapPlan::Interval{0, 1, 1}, RemapPlan::Interval{1, 2, 1}}}); EXPECT_THAT(plan.Validate(), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("Input array 0 shard 0 is already used"))); } TEST_P(RemapPlanTest, UnassignedOutputShard) { RemapPlan plan; plan.input_specs.push_back( ArraySpec{DType(DType::kS32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); plan.output_specs.push_back( ArraySpec{DType(DType::kS32), Shape({4, 3}), ConcreteEvenSharding::Create(GetDevices({0, 1}), MemoryKind(), Shape({4, 3}), Shape({2, 3}))}); plan.mappings = std::make_shared<std::vector<RemapPlan::Mapping>>(); plan.mappings->push_back( RemapPlan::Mapping{0, 0, {RemapPlan::Interval{0, 1, 1}}, {RemapPlan::Interval{0, 1, 1}}}); EXPECT_THAT(plan.Validate(), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("Output array 0 shard 1 is unassigned"))); } TEST_P(RemapPlanTest, AlreadyAssignedOutputShard) { RemapPlan plan; plan.input_specs.push_back( ArraySpec{DType(DType::kS32), Shape({4, 3}), ConcreteEvenSharding::Create(GetDevices({0, 1}), MemoryKind(), Shape({4, 3}), Shape({2, 3}))}); plan.output_specs.push_back( ArraySpec{DType(DType::kS32), Shape({2, 3}), ConcreteEvenSharding::Create(GetDevices({0}), MemoryKind(), Shape({2, 3}), Shape({2, 3}))}); plan.mappings = std::make_shared<std::vector<RemapPlan::Mapping>>(); plan.mappings->push_back(RemapPlan::Mapping{ 0, 0, {RemapPlan::Interval{0, 1, 1}, RemapPlan::Interval{1, 2, 1}}, {RemapPlan::Interval{0, 1, 1}, RemapPlan::Interval{0, 1, 1}}}); EXPECT_THAT( plan.Validate(), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("Output array 0 shard 0 is already assigned"))); } TEST_P(RemapPlanTest, InvalidOutputDevices) { RemapPlan plan; plan.input_specs.push_back( ArraySpec{DType(DType::kS32), Shape({4, 3}), ConcreteEvenSharding::Create(GetDevices({0, 1}), MemoryKind(), Shape({4, 3}), Shape({2, 3}))}); plan.output_specs.push_back( ArraySpec{DType(DType::kS32), Shape({4, 3}), ConcreteEvenSharding::Create(GetDevices({1, 0}), MemoryKind(), Shape({4, 3}), Shape({2, 3}))}); plan.mappings = std::make_shared<std::vector<RemapPlan::Mapping>>(); plan.mappings->push_back( RemapPlan::Mapping{0, 0, {RemapPlan::Interval{0, 2, 1}}, {RemapPlan::Interval{0, 2, 1}}}); EXPECT_THAT( plan.Validate(), StatusIs( absl::StatusCode::kInvalidArgument, HasSubstr( "Output array 0 devices and sharding devices do not match"))); } INSTANTIATE_TEST_SUITE_P(NumDevices, RemapPlanTest, testing::Values(test_util::ShardingTestParam{ 4, 4})); } } }
1,819
cpp
tensorflow/tensorflow
index
third_party/xla/xla/python/ifrt/index.cc
third_party/xla/xla/python/ifrt/index_test.cc
#ifndef XLA_PYTHON_IFRT_INDEX_H_ #define XLA_PYTHON_IFRT_INDEX_H_ #include <cstdint> #include <ostream> #include <string> #include "absl/container/inlined_vector.h" #include "absl/types/span.h" #include "tsl/platform/logging.h" namespace xla { namespace ifrt { class Index { public: static constexpr int kInlineElementSize = 6; using Elements = absl::InlinedVector<int64_t, kInlineElementSize>; explicit Index(absl::Span<const int64_t> elements) : elements_(Elements(elements.begin(), elements.end())) {} static Index Zeros(int num_elements) { return Index(Elements(num_elements)); } Index(const Index&) = default; Index(Index&&) = default; Index& operator=(const Index&) = default; Index& operator=(Index&&) = default; absl::Span<const int64_t> elements() const { return elements_; } bool operator==(const Index& other) const { return elements_ == other.elements_; } bool operator!=(const Index& other) const { return elements_ != other.elements_; } Index operator+(const Index& offset) const { CHECK_EQ(elements_.size(), offset.elements_.size()); Index result = *this; for (int i = 0; i < elements_.size(); ++i) { result.elements_[i] += offset.elements_[i]; } return result; } Index operator-(const Index& offset) const { CHECK_EQ(elements_.size(), offset.elements_.size()); Index result = *this; for (int i = 0; i < elements_.size(); ++i) { result.elements_[i] -= offset.elements_[i]; } return result; } Index operator*(absl::Span<const int64_t> multiplier) const { CHECK_EQ(elements_.size(), multiplier.size()); Index result = *this; for (int i = 0; i < elements_.size(); ++i) { result.elements_[i] *= multiplier[i]; } return result; } Index& operator+=(const Index& offset) { return *this = *this + offset; } Index& operator-=(const Index& offset) { return *this = *this - offset; } Index& operator*=(absl::Span<const int64_t> multiplier) { return *this = *this * multiplier; } std::string DebugString() const; private: Elements elements_; }; std::ostream& operator<<(std::ostream& os, const Index& index); } } #endif #include "xla/python/ifrt/index.h" #include <ostream> #include <string> #include "absl/strings/str_join.h" namespace xla { namespace ifrt { std::string Index::DebugString() const { return absl::StrCat("[", absl::StrJoin(elements_, ","), "]"); } std::ostream& operator<<(std::ostream& os, const Index& index) { return os << index.DebugString(); } } }
#include "xla/python/ifrt/index.h" #include <memory> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> namespace xla { namespace ifrt { namespace { using ::testing::ElementsAre; TEST(IndexTest, Construction) { EXPECT_THAT(Index({1, 2}).elements(), ElementsAre(1, 2)); EXPECT_THAT(Index::Zeros(2).elements(), ElementsAre(0, 0)); } TEST(IndexTest, Operations) { EXPECT_EQ(Index({1, 2}), Index({1, 2})); EXPECT_NE(Index({1, 2}), Index({1, 3})); Index a({11, 22}); Index b({2, 3}); EXPECT_EQ(a + b, Index({13, 25})); { Index c = a; EXPECT_EQ(c += b, Index({13, 25})); } EXPECT_EQ(a - b, Index({9, 19})); { Index c = a; EXPECT_EQ(c -= b, Index({9, 19})); } EXPECT_EQ(a * std::vector<int64_t>({1, 2}), Index({11, 44})); { Index c = a; EXPECT_EQ(c *= std::vector<int64_t>({1, 2}), Index({11, 44})); } } } } }
1,820
cpp
tensorflow/tensorflow
tuple
third_party/xla/xla/client/lib/tuple.cc
third_party/xla/xla/client/lib/tuple_test.cc
#ifndef XLA_CLIENT_LIB_TUPLE_H_ #define XLA_CLIENT_LIB_TUPLE_H_ #include "absl/status/statusor.h" #include "xla/client/xla_builder.h" #include "xla/shape_tree.h" namespace xla { absl::StatusOr<ShapeTree<XlaOp>> DisassembleTuple(XlaOp tuple); XlaOp AssembleTuple(XlaBuilder* builder, ShapeTree<XlaOp> elements); } #endif #include "xla/client/lib/tuple.h" #include <utility> #include "absl/container/inlined_vector.h" #include "absl/status/statusor.h" #include "xla/client/xla_builder.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "tsl/platform/statusor.h" namespace xla { absl::StatusOr<ShapeTree<XlaOp>> DisassembleTuple(XlaOp tuple) { TF_ASSIGN_OR_RETURN(Shape shape, tuple.builder()->GetShape(tuple)); ShapeTree<XlaOp> result(shape); result.ForEachMutableElement([&](ShapeIndexView index, XlaOp* element) { if (index.empty()) { *element = tuple; } else { ShapeIndexView parent_index = index.subspan(0, index.size() - 1); XlaOp parent = result.element(parent_index); *element = GetTupleElement(parent, index.back()); } }); return std::move(result); } XlaOp AssembleTuple(XlaBuilder* builder, ShapeTree<XlaOp> elements) { elements.ForEachMutableElementPostOrder( [&](const ShapeIndex& index, XlaOp* element) { const Shape& subshape = ShapeUtil::GetSubshape(elements.shape(), index); if (subshape.IsTuple()) { absl::InlinedVector<XlaOp, 2> children; ShapeIndex child_index = index; for (int i = 0; i < subshape.tuple_shapes_size(); ++i) { child_index.push_back(i); children.push_back(elements.element(child_index)); child_index.pop_back(); } *element = Tuple(builder, children); } }); return elements.element({}); } }
#include "xla/client/lib/tuple.h" #include <cstdint> #include <memory> #include <utility> #include "xla/client/global_data.h" #include "xla/client/xla_builder.h" #include "xla/error_spec.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/test_macros.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class TupleTest : public ClientLibraryTestBase {}; XLA_TEST_F(TupleTest, DisassembleAssemble) { XlaBuilder builder(TestName()); Shape shape = ShapeUtil::MakeTupleShape({ ShapeUtil::MakeShape(S32, {3}), ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(S32, {4}), ShapeUtil::MakeShape(S32, {5})}), ShapeUtil::MakeShape(S32, {6}), }); Literal input = LiteralUtil::MakeTupleOwned( LiteralUtil::CreateFullWithDescendingLayout({3}, int32_t{42}), LiteralUtil::MakeTupleOwned( LiteralUtil::CreateFullWithDescendingLayout({4}, int32_t{43}), LiteralUtil::CreateFullWithDescendingLayout({5}, int32_t{44})), LiteralUtil::CreateFullWithDescendingLayout({6}, int32_t{45})); XlaOp param = Parameter(&builder, 0, shape, "param"); TF_ASSERT_OK_AND_ASSIGN(ShapeTree<XlaOp> disassembled_tuple, DisassembleTuple(param)); int32_t addend = 1; disassembled_tuple.ForEachMutableElement([&](const ShapeIndex& index, XlaOp* element) { const Shape& subshape = ShapeUtil::GetSubshape(shape, index); if (subshape.IsArray()) { *element = Add( *element, ConstantLiteral(&builder, LiteralUtil::CreateFullWithDescendingLayout( subshape.dimensions(), addend))); ++addend; } }); AssembleTuple(&builder, std::move(disassembled_tuple)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<GlobalData> data, client_->TransferToServer(input)); Literal expected = LiteralUtil::MakeTupleOwned( LiteralUtil::CreateFullWithDescendingLayout({3}, int32_t{43}), LiteralUtil::MakeTupleOwned( LiteralUtil::CreateFullWithDescendingLayout({4}, int32_t{45}), LiteralUtil::CreateFullWithDescendingLayout({5}, int32_t{47})), LiteralUtil::CreateFullWithDescendingLayout({6}, int32_t{49})); ComputeAndCompareLiteral(&builder, expected, {data.get()}, ErrorSpec(0), &shape); } } }
1,821
cpp
tensorflow/tensorflow
value
third_party/xla/xla/python/ifrt/value.cc
tensorflow/cc/experimental/libtf/tests/value_test.cc
#ifndef XLA_PYTHON_IFRT_VALUE_H_ #define XLA_PYTHON_IFRT_VALUE_H_ #include <string> #include "absl/status/status.h" #include "llvm/Support/ExtensibleRTTI.h" #include "xla/python/ifrt/future.h" #include "xla/tsl/concurrency/ref_count.h" namespace xla { namespace ifrt { class Client; class Value : public tsl::ReferenceCounted<Value>, public llvm::RTTIExtends<Value, llvm::RTTIRoot> { public: Value() = default; Value(const Value&) = delete; Value(Value&&) = delete; Value& operator=(const Value&) = delete; Value& operator=(Value&&) = delete; virtual Client* client() const = 0; virtual Future<> GetReadyFuture() const = 0; virtual Future<> Delete() = 0; virtual bool IsDeleted() const = 0; virtual std::string DebugString() const = 0; static char ID; }; } } #endif #include "xla/python/ifrt/value.h" namespace xla { namespace ifrt { char Value::ID = 0; } }
#include "tensorflow/cc/experimental/libtf/value.h" #include <cstdint> #include "tensorflow/cc/experimental/libtf/value_iostream.h" #include "tensorflow/core/platform/test.h" namespace tf { namespace libtf { namespace impl { TEST(ValueTest, TestBasic) { TaggedValue valuef(3.f); TaggedValue valuei(int64_t(3)); TaggedValue list = TaggedValue::List(); TaggedValue tuple = TaggedValue::Tuple(); tuple.tuple().push_back(TaggedValue(int64_t(310))); list.list().push_back(valuei); list.list().push_back(valuef); list.list().push_back(tuple); std::stringstream stream; stream << list; ASSERT_EQ(stream.str(), "[3, 3, (310, ), ]"); } TEST(ValueTest, TestString) { TaggedValue value1a("string1"); std::string s = "string"; s += "1"; TaggedValue value1b(s.c_str()); ASSERT_EQ(value1b.s(), value1a.s()); TaggedValue value2("string2"); ASSERT_NE(value1a.s(), value2.s()); ASSERT_STREQ(value1a.s(), "string1"); ASSERT_STREQ(value2.s(), "string2"); } TEST(Test1, TestDict) { TaggedValue s1("test1"); TaggedValue s2("test2"); TaggedValue d = TaggedValue::Dict(); d.dict()[s2] = TaggedValue(6.f); std::stringstream stream; stream << d; ASSERT_EQ(stream.str(), "{test2: 6, }"); } namespace { TaggedValue add(TaggedValue args, TaggedValue kwargs) { if (args.type() == TaggedValue::TUPLE) { return TaggedValue(args.tuple()[0].f32() + args.tuple()[1].f32()); } return TaggedValue::None(); } } TEST(Test1, TestFunctionCall) { TaggedValue f32 = TaggedValue(add); TaggedValue args = TaggedValue::Tuple(); args.tuple().emplace_back(TaggedValue(1.f)); args.tuple().emplace_back(TaggedValue(2.f)); TaggedValue c = f32.func()(args, TaggedValue::None()).value(); ASSERT_EQ(c, TaggedValue(3.f)); } namespace { int alloc_count = 0; class Cool { public: Cool() { alloc_count++; } ~Cool() { alloc_count--; } }; } TEST(Test1, TestCapsule) { TaggedValue test_moved, test_copy; ASSERT_EQ(alloc_count, 0); void* ptr_value = new Cool(); { TaggedValue capsule = TaggedValue::Capsule(static_cast<void*>(ptr_value), [](void* x) { delete static_cast<Cool*>(x); }); ASSERT_EQ(alloc_count, 1); ASSERT_EQ(capsule.capsule(), ptr_value); test_moved = std::move(capsule); ASSERT_EQ(capsule.type(), TaggedValue::NONE); test_copy = test_moved; ASSERT_EQ(test_moved.capsule(), ptr_value); ASSERT_EQ(test_copy.capsule(), ptr_value); } ASSERT_EQ(alloc_count, 1); test_moved = TaggedValue::None(); ASSERT_EQ(alloc_count, 1); test_copy = TaggedValue(3.f); ASSERT_EQ(alloc_count, 0); } } } }
1,822
cpp
tensorflow/tensorflow
sharding_conversions
third_party/xla/xla/python/ifrt/support/sharding_conversions.cc
third_party/xla/xla/python/ifrt/support/sharding_conversions_test.cc
#ifndef XLA_PYTHON_IFRT_SUPPORT_SHARDING_CONVERSIONS_H_ #define XLA_PYTHON_IFRT_SUPPORT_SHARDING_CONVERSIONS_H_ #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/ir/sharding_param.h" #include "xla/python/ifrt/sharding.h" #include "xla/xla_data.pb.h" namespace xla { namespace ifrt { namespace support { absl::StatusOr<OpSharding> ToOpSharding(const Sharding& sharding); absl::StatusOr<OpSharding> ToOpSharding( const ShardingParam& sharding_param, const xla::ifrt::DeviceList& device_mapping); absl::StatusOr<HloSharding> ToHloSharding(const ShardingParam& sharding_param); absl::StatusOr<ShardingParam> ToShardingParam(const HloSharding& hlo_sharding, int rank, int num_devices); } } } #endif #include "xla/python/ifrt/support/sharding_conversions.h" #include <cstdint> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Casting.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/ir/sharding_param.h" #include "xla/python/ifrt/sharding.h" #include "xla/xla_data.pb.h" namespace xla { namespace ifrt { namespace support { absl::StatusOr<OpSharding> ToOpSharding(const Sharding& sharding) { if (auto* sharding_param_sharding = llvm::dyn_cast<xla::ifrt::ShardingParamSharding>(&sharding)) { return ToOpSharding(sharding_param_sharding->sharding_param(), sharding_param_sharding->devices()); } else { return absl::InvalidArgumentError( "Only conversion from `ShardingParamSharding` to `OpSharding` is " "supported."); } } absl::StatusOr<OpSharding> ToOpSharding( const ShardingParam& sharding_param, const xla::ifrt::DeviceList& device_mapping) { OpSharding op_sharding; { bool all_dim_replicated = true; for (const int64_t dim_shard : sharding_param.dim_shards()) { if (dim_shard != 1) { all_dim_replicated = false; break; } } if (all_dim_replicated) { op_sharding.set_type(OpSharding::REPLICATED); return op_sharding; } } op_sharding.set_type(OpSharding::OTHER); auto* tile_assignment_dims = op_sharding.mutable_tile_assignment_dimensions(); int64_t cum_size = 1; tile_assignment_dims->Reserve(sharding_param.dim_shards().size() + 1); for (const int64_t dim_shard : sharding_param.dim_shards()) { cum_size *= dim_shard; tile_assignment_dims->Add(dim_shard); } int device_count = 1; for (const int axis_size : sharding_param.minor_to_major().axis_sizes) { device_count *= axis_size; } if (device_count != cum_size) { op_sharding.set_replicate_on_last_tile_dim(true); tile_assignment_dims->Add(device_count / cum_size); } llvm::SmallVector<int> logical_device_ids; sharding_param.minor_to_major().ToDeviceList(logical_device_ids); auto* tile_assignment_devices = op_sharding.mutable_tile_assignment_devices(); tile_assignment_devices->Reserve(logical_device_ids.size()); for (const int logical_device_id : logical_device_ids) { if (logical_device_id < 0 || logical_device_id >= device_mapping.size()) { return absl::OutOfRangeError( absl::StrCat("Can't map device with logical id ", logical_device_id, ". The logical device id should be within [0, ", device_mapping.size(), ").")); } tile_assignment_devices->Add( device_mapping[logical_device_id]->Id().value()); } return op_sharding; } absl::StatusOr<HloSharding> ToHloSharding(const ShardingParam& sharding_param) { auto axis_sizes = sharding_param.minor_to_major().axis_sizes; llvm::SmallVector<int64_t> reshape_dims; reshape_dims.reserve(axis_sizes.size()); int device_count = 1; for (auto axis_size : llvm::reverse(axis_sizes)) { reshape_dims.push_back(axis_size); device_count *= axis_size; } if (device_count == 1) { return HloSharding::Replicate(); } int64_t cum_size = 1; llvm::SmallVector<int64_t> dims; dims.reserve(sharding_param.dim_shards().size()); for (const int64_t dim_shard : sharding_param.dim_shards()) { cum_size *= dim_shard; dims.push_back(dim_shard); } llvm::SmallVector<int, 4> permutation; int num_axis = sharding_param.minor_to_major().permutation.size(); permutation.reserve(num_axis); for (const int axis_id : llvm::reverse(sharding_param.minor_to_major().permutation)) { permutation.push_back(num_axis - axis_id - 1); } if (device_count != cum_size) { dims.push_back(device_count / cum_size); return HloSharding::PartialTile( TileAssignment(dims, reshape_dims, permutation)); } else { return HloSharding::IotaTile(dims, reshape_dims, permutation); } } absl::StatusOr<ShardingParam> ToShardingParam(const HloSharding& hlo_sharding, int rank, int num_devices) { ShardingParam::MinorToMajor minor_to_major; if (hlo_sharding.IsReplicated() || (hlo_sharding.IsTileMaximal() && hlo_sharding.HasUniqueDevice() && num_devices == 1)) { llvm::SmallVector<int64_t> dim_shards(rank, 1); minor_to_major.permutation.push_back(0); minor_to_major.axis_sizes.push_back(num_devices); return ShardingParam(dim_shards, std::move(minor_to_major)); } else if (hlo_sharding.IsTiled()) { const xla::TileAssignment& tile_assignment = hlo_sharding.tile_assignment(); if (!tile_assignment.iota()) { return absl::InvalidArgumentError(absl::StrCat( "Conversion from `HloSharding` without `IotaTileAssignment` is not " "supported; sharding=", hlo_sharding.ToString())); } if (rank != hlo_sharding.TiledDataRank()) { return absl::InvalidArgumentError(absl::StrFormat( "`TiledData` expected to have have %d dimensions, but has %d " "dimensions; sharding=%s", rank, hlo_sharding.TiledDataRank(), hlo_sharding.ToString())); } if (hlo_sharding.subgroup_types().size() > 1 || (hlo_sharding.subgroup_types().size() == 1 && hlo_sharding.subgroup_types()[0] != xla::OpSharding::REPLICATED)) { return absl::InvalidArgumentError(absl::StrCat( "Unsupported conversion to `ShardingParam` from `HloSharding` that " "has more than a subgroup or a subgroup that is not REPLICATED; " "sharding=", hlo_sharding.ToString())); } llvm::SmallVector<int64_t> dim_shards(tile_assignment.dimensions().begin(), tile_assignment.dimensions().end()); if (hlo_sharding.ReplicateOnLastTileDim() || (hlo_sharding.subgroup_types().size() == 1 && hlo_sharding.subgroup_types()[0] == xla::OpSharding::REPLICATED)) { dim_shards.pop_back(); } if (tile_assignment.iota()->reshape_dims().empty()) { minor_to_major.permutation.push_back(0); minor_to_major.axis_sizes.push_back(num_devices); } else { for (auto reshape_dim : llvm::reverse(tile_assignment.iota()->reshape_dims())) { minor_to_major.axis_sizes.push_back(reshape_dim); } int num_axis = tile_assignment.iota()->transpose_perm().size(); for (int axis_id : llvm::reverse(tile_assignment.iota()->transpose_perm())) { minor_to_major.permutation.push_back(num_axis - axis_id - 1); } } return ShardingParam(dim_shards, std::move(minor_to_major)); } return absl::UnimplementedError( absl::StrCat("Unsupported conversion to `ShardingParam` from " "`HloSharding`; sharding=", hlo_sharding.ToString())); } } } }
#include "xla/python/ifrt/support/sharding_conversions.h" #include <memory> #include <numeric> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/ir/tile_assignment.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/index_domain.h" #include "xla/python/ifrt/ir/sharding_param.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/mock.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/python/ifrt/test_util.h" #include "xla/shape.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace support { namespace { using ::testing::Return; using ::tsl::testing::StatusIs; using xla::HloSharding; absl::StatusOr<HloSharding> ToHloShardingViaOpSharding( const ShardingParam& sharding_param, const DeviceList& device_list) { TF_ASSIGN_OR_RETURN(xla::OpSharding op_sharding, ToOpSharding(sharding_param, device_list)); return HloSharding::FromProto(op_sharding); } struct ShardingConversionTestClientState { absl::flat_hash_map<DeviceId, std::unique_ptr<Device>> device_map; std::vector<Device*> devices; }; std::shared_ptr<MockClient> MakeTestClient(int num_devices) { auto state = std::make_shared<ShardingConversionTestClientState>(); state->devices.reserve(num_devices); for (int i = 0; i < num_devices; ++i) { auto device = std::make_unique<MockDevice>(); ON_CALL(*device, Id).WillByDefault(Return(DeviceId(i))); state->devices.push_back(device.get()); state->device_map.insert({DeviceId(i), std::move(device)}); } auto client = std::make_shared<MockClient>(); ON_CALL(*client, devices) .WillByDefault( [state]() -> absl::Span<Device* const> { return state->devices; }); return client; } class ShardingConversionsTest : public testing::TestWithParam<int> { public: void SetUp() override { client_ = MakeTestClient(GetParam()); } DeviceList GetDevices(absl::Span<const int> device_indices) { return test_util::GetDevices(client_.get(), device_indices).value(); } void AssertSameTiling(const ShardingParam& sharding_param, const HloSharding& hlo_sharding, const Shape& shape) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<const Sharding> sharding, ShardingParamSharding::Create( sharding_param, device_list, MemoryKind())); const xla::Shape xla_shape(PrimitiveType::F16, shape.dims(), {}, {}); TF_ASSERT_OK_AND_ASSIGN(const std::vector<IndexDomain> index_domains, sharding->IndexDomains(shape)); ASSERT_EQ(index_domains.size(), hlo_sharding.tile_assignment().num_elements()); const xla::Shape xla_tile_shape = hlo_sharding.TileShape(xla_shape); for (int i = 0; i < index_domains.size(); ++i) { SCOPED_TRACE(absl::StrCat("on device ", i)); EXPECT_EQ(index_domains[i].origin().elements(), hlo_sharding.TileOffsetForDevice(xla_shape, i)); EXPECT_EQ(index_domains[i].shape().dims(), xla_tile_shape.dimensions()); } } private: std::shared_ptr<Client> client_; }; TEST_P(ShardingConversionsTest, Replicated) { ShardingParam expected_sharding_param{ {1, 1, 1}, {{0, 1}, {2, 3}}}; TF_EXPECT_OK(expected_sharding_param.verify()); TF_ASSERT_OK_AND_ASSIGN(const HloSharding hlo_iota_sharding, ToHloSharding(expected_sharding_param)); TF_ASSERT_OK_AND_ASSIGN( const HloSharding hlo_sharding, ToHloShardingViaOpSharding(expected_sharding_param, GetDevices({0, 1, 2, 3, 4, 5}))); EXPECT_EQ(hlo_sharding.ToString(), "{replicated}"); EXPECT_EQ(hlo_sharding, hlo_iota_sharding); TF_ASSERT_OK_AND_ASSIGN(auto sharding_param, ToShardingParam(hlo_iota_sharding, 3, 6)); TF_ASSERT_OK_AND_ASSIGN(const HloSharding actual_hlo_sharding, ToHloSharding(sharding_param)); EXPECT_EQ(hlo_iota_sharding, actual_hlo_sharding); } TEST_P(ShardingConversionsTest, SingleDeviceReplicated) { ShardingParam expected_sharding_param{ {1, 1}, {{0}, {1}}}; TF_EXPECT_OK(expected_sharding_param.verify()); TF_ASSERT_OK_AND_ASSIGN(const HloSharding hlo_iota_sharding, ToHloSharding(expected_sharding_param)); TF_ASSERT_OK_AND_ASSIGN( const HloSharding hlo_sharding, ToHloShardingViaOpSharding(expected_sharding_param, GetDevices({0}))); EXPECT_EQ(hlo_sharding.ToString(), "{replicated}"); EXPECT_EQ(hlo_sharding, hlo_iota_sharding); TF_ASSERT_OK_AND_ASSIGN(auto sharding_param, ToShardingParam(hlo_iota_sharding, 2, 1)); EXPECT_EQ(expected_sharding_param, sharding_param); } TEST_P(ShardingConversionsTest, Permutation) { ShardingParam expected_sharding_param{ {2, 1, 3}, {{1, 0}, {3, 2}}}; TF_EXPECT_OK(expected_sharding_param.verify()); TF_ASSERT_OK_AND_ASSIGN(const HloSharding hlo_iota_sharding, ToHloSharding(expected_sharding_param)); TF_ASSERT_OK_AND_ASSIGN( const HloSharding hlo_sharding, ToHloShardingViaOpSharding(expected_sharding_param, GetDevices({0, 1, 2, 3, 4, 5}))); EXPECT_EQ(hlo_sharding.ToString(), "{devices=[2,1,3]0,3,1,4,2,5}"); EXPECT_EQ(hlo_sharding, hlo_iota_sharding); TF_ASSERT_OK_AND_ASSIGN(auto sharding_param, ToShardingParam(hlo_iota_sharding, 3, 6)); EXPECT_EQ(expected_sharding_param, sharding_param); } TEST_P(ShardingConversionsTest, Partial) { ShardingParam expected_sharding_param{ {2, 1}, {{0, 1}, {2, 3}}}; TF_EXPECT_OK(expected_sharding_param.verify()); TF_ASSERT_OK_AND_ASSIGN(const HloSharding hlo_iota_sharding, ToHloSharding(expected_sharding_param)); TF_ASSERT_OK_AND_ASSIGN( const HloSharding hlo_sharding, ToHloShardingViaOpSharding(expected_sharding_param, GetDevices({0, 1, 2, 3, 4, 5}))); EXPECT_EQ(hlo_sharding.ToString(), "{devices=[2,1,3]0,1,2,3,4,5 last_tile_dim_replicate}"); EXPECT_EQ(hlo_sharding, hlo_iota_sharding); TF_ASSERT_OK_AND_ASSIGN(auto sharding_param, ToShardingParam(hlo_iota_sharding, 2, 6)); TF_ASSERT_OK_AND_ASSIGN(const HloSharding actual_hlo_sharding, ToHloSharding(sharding_param)); EXPECT_EQ(hlo_iota_sharding, actual_hlo_sharding); } TEST_P(ShardingConversionsTest, OneDimToTwoAxes) { ShardingParam expected_sharding_param{ {4}, {{1, 0}, {2, 2}}}; TF_EXPECT_OK(expected_sharding_param.verify()); TF_ASSERT_OK_AND_ASSIGN(const HloSharding hlo_iota_sharding, ToHloSharding(expected_sharding_param)); TF_ASSERT_OK_AND_ASSIGN(const HloSharding hlo_sharding, ToHloShardingViaOpSharding(expected_sharding_param, GetDevices({0, 1, 2, 3}))); EXPECT_EQ(hlo_sharding.ToString(), "{devices=[4]0,2,1,3}"); EXPECT_EQ(hlo_sharding, hlo_iota_sharding); TF_ASSERT_OK_AND_ASSIGN(auto sharding_param, ToShardingParam(hlo_iota_sharding, 1, 4)); EXPECT_EQ(expected_sharding_param, sharding_param); } TEST_P(ShardingConversionsTest, NonTrivialDeviceAssignment) { ShardingParam expected_sharding_param{ {2, 1, 3}, {{1, 0}, {3, 2}}}; TF_EXPECT_OK(expected_sharding_param.verify()); TF_ASSERT_OK_AND_ASSIGN( const HloSharding hlo_sharding, ToHloShardingViaOpSharding(expected_sharding_param, GetDevices({6, 5, 4, 3, 2, 1}))); EXPECT_EQ(hlo_sharding.ToString(), "{devices=[2,1,3]6,3,5,2,4,1}"); } TEST_P(ShardingConversionsTest, VerifyIncorrectShardings) { ShardingParam different_permutation_and_axis{ {1, 1}, {{0, 1}, {2}}}; EXPECT_FALSE(different_permutation_and_axis.verify().ok()); ShardingParam too_many_slices{{2, 2}, {{0}, {2}}}; EXPECT_FALSE(too_many_slices.verify().ok()); ShardingParam incorrect_permutation{ {4, 1}, {{0, 1, 1}, {2, 2, 2}}}; EXPECT_FALSE(incorrect_permutation.verify().ok()); } TEST_P(ShardingConversionsTest, ErrorOnDeviceAssignment) { ShardingParam sharding_param{{2, 1, 3}, {{1, 0}, {3, 2}}}; TF_EXPECT_OK(sharding_param.verify()); EXPECT_THAT( ToHloShardingViaOpSharding(sharding_param, GetDevices({6, 5, 4, 3, 2})), StatusIs(absl::StatusCode::kOutOfRange, ::testing::HasSubstr("Can't map device with logical id 5"))); } TEST_P(ShardingConversionsTest, ShardingParamFullySharded) { ShardingParam sharding_param{{2, 3}, {{0, 1}, {2, 3}}}; TF_EXPECT_OK(sharding_param.verify()); TF_ASSERT_OK_AND_ASSIGN(const HloSharding hlo_sharding, ToHloShardingViaOpSharding( sharding_param, GetDevices({0, 1, 2, 3, 4, 5}))); AssertSameTiling(sharding_param, hlo_sharding, Shape({6, 6})); } TEST_P(ShardingConversionsTest, ShardingParamWithPermutation) { ShardingParam sharding_param{{2, 3}, {{1, 0}, {3, 2}}}; TF_EXPECT_OK(sharding_param.verify()); TF_ASSERT_OK_AND_ASSIGN(const HloSharding hlo_sharding, ToHloShardingViaOpSharding( sharding_param, GetDevices({0, 1, 2, 3, 4, 5}))); AssertSameTiling(sharding_param, hlo_sharding, Shape({6, 6})); } TEST_P(ShardingConversionsTest, ShardingParamWithReplication) { ShardingParam sharding_param{{2, 1}, {{0, 1}, {2, 3}}}; TF_EXPECT_OK(sharding_param.verify()); TF_ASSERT_OK_AND_ASSIGN(const HloSharding hlo_sharding, ToHloShardingViaOpSharding( sharding_param, GetDevices({0, 1, 2, 3, 4, 5}))); AssertSameTiling(sharding_param, hlo_sharding, Shape({6, 6})); } TEST_P(ShardingConversionsTest, OpShardingReplicated) { OpSharding op_sharding; op_sharding.set_type(OpSharding::REPLICATED); TF_ASSERT_OK_AND_ASSIGN(auto hlo_sharding, HloSharding::FromProto(op_sharding)); TF_ASSERT_OK_AND_ASSIGN(auto actual, ToShardingParam(hlo_sharding, 2, 6)); ShardingParam expected{{1, 1}, {{0}, {6}}}; TF_EXPECT_OK(expected.verify()); EXPECT_EQ(actual, expected); } INSTANTIATE_TEST_SUITE_P(NumDevices, ShardingConversionsTest, testing::Values(7)); struct HloShardingTestStruct { HloSharding hlo_sharding; int rank; int num_devices; }; class HloShardingToShardingParamTest : public testing::TestWithParam<HloShardingTestStruct> { public: void SetUp() override { const auto& param = GetParam(); client_ = MakeTestClient(param.num_devices); } DeviceList GetDevices(absl::Span<const int> device_indices) { return test_util::GetDevices(client_.get(), device_indices).value(); } private: std::shared_ptr<Client> client_; }; TEST_P(HloShardingToShardingParamTest, HloShardingToShardingParam) { const auto& param = GetParam(); TF_ASSERT_OK_AND_ASSIGN( auto sharding_param, ToShardingParam(param.hlo_sharding, param.rank, param.num_devices)); EXPECT_TRUE(sharding_param.verify().ok()); TF_ASSERT_OK_AND_ASSIGN(auto actual_hlo_sharding, ToHloSharding(sharding_param)); EXPECT_EQ(param.hlo_sharding, actual_hlo_sharding); std::vector<int> device_ids(param.num_devices); std::iota(device_ids.begin(), device_ids.end(), 0); TF_ASSERT_OK_AND_ASSIGN( auto hlo_via_op_sharding, ToHloShardingViaOpSharding(sharding_param, GetDevices(absl::MakeSpan(device_ids)))); EXPECT_EQ(param.hlo_sharding, hlo_via_op_sharding); } INSTANTIATE_TEST_SUITE_P( HloShardingConversionTests, HloShardingToShardingParamTest, testing::ValuesIn<HloShardingTestStruct>({ {HloSharding::IotaTile({4, 2}), 2, 8}, {HloSharding::IotaTile({2, 4}, {4, 2}, {1, 0}), 2, 8}, {HloSharding::IotaTile({8, 1}), 2, 8}, {HloSharding::IotaTile({8, 1}, {4, 2}, {1, 0}), 2, 8}, {HloSharding::PartialTile(TileAssignment({4, 1, 2}, {8}, {0})), 2, 8}, {HloSharding::PartialTile(TileAssignment({2, 1, 4}, {4, 2}, {1, 0})), 2, 8}, {HloSharding::PartialTile(TileAssignment({1, 4, 2}, {8}, {0})), 2, 8}, {HloSharding::PartialTile(TileAssignment({1, 2, 4}, {4, 2}, {1, 0})), 2, 8}, {HloSharding::PartialTile(TileAssignment({4, 3, 2}, {2, 3, 4}, {2, 1, 0})), 2, 24}, {HloSharding::PartialTile(TileAssignment({4, 2, 3}, {6, 4}, {1, 0})), 2, 24}, {HloSharding::PartialTile(TileAssignment({6, 1, 4}, {24}, {0})), 2, 24}, {HloSharding::PartialTile(TileAssignment({12, 1, 2}, {2, 12}, {1, 0})), 2, 24}, {HloSharding::PartialTile(TileAssignment({8, 1, 3}, {6, 4}, {1, 0})), 2, 24}, {HloSharding::PartialTile(TileAssignment({2, 1, 12}, {24}, {0})), 2, 24}, {HloSharding::PartialTile(TileAssignment({3, 1, 8}, {2, 3, 4}, {1, 0, 2})), 2, 24}, {HloSharding::PartialTile(TileAssignment({1, 4, 6}, {6, 4}, {1, 0})), 2, 24}, {HloSharding::PartialTile(TileAssignment({1, 12, 2}, {2, 12}, {1, 0})), 2, 24}, {HloSharding::PartialTile(TileAssignment({3, 2, 1, 4}, {2, 3, 4}, {1, 0, 2})), 3, 24}, {HloSharding::PartialTile(TileAssignment({2, 4, 1, 3}, {2, 3, 4}, {0, 2, 1})), 3, 24}, {HloSharding::PartialTile(TileAssignment({4, 3, 1, 2}, {2, 3, 4}, {2, 1, 0})), 3, 24}, {HloSharding::PartialTile(TileAssignment({12, 1, 1, 2}, {2, 12}, {1, 0})), 3, 24}, })); } } } }
1,823
cpp
tensorflow/tensorflow
type_to_shape
third_party/xla/xla/translate/mhlo_to_hlo/type_to_shape.cc
third_party/xla/xla/translate/mhlo_to_hlo/type_to_shape_test.cc
#ifndef XLA_TRANSLATE_MHLO_TO_HLO_TYPE_TO_SHAPE_H_ #define XLA_TRANSLATE_MHLO_TO_HLO_TYPE_TO_SHAPE_H_ #include "llvm/ADT/STLExtras.h" #include "mlir/IR/Types.h" #include "xla/shape.h" #include "xla/xla_data.pb.h" namespace xla { Shape TypeToShape(mlir::Type type); } #endif #include "xla/translate/mhlo_to_hlo/type_to_shape.h" #include <algorithm> #include <cstdint> #include <numeric> #include <optional> #include <tuple> #include <utility> #include <vector> #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "mlir/Dialect/SparseTensor/IR/Enums.h" #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/BuiltinTypeInterfaces.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Diagnostics.h" #include "mlir/IR/Location.h" #include "mlir/Support/DebugStringHelper.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "stablehlo/dialect/StablehloOps.h" #include "xla/mlir/utils/type_util.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/xla_data.pb.h" using ::int64_t; using mlir::MemRefType; using mlir::RankedTensorType; using mlir::ShapedType; using mlir::VectorType; using mlir::mhlo::TypeExtensionsAttr; using xla::PrimitiveType; namespace xla { std::optional<std::tuple<DimLevelType, bool, bool>> ConvertDimLevelType( mlir::sparse_tensor::LevelType lt) { auto f = mlir::sparse_tensor::getLevelFormat(lt); if (!f) return std::nullopt; bool unique = mlir::sparse_tensor::isUniqueLT(lt); bool ordered = mlir::sparse_tensor::isOrderedLT(lt); switch (*f) { case mlir::sparse_tensor::LevelFormat::Singleton: return std::make_tuple(DimLevelType::DIM_SINGLETON, unique, ordered); case mlir::sparse_tensor::LevelFormat::Compressed: return std::make_tuple(DimLevelType::DIM_COMPRESSED, unique, ordered); case mlir::sparse_tensor::LevelFormat::Dense: return std::make_tuple(DimLevelType::DIM_DENSE, unique, ordered); case mlir::sparse_tensor::LevelFormat::LooseCompressed: return std::make_tuple(DimLevelType::DIM_LOOSE_COMPRESSED, unique, ordered); default: return std::nullopt; } } Shape TypeToShape(mlir::Type type) { PrimitiveType ptype = ConvertMlirTypeToPrimitiveType(type); if (ptype != PrimitiveType::PRIMITIVE_TYPE_INVALID) return ShapeUtil::MakeShape(ptype, {}); if (type.isIntOrFloat()) { auto* context = type.getContext(); mlir::emitError(mlir::UnknownLoc::get(context)) << "lowering should have been handled by primitive type lowering for " << debugString(type); } else if (auto v = mlir::dyn_cast<mlir::VectorType>(type)) { llvm::SmallVector<int64_t, 4> span(v.getShape().begin(), v.getShape().end()); mlir::Type element_type = v.getElementType(); PrimitiveType primitive_type = ConvertMlirTypeToPrimitiveType(element_type); if (primitive_type != PrimitiveType::PRIMITIVE_TYPE_INVALID) return ShapeUtil::MakeShape(primitive_type, span); } else if (auto m = mlir::dyn_cast<mlir::MemRefType>(type)) { llvm::SmallVector<int64_t, 6> span(m.getShape().begin(), m.getShape().end()); mlir::Type element_type = m.getElementType(); if (auto v = mlir::dyn_cast<mlir::VectorType>(element_type)) { element_type = v.getElementType(); span.insert(span.end(), v.getShape().begin(), v.getShape().end()); } PrimitiveType primitive_type = ConvertMlirTypeToPrimitiveType(element_type); if (primitive_type == PrimitiveType::PRIMITIVE_TYPE_INVALID) return {}; if (m.getLayout().isIdentity()) return ShapeUtil::MakeShape(primitive_type, span); llvm::SmallVector<int64_t, 4> strides; int64_t offset; if (failed(mlir::getStridesAndOffset(m, strides, offset))) return {}; llvm::SmallVector<std::pair<int64_t, int>, 4> strides_with_indices; for (const auto& e : llvm::enumerate(strides)) { strides_with_indices.push_back({e.value(), e.index()}); } std::stable_sort(strides_with_indices.begin(), strides_with_indices.end()); llvm::SmallVector<int64_t, 4> minor_to_major; int64_t stride = 1; for (const auto& pr : strides_with_indices) { minor_to_major.push_back(pr.second); if (stride != pr.first && m.getShape()[pr.second] != 1) return {}; stride *= m.getShape()[pr.second]; } llvm::SmallVector<int64_t, 4> dimensions(m.getShape().begin(), m.getShape().end()); return ::xla::ShapeUtil::MakeShapeWithDenseLayout( primitive_type, dimensions, minor_to_major); } else if (auto t = mlir::dyn_cast<mlir::RankedTensorType>(type)) { int64_t rank = t.getRank(); llvm::SmallVector<int64_t, 4> bounds; if (auto extn = mlir::dyn_cast_or_null<TypeExtensionsAttr>(t.getEncoding())) { bounds = llvm::to_vector<4>(extn.getBounds()); } else { bounds.assign(rank, ShapedType::kDynamic); } llvm::SmallVector<int64_t, 4> shape(rank, mlir::ShapedType::kDynamic); std::vector<bool> is_dynamic(rank, false); for (int64_t dim = 0; dim < rank; ++dim) { int64_t size = t.getDimSize(dim); if (size == ShapedType::kDynamic) { shape[dim] = bounds[dim] != ShapedType::kDynamic ? bounds[dim] : Shape::kUnboundedSize; is_dynamic[dim] = true; } else { if (bounds[dim] != ShapedType::kDynamic) return {}; shape[dim] = size; } } PrimitiveType primitive_type = ConvertMlirTypeToPrimitiveType(t.getElementType()); if (primitive_type == PrimitiveType::PRIMITIVE_TYPE_INVALID) return {}; if (auto sparse = mlir::sparse_tensor::getSparseTensorEncoding(type)) { if (!t.hasStaticShape()) return {}; if (sparse.getPosWidth() != 32 || sparse.getCrdWidth() != 32) return {}; llvm::SmallVector<DimLevelType, 3> lvl_types; llvm::SmallVector<bool, 3> level_unique; llvm::SmallVector<bool, 3> level_ordered; for (auto lt : sparse.getLvlTypes()) { auto new_lt = ConvertDimLevelType(lt); if (!new_lt) return {}; lvl_types.push_back(std::get<0>(*new_lt)); level_unique.push_back(std::get<1>(*new_lt)); level_ordered.push_back(std::get<2>(*new_lt)); } std::vector<int64_t> ordering(rank); std::iota(ordering.rbegin(), ordering.rend(), 0); auto dimToLvl = sparse.getDimToLvl() ? sparse.getDimToLvl() : mlir::AffineMap::getMultiDimIdentityMap( rank, sparse.getContext()); auto final_ordering = mlir::applyPermutationMap( dimToLvl, llvm::ArrayRef<int64_t>(ordering)); auto sparse_shape = ::xla::ShapeUtil::MakeShapeWithSparseLayout( primitive_type, shape, final_ordering, lvl_types, level_unique, level_ordered); return sparse_shape; } return ShapeUtil::MakeShape(primitive_type, shape, is_dynamic); } else if (auto tuple_type = mlir::dyn_cast<mlir::TupleType>(type)) { llvm::SmallVector<Shape, 4> shapes; shapes.reserve(tuple_type.size()); for (mlir::Type sub_type : tuple_type.getTypes()) { shapes.push_back(TypeToShape(sub_type)); } return ShapeUtil::MakeTupleShape(shapes); } else if (mlir::isa<mlir::mhlo::TokenType>(type) || mlir::isa<mlir::stablehlo::TokenType>(type)) { return ShapeUtil::MakeTokenShape(); } else if (auto bundle_type = mlir::dyn_cast<mlir::mhlo::AsyncBundleType>(type)) { auto tuple_type = mlir::TupleType::get(type.getContext(), bundle_type.getTypes()); return TypeToShape(tuple_type); } return {}; } }
#include "xla/translate/mhlo_to_hlo/type_to_shape.h" #include <iostream> #include <utility> #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/MLIRContext.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/translate/hlo_to_mhlo/hlo_utils.h" #include "xla/xla_data.pb.h" #include "tsl/platform/protobuf.h" using mlir::Builder; using mlir::MemRefType; using mlir::MLIRContext; using mlir::RankedTensorType; using mlir::UnrankedTensorType; using mlir::VectorType; namespace xla { namespace { class ProtoStringMatcher { public: explicit ProtoStringMatcher(const tsl::protobuf::Message& expected) : expected_(expected.SerializeAsString()) {} template <typename Message> bool MatchAndExplain(const Message& p, testing::MatchResultListener*) const { return p.SerializeAsString() == expected_; } void DescribeTo(::std::ostream* os) const { *os << expected_; } void DescribeNegationTo(::std::ostream* os) const { *os << "not equal to expected message: " << expected_; } private: const std::string expected_; }; inline ::testing::PolymorphicMatcher<ProtoStringMatcher> EqualsProto( const tsl::protobuf::Message& x) { return ::testing::MakePolymorphicMatcher(ProtoStringMatcher(x)); } TEST(TypeToShapeTest, ConvertBasicTypesToTypes) { MLIRContext context; Builder b(&context); EXPECT_TRUE( ShapeUtil::IsScalarWithElementType(TypeToShape(b.getF32Type()), F32)); EXPECT_THAT( TypeToShape(VectorType::get({8, 128}, b.getIntegerType(32))).ToProto(), EqualsProto( ShapeUtil::MakeShape(PrimitiveType::S32, {8, 128}).ToProto())); EXPECT_THAT( TypeToShape(VectorType::get({8, 128}, b.getF32Type())).ToProto(), EqualsProto( ShapeUtil::MakeShape(PrimitiveType::F32, {8, 128}).ToProto())); EXPECT_THAT( TypeToShape(VectorType::get({8, 128}, b.getIntegerType(17))).ToProto(), EqualsProto(Shape().ToProto())); } TEST(TypeToShapeTest, ConvertMemRefTypeToTypes) { MLIRContext context; Builder b(&context); EXPECT_THAT( TypeToShape(MemRefType::get({8, 128}, b.getF32Type())).ToProto(), EqualsProto( ShapeUtil::MakeShape(PrimitiveType::F32, {8, 128}).ToProto())); EXPECT_THAT( TypeToShape(MemRefType::get({100, 13, 210}, b.getF32Type())).ToProto(), EqualsProto( ShapeUtil::MakeShape(PrimitiveType::F32, {100, 13, 210}).ToProto())); EXPECT_THAT( TypeToShape(MemRefType::get({100, 13, 210}, VectorType::get({8, 128}, b.getF32Type()))) .ToProto(), EqualsProto( ShapeUtil::MakeShape(PrimitiveType::F32, {100, 13, 210, 8, 128}) .ToProto())); } TEST(TypeToShapeTest, ConvertTensorTypeToTypes) { mlir::MLIRContext context; context.loadDialect<mlir::mhlo::MhloDialect>(); Builder b(&context); EXPECT_THAT( TypeToShape(RankedTensorType::get({8, 128}, b.getF32Type())).ToProto(), EqualsProto( ShapeUtil::MakeShape(PrimitiveType::F32, {8, 128}).ToProto())); llvm::SmallVector<int64_t, 4> bounds = {8, mlir::ShapedType::kDynamic}; auto extensions = mlir::mhlo::TypeExtensionsAttr::get(&context, bounds); EXPECT_THAT( TypeToShape(RankedTensorType::get({mlir::ShapedType::kDynamic, 128}, b.getF32Type(), extensions)) .ToProto(), EqualsProto( ShapeUtil::MakeShape(PrimitiveType::F32, {8, 128}, {true, false}) .ToProto())); EXPECT_THAT( TypeToShape(RankedTensorType::get({mlir::ShapedType::kDynamic, 784}, b.getF32Type())) .ToProto(), EqualsProto(ShapeUtil::MakeShape(PrimitiveType::F32, {Shape::kUnboundedSize, 784}, {true, false}) .ToProto())); EXPECT_THAT(TypeToShape(UnrankedTensorType::get(b.getF32Type())).ToProto(), EqualsProto(Shape().ToProto())); EXPECT_THAT( TypeToShape(RankedTensorType::get( {8, 128}, VectorType::get({16, 16}, b.getF32Type()))) .ToProto(), EqualsProto(Shape().ToProto())); } TEST(TypeToShapeTest, ConvertMemRefToShape) { Shape shape = ShapeUtil::MakeShapeWithDenseLayout(PrimitiveType::F32, {10, 20, 30}, {2, 0, 1}); MLIRContext context; mlir::Builder builder(&context); absl::StatusOr<mlir::Type> mlir_type = ConvertShapeToType<MemRefType>(shape, builder); ASSERT_TRUE(mlir_type.ok()); mlir::Type type = std::move(mlir_type).value(); Shape converted = TypeToShape(type); EXPECT_TRUE(ShapeUtil::Equal( converted, ShapeUtil::MakeShapeWithDenseLayout(PrimitiveType::F32, {10, 20, 30}, {2, 0, 1}))); EXPECT_TRUE(ShapeUtil::Equal(converted, shape)); } TEST(TypeToShapeTest, ConvertMemRefToShape2) { Shape shape = ShapeUtil::MakeShapeWithDenseLayout(PrimitiveType::C64, {2, 4, 3, 3}, {2, 3, 1, 0}); MLIRContext context; mlir::Builder builder(&context); absl::StatusOr<mlir::Type> mlir_type = ConvertShapeToType<MemRefType>(shape, builder); ASSERT_TRUE(mlir_type.ok()); mlir::Type type = std::move(mlir_type).value(); Shape converted = TypeToShape(type); EXPECT_TRUE(ShapeUtil::Equal( converted, ShapeUtil::MakeShapeWithDenseLayout( PrimitiveType::C64, {2, 4, 3, 3}, {2, 3, 1, 0}))); EXPECT_TRUE(ShapeUtil::Equal(converted, shape)); } } }
1,824
cpp
tensorflow/tensorflow
hlo_utils
third_party/xla/xla/mlir_hlo/utils/hlo_utils.cc
third_party/xla/xla/translate/hlo_to_mhlo/hlo_utils_test.cc
#ifndef MLIR_HLO_UTILS_HLO_UTILS_H #define MLIR_HLO_UTILS_HLO_UTILS_H #include <complex> #include <string> #include <utility> #include <vector> #include "mlir/Dialect/Complex/IR/Complex.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/PatternMatch.h" #include "mlir/IR/TypeUtilities.h" #include "mlir/Support/LLVM.h" #include "stablehlo/dialect/ChloOps.h" namespace mlir { namespace hlo { mlir::DenseI64ArrayAttr getBroadcastDimensionsAttr(mlir::Builder* b, mlir::Value x, mlir::Value y, bool allowEmpty = true); template <typename T> static ElementsAttr getSplat(Builder* b, RankedTensorType ty, T constant) { Type elementTy = getElementTypeOrSelf(ty); if (elementTy.isSignlessInteger()) return DenseElementsAttr::get(ty, b->getIntegerAttr(elementTy, constant)); if (mlir::isa<FloatType>(elementTy)) return DenseElementsAttr::get(ty, b->getFloatAttr(elementTy, constant)); if (auto complexTy = mlir::dyn_cast<ComplexType>(elementTy)) { auto complexElementTy = complexTy.getElementType(); if (complexElementTy.isF32()) return DenseElementsAttr::get(ty, static_cast<std::complex<float>>(constant)); if (complexElementTy.isF64()) return DenseElementsAttr::get( ty, static_cast<std::complex<double>>(constant)); } llvm_unreachable("unhandled element type"); } template <typename T> static ElementsAttr getSplat(Builder* b, Value val, T constant) { return getSplat(b, mlir::cast<RankedTensorType>(val.getType()), constant); } DenseElementsAttr getScalarOfType(Type ty, int64_t rawValue); DenseElementsAttr getScalarNegZeroOfType(Type ty); enum ScalarLimit { kLowest, kInfinityLowest, kMax, kInfinityMax, }; DenseElementsAttr getScalarLimitOfType(Type ty, ScalarLimit limit); std::string lmhloToMhloOpName(llvm::StringRef opName, mlir::MLIRContext* context); bool isSequenceStartingWith0(Attribute attr); int64_t getArgumentIndex(func::FuncOp op, Value value); std::pair<size_t, size_t> computeMemory(const std::vector<Value>& allocs); } } namespace mlir { namespace chlo { template <typename T> static Value getConstantLike(OpBuilder& b, Location loc, T constant, Value val) { Type ty = getElementTypeOrSelf(val.getType()); auto getAttr = [&]() -> Attribute { if (mlir::isa<IntegerType>(ty)) return b.getIntegerAttr(ty, constant); if (mlir::isa<FloatType>(ty)) return b.getFloatAttr(ty, constant); if (auto complexTy = mlir::dyn_cast<ComplexType>(ty)) return complex::NumberAttr::get(complexTy, constant, 0); llvm_unreachable("unhandled element type"); }; return b.create<ConstantLikeOp>(loc, cast<TypedAttr>(getAttr()), val); } Value getConstantLike(OpBuilder& b, Location loc, const APFloat& constant, Value val); Value getConstantLikeMaxFiniteValue(OpBuilder& b, Location loc, Value val); Value getConstantLikeInfValue(OpBuilder& b, Location loc, Value val, bool negative); Value getConstantLikeSmallestFiniteValue(OpBuilder& b, Location loc, Value val); } } #endif #include "utils/hlo_utils.h" #include <algorithm> #include <cassert> #include <numeric> #include <string> #include <utility> #include <vector> #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Value.h" #include "mlir/Support/LLVM.h" namespace mlir { namespace hlo { static constexpr size_t kPaddingSize = 64; DenseI64ArrayAttr getBroadcastDimensionsAttr(Builder* b, Value x, Value y, bool allowEmpty) { TensorType xType = mlir::dyn_cast<RankedTensorType>(x.getType()); TensorType yType = mlir::dyn_cast<RankedTensorType>(y.getType()); if (!xType || !yType) return {}; if (allowEmpty && xType == yType) return {}; auto xRank = xType.getRank(), yRank = yType.getRank(); if (allowEmpty && xRank == yRank) return {}; auto maxRank = std::max(xRank, yRank); auto minRank = std::min(xRank, yRank); SmallVector<int64_t, 4> broadcastDimensions(minRank); std::iota(broadcastDimensions.begin(), broadcastDimensions.end(), maxRank - minRank); return b->getDenseI64ArrayAttr(broadcastDimensions); } DenseElementsAttr getScalarOfType(Type ty, int64_t rawValue) { RankedTensorType scalarTy = RankedTensorType::get({}, ty); if (auto floatTy = mlir::dyn_cast<FloatType>(ty)) { APFloat value(floatTy.getFloatSemantics(), rawValue); return DenseElementsAttr::get(scalarTy, value); } if (auto intTy = mlir::dyn_cast<IntegerType>(ty)) { APInt value(intTy.getWidth(), static_cast<int64_t>(rawValue), true); return DenseElementsAttr::get(scalarTy, value); } if (auto complexTy = mlir::dyn_cast<ComplexType>(ty)) { if (auto floatTy = mlir::cast<FloatType>(complexTy.getElementType())) { APFloat real(floatTy.getFloatSemantics(), rawValue); APFloat imag = APFloat::getZero(floatTy.getFloatSemantics()); return DenseElementsAttr::get(scalarTy, std::complex<APFloat>(real, imag)); } } llvm_unreachable("unsupported type"); } DenseElementsAttr getScalarNegZeroOfType(Type ty) { RankedTensorType scalarTy = RankedTensorType::get({}, ty); if (auto floatTy = mlir::dyn_cast<FloatType>(ty)) { APFloat negZero = APFloat::getZero(floatTy.getFloatSemantics(), true); return DenseElementsAttr::get(scalarTy, negZero); } if (auto intTy = mlir::dyn_cast<IntegerType>(ty)) { return DenseElementsAttr::get(scalarTy, APInt::getZero(intTy.getWidth())); } if (auto complexTy = mlir::dyn_cast<ComplexType>(ty)) { if (auto floatTy = mlir::cast<FloatType>(complexTy.getElementType())) { APFloat negZero = APFloat::getZero(floatTy.getFloatSemantics(), true); return DenseElementsAttr::get(scalarTy, std::complex<APFloat>(negZero, negZero)); } } llvm_unreachable("unsupported type"); } static APFloat getScalarLimitOfFloatType(FloatType floatTy, ScalarLimit limit) { auto& semantics = floatTy.getFloatSemantics(); switch (limit) { case kLowest: return APFloat::getLargest(semantics, true); case kInfinityLowest: return APFloat::getInf(semantics, true); case kMax: return APFloat::getLargest(semantics, false); case kInfinityMax: return APFloat::getInf(semantics, false); } llvm_unreachable("invalid limit"); } static APInt getScalarLimitOfIntegerType(IntegerType integerTy, ScalarLimit limit) { unsigned width = integerTy.getWidth(); bool isBool = (width == 1); switch (limit) { case kLowest: case kInfinityLowest: if (integerTy.isUnsigned() || isBool) { return APInt::getMinValue(width); } else { return APInt::getSignedMinValue(width); } case kMax: case kInfinityMax: if (integerTy.isUnsigned() || isBool) { return APInt::getMaxValue(width); } else { return APInt::getSignedMaxValue(width); } } llvm_unreachable("invalid limit"); } DenseElementsAttr getScalarLimitOfType(Type ty, ScalarLimit limit) { RankedTensorType scalarTy = RankedTensorType::get({}, ty); if (auto floatTy = mlir::dyn_cast<FloatType>(ty)) { return DenseElementsAttr::get(scalarTy, getScalarLimitOfFloatType(floatTy, limit)); } if (auto integerTy = mlir::dyn_cast<IntegerType>(ty)) { return DenseElementsAttr::get( scalarTy, getScalarLimitOfIntegerType(integerTy, limit)); } llvm_unreachable("unsupported type"); } std::string lmhloToMhloOpName(llvm::StringRef opName, mlir::MLIRContext* context) { assert(opName.starts_with("lmhlo.") && "Expected an LMHLO op"); if (opName == "lmhlo.dot") { return "mhlo.dot_general"; } if (opName == "lmhlo.dynamic_slice") { return "mhlo.dynamic_slice"; } std::string mhloOpName(opName.drop_front(1)); if (context->isOperationRegistered(mhloOpName)) return mhloOpName; return ""; } bool isSequenceStartingWith0(Attribute attr) { DenseIntElementsAttr denseAttr = mlir::dyn_cast<DenseIntElementsAttr>(attr); for (int64_t i = 0, e = denseAttr.getNumElements(); i < e; ++i) if (denseAttr.getValues<APInt>()[i].getSExtValue() != i) return false; return true; } int64_t getArgumentIndex(mlir::func::FuncOp op, Value value) { BlockArgument arg = mlir::dyn_cast<BlockArgument>(value); if (!arg || arg.getOwner() != &op.front()) return -1; return arg.getArgNumber(); } std::pair<size_t, size_t> computeMemory(const std::vector<Value>& allocs) { size_t totalSize = 0; size_t allocCounter = 0; for (const Value alloc : allocs) { auto shape = mlir::cast<ShapedType>(alloc.getType()); size_t shapeBytes = llvm::divideCeil( shape.getNumElements() * shape.getElementTypeBitWidth(), 8); size_t alignFactor = llvm::divideCeil(shapeBytes, kPaddingSize); size_t size = alignFactor * kPaddingSize; totalSize += size; allocCounter++; } return std::make_pair(totalSize, allocCounter); } } } namespace mlir { namespace chlo { Value getConstantLikeMaxFiniteValue(OpBuilder& b, Location loc, Value val) { auto ty = mlir::cast<FloatType>(getElementTypeOrSelf(val.getType())); return getConstantLike( b, loc, llvm::APFloat::getLargest(ty.getFloatSemantics()), val); } Value getConstantLikeInfValue(OpBuilder& b, Location loc, Value val, bool negative) { auto ty = mlir::cast<FloatType>(getElementTypeOrSelf(val.getType())); return getConstantLike( b, loc, llvm::APFloat::getInf(ty.getFloatSemantics(), negative), val); } Value getConstantLikeSmallestFiniteValue(OpBuilder& b, Location loc, Value val) { auto ty = mlir::cast<FloatType>(getElementTypeOrSelf(val.getType())); return getConstantLike( b, loc, llvm::APFloat::getSmallest(ty.getFloatSemantics()), val); } Value getConstantLike(OpBuilder& b, Location loc, const APFloat& constant, Value val) { Type ty = getElementTypeOrSelf(val.getType()); return b.create<ConstantLikeOp>(loc, b.getFloatAttr(ty, constant), val); } } }
#include "xla/translate/hlo_to_mhlo/hlo_utils.h" #include <cstdint> #include <cstring> #include <vector> #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/MLIRContext.h" #include "mlir/Support/DebugStringHelper.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/types.h" #include "tsl/lib/core/status_test_util.h" namespace xla { namespace { TEST(ConvertTensorShapeToType, Simple) { mlir::MLIRContext context; context.loadDialect<mlir::mhlo::MhloDialect>(); mlir::Builder builder(&context); { auto shape = ShapeUtil::MakeShape(PrimitiveType::S32, {8, 128}); TF_ASSERT_OK_AND_ASSIGN( auto type, ConvertTensorShapeToType<mlir::RankedTensorType>(shape, builder)); auto expected = mlir::RankedTensorType::get({8, 128}, builder.getI32Type()); EXPECT_TRUE(type == expected) << " Expected: " << mlir::debugString(expected) << " Computed: " << mlir::debugString(type); } { auto shape = ShapeUtil::MakeShape(PrimitiveType::S32, {8, 128}, {true, false}); TF_ASSERT_OK_AND_ASSIGN( auto type, ConvertTensorShapeToType<mlir::RankedTensorType>(shape, builder)); int64_t bounds[] = {8, mlir::ShapedType::kDynamic}; auto extensions = mlir::mhlo::TypeExtensionsAttr::get(&context, bounds); auto expected = mlir::RankedTensorType::get( {mlir::ShapedType::kDynamic, 128}, builder.getI32Type(), extensions); EXPECT_TRUE(type == expected) << " Expected: " << mlir::debugString(expected) << " Computed: " << mlir::debugString(type); } } } }
1,825
cpp
tensorflow/tensorflow
dnn
third_party/xla/xla/stream_executor/dnn.cc
third_party/xla/xla/stream_executor/dnn_test.cc
#ifndef XLA_STREAM_EXECUTOR_DNN_H_ #define XLA_STREAM_EXECUTOR_DNN_H_ #include <cstddef> #include <cstdint> #include <limits> #include <memory> #include <optional> #include <ostream> #include <string> #include <tuple> #include <type_traits> #include <utility> #include <vector> #include "google/protobuf/wrappers.pb.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/stream_executor/data_type.h" #include "xla/stream_executor/device_description.pb.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/numeric_options.h" #include "tsl/platform/logging.h" #include "tsl/protobuf/dnn.pb.h" namespace Eigen { struct half; } namespace stream_executor { class HostBuffer; class Stream; class ScratchAllocator; namespace dnn { enum class DimIndex : int { X = 0, Y = 1, Z = 2, }; std::vector<int64_t> ReorderDims(const std::vector<int64_t>& input, const DataLayout& from, const DataLayout& to); inline int64_t GetDim(absl::Span<const int64_t> data, DimIndex dim) { return data.rbegin()[static_cast<int64_t>(dim)]; } inline void SetDim(absl::Span<int64_t> data, DimIndex dim, int64_t value) { data.rbegin()[static_cast<int64_t>(dim)] = value; } inline void SetDim(std::vector<int64_t>* data, DimIndex dim, int64_t value) { return SetDim(absl::MakeSpan(*data), dim, value); } template <typename T> inline absl::Span<const int64_t> AsInt64Slice(const T& repeated_field) { using data_ty = typename std::remove_reference<decltype(*repeated_field.data())>::type; static_assert(std::is_integral<data_ty>::value && std::is_signed<data_ty>::value && sizeof(data_ty) == 8, "repeated_field.data() must return a pointer to a signed " "64-bit integer type."); return absl::Span<const int64_t>( reinterpret_cast<const int64_t*>(repeated_field.data()), repeated_field.size()); } template <typename T> inline absl::Span<int64_t> AsInt64Slice(T* repeated_field) { using data_ty = typename std::remove_reference<decltype(*repeated_field->data())>::type; static_assert(std::is_integral<data_ty>::value && std::is_signed<data_ty>::value && sizeof(data_ty) == 8, "repeated_field->data() must return a pointer to a signed " "64-bit integer type."); return absl::Span<int64_t>( reinterpret_cast<int64_t*>(repeated_field->mutable_data()), repeated_field->size()); } std::string DataLayoutString(DataLayout layout); enum class QuantizedActivationMode { k8Bit = 1, k16Bit = 2, k32Bit = 4, }; enum class RnnMode { kRnnRelu = 0, kRnnTanh = 1, kRnnLstm = 2, kRnnGru = 3, }; enum class RnnInputMode { kRnnLinearSkip = 0, kRnnSkipInput = 1, }; enum class RnnDirectionMode { kRnnUnidirectional = 0, kRnnBidirectional = 1, }; class TensorDescriptor { public: TensorDescriptor() = default; absl::StatusOr<std::vector<int64_t>> GetPhysicalDimensionsMajorToMinor() const; std::vector<int64_t> GetPhysicalStridesMajorToMinor() const; std::vector<int64_t> GetLogicalStrides() const; static TensorDescriptor For(DataType type, absl::Span<const int64_t> dimensions, absl::Span<const int64_t> minor_to_major); int ndims() const; std::vector<int64_t> dimensions() const { return dimensions_; } std::vector<int64_t> minor_to_major() const { return minor_to_major_; } DataType type() const { return d_type_; } std::string ToString() const; protected: TensorDescriptor(DataType type, std::vector<int64_t> dimensions, std::vector<int64_t> minor_to_major) : d_type_(type), dimensions_(dimensions), minor_to_major_(minor_to_major) {} private: DataType d_type_; std::vector<int64_t> dimensions_; std::vector<int64_t> minor_to_major_; }; class MatmulTensorDescriptor { public: MatmulTensorDescriptor() = default; absl::StatusOr<std::vector<int64_t>> GetNonContractingDims() const; std::vector<int64_t> GetCudnnCompatibleDimensions( bool is_lhs ) const; std::vector<int64_t> GetCudnnCompatibleStrides( bool is_lhs ) const; absl::StatusOr<std::vector<int64_t>> MakeCudnnCompatible( const std::vector<int64_t>&, bool is_lhs) const; static MatmulTensorDescriptor For(DataType type, absl::Span<const int64_t> dimensions, absl::Span<const int64_t> minor_to_major, absl::Span<const int64_t> batch_dims, absl::Span<const int64_t> contracting_dims); std::vector<int64_t> dimensions() const { return tensor_.dimensions(); } std::vector<int64_t> minor_to_major() const { return tensor_.minor_to_major(); } DataType type() const { return tensor_.type(); } std::string ToString() const; protected: MatmulTensorDescriptor(TensorDescriptor tensor, std::vector<int64_t> batch_dims, std::vector<int64_t> contracting_dims) : tensor_(tensor), batch_dimension_numbers_(batch_dims), contracting_dim_(contracting_dims) {} private: TensorDescriptor tensor_; std::vector<int64_t> batch_dimension_numbers_; std::vector<int64_t> contracting_dim_; }; class RnnDescriptor { public: struct ParamsRegion { int64_t offset; int64_t size; }; typedef std::vector<ParamsRegion> ParamsRegions; virtual ~RnnDescriptor() = default; virtual int64_t ParamsSizeInBytes() const { return -1; } virtual ParamsRegions ParamsWeightRegions() const { return ParamsRegions(); } virtual ParamsRegions ParamsBiasRegions() const { return ParamsRegions(); } }; class RnnSequenceTensorDescriptor { public: virtual ~RnnSequenceTensorDescriptor() = default; }; class RnnStateTensorDescriptor { public: virtual ~RnnStateTensorDescriptor() = default; }; std::string QuantizedActivationModeString(QuantizedActivationMode mode); class BatchDescriptor { public: BatchDescriptor(); explicit BatchDescriptor(int ndims); void CloneFrom(const BatchDescriptor& other); std::string ToString() const; std::string ToShortString() const; TensorDescriptorProto ToProto(DataType data_type) const; int64_t count() const { return tensor_.dimensions(0); } int64_t feature_map_count() const { return tensor_.dimensions(1); } int64_t height() const { return GetDim(spatial_size(), DimIndex::Y); } int64_t width() const { return GetDim(spatial_size(), DimIndex::X); } int64_t spatial_dim(DimIndex dim) const { return GetDim(spatial_size(), dim); } int ndims() const { return spatial_size().size(); } float value_max() const { return value_max_; } float value_min() const { return value_min_; } DataLayout layout() const { return tensor_.data_layout(); } QuantizedActivationMode quantized_activation_mode() const { return quantized_activation_mode_; } std::vector<int64_t> full_dims(const DataLayout& layout) const; std::vector<int64_t> full_strides(const DataLayout& layout) const; std::vector<int64_t> vectorized_dims(const DataLayout& layout, int vector_size, int vector_dim) const; std::vector<int64_t> vectorized_strides(const DataLayout& layout, int vector_size, int vector_dim) const; BatchDescriptor& set_count(int64_t value) { tensor_.set_dimensions(0, value); return *this; } BatchDescriptor& set_feature_map_count(int64_t value) { tensor_.set_dimensions(1, value); return *this; } BatchDescriptor& set_height(int64_t value) { SetDim(spatial_size(), DimIndex::Y, value); return *this; } BatchDescriptor& set_width(int64_t value) { SetDim(spatial_size(), DimIndex::X, value); return *this; } BatchDescriptor& set_spatial_dim(DimIndex dim, int64_t value) { SetDim(spatial_size(), dim, value); return *this; } BatchDescriptor& set_value_max(float value) { value_max_ = value; return *this; } BatchDescriptor& set_value_min(float value) { value_min_ = value; return *this; } BatchDescriptor& set_layout(DataLayout layout) { tensor_.set_data_layout(layout); return *this; } BatchDescriptor& set_quantized_activation_mode( QuantizedActivationMode quantized_activation_mode) { quantized_activation_mode_ = quantized_activation_mode; return *this; } int64_t NodesPerFeatureMap() const; int64_t NodesAcrossFeatureMaps() const; int64_t ElementCount() const; static int64_t FullyConnectedWeightCount(const BatchDescriptor& input, const BatchDescriptor& output); static int64_t FullyConnectedBiasCount(const BatchDescriptor& output); static BatchDescriptor DepthConcatenateOutputDescriptor( absl::Span<const BatchDescriptor> inputs); private: absl::Span<const int64_t> spatial_size() const { return AsInt64Slice(tensor_.dimensions()).subspan(2); } absl::Span<int64_t> spatial_size() { return AsInt64Slice(tensor_.mutable_dimensions()).subspan(2); } TensorDescriptorProto tensor_; float value_max_; float value_min_; QuantizedActivationMode quantized_activation_mode_; }; std::string FilterLayoutString(FilterLayout layout); class FilterDescriptor { public: FilterDescriptor(); explicit FilterDescriptor(int ndims); ~FilterDescriptor(); FilterDescriptor& set_output_feature_map_count(int64_t value) { tensor_.set_dimensions(0, value); return *this; } FilterDescriptor& set_input_feature_map_count(int64_t value) { tensor_.set_dimensions(1, value); return *this; } FilterDescriptor& set_input_filter_height(int64_t value) { SetDim(input_filter_dims(), DimIndex::Y, value); return *this; } FilterDescriptor& set_input_filter_width(int64_t value) { SetDim(input_filter_dims(), DimIndex::X, value); return *this; } FilterDescriptor& set_layout(FilterLayout layout) { tensor_.set_filter_layout(layout); return *this; } FilterDescriptor& set_spatial_dim(DimIndex dim, int64_t value) { SetDim(input_filter_dims(), dim, value); return *this; } int ndims() const { return input_filter_dims().size(); } void CloneFrom(const FilterDescriptor& other); std::string ToString() const; std::string ToShortString() const; TensorDescriptorProto ToProto(DataType data_type) const; int64_t ComputeWeightCount() const; int64_t bias_count() const { return output_feature_map_count(); } int64_t output_feature_map_count() const { return tensor_.dimensions(0); } int64_t input_feature_map_count() const { return tensor_.dimensions(1); } int64_t input_filter_height() const { return GetDim(input_filter_dims(), DimIndex::Y); } int64_t input_filter_width() const { return GetDim(input_filter_dims(), DimIndex::X); } int64_t input_filter_dim(DimIndex dim) const { return GetDim(input_filter_dims(), dim); } FilterLayout layout() const { return tensor_.filter_layout(); } absl::Span<const int64_t> input_filter_dims() const { return AsInt64Slice(tensor_.dimensions()).subspan(2); } std::vector<int64_t> full_dims(const FilterLayout& layout) const; std::vector<int64_t> full_strides(const FilterLayout& layout) const; std::vector<int64_t> vectorized_dims(const FilterLayout& layout, int vector_size, int vector_dim) const; std::vector<int64_t> vectorized_strides(const FilterLayout& layout, int vector_size, int vector_dim) const; private: absl::Span<int64_t> input_filter_dims() { return AsInt64Slice(tensor_.mutable_dimensions()).subspan(2); } TensorDescriptorProto tensor_; }; enum class PadAlignment : int64_t { kDefault = 0, kCudnnPadding, kTensorFlowPadding, }; std::string PadAlignmentString(PadAlignment alignment); std::ostream& operator<<(std::ostream& str, PadAlignment alignment); class ConvolutionDescriptor { public: ConvolutionDescriptor(); explicit ConvolutionDescriptor(int ndims); ~ConvolutionDescriptor(); std::string ToString() const; std::string ToShortString() const; ConvolutionDescriptorProto ToProto() const { return proto_; } ConvolutionDescriptor& set_zero_padding_height(int64_t value) { SetDim(padding(), DimIndex::Y, value); return *this; } ConvolutionDescriptor& set_zero_padding_width(int64_t value) { SetDim(padding(), DimIndex::X, value); return *this; } ConvolutionDescriptor& set_zero_padding(DimIndex dim, int64_t value) { SetDim(padding(), dim, value); return *this; } ConvolutionDescriptor& set_vertical_filter_stride(int64_t value) { SetDim(strides(), DimIndex::Y, value); return *this; } ConvolutionDescriptor& set_horizontal_filter_stride(int64_t value) { SetDim(strides(), DimIndex::X, value); return *this; } ConvolutionDescriptor& set_filter_stride(DimIndex dim, int64_t value) { SetDim(strides(), dim, value); return *this; } ConvolutionDescriptor& set_vertical_dilation_rate(int64_t value) { SetDim(dilations(), DimIndex::Y, value); return *this; } ConvolutionDescriptor& set_horizontal_dilation_rate(int64_t value) { SetDim(dilations(), DimIndex::X, value); return *this; } ConvolutionDescriptor& set_dilation_rate(DimIndex dim, int64_t value) { SetDim(dilations(), dim, value); return *this; } ConvolutionDescriptor& set_group_count(int group_count) { proto_.set_group_count(group_count); return *this; } ConvolutionDescriptor& set_convolution_not_crosscorr(bool conv) { proto_.set_convolution_mode(conv ? ConvolutionMode::CONVOLUTION : ConvolutionMode::CROSS_CORRELATION); return *this; } ConvolutionDescriptor& set_name(const std::string& name) { proto_.set_name(name); return *this; } int64_t zero_padding_height() const { return GetDim(padding(), DimIndex::Y); } int64_t zero_padding_width() const { return GetDim(padding(), DimIndex::X); } int64_t vertical_filter_stride() const { return GetDim(strides(), DimIndex::Y); } int64_t horizontal_filter_stride() const { return GetDim(strides(), DimIndex::X); } int64_t vertical_dilation_rate() const { return GetDim(dilations(), DimIndex::Y); } int64_t horizontal_dilation_rate() const { return GetDim(dilations(), DimIndex::X); } int zero_padding(DimIndex dim) const { return GetDim(padding(), dim); } int filter_stride(DimIndex dim) const { return GetDim(strides(), dim); } int dilation_rate(DimIndex dim) const { return GetDim(dilations(), dim); } PadAlignment pad_alignment() const { return PadAlignment::kDefault; } int group_count() const { return proto_.group_count(); } int ndims() const { return padding().size(); } bool convolution_not_crosscorr() const { return proto_.convolution_mode() == ConvolutionMode::CONVOLUTION; } absl::Span<const int64_t> strides() const { return AsInt64Slice(proto_.strides()); } absl::Span<const int64_t> dilations() const { return AsInt64Slice(proto_.dilations()); } absl::Span<const int64_t> padding() const { return AsInt64Slice(proto_.paddings()); } std::string name() const { return proto_.name(); } private: absl::Span<int64_t> strides() { return AsInt64Slice(proto_.mutable_strides()); } absl::Span<int64_t> dilations() { return AsInt64Slice(proto_.mutable_dilations()); } absl::Span<int64_t> padding() { return AsInt64Slice(proto_.mutable_paddings()); } ConvolutionDescriptorProto proto_; }; enum class PoolingMode : int64_t { kMaximum, kAverage, }; enum class SpaceConcatenateMode : int64_t { XDirection, YDirection, }; std::string ShortPoolingModeString(PoolingMode mode); class PoolingDescriptor { public: PoolingDescriptor(); explicit PoolingDescriptor(int ndims); PoolingDescriptor& set_pooling_mode(PoolingMode value) { mode_ = value; return *this; } PoolingDescriptor& set_window_height(int64_t value) { SetDim(&window_, DimIndex::Y, value); return *this; } PoolingDescriptor& set_window_width(int64_t value) { SetDim(&window_, DimIndex::X, value); return *this; } PoolingDescriptor& set_window(DimIndex dim, int64_t value) { SetDim(&window_, dim, value); return *this; } PoolingDescriptor& set_vertical_padding(int64_t value) { SetDim(&padding_, DimIndex::Y, value); return *this; } PoolingDescriptor& set_horizontal_padding(int64_t value) { SetDim(&padding_, DimIndex::X, value); return *this; } PoolingDescriptor& set_padding(DimIndex dim, int64_t value) { SetDim(&padding_, dim, value); return *this; } PoolingDescriptor& set_vertical_stride(int64_t value) { SetDim(&strides_, DimIndex::Y, value); return *this; } PoolingDescriptor& set_horizontal_stride(int64_t value) { SetDim(&strides_, DimIndex::X, value); return *this; } PoolingDescriptor& set_stride(DimIndex dim, int64_t value) { SetDim(&strides_, dim, value); return *this; } PoolingDescriptor& set_propagate_nans(bool value) { propagate_nans_ = value; return *this; } PoolingDescriptor& set_name(const std::string& name) { name_ = name; return *this; } int ndims() const { return ndims_; } void CloneFrom(const PoolingDescriptor& other); std::string ToString() const; std::string ToShortString() const; PoolingMode mode() const { return mode_; } int64_t window_height() const { return GetDim(window_, DimIndex::Y); } int64_t window_width() const { return GetDim(window_, DimIndex::X); } int64_t window(DimIndex dim) const { return GetDim(window_, dim); } int64_t vertical_padding() const { return GetDim(padding_, DimIndex::Y); } int64_t horizontal_padding() const { return GetDim(padding_, DimIndex::X); } int64_t padding(DimIndex dim) const { return GetDim(padding_, dim); } int64_t vertical_stride() const { return GetDim(strides_, DimIndex::Y); } int64_t horizontal_stride() const { return GetDim(strides_, DimIndex::X); } int64_t stride(DimIndex dim) const { return GetDim(strides_, dim); } absl::Span<const int64_t> window() const { return window_; } absl::Span<const int64_t> padding() const { return padding_; } absl::Span<const int64_t> strides() const { return strides_; } bool propagate_nans() const { return propagate_nans_; } std::string name() const { return name_; } private: PoolingMode mode_; int ndims_; bool propagate_nans_; std::string name_; std::vector<int64_t> window_; std::vector<int64_t> padding_; std::vector<int64_t> strides_; }; class AlgorithmDesc { public: typedef int64_t Index; AlgorithmDesc() : AlgorithmDesc(0, false, std::nullopt) {} explicit AlgorithmDesc(AlgorithmProto proto) : proto_(std::move(proto)) {} AlgorithmDesc(Index algo_id, bool use_tensor_ops) : AlgorithmDesc(algo_id, use_tensor_ops, std::nullopt) {} AlgorithmDesc(Index algo_id, bool use_tensor_ops, std::optional<uint64_t> workspace_size) { proto_.set_is_cudnn_frontend(false); proto_.set_algo_id(algo_id); proto_.set_math_type(use_tensor_ops ? AlgorithmProto::TENSOR_OP_MATH : AlgorithmProto::DEFAULT_MATH); if (workspace_size) { proto_.mutable_workspace_size()->set_value(*workspace_size); } } AlgorithmDesc(int64_t engine_id, const std::vector<std::pair<int64_t, int64_t>>& tuning_knobs, std::optional<uint64_t> workspace_size); bool is_cudnn_frontend() const { return proto_.is_cudnn_frontend(); } bool tensor_ops_enabled() const { return proto_.math_type() == AlgorithmProto::TENSOR_OP_MATH; } std::optional<uint64_t> workspace_size() const { if (proto_.has_workspace_size()) { return proto_.workspace_size().value(); } return std::nullopt; } Index algo_id() const { return proto_.algo_id(); } std::vector<std::pair<int64_t, int64_t>> TuningKnobs() const; bool operator==(const AlgorithmDesc& other) const; uint64_t hash() const; template <typename H> friend H AbslHashValue(H h, const AlgorithmDesc& algo_desc); AlgorithmProto ToProto() const { return proto_; } std::string ToString() const; private: AlgorithmProto proto_; }; template <typename H> H AbslHashValue(H h, const AlgorithmDesc& algo_desc) { return H::combine(std::move(h), algo_desc.hash()); } class ProfileResult { public: bool is_valid() const { return algorithm_.ha
#include "xla/stream_executor/dnn.h" #include <tuple> #include <vector> #include "tsl/platform/test.h" namespace stream_executor { namespace { TEST(DnnTest, AlgorithmDescToString) { dnn::AlgorithmDesc desc(17, {{12, 1}, {1, 0}, {3, 1}}, 0); EXPECT_EQ(desc.ToString(), "eng17{k1=0,k3=1,k12=1}"); } TEST(DnnTest, VersionInfoComparisonOperators) { std::vector<std::tuple<int, int, int>> vs; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { for (int k = 0; k < 4; k++) { vs.push_back(std::make_tuple(i, j, k)); } } } for (const auto& a : vs) { for (const auto& b : vs) { auto [a1, a2, a3] = a; auto [b1, b2, b3] = b; dnn::VersionInfo va(a1, a2, a3); dnn::VersionInfo vb(b1, b2, b3); EXPECT_EQ((a == b), va == vb); EXPECT_EQ((a != b), va != vb); EXPECT_EQ((a < b), va < vb); EXPECT_EQ((a <= b), va <= vb); EXPECT_EQ((a > b), va > vb); EXPECT_EQ((a >= b), va >= vb); } } } } }
1,826
cpp
tensorflow/tensorflow
device_memory_handle
third_party/xla/xla/stream_executor/device_memory_handle.cc
third_party/xla/xla/stream_executor/device_memory_handle_test.cc
#ifndef XLA_STREAM_EXECUTOR_DEVICE_MEMORY_HANDLE_H_ #define XLA_STREAM_EXECUTOR_DEVICE_MEMORY_HANDLE_H_ #include <utility> #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/stream_executor.h" namespace stream_executor { class DeviceMemoryHandle { public: DeviceMemoryHandle() : memory_(), executor_(nullptr) {} DeviceMemoryHandle(StreamExecutor *executor, DeviceMemoryBase memory); ~DeviceMemoryHandle(); DeviceMemoryHandle(DeviceMemoryHandle &&other) noexcept; DeviceMemoryHandle &operator=(DeviceMemoryHandle &&other) noexcept; const DeviceMemoryBase &memory() const { return memory_; } DeviceMemoryBase *memory_ptr() { return &memory_; } private: void Free(); DeviceMemoryBase memory_; StreamExecutor *executor_; }; } #endif #include "xla/stream_executor/device_memory_handle.h" #include <utility> #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/stream_executor.h" namespace stream_executor { DeviceMemoryHandle::DeviceMemoryHandle(StreamExecutor *executor, DeviceMemoryBase memory) : memory_(std::move(memory)), executor_(executor) {} DeviceMemoryHandle::DeviceMemoryHandle(DeviceMemoryHandle &&other) noexcept : memory_(std::move(other.memory_)), executor_(other.executor_) { other.memory_ = DeviceMemoryBase(); } DeviceMemoryHandle::~DeviceMemoryHandle() { Free(); } void DeviceMemoryHandle::Free() { if (!memory_.is_null()) { executor_->Deallocate(&memory_); } } DeviceMemoryHandle &DeviceMemoryHandle::operator=( DeviceMemoryHandle &&other) noexcept { Free(); memory_ = std::move(other.memory_); other.memory_ = DeviceMemoryBase(); executor_ = other.executor_; return *this; } }
#include "xla/stream_executor/device_memory_handle.h" #include <utility> #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/mock_stream_executor.h" #include "tsl/platform/test.h" namespace stream_executor { namespace { TEST(DeviceMemoryHandle, NullMemoryNoDeallocate) { DeviceMemoryBase null_memory; MockStreamExecutor executor; EXPECT_CALL(executor, Deallocate).Times(0); { DeviceMemoryHandle releaser(&executor, null_memory); } } TEST(DeviceMemoryHandle, Deallocates) { MockStreamExecutor executor; DeviceMemoryBase memory(&executor, sizeof(executor)); EXPECT_CALL(executor, Deallocate).Times(1); { DeviceMemoryHandle releaser(&executor, memory); } } TEST(DeviceMemoryHandle, MoveDeallocatesOnce) { MockStreamExecutor executor; DeviceMemoryBase memory(&executor, sizeof(executor)); EXPECT_CALL(executor, Deallocate).Times(1); { DeviceMemoryHandle releaser(&executor, memory); DeviceMemoryHandle releaser_moved(std::move(releaser)); } } TEST(DeviceMemoryHandle, MoveAssignmentDeallocatesOnce) { MockStreamExecutor executor; DeviceMemoryBase memory(&executor, sizeof(executor)); EXPECT_CALL(executor, Deallocate).Times(1); { DeviceMemoryHandle releaser(&executor, memory); DeviceMemoryHandle releaser2; releaser2 = std::move(releaser); } } } }
1,827
cpp
tensorflow/tensorflow
tf_allocator_adapter
third_party/xla/xla/stream_executor/integrations/tf_allocator_adapter.cc
third_party/xla/xla/stream_executor/integrations/tf_allocator_adapter_test.cc
#ifndef XLA_STREAM_EXECUTOR_INTEGRATIONS_TF_ALLOCATOR_ADAPTER_H_ #define XLA_STREAM_EXECUTOR_INTEGRATIONS_TF_ALLOCATOR_ADAPTER_H_ #include <memory> #include <tuple> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tsl/framework/allocator.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace stream_executor { class TfAllocatorAdapter : public DeviceMemoryAllocator { public: TfAllocatorAdapter(tsl::Allocator *wrapped, Stream *stream); TfAllocatorAdapter(tsl::Allocator *wrapped, Platform *platform); ~TfAllocatorAdapter() override; absl::StatusOr<OwningDeviceMemory> Allocate(int device_ordinal, uint64_t size, bool retry_on_failure, int64_t memory_space) override; absl::Status Deallocate(int device_ordinal, DeviceMemoryBase mem) override; bool AllowsAsynchronousDeallocation() const override { return true; } absl::StatusOr<Stream *> GetStream(int device_ordinal) override; absl::StatusOr<tsl::Allocator *> GetAllocator(int device_ordinal); private: tsl::Allocator *wrapped_; Stream *stream_; }; class MultiDeviceAdapter : public DeviceMemoryAllocator { public: struct AllocatorInfo { std::unique_ptr<tsl::Allocator> allocator; Stream *stream; int64_t memory_space; std::optional<int> device_ordinal = std::nullopt; AllocatorInfo(std::unique_ptr<tsl::Allocator> allocator, Stream *stream, int64_t memory_space, std::optional<int> device_ordinal = std::nullopt) : allocator(std::move(allocator)), stream(stream), memory_space(memory_space), device_ordinal(device_ordinal) {} }; MultiDeviceAdapter(const Platform *platform, std::vector<AllocatorInfo> tf_allocators) : DeviceMemoryAllocator(platform) { tf_allocators_.reserve(tf_allocators.size()); for (AllocatorInfo &info : tf_allocators) { auto &per_device_allocators = memory_space_to_per_device_allocators_[info.memory_space]; int device_ordinal = info.device_ordinal.has_value() ? *info.device_ordinal : info.stream->parent()->device_ordinal(); if (per_device_allocators.size() <= device_ordinal) { per_device_allocators.resize(device_ordinal + 1); } CHECK(!per_device_allocators[device_ordinal]); per_device_allocators[device_ordinal] = std::make_unique<TfAllocatorAdapter>(info.allocator.get(), info.stream); tf_allocators_.push_back(std::move(info.allocator)); } } absl::StatusOr<OwningDeviceMemory> Allocate(int device_ordinal, uint64_t size, bool retry_on_failure, int64_t memory_space) override { auto it = memory_space_to_per_device_allocators_.find(memory_space); CHECK(it != memory_space_to_per_device_allocators_.end()); CHECK_LT(device_ordinal, it->second.size()); TF_ASSIGN_OR_RETURN( auto result, it->second[device_ordinal]->Allocate( device_ordinal, size, retry_on_failure, memory_space)); absl::MutexLock lock(&mu_); buffer_memory_spaces_[{device_ordinal, result->opaque()}] = memory_space; return result; } absl::Status Deallocate(int device_ordinal, DeviceMemoryBase mem) override { if (mem.opaque() == nullptr) return absl::OkStatus(); int64_t memory_space; { absl::MutexLock lock(&mu_); auto it = buffer_memory_spaces_.find({device_ordinal, mem.opaque()}); if (it == buffer_memory_spaces_.end()) { return memory_space_to_per_device_allocators_[0][device_ordinal] ->Deallocate(device_ordinal, mem); } memory_space = it->second; buffer_memory_spaces_.erase(it); } auto it = memory_space_to_per_device_allocators_.find(memory_space); CHECK(it != memory_space_to_per_device_allocators_.end()); CHECK_LT(device_ordinal, it->second.size()); return it->second[device_ordinal]->Deallocate(device_ordinal, mem); } bool AllowsAsynchronousDeallocation() const override { return true; } absl::StatusOr<Stream *> GetStream(int device_ordinal) override { return memory_space_to_per_device_allocators_[0][device_ordinal]->GetStream( device_ordinal); } absl::StatusOr<tsl::Allocator *> GetAllocator(int device_ordinal) { return memory_space_to_per_device_allocators_[0][device_ordinal] ->GetAllocator(device_ordinal); } private: absl::flat_hash_map<int64_t, std::vector<std::unique_ptr<TfAllocatorAdapter>>> memory_space_to_per_device_allocators_; absl::Mutex mu_; absl::flat_hash_map<std::pair<int, void *>, int64_t> buffer_memory_spaces_ ABSL_GUARDED_BY(mu_); std::vector<std::unique_ptr<tsl::Allocator>> tf_allocators_; }; } #endif #include "xla/stream_executor/integrations/tf_allocator_adapter.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "tsl/platform/errors.h" namespace stream_executor { TfAllocatorAdapter::TfAllocatorAdapter(tsl::Allocator *wrapped, Stream *stream) : DeviceMemoryAllocator(stream->parent()->GetPlatform()), wrapped_(wrapped), stream_(stream) {} TfAllocatorAdapter::TfAllocatorAdapter(tsl::Allocator *wrapped, Platform *platform) : DeviceMemoryAllocator(platform), wrapped_(wrapped), stream_(nullptr) {} TfAllocatorAdapter::~TfAllocatorAdapter() {} absl::StatusOr<OwningDeviceMemory> TfAllocatorAdapter::Allocate( int device_ordinal, uint64_t size, bool retry_on_failure, int64_t memory_space) { tsl::AllocationAttributes attrs; attrs.retry_on_failure = retry_on_failure; void *data = nullptr; if (size != 0) { data = wrapped_->AllocateRaw(tsl::Allocator::kAllocatorAlignment, size, attrs); if (data == nullptr) { return absl::ResourceExhaustedError(absl::StrCat( "Out of memory while trying to allocate ", size, " bytes.")); } } return OwningDeviceMemory(DeviceMemoryBase(data, size), device_ordinal, this); } absl::Status TfAllocatorAdapter::Deallocate(int device_ordinal, DeviceMemoryBase mem) { wrapped_->DeallocateRaw(mem.opaque()); return absl::OkStatus(); } absl::StatusOr<Stream *> TfAllocatorAdapter::GetStream(int device_ordinal) { CHECK_EQ(stream_->parent()->device_ordinal(), device_ordinal); return stream_; } absl::StatusOr<tsl::Allocator *> TfAllocatorAdapter::GetAllocator( int device_ordinal) { if (stream_ == nullptr) { return absl::UnavailableError("stream_ is null for TfAllocatorAdapter."); } if (stream_->parent()->device_ordinal() != device_ordinal) { return absl::InternalError( absl::StrCat("stream_->parent()->device_ordinal() ", stream_->parent()->device_ordinal(), " not equal to device_ordinal ", device_ordinal)); } return wrapped_; } }
#include "xla/stream_executor/integrations/tf_allocator_adapter.h" #include <cstddef> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/container/node_hash_set.h" #include "absl/log/check.h" #include "xla/service/platform_util.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tsl/framework/allocator.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace se = stream_executor; class TestAllocator : public tsl::Allocator { public: explicit TestAllocator( size_t start_address, std::shared_ptr<absl::flat_hash_set<void*>> allocations = nullptr) : start_address_(start_address), allocations_(allocations) { if (allocations_ == nullptr) { allocations_ = std::make_shared<absl::flat_hash_set<void*>>(); } } std::string Name() override { return "test"; } void* AllocateRaw(size_t alignment, size_t num_bytes) override { void* ptr = reinterpret_cast<void*>(++start_address_); allocations_->insert(ptr); return ptr; } void DeallocateRaw(void* ptr) override { auto it = allocations_->find(ptr); if (it == allocations_->end()) { ADD_FAILURE() << "Allocation not found (double free?)"; } else { allocations_->erase(it); } } private: size_t start_address_; std::shared_ptr<absl::flat_hash_set<void*>> allocations_; }; TEST(MultiDeviceAdapter, UsesCorrectAllocator) { TF_ASSERT_OK_AND_ASSIGN(auto* platform, xla::PlatformUtil::GetDefaultPlatform()); TF_ASSERT_OK_AND_ASSIGN(std::vector<se::StreamExecutor*> executors, xla::PlatformUtil::GetStreamExecutors(platform)) TF_ASSERT_OK_AND_ASSIGN(auto stream, executors[0]->CreateStream()); std::vector<se::MultiDeviceAdapter::AllocatorInfo> infos; infos.emplace_back(std::make_unique<TestAllocator>(0x1000), stream.get(), 0, 0); infos.emplace_back(std::make_unique<TestAllocator>(0x2000), stream.get(), 0, 1); infos.emplace_back(std::make_unique<TestAllocator>(0x3000), stream.get(), 1, 0); infos.emplace_back(std::make_unique<TestAllocator>(0x4000), stream.get(), 1, 1); std::unique_ptr<se::DeviceMemoryAllocator> allocator = std::make_unique<se::MultiDeviceAdapter>(platform, std::move(infos)); TF_ASSERT_OK_AND_ASSIGN( se::OwningDeviceMemory buff0, allocator->Allocate(0, 4, false, 0)); CHECK_EQ(reinterpret_cast<size_t>(buff0->opaque()), 0x1001); TF_ASSERT_OK_AND_ASSIGN( se::OwningDeviceMemory buff1, allocator->Allocate(0, 4, false, 0)); CHECK_EQ(reinterpret_cast<size_t>(buff1->opaque()), 0x1002); TF_ASSERT_OK_AND_ASSIGN( se::OwningDeviceMemory buff2, allocator->Allocate(0, 4, false, 1)); CHECK_EQ(reinterpret_cast<size_t>(buff2->opaque()), 0x3001); TF_ASSERT_OK_AND_ASSIGN( se::OwningDeviceMemory buff3, allocator->Allocate(1, 4, false, 0)); CHECK_EQ(reinterpret_cast<size_t>(buff3->opaque()), 0x2001); TF_ASSERT_OK_AND_ASSIGN( se::OwningDeviceMemory buff4, allocator->Allocate(1, 4, false, 1)); CHECK_EQ(reinterpret_cast<size_t>(buff4->opaque()), 0x4001); } TEST(MultiDeviceAdapter, DeallocationWithDifferentAllocator) { TF_ASSERT_OK_AND_ASSIGN(auto* platform, xla::PlatformUtil::GetDefaultPlatform()); TF_ASSERT_OK_AND_ASSIGN(std::vector<se::StreamExecutor*> executors, xla::PlatformUtil::GetStreamExecutors(platform)); TF_ASSERT_OK_AND_ASSIGN(auto stream, executors[0]->CreateStream()); std::shared_ptr<absl::flat_hash_set<void*>> allocations = std::make_shared<absl::flat_hash_set<void*>>(); std::vector<se::MultiDeviceAdapter::AllocatorInfo> info_allocator; info_allocator.emplace_back( std::make_unique<TestAllocator>(0x1000, allocations), stream.get(), 0, 0); std::unique_ptr<se::DeviceMemoryAllocator> allocator = std::make_unique<se::MultiDeviceAdapter>(platform, std::move(info_allocator)); std::vector<se::MultiDeviceAdapter::AllocatorInfo> info_deallocator; info_deallocator.emplace_back( std::make_unique<TestAllocator>(0x1000, allocations), stream.get(), 0, 0); std::unique_ptr<se::DeviceMemoryAllocator> deallocator = std::make_unique<se::MultiDeviceAdapter>(platform, std::move(info_deallocator)); TF_ASSERT_OK_AND_ASSIGN( se::OwningDeviceMemory buff0, allocator->Allocate(0, 4, false, 0)); CHECK_EQ(allocations->size(), 1); CHECK_EQ(reinterpret_cast<size_t>(buff0->opaque()), 0x1001); TF_CHECK_OK(deallocator->Deallocate(0, buff0.cref())); CHECK_EQ(allocations->size(), 0); allocations->insert(buff0->opaque()); }
1,828
cpp
tensorflow/tensorflow
host_kernel
third_party/xla/xla/stream_executor/host/host_kernel.cc
third_party/xla/xla/stream_executor/host/host_kernel_test.cc
#ifndef XLA_STREAM_EXECUTOR_HOST_HOST_KERNEL_H_ #define XLA_STREAM_EXECUTOR_HOST_HOST_KERNEL_H_ #include <cstddef> #include <cstdint> #include <memory> #include <type_traits> #include <utility> #include "absl/functional/any_invocable.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/host/host_kernel_c_api.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/kernel_spec.h" #include "xla/stream_executor/launch_dim.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "xla/tsl/concurrency/chain.h" #include "tsl/platform/threadpool.h" namespace stream_executor::host { class HostExecutor; class HostKernel : public Kernel { public: using Task = absl::AnyInvocable<void()>; using TaskRunner = absl::AnyInvocable<void(Task)>; using LaunchEvent = tsl::Chain; class KernelFunction { public: virtual ~KernelFunction() = default; virtual SE_HOST_Kernel* kernel() const = 0; }; class KernelFunctionPtr final : public KernelFunction { public: explicit KernelFunctionPtr(SE_HOST_Kernel* ptr) : ptr_(ptr) {} SE_HOST_Kernel* kernel() const override { return ptr_; } private: SE_HOST_Kernel* ptr_; }; explicit HostKernel(std::shared_ptr<tsl::thread::ThreadPool> thread_pool); HostKernel(unsigned arity, SE_HOST_Kernel* kernel, std::shared_ptr<tsl::thread::ThreadPool> thread_pool = nullptr); absl::Status Launch(const ThreadDim& thread_dims, absl::Span<const DeviceMemoryBase> buffers) const; absl::Status Launch(const ThreadDim& thread_dims, absl::Span<const SE_HOST_KernelArg> args) const; tsl::AsyncValueRef<LaunchEvent> Launch( const ThreadDim& thread_dims, absl::Span<const DeviceMemoryBase> buffers, TaskRunner task_runner) const; tsl::AsyncValueRef<LaunchEvent> Launch( const ThreadDim& thread_dims, absl::Span<const SE_HOST_KernelArg> args, TaskRunner task_runner) const; absl::StatusOr<int32_t> GetMaxOccupiedBlocksPerCore(ThreadDim, size_t) const override { return 1; }; void SetArity(unsigned arity) { arity_ = arity; }; unsigned Arity() const override { return arity_; }; template <typename T, std::enable_if_t<std::is_base_of_v<KernelFunction, T>>* = nullptr> void SetKernelFunction(std::unique_ptr<T> function) { function_ = std::move(function); kernel_ = function_->kernel(); } private: std::unique_ptr<KernelFunction> function_; SE_HOST_Kernel* kernel_; unsigned arity_; std::shared_ptr<tsl::thread::ThreadPool> thread_pool_; }; inline const HostKernel* AsHostKernel(const Kernel* kernel) { return static_cast<const HostKernel*>(kernel); } inline HostKernel* AsHostKernel(Kernel* kernel) { return static_cast<HostKernel*>(kernel); } } #endif #include "xla/stream_executor/host/host_kernel.h" #include <atomic> #include <cstddef> #include <cstdint> #include <memory> #include <utility> #include "absl/base/optimization.h" #include "absl/base/thread_annotations.h" #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/strings/str_format.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/host/host_kernel_c_api.h" #include "xla/stream_executor/launch_dim.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "xla/tsl/concurrency/ref_count.h" #include "tsl/platform/logging.h" #include "tsl/platform/threadpool.h" namespace stream_executor::host { using LaunchEvent = HostKernel::LaunchEvent; static tsl::AsyncValueRef<LaunchEvent> OkLaunchEvent() { static tsl::AsyncValueOwningRef<LaunchEvent>* event = [] { auto* storage = new tsl::internal::AsyncValueStorage<LaunchEvent>(); return new tsl::AsyncValueOwningRef<LaunchEvent>( tsl::MakeAvailableAsyncValueRef<LaunchEvent>(*storage)); }(); return event->AsRef(); } static absl::InlinedVector<SE_HOST_KernelArg, 8> ConvertBuffersToKernelArgs( absl::Span<const DeviceMemoryBase> buffers) { absl::InlinedVector<SE_HOST_KernelArg, 8> args(buffers.size()); for (size_t i = 0; i < buffers.size(); ++i) { args[i].data = const_cast<void*>(buffers[i].opaque()); args[i].size = buffers[i].size(); } return args; } namespace { class HostKernelExecuteState : public tsl::ReferenceCounted<HostKernelExecuteState> { public: HostKernelExecuteState(HostKernel::TaskRunner task_runner, SE_HOST_Kernel* kernel, ThreadDim thread_dims, absl::Span<const SE_HOST_KernelArg> args); void Notify(absl::Status status); void CallSync(uint64_t task_index); void CallAsync(uint64_t start_index, uint64_t end_index); tsl::AsyncValueRef<LaunchEvent> event() const { return event_; } private: SE_HOST_KernelThread Delinearize(uint64_t task_index); HostKernel::TaskRunner task_runner_; size_t num_tasks_; SE_HOST_Kernel* kernel_; SE_HOST_KernelThreadDim thread_dims_; absl::InlinedVector<SE_HOST_KernelArg, 8> args_; std::atomic<bool> abort_; absl::Mutex abort_mutex_; absl::Status abort_status_ ABSL_GUARDED_BY(abort_mutex_); std::atomic<int64_t> counter_; tsl::AsyncValueRef<LaunchEvent> event_; }; } HostKernel::HostKernel(std::shared_ptr<tsl::thread::ThreadPool> thread_pool) : thread_pool_(thread_pool) { } HostKernel::HostKernel(unsigned arity, SE_HOST_Kernel* kernel, std::shared_ptr<tsl::thread::ThreadPool> thread_pool) : function_(std::make_unique<KernelFunctionPtr>(kernel)), kernel_(function_->kernel()), arity_(arity), thread_pool_(thread_pool) {} absl::Status HostKernel::Launch( const ThreadDim& thread_dims, absl::Span<const DeviceMemoryBase> buffers) const { return Launch(thread_dims, ConvertBuffersToKernelArgs(buffers)); } absl::Status HostKernel::Launch( const ThreadDim& thread_dims, absl::Span<const SE_HOST_KernelArg> args) const { SE_HOST_KernelThreadDim kernel_thread_dims = { thread_dims.x, thread_dims.y, thread_dims.z, }; for (uint64_t z = 0; z < thread_dims.z; ++z) { for (uint64_t y = 0; y < thread_dims.y; ++y) { for (uint64_t x = 0; x < thread_dims.x; ++x) { SE_HOST_KernelThread kernel_thread = {x, y, z}; SE_HOST_KernelCallFrame call_frame = { &kernel_thread_dims, &kernel_thread, args.size(), args.data()}; SE_HOST_KernelError* error = (*kernel_)(&call_frame); if (ABSL_PREDICT_FALSE(error != nullptr)) { return absl::InternalError("Failed to call host kernel"); } } } } return absl::OkStatus(); } tsl::AsyncValueRef<LaunchEvent> HostKernel::Launch( const ThreadDim& thread_dims, absl::Span<const DeviceMemoryBase> buffers, TaskRunner task_runner) const { return Launch(thread_dims, ConvertBuffersToKernelArgs(buffers), std::move(task_runner)); } tsl::AsyncValueRef<LaunchEvent> HostKernel::Launch( const ThreadDim& thread_dims, absl::Span<const SE_HOST_KernelArg> args, TaskRunner task_runner) const { size_t num_tasks = thread_dims.x * thread_dims.y * thread_dims.z; CHECK_GT(num_tasks, 0) << "Number of tasks must be positive"; if (ABSL_PREDICT_TRUE(num_tasks == 1)) { absl::Status launched = Launch(thread_dims, args); return ABSL_PREDICT_TRUE(launched.ok()) ? OkLaunchEvent() : tsl::MakeErrorAsyncValueRef(std::move(launched)); } auto state = tsl::MakeRef<HostKernelExecuteState>(std::move(task_runner), kernel_, thread_dims, args); state->CallAsync(0, num_tasks); return state->event(); } HostKernelExecuteState::HostKernelExecuteState( HostKernel::TaskRunner task_runner, SE_HOST_Kernel kernel, ThreadDim thread_dims, absl::Span<const SE_HOST_KernelArg> args) : task_runner_(std::move(task_runner)), num_tasks_(thread_dims.x * thread_dims.y * thread_dims.z), kernel_(kernel), thread_dims_({thread_dims.x, thread_dims.y, thread_dims.z}), args_(args.begin(), args.end()), abort_(false), counter_(num_tasks_), event_(tsl::MakeConstructedAsyncValueRef<LaunchEvent>()) {} void HostKernelExecuteState::Notify(absl::Status status) { if (ABSL_PREDICT_FALSE(!status.ok())) { absl::MutexLock lock(&abort_mutex_); abort_.store(true, std::memory_order_relaxed); abort_status_.Update(std::move(status)); } bool is_done = counter_.load(std::memory_order_relaxed) == 1 || counter_.fetch_sub(1, std::memory_order_relaxed) == 1; if (ABSL_PREDICT_TRUE(!is_done)) return; if (ABSL_PREDICT_FALSE(abort_.load(std::memory_order_relaxed))) { absl::MutexLock lock(&abort_mutex_); event_.SetError(std::move(abort_status_)); } else { event_.SetStateConcrete(); } } void HostKernelExecuteState::CallSync(uint64_t task_index) { CHECK_LT(task_index, num_tasks_) << "Task index out of range"; if (ABSL_PREDICT_FALSE(abort_.load(std::memory_order_relaxed))) { Notify(absl::OkStatus()); return; } SE_HOST_KernelThread kernel_thread = Delinearize(task_index); SE_HOST_KernelCallFrame call_frame = {&thread_dims_, &kernel_thread, args_.size(), args_.data()}; SE_HOST_KernelError* error = (*kernel_)(&call_frame); if (ABSL_PREDICT_TRUE(error == nullptr)) { Notify(absl::OkStatus()); } else { Notify(absl::InternalError( absl::StrFormat("Failed to call host kernel: x=%d, y=%d, z=%d", kernel_thread.x, kernel_thread.y, kernel_thread.z))); } } void HostKernelExecuteState::CallAsync(uint64_t start_index, uint64_t end_index) { CHECK_LT(start_index, end_index) << "Invalid task index range"; while (end_index - start_index > 1) { uint64_t mid_index = (start_index + end_index) / 2; task_runner_([self = tsl::FormRef(this), mid_index, end_index] { self->CallAsync(mid_index, end_index); }); end_index = mid_index; } CallSync(start_index); } SE_HOST_KernelThread HostKernelExecuteState::Delinearize(uint64_t task_index) { uint64_t stride_z = thread_dims_.y * thread_dims_.x; uint64_t stride_y = thread_dims_.x; uint64_t z = task_index / stride_z; task_index = task_index % stride_z; uint64_t y = task_index / stride_y; task_index = task_index % stride_y; uint64_t x = task_index; return SE_HOST_KernelThread{x, y, z}; } }
#include "xla/stream_executor/host/host_kernel.h" #include <atomic> #include <cstddef> #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/functional/any_invocable.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/types/span.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/host/host_kernel_c_api.h" #include "xla/stream_executor/kernel_factory.h" #include "xla/stream_executor/kernel_spec.h" #include "xla/stream_executor/launch_dim.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/cpu_info.h" #include "tsl/platform/env.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" #include "tsl/platform/threadpool.h" namespace stream_executor::host { static auto ToCopyableTask(HostKernel::Task task) { return [shared_task = std::make_shared<decltype(task)>(std::move(task))] { (*shared_task)(); }; } static SE_HOST_KernelError* AddI32(const SE_HOST_KernelCallFrame* call_frame) { const SE_HOST_KernelArg& lhs = call_frame->args[0]; const SE_HOST_KernelArg& rhs = call_frame->args[1]; const SE_HOST_KernelArg& out = call_frame->args[2]; int32_t* lhs_ptr = reinterpret_cast<int32_t*>(lhs.data); int32_t* rhs_ptr = reinterpret_cast<int32_t*>(rhs.data); int32_t* out_ptr = reinterpret_cast<int32_t*>(out.data); const auto zstep = call_frame->thread_dims->x * call_frame->thread_dims->y; const auto ystep = call_frame->thread_dims->x; uint64_t i = call_frame->thread->x + call_frame->thread->y * ystep + call_frame->thread->z * zstep; *(out_ptr + i) = *(lhs_ptr + i) + *(rhs_ptr + i); return nullptr; } static const char* llvm_kernel_add = R"( %SE_HOST_KernelCallFrame = type { ptr, ptr, i64, ptr } %struct.SE_HOST_KernelArg = type { ptr, i64 } define ptr @LlvmAddI32(ptr noundef %0) { %2 = getelementptr inbounds %SE_HOST_KernelCallFrame, ptr %0, i32 0, i32 3 %3 = load ptr, ptr %2, align 8 %4 = getelementptr inbounds %struct.SE_HOST_KernelArg, ptr %3, i64 1 %5 = getelementptr inbounds %struct.SE_HOST_KernelArg, ptr %3, i64 2 %6 = load ptr, ptr %3, align 8 %7 = load ptr, ptr %4, align 8 %8 = load ptr, ptr %5, align 8 %9 = getelementptr inbounds %SE_HOST_KernelCallFrame, ptr %0, i32 0, i32 1 %10 = load ptr, ptr %9, align 8 %11 = load i64, ptr %10, align 8 %12 = getelementptr inbounds i32, ptr %6, i64 %11 %13 = load i32, ptr %12, align 4 %14 = getelementptr inbounds i32, ptr %7, i64 %11 %15 = load i32, ptr %14, align 4 %16 = add nsw i32 %13, %15 %17 = getelementptr inbounds i32, ptr %8, i64 %11 store i32 %16, ptr %17, align 4 ret ptr null } )"; static absl::StatusOr<std::unique_ptr<StreamExecutor>> NewStreamExecutor() { StreamExecutorConfig config(0); TF_ASSIGN_OR_RETURN(auto platform, PlatformManager::PlatformWithName("Host")); TF_ASSIGN_OR_RETURN(auto stream_exec, platform->GetUncachedExecutor(config)); return stream_exec; } TEST(HostKernelTest, InternalAddition1D) { auto tp = std::make_shared<tsl::thread::ThreadPool>(tsl::Env::Default(), "XLAEigen", 2); HostKernel kernel(3, AddI32, tp); std::vector<int32_t> lhs = {1, 2, 3, 4}; std::vector<int32_t> rhs = {5, 6, 7, 8}; std::vector<int32_t> out = {0, 0, 0, 0}; DeviceMemoryBase lhs_mem(lhs.data(), lhs.size() * sizeof(int32_t)); DeviceMemoryBase rhs_mem(rhs.data(), rhs.size() * sizeof(int32_t)); DeviceMemoryBase out_mem(out.data(), out.size() * sizeof(int32_t)); std::vector<DeviceMemoryBase> args = {lhs_mem, rhs_mem, out_mem}; TF_ASSERT_OK(kernel.Launch(ThreadDim(4), args)); std::vector<int32_t> expected = {6, 8, 10, 12}; EXPECT_EQ(out, expected); } TEST(HostKernelTest, InternalAddition3D) { auto tp = std::make_shared<tsl::thread::ThreadPool>(tsl::Env::Default(), "XLAEigen", 2); HostKernel kernel(3, AddI32, tp); std::vector<int32_t> lhs = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; std::vector<int32_t> rhs = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}; std::vector<int32_t> out = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; DeviceMemoryBase lhs_mem(lhs.data(), lhs.size() * sizeof(int32_t)); DeviceMemoryBase rhs_mem(rhs.data(), rhs.size() * sizeof(int32_t)); DeviceMemoryBase out_mem(out.data(), out.size() * sizeof(int32_t)); std::vector<DeviceMemoryBase> args = {lhs_mem, rhs_mem, out_mem}; TF_ASSERT_OK(kernel.Launch(ThreadDim(2, 2, 3), args)); std::vector<int32_t> expected = {11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33}; EXPECT_EQ(out, expected); } TEST(HostKernelTest, Addition3D) { std::vector<int32_t> lhs = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; std::vector<int32_t> rhs = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}; std::vector<int32_t> out = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; DeviceMemoryBase lhs_mem(lhs.data(), lhs.size() * sizeof(int32_t)); DeviceMemoryBase rhs_mem(rhs.data(), rhs.size() * sizeof(int32_t)); DeviceMemoryBase out_mem(out.data(), out.size() * sizeof(int32_t)); std::vector<DeviceMemoryBase> args = {lhs_mem, rhs_mem, out_mem}; MultiKernelLoaderSpec spec(3); spec.AddInProcessSymbol(reinterpret_cast<void*>(AddI32), "Addition_kernel"); TF_ASSERT_OK_AND_ASSIGN(auto executor, NewStreamExecutor()); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); TF_ASSERT_OK_AND_ASSIGN(auto add, KernelFactory::Create(executor.get(), spec)); const KernelArgsDeviceMemoryArray kargs{args, 0}; TF_ASSERT_OK(stream->Launch(ThreadDim(2, 2, 3), BlockDim(1), *add, kargs)); std::vector<int32_t> expected = {11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33}; EXPECT_EQ(out, expected); } TEST(HostKernelTest, JitAddition) { std::vector<int32_t> lhs = {1, 2, 3, 4}; std::vector<int32_t> rhs = {5, 6, 7, 8}; std::vector<int32_t> out = {0, 0, 0, 0}; DeviceMemoryBase lhs_mem(lhs.data(), lhs.size() * sizeof(int32_t)); DeviceMemoryBase rhs_mem(rhs.data(), rhs.size() * sizeof(int32_t)); DeviceMemoryBase out_mem(out.data(), out.size() * sizeof(int32_t)); std::vector<DeviceMemoryBase> args = {lhs_mem, rhs_mem, out_mem}; MultiKernelLoaderSpec spec(3); spec.AddLlvmHostKernel(llvm_kernel_add, "LlvmAddI32", "LlvmAddI32", absl::Span<std::string>()); TF_ASSERT_OK_AND_ASSIGN(auto executor, NewStreamExecutor()); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); TF_ASSERT_OK_AND_ASSIGN(auto add, KernelFactory::Create(executor.get(), spec)); const KernelArgsDeviceMemoryArray kargs{args, 0}; TF_ASSERT_OK(stream->Launch(ThreadDim(4), BlockDim(1), *add, kargs)); std::vector<int32_t> expected = {6, 8, 10, 12}; EXPECT_EQ(out, expected); } TEST(HostKernelTest, LaunchAsync) { auto* no_op = +[](const SE_HOST_KernelCallFrame*) { return static_cast<SE_HOST_KernelError*>(nullptr); }; auto thread_pool = std::make_shared<tsl::thread::ThreadPool>( tsl::Env::Default(), "benchmark", tsl::port::MaxParallelism()); std::atomic<size_t> num_tasks = 0; HostKernel::TaskRunner runner = [&](HostKernel::Task task) { num_tasks.fetch_add(1, std::memory_order_relaxed); thread_pool->Schedule(ToCopyableTask(std::move(task))); }; HostKernel host_kernel(0, no_op); auto event = host_kernel.Launch(ThreadDim(4, 4, 4), absl::Span<const SE_HOST_KernelArg>(), std::move(runner)); tsl::BlockUntilReady(event); EXPECT_TRUE(event.IsConcrete()); EXPECT_EQ(num_tasks.load(std::memory_order_relaxed), 4 * 4 * 4 - 1); } TEST(HostKernelTest, LaunchAsyncError) { auto* maybe_error = +[](const SE_HOST_KernelCallFrame* call_frame) { if (call_frame->thread->x == 2 && call_frame->thread->z == 2) { return reinterpret_cast<SE_HOST_KernelError*>(0xDEADBEEF); } return static_cast<SE_HOST_KernelError*>(nullptr); }; auto thread_pool = std::make_shared<tsl::thread::ThreadPool>( tsl::Env::Default(), "benchmark", tsl::port::MaxParallelism()); std::atomic<size_t> num_tasks = 0; HostKernel::TaskRunner runner = [&](HostKernel::Task task) { num_tasks.fetch_add(1, std::memory_order_relaxed); thread_pool->Schedule(ToCopyableTask(std::move(task))); }; HostKernel host_kernel(0, maybe_error); auto event = host_kernel.Launch(ThreadDim(4, 4, 4), absl::Span<const SE_HOST_KernelArg>(), std::move(runner)); tsl::BlockUntilReady(event); ASSERT_TRUE(event.IsError()); EXPECT_TRUE(absl::StrContains(event.GetError().message(), "Failed to call host kernel:")); EXPECT_EQ(num_tasks.load(std::memory_order_relaxed), 4 * 4 * 4 - 1); } static SE_HOST_KernelError* NoOp(const SE_HOST_KernelCallFrame*) { return nullptr; } static void BM_HostKernelSyncLaunch(benchmark::State& state) { int32_t tdim_x = state.range(0); HostKernel kernel(0, NoOp); for (auto _ : state) { benchmark::DoNotOptimize(kernel.Launch( ThreadDim(tdim_x), absl::Span<const SE_HOST_KernelArg>())); } } static void BM_HostKernelAsyncLaunch(benchmark::State& state) { int32_t tdim_x = state.range(0); auto thread_pool = std::make_shared<tsl::thread::ThreadPool>( tsl::Env::Default(), "benchmark", tsl::port::MaxParallelism()); HostKernel kernel(0, NoOp); for (auto _ : state) { auto event = kernel.Launch(ThreadDim(tdim_x), absl::Span<const SE_HOST_KernelArg>(), [&](auto task) { thread_pool->Schedule(ToCopyableTask(std::move(task))); }); tsl::BlockUntilReady(event); } } BENCHMARK(BM_HostKernelSyncLaunch) ->MeasureProcessCPUTime() ->Arg(1) ->Arg(4) ->Arg(8) ->Arg(16) ->Arg(32) ->Arg(64); BENCHMARK(BM_HostKernelAsyncLaunch) ->MeasureProcessCPUTime() ->Arg(1) ->Arg(4) ->Arg(8) ->Arg(16) ->Arg(32) ->Arg(64); }
1,829
cpp
tensorflow/tensorflow
host_stream
third_party/xla/xla/stream_executor/host/host_stream.cc
third_party/xla/xla/stream_executor/host/host_stream_test.cc
#ifndef XLA_STREAM_EXECUTOR_HOST_HOST_STREAM_H_ #define XLA_STREAM_EXECUTOR_HOST_HOST_STREAM_H_ #include <cstddef> #include <memory> #include <queue> #include "absl/base/thread_annotations.h" #include "absl/functional/any_invocable.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/stream_common.h" #include "tsl/platform/env.h" #include "tsl/platform/thread_annotations.h" namespace stream_executor { namespace host { class HostStream : public StreamCommon { public: explicit HostStream(StreamExecutor* executor); ~HostStream() override; bool EnqueueTaskWithStatus(absl::AnyInvocable<absl::Status() &&> task); bool EnqueueTask(absl::AnyInvocable<void() &&> task); absl::Status BlockUntilDone(); absl::Status WaitFor(Stream* other) override; absl::Status WaitFor(Event* event) override; absl::Status RecordEvent(Event* event) override; absl::Status MemZero(DeviceMemoryBase* location, uint64_t size) override; absl::Status Memset32(DeviceMemoryBase* location, uint32_t pattern, uint64_t size) override; absl::Status Memcpy(DeviceMemoryBase* gpu_dst, const void* host_src, uint64_t size) override; absl::Status Memcpy(DeviceMemoryBase* gpu_dst, const DeviceMemoryBase& gpu_src, uint64_t size) override; absl::Status Memcpy(void* host_dst, const DeviceMemoryBase& gpu_src, uint64_t size) override; private: bool WorkAvailable() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); void WorkLoop(); absl::Mutex mu_; std::queue<absl::AnyInvocable<absl::Status() &&>> work_queue_ ABSL_GUARDED_BY(mu_); std::unique_ptr<tsl::Thread> thread_; absl::Status status_; }; } } #endif #include "xla/stream_executor/host/host_stream.h" #include <string.h> #include <cfenv> #include <cstdint> #include <memory> #include <queue> #include <utility> #include "absl/functional/any_invocable.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "absl/synchronization/notification.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/event.h" #include "xla/stream_executor/host/host_event.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_common.h" #include "tsl/platform/denormal.h" #include "tsl/platform/env.h" #include "tsl/platform/setround.h" namespace stream_executor { namespace host { HostStream::HostStream(StreamExecutor* executor) : StreamCommon(executor), thread_(tsl::Env::Default()->StartThread({}, "host_executor", [this]() { WorkLoop(); })) {} HostStream::~HostStream() { { absl::MutexLock lock(&mu_); work_queue_.push(nullptr); } thread_.reset(); parent()->DeallocateStream(this); } absl::Status HostStream::Memcpy(DeviceMemoryBase* gpu_dst, const DeviceMemoryBase& gpu_src, uint64_t size) { void* dst_mem = gpu_dst->opaque(); void* src_mem = const_cast<void*>(gpu_src.opaque()); EnqueueTask([src_mem, dst_mem, size]() { memcpy(dst_mem, src_mem, size); }); return absl::OkStatus(); } absl::Status HostStream::Memcpy(void* host_dst, const DeviceMemoryBase& gpu_src, uint64_t size) { void* src_mem = const_cast<void*>(gpu_src.opaque()); EnqueueTask([host_dst, src_mem, size]() { memcpy(host_dst, src_mem, size); }); return absl::OkStatus(); } absl::Status HostStream::Memcpy(DeviceMemoryBase* gpu_dst, const void* host_src, uint64_t size) { void* dst_mem = gpu_dst->opaque(); EnqueueTask([dst_mem, host_src, size]() { memcpy(dst_mem, host_src, size); }); return absl::OkStatus(); } absl::Status HostStream::Memset32(DeviceMemoryBase* location, uint32_t pattern, uint64_t size) { void* gpu_mem = location->opaque(); EnqueueTask([gpu_mem, size, pattern]() { memset(gpu_mem, pattern, size); }); return absl::OkStatus(); } absl::Status HostStream::MemZero(DeviceMemoryBase* location, uint64_t size) { void* gpu_mem = location->opaque(); EnqueueTask([gpu_mem, size]() { memset(gpu_mem, 0, size); }); return absl::OkStatus(); } absl::Status HostStream::WaitFor(Stream* other) { auto event = std::make_shared<absl::Notification>(); static_cast<HostStream*>(other)->EnqueueTask([event]() { event->Notify(); }); EnqueueTask([event]() { event->WaitForNotification(); }); return absl::OkStatus(); } absl::Status HostStream::WaitFor(Event* event) { std::shared_ptr<absl::Notification> notification = static_cast<HostEvent*>(event)->notification(); EnqueueTask([notification]() { notification->WaitForNotification(); }); return absl::OkStatus(); } bool HostStream::EnqueueTask(absl::AnyInvocable<void() &&> task) { return EnqueueTaskWithStatus([task = std::move(task)]() mutable { std::move(task)(); return absl::OkStatus(); }); } absl::Status HostStream::RecordEvent(Event* event) { std::shared_ptr<absl::Notification> notification = static_cast<HostEvent*>(event)->notification(); EnqueueTask([notification]() { CHECK(!notification->HasBeenNotified()); notification->Notify(); }); return absl::OkStatus(); } bool HostStream::EnqueueTaskWithStatus( absl::AnyInvocable<absl::Status() &&> task) { CHECK(task != nullptr); absl::MutexLock lock(&mu_); work_queue_.push(std::move(task)); return true; } bool HostStream::WorkAvailable() { return !work_queue_.empty(); } void HostStream::WorkLoop() { tsl::port::ScopedFlushDenormal flush; tsl::port::ScopedSetRound round(FE_TONEAREST); while (true) { std::queue<absl::AnyInvocable<absl::Status() &&>> queue; { absl::MutexLock lock(&mu_); mu_.Await(absl::Condition(this, &HostStream::WorkAvailable)); std::swap(queue, work_queue_); } while (!queue.empty()) { absl::AnyInvocable<absl::Status() &&>& fn = queue.front(); if (!fn) { return; } status_.Update(std::move(fn)()); queue.pop(); } } } absl::Status HostStream::BlockUntilDone() { absl::Notification done; absl::Status status; EnqueueTask([&done, &status, this]() { status = status_; status_ = absl::OkStatus(); done.Notify(); }); done.WaitForNotification(); return status; } } }
#include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace se = stream_executor; TEST(HostStream, EnforcesFIFOOrder) { se::Platform* platform = se::PlatformManager::PlatformWithName("Host").value(); se::StreamExecutor* executor = platform->ExecutorForDevice(0).value(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); absl::Mutex mu; int expected = 0; bool ok = true; for (int i = 0; i < 2000; ++i) { TF_ASSERT_OK(stream->DoHostCallback([i, &mu, &expected, &ok]() { absl::MutexLock lock(&mu); if (expected != i) { ok = false; } ++expected; })); } TF_ASSERT_OK(stream->BlockHostUntilDone()); absl::MutexLock lock(&mu); EXPECT_TRUE(ok); } TEST(HostStream, ReportsHostCallbackError) { se::Platform* platform = se::PlatformManager::PlatformWithName("Host").value(); se::StreamExecutor* executor = platform->ExecutorForDevice(0).value(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); TF_ASSERT_OK(stream->DoHostCallbackWithStatus( []() { return absl::InternalError("error!"); })); auto status = stream->BlockHostUntilDone(); ASSERT_EQ(status.code(), tsl::error::INTERNAL); ASSERT_EQ(status.message(), "error!"); } TEST(HostStream, ReportsFirstHostCallbackError) { se::Platform* platform = se::PlatformManager::PlatformWithName("Host").value(); se::StreamExecutor* executor = platform->ExecutorForDevice(0).value(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); TF_ASSERT_OK(stream->DoHostCallbackWithStatus( []() { return absl::InternalError("error 1"); })); TF_ASSERT_OK(stream->DoHostCallbackWithStatus( []() { return absl::InternalError("error 2"); })); ASSERT_EQ(stream->BlockHostUntilDone().message(), "error 1"); }
1,830
cpp
tensorflow/tensorflow
c_api_conversions
third_party/xla/xla/stream_executor/tpu/c_api_conversions.cc
third_party/xla/xla/stream_executor/tpu/c_api_conversions_test.cc
#ifndef XLA_STREAM_EXECUTOR_TPU_C_API_CONVERSIONS_H_ #define XLA_STREAM_EXECUTOR_TPU_C_API_CONVERSIONS_H_ #include <array> #include <memory> #include <vector> #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/executable_run_options.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/layout.h" #include "xla/literal.h" #include "xla/service/hlo_module_config.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/service/shaped_buffer.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/tpu/c_api_decl.h" #include "xla/xla_data.pb.h" namespace ApiConverter { absl::Span<const float> MakeSpan(const FloatList& src_list); void CreateVector(absl::Span<const float> src, FloatList* dst); void Destroy(FloatList* float_list); absl::Span<const int64_t> MakeSpan(const Int64List& src_list); void CreateVector(absl::Span<const int64_t> src, Int64List* dst); absl::Span<const int> MakeSpan(const IntList& src_list); void CreateVector(absl::Span<const int> src, IntList* dst); absl::Span<const bool> MakeSpan(const BoolList& src_list); void CreateVector(absl::Span<const bool> src, BoolList* dst); void CreateVector(absl::Span<const xla::DimLevelType> src, IntList* dst); SE_DeviceMemoryBase ToC(const stream_executor::DeviceMemoryBase& base); void ToC(const stream_executor::DeviceMemoryBase& base, SE_DeviceMemoryBase* se_base); stream_executor::DeviceMemoryBase FromC(const SE_DeviceMemoryBase& se_base); void Destroy(SE_DeviceMemoryBase*); xla::Tile FromC(const XLA_Tile* c_tile); void ToC(const xla::Tile& xla_tile, XLA_Tile* c_tile); void Destroy(XLA_Tile* c_tile); xla::Layout FromC(const XLA_Layout* c_layout); void ToC(const xla::Layout& xla_layout, XLA_Layout* c_layout); void Destroy(XLA_Layout* c_layout); xla::Shape FromC(const XLA_Shape* c_shape); void ToC(const xla::Shape& xla_shape, XLA_Shape* c_shape); void Destroy(XLA_Shape* c_shape); XLA_ShapeIndex ToC(const xla::ShapeIndex& xla_shape); xla::ShapeIndex FromC(XLA_ShapeIndex* c_shape); void Destroy(XLA_ShapeIndex*); void ToC(const xla::LiteralSlice& literal, XLA_Literal* c_literal); xla::MutableBorrowingLiteral FromC(XLA_Literal* c_literal); void Destroy(XLA_Literal* c_literal); void ToC(const xla::ShapedBuffer& buffer, XLA_ShapedBuffer* c_device_buffer); xla::ShapedBuffer FromC(XLA_ShapedBuffer* c_buffer); void Destroy(XLA_ShapedBuffer* c_buffer); SE_DeviceMemoryBase ToC(const stream_executor::DeviceMemoryBase& base); stream_executor::DeviceMemoryBase FromC(const SE_DeviceMemoryBase& se_base); void Destroy(SE_DeviceMemoryBase*); void ToC(const xla::LiteralSlice& literal, XLA_Literal* c_literal); xla::MutableBorrowingLiteral FromC(XLA_Literal* c_literal); void Destroy(XLA_Literal* c_literal); void ToC(const xla::ShapedBuffer& buffer, XLA_ShapedBuffer* c_device_buffer); xla::ShapedBuffer FromC(XLA_ShapedBuffer* c_buffer); void Destroy(XLA_ShapedBuffer* c_buffer); struct TpuEmbeddingEngineParametersData { std::array<std::vector<FloatListRef*>, 8> vectors; TpuEmbeddingEngineParameters c_params; }; std::unique_ptr<TpuEmbeddingEngineParametersData> Create(int num_tables); xla::MaybeOwningDeviceMemory FromC( SE_MaybeOwningDeviceMemory* se_mem, stream_executor::DeviceMemoryAllocator* allocator); SE_DeviceMemoryAllocator ToC(stream_executor::DeviceMemoryAllocator* allocator); stream_executor::DeviceMemoryAllocator* FromC( const SE_DeviceMemoryAllocator& c_allocator); SE_MaybeOwningDeviceMemory ToC(stream_executor::OwningDeviceMemory* mem); SE_MaybeOwningDeviceMemory ToC(xla::MaybeOwningDeviceMemory& mem, bool aliased); XLA_HloModule ToC(const xla::HloModule& module); absl::StatusOr<std::unique_ptr<xla::HloModule>> FromC( const XLA_HloModule& c_module); void Destroy(XLA_HloModule* c_module); XLA_HloModuleConfig ToC(const xla::HloModuleConfig& config); xla::HloModuleConfig FromC(const XLA_HloModuleConfig& c_config); void Destroy(XLA_HloModuleConfig* c_config); template <class CType> struct StackHelper { explicit StackHelper() {} template <class CppType> explicit StackHelper(const CppType& t) { ::ApiConverter::ToC(t, &value); } ~StackHelper() { ::ApiConverter::Destroy(&value); } template <class CppType> CppType AsCpp() const { return ::ApiConverter::FromC(&value); } mutable CType value; }; } #endif #include "xla/stream_executor/tpu/c_api_conversions.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/layout.h" #include "xla/literal.h" #include "xla/service/computation_layout.h" #include "xla/service/computation_placer.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_module_config.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/service/shaped_buffer.h" #include "xla/shape.h" #include "xla/shape_layout.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/tpu/c_api_decl.h" #include "xla/stream_executor/tpu/c_api_defn.h" #include "xla/stream_executor/tpu/proto_helper.h" #include "xla/stream_executor/tpu/tpu_api.h" #include "xla/stream_executor/tpu/tpu_executor_api.h" #include "xla/stream_executor/tpu/tpu_executor_c_api.h" #include "xla/stream_executor/tpu/tpu_ops_c_api.h" #include "xla/util.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" namespace ApiConverter { template <typename Src, typename Dst, typename DstList> static void CreateVectorBase(const absl::Span<Src> src, DstList* dst) { dst->size = src.size(); if (dst->size > TPU_C_API_MAX_INLINED) { dst->heap = new Dst[dst->size]; std::copy(src.begin(), src.end(), dst->heap); } else { std::copy(src.begin(), src.end(), dst->inlined); } } void CreateVector(const absl::Span<const int> src, IntList* dst) { return CreateVectorBase<const int, int, IntList>(src, dst); } void CreateVector(const absl::Span<const int64_t> src, Int64List* dst) { return CreateVectorBase<const int64_t, int64_t, Int64List>(src, dst); } void CreateVector(const absl::Span<const float> src, FloatList* dst) { return CreateVectorBase<const float, float, FloatList>(src, dst); } void CreateVector(const absl::Span<const bool> src, BoolList* dst) { return CreateVectorBase<const bool, bool, BoolList>(src, dst); } void CreateVector(const absl::Span<const xla::DimLevelType> src, IntList* dst) { CreateVectorBase<const xla::DimLevelType, int, IntList>(src, dst); } static void CreateVector(const absl::Span<const bool> src, IntList* dst) { CreateVectorBase<const bool, int, IntList>(src, dst); } static void CreateVector(const absl::Span<const xla::Tile> src, TileList* dst) { dst->size = src.size(); XLA_Tile* c_tiles; if (dst->size > TPU_C_API_MAX_INLINED) { dst->heap = new XLA_Tile[dst->size]; c_tiles = dst->heap; } else { c_tiles = dst->inlined; } for (int i = 0; i < dst->size; ++i) { ToC(src[i], &c_tiles[i]); } } template <typename Dst, typename Src, typename SrcList> static absl::Span<const Dst> MakeSpanBase(const SrcList& src_list) { static_assert(sizeof(Src) == sizeof(Dst), "Mismatched types"); const Src* src = src_list.size > TPU_C_API_MAX_INLINED ? src_list.heap : &src_list.inlined[0]; return absl::Span<const Dst>(reinterpret_cast<const Dst*>(src), src_list.size); } absl::Span<const int> MakeSpan(const IntList& src_list) { return MakeSpanBase<int, int, IntList>(src_list); } absl::Span<const int64_t> MakeSpan(const Int64List& src_list) { return MakeSpanBase<int64_t, int64_t, Int64List>(src_list); } absl::Span<const float> MakeSpan(const FloatList& src_list) { return MakeSpanBase<float, float, FloatList>(src_list); } absl::Span<const bool> MakeSpan(const BoolList& src_list) { return MakeSpanBase<bool, bool, BoolList>(src_list); } xla::ShapedBuffer FromC(XLA_ShapedBuffer* c_buffer) { xla::Shape xla_on_device_shape = ApiConverter::FromC(&c_buffer->on_device_shape); xla::ShapeTree<stream_executor::DeviceMemoryBase> xla_shape_tree( xla_on_device_shape); size_t i = 0; for (auto& pair : xla_shape_tree) { pair.second = ApiConverter::FromC(c_buffer->bases[i]); i++; } xla::ShapedBuffer xla_shaped_buffer(xla_on_device_shape, c_buffer->device_ordinal); xla_shaped_buffer.set_buffers(xla_shape_tree); return xla_shaped_buffer; } SE_MaybeOwningDeviceMemory ToC(xla::MaybeOwningDeviceMemory& mem, bool aliased) { SE_MaybeOwningDeviceMemory se_mem; se_mem.owned = mem.HasOwnership(); se_mem.memory = ApiConverter::ToC(mem.AsDeviceMemoryBase()); if (mem.HasOwnership()) { const stream_executor::OwningDeviceMemory* owned = mem.AsOwningDeviceMemory(); se_mem.device_ordinal = owned->device_ordinal(); se_mem.allocator = ApiConverter::ToC(owned->allocator()); if (!aliased) { mem.Release()->Release(); } } else { se_mem.allocator = ToC(static_cast<stream_executor::DeviceMemoryAllocator*>(nullptr)); se_mem.device_ordinal = -1; } return se_mem; } xla::MaybeOwningDeviceMemory FromC( SE_MaybeOwningDeviceMemory* se_mem, stream_executor::DeviceMemoryAllocator* allocator) { if (se_mem->owned) { return xla::MaybeOwningDeviceMemory( stream_executor::OwningDeviceMemory(ApiConverter::FromC(se_mem->memory), se_mem->device_ordinal, allocator)); } else { return xla::MaybeOwningDeviceMemory(ApiConverter::FromC(se_mem->memory)); } } SE_DeviceMemoryAllocator ToC( stream_executor::DeviceMemoryAllocator* allocator) { SE_DeviceMemoryAllocator se_allocator; if (allocator == nullptr) { se_allocator.ctx = nullptr; se_allocator.platform = nullptr; se_allocator.allocate = nullptr; se_allocator.deallocate = nullptr; return se_allocator; } se_allocator.platform = nullptr; se_allocator.ctx = allocator; se_allocator.allocate = [](void* ctx, int device_ordinal, uint64_t size, bool retry_on_failure, int64_t memory_space, SE_ScopedDeviceMemory* memory, TF_Status* se_status) { auto allocation = reinterpret_cast<stream_executor::DeviceMemoryAllocator*>(ctx) ->Allocate(device_ordinal, size, retry_on_failure, memory_space); if (!allocation.ok()) { auto status = allocation.status(); auto message = status.message(); stream_executor::tpu::ExecutorApiFn()->TpuStatus_SetFn( se_status, status.raw_code(), message.data(), message.size()); } else { auto& scoped_memory = allocation.value(); memory->wrapped = ApiConverter::ToC(scoped_memory.Release()); memory->device_ordinal = scoped_memory.device_ordinal(); } }; se_allocator.deallocate = [](void* ctx, SE_DeviceMemoryBase* base, int device_ordinal, TF_Status* se_status) { auto status = reinterpret_cast<stream_executor::DeviceMemoryAllocator*>(ctx) ->Deallocate(device_ordinal, ApiConverter::FromC(*base)); if (!status.ok()) { auto message = status.message(); stream_executor::tpu::ExecutorApiFn()->TpuStatus_SetFn( se_status, status.raw_code(), message.data(), message.size()); } }; return se_allocator; } stream_executor::DeviceMemoryAllocator* FromC( const SE_DeviceMemoryAllocator& c_allocator) { return reinterpret_cast<stream_executor::DeviceMemoryAllocator*>( c_allocator.ctx); } SE_MaybeOwningDeviceMemory ToC(stream_executor::OwningDeviceMemory* mem) { SE_MaybeOwningDeviceMemory se_mem; se_mem.device_ordinal = mem->device_ordinal(); se_mem.memory = ApiConverter::ToC(mem->Release()); se_mem.allocator = ApiConverter::ToC(mem->allocator()); se_mem.owned = true; return se_mem; } void ToC(const stream_executor::DeviceMemoryBase& base, SE_DeviceMemoryBase* se_base) { se_base->opaque = const_cast<void*>(base.opaque()); se_base->payload = base.payload(); se_base->size = base.size(); } SE_DeviceMemoryBase ToC(const stream_executor::DeviceMemoryBase& base) { SE_DeviceMemoryBase se_base; ToC(base, &se_base); return se_base; } stream_executor::DeviceMemoryBase FromC(const SE_DeviceMemoryBase& se_base) { stream_executor::DeviceMemoryBase base(se_base.opaque, se_base.size); base.SetPayload(se_base.payload); return base; } void ToC(const xla::Shape& xla_shape, XLA_Shape* c_shape) { c_shape->element_type = xla_shape.element_type(); CreateVector(xla_shape.dimensions(), &c_shape->dimensions); CreateVector(xla_shape.dynamic_dimensions(), &c_shape->dynamic_dimensions); c_shape->ntuple_shapes = xla_shape.tuple_shapes_size(); if (c_shape->ntuple_shapes > 0) { c_shape->tuple_shapes = new XLA_Shape[c_shape->ntuple_shapes]; for (int i = 0; i < c_shape->ntuple_shapes; ++i) { ToC(xla_shape.tuple_shapes(i), &c_shape->tuple_shapes[i]); } } if (xla_shape.has_layout()) { c_shape->has_layout = true; ToC(xla_shape.layout(), &c_shape->layout); } else { c_shape->has_layout = false; } } xla::Shape FromC(const XLA_Shape* c_shape) { absl::Span<const int64_t> dims = MakeSpan(c_shape->dimensions); absl::Span<const bool> dynamic_dims = MakeSpan(c_shape->dynamic_dimensions); std::vector<xla::Shape> tuple_shapes; tuple_shapes.reserve(c_shape->ntuple_shapes); for (int i = 0; i < c_shape->ntuple_shapes; ++i) { tuple_shapes.push_back(FromC(&c_shape->tuple_shapes[i])); } xla::Shape result(static_cast<xla::PrimitiveType>(c_shape->element_type), dims, dynamic_dims, std::move(tuple_shapes)); if (c_shape->has_layout) { *result.mutable_layout() = FromC(&c_shape->layout); } return result; } void Destroy(XLA_Shape* c_shape) { if (c_shape->dimensions.size > TPU_C_API_MAX_INLINED) { delete[] c_shape->dimensions.heap; } if (c_shape->dynamic_dimensions.size > TPU_C_API_MAX_INLINED) { delete[] c_shape->dynamic_dimensions.heap; } if (c_shape->ntuple_shapes > 0) { for (int i = 0; i < c_shape->ntuple_shapes; ++i) { Destroy(&c_shape->tuple_shapes[i]); } delete[] c_shape->tuple_shapes; } if (c_shape->has_layout) { Destroy(&c_shape->layout); } } void ToC(const xla::Layout& layout, XLA_Layout* c_layout) { CreateVector(layout.minor_to_major(), &c_layout->minor_to_major); { const int n = layout.dim_level_types_size(); absl::InlinedVector<xla::DimLevelType, xla::InlineRank()> dim_level_types( n); for (int i = 0; i < n; i++) { dim_level_types[i] = layout.dim_level_type(i); } CreateVector(dim_level_types, &c_layout->dim_level_types); } { const int n = layout.dim_unique_size(); absl::InlinedVector<bool, xla::InlineRank()> dim_unique(n); for (int i = 0; i < n; i++) { dim_unique[i] = layout.dim_unique(i); } CreateVector(dim_unique, &c_layout->dim_unique); } { const int n = layout.dim_ordered_size(); absl::InlinedVector<bool, xla::InlineRank()> dim_ordered(n); for (int i = 0; i < n; i++) { dim_ordered[i] = layout.dim_ordered(i); } CreateVector(dim_ordered, &c_layout->dim_ordered); } c_layout->index_primitive_type = layout.index_primitive_type(); c_layout->pointer_primitive_type = layout.pointer_primitive_type(); c_layout->element_size_in_bits = layout.element_size_in_bits(); c_layout->memory_space = layout.memory_space(); c_layout->dynamic_shape_metadata_prefix_bytes = layout.dynamic_shape_metadata_prefix_bytes(); CreateVector(layout.tiles(), &c_layout->tiles); c_layout->tail_padding_alignment_in_elements = layout.tail_padding_alignment_in_elements(); } xla::Layout FromC(const XLA_Layout* c_layout) { absl::Span<const int64_t> minor_to_major = MakeSpan(c_layout->minor_to_major); absl::Span<const int> dim_level_type_ints = MakeSpan(c_layout->dim_level_types); xla::DimLevelTypeVector dim_level_types; dim_level_types.reserve(dim_level_type_ints.size()); for (int dim_level_type : dim_level_type_ints) { dim_level_types.push_back(static_cast<xla::DimLevelType>(dim_level_type)); } absl::Span<const int> dim_unique_ints = MakeSpan(c_layout->dim_unique); absl::InlinedVector<bool, xla::InlineRank()> dim_unique( dim_unique_ints.begin(), dim_unique_ints.end()); absl::Span<const int> dim_ordered_ints = MakeSpan(c_layout->dim_unique); absl::InlinedVector<bool, xla::InlineRank()> dim_ordered( dim_ordered_ints.begin(), dim_ordered_ints.end()); absl::InlinedVector<xla::Tile, 1> tiles; const XLA_Tile* c_tiles = c_layout->tiles.size > TPU_C_API_MAX_INLINED ? c_layout->tiles.heap : c_layout->tiles.inlined; tiles.reserve(c_layout->tiles.size); for (int i = 0; i < c_layout->tiles.size; ++i) { tiles.push_back(FromC(&c_tiles[i])); } return xla::Layout( minor_to_major, dim_level_types, dim_unique, dim_ordered, tiles, c_layout->tail_padding_alignment_in_elements, static_cast<xla::PrimitiveType>(c_layout->index_primitive_type), static_cast<xla::PrimitiveType>(c_layout->pointer_primitive_type), c_layout->element_size_in_bits, c_layout->memory_space, {}, nullptr, c_layout->dynamic_shape_metadata_prefix_bytes); } void Destroy(XLA_Layout* c_layout) { if (c_layout->minor_to_major.size > TPU_C_API_MAX_INLINED) { delete[] c_layout->minor_to_major.heap; } if (c_layout->dim_level_types.size > TPU_C_API_MAX_INLINED) { delete[] c_layout->dim_level_types.heap; } if (c_layout->tiles.size > TPU_C_API_MAX_INLINED) { delete[] c_layout->tiles.heap; } } void ToC(const xla::Tile& tile, XLA_Tile* c_tile) { CreateVector(tile.dimensions(), &c_tile->dimensions); } xla::Tile FromC(const XLA_Tile* c_tile) { absl::Span<const int64_t> dims = MakeSpan(c_tile->dimensions); return xla::Tile(dims); } void Destroy(XLA_Tile* c_tile) { if (c_tile->dimensions.size > TPU_C_API_MAX_INLINED) { delete[] c_tile->dimensions.heap; } } XLA_ShapeIndex ToC(const xla::ShapeIndex& xla_shape) { XLA_ShapeIndex c_shape; CHECK_LT(xla_shape.size(), 8); c_shape.count = xla_shape.size(); for (int i = 0; i < xla_shape.size(); ++i) { c_shape.indices[i] = xla_shape[i]; } return c_shape; } xla::ShapeIndex FromC(XLA_ShapeIndex* c_shape) { return xla::ShapeIndex(c_shape->indices, c_shape->indices + c_shape->count); } void ToC(const xla::LiteralSlice& literal, XLA_Literal* c_literal) { ApiConverter::ToC(literal.shape(), &c_literal->shape); auto shapes = xla::ShapeUtil::GetLeafShapes(literal.shape()); c_literal->buffers = new char*[shapes.size()]; c_literal->sizes = new size_t[shapes.size()]; c_literal->count = shapes.size(); for (int i = 0; i < shapes.size(); ++i) { c_literal->buffers[i] = reinterpret_cast<char*>( const_cast<void*>(literal.untyped_data(shapes[i].index))); c_literal->sizes[i] = literal.size_bytes(shapes[i].index); } } xla::MutableBorrowingLiteral FromC(XLA_Literal* c_literal) { xla::Shape shape = ApiConverter::FromC(&c_literal->shape); return xla::MutableBorrowingLiteral( absl::MakeSpan(c_literal->buffers, c_literal->count), shape); } void ToC(const xla::ShapedBuffer& buffer, XLA_ShapedBuffer* c_device_buffer) { ApiConverter::ToC(buffer.on_device_shape(), &c_device_buffer->on_device_shape); c_device_buffer->device_ordinal = buffer.device_ordinal(); absl::InlinedVector<SE_DeviceMemoryBase, 2> bases; for (auto& pair : buffer.buffers()) { bases.push_back(ApiConverter::ToC(pair.second)); } c_device_buffer->count = bases.size(); c_device_buffer->bases = new SE_DeviceMemoryBase[bases.size()]; for (int i = 0; i < bases.size(); ++i) { c_device_buffer->bases[i] = bases[i]; } } std::unique_ptr<TpuEmbeddingEngineParametersData> Create(int num_tables) { auto data = std::make_unique<TpuEmbeddingEngineParametersData>(); data->c_params.num_tables = num_tables; for (int i = 0; i < 8; i++) { data->vectors[i].resize(num_tables); data->c_params.parameters[i] = data->vectors[i].data(); } return data; } void Destroy(XLA_ShapeIndex* shape_index) { delete[] shape_index; } void Destroy(SE_DeviceMemoryBase*) {} void Destroy(XLA_Literal* c_literal) { delete[] c_literal->buffers; delete[] c_literal->sizes; ApiConverter::Destroy(&c_literal->shape); } void Destroy(XLA_ShapedBuffer* c_buffer) { ApiConverter::Destroy(&c_buffer->on_device_shape); delete[] c_buffer->bases; } XLA_HloModule ToC(const xla::HloModule& module) { XLA_HloModule c_module; c_module.proto = stream_executor::tpu::SerializeProto(module.ToProto()); c_module.module_config = ApiConverter::ToC(module.config()); return c_module; } absl::StatusOr<std::unique_ptr<xla::HloModule>> FromC( const XLA_HloModule& c_module) { xla::HloModuleProto module_proto = stream_executor::tpu::DeserializeProto<xla::HloModuleProto>( c_module.proto); return xla::HloModule::CreateFromProto( module_proto, ApiConverter::FromC(c_module.module_config)); } void Destroy(XLA_HloModule* c_module) { stream_executor::tpu::SerializedProto_Free(c_module->proto); Destroy(&c_module->module_config); } static xla::HloModuleConfig ConfigWithLayout( const XLA_HloModuleConfig& se_config) { xla::ShapeLayout result_layout( FromC(&se_config.entry_computation_layout.result_layout)); xla::ComputationLayout layout(result_layout); for (int i = 0; i < se_config.entry_computation_layout.parameter_count; ++i) { layout.add_parameter_layout(xla::ShapeLayout( FromC(&se_config.entry_computation_layout.parameter_layouts[i]))); } return xla::HloModuleConfig(layout); } XLA_HloModuleConfig ToC(const xla::HloModuleConfig& config) { XLA_HloModuleConfig hlo_config; hlo_config.seed = config.seed(); hlo_config.launch_id = config.launch_id(); hlo_config.replica_count = config.replica_count(); hlo_config.num_partitions = config.num_partitions(); hlo_config.use_spmd_partitioning = config.use_spmd_partitioning(); hlo_config.use_auto_spmd_partitioning = config.use_auto_spmd_partitioning(); CreateVector(config.allow_spmd_sharding_propagation_to_parameters(), &hlo_config.allow_spmd_sharding_propagation_to_parameters); CreateVector(config.allow_spmd_sharding_propagation_to_output(), &hlo_config.allow_spmd_sharding_propagation_to_output); CreateVector(config.auto_spmd_partitioning_mesh_shape(), &hlo_config.auto_spmd_partitioning_mesh_shape); CreateVector(config.auto_spmd_partitioning_mesh_ids(), &hlo_config.auto_spmd_partitioning_mesh_ids); hlo_config.has_static_device_assignment = config.has_static_device_assignment(); hlo_config.has_entry_computation_layout = config.has_entry_computation_layout(); if (config.has_static_device_assignment()) { xla::DeviceAssignmentProto dev_proto; config.static_device_assignment().Serialize(&dev_proto); hlo_config.static_device_assignment = stream_executor::tpu::SerializeProto(dev_proto); } hlo_config.debug_options = stream_executor::tpu::SerializeProto(config.debug_options()); if (config.has_entry_computation_layout()) { const auto& layout = config.entry_computation_layout(); ApiConverter::ToC(layout.result_layout().shape(), &hlo_config.entry_computation_layout.result_layout); hlo_config.entry_computation_layout.parameter_layouts = new XLA_Shape[layout.parameter_count()]; for (int i = 0; i < layout.parameter_count(); ++i) { ApiConverter::ToC( layout.parameter_layout(i).shape(), &hlo_config.entry_computation_layout.parameter_layouts[i]); } hlo_config.entry_computation_layout.parameter_count = layout.parameter_count(); } return hlo_config; } xla::HloModuleConfig FromC(const XLA_HloModuleConfig& c_config) { xla::HloModuleConfig config = c_config.has_entry_computation_layout ? ConfigWithLayout(c_config) : xla::HloModuleConfig(); config.set_launch_id(c_config.launch_id); config.set_seed(c_config.seed); config.set_replica_count(c_config.replica_count); config.set_num_partitions(c_config.num_partitions); config.set_use_spmd_partitioning(c_config.use_spmd_partitioning); config.set_use_auto_spmd_partitioning(c_config.use_auto_spmd_partitioning); config.set_allow_spmd_sharding_propagation_to_parameters( MakeSpan(c_config.allow_spmd_sharding_propagation_to_parameters)); config.set_allow_spmd_sharding_propagation_to_output( MakeSpan(c_config.allow_spmd_sharding_propagation_to_output)); absl::Span<const int64_t> mesh_shape_span = MakeSpan(c_config.auto_spmd_partitioning_mesh_shape); config.set_auto_spmd_partitioning_mesh_shape( std::vector<int64_t>(mesh_shape_span.begin(), mesh_shape_span.end())); absl::Span<const int64_t> mesh_ids_span = MakeSpan(c_config.auto_spmd_partitioning_mesh_ids); config.set_auto_spmd_partitioning_mesh_ids( std::vector<int64_t>(mesh_ids_span.begin(), mesh_ids_span.end())); if (c_config.has_static_device_assignment) { auto device_assignment = xla::DeviceAssignment::Deserialize( stream_executor::tpu::DeserializeProto<xla::DeviceAssignmentProto>( c_config.static_device_assignment)); config.set_static_device_assignment( *(std::move(device_assignment).value())); } config.set_debug_options( stream_executor::tpu::DeserializeProto<xla::DebugOptions>( c_config.debug_options)); return config; } void Destroy(XLA_HloModuleConfig* c_config) { for (auto i = 0; i < c_config->entry_computation_layout.parameter_count; ++i) { ApiConverter::Destroy( &c_config->entry_computation_layout.parameter_layouts[i]); } delete[] c_config->entry_computation_layout.parameter_layouts; ApiConverter::Destroy(&c_config->entry_computation_layout.result_layout); if (c_config->has_static_device_assignment) { stream_executor::tpu::SerializedProto_Free( c_config->static_device_assignment); } stream_executor::tpu::SerializedProto_Free(c_config->debug_options); } void Destroy(FloatList* float_list) { if (float_list->size > TPU_C_API_MAX_INLINED) { delete[] float_list->heap; } } }
#include "xla/stream_executor/tpu/c_api_conversions.h" #include <cstddef> #include <cstdint> #include <memory> #include <string> #include <vector> #include <gtest/gtest.h> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/executable_run_options.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/layout.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_parser.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/tpu/c_api_decl.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/statusor.h" namespace ApiConverter { namespace { constexpr absl::string_view kHloString = R"( HloModule TupleCreate_module: ENTRY %TupleCreate.v4 (v1: f32[], v2: f32[3], v3: f32[2,3]) -> (f32[], f32[3], f32[2,3]) { %v1 = f32[] parameter(0) %v2 = f32[3]{0} parameter(1) %v3 = f32[2,3]{1,0} parameter(2) ROOT %tuple = (f32[], f32[3]{0}, f32[2,3]{1,0}) tuple(f32[] %v1, f32[3]{0} %v2, f32[2,3]{1,0} %v3) } )"; TEST(XlaTile, ToCInlined) { std::vector<int64_t> tile_dimensions{2, 3, 4, 5}; xla::Tile cpp_tile(tile_dimensions); XLA_Tile c_tile; ToC(cpp_tile, &c_tile); absl::Span<const int64_t> cpp_tile_dimensions = cpp_tile.dimensions(); ASSERT_EQ(cpp_tile_dimensions, tile_dimensions); absl::Span<const int64_t> c_tile_dimensions = MakeSpan(c_tile.dimensions); EXPECT_EQ(cpp_tile_dimensions, c_tile_dimensions); Destroy(&c_tile); } TEST(XlaTile, ToCDynamic) { std::vector<int64_t> tile_dimensions{2, 3, 4, 5, 6, 7, 8, 9}; xla::Tile cpp_tile(tile_dimensions); XLA_Tile c_tile; ToC(cpp_tile, &c_tile); absl::Span<const int64_t> cpp_tile_dimensions = cpp_tile.dimensions(); ASSERT_EQ(cpp_tile_dimensions, tile_dimensions); absl::Span<const int64_t> c_tile_dimensions = MakeSpan(c_tile.dimensions); EXPECT_EQ(cpp_tile_dimensions, c_tile_dimensions); Destroy(&c_tile); } TEST(XlaTile, FromCInlined) { constexpr size_t kInlinedSize = 4; Int64List tile_dimensions; tile_dimensions.size = kInlinedSize; for (int i = 0; i < kInlinedSize; ++i) { tile_dimensions.inlined[i] = i + 2; } XLA_Tile c_tile{tile_dimensions}; xla::Tile cpp_tile = FromC(&c_tile); auto cpp_dimensions = cpp_tile.dimensions(); EXPECT_EQ(cpp_dimensions.size(), kInlinedSize); for (int i = 0; i < kInlinedSize; ++i) { EXPECT_EQ(cpp_dimensions[i], i + 2); } Destroy(&c_tile); } TEST(XlaTile, FromCDynamic) { constexpr size_t kDynamicSize = 8; int64_t* dynamic = new int64_t[kDynamicSize]; for (int i = 0; i < kDynamicSize; ++i) { dynamic[i] = i + 2; } Int64List tile_dimensions; tile_dimensions.size = kDynamicSize; tile_dimensions.heap = dynamic; XLA_Tile c_tile{tile_dimensions}; xla::Tile cpp_tile = FromC(&c_tile); auto cpp_dimensions = cpp_tile.dimensions(); EXPECT_EQ(cpp_dimensions.size(), kDynamicSize); for (int i = 0; i < kDynamicSize; ++i) { EXPECT_EQ(cpp_dimensions[i], i + 2); } Destroy(&c_tile); } namespace TestImpl { void XlaLayout_ToC(const xla::Layout& cpp_layout) { XLA_Layout c_layout; ToC(cpp_layout, &c_layout); absl::Span<const int64_t> cpp_minor_to_major = cpp_layout.minor_to_major(); absl::Span<const int64_t> c_minor_to_major = MakeSpan(c_layout.minor_to_major); EXPECT_EQ(cpp_minor_to_major, c_minor_to_major); absl::Span<const int> c_dim_level_types = MakeSpan(c_layout.dim_level_types); EXPECT_EQ(cpp_layout.dim_level_types_size(), c_dim_level_types.size()); for (int i = 0; i < c_dim_level_types.size(); ++i) { EXPECT_EQ(static_cast<int>(cpp_layout.dim_level_type(i)), c_dim_level_types[i]); } absl::Span<const int> c_dim_unique = MakeSpan(c_layout.dim_unique); EXPECT_EQ(cpp_layout.dim_unique_size(), c_dim_unique.size()); for (int i = 0; i < c_dim_unique.size(); ++i) { EXPECT_EQ(cpp_layout.dim_unique(i), static_cast<bool>(c_dim_unique[i])); } absl::Span<const int> c_dim_ordered = MakeSpan(c_layout.dim_ordered); EXPECT_EQ(cpp_layout.dim_ordered_size(), c_dim_ordered.size()); for (int i = 0; i < c_dim_ordered.size(); ++i) { EXPECT_EQ(cpp_layout.dim_ordered(i), static_cast<bool>(c_dim_ordered[i])); } absl::Span<const xla::Tile> cpp_tiles = cpp_layout.tiles(); TileList c_tiles = c_layout.tiles; EXPECT_EQ(cpp_tiles.size(), c_tiles.size); XLA_Tile* tile_base = (c_tiles.size > TPU_C_API_MAX_INLINED) ? c_tiles.heap : c_tiles.inlined; for (int i = 0; i < c_tiles.size; ++i) { xla::Tile converted_c_tile = FromC(&tile_base[i]); EXPECT_EQ(cpp_tiles[i], converted_c_tile); } EXPECT_EQ(cpp_layout.index_primitive_type(), c_layout.index_primitive_type); EXPECT_EQ(cpp_layout.pointer_primitive_type(), c_layout.pointer_primitive_type); EXPECT_EQ(cpp_layout.element_size_in_bits(), c_layout.element_size_in_bits); EXPECT_EQ(cpp_layout.memory_space(), c_layout.memory_space); EXPECT_EQ(cpp_layout.dynamic_shape_metadata_prefix_bytes(), c_layout.dynamic_shape_metadata_prefix_bytes); Destroy(&c_layout); } } TEST(XlaLayout, ToCScalar) { xla::Shape cpp_shape = xla::ShapeUtil::MakeShapeWithType<float>({4}); xla::Layout cpp_layout = cpp_shape.layout(); TestImpl::XlaLayout_ToC(cpp_layout); } TEST(XlaLayout, ToCNested) { xla::Shape cpp_shape = xla::ShapeUtil::MakeShapeWithType<float>({4, 3, 2}); xla::Layout cpp_layout = cpp_shape.layout(); TestImpl::XlaLayout_ToC(cpp_layout); } TEST(XlaLayout, FromCScalar) { xla::Shape cpp_shape = xla::ShapeUtil::MakeShapeWithType<float>({4}); xla::Layout in_layout = cpp_shape.layout(); XLA_Layout c_layout; ToC(in_layout, &c_layout); xla::Layout out_layout = FromC(&c_layout); EXPECT_EQ(in_layout, out_layout); Destroy(&c_layout); } TEST(XlaLayout, FromCNested) { xla::Shape cpp_shape = xla::ShapeUtil::MakeShapeWithType<float>({4, 3, 2}); xla::Layout in_layout = cpp_shape.layout(); XLA_Layout c_layout; ToC(in_layout, &c_layout); xla::Layout out_layout = FromC(&c_layout); EXPECT_EQ(in_layout, out_layout); Destroy(&c_layout); } TEST(XlaShape, ToCScalar) { xla::Shape cpp_shape = xla::ShapeUtil::MakeShapeWithType<float>({4}); XLA_Shape c_shape; ToC(cpp_shape, &c_shape); EXPECT_EQ(cpp_shape.element_type(), c_shape.element_type); absl::Span<const int64_t> cpp_dimensions = cpp_shape.dimensions(); absl::Span<const int64_t> c_dimensions = MakeSpan(c_shape.dimensions); EXPECT_EQ(cpp_dimensions, c_dimensions); absl::Span<const bool> cpp_dynamic_dimensions = cpp_shape.dynamic_dimensions(); absl::Span<const bool> c_dynamic_dimensions = MakeSpan(c_shape.dynamic_dimensions); EXPECT_EQ(cpp_dynamic_dimensions, c_dynamic_dimensions); int cpp_ntuple_shapes = cpp_shape.tuple_shapes_size(); int c_ntuple_shapes = c_shape.ntuple_shapes; EXPECT_EQ(cpp_ntuple_shapes, c_ntuple_shapes); EXPECT_EQ(cpp_ntuple_shapes, 0); bool cpp_has_layout = cpp_shape.has_layout(); bool c_has_layout = c_shape.has_layout; EXPECT_EQ(cpp_has_layout, c_has_layout); Destroy(&c_shape); } TEST(XlaShape, ToCNested) { xla::Shape cpp_shape = xla::ShapeUtil::MakeShapeWithType<float>({4, 3, 2}); XLA_Shape c_shape; ToC(cpp_shape, &c_shape); EXPECT_EQ(cpp_shape.element_type(), c_shape.element_type); absl::Span<const int64_t> cpp_dimensions = cpp_shape.dimensions(); absl::Span<const int64_t> c_dimensions = MakeSpan(c_shape.dimensions); EXPECT_EQ(cpp_dimensions, c_dimensions); absl::Span<const bool> cpp_dynamic_dimensions = cpp_shape.dynamic_dimensions(); absl::Span<const bool> c_dynamic_dimensions = MakeSpan(c_shape.dynamic_dimensions); EXPECT_EQ(cpp_dynamic_dimensions, c_dynamic_dimensions); int cpp_ntuple_shapes = cpp_shape.tuple_shapes_size(); int c_ntuple_shapes = c_shape.ntuple_shapes; EXPECT_EQ(cpp_ntuple_shapes, c_ntuple_shapes); const std::vector<xla::Shape>& cpp_tuple_shapes = cpp_shape.tuple_shapes(); absl::Span<const XLA_Shape> c_tuple_shapes(c_shape.tuple_shapes, c_ntuple_shapes); for (int i = 0; i < c_ntuple_shapes; ++i) { xla::Shape converted_c_shape = FromC(&c_tuple_shapes[i]); EXPECT_EQ(cpp_tuple_shapes[i], converted_c_shape); } bool cpp_has_layout = cpp_shape.has_layout(); bool c_has_layout = c_shape.has_layout; EXPECT_EQ(cpp_has_layout, c_has_layout); if (c_has_layout) { xla::Layout converted_c_layout = FromC(&c_shape.layout); EXPECT_EQ(cpp_shape.layout(), converted_c_layout); } Destroy(&c_shape); } TEST(XlaShape, FromCScalar) { xla::Shape in_shape = xla::ShapeUtil::MakeShapeWithType<float>({4}); XLA_Shape c_shape; ToC(in_shape, &c_shape); xla::Shape out_shape = FromC(&c_shape); EXPECT_EQ(in_shape, out_shape); Destroy(&c_shape); } TEST(XlaShape, FromCNested) { xla::Shape in_shape = xla::ShapeUtil::MakeShapeWithType<float>({4, 3, 2}); XLA_Shape c_shape; ToC(in_shape, &c_shape); xla::Shape out_shape = FromC(&c_shape); EXPECT_EQ(in_shape, out_shape); Destroy(&c_shape); } TEST(XlaHloModuleConfig, ToAndFromC) { absl::StatusOr<std::unique_ptr<xla::HloModule>> hlo_module = xla::ParseAndReturnUnverifiedModule(kHloString); ASSERT_TRUE(hlo_module.ok()); xla::HloModule& cpp_module = *hlo_module.value(); xla::HloModuleConfig in_config = cpp_module.config(); XLA_HloModuleConfig c_config = ToC(in_config); xla::HloModuleConfig out_config = FromC(c_config); xla::HloModuleConfigProto in_config_proto = in_config.ToProto(); xla::HloModuleConfigProto out_config_proto = out_config.ToProto(); tsl::protobuf::util::MessageDifferencer diff; diff.set_message_field_comparison( tsl::protobuf::util::MessageDifferencer::EQUIVALENT); EXPECT_TRUE(diff.Equals(in_config_proto, out_config_proto)); Destroy(&c_config); } TEST(XlaHloModule, ToAndFromC) { absl::StatusOr<std::unique_ptr<xla::HloModule>> hlo_module = xla::ParseAndReturnUnverifiedModule(kHloString); ASSERT_TRUE(hlo_module.ok()); xla::HloModule& in_module = *hlo_module.value(); XLA_HloModule c_module = ToC(in_module); absl::StatusOr<std::unique_ptr<xla::HloModule>> out_module_ptr = FromC(c_module); ASSERT_TRUE(out_module_ptr.ok()); xla::HloModule& out_module = *out_module_ptr.value(); xla::HloModuleProtoWithConfig in_module_proto = in_module.ToProtoWithConfig(); xla::HloModuleProtoWithConfig out_module_proto = out_module.ToProtoWithConfig(); tsl::protobuf::util::MessageDifferencer diff; diff.set_message_field_comparison( tsl::protobuf::util::MessageDifferencer::EQUIVALENT); const auto* ignore_unique_id = xla::HloModuleProto::GetDescriptor()->FindFieldByName("id"); diff.IgnoreField(ignore_unique_id); EXPECT_TRUE(diff.Compare(in_module_proto, out_module_proto)); Destroy(&c_module); } } }
1,831
cpp
tensorflow/tensorflow
cuda_driver
third_party/xla/xla/stream_executor/cuda/cuda_driver.cc
third_party/xla/xla/stream_executor/cuda/cuda_driver_test.cc
#ifndef XLA_STREAM_EXECUTOR_CUDA_CUDA_DRIVER_H_ #define XLA_STREAM_EXECUTOR_CUDA_CUDA_DRIVER_H_ #include <algorithm> #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/node_hash_map.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" #include "third_party/gpus/cuda/include/cuda.h" #include "xla/stream_executor/gpu/gpu_driver.h" namespace stream_executor { namespace gpu { static std::string ToString(CUresult result) { const char* error_name; if (cuGetErrorName(result, &error_name)) { return absl::StrCat("UNKNOWN ERROR (", static_cast<int>(result), ")"); } const char* error_string; if (cuGetErrorString(result, &error_string)) { return error_name; } return absl::StrCat(error_name, ": ", error_string); } absl::StatusOr<CUresult> QueryEvent(GpuContext* context, CUevent event); class GpuContext { public: GpuContext(CUcontext context, int64_t id) : context_(context), id_(id) {} CUcontext context() const { return context_; } int64_t id() const { return id_; } GpuContext(GpuContext&&) = delete; GpuContext(const GpuContext&) = delete; GpuContext& operator=(GpuContext&&) = delete; GpuContext& operator=(const GpuContext&) = delete; private: CUcontext const context_; const int64_t id_; }; class CreatedContexts { public: static bool Has(CUcontext context) { absl::ReaderMutexLock lock(&mu_); return Live()->find(context) != Live()->end(); } static GpuContext* Add(CUcontext context, int device_ordinal) { CHECK(context != nullptr); absl::MutexLock lock(&mu_); auto insert_result = Live()->insert(std::make_pair(context, nullptr)); auto it = insert_result.first; if (insert_result.second) { it->second = std::make_unique<GpuContext>(context, next_id_++); (*LiveOrdinal())[device_ordinal].push_back(context); } return it->second.get(); } static void Remove(CUcontext context) { CHECK(context != nullptr); absl::MutexLock lock(&mu_); auto it = Live()->find(context); CHECK(it != Live()->end()) << context; Live()->erase(it); for (auto p : (*LiveOrdinal())) { auto it2 = std::find(p.second.begin(), p.second.end(), context); if (it2 != p.second.end()) { p.second.erase(it2, it2++); if (p.second.empty()) { LiveOrdinal()->erase(p.first); } break; } } } static int GetDeviceOrdinal(void* ptr) { int device_ordinal; CUresult result = cuPointerGetAttribute(static_cast<void*>(&device_ordinal), CU_POINTER_ATTRIBUTE_DEVICE_ORDINAL, reinterpret_cast<CUdeviceptr>(ptr)); if (result != CUDA_SUCCESS) { LOG(FATAL) << "Not able to get the device_ordinal for ptr: " << ptr << ". Error: " << ToString(result); } return device_ordinal; } static CUcontext GetAnyContext(void* ptr) { absl::ReaderMutexLock lock(&mu_); int device_ordinal = GetDeviceOrdinal(ptr); CHECK_EQ(LiveOrdinal()->count(device_ordinal), 1); CHECK(!LiveOrdinal()->at(device_ordinal).empty()) << "Need at least one context."; return LiveOrdinal()->at(device_ordinal)[0]; } private: static absl::node_hash_map<CUcontext, std::unique_ptr<GpuContext>>* Live() { static auto singleton = new absl::node_hash_map<CUcontext, std::unique_ptr<GpuContext>>; return singleton; } static absl::node_hash_map<int, std::vector<CUcontext>>* LiveOrdinal() { static auto singleton = new absl::node_hash_map<int, std::vector<CUcontext>>; return singleton; } static absl::Mutex mu_; static int64_t next_id_; }; } namespace cuda { using MemorySpace = gpu::MemorySpace; using CUDADriver = gpu::GpuDriver; using ScopedActivateContext = gpu::ScopedActivateContext; using CudaContext = gpu::GpuContext; CUcontext CurrentContextOrDie(); } } #endif #include "xla/stream_executor/cuda/cuda_driver.h" #include <stdint.h> #include <stdlib.h> #include <cstdint> #include <cstring> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/base/casts.h" #include "absl/base/const_init.h" #include "absl/base/optimization.h" #include "absl/container/inlined_vector.h" #include "absl/debugging/leak_check.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/synchronization/notification.h" #include "absl/types/span.h" #include "third_party/gpus/cuda/include/cuda.h" #include "third_party/gpus/cuda/include/cuda_runtime_api.h" #include "third_party/gpus/cuda/include/driver_types.h" #include "xla/stream_executor/gpu/gpu_diagnostics.h" #include "xla/stream_executor/gpu/gpu_driver.h" #include "xla/stream_executor/gpu/gpu_types.h" #include "xla/stream_executor/platform.h" #include "tsl/platform/env.h" #include "tsl/platform/logging.h" #include "tsl/platform/macros.h" #include "tsl/platform/numbers.h" #include "tsl/platform/stacktrace.h" #include "tsl/platform/threadpool.h" #define RETURN_IF_CUDA_RES_ERROR(expr, ...) \ do { \ CUresult _res = (expr); \ if (ABSL_PREDICT_FALSE(_res != CUDA_SUCCESS)) { \ if (_res == CUDA_ERROR_OUT_OF_MEMORY) \ return absl::ResourceExhaustedError(absl::StrCat( \ __VA_ARGS__, ":", ::stream_executor::gpu::ToString(_res))); \ else \ return absl::InternalError(absl::StrCat( \ __VA_ARGS__, ": ", ::stream_executor::gpu::ToString(_res))); \ } \ } while (0) #define FAIL_IF_CUDA_RES_ERROR(expr, ...) \ do { \ CUresult _res = (expr); \ if (ABSL_PREDICT_FALSE(_res != CUDA_SUCCESS)) { \ LOG(FATAL) << absl::StrCat(__VA_ARGS__) << ": " \ << ::stream_executor::gpu::ToString(_res); \ } \ } while (0) constexpr bool kVerifyGpuContext = false; namespace stream_executor { namespace gpu { absl::Mutex CreatedContexts::mu_{absl::kConstInit}; int64_t CreatedContexts::next_id_ = 1; namespace { CUcontext CurrentContext() { CUcontext current = cuda::CurrentContextOrDie(); if (current != nullptr && !CreatedContexts::Has(current)) { LOG(FATAL) << "current context was not created by the StreamExecutor " "cuda_driver API: " << current << "; a CUDA runtime call " "was likely performed without using a StreamExecutor context"; } return current; } tsl::thread::ThreadPool* GetDriverExecutor() { static tsl::thread::ThreadPool* thread_pool = new tsl::thread::ThreadPool( tsl::Env::Default(), tsl::ThreadOptions(), "cuda_driver", 1); return thread_pool; } } std::string MemorySpaceString(MemorySpace memory_space) { switch (memory_space) { case MemorySpace::kHost: return "host"; case MemorySpace::kDevice: return "device"; default: LOG(FATAL) << "impossible memory space"; } } namespace { void SynchronizeOrDie() { FAIL_IF_CUDA_RES_ERROR(cuCtxSynchronize(), "Synchronize fail: ", tsl::CurrentStackTrace()); } thread_local struct ThreadLocalData { int64_t id; GpuContext* context; int depth; } tls_data = {}; } ScopedActivateContext::ScopedActivateContext(GpuContext* cuda_context) { auto* tls = &tls_data; if (tls->depth == 0) { VLOG(3) << "ScopedActivateContext switching to " << cuda_context->id(); FAIL_IF_CUDA_RES_ERROR(cuCtxSetCurrent(cuda_context->context()), "Failed setting context"); tls->depth = 1; tls->id = cuda_context->id(); tls->context = cuda_context; to_restore_ = nullptr; return; } tls->depth++; if (tls->id == cuda_context->id()) { if (kVerifyGpuContext) { CHECK_EQ(CurrentContext(), cuda_context->context()); } DCHECK_EQ(CurrentContext(), cuda_context->context()); return; } VLOG(3) << "ScopedActivateContext switching context from " << tls->id << " to " << cuda_context->id(); to_restore_ = tls->context; FAIL_IF_CUDA_RES_ERROR(cuCtxSetCurrent(cuda_context->context()), "Failed setting context"); tls->id = cuda_context->id(); tls->context = cuda_context; } ScopedActivateContext::~ScopedActivateContext() { auto* tls = &tls_data; if (kVerifyGpuContext) { CHECK_EQ(CurrentContext(), tls->context == nullptr ? nullptr : tls->context->context()); } tls->depth--; DCHECK_GE(tls->depth, 0); if (to_restore_ == nullptr) { return; } FAIL_IF_CUDA_RES_ERROR(cuCtxSetCurrent(to_restore_->context()), "Failed setting context"); tls->id = to_restore_->id(); tls->context = to_restore_; } namespace { std::string CUDAPointerToDeviceString(CUdeviceptr pointer) { auto value = GpuDriver::GetPointerDevice(pointer); if (value.ok()) { return absl::StrCat(value.value()); } LOG(ERROR) << "could not query device: " << value.status(); return "?"; } std::string CUDAPointerToMemorySpaceString(CUdeviceptr pointer) { auto value = GpuDriver::GetPointerMemorySpace(pointer); if (value.ok()) { return MemorySpaceString(value.value()); } LOG(ERROR) << "could not query device: " << value.status(); return "?"; } std::string CUDAPointersToCanAccessString(CUdeviceptr from, CUdeviceptr to) { auto from_context = GpuDriver::GetPointerContext(from); if (!from_context.ok()) { LOG(ERROR) << "could not retrieve source pointer's context: " << from_context.status(); return "source ptr error"; } auto to_context = GpuDriver::GetPointerContext(to); if (!to_context.ok()) { LOG(ERROR) << "could not retrieve destination pointer's context: " << to_context.status(); return "destination ptr error"; } return GpuDriver::CanEnablePeerAccess(from_context.value(), to_context.value()) ? "true" : "false"; } static absl::Status InternalInit() { CUresult res = cuInit(0 ); if (res == CUDA_SUCCESS) { return absl::OkStatus(); } else if (res == CUDA_ERROR_SHARED_OBJECT_INIT_FAILED) { VLOG(1) << "failed call to cuInit: " << ToString(res); } else { LOG(ERROR) << "failed call to cuInit: " << ToString(res); } Diagnostician::LogDiagnosticInformation(); return absl::AbortedError( absl::StrCat("failed call to cuInit: ", ToString(res))); } const char kScheduleSpinString[] = "spin"; const char kScheduleYieldString[] = "yield"; const char kScheduleBlockingSyncString[] = "blocking_sync"; int GetFlagsFromEnv() { const char* gpu_schedule_string = std::getenv("TF_CUDA_PLATFORM_GPU_DEVICE_SCHEDULE"); if (gpu_schedule_string == nullptr) { return 0; } unsigned device_flags = 0; if (strcmp(kScheduleSpinString, gpu_schedule_string) == 0) { device_flags = CU_CTX_SCHED_SPIN; } else if (strcmp(kScheduleYieldString, gpu_schedule_string) == 0) { device_flags = CU_CTX_SCHED_YIELD; } else if (strcmp(kScheduleBlockingSyncString, gpu_schedule_string) == 0) { device_flags = CU_CTX_SCHED_BLOCKING_SYNC; } else { LOG(QFATAL) << "Unknown option for environment variable " "TF_CUDA_PLATFORM_GPU_DEVICE_SCHEDULE " << gpu_schedule_string << " should be one of {" << kScheduleBlockingSyncString << ", " << kScheduleSpinString << ", " << kScheduleYieldString << "}"; } return device_flags; } } absl::StatusOr<CUresult> QueryEvent(GpuContext* context, CUevent event) { ScopedActivateContext activated{context}; CUresult res = cuEventQuery(event); if (res != CUDA_SUCCESS && res != CUDA_ERROR_NOT_READY) { return absl::InternalError( absl::StrFormat("failed to query event: %s", ToString(res))); } return res; } absl::Status GpuDriver::Init() { static absl::Status* init_retval = [] { return new absl::Status(InternalInit()); }(); return *init_retval; } absl::Status GpuDriver::GetDevice(int device_ordinal, CUdevice* device) { RETURN_IF_CUDA_RES_ERROR(cuDeviceGet(device, device_ordinal), "Failed call to cuDeviceGet"); return absl::OkStatus(); } absl::Status GpuDriver::GetDeviceName(CUdevice device, std::string* device_name) { static const size_t kCharLimit = 64; absl::InlinedVector<char, 4> chars(kCharLimit); RETURN_IF_CUDA_RES_ERROR( cuDeviceGetName(chars.begin(), kCharLimit - 1, device), "Failed to get device name"); chars[kCharLimit - 1] = '\0'; *device_name = chars.begin(); return absl::OkStatus(); } absl::Status GpuDriver::CreateContext(int device_ordinal, CUdevice device, GpuContext** context) { *context = nullptr; int flags = GetFlagsFromEnv(); CUresult res; CUcontext former_context; CUcontext new_context; unsigned int former_primary_context_flags; int former_primary_context_is_active; CHECK_EQ(CUDA_SUCCESS, cuDevicePrimaryCtxGetState(device, &former_primary_context_flags, &former_primary_context_is_active)); if (former_primary_context_flags != flags) { if (former_primary_context_is_active) { LOG(ERROR) << "The primary context is active and has a different flag set (" << former_primary_context_flags << ") than the desired flag set (" << flags << ")."; } else { CHECK_EQ(CUDA_SUCCESS, cuDevicePrimaryCtxSetFlags(device, flags)); } } former_context = cuda::CurrentContextOrDie(); res = cuDevicePrimaryCtxRetain(&new_context, device); if (former_context != nullptr) { CUdevice former_device; if (cuCtxGetDevice(&former_device) == CUDA_SUCCESS) { if (former_device == device) { if (former_context == new_context) { VLOG(2) << "The primary context " << former_context << " for device " << device << " exists before initializing the StreamExecutor."; } else { LOG(WARNING) << "A non-primary context " << former_context << " for device " << device << " exists before initializing the StreamExecutor. The " << "primary context is now " << new_context << ". We " << "haven't verified StreamExecutor works with that."; } } } else { LOG(ERROR) << "Failed to get the device of the current context " << former_context; } } CHECK_EQ(CUDA_SUCCESS, cuCtxSetCurrent(former_context)); if (res == CUDA_SUCCESS) { *context = CreatedContexts::Add(new_context, device_ordinal); CHECK(*context != nullptr) << "success in this call must entail non-null result"; VLOG(2) << "created or reused context " << new_context << " for this thread"; return absl::OkStatus(); } std::string message = "failed call to cuDevicePrimaryCtxRetain: " + ToString(res); if (res == CUDA_ERROR_OUT_OF_MEMORY) { uint64_t total_memory; if (GetDeviceTotalMemory(device, &total_memory)) { absl::StrAppend(&message, "; total memory reported: ", total_memory); } else { absl::StrAppend(&message, "; could not query total memory"); } } return absl::InternalError(message); } void GpuDriver::DestroyContext(GpuContext* context) { if (context == nullptr) { return; } CUresult res = cuCtxPushCurrent(context->context()); CUdevice device; cuCtxGetDevice(&device); cuCtxPopCurrent(nullptr); res = cuDevicePrimaryCtxRelease(device); if (res != CUDA_SUCCESS) { LOG(ERROR) << "failed to release CUDA context; leaking: " << ToString(res); } CreatedContexts::Remove(context->context()); } absl::Status GpuDriver::FuncGetAttribute( CUfunction_attribute attribute, CUfunction func, int* attribute_value) { RETURN_IF_CUDA_RES_ERROR(cuFuncGetAttribute(attribute_value, attribute, func), "Failed to query kernel attribute: ", attribute); return absl::OkStatus(); } absl::Status GpuDriver::FuncSetCacheConfig( CUfunction function, CUfunc_cache cache_config) { RETURN_IF_CUDA_RES_ERROR(cuFuncSetCacheConfig(function, cache_config), "Failed to set CUDA kernel cache config"); return absl::OkStatus(); } absl::StatusOr<CUsharedconfig> GpuDriver::ContextGetSharedMemConfig(GpuContext* context) { CUsharedconfig shared_mem_config; ScopedActivateContext activation(context); RETURN_IF_CUDA_RES_ERROR(cuCtxGetSharedMemConfig(&shared_mem_config), "Failed to get shared memory config"); return shared_mem_config; } absl::Status GpuDriver::ContextSetSharedMemConfig( GpuContext* context, CUsharedconfig shared_mem_config) { ScopedActivateContext activation(context); RETURN_IF_CUDA_RES_ERROR(cuCtxSetSharedMemConfig(shared_mem_config), "Failed to set shared memory config"); return absl::OkStatus(); } absl::Status GpuDriver::CreateGraph(CUgraph* graph) { VLOG(2) << "Create new CUDA graph"; RETURN_IF_CUDA_RES_ERROR(cuGraphCreate(graph, 0), "Failed to create CUDA graph"); VLOG(2) << "Created CUDA graph " << *graph; return absl::OkStatus(); } absl::Status GpuDriver::DestroyGraph(CUgraph graph) { VLOG(2) << "Destroy CUDA graph " << graph; RETURN_IF_CUDA_RES_ERROR(cuGraphDestroy(graph), "Failed to destroy CUDA graph"); return absl::OkStatus(); } static std::string_view StreamCaptureModeToString( GpuDriver::StreamCaptureMode mode) { switch (mode) { case GpuDriver::StreamCaptureMode::kGlobal: return "global"; case GpuDriver::StreamCaptureMode::kThreadLocal: return "threadlocal"; case GpuDriver::StreamCaptureMode::kRelaxed: return "relaxed"; } } absl::Status GpuDriver::StreamBeginCapture( CUstream stream, StreamCaptureMode mode) { CUstreamCaptureMode cu_mode; switch (mode) { case StreamCaptureMode::kGlobal: cu_mode = CU_STREAM_CAPTURE_MODE_GLOBAL; break; case StreamCaptureMode::kThreadLocal: cu_mode = CU_STREAM_CAPTURE_MODE_THREAD_LOCAL; break; case StreamCaptureMode::kRelaxed: cu_mode = CU_STREAM_CAPTURE_MODE_RELAXED; break; } VLOG(2) << "Beginning stream " << stream << " capture in " << StreamCaptureModeToString(mode) << " mode"; RETURN_IF_CUDA_RES_ERROR(cuStreamBeginCapture(stream, cu_mode), "Failed to begin stream capture"); return absl::OkStatus(); } absl::Status GpuDriver::StreamBeginCaptureToGraph( CUstream stream, CUgraph graph, StreamCaptureMode mode) { CUstreamCaptureMode cu_mode; switch (mode) { case StreamCaptureMode::kGlobal: cu_mode = CU_STREAM_CAPTURE_MODE_GLOBAL; break; case StreamCaptureMode::kThreadLocal: cu_mode = CU_STREAM_CAPTURE_MODE_THREAD_LOCAL; break; case StreamCaptureMode::kRelaxed: cu_mode = CU_STREAM_CAPTURE_MODE_RELAXED; break; } #if CUDA_VERSION >= 12030 VLOG(2) << "Beginning stream " << stream << " capture in " << StreamCaptureModeToString(mode) << " mode to graph " << graph; RETURN_IF_CUDA_RES_ERROR( cuStreamBeginCaptureToGraph(stream, graph, nullptr, nullptr, 0, cu_mode), "Failed to begin stream capture to graph"); return absl::OkStatus(); #else return absl::UnimplementedError( "StreamBeginCaptureToGraph is not implemented"); #endif } absl::Status GpuDriver::StreamEndCapture(CUstream stream, CUgraph* graph) { VLOG(2) << "End stream " << stream << " capture"; RETURN_IF_CUDA_RES_ERROR(cuStreamEndCapture(stream, graph), "Failed to end stream capture"); return absl::OkStatus(); } absl::Status GpuDriver::GraphInstantiate( CUgraphExec* exec, CUgraph graph, const GraphInstantiateFlags& flags) { VLOG(2) << "Instantiate CUDA executable graph from graph " << graph << " (" << "auto_free_on_launch=" << flags.auto_free_on_launch << ", " << "device_launch=" << flags.device_launch << ", " << "use_node_priority=" << flags.use_node_prirotiy << ", " << "upload=" << flags.upload << ")"; #if CUDA_VERSION >= 12000 uint64_t cu_flags = 0; if (flags.auto_free_on_launch) cu_flags |= CUDA_GRAPH_INSTANTIATE_FLAG_AUTO_FREE_ON_LAUNCH; if (flags.use_node_prirotiy) cu_flags |= CUDA_GRAPH_INSTANTIATE_FLAG_USE_NODE_PRIORITY; if (flags.device_launch) cu_flags |= CUDA_GRAPH_INSTANTIATE_FLAG_DEVICE_LAUNCH; if (flags.upload) cu_flags |= CUDA_GRAPH_INSTANTIATE_FLAG_UPLOAD; RETURN_IF_CUDA_RES_ERROR(cuGraphInstantiate(exec, graph, cu_flags), "Failed to instantiate CUDA graph"); #else RETURN_IF_CUDA_RES_ERROR(cuGraphInstantiate(exec, graph, nullptr, nullptr, 0), "Failed to instantiate CUDA graph"); #endif return absl::OkStatus(); } absl::Status GpuDriver::GraphLaunch(CUgraphExec exec, CUstream stream) { VLOG(2) << "Launching CUDA executable graph " << exec << " on a stream " << stream; RETURN_IF_CUDA_RES_ERROR(cuGraphLaunch(exec, stream), "Failed to launch CUDA graph"); return absl::OkStatus(); } absl::Status GpuDriver::GraphNodeSetEnabled(CUgraphExec exec, CUgraphNode node, bool enabled) { unsigned value = enabled ? 1 : 0; VLOG(2) << "Set CUDA executable graph " << exec << " node " << node << " enabled flag to " << value; RETURN_IF_CUDA_RES_ERROR(cuGraphNodeSetEnabled(exec, node, value), "Failed to set CUDA graph node enabled flag"); return absl::OkStatus(); } absl::Status GpuDriver::GraphExecUpdate( CUgraphExec exec, CUgraph graph, GraphExecUpdateResultInfo* result) { VLOG(2) << "Update CUDA graph executable " << exec << " with graph " << graph; #if CUDA_VERSION >= 12000 CUgraphExecUpdateResultInfo cu_result; memset(&cu_result, 0, sizeof(cu_result)); CUresult err_code = cuGraphExecUpdate(exec, graph, &cu_result); auto cu_result_enum = cu_result.result; if (cu_result.errorFromNode) { result->error_from_node = cu_result.errorFromNode; } if (cu_result.errorNode) { result->error_node = cu_result.errorNode; } #else CUgraphExecUpdateResult cu_result; CUresult err_code = cuGraphExecUpdate(exec, graph, nullptr, &cu_result); auto cu_result_enum = cu_result; #endif switch (cu_result_enum) { case CU_GRAPH_EXEC_UPDATE_SUCCESS: result->result = GraphExecUpdateResult::kSuccess; break; case CU_GRAPH_EXEC_UPDATE_ERROR: result->result = GraphExecUpdateResult::kError; break; case CU_GRAPH_EXEC_UPDATE_ERROR_TOPOLOGY_CHANGED: result->result = GraphExecUpdateResult::kTopologyChanged; break; case CU_GRAPH_EXEC_UPDATE_ERROR_NODE_TYPE_CHANGED: result->result = GraphExecUpdateResult::kNodeTypeChanged; break; case CU_GRAPH_EXEC_UPDATE_ERROR_FUNCTION_CHANGED: result->result = GraphExecUpdateResult::kFunctionChanged; break; case CU_GRAPH_EXEC_UPDATE_ERROR_PARAMETERS_CHANGED: result->result = GraphExecUpdateResult::kParametersChanged; break; case CU_GRAPH_EXEC_UPDATE_ERROR_NOT_SUPPORTED: result->result = GraphExecUpdateResult::kNotSupported; break; #if CUDA_VERSION >= 12000 case CU_GRAPH_EXEC_UPDATE_ERROR_UNSUPPORTED_FUNCTION_CHANGE: result->result = GraphExecUpdateResult::kUnsupportedFunctionChange; break; case CU_GRAPH_EXEC_UPDATE_ERROR_ATTRIBUTES_CHANGED: result->result = GraphExecUpdateResult::kAttributesChanged; break; #endif default: return absl::InternalError("Unknown graph update result"); } RETURN_IF_CUDA_RES_ERROR(err_code, "Failed to update CUDA graph"); return absl::OkStatus(); } absl::StatusOr<GpuDriver::GraphNodeType> GpuDriver::GraphNodeGetType(CUgraphNode node) { CUgraphNodeType cu_node_type; memset(&cu_node_type, 0, sizeof(cu_node_type)); RETURN_IF_CUDA_RES_ERROR(cuGraphNodeGetType(node, &cu_node_type), "Failed to get CUDA graph node type"); switch (cu_node_type) { case CU_GRAPH_NODE_TYPE_KERNEL: return GraphNodeType::kKernel; case CU_GRAPH_NODE_TYPE_MEMCPY: return GraphNodeType::kMemcpy; case CU_GRAPH_NODE_TYPE_MEMSET: return GraphNodeType::kMemset; case CU_GRAPH_NODE_TYPE_HOST: return GraphNodeType::kHost; case CU_GRAPH_NODE_TYPE_GRAPH: return GraphNodeType::kGraph; case CU_GRAPH_NODE_TYPE_EMPTY: return GraphNodeType::kEmpty; #if CUDA_VERSION >= 12000 case CU_GRAPH_NODE_TYPE_WAIT_EVENT: return GraphNodeType::kWaitEvent; case CU_GRAPH_NODE_TYPE_EVENT_RECORD: return GraphNodeType::kEventRecord; case CU_GRAPH_NODE_TYPE_EXT_SEMAS_SIGNAL: return GraphNodeType::kExtSemasSignal; case CU_GRAPH_NODE_TYPE_EXT_SEMAS_WAIT: return GraphNodeType::kExtSemasWait; case CU_GRAPH_NODE_TYPE_MEM_ALLOC: return GraphNodeType::kMemAlloc; case CU_GRAPH_NODE_TYPE_MEM_FREE: return GraphNodeType::kMemFree; case CU_GRAPH_NODE_TYPE_BATCH_MEM_OP: return GraphNodeType::kBatchMemOp; #endif default: return absl::InternalError("Unknown graph node type"); } return absl::InternalError("Invalid CUDA graph node type"); } absl::StatusOr<std::vector<GpuGraphNodeHandle>> GpuDriver::GraphNodeGetDependencies(GpuGraphNodeHandle node) { VLOG(2) << "Get CUDA graph node " << node << " dependencies"; std::vector<CUgraphNode> dependencies; size_t num_dependencies = 0; RETURN_IF_CUDA_RES_ERROR( cuGraphNodeGetDependencies(node, nullptr, &num_dependencies), "Failed to get CUDA graph node depedenc
#include "absl/log/log.h" #include "third_party/gpus/cuda/include/cuda.h" #include "third_party/gpus/cuda/include/driver_types.h" #include "xla/stream_executor/gpu/gpu_driver.h" #include "xla/stream_executor/cuda/cuda_driver.h" #include "third_party/gpus/cuda/include/cuda_runtime_api.h" #include "tsl/platform/test.h" namespace stream_executor { namespace gpu { void CheckCuda(CUresult result, const char* file, int line) { if (result == CUDA_SUCCESS) { return; } const char* name; cuGetErrorName(result, &name); const char* message; cuGetErrorString(result, &message); LOG(FATAL) << file << "(" << line << "): " << name << ", " << message; } void CheckCuda(cudaError_t result, const char* file, int line) { if (result == cudaSuccess) { return; } const char* name = cudaGetErrorName(result); const char* message = cudaGetErrorString(result); LOG(FATAL) << file << "(" << line << "): " << name << ", " << message; } #define CHECK_CUDA(result) CheckCuda(result, __FILE__, __LINE__) TEST(CudaDriverTest, ScopedActivateContextTest) { CHECK_CUDA(cuInit(0)); CUdevice device; CHECK_CUDA(cuDeviceGet(&device, 0)); CUcontext context0, context1; CHECK_CUDA(cuCtxCreate(&context0, 0, device)); CHECK_CUDA(cuCtxCreate(&context1, 0, device)); GpuContext se_context1(context1, 101); { ScopedActivateContext scope(&se_context1); CUcontext c; CHECK_CUDA(cuCtxGetCurrent(&c)); EXPECT_EQ(c, context1); } CHECK_CUDA(cuCtxSetCurrent(context0)); { ScopedActivateContext scope(&se_context1); CUcontext c; CHECK_CUDA(cuCtxGetCurrent(&c)); EXPECT_EQ(c, context1); } } } }
1,832
cpp
tensorflow/tensorflow
redzone_allocator
third_party/xla/xla/stream_executor/gpu/redzone_allocator.cc
third_party/xla/xla/stream_executor/gpu/redzone_allocator_test.cc
#ifndef XLA_STREAM_EXECUTOR_GPU_REDZONE_ALLOCATOR_H_ #define XLA_STREAM_EXECUTOR_GPU_REDZONE_ALLOCATOR_H_ #include <cstdint> #include <string> #include <utility> #include <vector> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/gpu/gpu_asm_opts.h" #include "xla/stream_executor/scratch_allocator.h" #include "xla/stream_executor/stream_executor.h" namespace stream_executor { class RedzoneAllocator : public ScratchAllocator { public: static constexpr int64_t kDefaultRedzoneSize = 1LL << 23; static constexpr uint8_t kDefaultRedzonePattern = -1; RedzoneAllocator(Stream* stream, DeviceMemoryAllocator* memory_allocator, const GpuAsmOpts& gpu_compilation_opts_, int64_t memory_limit = (1LL << 32), int64_t redzone_size = kDefaultRedzoneSize, uint8_t redzone_pattern = kDefaultRedzonePattern); int64_t GetMemoryLimitInBytes() override { return memory_limit_; } int64_t TotalAllocatedBytesExcludingRedzones() const { return allocated_bytes_excluding_redzones_; } absl::StatusOr<DeviceMemory<uint8>> AllocateBytes(int64_t byte_size) override; struct RedzoneCheckStatus { RedzoneCheckStatus() = default; RedzoneCheckStatus(absl::string_view buffer_name, void* user_buffer_address, int64_t offset, uint64_t expected_value, uint64_t actual_value) : buffer_name(buffer_name), user_buffer_address(user_buffer_address), offset(offset), expected_value(expected_value), actual_value(actual_value) {} static RedzoneCheckStatus OK() { return {}; } bool ok() { return user_buffer_address == nullptr; } std::string RedzoneFailureMsg() const; std::string buffer_name = {}; void* user_buffer_address = nullptr; int64_t offset = 0; uint64_t expected_value = 0; uint64_t actual_value = 0; }; absl::StatusOr<RedzoneCheckStatus> CheckRedzones() const; Stream* stream() const { return stream_; } private: const int device_ordinal_; Stream* stream_; const int64_t memory_limit_; const int64_t redzone_size_; const uint8_t redzone_pattern_; DeviceMemoryAllocator* memory_allocator_; GpuAsmOpts gpu_compilation_opts_; std::vector<std::pair<OwningDeviceMemory, int64_t>> allocated_buffers_; int64_t allocated_bytes_excluding_redzones_ = 0; }; } #endif #include "xla/stream_executor/gpu/redzone_allocator.h" #include <algorithm> #include <array> #include <cstdint> #include <cstring> #include <memory> #include <string> #include <utility> #include "absl/container/fixed_array.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_handle.h" #include "xla/stream_executor/gpu/gpu_asm_opts.h" #include "xla/stream_executor/gpu/redzone_allocator_kernel.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/launch_dim.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tsl/framework/allocator.h" #include "tsl/lib/math/math_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace stream_executor { template <typename T> static T RoundUpToNearest(T value, T divisor) { return tsl::MathUtil::CeilOfRatio(value, divisor) * divisor; } constexpr int64_t kRhsRedzoneAlign = 4; using RedzoneCheckStatus = RedzoneAllocator::RedzoneCheckStatus; RedzoneAllocator::RedzoneAllocator(Stream* stream, DeviceMemoryAllocator* memory_allocator, const GpuAsmOpts& gpu_compilation_opts, int64_t memory_limit, int64_t redzone_size, uint8_t redzone_pattern) : device_ordinal_(stream->parent()->device_ordinal()), stream_(stream), memory_limit_(memory_limit), redzone_size_(RoundUpToNearest( redzone_size, static_cast<int64_t>(tsl::Allocator::kAllocatorAlignment))), redzone_pattern_(redzone_pattern), memory_allocator_(memory_allocator), gpu_compilation_opts_(gpu_compilation_opts) {} absl::StatusOr<DeviceMemory<uint8_t>> RedzoneAllocator::AllocateBytes( int64_t byte_size) { CHECK_GE(byte_size, 0) << "byte_size must be positive."; if (byte_size > GetMemoryLimitInBytes()) { return absl::ResourceExhaustedError(absl::StrFormat( "Allocating %d bytes exceeds the memory limit of %d bytes.", byte_size, GetMemoryLimitInBytes())); } int64_t rhs_slop = RoundUpToNearest(byte_size, kRhsRedzoneAlign) - byte_size; TF_ASSIGN_OR_RETURN( OwningDeviceMemory allocated_buffer, memory_allocator_->Allocate(device_ordinal_, byte_size + 2 * redzone_size_ + rhs_slop, false)); allocated_bytes_excluding_redzones_ += byte_size; static_assert(sizeof(uint8_t) == 1, "Unexpected size"); DeviceMemory<uint8_t> allocated_buffer_memory(*allocated_buffer); DeviceMemory<uint8_t> lhs_redzone = allocated_buffer_memory.GetSlice(0, redzone_size_); DeviceMemory<uint8_t> data_chunk = allocated_buffer_memory.GetSlice(redzone_size_, byte_size); DeviceMemory<uint8_t> rhs_redzone_slop = allocated_buffer_memory.GetSlice(redzone_size_ + byte_size, rhs_slop); DeviceMemory<uint8_t> rhs_redzone_nonslop = allocated_buffer_memory.GetSlice( redzone_size_ + byte_size + rhs_slop, redzone_size_); uint8_t pattern_arr[] = {redzone_pattern_, redzone_pattern_, redzone_pattern_, redzone_pattern_}; uint32_t pattern32; std::memcpy(&pattern32, pattern_arr, sizeof(pattern32)); TF_RETURN_IF_ERROR(stream_->Memset32(&lhs_redzone, pattern32, redzone_size_)); if (rhs_slop != 0) { TF_RETURN_IF_ERROR( stream_->Memcpy(&rhs_redzone_slop, &pattern32, rhs_slop)); } TF_RETURN_IF_ERROR( stream_->Memset32(&rhs_redzone_nonslop, pattern32, redzone_size_)); allocated_buffers_.emplace_back(std::move(allocated_buffer), byte_size); return data_chunk; } static absl::StatusOr<RedzoneCheckStatus> CheckRedzoneHost( DeviceMemoryBase redzone, DeviceMemoryBase user_allocation, absl::string_view name, Stream* stream, uint8_t redzone_pattern) { uint64_t size = redzone.size(); auto redzone_data = std::make_unique<uint8_t[]>(size); TF_RETURN_IF_ERROR(stream->Memcpy(redzone_data.get(), redzone, size)); TF_RETURN_IF_ERROR(stream->BlockHostUntilDone()); std::array<uint8_t, sizeof(uint64_t)> pattern_arr; pattern_arr.fill(redzone_pattern); uint64_t pattern64; std::memcpy(&pattern64, pattern_arr.data(), sizeof(uint64_t)); int64_t i; for (i = 0; i + 7 < size; i += sizeof(uint64_t)) { uint64_t rz_value = *reinterpret_cast<uint64_t*>(&redzone_data[i]); if (rz_value != pattern64) { return RedzoneCheckStatus(name, user_allocation.opaque(), i, pattern64, rz_value); } } for (; i < size; ++i) { uint8_t rz_value = redzone_data[i]; if (rz_value != redzone_pattern) { return RedzoneCheckStatus(name, user_allocation.opaque(), i, redzone_pattern, rz_value); } } return RedzoneCheckStatus::OK(); } static absl::Status RunRedzoneChecker( Stream* stream, const DeviceMemory<uint8_t>& redzone, uint8_t redzone_pattern, const DeviceMemory<uint64_t>& out_param, const ComparisonKernel& comparison_kernel) { StreamExecutor* executor = stream->parent(); if (redzone.size() == 0) { return absl::OkStatus(); } int64_t num_elements = redzone.size(); int64_t threads_per_block = std::min( executor->GetDeviceDescription().threads_per_block_limit(), num_elements); int64_t block_count = tsl::MathUtil::CeilOfRatio(num_elements, threads_per_block); TF_RETURN_IF_ERROR(stream->ThenLaunch( ThreadDim(threads_per_block), BlockDim(block_count), comparison_kernel, redzone, redzone_pattern, redzone.size(), out_param)); return absl::OkStatus(); } static absl::Status ReinitializeRedzone(Stream* stream, DeviceMemoryBase redzone, uint8_t redzone_pattern) { absl::FixedArray<uint8_t> redzone_array(redzone.size()); redzone_array.fill(redzone_pattern); TF_RETURN_IF_ERROR( stream->Memcpy(&redzone, redzone_array.data(), redzone.size())); TF_RETURN_IF_ERROR(stream->BlockHostUntilDone()); return absl::OkStatus(); } static absl::StatusOr<RedzoneCheckStatus> CheckRedzonesForBuffer( Stream* stream, DeviceMemoryBase memory, const DeviceMemory<uint64_t>& out_param, const ComparisonKernel& comparison_kernel, int64_t user_allocation_size, uint64_t redzone_size, uint8_t redzone_pattern) { int64_t rhs_slop = RoundUpToNearest<int64_t>(user_allocation_size, kRhsRedzoneAlign) - user_allocation_size; CHECK_EQ(memory.size(), user_allocation_size + rhs_slop + 2 * redzone_size); DeviceMemory<uint8_t> buffer_uint8(memory); DeviceMemory<uint8_t> lhs_redzone = buffer_uint8.GetSlice(0, redzone_size); DeviceMemory<uint8_t> user_allocation = buffer_uint8.GetSlice(redzone_size, user_allocation_size); DeviceMemory<uint8_t> rhs_redzone = buffer_uint8.GetSlice(redzone_size + user_allocation_size, redzone_size + rhs_slop); TF_RETURN_IF_ERROR(RunRedzoneChecker(stream, lhs_redzone, redzone_pattern, out_param, comparison_kernel)); TF_RETURN_IF_ERROR(RunRedzoneChecker(stream, rhs_redzone, redzone_pattern, out_param, comparison_kernel)); int64_t result; CHECK_EQ(out_param.size(), sizeof(result)); TF_RETURN_IF_ERROR(stream->Memcpy(&result, out_param, sizeof(result))); TF_RETURN_IF_ERROR(stream->BlockHostUntilDone()); if (result != 0) { TF_ASSIGN_OR_RETURN(RedzoneCheckStatus lhs_check, CheckRedzoneHost(lhs_redzone, user_allocation, "LHS", stream, redzone_pattern)); TF_ASSIGN_OR_RETURN(RedzoneCheckStatus rhs_check, CheckRedzoneHost(rhs_redzone, user_allocation, "RHS", stream, redzone_pattern)); CHECK(!lhs_check.ok() || !rhs_check.ok()) << "Mismatched results with host and device comparison"; TF_RETURN_IF_ERROR( ReinitializeRedzone(stream, lhs_redzone, redzone_pattern)); TF_RETURN_IF_ERROR( ReinitializeRedzone(stream, rhs_redzone, redzone_pattern)); return !lhs_check.ok() ? lhs_check : rhs_check; } return RedzoneCheckStatus::OK(); } absl::StatusOr<RedzoneCheckStatus> RedzoneAllocator::CheckRedzones() const { StreamExecutor* executor = stream_->parent(); TF_ASSIGN_OR_RETURN( const ComparisonKernel* kernel, GetComparisonKernel(stream_->parent(), gpu_compilation_opts_)); stream_executor::DeviceMemoryHandle out_param( executor, executor->AllocateScalar<uint64_t>()); TF_RETURN_IF_ERROR( stream_->MemZero(out_param.memory_ptr(), sizeof(uint64_t))); for (const auto& buf_and_size : allocated_buffers_) { TF_ASSIGN_OR_RETURN( RedzoneCheckStatus redzone_status, CheckRedzonesForBuffer(stream_, *buf_and_size.first, DeviceMemory<uint64_t>(out_param.memory()), *kernel, buf_and_size.second, redzone_size_, redzone_pattern_)); if (!redzone_status.ok()) { return redzone_status; } } return RedzoneCheckStatus::OK(); } std::string RedzoneCheckStatus::RedzoneFailureMsg() const { return absl::StrFormat( "Redzone mismatch in %s redzone of buffer %p at offset %d; " "expected %08x but was %08x.", buffer_name, user_buffer_address, offset, expected_value, actual_value); } }
#include "xla/stream_executor/gpu/redzone_allocator.h" #include <cstdint> #include <vector> #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/gpu/gpu_asm_opts.h" #include "xla/stream_executor/gpu/gpu_init.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/stream_executor_memory_allocator.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace stream_executor { namespace gpu { using RedzoneCheckStatus = RedzoneAllocator::RedzoneCheckStatus; static void EXPECT_REDZONE_OK(absl::StatusOr<RedzoneCheckStatus> status) { EXPECT_TRUE(status.ok()); EXPECT_TRUE(status.value().ok()); } static void EXPECT_REDZONE_VIOLATION( absl::StatusOr<RedzoneCheckStatus> status) { EXPECT_TRUE(status.ok()); EXPECT_FALSE(status.value().ok()); } TEST(RedzoneAllocatorTest, WriteToRedzone) { constexpr int64_t kRedzoneSize = 1 << 23; constexpr uint8_t kRedzonePattern = 0x7e; constexpr int64_t kAllocSize = (1 << 25) + 1; Platform* platform = PlatformManager::PlatformWithName(GpuPlatformName()).value(); StreamExecutor* stream_exec = platform->ExecutorForDevice(0).value(); GpuAsmOpts opts; StreamExecutorMemoryAllocator se_allocator(platform, {stream_exec}); TF_ASSERT_OK_AND_ASSIGN(auto stream, stream_exec->CreateStream()); RedzoneAllocator allocator(stream.get(), &se_allocator, opts, (1LL << 32), kRedzoneSize, kRedzonePattern); TF_ASSERT_OK_AND_ASSIGN(DeviceMemory<uint8_t> buf, allocator.AllocateBytes(kAllocSize)); EXPECT_REDZONE_OK(allocator.CheckRedzones()); char* buf_addr = reinterpret_cast<char*>(buf.opaque()); DeviceMemoryBase lhs_redzone(buf_addr - kRedzoneSize, kRedzoneSize); DeviceMemoryBase rhs_redzone(buf_addr + kAllocSize, kRedzoneSize); auto check_redzone = [&](DeviceMemoryBase redzone, absl::string_view name) { std::vector<uint8_t> host_buf(kRedzoneSize); TF_ASSERT_OK(stream->Memcpy(host_buf.data(), redzone, kRedzoneSize)); TF_ASSERT_OK(stream->BlockHostUntilDone()); const int64_t kMaxMismatches = 16; int64_t mismatches = 0; for (int64_t i = 0; i < host_buf.size(); ++i) { if (mismatches == kMaxMismatches) { ADD_FAILURE() << "Hit max number of mismatches; skipping others."; break; } if (host_buf[i] != kRedzonePattern) { ++mismatches; EXPECT_EQ(host_buf[i], kRedzonePattern) << "at index " << i << " of " << name << " redzone"; } } }; check_redzone(lhs_redzone, "lhs"); check_redzone(rhs_redzone, "rhs"); auto modify_redzone = [&](DeviceMemoryBase redzone, int64_t offset, absl::string_view name) { SCOPED_TRACE(absl::StrCat(name, ", offset=", offset)); DeviceMemoryBase redzone_at_offset( reinterpret_cast<char*>(redzone.opaque()) + offset, 1); char old_redzone_value = 0; { EXPECT_REDZONE_OK(allocator.CheckRedzones()); } TF_ASSERT_OK(stream->Memcpy(&old_redzone_value, redzone_at_offset, 1)); TF_ASSERT_OK(stream->MemZero(&redzone_at_offset, 1)); EXPECT_REDZONE_VIOLATION(allocator.CheckRedzones()); EXPECT_REDZONE_OK(allocator.CheckRedzones()); }; modify_redzone(lhs_redzone, 0, "lhs"); modify_redzone(lhs_redzone, kRedzoneSize - 1, "lhs"); modify_redzone(rhs_redzone, 0, "rhs"); modify_redzone(rhs_redzone, kRedzoneSize - 1, "rhs"); } TEST(RedzoneAllocatorTest, VeryLargeRedzone) { constexpr int64_t kRedzoneSize = 65535 * 1024 + 1; Platform* platform = PlatformManager::PlatformWithName(GpuPlatformName()).value(); StreamExecutor* stream_exec = platform->ExecutorForDevice(0).value(); GpuAsmOpts opts; StreamExecutorMemoryAllocator se_allocator(platform, {stream_exec}); TF_ASSERT_OK_AND_ASSIGN(auto stream, stream_exec->CreateStream()); RedzoneAllocator allocator(stream.get(), &se_allocator, opts, (1LL << 32), kRedzoneSize, -1); (void)allocator.AllocateBytes(1); EXPECT_REDZONE_OK(allocator.CheckRedzones()); } } }
1,833
cpp
tensorflow/tensorflow
gpu_cudamallocasync_allocator
third_party/xla/xla/stream_executor/gpu/gpu_cudamallocasync_allocator.cc
third_party/xla/xla/stream_executor/gpu/gpu_cudamallocasync_allocator_test.cc
#ifndef XLA_STREAM_EXECUTOR_GPU_GPU_CUDAMALLOCASYNC_ALLOCATOR_H_ #define XLA_STREAM_EXECUTOR_GPU_GPU_CUDAMALLOCASYNC_ALLOCATOR_H_ #include <atomic> #include <cstddef> #include <memory> #include <optional> #include <string> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tsl/framework/allocator.h" #include "xla/tsl/framework/device_id.h" #include "tsl/platform/mutex.h" #if GOOGLE_CUDA #include "third_party/gpus/cuda/include/cuda.h" #define TF_CUDA_MALLOC_ASYNC_SUPPORTED CUDA_VERSION >= 11020 #endif namespace stream_executor { class GpuCudaMallocAsyncAllocator : public tsl::Allocator { public: explicit GpuCudaMallocAsyncAllocator(tsl::PlatformDeviceId platform_device_id, size_t release_threshold, bool reserve_memory = false, bool compute_stats = true); explicit GpuCudaMallocAsyncAllocator(tsl::PlatformDeviceId platform_device_id, bool create_new_pool, size_t new_pool_size, bool reserve_memory = false, size_t reserve_memory_size = 0, bool sync_mode = false, bool compute_stats = true); ~GpuCudaMallocAsyncAllocator() override; std::string Name() override { return name_; } void* AllocateRaw(size_t alignment, size_t num_bytes) override ABSL_NO_THREAD_SAFETY_ANALYSIS; void DeallocateRaw(void* ptr) override ABSL_NO_THREAD_SAFETY_ANALYSIS; bool TracksAllocationSizes() const override; size_t RequestedSize(const void* ptr) const override; size_t AllocatedSize(const void* ptr) const override; std::optional<tsl::AllocatorStats> GetStats() override; bool ClearStats() override; void SetStreamAndPreallocateMemory(void* stream) override; static int GetInstantiatedCountTestOnly() { return number_instantiated_; } tsl::AllocatorMemoryType GetMemoryType() const override { return tsl::AllocatorMemoryType::kDevice; } private: void PrintAllocatorStatisticsNoLock() ABSL_EXCLUSIVE_LOCKS_REQUIRED(lock_); #if TF_CUDA_MALLOC_ASYNC_SUPPORTED StreamExecutor* stream_exec_; CUstream cuda_stream_; CUmemoryPool pool_; #endif static std::atomic<int> number_instantiated_; std::string name_; bool reserve_memory_; bool create_new_pool_; bool sync_mode_; GpuCudaMallocAsyncAllocator(const GpuCudaMallocAsyncAllocator&) = delete; void operator=(const GpuCudaMallocAsyncAllocator&) = delete; mutable tsl::mutex lock_; std::unique_ptr<tsl::AllocatorStats> stats_ ABSL_PT_GUARDED_BY(lock_); absl::flat_hash_map<const void*, size_t> size_map_ ABSL_GUARDED_BY(lock_); }; } #endif #include "xla/stream_executor/gpu/gpu_cudamallocasync_allocator.h" #include <algorithm> #include <atomic> #include <cstddef> #include <cstdint> #include <cstring> #include <map> #include <memory> #include <optional> #include <string> #include <vector> #ifdef GOOGLE_CUDA #include "third_party/gpus/cuda/include/cuda.h" #include "xla/stream_executor/cuda/cuda_activation.h" #endif #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "xla/stream_executor/gpu/gpu_init.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tsl/framework/allocator.h" #include "xla/tsl/framework/device_id.h" #include "xla/tsl/util/env_var.h" #include "tsl/platform/logging.h" #include "tsl/platform/mutex.h" namespace stream_executor { #if GOOGLE_CUDA static std::string GetCudaErrorMessage(CUresult result) { const char* error; cuGetErrorString(result, &error); const char* name; cuGetErrorName(result, &name); return absl::StrCat("CUDA error: ", error ? error : "<unknown>", " (", name ? name : "Unknown", ")"); } #endif void GpuCudaMallocAsyncAllocator::PrintAllocatorStatisticsNoLock() { std::map<size_t, int> size_map_histogram; std::vector<std::string> ptr_size_string; for (auto p : size_map_) { if (VLOG_IS_ON(8)) { ptr_size_string.push_back( absl::StrCat("(", absl::Hex(p.first), ",", p.second) + ")"); } size_map_histogram[p.second]++; } LOG(ERROR) << "Histogram of current allocation: (allocation_size_in_bytes, " << "nb_allocation_of_that_sizes), ...;"; for (auto p : size_map_histogram) { LOG(ERROR) << p.first << ", " << p.second; } VLOG(8) << "\nThe sorted list of (ptr,size):"; VLOG(8) << absl::StrJoin(ptr_size_string, ","); #if CUDA_VERSION >= 11030 cuuint64_t mem_reserved_current; if (auto result = cuMemPoolGetAttribute( pool_, CU_MEMPOOL_ATTR_RESERVED_MEM_CURRENT, &mem_reserved_current)) { LOG(ERROR) << "Error while fetching extra cudaMallocAsync pool attribute: " << GetCudaErrorMessage(result); } cuuint64_t mem_used_current; if (auto result = cuMemPoolGetAttribute( pool_, CU_MEMPOOL_ATTR_USED_MEM_CURRENT, &mem_used_current)) { LOG(ERROR) << "Error while fetching extra cudaMallocAsync pool attribute: " << GetCudaErrorMessage(result); } cuuint64_t mem_reserved_high; if (auto result = cuMemPoolGetAttribute( pool_, CU_MEMPOOL_ATTR_RESERVED_MEM_HIGH, &mem_reserved_high)) { LOG(ERROR) << "Error while fetching extra cudaMallocAsync pool attribute: " << GetCudaErrorMessage(result); } cuuint64_t mem_used_high; if (auto result = cuMemPoolGetAttribute(pool_, CU_MEMPOOL_ATTR_USED_MEM_HIGH, &mem_used_high)) { LOG(ERROR) << "Error while fetching extra cudaMallocAsync pool attribute: " << GetCudaErrorMessage(result); } LOG(ERROR) << "CU_MEMPOOL_ATTR_RESERVED_MEM_CURRENT: " << mem_reserved_current; LOG(ERROR) << "CU_MEMPOOL_ATTR_USED_MEM_CURRENT: " << mem_used_current; LOG(ERROR) << "CU_MEMPOOL_ATTR_RESERVED_MEM_HIGH: " << mem_reserved_high; LOG(ERROR) << "CU_MEMPOOL_ATTR_USED_MEM_HIGH: " << mem_used_high; #endif } std::atomic<int> GpuCudaMallocAsyncAllocator::number_instantiated_(0); GpuCudaMallocAsyncAllocator::GpuCudaMallocAsyncAllocator( tsl::PlatformDeviceId platform_device_id, bool create_new_pool, size_t new_pool_size, bool reserve_memory, size_t reserve_memory_size, bool sync_mode, bool compute_stats) : name_(absl::StrCat("gpu_async_", platform_device_id.value())), reserve_memory_(reserve_memory), create_new_pool_(create_new_pool), sync_mode_(sync_mode) { ++number_instantiated_; (void)reserve_memory_; #if TF_CUDA_MALLOC_ASYNC_SUPPORTED stream_exec_ = GPUMachineManager() ->ExecutorForDevice(platform_device_id.value()) .value(); pool_ = nullptr; cuda_stream_ = nullptr; int driverVersion; cuDriverGetVersion(&driverVersion); VLOG(2) << "DRIVER VERSION: " << driverVersion; if (driverVersion < 11020) { LOG(FATAL) << "Disable cuda_malloc_async or update your CUDA driver to a version" << " compatible with CUDA 11.2 or higher." << " We detected a version compatible with: " << driverVersion; } if (platform_device_id.value() > 0 && driverVersion < 11030) { CUcontext pctx; if (auto result = cuDevicePrimaryCtxRetain(&pctx, 0)) LOG(FATAL) << "Failed to retain context: " << GetCudaErrorMessage(result); } cuda::ScopedActivateExecutorContext scoped_activation{stream_exec_}; if (auto status2 = cuDriverGetVersion(&driverVersion)) { LOG(FATAL) << "Error while fetching driver version: " << GetCudaErrorMessage(status2); } int cuda_malloc_async_supported; if (auto status = cuDeviceGetAttribute(&cuda_malloc_async_supported, CU_DEVICE_ATTRIBUTE_MEMORY_POOLS_SUPPORTED, platform_device_id.value())) { LOG(FATAL) << "On device: " << platform_device_id.value() << " Current driver: " << driverVersion << ". Failed to get device attribute : " << GetCudaErrorMessage(status); } if (!cuda_malloc_async_supported) LOG(FATAL) << "TF_GPU_ALLOCATOR=cuda_malloc_async isn't currently supported on " << "GPU id " << platform_device_id.value() << ":" << " Possible causes: device not supported (request SM60+), driver too " "old, " << " OS not supported, CUDA version too old(request CUDA11.2+)."; size_t pool_size; if (create_new_pool_) { pool_size = new_pool_size; CUmemPoolProps pool_props; memset(reinterpret_cast<void*>(&pool_props), 0, sizeof(pool_props)); pool_props.allocType = CU_MEM_ALLOCATION_TYPE_PINNED; pool_props.handleTypes = CU_MEM_HANDLE_TYPE_NONE; pool_props.location.id = platform_device_id.value(); pool_props.location.type = CU_MEM_LOCATION_TYPE_DEVICE; #if CUDA_VERSION >= 12030 pool_props.maxSize = new_pool_size; #endif if (auto status = cuMemPoolCreate(&pool_, &pool_props)) LOG(FATAL) << "Failed to create CUDA pool: " << GetCudaErrorMessage(status); } else { pool_size = reserve_memory_size; if (auto status = cuDeviceGetDefaultMemPool(&pool_, platform_device_id.value())) LOG(FATAL) << "Failed to get default CUDA pool: " << GetCudaErrorMessage(status); VLOG(2) << "using default memory pool " << pool_; } VLOG(1) << Name() << " CudaMallocAsync initialized on platform: " << platform_device_id.value() << " with pool size of: " << pool_size << " this ptr: " << this; uint64_t release_threshold_64 = reserve_memory_size; if (auto status = cuMemPoolSetAttribute( pool_, CU_MEMPOOL_ATTR_RELEASE_THRESHOLD, &release_threshold_64)) LOG(FATAL) << "Failed to set CUDA pool attribute: " << GetCudaErrorMessage(status); if (compute_stats) { stats_ = std::make_unique<tsl::AllocatorStats>(); stats_->bytes_limit = static_cast<int64_t>(pool_size); } bool deterministic = false; TF_CHECK_OK(tsl::ReadBoolFromEnvVar("TF_DETERMINISTIC_ALLOCATOR", false, &deterministic)); if (deterministic) { int disable = 0; if (auto status = cuMemPoolSetAttribute( pool_, CU_MEMPOOL_ATTR_REUSE_ALLOW_OPPORTUNISTIC, &disable)) { LOG(FATAL) << "Failed to set CUDA pool attribute: " << GetCudaErrorMessage(status); } if (auto status = cuMemPoolSetAttribute( pool_, CU_MEMPOOL_ATTR_REUSE_ALLOW_INTERNAL_DEPENDENCIES, &disable)) { LOG(FATAL) << "Failed to set CUDA pool attribute: " << GetCudaErrorMessage(status); } } static auto* all_pools_ = new std::vector<CUmemoryPool*>(); static auto* all_ids_ = new std::vector<tsl::PlatformDeviceId>(); if (!create_new_pool_) { DCHECK(all_pools_->size() == all_ids_->size()); for (int i = 0; i < all_pools_->size(); ++i) { CUmemAccessDesc map; map.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE; map.location.id = (*all_ids_)[i].value(); map.location.type = CU_MEM_LOCATION_TYPE_DEVICE; VLOG(2) << "Setting access of the current pool to " << " location id: " << map.location.id; int canAccessPeer; if (auto status = cuDeviceCanAccessPeer( &canAccessPeer, platform_device_id.value(), map.location.id)) { pool_ = nullptr; LOG(FATAL) << "cuDeviceCanAccessPeer failed to know if GPU id " << map.location.id << " can access GPU id " << platform_device_id.value() << ": " << GetCudaErrorMessage(status); } if (canAccessPeer == 1) { if (auto status = cuMemPoolSetAccess(pool_, &map, 1)) { pool_ = nullptr; LOG(FATAL) << "Error when setting access to the pool id: " << i << " location id: " << map.location.id << " error: " << GetCudaErrorMessage(status); } } map.location.id = platform_device_id.value(); VLOG(2) << "Set access to the pool id: " << i << " location id: " << map.location.id; if (auto status = cuDeviceCanAccessPeer(&canAccessPeer, i, platform_device_id.value())) { pool_ = nullptr; LOG(FATAL) << "cuDeviceCanAccessPeer failed: " << GetCudaErrorMessage(status); } if (canAccessPeer == 1) { if (auto status = cuMemPoolSetAccess(*(*all_pools_)[i], &map, 1)) { pool_ = nullptr; LOG(FATAL) << "Error when setting access to the pool id: " << i << " location id: " << map.location.id << " error: " << GetCudaErrorMessage(status); } } } all_pools_->push_back(&pool_); all_ids_->push_back(platform_device_id); } VLOG(2) << Name() << " GpuCudaMallocAsyncAllocator PoolSize " << pool_size; #else LOG(FATAL) << "GpuCudaMallocAsyncAllocator requires CUDA 11.2+"; #endif } GpuCudaMallocAsyncAllocator::GpuCudaMallocAsyncAllocator( tsl::PlatformDeviceId platform_device_id, size_t release_threshold, bool reserve_memory, bool compute_stats) : GpuCudaMallocAsyncAllocator(platform_device_id, false, 0, reserve_memory, release_threshold, false, compute_stats) {} GpuCudaMallocAsyncAllocator::~GpuCudaMallocAsyncAllocator() { #if TF_CUDA_MALLOC_ASYNC_SUPPORTED if (create_new_pool_) { VLOG(2) << "Delete memory pool " << reinterpret_cast<void*>(pool_); if (auto status = cuMemPoolDestroy(pool_)) LOG(FATAL) << "Failed to destroy memory pool:" << GetCudaErrorMessage(status); } #endif } void* GpuCudaMallocAsyncAllocator::AllocateRaw(size_t alignment, size_t num_bytes) { #if TF_CUDA_MALLOC_ASYNC_SUPPORTED CHECK(cuda_stream_ != nullptr) << "A stream must be added to the GpuCudaMallocAsync allocator"; if (pool_ == nullptr) { LOG(FATAL) << "The instantiation of GpuCudaMallocAsyncAllocator failed." << " See previous errors."; } std::unique_lock<tsl::mutex> lock(lock_, std::defer_lock); if (stats_) { lock.lock(); } cuda::ScopedActivateExecutorContext scoped_activation{stream_exec_}; void* ptr = nullptr; auto result = cuMemAllocFromPoolAsync(reinterpret_cast<CUdeviceptr*>(&ptr), num_bytes, pool_, cuda_stream_); if (result == CUDA_ERROR_OUT_OF_MEMORY) { cuStreamSynchronize(cuda_stream_); result = cuMemAllocFromPoolAsync(reinterpret_cast<CUdeviceptr*>(&ptr), num_bytes, pool_, cuda_stream_); } if (result) { size_t free, total; cuMemGetInfo(&free, &total); LOG(ERROR) << Name() << " cuMemAllocAsync failed to allocate " << num_bytes << " bytes: " << GetCudaErrorMessage(result) << "\n Reported by CUDA: Free memory/Total memory: " << free << "/" << total; if (stats_) { LOG(ERROR) << "Stats: " << stats_->DebugString(); PrintAllocatorStatisticsNoLock(); } return nullptr; } if (sync_mode_) { cuStreamSynchronize(cuda_stream_); } if (stats_) { ++(stats_->num_allocs); stats_->bytes_in_use += num_bytes; if (stats_->bytes_in_use > stats_->peak_bytes_in_use) { VLOG(9) << "New Peak memory usage of " << stats_->bytes_in_use << " bytes."; } stats_->peak_bytes_in_use = std::max(stats_->peak_bytes_in_use, stats_->bytes_in_use); stats_->largest_alloc_size = std::max<std::size_t>(stats_->largest_alloc_size, num_bytes); bool ptr_inserted = size_map_.emplace(ptr, num_bytes).second; DCHECK(ptr_inserted); } VLOG(10) << Name() << " Allocated " << num_bytes << " at " << ptr; return ptr; #else return nullptr; #endif } void GpuCudaMallocAsyncAllocator::DeallocateRaw(void* ptr) { #if TF_CUDA_MALLOC_ASYNC_SUPPORTED if (ptr == nullptr) return; std::unique_lock<tsl::mutex> lock(lock_, std::defer_lock); if (stats_) { lock.lock(); } if (auto result = cuMemFreeAsync(reinterpret_cast<const CUdeviceptr&>(ptr), cuda_stream_)) { if (result == CUDA_ERROR_DEINITIALIZED) { VLOG(1) << "Ignoring CUDA error: " << GetCudaErrorMessage(result); } else { size_t free, total; cuda::ScopedActivateExecutorContext scoped_activation{stream_exec_}; cuMemGetInfo(&free, &total); LOG(ERROR) << "cudaFreeAsync failed to free " << ptr << ": " << GetCudaErrorMessage(result) << "\n Free memory/Total memory: " << free << "/" << total; if (stats_) { LOG(ERROR) << "Stats: " << stats_->DebugString(); } } } if (sync_mode_) { cuStreamSynchronize(cuda_stream_); } if (stats_) { DCHECK(size_map_.contains(ptr)); size_t size = size_map_[ptr]; stats_->bytes_in_use -= size; size_map_.erase(ptr); } VLOG(10) << Name() << " Freed ptr: " << ptr; #endif } bool GpuCudaMallocAsyncAllocator::TracksAllocationSizes() const { return static_cast<bool>(stats_); } size_t GpuCudaMallocAsyncAllocator::RequestedSize(const void* ptr) const { if (!stats_ || !ptr) return 0; tsl::mutex_lock l(lock_); return size_map_.at(ptr); } size_t GpuCudaMallocAsyncAllocator::AllocatedSize(const void* ptr) const { if (!stats_ || !ptr) return 0; tsl::mutex_lock l(lock_); return size_map_.at(ptr); } std::optional<tsl::AllocatorStats> GpuCudaMallocAsyncAllocator::GetStats() { if (!stats_) return std::nullopt; tsl::mutex_lock l(lock_); return *stats_; } bool GpuCudaMallocAsyncAllocator::ClearStats() { if (!stats_) return false; tsl::mutex_lock l(lock_); stats_->num_allocs = 0; stats_->peak_bytes_in_use = stats_->bytes_in_use; stats_->largest_alloc_size = 0; return true; } void GpuCudaMallocAsyncAllocator::SetStreamAndPreallocateMemory(void* stream) { #if TF_CUDA_MALLOC_ASYNC_SUPPORTED auto new_cuda_stream = static_cast<CUstream>(stream); if (cuda_stream_ != nullptr && new_cuda_stream != cuda_stream_) { LOG(FATAL) << "Trying to set the stream twice. This isn't supported. "; } uint64_t pool_size_64 = 0; if (auto status = cuMemPoolGetAttribute( pool_, CU_MEMPOOL_ATTR_RELEASE_THRESHOLD, &pool_size_64)) { LOG(FATAL) << "Failed to get CUDA pool attribute: " << GetCudaErrorMessage(status); } cuda_stream_ = new_cuda_stream; int64_t prealloc_size = 0; TF_CHECK_OK(tsl::ReadInt64FromEnvVar( "TF_CUDA_MALLOC_ASYNC_SUPPORTED_PREALLOC", 0, &prealloc_size)); if (prealloc_size == -1) { prealloc_size = pool_size_64; } else if (reserve_memory_) { prealloc_size = pool_size_64; } if (prealloc_size != 0) { void* ptr = AllocateRaw(0, prealloc_size); DeallocateRaw(ptr); VLOG(2) << Name() << " GpuCudaMallocAsyncAllocator reserved the pool for " << prealloc_size << " bytes" << ". First ptr: " << ptr; ClearStats(); } #endif } }
#include "xla/stream_executor/gpu/gpu_cudamallocasync_allocator.h" #include <cstdint> #include <memory> #include <string> #include "absl/log/check.h" #include "absl/strings/ascii.h" #include "xla/service/platform_util.h" #include "xla/stream_executor/gpu/gpu_stream.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tsl/framework/device_id.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #ifdef GOOGLE_CUDA #include "third_party/gpus/cuda/include/cuda.h" #endif namespace se = stream_executor; namespace { static se::StreamExecutor* GpuExecutor() { auto name = absl::AsciiStrToUpper( xla::PlatformUtil::CanonicalPlatformName("gpu").value()); auto* platform = se::PlatformManager::PlatformWithName(name).value(); return platform->ExecutorForDevice(0).value(); } } namespace stream_executor { TEST(GpuCudaMallocAsyncAllocator, AddressAlignedDefaultPool) { #if CUDA_VERSION < 11030 GTEST_SKIP() << "Cuda async memory allocator is not supported for CUDA " "version less than 11030"; #endif se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); auto allocator = GpuCudaMallocAsyncAllocator( tsl::PlatformDeviceId(executor->device_ordinal()), 2048, true, true); allocator.SetStreamAndPreallocateMemory( se::gpu::AsGpuStreamValue(stream.get())); void* addr1 = allocator.AllocateRaw(128, 127); void* addr2 = allocator.AllocateRaw(128, 129); CHECK_EQ((reinterpret_cast<uintptr_t>(addr1) & 127), 0); CHECK_EQ((reinterpret_cast<uintptr_t>(addr2) & 127), 0); allocator.DeallocateRaw(addr1); allocator.DeallocateRaw(addr2); EXPECT_TRUE(stream->ok()); } TEST(GpuCudaMallocAsyncAllocator, AddressAlignedNewPool) { #if CUDA_VERSION < 11030 GTEST_SKIP() << "Cuda async memory allocator is not supported for CUDA " "version less than 11030"; #endif se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); auto allocator = GpuCudaMallocAsyncAllocator( tsl::PlatformDeviceId(executor->device_ordinal()), true, 2048, true, 0, false, true); allocator.SetStreamAndPreallocateMemory( se::gpu::AsGpuStreamValue(stream.get())); void* addr1 = allocator.AllocateRaw(128, 127); void* addr2 = allocator.AllocateRaw(128, 129); CHECK_EQ((reinterpret_cast<uintptr_t>(addr1) & 127), 0); CHECK_EQ((reinterpret_cast<uintptr_t>(addr2) & 127), 0); allocator.DeallocateRaw(addr1); allocator.DeallocateRaw(addr2); EXPECT_TRUE(stream->ok()); } TEST(GpuCudaMallocAsyncAllocator, SyncAddressAlignedNewPool) { #if CUDA_VERSION < 11030 GTEST_SKIP() << "Cuda async memory allocator is not supported for CUDA " "version less than 11030"; #endif se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); auto allocator = GpuCudaMallocAsyncAllocator( tsl::PlatformDeviceId(executor->device_ordinal()), true, 2048, true, 0, true, true); allocator.SetStreamAndPreallocateMemory( se::gpu::AsGpuStreamValue(stream.get())); void* addr1 = allocator.AllocateRaw(128, 127); void* addr2 = allocator.AllocateRaw(128, 129); CHECK_EQ((reinterpret_cast<uintptr_t>(addr1) & 127), 0); CHECK_EQ((reinterpret_cast<uintptr_t>(addr2) & 127), 0); allocator.DeallocateRaw(addr1); allocator.DeallocateRaw(addr2); EXPECT_TRUE(stream->ok()); } }
1,834
cpp
tensorflow/tensorflow
gpu_command_buffer
third_party/xla/xla/stream_executor/gpu/gpu_command_buffer.cc
third_party/xla/xla/stream_executor/gpu/gpu_command_buffer_test.cc
#ifndef XLA_STREAM_EXECUTOR_GPU_GPU_COMMAND_BUFFER_H_ #define XLA_STREAM_EXECUTOR_GPU_GPU_COMMAND_BUFFER_H_ #include <cstddef> #include <cstdint> #include <functional> #include <memory> #include <string_view> #include <type_traits> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/stream_executor/command_buffer.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/gpu/gpu_driver.h" #include "xla/stream_executor/gpu/gpu_executor.h" #include "xla/stream_executor/gpu/gpu_types.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/launch_dim.h" #include "xla/stream_executor/stream_executor.h" namespace stream_executor::gpu { class GpuCommandBuffer : public CommandBuffer { public: struct GpuGraphNodeInfo { GpuGraphNodeHandle handle = nullptr; }; struct GpuGraphBarrierInfo { GpuGraphNodeHandle handle = nullptr; bool is_barrier_node = true; size_t nodes_offset = 0; }; GpuCommandBuffer(Mode mode, GpuExecutor* parent, GpuGraphHandle graph, bool is_owned_graph = true); ~GpuCommandBuffer() override; absl::Status Barrier(ExecutionScopeId execution_scope_id) override; absl::Status Barrier( absl::Span<const ExecutionScopeId> execution_scope_ids) override; absl::Status Barrier(ExecutionScopeId from_execution_scope_id, ExecutionScopeId to_execution_scope_id) override; absl::Status Launch(ExecutionScopeId execution_scope_id, const ThreadDim& threads, const BlockDim& blocks, const Kernel& kernel, const KernelArgs& args) override; absl::Status AddNestedCommandBuffer(ExecutionScopeId execution_scope_id, const CommandBuffer& nested) override; absl::Status MemcpyDeviceToDevice(ExecutionScopeId execution_scope_id, DeviceMemoryBase* dst, const DeviceMemoryBase& src, uint64_t size) override; absl::Status Memset(ExecutionScopeId execution_scope_id, DeviceMemoryBase* dst, BitPattern bit_pattern, size_t num_elements) override; absl::Status If(ExecutionScopeId execution_scope_id, DeviceMemory<bool> predicate, Builder then_builder) override; absl::Status IfElse(ExecutionScopeId execution_scope_id, DeviceMemory<bool> predicate, Builder then_builder, Builder else_builder) override; absl::Status Case(ExecutionScopeId execution_scope_id, DeviceMemory<int32_t> index, std::vector<Builder> branches) override; absl::Status For(ExecutionScopeId execution_scope_id, int32_t num_iteration, DeviceMemory<int32_t> loop_counter, Builder body_builder) override; absl::Status While(ExecutionScopeId execution_scope_id, DeviceMemory<bool> pred, ExecutionScopeBuilder cond_builder, Builder body_builder) override; absl::Status Finalize() override; absl::Status Update() override; GpuGraphExecHandle executable() const { return exec_; } GpuGraphHandle graph() const { return graph_; } Mode mode() const override { return mode_; } State state() const override { return state_; } static GpuCommandBuffer* Cast(CommandBuffer* command_buffer) { return static_cast<GpuCommandBuffer*>(command_buffer); } static const GpuCommandBuffer* Cast(const CommandBuffer* command_buffer) { return static_cast<const GpuCommandBuffer*>(command_buffer); } absl::Span<const GpuGraphNodeInfo> nodes(ExecutionScopeId id) const; absl::Span<const GpuGraphBarrierInfo> barriers(ExecutionScopeId id) const; absl::Span<const GpuGraphNodeInfo> nodes() const { return nodes(kDefaulExecutionScope); } absl::Span<const GpuGraphBarrierInfo> barriers() const { return barriers(kDefaulExecutionScope); } private: absl::Status Trace(Stream* stream, absl::AnyInvocable<absl::Status()> function) override; static int64_t AllocatedExecs(); static int64_t AliveExecs(); private: using Dependencies = absl::InlinedVector<GpuGraphNodeHandle, 1>; using NoOpKernel = TypedKernel<>; using SetIfConditionKernel = TypedKernel<GpuGraphConditionalHandle, DeviceMemory<bool>>; using SetIfElseConditionKernel = TypedKernel<GpuGraphConditionalHandle, GpuGraphConditionalHandle, DeviceMemory<bool>>; using SetCaseConditionKernel = TypedKernel<GpuGraphConditionalHandle, GpuGraphConditionalHandle, GpuGraphConditionalHandle, GpuGraphConditionalHandle, GpuGraphConditionalHandle, GpuGraphConditionalHandle, GpuGraphConditionalHandle, GpuGraphConditionalHandle, DeviceMemory<int32_t>, int32_t>; using SetForConditionKernel = TypedKernel<GpuGraphConditionalHandle, DeviceMemory<int32_t>, int32_t>; using SetWhileConditionKernel = TypedKernel<GpuGraphConditionalHandle, DeviceMemory<bool>>; using SetConditionFn = std::function<absl::Status( ExecutionScopeId, absl::Span<const GpuGraphConditionalHandle>)>; using ConditionBuilder = std::function<absl::Status(CommandBuffer*, GpuGraphConditionalHandle)>; static ConditionBuilder ToConditionBuilder(Builder builder); using ConditionType = typename GpuDriver::GpuGraphConditionalNodeParams::Type; struct ScopedGpuGraphExec { ScopedGpuGraphExec(GpuCommandBuffer* cmd_buffer, GpuGraphExecHandle exec); ~ScopedGpuGraphExec(); GpuCommandBuffer* cmd_buffer; GpuGraphExecHandle restore; bool restore_is_owned; }; struct ConditionalCommandBuffers { std::vector<GpuGraphConditionalHandle> handles; std::vector<std::unique_ptr<GpuCommandBuffer>> command_buffers; }; using AllocationResult = std::pair<GpuDevicePtr, uint64_t>; absl::StatusOr<std::vector<GpuGraphConditionalHandle>> CreateConditionalHandles(size_t num_handles); absl::StatusOr<std::vector<std::unique_ptr<GpuCommandBuffer>>> CreateConditionalCommandBuffers( absl::Span<const GpuGraphConditionalHandle> handles, absl::Span<const GpuGraphHandle> graphs, absl::Span<const ConditionBuilder> builders); absl::Status UpdateConditionalCommandBuffers( absl::Span<const GpuGraphConditionalHandle> handles, absl::Span<const std::unique_ptr<GpuCommandBuffer>> command_buffers, absl::Span<const ConditionBuilder> builders); absl::StatusOr<std::vector<GpuGraphHandle>> CreateConditionalNodes( ExecutionScopeId execution_scope_id, ConditionType type, absl::Span<const GpuGraphConditionalHandle> handles); absl::Status CreateConditionalCommand( ExecutionScopeId execution_scope_id, ConditionType type, SetConditionFn set_condition, absl::Span<const ConditionBuilder> builders); Dependencies GetBarrier(ExecutionScopeId execution_scope_id); absl::StatusOr<SetIfConditionKernel*> GetSetIfConditionKernel(); absl::StatusOr<SetIfElseConditionKernel*> GetSetIfElseConditionKernel(); absl::StatusOr<SetCaseConditionKernel*> GetSetCaseConditionKernel(); absl::StatusOr<SetForConditionKernel*> GetSetForConditionKernel(); absl::StatusOr<SetWhileConditionKernel*> GetSetWhileConditionKernel(); absl::StatusOr<NoOpKernel*> GetNoOpKernel(); absl::Status DisableBarriersExecution(GpuGraphExecHandle exec); absl::Status LaunchWithPackedArgs( ExecutionScopeId execution_scope_id, const ThreadDim& threads, const BlockDim& blocks, const Kernel& kernel, const KernelArgsPackedArrayBase& packed_args); absl::Status CheckNotFinalized(); absl::Status CheckNumCommandBuffers( const ConditionalCommandBuffers& cmd_buffers, size_t num_cmd_buffers); absl::StatusOr<GpuGraphNodeHandle> CreateBarrierNode( const Dependencies& dependencies); Dependencies GetBarrierDependencies(ExecutionScopeId execution_scope_id); static_assert(std::is_pointer_v<GpuGraphHandle>, "GpuGraphHandle must be a pointer"); static_assert(std::is_pointer_v<GpuGraphExecHandle>, "GpuGraphExecHandle must be a pointer"); static_assert(std::is_pointer_v<GpuGraphNodeHandle>, "GpuGraphNodeHandle must be a pointer"); Mode mode_; State state_ = State::kCreate; GpuExecutor* parent_; GpuGraphHandle graph_ = nullptr; bool is_owned_graph_ = true; GpuGraphExecHandle exec_ = nullptr; bool is_owned_graph_exec_ = true; struct ExecutionScope { struct UpdateState { int64_t node_idx = 0; int64_t barrier_idx = 0; int64_t conditional_idx = 0; }; std::vector<GpuGraphNodeInfo> nodes; std::vector<GpuGraphBarrierInfo> barriers; std::vector<ConditionalCommandBuffers> conditional_command_buffers; UpdateState update_state; }; absl::flat_hash_map<ExecutionScopeId, ExecutionScope> execution_scopes_; int64_t num_updates_ = 0; SetIfConditionKernel set_if_condition_kernel_; SetIfElseConditionKernel set_if_else_condition_kernel_; SetCaseConditionKernel set_case_condition_kernel_; SetForConditionKernel set_for_condition_kernel_; SetWhileConditionKernel set_while_condition_kernel_; NoOpKernel noop_kernel_; }; void* GetNoOpKernel(); std::string_view GetSetIfConditionKernel(); std::string_view GetSetIfElseConditionKernel(); std::string_view GetSetCaseConditionKernel(); std::string_view GetSetForConditionKernel(); std::string_view GetSetWhileConditionKernel(); } #endif #include "xla/stream_executor/gpu/gpu_command_buffer.h" #include <array> #include <atomic> #include <cstddef> #include <cstdint> #include <memory> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "xla/stream_executor/command_buffer.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/gpu/gpu_driver.h" #include "xla/stream_executor/gpu/gpu_executor.h" #include "xla/stream_executor/gpu/gpu_kernel.h" #include "xla/stream_executor/gpu/gpu_kernels.h" #include "xla/stream_executor/gpu/gpu_stream.h" #include "xla/stream_executor/gpu/gpu_types.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/kernel_spec.h" #include "xla/stream_executor/launch_dim.h" #include "xla/stream_executor/stream_executor.h" #include "xla/stream_executor/typed_kernel_factory.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/path.h" #include "tsl/platform/statusor.h" namespace stream_executor::gpu { using Mode = CommandBuffer::Mode; using State = CommandBuffer::State; std::string_view to_string(State state) { switch (state) { case State::kCreate: return "create"; case State::kUpdate: return "update"; case State::kFinalized: return "finalized"; } } absl::Status UnsupportedStateError(State state) { return absl::InternalError( absl::StrCat("Unsupported command buffer state: ", to_string(state))); } static std::atomic<int64_t> allocated_execs(0); static std::atomic<int64_t> alive_execs(0); static int64_t NotifyExecCreated() { alive_execs.fetch_add(1, std::memory_order_relaxed); return allocated_execs.fetch_add(1, std::memory_order_relaxed); } static int64_t NotifyExecDestroyed() { DCHECK_GE(alive_execs.load(std::memory_order_relaxed), 1); return alive_execs.fetch_sub(1, std::memory_order_relaxed) - 1; } int64_t GpuCommandBuffer::AllocatedExecs() { return allocated_execs.load(std::memory_order_relaxed); } int64_t GpuCommandBuffer::AliveExecs() { return alive_execs.load(std::memory_order_relaxed); } static std::string_view ModeToString(CommandBuffer::Mode mode) { switch (mode) { case CommandBuffer::Mode::kPrimary: return "primary"; case CommandBuffer::Mode::kNested: return "nested"; } } GpuCommandBuffer::GpuCommandBuffer(Mode mode, GpuExecutor* parent, GpuGraphHandle graph, bool is_owned_graph) : mode_(mode), parent_(parent), graph_(graph), is_owned_graph_(is_owned_graph) { VLOG(5) << "Created command buffer for graph " << graph_ << "; mode=" << ModeToString(mode) << "; is_owned_graph=" << is_owned_graph_; execution_scopes_.try_emplace(kDefaulExecutionScope); } GpuCommandBuffer::~GpuCommandBuffer() { if (exec_ != nullptr && is_owned_graph_exec_) { VLOG(5) << "Destroy GPU command buffer executable graph " << exec_ << " " << "(remaining alive executable graphs: " << NotifyExecDestroyed() << ")"; if (auto status = GpuDriver::DestroyGraphExec(exec_); !status.ok()) { LOG(ERROR) << "Failed to destroy GPU graph exec: " << status.message(); } } if (graph_ != nullptr && is_owned_graph_) { if (auto status = GpuDriver::DestroyGraph(graph_); !status.ok()) { LOG(ERROR) << "Failed to destroy GPU graph: " << status.message(); } } } GpuCommandBuffer::ScopedGpuGraphExec::ScopedGpuGraphExec( GpuCommandBuffer* cmd_buffer, GpuGraphExecHandle exec) : cmd_buffer(cmd_buffer), restore(cmd_buffer->exec_), restore_is_owned(cmd_buffer->is_owned_graph_exec_) { cmd_buffer->exec_ = exec; cmd_buffer->is_owned_graph_exec_ = false; } GpuCommandBuffer::ScopedGpuGraphExec::~ScopedGpuGraphExec() { cmd_buffer->exec_ = restore; cmd_buffer->is_owned_graph_exec_ = restore_is_owned; } static GpuDevicePtr AsDevicePtr(const DeviceMemoryBase& mem) { return reinterpret_cast<GpuDevicePtr>(const_cast<void*>(mem.opaque())); } absl::Status GpuCommandBuffer::Trace( Stream* stream, absl::AnyInvocable<absl::Status()> function) { TF_RETURN_IF_ERROR(CheckNotFinalized()); #if defined(TENSORFLOW_USE_ROCM) TF_ASSIGN_OR_RETURN(size_t count, GpuDriver::GraphGetNodeCount(graph_)); if (count != 0 || !is_owned_graph_) return absl::InternalError( "Stream can't be traced on non empty command buffer"); #endif VLOG(5) << "Trace into GPU command buffer graph " << graph_ << " on a stream: " << stream; auto gpu_stream = AsGpuStreamValue(stream); uint64_t start_nanos = tsl::Env::Default()->NowNanos(); #if !defined(TENSORFLOW_USE_ROCM) TF_RETURN_IF_ERROR(GpuDriver::StreamBeginCaptureToGraph( gpu_stream, graph_, GpuDriver::StreamCaptureMode::kThreadLocal)); #else TF_RETURN_IF_ERROR(GpuDriver::StreamBeginCapture( gpu_stream, GpuDriver::StreamCaptureMode::kThreadLocal)); #endif auto traced = function(); GpuGraphHandle captured_graph; TF_RETURN_IF_ERROR(GpuDriver::StreamEndCapture(gpu_stream, &captured_graph)); #if !defined(TENSORFLOW_USE_ROCM) DCHECK(captured_graph == graph_) << "Stream capture should update graph_"; #else TF_RETURN_IF_ERROR( GpuDriver::DestroyGraph(std::exchange(graph_, captured_graph))); #endif uint64_t end_nanos = tsl::Env::Default()->NowNanos(); if (!traced.ok()) return absl::InternalError( absl::StrCat("Failed to capture gpu graph: ", traced.message())); VLOG(5) << "Traced into the GPU command buffer graph " << graph_ << " (took " << (end_nanos - start_nanos) / 1000 << " μs)"; return absl::OkStatus(); } GpuCommandBuffer::Dependencies GpuCommandBuffer::GetBarrier( ExecutionScopeId execution_scope_id) { ExecutionScope& execution_scope = execution_scopes_[execution_scope_id]; return execution_scope.barriers.empty() ? Dependencies{} : Dependencies{execution_scope.barriers.back().handle}; } absl::StatusOr<GpuCommandBuffer::SetIfConditionKernel*> GpuCommandBuffer::GetSetIfConditionKernel() { if (!set_if_condition_kernel_) { MultiKernelLoaderSpec spec(2); spec.AddCudaPtxInMemory(gpu::GetSetIfConditionKernel(), "set_if_condition"); TF_ASSIGN_OR_RETURN( set_if_condition_kernel_, SetIfConditionKernel::FactoryType::Create(parent_, spec)); } return &set_if_condition_kernel_; } absl::StatusOr<GpuCommandBuffer::SetIfElseConditionKernel*> GpuCommandBuffer::GetSetIfElseConditionKernel() { if (!set_if_else_condition_kernel_) { MultiKernelLoaderSpec spec(3); spec.AddCudaPtxInMemory(gpu::GetSetIfElseConditionKernel(), "set_if_else_condition"); TF_ASSIGN_OR_RETURN( set_if_else_condition_kernel_, SetIfElseConditionKernel::FactoryType::Create(parent_, spec)); } return &set_if_else_condition_kernel_; } absl::StatusOr<GpuCommandBuffer::SetCaseConditionKernel*> GpuCommandBuffer::GetSetCaseConditionKernel() { if (!set_case_condition_kernel_) { MultiKernelLoaderSpec spec(10); spec.AddCudaPtxInMemory(gpu::GetSetCaseConditionKernel(), "set_case_condition"); TF_ASSIGN_OR_RETURN( set_case_condition_kernel_, SetCaseConditionKernel::FactoryType::Create(parent_, spec)); } return &set_case_condition_kernel_; } absl::StatusOr<GpuCommandBuffer::SetForConditionKernel*> GpuCommandBuffer::GetSetForConditionKernel() { if (!set_for_condition_kernel_) { MultiKernelLoaderSpec spec(3); spec.AddCudaPtxInMemory(gpu::GetSetForConditionKernel(), "set_for_condition"); TF_ASSIGN_OR_RETURN( set_for_condition_kernel_, SetForConditionKernel::FactoryType::Create(parent_, spec)); } return &set_for_condition_kernel_; } absl::StatusOr<GpuCommandBuffer::SetWhileConditionKernel*> GpuCommandBuffer::GetSetWhileConditionKernel() { if (!set_while_condition_kernel_) { MultiKernelLoaderSpec spec(2); spec.AddCudaPtxInMemory(gpu::GetSetWhileConditionKernel(), "set_while_condition"); TF_ASSIGN_OR_RETURN( set_while_condition_kernel_, SetWhileConditionKernel::FactoryType::Create(parent_, spec)); } return &set_while_condition_kernel_; } absl::StatusOr<GpuCommandBuffer::NoOpKernel*> GpuCommandBuffer::GetNoOpKernel() { #if !defined(TENSORFLOW_USE_ROCM) if (!noop_kernel_) { MultiKernelLoaderSpec spec(0); spec.AddCudaPtxInMemory(gpu::kNoOpKernel, "noop"); TF_ASSIGN_OR_RETURN(noop_kernel_, NoOpKernel::FactoryType::Create(parent_, spec)); } return &noop_kernel_; #else return absl::UnimplementedError( "GpuCommandBuffer::GetNoOpKernel is not implemented."); #endif } absl::Status GpuCommandBuffer::DisableBarriersExecution( GpuGraphExecHandle exec) { #if !defined(TENSORFLOW_USE_ROCM) ExecutionScope& execution_scope = execution_scopes_[kDefaulExecutionScope]; for (GpuGraphBarrierInfo& barrier : execution_scope.barriers) { if (barrier.is_barrier_node) { TF_RETURN_IF_ERROR( GpuDriver::GraphNodeSetEnabled(exec, barrier.handle, false)); } } for (ConditionalCommandBuffers& cmd_buffers : execution_scope.conditional_command_buffers) { for (auto& cmd_buffer : cmd_buffers.command_buffers) { TF_RETURN_IF_ERROR(cmd_buffer->DisableBarriersExecution(exec)); } } #endif return absl::OkStatus(); } absl::Status GpuCommandBuffer::CheckNotFinalized() { if (state_ == State::kFinalized) return absl::InternalError( "Command can't be added to a command buffer after it was finalized"); return absl::OkStatus(); } absl::Status GpuCommandBuffer::CheckNumCommandBuffers( const ConditionalCommandBuffers& cmd_buffers, size_t num_cmd_buffers) { if (cmd_buffers.handles.size() != num_cmd_buffers) { return absl::InternalError(absl::StrCat( "Expected to have ", num_cmd_buffers, " conditional command buffers, got ", cmd_buffers.handles.size())); } return absl::OkStatus(); } absl::StatusOr<GpuGraphNodeHandle> GpuCommandBuffer::CreateBarrierNode( const Dependencies& dependencies) { GpuGraphNodeHandle barrier_handle = nullptr; #if !defined(TENSORFLOW_USE_ROCM) TF_ASSIGN_OR_RETURN(NoOpKernel * noop, GetNoOpKernel()); TF_RETURN_IF_ERROR(GpuDriver::GraphAddKernelNode( &barrier_handle, graph_, dependencies, "noop", AsGpuKernel(&**noop)->AsGpuFunctionHandle(), 1, 1, 1, 1, 1, 1, 0, nullptr, nullptr)); #else TF_RETURN_IF_ERROR( GpuDriver::GraphAddEmptyNode(&barrier_handle, graph_, dependencies)); #endif return barrier_handle; } GpuCommandBuffer::Dependencies GpuCommandBuffer::GetBarrierDependencies( ExecutionScopeId execution_scope_id) { ExecutionScope& execution_scope = execution_scopes_[execution_scope_id]; auto& barriers = execution_scope.barriers; Dependencies dependencies; for (size_t i = barriers.empty() ? 0 : barriers.back().nodes_offset; i < execution_scope.nodes.size(); ++i) { dependencies.push_back(execution_scope.nodes[i].handle); } return dependencies; } absl::Status GpuCommandBuffer::Barrier(ExecutionScopeId execution_scope_id) { ExecutionScope& execution_scope = execution_scopes_[execution_scope_id]; if (state_ == State::kCreate) { size_t nodes_offset = execution_scope.nodes.size(); Dependencies dependencies = GetBarrierDependencies(execution_scope_id); if (dependencies.empty() && !execution_scope.barriers.empty()) { execution_scope.barriers.push_back({execution_scope.barriers.back()}); return absl::OkStatus(); } if (dependencies.size() == 1) { execution_scope.barriers.push_back( {execution_scope.nodes.back().handle, false, nodes_offset}); return absl::OkStatus(); } TF_ASSIGN_OR_RETURN(auto barrier_handle, CreateBarrierNode(dependencies)); execution_scope.barriers.push_back({barrier_handle, true, nodes_offset}); return absl::OkStatus(); } if (state_ == State::kUpdate) { if (execution_scope.update_state.barrier_idx++ >= execution_scope.barriers.size()) { return absl::InternalError( absl::StrFormat("Execution scope %d barrier index out of range", execution_scope_id.value())); } return absl::OkStatus(); } return UnsupportedStateError(state_); } absl::Status GpuCommandBuffer::Barrier( absl::Span<const ExecutionScopeId> execution_scope_ids) { if (execution_scope_ids.empty()) return absl::OkStatus(); if (execution_scope_ids.size() == 1) { return Barrier(execution_scope_ids[0]); } for (ExecutionScopeId execution_scope_id : execution_scope_ids) { TF_RETURN_IF_ERROR(Barrier(execution_scope_id)); } if (state_ == State::kCreate) { Dependencies dependencies; for (ExecutionScopeId execution_scope_id : execution_scope_ids) { ExecutionScope& execution_scope = execution_scopes_[execution_scope_id]; dependencies.push_back(execution_scope.barriers.back().handle); } TF_ASSIGN_OR_RETURN(auto barrier_handle, CreateBarrierNode(dependencies)); for (ExecutionScopeId execution_scope_id : execution_scope_ids) { ExecutionScope& execution_scope = execution_scopes_[execution_scope_id]; size_t nodes_offset = execution_scope.nodes.size(); execution_scope.barriers.push_back({barrier_handle, true, nodes_offset}); } return absl::OkStatus(); } if (state_ == State::kUpdate) {
#include "xla/stream_executor/gpu/gpu_command_buffer.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <vector> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/strings/ascii.h" #include "xla/service/platform_util.h" #include "xla/stream_executor/command_buffer.h" #include "xla/stream_executor/gpu/gpu_driver.h" #include "xla/stream_executor/gpu/gpu_test_kernels.h" #include "xla/stream_executor/gpu/gpu_types.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/kernel_spec.h" #include "xla/stream_executor/launch_dim.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "xla/stream_executor/trace_command_buffer_factory.h" #include "xla/stream_executor/typed_kernel_factory.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" #if GOOGLE_CUDA #include "third_party/gpus/cuda/include/cuda.h" #endif namespace stream_executor::gpu { using ExecutionScopeId = CommandBuffer::ExecutionScopeId; static Platform* GpuPlatform() { auto name = absl::AsciiStrToUpper( xla::PlatformUtil::CanonicalPlatformName("gpu").value()); return PlatformManager::PlatformWithName(name).value(); } static MultiKernelLoaderSpec GetAddI32KernelSpec() { MultiKernelLoaderSpec spec(3); #if defined(GOOGLE_CUDA) spec.AddCudaPtxInMemory(internal::kAddI32Kernel, "add"); #elif defined(TENSORFLOW_USE_ROCM) spec.AddCudaCubinInMemory(internal::kAddI32KernelModule, "add"); #endif return spec; } using AddI32Kernel = TypedKernelFactory<DeviceMemory<int32_t>, DeviceMemory<int32_t>, DeviceMemory<int32_t>>; using MulI32Kernel = TypedKernelFactory<DeviceMemory<int32_t>, DeviceMemory<int32_t>, DeviceMemory<int32_t>>; using IncAndCmpKernel = TypedKernelFactory<DeviceMemory<int32_t>, DeviceMemory<bool>, int32_t>; using AddI32Ptrs3 = TypedKernelFactory<internal::Ptrs3<int32_t>>; static constexpr auto nested = CommandBuffer::Mode::kNested; static constexpr auto primary = CommandBuffer::Mode::kPrimary; template <typename Info> static std::vector<GpuGraphNodeHandle> Deps(Info info) { if (auto deps = GpuDriver::GraphNodeGetDependencies(info.handle); deps.ok()) { return *deps; } return {GpuGraphNodeHandle(0xDEADBEEF)}; } template <typename... Infos> static std::vector<GpuGraphNodeHandle> ExpectedDeps(Infos... info) { return {info.handle...}; } static bool IsAtLeastCuda12300() { #if defined(TENSORFLOW_USE_ROCM) return false; #endif #if CUDA_VERSION >= 12030 return true; #endif return false; } TEST(GpuCommandBufferTest, LaunchSingleKernel) { Platform* platform = GpuPlatform(); StreamExecutor* executor = platform->ExecutorForDevice(0).value(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); MultiKernelLoaderSpec spec(3); spec.AddInProcessSymbol(internal::GetAddI32Kernel(), "add"); TF_ASSERT_OK_AND_ASSIGN(auto add, AddI32Kernel::Create(executor, spec)); int64_t length = 4; int64_t byte_length = sizeof(int32_t) * length; DeviceMemory<int32_t> a = executor->AllocateArray<int32_t>(length, 0); DeviceMemory<int32_t> b = executor->AllocateArray<int32_t>(length, 0); DeviceMemory<int32_t> c = executor->AllocateArray<int32_t>(length, 0); TF_ASSERT_OK(stream->Memset32(&a, 1, byte_length)); TF_ASSERT_OK(stream->Memset32(&b, 2, byte_length)); TF_ASSERT_OK(stream->MemZero(&c, byte_length)); auto cmd_buffer = executor->CreateCommandBuffer(primary).value(); TF_ASSERT_OK(cmd_buffer->Launch(add, ThreadDim(), BlockDim(4), a, b, c)); TF_ASSERT_OK(cmd_buffer->Finalize()); TF_ASSERT_OK(executor->Submit(stream.get(), *cmd_buffer)); std::vector<int32_t> dst(4, 42); TF_ASSERT_OK(stream->Memcpy(dst.data(), c, byte_length)); std::vector<int32_t> expected = {3, 3, 3, 3}; ASSERT_EQ(dst, expected); DeviceMemory<int32_t> d = executor->AllocateArray<int32_t>(length, 0); TF_ASSERT_OK(stream->MemZero(&d, byte_length)); TF_ASSERT_OK(cmd_buffer->Update()); TF_ASSERT_OK(cmd_buffer->Launch(add, ThreadDim(), BlockDim(4), a, b, d)); TF_ASSERT_OK(cmd_buffer->Finalize()); TF_ASSERT_OK(executor->Submit(stream.get(), *cmd_buffer)); std::fill(dst.begin(), dst.end(), 42); TF_ASSERT_OK(stream->Memcpy(dst.data(), d, byte_length)); ASSERT_EQ(dst, expected); } TEST(CudaCommandBufferTest, TraceSingleKernel) { #if defined(TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Not supported on ROCM"; #endif #if CUDA_VERSION < 12030 GTEST_SKIP() << "Command buffer tracing is not supported"; #endif Platform* platform = GpuPlatform(); StreamExecutor* executor = platform->ExecutorForDevice(0).value(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); MultiKernelLoaderSpec spec(1, [&](const Kernel& kernel, const KernelArgs& args) { auto bufs = Cast<KernelArgsDeviceMemoryArray>(&args)->device_memory_args(); auto cast = [](auto m) { return reinterpret_cast<int32_t*>(m.opaque()); }; return PackKernelArgs(0, internal::Ptrs3<int32_t>{ cast(bufs[0]), cast(bufs[1]), cast(bufs[2]), }); }); spec.AddInProcessSymbol(internal::GetAddI32Ptrs3Kernel(), "add"); TF_ASSERT_OK_AND_ASSIGN(auto add, AddI32Ptrs3::Create(executor, spec)); int64_t length = 4; int64_t byte_length = sizeof(int32_t) * length; DeviceMemory<int32_t> a = executor->AllocateArray<int32_t>(length, 0); DeviceMemory<int32_t> b = executor->AllocateArray<int32_t>(length, 0); DeviceMemory<int32_t> c = executor->AllocateArray<int32_t>(length, 0); TF_ASSERT_OK(stream->Memset32(&a, 1, byte_length)); TF_ASSERT_OK(stream->Memset32(&b, 2, byte_length)); TF_ASSERT_OK(stream->MemZero(&c, byte_length)); KernelArgsDeviceMemoryArray args({a, b, c}, 0); auto cmd_buffer = TraceCommandBufferFactory::Create( executor, [&](Stream* stream) { return stream->Launch(ThreadDim(), BlockDim(4), *add, args); }, primary); TF_ASSERT_OK(cmd_buffer.status()); TF_ASSERT_OK(executor->Submit(stream.get(), **cmd_buffer)); std::vector<int32_t> dst(4, 42); TF_ASSERT_OK(stream->Memcpy(dst.data(), c, byte_length)); std::vector<int32_t> expected = {3, 3, 3, 3}; ASSERT_EQ(dst, expected); } TEST(GpuCommandBufferTest, LaunchNestedCommandBuffer) { Platform* platform = GpuPlatform(); StreamExecutor* executor = platform->ExecutorForDevice(0).value(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); MultiKernelLoaderSpec spec = GetAddI32KernelSpec(); TF_ASSERT_OK_AND_ASSIGN(auto add, AddI32Kernel::Create(executor, spec)); int64_t length = 4; int64_t byte_length = sizeof(int32_t) * length; DeviceMemory<int32_t> a = executor->AllocateArray<int32_t>(length, 0); DeviceMemory<int32_t> b = executor->AllocateArray<int32_t>(length, 0); DeviceMemory<int32_t> c = executor->AllocateArray<int32_t>(length, 0); TF_ASSERT_OK(stream->Memset32(&a, 1, byte_length)); TF_ASSERT_OK(stream->Memset32(&b, 2, byte_length)); TF_ASSERT_OK(stream->MemZero(&c, byte_length)); auto primary_cmd = executor->CreateCommandBuffer(primary).value(); auto nested_cmd = executor->CreateCommandBuffer(nested).value(); TF_ASSERT_OK(nested_cmd->Launch(add, ThreadDim(), BlockDim(4), a, b, c)); TF_ASSERT_OK(primary_cmd->AddNestedCommandBuffer(*nested_cmd)); TF_ASSERT_OK(primary_cmd->Finalize()); TF_ASSERT_OK(executor->Submit(stream.get(), *primary_cmd)); std::vector<int32_t> dst(4, 42); TF_ASSERT_OK(stream->Memcpy(dst.data(), c, byte_length)); std::vector<int32_t> expected = {3, 3, 3, 3}; ASSERT_EQ(dst, expected); DeviceMemory<int32_t> d = executor->AllocateArray<int32_t>(length, 0); TF_ASSERT_OK(stream->MemZero(&d, byte_length)); nested_cmd = executor->CreateCommandBuffer(nested).value(); TF_ASSERT_OK(nested_cmd->Launch(add, ThreadDim(), BlockDim(4), a, b, d)); TF_ASSERT_OK(primary_cmd->Update()); TF_ASSERT_OK(primary_cmd->AddNestedCommandBuffer(*nested_cmd)); TF_ASSERT_OK(primary_cmd->Finalize()); TF_ASSERT_OK(executor->Submit(stream.get(), *primary_cmd)); std::fill(dst.begin(), dst.end(), 42); TF_ASSERT_OK(stream->Memcpy(dst.data(), d, byte_length)); ASSERT_EQ(dst, expected); } TEST(GpuCommandBufferTest, MemcpyDeviceToDevice) { Platform* platform = GpuPlatform(); StreamExecutor* executor = platform->ExecutorForDevice(0).value(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); int64_t length = 4; int64_t byte_length = sizeof(int32_t) * length; DeviceMemory<int32_t> a = executor->AllocateArray<int32_t>(length, 0); DeviceMemory<int32_t> b = executor->AllocateArray<int32_t>(length, 0); TF_ASSERT_OK(stream->Memset32(&a, 42, byte_length)); auto cmd_buffer = executor->CreateCommandBuffer(primary).value(); TF_ASSERT_OK(cmd_buffer->MemcpyDeviceToDevice(&b, a, byte_length)); TF_ASSERT_OK(cmd_buffer->Finalize()); TF_ASSERT_OK(executor->Submit(stream.get(), *cmd_buffer)); std::vector<int32_t> dst(4, 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), a, byte_length)); std::vector<int32_t> expected = {42, 42, 42, 42}; ASSERT_EQ(dst, expected); TF_ASSERT_OK(cmd_buffer->Update()); TF_ASSERT_OK(cmd_buffer->MemcpyDeviceToDevice(&a, b, byte_length)); TF_ASSERT_OK(cmd_buffer->Finalize()); TF_ASSERT_OK(stream->Memset32(&a, 0, byte_length)); TF_ASSERT_OK(executor->Submit(stream.get(), *cmd_buffer)); std::fill(dst.begin(), dst.end(), 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), a, byte_length)); ASSERT_EQ(dst, expected); } TEST(GpuCommandBufferTest, Memset) { Platform* platform = GpuPlatform(); StreamExecutor* executor = platform->ExecutorForDevice(0).value(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); int64_t length = 4; int64_t byte_length = sizeof(int32_t) * length; DeviceMemory<int32_t> a = executor->AllocateArray<int32_t>(length, 0); auto cmd_buffer = executor->CreateCommandBuffer(primary).value(); TF_ASSERT_OK(cmd_buffer->Memset(&a, uint32_t{42}, length)); TF_ASSERT_OK(cmd_buffer->Finalize()); TF_ASSERT_OK(executor->Submit(stream.get(), *cmd_buffer)); std::vector<int32_t> dst(4, 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), a, byte_length)); std::vector<int32_t> expected = {42, 42, 42, 42}; ASSERT_EQ(dst, expected); TF_ASSERT_OK(cmd_buffer->Update()); TF_ASSERT_OK(cmd_buffer->Memset(&a, uint32_t{43}, length)); TF_ASSERT_OK(cmd_buffer->Finalize()); TF_ASSERT_OK(executor->Submit(stream.get(), *cmd_buffer)); std::fill(dst.begin(), dst.end(), 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), a, byte_length)); expected = {43, 43, 43, 43}; ASSERT_EQ(dst, expected); } TEST(GpuCommandBufferTest, Barriers) { Platform* platform = GpuPlatform(); StreamExecutor* executor = platform->ExecutorForDevice(0).value(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); std::vector<DeviceMemory<int32_t>> buffers; for (size_t i = 0; i < 6; ++i) { buffers.push_back(executor->AllocateArray<int32_t>(1, 0)); } auto transfer_buffers = [&]() -> std::vector<int32_t> { std::vector<int32_t> dst(buffers.size(), 0); for (size_t i = 0; i < buffers.size(); ++i) { TF_CHECK_OK(stream->Memcpy(dst.data() + i, buffers[i], sizeof(int32_t))); } return dst; }; auto record = [&](CommandBuffer* cmd_buffer, uint32_t bit_pattern) { TF_RETURN_IF_ERROR(cmd_buffer->Barrier()); TF_RETURN_IF_ERROR(cmd_buffer->Memset(&buffers[0], bit_pattern + 0, 1)); TF_RETURN_IF_ERROR(cmd_buffer->Barrier()); TF_RETURN_IF_ERROR(cmd_buffer->Memset(&buffers[1], bit_pattern + 1, 1)); TF_RETURN_IF_ERROR(cmd_buffer->Barrier()); TF_RETURN_IF_ERROR(cmd_buffer->Barrier()); TF_RETURN_IF_ERROR(cmd_buffer->Memset(&buffers[2], bit_pattern + 2, 1)); TF_RETURN_IF_ERROR(cmd_buffer->Memset(&buffers[3], bit_pattern + 3, 1)); TF_RETURN_IF_ERROR(cmd_buffer->Barrier()); TF_RETURN_IF_ERROR(cmd_buffer->Memset(&buffers[4], bit_pattern + 4, 1)); TF_RETURN_IF_ERROR(cmd_buffer->Memset(&buffers[5], bit_pattern + 5, 1)); TF_RETURN_IF_ERROR(cmd_buffer->Barrier()); return cmd_buffer->Finalize(); }; auto cmd_buffer = executor->CreateCommandBuffer(primary).value(); TF_ASSERT_OK(record(cmd_buffer.get(), 42)); TF_ASSERT_OK(executor->Submit(stream.get(), *cmd_buffer)); std::vector<int32_t> expected = {42, 43, 44, 45, 46, 47}; ASSERT_EQ(transfer_buffers(), expected); GpuCommandBuffer* gpu_cmd_buffer = GpuCommandBuffer::Cast(cmd_buffer.get()); ASSERT_EQ(gpu_cmd_buffer->nodes().size(), 6); ASSERT_EQ(gpu_cmd_buffer->barriers().size(), 6); auto nodes = gpu_cmd_buffer->nodes(); auto barriers = gpu_cmd_buffer->barriers(); EXPECT_TRUE(barriers[0].is_barrier_node); EXPECT_TRUE(Deps(barriers[0]).empty()); EXPECT_FALSE(barriers[1].is_barrier_node); EXPECT_EQ(barriers[1].handle, nodes[0].handle); EXPECT_FALSE(barriers[2].is_barrier_node); EXPECT_FALSE(barriers[3].is_barrier_node); EXPECT_EQ(barriers[2].handle, nodes[1].handle); EXPECT_EQ(barriers[3].handle, nodes[1].handle); EXPECT_TRUE(barriers[4].is_barrier_node); EXPECT_TRUE(barriers[5].is_barrier_node); EXPECT_EQ(Deps(barriers[4]), ExpectedDeps(nodes[2], nodes[3])); EXPECT_EQ(Deps(barriers[5]), ExpectedDeps(nodes[4], nodes[5])); TF_ASSERT_OK(cmd_buffer->Update()); TF_ASSERT_OK(record(cmd_buffer.get(), 43)); TF_ASSERT_OK(executor->Submit(stream.get(), *cmd_buffer)); expected = {43, 44, 45, 46, 47, 48}; ASSERT_EQ(transfer_buffers(), expected); } TEST(GpuCommandBufferTest, IndependentExecutionScopes) { Platform* platform = GpuPlatform(); StreamExecutor* executor = platform->ExecutorForDevice(0).value(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); CommandBuffer::ExecutionScopeId s0 = CommandBuffer::ExecutionScopeId(0); CommandBuffer::ExecutionScopeId s1 = CommandBuffer::ExecutionScopeId(1); std::vector<DeviceMemory<int32_t>> buffers; for (size_t i = 0; i < 4; ++i) { buffers.push_back(executor->AllocateArray<int32_t>(1, 0)); } auto transfer_buffers = [&]() -> std::vector<int32_t> { std::vector<int32_t> dst(buffers.size(), 0); for (size_t i = 0; i < buffers.size(); ++i) { TF_CHECK_OK(stream->Memcpy(dst.data() + i, buffers[i], sizeof(int32_t))); } return dst; }; auto record = [&](CommandBuffer* cmd_buffer, uint32_t bit_pattern) { TF_RETURN_IF_ERROR(cmd_buffer->Memset(s0, &buffers[0], bit_pattern + 0, 1)); TF_RETURN_IF_ERROR(cmd_buffer->Memset(s0, &buffers[1], bit_pattern + 1, 1)); TF_RETURN_IF_ERROR(cmd_buffer->Memset(s1, &buffers[2], bit_pattern + 2, 1)); TF_RETURN_IF_ERROR(cmd_buffer->Memset(s1, &buffers[3], bit_pattern + 3, 1)); TF_RETURN_IF_ERROR(cmd_buffer->Barrier(s0)); TF_RETURN_IF_ERROR(cmd_buffer->Barrier(s1)); return cmd_buffer->Finalize(); }; auto cmd_buffer = executor->CreateCommandBuffer(primary).value(); TF_ASSERT_OK(record(cmd_buffer.get(), 42)); TF_ASSERT_OK(executor->Submit(stream.get(), *cmd_buffer)); std::vector<int32_t> expected = {42, 43, 44, 45}; ASSERT_EQ(transfer_buffers(), expected); GpuCommandBuffer* gpu_cmd_buffer = GpuCommandBuffer::Cast(cmd_buffer.get()); auto nodes0 = gpu_cmd_buffer->nodes(s0); auto nodes1 = gpu_cmd_buffer->nodes(s1); auto barriers0 = gpu_cmd_buffer->barriers(s0); auto barriers1 = gpu_cmd_buffer->barriers(s1); ASSERT_EQ(nodes0.size(), 2); ASSERT_EQ(nodes1.size(), 2); ASSERT_EQ(barriers0.size(), 1); ASSERT_EQ(barriers1.size(), 1); EXPECT_TRUE(barriers0[0].is_barrier_node); EXPECT_TRUE(barriers1[0].is_barrier_node); EXPECT_EQ(Deps(barriers0[0]), ExpectedDeps(nodes0[0], nodes0[1])); EXPECT_EQ(Deps(barriers1[0]), ExpectedDeps(nodes1[0], nodes1[1])); TF_ASSERT_OK(cmd_buffer->Update()); TF_ASSERT_OK(record(cmd_buffer.get(), 43)); TF_ASSERT_OK(executor->Submit(stream.get(), *cmd_buffer)); expected = {43, 44, 45, 46}; ASSERT_EQ(transfer_buffers(), expected); } TEST(GpuCommandBufferTest, ExecutionScopeBarriers) { Platform* platform = GpuPlatform(); StreamExecutor* executor = platform->ExecutorForDevice(0).value(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); CommandBuffer::ExecutionScopeId s0 = CommandBuffer::ExecutionScopeId(0); CommandBuffer::ExecutionScopeId s1 = CommandBuffer::ExecutionScopeId(1); CommandBuffer::ExecutionScopeId s2 = CommandBuffer::ExecutionScopeId(2); std::vector<DeviceMemory<int32_t>> buffers; for (size_t i = 0; i < 7; ++i) { buffers.push_back(executor->AllocateArray<int32_t>(1, 0)); } auto transfer_buffers = [&]() -> std::vector<int32_t> { std::vector<int32_t> dst(buffers.size(), 0); for (size_t i = 0; i < buffers.size(); ++i) { TF_CHECK_OK(stream->Memcpy(dst.data() + i, buffers[i], sizeof(int32_t))); } return dst; }; auto record = [&](CommandBuffer* cmd_buffer, uint32_t bit_pattern) { TF_RETURN_IF_ERROR(cmd_buffer->Memset(s0, &buffers[0], bit_pattern + 0, 1)); TF_RETURN_IF_ERROR(cmd_buffer->Memset(s0, &buffers[1], bit_pattern + 1, 1)); TF_RETURN_IF_ERROR(cmd_buffer->Memset(s1, &buffers[2], bit_pattern + 2, 1)); TF_RETURN_IF_ERROR(cmd_buffer->Memset(s1, &buffers[3], bit_pattern + 3, 1)); TF_RETURN_IF_ERROR(cmd_buffer->Barrier({s0, s1, s2})); TF_RETURN_IF_ERROR(cmd_buffer->Memset(s0, &buffers[4], bit_pattern + 4, 1)); TF_RETURN_IF_ERROR(cmd_buffer->Memset(s1, &buffers[5], bit_pattern + 5, 1)); TF_RETURN_IF_ERROR(cmd_buffer->Memset(s2, &buffers[6], bit_pattern + 6, 1)); return cmd_buffer->Finalize(); }; auto cmd_buffer = executor->CreateCommandBuffer(primary).value(); TF_ASSERT_OK(record(cmd_buffer.get(), 42)); TF_ASSERT_OK(executor->Submit(stream.get(), *cmd_buffer)); std::vector<int32_t> expected = {42, 43, 44, 45, 46, 47, 48}; ASSERT_EQ(transfer_buffers(), expected); GpuCommandBuffer* gpu_cmd_buffer = GpuCommandBuffer::Cast(cmd_buffer.get()); auto nodes0 = gpu_cmd_buffer->nodes(s0); auto nodes1 = gpu_cmd_buffer->nodes(s1); auto nodes2 = gpu_cmd_buffer->nodes(s2); auto barriers0 = gpu_cmd_buffer->barriers(s0); auto barriers1 = gpu_cmd_buffer->barriers(s1); auto barriers2 = gpu_cmd_buffer->barriers(s2); ASSERT_EQ(nodes0.size(), 3); ASSERT_EQ(nodes1.size(), 3); ASSERT_EQ(nodes2.size(), 1); ASSERT_EQ(barriers0.size(), 2); ASSERT_EQ(barriers1.size(), 2); ASSERT_EQ(barriers2.size(), 2); EXPECT_TRUE(barriers0[0].is_barrier_node && barriers0[1].is_barrier_node); EXPECT_TRUE(barriers1[0].is_barrier_node && barriers1[1].is_barrier_node); EXPECT_TRUE(barriers2[0].is_barrier_node && barriers2[1].is_barrier_node); EXPECT_TRUE(barriers0[1].handle == barriers1[1].handle); EXPECT_TRUE(barriers1[1].handle == barriers2[1].handle); EXPECT_EQ(Deps(barriers0[0]), ExpectedDeps(nodes0[0], nodes0[1])); EXPECT_EQ(Deps(barriers1[0]), ExpectedDeps(nodes1[0], nodes1[1])); EXPECT_TRUE(Deps(barriers2[0]).empty()); EXPECT_EQ(Deps(barriers2[1]), ExpectedDeps(barriers0[0], barriers1[0], barriers2[0])); EXPECT_EQ(Deps(nodes0[2]), ExpectedDeps(barriers0[1])); EXPECT_EQ(Deps(nodes1[2]), ExpectedDeps(barriers1[1])); EXPECT_EQ(Deps(nodes2[0]), ExpectedDeps(barriers2[1])); TF_ASSERT_OK(cmd_buffer->Update()); TF_ASSERT_OK(record(cmd_buffer.get(), 43)); TF_ASSERT_OK(executor->Submit(stream.get(), *cmd_buffer)); expected = {43, 44, 45, 46, 47, 48, 49}; ASSERT_EQ(transfer_buffers(), expected); } TEST(GpuCommandBufferTest, ExecutionScopeOneDirectionalBarriers) { Platform* platform = GpuPlatform(); StreamExecutor* executor = platform->ExecutorForDevice(0).value(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); CommandBuffer::ExecutionScopeId s0 = CommandBuffer::ExecutionScopeId(0); CommandBuffer::ExecutionScopeId s1 = CommandBuffer::ExecutionScopeId(1); std::vector<DeviceMemory<int32_t>> buffers; for (size_t i = 0; i < 6; ++i) { buffers.push_back(executor->AllocateArray<int32_t>(1, 0)); } auto transfer_buffers = [&]() -> std::vector<int32_t> { std::vector<int32_t> dst(buffers.size(), 0); for (size_t i = 0; i < buffers.size(); ++i) { TF_CHECK_OK(stream->Memcpy(dst.data() + i, buffers[i], sizeof(int32_t))); } return dst; }; auto record = [&](CommandBuffer* cmd_buffer, uint32_t bit_pattern) { TF_RETURN_IF_ERROR(cmd_buffer->Memset(s0, &buffers[0], bit_pattern + 0, 1)); TF_RETURN_IF_ERROR(cmd_buffer->Memset(s0, &buffers[1], bit_pattern + 1, 1)); TF_RETURN_IF_ERROR(cmd_buffer->Memset(s1, &buffers[2], bit_pattern + 2, 1)); TF_RETURN_IF_ERROR(cmd_buffer->Memset(s1, &buffers[3], bit_pattern + 3, 1)); TF_RETURN_IF_ERROR(cmd_buffer->Barrier(s0, s1)); TF_RETURN_IF_ERROR(cmd_buffer->Memset(s0, &buffers[4], bit_pattern + 4, 1)); TF_RETURN_IF_ERROR(cmd_buffer->Memset(s1, &buffers[5], bit_pattern + 5, 1)); return cmd_buffer->Finalize(); }; auto cmd_buffer = executor->CreateCommandBuffer(primary).value(); TF_ASSERT_OK(record(cmd_buffer.get(), 42)); TF_ASSERT_OK(executor->Submit(stream.get(), *cmd_buffer)); std::vector<int32_t> expected = {42, 43, 44, 45, 46, 47}; ASSERT_EQ(transfer_buffers(), expected); GpuCommandBuffer* gpu_cmd_buffer = GpuCommandBuffer::Cast(cmd_buffer.get()); auto nodes0 = gpu_cmd_buffer->nodes(s0); auto nodes1 = gpu_cmd_buffer->nodes(s1); auto barriers0 = gpu_cmd_buffer->barriers(s0); auto barriers1 = gpu_cmd_buffer->barriers(s1); ASSERT_EQ(nodes0.size(), 3); ASSERT_EQ(nodes1.size(), 3); ASSERT_EQ(barriers0.size(), 1); ASSERT_EQ(barriers1.size(), 2); EXPECT_TRUE(barriers0[0].is_barrier_node); EXPECT_TRUE(barriers1[0].is_barrier_node && barriers1[1].is_barrier_node); EXPECT_EQ(Deps(barriers0[0]), ExpectedDeps(nodes0[0], nodes0[1])); EXPECT_EQ(Deps(barriers1[0]), ExpectedDeps(nodes1[0], nodes1[1])); EXPECT_EQ(Deps(barriers1[1]), ExpectedDeps(barriers0[0], barriers1[0])); EXPECT_EQ(Deps(nodes0[2]), ExpectedDeps(barriers0[0])); EXPECT_EQ(Deps(nodes1[2]), ExpectedDeps(barriers1[1])); TF_ASSERT_OK(cmd_buffer->Update()); TF_ASSERT_OK(record(cmd_buffer.get(), 43)); TF_ASSERT_OK(executor->Submit(stream.get(), *cmd_buffer)); expected = {43, 44, 45, 46, 47, 48}; ASSERT_EQ(transfer_buffers(), expected); } TEST(GpuCommandBufferTest, ConditionalIf) { if (!IsAtLeastCuda12300()) { GTEST_SKIP() << "CUDA graph conditionals are not supported"; } Platform* platform = GpuPlatform(); StreamExecutor* executor = platform->ExecutorForDevice(0).value(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); MultiKernelLoaderSpec spec(3); spec.AddInProcessSymbol(internal::GetAddI32Kernel(), "add"); TF_ASSERT_OK_AND_ASSIGN(auto add, AddI32Kernel::Create(executor, spec)); int64_t length = 4; int64_t byte_length = sizeof(int32_t) * length; DeviceMemory<bool> pred = executor->AllocateArray<bool>(1, 0); DeviceMemory<int32_t> a = executor->AllocateArray<int32_t>(length, 0); DeviceMemory<int32_t> b = executor->AllocateArray<int32_t>(length, 0); DeviceMemory<int32_t> c = executor->AllocateArray<int32_t>(length, 0); constexpr bool kTrue = true; TF_ASSERT_OK(stream->Memcpy(&pred, &kTrue, 1)); TF_ASSERT_OK(stream->Memset32(&a, 1, byte_length)); TF_ASSERT_OK(stream->Memset32(&b, 2, byte_length)); TF_ASSERT_OK(stream->MemZero(&c, byte_length)); CommandBuffer::Builder then_builder = [&](CommandBuffer* then_cmd) { return then_cmd->Launch(add, ThreadDim(), BlockDim(4), a, b, c); }; auto cmd_buffer = executor->CreateCommandBuffer(primary).value(); TF_ASSERT_OK(cmd_buffer->If(pred, then_builder)); TF_ASSERT_OK(cmd_buffer->Finalize()); TF_ASSERT_OK(executor->Submit(stream.get(), *cmd_buffer)); std::vector<int32_t> dst(4, 42); TF_ASSERT_OK(stream->Memcpy(dst.data(), c, byte_length)); std::vector<int32_t> expected = {3, 3, 3, 3}; ASSERT_EQ(dst, expected); constexpr bool kFalse = false; TF_ASSERT_OK(stream->Memcpy(&pred, &kFalse, 1)); TF_ASSERT_OK(stream->MemZero(&c, byte_length)); TF_ASSERT_OK(executor->Submit(stream.get(), *cmd_buffer)); TF_ASSERT_OK(stream->Memcpy(dst.data(), c, byte_length)); std::vector<int32_t> zeroes = {0, 0, 0, 0}; ASSERT_EQ(dst, zeroes); DeviceMemory<int32_t> d = executor->AllocateArray<int32_t>(length, 0); TF_ASSERT_OK(stream->MemZero(&d, byte_length)); TF_ASSERT_OK(stream->Memcpy(&pred, &kTrue, 1)); then_builder = [&](CommandBuffer* then_cmd) { return then_cmd->Launch(add, ThreadDim(), BlockDim(4), a, b, d); }; TF_ASSERT_OK(cmd_buffer->Update()); TF_ASSERT_OK(cmd_buffer->If(pred, then_builder)); TF_ASSERT_OK(cmd_buffer->Finalize()); TF_ASSERT_OK(executor->Submit(stream.get(), *cmd_buffer)); std::fill(dst.begin(), dst.end(), 42); TF_ASSERT_OK(stream->Memcpy(dst.data(), d, byte_length)); ASSERT_EQ(dst, expected); } TEST(GpuCommandBufferTest, ConditionalIfElse) { if (!IsAtLeastCuda12300()) { GTEST_SKIP() << "CUDA graph conditionals are not supported"; } Platform* platform = GpuPlatform(); StreamExecutor* executor = platform->ExecutorForDevice(0).value(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); MultiKernelLoaderSpec add_spec(3); add_spec.AddInProcessSymbol(internal::GetAddI32Kernel(), "add"); TF_ASSERT_OK_AND_ASSIGN(auto add, AddI32Kernel::Create(executor, add_spec)); MultiKernelLoaderSpec mul_spec(3); mul_spec.AddInProcessSymbol(internal::GetMulI32Kernel(), "mul"); TF_ASSERT_OK_AND_ASSIGN(auto mul, MulI32Kernel::Create(executor, mul_spec)); int64_t length = 4; int64_t byte_length = sizeof(int32_t) * length; DeviceMemory<bool> pred = executor->AllocateArray<bool>(1, 0); DeviceMemory<int32_t> a = executor->AllocateArray<int32_t>(length, 0); DeviceMemory<int32_t> b = executor->AllocateArray<int32_t>(length, 0); DeviceMemory<int32_t> c = executor->AllocateArray<int32_t>(length, 0); constexpr bool kTrue = true; TF_ASSERT_OK(stream->Memcpy(&pred, &kTrue, 1)); TF_ASSERT_OK(stream->Memset32(&a, 2, byte_length)); TF_ASSERT_OK(stream->Memset32(&b, 3, byte_length)); TF_ASSERT_OK(stream->MemZero(&c, byte_length)); CommandBuffer::Builder then_builder = [&](CommandBuffer* then_cmd) { return then_cmd->Launch(add, ThreadDim(), BlockDim(4), a, b, c); }; CommandBuffer::Builder else_builder = [&](CommandBuffer* else_cmd) { return else_cmd->Launch(mul, ThreadDim(), BlockDim(4), a, b, c); }; auto cmd_buffer = executor->CreateCommandBuffer(primary).value(); TF_ASSERT_OK(cmd_buffer->IfElse(pred, then_builder, else_builder)); TF_ASSERT_OK(cmd_buffer->Finalize()); TF_ASSERT_OK(executor->Submit(stream.get(), *cmd_buffer)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::vector<int32_t> dst(4, 42); TF_ASSERT_OK(stream->Memcpy(dst.data(), c, byte_length)); std::vector<int32_t> expected_add = {5, 5, 5, 5}; ASSERT_EQ(dst, expected_add); constexpr bool kFalse = false; TF_ASSERT_OK(stream->Memcpy(&pred, &kFalse, 1)); TF_ASSERT_OK(executor->Submit(stream.get(), *cmd_buffer)); TF_ASSERT_OK(stream->BlockHostUntilDone()); TF_ASSERT_OK(stream->Memcpy(dst.data(), c, byte_length)); std::vector<int32_t> expected_mul = {6, 6, 6, 6}; ASSERT_EQ(dst, expected_mul); DeviceMemory<int32_t> d = executor->All
1,835
cpp
tensorflow/tensorflow
scatter_expander
third_party/xla/xla/service/gpu/transforms/scatter_expander.cc
third_party/xla/xla/service/scatter_expander_test.cc
#ifndef XLA_SERVICE_SCATTER_EXPANDER_H_ #define XLA_SERVICE_SCATTER_EXPANDER_H_ #include "xla/service/op_expander_pass.h" namespace xla { class ScatterExpander : public OpExpanderPass { public: enum Mode { kEliminateAllScatters, kEliminateSimpleScatters, kEliminateIndeterministicScatters, }; explicit ScatterExpander(Mode m) : mode_(m) {} absl::string_view name() const override { return "scatter_expander"; } protected: bool InstructionMatchesPattern(HloInstruction* inst) override; absl::StatusOr<HloInstruction*> ExpandInstruction( HloInstruction* inst) override; private: Mode mode_; }; } #endif #include "xla/service/scatter_expander.h" #include "absl/algorithm/container.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal_util.h" #include "xla/service/call_inliner.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/while_util.h" namespace xla { static absl::StatusOr<HloInstruction*> TransposeIndexVectorDimToLast( HloInstruction* scatter_indices, int64_t index_vector_dim) { const Shape& scatter_indices_shape = scatter_indices->shape(); if (scatter_indices_shape.dimensions_size() == index_vector_dim) { return scatter_indices; } if (index_vector_dim == (scatter_indices_shape.dimensions_size() - 1)) { return scatter_indices; } std::vector<int64_t> permutation; permutation.reserve(scatter_indices_shape.dimensions_size()); for (int64_t i = 0, e = scatter_indices_shape.dimensions_size(); i < e; i++) { if (i != index_vector_dim) { permutation.push_back(i); } } permutation.push_back(index_vector_dim); return MakeTransposeHlo(scatter_indices, permutation); } static absl::StatusOr<HloInstruction*> CanonicalizeScatterIndices( HloInstruction* scatter_indices, int64_t index_vector_dim) { TF_ASSIGN_OR_RETURN( HloInstruction * transposed_scatter_indices, TransposeIndexVectorDimToLast(scatter_indices, index_vector_dim)); if (scatter_indices->shape().rank() == index_vector_dim + 1 && scatter_indices->shape().dimensions(index_vector_dim) == 1) { auto new_shape = ShapeUtil::DeleteDimension(index_vector_dim, scatter_indices->shape()); TF_ASSIGN_OR_RETURN(scatter_indices, MakeReshapeHlo(new_shape, scatter_indices)); } bool indices_are_scalar = index_vector_dim == scatter_indices->shape().dimensions_size(); const int64_t index_dims_in_scatter_indices = indices_are_scalar ? 0 : 1; const Shape& shape = transposed_scatter_indices->shape(); if (shape.dimensions_size() == index_dims_in_scatter_indices) { return PrependDegenerateDims(transposed_scatter_indices, 1); } else { return CollapseFirstNDims( transposed_scatter_indices, shape.dimensions_size() - index_dims_in_scatter_indices); } } static absl::StatusOr<HloInstruction*> PermuteScatterAndWindowDims( HloInstruction* updates, absl::Span<const int64_t> update_window_dims) { std::vector<int64_t> permutation; const int64_t updates_rank = updates->shape().rank(); permutation.reserve(updates_rank); for (int64_t i = 0; i < updates_rank; ++i) { bool is_scatter_dim = !absl::c_binary_search(update_window_dims, i); if (is_scatter_dim) { permutation.push_back(i); } } for (auto window_dim : update_window_dims) { permutation.push_back(window_dim); } return MakeTransposeHlo(updates, permutation); } static absl::StatusOr<HloInstruction*> AdjustScatterDims( const Shape& scatter_indices_shape, HloInstruction* updates, int64_t index_vector_dim) { int64_t num_scatter_dims = scatter_indices_shape.dimensions_size(); if (index_vector_dim < scatter_indices_shape.dimensions_size()) { --num_scatter_dims; } if (num_scatter_dims == 0) { return PrependDegenerateDims(updates, 1); } return CollapseFirstNDims(updates, num_scatter_dims); } static absl::StatusOr<HloInstruction*> ExpandIndexVectorIntoOperandSpace( HloInstruction* index_vector, const ScatterDimensionNumbers& dim_numbers, int64_t operand_rank) { HloComputation* computation = index_vector->parent(); const Shape& index_shape = index_vector->shape(); if (operand_rank == 0) { return computation->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateFromDimensions(index_shape.element_type(), {0}))); } HloInstruction* zero = computation->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateFromDimensions(index_shape.element_type(), {1}))); std::vector<HloInstruction*> expanded_index_components; for (int i = 0; i < operand_rank; i++) { int64_t index_vector_dim_index = FindIndex(dim_numbers.scatter_dims_to_operand_dims(), i); if (index_vector_dim_index != dim_numbers.scatter_dims_to_operand_dims_size()) { TF_ASSIGN_OR_RETURN( HloInstruction * component_to_concat, MakeSliceHlo(index_vector, {index_vector_dim_index}, {index_vector_dim_index + 1}, {1})); expanded_index_components.push_back(component_to_concat); } else { expanded_index_components.push_back(zero); } } return MakeConcatHlo(expanded_index_components, 0); } static absl::StatusOr<HloInstruction*> CheckIndexValidity( HloComputation* computation, HloInstruction* index, absl::Span<const int64_t> operand_dims, absl::Span<const int64_t> window_sizes, HloModule* module) { DCHECK_NE(nullptr, module); DCHECK_EQ(operand_dims.size(), window_sizes.size()); HloInstruction* zero_index = BroadcastZeros( computation, index->shape().element_type(), index->shape().dimensions()); TF_ASSIGN_OR_RETURN( HloInstruction * negative_index_check, MakeCompareHlo(ComparisonDirection::kLe, zero_index, index)); std::vector<int64_t> max_valid_index(operand_dims.size()); for (int i = 0; i < operand_dims.size(); ++i) { max_valid_index[i] = operand_dims[i] - window_sizes[i]; } TF_ASSIGN_OR_RETURN( HloInstruction * max_valid_index_constant, MakeR1ConstantHlo<int64_t>(computation, index->shape().element_type(), max_valid_index)); TF_ASSIGN_OR_RETURN(HloInstruction * oob_index_check, MakeCompareHlo(ComparisonDirection::kGe, max_valid_index_constant, index)); TF_ASSIGN_OR_RETURN( HloInstruction * valid_index, MakeBinaryHlo(HloOpcode::kAnd, negative_index_check, oob_index_check)); auto reduction_init = computation->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(true))); TF_ASSIGN_OR_RETURN( HloInstruction * valid_index_reduced, MakeReduceHlo(valid_index, reduction_init, HloOpcode::kAnd, module)); return MakeBroadcastHlo(valid_index_reduced, {}, window_sizes); } static absl::StatusOr<HloComputation*> CallAndGetOutput( HloComputation* original, int output_index) { HloInstruction* original_root = original->root_instruction(); if (!original_root->shape().IsTuple()) { return original; } HloComputation* new_comp = [&] { HloComputation::Builder builder( absl::StrCat(original->name(), ".dup.", output_index)); for (int i = 0, n = original->num_parameters(); i < n; ++i) { HloInstruction* original_param = original->parameter_instruction(i); builder.AddInstruction(HloInstruction::CreateParameter( i, original_param->shape(), original_param->name())); } return original->parent()->AddEmbeddedComputation(builder.Build()); }(); HloInstruction* call_original = new_comp->AddInstruction( HloInstruction::CreateCall(original_root->shape(), new_comp->parameter_instructions(), original)); new_comp->set_root_instruction( new_comp->AddInstruction( HloInstruction::CreateGetTupleElement(call_original, output_index)), true); TF_RETURN_IF_ERROR(CallInliner::Inline(call_original).status()); return new_comp; } static absl::StatusOr<std::vector<HloInstruction*>> ScatterLoopBody( HloScatterInstruction* scatter, HloInstruction* induction_var, absl::Span<HloInstruction* const> loop_state) { const ScatterDimensionNumbers& dim_numbers = scatter->scatter_dimension_numbers(); CHECK_EQ(loop_state.size(), scatter->operand_count()); auto operands = loop_state.first(scatter->scatter_operand_count()); HloInstruction* scatter_indices = loop_state[operands.size()]; auto updates = loop_state.last(operands.size()); bool has_scalar_indices = scatter_indices->shape().dimensions_size() == 1; HloInstruction* induction_var_as_vector = MakeBroadcastHlo(induction_var, {}, {1}); HloInstruction* index_vector; if (has_scalar_indices) { TF_ASSIGN_OR_RETURN( index_vector, MakeDynamicSliceHlo(scatter_indices, induction_var_as_vector, {1})); } else { TF_ASSIGN_OR_RETURN( HloInstruction * index_into_scatter_indices, PadVectorWithZeros(induction_var_as_vector, 0, 1)); int index_vector_size = scatter_indices->shape().dimensions(1); TF_ASSIGN_OR_RETURN( HloInstruction * index_vector_2d, MakeDynamicSliceHlo(scatter_indices, index_into_scatter_indices, {1, index_vector_size})); TF_ASSIGN_OR_RETURN(index_vector, ElideDegenerateDims(index_vector_2d, {0})); } TF_ASSIGN_OR_RETURN( HloInstruction * scatter_slice_start, ExpandIndexVectorIntoOperandSpace( index_vector, dim_numbers, operands[0]->shape().dimensions_size())); TF_ASSIGN_OR_RETURN( HloInstruction * index_into_updates, PadVectorWithZeros( induction_var_as_vector, 0, updates[0]->shape().dimensions_size() - 1)); std::vector<int64_t> update_slice_bounds( updates[0]->shape().dimensions().begin(), updates[0]->shape().dimensions().end()); update_slice_bounds[0] = 1; absl::InlinedVector<HloInstruction*, 2> map_operands( operands.size() + updates.size(), nullptr); auto operand_slices_to_update = absl::MakeSpan(map_operands).first(operands.size()); auto update_slices_with_dims_inserted = absl::MakeSpan(map_operands).last(updates.size()); absl::Span<const int64_t> actual_update_slice_dims; for (int i = 0, n = operands.size(); i < n; ++i) { HloInstruction* update = updates[i]; TF_ASSIGN_OR_RETURN( HloInstruction * update_slice, MakeDynamicSliceHlo(update, index_into_updates, update_slice_bounds)); TF_ASSIGN_OR_RETURN(HloInstruction * update_slice_for_scatter, ElideDegenerateDims(update_slice, {0})); TF_ASSIGN_OR_RETURN( HloInstruction * update_slice_with_dims_inserted, InsertDegenerateDims(update_slice_for_scatter, dim_numbers.inserted_window_dims())); update_slices_with_dims_inserted[i] = update_slice_with_dims_inserted; HloInstruction* operand = operands[i]; const Shape& update_slice_shape = update_slice_with_dims_inserted->shape(); TF_ASSIGN_OR_RETURN(HloInstruction * operand_slice_to_update, MakeDynamicSliceHlo(operand, scatter_slice_start, update_slice_shape.dimensions())); operand_slices_to_update[i] = operand_slice_to_update; if (i == 0) { actual_update_slice_dims = update_slice_shape.dimensions(); } else { TF_RET_CHECK(actual_update_slice_dims == update_slice_shape.dimensions()); } } TF_ASSIGN_OR_RETURN( HloInstruction * is_index_valid, CheckIndexValidity(operands[0]->parent(), scatter_slice_start, operands[0]->shape().dimensions(), actual_update_slice_dims, scatter->GetModule())); std::vector<HloInstruction*> updated_loop_state; updated_loop_state.reserve(loop_state.size()); for (int i = 0, n = operands.size(); i < n; ++i) { TF_ASSIGN_OR_RETURN(HloComputation * to_apply, CallAndGetOutput(scatter->to_apply(), i)); TF_ASSIGN_OR_RETURN(HloInstruction * updated_operand_slice, MakeMapHlo(map_operands, to_apply)); TF_ASSIGN_OR_RETURN(HloInstruction * updates_to_apply, MakeSelectHlo(is_index_valid, updated_operand_slice, operand_slices_to_update[i])); TF_ASSIGN_OR_RETURN(HloInstruction * updated_operand, MakeDynamicUpdateSliceHlo(operands[i], updates_to_apply, scatter_slice_start)); updated_loop_state.push_back(updated_operand); } updated_loop_state.push_back(scatter_indices); absl::c_copy(updates, std::back_inserter(updated_loop_state)); return updated_loop_state; } static int64_t ScatterTripCount(const HloScatterInstruction* scatter) { const HloInstruction* scatter_indices = scatter->scatter_indices(); const Shape& scatter_indices_shape = scatter_indices->shape(); const ScatterDimensionNumbers& dim_numbers = scatter->scatter_dimension_numbers(); int64_t scatter_loop_trip_count = 1; for (int64_t i = 0, e = scatter_indices_shape.dimensions_size(); i < e; i++) { if (i != dim_numbers.index_vector_dim()) { scatter_loop_trip_count *= scatter_indices_shape.dimensions(i); } } return scatter_loop_trip_count; } absl::StatusOr<HloInstruction*> ScatterExpander::ExpandInstruction( HloInstruction* inst) { auto* scatter = Cast<HloScatterInstruction>(inst); auto scatter_operands = scatter->scatter_operands(); HloInstruction* scatter_indices = scatter->scatter_indices(); auto scatter_updates = scatter->scatter_updates(); const ScatterDimensionNumbers& dim_numbers = scatter->scatter_dimension_numbers(); if (ShapeUtil::IsZeroElementArray(scatter_updates[0]->shape())) { if (scatter_operands.size() == 1) { return scatter_operands[0]; } return scatter->parent()->AddInstruction( HloInstruction::CreateTuple(scatter_operands)); } int64_t scatter_loop_trip_count = ScatterTripCount(scatter); if (!IsInt32(scatter_loop_trip_count)) { return Unimplemented( "Scatter operations with more than 2147483647 scatter indices are not " "supported. This error occurred for %s.", scatter->ToString()); } TF_ASSIGN_OR_RETURN(HloInstruction * canonical_scatter_indices, CanonicalizeScatterIndices( scatter_indices, dim_numbers.index_vector_dim())); CHECK_EQ(scatter_loop_trip_count, canonical_scatter_indices->shape().dimensions(0)); std::vector<HloInstruction*> adjusted_canonical_updates; adjusted_canonical_updates.reserve(scatter_updates.size()); for (HloInstruction* update : scatter_updates) { TF_ASSIGN_OR_RETURN( HloInstruction * canonical_update, PermuteScatterAndWindowDims(update, dim_numbers.update_window_dims())); TF_ASSIGN_OR_RETURN( HloInstruction * adjusted_canonical_update, AdjustScatterDims(scatter_indices->shape(), canonical_update, dim_numbers.index_vector_dim())); CHECK_EQ(scatter_loop_trip_count, adjusted_canonical_update->shape().dimensions(0)); adjusted_canonical_updates.push_back(adjusted_canonical_update); } std::vector<HloInstruction*> loop_state; loop_state.reserve(scatter->operand_count()); absl::c_copy(scatter_operands, std::back_inserter(loop_state)); loop_state.push_back(canonical_scatter_indices); absl::c_copy(adjusted_canonical_updates, std::back_inserter(loop_state)); absl::StatusOr<std::vector<HloInstruction*>> scatter_loop_result_status = WhileUtil::MakeCountedLoop( scatter->parent(), scatter_loop_trip_count, loop_state, [scatter](HloInstruction* induction_var, const std::vector<HloInstruction*>& loop_state) { return ScatterLoopBody(scatter, induction_var, loop_state); }, scatter->metadata()); TF_ASSIGN_OR_RETURN(std::vector<HloInstruction*> scatter_loop_result, scatter_loop_result_status); auto results = absl::MakeSpan(scatter_loop_result).first(scatter_operands.size()); return MaybeMakeTuple(results); } namespace { bool IsCombinerAssociative(const HloComputation* combiner) { if (combiner->instruction_count() != 3) { return false; } switch (combiner->root_instruction()->opcode()) { case HloOpcode::kMinimum: case HloOpcode::kMaximum: return true; case HloOpcode::kAdd: case HloOpcode::kMultiply: case HloOpcode::kOr: case HloOpcode::kXor: return combiner->root_instruction()->shape().IsInteger(); default: return false; } } bool IsDeterministic(const HloScatterInstruction* scatter) { if (scatter->unique_indices()) { return true; } if (IsCombinerAssociative(scatter->to_apply())) { return true; } return false; } } bool ScatterExpander::InstructionMatchesPattern(HloInstruction* inst) { auto* scatter = DynCast<HloScatterInstruction>(inst); return (scatter != nullptr) && (mode_ == kEliminateAllScatters || (mode_ == kEliminateSimpleScatters && ScatterTripCount(scatter) == 1) || (mode_ == kEliminateIndeterministicScatters && !IsDeterministic(scatter))); } }
#include "xla/service/scatter_expander.h" #include <memory> #include <utility> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/types.h" #include "tsl/lib/core/status_test_util.h" namespace xla { namespace { class ScatterExpanderTest : public HloTestBase { protected: void ClearInstructionLayout(HloModule* module, absl::string_view inst_name) { HloInstruction* inst = FindInstruction(module, inst_name); inst->mutable_shape()->clear_layout(); } }; TEST_F(ScatterExpanderTest, ScatterOperandWithoutLayout) { const char* kModuleStr = R"( HloModule scatter_expander scatter_computation { parameter0 = s32[] parameter(0) ROOT parameter1 = s32[] parameter(1) } ENTRY kernel_entry { operand = s32[5] iota(), iota_dimension=0 indices = s32[1] parameter(0) update = s32[] constant(0) ROOT scatter = s32[5]{0} scatter(operand, indices, update), update_window_dims={}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=0, to_apply=scatter_computation })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); ClearInstructionLayout(module.get(), "operand"); ScatterExpander scatter_expander(ScatterExpander::kEliminateAllScatters); TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&scatter_expander, module.get())); EXPECT_TRUE(result); } TEST_F(ScatterExpanderTest, ScatterMultipleOperandsWithoutLayout) { const char* kModuleStr = R"( HloModule scatter_expander scatter_computation { p0 = s32[] parameter(0) p1 = f32[] parameter(1) p2 = s32[] parameter(2) p3 = f32[] parameter(3) ROOT tuple = tuple(p2, p3) } ENTRY kernel_entry { operand0 = s32[5] iota(), iota_dimension=0 operand1 = f32[5] constant({2,4,6,8,10}) indices = s32[1] parameter(0) update0 = s32[] constant(0) update1 = f32[] constant(1) ROOT scatter = (s32[5]{0}, f32[5]{0}) scatter(operand0, operand1, indices, update0, update1), update_window_dims={}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=0, to_apply=scatter_computation })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); ClearInstructionLayout(module.get(), "operand0"); ClearInstructionLayout(module.get(), "operand1"); ScatterExpander scatter_expander(ScatterExpander::kEliminateAllScatters); TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&scatter_expander, module.get())); EXPECT_TRUE(result); } TEST_F(ScatterExpanderTest, EliminateSimpleScattersSkipsNontrivialScatter) { const char* kModuleStr = R"( HloModule scatter_expander scatter_computation { parameter0 = s32[] parameter(0) ROOT parameter1 = s32[] parameter(1) } ENTRY kernel_entry { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) updates = s32[2,3] parameter(2) ROOT scatter = s32[3,3] scatter(operand, indices, updates), to_apply=scatter_computation, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); ClearInstructionLayout(module.get(), "operand"); ScatterExpander scatter_expander(ScatterExpander::kEliminateSimpleScatters); TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&scatter_expander, module.get())); EXPECT_FALSE(result); } TEST_F(ScatterExpanderTest, EliminateSimpleMultioutpuScattersSkipsNontrivialScatter) { const char* kModuleStr = R"( HloModule scatter_expander scatter_computation { p0 = s32[] parameter(0) p1 = f32[] parameter(1) p2 = s32[] parameter(2) p3 = f32[] parameter(3) ROOT tuple = tuple(p2, p3) } ENTRY kernel_entry { operand0 = s32[3,3] parameter(0) operand1 = bf16[3,3] parameter(1) indices = s32[2] parameter(2) update0 = s32[2,3] parameter(3) update1 = bf16[2,3] parameter(4) ROOT scatter = (s32[3,3], bf16[3,3]) scatter(operand0, operand1, indices, update0, update1), to_apply=scatter_computation, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); ClearInstructionLayout(module.get(), "operand0"); ClearInstructionLayout(module.get(), "operand1"); ScatterExpander scatter_expander(ScatterExpander::kEliminateSimpleScatters); TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&scatter_expander, module.get())); EXPECT_FALSE(result); } TEST_F(ScatterExpanderTest, EliminateSimpleScattersRewritesTrivialScatter) { const char* kModuleStr = R"( HloModule scatter_expander scatter_computation { parameter0 = s32[] parameter(0) ROOT parameter1 = s32[] parameter(1) } ENTRY kernel_entry { operand = s32[5] iota(), iota_dimension=0 indices = s32[1] parameter(0) update = s32[] constant(0) ROOT scatter = s32[5]{0} scatter(operand, indices, update), update_window_dims={}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=0, to_apply=scatter_computation })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); ClearInstructionLayout(module.get(), "operand"); ScatterExpander scatter_expander(ScatterExpander::kEliminateSimpleScatters); TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&scatter_expander, module.get())); EXPECT_TRUE(result); } TEST_F(ScatterExpanderTest, EliminateSimpleMultioutputScattersRewritesTrivialScatter) { const char* kModuleStr = R"( HloModule scatter_expander scatter_computation { p0 = s32[] parameter(0) p1 = f32[] parameter(1) p2 = s32[] parameter(2) p3 = f32[] parameter(3) ROOT tuple = tuple(p2, p3) } ENTRY kernel_entry { operand0 = s32[5] iota(), iota_dimension=0 operand1 = f32[5] iota(), iota_dimension=0 indices = s32[1] parameter(0) update0 = s32[] constant(0) update1 = f32[] constant(0) ROOT scatter = (s32[5]{0}, f32[5]{0}) scatter(operand0, operand1, indices, update0, update1), update_window_dims={}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=0, to_apply=scatter_computation })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); ClearInstructionLayout(module.get(), "operand0"); ClearInstructionLayout(module.get(), "operand1"); ScatterExpander scatter_expander(ScatterExpander::kEliminateSimpleScatters); TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&scatter_expander, module.get())); EXPECT_TRUE(result); } TEST_F(ScatterExpanderTest, DoNotEliminateScatterWithAssociativeCombiner) { const char* const kModuleStr = R"( HloModule scatter_expander scatter_computation { arg1.173 = s32[] parameter(1) arg0.172 = s32[] parameter(0) ROOT add.48 = s32[] add(arg0.172, arg1.173) } ENTRY fused_computation { bitcast.2335 = s32[1,4096] parameter(0) pad.96 = s32[4096,2] parameter(1) bitcast.2748 = s32[4096,1,1] parameter(2) ROOT scatter.48 = s32[1,4096] scatter(bitcast.2335, pad.96, bitcast.2748), update_window_dims={1,2}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=1, to_apply=scatter_computation })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); ScatterExpander scatter_expander( ScatterExpander::kEliminateIndeterministicScatters); TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&scatter_expander, module.get())); EXPECT_FALSE(result); } TEST_F(ScatterExpanderTest, EliminateScatterWithNonAssociativeCombiner) { const char* const kModuleStr = R"( HloModule scatter_expander scatter_computation { arg1.173 = f32[] parameter(1) arg0.172 = f32[] parameter(0) ROOT add.48 = f32[] add(arg0.172, arg1.173) } ENTRY fused_computation { bitcast.2335 = f32[1,4096] parameter(0) pad.96 = s32[4096,2] parameter(1) bitcast.2748 = f32[4096,1,1] parameter(2) ROOT scatter.48 = f32[1,4096] scatter(bitcast.2335, pad.96, bitcast.2748), update_window_dims={1,2}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=1, to_apply=scatter_computation })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); ScatterExpander scatter_expander( ScatterExpander::kEliminateIndeterministicScatters); TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&scatter_expander, module.get())); EXPECT_TRUE(result); } TEST_F(ScatterExpanderTest, DoNotEliminateScatterWithAssociativeFp32Combiner) { const char* const kModuleStr = R"( HloModule scatter_expander scatter_computation { arg1.173 = f32[] parameter(1) arg0.172 = f32[] parameter(0) ROOT max.48 = f32[] maximum(arg0.172, arg1.173) } ENTRY fused_computation { bitcast.2335 = f32[1,4096] parameter(0) pad.96 = s32[4096,2] parameter(1) bitcast.2748 = f32[4096,1,1] parameter(2) ROOT scatter.48 = f32[1,4096] scatter(bitcast.2335, pad.96, bitcast.2748), update_window_dims={1,2}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=1, to_apply=scatter_computation })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); ScatterExpander scatter_expander( ScatterExpander::kEliminateIndeterministicScatters); TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&scatter_expander, module.get())); EXPECT_FALSE(result); } } }
1,836
cpp
tensorflow/tensorflow
reduce_scatter_decomposer
third_party/xla/xla/service/reduce_scatter_decomposer.cc
third_party/xla/xla/service/reduce_scatter_decomposer_test.cc
#ifndef XLA_SERVICE_REDUCE_SCATTER_DECOMPOSER_H_ #define XLA_SERVICE_REDUCE_SCATTER_DECOMPOSER_H_ #include <functional> #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class ReduceScatterDecomposer : public HloModulePass { public: explicit ReduceScatterDecomposer( std::function<void(Shape&)> update_layout = nullptr, std::function<bool(const HloInstruction*)> should_decompose = nullptr) : update_layout_(update_layout), should_decompose_(should_decompose) {} absl::string_view name() const override { return "reduce-scatter-decomposer"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; std::function<void(Shape&)> update_layout_; std::function<bool(const HloInstruction*)> should_decompose_; }; } #endif #include "xla/service/reduce_scatter_decomposer.h" #include <sys/types.h> #include <limits> #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/literal_util.h" #include "xla/service/collective_decomposer_utils.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/hlo_module_config.h" #include "xla/shape_util.h" namespace xla { absl::StatusOr<bool> ReduceScatterDecomposer::Run( HloModule *module, const absl::flat_hash_set<absl::string_view> &execution_threads) { bool changed = false; int64_t next_channel_id = hlo_query::NextChannelId(*module); for (HloComputation *computation : module->MakeNonfusionComputations(execution_threads)) { for (HloInstruction *instruction : computation->MakeInstructionPostOrder()) { auto *rs = DynCast<HloReduceScatterInstruction>(instruction); if (!rs || !rs->shape().IsArray()) { continue; } std::optional<int64_t> channel_id; if (rs->channel_id()) { channel_id = next_channel_id++; } if (should_decompose_ && !should_decompose_(rs)) { continue; } VLOG(2) << "Decompose: " << rs->ToString(); HloComputation *apply_clone = module->AddComputationAndUnifyNamesAndIds( rs->to_apply()->Clone(), false); HloInstruction *ar = computation->AddInstruction(HloInstruction::CreateAllReduce( rs->operand(0)->shape(), rs->operands(), apply_clone, rs->device_list(), rs->constrain_layout(), channel_id, rs->use_global_device_ids())); apply_clone->SetCollectiveCallInstruction(ar); TF_ASSIGN_OR_RETURN( CollectiveOpGroupMode group_mode, GetCollectiveOpGroupMode(rs->channel_id().has_value(), rs->use_global_device_ids())); TF_ASSIGN_OR_RETURN( std::vector<HloInstruction *> start_indices, CreateStartIndicesForCollectiveDecomposition( group_mode, rs->replica_groups(), rs->shape(), rs->scatter_dimension(), computation, update_layout_)); HloInstruction *ds = computation->AddInstruction(HloInstruction::CreateDynamicSlice( rs->shape(), ar, start_indices, rs->shape().dimensions())); TF_RETURN_IF_ERROR(rs->ReplaceAllUsesWith(ds)); TF_RETURN_IF_ERROR(computation->RemoveInstruction(rs)); changed = true; } } return changed; } }
#include "xla/service/reduce_scatter_decomposer.h" #include <utility> #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal_util.h" #include "xla/service/collective_ops_utils.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; class ReduceScatterDecomposerTest : public HloTestBase { public: enum class PassAction { kNoChange, kTrivialGroups, kTableLookup, }; void RunPass( absl::string_view hlo_module, PassAction action, CollectiveOpGroupMode mode = CollectiveOpGroupMode::kCrossReplica, int64_t shard_size = 0, int64_t shard_dimension = 0, int64_t replica_count = 2, std::function<bool(const HloInstruction *)> should_decompose = [](const HloInstruction *) { return true; }) { const int64_t partition_count = 2; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule(hlo_module, replica_count, partition_count)); TF_ASSERT_OK_AND_ASSIGN( bool changed, ReduceScatterDecomposer(nullptr, should_decompose) .Run(module.get())); if (action == PassAction::kNoChange) { ASSERT_FALSE(changed); return; } ASSERT_TRUE(changed); Literal multiplier = LiteralUtil::CreateR0<uint32_t>(shard_size); ::testing::Matcher<const ::xla::HloInstruction *> id_matcher = [&]() { switch (mode) { case CollectiveOpGroupMode::kCrossPartition: return op::PartitionId(); case CollectiveOpGroupMode::kCrossReplica: return op::ReplicaId(); case CollectiveOpGroupMode::kCrossReplicaAndPartition: return op::ReplicaId(); case CollectiveOpGroupMode::kFlattenedID: { return op::Add( op::Multiply(op::ReplicaId(), op::Constant(LiteralUtil::CreateR0<uint32_t>( partition_count))), op::PartitionId()); } } }(); auto root = module->entry_computation()->root_instruction(); const Shape &shape = root->shape(); ::testing::Matcher<const ::xla::HloInstruction *> slice_index = id_matcher; if (action == PassAction::kTableLookup) { slice_index = op::Reshape(op::DynamicSlice(op::Constant(), id_matcher)); } if (mode == CollectiveOpGroupMode::kCrossReplicaAndPartition) { slice_index = op::Add( op::Multiply( slice_index, op::Constant(LiteralUtil::CreateR0<uint32_t>(partition_count))), op::PartitionId()); } auto zero_matcher = op::Constant(LiteralUtil::Zero(U32)); std::vector<::testing::Matcher<const ::xla::HloInstruction *>> ds_operands( shape.rank() + 1, zero_matcher); ds_operands[0] = op::AllReduce(op::Parameter(0)); ds_operands[shard_dimension + 1] = op::Multiply(slice_index, op::Constant(std::move(multiplier))); EXPECT_THAT(root, op::DynamicSlice(ds_operands)); } }; TEST_F(ReduceScatterDecomposerTest, TrivialReplicaID) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) ROOT rs = f32[4] reduce-scatter(p0), replica_groups={{0,1}}, dimensions={0}, to_apply=sum } )"; RunPass(hlo_string, PassAction::kTrivialGroups, CollectiveOpGroupMode::kCrossReplica, 4); } TEST_F(ReduceScatterDecomposerTest, TableLookupReplicaId) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) ROOT rs = f32[4] reduce-scatter(p0), replica_groups={{1, 0}}, dimensions={0}, to_apply=sum } )"; RunPass(hlo_string, PassAction::kTableLookup, CollectiveOpGroupMode::kCrossReplica, 4); } TEST_F(ReduceScatterDecomposerTest, TrivialCrossReplicaAndPartition) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[4, 8] parameter(0) ROOT rs = f32[4, 2] reduce-scatter(p0), replica_groups={{0, 1}}, channel_id=1, dimensions={1}, to_apply=sum } )"; RunPass(hlo_string, PassAction::kTrivialGroups, CollectiveOpGroupMode::kCrossReplicaAndPartition, 2, 1); } TEST_F(ReduceScatterDecomposerTest, TrivialCrossReplicaAndPartition_SingleReplica) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[4, 8] parameter(0) ROOT rs = f32[4, 4] reduce-scatter(p0), replica_groups={{0}}, channel_id=1, dimensions={1}, to_apply=sum } )"; RunPass(hlo_string, PassAction::kTrivialGroups, CollectiveOpGroupMode::kCrossPartition, 4, 1, 1); } TEST_F(ReduceScatterDecomposerTest, TableLookupFlattenedId) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[4, 8] parameter(0) ROOT rs = f32[4, 2] reduce-scatter(p0), replica_groups={{1,0, 3, 2}}, channel_id=1, dimensions={1}, to_apply=sum, use_global_device_ids=true } )"; RunPass(hlo_string, PassAction::kTableLookup, CollectiveOpGroupMode::kFlattenedID, 2, 1); } TEST_F(ReduceScatterDecomposerTest, NoChange) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[4, 8] parameter(0) ROOT rs = (f32[4, 2], f32[4,2]) reduce-scatter(p0, p0), replica_groups={{1,0, 3, 2}}, channel_id=1, dimensions={1}, to_apply=sum, use_global_device_ids=true } )"; RunPass(hlo_string, PassAction::kNoChange); } TEST_F(ReduceScatterDecomposerTest, NoChangeWithShouldDecompose) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[4, 8] parameter(0) ROOT rs = f32[4, 4] reduce-scatter(p0), replica_groups={{0,1}, {2,3}}, channel_id=1, dimensions={1}, to_apply=sum, use_global_device_ids=true } )"; RunPass(hlo_string, PassAction::kNoChange, CollectiveOpGroupMode::kCrossReplica, 0, 0, 2, [](const HloInstruction *) { return false; }); } } }
1,837
cpp
tensorflow/tensorflow
batch_dot_simplification
third_party/xla/xla/service/batch_dot_simplification.cc
third_party/xla/xla/service/batch_dot_simplification_test.cc
#ifndef XLA_SERVICE_BATCH_DOT_SIMPLIFICATION_H_ #define XLA_SERVICE_BATCH_DOT_SIMPLIFICATION_H_ #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class BatchDotSimplification : public HloModulePass { public: using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; absl::string_view name() const override { return "batch-dot-simplification"; } private: absl::StatusOr<bool> ElideDegenerateBatchDimensionFromBatchDot( HloInstruction* batch_dot); }; } #endif #include "xla/service/batch_dot_simplification.h" #include "absl/algorithm/container.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/hlo_creation_utils.h" namespace xla { absl::StatusOr<bool> BatchDotSimplification::ElideDegenerateBatchDimensionFromBatchDot( HloInstruction* batch_dot) { if (Cast<HloDotInstruction>(batch_dot)->sparse_operands()) { return false; } const auto& is_iota = [](absl::Span<const int64_t> dims) { for (int64_t i = 0; i < dims.size(); ++i) { if (dims[i] != i) { return false; } } return true; }; if (!absl::c_equal( batch_dot->dot_dimension_numbers().lhs_batch_dimensions(), batch_dot->dot_dimension_numbers().rhs_batch_dimensions()) || !is_iota(batch_dot->dot_dimension_numbers().lhs_batch_dimensions())) { return false; } const DotDimensionNumbers& dim_numbers = batch_dot->dot_dimension_numbers(); HloInstruction *lhs = batch_dot->mutable_operand(0), *rhs = batch_dot->mutable_operand(1); const Shape& lhs_shape = lhs->shape(); if (dim_numbers.lhs_contracting_dimensions_size() != 1) { return false; } std::vector<int64_t> degenerate_dims; for (int64_t batch_dim : dim_numbers.lhs_batch_dimensions()) { if (lhs_shape.dimensions(batch_dim) == 1) { degenerate_dims.push_back(batch_dim); } } if (degenerate_dims.empty()) { return false; } TF_ASSIGN_OR_RETURN(HloInstruction * new_lhs, ElideDegenerateDims(lhs, degenerate_dims)); TF_ASSIGN_OR_RETURN(HloInstruction * new_rhs, ElideDegenerateDims(rhs, degenerate_dims)); DotDimensionNumbers new_dim_numbers = dim_numbers; new_dim_numbers.clear_lhs_batch_dimensions(); new_dim_numbers.clear_rhs_batch_dimensions(); for (int64_t i = 0, e = dim_numbers.lhs_batch_dimensions_size() - degenerate_dims.size(); i < e; i++) { new_dim_numbers.add_lhs_batch_dimensions(i); new_dim_numbers.add_rhs_batch_dimensions(i); } new_dim_numbers.set_lhs_contracting_dimensions( 0, new_dim_numbers.lhs_contracting_dimensions(0) - degenerate_dims.size()); new_dim_numbers.set_rhs_contracting_dimensions( 0, new_dim_numbers.rhs_contracting_dimensions(0) - degenerate_dims.size()); TF_ASSIGN_OR_RETURN( HloInstruction * new_dot, MakeDotHlo(new_lhs, new_rhs, new_dim_numbers, batch_dot->precision_config(), batch_dot->shape().element_type())); TF_ASSIGN_OR_RETURN(HloInstruction * new_dot_reshaped, MakeReshapeHlo(batch_dot->shape(), new_dot)); VLOG(2) << "Replaced " << batch_dot->ToString() << " with " << new_dot->ToString(); TF_RETURN_IF_ERROR( batch_dot->parent()->ReplaceInstruction(batch_dot, new_dot_reshaped)); return true; } absl::StatusOr<bool> BatchDotSimplification::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; std::vector<HloInstruction*> dot_instrs; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { absl::c_copy_if(computation->instructions(), std::back_inserter(dot_instrs), [](HloInstruction* instr) { return instr->opcode() == HloOpcode::kDot; }); } for (HloInstruction* dot_instr : dot_instrs) { TF_ASSIGN_OR_RETURN(bool elided_batch_dim_from_one, ElideDegenerateBatchDimensionFromBatchDot(dot_instr)); changed |= elided_batch_dim_from_one; } return changed; } }
#include "xla/service/batch_dot_simplification.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; class BatchDotSimplificationTest : public HloTestBase {}; TEST_F(BatchDotSimplificationTest, ElideSingleDegenerateBatchDotDim_VectorVector) { const std::string hlo_text = R"( HloModule BatchDot main { a = f32[1,3] parameter(0) b = f32[1,3] parameter(1) ROOT dot = f32[1] dot(a, b), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_contracting_dims={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(hlo_text)); BatchDotSimplification pass; ASSERT_TRUE(pass.Run(m.get()).value()); HloInstruction* root = m->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Reshape(op::Dot( op::Reshape(op::Parameter(0)), op::Reshape(op::Parameter(1)), 0, 0))); } TEST_F(BatchDotSimplificationTest, ElideSingleDegenerateBatchDotDim_MatrixVector) { const std::string hlo_text = R"( HloModule BatchDot main { a = f32[1,9,3] parameter(0) b = f32[1,3] parameter(1) ROOT dot = f32[1,9] dot(a, b), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(hlo_text)); BatchDotSimplification pass; ASSERT_TRUE(pass.Run(m.get()).value()); HloInstruction* root = m->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Reshape(op::Dot( op::Reshape(op::Parameter(0)), op::Reshape(op::Parameter(1)), 1, 0))); } TEST_F(BatchDotSimplificationTest, ElideSingleDegenerateBatchDotDim_MatrixMatrix) { const std::string hlo_text = R"( HloModule BatchDot main { a = f32[1,9,3] parameter(0) b = f32[1,3,7] parameter(1) ROOT dot = f32[1,9,7] dot(a, b), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(hlo_text)); BatchDotSimplification pass; ASSERT_TRUE(pass.Run(m.get()).value()); HloInstruction* root = m->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Reshape(op::Dot( op::Reshape(op::Parameter(0)), op::Reshape(op::Parameter(1)), 1, 0))); } TEST_F(BatchDotSimplificationTest, ElideMultipleDegenerateBatchDotDims_VectorVector) { const std::string hlo_text = R"( HloModule BatchDot main { a = f32[9,1,7,1,3] parameter(0) b = f32[9,1,7,1,3] parameter(1) ROOT dot = f32[9,1,7,1] dot(a, b), lhs_batch_dims={0,1,2,3}, rhs_batch_dims={0,1,2,3}, lhs_contracting_dims={4}, rhs_contracting_dims={4} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(hlo_text)); BatchDotSimplification pass; ASSERT_TRUE(pass.Run(m.get()).value()); HloInstruction* root = m->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Reshape(op::Dot( op::Reshape(op::Parameter(0)), op::Reshape(op::Parameter(1)), 2, 2))); } TEST_F(BatchDotSimplificationTest, ElideMultipleDegenerateBatchDotDims_VectorMatrix) { const std::string hlo_text = R"( HloModule BatchDot main { a = f32[9,1,7,1,3] parameter(0) b = f32[9,1,7,1,20,3] parameter(1) ROOT dot = f32[9,1,7,1,20] dot(a, b), lhs_batch_dims={0,1,2,3}, rhs_batch_dims={0,1,2,3}, lhs_contracting_dims={4}, rhs_contracting_dims={5} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(hlo_text)); BatchDotSimplification pass; ASSERT_TRUE(pass.Run(m.get()).value()); HloInstruction* root = m->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Reshape(op::Dot( op::Reshape(op::Parameter(0)), op::Reshape(op::Parameter(1)), 2, 3))); } TEST_F(BatchDotSimplificationTest, ElideMultipleDegenerateBatchDotDims_MatrixMatrix) { const std::string hlo_text = R"( HloModule BatchDot main { a = f32[9,1,7,1,19,3] parameter(0) b = f32[9,1,7,1,3,20] parameter(1) ROOT dot = f32[9,1,7,1,19,20] dot(a, b), lhs_batch_dims={0,1,2,3}, rhs_batch_dims={0,1,2,3}, lhs_contracting_dims={5}, rhs_contracting_dims={4} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(hlo_text)); BatchDotSimplification pass; ASSERT_TRUE(pass.Run(m.get()).value()); HloInstruction* root = m->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Reshape(op::Dot( op::Reshape(op::Parameter(0)), op::Reshape(op::Parameter(1)), 3, 2))); } TEST_F(BatchDotSimplificationTest, ElideMultipleDegenerateBatchDotDimsNonContracting) { const char* hlo_text = R"( HloModule BatchDot main { a = f32[1,101] parameter(0) b = f32[1,101] parameter(1) ROOT dot = f32[1,101,101] dot(a,b), lhs_batch_dims={0}, lhs_contracting_dims={}, rhs_batch_dims={0}, rhs_contracting_dims={} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(hlo_text)); BatchDotSimplification pass; ASSERT_FALSE(pass.Run(m.get()).value()); } TEST_F(BatchDotSimplificationTest, ElideMultipleDegenerateBatchDotDimsMultipleContracting) { const char* hlo_text = R"( HloModule BatchDot main { lhs = f32[1,5,17,10,13] parameter(0) rhs = f32[1,9,10,13,6,5] parameter(1) ROOT dot = f32[10,1,17,9,6] dot(lhs,rhs), lhs_batch_dims={3,0}, rhs_batch_dims={2,0}, lhs_contracting_dims={1,4}, rhs_contracting_dims={5,3} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(hlo_text)); BatchDotSimplification pass; ASSERT_FALSE(pass.Run(m.get()).value()); } } }
1,838
cpp
tensorflow/tensorflow
while_loop_simplifier
third_party/xla/xla/service/while_loop_simplifier.cc
third_party/xla/xla/service/while_loop_simplifier_test.cc
#ifndef XLA_SERVICE_WHILE_LOOP_SIMPLIFIER_H_ #define XLA_SERVICE_WHILE_LOOP_SIMPLIFIER_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { absl::StatusOr<bool> TryRemoveDeadWhileParams(HloInstruction* while_op); class WhileLoopSimplifier : public HloModulePass { public: explicit WhileLoopSimplifier(bool simplify_compare_instrs = false) : simplify_compare_instrs_(simplify_compare_instrs) {} ~WhileLoopSimplifier() override = default; absl::string_view name() const override { return "simplify-while-loops"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: const bool simplify_compare_instrs_; }; } #endif #include "xla/service/while_loop_simplifier.h" #include <cstdint> #include <optional> #include <utility> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/literal_util.h" #include "xla/primitive_util.h" #include "xla/service/call_inliner.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/hlo_dce.h" #include "xla/service/pattern_matcher.h" #include "xla/service/while_loop_analysis.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/union_find.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace m = match; using hlo_query::ContainsInstrWithOpcode; using std::optional; static absl::StatusOr<bool> TryRemoveTrivialCompare(HloInstruction* while_op) { std::optional<int64_t> indvar_index = GetLoopInductionVarTupleIdx(while_op); if (indvar_index.has_value()) { if (while_op->operand(0)->operand(*indvar_index)->IsConstant()) { const HloConstantInstruction* init_value_hlo = Cast<HloConstantInstruction>( while_op->operand(0)->operand(*indvar_index)); std::optional<int64_t> trip_count = MatchTrivialLoopTripCount( while_op, indvar_index.value(), init_value_hlo->literal()); if (trip_count.has_value()) { std::optional<int64_t> init_value = LiteralUtil::LiteralAsScalarInt64(init_value_hlo->literal()); for (HloInstruction* body_instr : while_op->while_body()->instructions()) { HloInstruction* constant; if (Match(body_instr, m::Compare(m::GetTupleElement(m::Parameter(), indvar_index.value()), m::Constant(&constant).IsConstantScalar()))) { std::optional<int64_t> constant_value = LiteralUtil::LiteralAsScalarInt64(constant->literal()); if (constant_value.has_value()) { if (constant_value.value() <= init_value.value()) { if (body_instr->comparison_direction() == ComparisonDirection::kLt) { TF_RETURN_IF_ERROR(while_op->while_body()->ReplaceInstruction( body_instr, MakeScalarLike(body_instr, false))); return true; } else if (body_instr->comparison_direction() == ComparisonDirection::kGt) { TF_RETURN_IF_ERROR(while_op->while_body()->ReplaceInstruction( body_instr, MakeScalarLike(body_instr, true))); return true; } } if (constant_value.value() >= init_value.value() + trip_count.value()) { if (body_instr->comparison_direction() == ComparisonDirection::kLt) { TF_RETURN_IF_ERROR(while_op->while_body()->ReplaceInstruction( body_instr, MakeScalarLike(body_instr, true))); return true; } else if (body_instr->comparison_direction() == ComparisonDirection::kGt) { TF_RETURN_IF_ERROR(while_op->while_body()->ReplaceInstruction( body_instr, MakeScalarLike(body_instr, false))); return true; } } } } } } } } return false; } void CopyFrontendAttributes(HloInstruction* old_while_op, HloInstruction* new_while_op) { new_while_op->add_frontend_attributes(old_while_op->frontend_attributes()); } void CopyMetadata(HloInstruction* old_while_op, HloInstruction* new_while_op) { new_while_op->set_metadata(old_while_op->metadata()); } static absl::StatusOr<HloInstruction*> RemoveDeadTupleIndices( HloInstruction* while_op, absl::flat_hash_set<int64_t>& used_tuple_indices, int64_t index_for_replaced = -1) { std::vector<int64_t> new_to_old_tuple_idx(used_tuple_indices.begin(), used_tuple_indices.end()); absl::c_sort(new_to_old_tuple_idx); HloModule* module = while_op->GetModule(); HloComputation* computation = while_op->parent(); HloInstruction* while_init = while_op->mutable_operand(0); HloComputation* while_cond = while_op->while_condition(); HloComputation* while_body = while_op->while_body(); HloInstruction* while_body_root = while_body->root_instruction(); auto print_no_metadata = HloPrintOptions().set_print_metadata(false); absl::flat_hash_map<int64_t, int64_t> old_to_new_tuple_idx; for (int64_t new_idx = 0; new_idx < new_to_old_tuple_idx.size(); ++new_idx) { int64_t old_idx = new_to_old_tuple_idx[new_idx]; old_to_new_tuple_idx[old_idx] = new_idx; VLOG(2) << "Remapping tuple index " << old_idx << " to " << new_idx; } std::vector<const Shape*> new_while_tuple_elem_shapes; new_while_tuple_elem_shapes.reserve(new_to_old_tuple_idx.size()); for (int64_t old_idx : new_to_old_tuple_idx) { new_while_tuple_elem_shapes.push_back( &while_init->shape().tuple_shapes(old_idx)); } Shape new_while_shape = ShapeUtil::MakeTupleShapeWithPtrs(new_while_tuple_elem_shapes); auto make_while_computation_replacements = [&](const HloComputation* comp) { absl::flat_hash_map<const HloInstruction*, std::unique_ptr<HloInstruction>> replacements; auto* param = comp->parameter_instruction(0); replacements.emplace(param, HloInstruction::CreateParameter( 0, new_while_shape, param->name())); std::vector<HloInstruction*> materialized_users(param->users().begin(), param->users().end()); for (const auto* user : materialized_users) { if (user == while_body_root) { continue; } CHECK_EQ(user->opcode(), HloOpcode::kGetTupleElement) << user->ToString(print_no_metadata); int64_t old_idx = user->tuple_index(); auto new_idx_iter = old_to_new_tuple_idx.find(old_idx); if (new_idx_iter != old_to_new_tuple_idx.end()) { replacements.emplace( user, HloInstruction::CreateGetTupleElement(user->shape(), param, new_idx_iter->second)); } else { replacements.emplace(user, nullptr); } } for (const auto* hlo : comp->MakeInstructionPostOrder()) { if (hlo == comp->root_instruction() || replacements.contains(hlo)) { continue; } for (const auto* operand : hlo->operands()) { auto op_it = replacements.find(operand); if (op_it != replacements.end() && op_it->second == nullptr) { replacements[hlo] = nullptr; break; } } } return replacements; }; absl::flat_hash_map<const HloInstruction*, std::unique_ptr<HloInstruction>> while_cond_replacements = make_while_computation_replacements(while_cond); std::unique_ptr<HloComputation> new_while_cond = while_cond->CloneWithReplacements(&while_cond_replacements); absl::flat_hash_map<const HloInstruction*, std::unique_ptr<HloInstruction>> while_body_replacements = make_while_computation_replacements(while_body); std::vector<HloInstruction*> new_while_body_root_elems; new_while_body_root_elems.reserve(new_to_old_tuple_idx.size()); for (int64_t old_idx : new_to_old_tuple_idx) { new_while_body_root_elems.push_back( while_body_root->mutable_operand(old_idx)); } while_body_replacements.emplace( while_body_root, HloInstruction::CreateTuple(new_while_body_root_elems)); std::unique_ptr<HloComputation> new_while_body = while_body->CloneWithReplacements(&while_body_replacements); std::vector<HloInstruction*> new_while_init_elems; new_while_init_elems.reserve(new_to_old_tuple_idx.size()); for (int64_t old_idx : new_to_old_tuple_idx) { new_while_init_elems.push_back( computation->AddInstruction(HloInstruction::CreateGetTupleElement( while_init->shape().tuple_shapes(old_idx), while_init, old_idx))); } auto* new_while_init = computation->AddInstruction( HloInstruction::CreateTuple(new_while_init_elems)); auto* new_while_op = computation->AddInstruction(HloInstruction::CreateWhile( new_while_shape, module->AddEmbeddedComputation(std::move(new_while_cond)), module->AddEmbeddedComputation(std::move(new_while_body)), new_while_init)); new_while_op->CopyBackendConfigFrom(while_op); CopyFrontendAttributes(while_op, new_while_op); CopyMetadata(while_op, new_while_op); std::vector<HloInstruction*> new_tuple_elems; const int64_t tuple_size = ShapeUtil::TupleElementCount(while_init->shape()); for (int64_t old_idx = 0; old_idx < tuple_size; ++old_idx) { auto new_tuple_idx_it = old_to_new_tuple_idx.find(old_idx); if (new_tuple_idx_it != old_to_new_tuple_idx.end() || index_for_replaced != -1) { int64_t gte_idx = new_tuple_idx_it != old_to_new_tuple_idx.end() ? new_tuple_idx_it->second : index_for_replaced; new_tuple_elems.push_back( computation->AddInstruction(HloInstruction::CreateGetTupleElement( new_while_op->shape().tuple_shapes(gte_idx), new_while_op, gte_idx))); } else { new_tuple_elems.push_back( computation->AddInstruction(HloInstruction::CreateGetTupleElement( while_init->shape().tuple_shapes(old_idx), while_init, old_idx))); } } HloInstruction* new_tuple = computation->AddInstruction(HloInstruction::CreateTuple(new_tuple_elems)); TF_RETURN_IF_ERROR(computation->ReplaceInstruction(while_op, new_tuple)); return new_while_op; } absl::StatusOr<bool> TryRemoveDeadWhileParams(HloInstruction* while_op) { CHECK_EQ(while_op->opcode(), HloOpcode::kWhile); if (!while_op->parent()->IsSafelyRemovable(while_op)) { VLOG(2) << "Can't remove dead parameters from non-removable while op."; return false; } HloInstruction* while_init = while_op->mutable_operand(0); HloComputation* while_cond = while_op->while_condition(); HloComputation* while_body = while_op->while_body(); HloInstruction* while_body_root = while_body->root_instruction(); if (!while_init->shape().IsTuple()) { VLOG(2) << "While op's carried value isn't tuple shaped."; return false; } if (while_body_root->opcode() != HloOpcode::kTuple) { VLOG(2) << "While body's root is not a tuple(...) instruction."; return false; } const int64_t tuple_size = ShapeUtil::TupleElementCount(while_init->shape()); auto print_no_metadata = HloPrintOptions().set_print_metadata(false); absl::flat_hash_set<int64_t> used_tuple_indices; for (int64_t i = 0; i < tuple_size; ++i) { used_tuple_indices.insert(i); } for (const HloInstruction* instr : {while_body->parameter_instruction(0), while_cond->parameter_instruction(0)}) { for (const HloInstruction* user : instr->users()) { if (user->opcode() != HloOpcode::kGetTupleElement) { VLOG(2) << "Cowardly refusing to analyze while loop with " << instr->ToString(print_no_metadata) << " used by non-GTE instruction " << user->ToString(print_no_metadata) << " in computation " << instr->parent()->name(); return false; } } } if (tuple_size == 0) { VLOG(2) << "Can't remove elements from while loop's tuple -- it's already " "empty."; return false; } absl::flat_hash_set<int64_t> used_indices_after_loop; if (while_op == while_op->parent()->root_instruction()) { for (int64_t i = 0; i < while_body_root->operand_count(); ++i) { used_indices_after_loop.insert(i); } } for (auto user : while_op->users()) { if (user->opcode() != HloOpcode::kGetTupleElement) { for (int64_t i = 0; i < while_body_root->operand_count(); ++i) { used_indices_after_loop.insert(i); } break; } used_indices_after_loop.insert(user->tuple_index()); } struct InputIndicesSet { void Merge(const InputIndicesSet& other) { if (all.size() + other.all.size() <= all.capacity() && owned == nullptr) { absl::c_copy(other.all, std::back_inserter(all)); return; } if (owned == nullptr) { owned = std::make_unique<absl::flat_hash_set<int64_t>>(); owned->reserve(other.all.front()->size() * 2); } for (auto* deps : all) { if (deps == owned.get()) { continue; } owned->insert(deps->begin(), deps->end()); } for (auto* deps : other.all) { owned->insert(deps->begin(), deps->end()); } all.clear(); all.push_back(owned.get()); } void Add(int64_t index) { if (owned == nullptr) { CHECK(all.empty()); owned = std::make_unique<absl::flat_hash_set<int64_t>>(); all.push_back(owned.get()); } owned->insert(index); } std::unique_ptr<absl::flat_hash_set<int64_t>> owned; absl::InlinedVector<const absl::flat_hash_set<int64_t>*, 4> all; }; absl::flat_hash_map<HloInstruction*, InputIndicesSet> inst_input_deps; absl::flat_hash_map<HloInstruction*, tensorflow::UnionFind<HloInstruction*>> disjoint_sets; for (HloComputation* comp : {while_body, while_cond}) { HloInstruction* while_input = comp->parameter_instruction(0); for (HloInstruction* inst : comp->instructions()) { if (inst == while_input || inst == while_body_root) { continue; } disjoint_sets[inst].Get() = inst; } } absl::flat_hash_set<int64_t> side_effecting_indices; for (HloComputation* comp : {while_body, while_cond}) { HloInstruction* while_input = comp->parameter_instruction(0); for (HloInstruction* inst : comp->MakeInstructionPostOrder()) { if (inst == while_input || inst == while_body_root) { continue; } auto& deps = inst_input_deps[inst]; auto& my_set = disjoint_sets[inst]; if (inst->opcode() == HloOpcode::kGetTupleElement && inst->operand(0) == while_input) { deps.Add(inst->tuple_index()); HloInstruction* output = while_body_root->mutable_operand(inst->tuple_index()); if (output != inst) { disjoint_sets[output].Merge(&my_set); } } else { for (HloInstruction* operand : inst->operands()) { disjoint_sets[operand].Merge(&my_set); deps.Merge(inst_input_deps[operand]); } } if (inst->HasSideEffect() || inst == while_cond->root_instruction()) { for (auto* dep : deps.all) { side_effecting_indices.insert(dep->begin(), dep->end()); } } } } absl::flat_hash_set<int64_t> indices_affecting_others; for (int64_t i = 0; i < tuple_size; ++i) { HloInstruction* output = while_body_root->mutable_operand(i); for (auto* deps : inst_input_deps[output].all) { for (int64_t index : *deps) { if (index != i) { indices_affecting_others.insert(index); } } } } for (int64_t i = 0; i < tuple_size; ++i) { if (!indices_affecting_others.contains(i) && !used_indices_after_loop.contains(i) && !side_effecting_indices.contains(i)) { VLOG(2) << "Remove with dependencies " << i; used_tuple_indices.erase(i); } } absl::flat_hash_map<HloInstruction*, absl::flat_hash_set<int64_t>> groups; for (int64_t i = 0; i < tuple_size; ++i) { HloInstruction* output = while_body_root->mutable_operand(i); groups[disjoint_sets[output].Get()].insert(i); } for (HloComputation* comp : {while_body, while_cond}) { HloInstruction* while_input = comp->parameter_instruction(0); for (HloInstruction* gte : while_input->users()) { groups[disjoint_sets[gte].Get()].insert(gte->tuple_index()); } } for (const auto& group : groups) { if (absl::c_any_of(group.second, [&](int64_t index) { const HloInstruction* output = while_body_root->operand(index); return side_effecting_indices.contains(index) || (used_indices_after_loop.contains(index) && !(output->opcode() == HloOpcode::kGetTupleElement && output->operand(0) == while_body->parameter_instruction(0) && output->tuple_index() == index)); })) { continue; } VLOG(2) << "Remove with groups:"; for (int64_t index : group.second) { VLOG(2) << " index " << index; used_tuple_indices.erase(index); } } if (used_tuple_indices.size() == tuple_size) { VLOG(2) << "Loop " << while_op->ToString(print_no_metadata) << " uses all of its inputs; no simplification possible."; return false; } CHECK_LT(used_tuple_indices.size(), tuple_size); VLOG(1) << "Eliminating " << tuple_size - used_tuple_indices.size() << " elements from tuple of " << while_op->ToString(print_no_metadata); TF_ASSIGN_OR_RETURN(while_op, RemoveDeadTupleIndices(while_op, used_tuple_indices)); return true; } static absl::StatusOr<HloInstruction*> TryRemoveRepeatedWhileTupleIndicesHelper( HloInstruction* while_op, const int64_t tuple_index, bool replace_with_init, absl::flat_hash_set<int64_t>& duplicates) { HloComputation* while_cond = while_op->while_condition(); HloComputation* while_body = while_op->while_body(); HloInstruction* while_init = while_op->mutable_operand(0); VLOG(2) << "while_init " << while_init->ToString() << " operands " << while_init->operand_count(); VLOG(2) << "while_body_root " << while_body->root_instruction()->ToString() << " operands " << while_body->root_instruction()->operand_count(); for (HloComputation* comp : {while_body, while_cond}) { auto new_get = comp->AddInstruction(HloInstruction::CreateGetTupleElement( comp->parameter_instruction(0)->shape().tuple_shapes(tuple_index), comp->parameter_instruction(0), tuple_index)); std::vector<HloInstruction*> instrs_to_replace; for (auto* instr : comp->instructions()) { if (instr->opcode() == HloOpcode::kGetTupleElement && duplicates.contains(instr->tuple_index()) && instr->operand(0) == comp->parameter_instruction(0)) { instrs_to_replace.push_back(instr); } } for (auto instr : instrs_to_replace) { TF_RETURN_IF_ERROR(comp->ReplaceInstruction(instr, new_get)); } } absl::flat_hash_set<int64_t> used_tuple_indices; for (int index = 0; index < while_init->shape().tuple_shapes_size(); ++index) { if (!duplicates.count(index)) { used_tuple_indices.insert(index); } } TF_ASSIGN_OR_RETURN( while_op, RemoveDeadTupleIndices(while_op, used_tuple_indices, replace_with_init ? -1 : tuple_index)); return while_op; } static bool IsDynamicUpdateSliceWhileInsertion( const HloInstruction* instr, const HloComputation* while_body) { return instr->opcode() == HloOpcode::kDynamicUpdateSlice && instr->operand(0)->opcode() == HloOpcode::kGetTupleElement && instr->operand(0)->operand(0) == while_body->parameter_instruction(0); } static absl::StatusOr<bool> TryRemoveRepeatedWhileTupleIndices( HloInstruction* while_op) { CHECK_EQ(while_op->opcode(), HloOpcode::kWhile); int index_to_investigate = 0; if (!while_op->parent()->IsSafelyRemovable(while_op)) { VLOG(2) << "Can't remove dead parameters from non-removable while op."; return false; } HloInstruction* while_init = while_op->mutable_operand(0); HloComputation* while_cond = while_op->while_condition(); HloComputation* while_body = while_op->while_body(); HloInstruction* while_body_root = while_body->root_instruction(); if (!while_init->shape().IsTuple()) { VLOG(2) << "While op's carried value isn't tuple shaped."; return false; } bool changed = false; while (index_to_investigate < while_init->shape().tuple_shapes_size()) { if (!while_init->shape().IsTuple() || while_init->opcode() != HloOpcode::kTuple) { VLOG(2) << "While op's carried value isn't tuple shaped."; return false; } if (while_body_root->opcode() != HloOpcode::kTuple) { VLOG(2) << "While body's root is not a tuple(...) instruction."; return false; } auto& while_shape = while_init->shape(); VLOG(2) << "Iterating " << index_to_investigate; absl::flat_hash_set<int64_t> duplicates; auto* pivot_init_elem = while_init->operand(index_to_investigate); auto* pivot_body_elem = while_body_root->operand(index_to_investigate); bool replace_with_init = true; if (pivot_body_elem->opcode() == HloOpcode::kGetTupleElement && pivot_body_elem->operand(0) == while_body->parameter_instruction(0)) { if (pivot_body_elem->tuple_index() != index_to_investigate) { VLOG(2) << "Mismatch between pivot_body_elem->tuple_index() " << pivot_body_elem->tuple_index() << " index_to_investigate " << index_to_investigate; index_to_investigate++; continue; } } else if (IsDynamicUpdateSliceWhileInsertion(pivot_body_elem, while_body)) { if (pivot_body_elem->operand(0)->tuple_index() != index_to_investigate) { VLOG(2) << "Mismatch between pivot_body_elem->operand(0)->tuple_index() " << pivot_body_elem->operand(0)->tuple_index() << " index_to_investigate " << index_to_investigate; index_to_investigate++; continue; } } else { index_to_investigate++; continue; } for (int64_t i = index_to_investigate + 1; i < while_shape.tuple_shapes_size(); ++i) { auto* init_elem = while_init->operand(i); auto* body_elem = while_body_root->operand(i); if (pivot_body_elem->opcode() == HloOpcode::kGetTupleElement && body_elem->opcode() == HloOpcode::kGetTupleElement && body_elem->operand(0) == while_body->parameter_instruction(0)) { if (body_elem->tuple_index() != i) { VLOG(2) << "Mismatch between body_elem->tuple_index() " << body_elem->tuple_index() << " i " << i; continue; } } else if (IsDynamicUpdateSliceWhileInsertion(pivot_body_elem, while_body) && IsDynamicUpdateSliceWhileInsertion(body_elem, while_body)) { if (pivot_body_elem->
#include "xla/service/while_loop_simplifier.h" #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_replace.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal_util.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_parser.h" #include "xla/service/tuple_simplifier.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" namespace xla { namespace { using ::testing::_; namespace op = xla::testing::opcode_matchers; HloInstruction* FindFirstWhile(HloModule* m) { const auto& instrs = m->entry_computation()->instructions(); return *absl::c_find_if(instrs, HloPredicateIsOp<HloOpcode::kWhile>); } class WhileLoopSimplifierTest : public HloTestBase { protected: [[nodiscard]] std::unique_ptr<VerifiedHloModule> MakeModuleWithSimpleLoop( int num_iters); [[nodiscard]] std::unique_ptr<VerifiedHloModule> MakeModuleWithSimpleLoopTupleElementLoopBound(int num_iters); }; std::unique_ptr<VerifiedHloModule> WhileLoopSimplifierTest::MakeModuleWithSimpleLoop(int num_iters) { std::string hlo_string_template = R"( HloModule SimpleLoop SimpleLoop.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } SimpleLoop.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant({{LOOP_BOUND}}) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY SimpleLoop { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[], s32[3]{0}) while(tuple.1), condition= SimpleLoop.condition, body=SimpleLoop.body } )"; std::string hlo_string = absl::StrReplaceAll( hlo_string_template, {{"{{LOOP_BOUND}}", absl::StrCat(42 + num_iters)}}); return ParseAndReturnVerifiedModule(hlo_string).value(); } std::unique_ptr<VerifiedHloModule> WhileLoopSimplifierTest::MakeModuleWithSimpleLoopTupleElementLoopBound( int num_iters) { std::string hlo_string_template = R"( HloModule SimpleLoopWithIndirectLoopBound SimpleLoopWithIndirectLoopBound.body { loop_var.1 = (s32[], s32[3]{0}, s32[]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) limit = s32[] get-tuple-element(loop_var.1), index=2 ROOT tuple = (s32[], s32[3]{0}, s32[]) tuple(add, multiply, limit) } SimpleLoopWithIndirectLoopBound.condition { loop_var.2 = (s32[], s32[3]{0}, s32[]) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 get-tuple-element.4 = s32[] get-tuple-element(loop_var.2), index=2 ROOT less-than = pred[] compare(get-tuple-element.3, get-tuple-element.4), direction=LT } ENTRY SimpleLoopWithIndirectLoopBound { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) constant.2 = s32[] constant({{LOOP_BOUND}}) tuple.1 = (s32[], s32[3]{0}, s32[]) tuple(constant.3, constant.4, constant.2) ROOT while = (s32[], s32[3]{0}, s32[]) while(tuple.1), condition=SimpleLoopWithIndirectLoopBound.condition, body=SimpleLoopWithIndirectLoopBound.body } )"; std::string hlo_string = absl::StrReplaceAll( hlo_string_template, {{"{{LOOP_BOUND}}", absl::StrCat(42 + num_iters)}}); return ParseAndReturnVerifiedModule(hlo_string).value(); } TEST_F(WhileLoopSimplifierTest, LoopWithZeroIterationSimplified) { auto m = MakeModuleWithSimpleLoop(0); ASSERT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); EXPECT_THAT(m->entry_computation()->root_instruction(), op::Tuple(op::Constant(), op::Constant())); } TEST_F(WhileLoopSimplifierTest, LoopWithZeroIterationTupleElementLoopBoundSimplified) { auto m = MakeModuleWithSimpleLoopTupleElementLoopBound(0); ASSERT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); EXPECT_THAT(m->entry_computation()->root_instruction(), op::Tuple(op::Constant(), op::Constant(), op::Constant())); } TEST_F(WhileLoopSimplifierTest, LoopWithOneIterationSimplified) { auto m = MakeModuleWithSimpleLoop(1); ASSERT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); EXPECT_THAT(m->entry_computation()->root_instruction(), op::Tuple(op::Add(), op::Multiply())); } TEST_F(WhileLoopSimplifierTest, LoopWithOneIterationTupleELementLoopBoundSimplified) { auto m = MakeModuleWithSimpleLoopTupleElementLoopBound(1); ASSERT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); EXPECT_THAT(m->entry_computation()->root_instruction(), op::Tuple(op::Add(), op::Multiply(), op::Constant())); } TEST_F(WhileLoopSimplifierTest, LoopWithTwoIterationsNotSimplified) { auto m = MakeModuleWithSimpleLoop(2); EXPECT_FALSE(WhileLoopSimplifier().Run(m.get()).value()); } TEST_F(WhileLoopSimplifierTest, LoopWithControlDependencySimplifiedDependencyPreserved) { auto m = MakeModuleWithSimpleLoop(1); HloComputation* computation = m->entry_computation(); auto* while_op = computation->root_instruction(); ASSERT_EQ(while_op->opcode(), HloOpcode::kWhile); auto* true_op = while_op->while_body()->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(true))); TF_ASSERT_OK(true_op->AddControlDependencyTo( while_op->while_body()->root_instruction())); ASSERT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); EXPECT_THAT(computation->root_instruction()->control_predecessors(), ElementsAre(op::Constant())) << computation->ToString(); } TEST_F(WhileLoopSimplifierTest, LoopWithSendNotSimplified) { auto m = MakeModuleWithSimpleLoop(1); HloComputation* computation = m->entry_computation(); auto* while_op = computation->root_instruction(); ASSERT_EQ(while_op->opcode(), HloOpcode::kWhile); auto* while_body = while_op->while_body(); auto* token = while_body->AddInstruction(HloInstruction::CreateToken()); auto* send = while_body->AddInstruction(HloInstruction::CreateSend( while_body->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(true))), token, 0)); while_body->AddInstruction(HloInstruction::CreateSendDone(send)); EXPECT_FALSE(WhileLoopSimplifier().Run(m.get()).value()); } TEST_F(WhileLoopSimplifierTest, LoopWithRecvNotSimplified) { auto m = MakeModuleWithSimpleLoop(1); HloComputation* computation = m->entry_computation(); auto* while_op = computation->root_instruction(); ASSERT_EQ(while_op->opcode(), HloOpcode::kWhile); auto* while_body = while_op->while_body(); auto* token = while_body->AddInstruction(HloInstruction::CreateToken()); auto* recv = while_body->AddInstruction( HloInstruction::CreateRecv(ShapeUtil::MakeShape(F32, {1}), token, 0)); while_body->AddInstruction(HloInstruction::CreateRecvDone(recv)); EXPECT_FALSE(WhileLoopSimplifier().Run(m.get()).value()); } TEST_F(WhileLoopSimplifierTest, LoopWithInfeedSimplified) { auto m = MakeModuleWithSimpleLoop(1); HloComputation* computation = m->entry_computation(); auto* while_op = computation->root_instruction(); ASSERT_EQ(while_op->opcode(), HloOpcode::kWhile); auto* while_body = while_op->while_body(); auto token = while_body->AddInstruction(HloInstruction::CreateToken()); while_body->AddInstruction(HloInstruction::CreateInfeed( ShapeUtil::MakeShape(F32, {1}), token, "config")); EXPECT_FALSE(WhileLoopSimplifier().Run(m.get()).value()); } TEST_F(WhileLoopSimplifierTest, LoopWithInfeedInCondNotSimplified) { auto m = MakeModuleWithSimpleLoop(1); HloComputation* computation = m->entry_computation(); auto* while_op = computation->root_instruction(); ASSERT_EQ(while_op->opcode(), HloOpcode::kWhile); auto* while_cond = while_op->while_condition(); auto token = while_cond->AddInstruction(HloInstruction::CreateToken()); while_cond->AddInstruction(HloInstruction::CreateInfeed( ShapeUtil::MakeShape(F32, {1}), token, "config")); EXPECT_FALSE(WhileLoopSimplifier().Run(m.get()).value()); } TEST_F(WhileLoopSimplifierTest, NonTupleShapedLoopNotSimplified) { const std::string hlo_string = R"( HloModule NonTupleShapedLoop NonTupleShapedLoop.body { loop_var.1 = s32[] parameter(0) constant.1 = s32[] constant(-1) ROOT add = s32[] add(s32[] loop_var.1, s32[] constant.1) } NonTupleShapedLoop.condition { loop_var = s32[] parameter(0) constant = s32[] constant(100) ROOT less-than = pred[] compare(s32[] loop_var, s32[] constant), direction=LT } ENTRY INonTupleShapedLoop { constant.2 = s32[] constant(42) ROOT while = s32[] while(s32[] constant.2), condition=NonTupleShapedLoop.condition, body=NonTupleShapedLoop.body } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_FALSE(WhileLoopSimplifier().Run(m.get()).value()); } TEST_F(WhileLoopSimplifierTest, LoopSwappingTupleElementsNotSimplified) { const std::string hlo_string = R"( HloModule SwappingTupleElements SwappingTupleElements.body { loop_var = (s32[], s32[]) parameter(0) get-tuple-element = s32[] get-tuple-element((s32[], s32[]) loop_var),index=1 get-tuple-element.1 = s32[] get-tuple-element((s32[], s32[]) loop_var), index=0 ROOT tuple = (s32[], s32[]) tuple(s32[] get-tuple-element, s32[] get-tuple-element.1) } SwappingTupleElements.always_true { param = (s32[], s32[]) parameter(0) ROOT constant = pred[] constant(true) } ENTRY SwappingTupleElements { x = s32[] parameter(0) y = s32[] parameter(1) tuple.1 = (s32[], s32[]) tuple(s32[] x, s32[] y) ROOT while = (s32[], s32[]) while((s32[], s32[]) tuple.1), condition=SwappingTupleElements.always_true, body=SwappingTupleElements.body } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_FALSE(WhileLoopSimplifier().Run(m.get()).value()); } TEST_F(WhileLoopSimplifierTest, LoopWithUnusedButModifiedTupleElementNotSimplified) { const std::string hlo_string = R"( HloModule UnusedButModifiedTupleElement UnusedButModifiedTupleElement.body { loop_var = (s32[]) parameter(0) constant.1 = s32[] constant(1) ROOT tuple = (s32[]) tuple(s32[] constant.1) } UnusedButModifiedTupleElement.always_true { param = (s32[]) parameter(0) ROOT constant = pred[] constant(true) } ENTRY UnusedButModifiedTupleElement { constant.2 = s32[] constant(0) tuple.1 = (s32[]) tuple(s32[] constant.2) ROOT while = (s32[]) while((s32[]) tuple.1), condition=UnusedButModifiedTupleElement.always_true, body=UnusedButModifiedTupleElement.body } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_FALSE(WhileLoopSimplifier().Run(m.get()).value()); } TEST_F(WhileLoopSimplifierTest, LoopWithUnusedOutsideLoopButModifiedTupleElementSimplified) { const std::string hlo_string = R"( HloModule UnusedButModifiedTupleElement UnusedButModifiedTupleElement.body { loop_var = (s32[], s32[]) parameter(0) constant.1 = s32[] constant(1) ROOT tuple = (s32[], s32[]) tuple(s32[] constant.1, constant.1) } UnusedButModifiedTupleElement.cond { param = (s32[], s32[]) parameter(0) gte.cond = s32[] get-tuple-element(param), index=0 constant.3 = s32[] constant(1) ROOT lt = pred[] compare(gte.cond, constant.3), direction=LT } ENTRY UnusedButModifiedTupleElement { constant.2 = s32[] constant(0) tuple.1 = (s32[], s32[]) tuple(constant.2, constant.2) while = (s32[], s32[]) while(tuple.1), condition=UnusedButModifiedTupleElement.cond, body=UnusedButModifiedTupleElement.body ROOT gte = s32[] get-tuple-element(while), index=0 } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); ASSERT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); EXPECT_TRUE(TupleSimplifier().Run(m.get()).ok()); EXPECT_TRUE(HloDCE().Run(m.get()).ok()); auto m_while = AllOf(op::While(), op::Shape("(s32[])")); EXPECT_THAT(m->entry_computation()->root_instruction(), op::GetTupleElement(m_while)); } TEST_F(WhileLoopSimplifierTest, LoopWithEmptyTupleNotSimplified) { const std::string hlo_string = R"( HloModule EmptyTuple EmptyTuple.body { loop_var = () parameter(0) ROOT tuple = () tuple() } EmptyTuple.always_true { param = () parameter(0) ROOT constant = pred[] constant(true) } ENTRY EmptyTuple { tuple.1 = () tuple() ROOT while = () while(() tuple.1), condition=EmptyTuple.always_true, body=EmptyTuple.body } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_FALSE(WhileLoopSimplifier().Run(m.get()).value()); } TEST_F(WhileLoopSimplifierTest, LoopWithElemUsedTwiceNotSimplified) { const std::string hlo_string = R"( HloModule ElemUsedTwice ElemUsedTwice.body { param0 = (s32[], s32[]) parameter(0) get-tuple-element = s32[] get-tuple-element((s32[], s32[]) param0), index=0 ROOT tuple = (s32[], s32[]) tuple(s32[] get-tuple-element, s32[] get-tuple-element) } ElemUsedTwice.always_true { param = (s32[], s32[]) parameter(0) ROOT constant = pred[] constant(true) } ENTRY ElemUsedTwice { x = s32[] parameter(0) y = s32[] parameter(1) tuple.1 = (s32[], s32[]) tuple(s32[] x, s32[] y) ROOT while = (s32[], s32[]) while((s32[], s32[]) tuple.1), condition=ElemUsedTwice.always_true, body=ElemUsedTwice.body } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_FALSE(WhileLoopSimplifier().Run(m.get()).value()); } TEST_F(WhileLoopSimplifierTest, RemoveUnusedLoopOperands) { const std::string hlo_string = R"( HloModule RemoveUnusedOperands RemoveUnusedOperands.body { loop_var = (s32[], s32[], s32[]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element((s32[], s32[], s32[]) loop_var), index=0 get-tuple-element.2 = s32[] get-tuple-element((s32[], s32[], s32[]) loop_var), index=1 constant.1 = s32[] constant(1) add = s32[] add(s32[] get-tuple-element.2, s32[] constant.1) get-tuple-element.3 = s32[] get-tuple-element((s32[], s32[], s32[]) loop_var), index=2 ROOT tuple = (s32[], s32[], s32[]) tuple(s32[] get-tuple-element.1, s32[] add, s32[] get-tuple-element.3) } RemoveUnusedOperands.loop_condition { constant.2 = s32[] constant(0) param0 = (s32[], s32[], s32[]) parameter(0) get-tuple-element = s32[] get-tuple-element((s32[], s32[], s32[]) param0), index=2 ROOT equal-to = pred[] compare(s32[] constant.2, s32[] get-tuple-element), direction=EQ } ENTRY RemoveUnusedOperands { x = s32[] parameter(0) constant.3 = s32[] constant(0) y = s32[] parameter(1) tuple.1 = (s32[], s32[], s32[]) tuple(s32[] x, s32[] constant.3, s32[] y) ROOT while = (s32[], s32[], s32[]) while((s32[], s32[], s32[]) tuple.1), condition=RemoveUnusedOperands.loop_condition, body=RemoveUnusedOperands.body } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); const auto& instrs = m->entry_computation()->instructions(); HloInstruction* new_while_op = *absl::c_find_if(instrs, [&](const HloInstruction* instr) { return (instr->opcode() == HloOpcode::kWhile && instr->name() != "while"); }); auto scalar_s32 = ShapeUtil::MakeShape(S32, {}); EXPECT_TRUE( ShapeUtil::Equal(new_while_op->shape(), ShapeUtil::MakeTupleShape({scalar_s32, scalar_s32}))) << ShapeUtil::HumanString(new_while_op->shape()); EXPECT_THAT( new_while_op->while_body()->root_instruction(), op::Tuple( op::Add(op::GetTupleElement(op::Parameter(0), 0), op::Constant()), op::GetTupleElement(op::Parameter(0), 1))); EXPECT_THAT(new_while_op->while_condition()->root_instruction(), op::Eq(op::Constant(), op::GetTupleElement(op::Parameter(0), 1))); } TEST_F(WhileLoopSimplifierTest, RemoveUnusedLoopOperandsCheckMetadata) { const std::string hlo_string = R"( HloModule RemoveUnusedOperands RemoveUnusedOperands.body { loop_var = (s32[], s32[], s32[]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element((s32[], s32[], s32[]) loop_var), index=0 get-tuple-element.2 = s32[] get-tuple-element((s32[], s32[], s32[]) loop_var), index=1 constant.1 = s32[] constant(1) add = s32[] add(s32[] get-tuple-element.2, s32[] constant.1) get-tuple-element.3 = s32[] get-tuple-element((s32[], s32[], s32[]) loop_var), index=2 ROOT tuple = (s32[], s32[], s32[]) tuple(s32[] get-tuple-element.1, s32[] add, s32[] get-tuple-element.3) } RemoveUnusedOperands.loop_condition { constant.2 = s32[] constant(0) param0 = (s32[], s32[], s32[]) parameter(0) get-tuple-element = s32[] get-tuple-element((s32[], s32[], s32[]) param0), index=2 ROOT equal-to = pred[] compare(s32[] constant.2, s32[] get-tuple-element), direction=EQ } ENTRY RemoveUnusedOperands { x = s32[] parameter(0) constant.3 = s32[] constant(0) y = s32[] parameter(1) tuple.1 = (s32[], s32[], s32[]) tuple(s32[] x, s32[] constant.3, s32[] y) ROOT while = (s32[], s32[], s32[]) while((s32[], s32[], s32[]) tuple.1), condition=RemoveUnusedOperands.loop_condition, body=RemoveUnusedOperands.body, metadata={op_name="while"} } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); OpMetadata while_metadata; while_metadata.set_op_name("while"); EXPECT_THAT(m->entry_computation()->root_instruction(), AllOf(op::Tuple(), op::Metadata(while_metadata))); EXPECT_THAT(m->entry_computation()->GetInstructionWithName("while.1"), AllOf(op::While(), op::Metadata(while_metadata))); } TEST_F(WhileLoopSimplifierTest, RemoveUnusedLoopOperandsDespiteSideEffectingOps) { const std::string hlo_string = R"( HloModule RemoveUnusedOperands body { loop_var = (s32[]) parameter(0) gte0 = s32[] get-tuple-element(loop_var), index=0 token0 = token[] after-all() unused = ((s32[], pred[]), token[]) infeed(token0) ROOT tuple = (s32[]) tuple(gte0) } cond { loop_var = (s32[]) parameter(0) ROOT constant = pred[] constant(true) } ENTRY RemoveUnusedOperands { x = s32[] parameter(0) tuple.1 = (s32[]) tuple(s32[] x) ROOT while = (s32[]) while((s32[]) tuple.1), condition=cond, body=body } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); const auto& instrs = m->entry_computation()->instructions(); HloInstruction* new_while_op = *absl::c_find_if(instrs, [&](const HloInstruction* instr) { return (instr->opcode() == HloOpcode::kWhile && instr->name() != "while"); }); EXPECT_TRUE(ShapeUtil::IsEmptyTuple(new_while_op->shape())) << new_while_op->shape().ToString(); } TEST_F(WhileLoopSimplifierTest, LoopWithNonTupleBodyShapeNotSimplified) { const std::string hlo_string = R"( HloModule BodyHasNonTupleRoot BodyHasNonTupleRoot.passthrough { ROOT param = (s32[], s32[]) parameter(0) } BodyHasNonTupleRoot.always_true { param.1 = (s32[], s32[]) parameter(0) ROOT constant = pred[] constant(true) } ENTRY BodyHasNonTupleRoot { init_value = (s32[], s32[]) parameter(0) ROOT while = (s32[], s32[]) while((s32[], s32[]) init_value), condition=BodyHasNonTupleRoot.always_true, body=BodyHasNonTupleRoot.passthrough } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_FALSE(WhileLoopSimplifier().Run(m.get()).value()); } TEST_F(WhileLoopSimplifierTest, LoopWithNonTupleBodyRootInstructionNotSimplified) { const std::string hlo_string = R"( HloModule SimpleLoop SimpleLoop.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT custom-call = (s32[], s32[3]{0}) custom-call(add, multiply), custom_call_target="x" } SimpleLoop.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(44) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY SimpleLoop { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[], s32[3]{0}) while(tuple.1), condition= SimpleLoop.condition, body=SimpleLoop.body } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_FALSE(WhileLoopSimplifier().Run(m.get()).value()); } TEST_F(WhileLoopSimplifierTest, LoopWithArrayConstantNotSimplified) { const std::string hlo_string = R"( HloModule SimpleLoop SimpleLoop.body { loop_var.1 = (s32[], s32[3]{0}, s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 get-tuple-element.3 = s32[3]{0} get-tuple-element(loop_var.1), index=2 add.2 = s32[3]{0} add(get-tuple-element.2, get-tuple-element.3) ROOT tuple = (s32[], s32[3]{0}, s32[3]{0}) tuple(add, add.2, get-tuple-element.3) } SimpleLoop.condition { loop_var.2 = (s32[], s32[3]{0}, s32[3]{0}) parameter(0) get-tuple-element.4 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(47) ROOT less-than = pred[] compare(get-tuple-element.4, constant.2), direction=LT } ENTRY SimpleLoop { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}, s32[3]{0}) tuple(constant.3, constant.4, constant.4) ROOT while = (s32[], s32[3]{0}, s32[3]{0}) while(tuple.1), condition= SimpleLoop.condition, body=SimpleLoop.body } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_FALSE(WhileLoopSimplifier().Run(m.get()).value()); } TEST_F(WhileLoopSimplifierTest, FlattenNestedTuple) { const std::string hlo_string = R"( HloModule Test Body { param = ((s32[1]), (s32[2], s32[3], (s32[4]))) parameter(0) ta = (s32[1]) get-tuple-element(param), index=0 a = s32[1] get-tuple-element(ta), index=0 a.1 = s32[1] add(a, a) tbcd = (s32[2], s32[3], (s32[4])) get-tuple-element(param), index=1 ROOT tuple = ((s32[1]), (s32[2], s32[3], (s32[4]))) tuple(ta, tbcd) } Cond { param = ((s32[1]), (s32[2], s32[3], (s32[4]))) parameter(0) ROOT cond = pred[] constant(true) } ENTRY Loop { a = s32[1] constant({0}) b = s32[2] constant({0,1}) c = s32[3] constant({0,1,2}) d = s32[4] constant({0,1,2,3}) ta = (s32[1]) tuple(a) td = (s32[4]) tuple(d) tbcd = (s32[2], s32[3], (s32[4])) tuple(b, c, td) init = ((s32[1]), (s32[2], s32[3], (s32[4]))) tuple(ta, tbcd) ROOT while = ((s32[1]), (s32[2], s32[3], (s32[4]))) while(init), condition=Cond, body=Body })"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); EXPECT_TRUE(HloDCE().Run(m.get()).ok()); HloInstruction* new_while = FindFirstWhile(m.get()); Shape flat_tuple = ParseShape("(s32[1], s32[2], s32[3], s32[4])").value(); SCOPED_TRACE(m->ToString()); EXPECT_TRUE(ShapeUtil::Equal(new_while->shape(), flat_tuple)); EXPECT_TRUE(ShapeUtil::Equal( new_while->while_body()->root_instruction()->shape(), flat_tuple)); EXPECT_TRUE(ShapeUtil::Equal( new_while->while_body()->parameter_instruction(0)->shape(), flat_tuple)); EXPECT_TRUE(ShapeUtil::Equal( new_while->while_condition()->parameter_instruction(0)->shape(), flat_tuple)); EXPECT_TRUE(ShapeUtil::Equal( m->entry_computation()->root_instruction()->shape(), ParseShape("((s32[1]), (s32[2], s32[3], (s32[4])))").value())); } TEST_F(WhileLoopSimplifierTest, OnlyConstantsInLoopCarry) { const std::string hlo_string = R"( HloModule Test Body { param = (s32[1]) parameter(0) a = s32[1] constant({0}) ROOT tuple = (s32[1]) tuple(a) } Cond { param = (s32[1]) parameter(0) ROOT cond = pred[] constant(true) } ENTRY Loop { a = s32[1] constant({0}) init = (s32[1]) tuple(a) ROOT while = (s32[1]) while(init), condition=Cond, body=Body })"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); EXPECT_TRUE(HloDCE().Run(m.get()).ok()); EXPECT_TRUE(TupleSimplifier().Run(m.get()).ok()); EXPECT_THAT(m->entry_computation()->root_instruction(), op::Tuple(op::Constant())); } TEST_F(WhileLoopSimplifierTest, RemoveConstantFromLoopCarry) { const std::string hlo_string = R"( HloModule Test Body { param = (s32[1], s32[2], s32[3]) parameter(0) a = s32[1] get-tuple-element(param), index=0 a.1 = s32[1] add(a, a) b = s32[2] constant({1,1}) c = s32[3] constant({10,10,10}) ROOT tuple = (s32[1], s32[2], s32[3]) tuple(a.1, b, c) } Cond { param = (s32[1], s32[2], s32[3]) parameter(0) a = s32[1] get-tuple-element(param), index=0 b = s32[2] get-tuple-element(param), index=1 c = s32[3] get-tuple-element(param), index=2 ROOT cond = pred[] constant(true) } ENTRY Loop { a = s32[1] constant({0}) b = s32[2] constant({1,1}) c = s32[3] constant({2,2,2}) init = (s32[1], s32[2], s32[3]) tuple(a,b,c) ROOT while = (s32[1], s32[2], s32[3]) while(init), condition=Cond, body=Body })"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE(WhileLoopSimplifier().Run(m.get()).value()); EXPECT_TRUE(HloDCE().Run(m.get()).ok()); EXPECT_TRUE(TupleSimplifier().Run(m.get()).ok()); HloInstruction* new_while = FindFirstWhile(m.get()); Shape new_while_shape = ParseShape("(s32[1], s32[3])").value(); EXPECT_TRUE(ShapeUtil::Equal(new_while->shape(), new_while_shape)); EXPECT_TRUE(ShapeUtil::Equal( new_while->while_body()->root_instruction()->shape(), new_while_shape)); EXPECT_TRUE(ShapeUtil::Equal( new_while->while_body()->parameter_instruction(0)->shape(), new_while_shape)); EXPECT_TRUE(ShapeUtil::Equal( new_while->while_condition()->parameter_instruction(0)->shape(), new_while_shape)); EXPECT_TRUE( ShapeUtil::Equal(m->entry_computation()->root_instruction()->shape(), ParseShape("(s32[1], s32[2], s32[3])").value())); EXPECT_THAT(m->entry_computation()->root_instruction(), op::Tuple(_, op::Constant(), _)); } const char* const kSimpleMergeInductionVariablesModule = R"( HloModule Test Body { param = (TYPE[], TYPE[], TYPE[]) parameter(0) a = TYPE[] get-tuple-element(param), index=0 one = TYPE[] constant(1) a1 = TYPE[] add(a, one) b = TYPE[] get-tuple-element(param), index=1 negone = TYPE[] constant(-1) b1 = TYPE[] add(b, negone) c = TYPE[] add(a, b) ROOT tuple = (TYPE[], TYPE[], TYPE[]) tuple(a1,b1,c) } Cond { param = (TYPE[], TYPE[], TYPE[]) parameter(0) a = TYPE[] get-tuple-element(param), index=0 b = TYPE[] get-tuple-element(param), index=1 sum = TYPE[] power(a, b) ten = TYPE[] constant(10) ROOT cond = pred[] compare(sum, ten), directi
1,839
cpp
tensorflow/tensorflow
hlo_parser
third_party/xla/xla/service/hlo_parser.cc
third_party/xla/xla/service/hlo_parser_test.cc
#ifndef XLA_SERVICE_HLO_PARSER_H_ #define XLA_SERVICE_HLO_PARSER_H_ #include <memory> #include <vector> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_lexer.h" #include "xla/xla_data.pb.h" namespace xla { absl::StatusOr<std::unique_ptr<HloModule>> ParseAndReturnUnverifiedModule( absl::string_view str, const HloModuleConfig& config); absl::StatusOr<std::unique_ptr<HloModule>> ParseAndReturnUnverifiedModule( absl::string_view str); absl::StatusOr<HloSharding> ParseSharding(absl::string_view str); absl::StatusOr<FrontendAttributes> ParseFrontendAttributes( absl::string_view str); absl::StatusOr<StatisticsViz> ParseStatisticsViz(absl::string_view str); absl::StatusOr<std::vector<bool>> ParseParameterReplication( absl::string_view str); absl::StatusOr<Window> ParseWindow(absl::string_view str); absl::StatusOr<ConvolutionDimensionNumbers> ParseConvolutionDimensionNumbers( absl::string_view str); absl::StatusOr<PaddingConfig> ParsePaddingConfig(absl::string_view str); absl::StatusOr<Shape> ParseShape(absl::string_view str); absl::StatusOr<Layout> ParseLayout(absl::string_view str); absl::StatusOr<std::vector<ReplicaGroup>> ParseReplicaGroupsOnly( absl::string_view str); class HloParser { public: virtual absl::Status Run(HloModule* module) = 0; virtual ~HloParser() {} private: static std::unique_ptr<HloParser> CreateHloParserForTests( absl::string_view str); friend class VerifiedHloModule; }; } #endif #include "xla/service/hlo_parser.h" #include <cmath> #include <complex> #include <cstdint> #include <functional> #include <iterator> #include <limits> #include <memory> #include <optional> #include <string> #include <tuple> #include <type_traits> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/casts.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/strings/strip.h" #include "absl/types/span.h" #include "Eigen/Core" #include "xla/comparison_util.h" #include "xla/hlo/ir/collective_device_list.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_domain_metadata.h" #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/ir/hlo_sharding_metadata.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/primitive_util.h" #include "xla/service/computation_layout.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_lexer.h" #include "xla/service/hlo_module_config.h" #include "xla/service/name_uniquer.h" #include "xla/service/shape_inference.h" #include "xla/shape.h" #include "xla/shape_layout.h" #include "xla/shape_util.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/lib/gtl/map_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace xla { namespace { using absl::StrAppend; using absl::StrCat; using absl::StrFormat; using absl::StrJoin; using std::nullopt; using std::optional; HloSchedule ScheduleFromInstructionOrder(HloModule* module) { HloSchedule schedule(module); for (HloComputation* computation : module->computations()) { if (!computation->IsFusionComputation()) { for (HloInstruction* instruction : computation->instructions()) { schedule.GetOrCreateSequence(computation).push_back(instruction); } } } return schedule; } bool CanInferShape(HloOpcode code) { switch (code) { case HloOpcode::kAbs: case HloOpcode::kAdd: case HloOpcode::kAddDependency: case HloOpcode::kAfterAll: case HloOpcode::kAtan2: case HloOpcode::kBatchNormGrad: case HloOpcode::kBatchNormInference: case HloOpcode::kBatchNormTraining: case HloOpcode::kBroadcast: case HloOpcode::kCall: case HloOpcode::kCeil: case HloOpcode::kCholesky: case HloOpcode::kClamp: case HloOpcode::kClz: case HloOpcode::kCompare: case HloOpcode::kComplex: case HloOpcode::kConcatenate: case HloOpcode::kConditional: case HloOpcode::kConvolution: case HloOpcode::kCopy: case HloOpcode::kCos: case HloOpcode::kOptimizationBarrier: case HloOpcode::kDivide: case HloOpcode::kDomain: case HloOpcode::kDot: case HloOpcode::kErf: case HloOpcode::kExp: case HloOpcode::kExpm1: case HloOpcode::kFft: case HloOpcode::kFloor: case HloOpcode::kGather: case HloOpcode::kGetDimensionSize: case HloOpcode::kSetDimensionSize: case HloOpcode::kGetTupleElement: case HloOpcode::kImag: case HloOpcode::kIsFinite: case HloOpcode::kLog: case HloOpcode::kLog1p: case HloOpcode::kLogistic: case HloOpcode::kAnd: case HloOpcode::kNot: case HloOpcode::kOr: case HloOpcode::kXor: case HloOpcode::kMap: case HloOpcode::kMaximum: case HloOpcode::kMinimum: case HloOpcode::kMultiply: case HloOpcode::kNegate: case HloOpcode::kPad: case HloOpcode::kPartitionId: case HloOpcode::kPopulationCount: case HloOpcode::kPower: case HloOpcode::kReal: case HloOpcode::kReduce: case HloOpcode::kRemainder: case HloOpcode::kReplicaId: case HloOpcode::kReverse: case HloOpcode::kRoundNearestAfz: case HloOpcode::kRoundNearestEven: case HloOpcode::kRsqrt: case HloOpcode::kScatter: case HloOpcode::kSelect: case HloOpcode::kShiftLeft: case HloOpcode::kShiftRightArithmetic: case HloOpcode::kShiftRightLogical: case HloOpcode::kSign: case HloOpcode::kSin: case HloOpcode::kSqrt: case HloOpcode::kCbrt: case HloOpcode::kReduceWindow: case HloOpcode::kSelectAndScatter: case HloOpcode::kSort: case HloOpcode::kSubtract: case HloOpcode::kTan: case HloOpcode::kTanh: case HloOpcode::kTranspose: case HloOpcode::kTriangularSolve: case HloOpcode::kTuple: case HloOpcode::kWhile: case HloOpcode::kTopK: return true; case HloOpcode::kAsyncStart: case HloOpcode::kAsyncUpdate: case HloOpcode::kAsyncDone: case HloOpcode::kAllGather: case HloOpcode::kAllGatherStart: case HloOpcode::kAllGatherDone: case HloOpcode::kAllReduce: case HloOpcode::kAllReduceStart: case HloOpcode::kAllReduceDone: case HloOpcode::kAllToAll: case HloOpcode::kCollectiveBroadcast: case HloOpcode::kCollectivePermute: case HloOpcode::kCollectivePermuteStart: case HloOpcode::kCollectivePermuteDone: case HloOpcode::kCopyDone: case HloOpcode::kCopyStart: case HloOpcode::kDynamicReshape: case HloOpcode::kDynamicSlice: case HloOpcode::kDynamicUpdateSlice: case HloOpcode::kRecv: case HloOpcode::kRecvDone: case HloOpcode::kReduceScatter: case HloOpcode::kSend: case HloOpcode::kSendDone: case HloOpcode::kSlice: case HloOpcode::kBitcast: case HloOpcode::kBitcastConvert: case HloOpcode::kConstant: case HloOpcode::kConvert: case HloOpcode::kCustomCall: case HloOpcode::kFusion: case HloOpcode::kInfeed: case HloOpcode::kIota: case HloOpcode::kOutfeed: case HloOpcode::kParameter: case HloOpcode::kReducePrecision: case HloOpcode::kReshape: case HloOpcode::kRng: case HloOpcode::kRngBitGenerator: case HloOpcode::kRngGetAndUpdateState: case HloOpcode::kStochasticConvert: return false; } } class HloParserImpl : public HloParser { public: using LocTy = HloLexer::LocTy; using BoolList = absl::InlinedVector<bool, 1>; explicit HloParserImpl(absl::string_view str) : lexer_(str) {} absl::Status Run(HloModule* module) override; std::string GetError() const { return StrJoin(error_, "\n"); } absl::StatusOr<Shape> ParseShapeOnly(); absl::StatusOr<Layout> ParseLayoutOnly(); absl::StatusOr<HloSharding> ParseShardingOnly(); absl::StatusOr<FrontendAttributes> ParseFrontendAttributesOnly(); absl::StatusOr<StatisticsViz> ParseStatisticsVizOnly(); absl::StatusOr<std::vector<bool>> ParseParameterReplicationOnly(); absl::StatusOr<BoolList> ParseBooleanListOrSingleBooleanOnly(); absl::StatusOr<Window> ParseWindowOnly(); absl::StatusOr<ConvolutionDimensionNumbers> ParseConvolutionDimensionNumbersOnly(); absl::StatusOr<PaddingConfig> ParsePaddingConfigOnly(); absl::StatusOr<std::vector<ReplicaGroup>> ParseReplicaGroupsOnly(); private: enum class AttrTy { kBool, kInt64, kInt32, kFloat, kString, kLiteral, kBracedInt64List, kBracedInt64ListList, kHloComputation, kBracedHloComputationList, kFftType, kPaddingType, kComparisonDirection, kComparisonType, kWindow, kConvolutionDimensionNumbers, kSharding, kFrontendAttributes, kStatisticsViz, kBracedBoolListOrBool, kParameterReplication, kInstructionList, kSliceRanges, kPaddingConfig, kMetadata, kFusionKind, kDistribution, kDomain, kPrecisionList, kShape, kShapeList, kEnum, kRandomAlgorithm, kPrecisionAlgorithm, kAliasing, kBufferDonor, kComputationLayout, kInstructionAliasing, kCustomCallSchedule, kCustomCallApiVersion, kSparsityDescriptor, kStringOrJsonDict, }; struct AttrConfig { bool required; AttrTy attr_type; void* result; }; using InstrNameTable = absl::flat_hash_map<std::string, std::pair<HloInstruction*, LocTy>>; InstrNameTable& current_name_table() { return scoped_name_tables_.back(); } std::pair<HloInstruction*, LocTy>* FindInstruction( const std::string& name, const optional<Shape>& shape = nullopt); bool ParseSingleInstruction(HloModule* module); bool ParseHloModule(HloModule* module, bool parse_module_without_header = false); bool ParseComputations(HloModule* module); bool ParseComputation(HloComputation** entry_computation); bool ParseInstructionList(HloComputation** computation, const std::string& computation_name); bool ParseInstruction(HloComputation::Builder* builder, std::string* root_name); bool ParseInstructionRhs(HloComputation::Builder* builder, std::string name, LocTy name_loc, bool allow_attributes = true); bool ParseControlPredecessors(HloInstruction* instruction); bool ParseLiteral(Literal* literal); bool ParseLiteral(Literal* literal, const Shape& shape); bool ParseTupleLiteral(Literal* literal, const Shape& shape); bool ParseNonTupleLiteral(Literal* literal, const Shape& shape); bool ParseDenseLiteral(Literal* literal, const Shape& shape); HloInstruction* CreateInstruction( HloComputation::Builder* builder, absl::string_view name, std::optional<Shape> shape, HloOpcode opcode, std::optional<HloOpcode> async_wrapped_opcode, absl::flat_hash_map<std::string, AttrConfig>& attrs, bool allow_attributes, std::vector<HloInstruction*>* preset_operands = nullptr); bool SetValueInLiteral(LocTy loc, int64_t value, int64_t index, Literal* literal); bool SetValueInLiteral(LocTy loc, double value, int64_t index, Literal* literal); bool SetValueInLiteral(LocTy loc, bool value, int64_t index, Literal* literal); bool SetValueInLiteral(LocTy loc, std::complex<double> value, int64_t index, Literal* literal); template <typename LiteralNativeT, typename ParsedElemT> bool SetValueInLiteralHelper(LocTy loc, ParsedElemT value, int64_t index, Literal* literal); template <typename LiteralNativeT, typename ParsedElemT> bool CheckParsedValueIsInRange(LocTy loc, ParsedElemT value); template <typename LiteralNativeT> bool CheckParsedValueIsInRange(LocTy loc, std::complex<double> value); bool ParseOperands(std::vector<HloInstruction*>* operands, HloComputation::Builder* builder); bool ParseOperands(std::vector<HloInstruction*>* operands, HloComputation::Builder* builder, int expected_size); struct SliceRanges { std::vector<int64_t> starts; std::vector<int64_t> limits; std::vector<int64_t> strides; }; struct DomainData { std::unique_ptr<DomainMetadata> entry_metadata; std::unique_ptr<DomainMetadata> exit_metadata; }; bool ParseAttributes( const absl::flat_hash_map<std::string, AttrConfig>& attrs, bool allow_attributes = true); bool ParseSubAttributes( const absl::flat_hash_map<std::string, AttrConfig>& attrs); bool ParseAttributeHelper( const absl::flat_hash_map<std::string, AttrConfig>& attrs, absl::flat_hash_set<std::string>* seen_attrs); bool CopyAttributeToProtoMessage( absl::flat_hash_set<std::string> non_proto_attrs, const absl::flat_hash_map<std::string, AttrConfig>& attrs, tsl::protobuf::Message* message); bool ParseAttributesAsProtoMessage( const absl::flat_hash_map<std::string, AttrConfig>& non_proto_attrs, tsl::protobuf::Message* message); bool ParseComputationName(HloComputation** value); bool ParseInstructionNames(std::vector<HloInstruction*>* instructions); bool ParseWindow(Window* window, bool expect_outer_curlies); bool ParseConvolutionDimensionNumbers(ConvolutionDimensionNumbers* dnums); bool ParsePaddingConfig(PaddingConfig* padding); bool ParseMetadata(OpMetadata* metadata); bool ParseSingleOrListMetadata( tsl::protobuf::RepeatedPtrField<OpMetadata>* metadata); bool ParseOpShardingType(OpSharding::Type* type); bool ParseListShardingType(std::vector<OpSharding::Type>* types); bool ParseSharding(OpSharding* sharding); bool ParseFrontendAttributes(FrontendAttributes* frontend_attributes); bool ParseStatisticsViz(StatisticsViz* statistics_viz); bool ParseSingleSharding(OpSharding* sharding, bool lbrace_pre_lexed); bool ParseParameterReplication(ParameterReplication* parameter_replication); bool ParseBooleanListOrSingleBoolean(BoolList* boolean_list); bool ParseReplicaGroupsOnly(std::vector<ReplicaGroup>* replica_groups); bool ParseDomain(DomainData* domain); bool ParseDxD(const std::string& name, std::vector<int64_t>* result); bool ParseWindowPad(std::vector<std::vector<int64_t>>* pad); bool ParseSliceRanges(SliceRanges* result); bool ParsePrecisionList(std::vector<PrecisionConfig::Precision>* result); bool ParseHloComputation(HloComputation** result); bool ParseHloComputationList(std::vector<HloComputation*>* result); bool ParseShapeList(std::vector<Shape>* result); bool ParseInt64List(TokKind start, TokKind end, TokKind delim, std::vector<int64_t>* result); bool ParseInt64ListList(TokKind start, TokKind end, TokKind delim, std::vector<std::vector<int64_t>>* result); bool ParseList(TokKind start, TokKind end, TokKind delim, absl::FunctionRef<bool()> parse_and_add_item); bool ParseParamListToShape(Shape* shape, LocTy* shape_loc); bool ParseParamList(); bool ParseName(std::string* result); bool ParseAttributeName(std::string* result); bool ParseString(std::string* result); bool ParseJsonDict(std::string* result); bool ParseDimensionSizes(std::vector<int64_t>* dimension_sizes, std::vector<bool>* dynamic_dimensions); bool ParseShape(Shape* result); bool ParseLayout(Layout* layout); bool ParseLayoutIntAttribute(int64_t* attr_value, absl::string_view attr_description); bool ParseDimLevelTypes( absl::InlinedVector<DimLevelType, InlineRank()>* dim_level_types, absl::InlinedVector<bool, InlineRank()>* dim_unique, absl::InlinedVector<bool, InlineRank()>* dim_ordered); bool ParseTiles(std::vector<Tile>* tiles); bool ParseSplitConfigs(std::vector<SplitConfig>& split_configs); bool ParsePhysicalShape(Shape* physical_shape); bool ParseOpcode(HloOpcode* opcode, std::optional<HloOpcode>* async_wrapped_opcode); bool ParseFftType(FftType* result); bool ParsePaddingType(PaddingType* result); bool ParsePrimitiveType(PrimitiveType* result); bool ParseComparisonDirection(ComparisonDirection* result); bool ParseComparisonType(Comparison::Type* result); bool ParseFusionKind(HloInstruction::FusionKind* result); bool ParseRandomDistribution(RandomDistribution* result); bool ParseRandomAlgorithm(RandomAlgorithm* result); bool ParsePrecision(PrecisionConfig::Precision* result); bool ParseAlgorithm(PrecisionConfig::Algorithm* result); bool ParseInt64(int64_t* result); bool ParseDouble(double* result); bool ParseComplex(std::complex<double>* result); bool ParseBool(bool* result); bool ParseToken(TokKind kind, const std::string& msg); bool ParseUnsignedIntegerType(PrimitiveType* primitive_type); using AliasingData = absl::flat_hash_map<ShapeIndex, HloInputOutputAliasConfig::Alias>; using BufferDonor = absl::flat_hash_set<HloBufferDonorConfig::BufferDonor>; bool ParseAliasing(AliasingData* data); bool ParseBufferDonor(BufferDonor* data); bool ParseComputationLayout(ComputationLayout* computation_layout); bool ParseInstructionOutputOperandAliasing( std::vector<std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>>* aliasing_output_operand_pairs); bool ParseCustomCallSchedule(CustomCallSchedule* result); bool ParseCustomCallApiVersion(CustomCallApiVersion* result); bool ParseSparsityDescriptor(std::vector<SparsityDescriptor>* result); bool ParseShapeIndex(ShapeIndex* out); bool CanBeShape(); bool CanBeParamListToShape(); bool TokenError(absl::string_view msg); bool Error(LocTy loc, absl::string_view msg); bool EatIfPresent(TokKind kind); bool AddInstruction(const std::string& name, HloInstruction* instruction, LocTy name_loc); bool AddComputation(const std::string& name, HloComputation* computation, LocTy name_loc); HloLexer lexer_; std::vector<InstrNameTable> scoped_name_tables_; class Scope { public: explicit Scope(std::vector<InstrNameTable>* scoped_name_tables) : scoped_name_tables_(scoped_name_tables) { scoped_name_tables_->emplace_back(); } ~Scope() { scoped_name_tables_->pop_back(); } private: std::vector<InstrNameTable>* scoped_name_tables_; }; absl::flat_hash_map<std::string, std::pair<HloComputation*, LocTy>> computation_pool_; std::vector<std::unique_ptr<HloComputation>> computations_; std::vector<std::string> error_; std::function<std::pair<HloInstruction*, LocTy>*(const std::string& name, const Shape& shape)> create_missing_instruction_; NameUniquer name_uniquer_{"."}; }; bool SplitToInt64s(absl::string_view s, char delim, std::vector<int64_t>* out) { for (const auto& split : absl::StrSplit(s, delim)) { int64_t val; if (!absl::SimpleAtoi(split, &val)) { return false; } out->push_back(val); } return true; } std::vector<ReplicaGroup> CreateReplicaGroups( absl::Span<const std::vector<int64_t>> groups) { std::vector<ReplicaGroup> replica_groups; absl::c_transform(groups, std::back_inserter(replica_groups), [](const std::vector<int64_t>& ids) { ReplicaGroup group; *group.mutable_replica_ids() = {ids.begin(), ids.end()}; return group; }); return replica_groups; } bool HloParserImpl::Error(LocTy loc, absl::string_view msg) { auto line_col = lexer_.GetLineAndColumn(loc); const unsigned line = line_col.first; const unsigned col = line_col.second; std::vector<std::string> error_lines; error_lines.push_back( StrCat("was parsing ", line, ":", col, ": error: ", msg)); error_lines.emplace_back(lexer_.GetLine(loc)); error_lines.push_back(col == 0 ? "" : StrCat(std::string(col - 1, ' '), "^")); error_.push_back(StrJoin(error_lines, "\n")); VLOG(1) << "Error: " << error_.back(); return false; } bool HloParserImpl::TokenError(absl::string_view msg) { return Error(lexer_.GetLoc(), msg); } absl::Status HloParserImpl::Run(HloModule* module) { lexer_.Lex(); if ((lexer_.GetKind() == TokKind::kw_HloModule) || (lexer_.GetKind() == TokKind::kw_ENTRY) || (lexer_.LookAhead() == TokKind::kLbrace)) { bool parse_module_without_header = (lexer_.GetKind() == TokKind::kw_HloModule) ? false : true; if (!ParseHloModule(module, parse_module_without_header)) { return InvalidArgument( "Syntax error when trying to parse the text as a HloModule:\n%s", GetError()); } return absl::OkStatus(); } if (!ParseSingleInstruction(module)) { return InvalidArgument( "Syntax error when trying to parse the text as a single " "HloInstruction:\n%s", GetError()); } return absl::OkStatus(); } std::pair<HloInstruction*, HloParserImpl::LocTy>* HloParserImpl::FindInstruction(const std::string& name, const optional<Shape>& shape) { std::pair<HloInstruction*, LocTy>* instr = nullptr; if (!name.empty()) { instr = tsl::gtl::FindOrNull(current_name_table(), name); }
#include "xla/service/hlo_parser.h" #include <memory> #include <string> #include <string_view> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/strings/ascii.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_frontend_attributes.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/verified_hlo_module.h" #include "xla/window_util.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace { namespace m = ::xla::match; using ::absl::string_view; using ::testing::ElementsAre; using ::testing::HasSubstr; struct TestData { std::string test_name; std::string module_string; int64_t replica_count = 1; bool enable_verification = true; }; std::string TestDataToString(const ::testing::TestParamInfo<TestData>& data) { return data.param.test_name; } struct NonRoundtripTestData { std::string test_name; std::string input_module_string; std::string output_module_string; }; std::string NonRoundtripTestDataToString( const ::testing::TestParamInfo<NonRoundtripTestData>& data) { return data.param.test_name; } std::vector<TestData> CreateTestCases() { return std::vector<TestData>({ { "AxpyParam", R"(HloModule axpy_module, entry_computation_layout={(f32[], f32[2,4]{1,0}, f32[2,4]{1,0})->f32[2,4]{1,0}} ENTRY %axpy.v5 (alpha: f32[], x: f32[2,4], y: f32[2,4]) -> f32[2,4] { %alpha = f32[] parameter(0) %broadcast = f32[2,4]{1,0} broadcast(f32[] %alpha), dimensions={} %x = f32[2,4]{1,0} parameter(1) %multiply = f32[2,4]{1,0} multiply(f32[2,4]{1,0} %broadcast, f32[2,4]{1,0} %x) %y = f32[2,4]{1,0} parameter(2) ROOT %add = f32[2,4]{1,0} add(f32[2,4]{1,0} %multiply, f32[2,4]{1,0} %y) } )" }, { "ParamReplication", R"(HloModule param_replication_module, entry_computation_layout={(f32[], (f32[2,4]{1,0}, (f32[2,4]{1,0})))->(f32[], (f32[2,4]{1,0}, (f32[2,4]{1,0})))} ENTRY %param_replication (a: f32[], b: (f32[2,4], (f32[2,4]))) -> (f32[], (f32[2,4], (f32[2,4]))) { %a = f32[] parameter(0), parameter_replication={true} %b = (f32[2,4]{1,0}, (f32[2,4]{1,0})) parameter(1), parameter_replication={false,true} ROOT %tuple = (f32[], (f32[2,4]{1,0}, (f32[2,4]{1,0}))) tuple(f32[] %a, (f32[2,4]{1,0}, (f32[2,4]{1,0})) %b) } )" }, { "ConstantPred", R"(HloModule constant_pred_module, entry_computation_layout={()->pred[]} ENTRY %constant_pred () -> pred[] { ROOT %constant = pred[] constant(true), metadata={op_type="const" op_name="\"it\'s not a problem\n" source_file="path/to/test.cc" source_line=68}, backend_config="foo\" bar" } )" }, { "ConstantPredArray", R"(HloModule module, entry_computation_layout={()->pred[2,3]{1,0}} ENTRY %constant_pred_array () -> pred[2,3] { ROOT %constant = pred[2,3]{1,0} constant({ { 0, 1, 0 }, { 1, 0, 1 } }) } )" }, { "ConstantS32", R"(HloModule constant_s32_module, entry_computation_layout={()->s32[]} ENTRY %constant_s32 () -> s32[] { ROOT %constant = s32[] constant(-42) } )" }, { "ConstantS32WithStatistics", R"(HloModule constant_s32_module, entry_computation_layout={()->s32[]} ENTRY %constant_s32 () -> s32[] { ROOT %constant = s32[] constant(-42), statistics={visualizing_index=1,stat-1=33,stat-2=44} } )" }, { "ConstantF32", R"(HloModule ConstantF32_module, entry_computation_layout={()->f32[]} ENTRY %ConstantF32.v4 () -> f32[] { ROOT %constant = f32[] constant(42), backend_config="this is a configuration" } )" }, { "ConstantF32R1Empty", R"(HloModule ConstantF32Empty_module, entry_computation_layout={()->f32[0]{0}} ENTRY %ConstantF32Empty.v4 () -> f32[0] { ROOT %constant = f32[0]{0} constant({}) } )" }, { "ConstantF32R4Empty", R"(HloModule ConstantF32R4Empty_module, entry_computation_layout={()->f32[2,0,4,3]{3,2,1,0}} ENTRY %ConstantF32R4Empty.v4 () -> f32[2,0,4,3] { ROOT %constant = f32[2,0,4,3]{3,2,1,0} constant({ { }, { } }) } )" }, { "Constant4D", R"(HloModule Small_3x2x1x1_module, entry_computation_layout={()->f32[3,2,1,1]{3,2,1,0}} ENTRY %Small_3x2x1x1.v1 () -> f32[3,2,1,1] { ROOT %constant = f32[3,2,1,1]{3,2,1,0} constant({ { { {-1} }, { {4.1} } }, { { {2} }, { {4.1} } }, { { {5} }, { {4.4} } } }) } )" }, { "ConstantNonFinite", R"(HloModule IsFiniteR1F32s_module, entry_computation_layout={()->pred[6]{0}} ENTRY %IsFiniteR1F32s.v2 () -> pred[6] { %constant = f32[6]{0} constant({nan, 7, nan, -1, inf, -inf}) ROOT %is-finite = pred[6]{0} is-finite(f32[6]{0} %constant) } )" }, { "ConstantNonFiniteE4M3", R"(HloModule ConstantR1F8E4M3FNs_module, entry_computation_layout={()->f8e4m3fn[3]{0}} ENTRY %IsFiniteR1F32s.v2 () -> f8e4m3fn[3] { ROOT %constant = f8e4m3fn[3]{0} constant({nan, 7, -nan}) } )" }, { "ConstantNonFiniteE4M3B11", R"(HloModule ConstantR1F8E4M3B11_module, entry_computation_layout={()->f8e4m3b11fnuz[2]{0}} ENTRY %IsFiniteR1F32s.v2 () -> f8e4m3b11fnuz[2] { ROOT %constant = f8e4m3b11fnuz[2]{0} constant({-nan, 7}) } )" }, { "ConstantF16", R"(HloModule ConstantF16_module, entry_computation_layout={()->f16[]} ENTRY %ConstantF16.v4 () -> f16[] { ROOT %constant = f16[] constant(500) } )" }, { "BF16", R"(HloModule BF16, entry_computation_layout={()->bf16[]} ENTRY %BF16.v4 () -> bf16[] { ROOT %constant = bf16[] constant(500) } )" }, { "AddConstants", R"(HloModule add_constants_module, entry_computation_layout={()->f32[]} ENTRY %add_constants () -> f32[] { %constant = f32[] constant(3.14) ROOT %add = f32[] add(f32[] %constant, f32[] %constant) } )" }, { "TupleConstant", R"(HloModule TupleConstant_module, entry_computation_layout={()->(f32[2,1]{1,0}, f32[2]{0})} ENTRY %TupleConstant.v1 () -> (f32[2,1], f32[2]) { ROOT %constant = (f32[2,1]{1,0}, f32[2]{0}) constant(( { {1}, {2} }, {2, 42} )) } )" }, { "SelectR1F32", R"(HloModule SelectR1F32WithCmpR1F32sFromParamsSmall_module, entry_computation_layout={(f32[4]{0}, f32[4]{0})->f32[4]{0}} ENTRY %SelectR1F32WithCmpR1F32sFromParamsSmall.v4 (v1: f32[4], v2: f32[4]) -> f32[4] { %v1 = f32[4]{0} parameter(0), sharding={maximal device=1} %v2 = f32[4]{0} parameter(1), sharding={maximal device=1} %greater-than = pred[4]{0} compare(f32[4]{0} %v1, f32[4]{0} %v2), direction=GT, type=TOTALORDER, sharding={replicated} ROOT %select = f32[4]{0} select(pred[4]{0} %greater-than, f32[4]{0} %v1, f32[4]{0} %v2), sharding={replicated} } )" }, { "EmptyTupleCreate", R"(HloModule EmptyTupleCreate_module, entry_computation_layout={()->()} ENTRY %EmptyTupleCreate.v1 () -> () { ROOT %tuple = () tuple() } )" }, { "TupleCreate", R"(HloModule TupleCreate_module, entry_computation_layout={(f32[], f32[3]{0}, f32[2,3]{1,0})->(f32[], f32[3]{0}, f32[2,3]{1,0})} ENTRY %TupleCreate.v4 (v1: f32[], v2: f32[3], v3: f32[2,3]) -> (f32[], f32[3], f32[2,3]) { %v1 = f32[] parameter(0) %v2 = f32[3]{0} parameter(1) %v3 = f32[2,3]{1,0} parameter(2) ROOT %tuple = (f32[], f32[3]{0}, f32[2,3]{1,0}) tuple(f32[] %v1, f32[3]{0} %v2, f32[2,3]{1,0} %v3) } )" }, { "LargeTupleRoundTrip", R"(HloModule LargeTupleRoundTrip_module, entry_computation_layout={(f32[])->(f32[], f32[], f32[], f32[], f32[], f32[])} ENTRY %TupleCreate.v4 (v: f32[]) -> (f32[], f32[], f32[], f32[], f32[], f32[]) { %v = f32[] parameter(0) ROOT %tuple = (f32[], f32[], f32[], f32[], f32[], f32[]) tuple(f32[] %v, f32[] %v, f32[] %v, f32[] %v, f32[] %v, f32[] %v) } )" }, { "ShardedTupleCreate", R"(HloModule ShardedTupleCreate_module, entry_computation_layout={(f32[], f32[3]{0}, f32[2,3]{1,0})->(f32[], f32[3]{0}, f32[2,3]{1,0})} ENTRY %ShardedTupleCreate.v4 (v1: f32[], v2: f32[3], v3: f32[2,3]) -> (f32[], f32[3], f32[2,3]) { %v1 = f32[] parameter(0), sharding={manual} %v2 = f32[3]{0} parameter(1) %v3 = f32[2,3]{1,0} parameter(2) ROOT %tuple = (f32[], f32[3]{0}, f32[2,3]{1,0}) tuple(f32[] %v1, f32[3]{0} %v2, f32[2,3]{1,0} %v3), sharding={{manual}, {maximal device=0}, {replicated}} } )" }, { "DomainParsing", R"(HloModule DomainParsing_module, entry_computation_layout={(f32[])->f32[]} ENTRY %DomainParsing (v1: f32[]) -> f32[] { %v1 = f32[] parameter(0) ROOT %dom = f32[] domain(f32[] %v1), domain={kind="sharding", entry={maximal device=0}, exit={maximal device=1}} } )" }, { "WhileWithScalarS32Result", R"(HloModule WhileWithScalarS32Result_module, entry_computation_layout={()->s32[]} %body.v3 (prev.1: s32[]) -> s32[] { %constant = s32[] constant(1) %prev.1 = s32[] parameter(0) ROOT %add = s32[] add(s32[] %constant, s32[] %prev.1) } %condition.v3 (prev.2: s32[]) -> pred[] { %constant.1 = s32[] constant(5) %prev.2 = s32[] parameter(0) ROOT %greater-than = pred[] compare(s32[] %constant.1, s32[] %prev.2), direction=GT } ENTRY %WhileWithScalarS32Result.v2 () -> s32[] { %constant.2 = s32[] constant(0) ROOT %while = s32[] while(s32[] %constant.2), condition=%condition.v3, body=%body.v3 } )" }, { "CopyStartAndCopyDone", R"(HloModule CopyStartAndCopyDone_module, entry_computation_layout={(f32[], f32[2,3]{1,0:S(1)})->(f32[], f32[2,3]{1,0:S(2)})} ENTRY %CopyStartAndCopyDone (v1: f32[], v2: f32[2,3]) -> (f32[], f32[2,3]) { %v1 = f32[] parameter(0) %copy-start.1 = (f32[], f32[], u32[]) copy-start(f32[] %v1), cross_program_prefetch_index=0 %copy-done.1 = f32[] copy-done((f32[], f32[], u32[]) %copy-start.1) %v2 = f32[2,3]{1,0:S(1)} parameter(1) %copy-start.2 = (f32[2,3]{1,0:S(2)}, f32[2,3]{1,0:S(1)}, u32[]) copy-start(f32[2,3]{1,0:S(1)} %v2) %copy-done.2 = f32[2,3]{1,0:S(2)} copy-done((f32[2,3]{1,0:S(2)}, f32[2,3]{1,0:S(1)}, u32[]) %copy-start.2) ROOT %tuple = (f32[], f32[2,3]{1,0:S(2)}) tuple(f32[] %copy-done.1, f32[2,3]{1,0:S(2)} %copy-done.2) } )" }, { "SendRecv", R"(HloModule TwoSendRecvBothWayRecvFist_module, entry_computation_layout={()->(f32[], token[])} ENTRY %TwoSendRecvBothWayRecvFist.v3 () -> (f32[], token[]) { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15, sharding={{maximal device=1}, {replicated}, {replicated}} ROOT %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15, sharding={{maximal device=1}, {replicated}} %constant = f32[] constant(2.1), sharding={maximal device=0} %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0), channel_id=16, sharding={{maximal device=1}, {replicated}, {replicated}}, control-predecessors={%recv} %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16, sharding={maximal device=0} } )" }, { "SendRecvWithHostTransfer", R"(HloModule HostTransferSendRecv_module, entry_computation_layout={()->(f32[], token[])} ENTRY %TwoSendRecvBothWayRecvFist.v3 () -> (f32[], token[]) { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15, is_host_transfer=true ROOT %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15, is_host_transfer=true %constant = f32[] constant(2.1), sharding={maximal device=0} %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0), channel_id=16, is_host_transfer=true %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16, is_host_transfer=true } )" }, { "GetTupleElement", R"(HloModule GetTupleElement_module, entry_computation_layout={()->s32[2,3]{1,0}} ENTRY %GetTupleElement.v4 () -> s32[2,3] { %constant = f32[3]{0} constant({1, 2, 3}) %constant.1 = s32[2,3]{1,0} constant({ { 1, 2, 3 }, { 4, 5, 6 } }) %tuple = (f32[3]{0}, s32[2,3]{1,0}) tuple(f32[3]{0} %constant, s32[2,3]{1,0} %constant.1) ROOT %get-tuple-element = s32[2,3]{1,0} get-tuple-element((f32[3]{0}, s32[2,3]{1,0}) %tuple), index=1, sharding={maximal device=0} } )" }, { "Call", R"(HloModule CallR0F32IdentityScalar_module, entry_computation_layout={()->f32[]} %Identity.v1 (x: f32[]) -> f32[] { ROOT %x = f32[] parameter(0) } ENTRY %CallR0F32IdentityScalar.v2 () -> f32[] { %constant = f32[] constant(42) ROOT %call = f32[] call(f32[] %constant), to_apply=%Identity.v1 } )" }, { "CustomCallWithOpaque", R"(HloModule custom_call, entry_computation_layout={()->f32[1,2,3]{0,2,1}} ENTRY %CustomCall () -> f32[1,2,3] { %constant = f32[1]{0} constant({12345}) ROOT %custom-call = f32[1,2,3]{0,2,1} custom-call(f32[1]{0} %constant), custom_call_target="foo\"bar", backend_config="this string is opaque" } )" }, { "CustomCallWithBackendConfigInCurlyBraces", R"(HloModule custom_call, entry_computation_layout={()->f32[1,2,3]{0,2,1}} ENTRY %CustomCall () -> f32[1,2,3] { %constant = f32[1]{0} constant({12345}) ROOT %custom-call = f32[1,2,3]{0,2,1} custom-call(f32[1]{0} %constant), custom_call_target="foo\"bar", backend_config={key: "value"} } )" }, { "CustomCallWithLiteral", R"(HloModule custom_call, entry_computation_layout={()->f32[1,2,3]{0,2,1}} ENTRY %CustomCall () -> f32[1,2,3] { %constant = f32[1]{0} constant({12345}) ROOT %custom-call = f32[1,2,3]{0,2,1} custom-call(f32[1]{0} %constant), custom_call_target="foo\"bar", literal=s32[2]{0} {1, 2} } )" }, { "CustomCallWithLiteralTuple", R"(HloModule custom_call, entry_computation_layout={()->f32[1,2,3]{0,2,1}} ENTRY %CustomCall () -> f32[1,2,3] { %constant = f32[1]{0} constant({12345}) ROOT %custom-call = f32[1,2,3]{0,2,1} custom-call(f32[1]{0} %constant), custom_call_target="foo\"bar", literal=( s32[4]{0} {4, 128, 128, 3}, pred[4]{0} {1, 0, 0, 0} ) } )" }, { "CustomCallWithLiteralR0", R"(HloModule custom_call, entry_computation_layout={()->f32[1,2,3]{0,2,1}} ENTRY %CustomCall () -> f32[1,2,3] { %constant = f32[1]{0} constant({12345}) ROOT %custom-call = f32[1,2,3]{0,2,1} custom-call(f32[1]{0} %constant), custom_call_target="foo\"bar", literal=f32[] 0.1 } )" }, { "ReduceWindow", R"(HloModule R4UnitWindow_module, entry_computation_layout={(f32[13,12,8,15]{0,3,2,1})->f32[13,3,8,15]{0,3,2,1}} %add_F32.v3 (lhs: f32[], rhs: f32[]) -> f32[] { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %add = f32[] add(f32[] %lhs, f32[] %rhs) } ENTRY %R4UnitWindow.v3 (operand: f32[13,12,8,15]) -> f32[13,3,8,15] { %operand = f32[13,12,8,15]{0,3,2,1} parameter(0) %constant = f32[] constant(0) ROOT %reduce-window = f32[13,3,8,15]{0,3,2,1} reduce-window(f32[13,12,8,15]{0,3,2,1} %operand, f32[] %constant), window={size=1x1x7x1 stride=1x4x1x1 pad=0_0x0_0x3_3x0_0}, to_apply=%add_F32.v3 } )" }, { "ReduceWindowScalar", R"(HloModule reduce_window_scalar, entry_computation_layout={()->f32[]} %add_F32.v3 (lhs: f32[], rhs: f32[]) -> f32[] { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %add = f32[] add(f32[] %lhs, f32[] %rhs) } ENTRY %R4UnitWindowScalar () -> f32[] { %constant = f32[] constant(42) %constant.1 = f32[] constant(1) ROOT %reduce-window = f32[] reduce-window(f32[] %constant, f32[] %constant.1), to_apply=%add_F32.v3 } )" }, { "ReduceWindowVariadic", R"(HloModule reduce_window_variadic, entry_computation_layout={()->(f32[], f32[])} %add_F32.v3 (lhs1: f32[], lhs2: f32[], rhs1: f32[], rhs2: f32[]) -> (f32[], f32[]) { %lhs1 = f32[] parameter(0) %rhs1 = f32[] parameter(2) %add1 = f32[] add(f32[] %lhs1, f32[] %rhs1) %lhs2 = f32[] parameter(1) %rhs2 = f32[] parameter(3) %add2 = f32[] add(f32[] %lhs2, f32[] %rhs2) ROOT %tuple1 = (f32[], f32[]) tuple(f32[] %add1, f32[] %add2) } ENTRY %R4UnitWindowScalar () -> (f32[], f32[]) { %constant = f32[] constant(42) %constant.1 = f32[] constant(1) ROOT %reduce-window = (f32[], f32[]) reduce-window(f32[] %constant, f32[] %constant, f32[] %constant.1, f32[] %constant.1), to_apply=%add_F32.v3 } )" }, { "Convolution", R"(HloModule Convolve1D1Window_0_module, entry_computation_layout={(f32[1,2,1]{2,1,0}, f32[1,1,1]{2,1,0})->f32[1,2,1]{2,0,1}} ENTRY %Convolve1D1Window_0.v3 (input: f32[1,2,1], filter: f32[1,1,1]) -> f32[1,2,1] { %input = f32[1,2,1]{2,1,0} parameter(0) %copy = f32[1,2,1]{2,0,1} copy(f32[1,2,1]{2,1,0} %input) %filter = f32[1,1,1]{2,1,0} parameter(1) ROOT %convolution = f32[1,2,1]{2,0,1} convolution(f32[1,2,1]{2,0,1} %copy, f32[1,1,1]{2,1,0} %filter), window={size=1}, dim_labels=b0f_0io->b0f, operand_precision={high,default} } )" }, { "ConvolutionDynamic", R"(HloModule Convolve1D1Window_0_module, entry_computation_layout={(f32[1,2,1]{2,1,0}, f32[1,1,1]{2,1,0})->f32[1,2,1]{2,0,1}} ENTRY %Convolve1D1Window_0.v3 (input: f32[1,2,1], filter: f32[1,1,1]) -> f32[1,2,1] { %input = f32[1,2,1]{2,1,0} parameter(0) %copy = f32[1,2,1]{2,0,1} copy(f32[1,2,1]{2,1,0} %input) %filter = f32[1,1,1]{2,1,0} parameter(1) ROOT %custom-call.52 = f32[1,2,1]{2,0,1} custom-call(f32[1,2,1]{2,0,1} %copy, f32[1,1,1]{2,1,0} %filter), window={size=1}, dim_labels=b0f_0io->b0f, operand_precision={high,default}, custom_call_target="DynamicConvolutionForward", metadata={op_type="Conv2D" op_name="conv1d"} } )" }, { "ConvolutionR2", R"(HloModule ConvolveR2_module, entry_computation_layout={(f32[1,2]{1,0}, f32[2,2]{1,0})->f32[1,2]{0,1}} ENTRY %ConvolveR2.v3 (input: f32[1,2], filter: f32[2,2]) -> f32[1,2] { %input = f32[1,2]{1,0} parameter(0) %filter = f32[2,2]{1,0} parameter(1) ROOT %convolution = f32[1,2]{0,1} convolution(f32[1,2]{1,0} %input, f32[2,2]{1,0} %filter), dim_labels=bf_io->bf } )" }, { "ConvolutionBackward", R"(HloModule ConvolveBackward_module, entry_computation_layout={(f32[128,7,7,512]{0,3,2,1}, f32[3,3,512,512]{3,2,1,0})->f32[128,14,14,512]{0,3,2,1}} ENTRY %ConvolveBackward (input: f32[128,7,7,512], filter: f32[3,3,512,512]) -> f32[128,14,14,512] { %input = f32[128,7,7,512]{0,3,2,1} parameter(0) %filter = f32[3,3,512,512]{3,2,1,0} parameter(1) ROOT %convolution-base-dilated = f32[128,14,14,512]{0,3,2,1} convolution(f32[128,7,7,512]{0,3,2,1} %input, f32[3,3,512,512]{3,2,1,0} %filter), window={size=3x3 pad=1_2x1_2 lhs_dilate=2x2 rhs_reversal=1x1}, dim_labels=b01f_01oi->b01f } )" }, { "Reverse4D", R"(HloModule Reverse4DFloatArrayOnDim01_module, entry_computation_layout={()->f32[4,3,2,1]{0,1,2,3}} ENTRY %Reverse4DFloatArrayOnDim01.v2 () -> f32[4,3,2,1] { %constant = f32[4,3,2,1]{0,1,2,3} constant({ { { {1}, {2} }, { {3}, {4} }, { {5}, {6} } }, { { {7}, {8} }, { {9}, {10} }, { {11}, {12} } }, { { {13}, {14} }, { {15}, {16} }, { {17}, {18} } }, { { {19}, {20} }, { {21}, {22} }, { {23}, {24} } } }) ROOT %reverse = f32[4,3,2,1]{0,1,2,3} reverse(f32[4,3,2,1]{0,1,2,3} %constant), dimensions={0,1} } )" }, { "Concat", R"(HloModule Concat2x3With2x5_module, entry_computation_layout={()->f32[2,8]{1,0}} ENTRY %Concat2x3With2x5.v3 () -> f32[2,8] { %constant = f32[2,3]{1,0} constant({ { 0, 1, 2 }, { 1000, 1001, 1002 } }) %constant.1 = f32[2,5]{1,0} constant({ { 64, 65, 66, 67, 68 }, { 1064, 1065, 1066, 1067, 1068 } }) ROOT %concatenate = f32[2,8]{1,0} concatenate(f32[2,3]{1,0} %constant, f32[2,5]{1,0} %constant.1), dimensions={1} } )" }, { "SelectAndScatter", R"(HloModule R4F32OverlapSmall_module, entry_computation_layout={()->f32[4,5,1,1]{3,2,1,0}} %ge_F32.v3 (lhs: f32[], rhs: f32[]) -> pred[] { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %greater-than-or-equal-to = pred[] compare(f32[] %lhs, f32[] %rhs), direction=GE, type=TOTALORDER } %add_F32.v3 (lhs.1: f32[], rhs.1: f32[]) -> f32[] { %lhs.1 = f32[] parameter(0) %rhs.1 = f32[] parameter(1) ROOT %add = f32[] add(f32[] %lhs.1, f32[] %rhs.1) } ENTRY %R4F32OverlapSmall.v4 () -> f32[4,5,1,1] { %constant = f32[4,5,1,1]{3,2,1,0} constant({ { { {7} }, { {2} }, { {5} }, { {3} }, { {8} } }, { { {3} }, { {8} }, { {9} }, { {3} }, { {4} } }, { { {1} }, { {5} }, { {7} }, { {5} }, { {6} } }, { { {0} }, { {6} }, { {2} }, { {10} }, { {2} } } }) %constant.1 = f32[2,2,1,1]{3,2,1,0} constant({ { { {2} }, { {6} } }, { { {3} }, { {1} } } }) %constant.2 = f32[] constant(0) ROOT %select-and-scatter = f32[4,5,1,1]{3,2,1,0} select-and-scatter(f32[4,5,1,1]{3,2,1,0} %constant, f32[2,2,1,1]{3,2,1,0} %constant.1, f32[] %constant.2), window={size=2x3x1x1 stride=2x2x1x1}, select=%ge_F32.v3, scatter=%add_F32.v3 } )" }, { "SelectAndScatterScalar", R"(HloModule select_and_scatter_scalar, entry_computation_layout={()->f32[]} %ge_F32.v3 (lhs: f32[], rhs: f32[]) -> pred[] { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %greater-than-or-equal-to = pred[] compare(f32[] %lhs, f32[] %rhs), direction=GE } %add_F32.v3 (lhs.1: f32[], rhs.1: f32[]) -> f32[] { %lhs.1 = f32[] parameter(0) %rhs.1 = f32[] parameter(1) ROOT %add = f32[] add(f32[] %lhs.1, f32[] %rhs.1) } ENTRY %SelectAndScatterScalar () -> f32[] { %constant = f32[] constant(42) %constant.1 = f32[] constant(1) %constant.2 = f32[] constant(2) ROOT %select-and-scatter = f32[] select-and-scatter(f32[] %constant, f32[] %constant.1, f32[] %constant.2), select=%ge_F32.v3, scatter=%add_F32.v3 } )" }, { "Slice", R"(HloModule slice_module, entry_computation_layout={(f32[3,3,4,4]{3,2,1,0})->f32[3,3,2,4]{3,2,1,0}} ENTRY %slice.v2 (p0: f32[3,3,4,4]) -> f32[3,3,2,4] { %p0 = f32[3,3,4,4]{3,2,1,0} parameter(0) ROOT %slice = f32[3,3,2,4]{3,2,1,0} slice(f32[3,3,4,4]{3,2,1,0} %p0), slice={[0:3:1], [0:3:1], [0:4:2], [0:4:1]} } )" }, { "SliceNoStride", R"(HloModule Slice3x3x3_To_1x3x3_F32_module, entry_computation_layout={()->f32[1,3,3]{2,1,0}} ENTRY %Slice3x3x3_To_1x3x3_F32.v2 () -> f32[1,3,3] { %constant = f32[3,3,3]{2,1,0} constant({ { { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 } }, { { 9, 10, 11 }, { 12, 13, 14 }, { 15, 16, 17 } }, { { 18, 19, 20 }, { 21, 22, 23 }, { 24, 25, 26 } } }) ROOT %slice = f32[1,3,3]{2,1,0} slice(f32[3,3,3]{2,1,0} %constant), slice={[0:1], [0:3], [0:3]} } )" }, { "SliceR0", R"(HloModule SliceR0_module, entry_computation_layout={()->s32[]} ENTRY %SliceR0.v2 () -> s32[] { %constant = s32[] constant(1) ROOT %slice = s32[] slice(s32[] %constant), slice={} } )" }, { "Transpose", R"(HloModule Transpose_module, entry_computation_layout={()->s32[1,2,3]{2,1,0}} ENTRY %Transpose.v2 () -> s32[1,2,3] { %constant = s32[1,2,3]{2,1,0} constant({ { { 1, 2, 3 }, { 4, 5, 6 } } }) ROOT %transpose = s32[1,2,3]{2,1,0} transpose(s32[1,2,3]{2,1,0} %constant), dimensions={0,1,2} } )" }, { "TransposeC128", R"(HloModule TransposeC128_module, entry_computation_layout={(c128[1,2,3]{2,1,0})->c128[1,2,3]{2,1,0}} ENTRY %Transpose.v3 (input: c128[1,2,3]) -> c128[1,2,3] { %input = c128[1,2,3]{2,1,0} parameter(0) ROOT %transpose = c128[1,2,3]{2,1,0} transpose(c128[1,2,3]{2,1,0} %input), dimensions={0,1,2} } )" }, { "TriangularSolve", R"(HloModule TriangularSolve_module, entry_computation_layout={(f32[4,4]{1,0}, f32[3,4]{1,0})->f32[3,4]{1,0}} ENTRY %SimpleRightLowerNotranspose.4 (a.1: f32[4,4], b.2: f32[3,4]) -> f32[3,4] { %a.1 = f32[4,4]{1,0} parameter(0) %b.2 = f32[3,4]{1,0} parameter(1) ROOT %triangular-solve.3 = f32[3,4]{1,0} triangular-solve(f32[4,4]{1,0} %a.1, f32[3,4]{1,0} %b.2), lower=true, transpose_a=NO_TRANSPOSE } )" }, { "DynamicSlice", R"(HloModule DynamicSlice_module, entry_computation_layout={(s32[2,2,258]{2,1,0}, s32[1]{0})->s32[2,2,258]{2,1,0}} ENTRY %DynamicSlice.v5 (original_parameter: s32[2,2,258], start_index: s32[1]) -> s32[2,2,258] { %original_parameter = s32[2,2,258]{2,1,0} parameter(0) %constant = s32[1]{0} constant({0}) %start_index = s32[1]{0} parameter(1) %concatenate = s32[3]{0} concatenate(s32[1]{0} %constant, s32[1]{0} %constant, s32[1]{0} %start_index), dimensions={0} ROOT %dynamic-slice = s32[2,2,258]{2,1,0} dynamic-slice(s32[2,2,258]{2,1,0} %original_parameter, s32[3]{0} %concatenate), dynamic_slice_sizes={2,2,258} } )" }, { "DynamicSliceScalarIndices", R"(HloModule DynamicSlice_module, entry_computation_layout={(s32[2,2,258]{2,1,0}, s32[])->s32[2,2,258]{2,1,0}} ENTRY %DynamicSlice.v5 (original_parameter: s32[2,2,258], start_index: s32[]) -> s32[2,2,258] { %original_parameter = s32[2,2,258]{2,1,0} parameter(0) %constant = s32[] constant(0) %start_index = s32[] parameter(1) ROOT %dynamic-slice = s32[2,2,258]{2,1,0} dynamic-slice(s32[2,2,258]{2,1,0} %original_parameter, s32[] %constant, s32[] %constant, s32[] %start_index), dynamic_slice_sizes={2,2,258} } )" }, { "DynamicUpdateSlice", R"(HloModule DynamicSlice_module, entry_computation_layout={(s32[1,1,25,1]{3,2,1,0}, s32[1,1,2,1]{3,2,1,0}, s32[4]{0})->s32[1,1,25,1]{3,2,1,0}} ENTRY %DynamicUpdateSlice.v4 (input: s32[1,1,25,1], update: s32[1,1,2,1], start_indices: s32[4]) -> s32[1,1,25,1] { %input = s32[1,1,25,1]{3,2,1,0} parameter(0) %update = s32[1,1,2,1]{3,2,1,0} parameter(1) %start_indices = s32[4]{0} parameter(2) ROOT %dynamic-update-slice = s32[1,1,25,1]{3,2,1,0} dynamic-update-slice(s32[1,1,25,1]{3,2,1,0} %input, s32[1,1,2,1]{3,2,1,0} %update, s32[4]{0} %start_indices) } )" }, { "DynamicUpdateSliceScalarIndex", R"(HloModule DynamicUpdateSlice_module, entry_computation_layout={(s32[1,1,25,1]{3,2,1,0}, s32[1,1,2,1]{3,2,1,0}, s32[], s32[], s32[], s32[])->s32[1,1,25,1]{3,2,1,0}} ENTRY %DynamicUpdateSlice.v4 (input: s32[1,1,25,1], update: s32[1,1,2,1], start_index.0: s32[], start_index.1: s32[], start_index.2: s32[], start_index.3: s32[]) -> s32[1,1,25,1] { %input = s32[1,1,25,1]{3,2,1,0} parameter(0) %update = s32[1,1,2,1]{3,2,1,0} parameter(1) %start_index.0 = s32[] parameter(2) %start_index.1 = s32[] parameter(3) %start_index.2 = s32[] parameter(4) %start_index.3 = s32[] parameter(5) ROOT %dynamic-update-slice = s32[1,1,25,1]{3,2,1,0} dynamic-update-slice(s32[1,1,25,1]{3,2,1,0} %input, s32[1,1,2,1]{3,2,1,0} %update, s32[] %start_index.0, s32[] %start_index.1, s32[] %start_index.2, s32[] %start_index.3) } )" }, { "BatchNormTraining", R"(HloModule BasicTraining_module, entry_computation_layout={()->(f32[2,2,1,2]{3,2,1,0}, f32[2]{0}, f32[2]{0})} ENTRY %BasicTraining.v4 () -> (f32[2,2,1,2], f32[2], f32[2]) { %constant = f32[2,2,1,2]{3,2,1,0} constant({ { { { 1, 2 } }, { { 3, 4 } } }, { { { 5, 6 } }, { { 7, 8 } } } }) %constant.1 = f32[2]{0} constant({2, 3}) %constant.2 = f32[2]{0} constant({1, 2}) ROOT %batch-norm-training = (f32[2,2,1,2]{3,2,1,0}, f32[2]{0}, f32[2]{0}) batch-norm-training(f32[2,2,1,2]{3,2,1,0} %constant, f32[2]{0} %constant.1, f32[2]{0} %constant.2), epsilon=0.001, feature_index=3 } )" }, { "BatchNormInference", R"(HloModule BatchNormInference_module, entry_computation_layout={(f32[2,2,2,2]{3,2,1,0}, f32[2]{0}, f32[2]{0}, f32[2]{0}, f32[2]{0})->f32[2,2,2,2]{3,2,1,0}} ENTRY %BatchNormInference.v6 (input: f32[2,2,2,2], offset: f32[2], scale: f32[2], mean: f32[2], variance: f32[2]) -> f32[2,2,2,2] { %input = f32[2,2,2,2]{3,2,1,0} parameter(0) %offset = f32[2]{0} parameter(1) %scale = f32[2]{0} parameter(2) %mean = f32[2]{0} parameter(3) %variance = f32[2]{0} parameter(4) ROOT %batch-norm-inference = f32[2,2,2,2]{3,2,1,0} batch-norm-inference(f32[2,2,2,2]{3,2,1,0} %input, f32[2]{0} %offset, f32[2]{0} %scale, f32[2]{0} %mean, f32[2]{0} %variance), epsilon=0.001, feature_index=0 } )" }, { "BatchNormGrad", R"(HloModule BatchNormGrad_module, entry_computation_layout={(f32[2,2,2,2]{3,2,1,0}, f32[2]{0}, f32[2]{0}, f32[2]{0}, f32[2,2,2,2]{3,2,1,0})->(f32[2,2,2,2]{3,2,1,0}, f32[2]{0}, f32[2]{0})} ENTRY %BatchNormGrad.v4 (input: f32[2,2,2,2], scale: f32[2], mean: f32[2], variance: f32[2], grad_output: f32[2,2,2,2]) -> (f32[2,2,2,2], f32[2], f32[2]) { %input = f32[2,2,2,2]{3,2,1,0} parameter(0) %scale = f32[2]{0} parameter(1) %mean = f32[2]{0} parameter(2) %variance = f32[2]{0} parameter(3) %grad_output = f32[2,2,2,2]{3,2,1,0} parameter(4) ROOT %batch-norm-grad = (f32[2,2,2,2]{3,2,1,0}, f32[2]{0}, f32[2]{0}) batch-norm-grad(f32[2,2,2,2]{3,2,1,0} %input, f32[2]{0} %scale, f32[2]{0} %mean, f32[2]{0} %variance, f32[2,2,2,2]{3,2,1,0} %grad_output), epsilon=0.001, feature_index=0 } )" }, { "Fft", R"(HloModule Fft_module, entry_computation_layout={(c64[8,32]{1,0})->c64[8,32]{1,0}} ENTRY %Fft (input: c64[8,32]) -> c64[8,32] { %input = c64[8,32]{1,0} parameter(0) ROOT %fft = c64[8,32]{1,0} fft(c64[8,32]{1,0} %input), fft_type=FFT, fft_length={32} } )" }, { "Ifft2d", R"(HloModule Ifft2d_module, entry_computation_layout={(c64[5,8,32]{2,1,0})->c64[5,8,32]{2,1,0}} ENTRY %Ifft2d (input: c64[5,8,32]) -> c64[5,8,32] { %input = c64[5,8,32]{2,1,0} parameter(0) ROOT %fft = c64[5,8,32]{2,1,0} fft(c64[5,8,32]{2,1,0} %input), fft_type=IFFT, fft_length={8,32} } )" }, { "Rfft2d", R"(HloModule Rfft2d_module, entry_computation_layout={(f32[5,64,32]{2,1,0})->c64[5,64,17]{2,1,0}} ENTRY %Rfft2d (input: f32[5,64,32]) -> c64[5,64,17] { %input = f32[5,64,32]{2,1,0} parameter(0) ROOT %fft = c64[5,64,17]{2,1,0} fft(f32[5,64,32]{2,1,0} %input), fft_type=RFFT, fft_length={64,32} } )" }, { "Irfft3d", R"(HloModule Irfft3d_module, entry_computation_layout={(c64[5,64,128,33]{3,2,1,0})->f32[5,64,128,64]{3,2,1,0}} ENTRY %Irfft3d (input: c64[5,64,128,33]) -> f32[5,64,128,64] { %input = c64[5,64,128,33]{3,2,1,0} parameter(0) ROOT %fft = f32[5,64,128,64]{3,2,1,0} fft(c64[5,64,128,33]{3,2,1,0} %input), fft_type=IRFFT, fft_length={64,128,64} } )" }, { "Pad", R"(HloModule Pad1DS3Array_module, entry_computation_layout={()->f32[7]{0}} ENTRY %Pad1DS3Array.v3 () -> f32[7] { %constant = f32[3]{0} constant({1, 2, 3}) %constant.1 = f32[] constant(0.1) ROOT %pad = f32[7]{0} pad(f32[3]{0} %constant, f32[] %constant.1), padding=3_1 } )" }, { "PadHasInterior", R"(HloModule PadHasInterior_module, entry_computation_layout={(f32[1,25,7,7]{3,2,1,0})->f32[1,2
1,840
cpp
tensorflow/tensorflow
all_gather_combiner
third_party/xla/xla/service/all_gather_combiner.cc
third_party/xla/xla/service/all_gather_combiner_test.cc
#ifndef XLA_SERVICE_ALL_GATHER_COMBINER_H_ #define XLA_SERVICE_ALL_GATHER_COMBINER_H_ #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" #include "xla/xla_data.pb.h" namespace xla { class AllGatherCombiner : public HloModulePass { public: AllGatherCombiner(int64_t combine_threshold_in_bytes, int64_t combine_threshold_count, bool combine_by_dim); absl::string_view name() const override { return "all-gather-combiner"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: int64_t combine_threshold_in_bytes_; int64_t combine_threshold_count_; bool combine_by_dim_; }; } #endif #include "xla/service/all_gather_combiner.h" #include <algorithm> #include <cassert> #include <cstdint> #include <iterator> #include <limits> #include <memory> #include <numeric> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/hlo/utils/hlo_sharding_util.h" #include "xla/layout.h" #include "xla/service/collective_combiner_utils.h" #include "xla/service/hlo_domain_map.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" namespace xla { namespace { int64_t FindMostFrequentGatherDim( absl::Span<HloInstruction* const> to_combine) { assert(!to_combine.empty()); int64_t min_rank = std::numeric_limits<int64_t>::max(); std::vector<int64_t> frequency; for (const HloInstruction* it : to_combine) { int64_t dim = Cast<HloAllGatherInstruction>(it)->all_gather_dimension(); frequency.resize(std::max(dim + 1, static_cast<int64_t>(frequency.size())), 0); frequency[dim]++; min_rank = std::min(min_rank, it->shape().rank()); } int64_t most_frequent_dim = std::distance( frequency.begin(), std::max_element(frequency.begin(), frequency.end())); return most_frequent_dim < min_rank ? most_frequent_dim : 0; } absl::Status CombineAllGathers(absl::Span<HloInstruction* const> to_combine, bool combine_by_dim) { if (to_combine.size() < 2) { return absl::OkStatus(); } VLOG(1) << "Combined " << to_combine.size() << " AllGather ops"; HloComputation& computation = *to_combine.back()->parent(); std::vector<HloInstruction*> operands; std::vector<std::optional<std::vector<int64_t>>> operand_permutations; std::vector<Shape> output_shapes; int64_t most_frequent_dim = FindMostFrequentGatherDim(to_combine); VLOG(1) << "Combining set"; for (HloInstruction* hlo : to_combine) { VLOG(1) << "Set element: " << hlo->ToString(); TF_RET_CHECK(hlo->opcode() == HloOpcode::kAllGather); const auto* ag = Cast<HloAllGatherInstruction>(hlo); TF_RET_CHECK(hlo->operand_count() == 1); TF_RET_CHECK(hlo->shape().IsArray()); TF_RET_CHECK(!combine_by_dim || ag->all_gather_dimension() == most_frequent_dim); HloInstruction* operand = hlo->operands().front(); operands.push_back(operand); operand_permutations.emplace_back(); output_shapes.push_back(hlo->shape()); if (ag->all_gather_dimension() != most_frequent_dim) { const Shape& operand_shape = operand->shape(); auto& perm = operand_permutations.back(); perm = std::vector<int64_t>(operand_shape.rank()); std::iota(perm->begin(), perm->end(), 0); std::swap((*perm)[most_frequent_dim], (*perm)[ag->all_gather_dimension()]); operands.back() = computation.AddInstruction(HloInstruction::CreateBitcast( ShapeUtil::PermuteDimensions(*perm, operand_shape), operand)); output_shapes.back() = ShapeUtil::PermuteDimensions(*perm, hlo->shape()); } } HloInstruction* combined; combined = computation.AddInstruction(HloInstruction::CreateAllGather( ShapeUtil::MakeTupleShape(output_shapes), operands, most_frequent_dim, to_combine.front()->device_list(), false, to_combine.front()->channel_id(), Cast<HloAllGatherInstruction>(to_combine.front()) ->use_global_device_ids())); combined->set_sharding( hlo_sharding_util::CreateTupleSharding(combined->shape(), to_combine)); VLOG(1) << "Replacing with : " << combined->ToString(); for (int64_t i = 0; i < to_combine.size(); ++i) { HloInstruction* replacement = computation.AddInstruction( HloInstruction::CreateGetTupleElement(combined, i)); if (operand_permutations[i]) { replacement = computation.AddInstruction(HloInstruction::CreateBitcast( ShapeUtil::PermuteDimensions(*operand_permutations[i], replacement->shape()), replacement)); } TF_RETURN_IF_ERROR( computation.ReplaceInstruction(to_combine[i], replacement)); } return absl::OkStatus(); } using GroupKey = std::tuple<std::optional<int64_t>, int64_t, bool, bool, std::vector<std::vector<int64_t>>>; std::optional<GroupKey> CombineKey(const HloInstruction* instruction, const HloDomainMap& domain_map, bool combine_by_dim) { if (instruction->opcode() != HloOpcode::kAllGather) { return std::nullopt; } std::vector<std::vector<int64_t>> replica_groups; const auto* ag = Cast<HloAllGatherInstruction>(instruction); replica_groups.reserve(ag->replica_groups().size()); for (const ReplicaGroup& replica_group : ag->replica_groups()) { replica_groups.push_back( std::vector<int64_t>(replica_group.replica_ids().begin(), replica_group.replica_ids().end())); } int64_t ag_dim_key = combine_by_dim ? ag->all_gather_dimension() : -1; return GroupKey{ag_dim_key, domain_map.GetDomainMetadataId(ag), ag->channel_id().has_value(), ag->use_global_device_ids(), replica_groups}; } } AllGatherCombiner::AllGatherCombiner(int64_t combine_threshold_in_bytes, int64_t combine_threshold_count, bool combine_by_dim) : combine_threshold_in_bytes_(combine_threshold_in_bytes), combine_threshold_count_(combine_threshold_count), combine_by_dim_(combine_by_dim) {} absl::StatusOr<bool> AllGatherCombiner::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { VLOG(1) << "Running AllGatherCombiner with threshold of " << combine_threshold_in_bytes_ << " bytes"; if (combine_threshold_in_bytes_ <= 0 || combine_threshold_count_ <= 0) { VLOG(1) << "Skip AllGatherCombiner because the threshold is zero"; return false; } if (hlo_query::ContainsLayoutConstrainedCollective(*module, HloOpcode::kAllGather)) { VLOG(1) << "Skip AllGatherCombiner because the module contains " "all-gather with constrained layouts"; return false; } bool changed = false; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { TF_ASSIGN_OR_RETURN(auto domain_map, HloDomainMap::Create(computation, "")); auto key_fn = [&](const HloInstruction* instruction) { return CombineKey(instruction, *domain_map, combine_by_dim_); }; auto combine_fn = [&](absl::Span<HloInstruction* const> to_combine) -> absl::Status { return CombineAllGathers(to_combine, combine_by_dim_); }; TF_ASSIGN_OR_RETURN( bool computation_changed, CombineInstructionsByKey<GroupKey>(computation, key_fn, combine_fn, combine_threshold_in_bytes_, combine_threshold_count_)); changed |= computation_changed; } return changed; } }
#include "xla/service/all_gather_combiner.h" #include <cstdint> #include <memory> #include <vector> #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" namespace xla { namespace { using ::testing::Matcher; namespace op = xla::testing::opcode_matchers; int64_t kMaxCombineCount = 256; std::vector<HloAllGatherInstruction*> FindAllGathers(const HloModule& module) { std::vector<HloAllGatherInstruction*> results; for (HloComputation* computation : module.computations()) { if (computation->IsFusionComputation()) { continue; } for (HloInstruction* hlo : computation->instructions()) { if (auto it = DynCast<HloAllGatherInstruction>(hlo)) { results.push_back(it); } } } return results; } int64_t AllGatherCount(const HloModule& module) { return FindAllGathers(module).size(); } using AllGatherCombinerTest = HloTestBase; TEST_F(AllGatherCombinerTest, CombineAllGathers) { const char* const hlo_string = R"( HloModule Module ENTRY entry { param0 = f32[32] parameter(0) param1 = f32[32] parameter(1) allgather0 = f32[128] all-gather(param0), replica_groups={}, dimensions={0} allgather1 = f32[128] all-gather(param1), replica_groups={}, dimensions={0} ROOT tuple = (f32[128], f32[128]) tuple(allgather0, allgather1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); AllGatherCombiner combine(1024 * 1024, kMaxCombineCount, true); ASSERT_EQ(AllGatherCount(*module), 2); TF_ASSERT_OK_AND_ASSIGN(bool changed, combine.Run(module.get())); EXPECT_TRUE(changed); Matcher<const HloInstruction*> combined_all_gather = op::AllGather(op::Parameter(0), op::Parameter(1)); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Tuple(op::GetTupleElement(combined_all_gather, 0), op::GetTupleElement(combined_all_gather, 1))); } TEST_F(AllGatherCombinerTest, CombineAllGathersByAllGatherDimension) { const char* const hlo_string = R"( HloModule Module ENTRY entry { param0 = f32[2,2] parameter(0) param1 = f32[2,2] parameter(1) param2 = f32[2,2] parameter(2) param3 = f32[2,2] parameter(3) param4 = f32[2,2] parameter(4) allgather0 = f32[8,2] all-gather(param0), replica_groups={}, dimensions={0} allgather1 = f32[8,2] all-gather(param1), replica_groups={}, dimensions={0} allgather2 = f32[2,8] all-gather(param2), replica_groups={}, dimensions={1} allgather3 = f32[2,8] all-gather(param3), replica_groups={}, dimensions={1} allgather4 = f32[8,2] all-gather(param4), replica_groups={}, dimensions={0} ROOT tuple = (f32[8,2], f32[8,2], f32[2,8], f32[2,8], f32[8,2]) tuple(allgather0, allgather1, allgather2, allgather3, allgather4) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); AllGatherCombiner combine(1024 * 1024, kMaxCombineCount, true); ASSERT_EQ(AllGatherCount(*module), 5); TF_ASSERT_OK_AND_ASSIGN(bool changed, combine.Run(module.get())); EXPECT_TRUE(changed); Matcher<const HloInstruction*> combined_all_gather0 = op::AllGather(op::Parameter(0), op::Parameter(1), op::Parameter(4)); Matcher<const HloInstruction*> combined_all_gather1 = op::AllGather(op::Parameter(2), op::Parameter(3)); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Tuple(op::GetTupleElement(combined_all_gather0, 0), op::GetTupleElement(combined_all_gather0, 1), op::GetTupleElement(combined_all_gather1, 0), op::GetTupleElement(combined_all_gather1, 1), op::GetTupleElement(combined_all_gather0, 2))); } TEST_F(AllGatherCombinerTest, DoNotCombineOverThreshold) { const char* const hlo_string = R"( HloModule Module ENTRY entry { param0 = f32[8] parameter(0) param1 = f32[8] parameter(1) allgather0 = f32[32] all-gather(param0), replica_groups={}, dimensions={0} allgather1 = f32[32] all-gather(param1), replica_groups={}, dimensions={0} ROOT tuple = (f32[32], f32[32]) tuple(allgather0, allgather1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); AllGatherCombiner combine(255, kMaxCombineCount, true); ASSERT_EQ(AllGatherCount(*module), 2); TF_ASSERT_OK_AND_ASSIGN(bool changed, combine.Run(module.get())); EXPECT_EQ(AllGatherCount(*module), 2); EXPECT_FALSE(changed); } TEST_F(AllGatherCombinerTest, CombineUpToThreshold) { const char* const hlo_string = R"( HloModule Module ENTRY entry { param0 = f32[8] parameter(0) param1 = f32[8] parameter(1) allgather0 = f32[32] all-gather(param0), replica_groups={}, dimensions={0} allgather1 = f32[32] all-gather(param1), replica_groups={}, dimensions={0} ROOT tuple = (f32[32], f32[32]) tuple(allgather0, allgather1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); AllGatherCombiner combine(256, kMaxCombineCount, true); ASSERT_EQ(AllGatherCount(*module), 2); TF_ASSERT_OK_AND_ASSIGN(bool changed, combine.Run(module.get())); EXPECT_EQ(AllGatherCount(*module), 1); EXPECT_TRUE(changed); } TEST_F(AllGatherCombinerTest, NoDependentCombination) { const char* const hlo_string = R"( HloModule Module ENTRY entry { param = f32[1] parameter(0) allgather0 = f32[2] all-gather(param), replica_groups={}, dimensions={0} ROOT allgather1 = f32[4] all-gather(allgather0), replica_groups={}, dimensions={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); AllGatherCombiner combine(1024 * 1024, kMaxCombineCount, true); ASSERT_EQ(AllGatherCount(*module), 2); TF_ASSERT_OK_AND_ASSIGN(bool changed, combine.Run(module.get())); EXPECT_EQ(AllGatherCount(*module), 2); EXPECT_FALSE(changed); } TEST_F(AllGatherCombinerTest, NoDifferentReplicaGroupsCombination) { const char* const hlo_string = R"( HloModule Module ENTRY entry { param0 = f32[32] parameter(0) param1 = f32[32] parameter(1) allgather0 = f32[64] all-gather(param0), replica_groups={{0, 1}, {2, 3}}, dimensions={0} allgather1 = f32[64] all-gather(param1), replica_groups={{0, 2}, {1, 3}}, dimensions={0} ROOT tuple = (f32[64], f32[64]) tuple(allgather0, allgather1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); AllGatherCombiner combine(1024 * 1024, kMaxCombineCount, true); ASSERT_EQ(AllGatherCount(*module), 2); TF_ASSERT_OK_AND_ASSIGN(bool changed, combine.Run(module.get())); EXPECT_EQ(AllGatherCount(*module), 2); EXPECT_FALSE(changed); } TEST_F(AllGatherCombinerTest, DomainPreventsCombining) { const char* const hlo_string = R"( HloModule Module ENTRY entry { param0 = f32[32] parameter(0), sharding={maximal device=0} param1 = f32[32] parameter(1), sharding={maximal device=1} allgather0 = f32[128] all-gather(param0), replica_groups={}, dimensions={0}, sharding={maximal device=0} allgather1 = f32[128] all-gather(param1), replica_groups={}, dimensions={0}, sharding={maximal device=1} domain0 = f32[128] domain(allgather0), domain={kind="sharding", entry={{maximal device=0}, {maximal device=1}}, exit={maximal device=0}} domain1 = f32[128] domain(allgather1), domain={kind="sharding", entry={{maximal device=0}, {maximal device=1}}, exit={maximal device=1}} ROOT tuple = (f32[128], f32[128]) tuple(domain0, domain1), sharding={{maximal device=0}, {maximal device=1}} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); AllGatherCombiner combine(1024 * 1024, kMaxCombineCount, true); ASSERT_EQ(AllGatherCount(*module), 2); TF_ASSERT_OK_AND_ASSIGN(bool changed, combine.Run(module.get())); EXPECT_EQ(AllGatherCount(*module), 2); EXPECT_FALSE(changed); } TEST_F(AllGatherCombinerTest, CombineFromTwoDomainsWithSameMetadata) { const char* const hlo_string = R"( HloModule Module ENTRY entry { param0 = f32[32] parameter(0), sharding={maximal device=0} param1 = f32[32] parameter(1), sharding={maximal device=1} param2 = f32[32] parameter(2), sharding={maximal device=1} allgather0 = f32[128] all-gather(param0), replica_groups={}, dimensions={0}, sharding={maximal device=0} allgather1 = f32[128] all-gather(param1), replica_groups={}, dimensions={0}, sharding={maximal device=1} allgather2 = f32[128] all-gather(param2), replica_groups={}, dimensions={0}, sharding={maximal device=0} domain0 = f32[128] domain(allgather0), domain={kind="sharding", entry={{maximal device=0}, {maximal device=1}, {maximal device=0}}, exit={maximal device=0}} domain1 = f32[128] domain(allgather1), domain={kind="sharding", entry={{maximal device=0}, {maximal device=1}, {maximal device=0}}, exit={maximal device=1}} domain2 = f32[128] domain(allgather2), domain={kind="sharding", entry={{maximal device=0}, {maximal device=1}, {maximal device=0}}, exit={maximal device=0}} ROOT tuple = (f32[128], f32[128], f32[128]) tuple(domain0, domain1, domain2), sharding={{maximal device=0}, {maximal device=1}, {maximal device=0}} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); AllGatherCombiner combine(1024 * 1024, kMaxCombineCount, true); ASSERT_EQ(AllGatherCount(*module), 3); TF_ASSERT_OK_AND_ASSIGN(bool changed, combine.Run(module.get())); EXPECT_EQ(AllGatherCount(*module), 2); EXPECT_TRUE(changed); const HloInstruction* param0 = module->entry_computation()->parameter_instruction(0); ASSERT_EQ(param0->user_count(), 1); const HloInstruction* combined_ag = param0->users().front(); ASSERT_EQ(combined_ag->opcode(), HloOpcode::kAllGather); EXPECT_THAT(combined_ag, op::Sharding("{{maximal device=0}, {maximal device=0}}")); } TEST_F(AllGatherCombinerTest, CombineAllGathersDifferentDims) { const char* const hlo_string = R"( HloModule Module ENTRY entry { param0 = f32[2,3]{1,0} parameter(0) param1 = f32[2,3]{0,1} parameter(1) allgather0 = f32[8,3]{1,0} all-gather(param0), replica_groups={}, dimensions={0} allgather1 = f32[2,12]{0,1} all-gather(param1), replica_groups={}, dimensions={1} ROOT tuple = (f32[8,3]{1,0}, f32[2,12]{0,1}) tuple(allgather0, allgather1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); AllGatherCombiner combine(1024 * 1024, kMaxCombineCount, false); ASSERT_EQ(AllGatherCount(*module), 2); TF_ASSERT_OK_AND_ASSIGN(bool changed, combine.Run(module.get())); EXPECT_TRUE(changed); Matcher<const HloInstruction*> combined_all_gather = op::AllGather(op::Parameter(0), op::Bitcast(op::Parameter(1))); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Tuple(op::GetTupleElement(combined_all_gather, 0), op::Bitcast(op::GetTupleElement(combined_all_gather, 1)))); } TEST_F(AllGatherCombinerTest, CombineManyAllGathersDifferentDims) { const char* const hlo_string = R"( HloModule Module ENTRY entry { param0 = f32[2,7]{1,0} parameter(0) param1 = f32[3,8]{1,0} parameter(1) param2 = f32[4,9]{0,1} parameter(2) param3 = f32[5,10]{0,1} parameter(3) param4 = f32[6,11]{1,0} parameter(4) allgather0 = f32[8,7]{1,0} all-gather(param0), replica_groups={}, dimensions={0} allgather1 = f32[12,8]{1,0} all-gather(param1), replica_groups={}, dimensions={0} allgather2 = f32[4,36]{0,1} all-gather(param2), replica_groups={}, dimensions={1} allgather3 = f32[5,40]{0,1} all-gather(param3), replica_groups={}, dimensions={1} allgather4 = f32[24,11]{1,0} all-gather(param4), replica_groups={}, dimensions={0} ROOT tuple = (f32[8,7]{1,0}, f32[12,8]{1,0}, f32[4,36]{0,1}, f32[5,40]{0,1}, f32[24,11]{1,0}) tuple(allgather0, allgather1, allgather2, allgather3, allgather4) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); AllGatherCombiner combine(1024 * 1024, kMaxCombineCount, false); ASSERT_EQ(AllGatherCount(*module), 5); TF_ASSERT_OK_AND_ASSIGN(bool changed, combine.Run(module.get())); EXPECT_TRUE(changed); Matcher<const HloInstruction*> combined_all_gather = op::AllGather( op::Parameter(0), op::Parameter(1), op::Bitcast(op::Parameter(2)), op::Bitcast(op::Parameter(3)), op::Parameter(4)); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Tuple(op::GetTupleElement(combined_all_gather, 0), op::GetTupleElement(combined_all_gather, 1), op::Bitcast(op::GetTupleElement(combined_all_gather, 2)), op::Bitcast(op::GetTupleElement(combined_all_gather, 3)), op::GetTupleElement(combined_all_gather, 4))); std::vector<HloAllGatherInstruction*> all_gathers = FindAllGathers(*module); ASSERT_EQ(1, all_gathers.size()); ASSERT_EQ(0, all_gathers.front()->all_gather_dimension()); } TEST_F(AllGatherCombinerTest, CombineManyAllGathersDifferentDimsRank4) { const char* const hlo_string = R"( HloModule Module ENTRY entry { param0 = f32[2,7,2,7]{3,2,1,0} parameter(0) param1 = f32[3,8,3,8]{3,2,1,0} parameter(1) param2 = f32[4,9,4,9]{3,0,1,2} parameter(2) param3 = f32[5,10,5,10]{3,0,1,2} parameter(3) param4 = f32[6,11,6,11]{3,2,1,0} parameter(4) allgather0 = f32[8,7,2,7]{3,2,1,0} all-gather(param0), replica_groups={}, dimensions={0} allgather1 = f32[12,8,3,8]{3,2,1,0} all-gather(param1), replica_groups={}, dimensions={0} allgather2 = f32[4,9,16,9]{3,0,1,2} all-gather(param2), replica_groups={}, dimensions={2} allgather3 = f32[5,10,20,10]{3,0,1,2} all-gather(param3), replica_groups={}, dimensions={2} allgather4 = f32[24,11,6,11]{3,2,1,0} all-gather(param4), replica_groups={}, dimensions={0} ROOT tuple = (f32[8,7,2,7]{3,2,1,0}, f32[12,8,3,8]{3,2,1,0}, f32[4,9,16,9]{3,0,1,2}, f32[5,10,20,10]{3,0,1,2}, f32[24,11,6,11]{3,2,1,0}) tuple(allgather0, allgather1, allgather2, allgather3, allgather4) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); AllGatherCombiner combine(1024 * 1024, kMaxCombineCount, false); ASSERT_EQ(AllGatherCount(*module), 5); TF_ASSERT_OK_AND_ASSIGN(bool changed, combine.Run(module.get())); EXPECT_TRUE(changed); Matcher<const HloInstruction*> combined_all_gather = op::AllGather( op::Parameter(0), op::Parameter(1), op::Bitcast(op::Parameter(2)), op::Bitcast(op::Parameter(3)), op::Parameter(4)); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Tuple(op::GetTupleElement(combined_all_gather, 0), op::GetTupleElement(combined_all_gather, 1), op::Bitcast(op::GetTupleElement(combined_all_gather, 2)), op::Bitcast(op::GetTupleElement(combined_all_gather, 3)), op::GetTupleElement(combined_all_gather, 4))); std::vector<HloAllGatherInstruction*> all_gathers = FindAllGathers(*module); ASSERT_EQ(1, all_gathers.size()); ASSERT_EQ(0, all_gathers.front()->all_gather_dimension()); } TEST_F(AllGatherCombinerTest, CombineManyAllGathersDifferentDimsMixedRanks) { const char* const hlo_string = R"( HloModule Module ENTRY entry { param0 = f32[2,7]{1,0} parameter(0) param1 = f32[3,8]{1,0} parameter(1) param2 = f32[4,9]{0,1} parameter(2) param3 = f32[5,10]{0,1} parameter(3) param4 = f32[6]{0} parameter(4) allgather0 = f32[2,28]{1,0} all-gather(param0), replica_groups={}, dimensions={1} allgather1 = f32[3,32]{1,0} all-gather(param1), replica_groups={}, dimensions={1} allgather2 = f32[4,36]{0,1} all-gather(param2), replica_groups={}, dimensions={1} allgather3 = f32[5,40]{0,1} all-gather(param3), replica_groups={}, dimensions={1} allgather4 = f32[24]{0} all-gather(param4), replica_groups={}, dimensions={0} ROOT tuple = (f32[2,28]{1,0}, f32[3,32]{1,0}, f32[4,36]{0,1}, f32[5,40]{0,1}, f32[24]{0}) tuple(allgather0, allgather1, allgather2, allgather3, allgather4) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); AllGatherCombiner combine(1024 * 1024, kMaxCombineCount, false); ASSERT_EQ(AllGatherCount(*module), 5); TF_ASSERT_OK_AND_ASSIGN(bool changed, combine.Run(module.get())); EXPECT_TRUE(changed); Matcher<const HloInstruction*> combined_all_gather = op::AllGather( op::Bitcast(op::Parameter(0)), op::Bitcast(op::Parameter(1)), op::Bitcast(op::Parameter(2)), op::Bitcast(op::Parameter(3)), op::Parameter(4)); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Tuple(op::Bitcast(op::GetTupleElement(combined_all_gather, 0)), op::Bitcast(op::GetTupleElement(combined_all_gather, 1)), op::Bitcast(op::GetTupleElement(combined_all_gather, 2)), op::Bitcast(op::GetTupleElement(combined_all_gather, 3)), op::GetTupleElement(combined_all_gather, 4))); std::vector<HloAllGatherInstruction*> all_gathers = FindAllGathers(*module); ASSERT_EQ(1, all_gathers.size()); ASSERT_EQ(0, all_gathers.front()->all_gather_dimension()); } TEST_F(AllGatherCombinerTest, CombineAllGathersByDim) { const char* const hlo_string = R"( HloModule Module ENTRY entry { param0 = f32[2,7]{1,0} parameter(0) param1 = f32[3,8]{1,0} parameter(1) param2 = f32[4,9]{0,1} parameter(2) param3 = f32[5,10]{0,1} parameter(3) param4 = f32[6,11]{1,0} parameter(4) allgather0 = f32[8,7]{1,0} all-gather(param0), replica_groups={}, dimensions={0} allgather1 = f32[12,8]{1,0} all-gather(param1), replica_groups={}, dimensions={0} allgather2 = f32[4,36]{0,1} all-gather(param2), replica_groups={}, dimensions={1} allgather3 = f32[5,40]{0,1} all-gather(param3), replica_groups={}, dimensions={1} allgather4 = f32[24,11]{1,0} all-gather(param4), replica_groups={}, dimensions={0} ROOT tuple = (f32[8,7]{1,0}, f32[12,8]{1,0}, f32[4,36]{0,1}, f32[5,40]{0,1}, f32[24,11]{1,0}) tuple(allgather0, allgather1, allgather2, allgather3, allgather4) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); AllGatherCombiner combine(1024 * 1024, kMaxCombineCount, true); ASSERT_EQ(AllGatherCount(*module), 5); TF_ASSERT_OK_AND_ASSIGN(bool changed, combine.Run(module.get())); EXPECT_TRUE(changed); Matcher<const HloInstruction*> combined_all_gather_0 = op::AllGather(op::Parameter(0), op::Parameter(1), op::Parameter(4)); Matcher<const HloInstruction*> combined_all_gather_1 = op::AllGather(op::Parameter(2), op::Parameter(3)); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Tuple(op::GetTupleElement(combined_all_gather_0, 0), op::GetTupleElement(combined_all_gather_0, 1), op::GetTupleElement(combined_all_gather_1, 0), op::GetTupleElement(combined_all_gather_1, 1), op::GetTupleElement(combined_all_gather_0, 2))); std::vector<HloAllGatherInstruction*> all_gathers = FindAllGathers(*module); ASSERT_EQ(2, all_gathers.size()); ASSERT_EQ(0, all_gathers[0]->all_gather_dimension()); ASSERT_EQ(1, all_gathers[1]->all_gather_dimension()); } } }
1,841
cpp
tensorflow/tensorflow
collective_pipeliner
third_party/xla/xla/service/collective_pipeliner.cc
third_party/xla/xla/service/collective_pipeliner_test.cc
#ifndef XLA_SERVICE_COLLECTIVE_PIPELINER_H_ #define XLA_SERVICE_COLLECTIVE_PIPELINER_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class CollectivePipeliner : public HloModulePass { public: enum PipeliningDirection { kBackward, kForward, kForwardSink, }; using HloPostprocessor = std::optional<std::function<absl::Status(HloInstruction* instr)>>; struct Config { int64_t level_to_operate_on = 0; int64_t max_pipelining_per_loop = 0; bool last_run = true; bool pipeline_use_tree = false; bool process_different_sized_ops = false; PipeliningDirection pipelining_direction = PipeliningDirection::kForward; HloPredicate should_process; HloPredicate acceptable_formatting; HloPredicate reuse_pipelined_op_buffer; HloPredicate should_allow_loop_variant_parameter_in_chain = HloPredicateFalse; bool should_allow_control_dependencies = false; HloPostprocessor postprocess_backward_peeled_op = std::nullopt; HloPostprocessor postprocess_backward_rotated_op = std::nullopt; bool should_add_loop_invariant_op_in_chain = false; }; static const char* const kInsertedByPreviousStep; static const char* const kSunkByPreviousStep; explicit CollectivePipeliner(const Config& config) : config_(config) {} CollectivePipeliner(CollectivePipeliner&& other) = default; CollectivePipeliner& operator=(CollectivePipeliner&& other) = default; absl::string_view GetPipelineDirectionString(PipeliningDirection direction) { switch (direction) { case PipeliningDirection::kForward: { return "forward"; } case PipeliningDirection::kBackward: { return "backward"; } case PipeliningDirection::kForwardSink: { return "forwardsink"; } } } absl::string_view name() const override { if (config_.pipelining_direction == kForward) { return "collective-pipeliner-forward"; } else if (config_.pipelining_direction == kBackward) { return "collective-pipeliner-backward"; } else { return "collective-pipeliner-forwardsink"; } } absl::StatusOr<bool> RunPipeliner( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads); using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: const Config config_; }; } #endif #include "xla/service/collective_pipeliner.h" #include <cstdint> #include <functional> #include <iterator> #include <limits> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/numeric/int128.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/comparison_util.h" #include "xla/hlo/evaluator/hlo_evaluator.h" #include "xla/hlo/ir/dfs_hlo_visitor.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instruction_utils.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/map_util.h" #include "xla/primitive_util.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/constant_value.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_parser.h" #include "xla/service/value_range.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { const char* const CollectivePipeliner::kInsertedByPreviousStep = "InsertedByPreviousStep"; const char* const CollectivePipeliner::kSunkByPreviousStep = "SunkByPreviousStep"; namespace { using InstructionMap = absl::flat_hash_map<const HloInstruction*, HloInstruction*>; using LoopVariantParameterInfo = std::vector<std::pair<int64_t, HloInstruction*>>; absl::Status UpdateControlDependencies(HloInstruction* original, HloInstruction* new_instr, const InstructionMap& cloned_map) { for (auto* pred : original->control_predecessors()) { auto it = cloned_map.find(pred); if (it == cloned_map.end()) { continue; } TF_RETURN_IF_ERROR(it->second->AddControlDependencyTo(new_instr)); } return absl::OkStatus(); } bool AllIndicesConstantsExceptOne( const HloDynamicUpdateSliceInstruction* dyn_update, int64_t index) { if (dyn_update->operand(index)->IsConstant()) { return false; } for (int64_t i = dyn_update->first_index_operand_number(); i < dyn_update->operand_count(); ++i) { if (i == index) { continue; } if (!dyn_update->operand(i)->IsConstant()) { return false; } } return true; } std::optional<int> GetSlicedDimension( const HloDynamicUpdateSliceInstruction* dyn_update) { std::optional<int> sliced_dim; for (int64_t i = dyn_update->first_index_operand_number(); i < dyn_update->operand_count(); ++i) { const HloInstruction* idx = dyn_update->operand(i); if (!idx->IsConstant()) { if (sliced_dim.has_value()) { return std::nullopt; } sliced_dim = i - dyn_update->first_index_operand_number(); continue; } if (Cast<HloConstantInstruction>(idx)->literal().GetFirstInteger() != 0) { return std::nullopt; } } return sliced_dim; } bool CheckIndexIsMonotonic( const HloInstruction* index, const absl::flat_hash_map<const HloInstruction*, Range>& induction_map) { Range range = RecursivelyIdentifyRange(index, induction_map); VLOG(5) << "Range for: " << index->ToString() << " " << range.ToString(); return !range.IsEmpty() && range.IsLinear(); } bool CheckParameterUsageIsCompatible(const HloInstruction* gte, const HloInstruction* dus, const HloInstruction* dus_idx, int64_t sliced_index) { for (auto* user : gte->users()) { if (dus != user) { VLOG(5) << "CheckParameterUsageIsCompatible(): User not a dynamic slice " "or the dynamic-update-slice for the output." << user->ToString(); return false; } if (user->operand(static_cast<HloDynamicSliceInstruction*>(user) ->first_index_operand_number() + sliced_index) != dus_idx) { VLOG(5) << "CheckParameterUsageIsCompatible(): Idx is not the same as " "dynamic-update-slice() " << user->ToString(); return false; } } return true; } std::optional<int64_t> GetLevelFromCustomCall(const HloInstruction* instr) { if (!instr->IsCustomCall(CollectivePipeliner::kInsertedByPreviousStep)) { return std::nullopt; } return Cast<HloConstantInstruction>(instr->operand(1)) ->literal() .GetFirstInteger(); } std::optional<std::vector<HloInstruction*>> CollectDynamicSliceIndicesIfConstant(HloInstruction* instr) { CHECK_EQ(instr->opcode(), HloOpcode::kDynamicSlice); std::vector<HloInstruction*> indices; HloDynamicSliceInstruction* dyn_slice = Cast<HloDynamicSliceInstruction>(instr); for (int64_t i = dyn_slice->first_index_operand_number(); i < instr->operand_count(); ++i) { HloInstruction* operand = dyn_slice->mutable_operand(i); CHECK_EQ(operand->shape().dimensions_size(), 0); std::vector<std::pair<HloInstruction*, int>> stack( 1, std::make_pair(operand, 0)); absl::flat_hash_set<HloInstruction*> visited; while (!stack.empty()) { auto& [curr_instr, operand_idx] = stack.back(); if (operand_idx == curr_instr->operand_count()) { indices.push_back(curr_instr); stack.pop_back(); continue; } HloInstruction* next_operand = curr_instr->mutable_operand(operand_idx++); if (next_operand->opcode() == HloOpcode::kParameter || next_operand->HasSideEffect()) { return std::nullopt; } if (visited.insert(next_operand).second) { stack.push_back(std::make_pair(next_operand, 0)); } } } return indices; } bool IsSupportedLoopIndexType(PrimitiveType type) { switch (type) { case PrimitiveType::S32: case PrimitiveType::S64: case PrimitiveType::S16: case PrimitiveType::S8: case PrimitiveType::U32: case PrimitiveType::U64: case PrimitiveType::U16: case PrimitiveType::U8: return true; default: return false; } } std::optional<Literal> CreateLiteralOfShape(const Shape& shape, int64_t value) { return primitive_util::PrimitiveTypeSwitch<std::optional<Literal>>( [&](auto kType) -> std::optional<Literal> { if constexpr (primitive_util::IsIntegralType(kType)) { using NativeT = typename primitive_util::NativeTypeOf<kType>; CHECK_LE(value, static_cast<absl::int128>( std::numeric_limits<NativeT>::max())); CHECK_GE(value, static_cast<absl::int128>( std::numeric_limits<NativeT>::min())); return LiteralUtil::CreateR0(static_cast<NativeT>(value)); } return std::nullopt; }, shape.element_type()); } bool CollectSimpleDependencies(HloInstruction* i, std::vector<HloInstruction*>& deps_vector, absl::flat_hash_set<HloInstruction*>& deps_set) { if (i->opcode() == HloOpcode::kDynamicSlice) { auto indices = CollectDynamicSliceIndicesIfConstant(i); if (!indices.has_value()) { return false; } deps_vector.insert(deps_vector.end(), indices->begin(), indices->end()); deps_set.insert(indices->begin(), indices->end()); return true; } for (HloInstruction* op : i->mutable_operands()) { absl::InlinedVector<HloInstruction*, 4> to_add; if (op->opcode() == HloOpcode::kBroadcast) { to_add.push_back(op); if (deps_set.insert(op).second) { op = op->mutable_operand(0); if (op->opcode() == HloOpcode::kConstant) { if (deps_set.insert(op).second) { to_add.push_back(op); } } } } deps_vector.insert(deps_vector.end(), to_add.rbegin(), to_add.rend()); } return true; } std::pair<HloDynamicUpdateSliceInstruction*, std::vector<HloInstruction*>> CheckStoreIntoSliceIsCompatible(HloInstruction* instr, const HloComputation* while_body, int64_t level_to_operate_on, bool multi_uses_pipelining, HloPredicate acceptable_formatting) { if ((!multi_uses_pipelining && instr->user_count() != 1) || instr->operand_count() != 1 || instr->HasControlDependencies()) { return std::make_pair(nullptr, std::vector<HloInstruction*>{}); } absl::flat_hash_set<HloInstruction*> added_instructions; HloInstruction* folded_instr = instr; std::vector<HloInstruction*> formatting_ops; auto is_acceptable_user = [&](HloInstruction* i) { if (i->HasControlDependencies() || !acceptable_formatting(i)) { return false; } if (i->opcode() == HloOpcode::kReduce && (ShapeUtil::ElementsIn(i->shape()) == ShapeUtil::ElementsIn(instr->operand(0)->shape()) || ShapeUtil::ElementsIn(instr->operand(0)->shape()) < 1024)) { return true; } return HloPredicateIsOp<HloOpcode::kSlice, HloOpcode::kDynamicSlice, HloOpcode::kPad, HloOpcode::kCollectivePermute, HloOpcode::kConvert, HloOpcode::kReshape, HloOpcode::kAllReduce, HloOpcode::kTranspose, HloOpcode::kBroadcast>(i) || (multi_uses_pipelining && i->IsElementwise()) || i->IsCustomCall(CollectivePipeliner::kInsertedByPreviousStep); }; auto is_final_slice_insertion = [&](HloInstruction* i) { HloDynamicUpdateSliceInstruction* dyn_update = DynCast<HloDynamicUpdateSliceInstruction>(i); if (dyn_update == nullptr || dyn_update->user_count() != 1) { return false; } if (level_to_operate_on == 0) { if (dyn_update->users()[0] == while_body->root_instruction()) { return true; } return false; } for (int64_t i = dyn_update->first_index_operand_number(); i < dyn_update->operand_count(); ++i) { if (auto level = GetLevelFromCustomCall(dyn_update->operand(i))) { if (*level == level_to_operate_on) { return true; } return false; } } return false; }; HloDynamicUpdateSliceInstruction* final_slice_insertion = nullptr; std::vector<std::pair<HloInstruction*, int>> stack; absl::flat_hash_map<HloInstruction*, int32_t> formatting_map; stack.push_back(std::make_pair(folded_instr, 0)); while (!stack.empty()) { auto& data = stack.back(); HloInstruction* instr = data.first; if (data.second == 0 && instr != folded_instr) { formatting_map[instr] = 0; } if (data.second == instr->user_count()) { stack.pop_back(); continue; } HloInstruction* next_user = instr->users()[data.second++]; if (is_final_slice_insertion(next_user)) { if ((final_slice_insertion != nullptr && final_slice_insertion != next_user) || next_user->user_count() != 1 || next_user->operand(1) != instr) { return std::make_pair(nullptr, std::vector<HloInstruction*>{}); } final_slice_insertion = Cast<HloDynamicUpdateSliceInstruction>(next_user); continue; } if (!is_acceptable_user(next_user)) { return std::make_pair(nullptr, std::vector<HloInstruction*>{}); } if (added_instructions.insert(next_user).second) { stack.push_back(std::make_pair(next_user, 0)); } } if (final_slice_insertion == nullptr) { return std::make_pair(nullptr, std::vector<HloInstruction*>{}); } for (auto& op : formatting_map) { for (const HloInstruction* operand : final_slice_insertion->operands()) { if (formatting_map.count(operand)) { ++op.second; } } } stack.push_back(std::make_pair(folded_instr, 0)); added_instructions.clear(); while (!stack.empty()) { auto& data = stack.back(); HloInstruction* instr = data.first; if (data.second == 0 && instr != folded_instr) { if (!CollectSimpleDependencies(instr, formatting_ops, added_instructions)) { return std::make_pair(nullptr, std::vector<HloInstruction*>{}); } formatting_ops.push_back(instr); } if (data.second == instr->user_count()) { stack.pop_back(); continue; } HloInstruction* next_user = instr->users()[data.second++]; if (is_final_slice_insertion(next_user)) { if ((final_slice_insertion != nullptr && final_slice_insertion != next_user) || next_user->user_count() != 1 || next_user->operand(1) != instr) { return std::make_pair(nullptr, std::vector<HloInstruction*>{}); } final_slice_insertion = Cast<HloDynamicUpdateSliceInstruction>(next_user); continue; } if (--formatting_map[next_user] > 0) { continue; } if (added_instructions.insert(next_user).second) { stack.push_back(std::make_pair(next_user, 0)); } } return std::make_pair(final_slice_insertion, formatting_ops); } bool IsLoopIterator(const HloInstruction* instr, int64_t loop_iteration_tuple_idx) { if (instr->opcode() != HloOpcode::kGetTupleElement || instr->operand(0)->opcode() != HloOpcode::kParameter) { return false; } return instr->tuple_index() == loop_iteration_tuple_idx; } std::vector<HloInstruction*> CollectDependenciesToPipeline( HloInstruction* source_op, absl::Span<HloInstruction* const> ops) { absl::flat_hash_set<HloInstruction*> formatting_set(ops.begin(), ops.end()); formatting_set.insert(source_op); std::vector<HloInstruction*> to_return; absl::flat_hash_set<HloInstruction*> already_inserted; for (const HloInstruction* op : ops) { for (HloInstruction* operand : op->operands()) { if (!formatting_set.count(operand)) { formatting_set.insert(operand); to_return.push_back(operand); } } } return to_return; } std::optional<std::vector<HloInstruction*>> CollectIndependentOperandChain( HloInstruction* instr, int64_t loop_iter, const absl::flat_hash_set<const HloInstruction*>& loop_invariant_params, HloPredicate should_allow_loop_variant_parameter_in_chain, const absl::flat_hash_set<const HloInstruction*>& loop_invariant_instructions, bool should_add_loop_invariant_op_in_chain) { std::vector<HloInstruction*> chain; absl::flat_hash_set<const HloInstruction*> visited_set({instr}); std::vector<std::pair<HloInstruction*, int>> stack(1, {instr, 0}); auto is_loop_variant_parameter_input = [&loop_invariant_params, loop_iter](const HloInstruction* instr) { if (instr->opcode() != HloOpcode::kGetTupleElement || instr->operand(0)->opcode() != HloOpcode::kParameter) { return false; } return !IsLoopIterator(instr, loop_iter) && !loop_invariant_params.count(instr); }; while (!stack.empty()) { auto& curr = stack.back(); if (curr.second == curr.first->operand_count()) { if (curr.first != instr) { chain.push_back(curr.first); } stack.pop_back(); continue; } HloInstruction* curr_operand = curr.first->mutable_operand(curr.second++); if (curr_operand->opcode() == HloOpcode::kParameter) { continue; } if (is_loop_variant_parameter_input(curr_operand) && !should_allow_loop_variant_parameter_in_chain(curr_operand)) { return std::nullopt; } if (visited_set.insert(curr_operand).second) { stack.emplace_back(curr_operand, 0); } } for (auto* chain_instr : chain) { if (chain_instr->opcode() == HloOpcode::kAfterAll) { continue; } if (chain_instr->opcode() == HloOpcode::kRecvDone) { return std::nullopt; } const bool all_users_in_chain = absl::c_all_of( chain_instr->users(), [&visited_set](const HloInstruction* u) { return visited_set.contains(u); }); const bool is_scalar_shaped = ShapeUtil::IsEffectiveScalar(chain_instr->shape()); if (!all_users_in_chain) { bool allow_loop_variant_parameter_in_chain = (chain_instr->opcode() != HloOpcode::kGetTupleElement || chain_instr->operand(0)->opcode() != HloOpcode::kParameter || !should_allow_loop_variant_parameter_in_chain(chain_instr)); bool add_loop_invariant_op_in_chain = (should_add_loop_invariant_op_in_chain && loop_invariant_instructions.contains(chain_instr)); if ((!loop_invariant_params.contains(chain_instr) && !is_scalar_shaped && allow_loop_variant_parameter_in_chain) && !add_loop_invariant_op_in_chain) { return std::nullopt; } } } return std::move(chain); } std::optional<std::vector<HloInstruction*>> CollectChainsToPushBackwards( HloInstruction* instr, int64_t loop_iter, const HloComputation* while_body, int64_t level_to_operate_on, const absl::flat_hash_set<const HloInstruction*>& loop_invariant_params, HloPredicate should_allow_loop_variant_parameter_in_chain, bool should_allow_control_dependencies, const absl::flat_hash_set<const HloInstruction*>& loop_invariant_instructions, bool should_add_loop_invariant_op_in_chain) { if (instr->HasControlDependencies() && !should_allow_control_dependencies) { return std::nullopt; } return CollectIndependentOperandChain( instr, loop_iter, loop_invariant_params, should_allow_loop_variant_parameter_in_chain, loop_invariant_instructions, should_add_loop_invariant_op_in_chain); } std::optional<int64_t> FindOutputIndexForDynamicUpdateSlice( const HloInstruction* dus, const HloInstruction* root_instr) { std::optional<int64_t> output_idx; while (dus->opcode() == HloOpcode::kDynamicUpdateSlice) { if (dus->user_count() != 1) { output_idx = std::nullopt; break; } if (dus->users()[0] == root_instr) { auto indices = root_instr->OperandIndices(dus); if (indices.size() != 1) { output_idx = std::nullopt; break; } output_idx = indices[0]; break; } dus = Cast<HloDynamicUpdateSliceInstruction>(dus->users()[0]); } return output_idx; } std::vector<HloInstruction*> MapNewOperands( absl::Span<HloInstruction* const> operands, const InstructionMap& clone_map, bool allow_unmapped = false) { std::vector<HloInstruction*> new_operands; new_operands.reserve(operands.size()); for (HloInstruction* operand : operands) { auto it = clone_map.find(operand); HloInstruction* mapped_operand = operand; CHECK(it != clone_map.end() || allow_unmapped) << operand->ToString() << " not present in map"; if (it != clone_map.end()) { mapped_operand = it->second; } new_operands.push_back(mapped_operand); } return new_operands; } struct WhileMoveInfo { HloInstruction* collective_to_move; HloDynamicUpdateSliceInstruction* dynamic_update_slice; std::vector<HloInstruction*> formatting_ops; int64_t sliced_idx; int64_t output_idx; }; void UpdateInstructionChannelId(HloInstruction* cloned_instr, int64_t& next_channel_id) { if (const auto* send_recv_instr = DynCast<HloSendRecvInstruction>(cloned_instr)) { if (!send_recv_instr->is_host_transfer()) { return; } } if (auto* channel_instr = DynCast<HloChannelInstruction>(cloned_instr)) { if (channel_instr->opcode() == HloOpcode::kSendDone || channel_instr->opcode() == HloOpcode::kRecvDone) { auto* operand = channel_instr->operand(0); CHECK(operand->opcode() == HloOpcode::kSend || operand->opcode() == HloOpcode::kRecv); channel_instr->set_channel_id( Cast<HloChannelInstruction>(operand)->channel_id()); return; } if (channel_instr->channel_id()) { channel_instr->set_channel_id(next_channel_id++); } } } template <typename Comp> absl::StatusOr<HloInstruction*> CloneBackwardChain( Comp& target_computation, const WhileMoveInfo& move_info, InstructionMap& clone_map, int64_t loop_iter_idx, int64_t& next_channel_id, LoopVariantParameterInfo* loop_variant_parameter_info = nullptr) { std::vector<HloInstruction*> to_clone(move_info.formatting_ops.begin(), move_info.formatting_ops.end()); to_clone.push_back(move_info.collective_to_move); HloInstruction* last_cloned = nullptr; for (auto* chain_op : to_clone) { if (IsLoopIterator(chain_op, loop_iter_idx) || clone_map.contains(chain_op)) { continue; } auto new_operands = MapNewOperands(chain_op->operands(), clone_map); HloInstruction* cloned = target_computation.AddInstruction( chain_op->CloneWithNewOperands(chain_op->shape(), new_operands)); TF_RETURN_IF_ERROR(UpdateControlDependencies(chain_op, cloned, clone_map)); UpdateInstructionChannelId(cloned, next_channel_id); clone_map[chain_op] = cloned; last_cloned = cloned; if (loop_variant_parameter_info != nullptr && chain_op->opcode() == HloOpcode::kGetTupleElement && chain_op->operand(0)->opcode() == HloOpcode::kParameter && chain_op->tuple_index() != loop_iter_idx) { loop_variant_parameter_info->push_back( std::make_pair(chain_op->tuple_index(), cloned)); } } CHECK_NE(last_cloned, nullptr); return last_cloned; }
#include "xla/service/collective_pipeliner.h" #include <functional> #include <memory> #include <optional> #include <queue> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/hlo_parser.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" namespace xla { namespace { using ::testing::_; namespace op = xla::testing::opcode_matchers; class CollectivePipelinerTest : public HloTestBase { public: CollectivePipelinerTest() { const int64_t kNumReplicas = 4; const int64_t kNumComputations = 2; config_ = GetModuleConfigForTest(kNumReplicas, kNumComputations); } protected: const HloPredicate IsAllGather = HloPredicateIsOp<HloOpcode::kAllGather>; HloModuleConfig config_; }; absl::StatusOr<bool> RunOptimizer( HloModule* module, bool last_run, int64_t level_to_operate_on = 0, bool pipeline_use_tree = false, bool process_different_sized_ops = true, CollectivePipeliner::PipeliningDirection direction = CollectivePipeliner::PipeliningDirection::kForward, HloPredicate should_process = HloPredicateIsOp<HloOpcode::kAllReduce>, HloPredicate acceptable_formatting = HloPredicateTrue, HloPredicate reuse_pipelined_op_buffer = HloPredicateTrue, HloPredicate should_allow_loop_variant_parameter_in_chain = HloPredicateFalse, CollectivePipeliner::HloPostprocessor postprocess_backward_peeled = std::nullopt, CollectivePipeliner::HloPostprocessor postprocess_backward_rotated = std::nullopt, bool should_add_loop_invariant_op_in_chain = false) { CollectivePipeliner::Config config = { level_to_operate_on, INT64_MAX, last_run, pipeline_use_tree, process_different_sized_ops, direction, should_process, acceptable_formatting, reuse_pipelined_op_buffer, should_allow_loop_variant_parameter_in_chain, false, postprocess_backward_peeled, postprocess_backward_rotated, should_add_loop_invariant_op_in_chain}; HloPassPipeline pass("optimizer"); pass.AddPass<HloVerifier>(false, false); pass.AddPass<CollectivePipeliner>(config); pass.AddPass<HloVerifier>(false, false); return pass.Run(module); } TEST_F(CollectivePipelinerTest, TransformIncrementIndexByOne) { constexpr absl::string_view hlo_string = R"( HloModule module add { lhs = bf16[] parameter(0) rhs = bf16[] parameter(1) ROOT add = bf16[] add(lhs, rhs) } while_cond { param = (s32[], bf16[3,8,128], bf16[3,8,128]) parameter(0) gte = s32[] get-tuple-element(param), index=0 constant.1 = s32[] constant(3) ROOT cmp = pred[] compare(gte, constant.1), direction=LT } while_body { param = (s32[], bf16[3,8,128], bf16[3,8,128]) parameter(0) get-tuple-element.394 = s32[] get-tuple-element(param), index=0 get-tuple-element.395 = bf16[3,8,128] get-tuple-element(param), index=1 get-tuple-element.5 = bf16[3,8,128] get-tuple-element(param), index=2 constant.2557 = s32[] constant(1) add.230 = s32[] add(get-tuple-element.394, constant.2557) constant.2559 = s32[] constant(3) subtract.139 = s32[] subtract(constant.2559, get-tuple-element.394) constant.2560 = s32[] constant(-1) add.231 = s32[] add(subtract.139, constant.2560) constant.2561 = s32[] constant(0) compare.747 = pred[] compare(add.231, constant.2561), direction=LT constant.2562 = s32[] constant(2) add.232 = s32[] add(subtract.139, constant.2562) select.1348 = s32[] select(compare.747, add.232, add.231) dynamic-slice.99 = bf16[1,8,128] dynamic-slice(get-tuple-element.5, select.1348, constant.2561, constant.2561), dynamic_slice_sizes={1,8,128} mul = bf16[1,8,128] multiply(dynamic-slice.99, dynamic-slice.99) ar.1 = bf16[1,8,128] all-reduce(mul), replica_groups={}, to_apply=add, channel_id=1 dynamic-update-slice.35 = bf16[3,8,128] dynamic-update-slice(get-tuple-element.395, ar.1, select.1348, constant.2561, constant.2561) ROOT tuple = (s32[], bf16[3,8,128], bf16[3,8,128]) tuple(add.230, dynamic-update-slice.35, get-tuple-element.5) } ENTRY entry { c0 = s32[] constant(0) p0 = bf16[3,8,128] parameter(0) tuple = (s32[], bf16[3,8,128], bf16[3,8,128]) tuple(c0, p0, p0) while = (s32[], bf16[3,8,128], bf16[3,8,128]) while(tuple), condition=while_cond, body=while_body ROOT gte1 = bf16[3,8,128] get-tuple-element(while), index=1 } )"; auto module = ParseAndReturnUnverifiedModule(hlo_string, config_).value(); EXPECT_TRUE(RunOptimizer(module.get(), true).value()); XLA_VLOG_LINES(1, module->ToString()); const HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::DynamicUpdateSlice(_, op::AllReduce(), _, _, _)); const HloInstruction* sliced = root->operand(1)->operand(0); EXPECT_EQ(sliced->opcode(), HloOpcode::kDynamicSlice); const HloInstruction* index = sliced->operand(1); EXPECT_EQ(index->opcode(), HloOpcode::kGetTupleElement); EXPECT_EQ(index->tuple_index(), 3); const HloInstruction* while_inst = index->operand(0); EXPECT_EQ(while_inst->opcode(), HloOpcode::kWhile); const HloInstruction* while_root = while_inst->while_body()->root_instruction(); EXPECT_EQ(while_root->opcode(), HloOpcode::kTuple); const HloInstruction* dyn_upd = while_root->operand(1); EXPECT_EQ(dyn_upd->opcode(), HloOpcode::kDynamicUpdateSlice); const HloInstruction* dyn_upd2 = dyn_upd->operand(0); EXPECT_EQ(dyn_upd2->opcode(), HloOpcode::kDynamicUpdateSlice); const HloInstruction* prev_ar = dyn_upd2->operand(1); EXPECT_EQ(prev_ar->opcode(), HloOpcode::kAllReduce); const HloInstruction* dyn_slice_top = prev_ar->operand(0); EXPECT_EQ(dyn_slice_top->opcode(), HloOpcode::kDynamicSlice); const HloInstruction* get_tuple_value = dyn_slice_top->operand(0); const HloInstruction* get_tuple_index = dyn_slice_top->operand(1); EXPECT_EQ(get_tuple_value->opcode(), HloOpcode::kGetTupleElement); EXPECT_EQ(get_tuple_index->opcode(), HloOpcode::kGetTupleElement); EXPECT_EQ(get_tuple_value->tuple_index(), 1); EXPECT_EQ(get_tuple_index->tuple_index(), 3); } TEST_F(CollectivePipelinerTest, TransformIncrementIndexByOneCollectivePermute) { constexpr absl::string_view hlo_string = R"( HloModule module add { lhs = bf16[] parameter(0) rhs = bf16[] parameter(1) ROOT add = bf16[] add(lhs, rhs) } while_cond { param = (s32[], bf16[3,8,128], bf16[3,8,128]) parameter(0) gte = s32[] get-tuple-element(param), index=0 constant.1 = s32[] constant(14) ROOT cmp = pred[] compare(gte, constant.1), direction=LT } while_body { param = (s32[], bf16[3,8,128], bf16[3,8,128]) parameter(0) get-tuple-element.394 = s32[] get-tuple-element(param), index=0 get-tuple-element.395 = bf16[3,8,128] get-tuple-element(param), index=1 get-tuple-element.5 = bf16[3,8,128] get-tuple-element(param), index=2 cp = bf16[3,8,128] collective-permute(get-tuple-element.5), channel_id=1, source_target_pairs={{0,1},{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,0}}, frontend_attributes={_xla_send_recv_validation="{{0,6},{1,7},{2,8},{3,9},{4,10},{5,11},{6,12},{7,13}}"} constant.2557 = s32[] constant(1) add.230 = s32[] add(get-tuple-element.394, constant.2557) constant.2559 = s32[] constant(14) subtract.139 = s32[] subtract(constant.2559, get-tuple-element.394) constant.2560 = s32[] constant(-1) add.231 = s32[] add(subtract.139, constant.2560) constant.2561 = s32[] constant(0) compare.747 = pred[] compare(add.231, constant.2561), direction=LT constant.2562 = s32[] constant(13) add.232 = s32[] add(subtract.139, constant.2562) select.1348 = s32[] select(compare.747, add.232, add.231) dynamic-slice.99 = bf16[1,8,128] dynamic-slice(cp, select.1348, constant.2561, constant.2561), dynamic_slice_sizes={1,8,128} mul = bf16[1,8,128] multiply(dynamic-slice.99, dynamic-slice.99) ar.1 = bf16[1,8,128] all-reduce(mul), replica_groups={}, to_apply=add, channel_id=2 dynamic-update-slice.35 = bf16[3,8,128] dynamic-update-slice(get-tuple-element.395, ar.1, select.1348, constant.2561, constant.2561) ROOT tuple = (s32[], bf16[3,8,128], bf16[3,8,128]) tuple(add.230, dynamic-update-slice.35, get-tuple-element.5) } ENTRY entry { c0 = s32[] constant(0) p0 = bf16[3,8,128] parameter(0) tuple = (s32[], bf16[3,8,128], bf16[3,8,128]) tuple(c0, p0, p0) while = (s32[], bf16[3,8,128], bf16[3,8,128]) while(tuple), condition=while_cond, body=while_body ROOT gte1 = bf16[3,8,128] get-tuple-element(while), index=1 } )"; config_.set_num_partitions(8); config_.set_replica_count(1); auto module = ParseAndReturnUnverifiedModule(hlo_string, config_).value(); EXPECT_TRUE(RunOptimizer(module.get(), true).value()); XLA_VLOG_LINES(1, module->ToString()); EXPECT_TRUE(*RunFileCheck(module->ToString(), R"( )")); } TEST_F(CollectivePipelinerTest, TransformIncrementIndexByOneCollectivePermuteBackwardCycle) { constexpr absl::string_view hlo_string = R"( HloModule module add { lhs = bf16[] parameter(0) rhs = bf16[] parameter(1) ROOT add = bf16[] add(lhs, rhs) } while_cond { param = (s32[], bf16[3,8,128], bf16[3,8,128]) parameter(0) gte = s32[] get-tuple-element(param), index=0 constant.1 = s32[] constant(14) ROOT cmp = pred[] compare(gte, constant.1), direction=LT } while_body { param = (s32[], bf16[3,8,128], bf16[3,8,128]) parameter(0) get-tuple-element.394 = s32[] get-tuple-element(param), index=0 get-tuple-element.395 = bf16[3,8,128] get-tuple-element(param), index=1 get-tuple-element.5 = bf16[3,8,128] get-tuple-element(param), index=2 cp = bf16[3,8,128] collective-permute(get-tuple-element.5), channel_id=1, source_target_pairs={{0,7},{1,0},{2,1},{3,2},{4,3},{5,4},{6,5},{7,6}}, frontend_attributes={_xla_send_recv_validation="{{7,13},{6,12},{5,11},{4,10},{3,9},{2,8},{1,7},{0,6}}"} constant.2557 = s32[] constant(1) add.230 = s32[] add(get-tuple-element.394, constant.2557) constant.2559 = s32[] constant(14) subtract.139 = s32[] subtract(constant.2559, get-tuple-element.394) constant.2560 = s32[] constant(-1) add.231 = s32[] add(subtract.139, constant.2560) constant.2561 = s32[] constant(0) compare.747 = pred[] compare(add.231, constant.2561), direction=LT constant.2562 = s32[] constant(13) add.232 = s32[] add(subtract.139, constant.2562) select.1348 = s32[] select(compare.747, add.232, add.231) dynamic-slice.99 = bf16[1,8,128] dynamic-slice(cp, select.1348, constant.2561, constant.2561), dynamic_slice_sizes={1,8,128} mul = bf16[1,8,128] multiply(dynamic-slice.99, dynamic-slice.99) ar.1 = bf16[1,8,128] all-reduce(mul), replica_groups={}, to_apply=add, channel_id=2 dynamic-update-slice.35 = bf16[3,8,128] dynamic-update-slice(get-tuple-element.395, ar.1, select.1348, constant.2561, constant.2561) ROOT tuple = (s32[], bf16[3,8,128], bf16[3,8,128]) tuple(add.230, dynamic-update-slice.35, get-tuple-element.5) } ENTRY entry { c0 = s32[] constant(0) p0 = bf16[3,8,128] parameter(0) tuple = (s32[], bf16[3,8,128], bf16[3,8,128]) tuple(c0, p0, p0) while = (s32[], bf16[3,8,128], bf16[3,8,128]) while(tuple), condition=while_cond, body=while_body ROOT gte1 = bf16[3,8,128] get-tuple-element(while), index=1 } )"; config_.set_num_partitions(8); config_.set_replica_count(1); auto module = ParseAndReturnUnverifiedModule(hlo_string, config_).value(); EXPECT_TRUE(RunOptimizer(module.get(), true).value()); XLA_VLOG_LINES(1, module->ToString()); EXPECT_TRUE(*RunFileCheck(module->ToString(), R"( )")); } TEST_F(CollectivePipelinerTest, UpdateSendRecvChannelIdForHostTransfers) { constexpr absl::string_view hlo_string = R"( HloModule module add { lhs = bf16[] parameter(0) rhs = bf16[] parameter(1) ROOT add = bf16[] add(lhs, rhs) } while_cond { param = (s32[], bf16[3,8,128], bf16[3,8,128]) parameter(0) gte = s32[] get-tuple-element(param), index=0 constant.1 = s32[] constant(3) ROOT cmp = pred[] compare(gte, constant.1), direction=LT } while_body { param = (s32[], bf16[3,8,128], bf16[3,8,128]) parameter(0) get-tuple-element.394 = s32[] get-tuple-element(param), index=0 get-tuple-element.395 = bf16[3,8,128] get-tuple-element(param), index=1 get-tuple-element.5 = bf16[3,8,128] get-tuple-element(param), index=2 constant.2557 = s32[] constant(1) add.230 = s32[] add(get-tuple-element.394, constant.2557) constant.2559 = s32[] constant(3) subtract.139 = s32[] subtract(constant.2559, get-tuple-element.394) constant.2560 = s32[] constant(-1) add.231 = s32[] add(subtract.139, constant.2560) constant.2561 = s32[] constant(0) compare.747 = pred[] compare(add.231, constant.2561), direction=LT constant.2562 = s32[] constant(2) add.232 = s32[] add(subtract.139, constant.2562) after-all = after-all() send.88 = (s32[], u32[], token[]) send( add.232, after-all), channel_id=2, is_host_transfer=true send-done.88 = token[] send-done(send.88), channel_id=2, is_host_transfer=true select.1348 = s32[] select(compare.747, add.232, add.231) dynamic-slice.99 = bf16[1,8,128] dynamic-slice(get-tuple-element.5, select.1348, constant.2561, constant.2561), dynamic_slice_sizes={1,8,128} mul = bf16[1,8,128] multiply(dynamic-slice.99, dynamic-slice.99) ar.1 = bf16[1,8,128] all-reduce(mul), replica_groups={}, to_apply=add, channel_id=1 dynamic-update-slice.35 = bf16[3,8,128] dynamic-update-slice(get-tuple-element.395, ar.1, select.1348, constant.2561, constant.2561) ROOT tuple = (s32[], bf16[3,8,128], bf16[3,8,128]) tuple(add.230, dynamic-update-slice.35, get-tuple-element.5) } ENTRY entry { c0 = s32[] constant(0) p0 = bf16[3,8,128] parameter(0) tuple = (s32[], bf16[3,8,128], bf16[3,8,128]) tuple(c0, p0, p0) while = (s32[], bf16[3,8,128], bf16[3,8,128]) while(tuple), condition=while_cond, body=while_body ROOT gte1 = bf16[3,8,128] get-tuple-element(while), index=1 } )"; auto module = ParseAndReturnUnverifiedModule(hlo_string, config_).value(); EXPECT_TRUE(RunOptimizer(module.get(), true).value()); XLA_VLOG_LINES(1, module->ToString()); auto* entry_comp = module->entry_computation(); auto* unrolled_send_done = entry_comp->GetInstructionWithName("send-done.0"); ASSERT_THAT(unrolled_send_done, ::testing::NotNull()); auto* unrolled_send = unrolled_send_done->operand(0); auto channel_id = [](const HloInstruction* instr) { return DynCast<HloChannelInstruction>(instr)->channel_id(); }; EXPECT_EQ(channel_id(unrolled_send), channel_id(unrolled_send_done)); } TEST_F(CollectivePipelinerTest, TransformIncrementIndexByOneNoReuse) { constexpr absl::string_view hlo_string = R"( HloModule module add { lhs = bf16[] parameter(0) rhs = bf16[] parameter(1) ROOT add = bf16[] add(lhs, rhs) } while_cond { param = (s32[], bf16[3,8,128], bf16[3,8,128]) parameter(0) gte = s32[] get-tuple-element(param), index=0 constant.1 = s32[] constant(3) ROOT cmp = pred[] compare(gte, constant.1), direction=LT } while_body { param = (s32[], bf16[3,8,128], bf16[3,8,128]) parameter(0) get-tuple-element.394 = s32[] get-tuple-element(param), index=0 get-tuple-element.395 = bf16[3,8,128] get-tuple-element(param), index=1 get-tuple-element.5 = bf16[3,8,128] get-tuple-element(param), index=2 constant.2557 = s32[] constant(1) add.230 = s32[] add(get-tuple-element.394, constant.2557) constant.2559 = s32[] constant(3) subtract.139 = s32[] subtract(constant.2559, get-tuple-element.394) constant.2560 = s32[] constant(-1) add.231 = s32[] add(subtract.139, constant.2560) constant.2561 = s32[] constant(0) compare.747 = pred[] compare(add.231, constant.2561), direction=LT constant.2562 = s32[] constant(2) add.232 = s32[] add(subtract.139, constant.2562) select.1348 = s32[] select(compare.747, add.232, add.231) dynamic-slice.99 = bf16[1,8,128] dynamic-slice(get-tuple-element.5, select.1348, constant.2561, constant.2561), dynamic_slice_sizes={1,8,128} mul = bf16[1,8,128] multiply(dynamic-slice.99, dynamic-slice.99) ar.1 = bf16[1,8,128] all-reduce(mul), replica_groups={}, to_apply=add, channel_id=1 dynamic-update-slice.35 = bf16[3,8,128] dynamic-update-slice(get-tuple-element.395, ar.1, select.1348, constant.2561, constant.2561) ROOT tuple = (s32[], bf16[3,8,128], bf16[3,8,128]) tuple(add.230, dynamic-update-slice.35, get-tuple-element.5) } ENTRY entry { c0 = s32[] constant(0) p0 = bf16[3,8,128] parameter(0) tuple = (s32[], bf16[3,8,128], bf16[3,8,128]) tuple(c0, p0, p0) while = (s32[], bf16[3,8,128], bf16[3,8,128]) while(tuple), condition=while_cond, body=while_body ROOT gte1 = bf16[3,8,128] get-tuple-element(while), index=1 } )"; auto module = ParseAndReturnUnverifiedModule(hlo_string, config_).value(); EXPECT_TRUE(RunOptimizer( module.get(), true, 0, false, true, CollectivePipeliner::PipeliningDirection::kForward, HloPredicateIsOp<HloOpcode::kAllReduce>, [](const HloInstruction* i) { return true; }, [](const HloInstruction* i) { return false; }) .value()); XLA_VLOG_LINES(1, module->ToString()); HloInstruction* while_instr = FindInstruction(module.get(), HloOpcode::kWhile); EXPECT_EQ(while_instr->shape().tuple_shapes_size(), 5); } TEST_F(CollectivePipelinerTest, TransformIncrementIndexByOneNotFirstIdx) { constexpr absl::string_view hlo_string = R"( HloModule module add { lhs = bf16[] parameter(0) rhs = bf16[] parameter(1) ROOT add = bf16[] add(lhs, rhs) } while_cond { param = (s32[], bf16[8,3,128], bf16[8,3,128]) parameter(0) gte = s32[] get-tuple-element(param), index=0 constant.1 = s32[] constant(3) ROOT cmp = pred[] compare(gte, constant.1), direction=LT } while_body { param = (s32[], bf16[8,3,128], bf16[8,3,128]) parameter(0) get-tuple-element.394 = s32[] get-tuple-element(param), index=0 get-tuple-element.395 = bf16[8,3,128] get-tuple-element(param), index=1 get-tuple-element.5 = bf16[8,3,128] get-tuple-element(param), index=2 constant.2557 = s32[] constant(1) add.230 = s32[] add(get-tuple-element.394, constant.2557) constant.2559 = s32[] constant(3) subtract.139 = s32[] subtract(constant.2559, get-tuple-element.394) constant.2560 = s32[] constant(-1) add.231 = s32[] add(subtract.139, constant.2560) constant.2561 = s32[] constant(0) compare.747 = pred[] compare(add.231, constant.2561), direction=LT constant.2562 = s32[] constant(2) add.232 = s32[] add(subtract.139, constant.2562) select.1348 = s32[] select(compare.747, add.232, add.231) dynamic-slice.99 = bf16[8,1,128] dynamic-slice(get-tuple-element.5, constant.2561, select.1348, constant.2561), dynamic_slice_sizes={8,1,128} mul = bf16[8,1,128] multiply(dynamic-slice.99, dynamic-slice.99) ar.1 = bf16[8,1,128] all-reduce(mul), replica_groups={}, to_apply=add, channel_id=1 dynamic-update-slice.35 = bf16[8,3,128] dynamic-update-slice(get-tuple-element.395, ar.1, constant.2561, select.1348, constant.2561) ROOT tuple = (s32[], bf16[8,3,128], bf16[8,3,128]) tuple(add.230, dynamic-update-slice.35, get-tuple-element.5) } ENTRY entry { c0 = s32[] constant(0) p0 = bf16[8,3,128] parameter(0) tuple = (s32[], bf16[8,3,128], bf16[8,3,128]) tuple(c0, p0, p0) while = (s32[], bf16[8,3,128], bf16[8,3,128]) while(tuple), condition=while_cond, body=while_body ROOT gte1 = bf16[8,3,128] get-tuple-element(while), index=1 } )"; auto module = ParseAndReturnUnverifiedModule(hlo_string, config_).value(); EXPECT_TRUE(RunOptimizer(module.get(), true).value()); XLA_VLOG_LINES(1, module->ToString()); const HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::DynamicUpdateSlice(_, op::AllReduce(), _, _, _)); const HloInstruction* sliced = root->operand(1)->operand(0); EXPECT_EQ(sliced->opcode(), HloOpcode::kDynamicSlice); const HloInstruction* index = sliced->operand(2); EXPECT_EQ(index->opcode(), HloOpcode::kGetTupleElement); EXPECT_EQ(index->tuple_index(), 3); const HloInstruction* while_inst = index->operand(0); EXPECT_EQ(while_inst->opcode(), HloOpcode::kWhile); const HloInstruction* while_root = while_inst->while_body()->root_instruction(); EXPECT_EQ(while_root->opcode(), HloOpcode::kTuple); const HloInstruction* dyn_upd = while_root->operand(1); EXPECT_EQ(dyn_upd->opcode(), HloOpcode::kDynamicUpdateSlice); const HloInstruction* dyn_upd2 = dyn_upd->operand(0); EXPECT_EQ(dyn_upd2->opcode(), HloOpcode::kDynamicUpdateSlice); const HloInstruction* prev_ar = dyn_upd2->operand(1); EXPECT_EQ(prev_ar->opcode(), HloOpcode::kAllReduce); const HloInstruction* dyn_slice_top = prev_ar->operand(0); EXPECT_EQ(dyn_slice_top->opcode(), HloOpcode::kDynamicSlice); const HloInstruction* get_tuple_value = dyn_slice_top->operand(0); const HloInstruction* get_tuple_index = dyn_slice_top->operand(2); EXPECT_EQ(get_tuple_value->opcode(), HloOpcode::kGetTupleElement); EXPECT_EQ(get_tuple_index->opcode(), HloOpcode::kGetTupleElement); EXPECT_EQ(get_tuple_value->tuple_index(), 1); EXPECT_EQ(get_tuple_index->tuple_index(), 3); } TEST_F(CollectivePipelinerTest, TransformIncrementByTwo) { constexpr absl::string_view hlo_string = R"( HloModule module add { lhs = bf16[] parameter(0) rhs = bf16[] parameter(1) ROOT add = bf16[] add(lhs, rhs) } while_cond { param = (s32[], bf16[3,8,128], bf16[3,8,128]) parameter(0) gte = s32[] get-tuple-element(param), index=0 constant.1 = s32[] constant(3) ROOT cmp = pred[] compare(gte, constant.1), direction=LT } while_body { param = (s32[], bf16[3,8,128], bf16[3,8,128]) parameter(0) get-tuple-element.394 = s32[] get-tuple-element(param), index=0 get-tuple-element.395 = bf16[3,8,128] get-tuple-element(param), index=1 get-tuple-element.5 = bf16[3,8,128] get-tuple-element(param), index=2 constant.2557 = s32[] constant(2) add.230 = s32[] add(get-tuple-element.394, constant.2557) constant.2559 = s32[] constant(3) subtract.139 = s32[] subtract(constant.2559, get-tuple-element.394) constant.2560 = s32[] constant(-1) add.231 = s32[] add(subtract.139, constant.2560) constant.2561 = s32[] constant(0) compare.747 = pred[] compare(add.231, constant.2561), direction=LT constant.2562 = s32[] constant(2) add.232 = s32[] add(subtract.139, constant.2562) select.1348 = s32[] select(compare.747, add.232, add.231) dynamic-slice.99 = bf16[1,8,128] dynamic-slice(get-tuple-element.5, select.1348, constant.2561, constant.2561), dynamic_slice_sizes={1,8,128} mul = bf16[1,8,128] multiply(dynamic-slice.99, dynamic-slice.99) ar.1 = bf16[1,8,128] all-reduce(mul), replica_groups={}, to_apply=add, channel_id=1 dynamic-update-slice.35 = bf16[3,8,128] dynamic-update-slice(get-tuple-element.395, ar.1, select.1348, constant.2561, constant.2561) ROOT tuple = (s32[], bf16[3,8,128], bf16[3,8,128]) tuple(add.230, dynamic-update-slice.35, get-tuple-element.5) } ENTRY entry { c0 = s32[] constant(0) p0 = bf16[3,8,128] parameter(0) tuple = (s32[], bf16[3,8,128], bf16[3,8,128]) tuple(c0, p0, p0) while = (s32[], bf16[3,8,128], bf16[3,8,128]) while(tuple), condition=while_cond, body=while_body ROOT gte1 = bf16[3,8,128] get-tuple-element(while), index=1 } )"; auto module = ParseAndReturnUnverifiedModule(hlo_string, config_).value(); EXPECT_TRUE(RunOptimizer(module.get(), true).value()); XLA_VLOG_LINES(1, module->ToString()); const HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::DynamicUpdateSlice(_, op::AllReduce(), _, _, _)); const HloInstruction* sliced = root->operand(1)->operand(0); EXPECT_EQ(sliced->opcode(), HloOpcode::kDynamicSlice); const HloInstruction* index = sliced->operand(1); EXPECT_EQ(index->opcode(), HloOpcode::kGetTupleElement); EXPECT_EQ(index->tuple_index(), 3); const HloInstruction* while_inst = index->operand(0); EXPECT_EQ(while_inst->opcode(), HloOpcode::kWhile); const HloInstruction* while_root = while_inst->while_body()->root_instruction(); EXPECT_EQ(while_root->opcode(), HloOpcode::kTuple); const HloInstruction* dyn_upd = while_root->operand(1); EXPECT_EQ(dyn_upd->opcode(), HloOpcode::kDynamicUpdateSlice); const HloInstruction* dyn_upd2 = dyn_upd->operand(0); EXPECT_EQ(dyn_upd2->opcode(), HloOpcode::kDynamicUpdateSlice); const HloInstruction* prev_ar = dyn_upd2->operand(1); EXPECT_EQ(prev_ar->opcode(), HloOpcode::kAllReduce); const HloInstruction* dyn_slice_top = prev_ar->operand(0); EXPECT_EQ(dyn_slice_top->opcode(), HloOpcode::kDynamicSlice); const HloInstruction* get_tuple_value = dyn_slice_top->operand(0); const HloInstruction* get_tuple_index = dyn_slice_top->operand(1); EXPECT_EQ(get_tuple_value->opcode(), HloOpcode::kGetTupleElement); EXPECT_EQ(get_tuple_index->opcode(), HloOpcode::kGetTupleElement); EXPECT_EQ(get_tuple_value->tuple_index(), 1); EXPECT_EQ(get_tuple_index->tuple_index(), 3); } TEST_F(CollectivePipelinerTest, NoTransformCantProveIndexDoesntWrap) { constexpr absl::string_view hlo_string = R"( HloModule module add { lhs = bf16[] parameter(0) rhs = bf16[] parameter(1) ROOT add = bf16[] add(lhs, rhs) } while_cond { param = (s32[], bf16[3,8,128], bf16[3,8,128]) parameter(0) gte = s32[] get-tuple-element(param), index=0 constant.1 = s32[] constant(4) ROOT cmp = pred[] compare(gte, constant.1), direction=LT } while_body { param = (s32[], bf16[3,8,128], bf16[3,8,128]) parameter(0) get-tuple-element.394 = s32[] get-tuple-element(param), index=0 get-tuple-element.395 = bf16[3,8,128] get-tuple-element(param), index=1 get-tuple-element.5 = bf16[3,8,128] get-tuple-element(param), index=2 constant.2557 = s32[] constant(1) add.230 = s32[] add(get-tuple-element.394, constant.2557) constant.2559 = s32[] constant(3) subtract.139 = s32[] subtract(constant.2559, get-tuple-element.394) constant.2560 = s32[] constant(-1) add.231 = s32[] add(subtract.139, constant.2560) constant.2561 = s32[] constant(0) compare.747 = pred[] compare(add.231, constant.2561), direction=LT constant.2562 = s32[] constant(2) add.232 = s32[] add(subtract.139, constant.2562) select.1348 = s32[] select(compare.747, add.232, add.231) dynamic-slice.99 = bf16[1,8,128] dynamic-slice(get-tuple-element.5, select.1348, constant.2561, constant.2561), dynamic_slice_sizes={1,8,128} mul = bf16[1,8,128] multiply(dynamic-slice.99, dynamic-slice.99) ar.1 = bf16[1,8,128] all-reduce(mul), replica_groups={}, to_apply=add, channel_id=1 dynamic-update-slice.35 = bf16[3,8,128] dynamic-update-slice(get-tuple-element.395, ar.1, select.1348, constant.2561, constant.2561) ROOT tuple = (s32[], bf16[3,8,128], bf16[3,8,128]) tuple(add.230, dynamic-update-slice.35, get-tuple-element.5) } ENTRY entry { c0 = s32[] constant(-1) p0 = bf16[3,8,128] parameter(0) tuple = (s32[], bf16[3,8,128], bf16[3,8,128]) tuple(c0, p0, p0) while = (s32[], bf16[3,8,128], bf16[3,8,128]) while(tuple), condition=while_cond, body=while_body ROOT gte1 = bf16[3,8,128] get-tuple-element(while), index=1 } )"; auto module = ParseAndReturnUnverifiedModule(hlo_string, config_).value(); EXPECT_FALSE(RunOptimizer(module.get(), true).value()); XLA_VLOG_LINES(1, module->ToString()); } TEST_F(CollectivePipelinerTest, TransformNegativeIndexIterationToZero) { constexpr absl::string_view hlo_string = R"( HloModule module add { lhs = bf16[] parameter(0) rhs = bf16[] parameter(1) ROOT add = bf16[] add(lhs, rhs) } while_cond { param = (s32[], bf16[3,8,128], bf16[3,8,128]) parameter(0) gte = s32[] get-tuple-element(param), index=0 constant.1 = s32[] constant(0) ROOT cmp = pred[] compare(gte, constant.1), direction=LT } while_body { param = (s32[], bf16[3,8,128], bf16[3,8,128]) parameter(0) get-tuple-element.394 = s32[] get-tuple-element(param), index=0 get-tuple-element.395 = bf16[3,8,128] get-tuple-element(param), index=1 get-tuple-element.5 = bf16[3,8,128] get-tuple-element(param), index=2 constant.2557 = s32[] constant(1) add.230 = s32[] add(get-tuple-element.394, constant.2557) constant.2559 = s32[] constant(3) subtract.139 = s32[] subtract(constant.2559, get-tuple-element.394) constant.2560 = s32[] constant(-1) add.231 = s32[] add(subtract.139, constant.2560) constant.2561 = s32[] constant(0) compare.747 = pred[] compare(add.231, constant.2561), direction=LT constant.2562 = s32[] constant(2) add.232 = s32[] add(subtract.139, constant.2562) select.1348 = s32[] select(compare.747, add.232, add.231) dynamic-slice.99 = bf16[1,8,128] dynamic-slice(get-tuple-element.5, select.1348, constant.2561, constant.2561), dynamic_slice_sizes={1,8,128} mul = bf16[1,8,128] multiply(dynamic-sli
1,842
cpp
tensorflow/tensorflow
change_op_data_type
third_party/xla/xla/service/change_op_data_type.cc
third_party/xla/xla/service/change_op_data_type_test.cc
#ifndef XLA_SERVICE_CHANGE_OP_DATA_TYPE_H_ #define XLA_SERVICE_CHANGE_OP_DATA_TYPE_H_ #include <functional> #include <memory> #include <utility> #include "xla/service/hlo_pass_interface.h" namespace xla { class ChangeOpDataType : public HloModulePass { public: using HloCloner = std::function<std::unique_ptr<HloInstruction>( const HloInstruction*, const Shape&, absl::Span<HloInstruction* const>)>; ChangeOpDataType( absl::Span<std::pair<PrimitiveType, PrimitiveType> const> from_to_types, HloPredicate op_matcher, HloCloner cloner = nullptr) : op_matcher_(op_matcher), cloner_(cloner) { for (const std::pair<PrimitiveType, PrimitiveType>& pair : from_to_types) { to_type_map_[pair.first] = pair.second; } } ChangeOpDataType(PrimitiveType from_ty, PrimitiveType to_ty, HloPredicate op_matcher, HloCloner cloner = nullptr) : op_matcher_(op_matcher), cloner_(cloner) { to_type_map_[from_ty] = to_ty; } absl::string_view name() const override { return "change-op-data-type"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: absl::flat_hash_map<PrimitiveType, PrimitiveType> to_type_map_; HloPredicate op_matcher_; HloCloner cloner_; }; } #endif #include "xla/service/change_op_data_type.h" #include <optional> #include "xla/service/hlo_creation_utils.h" #if defined(INTEL_MKL) && defined(ENABLE_ONEDNN_V3) #include "xla/service/cpu/onednn_matmul_rewriter.h" #endif namespace xla { namespace { std::optional<PrimitiveType> GetUniformOperandType( const HloInstruction* instr) { std::optional<PrimitiveType> type; for (const HloInstruction* operand : instr->operands()) { if (!type.has_value()) { type = operand->shape().element_type(); } else if (operand->shape().element_type() != type.value()) { return std::nullopt; } } return type; } } absl::StatusOr<bool> ChangeOpDataType::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; HloCloner default_cloner = [](const HloInstruction* inst, const Shape& shape, absl::Span<HloInstruction* const> operands) { return inst->CloneWithNewOperands(shape, operands); }; HloCloner cloner = cloner_ ? cloner_ : default_cloner; for (HloComputation* comp : module->MakeNonfusionComputations(execution_threads)) { for (HloInstruction* instr : comp->MakeInstructionPostOrder()) { std::optional<PrimitiveType> operand_type = GetUniformOperandType(instr); if (!op_matcher_(instr) || !operand_type.has_value() || !instr->shape().IsArray() || instr->opcode() == HloOpcode::kParameter) { continue; } const PrimitiveType from_type = *operand_type; auto it = to_type_map_.find(from_type); if (it == to_type_map_.end()) { continue; } #if defined(INTEL_MKL) && defined(ENABLE_ONEDNN_V3) if (instr->opcode() == HloOpcode::kDot && cpu::OneDnnMatMulRewriter::ShouldRewrite(instr)) { continue; } #endif const PrimitiveType to_type = it->second; absl::InlinedVector<HloInstruction*, 8> new_operands; for (HloInstruction* operand : instr->mutable_operands()) { new_operands.push_back(MakeConvertToHlo(operand, to_type)); } Shape new_shape = instr->shape(); new_shape.set_element_type(to_type); HloInstruction* new_instr = comp->AddInstruction(cloner(instr, new_shape, new_operands)); TF_RETURN_IF_ERROR(comp->ReplaceInstruction( instr, MakeConvertToHlo(new_instr, from_type))); changed = true; } } return changed; } }
#include "xla/service/change_op_data_type.h" #include <string> #include <tuple> #include <vector> #include "absl/types/span.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { namespace m = ::xla::match; class ChangeOpDataTypeTest : public HloTestBase { public: ChangeOpDataTypeTest() : HloTestBase(false, false) {} }; TEST_F(ChangeOpDataTypeTest, Simple) { const char* const kModuleStr = R"( HloModule module ENTRY entry { ROOT op = add(f16[10] parameter(0), f16[10] parameter(1)) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kModuleStr)); ChangeOpDataType pass(F16, F32, HloPredicateTrue); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch( m::Convert(m::Add(m::Convert(m::Parameter(0)).WithShape(F32, {10}), m::Convert(m::Parameter(1)).WithShape(F32, {10}))) .WithShape(F16, {10}))); } TEST_F(ChangeOpDataTypeTest, AllTypesMustBeSame) { const char* const kModuleStr = R"( HloModule module ENTRY entry { ROOT op = f16[1] dynamic-slice(f16[10] parameter(0), s32[1] parameter(1)), dynamic_slice_sizes={1} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kModuleStr)); ChangeOpDataType pass(F16, F32, HloPredicateTrue); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_FALSE(changed); } TEST_F(ChangeOpDataTypeTest, DotAndConv) { const char* const kModuleStr = R"( HloModule module ENTRY entry { dot = f16[10,10] dot(f16[10,10] parameter(0), f16[10,10] parameter(1)), lhs_contracting_dims={1}, rhs_contracting_dims={0} conv = f16[1,2,1] convolution(f16[1,2,1] parameter(2), f16[1,1,1] parameter(3)), window={size=1}, dim_labels=b0f_0io->b0f root = tuple(dot, conv) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kModuleStr)); ChangeOpDataType pass( F16, F32, HloPredicateIsOp<HloOpcode::kDot, HloOpcode::kConvolution>); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::Convert( m::Dot(m::Convert(m::Parameter(0)).WithShape(F32, {10, 10}), m::Convert(m::Parameter(1)).WithShape(F32, {10, 10}))) .WithShape(F16, {10, 10}), m::Convert(m::Convolution( m::Convert(m::Parameter(2)).WithShape(F32, {1, 2, 1}), m::Convert(m::Parameter(3)).WithShape(F32, {1, 1, 1}))) .WithShape(F16, {1, 2, 1})))); } TEST_F(ChangeOpDataTypeTest, SimpleWithCloner) { const char* const kModuleStr = R"( HloModule module ENTRY entry { ROOT op = add(f16[10] parameter(0), f16[10] parameter(1)) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kModuleStr)); HloPredicate matcher = HloPredicateTrue; int count = 0; ChangeOpDataType::HloCloner cloner = [&count](const HloInstruction* instr, const Shape& shape, absl::Span<HloInstruction* const> operands) { count++; return instr->CloneWithNewOperands(shape, operands); }; ChangeOpDataType pass(F16, F32, matcher, cloner); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(changed); EXPECT_EQ(count, 1); } TEST_F(ChangeOpDataTypeTest, SimpleWithMultipleTypes) { const char* const kModuleStr = R"( HloModule module ENTRY entry { op1 = add(f16[10] parameter(0), f16[10] parameter(1)) op2 = add(u16[10] parameter(2), u16[10] parameter(3)) ROOT tup = (f16[10], u16[10]) tuple(op1, op2) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kModuleStr)); HloPredicate matcher = HloPredicateTrue; ChangeOpDataType pass({{F16, F32}, {U16, U32}}, matcher); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(changed); const HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kTuple); EXPECT_EQ(root->operand_count(), 2); EXPECT_THAT( root->operand(0), GmockMatch( m::Convert(m::Add(m::Convert(m::Parameter(0)).WithShape(F32, {10}), m::Convert(m::Parameter(1)).WithShape(F32, {10}))) .WithShape(F16, {10}))); EXPECT_THAT( root->operand(1), GmockMatch( m::Convert(m::Add(m::Convert(m::Parameter(2)).WithShape(U32, {10}), m::Convert(m::Parameter(3)).WithShape(U32, {10}))) .WithShape(U16, {10}))); } } }
1,843
cpp
tensorflow/tensorflow
fusion_node_indexing_evaluation
third_party/xla/xla/service/fusion_node_indexing_evaluation.cc
third_party/xla/xla/service/fusion_node_indexing_evaluation_test.cc
#ifndef XLA_SERVICE_FUSION_NODE_INDEXING_EVALUATION_H_ #define XLA_SERVICE_FUSION_NODE_INDEXING_EVALUATION_H_ #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/types.h" namespace xla { class FusionNodeIndexingEvaluation { public: explicit FusionNodeIndexingEvaluation(const HloInstruction* fusion, int64_t root_usage_count = 1); bool CodeDuplicationTooHigh(const HloInstruction* producer) const; bool MaxCodeDuplicationTooHigh() const; int64_t EvaluateEmittedInstructions(const HloInstruction* producer) const; void UpdateEvaluationCache( const HloInstruction* producer, absl::flat_hash_set<const HloInstruction*> indexing_users_of_producer); absl::flat_hash_set<const HloInstruction*> RemoveFusionOperand( HloInstruction* fusion_operand); private: static const int64_t kAllowedCodeDuplication; void RecomputeCache(); void UpdateIndexUsageCount(const HloInstruction* instruction); void UpdateIndexingUsersOfOperands(const HloInstruction* instruction); absl::flat_hash_map<const HloInstruction*, absl::flat_hash_set<const HloInstruction*>> indexing_users_; absl::flat_hash_map<const HloInstruction*, int64_t> index_usage_count_; const HloInstruction* fusion_; }; } #endif #include "xla/service/fusion_node_indexing_evaluation.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/elemental_ir_emitter.h" #include "xla/types.h" #include "tsl/platform/logging.h" namespace xla { FusionNodeIndexingEvaluation::FusionNodeIndexingEvaluation( const HloInstruction* fusion, int64_t root_usage_count) : fusion_(fusion) { HloInstruction* root = fusion->fused_expression_root(); indexing_users_[root].insert(fusion); index_usage_count_[fusion] = root_usage_count; RecomputeCache(); } const int64_t FusionNodeIndexingEvaluation::kAllowedCodeDuplication = 15; namespace { int64_t UserCount(const HloInstruction* hlo) { int64_t cnt = 0; for (HloInstruction* user : hlo->users()) { if (user->opcode() == HloOpcode::kFusion) { int64_t operand_index = user->operand_index(hlo); cnt += user->fused_parameter(operand_index)->user_count(); } else { ++cnt; } } return cnt; } } bool FusionNodeIndexingEvaluation::CodeDuplicationTooHigh( const HloInstruction* producer) const { if (producer->opcode() == HloOpcode::kBroadcast) { return false; } int64_t emitted_instructions = EvaluateEmittedInstructions(producer); return emitted_instructions > kAllowedCodeDuplication || (ElementalIrEmitter::OpInvalidatesCache(producer) && (emitted_instructions > 1 || UserCount(producer) > 1)); } bool FusionNodeIndexingEvaluation::MaxCodeDuplicationTooHigh() const { for (const auto& entry : index_usage_count_) { if (entry.second > kAllowedCodeDuplication || (ElementalIrEmitter::OpInvalidatesCache(entry.first) && (entry.second > 1 || UserCount(entry.first) > 1))) { return true; } } return false; } int64_t FusionNodeIndexingEvaluation::EvaluateEmittedInstructions( const HloInstruction* producer) const { int64_t total = 0; for (const auto* user : indexing_users_.at(producer)) { total += index_usage_count_.at(user); } return total; } void FusionNodeIndexingEvaluation::UpdateEvaluationCache( const HloInstruction* producer, absl::flat_hash_set<const HloInstruction*> indexing_users_of_producer) { CHECK(!indexing_users_.contains(producer)); indexing_users_[producer] = std::move(indexing_users_of_producer); UpdateIndexUsageCount(producer); UpdateIndexingUsersOfOperands(producer); } absl::flat_hash_set<const HloInstruction*> FusionNodeIndexingEvaluation::RemoveFusionOperand( HloInstruction* fusion_operand) { auto indexing_users_of_operand = std::move(indexing_users_.at(fusion_operand)); indexing_users_.erase(fusion_operand); CHECK(!index_usage_count_.contains(fusion_operand)); return indexing_users_of_operand; } void FusionNodeIndexingEvaluation::RecomputeCache() { auto postorder = fusion_->fused_instructions_computation()->MakeInstructionPostOrder(); std::reverse(postorder.begin(), postorder.end()); for (const auto* instruction : postorder) { if (instruction->opcode() == HloOpcode::kParameter) { continue; } UpdateIndexUsageCount(instruction); UpdateIndexingUsersOfOperands(instruction); } } void FusionNodeIndexingEvaluation::UpdateIndexUsageCount( const HloInstruction* instruction) { int64_t total = 0; for (const auto* user : indexing_users_[instruction]) { total += index_usage_count_.at(user); } CHECK(index_usage_count_.emplace(instruction, total).second); } void FusionNodeIndexingEvaluation::UpdateIndexingUsersOfOperands( const HloInstruction* instruction) { for (const auto* operand : instruction->operands()) { if (operand->opcode() == HloOpcode::kParameter) { operand = fusion_->operand(operand->parameter_number()); } if (instruction->opcode() == HloOpcode::kTranspose || Shape::Equal().IgnoreElementType()(operand->shape(), instruction->shape())) { indexing_users_[operand].insert(indexing_users_[instruction].begin(), indexing_users_[instruction].end()); } else { indexing_users_[operand].insert(instruction); } } } }
#include "xla/service/fusion_node_indexing_evaluation.h" #include "absl/container/flat_hash_map.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_parser.h" #include "xla/service/instruction_fusion.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/test.h" namespace xla { using FusionNodeIndexingEvaluationTest = HloTestBase; class InstructionFusionForTesting : public InstructionFusion { public: explicit InstructionFusionForTesting() : InstructionFusion(InstructionFusion::IsExpensive) {} HloInstruction* FuseInstruction(HloInstruction* fusion_instruction, HloInstruction* producer) override { auto evaluation = fusion_node_evaluations_.find(fusion_instruction); if (evaluation == fusion_node_evaluations_.end()) { evaluation = fusion_node_evaluations_ .emplace(fusion_instruction, FusionNodeIndexingEvaluation(fusion_instruction)) .first; } auto indexing_users = evaluation->second.RemoveFusionOperand(producer); HloInstruction* new_producer = InstructionFusion::FuseInstruction(fusion_instruction, producer); evaluation->second.UpdateEvaluationCache(new_producer, indexing_users); return new_producer; } HloInstruction* Fuse(HloInstruction* producer, HloInstruction* consumer, HloComputation* computation) override { return InstructionFusion::Fuse(producer, consumer, computation); } int64_t EvaluateEmittedInstructions(const HloInstruction* producer, const HloInstruction* consumer) { if (consumer->opcode() != HloOpcode::kFusion) { return 0; } if (fusion_node_evaluations_.find(consumer) == fusion_node_evaluations_.end()) { fusion_node_evaluations_.emplace(consumer, FusionNodeIndexingEvaluation(consumer)); } return fusion_node_evaluations_.at(consumer).EvaluateEmittedInstructions( producer); } const FusionNodeIndexingEvaluation* GetFusionNodeEvaluation( const HloInstruction* consumer) { auto it = fusion_node_evaluations_.find(consumer); if (it == fusion_node_evaluations_.end()) { return nullptr; } return &it->second; } private: absl::flat_hash_map<const HloInstruction*, FusionNodeIndexingEvaluation> fusion_node_evaluations_; }; TEST_F(FusionNodeIndexingEvaluationTest, FuseTwoInstructions) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module ENTRY entry_computation { p0 = f32[4,3]{1,0} parameter(0) add = f32[4,3]{1,0} add(p0, p0) ROOT sub = f32[4,3]{1,0} subtract(add, p0) })") .value(); HloInstruction* sub = module->entry_computation()->root_instruction(); HloInstruction* add = sub->mutable_operand(0); InstructionFusionForTesting().Fuse(add, sub, module->entry_computation()); } TEST_F(FusionNodeIndexingEvaluationTest, FuseThreeInstructions) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module ENTRY entry_computation { p0 = f32[4]{0} parameter(0) slice1 = f32[3]{0} slice(p0), slice={[0:3]} slice2 = f32[3]{0} slice(p0), slice={[0:3]} ROOT sub = f32[3]{0} subtract(slice1, slice2) })") .value(); HloInstruction* sub = module->entry_computation()->root_instruction(); InstructionFusionForTesting instruction_fusion; HloInstruction* slice1 = sub->mutable_operand(0); HloInstruction* slice2 = sub->mutable_operand(1); auto fusion = instruction_fusion.Fuse(slice1, sub, module->entry_computation()); EXPECT_EQ(instruction_fusion.EvaluateEmittedInstructions(slice2, fusion), 1); instruction_fusion.Fuse(slice2, fusion, module->entry_computation()); } TEST_F(FusionNodeIndexingEvaluationTest, ExponentialDuplicationPattern) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module ENTRY entry_computation { p0 = f32[4]{0} parameter(0) p1 = f32[4]{0} parameter(1) add0 = f32[4]{0} add(p0, p1) slice1.0 = f32[3]{0} slice(add0), slice={[0:3]} slice1.1 = f32[3]{0} slice(add0), slice={[1:4]} add1 = f32[3]{0} add(slice1.0, slice1.1) slice2.0 = f32[2]{0} slice(add1), slice={[0:2]} slice2.1 = f32[2]{0} slice(add1), slice={[1:3]} ROOT add2 = f32[2]{0} add(slice2.0, slice2.1) })") .value(); HloInstruction* add2 = module->entry_computation()->root_instruction(); InstructionFusionForTesting instruction_fusion; HloInstruction* slice2_0 = add2->mutable_operand(0); HloInstruction* slice2_1 = add2->mutable_operand(1); auto fusion = instruction_fusion.Fuse(slice2_0, add2, module->entry_computation()); EXPECT_EQ(instruction_fusion.EvaluateEmittedInstructions(slice2_1, fusion), 1); instruction_fusion.Fuse(slice2_1, fusion, module->entry_computation()); HloInstruction* add1 = fusion->mutable_operand(0); EXPECT_EQ(add1->opcode(), HloOpcode::kAdd); EXPECT_EQ(instruction_fusion.EvaluateEmittedInstructions(add1, fusion), 2); instruction_fusion.Fuse(add1, fusion, module->entry_computation()); HloInstruction* slice1_0 = fusion->mutable_operand(0); EXPECT_EQ(slice1_0->opcode(), HloOpcode::kSlice); EXPECT_EQ(instruction_fusion.EvaluateEmittedInstructions(slice1_0, fusion), 2); instruction_fusion.Fuse(slice1_0, fusion, module->entry_computation()); HloInstruction* slice1_1 = fusion->mutable_operand(0); EXPECT_EQ(slice1_1->opcode(), HloOpcode::kSlice); EXPECT_EQ(instruction_fusion.EvaluateEmittedInstructions(slice1_1, fusion), 2); instruction_fusion.Fuse(slice1_1, fusion, module->entry_computation()); HloInstruction* add0 = fusion->mutable_operand(0); EXPECT_EQ(add0->opcode(), HloOpcode::kAdd); EXPECT_EQ(instruction_fusion.EvaluateEmittedInstructions(add0, fusion), 4); instruction_fusion.Fuse(add0, fusion, module->entry_computation()); } TEST_F(FusionNodeIndexingEvaluationTest, RecomputeCache) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module %fused_computation (param_0.5: f32[4]) -> f32[2] { %param_0.5 = f32[4]{0} parameter(0) %slice1.2 = f32[3]{0} slice(f32[4]{0} %param_0.5), slice={[0:3]} %slice1.3 = f32[3]{0} slice(f32[4]{0} %param_0.5), slice={[1:4]} %add1.1 = f32[3]{0} add(f32[3]{0} %slice1.2, f32[3]{0} %slice1.3) %slice2.2 = f32[2]{0} slice(f32[3]{0} %add1.1), slice={[0:2]} %slice2.3 = f32[2]{0} slice(f32[3]{0} %add1.1), slice={[1:3]} ROOT %add2.1 = f32[2]{0} add(f32[2]{0} %slice2.2, f32[2]{0} %slice2.3) } ENTRY entry_computation { p0 = f32[4]{0} parameter(0) p1 = f32[4]{0} parameter(1) add0 = f32[4]{0} add(p0, p1) ROOT %fusion = f32[2]{0} fusion(add0), kind=kLoop, calls=%fused_computation })") .value(); HloInstruction* fusion = module->entry_computation()->root_instruction(); InstructionFusionForTesting instruction_fusion; HloInstruction* add0 = fusion->mutable_operand(0); EXPECT_EQ(add0->opcode(), HloOpcode::kAdd); EXPECT_EQ(instruction_fusion.EvaluateEmittedInstructions(add0, fusion), 4); } TEST_F(FusionNodeIndexingEvaluationTest, CodeDuplicationTooHigh) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module %fused_computation (param: f32[6]) -> f32[2] { %param = f32[6]{0} parameter(0) %slice0.1 = f32[5]{0} slice(f32[6]{0} %param), slice={[0:5]} %slice0.2 = f32[5]{0} slice(f32[6]{0} %param), slice={[1:6]} %add0 = f32[5]{0} add(f32[5]{0} %slice0.1, f32[5]{0} %slice0.2) %slice1.1 = f32[4]{0} slice(f32[5]{0} %add0), slice={[0:4]} %slice1.2 = f32[4]{0} slice(f32[5]{0} %add0), slice={[1:5]} %add1 = f32[4]{0} add(f32[4]{0} %slice1.1, f32[4]{0} %slice1.2) %slice2.1 = f32[3]{0} slice(f32[4]{0} %add1), slice={[0:3]} %slice2.2 = f32[3]{0} slice(f32[4]{0} %add1), slice={[1:4]} %add2 = f32[3]{0} add(f32[3]{0} %slice2.1, f32[3]{0} %slice2.2) %slice3.1 = f32[2]{0} slice(f32[3]{0} %add2), slice={[0:2]} %slice3.2 = f32[2]{0} slice(f32[3]{0} %add2), slice={[1:3]} ROOT %add3 = f32[2]{0} add(f32[2]{0} %slice3.1, f32[2]{0} %slice3.2) } ENTRY entry_computation { p0 = f32[] parameter(0) add = f32[] add(p0, p0) broadcast = f32[6]{0} broadcast(add), dimensions={} ROOT %fusion = f32[2]{0} fusion(broadcast), kind=kLoop, calls=%fused_computation })") .value(); HloInstruction* fusion = module->entry_computation()->root_instruction(); InstructionFusionForTesting instruction_fusion; HloInstruction* broadcast = fusion->mutable_operand(0); EXPECT_EQ(broadcast->opcode(), HloOpcode::kBroadcast); EXPECT_EQ(instruction_fusion.EvaluateEmittedInstructions(broadcast, fusion), 16); EXPECT_FALSE(instruction_fusion.GetFusionNodeEvaluation(fusion) ->CodeDuplicationTooHigh(broadcast)); instruction_fusion.Fuse(broadcast, fusion, module->entry_computation()); HloInstruction* add = fusion->mutable_operand(0); EXPECT_EQ(add->opcode(), HloOpcode::kAdd); EXPECT_EQ(instruction_fusion.EvaluateEmittedInstructions(add, fusion), 16); EXPECT_TRUE(instruction_fusion.GetFusionNodeEvaluation(fusion) ->CodeDuplicationTooHigh(add)); } }
1,844
cpp
tensorflow/tensorflow
convolution_group_converter
third_party/xla/xla/service/convolution_group_converter.cc
third_party/xla/xla/service/convolution_group_converter_test.cc
#ifndef XLA_SERVICE_CONVOLUTION_GROUP_CONVERTER_H_ #define XLA_SERVICE_CONVOLUTION_GROUP_CONVERTER_H_ #include <functional> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" #include "xla/status_macros.h" namespace xla { class ConvolutionGroupConverter : public HloModulePass { public: ConvolutionGroupConverter(std::function<bool(HloInstruction*)> should_expand, std::function<bool(HloInstruction*)> is_cost_viable, bool convert_batch_groups_only, bool filter_expansion = true) : should_expand_(should_expand), is_cost_viable_(is_cost_viable), convert_batch_groups_only_(convert_batch_groups_only), filter_expansion_(filter_expansion) {} absl::string_view name() const override { return "convolution-group-converter"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; std::function<bool(HloInstruction*)> should_expand_; std::function<bool(HloInstruction*)> is_cost_viable_; bool convert_batch_groups_only_; bool filter_expansion_; }; } #endif #include "xla/service/convolution_group_converter.h" #include <algorithm> #include <memory> #include <vector> #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/hlo_creation_utils.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" namespace xla { namespace { class ConvolutionVisitor : public DfsHloVisitorWithDefault { public: absl::Status DefaultAction(HloInstruction* ) override { return absl::OkStatus(); } absl::Status HandleConvolution(HloInstruction* convolution) override; absl::Status HandleBatchGroupCount(HloInstruction* convolution); static bool Run(HloComputation* computation, std::function<bool(HloInstruction*)> should_expand, std::function<bool(HloInstruction*)> is_cost_viable, bool convert_batch_groups_only, bool filter_expansion); const bool changed() const { return changed_; } ~ConvolutionVisitor() override = default; private: explicit ConvolutionVisitor( HloComputation* computation, std::function<bool(HloInstruction*)> should_expand, std::function<bool(HloInstruction*)> is_cost_viable, bool convert_batch_groups_only, bool filter_expansion) : computation_(computation), filter_expansion_(filter_expansion), convert_batch_groups_only_(convert_batch_groups_only), should_expand_(should_expand), is_cost_viable_(is_cost_viable) {} HloComputation* computation_; bool changed_ = false; bool filter_expansion_; bool convert_batch_groups_only_; std::function<bool(HloInstruction*)> should_expand_; std::function<bool(HloInstruction*)> is_cost_viable_; }; bool ConvolutionVisitor::Run( HloComputation* computation, std::function<bool(HloInstruction*)> should_expand, std::function<bool(HloInstruction*)> is_cost_viable, bool convert_batch_groups_only, bool filter_expansion) { ConvolutionVisitor visitor(computation, should_expand, is_cost_viable, convert_batch_groups_only, filter_expansion); TF_CHECK_OK(computation->Accept(&visitor)); return visitor.changed_; } Shape ExpandedFilterShape(const Shape& shape, int64_t group_count, int64_t input_feature_dim) { int64_t num_dims = shape.dimensions_size(); CHECK_GE(num_dims, 2); Shape expanded_shape = shape; expanded_shape.set_dimensions( input_feature_dim, shape.dimensions(input_feature_dim) * group_count); return expanded_shape; } std::vector<int32_t> GetMaskIds(int64_t group_size, int64_t group_count) { std::vector<int32_t> values; values.reserve(group_count * group_size); for (int i = 0; i < group_count; ++i) { for (int j = 0; j < group_size; ++j) { values.push_back(i); } } return values; } HloInstruction* GetExpandedFilterMask( const Shape& filter_shape, int64_t kernel_input_feature_dim, int64_t kernel_output_feature_dim, int64_t group_count, const std::function<HloInstruction*(std::unique_ptr<HloInstruction>)>& add_instruction) { Shape expanded_filter_shape = ExpandedFilterShape(filter_shape, group_count, kernel_input_feature_dim); Shape mask_shape = ShapeUtil::MakeShape(S32, expanded_filter_shape.dimensions()); int64_t output_feature = filter_shape.dimensions(kernel_output_feature_dim); int64_t group_size = filter_shape.dimensions(kernel_input_feature_dim); const std::vector<int32_t> input_feature_filter_mask = GetMaskIds(group_size, group_count); const std::vector<int32_t> output_feature_filter_mask = GetMaskIds(output_feature / group_count, group_count); auto mask1 = add_instruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<int32_t>(input_feature_filter_mask))); auto broadcasted_mask1 = add_instruction(HloInstruction::CreateBroadcast( mask_shape, mask1, {kernel_input_feature_dim})); auto mask2 = add_instruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<int32_t>(output_feature_filter_mask))); auto broadcasted_mask2 = add_instruction(HloInstruction::CreateBroadcast( mask_shape, mask2, {kernel_output_feature_dim})); Shape predicate_shape = ShapeUtil::MakeShape(PRED, expanded_filter_shape.dimensions()); return add_instruction(HloInstruction::CreateCompare( predicate_shape, broadcasted_mask1, broadcasted_mask2, ComparisonDirection::kEq)); } absl::Status ConvolutionVisitor::HandleBatchGroupCount( HloInstruction* convolution) { auto dim_numbers = convolution->convolution_dimension_numbers(); auto activation = convolution->mutable_operand(0); auto filter = convolution->mutable_operand(1); int64_t batch_group_count = convolution->batch_group_count(); if (batch_group_count == 1 || (should_expand_ && !should_expand_(convolution))) { return absl::OkStatus(); } VLOG(2) << "Dealing with batch_group_count " << batch_group_count << " for convolution " << convolution->ToString() << "\n"; auto add = [&](std::unique_ptr<HloInstruction> inst) { return computation_->AddInstruction(std::move(inst)); }; int64_t input_batch_dimension = dim_numbers.input_batch_dimension(); const int64_t input_feature_dimension = dim_numbers.input_feature_dimension(); int64_t output_batch_dimension = dim_numbers.output_batch_dimension(); int64_t output_feature_dimension = dim_numbers.output_feature_dimension(); const int64_t kernel_input_feature_dimension = dim_numbers.kernel_input_feature_dimension(); const int64_t kernel_output_feature_dimension = dim_numbers.kernel_output_feature_dimension(); const int64_t input_batch = activation->shape().dimensions(input_batch_dimension); const int64_t output_feature = filter->shape().dimensions(kernel_output_feature_dimension); if (output_feature != batch_group_count || input_batch != batch_group_count) { std::vector<int64_t> input_sizes(activation->shape().dimensions().begin(), activation->shape().dimensions().end()); input_sizes[input_batch_dimension] /= batch_group_count; input_sizes.insert(input_sizes.begin() + input_batch_dimension, batch_group_count); activation = MakeReshapeHlo(input_sizes, activation).value(); for (auto& d : *dim_numbers.mutable_input_spatial_dimensions()) { if (d > input_batch_dimension) { ++d; } } dim_numbers.add_input_spatial_dimensions(input_batch_dimension); dim_numbers.set_input_batch_dimension(input_batch_dimension + 1); if (input_feature_dimension > input_batch_dimension) { dim_numbers.set_input_feature_dimension(input_feature_dimension + 1); } std::vector<int64_t> kernel_sizes(filter->shape().dimensions().begin(), filter->shape().dimensions().end()); kernel_sizes[kernel_output_feature_dimension] /= batch_group_count; kernel_sizes.insert(kernel_sizes.begin() + kernel_output_feature_dimension, batch_group_count); filter = MakeReshapeHlo(kernel_sizes, filter).value(); for (auto& d : *dim_numbers.mutable_kernel_spatial_dimensions()) { if (d > kernel_output_feature_dimension) { ++d; } } dim_numbers.add_kernel_spatial_dimensions(kernel_output_feature_dimension); dim_numbers.set_kernel_output_feature_dimension( kernel_output_feature_dimension + 1); if (kernel_input_feature_dimension > kernel_output_feature_dimension) { dim_numbers.set_kernel_input_feature_dimension( kernel_input_feature_dimension + 1); } for (auto& d : *dim_numbers.mutable_output_spatial_dimensions()) { if (d > output_feature_dimension) { ++d; } } dim_numbers.add_output_spatial_dimensions(output_feature_dimension); dim_numbers.set_output_feature_dimension(output_feature_dimension + 1); if (output_batch_dimension > output_feature_dimension) { dim_numbers.set_output_batch_dimension(output_batch_dimension + 1); } Window window = convolution->window(); auto window_dim = window.add_dimensions(); window_dim->set_base_dilation(batch_group_count); window_dim->set_size(batch_group_count); window_dim->set_stride(batch_group_count - 1); window_dim->set_padding_low(0); window_dim->set_padding_high(0); window_dim->set_window_reversal(false); window_dim->set_window_dilation(1); HloInstruction* new_convolution = MakeConvolveHlo( activation, filter, convolution->feature_group_count(), 1, window, dim_numbers, convolution->precision_config(), convolution->shape().element_type()) .value(); convolution->SetupDerivedInstruction(new_convolution); TF_CHECK_OK(computation_->ReplaceInstruction( convolution, MakeReshapeHlo(convolution->shape(), new_convolution).value())); changed_ = true; return absl::OkStatus(); } VLOG(2) << "is_cost_viable_ " << is_cost_viable_(convolution); const bool cost_too_high = !is_cost_viable_(convolution); if (cost_too_high || filter_expansion_) { HloInstruction* filter_mask = GetExpandedFilterMask(convolution->shape(), output_batch_dimension, output_feature_dimension, batch_group_count, add); auto expanded_filter_shape = ExpandedFilterShape( convolution->shape(), batch_group_count, output_batch_dimension); VLOG(2) << "output_batch_dimension " << output_batch_dimension; VLOG(2) << "New output shape of convolution " << expanded_filter_shape.ToString(); auto new_convolution = add(HloInstruction::CreateConvolve( expanded_filter_shape, activation, filter, 1, 1, convolution->window(), dim_numbers, convolution->precision_config())); VLOG(2) << "Expanded convolution " << new_convolution->ToString(); auto zero = add(HloInstruction::CreateConstant( LiteralUtil::Zero(expanded_filter_shape.element_type()))); auto zero_filter = add(HloInstruction::CreateBroadcast(expanded_filter_shape, zero, {})); auto new_filter = add(HloInstruction::CreateTernary( expanded_filter_shape, HloOpcode::kSelect, filter_mask, new_convolution, zero_filter)); PrimitiveType reduce_type = new_filter->shape().element_type(); auto reduce_window_shape = new_convolution->shape(); reduce_window_shape.set_dimensions(output_batch_dimension, 1); if (primitive_util::BitWidth(reduce_type) < primitive_util::BitWidth(F32)) { reduce_type = F32; reduce_window_shape.set_element_type(F32); Shape convert_shape = new_filter->shape(); convert_shape.set_element_type(F32); new_filter = add(HloInstruction::CreateConvert(convert_shape, new_filter)); } auto zero_literal = LiteralUtil::Zero(reduce_type); auto zero_scalar = add(HloInstruction::CreateConstant(std::move(zero_literal))); auto reduce_function = [&]() -> HloComputation* { HloComputation::Builder b("add_computation"); Shape shape = ShapeUtil::MakeShape(reduce_type, {}); auto lhs = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "lhs")); auto rhs = b.AddInstruction(HloInstruction::CreateParameter(1, shape, "rhs")); auto scalar_op = b.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, lhs, rhs)); return computation_->parent()->AddEmbeddedComputation(b.Build(scalar_op)); }; Window window; for (int64_t i = 0; i < new_convolution->shape().dimensions_size(); ++i) { auto* dim = window.add_dimensions(); dim->set_padding_low(0); dim->set_padding_high(0); dim->set_window_dilation(1); dim->set_base_dilation(1); if (i == output_batch_dimension) { dim->set_stride(batch_group_count); dim->set_size(batch_group_count); } else { dim->set_stride(1); dim->set_size(1); } } auto reduce_window = add(HloInstruction::CreateReduceWindow( reduce_window_shape, new_filter, zero_scalar, window, reduce_function())); Shape convert_back_shape = reduce_window->shape(); convert_back_shape.set_element_type(activation->shape().element_type()); auto reduce_window_converted = HloInstruction::CreateConvert(convert_back_shape, reduce_window); TF_CHECK_OK(computation_->ReplaceWithNewInstruction( convolution, std::move(reduce_window_converted))); changed_ = true; } return absl::OkStatus(); } absl::Status ConvolutionVisitor::HandleConvolution( HloInstruction* convolution) { if (convert_batch_groups_only_) { return HandleBatchGroupCount(convolution); } auto add = [&](std::unique_ptr<HloInstruction> inst) { return computation_->AddInstruction(std::move(inst)); }; int64_t group_count = convolution->feature_group_count(); if (group_count == 1 || (should_expand_ && !should_expand_(convolution))) { return absl::OkStatus(); } changed_ = true; ConvolutionDimensionNumbers dim_numbers = convolution->convolution_dimension_numbers(); auto filter = convolution->mutable_operand(1); int64_t kernel_input_feature_dim = dim_numbers.kernel_input_feature_dimension(); int64_t group_size = filter->shape().dimensions(kernel_input_feature_dim); int64_t kernel_output_feature_dim = dim_numbers.kernel_output_feature_dimension(); auto expanded_filter_shape = ExpandedFilterShape(filter->shape(), group_count, kernel_input_feature_dim); HloInstruction* filter_mask = GetExpandedFilterMask(filter->shape(), kernel_input_feature_dim, kernel_output_feature_dim, group_count, add); HloInstruction* expanded_filter; if (group_size == 1) { bool depthwise_separable = (group_count == filter->shape().dimensions(kernel_output_feature_dim)); if (!filter_expansion_ && depthwise_separable) { changed_ = false; return absl::OkStatus(); } VLOG(2) << "is_cost_viable_ " << is_cost_viable_(convolution); if (!is_cost_viable_(convolution) || filter_expansion_) { Shape reshaped_filter_shape = ShapeUtil::DeleteDimension(kernel_input_feature_dim, filter->shape()); auto reshaped_filter = add(HloInstruction::CreateReshape(reshaped_filter_shape, filter)); std::vector<int64_t> broadcast_dims; for (int64_t i = 0; i < filter->shape().dimensions_size(); ++i) { if (i == kernel_input_feature_dim) { continue; } broadcast_dims.push_back(i); } expanded_filter = add(HloInstruction::CreateBroadcast( expanded_filter_shape, reshaped_filter, broadcast_dims)); auto zero = add(HloInstruction::CreateConstant( LiteralUtil::Zero(expanded_filter_shape.element_type()))); auto zero_filter = add(HloInstruction::CreateBroadcast(expanded_filter_shape, zero, {})); auto new_filter = add(HloInstruction::CreateTernary( expanded_filter_shape, HloOpcode::kSelect, filter_mask, expanded_filter, zero_filter)); auto new_convolution = HloInstruction::CreateConvolve( convolution->shape(), convolution->mutable_operand(0), new_filter, 1, 1, convolution->window(), dim_numbers, convolution->precision_config()); return computation_->ReplaceWithNewInstruction( convolution, std::move(new_convolution)); } std::vector<int64_t> new_filter_dimension; new_filter_dimension.reserve(filter->shape().rank() + 1); const int64_t depthwise_multiplier = filter->shape().dimensions(kernel_output_feature_dim) / group_count; for (int64_t i = 0; i < filter->shape().rank(); ++i) { if (i == kernel_output_feature_dim) { new_filter_dimension.push_back(group_count); new_filter_dimension.push_back(depthwise_multiplier); } else { new_filter_dimension.push_back(filter->shape().dimensions(i)); } } if (kernel_input_feature_dim > kernel_output_feature_dim) { dim_numbers.set_kernel_input_feature_dimension(kernel_input_feature_dim + 1); } for (auto& dim : *dim_numbers.mutable_kernel_spatial_dimensions()) { if (dim > kernel_output_feature_dim) { ++dim; } } dim_numbers.add_kernel_spatial_dimensions(kernel_output_feature_dim + 1); HloInstruction* new_filter = computation_->AddInstruction(HloInstruction::CreateReshape( ShapeUtil::MakeShape(filter->shape().element_type(), new_filter_dimension), filter)); auto new_activation_shape = convolution->operand(0)->shape(); dim_numbers.add_input_spatial_dimensions(new_activation_shape.rank()); ShapeUtil::AppendMajorDimension(1, &new_activation_shape); HloInstruction* new_activation = computation_->AddInstruction(HloInstruction::CreateReshape( new_activation_shape, convolution->mutable_operand(0))); auto new_window = convolution->window(); auto new_dim = new_window.add_dimensions(); new_dim->set_size(depthwise_multiplier); new_dim->set_window_reversal(true); new_dim->set_padding_low(depthwise_multiplier - 1); new_dim->set_padding_high(depthwise_multiplier - 1); new_dim->set_stride(1); new_dim->set_window_dilation(1); new_dim->set_base_dilation(1); std::vector<int64_t> new_output_dimension; new_output_dimension.reserve(convolution->shape().rank() + 1); for (int64_t i = 0; i < convolution->shape().rank(); ++i) { if (i == dim_numbers.output_feature_dimension()) { new_output_dimension.push_back(group_count); new_output_dimension.push_back(depthwise_multiplier); } else { new_output_dimension.push_back(convolution->shape().dimensions(i)); } } if (dim_numbers.output_batch_dimension() > dim_numbers.output_feature_dimension()) { dim_numbers.set_output_batch_dimension( dim_numbers.output_batch_dimension() + 1); } for (auto& dim : *dim_numbers.mutable_output_spatial_dimensions()) { if (dim > dim_numbers.output_feature_dimension()) { ++dim; } } dim_numbers.add_output_spatial_dimensions( dim_numbers.output_feature_dimension() + 1); auto new_convolution_output_shape = ShapeUtil::MakeShape( convolution->shape().element_type(), new_output_dimension); HloInstruction* new_convolution = computation_->AddInstruction(HloInstruction::CreateConvolve( new_convolution_output_shape, new_activation, new_filter, group_count, 1, new_window, dim_numbers, convolution->precision_config())); return computation_->ReplaceWithNewInstruction( convolution, HloInstruction::CreateReshape(convolution->shape(), new_convolution)); } HloInstruction* activation = convolution->mutable_operand(0); std::vector<int64_t> input_sizes(activation->shape().dimensions().begin(), activation->shape().dimensions().end()); const int64_t input_feature_dimension = dim_numbers.input_feature_dimension(); input_sizes[input_feature_dimension] /= group_count; input_sizes.insert(input_sizes.begin() + input_feature_dimension, group_count); activation = MakeReshapeHlo(input_sizes, activation).value(); for (auto& d : *dim_numbers.mutable_input_spatial_dimensions()) { if (d > input_feature_dimension) { ++d; } } dim_numbers.add_input_spatial_dimensions(input_feature_dimension); dim_numbers.set_input_feature_dimension(input_feature_dimension + 1); if (dim_numbers.input_batch_dimension() > input_feature_dimension) { dim_numbers.set_input_batch_dimension(dim_numbers.input_batch_dimension() + 1); } std::vector<int64_t> kernel_sizes(filter->shape().dimensions().begin(), filter->shape().dimensions().end()); const int64_t kernel_output_feature_dimension = dim_numbers.kernel_output_feature_dimension(); kernel_sizes[kernel_output_feature_dimension] /= group_count; kernel_sizes.insert(kernel_sizes.begin() + kernel_output_feature_dimension, group_count); filter = MakeReshapeHlo(kernel_sizes, filter).value(); for (auto& d : *dim_numbers.mutable_kernel_spatial_dimensions()) { if (d > kernel_output_feature_dimension) { ++d; } } dim_numbers.add_kernel_spatial_dimensions(kernel_output_feature_dimension); dim_numbers.set_kernel_output_feature_dimension( kernel_output_feature_dimension + 1); if (dim_numbers.kernel_input_feature_dimension() > kernel_output_feature_dimension) { dim_numbers.set_kernel_input_feature_dimension( dim_numbers.kernel_input_feature_dimension() + 1); } const int64_t output_feature_dimension = dim_numbers.output_feature_dimension(); for (auto& d : *dim_numbers.mutable_output_spatial_dimensions()) { if (d > output_feature_dimension) { ++d; } } dim_numbers.add_output_spatial_dimensions(output_feature_dimension); dim_numbers.set_output_feature_dimension(output_feature_dimension + 1); if (dim_numbers.output_batch_dimension() > output_feature_dimension) { dim_numbers.set_output_batch_dimension( dim_numbers.output_batch_dimension() + 1); } Window window = convolution->window(); auto window_dim = window.add_dimensions(); window_dim->set_base_dilation(group_count); window_dim->set_size(group_count); window_dim->set_stride(group_count - 1); window_dim->set_padding_low(0); window_dim->set_padding_high(0); window_dim->set_window_reversal(false); window_dim->set_window_dilation(1); HloInstruction* new_convolution = MakeConvolveHlo( activation, filter, 1, 1, window, dim_numbers, convolution->precision_config(), convolution->shape().element_type()) .value(); convolution->SetupDerivedInstruction(new_convolution); changed_ = true; return computation_->ReplaceInstruction( convolution, MakeReshapeHlo(convolution->shape(), new_convolution).value()); } } absl::StatusOr<bool> ConvolutionGroupConverter::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { XLA_VLOG_LINES( 2, "ConvolutionGroupConverter::Run(), before:\n" + module->ToString()); bool changed = false; for (auto* comp : module->MakeNonfusionComputations(execution_threads)) { if (ConvolutionVisitor::Run(comp, should_expand_, is_cost_viable_, convert_batch_groups_only_, filter_expansion_)) { changed = true; } } XLA_VLOG_LINES( 2, "ConvolutionGroupConverter::Run(), after:\n" + module->ToString()); return changed; } }
#include "xla/service/convolution_group_converter.h" #include <memory> #include <string> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/types.h" namespace xla { namespace { using ConvolutionGroupConverterTest = HloTestBase; namespace op = testing::opcode_matchers; TEST_F(ConvolutionGroupConverterTest, ConvertFeatureGroupCountEqualToInputFeatureDim) { std::string hlo_string = R"(HloModule Convolve1D1Window_0_module ENTRY %Convolve1D1Window_0.v3 (input: f32[1,2,2], filter: f32[1,1,2]) -> f32[1,2,2] { %input = f32[1,2,2]{2,1,0} parameter(0) %copy = f32[1,2,2]{2,0,1} copy(f32[1,2,2]{2,1,0} %input) %filter = f32[1,1,2]{2,1,0} parameter(1) ROOT %convolution = f32[1,2,2]{2,0,1} convolution(f32[1,2,2]{2,0,1} %copy, f32[1,1,2]{2,1,0} %filter), window={size=1}, dim_labels=b0f_0io->b0f, feature_group_count=2 })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); HloInstruction* root = computation->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kConvolution); auto should_expand = [](HloInstruction* conv) { return true; }; auto cost_model = [](HloInstruction* conv) { return true; }; ConvolutionGroupConverter converter(should_expand, cost_model, false); ASSERT_TRUE(converter.Run(module.get()).value()); root = computation->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kConvolution); EXPECT_EQ(root->feature_group_count(), 1); EXPECT_THAT(root->operand(1), op::Select(op::Eq(op::Broadcast(op::Constant()), op::Broadcast(op::Constant())), op::Broadcast(op::Reshape(op::Parameter())), op::Broadcast(op::Constant()))); } TEST_F(ConvolutionGroupConverterTest, ConvertFeatureGroupCountDivisorOfInputFeatureDim) { std::string hlo_string = R"(HloModule Convolve1D1Window_0_module ENTRY %Convolve1D1Window_0.v3 (input: f32[1,2,4], filter: f32[1,2,2]) -> f32[1,2,2] { %input = f32[1,2,4]{2,1,0} parameter(0) %copy = f32[1,2,4]{2,0,1} copy(f32[1,2,4]{2,1,0} %input) %filter = f32[1,2,2]{2,1,0} parameter(1) ROOT %convolution = f32[1,2,2]{2,0,1} convolution(f32[1,2,4]{2,0,1} %copy, f32[1,2,2]{2,1,0} %filter), window={size=1}, dim_labels=b0f_0io->b0f, feature_group_count=2 })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); HloInstruction* root = computation->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kConvolution); auto should_expand = [](HloInstruction* conv) { return true; }; auto cost_model = [](HloInstruction* conv) { return true; }; ConvolutionGroupConverter converter(should_expand, cost_model, false); ASSERT_TRUE(converter.Run(module.get()).value()); root = computation->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kReshape); EXPECT_EQ(root->operand(0)->opcode(), HloOpcode::kConvolution); EXPECT_EQ(root->operand(0)->feature_group_count(), 1); EXPECT_EQ(root->operand(0)->shape().rank(), 4); } TEST_F(ConvolutionGroupConverterTest, ConvertBatchGroupCountEqualToInputBatchDim) { std::string hlo_string = R"(HloModule Convolve1D1Window_0_module ENTRY %Convolve1D1Window_0.v3 (input: f32[16,19,19,512]{3,2,1,0}, filter: f32[16,19,19,512]{3,2,1,0}) -> f32[3,3,512,1]{3,2,1,0} { %input = f32[16,19,19,512]{3,2,1,0} parameter(0) %filter = f32[16,19,19,512]{3,2,1,0} parameter(1) ROOT %convolution = f32[3,3,512,1]{3,2,1,0} convolution(f32[16,19,19,512]{3,2,1,0} %input, f32[16,19,19,512]{3,2,1,0} %filter), window={size=19x19 pad=1_1x1_1}, dim_labels=f01b_i01o->01fb, batch_group_count=512 })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); HloInstruction* root = computation->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kConvolution); auto should_expand = [](HloInstruction* conv) { return true; }; auto cost_model = [](HloInstruction* conv) { return false; }; ConvolutionGroupConverter converter(should_expand, cost_model, true); ASSERT_TRUE(converter.Run(module.get()).value()); root = computation->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kConvert); EXPECT_EQ(root->operand(0)->opcode(), HloOpcode::kReduceWindow); } TEST_F(ConvolutionGroupConverterTest, ConvertBatchGroupCountNotEqualToInputBatchDim) { std::string hlo_string = R"(HloModule m ENTRY main { %input = f32[1,1,1,4] parameter(0) %filter = f32[1,1,1,2] parameter(1) ROOT %convolution = f32[1,1,2,2] convolution(%input,%filter), window={size=1x1}, dim_labels=f01b_i01o->01fb, batch_group_count=2 })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); HloInstruction* root = computation->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kConvolution); auto should_expand = [](HloInstruction* conv) { return true; }; auto cost_model = [](HloInstruction* conv) { return false; }; ConvolutionGroupConverter converter(should_expand, cost_model, true); ASSERT_TRUE(converter.Run(module.get()).value()); } } }
1,845
cpp
tensorflow/tensorflow
optimize_input_output_buffer_alias
third_party/xla/xla/service/optimize_input_output_buffer_alias.cc
third_party/xla/xla/service/optimize_input_output_buffer_alias_test.cc
#ifndef XLA_SERVICE_OPTIMIZE_INPUT_OUTPUT_BUFFER_ALIAS_H_ #define XLA_SERVICE_OPTIMIZE_INPUT_OUTPUT_BUFFER_ALIAS_H_ #include <cstdint> #include <functional> #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" #include "xla/shape.h" #include "xla/shape_util.h" namespace xla { class OptimizeInputOutputBufferAlias : public HloModulePass { public: OptimizeInputOutputBufferAlias() = default; explicit OptimizeInputOutputBufferAlias( bool registered_buffer_donor_only, std::function<int64_t(const Shape&)> shape_size_fn = [](const Shape& shape) { return ShapeUtil::ByteSizeOf(shape); }) : registered_buffer_donor_only_(registered_buffer_donor_only), shape_size_fn_(shape_size_fn) {} ~OptimizeInputOutputBufferAlias() override = default; absl::string_view name() const override { return "optimize_input_output_buffer_alias"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: friend class OptimizeInputOutputBufferAliasTest; bool registered_buffer_donor_only_ = false; absl::StatusOr<bool> Build(absl::Span<const Shape> input_shapes, const Shape& output_shape, HloInputOutputAliasConfig* alias_config, HloBufferDonorConfig* buffer_donor_config); std::function<int64_t(const Shape&)> shape_size_fn_ = [](const Shape& shape) { return ShapeUtil::ByteSizeOf(shape); }; }; } #endif #include "xla/service/optimize_input_output_buffer_alias.h" #include <cstdint> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/layout_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "tsl/platform/errors.h" namespace xla { absl::StatusOr<bool> OptimizeInputOutputBufferAlias::Build( absl::Span<const Shape> input_shapes, const Shape& output_shape, HloInputOutputAliasConfig* alias_config, HloBufferDonorConfig* buffer_donor_config) { bool changed = false; if (output_shape.is_dynamic()) { return false; } struct DonorEntry { int64_t param_number; ShapeIndex index; int64_t shape_size; }; absl::flat_hash_map<int64_t, std::vector<DonorEntry>> donors; for (int64_t param_number = 0; param_number < input_shapes.size(); ++param_number) { const Shape& input_shape = input_shapes[param_number]; TF_RET_CHECK(LayoutUtil::HasLayout(input_shape)); VLOG(1) << "input_shape: " << input_shape.ToString(); ShapeUtil::ForEachSubshape(input_shape, [&](const Shape& subshape, const ShapeIndex& index) { if (!LayoutUtil::IsDenseArray(subshape) || subshape.is_dynamic()) { return; } if (alias_config->ParameterHasAlias(param_number, index)) { return; } if (registered_buffer_donor_only_ && !buffer_donor_config->ParameterIsBufferDonor(param_number, index)) { return; } int64_t memory_space = subshape.layout().memory_space(); donors[memory_space].emplace_back( DonorEntry{param_number, index, shape_size_fn_(subshape)}); }); } struct DoneeEntry { ShapeIndex index; int64_t shape_size; }; absl::flat_hash_map<int64_t, std::vector<DoneeEntry>> donees; TF_RET_CHECK(LayoutUtil::HasLayout(output_shape)); VLOG(1) << "output_shape: " << output_shape.ToString(); ShapeUtil::ForEachSubshape( output_shape, [&](const Shape& subshape, const ShapeIndex& index) { if (!LayoutUtil::IsDenseArray(subshape)) { return; } if (alias_config->OutputHasAlias(index)) { return; } int64_t memory_space = subshape.layout().memory_space(); donees[memory_space].emplace_back( DoneeEntry{index, shape_size_fn_(subshape)}); }); for (auto& [memory_space, donor_vector] : donors) { auto donee_it = donees.find(memory_space); if (donee_it == donees.end()) { continue; } auto& donee_vector = donee_it->second; absl::c_stable_sort(donor_vector, [](const DonorEntry& a, const DonorEntry& b) -> bool { return a.shape_size > b.shape_size; }); absl::c_stable_sort(donee_vector, [](const DoneeEntry& a, const DoneeEntry& b) -> bool { return a.shape_size > b.shape_size; }); int64_t donor_vector_index = 0; int64_t donee_vector_index = 0; while (donor_vector_index < donor_vector.size() && donee_vector_index < donee_vector.size()) { const auto& donor = donor_vector[donor_vector_index]; const auto& donee = donee_vector[donee_vector_index]; if (donor.shape_size > donee.shape_size) { donor_vector_index += 1; } else if (donor.shape_size < donee.shape_size) { donee_vector_index += 1; } else { TF_RETURN_IF_ERROR(alias_config->SetUpAlias( donee.index, donor.param_number, donor.index)); TF_RETURN_IF_ERROR(buffer_donor_config->RemoveBufferDonor( donor.param_number, donor.index)); donor_vector_index += 1; donee_vector_index += 1; changed = true; } } } return changed; } absl::StatusOr<bool> OptimizeInputOutputBufferAlias::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { const auto& entry_computation_layout = module->entry_computation_layout(); std::vector<Shape> input_shapes; for (int64_t i = 0; i < module->entry_computation()->num_parameters(); ++i) { input_shapes.push_back(entry_computation_layout.parameter_shape(i)); } const Shape& output_shape = entry_computation_layout.result_shape(); HloInputOutputAliasConfig* alias_config = &module->input_output_alias_config(); HloBufferDonorConfig* buffer_donor_config = &module->buffer_donor_config(); TF_ASSIGN_OR_RETURN(bool changed, Build(input_shapes, output_shape, alias_config, buffer_donor_config)); TF_RETURN_IF_ERROR(alias_config->Verify(*module, shape_size_fn_)); return changed; } }
#include "xla/service/optimize_input_output_buffer_alias.h" #include <cstdint> #include <memory> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/test_utils.h" #include "tsl/platform/test.h" namespace xla { class OptimizeInputOutputBufferAliasTest : public HloTestBase { protected: OptimizeInputOutputBufferAliasTest() { r1f32_ = ShapeUtil::MakeShape(F32, {4}); r2f32_ = ShapeUtil::MakeShape(F32, {4, 5}); r3f32_ = ShapeUtil::MakeShape(F32, {4, 5, 6}); r4f32_ = ShapeUtil::MakeShape(F32, {4, 5, 6, 7}); d1f32_ = ShapeUtil::MakeShape(F32, {256}, {true}); d2f32_ = ShapeUtil::MakeShape(F32, {128, 128}, {false, true}); d3f32_ = ShapeUtil::MakeShape(F32, {512}); } void CreatePassAndBufferDonorConfig( bool registered_donor_buffer_only = false) { optimize_pass_ = std::make_unique<OptimizeInputOutputBufferAlias>( registered_donor_buffer_only); buffer_donor_config_ = HloBufferDonorConfig(); } int64_t AliasCount() { int64_t count = 0; alias_config_.ForEachAlias( [&](const ShapeIndex&, const HloInputOutputAliasConfig::Alias&) { count++; }); return count; } bool BuildAliasConfig(const std::vector<Shape>& input_shapes, const Shape& output_shape) { alias_config_ = HloInputOutputAliasConfig(output_shape); auto changed = optimize_pass_->Build(input_shapes, output_shape, &alias_config_, &buffer_donor_config_); TF_CHECK_OK(changed.status()); return changed.value(); } std::unique_ptr<OptimizeInputOutputBufferAlias> optimize_pass_; HloInputOutputAliasConfig alias_config_; HloBufferDonorConfig buffer_donor_config_; Shape r1f32_; Shape r2f32_; Shape r3f32_; Shape r4f32_; Shape d1f32_; Shape d2f32_; Shape d3f32_; }; TEST_F(OptimizeInputOutputBufferAliasTest, AllDifferentBufferSizes) { CreatePassAndBufferDonorConfig(false); std::vector<Shape> input = {ShapeUtil::MakeTupleShape({r1f32_, r2f32_})}; Shape output = ShapeUtil::MakeTupleShape({r3f32_, r4f32_}); bool changed = BuildAliasConfig(input, output); EXPECT_FALSE(changed); EXPECT_EQ(AliasCount(), 0); } TEST_F(OptimizeInputOutputBufferAliasTest, OrderedNonNestedTuple) { CreatePassAndBufferDonorConfig(false); std::vector<Shape> input = { ShapeUtil::MakeTupleShape({r1f32_, r2f32_, r3f32_, r4f32_})}; Shape output = ShapeUtil::MakeTupleShape({r1f32_, r2f32_, r3f32_, r4f32_}); bool changed = BuildAliasConfig(input, output); EXPECT_TRUE(changed); EXPECT_EQ(AliasCount(), 4); EXPECT_EQ(alias_config_.GetAliasedOutput(0, {0}), ShapeIndex{0}); EXPECT_EQ(alias_config_.GetAliasedOutput(0, {1}), ShapeIndex{1}); EXPECT_EQ(alias_config_.GetAliasedOutput(0, {2}), ShapeIndex{2}); EXPECT_EQ(alias_config_.GetAliasedOutput(0, {3}), ShapeIndex{3}); } TEST_F(OptimizeInputOutputBufferAliasTest, PartialReuseNonNestedTuple) { CreatePassAndBufferDonorConfig(false); std::vector<Shape> input = { ShapeUtil::MakeTupleShape({r1f32_, r1f32_, r2f32_, r2f32_})}; Shape output = ShapeUtil::MakeTupleShape({r1f32_, r2f32_, r3f32_, r4f32_}); bool changed = BuildAliasConfig(input, output); EXPECT_TRUE(changed); EXPECT_EQ(AliasCount(), 2); EXPECT_TRUE(alias_config_.OutputHasAlias(ShapeIndex{0})); EXPECT_TRUE(alias_config_.OutputHasAlias(ShapeIndex{1})); EXPECT_FALSE(alias_config_.OutputHasAlias(ShapeIndex{2})); EXPECT_FALSE(alias_config_.OutputHasAlias(ShapeIndex{3})); } TEST_F(OptimizeInputOutputBufferAliasTest, UnorderedNonNestedTuple) { CreatePassAndBufferDonorConfig(false); std::vector<Shape> input = { ShapeUtil::MakeTupleShape({r1f32_, r2f32_, r3f32_, r4f32_})}; Shape output = ShapeUtil::MakeTupleShape({r4f32_, r3f32_, r2f32_, r1f32_}); bool changed = BuildAliasConfig(input, output); EXPECT_TRUE(changed); EXPECT_EQ(AliasCount(), 4); EXPECT_EQ(alias_config_.GetAliasedOutput(0, {0}), ShapeIndex{3}); EXPECT_EQ(alias_config_.GetAliasedOutput(0, {1}), ShapeIndex{2}); EXPECT_EQ(alias_config_.GetAliasedOutput(0, {2}), ShapeIndex{1}); EXPECT_EQ(alias_config_.GetAliasedOutput(0, {3}), ShapeIndex{0}); } TEST_F(OptimizeInputOutputBufferAliasTest, UnorderedNestedTuple) { CreatePassAndBufferDonorConfig(false); std::vector<Shape> input = {ShapeUtil::MakeTupleShape( {ShapeUtil::MakeTupleShape({r1f32_}), r2f32_, r3f32_, r4f32_})}; Shape output = ShapeUtil::MakeTupleShape( {r1f32_, ShapeUtil::MakeTupleShape({r3f32_, r2f32_}), r2f32_}); bool changed = BuildAliasConfig(input, output); EXPECT_TRUE(changed); EXPECT_EQ(AliasCount(), 3); EXPECT_EQ(alias_config_.GetAliasedOutput(0, {0, 0}), ShapeIndex{0}); EXPECT_EQ(alias_config_.GetAliasedOutput(0, {1}), ShapeIndex({1, 1})); EXPECT_EQ(alias_config_.GetAliasedOutput(0, {2}), ShapeIndex({1, 0})); EXPECT_FALSE(alias_config_.ParameterHasAlias(0, {0, 3})); } TEST_F(OptimizeInputOutputBufferAliasTest, MultipleParameters) { CreatePassAndBufferDonorConfig(false); std::vector<Shape> input = {{r1f32_, r2f32_, r3f32_, r4f32_}}; Shape output = ShapeUtil::MakeTupleShape({r4f32_, r3f32_, r2f32_, r1f32_}); bool changed = BuildAliasConfig(input, output); EXPECT_TRUE(changed); EXPECT_EQ(AliasCount(), 4); EXPECT_EQ(alias_config_.GetAliasedOutput(0, {}), ShapeIndex{3}); EXPECT_EQ(alias_config_.GetAliasedOutput(1, {}), ShapeIndex{2}); EXPECT_EQ(alias_config_.GetAliasedOutput(2, {}), ShapeIndex{1}); EXPECT_EQ(alias_config_.GetAliasedOutput(3, {}), ShapeIndex{0}); } TEST_F(OptimizeInputOutputBufferAliasTest, BufferDonorOnly) { CreatePassAndBufferDonorConfig(true); std::vector<Shape> input = {ShapeUtil::MakeTupleShape({r1f32_, r2f32_})}; Shape output = ShapeUtil::MakeTupleShape({r2f32_, r1f32_}); TF_CHECK_OK(buffer_donor_config_.AddBufferDonor(0, {0})); EXPECT_TRUE(buffer_donor_config_.ParameterIsBufferDonor(0, {0})); bool changed = BuildAliasConfig(input, output); EXPECT_TRUE(changed); EXPECT_EQ(AliasCount(), 1); EXPECT_FALSE(buffer_donor_config_.ParameterIsBufferDonor(0, {0})); EXPECT_EQ(alias_config_.GetAliasedOutput(0, {0}), ShapeIndex{1}); EXPECT_FALSE(alias_config_.GetAliasedOutput(0, {1})); } TEST_F(OptimizeInputOutputBufferAliasTest, DynamicShapeWithTuple) { CreatePassAndBufferDonorConfig(false); std::vector<Shape> input = {ShapeUtil::MakeTupleShape({d1f32_, d2f32_})}; Shape output = ShapeUtil::MakeTupleShape({d1f32_, d2f32_}); bool changed = BuildAliasConfig(input, output); EXPECT_FALSE(changed); EXPECT_EQ(AliasCount(), 0); } TEST_F(OptimizeInputOutputBufferAliasTest, DynamicShapeNoTuple) { CreatePassAndBufferDonorConfig(false); std::vector<Shape> input = {d1f32_, d2f32_}; Shape output = d1f32_; bool changed = BuildAliasConfig(input, output); EXPECT_FALSE(changed); EXPECT_EQ(AliasCount(), 0); } TEST_F(OptimizeInputOutputBufferAliasTest, DynamicShapeBufferOutput) { CreatePassAndBufferDonorConfig(false); std::vector<Shape> input = {d1f32_, d2f32_}; Shape output = d3f32_; bool changed = BuildAliasConfig(input, output); EXPECT_FALSE(changed); EXPECT_EQ(AliasCount(), 0); } TEST_F(OptimizeInputOutputBufferAliasTest, DynamicShapeBufferInput) { CreatePassAndBufferDonorConfig(false); std::vector<Shape> input = {d3f32_}; Shape output = d1f32_; bool changed = BuildAliasConfig(input, output); EXPECT_FALSE(changed); EXPECT_EQ(AliasCount(), 0); } TEST_F(OptimizeInputOutputBufferAliasTest, AllDifferentMemorySpaces) { CreatePassAndBufferDonorConfig(false); std::vector<Shape> input = { ShapeUtil::MakeTupleShape({r1f32_, r2f32_, r3f32_, r4f32_})}; Shape output = ShapeUtil::MakeTupleShape({r1f32_, r2f32_, r3f32_, r4f32_}); for (int i = 0; i < output.tuple_shapes_size(); ++i) { output.mutable_tuple_shapes(i)->mutable_layout()->set_memory_space( Layout::kHostMemorySpace); } bool changed = BuildAliasConfig(input, output); EXPECT_FALSE(changed); EXPECT_EQ(AliasCount(), 0); } }
1,846
cpp
tensorflow/tensorflow
buffer_assignment
third_party/xla/xla/service/buffer_assignment.cc
third_party/xla/xla/service/buffer_assignment_test.cc
#ifndef XLA_SERVICE_BUFFER_ASSIGNMENT_H_ #define XLA_SERVICE_BUFFER_ASSIGNMENT_H_ #include <algorithm> #include <cstddef> #include <cstdint> #include <functional> #include <iosfwd> #include <memory> #include <optional> #include <set> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/utils/hlo_live_range.h" #include "xla/service/buffer_assignment.pb.h" #include "xla/service/buffer_value.h" #include "xla/service/call_graph.h" #include "xla/service/heap_simulator/heap_simulator.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_buffer.h" #include "xla/service/hlo_dataflow_analysis.h" #include "xla/service/hlo_ordering.h" #include "xla/service/hlo_value.h" #include "xla/service/logical_buffer.h" #include "xla/service/memory_space_assignment/memory_space_assignment.h" #include "xla/shape_util.h" #include "tsl/platform/logging.h" namespace xla { absl::Status GatherComputationsByAllocationType( const HloModule* module, std::vector<const HloComputation*>* thread_local_computations, std::vector<const HloComputation*>* global_computations); class BufferAllocation { public: using Index = int64_t; BufferAllocation(Index index, int64_t size, LogicalBuffer::Color color) : index_(index), size_(size), color_(color) {} Index index() const { return index_; } bool is_thread_local() const { return is_thread_local_; } void set_is_thread_local(bool is_thread_local) { is_thread_local_ = is_thread_local; } bool is_reusable() const { return !is_thread_local() && !is_tuple(); } bool is_readonly() const { return (is_entry_computation_parameter() && !is_parameter_aliased_with_output_) || is_constant(); } bool is_tuple() const { return is_tuple_; } void set_is_tuple(bool is_tuple) { is_tuple_ = is_tuple; } bool is_entry_computation_parameter() const { return is_entry_computation_parameter_; } bool is_parameter_aliased_with_output() const { return is_parameter_aliased_with_output_; } bool is_constant() const { return is_constant_; } int64_t parameter_number() const { CHECK(is_entry_computation_parameter_); return parameter_number_; } const ShapeIndex& param_shape_index() const { CHECK(is_entry_computation_parameter_); return param_shape_index_; } bool maybe_live_out() const { return maybe_live_out_; } void set_maybe_live_out(bool value) { maybe_live_out_ = value; } int64_t size() const { return size_; } LogicalBuffer::Color color() const { return color_; } void set_color(LogicalBuffer::Color color) { color_ = color; } struct OffsetSize { int64_t offset = 0; int64_t size = 0; }; const absl::flat_hash_map<const HloValue*, OffsetSize>& assigned_buffers() const { return assigned_buffers_; } class Slice { public: Slice() {} Slice(const BufferAllocation* allocation, int64_t offset, int64_t size) : allocation_(allocation), offset_(offset), size_(size) {} const BufferAllocation* allocation() const { return allocation_; } Index index() const { return allocation_->index(); } int64_t offset() const { return offset_; } int64_t size() const { return size_; } bool operator==(const Slice& other) const { return index() == other.index() && offset_ == other.offset_ && size_ == other.size_; } bool operator!=(const Slice& other) const { return !(*this == other); } bool operator<(const Slice& other) const { if (index() != other.index()) return index() < other.index(); if (offset_ != other.offset_) return offset_ < other.offset_; return size_ < other.size_; } bool OverlapsWith(const Slice& other) const { const int64_t end = offset_ + size_; const int64_t other_end = other.offset_ + other.size_; return index() == other.index() && offset_ < other_end && end > other.offset_; } template <typename H> friend H AbslHashValue(H h, const Slice& s) { return H::combine(std::move(h), s.index(), s.offset(), s.size()); } std::string ToString() const; private: const BufferAllocation* allocation_ = nullptr; int64_t offset_ = 0; int64_t size_ = 0; }; Slice GetSlice(const HloValue& buffer) const; std::string ToString() const; std::string ToShortString() const; BufferAllocationProto ToProto() const; bool IsInputOrOutput() const { return is_entry_computation_parameter() || maybe_live_out(); } bool IsPreallocatedTempBuffer() const { return !is_entry_computation_parameter() && !maybe_live_out() && !is_thread_local() && !is_constant(); } void AddHeapTrace(const HeapSimulatorTrace& heap_trace) { heap_traces_.push_back(heap_trace); heap_traces_.back().set_buffer_allocation_index(index()); } std::vector<HeapSimulatorTrace> HeapTraces() const { return heap_traces_; } const std::vector<const HloValue*>& PeakMemoryLogicalBuffers() const { return peak_buffers_; } int64_t fragmentation_bytes() const { return fragmentation_bytes_; } bool operator==(const BufferAllocation& other) const { return index_ == other.index_; } bool operator!=(const BufferAllocation& other) const { return !(*this == other); } bool operator<(const BufferAllocation& other) const { return index() < other.index(); } void set_entry_computation_parameter(int64_t parameter_number, ShapeIndex param_shape_index, bool parameter_aliased_with_output) { is_entry_computation_parameter_ = true; is_parameter_aliased_with_output_ = parameter_aliased_with_output; parameter_number_ = parameter_number; param_shape_index_ = std::move(param_shape_index); } void set_constant(bool is_constant) { is_constant_ = is_constant; } private: friend class BufferAssigner; friend class BufferAssignment; void AddAssignment(const HloValue& buffer, int64_t offset, int64_t size); void set_index(Index index) { index_ = index; } void set_size(int64_t size) { size_ = size; } Index index_; int64_t size_; bool is_thread_local_ = false; bool is_tuple_ = false; LogicalBuffer::Color color_; bool is_entry_computation_parameter_ = false; bool is_parameter_aliased_with_output_ = false; int64_t parameter_number_ = 0; ShapeIndex param_shape_index_; bool maybe_live_out_ = false; bool is_constant_ = false; absl::flat_hash_map<const HloValue*, OffsetSize> assigned_buffers_; int64_t fragmentation_bytes_ = 0; std::vector<HeapSimulatorTrace> heap_traces_; std::vector<const HloValue*> peak_buffers_; }; std::ostream& operator<<(std::ostream& out, const BufferAllocation& s); std::ostream& operator<<(std::ostream& out, const BufferAllocation::Slice& s); class BufferAssignment { public: struct BufferIsolationOptions { std::function<bool(const HloValue*, const HloValue*)> hlo_value_compare; buffer_assignment::BufferIsolationConfig config; }; const std::vector<BufferAllocation>& Allocations() const { return allocations_; } int64_t temp_allocation_total_size() const { return temp_allocation_total_size_; } uint64_t multiheap_size_constraint_per_heap() const { return multiheap_size_constraint_per_heap_; } bool HasAllocation(const HloValue& value) const; bool HasAllocation(HloValue::Id value_id) const; bool HasAllocation(const HloBuffer& buffer) const; const BufferAllocation& GetAssignedAllocation(const HloValue& value) const; const BufferAllocation& GetAssignedAllocation( const HloBuffer& hlo_buffer) const; const BufferAllocation& GetAllocation(BufferAllocation::Index index) const; const BufferAllocation* GetInstructionAllocation( const HloInstruction* hlo, const ShapeIndex& shape_index) const; std::set<BufferAllocation::Slice> GetAllSlices( const HloInstruction* instruction, const ShapeIndex& index) const; bool HasAllocationAt(const HloInstruction* instruction, const ShapeIndex& index) const; bool HasTopLevelAllocation(const HloInstruction* instruction) const; absl::StatusOr<BufferAllocation::Slice> GetUniqueSlice( const HloInstruction* instruction, const ShapeIndex& index) const; absl::StatusOr<BufferAllocation::Slice> GetUniqueTopLevelSlice( const HloInstruction* instruction) const; absl::StatusOr<BufferAllocation::Slice> GetUniqueTopLevelOutputSlice() const; const std::vector<const HloValue*>& GetSourceBuffers( const HloInstruction* instruction, const ShapeIndex& index) const { return dataflow_analysis().GetValueSet(instruction, index).values(); } bool SharesSliceAtIndex(const HloInstruction* hlo_a, const ShapeIndex& shape_index_a, const HloInstruction* hlo_b, const ShapeIndex& shape_index_b) const; bool SharesTopLevelSlice(const HloInstruction* hlo_a, const HloInstruction* hlo_b) const { return SharesSliceAtIndex(hlo_a, {}, hlo_b, {}); } bool HaveDisjointSlices(const HloInstruction* hlo_a, const HloInstruction* hlo_b) const; const HloDataflowAnalysis& dataflow_analysis() const { return alias_analysis_->dataflow_analysis(); } HloAliasAnalysis& alias_analysis() const { return *alias_analysis_; } const HloOrdering& hlo_ordering() const { return *hlo_ordering_; } const HloLiveRange& hlo_live_range() const { return *hlo_live_range_; } std::string ToString() const; std::string ToVerboseString(size_t max_buffers_to_show) const; std::string BufferInfoString() const; BufferAssignmentProto ToProto() const; static absl::StatusOr<std::unique_ptr<BufferAssignment>> FromProto( const BufferAssignmentProto& proto, const HloModule* module, BufferValue::SizeFunction buffer_size, HloDataflowAnalysis::CanShareBuffer can_share_buffer); struct Stats { int64_t parameter_allocation_count = 0; int64_t parameter_allocation_bytes = 0; int64_t constant_allocation_count = 0; int64_t constant_allocation_bytes = 0; int64_t maybe_live_out_allocation_count = 0; int64_t maybe_live_out_allocation_bytes = 0; int64_t preallocated_temp_allocation_count = 0; int64_t preallocated_temp_allocation_bytes = 0; int64_t preallocated_temp_fragmentation_bytes = -1; int64_t total_allocation_count = 0; int64_t total_allocation_bytes = 0; int64_t total_fragmentation_bytes = -1; std::string ToString() const; }; const Stats& GetStats() const { return stats_; } private: friend class BufferAssigner; BufferAssignment(const HloModule* module, std::unique_ptr<HloOrdering> hlo_ordering, BufferValue::SizeFunction buffer_size, LogicalBuffer::AlignmentFunction color_alignment, std::unique_ptr<HloAliasAnalysis> alias_analysis, std::unique_ptr<HloLiveRange> hlo_live_range) : module_(module), hlo_ordering_(std::move(hlo_ordering)), buffer_size_(std::move(buffer_size)), color_alignment_(std::move(color_alignment)), alias_analysis_(std::move(alias_analysis)), hlo_live_range_(std::move(hlo_live_range)) { int32_t raw_value = module->config() .debug_options() .xla_multiheap_size_constraint_per_heap(); multiheap_size_constraint_per_heap_ = (raw_value == -1) ? UINT64_MAX : raw_value; } BufferAllocation* NewEmptyAllocation(int64_t size, LogicalBuffer::Color color); BufferAllocation* NewAllocation(const HloBuffer& buffer, int64_t size); void AddAssignment(BufferAllocation* allocation, const HloBuffer& buffer, int64_t offset, int64_t size); void AddAssignment(BufferAllocation* allocation, const HloValue& value, int64_t offset, int64_t size); const HloModule& module() const { return *module_; } BufferAllocation* GetMutableAssignedAllocation(const HloBuffer& buffer); BufferAllocation* GetMutableAllocation(BufferAllocation::Index index); int64_t HloBufferSize(const HloBuffer& buffer) { auto iter = cached_buffer_sizes_.find(buffer.id()); if (iter != cached_buffer_sizes_.end()) return iter->second; int64_t result = 0; for (const HloValue* value : buffer.values()) { result = std::max(result, buffer_size_(*value)); } cached_buffer_sizes_.insert({buffer.id(), result}); return result; } void CombineTempAllocations( const absl::flat_hash_set<BufferValue::Color>& private_stack_colors, std::optional<BufferValue::Color> temp_buffer_color); absl::Status ComputeSummaryStats(); std::vector<BufferAllocation> allocations_; int64_t temp_allocation_total_size_ = 0; uint64_t multiheap_size_constraint_per_heap_; absl::flat_hash_map<const HloValue*, BufferAllocation::Index> allocation_index_for_value_; const HloModule* module_; const std::unique_ptr<HloOrdering> hlo_ordering_; BufferValue::SizeFunction buffer_size_; LogicalBuffer::AlignmentFunction color_alignment_; std::unique_ptr<HloAliasAnalysis> alias_analysis_; std::unique_ptr<HloLiveRange> hlo_live_range_; Stats stats_; absl::flat_hash_map<HloBuffer::Id, int64_t> cached_buffer_sizes_; BufferAssignment(const BufferAssignment&) = delete; BufferAssignment& operator=(const BufferAssignment&) = delete; }; class BufferAssigner { public: using Colorer = std::function<absl::Status(HloAliasAnalysis*, const HloOrdering&)>; using MustNotLiveOut = std::function<bool( const HloAliasAnalysis&, const HloInstruction*, const ShapeIndex&)>; using PrivateStacks = absl::flat_hash_map<BufferValue::Color, std::vector<const HloComputation*>>; static Colorer DefaultColorer() { return [](HloAliasAnalysis* alias_analysis, const HloOrdering&) { for (HloValue* value : alias_analysis->dataflow_analysis().values()) { const HloPosition& defining_position = value->defining_position(); if (defining_position.shape().has_layout()) { value->set_color(BufferValue::Color( defining_position.shape().layout().memory_space())); } else { value->set_color(BufferValue::Color(0)); } } return absl::OkStatus(); }; } static absl::StatusOr<std::unique_ptr<BufferAssignment>> Run( const HloModule* module, std::unique_ptr<HloOrdering> hlo_ordering, BufferValue::SizeFunction buffer_size, LogicalBuffer::AlignmentFunction color_alignment, bool allocate_buffers_for_constants = false, Colorer colorer = DefaultColorer(), std::optional<MustNotLiveOut> must_not_live_out = std::nullopt, HloDataflowAnalysis::CanShareBuffer can_share_buffer = nullptr, std::unique_ptr<memory_space_assignment::PresetAssignments> preset_assignments = {}, const PrivateStacks& private_stacks = {}, GlobalDecreasingSizeBestFitHeap<HloValue>::BufferIntervalCompare heap_buffer_interval_compare = nullptr, std::optional<BufferAssignment::BufferIsolationOptions> isolation_options = std::nullopt, std::optional<BufferValue::Color> temp_buffer_color = std::nullopt); private: BufferAssigner(bool allocate_buffers_for_constants, Colorer colorer, std::optional<MustNotLiveOut> must_not_live_out, std::unique_ptr<memory_space_assignment::PresetAssignments> preset_assignments) : allocate_buffers_for_constants_(allocate_buffers_for_constants), colorer_(colorer), must_not_live_out_(must_not_live_out), preset_assignments_(std::move(preset_assignments)) {} virtual ~BufferAssigner() = default; absl::StatusOr<std::unique_ptr<BufferAssignment>> CreateAssignment( const HloModule* module, std::unique_ptr<HloOrdering> hlo_ordering, BufferValue::SizeFunction buffer_size, LogicalBuffer::AlignmentFunction color_alignment, HloDataflowAnalysis::CanShareBuffer can_share_buffer, const PrivateStacks& private_stacks, GlobalDecreasingSizeBestFitHeap<HloValue>::BufferIntervalCompare heap_buffer_interval_compare, std::optional<BufferAssignment::BufferIsolationOptions> isolation_options, std::optional<BufferValue::Color> temp_buffer_color); absl::Status AssignBuffersForComputations( const std::vector<const HloComputation*>& computations, bool is_thread_local, absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloValue*>>* buffers_to_assign_sequentially, BufferAssignment* assignment); bool LiveRangeInterferes(const HloValue* buffer1, const HloValue* buffer2, BufferAssignment* assignment); absl::Status AssignPresetBuffers( absl::flat_hash_set<const HloBuffer*>* assigned_buffers, BufferAssignment* assignment); absl::Status AssignSingleHloBuffer( const HloBuffer* hlo_buffer, bool is_thread_local, absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloValue*>>* buffers_to_assign_sequentially, std::vector<BufferAllocation::Index>* allocation_indices, BufferAssignment* assignment); absl::Status AssignBuffersWithSequentialOrdering( const absl::flat_hash_map<const HloComputation*, absl::flat_hash_set<const HloValue*>>& buffers_to_assign_sequentially, bool run_whole_module_heap_simulation, BufferAssignment* assignment, const PrivateStacks& private_stacks, GlobalDecreasingSizeBestFitHeap<HloValue>::BufferIntervalCompare heap_buffer_interval_compare, std::optional<BufferAssignment::BufferIsolationOptions> isolation_options); void IsolateHeapBuffers( std::optional<BufferAssignment::BufferIsolationOptions> isolation_options, const BufferAssignment* assignment, LogicalBuffer::Color color, HeapSimulator::Result<HloValue>& result) const; void AssignBuffersFromHeapSimulator( HeapSimulator::Result<HloValue>& result, BufferAssignment* assignment, LogicalBuffer::Color color, std::optional<BufferAssignment::BufferIsolationOptions> isolation_options); bool MaybeAssignBuffer(BufferAllocation* allocation, const HloBuffer& buffer, BufferAssignment* assignment); absl::flat_hash_map<LogicalBuffer::Color, absl::flat_hash_set<const HloValue*>> SplitBuffersByColor( const absl::flat_hash_set<const HloValue*>& buffers) const;
#include "xla/service/buffer_assignment.h" #include <memory> #include <optional> #include <set> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/literal.h" #include "xla/service/buffer_value.h" #include "xla/service/call_graph.h" #include "xla/service/copy_insertion.h" #include "xla/service/flatten_call_graph.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_memory_scheduler.h" #include "xla/service/hlo_ordering.h" #include "xla/service/hlo_parser.h" #include "xla/service/hlo_proto_util.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using memory_space_assignment::PresetAssignments; using ::testing::UnorderedElementsAre; class InstructionListVisitor : public DfsHloVisitorWithDefault { public: explicit InstructionListVisitor(const HloInstruction* root) : root_(root) {} absl::Status DefaultAction(HloInstruction* hlo) override { instructions_.push_back(hlo); VLOG(0) << "List instruction " << hlo->ToString(); return absl::OkStatus(); } std::vector<const HloInstruction*> GetInstructions() { return instructions_; } private: const HloInstruction* root_; std::vector<const HloInstruction*> instructions_; InstructionListVisitor(const InstructionListVisitor&) = delete; InstructionListVisitor& operator=(const InstructionListVisitor&) = delete; }; const std::vector<const HloInstruction*> GetInstructions(HloInstruction* root) { InstructionListVisitor main_list(root); TF_CHECK_OK(root->Accept(&main_list)); return main_list.GetInstructions(); } class BufferAssignmentTest : public HloTestBase { protected: ~BufferAssignmentTest() override {} std::unique_ptr<BufferAssignment> RunBufferAssignment(HloModule* module, int64_t alignment = 1) { return BufferAssigner::Run( module, std::make_unique<DependencyHloOrdering>(module), backend().compiler()->BufferSizeBytesFunction(), [alignment](LogicalBuffer::Color) { return alignment; }, true) .value(); } absl::StatusOr<std::unique_ptr<BufferAssignment>> ConvertToProtoAndBack( const BufferAssignment* buffers, const HloModule* module) { auto proto = buffers->ToProto(); return BufferAssignment::FromProto( proto, module, backend().compiler()->BufferSizeBytesFunction(), nullptr); } std::unique_ptr<BufferAssignment> RunBufferAssignmentWithSequentialOrdering( HloModule* module, int64_t alignment = 1, BufferAssigner::Colorer colorer = BufferAssigner::DefaultColorer(), const BufferAssigner::PrivateStacks& private_stacks = {}, std::optional<BufferAssignment::BufferIsolationOptions> isolation_options = std::nullopt) { return BufferAssigner::Run( module, std::make_unique<SequentialHloOrdering>(module->schedule()), backend().compiler()->BufferSizeBytesFunction(), [alignment](LogicalBuffer::Color) { return alignment; }, true, colorer, std::nullopt, nullptr, {}, private_stacks, nullptr, isolation_options) .value(); } std::unique_ptr<BufferAssignment> RunBufferAssignmentNoBuffersForConstants( HloModule* module, int64_t alignment = 1) { return BufferAssigner::Run( module, std::make_unique<DependencyHloOrdering>(module), backend().compiler()->BufferSizeBytesFunction(), [alignment](LogicalBuffer::Color) { return alignment; }, false) .value(); } std::unique_ptr<BufferAssignment> RunBufferAssignmentNoBuffersReuseForAdd( HloModule* module, int64_t alignment = 1) { auto must_not_live_out = [](const HloAliasAnalysis& alias_analysis, const HloInstruction* instruction, const ShapeIndex&) { return instruction->opcode() == HloOpcode::kAdd; }; return BufferAssigner::Run( module, std::make_unique<DependencyHloOrdering>(module), backend().compiler()->BufferSizeBytesFunction(), [alignment](LogicalBuffer::Color) { return alignment; }, false, BufferAssigner::DefaultColorer(), must_not_live_out) .value(); } std::unique_ptr<BufferAssignment> RunColoredBufferAssignment( HloModule* module, BufferAssigner::Colorer colorer, int64_t alignment = 1) { return BufferAssigner::Run( module, std::make_unique<DependencyHloOrdering>(module), backend().compiler()->BufferSizeBytesFunction(), [alignment](LogicalBuffer::Color) { return alignment; }, true, std::move(colorer)) .value(); } std::unique_ptr<BufferAssignment> RunBufferAssignmentWithInstructionSequence( HloModule* module, absl::Span<HloInstruction* const> instruction_sequence, int64_t alignment = 1) { HloSchedule schedule(module); schedule.set_sequence(module->entry_computation(), instruction_sequence); return BufferAssigner::Run( module, std::make_unique<SequentialHloOrdering>(schedule), backend().compiler()->BufferSizeBytesFunction(), [alignment](LogicalBuffer::Color) { return alignment; }, true) .value(); } std::unique_ptr<BufferAssignment> RunBufferAssignmentWithPresetAssignments( HloModule* module, std::unique_ptr<PresetAssignments> preset_assignments, int64_t alignment = 1) { return BufferAssigner::Run( module, std::make_unique<DependencyHloOrdering>(module), backend().compiler()->BufferSizeBytesFunction(), [alignment](LogicalBuffer::Color) { return alignment; }, true, BufferAssigner::DefaultColorer(), std::nullopt, nullptr, std::move(preset_assignments)) .value(); } std::unique_ptr<BufferAssignment> RunBufferAssignmentWithIsolationOptions( HloModule* module, std::optional<BufferAssignment::BufferIsolationOptions> isolation_options = std::nullopt) { return BufferAssigner::Run( module, std::make_unique<SequentialHloOrdering>(module->schedule()), backend().compiler()->BufferSizeBytesFunction(), [](LogicalBuffer::Color) { return 1; }, true, BufferAssigner::DefaultColorer(), std::nullopt, nullptr, {}, {}, nullptr, isolation_options) .value(); } std::unique_ptr<HloComputation> BuildMapComputationPlus1( const std::string& name) { auto builder = HloComputation::Builder(name); auto param = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "x")); auto value = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, param, value)); return builder.Build(); } std::unique_ptr<HloComputation> BuildReduceComputation( const std::string& name) { auto builder = HloComputation::Builder(name); auto param = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "x")); auto param2 = builder.AddInstruction(HloInstruction::CreateParameter(1, r0f32_, "y")); builder.AddInstruction( HloInstruction::CreateBinary(r0f32_, HloOpcode::kAdd, param, param2)); return builder.Build(); } std::unique_ptr<HloComputation> BuildWhileConditionComputation( const std::string& name) { auto builder = HloComputation::Builder(name); auto const4 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int>(4))); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, t_s32_f32v4_, "x")); auto index = builder.AddInstruction( HloInstruction::CreateGetTupleElement(const4->shape(), param, 0)); builder.AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), index, const4, ComparisonDirection::kLt)); return builder.Build(); } std::unique_ptr<HloComputation> BuildWhileBodyComputation( const std::string& name) { auto builder = HloComputation::Builder(name); auto const1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int>(1))); auto constv = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({1.1f, 2.2f, 3.3f, 4.4f}))); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, t_s32_f32v4_, "x")); auto indexc = builder.AddInstruction( HloInstruction::CreateGetTupleElement(const1->shape(), param, 0)); auto addc = builder.AddInstruction(HloInstruction::CreateBinary( indexc->shape(), HloOpcode::kAdd, indexc, const1)); auto indexv = builder.AddInstruction( HloInstruction::CreateGetTupleElement(constv->shape(), param, 1)); auto addv = builder.AddInstruction(HloInstruction::CreateBinary( constv->shape(), HloOpcode::kAdd, indexv, constv)); builder.AddInstruction(HloInstruction::CreateTuple({addc, addv})); return builder.Build(); } std::unique_ptr<HloComputation> BuildR0F32UnaryOpComputation( HloOpcode opcode, const std::string& name) { auto builder = HloComputation::Builder(name); auto param = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "x")); builder.AddInstruction(HloInstruction::CreateUnary(r0f32_, opcode, param)); return builder.Build(); } const BufferAllocation& GetAssignedInputAllocation( const BufferAssignment& buffers, HloInstruction* hlo) { LOG(INFO) << "Checking input: " << hlo->ToString(); const BufferAllocation& buffer = *buffers.GetUniqueTopLevelSlice(hlo).value().allocation(); EXPECT_EQ(hlo->parameter_number(), buffer.parameter_number()); return buffer; } const BufferAllocation& GetAssignedOutputAllocation( const BufferAssignment& buffers, HloInstruction* hlo) { LOG(INFO) << "Checking output: " << hlo->ToString(); const BufferAllocation& buffer = GetTopLevelAllocation(buffers, hlo); return buffer; } const BufferAllocation& GetAllocation(const BufferAssignment& buffers, const HloInstruction* hlo, const ShapeIndex& index) { return *buffers.GetUniqueSlice(hlo, index).value().allocation(); } const BufferAllocation& GetTopLevelAllocation(const BufferAssignment& buffers, const HloInstruction* hlo) { return *buffers.GetUniqueTopLevelSlice(hlo).value().allocation(); } int64_t ValidateBuffers( const std::vector<const HloInstruction*>& instructions, const BufferAssignment& buffers) { for (const HloInstruction* hlo : instructions) { if (!buffers.HasTopLevelAllocation(hlo)) { EXPECT_TRUE(HloOpcode::kConstant == hlo->opcode() || HloOpcode::kParameter == hlo->opcode()); continue; } } int64_t total_size = 0; for (auto& allocation : buffers.Allocations()) { total_size += allocation.size(); } return total_size; } Shape s32_ = ShapeUtil::MakeShape(xla::S32, {}); Shape r0f32_ = ShapeUtil::MakeShape(xla::F32, {}); Shape f32vec4_ = ShapeUtil::MakeShape(F32, {4}); Shape f32vec10_ = ShapeUtil::MakeShape(F32, {10}); Shape f32vec100_ = ShapeUtil::MakeShape(F32, {100}); Shape f32a100x10_ = ShapeUtil::MakeShape(F32, {100, 10}); Shape t_s32_f32v4_ = ShapeUtil::MakeTupleShape({s32_, f32vec4_}); Shape t_s32_f32v10_ = ShapeUtil::MakeTupleShape({s32_, f32vec10_}); }; static bool BuffersDistinct(const std::vector<const HloInstruction*>& a, const std::vector<const HloInstruction*>& b, const BufferAssignment& assignment) { absl::flat_hash_set<BufferAllocation::Slice> a_slices; for (const HloInstruction* instruction : a) { if (assignment.HasTopLevelAllocation(instruction)) { a_slices.insert(assignment.GetUniqueTopLevelSlice(instruction).value()); } } for (const HloInstruction* instruction : b) { if (assignment.HasTopLevelAllocation(instruction)) { if (a_slices.contains( assignment.GetUniqueTopLevelSlice(instruction).value())) { return false; } } } return true; } TEST_F(BufferAssignmentTest, ScalarConstant) { auto builder = HloComputation::Builder(TestName()); auto const0 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); { auto buffers = RunBufferAssignment(module.get()); EXPECT_TRUE(buffers->HasTopLevelAllocation(const0)); } { auto buffers = RunBufferAssignmentNoBuffersForConstants(module.get()); EXPECT_FALSE(buffers->HasTopLevelAllocation(const0)); } } TEST_F(BufferAssignmentTest, BufferForConst) { auto builder = HloComputation::Builder(TestName()); auto const0 = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({1.1f, 2.2f, 3.3f, 4.4f}))); auto const1 = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({4.1f, 4.2f, 4.3f, 4.4f}))); auto add = builder.AddInstruction( HloInstruction::CreateBinary(f32vec4_, HloOpcode::kAdd, const0, const1)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); { auto buffers = RunBufferAssignment(module.get()); EXPECT_TRUE(buffers->HasTopLevelAllocation(const0)); EXPECT_TRUE(buffers->HasTopLevelAllocation(const1)); GetAssignedOutputAllocation(*buffers, add); } { auto buffers = RunBufferAssignmentNoBuffersForConstants(module.get()); EXPECT_FALSE(buffers->HasTopLevelAllocation(const0)); EXPECT_FALSE(buffers->HasTopLevelAllocation(const1)); GetAssignedOutputAllocation(*buffers, add); } } TEST_F(BufferAssignmentTest, HasAllocationAt) { auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec100_, "param0")); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int>(1))); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(f32vec100_, HloOpcode::kNegate, param0)); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({negate, param0, constant})); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto buffers = RunBufferAssignment(module.get()); EXPECT_EQ(buffers->HasTopLevelAllocation(tuple), buffers->HasAllocationAt(tuple, {})); EXPECT_EQ(buffers->HasTopLevelAllocation(negate), buffers->HasAllocationAt(tuple, {0})); EXPECT_EQ(buffers->HasTopLevelAllocation(param0), buffers->HasAllocationAt(tuple, {1})); EXPECT_EQ(buffers->HasTopLevelAllocation(constant), buffers->HasAllocationAt(tuple, {2})); } TEST_F(BufferAssignmentTest, BufferForOutputConst) { auto builder = HloComputation::Builder(TestName()); auto const0 = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({1.1f, 2.2f, 3.3f, 4.4f}))); auto copy = builder.AddInstruction( HloInstruction::CreateUnary(const0->shape(), HloOpcode::kCopy, const0)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto buffers = RunBufferAssignment(module.get()); GetAssignedOutputAllocation(*buffers, copy); } TEST_F(BufferAssignmentTest, Basic) { auto builder = HloComputation::Builder(TestName()); auto paramscalar = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "p")); auto broadcast = builder.AddInstruction( HloInstruction::CreateBroadcast(f32vec100_, paramscalar, {})); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec100_, "p1")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(2, f32vec100_, "p2")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec100_, HloOpcode::kMultiply, broadcast, param0)); auto add = builder.AddInstruction( HloInstruction::CreateBinary(f32vec100_, HloOpcode::kAdd, mul, param1)); auto sub = builder.AddInstruction(HloInstruction::CreateBinary( f32vec100_, HloOpcode::kSubtract, add, param1)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto buffers_orig = RunBufferAssignment(module.get()); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<BufferAssignment> buffers, ConvertToProtoAndBack(buffers_orig.get(), module.get())); BufferAllocation paramscalar_buffer = GetAssignedInputAllocation(*buffers, paramscalar); BufferAllocation param0_buffer = GetAssignedInputAllocation(*buffers, param0); BufferAllocation param1_buffer = GetAssignedInputAllocation(*buffers, param1); EXPECT_NE(paramscalar_buffer.index(), param0_buffer.index()); EXPECT_NE(paramscalar_buffer.index(), param1_buffer.index()); EXPECT_NE(param0_buffer.index(), param1_buffer.index()); const BufferAllocation& mul_buffer = GetTopLevelAllocation(*buffers, mul); EXPECT_NE(mul_buffer.index(), param0_buffer.index()); const BufferAllocation& add_buffer = GetTopLevelAllocation(*buffers, add); EXPECT_EQ(add_buffer.index(), mul_buffer.index()); GetAssignedOutputAllocation(*buffers, sub); } TEST_F(BufferAssignmentTest, BasicToFromProto) { auto builder = HloComputation::Builder(TestName()); auto paramscalar = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "p")); auto broadcast = builder.AddInstruction( HloInstruction::CreateBroadcast(f32vec100_, paramscalar, {})); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec100_, "p1")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(2, f32vec100_, "p2")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec100_, HloOpcode::kMultiply, broadcast, param0)); auto add = builder.AddInstruction( HloInstruction::CreateBinary(f32vec100_, HloOpcode::kAdd, mul, param1)); builder.AddInstruction(HloInstruction::CreateBinary( f32vec100_, HloOpcode::kSubtract, add, param1)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto buffers_orig = RunBufferAssignment(module.get()); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<BufferAssignment> buffers_from_proto, ConvertToProtoAndBack(buffers_orig.get(), module.get())); const HloDataflowAnalysis& dataflow_orig = buffers_orig->dataflow_analysis(); const HloDataflowAnalysis& dataflow_proto = buffers_from_proto->dataflow_analysis(); EXPECT_EQ(buffers_orig->Allocations().size(), buffers_from_proto->Allocations().size()); for (BufferValue::Id id = 0; id < dataflow_orig.values().size(); id++) { auto& orig_value = dataflow_orig.values().at(id); if (buffers_orig->HasAllocation(*orig_value)) { auto& value_proto = dataflow_proto.GetUniqueValueAt( orig_value->instruction(), orig_value->index()); EXPECT_TRUE(buffers_from_proto->HasAllocation(value_proto)); EXPECT_EQ(orig_value->color(), value_proto.color()); EXPECT_EQ(buffers_orig->GetAssignedAllocation(*orig_value).index(), buffers_from_proto->GetAssignedAllocation(value_proto).index()); } } } TEST_F(BufferAssignmentTest, AliasedParamCanBeReused) { auto builder = HloComputation::Builder(TestName()); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec100_, "p0")); auto neg_1 = builder.AddInstruction( HloInstruction::CreateUnary(f32vec100_, HloOpcode::kNegate, param)); auto neg_2 = builder.AddInstruction( HloInstruction::CreateUnary(f32vec100_, HloOpcode::kNegate, neg_1)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); TF_ASSERT_OK(module->input_output_alias_config().SetUpAlias({}, 0, {})); auto buffers_orig = RunBufferAssignment(module.get()); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<BufferAssignment> buffers, ConvertToProtoAndBack(buffers_orig.get(), module.get())); BufferAllocation param_buffer = GetAssignedInputAllocation(*buffers, param); BufferAllocation neg_1_buffer = GetAllocation(*buffers, neg_1, {}); BufferAllocation neg_2_buffer = GetAllocation(*buffers, neg_2, {}); EXPECT_EQ(param_buffer.index(), neg_1_buffer.index()); EXPECT_EQ(neg_2_buffer.index(), neg_1_buffer.index()); } TEST_F(BufferAssignmentTest, AddCannotReuse) { auto builder = HloComputation::Builder(TestName()); auto paramscalar = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "p")); auto broadcast = builder.AddInstruction( HloInstruction::CreateBroadcast(f32vec100_, paramscalar, {})); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec100_, "p1")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(2, f32vec100_, "p2")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec100_, HloOpcode::kMultiply, broadcast, param0)); auto add = builder.AddInstruction( HloInstruction::CreateBinary(f32vec100_, HloOpcode::kAdd, mul, param1)); auto sub = builder.AddInstruction(HloInstruction::CreateBinary( f32vec100_, HloOpcode::kSubtract, add, param1)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); auto buffers_orig = RunBufferAssignmentNoBuffersReuseForAdd(module.get()); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<BufferAssignment> buffers, ConvertToProtoAndBack(buffers_orig.get(), module.get())); BufferAllocation paramscalar_buffer = GetAssignedInputAllocation(*buffers, paramscalar); BufferAllocation param0_buffer = GetAssignedInputAllocation(*buffers, param0); BufferAllocation param1_buffer = GetAssignedInputAllocation(*buffers, param1); EXPECT_NE(paramscalar_buffer.index(), param0_buffer.index()); EXPECT_NE(paramscalar_buffer.index(), param1_buffer.index()); EXPECT_NE(param0_buffer.index(), param1_buffer.index()); const BufferAllocation& sub_buffer = GetTopLevelAllocation(*buffers, sub); EXPECT_NE(sub_buffer.index(), param0_buffer.index()); const BufferAllocation& add_buffer = GetTopLevelAllocation(*buffers, add); EXPECT_NE(add_buffer.index(), sub_buffer.index()); GetAssignedOutputAllocation(*buffers, sub); } TEST_F(BufferAssignmentTest, BasicUniquelyColored) { auto builder = HloComputation::Builder(TestName()); auto paramscalar = builder.AddInstruction(HloInstruction::CreateParameter(0, r0f32_, "p")); auto broadcast = builder.AddInstruction( HloInstruction::CreateBroadcast(f32vec100_, paramscalar, {})); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec100_, "p1")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(2, f32vec100_, "p2")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec100_, HloOpcode::kMultiply, broadcast, param0)); auto add = builder.AddInstruction( HloInstruction::CreateBinary(f32vec100_, HloOpcode::kAdd, mul, param1)); auto sub = builder.AddInstruction(HloInstruction::CreateBinary( f32vec100_, HloOpcode::kSubtract, add, param1)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); absl::flat_hash_map<const HloInstruction*, int> color_map; auto colorer = [&](HloAliasAnalysis* alias_analysis, const HloOrdering&) { int color = 0; for (HloValue::Id id = 0; id < alias_analysis->dataflow_analysis().values().size(); id++) { auto& value = alias_analysis->dataflow_analysis().GetValue(id); color_map[value.defining_instruction()] = color; value.set_color(BufferValue::Color(color++)); } return absl::OkStatus(); }; auto buffers = RunColoredBufferAssignment(module.get(), colorer); BufferAllocation paramscalar_buffer = GetAssignedInputAllocation(*buffers, paramscalar); BufferAllocation param0_buffer = GetAssignedInputAllocation(*buffers, param0); BufferAllocation param1_buffer = GetAssignedInputAllocation(*buffers, param1); EXPECT_NE(paramscalar_buffer.index(), param0_buffer.index()); EXPECT_NE(paramscalar_buffer.index(), param1_buffer.index()); EXPECT_NE(param0_buffer.index(), param1_buffer.index()); const BufferAllocation& mul_buffer = GetTopLevelAllocation(*buffers, mul); EXPECT_NE(mul_buffer.index(), param0_buffer.index()); const BufferAllocation& add_buffer = GetTopLevelAllocation(*buffers, add); EXPECT_NE(add_buffer.index(), mul_buffer.index()); GetAssignedOutputAllocation(*buffers, sub);
1,847
cpp
tensorflow/tensorflow
while_loop_trip_count_annotator
third_party/xla/xla/service/while_loop_trip_count_annotator.cc
third_party/xla/xla/service/while_loop_trip_count_annotator_test.cc
#ifndef XLA_SERVICE_WHILE_LOOP_TRIP_COUNT_ANNOTATOR_H_ #define XLA_SERVICE_WHILE_LOOP_TRIP_COUNT_ANNOTATOR_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class WhileLoopTripCountAnnotator : public HloModulePass { public: ~WhileLoopTripCountAnnotator() override {} absl::string_view name() const override { return "while-loop-trip-count-annotator"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } #endif #include "xla/service/while_loop_trip_count_annotator.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/while_loop_analysis.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" namespace xla { absl::StatusOr<bool> WhileLoopTripCountAnnotator::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (const HloComputation* comp : module->computations(execution_threads)) { for (HloInstruction* instr : comp->instructions()) { if (instr->opcode() != HloOpcode::kWhile) { continue; } if (auto trip_count = ComputeWhileLoopTripCount(instr)) { WhileLoopBackendConfig config; config.mutable_known_trip_count()->set_n(*trip_count); TF_RETURN_IF_ERROR(instr->set_backend_config(config)); changed = true; } } } return changed; } }
#include "xla/service/while_loop_trip_count_annotator.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class TripCountAnnotatorTest : public HloTestBase {}; TEST_F(TripCountAnnotatorTest, KnownSmallTripCount) { const char* kModuleStr = R"( HloModule test Body { param = (s32[]) parameter(0) i = s32[] get-tuple-element(param), index=0 one = s32[] constant(1) i_plus_one = s32[] add(i, one) ROOT tuple = (s32[]) tuple(i_plus_one) } Cond { param = (s32[]) parameter(0) i = s32[] get-tuple-element(param), index=0 trip_count = s32[] constant(10) ROOT done = pred[] compare(i, trip_count), direction=LT } ENTRY test { i_start = s32[] constant(0) initial_tuple = (s32[]) tuple(i_start) ROOT while = (s32[]) while(initial_tuple), condition=Cond, body=Body })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kModuleStr)); WhileLoopTripCountAnnotator pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, m.get())); ASSERT_TRUE(changed); TF_ASSERT_OK_AND_ASSIGN(auto config, m->entry_computation() ->root_instruction() ->backend_config<WhileLoopBackendConfig>()); EXPECT_EQ(10, config.known_trip_count().n()); } TEST_F(TripCountAnnotatorTest, KnownLargeTripCount) { const char* kModuleStr = R"( HloModule test Body { param = (s32[]) parameter(0) i = s32[] get-tuple-element(param), index=0 one = s32[] constant(1) i_plus_one = s32[] add(i, one) ROOT tuple = (s32[]) tuple(i_plus_one) } Cond { param = (s32[]) parameter(0) i = s32[] get-tuple-element(param), index=0 trip_count = s32[] constant(1000000) ROOT done = pred[] compare(i, trip_count), direction=LT } ENTRY test { i_start = s32[] constant(0) initial_tuple = (s32[]) tuple(i_start) ROOT while = (s32[]) while(initial_tuple), condition=Cond, body=Body })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kModuleStr)); WhileLoopTripCountAnnotator pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, m.get())); ASSERT_TRUE(changed); TF_ASSERT_OK_AND_ASSIGN(auto config, m->entry_computation() ->root_instruction() ->backend_config<WhileLoopBackendConfig>()); EXPECT_EQ(1000000, config.known_trip_count().n()); } TEST_F(TripCountAnnotatorTest, NonzeroStart) { const char* kModuleStr = R"( HloModule test Body { param = (s32[]) parameter(0) i = s32[] get-tuple-element(param), index=0 one = s32[] constant(1) i_plus_one = s32[] add(i, one) ROOT tuple = (s32[]) tuple(i_plus_one) } Cond { param = (s32[]) parameter(0) i = s32[] get-tuple-element(param), index=0 trip_count = s32[] constant(1000000) ROOT done = pred[] compare(i, trip_count), direction=LT } ENTRY test { i_start = s32[] constant(10) initial_tuple = (s32[]) tuple(i_start) ROOT while = (s32[]) while(initial_tuple), condition=Cond, body=Body })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kModuleStr)); WhileLoopTripCountAnnotator pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, m.get())); ASSERT_TRUE(changed); TF_ASSERT_OK_AND_ASSIGN(auto config, m->entry_computation() ->root_instruction() ->backend_config<WhileLoopBackendConfig>()); EXPECT_EQ(999990, config.known_trip_count().n()); } TEST_F(TripCountAnnotatorTest, LessThanOrEqualTo) { const char* kModuleStr = R"( HloModule test Body { param = (s32[]) parameter(0) i = s32[] get-tuple-element(param), index=0 one = s32[] constant(1) i_plus_one = s32[] add(i, one) ROOT tuple = (s32[]) tuple(i_plus_one) } Cond { param = (s32[]) parameter(0) i = s32[] get-tuple-element(param), index=0 trip_count = s32[] constant(1000000) ROOT done = pred[] compare(i, trip_count), direction=LE } ENTRY test { i_start = s32[] constant(10) initial_tuple = (s32[]) tuple(i_start) ROOT while = (s32[]) while(initial_tuple), condition=Cond, body=Body })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kModuleStr)); WhileLoopTripCountAnnotator pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, m.get())); ASSERT_TRUE(changed); TF_ASSERT_OK_AND_ASSIGN(auto config, m->entry_computation() ->root_instruction() ->backend_config<WhileLoopBackendConfig>()); EXPECT_EQ(999991, config.known_trip_count().n()); } TEST_F(TripCountAnnotatorTest, Int64Overflow) { const char* kModuleStr = R"( HloModule test Body { param = (s64[]) parameter(0) i = s64[] get-tuple-element(param), index=0 one = s64[] constant(1) i_plus_one = s64[] add(i, one) ROOT tuple = (s64[]) tuple(i_plus_one) } Cond { param = (s64[]) parameter(0) i = s64[] get-tuple-element(param), index=0 trip_count = s64[] constant(9223372036854775807) ROOT done = pred[] compare(i, trip_count), direction=LE } ENTRY test { i_start = s64[] constant(-9223372036854775808) initial_tuple = (s64[]) tuple(i_start) ROOT while = (s64[]) while(initial_tuple), condition=Cond, body=Body })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kModuleStr)); WhileLoopTripCountAnnotator pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, m.get())); EXPECT_FALSE(changed); } } }
1,848
cpp
tensorflow/tensorflow
hlo_alias_analysis
third_party/xla/xla/service/hlo_alias_analysis.cc
third_party/xla/xla/service/hlo_alias_analysis_test.cc
#ifndef XLA_SERVICE_HLO_ALIAS_ANALYSIS_H_ #define XLA_SERVICE_HLO_ALIAS_ANALYSIS_H_ #include <memory> #include <string> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_buffer.h" #include "xla/service/hlo_dataflow_analysis.h" #include "xla/service/hlo_ordering.h" #include "xla/types.h" #include "xla/xla_data.pb.h" namespace xla { class HloAliasAnalysis { public: static absl::StatusOr<std::unique_ptr<HloAliasAnalysis>> Run( const HloModule* module, const HloDataflowAnalysis::CanShareBuffer& can_share_buffer = nullptr); std::string ToString() const; const HloBuffer& GetBufferContainingValue(const HloValue& value) const { return *value_to_buffer_.at(&value); } HloBuffer& GetBufferContainingValue(const HloValue& value) { return *value_to_buffer_.at(&value); } const HloBuffer& GetBuffer(HloBuffer::Id buffer_id) const { return buffers_.at(buffer_id); } HloBuffer& GetBuffer(HloBuffer::Id buffer_id) { return buffers_.at(buffer_id); } const HloBuffer& GetUniqueBufferAt(const HloInstruction* instruction, const ShapeIndex& index = {}) const; HloBuffer& GetUniqueBufferAt(const HloInstruction* instruction, const ShapeIndex& index = {}); std::vector<const HloBuffer*> ComputeBuffersAt( const HloInstruction* instruction, const ShapeIndex& index = {}) const; const std::vector<HloBuffer>& buffers() const { return buffers_; } HloDataflowAnalysis& dataflow_analysis() const { return *dataflow_analysis_; } bool BufferLivesOut(const HloBuffer& buffer) const { return live_out_buffers_.contains(&buffer); } bool ValueLivesOut(const HloValue& value) const { return live_out_buffers_.contains(&GetBufferContainingValue(value)); } std::vector<const HloBuffer*> LiveOutBuffers() const { std::vector<const HloBuffer*> results(live_out_buffers_.begin(), live_out_buffers_.end()); absl::c_sort(results, HloBuffer::IdLessThan); return results; } protected: explicit HloAliasAnalysis(const HloModule* module); absl::Status Verify() const; const HloModule* module_; absl::flat_hash_set<const HloBuffer*> live_out_buffers_; std::unique_ptr<HloDataflowAnalysis> dataflow_analysis_; absl::flat_hash_map<const HloValue*, HloBuffer*> value_to_buffer_; std::vector<HloBuffer> buffers_; }; } #endif #include "xla/service/hlo_alias_analysis.h" #include <algorithm> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/map_util.h" #include "xla/service/hlo_buffer.h" #include "xla/service/hlo_value.h" #include "xla/shape_util.h" #include "xla/types.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace xla { using absl::StrAppend; namespace { using FlatValueSet = absl::flat_hash_set<const HloValue*>; void ComputeInputOutputAliasedValues(const HloValue& value, const HloDataflowAnalysis& dataflow, FlatValueSet& aliased_values) { const HloModule& module = dataflow.module(); const HloComputation& entry_computation = *module.entry_computation(); const HloInputOutputAliasConfig& io_alias_config = module.input_output_alias_config(); for (const HloPosition& pos : value.positions()) { if (pos.instruction == entry_computation.root_instruction()) { std::optional<HloInputOutputAliasConfig::Alias> aliased_input = io_alias_config.GetAliasedParameter(pos.index); if (aliased_input) { aliased_values.insert( &dataflow.GetUniqueValueAt(entry_computation.parameter_instruction( aliased_input->parameter_number), aliased_input->parameter_index)); } } } } void ComputeWhileAliasedValues(const HloValue& value, const HloDataflowAnalysis& dataflow, FlatValueSet& aliased_values) { VLOG(3) << "Compute kWhile aliases"; for (const HloUse& use : value.GetUses()) { if (use.instruction->opcode() == HloOpcode::kWhile) { const HloValue& while_value = dataflow.GetUniqueValueAt(use.instruction, use.operand_index); aliased_values.insert(&while_value); VLOG(3) << " value is init value to a while; must share buffer with " "while value " << while_value; } } if (value.defining_instruction()->opcode() == HloOpcode::kParameter) { const HloComputation* computation = value.defining_instruction()->parent(); const CallGraphNode& call_graph_node = dataflow.call_graph().GetNode(computation); for (const CallSite& callsite : call_graph_node.caller_callsites()) { if (callsite.instruction()->opcode() == HloOpcode::kWhile) { CHECK_EQ(call_graph_node.caller_callsites().size(), 1); const HloValue& while_value = dataflow.GetUniqueValueAt( callsite.instruction(), value.defining_index()); VLOG(3) << " value is parameter value of the body or condition of a " "while; must share buffer with while value " << while_value; aliased_values.insert(&while_value); } } } for (const HloPosition& position : value.positions()) { if (!position.instruction->IsRoot()) continue; const HloComputation* computation = position.instruction->parent(); const CallGraphNode& call_graph_node = dataflow.call_graph().GetNode(computation); for (const CallSite& callsite : call_graph_node.caller_callsites()) { if (callsite.instruction()->opcode() == HloOpcode::kWhile && callsite.instruction()->while_body() == computation) { CHECK_EQ(call_graph_node.caller_callsites().size(), 1) << "Call graph must have been flattened."; const HloValue& while_value = dataflow.GetUniqueValueAt(callsite.instruction(), position.index); VLOG(3) << " value @ " << position << " is root of " << callsite.instruction()->name() << "; body root and while value root must share buffer " "among them: " << while_value; aliased_values.insert(&while_value); } } } } void ComputeConditionalAliasedValues(const HloValue& value, const HloDataflowAnalysis& dataflow, FlatValueSet& aliased_values) { VLOG(3) << "Compute kConditional aliases"; for (const HloPosition& position : value.positions()) { if (!position.instruction->IsRoot()) continue; const HloComputation* computation = position.instruction->parent(); const CallGraphNode& call_graph_node = dataflow.call_graph().GetNode(computation); for (const CallSite& callsite : call_graph_node.caller_callsites()) { if (callsite.instruction()->opcode() == HloOpcode::kConditional) { CHECK_EQ(call_graph_node.caller_callsites().size(), 1); const HloValue& cond_value = dataflow.GetUniqueValueAt(callsite.instruction(), position.index); VLOG(3) << " value @ " << position << " is root of " << callsite.instruction()->name() << "; branch computation roots must share buffer among them : " << cond_value; aliased_values.insert(&cond_value); } } } } void ComputeInPlaceOperationAliasedValues(const HloValue& value, const HloDataflowAnalysis& dataflow, FlatValueSet& aliased_values) { VLOG(3) << "Compute aliases for in-place operations (e.g. " "kDynamicUpdateSlice and kScatter)"; for (const HloPosition& position : value.positions()) { HloInstruction* instruction = position.instruction; for (const auto& operand_and_output_index : HloDataflowAnalysis::GetInPlaceInputOutputPairs(instruction)) { if (position.index == operand_and_output_index.second) { const HloOperandIndex& operand_index = operand_and_output_index.first; const HloValue& operand_value = dataflow.GetUniqueValueAt( instruction->operand(operand_index.operand_number), operand_index.operand_index); VLOG(3) << " operand value " << operand_value << " aliases."; aliased_values.insert(&operand_value); } } } for (const HloUse& use : value.GetUses()) { for (const auto& operand_and_output_index : HloDataflowAnalysis::GetInPlaceInputOutputPairs(use.instruction)) { const HloOperandIndex& operand_index = operand_and_output_index.first; if (use.operand_number == operand_index.operand_number && use.operand_index == operand_index.operand_index) { const HloValue& use_value = dataflow.GetUniqueValueAt( use.instruction, operand_and_output_index.second); VLOG(3) << " use value " << use_value << " aliases."; aliased_values.insert(&use_value); } } } } FlatValueSet ComputeAliasedValues(const HloValue& value, const HloDataflowAnalysis& dataflow) { if (VLOG_IS_ON(2)) { for (const HloUse& use : value.GetUses()) { VLOG(2) << "Use of value " << value << ": " << use; } } FlatValueSet aliased_values{&value}; ComputeInputOutputAliasedValues(value, dataflow, aliased_values); ComputeWhileAliasedValues(value, dataflow, aliased_values); ComputeConditionalAliasedValues(value, dataflow, aliased_values); ComputeInPlaceOperationAliasedValues(value, dataflow, aliased_values); return aliased_values; } std::vector<HloBuffer> CreateBuffers(const HloDataflowAnalysis& dataflow) { const std::vector<HloValue*>& values = dataflow.values(); size_t num_buffers = values.size(); std::vector<FlatValueSet> buffer_values(values.size()); absl::flat_hash_map<const HloValue*, FlatValueSet*> value_to_set; value_to_set.reserve(values.size()); for (size_t i = 0; i < values.size(); ++i) { buffer_values[i].insert(values[i]); value_to_set[values[i]] = &buffer_values[i]; } for (const HloValue* value : values) { VLOG(3) << "Merging colocated values, value: " << *value; FlatValueSet aliased_values = ComputeAliasedValues(*value, dataflow); if (aliased_values.size() < 2) continue; std::vector<std::pair<FlatValueSet*, HloValue::Id>> aliased_sets; aliased_sets.reserve(aliased_values.size()); for (const HloValue* aliased : aliased_values) { aliased_sets.push_back({value_to_set[aliased], aliased->id()}); } auto key = [](const auto& set_and_id) { return std::make_pair(set_and_id.first->size(), -set_and_id.second); }; FlatValueSet* union_set = absl::c_max_element(aliased_sets, LessThanByKey(key))->first; for (auto& aliased_set_and_id : aliased_sets) { FlatValueSet* aliased_set = aliased_set_and_id.first; if ((aliased_set != union_set) && !aliased_set->empty()) { for (const HloValue* aliased_value : *aliased_set) { CHECK(union_set->insert(aliased_value).second); value_to_set[aliased_value] = union_set; } aliased_set->clear(); --num_buffers; } } } std::vector<HloBuffer> buffers; buffers.reserve(num_buffers); for (const FlatValueSet& value_set : buffer_values) { if (!value_set.empty()) { HloBuffer::Id id = buffers.size(); buffers.push_back({id, HloValueSet(value_set).TakeValues()}); } } CHECK_EQ(buffers.size(), num_buffers); return buffers; } } HloAliasAnalysis::HloAliasAnalysis(const HloModule* module) : module_(module) {} const HloBuffer& HloAliasAnalysis::GetUniqueBufferAt( const HloInstruction* instruction, const ShapeIndex& index) const { std::vector<const HloBuffer*> buffers = ComputeBuffersAt(instruction, index); CHECK_EQ(buffers.size(), 1); return *buffers[0]; } HloBuffer& HloAliasAnalysis::GetUniqueBufferAt( const HloInstruction* instruction, const ShapeIndex& index) { return GetBuffer(const_cast<const HloAliasAnalysis*>(this) ->GetUniqueBufferAt(instruction, index) .id()); } std::vector<const HloBuffer*> HloAliasAnalysis::ComputeBuffersAt( const HloInstruction* instruction, const ShapeIndex& index) const { const HloValueSet& value_set = dataflow_analysis_->GetValueSet(instruction, index); std::vector<const HloBuffer*> buffers; buffers.reserve(value_set.values().size()); for (const HloValue* value : value_set.values()) { buffers.push_back(&GetBufferContainingValue(*value)); } absl::c_sort(buffers, HloBuffer::IdLessThan); buffers.erase(std::unique(buffers.begin(), buffers.end()), buffers.end()); return buffers; } absl::Status HloAliasAnalysis::Verify() const { for (const auto& pair : value_to_buffer_) { const HloValue* value = pair.first; const HloBuffer& buffer = *pair.second; TF_RET_CHECK(absl::c_linear_search(buffer.values(), value)); } for (HloBuffer::Id id = 0; id < buffers_.size(); ++id) { const HloBuffer& buffer = buffers_[id]; TF_RET_CHECK(buffer.id() == id); HloValue::Id last_value_id = -1; for (const HloValue* value : buffer.values()) { TF_RET_CHECK(GetBufferContainingValue(*value) == buffer); TF_RET_CHECK(value->id() > last_value_id); last_value_id = value->id(); } } return absl::OkStatus(); } std::string HloAliasAnalysis::ToString() const { std::string out = absl::StrCat("HloAliasAnalysis, module ", module_->name(), "\n"); StrAppend(&out, " Buffers at each position:\n"); for (const HloComputation* computation : module_->computations()) { for (const HloInstruction* instruction : computation->instructions()) { StrAppend(&out, " ", instruction->name(), ":\n"); if (instruction->shape().IsTuple()) { ShapeUtil::ForEachSubshape( instruction->shape(), [&out, &instruction, this](const Shape&, const ShapeIndex& index) { StrAppend(&out, " tuple index ", index.ToString(), ":\n"); for (const HloBuffer* buffer : ComputeBuffersAt(instruction, index)) { StrAppend(&out, " ", buffer->ToString(), "\n"); } }); } else { for (const HloBuffer* buffer : ComputeBuffersAt(instruction, {})) { StrAppend(&out, " ", buffer->ToString(), "\n"); } } } } StrAppend(&out, " Buffers:\n"); for (const HloBuffer& buffer : buffers()) { StrAppend(&out, " ", buffer.ToString(), "\n"); StrAppend(&out, " positions:\n"); for (const HloPosition& position : buffer.ComputePositions()) { StrAppend(&out, " ", position.ToString(), "\n"); } } return out; } absl::StatusOr<std::unique_ptr<HloAliasAnalysis>> HloAliasAnalysis::Run( const HloModule* module, const HloDataflowAnalysis::CanShareBuffer& can_share_buffer) { VLOG(2) << "HloAliasAnalysis::Run on module " << module->name(); XLA_VLOG_LINES(2, module->ToString()); auto alias_analysis = absl::WrapUnique(new HloAliasAnalysis(module)); TF_ASSIGN_OR_RETURN(alias_analysis->dataflow_analysis_, HloDataflowAnalysis::Run(*module, true, false, can_share_buffer)); size_t num_values = alias_analysis->dataflow_analysis_->values().size(); alias_analysis->buffers_ = CreateBuffers(alias_analysis->dataflow_analysis()); alias_analysis->value_to_buffer_.reserve(num_values); for (HloBuffer& buffer : alias_analysis->buffers_) { for (const HloValue* value : buffer.values()) { alias_analysis->value_to_buffer_[value] = &buffer; } } CHECK_EQ(alias_analysis->value_to_buffer_.size(), num_values); TF_DCHECK_OK(alias_analysis->Verify()); HloInstruction* root = module->entry_computation()->root_instruction(); ShapeUtil::ForEachSubshape(root->shape(), [&](const Shape& , const ShapeIndex& index) { std::vector<const HloBuffer*> buffers = alias_analysis->ComputeBuffersAt(root, index); alias_analysis->live_out_buffers_.insert(buffers.begin(), buffers.end()); }); XLA_VLOG_LINES(2, alias_analysis->ToString()); return std::move(alias_analysis); } }
#include "xla/service/hlo_alias_analysis.h" #include <map> #include <memory> #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal.h" #include "xla/service/flatten_call_graph.h" #include "xla/service/hlo_ordering.h" #include "xla/service/instruction_fusion.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/logging.h" #include "tsl/platform/test.h" namespace xla { namespace { using ::testing::UnorderedElementsAre; class HloAliasAnalysisTest : public HloTestBase { protected: HloAliasAnalysisTest() : HloTestBase() { module_ = CreateNewVerifiedModule(); } HloAliasAnalysis& RunAnalysis() { analysis_ = HloAliasAnalysis::Run(module_.get(), nullptr) .value(); return *analysis_; } std::vector<HloBuffer> GetBuffersAt(const HloInstruction* instruction, const ShapeIndex& index = {}) const { std::set<HloBuffer::Id> buffer_ids; for (const HloValue* value : analysis_->dataflow_analysis() .GetValueSet(instruction, index) .values()) { buffer_ids.insert(analysis_->GetBufferContainingValue(*value).id()); } std::vector<HloBuffer> buffers; buffers.reserve(buffer_ids.size()); for (HloBuffer::Id id : buffer_ids) { buffers.push_back(analysis_->GetBuffer(id)); } return buffers; } const HloValue& GetValueDefinedAt(const HloInstruction* instruction, const ShapeIndex& index = {}) const { return analysis_->dataflow_analysis().GetValueDefinedAt(instruction, index); } bool AnyValuesInSameBufferInterfere() { DependencyHloOrdering ordering(module_.get()); for (const HloBuffer& buffer : analysis_->buffers()) { for (const HloValue* value_a : buffer.values()) { for (const HloValue* value_b : buffer.values()) { if (*value_a != *value_b && ordering.MayInterfere(*value_a, *value_b, analysis_->dataflow_analysis())) { VLOG(1) << *value_a << " interferes with " << *value_b << " in buffer: " << buffer; return true; } } } } return false; } bool InstructionBuffersAreAmbiguous(const HloInstruction* instruction) const { for (const auto& pair : analysis_->dataflow_analysis().GetInstructionValueSet(instruction)) { const HloValueSet& value_set = pair.second; const HloBuffer* buffer = nullptr; for (const HloValue* value : value_set.values()) { if (buffer == nullptr) { buffer = &analysis_->GetBufferContainingValue(*value); } else if (buffer != &analysis_->GetBufferContainingValue(*value)) { return true; } } } return false; } bool InstructionBuffersAreDistinct(const HloInstruction* instruction) const { absl::flat_hash_set<const HloBuffer*> buffers_seen; for (const auto& pair : analysis_->dataflow_analysis().GetInstructionValueSet(instruction)) { const HloValueSet& value_set = pair.second; absl::flat_hash_set<const HloBuffer*> buffers_at_this_index; for (const HloValue* value : value_set.values()) { buffers_at_this_index.insert( &analysis_->GetBufferContainingValue(*value)); } buffers_seen.merge(buffers_at_this_index); if (!buffers_at_this_index.empty()) return false; } return true; } std::unique_ptr<HloModule> module_; std::unique_ptr<HloAliasAnalysis> analysis_; const Shape scalar_shape_ = ShapeUtil::MakeShape(F32, {}); }; TEST_F(HloAliasAnalysisTest, BinaryOperation) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto add = builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape_, HloOpcode::kAdd, constant1, constant2)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); const HloAliasAnalysis& analysis = RunAnalysis(); EXPECT_EQ(analysis.buffers().size(), 3); for (const HloInstruction* instruction : {constant1, constant2, add}) { EXPECT_EQ(analysis.GetUniqueBufferAt(instruction).GetUniqueValue(), GetValueDefinedAt(instruction)); } EXPECT_FALSE(InstructionBuffersAreAmbiguous(add)); EXPECT_TRUE(InstructionBuffersAreDistinct(add)); EXPECT_FALSE(AnyValuesInSameBufferInterfere()); } TEST_F(HloAliasAnalysisTest, TupleAndGtes) { auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape_, "param0")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "param1")); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({param0, param1})); auto gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, tuple, 0)); auto gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, tuple, 1)); builder.AddInstruction( HloInstruction::CreateBinary(scalar_shape_, HloOpcode::kAdd, gte0, gte1)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); const HloAliasAnalysis& analysis = RunAnalysis(); EXPECT_EQ(analysis.buffers().size(), 4); EXPECT_EQ(analysis.GetUniqueBufferAt(tuple, {}).GetUniqueValue(), GetValueDefinedAt(tuple, {})); EXPECT_EQ(analysis.GetUniqueBufferAt(tuple, {0}).GetUniqueValue(), GetValueDefinedAt(param0)); EXPECT_EQ(analysis.GetUniqueBufferAt(tuple, {1}).GetUniqueValue(), GetValueDefinedAt(param1)); EXPECT_EQ(analysis.GetUniqueBufferAt(param0), analysis.GetUniqueBufferAt(tuple, {0})); EXPECT_EQ(analysis.GetUniqueBufferAt(param0), analysis.GetUniqueBufferAt(gte0)); EXPECT_THAT( analysis.GetUniqueBufferAt(param0).ComputePositions(), UnorderedElementsAre(HloPosition{param0, {}}, HloPosition{tuple, {0}}, HloPosition{gte0, {}})); EXPECT_FALSE(InstructionBuffersAreAmbiguous(tuple)); EXPECT_TRUE(InstructionBuffersAreDistinct(tuple)); EXPECT_FALSE(AnyValuesInSameBufferInterfere()); } TEST_F(HloAliasAnalysisTest, NondistinctTuple) { auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape_, "param0")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "param1")); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({param0, param1, param0})); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); const HloAliasAnalysis& analysis = RunAnalysis(); EXPECT_THAT( analysis.GetUniqueBufferAt(param0).ComputePositions(), UnorderedElementsAre(HloPosition{param0, {}}, HloPosition{tuple, {0}}, HloPosition{tuple, {2}})); EXPECT_FALSE(InstructionBuffersAreAmbiguous(tuple)); EXPECT_FALSE(InstructionBuffersAreDistinct(tuple)); EXPECT_FALSE(AnyValuesInSameBufferInterfere()); } TEST_F(HloAliasAnalysisTest, ParametersWithAliasing) { const Shape tuple_shape = ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_}); auto builder = HloComputation::Builder(TestName()); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "p0")); auto gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, param, 0)); auto gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, param, 1)); auto negate0 = builder.AddInstruction( HloInstruction::CreateUnary(scalar_shape_, HloOpcode::kNegate, gte0)); auto negate1 = builder.AddInstruction( HloInstruction::CreateUnary(scalar_shape_, HloOpcode::kNegate, gte1)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({negate0, negate1})); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(module_->input_output_alias_config().SetUpAlias( {0}, 0, {0})); TF_ASSERT_OK(module_->input_output_alias_config().SetUpAlias( {1}, 0, {1})); ASSERT_IS_NOT_OK(module_->input_output_alias_config().SetUpAlias( {1}, 0, {0})); const HloAliasAnalysis& analysis = RunAnalysis(); EXPECT_EQ(analysis.GetUniqueBufferAt(gte0), analysis.GetUniqueBufferAt(tuple, {0})); EXPECT_EQ(analysis.GetUniqueBufferAt(gte1), analysis.GetUniqueBufferAt(tuple, {1})); } TEST_F(HloAliasAnalysisTest, ParametersWithCrossAliasing) { const Shape tuple_shape = ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_}); auto builder = HloComputation::Builder(TestName()); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "p0")); auto gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, param, 0)); auto gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, param, 1)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({gte0, gte1})); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(module_->input_output_alias_config().SetUpAlias( {0}, 0, {1})); TF_ASSERT_OK(module_->input_output_alias_config().SetUpAlias( {1}, 0, {0})); ASSERT_IS_NOT_OK(module_->input_output_alias_config().SetUpAlias( {1}, 0, {1})); const HloAliasAnalysis& analysis = RunAnalysis(); EXPECT_EQ(analysis.GetUniqueBufferAt(gte0), analysis.GetUniqueBufferAt(tuple, {0})); EXPECT_EQ(analysis.GetUniqueBufferAt(gte0), analysis.GetUniqueBufferAt(tuple, {1})); EXPECT_EQ(analysis.GetUniqueBufferAt(gte1), analysis.GetUniqueBufferAt(tuple, {0})); EXPECT_EQ(analysis.GetUniqueBufferAt(gte1), analysis.GetUniqueBufferAt(tuple, {1})); } TEST_F(HloAliasAnalysisTest, InputOutputAliasingWithWhile) { const Shape tuple_shape = ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_}); auto body_builder = HloComputation::Builder("body"); auto body_param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); auto body_element_0 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 0)); auto body_element_1 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 1)); auto add = body_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape_, HloOpcode::kAdd, body_element_0, body_element_1)); auto body_tuple = body_builder.AddInstruction( HloInstruction::CreateTuple({body_element_0, add})); HloComputation* body = module_->AddEmbeddedComputation(body_builder.Build()); auto cond_builder = HloComputation::Builder("condition"); auto cond_param = cond_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false))); HloComputation* condition = module_->AddEmbeddedComputation(cond_builder.Build()); auto builder = HloComputation::Builder(TestName()); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "p0")); auto xla_while = builder.AddInstruction( HloInstruction::CreateWhile(tuple_shape, condition, body, param)); auto while_element_1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, xla_while, 0)); auto while_element_2 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, xla_while, 1)); auto negate_1 = builder.AddInstruction(HloInstruction::CreateUnary( scalar_shape_, HloOpcode::kNegate, while_element_1)); auto negate_2 = builder.AddInstruction(HloInstruction::CreateUnary( scalar_shape_, HloOpcode::kNegate, while_element_2)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({negate_1, negate_2})); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(module_->input_output_alias_config().SetUpAlias( {0}, 0, {0})); TF_ASSERT_OK(module_->input_output_alias_config().SetUpAlias( {1}, 0, {1})); const HloAliasAnalysis& analysis = RunAnalysis(); EXPECT_THAT(analysis.GetUniqueBufferAt(xla_while, {1}).values(), UnorderedElementsAre(&GetValueDefinedAt(param, {1}), &GetValueDefinedAt(xla_while, {1}), &GetValueDefinedAt(body_param, {1}), &GetValueDefinedAt(cond_param, {1}), &GetValueDefinedAt(add), &GetValueDefinedAt(negate_2))); EXPECT_THAT( analysis.GetUniqueBufferAt(xla_while, {1}).ComputePositions(), UnorderedElementsAre( HloPosition{param, {1}}, HloPosition{xla_while, {1}}, HloPosition{while_element_2, {}}, HloPosition{body_param, {1}}, HloPosition{body_element_1, {}}, HloPosition{add, {}}, HloPosition{body_tuple, {1}}, HloPosition{tuple, {1}}, HloPosition{cond_param, {1}}, HloPosition{negate_2, {}})); EXPECT_FALSE(AnyValuesInSameBufferInterfere()); } TEST_F(HloAliasAnalysisTest, SingleCall) { auto subbuilder = HloComputation::Builder("Subcomputation"); auto subparam0 = subbuilder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape_, "param0")); auto subparam1 = subbuilder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "param1")); auto add = subbuilder.AddInstruction(HloInstruction::CreateBinary( scalar_shape_, HloOpcode::kAdd, subparam0, subparam1)); HloComputation* called_computation = module_->AddEmbeddedComputation(subbuilder.Build()); auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto call = builder.AddInstruction(HloInstruction::CreateCall( scalar_shape_, {constant1, constant2}, called_computation)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); const HloAliasAnalysis& analysis = RunAnalysis(); EXPECT_THAT(analysis.GetUniqueBufferAt(constant1).ComputePositions(), UnorderedElementsAre(HloPosition{constant1, {}}, HloPosition{subparam0, {}})); EXPECT_THAT(analysis.GetUniqueBufferAt(constant2).ComputePositions(), UnorderedElementsAre(HloPosition{constant2, {}}, HloPosition{subparam1, {}})); EXPECT_THAT( analysis.GetUniqueBufferAt(add).ComputePositions(), UnorderedElementsAre(HloPosition{add, {}}, HloPosition{call, {}})); EXPECT_FALSE(AnyValuesInSameBufferInterfere()); } TEST_F(HloAliasAnalysisTest, ComputationCalledTwice) { auto subbuilder = HloComputation::Builder("Subcomputation"); auto subparam0 = subbuilder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape_, "param0")); auto subparam1 = subbuilder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "param1")); auto add = subbuilder.AddInstruction(HloInstruction::CreateBinary( scalar_shape_, HloOpcode::kAdd, subparam0, subparam1)); HloComputation* called_computation = module_->AddEmbeddedComputation(subbuilder.Build()); auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto call1 = builder.AddInstruction(HloInstruction::CreateCall( scalar_shape_, {constant1, constant2}, called_computation)); auto call2 = builder.AddInstruction(HloInstruction::CreateCall( scalar_shape_, {call1, constant2}, called_computation)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); const HloAliasAnalysis& analysis = RunAnalysis(); EXPECT_THAT(analysis.GetUniqueBufferAt(constant1).ComputePositions(), UnorderedElementsAre(HloPosition{constant1, {}}, HloPosition{subparam0, {}})); EXPECT_THAT(analysis.GetUniqueBufferAt(constant2).ComputePositions(), UnorderedElementsAre(HloPosition{constant2, {}}, HloPosition{subparam1, {}})); EXPECT_THAT( analysis.GetUniqueBufferAt(add).ComputePositions(), UnorderedElementsAre(HloPosition{add, {}}, HloPosition{call1, {}}, HloPosition{subparam0, {}}, HloPosition{call2, {}})); EXPECT_THAT(GetBuffersAt(subparam0), UnorderedElementsAre(analysis.GetUniqueBufferAt(constant1), analysis.GetUniqueBufferAt(add))); EXPECT_THAT(GetBuffersAt(subparam1), UnorderedElementsAre(analysis.GetUniqueBufferAt(constant2))); EXPECT_TRUE(InstructionBuffersAreAmbiguous(subparam0)); EXPECT_FALSE(InstructionBuffersAreAmbiguous(subparam1)); EXPECT_TRUE(InstructionBuffersAreDistinct(subparam0)); EXPECT_TRUE(InstructionBuffersAreDistinct(subparam1)); EXPECT_FALSE(AnyValuesInSameBufferInterfere()); } TEST_F(HloAliasAnalysisTest, SingleWhile) { const Shape tuple_shape = ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_}); auto body_builder = HloComputation::Builder("body"); auto body_param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); auto body_element_0 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 0)); auto body_element_1 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 1)); auto add = body_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape_, HloOpcode::kAdd, body_element_0, body_element_1)); auto body_tuple = body_builder.AddInstruction( HloInstruction::CreateTuple({body_element_0, add})); HloComputation* body = module_->AddEmbeddedComputation(body_builder.Build()); auto cond_builder = HloComputation::Builder("condition"); auto cond_param = cond_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false))); HloComputation* condition = module_->AddEmbeddedComputation(cond_builder.Build()); auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({constant1, constant2})); auto xla_while = builder.AddInstruction( HloInstruction::CreateWhile(tuple_shape, condition, body, tuple)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); const HloAliasAnalysis& analysis = RunAnalysis(); EXPECT_THAT( analysis.GetUniqueBufferAt(xla_while, {}).ComputePositions(), UnorderedElementsAre(HloPosition{tuple, {}}, HloPosition{xla_while, {}}, HloPosition{body_param, {}}, HloPosition{body_tuple, {}}, HloPosition{cond_param, {}})); EXPECT_THAT( analysis.GetUniqueBufferAt(xla_while, {0}).ComputePositions(), UnorderedElementsAre( HloPosition{constant1, {}}, HloPosition{tuple, {0}}, HloPosition{xla_while, {0}}, HloPosition{body_param, {0}}, HloPosition{body_element_0, {}}, HloPosition{body_tuple, {0}}, HloPosition{cond_param, {0}})); EXPECT_THAT( analysis.GetUniqueBufferAt(xla_while, {1}).ComputePositions(), UnorderedElementsAre( HloPosition{constant2, {}}, HloPosition{tuple, {1}}, HloPosition{xla_while, {1}}, HloPosition{body_param, {1}}, HloPosition{body_element_1, {}}, HloPosition{add, {}}, HloPosition{body_tuple, {1}}, HloPosition{cond_param, {1}})); EXPECT_THAT(analysis.GetUniqueBufferAt(xla_while, {0}).values(), UnorderedElementsAre(&GetValueDefinedAt(constant1))); EXPECT_THAT(analysis.GetUniqueBufferAt(xla_while, {1}).values(), UnorderedElementsAre(&GetValueDefinedAt(constant2), &GetValueDefinedAt(xla_while, {1}), &GetValueDefinedAt(body_param, {1}), &GetValueDefinedAt(cond_param, {1}), &GetValueDefinedAt(add))); EXPECT_FALSE(AnyValuesInSameBufferInterfere()); } TEST_F(HloAliasAnalysisTest, SequentialWhiles) { const Shape tuple_shape = ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_}); auto body_builder = HloComputation::Builder("body"); auto body_param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); auto body_element_0 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 0)); auto body_element_1 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 1)); auto add = body_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape_, HloOpcode::kAdd, body_element_0, body_element_1)); body_builder.AddInstruction( HloInstruction::CreateTuple({body_element_0, add})); HloComputation* body = module_->AddEmbeddedComputation(body_builder.Build()); auto cond_builder = HloComputation::Builder("condition"); cond_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false))); HloComputation* condition = module_->AddEmbeddedComputation(cond_builder.Build()); auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({constant1, constant2})); auto xla_while0 = builder.AddInstruction( HloInstruction::CreateWhile(tuple_shape, condition, body, tuple)); auto xla_while1 = builder.AddInstruction( HloInstruction::CreateWhile(tuple_shape, condition, body, xla_while0)); auto xla_while2 = builder.AddInstruction( HloInstruction::CreateWhile(tuple_shape, condition, body, xla_while1)); module_->AddEntryComputation(builder.Build()); FlattenCallGraph flattener; TF_ASSERT_OK(flattener.Run(module_.get()).status()); SCOPED_TRACE(module_->ToString()); const HloAliasAnalysis& analysis = RunAnalysis(); EXPECT_EQ(analysis.GetUniqueBufferAt(tuple, {}), analysis.GetUniqueBufferAt(xla_while2, {})); EXPECT_EQ(analysis.GetUniqueBufferAt(constant1), analysis.GetUniqueBufferAt(xla_while2, {0})); EXPECT_EQ(analysis.GetUniqueBufferAt(constant2), analysis.GetUniqueBufferAt(xla_while2, {1})); } TEST_F(HloAliasAnalysisTest, NestedWhiles) { const Shape tuple_shape = ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_}); auto build_cond_computation = [&tuple_shape]() { auto cond_builder = HloComputation::Builder("condition"); cond_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false))); return cond_builder.Build(); }; HloComputation* condition1 = module_->AddEmbeddedComputation(build_cond_computation()); HloComputation* condition2 = module_->AddEmbeddedComputation(build_cond_computation()); auto inner_builder = HloComputation::Builder("inner_body"); auto inner_param = inner_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); auto inner_element_0 = inner_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, inner_param, 0)); auto inner_element_1 = inner_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, inner_param, 1)); auto add = inner_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape_, HloOpcode::kAdd, inner_element_0, inner_element_1)); inner_builder.AddInstruction( HloInstruction::CreateTuple({inner_element_0, add})); HloComputation* inner_body = module_->AddEmbeddedComputation(inner_builder.Build()); auto outer_builder = HloComputation::Builder("outer_body"); auto outer_param = outer_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shap
1,849
cpp
tensorflow/tensorflow
xla_debug_info_manager
third_party/xla/xla/service/xla_debug_info_manager.cc
third_party/xla/xla/service/xla_debug_info_manager_test.cc
#ifndef XLA_SERVICE_XLA_DEBUG_INFO_MANAGER_H_ #define XLA_SERVICE_XLA_DEBUG_INFO_MANAGER_H_ #include <memory> #include <string> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/synchronization/mutex.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo.pb.h" #include "tsl/platform/status.h" namespace xla { using ModuleIdentifier = int; class XlaDebugInfoManager { public: static XlaDebugInfoManager* Get() { static XlaDebugInfoManager* singleton = new XlaDebugInfoManager(); return singleton; } void RegisterModule(std::shared_ptr<const HloModule> hlo_module, BufferAssignmentProto buffer_assignment); void UnregisterModule(ModuleIdentifier module_id); void StartTracing(); void StopTracing( std::vector<std::unique_ptr<HloProto>>* module_debug_info = nullptr); bool TracksModule(ModuleIdentifier module_id) const; friend class XlaDebugInfoManagerTestPeer; private: XlaDebugInfoManager() = default; struct XlaModuleEntry { std::shared_ptr<const HloModule> hlo_module; BufferAssignmentProto buffer_assignment; bool active = false; }; mutable absl::Mutex mutex_; bool tracing_active_ ABSL_GUARDED_BY(mutex_) = false; absl::flat_hash_map<ModuleIdentifier, XlaModuleEntry> modules_ ABSL_GUARDED_BY(mutex_); }; } #endif #include "xla/service/xla_debug_info_manager.h" #include <memory> #include <string> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/synchronization/mutex.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_proto_util.h" namespace xla { void XlaDebugInfoManager::RegisterModule( std::shared_ptr<const HloModule> hlo_module, BufferAssignmentProto buffer_assignment) { CHECK(hlo_module != nullptr); absl::MutexLock lock(&mutex_); auto result = modules_.try_emplace(hlo_module->unique_id()); CHECK(result.second); XlaModuleEntry& m = result.first->second; m.hlo_module = std::move(hlo_module); m.buffer_assignment = std::move(buffer_assignment); m.active = true; } void XlaDebugInfoManager::UnregisterModule(ModuleIdentifier module_id) { absl::MutexLock lock(&mutex_); auto it = modules_.find(module_id); CHECK(it != modules_.end()); if (!tracing_active_) { modules_.erase(it); } else { XlaModuleEntry& m = it->second; m.active = false; } } void XlaDebugInfoManager::StartTracing() { absl::MutexLock lock(&mutex_); tracing_active_ = true; } void XlaDebugInfoManager::StopTracing( std::vector<std::unique_ptr<HloProto>>* module_debug_info) { std::vector<XlaModuleEntry> modules_to_serialize; { absl::MutexLock lock(&mutex_); if (!tracing_active_) return; tracing_active_ = false; modules_to_serialize.reserve(modules_.size()); for (auto it = modules_.begin(); it != modules_.end();) { auto& m = it->second; auto cur_it = it++; if (!m.active) { modules_to_serialize.emplace_back(std::move(m)); modules_.erase(cur_it); } else { modules_to_serialize.emplace_back(m); } } } if (module_debug_info) { module_debug_info->clear(); for (const auto& m : modules_to_serialize) { auto hlo_proto = std::make_unique<HloProto>(MakeHloProto(*m.hlo_module)); *hlo_proto->mutable_buffer_assignment() = m.buffer_assignment; module_debug_info->emplace_back(std::move(hlo_proto)); } } } bool XlaDebugInfoManager::TracksModule(ModuleIdentifier module_id) const { absl::MutexLock lock(&mutex_); return modules_.find(module_id) != modules_.end(); } }
#include "xla/service/xla_debug_info_manager.h" #include <memory> #include <string> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_set.h" #include "absl/synchronization/mutex.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_module_config.h" #include "xla/tests/hlo_test_base.h" namespace xla { class XlaDebugInfoManagerTestPeer { public: void RegisterModule(std::shared_ptr<const HloModule> hlo_module, BufferAssignmentProto buffer_assignment) { return xla_debug_info_manager_.RegisterModule(hlo_module, std::move(buffer_assignment)); } void UnregisterModule(ModuleIdentifier module_id) { return xla_debug_info_manager_.UnregisterModule(module_id); } void StartTracing() { return xla_debug_info_manager_.StartTracing(); } absl::flat_hash_set<ModuleIdentifier> StopTracing() { std::vector<std::unique_ptr<HloProto>> module_debug_info; xla_debug_info_manager_.StopTracing(&module_debug_info); absl::flat_hash_set<ModuleIdentifier> module_ids; for (const auto& hlo_proto : module_debug_info) { module_ids.insert(hlo_proto->hlo_module().id()); } return module_ids; } absl::flat_hash_set<ModuleIdentifier> GetModuleIds() { absl::flat_hash_set<ModuleIdentifier> module_ids; absl::MutexLock lock(&xla_debug_info_manager_.mutex_); for (const auto& it : xla_debug_info_manager_.modules_) { module_ids.insert(it.first); } return module_ids; } private: XlaDebugInfoManager xla_debug_info_manager_; }; namespace { using ::testing::IsEmpty; using ::testing::UnorderedElementsAre; class XlaDebugInfoManagerTest : public HloTestBase { protected: struct DebugMetadata { ModuleIdentifier unique_id; std::shared_ptr<HloModule> module; }; ModuleIdentifier RegisterProgram(const std::string& module_name) { DebugMetadata debug_info; HloModuleConfig config; debug_info.module = std::make_shared<HloModule>(module_name, config); ModuleIdentifier unique_id = debug_info.module->unique_id(); debug_info.unique_id = unique_id; xla_debug_info_manager_.RegisterModule(debug_info.module, BufferAssignmentProto()); external_references_.push_back(std::move(debug_info)); return unique_id; } void UnregisterProgram(ModuleIdentifier unique_id) { for (int i = 0; i < external_references_.size(); i++) { if (external_references_[i].unique_id == unique_id) { xla_debug_info_manager_.UnregisterModule(unique_id); external_references_.erase(external_references_.begin() + i); break; } } } absl::flat_hash_set<ModuleIdentifier> GetModuleIds() { return xla_debug_info_manager_.GetModuleIds(); } void StartTrace() { xla_debug_info_manager_.StartTracing(); } absl::flat_hash_set<ModuleIdentifier> StopTrace() { return xla_debug_info_manager_.StopTracing(); } std::vector<DebugMetadata> external_references_; XlaDebugInfoManagerTestPeer xla_debug_info_manager_; }; TEST_F(XlaDebugInfoManagerTest, NoTraceBasic) { auto program0 = RegisterProgram("program0"); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program0)); auto program1 = RegisterProgram("program1"); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program0, program1)); UnregisterProgram(program0); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program1)); UnregisterProgram(program1); EXPECT_TRUE(GetModuleIds().empty()); } TEST_F(XlaDebugInfoManagerTest, NoTraceDuplicateIds) { auto program0A = RegisterProgram("program0"); auto program0B = RegisterProgram("program0"); auto program1 = RegisterProgram("program1"); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program0A, program0B, program1)); UnregisterProgram(program1); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program0A, program0B)); UnregisterProgram(program0A); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program0B)); UnregisterProgram(program0B); EXPECT_THAT(GetModuleIds(), IsEmpty()); } TEST_F(XlaDebugInfoManagerTest, ActiveTrace) { auto program0A = RegisterProgram("program0"); auto program0B = RegisterProgram("program0"); auto program1 = RegisterProgram("program1"); StartTrace(); auto program2 = RegisterProgram("program2"); EXPECT_THAT(StopTrace(), UnorderedElementsAre(program0A, program0B, program1, program2)); StartTrace(); EXPECT_THAT(StopTrace(), UnorderedElementsAre(program0A, program0B, program1, program2)); UnregisterProgram(program2); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program0A, program0B, program1)); UnregisterProgram(program0A); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program0B, program1)); UnregisterProgram(program0B); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program1)); UnregisterProgram(program1); EXPECT_THAT(GetModuleIds(), IsEmpty()); } TEST_F(XlaDebugInfoManagerTest, UnregisterDuringTrace) { auto program0A = RegisterProgram("program0"); auto program0B = RegisterProgram("program0"); auto program1 = RegisterProgram("program1"); StartTrace(); UnregisterProgram(program1); UnregisterProgram(program0B); EXPECT_THAT(StopTrace(), UnorderedElementsAre(program0A, program0B, program1)); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program0A)); UnregisterProgram(program0A); } } }
1,850
cpp
tensorflow/tensorflow
bfloat16_propagation
third_party/xla/xla/service/bfloat16_propagation.cc
third_party/xla/xla/service/bfloat16_propagation_test.cc
#ifndef XLA_SERVICE_BFLOAT16_PROPAGATION_H_ #define XLA_SERVICE_BFLOAT16_PROPAGATION_H_ #include <memory> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/float_support.h" #include "xla/service/hlo_dataflow_analysis.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class BFloat16Propagation : public HloModulePass { public: explicit BFloat16Propagation(const FloatSupport* bfloat16_support); ~BFloat16Propagation() override = default; absl::string_view name() const override { return "bfloat16-propagation"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; virtual bool ShouldKeepPrecisionUnchanged(const HloInstruction* inst); virtual bool InstructionIsCandidateForBF16Output(HloInstruction* hlo); private: absl::flat_hash_set<const HloInstruction*> consider_using_bfloat16_; void DetermineInstructionPrecision(HloInstruction* hlo, bool skip_parameters); void DetermineFusionComputationPrecision(HloInstruction* fusion); void RevertIfFusionInternalBF16Changes(HloInstruction* fusion); void DetermineWhileComputationsPrecision(HloInstruction* while_hlo); void DetermineConditionalComputationsPrecision(HloInstruction* cond); absl::flat_hash_set<const HloInstruction*> instructions_visited_in_backward_pass_; absl::flat_hash_set<const HloComputation*> computations_visited_in_backward_pass_; void ResolveInconsistencyOfAliasingBuffers( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads); bool ResolveInconsistencyOfAliasingBuffersHelper( HloComputation* computation, absl::flat_hash_set<const HloComputation*>* visited_computations); void AdjustCalledComputationParameters(HloInstruction* hlo); void AdjustCalledComputationRoot(HloInstruction* hlo); absl::Status ResolveInconsistentFusions( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads); absl::Status ResolveConvertedConstants( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads); absl::Status SkipNoopConversions( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads); bool AllUsersConsumeBF16(const HloInstruction& hlo, const ShapeIndex& index) const; PrimitiveType OutputTypeAfterChange(HloInstruction* hlo, const ShapeIndex& index) const; PrimitiveType ValueTypeAfterChange(const HloValue* value) const; void AddToOrRemoveFromBF16ChangeSet(HloInstruction* hlo, const ShapeIndex& index, PrimitiveType target_type); absl::flat_hash_set<const HloValue*> values_that_must_be_kept_as_f32_; absl::flat_hash_map<const HloComputation*, int64_t> caller_counts_; absl::flat_hash_map<HloInstruction*, absl::flat_hash_map<Shape*, ShapeIndex>> changes_to_bf16_; bool changed_ = false; const FloatSupport* bfloat16_support_; std::unique_ptr<HloDataflowAnalysis> dataflow_; }; } #endif #include "xla/service/bfloat16_propagation.h" #include "absl/algorithm/container.h" #include "absl/cleanup/cleanup.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/map_util.h" #include "xla/service/hlo_dce.h" #include "xla/service/tuple_simplifier.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "tsl/platform/logging.h" namespace xla { BFloat16Propagation::BFloat16Propagation(const FloatSupport* bfloat16_support) : bfloat16_support_(bfloat16_support) { DCHECK_EQ(bfloat16_support->LowPrecisionType(), BF16); } void BFloat16Propagation::DetermineFusionComputationPrecision( HloInstruction* fusion) { CHECK_EQ(fusion->opcode(), HloOpcode::kFusion); if (!bfloat16_support_->SupportsMixedPrecisions(*fusion)) { return; } auto root = fusion->fused_instructions_computation()->root_instruction(); ShapeUtil::ForEachSubshape( root->shape(), [&](const Shape& subshape, const ShapeIndex& index) { if (subshape.element_type() != F32) { return; } if (OutputTypeAfterChange(fusion, index) == BF16) { AddToOrRemoveFromBF16ChangeSet(root, index, BF16); VLOG(2) << "Fused root " << root->ToString() << " at shape index " << index << " changed to BF16 precision for fusion " << fusion->ToString(); } }); auto insts = fusion->fused_instructions_computation()->MakeInstructionPostOrder(); for (auto inst_it = insts.rbegin(); inst_it != insts.rend(); ++inst_it) { DetermineInstructionPrecision(*inst_it, false); } computations_visited_in_backward_pass_.insert( fusion->fused_instructions_computation()); RevertIfFusionInternalBF16Changes(fusion); } void BFloat16Propagation::RevertIfFusionInternalBF16Changes( HloInstruction* fusion) { auto has_changes = [this](HloInstruction* inst) { auto it = changes_to_bf16_.find(inst); return it != changes_to_bf16_.end() && !it->second.empty(); }; auto root = fusion->fused_instructions_computation()->root_instruction(); absl::flat_hash_set<const HloValue*> changed_root_buffers; auto root_changes_it = changes_to_bf16_.find(root); if (root_changes_it != changes_to_bf16_.end()) { for (const auto& entry : root_changes_it->second) { for (const HloValue* value : dataflow_->GetValueSet(root, entry.second).values()) { changed_root_buffers.insert(value); } } } auto aliases_changed_root_buffer = [this, &changed_root_buffers]( const HloInstruction* inst) { bool aliasing = false; ShapeUtil::ForEachSubshape(inst->shape(), [&](const Shape& subshape, const ShapeIndex& index) { if (aliasing) { return; } if (subshape.element_type() != F32) { return; } aliasing = absl::c_any_of(dataflow_->GetValueSet(inst, index).values(), IsValueIn(changed_root_buffers)); }); return aliasing; }; for (auto inst : fusion->fused_instructions_computation()->MakeInstructionPostOrder()) { if (inst->opcode() == HloOpcode::kParameter) { continue; } if (aliases_changed_root_buffer(inst)) { continue; } if (inst->opcode() == HloOpcode::kFusion) { bool parameter_reverted = false; for (int64_t i = 0; i < inst->operand_count(); ++i) { if (has_changes(inst->mutable_operand(i))) { continue; } auto* fused_parameter = inst->fused_parameter(i); if (has_changes(fused_parameter)) { changes_to_bf16_.erase(fused_parameter); parameter_reverted = true; } } if (parameter_reverted) { RevertIfFusionInternalBF16Changes(inst); } } if (!has_changes(inst)) { continue; } bool revert_changes = true; for (auto operand : inst->operands()) { if (has_changes(operand)) { revert_changes = false; break; } } if (revert_changes) { changes_to_bf16_.erase(inst); } } } void BFloat16Propagation::DetermineWhileComputationsPrecision( HloInstruction* while_hlo) { CHECK_EQ(while_hlo->opcode(), HloOpcode::kWhile); HloComputation* body = while_hlo->while_body(); auto body_root = body->root_instruction(); HloComputation* condition = while_hlo->while_condition(); ShapeUtil::ForEachSubshape( body_root->shape(), [this, while_hlo, body_root]( const Shape& subshape, const ShapeIndex& index) { if (subshape.element_type() != F32) { return; } if (OutputTypeAfterChange(while_hlo, index) == BF16) { AddToOrRemoveFromBF16ChangeSet(body_root, index, BF16); VLOG(2) << "While body root " << body_root->ToString() << " at shape index " << index << " changed to BF16 precision for while " << while_hlo->ToString(); } }); auto body_insts = body->MakeInstructionPostOrder(); for (auto inst_it = body_insts.rbegin(); inst_it != body_insts.rend(); ++inst_it) { DetermineInstructionPrecision(*inst_it, false); } computations_visited_in_backward_pass_.insert(body); auto condition_insts = condition->MakeInstructionPostOrder(); for (auto inst_it = condition_insts.rbegin(); inst_it != condition_insts.rend(); ++inst_it) { DetermineInstructionPrecision(*inst_it, false); } computations_visited_in_backward_pass_.insert(condition); } void BFloat16Propagation::DetermineConditionalComputationsPrecision( HloInstruction* cond) { CHECK_EQ(cond->opcode(), HloOpcode::kConditional); for (int64_t i = 0; i < cond->branch_count(); ++i) { auto branch = cond->branch_computation(i); auto root = branch->root_instruction(); ShapeUtil::ForEachSubshape( root->shape(), [&](const Shape& subshape, const ShapeIndex& index) { if (subshape.element_type() != F32) { return; } if (OutputTypeAfterChange(cond, index) == BF16) { AddToOrRemoveFromBF16ChangeSet(root, index, BF16); VLOG(2) << "Conditional branch " << i << " root " << root->ToString() << " at shape index " << index << " changed to BF16 precision for conditional " << cond->ToString(); } }); auto insts = branch->MakeInstructionPostOrder(); for (auto inst_it = insts.rbegin(); inst_it != insts.rend(); ++inst_it) { DetermineInstructionPrecision(*inst_it, false); } computations_visited_in_backward_pass_.insert(branch); } } bool BFloat16Propagation::AllUsersConsumeBF16(const HloInstruction& hlo, const ShapeIndex& index) const { const Shape& subshape = ShapeUtil::GetSubshape(hlo.shape(), index); if (subshape.element_type() != BF16 && subshape.element_type() != F32) { return false; } auto& value_set = dataflow_->GetValueSet(&hlo, index); for (const HloValue* value : value_set.values()) { if (ContainsKey(values_that_must_be_kept_as_f32_, value)) { return false; } if (value->shape().element_type() == BF16) { continue; } for (const HloUse& use : value->GetUses()) { if (!ContainsKey(instructions_visited_in_backward_pass_, use.instruction)) { continue; } if (use.instruction->HasSideEffectNoRecurse()) { return false; } if (use.instruction->opcode() == HloOpcode::kFusion) { auto* fused_parameter = use.instruction->fused_parameter(use.operand_number); if (OutputTypeAfterChange(fused_parameter, use.operand_index) != BF16) { return false; } continue; } else if (use.instruction->opcode() == HloOpcode::kWhile) { auto* cond_parameter = use.instruction->while_condition()->parameter_instruction( use.operand_number); if (OutputTypeAfterChange(cond_parameter, use.operand_index) != BF16) { return false; } auto* body_parameter = use.instruction->while_body()->parameter_instruction( use.operand_number); if (OutputTypeAfterChange(body_parameter, use.operand_index) != BF16) { return false; } continue; } else if (use.instruction->opcode() == HloOpcode::kConditional) { auto* cond_parameter = use.instruction->branch_computation(use.operand_number - 1) ->parameter_instruction(0); if (OutputTypeAfterChange(cond_parameter, use.operand_index) != BF16) { return false; } continue; } if (bfloat16_support_->EffectiveOperandPrecisionIsLowPrecision( *use.instruction, use.operand_number)) { continue; } if (bfloat16_support_->EffectiveOperandPrecisionIsOutputPrecision( *use.instruction, use.operand_number)) { if (use.instruction->opcode() == HloOpcode::kTuple || (use.instruction->opcode() == HloOpcode::kAllReduce && use.instruction->shape().IsTuple())) { ShapeIndex use_output_index{use.operand_number}; for (int64_t i : use.operand_index) { use_output_index.push_back(i); } if (OutputTypeAfterChange(use.instruction, use_output_index) == BF16) { continue; } } else if (use.instruction->opcode() == HloOpcode::kGetTupleElement) { ShapeIndex use_output_index; for (int64_t i = 1; i < use.operand_index.size(); ++i) { use_output_index.push_back(use.operand_index[i]); } if (OutputTypeAfterChange(use.instruction, use_output_index) == BF16) { continue; } } else { if (OutputTypeAfterChange(use.instruction, use.operand_index) == BF16) { continue; } } } return false; } } return true; } bool BFloat16Propagation::ShouldKeepPrecisionUnchanged( const HloInstruction* inst) { if (inst->opcode() == HloOpcode::kFusion && inst->fusion_kind() == HloInstruction::FusionKind::kCustom) { return ShouldKeepPrecisionUnchanged( inst->fused_instructions_computation()->root_instruction()); } return inst->opcode() == HloOpcode::kCustomCall || inst->opcode() == HloOpcode::kCall || inst->opcode() == HloOpcode::kBitcastConvert || inst->HasSideEffectNoRecurse(); } void BFloat16Propagation::DetermineInstructionPrecision(HloInstruction* hlo, bool skip_parameters) { bool postpone_processing_called_computations = false; absl::Cleanup cleaner = [this, hlo, &postpone_processing_called_computations] { if (!postpone_processing_called_computations) { if (hlo->opcode() == HloOpcode::kFusion) { DetermineFusionComputationPrecision(hlo); } else if (hlo->opcode() == HloOpcode::kWhile) { DetermineWhileComputationsPrecision(hlo); } else if (hlo->opcode() == HloOpcode::kConditional) { DetermineConditionalComputationsPrecision(hlo); } } instructions_visited_in_backward_pass_.insert(hlo); }; if (hlo->opcode() == HloOpcode::kWhile && (caller_counts_[hlo->while_condition()] > 1 || caller_counts_[hlo->while_body()] > 1)) { postpone_processing_called_computations = true; return; } if (hlo->opcode() == HloOpcode::kConditional && absl::c_any_of(hlo->branch_computations(), [&](const HloComputation* c) { return caller_counts_[c] > 1; })) { postpone_processing_called_computations = true; return; } CHECK(hlo->parent() != nullptr); if (hlo == hlo->parent()->root_instruction()) { if (!hlo->parent()->IsFusionComputation()) { ShapeUtil::ForEachSubshape(hlo->shape(), [&](const Shape& , const ShapeIndex& index) { if (OutputTypeAfterChange(hlo, index) != F32) { return; } for (const auto* value : dataflow_->GetValueSet(hlo, index).values()) { values_that_must_be_kept_as_f32_.insert(value); } }); } return; } if (ShouldKeepPrecisionUnchanged(hlo) || (hlo->opcode() == HloOpcode::kParameter && skip_parameters)) { return; } if (!ContainsKey(consider_using_bfloat16_, hlo)) { return; } if (!bfloat16_support_->SupportsLowPrecisionOutput(*hlo)) { return; } ShapeUtil::ForEachSubshape( hlo->shape(), [hlo, this](const Shape& , const ShapeIndex& index) { if (OutputTypeAfterChange(hlo, index) == F32 && AllUsersConsumeBF16(*hlo, index)) { AddToOrRemoveFromBF16ChangeSet(hlo, index, BF16); VLOG(2) << "HloInstruction output at shape index " << index << " changed to BF16 precision: " << hlo->ToString(); } }); } bool BFloat16Propagation::InstructionIsCandidateForBF16Output( HloInstruction* hlo) { if (!bfloat16_support_->SupportsMixedPrecisions(*hlo) && hlo->opcode() != HloOpcode::kTuple && hlo->opcode() != HloOpcode::kGetTupleElement && hlo->opcode() != HloOpcode::kDomain && hlo->shape().element_type() != BF16) { for (int64_t i = 0; i < hlo->operand_count(); ++i) { if (!bfloat16_support_->EffectiveOperandPrecisionIsOutputPrecision(*hlo, i) || !ContainsKey(consider_using_bfloat16_, hlo->operand(i))) { return false; } } } return true; } void BFloat16Propagation::AdjustCalledComputationParameters( HloInstruction* hlo) { auto adjust_computation = [this, hlo]( HloComputation* computation, absl::Span<HloInstruction* const> operands) { CHECK_EQ(operands.size(), computation->num_parameters()); for (int64_t i = 0; i < operands.size(); ++i) { auto parameter = computation->parameter_instruction(i); ShapeUtil::ForEachSubshape( parameter->shape(), [this, i, hlo, &operands, parameter](const Shape& , const ShapeIndex& index) { if (!ShapeUtil::IsLeafIndex(parameter->shape(), index)) { return; } PrimitiveType operand_type = OutputTypeAfterChange(operands[i], index); if (OutputTypeAfterChange(parameter, index) == operand_type) { return; } AddToOrRemoveFromBF16ChangeSet(parameter, index, operand_type); VLOG(2) << "Called computation parameter " << parameter->ToString() << " at shape index " << index << " adjusted to " << (operand_type == BF16 ? "BF16" : "F32") << " to match operand in HLO " << hlo->ToString(); }); } }; switch (hlo->opcode()) { case HloOpcode::kFusion: adjust_computation(hlo->fused_instructions_computation(), hlo->operands()); break; case HloOpcode::kWhile: adjust_computation(hlo->while_condition(), hlo->operands()); adjust_computation(hlo->while_body(), hlo->operands()); break; case HloOpcode::kConditional: for (int64_t i = 0; i < hlo->branch_count(); ++i) { adjust_computation(hlo->branch_computation(i), {hlo->mutable_operand(i + 1)}); } break; default: break; } } void BFloat16Propagation::AdjustCalledComputationRoot(HloInstruction* hlo) { auto adjust_computation = [this, hlo](HloComputation* computation, HloInstruction* output) { HloInstruction* root = computation->root_instruction(); ShapeUtil::ForEachSubshape(root->shape(), [this, hlo, root, output]( const Shape& , const ShapeIndex& index) { if (!ShapeUtil::IsLeafIndex(hlo->shape(), index)) { return; } const PrimitiveType output_type = OutputTypeAfterChange(output, index); if (OutputTypeAfterChange(root, index) == output_type) { return; } AddToOrRemoveFromBF16ChangeSet(root, index, output_type); if (output_type == F32) { for (const auto* value : dataflow_->GetValueSet(root, index).values()) { values_that_must_be_kept_as_f32_.insert(value); } } VLOG(2) << "Called computation root " << root->ToString() << " at shape index " << index << " adjusted to " << (output_type == BF16 ? "BF16" : "F32") << " to match output shape of " << hlo->ToString(); }); }; switch (hlo->opcode()) { case HloOpcode::kFusion: adjust_computation(hlo->fused_instructions_computation(), hlo); break; case HloOpcode::kWhile: adjust_computation(hlo->while_body(), hlo); break; case HloOpcode::kConditional: for (auto* branch : hlo->branch_computations()) { adjust_computation(branch, hlo); } break; default: break; } } bool BFloat16Propagation::ResolveInconsistencyOfAliasingBuffersHelper( HloComputation* computation, absl::flat_hash_set<const HloComputation*>* visited_computations) { bool parameter_changed = false; auto insts = computation->MakeInstructionPostOrder(); while (true) { bool any_change = false; for (auto inst_it = insts.rbegin(); inst_it != insts.rend(); ++inst_it) { auto hlo = *inst_it; auto adjust_hlo_output = [&](const Shape& , const ShapeIn
#include "xla/service/bfloat16_propagation.h" #include <cstdint> #include <memory> #include <string> #include "absl/log/log.h" #include "absl/status/statusor.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/collective_device_list.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal_util.h" #include "xla/service/float_support.h" #include "xla/service/hlo_verifier.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { class TestBFloat16Support : public FloatSupport { public: TestBFloat16Support() : FloatSupport(BF16) {} ~TestBFloat16Support() override {} bool SupportsLowPrecisionOperand(const HloInstruction& hlo, int64_t operand_index) const override { return true; } bool SupportsLowPrecisionOutput(const HloInstruction& hlo) const override { return true; } bool SupportsMixedPrecisions(const HloInstruction& hlo) const override { return true; } bool EffectiveOperandPrecisionIsLowPrecision( const HloInstruction& hlo, int64_t operand_index) const override { return hlo.opcode() == HloOpcode::kDot; } }; class BFloat16PropagationTest : public HloTestBase { protected: BFloat16PropagationTest() : HloTestBase(false, true) {} bool PropagatePrecision(HloModule* module) { TestBFloat16Support bfloat16_support; BFloat16Propagation propagation(&bfloat16_support); absl::StatusOr<bool> result = propagation.Run(module); EXPECT_IS_OK(result.status()); return result.value(); } bool OutputsBF16(const HloInstruction* inst) { if (inst->shape().element_type() == BF16) { return true; } return inst->user_count() == 1 && inst->users()[0]->opcode() == HloOpcode::kConvert && inst->users()[0]->shape().element_type() == BF16; } std::unique_ptr<HloInstruction> CreateDot(const Shape& shape, HloInstruction* lhs, HloInstruction* rhs) { DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); return HloInstruction::CreateDot(shape, lhs, rhs, dot_dnums, DefaultPrecisionConfig(2)); } }; TEST_F(BFloat16PropagationTest, PropagateThroughSelectButNotAdd) { auto builder = HloComputation::Builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 4}); HloInstruction* a = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "a")); HloInstruction* b = builder.AddInstruction(HloInstruction::CreateParameter(1, shape, "b")); HloInstruction* c = builder.AddInstruction(HloInstruction::CreateParameter(2, shape, "c")); HloInstruction* add0 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, a, b)); HloInstruction* add1 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, add0, b)); HloInstruction* pred = builder.AddInstruction(HloInstruction::CreateCompare( ShapeUtil::MakeShape(PRED, {2, 4}), a, b, ComparisonDirection::kEq)); HloInstruction* sel = builder.AddInstruction( HloInstruction::CreateTernary(shape, HloOpcode::kSelect, pred, c, add1)); HloInstruction* xpose = builder.AddInstruction(HloInstruction::CreateTranspose( ShapeUtil::MakeShape(F32, {4, 2}), sel, {1, 0})); HloInstruction* dot = builder.AddInstruction( CreateDot(ShapeUtil::MakeShape(F32, {4, 4}), xpose, a)); HloInstruction* root = builder.AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(F32, {4, 4}), HloOpcode::kAdd, dot, dot)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(PropagatePrecision(module.get())); EXPECT_EQ(computation->root_instruction(), root); EXPECT_TRUE(OutputsBF16(xpose)); EXPECT_TRUE(OutputsBF16(sel)); EXPECT_TRUE(OutputsBF16(add1)); EXPECT_FALSE(OutputsBF16(add0)); EXPECT_FALSE(OutputsBF16(a)); EXPECT_FALSE(OutputsBF16(b)); EXPECT_FALSE(OutputsBF16(c)); } TEST_F(BFloat16PropagationTest, PropagateThroughMaxPoolReduceWindow) { auto module = CreateNewVerifiedModule(); auto sub_builder = HloComputation::Builder("max"); HloInstruction* p0 = sub_builder.AddInstruction( HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {}), "a")); HloInstruction* p1 = sub_builder.AddInstruction( HloInstruction::CreateParameter(1, ShapeUtil::MakeShape(F32, {}), "b")); sub_builder.AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(F32, {}), HloOpcode::kMaximum, p0, p1)); auto max_computation = module->AddEmbeddedComputation(sub_builder.Build()); auto builder = HloComputation::Builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 4}); HloInstruction* a = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "a")); HloInstruction* b = builder.AddInstruction(HloInstruction::CreateParameter(1, shape, "b")); HloInstruction* c = builder.AddInstruction(HloInstruction::CreateParameter(2, shape, "c")); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, a, b)); Window window; WindowDimension dim; dim.set_size(2); dim.set_stride(1); dim.set_padding_high(1); dim.set_window_dilation(1); dim.set_base_dilation(1); *window.add_dimensions() = dim; *window.add_dimensions() = dim; HloInstruction* rw = builder.AddInstruction(HloInstruction::CreateReduceWindow( shape, add, builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::Zero(F32))), window, max_computation)); HloInstruction* xpose = builder.AddInstruction(HloInstruction::CreateTranspose( ShapeUtil::MakeShape(F32, {4, 2}), c, {1, 0})); HloInstruction* dot = builder.AddInstruction( CreateDot(ShapeUtil::MakeShape(F32, {4, 4}), xpose, rw)); HloInstruction* root = builder.AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(F32, {4, 4}), HloOpcode::kAdd, dot, dot)); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(PropagatePrecision(module.get())); EXPECT_EQ(computation->root_instruction(), root); EXPECT_TRUE(OutputsBF16(add)); EXPECT_TRUE(OutputsBF16(xpose)); EXPECT_TRUE(OutputsBF16(rw)); } TEST_F(BFloat16PropagationTest, DoNotChangeAllReduce) { auto module = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {4, 4}); HloInstruction* a = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "a")); HloInstruction* b = builder.AddInstruction(HloInstruction::CreateParameter(1, shape, "b")); auto rb = HloComputation::Builder(TestName()); rb.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, rb.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")), rb.AddInstruction(HloInstruction::CreateParameter(1, shape, "p1")))); auto reduction = module->AddEmbeddedComputation(rb.Build()); HloInstruction* all_reduce = builder.AddInstruction(HloInstruction::CreateAllReduce( ShapeUtil::MakeTupleShape({shape, shape}), {a, b}, reduction, CollectiveDeviceList(), false, 1, false)); HloInstruction* gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, all_reduce, 0)); HloInstruction* gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, all_reduce, 1)); HloInstruction* dot = builder.AddInstruction(CreateDot(shape, gte0, gte1)); HloInstruction* root = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, dot, dot)); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_FALSE(PropagatePrecision(module.get())); EXPECT_EQ(computation->root_instruction(), root); } TEST_F(BFloat16PropagationTest, ConvertConstantLiteral) { auto builder = HloComputation::Builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {4, 4}); Array2D<float> array_a(4, 4); array_a.FillUnique(1.0f); Array2D<float> array_b(4, 4); array_b.FillUnique(10.0f); HloInstruction* a = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateFromArray(array_a))); HloInstruction* b = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateFromArray(array_b))); HloInstruction* dot = builder.AddInstruction(CreateDot(shape, a, b)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(PropagatePrecision(module.get())); EXPECT_EQ(computation->root_instruction(), dot); EXPECT_TRUE(OutputsBF16(dot->operand(0))); EXPECT_TRUE(OutputsBF16(dot->operand(1))); EXPECT_EQ(dot->operand(0)->opcode(), HloOpcode::kConstant); EXPECT_EQ(dot->operand(1)->opcode(), HloOpcode::kConstant); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::ConvertF32ToBF16(LiteralUtil::CreateFromArray(array_a)), dot->operand(0)->literal())); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::ConvertF32ToBF16(LiteralUtil::CreateFromArray(array_b)), dot->operand(1)->literal())); } TEST_F(BFloat16PropagationTest, PropagateThroughTuples) { auto builder = HloComputation::Builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 4}); HloInstruction* a = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "a")); HloInstruction* b = builder.AddInstruction(HloInstruction::CreateParameter(1, shape, "b")); HloInstruction* add0 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, a, b)); HloInstruction* add1 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, a, a)); HloInstruction* add2 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, b, b)); HloInstruction* xpose = builder.AddInstruction(HloInstruction::CreateTranspose( ShapeUtil::MakeShape(F32, {4, 2}), add1, {1, 0})); HloInstruction* tuple0 = builder.AddInstruction(HloInstruction::CreateTuple({add0, add1, add2})); HloInstruction* tuple1 = builder.AddInstruction(HloInstruction::CreateTuple({tuple0, xpose})); HloInstruction* lhs = builder.AddInstruction( HloInstruction::CreateGetTupleElement(xpose->shape(), tuple1, 1)); HloInstruction* rhs = builder.AddInstruction(HloInstruction::CreateGetTupleElement( add0->shape(), builder.AddInstruction(HloInstruction::CreateGetTupleElement( tuple0->shape(), tuple1, 0)), 0)); HloInstruction* dot = builder.AddInstruction( CreateDot(ShapeUtil::MakeShape(F32, {4, 4}), lhs, rhs)); HloInstruction* output_tuple = builder.AddInstruction(HloInstruction::CreateTuple({dot, add2})); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(PropagatePrecision(module.get())); EXPECT_EQ(computation->root_instruction(), output_tuple); EXPECT_TRUE(OutputsBF16(xpose)); EXPECT_TRUE(OutputsBF16(add0)); EXPECT_TRUE(OutputsBF16(add1)); EXPECT_FALSE(OutputsBF16(add2)); } TEST_F(BFloat16PropagationTest, SameValueReferencedTwice) { auto builder = HloComputation::Builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 4}); HloInstruction* a = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "a")); HloInstruction* b = builder.AddInstruction(HloInstruction::CreateParameter(1, shape, "b")); HloInstruction* add0 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, a, b)); HloInstruction* add1 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, a, a)); HloInstruction* lhs = builder.AddInstruction(HloInstruction::CreateTranspose( ShapeUtil::MakeShape(F32, {4, 2}), add1, {1, 0})); HloInstruction* tuple = builder.AddInstruction(HloInstruction::CreateTuple({add0, add1})); HloInstruction* rhs = builder.AddInstruction( HloInstruction::CreateGetTupleElement(add1->shape(), tuple, 1)); HloInstruction* dot = builder.AddInstruction( CreateDot(ShapeUtil::MakeShape(F32, {4, 4}), lhs, rhs)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(PropagatePrecision(module.get())); EXPECT_EQ(computation->root_instruction(), dot); EXPECT_TRUE(OutputsBF16(add1)); EXPECT_TRUE(OutputsBF16(lhs)); } TEST_F(BFloat16PropagationTest, DoNotChangeComputationRoot) { auto builder = HloComputation::Builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {4, 4}); HloInstruction* a = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "a")); HloInstruction* b = builder.AddInstruction(HloInstruction::CreateParameter(1, shape, "b")); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, a, b)); HloInstruction* dot = builder.AddInstruction(CreateDot(shape, add, add)); HloInstruction* tuple = builder.AddInstruction(HloInstruction::CreateTuple({add, dot})); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_FALSE(PropagatePrecision(module.get())); EXPECT_EQ(computation->root_instruction(), tuple); EXPECT_FALSE(OutputsBF16(add)); } TEST_F(BFloat16PropagationTest, PropagateThroughFusion) { auto module = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {4, 4}); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "param")); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, param, param)); auto builder_f0 = HloComputation::Builder("fusion0"); HloInstruction* a_f0 = builder_f0.AddInstruction(HloInstruction::CreateParameter(0, shape, "a")); HloInstruction* b_f0 = builder_f0.AddInstruction(HloInstruction::CreateParameter(1, shape, "b")); HloInstruction* tuple_f0 = builder_f0.AddInstruction(HloInstruction::CreateTuple({a_f0, b_f0})); auto comp_f0 = module->AddEmbeddedComputation(builder_f0.Build()); auto fusion0 = builder.AddInstruction(HloInstruction::CreateFusion( tuple_f0->shape(), HloInstruction::FusionKind::kCustom, {add, add}, comp_f0)); auto builder_f1 = HloComputation::Builder("fusion1"); HloInstruction* p_f1 = builder_f1.AddInstruction( HloInstruction::CreateParameter(0, tuple_f0->shape(), "param")); HloInstruction* a_f1 = builder_f1.AddInstruction( HloInstruction::CreateGetTupleElement(shape, p_f1, 0)); HloInstruction* b_f1 = builder_f1.AddInstruction( HloInstruction::CreateGetTupleElement(shape, p_f1, 1)); HloInstruction* dot = builder_f1.AddInstruction(CreateDot(shape, a_f1, b_f1)); auto comp_f1 = module->AddEmbeddedComputation(builder_f1.Build()); auto fusion1 = builder.AddInstruction(HloInstruction::CreateFusion( dot->shape(), HloInstruction::FusionKind::kCustom, {fusion0}, comp_f1)); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(PropagatePrecision(module.get())); EXPECT_EQ(computation->root_instruction(), fusion1); EXPECT_TRUE(OutputsBF16(add)); EXPECT_TRUE(OutputsBF16(a_f0)); EXPECT_TRUE(OutputsBF16(b_f0)); EXPECT_TRUE(OutputsBF16(a_f1)); EXPECT_TRUE(OutputsBF16(b_f1)); } TEST_F(BFloat16PropagationTest, FusionWithBitcastConvertRoot) { auto module = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); Shape u32_shape = ShapeUtil::MakeShape(U32, {4, 4}); Shape f32_shape = ShapeUtil::MakeShape(F32, {4, 4}); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, u32_shape, "param")); auto builder_f = HloComputation::Builder("fusion"); HloInstruction* a_f = builder_f.AddInstruction( HloInstruction::CreateParameter(0, u32_shape, "a")); HloInstruction* bc_f = builder_f.AddInstruction( HloInstruction::CreateBitcastConvert(f32_shape, a_f)); auto comp_f = module->AddEmbeddedComputation(builder_f.Build()); auto fusion = builder.AddInstruction(HloInstruction::CreateFusion( f32_shape, HloInstruction::FusionKind::kLoop, {param}, comp_f)); auto dot = builder.AddInstruction(CreateDot(f32_shape, fusion, fusion)); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(PropagatePrecision(module.get())); EXPECT_EQ(computation->root_instruction(), dot); EXPECT_EQ(bc_f->shape(), f32_shape); EXPECT_TRUE(OutputsBF16(bc_f)); } TEST_F(BFloat16PropagationTest, DiscardFusionInternalBF16Changes) { auto module = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {4, 4}); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "param")); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, param, param)); auto builder_f = HloComputation::Builder("fusion"); HloInstruction* a_f = builder_f.AddInstruction(HloInstruction::CreateParameter(0, shape, "a")); HloInstruction* b_f = builder_f.AddInstruction(HloInstruction::CreateParameter(1, shape, "b")); HloInstruction* add_f = builder_f.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, a_f, b_f)); HloInstruction* dot_f = builder_f.AddInstruction(CreateDot(shape, add_f, add_f)); auto comp_f = module->AddEmbeddedComputation(builder_f.Build()); auto fusion = builder.AddInstruction(HloInstruction::CreateFusion( dot_f->shape(), HloInstruction::FusionKind::kCustom, {add, add}, comp_f)); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_FALSE(PropagatePrecision(module.get())); EXPECT_EQ(computation->root_instruction(), fusion); } TEST_F(BFloat16PropagationTest, ConvertTupleFusionElementIfUsedByAdd) { auto module = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {4, 4}); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "param")); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, param, param)); auto builder_f = HloComputation::Builder("fusion0"); HloInstruction* a_f = builder_f.AddInstruction(HloInstruction::CreateParameter(0, shape, "a")); HloInstruction* b_f = builder_f.AddInstruction(HloInstruction::CreateParameter(1, shape, "b")); HloInstruction* add_f = builder_f.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, a_f, b_f)); HloInstruction* tuple_f = builder_f.AddInstruction(HloInstruction::CreateTuple({a_f, add_f})); auto comp_f = module->AddEmbeddedComputation(builder_f.Build()); auto fusion = builder.AddInstruction(HloInstruction::CreateFusion( tuple_f->shape(), HloInstruction::FusionKind::kCustom, {add, add}, comp_f)); HloInstruction* gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, fusion, 0)); HloInstruction* gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, fusion, 1)); HloInstruction* dot = builder.AddInstruction(CreateDot(shape, gte0, gte1)); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(PropagatePrecision(module.get())); EXPECT_EQ(computation->root_instruction(), dot); EXPECT_TRUE(OutputsBF16(gte0)); EXPECT_TRUE(OutputsBF16(gte1)); EXPECT_FALSE(OutputsBF16(a_f)); EXPECT_FALSE(OutputsBF16(b_f)); EXPECT_TRUE(OutputsBF16(add_f)); auto new_fusion_root = comp_f->root_instruction(); EXPECT_EQ(new_fusion_root->opcode(), HloOpcode::kTuple); EXPECT_EQ(new_fusion_root->operand(1), add_f); EXPECT_EQ(new_fusion_root->operand(0)->opcode(), HloOpcode::kConvert); EXPECT_TRUE(OutputsBF16(new_fusion_root->operand(0))); } TEST_F(BFloat16PropagationTest, PropagateThroughSimpleWhile) { auto module = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {4, 4}); HloInstruction* param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "param0")); HloInstruction* param1 = builder.AddInstruction( HloInstruction::CreateParameter(1, shape, "param1")); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, param0, param1)); auto builder_cond = HloComputation::Builder("cond"); auto cond_param = builder_cond.AddInstruction( HloInstruction::CreateParameter(0, shape, "cond_param")); auto cond_dot = builder_cond.AddInstruction(CreateDot(shape, cond_param, cond_param)); auto cond_root = builder_cond.AddInstruction(HloInstruction::CreateCompare( ShapeUtil::MakeShape(PRED, {}), builder_cond.AddInstruction(HloInstruction::CreateReshape( ShapeUtil::MakeShape(F32, {}), builder_cond.AddInstruction( HloInstruction::CreateSlice(ShapeUtil::MakeShape(F32, {1, 1}), cond_dot, {0, 0}, {1, 1}, {1, 1})))), builder_cond.AddInstruction(HloInstruction::CreateReshape( ShapeUtil::MakeShape(F32, {}), builder_cond.AddInstruction( HloInstruction::CreateSlice(ShapeUtil::MakeShape(F32, {1, 1}), cond_dot, {1, 1}, {2, 2}, {1, 1})))), ComparisonDirection::kGt)); auto cond = module->AddEmbeddedComputation(builder_cond.Build()); auto builder_body = HloComputation::Builder("body"); auto body_param = builder_body.AddInstruction( HloInstruction::CreateParameter(0, shape, "body_param")); auto body_dot = builder_body.AddInstruction(CreateDot(shape, body_param, body_param)); auto body = module->AddEmbeddedComputation(builder_body.Build()); auto while_hlo = builder.AddInstruction( HloInstruction::CreateWhile(shape, cond, body, add)); auto dot = builder.AddInstruction(CreateDot(shape, while_hlo, while_hlo)); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(PropagatePrecision(module.get())); EXPECT_EQ(computation->root_instruction(), dot); EXPECT_TRUE( ShapeUtil::Equal(cond_root->shape(), ShapeUtil::MakeShape(PRED, {}))); EXPECT_TRUE(OutputsBF16(add)); EXPECT_TRUE(OutputsBF16(body_dot)); EXPECT_TRUE(OutputsBF16(body_param)); EXPECT_TRUE(OutputsBF16(cond_param)); EXPECT_FALSE(OutputsBF16(dot)); } TEST_F(BFloat16PropagationTest, ConditionPreventsPropagationForFusionInsideWhile) { auto module = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {4, 4}); HloInstruction* param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "param0")); HloInstruction* param1 = builder.AddInstruction( HloInstruction::CreateParameter(1, shape, "param1")); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, param0, param1)); auto builder_cond = HloComputation::Builder("cond"); auto cond_param = builder_cond.AddInstruction( HloInstruction::CreateParameter(0, shape, "cond_param")); builder_cond.AddInstruction(HloInstruction::CreateCompare( ShapeUtil::MakeShape(PRED, {}), builder_cond.AddInstruction(HloInstruction::CreateReshape( ShapeUtil::MakeShape(F32, {}), builder_cond.AddInstruction(HloInstruction::CreateSlice( ShapeUtil::MakeShape(F32, {1, 1}), cond_param, {0, 0}, {1, 1}, {1, 1})))), builder_cond.AddInstruction(HloInstruction::CreateReshape( ShapeUtil::MakeShape(F32, {}), builder_cond.AddInstruction(HloInstruction::CreateSlice( ShapeUtil::MakeShape(F32, {1, 1}), cond_param, {1, 1}, {2, 2}, {1, 1})))), ComparisonDirection::kGt)); auto cond = module->AddEmbeddedComputation(builder_cond.Build()); auto builder_body = HloComputation::Builder("body"); auto body_param = builder_body.AddInstruction( HloInstruction::CreateParameter(0, shape, "body_param")); auto body_transpose = builder_body.AddInstruction( HloInstruction::CreateTranspose(shape, body_param, {0, 1})); auto builder_f = HloComputation::Builder("fusion"); HloInstruction* a_f = builder_f.AddInstruction(HloInstruction::CreateParameter(0, shape, "a")); builder_f.AddInstruction(HloInstruction::CreateTranspose(shape, a_f, {0, 1})); auto comp_f = module->AddEmbeddedComputation(builder_f.Build()); auto body_fusion = builder_body.AddInstruction(HloInstruction::CreateFusion( shape, HloInstruction::FusionKind::kCustom, {body_transpose}, comp_f)); auto body = module->AddEmbeddedComputation(builder_body.Build()); auto while_hlo = builder.AddInstruction( HloInstruction::CreateWhile(shape, cond, body, add)); auto dot = builder.AddInstruction(CreateDot(shape, while_hlo, while_hlo)); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_FALSE(PropagatePrecision(module.get())); EXPECT_EQ(computation->root_instruction(), dot); EXPECT_FALSE(OutputsBF16(add)); EXPECT_FALSE(OutputsBF16(body_fusion)); EXPECT_FALSE(OutputsBF16(body_param)); EXPECT_FALSE(OutputsBF16(body_transpose)); EXPECT_FALSE(OutputsBF16(a_f)); } TEST_F(BFloat16PropagationTest, PropagateThroughTupleWhile) { auto module = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {4, 4}); HloInstruction* param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "param0")); HloInstruction* param1 = builder.AddInstruction( HloInstruction::CreateParameter(1, shape, "param1")); HloInstruction* add0 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, param0, param1)); HloInstruction* add1 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, param0, param1)); HloInstruction* tuple = builder.AddInstruction(HloInstruction::CreateTuple({add0, add1})); auto builder_cond = HloComputation::Builder("cond"); auto cond_param = builder_cond.AddInstruction( HloInstruction::CreateParameter(0, tuple->shape(), "cond_param")); auto cond_lhs = builder_cond.AddInstruction( HloInstruction::CreateGetTupleElement(shape, cond_param, 0)); auto cond_rhs = builder_cond.AddInstruction( HloInstruction::CreateGetTupleElement(shape, cond_param, 1)); auto cond_add_rhs = builder_cond.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, cond_rhs, cond_rhs)); auto cond_dot = builder_cond.AddInstruction(CreateDot(shape, cond_lhs, cond_add_rhs)); builder_cond.AddInstruction(HloInstruction::CreateCompare( ShapeUtil::MakeShape(PRED, {}), builder_cond.AddInstruction(HloInstruction::CreateReshape( ShapeUtil::MakeShape(F32, {}), builder_cond.AddInstruction( HloInstruction::CreateSlice(ShapeUtil::MakeShape(F32, {1, 1}), cond_dot, {0, 0}, {1, 1}, {1, 1})))), builder_cond.AddInstruction(HloInstruction::CreateReshape( ShapeUtil::MakeShape(F32, {}), builder_cond.AddInstruction( HloInstruction::CreateSlice(ShapeUtil::MakeShape(F32, {1, 1}), cond_dot, {1, 1}, {2, 2}, {1, 1})))), ComparisonDirection::kGt)); auto cond = module->AddEmbeddedComputation(builder_cond.Build()); auto builder_body = HloComputation::Builder("body"); auto body_param = builder_body.AddInstruction( HloInstruction::CreateParameter(0, tuple->shape(), "body_param")); auto body_lhs = builder_body.AddInstruction( HloInstruction::CreateGetTupleElement(shape, body_param, 0)); auto body_rhs = builder_body.AddInstruction( HloInstruction::CreateGetTupleElement(shape, body_param, 1)); auto body_dot1 = builder_body.AddInstruction(CreateDot(shape, body_lhs, body_rhs)); auto body_dot2 = builder_body.AddInstruction(CreateDot(shape, body_rhs, body_lhs)); auto body_transpose = builder_body.AddInstruction( HloInstruction::CreateTranspose(shape, body_dot2, {0, 1})); builder_body.AddInstruction( HloInstruction::CreateTuple({body_dot1, body_transpose})); auto body = module->AddEmbeddedComputation(builder_body.Build()); auto while_hlo = builder.AddInstruction( HloInstruction::CreateWhile(tuple->shape(), cond, body, tuple)); auto lhs = builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, while_hlo, 0));
1,851
cpp
tensorflow/tensorflow
hlo_replication_analysis
third_party/xla/xla/service/hlo_replication_analysis.cc
third_party/xla/xla/service/hlo_replication_analysis_test.cc
#ifndef XLA_SERVICE_HLO_REPLICATION_ANALYSIS_H_ #define XLA_SERVICE_HLO_REPLICATION_ANALYSIS_H_ #include <string> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/xla_data.pb.h" namespace xla { class HloReplicationAnalysis { public: static absl::StatusOr<std::unique_ptr<HloReplicationAnalysis>> Run( const HloModule* module, bool cross_partition_spmd); static absl::StatusOr<std::unique_ptr<HloReplicationAnalysis>> Run( const HloModule* module, bool cross_partition_spmd, const absl::flat_hash_set<const HloInstruction*>* loops_known_with_same_iterations); static absl::StatusOr<std::unique_ptr<HloReplicationAnalysis>> RunWithPartialReplication(const HloModule* module, bool cross_partition_spmd); bool HloInstructionIsReplicatedAt(const HloInstruction* inst, const ShapeIndex& index) const; bool HloInstructionIsReplicatedAt( const HloInstruction* inst, const ShapeIndex& index, absl::Span<const ReplicaGroup> replica_groups) const; private: class HloReplication { public: static HloReplication ReplicatedOnAllDevices(); static HloReplication UniqueOnAllDevices(); static HloReplication PartiallyReplicated( absl::Span<const absl::Span<const int64_t>> device_sets); HloReplication(); HloReplication(const HloReplication& other) = default; HloReplication(HloReplication&& other) = default; HloReplication& operator=(HloReplication&& other) = default; HloReplication Merge(const HloReplication& other) const; bool Equal(const HloReplication& other) const; bool IsReplicatedOnAllDevices() const; bool IsUniqueOnAllDevices() const; bool IsReplicatedWithinSubgroup(absl::Span<const int64_t> device_ids) const; std::string ToString() const; private: enum class State { kReplicatedOnAllDevices = 0, kUniqueOnAllDevices = 1, kPartiallyReplicated = 2, }; explicit HloReplication(State state, absl::Span<const int64_t> device_set_root); State state_; std::vector<int64_t> device_set_root_; }; static HloReplication DetermineHloInstructionIsReplicated( const HloInstruction* hlo, const ShapeIndex& index, bool cross_partition_spmd, const absl::flat_hash_map<const HloInstruction*, ShapeTree<HloReplication>>& hlo_replication, bool support_partial_replication); HloReplicationAnalysis(const HloModule* module, bool cross_partition_spmd, const absl::flat_hash_set<const HloInstruction*>* loops_known_with_same_iterations, bool support_partial_replication) : module_(module), cross_partition_spmd_(cross_partition_spmd), loops_known_with_same_iterations_(*loops_known_with_same_iterations), support_partial_replication_(support_partial_replication) {} absl::Status ComputeHloReplication(); bool ComputeHloReplicationOnComputation(const HloComputation* computation, bool mark_everything_not_replicated); const HloModule* module_; bool cross_partition_spmd_; const absl::flat_hash_set<const HloInstruction*>& loops_known_with_same_iterations_; const bool support_partial_replication_; absl::flat_hash_map<const HloInstruction*, ShapeTree<HloReplication>> hlo_replication_; }; } #endif #include "xla/service/hlo_replication_analysis.h" #include <algorithm> #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/map_util.h" #include "xla/shape_util.h" #include "xla/xla_data.pb.h" namespace xla { HloReplicationAnalysis::HloReplication HloReplicationAnalysis::DetermineHloInstructionIsReplicated( const HloInstruction* hlo, const ShapeIndex& index, bool cross_partition_spmd, const absl::flat_hash_map<const HloInstruction*, ShapeTree<HloReplication>>& hlo_replication, bool support_partial_replication) { const auto merge_operand_replication = [&hlo_replication]( const HloInstruction* inst) { HloReplication replication = HloReplication::ReplicatedOnAllDevices(); for (auto operand : inst->operands()) { auto operand_it = hlo_replication.find(operand); if (operand_it == hlo_replication.end()) { replication = replication.Merge(HloReplication::UniqueOnAllDevices()); } else { replication = replication.Merge(operand_it->second.element({})); } } return replication; }; if (hlo->opcode() == HloOpcode::kAllReduce || hlo->opcode() == HloOpcode::kAllGather) { HloReplication replication = merge_operand_replication(hlo); if (replication.IsReplicatedOnAllDevices()) { return replication; } if (!hlo->channel_id().has_value()) { if (cross_partition_spmd) { return replication; } if (hlo->replica_groups().empty() || hlo->replica_groups().size() == 1) { return HloReplication::ReplicatedOnAllDevices(); } if (support_partial_replication) { std::vector<absl::Span<const int64_t>> device_sets; for (const ReplicaGroup& replica_group : hlo->replica_groups()) { device_sets.push_back(replica_group.replica_ids()); } return HloReplication::PartiallyReplicated(device_sets); } else { return HloReplication::UniqueOnAllDevices(); } } else { bool global_id; if (hlo->opcode() == HloOpcode::kAllReduce) { global_id = Cast<HloAllReduceInstruction>(hlo)->use_global_device_ids(); } else { global_id = Cast<HloAllGatherInstruction>(hlo)->use_global_device_ids(); } if (global_id) { bool replicated_across_partitions = true; bool replicated_across_replicas = true; const int64_t num_partitions = hlo->GetModule()->config().num_partitions(); absl::flat_hash_set<int64_t> visited_partitions; absl::flat_hash_set<int64_t> visited_replicas; for (const auto& group : hlo->replica_groups()) { visited_partitions.clear(); visited_replicas.clear(); visited_replicas.reserve(group.replica_ids().size()); visited_partitions.reserve(group.replica_ids().size()); for (int64_t id : group.replica_ids()) { int64_t rid = id / num_partitions; int64_t pid = id % num_partitions; visited_partitions.insert(pid); visited_replicas.insert(rid); } replicated_across_partitions &= visited_partitions.size() == num_partitions; replicated_across_replicas &= visited_replicas.size() == hlo->GetModule()->config().replica_count(); } if ((cross_partition_spmd && replicated_across_partitions) || (!cross_partition_spmd && replicated_across_replicas)) { return HloReplication::ReplicatedOnAllDevices(); } else { return HloReplication::UniqueOnAllDevices(); } } if (cross_partition_spmd) { return HloReplication::ReplicatedOnAllDevices(); } if (hlo->replica_groups().empty() || hlo->replica_groups().size() == 1) { return HloReplication::ReplicatedOnAllDevices(); } else { return HloReplication::UniqueOnAllDevices(); } } } if (hlo->HasSideEffectNoRecurse()) { return HloReplication::UniqueOnAllDevices(); } if (hlo->opcode() == HloOpcode::kReplicaId) { return cross_partition_spmd ? HloReplication::ReplicatedOnAllDevices() : HloReplication::UniqueOnAllDevices(); } if (hlo->opcode() == HloOpcode::kPartitionId) { return cross_partition_spmd ? HloReplication::UniqueOnAllDevices() : HloReplication::ReplicatedOnAllDevices(); } auto it = hlo_replication.find(hlo); if (hlo->opcode() == HloOpcode::kParameter) { CHECK(it != hlo_replication.end()); return it->second.element(index); } if (it != hlo_replication.end() && it->second.element(index).IsUniqueOnAllDevices()) { return it->second.element(index); } if (hlo->opcode() == HloOpcode::kConstant) { return HloReplication::ReplicatedOnAllDevices(); } if (hlo->opcode() == HloOpcode::kCustomCall && (hlo->custom_call_target() == "X64SplitLow" || hlo->custom_call_target() == "X64SplitHigh" || hlo->custom_call_target() == "X64Combine")) { return merge_operand_replication(hlo); } if (support_partial_replication) { if (hlo->opcode() == HloOpcode::kDynamicSlice) { const HloInstruction* ds_buffer = hlo->operand(0); if (hlo->dynamic_slice_sizes().size() == 1 && hlo->dynamic_slice_sizes()[0] == 1 && ds_buffer->opcode() == HloOpcode::kConstant && ds_buffer->shape().rank() == 1 && ds_buffer->shape().element_type() == PrimitiveType::S32 && ((cross_partition_spmd && hlo->operand(1)->opcode() == HloOpcode::kPartitionId) || (!cross_partition_spmd && hlo->operand(1)->opcode() == HloOpcode::kReplicaId))) { const HloModule* hlo_module = hlo->GetModule(); int64_t num_devices = cross_partition_spmd ? hlo_module->config().num_partitions() : hlo_module->config().replica_count(); absl::flat_hash_map<int64_t, std::vector<int64_t>> value_to_device_set; for (int64_t device_id = 0; device_id < num_devices; ++device_id) { std::optional<int64_t> value = ds_buffer->literal().GetIntegralAsS64({device_id}); value_to_device_set[*value].push_back(device_id); } std::vector<absl::Span<const int64_t>> device_sets; for (const auto& value_and_device_set : value_to_device_set) { device_sets.push_back( absl::Span<const int64_t>(value_and_device_set.second)); } return HloReplication::PartiallyReplicated(device_sets); } } } if (hlo->IsElementwise() || hlo->opcode() == HloOpcode::kConcatenate || hlo->opcode() == HloOpcode::kConvolution || hlo->opcode() == HloOpcode::kDot || hlo->opcode() == HloOpcode::kReduce || hlo->opcode() == HloOpcode::kBroadcast || hlo->opcode() == HloOpcode::kTranspose || hlo->opcode() == HloOpcode::kReshape || hlo->opcode() == HloOpcode::kBitcast || hlo->opcode() == HloOpcode::kReverse || hlo->opcode() == HloOpcode::kGather || hlo->opcode() == HloOpcode::kScatter || hlo->opcode() == HloOpcode::kIota || hlo->opcode() == HloOpcode::kPad || hlo->opcode() == HloOpcode::kSlice || hlo->opcode() == HloOpcode::kDynamicSlice || hlo->opcode() == HloOpcode::kDynamicUpdateSlice || hlo->opcode() == HloOpcode::kReduceWindow || hlo->opcode() == HloOpcode::kCopy) { return merge_operand_replication(hlo); } return HloReplication::UniqueOnAllDevices(); } bool HloReplicationAnalysis::ComputeHloReplicationOnComputation( const HloComputation* computation, bool mark_everything_not_replicated) { bool changed = false; for (HloInstruction* inst : computation->MakeInstructionPostOrder()) { auto assign_or_combine_shapetree = [&](ShapeTree<HloReplication>&& to_combine, const HloInstruction* dest) { auto it = hlo_replication_.find(dest); if (it == hlo_replication_.end()) { hlo_replication_[dest] = std::move(to_combine); return true; } bool updated = false; it->second.ForEachMutableElement( [&](const ShapeIndex& index, HloReplication* element) { HloReplication new_replication = element->Merge(to_combine.element(index)); if (!element->Equal(new_replication)) { *element = std::move(new_replication); updated = true; } }); return updated; }; auto propagate_shapetree = [&](const HloInstruction* source, const HloInstruction* dest) { auto source_it = hlo_replication_.find(source); if (source_it == hlo_replication_.end()) { return false; } return assign_or_combine_shapetree( ShapeTree<HloReplication>(source_it->second), dest); }; if (inst->opcode() == HloOpcode::kWhile) { while (true) { bool updated = propagate_shapetree( inst->operand(0), inst->while_condition()->parameter_instruction(0)); updated |= propagate_shapetree( inst->while_body()->root_instruction(), inst->while_condition()->parameter_instruction(0)); updated |= propagate_shapetree( inst->operand(0), inst->while_body()->parameter_instruction(0)); updated |= propagate_shapetree(inst->while_body()->root_instruction(), inst->while_body()->parameter_instruction(0)); updated |= ComputeHloReplicationOnComputation( inst->while_condition(), mark_everything_not_replicated); if (!ContainsKey(loops_known_with_same_iterations_, inst) && !hlo_replication_[inst->while_condition()->root_instruction()] .element({}) .IsReplicatedOnAllDevices()) { updated |= ComputeHloReplicationOnComputation( inst->while_body(), true); } else { updated |= ComputeHloReplicationOnComputation( inst->while_body(), mark_everything_not_replicated); } if (!updated) { break; } changed = true; } changed |= propagate_shapetree(inst->operand(0), inst); changed |= propagate_shapetree(inst->while_body()->root_instruction(), inst); } else if (inst->opcode() == HloOpcode::kCall || inst->opcode() == HloOpcode::kFusion) { auto called = inst->called_computations().front(); for (int64_t i = 0; i < inst->operand_count(); ++i) { changed |= propagate_shapetree(inst->operand(i), called->parameter_instruction(i)); } changed |= ComputeHloReplicationOnComputation( called, mark_everything_not_replicated); changed |= propagate_shapetree(called->root_instruction(), inst); } else if (inst->opcode() == HloOpcode::kConditional) { for (int64_t i = 0; i < inst->called_computations().size(); ++i) { changed |= propagate_shapetree( inst->operand(i + 1), inst->called_computations()[i]->parameter_instruction(0)); } if (!hlo_replication_[inst->operand(0)] .element({}) .IsReplicatedOnAllDevices()) { for (auto called : inst->called_computations()) { changed |= ComputeHloReplicationOnComputation( called, true); } changed |= assign_or_combine_shapetree( ShapeTree<HloReplication>(inst->shape(), HloReplication::UniqueOnAllDevices()), inst); } else { for (auto called : inst->called_computations()) { changed |= ComputeHloReplicationOnComputation( called, mark_everything_not_replicated); changed |= propagate_shapetree(called->root_instruction(), inst); } } } else if (inst->opcode() == HloOpcode::kTuple) { ShapeTree<HloReplication> shape_tree( inst->shape(), HloReplication::ReplicatedOnAllDevices()); for (int64_t i = 0; i < inst->operand_count(); ++i) { shape_tree.CopySubtreeFrom(hlo_replication_[inst->operand(i)], {}, {i}); } changed |= assign_or_combine_shapetree(std::move(shape_tree), inst); } else if (inst->opcode() == HloOpcode::kOptimizationBarrier) { ShapeTree<HloReplication> shape_tree = hlo_replication_[inst->operand(0)]; changed |= assign_or_combine_shapetree(std::move(shape_tree), inst); } else if (inst->opcode() == HloOpcode::kGetTupleElement) { ShapeTree<HloReplication> shape_tree( inst->shape(), HloReplication::ReplicatedOnAllDevices()); shape_tree.CopySubtreeFrom(hlo_replication_[inst->operand(0)], {inst->tuple_index()}, {}); changed |= assign_or_combine_shapetree(std::move(shape_tree), inst); } else if (inst->opcode() == HloOpcode::kInfeed && cross_partition_spmd_) { ShapeTree<HloReplication> shape_tree( inst->shape(), HloReplication::UniqueOnAllDevices()); if (inst->has_sharding()) { auto sharding = inst->sharding().GetAsShapeTree(inst->shape()); shape_tree.ForEachMutableElement( [&sharding](const ShapeIndex& index, HloReplication* data) { *data = sharding.element(index).IsReplicated() ? HloReplication::ReplicatedOnAllDevices() : HloReplication::UniqueOnAllDevices(); }); } changed |= assign_or_combine_shapetree(std::move(shape_tree), inst); } else { if (mark_everything_not_replicated) { changed |= assign_or_combine_shapetree( ShapeTree<HloReplication>(inst->shape(), HloReplication::UniqueOnAllDevices()), inst); } else { ShapeTree<HloReplication> shape_tree( inst->shape(), HloReplication::ReplicatedOnAllDevices()); ShapeUtil::ForEachSubshape( inst->shape(), [&](const Shape& subshape, const ShapeIndex& index) { *shape_tree.mutable_element(index) = DetermineHloInstructionIsReplicated( inst, index, cross_partition_spmd_, hlo_replication_, support_partial_replication_); }); changed |= assign_or_combine_shapetree(std::move(shape_tree), inst); } } } return changed; } absl::Status HloReplicationAnalysis::ComputeHloReplication() { auto entry = module_->entry_computation(); for (int i = 0; i < entry->num_parameters(); ++i) { auto param = entry->parameter_instruction(i); ShapeTree<HloReplication> shape_tree(param->shape(), HloReplication::UniqueOnAllDevices()); const auto& replication = param->parameter_replicated_at_leaf_buffers(); int leaf_index = 0; absl::Status status = ShapeUtil::ForEachSubshapeWithStatus( param->shape(), [&](const Shape& subshape, const ShapeIndex& index) { if (!ShapeUtil::IsLeafIndex(param->shape(), index)) { return absl::OkStatus(); } if (cross_partition_spmd_ && param->has_sharding()) { TF_ASSIGN_OR_RETURN(auto sharding_tree, param->sharding().AsShapeTree(param->shape())); *shape_tree.mutable_element(index) = sharding_tree.element(index).IsReplicated() ? HloReplication::ReplicatedOnAllDevices() : HloReplication::UniqueOnAllDevices(); } if (replication) { if (!cross_partition_spmd_ && (*replication)[leaf_index]) { *shape_tree.mutable_element(index) = HloReplication::ReplicatedOnAllDevices(); } if (cross_partition_spmd_ && !(*replication)[leaf_index]) { *shape_tree.mutable_element(index) = HloReplication::UniqueOnAllDevices(); } ++leaf_index; } return absl::OkStatus(); }); TF_RETURN_IF_ERROR(status); hlo_replication_[param] = std::move(shape_tree); } ComputeHloReplicationOnComputation(entry, false); return absl::OkStatus(); } bool HloReplicationAnalysis::HloInstructionIsReplicatedAt( const HloInstruction* inst, const ShapeIndex& index) const { auto it = hlo_replication_.find(inst); if (it == hlo_replication_.end()) { return false; } return it->second.element(index).IsReplicatedOnAllDevices(); } bool HloReplicationAnalysis::HloInstructionIsReplicatedAt( const HloInstruction* inst, const ShapeIndex& index, absl::Span<const ReplicaGroup> replica_groups) const { auto it = hlo_replication_.find(inst); if (it == hlo_replication_.end()) { return false; } VLOG(5) << "HloInstructionIsReplicatedAt is called on " << inst->name() << ", index: " << index.ToString() << ", replication: " << it->second.element(index).ToString(); if (replica_groups.empty()) { return it->second.element(index).IsReplicatedOnAllDevices(); } if (it->second.element(index).IsReplicatedOnAllDevices()) { return true; } if (it->second.element(index).IsUniqueOnAllDevices()) { return false; } for (const ReplicaGroup& replica_group : replica_groups) { if (!it->second.element(index).IsReplicatedWithinSubgroup( replica_group.replica_ids())) { return false; } } return true; } absl::StatusOr<std::unique_ptr<HloReplicationAnalysis>> HloReplicationAnalysis::Run(const HloModule* module, bool cross_partition_spmd) { const absl::flat_hash_set<const HloInstruction*> empty; return Run(module, cross_partition_spmd, &empty); } absl::StatusOr<std::unique_ptr<HloReplicationAnalysis>> HloReplicationAnalysis::Run(const HloModule* module, bool cross_partition_spmd, const absl::flat_hash_set<const HloInstruction*>* loops_known_with_same_iterations) { auto analysis = absl::WrapUnique(new HloReplicationAnalysis( module, cross_partition_spmd, loops_known_with_same_iterations, false)); TF_RETURN_IF_ERROR(analysis->ComputeHloReplication()); return analysis; } absl::StatusOr<std::unique_ptr<HloReplicationAnalysis>> HloReplicationAnalysis::RunWithPartialReplication(const HloModule* module, bool cross_partition_spmd) { const absl::flat_hash_set<const HloInstruction*> empty; auto analysis = absl::WrapUnique( new HloReplicationAnalysis(module, cross_partition_spmd, &empty, true)); TF_RETURN_IF_ERROR(analysis->ComputeHloReplication()); return analysis; } HloReplicationAnalysis::HloReplication::HloReplication() : state_(State::kReplicatedOnAllDevices) {} HloReplicationAnalysis::HloReplication::HloReplication( HloReplicationAnalysis::HloReplication::State state, absl::Span<const int64_t> device_set_root) : state_(state), device_set_root_(device_set_root.begin(), device_set_root.end()) { CHECK(state == State::kPartiallyReplicated || device_set_root_.empty()); } HloReplicationAnalysis::HloReplication HloReplicationAnalysis::HloReplication::ReplicatedOnAllDevices() { return HloReplication(State::kReplicatedOnAllDevices, {}); } HloReplicationAnalysis::HloReplication HloReplicationAnalysis::HloReplication::UniqueOnAllDevices() { return HloReplication(State::kUniqueOnAllDevices, {}); } HloReplicationAnalysis::HloReplication HloReplicationAnalysis::HloReplication::PartiallyReplicated( absl::Span<const absl::Span<const int64_t>> device_sets) { int64_t max_device_id = 0; for (const absl::Span<const int64_t>& device_set : device_sets) { for (int64_t device_id : device_set) { max_device_id = std::max(max_device_id, device_id); } } std::vector<int64_t> device_set_root; device_set_root.resize(max_device_id + 1); for (const absl::Span<const int64_t>& device_set : device_sets) { int64_t min_device_id = *absl::c_min_element(device_set); for (int64_t device_id : device_set) { device_set_root[device_id] = min_device_id; } } return HloReplication(State::kPartiallyReplicated, device_set_root); } HloReplicationAnalysis::HloReplication HloReplicationAnalysis::HloReplication::Merge( const HloReplication& other) const { switch (state_) { case State::kReplicatedOnAllDevices: return other; case State::kUniqueOnAllDevices: return *this; case State::kPartiallyReplicated: { switch (other.state_) { case State::kReplicatedOnAllDevices: return *this; case State::kUniqueOnAllDevices: return other; case State::kPartiallyReplicated: { absl::flat_hash_map<int64_t, std::vector<int64_t>> value_to_device_set; size_t num_devices = device_set_root_.size(); for (int64_t device_id = 0; device_id < num_devices; ++device_id) { int64_t new_value = device_set_root_[device_id] * num_devices + other.device_set_root_[device_id]; value_to_device_set[new_value].push_back(device_id); } CHECK_LE(value_to_device_set.size(), num_devices); if (value_to_device_set.size() == 1) { return ReplicatedOnAllDevices(); } else if (value_to_device_set.size() < num_devices) { std::vector<absl::Span<const int64_t>> device_sets; for (const auto& value_and_device_set : value_to_device_set) { device_sets.push_back( absl::Span<const int64_t>(value_and_device_set.seco
#include "xla/service/hlo_replication_analysis.h" #include <memory> #include <string> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/types.h" #include "tsl/lib/core/status_test_util.h" namespace xla { namespace { class HloReplicationAnalysisTest : public HloTestBase {}; TEST_F(HloReplicationAnalysisTest, NoControlFlow) { const std::string module_str = R"( HloModule NoControlFlow sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } sum.u32 { a = u32[] parameter(0) b = u32[] parameter(1) ROOT add.2 = u32[] add(a, b) } ENTRY entry { param = (f32[4096,4096]{1,0}, f32[4096,4096]{1,0}) parameter(0) get-tuple-element.2 = f32[4096,4096]{1,0} get-tuple-element(param), index=0 get-tuple-element.3 = f32[4096,4096]{1,0} get-tuple-element(param), index=1 after-all.1 = token[] after-all() replica-id = u32[] replica-id() infeed = (f32[4096,4096]{1,0}, token[]) infeed(after-all.1) get-tuple-element.5 = f32[4096,4096]{1,0} get-tuple-element(infeed), index=0 dot = f32[4096,4096]{1,0} dot(get-tuple-element.5, get-tuple-element.3), lhs_contracting_dims={1}, rhs_contracting_dims={0} all-reduce = f32[4096,4096]{1,0} all-reduce(dot), replica_groups={}, to_apply=sum subtract = f32[4096,4096]{1,0} subtract(get-tuple-element.3, all-reduce) all-reduce-partitions = u32[] all-reduce(replica-id), channel_id=1, to_apply=sum.u32, replica_groups={{0},{1},{2},{3}} all-reduce-subgroup = u32[] all-reduce(replica-id), replica_groups={{0,1},{2,3}}, to_apply=sum.u32 ROOT add = f32[4096,4096]{1,0} add(get-tuple-element.2, subtract) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule( module_str, 4)); auto param = module->entry_computation()->parameter_instruction(0); param->set_parameter_replicated_at_leaf_buffers( absl::Span<const bool>{false, true}); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloReplicationAnalysis> analysis, HloReplicationAnalysis::Run( module.get(), false)); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "get-tuple-element.2"), {})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "get-tuple-element.3"), {})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "get-tuple-element.5"), {})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "dot"), {})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "all-reduce"), {})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "subtract"), {})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "add"), {})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "replica-id"), {})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "all-reduce-partitions"), {})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "all-reduce-subgroup"), {})); } TEST_F(HloReplicationAnalysisTest, NoControlFlowSPMD) { const std::string module_str = R"( HloModule NoControlFlow sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } sum.u32 { a = u32[] parameter(0) b = u32[] parameter(1) ROOT add.2 = u32[] add(a, b) } ENTRY entry { param = (f32[4096,4096]{1,0}, f32[4096,4096]{1,0}, f32[4096,4096]{1,0}) parameter(0), sharding={{maximal device=0}, {replicated}, {replicated}} get-tuple-element.2 = f32[4096,4096]{1,0} get-tuple-element(param), index=0 get-tuple-element.3 = f32[4096,4096]{1,0} get-tuple-element(param), index=1 get-tuple-element.4 = f32[4096,4096]{1,0} get-tuple-element(param), index=2 after-all.1 = token[] after-all() replica-id = u32[] replica-id() partition-id = u32[] partition-id() infeed = ((f32[4096,4096]{1,0}, f32[8,8]{1,0}), token[]) infeed(after-all.1), sharding={{maximal device=0}, {replicated}, {maximal device=0}} infeed-data = (f32[4096,4096]{1,0}, f32[8,8]{1,0}) get-tuple-element(infeed), index=0 get-tuple-element.5 = f32[4096,4096]{1,0} get-tuple-element(infeed-data), index=0 get-tuple-element.6 = f32[8,8]{1,0} get-tuple-element(infeed-data), index=1 dot = f32[4096,4096]{1,0} dot(get-tuple-element.5, get-tuple-element.3), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot.2 = f32[4096,4096]{1,0} dot(get-tuple-element.4, get-tuple-element.3), lhs_contracting_dims={1}, rhs_contracting_dims={0} all-reduce = f32[4096,4096]{1,0} all-reduce(dot), replica_groups={}, to_apply=sum all-reduce.2 = f32[4096,4096]{1,0} all-reduce(dot.2), replica_groups={}, to_apply=sum all-reduce-subgroup = f32[4096,4096]{1,0} all-reduce(dot), replica_groups={{0,1},{2,3}}, to_apply=sum all-reduce-partitions = f32[4096,4096]{1,0} all-reduce(get-tuple-element.2), channel_id=1, to_apply=sum all-reduce-partitions.2 = f32[4096,4096]{1,0} all-reduce(get-tuple-element.4), channel_id=1, to_apply=sum subtract = f32[4096,4096]{1,0} subtract(get-tuple-element.3, all-reduce-partitions) subtract.2 = f32[4096,4096]{1,0} subtract(get-tuple-element.3, all-reduce-partitions.2) all-reduce-same-operand = u32[] all-reduce(replica-id), to_apply=sum.u32 all-reduce-same-operand-subgroup = u32[] all-reduce(replica-id), replica_groups={{0,1},{2,3}}, to_apply=sum.u32 all-reduce-different-operand = u32[] all-reduce(partition-id), to_apply=sum.u32 add = f32[4096,4096]{1,0} add(get-tuple-element.2, subtract) ROOT add.2 = f32[4096,4096]{1,0} add(get-tuple-element.4, subtract.2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule( module_str, 4)); auto param = module->entry_computation()->parameter_instruction(0); param->set_parameter_replicated_at_leaf_buffers( absl::Span<const bool>{false, true, false}); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloReplicationAnalysis> analysis, HloReplicationAnalysis::Run(module.get(), true)); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "get-tuple-element.2"), {})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "get-tuple-element.3"), {})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "get-tuple-element.4"), {})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "get-tuple-element.5"), {})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "get-tuple-element.6"), {})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "dot"), {})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "dot.2"), {})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "all-reduce"), {})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "all-reduce.2"), {})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "all-reduce-partitions"), {})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "all-reduce-partitions.2"), {})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "subtract"), {})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "subtract.2"), {})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "add"), {})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "add"), {})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "replica-id"), {})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "partition-id"), {})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "all-reduce-same-operand"), {})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "all-reduce-same-operand-subgroup"), {})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "all-reduce-different-operand"), {})); } TEST_F(HloReplicationAnalysisTest, NestedCall) { const std::string module_str = R"( HloModule NestedCall fusion_computation { fusion_p0 = f32[] parameter(0) fusion_p1 = f32[] parameter(1) add = f32[] add(fusion_p0, fusion_p0) multiply = f32[] multiply(add, fusion_p1) ROOT tuple = (f32[], f32[]) tuple(add, multiply) } call_body { a = f32[] parameter(0) b = f32[] parameter(1) ROOT fusion = (f32[], f32[]) fusion(a, b), kind=kLoop, calls=fusion_computation } ENTRY entry { param = (f32[], f32[]) parameter(0) get-tuple-element = f32[] get-tuple-element(param), index=0 get-tuple-element.1 = f32[] get-tuple-element(param), index=1 ROOT call = (f32[], f32[]) call(get-tuple-element, get-tuple-element.1), to_apply=call_body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(module_str)); auto param = module->entry_computation()->parameter_instruction(0); param->set_parameter_replicated_at_leaf_buffers( absl::Span<const bool>{true, false}); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloReplicationAnalysis> analysis, HloReplicationAnalysis::Run( module.get(), false)); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "get-tuple-element"), {})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "get-tuple-element.1"), {})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "add"), {})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "multiply"), {})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "fusion"), {0})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "fusion"), {1})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "call"), {0})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "call"), {1})); } TEST_F(HloReplicationAnalysisTest, SimpleWhileLoop) { const std::string module_str = R"( HloModule SimpleWhileLoop cond { cond_param = (f32[4096,4096]{1,0}, u32[]) parameter(0) get-tuple-element = u32[] get-tuple-element(cond_param), index=1 constant.3 = u32[] constant(5) ROOT greater-than = pred[] compare(get-tuple-element, constant.3), direction=LT } body { body_param = (f32[4096,4096]{1,0}, u32[]) parameter(0) get-tuple-element.1 = f32[4096,4096]{1,0} get-tuple-element(body_param), index=0 multiply = f32[4096,4096]{1,0} multiply(get-tuple-element.1, get-tuple-element.1) get-tuple-element.6 = u32[] get-tuple-element(body_param), index=1 constant.1 = u32[] constant(1) add = u32[] add(get-tuple-element.6, constant.1) ROOT tuple = (f32[4096,4096]{1,0}, u32[]) tuple(multiply, add) } ENTRY SimpleWhileLoop { param = (f32[4096,4096]{1,0}, u32[]) parameter(0) ROOT while = (f32[4096,4096]{1,0}, u32[]) while(param), condition=cond, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(module_str)); auto param = module->entry_computation()->parameter_instruction(0); param->set_parameter_replicated_at_leaf_buffers( absl::Span<const bool>{true, true}); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloReplicationAnalysis> analysis, HloReplicationAnalysis::Run( module.get(), false)); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "tuple"), {0})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "tuple"), {1})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "while"), {0})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "while"), {1})); } TEST_F(HloReplicationAnalysisTest, WhileLoopParameterAliasingNonReplicatedOutput) { const std::string module_str = R"( HloModule WhileLoopParameterAliasingNonReplicatedOutput cond { cond_param = (f32[4096,4096]{1,0}, u32[]) parameter(0) get-tuple-element = u32[] get-tuple-element(cond_param), index=1 constant.3 = u32[] constant(5) ROOT greater-than = pred[] compare(get-tuple-element, constant.3), direction=LT } body { body_param = (f32[4096,4096]{1,0}, u32[]) parameter(0) get-tuple-element.1 = f32[4096,4096]{1,0} get-tuple-element(body_param), index=0 multiply = f32[4096,4096]{1,0} multiply(get-tuple-element.1, get-tuple-element.1) after-all.1 = token[] after-all() infeed = (f32[4096,4096]{1,0}, token[]) infeed(after-all.1) get-tuple-element.5 = f32[4096,4096]{1,0} get-tuple-element(infeed), index=0 subtract = f32[4096,4096]{1,0} subtract(get-tuple-element.5, multiply) get-tuple-element.6 = u32[] get-tuple-element(body_param), index=1 constant.1 = u32[] constant(1) add = u32[] add(get-tuple-element.6, constant.1) ROOT tuple = (f32[4096,4096]{1,0}, u32[]) tuple(subtract, add) } ENTRY WhileLoopParameterAliasingNonReplicatedOutput { param = (f32[4096,4096]{1,0}, u32[]) parameter(0) ROOT while = (f32[4096,4096]{1,0}, u32[]) while(param), condition=cond, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(module_str)); auto param = module->entry_computation()->parameter_instruction(0); param->set_parameter_replicated_at_leaf_buffers( absl::Span<const bool>{true, true}); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloReplicationAnalysis> analysis, HloReplicationAnalysis::Run( module.get(), false)); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "multiply"), {})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "tuple"), {0})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "tuple"), {1})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "while"), {0})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "while"), {1})); } TEST_F(HloReplicationAnalysisTest, WhileLoopDifferentCondition) { const std::string module_str = R"( HloModule WhileLoopDifferentCondition cond { cond_param = (f32[4096,4096]{1,0}, u32[]) parameter(0) get-tuple-element = u32[] get-tuple-element(cond_param), index=1 constant.3 = u32[] constant(5) ROOT greater-than = pred[] compare(get-tuple-element, constant.3), direction=LT } body { body_param = (f32[4096,4096]{1,0}, u32[]) parameter(0) get-tuple-element.1 = f32[4096,4096]{1,0} get-tuple-element(body_param), index=0 multiply = f32[4096,4096]{1,0} multiply(get-tuple-element.1, get-tuple-element.1) get-tuple-element.6 = u32[] get-tuple-element(body_param), index=1 replica-id = u32[] replica-id() add = u32[] add(get-tuple-element.6, replica-id) ROOT tuple = (f32[4096,4096]{1,0}, u32[]) tuple(multiply, add) } ENTRY WhileLoopDifferentCondition { param = (f32[4096,4096]{1,0}, u32[]) parameter(0) ROOT while = (f32[4096,4096]{1,0}, u32[]) while(param), condition=cond, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(module_str)); auto param = module->entry_computation()->parameter_instruction(0); param->set_parameter_replicated_at_leaf_buffers( absl::Span<const bool>{true, true}); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloReplicationAnalysis> analysis, HloReplicationAnalysis::Run( module.get(), false)); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "while"), {0})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "while"), {1})); } TEST_F(HloReplicationAnalysisTest, SimpleConditional) { const std::string module_str = R"( HloModule SimpleConditional Negate { x = (f32[], f32[]) parameter(0) get-tuple-element = f32[] get-tuple-element(x), index=0 negate = f32[] negate(get-tuple-element) get-tuple-element.1 = f32[] get-tuple-element(x), index=1 negate.1 = f32[] negate(get-tuple-element.1) ROOT tuple = (f32[], f32[]) tuple(negate, negate.1) } Identity { ROOT y = (f32[], f32[]) parameter(0) } Floor { z = (f32[], f32[]) parameter(0) get-tuple-element.2 = f32[] get-tuple-element(z), index=0 floor = f32[] floor(get-tuple-element.2) get-tuple-element.3 = f32[] get-tuple-element(z), index=1 floor.1 = f32[] floor(get-tuple-element.3) ROOT tuple.1 = (f32[], f32[]) tuple(floor, floor.1) } ENTRY entry { param = ((f32[], f32[]), (f32[], f32[]), (f32[], f32[]), s32[]) parameter(0) get-tuple-element.4 = (f32[], f32[]) get-tuple-element(param), index=0 get-tuple-element.5 = (f32[], f32[]) get-tuple-element(param), index=1 get-tuple-element.6 = (f32[], f32[]) get-tuple-element(param), index=2 get-tuple-element.7 = s32[] get-tuple-element(param), index=3 ROOT conditional = (f32[], f32[]) conditional(get-tuple-element.7, get-tuple-element.4, get-tuple-element.5, get-tuple-element.6), branch_computations={Negate, Identity, Floor} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(module_str)); auto param = module->entry_computation()->parameter_instruction(0); param->set_parameter_replicated_at_leaf_buffers( absl::Span<const bool>{true, true, true, true, false, true, true}); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloReplicationAnalysis> analysis, HloReplicationAnalysis::Run( module.get(), false)); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "tuple"), {0})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "tuple"), {1})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "y"), {0})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "y"), {1})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "tuple.1"), {0})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "tuple.1"), {1})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "conditional"), {0})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "conditional"), {1})); } TEST_F(HloReplicationAnalysisTest, ConditionalWithDifferentPredicates) { const std::string module_str = R"( HloModule ConditionalWithDifferentPredicates Negate { x = (f32[], f32[]) parameter(0) get-tuple-element = f32[] get-tuple-element(x), index=0 negate = f32[] negate(get-tuple-element) get-tuple-element.1 = f32[] get-tuple-element(x), index=1 negate.1 = f32[] negate(get-tuple-element.1) ROOT tuple = (f32[], f32[]) tuple(negate, negate.1) } Identity { ROOT y = (f32[], f32[]) parameter(0) } Floor { z = (f32[], f32[]) parameter(0) get-tuple-element.2 = f32[] get-tuple-element(z), index=0 floor = f32[] floor(get-tuple-element.2) get-tuple-element.3 = f32[] get-tuple-element(z), index=1 floor.1 = f32[] floor(get-tuple-element.3) ROOT tuple.1 = (f32[], f32[]) tuple(floor, floor.1) } ENTRY entry { param = ((f32[], f32[]), (f32[], f32[]), (f32[], f32[])) parameter(0) get-tuple-element.4 = (f32[], f32[]) get-tuple-element(param), index=0 get-tuple-element.5 = (f32[], f32[]) get-tuple-element(param), index=1 get-tuple-element.6 = (f32[], f32[]) get-tuple-element(param), index=2 replica-id = u32[] replica-id() id = s32[] bitcast-convert(replica-id) ROOT conditional = (f32[], f32[]) conditional(id, get-tuple-element.4, get-tuple-element.5, get-tuple-element.6), branch_computations={Negate, Identity, Floor} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(module_str)); auto param = module->entry_computation()->parameter_instruction(0); param->set_parameter_replicated_at_leaf_buffers( absl::Span<const bool>{true, true, true, true, true, true}); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloReplicationAnalysis> analysis, HloReplicationAnalysis::Run( module.get(), false)); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "tuple"), {0})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "tuple"), {1})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "y"), {0})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "y"), {1})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "tuple.1"), {0})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "tuple.1"), {1})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "conditional"), {0})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "conditional"), {1})); } TEST_F(HloReplicationAnalysisTest, X64SplitCombine) { const std::string module_str = R"( HloModule SimpleX64SplitCombine ENTRY entry { param = (f64[]) parameter(0) gte = f64[] get-tuple-element(param), index=0 param-low = f32[] custom-call(gte), custom_call_target="X64SplitLow" param-high = f32[] custom-call(gte), custom_call_target="X64SplitHigh" ROOT result-combine = f64[] custom-call(param-low, param-high), custom_call_target="X64Combine" } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(module_str)); auto param = module->entry_computation()->parameter_instruction(0); param->set_parameter_replicated_at_leaf_buffers(absl::Span<const bool>{true}); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloReplicationAnalysis> analysis, HloReplicationAnalysis::Run( module.get(), false)); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "gte"), {})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "param-low"), {})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "param-high"), {})); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "result-combine"), {})); } TEST_F(HloReplicationAnalysisTest, CrossModuleAndReplicaAllReduce) { const std::string module_str = R"( HloModule CrossModuleAndReplicaAllReduce sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add = f32[] add(a, b) } ENTRY entry { param = (f32[], f32[]) parameter(0) get-tuple-element.0 = f32[] get-tuple-element(param), index=0 get-tuple-element.1 = f32[] get-tuple-element(param), index=1 ar0 = f32[] all-reduce(get-tuple-element.0), to_apply=sum, replica_groups={{0,1}} ar1 = f32[] all-reduce(get-tuple-element.1), to_apply=sum, replica_groups={{0},{1}} ROOT tuple = (f32[], f32[]) tuple(ar0, ar1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule( module_str, 2)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloReplicationAnalysis> analysis, HloReplicationAnalysis::Run( module.get(), false)); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "ar0"), {})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "ar1"), {})); } TEST_F(HloReplicationAnalysisTest, GlobalIdAllGather) { const std::string module_str = R"( HloModule GlobalIdAllGather ENTRY entry { param = f32[1] parameter(0) ag1 = f32[2] all-gather(param), replica_groups={{0,1},{2,3}}, dimensions={0}, use_global_device_ids=true, channel_id=1 ag2 = f32[2] all-gather(param), replica_groups={{0,2},{1,3}}, dimensions={0}, use_global_device_ids=true, channel_id=2 ag3 = f32[4] all-gather(param), replica_groups={{0,1,2,3}}, dimensions={0}, use_global_device_ids=true, channel_id=3 ROOT tuple = (f32[2], f32[2], f32[4]) tuple(ag1, ag2, ag3) } )"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule(module_str, 2, 2)); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloReplicationAnalysis> replica_analysis, HloReplicationAnalysis::Run(module.get(), false)); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloReplicationAnalysis> partition_analysis, HloReplicationAnalysis::Run(module.get(), true)); EXPECT_FALSE(replica_analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "ag1"), {})); EXPECT_TRUE(replica_analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "ag2"), {})); EXPECT_TRUE(replica_analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "ag3"), {})); EXPECT_TRUE(partition_analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "ag1"), {})); EXPECT_FALSE(partition_analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "ag2"), {})); EXPECT_TRUE(partition_analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "ag3"), {})); } TEST_F(HloReplicationAnalysisTest, PartiallyReplicatedDynamicSlice) { const std::string module_str = R"( HloModule PartiallyReplicatedDynamicSlice ENTRY entry { constant = s32[8] constant({1, 3, 9, 10, 1, 3, 9, 10}) replica-id = u32[] replica-id() ROOT dynamic-slice = s32[1] dynamic-slice(constant, replica-id), dynamic_slice_sizes={1} } )"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule(module_str, 8, 1)); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloReplicationAnalysis> replica_analysis, HloReplicationAnalysis::RunWithPartialReplication( module.get(), false)); EXPECT_FALSE(replica_analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "dynamic-slice"), {})); std::vector<ReplicaGroup> replica_groups(4); replica_groups[0].add_replica_ids(0); replica_groups[0].add_replica_ids(4); replica_groups[1].add_replica_ids(1); replica_groups[1].add_replica_ids(5); replica_groups[2].add_replica_ids(2); replica_groups[2].add_replica_ids(6); replica_groups[3].add_replica_ids(3); replica_groups[3].add_replica_ids(7); EXPECT_TRUE(replica_analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "dynamic-slice"), {}, replica_groups)); std::vector<ReplicaGroup> replica_groups_2(2); replica_groups_2[0].add_replica_ids(0); replica_groups_2[0].add_replica_ids(1); replica_groups_2[0].add_replica_ids(2); replica_groups_2[0].add_replica_ids(3); replica_groups_2[1].add_replica_ids(4); replica_groups_2[1].add_replica_ids(5); replica_groups_2[1].add_replica_ids(6); replica_groups_2[1].add_replica_ids(7); EXPECT_FALSE(replica_analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "dynamic-slice"), {}, replica_groups_2)); } TEST_F(HloReplicationAnalysisTest, OptimizationBarrier) { const std::string module_str = R"( HloModule OptimizationBarrier sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add = f32[] add(a, b) } ENTRY entry { param = (f32[], f32[]) parameter(0) get-tuple-element.0 = f32[] get-tuple-element(param), index=0 get-tuple-element.1 = f32[] get-tuple-element(param), index=1 ar0 = f32[] all-reduce(get-tuple-element.0), to_apply=sum, replica_groups={{0,1}} ar1 = f32[] all-reduce(get-tuple-element.1), to_apply=sum, replica_groups={{0},{1}} tuple = (f32[], f32[]) tuple(ar0, ar1) opt-barrier = (f32[], f32[]) opt-barrier(tuple) gte.0 = f32[] get-tuple-element(opt-barrier), index=0 gte.1 = f32[] get-tuple-element(opt-barrier), index=1 ROOT tuple.1 = (f32[], f32[]) tuple(gte.0, gte.1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule( module_str, 2)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloReplicationAnalysis> analysis, HloReplicationAnalysis::Run( module.get(), false)); EXPECT_TRUE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "gte.0"), {})); EXPECT_FALSE(analysis->HloInstructionIsReplicatedAt( FindInstruction(module.get(), "gte.1"), {})); } } }
1,852
cpp
tensorflow/tensorflow
constant_value
third_party/xla/xla/service/constant_value.cc
third_party/xla/xla/service/constant_value_test.cc
#ifndef XLA_SERVICE_CONSTANT_VALUE_H_ #define XLA_SERVICE_CONSTANT_VALUE_H_ #include <string> #include "absl/status/statusor.h" #include "xla/literal.h" #include "xla/util.h" namespace xla { class ConstantValue { public: ConstantValue(uint64_t value, int32_t bitwidth, bool is_signed) : value_(is_signed ? absl::bit_cast<uint64_t>( absl::bit_cast<int64_t>( value << (8 * sizeof(uint64_t) - bitwidth)) >> (8 * sizeof(uint64_t) - bitwidth)) : KeepLowerBits(value, bitwidth)), bitwidth_(bitwidth), is_signed_(is_signed) {} static ConstantValue GetZero(int32_t bitwidth, bool is_signed) { return ConstantValue(0, bitwidth, is_signed); } static ConstantValue GetOne(int32_t bitwidth, bool is_signed) { return ConstantValue(1, bitwidth, is_signed); } static ConstantValue GetSigned(int64_t value, int32_t bitwidth) { return ConstantValue(absl::bit_cast<uint64_t>(value), bitwidth, true); } static ConstantValue GetUnsigned(uint64_t value, int32_t bitwidth) { return ConstantValue(value, bitwidth, false); } static absl::StatusOr<ConstantValue> FromLiteral(const Literal& literal); ConstantValue add(const ConstantValue& other) const { return ConstantValue(value_ + other.value_, bitwidth_, is_signed_); } ConstantValue sub(const ConstantValue& other) const { return ConstantValue(value_ - other.value_, bitwidth_, is_signed_); } ConstantValue div(const ConstantValue& other) const; ConstantValue mod(const ConstantValue& other) const; ConstantValue mul(const ConstantValue& other) const; bool lt(const ConstantValue& other) const; bool gt(const ConstantValue& other) const; bool eq(const ConstantValue& other) const { return *this == other; } int64_t GetSignedValue() const { return absl::bit_cast<int64_t>(value_); } uint64_t GetUnsignedValue() const { return value_; } int32_t GetBitwidth() const { return bitwidth_; } bool IsSigned() const { return is_signed_; } bool operator==(const ConstantValue& other) const { return value_ == other.value_ && bitwidth_ == other.bitwidth_ && is_signed_ == other.is_signed_; } std::string ToString() const; private: uint64_t value_; int32_t bitwidth_; bool is_signed_; }; } #endif #include "xla/service/constant_value.h" #include <string> namespace xla { absl::StatusOr<ConstantValue> ConstantValue::FromLiteral( const Literal& literal) { CHECK_EQ(literal.shape().dimensions_size(), 0) << "Expected scalar literal"; return primitive_util::PrimitiveTypeSwitch<absl::StatusOr<ConstantValue>>( [&](auto primitive_type_constant) -> absl::StatusOr<ConstantValue> { if constexpr (primitive_util::IsIntegralType(primitive_type_constant)) { return ConstantValue( static_cast<uint64_t>( literal.GetFirstElement< primitive_util::NativeTypeOf<primitive_type_constant>>()), primitive_util::BitWidth(primitive_type_constant), primitive_util::IsSignedIntegralType(primitive_type_constant)); } return InvalidArgument("Unsupported type"); }, literal.shape().element_type()); } ConstantValue ConstantValue::div(const ConstantValue& other) const { if (!is_signed_) { return ConstantValue(value_ / other.value_, bitwidth_, is_signed_); } return ConstantValue( absl::bit_cast<uint64_t>(absl::bit_cast<int64_t>(value_) / absl::bit_cast<int64_t>(other.value_)), bitwidth_, is_signed_); } ConstantValue ConstantValue::mod(const ConstantValue& other) const { if (!is_signed_) { return ConstantValue(value_ % other.value_, bitwidth_, is_signed_); } return ConstantValue( absl::bit_cast<uint64_t>(absl::bit_cast<int64_t>(value_) % absl::bit_cast<int64_t>(other.value_)), bitwidth_, is_signed_); } ConstantValue ConstantValue::mul(const ConstantValue& other) const { if (!is_signed_) { return ConstantValue(value_ * other.value_, bitwidth_, is_signed_); } return ConstantValue( absl::bit_cast<uint64_t>(absl::bit_cast<int64_t>(value_) * absl::bit_cast<int64_t>(other.value_)), bitwidth_, is_signed_); } bool ConstantValue::lt(const ConstantValue& other) const { if (!is_signed_) { return value_ < other.value_; } return absl::bit_cast<int64_t>(value_) < absl::bit_cast<int64_t>(other.value_); } bool ConstantValue::gt(const ConstantValue& other) const { if (!is_signed_) { return value_ > other.value_; } return absl::bit_cast<int64_t>(value_) > absl::bit_cast<int64_t>(other.value_); } std::string ConstantValue::ToString() const { return is_signed_ ? absl::StrCat(GetSignedValue()) : absl::StrCat(GetUnsignedValue()); } }
#include "xla/service/constant_value.h" #include <gtest/gtest.h> #include "xla/literal_util.h" namespace xla { namespace { class ConstantValueTest : public ::testing::Test {}; TEST_F(ConstantValueTest, ZeroTest32) { ConstantValue zero = ConstantValue::GetZero(32, false); EXPECT_EQ(zero.GetSignedValue(), 0); EXPECT_EQ(zero.GetUnsignedValue(), 0); EXPECT_EQ(zero.GetBitwidth(), 32); EXPECT_FALSE(zero.IsSigned()); ConstantValue zero_s = ConstantValue::GetZero(32, true); EXPECT_EQ(zero_s.GetSignedValue(), 0); EXPECT_EQ(zero_s.GetUnsignedValue(), 0); EXPECT_EQ(zero_s.GetBitwidth(), 32); EXPECT_TRUE(zero_s.IsSigned()); } TEST_F(ConstantValueTest, OneTest32) { ConstantValue one = ConstantValue::GetOne(32, false); EXPECT_EQ(one.GetSignedValue(), 1); EXPECT_EQ(one.GetUnsignedValue(), 1); EXPECT_EQ(one.GetBitwidth(), 32); EXPECT_FALSE(one.IsSigned()); ConstantValue one_s = ConstantValue::GetOne(32, true); EXPECT_EQ(one_s.GetSignedValue(), 1); EXPECT_EQ(one_s.GetUnsignedValue(), 1); EXPECT_EQ(one_s.GetBitwidth(), 32); EXPECT_TRUE(one_s.IsSigned()); } TEST_F(ConstantValueTest, Signed23) { ConstantValue signed_number = ConstantValue::GetSigned(4194303, 23); EXPECT_EQ(signed_number.GetSignedValue(), 4194303); EXPECT_EQ(signed_number.GetBitwidth(), 23); EXPECT_TRUE(signed_number.IsSigned()); ConstantValue signed_number_of = ConstantValue::GetSigned(4194304, 23); EXPECT_EQ(signed_number_of.GetSignedValue(), -4194304); EXPECT_EQ(signed_number_of.GetBitwidth(), 23); EXPECT_TRUE(signed_number_of.IsSigned()); } TEST_F(ConstantValueTest, Unsigned23) { ConstantValue unsigned_number = ConstantValue::GetUnsigned(8388607, 23); EXPECT_EQ(unsigned_number.GetUnsignedValue(), 8388607); EXPECT_EQ(unsigned_number.GetBitwidth(), 23); EXPECT_FALSE(unsigned_number.IsSigned()); ConstantValue unsigned_number_of = ConstantValue::GetUnsigned(8388608, 23); EXPECT_EQ(unsigned_number_of.GetUnsignedValue(), 0); EXPECT_EQ(unsigned_number_of.GetBitwidth(), 23); EXPECT_FALSE(unsigned_number_of.IsSigned()); } TEST_F(ConstantValueTest, FromLiteral) { auto cv_8 = ConstantValue::FromLiteral( LiteralUtil::CreateR0(static_cast<int8_t>(-32))); EXPECT_TRUE(cv_8.ok()); EXPECT_TRUE(cv_8->IsSigned()); EXPECT_EQ(cv_8->GetBitwidth(), 8); EXPECT_EQ(cv_8->GetSignedValue(), -32); auto cv_u8 = ConstantValue::FromLiteral( LiteralUtil::CreateR0(static_cast<int8_t>(32))); EXPECT_TRUE(cv_u8.ok()); EXPECT_TRUE(cv_u8->IsSigned()); EXPECT_EQ(cv_u8->GetBitwidth(), 8); EXPECT_EQ(cv_u8->GetUnsignedValue(), 32); auto cv_16 = ConstantValue::FromLiteral( LiteralUtil::CreateR0(static_cast<int16_t>(32000))); EXPECT_TRUE(cv_16.ok()); EXPECT_TRUE(cv_16->IsSigned()); EXPECT_EQ(cv_16->GetBitwidth(), 16); EXPECT_EQ(cv_16->GetSignedValue(), 32000); auto cv_u16 = ConstantValue::FromLiteral( LiteralUtil::CreateR0(static_cast<uint16_t>(33000))); EXPECT_TRUE(cv_u16.ok()); EXPECT_FALSE(cv_u16->IsSigned()); EXPECT_EQ(cv_u16->GetBitwidth(), 16); EXPECT_EQ(cv_u16->GetUnsignedValue(), 33000); auto cv_32 = ConstantValue::FromLiteral( LiteralUtil::CreateR0(static_cast<int32_t>(-2000000000))); EXPECT_TRUE(cv_32.ok()); EXPECT_TRUE(cv_32->IsSigned()); EXPECT_EQ(cv_32->GetBitwidth(), 32); EXPECT_EQ(cv_32->GetSignedValue(), -2000000000); auto cv_u32 = ConstantValue::FromLiteral( LiteralUtil::CreateR0(static_cast<uint32_t>(3000000000))); EXPECT_TRUE(cv_u32.ok()); EXPECT_FALSE(cv_u32->IsSigned()); EXPECT_EQ(cv_u32->GetBitwidth(), 32); EXPECT_EQ(cv_u32->GetUnsignedValue(), 3000000000); auto cv_64 = ConstantValue::FromLiteral( LiteralUtil::CreateR0(static_cast<int64_t>(3000000000))); EXPECT_TRUE(cv_64.ok()); EXPECT_TRUE(cv_64->IsSigned()); EXPECT_EQ(cv_64->GetBitwidth(), 64); EXPECT_EQ(cv_64->GetSignedValue(), 3000000000); auto cv_u64 = ConstantValue::FromLiteral( LiteralUtil::CreateR0(static_cast<uint64_t>(6000000000))); EXPECT_TRUE(cv_u64.ok()); EXPECT_FALSE(cv_u64->IsSigned()); EXPECT_EQ(cv_u64->GetBitwidth(), 64); EXPECT_EQ(cv_u64->GetUnsignedValue(), 6000000000); } TEST_F(ConstantValueTest, Add) { ConstantValue lhs = ConstantValue::GetUnsigned(8388607, 23); ConstantValue rhs = ConstantValue::GetUnsigned(1, 23); ConstantValue result = lhs.add(rhs); EXPECT_EQ(result.GetUnsignedValue(), 0); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_FALSE(result.IsSigned()); lhs = ConstantValue::GetUnsigned(8388600, 23); rhs = ConstantValue::GetUnsigned(7, 23); result = lhs.add(rhs); EXPECT_EQ(result.GetUnsignedValue(), 8388607); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_FALSE(result.IsSigned()); lhs = ConstantValue::GetSigned(-10, 23); rhs = ConstantValue::GetSigned(4, 23); result = lhs.add(rhs); EXPECT_EQ(result.GetSignedValue(), -6); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_TRUE(result.IsSigned()); lhs = ConstantValue::GetSigned(-4194304, 23); rhs = ConstantValue::GetSigned(-1, 23); result = lhs.add(rhs); EXPECT_EQ(result.GetSignedValue(), 4194303); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_TRUE(result.IsSigned()); } TEST_F(ConstantValueTest, Sub) { ConstantValue lhs = ConstantValue::GetUnsigned(8388607, 23); ConstantValue rhs = ConstantValue::GetUnsigned(1, 23); ConstantValue result = lhs.sub(rhs); EXPECT_EQ(result.GetUnsignedValue(), 8388606); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_FALSE(result.IsSigned()); lhs = ConstantValue::GetUnsigned(6, 23); rhs = ConstantValue::GetUnsigned(7, 23); result = lhs.sub(rhs); EXPECT_EQ(result.GetUnsignedValue(), 8388607); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_FALSE(result.IsSigned()); lhs = ConstantValue::GetSigned(-10, 23); rhs = ConstantValue::GetSigned(4, 23); result = lhs.sub(rhs); EXPECT_EQ(result.GetSignedValue(), -14); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_TRUE(result.IsSigned()); lhs = ConstantValue::GetSigned(-4194304, 23); rhs = ConstantValue::GetSigned(1, 23); result = lhs.sub(rhs); EXPECT_EQ(result.GetSignedValue(), 4194303); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_TRUE(result.IsSigned()); } TEST_F(ConstantValueTest, Div) { ConstantValue lhs = ConstantValue::GetUnsigned(94, 23); ConstantValue rhs = ConstantValue::GetUnsigned(47, 23); ConstantValue result = lhs.div(rhs); EXPECT_EQ(result.GetUnsignedValue(), 2); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_FALSE(result.IsSigned()); lhs = ConstantValue::GetUnsigned(6, 23); rhs = ConstantValue::GetUnsigned(7, 23); result = lhs.div(rhs); EXPECT_EQ(result.GetUnsignedValue(), 0); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_FALSE(result.IsSigned()); lhs = ConstantValue::GetSigned(-10, 23); rhs = ConstantValue::GetSigned(4, 23); result = lhs.div(rhs); EXPECT_EQ(result.GetSignedValue(), -2); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_TRUE(result.IsSigned()); lhs = ConstantValue::GetSigned(-4194304, 23); rhs = ConstantValue::GetSigned(2, 23); result = lhs.div(rhs); EXPECT_EQ(result.GetSignedValue(), -2097152); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_TRUE(result.IsSigned()); } TEST_F(ConstantValueTest, Mod) { ConstantValue lhs = ConstantValue::GetUnsigned(94, 23); ConstantValue rhs = ConstantValue::GetUnsigned(47, 23); ConstantValue result = lhs.mod(rhs); EXPECT_EQ(result.GetUnsignedValue(), 0); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_FALSE(result.IsSigned()); lhs = ConstantValue::GetUnsigned(6, 23); rhs = ConstantValue::GetUnsigned(7, 23); result = lhs.mod(rhs); EXPECT_EQ(result.GetUnsignedValue(), 6); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_FALSE(result.IsSigned()); lhs = ConstantValue::GetSigned(-10, 23); rhs = ConstantValue::GetSigned(3, 23); result = lhs.mod(rhs); EXPECT_EQ(result.GetSignedValue(), -1); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_TRUE(result.IsSigned()); lhs = ConstantValue::GetSigned(-4194304, 23); rhs = ConstantValue::GetSigned(1, 23); result = lhs.mod(rhs); EXPECT_EQ(result.GetSignedValue(), 0); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_TRUE(result.IsSigned()); } TEST_F(ConstantValueTest, Mul) { ConstantValue lhs = ConstantValue::GetUnsigned(94, 23); ConstantValue rhs = ConstantValue::GetUnsigned(47, 23); ConstantValue result = lhs.mul(rhs); EXPECT_EQ(result.GetUnsignedValue(), 4418); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_FALSE(result.IsSigned()); lhs = ConstantValue::GetUnsigned(8388607, 23); rhs = ConstantValue::GetUnsigned(2, 23); result = lhs.mul(rhs); EXPECT_EQ(result.GetUnsignedValue(), 8388606); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_FALSE(result.IsSigned()); lhs = ConstantValue::GetSigned(-10, 23); rhs = ConstantValue::GetSigned(3, 23); result = lhs.mul(rhs); EXPECT_EQ(result.GetSignedValue(), -30); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_TRUE(result.IsSigned()); lhs = ConstantValue::GetSigned(-4194304, 23); rhs = ConstantValue::GetSigned(2, 23); result = lhs.mod(rhs); EXPECT_EQ(result.GetSignedValue(), 0); EXPECT_EQ(result.GetBitwidth(), 23); EXPECT_TRUE(result.IsSigned()); } TEST_F(ConstantValueTest, LtGtEq) { ConstantValue lhs = ConstantValue::GetUnsigned(94, 23); ConstantValue rhs = ConstantValue::GetUnsigned(47, 23); EXPECT_FALSE(lhs.lt(rhs)); EXPECT_TRUE(lhs.gt(rhs)); lhs = ConstantValue::GetUnsigned(8388607, 23); rhs = ConstantValue::GetUnsigned(2, 23); EXPECT_FALSE(lhs.lt(rhs)); EXPECT_TRUE(lhs.gt(rhs)); lhs = ConstantValue::GetSigned(-10, 23); rhs = ConstantValue::GetSigned(3, 23); lhs = ConstantValue::GetSigned(-4194304, 23); rhs = ConstantValue::GetSigned(2, 23); EXPECT_TRUE(lhs.lt(rhs)); EXPECT_FALSE(lhs.gt(rhs)); lhs = ConstantValue::GetUnsigned(43, 23); rhs = ConstantValue::GetUnsigned(43, 23); EXPECT_TRUE(lhs.eq(rhs)); EXPECT_TRUE(rhs.eq(lhs)); lhs = ConstantValue::GetSigned(-10, 23); rhs = ConstantValue::GetSigned(-10, 23); EXPECT_TRUE(lhs.eq(rhs)); EXPECT_TRUE(rhs.eq(lhs)); lhs = ConstantValue::GetUnsigned(4194304, 23); rhs = ConstantValue::GetUnsigned(2, 23); EXPECT_FALSE(lhs.eq(rhs)); EXPECT_FALSE(rhs.eq(lhs)); lhs = ConstantValue::GetSigned(-4194304, 23); rhs = ConstantValue::GetSigned(2, 23); EXPECT_FALSE(lhs.eq(rhs)); EXPECT_FALSE(rhs.eq(lhs)); } } }
1,853
cpp
tensorflow/tensorflow
all_gather_decomposer
third_party/xla/xla/service/all_gather_decomposer.cc
third_party/xla/xla/service/all_gather_decomposer_test.cc
#ifndef XLA_SERVICE_ALL_GATHER_DECOMPOSER_H_ #define XLA_SERVICE_ALL_GATHER_DECOMPOSER_H_ #include <cstdint> #include <functional> #include <utility> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/hlo_pass_interface.h" #include "xla/shape.h" namespace xla { class AllGatherDecomposer : public HloModulePass { public: explicit AllGatherDecomposer( std::function<bool(const HloAllGatherInstruction&)> should_decompose) : should_decompose_(std::move(should_decompose)) {} AllGatherDecomposer() : should_decompose_( [](const HloAllGatherInstruction& ag) { return true; }) {} absl::string_view name() const override { return "all_gather_decomposer"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; protected: virtual HloInstruction* TranslateAllGatherToAllReducePerOperand( CollectiveOpGroupMode group_mode, const HloAllGatherInstruction& ag, const Shape& output_shape, HloInstruction* operand, HloComputation* comp, int64_t ag_dim); virtual bool ShouldDecompose(const HloAllGatherInstruction& ag) const { return should_decompose_(ag); } absl::Status DecomposeAllGather(HloAllGatherInstruction* ag, HloComputation* comp); private: std::function<bool(const HloAllGatherInstruction&)> should_decompose_; }; } #endif #include "xla/service/all_gather_decomposer.h" #include <cstdint> #include <optional> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal_util.h" #include "xla/service/collective_decomposer_utils.h" #include "xla/service/collective_ops_utils.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace { HloComputation* MakeBinaryAdd(PrimitiveType type, HloModule* module) { HloComputation::Builder sum_b("add"); auto x = sum_b.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(type, {}), "x")); auto y = sum_b.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(type, {}), "y")); if (type == PRED) { sum_b.AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(type, {}), HloOpcode::kOr, x, y)); } else { sum_b.AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(type, {}), HloOpcode::kAdd, x, y)); } HloComputation* reduction = module->AddEmbeddedComputation(sum_b.Build()); return reduction; } } HloInstruction* AllGatherDecomposer::TranslateAllGatherToAllReducePerOperand( CollectiveOpGroupMode group_mode, const HloAllGatherInstruction& ag, const Shape& output_shape, HloInstruction* operand, HloComputation* comp, int64_t ag_dim) { std::vector<HloInstruction*> start_indices = CreateStartIndicesForCollectiveDecomposition( group_mode, ag.replica_groups(), operand->shape(), ag_dim, comp) .value(); auto zero = comp->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(output_shape.element_type()))); zero = comp->AddInstruction( HloInstruction::CreateBroadcast(output_shape, zero, {})); auto dus = comp->AddInstruction(HloInstruction::CreateDynamicUpdateSlice( zero->shape(), zero, operand, start_indices)); auto ar = comp->AddInstruction(HloInstruction::CreateAllReduce( dus->shape(), {dus}, MakeBinaryAdd(dus->shape().element_type(), comp->parent()), ag.device_list(), ag.constrain_layout(), ag.channel_id(), ag.use_global_device_ids())); return ar; } absl::Status AllGatherDecomposer::DecomposeAllGather( HloAllGatherInstruction* ag, HloComputation* comp) { TF_ASSIGN_OR_RETURN(CollectiveOpGroupMode group_mode, GetCollectiveOpGroupMode(ag->channel_id().has_value(), ag->use_global_device_ids())); if (ag->operand_count() > 1) { std::vector<HloInstruction*> tuple_inputs; for (int i = 0; i < ag->operand_count(); ++i) { auto* input_operand = ag->mutable_operand(i); const auto& output_shape = ag->shape().tuple_shapes(i); auto* ar = TranslateAllGatherToAllReducePerOperand( group_mode, *ag, output_shape, input_operand, comp, ag->all_gather_dimension()); tuple_inputs.push_back(ar); } auto tup = comp->AddInstruction(HloInstruction::CreateTuple(tuple_inputs)); TF_RETURN_IF_ERROR(ag->ReplaceAllUsesWith(tup)); } else { auto* ar = TranslateAllGatherToAllReducePerOperand( group_mode, *ag, ag->shape(), ag->mutable_operand(0), comp, ag->all_gather_dimension()); TF_RETURN_IF_ERROR(ag->ReplaceAllUsesWith(ar)); } TF_RETURN_IF_ERROR(comp->RemoveInstructionAndUnusedOperands(ag)); return absl::OkStatus(); } absl::StatusOr<bool> AllGatherDecomposer::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (auto comp : module->MakeNonfusionComputations(execution_threads)) { for (auto hlo : comp->MakeInstructionPostOrder()) { if (hlo->opcode() != HloOpcode::kAllGather) { continue; } auto ag = Cast<HloAllGatherInstruction>(hlo); if (ShouldDecompose(*ag)) { TF_RETURN_IF_ERROR(DecomposeAllGather(ag, comp)); changed = true; } } } return changed; } }
#include "xla/service/all_gather_decomposer.h" #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/hlo_parser.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using ::testing::AllOf; namespace op = xla::testing::opcode_matchers; using AllGatherDecomposerTest = HloTestBase; TEST_F(AllGatherDecomposerTest, CrossReplicaAllGather) { const std::string module_str = R"( HloModule module ENTRY entry { param0 = f32[10,20] parameter(0) ROOT ag = f32[10,80] all-gather(param0), replica_groups={}, dimensions={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); AllGatherDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(0), op::Constant(), op::Multiply(op::ReplicaId(), op::Constant())))); } TEST_F(AllGatherDecomposerTest, CrossReplicaAndPartitionAllGather) { const std::string module_str = R"( HloModule module ENTRY entry { param0 = f32[10,20] parameter(0) ROOT ag = f32[10,80] all-gather(param0), replica_groups={{0}}, channel_id=1, dimensions={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); AllGatherDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(0), op::Constant(), op::Multiply(op::PartitionId(), op::Constant())))); } TEST_F(AllGatherDecomposerTest, CrossReplicaAllGatherWithTrivialGroup) { const std::string module_str = R"( HloModule module ENTRY entry { param0 = f32[10,20] parameter(0) ROOT ag = f32[10,80] all-gather(param0), replica_groups={{0,1,2,3}}, dimensions={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); AllGatherDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(0), op::Constant(), op::Multiply(op::ReplicaId(), op::Constant())))); } TEST_F(AllGatherDecomposerTest, CrossReplicaAllGatherWithSubgroups) { const std::string module_str = R"( HloModule module ENTRY entry { param0 = f32[10,20] parameter(0) ROOT ag = f32[10,80] all-gather(param0), replica_groups={{2,1,0,3}, {4,6,7,5}}, dimensions={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); AllGatherDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); auto id = AllOf(op::Shape("u32[]"), op::Reshape(op::DynamicSlice(op::Constant(), op::ReplicaId()))); EXPECT_THAT(module->entry_computation()->root_instruction(), op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(0), op::Constant(), op::Multiply(id, op::Constant())))); } TEST_F(AllGatherDecomposerTest, CrossReplicaAllGatherWithSubgroupsGlobalIds) { const std::string module_str = R"( HloModule module ENTRY entry { param0 = f32[10,20] parameter(0) ROOT ag = f32[10,80] all-gather(param0), replica_groups={{2,1,0,3}, {4,6,7,5}}, dimensions={1}, channel_id=1, use_global_device_ids=true } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); AllGatherDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); auto global_id = op::Add(op::Multiply(op::ReplicaId(), op::Constant()), op::PartitionId()); auto id = AllOf(op::Shape("u32[]"), op::Reshape(op::DynamicSlice(op::Constant(), global_id))); EXPECT_THAT(module->entry_computation()->root_instruction(), op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(0), op::Constant(), op::Multiply(id, op::Constant())))); } TEST_F(AllGatherDecomposerTest, CrossReplicaAllGatherWithTuple) { const std::string module_str = R"( HloModule module ENTRY entry { param0 = f32[10,20] parameter(0) param1 = f32[10,16] parameter(1) ROOT ag = (f32[10,80], f32[10,64]) all-gather(param0, param1), replica_groups={}, dimensions={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); AllGatherDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Tuple( op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(0), op::Constant(), op::Multiply(op::ReplicaId(), op::Constant()))), op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(1), op::Constant(), op::Multiply(op::ReplicaId(), op::Constant()))))); } } }
1,854
cpp
tensorflow/tensorflow
all_reduce_reassociate
third_party/xla/xla/service/all_reduce_reassociate.cc
third_party/xla/xla/service/all_reduce_reassociate_test.cc
#ifndef XLA_SERVICE_ALL_REDUCE_REASSOCIATE_H_ #define XLA_SERVICE_ALL_REDUCE_REASSOCIATE_H_ #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class AllReduceReassociate : public HloModulePass { public: explicit AllReduceReassociate(bool reassociate_converted_ar = false) : reassociate_converted_ar_(reassociate_converted_ar) {} absl::string_view name() const override { return "all-reduce-reassociate"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: bool reassociate_converted_ar_; }; } #endif #include "xla/service/all_reduce_reassociate.h" #include <cstdint> #include <optional> #include <string> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/literal.h" #include "xla/primitive_util.h" #include "xla/service/all_reduce_key.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/pattern_matcher.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "tsl/platform/errors.h" namespace xla { namespace { namespace m = match; bool AreAllreduceKeysEqual(AllReduceKey& key0, AllReduceKey& key1, bool ignore_element_type) { if (ignore_element_type) { return std::get<0>(key0) == std::get<0>(key1) && std::get<2>(key0) == std::get<2>(key1) && std::get<3>(key0) == std::get<3>(key1) && std::get<4>(key0) == std::get<4>(key1) && std::get<5>(key0) == std::get<5>(key1); } else { return key0 == key1; } } bool AreCompatible(const HloAllReduceInstruction* ar0, const HloAllReduceInstruction* ar1, ReductionKind op_kind, bool ignore_element_type) { std::optional<AllReduceKey> key0 = GetAllReduceKey(ar0); std::optional<AllReduceKey> key1 = GetAllReduceKey(ar1); auto kind0 = MatchReductionComputation(ar0->to_apply()); return key0 && key1 && kind0 && AreAllreduceKeysEqual(*key0, *key1, ignore_element_type) && kind0 == op_kind; } HloInstruction* LookThroughForAllReduce(HloInstruction* instr, const Literal& reduction_identity) { if (instr->opcode() == HloOpcode::kDynamicSlice) { if (instr->operand(0)->opcode() != HloOpcode::kAllReduce || instr->operand(0)->user_count() != 1 || instr->user_count() != 1) { return nullptr; } return instr; } while (instr->opcode() != HloOpcode::kAllReduce) { if (instr->user_count() != 1) { return nullptr; } if (instr->opcode() != HloOpcode::kReshape && instr->opcode() != HloOpcode::kPad && instr->opcode() != HloOpcode::kSlice && instr->opcode() != HloOpcode::kConvert) { return nullptr; } if (instr->opcode() == HloOpcode::kPad) { if (!instr->operand(1)->IsConstant()) { return nullptr; } if (instr->operand(1)->literal() != reduction_identity) { return nullptr; } } instr = instr->mutable_operand(0); } if (instr->user_count() != 1) { return nullptr; } return instr; } bool ReassociateAllReduceIsProfitable(HloInstruction* ar0, HloInstruction* ar1, HloInstruction* reassociated_inst) { int64_t pre_reassociated_size = ShapeUtil::ElementsIn(ar0->shape()); if (ar0 != ar1) { pre_reassociated_size += ShapeUtil::ElementsIn(ar1->shape()); } return pre_reassociated_size >= ShapeUtil::ElementsIn(reassociated_inst->shape()); } bool AreCompatibleConverts(const HloInstruction* convert0, const HloInstruction* convert1) { bool is_compatible = true; if (convert0) { is_compatible &= primitive_util::CastPreservesValues( convert0->operand(0)->shape().element_type(), convert0->shape().element_type()); } if (convert1) { is_compatible &= primitive_util::CastPreservesValues( convert1->operand(0)->shape().element_type(), convert1->shape().element_type()); } if (convert0 && convert1) { CHECK(convert0->shape().element_type() == convert1->shape().element_type()); is_compatible &= convert0->operand(0)->shape().element_type() == convert1->operand(0)->shape().element_type(); } return is_compatible; } template <typename Pattern> auto OptionalConvertWithOneUser(HloInstruction** optional_convert, Pattern pattern) { return m::AnyOf<HloInstruction>( m::Convert(optional_convert, pattern).WithOneUser(), std::move(pattern)); } bool MatchOperandsToAllReduceWithOptionalConvert(HloInstruction* inst, HloInstruction** convert0, HloInstruction** convert1) { auto ar_op_optional_convert_pattern = m::Op() .WithOperand(0, OptionalConvertWithOneUser(convert0, m::AllReduce())) .WithOperand(1, OptionalConvertWithOneUser(convert1, m::AllReduce())) .WithPredicate([](const HloInstruction* inst) { return inst->shape().IsArray(); }); return Match(inst, ar_op_optional_convert_pattern); } } absl::StatusOr<bool> AllReduceReassociate::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { if (hlo_query::ContainsLayoutConstrainedAllReduce(*module)) { VLOG(1) << "Skip AllReduceReassociate because the module contains all-reduce " "with constrained layouts"; return false; } int64_t next_channel_id = hlo_query::NextChannelId(*module); bool changed = false; for (auto computation : module->computations(execution_threads)) { for (HloInstruction* inst : computation->MakeInstructionPostOrder()) { std::optional<ReductionKind> kind = MatchReductionInstruction(inst); if (!kind) { continue; } std::optional<Literal> reduction_identity = GetReductionIdentity(*kind, inst->shape().element_type()); if (!reduction_identity) { continue; } HloInstruction* lhs = LookThroughForAllReduce(inst->mutable_operand(0), *reduction_identity); if (lhs == nullptr) { continue; } HloInstruction* rhs = LookThroughForAllReduce(inst->mutable_operand(1), *reduction_identity); if (rhs == nullptr) { continue; } if (!inst->shape().IsArray()) { continue; } if (lhs->opcode() != rhs->opcode() || (lhs->opcode() == HloOpcode::kDynamicSlice && !ShapeUtil::Compatible(lhs->operand(0)->shape(), rhs->operand(0)->shape()))) { continue; } HloAllReduceInstruction* ar0 = nullptr; HloAllReduceInstruction* ar1 = nullptr; bool reduce_scatter_pattern_match = false; if (lhs->opcode() == HloOpcode::kDynamicSlice) { HloInstruction* original_rhs_operand = rhs->mutable_operand(0); TF_RETURN_IF_ERROR(rhs->ReplaceOperandWith(0, lhs->mutable_operand(0))); if (!lhs->Identical(*rhs)) { TF_RETURN_IF_ERROR(rhs->ReplaceOperandWith(0, original_rhs_operand)); continue; } TF_RETURN_IF_ERROR(rhs->ReplaceOperandWith(0, original_rhs_operand)); ar0 = Cast<HloAllReduceInstruction>(lhs->mutable_operand(0)); ar1 = Cast<HloAllReduceInstruction>(rhs->mutable_operand(0)); reduce_scatter_pattern_match = true; } else { ar0 = Cast<HloAllReduceInstruction>(lhs); ar1 = Cast<HloAllReduceInstruction>(rhs); } if (!ReassociateAllReduceIsProfitable(lhs, rhs, inst)) { continue; } HloInstruction* convert0 = nullptr; HloInstruction* convert1 = nullptr; if (!MatchOperandsToAllReduceWithOptionalConvert(inst, &convert0, &convert1)) { VLOG(2) << "One or both inputs are type-converted."; } bool should_promote_ar = convert0 || convert1; if (should_promote_ar) { if (!reassociate_converted_ar_) { VLOG(2) << "Promotions of all_reduces for reassociation will be " "disabled."; continue; } if (!AreCompatibleConverts(convert0, convert1)) { VLOG(2) << "Inputs' Converts are not preserving " "value, skipping"; continue; } } HloInstruction* op_operand0 = inst->mutable_operand(0); HloInstruction* op_operand1 = inst->mutable_operand(1); if (convert0) { op_operand0 = convert0->mutable_operand(0); } if (convert1) { op_operand1 = convert1->mutable_operand(0); } if (!AreCompatible(ar0, ar1, *kind, should_promote_ar)) { VLOG(2) << "All-Reduce operations are not compatible, skipping"; continue; } VLOG(2) << "Reassociated:"; VLOG(2) << "\tAR0: " << ar0->ToString(); VLOG(2) << "\tAR1: " << ar1->ToString(); auto op_users = inst->users(); HloInstruction* new_op_operand0 = ar0->mutable_operand(0); HloInstruction* new_op_operand1 = ar1->mutable_operand(0); if (convert0) { HloInstruction* ar0_operand = ar0->mutable_operand(0); TF_RETURN_IF_ERROR(convert0->ReplaceOperandWith(0, ar0_operand)); new_op_operand0 = convert0; } if (convert1) { HloInstruction* ar1_operand = ar1->mutable_operand(0); TF_RETURN_IF_ERROR(convert1->ReplaceOperandWith(0, ar1_operand)); new_op_operand1 = convert1; } HloInstruction* new_op = inst; if (should_promote_ar) { new_op = computation->AddInstruction(inst->CloneWithNewOperands( inst->shape(), {new_op_operand0, new_op_operand1})); } else if (reduce_scatter_pattern_match) { new_op = computation->AddInstruction(inst->CloneWithNewOperands( ar0->shape(), {new_op_operand0, new_op_operand1})); } Shape new_ar_out_shape = inst->shape(); CHECK(!should_promote_ar || !reduce_scatter_pattern_match); if (should_promote_ar) { new_ar_out_shape.set_element_type( new_op_operand0->shape().element_type()); } else if (reduce_scatter_pattern_match) { new_ar_out_shape = ar0->shape(); } else { TF_RETURN_IF_ERROR(ar0->ReplaceAllUsesWith(ar0->mutable_operand(0))); TF_RETURN_IF_ERROR(ar1->ReplaceAllUsesWith(ar1->mutable_operand(0))); } HloInstruction* new_ar = computation->AddInstruction( ar0->CloneWithNewOperands(new_ar_out_shape, {new_op})); if (new_ar->channel_id()) { new_ar->set_channel_id(next_channel_id++); } if (should_promote_ar) { HloComputation* to_apply = new_ar->to_apply(); PrimitiveType type = new_ar->shape().element_type(); std::string name = absl::StrCat(to_apply->name(), "_reassoc_promoted"); HloComputation::Builder promoted(name); auto x = promoted.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(type, {}), "x")); auto y = promoted.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(type, {}), "y")); promoted.AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(type, {}), to_apply->root_instruction()->opcode(), x, y)); HloComputation* to_apply_promoted = inst->GetModule()->AddEmbeddedComputation(promoted.Build()); new_ar->set_to_apply(to_apply_promoted); TF_RETURN_IF_ERROR(inst->ReplaceAllUsesWith(new_ar)); } else if (reduce_scatter_pattern_match) { auto dyn_slice_operands = lhs->mutable_operands(); dyn_slice_operands[0] = new_ar; HloInstruction* new_dyn_slice = inst->parent()->AddInstruction( lhs->CloneWithNewOperands(inst->shape(), dyn_slice_operands)); TF_RETURN_IF_ERROR(inst->ReplaceUsesWith(op_users, new_dyn_slice)); } else { TF_RETURN_IF_ERROR(inst->ReplaceUsesWith(op_users, new_ar)); } if (should_promote_ar || reduce_scatter_pattern_match) { TF_RETURN_IF_ERROR(computation->RemoveInstruction(inst)); } if (reduce_scatter_pattern_match) { TF_RETURN_IF_ERROR(computation->RemoveInstruction(lhs)); if (lhs != rhs) { TF_RETURN_IF_ERROR(computation->RemoveInstruction(rhs)); } } TF_RETURN_IF_ERROR(computation->RemoveInstruction(ar0)); if (ar0 != ar1) { TF_RETURN_IF_ERROR(computation->RemoveInstruction(ar1)); } changed = true; } } return changed; } }
#include "xla/service/all_reduce_reassociate.h" #include <cstddef> #include <memory> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace m = xla::testing::opcode_matchers; using ::testing::_; class AllReduceSimplifierTest : public HloTestBase { public: absl::StatusOr<std::unique_ptr<HloModule>> RunPass( absl::string_view hlo_module, bool expect_change, bool reassociate_converted_ar = false) { TF_ASSIGN_OR_RETURN(auto module, ParseAndReturnVerifiedModule(hlo_module)); auto changed = AllReduceReassociate(reassociate_converted_ar).Run(module.get()); if (!changed.ok()) { return changed.status(); } EXPECT_EQ(changed.value(), expect_change); return absl::StatusOr<std::unique_ptr<HloModule>>(std::move(module)); } size_t AllReduceCount(std::unique_ptr<HloModule>& module) { return absl::c_count_if(module->entry_computation()->instructions(), HloPredicateIsOp<HloOpcode::kAllReduce>); } }; TEST_F(AllReduceSimplifierTest, Simple) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), replica_groups={}, to_apply=sum ar1 = f32[8] all-reduce(p1), replica_groups={}, to_apply=sum ROOT add = f32[8] add(ar0, ar1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), m::AllReduce(m::Add(m::Parameter(0), m::Parameter(1)))); EXPECT_EQ(AllReduceCount(module), 1); } TEST_F(AllReduceSimplifierTest, SimpleWithChannelId) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), channel_id=1, replica_groups={}, to_apply=sum ar1 = f32[8] all-reduce(p1), channel_id=1, replica_groups={}, to_apply=sum ROOT add = f32[8] add(ar0, ar1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), m::AllReduce(m::Add(m::Parameter(0), m::Parameter(1)))); EXPECT_EQ(AllReduceCount(module), 1); } TEST_F(AllReduceSimplifierTest, SimpleChain) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) p2 = f32[8] parameter(2) p3 = f32[8] parameter(3) ar0 = f32[8] all-reduce(p0), replica_groups={}, to_apply=sum ar1 = f32[8] all-reduce(p1), replica_groups={}, to_apply=sum ar2 = f32[8] all-reduce(p2), replica_groups={}, to_apply=sum ar3 = f32[8] all-reduce(p3), replica_groups={}, to_apply=sum add0 = f32[8] add(ar0, ar1) add1 = f32[8] add(add0, ar2) ROOT add2 = f32[8] add(add1, ar3) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_THAT( module->entry_computation()->root_instruction(), m::AllReduce(m::Add( m::Add(m::Add(m::Parameter(0), m::Parameter(1)), m::Parameter(2)), m::Parameter(3)))); EXPECT_EQ(AllReduceCount(module), 1); } TEST_F(AllReduceSimplifierTest, SimpleTree) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) p2 = f32[8] parameter(2) p3 = f32[8] parameter(3) ar0 = f32[8] all-reduce(p0), replica_groups={}, to_apply=sum ar1 = f32[8] all-reduce(p1), replica_groups={}, to_apply=sum ar2 = f32[8] all-reduce(p2), replica_groups={}, to_apply=sum ar3 = f32[8] all-reduce(p3), replica_groups={}, to_apply=sum add0 = f32[8] add(ar0, ar1) add1 = f32[8] add(ar2, ar3) ROOT add2 = f32[8] add(add0, add1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), m::AllReduce(m::Add(m::Add(m::Parameter(0), m::Parameter(1)), m::Add(m::Parameter(2), m::Parameter(3))))); EXPECT_EQ(AllReduceCount(module), 1); } TEST_F(AllReduceSimplifierTest, MismatchOp0) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } max { a = f32[] parameter(0) b = f32[] parameter(1) ROOT r = f32[] maximum(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), replica_groups={}, to_apply=sum ar1 = f32[8] all-reduce(p1), replica_groups={}, to_apply=max ROOT add = f32[8] add(ar0, ar1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(AllReduceSimplifierTest, MismatchOp1) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } max { a = f32[] parameter(0) b = f32[] parameter(1) ROOT r = f32[] maximum(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), replica_groups={}, to_apply=max ar1 = f32[8] all-reduce(p1), replica_groups={}, to_apply=max ROOT add = f32[8] add(ar0, ar1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(AllReduceSimplifierTest, MismatchReplicaGroups) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), replica_groups={{0}}, to_apply=sum ar1 = f32[8] all-reduce(p1), replica_groups={}, to_apply=sum ROOT add = f32[8] add(ar0, ar1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(AllReduceSimplifierTest, MismatchHasChannelId) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), replica_groups={}, channel_id=3, to_apply=sum ar1 = f32[8] all-reduce(p1), replica_groups={}, to_apply=sum ROOT add = f32[8] add(ar0, ar1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(AllReduceSimplifierTest, MismatchUseGlobalDeviceId) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), replica_groups={{0, 1}}, channel_id=3, use_global_device_ids=true, to_apply=sum ar1 = f32[8] all-reduce(p1), replica_groups={{0, 1}}, channel_id=4, to_apply=sum ROOT add = f32[8] add(ar0, ar1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(AllReduceSimplifierTest, NotSingleUser) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), replica_groups={}, to_apply=sum ar1 = f32[8] all-reduce(p1), replica_groups={}, to_apply=sum add = f32[8] add(ar0, ar1) ROOT t = (f32[8], f32[8]) tuple(ar0, add) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(AllReduceSimplifierTest, DoubleUse) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), replica_groups={}, to_apply=sum add = f32[8] add(ar0, ar0) ROOT c = f32[8] copy(add) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); } TEST_F(AllReduceSimplifierTest, PaddedUse) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), replica_groups={}, to_apply=sum ar1 = f32[8] all-reduce(p1), replica_groups={}, to_apply=sum %constant.1 = f32[] constant(0) pad = f32[12]{0} pad(ar0, constant.1), padding=0_4 pad.1 = f32[12]{0} pad(ar1, constant.1), padding=0_4 ROOT add = f32[12] add(pad, pad.1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), m::AllReduce(m::Add(m::Pad(m::Parameter(0), _), m::Pad(m::Parameter(1), _)))); EXPECT_EQ(AllReduceCount(module), 1); } TEST_F(AllReduceSimplifierTest, PaddedUseInvalidReduceValue) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), replica_groups={}, to_apply=sum ar1 = f32[8] all-reduce(p1), replica_groups={}, to_apply=sum %constant.1 = f32[] constant(-1.0) pad = f32[12]{0} pad(ar0, constant.1), padding=0_4 pad.1 = f32[12]{0} pad(ar1, constant.1), padding=0_4 ROOT add = f32[12] add(pad, pad.1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); EXPECT_EQ(AllReduceCount(module), 2); } TEST_F(AllReduceSimplifierTest, PaddedUseNotProfitable) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), replica_groups={}, to_apply=sum ar1 = f32[8] all-reduce(p1), replica_groups={}, to_apply=sum %constant.1 = f32[] constant(0) pad = f32[17]{0} pad(ar0, constant.1), padding=0_9 pad.1 = f32[17]{0} pad(ar1, constant.1), padding=0_9 ROOT add = f32[17] add(pad, pad.1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); EXPECT_EQ(AllReduceCount(module), 2); } TEST_F(AllReduceSimplifierTest, PaddedUseDoubleUseNotProfitable) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), replica_groups={}, to_apply=sum %constant.1 = f32[] constant(0) pad = f32[9]{0} pad(ar0, constant.1), padding=0_1 ROOT add = f32[9] add(pad, pad) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); EXPECT_EQ(AllReduceCount(module), 1); } TEST_F(AllReduceSimplifierTest, ReshapeUse) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[1,8] parameter(0) p1 = f32[1,8] parameter(1) ar0 = f32[1,8] all-reduce(p0), replica_groups={}, to_apply=sum ar1 = f32[1,8] all-reduce(p1), replica_groups={}, to_apply=sum rshp0 = f32[8]{0} reshape(ar0) rshp1 = f32[8]{0} reshape(ar1) ROOT add = f32[8] add(rshp0, rshp1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), m::AllReduce(m::Add(m::Reshape(m::Parameter(0)), m::Reshape(m::Parameter(1))))); EXPECT_EQ(AllReduceCount(module), 1); } TEST_F(AllReduceSimplifierTest, SliceUse) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) ar0 = f32[8] all-reduce(p0), replica_groups={}, to_apply=sum ar1 = f32[8] all-reduce(p1), replica_groups={}, to_apply=sum rshp0 = f32[4]{0} slice(ar0), slice={[0:4]} rshp1 = f32[4]{0} slice(ar1), slice={[0:4]} ROOT add = f32[4] add(rshp0, rshp1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), m::AllReduce(m::Add(m::Slice(m::Parameter(0)), m::Slice(m::Parameter(1))))); EXPECT_EQ(AllReduceCount(module), 1); } TEST_F(AllReduceSimplifierTest, ChainWithConvert) { absl::string_view hlo_string = R"( HloModule m add.1 { x.47 = bf16[] parameter(0) y.47 = bf16[] parameter(1) ROOT add.2532 = bf16[] add(x.47, y.47) } ENTRY main { p0 = bf16[8] parameter(0) p1 = bf16[8] parameter(1) p2 = bf16[8] parameter(2) p3 = bf16[8] parameter(3) ar0 = bf16[8] all-reduce(p0), replica_groups={}, to_apply=add.1 ar1 = bf16[8] all-reduce(p1), replica_groups={}, to_apply=add.1 ar2 = bf16[8] all-reduce(p2), replica_groups={}, to_apply=add.1 ar3 = bf16[8] all-reduce(p3), replica_groups={}, to_apply=add.1 convert0 = f32[8] convert(ar0) convert1 = f32[8] convert(ar1) add0 = f32[8] add(convert0, convert1) convert2 = f32[8] convert(ar2) add1 = f32[8] add(add0, convert2) convert3 = f32[8] convert(ar3) add2 = f32[8] add(add1, convert3) ROOT convert4 = bf16[8] convert(add2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true, true)); SCOPED_TRACE(module->ToString()); EXPECT_THAT( module->entry_computation()->root_instruction(), m::Convert(m::AllReduce(m::Add(m::Add(m::Add(m::Convert(m::Parameter(0)), m::Convert(m::Parameter(1))), m::Convert(m::Parameter(2))), m::Convert(m::Parameter(3)))))); EXPECT_EQ(AllReduceCount(module), 1); EXPECT_THAT( module->entry_computation()->root_instruction()->operand(0)->shape(), GmockMatch(::xla::match::Shape().WithElementType(F32))); } TEST_F(AllReduceSimplifierTest, AllreduceWithConvertIncompatibleType) { absl::string_view hlo_string = R"( HloModule m add.1 { x.47 = bf16[] parameter(0) y.47 = bf16[] parameter(1) ROOT add.2532 = bf16[] add(x.47, y.47) } max.1 { x.48 = bf16[] parameter(0) y.48 = bf16[] parameter(1) ROOT max.2533 = bf16[] maximum(x.48, y.48) } min.1 { x.49 = bf16[] parameter(0) y.49 = bf16[] parameter(1) ROOT min.2534 = bf16[] minimum(x.49, y.49) } mul.1 { x.50 = bf16[] parameter(0) y.50 = bf16[] parameter(1) ROOT mul.2535 = bf16[] multiply(x.50, y.50) } ENTRY main { p0 = bf16[8] parameter(0) p1 = bf16[8] parameter(1) p2 = bf16[8] parameter(2) p3 = bf16[8] parameter(3) ar0 = bf16[8] all-reduce(p0), replica_groups={}, to_apply=add.1 ar1 = bf16[8] all-reduce(p1), replica_groups={}, to_apply=max.1 ar2 = bf16[8] all-reduce(p2), replica_groups={}, to_apply=min.1 ar3 = bf16[8] all-reduce(p3), replica_groups={}, to_apply=mul.1 convert0 = f32[8] convert(ar0) convert1 = f32[8] convert(ar1) add0 = f32[8] add(convert0, convert1) convert2 = f32[8] convert(ar2) add1 = f32[8] add(add0, convert2) convert3 = f32[8] convert(ar3) add2 = f32[8] add(add1, convert3) ROOT convert4 = bf16[8] convert(add2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); SCOPED_TRACE(module->ToString()); } TEST_F(AllReduceSimplifierTest, AllreduceWithLossyConvert) { absl::string_view hlo_string = R"( HloModule m add.1 { x.47 = bf16[] parameter(0) y.47 = bf16[] parameter(1) ROOT add.2532 = bf16[] add(x.47, y.47) } ENTRY main { p0 = bf16[8] parameter(0) p1 = bf16[8] parameter(1) p2 = bf16[8] parameter(2) p3 = bf16[8] parameter(3) ar0 = bf16[8] all-reduce(p0), replica_groups={}, to_apply=add.1 ar1 = bf16[8] all-reduce(p1), replica_groups={}, to_apply=add.1 ar2 = bf16[8] all-reduce(p2), replica_groups={}, to_apply=add.1 ar3 = bf16[8] all-reduce(p3), replica_groups={}, to_apply=add.1 convert0 = u32[8] convert(ar0) convert1 = u32[8] convert(ar1) add0 = u32[8] add(convert0, convert1) convert2 = u32[8] convert(ar2) add1 = u32[8] add(add0, convert2) convert3 = u32[8] convert(ar3) add2 = u32[8] add(add1, convert3) ROOT convert4 = bf16[8] convert(add2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); SCOPED_TRACE(module->ToString()); } TEST_F(AllReduceSimplifierTest, AllReduceDynamicSlicePattern) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[1,8] parameter(0) p1 = f32[1,8] parameter(1) p2 = f32[1,8] parameter(2) p3 = s32[] parameter(3) cst = s32[] constant(0) ar0 = f32[1,8] all-reduce(p0), replica_groups={}, to_apply=sum ar1 = f32[1,8] all-reduce(p1), replica_groups={}, to_apply=sum ar2 = f32[1,8] all-reduce(p2), replica_groups={}, to_apply=sum dyn0 = f32[1,4] dynamic-slice(ar0, cst, p3), dynamic_slice_sizes={1,4} dyn1 = f32[1,4] dynamic-slice(ar1, cst, p3), dynamic_slice_sizes={1,4} dyn2 = f32[1,4] dynamic-slice(ar2, cst, p3), dynamic_slice_sizes={1,4} add = f32[1,4] add(dyn0, dyn1) ROOT add1 = f32[1,4] add(add, dyn2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), m::DynamicSlice( m::AllReduce(m::Add(m::Add(m::Parameter(0), m::Parameter(1)), m::Parameter(2))), m::Constant(), m::Parameter(3))); XLA_VLOG_LINES(1, module->ToString()); EXPECT_EQ(AllReduceCount(module), 1); } TEST_F(AllReduceSimplifierTest, AllReduceDynamicSlicePatternSameOperand) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[1,8] parameter(0) p1 = f32[1,8] parameter(1) p2 = s32[] parameter(2) cst = s32[] constant(0) ar0 = f32[1,8] all-reduce(p0), replica_groups={}, to_apply=sum ar2 = f32[1,8] all-reduce(p1), replica_groups={}, to_apply=sum dyn0 = f32[1,4] dynamic-slice(ar0, cst, p2), dynamic_slice_sizes={1,4} dyn2 = f32[1,4] dynamic-slice(ar2, cst, p2), dynamic_slice_sizes={1,4} add = f32[1,4] add(dyn0, dyn0) ROOT add1 = f32[1,4] add(add, dyn2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), m::DynamicSlice( m::AllReduce(m::Add(m::Add(m::Parameter(0), m::Parameter(0)), m::Parameter(1))), m::Constant(), m::Parameter(2))); XLA_VLOG_LINES(1, module->ToString()); EXPECT_EQ(AllReduceCount(module), 1); } TEST_F(AllReduceSimplifierTest, AllReduceDynamicSliceDifferentSlices) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[1,8] parameter(0) p1 = f32[1,8] parameter(1) p2 = f32[1,16] parameter(2) p3 = s32[] parameter(3) cst = s32[] constant(0) ar0 = f32[1,8] all-reduce(p0), replica_groups={}, to_apply=sum ar1 = f32[1,8] all-reduce(p1), replica_groups={}, to_apply=sum ar2 = f32[1,16] all-reduce(p2), replica_groups={}, to_apply=sum dyn0 = f32[1,4] dynamic-slice(ar0, cst, p3), dynamic_slice_sizes={1,4} dyn1 = f32[1,4] dynamic-slice(ar1, cst, p3), dynamic_slice_sizes={1,4} dyn2 = f32[1,4] dynamic-slice(ar2, cst, p3), dynamic_slice_sizes={1,4} add = f32[1,4] add(dyn0, dyn1) ROOT add1 = f32[1,4] add(add, dyn2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_THAT( module->entry_computation()->root_instruction(), m::Add(m::DynamicSlice(), m::DynamicSlice(m::AllReduce(), m::Constant(), m::Parameter(3)))); XLA_VLOG_LINES(1, module->ToString()); EXPECT_EQ(AllReduceCount(module), 2); } } }
1,855
cpp
tensorflow/tensorflow
sharding_remover
third_party/xla/xla/service/sharding_remover.cc
third_party/xla/xla/service/sharding_remover_test.cc
#ifndef XLA_SERVICE_SHARDING_REMOVER_H_ #define XLA_SERVICE_SHARDING_REMOVER_H_ #include <memory> #include <vector> #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class ShardingRemover : public HloModulePass { public: absl::string_view name() const override { return "sharding-remover"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } #endif #include "xla/service/sharding_remover.h" #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "tsl/platform/errors.h" namespace xla { absl::StatusOr<bool> ShardingRemover::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; const absl::flat_hash_set<absl::string_view> to_remove_sharding_ops = { "Sharding", "SPMDShardToFullShape", "SPMDFullToShardShape"}; for (HloComputation* computation : module->computations(execution_threads)) { auto instructions = computation->MakeInstructionPostOrder(); std::reverse(instructions.begin(), instructions.end()); for (HloInstruction* instruction : instructions) { if (instruction->opcode() != HloOpcode::kCustomCall) { continue; } if (!to_remove_sharding_ops.contains(instruction->custom_call_target())) { continue; } CHECK(instruction->operand_count() == 1) << "Sharding instruction must have exactly one operand"; TF_RETURN_IF_ERROR(instruction->ReplaceAllUsesWith( instruction->mutable_operand(0), name())); changed = true; if (instruction->custom_call_target() == "Sharding") { auto copy = computation->AddInstruction( HloInstruction::CreateUnary(instruction->shape(), HloOpcode::kCopy, instruction->mutable_operand(0))); TF_RETURN_IF_ERROR(computation->ReplaceInstruction(instruction, copy)); instruction = copy; } } } return changed; } }
#include "xla/service/sharding_remover.h" #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/hlo_parser.h" #include "xla/status_macros.h" #include "xla/tests/hlo_test_base.h" namespace op = xla::testing::opcode_matchers; namespace xla { namespace { using ShardingRemoverTest = HloTestBase; TEST_F(ShardingRemoverTest, RemoveSharding) { const char* const hlo_string = R"( HloModule module ENTRY entry { %parameter.3379 = f32[1,1]{1,0} parameter(0) %custom-call.3380 = f32[1,1]{1,0} custom-call(f32[1,1]{1,0} %parameter.3379), custom_call_target="Sharding", sharding={replicated} ROOT %reshape.6032 = f32[] reshape(f32[1,1]{1,0} %custom-call.3380) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, ShardingRemover().Run(module.get())); EXPECT_TRUE(changed); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Reshape(op::Parameter())); auto parameter = root->operand(0); EXPECT_EQ(parameter->user_count(), 2); bool replaced = false; for (HloInstruction* user : parameter->users()) { if (user->opcode() == HloOpcode::kCopy) { replaced = true; EXPECT_THAT(user, op::Copy(op::Parameter())); break; } } EXPECT_TRUE(replaced); } TEST_F(ShardingRemoverTest, RemoveSPMDShardingToFullShape) { const char* const hlo_string = R"( HloModule module ENTRY entry { %parameter.3379 = f32[1,1]{1,0} parameter(0) %custom-call.3380 = f32[1,1]{1,0} custom-call(f32[1,1]{1,0} %parameter.3379), custom_call_target="SPMDShardToFullShape", sharding={replicated} ROOT %reshape.6032 = f32[] reshape(f32[1,1]{1,0} %custom-call.3380) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, ShardingRemover().Run(module.get())); EXPECT_TRUE(changed); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Reshape(op::Parameter())); } TEST_F(ShardingRemoverTest, RemoveSPMDFullToShardShape) { const char* const hlo_string = R"( HloModule module ENTRY entry { %parameter.3379 = f32[1,1]{1,0} parameter(0) %custom-call.3380 = f32[1,1]{1,0} custom-call(f32[1,1]{1,0} %parameter.3379), custom_call_target="SPMDFullToShardShape", sharding={replicated} ROOT %reshape.6032 = f32[] reshape(f32[1,1]{1,0} %custom-call.3380) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, ShardingRemover().Run(module.get())); EXPECT_TRUE(changed); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Reshape(op::Parameter())); } TEST_F(ShardingRemoverTest, NoChangeForOtherCustomCall) { const char* const hlo_string = R"( HloModule cluster_2013453984438090939__.47 ENTRY %cluster_2013453984438090939__.47 (arg_tuple.1: ()) -> (bf16[2,2000], s32[2,2000]) { %arg_tuple.1 = bf16[2,209664] parameter(0) %custom-call = (bf16[2,2000]{1,0}, s32[2,2000]{1,0}) custom-call(bf16[2,209664]{1,0} %arg_tuple.1), custom_call_target="TopK" %get-tuple-element = bf16[2,2000]{1,0} get-tuple-element((bf16[2,2000]{1,0}, s32[2,2000]{1,0}) %custom-call), index=0 %get-tuple-element.1 = s32[2,2000]{1,0} get-tuple-element((bf16[2,2000]{1,0}, s32[2,2000]{1,0}) %custom-call), index=1, sharding={replicated} ROOT %tuple.46 = (bf16[2,2000]{1,0}, s32[2,2000]{1,0}) tuple(bf16[2,2000]{1,0} %get-tuple-element, s32[2,2000]{1,0} %get-tuple-element.1), metadata={op_name="XLA_Retvals"} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, ShardingRemover().Run(module.get())); EXPECT_FALSE(changed); } } }
1,856
cpp
tensorflow/tensorflow
triangular_solve_expander
third_party/xla/xla/service/triangular_solve_expander.cc
third_party/xla/xla/service/triangular_solve_expander_test.cc
#ifndef XLA_SERVICE_TRIANGULAR_SOLVE_EXPANDER_H_ #define XLA_SERVICE_TRIANGULAR_SOLVE_EXPANDER_H_ #include "absl/container/flat_hash_map.h" #include "xla/client/xla_builder.h" #include "xla/service/op_expander_pass.h" namespace xla { class TriangularSolveExpander : public OpExpanderPass { public: explicit TriangularSolveExpander(int64_t block_size = 128); absl::string_view name() const override { return "triangular_solve_expander"; } protected: virtual bool UseDirectSolves() const { return true; } bool InstructionMatchesPattern(HloInstruction* instruction) override; absl::StatusOr<HloInstruction*> ExpandInstruction( HloInstruction* instruction) override; XlaOp SolveByInvertingDiagonalBlocks(XlaOp a, XlaOp b, bool left_side, bool lower, bool transpose_a, bool conjugate_a, bool unit_diagonal, PrecisionConfig::Precision precision); virtual XlaOp InvertDiagonalBlocks(XlaOp diag_blocks, bool lower_triangular, PrecisionConfig::Precision precision); XlaOp SolveDirectly(XlaOp a, XlaOp b, bool left_side, bool lower, bool transpose_a, bool conjugate_a, bool unit_diagonal, PrecisionConfig::Precision precision); XlaOp BuildTriangularSolve(XlaOp a, XlaOp b, bool left_side, bool lower, bool transpose_a, bool conjugate_a, bool unit_diagonal, int64_t block_size, PrecisionConfig::Precision precision); private: const int64_t block_size_; absl::flat_hash_map<std::string, HloComputation*> computation_cache_; }; } #endif #include "xla/service/triangular_solve_expander.h" #include <memory> #include <vector> #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/client/lib/constants.h" #include "xla/client/lib/math.h" #include "xla/client/lib/matrix.h" #include "xla/client/lib/slicing.h" #include "xla/client/xla_builder.h" #include "xla/client/xla_computation.h" #include "xla/literal.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/util.h" namespace xla { namespace { XlaOp DiagonalBlocks(XlaOp a, int64_t block_size) { XlaBuilder* builder = a.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(a)); int ndims = shape.rank(); int64_t n = ShapeUtil::GetDimension(shape, -1); int64_t num_blocks = n / block_size; absl::Span<int64_t const> batch_dims = absl::MakeConstSpan( shape.dimensions().begin(), shape.dimensions().begin() + (ndims - 2)); XlaOp diag_blocks; if (n == block_size) { std::vector<int64_t> permutation(ndims); std::iota(permutation.begin(), permutation.end(), 1); permutation.insert(permutation.end() - 2, 0); return Transpose(Broadcast(a, {1}), permutation); } if (n > block_size) { auto start_indices = Transpose(Broadcast(Mul(Iota(builder, S32, num_blocks), ConstantR0<int32_t>(builder, block_size)), {2}), {1, 0}); std::vector<int64_t> slice_sizes(ndims); GatherDimensionNumbers dim_numbers; for (int i = 0; i < ndims - 2; ++i) { dim_numbers.add_offset_dims(i); slice_sizes[i] = ShapeUtil::GetDimension(shape, i); } slice_sizes[ndims - 2] = slice_sizes[ndims - 1] = block_size; dim_numbers.add_offset_dims(ndims - 1); dim_numbers.add_offset_dims(ndims); dim_numbers.add_start_index_map(ndims - 2); dim_numbers.add_start_index_map(ndims - 1); dim_numbers.set_index_vector_dim(1); diag_blocks = Gather(a, start_indices, dim_numbers, slice_sizes); } if (n % block_size != 0) { auto last_blocks = SliceInMinorDims(a, {n - n % block_size, n - n % block_size}, {n, n}); PaddingConfig config = MakeNoPaddingConfig(ndims); int64_t padding = block_size - n % block_size; config.mutable_dimensions(ndims - 2)->set_edge_padding_high(padding); last_blocks = Pad(last_blocks, Zero(builder, shape.element_type()), config); auto eye = IdentityMatrix(builder, shape.element_type(), padding, padding); config = MakeNoPaddingConfig(2); config.mutable_dimensions(0)->set_edge_padding_low(n % block_size); eye = Pad(eye, Zero(builder, shape.element_type()), config); eye = Broadcast(eye, batch_dims); last_blocks = ConcatInDim(builder, {last_blocks, eye}, ndims - 1); TF_ASSIGN_OR_RETURN(Shape blocks_shape, builder->GetShape(last_blocks)); auto shape_dims = blocks_shape.dimensions(); auto last_blocks_dims = std::vector<int64_t>(ndims); std::copy(shape_dims.begin(), shape_dims.end(), last_blocks_dims.begin()); last_blocks_dims.insert(last_blocks_dims.end() - 2, 1); last_blocks = Reshape(last_blocks, last_blocks_dims); if (n > block_size) { diag_blocks = ConcatInDim(builder, {diag_blocks, last_blocks}, ndims - 2); } else { diag_blocks = last_blocks; } } return diag_blocks; }); } XlaOp SolveWithInvertedDiagonalBlocks(XlaOp a, XlaOp b, XlaOp inv_diag_blocks, bool left_side, bool lower, bool transpose_a, bool conjugate_a, PrecisionConfig::Precision precision) { XlaBuilder* builder = a.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape blocks_shape, builder->GetShape(inv_diag_blocks)); TF_ASSIGN_OR_RETURN(Shape b_shape, builder->GetShape(b)); int64_t block_size = ShapeUtil::GetDimension(blocks_shape, -1); TF_ASSIGN_OR_RETURN(Shape a_shape, builder->GetShape(a)); int64_t ndims = a_shape.rank(); int64_t n = ShapeUtil::GetDimension(a_shape, -1); int64_t num_blocks = n / block_size + (n % block_size != 0); int64_t m_dim = (left_side) ? -1 : -2; int64_t m = ShapeUtil::GetDimension(b_shape, m_dim); std::vector<XlaOp> update_ops; int bdims = b_shape.rank(); int64_t block_dim = (left_side) ? bdims - 2 : bdims - 1; XlaOp x; for (int i = 0; i < num_blocks; i++) { bool backward = left_side ^ lower ^ transpose_a; auto j = backward ? num_blocks - 1 - i : i; int64_t block = (n % block_size != 0 && j + 1 == num_blocks) ? n % block_size : block_size; auto inv_block = MaybeConjugate(Collapse(SliceInMinorDims(inv_diag_blocks, {j, 0, 0}, {j + 1, block, block}), {ndims - 2, ndims - 1}), conjugate_a); int64_t k = std::min((j + 1) * block_size, n); std::vector<int64_t> start = {j * block_size, 0}; std::vector<int64_t> end = {k, m}; if (!left_side) { std::swap(start[0], start[1]); std::swap(end[0], end[1]); } auto b_row = SliceInMinorDims(b, start, end); XlaOp remainder; if (i == 0) { remainder = b_row; } else { if (backward) { start = {j * block_size, std::max(int64_t{0}, (num_blocks - i) * block_size)}; end = {k, n}; } else { start = {j * block_size, 0}; end = {k, std::min(i * block_size, n)}; } if (!left_side ^ transpose_a) { std::swap(start[0], start[1]); std::swap(end[0], end[1]); } auto a_row = MaybeConjugate(SliceInMinorDims(a, start, end), conjugate_a); if (left_side) { remainder = b_row - BatchDot(a_row, transpose_a, x, false, precision); } else { remainder = b_row - BatchDot(x, false, a_row, transpose_a, precision); } } XlaOp x_update; if (left_side) { x_update = BatchDot(inv_block, transpose_a, remainder, false, precision); } else { x_update = BatchDot(remainder, false, inv_block, transpose_a, precision); } if (i == 0) { x = x_update; } else { if (backward) { x = ConcatInDim(builder, {x_update, x}, block_dim); } else { x = ConcatInDim(builder, {x, x_update}, block_dim); } } } return x; }); } } XlaOp TriangularSolveExpander::InvertDiagonalBlocks( XlaOp diag_blocks, bool lower_triangular, PrecisionConfig::Precision precision) { XlaBuilder* builder = diag_blocks.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(diag_blocks)); int64_t block_size = ShapeUtil::GetDimension(shape, -1); int64_t num_blocks = ShapeUtil::ElementsIn(shape) / IPow(block_size, 2); diag_blocks = Reshape(diag_blocks, {num_blocks, block_size, block_size}); diag_blocks = Triangle(diag_blocks, lower_triangular); auto diags = GetMatrixDiagonal(diag_blocks); auto ones = FullLike(diags, 1); diags = Select(Eq(diags, Zero(builder, shape.element_type())), ones, diags); auto scaled_diag_blocks = Div(diag_blocks, diags, {0, 2}); auto identity = IdentityMatrix(builder, shape.element_type(), block_size, block_size); auto neg_identity = -identity; auto pos_one = Reshape(One(builder, shape.element_type()), {1, 1}); auto start_index = ConstantR0<int>(builder, lower_triangular ? 0 : block_size - 1); auto output_block = DynamicUpdateSlice(neg_identity, pos_one, {start_index, start_index}); XlaOp output = Broadcast(output_block, {num_blocks}); std::vector<Shape> tuple_shapes = { ShapeUtil::MakeShape(S32, {}), ShapeUtil::MakeShape(shape.element_type(), {num_blocks, block_size, block_size}), ShapeUtil::MakeShape(shape.element_type(), {num_blocks, block_size, block_size})}; Shape tuple_shape = ShapeUtil::MakeTupleShape(tuple_shapes); auto init_i = One(builder, S32); auto init = Tuple(builder, {init_i, output, scaled_diag_blocks}); std::unique_ptr<XlaBuilder> condb = builder->CreateSubBuilder("InvertDiagCond"); { auto i = GetTupleElement( Parameter(condb.get(), 0, tuple_shape, "InvertDiagCondTuple"), 0); Lt(i, ConstantR0<int32_t>(condb.get(), block_size)); } TF_ASSIGN_OR_RETURN(auto cond, condb->Build()); std::unique_ptr<XlaBuilder> bodyb = builder->CreateSubBuilder("InvertDiagBody"); { auto input_tuple = Parameter(bodyb.get(), 0, tuple_shape, "InvertDiagBodyTuple"); auto i = GetTupleElement(input_tuple, 0); auto body_out = GetTupleElement(input_tuple, 1); auto body_input = GetTupleElement(input_tuple, 2); auto zero = ConstantR0<int32_t>(bodyb.get(), 0); auto j = lower_triangular ? i : ScalarLike(i, block_size - 1) - i; auto input_row = DynamicSlice(body_input, {zero, j, zero}, {num_blocks, 1, block_size}); DotDimensionNumbers dnums; dnums.add_lhs_batch_dimensions(0); dnums.add_rhs_batch_dimensions(0); dnums.add_lhs_contracting_dimensions(2); dnums.add_rhs_contracting_dimensions(1); PrecisionConfig precision_proto; precision_proto.add_operand_precision(precision); precision_proto.add_operand_precision(precision); auto update = -DotGeneral(input_row, body_out, dnums, &precision_proto); body_out = DynamicUpdateSlice(body_out, update, {zero, j, zero}); auto next_i = i + ScalarLike(i, 1); Tuple(bodyb.get(), {next_i, body_out, body_input}); } TF_ASSIGN_OR_RETURN(auto body, bodyb->Build()); auto invert_while = While(cond, body, init); auto inv_diag_blocks = GetTupleElement(invert_while, 1); inv_diag_blocks = Div(inv_diag_blocks, diags, {0, 1}); return Reshape(inv_diag_blocks, shape.dimensions()); }); } XlaOp TriangularSolveExpander::SolveByInvertingDiagonalBlocks( XlaOp a, XlaOp b, bool left_side, bool lower, bool transpose_a, bool conjugate_a, bool unit_diagonal, PrecisionConfig::Precision precision) { XlaBuilder* builder = a.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape a_shape, builder->GetShape(a)); const int64_t ndims = a_shape.rank(); int64_t k = ShapeUtil::GetDimension(a_shape, -1); if (unit_diagonal) { a = lower ? Select(TriangleMask(a, -1), a, ZerosLike(a)) : Select(TriangleMask(a, 0), ZerosLike(a), a); a = xla::Add(a, IdentityMatrix(builder, a_shape.element_type(), k, k), {ndims - 2, ndims - 1}); } else { a = Triangle(a, lower); } int64_t block_size = std::min(block_size_, k); auto diag_blocks = DiagonalBlocks(a, block_size); auto inv_diag_blocks = InvertDiagonalBlocks(diag_blocks, lower, precision); return SolveWithInvertedDiagonalBlocks(a, b, inv_diag_blocks, left_side, lower, transpose_a, conjugate_a, precision); }); } XlaOp TriangularSolveExpander::SolveDirectly( XlaOp a, XlaOp b, bool left_side, bool lower, bool transpose_a, bool conjugate_a, bool unit_diagonal, PrecisionConfig::Precision precision) { XlaBuilder* builder = a.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape a_shape, builder->GetShape(a)); TF_ASSIGN_OR_RETURN(Shape b_shape, builder->GetShape(b)); int64_t m = ShapeUtil::GetDimension(b_shape, -2); int64_t n = ShapeUtil::GetDimension(b_shape, -1); const int64_t a_size = ShapeUtil::GetDimension(a_shape, -1); a = MaybeConjugate(a, conjugate_a); bool backwards = transpose_a ^ lower ^ !left_side; for (int64_t i = 0; i < a_size; ++i) { int64_t j = backwards ? i : (a_size - i - 1); std::vector<int64_t> b_row_start, b_row_end; if (left_side) { b_row_start = {j, 0}; b_row_end = {j + 1, n}; } else { b_row_start = {0, j}; b_row_end = {m, j + 1}; } auto b_row = SliceInMinorDims(b, b_row_start, b_row_end); std::vector<int64_t> a_start = {j, backwards ? 0 : (j + 1)}; std::vector<int64_t> a_end = {j + 1, backwards ? j : a_size}; if (transpose_a ^ !left_side) { std::swap(a_start[0], a_start[1]); std::swap(a_end[0], a_end[1]); } auto a_chunk = SliceInMinorDims(a, a_start, a_end); if (left_side) { bool which = transpose_a ^ lower; auto b_chunk = SliceInMinorDims(b, {which ? 0 : (j + 1), 0}, {which ? j : m, n}); b_row = b_row - BatchDot(a_chunk, transpose_a, b_chunk, false, precision); } else { bool which = transpose_a ^ !lower; auto b_chunk = SliceInMinorDims(b, {0, which ? 0 : (j + 1)}, {m, which ? j : n}); b_row = b_row - BatchDot(b_chunk, false, a_chunk, transpose_a, precision); } if (!unit_diagonal) { auto a_diag = SliceInMinorDims(a, {j, j}, {j + 1, j + 1}); b_row = b_row / a_diag; } b = UpdateSliceInMinorDims(b, b_row, b_row_start); } return b; }); } XlaOp TriangularSolveExpander::BuildTriangularSolve( XlaOp a, XlaOp b, bool left_side, bool lower, bool transpose_a, bool conjugate_a, bool unit_diagonal, int64_t block_size, PrecisionConfig::Precision precision) { XlaBuilder* builder = a.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape a_shape, builder->GetShape(a)); TF_ASSIGN_OR_RETURN(Shape b_shape, builder->GetShape(b)); if (a_shape.rank() != b_shape.rank()) { return InvalidArgument( "Arguments to TriangularSolve have shapes with different ranks: " "%s vs. %s", ShapeUtil::HumanString(a_shape), ShapeUtil::HumanString(b_shape)); } const int64_t ndims = a_shape.rank(); if (ndims < 2) { return InvalidArgument( "Arguments to TriangularSolve was rank %d but must have rank >= 2.", ndims); } std::vector<int64_t> batch_dimensions; int64_t batch = 1; for (int i = 0; i < ndims - 2; ++i) { int64_t a_size = a_shape.dimensions(i); int64_t b_size = b_shape.dimensions(i); if (a_size != b_size) { return InvalidArgument( "Batch dimensions of arguments to TriangularSolve must be equal; " "shapes were %s and %s.", ShapeUtil::HumanString(a_shape), ShapeUtil::HumanString(b_shape)); } batch_dimensions.push_back(a_size); batch *= a_size; } if (ShapeUtil::GetDimension(a_shape, -1) != ShapeUtil::GetDimension(a_shape, -2)) { return InvalidArgument( "The 'a' argument to TriangularSolve must be a batched square matrix;" " shape was: %s", ShapeUtil::HumanString(a_shape)); } const int64_t m = ShapeUtil::GetDimension(b_shape, -2); const int64_t n = ShapeUtil::GetDimension(b_shape, -1); if ((left_side ? m : n) != ShapeUtil::GetDimension(a_shape, -1)) { return InvalidArgument( "Arguments to TriangularSolve have incompatible matrix shapes %s and " "%s", ShapeUtil::HumanString(a_shape), ShapeUtil::HumanString(b_shape)); } int64_t a_size = ShapeUtil::GetDimension(a_shape, -1); if (ShapeUtil::IsZeroElementArray(b_shape)) { return b; } if (a_size == 1) { return unit_diagonal ? b : Div(b, MaybeConjugate(a, conjugate_a)); } if (UseDirectSolves() && batch > block_size_ / 16 && a_size < block_size_ / 4) { return SolveDirectly(a, b, left_side, lower, transpose_a, conjugate_a, unit_diagonal, precision); } else { return SolveByInvertingDiagonalBlocks(a, b, left_side, lower, transpose_a, conjugate_a, unit_diagonal, precision); } }); } TriangularSolveExpander::TriangularSolveExpander(int64_t block_size) : block_size_(block_size) { CHECK_GE(block_size_, 1); } bool TriangularSolveExpander::InstructionMatchesPattern( HloInstruction* instruction) { return instruction->opcode() == HloOpcode::kTriangularSolve; } absl::StatusOr<HloInstruction*> TriangularSolveExpander::ExpandInstruction( HloInstruction* instruction) { const TriangularSolveOptions& options = instruction->triangular_solve_options(); const std::string name = absl::StrFormat( "xla.triangular_solve_%s_%s_%s_%s_%s_%s", instruction->operand(0)->shape().ToString(), instruction->operand(1)->shape().ToString(), options.left_side() ? "left" : "right", options.lower() ? "lower" : "upper", TriangularSolveOptions_Transpose_Name(options.transpose_a()), options.unit_diagonal() ? "unit" : "nonunit"); HloModule* module = instruction->GetModule(); HloComputation*& computation = computation_cache_.emplace(name, nullptr).first->second; if (!computation) { XlaBuilder builder(name); XlaOp a = Parameter(&builder, 0, instruction->operand(0)->shape(), "a"); XlaOp b = Parameter(&builder, 1, instruction->operand(1)->shape(), "b"); bool transpose_a = options.transpose_a() != TriangularSolveOptions::NO_TRANSPOSE; bool conjugate_a = options.transpose_a() == TriangularSolveOptions::ADJOINT; BuildTriangularSolve(a, b, options.left_side(), options.lower(), transpose_a, conjugate_a, options.unit_diagonal(), block_size_, PrecisionConfig::HIGHEST); TF_ASSIGN_OR_RETURN(XlaComputation xla_computation, builder.Build()); TF_ASSIGN_OR_RETURN(ProgramShape program_shape, xla_computation.GetProgramShape()); HloModuleConfig config(program_shape); TF_ASSIGN_OR_RETURN(auto new_module, HloModule::CreateFromProto( xla_computation.proto(), config)); HloCloneContext context(module); computation = module->DeepCloneComputation(new_module->entry_computation(), &context); } return instruction->parent()->AddInstruction(HloInstruction::CreateCall( instruction->shape(), instruction->operands(), computation)); } }
#include "xla/service/triangular_solve_expander.h" #include <memory> #include <utility> #include "xla/literal.h" #include "xla/reference_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/types.h" #include "tsl/lib/core/status_test_util.h" namespace xla { namespace { class TriangularExpanderTest : public HloTestBase, public ::testing::WithParamInterface<int32_t> {}; TEST_P(TriangularExpanderTest, TestBlockSize) { auto block_size = GetParam(); std::string hlo_string = R"( HloModule TensorFlowTriangularSolve ENTRY main { a = f32[256,256]{1,0} parameter(0) b = f32[256,192]{1,0} parameter(1) ROOT triangular-solve = f32[256,192]{1,0} triangular-solve(a, b), left_side=true, unit_diagonal=true, lower=true, transpose_a=NO_TRANSPOSE } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); { TriangularSolveExpander triangular_solve_expander(block_size); TF_ASSERT_OK_AND_ASSIGN( bool result, RunHloPass(&triangular_solve_expander, module.get())); EXPECT_TRUE(result); } Array2D<float> a(256, 256); for (int64_t row = 0; row < a.dim(0); ++row) { a(row, row) = 1; if (row > 0) { a(row, row - 1) = 0.01; } } Array2D<float> b(256, 192); const float kMax = static_cast<float>(b.dim(0) * b.dim(1) + 1); for (int64_t row = 0; row < b.dim(0); ++row) { for (int64_t col = 0; col < b.dim(1); ++col) { b(row, col) = static_cast<float>(row + col + 1) / kMax; } } auto la = LiteralUtil::CreateR2FromArray2D(a); auto lb = LiteralUtil::CreateR2FromArray2D(b); TF_ASSERT_OK_AND_ASSIGN(Literal lx, Execute(std::move(module), {&la, &lb})); auto x_shape = lx.shape(); EXPECT_EQ(x_shape.dimensions_size(), 2); EXPECT_EQ(x_shape.dimensions(0), b.dim(0)); EXPECT_EQ(x_shape.dimensions(1), b.dim(1)); Array2D<float> x(x_shape.dimensions(0), x_shape.dimensions(1)); x.SetValues(lx.data<float>()); auto ref_b = ReferenceUtil::MatmulArray2D(a, x); auto ref_lb = LiteralUtil::CreateR2FromArray2D(*ref_b); EXPECT_TRUE( LiteralTestUtil::NearOrEqual(ref_lb, lb, ErrorSpec{0.001, 0.001})); } INSTANTIATE_TEST_CASE_P(TriangularExpanderTestInstances, TriangularExpanderTest, ::testing::Range(2, 256, 7)); } }
1,857
cpp
tensorflow/tensorflow
reduce_decomposer
third_party/xla/xla/service/reduce_decomposer.cc
third_party/xla/xla/service/reduce_decomposer_test.cc
#ifndef XLA_SERVICE_REDUCE_DECOMPOSER_H_ #define XLA_SERVICE_REDUCE_DECOMPOSER_H_ #include <functional> #include "xla/service/hlo_pass_interface.h" namespace xla { class ReduceDecomposer : public HloModulePass { public: explicit ReduceDecomposer(HloPredicate custom_layout_allowed = nullptr) : custom_layout_allowed_(custom_layout_allowed) {} absl::string_view name() const override { return "reduce-decomposer"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: HloPredicate custom_layout_allowed_; }; } #endif #include "xla/service/reduce_decomposer.h" #include <functional> #include <utility> #include <vector> #include "absl/status/status.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/hlo_creation_utils.h" namespace xla { namespace { class VariadicReductionLayoutEqualizer : public DfsHloRewriteVisitor { public: absl::Status HandleReduce(HloInstruction* hlo) override { auto reduce = Cast<HloReduceInstruction>(hlo); std::vector<HloInstruction*> new_inputs; bool changed = false; for (HloInstruction* input : reduce->inputs()) { auto first_input = reduce->inputs()[0]; auto first_input_s = first_input->shape(); auto input_s = input->shape(); if (first_input_s.layout() != input_s.layout()) { Shape new_input_s = ShapeUtil::MakeShapeWithDenseLayout( input_s.element_type(), input_s.dimensions(), first_input_s.layout().minor_to_major()); auto copy = MakeCopyHlo(input, new_input_s); changed = true; new_inputs.push_back(copy); } else { new_inputs.push_back(input); } } if (changed) { TF_ASSIGN_OR_RETURN( auto new_reduce, MakeReduceHlo(new_inputs, reduce->init_values(), reduce->dimensions(), reduce->called_computations()[0])); TF_RETURN_IF_ERROR(ReplaceInstruction(reduce, new_reduce)); } return absl::OkStatus(); } }; class ReduceDecomposerVisitor : public DfsHloRewriteVisitor { public: explicit ReduceDecomposerVisitor(HloPredicate custom_layout_allowed) : custom_layout_allowed_(std::move(custom_layout_allowed)) {} absl::Status HandleReduce(HloInstruction* hlo) override { auto reduce = Cast<HloReduceInstruction>(hlo); auto shape = reduce->shape(); if (custom_layout_allowed_ && custom_layout_allowed_(reduce)) { return absl::OkStatus(); } std::vector<Shape> expected_shapes(reduce->input_count()); for (int i = 0; i < reduce->input_count(); i++) { expected_shapes[i] = ExpectedOutputShape(reduce, i); TF_RET_CHECK(reduce->inputs()[i]->shape().layout() == reduce->inputs()[0]->shape().layout()); } std::vector<Shape> output_shapes; if (shape.IsTuple()) { for (int i = 0; i < shape.tuple_shapes_size(); i++) { output_shapes.push_back(ShapeUtil::GetTupleElementShape(shape, i)); TF_RET_CHECK(output_shapes[i].layout() == output_shapes[0].layout()); } } else { output_shapes.push_back(shape); } TF_RET_CHECK(!output_shapes.empty()); if (ShapeUtil::MakeMaybeTupleShape(expected_shapes) != ShapeUtil::MakeMaybeTupleShape(output_shapes)) { TF_ASSIGN_OR_RETURN(auto r_prime, MakeReduceHlo(reduce->inputs(), reduce->init_values(), reduce->dimensions(), reduce->called_computations()[0])); TF_RET_CHECK(r_prime->shape() == ShapeUtil::MakeMaybeTupleShape(expected_shapes)); if (!shape.IsTuple()) { auto copy = MakeCopyHlo(r_prime, shape); TF_RETURN_IF_ERROR(ReplaceInstruction(reduce, copy)); return absl::OkStatus(); } std::vector<HloInstruction*> copies; for (int i = 0; i < reduce->input_count(); i++) { TF_ASSIGN_OR_RETURN(auto from, GetOutput(r_prime, i)); auto copy = MakeCopyHlo(from, output_shapes[i]); copies.push_back(copy); } auto out = MaybeMakeTuple(copies); TF_RETURN_IF_ERROR(ReplaceInstruction(reduce, out)); } return absl::OkStatus(); } private: absl::StatusOr<HloInstruction*> GetOutput(HloInstruction* instr, int idx) { if (instr->shape().IsTuple()) { return MakeGetTupleElementHlo(instr, idx); } else { TF_RET_CHECK(idx == 0); return instr; } } Shape ExpectedOutputShape(HloReduceInstruction* reduce, int input_idx) { Shape reduce_shape = reduce->shape(); auto output_shape = reduce_shape.IsTuple() ? reduce_shape.tuple_shapes(input_idx) : reduce_shape; auto* operand = reduce->inputs()[input_idx]; auto operand_shape = operand->shape(); return ShapeUtil::DeleteDimensions(reduce->dimensions(), operand_shape); } HloPredicate custom_layout_allowed_; }; } absl::StatusOr<bool> ReduceDecomposer::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { TF_ASSIGN_OR_RETURN(bool changed1, VariadicReductionLayoutEqualizer{}.RunOnModule( module, execution_threads)); TF_ASSIGN_OR_RETURN( bool changed2, ReduceDecomposerVisitor{custom_layout_allowed_}.RunOnModule( module, execution_threads)); return changed1 || changed2; } }
#include "xla/service/reduce_decomposer.h" #include <functional> #include <memory> #include <optional> #include "xla/service/hlo_parser.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { class ReduceDecomposerTest : public HloTestBase {}; TEST_F(ReduceDecomposerTest, ReducePerformsTransposition) { const char* hlo = R"( HloModule module add { a = f32[] parameter(0) b = f32[] parameter(1) ROOT out = add(a, b) } ENTRY c { p = f32[5,3,4]{2,1,0} parameter(0) z = f32[] constant(0) ROOT r = f32[5,4]{0,1} reduce(p, z), dimensions={1}, to_apply=add } )"; RunAndFilecheckHloRewrite( hlo, ReduceDecomposer{[&](const HloInstruction*) { return true; }}, std::nullopt); RunAndFilecheckHloRewrite(hlo, ReduceDecomposer{}, R"( )"); } TEST_F(ReduceDecomposerTest, ReduceNaturalLayout) { const char* hlo = R"( HloModule module add { a = f32[] parameter(0) b = f32[] parameter(1) ROOT out = add(a, b) } ENTRY c { p = f32[5,3,4]{2,1,0} parameter(0) z = f32[] constant(0) ROOT r = reduce(p, z), dimensions={1}, to_apply=add } )"; RunAndFilecheckHloRewrite(hlo, ReduceDecomposer{}, std::nullopt); } TEST_F(ReduceDecomposerTest, VariadicReductionWithTranspose) { const char* hlo = R"( HloModule ReduceWithLayoutChangeVariadicDifferent argmax { running_max = f32[] parameter(0) running_max_idx = u32[] parameter(1) current_value = f32[] parameter(2) current_value_idx = u32[] parameter(3) current = (f32[], u32[]) tuple(running_max, running_max_idx) potential = (f32[], u32[]) tuple(current_value, current_value_idx) cmp_code = pred[] compare(current_value, running_max), direction=GT new_max = f32[] select(cmp_code, current_value, running_max) new_idx = u32[] select(cmp_code, current_value_idx, running_max_idx) ROOT out = (f32[], u32[]) tuple(new_max, new_idx) } ENTRY main { arg0 = f32[2,3,4,1024]{3,2,1,0} parameter(0) idxs = u32[2,3,4,1024]{3,2,1,0} parameter(1) constant0 = f32[] constant(0) constant1 = u32[] constant(0) ROOT reduce0 = ( f32[2,3,4]{0,1,2}, u32[2,3,4]{0,1,2} ) reduce(arg0, idxs, constant0,constant1), dimensions={3}, to_apply=argmax } )"; RunAndFilecheckHloRewrite(hlo, ReduceDecomposer{}, R"( )"); } TEST_F(ReduceDecomposerTest, VariadicReductionDescendingLayout) { const char* hlo = R"( HloModule ReduceWithLayoutChangeVariadicDifferent argmax { running_max = f32[] parameter(0) running_max_idx = u32[] parameter(1) current_value = f32[] parameter(2) current_value_idx = u32[] parameter(3) current = (f32[], u32[]) tuple(running_max, running_max_idx) potential = (f32[], u32[]) tuple(current_value, current_value_idx) cmp_code = pred[] compare(current_value, running_max), direction=GT new_max = f32[] select(cmp_code, current_value, running_max) new_idx = u32[] select(cmp_code, current_value_idx, running_max_idx) ROOT out = (f32[], u32[]) tuple(new_max, new_idx) } ENTRY main { arg0 = f32[2,3,4,1024]{3,2,1,0} parameter(0) idxs = u32[2,3,4,1024]{3,2,1,0} parameter(1) constant0 = f32[] constant(0) constant1 = u32[] constant(0) ROOT reduce0 = ( f32[2,3,4]{2,1,0}, u32[2,3,4]{2,1,0} ) reduce(arg0, idxs, constant0,constant1), dimensions={3}, to_apply=argmax } )"; RunAndFilecheckHloRewrite(hlo, ReduceDecomposer{}, std::nullopt); } TEST_F(ReduceDecomposerTest, VariadicReductionInputsDifferentLayout) { const char* hlo = R"( HloModule ReduceWithLayoutChangeVariadicDifferent argmax { running_max = f32[] parameter(0) running_max_idx = u32[] parameter(1) current_value = f32[] parameter(2) current_value_idx = u32[] parameter(3) current = (f32[], u32[]) tuple(running_max, running_max_idx) potential = (f32[], u32[]) tuple(current_value, current_value_idx) cmp_code = pred[] compare(current_value, running_max), direction=GT new_max = f32[] select(cmp_code, current_value, running_max) new_idx = u32[] select(cmp_code, current_value_idx, running_max_idx) ROOT out = (f32[], u32[]) tuple(new_max, new_idx) } ENTRY main { arg0 = f32[2,3,4,1024]{3,2,1,0} parameter(0) idxs = u32[2,3,4,1024]{2,1,3,0} parameter(1) constant0 = f32[] constant(0) constant1 = u32[] constant(0) ROOT reduce0 = ( f32[2,3,4]{2,1,0}, u32[2,3,4]{2,1,0} ) reduce(arg0, idxs, constant0,constant1), dimensions={3}, to_apply=argmax } )"; RunAndFilecheckHloRewrite(hlo, ReduceDecomposer{}, R"( )"); } } }
1,858
cpp
tensorflow/tensorflow
name_uniquer
third_party/xla/xla/service/name_uniquer.cc
third_party/xla/xla/service/name_uniquer_test.cc
#ifndef XLA_SERVICE_NAME_UNIQUER_H_ #define XLA_SERVICE_NAME_UNIQUER_H_ #include <string> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/string_view.h" #include "xla/types.h" namespace xla { class NameUniquer { public: explicit NameUniquer(const std::string& separator = "__"); std::string GetUniqueName(absl::string_view prefix = ""); static std::string GetSanitizedName(absl::string_view name); private: class SequentialIdGenerator { public: SequentialIdGenerator() = default; int64_t RegisterId(int64_t id) { if (used_.insert(id).second) { return id; } while (!used_.insert(next_).second) { ++next_; } return next_++; } private: int64_t next_ = 0; absl::flat_hash_set<int64_t> used_; }; std::string separator_; absl::flat_hash_map<std::string, SequentialIdGenerator> generated_names_; NameUniquer(const NameUniquer&) = delete; NameUniquer& operator=(const NameUniquer&) = delete; }; } #endif #include "xla/service/name_uniquer.h" #include "absl/strings/ascii.h" #include "absl/strings/match.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "xla/primitive_util.h" #include "xla/types.h" #include "tsl/platform/logging.h" namespace xla { namespace { bool IsAllowed(char character) { auto c = static_cast<unsigned char>(character); return (absl::ascii_isalnum(c) != 0) || c == '_' || c == '.' || c == '-'; } } NameUniquer::NameUniquer(const std::string& separator) { CHECK(absl::c_all_of(separator, IsAllowed)) << "separator should comprises allowed characters only"; separator_ = separator; } std::string NameUniquer::GetSanitizedName(absl::string_view name) { if (name.empty()) { return ""; } std::string result(name); char c = static_cast<unsigned char>(result[0]); if (!absl::ascii_isalpha(c) && c != '_') { result[0] = '_'; } for (int i = 1, iter_limit = result.length(); i < iter_limit; i++) { if (!IsAllowed(result[i])) { result[i] = '_'; } } if (primitive_util::IsPrimitiveTypeName(result) && result != "tuple") { result += "_"; } if (absl::StartsWith(result, "__") && !absl::StartsWith(result, "__xla_")) { result[0] = 'a'; } return result; } std::string NameUniquer::GetUniqueName(absl::string_view prefix) { std::string root = GetSanitizedName(prefix.empty() ? "name" : std::string(prefix)); bool has_numeric_suffix = false; int64_t numeric_suffix = 0; size_t separator_index = root.rfind(separator_); if (separator_index != std::string::npos && (separator_index > 0) && (separator_index < root.size() - 1)) { std::string after_suffix = root.substr(separator_index + 1); if (absl::SimpleAtoi(after_suffix, &numeric_suffix)) { has_numeric_suffix = true; root = root.substr(0, separator_index); } else { numeric_suffix = 0; } } SequentialIdGenerator& id_generator = generated_names_[root]; numeric_suffix = id_generator.RegisterId(numeric_suffix); if (numeric_suffix == 0) { return has_numeric_suffix ? absl::StrCat(root, separator_, 0) : root; } absl::StrAppend(&root, separator_, numeric_suffix); return root; } }
#include "xla/service/name_uniquer.h" #include <memory> #include <utility> #include <vector> #include "tsl/platform/test.h" namespace xla { namespace { class NameUniquerTest : public ::testing::Test {}; TEST_F(NameUniquerTest, SimpleUniquer) { NameUniquer uniquer; EXPECT_EQ("foo", uniquer.GetUniqueName("foo")); EXPECT_EQ("foo__1", uniquer.GetUniqueName("foo")); EXPECT_EQ("foo__2", uniquer.GetUniqueName("foo")); EXPECT_EQ("bar", uniquer.GetUniqueName("bar")); EXPECT_EQ("foo__3", uniquer.GetUniqueName("foo")); EXPECT_EQ("bar__1", uniquer.GetUniqueName("bar")); EXPECT_EQ("qux", uniquer.GetUniqueName("qux")); } TEST_F(NameUniquerTest, DifferentSeparator) { NameUniquer uniquer("."); EXPECT_EQ("foo", uniquer.GetUniqueName("foo")); EXPECT_EQ("foo.1", uniquer.GetUniqueName("foo")); EXPECT_EQ("foo.2", uniquer.GetUniqueName("foo")); EXPECT_EQ("bar", uniquer.GetUniqueName("bar")); EXPECT_EQ("foo.3", uniquer.GetUniqueName("foo")); EXPECT_EQ("bar.1", uniquer.GetUniqueName("bar")); } TEST_F(NameUniquerTest, NumericSuffixes) { NameUniquer uniquer("."); EXPECT_EQ("foo", uniquer.GetUniqueName("foo")); EXPECT_EQ("foo.54", uniquer.GetUniqueName("foo.54")); EXPECT_EQ("foo.1", uniquer.GetUniqueName("foo")); EXPECT_EQ("foo.55.1", uniquer.GetUniqueName("foo.55.1")); EXPECT_EQ("foo.55.0", uniquer.GetUniqueName("foo.55.1")); EXPECT_EQ("bar.1000", uniquer.GetUniqueName("bar.1000")); EXPECT_EQ("bar.2000", uniquer.GetUniqueName("bar.2000")); EXPECT_EQ("bar.-2000", uniquer.GetUniqueName("bar.-2000")); EXPECT_EQ("bar.1", uniquer.GetUniqueName("bar.1")); } TEST_F(NameUniquerTest, PrefixHasSuffix) { NameUniquer uniquer("."); EXPECT_EQ("foo.11.0", uniquer.GetUniqueName("foo.11.0")); EXPECT_EQ("foo.11", uniquer.GetUniqueName("foo.11")); } TEST_F(NameUniquerTest, Sanitize) { NameUniquer uniquer("_"); EXPECT_EQ("foo", uniquer.GetUniqueName("foo")); EXPECT_EQ("foo_1", uniquer.GetUniqueName("foo")); EXPECT_EQ("foo.54", uniquer.GetUniqueName("foo.54")); EXPECT_EQ("foo_54", uniquer.GetUniqueName("foo_54")); EXPECT_EQ("foo_54.1", uniquer.GetUniqueName("foo_54.1")); EXPECT_EQ("foo_2", uniquer.GetUniqueName("foo")); EXPECT_EQ("bar_1000", uniquer.GetUniqueName("bar<1000")); EXPECT_EQ("bar_2000", uniquer.GetUniqueName("bar<2000")); EXPECT_EQ("bar_1", uniquer.GetUniqueName("bar_1")); EXPECT_EQ("_10", uniquer.GetUniqueName( ".10")); EXPECT_EQ("_10_1", uniquer.GetUniqueName(".10")); EXPECT_EQ("_10_2", uniquer.GetUniqueName("_10")); EXPECT_EQ("foobar_", uniquer.GetUniqueName("foobar_")); EXPECT_EQ("foobar__1", uniquer.GetUniqueName("foobar_")); } TEST_F(NameUniquerTest, KeepNamesInRandomOrder) { NameUniquer uniquer("."); EXPECT_EQ("foo.11", uniquer.GetUniqueName("foo.11")); EXPECT_EQ("foo.10", uniquer.GetUniqueName("foo.10")); EXPECT_EQ("foo.1", uniquer.GetUniqueName("foo.1")); EXPECT_EQ("foo.12", uniquer.GetUniqueName("foo.12")); EXPECT_EQ("foo.3", uniquer.GetUniqueName("foo.3")); } TEST_F(NameUniquerTest, AvoidKeywords) { NameUniquer uniquer("."); EXPECT_EQ("f32_", uniquer.GetUniqueName("f32")); EXPECT_EQ("s64_", uniquer.GetUniqueName("s64")); EXPECT_EQ("pred_", uniquer.GetUniqueName("pred")); EXPECT_NE(uniquer.GetUniqueName("__xla_").find("__xla_"), std::string::npos); EXPECT_EQ(uniquer.GetUniqueName("__abx").find("__"), std::string::npos); EXPECT_EQ("tuple", uniquer.GetUniqueName("tuple")); EXPECT_EQ("F32", uniquer.GetUniqueName("F32")); EXPECT_EQ("S32", uniquer.GetUniqueName("S32")); EXPECT_EQ("Pred", uniquer.GetUniqueName("Pred")); } } }
1,859
cpp
tensorflow/tensorflow
float_normalization
third_party/xla/xla/service/float_normalization.cc
third_party/xla/xla/service/float_normalization_test.cc
#ifndef XLA_SERVICE_FLOAT_NORMALIZATION_H_ #define XLA_SERVICE_FLOAT_NORMALIZATION_H_ #include <string> #include "xla/hlo/ir/hlo_module.h" #include "xla/service/float_support.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class FloatNormalization : public HloModulePass { public: explicit FloatNormalization(const FloatSupport* float_support) : float_support_(float_support), name_("float-normalization-" + primitive_util::LowercasePrimitiveTypeName( float_support_->LowPrecisionType())) {} ~FloatNormalization() override = default; absl::string_view name() const override { return name_; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: const FloatSupport* float_support_; std::string name_; }; class BFloat16MixedPrecisionRemoval : public HloModulePass { public: BFloat16MixedPrecisionRemoval() = default; ~BFloat16MixedPrecisionRemoval() override = default; absl::string_view name() const override { return "bf16-mixed-precision-removal"; } using HloPassInterface::Run; absl::StatusOr<bool> Run(HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override { FloatNormalization normalization(&no_mixed_precision_support_); return normalization.Run(module, execution_threads); } private: class BFloat16SupportForMixedPrecisionRemoval : public FloatSupport { public: BFloat16SupportForMixedPrecisionRemoval() : FloatSupport(BF16) {} ~BFloat16SupportForMixedPrecisionRemoval() override = default; bool SupportsLowPrecisionOperand(const HloInstruction& hlo, int64_t operand_index) const override { return true; } bool SupportsLowPrecisionOutput(const HloInstruction& hlo) const override { return true; } bool SupportsMixedPrecisions(const HloInstruction& hlo) const override { return false; } } no_mixed_precision_support_; }; } #endif #include "xla/service/float_normalization.h" #include <vector> #include "absl/types/span.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/call_graph.h" #include "xla/service/hlo_dce.h" #include "xla/service/tuple_simplifier.h" #include "xla/shape_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace xla { namespace { class FloatNormalizationVisitor : public DfsHloVisitorWithDefault { public: explicit FloatNormalizationVisitor(const FloatSupport* float_support, FloatNormalization* float_normalization) : computation_(nullptr), float_support_(float_support), float_normalization_(float_normalization) {} bool changed() const { return changed_; } absl::Status DefaultAction(HloInstruction* hlo) override; absl::Status Preprocess(HloInstruction* hlo) override; private: absl::Status HandleInstruction(HloInstruction* hlo); absl::Status HandleMultipleOutputs(HloInstruction* hlo); absl::StatusOr<HloInstruction*> ConvertType(HloInstruction* hlo, PrimitiveType from, PrimitiveType to, HloComputation* computation); absl::Status InsertConvertAfterOutput(HloInstruction* hlo, PrimitiveType from, PrimitiveType to, HloComputation* computation); absl::Status ChangeOutputTypeThenInsertConvertBack( HloInstruction* hlo, PrimitiveType from, PrimitiveType to, HloComputation* computation); absl::Status InsertConvertBeforeOperand(HloInstruction* hlo, int64_t operand_idx, PrimitiveType from, PrimitiveType to, HloComputation* computation); absl::Status ConvertCalledComputations( HloInstruction* hlo, absl::Span<HloComputation* const> low_precision_called_comps); PrimitiveType LowPrecisionType() const { return float_support_->LowPrecisionType(); } PrimitiveType HighPrecisionType() const { return float_support_->HighPrecisionType(); } HloComputation* computation_; const FloatSupport* float_support_; FloatNormalization* float_normalization_; bool changed_ = false; }; int64_t CountSubshapesWithMatchingType(const Shape& shape, PrimitiveType type) { int64_t count = 0; ShapeUtil::ForEachSubshape( shape, [&](const Shape& subshape, const ShapeIndex& index) { if (subshape.element_type() == type) { ++count; } }); return count; } int64_t ShapeLeafCount(const Shape& shape) { int64_t count = 0; ShapeUtil::ForEachSubshape( shape, [&](const Shape& subshape, const ShapeIndex& index) { if (ShapeUtil::IsLeafIndex(shape, index)) { ++count; } }); return count; } absl::StatusOr<HloInstruction*> FloatNormalizationVisitor::ConvertType( HloInstruction* hlo, PrimitiveType from, PrimitiveType to, HloComputation* computation) { if (CountSubshapesWithMatchingType(hlo->shape(), from) == 0) { return hlo; } if (hlo->opcode() == HloOpcode::kConvert && hlo->operand(0)->shape().element_type() == to && to == LowPrecisionType() && from == HighPrecisionType()) { return hlo->mutable_operand(0); } TF_ASSIGN_OR_RETURN( auto new_hlo, computation->DeepCopyInstructionWithCustomCopier( hlo, [&](HloInstruction* leaf, const ShapeIndex& leaf_index, HloComputation* comp) { const auto& original_subshape = ShapeUtil::GetSubshape(hlo->shape(), leaf_index); if (original_subshape.element_type() != from) { return leaf; } auto new_subshape = ShapeUtil::ChangeElementType(original_subshape, to); float_normalization_->UpdateLayout(&new_subshape); return computation->AddInstruction( HloInstruction::CreateConvert(new_subshape, leaf)); })); return new_hlo; } absl::Status FloatNormalizationVisitor::InsertConvertAfterOutput( HloInstruction* hlo, PrimitiveType from, PrimitiveType to, HloComputation* computation) { bool is_root = computation->root_instruction() == hlo; std::vector<HloInstruction*> materialized_users = hlo->users(); TF_ASSIGN_OR_RETURN(auto new_hlo, ConvertType(hlo, from, to, computation)); if (new_hlo == hlo) { return absl::OkStatus(); } for (auto* user : materialized_users) { TF_RETURN_IF_ERROR(hlo->ReplaceUseWithDifferentShape(user, new_hlo)); } if (is_root) { computation->set_root_instruction(new_hlo, true); } changed_ = true; return absl::OkStatus(); } absl::Status FloatNormalizationVisitor::ChangeOutputTypeThenInsertConvertBack( HloInstruction* hlo, PrimitiveType from, PrimitiveType to, HloComputation* computation) { auto original_shape = hlo->shape(); if (CountSubshapesWithMatchingType(original_shape, from) == 0) { return absl::OkStatus(); } ShapeUtil::ForEachMutableSubshape( hlo->mutable_shape(), [&](Shape* subshape, const xla::ShapeIndex& index) { if (subshape->element_type() == from) { subshape->set_element_type(to); } }); float_normalization_->UpdateLayout(hlo->mutable_shape()); bool is_root = computation->root_instruction() == hlo; std::vector<HloInstruction*> materialized_users = hlo->users(); TF_ASSIGN_OR_RETURN( auto new_hlo, computation->DeepCopyInstructionWithCustomCopier( hlo, [&](HloInstruction* leaf, const ShapeIndex& leaf_index, HloComputation* comp) { const auto& original_subshape = ShapeUtil::GetSubshape(original_shape, leaf_index); if (original_subshape.element_type() == leaf->shape().element_type()) { return leaf; } return computation->AddInstruction( HloInstruction::CreateConvert(original_subshape, leaf)); })); std::vector<HloInstruction*> conversions_to_simplify; for (auto* user : materialized_users) { if (user->opcode() == HloOpcode::kConvert && user->shape().element_type() == to && to == HighPrecisionType() && from == LowPrecisionType()) { conversions_to_simplify.emplace_back(user); } else { TF_RETURN_IF_ERROR(hlo->ReplaceUseWithDifferentShape(user, new_hlo)); } } for (auto* convert : conversions_to_simplify) { TF_RETURN_IF_ERROR(convert->ReplaceAllUsesWith(hlo)); } if (is_root) { computation->set_root_instruction(new_hlo, true); } changed_ = true; return absl::OkStatus(); } absl::Status FloatNormalizationVisitor::InsertConvertBeforeOperand( HloInstruction* hlo, int64_t operand_idx, PrimitiveType from, PrimitiveType to, HloComputation* computation) { auto operand = hlo->mutable_operand(operand_idx); TF_ASSIGN_OR_RETURN(auto new_operand, ConvertType(operand, from, to, computation)); if (new_operand == operand) { return absl::OkStatus(); } TF_RETURN_IF_ERROR( hlo->ReplaceOperandWithDifferentShape(operand_idx, new_operand)); changed_ = true; return absl::OkStatus(); } absl::Status FloatNormalizationVisitor::ConvertCalledComputations( HloInstruction* hlo, absl::Span<HloComputation* const> low_precision_called_comps) { absl::flat_hash_map<HloComputation*, HloComputation*> cloned_computations; for (auto& comp : low_precision_called_comps) { auto cloned = comp->parent()->AddEmbeddedComputation(comp->Clone()); cloned_computations[comp] = cloned; changed_ = true; } hlo->ReplaceCalledComputations([&](HloComputation* comp) { auto it = cloned_computations.find(comp); if (it != cloned_computations.end()) { return it->second; } return comp; }); for (auto& comp_pair : cloned_computations) { auto comp = comp_pair.second; TF_RETURN_IF_ERROR(InsertConvertAfterOutput(comp->root_instruction(), LowPrecisionType(), HighPrecisionType(), comp)); for (auto* param : comp->parameter_instructions()) { TF_RETURN_IF_ERROR(ChangeOutputTypeThenInsertConvertBack( param, LowPrecisionType(), HighPrecisionType(), comp)); } } return absl::OkStatus(); } bool ShouldAvoidNormalizingComputationsForInstruction(HloInstruction* hlo) { return hlo->opcode() == HloOpcode::kAllReduce || hlo->opcode() == HloOpcode::kReduceScatter; } absl::Status FloatNormalizationVisitor::HandleMultipleOutputs( HloInstruction* hlo) { std::vector<PrimitiveType> operand_types(hlo->operand_count()); std::vector<PrimitiveType> output_types(hlo->operand_count()); int64_t high_prec_count = 0; int64_t low_prec_count = 0; bool has_unsupported_low_prec_operand = false; bool has_unsupported_low_prec_output = false; for (int64_t i = 0; i < hlo->operand_count(); ++i) { CHECK(hlo->operand(i)->shape().IsArray()); CHECK(ShapeUtil::GetSubshape(hlo->shape(), {i}).IsArray()); operand_types[i] = hlo->operand(i)->shape().element_type(); output_types[i] = ShapeUtil::GetSubshape(hlo->shape(), {i}).element_type(); if (operand_types[i] == HighPrecisionType()) { high_prec_count += 1; } else if (operand_types[i] == LowPrecisionType()) { low_prec_count += 1; if (!float_support_->SupportsLowPrecisionOperand(*hlo, i)) { has_unsupported_low_prec_operand = true; } } if (output_types[i] == HighPrecisionType()) { high_prec_count += 1; } else if (output_types[i] == LowPrecisionType()) { low_prec_count += 1; if (!float_support_->SupportsLowPrecisionOutput(*hlo)) { has_unsupported_low_prec_output = true; } } } if (low_prec_count == 0) { return absl::OkStatus(); } auto should_convert_operand = [&](int64_t i) { if (operand_types[i] != LowPrecisionType()) { return false; } if (!float_support_->SupportsLowPrecisionOperand(*hlo, i)) { return true; } if (float_support_->SupportsMixedPrecisions(*hlo)) { return false; } return has_unsupported_low_prec_operand || has_unsupported_low_prec_output || high_prec_count > 0; }; for (int64_t i = 0; i < hlo->operand_count(); ++i) { if (should_convert_operand(i)) { TF_RETURN_IF_ERROR(InsertConvertBeforeOperand( hlo, i, LowPrecisionType(), HighPrecisionType(), computation_)); high_prec_count += 1; low_prec_count -= 1; } } if (!has_unsupported_low_prec_output && (float_support_->SupportsMixedPrecisions(*hlo) || high_prec_count == 0 || low_prec_count == 0)) { return absl::OkStatus(); } std::vector<HloComputation*> low_precision_called_comps; for (auto* comp : hlo->called_computations()) { if (ShouldAvoidNormalizingComputationsForInstruction(hlo)) { continue; } bool comp_has_low_precision = false; if (comp->root_instruction()->shape().element_type() == HighPrecisionType()) { high_prec_count += 1; } else if (comp->root_instruction()->shape().element_type() == LowPrecisionType()) { low_prec_count += 1; comp_has_low_precision = true; } for (auto* param : comp->parameter_instructions()) { if (param->shape().element_type() == HighPrecisionType()) { high_prec_count += 1; } else if (param->shape().element_type() == LowPrecisionType()) { low_prec_count += 1; comp_has_low_precision = true; } } if (comp_has_low_precision) { low_precision_called_comps.push_back(comp); } } std::vector<HloInstruction*> materialized_users = hlo->users(); std::vector<HloInstruction*> output_elements(hlo->operand_count()); auto original_shape = hlo->shape(); for (int64_t i = 0; i < hlo->operand_count(); ++i) { auto subshape = ShapeUtil::GetMutableSubshape(hlo->mutable_shape(), {i}); if (output_types[i] != LowPrecisionType()) { output_elements[i] = computation_->AddInstruction( HloInstruction::CreateGetTupleElement(*subshape, hlo, i)); continue; } subshape->set_element_type(HighPrecisionType()); float_normalization_->UpdateLayout(subshape); auto gte = computation_->AddInstruction( HloInstruction::CreateGetTupleElement(*subshape, hlo, i)); auto shape = ShapeUtil::ChangeElementType(*subshape, LowPrecisionType()); float_normalization_->UpdateLayout(&shape); output_elements[i] = computation_->AddInstruction(HloInstruction::CreateConvert(shape, gte)); } auto tuple = computation_->AddInstruction( HloInstruction::CreateTuple(output_elements)); *tuple->mutable_shape() = hlo->shape(); for (auto* user : materialized_users) { TF_RETURN_IF_ERROR(hlo->ReplaceUseWith(user, tuple)); } bool is_root = computation_->root_instruction() == hlo; if (is_root) { computation_->set_root_instruction(tuple); } *tuple->mutable_shape() = original_shape; return ConvertCalledComputations(hlo, low_precision_called_comps); } absl::Status FloatNormalizationVisitor::HandleInstruction(HloInstruction* hlo) { int high_prec_count = 0; int low_prec_count = 0; for (int64_t i = 0; i < hlo->operand_count(); ++i) { high_prec_count += CountSubshapesWithMatchingType(hlo->operand(i)->shape(), HighPrecisionType()); low_prec_count += CountSubshapesWithMatchingType(hlo->operand(i)->shape(), LowPrecisionType()); } high_prec_count += CountSubshapesWithMatchingType(hlo->shape(), HighPrecisionType()); low_prec_count += CountSubshapesWithMatchingType(hlo->shape(), LowPrecisionType()); std::vector<HloComputation*> low_precision_called_comps; for (auto* comp : hlo->called_computations()) { if (ShouldAvoidNormalizingComputationsForInstruction(hlo)) { continue; } bool comp_has_low_precision = false; high_prec_count += CountSubshapesWithMatchingType( comp->root_instruction()->shape(), HighPrecisionType()); int64_t low_prec_count_comp_root = CountSubshapesWithMatchingType( comp->root_instruction()->shape(), LowPrecisionType()); if (low_prec_count_comp_root > 0) { low_prec_count += low_prec_count_comp_root; comp_has_low_precision = true; } for (auto* param : comp->parameter_instructions()) { high_prec_count += CountSubshapesWithMatchingType(param->shape(), HighPrecisionType()); int64_t low_prec_count_comp_param = CountSubshapesWithMatchingType(param->shape(), LowPrecisionType()); if (low_prec_count_comp_param > 0) { low_prec_count += low_prec_count_comp_param; comp_has_low_precision = true; } } if (comp_has_low_precision) { low_precision_called_comps.push_back(comp); } } for (int i = 0; i < hlo->operand_count(); ++i) { int64_t low_prec_count_in_operand = CountSubshapesWithMatchingType( hlo->operand(i)->shape(), LowPrecisionType()); if (low_prec_count_in_operand > 0 && !float_support_->SupportsLowPrecisionOperand(*hlo, i)) { TF_RETURN_IF_ERROR(InsertConvertBeforeOperand( hlo, i, LowPrecisionType(), HighPrecisionType(), computation_)); low_prec_count -= low_prec_count_in_operand; high_prec_count += low_prec_count_in_operand; } } if (!float_support_->SupportsLowPrecisionOutput(*hlo)) { int64_t low_prec_count_in_hlo = CountSubshapesWithMatchingType(hlo->shape(), LowPrecisionType()); if (low_prec_count_in_hlo > 0) { TF_RETURN_IF_ERROR(ChangeOutputTypeThenInsertConvertBack( hlo, LowPrecisionType(), HighPrecisionType(), computation_)); low_prec_count -= low_prec_count_in_hlo; high_prec_count += low_prec_count_in_hlo; } } if (float_support_->SupportsMixedPrecisions(*hlo) || low_prec_count == 0 || high_prec_count == 0) { return absl::OkStatus(); } if (hlo->called_computations().empty() && CountSubshapesWithMatchingType(hlo->shape(), LowPrecisionType()) == ShapeLeafCount(hlo->shape())) { bool can_use_low_prec = true; for (int i = 0; i < hlo->operand_count(); ++i) { if (CountSubshapesWithMatchingType(hlo->operand(i)->shape(), LowPrecisionType()) == ShapeLeafCount(hlo->operand(i)->shape())) { continue; } if ((float_support_->EffectiveOperandPrecisionIsLowPrecision(*hlo, i) || float_support_->EffectiveOperandPrecisionIsOutputPrecision(*hlo, i)) && float_support_->SupportsLowPrecisionOperand(*hlo, i)) { continue; } can_use_low_prec = false; break; } if (can_use_low_prec) { for (int i = 0; i < hlo->operand_count(); ++i) { TF_RETURN_IF_ERROR(InsertConvertBeforeOperand( hlo, i, HighPrecisionType(), LowPrecisionType(), computation_)); } return absl::OkStatus(); } } TF_RETURN_IF_ERROR(ChangeOutputTypeThenInsertConvertBack( hlo, LowPrecisionType(), HighPrecisionType(), computation_)); for (int i = 0; i < hlo->operand_count(); ++i) { TF_RETURN_IF_ERROR(InsertConvertBeforeOperand( hlo, i, LowPrecisionType(), HighPrecisionType(), computation_)); } return ConvertCalledComputations(hlo, low_precision_called_comps); } absl::Status FloatNormalizationVisitor::DefaultAction(HloInstruction* hlo) { if (hlo->opcode() == HloOpcode::kTuple || hlo->opcode() == HloOpcode::kGetTupleElement || hlo->opcode() == HloOpcode::kConstant || hlo->opcode() == HloOpcode::kDomain || hlo->opcode() == HloOpcode::kParameter || hlo->opcode() == HloOpcode::kFusion || hlo->opcode() == HloOpcode::kConvert || hlo->opcode() == HloOpcode::kCall || hlo->opcode() == HloOpcode::kCustomCall || hlo->opcode() == HloOpcode::kWhile || hlo->opcode() == HloOpcode::kConditional || hlo->opcode() == HloOpcode::kBitcastConvert || hlo->HasSideEffectNoRecurse()) { return absl::OkStatus(); } if ((hlo->opcode() == HloOpcode::kSort || hlo->opcode() == HloOpcode::kAllReduce || hlo->opcode() == HloOpcode::kReduceScatter) && hlo->shape().IsTuple()) { return HandleMultipleOutputs(hlo); } return HandleInstruction(hlo); } absl::Status FloatNormalizationVisitor::Preprocess(HloInstruction* hlo) { computation_ = hlo->parent(); return absl::OkStatus(); } absl::flat_hash_set<HloComputation*> CloneComputationsForNonNormalizingInstructions( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { std::unique_ptr<CallGraph> call_graph = CallGraph::Build(module, execution_threads); absl::flat_hash_set<HloComputation*> computations_to_skip; for (const CallGraphNode& node : call_graph->nodes()) { bool has_normalizing_users = false; bool has_users_to_skip_normalization = false; for (const CallSite& site : node.caller_callsites()) { if (ShouldAvoidNormalizingComputationsForInstruction( site.instruction())) { has_users_to_skip_normalization = true; } else { has_normalizing_users = true; } } if (!has_users_to_skip_normalization) { continue; } if (!has_normalizing_users) { computations_to_skip.insert(node.computation()); continue; } HloComputation* clone = module->DeepCloneComputation(node.computation()); for (const CallSite& site : node.caller_callsites()) { if (ShouldAvoidNormalizingComputationsForInstruction( site.instruction())) { site.instruction()->ReplaceCalledComputations( [&](HloComputation* called) { return called == node.computation() ? clone : called; }); } } computations_to_skip.insert(clone); } return computations_to_skip; } } absl::StatusOr<bool> FloatNormalization::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { XLA_VLOG_LINES(2, "FloatNormalization::Run() for " + primitive_util::LowercasePrimitiveTypeName( float_support_->LowPrecisionType()) + ", before:\n" + module->ToString()); auto computations_to_visit = module->MakeComputationPostOrder(execution_threads); auto computations_to_skip = CloneComputationsForNonNormalizingInstructions(module, execution_threads); FloatNormalizationVisitor visitor(float_support_, this); for (auto* comp : computations_to_visit) { if (computations_to_skip.contains(comp)) continue; TF_RETURN_IF_ERROR(comp->Accept(&visitor)); } XLA_VLOG_LINES(2, "FloatNormalization::Run() for " + primitive_util::LowercasePrimitiveTypeName( float_support_->LowPrecisionType()) + ", after:\n" + module->ToString()); if (visitor.changed()) { TupleSimplifier tuple_simplifier; TF_RETURN_IF_ERROR(tuple_simplifier.Run(module).status()); HloDCE dce; TF_RETURN_IF_ERROR(dce.Run(module).status()); } return visitor.changed(); } }
#include "xla/service/float_normalization.h" #include <cstdint> #include <optional> #include <vector> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/float_support.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/hlo_verifier.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { class TestFloatSupport : public FloatSupport { public: explicit TestFloatSupport(PrimitiveType low_precision_type, PrimitiveType high_precision_type) : FloatSupport(low_precision_type, high_precision_type) {} ~TestFloatSupport() override = default; bool SupportsLowPrecisionOperand(const HloInstruction& hlo, int64_t operand_index) const override { if (hlo.opcode() == HloOpcode::kAdd || hlo.opcode() == HloOpcode::kSubtract || hlo.opcode() == HloOpcode::kReduce || hlo.opcode() == HloOpcode::kTuple || hlo.opcode() == HloOpcode::kGetTupleElement || hlo.opcode() == HloOpcode::kAllToAll) { return true; } if (hlo.opcode() == HloOpcode::kDot) { return operand_index == 0; } return false; } bool SupportsLowPrecisionOutput(const HloInstruction& hlo) const override { if (hlo.opcode() == HloOpcode::kAdd || hlo.opcode() == HloOpcode::kReduce || hlo.opcode() == HloOpcode::kSubtract || hlo.opcode() == HloOpcode::kDot || hlo.opcode() == HloOpcode::kTuple || hlo.opcode() == HloOpcode::kGetTupleElement || hlo.opcode() == HloOpcode::kAllToAll) { return true; } return false; } bool SupportsMixedPrecisions(const HloInstruction& hlo) const override { if (hlo.opcode() == HloOpcode::kAdd || hlo.opcode() == HloOpcode::kTuple || hlo.opcode() == HloOpcode::kGetTupleElement) { return true; } return false; } }; class TestFloatNoComputeSupport : public FloatSupport { public: explicit TestFloatNoComputeSupport(PrimitiveType low_precision_type, PrimitiveType high_precision_type) : FloatSupport(low_precision_type, high_precision_type) {} ~TestFloatNoComputeSupport() override = default; bool SupportsLowPrecisionOperand(const HloInstruction& hlo, int64_t operand_index) const override { if (hlo.opcode() == HloOpcode::kTuple || hlo.opcode() == HloOpcode::kGetTupleElement || hlo.opcode() == HloOpcode::kAllToAll || hlo.opcode() == HloOpcode::kAllReduce || hlo.opcode() == HloOpcode::kReduceScatter) { return true; } return false; } bool SupportsLowPrecisionOutput(const HloInstruction& hlo) const override { if (hlo.opcode() == HloOpcode::kTuple || hlo.opcode() == HloOpcode::kGetTupleElement || hlo.opcode() == HloOpcode::kAllToAll || hlo.opcode() == HloOpcode::kAllReduce || hlo.opcode() == HloOpcode::kReduceScatter) { return true; } return false; } }; class FloatNormalizationTest : public HloTestBase { protected: FloatNormalizationTest() : HloTestBase(false, true) {} bool Normalize(HloModule* module, PrimitiveType low_precision_type = BF16, PrimitiveType high_precision_type = F32) { TestFloatSupport float_support(low_precision_type, high_precision_type); FloatNormalization normalization(&float_support); absl::StatusOr<bool> result = normalization.Run(module); EXPECT_IS_OK(result.status()); HloVerifier verifier(false, true); EXPECT_IS_OK(verifier.Run(module).status()); return result.value(); } }; TEST_F(FloatNormalizationTest, NoopIfSupported) { auto builder = HloComputation::Builder(TestName()); Shape f32_shape = ShapeUtil::MakeShape(F32, {2, 4}); Shape bf16_shape = ShapeUtil::MakeShape(BF16, {2, 4}); HloInstruction* a = builder.AddInstruction( HloInstruction::CreateParameter(0, f32_shape, "a")); HloInstruction* b = builder.AddInstruction( HloInstruction::CreateParameter(1, bf16_shape, "b")); HloInstruction* c = builder.AddInstruction( HloInstruction::CreateParameter(2, f32_shape, "c")); HloInstruction* add0 = builder.AddInstruction( HloInstruction::CreateBinary(bf16_shape, HloOpcode::kAdd, a, b)); HloInstruction* add1 = builder.AddInstruction( HloInstruction::CreateBinary(f32_shape, HloOpcode::kAdd, add0, c)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_FALSE(Normalize(module.get())); EXPECT_EQ(computation->root_instruction(), add1); EXPECT_EQ(add0->shape().element_type(), BF16); EXPECT_EQ(add1->shape().element_type(), F32); } TEST_F(FloatNormalizationTest, ResolveIfUnsupportedBF16) { auto builder = HloComputation::Builder(TestName()); Shape f32_shape = ShapeUtil::MakeShape(F32, {2, 4}); Shape bf16_shape = ShapeUtil::MakeShape(BF16, {2, 4}); HloInstruction* a = builder.AddInstruction( HloInstruction::CreateParameter(0, f32_shape, "a")); HloInstruction* b = builder.AddInstruction( HloInstruction::CreateParameter(1, bf16_shape, "b")); HloInstruction* c = builder.AddInstruction( HloInstruction::CreateParameter(2, f32_shape, "c")); HloInstruction* mul0 = builder.AddInstruction( HloInstruction::CreateBinary(bf16_shape, HloOpcode::kMultiply, a, b)); HloInstruction* mul1 = builder.AddInstruction( HloInstruction::CreateBinary(bf16_shape, HloOpcode::kMultiply, mul0, c)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(Normalize(module.get())); EXPECT_EQ(computation->root_instruction()->opcode(), HloOpcode::kConvert); EXPECT_EQ(computation->root_instruction()->operand(0), mul1); EXPECT_EQ(mul0->shape().element_type(), F32); EXPECT_EQ(mul1->shape().element_type(), F32); EXPECT_EQ(mul1->operand(0)->opcode(), HloOpcode::kConvert); } TEST_F(FloatNormalizationTest, ResolveUnsupportedMixedPrecisionSubtraction) { auto builder = HloComputation::Builder(TestName()); Shape f32_shape = ShapeUtil::MakeShape(F32, {2, 4}); Shape bf16_shape = ShapeUtil::MakeShape(BF16, {2, 4}); HloInstruction* a = builder.AddInstruction( HloInstruction::CreateParameter(0, f32_shape, "a")); HloInstruction* b = builder.AddInstruction( HloInstruction::CreateParameter(1, bf16_shape, "b")); HloInstruction* c = builder.AddInstruction( HloInstruction::CreateParameter(2, f32_shape, "c")); HloInstruction* sub0 = builder.AddInstruction( HloInstruction::CreateBinary(bf16_shape, HloOpcode::kSubtract, a, b)); HloInstruction* sub1 = builder.AddInstruction( HloInstruction::CreateBinary(bf16_shape, HloOpcode::kSubtract, sub0, c)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(Normalize(module.get())); EXPECT_EQ(computation->root_instruction()->opcode(), HloOpcode::kConvert); EXPECT_EQ(computation->root_instruction()->operand(0), sub1); EXPECT_EQ(sub0->shape().element_type(), F32); EXPECT_EQ(sub1->shape().element_type(), F32); EXPECT_EQ(sub1->operand(0)->opcode(), HloOpcode::kConvert); } TEST_F(FloatNormalizationTest, ResolveUnsupportedMixedPrecisionReduce) { Shape f32_input_shape = ShapeUtil::MakeShape(F32, {2, 4}); Shape f32_output_shape = ShapeUtil::MakeShape(F32, {4}); Shape bf16_scalar_shape = ShapeUtil::MakeShape(BF16, {}); auto reduce_comp_builder = HloComputation::Builder("reduce_comp"); auto reduce_comp_param0 = reduce_comp_builder.AddInstruction( HloInstruction::CreateParameter(0, bf16_scalar_shape, "param0")); auto reduce_comp_param1 = reduce_comp_builder.AddInstruction( HloInstruction::CreateParameter(1, bf16_scalar_shape, "param1")); reduce_comp_builder.AddInstruction( HloInstruction::CreateBinary(bf16_scalar_shape, HloOpcode::kAdd, reduce_comp_param0, reduce_comp_param1)); auto module = CreateNewVerifiedModule(); auto reduce_computation = module->AddEmbeddedComputation(reduce_comp_builder.Build()); auto builder = HloComputation::Builder(TestName()); HloInstruction* input = builder.AddInstruction( HloInstruction::CreateParameter(0, f32_input_shape, "a")); HloInstruction* init = builder.AddInstruction( HloInstruction::CreateParameter(1, bf16_scalar_shape, "init")); HloInstruction* reduce = builder.AddInstruction(HloInstruction::CreateReduce( f32_output_shape, input, init, {0}, reduce_computation)); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(Normalize(module.get())); EXPECT_EQ(computation->root_instruction(), reduce); EXPECT_EQ(reduce->called_computations().size(), 1); EXPECT_EQ(reduce->called_computations()[0]->num_parameters(), 2); EXPECT_EQ(reduce->called_computations()[0] ->parameter_instruction(0) ->shape() .element_type(), F32); EXPECT_EQ(reduce->called_computations()[0] ->parameter_instruction(1) ->shape() .element_type(), F32); EXPECT_EQ(reduce->called_computations()[0] ->root_instruction() ->shape() .element_type(), F32); EXPECT_EQ(reduce->shape().element_type(), F32); EXPECT_EQ(reduce->operand(0), input); EXPECT_EQ(input->shape().element_type(), F32); EXPECT_EQ(reduce->operand(1)->opcode(), HloOpcode::kConvert); EXPECT_EQ(reduce->operand(1)->shape().element_type(), F32); } TEST_F(FloatNormalizationTest, ResolveMixedPrecisionTupleAllReduce) { auto module = CreateNewVerifiedModule(); HloComputation::Builder sum_builder("sum"); auto x = sum_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "x")); auto y = sum_builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {}), "y")); sum_builder.AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(F32, {}), HloOpcode::kAdd, x, y)); HloComputation* reduction = module->AddEmbeddedComputation(sum_builder.Build()); auto builder = HloComputation::Builder(TestName()); Shape f32_shape = ShapeUtil::MakeShape(F32, {2, 4}); Shape bf16_shape = ShapeUtil::MakeShape(BF16, {2, 4}); HloInstruction* a = builder.AddInstruction( HloInstruction::CreateParameter(0, f32_shape, "a")); HloInstruction* b = builder.AddInstruction( HloInstruction::CreateParameter(1, bf16_shape, "b")); HloInstruction* crs = builder.AddInstruction(HloInstruction::CreateAllReduce( ShapeUtil::MakeTupleShape({f32_shape, bf16_shape}), {a, b}, reduction, CollectiveDeviceList(), false, std::nullopt, false)); builder.AddInstruction( HloInstruction::CreateGetTupleElement(bf16_shape, crs, 1)); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(Normalize(module.get())); EXPECT_EQ(computation->root_instruction()->shape().element_type(), BF16); EXPECT_EQ(crs->operand(1)->shape().element_type(), F32); EXPECT_EQ(ShapeUtil::GetSubshape(crs->shape(), {1}).element_type(), F32); } TEST_F(FloatNormalizationTest, ResolveMixedPrecisionTupleAllToAllToBF16) { auto module = CreateNewVerifiedModule(TestName(), 2); auto builder = HloComputation::Builder(TestName()); Shape f32_shape = ShapeUtil::MakeShape(F32, {2, 4}); Shape bf16_shape = ShapeUtil::MakeShape(BF16, {2, 4}); HloInstruction* a = builder.AddInstruction( HloInstruction::CreateParameter(0, f32_shape, "a")); std::vector<ReplicaGroup> replica_groups(1); replica_groups[0].add_replica_ids(0); replica_groups[0].add_replica_ids(1); HloInstruction* a2a = builder.AddInstruction(HloInstruction::CreateAllToAll( ShapeUtil::MakeTupleShape({bf16_shape, bf16_shape}), {a, a}, CollectiveDeviceList(replica_groups), false, std::nullopt)); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(Normalize(module.get())); EXPECT_EQ(computation->root_instruction(), a2a); EXPECT_EQ(ShapeUtil::GetSubshape(a2a->shape(), {0}).element_type(), BF16); EXPECT_EQ(ShapeUtil::GetSubshape(a2a->shape(), {1}).element_type(), BF16); EXPECT_EQ(a2a->operand(0)->opcode(), HloOpcode::kConvert); EXPECT_EQ(a2a->operand(0)->shape().element_type(), BF16); EXPECT_EQ(a2a->operand(1)->opcode(), HloOpcode::kConvert); EXPECT_EQ(a2a->operand(1)->shape().element_type(), BF16); } TEST_F(FloatNormalizationTest, ResolveMixedPrecisionTupleAllToAllToF32) { auto module = CreateNewVerifiedModule(TestName(), 2); auto builder = HloComputation::Builder(TestName()); Shape f32_shape = ShapeUtil::MakeShape(F32, {2, 4}); Shape bf16_shape = ShapeUtil::MakeShape(BF16, {2, 4}); HloInstruction* a = builder.AddInstruction( HloInstruction::CreateParameter(0, f32_shape, "a")); std::vector<ReplicaGroup> replica_groups(1); replica_groups[0].add_replica_ids(0); replica_groups[0].add_replica_ids(1); HloInstruction* a2a = builder.AddInstruction(HloInstruction::CreateAllToAll( ShapeUtil::MakeTupleShape({bf16_shape, f32_shape}), {a, a}, CollectiveDeviceList(replica_groups), false, std::nullopt)); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(Normalize(module.get())); EXPECT_EQ(computation->root_instruction()->opcode(), HloOpcode::kTuple); EXPECT_EQ(ShapeUtil::GetSubshape(a2a->shape(), {0}).element_type(), F32); EXPECT_EQ(ShapeUtil::GetSubshape(a2a->shape(), {1}).element_type(), F32); EXPECT_EQ(a2a->operand(0)->opcode(), HloOpcode::kParameter); EXPECT_EQ(a2a->operand(0)->shape().element_type(), F32); EXPECT_EQ(a2a->operand(1)->opcode(), HloOpcode::kParameter); EXPECT_EQ(a2a->operand(1)->shape().element_type(), F32); } TEST_F(FloatNormalizationTest, ResolveMixedPrecisionTupleSort) { auto module = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); Shape f32_shape = ShapeUtil::MakeShape(F32, {1024}); Shape bf16_shape = ShapeUtil::MakeShape(BF16, {1024}); Shape s32_shape = ShapeUtil::MakeShape(BF16, {1024}); HloInstruction* key = builder.AddInstruction( HloInstruction::CreateParameter(0, f32_shape, "key")); HloInstruction* value = builder.AddInstruction( HloInstruction::CreateParameter(1, s32_shape, "value")); TF_ASSERT_OK_AND_ASSIGN( auto* sort, MakeSortHlo(ShapeUtil::MakeTupleShape({bf16_shape, s32_shape}), {key, value}, 0, false, &builder, module.get())); builder.AddInstruction( HloInstruction::CreateGetTupleElement(bf16_shape, sort, 0)); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(Normalize(module.get())); EXPECT_EQ(computation->root_instruction()->shape().element_type(), BF16); EXPECT_EQ(sort->operand(0)->shape().element_type(), F32); EXPECT_EQ(ShapeUtil::GetSubshape(sort->shape(), {0}).element_type(), F32); } TEST_F(FloatNormalizationTest, ResolveMixedPrecisionTupleSortRoot) { auto module = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); Shape f32_shape = ShapeUtil::MakeShape(F32, {1024}); Shape bf16_shape = ShapeUtil::MakeShape(BF16, {1024}); HloInstruction* key = builder.AddInstruction( HloInstruction::CreateParameter(0, f32_shape, "key")); HloInstruction* value = builder.AddInstruction( HloInstruction::CreateParameter(1, bf16_shape, "value")); TF_ASSERT_OK_AND_ASSIGN( auto* sort, MakeSortHlo(ShapeUtil::MakeTupleShape({bf16_shape, f32_shape}), {key, value}, 0, false, &builder, module.get())); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(Normalize(module.get())); EXPECT_EQ(sort->operand(0)->shape().element_type(), F32); EXPECT_EQ(ShapeUtil::GetSubshape(sort->shape(), {0}).element_type(), F32); EXPECT_NE(computation->root_instruction(), sort); EXPECT_EQ(computation->root_instruction()->opcode(), HloOpcode::kTuple); EXPECT_EQ(sort->to_apply()->parameter_instruction(1)->shape().element_type(), F32); auto users = sort->to_apply()->parameter_instruction(1)->users(); for (auto user : users) { EXPECT_NE(user->opcode(), HloOpcode::kConvert); } } TEST_F(FloatNormalizationTest, DoNotAddUnsupportedMixedPrecision) { auto builder = HloComputation::Builder(TestName()); Shape bf16_shape = ShapeUtil::MakeShape(BF16, {4, 4}); HloInstruction* a = builder.AddInstruction( HloInstruction::CreateParameter(0, bf16_shape, "a")); HloInstruction* b = builder.AddInstruction( HloInstruction::CreateParameter(1, bf16_shape, "b")); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); PrecisionConfig precision_config; precision_config.mutable_operand_precision()->Resize( 2, PrecisionConfig::DEFAULT); HloInstruction* dot = builder.AddInstruction( HloInstruction::CreateDot(bf16_shape, a, b, dot_dnums, precision_config)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(Normalize(module.get())); EXPECT_EQ(computation->root_instruction()->opcode(), HloOpcode::kConvert); EXPECT_EQ(dot->shape().element_type(), F32); EXPECT_EQ(dot->operand(0)->shape().element_type(), F32); EXPECT_EQ(dot->operand(0)->opcode(), HloOpcode::kConvert); EXPECT_EQ(dot->operand(1)->shape().element_type(), F32); EXPECT_EQ(dot->operand(1)->opcode(), HloOpcode::kConvert); } TEST_F(FloatNormalizationTest, DoNotChangeBitcastConvert) { auto builder = HloComputation::Builder(TestName()); Shape u16_shape = ShapeUtil::MakeShape(U16, {4, 4}); Shape bf16_shape = ShapeUtil::MakeShape(BF16, {4, 4}); HloInstruction* a = builder.AddInstruction( HloInstruction::CreateParameter(0, u16_shape, "a")); builder.AddInstruction(HloInstruction::CreateBitcastConvert(bf16_shape, a)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_FALSE(Normalize(module.get())); auto root = computation->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kBitcastConvert); EXPECT_EQ(root->shape().element_type(), BF16); EXPECT_EQ(root->operand(0)->shape().element_type(), U16); } TEST_F(FloatNormalizationTest, ResolveIfUnsupportedF8e5m2) { auto builder = HloComputation::Builder(TestName()); Shape f16_shape = ShapeUtil::MakeShape(F16, {2, 4}); Shape f8_shape = ShapeUtil::MakeShape(F8E5M2, {2, 4}); HloInstruction* a = builder.AddInstruction( HloInstruction::CreateParameter(0, f16_shape, "a")); HloInstruction* b = builder.AddInstruction(HloInstruction::CreateParameter(1, f8_shape, "b")); HloInstruction* c = builder.AddInstruction( HloInstruction::CreateParameter(2, f16_shape, "c")); HloInstruction* mul0 = builder.AddInstruction( HloInstruction::CreateBinary(f8_shape, HloOpcode::kMultiply, a, b)); HloInstruction* mul1 = builder.AddInstruction( HloInstruction::CreateBinary(f8_shape, HloOpcode::kMultiply, mul0, c)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(Normalize(module.get(), F8E5M2, F16)); EXPECT_EQ(computation->root_instruction()->opcode(), HloOpcode::kConvert); EXPECT_EQ(computation->root_instruction()->operand(0), mul1); EXPECT_EQ(mul0->shape().element_type(), F16); EXPECT_EQ(mul1->shape().element_type(), F16); EXPECT_EQ(mul1->operand(0)->opcode(), HloOpcode::kConvert); } class FloatNormalizationNoComputeSupportTest : public FloatNormalizationTest { protected: bool Normalize(HloModule* module, PrimitiveType low_precision_type = BF16, PrimitiveType high_precision_type = F32) { TestFloatNoComputeSupport float_support(low_precision_type, high_precision_type); FloatNormalization normalization(&float_support); absl::StatusOr<bool> result = normalization.Run(module); EXPECT_IS_OK(result.status()); HloVerifier verifier(false, true); EXPECT_IS_OK(verifier.Run(module).status()); return result.value(); } }; TEST_F(FloatNormalizationNoComputeSupportTest, NoNormalizationForToApplyMultiOutputAllReduce) { auto module = CreateNewVerifiedModule(); HloComputation::Builder sum_builder("sum"); auto x = sum_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(BF16, {}), "x")); auto y = sum_builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(BF16, {}), "y")); sum_builder.AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(BF16, {}), HloOpcode::kAdd, x, y)); HloComputation* reduction = module->AddEmbeddedComputation(sum_builder.Build()); auto builder = HloComputation::Builder(TestName()); Shape bf16_shape_a = ShapeUtil::MakeShape(BF16, {2, 4}); Shape bf16_shape_b = ShapeUtil::MakeShape(BF16, {16, 16}); HloInstruction* a = builder.AddInstruction( HloInstruction::CreateParameter(0, bf16_shape_a, "a")); HloInstruction* b = builder.AddInstruction( HloInstruction::CreateParameter(1, bf16_shape_b, "b")); HloInstruction* crs = builder.AddInstruction(HloInstruction::CreateAllReduce( ShapeUtil::MakeTupleShape({bf16_shape_a, bf16_shape_b}), {a, b}, reduction, CollectiveDeviceList(), false, std::nullopt, false)); builder.AddInstruction( HloInstruction::CreateGetTupleElement(bf16_shape_b, crs, 1)); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_FALSE(Normalize(module.get())); EXPECT_EQ(computation->root_instruction()->shape().element_type(), BF16); EXPECT_EQ(crs->operand(1)->shape().element_type(), BF16); EXPECT_EQ(crs->to_apply()->root_instruction()->opcode(), HloOpcode::kAdd); EXPECT_EQ(ShapeUtil::GetSubshape(crs->shape(), {1}).element_type(), BF16); } TEST_F(FloatNormalizationNoComputeSupportTest, NormalizationClonesSharedApplyAllReduceAndReduce) { auto module = CreateNewVerifiedModule(); HloComputation::Builder sum_builder("sum"); auto x = sum_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(BF16, {}), "x")); auto y = sum_builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(BF16, {}), "y")); sum_builder.AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(BF16, {}), HloOpcode::kAdd, x, y)); HloComputation* reduction = module->AddEmbeddedComputation(sum_builder.Build()); auto builder = HloComputation::Builder(TestName()); Shape bf16_shape_a = ShapeUtil::MakeShape(BF16, {2, 4}); HloInstruction* a = builder.AddInstruction( HloInstruction::CreateParameter(0, bf16_shape_a, "a")); Shape bf16_shape_b = ShapeUtil::MakeShape(BF16, {2, 4, 2}); HloInstruction* b = builder.AddInstruction( HloInstruction::CreateParameter(1, bf16_shape_b, "b")); Shape bf16_scalar_shape = ShapeUtil::MakeShape(BF16, {}); HloInstruction* init = builder.AddInstruction( HloInstruction::CreateParameter(2, bf16_scalar_shape, "init")); HloInstruction* all_reduce = builder.AddInstruction( HloInstruction::CreateAllReduce(bf16_shape_a, {a}, reduction, CollectiveDeviceList(), false, std::nullopt, false)); HloInstruction* reduce = builder.AddInstruction( HloInstruction::CreateReduce(bf16_shape_a, b, init, {2}, reduction)); builder.AddInstruction(HloInstruction::CreateBinary( bf16_shape_a, HloOpcode::kAdd, all_reduce, reduce)); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(Normalize(module.get())); EXPECT_EQ(computation->root_instruction()->shape().element_type(), BF16); EXPECT_EQ(all_reduce->operand(0)->shape().element_type(), BF16); EXPECT_EQ(all_reduce->to_apply()->root_instruction()->opcode(), HloOpcode::kAdd); EXPECT_EQ(all_reduce->to_apply()->root_instruction()->shape().element_type(), BF16); EXPECT_EQ(reduce->called_computations().size(), 1); EXPECT_EQ(reduce->called_computations()[0] ->root_instruction() ->shape() .element_type(), F32); EXPECT_EQ(reduce->called_computations()[0]->root_instruction()->opcode(), HloOpcode::kConvert); EXPECT_EQ(reduce->shape().element_type(), F32); } TEST_F(FloatNormalizationNoComputeSupportTest, NoNormalizationForToApplyAllReduce) { auto module = CreateNewVerifiedModule(); HloComputation::Builder sum_builder("sum"); auto x = sum_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(BF16, {}), "x")); auto y = sum_builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(BF16, {}), "y")); sum_builder.AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(BF16, {}), HloOpcode::kAdd, x, y)); HloComputation* reduction = module->AddEmbeddedComputation(sum_builder.Build()); auto builder = HloComputation::Builder(TestName()); Shape bf16_shape_a = ShapeUtil::MakeShape(BF16, {2, 4}); HloInstruction* a = builder.AddInstruction( HloInstruction::CreateParameter(0, bf16_shape_a, "a")); HloInstruction* crs = builder.AddInstruction( HloInstruction::CreateAllReduce(bf16_shape_a, {a}, reduction, CollectiveDeviceList(), false, std::nullopt, false)); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_FALSE(Normalize(module.get())); EXPECT_EQ(computation->root_instruction()->shape().element_type(), BF16); EXPECT_EQ(crs->operand(0)->shape().element_type(), BF16); EXPECT_EQ(crs->to_apply()->root_instruction()->opcode(), HloOpcode::kAdd); } TEST_F(FloatNormalizationNoComputeSupportTest, NoNormalizationForToApplyReduceScatter) { auto module = CreateNewVerifiedModule(); HloComputation::Builder sum_builder("sum"); auto x = sum_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(BF16, {}), "x")); auto y = sum_builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(BF16, {}), "y")); sum_builder.AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(BF16, {}), HloOpcode::kAdd, x, y)); HloComputation* reduction = module->AddEmbeddedComputation(sum_builder.Build()); auto builder = HloComputation::Builder(TestName()); Shape bf16_shape_a = ShapeUtil::MakeShape(BF16, {2, 4}); Shape bf16_shape_scattered = ShapeUtil::MakeShape(BF16, {1, 4}); HloInstruction* a = builder.AddInstruction( HloInstruction::CreateParameter(0, bf16_shape_a, "a")); HloInstruction* crs = builder.AddInstruction(HloInstruction::CreateReduceScatter( bf16_shape_scattered, {a}, reduction, CollectiveDeviceList(), false, std::nullopt, false, 0)); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_FALSE(Normalize(module.get())); EXPECT_EQ(computation->root_instruction()->shape().element_type(), BF16); EXPECT_EQ(crs->operand(0)->shape().element_type(), BF16); EXPECT_EQ(crs->to_apply()->root_instruction()->opcode(), HloOpcode::kAdd); } TEST_F(FloatNormalizationTest, ConvertBeforeTuple) { auto builder = HloComputation::Builder(TestName()); Shape bf16_shape = ShapeUtil::MakeShape(BF16, {2, 4}); Shape f32_shape = ShapeUtil::MakeShape(F32, {2, 4}); HloInstruction* a = builder.AddInstruction( HloInstruction::CreateParameter(0, bf16_shape, "a")); HloInstruction* b = builder.AddInstruction( HloInstruction::CreateParameter(1, bf16_shape, "b")); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(bf16_shape, HloOpcode::kMultiply, a, b)); HloInstruction* convert = builder.AddInstruction(HloInstruction::CreateConvert(f32_shape, add)); builder.AddInstruction(HloInstruction::CreateVariadic( ShapeUtil::MakeTupleShape({f32_shape, bf16_shape}), HloOpcode::kTuple, {convert, add})); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(Normalize(module.get(), BF16)); EXPECT_EQ(computation->root_instruction()->opcode(), HloOpcode::kTuple); EXPECT_EQ(computation->root_instruction()->operand(0)->shape().element_type(), F32); EXPECT_EQ( computation->root_instruction()->shape().tuple_shapes(0).element_type(), F32); } }
1,860
cpp
tensorflow/tensorflow
hlo_phi_graph
third_party/xla/xla/service/hlo_phi_graph.cc
third_party/xla/xla/service/hlo_phi_graph_test.cc
#ifndef XLA_SERVICE_HLO_PHI_GRAPH_H_ #define XLA_SERVICE_HLO_PHI_GRAPH_H_ #include <iterator> #include <memory> #include <string> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_value.h" namespace xla { class PhiGraph { public: void RegisterPhi(const HloValue& value, absl::Span<const HloValue* const> inputs); HloValue::Id GetOptimizedId(const HloValue& value); bool InputsEqualTo(const HloValue& value, absl::Span<const HloValue* const> inputs); HloValue::Id FindOptimizedValue(const HloValue::Id id); void Optimize(); std::string ToString(); private: struct Node { bool is_phi; std::vector<Node*> users; std::vector<Node*> operands; HloValue::Id value_id; bool mark_as_dead = false; }; Node* CreateOrReuseNode(const HloValue& value); void ReplaceNodeWith(Node* node, Node* replace); absl::flat_hash_map<Node*, std::vector<HloValue::Id>> node_to_value_id_; absl::flat_hash_map<HloValue::Id, Node*> value_id_to_node_; std::vector<std::unique_ptr<Node>> node_storage_; }; } #endif #include "xla/service/hlo_phi_graph.h" #include <queue> namespace xla { HloValue::Id PhiGraph::GetOptimizedId(const HloValue& value) { Node* node = value_id_to_node_[value.id()]; CHECK(!node->mark_as_dead); return node->value_id; } bool PhiGraph::InputsEqualTo(const HloValue& value, absl::Span<const HloValue* const> inputs) { auto iter = value_id_to_node_.find(value.id()); CHECK(iter != value_id_to_node_.end()); absl::flat_hash_set<HloValue::Id> existing_set; for (Node* operand : iter->second->operands) { existing_set.insert(operand->value_id); } absl::flat_hash_set<HloValue::Id> new_set; for (const HloValue* input : inputs) { new_set.insert(input->id()); } return existing_set == new_set; } HloValue::Id PhiGraph::FindOptimizedValue(const HloValue::Id id) { auto iter = value_id_to_node_.find(id); CHECK(iter != value_id_to_node_.end()); CHECK(!iter->second->mark_as_dead); return iter->second->value_id; } PhiGraph::Node* PhiGraph::CreateOrReuseNode(const HloValue& value) { auto iter = value_id_to_node_.find(value.id()); if (iter == value_id_to_node_.end()) { node_storage_.emplace_back(std::make_unique<Node>()); Node* node = node_storage_.back().get(); node->value_id = value.id(); value_id_to_node_[value.id()] = node; node_to_value_id_[node].push_back(value.id()); return node; } else { CHECK_NE(iter->second, nullptr); CHECK_EQ(iter->second->value_id, value.id()); return iter->second; } } void PhiGraph::ReplaceNodeWith(PhiGraph::Node* node, PhiGraph::Node* replace) { CHECK(node->is_phi); if (node->mark_as_dead) { return; } if (replace->mark_as_dead) { auto iter = value_id_to_node_.find(replace->value_id); CHECK(iter != value_id_to_node_.end()); return ReplaceNodeWith(node, iter->second); } CHECK(!replace->mark_as_dead); for (Node* user : node->users) { absl::c_replace(user->operands, node, replace); } for (Node* operand : node->operands) { absl::c_replace(operand->users, node, replace); } for (HloValue::Id value_id : node_to_value_id_[node]) { CHECK(value_id_to_node_.contains(value_id)); value_id_to_node_[value_id] = replace; } absl::c_copy(node_to_value_id_[node], std::back_inserter(node_to_value_id_[replace])); node_to_value_id_[node].clear(); node->mark_as_dead = true; } void PhiGraph::RegisterPhi(const HloValue& value, absl::Span<const HloValue* const> inputs) { Node* node = CreateOrReuseNode(value); CHECK(value.is_phi()); node->is_phi = true; node->operands.clear(); for (auto input : inputs) { CHECK(input != nullptr); Node* input_node = CreateOrReuseNode(*input); node->operands.push_back(input_node); } } std::string PhiGraph::ToString() { std::string out = "PhiGraph: \n"; for (auto& node : node_storage_) { absl::StrAppend(&out, node->value_id); if (node->is_phi) { absl::StrAppend(&out, ", phi"); } if (node->mark_as_dead) { absl::StrAppend(&out, ", dead", ":\n"); } for (Node* input : node->operands) { absl::StrAppend(&out, " ", input->value_id, "\n"); } } return out; } void PhiGraph::Optimize() { VLOG(2) << "Optimizing phi graph:"; XLA_VLOG_LINES(2, ToString()); for (auto& node : node_storage_) { for (Node* input : node->operands) { input->users.push_back(node.get()); } } bool changed = true; while (changed) { changed = false; absl::flat_hash_set<Node*> checked_for_closure; for (auto& node : node_storage_) { if (!node->is_phi) { continue; } if (node->mark_as_dead) { continue; } Node* node_ptr = node.get(); VLOG(2) << "Optimizing: " << node_ptr->value_id; CHECK_GE(node_ptr->operands.size(), 1); auto it = absl::c_find(node_ptr->operands, node_ptr); while (it != node_ptr->operands.end()) { node_ptr->operands.erase(it); it = absl::c_find(node_ptr->operands, node_ptr); } it = absl::c_find(node_ptr->users, node_ptr); while (it != node_ptr->users.end()) { node_ptr->users.erase(it); it = absl::c_find(node_ptr->users, node_ptr); } CHECK_GE(node_ptr->operands.size(), 1); bool all_inputs_are_same = absl::c_all_of( node_ptr->operands, [&](Node* elem) { return elem == node_ptr->operands[0]; }); if (all_inputs_are_same) { VLOG(1) << "All inputs to node " << node_ptr->value_id << " are the same, replacing it with " << node_ptr->operands[0]->value_id; ReplaceNodeWith(node_ptr, node_ptr->operands[0]); changed = true; continue; } if (checked_for_closure.contains(node_ptr)) { continue; } absl::flat_hash_set<Node*> workset; std::queue<Node*> worklist; Node* non_phi = nullptr; worklist.push(node_ptr); while (!worklist.empty()) { Node* todo = worklist.front(); worklist.pop(); if (workset.contains(todo)) { continue; } checked_for_closure.insert(todo); workset.insert(todo); for (Node* operand : todo->operands) { worklist.push(operand); } if (!todo->is_phi) { if (non_phi != nullptr && non_phi != todo) { non_phi = nullptr; break; } else { non_phi = todo; } } } if (non_phi != nullptr) { for (Node* node : workset) { if (!node->is_phi) { CHECK_EQ(node, non_phi); continue; } VLOG(1) << "Replace node " << node->value_id << " in the closure with node " << non_phi->value_id; ReplaceNodeWith(node, non_phi); changed = true; } } } } } }
#include "xla/service/hlo_phi_graph.h" #include "xla/literal_util.h" #include "tsl/platform/test.h" namespace xla { namespace { class PhiGraphTest : public ::testing::Test { protected: HloValue NewHloValue(bool is_phi) { static int64_t id = 0; return HloValue(id++, dummy_inst_.get(), {}, is_phi); } void SetUp() override { dummy_inst_ = HloInstruction::CreateConstant(LiteralUtil::CreateR0(0.0f)); } std::unique_ptr<HloInstruction> dummy_inst_; }; TEST_F(PhiGraphTest, SelfReferencingPhi) { PhiGraph phi_graph; HloValue A = NewHloValue(false); HloValue B = NewHloValue(true); phi_graph.RegisterPhi(B, {&A, &B}); phi_graph.Optimize(); EXPECT_EQ(A.id(), phi_graph.FindOptimizedValue(B.id())); } TEST_F(PhiGraphTest, PhiWithSameInputs) { PhiGraph phi_graph; HloValue A = NewHloValue(false); HloValue B = NewHloValue(true); phi_graph.RegisterPhi(B, {&A, &A}); phi_graph.Optimize(); EXPECT_EQ(A.id(), phi_graph.FindOptimizedValue(B.id())); } TEST_F(PhiGraphTest, CircularPhi) { PhiGraph phi_graph; HloValue A = NewHloValue(true); HloValue B = NewHloValue(true); HloValue C = NewHloValue(true); HloValue D = NewHloValue(false); phi_graph.RegisterPhi(A, {&B, &C}); phi_graph.RegisterPhi(B, {&D, &C}); phi_graph.RegisterPhi(C, {&A, &B}); phi_graph.Optimize(); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(A.id())); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(B.id())); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(C.id())); } TEST_F(PhiGraphTest, NestedPhiReduction) { PhiGraph phi_graph; HloValue A = NewHloValue(true); HloValue B = NewHloValue(true); HloValue C = NewHloValue(true); HloValue D = NewHloValue(false); HloValue E = NewHloValue(true); phi_graph.RegisterPhi(A, {&B, &C}); phi_graph.RegisterPhi(B, {&E, &C}); phi_graph.RegisterPhi(C, {&A, &B}); phi_graph.RegisterPhi(E, {&D, &D}); phi_graph.Optimize(); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(A.id())); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(B.id())); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(C.id())); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(E.id())); } } }
1,861
cpp
tensorflow/tensorflow
while_loop_fusible_sinking
third_party/xla/xla/service/while_loop_fusible_sinking.cc
third_party/xla/xla/service/while_loop_fusible_sinking_test.cc
#ifndef XLA_SERVICE_WHILE_LOOP_FUSIBLE_SINKING_H_ #define XLA_SERVICE_WHILE_LOOP_FUSIBLE_SINKING_H_ #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class WhileLoopFusibleSinking : public HloModulePass { public: WhileLoopFusibleSinking() = default; ~WhileLoopFusibleSinking() override = default; absl::string_view name() const override { return "while-loop-fusible-sinking"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: absl::StatusOr<bool> TrySinkingFusiblesIntoWhileLoop( HloInstruction* while_instr); bool IsSinkableFusion(HloInstruction* while_operand); HloInstruction* CreateSinkableFusion(HloInstruction* while_operand); absl::flat_hash_map<HloComputation*, int> call_counts_; }; } #endif #include "xla/service/while_loop_fusible_sinking.h" #include <cstdint> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/while_util.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { bool IsPurelyExpanding(const HloInstruction* instr) { return instr->opcode() == HloOpcode::kBroadcast || (instr->opcode() == HloOpcode::kConstant && instr->shape().rank() == 0) || instr->opcode() == HloOpcode::kIota; } bool IsFusionCandidate(const HloInstruction* instr) { return instr->opcode() != HloOpcode::kRng && (instr->IsElementwise() || instr->opcode() == HloOpcode::kReshape || instr->opcode() == HloOpcode::kTranspose); } } bool WhileLoopFusibleSinking::IsSinkableFusion(HloInstruction* while_operand) { absl::InlinedVector<HloInstruction*, 8> worklist; absl::flat_hash_set<int> visited; worklist.push_back(while_operand); while (!worklist.empty()) { HloInstruction* to_process = worklist.back(); worklist.pop_back(); if (!to_process->IsFusible()) { return false; } if (!visited.insert(to_process->unique_id()).second) { if (visited.size() > 100) { return false; } continue; } if (IsPurelyExpanding(to_process)) { continue; } if (IsFusionCandidate(to_process)) { for (auto* op : to_process->operands()) { worklist.push_back(op); } continue; } return false; } return true; } HloInstruction* WhileLoopFusibleSinking::CreateSinkableFusion( HloInstruction* while_operand) { HloInstruction* fusion = while_operand->AddInstruction(while_operand->CreateFusion( while_operand->shape(), HloInstruction::FusionKind::kLoop, while_operand)); bool did_fuse = IsFusionCandidate(while_operand); while (did_fuse) { did_fuse = false; for (int64_t i = fusion->operand_count() - 1; i >= 0; --i) { HloInstruction* op = fusion->mutable_operand(i); if (IsPurelyExpanding(op)) { continue; } fusion->FuseInstruction(op); did_fuse = true; break; } } did_fuse = true; while (did_fuse) { did_fuse = false; for (int64_t i = fusion->operand_count() - 1; i >= 0; --i) { HloInstruction* op = fusion->mutable_operand(i); if (IsPurelyExpanding(op)) { fusion->FuseInstruction(op); did_fuse = true; break; } } } return fusion; } absl::StatusOr<bool> WhileLoopFusibleSinking::TrySinkingFusiblesIntoWhileLoop( HloInstruction* while_instr) { HloComputation* while_cond = while_instr->while_condition(); HloComputation* while_body = while_instr->while_body(); if (call_counts_[while_body] > 1 || call_counts_[while_cond] > 1) { return false; } HloInstruction* init_value = while_instr->mutable_operand(0); if (init_value->opcode() != HloOpcode::kTuple) { return false; } bool changed = false; absl::flat_hash_map<int64_t, absl::InlinedVector<HloInstruction*, 1>> conditional_gte_index_to_insts = WhileUtil::GetGTEsMapForWhileConditional(*while_cond); std::vector<HloInstruction*> invariant_body_gtes = WhileUtil::GetInvariantGTEsForWhileBody(*while_body); std::vector<int64_t> tuple_indices; std::vector<HloInstruction*> new_operands; for (HloInstruction* invariant_body_gte : invariant_body_gtes) { int64_t index = invariant_body_gte->tuple_index(); if (while_instr->operand_count() == 0 || init_value->operand_count() == 0) { CHECK_EQ(while_instr->user_count(), 0); VLOG(3) << "Each element in the operand tuple of the while instruction '" << while_instr->name() << "' was an invariant value, whose usage has been replaced " " directly by the value."; break; } HloInstruction* invariant_value = init_value->mutable_operand(index); if (absl::c_any_of(invariant_body_gte->users(), [](const HloInstruction* use) { switch (use->opcode()) { case HloOpcode::kDynamicSlice: case HloOpcode::kGather: case HloOpcode::kSlice: return true; default: return false; } })) { continue; } if (init_value->IsRoot() || init_value->user_count() > 1) { init_value = init_value->AddInstruction(init_value->Clone()); TF_RETURN_IF_ERROR(while_instr->ReplaceOperandWith(0, init_value)); } if (!IsSinkableFusion(invariant_value)) { continue; } HloInstruction* fusion = CreateSinkableFusion(invariant_value); changed = true; if (fusion->operand_count() > 0 && (while_instr->IsRoot() || absl::c_any_of(while_instr->users(), [&](HloInstruction* use) { return use->opcode() != HloOpcode::kGetTupleElement; }))) { auto uses = while_instr->users(); std::vector<HloInstruction*> gtes(init_value->operand_count()); for (int64_t i = 0; i < gtes.size(); ++i) { gtes[i] = while_instr->AddInstruction( HloInstruction::CreateGetTupleElement(while_instr, i)); } HloInstruction* tuple = while_instr->AddInstruction(HloInstruction::CreateTuple(gtes)); if (while_instr->IsRoot()) { while_instr->parent()->set_root_instruction(tuple); } if (!uses.empty()) { TF_RETURN_IF_ERROR(while_instr->ReplaceUsesWith(uses, tuple)); } } absl::InlinedVector<HloInstruction*, 2> invariant_output_uses; for (auto use : while_instr->users()) { if (use->opcode() == HloOpcode::kGetTupleElement && use->tuple_index() == index) { invariant_output_uses.push_back(use); } } for (auto use : invariant_output_uses) { TF_RETURN_IF_ERROR( while_instr->parent()->ReplaceInstruction(use, invariant_value)); } HloInstruction* root = while_body->root_instruction(); HloInstruction* parameter = while_body->parameter_instruction(0); tuple_indices.resize(fusion->operand_count()); int64_t next_index = init_value->operand_count(); new_operands.resize(fusion->operand_count()); for (int64_t i = 0; i < fusion->operand_count(); ++i) { init_value->AppendOperand(fusion->mutable_operand(i)); parameter->mutable_shape()->mutable_tuple_shapes()->push_back( fusion->mutable_operand(i)->shape()); new_operands[i] = root->AddInstruction( HloInstruction::CreateGetTupleElement(parameter, next_index++)); root->AppendOperand(new_operands[i]); } *(init_value->mutable_shape()) = parameter->shape(); *(while_instr->mutable_shape()) = parameter->shape(); *(while_cond->parameter_instruction(0)->mutable_shape()) = parameter->shape(); *(root->mutable_shape()) = parameter->shape(); auto cloned_fusion = while_body->AddInstruction( fusion->CloneWithNewOperands(fusion->shape(), new_operands)); TF_RETURN_IF_ERROR(fusion->parent()->RemoveInstruction(fusion)); TF_RETURN_IF_ERROR( while_body->ReplaceInstruction(invariant_body_gte, cloned_fusion)); TF_RETURN_IF_ERROR(cloned_fusion->Defuse()); } return changed; } absl::StatusOr<bool> WhileLoopFusibleSinking::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { call_counts_.clear(); bool changed = false; std::vector<HloInstruction*> while_instrs; for (auto* comp : module->MakeNonfusionComputations(execution_threads)) { absl::c_copy_if(comp->instructions(), std::back_inserter(while_instrs), HloPredicateIsOp<HloOpcode::kWhile>); } for (HloInstruction* while_instr : while_instrs) { call_counts_[while_instr->while_body()]++; call_counts_[while_instr->while_condition()]++; } for (HloInstruction* while_instr : while_instrs) { TF_ASSIGN_OR_RETURN(bool result, TrySinkingFusiblesIntoWhileLoop(while_instr)); changed |= result; } return changed; } }
#include "xla/service/while_loop_fusible_sinking.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; using ::testing::_; using WhileLoopFusibleSinkingTest = HloTestBase; TEST_F(WhileLoopFusibleSinkingTest, SinkOneFusible) { const char* const hlo_string = R"( HloModule ModuleWithWhile body { p_body = (f32[2],f32[2]) parameter(0) p_body.0 = f32[2] get-tuple-element((f32[2],f32[2]) p_body), index=0 p_body.1 = f32[2] get-tuple-element((f32[2],f32[2]) p_body), index=1 add.0 = f32[2] add(p_body.0, p_body.1) ROOT root = (f32[2],f32[2]) tuple(add.0, p_body.1) } condition { p_cond = (f32[2],f32[2]) parameter(0) ROOT result = pred[] constant(true) } ENTRY entry { const_0 = f32[2] parameter(0) const_1 = f32[2] iota(), iota_dimension=0 while_init = (f32[2],f32[2]) tuple(const_0, const_1) ROOT while = (f32[2],f32[2]) while(while_init), condition=condition, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, WhileLoopFusibleSinking{}.Run(module.get())); ASSERT_TRUE(changed); auto* while_body = module->GetComputationWithName("body"); EXPECT_THAT(while_body->root_instruction(), op::Tuple(op::Add(_, op::Iota()), _)); } TEST_F(WhileLoopFusibleSinkingTest, SinkMask) { const char* const hlo_string = R"( HloModule ModuleWithWhile body { p_body = (f32[5,7],f32[5,7]) parameter(0) p_body.0 = get-tuple-element(p_body), index=0 p_body.1 = get-tuple-element(p_body), index=1 add.0 = add(p_body.0, p_body.1) ROOT root = tuple(add.0, p_body.1) } condition { p_cond = (f32[5,7],f32[5,7]) parameter(0) ROOT result = pred[] constant(true) } ENTRY entry { const_0 = f32[5,7] parameter(0) p = f32[5] parameter(1) a = f32[5,7] iota(), iota_dimension=0 b = f32[5,7] iota(), iota_dimension=1 c = add(a, b) d = f32[5,7] broadcast(p), dimensions={0} mask = multiply(c,d) while_init = tuple(const_0, mask) ROOT while = while(while_init), condition=condition, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, WhileLoopFusibleSinking{}.Run(module.get())); ASSERT_TRUE(changed); auto* while_body = module->GetComputationWithName("body"); EXPECT_THAT(while_body->root_instruction(), op::Tuple(op::Add(_, op::Multiply(op::Add(op::Iota(), op::Iota()), op::Broadcast())), _, _)); } TEST_F(WhileLoopFusibleSinkingTest, NoSinkSlicedMask) { const char* const hlo_string = R"( HloModule ModuleWithWhile body { p_body = (f32[5,7],f32[5,7]) parameter(0) p_body.0 = get-tuple-element(p_body), index=0 p_body.1 = get-tuple-element(p_body), index=1 z = s32[] constant(0) j = s32[] constant(3) ds = f32[1,7] dynamic-slice(p_body.1, j, z), dynamic_slice_sizes={1,7} r = f32[7] reshape(ds) b = f32[5,7] broadcast(r), dimensions={1} a = add(b, p_body.0) add.0 = add(a, p_body.1) ROOT root = tuple(add.0, p_body.1) } condition { p_cond = (f32[5,7],f32[5,7]) parameter(0) ROOT result = pred[] constant(true) } ENTRY entry { const_0 = f32[5,7] parameter(0) p = f32[5] parameter(1) a = f32[5,7] iota(), iota_dimension=0 b = f32[5,7] iota(), iota_dimension=1 c = add(a, b) d = f32[5,7] broadcast(p), dimensions={0} mask = multiply(c,d) while_init = tuple(const_0, mask) ROOT while = while(while_init), condition=condition, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, WhileLoopFusibleSinking{}.Run(module.get())); EXPECT_FALSE(changed); } } }
1,862
cpp
tensorflow/tensorflow
dynamic_dimension_inference
third_party/xla/xla/service/dynamic_dimension_inference.cc
third_party/xla/xla/service/dynamic_dimension_inference_test.cc
#ifndef XLA_SERVICE_DYNAMIC_DIMENSION_INFERENCE_H_ #define XLA_SERVICE_DYNAMIC_DIMENSION_INFERENCE_H_ #include <cstdint> #include <functional> #include <map> #include <set> #include <string> #include <tuple> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/shape.h" #include "xla/shape_util.h" namespace xla { enum OpDynamismSupport : uint8_t { kNoSupport = 0, kOptional, kRequired, }; using OpSupportsDynamismHandler = std::function<OpDynamismSupport(HloInstruction*)>; class DynamicDimensionInference { public: enum ShapeCheckMode { kInvalid = 0, kCompileTime, kRuntime, kIgnore, }; using CustomCallInferenceHandler = std::function<absl::Status(HloInstruction*, DynamicDimensionInference*)>; using AssertionGenerator = std::function<void(HloInstruction*)>; static absl::StatusOr<DynamicDimensionInference> Run( HloModule* module, OpSupportsDynamismHandler op_supports_dynamism_handler = nullptr, CustomCallInferenceHandler custom_call_handler = nullptr, ShapeCheckMode shape_check_mode = ShapeCheckMode::kIgnore, const AssertionGenerator& assertion_generator = nullptr, const absl::flat_hash_set<absl::string_view>& execution_threads_ = {}); std::string ToString() const; HloInstruction* GetDynamicSize(HloInstruction* inst, const ShapeIndex& index, int64_t dim) const; const HloInstruction* GetDynamicSize(const HloInstruction* inst, const ShapeIndex& index, int64_t dim) const; std::vector<HloInstruction*> GetDynamicSizes(HloInstruction* inst, const ShapeIndex& index) const; bool HasDynamicDimension(HloInstruction* inst, ShapeIndexView index = {}) const; absl::Status ForwardDynamicSize(HloInstruction* inst, HloInstruction* new_inst, const ShapeIndex& index); void SetDynamicSize(HloInstruction* inst, const ShapeIndex& index, int64_t dim, HloInstruction* size); void ReplaceAllDynamicDimensionUsesWith(HloInstruction* replace, HloInstruction* with); Shape GetDynamicShape(HloInstruction* inst); bool CanInfer(HloInstruction* hlo); bool changed() const { return changed_; } friend class DynamicDimensionInferenceVisitor; private: explicit DynamicDimensionInference( HloModule* module, OpSupportsDynamismHandler op_supports_dynamism_handler, CustomCallInferenceHandler custom_call_handler, ShapeCheckMode shape_check_mode, AssertionGenerator assertion_generator, const absl::flat_hash_set<absl::string_view>& execution_threads_); struct DynamicDimension { HloInstruction* inst; ShapeIndex index; int64_t dim; template <typename H> friend H AbslHashValue(H h, const DynamicDimension& m) { return H::combine(std::move(h), m.inst, m.index, m.dim); } friend bool operator==(const DynamicDimension& lhs, const DynamicDimension& rhs) { return lhs.inst == rhs.inst && lhs.index == rhs.index && lhs.dim == rhs.dim; } std::tuple<int, int, std::string, int64_t> ToTuple() const { return std::make_tuple( inst && inst->GetModule() ? inst->GetModule()->unique_id() : -1, inst ? inst->unique_id() : -1, index.ToString(), dim); } friend bool operator<(const DynamicDimension& lhs, const DynamicDimension& rhs) { return lhs.ToTuple() < rhs.ToTuple(); } }; void CopyMapping(HloInstruction* from, HloInstruction* to, const absl::flat_hash_map<HloInstruction*, HloInstruction*>* dynamic_size_map = nullptr); absl::Status AnalyzeDynamicDimensions(); HloModule* module_; using DynamicMapping = std::map<DynamicDimension, HloInstruction*>; DynamicMapping dynamic_mapping_; using PerHloDynamicDimensions = ConstHloInstructionMap<std::set<DynamicDimension>>; PerHloDynamicDimensions per_hlo_dynamic_dimensions_; OpSupportsDynamismHandler op_supports_dynamism_handler_; CustomCallInferenceHandler custom_call_handler_; ShapeCheckMode shape_check_mode_; AssertionGenerator assertion_generator_; bool changed_ = false; const absl::flat_hash_set<absl::string_view>& execution_threads_; }; } #endif #include "xla/service/dynamic_dimension_inference.h" #include <cstdint> #include <functional> #include <memory> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/functional/function_ref.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/dynamic_parameter_binding.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/call_inliner.h" #include "xla/service/dynamic_window_utils.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/hlo_dataflow_analysis.h" #include "xla/service/hlo_value.h" #include "xla/service/tuple_util.h" #include "xla/service/while_util.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/util.h" #include "xla/window_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace { absl::StatusOr<std::pair<HloComputation*, CallInliner::InlinedInstructionMap>> WidenComputation(HloComputation* narrow_comp, const Shape& wide_shape) { TF_RET_CHECK(wide_shape.IsTuple()); const Shape& narrow_shape = narrow_comp->parameter_instruction(0)->shape(); if (Shape::Equal()(wide_shape, narrow_shape)) { return std::make_pair(narrow_comp, CallInliner::InlinedInstructionMap()); } HloComputation* wide_comp = [&]() { HloComputation::Builder builder(absl::StrCat("wide.", narrow_comp->name())); builder.AddInstruction(HloInstruction::CreateParameter( 0, wide_shape, absl::StrCat("wide.", narrow_comp->parameter_instruction(0)->name()))); return narrow_comp->parent()->AddEmbeddedComputation(builder.Build()); }(); HloInstruction* wide_parameter = wide_comp->parameter_instruction(0); HloInstruction* truncated_parameter = TupleUtil::ExtractPrefix( wide_parameter, narrow_shape.tuple_shapes_size(), absl::StrCat("renarrowed.", narrow_comp->parameter_instruction(0)->name())); HloInstruction* call_narrow_comp = wide_comp->AddInstruction( HloInstruction::CreateCall(narrow_comp->root_instruction()->shape(), {truncated_parameter}, narrow_comp)); wide_comp->set_root_instruction(call_narrow_comp, true); TF_ASSIGN_OR_RETURN(auto inline_map, CallInliner::Inline(call_narrow_comp)); return std::make_pair(wide_comp, std::move(inline_map)); } } class DynamicDimensionInferenceVisitor : public DfsHloRewriteVisitor { public: explicit DynamicDimensionInferenceVisitor( const DynamicParameterBinding& param_bindings, HloDataflowAnalysis& dataflow_analysis, DynamicDimensionInference* parent, DynamicDimensionInference::CustomCallInferenceHandler custom_call_handler, DynamicDimensionInference::ShapeCheckMode shape_check_mode, DynamicDimensionInference::AssertionGenerator assertion_generator) : param_bindings_(param_bindings), dataflow_analysis_(dataflow_analysis), parent_(parent), custom_call_handler_(std::move(custom_call_handler)), shape_check_mode_(shape_check_mode), assertion_generator_(assertion_generator) {} absl::Status DefaultAction(HloInstruction* hlo) override; static absl::StatusOr<bool> Run( HloComputation* computation, HloDataflowAnalysis& dataflow_analysis, const DynamicParameterBinding& param_bindings, DynamicDimensionInference* parent, DynamicDimensionInference::CustomCallInferenceHandler custom_call_handler = nullptr, DynamicDimensionInference::ShapeCheckMode shape_check_mode = DynamicDimensionInference::ShapeCheckMode::kIgnore, const DynamicDimensionInference::AssertionGenerator& assertion_generator = nullptr) { if (!HloInstruction::IsThreadIncluded(computation->execution_thread(), parent->execution_threads_)) { return false; } DynamicDimensionInferenceVisitor visitor( param_bindings, dataflow_analysis, parent, std::move(custom_call_handler), shape_check_mode, assertion_generator); TF_RETURN_IF_ERROR(computation->Accept(&visitor)); if (visitor.shape_assertion_ != nullptr) { CHECK(assertion_generator); assertion_generator(visitor.shape_assertion_); } return visitor.changed(); } absl::Status HandleParameter(HloInstruction* hlo) override; absl::Status HandleInfeed(HloInstruction* hlo) override; absl::Status HandleConstant(HloInstruction* hlo) override; absl::Status HandleReduce(HloInstruction* hlo) override; absl::Status HandleDot(HloInstruction* hlo) override; absl::Status HandleTuple(HloInstruction* hlo) override; absl::Status HandleTranspose(HloInstruction* hlo) override; absl::Status HandleDynamicReshape(HloInstruction* hlo) override; absl::Status HandleReshape(HloInstruction* hlo) override; absl::Status HandleSort(HloInstruction* hlo) override; absl::Status HandlePad(HloInstruction* hlo) override; absl::Status HandleCustomCall(HloInstruction* hlo) override; absl::Status HandleBroadcast(HloInstruction* hlo) override; absl::Status HandleGetDimensionSize(HloInstruction* hlo) override; absl::Status HandleSetDimensionSize(HloInstruction* hlo) override; absl::Status HandleSelect(HloInstruction* hlo) override; absl::Status HandleConvolution(HloInstruction* hlo) override; absl::Status HandleConcatenate(HloInstruction* hlo) override; absl::Status HandleReduceWindow(HloInstruction* hlo) override; absl::Status HandleReverse(HloInstruction* hlo) override; absl::Status HandleSelectAndScatter(HloInstruction* hlo) override; absl::Status HandleGetTupleElement(HloInstruction* hlo) override; absl::Status HandleElementwiseUnary(HloInstruction* hlo) override; absl::Status HandleElementwiseNary(HloInstruction* hlo); absl::Status HandleElementwiseBinary(HloInstruction* hlo) override; absl::Status HandleClamp(HloInstruction* hlo) override; absl::Status HandleConditional(HloInstruction* hlo) override; absl::Status HandleWhile(HloInstruction* hlo) override; absl::Status HandleSlice(HloInstruction* hlo) override; absl::Status HandleDynamicSlice(HloInstruction* hlo) override; absl::Status HandleDynamicUpdateSlice(HloInstruction* hlo) override; absl::Status HandleGather(HloInstruction* hlo) override; absl::Status HandleScatter(HloInstruction* hlo) override; absl::Status HandleMap(HloInstruction* hlo) override; absl::Status HandleDomain(HloInstruction* hlo) override; absl::Status HandleAsyncStart(HloInstruction* hlo) override; absl::Status HandleAsyncDone(HloInstruction* hlo) override; private: using OperandDynamicDimensionFn = absl::FunctionRef<absl::Status( HloInstruction* operand, ShapeIndex index, int64_t dimension, int64_t operand_index, HloInstruction* dynamic_size)>; using DynamicDimensionFn = std::function<absl::Status( ShapeIndex index, int64_t dimension, HloInstruction* dynamic_size)>; void SetDynamicSize(HloInstruction* inst, const ShapeIndex& index, int64_t dim, HloInstruction* size, bool clear_dynamic_dimension = true); void SetDynamicSizes(HloInstruction* inst, const ShapeIndex& index, absl::Span<HloInstruction* const> sizes); absl::Status HandleDynamicConvolutionForward(HloInstruction* hlo, int64_t operand_index, int64_t dimension, HloInstruction* dynamic_size); absl::Status HandleDynamicConvolutionKernelGrad(HloInstruction* hlo, int64_t operand_index, int64_t dimension); absl::Status HandleDynamicConvolutionInputGrad(HloInstruction* hlo, int64_t operand_index, int64_t dimension); absl::Status HandleDynamicWindowSamePadding(HloInstruction* hlo, HloInstruction* dynamic_size, int64_t operand_index, int64_t dimension); absl::Status ForEachOperandDynamicDimension(HloInstruction* inst, OperandDynamicDimensionFn); absl::Status ForEachDynamicDimensionInOperand(HloInstruction* inst, int64_t operand_index, OperandDynamicDimensionFn); absl::Status ForEachDynamicDimension(HloInstruction* inst, const DynamicDimensionFn& fn); bool CanInfer(HloInstruction* hlo) { return parent_->CanInfer(hlo); } absl::StatusOr<bool> RequiresPadToStatic(HloInstruction* instr, ShapeIndex shape_index); absl::Status InsertPadToStaticOnInstruction(HloInstruction* inst); absl::Status InsertShapeCheck(HloInstruction* dim1, HloInstruction* dim2, bool support_implicit_broadcast); absl::Status PassThroughDynamicDimension(HloInstruction*); const DynamicParameterBinding& param_bindings_; HloDataflowAnalysis& dataflow_analysis_; DynamicDimensionInference* parent_; DynamicDimensionInference::CustomCallInferenceHandler custom_call_handler_; DynamicDimensionInference::ShapeCheckMode shape_check_mode_; HloInstruction* shape_assertion_ = nullptr; DynamicDimensionInference::AssertionGenerator assertion_generator_; }; void DynamicDimensionInferenceVisitor::SetDynamicSize( HloInstruction* inst, const ShapeIndex& index, int64_t dim, HloInstruction* size, bool clear_dynamic_dimension) { parent_->SetDynamicSize(inst, index, dim, size); if (clear_dynamic_dimension) { ShapeUtil::GetMutableSubshape(inst->mutable_shape(), index) ->set_dynamic_dimension(dim, false); } MarkAsChanged(); } void DynamicDimensionInferenceVisitor::SetDynamicSizes( HloInstruction* inst, const ShapeIndex& index, absl::Span<HloInstruction* const> sizes) { const Shape& subshape = ShapeUtil::GetSubshape(inst->shape(), index); CHECK(subshape.IsArray() && subshape.rank() == sizes.size()); for (int64_t dimension = 0; dimension < subshape.rank(); ++dimension) { if (sizes[dimension] != nullptr) { SetDynamicSize(inst, index, dimension, sizes[dimension]); } } } absl::Status DynamicDimensionInferenceVisitor::DefaultAction( HloInstruction* hlo) { return ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex index, int64_t dimension, int64_t operand_index, HloInstruction* dynamic_size) { return UnimplementedStrCat( "Asked to propagate a dynamic dimension from hlo ", operand->name(), "@", index.ToString(), "@", dimension, " to hlo ", hlo->ToString(), ", which is not implemented."); }); } absl::Status DynamicDimensionInferenceVisitor::HandleGetTupleElement( HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } return ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex index, int64_t dimension, int64_t operand_index, HloInstruction* dynamic_size) -> absl::Status { if (hlo->tuple_index() != index[0]) { return absl::OkStatus(); } ShapeIndex new_index(ShapeIndexView(index).subspan(1)); SetDynamicSize(hlo, new_index, dimension, dynamic_size); return absl::OkStatus(); }); } absl::Status DynamicDimensionInferenceVisitor::HandleTuple( HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(ForEachOperandDynamicDimension( hlo, [&](HloInstruction*, ShapeIndex index, int64_t dimension, int64_t operand_index, HloInstruction* dynamic_size) { index.push_front(operand_index); SetDynamicSize(hlo, index, dimension, dynamic_size); return absl::OkStatus(); })); return absl::OkStatus(); } absl::Status DynamicDimensionInferenceVisitor::HandleBroadcast( HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } return ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex index, int64_t dimension, int64_t operand_index, HloInstruction* dynamic_size) { int64_t broadcast_dim = hlo->dimensions(dimension); SetDynamicSize(hlo, {}, broadcast_dim, dynamic_size); return absl::OkStatus(); }); } absl::Status DynamicDimensionInferenceVisitor::HandleConstant( HloInstruction* hlo) { if (!hlo->shape().is_dynamic()) { return absl::OkStatus(); } auto* constant = Cast<HloConstantInstruction>(hlo); ShapeTree<bool> do_pad(constant->shape(), false); Shape padded_shape = constant->shape(); bool pad_any = false; TF_RETURN_IF_ERROR(ShapeUtil::ForEachMutableSubshapeWithStatus( &padded_shape, [&](Shape* subshape, const ShapeIndex& index) -> absl::Status { if (!subshape->IsArray()) { return absl::OkStatus(); } TF_ASSIGN_OR_RETURN(bool requires_pad, RequiresPadToStatic(hlo, index)); if (requires_pad) { pad_any = *do_pad.mutable_element(index) = true; *subshape = ShapeUtil::MakeStaticShape(*subshape); } return absl::OkStatus(); })); if (!pad_any) { return absl::OkStatus(); } Literal padded_literal(padded_shape); do_pad.ForEachElement([&](const ShapeIndex& index, bool requires_pad) { const Shape& subshape = ShapeUtil::GetSubshape(padded_shape, index); if (!subshape.IsArray()) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(padded_literal.CopyFrom(constant->literal(), index, index, true)); if (!requires_pad) { for (int64_t dimension = 0; dimension < subshape.rank(); ++dimension) { if (subshape.is_dynamic_dimension(dimension)) { padded_literal.SetDynamicSize( dimension, index, constant->literal().GetDynamicSize(dimension, index)); } } } return absl::OkStatus(); }); auto* padded_constant = hlo->AddInstruction( HloInstruction::CreateConstant(std::move(padded_literal))); TF_RETURN_IF_ERROR(constant->ReplaceAllUsesWith(padded_constant)); SetVisited(*padded_constant); TF_RETURN_IF_ERROR(do_pad.ForEachElementWithStatus( [&](const ShapeIndex& index, bool requires_pad) -> absl::Status { if (!requires_pad) { return absl::OkStatus(); } const Shape& subshape = ShapeUtil::GetSubshape(constant->shape(), index); TF_RET_CHECK(subshape.IsArray()); for (int64_t dimension = 0; dimension < subshape.rank(); ++dimension) { if (!subshape.is_dynamic_dimension(dimension)) { continue; } HloInstruction* dynamic_size = hlo->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>( constant->literal().GetDynamicSize(dimension, index)))); SetVisited(*dynamic_size); SetDynamicSize(padded_constant, index, dimension, dynamic_size); } return absl::OkStatus(); })); MarkAsChanged(); return absl::OkStatus(); } absl::Status DynamicDimensionInferenceVisitor::HandleCustomCall( HloInstruction* hlo) { if (hlo->custom_call_target() == "PadToStatic") { for (int64_t i = 0; i < hlo->operand(0)->shape().rank(); ++i) { if (hlo->operand(0)->shape().is_dynamic_dimension(i)) { HloInstruction* dynamic_size = hlo->parent()->AddInstruction(HloInstruction::CreateGetTupleElement( ShapeUtil::MakeScalarShape(S32), hlo, i + 1)); ShapeIndex data_output = {0}; SetDynamicSize(hlo, data_output, i, dynamic_size); } } return absl::OkStatus(); } if (!CanInfer(hlo)) { return absl::OkStatus(); } if (custom_call_handler_) { TF_RETURN_IF_ERROR(custom_call_handler_(hlo, parent_)); } else { TF_RETURN_IF_ERROR(ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex index, int64_t dimension, int64_t operand_index, HloInstruction* dynamic_size) -> absl::Status { if (hlo->custom_call_target() == "SliceToDynamic" || hlo->custom_call_target() == "Sharding" || (absl::StartsWith(hlo->custom_call_target(), "Resize") && (dimension == 0 || dimension == 3))) { SetDynamicSize(hlo, {}, dimension, dynamic_size); return absl::OkStatus(); } if (hlo->custom_call_target() == "DynamicReduceWindowSamePadding") { if (hlo->operand_count() > 2) { return Unimplemented( "DynamicReduceWindowSamePadding doesn't support variadic " "reduce window %s", hlo->ToString()); } return HandleDynamicWindowSamePadding(hlo, dynamic_size, operand_index, dimension); } if (hlo->custom_call_target() == "DynamicSelectAndScatterSamePadding") { if (operand_index == 1) { return absl::OkStatus(); } SetDynamicSize(hlo, {}, dimension, dynamic_size); return absl::OkStatus(); } if (hlo->custom_call_target() == "DynamicConvolutionInputGrad") { return HandleDynamicConvolutionInputGrad(hlo, operand_index, dimension); } if (hlo->custom_call_target() == "DynamicConvolutionKernelGrad") { return HandleDynamicConvolutionKernelGrad(hlo, operand_index, dimension); } if (hlo->custom_call_target() == "DynamicConvolutionForward") { return HandleDynamicConvolutionForward(hlo, operand_index, dimension, dynamic_size); } return Unimplemented( "CustomCall \"%s\" is not supported to have a dynamic dimension", hlo->custom_call_target()); })); } return InsertPadToStaticOnInstruction(hlo); } absl::Status DynamicDimensionInferenceVisitor::HandleSort(HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } return ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex index, int64_t dynamic_dimension, int64_t operand_index, HloInstruction* dynamic_size) { HloSortInstruction* sort = Cast<HloSortInstruction>(hlo); if (sort->values_count() == 0) { SetDynamicSize(hlo, {}, dynamic_dimension, dynamic_size); } else { SetDynamicSize(hlo, {operand_index}, dynamic_dimension, dynamic_size); } return absl::OkStatus(); }); } absl::Status DynamicDimensionInferenceVisitor::HandlePad(HloInstruction* hlo) { if (!CanInfer(hlo)) { return absl::OkStatus(); } return ForEachOperandDynamicDimension( hlo, [&](HloInstruction* operand, ShapeIndex index, int64_t dimension, int64_t operand_index, HloInstruction* dynamic_size) -> absl::Status { if (operand_index != 0) { return Unimplemented( "Dynamic dimension on padding value is not supported"); } const PaddingConfig_PaddingConfigDimension& padding_config = hlo->padding_config().dimensions(dimension); HloInstruction* dynamic_size_adjusted = dynamic_size; if (padding_config.interior_padding() != 0) {
#include "xla/service/dynamic_dimension_inference.h" #include "xla/client/xla_builder.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal.h" #include "xla/service/hlo_runner.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test_benchmark.h" namespace op = xla::testing::opcode_matchers; namespace xla { namespace { class DynamicDimensionInferenceTest : public HloTestBase { protected: DynamicDimensionInferenceTest() : HloTestBase() { module_ = CreateNewVerifiedModule(); } absl::Status RunInference( OpSupportsDynamismHandler op_supports_dynamism_handler = nullptr, DynamicDimensionInference::CustomCallInferenceHandler handler = nullptr, DynamicDimensionInference::ShapeCheckMode shape_check_mode = DynamicDimensionInference::ShapeCheckMode::kIgnore, const DynamicDimensionInference::AssertionGenerator& assertion_generator = nullptr) { TF_ASSIGN_OR_RETURN(DynamicDimensionInference inference, DynamicDimensionInference::Run( module_.get(), op_supports_dynamism_handler, handler, shape_check_mode, assertion_generator)); inference_ = std::make_unique<DynamicDimensionInference>(inference); return absl::OkStatus(); } HloComputation* GetAdd() { auto embedded_builder = HloComputation::Builder("add"); auto lhs = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "lhs")); auto rhs = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {}), "rhs")); embedded_builder.AddInstruction( HloInstruction::CreateBinary(lhs->shape(), HloOpcode::kAdd, lhs, rhs)); return module_->AddEmbeddedComputation(embedded_builder.Build()); } HloComputation* GetAddTuple() { auto embedded_builder = HloComputation::Builder("add"); auto lhs = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "lhs")); auto lhs_1 = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {}), "lhs.1")); auto rhs = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 2, ShapeUtil::MakeShape(F32, {}), "rhs")); auto rhs_1 = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 3, ShapeUtil::MakeShape(F32, {}), "rhs.1")); auto add = embedded_builder.AddInstruction( HloInstruction::CreateBinary(lhs->shape(), HloOpcode::kAdd, lhs, rhs)); auto add_1 = embedded_builder.AddInstruction(HloInstruction::CreateBinary( lhs->shape(), HloOpcode::kAdd, lhs_1, rhs_1)); embedded_builder.AddInstruction(HloInstruction::CreateTuple({add, add_1})); return module_->AddEmbeddedComputation(embedded_builder.Build()); } HloComputation* GetGe() { auto embedded_builder = HloComputation::Builder("ge"); auto lhs = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "lhs")); auto rhs = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {}), "rhs")); embedded_builder.AddInstruction(HloInstruction::CreateCompare( ShapeUtil::MakeShape(PRED, {}), lhs, rhs, ComparisonDirection::kGe)); return module_->AddEmbeddedComputation(embedded_builder.Build()); } std::unique_ptr<HloModule> module_; std::unique_ptr<DynamicDimensionInference> inference_; const Shape scalar_shape_ = ShapeUtil::MakeShape(S32, {}); }; TEST_F(DynamicDimensionInferenceTest, ParamTest) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {1, 2, 2}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {1, 2, 2}, {false, true, false}); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, input_shape, "param")); auto param2 = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "param")); auto result = builder.AddInstruction( HloInstruction::CreateSetDimensionSize(dynamic_shape, param, param2, 1)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(result, {}, 1), param2); EXPECT_EQ(inference_->GetDynamicSize(param, {}, 0), nullptr); EXPECT_EQ(inference_->GetDynamicSize(param2, {}, 0), nullptr); } TEST_F(DynamicDimensionInferenceTest, ElementwiseTest) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {1, 2, 2}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {1, 2, 2}, {false, true, false}); auto data_param = builder.AddInstruction( HloInstruction::CreateParameter(0, input_shape, "data_param")); auto size_param = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "size_param")); auto dynamic_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, data_param, size_param, 1)); auto* negate = builder.AddInstruction(HloInstruction::CreateUnary( dynamic_shape, HloOpcode::kNegate, dynamic_param)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(negate, {}, 1), size_param); } TEST_F(DynamicDimensionInferenceTest, ReduceTestI) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {1, 2, 2}); auto reduce_shape = ShapeUtil::MakeShape(F32, {2}, {true}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {1, 2, 2}, {false, true, false}); auto data_param = builder.AddInstruction( HloInstruction::CreateParameter(0, input_shape, "data_param")); auto size_param = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "size_param")); auto dynamic_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, data_param, size_param, 1)); auto negate = builder.AddInstruction(HloInstruction::CreateUnary( dynamic_shape, HloOpcode::kNegate, dynamic_param)); auto init = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0))); auto reduce = builder.AddInstruction(HloInstruction::CreateReduce( reduce_shape, negate, init, {0, 2}, GetAdd())); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(reduce, {}, 0), size_param); } TEST_F(DynamicDimensionInferenceTest, ReduceTestII) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {1, 2, 2}); auto reduce_shape = ShapeUtil::MakeShape(F32, {1, 2}, {false, true}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {1, 2, 2}, {false, false, true}); auto data_param = builder.AddInstruction( HloInstruction::CreateParameter(0, input_shape, "data_param")); auto size_param = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "size_param")); auto dynamic_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, data_param, size_param, 2)); auto negate = builder.AddInstruction(HloInstruction::CreateUnary( dynamic_shape, HloOpcode::kNegate, dynamic_param)); auto init = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0))); auto reduce = builder.AddInstruction( HloInstruction::CreateReduce(reduce_shape, negate, init, {1}, GetAdd())); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(reduce, {}, 1), size_param); EXPECT_EQ(inference_->GetDynamicSize(reduce, {}, 0), nullptr); } TEST_F(DynamicDimensionInferenceTest, VariadicReduce) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {1, 2, 2}); auto reduce_shape = ShapeUtil::MakeShape(F32, {1, 2}, {false, true}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {1, 2, 2}, {false, false, true}); auto data_param_1 = builder.AddInstruction( HloInstruction::CreateParameter(0, input_shape, "data_param")); auto data_param_2 = builder.AddInstruction( HloInstruction::CreateParameter(1, input_shape, "data_param.2")); auto size_param = builder.AddInstruction( HloInstruction::CreateParameter(2, scalar_shape_, "size_param")); auto data_param_dynamic_1 = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, data_param_1, size_param, 2)); auto data_param_dynamic_2 = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, data_param_2, size_param, 2)); auto dynamic_negate_1 = builder.AddInstruction(HloInstruction::CreateUnary( dynamic_shape, HloOpcode::kNegate, data_param_dynamic_1)); auto dynamic_negate_2 = builder.AddInstruction(HloInstruction::CreateUnary( dynamic_shape, HloOpcode::kNegate, data_param_dynamic_2)); auto init = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0))); auto reduce = builder.AddInstruction(HloInstruction::CreateReduce( ShapeUtil::MakeTupleShape({reduce_shape, reduce_shape}), {dynamic_negate_1, dynamic_negate_2}, {init, init}, {1}, GetAddTuple())); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(reduce, {0}, 1), size_param); EXPECT_EQ(inference_->GetDynamicSize(reduce, {1}, 1), size_param); EXPECT_EQ(inference_->GetDynamicSize(reduce, {0}, 0), nullptr); EXPECT_EQ(inference_->GetDynamicSize(reduce, {1}, 0), nullptr); } TEST_F(DynamicDimensionInferenceTest, DotTest) { auto builder = HloComputation::Builder(TestName()); constexpr int xdim = 3; constexpr int ydim = 2; constexpr int zdim = 1; auto xy_shape = ShapeUtil::MakeShape(F32, {xdim, ydim}); auto yz_shape = ShapeUtil::MakeShape(F32, {ydim, zdim}); auto xy_dynamic_shape = ShapeUtil::MakeShape(F32, {xdim, ydim}, {true, true}); auto yz_dynamic_shape = ShapeUtil::MakeShape(F32, {ydim, zdim}, {true, false}); auto xz_dynamic_shape = ShapeUtil::MakeShape(F32, {xdim, zdim}, {true, false}); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, xy_shape, "A")); auto* b_param = builder.AddInstruction(HloInstruction::CreateParameter( 1, yz_shape, "B")); auto* size_param = builder.AddInstruction(HloInstruction::CreateParameter( 2, scalar_shape_, "size_param")); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( ShapeUtil::MakeShape(F32, xy_shape.dimensions(), {true, false}), a_param, size_param, 0)); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( xy_dynamic_shape, a_param, size_param, 1)); b_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( yz_dynamic_shape, b_param, size_param, 0)); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); auto dot = builder.AddInstruction( HloInstruction::CreateDot(xz_dynamic_shape, a_param, b_param, dot_dnums, HloTestBase::DefaultPrecisionConfig(2))); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(dot, {}, 0), size_param); EXPECT_EQ(inference_->GetDynamicSize(dot, {}, 1), nullptr); } TEST_F(DynamicDimensionInferenceTest, DotTestBatch) { auto builder = HloComputation::Builder(TestName()); auto lhs_shape = ShapeUtil::MakeShape(F32, {4, 128, 2, 8}); auto rhs_shape = ShapeUtil::MakeShape(F32, {4, 128, 2, 8}); auto output_shape = ShapeUtil::MakeShape(F32, {4, 2, 128, 128}, {true, false, false, false}); auto lhs_shape_dynamic = ShapeUtil::MakeShape(F32, {4, 128, 2, 8}, {true, false, false, false}); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, lhs_shape, "A")); auto* b_param = builder.AddInstruction(HloInstruction::CreateParameter( 1, rhs_shape, "B")); auto* size_param = builder.AddInstruction(HloInstruction::CreateParameter( 2, scalar_shape_, "size_param")); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( lhs_shape_dynamic, a_param, size_param, 0)); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(3); dot_dnums.add_rhs_contracting_dimensions(3); dot_dnums.add_lhs_batch_dimensions(0); dot_dnums.add_lhs_batch_dimensions(2); dot_dnums.add_rhs_batch_dimensions(0); dot_dnums.add_rhs_batch_dimensions(2); auto dot = builder.AddInstruction( HloInstruction::CreateDot(output_shape, a_param, b_param, dot_dnums, HloTestBase::DefaultPrecisionConfig(2))); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(dot, {}, 0), size_param); EXPECT_EQ(inference_->GetDynamicSize(dot, {}, 1), nullptr); EXPECT_EQ(inference_->GetDynamicSize(dot, {}, 2), nullptr); EXPECT_EQ(inference_->GetDynamicSize(dot, {}, 3), nullptr); } TEST_F(DynamicDimensionInferenceTest, DotTestMultiContracting) { auto builder = HloComputation::Builder(TestName()); auto lhs_shape = ShapeUtil::MakeShape(F32, {2, 2, 8, 64}); auto rhs_shape = ShapeUtil::MakeShape(F32, {2, 2, 512}); auto output_shape = ShapeUtil::MakeShape(F32, {8, 64, 512}); auto lhs_shape_dynamic = ShapeUtil::MakeShape(F32, {2, 2, 8, 64}, {true, true, false, false}); auto rhs_shape_dynamic = ShapeUtil::MakeShape(F32, {2, 2, 512}, {true, true, false}); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, lhs_shape, "A")); auto* b_param = builder.AddInstruction(HloInstruction::CreateParameter( 1, rhs_shape, "B")); auto* size_param = builder.AddInstruction(HloInstruction::CreateParameter( 2, scalar_shape_, "size_param")); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( ShapeUtil::MakeShape(F32, lhs_shape.dimensions(), {true, false, false, false}), a_param, size_param, 0)); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( lhs_shape_dynamic, a_param, size_param, 1)); b_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( ShapeUtil::MakeShape(F32, rhs_shape.dimensions(), {true, false, false}), b_param, size_param, 0)); b_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( rhs_shape_dynamic, b_param, size_param, 1)); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(0); dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); dot_dnums.add_rhs_contracting_dimensions(1); auto dot = builder.AddInstruction( HloInstruction::CreateDot(output_shape, a_param, b_param, dot_dnums, HloTestBase::DefaultPrecisionConfig(2))); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(dot, {}, 0), nullptr); EXPECT_EQ(inference_->GetDynamicSize(dot, {}, 1), nullptr); EXPECT_EQ(inference_->GetDynamicSize(dot, {}, 2), nullptr); } TEST_F(DynamicDimensionInferenceTest, ConvolutionTest) { auto builder = HloComputation::Builder(TestName()); constexpr int xdim = 3; constexpr int ydim = 2; constexpr int zdim = 1; auto xy_shape = ShapeUtil::MakeShape(F32, {xdim, ydim}); auto yz_shape = ShapeUtil::MakeShape(F32, {ydim, zdim}); auto xy_shape_dynamic = ShapeUtil::MakeShape(F32, {xdim, ydim}, {true, true}); auto zx_shape_dynamic = ShapeUtil::MakeShape(F32, {zdim, xdim}, {false, true}); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, xy_shape, "A")); auto* b_param = builder.AddInstruction(HloInstruction::CreateParameter( 1, yz_shape, "B")); auto* size_param = builder.AddInstruction(HloInstruction::CreateParameter( 2, scalar_shape_, "size_param")); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( ShapeUtil::MakeShape(F32, xy_shape.dimensions(), {true, false}), a_param, size_param, 0)); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( xy_shape_dynamic, a_param, size_param, 1)); auto dnums = XlaBuilder::CreateDefaultConvDimensionNumbers(0); dnums.set_kernel_input_feature_dimension(0); dnums.set_kernel_output_feature_dimension(1); dnums.set_input_batch_dimension(0); dnums.set_output_batch_dimension(1); dnums.set_output_feature_dimension(0); Window window; auto* conv = builder.AddInstruction(HloInstruction::CreateConvolve( zx_shape_dynamic, a_param, b_param, 1, 1, window, dnums, HloTestBase::DefaultPrecisionConfig(2))); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(conv, {}, 1), size_param); EXPECT_EQ(inference_->GetDynamicSize(conv, {}, 0), nullptr); } TEST_F(DynamicDimensionInferenceTest, TransposeTest) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {1, 2, 3}); auto output_shape = ShapeUtil::MakeShape(F32, {3, 2, 1}, {true, true, true}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {1, 2, 3}, {true, true, true}); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, input_shape, "A")); auto* size_param_1 = builder.AddInstruction(HloInstruction::CreateParameter( 1, scalar_shape_, "size_param")); auto* size_param_2 = builder.AddInstruction(HloInstruction::CreateParameter( 2, scalar_shape_, "size_param")); auto* size_param_3 = builder.AddInstruction(HloInstruction::CreateParameter( 3, scalar_shape_, "size_param")); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( ShapeUtil::MakeShape(F32, {1, 2, 3}, {true, false, false}), a_param, size_param_1, 0)); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( ShapeUtil::MakeShape(F32, {1, 2, 3}, {true, true, false}), a_param, size_param_2, 1)); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, a_param, size_param_3, 2)); auto* transpose = builder.AddInstruction( HloInstruction::CreateTranspose(output_shape, a_param, {2, 1, 0})); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(transpose, {}, 0), size_param_3); EXPECT_EQ(inference_->GetDynamicSize(transpose, {}, 1), size_param_2); EXPECT_EQ(inference_->GetDynamicSize(transpose, {}, 2), size_param_1); } TEST_F(DynamicDimensionInferenceTest, NonDescendingTransposeTest) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {1, 2, 3}); auto output_shape = ShapeUtil::MakeShape(F32, {3, 1, 2}, {true, true, true}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {1, 2, 3}, {true, true, true}); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, input_shape, "A")); auto* size_param_1 = builder.AddInstruction(HloInstruction::CreateParameter( 1, scalar_shape_, "size_param")); auto* size_param_2 = builder.AddInstruction(HloInstruction::CreateParameter( 2, scalar_shape_, "size_param")); auto* size_param_3 = builder.AddInstruction(HloInstruction::CreateParameter( 3, scalar_shape_, "size_param")); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( ShapeUtil::MakeShape(F32, {1, 2, 3}, {true, false, false}), a_param, size_param_1, 0)); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( ShapeUtil::MakeShape(F32, {1, 2, 3}, {true, true, false}), a_param, size_param_2, 1)); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, a_param, size_param_3, 2)); auto* transpose = builder.AddInstruction( HloInstruction::CreateTranspose(output_shape, a_param, {2, 0, 1})); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(transpose, {}, 0), size_param_3); EXPECT_EQ(inference_->GetDynamicSize(transpose, {}, 1), size_param_1); EXPECT_EQ(inference_->GetDynamicSize(transpose, {}, 2), size_param_2); } TEST_F(DynamicDimensionInferenceTest, ReshapeTest) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {2, 3, 4, 5, 6}); auto output_shape = ShapeUtil::MakeShape( F32, {6, 4, 1, 5, 2, 3}, {false, true, false, true, false, false}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {2, 3, 4, 5, 6}, {false, false, true, true, false}); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, input_shape, "A")); auto* size_param = builder.AddInstruction(HloInstruction::CreateParameter( 1, scalar_shape_, "size_param")); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( ShapeUtil::MakeShape(F32, {2, 3, 4, 5, 6}, {false, false, true, false, false}), a_param, size_param, 2)); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, a_param, size_param, 3)); auto* reshape = builder.AddInstruction( HloInstruction::CreateReshape(output_shape, a_param)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(reshape, {}, 0), nullptr); EXPECT_EQ(inference_->GetDynamicSize(reshape, {}, 1), size_param); EXPECT_EQ(inference_->GetDynamicSize(reshape, {}, 2), nullptr); EXPECT_EQ(inference_->GetDynamicSize(reshape, {}, 3), size_param); EXPECT_EQ(inference_->GetDynamicSize(reshape, {}, 4), nullptr); EXPECT_EQ(inference_->GetDynamicSize(reshape, {}, 5), nullptr); } TEST_F(DynamicDimensionInferenceTest, ReshapeInferredDimensionTest) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {4, 5}); auto output_shape = ShapeUtil::MakeShape(F32, {1, 4, 5}, {true, false, false}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {4, 5}, {true, false}); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, input_shape, "A")); auto* size_param = builder.AddInstruction(HloInstruction::CreateParameter( 1, scalar_shape_, "size_param")); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, a_param, size_param, 0)); auto* reshape = builder.AddInstruction(HloInstruction::CreateReshape( output_shape, a_param, 0)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_NE(inference_->GetDynamicSize(reshape, {}, 0), nullptr); } TEST_F(DynamicDimensionInferenceTest, ReshapeTestMajorDimension) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {32, 10, 4}); auto output_shape = ShapeUtil::MakeShape(F32, {320, 4}, {true, false}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {32, 10, 4}, {true, false, false}); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, input_shape, "A")); auto* size_param = builder.AddInstruction(HloInstruction::CreateParameter( 1, scalar_shape_, "size_param")); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, a_param, size_param, 0)); auto* reshape = builder.AddInstruction( HloInstruction::CreateReshape(output_shape, a_param)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); absl::Status status = RunInference(); EXPECT_NE(inference_->GetDynamicSize(reshape, {}, 0), nullptr); } TEST_F(DynamicDimensionInferenceTest, ReshapeIntoScalar) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {1}); auto output_shape = ShapeUtil::MakeShape(F32, {}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {1}, {true}); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, input_shape, "A")); auto* size_param = builder.AddInstruction(HloInstruction::CreateParameter( 1, scalar_shape_, "size_param")); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, a_param, size_param, 0)); builder.AddInstruction(HloInstruction::CreateReshape(output_shape, a_param)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_CHECK_OK(RunInference()); } TEST_F(DynamicDimensionInferenceTest, GatherTest) { const std::string hlo_text = R"( HloModule TensorFlowGatherV2 ENTRY main { operand = s32[20,10]{1,0} parameter(0) indices = s32[32,20] parameter(1) dynamic_size = s32[] parameter(2) indices_dynamic = s32[<=32,20] set-dimension-size(indices, dynamic_size), dimensions={0} ROOT gather = s32[<=32,20,10]{2,1,0} gather(%operand, %indices_dynamic), offset_dims={2}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=2, slice_sizes={1,10} } )"; TF_ASSERT_OK_AND_ASSIGN(module_, ParseAndReturnVerifiedModule(hlo_text)); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize( module_->entry_computation()->root_instruction(), {}, 0), module_->entry_computation()->parameter_instruction(2)); } TEST_F(DynamicDimensionInferenceTest, BroadcastTest) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {2}); auto output_shape = ShapeUtil::MakeShape(F32, {3, 2, 4}, {false, true, false}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {2}, {true}); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, input_shape, "A")); auto* size_param = builder.AddInstruction(HloInstruction::CreateParameter( 1, scalar_shape_, "size_param")); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, a_param, size_param, 0)); auto* broadcast = builder.AddInstruction( HloInstruction::CreateBroadcast(output_shape, a_param, {1})); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); TF_ASSERT_OK(RunInference()); EXPECT_EQ(inference_->GetDynamicSize(broadcast, {}, 0), nullptr); EXPECT_EQ(inference_->GetDynamicSize(broadcast, {}, 1), size_param); EXPECT_EQ(inference_->GetDynamicSize(broadcast, {}, 2), nullptr); } TEST_F(DynamicDimensionInferenceTest, WhileTest) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {2, 4, 4}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {2, 4, 4}, {true, false, false}); auto tuple_shape = ShapeUtil::MakeTupleShape({input_shape, input_shape}); auto dynamic_tuple_shape = ShapeUtil::MakeTupleShape({dynamic_shape, dynamic_shape}); auto body_builder = HloComputation::Builder("body"); auto body_param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, dynamic_tuple_shape, "param")); auto gte_0 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(dynamic_shape, body_param, 0)); auto gte_1 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(dynamic_shape, body_param, 1)); auto add = body_builder.AddInstruction(HloInstruction::CreateBinary( dynamic_shape, HloOpcode::kAdd, gte_0, gte_1)); body_builder.AddInstruction(HloInstruction::CreateTuple({add, add})); HloComputation* body = module_->AddEmbeddedComputation(body_builder.Build()); auto cond_builder = HloComputation::Builder("condition"); cond_builder.AddInstruction( HloInstruction::CreateParameter(0, dynamic_tuple_shape, "param")); cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false))); HloComputation* condition = module_->AddEmbeddedComputation(cond_builder.Build()); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, tuple_shape, "A")); auto* size_param = builder.AddInstruction(HloInstruction::CreateParameter( 1, scalar_shape_, "size_param")); auto* a_0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(input_shape, a_param, 0)); a_0 = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, a_0, size_param, 0)); auto* a_1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(input_shape, a_param, 0)); a_1 = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, a_1, size_param, 0)); a_param = builder.AddInstruction(HloInstruction::CreateTuple({a_0, a_1})); builder.AddInstruction(HloInstruction::CreateWhile(dynamic_tuple_shape, condition, body, a_param)); module_->AddEntryComputation(builder.Build()); TF_ASSERT_OK(RunInference());
1,863
cpp
tensorflow/tensorflow
dot_dimension_merger
third_party/xla/xla/service/dot_dimension_merger.cc
third_party/xla/xla/service/dot_dimension_merger_test.cc
#ifndef XLA_SERVICE_DOT_DIMENSION_MERGER_H_ #define XLA_SERVICE_DOT_DIMENSION_MERGER_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class DotDimensionMerger : public HloModulePass { public: absl::string_view name() const override { return "dot_dimension_merger"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } #endif #include "xla/service/dot_dimension_merger.h" #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/layout_util.h" #include "xla/service/hlo_creation_utils.h" #include "xla/shape.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { std::vector<int64_t> ShiftDimensions(absl::Span<const int64_t> dimensions, const int64_t start, const int64_t shift) { std::vector<int64_t> new_dimensions; new_dimensions.reserve(dimensions.size()); for (const int64_t i : dimensions) { if (i < start) { new_dimensions.push_back(i); } else { new_dimensions.push_back(i - shift); } } return new_dimensions; } class BatchDimensionMerger : public DfsHloRewriteVisitor { public: absl::Status HandleDot(HloInstruction* dot) override { const DotDimensionNumbers& dnums = dot->dot_dimension_numbers(); const Shape& lhs_shape = dot->operand(0)->shape(); const Shape& rhs_shape = dot->operand(1)->shape(); CHECK_EQ(dnums.lhs_batch_dimensions_size(), dnums.rhs_batch_dimensions_size()); const int64_t batch_dimension_count = dnums.lhs_batch_dimensions_size(); if (batch_dimension_count < 2 || !DistinctNumbersAreConsecutiveIfSorted(dnums.lhs_batch_dimensions()) || !DistinctNumbersAreConsecutiveIfSorted(dnums.rhs_batch_dimensions()) || !absl::c_is_sorted(dnums.lhs_batch_dimensions()) || !absl::c_is_sorted(dnums.rhs_batch_dimensions()) || !LayoutUtil::AreDimensionsConsecutive(lhs_shape.layout(), dnums.lhs_batch_dimensions()) || !LayoutUtil::AreDimensionsConsecutive(rhs_shape.layout(), dnums.rhs_batch_dimensions())) { return absl::OkStatus(); } const int64_t lhs_batch_dimension = *absl::c_min_element(dnums.lhs_batch_dimensions()); const int64_t rhs_batch_dimension = *absl::c_min_element(dnums.rhs_batch_dimensions()); int64_t batch_size = 1; for (const int64_t dimension_number : dnums.lhs_batch_dimensions()) { batch_size *= lhs_shape.dimensions(dimension_number); } auto merge_batch_dims = [&](Shape old_shape, int64_t batch_dim) { Shape new_shape = old_shape; for (int64_t i = 1; i < batch_dimension_count; ++i) { new_shape.DeleteDimension(batch_dim + 1); } new_shape.set_dimensions(batch_dim, batch_size); return new_shape; }; Shape new_lhs_shape = merge_batch_dims(lhs_shape, lhs_batch_dimension); Shape new_rhs_shape = merge_batch_dims(rhs_shape, rhs_batch_dimension); DotDimensionNumbers new_dot_dimension_numbers; new_dot_dimension_numbers.add_lhs_batch_dimensions(lhs_batch_dimension); new_dot_dimension_numbers.add_rhs_batch_dimensions(rhs_batch_dimension); { const std::vector<int64_t> shifted_contracting_dimensions = ShiftDimensions(dnums.lhs_contracting_dimensions(), lhs_batch_dimension, batch_dimension_count - 1); new_dot_dimension_numbers.mutable_lhs_contracting_dimensions()->Assign( shifted_contracting_dimensions.begin(), shifted_contracting_dimensions.end()); } { const std::vector<int64_t> shifted_contracting_dimensions = ShiftDimensions(dnums.rhs_contracting_dimensions(), rhs_batch_dimension, batch_dimension_count - 1); new_dot_dimension_numbers.mutable_rhs_contracting_dimensions()->Assign( shifted_contracting_dimensions.begin(), shifted_contracting_dimensions.end()); } auto sparsity = Cast<HloDotInstruction>(dot)->sparsity(); std::vector<SparsityDescriptor> new_sparsity(sparsity.begin(), sparsity.end()); std::vector<HloInstruction*> sparse_meta(sparsity.size()); for (int i = 0; i < sparsity.size(); ++i) { SparsityDescriptor& descriptor = new_sparsity[i]; int64_t sparse_batch_dim = descriptor.index() == 0 ? lhs_batch_dimension : rhs_batch_dimension; if (descriptor.dimension() > sparse_batch_dim) descriptor.set_dimension(descriptor.dimension() - (batch_dimension_count - 1)); HloInstruction* meta = dot->mutable_operand(HloDotInstruction::kOperands + i); Shape new_meta_shape = merge_batch_dims(meta->shape(), sparse_batch_dim); TF_ASSIGN_OR_RETURN(sparse_meta[i], MakeReshapeHlo(new_meta_shape, meta)); } TF_ASSIGN_OR_RETURN(HloInstruction * reshaped_lhs, MakeReshapeHlo(new_lhs_shape, dot->mutable_operand(0))); TF_ASSIGN_OR_RETURN(HloInstruction * reshaped_rhs, MakeReshapeHlo(new_rhs_shape, dot->mutable_operand(1))); Shape new_dot_shape = merge_batch_dims(dot->shape(), 0); HloInstruction* new_dot = dot->parent()->AddInstruction( HloInstruction::CreateDot(new_dot_shape, reshaped_lhs, reshaped_rhs, new_dot_dimension_numbers, dot->precision_config(), new_sparsity, sparse_meta), &dot->metadata()); dot->SetupDerivedInstruction(new_dot); std::unique_ptr<HloInstruction> out_reshape = HloInstruction::CreateReshape(dot->shape(), new_dot); return ReplaceWithNewInstruction(dot, std::move(out_reshape)); } }; } absl::StatusOr<bool> DotDimensionMerger::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { return BatchDimensionMerger().RunOnModule(module, execution_threads); } }
#include "xla/service/dot_dimension_merger.h" #include <memory> #include <string> #include <gtest/gtest.h> #include "xla/service/hlo_parser.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using DotDimensionMergerTest = HloTestBase; TEST_F(DotDimensionMergerTest, MergeConsecutiveBatchDimensions) { const std::string kHloText = R"( HloModule m ENTRY e { p0 = bf16[79,2,4,12,11] parameter(0) p1 = bf16[79,2,4,11,44] parameter(1) ROOT d = bf16[2,4,12,44] dot(p0, p1), lhs_batch_dims={1,2}, lhs_contracting_dims={0,4}, rhs_batch_dims={1,2}, rhs_contracting_dims={0,3}, metadata={op_name="testname"} })"; RunAndFilecheckHloRewrite(kHloText, DotDimensionMerger(), R"( ; CHECK: %[[R0:.*]] = bf16[79,8,12,11]{3,2,1,0} reshape(%p0) ; CHECK: %[[R1:.*]] = bf16[79,8,11,44]{3,2,1,0} reshape(%p1) ; CHECK: %[[DOT:.*]] = bf16[8,12,44]{2,1,0} dot(%[[R0]], %[[R1]]) ; CHECK-SAME: lhs_batch_dims={1} ; CHECK-SAME: lhs_contracting_dims={0,3} ; CHECK-SAME: rhs_batch_dims={1} ; CHECK-SAME: rhs_contracting_dims={0,2} ; CHECK-NEXT: ROOT {{[^ ]+}} = bf16[2,4,12,44]{3,2,1,0} reshape(%[[DOT]]) ; CHECK-SAME: metadata={op_name="testname"} )"); } TEST_F(DotDimensionMergerTest, MergeConsecutiveBatchDimensionsNonDefaultLayouts) { const std::string kHloText = R"( HloModule m ENTRY e { p0 = bf16[79,2,4,12,11]{4,0,3,2,1} parameter(0) p1 = bf16[79,2,4,11,44]{3,0,4,2,1} parameter(1) ROOT d = bf16[2,4,12,44]{3,1,0,2} dot(p0, p1), lhs_batch_dims={1,2}, lhs_contracting_dims={0,4}, rhs_batch_dims={1,2}, rhs_contracting_dims={0,3}, metadata={op_name="testname"} })"; RunAndFilecheckHloRewrite(kHloText, DotDimensionMerger(), R"( ; CHECK: %[[R0:.*]] = bf16[79,8,12,11]{3,0,2,1} reshape(%p0) ; CHECK: %[[R1:.*]] = bf16[79,8,11,44]{2,0,3,1} reshape(%p1) ; CHECK: %[[DOT:.*]] = bf16[8,12,44]{2,0,1} dot(%[[R0]], %[[R1]]) ; CHECK-SAME: lhs_batch_dims={1} ; CHECK-SAME: lhs_contracting_dims={0,3} ; CHECK-SAME: rhs_batch_dims={1} ; CHECK-SAME: rhs_contracting_dims={0,2} ; CHECK-NEXT: ROOT {{[^ ]+}} = bf16[2,4,12,44]{3,1,0,2} reshape(%[[DOT]]) ; CHECK-SAME: metadata={op_name="testname"} )"); } TEST_F(DotDimensionMergerTest, SkipPhysicallyNonConsecutiveBatchDimensions) { const std::string kHloText = R"( HloModule m ENTRY e { p0 = bf16[2,4,12,13]{3,1,2,0} parameter(0) p1 = bf16[2,4,13,55]{3,2,1,0} parameter(1) ROOT d = bf16[2,4,12,55]{3,2,1,0} dot(p0, p1), lhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={2} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); TF_ASSERT_OK_AND_ASSIGN(bool modified, DotDimensionMerger().Run(module.get())); EXPECT_FALSE(modified); } TEST_F(DotDimensionMergerTest, SkipUnsortedBatchDimensions) { const std::string kHloText = R"( HloModule m ENTRY e { p0 = bf16[4,2,12,13] parameter(0) p1 = bf16[2,4,13,55] parameter(1) ROOT d = bf16[2,4,12,55] dot(p0, p1), lhs_batch_dims={1,0}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={2} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); TF_ASSERT_OK_AND_ASSIGN(bool modified, DotDimensionMerger().Run(module.get())); EXPECT_FALSE(modified); } TEST_F(DotDimensionMergerTest, SkipLogicallyNonConsecutiveBatchDimensions) { const std::string kHloText = R"( HloModule m ENTRY e { p0 = bf16[2,12,4,13] parameter(0) p1 = bf16[2,4,13,55] parameter(1) ROOT d = bf16[2,4,12,55] dot(p0, p1), lhs_batch_dims={0,2}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={2} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); TF_ASSERT_OK_AND_ASSIGN(bool modified, DotDimensionMerger().Run(module.get())); EXPECT_FALSE(modified); } TEST_F(DotDimensionMergerTest, SparseDotUpdatesDescriptor) { const std::string kHloText = R"( HloModule m ENTRY e { p0 = bf16[3,4,5,6,16] parameter(0) p1 = bf16[3,4,5,32,6] parameter(1) meta = u16[3,4,5,6,2] parameter(2) ROOT d = bf16[4,5,6,6] dot(p0, p1, meta), sparsity=L.4@2:4, lhs_batch_dims={1,2}, lhs_contracting_dims={0,4}, rhs_batch_dims={1,2}, rhs_contracting_dims={0,3} })"; RunAndFilecheckHloRewrite(kHloText, DotDimensionMerger(), R"( ; CHECK: %[[R0:.*]] = bf16[3,20,6,16]{3,2,1,0} reshape(%p0) ; CHECK: %[[R1:.*]] = bf16[3,20,32,6]{3,2,1,0} reshape(%p1) ; CHECK: %[[R2:.*]] = u16[3,20,6,2]{3,2,1,0} reshape(%meta) ; CHECK: %[[DOT:.*]] = bf16[20,6,6]{2,1,0} dot(%[[R0]], %[[R1]], %[[R2]]) ; CHECK-SAME: lhs_batch_dims={1} ; CHECK-SAME: lhs_contracting_dims={0,3} ; CHECK-SAME: rhs_batch_dims={1} ; CHECK-SAME: rhs_contracting_dims={0,2} ; CHECK-SAME: sparsity=L.3@2:4 ; CHECK-NEXT: ROOT {{.+}} = bf16[4,5,6,6]{3,2,1,0} reshape(%[[DOT]]) )"); } } }
1,864
cpp
tensorflow/tensorflow
all_reduce_combiner
third_party/xla/xla/service/all_reduce_combiner.cc
third_party/xla/xla/service/all_reduce_combiner_test.cc
#ifndef XLA_SERVICE_ALL_REDUCE_COMBINER_H_ #define XLA_SERVICE_ALL_REDUCE_COMBINER_H_ #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/array2d.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" #include "xla/xla_data.pb.h" namespace xla { class AllReduceCombiner : public HloModulePass { public: AllReduceCombiner(int64_t combine_threshold_in_bytes, int64_t combine_threshold_count); absl::string_view name() const override { return "all-reduce-combiner"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: int64_t combine_threshold_in_bytes_; int64_t combine_threshold_count_; }; } #endif #include "xla/service/all_reduce_combiner.h" #include <algorithm> #include <list> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/hlo/utils/hlo_sharding_util.h" #include "xla/service/all_reduce_key.h" #include "xla/service/collective_combiner_utils.h" #include "xla/service/hlo_domain_map.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" namespace xla { namespace { absl::Status CombineAllReduces(absl::Span<HloInstruction* const> to_combine) { if (to_combine.size() < 2) { return absl::OkStatus(); } VLOG(1) << "Combined " << to_combine.size() << " CRS ops"; HloComputation& computation = *to_combine.back()->parent(); HloComputation* reduction = to_combine[0]->to_apply(); const HloOpcode type = reduction->root_instruction()->opcode(); std::vector<HloInstruction*> operands; std::vector<const Shape*> operand_shapes; VLOG(1) << "Combining set"; for (HloInstruction* hlo : to_combine) { VLOG(1) << "Set element: " << hlo->ToString(); TF_RET_CHECK(hlo->opcode() == HloOpcode::kAllReduce); TF_RET_CHECK(hlo->operands().size() == 1); TF_RET_CHECK(hlo->to_apply() == reduction || (hlo->to_apply()->instruction_count() == 3 && hlo->to_apply()->num_parameters() == 2 && hlo->to_apply()->root_instruction()->opcode() == type)); TF_RET_CHECK(hlo->shape().IsArray()); for (HloInstruction* operand : hlo->operands()) { operands.push_back(operand); operand_shapes.push_back(&operand->shape()); } } HloInstruction* combined; TF_RET_CHECK(operands.size() >= 2); combined = computation.AddInstruction(HloInstruction::CreateAllReduce( ShapeUtil::MakeTupleShapeWithPtrs(operand_shapes), operands, reduction, to_combine.front()->device_list(), false, to_combine.front()->channel_id(), Cast<HloAllReduceInstruction>(to_combine.front()) ->use_global_device_ids())); combined->set_sharding( hlo_sharding_util::CreateTupleSharding(combined->shape(), to_combine)); VLOG(1) << "Replacing with : " << combined->ToString(); for (int64_t i = 0; i < to_combine.size(); ++i) { auto replace_with = HloInstruction::CreateGetTupleElement( to_combine[i]->shape(), combined, i); TF_RETURN_IF_ERROR(computation.ReplaceWithNewInstruction( to_combine[i], std::move(replace_with))); } return absl::OkStatus(); } } AllReduceCombiner::AllReduceCombiner(int64_t combine_threshold_in_bytes, int64_t combine_threshold_count) : combine_threshold_in_bytes_(combine_threshold_in_bytes), combine_threshold_count_(combine_threshold_count) {} absl::StatusOr<bool> AllReduceCombiner::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { VLOG(1) << "Running AllReduceCombiner with threshold of " << combine_threshold_in_bytes_ << " bytes"; if (combine_threshold_in_bytes_ <= 0 || combine_threshold_count_ <= 0) { VLOG(1) << "Skip AllReduceCombiner because the threshold is zero"; return false; } if (hlo_query::ContainsLayoutConstrainedAllReduce(*module)) { VLOG(1) << "Skip AllReduceCombiner because the module contains all-reduce " "with constrained layouts"; return false; } bool changed = false; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { TF_ASSIGN_OR_RETURN(auto domain_map, HloDomainMap::Create(computation, "")); auto key_fn = [&domain_map]( const HloInstruction* instruction) -> std::optional<AllReduceKey> { if (instruction->opcode() != HloOpcode::kAllReduce) { return std::nullopt; } return GetAllReduceKey(instruction, domain_map.get()); }; TF_ASSIGN_OR_RETURN( bool computation_changed, CombineInstructionsByKey<AllReduceKey>( computation, key_fn, &CombineAllReduces, combine_threshold_in_bytes_, combine_threshold_count_)); changed |= computation_changed; } return changed; } }
#include "xla/service/all_reduce_combiner.h" #include <memory> #include <vector> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" namespace xla { namespace { using std::nullopt; using ::testing::AllOf; namespace op = xla::testing::opcode_matchers; int64_t kMaxCombineCount = 256; int64_t AllReduceCount(const HloModule& module) { int64_t count = 0; for (HloComputation* computation : module.computations()) { if (computation->IsFusionComputation()) { continue; } for (HloInstruction* hlo : computation->instructions()) { if (hlo->opcode() == HloOpcode::kAllReduce) { ++count; } } } return count; } HloInstruction* MakeCrossReplicaReductions( std::vector<int64_t> sizes_in_kib, std::vector<HloComputation*> reductions, std::vector<HloInstruction*>* inputs, HloComputation::Builder* b) { CHECK_EQ(reductions.size(), sizes_in_kib.size()); std::vector<HloInstruction*> all_reduces; for (int i = 0; i < sizes_in_kib.size(); i++) { int64_t size_in_kib = sizes_in_kib[i]; HloComputation* reduction = reductions[i]; auto constant = b->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0(42.3))); Shape shape = ShapeUtil::MakeShape( F32, {static_cast<int32_t>(size_in_kib * 1024 / sizeof(float))}); auto input = b->AddInstruction(HloInstruction::CreateBroadcast(shape, constant, {})); inputs->push_back(input); all_reduces.push_back(b->AddInstruction(HloInstruction::CreateAllReduce( shape, {input}, reduction, CollectiveDeviceList(), false, nullopt, false))); } return b->AddInstruction(HloInstruction::CreateTuple(all_reduces)); } HloComputation* MakeReduction(const HloOpcode type, HloModule* module) { HloComputation::Builder sum_builder(HloOpcodeString(type)); auto x = sum_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "x")); auto y = sum_builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {}), "y")); sum_builder.AddInstruction( HloInstruction::CreateBinary(ShapeUtil::MakeShape(F32, {}), type, x, y)); HloComputation* reduction = module->AddEmbeddedComputation(sum_builder.Build()); return reduction; } using AllReduceCombinerTest = HloTestBase; TEST_F(AllReduceCombinerTest, CombineAllReduces) { auto module = CreateNewVerifiedModule(); HloComputation* sum = MakeReduction(HloOpcode::kAdd, module.get()); HloComputation::Builder b(TestName()); std::vector<HloInstruction*> inputs; auto root = MakeCrossReplicaReductions( {1, 2, 10, 7, 6}, {sum, sum, sum, sum, sum}, &inputs, &b); auto computation = module->AddEntryComputation(b.Build()); AllReduceCombiner combine(10 * 1024 * 1024, kMaxCombineCount); ASSERT_EQ(AllReduceCount(*module), inputs.size()); TF_ASSERT_OK_AND_ASSIGN(bool changed, combine.Run(module.get())); ASSERT_EQ(AllReduceCount(*module), 1); EXPECT_TRUE(changed); ASSERT_EQ(root, computation->root_instruction()); ASSERT_EQ(inputs.size(), root->operands().size()); HloInstruction* combined = nullptr; for (int64_t i = 0; i < root->operands().size(); ++i) { HloInstruction* hlo = root->mutable_operand(i); ASSERT_TRUE(hlo->opcode() == HloOpcode::kGetTupleElement); EXPECT_EQ(hlo->tuple_index(), i); EXPECT_TRUE(ShapeUtil::Equal(inputs[i]->shape(), hlo->shape())); if (combined == nullptr) { combined = hlo->mutable_operand(0); ASSERT_TRUE(combined->opcode() == HloOpcode::kAllReduce); EXPECT_TRUE(ShapeUtil::Equal(root->shape(), combined->shape())); ASSERT_EQ(combined->operands().size(), inputs.size()); } EXPECT_EQ(combined, hlo->operand(0)); EXPECT_TRUE(ShapeUtil::Equal(inputs[i]->shape(), hlo->shape())); EXPECT_EQ(combined->operand(i), inputs[i]); EXPECT_EQ(1, inputs[i]->users().size()); } ASSERT_NE(combined, nullptr); } TEST_F(AllReduceCombinerTest, CombineCrossReplicaReductionsInGroups) { auto module = CreateNewVerifiedModule(); HloComputation* sum = MakeReduction(HloOpcode::kAdd, module.get()); HloComputation* min = MakeReduction(HloOpcode::kMinimum, module.get()); HloComputation* max = MakeReduction(HloOpcode::kMaximum, module.get()); HloComputation* sum_2 = MakeReduction(HloOpcode::kAdd, module.get()); HloComputation::Builder b(TestName()); std::vector<HloInstruction*> inputs; MakeCrossReplicaReductions( {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, {sum, sum_2, min, min, min, max, max, max, sum, sum_2}, &inputs, &b); module->AddEntryComputation(b.Build()); AllReduceCombiner combine(10 * 1024 * 1024, kMaxCombineCount); ASSERT_EQ(AllReduceCount(*module), inputs.size()); TF_ASSERT_OK_AND_ASSIGN(bool changed, combine.Run(module.get())); ASSERT_EQ(AllReduceCount(*module), 3) << "expects 3 groups for 3 reduction types."; EXPECT_TRUE(changed); } TEST_F(AllReduceCombinerTest, RespectThreshold) { auto module = CreateNewVerifiedModule(); HloComputation* sum = MakeReduction(HloOpcode::kAdd, module.get()); HloComputation::Builder b(TestName()); std::vector<HloInstruction*> inputs; MakeCrossReplicaReductions({8, 4}, {sum, sum}, &inputs, &b); module->AddEntryComputation(b.Build()); { AllReduceCombiner combine((8 + 4) * 1024 - 1, kMaxCombineCount); ASSERT_EQ(AllReduceCount(*module), inputs.size()); TF_ASSERT_OK_AND_ASSIGN(bool changed, combine.Run(module.get())); EXPECT_EQ(AllReduceCount(*module), inputs.size()); EXPECT_FALSE(changed); } { AllReduceCombiner combine((8 + 4) * 1024, kMaxCombineCount); ASSERT_EQ(AllReduceCount(*module), inputs.size()); TF_ASSERT_OK_AND_ASSIGN(bool changed, combine.Run(module.get())); EXPECT_EQ(AllReduceCount(*module), 1); EXPECT_TRUE(changed); } } TEST_F(AllReduceCombinerTest, NoDependentCombination) { auto module = CreateNewVerifiedModule(); HloComputation* reduction = MakeReduction(HloOpcode::kAdd, module.get()); HloComputation::Builder b(TestName()); auto constant = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0(42.3))); auto all_reduce = b.AddInstruction(HloInstruction::CreateAllReduce( constant->shape(), {constant}, reduction, CollectiveDeviceList(), false, nullopt, false)); b.AddInstruction(HloInstruction::CreateAllReduce( constant->shape(), {all_reduce}, reduction, CollectiveDeviceList(), false, nullopt, false)); module->AddEntryComputation(b.Build()); AllReduceCombiner combine(1024 * 1024, kMaxCombineCount); ASSERT_EQ(AllReduceCount(*module), 2); TF_ASSERT_OK_AND_ASSIGN(bool changed, combine.Run(module.get())); EXPECT_EQ(AllReduceCount(*module), 2); EXPECT_FALSE(changed); } TEST_F(AllReduceCombinerTest, GroupAllReduce) { auto module = CreateNewVerifiedModule(TestName(), 4); HloComputation::Builder b(TestName()); HloComputation* reduction = MakeReduction(HloOpcode::kAdd, module.get()); auto constant = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0(42.3))); auto crs0 = b.AddInstruction(HloInstruction::CreateAllReduce( constant->shape(), {constant}, reduction, CollectiveDeviceList({{0, 1}, {2, 3}}), false, nullopt, false)); auto crs1 = b.AddInstruction(HloInstruction::CreateAllReduce( constant->shape(), {constant}, reduction, CollectiveDeviceList({{0, 2}, {1, 3}}), false, nullopt, false)); b.AddInstruction(HloInstruction::CreateTuple({crs0, crs1})); module->AddEntryComputation(b.Build()); AllReduceCombiner combine(1024 * 1024, kMaxCombineCount); ASSERT_EQ(AllReduceCount(*module), 2); TF_ASSERT_OK_AND_ASSIGN(bool changed, combine.Run(module.get())); EXPECT_EQ(AllReduceCount(*module), 2); EXPECT_FALSE(changed); } TEST_F(AllReduceCombinerTest, DomainPreventsCombining) { const char* const hlo_string = R"( HloModule Module summit { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY entry { param0 = f32[128] parameter(0), sharding={maximal device=0} param1 = f32[128] parameter(1), sharding={maximal device=1} crs0 = f32[128] all-reduce(param0), replica_groups={}, to_apply=summit, sharding={maximal device=0} crs1 = f32[128] all-reduce(param1), replica_groups={}, to_apply=summit, sharding={maximal device=1} domain0 = f32[128] domain(crs0), domain={kind="sharding", entry={{maximal device=0}, {maximal device=1}}, exit={maximal device=0}} domain1 = f32[128] domain(crs1), domain={kind="sharding", entry={{maximal device=0}, {maximal device=1}}, exit={maximal device=1}} ROOT tuple = (f32[128], f32[128]) tuple(domain0, domain1), sharding={{maximal device=0}, {maximal device=1}} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); LOG(INFO) << "Original module:\n" << module->ToString(); AllReduceCombiner combine(1024 * 1024, kMaxCombineCount); ASSERT_EQ(AllReduceCount(*module), 2); TF_ASSERT_OK_AND_ASSIGN(bool changed, combine.Run(module.get())); EXPECT_EQ(AllReduceCount(*module), 2); EXPECT_FALSE(changed); } TEST_F(AllReduceCombinerTest, CombineFromTwoDomainsWithSameMetadata) { const char* const hlo_string = R"( HloModule Module summit { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY entry { param0 = f32[128] parameter(0), sharding={maximal device=0} param1 = f32[128] parameter(1), sharding={maximal device=1} param2 = f32[128] parameter(2), sharding={maximal device=1} crs0 = f32[128] all-reduce(param0), replica_groups={}, to_apply=summit, sharding={maximal device=0} crs1 = f32[128] all-reduce(param1), replica_groups={}, to_apply=summit, sharding={maximal device=1} crs2 = f32[128] all-reduce(param2), replica_groups={}, to_apply=summit, sharding={maximal device=0} domain0 = f32[128] domain(crs0), domain={kind="sharding", entry={{maximal device=0}, {maximal device=1}, {maximal device=0}}, exit={maximal device=0}} domain1 = f32[128] domain(crs1), domain={kind="sharding", entry={{maximal device=0}, {maximal device=1}, {maximal device=0}}, exit={maximal device=1}} domain2 = f32[128] domain(crs2), domain={kind="sharding", entry={{maximal device=0}, {maximal device=1}, {maximal device=0}}, exit={maximal device=0}} ROOT tuple = (f32[128], f32[128], f32[128]) tuple(domain0, domain1, domain2), sharding={{maximal device=0}, {maximal device=1}, {maximal device=0}} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AllReduceCombiner combine(1024 * 1024, kMaxCombineCount); ASSERT_EQ(AllReduceCount(*module), 3); TF_ASSERT_OK_AND_ASSIGN(bool changed, combine.Run(module.get())); EXPECT_EQ(AllReduceCount(*module), 2); EXPECT_TRUE(changed); const HloInstruction* param0 = module->entry_computation()->parameter_instruction(0); ASSERT_EQ(param0->user_count(), 1); const HloInstruction* combined_ar = param0->users().front(); ASSERT_EQ(combined_ar->opcode(), HloOpcode::kAllReduce); EXPECT_THAT(combined_ar, testing::opcode_matchers::Sharding( "{{maximal device=0}, {maximal device=0}}")); } TEST_F(AllReduceCombinerTest, DoNotCombineCrossShardAndCrossReplicaInSPMD) { const char* const hlo_string = R"( HloModule Module summit { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY entry { param0 = f32[128] parameter(0), sharding={maximal device=0} param1 = f32[128] parameter(1), sharding={maximal device=1} cross_shard_ar = f32[128] all-reduce(param0), replica_groups={{0}}, to_apply=summit, channel_id=1 cross_replica_ar = f32[128] all-reduce(param1), replica_groups={{0}}, to_apply=summit, sharding={maximal device=1} ROOT tuple = (f32[128], f32[128]) tuple(cross_shard_ar, cross_replica_ar) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AllReduceCombiner combine(1024 * 1024, kMaxCombineCount); ASSERT_EQ(AllReduceCount(*module), 2); TF_ASSERT_OK_AND_ASSIGN(bool changed, combine.Run(module.get())); EXPECT_EQ(AllReduceCount(*module), 2); EXPECT_FALSE(changed); } TEST_F(AllReduceCombinerTest, CrossCoreAllReduce) { const char* const hlo_string = R"( HloModule Module summit { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY entry { param0 = f32[128] parameter(0), sharding={maximal device=0} param1 = f32[128] parameter(1), sharding={maximal device=1} crs00 = f32[128] all-reduce(param0), replica_groups={{0}}, channel_id=1, to_apply=summit, sharding={maximal device=0} crs01 = f32[128] all-reduce(param1), replica_groups={{0}}, channel_id=1, to_apply=summit, sharding={maximal device=1} crs10 = f32[128] all-reduce(param0), replica_groups={{0}}, channel_id=2, to_apply=summit, sharding={maximal device=0} crs11 = f32[128] all-reduce(param1), replica_groups={{0}}, channel_id=2, to_apply=summit, sharding={maximal device=1} domain0 = f32[128] domain(crs00), domain={kind="sharding", entry={maximal device=0}, exit={maximal device=1}} ROOT add = f32[128] add(domain0, crs11), sharding={maximal device=1} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AllReduceCombiner combine(1024 * 1024, kMaxCombineCount); ASSERT_EQ(AllReduceCount(*module), 4); TF_ASSERT_OK_AND_ASSIGN(bool changed, combine.Run(module.get())); EXPECT_EQ(AllReduceCount(*module), 2); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Add(op::Domain(op::GetTupleElement(AllOf( op::AllReduce(op::Parameter(0), op::Parameter(0)), op::Shape("(f32[128], f32[128])")))), op::GetTupleElement(AllOf( op::AllReduce(op::Parameter(1), op::Parameter(1)), op::Shape("(f32[128], f32[128])"))))); } TEST_F(AllReduceCombinerTest, CrossCombineGroupCycle) { const char* const hlo_string = R"( HloModule module %add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } %max { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] maximum(lhs, rhs) } ENTRY %comp { p0 = f32[128] parameter(0) p1 = f32[128] parameter(1) crs00 = f32[128] all-reduce(p0), to_apply=add crs10 = f32[128] all-reduce(p1), to_apply=max crs01 = f32[128] all-reduce(crs00), to_apply=max crs11 = f32[128] all-reduce(crs10), to_apply=add add0 = f32[128] add(crs01, crs11) crs02 = f32[128] all-reduce(add0), to_apply=add crs12 = f32[128] all-reduce(crs11), to_apply=add ROOT tuple = (f32[128], f32[128]) tuple(crs02, crs12) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AllReduceCombiner combine(1024 * 1024, kMaxCombineCount); ASSERT_EQ(AllReduceCount(*module), 6); TF_ASSERT_OK_AND_ASSIGN(bool changed, combine.Run(module.get())); EXPECT_EQ(AllReduceCount(*module), 4); EXPECT_TRUE(changed); auto crs0 = op::AllReduce(op::Parameter(0), op::AllReduce(op::Parameter(1))); auto add = op::Add(op::AllReduce(op::GetTupleElement(crs0, 0)), op::GetTupleElement(crs0, 1)); auto crs1 = op::AllReduce(add, op::GetTupleElement(crs0)); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Tuple(op::GetTupleElement(crs1, 0), op::GetTupleElement(crs1, 1))); } } }
1,865
cpp
tensorflow/tensorflow
host_offloader
third_party/xla/xla/service/host_offloader.cc
third_party/xla/xla/service/host_offloader_test.cc
#ifndef XLA_SERVICE_HOST_OFFLOADER_H_ #define XLA_SERVICE_HOST_OFFLOADER_H_ #include <cstdint> #include <memory> #include <string> #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_buffer.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class HloCostAnalysis; struct InstructionAndShapeIndex { explicit InstructionAndShapeIndex(HloInstruction* instruction) : instruction(instruction) {} InstructionAndShapeIndex(HloInstruction* instruction, ShapeIndex shape_index) : instruction(instruction), shape_index(shape_index) {} HloInstruction* instruction; ShapeIndex shape_index; std::string ToString() const; template <typename H> static H Hash(H h, const InstructionAndShapeIndex& i) { h = H::combine(std::move(h), i.instruction); h = H::combine(std::move(h), i.shape_index); return std::move(h); } template <typename H> friend H AbslHashValue(H h, const InstructionAndShapeIndex& i) { return InstructionAndShapeIndex::Hash(std::move(h), i); } }; bool operator==(const InstructionAndShapeIndex& lhs, const InstructionAndShapeIndex& rhs); class HostOffloader : public HloModulePass { public: explicit HostOffloader(int64_t host_memory_space_color) : kHostMemorySpaceColor(host_memory_space_color) {} ~HostOffloader() override = default; absl::string_view name() const override { return "host-offloader"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: const int64_t kHostMemorySpaceColor; absl::flat_hash_set<HloInstruction*> already_visited_move_to_host_custom_calls_; absl::flat_hash_set<HloInstruction*> dynamic_update_slices_already_allocated_; absl::flat_hash_set<HloInstruction*> validated_slices_; absl::flat_hash_map<HloInstruction*, HloInstruction*> copies_created_after_; absl::flat_hash_set<HloInstruction*> move_to_device_custom_calls_to_remove_; absl::flat_hash_set<InstructionAndShapeIndex> already_inserted_copy_before_; absl::StatusOr<HloInstruction*> DynamifySlice(HloInstruction* slice); bool IsValidDuringPureMemoryOffload(const HloInstruction* instruction) const; bool InstructionIsAllowedBetweenMoveToHostAndDus( const HloInstruction* instruction) const; bool InstructionIsAllowedBetweenDsAndMoveToDevice( const HloInstruction* instruction) const; absl::StatusOr<bool> HandleInputStreaming(HloComputation* entry_computation); absl::StatusOr<bool> HandleMoveToHostCustomCall( HloInstruction* custom_call_instruction); absl::StatusOr<bool> HandleMoveToDeviceCustomCall( HloInstruction* custom_call_instruction); absl::Status CreateAllocateBufferForDynamicUpdateSlice( HloInstruction* dynamic_update_slice); absl::Status ValidateSliceLeadsToMoveToDeviceCustomCall( HloInstruction* slice); absl::StatusOr<bool> WalkDownHostMemoryOffloadPaths( const InstructionAndShapeIndex& starting_instruction_and_index, bool insert_copy_before); absl::StatusOr<std::vector<InstructionAndShapeIndex>> GetStartingInstructions( HloInstruction* custom_call_instruction); absl::StatusOr<bool> InsertCopyBetween( const InstructionAndShapeIndex& before_instruction_and_index, const InstructionAndShapeIndex& after_instruction_and_index); absl::StatusOr<bool> ApplySchedulingFix( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads); }; } #endif #include "xla/service/host_offloader.h" #include <array> #include <cstdint> #include <iomanip> #include <memory> #include <optional> #include <queue> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal_util.h" #include "xla/service/call_graph.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_buffer.h" #include "xla/service/hlo_cse.h" #include "xla/service/hlo_value.h" #include "xla/service/host_memory_offload_annotations.h" #include "xla/service/pattern_matcher.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using ::xla::host_memory_offload_annotations::kMoveToDeviceCustomCallTarget; using ::xla::host_memory_offload_annotations::kMoveToHostCustomCallTarget; void SetMemorySpace(Shape* shape, int64_t memory_space_color) { CHECK(shape->has_layout()); shape->mutable_layout()->set_memory_space(memory_space_color); } bool SetBuffersToMemorySpaceColor( const std::vector<InstructionAndShapeIndex>& buffers_to_set_to_host_memory, int64_t memory_space_color) { bool changed = false; for (const auto& instr_and_shape : buffers_to_set_to_host_memory) { VLOG(2) << absl::StreamFormat("Setting %s to memory space %d", instr_and_shape.ToString(), memory_space_color); Shape* shape = ShapeUtil::GetMutableSubshape( instr_and_shape.instruction->mutable_shape(), instr_and_shape.shape_index); CHECK(shape->has_layout()) << "Shape must have a layout"; SetMemorySpace(ShapeUtil::GetMutableSubshape( instr_and_shape.instruction->mutable_shape(), instr_and_shape.shape_index), memory_space_color); changed = true; } return changed; } bool CustomCallReusesBuffer(const HloInstruction* custom_call, int64_t operand_index) { if (custom_call->custom_call_target() == kMoveToDeviceCustomCallTarget || custom_call->custom_call_target() == kMoveToHostCustomCallTarget) { return true; } const std::vector<std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>>& aliases = custom_call->output_operand_aliasing(); for (const std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>& alias : aliases) { int64_t alias_operand_index = alias.second.first; if (alias_operand_index == operand_index) { return true; } } return false; } absl::StatusOr<std::vector<InstructionAndShapeIndex>> GetSuccessors( const InstructionAndShapeIndex& instruction_and_shape_index) { std::vector<InstructionAndShapeIndex> result; HloInstruction* instruction = instruction_and_shape_index.instruction; if (instruction->IsRoot()) { std::unique_ptr<CallGraph> call_graph = CallGraph::Build(instruction->GetModule()); auto callers = call_graph->GetComputationCallers(instruction->parent()); for (HloInstruction* caller : callers) { result.push_back({caller, instruction_and_shape_index.shape_index}); } } for (HloInstruction* user : instruction->users()) { if (user->opcode() == HloOpcode::kTuple) { auto operand_indices = user->OperandIndices(instruction); for (const auto i : operand_indices) { auto tmp_shape_index = instruction_and_shape_index.shape_index; tmp_shape_index.push_back(i); result.push_back({user, std::move(tmp_shape_index)}); } } else if (user->opcode() == HloOpcode::kGetTupleElement) { ShapeIndex tmp_shape_index = instruction_and_shape_index.shape_index; const auto index = tmp_shape_index.front(); if (index == user->tuple_index()) { tmp_shape_index.pop_front(); result.push_back({user, std::move(tmp_shape_index)}); } } else if (user->opcode() == HloOpcode::kCall) { auto operand_indices = user->OperandIndices(instruction); CHECK(user->called_computations().size() == 1) << "Expect call to only have one called computation."; for (const auto i : operand_indices) { HloComputation* called_computation = user->called_computations().front(); HloInstruction* parameter_instruction = called_computation->parameter_instruction(i); result.push_back( {parameter_instruction, instruction_and_shape_index.shape_index}); } } else if (user->opcode() == HloOpcode::kWhile) { auto operand_indices = user->OperandIndices(instruction); HloComputation* while_body_computation = user->while_body(); HloComputation* while_condition_computation = user->while_condition(); for (const auto i : operand_indices) { HloInstruction* parameter_instruction = while_body_computation->parameter_instruction(i); result.push_back( {parameter_instruction, instruction_and_shape_index.shape_index}); HloInstruction* condition_instruction = while_condition_computation->parameter_instruction(i); result.push_back( {condition_instruction, instruction_and_shape_index.shape_index}); } } else if (user->opcode() == HloOpcode::kAsyncStart) { auto operand_indices = user->OperandIndices(instruction); CHECK(user->called_computations().size() == 1) << "Expect async-start to only have one called computation."; for (const auto i : operand_indices) { HloComputation* called_computation = user->called_computations().front(); HloInstruction* parameter_instruction = called_computation->parameter_instruction(i); result.push_back( {parameter_instruction, instruction_and_shape_index.shape_index}); } } else if (user->opcode() == HloOpcode::kCustomCall) { const auto operand_indices = user->OperandIndices(instruction); bool found_one = false; for (const auto i : operand_indices) { if (CustomCallReusesBuffer(user, i)) { if (found_one) { return absl::InternalError( "Found multiple operands of a custom call that reuse the same " "output buffer."); } result.push_back({user, instruction_and_shape_index.shape_index}); found_one = true; } } } else { result.push_back({user, instruction_and_shape_index.shape_index}); } } return result; } std::vector<InstructionAndShapeIndex> GetPredecessors( const InstructionAndShapeIndex& instruction_and_shape_index) { std::vector<InstructionAndShapeIndex> result; HloInstruction* instruction = instruction_and_shape_index.instruction; if (instruction->opcode() == HloOpcode::kGetTupleElement) { const int64_t index = instruction->tuple_index(); auto tmp_shape_index = instruction_and_shape_index.shape_index; tmp_shape_index.push_front(index); result.push_back({instruction->mutable_operand(0), tmp_shape_index}); } else if (instruction->opcode() == HloOpcode::kTuple) { CHECK(!instruction_and_shape_index.shape_index.empty()) << "Did not store an index before encountering a tuple."; auto tmp_shape_index = instruction_and_shape_index.shape_index; const int64_t index = tmp_shape_index.front(); tmp_shape_index.pop_front(); result.push_back({instruction->mutable_operand(index), tmp_shape_index}); } else if (instruction->opcode() == HloOpcode::kCall) { CHECK(instruction->called_computations().size() == 1) << "Expect call to only have one called computation."; HloComputation* called_computation = instruction->called_computations().front(); result.push_back({called_computation->root_instruction(), instruction_and_shape_index.shape_index}); } else if (instruction->opcode() == HloOpcode::kParameter) { std::unique_ptr<CallGraph> call_graph = CallGraph::Build(instruction->GetModule()); auto callers = call_graph->GetComputationCallers(instruction->parent()); for (HloInstruction* caller : callers) { result.push_back( {caller->mutable_operand(instruction->parameter_number()), instruction_and_shape_index.shape_index}); } } else if (instruction->opcode() == HloOpcode::kDynamicSlice) { result.push_back({instruction->mutable_operand(0), instruction_and_shape_index.shape_index}); } else if (instruction->opcode() == HloOpcode::kDynamicUpdateSlice) { result.push_back({instruction->mutable_operand(0), instruction_and_shape_index.shape_index}); } else if (instruction->opcode() == HloOpcode::kWhile) { HloComputation* while_body_computation = instruction->while_body(); result.push_back({while_body_computation->root_instruction(), instruction_and_shape_index.shape_index}); } else { CHECK(instruction->operand_count() == 1) << absl::StreamFormat( "Expecting instruction %s to have 1 operand, but it has %d.", instruction->name(), instruction->operand_count()); result.push_back({instruction->mutable_operand(0), instruction_and_shape_index.shape_index}); } return result; } } bool operator==(const InstructionAndShapeIndex& lhs, const InstructionAndShapeIndex& rhs) { return lhs.instruction == rhs.instruction && lhs.shape_index == rhs.shape_index; } std::string InstructionAndShapeIndex::ToString() const { return absl::StrFormat("{Instr: %s, ShapeIndex: %s}", instruction->name(), shape_index.ToString()); } bool HostOffloader::IsValidDuringPureMemoryOffload( const HloInstruction* instruction) const { static constexpr std::array allowed_opcodes = { HloOpcode::kGetTupleElement, HloOpcode::kBitcast, HloOpcode::kTuple, HloOpcode::kCall, HloOpcode::kWhile, HloOpcode::kParameter, HloOpcode::kOptimizationBarrier, HloOpcode::kAsyncStart, HloOpcode::kAsyncDone, HloOpcode::kCustomCall}; return absl::c_linear_search(allowed_opcodes, instruction->opcode()); } bool HostOffloader::InstructionIsAllowedBetweenMoveToHostAndDus( const HloInstruction* instruction) const { if (instruction->opcode() == HloOpcode::kReshape) { return ShapeUtil::ReshapeIsBitcast(instruction->operand(0)->shape(), instruction->shape()); } return instruction->opcode() == HloOpcode::kBitcast; } bool HostOffloader::InstructionIsAllowedBetweenDsAndMoveToDevice( const HloInstruction* instruction) const { if (instruction->opcode() == HloOpcode::kReduce) { return ShapeUtil::TrueRank(instruction->operand(0)->shape()) == ShapeUtil::TrueRank(instruction->shape()); } if (instruction->opcode() == HloOpcode::kReshape) { return ShapeUtil::ReshapeIsBitcast(instruction->operand(0)->shape(), instruction->shape()); } return instruction->opcode() == HloOpcode::kBitcast || instruction->opcode() == HloOpcode::kCopy; } absl::StatusOr<bool> HostOffloader::WalkDownHostMemoryOffloadPaths( const InstructionAndShapeIndex& starting_instruction_and_index, bool insert_copy_before) { bool changed = false; absl::flat_hash_set<HloInstruction*> mth_custom_calls_to_remove; absl::flat_hash_set<HloInstruction*> slices_to_dynamify; absl::flat_hash_set<HloInstruction*> custom_calls_to_insert_copies_before; std::vector<InstructionAndShapeIndex> buffers_to_set_to_host_memory; std::vector<HloInstruction*> dynamic_update_slices; HloInstruction* starting_instruction = starting_instruction_and_index.instruction; std::queue<InstructionAndShapeIndex> queue; queue.push(starting_instruction_and_index); while (!queue.empty()) { InstructionAndShapeIndex instruction_and_shape_index = queue.front(); queue.pop(); HloInstruction* instruction = instruction_and_shape_index.instruction; VLOG(4) << absl::StreamFormat("Visiting instruction: %s", instruction_and_shape_index.ToString()); bool already_saved_buffer = false; if (instruction->opcode() == HloOpcode::kCustomCall && instruction->custom_call_target() == host_memory_offload_annotations::kMoveToHostCustomCallTarget) { already_visited_move_to_host_custom_calls_.insert(instruction); mth_custom_calls_to_remove.insert(instruction); } else if (instruction->opcode() == HloOpcode::kCustomCall && instruction->custom_call_target() == host_memory_offload_annotations:: kMoveToDeviceCustomCallTarget) { custom_calls_to_insert_copies_before.insert(instruction); continue; } else if (instruction->opcode() == HloOpcode::kDynamicUpdateSlice) { if (instruction == starting_instruction) { dynamic_update_slices.push_back(instruction); } else { dynamic_update_slices_already_allocated_.insert(instruction); } } else if (IsValidDuringPureMemoryOffload(instruction)) { if (instruction->opcode() == HloOpcode::kAsyncStart) { already_saved_buffer = true; } else if (instruction->opcode() == HloOpcode::kAsyncDone) { HloInstruction* async_start = instruction->mutable_operand(0); buffers_to_set_to_host_memory.emplace_back(async_start, ShapeIndex{1}); } else if (instruction->opcode() == HloOpcode::kParameter) { std::unique_ptr<CallGraph> call_graph = CallGraph::Build(instruction->GetModule()); std::vector<HloInstruction*> callers = call_graph->GetComputationCallers(instruction->parent()); for (HloInstruction* caller : callers) { if (caller->opcode() == HloOpcode::kAsyncStart) { ShapeIndex tmp_index = instruction_and_shape_index.shape_index; tmp_index.push_front(instruction->parameter_number()); tmp_index.push_front( 0); buffers_to_set_to_host_memory.emplace_back(caller, tmp_index); } } } } else if (instruction->opcode() == HloOpcode::kDynamicSlice) { TF_RETURN_IF_ERROR( ValidateSliceLeadsToMoveToDeviceCustomCall(instruction)); continue; } else if (instruction->opcode() == HloOpcode::kSlice) { TF_RETURN_IF_ERROR( ValidateSliceLeadsToMoveToDeviceCustomCall(instruction)); slices_to_dynamify.insert(instruction); continue; } else { return absl::InvalidArgumentError( absl::StrFormat("Tensor which is moved to host (starting from " "\"%s\") is used by an instruction (\"%s\") which is " "not acceptable during pure memory offload.", starting_instruction->name(), instruction->name())); } if (!already_saved_buffer) { VLOG(5) << "Saving " << instruction_and_shape_index.ToString() << " to be set to host memory."; buffers_to_set_to_host_memory.push_back(instruction_and_shape_index); } if (instruction->IsRoot() && instruction->parent()->IsEntryComputation()) { const Shape& output_shape = ShapeUtil::GetSubshape( instruction->GetModule()->entry_computation_layout().result_shape(), instruction_and_shape_index.shape_index); CHECK(output_shape.has_layout()) << "Expecting output shape of entry computation to have a layout."; if (output_shape.layout().memory_space() == kHostMemorySpaceColor) { VLOG(2) << absl::StreamFormat( "Memory offloaded starting from %s is output streamed", starting_instruction_and_index.ToString()); continue; } else { return absl::InvalidArgumentError( absl::StrFormat("Tensor which is moved to host (starting from %s) " "is returned from the entry computation but the " "layout for this output is not set to host memory.", starting_instruction->name())); } } TF_ASSIGN_OR_RETURN(const std::vector<InstructionAndShapeIndex> successors, GetSuccessors(instruction_and_shape_index)); for (const InstructionAndShapeIndex& successor : successors) { queue.push(successor); } } const bool set_buffers_changed = SetBuffersToMemorySpaceColor( buffers_to_set_to_host_memory, kHostMemorySpaceColor); changed = changed || set_buffers_changed; for (HloInstruction* dus : dynamic_update_slices) { TF_RETURN_IF_ERROR(CreateAllocateBufferForDynamicUpdateSlice(dus)); changed = true; } if (insert_copy_before) { const auto predecessors = GetPredecessors(starting_instruction_and_index); CHECK_EQ(predecessors.size(), 1); TF_ASSIGN_OR_RETURN(bool inserted_copy, InsertCopyBetween(predecessors.front(), starting_instruction_and_index)); changed = changed || inserted_copy; } for (HloInstruction* custom_call : custom_calls_to_insert_copies_before) { HloInstruction* data_to_copy = custom_call->mutable_operand(0); HloInstruction* copy_to_device = data_to_copy->parent()->AddInstruction(HloInstruction::CreateUnary( data_to_copy->shape(), HloOpcode::kCopy, data_to_copy)); SetMemorySpace(copy_to_device->mutable_shape(), Layout::kDefaultMemorySpace); VLOG(1) << absl::StreamFormat( "Inserted copy \"%s\" before custom call \"%s\"", copy_to_device->name(), custom_call->name()); TF_RETURN_IF_ERROR(custom_call->ReplaceAllUsesWith(copy_to_device)); changed = true; } for (HloInstruction* custom_call : mth_custom_calls_to_remove) { VLOG(1) << absl::StreamFormat("Removing MoveToHost custom call \"%s\"", custom_call->name()); TF_RETURN_IF_ERROR( custom_call->ReplaceAllUsesWith(custom_call->mutable_operand(0))); TF_RETURN_IF_ERROR(custom_call->parent()->RemoveInstruction(custom_call)); changed = true; } for (HloInstruction* slice : slices_to_dynamify) { TF_ASSIGN_OR_RETURN(HloInstruction * dynamic_slice, DynamifySlice(slice)); validated_slices_.insert(dynamic_slice); changed = true; } return changed; } absl::StatusOr<bool> HostOffloader::HandleInputStreaming( HloComputation* entry_computation) { bool changed = false; const ComputationLayout& entry_computation_layout = entry_computation->parent()->entry_computation_layout(); for (int i = 0; i < entry_computation_layout.parameter_count(); ++i) { if (entry_computation_layout.parameter_shape(i).IsToken()) { LOG(WARNING) << "Token parameters are not supported for streaming."; continue; } TF_RETURN_IF_ERROR(ShapeUtil::ForEachSubshapeWithStatus( entry_computation_layout.parameter_shape(i), [&](const Shape& subshape, const ShapeIndex& index) { if (subshape.has_layout() && subshape.layout().memory_space() == kHostMemorySpaceColor) { HloInstruction* parameter_instruction = entry_computation->parameter_instruction(i); VLOG(1) << "Host parameter streamed into program with shape: " << subshape.ToString(true) << " at index " << index.ToString(); TF_ASSIGN_OR_RETURN( bool result, WalkDownHostMemoryOffloadPaths( InstructionAndShapeIndex(parameter_instruction, index), false)); changed = changed || result; } return absl::OkStatus(); })); } return changed; } absl::StatusOr<bool> HostOffloader::HandleMoveToHostCustomCall( HloInstruction* custom_call_instruction) { if (already_visited_move_to_host_custom_calls_.contains( custom_call_instruction)) { return false; } VLOG(1) << "Offloading " << custom_call_instruction->operand(0)->name() << " to host."; TF_ASSIGN_OR_RETURN( std::vector<InstructionAndShapeIndex> starting_instruction_and_shapes, GetStartingInstructions(custom_call_instruction)); if (starting_instruction_and_shapes.empty()) {
#include "xla/service/host_offloader.h" #include <cstdint> #include <stack> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout.h" #include "xla/service/hlo_verifier.h" #include "xla/service/host_memory_offload_annotations.h" #include "xla/service/host_offload_legalize.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace m = ::xla::match; namespace xla { namespace { class HostOffloaderTest : public HloTestBase { protected: static constexpr int64_t kHostMemorySpaceColor{5}; absl::StatusOr<bool> RunHostOffloader(HloModule* module, bool after_layout = false) { TF_EXPECT_OK(verifier().Run(module).status()); if (module->has_schedule()) { return absl::InternalError("Expected a non-scheduled module"); } bool changed = false; HostOffloadLegalize host_offload_legalize(kHostMemorySpaceColor, after_layout); TF_ASSIGN_OR_RETURN(bool legal_changed, host_offload_legalize.Run(module)); changed |= legal_changed; HostOffloader host_offloader(kHostMemorySpaceColor); TF_ASSIGN_OR_RETURN(bool offload_changed, host_offloader.Run(module)); changed |= offload_changed; return changed; } void TestShapeHasMemorySpace(const Shape& shape, int64_t memory_space) { ASSERT_TRUE(shape.has_layout()); EXPECT_EQ(shape.layout().memory_space(), memory_space); } bool HaveRemainingOffloadAnnotations(const HloModule* module) { for (const HloComputation* computation : module->computations()) { for (const HloInstruction* instruction : computation->instructions()) { if (instruction->IsCustomCall( {host_memory_offload_annotations::kMoveToHostCustomCallTarget, host_memory_offload_annotations:: kMoveToDeviceCustomCallTarget})) { return true; } } } return false; } }; TEST_F(HostOffloaderTest, BasicDusDs) { const std::string& hlo_string = R"( HloModule my_module ENTRY main { data_param = f32[1,2048,2048] parameter(0) index_param = s32[] parameter(1) constant_f32_0 = f32[] constant(0) constant_s32_0 = s32[] constant(0) broadcast = f32[2,2048,2048] broadcast(constant_f32_0), dimensions={} offload_custom_call = f32[1,2048,2048] custom-call(data_param), custom_call_target="MoveToHost" dynamic_update_slice = f32[2,2048,2048] dynamic-update-slice(broadcast, offload_custom_call, index_param, constant_s32_0, constant_s32_0) dynamic_slice = f32[1,2048,2048] dynamic-slice(dynamic_update_slice, index_param, constant_s32_0, constant_s32_0), dynamic_slice_sizes={1,2048,2048} ROOT load_custom_call = f32[1,2048,2048] custom-call(dynamic_slice), custom_call_target="MoveToDevice" } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHostOffloader(module.get())); EXPECT_TRUE(changed); HloInstruction* param; HloInstruction* allocate_buffer; HloInstruction* dynamic_update_slice; HloInstruction* dynamic_slice; ASSERT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::DynamicSlice( &dynamic_slice, m::DynamicUpdateSlice( &dynamic_update_slice, m::CustomCall(&allocate_buffer, {"AllocateBuffer"}), m::Parameter(&param, 0), m::Op(), m::Op(), m::Op()), m::Op(), m::Op(), m::Op()))); TestShapeHasMemorySpace(param->shape(), Layout::kDefaultMemorySpace); TestShapeHasMemorySpace(allocate_buffer->shape(), kHostMemorySpaceColor); TestShapeHasMemorySpace(dynamic_update_slice->shape(), kHostMemorySpaceColor); TestShapeHasMemorySpace(dynamic_slice->shape(), Layout::kDefaultMemorySpace); EXPECT_FALSE(HaveRemainingOffloadAnnotations(module.get())); } TEST_F(HostOffloaderTest, DusFirstOperandIsNotFromABroadcast) { const std::string& hlo_string = R"( HloModule my_module ENTRY main { data_param = f32[1,2048,2048] parameter(0) index_param = s32[] parameter(1) param_2 = f32[2,2048,2048] parameter(2) constant_s32_0 = s32[] constant(0) offload_custom_call = f32[1,2048,2048] custom-call(data_param), custom_call_target="MoveToHost" dynamic_update_slice = f32[2,2048,2048] dynamic-update-slice(param_2, offload_custom_call, index_param, constant_s32_0, constant_s32_0) dynamic_slice = f32[1,2048,2048] dynamic-slice(dynamic_update_slice, index_param, constant_s32_0, constant_s32_0), dynamic_slice_sizes={1,2048,2048} ROOT load_custom_call = f32[1,2048,2048] custom-call(dynamic_slice), custom_call_target="MoveToDevice" } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); const absl::StatusOr<bool> result = RunHostOffloader(module.get()); EXPECT_FALSE(result.ok()); } TEST_F(HostOffloaderTest, DusDsWithTupleAfterBroadcast) { const std::string& hlo_string = R"( HloModule my_module ENTRY main { data_param = f32[1,2048,2048] parameter(0) index_param = s32[] parameter(1) constant_f32_0 = f32[] constant(0) constant_s32_0 = s32[] constant(0) broadcast = f32[2,2048,2048] broadcast(constant_f32_0), dimensions={} tuple = (f32[2,2048,2048]) tuple(broadcast) gte = f32[2,2048,2048] get-tuple-element(tuple), index=0 offload_custom_call = f32[1,2048,2048] custom-call(data_param), custom_call_target="MoveToHost" dynamic_update_slice = f32[2,2048,2048] dynamic-update-slice(gte, offload_custom_call, index_param, constant_s32_0, constant_s32_0) dynamic_slice = f32[1,2048,2048] dynamic-slice(dynamic_update_slice, index_param, constant_s32_0, constant_s32_0), dynamic_slice_sizes={1,2048,2048} ROOT load_custom_call = f32[1,2048,2048] custom-call(dynamic_slice), custom_call_target="MoveToDevice" } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHostOffloader(module.get())); EXPECT_TRUE(changed); HloInstruction* param; HloInstruction* allocate_buffer; HloInstruction* tuple; HloInstruction* gte; HloInstruction* dynamic_update_slice; HloInstruction* dynamic_slice; ASSERT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::DynamicSlice( &dynamic_slice, m::DynamicUpdateSlice( &dynamic_update_slice, m::GetTupleElement( &gte, m::Tuple(&tuple, m::CustomCall(&allocate_buffer, {"AllocateBuffer"})), 0), m::Parameter(&param, 0), m::Op(), m::Op(), m::Op()), m::Op(), m::Op(), m::Op()))); TestShapeHasMemorySpace(param->shape(), Layout::kDefaultMemorySpace); TestShapeHasMemorySpace(allocate_buffer->shape(), kHostMemorySpaceColor); TestShapeHasMemorySpace(ShapeUtil::GetSubshape(tuple->shape(), {0}), kHostMemorySpaceColor); TestShapeHasMemorySpace(gte->shape(), kHostMemorySpaceColor); TestShapeHasMemorySpace(dynamic_update_slice->shape(), kHostMemorySpaceColor); TestShapeHasMemorySpace(dynamic_slice->shape(), Layout::kDefaultMemorySpace); EXPECT_FALSE(HaveRemainingOffloadAnnotations(module.get())); } TEST_F(HostOffloaderTest, DusWithoutDs) { const std::string& hlo_string = R"( HloModule my_module ENTRY main { data_param = f32[1,2048,2048] parameter(0) index_param = s32[] parameter(1) constant_f32_0 = f32[] constant(0) constant_s32_0 = s32[] constant(0) broadcast = f32[2,2048,2048] broadcast(constant_f32_0), dimensions={} offload_custom_call = f32[1,2048,2048] custom-call(data_param), custom_call_target="MoveToHost" dynamic_update_slice = f32[2,2048,2048] dynamic-update-slice(broadcast, offload_custom_call, index_param, constant_s32_0, constant_s32_0) ROOT load_custom_call = f32[2,2048,2048] custom-call(dynamic_update_slice), custom_call_target="MoveToDevice" } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHostOffloader(module.get())); EXPECT_TRUE(changed); HloInstruction* param; HloInstruction* allocate_buffer; HloInstruction* dynamic_update_slice; HloInstruction* copy; ASSERT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Copy( &copy, m::DynamicUpdateSlice( &dynamic_update_slice, m::CustomCall(&allocate_buffer, {"AllocateBuffer"}), m::Parameter(&param, 0), m::Op(), m::Op(), m::Op())))); TestShapeHasMemorySpace(param->shape(), Layout::kDefaultMemorySpace); TestShapeHasMemorySpace(allocate_buffer->shape(), kHostMemorySpaceColor); TestShapeHasMemorySpace(dynamic_update_slice->shape(), kHostMemorySpaceColor); TestShapeHasMemorySpace(copy->shape(), Layout::kDefaultMemorySpace); EXPECT_FALSE(HaveRemainingOffloadAnnotations(module.get())); } TEST_F(HostOffloaderTest, DusAndNoCopyFromSameCustomCall) { const std::string& hlo_string = R"( HloModule my_module ENTRY main { data_param = f32[1,2048,2048] parameter(0) index_param = s32[] parameter(1) constant_f32_0 = f32[] constant(0) constant_s32_0 = s32[] constant(0) broadcast = f32[2,2048,2048] broadcast(constant_f32_0), dimensions={} offload_custom_call = f32[1,2048,2048] custom-call(data_param), custom_call_target="MoveToHost" dynamic_update_slice = f32[2,2048,2048] dynamic-update-slice(broadcast, offload_custom_call, index_param, constant_s32_0, constant_s32_0) dynamic_slice = f32[1,2048,2048] dynamic-slice(dynamic_update_slice, index_param, constant_s32_0, constant_s32_0), dynamic_slice_sizes={1,2048,2048} tuple = (f32[1,2048,2048]) tuple(offload_custom_call) gte = f32[1,2048,2048] get-tuple-element(tuple), index=0 load_custom_call_0 = f32[1,2048,2048] custom-call(dynamic_slice), custom_call_target="MoveToDevice" load_custom_call_1 = f32[1,2048,2048] custom-call(gte), custom_call_target="MoveToDevice" ROOT tuple_1 = (f32[1,2048,2048], f32[1,2048,2048]) tuple(load_custom_call_0, load_custom_call_1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHostOffloader(module.get())); EXPECT_TRUE(changed); HloInstruction* param_match_1; HloInstruction* param_match_2; HloInstruction* allocate_buffer; HloInstruction* dynamic_update_slice; HloInstruction* dynamic_slice; HloInstruction* copy_to_host; HloInstruction* tuple_0; HloInstruction* gte; HloInstruction* copy_to_device; HloInstruction* tuple_1; const auto dynamic_slice_pattern = m::DynamicSlice( &dynamic_slice, m::DynamicUpdateSlice(&dynamic_update_slice, m::CustomCall(&allocate_buffer, {"AllocateBuffer"}), m::Parameter(&param_match_1, 0), m::Op(), m::Op(), m::Op()), m::Op(), m::Op(), m::Op()); const auto copy_pattern = m::Copy( &copy_to_device, m::GetTupleElement( &gte, m::Tuple(&tuple_0, m::Copy(&copy_to_host, m::Parameter(&param_match_2, 0))), 0)); ASSERT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(&tuple_1, dynamic_slice_pattern, copy_pattern))); EXPECT_EQ(param_match_1, param_match_2); TestShapeHasMemorySpace(param_match_1->shape(), Layout::kDefaultMemorySpace); TestShapeHasMemorySpace(allocate_buffer->shape(), kHostMemorySpaceColor); TestShapeHasMemorySpace(dynamic_update_slice->shape(), kHostMemorySpaceColor); TestShapeHasMemorySpace(dynamic_slice->shape(), Layout::kDefaultMemorySpace); TestShapeHasMemorySpace(copy_to_host->shape(), kHostMemorySpaceColor); TestShapeHasMemorySpace(ShapeUtil::GetSubshape(tuple_0->shape(), {0}), kHostMemorySpaceColor); TestShapeHasMemorySpace(gte->shape(), kHostMemorySpaceColor); TestShapeHasMemorySpace(copy_to_device->shape(), Layout::kDefaultMemorySpace); TestShapeHasMemorySpace(ShapeUtil::GetSubshape(tuple_1->shape(), {0}), Layout::kDefaultMemorySpace); TestShapeHasMemorySpace(ShapeUtil::GetSubshape(tuple_1->shape(), {1}), Layout::kDefaultMemorySpace); EXPECT_FALSE(HaveRemainingOffloadAnnotations(module.get())); } TEST_F(HostOffloaderTest, BasicAsyncCustomCallWithAliasing) { const std::string& hlo_string = R"( HloModule m, input_output_alias={{}: (0, {}, must-alias)}, entry_computation_layout={(f32[4096]{0:T(128)S(5)})->f32[4096]{0:T(128)S(5)}} ENTRY %main (a: f32[4096]) -> f32[4096] { %a = f32[4096]{0} parameter(0) %async-start = ((f32[4096]{0}), f32[4096]{0}, u32[]) custom-call-start(%a), custom_call_target="Foo", output_to_operand_aliasing={{}: (0, {})} ROOT %async-done = f32[4096]{0} custom-call-done(%async-start) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHostOffloader(module.get())); EXPECT_TRUE(changed); HloInstruction* async_done = FindInstruction(module.get(), "async-done"); TestShapeHasMemorySpace(async_done->shape(), kHostMemorySpaceColor); } TEST_F(HostOffloaderTest, ParameterStreamingWithXposeCopyFeedingIntoWhile) { const std::string& hlo_string = R"( HloModule jit__prefill_impl, entry_computation_layout={(bf16[2,16,16]{2,1,0:T(8,128)(2,1)S(5)})->bf16[2,16,16]{1,2,0:T(8,128)(2,1)}} while_condition { condition_param = (s32[], bf16[2,16,16]{1,2,0:T(8,128)(2,1)}, bf16[2,16,16]{1,2,0:T(8,128)(2,1)}) parameter(0) condition_current_iteration_index = s32[] get-tuple-element(condition_param), index=0 condition_iteration_count = s32[] constant(16) ROOT condition_result = pred[] compare(condition_current_iteration_index, condition_iteration_count), direction=LT } while_body { input_tuple.0 = (s32[], bf16[2,16,16]{1,2,0:T(8,128)(2,1)}, bf16[2,16,16]{1,2,0:T(8,128)(2,1)}) parameter(0) current_iteration_index.0 = s32[] get-tuple-element(input_tuple.0), index=0 orig_data = bf16[2,16,16]{1,2,0:T(8,128)(2,1)} get-tuple-element(input_tuple.0), index=1 custom-call.0 = bf16[2,16,16]{1,2,0:T(8,128)(2,1)} custom-call(orig_data), custom_call_target="MoveToDevice" sum = bf16[2,16,16]{1,2,0:T(8,128)(2,1)} get-tuple-element(input_tuple.0), index=2 sum.1 = bf16[2,16,16]{1,2,0:T(8,128)(2,1)} add(custom-call.0, sum) constant_1 = s32[] constant(1) incremented_index.0 = s32[] add(current_iteration_index.0, constant_1) ROOT tuple_result.0 = (s32[], bf16[2,16,16]{1,2,0:T(8,128)(2,1)}, bf16[2,16,16]{1,2,0:T(8,128)(2,1)}) tuple(incremented_index.0, custom-call.0, sum.1) } ENTRY main { param.0 = bf16[2,16,16]{2,1,0:T(8,128)(2,1)} parameter(0) copy = bf16[2,16,16]{1,2,0:T(8,128)(2,1)} copy(param.0) constant_0 = s32[] constant(0) constant_0.0 = bf16[] constant(0.0) broadcast = bf16[2,16,16]{1,2,0:T(8,128)(2,1)} broadcast(constant_0.0), dimensions={} tuple_for_while = (s32[], bf16[2,16,16]{1,2,0:T(8,128)(2,1)}, bf16[2,16,16]{1,2,0:T(8,128)(2,1)}) tuple(constant_0, copy, broadcast) while = (s32[], bf16[2,16,16]{1,2,0:T(8,128)(2,1)}, bf16[2,16,16]{1,2,0:T(8,128)(2,1)}) while(tuple_for_while), condition=while_condition, body=while_body ROOT gte = bf16[2,16,16]{1,2,0:T(8,128)(2,1)} get-tuple-element(while), index=2 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN( bool changed, RunHostOffloader(module.get(), true)); EXPECT_TRUE(changed); EXPECT_FALSE(HaveRemainingOffloadAnnotations(module.get())); HloVerifier verifier(true, true); TF_EXPECT_OK(verifier.Run(module.get()).status()); VLOG(1) << "module after: " << module->ToString(); } TEST_F(HostOffloaderTest, ParameterStreamingFeedingIntoWhile) { const std::string& hlo_string = R"( HloModule jit__prefill_impl, entry_computation_layout={(bf16[2,16,16]{2,1,0:T(8,128)(2,1)S(5)})->bf16[2,16,16]{2,1,0:T(8,128)(2,1)}} while_condition { condition_param = (s32[], bf16[2,16,16]{2,1,0:T(8,128)(2,1)}, bf16[2,16,16]{2,1,0:T(8,128)(2,1)}) parameter(0) condition_current_iteration_index = s32[] get-tuple-element(condition_param), index=0 condition_iteration_count = s32[] constant(16) ROOT condition_result = pred[] compare(condition_current_iteration_index, condition_iteration_count), direction=LT } while_body { input_tuple.0 = (s32[], bf16[2,16,16]{2,1,0:T(8,128)(2,1)}, bf16[2,16,16]{2,1,0:T(8,128)(2,1)}) parameter(0) current_iteration_index.0 = s32[] get-tuple-element(input_tuple.0), index=0 orig_data = bf16[2,16,16]{2,1,0:T(8,128)(2,1)} get-tuple-element(input_tuple.0), index=1 custom-call.0 = bf16[2,16,16]{2,1,0:T(8,128)(2,1)} custom-call(orig_data), custom_call_target="MoveToDevice" sum = bf16[2,16,16]{2,1,0:T(8,128)(2,1)} get-tuple-element(input_tuple.0), index=2 sum.1 = bf16[2,16,16]{2,1,0:T(8,128)(2,1)} add(custom-call.0, sum) constant_1 = s32[] constant(1) incremented_index.0 = s32[] add(current_iteration_index.0, constant_1) ROOT tuple_result.0 = (s32[], bf16[2,16,16]{2,1,0:T(8,128)(2,1)}, bf16[2,16,16]{2,1,0:T(8,128)(2,1)}) tuple(incremented_index.0, custom-call.0, sum.1) } ENTRY main { param.0 = bf16[2,16,16]{2,1,0:T(8,128)(2,1)} parameter(0) constant_0 = s32[] constant(0) constant_0.0 = bf16[] constant(0.0) broadcast = bf16[2,16,16]{2,1,0:T(8,128)(2,1)} broadcast(constant_0.0), dimensions={} tuple_for_while = (s32[], bf16[2,16,16]{2,1,0:T(8,128)(2,1)}, bf16[2,16,16]{2,1,0:T(8,128)(2,1)}) tuple(constant_0, param.0, broadcast) while = (s32[], bf16[2,16,16]{2,1,0:T(8,128)(2,1)}, bf16[2,16,16]{2,1,0:T(8,128)(2,1)}) while(tuple_for_while), condition=while_condition, body=while_body ROOT gte = bf16[2,16,16]{2,1,0:T(8,128)(2,1)} get-tuple-element(while), index=2 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN( bool changed, RunHostOffloader(module.get(), true)); EXPECT_TRUE(changed); EXPECT_FALSE(HaveRemainingOffloadAnnotations(module.get())); HloVerifier verifier(true, true); TF_EXPECT_OK(verifier.Run(module.get()).status()); VLOG(1) << "module after: " << module->ToString(); } TEST_F(HostOffloaderTest, ParameterStreamingInScanLoop) { const std::string& hlo_string = R"( HloModule m, entry_computation_layout={(f32[8,2]{0,1:T(2,128)S(5)})->(f32[]{:T(256)}, f32[8,2]{0,1:T(2,128)})}, allow_spmd_sharding_propagation_to_output={true,true} add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } while_body { arg_tuple.8 = (s32[]{:T(256)}, f32[8,2]{0,1:T(2,128)}, f32[8,2]{0,1:T(2,128)}) parameter(0) get-tuple-element.9 = s32[]{:T(256)} get-tuple-element(arg_tuple.8), index=0 constant.12 = s32[]{:T(256)} constant(1) add.29 = s32[]{:T(256)} add(get-tuple-element.9, constant.12) get-tuple-element.10 = f32[8,2]{0,1:T(2,128)} get-tuple-element(arg_tuple.8), index=1 get-tuple-element.11 = f32[8,2]{0,1:T(2,128)} get-tuple-element(arg_tuple.8), index=2 constant.16 = s32[]{:T(256)} constant(0) dynamic-slice.20 = f32[1,2]{0,1:T(2,128)} dynamic-slice(get-tuple-element.11, get-tuple-element.9, constant.16), dynamic_slice_sizes={1,2} constant.1 = f32[] constant(-0) reduce = f32[2]{0:T(256)} reduce(dynamic-slice.20, constant.1), dimensions={0}, to_apply=add custom-call = f32[2]{0:T(256)} custom-call(reduce), custom_call_target="MoveToDevice" constant.13 = f32[]{:T(256)} constant(1) broadcast.14 = f32[2]{0:T(256)} broadcast(constant.13), dimensions={} add.23 = f32[2]{0:T(256)} add(custom-call, broadcast.14) reshape.24 = f32[1,2]{0,1:T(2,128)} reshape(add.23) dynamic-update-slice.28 = f32[8,2]{0,1:T(2,128)} dynamic-update-slice(get-tuple-element.10, reshape.24, get-tuple-element.9, constant.16) ROOT tuple.30 = (s32[]{:T(256)}, f32[8,2]{0,1:T(2,128)}, f32[8,2]{0,1:T(2,128)}) tuple(add.29, dynamic-update-slice.28, get-tuple-element.11) } condition { arg_tuple.32 = (s32[]{:T(256)}, f32[8,2]{0,1:T(2,128)}, f32[8,2]{0,1:T(2,128)}) parameter(0) get-tuple-element.33 = s32[]{:T(256)} get-tuple-element(arg_tuple.32), index=0 constant.36 = s32[]{:T(256)} constant(8) ROOT compare.37 = pred[]{:T(1024)} compare(get-tuple-element.33, constant.36), direction=LT } ENTRY e { constant.3 = f32[]{:T(256)} constant(1) constant.2 = s32[]{:T(256)} constant(0) constant.4 = f32[]{:T(256)} constant(0) broadcast.5 = f32[8,2]{0,1:T(2,128)} broadcast(constant.4), dimensions={} Arg_0.1 = f32[8,2]{0,1:T(2,128)} parameter(0), sharding={replicated} tuple.6 = (s32[]{:T(256)}, f32[8,2]{0,1:T(2,128)}, f32[8,2]{0,1:T(2,128)}) tuple(constant.2, broadcast.5, Arg_0.1) while.38 = (s32[]{:T(256)}, f32[8,2]{0,1:T(2,128)}, f32[8,2]{0,1:T(2,128)}) while(tuple.6), condition=condition, body=while_body get-tuple-element.40 = f32[8,2]{0,1:T(2,128)} get-tuple-element(while.38), index=1 ROOT tuple.42 = (f32[]{:T(256)}, f32[8,2]{0,1:T(2,128)}) tuple(constant.3, get-tuple-element.40) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN( bool changed, RunHostOffloader(module.get(), true)); EXPECT_TRUE(changed); EXPECT_FALSE(HaveRemainingOffloadAnnotations(module.get())); HloVerifier verifier(true, true); TF_EXPECT_OK(verifier.Run(module.get()).status()); } TEST_F(HostOffloaderTest, OutputStreamingInScanLoop) { const std::string& hlo_string = R"( HloModule m, entry_computation_layout={(f32[4,1]{0,1:T(2,128)})->(f32[]{:T(256)}, f32[8,2]{0,1:T(2,128)S(5)})}, allow_spmd_sharding_propagation_to_output={true,true} add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } while_body { param.1 = (s32[]{:T(256)}, f32[8,2]{0,1:T(2,128)}, f32[4,1]{0,1:T(2,128)}) parameter(0) get-tuple-element.1 = s32[]{:T(256)} get-tuple-element(param.1), index=0 constant.9 = s32[]{:T(256)} constant(1) add.1 = s32[]{:T(256)} add(get-tuple-element.1, constant.9) get-tuple-element.2 = f32[8,2]{0,1:T(2,128)} get-tuple-element(param.1), index=1 get-tuple-element.3 = f32[4,1]{0,1:T(2,128)} get-tuple-element(param.1), index=2 bitcast = f32[1,4,1]{1,2,0:T(2,128)} bitcast(get-tuple-element.3) all-gather.2 = f32[4,4,1]{1,2,0:T(2,128)} all-gather(bitcast), channel_id=2, replica_groups={{0,1,2,3}}, dimensions={0}, use_global_device_ids=true constant.20 = f32[] constant(-0) reduce = f32[4,4]{1,0:T(4,128)} reduce(all-gather.2, constant.20), dimensions={2}, to_apply=add bitcast.1 = f32[2,4,2,1]{1,2,0,3:T(2,128)} bitcast(reduce) copy.1 = f32[2,4,2,1]{1,0,2,3:T(2,128)} copy(bitcast.1) reshape.6 = f32[8,2]{0,1:T(2,128)} reshape(copy.1) constant.10 = s32[]{:T(256)} constant(0) dynamic-slice.0 = f32[1,2]{0,1:T(2,128)} dynamic-slice(reshape.6, get-tuple-element.1, constant.10), dynamic_slice_sizes={1,2} constant.11 = f32[]{:T(256)} constant(1) broadcast.4 = f32[1,2]{0,1:T(2,128)} broadcast(constant.11), dimensions={} add.2 = f32[1,2]{0,1:T(2,128)} add(dynamic-slice.0, broadcast.4) reduce.1 = f32[2]{0:T(256)} reduce(add.2, constant.20), dimensions={0}, to_apply=add custom-call.1 = f32[2]{0:T(256)} custom-call(reduce.1), custom_call_target="MoveToHost" reshape.8 = f32[1,2]{0,1:T(2,128)} reshape(custom-call.1) dynamic-update-slice.0 = f32[8,2]{0,1:T(2,128)} dynamic-update-slice(get-tuple-element.2, reshape.8, get-tuple-element.1, constant.10) ROOT tuple = (s32[]{:T(256)}, f32[8,2]{0,1:T(2,128)}, f32[4,1]{0,1:T(2,128)}) tuple(add.1, dynamic-update-slice.0, get-tuple-element.3) } condition { param = (s32[]{:T(256)}, f32[8,2]{0,1:T(2,128)}, f32[4,1]{0,1:T(2,128)}) parameter(0) get-tuple-element = s32[]{:T(256)} get-tuple-element(param), index=0 constant.8 = s32[]{:T(256)} constant(8) ROOT compare.0 = pred[]{:T(1024)} compare(get-tuple-element, constant.8), direction=LT } ENTRY e { constant.17 = f32[]{:T(256)} constant(1) constant.18 = s32[]{:T(256)} constant(0) constant.19 = f32[]{:T(256)} constant(0) broadcast.6 = f32[8,2]{0,1:T(2,128)} broadcast(constant.19), dimensions={} param.2 = f32[4,1]{0,1:T(2,128)} parameter(0), sharding={devices=[2,2]<=[4]} tuple.1 = (s32[]{:T(256)}, f32[8,2]{0,1:T(2,128)}, f32[4,1]{0,1:T(2,128)}) tuple(constant.18, broadcast.6, param.2) while = (s32[]{:T(256)}, f32[8,2]{0,1:T(2,128)}, f32[4,1]{0,1:T(2,128)}) while(tuple.1), condition=condition, body=while_body get-tuple-element.4 = f32[8,2]{0,1:T(2,128)} get-tuple-element(while), index=1 ROOT tuple.2 = (f32[]{:T(256)}, f32[8,2]{0,1:T(2,128)}) tuple(constant.17, get-tuple-element.4) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN( bool changed, RunHostOffloader(module.get(), true)); EXPECT_TRUE(changed); EXPECT_FALSE(HaveRemainingOffloadAnnotations(module.get())); HloVerifier verifier(true, true); TF_EXPECT_OK(verifier.Run(module.get()).status()); } TEST_F(HostOffloaderTest, BasicNoCopy) { const std::string& hlo_string = R"( HloModule my_module ENTRY main { data_param = f32[2048] parameter(0) offload_custom_call = f32[2048] custom-call(data_param), custom_call_target="MoveToHost" ROOT load_custom_call = f32[2048] custom-call(offload_custom_call), custom_call_target="MoveToDevice" } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHostOffloader(module.get())); EXPECT_TRUE(changed); HloInstruction* param; HloInstruction* copy_to_host; HloInstruction* copy_to_device; ASSERT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Copy(&copy_to_device, m::Copy(&copy_to_host, m::Parameter(&param, 0))))); TestShapeHasMemorySpace(param->shape(), Layout::kDefaultMemorySpace); TestShapeHasMemorySpace(copy_to_host->shape(), kHostMemorySpaceColor); TestShapeHasMemorySpace(copy_to_device->shape(), Layout::kDefaultMemorySpace); EXPECT_FALSE(HaveRemainingOffloadAnnotations(module.get())); } TEST_F(HostOffloaderTest, NoCopyThroughTuple) { const std::string& hlo_string = R"( HloModule my_module ENTRY main { data_param = f32[2048] parameter(0) other_param = f32[2048] parameter(1) offload_custom_call = f32[2048] custom-call(data_param), custom_call_target="MoveToHost" tuple = (f32[2048], f32[2048]) tuple(offload_custom_call, other_param) gte_0 = f32[2048] get-tuple-element(tuple), index=0 gte_1 = f32[2048] get-tuple-element(tuple), index=1 ROOT load_custom_call = f32[2048] custom-call(gte_0), custom_call_target="MoveToDevice" } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHostOffloader(module.get())); EXPECT_TRUE(changed); HloInstruction* param; HloInstruction* copy_to_host; HloInstruction* tuple; HloInstruction* gte; HloInstruction* copy_to_device; ASSERT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Copy( &copy_to_device, m::GetTupleElement( &gte, m::Tuple(&tuple, m::Copy(&copy_to_host, m::Parameter(&param, 0)), m::Op()), 0)))); TestShapeHasMemorySpace(param->shape(), Layout::kDefaultMemorySpace); TestShapeHasMemorySpace(copy_to_host->shape(), kHostMemorySpaceColor); TestShapeHasMemorySpace(ShapeUtil::GetSubshape(tuple->shape(), {0}), kHostMemorySpaceColor); TestShapeHasMemorySpace(ShapeUtil::GetSubshape(tuple->shape(), {1}), Layout::kDefaultMemorySpace); TestShapeHasMemorySpace(gte->shape(), kHostMemorySpaceColor); TestShapeHasMemorySpace(copy_to_device->shape(), Layout::kDefaultMemorySpace); EXPECT_FALSE(HaveRemainingOffloadAnnotations(module.get())); } TEST_F(HostOffloaderTest, NoCopyThroughNestedTuple) { const std::string& hlo_string = R"( HloModule my_module ENTRY main { data_param = f32[2048] parameter(0) other_param_0 = f32[2048] parameter(1) other_param_1 = f32[2048] parameter(2) offload_custom_call = f32[2048] custom-call(data_param), custom_call_target="MoveToHost" tuple_0 = (f32[2048], f32[2048]) tuple(offload_custom_call, other_param_0) tuple_1 = ((f32[2048], f32[2048]), f32[2048]) tuple(tuple_0, other_param_1) gte_0 = (f32[2048], f32[2048]) get-tuple-element(tuple_1), index=0 gte_1 = f32[2048] get-tuple-element(tuple_1), index=1 gte_2 = f32[2048] get-tuple-element(gte_0), index=0 gte_3 = f32[2048] get-tuple-element(gte_0), index=1 ROOT load_custom_call = f32[2048] custom-call(gte_2), custom_call_target="MoveToDevice" } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHostOffloader(module.get())); EXPECT_TRUE(changed); HloInstruction* par
1,866
cpp
tensorflow/tensorflow
all_reduce_simplifier
third_party/xla/xla/service/all_reduce_simplifier.cc
third_party/xla/xla/service/all_reduce_simplifier_test.cc
#ifndef XLA_SERVICE_ALL_REDUCE_SIMPLIFIER_H_ #define XLA_SERVICE_ALL_REDUCE_SIMPLIFIER_H_ #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class AllReduceSimplifier : public HloModulePass { public: explicit AllReduceSimplifier(int64_t replica_count) : replica_count_(replica_count) {} ~AllReduceSimplifier() override = default; absl::string_view name() const override { return "all-reduce-simp"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: int64_t replica_count_; }; } #endif #include "xla/service/all_reduce_simplifier.h" #include <cstdint> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal_util.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_replication_analysis.h" #include "xla/shape_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { absl::StatusOr<bool> AllReduceSimplifier::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { TF_ASSIGN_OR_RETURN( auto replication, HloReplicationAnalysis::Run(module, false)); std::vector<std::pair<HloInstruction*, int64_t>> all_reduces_to_replace; auto get_participant_counts_for_replica_group = [](const HloInstruction* all_reduce) -> absl::StatusOr<int64_t> { const HloModuleConfig& config = all_reduce->GetModule()->config(); TF_ASSIGN_OR_RETURN( CollectiveOpGroupMode group_mode, GetCollectiveOpGroupMode(all_reduce->channel_id().has_value(), Cast<HloAllReduceInstruction>(all_reduce) ->use_global_device_ids())); int64_t num_devices = config.num_partitions(); int64_t num_replicas = config.replica_count(); TF_ASSIGN_OR_RETURN(std::vector<int64_t> participant_counts, GetPariticipantCountsForReplicaGroups( num_replicas, num_devices, all_reduce->replica_groups(), group_mode)); if (participant_counts.empty()) { return -1; } if (!absl::c_all_of(participant_counts, [&](int64_t participant_count) { return participant_count == participant_counts[0]; })) { return -1; } return participant_counts[0]; }; bool changed = false; for (auto computation : module->computations(execution_threads)) { for (HloInstruction* inst : computation->MakeInstructionPostOrder()) { if ((inst->opcode() == HloOpcode::kAllGather || inst->opcode() == HloOpcode::kReduceScatter) && ShapeUtil::Compatible(inst->shape(), inst->operand(0)->shape())) { changed = true; TF_RETURN_IF_ERROR( computation->ReplaceInstruction(inst, inst->mutable_operand(0))); } } } for (auto computation : module->computations(execution_threads)) { for (HloInstruction* inst : computation->MakeInstructionPostOrder()) { if (!inst->shape().IsArray()) { continue; } if (!inst->IsCrossReplicaAllReduce() && !inst->IsCrossModuleAllReduce()) { continue; } TF_ASSIGN_OR_RETURN(int64_t group_size, get_participant_counts_for_replica_group(inst)); if (group_size == -1 || (!inst->IsCrossReplicaAllReduce() && group_size != 1) || (!inst->IsCrossReplicaAllReduce() && !module->config().use_spmd_partitioning())) { continue; } if (replication->HloInstructionIsReplicatedAt(inst->operand(0), {}) || group_size == 1) { all_reduces_to_replace.push_back({inst, group_size}); } } } for (auto all_reduce_and_group_size : all_reduces_to_replace) { auto all_reduce = all_reduce_and_group_size.first; const int64_t replica_group_size = all_reduce_and_group_size.second; if (replica_group_size == 1) { TF_RETURN_IF_ERROR(all_reduce->parent()->ReplaceInstruction( all_reduce, all_reduce->mutable_operand(0))); changed = true; continue; } if (all_reduce->to_apply()->instruction_count() != 3 || all_reduce->to_apply()->num_parameters() != 2) { continue; } HloInstruction* replacement; switch (all_reduce->to_apply()->root_instruction()->opcode()) { case HloOpcode::kAdd: { auto multiplier = all_reduce->parent()->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR0<int32_t>(replica_group_size))); if (all_reduce->shape().element_type() != S32) { multiplier = all_reduce->parent()->AddInstruction( HloInstruction::CreateConvert( ShapeUtil::ChangeElementType( multiplier->shape(), all_reduce->shape().element_type()), multiplier)); } if (all_reduce->shape().rank() > 0) { multiplier = all_reduce->parent()->AddInstruction( HloInstruction::CreateBroadcast(all_reduce->shape(), multiplier, {})); } replacement = all_reduce->parent()->AddInstruction(HloInstruction::CreateBinary( all_reduce->shape(), HloOpcode::kMultiply, all_reduce->mutable_operand(0), multiplier)); break; } case HloOpcode::kMinimum: case HloOpcode::kMaximum: case HloOpcode::kOr: case HloOpcode::kAnd: replacement = all_reduce->mutable_operand(0); break; default: continue; } VLOG(2) << "Replacing " << all_reduce->ToString() << " with " << replacement->ToString(); TF_RETURN_IF_ERROR(all_reduce->ReplaceAllUsesWith(replacement)); changed = true; } return changed; } }
#include "xla/service/all_reduce_simplifier.h" #include <memory> #include <utility> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_parser.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/types.h" #include "xla/window_util.h" #include "tsl/lib/core/status_test_util.h" namespace xla { namespace { namespace m = match; using AllReduceSimplifierTest = HloTestBase; TEST_F(AllReduceSimplifierTest, ReplicatedParameters) { const char* kModuleStr = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } max { a.1 = f32[] parameter(0) b.1 = f32[] parameter(1) ROOT max = f32[] maximum(a.1, b.1) } min { a.2 = f32[] parameter(0) b.2 = f32[] parameter(1) ROOT min = f32[] minimum(a.2, b.2) } sum.1 { a.3 = f32[] parameter(0) b.3 = f32[] parameter(1) ROOT add.1 = f32[] add(a.3, b.3) } test { p0 = f32[8,16] parameter(0), parameter_replication={true} p1 = f32[8,16] parameter(1), parameter_replication={false} p2 = f32[] parameter(2), parameter_replication={true} all-reduce = f32[8,16] all-reduce(p0), replica_groups={}, to_apply=sum all-reduce.1 = f32[8,16] all-reduce(p0), replica_groups={}, to_apply=max all-reduce.2 = f32[8,16] all-reduce(p1), replica_groups={}, to_apply=min all-reduce.3 = f32[] all-reduce(p2), replica_groups={}, to_apply=sum.1 ROOT tuple = (f32[8,16], f32[8,16], f32[8,16], f32[]) tuple(all-reduce, all-reduce.1, all-reduce.2, all-reduce.3) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule( kModuleStr, 8)); AllReduceSimplifier simplifier(8); ASSERT_TRUE(simplifier.Run(module.get()).value()); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::MultiplyAnyOrder(m::Parameter(0), m::Broadcast(m::Convert(m::ConstantScalar(8)))), m::Parameter(0), m::AllReduce(m::Parameter(1)), m::MultiplyAnyOrder(m::Parameter(2), m::Convert(m::ConstantScalar(8)))))); } TEST_F(AllReduceSimplifierTest, AllReduceAfterAllReduce) { const char* kModuleStr = R"( HloModule m max { a.1 = f32[] parameter(0) b.1 = f32[] parameter(1) ROOT max = f32[] maximum(a.1, b.1) } sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } test { p0 = f32[8,16] parameter(0), parameter_replication={false} all-reduce = f32[8,16] all-reduce(p0), replica_groups={}, to_apply=max ROOT all-reduce.1 = f32[8,16] all-reduce(all-reduce), replica_groups={}, to_apply=sum } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule( kModuleStr, 8)); AllReduceSimplifier simplifier(8); ASSERT_TRUE(simplifier.Run(module.get()).value()); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::MultiplyAnyOrder( m::AllReduce(m::Parameter(0)), m::Broadcast(m::Convert(m::ConstantScalar(8)))))); } TEST_F(AllReduceSimplifierTest, SubgroupAllReduce) { const char* kModuleStr = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } max { a.1 = f32[] parameter(0) b.1 = f32[] parameter(1) ROOT max = f32[] maximum(a.1, b.1) } min { a.2 = f32[] parameter(0) b.2 = f32[] parameter(1) ROOT min = f32[] minimum(a.2, b.2) } test { p0 = f32[8,16] parameter(0), parameter_replication={true} p1 = f32[8,16] parameter(1), parameter_replication={false} all-reduce = f32[8,16] all-reduce(p0), replica_groups={{0,1,2,3},{4,5,6,7}}, to_apply=sum all-reduce.1 = f32[8,16] all-reduce(p0), replica_groups={{0,1,2,3},{4,5,6,7}}, to_apply=max all-reduce.2 = f32[8,16] all-reduce(p1), replica_groups={{0,1,2,3},{4,5,6,7}}, to_apply=min ROOT tuple = (f32[8,16], f32[8,16], f32[8,16]) tuple(all-reduce, all-reduce.1, all-reduce.2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule( kModuleStr, 8)); AllReduceSimplifier simplifier(8); ASSERT_TRUE(simplifier.Run(module.get()).value()); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::MultiplyAnyOrder(m::Parameter(0), m::Broadcast(m::Convert(m::ConstantScalar(4)))), m::Parameter(0), m::AllReduce(m::Parameter(1))))); } TEST_F(AllReduceSimplifierTest, TrivialSubgroupAllReduce) { const char* kModuleStr = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } test { p0 = f32[8,16] parameter(0), parameter_replication={false} ROOT all-reduce = f32[8,16] all-reduce(p0), replica_groups={{0},{1},{2},{3},{4},{5},{6},{7}}, to_apply=sum } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule( kModuleStr, 8)); AllReduceSimplifier simplifier(8); EXPECT_TRUE(simplifier.Run(module.get()).value()); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Parameter(0))); } TEST_F(AllReduceSimplifierTest, TrivialSubgroupNonCrossReplicaAllReduce) { const char* kModuleStr = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } test { p0 = f32[8,16] parameter(0), parameter_replication={false} ROOT all-reduce = f32[8,16] all-reduce(p0), channel_id=1, use_global_device_ids=true, replica_groups={{0},{1},{2},{3},{4},{5},{6},{7}}, to_apply=sum } )"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule(kModuleStr, 1, 8)); module->mutable_config().set_use_spmd_partitioning(true); AllReduceSimplifier simplifier(1); EXPECT_TRUE(simplifier.Run(module.get()).value()); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Parameter(0))); } TEST_F(AllReduceSimplifierTest, NonCrossReplicaAllReduceAfterAllReduce) { const char* kModuleStr = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } test { p0 = f32[8,16] parameter(0), parameter_replication={false} all-reduce = f32[8,16] all-reduce(p0), channel_id=1, use_global_device_ids=true, replica_groups={{0,2},{1,3},{4,6},{5,7}}, to_apply=sum ROOT all-reduce.1 = f32[8,16] all-reduce(all-reduce), channel_id=2, use_global_device_ids=true, replica_groups={{0,4},{1,5},{2,6},{3,7}}, to_apply=sum } )"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule(kModuleStr, 1, 8)); module->mutable_config().set_use_spmd_partitioning(true); AllReduceSimplifier simplifier(1); EXPECT_FALSE(simplifier.Run(module.get()).value()); } TEST_F(AllReduceSimplifierTest, MPMDNonCrossReplicaAllReduce) { const char* kModuleStr = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } test { p0 = f32[8,16] parameter(0), parameter_replication={false} ROOT all-reduce = f32[8,16] all-reduce(p0), channel_id=1, replica_groups={{0},{1}}, to_apply=sum } )"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule(kModuleStr, 2, 1)); module->mutable_config().set_use_spmd_partitioning(false); AllReduceSimplifier simplifier(2); EXPECT_FALSE(simplifier.Run(module.get()).value()); } } }
1,867
cpp
tensorflow/tensorflow
while_loop_invariant_code_motion
third_party/xla/xla/service/while_loop_invariant_code_motion.cc
third_party/xla/xla/service/while_loop_invariant_code_motion_test.cc
#ifndef XLA_SERVICE_WHILE_LOOP_INVARIANT_CODE_MOTION_H_ #define XLA_SERVICE_WHILE_LOOP_INVARIANT_CODE_MOTION_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/compile_time_cap.h" #include "xla/service/hlo_pass_interface.h" #include "xla/shape.h" #include "xla/shape_util.h" namespace xla { class WhileLoopInvariantCodeMotion : public HloModulePass { public: using ShapeSizeFunction = std::function<int64_t(const Shape&)>; explicit WhileLoopInvariantCodeMotion( bool hoist_constants = false, bool hoist_reshapes = false, bool hoist_other = true, std::optional<float> hoist_size_inflation_ratio = std::nullopt, ShapeSizeFunction shape_size_function = ShapeUtil::ByteSizeOfElements) : hoist_constants_(hoist_constants), hoist_reshapes_(hoist_reshapes), hoist_other_(hoist_other), hoist_size_inflation_ratio_(hoist_size_inflation_ratio), shape_size_function_(shape_size_function) {} ~WhileLoopInvariantCodeMotion() override = default; absl::string_view name() const override { return "while-loop-invariant-code-motion"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: bool NotWorthHoistingIndividually(const HloInstruction& instruction); absl::StatusOr<bool> TryHoistingInvariantInstructionsFromWhileBody( HloInstruction* while_instr, BoundNonLinearCompilerAnalysis* allowance); bool hoist_constants_; bool hoist_reshapes_; bool hoist_other_; std::optional<float> hoist_size_inflation_ratio_; ShapeSizeFunction shape_size_function_; }; } #endif #include "xla/service/while_loop_invariant_code_motion.h" #include <cstdint> #include <iterator> #include <string> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/map_util.h" #include "xla/service/compile_time_cap.h" #include "xla/service/hlo_dce.h" #include "xla/service/while_loop_analysis.h" #include "xla/service/while_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { using absl::flat_hash_map; using absl::flat_hash_set; using absl::InlinedVector; static void CreateLoopInvariantCopy( flat_hash_map<HloInstruction*, HloInstruction*>* hoisted_instructions, flat_hash_set<HloInstruction*>* unhoisted_invariant_instructions, HloInstruction* while_instr, HloInstruction* to_hoist) { HloComputation* parent_of_while = while_instr->parent(); HloComputation* while_body = while_instr->while_body(); struct DFSFrame { HloInstruction* instruction; int64_t operand_index; }; InlinedVector<DFSFrame, 8> dfs_stack; dfs_stack.push_back({to_hoist, 0}); HloInstruction* while_body_param = while_body->parameter_instruction(0); HloInstruction* while_operand = while_instr->mutable_operand(0); do { DFSFrame* frame = &dfs_stack.back(); if (frame->operand_index == frame->instruction->operand_count()) { HloInstruction* old_instruction = frame->instruction; auto get_new_operand = [&](HloInstruction* old_operand) { return old_operand == while_body_param ? while_operand : FindOrDie(*hoisted_instructions, old_operand); }; InlinedVector<HloInstruction*, 4> new_operands; absl::c_transform(old_instruction->operands(), std::back_inserter(new_operands), get_new_operand); HloInstruction* new_instruction = parent_of_while->AddInstruction(old_instruction->CloneWithNewOperands( old_instruction->shape(), new_operands)); InsertOrDie(hoisted_instructions, old_instruction, new_instruction); CHECK_EQ(unhoisted_invariant_instructions->erase(old_instruction), to_hoist != old_instruction && old_instruction->opcode() != HloOpcode::kConstant); dfs_stack.pop_back(); continue; } HloInstruction* next_operand = frame->instruction->mutable_operand(frame->operand_index++); if (hoisted_instructions->contains(next_operand) || next_operand == while_body_param) { continue; } dfs_stack.push_back({next_operand, 0}); } while (!dfs_stack.empty()); } bool WhileLoopInvariantCodeMotion::NotWorthHoistingIndividually( const HloInstruction& instruction) { if (instruction.IsCustomCall("Sharding")) { return true; } switch (instruction.opcode()) { default: return false; case HloOpcode::kConstant: return !hoist_constants_; case HloOpcode::kReshape: return !hoist_reshapes_; case HloOpcode::kBitcast: case HloOpcode::kBroadcast: case HloOpcode::kIota: case HloOpcode::kReverse: case HloOpcode::kSlice: case HloOpcode::kTranspose: case HloOpcode::kTuple: return true; } } absl::StatusOr<bool> WhileLoopInvariantCodeMotion::TryHoistingInvariantInstructionsFromWhileBody( HloInstruction* while_instr, BoundNonLinearCompilerAnalysis* allowance) { auto print_no_metadata = HloPrintOptions{}.set_print_metadata(false); if (!while_instr->shape().IsTuple()) { return false; } std::string while_instr_name = while_instr->ToString(print_no_metadata); VLOG(2) << "Trying to hoist from " << while_instr_name; auto maybe_upper_bound = ComputeWhileLoopTripCountUpperBound(while_instr); if (maybe_upper_bound && *maybe_upper_bound <= 1) { VLOG(2) << "Loop has a trip count of at most 1, skipping."; return false; } HloComputation* while_body = while_instr->while_body(); flat_hash_map<HloInstruction*, HloInstruction*> hoisted_instructions; flat_hash_set<HloInstruction*> unhoisted_invariant_instructions; for (auto* instr : WhileUtil::GetInvariantGTEsForWhileBody(*while_body)) { if (instr->shape().IsArray()) { InsertOrDie(&unhoisted_invariant_instructions, instr); } } if (unhoisted_invariant_instructions.empty() && !hoist_constants_) { return false; } for (auto* instruction : while_body->MakeInstructionPostOrder()) { if (instruction->opcode() == HloOpcode::kDomain || instruction->IsCustomCall("SPMDFullToShardShape") || instruction->IsCustomCall("SPMDShardShapeToFull")) { return false; } } std::vector<HloInstruction*> instructions_to_replace; std::vector<HloInstruction*> replacement_instructions; for (auto* instruction : while_body->MakeInstructionPostOrder()) { allowance->DeductCost(1); if (!allowance->ContinueAnalysis()) { return false; } if (instruction->HasSideEffect() || instruction->opcode() == HloOpcode::kParameter || !instruction->control_predecessors().empty() || !instruction->control_successors().empty()) { continue; } if (!hoist_other_ && instruction->opcode() != HloOpcode::kConstant && instruction->opcode() != HloOpcode::kReshape) { continue; } if (hoist_size_inflation_ratio_ && instruction->opcode() != HloOpcode::kConstant) { int64_t input_size = 0, output_size = 0; for (auto* operand : instruction->operands()) { ShapeUtil::ForEachSubshape( operand->shape(), [&input_size, this](const Shape& subshape, const ShapeIndex& ) { if (subshape.IsArray()) { input_size += shape_size_function_(subshape); } }); } ShapeUtil::ForEachSubshape( instruction->shape(), [&output_size, this](const Shape& subshape, const ShapeIndex& ) { if (subshape.IsArray()) { output_size += shape_size_function_(subshape); } }); if (output_size > input_size * *hoist_size_inflation_ratio_) { continue; } } auto is_invariant = [&](HloInstruction* op) { return hoisted_instructions.find(op) != hoisted_instructions.end() || unhoisted_invariant_instructions.contains(op) || op->opcode() == HloOpcode::kConstant; }; if (!absl::c_all_of(instruction->operands(), is_invariant)) { continue; } if (NotWorthHoistingIndividually(*instruction)) { VLOG(2) << "Adding " << instruction->ToString(print_no_metadata) << " to unhoisted invariant set."; if (instruction->opcode() != HloOpcode::kConstant) { InsertOrDie(&unhoisted_invariant_instructions, instruction); } continue; } VLOG(2) << "Hoisting " << instruction->ToString(print_no_metadata); CreateLoopInvariantCopy(&hoisted_instructions, &unhoisted_invariant_instructions, while_instr, instruction); instructions_to_replace.push_back(instruction); replacement_instructions.push_back( FindOrDie(hoisted_instructions, instruction)); } if (instructions_to_replace.empty()) { return false; } TF_ASSIGN_OR_RETURN( WhileUtil::MakeInstructionsLiveInResult live_in_instructions_result, WhileUtil::MakeInstructionsLiveIn(while_instr, replacement_instructions)); HloComputation* new_while_body = live_in_instructions_result.new_while_instr->while_body(); for (int i = 0; i < instructions_to_replace.size(); i++) { HloInstruction* instruction_to_replace_in_new_while = FindOrDie(live_in_instructions_result.while_body_instruction_map, instructions_to_replace[i]); TF_RETURN_IF_ERROR(new_while_body->ReplaceInstruction( instruction_to_replace_in_new_while, live_in_instructions_result.while_body_live_in_values[i])); } VLOG(1) << "Hoisted " << instructions_to_replace.size() << " instructions from " << while_instr_name; return true; } absl::StatusOr<bool> WhileLoopInvariantCodeMotion::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { VLOG(2) << "HLO module before WhileLoopInvariantCodeMotion:"; XLA_VLOG_LINES(2, module->ToString()); bool changed = false; std::vector<HloInstruction*> while_instrs; for (auto* comp : module->MakeComputationPostOrder(execution_threads)) { absl::c_copy_if(comp->instructions(), std::back_inserter(while_instrs), HloPredicateIsOp<HloOpcode::kWhile>); } BoundNonLinearCompilerAnalysis allowance(module, name(), 10); for (HloInstruction* while_instr : while_instrs) { if (!allowance.ContinueAnalysis()) { break; } TF_ASSIGN_OR_RETURN( bool result, TryHoistingInvariantInstructionsFromWhileBody(while_instr, &allowance)); changed |= result; } if (changed) { HloDCE dce; TF_RETURN_IF_ERROR(dce.Run(module).status()); } if (changed) { VLOG(2) << "HLO module after WhileLoopInvariantCodeMotion:"; XLA_VLOG_LINES(2, module->ToString()); } else { VLOG(2) << "HLO module unchanged after WhileLoopInvariantCodeMotion"; } return changed; } }
#include "xla/service/while_loop_invariant_code_motion.h" #include "absl/log/log.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal_util.h" #include "xla/service/hlo_parser.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; class WhileLoopInvariantCodeMotionTest : public HloTestBase { public: HloComputation* MakeAlwaysTrueComputation(const Shape& param_shape, HloModule* module); }; static void FindOnlyWhileInstruction(HloComputation* computation, HloInstruction** while_instruction) { *while_instruction = nullptr; for (auto* instr : computation->instructions()) { if (instr->opcode() == HloOpcode::kWhile) { ASSERT_EQ(*while_instruction, nullptr); *while_instruction = instr; } } ASSERT_NE(*while_instruction, nullptr); } HloComputation* WhileLoopInvariantCodeMotionTest::MakeAlwaysTrueComputation( const Shape& param_shape, HloModule* module) { HloComputation::Builder builder(TestName() + ".always_true"); builder.AddInstruction( HloInstruction::CreateParameter(0, param_shape, "param")); builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(true))); return module->AddEmbeddedComputation(builder.Build()); } TEST_F(WhileLoopInvariantCodeMotionTest, HoistOneInvariantOperation) { auto m = CreateNewVerifiedModule(); auto scalar_s32 = ShapeUtil::MakeShape(S32, {}); Shape while_shape = ShapeUtil::MakeTupleShape({scalar_s32, scalar_s32, scalar_s32}); HloComputation* while_body = [&]() { HloComputation::Builder builder(TestName() + ".while_body"); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, while_shape, "param")); HloInstruction* gte_0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_s32, param, 0)); HloInstruction* gte_1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_s32, param, 1)); HloInstruction* add_result = builder.AddInstruction(HloInstruction::CreateBinary( scalar_s32, HloOpcode::kAdd, gte_0, gte_1)); builder.AddInstruction( HloInstruction::CreateTuple({gte_0, gte_1, add_result})); return m->AddEmbeddedComputation(builder.Build()); }(); HloComputation::Builder builder(TestName()); auto* init_value = builder.AddInstruction( HloInstruction::CreateParameter(0, while_shape, "init_value")); builder.AddInstruction(HloInstruction::CreateWhile( while_shape, MakeAlwaysTrueComputation(while_shape, m.get()), while_body, init_value)); HloComputation* entry_computation = m->AddEntryComputation(builder.Build()); TF_ASSERT_OK_AND_ASSIGN(bool simplified_loop, WhileLoopInvariantCodeMotion{}.Run(m.get())); EXPECT_TRUE(simplified_loop); HloInstruction* transformed_while; FindOnlyWhileInstruction(entry_computation, &transformed_while); EXPECT_THAT(entry_computation->instructions(), Contains(op::Add())); EXPECT_THAT(transformed_while->while_body()->instructions(), Each(Not(op::Add()))); } TEST_F(WhileLoopInvariantCodeMotionTest, HoistInvariantOperationTree) { auto m = CreateNewVerifiedModule(); auto scalar_s32 = ShapeUtil::MakeShape(S32, {}); Shape while_shape = ShapeUtil::MakeTupleShape({scalar_s32, scalar_s32, scalar_s32}); HloComputation* while_body = [&]() { HloComputation::Builder builder(TestName() + ".while_body"); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, while_shape, "param")); HloInstruction* gte_0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_s32, param, 0)); HloInstruction* gte_1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_s32, param, 1)); HloInstruction* gte_2_loop_variant = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_s32, param, 2)); HloInstruction* add_result = builder.AddInstruction(HloInstruction::CreateBinary( scalar_s32, HloOpcode::kAdd, gte_0, gte_1)); HloInstruction* mul_result = builder.AddInstruction(HloInstruction::CreateBinary( scalar_s32, HloOpcode::kMultiply, add_result, gte_1)); HloInstruction* negate_result = builder.AddInstruction(HloInstruction::CreateUnary( scalar_s32, HloOpcode::kNegate, mul_result)); HloInstruction* constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(4))); HloInstruction* sub_result = builder.AddInstruction(HloInstruction::CreateBinary( scalar_s32, HloOpcode::kSubtract, negate_result, constant)); HloInstruction* divide_result = builder.AddInstruction(HloInstruction::CreateBinary( scalar_s32, HloOpcode::kDivide, sub_result, gte_2_loop_variant)); builder.AddInstruction( HloInstruction::CreateTuple({gte_0, gte_1, divide_result})); return m->AddEmbeddedComputation(builder.Build()); }(); HloComputation::Builder builder(TestName()); auto* init_value = builder.AddInstruction( HloInstruction::CreateParameter(0, while_shape, "init_value")); builder.AddInstruction(HloInstruction::CreateWhile( while_shape, MakeAlwaysTrueComputation(while_shape, m.get()), while_body, init_value)); HloComputation* entry_computation = m->AddEntryComputation(builder.Build()); TF_ASSERT_OK_AND_ASSIGN(bool simplified_loop, WhileLoopInvariantCodeMotion{}.Run(m.get())); EXPECT_TRUE(simplified_loop); HloInstruction* transformed_while; FindOnlyWhileInstruction(entry_computation, &transformed_while); EXPECT_THAT(entry_computation->instructions(), AllOf(Contains(op::Add()), Contains(op::Multiply()), Contains(op::Negate()), Contains(op::Subtract()), Contains(op::Constant()), Not(Contains(op::Divide())))); EXPECT_THAT(transformed_while->while_body()->instructions(), Each(Not(AnyOf(op::Add(), op::Multiply(), op::Negate(), op::Subtract(), op::Constant())))); EXPECT_THAT(transformed_while->while_body()->instructions(), Contains(op::Divide())); } TEST_F(WhileLoopInvariantCodeMotionTest, DontHoistTriviallyLoopVaryingComputation) { auto m = CreateNewVerifiedModule(); auto scalar_s32 = ShapeUtil::MakeShape(S32, {}); Shape while_shape = ShapeUtil::MakeTupleShape({scalar_s32, scalar_s32}); HloComputation* while_body = [&]() { HloComputation::Builder builder(TestName() + ".while_body"); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, while_shape, "param")); HloInstruction* gte_0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_s32, param, 0)); HloInstruction* gte_1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_s32, param, 1)); HloInstruction* add_result = builder.AddInstruction(HloInstruction::CreateBinary( scalar_s32, HloOpcode::kAdd, gte_0, gte_1)); builder.AddInstruction(HloInstruction::CreateTuple({gte_0, add_result})); return m->AddEmbeddedComputation(builder.Build()); }(); HloComputation::Builder builder(TestName()); auto* init_value = builder.AddInstruction( HloInstruction::CreateParameter(0, while_shape, "init_value")); auto* while_inst = builder.AddInstruction(HloInstruction::CreateWhile( while_shape, MakeAlwaysTrueComputation(while_shape, m.get()), while_body, init_value)); m->AddEntryComputation(builder.Build()); TF_ASSERT_OK_AND_ASSIGN(bool simplified_loop, WhileLoopInvariantCodeMotion{}.Run(m.get())); EXPECT_FALSE(simplified_loop); EXPECT_THAT(while_inst->while_body()->instructions(), Contains(op::Add())); } TEST_F(WhileLoopInvariantCodeMotionTest, DontHoistLoopVaryingComputationWithAlternatingTuples) { auto m = CreateNewVerifiedModule(); auto scalar_s32 = ShapeUtil::MakeShape(S32, {}); Shape while_shape = ShapeUtil::MakeTupleShape({scalar_s32, scalar_s32, scalar_s32}); HloComputation* while_body = [&]() { HloComputation::Builder builder(TestName() + ".while_body"); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, while_shape, "param")); HloInstruction* gte_0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_s32, param, 0)); HloInstruction* gte_1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_s32, param, 1)); HloInstruction* add_result = builder.AddInstruction(HloInstruction::CreateBinary( scalar_s32, HloOpcode::kAdd, gte_0, gte_1)); builder.AddInstruction( HloInstruction::CreateTuple({gte_1, gte_0, add_result})); return m->AddEmbeddedComputation(builder.Build()); }(); HloComputation::Builder builder(TestName()); auto* init_value = builder.AddInstruction( HloInstruction::CreateParameter(0, while_shape, "init_value")); auto* while_inst = builder.AddInstruction(HloInstruction::CreateWhile( while_shape, MakeAlwaysTrueComputation(while_shape, m.get()), while_body, init_value)); m->AddEntryComputation(builder.Build()); TF_ASSERT_OK_AND_ASSIGN(bool simplified_loop, WhileLoopInvariantCodeMotion{}.Run(m.get())); EXPECT_FALSE(simplified_loop); EXPECT_THAT(while_inst->while_body()->instructions(), Contains(op::Add())); } TEST_F(WhileLoopInvariantCodeMotionTest, DontHoistInstructionWithSideEffects) { auto m = CreateNewVerifiedModule(); auto scalar_s32 = ShapeUtil::MakeShape(S32, {}); auto token_shape = ShapeUtil::MakeTokenShape(); Shape while_shape = ShapeUtil::MakeTupleShape({scalar_s32, scalar_s32, token_shape}); HloComputation* while_body = [&]() { HloComputation::Builder builder(TestName() + ".while_body"); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, while_shape, "param")); HloInstruction* gte_0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_s32, param, 0)); HloInstruction* gte_1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_s32, param, 1)); HloInstruction* in_token = builder.AddInstruction( HloInstruction::CreateGetTupleElement(token_shape, param, 2)); HloInstruction* out_token = builder.AddInstruction( HloInstruction::CreateOutfeed(scalar_s32, gte_0, in_token, "")); builder.AddInstruction( HloInstruction::CreateTuple({gte_0, gte_1, out_token})); return m->AddEmbeddedComputation(builder.Build()); }(); HloComputation::Builder builder(TestName()); auto* scalar_param = builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_s32, "param")); auto* token = builder.AddInstruction(HloInstruction::CreateToken()); auto* init_value = builder.AddInstruction( HloInstruction::CreateTuple({scalar_param, scalar_param, token})); auto* while_inst = builder.AddInstruction(HloInstruction::CreateWhile( while_shape, MakeAlwaysTrueComputation(while_shape, m.get()), while_body, init_value)); builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_s32, while_inst, 0)); m->AddEntryComputation(builder.Build()); TF_ASSERT_OK_AND_ASSIGN(bool simplified_loop, WhileLoopInvariantCodeMotion{}.Run(m.get())); ASSERT_FALSE(simplified_loop); EXPECT_THAT(while_inst->while_body()->instructions(), Contains(op::Outfeed())); } TEST_F(WhileLoopInvariantCodeMotionTest, DontHoistBitcastAlone) { auto m = CreateNewVerifiedModule(); auto scalar_s32 = ShapeUtil::MakeShape(S32, {}); auto effective_scalar_s32 = ShapeUtil::MakeShape(S32, {1}); auto token_shape = ShapeUtil::MakeTokenShape(); Shape while_shape = ShapeUtil::MakeTupleShape({scalar_s32, scalar_s32, token_shape}); HloComputation* while_body = [&]() { HloComputation::Builder builder(TestName() + ".while_body"); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, while_shape, "param")); HloInstruction* gte_0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_s32, param, 0)); HloInstruction* gte_1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_s32, param, 1)); HloInstruction* in_token = builder.AddInstruction( HloInstruction::CreateGetTupleElement(token_shape, param, 2)); HloInstruction* bitcast_inst = builder.AddInstruction(HloInstruction::CreateUnary( effective_scalar_s32, HloOpcode::kBitcast, gte_0)); HloInstruction* out_token = builder.AddInstruction(HloInstruction::CreateOutfeed( effective_scalar_s32, bitcast_inst, in_token, "")); builder.AddInstruction( HloInstruction::CreateTuple({gte_0, gte_1, out_token})); return m->AddEmbeddedComputation(builder.Build()); }(); HloComputation::Builder builder(TestName()); auto* scalar_param = builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_s32, "param")); auto* token = builder.AddInstruction(HloInstruction::CreateToken()); auto* init_value = builder.AddInstruction( HloInstruction::CreateTuple({scalar_param, scalar_param, token})); auto* while_inst = builder.AddInstruction(HloInstruction::CreateWhile( while_shape, MakeAlwaysTrueComputation(while_shape, m.get()), while_body, init_value)); builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_s32, while_inst, 0)); m->AddEntryComputation(builder.Build()); TF_ASSERT_OK_AND_ASSIGN(bool simplified_loop, WhileLoopInvariantCodeMotion{}.Run(m.get())); EXPECT_FALSE(simplified_loop); EXPECT_THAT(while_inst->while_body()->instructions(), Contains(op::Outfeed())); EXPECT_THAT(while_inst->while_body()->instructions(), Contains(op::Bitcast())); } TEST_F(WhileLoopInvariantCodeMotionTest, HoistBitcastIfNeeded) { auto m = CreateNewVerifiedModule(); auto scalar_s32 = ShapeUtil::MakeShape(S32, {}); auto effective_scalar_s32 = ShapeUtil::MakeShape(S32, {1}); Shape while_shape = ShapeUtil::MakeTupleShape( {scalar_s32, effective_scalar_s32, effective_scalar_s32}); HloComputation* while_body = [&]() { HloComputation::Builder builder(TestName() + ".while_body"); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, while_shape, "param")); HloInstruction* gte_0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_s32, param, 0)); HloInstruction* gte_1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(effective_scalar_s32, param, 1)); HloInstruction* bitcast_inst = builder.AddInstruction(HloInstruction::CreateUnary( effective_scalar_s32, HloOpcode::kBitcast, gte_0)); HloInstruction* add_inst = builder.AddInstruction(HloInstruction::CreateBinary( effective_scalar_s32, HloOpcode::kAdd, bitcast_inst, gte_1)); builder.AddInstruction( HloInstruction::CreateTuple({gte_0, gte_1, add_inst})); return m->AddEmbeddedComputation(builder.Build()); }(); HloComputation::Builder builder(TestName()); auto* init_value = builder.AddInstruction( HloInstruction::CreateParameter(0, while_shape, "init_value")); builder.AddInstruction(HloInstruction::CreateWhile( while_shape, MakeAlwaysTrueComputation(while_shape, m.get()), while_body, init_value)); HloComputation* entry_computation = m->AddEntryComputation(builder.Build()); TF_ASSERT_OK_AND_ASSIGN(bool simplified_loop, WhileLoopInvariantCodeMotion{}.Run(m.get())); EXPECT_TRUE(simplified_loop); HloInstruction* transformed_while; FindOnlyWhileInstruction(entry_computation, &transformed_while); EXPECT_THAT(transformed_while->while_body()->instructions(), Each(Not(op::Add()))); EXPECT_THAT(transformed_while->while_body()->instructions(), Each(Not(op::Bitcast()))); EXPECT_THAT(entry_computation->instructions(), Contains(op::Add())); EXPECT_THAT(entry_computation->instructions(), Contains(op::Bitcast())); } TEST_F(WhileLoopInvariantCodeMotionTest, DontHoistControlDependencies) { auto m = CreateNewVerifiedModule(); auto scalar_s32 = ShapeUtil::MakeShape(S32, {}); Shape while_shape = ShapeUtil::MakeTupleShape({scalar_s32, scalar_s32, scalar_s32}); HloComputation* while_body; { HloComputation::Builder builder(TestName() + ".while_body"); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, while_shape, "param")); HloInstruction* gte_0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_s32, param, 0)); HloInstruction* gte_1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_s32, param, 1)); HloInstruction* add_result = builder.AddInstruction(HloInstruction::CreateBinary( scalar_s32, HloOpcode::kAdd, gte_0, gte_1)); TF_ASSERT_OK(param->AddControlDependencyTo(add_result)); builder.AddInstruction( HloInstruction::CreateTuple({gte_0, gte_1, add_result})); while_body = m->AddEmbeddedComputation(builder.Build()); } HloComputation::Builder builder(TestName()); auto* init_value = builder.AddInstruction( HloInstruction::CreateParameter(0, while_shape, "init_value")); builder.AddInstruction(HloInstruction::CreateWhile( while_shape, MakeAlwaysTrueComputation(while_shape, m.get()), while_body, init_value)); m->AddEntryComputation(builder.Build()); TF_ASSERT_OK_AND_ASSIGN(bool simplified_loop, WhileLoopInvariantCodeMotion{}.Run(m.get())); EXPECT_FALSE(simplified_loop); } TEST_F(WhileLoopInvariantCodeMotionTest, BodyHasNonTupleRoot) { auto m = CreateNewVerifiedModule(); auto scalar_s32 = ShapeUtil::MakeShape(S32, {}); Shape while_shape = ShapeUtil::MakeTupleShape({scalar_s32, scalar_s32}); HloComputation* while_body = [&]() { HloComputation::Builder builder(TestName() + ".passthrough"); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, while_shape, "param")); HloComputation* result = m->AddEmbeddedComputation(builder.Build()); result->AddInstruction( HloInstruction::CreateGetTupleElement(scalar_s32, param, 1)); return result; }(); HloComputation::Builder builder(TestName()); auto* init_value = builder.AddInstruction( HloInstruction::CreateParameter(0, while_shape, "init_value")); builder.AddInstruction(HloInstruction::CreateWhile( while_shape, MakeAlwaysTrueComputation(while_shape, m.get()), while_body, init_value)); m->AddEntryComputation(builder.Build()); TF_ASSERT_OK_AND_ASSIGN(bool simplified_loop, WhileLoopInvariantCodeMotion{}.Run(m.get())); EXPECT_FALSE(simplified_loop); } const char* const kConstantHoistingTestCase = R"( HloModule ModuleWithWhile body { p_body = (f32[2]{0}) parameter(0) p_body.1 = f32[2]{0} get-tuple-element(p_body), index=0 const = f32[2]{0} constant({3, 4}) add.0 = f32[2]{0} add(p_body.1, const) ROOT root = (f32[2]{0}) tuple(add.0) } condition { p_cond = (f32[2]{0}) parameter(0) ROOT result = pred[] constant(true) } ENTRY entry { const_0 = f32[2]{0} constant({1, 2}) while_init = (f32[2]{0}) tuple(const_0) ROOT while = (f32[2]{0}) while(while_init), condition=condition, body=body } )"; TEST_F(WhileLoopInvariantCodeMotionTest, HoistsConstantWhenAsked) { auto m = ParseAndReturnVerifiedModule(kConstantHoistingTestCase).value(); TF_ASSERT_OK_AND_ASSIGN( bool simplified_loop, WhileLoopInvariantCodeMotion{true}.Run(m.get())); EXPECT_TRUE(simplified_loop); HloComputation* while_body = m->GetComputationWithName("wide.body"); ASSERT_NE(while_body, nullptr); auto wide_param_1 = op::Parameter(0); auto get_tuple_element_1 = op::GetTupleElement(wide_param_1, 0); auto tuple_1 = op::Tuple(get_tuple_element_1); auto get_tuple_element_4 = op::GetTupleElement(tuple_1, 0); auto get_tuple_element_7 = op::GetTupleElement(wide_param_1, 1); auto add_1 = op::Add(get_tuple_element_4, get_tuple_element_7); auto tuple_3 = op::Tuple(add_1); auto get_tuple_element_8 = op::GetTupleElement(tuple_3, 0); auto get_tuple_element_9 = op::GetTupleElement(wide_param_1, 1); auto tuple_4 = op::Tuple(get_tuple_element_8, get_tuple_element_9); EXPECT_THAT(while_body->root_instruction(), tuple_4); } TEST_F(WhileLoopInvariantCodeMotionTest, DoesNotHoistConstantByDefault) { auto m = ParseAndReturnVerifiedModule(kConstantHoistingTestCase).value(); TF_ASSERT_OK_AND_ASSIGN(bool simplified_loop, WhileLoopInvariantCodeMotion{}.Run(m.get())); EXPECT_FALSE(simplified_loop); } TEST_F(WhileLoopInvariantCodeMotionTest, DoNotHoistOutOfSingleIteration) { const char* const kHloModule = R"( HloModule ModuleWithWhile body { p_body = (f32[2], f32[2], f32[2], s32[]) parameter(0) val.0 = f32[2] get-tuple-element(p_body), index=0 val.1 = f32[2] get-tuple-element(p_body), index=1 add = f32[2] add(val.0, val.1) const = s32[] constant(-1) ROOT root = (f32[2], f32[2], f32[2], s32[]) tuple(val.0, val.1, add, const) } condition { p_cond = (f32[2], f32[2], f32[2], s32[]) parameter(0) gte = s32[] get-tuple-element(p_cond), index=3 const = s32[] constant(42) ROOT result = pred[] compare(gte, const), direction=EQ } ENTRY entry { param.0 = f32[2] parameter(0) param.1 = s32[] parameter(1) while_init = (f32[2], f32[2], f32[2], s32[]) tuple(param.0, param.0, param.0, param.1) ROOT while = (f32[2], f32[2], f32[2], s32[]) while(while_init), condition=condition, body=body })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloModule)); TF_ASSERT_OK_AND_ASSIGN(bool simplified_loop, WhileLoopInvariantCodeMotion{}.Run(module.get())); EXPECT_FALSE(simplified_loop); } const char* const kInflatingTestCase = R"( HloModule ModuleWithWhile mul { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT mul = f32[] multiply(lhs, rhs) } body { p_body = (f32[]) parameter(0) iota = f32[1024, 1024] iota(), iota_dimension=0 add = f32[1024, 1024] add(iota, iota) constant = f32[] constant(1.0) reduce = f32[] reduce(f32[1024, 1024] add, f32[] constant), dimensions={0,1}, to_apply=mul ROOT root = (f32[]) tuple(reduce) } condition { p_cond = (f32[]) parameter(0) ROOT result = pred[] constant(true) } ENTRY entry { param = f32[] parameter(0) while_init = (f32[]) tuple(param) ROOT while = (f32[]) while(while_init), condition=condition, body=body } )"; TEST_F(WhileLoopInvariantCodeMotionTest, HoistsInflatingByDefault) { auto m = ParseAndReturnVerifiedModule(kInflatingTestCase).value(); TF_ASSERT_OK_AND_ASSIGN( bool simplified_loop, WhileLoopInvariantCodeMotion(true).Run(m.get())); EXPECT_TRUE(simplified_loop); HloComputation* while_body = m->GetComputationWithName("wide.body"); ASSERT_NE(while_body, nullptr); EXPECT_THAT(while_body->instructions(), Not(Contains(op::Iota()))); } TEST_F(WhileLoopInvariantCodeMotionTest, NoHoistInflating) { auto m = ParseAndReturnVerifiedModule(kInflatingTestCase).value(); TF_ASSERT_OK_AND_ASSIGN( bool simplified_loop, WhileLoopInvariantCodeMotion(false, true, 1.0) .Run(m.get())); EXPECT_FALSE(simplified_loop); } TEST_F(WhileLoopInvariantCodeMotionTest, DoesNotHoistSPMDFullToShardShape) { auto m = CreateNewVerifiedModule(); auto array_s32 = ShapeUtil::MakeShape(S32, {4}); Shape while_shape = ShapeUtil::MakeTupleShape({array_s32, array_s32, array_s32}); HloComputation* while_body = [&]() { HloComputation::Builder builder(TestName() + ".while_body"); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, while_shape, "param")); HloInstruction* gte_0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(array_s32, param, 0)); HloInstruction* gte_1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(array_s32, param, 1)); HloInstruction* sharded_gte_1 = builder.AddInstruction( HloInstruction::CreateCustomCall(array_s32, {gte_1}, "Sharding")); sharded_gte_1->set_sharding(HloSharding::Tile1D(array_s32, 4)); HloInstruction* manually_sharded_gte_1 = builder.AddInstruction(HloInstruction::CreateCustomCall( array_s32, {sharded_gte_1}, "SPMDFullToShardShape")); manually_sharded_gte_1->set_sharding(HloSharding::Manual()); HloInstruction* add_result = builder.AddInstruction(HloInstruction::CreateBinary( array_s32, HloOpcode::kAdd, gte_0, manually_sharded_gte_1)); HloInstruction* manually_sharded_add_result = builder.AddInstruction( HloInstruction::CreateCustomCall(array_s32, {add_result}, "Sharding")); manually_sharded_add_result->set_sharding(HloSharding::Manual()); HloInstruction* sharded_add_result = builder.AddInstruction(HloInstruction::CreateCustomCall( array_s32, {manually_sharded_add_result}, "SPMDShardShapeToFull")); sharded_add_result->set_sharding(HloSharding::Tile1D(array_s32, 4)); builder.AddInstruction( HloInstruction::CreateTuple({gte_0, gte_1, sharded_add_result})); return m->AddEmbeddedComputation(builder.Build()); }(); HloComputation::Builder builder(TestName()); auto* init_value = builder.AddInstruction( HloInstruction::CreateParameter(0, while_shape, "init_value")); builder.AddInstruction(HloInstruction::CreateWhile( while_shape, MakeAlwaysTrueComputation(while_shape, m.get()), while_body, init_value)); m->AddEntryComputation(builder.Build()); LOG(INFO) << "my_test: " << m->ToString(); TF_ASSERT_OK_AND_ASSIGN(bool simplified_loop, WhileLoopInvariantCodeMotion{}.Run(m.get())); EXPECT_FALSE(simplified_loop); } TEST_F(WhileLoopInvariantCodeMotionTest, DoesNotHoistShardingCustomCalls) { const char* const kHloModule = R"( HloModule ModuleWithWhile body { p_body = (f32[2], f32[2], s32[]) parameter(0) gte.0 = f32[2] get-tuple-element(p_body), index=0 gte.1 = f32[2] get-tuple-element(p_body), index=1 sharding.0 = f32[2] custom-call(gte.0), custom_call_target="Sharding", sharding={devices=[2]<=[2]} sharding.1 = f32[2] custom-call(gte.1), custom_call_target="Sharding", sharding={replicated} add.0 = f32[2] add(sharding.0, sharding.1) gte.2 = s32[] get-tuple-element(p_body), index=2 const = s32[] constant(1) add.1 = s32[] add(gte.2, const) ROOT root = (f32[2], f32[2], s32[]) tuple(gte.0, add.0, add.1) } condition { p_cond = (f32[2], f32[2], s32[]) parameter(0) gte = s32[] get-tuple-element(p_cond), index=2 const = s32[] constant(5) ROOT result = pred[] compare(gte, const), direction=LT } ENTRY entry { param.0 = f32[2] parameter(0) param.1 = s32[] parameter(1) while_init = (f32[2], f32[2], s32[]) tuple(param.0, param.0, param.1) ROOT while = (f32[2], f32[2], s32[]) while(while_init), condition=condition, body=body })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloModule)); TF_ASSERT_OK_AND_ASSIGN(bool simplified_loop, WhileLoopInvariantCodeMotion{}.Run(module.get())); EXPECT_FALSE(simplified_loop); } } }
1,868
cpp
tensorflow/tensorflow
dynamic_index_splitter
third_party/xla/xla/service/dynamic_index_splitter.cc
third_party/xla/xla/service/dynamic_index_splitter_test.cc
#ifndef XLA_SERVICE_DYNAMIC_INDEX_SPLITTER_H_ #define XLA_SERVICE_DYNAMIC_INDEX_SPLITTER_H_ #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class DynamicIndexSplitter : public HloModulePass { public: DynamicIndexSplitter() = default; absl::string_view name() const override { return "dynamic-index-splitter"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } #endif #include "xla/service/dynamic_index_splitter.h" #include <map> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/shape_util.h" namespace xla { absl::StatusOr<bool> DynamicIndexSplitter::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; std::vector<HloComputation*> computations = module->MakeNonfusionComputations(execution_threads); for (HloComputation* computation : computations) { for (HloInstruction* dynamic_op : computation->MakeInstructionPostOrder()) { switch (dynamic_op->opcode()) { case HloOpcode::kDynamicSlice: case HloOpcode::kDynamicUpdateSlice: break; default: continue; } auto parent = dynamic_op->parent(); bool is_update = dynamic_op->opcode() == HloOpcode::kDynamicUpdateSlice; int64_t num_indices = dynamic_op->operand(0)->shape().rank(); if (num_indices == 0) { if (is_update) { TF_CHECK_OK(parent->ReplaceInstruction( dynamic_op, dynamic_op->mutable_operand(1))); } else { TF_CHECK_OK(parent->ReplaceInstruction( dynamic_op, dynamic_op->mutable_operand(0))); } changed = true; continue; } int64_t index_operand_number = Cast<HloDynamicIndexInstruction>(dynamic_op) ->first_index_operand_number(); auto index_operand = dynamic_op->mutable_operand(index_operand_number); if (ShapeUtil::IsScalar(index_operand->shape())) { continue; } TF_RET_CHECK(index_operand->shape().rank() == 1); auto index_element_type = index_operand->shape().element_type(); std::vector<HloInstruction*> index_array; index_array.reserve(num_indices); for (int64_t dim = 0; dim < num_indices; ++dim) { auto slice = parent->AddInstruction(HloInstruction::CreateSlice( ShapeUtil::MakeShape(index_element_type, {1}), index_operand, {dim}, {dim + 1}, {1})); auto bitcast = parent->AddInstruction(HloInstruction::CreateReshape( ShapeUtil::MakeShape(index_element_type, {}), slice)); index_array.push_back(bitcast); } auto new_dynamic_op = is_update ? HloInstruction::CreateDynamicUpdateSlice( dynamic_op->shape(), dynamic_op->mutable_operand(0), dynamic_op->mutable_operand(1), absl::MakeSpan(index_array)) : HloInstruction::CreateDynamicSlice( dynamic_op->shape(), dynamic_op->mutable_operand(0), absl::MakeSpan(index_array), dynamic_op->dynamic_slice_sizes()); TF_CHECK_OK(parent->ReplaceWithNewInstruction(dynamic_op, std::move(new_dynamic_op))); changed = true; } } return changed; } }
#include "xla/service/dynamic_index_splitter.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; class DynamicIndexSplitterTest : public HloTestBase {}; TEST_F(DynamicIndexSplitterTest, DynamicSlice) { const char* const kDynamicSlice = R"( HloModule DynamicSlice_module ENTRY entry (operand: s32[4,5,6], indices: s32[3]) -> s32[1,1,1] { operand = s32[4,5,6] parameter(0) indices = s32[3] parameter(1) ROOT dynamic-slice = s32[1,1,1] dynamic-slice(operand, indices), dynamic_slice_sizes={1,1,1} } )"; HloModuleConfig config; DebugOptions debug_options = config.debug_options(); debug_options.set_xla_allow_scalar_index_dynamic_ops(true); config.set_debug_options(debug_options); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kDynamicSlice, config)); TF_ASSERT_OK_AND_ASSIGN(bool changed, DynamicIndexSplitter().Run(module.get())); EXPECT_TRUE(changed); ASSERT_THAT(module->entry_computation()->root_instruction(), op::DynamicSlice(op::Parameter(0), op::Reshape(op::Slice(op::Parameter(1))), op::Reshape(op::Slice(op::Parameter(1))), op::Reshape(op::Slice(op::Parameter(1))))); for (int i = 0; i < 3; ++i) { const HloInstruction* slice = module->entry_computation() ->root_instruction() ->operand(i + 1) ->operand(0); EXPECT_EQ(slice->slice_starts(0), i); EXPECT_EQ(slice->slice_limits(0), i + 1); } } TEST_F(DynamicIndexSplitterTest, DynamicUpdateSlice) { const char* const kDynamicUpdateSlice = R"( HloModule DynamicUpdatedSlice_module ENTRY entry (operand: s32[4,5,6], indices: s32[3], update: s32[1,1,1]) -> s32[4,5,6] { operand = s32[4,5,6] parameter(0) indices = s32[3] parameter(1) update = s32[1,1,1] parameter(2) ROOT dynamic-update-slice = s32[4,5,6] dynamic-update-slice(operand, update, indices) } )"; HloModuleConfig config; DebugOptions debug_options = config.debug_options(); debug_options.set_xla_allow_scalar_index_dynamic_ops(true); config.set_debug_options(debug_options); TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule(kDynamicUpdateSlice, config)); TF_ASSERT_OK_AND_ASSIGN(bool changed, DynamicIndexSplitter().Run(module.get())); EXPECT_TRUE(changed); ASSERT_THAT(module->entry_computation()->root_instruction(), op::DynamicUpdateSlice(op::Parameter(0), op::Parameter(2), op::Reshape(op::Slice(op::Parameter(1))), op::Reshape(op::Slice(op::Parameter(1))), op::Reshape(op::Slice(op::Parameter(1))))); for (int i = 0; i < 3; ++i) { const HloInstruction* slice = module->entry_computation() ->root_instruction() ->operand(i + 2) ->operand(0); EXPECT_EQ(slice->slice_starts(0), i); EXPECT_EQ(slice->slice_limits(0), i + 1); } } TEST_F(DynamicIndexSplitterTest, AlreadyScalar) { const char* const kDynamicSlice = R"( HloModule DynamicSlice_module ENTRY entry (operand: s32[4,5,6], index.0: s32[], index.1: s32[], index.2: s32[]) -> s32[1,1,1] { operand = s32[4,5,6] parameter(0) index.0 = s32[] parameter(1) index.1 = s32[] parameter(2) index.2 = s32[] parameter(3) ROOT dynamic-slice = s32[1,1,1] dynamic-slice(operand, index.0, index.1, index.2), dynamic_slice_sizes={1,1,1} } )"; HloModuleConfig config; DebugOptions debug_options = config.debug_options(); debug_options.set_xla_allow_scalar_index_dynamic_ops(true); config.set_debug_options(debug_options); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kDynamicSlice, config)); TF_ASSERT_OK_AND_ASSIGN(bool changed, DynamicIndexSplitter().Run(module.get())); EXPECT_FALSE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::DynamicSlice(op::Parameter(0), op::Parameter(1), op::Parameter(2), op::Parameter(3))); } } }
1,869
cpp
tensorflow/tensorflow
hlo_creation_utils
third_party/xla/xla/service/hlo_creation_utils.cc
third_party/xla/xla/service/hlo_creation_utils_test.cc
#ifndef XLA_SERVICE_HLO_CREATION_UTILS_H_ #define XLA_SERVICE_HLO_CREATION_UTILS_H_ #include <cstddef> #include <memory> #include <optional> #include <vector> #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/literal_util.h" #include "xla/xla_data.pb.h" namespace xla { absl::StatusOr<HloInstruction*> MakeUnaryHlo( HloOpcode opcode, HloInstruction* operand, const OpMetadata* metadata = nullptr); absl::StatusOr<HloInstruction*> MakeBinaryHlo( HloOpcode opcode, HloInstruction* lhs, HloInstruction* rhs, const OpMetadata* metadata = nullptr, const FrontendAttributes* frontend_attributes = nullptr); HloInstruction* MakeCopyHlo(HloInstruction* from, const Shape& to); absl::StatusOr<HloInstruction*> MakeCompareHlo( Comparison::Direction direction, HloInstruction* lhs, HloInstruction* rhs, const OpMetadata* metadata = nullptr, const FrontendAttributes* frontend_attributes = nullptr); absl::StatusOr<HloInstruction*> MakePadHlo( HloInstruction* operand, HloInstruction* padding_value, const PaddingConfig& padding_config, const OpMetadata* metadata = nullptr, const FrontendAttributes* frontend_attributes = nullptr); absl::StatusOr<HloInstruction*> MakeSliceHlo( HloInstruction* operand, absl::Span<const int64_t> start_indices, absl::Span<const int64_t> limit_indices, absl::Span<const int64_t> strides, const OpMetadata* metadata = nullptr, const FrontendAttributes* frontend_attributes = nullptr); absl::StatusOr<HloInstruction*> MakeConvolveHlo( HloInstruction* lhs, HloInstruction* rhs, int64_t feature_group_count, int64_t batch_group_count, const Window& window, const ConvolutionDimensionNumbers& dimension_numbers, const PrecisionConfig& precision_config, std::optional<PrimitiveType> preferred_element_type, const OpMetadata* metadata = nullptr, const FrontendAttributes* frontend_attributes = nullptr); absl::StatusOr<HloInstruction*> MakeTransposeHlo( HloInstruction* operand, absl::Span<const int64_t> dimensions); absl::StatusOr<HloInstruction*> MakeReshapeHlo(const Shape& result_shape, HloInstruction* operand); absl::StatusOr<HloInstruction*> MakeReshapeHlo( absl::Span<const int64_t> result_shape_dim_bounds, HloInstruction* operand); absl::StatusOr<HloInstruction*> MakeDynamicSliceHlo( HloInstruction* operand, absl::Span<HloInstruction* const> start_indices, absl::Span<const int64_t> slice_sizes, const OpMetadata* metadata = nullptr); absl::StatusOr<HloInstruction*> MakeDynamicSliceHlo( HloInstruction* operand, HloInstruction* start_indices, absl::Span<const int64_t> slice_sizes, const OpMetadata* metadata = nullptr); absl::StatusOr<HloInstruction*> MakeDynamicUpdateSliceHlo( HloInstruction* operand, HloInstruction* update, HloInstruction* start_indices, const OpMetadata* metadata = nullptr); absl::StatusOr<HloInstruction*> MakeDynamicUpdateSliceHlo( HloInstruction* operand, HloInstruction* update, absl::Span<HloInstruction* const> start_indices, const OpMetadata* metadata = nullptr); HloInstruction* MakeBroadcastHlo( HloInstruction* operand, absl::Span<const int64_t> broadcast_dimensions, absl::Span<const int64_t> result_shape_bounds, const OpMetadata* metadata = nullptr, const FrontendAttributes* frontend_attributes = nullptr); HloInstruction* MakeBroadcastHlo( HloInstruction* operand, absl::Span<const int64_t> broadcast_dimensions, const Shape& shape, const OpMetadata* metadata = nullptr, const FrontendAttributes* frontend_attributes = nullptr); absl::StatusOr<HloInstruction*> MakeGetTupleElementHlo( HloInstruction* operand, int64_t index, const OpMetadata* metadata = nullptr); absl::StatusOr<HloInstruction*> MakeConcatHlo( absl::Span<HloInstruction* const> operands, int64_t dimension, const OpMetadata* metadata = nullptr, const FrontendAttributes* frontend_attributes = nullptr); HloInstruction* MakeConvertToHlo(HloInstruction* hlo, PrimitiveType type, const OpMetadata* metadata = nullptr); HloInstruction* MakeBitcastHlo(HloInstruction* hlo, const Shape& shape, const OpMetadata* metadata = nullptr); HloInstruction* MakeBitcastConvertToHlo(HloInstruction* hlo, PrimitiveType type, const OpMetadata* metadata = nullptr); HloInstruction* MakeIotaHlo(HloComputation* computation, const Shape& shape, int64_t iota_dimension); absl::StatusOr<HloInstruction*> MakeDotHlo( HloInstruction* lhs, HloInstruction* rhs, const DotDimensionNumbers& dim_numbers, const PrecisionConfig& precision_config, std::optional<PrimitiveType> preferred_element_type, std::vector<SparsityDescriptor> sparsity = {}, absl::Span<HloInstruction* const> sparse_meta = {}, const OpMetadata* metadata = nullptr); absl::StatusOr<HloInstruction*> MakeMapHlo( absl::Span<HloInstruction* const> operands, HloComputation* map_computation, const OpMetadata* metadata = nullptr); HloInstruction* MakeReducePrecisionHlo(HloInstruction* operand, int exponent_bits, int mantissa_bits, const OpMetadata* metadata = nullptr); absl::StatusOr<HloInstruction*> MakeReduceWindowHlo( HloInstruction* operand, HloInstruction* init_value, const Window& window, HloComputation* reduce_computation, const OpMetadata* metadata = nullptr); absl::StatusOr<HloInstruction*> MakeReduceWindowHlo( HloInstruction* operand, HloInstruction* init_value, const Window& window, HloOpcode binary_opcode, const OpMetadata* metadata = nullptr); absl::StatusOr<HloInstruction*> MakeReduceHlo( HloInstruction* operand, HloInstruction* init_value, absl::Span<const int64_t> dimensions, HloOpcode binary_opcode, const OpMetadata* metadata = nullptr, const FrontendAttributes* frontend_attributes = nullptr); absl::StatusOr<HloInstruction*> MakeReduceHlo( HloInstruction* operand, HloInstruction* init_value, absl::Span<const int64_t> dimensions, HloComputation* reduce_computation, const OpMetadata* metadata = nullptr, const FrontendAttributes* frontend_attributes = nullptr); absl::StatusOr<HloInstruction*> MakeReduceHlo( HloInstruction* operand, HloInstruction* init_value, HloOpcode binary_opcode, HloModule* module, const OpMetadata* metadata = nullptr, const FrontendAttributes* frontend_attributes = nullptr); absl::StatusOr<HloInstruction*> MakeReduceHlo( absl::Span<HloInstruction* const> operands, absl::Span<HloInstruction* const> init_values, absl::Span<const int64_t> dimensions, HloComputation* reduce_computation, const OpMetadata* metadata = nullptr, const FrontendAttributes* frontend_attributes = nullptr); absl::StatusOr<HloInstruction*> MakeReverseHlo( HloInstruction* operand, absl::Span<const int64_t> dimensions, const OpMetadata* metadata = nullptr); absl::StatusOr<HloInstruction*> MakeSelectHlo( HloInstruction* pred, HloInstruction* on_true, HloInstruction* on_false, HloInstruction* derived_from = nullptr, const OpMetadata* metadata = nullptr, const FrontendAttributes* frontend_attributes = nullptr); HloInstruction* MaybeMakeTuple(absl::Span<HloInstruction* const> operands); absl::StatusOr<HloInstruction*> MakeSortHlo( const Shape& sort_shape, absl::Span<HloInstruction* const> operands, int64_t dimension_to_sort, bool is_stable, HloComputation::Builder* builder, HloModule* module, const OpMetadata* metadata = nullptr); template <typename NativeT> absl::StatusOr<HloInstruction*> MakeR1ConstantHlo( HloComputation* computation, PrimitiveType type, absl::Span<const NativeT> values) { Literal literal = LiteralUtil::CreateR1<NativeT>(values); if (literal.shape().element_type() != type) { TF_ASSIGN_OR_RETURN(literal, literal.Convert(type)); } return computation->AddInstruction( HloInstruction::CreateConstant(std::move(literal))); } template <class NativeT> HloInstruction* MakeR0ConstantHlo(HloComputation* computation, NativeT value) { return computation->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<NativeT>(value))); } template <class NativeT> HloInstruction* MakeScalarLike(HloInstruction* base, NativeT value) { auto scalar = base->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<NativeT>(value) .Convert(base->shape().element_type()) .value())); if (base->shape().rank() == 0) { *scalar->mutable_shape() = base->shape(); return scalar; } return base->AddInstruction(HloInstruction::CreateBroadcast( ShapeUtil::MakeStaticShape(base->shape()), scalar, {})); } absl::StatusOr<HloInstruction*> MakeFusionInstruction( HloInstruction* fused, HloInstruction::FusionKind kind); absl::StatusOr<HloInstruction*> CollapseFirstNDims(HloInstruction* operand, int64_t n); absl::StatusOr<HloInstruction*> PrependDegenerateDims(HloInstruction* operand, int64_t n); absl::StatusOr<HloInstruction*> ExpandFirstDimIntoNDims( HloInstruction* operand, absl::Span<const int64_t> expanded_dims); absl::StatusOr<HloInstruction*> ElideDegenerateDims( HloInstruction* operand, absl::Span<const int64_t> dims_to_elide); absl::StatusOr<HloInstruction*> InsertDegenerateDims( HloInstruction* operand, absl::Span<const int64_t> dims_to_insert); absl::StatusOr<HloInstruction*> PadVectorWithZeros(HloInstruction* operand, int64_t zeros_to_prepend, int64_t zeros_to_append); HloInstruction* BroadcastZeros(HloComputation* computation, PrimitiveType element_type, absl::Span<const int64_t> broadcast_dimensions); HloInstruction* BroadcastZeros(HloComputation* computation, const Shape& broadcast_shape); HloInstruction* BroadcastOnes(HloComputation* computation, PrimitiveType element_type, absl::Span<const int64_t> broadcast_dimensions); absl::StatusOr<std::unique_ptr<HloComputation>> CreateComputationWithSignature( absl::Span<const Shape* const> domain, const Shape& range, absl::string_view name); HloInstruction* ExpandDegenerateReshape(HloInstruction* inst); std::unique_ptr<HloInstruction> MakeConstantWithShape(const Shape& shape, int64_t value); } #endif #include "xla/service/hlo_creation_utils.h" #include <algorithm> #include <cstdint> #include <iterator> #include <memory> #include <numeric> #include <optional> #include <string> #include <vector> #include "absl/algorithm/container.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/client/lib/comparators.h" #include "xla/client/xla_builder.h" #include "xla/client/xla_computation.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal_util.h" #include "xla/primitive_util.h" #include "xla/service/hlo_module_config.h" #include "xla/service/shape_inference.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { using absl::StrCat; absl::StatusOr<HloInstruction*> MakeUnaryHlo(HloOpcode opcode, HloInstruction* operand, const OpMetadata* metadata) { HloComputation* computation = operand->parent(); TF_ASSIGN_OR_RETURN(Shape unary_op_shape, ShapeInference::InferUnaryOpShape(opcode, operand)); return computation->AddInstruction( HloInstruction::CreateUnary(unary_op_shape, opcode, operand), metadata); } HloInstruction* MakeCopyHlo(HloInstruction* from, const Shape& to) { return from->AddInstruction( HloInstruction::CreateUnary(to, HloOpcode::kCopy, from)); } absl::StatusOr<HloInstruction*> MakeBinaryHlo( HloOpcode opcode, HloInstruction* lhs, HloInstruction* rhs, const OpMetadata* metadata, const FrontendAttributes* frontend_attributes) { HloComputation* computation = lhs->parent(); CHECK_EQ(computation, rhs->parent()); TF_ASSIGN_OR_RETURN(Shape binary_op_shape, ShapeInference::InferBinaryOpShape(opcode, lhs, rhs)); return computation->AddInstruction( HloInstruction::CreateBinary(binary_op_shape, opcode, lhs, rhs), metadata, frontend_attributes); } absl::StatusOr<HloInstruction*> MakeCompareHlo( ComparisonDirection direction, HloInstruction* lhs, HloInstruction* rhs, const OpMetadata* metadata, const FrontendAttributes* frontend_attributes) { HloComputation* computation = lhs->parent(); CHECK_EQ(computation, rhs->parent()); TF_ASSIGN_OR_RETURN( Shape binary_op_shape, ShapeInference::InferBinaryOpShape(HloOpcode::kCompare, lhs, rhs)); return computation->AddInstruction( HloInstruction::CreateCompare(binary_op_shape, lhs, rhs, direction), metadata, frontend_attributes); } absl::StatusOr<HloInstruction*> MakePadHlo( HloInstruction* operand, HloInstruction* padding_value, const PaddingConfig& padding_config, const OpMetadata* metadata, const FrontendAttributes* frontend_attributes) { HloComputation* computation = operand->parent(); CHECK_EQ(computation, padding_value->parent()); TF_ASSIGN_OR_RETURN( Shape pad_shape, ShapeInference::InferPadShape(operand->shape(), padding_value->shape(), padding_config)); return computation->AddInstruction( HloInstruction::CreatePad(pad_shape, operand, padding_value, padding_config), metadata, frontend_attributes); } absl::StatusOr<HloInstruction*> MakeSliceHlo( HloInstruction* operand, absl::Span<const int64_t> start_indices, absl::Span<const int64_t> limit_indices, absl::Span<const int64_t> strides, const OpMetadata* metadata, const FrontendAttributes* frontend_attributes) { HloComputation* computation = operand->parent(); TF_ASSIGN_OR_RETURN(Shape slice_shape, ShapeInference::InferSliceShape( operand->shape(), start_indices, limit_indices, strides)); return computation->AddInstruction( HloInstruction::CreateSlice(slice_shape, operand, start_indices, limit_indices, strides), metadata, frontend_attributes); } absl::StatusOr<HloInstruction*> MakeConvolveHlo( HloInstruction* lhs, HloInstruction* rhs, int64_t feature_group_count, int64_t batch_group_count, const Window& window, const ConvolutionDimensionNumbers& dimension_numbers, const PrecisionConfig& precision_config, std::optional<PrimitiveType> preferred_element_type, const OpMetadata* metadata, const FrontendAttributes* frontend_attributes) { HloComputation* computation = lhs->parent(); CHECK_EQ(computation, rhs->parent()); TF_ASSIGN_OR_RETURN( Shape convolve_shape, ShapeInference::InferConvolveShape( lhs->shape(), rhs->shape(), feature_group_count, batch_group_count, window, dimension_numbers, preferred_element_type)); return computation->AddInstruction( HloInstruction::CreateConvolve( convolve_shape, lhs, rhs, feature_group_count, batch_group_count, window, dimension_numbers, precision_config), metadata, frontend_attributes); } absl::StatusOr<HloInstruction*> MakeTransposeHlo( HloInstruction* operand, absl::Span<const int64_t> dimensions) { TF_ASSIGN_OR_RETURN( Shape transpose_shape, ShapeInference::InferTransposeShape(operand->shape(), dimensions)); return operand->AddInstruction( HloInstruction::CreateTranspose(transpose_shape, operand, dimensions)); } absl::StatusOr<HloInstruction*> MakeReshapeHlo(const Shape& result_shape, HloInstruction* operand) { return operand->AddInstruction( HloInstruction::CreateReshape(result_shape, operand)); } absl::StatusOr<HloInstruction*> MakeReshapeHlo( absl::Span<const int64_t> result_shape_dim_bounds, HloInstruction* operand) { Shape new_shape = ShapeUtil::MakeShape(operand->shape().element_type(), result_shape_dim_bounds); return MakeReshapeHlo(new_shape, operand); } absl::StatusOr<HloInstruction*> MakeDynamicSliceHlo( HloInstruction* operand, absl::Span<HloInstruction* const> start_indices, absl::Span<const int64_t> slice_sizes, const OpMetadata* metadata) { if (start_indices.empty() || slice_sizes.empty()) { return operand; } HloComputation* computation = operand->parent(); std::vector<Shape> scalar_start_indices_shapes( start_indices.size(), ShapeUtil::MakeShape(start_indices[0]->shape().element_type(), {})); TF_ASSIGN_OR_RETURN( Shape dynamic_slice_shape, ShapeInference::InferDynamicSliceShape( operand->shape(), scalar_start_indices_shapes, slice_sizes)); return computation->AddInstruction( HloInstruction::CreateDynamicSlice(dynamic_slice_shape, operand, start_indices, slice_sizes), metadata); } absl::StatusOr<HloInstruction*> MakeDynamicSliceHlo( HloInstruction* operand, HloInstruction* start_indices, absl::Span<const int64_t> slice_sizes, const OpMetadata* metadata) { HloComputation* computation = operand->parent(); CHECK_EQ(computation, start_indices->parent()); int64_t rank = start_indices->shape().dimensions(0); std::vector<HloInstruction*> scalar_start_indices; for (int i = 0; i < rank; ++i) { auto slice = computation->AddInstruction(HloInstruction::CreateSlice( ShapeUtil::MakeShape(start_indices->shape().element_type(), {1}), start_indices, {i}, {i + 1}, {1})); scalar_start_indices.push_back( computation->AddInstruction(HloInstruction::CreateReshape( ShapeUtil::MakeShape(start_indices->shape().element_type(), {}), slice))); } std::vector<Shape> scalar_start_indices_shapes( rank, ShapeUtil::MakeShape(start_indices->shape().element_type(), {})); TF_ASSIGN_OR_RETURN( Shape dynamic_slice_shape, ShapeInference::InferDynamicSliceShape( operand->shape(), scalar_start_indices_shapes, slice_sizes)); return computation->AddInstruction( HloInstruction::CreateDynamicSlice(dynamic_slice_shape, operand, scalar_start_indices, slice_sizes), metadata); } absl::StatusOr<HloInstruction*> MakeDynamicUpdateSliceHlo( HloInstruction* operand, HloInstruction* update, HloInstruction* start_indices, const OpMetadata* metadata) { HloComputation* computation = operand->parent(); CHECK_EQ(computation, update->parent()); CHECK_EQ(computation, start_indices->parent()); int64_t rank = start_indices->shape().dimensions(0); std::vector<HloInstruction*> scalar_start_indices; for (int i = 0; i < rank; ++i) { auto slice = computation->AddInstruction(HloInstruction::CreateSlice( ShapeUtil::MakeShape(start_indices->shape().element_type(), {1}), start_indices, {i}, {i + 1}, {1})); scalar_start_indices.push_back( computation->AddInstruction(HloInstruction::CreateReshape( ShapeUtil::MakeShape(start_indices->shape().element_type(), {}), slice))); } std::vector<Shape> scalar_start_indices_shapes( rank, ShapeUtil::MakeShape(start_indices->shape().element_type(), {})); TF_ASSIGN_OR_RETURN( Shape dynamic_update_slice_shape, ShapeInference::InferDynamicUpdateSliceShape( operand->shape(), update->shape(), scalar_start_indices_shapes)); return computation->AddInstruction( HloInstruction::CreateDynamicUpdateSlice( dynamic_update_slice_shape, operand, update, scalar_start_indices), metadata); } absl::StatusOr<HloInstruction*> MakeDynamicUpdateSliceHlo( HloInstruction* operand, HloInstruction* update, absl::Span<HloInstruction* const> start_indices, const OpMetadata* metadata) { HloComputation* computation = operand->parent(); CHECK_EQ(computation, update->parent()); std::vector<Shape> scalar_start_indices_shapes; scalar_start_indices_shapes.reserve(start_indices.size()); for (auto start_index : start_indices) { scalar_start_indices_shapes.push_back(start_index->shape()); } TF_ASSIGN_OR_RETURN( Shape dynamic_update_slice_shape, ShapeInference::InferDynamicUpdateSliceShape( operand->shape(), update->shape(), scalar_start_indices_shapes)); return computation->AddInstruction( HloInstruction::CreateDynamicUpdateSlice(dynamic_update_slice_shape, operand, update, start_indices), metadata); } HloInstruction* MakeBroadcastHlo( HloInstruction* operand, absl::Span<const int64_t> broadcast_dimensions, absl::Span<const int64_t> result_shape_bounds, const OpMetadata* metadata, const FrontendAttributes* frontend_attributes) { Shape broadcast_shape = ShapeUtil::MakeShape(operand->shape().element_type(), result_shape_bounds); return MakeBroadcastHlo(operand, broadcast_dimensions, broadcast_shape, metadata, frontend_attributes); } HloInstruction* MakeBroadcastHlo( HloInstruction* operand, absl::Span<const int64_t> broadcast_dimensions, const Shape& shape, const OpMetadata* metadata, const FrontendAttributes* frontend_attributes) { HloComputation* computation = operand->parent(); return computation->AddInstruction( HloInstruction::CreateBroadcast(shape, operand, broadcast_dimensions), metadata, frontend_attributes); } absl::StatusOr<HloInstruction*> MakeGetTupleElementHlo( HloInstruction* operand, int64_t index, const OpMetadata* metadata) { HloComputation* computation = operand->parent(); TF_ASSIGN_OR_RETURN( Shape gte_shape, ShapeInference::InferGetTupleElementShape(operand->shape(), index)); return computation->AddInstruction( HloInstruction::CreateGetTupleElement(gte_shape, operand, index), metadata); } absl::StatusOr<HloInstruction*> MakeConcatHlo( absl::Span<HloInstruction* const> operands, int64_t dimension, const OpMetadata* metadata, const FrontendAttributes* frontend_attributes) { CHECK_GT(operands.size(), 0); HloComputation* computation = operands[0]->pa
#include "xla/service/hlo_creation_utils.h" #include <memory> #include "xla/hlo/evaluator/hlo_evaluator.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/test.h" namespace xla { namespace { namespace m = match; class HloCreationUtilsTest : public HloTestBase { protected: std::unique_ptr<VerifiedHloModule> CreateModuleWithProgramShape( PrimitiveType primitive_type, absl::Span<const int64_t> input_shape_dims, absl::Span<const int64_t> output_shape_dims, HloInstruction** param, HloComputation** entry_computation) { Shape input_shape = ShapeUtil::MakeShape(primitive_type, input_shape_dims); Shape output_shape = ShapeUtil::MakeShape(primitive_type, output_shape_dims); auto module = CreateNewVerifiedModule("test"); *entry_computation = module->AddEntryComputation( CreateComputationWithSignature({&input_shape}, output_shape, "entry") .value()); *param = (*entry_computation)->parameter_instruction(0); return module; } std::unique_ptr<VerifiedHloModule> CreateModuleWithProgramShape( PrimitiveType primitive_type, absl::Span<const int64_t> input_shape_dims, absl::Span<const int64_t> output_shape_dims, HloInstruction** param, HloComputation** entry_computation, PrimitiveType primitive_type_output) { Shape input_shape = ShapeUtil::MakeShape(primitive_type, input_shape_dims); Shape output_shape = ShapeUtil::MakeShape(primitive_type_output, output_shape_dims); auto module = CreateNewVerifiedModule("test"); *entry_computation = module->AddEntryComputation( CreateComputationWithSignature({&input_shape}, output_shape, "entry") .value()); *param = (*entry_computation)->parameter_instruction(0); return module; } }; TEST_F(HloCreationUtilsTest, CollapseFirst1Dim) { HloInstruction* param; HloComputation* entry_computation; auto module = CreateModuleWithProgramShape(S32, {2}, {2}, &param, &entry_computation); TF_ASSERT_OK_AND_ASSIGN(HloInstruction * first_1_dims_collapsed, CollapseFirstNDims(param, 1)); entry_computation->set_root_instruction(first_1_dims_collapsed); HloEvaluator evaluator; TF_ASSERT_OK_AND_ASSIGN( Literal result_literal, evaluator.Evaluate(*module, {LiteralUtil::CreateR1<int32_t>({3, 4})})); CHECK_EQ(result_literal, LiteralUtil::CreateR1<int32_t>({3, 4})); } TEST_F(HloCreationUtilsTest, CollapseFirst2Dims) { HloInstruction* param; HloComputation* entry_computation; auto module = CreateModuleWithProgramShape( S32, {2, 3, 2}, {6, 2}, &param, &entry_computation); TF_ASSERT_OK_AND_ASSIGN(HloInstruction * first_2_dims_collapsed, CollapseFirstNDims(param, 2)); entry_computation->set_root_instruction(first_2_dims_collapsed); HloEvaluator evaluator; TF_ASSERT_OK_AND_ASSIGN( Literal result_literal, evaluator.Evaluate(*module, {LiteralUtil::CreateR3<int32_t>( {{{1, 2}, {3, 4}, {5, 6}}, {{-1, -2}, {-3, -4}, {-5, -6}}})})); CHECK_EQ(result_literal, LiteralUtil::CreateR2<int32_t>( {{1, 2}, {3, 4}, {5, 6}, {-1, -2}, {-3, -4}, {-5, -6}})); } TEST_F(HloCreationUtilsTest, Prepend1DegenerateDim) { HloInstruction* param; HloComputation* entry_computation; auto module = CreateModuleWithProgramShape(S32, {2}, {1, 2}, &param, &entry_computation); TF_ASSERT_OK_AND_ASSIGN(HloInstruction * with_1_degenerate_dim_prepended, PrependDegenerateDims(param, 1)); entry_computation->set_root_instruction(with_1_degenerate_dim_prepended); HloEvaluator evaluator; TF_ASSERT_OK_AND_ASSIGN( Literal result_literal, evaluator.Evaluate(*module, {LiteralUtil::CreateR1<int32_t>({9, 10})})); CHECK_EQ(result_literal, LiteralUtil::CreateR2<int32_t>({{9, 10}})); } TEST_F(HloCreationUtilsTest, Prepend2DegenerateDims) { HloInstruction* param; HloComputation* entry_computation; auto module = CreateModuleWithProgramShape(S32, {2}, {1, 1, 2}, &param, &entry_computation); TF_ASSERT_OK_AND_ASSIGN(HloInstruction * with_2_degenerate_dims_prepended, PrependDegenerateDims(param, 2)); entry_computation->set_root_instruction(with_2_degenerate_dims_prepended); HloEvaluator evaluator; TF_ASSERT_OK_AND_ASSIGN( Literal result_literal, evaluator.Evaluate(*module, {LiteralUtil::CreateR1<int32_t>({9, 10})})); CHECK_EQ(result_literal, LiteralUtil::CreateR3<int32_t>({{{9, 10}}})); } TEST_F(HloCreationUtilsTest, Prepend2DegenerateDimsToScalar) { HloInstruction* param; HloComputation* entry_computation; auto module = CreateModuleWithProgramShape(S32, {}, {1, 1}, &param, &entry_computation); TF_ASSERT_OK_AND_ASSIGN(HloInstruction * with_2_degenerate_dims_prepended, PrependDegenerateDims(param, 2)); entry_computation->set_root_instruction(with_2_degenerate_dims_prepended); HloEvaluator evaluator; TF_ASSERT_OK_AND_ASSIGN( Literal result_literal, evaluator.Evaluate(*module, {LiteralUtil::CreateR0<int32_t>(9)})); CHECK_EQ(result_literal, LiteralUtil::CreateR2<int32_t>({{9}})); } TEST_F(HloCreationUtilsTest, ExpandFirstDimInto3Dims) { HloInstruction* param; HloComputation* entry_computation; auto module = CreateModuleWithProgramShape(S32, {6}, {3, 1, 2}, &param, &entry_computation); TF_ASSERT_OK_AND_ASSIGN(HloInstruction * first_dim_expanded, ExpandFirstDimIntoNDims(param, {3, 1, 2})); entry_computation->set_root_instruction(first_dim_expanded); HloEvaluator evaluator; TF_ASSERT_OK_AND_ASSIGN( Literal result_literal, evaluator.Evaluate(*module, {LiteralUtil::CreateR1<int32_t>({1, 2, 3, 4, 5, 6})})); CHECK_EQ(result_literal, LiteralUtil::CreateR3<int32_t>({{{1, 2}}, {{3, 4}}, {{5, 6}}})); } TEST_F(HloCreationUtilsTest, PadVectorWithZeros) { HloInstruction* param; HloComputation* entry_computation; auto module = CreateModuleWithProgramShape(S32, {2}, {6}, &param, &entry_computation); TF_ASSERT_OK_AND_ASSIGN( HloInstruction * zero_padded_param, PadVectorWithZeros(param, 3, 1)); entry_computation->set_root_instruction(zero_padded_param); HloEvaluator evaluator; TF_ASSERT_OK_AND_ASSIGN( Literal result_literal, evaluator.Evaluate(*module, {LiteralUtil::CreateR1<int32_t>({3, 4})})); CHECK_EQ(result_literal, LiteralUtil::CreateR1<int32_t>({0, 0, 0, 3, 4, 0})); } TEST_F(HloCreationUtilsTest, BroadcastZeros_S32) { HloInstruction* param; HloComputation* entry_computation; auto module = CreateModuleWithProgramShape(S32, {}, {2, 2}, &param, &entry_computation); HloInstruction* zeros = BroadcastZeros(module->entry_computation(), S32, {2, 2}); entry_computation->set_root_instruction(zeros); HloEvaluator evaluator; TF_ASSERT_OK_AND_ASSIGN( Literal result_literal, evaluator.Evaluate(*module, {LiteralUtil::CreateR0<int32_t>(0)})); CHECK_EQ(result_literal, LiteralUtil::CreateR2<int32_t>({{0, 0}, {0, 0}})); } TEST_F(HloCreationUtilsTest, BroadcastZeros_F32) { HloInstruction* param; HloComputation* entry_computation; auto module = CreateModuleWithProgramShape(F32, {}, {2, 2}, &param, &entry_computation); HloInstruction* zeros = BroadcastZeros(module->entry_computation(), F32, {2, 2}); entry_computation->set_root_instruction(zeros); HloEvaluator evaluator; TF_ASSERT_OK_AND_ASSIGN( Literal result_literal, evaluator.Evaluate(*module, {LiteralUtil::CreateR0<float>(0.0f)})); CHECK_EQ(result_literal, LiteralUtil::CreateR2<float>({{0.0f, 0.0f}, {0.0f, 0.0f}})); } TEST_F(HloCreationUtilsTest, MakeBitcastConvertToHlo_S32) { HloInstruction* param; HloComputation* entry_computation; auto module = CreateModuleWithProgramShape(S32, {2, 2}, {2, 2}, &param, &entry_computation, F32); auto* input = module->entry_computation()->AddInstruction( HloInstruction::CreateConstant( LiteralUtil::CreateR2<int32_t>({{0, 0}, {0, 0}}))); HloInstruction* output = MakeBitcastConvertToHlo(input, F32); entry_computation->set_root_instruction(output); HloEvaluator evaluator; TF_ASSERT_OK_AND_ASSIGN( Literal result_literal, evaluator.Evaluate(*module, {LiteralUtil::CreateR2<int32_t>({{0, 0}, {0, 0}})})); CHECK_EQ(result_literal, LiteralUtil::CreateR2<float>({{0.0f, 0.0f}, {0.0f, 0.0f}})); } TEST_F(HloCreationUtilsTest, MakeIotaHlo_I32) { HloInstruction* param; HloComputation* entry_computation; auto module = CreateModuleWithProgramShape(S32, {}, {2, 2}, &param, &entry_computation, F32); HloInstruction* output = MakeIotaHlo(module->entry_computation(), ShapeUtil::MakeShape(F32, {2, 2}), 0); entry_computation->set_root_instruction(output); HloEvaluator evaluator; TF_ASSERT_OK_AND_ASSIGN( Literal result_literal, evaluator.Evaluate(*module, {LiteralUtil::CreateR0<int32_t>(0.0)})); CHECK_EQ(result_literal, LiteralUtil::CreateR2<float>({{0.0f, 0.0f}, {1.0f, 1.0f}})); } TEST_F(HloCreationUtilsTest, MakeBroadcast_F32) { HloInstruction* param; HloComputation* entry_computation; auto module = CreateModuleWithProgramShape(F32, {}, {2, 2}, &param, &entry_computation); auto* input = MakeR0ConstantHlo<float>(module->entry_computation(), 0); HloInstruction* output = MakeBroadcastHlo(input, {}, {2, 2}); entry_computation->set_root_instruction(output); HloEvaluator evaluator; TF_ASSERT_OK_AND_ASSIGN( Literal result_literal, evaluator.Evaluate(*module, {LiteralUtil::CreateR0<float>(0.0f)})); CHECK_EQ(result_literal, LiteralUtil::CreateR2<float>({{0.0f, 0.0f}, {0.0f, 0.0f}})); } TEST_F(HloCreationUtilsTest, MakeBroadcast_Shape_I32) { HloInstruction* param; HloComputation* entry_computation; auto module = CreateModuleWithProgramShape(S32, {}, {2, 2}, &param, &entry_computation); auto* input = MakeR0ConstantHlo<int32_t>(module->entry_computation(), 0); HloInstruction* output = MakeBroadcastHlo(input, {}, ShapeUtil::MakeShape(S32, {2, 2})); entry_computation->set_root_instruction(output); HloEvaluator evaluator; TF_ASSERT_OK_AND_ASSIGN( Literal result_literal, evaluator.Evaluate(*module, {LiteralUtil::CreateR0<int32_t>(0.0)})); CHECK_EQ(result_literal, LiteralUtil::CreateR2<int32_t>({{0, 0}, {0, 0}})); } TEST_F(HloCreationUtilsTest, MaybeMakeTupleCrashesWithEmptyOperands) { EXPECT_DEATH(MaybeMakeTuple({}), ""); } TEST_F(HloCreationUtilsTest, MaybeMakeTupleForwardsSingleElement) { HloInstruction* param; HloComputation* entry_computation; auto module = CreateModuleWithProgramShape(S32, {2, 2}, {2, 2}, &param, &entry_computation); HloInstruction* output = MaybeMakeTuple({param}); entry_computation->set_root_instruction(output); HloEvaluator evaluator; TF_ASSERT_OK_AND_ASSIGN( Literal result_literal, evaluator.Evaluate(*module, {LiteralUtil::CreateR2<int32_t>({{0, 0}, {0, 0}})})); EXPECT_EQ(result_literal, LiteralUtil::CreateR2<int32_t>({{0, 0}, {0, 0}})); } TEST_F(HloCreationUtilsTest, MaybeMakeTupleTuplizesMultipleOperands) { Shape input_shape0 = ShapeUtil::MakeShape(S32, {2}); Shape input_shape1 = ShapeUtil::MakeShape(F32, {3, 3}); Shape output_shape = ShapeUtil::MakeTupleShapeWithPtrs({&input_shape1, &input_shape0}); auto module = CreateNewVerifiedModule("test"); HloComputation* entry_computation = module->AddEntryComputation( CreateComputationWithSignature({&input_shape0, &input_shape1}, output_shape, "entry") .value()); HloInstruction* output = MaybeMakeTuple({entry_computation->parameter_instruction(1), entry_computation->parameter_instruction(0)}); entry_computation->set_root_instruction(output); HloEvaluator evaluator; Literal input0 = LiteralUtil::CreateR1<int32_t>({{2, 4}}); Literal input1 = LiteralUtil::CreateR2<float>({{3, 2, 1}, {4, 5, 6}, {9, 8, 7}}); TF_ASSERT_OK_AND_ASSIGN( Literal result_literal, evaluator.Evaluate(*module, {input0.Clone(), input1.Clone()})); Literal expected_result = LiteralUtil::MakeTuple({&input1, &input0}); EXPECT_EQ(result_literal, expected_result); } TEST_F(HloCreationUtilsTest, DynamicUpdateSliceVectorStartIndices) { auto module = CreateNewVerifiedModule("dus-creation-test"); auto operand_array = std::make_unique<Array2D<double>>(2, 3); operand_array->FillUnique(1.0); auto operand_literal = LiteralUtil::CreateR2FromArray2D<double>(*operand_array); Shape input_shape = ShapeUtil::MakeShape(F64, {2, 3}); Shape update_shape = ShapeUtil::MakeShape(F64, {2, 2}); HloComputation* entry_computation = module->AddEntryComputation( CreateComputationWithSignature({&input_shape, &update_shape}, input_shape, "entry") .value()); auto zero = module->entry_computation()->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(0))); auto one = module->entry_computation()->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(1))); auto update = LiteralUtil::CreateR2<double>({{-2.0, -3.0}, {-6.0, -7.0}}); HloInstruction* dus = MakeDynamicUpdateSliceHlo(entry_computation->parameter_instruction(0), entry_computation->parameter_instruction(1), {zero, one}) .value(); entry_computation->set_root_instruction(dus); HloEvaluator evaluator; TF_ASSERT_OK_AND_ASSIGN( Literal result, evaluator.Evaluate(*module, {&operand_literal, &update})); auto expected = LiteralUtil::CreateR2<double>({ {1, -2, -3}, {5, -6, -7}, }); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloCreationUtilsTest, ExpandDegenerateReshape) { const char* hlo_string = R"( HloModule module ENTRY test { param = f32[12,1,10,32,8] parameter(0) ROOT reshape = f32[1,12,10,1,32,1,8] reshape(param) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto expanded = ExpandDegenerateReshape(module->entry_computation()->root_instruction()); EXPECT_THAT(expanded, GmockMatch(m::Reshape(m::Reshape( m::Reshape(m::Reshape(m::Parameter(0))))))); } TEST_F(HloCreationUtilsTest, ReduceWindow) { const Shape scalar_shape = ShapeUtil::MakeShape(S32, {}); std::unique_ptr<HloModule> module = CreateNewVerifiedModule(); HloComputation* addition = [&] { auto embedded_builder = HloComputation::Builder("add"); auto lhs = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "lhs")); auto rhs = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {}), "rhs")); embedded_builder.AddInstruction( HloInstruction::CreateBinary(lhs->shape(), HloOpcode::kAdd, lhs, rhs)); return module->AddEmbeddedComputation(embedded_builder.Build()); }(); auto builder = HloComputation::Builder(TestName()); Shape input_shape = ShapeUtil::MakeShape(F32, {2, 4, 4}); Shape expected_output_shape = ShapeUtil::MakeShape(F32, {2, 2, 2}); Window window; WindowDimension* batch_dim = window.add_dimensions(); batch_dim->set_size(1); batch_dim->set_stride(1); batch_dim->set_padding_low(0); batch_dim->set_padding_high(0); batch_dim->set_window_dilation(1); batch_dim->set_base_dilation(1); for (int64_t i = 0; i < 2; ++i) { WindowDimension* dim = window.add_dimensions(); dim->set_size(2); dim->set_stride(2); dim->set_padding_low(0); dim->set_padding_high(0); dim->set_window_dilation(1); dim->set_base_dilation(1); } auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, input_shape, "A")); auto init = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0))); module->AddEntryComputation(builder.Build()); TF_ASSERT_OK_AND_ASSIGN(HloInstruction * reduce_window, MakeReduceWindowHlo(a_param, init, window, addition)); module->entry_computation()->set_root_instruction( reduce_window, true); *module->mutable_entry_computation_layout() = module->compute_computation_layout(); EXPECT_EQ(module->entry_computation()->root_instruction()->shape(), expected_output_shape); } TEST_F(HloCreationUtilsTest, ReduceWindowBinaryOpcode) { const Shape scalar_shape = ShapeUtil::MakeShape(S32, {}); std::unique_ptr<HloModule> module = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); Shape input_shape = ShapeUtil::MakeShape(F32, {2, 4, 4}); Shape expected_output_shape = ShapeUtil::MakeShape(F32, {2, 2, 2}); Window window; WindowDimension* batch_dim = window.add_dimensions(); batch_dim->set_size(1); batch_dim->set_stride(1); batch_dim->set_padding_low(0); batch_dim->set_padding_high(0); batch_dim->set_window_dilation(1); batch_dim->set_base_dilation(1); for (int64_t i = 0; i < 2; ++i) { WindowDimension* dim = window.add_dimensions(); dim->set_size(2); dim->set_stride(2); dim->set_padding_low(0); dim->set_padding_high(0); dim->set_window_dilation(1); dim->set_base_dilation(1); } auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, input_shape, "A")); auto init = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0))); module->AddEntryComputation(builder.Build()); TF_ASSERT_OK_AND_ASSIGN( HloInstruction * reduce_window, MakeReduceWindowHlo(a_param, init, window, HloOpcode::kAdd)); module->entry_computation()->set_root_instruction( reduce_window, true); *module->mutable_entry_computation_layout() = module->compute_computation_layout(); EXPECT_EQ(module->entry_computation()->root_instruction()->shape(), expected_output_shape); } TEST_F(HloCreationUtilsTest, DynamicBroadcastShape) { HloInstruction* param; HloComputation* entry_computation; auto module = CreateModuleWithProgramShape(F32, {10}, {10}, &param, &entry_computation); param->mutable_shape()->set_dynamic_dimension(0, true); HloInstruction* one_constant = MakeScalarLike(param, 1.0f); EXPECT_TRUE(one_constant->shape().is_static()); } } }
1,870
cpp
tensorflow/tensorflow
hlo_memory_scheduler
third_party/xla/xla/service/hlo_memory_scheduler.cc
third_party/xla/xla/service/hlo_memory_scheduler_test.cc
#ifndef XLA_SERVICE_HLO_MEMORY_SCHEDULER_H_ #define XLA_SERVICE_HLO_MEMORY_SCHEDULER_H_ #include <cstdint> #include <functional> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_pass_interface.h" #include "xla/service/logical_buffer.h" #include "xla/service/tuple_points_to_analysis.h" namespace xla { using MemorySchedulerPostprocessor = std::function<HloInstructionSequence(const HloInstructionSequence&)>; using MemorySchedulerAlgorithm = std::function<absl::StatusOr<HloInstructionSequence>( HloComputation*, const TuplePointsToAnalysis&, const HloAliasAnalysis&, const LogicalBuffer::SizeFunction&, const absl::flat_hash_map<const HloComputation*, int64_t>&, const MemorySchedulerPostprocessor&, int64_t*)>; using ModuleSchedulerAlgorithm = std::function<absl::StatusOr<HloSchedule>( const HloModule*, const TuplePointsToAnalysis&, const HloAliasAnalysis&, const LogicalBuffer::SizeFunction&, const absl::flat_hash_set<absl::string_view>& execution_threads, int64_t*)>; ModuleSchedulerAlgorithm ComputationSchedulerToModuleScheduler( const MemorySchedulerAlgorithm&, const MemorySchedulerPostprocessor& = {}); absl::StatusOr<HloInstructionSequence> ListMemoryScheduler( HloComputation* computation, const TuplePointsToAnalysis& points_to_analysis, const HloAliasAnalysis& alias_analysis, const LogicalBuffer::SizeFunction& size_function, const absl::flat_hash_map<const HloComputation*, int64_t>& memory_by_computation, const MemorySchedulerPostprocessor& postprocessor, int64_t* peak_memory); absl::StatusOr<HloInstructionSequence> DFSMemoryScheduler( HloComputation* computation, const TuplePointsToAnalysis& points_to_analysis, const HloAliasAnalysis& alias_analysis, const LogicalBuffer::SizeFunction& size_function, const absl::flat_hash_map<const HloComputation*, int64_t>& memory_by_computation, const MemorySchedulerPostprocessor& postprocessor, int64_t* peak_memory); absl::StatusOr<HloInstructionSequence> BFSMemoryScheduler( HloComputation* computation, const TuplePointsToAnalysis& points_to_analysis, const HloAliasAnalysis& alias_analysis, const LogicalBuffer::SizeFunction& size_function, const absl::flat_hash_map<const HloComputation*, int64_t>& memory_by_computation, const MemorySchedulerPostprocessor& postprocessor, int64_t* peak_memory); absl::StatusOr<HloInstructionSequence> PostOrderMemoryScheduler( HloComputation* computation, const TuplePointsToAnalysis& points_to_analysis, const HloAliasAnalysis& alias_analysis, const LogicalBuffer::SizeFunction& size_function, const absl::flat_hash_map<const HloComputation*, int64_t>& memory_by_computation, const MemorySchedulerPostprocessor& postprocessor, int64_t* peak_memory); absl::StatusOr<HloInstructionSequence> DefaultMemoryScheduler( HloComputation* computation, const TuplePointsToAnalysis& points_to_analysis, const HloAliasAnalysis& alias_analysis, const LogicalBuffer::SizeFunction& size_function, const absl::flat_hash_map<const HloComputation*, int64_t>& memory_by_computation, const MemorySchedulerPostprocessor& postprocessor, int64_t* peak_memory); absl::StatusOr<HloSchedule> DefaultModuleScheduler( const HloModule* module, const TuplePointsToAnalysis& points_to_analysis, const HloAliasAnalysis& alias_analysis, const LogicalBuffer::SizeFunction& size_function, const absl::flat_hash_set<absl::string_view>& execution_threads, int64_t* peak_memory); absl::StatusOr<HloSchedule> ScheduleModule( const HloModule* module, const LogicalBuffer::SizeFunction& size_function, const ModuleSchedulerAlgorithm& algorithm = {}, const absl::flat_hash_set<absl::string_view>& execution_threads = {}, int64_t* peak_memory = nullptr); absl::StatusOr<HloInstructionSequence> ScheduleComputation( HloComputation* computation, const LogicalBuffer::SizeFunction& size_function, const MemorySchedulerPostprocessor& postprocessor); class HloMemoryScheduler : public HloModulePass { public: explicit HloMemoryScheduler(const LogicalBuffer::SizeFunction& size_function, const ModuleSchedulerAlgorithm& algorithm = {}); ~HloMemoryScheduler() override = default; absl::string_view name() const override { return "hlo-memory-scheduler"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: LogicalBuffer::SizeFunction size_function_; ModuleSchedulerAlgorithm algorithm_; }; class HloTrivialScheduler : public HloModulePass { public: absl::string_view name() const override { return "hlo-trivial-scheduler"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; class HloDescheduler : public HloModulePass { public: HloDescheduler() = default; ~HloDescheduler() override = default; absl::string_view name() const override { return "hlo-descheduler"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } #endif #include "xla/service/hlo_memory_scheduler.h" #include <algorithm> #include <climits> #include <cstddef> #include <cstdint> #include <limits> #include <map> #include <memory> #include <queue> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/service/buffer_value.h" #include "xla/service/heap_simulator/heap_simulator.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/logical_buffer.h" #include "xla/service/tuple_points_to_analysis.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/numbers.h" #include "tsl/platform/statusor.h" #include "tsl/profiler/lib/scoped_annotation.h" namespace xla { namespace { using ::tsl::strings::HumanReadableNumBytes; class ListScheduler { public: static absl::StatusOr<HloInstructionSequence> Run( HloComputation* computation, const TuplePointsToAnalysis& points_to_analysis, const BufferValue::SizeFunction& size_function, const absl::flat_hash_map<const HloComputation*, int64_t>& memory_by_computation) { ListScheduler scheduler(computation, points_to_analysis, size_function, memory_by_computation); return scheduler.CreateSchedule(); } static bool IgnoreInstruction(const HloInstruction& instruction) { return instruction.opcode() == HloOpcode::kParameter || instruction.opcode() == HloOpcode::kConstant; } private: using Priority = std::pair<int64_t, int64_t>; ListScheduler(HloComputation* computation, const TuplePointsToAnalysis& points_to_analysis, const BufferValue::SizeFunction& size_function, const absl::flat_hash_map<const HloComputation*, int64_t>& memory_by_computation) : computation_(computation), points_to_analysis_(points_to_analysis), size_function_(size_function), memory_by_computation_(memory_by_computation) { for (auto* instruction : computation->instructions()) { absl::flat_hash_set<const LogicalBuffer*> instr_uses; for (auto* operand : instruction->operands()) { points_to_analysis.GetPointsToSet(operand).ForEachElement( [&](const ShapeIndex& , const PointsToSet::BufferList& buffers) { instr_uses.insert(buffers.begin(), buffers.end()); }); } buffer_uses_[instruction] = std::vector<const LogicalBuffer*>( instr_uses.begin(), instr_uses.end()); } unscheduled_use_count_.reserve(points_to_analysis.num_logical_buffers()); for (auto* instruction : computation->instructions()) { for (auto* buffer : points_to_analysis.GetBuffersDefinedByInstruction(instruction)) { unscheduled_use_count_[buffer] = 0; } } for (auto* instruction : computation->instructions()) { for (const LogicalBuffer* buffer : buffer_uses_.at(instruction)) { ++unscheduled_use_count_[buffer]; } } for (const LogicalBuffer* live_out_buffer : points_to_analysis.GetPointsToSet(computation->root_instruction()) .CreateFlattenedSet()) { ++unscheduled_use_count_[live_out_buffer]; } } static bool IgnoreBuffer(const LogicalBuffer& buffer) { return IgnoreInstruction(*buffer.instruction()); } struct ReadyListEntry { HloInstruction* instruction; int64_t bytes_defined; std::vector<const std::pair<const LogicalBuffer* const, int64_t>*> used_buffer_unscheduled_use_counts; }; ReadyListEntry MakeReadyListEntry(HloInstruction* instruction) { ReadyListEntry entry; entry.instruction = instruction; entry.bytes_defined = 0; for (auto* buffer : points_to_analysis_.GetBuffersDefinedByInstruction(instruction)) { if (!IgnoreBuffer(*buffer)) { entry.bytes_defined += size_function_(*buffer); } } for (auto* buffer : buffer_uses_.at(instruction)) { if (IgnoreBuffer(*buffer)) { continue; } auto unscheduled_use_count_it = unscheduled_use_count_.find(buffer); CHECK(unscheduled_use_count_it != unscheduled_use_count_.end()); entry.used_buffer_unscheduled_use_counts.push_back( &*unscheduled_use_count_it); } return entry; } int64_t BytesFreedIfScheduled(const ReadyListEntry& entry) { auto instruction = entry.instruction; auto opcode = instruction->opcode(); if (opcode == HloOpcode::kOutfeed && !instruction->outfeed_config().empty()) { return INT_MAX; } if (opcode == HloOpcode::kInfeed && !instruction->infeed_config().empty()) { return INT_MIN; } int64_t freed_bytes = 0; for (const auto& kv : entry.used_buffer_unscheduled_use_counts) { auto buffer = kv->first; auto use_count = kv->second; if (use_count == 1) { freed_bytes += size_function_(*buffer); } } int64_t max_subcomputation_bytes = 0; for (const auto* c : instruction->called_computations()) { auto it = memory_by_computation_.find(c); if (it != memory_by_computation_.end()) { int64_t subcomputation_bytes = it->second; if (subcomputation_bytes > max_subcomputation_bytes) { max_subcomputation_bytes = subcomputation_bytes; } } } int64_t bytes_defined; if (max_subcomputation_bytes > 0 && (opcode == HloOpcode::kWhile || opcode == HloOpcode::kCall || opcode == HloOpcode::kConditional)) { bytes_defined = max_subcomputation_bytes; } else { bytes_defined = entry.bytes_defined + max_subcomputation_bytes; } return freed_bytes - bytes_defined; } Priority GetPriority(const ReadyListEntry& entry) { if (ShapeUtil::IsEffectiveScalar(entry.instruction->shape())) { return {std::numeric_limits<int64_t>::max(), std::numeric_limits<int64_t>::max()}; } return {BytesFreedIfScheduled(entry), entry.instruction->user_count()}; } HloInstructionSequence CreateSchedule() { HloInstructionSequence schedule; absl::flat_hash_map<const HloInstruction*, int64_t> unscheduled_pred_count; for (auto* instruction : computation_->instructions()) { for (HloInstruction* user : instruction->users()) { unscheduled_pred_count[user]++; } for (HloInstruction* succ : instruction->control_successors()) { unscheduled_pred_count[succ]++; } } std::multimap<Priority, ReadyListEntry> ready_queue; absl::flat_hash_map<const HloInstruction*, std::multimap<Priority, ReadyListEntry>::iterator> ready_instructions; auto add_to_ready_queue = [&](HloInstruction* inst) { auto entry = MakeReadyListEntry(inst); auto it = ready_queue.emplace(GetPriority(entry), std::move(entry)); ready_instructions[inst] = it; }; for (auto* instruction : computation_->instructions()) { if (instruction->operands().empty() && instruction->control_predecessors().empty()) { add_to_ready_queue(instruction); } } while (!ready_queue.empty()) { auto best_it = ready_queue.end(); --best_it; HloInstruction* best = best_it->second.instruction; VLOG(2) << "Schedule instruction: " << best->ToShortString() << " Bytes freed: " << best_it->first.first; ready_queue.erase(best_it); ready_instructions.erase(best); schedule.push_back(best); scheduled_instructions_.insert(best); bool adjust_ready_queue = false; for (const LogicalBuffer* buffer : buffer_uses_.at(best)) { int64_t& count = unscheduled_use_count_[buffer]; CHECK_GT(count, 0); --count; if (count == 1) { adjust_ready_queue = true; } } auto update_pred_count = [&](HloInstruction* inst) { int64_t pred_count = --unscheduled_pred_count.at(inst); CHECK_GE(pred_count, 0); if (pred_count == 0) { add_to_ready_queue(inst); } }; for (HloInstruction* user : best->users()) { update_pred_count(user); } for (HloInstruction* succ : best->control_successors()) { update_pred_count(succ); } if (adjust_ready_queue) { for (HloInstruction* operand : best->operands()) { for (HloInstruction* operand_user : operand->users()) { auto ready_instructions_it = ready_instructions.find(operand_user); if (ready_instructions_it == ready_instructions.end()) { continue; } auto ready_queue_it = ready_instructions_it->second; auto& entry = ready_queue_it->second; Priority new_priority = GetPriority(entry); if (new_priority == ready_queue_it->first) { continue; } ready_instructions_it->second = ready_queue.emplace(new_priority, std::move(entry)); ready_queue.erase(ready_queue_it); } } } } CHECK_EQ(schedule.size(), computation_->instruction_count()); CHECK_EQ(scheduled_instructions_.size(), computation_->instruction_count()); return schedule; } HloComputation* computation_; const TuplePointsToAnalysis& points_to_analysis_; const BufferValue::SizeFunction& size_function_; const absl::flat_hash_map<const HloComputation*, int64_t>& memory_by_computation_; absl::flat_hash_map<const HloInstruction*, std::vector<const LogicalBuffer*>> buffer_uses_; absl::flat_hash_map<const LogicalBuffer*, int64_t> unscheduled_use_count_; absl::flat_hash_set<const HloInstruction*> scheduled_instructions_; }; int64_t SumLogicalBufferSizes( const TuplePointsToAnalysis::BufferDefinitionVector& buffers, const BufferValue::SizeFunction& size_function) { int64_t size = 0; for (const LogicalBuffer* buffer : buffers) { size += size_function(*buffer); } return size; } absl::StatusOr<HloInstructionSequence> ScheduleComputationHelper( HloComputation* computation, const TuplePointsToAnalysis& points_to_analysis, const HloAliasAnalysis& alias_analysis, const BufferValue::SizeFunction& size_function, const MemorySchedulerAlgorithm& algorithm, const absl::flat_hash_map<const HloComputation*, int64_t>& memory_by_computation, const MemorySchedulerPostprocessor& postprocessor, int64_t* peak_memory) { VLOG(2) << "Computation: " << computation->name(); if (algorithm) { return algorithm(computation, points_to_analysis, alias_analysis, size_function, memory_by_computation, postprocessor, peak_memory); } return DefaultMemoryScheduler(computation, points_to_analysis, alias_analysis, size_function, memory_by_computation, postprocessor, peak_memory); } } absl::StatusOr<HloInstructionSequence> DFSMemoryScheduler( HloComputation* computation, const TuplePointsToAnalysis& points_to_analysis, const HloAliasAnalysis& alias_analysis, const BufferValue::SizeFunction& size_function, const absl::flat_hash_map<const HloComputation*, int64_t>& memory_by_computation, const MemorySchedulerPostprocessor& postprocessor, int64_t* peak_memory) { int64_t cumulative_total_size = 0; int64_t total_hlos = computation->instruction_count(); struct Stats { int64_t extra_users = 0; int64_t total_sizes = 0; }; absl::flat_hash_map<const HloInstruction*, Stats> stats_map; stats_map.reserve(computation->instruction_count()); for (const HloInstruction* hlo : computation->MakeInstructionPostOrder()) { auto& stats = stats_map[hlo]; if (ListScheduler::IgnoreInstruction(*hlo)) { continue; } stats.extra_users = hlo->users().empty() ? 0 : hlo->users().size() - 1; int64_t logical_buffer_size = SumLogicalBufferSizes( points_to_analysis.GetBuffersDefinedByInstruction(hlo), size_function); stats.total_sizes = logical_buffer_size; cumulative_total_size += logical_buffer_size; absl::flat_hash_set<const HloInstruction*> unique_operands( hlo->operands().begin(), hlo->operands().end()); for (const HloInstruction* operand : unique_operands) { auto& operand_stats = stats_map.at(operand); stats.extra_users += operand_stats.extra_users; stats.total_sizes += operand_stats.total_sizes; } stats.total_sizes = std::min(stats.total_sizes, cumulative_total_size); stats.extra_users = std::min(stats.extra_users, total_hlos); } CHECK_EQ(stats_map.size(), computation->instruction_count()); HloInstructionSequence sequence; FunctionVisitor visitor([&sequence](HloInstruction* hlo) { sequence.push_back(hlo); return absl::OkStatus(); }); visitor.ReserveVisitStates(computation->instruction_count()); TF_RETURN_IF_ERROR(computation->AcceptWithOperandOrder( &visitor, [&stats_map](const HloInstruction* a, const HloInstruction* b) { auto& stats_a = stats_map.at(a); auto& stats_b = stats_map.at(b); if (stats_a.extra_users != stats_b.extra_users) { return stats_a.extra_users > stats_b.extra_users; } if (stats_a.total_sizes != stats_b.total_sizes) { return stats_a.total_sizes > stats_b.total_sizes; } return a->name() < b->name(); })); if (postprocessor) { sequence = postprocessor(sequence); } CHECK_EQ(sequence.size(), computation->instruction_count()); if (peak_memory) { TF_ASSIGN_OR_RETURN( *peak_memory, HeapSimulator::MinimumMemoryForComputation( *computation, sequence, alias_analysis, size_function, &memory_by_computation)); } return sequence; } absl::StatusOr<HloInstructionSequence> BFSMemoryScheduler( HloComputation* computation, const TuplePointsToAnalysis& points_to_analysis, const HloAliasAnalysis& alias_analysis, const BufferValue::SizeFunction& size_function, const absl::flat_hash_map<const HloComputation*, int64_t>& memory_by_computation, const MemorySchedulerPostprocessor& postprocessor, int64_t* peak_memory) { absl::flat_hash_map<const HloInstruction*, int64_t> inst_index; std::vector<int64_t> inst_deps(computation->instruction_count(), 0); std::queue<HloInstruction*> ready_queue; auto update_queue = [&](HloInstruction* inst) { int64_t index = inst_index.at(inst); CHECK_GE(--inst_deps[index], 0); if (inst_deps[index] == 0) { ready_queue.push(inst); } }; for (HloInstruction* inst : computation->instructions()) { size_t index = inst_index.size(); inst_index[inst] = index; inst_deps[index] = inst->unique_operands().size() + inst->control_predecessors().size(); if (inst_deps[index] == 0) { ready_queue.push(i
#include "xla/service/hlo_memory_scheduler.h" #include <cstddef> #include <cstdint> #include <iterator> #include <memory> #include <string> #include <string_view> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/literal_util.h" #include "xla/service/buffer_value.h" #include "xla/service/heap_simulator/heap_simulator.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_ordering.h" #include "xla/service/hlo_value.h" #include "xla/service/logical_buffer.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace { class HloSchedulingTest : public HloTestBase {}; int64_t PeakMemoryUseOfEntryComputation( HloModule* module, LogicalBuffer::SizeFunction size_function) { CHECK(module->has_entry_computation()); CHECK(module->has_schedule()); std::unique_ptr<HloAliasAnalysis> alias_analysis = HloAliasAnalysis::Run(module).value(); const HloSchedule& schedule = module->schedule(); HloComputation* computation = module->entry_computation(); const HloInstructionSequence& sequence = schedule.sequence(computation); return HeapSimulator::Run( std::make_unique<NoFragmentationStatsHeap<HloValue>>(), *computation, sequence, *alias_analysis, size_function) .value() .heap_size; } TEST_F(HloSchedulingTest, LastUseScheduledFirst) { const Shape vec = ShapeUtil::MakeShape(xla::F32, {42}); auto builder = HloComputation::Builder(TestName()); auto param = builder.AddInstruction(HloInstruction::CreateParameter(0, vec, "param")); auto ab = builder.AddInstruction( HloInstruction::CreateUnary(vec, HloOpcode::kAbs, param)); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(vec, HloOpcode::kExp, param)); auto add = builder.AddInstruction( HloInstruction::CreateBinary(vec, HloOpcode::kAdd, ab, exp)); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(vec, HloOpcode::kNegate, exp)); auto sub = builder.AddInstruction( HloInstruction::CreateBinary(vec, HloOpcode::kSubtract, add, negate)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); HloMemoryScheduler scheduler([](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape()); }); ASSERT_FALSE(module->has_schedule()); TF_ASSERT_OK_AND_ASSIGN(bool changed, scheduler.Run(module.get())); EXPECT_TRUE(changed); ASSERT_TRUE(module->has_schedule()); TF_ASSERT_OK(module->schedule().Verify()); const std::vector<HloInstruction*>& sequence = module->schedule().sequence(module->entry_computation()).instructions(); EXPECT_EQ(module->entry_computation()->instruction_count(), sequence.size()); EXPECT_EQ(param, sequence.front()); EXPECT_EQ(sub, sequence.back()); SequentialHloOrdering ordering(module->schedule()); EXPECT_TRUE(ordering.ExecutesBefore(add, negate)); HloDescheduler descheduler; EXPECT_TRUE(module->has_schedule()); TF_ASSERT_OK_AND_ASSIGN(bool descheduler_changed, descheduler.Run(module.get())); EXPECT_TRUE(descheduler_changed); EXPECT_FALSE(module->has_schedule()); } TEST_F(HloSchedulingTest, ListSchedulerHandlesAliasing) { const char* module_str = R"( HloModule test_aliasing_module ENTRY root { param = s32[1000] parameter(0) p0 = s32[1000] copy(param) p1 = s32[1000] copy(param) t = (s32[1000], s32[1000]) tuple(p0, p1) a = s32[1000] get-tuple-element(t), index=0 b = s32[1000] get-tuple-element(t), index=1 c = s32[1000] add(a, b) d = s32[1000] add(c, b) e = s32[1000] add(c, c) f = s32[1000] add(e, e) ROOT result = (s32[1000], s32[1000], s32[1000]) tuple(d, e, f) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); auto size_fn = [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape(), 8); }; int64_t peak_memory; TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule(module.get(), size_fn, ComputationSchedulerToModuleScheduler(ListMemoryScheduler), {}, &peak_memory)); TF_ASSERT_OK(module->set_schedule(schedule)); const std::vector<HloInstruction*>& sequence = schedule.sequence(module->entry_computation()).instructions(); EXPECT_EQ(module->entry_computation()->instruction_count(), sequence.size()); absl::flat_hash_map<std::string, const HloInstruction*> instructions_by_name; for (const HloInstruction* instruction : sequence) { instructions_by_name[instruction->name()] = instruction; } EXPECT_EQ(instructions_by_name.at("param"), sequence.front()); EXPECT_EQ(instructions_by_name.at("result"), sequence.back()); SequentialHloOrdering ordering(schedule); EXPECT_TRUE(ordering.ExecutesBefore(instructions_by_name.at("d"), instructions_by_name.at("e"))); EXPECT_EQ(PeakMemoryUseOfEntryComputation(module.get(), size_fn), peak_memory); } TEST_F(HloSchedulingTest, HostSendDoneSchedule) { const char* const module_str = R"( HloModule module ENTRY entry { %p = f32[1000, 1000] parameter(0) %token.0 = token[] after-all() %send = (f32[1000, 1000], token[]) send(%p, %token.0), channel_id=1, is_host_transfer=true %n1 = f32[1000, 1000] negate(%p) %n2 = f32[1000, 1000] negate(%n1) %n3 = f32[1000, 1000] negate(%n2) %send-done = token[] send-done(%send), channel_id=1, is_host_transfer=true } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); auto size_fn = [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape(), 8); }; TF_ASSERT_OK_AND_ASSIGN(HloSchedule schedule, ScheduleModule(module.get(), size_fn, ComputationSchedulerToModuleScheduler( ListMemoryScheduler))); const std::vector<HloInstruction*>& sequence = schedule.sequence(module->entry_computation()).instructions(); EXPECT_EQ(module->entry_computation()->instruction_count(), sequence.size()); absl::flat_hash_map<std::string, const HloInstruction*> instructions_by_name; for (const HloInstruction* instruction : sequence) { instructions_by_name[instruction->name()] = instruction; } EXPECT_LT(absl::c_find(sequence, instructions_by_name.at("send-done")), absl::c_find(sequence, instructions_by_name.at("n1"))); } TEST_F(HloSchedulingTest, TuplesAreAccountedCorrectly) { auto builder = HloComputation::Builder(TestName()); const Shape r1f32 = ShapeUtil::MakeShape(xla::F32, {6}); auto lit = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({1, 1, 1, 1, 1, 1}))); auto abs_const = builder.AddInstruction( HloInstruction::CreateUnary(r1f32, HloOpcode::kAbs, lit)); auto abs_abs1 = builder.AddInstruction( HloInstruction::CreateUnary(r1f32, HloOpcode::kAbs, abs_const)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple( absl::Span<HloInstruction* const>({abs_abs1}))); auto tuple_elm = builder.AddInstruction( HloInstruction::CreateGetTupleElement(r1f32, tuple, 0)); auto abs_abs2 = builder.AddInstruction( HloInstruction::CreateUnary(r1f32, HloOpcode::kAbs, abs_const)); builder.AddInstruction(HloInstruction::CreateBinary(r1f32, HloOpcode::kAdd, tuple_elm, abs_abs2)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule( module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape(), 1); }, ComputationSchedulerToModuleScheduler(ListMemoryScheduler))); EXPECT_EQ(module->entry_computation()->instruction_count(), schedule.sequence(module->entry_computation()).size()); SequentialHloOrdering ordering(schedule); EXPECT_TRUE(ordering.ExecutesBefore(abs_abs2, tuple)); } TEST_F(HloSchedulingTest, MultiOutputFusionAccountedCorrectly) { const Shape r1f32 = ShapeUtil::MakeShape(xla::F32, {5}); HloComputation::Builder builder(TestName()); auto c1 = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({1, 1, 1, 1, 1}))); auto c2 = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({1, 2, 3, 4, 5}))); auto c3 = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({0, 2, 4, 6, 8}))); auto add = builder.AddInstruction( HloInstruction::CreateBinary(r1f32, HloOpcode::kAdd, c1, c2)); auto mul = builder.AddInstruction( HloInstruction::CreateBinary(r1f32, HloOpcode::kMultiply, add, c3)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({add, mul})); auto tuple_elm = builder.AddInstruction( HloInstruction::CreateGetTupleElement(r1f32, tuple, 0)); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(r1f32, HloOpcode::kExp, c3)); builder.AddInstruction( HloInstruction::CreateBinary(r1f32, HloOpcode::kAdd, tuple_elm, exp)); auto module = CreateNewVerifiedModule(); auto* computation = module->AddEntryComputation(builder.Build()); auto fusion = computation->CreateFusionInstruction( {tuple, mul, add}, HloInstruction::FusionKind::kLoop); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule( module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape(), 2); }, ComputationSchedulerToModuleScheduler(ListMemoryScheduler))); EXPECT_EQ(module->entry_computation()->instruction_count(), schedule.sequence(module->entry_computation()).size()); SequentialHloOrdering ordering(schedule); EXPECT_TRUE(ordering.ExecutesBefore(exp, fusion)); } TEST_F(HloSchedulingTest, TrivialScheduler) { const char* const hlo_string = R"( HloModule ModuleWithWhile body { param.b = (s32[], s32[]) parameter(0) gte.0 = s32[] get-tuple-element(param.b), index=0 gte.1 = s32[] get-tuple-element(param.b), index=1 add = s32[] add(gte.0, gte.1) ROOT tuple = (s32[], s32[]) tuple(gte.0, add) } cond { param.c = (s32[], s32[]) parameter(0) ROOT constant = pred[] constant(true) } ENTRY main { init = (s32[], s32[]) parameter(0) ROOT while = (s32[], s32[]) while(init), condition=cond, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); EXPECT_FALSE(module->has_schedule()); TF_ASSERT_OK(HloTrivialScheduler().Run(module.get()).status()); ASSERT_TRUE(module->has_schedule()); TF_ASSERT_OK(module->schedule().Verify()); std::unique_ptr<HloModule> clone = module->Clone(); ASSERT_TRUE(clone->has_schedule()); TF_ASSERT_OK(clone->schedule().Verify()); } TEST_F(HloSchedulingTest, BFSScheduler) { const char* const hlo_string = R"( HloModule m add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } ENTRY e { p0 = f32[1,2,1,512,256] parameter(0) c0 = f32[] constant(0) c1 = f32[] constant(1) bcast1 = f32[1,2,1,512,256] broadcast(c1), dimensions={} add1 = f32[1,2,1,512,256] add(p0, bcast1) c2 = f32[] constant(2) bcast2 = f32[1,2,1,512,256] broadcast(c2), dimensions={} add2 = f32[1,2,1,512,256] add(p0, bcast2) c3 = f32[] constant(3) bcast3 = f32[1,2,1,512,256] broadcast(c3), dimensions={} add3 = f32[1,2,1,512,256] add(p0, bcast3) c4 = f32[] constant(4) bcast4 = f32[1,2,1,512,256] broadcast(c4), dimensions={} add4 = f32[1,2,1,512,256] add(p0, bcast4) c5 = f32[] constant(5) bcast5 = f32[1,2,1,512,256] broadcast(c5), dimensions={} add5 = f32[1,2,1,512,256] add(p0, bcast5) r1 = f32[1,2] reduce(add1, c0), dimensions={2,3,4}, to_apply=add r2 = f32[1,2] reduce(add2, c0), dimensions={2,3,4}, to_apply=add r3 = f32[1,2] reduce(add3, c0), dimensions={2,3,4}, to_apply=add r4 = f32[1,2] reduce(add4, c0), dimensions={2,3,4}, to_apply=add r5 = f32[1,2] reduce(add5, c0), dimensions={2,3,4}, to_apply=add out0 = f32[1,2] add(r1, r2) out1 = f32[1,2] add(r3, r4) out2 = f32[1,2] add(out0, out1) ROOT out3 = f32[1,2] add(out2, r5) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule( module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape()); }, ComputationSchedulerToModuleScheduler(BFSMemoryScheduler))); const std::vector<HloInstruction*>& sequence = schedule.sequence(module->entry_computation()).instructions(); absl::flat_hash_map<std::string, const HloInstruction*> instructions_by_name; for (const HloInstruction* instruction : sequence) { instructions_by_name[instruction->name()] = instruction; } auto index = [&](std::string_view name) -> size_t { const HloInstruction* instruction = instructions_by_name.at(name); return std::distance(sequence.begin(), absl::c_find(sequence, instruction)); }; std::vector<size_t> indices = { index("bcast1"), index("bcast2"), index("bcast3"), index("bcast4"), index("bcast5"), index("add1"), index("add2"), index("add3"), index("add4"), index("add5"), index("r1"), index("r2"), index("r3"), index("r4"), index("r5"), index("out0"), index("out1"), index("out2"), index("out3")}; EXPECT_TRUE(absl::c_is_sorted(indices)); } } }
1,871
cpp
tensorflow/tensorflow
custom_call_status
third_party/xla/xla/service/custom_call_status.cc
third_party/xla/xla/service/custom_call_status_test.cc
#ifndef XLA_SERVICE_CUSTOM_CALL_STATUS_H_ #define XLA_SERVICE_CUSTOM_CALL_STATUS_H_ #include <string.h> #ifdef __cplusplus extern "C" { #endif typedef struct XlaCustomCallStatus_ XlaCustomCallStatus; void XlaCustomCallStatusSetSuccess(XlaCustomCallStatus* status); void XlaCustomCallStatusSetFailure(XlaCustomCallStatus* status, const char* message, size_t message_len); #ifdef __cplusplus } #endif #endif #include "xla/service/custom_call_status_internal.h" namespace xla { std::optional<absl::string_view> CustomCallStatusGetMessage( const XlaCustomCallStatus* status) { return status->message; } } void XlaCustomCallStatusSetSuccess(XlaCustomCallStatus* status) { status->message = std::nullopt; } void XlaCustomCallStatusSetFailure(XlaCustomCallStatus* status, const char* message, size_t message_len) { status->message = std::string(message, 0, message_len); }
#include "xla/service/custom_call_status_internal.h" #include "xla/service/custom_call_status_test_c_caller.h" #include "tsl/platform/test.h" TEST(XlaCustomCallStatusTest, DefaultIsSuccess) { XlaCustomCallStatus status; ASSERT_EQ(xla::CustomCallStatusGetMessage(&status), std::nullopt); } TEST(XlaCustomCallStatusTest, SetSuccess) { XlaCustomCallStatus status; XlaCustomCallStatusSetSuccess(&status); ASSERT_EQ(xla::CustomCallStatusGetMessage(&status), std::nullopt); } TEST(XlaCustomCallStatusTest, SetSuccessAfterFailure) { XlaCustomCallStatus status; XlaCustomCallStatusSetFailure(&status, "error", 5); XlaCustomCallStatusSetSuccess(&status); ASSERT_EQ(xla::CustomCallStatusGetMessage(&status), std::nullopt); } TEST(XlaCustomCallStatusTest, SetFailure) { XlaCustomCallStatus status; XlaCustomCallStatusSetFailure(&status, "error", 5); ASSERT_EQ(xla::CustomCallStatusGetMessage(&status), "error"); } TEST(XlaCustomCallStatusTest, SetFailureAfterSuccess) { XlaCustomCallStatus status; XlaCustomCallStatusSetSuccess(&status); XlaCustomCallStatusSetFailure(&status, "error", 5); ASSERT_EQ(xla::CustomCallStatusGetMessage(&status), "error"); } TEST(XlaCustomCallStatusTest, SetFailureTruncatesErrorAtGivenLength) { XlaCustomCallStatus status; XlaCustomCallStatusSetFailure(&status, "error", 4); ASSERT_EQ(xla::CustomCallStatusGetMessage(&status), "erro"); } TEST(XlaCustomCallStatusTest, SetFailureTruncatesErrorAtNullTerminator) { XlaCustomCallStatus status; XlaCustomCallStatusSetFailure(&status, "error", 100); ASSERT_EQ(xla::CustomCallStatusGetMessage(&status), "error"); } TEST(XlaCustomCallStatusTest, CSetSuccess) { XlaCustomCallStatus status; CSetSuccess(&status); ASSERT_EQ(xla::CustomCallStatusGetMessage(&status), std::nullopt); } TEST(XlaCustomCallStatusTest, CSetFailure) { XlaCustomCallStatus status; CSetFailure(&status, "error", 5); ASSERT_EQ(xla::CustomCallStatusGetMessage(&status), "error"); }
1,872
cpp
tensorflow/tensorflow
conditional_canonicalizer
third_party/xla/xla/service/conditional_canonicalizer.cc
third_party/xla/xla/service/conditional_canonicalizer_test.cc
#ifndef XLA_SERVICE_CONDITIONAL_CANONICALIZER_H_ #define XLA_SERVICE_CONDITIONAL_CANONICALIZER_H_ #include <utility> #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class ConditionalCanonicalizer : public HloModulePass { public: absl::string_view name() const override { return "conditional-canonicalizer"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } #endif #include "xla/service/conditional_canonicalizer.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/status_macros.h" namespace xla { namespace { absl::Status CanonicalizeNonTupleConditional(HloInstruction* conditional) { TF_RET_CHECK(conditional->opcode() == HloOpcode::kConditional); for (auto* branch : conditional->called_computations()) { HloInstruction* root = branch->root_instruction(); TF_RET_CHECK(!root->shape().IsTuple()); HloInstruction* tuple = branch->AddInstruction(HloInstruction::CreateTuple({root})); branch->set_root_instruction(tuple, true); } auto parent = conditional->parent(); const Shape& root_shape = conditional->shape(); auto new_shape = ShapeUtil::MakeTupleShape(absl::MakeSpan(&root_shape, 1)); auto new_conditional = parent->AddInstruction(conditional->CloneWithNewShape(new_shape)); auto gte = parent->AddInstruction( HloInstruction::CreateGetTupleElement(root_shape, new_conditional, 0)); TF_RETURN_IF_ERROR(parent->ReplaceInstruction(conditional, gte)); return absl::OkStatus(); } } absl::StatusOr<bool> ConditionalCanonicalizer::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { XLA_VLOG_LINES( 2, "ConditionalCanonicalizer::Run(), before:\n" + module->ToString()); bool changed = false; for (auto* comp : module->MakeNonfusionComputations(execution_threads)) { for (auto* inst : comp->MakeInstructionPostOrder()) { if (inst->opcode() == HloOpcode::kConditional && !inst->shape().IsTuple()) { TF_RETURN_IF_ERROR(CanonicalizeNonTupleConditional(inst)); changed = true; } } } XLA_VLOG_LINES( 2, "ConditionalCanonicalizer::Run(), after:\n" + module->ToString()); return changed; } }
#include "xla/service/conditional_canonicalizer.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/hlo_parser.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_utils.h" #include "xla/types.h" #include "xla/util.h" #include "tsl/lib/core/status_test_util.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; class ConditionalCanonicalizerTest : public HloTestBase { protected: ConditionalCanonicalizerTest() {} }; TEST_F(ConditionalCanonicalizerTest, DenseArrayConditionalRewrite) { auto module = ParseAndReturnVerifiedModule(R"( HloModule _ true_branch { true_param = (s32[3,2]) parameter(0) ROOT root = s32[] constant(0) } false_branch { false_param = (s32[3,2]) parameter(0) ROOT root = s32[] constant(1) } ENTRY entry { param0 = s32[3,2] parameter(0) branch = pred[] constant(false) param_tuple = (s32[3 ,2]) tuple(param0) ROOT conditional = s32[] conditional(branch, param_tuple, param_tuple), true_computation=true_branch, false_computation=false_branch } )") .value(); ConditionalCanonicalizer pass; EXPECT_TRUE(pass.Run(module.get()).value()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::GetTupleElement(op::Conditional())); } } }
1,873
cpp
tensorflow/tensorflow
space_to_batch_converter
third_party/xla/xla/service/space_to_batch_converter.cc
third_party/xla/xla/service/space_to_batch_converter_test.cc
#ifndef XLA_SERVICE_SPACE_TO_BATCH_CONVERTER_H_ #define XLA_SERVICE_SPACE_TO_BATCH_CONVERTER_H_ #include <stdbool.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" #include "xla/status_macros.h" namespace xla { struct SpaceToBatchController { bool enable_propagations_on_base_dilations; bool enable_propagations_on_window_dilations; bool enable_propagations_on_trivial_window_dilations; bool disable_starting_on_small_chains; int64_t limit_on_batch_size; int64_t dimension_from_end_to_convert = 1; int64_t number_of_splits = 8; int64_t count_of_dimensions_to_convert = 1; }; enum class SpaceToBatchDimMap : uint8_t { kBatch = 0, kFeature = 1, kSpace0 = 2, }; inline constexpr int64_t NumMappedDims() { return 3; } class SpaceToBatchConverter : public HloModulePass { public: explicit SpaceToBatchConverter(SpaceToBatchController ctrl) : ctrl_(ctrl) {} absl::string_view name() const override { return "space-to-batch-converter"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; SpaceToBatchController ctrl_; }; } #endif #include "xla/service/space_to_batch_converter.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <iterator> #include <map> #include <memory> #include <queue> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/algorithm.h" #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/debug_options_flags.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/pattern_matcher.h" #include "xla/service/shape_inference.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/bitmap.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" namespace xla { namespace { namespace m = match; class ConvolutionVisitor { public: absl::Status PerformSpaceToBatchOnConvolution(HloInstruction* convolution); struct ConvDetails { std::vector<int64_t> spatial_dimensions_to_split; int64_t inherent_low_padding, inherent_high_padding, stride, spatial_size, base_dilation_factor, halo_size, high_padding_for_conv, low_padding_for_conv, kernel_spatial_dim_size, input_dim_size; }; ConvDetails GetConvolutionDetails(HloInstruction* convolution, ConvolutionDimensionNumbers& dim_numbers); std::pair<std::vector<int64_t>, std::vector<int64_t>> GetSpatialDimsToSplit( HloInstruction* old_operand); bool IsForwardWindowDilatedConv(HloInstruction* convolution, ConvolutionDimensionNumbers& dim_numbers); bool CanPropagate(HloInstruction* consumer, HloInstruction* producer); bool IsBroadcastTree(HloInstruction* op, HloInstruction* consumer, std::vector<HloInstruction*>& instructions_to_transform); void RewriteBroadcastTree( HloInstruction* producer, std::vector<HloInstruction*>& instructions_to_transform); void PropagateOnBroadcast(HloInstruction* consumer, HloInstruction* producer); bool IsOpcodeNonPropagatable(HloInstruction* consumer); bool SupportedOpForPropagation(HloInstruction* consumer, HloInstruction* producer); bool SupportedDotForPropagation(HloInstruction* consumer, HloInstruction* producer); bool IsBroadcastPropagatable(HloInstruction* broadcast, HloInstruction* old_other_op); absl::StatusOr<bool> Propagate(HloInstruction* consumer, HloInstruction* producer); absl::StatusOr<std::pair<HloInstruction*, std::vector<int64_t>>> SplitSpace( HloInstruction* activations, ConvolutionDimensionNumbers& dim_numbers, int64_t& activations_batch_dim, int64_t high_padding, int64_t low_padding, int64_t spatial_split_size, int64_t num_splits, std::vector<int64_t>* spatial_dimensions_to_split, bool is_backprop = false, bool is_rhs = false); absl::StatusOr<HloInstruction*> PerformSplitSpace( HloInstruction* activations, absl::Span<const int64_t> spatial_dimensions_to_split, int64_t activations_batch_dim, int64_t spatial_split_size, int64_t num_splits); absl::StatusOr<HloInstruction*> TransposeAndMergeBatch( HloInstruction* activations, absl::Span<const int64_t> final_split_spatial_dim_positioning, int64_t activations_batch_dim, int64_t old_batch_size); absl::StatusOr<HloInstruction*> PadAndSplitSpace( HloInstruction* activations, absl::Span<const int64_t> spatial_dimensions_to_split, int64_t activations_batch_dim, int64_t high_padding, int64_t low_padding, int64_t spatial_split_size, int64_t num_splits); absl::StatusOr<HloInstruction*> PropagateOnConstant(HloInstruction* consumer, HloInstruction* producer); absl::Status PropagateOnConv(HloInstruction* convolution); absl::Status PropagateOnConcat(HloInstruction* concat); absl::Status PropagateOnReverse(HloInstruction* reverse); absl::Status PropagateOnPad(HloInstruction* pad); absl::Status PropagateOnSlice(HloInstruction* slice); absl::Status PropagateOnBackpropFilterConv(HloInstruction* convolution); bool IsConvSuitableForSpaceToBatch(HloInstruction* convolution); bool IsThisBackPropFilterConv(HloInstruction* convolution); absl::Status PropagateOnUsers(HloInstruction* old_conv); absl::StatusOr<HloInstruction*> SelectValidPortion( HloInstruction* new_instr, HloInstruction* old_instr, HloInstruction* select_val, int64_t new_batch_dim, absl::Span<const int64_t> new_space_dims, int64_t old_batch_dim, absl::Span<const int64_t> old_space_dims); struct SpaceNextToBatchDetails { HloInstruction* instr; std::vector<int64_t> transpose_dims; }; absl::StatusOr<SpaceNextToBatchDetails> BringSpaceNextToBatch( HloInstruction* activations, ConvolutionDimensionNumbers& dim_numbers, int64_t& activations_batch_dim, std::vector<int64_t>* spatial_dimensions_to_split, bool is_backprop = false, bool is_rhs = false); absl::StatusOr<HloInstruction*> ChangeSpatialSizeOnSpaceToBatchedShape( HloInstruction* activations, int64_t batch_dimension, int64_t old_batch_size, absl::Span<const int64_t> spatial_dimensions_to_split, int64_t new_spatial_dim_size, bool increase_spatial_size = false); absl::StatusOr<HloInstruction*> SplitAndTransposeMergedBatch( HloInstruction* activations, int64_t batch_dimension, int64_t old_batch_size, absl::Span<const int64_t> spatial_dimensions); absl::StatusOr<HloInstruction*> BatchToSpace(HloInstruction* old_instr); absl::StatusOr<HloInstruction*> HaloDuplicateWithSlice( HloInstruction* activations, absl::Span<const int64_t> spatial_dimensions_to_split, int64_t activations_batch_dim, int64_t low_padding, int64_t halo_size, HloInstruction* pad_val = nullptr); absl::StatusOr<bool> Run(); const bool changed() const { return changed_; } ~ConvolutionVisitor() = default; explicit ConvolutionVisitor(SpaceToBatchController ctrl, HloComputation* computation); int64_t GetFirstChosenSpatialDim(HloInstruction* convolution) { const int64_t dim_count = ctrl_.count_of_dimensions_to_convert; const int64_t end_point = convolution->convolution_dimension_numbers() .input_spatial_dimensions_size() - ctrl_.dimension_from_end_to_convert; return end_point - dim_count + 1; } std::vector<int64_t> GetChosenSpatialDims(HloInstruction* convolution) { const int64_t dim_count = ctrl_.count_of_dimensions_to_convert; const int64_t first_dim = GetFirstChosenSpatialDim(convolution); std::vector<int64_t> dims(dim_count); for (int i = 0; i < dim_count; ++i) { dims[i] = convolution->convolution_dimension_numbers().input_spatial_dimensions( first_dim + i); } return dims; } int64_t DimLookUp(absl::Span<const int64_t> permute_dims, int64_t id) { return permute_dims[id]; } int DimMapper(SpaceToBatchDimMap s) { return static_cast<int>(s); } int64_t ReverseDimLookUp(absl::Span<const int64_t> permute_dims, int64_t id) { return std::distance(permute_dims.begin(), absl::c_find(permute_dims, id)); } HloInstruction* DoesConvolutionFeedReduceWindowOrSelectAndScatter( HloInstruction* instr, int64_t depth); bool DoesConvolutionFeedUnpropagatableOp( HloInstruction* instr, int64_t depth = kUnpropagatableOpSearchDepth); bool IsSpaceToBatchedSpaceSizeSuitable(HloInstruction* instr); private: HloComputation* computation_; absl::flat_hash_set<HloInstruction*> convs_to_visit_; std::vector<HloInstruction*> conv_visitor_list_; HloInstructionSet non_propagatable_instrs_; absl::flat_hash_map<HloInstruction*, HloInstruction*> batch_to_space_map_; absl::flat_hash_map<HloInstruction*, HloInstruction*> old_to_new_instrs_; absl::flat_hash_map<HloInstruction*, std::vector<int64_t>> instr_to_dim_map_; absl::flat_hash_map<HloInstruction*, std::vector<int64_t>> instr_to_dim_permute_map_; absl::flat_hash_map<HloInstruction*, absl::flat_hash_set<HloInstruction*>> broadcast_map_; bool changed_ = false; static constexpr int64_t kReduceWindowSearchDepth = 10; static constexpr int64_t kUnpropagatableOpSearchDepth = 3; static constexpr int64_t kMultiplierOnSpaceForBaseDilation = 3; absl::flat_hash_map<std::pair<HloInstruction*, int64_t>, bool> unpropagatability_cache_; SpaceToBatchController ctrl_; }; ConvolutionVisitor::ConvolutionVisitor(SpaceToBatchController ctrl, HloComputation* computation) { ctrl_ = ctrl; computation_ = computation; for (HloInstruction* inst : computation->MakeInstructionPostOrder()) { if (inst->opcode() != HloOpcode::kConvolution) { continue; } auto convolution = inst; if (!IsConvSuitableForSpaceToBatch(convolution)) { VLOG(1) << "Conv not suitable for space-to-batch " << convolution->ToString(); continue; } VLOG(1) << "Conv added to space-to-batch worklist " << convolution->ToString(); convs_to_visit_.insert(convolution); conv_visitor_list_.push_back(convolution); } } std::pair<std::vector<int64_t>, std::vector<int64_t>> ConvolutionVisitor::GetSpatialDimsToSplit(HloInstruction* old_operand) { auto new_operand = old_to_new_instrs_[old_operand]; auto dim_map_val = instr_to_dim_map_[old_operand]; auto permute_dims = instr_to_dim_permute_map_[new_operand]; std::vector<int64_t> old_dims(ctrl_.count_of_dimensions_to_convert), new_dims(ctrl_.count_of_dimensions_to_convert); old_dims[0] = dim_map_val[DimMapper(SpaceToBatchDimMap::kSpace0)]; new_dims[0] = DimLookUp(permute_dims, old_dims[0]); for (int i = 1; i < ctrl_.count_of_dimensions_to_convert; ++i) { old_dims[i] = old_dims[0] + i; new_dims[i] = new_dims[0] + i; } return std::make_pair(old_dims, new_dims); } bool ConvolutionVisitor::IsForwardWindowDilatedConv( HloInstruction* convolution, ConvolutionDimensionNumbers& dim_numbers) { const int64_t window_dilation_factor = convolution->window() .dimensions(GetFirstChosenSpatialDim(convolution)) .window_dilation(); if (window_dilation_factor == 1) { return false; } const int64_t output_spatial_dim = dim_numbers.output_spatial_dimensions( GetFirstChosenSpatialDim(convolution)); const int64_t kernel_spatial_dim = dim_numbers.kernel_spatial_dimensions( GetFirstChosenSpatialDim(convolution)); return convolution->operand(1)->shape().dimensions(kernel_spatial_dim) < convolution->shape().dimensions(output_spatial_dim); } bool ConvolutionVisitor::IsConvSuitableForSpaceToBatch( HloInstruction* convolution) { ConvolutionDimensionNumbers dim_numbers = convolution->convolution_dimension_numbers(); if (GetFirstChosenSpatialDim(convolution) < 0) { return false; } if (convolution->batch_group_count() != 1) { return false; } if (convolution->window() .dimensions(GetFirstChosenSpatialDim(convolution)) .window_dilation() != 1) { if (!IsForwardWindowDilatedConv(convolution, dim_numbers)) { return false; } } const ConvDetails c = GetConvolutionDetails(convolution, dim_numbers); const int64_t low_pad = convolution->window() .dimensions(GetFirstChosenSpatialDim(convolution)) .padding_low(); if (c.base_dilation_factor != 1) { if (!ctrl_.enable_propagations_on_base_dilations) { return false; } if (c.stride != 1) { return false; } if (low_pad == 0) { if (c.kernel_spatial_dim_size != 1) { return false; } } else if (low_pad != c.base_dilation_factor - 1 && low_pad != c.base_dilation_factor) { return false; } } int64_t activations_batch_dim = dim_numbers.input_batch_dimension(); const int64_t old_batch_size = convolution->operand(0)->shape().dimensions(activations_batch_dim); if (old_batch_size > ctrl_.limit_on_batch_size) { return false; } VLOG(1) << "spatial size " << c.spatial_size << " halo size " << c.halo_size; if (c.halo_size > CeilOfRatio(c.spatial_size, ctrl_.number_of_splits)) { return false; } if (c.base_dilation_factor > 1 && c.inherent_low_padding == c.base_dilation_factor) { if (c.spatial_size < kMultiplierOnSpaceForBaseDilation * ctrl_.number_of_splits) { return false; } } VLOG(1) << "Legal space-to-batch convolution " << convolution->ToString(); return true; } bool ConvolutionVisitor::IsThisBackPropFilterConv(HloInstruction* convolution) { auto activations = convolution->mutable_operand(0); auto kernel = convolution->mutable_operand(1); auto dim_numbers = convolution->convolution_dimension_numbers(); if (!old_to_new_instrs_.contains(kernel) && !old_to_new_instrs_.contains(activations)) { return false; } if (old_to_new_instrs_.contains(kernel)) { auto dim_map_val_op_0 = instr_to_dim_map_[kernel]; const int64_t old_batch_dim = dim_map_val_op_0[DimMapper(SpaceToBatchDimMap::kBatch)]; if (convolution->convolution_dimension_numbers() .kernel_input_feature_dimension() != old_batch_dim) { return false; } } if (old_to_new_instrs_.contains(activations)) { auto dim_map_val_op_0 = instr_to_dim_map_[activations]; const int64_t old_batch_dim = dim_map_val_op_0[DimMapper(SpaceToBatchDimMap::kBatch)]; if (dim_numbers.input_feature_dimension() != old_batch_dim) { return false; } } return true; } absl::StatusOr<HloInstruction*> ConvolutionVisitor::HaloDuplicateWithSlice( HloInstruction* activations, absl::Span<const int64_t> spatial_dimensions_to_split, int64_t activations_batch_dim, int64_t low_padding, int64_t halo_size, HloInstruction* pad_val) { const int64_t spatial_dim_count = spatial_dimensions_to_split.size(); const int64_t additional_batch_size = IPow<int64_t>(ctrl_.number_of_splits, spatial_dim_count); const int64_t original_batch_size = activations->shape().dimensions(activations_batch_dim) / additional_batch_size; const int64_t spatial_split_size = activations->shape().dimensions(spatial_dimensions_to_split[0]); const int64_t batch_size = ctrl_.number_of_splits; TF_ASSIGN_OR_RETURN( activations, SplitAndTransposeMergedBatch( activations, activations_batch_dim, original_batch_size, spatial_dimensions_to_split)); const int64_t rank = activations->shape().rank(); VLOG(1) << "In HaloDuplicateWithSlice with activations " << activations->ToString() << " batch_size " << batch_size << " spatial_split_size " << spatial_split_size << " low_padding " << low_padding << " halo size " << halo_size; CHECK_LE(std::abs(halo_size - low_padding), spatial_split_size); for (int64_t i = 0; i < spatial_dimensions_to_split.size(); ++i) { int64_t spatial_dimension_to_split = activations_batch_dim + 2 * (i + 1); int64_t remapped_batch_dimension = spatial_dimension_to_split - 1; HloInstruction* first_slice = nullptr; std::vector<int64_t> strides(rank, 1); HloInstruction* padding = pad_val == nullptr ? activations->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(activations->shape().element_type()))) : pad_val; if (low_padding > 0) { std::vector<int64_t> start_indices(rank, 0), end_indices(activations->shape().dimensions().begin(), activations->shape().dimensions().end()); start_indices[spatial_dimension_to_split] = spatial_split_size - low_padding; end_indices[remapped_batch_dimension] = batch_size - 1; end_indices[spatial_dimension_to_split] = spatial_split_size; TF_ASSIGN_OR_RETURN(first_slice, MakeSliceHlo(activations, start_indices, end_indices, strides, &activations->metadata(), &activations->frontend_attributes())); VLOG(1) << "first slice " << first_slice->ToString(); PaddingConfig padding_config = MakeNoPaddingConfig(first_slice->shape().dimensions_size()); padding_config.mutable_dimensions(remapped_batch_dimension) ->set_edge_padding_low(1); TF_ASSIGN_OR_RETURN(first_slice, MakePadHlo(first_slice, padding, padding_config, &first_slice->metadata(), &first_slice->frontend_attributes())); } HloInstruction* halo_region = nullptr; if (halo_size - low_padding > 0) { std::vector<int64_t> start_indices_halo(rank, 0), end_indices_halo(activations->shape().dimensions().begin(), activations->shape().dimensions().end()); start_indices_halo[remapped_batch_dimension] = 1; end_indices_halo[spatial_dimension_to_split] = halo_size - low_padding; TF_ASSIGN_OR_RETURN( halo_region, MakeSliceHlo(activations, start_indices_halo, end_indices_halo, strides, &activations->metadata(), &activations->frontend_attributes())); VLOG(1) << "halo_region " << halo_region->ToString(); PaddingConfig padding_config_halo = MakeNoPaddingConfig(halo_region->shape().dimensions_size()); padding_config_halo.mutable_dimensions(remapped_batch_dimension) ->set_edge_padding_high(1); TF_ASSIGN_OR_RETURN(halo_region, MakePadHlo(halo_region, padding, padding_config_halo, &halo_region->metadata(), &halo_region->frontend_attributes())); } if ((halo_size == 0 && low_padding != 0) || low_padding < 0) { std::vector<int64_t> start_indices_activations_cut(rank, 0), end_indices_activations_cut(activations->shape().dimensions().begin(), activations->shape().dimensions().end()); if (low_padding > 0) { end_indices_activations_cut[spatial_dimension_to_split] = spatial_split_size - low_padding; } else { start_indices_activations_cut[spatial_dimension_to_split] = 0 - low_padding; end_indices_activations_cut[spatial_dimension_to_split] = spatial_split_size; } TF_ASSIGN_OR_RETURN( activations, MakeSliceHlo(activations, start_indices_activations_cut, end_indices_activations_cut, strides, &activations->metadata(), &activations->frontend_attributes())); } if (first_slice != nullptr) { TF_ASSIGN_OR_RETURN( activations, MakeConcatHlo({first_slice, activations}, spatial_dimension_to_split, &activations->metadata(), &activations->frontend_attributes())); } if (halo_region != nullptr) { TF_ASSIGN_OR_RETURN( activations, MakeConcatHlo({activations, halo_region}, spatial_dimension_to_split, &activations->metadata(), &activations->frontend_attributes())); } } TF_ASSIGN_OR_RETURN( activations, TransposeAndMergeBatch( activations, spatial_dimensions_to_split, activations_batch_dim, original_batch_size)); VLOG(1) << "HaloDuplicated activations " << activations->ToString(); return activations; } absl::StatusOr<ConvolutionVisitor::SpaceNextToBatchDetails> ConvolutionVisitor::BringSpaceNextToBatch( HloInstruction* activations, ConvolutionDimensionNumbers& dim_numbers, int64_t& activations_batch_dim, std::vector<int64_t>* spatial_dimensions_to_split, bool is_backprop, bool is_rhs) { for (int64_t i = 1; i < spatial_dimensions_to_split->size(); ++i) { CHECK_EQ(spatial_dimensions_to_split->at(i), spatial_dimensions_to_split->at(i - 1) + 1) << "Spatial dimensions are not contiguous"; } int64_t spatial_dimension_to_split = spatial_dimensions_to_split->at(0); std::vector<int64_t> transpose_dims(activations->shape().rank()); if (spatial_dimension_to_split == activations_batch_dim + 1) { absl::c_iota(transpose_dims, 0); } else { ConvolutionDimensionNumbers new_dim_numbers = dim_numbers; int64_t pushed_counter = 0; int64_t new_batch_dim, new_spatial_dim; int64_t dim_counter = 0; if (is_rhs) { CHECK(is_backprop); for (int i = 0; i < activations->shape().rank(); ++i) { if (i == activations_batch_dim) { continue; } if (i == spatial_dimension_to_split) { transpose_dims[dim_counter++] = activations_batch_dim; new_batch_dim = pushed_counter; pushed_counter++; new_spatial_dim = pushed_counter; } if (i == dim_numbers.kernel_output_feature_dimension()) { new_dim_numbers.set_kernel_output_feature_dimension(pushed_counter); } else { auto it = absl::c_find(dim_numbers.kernel_spatial_dimensions(), i); if (it != dim_numbers.kernel_spatial_dimensions().end()) { int64_t j = it - dim_numbers.kernel_spatial_dimensions().begin(); new_dim_numbers.set_kernel_spatial_dimensions(j, pushed_counter); } } transpose_dims[dim_counter++] = i; pushed_counter++; } activations_batch_dim = new_batch_dim; spatial_dimension_to_split = new_spatial_dim; TF_ASSIGN_OR_RETURN(activations, MakeTransposeHlo(activations, transpose_dims)); new_dim_numbers.set_kernel_input_feature_dimension(activations_batch_dim); } else { for (int i = 0; i < activations->shape().rank(); ++i) { if (i == activations_batch_dim) { continue; } if (i == spatial_dimension_to_split) { transpose_dims[dim_counter++] = activations_batch_dim; new_batch_dim = pushed_counter; pushed_counter++; new_spatial_dim = pushed_counter; } if (is_backprop && i == dim_numbers.input_batch_dimension()) { new_dim_numbers.set_input_batch_dimension(pushed_counter); } else if (i == dim_numbers.input_feature_dimension()) { new_dim_numbers.set_input_feature_dimension(pushed_counter); } else { auto it = absl::c_find(dim_numbers.input_spatial_dimensions(), i); if (it != dim_numbers.input_spatial_dimensions().end()) { int64_t j = it - dim_numbers.input_spatial_dimensions().begin(); new_dim_numbers.set_input_spatial_dimensions(j, pushed_counter); } } transpose_dims[dim_counter++] = i; pushed_counter++; } activations_batch_dim = new_batch_dim; spatial_dimension_to_split = new_spatial_dim; TF_ASSIGN_OR_RETURN(activations, MakeTransposeHlo(activations, transpose_dims)); if (is_backprop) { new_dim_numbers.set_input_feature_dimension(activations_batch_dim); } else { new_dim_numbers.set_input_batch_dimension(activations_batch_dim); } } dim_numbers = new_dim_numbers; }
#include "xla/service/space_to_batch_converter.h" #include <memory> #include <string> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/types.h" namespace xla { namespace { using SpaceToBatchConverterTest = HloTestBase; namespace op = testing::opcode_matchers; TEST_F(SpaceToBatchConverterTest, SimpleBatch1) { std::string hlo_string = R"( HloModule module ENTRY computation { %p0 = bf16[1,258,258,32] parameter(0) %p1 = bf16[3,3,32,32] parameter(1) ROOT %convolution = bf16[1,256,256,32] convolution(%p0, %p1), window={size=3x3}, dim_labels=b01f_01io->b01f } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 8}); ASSERT_TRUE(converter.Run(module.get()).value()); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, op::Transpose()); EXPECT_THAT(root->operand(0), op::Slice()); auto reshape = root->operand(0)->operand(0); EXPECT_THAT(reshape, op::Reshape()); auto previous_reshape = reshape->operand(0); EXPECT_THAT(previous_reshape, op::Reshape()); EXPECT_THAT(previous_reshape->operand(0)->operand(1), op::Convolution()); const int64_t batch_dim = previous_reshape->operand(0) ->operand(1) ->convolution_dimension_numbers() .output_batch_dimension(); EXPECT_GT(previous_reshape->operand(0)->shape().dimensions(batch_dim), 1); } TEST_F(SpaceToBatchConverterTest, SimpleBatch1ConvXpose) { std::string hlo_string = R"( HloModule module ENTRY computation { %p0 = bf16[1,258,258,32] parameter(0) %p1 = bf16[3,3,32,32] parameter(1) %convolution = bf16[1,256,256,32] convolution(%p0, %p1), window={size=3x3}, dim_labels=b01f_01io->b01f ROOT tr = bf16[1,256,256,32] transpose(%convolution), dimensions={0,2,1,3} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 8}); ASSERT_TRUE(converter.Run(module.get()).value()); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, op::Transpose()); EXPECT_THAT(root->operand(0), op::Slice()); auto reshape = root->operand(0)->operand(0); EXPECT_THAT(reshape, op::Reshape()); auto previous_reshape = reshape->operand(0); EXPECT_THAT(previous_reshape, op::Reshape()); EXPECT_THAT(previous_reshape->operand(0), op::Select()); EXPECT_THAT(previous_reshape->operand(0)->operand(1), op::Convolution()); } TEST_F(SpaceToBatchConverterTest, SimpleBatch1WithReduceWindow) { std::string hlo_string = R"( HloModule module adder (lhs: bf16[], rhs: bf16[]) -> bf16[] { lhs = bf16[] parameter(0) rhs = bf16[] parameter(1) ROOT add = bf16[] add(lhs, rhs) } ENTRY computation { %p0 = bf16[1,258,258,32] parameter(0) %p1 = bf16[3,3,32,32] parameter(1) %convolution = bf16[1,256,256,32] convolution(%p0, %p1), window={size=3x3}, dim_labels=b01f_01io->b01f %constant = bf16[3] constant({1.0, 2.0, 3.0}) %tuple = (bf16[1,256,256,32], bf16[3])tuple(%convolution, %constant) ROOT %gte = bf16[1,256,256,32] get-tuple-element(%tuple), index=0 %gte2 = bf16[3]get-tuple-element(%tuple), index=1 %init = bf16[] constant(1.0) %reduce-window = bf16[3] reduce-window(bf16[3] %gte2, bf16[] %init), window={size=1}, to_apply=%adder } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 8}); ASSERT_TRUE(converter.Run(module.get()).value()); } TEST_F(SpaceToBatchConverterTest, SimpleBatch2) { std::string hlo_string = R"( HloModule module ENTRY computation { %p0 = bf16[2,258,258,32] parameter(0) %p1 = bf16[3,3,32,32] parameter(1) ROOT %convolution = bf16[2,256,256,32] convolution(%p0, %p1), window={size=3x3}, dim_labels=b01f_01io->b01f } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 1}); ASSERT_FALSE(converter.Run(module.get()).value()); } TEST_F(SpaceToBatchConverterTest, UnpropagatableOp) { std::string hlo_string = R"( HloModule module ENTRY comp { %reduce-window = bf16[1,76,76,64]{3,2,1,0} parameter(0) %convert.13 = bf16[3,3,64,64]{3,2,1,0} parameter(1) %convolution.1 = bf16[64,76,76,1]{0,2,1,3} convolution( %reduce-window, %convert.13), window={size=3x3 pad=1_1x1_1}, dim_labels=b01f_01io->f01b ROOT custom-call.5079 = bf16[64,152,152,1]{0,2,1,3} custom-call(%convolution.1), custom_call_target="ResizeNearest" } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 1}); ASSERT_FALSE(converter.Run(module.get()).value()); } TEST_F(SpaceToBatchConverterTest, Batch1WithStrideAndPad) { std::string hlo_string = R"( HloModule module ENTRY computation { %p0 = bf16[1,224,224,3]{3,2,1,0} parameter(0) %p1 = bf16[7,7,3,64]{3,2,1,0} parameter(1) ROOT %convolution.3 = bf16[1,112,112,64]{3,2,1,0} convolution(%p0, %p1), window={size=7x7 stride=2x2 pad=3_3x3_3}, dim_labels=b01f_01io->b01f } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 4}); ASSERT_TRUE(converter.Run(module.get()).value()); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, op::Transpose()); EXPECT_THAT(root->operand(0), op::Slice()); auto reshape = root->operand(0)->operand(0); EXPECT_THAT(reshape, op::Reshape()); auto previous_reshape = reshape->operand(0); EXPECT_THAT(previous_reshape, op::Reshape()); EXPECT_THAT(previous_reshape->operand(0)->operand(1), op::Convolution()); const int64_t batch_dim = previous_reshape->operand(0) ->operand(1) ->convolution_dimension_numbers() .output_batch_dimension(); EXPECT_GT(previous_reshape->operand(0)->shape().dimensions(batch_dim), 4); } TEST_F(SpaceToBatchConverterTest, Batch1WithBaseDilation) { std::string hlo_string = R"( HloModule module ENTRY computation { %p2 = bf16[1,28,28,128]{3,0,2,1} parameter(0) %p3 = bf16[1,1,512,128]{3,2,1,0} parameter(1) ROOT %c = bf16[1,56,56,512]{3,0,2,1} convolution(%p2, %p3), window={size=1x1 pad=0_1x0_1 lhs_dilate=2x2 rhs_reversal=1x1}, dim_labels=b01f_01oi->b01f } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 8}); ASSERT_TRUE(converter.Run(module.get()).value()); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, op::Transpose()); EXPECT_THAT(root->operand(0), op::Slice()); auto reshape = root->operand(0)->operand(0); EXPECT_THAT(reshape, op::Reshape()); auto previous_reshape = reshape->operand(0); EXPECT_THAT(previous_reshape, op::Reshape()); EXPECT_THAT(previous_reshape->operand(0)->operand(1), op::Convolution()); const int64_t batch_dim = previous_reshape->operand(0) ->operand(1) ->convolution_dimension_numbers() .output_batch_dimension(); EXPECT_GT(previous_reshape->operand(0)->shape().dimensions(batch_dim), 4); } TEST_F(SpaceToBatchConverterTest, PropagateThroughDot) { std::string hlo_string = R"( HloModule module ENTRY computation { %p0 = bf16[1,258,258,32] parameter(0) %p1 = bf16[3,3,32,32] parameter(1) %convolution = bf16[1,256,256,32] convolution(%p0, %p1), window={size=3x3}, dim_labels=b01f_01io->b01f %p2 = bf16[32,32] parameter(2) ROOT %dot.5010 = bf16[1,256,256,32] dot(%convolution, %p2), lhs_contracting_dims={3}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 8}); ASSERT_TRUE(converter.Run(module.get()).value()); } } }
1,874
cpp
tensorflow/tensorflow
hlo_cse
third_party/xla/xla/service/hlo_cse.cc
third_party/xla/xla/service/hlo_cse_test.cc
#ifndef XLA_SERVICE_HLO_CSE_H_ #define XLA_SERVICE_HLO_CSE_H_ #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class HloCSE : public HloModulePass { public: explicit HloCSE(bool is_layout_sensitive, bool only_fusion_computations = false, bool ignore_control_dependencies = false, bool only_scalars = false) : is_layout_sensitive_(is_layout_sensitive), only_fusion_computations_(only_fusion_computations), ignore_control_dependencies_(ignore_control_dependencies), only_scalars_(only_scalars) {} ~HloCSE() override = default; absl::string_view name() const override { return "cse"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: const bool is_layout_sensitive_; const bool only_fusion_computations_; const bool ignore_control_dependencies_; const bool only_scalars_; }; } #endif #include "xla/service/hlo_cse.h" #include <memory> #include <optional> #include <string> #include <utility> #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/service/hlo_domain_map.h" #include "xla/shape_util.h" #include "tsl/platform/errors.h" namespace xla { namespace { template <bool kIsLayoutSensitive> struct ConstantKey { template <typename H> friend H AbslHashValue(H h, const ConstantKey& key) { h = H::combine(std::move(h), key.domain); return Literal::Hash<H, kIsLayoutSensitive, 64>( std::move(h), key.hlo->literal()); } friend bool operator==(const ConstantKey& lhs, const ConstantKey& rhs) { return lhs.domain == rhs.domain && (kIsLayoutSensitive ? Shape::Equal() : Shape::Equal().IgnoreLayout())( lhs.hlo->shape(), rhs.hlo->shape()) && lhs.hlo->literal().Equal(rhs.hlo->literal(), kIsLayoutSensitive); } HloConstantInstruction* hlo; int64_t domain; }; template <bool kIsLayoutSensitive> absl::StatusOr<bool> CombineConstants(HloComputation* computation, bool only_scalars) { std::unique_ptr<HloDomainMap> domain_map; if (absl::c_any_of(computation->instructions(), [&](const HloInstruction* instr) { return instr->opcode() == HloOpcode::kDomain; })) { TF_ASSIGN_OR_RETURN(domain_map, HloDomainMap::Create(computation, "")); } absl::flat_hash_set<ConstantKey<kIsLayoutSensitive>> constants; int64_t combined = 0; auto inst_it = computation->instructions().begin(); while (inst_it != computation->instructions().end()) { HloInstruction* instruction = *inst_it; ++inst_it; if (only_scalars && !ShapeUtil::IsScalar(instruction->shape())) { continue; } HloInstruction* match = nullptr; if (auto* constant_inst = DynCast<HloConstantInstruction>(instruction)) { auto insert_result = constants.insert(ConstantKey<kIsLayoutSensitive>{ constant_inst, (domain_map != nullptr ? domain_map->GetDomainId(instruction) : 0)}); if (!insert_result.second) { match = insert_result.first->hlo; } } if (match != nullptr) { TF_CHECK_OK(instruction->ReplaceAllUsesWith(match)); TF_CHECK_OK(computation->RemoveInstruction(instruction)); ++combined; } } VLOG(4) << "Combined " << combined << " constants and iotas in " << computation->name() << " computation"; return combined > 0; } struct CseKey { template <typename H> friend H AbslHashValue(H h, const CseKey& key) { auto instruction = key.hlo; h = H::combine(std::move(h), instruction->opcode(), instruction->shape().dimensions()); auto window_hash = [](H h, const Window& window) { const auto& window_dims = window.dimensions(); for (const auto& window_dim : window_dims) { h = H::combine(std::move(h), window_dim.size(), window_dim.stride(), window_dim.padding_low(), window_dim.padding_high(), window_dim.window_dilation(), window_dim.base_dilation(), window_dim.window_reversal()); } return H::combine(std::move(h), window_dims.size()); }; if (HloOpcodeIsBinaryCommutative(instruction->opcode())) { CHECK_EQ(instruction->operand_count(), 2); auto id0 = instruction->operand(0)->unique_id(); if (instruction->operand(0)->opcode() == HloOpcode::kIota) { id0 = 0; } auto id1 = instruction->operand(1)->unique_id(); if (instruction->operand(1)->opcode() == HloOpcode::kIota) { id1 = 0; } if (id0 > id1) { std::swap(id0, id1); } h = H::combine(std::move(h), id0, id1); } else { for (auto operand : instruction->operands()) { if (operand->opcode() == HloOpcode::kIota) { continue; } h = H::combine(std::move(h), operand->unique_id()); } } for (auto c : instruction->called_computations()) { h = H::combine(std::move(h), c->root_instruction()->opcode()); } switch (instruction->opcode()) { case HloOpcode::kSlice: return H::combine(std::move(h), instruction->slice_starts(), instruction->slice_strides()); case HloOpcode::kPad: { const auto& padding_dims = instruction->padding_config().dimensions(); for (const auto& padding_dim : padding_dims) { h = H::combine(std::move(h), padding_dim.edge_padding_low(), padding_dim.edge_padding_high(), padding_dim.interior_padding()); } h = H::combine(std::move(h), padding_dims.size()); return std::move(h); } case HloOpcode::kDot: { const auto& dot_dimension_numbers = instruction->dot_dimension_numbers(); h = H::combine( std::move(h), absl::MakeSpan(dot_dimension_numbers.lhs_contracting_dimensions()), absl::MakeSpan(dot_dimension_numbers.rhs_contracting_dimensions()), absl::MakeSpan(dot_dimension_numbers.lhs_batch_dimensions()), absl::MakeSpan(dot_dimension_numbers.rhs_batch_dimensions())); return std::move(h); } case HloOpcode::kConvolution: { const auto& conv_dimension_numbers = instruction->convolution_dimension_numbers(); h = H::combine( std::move(h), conv_dimension_numbers.input_batch_dimension(), conv_dimension_numbers.input_feature_dimension(), absl::MakeSpan(conv_dimension_numbers.input_spatial_dimensions()), conv_dimension_numbers.kernel_input_feature_dimension(), conv_dimension_numbers.kernel_output_feature_dimension(), absl::MakeSpan(conv_dimension_numbers.kernel_spatial_dimensions()), conv_dimension_numbers.output_batch_dimension(), conv_dimension_numbers.output_feature_dimension(), absl::MakeSpan(conv_dimension_numbers.output_spatial_dimensions())); return window_hash(std::move(h), instruction->window()); } case HloOpcode::kReduceWindow: return window_hash(std::move(h), instruction->window()); case HloOpcode::kConcatenate: case HloOpcode::kBroadcast: case HloOpcode::kTranspose: case HloOpcode::kReduce: return H::combine(std::move(h), instruction->dimensions()); case HloOpcode::kGetTupleElement: return H::combine(std::move(h), instruction->tuple_index()); case HloOpcode::kCompare: return H::combine( std::move(h), Cast<HloCompareInstruction>(instruction)->direction()); default: return std::move(h); } } HloInstruction* hlo; }; } absl::StatusOr<bool> HloCSE::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; const auto eq_instructions = [&](const HloInstruction* a, const HloInstruction* b) { if (a == b) { return true; } if (a->opcode() != b->opcode() || a->opcode() != HloOpcode::kIota) { return false; } return a->dimensions(0) == b->dimensions(0) && (is_layout_sensitive_ ? ShapeUtil::Equal(a->shape(), b->shape()) : ShapeUtil::Compatible(a->shape(), b->shape())); }; const auto eq_computations = [](const HloComputation* lhs, const HloComputation* rhs) { return *lhs == *rhs; }; auto cse_equal = [&](const CseKey& lhs, const CseKey& rhs) { return lhs.hlo->IdenticalIgnoringCommutativeOperandOrder( *rhs.hlo, eq_instructions, eq_computations, is_layout_sensitive_, true); }; for (auto* computation : module->computations(execution_threads)) { if (only_fusion_computations_ && !computation->IsFusionComputation()) { continue; } TF_ASSIGN_OR_RETURN( bool combined, is_layout_sensitive_ ? CombineConstants<true>(computation, only_scalars_) : CombineConstants<false>(computation, only_scalars_)); changed |= combined; absl::flat_hash_set<CseKey, absl::Hash<CseKey>, decltype(cse_equal)> representatives(computation->instruction_count() + 1, absl::Hash<CseKey>{}, cse_equal); for (auto instruction : computation->MakeInstructionPostOrder()) { if (instruction->operand_count() == 0 && instruction->opcode() != HloOpcode::kPartitionId && instruction->opcode() != HloOpcode::kReplicaId) { continue; } if (instruction->HasSideEffect()) { continue; } if (only_scalars_ && !ShapeUtil::IsScalar(instruction->shape())) { continue; } auto pair = representatives.insert(CseKey{instruction}); if (!pair.second) { HloInstruction* equivalent_instruction = pair.first->hlo; TF_RETURN_IF_ERROR( instruction->ReplaceAllUsesWith(equivalent_instruction)); TF_RETURN_IF_ERROR(computation->RemoveInstructionAndUnusedOperands( instruction, std::nullopt, ignore_control_dependencies_)); VLOG(4) << "Replaced " << instruction->name() << " with " << equivalent_instruction->name(); changed = true; continue; } for (int64_t i = 0; i < instruction->operand_count(); ++i) { HloInstruction* a = instruction->mutable_operand(i); if (a->opcode() != HloOpcode::kIota) { continue; } for (int64_t j = i + 1; j < instruction->operand_count(); ++j) { HloInstruction* b = instruction->mutable_operand(j); if (a == b || !eq_instructions(a, b)) { continue; } TF_RETURN_IF_ERROR(instruction->ReplaceOperandWith(j, a)); changed = true; if (b->IsDead()) { TF_RETURN_IF_ERROR(computation->RemoveInstruction(b)); } } } } } return changed; } }
#include "xla/service/hlo_cse.h" #include <memory> #include <string> #include <vector> #include "absl/algorithm/container.h" #include "absl/strings/substitute.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/service/hlo_parser.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; namespace m = xla::match; class HloCseTest : public HloTestBase { protected: HloCseTest() {} }; TEST_F(HloCseTest, CombineTwoConstants) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); builder.AddInstruction(HloInstruction::CreateBinary( constant1->shape(), HloOpcode::kAdd, constant1, constant2)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(3, computation->instruction_count()); HloCSE cse(false); EXPECT_TRUE(cse.Run(module.get()).value()); EXPECT_EQ(2, computation->instruction_count()); HloInstruction* constant = *computation->instructions().begin(); EXPECT_EQ(42.0f, constant->literal().Get<float>({})); auto result = ExecuteAndTransfer(module->Clone(), {}); auto expected = LiteralUtil::CreateR0<float>(84.0); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, ErrorSpec(1e-4))); } TEST_F(HloCseTest, CombineTwoConstantsDifferentLayouts) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR2WithLayout<float>( {{1.0, 2.0}, {3.0, 4.0}}, LayoutUtil::MakeLayout({0, 1})))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR2WithLayout<float>( {{1.0, 2.0}, {3.0, 4.0}}, LayoutUtil::MakeLayout({1, 0})))); auto add = builder.AddInstruction(HloInstruction::CreateBinary( constant1->shape(), HloOpcode::kAdd, constant1, constant2)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(3, computation->instruction_count()); EXPECT_THAT(add, op::Add(constant1, constant2)); HloCSE cse(true); EXPECT_FALSE(cse.Run(module.get()).value()); EXPECT_EQ(3, computation->instruction_count()); EXPECT_THAT(add, op::Add(constant1, constant2)); auto result = ExecuteAndTransfer(module->Clone(), {}); auto expected = LiteralUtil::CreateR2<float>({{2.0, 4.0}, {6.0, 8.0}}); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, ErrorSpec(1e-4))); } TEST_F(HloCseTest, ConstantsSameValueDifferentType) { auto builder = HloComputation::Builder(TestName()); std::vector<HloInstruction*> constants; constants.push_back(builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<uint32_t>(42)))); constants.push_back(builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(42)))); constants.push_back(builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<uint64_t>(42.0)))); constants.push_back(builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int64_t>(42.0)))); constants.push_back(builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<double>(42.0)))); constants.push_back(builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f)))); constants.push_back(builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f)))); const Shape shape_r0 = ShapeUtil::MakeShape(F32, {}); for (int64_t i = 0; i < constants.size(); ++i) { constants[i] = builder.AddInstruction( HloInstruction::CreateConvert(shape_r0, constants[i])); } HloInstruction* root = builder.AddInstruction(HloInstruction::CreateBinary( shape_r0, HloOpcode::kAdd, constants[0], constants[1])); for (int64_t i = 2; i < constants.size(); ++i) { root = builder.AddInstruction(HloInstruction::CreateBinary( shape_r0, HloOpcode::kAdd, root, constants[i])); } auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(20, computation->instruction_count()); HloCSE cse(false); EXPECT_TRUE(cse.Run(module.get()).value()); EXPECT_EQ(18, computation->instruction_count()); } TEST_F(HloCseTest, NonscalarConstants) { auto builder = HloComputation::Builder(TestName()); auto common_constant1 = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}))); auto common_constant2 = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}))); auto uncommon_constant = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{2.0, 4.0}, {6.0, 8.0}}))); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple( {common_constant1, common_constant2, uncommon_constant})); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(4, computation->instruction_count()); EXPECT_THAT(tuple, op::Tuple(common_constant1, common_constant2, uncommon_constant)); HloCSE cse(false); EXPECT_TRUE(cse.Run(module.get()).value()); EXPECT_EQ(3, computation->instruction_count()); auto first_operand = tuple->operand(0); EXPECT_THAT(first_operand, ::testing::AnyOf(common_constant1, common_constant2)); EXPECT_THAT(tuple, op::Tuple(first_operand, first_operand, uncommon_constant)); } TEST_F(HloCseTest, IdenticalInstructions) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0))); auto exp1 = builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kExp, constant)); auto exp2 = builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kExp, constant)); auto exp3 = builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kExp, constant)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({exp1, exp2, exp3})); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(5, computation->instruction_count()); EXPECT_THAT(tuple, op::Tuple(exp1, exp2, exp3)); HloCSE cse(true); EXPECT_TRUE(cse.Run(module.get()).value()); EXPECT_EQ(3, computation->instruction_count()); auto first_operand = tuple->operand(0); EXPECT_THAT(first_operand, ::testing::AnyOf(exp1, exp2, exp3)); EXPECT_THAT(tuple, op::Tuple(first_operand, first_operand, first_operand)); } TEST_F(HloCseTest, WhileLoopsIdenticalConditionsAndBodiesSameInput) { const char* const hlo_string = R"( HloModule WhileLoopsIdenticalConditionsAndBodiesSameInput %body (param: (f32[], f32[])) -> (f32[], f32[]) { %param = (f32[], f32[]) parameter(0) %gte0 = get-tuple-element(%param), index=0 %gte1 = get-tuple-element(%param), index=1 %add = add(%gte0, %gte1) ROOT %tuple = tuple(%gte0, %add) } %condition { %param.1 = (f32[], f32[]) parameter(0) ROOT %constant = pred[] constant(false) } %condition.1 { %param.2 = (f32[], f32[]) parameter(0) ROOT %constant.1 = pred[] constant(false) } ENTRY %WhileLoopsIdenticalConditionsAndBodiesSameInput { %c0 = f32[] constant(1) %c1 = f32[] constant(2) %t = tuple(c0, c1) %while = while(%t), condition=%condition, body=%body %while.1 = while(%t), condition=%condition.1, body=%body ROOT r = tuple(while, while.1) })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); auto computation = m->entry_computation(); EXPECT_EQ(6, computation->instruction_count()); HloCSE cse(true); EXPECT_TRUE(cse.Run(m.get()).value()); EXPECT_EQ(5, computation->instruction_count()); } TEST_F(HloCseTest, WhileLoopsIdenticalConditionsSameInputAndDifferentBodies) { const char* const hlo_string = R"( HloModule WhileLoopsIdenticalConditionsSameInputAndDifferentBodies %body { %param = (f32[], f32[]) parameter(0) %get-tuple-element = get-tuple-element(%param), index=0 %get-tuple-element.1 = get-tuple-element(%param), index=1 %add = add(%get-tuple-element, %get-tuple-element.1) ROOT %tuple = tuple(%get-tuple-element, %add) } %body2 { %param.1 = (f32[], f32[]) parameter(0) %get-tuple-element.2 = get-tuple-element(%param.1), index=0 %get-tuple-element.3 = get-tuple-element(%param.1), index=1 %sub = subtract(%get-tuple-element.2, %get-tuple-element.3) ROOT %tuple.2 = tuple(%get-tuple-element.2, %sub) } %condition (param.2: (f32[], f32[])) -> pred[] { %param.2 = (f32[], f32[]) parameter(0) ROOT %constant = pred[] constant(false) } %condition.1 (param.3: (f32[], f32[])) -> pred[] { %param.3 = (f32[], f32[]) parameter(0) ROOT %constant.1 = pred[] constant(false) } ENTRY %WhileLoopsIdenticalConditionsSameInputAndDifferentBodies { %constant.2 = f32[] constant(1) %constant.3 = f32[] constant(2) %tuple.1 = tuple(f32[] %constant.2, f32[] %constant.3) %while = while(%tuple.1), condition=%condition, body=%body ROOT %while.1 = while(%tuple.1), condition=%condition.1, body=%body2 })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); auto computation = m->entry_computation(); EXPECT_EQ(5, computation->instruction_count()); HloCSE cse(true); EXPECT_FALSE(cse.Run(m.get()).value()); EXPECT_EQ(5, computation->instruction_count()); } TEST_F(HloCseTest, WhileLoopsIdenticalBodiesAndInputDifferentConditions) { const char* const hlo_string = R"( HloModule WhileLoopsIdenticalBodiesAndInputDifferentConditions %body { %param = (f32[], f32[]) parameter(0) %get-tuple-element = get-tuple-element(%param), index=0 %get-tuple-element.1 = get-tuple-element((f32[], f32[]) %param), index=1 %add = add(%get-tuple-element, %get-tuple-element.1) ROOT %tuple = tuple(%get-tuple-element, %add) } %condition { %param.1 = (f32[], f32[]) parameter(0) ROOT %constant = pred[] constant(false) } %condition.1 { %param.2 = (f32[], f32[]) parameter(0) ROOT %constant.1 = pred[] constant(true) } ENTRY %WhileLoopsIdenticalBodiesAndInputDifferentConditions { %constant.2 = f32[] constant(1) %constant.3 = f32[] constant(2) %tuple.1 = tuple(%constant.2, %constant.3) %while = while(%tuple.1), condition=%condition, body=%body ROOT %while.1 = while(%tuple.1), condition=%condition.1, body=%body })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); auto computation = m->entry_computation(); EXPECT_EQ(5, computation->instruction_count()); HloCSE cse(true); EXPECT_FALSE(cse.Run(m.get()).value()); EXPECT_EQ(5, computation->instruction_count()); } TEST_F(HloCseTest, IdenticalInstructionsDifferentLayoutsSensitive) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}))); auto exp1 = builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kExp, constant)); *exp1->mutable_shape()->mutable_layout() = LayoutUtil::MakeLayout({0, 1}); auto exp2 = builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kExp, constant)); *exp2->mutable_shape()->mutable_layout() = LayoutUtil::MakeLayout({1, 0}); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({exp1, exp2})); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(4, computation->instruction_count()); EXPECT_THAT(tuple, op::Tuple(exp1, exp2)); HloCSE cse(true); EXPECT_FALSE(cse.Run(module.get()).value()); EXPECT_EQ(4, computation->instruction_count()); EXPECT_THAT(tuple, op::Tuple(exp1, exp2)); } TEST_F(HloCseTest, IdenticalInstructionsDifferentLayoutsInsensitive) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}))); auto exp1 = builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kExp, constant)); *exp1->mutable_shape()->mutable_layout() = LayoutUtil::MakeLayout({0, 1}); auto exp2 = builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kExp, constant)); *exp2->mutable_shape()->mutable_layout() = LayoutUtil::MakeLayout({1, 0}); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({exp1, exp2})); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(4, computation->instruction_count()); EXPECT_THAT(tuple, op::Tuple(exp1, exp2)); HloCSE cse(false); EXPECT_TRUE(cse.Run(module.get()).value()); EXPECT_EQ(3, computation->instruction_count()); auto first_operand = tuple->operand(0); EXPECT_THAT(first_operand, ::testing::AnyOf(exp1, exp2)); EXPECT_THAT(tuple, op::Tuple(first_operand, first_operand)); } TEST_F(HloCseTest, FusionInternalCSE) { auto module = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); const Shape shape_r0 = ShapeUtil::MakeShape(F32, {}); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, shape_r0, "p0")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(1, shape_r0, "p1")); auto add1 = builder.AddInstruction( HloInstruction::CreateBinary(shape_r0, HloOpcode::kAdd, param0, param1)); auto add2 = builder.AddInstruction( HloInstruction::CreateBinary(shape_r0, HloOpcode::kAdd, param0, param1)); auto mul = builder.AddInstruction( HloInstruction::CreateBinary(shape_r0, HloOpcode::kMultiply, add1, add2)); auto computation = module->AddEntryComputation(builder.Build()); auto fused_computation = computation ->CreateFusionInstruction({mul, add1, add2}, HloInstruction::FusionKind::kLoop) ->fused_instructions_computation(); EXPECT_EQ(5, fused_computation->instruction_count()); HloCSE cse(false); EXPECT_TRUE(cse.Run(module.get()).value()); EXPECT_EQ(4, fused_computation->instruction_count()); auto root = fused_computation->root_instruction(); EXPECT_THAT(root, op::Multiply(root->operand(0), root->operand(0))); } TEST_F(HloCseTest, IdenticalExpressions) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0))); auto negate1 = builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kNegate, constant)); auto exp1 = builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kExp, constant)); auto add1 = builder.AddInstruction(HloInstruction::CreateBinary( constant->shape(), HloOpcode::kAdd, negate1, exp1)); auto negate2 = builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kNegate, constant)); auto exp2 = builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kExp, constant)); auto add2 = builder.AddInstruction(HloInstruction::CreateBinary( constant->shape(), HloOpcode::kAdd, negate2, exp2)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({add1, add2})); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(8, computation->instruction_count()); EXPECT_THAT(tuple, op::Tuple(op::Add(negate1, exp1), op::Add(negate2, exp2))); HloCSE cse(false); EXPECT_TRUE(cse.Run(module.get()).value()); EXPECT_EQ(5, computation->instruction_count()); auto operand = tuple->operand(0); EXPECT_THAT(tuple, op::Tuple(operand, operand)); EXPECT_THAT(operand, op::Add(op::Negate(), op::Exp())); } TEST_F(HloCseTest, DoNotCombineRng) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0f))); auto rng1 = builder.AddInstruction(HloInstruction::CreateRng( ShapeUtil::MakeShape(F32, {}), RandomDistribution::RNG_UNIFORM, {constant1, constant2})); auto rng2 = builder.AddInstruction(HloInstruction::CreateRng( ShapeUtil::MakeShape(F32, {}), RandomDistribution::RNG_UNIFORM, {constant1, constant2})); builder.AddInstruction(HloInstruction::CreateBinary( constant1->shape(), HloOpcode::kAdd, rng1, rng2)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, op::Add(rng1, rng2)); uint32_t count_before = computation->instruction_count(); HloCSE cse(false); EXPECT_FALSE(cse.Run(module.get()).value()); uint32_t count_after = computation->instruction_count(); EXPECT_EQ(count_before, count_after); root = computation->root_instruction(); EXPECT_THAT(root, op::Add(rng1, rng2)); } TEST_F(HloCseTest, DoNotCombineOpsWithDifferentShardings) { const char* const hlo_string = R"( HloModule module ENTRY %entry { constant.68 = s32[1]{0} constant({0}) custom-call.82 = s32[1]{0} custom-call(constant.68), custom_call_target="Sharding", sharding={replicated} custom-call.1343 = s32[1]{0} custom-call(constant.68), custom_call_target="Sharding", sharding={manual} custom-call.1344 = s32[8]{0} custom-call(custom-call.1343), custom_call_target="SPMDShardToFullShape", sharding={devices=[8]0,1,2,3,4,5,6,7} ROOT tuple = (s32[1]{0}, s32[8]{0}) tuple(custom-call.82, custom-call.1344) })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); HloCSE cse(false); EXPECT_FALSE(cse.Run(m.get()).value()); } TEST_F(HloCseTest, DoNotCombineCallsToImpureFunctions) { auto module = CreateNewVerifiedModule(); HloComputation* rng_function = nullptr; { Shape scalar_shape = ShapeUtil::MakeShape(F32, {}); auto builder = HloComputation::Builder(TestName() + "_rng_fun"); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0f))); auto rng = builder.AddInstruction(HloInstruction::CreateRng( scalar_shape, RandomDistribution::RNG_UNIFORM, {constant1, constant2})); auto param = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "param")); builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, rng, param)); rng_function = module->AddEmbeddedComputation(builder.Build()); } HloComputation* computation = nullptr; { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<float>({5.0f}))); auto rng1 = builder.AddInstruction( HloInstruction::CreateMap(constant->shape(), {constant}, rng_function)); auto rng2 = builder.AddInstruction( HloInstruction::CreateMap(constant->shape(), {constant}, rng_function)); builder.AddInstruction(HloInstruction::CreateBinary( constant->shape(), HloOpcode::kAdd, rng1, rng2)); computation = module->AddEntryComputation(builder.Build()); } EXPECT_EQ(4, computation->instruction_count()); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, op::Add(op::Map(), op::Map())); VLOG(3) << "before: " << module->ToString(); HloCSE cse(false); EXPECT_FALSE(cse.Run(module.get()).value()); VLOG(3) << "after: " << module->ToString(); EXPECT_EQ(4, computation->instruction_count()); root = computation->root_instruction(); EXPECT_THAT(root, op::Add(op::Map(op::Constant()), op::Map(op::Constant()))); } TEST_F(HloCseTest, CompareComputations) { const char* const hlo_string = R"( HloModule m add_computation { add_lhs = f32[] parameter(0) add_rhs = f32[] parameter(1) ROOT add_root = add(add_lhs, add_rhs) } add_computation2 { add_lhs2 = f32[] parameter(0) add_rhs2 = f32[] parameter(1) ROOT add_root2 = add(add_lhs2, add_rhs2) } ENTRY entry { p = f32[10]{0} parameter(0) c = f32[] constant(0) r1 = reduce(p, c), dimensions={0}, to_apply=add_computation r2 = reduce(p, c), dimensions={0}, to_apply=add_computation2 ROOT f2 = tuple(r1, r2) })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); HloCSE cse(false); EXPECT_TRUE(cse.Run(m.get()).value()); HloInstruction* root = m->entry_computation()->root_instruction(); EXPECT_EQ(root->operand(0), root->operand(1)); } TEST_F(HloCseTest, Domain) { const char* const hlo_string = R"( HloModule module ENTRY %entry { %param = f32[] parameter(0), sharding={maximal device=0} %domain.0 = f32[] domain(%param), domain={kind="sharding", entry={maximal device=0}, exit={maximal device=1}} %domain.1 = f32[] domain(%param), domain={kind="sharding", entry={maximal device=0}, exit={maximal device=1}} %domain.2 = f32[] domain(%param), domain={kind="sharding", entry={maximal device=0}, exit={maximal device=2}} %negate.0 = f32[] negate(%domain.0) %negate.1 = f32[] negate(%domain.1) %negate.2 = f32[] negate(%domain.2) %domain.3 = f32[] domain(%negate.0), domain={kind="sharding", entry={maximal device=1}, exit={maximal device=0}} %domain.4 = f32[] domain(%negate.1), domain={kind="sharding", entry={maximal device=1}, exit={maximal device=0}} %domain.5 = f32[] domain(%negate.2), domain={kind="sharding", entry={maximal device=2}, exit={maximal device=0}} %add = f32[] add(%domain.3, %domain.4) ROOT %sub = f32[] subtract(%add, %domain.5) })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); HloCSE cse(false); EXPECT_TRUE(cse.Run(m.get()).value()); const HloInstruction* sub = m->entry_computation()->root_instruction(); const HloInstruction* add = sub->operand(0); EXPECT_EQ(add->operand(0), add->operand(1)); EXPECT_NE(add->operand(0), sub->operand(1)); EXPECT_NE(add->operand(1), sub->operand(1)); } TEST_F(HloCseTest, Iota) { const char* const hlo_string = R"( HloModule m ENTRY entry { i1 = s64[16,16] iota(), iota_dimension=0 i2 = s64[16,16] iota(), iota_dimension=0 i3 = s64[17,16] iota(), iota_dimension=0 i4 = s64[16,16] iota(), iota_dimension=1 ROOT root = (s64[16,16], s64[16,16], s64[17,16], s64[16,16]) tuple(i1, i2, i3, i4) })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); HloCSE cse(false); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&cse, m.get())); EXPECT_TRUE(changed); HloInstruction* root = m->entry_computation()->root_instruction(); EXPECT_EQ(root->operand(0), root->operand(1)); EXPECT_NE(root->operand(0), root->operand(2)); EXPECT_NE(root->operand(0), root->operand(3)); } TEST_F(HloCseTest, OptimizationBarrier) { const char* const hlo_string = R"( HloModule m ENTRY entry { %param.0 = f32[] parameter(0) %param.1 = f32[] parameter(1) %add.0 = f32[] add(%param.0, %param.1) %cse_tmp.0 = (f32[], f32[], f32[]) tuple(%param.0, %param.1, %add.0) %cse_tmp.1 = (f32[], f32[], f32[]) opt-barrier(%cse_tmp.0) %param.0.1 = f32[] get-tuple-element(%cse_tmp.1), index=0 %param.1.1 = f32[] get-tuple-element(%cse_tmp.1), index=1 %add.0.1 = f32[] get-tuple-element(%cse_tmp.1), index=2 %add.1 = f32[] add(%param.0.1, %param.1.1) ROOT %add.2 = f32[] add(%add.1, %add.0.1) })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); HloCSE cse(false); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&cse, m.get())); EXPECT_FALSE(changed); } TEST_F(HloCseTest, OnlyScalar) { const char* const hlo_string = R"( HloModule m ENTRY entry { %const1 = f32[] constant(1) %const2 = f32[] constant(1) %const3 = f32[2] constant({1,2}) %const4 = f32[2] constant({1,2}) %add.0 = f32[] add(%const1, %const2) %add.1 = f32[2] add(%const3, %const4) ROOT out = (f32[], f32[2]) tuple(%add.0, %add.1) })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); HloCSE cse(false, false, false, true); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&cse, m.get())); EXPECT_TRUE(changed); EXPECT_EQ(absl::c_count_if(m->entry_computation()->instructions(), [](const HloInstruction* instruction) { return instruction->IsConstant(); }), 3); } class HloCseCustomCallTest : public HloCseTest, public ::testing::WithParamInterface<std::tuple< std::string , std::string , bool >> {}; TEST_P(HloCseCustomCallTest, DoIt) { std::string op1 = std::get<0>(GetParam()); std::string op2 = std::get<1>(GetParam()); bool should_cse = std::get<2>(GetParam()); const char* const hlo_string_tmpl = R"( HloModule m ENTRY entry { p0 = f32[1,1,1] parameter(0) op0 = $0 op1 = $0 op2 = $1 ROOT root = tuple(op0, op1, op2) } )"; std::string hlo_string = absl::Substitute(hlo_string_tmpl, op1, op2); SCOPED_TRACE(absl::StrCat("Module before CSE:\n", hlo_string)); TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); HloCSE cse(false); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&cse, m.get())); SCOPED_TRACE(absl::StrCat("Module after CSE:\n", m->ToString())); EXPECT_EQ(changed, true); HloInstruction* root = m->entry_computation()->root_instruction(); EXPECT_EQ(root->operand(0), root->operand(1)) << "Identical ops should be CSE'ed"; if (should_cse) { EXPECT_EQ(root->operand(0), root->operand(2)) << "Ops should be CSE'ed"; } else { EXPECT_NE(root->operand(0), root->operand(2)) << "Ops should not be CSE'ed"; } } static std::vector< std::tuple<std::string , std::string , bool >> CustomCallTests() { auto build = [](absl::string_view args1, absl::string_view args2) { absl::string_view prefix = "f32[] custom-call(p0), custom_call_target=\"foo\", "; return std::make_tuple(absl::StrCat(prefix, args1), absl::StrCat(prefix, args2), false); }; return { { "f32[] custom-call(p0), custom_call_target=\"foo\"", "f32[] custom-call(p0), custom_call_target=\"foo\", " "metadata={op_name=\"bar\"}", true, }, { "f32[] custom-call(p0), custom_call_target=\"foo\"", "f32[] custom-call(p0, p0), custom_call_target=\"foo\"", false, }, { "f32[1] custom-call(p0), custom_call_target=\"foo\"", "f32[2] custom-call(p0), custom_call_target=\"foo\"", false, }, { "f32[] custom-call(p0), custom_call_target=\"foo\"", "f32[] custom-call(p0), custom_call_target=\"bar\"", false, }, build("window={size=1}", "window={size=2}"), build("dim_labels=b0f_0oi->b0f", "dim_labels=b0f_0oi->bf0"), build("backend_config=\"foo\"", "backend_config=\"bar\""), build("literal=s32[] 0", "literal=s32[] 1"), build("literal=s32[] 0", "literal=f32[] 0"), build("operand_precision={high,default}", "operand_precision={high, high}"), build("api_version=API_VERSION_STATUS_RETURNING", "api_version=API_VERSION_ORIGINAL"), build("feature_group_count=0", "feature_group_count=1"), }; } INSTANTIATE_TEST_SUITE_P(HloCseCustomCallTestSuite, HloCseCustomCallTest, ::testing::ValuesIn(CustomCallTests())); TEST_F(HloCseTest, CustomCallCalledComputations) { const char* const hlo_string = R"( HloModule m comp { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT maximum = f32[] maximum(lhs, rhs) } ENTRY entry { p0 = f32[] parameter(0) op0 = f32[]
1,875
cpp
tensorflow/tensorflow
latency_hiding_scheduler
third_party/xla/xla/service/latency_hiding_scheduler.cc
third_party/xla/xla/service/latency_hiding_scheduler_test.cc
#ifndef XLA_SERVICE_LATENCY_HIDING_SCHEDULER_H_ #define XLA_SERVICE_LATENCY_HIDING_SCHEDULER_H_ #include <cstddef> #include <cstdint> #include <functional> #include <limits> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_pass_interface.h" #include "xla/xla.pb.h" namespace xla { struct CanonicalAsyncOp { HloOpcode outer; HloOpcode inner; }; CanonicalAsyncOp DefaultGetCanonicalAsyncOp(const HloInstruction& hlo); using GetCanonicalAsyncOpFunc = std::function<CanonicalAsyncOp(const HloInstruction& hlo)>; class HloGraphNode; class ModulePressureState; enum class ResourceType { kNoResource = 0, kAllToAll = 1, kAllGather = 2, kAllReduce = 3, kCollectivePermute = 4, kCopy = 5, kReduceScatter = 6, kSendRecv = 7, kSendHost = 8, kRecvHost = 9, kCollectiveBroadcast = 10, kNumResources = 11, kTargetDefinedResourcesBound = 10000, }; enum class ResourceUsageType { kNoResource, kResourceOccupy, kResourceRelease, }; enum class ResourceHazardType { kShareable = 0, kSerial = 1, kNonextendable = 2, kUnshareable = 3, }; constexpr int64_t ResourceTypeToIndex(ResourceType resource_type) { return static_cast<int64_t>(resource_type); } constexpr int64_t ResourceUsageTypeToIndex( ResourceUsageType resource_usage_type) { return static_cast<int64_t>(resource_usage_type); } using ResourcePair = std::pair<int64_t, ResourceUsageType>; using ResourcesVector = absl::InlinedVector<ResourcePair, 1>; class HloGraphNode; class HloScheduleGraph; struct SchedulerConfig { int64_t collective_broadcast_overlap_limit = 1; int64_t collective_permute_overlap_limit = 1; int64_t all_to_all_overlap_limit = 1; int64_t all_gather_overlap_limit = 1; int64_t all_reduce_overlap_limit = 1; int64_t reduce_scatter_overlap_limit = 1; int64_t send_recv_overlap_limit = 1; int64_t send_recv_host_overlap_limit = 1; int64_t copy_overlap_limit = 1; uint64_t memory_limit = UINT64_MAX; bool schedule_send_recvs = false; bool force_send_recv_to_use_same_resource = false; bool use_real_cost_model = false; bool aggressive_scheduling_policies = false; bool enable_release_start_policy = false; bool resource_sharing = false; bool resource_serializing = false; bool depth_based_memory_pressure_reduction = false; int64_t rerun = 0; }; class LatencyEstimator { public: using TimeCost = double; virtual TimeCost GetLatencyBetween(const HloGraphNode& from, const HloGraphNode& target) const = 0; virtual TimeCost NodeCost(const HloInstruction* node) const = 0; virtual int CyclesPerMicrosecond() const = 0; virtual ~LatencyEstimator() = default; inline CanonicalAsyncOp GetCanonicalAsyncOp(const HloInstruction& hlo) const { return get_canonical_async_op_(hlo); } bool IsAsyncPair(const HloGraphNode& from, const HloGraphNode& target) const; bool IsP2pPair(const HloGraphNode& from, const HloGraphNode& target) const; explicit LatencyEstimator( GetCanonicalAsyncOpFunc func = DefaultGetCanonicalAsyncOp) : get_canonical_async_op_(func) {} private: GetCanonicalAsyncOpFunc get_canonical_async_op_; }; class ApproximateLatencyEstimator : public LatencyEstimator { public: explicit ApproximateLatencyEstimator( GetCanonicalAsyncOpFunc func = DefaultGetCanonicalAsyncOp) : LatencyEstimator(func) {} TimeCost GetLatencyBetween(const HloGraphNode& from, const HloGraphNode& target) const override; TimeCost NodeCost(const HloInstruction* instr) const override; int CyclesPerMicrosecond() const override { return 1; } public: static constexpr TimeCost kLowCost = 1.0; static constexpr TimeCost kMediumCost = 1000.0; static constexpr TimeCost kHighCost = 5000.0; protected: static constexpr TimeCost kLowLatency = 1.0; static constexpr TimeCost kHighLatency = 5000.0; }; class AsyncTracker { public: virtual ~AsyncTracker() = default; virtual bool IsSupportedAsyncDone(const HloInstruction& hlo) const; virtual bool IsSupportedAsyncStart(const HloInstruction& hlo) const; virtual ResourcesVector GetResourcesFromInstructionImpl( const HloInstruction& hlo) const; virtual ResourcesVector GetResourcesFromInstruction( const HloInstruction& hlo) const; virtual void PostProcessScheduleGraph( HloScheduleGraph* schedule_graph, const LatencyEstimator* latency_estimator) const {} virtual int64_t GetNumResourcesPerInstruction( ResourceType resource_type, const HloInstruction& instr) const; virtual int64_t GetNumResourcesPerInstruction( int64_t resource_type, const HloInstruction& instr) const; virtual void SetConcurrentResourceLimits( absl::flat_hash_map<int64_t, int64_t>& max_concurrent_resource) const; virtual absl::string_view GetResourceName(int64_t resource_type) const; absl::string_view GetResourceUsageName(int64_t resource_usage_type) const; absl::string_view GetResourceUsageName( ResourceUsageType resource_usage_type) const; static int64_t GetFirstTargetDefinedResource() { return static_cast<int64_t>(ResourceType::kTargetDefinedResourcesBound) + 1; } virtual int64_t GetNumTargetDefinedResources() const; virtual int64_t GetNumAvailableResources(int64_t resource_type) const; virtual ResourceHazardType GetResourceHazardType(int64_t resource_type) const; virtual absl::InlinedVector<int64_t, 1> GetReleasedShareableResourcesFromVector( const ResourcesVector& resources) const; virtual absl::InlinedVector<int64_t, 1> GetOccupiedShareableResourcesFromVector( const ResourcesVector& resources) const; virtual absl::InlinedVector<int64_t, 1> GetOccupiedSerialResourcesFromVector( const ResourcesVector& resources) const; virtual absl::InlinedVector<int64_t, 1> GetReleasedNonextendableResourcesFromVector( const ResourcesVector& resources) const; inline CanonicalAsyncOp GetCanonicalAsyncOp(const HloInstruction& hlo) const { return get_canonical_async_op_(hlo); } explicit AsyncTracker( const SchedulerConfig& config, GetCanonicalAsyncOpFunc func = DefaultGetCanonicalAsyncOp) : config_(config), get_canonical_async_op_(func) {} private: const SchedulerConfig config_; mutable absl::flat_hash_map<const HloComputation*, absl::flat_hash_map<int64_t, int64_t>> async_in_computation_cache_; GetCanonicalAsyncOpFunc get_canonical_async_op_; protected: mutable absl::flat_hash_map<const HloInstruction*, ResourcesVector> resources_cache_; }; class SchedulerCore { public: virtual absl::Status InitializeScheduler(const HloModule* module) = 0; virtual absl::StatusOr<std::vector<HloInstruction*>> ScheduleComputation( const HloComputation* computation) = 0; virtual ~SchedulerCore() = default; virtual int64_t GetMemoryPeak() = 0; virtual void SetMemoryLimit(uint64_t new_limit) = 0; virtual uint64_t GetMemoryLimit() = 0; virtual int64_t GetRerunTimes() = 0; }; class HloEdge { public: HloEdge(LatencyEstimator::TimeCost latency, HloGraphNode* target) : latency_(latency), original_latency_(latency), target_(target) {} LatencyEstimator::TimeCost Latency() const { return latency_; } LatencyEstimator::TimeCost OriginalLatency() const { return original_latency_; } void SetLatency(LatencyEstimator::TimeCost latency) { latency_ = latency; } void SetOriginalLatency(LatencyEstimator::TimeCost original_latency) { original_latency_ = original_latency; } const HloGraphNode& Target() const { return *target_; } HloGraphNode& Target() { return *target_; } std::string ToString() const; private: LatencyEstimator::TimeCost latency_; LatencyEstimator::TimeCost original_latency_; HloGraphNode* target_; }; class HloGraphNode { public: using TimeCost = LatencyEstimator::TimeCost; explicit HloGraphNode(const HloInstruction* i, int64_t original_position) : instr_(i), original_position_(original_position) {} const HloInstruction& GetInstr() const { return *instr_; } bool IsScheduled() const { return scheduled_; } int32_t GetIndegree() const { return indegree_; } int32_t GetOutdegree() const { return outdegree_; } TimeCost GetReadyTime() const { return ready_time_; } void SetIndegree(int64_t indeg) { indegree_ = indeg; } void SetOutdegree(int64_t outdeg) { outdegree_ = outdeg; } void SetScheduled() { scheduled_ = true; } void SetReadyTime(TimeCost ready_time) { ready_time_ = ready_time; } TimeCost GetCost() const { return cost_; } void SetCost(TimeCost cost) { cost_ = cost; } TimeCost GetAsyncDepth() const { return async_depth_; } TimeCost GetDepth() const { return depth_; } TimeCost GetGraphDepth() const { return graph_depth_; } void SetAsyncDepth(TimeCost async_depth) { async_depth_ = async_depth; } void SetDepth(TimeCost depth) { depth_ = depth; } void SetGraphDepth(TimeCost graph_depth) { graph_depth_ = graph_depth; } bool GetForceDelay() const { return force_delay_; } void SetForceDelay(bool force_delay) { force_delay_ = force_delay; } bool GetForceEarly() const { return force_early_; } void SetForceEarly(bool force_early) { force_early_ = force_early; } ResourcesVector GetResources() const { return resources_; } bool DoesOccupyAnyResource() const { return absl::c_any_of(resources_, [](const ResourcePair& resource) { return resource.second == ResourceUsageType::kResourceOccupy; }); } bool DoesReleaseAnyResource() const { return absl::c_any_of(resources_, [](const ResourcePair& resource) { return resource.second == ResourceUsageType::kResourceRelease; }); } bool DoesOccupyShareableResource(int64_t resource) const { return absl::c_linear_search(occupied_shareable_resources_, resource); } bool DoesReleaseResource(ResourceType res) const { return absl::c_any_of(resources_, [res](const ResourcePair& resource) { return resource.second == ResourceUsageType::kResourceRelease && resource.first == ResourceTypeToIndex(res); }); } std::optional<ResourceUsageType> UsesResourceType(ResourceType res) const { int64_t res_type = ResourceTypeToIndex(res); for (const auto& [resource_type, usage_type] : resources_) { if (resource_type == res_type) { return usage_type; } } return std::nullopt; } std::optional<ResourceUsageType> UsesResourceType(int64_t res) const { for (const auto& [resource_type, usage_type] : resources_) { if (resource_type == res) { return usage_type; } } return std::nullopt; } std::vector<int64_t> GetShareableResourcesOnEdge(const HloEdge& edge) const { HloGraphNode node = edge.Target(); std::vector<int64_t> resources; absl::c_for_each(released_shareable_resources_, [&node, &resources](const int64_t resource) { if (node.DoesOccupyShareableResource(resource)) { resources.push_back(resource); } }); return resources; } absl::Span<HloEdge> GetPredecessors() { return absl::MakeSpan(predecessors_); } absl::Span<const HloEdge> GetPredecessors() const { return absl::MakeConstSpan(predecessors_); } void AddPredecessor(const HloEdge& e) { predecessors_.push_back(e); } absl::Span<HloEdge> GetSuccessors() { return absl::MakeSpan(successors_); } absl::Span<const HloEdge> GetSuccessors() const { return absl::MakeConstSpan(successors_); } void AddSuccessor(const HloEdge& e) { successors_.push_back(e); } int64_t GetOriginalPosition() const { return original_position_; } std::string ToString(const AsyncTracker* async_tracker = nullptr) const { std::string result; absl::StrAppend(&result, "Instr: ", instr_->ToShortString(), "\n"); absl::StrAppend(&result, "ReadyTime: ", ready_time_, "\n"); absl::StrAppend(&result, "Indegree: ", indegree_, "\n"); absl::StrAppend(&result, "Outdegree: ", outdegree_, "\n"); absl::StrAppend(&result, "Cost: ", cost_, "\n"); absl::StrAppend(&result, "Async Depth: ", async_depth_, "\n"); absl::StrAppend(&result, "Depth: ", depth_, "\n"); absl::StrAppend(&result, "Graph Depth: ", graph_depth_, "\n"); absl::StrAppend(&result, "Force Delay: ", force_delay_, "\n"); absl::StrAppend(&result, "Force Early: ", force_early_, "\n"); absl::StrAppend(&result, "Predecessors:\n"); for (const HloEdge& e : predecessors_) { absl::StrAppend(&result, e.ToString()); } absl::StrAppend(&result, "Successors:\n"); for (const HloEdge& e : successors_) { absl::StrAppend(&result, e.ToString()); } if (async_tracker != nullptr) { absl::StrAppend(&result, "Resources:\n"); for (const auto& [resource, usage] : resources_) { absl::StrAppend( &result, "\tResource: ", async_tracker->GetResourceName(resource), " usage: ", async_tracker->GetResourceUsageName(usage), "\n"); } } return result; } private: friend class HloScheduleGraph; std::vector<HloEdge> predecessors_; std::vector<HloEdge> successors_; const HloInstruction* instr_; int64_t original_position_; TimeCost ready_time_ = std::numeric_limits<TimeCost>::max(); int32_t indegree_ = 0; int32_t outdegree_ = 0; TimeCost cost_ = 0.0; TimeCost async_depth_ = 0.0; TimeCost depth_ = 0.0; int64_t graph_depth_ = 0; ResourcesVector resources_; bool force_delay_ = false; bool force_early_ = false; bool scheduled_ = false; absl::InlinedVector<int64_t, 1> released_shareable_resources_; absl::InlinedVector<int64_t, 1> occupied_shareable_resources_; }; class HloScheduleGraph { public: HloScheduleGraph(const std::vector<HloInstruction*>* post_order_instructions, HloAliasAnalysis* alias_analysis, const LatencyEstimator* latency_estimator, const AsyncTracker* async_tracker); std::string ToString(const AsyncTracker* async_tracker = nullptr) const; HloGraphNode& GetNode(const HloInstruction* instr) const; std::vector<HloGraphNode*> FindBottomRoots() const; std::vector<HloGraphNode*> FindTopRoots() const; void InitializeGraphAnalysis(const AsyncTracker* async_tracker); absl::Span<const HloInstruction* const> GetOriginalInstrList() const { return absl::MakeConstSpan(original_order_); } int64_t OriginalInstructionPosition(const HloInstruction* instr) const { auto it = instr_order_map_.find(instr); CHECK(it != instr_order_map_.end()); return it->second; } private: absl::flat_hash_map<const HloInstruction*, std::unique_ptr<HloGraphNode>> nodes_; absl::flat_hash_map<const HloInstruction*, int64_t> instr_order_map_; std::vector<const HloInstruction*> original_order_; bool IsPredecessorTransitively(const HloGraphNode* node, const HloGraphNode* possible_predecessor); }; class BufferInfoTracker { public: struct ValueInfo { const HloBuffer* value = nullptr; const HloInstruction* first_definition = nullptr; int64_t buffer_size = 0; }; BufferInfoTracker(const HloModule* module, const HloAliasAnalysis* alias_analysis, const HloCostAnalysis::ShapeSizeFunction& shape_size_bytes); static ValueInfo CreateBufferInfo( const HloBuffer* value, const HloInstruction* first_definition, const HloCostAnalysis::ShapeSizeFunction& shape_size_bytes) { return ValueInfo{ value, first_definition, shape_size_bytes(value->values()[0]->shape())}; } const ValueInfo& GetBufferInfo(HloBuffer::Id id) const { return buffer_infos_[id]; } private: std::vector<ValueInfo> buffer_infos_; }; class MemoryPressureTracker { public: using LiveBufferSet = absl::flat_hash_set<HloBuffer::Id>; struct MemoryPressureState { int64_t memory_peak = 0; absl::flat_hash_set<HloBuffer::Id> live_ids_at_bottom; }; MemoryPressureTracker( const HloAliasAnalysis* hlo_alias_analysis, const BufferInfoTracker& buffer_tracker, const absl::flat_hash_map<const HloComputation*, MemoryPressureState>& pressure_state_cache) : hlo_alias_analysis_(hlo_alias_analysis), live_buffers_(hlo_alias_analysis->buffers().back().id() + 1), buffer_tracker_(buffer_tracker), pressure_state_cache_(pressure_state_cache), live_memory_usage_(0), initial_memory_pressure_(0) {} void Initialize(const HloComputation* computation, const LiveBufferSet& initial_live_buffers); void UpdateBuffers(const HloInstruction* instruction); std::pair<int64_t, int64_t> MemoryPressureDifference( const HloInstruction* instruction) const; absl::flat_hash_set<HloBuffer::Id> live_buffers() const { return live_buffers_set_; } bool BufferIsLive(const HloValue* buffer) const { CHECK_LT(buffer->id(), live_buffers_.size()); return live_buffers_[buffer->id()]; } int64_t memory_usage() const { return live_memory_usage_ + initial_memory_pressure_; } int64_t initial_memory_pressure() const { return initial_memory_pressure_; } const MemoryPressureState& pressure_state() const { return pressure_state_; } private: static bool ShouldSkipBufferAllocations( const HloInstruction* instruction, const ShapeIndex& idx, const HloInstruction* first_definition) { if ((instruction->opcode() == HloOpcode::kGetTupleElement || instruction->opcode() == HloOpcode::kBitcast) && !idx.empty()) { return true; } if (first_definition->opcode() == HloOpcode::kParameter && first_definition->parent()->IsEntryComputation()) { return true; } return false; } static bool ShouldSkipBufferReleases(const HloInstruction* instruction) { if (instruction->opcode() == HloOpcode::kParameter) { return true; } return false; } const HloAliasAnalysis* hlo_alias_analysis_; std::vector<int8_t> live_buffers_; LiveBufferSet live_buffers_set_; const BufferInfoTracker& buffer_tracker_; absl::flat_hash_map< HloInstruction*, std::vector<std::pair<BufferInfoTracker::ValueInfo, ShapeIndex>>> output_buffers_; absl::flat_hash_map<HloInstruction*, std::vector<BufferInfoTracker::ValueInfo>> defined_buffers_; const absl::flat_hash_map<const HloComputation*, MemoryPressureState>& pressure_state_cache_; int64_t live_memory_usage_; int64_t initial_memory_pressure_; MemoryPressureState pressure_state_; }; class ModulePressureState { public: using PressureStateMap = absl::flat_hash_map<const HloComputation*, MemoryPressureTracker::MemoryPressureState>; ModulePressureState( const HloModule* module, const HloAliasAnalysis* hlo_alias_analysis, const HloCostAnalysis::ShapeSizeFunction& shape_size_bytes) : module_(module), hlo_alias_analysis_(hlo_alias_analysis), buffer_tracker_(module, hlo_alias_analysis, shape_size_bytes) {} void InitializePressureStates(); bool ComputationIsMemoryTracked(const HloComputation* computation) const { return ContainsKey(memory_pressure_states_, computation); } const MemoryPressureTracker::MemoryPressureState& GetPressureStateForComputation(const HloComputation* comp) const { auto it = memory_pressure_states_.find(comp); CHECK(it != memory_pressure_states_.end()) << "No state for " << comp->name(); return it->second; } void UpdatePressureStateForComputation( const HloComputation* comp, MemoryPressureTracker::MemoryPressureState state) { memory_pressure_states_[comp] = state; memory_peak_ = std::max(memory_peak_, state.memory_peak); } const PressureStateMap& pressure_state_cache() const { return memory_pressure_states_; } const BufferInfoTracker& buffer_tracker() const { return buffer_tracker_; } int64_t GetMemoryPeak() { return memory_peak_; } void SetMemoryPeak(int64_t peak) { memory_peak_ = peak; } private: const HloModule* module_; const HloAliasAnalysis* hlo_alias_analysis_; absl::flat_hash_map<const HloComputation*, MemoryPressureTracker::MemoryPressureState> memory_pressure_states_; BufferInfoTracker buffer_tracker_; int64_t memory_peak_ = 0; }; class DefaultSchedulerCore : public SchedulerCore { public: using ReadyQueueSet = std::vector<HloGraphNode*>; using ResourceMap = absl::flat_hash_map<int64_t, int64_t>; using ShouldSkipNodeFunction = std::function<bool(const HloGraphNode*)>; struct ScheduleCandidate { HloGraphNode* node = nullptr; std::optional<std::pair<int64_t, int64_t>> pressure_change; std::optional<HloGraphNode::TimeCost> estimated_connected_send_ready_time; std::optional<bool> resource_constrained; }; struct CandidateResult { ScheduleCandidate result; const char* reason; }; using TargetSchedulingRule = std::function<std::optional<CandidateResult>( ScheduleCandidate&, ScheduleCandidate&)>; static std::optional<bool> TrueForOneOnly(bool first, bool second) { if (first == second) { return std::nullopt; } return first; } static std::optional<CandidateResult> ChooseBestCandidate( bool first_cond, const ScheduleCandidate& first_candidate, bool second_cond, const ScheduleCandidate& second_candidate, const char* reason) { if (auto cond = TrueForOneOnly(first_cond, second_cond)) { return CandidateResult{*cond ? first_candidate : second_candidate, reason}; } return std::nullopt; } struct SchedulingState { HloScheduleGraph sched_graph; ReadyQueueSet ready_set; ResourceMap max_concurrent_resource; std::vector<HloInstruction*> new_sequence_reversed; HloGraphNode::TimeCost current_ti
#include "xla/service/latency_hiding_scheduler.h" #include <algorithm> #include <cstdint> #include <cstdlib> #include <functional> #include <iterator> #include <list> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/service/async_collective_creator.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { constexpr int kMaxConcurrentAsyncCollectivePermutes = 5; int PositionInVector(absl::Span<HloInstruction* const> vec, const HloInstruction* element) { return std::distance(vec.begin(), std::find(vec.begin(), vec.end(), element)); } bool MaxConcurrentCollectivePermutesBelowThreshold( absl::Span<HloInstruction* const> instruction_sequence) { int max_concurrent_collective_permutes = 0; int num_concurrent_collective_permutes = 0; for (HloInstruction* instruction : instruction_sequence) { if (instruction->opcode() == HloOpcode::kCollectivePermuteStart) { num_concurrent_collective_permutes += 1; max_concurrent_collective_permutes = std::max(max_concurrent_collective_permutes, num_concurrent_collective_permutes); } if (instruction->opcode() == HloOpcode::kCollectivePermuteDone) { num_concurrent_collective_permutes -= 1; } } int max_num_collective_permutes_threshold = kMaxConcurrentAsyncCollectivePermutes; return max_concurrent_collective_permutes <= max_num_collective_permutes_threshold; } int GetIndex(absl::Span<HloInstruction* const> instruction_sequence, absl::string_view hlo_name) { return absl::c_find_if(instruction_sequence, [hlo_name](HloInstruction* instruction) { return instruction->name() == hlo_name; }) - instruction_sequence.begin(); } int GetOpcodeIndexUsingMetaData( HloOpcode opcode, absl::Span<HloInstruction* const> instruction_sequence, absl::string_view metadata_name) { return absl::c_find_if(instruction_sequence, [metadata_name, opcode](HloInstruction* instruction) { return instruction->metadata().op_name() == metadata_name && instruction->opcode() == opcode; }) - instruction_sequence.begin(); } SchedulerConfig GetDefaultSchedConfig() { SchedulerConfig sched_cfg; sched_cfg.collective_permute_overlap_limit = kMaxConcurrentAsyncCollectivePermutes; sched_cfg.send_recv_overlap_limit = INT32_MAX; return sched_cfg; } class TestLatencyEstimator : public LatencyEstimator { public: TimeCost GetLatencyBetween(const HloGraphNode& from, const HloGraphNode& target) const override { static constexpr TimeCost kLowLatency = 1.0; if (from.GetInstr().opcode() == HloOpcode::kCollectivePermuteStart && target.GetInstr().opcode() == HloOpcode::kCollectivePermuteDone) { return kLowLatency * ShapeUtil::ElementsIn(from.GetInstr().operand(0)->shape()); } return kLowLatency; } TimeCost NodeCost(const HloInstruction* instr) const override { if (instr->IsLoopFusion()) { return instr->shape().IsTuple() ? kMediumCost : kLowCost * ShapeUtil::ElementsIn(instr->shape()); } if (instr->IsOutputFusion() || instr->opcode() == HloOpcode::kConvolution) { return instr->shape().IsTuple() ? kHighCost : kMediumCost * ShapeUtil::ElementsIn(instr->shape()); } return kLowCost; } int CyclesPerMicrosecond() const override { return 1; } public: static constexpr TimeCost kLowCost = 1.0; static constexpr TimeCost kMediumCost = 1000.0; static constexpr TimeCost kHighCost = 5000.0; }; absl::StatusOr<bool> RunScheduler( HloModule* module, SchedulerConfig sched_config = GetDefaultSchedConfig(), std::unique_ptr<LatencyEstimator> latency_estimator = std::make_unique<ApproximateLatencyEstimator>()) { AsyncCollectiveCreator::CollectiveCreatorConfig config{ HloPredicateTrue, HloPredicateTrue, HloPredicateTrue, HloPredicateTrue}; TF_ASSIGN_OR_RETURN(bool value, AsyncCollectiveCreator(std::move(config)).Run(module)); HloCostAnalysis::ShapeSizeFunction shape_size_bytes = [&shape_size_bytes](const Shape& shape) -> int64_t { int64_t shape_size = 0; if (shape.IsTuple()) { for (auto& sub_shape : shape.tuple_shapes()) { shape_size += shape_size_bytes(sub_shape); } return shape_size; } return ShapeUtil::ByteSizeOfElements(shape); }; auto async_tracker = std::make_unique<AsyncTracker>(sched_config); auto scheduler_core = std::make_unique<DefaultSchedulerCore>( shape_size_bytes, async_tracker.get(), latency_estimator.get(), sched_config); TF_ASSIGN_OR_RETURN( value, LatencyHidingScheduler(std::move(latency_estimator), std::move(async_tracker), std::move(scheduler_core), shape_size_bytes) .Run(module)); return value; } } class LatencyHidingSchedulerTest : public HloTestBase { public: absl::StatusOr<std::unique_ptr<HloModule>> ParseHloText( absl::string_view hlo_string) { TF_ASSIGN_OR_RETURN( auto hlo_module, ParseAndReturnVerifiedModule(hlo_string, GetModuleConfigForTest())); return absl::StatusOr<std::unique_ptr<HloModule>>(std::move(hlo_module)); } }; TEST_F(LatencyHidingSchedulerTest, AllGatherAsyncSimple) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY %module { %constant.19 = u32[] constant(0) %replica_id = u32[]{:T(128)} replica-id() %convert = f32[]{:T(128)} convert(u32[]{:T(128)} %replica_id) %color_operand.1 = f32[8,256,256]{2,1,0:T(8,128)} broadcast( f32[]{:T(128)} %convert), dimensions={} %ag-start = (f32[8,256,256], f32[16,256,256]) all-gather-start( f32[8,256,256] %color_operand.1), replica_groups={{0,1}}, dimensions={0}, metadata={op_type="AllGather" op_name="ag0"} %ag-done = f32[16,256,256] all-gather-done( (f32[8,256,256], f32[16,256,256]) %ag-start), metadata={op_type="AllGather" op_name="ag0"} p0 = f32[16,64,256]{2,1,0} parameter(0) p1 = f32[16,64,256]{2,1,0} parameter(1) p2 = f32[16,256,256]{2,1,0} parameter(2) p3 = f32[16,256,256]{2,1,0} parameter(3) c0 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb c1 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb ROOT a2 = f32[16,256,256]{2,1,0} add(%ag-done, c0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_EQ(GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherDone, new_instruction_sequence, "ag0"), GetIndex(new_instruction_sequence, "a2") - 1); } TEST_F(LatencyHidingSchedulerTest, AllGatherAsyncBalance) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY %module { %constant.19 = u32[] constant(0) %replica_id = u32[]{:T(128)} replica-id() %convert = f32[]{:T(128)} convert(u32[]{:T(128)} %replica_id) %color_operand.1 = f32[1,8,256,256]{3,2,1,0:T(8,128)} broadcast( f32[]{:T(128)} %convert), dimensions={} %ag-start = (f32[1,8,256,256], f32[2,8,256,256]) all-gather-start( f32[1,8,256,256] %color_operand.1), replica_groups={{0,1}}, dimensions={0}, metadata={op_type="AllGather" op_name="ag0"} %ag-done = f32[2,8,256,256] all-gather-done( (f32[1,8,256,256], f32[2,8,256,256]) %ag-start), metadata={op_type="AllGather" op_name="ag0"} %ag-done-bc = f32[16,256,256] bitcast(f32[2,8,256,256] %ag-done), metadata={op_type="Bitcast" op_name="ag0"} %ag-start.2 = (f32[1,8,256,256], f32[2,8,256,256]) all-gather-start( f32[1,8,256,256] %color_operand.1), replica_groups={{0,1}}, dimensions={0}, metadata={op_type="AllGather" op_name="ag1"} %ag-done.2 = f32[2,8,256,256] all-gather-done( (f32[1,8,256,256], f32[2,8,256,256]) %ag-start.2), metadata={op_type="AllGather" op_name="ag1"} %ag-done-bc.2 = f32[16,256,256] bitcast(f32[2,8,256,256] %ag-done.2), metadata={op_type="Bitcast" op_name="ag1"} p0 = f32[16,64,256]{2,1,0} parameter(0) p1 = f32[16,64,256]{2,1,0} parameter(1) p2 = f32[16,256,256]{2,1,0} parameter(2) p3 = f32[16,256,256]{2,1,0} parameter(3) c0 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb, metadata={op_type="AllGather" op_name="c0"} c1 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb, metadata={op_type="AllGather" op_name="c1"} a2 = f32[16,256,256]{2,1,0} add(c1, c0) ROOT t = (f32[16,256,256], f32[16,256,256], f32[16,256,256]) tuple(a2, %ag-done-bc.2, %ag-done-bc) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kConvolution, new_instruction_sequence, "c0"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherDone, new_instruction_sequence, "ag0")); EXPECT_GT(GetOpcodeIndexUsingMetaData(HloOpcode::kConvolution, new_instruction_sequence, "c0"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherStart, new_instruction_sequence, "ag0")); EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kConvolution, new_instruction_sequence, "c1"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherDone, new_instruction_sequence, "ag1")); EXPECT_GT(GetOpcodeIndexUsingMetaData(HloOpcode::kConvolution, new_instruction_sequence, "c1"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherStart, new_instruction_sequence, "ag1")); } TEST_F(LatencyHidingSchedulerTest, AllGatherAsyncReshaped) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY %module { %constant.19 = u32[] constant(0) %replica_id = u32[]{:T(128)} replica-id() %convert = f32[]{:T(128)} convert(u32[]{:T(128)} %replica_id) %color_operand.1 = f32[1,8,256,256]{3,2,1,0:T(8,128)} broadcast( f32[]{:T(128)} %convert), dimensions={} %ag-start = (f32[1,8,256,256], f32[2,8,256,256]) all-gather-start( f32[1,8,256,256] %color_operand.1), replica_groups={{0,1}}, dimensions={0}, metadata={op_type="AllGather" op_name="ag0"} %ag-done = f32[2,8,256,256] all-gather-done( (f32[1,8,256,256], f32[2,8,256,256]) %ag-start), metadata={op_type="AllGather" op_name="ag0"} %ag-done-bc = f32[16,256,256] bitcast(f32[2,8,256,256] %ag-done), metadata={op_type="Bitcast" op_name="ag0"} p0 = f32[16,64,256]{2,1,0} parameter(0) p1 = f32[16,64,256]{2,1,0} parameter(1) p2 = f32[16,256,256]{2,1,0} parameter(2) p3 = f32[16,256,256]{2,1,0} parameter(3) c0 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb c1 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb ROOT a2 = f32[16,256,256]{2,1,0} add(%ag-done-bc, c0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_EQ(GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherDone, new_instruction_sequence, "ag0"), GetIndex(new_instruction_sequence, "a2") - 2); EXPECT_EQ(GetOpcodeIndexUsingMetaData(HloOpcode::kBitcast, new_instruction_sequence, "ag0"), GetIndex(new_instruction_sequence, "a2") - 1); } TEST_F(LatencyHidingSchedulerTest, AllGatherAsyncOverlapped) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY %module { %constant.19 = u32[] constant(1) %replica_id = u32[]{:T(128)} replica-id() %add.1 = u32[]{:T(128)} add(replica_id, constant.19) %convert = f32[]{:T(128)} convert(u32[]{:T(128)} %replica_id) %convert.1 = f32[]{:T(128)} convert(u32[]{:T(128)} %add.1) %color_operand.1 = f32[8,256,256]{2,1,0:T(8,128)} broadcast(f32[]{:T(128)} %convert), dimensions={} %color_operand.2 = f32[8,256,256]{2,1,0:T(8,128)} broadcast(f32[]{:T(128)} %convert.1), dimensions={} %ag-start = (f32[8,256,256], f32[16,256,256]) all-gather-start(f32[8,256,256] %color_operand.1), replica_groups={{0,1}}, dimensions={0}, metadata={op_type="AllGather" op_name="ag0"} %ag-start.2 = (f32[8,256,256], f32[16,256,256]) all-gather-start(f32[8,256,256] %color_operand.2), replica_groups={{0,1}}, dimensions={0}, metadata={op_type="AllGather" op_name="ag1"} %ag-done = f32[16,256,256] all-gather-done((f32[8,256,256], f32[16,256,256]) %ag-start), metadata={op_type="AllGather" op_name="ag0"} %ag-done.2 = f32[16,256,256] all-gather-done((f32[8,256,256], f32[16,256,256]) %ag-start.2), metadata={op_type="AllGather" op_name="ag1"} p0 = f32[16,64,256]{2,1,0} parameter(0) p1 = f32[16,64,256]{2,1,0} parameter(1) p2 = f32[16,256,256]{2,1,0} parameter(2) p3 = f32[16,256,256]{2,1,0} parameter(3) c0 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb c1 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb ROOT a2 = f32[16,256,256]{2,1,0} add(%ag-done, %ag-done.2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherDone, new_instruction_sequence, "ag0"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherStart, new_instruction_sequence, "ag1")); EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherStart, new_instruction_sequence, "ag0"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherDone, new_instruction_sequence, "ag0")); EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherStart, new_instruction_sequence, "ag1"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherDone, new_instruction_sequence, "ag1")); } TEST_F(LatencyHidingSchedulerTest, AllGatherAsyncOverlapped2) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY %module { %constant.19 = u32[] constant(1) %replica_id = u32[]{:T(128)} replica-id() %add.1 = u32[]{:T(128)} add(replica_id, constant.19) %convert = f32[]{:T(128)} convert(u32[]{:T(128)} %replica_id) %convert.1 = f32[]{:T(128)} convert(u32[]{:T(128)} %add.1) %color_operand.1 = f32[8,256,256]{2,1,0:T(8,128)} broadcast(f32[]{:T(128)} %convert), dimensions={} %color_operand.2 = f32[8,256,256]{2,1,0:T(8,128)} broadcast(f32[]{:T(128)} %convert.1), dimensions={} %ag-start = (f32[8,256,256], f32[16,256,256]) all-gather-start(f32[8,256,256] %color_operand.1), replica_groups={{0,1}}, dimensions={0}, metadata={op_type="AllGather" op_name="ag0"} %ag-start.2 = (f32[8,256,256], f32[16,256,256]) all-gather-start(f32[8,256,256] %color_operand.2), replica_groups={{0,1}}, dimensions={0}, metadata={op_type="AllGather" op_name="ag1"} %ag-done = f32[16,256,256] all-gather-done((f32[8,256,256], f32[16,256,256]) %ag-start), metadata={op_type="AllGather" op_name="ag0"} %ag-done.2 = f32[16,256,256] all-gather-done((f32[8,256,256], f32[16,256,256]) %ag-start.2), metadata={op_type="AllGather" op_name="ag1"} p0 = f32[16,64,256]{2,1,0} parameter(0) p1 = f32[16,64,256]{2,1,0} parameter(1) c0 = f32[16,256,256]{2,1,0} convolution(ag-done, ag-done.2), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb c1 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb ROOT a2 = f32[16,256,256]{2,1,0} add(%c0, %c1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherDone, new_instruction_sequence, "ag0"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherStart, new_instruction_sequence, "ag1")); EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherStart, new_instruction_sequence, "ag0"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherDone, new_instruction_sequence, "ag0")); EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherStart, new_instruction_sequence, "ag1"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherDone, new_instruction_sequence, "ag1")); } TEST_F(LatencyHidingSchedulerTest, AllGatherAsyncOverlapped3) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY %module { %constant.19 = u32[] constant(1) %replica_id = u32[]{:T(128)} replica-id() %add.1 = u32[]{:T(128)} add(replica_id, constant.19) %convert = f32[]{:T(128)} convert(u32[]{:T(128)} %replica_id) %convert.1 = f32[]{:T(128)} convert(u32[]{:T(128)} %add.1) p0 = f32[16,64,256]{2,1,0} parameter(0) p1 = f32[16,64,256]{2,1,0} parameter(1) p2 = f32[16,256,256]{2,1,0} parameter(2) p3 = f32[16,256,256]{2,1,0} parameter(3) c1 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb %color_operand.1 = f32[8,256,256]{2,1,0:T(8,128)} broadcast(f32[]{:T(128)} %convert), dimensions={} %color_operand.2 = f32[8,256,256]{2,1,0:T(8,128)} broadcast(f32[]{:T(128)} %convert.1), dimensions={} %ag-start = (f32[8,256,256], f32[16,256,256]) all-gather-start(f32[8,256,256] %color_operand.1), replica_groups={{0,1}}, dimensions={0}, metadata={op_type="AllGather" op_name="ag0"} %ag-start.2 = (f32[8,256,256], f32[16,256,256]) all-gather-start(f32[8,256,256] %color_operand.2), replica_groups={{0,1}}, dimensions={0}, metadata={op_type="AllGather" op_name="ag1"} %ag-done = f32[16,256,256] all-gather-done((f32[8,256,256], f32[16,256,256]) %ag-start), metadata={op_type="AllGather" op_name="ag0"} %ag-done.2 = f32[16,256,256] all-gather-done((f32[8,256,256], f32[16,256,256]) %ag-start.2), metadata={op_type="AllGather" op_name="ag1"} c0 = f32[16,256,256]{2,1,0} convolution(ag-done, ag-done.2), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb ROOT a2 = f32[16,256,256]{2,1,0} add(%ag-done, %ag-done.2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherDone, new_instruction_sequence, "ag0"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherStart, new_instruction_sequence, "ag1")); EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherStart, new_instruction_sequence, "ag0"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherDone, new_instruction_sequence, "ag0")); EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherStart, new_instruction_sequence, "ag1"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherDone, new_instruction_sequence, "ag1")); } TEST_F(LatencyHidingSchedulerTest, AllReduceAsyncBalance) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true %add { %p0 = f32[] parameter(0) %p1 = f32[] parameter(1) ROOT %a = f32[] add(p0, p1) } ENTRY %module { %constant.19 = u32[] constant(0) %replica_id = u32[]{:T(128)} replica-id() %convert = f32[]{:T(128)} convert(u32[]{:T(128)} %replica_id) %color_operand.1 = f32[2,8,256,256]{3,2,1,0:T(8,128)} broadcast( f32[]{:T(128)} %convert), dimensions={} %color_operand.2 = f32[2,8,256,256]{3,2,1,0:T(8,128)} broadcast( f32[]{:T(128)} %convert), dimensions={} %ar-start = f32[2,8,256,256] all-reduce-start( f32[2,8,256,256] %color_operand.1), replica_groups={{0,1}}, to_apply=%add, metadata={op_type="AllReduce" op_name="ar0"} %ar-start.2 = f32[2,8,256,256] all-reduce-start( f32[2,8,256,256] %color_operand.2), replica_groups={{0,1}}, to_apply=%add, metadata={op_type="AllReduce" op_name="ar1"} %ar-done = f32[2,8,256,256] all-reduce-done( f32[2,8,256,256] %ar-start), metadata={op_type="AllReduce" op_name="ar0"} %ar-done-bc = f32[16,256,256] bitcast(f32[2,8,256,256] %ar-done), metadata={op_type="Bitcast" op_name="ar0"} %ar-done.2 = f32[2,8,256,256] all-reduce-done( f32[2,8,256,256] %ar-start.2), metadata={op_type="AllReduce" op_name="ar1"} %ar-done-bc.2 = f32[16,256,256] bitcast(f32[2,8,256,256] %ar-done.2), metadata={op_type="Bitcast" op_name="ar1"} p0 = f32[16,64,256]{2,1,0} parameter(0) p1 = f32[16,64,256]{2,1,0} parameter(1) p2 = f32[16,256,256]{2,1,0} parameter(2) p3 = f32[16,256,256]{2,1,0} parameter(3) c0 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb, metadata={op_type="AllReduce" op_name="c0"} c1 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb, metadata={op_type="AllReduce" op_name="c1"} a2 = f32[16,256,256]{2,1,0} add(c1, c0) ROOT t = (f32[16,256,256], f32[16,256,256], f32[16,256,256]) tuple(a2, %ar-done-bc.2, %ar-done-bc) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kConvolution, new_instruction_sequence, "c0"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllReduceDone, new_instruction_sequence, "ar0")); EXPECT_GT(GetOpcodeIndexUsingMetaData(HloOpcode::kConvolution, new_instruction_sequence, "c0"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllReduceStart, new_instruction_sequence, "ar0")); EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kConvolution, new_instruction_sequence, "c1"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllReduceDone, new_instruction_sequence, "ar1")); EXPECT_GT(GetOpcodeIndexUsingMetaData(HloOpcode::kConvolution, new_instruction_sequence, "c1"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllReduceStart, new_instruction_sequence, "ar1")); } TEST_F(LatencyHidingSchedulerTest, WhileLoopAliasingBug) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true while_cond { param = (bf16[8]{0}, bf16[8]{0}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(param), index=2 } while_body { param = (bf16[8]{0}, bf16[8]{0}, pred[]) parameter(0) gte0 = bf16[8]{0} get-tuple-element(param), index=0 gte1 = pred[] get-tuple-element(param), index=2 bitcast = bf16[8]{0} bitcast(gte0) collective-permute.1 = bf16[8]{0} collective-permute(gte0), source_target_pairs={{0,1},{1,2},{2,3}} add0 = bf16[8]{0} add(collective-permute.1, bitcast) negate = bf16[8]{0} negate(add0) collective-permute.2 = bf16[8]{0} collective-permute(collective-permute.1), source_target_pairs={{1,0},{0,3},{3,2}} ROOT tuple = (bf16[8]{0}, bf16[8]{0}, pred[]) tuple(collective-permute.2, negate, gte1) } ENTRY entry { p0 = bf16[8]{0} parameter(0) p1 = bf16[8]{0} parameter(1) p2 = pred[] parameter(2) tuple = (bf16[8]{0}, bf16[8]{0}, pred[]) tuple(p0, p1, p2) while = (bf16[8]{0}, bf16[8]{0}, pred[]) while(tuple), condition=while_cond, body=while_body gte0 = bf16[8]{0} get-tuple-element(while), index=0 gte1 = bf16[8]{0} get-tuple-element(while), index=1 ROOT add = bf16[8]{0} add(gte0, gte1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* while_body = hlo_module->GetComputationWithName("while_body"); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(while_body).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } const HloInstruction* cp_start = while_body->root_instruction()->operand(0)->operand(0); EXPECT_EQ(cp_start->opcode(), HloOpcode::kCollectivePermuteStart); EXPECT_LT(GetIndex(new_instruction_sequence, "add0"), GetIndex(new_instruction_sequence, cp_start->name())); } TEST_F(LatencyHidingSchedulerTest, WhileLoopAliasingBug2) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true while_cond { param = (bf16[8]{0}, bf16[8]{0}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(param), index=2 } while_body { param = (bf16[8]{0}, bf16[8]{0}, pred[]) parameter(0) gte0 = bf16[8]{0} get-tuple-element(param), index=0 gte1 = bf16[8]{0} get-tuple-element(param), index=1
1,876
cpp
tensorflow/tensorflow
result_caster
third_party/xla/xla/service/result_caster.cc
third_party/xla/xla/service/result_caster_test.cc
#ifndef XLA_SERVICE_RESULT_CASTER_H_ #define XLA_SERVICE_RESULT_CASTER_H_ #include <utility> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/op_expander_pass.h" #include "xla/util.h" namespace xla { class ResultCaster : public OpExpanderPass { public: explicit ResultCaster(HloPredicate extra_filter = nullptr) : OpExpanderPass(std::move(extra_filter)) {} absl::string_view name() const override { return "result_caster"; } protected: bool InstructionMatchesPattern(HloInstruction* instruction) override; absl::StatusOr<HloInstruction*> ExpandInstruction( HloInstruction* instruction) override; }; } #endif #include "xla/service/result_caster.h" #include <optional> #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/shape_inference.h" #include "xla/shape.h" namespace xla { namespace { absl::StatusOr<std::optional<Shape>> MaybeInferShape( const HloInstruction* instruction) { switch (instruction->opcode()) { case HloOpcode::kDot: return ShapeInference::InferDotOpShape( instruction->operand(0)->shape(), instruction->operand(1)->shape(), instruction->dot_dimension_numbers(), std::nullopt, Cast<HloDotInstruction>(instruction)->sparsity()); case HloOpcode::kConvolution: return ShapeInference::InferConvolveShape( instruction->operand(0)->shape(), instruction->operand(1)->shape(), instruction->feature_group_count(), instruction->batch_group_count(), instruction->window(), instruction->convolution_dimension_numbers(), std::nullopt); default: return std::optional<Shape>(std::nullopt); } } } bool ResultCaster::InstructionMatchesPattern(HloInstruction* instruction) { auto status_or_inferred_shape = MaybeInferShape(instruction); if (!status_or_inferred_shape.ok() || !status_or_inferred_shape->has_value()) { return false; } const Shape& inferred_shape = status_or_inferred_shape.value().value(); return inferred_shape.element_type() != instruction->shape().element_type(); } absl::StatusOr<HloInstruction*> ResultCaster::ExpandInstruction( HloInstruction* instruction) { auto* computation = instruction->parent(); Shape inferred_shape = MaybeInferShape(instruction).value().value(); *inferred_shape.mutable_layout() = instruction->shape().layout(); auto clone = computation->AddInstruction( instruction->CloneWithNewShape(inferred_shape)); return computation->AddInstruction( HloInstruction::CreateConvert(instruction->shape(), clone)); } }
#include "xla/service/result_caster.h" #include <memory> #include <tuple> #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/primitive_util.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace op = ::xla::testing::opcode_matchers; class ResultCasterTest : public HloTestBase, public ::testing::WithParamInterface< std::tuple<PrimitiveType, PrimitiveType, PrimitiveType>> {}; TEST_P(ResultCasterTest, CastResultWhenNeeded) { PrimitiveType lhs_type, rhs_type, result_type; std::tie(lhs_type, rhs_type, result_type) = GetParam(); absl::string_view module_tmpl = R"( HloModule module ENTRY main { p0 = $0[2,3]{1,0} parameter(0) p1 = $1[3,2]{1,0} parameter(1) ROOT dot = $2[2,2]{1,0} dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; auto module_string = absl::Substitute( module_tmpl, primitive_util::LowercasePrimitiveTypeName(lhs_type), primitive_util::LowercasePrimitiveTypeName(rhs_type), primitive_util::LowercasePrimitiveTypeName(result_type)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); TF_ASSERT_OK_AND_ASSIGN(bool casted, ResultCaster().Run(module.get())); const PrimitiveType accumulation_type = primitive_util::HigherPrecisionType(lhs_type, rhs_type); const bool should_cast = result_type != accumulation_type; EXPECT_EQ(casted, should_cast); auto lhs = op::Parameter(0); auto rhs = op::Parameter(1); auto original_shape_str = absl::Substitute( "$0[2,2]{1,0}", primitive_util::LowercasePrimitiveTypeName(result_type)); auto accumulation_shape_str = absl::Substitute( "$0[2,2]{1,0}", primitive_util::LowercasePrimitiveTypeName(accumulation_type)); if (should_cast) { EXPECT_THAT(module->entry_computation()->root_instruction(), AllOf(op::Convert(AllOf(op::Dot(lhs, rhs), op::Shape(accumulation_shape_str))), op::Shape(original_shape_str))); } else { EXPECT_THAT(module->entry_computation()->root_instruction(), AllOf(op::Dot(lhs, rhs), op::Shape(original_shape_str))); } } INSTANTIATE_TEST_SUITE_P(All, ResultCasterTest, ::testing::Values(std::make_tuple(BF16, BF16, S32), std::make_tuple(F32, F32, S32), std::make_tuple(F32, BF16, F32))); TEST_F(ResultCasterTest, SparseDot) { absl::string_view kHlo = R"( HloModule module ENTRY main { p0 = bf16[2,16]{1,0} parameter(0) p1 = bf16[32,2]{1,0} parameter(1) meta = u16[2,2]{1,0} parameter(2) ROOT dot = f32[2,2]{1,0} dot(p0, p1, meta), lhs_contracting_dims={1}, rhs_contracting_dims={0}, sparsity=L.1@2:4 })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHlo)); TF_ASSERT_OK_AND_ASSIGN(bool casted, ResultCaster().Run(module.get())); EXPECT_TRUE(casted); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Convert(::testing::MakeMatcher(new ::xla::testing::HloMatcher( HloOpcode::kDot, {op::Parameter(0), op::Parameter(1), op::Parameter(2)})))); } } }
1,877
cpp
tensorflow/tensorflow
reduce_window_rewriter
third_party/xla/xla/service/reduce_window_rewriter.cc
third_party/xla/xla/service/reduce_window_rewriter_test.cc
#ifndef XLA_SERVICE_REDUCE_WINDOW_REWRITER_H_ #define XLA_SERVICE_REDUCE_WINDOW_REWRITER_H_ #include <cstdint> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class ReduceWindowRewriter : public HloModulePass { public: explicit ReduceWindowRewriter(int64_t base_length) : base_length_(base_length) {} absl::string_view name() const override { return "reduce-window-rewriter"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: absl::Status ReplaceReduceWindowWithReshape( HloReduceWindowInstruction* reduce_window); absl::StatusOr<bool> TryOptimizeCumSumOrProd( HloReduceWindowInstruction* reduce_window); int64_t base_length_; }; } #endif #include "xla/service/reduce_window_rewriter.h" #include <cstddef> #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/util.h" #include "xla/window_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { static size_t FlattenShapeIndex(const ShapeIndex& shape_index) { if (shape_index.empty()) { return 0; } CHECK_EQ(shape_index.size(), 1); return shape_index.back(); } static Shape ShapeAtIndex(const Shape& shape, const ShapeIndex& shape_index) { if (shape_index.empty()) { return shape; } CHECK_EQ(shape_index.size(), 1); return ShapeUtil::GetTupleElementShape(shape, shape_index.back()); } static HloInstruction* GetAtIndex(HloInstruction* hlo, const ShapeIndex& shape_index) { if (shape_index.empty()) { return hlo; } CHECK_EQ(shape_index.size(), 1); return hlo->parent()->AddInstruction(HloInstruction::CreateGetTupleElement( ShapeAtIndex(hlo->shape(), shape_index), hlo, shape_index.back())); } absl::Status ReduceWindowRewriter::ReplaceReduceWindowWithReshape( HloReduceWindowInstruction* reduce_window) { VLOG(2) << "Converting R1 reduce window: " << reduce_window->ToString(); std::vector<Shape> r2_output_shapes; ShapeUtil::ForEachSubshape( reduce_window->shape(), [&](const Shape& subshape, const ShapeIndex& shape_index) { if (!ShapeUtil::IsLeafIndex(reduce_window->shape(), shape_index)) { return; } Shape r2_output_shape = subshape; ShapeUtil::AppendMajorDimension(1, &r2_output_shape); UpdateLayout(&r2_output_shape); r2_output_shapes.push_back(r2_output_shape); VLOG(2) << "ReduceWindowRewriter: Converting R2 result to R1: " << ShapeUtil::HumanStringWithLayout(r2_output_shape); }); Window r2_window = reduce_window->window(); WindowDimension* dim = r2_window.add_dimensions(); dim->set_size(1); dim->set_stride(1); dim->set_base_dilation(1); dim->set_window_dilation(1); std::vector<HloInstruction*> r2_operands; for (HloInstruction* operand : reduce_window->inputs()) { Shape r2_input_shape = operand->shape(); ShapeUtil::AppendMajorDimension(1, &r2_input_shape); UpdateLayout(&r2_input_shape); VLOG(2) << "ReduceWindowRewriter: Converting R1 operand to R2: " << ShapeUtil::HumanStringWithLayout(r2_input_shape); HloInstruction* r2_operand = operand->parent()->AddInstruction( HloInstruction::CreateReshape(r2_input_shape, operand)); VLOG(2) << "R2 new operand: " << r2_operand->ToString(); r2_operands.push_back(r2_operand); } HloInstruction* new_reduce_window = reduce_window->parent()->AddInstruction( HloInstruction::CreateReduceWindow( reduce_window->shape().IsTuple() ? ShapeUtil::MakeTupleShape(r2_output_shapes) : r2_output_shapes[0], r2_operands, reduce_window->init_values(), r2_window, reduce_window->to_apply())); VLOG(2) << "R2 resulting reduce window: " << new_reduce_window->ToString(); std::vector<HloInstruction*> final_reshapes; ShapeUtil::ForEachSubshape( reduce_window->shape(), [&](const Shape& subshape, const ShapeIndex& shape_index) { if (!ShapeUtil::IsLeafIndex(reduce_window->shape(), shape_index)) { return; } HloInstruction* final_reshape = new_reduce_window->parent()->AddInstruction( HloInstruction::CreateReshape( subshape, GetAtIndex(new_reduce_window, shape_index))); final_reshapes.push_back(final_reshape); }); HloInstruction* result; if (reduce_window->shape().IsTuple()) { result = new_reduce_window->parent()->AddInstruction( HloInstruction::CreateTuple(final_reshapes)); } else { CHECK_EQ(final_reshapes.size(), 1); result = final_reshapes[0]; } TF_RETURN_IF_ERROR(reduce_window->ReplaceAllUsesWith(result)); TF_RETURN_IF_ERROR( new_reduce_window->parent()->RemoveInstruction(reduce_window)); return absl::OkStatus(); } absl::StatusOr<bool> ReduceWindowRewriter::TryOptimizeCumSumOrProd( HloReduceWindowInstruction* reduce_window) { const Shape& operand_shape = reduce_window->inputs().front()->shape(); int64_t rank = operand_shape.rank(); const Window& window = reduce_window->window(); int64_t scan_dim_num = -1; for (int i = 0; i < rank; ++i) { const WindowDimension& window_dim = window.dimensions(i); if (window_util::IsTrivialWindowDimension(window_dim)) { continue; } if (scan_dim_num != -1) { return false; } scan_dim_num = i; } if (scan_dim_num == -1) { return false; } const int64_t scan_length = operand_shape.dimensions(scan_dim_num); absl::Span<HloInstruction* const> init_values = reduce_window->init_values(); const WindowDimension& scan_window_dim = window.dimensions(scan_dim_num); bool forward_scan = (scan_window_dim.padding_low() == scan_length - 1 || scan_window_dim.padding_low() == scan_length) && scan_window_dim.padding_high() == 0; bool reverse_scan = (scan_window_dim.padding_high() == scan_length - 1 || scan_window_dim.padding_high() == scan_length) && scan_window_dim.padding_low() == 0; if (scan_window_dim.stride() != 1 || scan_window_dim.size() != scan_length || (!forward_scan && !reverse_scan) || scan_window_dim.window_reversal() || scan_window_dim.base_dilation() != 1 || scan_window_dim.window_dilation() != 1) { return false; } bool is_exclusive = forward_scan ? (scan_window_dim.padding_low() == scan_length) : (scan_window_dim.padding_high() == scan_length); if (scan_length <= base_length_) { return false; } if (reduce_window->to_apply()->root_instruction()->shape().IsTuple() && reduce_window->to_apply()->root_instruction()->opcode() != HloOpcode::kTuple) { return false; } VLOG(2) << "Rewriting Scan: " << reduce_window->ToString(); HloComputation* parent = reduce_window->parent(); std::vector<HloInstruction*> sources(reduce_window->inputs().begin(), reduce_window->inputs().end()); std::vector<int64_t> permutation(rank); absl::c_iota(permutation, 0); permutation[scan_dim_num] = rank - 1; permutation[rank - 1] = scan_dim_num; if (scan_dim_num != rank - 1) { for (size_t i = 0; i < sources.size(); ++i) { sources[i] = parent->AddInstruction(HloInstruction::CreateTranspose( ShapeUtil::PermuteDimensions(permutation, sources[i]->shape()), sources[i], permutation)); } } const int64_t padded_length = RoundUpTo(scan_length, base_length_); if (scan_length != padded_length) { for (size_t i = 0; i < sources.size(); ++i) { auto* source = sources[i]; Shape padded_shape = source->shape(); padded_shape.set_dimensions(rank - 1, padded_length); UpdateLayout(&padded_shape); auto padding_config = MakeNoPaddingConfig(rank); padding_config.mutable_dimensions(rank - 1)->set_edge_padding_high( padded_length - scan_length); sources[i] = parent->AddInstruction(HloInstruction::CreatePad( padded_shape, source, init_values[i], padding_config)); } } const int64_t num_columns = padded_length / base_length_; std::vector<HloInstruction*> tiled_sources; std::vector<Shape> tiled_shapes; for (size_t i = 0; i < sources.size(); ++i) { auto* source = sources[i]; Shape tiled_shape = source->shape(); tiled_shape.set_dimensions(rank - 1, num_columns); UpdateLayout(&tiled_shape); ShapeUtil::AppendMajorDimension(base_length_, &tiled_shape); tiled_shapes.push_back(tiled_shape); tiled_sources.push_back(parent->AddInstruction( HloInstruction::CreateReshape(tiled_shape, source))); } Window outer_window = window_util::MakeWindow(std::vector<int64_t>(rank + 1, 1)); outer_window.mutable_dimensions(rank)->set_size(base_length_); if (forward_scan) { outer_window.mutable_dimensions(rank)->set_padding_low(base_length_ - 1); } else { outer_window.mutable_dimensions(rank)->set_padding_high(base_length_ - 1); } auto outer_reduce_window = parent->AddInstruction(HloInstruction::CreateReduceWindow( reduce_window->shape().IsTuple() ? ShapeUtil::MakeTupleShape(tiled_shapes) : tiled_shapes[0], tiled_sources, init_values, outer_window, reduce_window->to_apply())); std::vector<Shape> column_shapes; std::vector<HloInstruction*> last_cols; ShapeUtil::ForEachSubshape( outer_reduce_window->shape(), [&](const Shape& subshape, const ShapeIndex& shape_index) { if (!ShapeUtil::IsLeafIndex(outer_reduce_window->shape(), shape_index)) { return; } Shape column_shape = subshape; column_shape.set_dimensions(rank, 1); UpdateLayout(&column_shape); std::vector<int64_t> col_slice_starts(rank + 1, 0); std::vector<int64_t> col_slice_limits( SpanToVector(subshape.dimensions())); if (forward_scan) { col_slice_starts[rank] = base_length_ - 1; } else { col_slice_limits[rank] = 1; } auto last_col = parent->AddInstruction(HloInstruction::CreateSlice( column_shape, GetAtIndex(outer_reduce_window, shape_index), col_slice_starts, col_slice_limits, std::vector<int64_t>(rank + 1, 1))); column_shape.DeleteDimension(rank); last_col = parent->AddInstruction( HloInstruction::CreateReshape(column_shape, last_col)); last_cols.push_back(last_col); column_shape.set_dimensions(rank - 1, num_columns + 1); UpdateLayout(&column_shape); column_shapes.push_back(column_shape); }); Window inner_window = window_util::MakeWindow(std::vector<int64_t>(rank, 1)); inner_window.mutable_dimensions(rank - 1)->set_size(num_columns); if (forward_scan) { inner_window.mutable_dimensions(rank - 1)->set_padding_low(num_columns); } else { inner_window.mutable_dimensions(rank - 1)->set_padding_high(num_columns); } auto inner_reduce_window = parent->AddInstruction(HloInstruction::CreateReduceWindow( reduce_window->shape().IsTuple() ? ShapeUtil::MakeTupleShape(column_shapes) : column_shapes[0], last_cols, init_values, inner_window, reduce_window->to_apply())); std::vector<int64_t> exclusive_slice_starts(rank, 0); std::vector<int64_t> exclusive_slice_limits = SpanToVector(column_shapes[0].dimensions()); if (forward_scan) { exclusive_slice_limits[rank - 1] = num_columns; } else { exclusive_slice_starts[rank - 1] = 1; exclusive_slice_limits[rank - 1] = num_columns + 1; } std::vector<HloInstruction*> inner_scan_components; ShapeUtil::ForEachSubshape( inner_reduce_window->shape(), [&](const Shape& subshape, const ShapeIndex& shape_index) { if (!ShapeUtil::IsLeafIndex(inner_reduce_window->shape(), shape_index)) { return; } size_t idx = FlattenShapeIndex(shape_index); auto last_col = last_cols[idx]; auto* inner_slice = parent->AddInstruction(HloInstruction::CreateSlice( last_col->shape(), GetAtIndex(inner_reduce_window, shape_index), exclusive_slice_starts, exclusive_slice_limits, std::vector<int64_t>(rank, 1))); std::vector<int64_t> rank_iota(rank); absl::c_iota(rank_iota, 0); auto* inner_scan_component = parent->AddInstruction(HloInstruction::CreateBroadcast( tiled_shapes[idx], inner_slice, rank_iota)); inner_scan_components.push_back(inner_scan_component); }); std::vector<HloInstruction*> map_operands; ShapeUtil::ForEachSubshape( outer_reduce_window->shape(), [&](const Shape& subshape, const ShapeIndex& shape_index) { if (!ShapeUtil::IsLeafIndex(outer_reduce_window->shape(), shape_index)) { return; } map_operands.push_back(GetAtIndex(outer_reduce_window, shape_index)); }); map_operands.insert(map_operands.end(), inner_scan_components.begin(), inner_scan_components.end()); std::vector<HloInstruction*> scans; auto status = ShapeUtil::ForEachSubshapeWithStatus( outer_reduce_window->shape(), [&](const Shape& subshape, const ShapeIndex& shape_index) -> absl::Status { if (!ShapeUtil::IsLeafIndex(outer_reduce_window->shape(), shape_index)) { return absl::OkStatus(); } size_t idx = FlattenShapeIndex(shape_index); auto source = sources[idx]; HloComputation* map_computation; auto reduce_function_root = reduce_window->to_apply()->root_instruction(); if (reduce_function_root->shape().IsTuple()) { TF_RET_CHECK(reduce_function_root->opcode() == HloOpcode::kTuple); auto* map_computation_root = reduce_function_root->operand(idx); absl::flat_hash_map<const HloInstruction*, std::unique_ptr<HloInstruction>> replacements; replacements[reduce_function_root] = nullptr; map_computation = parent->parent()->AddEmbeddedComputation( reduce_window->to_apply()->CloneWithReplacements( &replacements, {}, nullptr, "clone", map_computation_root)); } else { map_computation = reduce_window->to_apply(); } auto scan = parent->AddInstruction(HloInstruction::CreateMap( ShapeAtIndex(outer_reduce_window->shape(), shape_index), map_operands, map_computation)); scan = parent->AddInstruction( HloInstruction::CreateReshape(source->shape(), scan)); if (scan_dim_num != rank - 1) { scan = parent->AddInstruction(HloInstruction::CreateTranspose( ShapeUtil::PermuteDimensions(permutation, source->shape()), scan, permutation)); } if (padded_length != scan_length) { scan = parent->AddInstruction(HloInstruction::CreateSlice( operand_shape, scan, std::vector<int64_t>(rank, 0), operand_shape.dimensions(), std::vector<int64_t>(rank, 1))); } if (is_exclusive) { auto padding_config = MakeNoPaddingConfig(rank); if (forward_scan) { padding_config.mutable_dimensions(scan_dim_num) ->set_edge_padding_low(1); } else { padding_config.mutable_dimensions(scan_dim_num) ->set_edge_padding_high(1); } scan = parent->AddInstruction(HloInstruction::CreatePad( ShapeAtIndex(reduce_window->shape(), shape_index), scan, init_values[idx], padding_config)); } scans.push_back(scan); return absl::OkStatus(); }); TF_RETURN_IF_ERROR(status); HloInstruction* scan; if (reduce_window->shape().IsTuple()) { scan = parent->AddInstruction(HloInstruction::CreateTuple(scans)); } else { CHECK_EQ(scans.size(), 1); scan = scans[0]; } TF_RETURN_IF_ERROR(reduce_window->ReplaceAllUsesWith(scan)); TF_RETURN_IF_ERROR(parent->RemoveInstruction(reduce_window)); return true; } absl::StatusOr<bool> ReduceWindowRewriter::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (const auto& computation : module->computations(execution_threads)) { for (HloInstruction* instruction : computation->MakeInstructionPostOrder()) { HloReduceWindowInstruction* reduce_window = DynCast<HloReduceWindowInstruction>(instruction); if (!reduce_window) { continue; } TF_ASSIGN_OR_RETURN(bool made_change, TryOptimizeCumSumOrProd(reduce_window)); if (made_change) { changed = true; continue; } if (reduce_window->inputs().front()->shape().rank() != 1) { continue; } TF_RETURN_IF_ERROR(ReplaceReduceWindowWithReshape(reduce_window)); changed = true; } } return changed; } }
#include "xla/service/reduce_window_rewriter.h" #include <optional> #include <string> #include "absl/strings/string_view.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" namespace xla { namespace { class ReduceWindowRewriterTest : public HloTestBase { public: void CheckReduceWindowRewrite(absl::string_view hlo, std::optional<absl::string_view> expected) { RunAndFilecheckHloRewrite(hlo, ReduceWindowRewriter{128}, expected); } }; TEST_F(ReduceWindowRewriterTest, EliminateR1) { const char* hlo = R"( %binary_add { %a = f32[] parameter(0) %b = f32[] parameter(1) ROOT %add = f32[] add(f32[] %a, f32[] %b) } ENTRY %EliminateR1 (input: f32[10]) -> f32[10] { %input = f32[10]{0} parameter(0) %constant = f32[] constant(0) ROOT %reduce-window = f32[10]{0} reduce-window(f32[10]{0} %input, f32[] %constant), window={size=5 pad=2_2}, to_apply=%binary_add } )"; CheckReduceWindowRewrite(hlo, R"( )"); } TEST_F(ReduceWindowRewriterTest, EliminateR1Variadic) { const char* hlo = R"( HloModule reduce-window add_float { lhs.0 = f32[] parameter(0) lhs.1 = f32[] parameter(1) rhs.0 = f32[] parameter(2) rhs.1 = f32[] parameter(3) sum.0 = f32[] add(lhs.0, rhs.0) sum.1 = f32[] add(lhs.1, rhs.1) ROOT root = (f32[], f32[]) tuple(sum.0, sum.1) } ENTRY entry (arg: f32[10]) -> (f32[10], f32[10]) { arg = f32[10]{0} parameter(0) constant = f32[] constant(0) ROOT reduce-window = (f32[10]{0}, f32[10]{0}) reduce-window(f32[10]{0} %arg, f32[10]{0} %arg, f32[] %constant, f32[] %constant), window={size=5 pad=2_2}, to_apply=%add_float })"; CheckReduceWindowRewrite(hlo, R"( )"); } TEST_F(ReduceWindowRewriterTest, OptimizeR1InclusiveScan) { const char* hlo = R"( HloModule reduce-window add_float { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT mul = f32[] multiply(lhs, rhs) } ENTRY entry (arg: f32[46592]) -> f32[46592] { arg = f32[46592]{0} parameter(0) constant = f32[] constant(0) ROOT reduce-window = f32[46592]{0} reduce-window(f32[46592]{0} %arg, f32[] %constant), window={size=46592 pad=46591_0}, to_apply=%add_float })"; CheckReduceWindowRewrite(hlo, R"( )"); } TEST_F(ReduceWindowRewriterTest, OptimizeR1InclusiveScanVariadic) { const std::string hlo_string = R"( HloModule reduce-window MaxMin { l.max = f32[] parameter(0) l.min = f32[] parameter(1) r.max = f32[] parameter(2) r.min = f32[] parameter(3) max = f32[] maximum(l.max, r.max) min = f32[] minimum(l.min, r.min) ROOT root = (f32[], f32[]) tuple(max, min) } ENTRY entry (arg_0: f32[46592], arg_1: f32[46592]) -> (f32[46592], f32[46592]) { arg.0 = f32[46592]{0} parameter(0) arg.1 = f32[46592]{0} parameter(1) init_ninf = f32[] constant(-inf) init_inf = f32[] constant(inf) ROOT reduce-window = (f32[46592]{0}, f32[46592]{0}) reduce-window(f32[46592]{0} %arg.0, f32[46592]{0} %arg.1, f32[] %init_ninf, f32[] %init_inf), window={size=46592 pad=46591_0}, to_apply=%MaxMin } )"; CheckReduceWindowRewrite(hlo_string, R"( )"); } } }
1,878
cpp
tensorflow/tensorflow
hlo_ordering
third_party/xla/xla/service/hlo_ordering.cc
third_party/xla/xla/service/hlo_ordering_test.cc
#ifndef XLA_SERVICE_HLO_ORDERING_H_ #define XLA_SERVICE_HLO_ORDERING_H_ #include <memory> #include <string> #include <utility> #include "absl/container/flat_hash_map.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_reachability.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/service/call_graph.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_dataflow_analysis.h" #include "xla/service/hlo_value.h" #include "xla/types.h" namespace xla { class HloOrdering { public: explicit HloOrdering(const HloModule* module) : module_(module), call_graph_(CallGraph::Build(module)) {} virtual ~HloOrdering() = default; enum class ExecutionConstraint { kIsSame, kRunBeforeStart, kRunBeforeEnd, kRunExclusiveBefore, kRunExclusiveAfter, kRunAfter, kUnordered, }; HloOrdering::ExecutionConstraint GetExecutionConstraint( const HloInstruction* a, const HloInstruction* b) const; bool ExecutesBefore(const HloInstruction* a, const HloInstruction* b) const; bool IsDefinedBefore(const HloValue& a, const HloValue& b) const; bool UsesBeforeValueDefinition( absl::Span<const HloUse* const> uses, const HloValue& value, const HloDataflowAnalysis& dataflow, bool use_is_always_before_def_in_same_instr = false) const; bool MayInterfere(const HloValue& a, const HloValue& b, const HloDataflowAnalysis& dataflow) const; bool LiveRangeStrictlyBefore( const HloValue& a, const HloValue& b, const HloDataflowAnalysis& dataflow, bool use_is_always_before_def_in_same_instr = false) const; virtual const HloInstructionSequence* SequentialOrder( const HloComputation& computation) const = 0; const CallGraph& call_graph() const { return *call_graph_; } virtual std::string ToString() const = 0; protected: virtual bool ExecutesBeforeInSameComputation( const HloInstruction* a, const HloInstruction* b) const = 0; const HloModule* module_; std::unique_ptr<CallGraph> call_graph_; }; class PredecessorHloOrdering : public HloOrdering { public: ~PredecessorHloOrdering() override = default; const HloInstructionSequence* SequentialOrder( const HloComputation& computation) const override { return nullptr; } HloReachabilityMap& reachability_map(const HloComputation* computation) { return *predecessors_.at(computation); } const HloReachabilityMap& reachability_map( const HloComputation* computation) const { return *predecessors_.at(computation); } protected: explicit PredecessorHloOrdering(const HloModule* module); std::string ToStringHelper(const std::string& name) const; bool ExecutesBeforeInSameComputation(const HloInstruction* a, const HloInstruction* b) const override; absl::flat_hash_map<const HloComputation*, std::unique_ptr<HloReachabilityMap>> predecessors_; }; class DependencyHloOrdering : public PredecessorHloOrdering { public: explicit DependencyHloOrdering(const HloModule* module); ~DependencyHloOrdering() override = default; std::string ToString() const override; }; class SequentialHloOrdering : public HloOrdering { public: explicit SequentialHloOrdering(const HloSchedule& schedule); explicit SequentialHloOrdering(HloSchedule&& schedule); ~SequentialHloOrdering() override = default; const HloInstructionSequence* SequentialOrder( const HloComputation& computation) const override; std::string ToString() const override; protected: void Initialize(); bool ExecutesBeforeInSameComputation(const HloInstruction* a, const HloInstruction* b) const override; const HloSchedule schedule_; absl::flat_hash_map<const HloInstruction*, int> order_position_; }; } #endif #include "xla/service/hlo_ordering.h" #include <memory> #include <utility> #include <vector> #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/types.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace xla { bool HloOrdering::ExecutesBefore(const HloInstruction* a, const HloInstruction* b) const { switch (GetExecutionConstraint(a, b)) { case ExecutionConstraint::kIsSame: return false; case ExecutionConstraint::kRunBeforeStart: case ExecutionConstraint::kRunBeforeEnd: case ExecutionConstraint::kRunExclusiveBefore: return true; case ExecutionConstraint::kRunExclusiveAfter: case ExecutionConstraint::kRunAfter: case ExecutionConstraint::kUnordered: return false; } } HloOrdering::ExecutionConstraint HloOrdering::GetExecutionConstraint( const HloInstruction* a, const HloInstruction* b) const { auto is_async_wrapped = [](const HloInstruction* a, const HloInstruction* b) { return a->IsAsynchronous() && a->async_wrapped_instruction() == b; }; if (a == b || is_async_wrapped(a, b) || is_async_wrapped(b, a)) { return ExecutionConstraint::kIsSame; } const HloInstruction* a_ancestor; const HloInstruction* b_ancestor; std::tie(a_ancestor, b_ancestor) = call_graph_->NearestAncestorsInSameComputation( const_cast<HloInstruction*>(a), const_cast<HloInstruction*>(b)); if (a_ancestor == nullptr) { VLOG(4) << "Ancestors in a common computation could not be found between" << a->ToString() << "\n and \n" << b->ToString() << "\n so consider them to be unordered.\n"; return ExecutionConstraint::kUnordered; } CHECK_NE(b_ancestor, nullptr); CHECK_EQ(a_ancestor->parent(), b_ancestor->parent()); if (a_ancestor == b_ancestor && a_ancestor->opcode() == HloOpcode::kWhile) { const HloComputation* body = a_ancestor->while_body(); const HloComputation* condition = a_ancestor->while_condition(); if (call_graph_->InstructionIsNestedIn(a, condition) && call_graph_->InstructionIsNestedIn(b, body)) { return ExecutionConstraint::kRunBeforeEnd; } } if (a_ancestor == b_ancestor && (a_ancestor->opcode() == HloOpcode::kConditional)) { int a_branch = -1; int b_branch = -1; for (int j = 0; j < a_ancestor->branch_count(); ++j) { if (call_graph_->InstructionIsNestedIn( a, a_ancestor->branch_computation(j))) { a_branch = j; } if (call_graph_->InstructionIsNestedIn( b, a_ancestor->branch_computation(j))) { b_branch = j; } } if (a_branch == -1 && b_branch == -1) { CHECK_EQ(a, a_ancestor); CHECK_EQ(b, b_ancestor); CHECK_EQ(a, b); return ExecutionConstraint::kIsSame; } if (b_branch == -1) { CHECK_EQ(b, a_ancestor); return ExecutionConstraint::kRunBeforeEnd; } if (a_branch == -1) { CHECK_EQ(a, a_ancestor); return ExecutionConstraint::kRunAfter; } if (a_branch < b_branch) { return ExecutionConstraint::kRunExclusiveBefore; } if (b_branch < a_branch) { return ExecutionConstraint::kRunExclusiveAfter; } } if (ExecutesBeforeInSameComputation(a_ancestor, b_ancestor)) { return ExecutionConstraint::kRunBeforeStart; } if (ExecutesBeforeInSameComputation(b_ancestor, a_ancestor)) { return ExecutionConstraint::kRunAfter; } VLOG(1) << "Cannot determine order between:" << a->ToString() << "\n" << "and " << b->ToString() << " which are in the same computation\n"; return ExecutionConstraint::kUnordered; } bool HloOrdering::IsDefinedBefore(const HloValue& a, const HloValue& b) const { const HloModule* module = b.defining_instruction()->GetModule(); if (b.defining_instruction()->parent() == module->entry_computation() && b.defining_instruction()->opcode() == HloOpcode::kParameter) { return false; } if (a.defining_instruction()->parent() == module->entry_computation() && a.defining_instruction()->opcode() == HloOpcode::kParameter) { return true; } auto is_body_or_condition_phi = [](const HloValue& v) { return v.is_phi() && v.defining_instruction()->opcode() == HloOpcode::kParameter; }; if (is_body_or_condition_phi(a) && !is_body_or_condition_phi(b) && call_graph_->InstructionIsNestedIn(b.defining_instruction(), a.defining_instruction()->parent())) { return true; } if (is_body_or_condition_phi(b) && call_graph_->InstructionIsNestedIn(a.defining_instruction(), b.defining_instruction()->parent())) { return false; } if (b.is_phi() && b.defining_instruction()->opcode() == HloOpcode::kWhile && (call_graph_->InstructionIsNestedIn( a.defining_instruction(), b.defining_instruction()->while_body()) || call_graph_->InstructionIsNestedIn( a.defining_instruction(), b.defining_instruction()->while_condition()))) { return true; } if (b.is_phi() && b.defining_instruction()->opcode() == HloOpcode::kConditional) { for (int j = 0; j < b.defining_instruction()->branch_count(); ++j) { if (call_graph_->InstructionIsNestedIn( a.defining_instruction(), b.defining_instruction()->branch_computation(j))) { return true; } } } return ExecutesBefore(a.defining_instruction(), b.defining_instruction()); } bool HloOrdering::UsesBeforeValueDefinition( absl::Span<const HloUse* const> uses, const HloValue& value, const HloDataflowAnalysis& dataflow, bool use_is_always_before_def_in_same_instr) const { bool has_use_in_exclusive_branches = false; bool has_escaped_use_in_conditional = false; auto UseIsBeforeValueDefinition = [&](const HloUse& use) { VLOG(4) << "UseIsBeforeValueDefinition(use=" << use << ", value=" << value.ToShortString() << ")"; switch ( GetExecutionConstraint(use.instruction, value.defining_instruction())) { case HloOrdering::ExecutionConstraint::kIsSame: { if (use_is_always_before_def_in_same_instr) { return true; } HloInstruction* operand = use.instruction->mutable_operand(use.operand_number); HloInstruction* user = value.defining_instruction(); auto operand_index_ptr = std::make_unique<ShapeIndex>(use.operand_index); if (use.instruction->IsAsynchronous()) { if (value.defining_instruction()->parent() == use.instruction->async_wrapped_computation()) { if (use.instruction->opcode() == HloOpcode::kAsyncStart) { operand = use.instruction->async_wrapped_computation() ->parameter_instruction(use.operand_number); } else { CHECK_GT(use.operand_index.size(), 1); operand = use.instruction->async_wrapped_computation() ->parameter_instruction(use.operand_index.at(1)); operand_index_ptr = std::make_unique<ShapeIndex>( absl::MakeSpan(use.operand_index) .subspan(2, use.operand_index.size() - 2)); } } } if (dataflow.CanShareOperandBufferWithUser( operand, *operand_index_ptr, user, value.defining_index())) { VLOG(4) << " use is value def, and instruction can share use buffer."; return true; } break; } case HloOrdering::ExecutionConstraint::kRunExclusiveAfter: VLOG(4) << " use and value def are in exclusive branches."; if (!has_escaped_use_in_conditional) { has_use_in_exclusive_branches = true; VLOG(4) << "Allowing them to share buffer.\n"; return true; } VLOG(4) << "value def has escaped use in conditional. \n"; break; case HloOrdering::ExecutionConstraint::kRunExclusiveBefore: case HloOrdering::ExecutionConstraint::kRunBeforeStart: case HloOrdering::ExecutionConstraint::kRunBeforeEnd: VLOG(4) << " use instruction executes before value-defining instruction"; return true; case HloOrdering::ExecutionConstraint::kRunAfter: if (use_is_always_before_def_in_same_instr && use.instruction->opcode() == HloOpcode::kCollectivePermuteDone && use.instruction->operand(0) == value.instruction()) { return true; } break; case HloOrdering::ExecutionConstraint::kUnordered: break; } if (use.instruction->opcode() == HloOpcode::kWhile) { const HloInstruction* xla_while = use.instruction; if (call_graph_->InstructionIsNestedIn(value.defining_instruction(), xla_while->while_body())) { VLOG(4) << " use is while " << use.instruction->name() << " and def is in body"; return true; } if (call_graph_->InstructionIsNestedIn(value.defining_instruction(), xla_while->while_condition())) { if (value.defining_instruction() != xla_while->while_condition()->parameter_instruction(0)) { VLOG(4) << " use is while " << use.instruction->name() << " and def is in condition and is not the parameter"; return false; } else { VLOG(4) << " use is while " << use.instruction->name() << " and def is in condition and is the parameter"; return true; } } } if (value.defining_instruction()->opcode() == HloOpcode::kWhile) { CHECK(value.is_phi()); const HloInstruction* xla_while = value.defining_instruction(); if (call_graph_->InstructionIsNestedIn(use.instruction, xla_while->while_body()) || call_graph_->InstructionIsNestedIn(use.instruction, xla_while->while_condition())) { VLOG(4) << " value is while " << value.defining_instruction()->name() << " and use is in condition or body"; return true; } } if (use.instruction->opcode() == HloOpcode::kCall) { const HloInstruction* call = use.instruction; if (call_graph_->InstructionIsNestedIn(value.defining_instruction(), call->to_apply())) { VLOG(4) << " use is call " << use.instruction->name() << " and def is in called computation"; return true; } } if (use.instruction->IsAsynchronous() && use.instruction->async_wrapped_opcode() == HloOpcode::kCall) { const HloInstruction* async = use.instruction; if (call_graph_->InstructionIsNestedIn( value.defining_instruction(), async->async_wrapped_instruction()->to_apply())) { VLOG(4) << " use is async " << use.instruction->name() << " and def is in called computation"; return true; } } if (use.instruction->opcode() == HloOpcode::kConditional) { const HloInstruction* conditional = use.instruction; for (int j = 0; j < conditional->branch_count(); ++j) { if (call_graph_->InstructionIsNestedIn( value.defining_instruction(), conditional->branch_computation(j))) { if (!dataflow.ValueIsDefinedAt( use.instruction->operand(use.operand_number), {})) { for (auto value_use : value.GetUses()) { VLOG(4) << "def have use:" << value_use << "\n"; if (value_use.instruction == value_use.instruction->parent()->root_instruction()) { VLOG(4) << "def use is conditional root \n"; has_escaped_use_in_conditional = true; break; } } } if (!has_use_in_exclusive_branches) { VLOG(4) << " use is conditional " << use.instruction->name() << " and def is in " << j << "th branch computation"; return true; } } } if (value.defining_instruction() == use.instruction) { VLOG(4) << " use is conditional " << use << " and def is " << value.ToShortString(); return true; } } VLOG(4) << " use is not before value definition"; return false; }; for (auto* use : uses) { if (!UseIsBeforeValueDefinition(*use)) { return false; } } return true; } bool HloOrdering::LiveRangeStrictlyBefore( const HloValue& a, const HloValue& b, const HloDataflowAnalysis& dataflow, bool use_is_always_before_def_in_same_instr) const { VLOG(4) << "LiveRangeStrictlyBefore(a = " << a.ToShortString() << ", b = " << b.ToShortString() << ")"; VLOG(4) << "Parent:" << a.instruction()->parent()->ToString() << "\n"; if (!IsDefinedBefore(a, b)) { VLOG(4) << a << " not defined before " << b; return false; } if (a.live_out_of_module()) { VLOG(4) << a << " is live out of module and not defined before " << b; return false; } for (const HloPosition& pos : a.positions()) { if (pos.instruction->parent()->root_instruction() == pos.instruction && call_graph().InstructionIsNestedIn(b.instruction(), pos.instruction->parent())) { return false; } } std::vector<const HloUse*> uses; for (const HloUse& use : a.GetUses()) { if (dataflow.DoesNotUseOperandBuffer(a.instruction(), a.index(), use.instruction)) { continue; } uses.push_back(&use); } if (!UsesBeforeValueDefinition(uses, b, dataflow, use_is_always_before_def_in_same_instr)) { VLOG(4) << "uses of " << a << "not before " << b << " is defined"; return false; } if (a.IsRootOf(b.instruction()->parent())) { VLOG(4) << a << " is live out of computation and defined before " << b << " which is in same computation"; return false; } return true; } bool HloOrdering::MayInterfere(const HloValue& a, const HloValue& b, const HloDataflowAnalysis& dataflow) const { return !LiveRangeStrictlyBefore(a, b, dataflow) && !LiveRangeStrictlyBefore(b, a, dataflow); } PredecessorHloOrdering::PredecessorHloOrdering(const HloModule* module) : HloOrdering(module) {} bool PredecessorHloOrdering::ExecutesBeforeInSameComputation( const HloInstruction* a, const HloInstruction* b) const { CHECK_EQ(a->parent(), b->parent()); return a != b && predecessors_.at(a->parent())->IsReachable(a, b); } std::string PredecessorHloOrdering::ToStringHelper( const std::string& name) const { std::vector<std::string> pieces; pieces.push_back(name); for (auto* computation : module_->MakeNonfusionComputations()) { pieces.push_back(absl::StrFormat("computation %s:", computation->name())); const auto all = computation->MakeInstructionPostOrder(); for (auto instruction : all) { pieces.push_back( absl::StrFormat(" %s predecessors:", instruction->name())); for (auto predecessor : all) { if (predecessors_.at(computation) ->IsReachable(predecessor, instruction)) { pieces.push_back(absl::StrFormat(" %s", predecessor->name())); } } } } return absl::StrJoin(pieces, "\n"); } DependencyHloOrdering::DependencyHloOrdering(const HloModule* module) : PredecessorHloOrdering(module) {
#include "xla/service/hlo_ordering.h" #include <memory> #include <string> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/service/hlo_dataflow_analysis.h" #include "xla/service/hlo_value.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class HloOrderingTest : public HloTestBase {}; TEST_F(HloOrderingTest, InstructionsInDifferentComputations) { auto module = CreateNewVerifiedModule(); const Shape scalar_shape = ShapeUtil::MakeShape(xla::F32, {}); auto builder_c = HloComputation::Builder("C"); HloInstruction* c = builder_c.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); HloComputation* computation_c = module->AddEmbeddedComputation(builder_c.Build()); auto builder_b = HloComputation::Builder("B"); builder_b.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "param")); HloInstruction* b = builder_b.AddInstruction( HloInstruction::CreateCall(scalar_shape, {}, computation_c)); HloComputation* computation_b = module->AddEmbeddedComputation(builder_b.Build()); auto builder_a = HloComputation::Builder("A"); HloInstruction* a = builder_a.AddInstruction( HloInstruction::CreateCall(scalar_shape, {}, computation_c)); HloComputation* computation_a = module->AddEmbeddedComputation(builder_a.Build()); auto builder = HloComputation::Builder(TestName()); HloInstruction* x = builder.AddInstruction( HloInstruction::CreateCall(scalar_shape, {}, computation_a)); HloInstruction* y = builder.AddInstruction( HloInstruction::CreateCall(scalar_shape, {x}, computation_b)); module->AddEntryComputation(builder.Build()); DependencyHloOrdering ordering(module.get()); EXPECT_TRUE(ordering.ExecutesBefore(x, y)); EXPECT_FALSE(ordering.ExecutesBefore(y, x)); EXPECT_TRUE(ordering.ExecutesBefore(a, b)); EXPECT_FALSE(ordering.ExecutesBefore(b, a)); EXPECT_FALSE(ordering.ExecutesBefore(a, x)); EXPECT_TRUE(ordering.ExecutesBefore(a, y)); EXPECT_FALSE(ordering.ExecutesBefore(x, a)); EXPECT_FALSE(ordering.ExecutesBefore(y, a)); EXPECT_FALSE(ordering.ExecutesBefore(b, x)); EXPECT_FALSE(ordering.ExecutesBefore(b, y)); EXPECT_TRUE(ordering.ExecutesBefore(x, b)); EXPECT_FALSE(ordering.ExecutesBefore(y, b)); EXPECT_FALSE(ordering.ExecutesBefore(c, a)); EXPECT_FALSE(ordering.ExecutesBefore(c, b)); EXPECT_FALSE(ordering.ExecutesBefore(c, x)); EXPECT_FALSE(ordering.ExecutesBefore(c, y)); EXPECT_FALSE(ordering.ExecutesBefore(a, c)); EXPECT_FALSE(ordering.ExecutesBefore(b, c)); EXPECT_FALSE(ordering.ExecutesBefore(x, c)); EXPECT_FALSE(ordering.ExecutesBefore(y, c)); } TEST_F(HloOrderingTest, InstructionsInWhileComputations) { auto module = CreateNewVerifiedModule(); const Shape scalar_shape = ShapeUtil::MakeShape(xla::F32, {}); auto body_builder = HloComputation::Builder("body"); auto body_param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "body_param")); auto negate = body_builder.AddInstruction(HloInstruction::CreateUnary( scalar_shape, HloOpcode::kNegate, body_param)); HloComputation* body = module->AddEmbeddedComputation(body_builder.Build()); auto cond_builder = HloComputation::Builder("condition"); auto cond_param = cond_builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "cond_param")); auto convert = cond_builder.AddInstruction(HloInstruction::CreateConvert( ShapeUtil::MakeShape(xla::PRED, {}), cond_param)); HloComputation* condition = module->AddEmbeddedComputation(cond_builder.Build()); auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto xla_while = builder.AddInstruction( HloInstruction::CreateWhile(scalar_shape, condition, body, constant)); module->AddEntryComputation(builder.Build()); DependencyHloOrdering ordering(module.get()); EXPECT_TRUE(ordering.ExecutesBefore(constant, xla_while)); EXPECT_TRUE(ordering.ExecutesBefore(constant, cond_param)); EXPECT_TRUE(ordering.ExecutesBefore(constant, convert)); EXPECT_TRUE(ordering.ExecutesBefore(constant, body_param)); EXPECT_TRUE(ordering.ExecutesBefore(constant, negate)); EXPECT_FALSE(ordering.ExecutesBefore(xla_while, body_param)); EXPECT_FALSE(ordering.ExecutesBefore(xla_while, cond_param)); EXPECT_FALSE(ordering.ExecutesBefore(body_param, xla_while)); EXPECT_FALSE(ordering.ExecutesBefore(cond_param, xla_while)); EXPECT_TRUE(ordering.ExecutesBefore(cond_param, body_param)); EXPECT_TRUE(ordering.ExecutesBefore(convert, body_param)); EXPECT_TRUE(ordering.ExecutesBefore(cond_param, negate)); EXPECT_TRUE(ordering.ExecutesBefore(convert, negate)); EXPECT_FALSE(ordering.ExecutesBefore(body_param, cond_param)); } TEST_F(HloOrderingTest, ParametersDefinedBeforeOthers) { auto module = CreateNewVerifiedModule(); const Shape scalar_shape = ShapeUtil::MakeShape(xla::F32, {}); auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "param")); module->AddEntryComputation(builder.Build()); TF_ASSERT_OK_AND_ASSIGN(auto dataflow, HloDataflowAnalysis::Run(*module, true)); DependencyHloOrdering ordering(module.get()); EXPECT_TRUE(ordering.IsDefinedBefore(dataflow->GetValueDefinedAt(param), dataflow->GetValueDefinedAt(constant))); EXPECT_TRUE(!ordering.IsDefinedBefore(dataflow->GetValueDefinedAt(constant), dataflow->GetValueDefinedAt(param))); } TEST_F(HloOrderingTest, ValuesInWhileComputations) { auto module = CreateNewVerifiedModule(); const Shape scalar_shape = ShapeUtil::MakeShape(xla::F32, {}); auto body_builder = HloComputation::Builder("body"); auto body_param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "body_param")); auto negate = body_builder.AddInstruction(HloInstruction::CreateUnary( scalar_shape, HloOpcode::kNegate, body_param)); HloComputation* body = module->AddEmbeddedComputation(body_builder.Build()); auto cond_builder = HloComputation::Builder("condition"); auto cond_param = cond_builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "cond_param")); auto convert = cond_builder.AddInstruction(HloInstruction::CreateConvert( ShapeUtil::MakeShape(xla::PRED, {}), cond_param)); HloComputation* condition = module->AddEmbeddedComputation(cond_builder.Build()); auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto xla_while = builder.AddInstruction( HloInstruction::CreateWhile(scalar_shape, condition, body, constant)); auto add = builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, constant, xla_while)); module->AddEntryComputation(builder.Build()); TF_ASSERT_OK_AND_ASSIGN(auto dataflow, HloDataflowAnalysis::Run(*module, true)); DependencyHloOrdering ordering(module.get()); EXPECT_TRUE(ordering.IsDefinedBefore(dataflow->GetValueDefinedAt(constant), dataflow->GetValueDefinedAt(xla_while))); EXPECT_FALSE(ordering.LiveRangeStrictlyBefore( dataflow->GetValueDefinedAt(constant), dataflow->GetValueDefinedAt(xla_while), *dataflow)); EXPECT_FALSE(ordering.LiveRangeStrictlyBefore( dataflow->GetValueDefinedAt(constant), dataflow->GetValueDefinedAt(convert), *dataflow)); EXPECT_TRUE(ordering.MayInterfere(dataflow->GetValueDefinedAt(constant), dataflow->GetValueDefinedAt(xla_while), *dataflow)); EXPECT_TRUE(ordering.IsDefinedBefore(dataflow->GetValueDefinedAt(negate), dataflow->GetValueDefinedAt(xla_while))); EXPECT_TRUE(ordering.LiveRangeStrictlyBefore( dataflow->GetValueDefinedAt(negate), dataflow->GetValueDefinedAt(xla_while), *dataflow)); EXPECT_FALSE(ordering.MayInterfere(dataflow->GetValueDefinedAt(negate), dataflow->GetValueDefinedAt(xla_while), *dataflow)); EXPECT_TRUE(ordering.MayInterfere(dataflow->GetValueDefinedAt(constant), dataflow->GetValueDefinedAt(xla_while), *dataflow)); EXPECT_TRUE(ordering.IsDefinedBefore(dataflow->GetValueDefinedAt(constant), dataflow->GetValueDefinedAt(xla_while))); EXPECT_TRUE(ordering.LiveRangeStrictlyBefore( dataflow->GetValueDefinedAt(convert), dataflow->GetValueDefinedAt(xla_while), *dataflow)); EXPECT_FALSE(ordering.MayInterfere(dataflow->GetValueDefinedAt(convert), dataflow->GetValueDefinedAt(xla_while), *dataflow)); EXPECT_TRUE(ordering.IsDefinedBefore(dataflow->GetValueDefinedAt(xla_while), dataflow->GetValueDefinedAt(add))); ASSERT_EQ(dataflow->GetValueDefinedAt(xla_while).GetUses().size(), 1); const HloUse* while_use = dataflow->GetValueDefinedAt(xla_while).GetUses().data(); EXPECT_EQ(while_use->instruction, add); EXPECT_TRUE(ordering.UsesBeforeValueDefinition( {&while_use, 1}, dataflow->GetValueDefinedAt(add), *dataflow)); EXPECT_TRUE(ordering.LiveRangeStrictlyBefore( dataflow->GetValueDefinedAt(xla_while), dataflow->GetValueDefinedAt(add), *dataflow)); } TEST_F(HloOrderingTest, ToStringDoesNotCrash) { const char* module_str = R"( HloModule test_module body.v8 { prev.1 = (s32[], f32[3]{0}, f32[3]{0}, f32[3]{0}) parameter(0) get-tuple-element.4 = s32[] get-tuple-element(prev.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.4, constant.1) get-tuple-element.5 = f32[3]{0} get-tuple-element(prev.1), index=3 get-tuple-element.6 = f32[3]{0} get-tuple-element(prev.1), index=1 get-tuple-element.7 = f32[3]{0} get-tuple-element(prev.1), index=2 ROOT tuple = (s32[], f32[3]{0}, f32[3]{0}, f32[3]{0}) tuple(add, get-tuple-element.5, get-tuple-element.6, get-tuple-element.7) } condition.v4 { constant.2 = s32[] constant(2) prev.2 = (s32[], f32[3]{0}, f32[3]{0}, f32[3]{0}) parameter(0) get-tuple-element.8 = s32[] get-tuple-element(prev.2), index=0 ROOT greater-than = pred[] compare(constant.2, get-tuple-element.8), direction=GT } fused_computation { get-tuple-element.5.param_1 = f32[3]{0} parameter(1) get-tuple-element.6.param_2 = f32[3]{0} parameter(2) add.4 = f32[3]{0} add(get-tuple-element.5.param_1, get-tuple-element.6.param_2) get-tuple-element.7.param_1.1 = f32[3]{0} parameter(0) ROOT add.5 = f32[3]{0} add(add.4, get-tuple-element.7.param_1.1) } ENTRY while.v11 { constant.5 = s32[] constant(0) constant.6 = f32[3]{0} constant({1, 1, 1}) constant.7 = f32[3]{0} constant({2, 2, 2}) constant.8 = f32[3]{0} constant({3, 3, 3}) tuple.1 = (s32[], f32[3]{0}, f32[3]{0}, f32[3]{0}) tuple(constant.5, constant.6, constant.7, constant.8) while = (s32[], f32[3]{0}, f32[3]{0}, f32[3]{0}) while(tuple.1), condition=condition.v4, body=body.v8 get-tuple-element.9 = f32[3]{0} get-tuple-element(while), index=3 get-tuple-element.10 = f32[3]{0} get-tuple-element(while), index=1 get-tuple-element.11 = f32[3]{0} get-tuple-element(while), index=2 ROOT fusion = f32[3]{0} fusion(get-tuple-element.9, get-tuple-element.10, get-tuple-element.11), kind=kLoop, calls=fused_computation })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); DependencyHloOrdering ordering(module.get()); ordering.ToString(); } TEST_F(HloOrderingTest, ConditionalInstructionOrdering) { const char* module_str = R"( HloModule test_conditional_module true_branch { param.1 = (s32[], s32[]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(param.1), index=0 get-tuple-element.2 = s32[] get-tuple-element(param.1), index=1 add.1 = s32[] add(get-tuple-element.1, get-tuple-element.2) ROOT tuple.1 = (s32[], s32[]) tuple(add.1, get-tuple-element.1) } false_branch { param.2 = (s32[], s32[]) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(param.2), index=0 get-tuple-element.4 = s32[] get-tuple-element(param.2), index=1 add.2 = s32[] add(get-tuple-element.3, get-tuple-element.4) ROOT tuple.2 = (s32[], s32[]) tuple(add.2, get-tuple-element.4) } ENTRY root { param.3 = (pred[], (s32[], s32[])) parameter(0) pred.1 = pred[] get-tuple-element(param.3), index=0 cond_arg.1 = (s32[], s32[]) get-tuple-element(param.3), index=1 conditional = (s32[], s32[]) conditional(pred.1, cond_arg.1, cond_arg.1), true_computation=true_branch, false_computation=false_branch cond_res.1 = s32[] get-tuple-element(conditional), index=0 cond_res.2 = s32[] get-tuple-element(conditional), index=1 add.3 = s32[] add(cond_res.1, cond_res.2) ROOT result = (s32[], s32[], s32[]) tuple(add.3, cond_res.1, cond_res.2) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); TF_ASSERT_OK_AND_ASSIGN(auto dataflow, HloDataflowAnalysis::Run(*module, true)); DependencyHloOrdering ordering(module.get()); HloInstruction* add_1 = FindInstruction(module.get(), "add.1"); HloInstruction* add_2 = FindInstruction(module.get(), "add.2"); HloInstruction* add_3 = FindInstruction(module.get(), "add.3"); HloInstruction* conditional = FindInstruction(module.get(), "conditional"); EXPECT_TRUE(ordering.IsDefinedBefore(dataflow->GetValueDefinedAt(add_1), dataflow->GetValueDefinedAt(add_2))); EXPECT_TRUE( ordering.IsDefinedBefore(dataflow->GetValueDefinedAt(add_2), dataflow->GetValueDefinedAt(conditional))); EXPECT_TRUE( ordering.IsDefinedBefore(dataflow->GetValueDefinedAt(add_1), dataflow->GetValueDefinedAt(conditional))); EXPECT_TRUE(ordering.IsDefinedBefore(dataflow->GetValueDefinedAt(add_1), dataflow->GetValueDefinedAt(add_3))); EXPECT_TRUE(ordering.IsDefinedBefore(dataflow->GetValueDefinedAt(add_2), dataflow->GetValueDefinedAt(add_3))); } TEST_F(HloOrderingTest, ValuesLiveOutOfModuleInterfereWithInstructionsAfterRoot) { auto module = CreateNewVerifiedModule(); const Shape scalar_shape = ShapeUtil::MakeShape(xla::F32, {}); auto builder = HloComputation::Builder(TestName()); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "param")); HloInstruction* root = builder.AddInstruction( HloInstruction::CreateUnary(scalar_shape, HloOpcode::kNegate, param)); HloInstruction* dead = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(123.0f))); HloComputation* entry = module->AddEntryComputation(builder.Build(root)); HloSchedule schedule(module.get()); schedule.set_sequence(entry, {param, root, dead}); TF_ASSERT_OK(schedule.Verify()); SequentialHloOrdering ordering(schedule); TF_ASSERT_OK_AND_ASSIGN(auto dataflow, HloDataflowAnalysis::Run(*module, true)); EXPECT_FALSE(ordering.ExecutesBefore(root, dead)); EXPECT_FALSE(ordering.ExecutesBefore(dead, root)); EXPECT_FALSE(ordering.LiveRangeStrictlyBefore( dataflow->GetValueDefinedAt(root), dataflow->GetValueDefinedAt(dead), *dataflow)); EXPECT_TRUE(ordering.MayInterfere(dataflow->GetValueDefinedAt(root), dataflow->GetValueDefinedAt(dead), *dataflow)); } TEST_F(HloOrderingTest, ValuesLiveOutOfComputationInterfereWithInstructionsAfterRoot) { auto module = CreateNewVerifiedModule(); const Shape scalar_shape = ShapeUtil::MakeShape(xla::F32, {}); auto subbuilder = HloComputation::Builder(TestName() + ".sub"); HloInstruction* param = subbuilder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "param")); HloInstruction* root = subbuilder.AddInstruction( HloInstruction::CreateUnary(scalar_shape, HloOpcode::kNegate, param)); HloInstruction* dead = subbuilder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(123.0f))); HloComputation* subcomputation = module->AddEmbeddedComputation( subbuilder.Build(root)); auto builder = HloComputation::Builder(TestName()); HloInstruction* c = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); HloInstruction* call = builder.AddInstruction( HloInstruction::CreateCall(scalar_shape, {c}, subcomputation)); HloComputation* entry = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(subcomputation, {param, root, dead}); schedule.set_sequence(entry, {c, call}); TF_ASSERT_OK(schedule.Verify()); SequentialHloOrdering ordering(schedule); TF_ASSERT_OK_AND_ASSIGN(auto dataflow, HloDataflowAnalysis::Run(*module, true)); EXPECT_FALSE(ordering.ExecutesBefore(root, dead)); EXPECT_FALSE(ordering.ExecutesBefore(dead, root)); EXPECT_FALSE(ordering.LiveRangeStrictlyBefore( dataflow->GetValueDefinedAt(root), dataflow->GetValueDefinedAt(dead), *dataflow)); EXPECT_TRUE(ordering.MayInterfere(dataflow->GetValueDefinedAt(root), dataflow->GetValueDefinedAt(dead), *dataflow)); } TEST_F(HloOrderingTest, InterferenceWithOuterRoot) { absl::string_view hlo_string = R"( HloModule InterferenceWithOuterRoot, is_scheduled=true Embedded (embedded_param: f32[4096,4096]) -> f32[4096,4096] { embedded_param = f32[4096,4096]{1,0} parameter(0) multiply = f32[4096,4096]{1,0} multiply(embedded_param, embedded_param) ROOT log = f32[4096,4096]{1,0} log(multiply) } ENTRY InterferenceWithOuterRoot { param = f32[4096,4096]{1,0} parameter(0) ROOT add = f32[4096,4096]{1,0} add(param, param) call = f32[4096,4096]{1,0} call(param), to_apply=Embedded } )"; HloModuleConfig hlo_config; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string, hlo_config)); TF_ASSERT_OK_AND_ASSIGN(auto dataflow, HloDataflowAnalysis::Run(*module, true)); DependencyHloOrdering ordering(module.get()); auto multiply = FindInstruction(module.get(), "multiply"); auto add = FindInstruction(module.get(), "add"); EXPECT_TRUE(ordering.MayInterfere(dataflow->GetValueDefinedAt(multiply), dataflow->GetValueDefinedAt(add), *dataflow)); } TEST_F(HloOrderingTest, RootNotLastInstruction) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true body2 { p_body2 = (f32[2]{0}) parameter(0) p_body2.1 = f32[2]{0} get-tuple-element(p_body2), index=0 add.3 = f32[2]{0} add(p_body2.1, p_body2.1) ROOT root2 = (f32[2]{0}) tuple(add.3) } condition2 { p_cond2 = (f32[2]{0}) parameter(0) ROOT result = pred[] constant(true) } body { p_body = (f32[2]{0}) parameter(0) p_body.1 = f32[2]{0} get-tuple-element(p_body), index=0 ROOT root = (f32[2]{0}) tuple(p_body.1) copy = f32[2]{0} copy(p_body.1) tuple = (f32[2]{0}) tuple(copy) while.1 = (f32[2]{0}) while(tuple), condition=condition2, body=body2 } condition { p_cond = (f32[2]{0}) parameter(0) ROOT result = pred[] constant(true) } ENTRY entry { const0 = f32[2]{0} constant({1, 2}) while_init = (f32[2]{0}) tuple(const0) ROOT while.0 = (f32[2]{0}) while(while_init), condition=condition, body=body } )"; HloModuleConfig hlo_config; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string, hlo_config)); TF_ASSERT_OK_AND_ASSIGN(auto dataflow, HloDataflowAnalysis::Run(*module, true)); SequentialHloOrdering ordering(module->schedule()); auto root = FindInstruction(module.get(), "root"); auto p_body_2 = FindInstruction(module.get(), "p_body2"); auto tuple_use = HloUse{root, 0}; const HloValue& value = dataflow->GetUniqueValueAt(p_body_2, {0}); EXPECT_FALSE( ordering.UsesBeforeValueDefinition({&tuple_use}, value, *dataflow)); } TEST_F(HloOrderingTest, AsyncCallUses) { absl::string_view hlo_string = R"( HloModule single_sc_async_call %called_computation { %out_param = s32[1024]{0} parameter(1) %input = s32[1024]{0} parameter(0) %size = s32[] constant(256) %index = s32[] custom-call(), custom_call_target="Baz" %start = s32[] multiply(s32[] %size, s32[] %index) %input2 = s32[256]{0} dynamic-slice(s32[1024]{0} %input, s32[] %start), dynamic_slice_sizes={256} %output = s32[256]{0} add(s32[256]{0} %input2, s32[256]{0} %input2) ROOT %output2 = s32[1024]{0} dynamic-update-slice(s32[1024]{0} %out_param, s32[256]{0} %output, s32[] %start) }, execution_thread="foobar" %async_wrapped { %async_param = s32[1024]{0} parameter(0) %async_param.1 = s32[1024]{0} parameter(1) ROOT %call = s32[1024]{0} call(s32[1024]{0} %async_param, s32[1024]{0} %async_param.1), to_apply=%called_computation }, execution_thread="foobar" ENTRY %main { %input.1 = s32[1024]{0} parameter(0) %buf = s32[1024]{0} custom-call(), custom_call_target="AllocateBuffer" %async-start = ((s32[1024]{0}, s32[1024]{0}), s32[1024]{0}, u32[]) async-start(s32[1024]{0} %input.1, s32[1024]{0} %buf), async_execution_thread="foobar", calls=%async_wrapped ROOT %async-done = s32[1024]{0} async-done(((s32[1024]{0}, s32[1024]{0}), s32[1024]{0}, u32[]) %async-start), async_execution_thread="foobar", calls=%async_wrapped } )"; HloModuleConfig hlo_config; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string, hlo_config)); TF_ASSERT_OK_AND_ASSIGN(auto dataflow, HloDataflowAnalysis::Run(*module, true)); DependencyHloOrdering ordering(module.get()); auto async_start = FindInstruction(module.get(), "async-start"); auto async_done = FindInstruction(module.get(), "async-done"); auto call = FindInstruction(module.get(), "call"); auto output2 = FindInstruction(module.get(), "output2"); auto async_start_use = HloUse{async_start, 1}; auto async_done_use = HloUse{async_done, 0, {0, 1}}; auto call_use = HloUse{call, 1}; const HloValue& value = dataflow->GetUniqueValueAt(output2, {}); EXPECT_TRUE(ordering.UsesBeforeValueDefinition( {&async_start_use, &call_use, &async_done_use}, value, *dataflow)); } TEST_F(HloOrderingTest, UsesBeforeValueDefinitionValueIsAsyncWrappedCallInstruction) { constexpr absl::string_view hlo_string = R"( HloModule UsesBeforeValueDefinitionValueIsAsyncWrappedCallInstruction, input_output_alias={ {}: (0, {}, must-alias) }, entry_computation_layout={(f32[2,2])->f32[2,2]} %host_computation { %arg_0.2 = f32[2,2] parameter(0) %constant.1 = f32[] constant(2) %broadcast.1 = f32[2,2] broadcast(f32[] %constant.1), dimensions={} ROOT %multiply.1 = f32[2,2] multiply(f32[2,2] %arg_0.2, f32[2,2] %broadcast.1) }, execution_thread="host" %async_wrapped_comp { %param_0 = f32[2,2] parameter(0) ROOT %async_wrapped_call = f32[2,2] custom-call(f32[2,2] %param_0), custom_call_target="HostExecute", called_computations={%host_computation} }, execution_thread="host" ENTRY %main { %p0 = f32[2,2] parameter(0) %host-async-start = ((f32[2,2]), f32[2,2], u32[]) async-start(f32[2,2] %p0), async_execution_thread="host", calls=%async_wrapped_comp %host-async-done = f32[2,2] async-done(((f32[2,2]), f32[2,2], u32[]) %host-async-start) ROOT %copy.1 = f32[2,2] copy(f32[2,2] %host-async-done) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloDataflowAnalysis> dataflow, HloDataflowAnalysis::Run(*module, true)); HloInstruction* async_start = FindInstruction(module.get(), "host-async-start"); HloInstruction* async_done = FindInstruction(module.get(), "host-async-done"); HloInstruction* async_wrapped_call = FindInstruction(module.get(), "async_wrapped_call"); HloInstruction* p0 = FindInstruction(module.get(), "p0"); ASSERT_NE(async_start, nullptr); ASSERT_NE(async_done, nullptr); ASSERT_NE(async_wrapped_call, nullptr); ASSERT_NE(p0, nullptr); HloUse async_start_use = HloUse{async_start, 0}; HloUse async_done_use = HloUse{async_done, 0, {0, 0}}; HloUse call_use = HloUse{async_wrapped_call, 0}; const HloValue& value = dataflow->GetUniqueValueAt(async_wrapped_call, {}); DependencyHloOrdering ordering(module.get()); EXPECT_FALSE( ordering.UsesBeforeValueDefinition({&async_start_use}, value, *dataflow)); EXPECT_FALSE( ordering.UsesBeforeValueDefinition({&call_use}, value, *dataflow)); EXPECT_FALSE( ordering.UsesBeforeValueDefinition({&async_done_use}, value, *dataflow)); } TEST_F(HloOrderingTest, UsesBeforeValueDefinitionValueIsAnAliasedAsyncWrappedCallInstruction) { constexpr absl::string_view hlo_string = R"( HloModule UsesBeforeValueDefinitionValueIsAnAliasedAsyncWrappedCallInstruction, input_output_alias={ {}: (0, {}, must-alias) }, entry_computation_layout={(f32[2,2])->f32[2,2]} %host_computation { %arg_0.2 = f32[2,2] parameter(0) %constant.1 = f32[] constant(2) %broadcast.1 = f32[2,2] broadcast(f32[] %constant.1), dimensions={} ROOT %multiply.1 = f32[2,2] multiply(f32[2,2] %arg_0.2, f32[2,2] %broadcast.1) }, execution_thread="host" %async_wrapped_comp { %param_0 = f32[2,2] parameter(0) ROOT %async_wrapped_call = f32[2,2] custom-call(f32[2,2] %param_0), custom_call_target="HostExecute", called_computations={%host_computation}, output_to_operand_aliasing={{}: (0, {})} }, execution_thread="host" ENTRY %main { %p0 = f32[2,2] parameter(0) %host-async-start = ((f32[2,2]), f32[2,2], u32[]) async-start(f32[2,2] %p0), async_execution_thread="host", calls=%async_wrapped_comp ROOT %host-async-done = f32[2,2] async-done(((f32[2,2]), f32[2,2], u32[]) %host-async-start) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloDataflowAnalysis> dataflow, HloDataflowAnalysis::Run(*module, true)); HloInstruction* async_start = FindInstruction(module.get(), "host-async-start"); HloInstruction* async_done = FindInstruction(module.get(), "host-async-done"); HloInstruction* async_wrapped_call = FindInstruction(module.get(), "async_wrapped_call"); HloInstruction* p0 = FindInstruction(module.get(), "p0"); ASSERT_NE(async_start, nullptr); ASSERT_NE(async_done, nullptr); ASSERT_NE(async_wrapped_call, nullptr); ASSERT_NE(p0, nullptr); HloUse async_start_use = HloUse{async_start, 0}; HloUse async_done_use = HloUse{async_done, 0, {0, 0}}; HloUse call_use = HloUse{async_wrapped_call, 0}; const HloValue& value = dataflow->GetUniqueValueAt(async_wrapped_call, {}); DependencyHloOrdering ordering(module.get()); EXPECT_TRUE( ordering.UsesBeforeValueDefinition({&async_start_use}, value, *dataflow)); EXPECT_TRUE( ordering.UsesBeforeValueDefinition({&call_use}, value, *dataflow)); EXPECT_TRUE( ordering.UsesBeforeValueDefinition({&async_done_use
1,879
cpp
tensorflow/tensorflow
float_support
third_party/xla/xla/service/float_support.cc
third_party/xla/xla/service/gpu/float_support_test.cc
#ifndef XLA_SERVICE_FLOAT_SUPPORT_H_ #define XLA_SERVICE_FLOAT_SUPPORT_H_ #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/xla_data.pb.h" namespace xla { class FloatSupport { public: explicit FloatSupport(PrimitiveType low_precision_type, PrimitiveType high_precision_type = F32) : low_precision_type_(low_precision_type), high_precision_type_(high_precision_type) {} virtual ~FloatSupport() = default; PrimitiveType LowPrecisionType() const { return low_precision_type_; } PrimitiveType HighPrecisionType() const { return high_precision_type_; } virtual bool SupportsLowPrecisionOperand(const HloInstruction& hlo, int64_t operand_index) const; virtual bool SupportsLowPrecisionOutput(const HloInstruction& hlo) const; virtual bool SupportsMixedPrecisions(const HloInstruction& hlo) const; static bool EffectiveOperandPrecisionIsOutputPrecision( const HloInstruction& hlo, int64_t operand_index); virtual bool EffectiveOperandPrecisionIsLowPrecision( const HloInstruction& hlo, int64_t operand_index) const; private: PrimitiveType low_precision_type_; PrimitiveType high_precision_type_; }; } #endif #include "xla/service/float_support.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" namespace xla { bool FloatSupport::SupportsLowPrecisionOperand(const HloInstruction& hlo, int64_t operand_index) const { switch (hlo.opcode()) { case HloOpcode::kCall: case HloOpcode::kConditional: case HloOpcode::kCustomCall: case HloOpcode::kDomain: case HloOpcode::kGetTupleElement: case HloOpcode::kTuple: case HloOpcode::kWhile: case HloOpcode::kOptimizationBarrier: return true; case HloOpcode::kConvert: CHECK_EQ(operand_index, 0); return hlo.operand(0)->shape().element_type() == low_precision_type_; default: break; } return false; } bool FloatSupport::SupportsLowPrecisionOutput(const HloInstruction& hlo) const { switch (hlo.opcode()) { case HloOpcode::kCall: case HloOpcode::kConditional: case HloOpcode::kCustomCall: case HloOpcode::kDomain: case HloOpcode::kGetTupleElement: case HloOpcode::kTuple: case HloOpcode::kWhile: case HloOpcode::kOptimizationBarrier: return true; case HloOpcode::kConvert: return hlo.shape().element_type() == low_precision_type_; default: break; } return false; } bool FloatSupport::SupportsMixedPrecisions(const HloInstruction& hlo) const { switch (hlo.opcode()) { case HloOpcode::kCall: case HloOpcode::kConditional: case HloOpcode::kConvert: case HloOpcode::kCustomCall: case HloOpcode::kGetTupleElement: case HloOpcode::kTuple: case HloOpcode::kWhile: case HloOpcode::kOptimizationBarrier: return true; default: break; } return false; } bool FloatSupport::EffectiveOperandPrecisionIsOutputPrecision( const HloInstruction& hlo, int64_t operand_index) { switch (hlo.opcode()) { case HloOpcode::kAbs: case HloOpcode::kAllGather: case HloOpcode::kAllToAll: case HloOpcode::kBroadcast: case HloOpcode::kClamp: case HloOpcode::kCollectiveBroadcast: case HloOpcode::kCollectivePermute: case HloOpcode::kConcatenate: case HloOpcode::kConvert: case HloOpcode::kCopy: case HloOpcode::kDomain: case HloOpcode::kGetTupleElement: case HloOpcode::kMaximum: case HloOpcode::kMinimum: case HloOpcode::kPad: case HloOpcode::kReshape: case HloOpcode::kReverse: case HloOpcode::kSlice: case HloOpcode::kSort: case HloOpcode::kTranspose: case HloOpcode::kTuple: case HloOpcode::kOptimizationBarrier: return true; case HloOpcode::kBitcast: return hlo.shape().element_type() == hlo.operand(0)->shape().element_type(); case HloOpcode::kDynamicSlice: return operand_index == 0; case HloOpcode::kDynamicUpdateSlice: return operand_index == 0 || operand_index == 1; case HloOpcode::kGather: return operand_index == 0; case HloOpcode::kSelect: return operand_index == 1 || operand_index == 2; case HloOpcode::kReduce: case HloOpcode::kReduceWindow: { HloComputation* reduce_comp = hlo.called_computations()[0]; for (HloInstruction* inst : reduce_comp->instructions()) { if (inst->opcode() == HloOpcode::kParameter) { continue; } for (int64_t i = 0; i < inst->operand_count(); ++i) { if (!EffectiveOperandPrecisionIsOutputPrecision(*inst, i)) { return false; } } } return true; } default: break; } return false; } bool FloatSupport::EffectiveOperandPrecisionIsLowPrecision( const HloInstruction& hlo, int64_t operand_index) const { return false; } }
#include <variant> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/error_spec.h" #include "xla/service/gpu/variant_visitor.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla.pb.h" namespace xla { namespace gpu { namespace { class FloatSupportTest : public HloTestBase { public: const se::GpuComputeCapability& GetGpuComputeCapability() { return backend() .default_stream_executor() ->GetDeviceDescription() .gpu_compute_capability(); } }; class FloatSupportTestWithCublas : public FloatSupportTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = FloatSupportTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_enable_triton_gemm(false); return debug_options; } }; class FloatSupportTestWithTriton : public FloatSupportTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = FloatSupportTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_enable_triton_gemm(true); debug_options.set_xla_gpu_triton_gemm_any(true); debug_options.set_xla_gpu_cublas_fallback(false); return debug_options; } }; TEST_F(FloatSupportTestWithCublas, MixedTypeDotIsNotUpcasted) { constexpr absl::string_view kHloText = R"( ENTRY e { p0 = bf16[32,32] parameter(0) p1 = bf16[32,32] parameter(1) ROOT d = f32[32,32] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; MatchOptimizedHlo(kHloText, R"( ; CHECK-NOT: convert ; CHECK: __cublas )"); EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{1e-6, 1e-6})); } TEST_F(FloatSupportTestWithTriton, MixedTypeDotWithBF16IsNotUpcasted) { bool skip_test = std::visit( VariantVisitor{[](const se::CudaComputeCapability& cc) { return !cc.IsAtLeast(se::CudaComputeCapability::AMPERE); }, [](const se::RocmComputeCapability&) { return true; }}, GetGpuComputeCapability()); if (skip_test) { GTEST_SKIP() << "Not supported on this GPU architecture"; } constexpr absl::string_view kHloText = R"( ENTRY e { p0 = bf16[32,32] parameter(0) p1 = bf16[32,32] parameter(1) ROOT d = f32[32,32] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; MatchOptimizedHlo(kHloText, R"( ; CHECK-NOT: convert ; CHECK: __triton )"); EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{1e-6, 1e-6})); } } } }
1,880
cpp
tensorflow/tensorflow
scatter_simplifier
third_party/xla/xla/service/scatter_simplifier.cc
third_party/xla/xla/service/scatter_simplifier_test.cc
#ifndef XLA_SERVICE_SCATTER_SIMPLIFIER_H_ #define XLA_SERVICE_SCATTER_SIMPLIFIER_H_ #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/op_expander_pass.h" namespace xla { class ScatterSimplifier : public OpExpanderPass { public: absl::string_view name() const override { return "scatter_simplifier"; } static bool IsSimplifiedScatter(const HloScatterInstruction* scatter); protected: bool InstructionMatchesPattern(HloInstruction* inst) override; absl::StatusOr<HloInstruction*> ExpandInstruction( HloInstruction* inst) override; }; } #endif #include "xla/service/scatter_simplifier.h" #include <algorithm> #include <iterator> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/permutation_util.h" #include "xla/service/gather_scatter_utils.h" #include "xla/service/hlo_creation_utils.h" #include "xla/shape.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { absl::StatusOr<HloInstruction*> FlattenAndTransposeUpdates( HloInstruction* updates, absl::Span<const int64_t> update_window_dims, absl::Span<const int64_t> inserted_window_dims, int64_t scatter_indices_size) { int64_t updates_rank = updates->shape().rank(); std::vector<int64_t> permutation; const int64_t num_scatter_dims = updates_rank - update_window_dims.size(); permutation.reserve(updates_rank); for (int i = 0; i < updates_rank; ++i) { if (!absl::c_linear_search(update_window_dims, i)) { permutation.push_back(i); } } absl::c_copy(update_window_dims, std::back_inserter(permutation)); TF_ASSIGN_OR_RETURN(updates, MaybeTranspose(updates, permutation)); if (num_scatter_dims > 1) { TF_ASSIGN_OR_RETURN(updates, CollapseFirstNDims(updates, num_scatter_dims)); } else if (num_scatter_dims == 0) { TF_ASSIGN_OR_RETURN(updates, InsertDegenerateDims(updates, {0})); } if (!inserted_window_dims.empty()) { std::vector<int64_t> new_dims; new_dims.reserve(inserted_window_dims.size()); for (int64_t i : inserted_window_dims) { new_dims.push_back(i + 1); } TF_ASSIGN_OR_RETURN(updates, InsertDegenerateDims(updates, new_dims)); } return updates; } std::vector<int64_t> MakeUpdatePermutation( const std::vector<int64_t>& operand_permutation) { std::vector<int64_t> update_permutation; update_permutation.reserve(operand_permutation.size() + 1); update_permutation.push_back(0); for (auto& dim : operand_permutation) { update_permutation.push_back(dim + 1); } return update_permutation; } absl::StatusOr<std::vector<HloInstruction*>> TransformScatterUpdates( HloScatterInstruction* scatter, const std::vector<int64_t>& update_permutation, int64_t scatter_indices_size) { std::vector<HloInstruction*> scatter_updates; const auto& attrs = scatter->scatter_dimension_numbers(); scatter_updates.reserve(scatter->scatter_updates().size()); for (auto* update : scatter->scatter_updates()) { TF_ASSIGN_OR_RETURN( scatter_updates.emplace_back(), FlattenAndTransposeUpdates(update, attrs.update_window_dims(), attrs.inserted_window_dims(), scatter_indices_size)); } return MaybeTranspose(scatter_updates, update_permutation); } ScatterDimensionNumbers MakeScatterDimensionNumbers( int64_t operand_rank, int64_t scatter_indices_vector_size) { ScatterDimensionNumbers dim_numbers; dim_numbers.mutable_update_window_dims()->Reserve( static_cast<int>(operand_rank)); for (int i = 0; i < operand_rank; ++i) { dim_numbers.add_update_window_dims(1 + i); } dim_numbers.mutable_scatter_dims_to_operand_dims()->Reserve( static_cast<int>(scatter_indices_vector_size)); for (int i = 0; i < scatter_indices_vector_size; ++i) { dim_numbers.add_scatter_dims_to_operand_dims(i); } dim_numbers.set_index_vector_dim(1); return dim_numbers; } } absl::StatusOr<HloInstruction*> ScatterSimplifier::ExpandInstruction( HloInstruction* inst) { auto* scatter = Cast<HloScatterInstruction>(inst); if (scatter->called_computations().size() != 1) { return InvalidArgumentStrCat( "Expected scatter->called_computations() to have exactly one element, " "got ", scatter->called_computations().size()); } const auto& attrs = scatter->scatter_dimension_numbers(); const int operand_rank = attrs.update_window_dims().size() + attrs.inserted_window_dims().size(); auto [operand_permutation, operand_permutation_inverse] = MakeOperandStartIndexPermutations(attrs.scatter_dims_to_operand_dims(), operand_rank); auto update_permutation = MakeUpdatePermutation(operand_permutation); TF_ASSIGN_OR_RETURN(auto* scatter_indices, TransformStartIndices(scatter->scatter_indices(), attrs.index_vector_dim())); TF_ASSIGN_OR_RETURN( auto scatter_updates, TransformScatterUpdates(scatter, update_permutation, scatter_indices->shape().dimensions(0))); TF_ASSIGN_OR_RETURN( auto scatter_operands, MaybeTranspose(scatter->scatter_operands(), operand_permutation)); auto dim_numbers = MakeScatterDimensionNumbers( operand_rank, attrs.scatter_dims_to_operand_dims().size()); Shape output_shape; if (scatter_operands.size() == 1) { output_shape = scatter_operands.front()->shape(); } else { std::vector<Shape> shapes; shapes.reserve(scatter_operands.size()); for (auto* operand : scatter_operands) { shapes.push_back(operand->shape()); } output_shape = ShapeUtil::MakeTupleShape(shapes); } auto* result = scatter->AddInstruction(HloInstruction::CreateScatter( output_shape, scatter_operands, scatter_indices, scatter_updates, scatter->called_computations().front(), dim_numbers, scatter->indices_are_sorted(), scatter->unique_indices())); if (IsIdentityPermutation(operand_permutation)) { return result; } if (scatter->scatter_operands().size() == 1) { return MaybeTranspose(result, operand_permutation_inverse); } std::vector<HloInstruction*> result_items; result_items.reserve(scatter->scatter_operands().size()); for (int i = 0; i < scatter->scatter_operands().size(); ++i) { TF_ASSIGN_OR_RETURN(result_items.emplace_back(), MakeGetTupleElementHlo(result, i)); TF_ASSIGN_OR_RETURN( result_items.back(), MaybeTranspose(result_items.back(), operand_permutation_inverse)); } return MaybeMakeTuple(result_items); } bool ScatterSimplifier::IsSimplifiedScatter( const HloScatterInstruction* scatter) { const auto& dims = scatter->scatter_dimension_numbers(); bool nonstandard_index_vector_dim = dims.index_vector_dim() != scatter->scatter_indices()->shape().rank() - 1; int64_t num_scatter_dims = scatter->scatter_updates().front()->shape().rank() - dims.update_window_dims().size(); bool scatter_indices_reordered = !IsIdentityPermutation(dims.scatter_dims_to_operand_dims()); bool scatter_dim_not_first = absl::c_linear_search(dims.update_window_dims(), 0); bool update_window_dims_sorted = absl::c_is_sorted(dims.update_window_dims()); return !(nonstandard_index_vector_dim || num_scatter_dims > 1 || scatter_indices_reordered || scatter_dim_not_first || !update_window_dims_sorted || !dims.inserted_window_dims().empty()); } bool ScatterSimplifier::InstructionMatchesPattern(HloInstruction* inst) { auto* scatter = DynCast<HloScatterInstruction>(inst); return scatter && !IsSimplifiedScatter(scatter); } }
#include "xla/service/scatter_simplifier.h" #include <optional> #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/service/hlo_parser.h" #include "xla/service/hlo_pass_fix.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { class ScatterSimplifierTest : public HloTestBase {}; TEST_F(ScatterSimplifierTest, InsertsIndexVectorAndWindowDims) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { p0 = f32[] parameter(0) p1 = f32[] parameter(1) p2 = f32[] parameter(2) p3 = f32[] parameter(3) ROOT tuple = tuple(p2, p3) } ENTRY kernel_entry { operand0 = f32[3,3] parameter(0) operand1 = f32[3,3] parameter(1) indices = s32[2] parameter(2) update0 = f32[2,3] parameter(3) update1 = f32[2,3] parameter(4) ROOT scatter = (f32[3,3], f32[3,3]) scatter(operand0, operand1, indices, update0, update1), to_apply=scatter_computation, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 })"; RunAndFilecheckHloRewrite(kModuleStr, ScatterSimplifier(), R"( CHECK: %[[SCATTER_DIMS_WITH_VECTOR:.*]] = s32[2,1]{1,0} reshape(%indices) CHECK: %[[RESHAPED_UPDATES0:.*]] = f32[2,1,3]{2,1,0} reshape(%update0) CHECK: %[[RESHAPED_UPDATES1:.*]] = f32[2,1,3]{2,1,0} reshape(%update1) CHECK: ROOT %scatter = (f32[3,3]{1,0}, f32[3,3]{1,0}) scatter( CHECK-SAME: %operand0, %operand1, %[[SCATTER_DIMS_WITH_VECTOR]], CHECK-SAME: %[[RESHAPED_UPDATES0]], %[[RESHAPED_UPDATES1]]), CHECK-SAME: update_window_dims={1,2}, CHECK-SAME: inserted_window_dims={}, CHECK-SAME: scatter_dims_to_operand_dims={0}, CHECK-SAME: index_vector_dim=1, CHECK-SAME: to_apply=%scatter_computation )"); } TEST_F(ScatterSimplifierTest, CollapsesScatterDims) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { %p0 = f32[] parameter(0) ROOT result = f32[] parameter(1) } ENTRY kernel_entry { operand = f32[3,3] parameter(0) indices = s32[2,1,2] parameter(1) update = f32[2,1,1,3] parameter(2) ROOT scatter = f32[3,3] scatter(operand, indices, update), to_apply=scatter_computation, update_window_dims={2, 3}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=2 })"; RunAndFilecheckHloRewrite(kModuleStr, ScatterSimplifier(), R"( CHECK: %[[RESHAPED_INDICES:.*]] = s32[2,2]{1,0} reshape(%indices) CHECK: %[[RESHAPED_UPDATES:.*]] = f32[2,1,3]{2,1,0} reshape(%update) CHECK: scatter( CHECK-SAME: %[[RESHAPED_INDICES]] CHECK-SAME: %[[RESHAPED_UPDATES]] )"); } TEST_F(ScatterSimplifierTest, NoOpForSimpleScatter) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { %p0 = f32[] parameter(0) ROOT result = f32[] parameter(1) } ENTRY kernel_entry { operand = f32[3,3] parameter(0) indices = s32[2,2] parameter(1) update = f32[2,1,3] parameter(2) ROOT scatter = f32[3,3] scatter(operand, indices, update), to_apply=scatter_computation, update_window_dims={1,2}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=1 })"; RunAndFilecheckHloRewrite(kModuleStr, ScatterSimplifier(), std::nullopt); } TEST_F(ScatterSimplifierTest, MovesIndexVectorDim) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { %p0 = f32[] parameter(0) ROOT result = f32[] parameter(1) } ENTRY kernel_entry { operand = f32[3,3] parameter(0) indices = s32[2,1] parameter(1) update = f32[1,3,3] parameter(2) ROOT scatter = f32[3,3] scatter(operand, indices, update), to_apply=scatter_computation, update_window_dims={1, 2}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=0 })"; RunAndFilecheckHloRewrite(kModuleStr, ScatterSimplifier(), R"( CHECK: %[[TRANSPOSED_INDICES:.*]] = s32[1,2]{1,0} CHECK-SAME: transpose(%indices), dimensions={1,0} CHECK: scatter(%operand, %[[TRANSPOSED_INDICES]], %update), CHECK-SAME: index_vector_dim=1 )"); } TEST_F(ScatterSimplifierTest, TransformsUpdatesAndOperandUsingScatterDims) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { %p0 = f32[] parameter(0) ROOT result = f32[] parameter(1) } ENTRY kernel_entry { operand = f32[3,4,5] parameter(0) indices = s32[2,2] parameter(1) update = f32[2,1,1,3] parameter(2) ROOT scatter = f32[3,4,5] scatter(operand, indices, update), to_apply=scatter_computation, update_window_dims={1, 2, 3}, inserted_window_dims={}, scatter_dims_to_operand_dims={2,0}, index_vector_dim=1 })"; RunAndFilecheckHloRewrite(kModuleStr, ScatterSimplifier(), R"( CHECK: %[[T_OPERAND:.*]] = f32[5,3,4]{2,1,0} transpose(%operand), CHECK-SAME: dimensions={2,0,1} CHECK: %[[T_UPDATES:.*]] = f32[2,3,1,1]{3,2,1,0} transpose(%update), CHECK-SAME: dimensions={0,3,1,2} CHECK: %[[SCATTER:.*]] = {{.*}} scatter( CHECK-SAME: %[[T_OPERAND]], %indices, %[[T_UPDATES]]) CHECK-SAME: scatter_dims_to_operand_dims={0,1}, CHECK: ROOT %{{.*}} = f32[3,4,5] CHECK-SAME: transpose(%[[SCATTER]]), dimensions={1,2,0} )"); } TEST_F(ScatterSimplifierTest, MakesScatterDimensionsLeadingInUpdates) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { %p0 = f32[] parameter(0) ROOT result = f32[] parameter(1) } ENTRY kernel_entry { operand = f32[3] parameter(0) indices = s32[1,1] parameter(1) update = f32[2,1] parameter(2) ROOT scatter = f32[3] scatter(operand, indices, update), to_apply=scatter_computation, update_window_dims={0}, inserted_window_dims={}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 })"; RunAndFilecheckHloRewrite(kModuleStr, ScatterSimplifier(), R"( CHECK: %[[TRANSPOSED_UPDATES:.*]] = f32[1,2]{1,0} CHECK-SAME: transpose(%update), dimensions={1,0} CHECK: scatter( CHECK-SAME: %[[TRANSPOSED_UPDATES]] CHECK-SAME: update_window_dims={1}, )"); } TEST_F(ScatterSimplifierTest, ZeroDimScatterIndices) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { %p0 = f32[] parameter(0) ROOT result = f32[] parameter(1) } ENTRY kernel_entry { operand = f32[4,4] parameter(0) indices = s32[2] parameter(1) update = f32[3,3] parameter(2) ROOT scatter = f32[4,4]{1,0} scatter(operand, indices, update), update_window_dims={0,1}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=0, to_apply=scatter_computation })"; RunAndFilecheckHloRewrite(kModuleStr, ScatterSimplifier(), R"( CHECK: scatter( )"); } TEST_F(ScatterSimplifierTest, IsSimplifiedScatterReturnsFalseForUnsortedWindowDims) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { %p0 = f32[] parameter(0) ROOT result = f32[] parameter(1) } ENTRY kernel_entry { operand = f32[3,2] parameter(0) indices = s32[1,1] parameter(1) update = f32[1,2,2] parameter(2) ROOT scatter = f32[3,2] scatter(operand, indices, update), to_apply=scatter_computation, update_window_dims={2,1}, inserted_window_dims={}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 })"; auto module = ParseAndReturnUnverifiedModule(kModuleStr).value(); auto scatter = module->entry_computation()->root_instruction(); EXPECT_FALSE(ScatterSimplifier::IsSimplifiedScatter( Cast<HloScatterInstruction>(scatter))); } } }
1,881
cpp
tensorflow/tensorflow
while_loop_all_reduce_code_motion
third_party/xla/xla/service/while_loop_all_reduce_code_motion.cc
third_party/xla/xla/service/while_loop_all_reduce_code_motion_test.cc
#ifndef XLA_SERVICE_WHILE_LOOP_ALL_REDUCE_CODE_MOTION_H_ #define XLA_SERVICE_WHILE_LOOP_ALL_REDUCE_CODE_MOTION_H_ #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class WhileLoopAllReduceCodeMotion : public HloModulePass { public: explicit WhileLoopAllReduceCodeMotion(bool enable_reduce_scatter = false) : enable_reduce_scatter_(enable_reduce_scatter) {} ~WhileLoopAllReduceCodeMotion() override = default; absl::string_view name() const override { return "while-loop-all-reduce-code-motion"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: const bool enable_reduce_scatter_; }; } #endif #include "xla/service/while_loop_all_reduce_code_motion.h" #include <memory> #include <optional> #include <stack> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/literal_util.h" #include "xla/map_util.h" #include "xla/service/call_graph.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/hlo_replication_analysis.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { struct AccumulationContext { HloInstruction* accumulation_instruction; HloInstruction* accumulation_buffer; int64_t param_tuple_index; std::optional<HloInstruction*> dynamic_slice; std::optional<HloInstruction*> dynamic_update_slice; }; struct MovableAllReduceContext { bool is_movable; std::vector<AccumulationContext> accumulation_contexts; }; bool IsZero(const HloInstruction* hlo) { if (hlo->IsConstant() && hlo->shape().rank() == 0 && hlo->literal().IsZero({})) { return true; } if (hlo->opcode() == HloOpcode::kBroadcast) { return IsZero(hlo->operand(0)); } return false; } bool IsValueReplicatedWithinEachAllReduceGroup( const HloInstruction& instruction, const ShapeIndex& index, CollectiveOpGroupMode all_reduce_group_mode, absl::Span<const ReplicaGroup> replica_groups, int num_replicas, int num_partitions, const std::unique_ptr<HloReplicationAnalysis>& cross_replica_replication_analysis, const std::unique_ptr<HloReplicationAnalysis>& cross_partition_replication_analysis) { VLOG(5) << "IsValueReplicatedWithinEachAllReduceGroup," << " all_reduce_group_mode: " << CollectiveOpGroupModeToString(all_reduce_group_mode); switch (all_reduce_group_mode) { case CollectiveOpGroupMode::kCrossReplica: { return cross_replica_replication_analysis == nullptr || cross_replica_replication_analysis->HloInstructionIsReplicatedAt( &instruction, index, replica_groups); } case CollectiveOpGroupMode::kCrossPartition: { return cross_partition_replication_analysis == nullptr || cross_partition_replication_analysis->HloInstructionIsReplicatedAt( &instruction, index, replica_groups); } case CollectiveOpGroupMode::kCrossReplicaAndPartition: { return (cross_replica_replication_analysis == nullptr || cross_replica_replication_analysis->HloInstructionIsReplicatedAt( &instruction, index, replica_groups)) && (cross_partition_replication_analysis == nullptr || cross_partition_replication_analysis ->HloInstructionIsReplicatedAt(&instruction, index)); } case CollectiveOpGroupMode::kFlattenedID: { if (num_replicas == 1) { return cross_partition_replication_analysis == nullptr || cross_partition_replication_analysis ->HloInstructionIsReplicatedAt(&instruction, index, replica_groups); } if (num_partitions == 1) { return cross_replica_replication_analysis == nullptr || cross_replica_replication_analysis->HloInstructionIsReplicatedAt( &instruction, index, replica_groups); } return (cross_replica_replication_analysis == nullptr || cross_replica_replication_analysis->HloInstructionIsReplicatedAt( &instruction, index)) && (cross_partition_replication_analysis == nullptr || cross_partition_replication_analysis ->HloInstructionIsReplicatedAt(&instruction, index)); } } } HloInstruction* GetEffectiveScalar(HloInstruction* instruction) { if (instruction->opcode() != HloOpcode::kBroadcast) { return nullptr; } HloInstruction* operand = instruction->mutable_operand(0); if (!ShapeUtil::IsScalar(operand->shape())) { return nullptr; } return operand; } MovableAllReduceContext IsAllReduceMovable( HloAllReduceInstructionBase* all_reduce, HloComputation* while_body, const std::unique_ptr<HloReplicationAnalysis>& cross_replica_replication_analysis, const std::unique_ptr<HloReplicationAnalysis>& cross_partition_replication_analysis) { VLOG(4) << "IsAllReduceMovable: " << all_reduce->ToString(); std::optional<ReductionKind> reduction_type = MatchReductionComputation(all_reduce->to_apply()); const bool all_reduce_is_summation = reduction_type.has_value() && *reduction_type == ReductionKind::SUM; const absl::InlinedVector<PrimitiveType, 12> kSupportedTypes{ BF16, F16, F32, F64, S8, S16, S32, S64, U8, U16, U32, U64}; if (!absl::c_linear_search(kSupportedTypes, all_reduce->shape().element_type()) || !all_reduce_is_summation) { return MovableAllReduceContext{false, {}}; } CollectiveOpGroupMode all_reduce_group_mode = GetCollectiveOpGroupMode(all_reduce->channel_id().has_value(), all_reduce->use_global_device_ids()) .value(); auto is_value_replicated_within_replica_group = [&cross_replica_replication_analysis, &cross_partition_replication_analysis, &all_reduce_group_mode, all_reduce](const HloInstruction& instruction, const ShapeIndex& index) -> bool { bool is_replicated = IsValueReplicatedWithinEachAllReduceGroup( instruction, index, all_reduce_group_mode, all_reduce->replica_groups(), all_reduce->GetModule()->config().replica_count(), all_reduce->GetModule()->config().num_partitions(), cross_replica_replication_analysis, cross_partition_replication_analysis); VLOG(5) << "instruction: " << instruction.name() << " is_replicate: " << is_replicated; return is_replicated; }; struct BufferTupleIndex { bool unsupported_operation{false}; std::optional<int64_t> tuple_index; bool returned_from_computation{false}; std::optional<HloInstruction*> dynamic_slice; std::optional<HloInstruction*> dynamic_update_slice; }; const bool is_reduce_scatter = all_reduce->opcode() == HloOpcode::kReduceScatter; auto get_origin_tuple_index = [is_reduce_scatter](HloInstruction* instruction) -> BufferTupleIndex { VLOG(4) << "get_origin_tuple_index called on " << instruction->ToString(); BufferTupleIndex result; while (!result.unsupported_operation) { switch (instruction->opcode()) { default: { VLOG(4) << "get_origin_tuple_index, instruction: (" << instruction->ToString() << ") is an unsupported operation on accumulation buffer."; result.unsupported_operation = true; break; } case HloOpcode::kBitcast: case HloOpcode::kConvert: case HloOpcode::kReshape: case HloOpcode::kTranspose: if (is_reduce_scatter) { VLOG(4) << "get_origin_tuple_index, instruction: (" << instruction->ToString() << ") is an unsupported operation on accumulation buffer."; result.unsupported_operation = true; } else { instruction = instruction->mutable_operand(0); } break; case HloOpcode::kGetTupleElement: { if (result.tuple_index.has_value()) { result.unsupported_operation = true; } else { result.tuple_index = Cast<HloGetTupleElementInstruction>(instruction)->tuple_index(); instruction = instruction->mutable_operand(0); } break; } case HloOpcode::kDynamicSlice: { if (is_reduce_scatter) { VLOG(4) << "get_origin_tuple_index, instruction: (" << instruction->ToString() << ") is an unsupported operation on accumulation buffer."; result.unsupported_operation = true; } else if (result.dynamic_slice.has_value()) { VLOG(4) << "get_origin_tuple_index, instruction: (" << instruction->ToString() << "), we do not yet support more than 1 dynamic-slices on" << " the accumulation buffer."; result.unsupported_operation = true; } else { result.dynamic_slice = instruction; instruction = instruction->mutable_operand(0); } break; } case HloOpcode::kParameter: { int parameter_number = Cast<HloParameterInstruction>(instruction)->parameter_number(); CHECK_EQ(parameter_number, 0); break; } } if (instruction->opcode() == HloOpcode::kParameter) { break; } } return result; }; auto get_output_tuple_index = [is_reduce_scatter](HloInstruction* instruction, HloComputation* while_body) -> BufferTupleIndex { VLOG(4) << "get_output_tuple_index called on " << instruction->ToString(); BufferTupleIndex result; std::stack<HloInstruction*> to_visit; to_visit.push(instruction); while (!to_visit.empty() && !result.unsupported_operation) { HloInstruction* instruction = to_visit.top(); to_visit.pop(); for (HloInstruction* user : instruction->users()) { switch (user->opcode()) { case HloOpcode::kBitcast: case HloOpcode::kConvert: case HloOpcode::kReshape: case HloOpcode::kGetTupleElement: case HloOpcode::kTranspose: case HloOpcode::kSlice: { if (is_reduce_scatter) { result.unsupported_operation = true; } else { to_visit.push(user); } break; } case HloOpcode::kDynamicUpdateSlice: { if (result.dynamic_update_slice.has_value() || is_reduce_scatter) { result.unsupported_operation = true; } else { result.dynamic_update_slice = user; to_visit.push(user); } break; } case HloOpcode::kTuple: { if (result.tuple_index.has_value()) { result.unsupported_operation = true; } else { result.tuple_index = user->operand_index(instruction); if (while_body->root_instruction() == user) { if (result.returned_from_computation) { result.unsupported_operation = true; } result.returned_from_computation = true; } else { to_visit.push(user); } } break; } default: { VLOG(4) << "get_output_tuple_index, instruction: (" << instruction->ToString() << ") is an unsupported operation on accumulation buffer."; result.unsupported_operation = true; } } if (result.unsupported_operation) { break; } } } return result; }; auto is_buffer_used = [&is_value_replicated_within_replica_group, is_reduce_scatter]( absl::Span<const AccumulationContext> accumulation_contexts, HloComputation* while_body_computation) -> bool { CHECK_EQ(while_body_computation->num_parameters(), 1); HloInstruction* parameter_instruction = while_body_computation->parameter_instruction(0); for (const auto& accumulation : accumulation_contexts) { HloInstruction* accumulation_instruction = accumulation.accumulation_instruction; int64_t tuple_index = accumulation.param_tuple_index; std::stack<HloInstruction*> to_visit; for (HloInstruction* user : parameter_instruction->users()) { if (auto* gte = DynCast<HloGetTupleElementInstruction>(user)) { if (gte->tuple_index() == tuple_index) { to_visit.push(user); } } else { return true; } } while (!to_visit.empty()) { HloInstruction* instruction = to_visit.top(); to_visit.pop(); for (HloInstruction* user : instruction->users()) { VLOG(5) << "is_buffer_used, user: " << user->name(); switch (user->opcode()) { case HloOpcode::kBitcast: case HloOpcode::kConvert: case HloOpcode::kReshape: case HloOpcode::kTranspose: if (is_reduce_scatter) { VLOG(4) << "buffer is used by " << user->ToString() << ", preventing the motion of reduce-scatter."; return true; } to_visit.push(user); break; case HloOpcode::kSelect: { if (((user->operand_index(instruction) == 1 && IsZero(user->operand(2))) || (user->operand_index(instruction) == 2 && IsZero(user->operand(1)))) && is_value_replicated_within_replica_group(*(user->operand(0)), {})) { to_visit.push(user); } else { return true; } break; } case HloOpcode::kAdd: { if (user != accumulation_instruction) { return true; } break; } case HloOpcode::kDynamicSlice: { if (!accumulation.dynamic_slice.has_value() || user != *accumulation.dynamic_slice) { return true; } break; } case HloOpcode::kDynamicUpdateSlice: { if (!accumulation.dynamic_update_slice.has_value() || user != *accumulation.dynamic_update_slice) { return true; } break; } default: { VLOG(4) << "buffer is used by " << user->ToString() << ", preventing the motion of all-reduce."; return true; } } } } } return false; }; auto dus_matches_ds_offsets = [](const HloInstruction& dynamic_slice, const HloInstruction& dynamic_update_slice) -> bool { if (dynamic_slice.operand_count() + 1 != dynamic_update_slice.operand_count()) { return false; } for (int i = 1; i < dynamic_slice.operand_count(); ++i) { if (dynamic_slice.operand(i) != dynamic_update_slice.operand(i + 1)) { return false; } } return true; }; auto dus_indices_are_replicated = [&is_value_replicated_within_replica_group]( const HloInstruction& dynamic_update_slice) -> bool { for (int i = 2; i < dynamic_update_slice.operand_count(); ++i) { if (!is_value_replicated_within_replica_group( *dynamic_update_slice.operand(i), {})) { return false; } } return true; }; std::vector<AccumulationContext> accumulation_contexts; std::stack<HloInstruction*> to_visit; bool is_all_reduce_movable = true; to_visit.push(all_reduce); while (!to_visit.empty() && is_all_reduce_movable) { HloInstruction* instruction = to_visit.top(); to_visit.pop(); for (HloInstruction* user : instruction->users()) { switch (user->opcode()) { case HloOpcode::kConvert: to_visit.push(user); break; case HloOpcode::kBitcast: case HloOpcode::kReshape: case HloOpcode::kGetTupleElement: case HloOpcode::kTranspose: case HloOpcode::kSlice: { if (is_reduce_scatter) { is_all_reduce_movable = false; } else { to_visit.push(user); } break; } case HloOpcode::kSelect: { bool is_select_ok = [&]() { bool operand_1_match = user->operand_index(instruction) == 1 && IsZero(user->operand(2)); bool operand_2_match = user->operand_index(instruction) == 2 && IsZero(user->operand(1)); if (!operand_1_match && !operand_2_match) { return false; } if (!is_reduce_scatter) { return true; } HloInstruction* predicate = user->mutable_operand(0); return GetEffectiveScalar(predicate) != nullptr; }(); if (is_select_ok) { to_visit.push(user); } else { is_all_reduce_movable = false; } break; } case HloOpcode::kAdd: { int64_t buffer_index = 1 - user->operand_index(instruction); HloInstruction* accumulation_buffer = user->mutable_operand(buffer_index); auto origin_buffer_tuple_index = get_origin_tuple_index(accumulation_buffer); if (origin_buffer_tuple_index.unsupported_operation) { is_all_reduce_movable = false; break; } auto output_buffer_tuple_index = get_output_tuple_index(user, while_body); if (!output_buffer_tuple_index.unsupported_operation && output_buffer_tuple_index.returned_from_computation && origin_buffer_tuple_index.tuple_index.has_value() && output_buffer_tuple_index.tuple_index.has_value() && origin_buffer_tuple_index.tuple_index == output_buffer_tuple_index.tuple_index && (origin_buffer_tuple_index.dynamic_slice.has_value() == output_buffer_tuple_index.dynamic_update_slice.has_value()) && (!origin_buffer_tuple_index.dynamic_slice.has_value() || (dus_matches_ds_offsets( **origin_buffer_tuple_index.dynamic_slice, **output_buffer_tuple_index.dynamic_update_slice) && dus_indices_are_replicated( **output_buffer_tuple_index.dynamic_update_slice)))) { accumulation_contexts.push_back(AccumulationContext{ user, accumulation_buffer, *output_buffer_tuple_index.tuple_index, origin_buffer_tuple_index.dynamic_slice, output_buffer_tuple_index.dynamic_update_slice}); } else { is_all_reduce_movable = false; } break; } default: { VLOG(4) << "get_accumulation_contexts, all-reduce result is used " << " by " << user->ToString() << ", not movable."; is_all_reduce_movable = false; } } } } if (is_buffer_used(accumulation_contexts, while_body)) { is_all_reduce_movable = false; } return MovableAllReduceContext{is_all_reduce_movable, accumulation_contexts}; } struct WhileInitContext { HloInstruction* while_init{nullptr}; absl::flat_hash_map<int, HloInstruction*> tuple_index_to_old_buffer; }; WhileInitContext CreateNewWhileInit( HloInstruction* old_while_instruction, const HloInstructionMap<std::vector<AccumulationContext>>& all_reduce_to_accumulations) { HloInstruction* old_while_init = old_while_instruction->mutable_operand(0); HloComputation* while_parent = old_while_instruction->parent(); std::vector<HloInstruction*> new_while_init_elements( old_while_init->operand_count(), nullptr); for (const auto& all_reduce_and_accumulations_pair : all_reduce_to_accumulations) { const std::vector<AccumulationContext>& accumulations = all_reduce_and_accumulations_pair.second; HloInstruction* loop_all_reduce = all_reduce_and_accumulations_pair.first; for (auto& accumulation_context : accumulations) { int64_t tuple_index = accumulation_context.param_tuple_index; HloInstruction* old_buffer = old_while_init->mutable_operand(tuple_index); const Shape& accumulation_shape = loop_all_reduce->opcode() == HloOpcode::kAllReduce ? old_buffer->shape() : loop_all_reduce->operand(0)->shape(); HloInstruction* new_buffer = while_parent->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateFromDimensions( accumulation_shape.element_type(), accumulation_shape.dimensions()))); new_while_init_elements[tuple_index] = new_buffer; } } absl::flat_hash_map<int, HloInstruction*> tuple_index_to_old_buffer; for (int i = 0; i < old_while_init->operand_count(); i++) { if (!new_while_init_elements[i]) { new_while_init_elements[i] = old_while_init->mutable_operand(i); } else { tuple_index_to_old_buffer[i] = old_while_init->mutable_operand(i); } } HloInstruction* new_while_init = while_parent->AddInstruction( HloInstruction::CreateTuple(new_while_init_elements)); return WhileInitContext{new_while_init, tuple_index_to_old_buffer}; } absl::Status ChangeAccumulatorShapesInLoopBodies( HloInstruction* old_while_instruction, const HloInstructionMap<std::vector<AccumulationContext>>& all_reduce_to_accumulations) { HloComputation* body = old_while_instruction->while_body(); HloComputation* cond = old_while_instruction->while_condition(); absl::flat_hash_map<Shape, HloInstruction*> zeros; auto create_zero_of_shape = [&zeros, body](const Shape& shape) { auto it = zeros.find(shape); if (it != zeros.end()) { return it->second; } HloInstruction* zero = body->AddInstruction( HloInstruction::CreateConstant(Literal::CreateFromShape(shape))); zeros[shape] = zero; return zero; }; for (const auto& [loop_reduce_scatter, accumulations] : all_reduce_to_accumulations) { if (loop_reduce_scatter->opcode() != HloOpcode::kReduceScatter) { continue; } const Shape& accumulation_shape = loop_reduce_scatter->operand(0)->shape(); for (auto& accumulation_context : accumulations) { const int64_t tuple_index = accumulation_context.param_tuple_index; HloInstruction* param_body = body->parameter_instruction(0); std::vector<Shape> element_shapes = param_body->shape().tuple_shapes(); element_shapes[tuple_index] = accumulation_shape; *param_body->mutable_shape() = ShapeUtil::MakeTupleShape(element_shapes); for (HloInstruction* user : param_body->users()) { if (user->opcode() != HloOpcode::kGetTupleElement) { continue; } HloGetTupleElementInstruction* gte = Cast<HloGetTupleElementInstruction>(user); if (gte->tuple_index() != tuple_index) { continue; } *gte->mutable_shape() = accumulation_shape; for (HloInstruction* gte_user : gte->users()) { CHECK_EQ(gte_user->opcode(), HloOpcode::kAdd); *gte_user->mutable_shape() = accumulation_shape; } } std::vector<HloInstruction*> reduce_scatter_users = loop_reduce_scatter->users();
#include "xla/service/while_loop_all_reduce_code_motion.h" #include <algorithm> #include <array> #include <iterator> #include <optional> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/hlo_verifier.h" #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" namespace xla { namespace { namespace op = ::xla::testing::opcode_matchers; using ::testing::Ne; using ::testing::NotNull; using ::testing::Property; using ::testing::SizeIs; class WhileLoopAllReduceCodeMotionTest : public HloTestBase { public: template <HloOpcode op> HloInstruction* find_op(HloComputation* computation) { return *std::find_if(computation->instructions().begin(), computation->instructions().end(), HloPredicateIsOp<op>); } }; TEST_F(WhileLoopAllReduceCodeMotionTest, AllReduceAccumulate) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %reduction { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(f32[] %x, f32[] %y) } %while_condition { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 ROOT result = pred[] compare(%gte.0, %gte.1), direction=LT } %while_body { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %gte.3 = f32[1024, 1024] get-tuple-element(%param), index=3 %all-reduce = f32[1024, 1024] all-reduce(f32[1024, 1024] %gte.2), channel_id=1, replica_groups={{0,1,2,3}}, use_global_device_ids=true, to_apply=%reduction %accumulation = f32[1024, 1024] add(f32[1024, 1024] %all-reduce, f32[1024, 1024] %gte.3) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %gte.2, %accumulation) } ENTRY accumulated_all_reduce { %param.0 = s32[] parameter(0) %param.1 = f32[1024, 1024] parameter(1) %constant.0 = s32[] constant(1) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, s32[] %param.0, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) ROOT %while = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloModule)); TF_ASSERT_OK_AND_ASSIGN(bool simplified_loop, WhileLoopAllReduceCodeMotion{}.Run(module.get())); ASSERT_TRUE(simplified_loop); TF_ASSERT_OK( HloVerifier(false, true) .Run(module.get()) .status()); HloComputation* entry = module->entry_computation(); HloInstruction* transformed_while = find_op<HloOpcode::kWhile>(entry); ASSERT_THAT(transformed_while, NotNull()); EXPECT_THAT(transformed_while->while_body()->instructions(), Each(Not(op::AllReduce()))); HloInstruction* accumulation_buffer = transformed_while->mutable_operand(0)->mutable_operand(3); EXPECT_THAT(accumulation_buffer, op::Constant()); HloAllReduceInstruction* moved_all_reduce = DynCast<HloAllReduceInstruction>(find_op<HloOpcode::kAllReduce>(entry)); ASSERT_THAT(moved_all_reduce, NotNull()); EXPECT_THAT(moved_all_reduce->operand(0), op::GetTupleElement()); EXPECT_EQ(DynCast<HloGetTupleElementInstruction>( moved_all_reduce->mutable_operand(0)) ->tuple_index(), 3); EXPECT_THAT(moved_all_reduce, op::ReplicaGroups({{0, 1, 2, 3}})); EXPECT_FALSE(moved_all_reduce->constrain_layout()); EXPECT_TRUE(moved_all_reduce->use_global_device_ids()); HloComputation* reduction_computation = module->GetComputationWithName("reduction"); ASSERT_THAT(reduction_computation, NotNull()); EXPECT_EQ(moved_all_reduce->to_apply(), reduction_computation); } TEST_F(WhileLoopAllReduceCodeMotionTest, ReduceScatterAccumulate) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_reduce_scatter %reduction { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(f32[] %x, f32[] %y) } %while_condition { %param = (s32[], s32[], f32[4096, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 ROOT result = pred[] compare(%gte.0, %gte.1), direction=LT } %while_body { %param = (s32[], s32[], f32[4096, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = f32[4096, 1024] get-tuple-element(%param), index=2 %gte.3 = f32[1024, 1024] get-tuple-element(%param), index=3 %reduce-scatter = f32[1024, 1024] reduce-scatter(f32[4096, 1024] %gte.2), channel_id=1, replica_groups={{0,1,2,3}}, use_global_device_ids=true, to_apply=%reduction, dimensions={0} %accumulation = f32[1024, 1024] add(f32[1024, 1024] %reduce-scatter, f32[1024, 1024] %gte.3) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], f32[4096, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %gte.2, %accumulation) } ENTRY accumulated_all_reduce { %param.0 = s32[] parameter(0) %param.1 = f32[4096, 1024] parameter(1) %constant.0 = s32[] constant(1) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], s32[], f32[4096, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, s32[] %param.0, f32[4096, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) ROOT %while = (s32[], s32[], f32[4096, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloModule)); TF_ASSERT_OK_AND_ASSIGN( bool simplified_loop, WhileLoopAllReduceCodeMotion{true}.Run( module.get())); ASSERT_TRUE(simplified_loop); TF_ASSERT_OK( HloVerifier(false, true) .Run(module.get()) .status()); HloComputation* entry = module->entry_computation(); HloInstruction* transformed_while = find_op<HloOpcode::kWhile>(entry); ASSERT_THAT(transformed_while, NotNull()); EXPECT_THAT(transformed_while->while_body()->instructions(), Each(Not(op::ReduceScatter()))); HloInstruction* accumulation_buffer = transformed_while->mutable_operand(0)->mutable_operand(3); EXPECT_THAT(accumulation_buffer, op::Constant()); EXPECT_THAT(accumulation_buffer, op::Shape("f32[4096, 1024]")); auto* moved_reduce_scatter = DynCast<HloReduceScatterInstruction>( find_op<HloOpcode::kReduceScatter>(entry)); ASSERT_THAT(moved_reduce_scatter, NotNull()); EXPECT_THAT(moved_reduce_scatter->operand(0), op::GetTupleElement()); EXPECT_EQ(DynCast<HloGetTupleElementInstruction>( moved_reduce_scatter->mutable_operand(0)) ->tuple_index(), 3); EXPECT_THAT(moved_reduce_scatter, op::ReplicaGroups({{0, 1, 2, 3}})); EXPECT_FALSE(moved_reduce_scatter->constrain_layout()); EXPECT_TRUE(moved_reduce_scatter->use_global_device_ids()); HloComputation* reduction_computation = module->GetComputationWithName("reduction"); ASSERT_THAT(reduction_computation, NotNull()); EXPECT_EQ(moved_reduce_scatter->to_apply(), reduction_computation); } TEST_F(WhileLoopAllReduceCodeMotionTest, ReduceScatterAccumulateDisabledByDefault) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_reduce_scatter %reduction { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(f32[] %x, f32[] %y) } %while_condition { %param = (s32[], s32[], f32[4096, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 ROOT result = pred[] compare(%gte.0, %gte.1), direction=LT } %while_body { %param = (s32[], s32[], f32[4096, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = f32[4096, 1024] get-tuple-element(%param), index=2 %gte.3 = f32[1024, 1024] get-tuple-element(%param), index=3 %reduce-scatter = f32[1024, 1024] reduce-scatter(f32[4096, 1024] %gte.2), channel_id=1, replica_groups={{0,1,2,3}}, use_global_device_ids=true, to_apply=%reduction, dimensions={0} %accumulation = f32[1024, 1024] add(f32[1024, 1024] %reduce-scatter, f32[1024, 1024] %gte.3) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], f32[4096, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %gte.2, %accumulation) } ENTRY accumulated_all_reduce { %param.0 = s32[] parameter(0) %param.1 = f32[4096, 1024] parameter(1) %constant.0 = s32[] constant(1) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], s32[], f32[4096, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, s32[] %param.0, f32[4096, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) ROOT %while = (s32[], s32[], f32[4096, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloModule)); TF_ASSERT_OK_AND_ASSIGN(bool simplified_loop, WhileLoopAllReduceCodeMotion{}.Run(module.get())); EXPECT_FALSE(simplified_loop); } TEST_F(WhileLoopAllReduceCodeMotionTest, AllReduceSliceAccumulate) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %reduction { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(f32[] %x, f32[] %y) } %while_condition { %param = (s32[], s32[], f32[3, 1024, 1024], f32[1024, 1024], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 ROOT result = pred[] compare(%gte.0, %gte.1), direction=LT } %while_body { %param = (s32[], s32[], f32[3, 1024, 1024], f32[1024, 1024], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = f32[3, 1024, 1024] get-tuple-element(%param), index=2 %gte.3 = f32[1024, 1024] get-tuple-element(%param), index=3 %gte.4 = f32[1024, 1024] get-tuple-element(%param), index=4 %gte.5 = f32[1024, 1024] get-tuple-element(%param), index=5 %all-reduce = f32[3, 1024, 1024] all-reduce(f32[3, 1024, 1024] %gte.2), channel_id=1, replica_groups={{0,1,2,3}}, use_global_device_ids=true, to_apply=%reduction %slice.0 = f32[1, 1024, 1024] slice(f32[3, 1024, 1024] %all-reduce), slice={[0:1], [0:1024], [0:1024]} %reshape.0 = f32[1024, 1024] reshape(f32[1, 1024, 1024] %slice.0) %slice.1 = f32[1, 1024, 1024] slice(f32[3, 1024, 1024] %all-reduce), slice={[1:2], [0:1024], [0:1024]} %reshape.1 = f32[1024, 1024] reshape(f32[1, 1024, 1024] %slice.1) %slice.2 = f32[1, 1024, 1024] slice(f32[3, 1024, 1024] %all-reduce), slice={[2:3], [0:1024], [0:1024]} %reshape.2 = f32[1024, 1024] reshape(f32[1, 1024, 1024] %slice.2) %accumulation.0 = f32[1024, 1024] add(f32[1024, 1024] %reshape.0, f32[1024, 1024] %gte.3) %accumulation.1 = f32[1024, 1024] add(f32[1024, 1024] %reshape.1, f32[1024, 1024] %gte.4) %accumulation.2 = f32[1024, 1024] add(f32[1024, 1024] %reshape.2, f32[1024, 1024] %gte.5) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], f32[3, 1024, 1024], f32[1024, 1024], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %gte.2, %accumulation.0, %accumulation.1, %accumulation.2) } ENTRY accumulated_all_reduce { %param.0 = s32[] parameter(0) %param.1 = f32[3, 1024, 1024] parameter(1) %constant.0 = s32[] constant(1) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer.0 = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %accumulation_buffer.1 = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %accumulation_buffer.2 = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], s32[], f32[3, 1024, 1024], f32[1024, 1024], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, s32[] %param.0, f32[3, 1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer.0, f32[1024, 1024] %accumulation_buffer.1, f32[1024, 1024] %accumulation_buffer.2) ROOT %while = (s32[], s32[], f32[3, 1024, 1024], f32[1024, 1024], f32[1024, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloModule)); TF_ASSERT_OK_AND_ASSIGN(bool simplified_loop, WhileLoopAllReduceCodeMotion{}.Run(module.get())); ASSERT_TRUE(simplified_loop); TF_ASSERT_OK( HloVerifier(false, true) .Run(module.get()) .status()); HloComputation* entry = module->entry_computation(); HloInstruction* transformed_while = find_op<HloOpcode::kWhile>(entry); ASSERT_THAT(transformed_while, NotNull()); EXPECT_THAT(transformed_while->while_body()->instructions(), Each(Not(op::AllReduce()))); std::vector<HloInstruction*> hoisted_all_reduces; absl::c_copy_if(module->entry_computation()->instructions(), std::back_inserter(hoisted_all_reduces), HloPredicateIsOp<HloOpcode::kAllReduce>); EXPECT_THAT(hoisted_all_reduces, SizeIs(3)); ASSERT_THAT( hoisted_all_reduces, Each(Pointee(Property(&HloInstruction::channel_id, Ne(std::nullopt))))); absl::flat_hash_set<int> unique_channel_ids = { hoisted_all_reduces[0]->channel_id().value(), hoisted_all_reduces[1]->channel_id().value(), hoisted_all_reduces[2]->channel_id().value()}; EXPECT_THAT(unique_channel_ids, SizeIs(3)); } TEST_F(WhileLoopAllReduceCodeMotionTest, AllReduceAccumulateUse) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %reduction { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(f32[] %x, f32[] %y) } %while_condition { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 ROOT result = pred[] compare(%gte.0, %gte.1), direction=LT } %while_body { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %gte.3 = f32[1024, 1024] get-tuple-element(%param), index=3 %all-reduce = f32[1024, 1024] all-reduce(f32[1024, 1024] %gte.2), channel_id=1, replica_groups={{0,1,2,3}}, use_global_device_ids=true, to_apply=%reduction %accumulation = f32[1024, 1024] add(f32[1024, 1024] %all-reduce, f32[1024, 1024] %gte.3) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %gte.2, %accumulation) } ENTRY accumulated_all_reduce { %param.0 = s32[] parameter(0) %param.1 = f32[1024, 1024] parameter(1) %constant.0 = s32[] constant(1) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, s32[] %param.0, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) %while = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body %gte_while = f32[1024, 1024] get-tuple-element((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %while), index=3 ROOT %multiply = f32[1024, 1024] multiply(f32[1024, 1024] %gte_while, f32[1024, 1024] %param.1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloModule)); TF_ASSERT_OK_AND_ASSIGN(bool simplified_loop, WhileLoopAllReduceCodeMotion{}.Run(module.get())); ASSERT_TRUE(simplified_loop); TF_ASSERT_OK( HloVerifier(false, true) .Run(module.get()) .status()); HloComputation* entry = module->entry_computation(); HloInstruction* transformed_while = find_op<HloOpcode::kWhile>(entry); ASSERT_THAT(transformed_while, NotNull()); EXPECT_THAT(transformed_while->while_body()->instructions(), Each(Not(op::AllReduce()))); HloInstruction* new_root = module->entry_computation()->root_instruction(); ASSERT_THAT(new_root, op::Multiply()); ASSERT_THAT(new_root->operand(0), op::GetTupleElement()); ASSERT_THAT(new_root->operand(0)->operand(0), op::Tuple()); EXPECT_THAT(new_root->operand(0)->operand(0)->operand(3), op::Add()); } TEST_F(WhileLoopAllReduceCodeMotionTest, RepeatedlyAccumulatedAllReduce) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %reduction { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(f32[] %x, f32[] %y) } %while_condition { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 ROOT result = pred[] compare(%gte.0, %gte.1), direction=LT } %while_body { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %gte.3 = f32[1024, 1024] get-tuple-element(%param), index=3 %all-reduce = f32[1024, 1024] all-reduce(f32[1024, 1024] %gte.2), channel_id=1, replica_groups={{0,1,2,3}}, use_global_device_ids=true, to_apply=%reduction %accumulation = f32[1024, 1024] add(f32[1024, 1024] %all-reduce, f32[1024, 1024] %gte.3) %add.0 = f32[1024, 1024] add(f32[1024, 1024] %all-reduce, f32[1024, 1024] %accumulation) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %gte.2, %add.0) } ENTRY accumulated_all_reduce { %param.0 = s32[] parameter(0) %param.1 = f32[1024, 1024] parameter(1) %constant.0 = s32[] constant(1) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, s32[] %param.0, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) ROOT %while = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloModule)); TF_ASSERT_OK_AND_ASSIGN(bool simplified_loop, WhileLoopAllReduceCodeMotion{}.Run(module.get())); EXPECT_FALSE(simplified_loop); } TEST_F(WhileLoopAllReduceCodeMotionTest, TypeCastAllReduceAccumulate) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %reduction { %x = bf16[] parameter(0) %y = bf16[] parameter(1) ROOT %add = bf16[] add(bf16[] %x, bf16[] %y) } %while_condition { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 ROOT result = pred[] compare(%gte.0, %gte.1), direction=LT } %while_body { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %gte.3 = f32[1024, 1024] get-tuple-element(%param), index=3 %convert.0 = bf16[1024, 1024] convert(f32[1024, 1024] %gte.2) %all-reduce = bf16[1024, 1024] all-reduce(bf16[1024, 1024] %convert.0), channel_id=1, replica_groups={{0,1,2,3}}, use_global_device_ids=true, to_apply=%reduction %convert.1 = f32[1024, 1024] convert(bf16[1024, 1024] %all-reduce) %accumulation = f32[1024, 1024] add(f32[1024, 1024] %convert.1, f32[1024, 1024] %gte.3) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %gte.2, %accumulation) } ENTRY accumulated_all_reduce { %param.0 = s32[] parameter(0) %param.1 = f32[1024, 1024] parameter(1) %constant.0 = s32[] constant(1) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, s32[] %param.0, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) ROOT %while = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloModule)); TF_ASSERT_OK_AND_ASSIGN(bool simplified_loop, WhileLoopAllReduceCodeMotion{}.Run(module.get())); ASSERT_TRUE(simplified_loop); TF_ASSERT_OK( HloVerifier(false, true) .Run(module.get()) .status()); HloComputation* entry = module->entry_computation(); HloInstruction* transformed_while = find_op<HloOpcode::kWhile>(entry); ASSERT_THAT(transformed_while, NotNull()); EXPECT_THAT(transformed_while->while_body()->instructions(), Each(Not(op::AllReduce()))); HloInstruction* accumulation_buffer = transformed_while->mutable_operand(0)->mutable_operand(3); EXPECT_THAT(accumulation_buffer, op::Constant()); HloAllReduceInstruction* moved_all_reduce = DynCast<HloAllReduceInstruction>(find_op<HloOpcode::kAllReduce>(entry)); EXPECT_THAT(moved_all_reduce, op::Shape("bf16[1024, 1024]")); HloInstruction* add_delta_to_old_buffer = find_op<HloOpcode::kAdd>(entry); ASSERT_THAT(add_delta_to_old_buffer, NotNull()); EXPECT_THAT(add_delta_to_old_buffer, op::Shape("f32[1024, 1024]")); EXPECT_THAT(add_delta_to_old_buffer->operand(0), op::Shape("f32[1024, 1024]")); EXPECT_THAT(add_delta_to_old_buffer->operand(1), op::Shape("f32[1024, 1024]")); } TEST_F(WhileLoopAllReduceCodeMotionTest, SelectAllReduceAccumulate) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %reduction { %x = bf16[] parameter(0) %y = bf16[] parameter(1) ROOT %add = bf16[] add(bf16[] %x, bf16[] %y) } %while_condition { %param = (s32[], s32[], f32[1024,1024], f32[1024,1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 ROOT result = pred[] compare(%gte.0, %gte.1), direction=LT } %while_body { %param = (s32[], s32[], f32[1024,1024], f32[1024,1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = f32[1024,1024] get-tuple-element(%param), index=2 %gte.3 = f32[1024,1024] get-tuple-element(%param), index=3 %all-reduce = f32[1024,1024] all-reduce(%gte.2), channel_id=1, replica_groups={{0,1,2,3}}, use_global_device_ids=true, to_apply=%reduction %const.0 = f32[] constant(0) %zeros = f32[1024,1024] broadcast(%const.0), dimensions={} %predicates = pred[1024,1024] custom-call(), custom_call_target="something" %select = f32[1024,1024] select(%predicates, %zeros, %all-reduce) %accumulation = f32[1024,1024] add(%select, %gte.3) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], f32[1024,1024], f32[1024,1024]) tuple(%increment_iteration, %gte.1, %gte.2, %accumulation) } ENTRY accumulated_all_reduce { %param.0 = s32[] parameter(0) %param.1 = f32[1024,1024] parameter(1) %constant.0 = s32[] constant(1) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024,1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], s32[], f32[1024, 1024], f32[1024,1024]) tuple(s32[] %constant.0, s32[] %param.0, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) ROOT %while = (s32[], s32[], f32[1024, 1024], f32[1024,1024]) while(%while_init), condition=%while_condition, body=%while_body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloModule)); TF_ASSERT_OK_AND_ASSIGN(bool simplified_loop, WhileLoopAllReduceCodeMotion{}.Run(module.get())); ASSERT_TRUE(simplified_loop); TF_ASSERT_OK( HloVerifier(false, true) .Run(module.get()) .status()); HloComputation* entry = module->entry_computation(); HloInstruction* transformed_while = find_op<HloOpcode::kWhile>(entry); ASSERT_THAT(transformed_while, NotNull()); EXPECT_THAT(transformed_while->while_body()->instructions(), Each(Not(op::AllReduce()))); HloInstruction* accumulation_buffer = transformed_while->mutable_operand(0)->mutable_operand(3); EXPECT_THAT(accumulation_buffer, op::Constant()); HloAllReduceInstruction* moved_all_reduce = DynCast<HloAllReduceInstruction>(find_op<HloOpcode::kAllReduce>(entry)); EXPECT_THAT(moved_all_reduce, op::Shape("f32[1024,1024]")); HloInstruction* add_delta_to_old_buffer = find_op<HloOpcode::kAdd>(entry); ASSERT_THAT(add_delta_to_old_buffer, NotNull()); EXPECT_THAT(add_delta_to_old_buffer, op::Shape("f32[1024, 1024]")); EXPECT_THAT(add_delta_to_old_buffer->operand(0), op::Shape("f32[1024, 1024]")); EXPECT_THAT(add_delta_to_old_buffer->operand(1), op::Shape("f32[1024, 1024]")); } TEST_F(WhileLoopAllReduceCodeMotionTest, SelectReduceScatterAccumulate) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_reduce_scatter %reduction { %x = bf16[] parameter(0) %y = bf16[] parameter(1) ROOT %add = bf16[] add(bf16[] %x, bf16[] %y) } %while_condition { %param = (s32[], s32[], f32[1024,4096], f32[1024,1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 ROOT result = pred[] compare(%gte.0, %gte.1), direction=LT } %while_body { %param = (s32[], s32[], f32[1024,4096], f32[1024,1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = f32[1024,4096] get-tuple-element(%param), index=2 %gte.3 = f32[1024,1024] get-tuple-element(%param), index=3 %reduce-scatter = f32[1024,1024] reduce-scatter(%gte.2), channel_id=1, replica_groups={{0,1,2,3}}, use_global_device_ids=true, to_apply=%reduction, dimensions={1} %const.0 = f32[] constant(0) %zeros = f32[1024,1024] broadcast(%const.0), dimensions={} %scalarp = pred[] custom-call(), custom_call_target="something" %predicates = pred[1024,1024] broadcast(%scalarp), dimensions={} %select = f32[1024,1024] select(%predicates, %zeros, %reduce-scatter) %accumulation = f32[1024,1024] add(%select, %gte.3) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], f32[1024,4096], f32[1024,1024]) tuple(%increment_iteration, %gte.1, %gte.2, %accumulation) } ENTRY accumulated_all_reduce { %param.0 = s32[] parameter(0) %param.1 = f32[1024,4096] parameter(1) %constant.0 = s32[] constant(1) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024,1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], s32[], f32[1024, 4096], f32[1024,1024]) tuple(s32[] %constant.0, s32[] %param.0, f32[1024, 4096] %param.1, f32[1024, 1024] %accumulation_buffer) ROOT %while = (s32[], s32[], f32[1024, 4096], f32[1024,1024]) while(%while_init), condition=%while_condition, body=%while_body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloModule)); TF_ASSERT_OK_AND_ASSIGN( bool simplified_loop, WhileLoopAllReduceCodeMotion{true}.Run( module.get())); ASSERT_TRUE(simplified_loop); TF_ASSERT_OK( HloVerifier(false, true) .Run(module.get()) .status()); HloComputation* entry = module->entry_computation(); HloInstruction* transformed_while = find_op<HloOpcode::kWhile>(entry); ASSERT_THAT(transformed_while, NotNull()); EXPECT_THAT(transformed_while->while_body()->instructions(), Each(Not(op::ReduceScatter()))); HloInstruction* accumulation_b
1,882
cpp
tensorflow/tensorflow
hlo_dataflow_analysis
third_party/xla/xla/service/hlo_dataflow_analysis.cc
third_party/xla/xla/service/hlo_dataflow_analysis_test.cc
#ifndef XLA_SERVICE_HLO_DATAFLOW_ANALYSIS_H_ #define XLA_SERVICE_HLO_DATAFLOW_ANALYSIS_H_ #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/hash/hash.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/call_graph.h" #include "xla/service/hlo_phi_graph.h" #include "xla/service/hlo_value.h" #include "xla/shape_util.h" #include "xla/xla_data.pb.h" namespace xla { struct HloOperandIndex { using MyTuple = std::tuple<int64_t, const ShapeIndex&>; template <typename H> friend H AbslHashValue(H h, const HloOperandIndex& hlo_operand_index) { return H::combine(std::move(h), hlo_operand_index.ToTuple()); } friend bool operator==(const HloOperandIndex& lhs, const HloOperandIndex& rhs) { return lhs.ToTuple() == rhs.ToTuple(); } bool operator!=(const HloOperandIndex& other) const { return !(*this == other); } MyTuple ToTuple() const { return std::make_tuple(operand_number, std::cref(operand_index)); } int64_t operand_number; ShapeIndex operand_index; }; class HloDataflowAnalysis { public: using CanShareBuffer = std::function<std::optional<bool>( const HloInstruction* instr, const HloInstruction* operand, const ShapeIndex& user_index)>; struct ForwardedOperand { int64_t operand_number; ShapeIndex operand_index; }; using ForwardsValue = std::function<std::optional<ForwardedOperand>( const HloInstruction* instr, const ShapeIndex& index)>; static absl::StatusOr<std::unique_ptr<HloDataflowAnalysis>> Run( const HloModule& module, bool ssa_form = false, bool bitcast_defines_value = false, const CanShareBuffer& can_share_buffer = nullptr, const ForwardsValue& forwards_value = nullptr, absl::flat_hash_set<absl::string_view> execution_threads = {}); bool ValueIsDefinedAt(const HloInstruction* instruction, const ShapeIndex& index = {}) const; const HloValue& GetValueDefinedAt(const HloInstruction* instruction, const ShapeIndex& index = {}) const; HloValue& GetValueDefinedAt(const HloInstruction* instruction, const ShapeIndex& index = {}); const InstructionValueSet& GetInstructionValueSet( const HloInstruction* instruction) const; InstructionValueSet& GetInstructionValueSet( const HloInstruction* instruction); HloValueSet GetFlattenedValueSet(const HloInstruction* instruction) const; const HloValueSet& GetValueSet(const HloInstruction* instruction, const ShapeIndex& index = {}) const; const HloValueSet& GetValueSet(const HloPosition& position) const; HloValueSet& GetValueSet(const HloPosition& position); HloValueSet& GetValueSet(const HloInstruction* instruction, const ShapeIndex& index = {}); const HloValue& GetUniqueValueAt(const HloInstruction* instruction, const ShapeIndex& index = {}) const { return GetValueSet(instruction, index).GetUniqueValue(); } HloValue& GetUniqueValueAt(const HloInstruction* instruction, const ShapeIndex& index = {}) { return GetValue(GetValueSet(instruction, index).GetUniqueValue().id()); } const HloValue& GetValue(HloValue::Id value_id) const; HloValue& GetValue(HloValue::Id value_id); int64_t value_count() const { return values_.size(); } const std::vector<HloValue*>& values() const { return values_vector_; } const CallGraph& call_graph() const { return *call_graph_; } std::string ToString() const; bool DoesNotUseOperandBuffer(const HloInstruction* operand, const ShapeIndex& index, const HloInstruction* user) const; bool CanShareOperandBufferWithUser(HloInstruction* operand, const ShapeIndex& operand_index, HloInstruction* user, const ShapeIndex& user_index) const; const HloModule& module() const { return module_; } static bool IsInPlaceOperation(HloOpcode opcode); static bool IsAsynchronousOperationStart(HloOpcode opcode); static bool IsAsynchronousOperationDone(HloOpcode opcode); static std::vector<std::pair<HloOperandIndex, ShapeIndex>> GetInPlaceInputOutputPairs(const HloInstruction* instruction); absl::Status Verify() const; private: static bool AreTransitiveUsesElementwiseOrTuple(const HloInstruction* inst); HloDataflowAnalysis(const HloModule& module, bool ssa_form, bool bitcast_defines_value, const CanShareBuffer& can_share_buffer, const ForwardsValue& forwards_value, absl::flat_hash_set<absl::string_view> execution_threads); void OptimizePhiValues(); HloValue* NewHloValue(HloInstruction* instruction, const ShapeIndex& index, bool is_phi); void MarkValueForDeletion(HloValue::Id value_id); void DeleteMarkedValues(); absl::Status InitializeInstructionValueSets(); bool UpdateInstructionValueSet(HloInstruction* instruction); bool UpdateBitcastValueSet(HloInstruction* bitcast); bool UpdateCallValueSet(HloInstruction* call); bool UpdateConditionalValueSet(HloInstruction* conditional); bool UpdateCopyValueSet(HloInstruction* copy); bool UpdateCustomCallValueSet(HloInstruction* custom_call); bool UpdateDomainValueSet(HloInstruction* domain); bool UpdateGetTupleElementValueSet(HloInstruction* gte); bool UpdateParameterValueSet(HloInstruction* parameter); bool UpdateAsyncStartValueSet(HloInstruction* async_start); bool UpdateAsyncUpdateValueSet(HloInstruction* async_update); bool UpdateAsyncDoneValueSet(HloInstruction* async_done); bool UpdateCopyStartValueSet(HloInstruction* copy_start); bool UpdateCopyDoneValueSet(HloInstruction* copy_done); bool UpdateOptimizationBarrierValueSet(HloInstruction* barrier); bool UpdateRecvDoneValueSet(HloInstruction* recv_done); bool UpdateSendValueSet(HloInstruction* send); bool UpdateTupleValueSet(HloInstruction* tuple); bool UpdateWhileValueSet(HloInstruction* xla_while); bool UpdateAddDependencyValueSet(HloInstruction* add_dependency); bool UpdateAllGatherStartValueSet(HloInstruction* all_gather_start); bool UpdateAllGatherDoneValueSet(HloInstruction* all_gather_done); bool UpdateAllReduceDoneValueSet(HloInstruction* all_reduce_done); bool UpdateCollectivePermuteStartValueSet( HloInstruction* collective_permute_start); bool UpdateCollectivePermuteDoneValueSet( HloInstruction* collective_permute_done); void Propagate(); bool Phi(HloInstruction* instruction, absl::Span<const InstructionValueSet* const> inputs); void UpdatePositionsOfValuesAt( HloInstruction* instruction, const InstructionValueSet& new_value_set, const InstructionValueSet* prev_value_set = nullptr); const HloModule& module_; const absl::flat_hash_set<absl::string_view> execution_threads_; const bool ssa_form_; const bool bitcast_defines_value_; std::unique_ptr<CallGraph> call_graph_; absl::flat_hash_map<HloValue::Id, std::unique_ptr<HloValue>> values_; absl::flat_hash_map<const HloInstruction*, std::unique_ptr<InstructionValueSet>> value_sets_; std::vector<HloValue::Id> value_ids_to_delete_; std::vector<HloValue*> values_vector_; HloValue::Id next_value_id_ = 0; PhiGraph phi_graph_; CanShareBuffer can_share_buffer_ = nullptr; ForwardsValue forwards_value_ = nullptr; }; std::pair<const HloInstruction*, ShapeIndex> FollowTupleIndirection( const HloInstruction* instruction, ShapeIndex operand_index); } #endif #include "xla/service/hlo_dataflow_analysis.h" #include <algorithm> #include <memory> #include <optional> #include <queue> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/attributes.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/functional/function_ref.h" #include "absl/log/check.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/map_util.h" #include "xla/shape_util.h" #include "xla/types.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace xla { namespace { int64_t CalculatePostOrderScheduleHelper( const HloComputation* comp, int64_t start_ordinal, absl::flat_hash_map<HloInstruction*, int64_t>* ordinal_map) { int64_t ordinal = start_ordinal; for (HloInstruction* instruction : comp->MakeInstructionPostOrder()) { if (instruction->opcode() == HloOpcode::kCall || instruction->opcode() == HloOpcode::kConditional) { for (const HloComputation* called_computation : instruction->called_computations()) { ordinal = CalculatePostOrderScheduleHelper(called_computation, ordinal, ordinal_map); } } if (instruction->opcode() == HloOpcode::kWhile) { ordinal = CalculatePostOrderScheduleHelper(instruction->while_condition(), ordinal, ordinal_map); ordinal = CalculatePostOrderScheduleHelper(instruction->while_body(), ordinal, ordinal_map); } ordinal_map->insert({instruction, ordinal++}); } return ordinal; } absl::flat_hash_map<HloInstruction*, int64_t> CalculatePostOrderSchedule( const HloModule& module) { absl::flat_hash_map<HloInstruction*, int64_t> map; CalculatePostOrderScheduleHelper(module.entry_computation(), 0, &map); return map; } } using absl::StrAppend; using absl::StrCat; HloDataflowAnalysis::HloDataflowAnalysis( const HloModule& module, bool ssa_form, bool bitcast_defines_value, const CanShareBuffer& can_share_buffer, const ForwardsValue& forwards_value, absl::flat_hash_set<absl::string_view> execution_threads) : module_(module), execution_threads_(std::move(execution_threads)), ssa_form_(ssa_form), bitcast_defines_value_(bitcast_defines_value), call_graph_(CallGraph::Build(&module)), can_share_buffer_(can_share_buffer), forwards_value_(forwards_value) {} bool HloDataflowAnalysis::AreTransitiveUsesElementwiseOrTuple( const HloInstruction* inst) { absl::flat_hash_set<const HloInstruction*> visited; absl::InlinedVector<const HloInstruction*, 4> stack; stack.push_back(inst); while (!stack.empty()) { const HloInstruction* current = stack.back(); stack.pop_back(); visited.insert(current); for (const HloInstruction* user : current->users()) { for (const int64_t use_index : user->OperandIndices(current)) { if (!user->IsElementwiseOnOperand(use_index) && user->opcode() != HloOpcode::kTuple) { return false; } } if (!visited.contains(user)) { stack.push_back(user); } } } return true; } namespace { bool Is1dSliceWithoutStrides(const HloInstruction* instr) { return instr->opcode() == HloOpcode::kSlice && 1 == instr->slice_starts().size() && 1 == instr->slice_limits().size() && 1 == instr->slice_strides().size() && 1 == instr->slice_strides().at(0); } bool IsSliceInputFusion(const HloInstruction& unnested_hlo) { if (!unnested_hlo.IsInputFusion()) { return false; } const HloInstruction* root = unnested_hlo.fused_expression_root(); if (root->opcode() != HloOpcode::kTuple) { return false; } return absl::c_all_of(root->operands(), [](const HloInstruction* instr) { return Is1dSliceWithoutStrides(instr); }); } struct ConcatUsageInfo { const HloInstruction* prev_concat; int64_t concat_opnd_idx; const HloInstruction* slice_to_recover_opnd; }; std::optional<ConcatUsageInfo> ConcatIsEffectivelyElementwise( const HloInstruction& concat, const HloInstruction& operand, const ConcatUsageInfo& info) { std::vector<HloInstruction*> users = concat.users(); if (!absl::c_all_of(users, Is1dSliceWithoutStrides)) { return std::optional<ConcatUsageInfo>(); } if (users.size() != concat.operand_count() || concat.operand_count() != concat.unique_operands().size()) { return std::optional<ConcatUsageInfo>(); } absl::c_sort(users, [](const HloInstruction* a, const HloInstruction* b) { return a->slice_starts().at(0) < b->slice_starts().at(0); }); int64_t prev_limit = 0; for (int64_t i = 0; i < users.size(); ++i) { const HloInstruction* u = users[i]; int64_t slice_size = u->slice_limits().at(0) - u->slice_starts().at(0); if (u->slice_starts().at(0) != prev_limit || slice_size != ShapeUtil::ElementsIn(concat.operand(i)->shape())) { return std::optional<ConcatUsageInfo>(); } prev_limit = u->slice_limits().at(0); } int64_t operand_idx = concat.operand_index(&operand); if (info.prev_concat != nullptr) { bool is_concat_identical = info.prev_concat->Identical( concat, [](const HloInstruction*, const HloInstruction*) { return true; }); if (!is_concat_identical || info.concat_opnd_idx != operand_idx) { return std::optional<ConcatUsageInfo>(); } } const HloInstruction* slice_to_recover_opnd = users.at(operand_idx); return std::optional<ConcatUsageInfo>( ConcatUsageInfo{&concat, operand_idx, slice_to_recover_opnd}); } bool AreTransitiveUsesEffectivelyElementwise(const HloInstruction* param, const HloInstruction* root_tuple, const ShapeIndex& out_shape_idx) { CHECK_EQ(root_tuple->opcode(), HloOpcode::kTuple); CHECK_EQ(out_shape_idx.size(), 1); absl::flat_hash_set<const HloInstruction*> visited; absl::InlinedVector<const HloInstruction*, 4> stack; stack.push_back(param); ConcatUsageInfo concat_usage_info{nullptr, 0, nullptr}; bool is_output_reachable = false; while (!stack.empty()) { const HloInstruction* current = stack.back(); stack.pop_back(); visited.insert(current); for (const HloInstruction* user : current->users()) { VLOG(3) << "Visiting: " << user->ToString(); switch (user->opcode()) { case HloOpcode::kTuple: if (user == root_tuple && current == root_tuple->operand(out_shape_idx.back())) { is_output_reachable = true; } break; case HloOpcode::kReshape: if (!ShapeUtil::ReshapeIsBitcast(current->shape(), user->shape())) { return false; } break; case HloOpcode::kConcatenate: { std::optional<ConcatUsageInfo> optional_concat_info = ConcatIsEffectivelyElementwise(*user, *current, concat_usage_info); if (!optional_concat_info) { return false; } concat_usage_info = *optional_concat_info; CHECK(!visited.contains(concat_usage_info.slice_to_recover_opnd)); stack.push_back(concat_usage_info.slice_to_recover_opnd); continue; } default: for (const int64_t use_index : user->OperandIndices(current)) { if (!user->IsElementwiseOnOperand(use_index)) { return false; } } if (!LayoutUtil::Equal(current->shape().layout(), user->shape().layout())) { return false; } break; } if (!visited.contains(user)) { stack.push_back(user); } } } return is_output_reachable; } } bool HloDataflowAnalysis::ValueIsDefinedAt(const HloInstruction* instruction, const ShapeIndex& index) const { const HloValueSet& value_set = GetValueSet(instruction, index); if (value_set.values().size() != 1) { return false; } return value_set.GetUniqueValue().defining_instruction() == instruction; } const HloValue& HloDataflowAnalysis::GetValueDefinedAt( const HloInstruction* instruction, const ShapeIndex& index) const { CHECK(ValueIsDefinedAt(instruction, index)) << instruction->ToString(); return GetUniqueValueAt(instruction, index); } HloValue& HloDataflowAnalysis::GetValueDefinedAt( const HloInstruction* instruction, const ShapeIndex& index) { CHECK(ValueIsDefinedAt(instruction, index)); return GetUniqueValueAt(instruction, index); } HloValue* HloDataflowAnalysis::NewHloValue(HloInstruction* instruction, const ShapeIndex& index, bool is_phi) { const int64_t value_id = next_value_id_++; auto result = values_.insert({value_id, std::make_unique<HloValue>( value_id, instruction, index, is_phi)}); CHECK(result.second); VLOG(4) << "NewHloValue = " << result.first->second->ToShortString(); return result.first->second.get(); } void HloDataflowAnalysis::MarkValueForDeletion(HloValue::Id value_id) { const HloValue& value = GetValue(value_id); VLOG(4) << "MarkValueForDeletion(" << value.ToShortString() << ")"; value_ids_to_delete_.push_back(value_id); } void HloDataflowAnalysis::DeleteMarkedValues() { absl::flat_hash_set<HloValue::Id> id_set(value_ids_to_delete_.begin(), value_ids_to_delete_.end()); #ifndef NDEBUG for (const auto& pair : value_sets_) { const HloInstruction* instruction = pair.first; const InstructionValueSet& instruction_value_set = *pair.second; for (const auto& index_value_set : instruction_value_set) { const HloValueSet& value_set = index_value_set.second; for (const HloValue* value : value_set.values()) { DCHECK(!ContainsKey(id_set, value->id())) << "Value " << value->ToShortString() << " marked for deletion, but still exists in value set for " "instruction " << instruction->name(); } } } #endif for (HloValue::Id value_id : id_set) { values_.erase(value_id); } value_ids_to_delete_.clear(); } std::string HloDataflowAnalysis::ToString() const { std::string out = StrCat("HloDataflowAnalysis, module ", module_.name(), "\n"); StrAppend(&out, " Instruction value sets:\n"); for (const HloComputation* computation : module_.computations()) { if (!HloInstruction::IsThreadIncluded(computation->execution_thread(),
#include "xla/service/hlo_dataflow_analysis.h" #include <cstdint> #include <initializer_list> #include <memory> #include <string> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/literal_util.h" #include "xla/service/flatten_call_graph.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_ordering.h" #include "xla/service/hlo_value.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace { using ::testing::ElementsAre; using ::testing::IsEmpty; using ::testing::UnorderedElementsAre; class HloDataflowAnalysisTest : public HloTestBase, public ::testing::WithParamInterface<bool> { protected: HloDataflowAnalysisTest() : module_(CreateNewVerifiedModule()) {} const HloDataflowAnalysis& RunAnalysis(bool ssa_form, bool bitcast_defines_value = false, bool run_dce = true) { if (run_dce) { HloDCE dce; EXPECT_TRUE(dce.Run(module_.get()).ok()); } FlattenCallGraph flatten; EXPECT_TRUE(flatten.Run(module_.get()).ok()); analysis_ = HloDataflowAnalysis::Run(*module_, ssa_form, bitcast_defines_value) .value(); return *analysis_; } const std::vector<const HloValue*>& HloValuesAt( const HloInstruction* instruction, const ShapeIndex& index = {}) { CHECK(analysis_ != nullptr); return analysis_->GetValueSet(instruction, index).values(); } bool InstructionsMayInterfere(const HloOrdering& ordering, const HloInstruction* a, const HloInstruction* b) { EXPECT_FALSE(a->shape().IsTuple()); EXPECT_FALSE(b->shape().IsTuple()); return ordering.MayInterfere(analysis_->GetValueDefinedAt(a), analysis_->GetValueDefinedAt(b), *analysis_); } std::unique_ptr<HloComputation> CreateR0F32UnaryOpComputation( HloOpcode opcode) { HloComputation::Builder builder( absl::StrCat(TestName(), ".", HloOpcodeString(opcode))); HloInstruction* param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape_, "param0")); builder.AddInstruction( HloInstruction::CreateUnary(scalar_shape_, opcode, param0)); return builder.Build(); } std::unique_ptr<HloModule> module_; std::unique_ptr<HloDataflowAnalysis> analysis_; const Shape scalar_shape_ = ShapeUtil::MakeShape(F32, {}); const Shape vector_shape_ = ShapeUtil::MakeShape(F32, {42}); const Shape tuple_shape_ = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {}), ShapeUtil::MakeShape(F32, {})}); }; TEST_P(HloDataflowAnalysisTest, BinaryOperation) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto add = builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape_, HloOpcode::kAdd, constant1, constant2)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); bool ssa_form = GetParam(); const HloDataflowAnalysis& analysis = RunAnalysis(ssa_form); EXPECT_EQ(analysis.values().size(), 3); EXPECT_TRUE(analysis.ValueIsDefinedAt(constant1)); EXPECT_TRUE(analysis.ValueIsDefinedAt(constant2)); EXPECT_TRUE(analysis.ValueIsDefinedAt(add)); EXPECT_THAT(analysis.GetValueDefinedAt(constant1).positions(), UnorderedElementsAre(HloPosition{constant1, {}})); EXPECT_THAT(analysis.GetValueDefinedAt(constant2).positions(), UnorderedElementsAre(HloPosition{constant2, {}})); EXPECT_THAT(analysis.GetValueDefinedAt(add).positions(), UnorderedElementsAre(HloPosition{add, {}})); EXPECT_THAT(analysis.GetValueDefinedAt(constant1).GetUses(), UnorderedElementsAre(HloUse{add, 0, {}})); EXPECT_THAT(analysis.GetValueDefinedAt(constant2).GetUses(), UnorderedElementsAre(HloUse{add, 1, {}})); EXPECT_TRUE(analysis.GetValueDefinedAt(add).GetUses().empty()); EXPECT_FALSE(analysis.GetValueDefinedAt(constant1).live_out_of_module()); EXPECT_FALSE(analysis.GetValueDefinedAt(constant2).live_out_of_module()); EXPECT_TRUE(analysis.GetValueDefinedAt(add).live_out_of_module()); } TEST_P(HloDataflowAnalysisTest, TupleAndGtes) { auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape_, "param0")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "param1")); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({param0, param1})); auto gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, tuple, 0)); auto gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, tuple, 1)); auto add = builder.AddInstruction( HloInstruction::CreateBinary(scalar_shape_, HloOpcode::kAdd, gte0, gte1)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); bool ssa_form = GetParam(); const HloDataflowAnalysis& analysis = RunAnalysis(ssa_form); EXPECT_EQ(analysis.values().size(), 4); EXPECT_TRUE(analysis.ValueIsDefinedAt(param0)); EXPECT_TRUE(analysis.ValueIsDefinedAt(param1)); EXPECT_TRUE(analysis.ValueIsDefinedAt(tuple, {})); EXPECT_FALSE(analysis.ValueIsDefinedAt(tuple, {0})); EXPECT_FALSE(analysis.ValueIsDefinedAt(tuple, {1})); EXPECT_FALSE(analysis.ValueIsDefinedAt(gte0)); EXPECT_FALSE(analysis.ValueIsDefinedAt(gte1)); EXPECT_TRUE(analysis.ValueIsDefinedAt(add)); EXPECT_THAT( analysis.GetValueDefinedAt(param0).positions(), UnorderedElementsAre(HloPosition{param0, {}}, HloPosition{tuple, {0}}, HloPosition{gte0, {}})); EXPECT_THAT( analysis.GetValueDefinedAt(param1).positions(), UnorderedElementsAre(HloPosition{param1, {}}, HloPosition{tuple, {1}}, HloPosition{gte1, {}})); EXPECT_THAT(analysis.GetValueDefinedAt(tuple).positions(), UnorderedElementsAre(HloPosition{tuple, {}})); EXPECT_THAT(analysis.GetValueDefinedAt(param0).GetUses(), UnorderedElementsAre(HloUse{add, 0, {}})); EXPECT_THAT(analysis.GetValueDefinedAt(param1).GetUses(), UnorderedElementsAre(HloUse{add, 1, {}})); EXPECT_THAT(analysis.GetValueDefinedAt(tuple, {}).GetUses(), UnorderedElementsAre(HloUse{gte0, 0, {}}, HloUse{gte1, 0, {}})); EXPECT_TRUE(analysis.GetValueDefinedAt(add).live_out_of_module()); } TEST_P(HloDataflowAnalysisTest, NestedTuple) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({constant1, constant2})); auto nested_tuple = builder.AddInstruction( HloInstruction::CreateTuple({tuple, tuple, constant1})); auto gte_tuple = builder.AddInstruction( HloInstruction::CreateGetTupleElement(tuple->shape(), nested_tuple, 1)); auto gte_out = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, gte_tuple, 0)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); bool ssa_form = GetParam(); const HloDataflowAnalysis& analysis = RunAnalysis(ssa_form); EXPECT_EQ(analysis.values().size(), 4); EXPECT_THAT( analysis.GetValueDefinedAt(constant1).positions(), UnorderedElementsAre( HloPosition{constant1, {}}, HloPosition{tuple, {0}}, HloPosition{nested_tuple, {0, 0}}, HloPosition{nested_tuple, {1, 0}}, HloPosition{nested_tuple, {2}}, HloPosition{gte_tuple, {0}}, HloPosition{gte_out, {}})); EXPECT_THAT(analysis.GetValueDefinedAt(constant1, {}).GetUses(), UnorderedElementsAre(HloUse{gte_out, 0, {0}})); EXPECT_TRUE(analysis.GetValueDefinedAt(constant2).GetUses().empty()); EXPECT_THAT(analysis.GetValueDefinedAt(tuple, {}).GetUses(), UnorderedElementsAre(HloUse{gte_out, 0, {}})); EXPECT_THAT(analysis.GetValueDefinedAt(nested_tuple, {}).GetUses(), UnorderedElementsAre(HloUse{gte_tuple, 0, {}})); EXPECT_TRUE(analysis.GetValueDefinedAt(constant1).live_out_of_module()); EXPECT_FALSE(analysis.GetValueDefinedAt(constant2).live_out_of_module()); EXPECT_FALSE( analysis.GetValueDefinedAt(tuple, {}).live_out_of_module()); EXPECT_FALSE(analysis.GetValueDefinedAt(nested_tuple, {}) .live_out_of_module()); } TEST_P(HloDataflowAnalysisTest, SingleCall) { auto subbuilder = HloComputation::Builder("Subcomputation"); auto subparam0 = subbuilder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape_, "param0")); auto subparam1 = subbuilder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "param1")); auto add = subbuilder.AddInstruction(HloInstruction::CreateBinary( scalar_shape_, HloOpcode::kAdd, subparam0, subparam1)); HloComputation* called_computation = module_->AddEmbeddedComputation(subbuilder.Build()); auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto call = builder.AddInstruction(HloInstruction::CreateCall( scalar_shape_, {constant1, constant2}, called_computation)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); bool ssa_form = GetParam(); const HloDataflowAnalysis& analysis = RunAnalysis(ssa_form); EXPECT_EQ(analysis.values().size(), 3); EXPECT_TRUE(analysis.ValueIsDefinedAt(constant1)); EXPECT_TRUE(analysis.ValueIsDefinedAt(constant2)); EXPECT_FALSE(analysis.ValueIsDefinedAt(subparam0)); EXPECT_FALSE(analysis.ValueIsDefinedAt(subparam1)); EXPECT_TRUE(analysis.ValueIsDefinedAt(add)); EXPECT_FALSE(analysis.ValueIsDefinedAt(call)); EXPECT_EQ(analysis.GetUniqueValueAt(subparam0), analysis.GetValueDefinedAt(constant1)); EXPECT_EQ(analysis.GetUniqueValueAt(subparam1), analysis.GetValueDefinedAt(constant2)); EXPECT_EQ(analysis.GetUniqueValueAt(call), analysis.GetValueDefinedAt(add)); EXPECT_THAT(analysis.GetValueDefinedAt(constant1).GetUses(), UnorderedElementsAre(HloUse{call, 0, {}}, HloUse{add, 0, {}})); EXPECT_THAT(analysis.GetValueDefinedAt(constant2).GetUses(), UnorderedElementsAre(HloUse{call, 1, {}}, HloUse{add, 1, {}})); EXPECT_TRUE(analysis.GetValueDefinedAt(add).live_out_of_module()); } TEST_P(HloDataflowAnalysisTest, NestedCalls) { auto inner_builder = HloComputation::Builder("InnerComputation"); auto inner_param0 = inner_builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape_, "param0")); auto inner_param1 = inner_builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "param1")); auto add = inner_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape_, HloOpcode::kAdd, inner_param0, inner_param1)); HloComputation* inner_computation = module_->AddEmbeddedComputation(inner_builder.Build()); auto outer_builder = HloComputation::Builder("OuterComputation"); auto outer_param0 = outer_builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape_, "param0")); auto outer_param1 = outer_builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "param1")); auto nested_call = outer_builder.AddInstruction(HloInstruction::CreateCall( scalar_shape_, {outer_param1, outer_param0}, inner_computation)); HloComputation* outer_computation = module_->AddEmbeddedComputation(outer_builder.Build()); auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto call = builder.AddInstruction(HloInstruction::CreateCall( scalar_shape_, {constant1, constant2}, outer_computation)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); bool ssa_form = GetParam(); const HloDataflowAnalysis& analysis = RunAnalysis(ssa_form); EXPECT_EQ(analysis.values().size(), 3); EXPECT_THAT( analysis.GetValueDefinedAt(constant1).GetUses(), UnorderedElementsAre(HloUse{call, 0, {}}, HloUse{nested_call, 1, {}}, HloUse{add, 1, {}})); EXPECT_THAT( analysis.GetValueDefinedAt(constant2).GetUses(), UnorderedElementsAre(HloUse{call, 1, {}}, HloUse{nested_call, 0, {}}, HloUse{add, 0, {}})); EXPECT_TRUE(analysis.GetValueDefinedAt(add).live_out_of_module()); } TEST_P(HloDataflowAnalysisTest, SingleWhile) { const Shape tuple_shape = ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_}); auto body_builder = HloComputation::Builder("body"); auto body_param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); auto body_element_0 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 0)); auto body_element_1 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 1)); auto add = body_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape_, HloOpcode::kAdd, body_element_0, body_element_1)); auto body_root = body_builder.AddInstruction( HloInstruction::CreateTuple({body_element_0, add})); HloComputation* body = module_->AddEmbeddedComputation(body_builder.Build()); auto cond_builder = HloComputation::Builder("condition"); auto cond_param = cond_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); auto cond_constant = cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false))); HloComputation* condition = module_->AddEmbeddedComputation(cond_builder.Build()); auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({constant1, constant2})); auto xla_while = builder.AddInstruction( HloInstruction::CreateWhile(tuple_shape, condition, body, tuple)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); bool ssa_form = GetParam(); const HloDataflowAnalysis& analysis = RunAnalysis(ssa_form); EXPECT_FALSE(analysis.GetValueDefinedAt(cond_constant).live_out_of_module()); if (ssa_form) { EXPECT_FALSE(analysis.ValueIsDefinedAt(xla_while, {0})); EXPECT_FALSE(analysis.ValueIsDefinedAt(body_param, {0})); EXPECT_FALSE(analysis.ValueIsDefinedAt(cond_param, {0})); EXPECT_TRUE(analysis.ValueIsDefinedAt(xla_while, {1})); EXPECT_TRUE(analysis.GetValueDefinedAt(xla_while, {1}).is_phi()); EXPECT_TRUE(analysis.ValueIsDefinedAt(body_param, {1})); EXPECT_TRUE(analysis.GetValueDefinedAt(body_param, {1}).is_phi()); EXPECT_TRUE(analysis.ValueIsDefinedAt(cond_param, {1})); EXPECT_TRUE(analysis.GetValueDefinedAt(cond_param, {1}).is_phi()); EXPECT_THAT( analysis.GetValueDefinedAt(constant1).GetUses(), UnorderedElementsAre(HloUse{add, 0, {}}, HloUse{body_root, 0, {}}, HloUse{xla_while, 0, {0}})); EXPECT_TRUE(analysis.GetValueDefinedAt(constant1).live_out_of_module()); EXPECT_TRUE(analysis.GetValueDefinedAt(xla_while, {1}) .live_out_of_module()); EXPECT_FALSE(analysis.GetValueDefinedAt(add).live_out_of_module()); } else { EXPECT_FALSE(analysis.ValueIsDefinedAt(xla_while, {0})); EXPECT_FALSE(analysis.ValueIsDefinedAt(xla_while, {1})); EXPECT_FALSE(analysis.ValueIsDefinedAt(body_param, {0})); EXPECT_FALSE(analysis.ValueIsDefinedAt(body_param, {1})); EXPECT_FALSE(analysis.ValueIsDefinedAt(cond_param, {0})); EXPECT_FALSE(analysis.ValueIsDefinedAt(cond_param, {1})); EXPECT_TRUE(analysis.GetValueDefinedAt(constant1).live_out_of_module()); EXPECT_TRUE(analysis.GetValueDefinedAt(add).live_out_of_module()); } } TEST_P(HloDataflowAnalysisTest, SequentialWhiles) { const Shape tuple_shape = ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_}); auto body_builder = HloComputation::Builder("body"); auto body_param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); auto body_element_0 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 0)); auto body_element_1 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 1)); auto add = body_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape_, HloOpcode::kAdd, body_element_0, body_element_1)); body_builder.AddInstruction( HloInstruction::CreateTuple({body_element_0, add})); HloComputation* body = module_->AddEmbeddedComputation(body_builder.Build()); auto cond_builder = HloComputation::Builder("condition"); cond_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false))); HloComputation* condition = module_->AddEmbeddedComputation(cond_builder.Build()); auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({constant1, constant2})); auto xla_while0 = builder.AddInstruction( HloInstruction::CreateWhile(tuple_shape, condition, body, tuple)); auto xla_while1 = builder.AddInstruction( HloInstruction::CreateWhile(tuple_shape, condition, body, xla_while0)); auto xla_while2 = builder.AddInstruction( HloInstruction::CreateWhile(tuple_shape, condition, body, xla_while1)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); bool ssa_form = GetParam(); const HloDataflowAnalysis& analysis = RunAnalysis(ssa_form); EXPECT_EQ(analysis.GetUniqueValueAt(xla_while0, {0}), analysis.GetValueDefinedAt(constant1)); EXPECT_EQ(analysis.GetUniqueValueAt(xla_while1, {0}), analysis.GetValueDefinedAt(constant1)); EXPECT_EQ(analysis.GetUniqueValueAt(xla_while2, {0}), analysis.GetValueDefinedAt(constant1)); EXPECT_TRUE(analysis.GetValueDefinedAt(constant1).live_out_of_module()); } TEST_P(HloDataflowAnalysisTest, MultiLevelNestedWhile) { const Shape tuple_shape = ShapeUtil::MakeTupleShape({scalar_shape_}); auto cond_builder = HloComputation::Builder("condition"); cond_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false))); HloComputation* condition = module_->AddEmbeddedComputation(cond_builder.Build()); auto level0_builder = HloComputation::Builder("level0_body"); auto level0_param = level0_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); auto level0_element_0 = level0_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, level0_param, 0)); auto level0_root = level0_builder.AddInstruction( HloInstruction::CreateTuple({level0_element_0})); HloComputation* level0_body = module_->AddEmbeddedComputation(level0_builder.Build()); auto level1_builder = HloComputation::Builder("level1_body"); auto level1_param = level1_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); auto level1_root = level1_builder.AddInstruction(HloInstruction::CreateWhile( tuple_shape, condition, level0_body, level1_param)); HloComputation* level1_body = module_->AddEmbeddedComputation(level1_builder.Build()); auto level2_builder = HloComputation::Builder("level2_body"); auto level2_param = level2_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); auto level2_while = level2_builder.AddInstruction(HloInstruction::CreateWhile( tuple_shape, condition, level1_body, level2_param)); auto level2_element_0 = level2_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, level2_while, 0)); auto negate = level2_builder.AddInstruction(HloInstruction::CreateUnary( scalar_shape_, HloOpcode::kNegate, level2_element_0)); level2_builder.AddInstruction(HloInstruction::CreateTuple({negate})); HloComputation* level2_body = module_->AddEmbeddedComputation(level2_builder.Build()); auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({constant1})); builder.AddInstruction( HloInstruction::CreateWhile(tuple_shape, condition, level2_body, tuple)); module_->AddEntryComputation(builder.Build()); SCOPED_TRACE(module_->ToString()); bool ssa_form = GetParam(); if (!ssa_form) { return; } const HloDataflowAnalysis& analysis = RunAnalysis(ssa_form); EXPECT_FALSE(analysis.ValueIsDefinedAt(level1_param, {0})); EXPECT_FALSE(analysis.ValueIsDefinedAt(level0_param, {0})); EXPECT_FALSE(analysis.ValueIsDefinedAt(level1_root, {0})); EXPECT_FALSE(analysis.ValueIsDefinedAt(level0_root, {0})); EXPECT_TRUE(analysis.ValueIsDefinedAt(level2_param, {0})); EXPECT_EQ(HloValuesAt(level1_param, {0}), HloValuesAt(level2_param, {0})); EXPECT_EQ(HloValuesAt(level0_param, {0}), HloValuesAt(level2_param, {0})); EXPECT_EQ(HloValuesAt(level1_root, {0}), HloValuesAt(level2_param, {0})); EXPECT_EQ(HloValuesAt(level0_root, {0}), HloValuesAt(level2_param, {0})); } TEST_P(HloDataflowAnalysisTest, NestedWhiles) { const Shape tuple_shape = ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_}); auto cond_builder = HloComputation::Builder("condition"); cond_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false))); HloComputation* condition = module_->AddEmbeddedComputation(cond_builder.Build()); auto inner_builder = HloComputation::Builder("inner_body"); auto inner_param = inner_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); auto inner_element_0 = inner_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, inner_param, 0)); auto inner_element_1 = inner_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, inner_param, 1)); auto add = inner_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape_, HloOpcode::kAdd, inner_element_0, inner_element_1)); inner_builder.AddInstruction( HloInstruction::CreateTuple({inner_element_0, add})); HloComputation* inner_body = module_->AddEmbeddedComputation(inner_builder.Build()); auto outer_builder = HloComputation::Builder("outer_body"); auto outer_param = outer_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); auto outer_element_0 = outer_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, outer_param, 0)); auto negate = outer_builder.AddInstruction(HloInstruction::CreateUnary( scalar_shape_, HloOpcode::kNegate, outer_element_0)); auto outer_element_1 = outer_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, outer_param, 1)); auto outer_tuple = outer_builder.AddInstruction( HloInstruction::CreateTuple({negate, outer_element_1})); auto nested_while = outer_builder.AddInstruction(HloInstruction::CreateWhile( tuple_shape, condition, inner_body, outer_tuple)); HloComputation* outer_body = module_->AddEmbeddedComputation(outer_builder.Build()); auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({
1,883
cpp
tensorflow/tensorflow
tuple_simplifier
third_party/xla/xla/service/tuple_simplifier.cc
third_party/xla/xla/service/tuple_simplifier_test.cc
#ifndef XLA_SERVICE_TUPLE_SIMPLIFIER_H_ #define XLA_SERVICE_TUPLE_SIMPLIFIER_H_ #include <utility> #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class TupleSimplifier : public HloModulePass { public: TupleSimplifier() : TupleSimplifier(false) {} explicit TupleSimplifier(bool exclude_entry_computation); ~TupleSimplifier() override {} absl::string_view name() const override { return "tuple-simplifier"; } using HloPassInterface::Run; using HloPassInterface::RunOnModuleGroup; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: bool exclude_entry_computation_; absl::StatusOr<bool> RemoveWholeTuple(HloInstruction* tuple); }; } #endif #include "xla/service/tuple_simplifier.h" #include <queue> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" namespace xla { TupleSimplifier::TupleSimplifier(bool exclude_entry_computation) : exclude_entry_computation_(exclude_entry_computation) {} absl::StatusOr<bool> TupleSimplifier::RemoveWholeTuple(HloInstruction* tuple) { HloInstruction* top_tuple = nullptr; for (int64_t operand_number = 0; operand_number < tuple->operand_count(); ++operand_number) { HloInstruction* operand = tuple->mutable_operand(operand_number); if (operand->opcode() != HloOpcode::kGetTupleElement || operand->tuple_index() != operand_number) { return false; } if (top_tuple == nullptr) { top_tuple = operand->mutable_operand(0); if (!ShapeUtil::Compatible(top_tuple->shape(), tuple->shape())) { return false; } } else if (top_tuple != operand->operand(0)) { return false; } } if (top_tuple == nullptr) { return false; } TF_ASSIGN_OR_RETURN(bool changed, tuple->parent()->ReplaceInstruction( tuple, top_tuple, true)); return changed; } absl::StatusOr<bool> TupleSimplifier::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (auto* computation : module->computations(execution_threads)) { if (exclude_entry_computation_ && computation == module->entry_computation()) { continue; } for (auto* instruction : computation->MakeInstructionPostOrder()) { if (instruction->opcode() == HloOpcode::kTuple) { TF_ASSIGN_OR_RETURN(bool c, RemoveWholeTuple(instruction)); changed |= c; } else { auto ancestor = instruction->LatestNonGteAncestorAndIndex(); if (ancestor.first == instruction) { continue; } HloInstruction* replacement = ancestor.first; for (int i = 0; i < ancestor.second.size(); ++i) { if (replacement->opcode() != HloOpcode::kTuple) { replacement = nullptr; break; } replacement = replacement->mutable_operand(ancestor.second[i]); } if (replacement) { TF_ASSIGN_OR_RETURN(bool replaced, computation->ReplaceInstruction( instruction, replacement, true, true)); changed |= replaced; } } } } return changed; } }
#include "xla/service/tuple_simplifier.h" #include <memory> #include <utility> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/types.h" #include "tsl/lib/core/status_test_util.h" namespace op = xla::testing::opcode_matchers; namespace xla { namespace { class TupleSimplifierTest : public HloTestBase { protected: void Run(HloModule* module, bool change_expected) { auto changed_status = RunHloPass(TupleSimplifier(), module); TF_ASSERT_OK(changed_status.status()); EXPECT_EQ(change_expected, changed_status.value()); } void Run(HloModule* module, bool change_expected, bool exclude_entry) { auto changed_status = RunHloPass(TupleSimplifier(exclude_entry), module); TF_ASSERT_OK(changed_status.status()); EXPECT_EQ(change_expected, changed_status.value()); } const Shape scalar_shape_ = ShapeUtil::MakeShape(F32, {}); const Shape tuple_shape_ = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {}), ShapeUtil::MakeShape(F32, {}), ShapeUtil::MakeShape(F32, {})}); }; TEST_F(TupleSimplifierTest, TupleOfParameters) { HloComputation::Builder builder(TestName()); HloInstruction* param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape_, "param0")); HloInstruction* param1 = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "param1")); HloInstruction* param2 = builder.AddInstruction( HloInstruction::CreateParameter(2, scalar_shape_, "param2")); builder.AddInstruction(HloInstruction::CreateTuple({param0, param1, param2})); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); Run(module.get(), false); } TEST_F(TupleSimplifierTest, GteOfTupleOfParameter) { HloComputation::Builder builder(TestName()); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape_, "param")); builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, param, 1)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); Run(module.get(), false); } TEST_F(TupleSimplifierTest, GteOfTuple) { HloComputation::Builder builder(TestName()); HloInstruction* param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape_, "param0")); HloInstruction* param1 = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "param1")); HloInstruction* param2 = builder.AddInstruction( HloInstruction::CreateParameter(2, scalar_shape_, "param2")); HloInstruction* tuple = builder.AddInstruction( HloInstruction::CreateTuple({param0, param1, param2})); HloInstruction* gte = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, tuple, 1)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_THAT(computation->root_instruction(), gte); Run(module.get(), true); EXPECT_THAT(computation->root_instruction(), param1); } TEST_F(TupleSimplifierTest, GteOfTupleChain) { HloComputation::Builder builder(TestName()); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape_, "param")); const int kChainLength = 10; HloInstruction* element = param; for (int i = 0; i < kChainLength; ++i) { HloInstruction* tuple = builder.AddInstruction( HloInstruction::CreateTuple({element, element, element})); element = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, tuple, 1)); } builder.AddInstruction( HloInstruction::CreateUnary(scalar_shape_, HloOpcode::kNegate, element)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_THAT(computation->root_instruction(), op::Negate(op::GetTupleElement(op::Tuple()))); Run(module.get(), true); EXPECT_THAT(computation->root_instruction(), op::Negate(op::Parameter())); } TEST_F(TupleSimplifierTest, NestedGteOfTuples) { HloComputation::Builder builder(TestName()); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape_, "param")); const int kNestingDepth = 5; HloInstruction* nested_tuple = param; for (int i = 0; i < kNestingDepth; ++i) { nested_tuple = builder.AddInstruction( HloInstruction::CreateTuple({nested_tuple, nested_tuple})); } HloInstruction* element = nested_tuple; for (int i = 0; i < kNestingDepth; ++i) { element = builder.AddInstruction(HloInstruction::CreateGetTupleElement( ShapeUtil::GetTupleElementShape(element->shape(), 0), element, 0)); } auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_THAT(computation->root_instruction(), element); Run(module.get(), true); EXPECT_THAT(computation->root_instruction(), param); } TEST_F(TupleSimplifierTest, TupleOfGteInstructions) { HloComputation::Builder builder(TestName()); HloInstruction* tuple_param = builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape_, "param")); HloInstruction* gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, tuple_param, 0)); HloInstruction* gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, tuple_param, 1)); HloInstruction* gte2 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, tuple_param, 2)); HloInstruction* tuple = builder.AddInstruction(HloInstruction::CreateTuple({gte0, gte1, gte2})); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_THAT(computation->root_instruction(), tuple); Run(module.get(), true); EXPECT_THAT(computation->root_instruction(), tuple_param); } TEST_F(TupleSimplifierTest, IncompatibleTuples) { HloComputation::Builder builder(TestName()); HloInstruction* tuple_param = builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape_, "param")); HloInstruction* gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, tuple_param, 0)); HloInstruction* gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, tuple_param, 1)); HloInstruction* tuple = builder.AddInstruction(HloInstruction::CreateTuple({gte0, gte1})); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_THAT(computation->root_instruction(), tuple); Run(module.get(), false); EXPECT_THAT(computation->root_instruction(), tuple); } TEST_F(TupleSimplifierTest, CanExcludeEntryComputation) { auto module = CreateNewVerifiedModule(); HloInstruction* p0; HloInstruction* p1; HloComputation* c0; HloComputation* c1; HloComputation* entry; { HloComputation::Builder builder(TestName() + "_1"); p0 = builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape_, "param")); HloInstruction* gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, p0, 0)); HloInstruction* gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, p0, 1)); HloInstruction* gte2 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, p0, 2)); builder.AddInstruction(HloInstruction::CreateTuple({gte0, gte1, gte2})); c0 = module->AddEmbeddedComputation(builder.Build()); } { HloComputation::Builder builder(TestName() + "_2"); p1 = builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape_, "param")); HloInstruction* gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, p1, 0)); HloInstruction* gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, p1, 1)); HloInstruction* gte2 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, p1, 2)); builder.AddInstruction(HloInstruction::CreateTuple({gte0, gte1, gte2})); c1 = module->AddEmbeddedComputation(builder.Build()); } { HloComputation::Builder builder(TestName() + "_Entry"); HloInstruction* tuple_param = builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape_, "param")); HloInstruction* call0 = builder.AddInstruction( HloInstruction::CreateCall(tuple_shape_, {tuple_param}, c0)); HloInstruction* call1 = builder.AddInstruction( HloInstruction::CreateCall(tuple_shape_, {tuple_param}, c1)); HloInstruction* gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, call0, 0)); HloInstruction* gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, call1, 1)); HloInstruction* tuple0 = builder.AddInstruction(HloInstruction::CreateTuple({gte0, gte1})); HloInstruction* gte2 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, tuple0, 0)); HloInstruction* gte3 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, tuple0, 1)); builder.AddInstruction(HloInstruction::CreateTuple({gte2, gte3})); entry = module->AddEntryComputation(builder.Build()); } Run(module.get(), true, true); EXPECT_THAT(c0->root_instruction(), p0); EXPECT_THAT(c1->root_instruction(), p1); EXPECT_THAT(entry->instruction_count(), 9); } TEST_F(TupleSimplifierTest, ShardingLoss) { const char* kModuleStr = R"( HloModule m ENTRY test { p0 = s32[10] parameter(0), sharding={devices=[2]0,1} t = (s32[10]) tuple(p0) ROOT %gte = s32[10] get-tuple-element(t), index=0, sharding={replicated} } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kModuleStr)); Run(m.get(), false); } TEST_F(TupleSimplifierTest, NestedTuple) { const char* kModuleStr = R"( HloModule m ENTRY test { p0 = s32[10] parameter(0), sharding={devices=[2]0,1} p1 = s32[10] parameter(1), sharding={devices=[2]0,1} p2 = s32[10] parameter(2), sharding={devices=[2]0,1} p3 = s32[10] parameter(3), sharding={devices=[2]0,1} t = (s32[10], s32[10]) tuple(p0, p1), sharding={{devices=[2]0,1}, {devices=[2]0,1}} t2 = ((s32[10], s32[10]), s32[10]) tuple(t, p2), sharding={{devices=[2]0,1}, {devices=[2]0,1}, {devices=[2]0,1}} t3 = (((s32[10], s32[10]), s32[10]), s32[10]) tuple(t2, p3), sharding={{devices=[2]0,1}, {devices=[2]0,1}, {devices=[2]0,1}, {devices=[2]0,1}} gte0 = ((s32[10], s32[10]), s32[10]) get-tuple-element(t3), index=0, sharding={{replicated}, {replicated}, {replicated}} gte1 = (s32[10], s32[10]) get-tuple-element(gte0), index=0, sharding={{replicated}, {replicated}} gte2 = s32[10] get-tuple-element(gte1), index=1, sharding={devices=[2]0,1} gte3 = s32[10] get-tuple-element(gte1), index=0, sharding={replicated} ROOT to = (s32[10], s32[10]) tuple(gte2, gte3) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kModuleStr)); Run(m.get(), true); auto* p1 = FindInstruction(m.get(), "p1"); auto* gte3 = FindInstruction(m.get(), "gte3"); EXPECT_THAT(m->entry_computation()->root_instruction()->operand(0), p1); EXPECT_THAT(m->entry_computation()->root_instruction()->operand(1), gte3); } } }
1,884
cpp
tensorflow/tensorflow
reshape_decomposer
third_party/xla/xla/service/reshape_decomposer.cc
third_party/xla/xla/service/reshape_decomposer_test.cc
#ifndef XLA_SERVICE_RESHAPE_DECOMPOSER_H_ #define XLA_SERVICE_RESHAPE_DECOMPOSER_H_ #include "xla/service/hlo_pass_interface.h" namespace xla { class ReshapeDecomposer : public HloModulePass { public: absl::string_view name() const override { return "reshape-decomposer"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } #endif #include "xla/service/reshape_decomposer.h" #include "absl/status/status.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/service/hlo_creation_utils.h" namespace xla { namespace { class ReshapeDecomposerVisitor : public DfsHloRewriteVisitor { public: absl::Status HandleReshape(HloInstruction* reshape) override { HloInstruction* operand = reshape->mutable_operand(0); auto s = reshape->shape(); auto s0 = operand->shape(); if (ShapeUtil::ReshapeIsBitcast(s, s0)) { auto b = MakeBitcastHlo(operand, s, &operand->metadata()); return ReplaceInstruction(reshape, b); } else if (auto output_aligned_input_shape = ShapeUtil::AlignLayouts(s, s0)) { Shape new_input_shape = *output_aligned_input_shape; HloInstruction* copied_operand = MakeCopyHlo(operand, new_input_shape); VLOG(3) << "Decomposing reshape into reshape-bitcast and a physical " "transpose on the operand: " << copied_operand->ToString(); auto b = MakeBitcastHlo(copied_operand, s, &copied_operand->metadata()); TF_RETURN_IF_ERROR(ReplaceInstruction(reshape, b)); DCHECK(ShapeUtil::ReshapeIsBitcast(b->shape(), b->operand(0)->shape())); } else if (auto input_aligned_output_shape = ShapeUtil::AlignLayouts(s0, s)) { Shape new_output_shape = *input_aligned_output_shape; auto b = MakeBitcastHlo(operand, new_output_shape, &operand->metadata()); DCHECK(ShapeUtil::ReshapeIsBitcast(b->shape(), b->operand(0)->shape())); HloInstruction* copied_result = MakeCopyHlo(b, s); VLOG(3) << "Decomposing reshape into reshape-bitcast and a physical " "transposition on the result: " << copied_result->ToString(); TF_RETURN_IF_ERROR(ReplaceInstruction(reshape, copied_result)); } else { VLOG(3) << "Both input and output of reshape are not alignable, create " "two physical transposes"; auto s0_normalized = ShapeUtil::MakeShapeWithDescendingLayout( s0.element_type(), s0.dimensions()); auto c1 = MakeCopyHlo(reshape->mutable_operand(0), s0_normalized); auto s_normalized = ShapeUtil::MakeShapeWithDescendingLayout( s.element_type(), s.dimensions()); auto b = MakeBitcastHlo(c1, s_normalized, &c1->metadata()); DCHECK(ShapeUtil::ReshapeIsBitcast(b->shape(), b->operand(0)->shape())); auto c2 = MakeCopyHlo(b, s); TF_RETURN_IF_ERROR(ReplaceInstruction(reshape, c2)); } return absl::OkStatus(); } }; } absl::StatusOr<bool> ReshapeDecomposer::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { return ReshapeDecomposerVisitor{}.RunOnModule(module, execution_threads); } }
#include "xla/service/reshape_decomposer.h" #include <memory> #include <optional> #include "xla/service/hlo_parser.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { class ReshapeDecomposerTest : public HloTestBase { public: void CheckReshapeDecomposer(const char* hlo, std::optional<absl::string_view> expected) { RunAndFilecheckHloRewrite( hlo, ReshapeDecomposer{}, expected, [&](HloModule* module) { EXPECT_TRUE(absl::c_all_of( module->entry_computation()->instructions(), [&](const HloInstruction* instr) { return instr->opcode() != HloOpcode::kReshape || ShapeUtil::ReshapeIsBitcast(instr->operand(0)->shape(), instr->shape()); })); }); } }; TEST_F(ReshapeDecomposerTest, IsBitcast) { const char* hlo = R"( HloModule Module ENTRY main { p = f32[8]{0} parameter(0) ROOT r = f32[4,2]{1,0} reshape(p) } )"; CheckReshapeDecomposer(hlo, R"( )"); } TEST_F(ReshapeDecomposerTest, AlignableOutput) { const char* hlo = R"( HloModule Module ENTRY main { p = f32[8,3]{1,0} parameter(0) ROOT r = f32[4,2,3]{0,1,2} reshape(p) } )"; CheckReshapeDecomposer(hlo, R"( )"); } TEST_F(ReshapeDecomposerTest, AlignableInput) { const char* hlo = R"( HloModule Module ENTRY main { p = f32[4,2,3]{0,1,2} parameter(0) ROOT r = f32[8,3]{1,0} reshape(p) } )"; CheckReshapeDecomposer(hlo, R"( )"); } TEST_F(ReshapeDecomposerTest, NotAlignable) { const char* hlo = R"( HloModule Module ENTRY main { p = f32[4,2,3,8]{0,2,1,3} parameter(0) ROOT r = f32[8,3,2,4]{0,2,1,3} reshape(p) } )"; CheckReshapeDecomposer(hlo, R"( )"); } } }
1,885
cpp
tensorflow/tensorflow
hlo_module_dce
third_party/xla/xla/service/hlo_module_dce.cc
third_party/xla/xla/service/hlo_module_dce_test.cc
#ifndef XLA_SERVICE_HLO_MODULE_DCE_H_ #define XLA_SERVICE_HLO_MODULE_DCE_H_ #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class HloModuleDCE : public HloModulePass { public: ~HloModuleDCE() override {} absl::string_view name() const override { return "hlo-module-dce"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } #endif #include "xla/service/hlo_module_dce.h" #include <deque> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_liveness_analysis.h" #include "xla/service/tuple_simplifier.h" #include "xla/service/while_loop_simplifier.h" #include "xla/status_macros.h" #include "xla/types.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace xla { namespace { absl::StatusOr<bool> RunWhileDCE( HloModule* module, HloLivenessAnalysis* liveness, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; std::vector<HloComputation*> while_body_comps_to_dce; for (auto* computation : module->computations(execution_threads)) { for (auto* instruction : computation->instructions()) { if (instruction->opcode() != HloOpcode::kWhile) { continue; } const auto* xla_while = instruction; auto* while_body_comp = xla_while->while_body(); auto* while_body_param = while_body_comp->parameter_instruction(0); auto* while_body_root = while_body_comp->root_instruction(); if (!xla_while->shape().IsTuple() || while_body_root->opcode() != HloOpcode::kTuple) { VLOG(1) << "WhileDCE SKIP while: " << xla_while->ToString(); continue; } const int64_t tuple_element_count = ShapeUtil::TupleElementCount(xla_while->shape()); bool modified_while_body_comp = false; for (int64_t i = 0; i < tuple_element_count; ++i) { if (liveness->IsLive(xla_while, {i})) { continue; } VLOG(1) << "WhileDCE Dead while tuple element." << " while: " << xla_while->name() << " tuple_index: " << i; HloInstruction* pass_thru_gte = while_body_comp->AddInstruction( HloInstruction::CreateGetTupleElement( while_body_param->shape().tuple_shapes(i), while_body_param, i)); TF_RETURN_IF_ERROR( while_body_root->ReplaceOperandWith(i, pass_thru_gte)); changed = true; modified_while_body_comp = true; } if (modified_while_body_comp) { while_body_comps_to_dce.push_back(while_body_comp); } } } for (auto* while_body_comp : while_body_comps_to_dce) { TF_ASSIGN_OR_RETURN(bool changed_for_computation, HloDCE::RunOnComputation( while_body_comp, false)); changed |= changed_for_computation; } return changed; } } absl::StatusOr<bool> HloModuleDCE::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { VLOG(2) << "Before HloModuleDCE:"; XLA_VLOG_LINES(3, module->ToString()); std::unique_ptr<HloLivenessAnalysis> liveness; TF_ASSIGN_OR_RETURN(liveness, HloLivenessAnalysis::Run(*module)); TF_ASSIGN_OR_RETURN(bool hlo_module_dce_changed, RunWhileDCE(module, liveness.get(), execution_threads)); WhileLoopSimplifier while_loop_simplifier; TF_ASSIGN_OR_RETURN(bool while_loop_simplifier_changed, while_loop_simplifier.Run(module, execution_threads)); TupleSimplifier tuple_simplifier; TF_ASSIGN_OR_RETURN(bool tuple_simplifier_changed, tuple_simplifier.Run(module, execution_threads)); HloDCE hlo_dce; TF_ASSIGN_OR_RETURN(bool hlo_dce_changed, hlo_dce.Run(module, execution_threads)); VLOG(2) << "After HloModuleDCE:"; XLA_VLOG_LINES(3, module->ToString()); return hlo_module_dce_changed | hlo_dce_changed | tuple_simplifier_changed | while_loop_simplifier_changed; } }
#include "xla/service/hlo_module_dce.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_utils.h" #include "xla/types.h" #include "tsl/lib/core/status_test_util.h" namespace xla { namespace { class HloModuleDceTest : public HloTestBase { protected: HloModuleDceTest() {} bool HasInstruction(const HloComputation& computation, const HloInstruction* instruction) { return absl::c_linear_search(computation.instructions(), instruction); } bool WhileBodyHasPassThroughTupleElement(const HloComputation* computation, const std::string& while_name, const int64_t tuple_index) { for (auto* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kWhile && instruction->name() == while_name) { auto* while_body_comp = instruction->while_body(); auto* while_body_param = while_body_comp->parameter_instruction(0); auto* while_body_root = while_body_comp->root_instruction(); if (while_body_root->opcode() != HloOpcode::kTuple) { return false; } auto* operand = while_body_root->operand(tuple_index); if (operand->opcode() == HloOpcode::kGetTupleElement && operand->tuple_index() == tuple_index && operand->operand(0) == while_body_param) { return true; } return false; } } return false; } std::vector<const HloInstruction*> GetWhileLoops( const HloComputation* computation) { std::vector<const HloInstruction*> while_loops; for (auto* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kWhile) { while_loops.push_back(instruction); } } return while_loops; } }; TEST_F(HloModuleDceTest, WhileWithLiveOutputs) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleLoop SimpleLoop.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } SimpleLoop.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(5) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY SimpleLoop { constant.3 = s32[] constant(0) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[], s32[3]{0}) while(tuple.1), condition= SimpleLoop.condition, body=SimpleLoop.body })") .value(); HloModuleDCE dce; EXPECT_FALSE(dce.Run(module.get()).value()); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while", 0)); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while", 1)); } TEST_F(HloModuleDceTest, WhileWithUnusedSideEffectingTupleElement) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleLoop SimpleLoop.body { loop_var.1 = (s32[], f32[]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = f32[] get-tuple-element(loop_var.1), index=1 constant.2 = f32[] constant(1.0) rng = f32[] rng(constant.2, get-tuple-element.2), distribution=rng_uniform add.1 = f32[] add(get-tuple-element.2, constant.2) ROOT tuple = (s32[], f32[]) tuple(add, add.1) } SimpleLoop.condition { loop_var.2 = (s32[], f32[]) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.3 = s32[] constant(5) ROOT less-than = pred[] compare(get-tuple-element.3, constant.3), direction=LT } ENTRY SimpleLoop { constant.4 = s32[] constant(0) constant.5 = f32[] constant(0.0) tuple.1 = (s32[], f32[]) tuple(constant.4, constant.5) while = (s32[], f32[]) while(tuple.1), condition= SimpleLoop.condition, body=SimpleLoop.body ROOT get-tuple-element.4 = s32[] get-tuple-element(while), index=0 })") .value(); HloModuleDCE dce; EXPECT_FALSE(dce.Run(module.get()).value()); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while", 0)); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while", 1)); } TEST_F(HloModuleDceTest, OneWhileWithDeadTupleElement) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleLoop SimpleLoop.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } SimpleLoop.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(5) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY SimpleLoop { constant.3 = s32[] constant(0) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) while = (s32[], s32[3]{0}) while(tuple.1), condition= SimpleLoop.condition, body=SimpleLoop.body ROOT get-tuple-element.4 = s32[] get-tuple-element(while), index=0 })") .value(); HloModuleDCE dce; EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while", 1)); EXPECT_TRUE(dce.Run(module.get()).value()); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while", 0)); auto while_loops = GetWhileLoops(module->entry_computation()); EXPECT_EQ(1, while_loops.size()); EXPECT_EQ(1, ShapeUtil::TupleElementCount(while_loops[0]->shape())); } TEST_F(HloModuleDceTest, OneWhileWithTupleElementUsedByCond) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleLoop SimpleLoop.body { loop_var.1 = (s32[], s32[]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[] get-tuple-element(loop_var.1), index=1 multiply = s32[] multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[]) tuple(add, multiply) } SimpleLoop.condition { loop_var.2 = (s32[], s32[]) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=1 constant.2 = s32[] constant(5) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY SimpleLoop { constant.3 = s32[] constant(0) constant.4 = s32[] constant(0) tuple.1 = (s32[], s32[]) tuple(constant.3, constant.4) while = (s32[], s32[]) while(tuple.1), condition= SimpleLoop.condition, body=SimpleLoop.body ROOT get-tuple-element.4 = s32[] get-tuple-element(while), index=0 })") .value(); HloModuleDCE dce; EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while", 1)); EXPECT_FALSE(dce.Run(module.get()).value()); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while", 0)); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while", 1)); } TEST_F(HloModuleDceTest, TwoWhilesWithDeadTupleElement) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleLoop SimpleLoop.body0 { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } SimpleLoop.condition0 { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(5) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } SimpleLoop.body1 { loop_var.3 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.4 = s32[] get-tuple-element(loop_var.3), index=0 constant.3 = s32[] constant(1) add.1 = s32[] add(get-tuple-element.4, constant.3) get-tuple-element.5 = s32[3]{0} get-tuple-element(loop_var.3), index=1 multiply.1 = s32[3]{0} multiply(get-tuple-element.5, get-tuple-element.5) ROOT tuple.1 = (s32[], s32[3]{0}) tuple(add.1, multiply.1) } SimpleLoop.condition1 { loop_var.4 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.6 = s32[] get-tuple-element(loop_var.4), index=0 constant.4 = s32[] constant(10) ROOT less-than.1 = pred[] compare(get-tuple-element.6, constant.4), direction=LT } ENTRY SimpleLoop { constant.5 = s32[] constant(0) constant.6 = s32[3]{0} constant({0, 1, 2}) tuple.2 = (s32[], s32[3]{0}) tuple(constant.5, constant.6) while.1 = (s32[], s32[3]{0}) while(tuple.2), condition= SimpleLoop.condition0, body=SimpleLoop.body0 get-tuple-element.7 = s32[] get-tuple-element(while.1), index=0 tuple.3 = (s32[], s32[3]{0}) tuple(get-tuple-element.7, constant.6) while.2 = (s32[], s32[3]{0}) while(tuple.3), condition= SimpleLoop.condition1, body=SimpleLoop.body1 ROOT get-tuple-element.8 = s32[] get-tuple-element(while.2), index=0 })") .value(); HloModuleDCE dce; EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while.1", 1)); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while.2", 1)); EXPECT_TRUE(dce.Run(module.get()).value()); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while.1", 0)); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while.2", 0)); auto while_loops = GetWhileLoops(module->entry_computation()); EXPECT_EQ(2, while_loops.size()); EXPECT_EQ(1, ShapeUtil::TupleElementCount(while_loops[0]->shape())); EXPECT_EQ(1, ShapeUtil::TupleElementCount(while_loops[1]->shape())); } TEST_F(HloModuleDceTest, TwoWhilesWithDeadTupleElementSwizzled) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleLoop SimpleLoop.body0 { loop_var.1 = (s32[3]{0}, s32[]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=1 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=0 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[3]{0}, s32[]) tuple(multiply, add) } SimpleLoop.condition0 { loop_var.2 = (s32[3]{0}, s32[]) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=1 constant.2 = s32[] constant(5) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } SimpleLoop.body1 { loop_var.3 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.4 = s32[] get-tuple-element(loop_var.3), index=0 constant.3 = s32[] constant(1) add.1 = s32[] add(get-tuple-element.4, constant.3) get-tuple-element.5 = s32[3]{0} get-tuple-element(loop_var.3), index=1 multiply.1 = s32[3]{0} multiply(get-tuple-element.5, get-tuple-element.5) ROOT tuple.1 = (s32[], s32[3]{0}) tuple(add.1, multiply.1) } SimpleLoop.condition1 { loop_var.4 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.6 = s32[] get-tuple-element(loop_var.4), index=0 constant.4 = s32[] constant(10) ROOT less-than.1 = pred[] compare(get-tuple-element.6, constant.4), direction=LT } ENTRY SimpleLoop { constant.5 = s32[] constant(0) constant.6 = s32[3]{0} constant({0, 1, 2}) tuple.2 = (s32[3]{0}, s32[]) tuple(constant.6, constant.5) while.1 = (s32[3]{0}, s32[]) while(tuple.2), condition= SimpleLoop.condition0, body=SimpleLoop.body0 get-tuple-element.7 = s32[] get-tuple-element(while.1), index=1 tuple.3 = (s32[], s32[3]{0}) tuple(get-tuple-element.7, constant.6) while.2 = (s32[], s32[3]{0}) while(tuple.3), condition= SimpleLoop.condition1, body=SimpleLoop.body1 ROOT get-tuple-element.8 = s32[] get-tuple-element(while.2), index=0 })") .value(); HloModuleDCE dce; EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while.1", 0)); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while.2", 1)); EXPECT_TRUE(dce.Run(module.get()).value()); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while.1", 1)); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while.2", 0)); auto while_loops = GetWhileLoops(module->entry_computation()); EXPECT_EQ(2, while_loops.size()); EXPECT_EQ(1, ShapeUtil::TupleElementCount(while_loops[0]->shape())); EXPECT_EQ(1, ShapeUtil::TupleElementCount(while_loops[1]->shape())); } TEST_F(HloModuleDceTest, WhileWithOutfeed) { auto module = ParseAndReturnVerifiedModule(R"( HloModule OutfeedLoop WhileBody { body_param = (s32[]) parameter(0) token0 = token[] after-all() constant.2 = s32[] constant(2) outfeed_tuple = (s32[]) outfeed(constant.2, token0) get-tuple-element.1 = s32[] get-tuple-element(body_param), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) ROOT tuple = (s32[]) tuple(add) } WhileCondition { cond_param = (s32[]) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(cond_param), index=0 constant.2 = s32[] constant(10) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY SimpleLoop { constant.3 = s32[] constant(0) tuple.1 = (s32[]) tuple(constant.3) while = (s32[]) while(tuple.1), condition=WhileCondition, body=WhileBody ROOT rtuple = () tuple() })") .value(); HloModuleDCE dce; EXPECT_FALSE(dce.Run(module.get()).value()); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while", 0)); } TEST_F(HloModuleDceTest, WhileWithOnlyLoopVariableBumping) { auto module = ParseAndReturnVerifiedModule(R"( HloModule InfiniteLoop WhileBody { body_param = (s32[], s32[]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(body_param), index=0 get-tuple-element.2 = s32[] get-tuple-element(body_param), index=1 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) ROOT tuple = (s32[], s32[]) tuple(add, get-tuple-element.2) } WhileCondition { cond_param = (s32[], s32[]) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(cond_param), index=0 constant.2 = s32[] constant(10) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY SimpleLoop { p0 = (s32[]) parameter(0) get-tuple-element.5 = s32[] get-tuple-element(p0), index=0 constant.3 = s32[] constant(0) tuple.1 = (s32[], s32[]) tuple(constant.3, get-tuple-element.5) while = (s32[], s32[]) while(tuple.1), condition=WhileCondition, body=WhileBody ROOT get-tuple-element.4 = s32[] get-tuple-element(while), index=1 })") .value(); HloModuleDCE dce; EXPECT_TRUE(dce.Run(module.get()).value()); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while", 0)); } TEST_F(HloModuleDceTest, TwoWhilesWithDeadWhileLoop) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TwoWhilesWithDeadWhileLoop SimpleLoop.body0 { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 ROOT tuple = (s32[], s32[3]{0}) tuple(add, get-tuple-element.2) } SimpleLoop.condition0 { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(5) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } SimpleLoop.body1 { loop_var.3 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.4 = s32[] get-tuple-element(loop_var.3), index=0 constant.3 = s32[] constant(1) add.1 = s32[] add(get-tuple-element.4, constant.3) get-tuple-element.5 = s32[3]{0} get-tuple-element(loop_var.3), index=1 ROOT tuple.1 = (s32[], s32[3]{0}) tuple(add.1, get-tuple-element.5) } SimpleLoop.condition1 { loop_var.4 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.6 = s32[] get-tuple-element(loop_var.4), index=0 constant.4 = s32[] constant(5) ROOT less-than.1 = pred[] compare(get-tuple-element.6, constant.4), direction=LT } ENTRY SimpleLoop { constant.5 = s32[] constant(0) constant.6 = s32[3]{0} constant({0, 1, 2}) tuple.2 = (s32[], s32[3]{0}) tuple(constant.5, constant.6) while.1 = (s32[], s32[3]{0}) while(tuple.2), condition= SimpleLoop.condition0, body=SimpleLoop.body0 get-tuple-element.7 = s32[3]{0} get-tuple-element(while.1), index=1 constant.7 = s32[] constant(0) tuple.3 = (s32[], s32[3]{0}) tuple(constant.7, get-tuple-element.7) while.2 = (s32[], s32[3]{0}) while(tuple.3), condition= SimpleLoop.condition1, body=SimpleLoop.body1 ROOT get-tuple-element.8 = s32[] get-tuple-element(while.2), index=0 })") .value(); HloModuleDCE dce; EXPECT_TRUE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while.1", 1)); EXPECT_TRUE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while.2", 1)); EXPECT_TRUE(dce.Run(module.get()).value()); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while.2", 0)); auto while_loops = GetWhileLoops(module->entry_computation()); EXPECT_EQ(1, while_loops.size()); EXPECT_EQ(1, ShapeUtil::TupleElementCount(while_loops[0]->shape())); } } }
1,886
cpp
tensorflow/tensorflow
loop_schedule_linearizer
third_party/xla/xla/service/loop_schedule_linearizer.cc
third_party/xla/xla/service/loop_schedule_linearizer_test.cc
#ifndef XLA_SERVICE_LOOP_SCHEDULE_LINEARIZER_H_ #define XLA_SERVICE_LOOP_SCHEDULE_LINEARIZER_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_dataflow_analysis.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class LoopScheduleLinearizer : public HloModulePass { public: absl::string_view name() const override { return "loop-schedule-linearizer"; } explicit LoopScheduleLinearizer( const HloDataflowAnalysis::CanShareBuffer& can_share_buffer = nullptr) : can_share_buffer_(can_share_buffer) {} using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: HloDataflowAnalysis::CanShareBuffer can_share_buffer_; }; } #endif #include "xla/service/loop_schedule_linearizer.h" #include <memory> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/graphcycles/graphcycles.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_dataflow_analysis.h" #include "xla/service/hlo_value.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class ComputationInstructionOrdering { public: explicit ComputationInstructionOrdering(const HloComputation& computation) { for (const HloInstruction* instr : computation.instructions()) { for (const HloInstruction* control_pred : instr->control_predecessors()) { CHECK(this->InsertEdge(*control_pred, *instr)) << "Graph already contained a cycle"; } for (int op_id = 0; op_id < instr->operand_count(); op_id++) { const HloInstruction* op = instr->operand(op_id); CHECK(this->InsertEdge(*op, *instr)) << "Graph already contained a cycle"; } } } int32_t NodeIdForInstruction(const HloInstruction& instr) { int32_t instruction_id = instr.unique_id(); auto it = node_id_to_graph_id_.find(instruction_id); if (it != node_id_to_graph_id_.end()) { return it->second; } int32_t node_id = graph_cycles_.NewNode(); node_id_to_graph_id_[instruction_id] = node_id; return node_id; } bool InsertEdge(const HloInstruction& source, const HloInstruction& dest) { int32_t source_id = NodeIdForInstruction(source); int32_t dest_id = NodeIdForInstruction(dest); return graph_cycles_.InsertEdge(source_id, dest_id); } private: absl::flat_hash_map<int32_t, int32_t> node_id_to_graph_id_; tensorflow::GraphCycles graph_cycles_; }; } static absl::StatusOr<bool> AddControlEdgesForLoopWrites( HloInstruction* xla_while, HloAliasAnalysis& alias_analysis) { HloDataflowAnalysis& dataflow = alias_analysis.dataflow_analysis(); HloComputation* body = xla_while->while_body(); HloInstruction* root = body->root_instruction(); HloInstruction* input = body->parameter_instruction(0); bool changed = false; ComputationInstructionOrdering ordering(*body); ShapeTree<bool> indices_to_copy(&xla_while->shape()); for (auto& p : indices_to_copy) { const ShapeIndex& index = p.first; if (index.empty()) { continue; } if (dataflow.GetValueSet(root, index).values().size() > 1 || dataflow.GetValueSet(input, index).values().size() > 1) { VLOG(2) << "Index " << index.ToString() << " is associated with multiple " << "values, not attempting to introduce stricter dependencies"; } else { HloValue& value_at_root = dataflow.GetUniqueValueAt(root, index); HloValue& value_at_input = dataflow.GetUniqueValueAt(input, index); if (value_at_root.shape().IsTuple()) { continue; } HloInstruction* write = value_at_root.defining_instruction(); for (const HloUse& use : value_at_input.GetUses()) { HloInstruction* read = use.instruction; if (read != write && value_at_root != value_at_input && read->parent() == write->parent()) { VLOG(2) << "Inside " << body->name() << ", index " << index.ToString(); if (!ordering.InsertEdge(*read, *write)) { VLOG(2) << "Not adding a control dependency from " << read->ToShortString() << " to " << write->ToShortString() << " as it would introduce a cycle"; continue; } if (!absl::c_linear_search(read->control_successors(), write)) { TF_RETURN_IF_ERROR(read->AddControlDependencyTo(write)); VLOG(2) << "Adding dependency: " << read->ToShortString() << " before " << write->ToShortString(); changed = true; } } } } } return changed; } absl::StatusOr<bool> LoopScheduleLinearizer::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { std::unique_ptr<HloAliasAnalysis> alias_analysis; bool changed = false; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { for (HloInstruction* instruction : computation->instructions()) { if (instruction->opcode() != HloOpcode::kWhile) { continue; } const HloComputation* body = instruction->while_body(); bool has_async_collectives = absl::c_any_of(body->instructions(), [](const HloInstruction* instr) { return hlo_query::IsAsyncCollectiveStartOp( instr, true) || hlo_query::IsAsyncCollectiveDoneOp( instr, true); }); if (has_async_collectives) { VLOG(2) << "Skipping " << instruction->name() << " since body has async collectives"; continue; } if (alias_analysis == nullptr) { TF_ASSIGN_OR_RETURN(alias_analysis, HloAliasAnalysis::Run(module, can_share_buffer_)); } TF_ASSIGN_OR_RETURN(bool updated_loop, AddControlEdgesForLoopWrites( instruction, *alias_analysis)); changed |= updated_loop; } } return changed; } }
#include "xla/service/loop_schedule_linearizer.h" #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/copy_insertion.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { int64_t CountCopies(const HloComputation& computation) { int64_t count = 0; for (const auto& instruction : computation.instructions()) { if (instruction->opcode() == HloOpcode::kCopy) { count++; } } return count; } int64_t CountCopies(const HloModule& module) { int64_t count = 0; for (const auto& computation : module.computations()) { count += CountCopies(*computation); } return count; } int64_t CountControlEdges(const HloComputation& computation) { int64_t count = 0; for (const auto& instruction : computation.instructions()) { count += instruction->control_successors().size(); } return count; } int64_t CountControlEdges(const HloModule& module) { int64_t count = 0; for (const auto& computation : module.computations()) { count += CountControlEdges(*computation); } return count; } class LoopScheduleLinearizerTest : public HloTestBase { protected: void InsertCopies(HloModule* module, bool expect_change) { LoopScheduleLinearizer loop_schedule_linearizer; TF_ASSERT_OK_AND_ASSIGN(bool changed, loop_schedule_linearizer.Run(module)); ASSERT_EQ(changed, expect_change); CopyInsertion copy_insertion; ASSERT_IS_OK(copy_insertion.Run(module).status()); } }; TEST_F(LoopScheduleLinearizerTest, NoExtraCopiesRequired) { absl::string_view hlo_string = R"( HloModule module while_body { input = (s32[], s32[]) parameter(0) counter = s32[] get-tuple-element(input), index=0 buffer = s32[] get-tuple-element(input), index=1 one = s32[] constant(1) updated_counter = s32[] add(counter, one) updated_buffer = s32[] add(buffer, counter) ROOT out = (s32[], s32[]) tuple(updated_counter, updated_buffer) } while_cond { input = (s32[], s32[]) parameter(0) counter = s32[] get-tuple-element(input), index=0 bound = s32[] constant(100) ROOT cmp = pred[] compare(counter, bound), direction=LT } ENTRY entry { zero = s32[] constant(0) buffer = s32[] parameter(0) while_input = (s32[], s32[]) tuple(zero, buffer) ROOT out = (s32[], s32[]) while(while_input), condition=while_cond, body=while_body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCopies(module.get(), true); EXPECT_EQ(CountCopies( *module->entry_computation()->root_instruction()->while_body()), 0); EXPECT_EQ(CountControlEdges( *module->entry_computation()->root_instruction()->while_body()), 1); } TEST_F(LoopScheduleLinearizerTest, SkipAsyncCollectives) { absl::string_view hlo_string = R"( HloModule module add { x = s32[] parameter(0) y = s32[] parameter(1) ROOT add = s32[] add(x, y) } while_body { input = (s32[], s32[]) parameter(0) counter = s32[] get-tuple-element(input), index=0 buffer = s32[] get-tuple-element(input), index=1 one = s32[] constant(1) updated_counter = s32[] add(counter, one) updated_buffer = s32[] add(buffer, counter) ar_start = s32[] all-reduce-start(updated_buffer), replica_groups={}, to_apply=add ar_done = s32[] all-reduce-done(ar_start) ROOT out = (s32[], s32[]) tuple(updated_counter, ar_done) } while_cond { input = (s32[], s32[]) parameter(0) counter = s32[] get-tuple-element(input), index=0 bound = s32[] constant(100) ROOT cmp = pred[] compare(counter, bound), direction=LT } ENTRY entry { zero = s32[] constant(0) buffer = s32[] parameter(0) while_input = (s32[], s32[]) tuple(zero, buffer) ROOT out = (s32[], s32[]) while(while_input), condition=while_cond, body=while_body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCopies(module.get(), false); } } }
1,887
cpp
tensorflow/tensorflow
shaped_buffer
third_party/xla/xla/service/shaped_buffer.cc
third_party/xla/xla/service/shaped_buffer_test.cc
#ifndef XLA_SERVICE_SHAPED_BUFFER_H_ #define XLA_SERVICE_SHAPED_BUFFER_H_ #include <memory> #include <ostream> #include <string> #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/stream_executor.h" #include "xla/xla_data.pb.h" namespace xla { class ScopedShapedBuffer; class ShapedBuffer { public: ShapedBuffer(Shape on_device_shape, int device_ordinal); ShapedBuffer(Shape on_host_shape, Shape on_device_shape, int device_ordinal); ShapedBuffer(ShapedBuffer&& s); ShapedBuffer& operator=(ShapedBuffer&&); ShapedBuffer(const ShapedBuffer&) = delete; ShapedBuffer& operator=(const ShapedBuffer&) = delete; ShapedBuffer(const ScopedShapedBuffer&) = delete; ShapedBuffer& operator=(const ScopedShapedBuffer&) = delete; virtual ~ShapedBuffer(); const Shape& on_host_shape() const { return on_host_shape_; } const Shape& on_device_shape() const { return on_device_shape_; } int device_ordinal() const { return device_ordinal_; } const se::DeviceMemoryBase& root_buffer() const { return buffer({}); } const se::DeviceMemoryBase& buffer(const ShapeIndex& index) const { return buffers_.element(index); } void set_buffer(const se::DeviceMemoryBase& buffer, const ShapeIndex& index) { *buffers_.mutable_element(index) = buffer; } void set_buffers(ShapeTree<se::DeviceMemoryBase> buffers) { CHECK(ShapeUtil::Equal(buffers.shape(), on_device_shape_)); buffers_ = std::move(buffers); buffers_.replace_shape_ptr(on_device_shape_); } void set_shapes(const Shape& on_device_shape) { CHECK(ShapeUtil::EqualStructure(on_device_shape, on_device_shape_)) << "Structures are not the same. new: " << on_device_shape << ", old: " << on_device_shape_; on_host_shape_ = ShapeUtil::DeviceShapeToHostShape(on_device_shape); on_device_shape_ = on_device_shape; buffers_.replace_shape_ptr(on_device_shape_); } void set_shapes(const Shape& on_host_shape, const Shape& on_device_shape) { set_shapes(on_device_shape); } const ShapeTree<se::DeviceMemoryBase>& buffers() const { return buffers_; } ShapeTree<se::DeviceMemoryBase>& buffers() { return buffers_; } absl::StatusOr<ShapedBuffer> SubShapedBuffer(const ShapeIndex& index) const; void clear(); std::string ToString() const; protected: Shape on_host_shape_; Shape on_device_shape_; int device_ordinal_; ShapeTree<se::DeviceMemoryBase> buffers_; }; std::ostream& operator<<(std::ostream& out, const ShapedBuffer& buffer); class ScopedShapedBuffer : public ShapedBuffer { public: explicit ScopedShapedBuffer(Shape on_device_shape, se::DeviceMemoryAllocator* allocator, int device_ordinal); explicit ScopedShapedBuffer(Shape on_host_shape, Shape on_device_shape, se::DeviceMemoryAllocator* allocator, int device_ordinal); explicit ScopedShapedBuffer(ShapedBuffer shaped_buffer, se::DeviceMemoryAllocator* allocator); ScopedShapedBuffer(ScopedShapedBuffer&& s); ScopedShapedBuffer& operator=(ScopedShapedBuffer&&); ScopedShapedBuffer(const ScopedShapedBuffer&) = delete; ScopedShapedBuffer& operator=(const ScopedShapedBuffer&) = delete; ~ScopedShapedBuffer() override; se::DeviceMemoryAllocator* memory_allocator() const { return allocator_; } void set_buffer(se::OwningDeviceMemory buffer, const ShapeIndex& index) { if (!buffer.is_null()) { CHECK_EQ(buffer.device_ordinal(), device_ordinal()); CHECK_EQ(buffer.allocator(), allocator_); *buffers_.mutable_element(index) = buffer.Release(); } else { *buffers_.mutable_element(index) = se::DeviceMemoryBase(); } } [[nodiscard]] ShapedBuffer release(); ScopedShapedBuffer TakeSubTree(ShapeIndexView index); protected: void Deallocate(); se::DeviceMemoryAllocator* allocator_; }; } #endif #include "xla/service/shaped_buffer.h" #include <memory> #include <string> #include <utility> #include "absl/container/flat_hash_set.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "xla/layout_util.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/types.h" #include "xla/util.h" #include "tsl/platform/logging.h" namespace xla { ShapedBuffer::ShapedBuffer(Shape on_device_shape, int device_ordinal) : on_device_shape_(std::move(on_device_shape)), device_ordinal_(device_ordinal), buffers_(&on_device_shape_) { on_host_shape_ = ShapeUtil::DeviceShapeToHostShape(on_device_shape_); } ShapedBuffer::ShapedBuffer(Shape on_host_shape, Shape on_device_shape, int device_ordinal) : ShapedBuffer(on_device_shape, device_ordinal) {} ShapedBuffer::ShapedBuffer(ShapedBuffer&& s) : on_host_shape_(std::move(s.on_host_shape_)), on_device_shape_(std::move(s.on_device_shape_)), device_ordinal_(s.device_ordinal_), buffers_(std::move(s.buffers_)) { buffers_.replace_shape_ptr(on_device_shape_); } ShapedBuffer& ShapedBuffer::operator=(ShapedBuffer&& s) { on_device_shape_ = std::move(s.on_device_shape_); on_host_shape_ = std::move(s.on_host_shape_); device_ordinal_ = s.device_ordinal_; buffers_ = std::move(s.buffers_); buffers_.replace_shape_ptr(on_device_shape_); return *this; } ShapedBuffer::~ShapedBuffer() {} absl::StatusOr<ShapedBuffer> ShapedBuffer::SubShapedBuffer( const ShapeIndex& index) const { TF_ASSIGN_OR_RETURN(const Shape* device_sub_shape, ShapeUtil::TryGetSubshape(on_device_shape(), index)); ShapedBuffer sub_shaped_buffer(*device_sub_shape, device_ordinal_); TF_ASSIGN_OR_RETURN(ShapeTree<se::DeviceMemoryBase> sub_buffers, buffers_.SubShapeTree(index)); sub_shaped_buffer.set_buffers(std::move(sub_buffers)); return std::move(sub_shaped_buffer); } void ShapedBuffer::clear() { for (auto& pair : buffers_) { pair.second = se::DeviceMemoryBase(); } } std::string ShapedBuffer::ToString() const { std::string s = absl::StrCat("ShapedBuffer(", device_ordinal(), "), on-device shape=" + ShapeUtil::HumanStringWithLayout(on_device_shape()), ":\n"); ShapeUtil::ForEachSubshape( on_device_shape(), [this, &s](const Shape& subshape, const ShapeIndex& index) { std::string shape_str; if (subshape.IsTuple()) { shape_str = "tuple"; } else { shape_str = ShapeUtil::HumanStringWithLayout(subshape); } const se::DeviceMemoryBase& memory = buffer(index); absl::StrAppendFormat(&s, " %s%p (%d bytes) : %s\n", std::string(index.size() * 2, ' '), memory.opaque(), memory.size(), shape_str); }); return s; } std::ostream& operator<<(std::ostream& out, const ShapedBuffer& buffer) { out << buffer.ToString(); return out; } ScopedShapedBuffer::ScopedShapedBuffer(Shape on_device_shape, se::DeviceMemoryAllocator* allocator, int device_ordinal) : ShapedBuffer(std::move(on_device_shape), device_ordinal), allocator_(allocator) {} ScopedShapedBuffer::ScopedShapedBuffer(Shape on_host_shape, Shape on_device_shape, se::DeviceMemoryAllocator* allocator, int device_ordinal) : ScopedShapedBuffer(std::move(on_device_shape), allocator, device_ordinal) {} ScopedShapedBuffer::ScopedShapedBuffer(ShapedBuffer shaped_buffer, se::DeviceMemoryAllocator* allocator) : ShapedBuffer(std::move(shaped_buffer)), allocator_(allocator) {} ScopedShapedBuffer::ScopedShapedBuffer(ScopedShapedBuffer&& s) : ShapedBuffer(static_cast<ShapedBuffer&&>(s)), allocator_(s.allocator_) { s.allocator_ = nullptr; } ScopedShapedBuffer& ScopedShapedBuffer::operator=(ScopedShapedBuffer&& s) { Deallocate(); *static_cast<ShapedBuffer*>(this) = std::move(static_cast<ShapedBuffer&>(s)); allocator_ = s.allocator_; s.allocator_ = nullptr; return *this; } ScopedShapedBuffer::~ScopedShapedBuffer() { Deallocate(); } ShapedBuffer ScopedShapedBuffer::release() { ShapedBuffer shaped_buffer(static_cast<ShapedBuffer&&>(*this)); buffers_ = ShapeTree<se::DeviceMemoryBase>(); return shaped_buffer; } void ScopedShapedBuffer::Deallocate() { if (allocator_ == nullptr) { return; } absl::flat_hash_set<void*> deallocated_ptrs; for (auto& pair : buffers_) { se::DeviceMemoryBase& memory_base = pair.second; if (!memory_base.is_null() && deallocated_ptrs.insert(memory_base.opaque()).second) { TF_CHECK_OK(allocator_->Deallocate(device_ordinal(), memory_base)); } } } ScopedShapedBuffer ScopedShapedBuffer::TakeSubTree(ShapeIndexView index) { const xla::Shape& sub_on_device_shape = xla::ShapeUtil::GetSubshape(on_device_shape(), {index}); ScopedShapedBuffer output(sub_on_device_shape, memory_allocator(), device_ordinal()); auto src_it = buffers().find(index); auto dst_it = output.buffers().begin(); while (dst_it != output.buffers().end()) { dst_it->second = src_it->second; src_it->second = tensorflow::se::DeviceMemoryBase(nullptr, 0); ++src_it; ++dst_it; } return output; } }
#include "xla/service/shaped_buffer.h" #include <memory> #include <utility> #include <vector> #include "xla/service/platform_util.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/stream_executor_memory_allocator.h" #include "xla/test.h" #include "tsl/platform/test_benchmark.h" namespace xla { namespace { TEST(ShapedBufferTest, ScopedShapeBufferAsShapedBufferB71629047) { TF_ASSERT_OK_AND_ASSIGN(auto* platform, xla::PlatformUtil::GetDefaultPlatform()); TF_ASSERT_OK_AND_ASSIGN(auto executors, xla::PlatformUtil::GetStreamExecutors(platform)); xla::se::StreamExecutorMemoryAllocator allocator(platform, executors); const xla::Shape shape = xla::ShapeUtil::MakeShape(xla::F32, {}); const int kDeviceOrdinal = 0; auto scoped_buffer = std::make_unique<xla::ScopedShapedBuffer>( shape, shape, &allocator, kDeviceOrdinal); std::unique_ptr<xla::ShapedBuffer> buffer = std::move(scoped_buffer); buffer = nullptr; } class TestAllocator : public se::DeviceMemoryAllocator { public: TestAllocator() : se::DeviceMemoryAllocator(PlatformUtil::GetDefaultPlatform().value()) {} ~TestAllocator() override { if (!allocations_.empty()) { ADD_FAILURE() << "Some allocations not freed!"; } } using se::DeviceMemoryAllocator::Allocate; absl::StatusOr<se::OwningDeviceMemory> Allocate( int device_ordinal, uint64_t size, bool , int64_t ) override { if (size == 0) { return se::OwningDeviceMemory(); } void* buf = malloc(size); allocations_.insert({device_ordinal, buf}); return se::OwningDeviceMemory(se::DeviceMemoryBase(buf, size), device_ordinal, this); } absl::Status Deallocate(int device_ordinal, se::DeviceMemoryBase mem) override { if (mem.is_null()) { return absl::OkStatus(); } auto it = allocations_.find({device_ordinal, mem.opaque()}); if (it == allocations_.end()) { ADD_FAILURE() << "Allocation not found (double free?)"; } else { free(mem.opaque()); allocations_.erase(it); } return absl::OkStatus(); } bool AllowsAsynchronousDeallocation() const override { return false; } absl::StatusOr<se::Stream*> GetStream(int device_ordinal) override { LOG(FATAL) << "Not implemented"; } private: std::set<std::pair< int64_t, void*>> allocations_; }; TEST(ScopedShapedBufferTest, TestMoveAssignmentOperator) { Shape s = ShapeUtil::MakeShape(F32, {1}); TestAllocator allocator; ScopedShapedBuffer sb1(s, &allocator, 0); sb1.set_buffer(allocator.Allocate(0, 42).value(), {}); ScopedShapedBuffer sb2(s, &allocator, 1); sb2.set_buffer(allocator.Allocate(1, 10).value(), {}); sb1 = std::move(sb2); } TEST(ScopedShapedBufferTest, TestTakeSubTree) { TestAllocator allocator; Shape s = ShapeUtil::MakeShape(F32, {1}); s = xla::ShapeUtil::MakeTupleShape(std::vector<xla::Shape>(2, s)); s = xla::ShapeUtil::MakeTupleShape(std::vector<xla::Shape>(3, s)); ScopedShapedBuffer sb(s, &allocator, 0); sb.buffers().ForEachMutableElement( [&](const xla::ShapeIndex& index, se::DeviceMemoryBase* buffer) { TF_ASSERT_OK_AND_ASSIGN( se::OwningDeviceMemory m, allocator.Allocate(0, 77)); *buffer = m.Release(); }); ShapeTree<se::DeviceMemoryBase> buffers = sb.buffers(); xla::ShapeIndex subtree_index = {1}; ScopedShapedBuffer output = sb.TakeSubTree(subtree_index); output.buffers().ForEachElement([&](const xla::ShapeIndex& sub_index, const se::DeviceMemoryBase& buffer) { xla::ShapeIndex orig_index = subtree_index; for (int i : sub_index) { orig_index.push_back(i); } EXPECT_TRUE(buffers.find(orig_index)->second.IsSameAs(buffer)); }); sb.buffers().ForEachElement([&](const xla::ShapeIndex& index, const se::DeviceMemoryBase& buffer) { if ((index.size() >= subtree_index.size()) && ShapeIndexView(index).first(subtree_index.size()) == subtree_index) { EXPECT_TRUE(buffer.is_null()); } else { EXPECT_TRUE(buffers.find(index)->second.IsSameAs(buffer)); } }); } TEST(ScopedShapedBufferTest, TestSubShapeTree) { Shape array_shape = ShapeUtil::MakeShape(F32, {1}); Shape tuple_shape = xla::ShapeUtil::MakeTupleShape({array_shape, array_shape}); TestAllocator allocator; ScopedShapedBuffer sb(tuple_shape, &allocator, 0); sb.buffers().ForEachMutableElement( [&](const xla::ShapeIndex& index, se::DeviceMemoryBase* buffer) { TF_ASSERT_OK_AND_ASSIGN( se::OwningDeviceMemory m, allocator.Allocate(0, 32)); *buffer = m.Release(); }); auto ssb_statusor = sb.SubShapedBuffer({1}); ASSERT_TRUE(ssb_statusor.ok()); auto ssb = std::move(ssb_statusor).value(); EXPECT_EQ(ssb.on_host_shape(), array_shape); EXPECT_EQ(ssb.on_device_shape(), array_shape); } void BM_TakeSubTree(::testing::benchmark::State& state) { const int depth = state.range(0); const int fan_out = state.range(1); TestAllocator allocator; xla::Shape shape = xla::ShapeUtil::MakeShape(xla::F32, {32, 64, 128}); for (int i = 0; i < depth; ++i) { std::vector<xla::Shape> shapes(fan_out, shape); shape = xla::ShapeUtil::MakeTupleShape(shapes); } xla::ScopedShapedBuffer shaped_buffer(shape, &allocator, 0); for (auto s : state) { (void)shaped_buffer.TakeSubTree({fan_out / 2}).release(); } } BENCHMARK(BM_TakeSubTree) ->ArgPair(1, 4) ->ArgPair(1, 8) ->ArgPair(1, 32) ->ArgPair(1, 64) ->ArgPair(1, 128) ->ArgPair(1, 256) ->ArgPair(1, 512) ->ArgPair(2, 4) ->ArgPair(2, 8) ->ArgPair(2, 32) ->ArgPair(2, 64) ->ArgPair(2, 128); } }
1,888
cpp
tensorflow/tensorflow
hlo_constant_folding
third_party/xla/xla/service/hlo_constant_folding.cc
third_party/xla/xla/service/hlo_constant_folding_test.cc
#ifndef XLA_SERVICE_HLO_CONSTANT_FOLDING_H_ #define XLA_SERVICE_HLO_CONSTANT_FOLDING_H_ #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class HloConstantFolding : public HloModulePass { public: absl::string_view name() const override { return "constant_folding"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: static std::atomic<int64_t> slow_op_counter_; }; } #endif #include "xla/service/hlo_constant_folding.h" #include <algorithm> #include <memory> #include <string> #include <utility> #include <vector> #include "xla/hlo/evaluator/hlo_evaluator.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/service/slow_operation_alarm.h" #include "xla/shape_util.h" #include "xla/types.h" #include "tsl/platform/errors.h" namespace xla { static bool IsOrContainsIllegalInstr(const HloInstruction* instr) { if (instr->opcode() == HloOpcode::kAfterAll || instr->opcode() == HloOpcode::kRng) { return true; } for (const HloComputation* c : instr->called_computations()) { if (absl::c_any_of(c->instructions(), IsOrContainsIllegalInstr)) { return true; } } return false; } std::atomic<int64_t> HloConstantFolding::slow_op_counter_{0}; absl::StatusOr<bool> HloConstantFolding::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { auto evaluator = std::make_unique<HloEvaluator>(0); evaluator->set_use_fast_path(true); std::vector<HloInstruction*> dead_instructions; for (auto* computation : module->MakeNonfusionComputations(execution_threads)) { for (auto* instruction : computation->MakeInstructionPostOrder()) { if (instruction->IsDead()) { continue; } if (!absl::c_any_of(instruction->operands(), HloPredicateIsOp<HloOpcode::kConstant>) || !absl::c_all_of( instruction->operands(), [](const HloInstruction* operand) { return operand->opcode() == HloOpcode::kConstant || (operand->opcode() == HloOpcode::kBroadcast && operand->operand(0)->opcode() == HloOpcode::kConstant); })) { continue; } if (instruction->opcode() == HloOpcode::kParameter || instruction->opcode() == HloOpcode::kConstant || instruction->opcode() == HloOpcode::kTuple) { continue; } if (instruction->opcode() == HloOpcode::kBroadcast || instruction->opcode() == HloOpcode::kIota) { continue; } if (instruction->IsAsynchronous() && instruction->async_execution_thread() != instruction->parent()->execution_thread()) { continue; } if (instruction->opcode() == HloOpcode::kFft) { continue; } if (IsOrContainsIllegalInstr(instruction)) { continue; } if (instruction->HasSideEffect()) { continue; } if (instruction->shape().IsArray()) { int64_t elements_in_operands = 0; for (HloInstruction* operand : instruction->operands()) { if (operand->shape().IsArray()) { elements_in_operands += ShapeUtil::ElementsIn(operand->shape()); } } int64_t elements_in_constant = ShapeUtil::ElementsIn(instruction->shape()); static const int64_t kMaximumConstantSizeElements = 45 * 1000 * 1000; if (std::max(elements_in_constant, elements_in_operands) > kMaximumConstantSizeElements) { continue; } } VLOG(5) << "Constant folding: " << instruction->ToString(); absl::Duration slow_timeout = absl::Seconds(uint64_t{1} << slow_op_counter_.load()); SlowOperationAlarm slow_alarm(slow_timeout, [instruction, slow_timeout] { const bool ndebug = #if NDEBUG true; #else false; #endif absl::string_view explanation_msg = ndebug ? "This isn't necessarily a bug; constant-folding is " "inherently a trade-off between compilation time and speed " "at runtime. XLA has some guards that attempt to keep " "constant folding from taking too long, but fundamentally " "you'll always be able to come up with an input program that " "takes a long time.\n\n" "If you'd like to file a bug, run with envvar " "XLA_FLAGS=--xla_dump_to=/tmp/foo and attach the results." : "XLA was built without compiler optimizations, which can be " "slow. Try rebuilding with -c opt."; return absl::StrFormat( "Constant folding an instruction is taking > %s:\n\n" " %s\n\n" "%s", absl::FormatDuration(slow_timeout), instruction->ToString(), explanation_msg); }); Literal result; if (!evaluator->TryEvaluate( instruction, &result, true)) { VLOG(2) << "Constant folding failed for instruction: " << instruction->ToString(); continue; } slow_alarm.cancel(); if (slow_alarm.fired()) { slow_op_counter_++; } VLOG(4) << "Constant folded: " << instruction->ToString(); dead_instructions.push_back(instruction); HloInstruction* new_constant = instruction->AddInstruction( HloInstruction::CreateConstant(std::move(result))); if (new_constant->shape().has_layout()) { new_constant->mutable_shape() ->mutable_layout() ->set_element_size_in_bits( instruction->shape().layout().element_size_in_bits()); } TF_RETURN_IF_ERROR(instruction->ReplaceAllUsesWith(new_constant)); } } const bool changed = !dead_instructions.empty(); for (HloInstruction* dead_instruction : dead_instructions) { CHECK(dead_instruction->IsDead()); HloComputation* computation = dead_instruction->parent(); TF_RETURN_IF_ERROR(computation->RemoveInstruction(dead_instruction)); } return changed; } }
#include "xla/service/hlo_constant_folding.h" #include <memory> #include <utility> #include <vector> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/permutation_util.h" #include "xla/service/hlo_parser.h" #include "xla/service/hlo_pass_fix.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/types.h" #include "xla/xla_data.pb.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; namespace m = xla::match; using HloConstantFoldingTest = HloTestBase; TEST_F(HloConstantFoldingTest, ConvertF32ToS64) { HloComputation::Builder builder(TestName()); HloInstruction* input = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); builder.AddInstruction( HloInstruction::CreateConvert(ShapeUtil::MakeShape(S64, {}), input)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Convert().WithOperand(0, m::Op().Is(input)))); HloConstantFolding const_folder; TF_ASSERT_OK_AND_ASSIGN(bool result, const_folder.Run(module.get())); EXPECT_TRUE(result); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Constant())); EXPECT_EQ( computation->root_instruction()->literal().GetFirstElement<int64_t>(), 42); } TEST_F(HloConstantFoldingTest, ConvertS64ToF32) { HloComputation::Builder builder(TestName()); HloInstruction* input = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int64_t>(42))); builder.AddInstruction( HloInstruction::CreateConvert(ShapeUtil::MakeShape(F32, {}), input)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Convert().WithOperand(0, m::Op().Is(input)))); HloConstantFolding const_folder; TF_ASSERT_OK_AND_ASSIGN(bool result, const_folder.Run(module.get())); EXPECT_TRUE(result); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Constant())); EXPECT_EQ(computation->root_instruction()->literal().GetFirstElement<float>(), 42.0f); } TEST_F(HloConstantFoldingTest, ConvertF32ArrayToS64Array) { HloComputation::Builder builder(TestName()); HloInstruction* input = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({42.0f, 19.0f}))); builder.AddInstruction( HloInstruction::CreateConvert(ShapeUtil::MakeShape(S64, {2}), input)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Convert().WithOperand(0, m::Op().Is(input)))); HloConstantFolding const_folder; TF_ASSERT_OK_AND_ASSIGN(bool result, const_folder.Run(module.get())); EXPECT_TRUE(result); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Constant())); EXPECT_EQ(computation->root_instruction()->literal().Get<int64_t>({0}), 42); EXPECT_EQ(computation->root_instruction()->literal().Get<int64_t>({1}), 19); } TEST_F(HloConstantFoldingTest, Concatenate) { const struct TestConfig { int concat_dimension; std::vector<int64_t> dimensions; std::vector<int64_t> concat_sizes; } test_configs[] = { {1, {11, 0, 7, 5, 9}, {2, 5, 7, 11}}, {3, {1, 4, 17, 0, 8}, {1, 3, 9, 12}}, }; for (auto& test_config : test_configs) { HloComputation::Builder builder(TestName()); std::vector<int64_t> dimensions(test_config.dimensions.begin(), test_config.dimensions.end()); int64_t concat_size = 0; std::vector<HloInstruction*> operands; for (auto csize : test_config.concat_sizes) { dimensions[test_config.concat_dimension] = csize; concat_size += csize; auto literal = LiteralUtil::CreateFromDimensions(F32, dimensions); HloInstruction* insn = builder.AddInstruction( HloInstruction::CreateConstant(std::move(literal))); operands.push_back(insn); } dimensions[test_config.concat_dimension] = concat_size; Shape shape = ShapeUtil::MakeShape(F32, dimensions); builder.AddInstruction(HloInstruction::CreateConcatenate( shape, operands, test_config.concat_dimension)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); HloConstantFolding const_folder; TF_ASSERT_OK_AND_ASSIGN(bool result, const_folder.Run(module.get())); EXPECT_TRUE(result); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Constant())); EXPECT_TRUE(ShapeUtil::Equal(root->shape(), shape)); } } TEST_F(HloConstantFoldingTest, Slice) { HloComputation::Builder builder(TestName()); const int64_t dimensions[] = {11, 8, 7, 5, 9}; const int64_t slice_start[] = {4, 2, 3, 1, 5}; const int64_t slice_limits[] = {10, 8, 6, 5, 9}; const int64_t slice_strides[] = {1, 1, 1, 1, 1}; TF_ASSERT_OK_AND_ASSIGN(auto literal, LiteralUtil::CreateRandomLiteral<F32>( ShapeUtil::MakeShape(F32, dimensions), 0.0, 1.0)); HloInstruction* literal_instruction = builder.AddInstruction( HloInstruction::CreateConstant(std::move(literal))); Shape shape = ShapeUtil::MakeShape(F32, {6, 6, 3, 4, 4}); builder.AddInstruction(HloInstruction::CreateSlice( shape, literal_instruction, slice_start, slice_limits, slice_strides)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); HloConstantFolding const_folder; TF_ASSERT_OK_AND_ASSIGN(bool result, const_folder.Run(module.get())); EXPECT_TRUE(result); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Constant())); EXPECT_TRUE(ShapeUtil::Equal(root->shape(), shape)); } TEST_F(HloConstantFoldingTest, TransposeConstantFold) { HloComputation::Builder builder(TestName()); const int64_t dimensions[] = {11, 8, 7, 5, 9}; TF_ASSERT_OK_AND_ASSIGN(auto literal, LiteralUtil::CreateRandomLiteral<F32>( ShapeUtil::MakeShape(F32, dimensions), 0.0, 1.0)); auto literal_clone = literal.Clone(); HloInstruction* literal_instruction = builder.AddInstruction( HloInstruction::CreateConstant(std::move(literal))); Shape shape = ShapeUtil::MakeShape(F32, {8, 7, 11, 9, 5}); const int64_t permutation[] = {1, 2, 0, 4, 3}; builder.AddInstruction( HloInstruction::CreateTranspose(shape, literal_instruction, permutation)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); HloConstantFolding const_folder; TF_ASSERT_OK_AND_ASSIGN(bool result, const_folder.Run(module.get())); EXPECT_TRUE(result); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Constant())); EXPECT_TRUE(ShapeUtil::Compatible(root->shape(), shape)); using NativeT = typename primitive_util::PrimitiveTypeToNative<F32>::type; bool matched = true; root->literal().EachCell<NativeT>( [&](absl::Span<const int64_t> indices, NativeT value) { std::vector<int64_t> rindexes = PermuteInverse(indices, permutation); matched = matched && (value == literal_clone.Get<NativeT>(rindexes)); }); EXPECT_TRUE(matched); } const char* const kConstantFoldReduce = R"( HloModule ConstantFoldReduce add { a = s32[] parameter(0) b = s32[] parameter(1) ROOT add = s32[] add(a, b) } ENTRY r { x = s32[3] constant({1, 2, 3}) init = s32[] constant(0) ROOT reduce = s32[] reduce(x, init), dimensions={0}, to_apply=add })"; TEST_F(HloConstantFoldingTest, ConstantFoldReduce) { TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kConstantFoldReduce)); HloConstantFolding const_folder; TF_ASSERT_OK_AND_ASSIGN(bool result, const_folder.Run(m.get())); EXPECT_TRUE(result); EXPECT_EQ(6, m->entry_computation() ->root_instruction() ->literal() .GetFirstElement<int32_t>()); } constexpr absl::string_view kConstantFoldReduceWithMetadata = R"( HloModule ConstantFoldReduce add { a = s32[] parameter(0) b = s32[] parameter(1) ROOT add = s32[] add(a, b) } ENTRY r { x = s32[3] constant({1, 2, 3}), metadata={op_name="constant"} init = s32[] constant(0), metadata={op_name="zero_constant"} ROOT reduce = s32[] reduce(x, init), metadata={op_name="reduce"}, dimensions={0}, to_apply=add })"; TEST_F(HloConstantFoldingTest, ConstantFoldReduceCheckMetadata) { TF_ASSERT_OK_AND_ASSIGN( auto m, ParseAndReturnVerifiedModule(kConstantFoldReduceWithMetadata)); HloConstantFolding const_folder; TF_ASSERT_OK_AND_ASSIGN(bool result, const_folder.Run(m.get())); EXPECT_TRUE(result); OpMetadata reduce_metadata; reduce_metadata.set_op_name("reduce"); EXPECT_THAT(m->entry_computation()->root_instruction(), AllOf(op::Constant(), op::Metadata(reduce_metadata))); } TEST_F(HloConstantFoldingTest, ConstantFoldReduceNoLayout) { TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kConstantFoldReduce)); HloInstruction* add = (*m->computations().begin())->root_instruction(); LayoutUtil::ClearLayout(add->mutable_shape()); HloConstantFolding const_folder; TF_ASSERT_OK_AND_ASSIGN(bool result, const_folder.Run(m.get())); EXPECT_FALSE(result); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Reduce())); } const char* const kConstantFoldLargePad = R"( HloModule ConstantFoldLargePad ENTRY r { a = f32[1,1,1] constant({{{7}}}) b = f32[] constant(42) ROOT pad = f32[2048,2048,128] pad(a, b), padding=1024_1023x1024_1023x64_63 })"; TEST_F(HloConstantFoldingTest, DoesNotFoldLargePad) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kConstantFoldLargePad)); HloConstantFolding const_folder; TF_ASSERT_OK_AND_ASSIGN(bool result, const_folder.Run(module.get())); EXPECT_FALSE(result); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Pad(m::Constant(), m::Constant()))); } TEST_F(HloConstantFoldingTest, DoesNotFoldSlicesWithLargeOperand) { const char* const kModuleStr = R"( HloModule test ENTRY r { a = f32[] constant(42) broadcast = f32[1000000000]{0} broadcast(a), dimensions={} slice1 = f32[10000]{0} slice(broadcast), slice={[0:10000]} slice2 = f32[10000]{0} slice(broadcast), slice={[10000:20000]} ROOT add = f32[10000]{0} add(slice1, slice2) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); HloConstantFolding const_folder; TF_ASSERT_OK_AND_ASSIGN(bool result, const_folder.Run(module.get())); EXPECT_FALSE(result); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Add(m::Slice(), m::Slice()))); } TEST_F(HloConstantFoldingTest, DontFoldSubcomputationContainingAfterAll) { const char* const kModuleStr = R"( HloModule test Fn { tok = token[] after-all() ROOT root = f32[10] iota(), iota_dimension=0 } ENTRY entry { ROOT call = f32[10] call(), to_apply=Fn })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); HloConstantFolding constant_folding; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&constant_folding, module.get())); EXPECT_FALSE(result); } TEST_F(HloConstantFoldingTest, DontFoldSubcomputationTransitivelyContainingRng) { const char* const kModuleStr = R"( HloModule test InnerFn { c0 = f32[] constant(0) c1 = f32[] constant(1) ROOT rng = f32[10] rng(c0, c1), distribution=rng_uniform } Fn { ROOT fusion = f32[10] fusion(), kind=kLoop, calls=InnerFn } ENTRY entry { ROOT call = f32[10] call(), to_apply=Fn })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); HloConstantFolding constant_folding; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&constant_folding, module.get())); EXPECT_FALSE(result); } TEST_F(HloConstantFoldingTest, FoldOpsWhereOneOperandIsBroadcast) { const char* const kModuleStr = R"( HloModule test ENTRY entry { not_folded1 = f32[4] broadcast(f32[] constant(1)) not_folded2 = add(f32[4] broadcast(f32[] constant(2)), f32[4] broadcast(f32[] constant(3))) folded1 = add(f32[4] broadcast(f32[] constant(5)), f32[4] constant({0,1,2,3})) folded2 = add(f32[4] constant({0,1,2,3}), f32[4] broadcast(f32[] constant(5))) ROOT root = tuple(not_folded1, not_folded2, folded1, folded2) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); HloConstantFolding constant_folding; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&constant_folding, module.get())); EXPECT_TRUE(result); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(m::Broadcast(m::Constant()), m::Add(m::Broadcast(m::Constant()), m::Broadcast(m::Constant())), m::Constant(), m::Constant() ))); } TEST_F(HloConstantFoldingTest, FoldInt4Ops) { const char* const kModuleStr = R"( HloModule test ENTRY entry { c0 = s4[2]{0:E(4)} constant({1, 2}) c1 = s4[2]{0:E(4)} constant({3, 4}) add1 = s4[2]{0:E(4)} add(c0, c1) c2 = s4[]{:E(4)} constant(5) add2 = s4[2]{0:E(4)} add(c0, s4[2]{0:E(4)} broadcast(c2)) ROOT root = tuple(add1, add2) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); HloConstantFolding constant_folding; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&constant_folding, module.get())); EXPECT_TRUE(result); auto is_4_bit = [](const HloInstruction* instr) { return instr->shape().layout().element_size_in_bits() == 4; }; EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(m::Constant().WithPredicate(is_4_bit), m::Constant().WithPredicate(is_4_bit)))); } TEST_F(HloConstantFoldingTest, BigReduceWindow) { constexpr absl::string_view kModuleStr = R"( HloModule test add_bf16 { lhs = bf16[] parameter(0) rhs = bf16[] parameter(1) ROOT add = bf16[] add(lhs, rhs) } ENTRY accumulated_all_reduce { x = bf16[160,10,10,512]{3,2,1,0} broadcast(bf16[] constant(1.0)) init = bf16[] constant(0) ROOT reduce-window = reduce-window(x, init), window={size=1x2x2x1 stride=1x2x2x1}, to_apply=add_bf16 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); HloConstantFolding constant_folding; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&constant_folding, module.get())); EXPECT_TRUE(result); } TEST_F(HloConstantFoldingTest, TimingConsumingTest) { constexpr absl::string_view mod_str = R"( HloModule jit_f, entry_computation_layout={()->f32[]} region_0.4 { Arg_0.5 = f32[] parameter(0) Arg_1.6 = f32[] parameter(1) ROOT add.7 = f32[] add(Arg_0.5, Arg_1.6) } ENTRY main.9 { constant.1 = f32[] constant(1) broadcast.2 = f32[32,999,40,512]{3,2,1,0} broadcast(constant.1), dimensions={} constant.3 = f32[] constant(0) ROOT reduce.8 = f32[] reduce(broadcast.2, constant.3), dimensions={0,1,2,3}, to_apply=region_0.4 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(mod_str)); HloConstantFolding const_fold; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&const_fold, module.get())); EXPECT_FALSE(result); } } }
1,889
cpp
tensorflow/tensorflow
gather_expander
third_party/xla/xla/service/gather_expander.cc
third_party/xla/xla/service/gather_expander_test.cc
#ifndef XLA_SERVICE_GATHER_EXPANDER_H_ #define XLA_SERVICE_GATHER_EXPANDER_H_ #include "xla/service/op_expander_pass.h" namespace xla { class GatherExpander : public OpExpanderPass { public: enum Mode { kEliminateAllGathers, kEliminateSimpleGathers, }; explicit GatherExpander(Mode m) : mode_(m) {} absl::string_view name() const override { return "gather_expander"; } protected: bool InstructionMatchesPattern(HloInstruction* instruction) override; absl::StatusOr<HloInstruction*> ExpandInstruction( HloInstruction* gather_inst) override; private: Mode mode_; }; } #endif #include "xla/service/gather_expander.h" #include <utility> #include "absl/algorithm/container.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/literal_util.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/while_util.h" #include "xla/util.h" namespace xla { namespace { absl::StatusOr<HloInstruction*> TransposeIndexVectorDimToLast( HloInstruction* start_indices, int64_t index_vector_dim) { const Shape& start_indices_shape = start_indices->shape(); if (start_indices_shape.dimensions_size() == index_vector_dim) { return start_indices; } if (index_vector_dim == (start_indices_shape.dimensions_size() - 1)) { return start_indices; } std::vector<int64_t> permutation; permutation.reserve(start_indices_shape.dimensions_size()); for (int64_t i = 0, e = start_indices_shape.dimensions_size(); i < e; i++) { if (i != index_vector_dim) { permutation.push_back(i); } } permutation.push_back(index_vector_dim); return MakeTransposeHlo(start_indices, permutation); } absl::StatusOr<HloInstruction*> CanonicalizeGatherIndices( HloInstruction* start_indices, int64_t index_vector_dim) { TF_ASSIGN_OR_RETURN( HloInstruction * transposed_start_indices, TransposeIndexVectorDimToLast(start_indices, index_vector_dim)); bool indices_are_scalar = index_vector_dim == start_indices->shape().dimensions_size(); const int64_t index_dims_in_start_indices = indices_are_scalar ? 0 : 1; const Shape& shape = transposed_start_indices->shape(); if (shape.dimensions_size() == index_dims_in_start_indices) { return PrependDegenerateDims(transposed_start_indices, 1); } else { return CollapseFirstNDims( transposed_start_indices, shape.dimensions_size() - index_dims_in_start_indices); } } absl::StatusOr<HloInstruction*> AdjustBatchDimsInAccumulator( const Shape& start_indices_shape, HloInstruction* accumulator, int64_t index_vector_dim) { std::vector<int64_t> batch_dim_bounds; batch_dim_bounds.reserve(start_indices_shape.dimensions_size()); for (int64_t i = 0, e = start_indices_shape.dimensions_size(); i < e; i++) { if (i != index_vector_dim) { batch_dim_bounds.push_back(start_indices_shape.dimensions(i)); } } if (batch_dim_bounds.empty()) { return ElideDegenerateDims(accumulator, {0}); } return ExpandFirstDimIntoNDims(accumulator, batch_dim_bounds); } absl::StatusOr<HloInstruction*> ExpandIndexVectorIntoOperandSpace( HloInstruction* index_vector, const GatherDimensionNumbers& dim_numbers, int64_t operand_rank) { HloComputation* computation = index_vector->parent(); const Shape& index_shape = index_vector->shape(); if (operand_rank == 0) { return computation->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateFromDimensions(index_shape.element_type(), {0}))); } HloInstruction* zero = computation->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateFromDimensions(index_shape.element_type(), {1}))); std::vector<HloInstruction*> expanded_index_components; for (int i = 0; i < operand_rank; i++) { int64_t index_vector_dim_index = FindIndex(dim_numbers.start_index_map(), i); if (index_vector_dim_index != dim_numbers.start_index_map_size()) { TF_ASSIGN_OR_RETURN( HloInstruction * component_to_concat, MakeSliceHlo(index_vector, {index_vector_dim_index}, {index_vector_dim_index + 1}, {1})); expanded_index_components.push_back(component_to_concat); } else { expanded_index_components.push_back(zero); } } return MakeConcatHlo(expanded_index_components, 0); } absl::StatusOr<std::vector<HloInstruction*>> GatherLoopBody( const HloInstruction& gather, HloInstruction* induction_var, const std::vector<HloInstruction*>& incoming_loop_state) { const GatherDimensionNumbers& dim_numbers = gather.gather_dimension_numbers(); CHECK_EQ(incoming_loop_state.size(), 3); HloInstruction* const operand = incoming_loop_state[0]; HloInstruction* const start_indices = incoming_loop_state[1]; HloInstruction* const output_accumulator = incoming_loop_state[2]; bool has_scalar_indices = start_indices->shape().dimensions_size() == 1; CHECK_EQ(has_scalar_indices, dim_numbers.index_vector_dim() == gather.operand(1)->shape().dimensions_size()); HloInstruction* induction_var_as_vector = MakeBroadcastHlo(induction_var, {}, {1}); HloInstruction* index_vector; if (has_scalar_indices) { TF_ASSIGN_OR_RETURN( index_vector, MakeDynamicSliceHlo(start_indices, induction_var_as_vector, {1})); } else { TF_ASSIGN_OR_RETURN( HloInstruction * index_into_start_indices, PadVectorWithZeros(induction_var_as_vector, 0, 1)); int64_t index_vector_size = start_indices->shape().dimensions(1); TF_ASSIGN_OR_RETURN( HloInstruction * index_vector_2d, MakeDynamicSliceHlo(start_indices, index_into_start_indices, {1, index_vector_size})); TF_ASSIGN_OR_RETURN(index_vector, ElideDegenerateDims(index_vector_2d, {0})); } TF_ASSIGN_OR_RETURN( HloInstruction * gathered_slice_start, ExpandIndexVectorIntoOperandSpace(index_vector, dim_numbers, operand->shape().dimensions_size())); TF_ASSIGN_OR_RETURN(HloInstruction * gathered_slice, MakeDynamicSliceHlo(operand, gathered_slice_start, gather.gather_slice_sizes())); TF_ASSIGN_OR_RETURN( HloInstruction* const gathered_slice_with_dims_collapsed, ElideDegenerateDims(gathered_slice, dim_numbers.collapsed_slice_dims())); TF_ASSIGN_OR_RETURN( HloInstruction* const gathered_slice_for_update, PrependDegenerateDims(gathered_slice_with_dims_collapsed, 1)); TF_ASSIGN_OR_RETURN( HloInstruction* const index_vector_into_accumulator, PadVectorWithZeros( induction_var_as_vector, 0, gathered_slice_with_dims_collapsed->shape().dimensions_size())); TF_ASSIGN_OR_RETURN( HloInstruction* const updated_accumulator, MakeDynamicUpdateSliceHlo(output_accumulator, gathered_slice_for_update, index_vector_into_accumulator)); return absl::StatusOr<std::vector<HloInstruction*>>{ {operand, start_indices, updated_accumulator}}; } HloInstruction* CreateGatherLoopAccumulatorInitValue( HloComputation* computation, PrimitiveType element_type, absl::Span<const int64_t> slice_sizes, int64_t gather_loop_trip_count, const GatherDimensionNumbers& dim_numbers) { std::vector<int64_t> accumulator_state_shape_dims; accumulator_state_shape_dims.reserve(1 + slice_sizes.size()); accumulator_state_shape_dims.push_back(gather_loop_trip_count); for (int64_t i = 0; i < slice_sizes.size(); i++) { if (!absl::c_binary_search(dim_numbers.collapsed_slice_dims(), i)) { accumulator_state_shape_dims.push_back(slice_sizes[i]); } } return BroadcastZeros(computation, element_type, accumulator_state_shape_dims); } absl::StatusOr<HloInstruction*> PermuteBatchAndOffsetDims( HloInstruction* accumulator, absl::Span<const int64_t> offset_dims, int64_t output_rank) { std::vector<int64_t> permutation; permutation.reserve(output_rank); int64_t batch_idx_counter = 0; int64_t offset_idx_counter = output_rank - offset_dims.size(); for (int64_t i = 0; i < output_rank; i++) { bool is_offset_dim = absl::c_binary_search(offset_dims, i); if (is_offset_dim) { permutation.push_back(offset_idx_counter++); } else { permutation.push_back(batch_idx_counter++); } } return MakeTransposeHlo(accumulator, permutation); } int64_t GatherLoopTripCount(HloInstruction* gather_instr) { HloInstruction* start_indices = gather_instr->mutable_operand(1); const Shape& start_indices_shape = start_indices->shape(); const GatherDimensionNumbers& dim_numbers = gather_instr->gather_dimension_numbers(); int64_t trip_count = 1; for (int64_t i = 0, e = start_indices_shape.dimensions_size(); i < e; i++) { if (i != dim_numbers.index_vector_dim()) { trip_count *= start_indices_shape.dimensions(i); } } return trip_count; } int64_t GatherIsBroadcast(HloInstruction* gather_instr) { return absl::c_equal(gather_instr->gather_slice_sizes(), gather_instr->operand(0)->shape().dimensions()); } } absl::StatusOr<HloInstruction*> GatherExpander::ExpandInstruction( HloInstruction* gather_instr) { CHECK(!ShapeUtil::IsZeroElementArray(gather_instr->shape())); if (GatherIsBroadcast(gather_instr)) { if (ShapeUtil::IsZeroElementArray(gather_instr->operand(0)->shape())) { return MakeScalarLike(gather_instr, 0); } Shape broadcast_operand_shape = ShapeUtil::DeleteDimensions( gather_instr->gather_dimension_numbers().collapsed_slice_dims(), gather_instr->operand(0)->shape()); TF_ASSIGN_OR_RETURN(HloInstruction * broadcast_operand, MakeReshapeHlo(broadcast_operand_shape, gather_instr->mutable_operand(0))); gather_instr->SetupDerivedInstruction(broadcast_operand); HloInstruction* broadcast = MakeBroadcastHlo(broadcast_operand, gather_instr->gather_dimension_numbers().offset_dims(), gather_instr->shape()); gather_instr->SetupDerivedInstruction(broadcast); return broadcast; } HloComputation* computation = gather_instr->parent(); HloInstruction* operand = gather_instr->mutable_operand(0); HloInstruction* start_indices = gather_instr->mutable_operand(1); const Shape& output_shape = gather_instr->shape(); int64_t output_rank = output_shape.dimensions_size(); const GatherDimensionNumbers& dim_numbers = gather_instr->gather_dimension_numbers(); int64_t gather_loop_trip_count = GatherLoopTripCount(gather_instr); if (!IsInt32(gather_loop_trip_count)) { return Unimplemented( "Gather operations with more than 2147483647 gather indices are not " "supported. This error occurred for %s.", gather_instr->ToString()); } TF_ASSIGN_OR_RETURN( HloInstruction * canonical_start_indices, CanonicalizeGatherIndices(start_indices, dim_numbers.index_vector_dim())); CHECK_EQ(gather_loop_trip_count, canonical_start_indices->shape().dimensions(0)); HloInstruction* accumulator_init = CreateGatherLoopAccumulatorInitValue( computation, output_shape.element_type(), gather_instr->gather_slice_sizes(), gather_loop_trip_count, gather_instr->gather_dimension_numbers()); absl::StatusOr<std::vector<HloInstruction*>> gather_loop_result_or_error = WhileUtil::MakeCountedLoop( computation, gather_loop_trip_count, {operand, canonical_start_indices, accumulator_init}, [&](HloInstruction* indvar, const std::vector<HloInstruction*>& loop_state) { return GatherLoopBody(*gather_instr, indvar, loop_state); }, gather_instr->metadata()); TF_ASSIGN_OR_RETURN(std::vector<HloInstruction*> gather_loop_result, gather_loop_result_or_error); HloInstruction* accumulator_result = gather_loop_result.back(); TF_ASSIGN_OR_RETURN( HloInstruction* const accumulator_with_batch_dims_decanonicalized, AdjustBatchDimsInAccumulator(start_indices->shape(), accumulator_result, dim_numbers.index_vector_dim())); return PermuteBatchAndOffsetDims(accumulator_with_batch_dims_decanonicalized, dim_numbers.offset_dims(), output_rank); } bool GatherExpander::InstructionMatchesPattern(HloInstruction* inst) { return inst->opcode() == HloOpcode::kGather && !ShapeUtil::IsZeroElementArray(inst->shape()) && (mode_ == kEliminateAllGathers || GatherLoopTripCount(inst) == 1 || absl::c_equal(inst->gather_slice_sizes(), inst->operand(0)->shape().dimensions())); } }
#include "xla/service/gather_expander.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/test_macros.h" namespace xla { namespace { using GatherExpanderTest = HloTestBase; TEST_F(GatherExpanderTest, ErrorStatusOnTooManyIndices) { const std::string hlo_text = R"( HloModule TensorFlowGatherMultipleBatchDims ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2147483647,5] parameter(1) ROOT gather = s32[2147483647,3,5] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={1}, start_index_map={1}, index_vector_dim=2, slice_sizes={3, 1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); absl::Status status = GatherExpander{GatherExpander::kEliminateAllGathers} .Run(module.get()) .status(); EXPECT_EQ(status.code(), tsl::error::UNIMPLEMENTED); ASSERT_THAT( status.message(), ::testing::HasSubstr("Gather operations with more than 2147483647 gather " "indices are not supported.")); } TEST_F(GatherExpanderTest, AvoidDegenerateDims) { const std::string hlo_text = R"( HloModule TensorFlowGatherV2 ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) ROOT gather = s32[3,2] gather(operand, indices), offset_dims={0}, collapsed_slice_dims={1}, start_index_map={1}, index_vector_dim=1, slice_sizes={3, 1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN( bool changed, GatherExpander{GatherExpander::kEliminateAllGathers}.Run(module.get())); ASSERT_TRUE(changed); HloInstruction* while_instr = nullptr; for (auto* instr : module->entry_computation()->instructions()) { if (instr->opcode() == HloOpcode::kWhile) { ASSERT_EQ(while_instr, nullptr) << "Expected exactly one while instruction in the entry computation " "after gather expansion"; while_instr = instr; } } ASSERT_NE(while_instr, nullptr) << "Expected exactly one while instruction in the entry computation " "after gather expansion"; const Shape& while_shape = while_instr->shape(); ASSERT_TRUE(while_shape.IsTuple()); ASSERT_EQ(ShapeUtil::TupleElementCount(while_shape), 4); EXPECT_TRUE(ShapeUtil::SameDimensions( ShapeUtil::MakeShape(S32, {3, 3}), ShapeUtil::GetTupleElementShape(while_shape, 1))); EXPECT_TRUE(ShapeUtil::SameDimensions( ShapeUtil::MakeShape(S32, {2}), ShapeUtil::GetTupleElementShape(while_shape, 2))); EXPECT_TRUE(ShapeUtil::SameDimensions( ShapeUtil::MakeShape(S32, {2, 3}), ShapeUtil::GetTupleElementShape(while_shape, 3))); } TEST_F(GatherExpanderTest, CheckOpMetadata) { const std::string hlo_text = R"( HloModule TensorFlowGatherV2 ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) ROOT gather = s32[3,2] gather(operand, indices), offset_dims={0}, collapsed_slice_dims={1}, start_index_map={1}, index_vector_dim=1, slice_sizes={3, 1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); OpMetadata metadata; metadata.set_op_name("Gather"); module->entry_computation()->root_instruction()->set_metadata(metadata); TF_ASSERT_OK_AND_ASSIGN( bool changed, GatherExpander{GatherExpander::kEliminateAllGathers}.Run(module.get())); ASSERT_TRUE(changed); HloInstruction* while_instr = nullptr; for (auto* instr : module->entry_computation()->instructions()) { if (instr->opcode() == HloOpcode::kWhile) { ASSERT_EQ(while_instr, nullptr) << "Expected exactly one while instruction in the entry computation " "after gather expansion"; while_instr = instr; } } ASSERT_NE(while_instr, nullptr) << "Expected exactly one while instruction in the entry computation " "after gather expansion"; EXPECT_EQ(while_instr->metadata().op_name(), "Gather"); } TEST_F(GatherExpanderTest, EliminateSimpleGathersSkipsNontrivialGather) { const std::string hlo_text = R"( HloModule TensorFlowGatherV1 ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) ROOT gather = s32[2,3] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1, slice_sizes={1, 3} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GatherExpander pass(GatherExpander::kEliminateSimpleGathers); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); ASSERT_FALSE(changed); } TEST_F(GatherExpanderTest, EliminateSimpleGathersRewritesTrivialGather) { const std::string hlo_text = R"( HloModule test ENTRY main { operand = s32[100] parameter(0) indices = s32[1] parameter(1) ROOT gather = s32[10] gather(operand, indices), offset_dims={0}, collapsed_slice_dims={}, start_index_map={0}, index_vector_dim=0, slice_sizes={10} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GatherExpander pass(GatherExpander::kEliminateAllGathers); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); ASSERT_TRUE(changed); ASSERT_FALSE(hlo_query::ContainsInstrWithOpcode(module->entry_computation(), {HloOpcode::kGather})); } TEST_F(GatherExpanderTest, GatherIsBroadcast) { const std::string hlo_text = R"( HloModule test ENTRY main { operand = s32[1,3] parameter(0) indices = s32[7,5] parameter(1) ROOT gather = s32[7,3,5] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=2, slice_sizes={1,3} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_text)); GatherExpander pass(GatherExpander::kEliminateSimpleGathers); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); ASSERT_TRUE(changed); ASSERT_FALSE(hlo_query::ContainsInstrWithOpcode(module->entry_computation(), {HloOpcode::kGather})); ASSERT_TRUE(hlo_query::ContainsInstrWithOpcode(module->entry_computation(), {HloOpcode::kBroadcast})); module->VerifyOrAddFailure("after-gather-expander."); } } }
1,890
cpp
tensorflow/tensorflow
stable_sort_expander
third_party/xla/xla/service/stable_sort_expander.cc
third_party/xla/xla/service/stable_sort_expander_test.cc
#ifndef XLA_SERVICE_STABLE_SORT_EXPANDER_H_ #define XLA_SERVICE_STABLE_SORT_EXPANDER_H_ #include <cstdint> #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/op_expander_pass.h" namespace xla { class StableSortExpander : public OpExpanderPass { public: absl::string_view name() const override { return "stable-sort-expander"; } static int64_t IotaOperandIndexForStableSort(const HloSortInstruction& sort); private: bool InstructionMatchesPattern(HloInstruction* instruction) override; absl::StatusOr<HloInstruction*> ExpandInstruction( HloInstruction* instruction) override; }; } #endif #include "xla/service/stable_sort_expander.h" #include <cstdint> #include <limits> #include <memory> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" namespace xla { int64_t StableSortExpander::IotaOperandIndexForStableSort( const HloSortInstruction& sort) { for (const HloInstruction* operand : sort.operands()) { if (operand->opcode() == HloOpcode::kIota && Cast<HloIotaInstruction>(operand)->iota_dimension() == sort.sort_dimension() && operand->shape().element_type() == S32) { return sort.operand_index(operand); } } return -1; } absl::StatusOr<HloInstruction*> StableSortExpander::ExpandInstruction( HloInstruction* instruction) { auto* sort = Cast<HloSortInstruction>(instruction); HloComputation* computation = sort->parent(); HloInstruction* expanded_sort = nullptr; absl::flat_hash_set<int64_t> used_indices; int64_t iota_index = IotaOperandIndexForStableSort(*sort); if (iota_index == -1) { Shape iota_shape = sort->operand(0)->shape(); if (iota_shape.dimensions(sort->sort_dimension()) > std::numeric_limits<int32_t>::max()) { return Unimplemented( "Stable sorting of more than 2^31-1 elements is not implemented"); } iota_shape.set_element_type(S32); auto iota = computation->AddInstruction( HloInstruction::CreateIota(iota_shape, sort->sort_dimension())); auto comparator = sort->to_apply(); absl::flat_hash_map<const HloInstruction*, std::unique_ptr<HloInstruction>> replacements; std::vector<std::unique_ptr<HloInstruction>> extra_parameters; std::vector<HloInstruction*> extra_parameter_ptrs; Shape scalar_shape = ShapeUtil::MakeShape(S32, {}); extra_parameters.push_back(HloInstruction::CreateParameter( sort->operand_count() * 2, scalar_shape, absl::StrCat("p.", sort->operand_count(), ".lhs"))); extra_parameter_ptrs.push_back(extra_parameters.back().get()); extra_parameters.push_back(HloInstruction::CreateParameter( sort->operand_count() * 2 + 1, scalar_shape, absl::StrCat("p.", sort->operand_count(), ".rhs"))); extra_parameter_ptrs.push_back(extra_parameters.back().get()); sort->set_to_apply(sort->GetModule()->AddEmbeddedComputation( comparator->CloneWithReplacements(&replacements, extra_parameter_ptrs))); std::vector<HloInstruction*> new_operands(sort->operands().begin(), sort->operands().end()); new_operands.push_back(iota); std::vector<Shape> new_shapes = sort->operand_count() == 1 ? std::vector<Shape>{sort->shape()} : sort->shape().tuple_shapes(); new_shapes.push_back(iota_shape); Shape new_sort_shape = ShapeUtil::MakeTupleShape(new_shapes); HloInstruction* new_sort = computation->AddInstruction( sort->CloneWithNewOperands(new_sort_shape, new_operands)); std::vector<HloInstruction*> tuple_elements; tuple_elements.reserve(sort->operand_count()); for (int64_t i = 0; i < sort->operand_count(); ++i) { tuple_elements.push_back( computation->AddInstruction(HloInstruction::CreateGetTupleElement( sort->operand(i)->shape(), new_sort, i))); } expanded_sort = tuple_elements[0]; if (tuple_elements.size() > 1) { expanded_sort = computation->AddInstruction( HloInstruction::CreateTuple(tuple_elements)); } sort = Cast<HloSortInstruction>(new_sort); iota_index = sort->operand_count() - 1; } auto comparator = sort->to_apply(); std::vector<HloInstruction*> instructions_postorder = comparator->MakeInstructionPostOrder(); absl::flat_hash_map<HloInstruction*, HloInstruction*> replacements; auto replace = [&](HloInstruction* instr) { auto it = replacements.find(instr); if (it == replacements.end()) { return instr; } return it->second; }; HloInstruction* old_root = comparator->root_instruction(); for (int64_t i = 0; i < comparator->num_parameters(); ++i) { replacements[comparator->parameter_instruction(i)] = comparator->parameter_instruction(i ^ 1); } HloInstruction* cloned_root = nullptr; for (HloInstruction* inst : instructions_postorder) { if (inst->operand_count() == 0) { continue; } std::vector<HloInstruction*> new_operands; new_operands.reserve(inst->operand_count()); for (HloInstruction* operand : inst->operands()) { new_operands.push_back(replace(operand)); } auto new_instruction = inst->CloneWithNewOperands(inst->shape(), new_operands); replacements[inst] = new_instruction.get(); if (inst == old_root) { cloned_root = new_instruction.get(); } comparator->AddInstruction(std::move(new_instruction)); } CHECK_NE(cloned_root, nullptr); Shape scalar_pred = ShapeUtil::MakeShape(PRED, {}); HloInstruction* same = comparator->AddInstruction(HloInstruction::CreateCompare( scalar_pred, old_root, cloned_root, ComparisonDirection::kEq)); HloInstruction* tie_breaker = comparator->AddInstruction(HloInstruction::CreateCompare( scalar_pred, comparator->parameter_instruction(2 * iota_index), comparator->parameter_instruction(2 * iota_index + 1), ComparisonDirection::kLt)); HloInstruction* new_root = comparator->AddInstruction(HloInstruction::CreateTernary( ShapeUtil::MakeShape(PRED, {}), HloOpcode::kSelect, same, tie_breaker, old_root)); comparator->set_root_instruction(new_root); return expanded_sort; } bool StableSortExpander::InstructionMatchesPattern( HloInstruction* instruction) { return instruction->opcode() == HloOpcode::kSort && Cast<HloSortInstruction>(instruction)->is_stable(); } }
#include "xla/service/stable_sort_expander.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/algebraic_simplifier.h" #include "xla/service/hlo_parser.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" namespace xla { namespace { namespace m = match; using StableSortExpanderTest = HloTestBase; bool IsSameComputationExceptParams(const HloInstruction* a, const HloInstruction* b) { if (a->opcode() != b->opcode() || a->operand_count() != b->operand_count()) { return false; } if (a->opcode() == HloOpcode::kParameter) { return a->parameter_number() == (b->parameter_number() ^ 1); } if (a->operand_count() == 0) { return a == b; } for (int64_t i = 0; i < a->operand_count(); ++i) { if (!IsSameComputationExceptParams(a->operand(i), b->operand(i))) { return false; } } return true; } void CheckComputationHasTieBreaker(const HloInstruction* root, int64_t iota_parameter) { ASSERT_EQ(root->opcode(), HloOpcode::kSelect); ASSERT_EQ(root->operand(0)->opcode(), HloOpcode::kCompare); ASSERT_EQ(root->operand(0)->comparison_direction(), ComparisonDirection::kEq); EXPECT_THAT(root->operand(1), GmockMatch(m::Lt(m::Parameter(iota_parameter * 2), m::Parameter(iota_parameter * 2 + 1)))); EXPECT_EQ(root->operand(2), root->operand(0)->operand(0)); EXPECT_TRUE(IsSameComputationExceptParams(root->operand(0)->operand(0), root->operand(0)->operand(1))); } TEST_F(StableSortExpanderTest, StabilizeSortReuseIotaOperand) { const char* hlo_string = R"( HloModule permutation_sort compare { p.0.lhs = f32[] parameter(0) p.0.rhs = f32[] parameter(1) p.1.lhs = s32[] parameter(2) p.1.rhs = s32[] parameter(3) ROOT lt = pred[] compare(p.0.lhs, p.0.rhs), direction=LT } ENTRY sort_computation { keys = f32[64,8732]{1,0} parameter(0) values = s32[64,8732]{1,0} iota(), iota_dimension=1 sort = (f32[64,8732]{1,0}, s32[64,8732]{1,0}) sort(keys, values), dimensions={1}, to_apply=compare, is_stable=true ROOT gte = f32[64,8732]{1,0} get-tuple-element(sort), index=0 })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); StableSortExpander stabilizer; EXPECT_TRUE(stabilizer.Run(module.get()).value()); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::GetTupleElement( m::Sort(m::Parameter(0), m::Iota()), 0))); CheckComputationHasTieBreaker( root->operand(0)->to_apply()->root_instruction(), 1); } TEST_F(StableSortExpanderTest, StabilizeSortReuseIotaOperandComplicatedComparison) { const char* hlo_string = R"( HloModule permutation_sort compare { p.0.lhs = f32[] parameter(0) p.0.rhs = f32[] parameter(1) p.1.lhs = s32[] parameter(2) p.1.rhs = s32[] parameter(3) max = u32[] constant(2147483647) zero = s32[] constant(0) lhs.signed = s32[] bitcast-convert(p.0.lhs) lhs.unsigned = u32[] bitcast-convert(p.0.lhs) lhs.flipped = u32[] subtract(max, lhs.unsigned) lhs.flipped.signed = s32[] bitcast-convert(lhs.flipped) lhs.is_negative = pred[] compare(lhs.flipped.signed, zero), direction=LT lhs.converted = s32[] select(lhs.is_negative, lhs.flipped.signed, lhs.signed) rhs.signed = s32[] bitcast-convert(p.0.rhs) rhs.unsigned = u32[] bitcast-convert(p.0.rhs) rhs.flipped = u32[] subtract(max, rhs.unsigned) rhs.flipped.signed = s32[] bitcast-convert(rhs.flipped) rhs.is_negative = pred[] compare(rhs.flipped.signed, zero), direction=LT rhs.converted = s32[] select(rhs.is_negative, rhs.flipped.signed, rhs.signed) ROOT lt = pred[] compare(lhs.converted, rhs.converted), direction=LT } ENTRY sort_computation { keys = f32[64,8732]{1,0} parameter(0) values = s32[64,8732]{1,0} iota(), iota_dimension=1 sort = (f32[64,8732]{1,0}, s32[64,8732]{1,0}) sort(keys, values), dimensions={1}, to_apply=compare, is_stable=true ROOT gte = f32[64,8732]{1,0} get-tuple-element(sort), index=0 })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); StableSortExpander stabilizer; EXPECT_TRUE(stabilizer.Run(module.get()).value()); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::GetTupleElement( m::Sort(m::Parameter(0), m::Iota()), 0))); CheckComputationHasTieBreaker( root->operand(0)->to_apply()->root_instruction(), 1); } TEST_F(StableSortExpanderTest, StabilizeSortAddIotaOperandAndChangeRoot) { const char* hlo_string = R"( HloModule permutation_sort compare { p.0.lhs = f32[] parameter(0) p.0.rhs = f32[] parameter(1) p.1.lhs = s32[] parameter(2) p.1.rhs = s32[] parameter(3) ROOT lt = pred[] compare(p.0.lhs, p.0.rhs), direction=LT } ENTRY sort_computation { keys = f32[64,8732]{1,0} parameter(0) values = s32[64,8732]{1,0} parameter(1) ROOT sort = (f32[64,8732]{1,0}, s32[64,8732]{1,0}) sort(keys, values), dimensions={1}, to_apply=compare, is_stable=true })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); StableSortExpander stabilizer; EXPECT_TRUE(stabilizer.Run(module.get()).value()); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, GmockMatch(m::Tuple( m::GetTupleElement( m::Sort(m::Parameter(0), m::Parameter(1), m::Iota()), 0), m::GetTupleElement( m::Sort(m::Parameter(0), m::Parameter(1), m::Iota()), 1)))); CheckComputationHasTieBreaker( root->operand(0)->operand(0)->to_apply()->root_instruction(), 2); } TEST_F(StableSortExpanderTest, HonorIsStableFlag) { const char* hlo_string = R"( HloModule permutation_sort compare { p.0.lhs = f32[] parameter(0) p.0.rhs = f32[] parameter(1) p.1.lhs = s32[] parameter(2) p.1.rhs = s32[] parameter(3) ROOT lt = pred[] compare(p.0.lhs, p.0.rhs), direction=LT } ENTRY sort_computation { keys = f32[64,8732]{1,0} parameter(0) values = s32[64,8732]{1,0} iota(), iota_dimension=1 sort = (f32[64,8732]{1,0}, s32[64,8732]{1,0}) sort(keys, values), dimensions={1}, to_apply=compare, is_stable=false ROOT gte = f32[64,8732]{1,0} get-tuple-element(sort), index=0 })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); StableSortExpander stabilizer; EXPECT_FALSE(stabilizer.Run(module.get()).value()); } TEST_F(StableSortExpanderTest, StabilizeSortDontReuseIotaOperandWrongDimension) { const char* hlo_string = R"( HloModule permutation_sort compare { p.0.lhs = f32[] parameter(0) p.0.rhs = f32[] parameter(1) p.1.lhs = s32[] parameter(2) p.1.rhs = s32[] parameter(3) ROOT lt = pred[] compare(p.0.lhs, p.0.rhs), direction=LT } ENTRY sort_computation { keys = f32[64,8732]{1,0} parameter(0) values = s32[64,8732]{1,0} iota(), iota_dimension=0 sort = (f32[64,8732]{1,0}, s32[64,8732]{1,0}) sort(keys, values), dimensions={1}, to_apply=compare, is_stable=true ROOT gte = f32[64,8732]{1,0} get-tuple-element(sort), index=0 })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); StableSortExpander stabilizer; EXPECT_TRUE(stabilizer.Run(module.get()).value()); AlgebraicSimplifier simplifier(AlgebraicSimplifierOptions( [](const Shape&, const Shape&) { return false; })); ASSERT_TRUE(simplifier.Run(module.get()).value()); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::GetTupleElement( m::Sort(m::Parameter(0), m::Iota(), m::Iota()), 0))); CheckComputationHasTieBreaker( root->operand(0)->to_apply()->root_instruction(), 2); } TEST_F(StableSortExpanderTest, StabilizeSortDontReuseIotaOperandWrongType) { const char* hlo_string = R"( HloModule permutation_sort compare { p.0.lhs = f32[] parameter(0) p.0.rhs = f32[] parameter(1) p.1.lhs = f32[] parameter(2) p.1.rhs = f32[] parameter(3) ROOT lt = pred[] compare(p.0.lhs, p.0.rhs), direction=LT } ENTRY sort_computation { keys = f32[64,8732]{1,0} parameter(0) values = f32[64,8732]{1,0} iota(), iota_dimension=1 sort = (f32[64,8732]{1,0}, f32[64,8732]{1,0}) sort(keys, values), dimensions={1}, to_apply=compare, is_stable=true ROOT gte = f32[64,8732]{1,0} get-tuple-element(sort), index=0 })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); StableSortExpander stabilizer; EXPECT_TRUE(stabilizer.Run(module.get()).value()); AlgebraicSimplifier simplifier(AlgebraicSimplifierOptions( [](const Shape&, const Shape&) { return false; })); ASSERT_TRUE(simplifier.Run(module.get()).value()); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::GetTupleElement( m::Sort(m::Parameter(0), m::Iota(), m::Iota()), 0))); CheckComputationHasTieBreaker( root->operand(0)->to_apply()->root_instruction(), 2); } TEST_F(StableSortExpanderTest, StabilizeSortR1) { const char* hlo_string = R"( HloModule permutation_sort compare { p.0.lhs = s32[] parameter(0) p.0.rhs = s32[] parameter(1) mask = s32[] constant(65535) lhs = s32[] and(p.0.lhs, mask) rhs = s32[] and(p.0.rhs, mask) ROOT lt = pred[] compare(lhs, rhs), direction=LT } ENTRY sort_computation { keys = s32[64,8732]{1,0} parameter(0) ROOT sort = s32[64,8732]{1,0} sort(keys), dimensions={0}, to_apply=compare, is_stable=true })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); StableSortExpander stabilizer; EXPECT_TRUE(stabilizer.Run(module.get()).value()); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::GetTupleElement( m::Sort(m::Parameter(0), m::Iota()), 0))); CheckComputationHasTieBreaker( root->operand(0)->to_apply()->root_instruction(), 1); } TEST_F(StableSortExpanderTest, StabilizeSortR1NoRoot) { const char* hlo_string = R"( HloModule permutation_sort compare { p.0.lhs = s32[] parameter(0) p.0.rhs = s32[] parameter(1) mask = s32[] constant(65535) lhs = s32[] and(p.0.lhs, mask) rhs = s32[] and(p.0.rhs, mask) ROOT lt = pred[] compare(lhs, rhs), direction=LT } ENTRY sort_computation { keys = s32[64,8732]{1,0} parameter(0) sort = s32[64,8732]{1,0} sort(keys), dimensions={0}, to_apply=compare, is_stable=true ROOT neg = s32[64,8732]{1,0} negate(sort) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); StableSortExpander stabilizer; EXPECT_TRUE(stabilizer.Run(module.get()).value()); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Negate(m::GetTupleElement( m::Sort(m::Parameter(0), m::Iota()), 0)))); CheckComputationHasTieBreaker( root->operand(0)->operand(0)->to_apply()->root_instruction(), 1); } } }
1,891
cpp
tensorflow/tensorflow
collectives_schedule_linearizer
third_party/xla/xla/service/collectives_schedule_linearizer.cc
third_party/xla/xla/service/collectives_schedule_linearizer_test.cc
#ifndef XLA_SERVICE_COLLECTIVES_SCHEDULE_LINEARIZER_H_ #define XLA_SERVICE_COLLECTIVES_SCHEDULE_LINEARIZER_H_ #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" #include "xla/util.h" namespace xla { class CollectivesScheduleLinearizer : public HloModulePass { public: explicit CollectivesScheduleLinearizer(HloModulePredicate is_enabled = {}) : is_enabled_(is_enabled) {} absl::string_view name() const override { return "collectives-schedule-linearizer"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: HloModulePredicate is_enabled_; }; } #endif #include "xla/service/collectives_schedule_linearizer.h" #include <algorithm> #include <list> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_reachability.h" #include "tsl/platform/errors.h" namespace xla { absl::StatusOr<bool> CollectivesScheduleLinearizer::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { if (is_enabled_ && !is_enabled_(module)) { return false; } bool changed = false; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { std::unique_ptr<HloReachabilityMap> reachability; HloInstruction* prev_done = nullptr; for (HloInstruction* inst : computation->MakeInstructionPostOrder()) { auto* next = DynCast<HloCollectiveInstruction>(inst); if (!next) { continue; } if (!reachability) { reachability = HloReachabilityMap::Build(computation); } HloInstruction* start = next; HloInstruction* done = next; switch (next->opcode()) { case HloOpcode::kAllReduceStart: case HloOpcode::kAllGatherStart: case HloOpcode::kCollectivePermuteStart: case HloOpcode::kAsyncStart: CHECK_EQ(start->user_count(), 1); done = start->users()[0]; break; default: break; } if (prev_done && !reachability->IsConnected(start, prev_done)) { TF_RETURN_IF_ERROR(prev_done->AddControlDependencyTo(next)); VLOG(1) << "Adding control dependency from " << prev_done->ToString() << " to " << start->ToString(); changed = true; } prev_done = done; } } return changed; } }
#include "xla/service/collectives_schedule_linearizer.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/pattern_matcher.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" namespace xla { namespace { namespace m = match; int64_t CountControlEdges(const HloComputation& computation) { int64_t count = 0; for (const auto& instruction : computation.instructions()) { count += instruction->control_successors().size(); } return count; } class CollectivesScheduleLinearizerTest : public HloTestBase { protected: void InsertCollectivesSchedule(HloModule* module) { CollectivesScheduleLinearizer collectives_schedule_linearizer; ASSERT_IS_OK(collectives_schedule_linearizer.Run(module).status()); } }; TEST_F(CollectivesScheduleLinearizerTest, FixOrdering) { absl::string_view hlo_string = R"( HloModule module sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT out = f32[] add(a, b) } ENTRY entry { p0 = f32[100] parameter(0), parameter_replication={false} p1 = f32[100] parameter(1), parameter_replication={false} c1 = f32[100] all-reduce(p0), replica_groups={}, to_apply=sum c2 = f32[100] all-reduce(p1), replica_groups={}, to_apply=sum ROOT out = f32[100] add(c1, c2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCollectivesSchedule(module.get()); EXPECT_EQ(CountControlEdges(*module->entry_computation()), 1); HloInstruction *c1 = nullptr, *c2 = nullptr; for (HloInstruction* instr : module->entry_computation()->instructions()) { if (Match(instr, m::AllReduce(m::Parameter(0)))) { c1 = instr; } if (Match(instr, m::AllReduce(m::Parameter(1)))) { c2 = instr; } } EXPECT_TRUE(c1 != nullptr && c2 != nullptr); EXPECT_TRUE(absl::c_linear_search(c2->control_predecessors(), c1)); } TEST_F(CollectivesScheduleLinearizerTest, NoFixRequired) { absl::string_view hlo_string = R"( HloModule module sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT out = f32[] add(a, b) } ENTRY entry { p0 = f32[100] parameter(0), parameter_replication={false} p1 = f32[100] parameter(1), parameter_replication={false} c1 = f32[100] all-reduce(p0), replica_groups={}, to_apply=sum c2 = f32[100] all-reduce(p1), replica_groups={}, to_apply=sum, control-predecessors={c1} ROOT out = f32[100] add(c1, c2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCollectivesSchedule(module.get()); EXPECT_EQ(CountControlEdges(*module->entry_computation()), 1); } TEST_F(CollectivesScheduleLinearizerTest, DependentCollectives) { absl::string_view hlo_string = R"( HloModule module sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT out = f32[] add(a, b) } ENTRY entry { p0 = f32[100] parameter(0), parameter_replication={false} p1 = f32[100] parameter(1), parameter_replication={false} c1 = f32[100] all-reduce(p0), replica_groups={}, to_apply=sum c2 = f32[100] all-reduce(c1), replica_groups={}, to_apply=sum ROOT out = f32[100] add(c1, c2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCollectivesSchedule(module.get()); EXPECT_EQ(CountControlEdges(*module->entry_computation()), 0); } TEST_F(CollectivesScheduleLinearizerTest, NonPostorder) { absl::string_view hlo_string = R"( HloModule module sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT out = f32[] add(a, b) } ENTRY entry { p0 = f32[100] parameter(0), parameter_replication={false} p1 = f32[100] parameter(1), parameter_replication={false} c1 = f32[100] all-reduce(p0), replica_groups={}, to_apply=sum c2 = f32[100] all-reduce(p1), replica_groups={}, to_apply=sum c3 = f32[100] all-reduce(p1), replica_groups={}, to_apply=sum t = f32[100] add(c1, c2) ROOT out = f32[100] add(t, c3) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); ASSERT_IS_OK( module->entry_computation() ->GetInstructionWithName("c3") ->AddControlDependencyTo( module->entry_computation()->GetInstructionWithName("c1"))); InsertCollectivesSchedule(module.get()); EXPECT_EQ(CountControlEdges(*module->entry_computation()), 2); } TEST_F(CollectivesScheduleLinearizerTest, AsyncOrdering) { absl::string_view hlo_string = R"( HloModule module sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT out = f32[] add(a, b) } ENTRY entry { p0 = f32[100] parameter(0), parameter_replication={false} p1 = f32[100] parameter(1), parameter_replication={false} ars0 = f32[100] all-reduce-start(p0), replica_groups={}, to_apply=sum ard0 = f32[100] all-reduce-done(ars0) ars1 = f32[100] all-reduce-start(p1), replica_groups={}, to_apply=sum ard1 = f32[100] all-reduce-done(ars1) ROOT out = f32[100] add(ard0, ard1) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCollectivesSchedule(module.get()); EXPECT_EQ(CountControlEdges(*module->entry_computation()), 1); const HloInstruction *root = module->entry_computation()->root_instruction(); const HloInstruction *ard0 = root->operand(0); const HloInstruction *ard1 = root->operand(1); EXPECT_EQ(ard0->opcode(), HloOpcode::kAllReduceDone); EXPECT_EQ(ard1->opcode(), HloOpcode::kAllReduceDone); const HloInstruction *ars1 = ard1->operand(0); EXPECT_EQ(ars1->opcode(), HloOpcode::kAllReduceStart); EXPECT_TRUE(absl::c_linear_search(ars1->control_predecessors(), ard0)); } } }
1,892
cpp
tensorflow/tensorflow
hlo_liveness_analysis
third_party/xla/xla/service/hlo_liveness_analysis.cc
third_party/xla/xla/service/hlo_liveness_analysis_test.cc
#ifndef XLA_SERVICE_HLO_LIVENESS_ANALYSIS_H_ #define XLA_SERVICE_HLO_LIVENESS_ANALYSIS_H_ #include <memory> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/call_graph.h" #include "xla/service/hlo_value.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" namespace xla { class HloLivenessAnalysis { public: using HloIndexMap = absl::flat_hash_map<const HloInstruction*, std::unique_ptr<ShapeTree<bool>>>; static absl::StatusOr<std::unique_ptr<HloLivenessAnalysis>> Run( const HloModule& module); bool IsLive(const HloInstruction* instruction, const ShapeIndex& shape_index) const; private: HloLivenessAnalysis(const HloModule& module); void RunAnalysis(); const HloModule& module_; std::unique_ptr<CallGraph> call_graph_; HloIndexMap live_index_map_; }; } #endif #include "xla/service/hlo_liveness_analysis.h" #include <cstddef> #include <cstdint> #include <deque> #include <functional> #include <memory> #include "absl/container/flat_hash_set.h" #include "absl/functional/function_ref.h" #include "absl/log/check.h" #include "absl/strings/str_cat.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/call_graph.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/types.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace xla { namespace { using Worklist = std::deque<const HloInstruction*>; using Workset = absl::flat_hash_set<const HloInstruction*>; void AddToWorklist(const HloInstruction* instruction, Worklist* worklist, Workset* workset) { if (workset->insert(instruction).second) { worklist->push_back(instruction); VLOG(3) << "ADD instruction: " << instruction->name(); } } using VisitorFunction = absl::FunctionRef<void(const ShapeIndex& )>; void ForEachLiveIndex(const ShapeTree<bool>& index_tree, VisitorFunction func) { index_tree.ForEachElement([&](const ShapeIndex& shape_index, bool live) { if (live) { func(shape_index); } }); } void MarkLiveAtIndex(const HloInstruction* instruction, const ShapeIndex& shape_index, HloLivenessAnalysis::HloIndexMap* live_index_map, Worklist* worklist, Workset* workset) { std::unique_ptr<ShapeTree<bool>>& liveness = (*live_index_map)[instruction]; if (liveness == nullptr) { liveness = std::make_unique<ShapeTree<bool>>(instruction->shape(), false); } bool& alive = *liveness->mutable_element(shape_index); if (!alive) { AddToWorklist(instruction, worklist, workset); alive = true; VLOG(3) << "MARK instruction: " << instruction->name() << " shape_index: " << shape_index; } } void MarkLiveAtAllIndices(const HloInstruction* instruction, HloLivenessAnalysis::HloIndexMap* live_index_map, Worklist* worklist, Workset* workset) { bool add_to_worklist = false; std::unique_ptr<ShapeTree<bool>>& liveness = (*live_index_map)[instruction]; if (liveness == nullptr) { liveness = std::make_unique<ShapeTree<bool>>(instruction->shape(), true); add_to_worklist = true; } else { for (auto& entry : *liveness) { if (!entry.second) { add_to_worklist = true; entry.second = true; VLOG(3) << "MARK instruction: " << instruction->name() << " shape_index: " << entry.first; } } } if (add_to_worklist) { AddToWorklist(instruction, worklist, workset); } } void PropagateLivenessThroughTuple( const HloInstruction* instruction, HloLivenessAnalysis::HloIndexMap* live_index_map, Worklist* worklist, Workset* workset) { CHECK_EQ(instruction->opcode(), HloOpcode::kTuple); const ShapeTree<bool>& index_tree = *live_index_map->at(instruction); ForEachLiveIndex(index_tree, [&](const ShapeIndex& shape_index) { const size_t size = shape_index.size(); if (size == 0) { return; } const int64_t operand_index = shape_index[0]; if (operand_index >= instruction->operand_count()) { return; } MarkLiveAtIndex(instruction->operand(operand_index), {}, live_index_map, worklist, workset); ShapeIndex operand_shape_index(size - 1); for (int i = 1; i < size; ++i) { operand_shape_index[i - 1] = shape_index[i]; } MarkLiveAtIndex(instruction->operand(operand_index), operand_shape_index, live_index_map, worklist, workset); }); } void PropagateLivenessThroughGTE( const HloInstruction* instruction, HloLivenessAnalysis::HloIndexMap* live_index_map, Worklist* worklist, Workset* workset) { CHECK_EQ(instruction->opcode(), HloOpcode::kGetTupleElement); MarkLiveAtIndex(instruction->operand(0), {}, live_index_map, worklist, workset); const ShapeTree<bool>& index_tree = *live_index_map->at(instruction); ForEachLiveIndex(index_tree, [&](const ShapeIndex& shape_index) { ShapeIndex operand_shape_index(shape_index); operand_shape_index.push_front(instruction->tuple_index()); MarkLiveAtIndex(instruction->operand(0), operand_shape_index, live_index_map, worklist, workset); }); } void PropagateLivenessThroughWhile( const HloInstruction* instruction, HloLivenessAnalysis::HloIndexMap* live_index_map, Worklist* worklist, Workset* workset) { CHECK_EQ(instruction->opcode(), HloOpcode::kWhile); const ShapeTree<bool>& index_tree = *live_index_map->at(instruction); ForEachLiveIndex(index_tree, [&](const ShapeIndex& shape_index) { MarkLiveAtIndex(instruction->while_body()->root_instruction(), shape_index, live_index_map, worklist, workset); MarkLiveAtIndex(instruction->operand(0), shape_index, live_index_map, worklist, workset); }); MarkLiveAtIndex(instruction->while_condition()->root_instruction(), {}, live_index_map, worklist, workset); } void PropagateLivenessToParameterCallers( const HloInstruction* instruction, HloLivenessAnalysis::HloIndexMap* live_index_map, Worklist* worklist, Workset* workset, CallGraph* call_graph) { CHECK_EQ(instruction->opcode(), HloOpcode::kParameter); const CallGraphNode& call_graph_node = call_graph->GetNode(instruction->parent()); if (call_graph_node.context() == CallContext::kControlFlow) { for (const CallSite& callsite : call_graph_node.caller_callsites()) { if (callsite.instruction()->opcode() == HloOpcode::kWhile) { auto* xla_while = callsite.instruction(); const ShapeTree<bool>& index_tree = *live_index_map->at(instruction); ForEachLiveIndex(index_tree, [&](const ShapeIndex& shape_index) { MarkLiveAtIndex(xla_while, shape_index, live_index_map, worklist, workset); MarkLiveAtIndex(xla_while->while_body()->root_instruction(), shape_index, live_index_map, worklist, workset); MarkLiveAtIndex(xla_while->operand(0), shape_index, live_index_map, worklist, workset); }); } } } } void PropagateLivenessThroughControlFlow( const HloInstruction* instruction, HloLivenessAnalysis::HloIndexMap* live_index_map, Worklist* worklist, Workset* workset, CallGraph* call_graph) { const CallGraphNode& call_graph_node = call_graph->GetNode(instruction->parent()); if (call_graph_node.context() == CallContext::kControlFlow) { for (const CallSite& callsite : call_graph_node.caller_callsites()) { HloInstruction* caller = callsite.instruction(); if (caller->opcode() == HloOpcode::kWhile) { MarkLiveAtIndex(caller->while_condition()->root_instruction(), {}, live_index_map, worklist, workset); } else if (caller->opcode() == HloOpcode::kConditional) { MarkLiveAtIndex(caller->operand(0), {}, live_index_map, worklist, workset); MarkLiveAtIndex(caller, {}, live_index_map, worklist, workset); const HloComputation* callee_comp = instruction->parent(); int64_t operand_index = 1; for (auto* caller_comp : caller->called_computations()) { if (callee_comp == caller_comp) { MarkLiveAtIndex(caller->operand(operand_index), {}, live_index_map, worklist, workset); if (instruction->opcode() == HloOpcode::kParameter) { const ShapeTree<bool>& index_tree = *live_index_map->at(instruction); ForEachLiveIndex(index_tree, [&](const ShapeIndex& shape_index) { MarkLiveAtIndex(caller->operand(operand_index), shape_index, live_index_map, worklist, workset); }); } break; } ++operand_index; } } } } } } HloLivenessAnalysis::HloLivenessAnalysis(const HloModule& module) : module_(module), call_graph_(CallGraph::Build(&module)) {} void HloLivenessAnalysis::RunAnalysis() { Worklist worklist; Workset workset; MarkLiveAtAllIndices(module_.entry_computation()->root_instruction(), &live_index_map_, &worklist, &workset); for (auto* computation : module_.computations()) { for (auto* instruction : computation->instructions()) { if (instruction->HasSideEffectNoRecurse()) { MarkLiveAtAllIndices(instruction, &live_index_map_, &worklist, &workset); } } } while (!worklist.empty()) { const HloInstruction* instruction = worklist.front(); worklist.pop_front(); workset.erase(workset.find(instruction)); VLOG(1) << "VISIT instruction: " << instruction->name(); if (instruction->opcode() == HloOpcode::kTuple) { PropagateLivenessThroughTuple(instruction, &live_index_map_, &worklist, &workset); } else if (instruction->opcode() == HloOpcode::kGetTupleElement) { PropagateLivenessThroughGTE(instruction, &live_index_map_, &worklist, &workset); } else if (instruction->opcode() == HloOpcode::kWhile) { PropagateLivenessThroughWhile(instruction, &live_index_map_, &worklist, &workset); } else if (instruction->opcode() == HloOpcode::kParameter) { PropagateLivenessToParameterCallers(instruction, &live_index_map_, &worklist, &workset, call_graph_.get()); } else { for (auto* called_computation : instruction->called_computations()) { MarkLiveAtAllIndices(called_computation->root_instruction(), &live_index_map_, &worklist, &workset); } for (HloInstruction* operand : instruction->operands()) { MarkLiveAtAllIndices(operand, &live_index_map_, &worklist, &workset); } } PropagateLivenessThroughControlFlow(instruction, &live_index_map_, &worklist, &workset, call_graph_.get()); } } bool HloLivenessAnalysis::IsLive(const HloInstruction* instruction, const ShapeIndex& shape_index) const { auto it = live_index_map_.find(instruction); return (it != live_index_map_.end()) && it->second->element(shape_index); } absl::StatusOr<std::unique_ptr<HloLivenessAnalysis>> HloLivenessAnalysis::Run( const HloModule& module) { VLOG(1) << "HloLivenessAnalysis::Run on module " << module.name(); XLA_VLOG_LINES(2, module.ToString()); auto liveness_analysis = absl::WrapUnique(new HloLivenessAnalysis(module)); liveness_analysis->RunAnalysis(); return std::move(liveness_analysis); } }
#include "xla/service/hlo_liveness_analysis.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/logging.h" #include "tsl/platform/test.h" namespace xla { namespace { class HloLivenessAnalysisTest : public HloTestBase { protected: HloLivenessAnalysisTest() {} const HloLivenessAnalysis& RunLiveness(HloModule* module) { liveness_ = HloLivenessAnalysis::Run(*module).value(); return *liveness_; } HloInstruction* GetInstruction(HloModule* module, const std::string& name) { HloInstruction* to_return = nullptr; for (auto* comp : module->computations()) { for (auto* inst : comp->instructions()) { if (inst->name() == name) { to_return = inst; break; } } } return CHECK_NOTNULL(to_return); } std::unique_ptr<HloLivenessAnalysis> liveness_; }; TEST_F(HloLivenessAnalysisTest, AddAtEntryRoot) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleModule ENTRY SimpleComputation { constant.1 = s32[] constant(0) constant.2 = s32[] constant(1) ROOT add = s32[] add(constant.1, constant.2) })") .value(); const HloLivenessAnalysis& liveness = RunLiveness(module.get()); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "add"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.2"), {})); } TEST_F(HloLivenessAnalysisTest, DeadAdd) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleModule ENTRY SimpleComputation { constant.1 = s32[] constant(0) constant.2 = s32[] constant(1) add.1 = s32[] add(constant.1, constant.2) ROOT add.2 = s32[] add(constant.1, constant.2) })") .value(); const HloLivenessAnalysis& liveness = RunLiveness(module.get()); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "add.2"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.2"), {})); EXPECT_FALSE(liveness.IsLive(GetInstruction(module.get(), "add.1"), {})); } TEST_F(HloLivenessAnalysisTest, TupleAtEntryRoot) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleModule ENTRY SimpleComputation { constant.1 = s32[] constant(0) constant.2 = s32[] constant(1) ROOT tuple.1 = (s32[], s32[]) tuple(constant.1, constant.2) })") .value(); const HloLivenessAnalysis& liveness = RunLiveness(module.get()); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.2"), {})); } TEST_F(HloLivenessAnalysisTest, NestedTupleAtEntryRoot) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleModule ENTRY SimpleComputation { constant.1 = s32[] constant(1) constant.2 = s32[] constant(2) constant.3 = s32[] constant(3) tuple.1 = (s32[], s32[]) tuple(constant.2, constant.3) ROOT tuple.2 = (s32[], (s32[], s32[])) tuple(constant.1, tuple.1) })") .value(); const HloLivenessAnalysis& liveness = RunLiveness(module.get()); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {1, 0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {1, 1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.2"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.3"), {})); } TEST_F(HloLivenessAnalysisTest, GteOfTuple) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleModule ENTRY SimpleComputation { constant.1 = s32[] constant(0) constant.2 = s32[] constant(1) tuple.1 = (s32[], s32[]) tuple(constant.1, constant.2) ROOT get-tuple-element.1 = s32[] get-tuple-element(tuple.1), index=0 })") .value(); const HloLivenessAnalysis& liveness = RunLiveness(module.get()); EXPECT_TRUE( liveness.IsLive(GetInstruction(module.get(), "get-tuple-element.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {0})); EXPECT_FALSE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.1"), {})); EXPECT_FALSE(liveness.IsLive(GetInstruction(module.get(), "constant.2"), {})); } TEST_F(HloLivenessAnalysisTest, GteOfNestedTuple) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleModule ENTRY SimpleComputation { constant.1 = s32[] constant(0) constant.2 = s32[] constant(1) constant.3 = s32[] constant(2) tuple.1 = (s32[], s32[]) tuple(constant.2, constant.3) tuple.2 = (s32[], (s32[], s32[])) tuple(constant.1, tuple.1) ROOT get-tuple-element.1 = (s32[], s32[]) get-tuple-element(tuple.2), index=1 })") .value(); const HloLivenessAnalysis& liveness = RunLiveness(module.get()); EXPECT_TRUE( liveness.IsLive(GetInstruction(module.get(), "get-tuple-element.1"), {})); EXPECT_TRUE(liveness.IsLive( GetInstruction(module.get(), "get-tuple-element.1"), {0})); EXPECT_TRUE(liveness.IsLive( GetInstruction(module.get(), "get-tuple-element.1"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {})); EXPECT_FALSE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {1, 0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {1, 1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {1})); EXPECT_FALSE(liveness.IsLive(GetInstruction(module.get(), "constant.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.2"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.3"), {})); } TEST_F(HloLivenessAnalysisTest, GteOfGteOfNestedTuple) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleModule ENTRY SimpleComputation { constant.1 = s32[] constant(0) constant.2 = s32[] constant(1) constant.3 = s32[] constant(2) tuple.1 = (s32[], s32[]) tuple(constant.2, constant.3) tuple.2 = (s32[], (s32[], s32[])) tuple(constant.1, tuple.1) get-tuple-element.1 = (s32[], s32[]) get-tuple-element(tuple.2), index=1 ROOT get-tuple-element.2 = s32[] get-tuple-element(get-tuple-element.1), index=0 })") .value(); const HloLivenessAnalysis& liveness = RunLiveness(module.get()); EXPECT_TRUE( liveness.IsLive(GetInstruction(module.get(), "get-tuple-element.2"), {})); EXPECT_TRUE( liveness.IsLive(GetInstruction(module.get(), "get-tuple-element.1"), {})); EXPECT_TRUE(liveness.IsLive( GetInstruction(module.get(), "get-tuple-element.1"), {0})); EXPECT_FALSE(liveness.IsLive( GetInstruction(module.get(), "get-tuple-element.1"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {})); EXPECT_FALSE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {1, 0})); EXPECT_FALSE( liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {1, 1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {0})); EXPECT_FALSE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {1})); EXPECT_FALSE(liveness.IsLive(GetInstruction(module.get(), "constant.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.2"), {})); EXPECT_FALSE(liveness.IsLive(GetInstruction(module.get(), "constant.3"), {})); } TEST_F(HloLivenessAnalysisTest, WhileWithDeadTupleElement) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleLoop SimpleLoop.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add.0 = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply.0 = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple.0 = (s32[], s32[3]{0}) tuple(add.0, multiply.0) } SimpleLoop.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(5) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY SimpleLoop { constant.3 = s32[] constant(0) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) while.0 = (s32[], s32[3]{0}) while(tuple.1), condition= SimpleLoop.condition, body=SimpleLoop.body ROOT get-tuple-element.4 = s32[] get-tuple-element(while.0), index=0 })") .value(); const HloLivenessAnalysis& liveness = RunLiveness(module.get()); EXPECT_TRUE( liveness.IsLive(GetInstruction(module.get(), "get-tuple-element.4"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "while.0"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "while.0"), {0})); EXPECT_FALSE(liveness.IsLive(GetInstruction(module.get(), "while.0"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {0})); EXPECT_FALSE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.3"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.0"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.0"), {0})); EXPECT_FALSE(liveness.IsLive(GetInstruction(module.get(), "tuple.0"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "add.0"), {})); EXPECT_FALSE(liveness.IsLive(GetInstruction(module.get(), "multiply.0"), {})); } TEST_F(HloLivenessAnalysisTest, WhileCondPropagatesLiveness) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleLoop add_S32 { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } SimpleLoop.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add.0 = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply.0 = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple.0 = (s32[], s32[3]{0}) tuple(add.0, multiply.0) } SimpleLoop.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 get-tuple-element.4 = s32[3]{0} get-tuple-element(loop_var.2), index=1 zero = s32[] constant(0) reduce = s32[] reduce(get-tuple-element.4, zero), dimensions={0}, to_apply=add_S32 add.1 = s32[] add(get-tuple-element.3, reduce) constant.2 = s32[] constant(5) ROOT less-than = pred[] compare(add.1, constant.2), direction=LT } ENTRY SimpleLoop { constant.3 = s32[] constant(0) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) while.0 = (s32[], s32[3]{0}) while(tuple.1), condition= SimpleLoop.condition, body=SimpleLoop.body ROOT get-tuple-element.5 = s32[] get-tuple-element(while.0), index=0 })") .value(); const HloLivenessAnalysis& liveness = RunLiveness(module.get()); EXPECT_TRUE( liveness.IsLive(GetInstruction(module.get(), "get-tuple-element.5"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "while.0"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "while.0"), {0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "while.0"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.3"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.4"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.0"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.0"), {0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.0"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "add.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "multiply.0"), {})); } TEST_F(HloLivenessAnalysisTest, WhileWithLiveTupleElements) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleLoop SimpleLoop.body { loop_var.1 = (s32[], s32[], s32[]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 get-tuple-element.2 = s32[] get-tuple-element(loop_var.1), index=1 add.1 = s32[] add(get-tuple-element.1, get-tuple-element.2) get-tuple-element.3 = s32[] get-tuple-element(loop_var.1), index=2 multiply.1 = s32[] multiply(get-tuple-element.3, get-tuple-element.3) ROOT tuple.1 = (s32[], s32[], s32[]) tuple(add.1, get-tuple-element.3, multiply.1) } SimpleLoop.condition { loop_var.2 = (s32[], s32[], s32[]) parameter(0) get-tuple-element.4 = s32[] get-tuple-element(loop_var.2), index=0 constant.1 = s32[] constant(5) ROOT less-than = pred[] compare(get-tuple-element.4, constant.1), direction=LT } ENTRY SimpleLoop { constant.2 = s32[] constant(0) constant.3 = s32[] constant(1) constant.4 = s32[] constant(2) tuple.2 = (s32[], s32[], s32[]) tuple(constant.2, constant.3, constant.4) while.1 = (s32[], s32[], s32[]) while(tuple.2), condition= SimpleLoop.condition, body=SimpleLoop.body ROOT get-tuple-element.5 = s32[] get-tuple-element(while.1), index=0 })") .value(); const HloLivenessAnalysis& liveness = RunLiveness(module.get()); EXPECT_TRUE( liveness.IsLive(GetInstruction(module.get(), "get-tuple-element.5"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "while.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "while.1"), {0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "while.1"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "while.1"), {2})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.2"), {2})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.1"), {2})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "loop_var.1"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "loop_var.1"), {0})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "loop_var.1"), {1})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "loop_var.1"), {2})); } TEST_F(HloLivenessAnalysisTest, WhileWithOutfeed) { auto module = ParseAndReturnVerifiedModule(R"( HloModule OutfeedLoop WhileBody { body_param = (s32[]) parameter(0) token0 = token[] after-all() constant.2 = s32[] constant(2) outfeed_tuple = (s32[]) outfeed(constant.2, token0) get-tuple-element.1 = s32[] get-tuple-element(body_param), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) ROOT tuple = (s32[]) tuple(add) } WhileCondition { cond_param = (s32[]) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(cond_param), index=0 constant.2 = s32[] constant(10) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY SimpleLoop { constant.3 = s32[] constant(0) tuple.1 = (s32[]) tuple(constant.3) while = (s32[]) while(tuple.1), condition=WhileCondition, body=WhileBody ROOT rtuple = () tuple() })") .value(); const HloLivenessAnalysis& liveness = RunLiveness(module.get()); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "add"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.3"), {})); } TEST_F(HloLivenessAnalysisTest, NestedWhileWithOutfeed) { auto module = ParseAndReturnVerifiedModule(R"( HloModule OutfeedLoop InnerWhileBody { body_param = (s32[]) parameter(0) token0 = token[] after-all() constant.2 = s32[] constant(2) outfeed_tuple = (s32[]) outfeed(constant.2, token0) get-tuple-element.1 = s32[] get-tuple-element(body_param), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) ROOT tuple = (s32[]) tuple(add) } InnerWhileCondition { cond_param = (s32[]) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(cond_param), index=0 constant.2 = s32[] constant(10) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } OuterWhileCondition { cond_param.2 = (s32[]) parameter(0) get-tuple-element.5 = s32[] get-tuple-element(cond_param.2), index=0 constant.5 = s32[] constant(5) ROOT less-than.2 = pred[] compare(get-tuple-element.5, constant.5), direction=LT } OuterWhileBody { body_param.2 = (s32[]) parameter(0) get-tuple-element.8 = s32[] get-tuple-element(body_param.2), index=0 constant.6 = s32[] constant(0) tuple.2 = (s32[]) tuple(constant.6) inner_while = (s32[]) while(tuple.2), condition=InnerWhileCondition, body=InnerWhileBody constant.7 = s32[] constant(1) add.2 = s32[] add(get-tuple-element.8, constant.7) ROOT rtuple = (s32[]) tuple(add.2) } ENTRY SimpleLoop { constant.3 = s32[] constant(0) tuple.1 = (s32[]) tuple(constant.3) while = (s32[]) while(tuple.1), condition=OuterWhileCondition, body=OuterWhileBody ROOT rtuple = () tuple() })") .value(); const HloLivenessAnalysis& liveness = RunLiveness(module.get()); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "add"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "add.2"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "constant.3"), {})); } TEST_F(HloLivenessAnalysisTest, PropagateLivenessFromConditionalComputation) { auto module = ParseAndReturnVerifiedModule(R"( HloModule main.67 %region_0.10 (Arg_0.11: (s32[], s32[], f32[1024,3], s32[1])) -> (s32[], s32[], f32[1024,3], s32[1]) { %Arg_0.11 = (s32[], s32[], f32[1024,3]{1,0}, s32[1]{0}) parameter(0) %get-tuple-element.17 = s32[] get-tuple-element((s32[], s32[], f32[1024,3]{1,0}, s32[1]{0}) %Arg_0.11), index=0, metadata={op_name="while"} %constant.13 = s32[] constant(1) %add.25 = s32[] add(s32[] %get-tuple-element.17, s32[] %constant.13), metadata={op_name="while/add_1"} %get-tuple-element.18 = s32[] get-tuple-element((s32[], s32[], f32[1024,3]{1,0}, s32[1]{0}) %Arg_0.11), index=1, metadata={op_name="while"} %add.22 = s32[] add(s32[] %get-tuple-element.18, s32[] %constant.13), metadata={op_name="while/add"} %get-tuple-element.19 = f32[1024,3]{1,0} get-tuple-element((s32[], s32[], f32[1024,3]{1,0}, s32[1]{0}) %Arg_0.11), index=2, metadata={op_name="while"} %constant.16 = f32[] constant(0) %constant.15 = f32[] constant(1) %rng.21 = f32[3]{0} rng(f32[] %constant.16, f32[] %constant.15), distribution=rng_uniform, metadata={op_name="while/random_uniform/RandomUniform"} %reshape.23 = f32[1,3]{1,0} reshape(f32[3]{0} %rng.21), metadata={op_name="while/TensorArrayV2Write/TensorListSetItem"} %constant.12 = s32[] constant(0) %dynamic-update-slice.24 = f32[1024,3]{1,0} dynamic-update-slice(f32[1024,3]{1,0} %get-tuple-element.19, f32[1,3]{1,0} %reshape.23, s32[] %get-tuple-element.18, s32[] %constant.12), metadata={op_name="while/TensorArrayV2Write/TensorListSetItem"} %get-tuple-element.20 = s32[1]{0} get-tuple-element((s32[], s32[], f32[1024,3]{1,0}, s32[1]{0}) %Arg_0.11), index=3, metadata={op_name="while"} ROOT %tuple.26 = (s32[], s32[], f32[1024,3]{1,0}, s32[1]{0}) tuple(s32[] %add.25, s32[] %add.22, f32[1024,3]{1,0} %dynamic-update-slice.24, s32[1]{0} %get-tuple-element.20), metadata={op_name="while"} } %region_1.27 (Arg_0.28: (s32[], s32[], f32[1024,3], s32[1])) -> pred[] { %Arg_0.28 = (s32[], s32[], f32[1024,3]{1,0}, s32[1]{0}) parameter(0) %get-tuple-element.30 = s32[] get-tuple-element((s32[], s32[], f32[1024,3]{1,0}, s32[1]{0}) %Arg_0.28), index=1, metadata={op_name="while"} %constant.29 = s32[] constant(1024) ROOT %compare.31 = pred[] compare(s32[] %get-tuple-element.30, s32[] %constant.29), direction=LT, metadata={op_name="while/Less"} } %region_2.42 (Arg_0.43: (f32[3,32,32,3], token[])) -> (pred[], token[]) { %constant.44 = pred[] constant(true) %Arg_0.43 = (f32[3,32,32,3]{3,2,1,0}, token[]) parameter(0) %get-tuple-element.52 = f32[3,32,32,3]{3,2,1,0} get-tuple-element((f32[3,32,32,3]{3,2,1,0}, token[]) %Arg_0.43), index=0, metadata={op_name="image_sample/write_summary/summary_cond"} %constant.49 = f32[] constant(255.5) %broadcast.50 = f32[3,32,32,3]{3,2,1,0} broadcast(f32[] %constant.49), dimensions={}, metadata={op_name="image_sample/write_summary/summary_cond/convert_image/Mul"} %multiply.53 = f32[3,32,32,3]{3,2,1,0} multiply(f32[3,32,32,3]{3,2,1,0} %get-tuple-element.52, f32[3,32,32,3]{3,2,1,0} %broadcast.50), metadata={op_name="image_sample/write_summary/summary_cond/convert_image/Mul"} %constant.47 = f32[] constant(0) %broadcast.48 = f32[3,32,32,3]{3,2,1,0} broadcast(f32[] %constant.47), dimensions={}, metadata={op_name="image_sample/write_summary/summary_cond/convert_image/Maximum"} %maximum.54 = f32[3,32,32,3]{3,2,1,0} maximum(f32[3,32,32,3]{3,2,1,0} %multiply.53, f32[3,32,32,3]{3,2,1,0} %broadcast.48), metadata={op_name="image_sample/write_summary/summary_cond/convert_image/Maximum"} %constant.45 = f32[] constant(255) %broadcast.46 = f32[3,32,32,3]{3,2,1,0} broadcast(f32[] %constant.45), dimensions={}, metadata={op_name="image_sample/write_summary/summary_cond/convert_image/Minimum"} %minimum.55 = f32[3,32,32,3]{3,2,1,0} minimum(f32[3,32,32,3]{3,2,1,0} %maximum.54, f32[3,32,32,3]{3,2,1,0} %broadcast.46), metadata={op_name="image_sample/write_summary/summary_cond/convert_image/Minimum"} %convert.56 = u8[3,32,32,3]{3,2,1,0} convert(f32[3,32,32,3]{3,2,1,0} %minimum.55), metadata={op_name="image_sample/write_summary/summary_cond/convert_image"} %get-tuple-element.51 = token[] get-tuple-element((f32[3,32,32,3]{3,2,1,0}, token[]) %Arg_0.43), index=1, metadata={op_name="image_sample/write_summary/summary_cond"} %send.57 = (u8[3,32,32,3]{3,2,1,0}, u32[], token[]) send(u8[3,32,32,3]{3,2,1,0} %convert.56, token[] %get-tuple-element.51), channel_id=2, is_host_transfer=true, frontend_attributes={_xla_host_transfer_rendezvous="host_compute_channel_0_args_dtoh_0"}, metadata={op_name="image_sample/write_summary/summary_cond/encode_each_image/TensorArrayUnstack/TensorListFromTensor"} %send-done.58 = token[] send-done((u8[3,32,32,3]{3,2,1,0}, u32[], token[]) %send.57), channel_id=2, is_host_transfer=true, frontend_attributes={_xla_host_transfer_rendezvous="host_compute_channel_0_args_dtoh_0"}, metadata={op_name="image_sample/write_summary/summary_cond/encode_each_image/TensorArrayUnstack/TensorListFromTensor"} ROOT %tuple.59 = (pred[], token[]) tuple(pred[] %constant.44, token[] %send-done.58), metadata={op_name="image_sample/write_summary/summary_cond"} } %region_3.60 (Arg_0.61: (f32[3,32,32,3], token[])) -> (pred[], token[]) { %constant.62 = pred[] constant(false) %Arg_0.61 = (f32[3,32,32,3]{3,2,1,0}, token[]) parameter(0) %get-tuple-element.63 = token[] get-tuple-element((f32[3,32,32,3]{3,2,1,0}, token[]) %Arg_0.61), index=1, metadata={op_name="image_sample/write_summary/summary_cond"} ROOT %tuple.64 = (pred[], token[]) tuple(pred[] %constant.62, token[] %get-tuple-element.63), metadata={op_name="image_sample/write_summary/summary_cond"} } ENTRY %main.67 (arg_tuple.1: (s32[])) -> () { %arg_tuple.1 = (s32[]{:T(256)}) parameter(0) %get-tuple-element.2 = s32[]{:T(256)} get-tuple-element((s32[]{:T(256)}) %arg_tuple.1), index=0 %constant.3 = s32[] constant(0) %compare.8 = pred[]{:T(256)} compare(s32[]{:T(256)} %get-tuple-element.2, s32[] %constant.3), direction=EQ, metadata={op_name="image_sample/write_summary/Equal"} %constant.5 = f32[] constant(0) %broadcast.6 = f32[1024,3]{1,0} broadcast(f32[] %constant.5), dimensions={}, metadata={op_name="tokens_accumulator"} %constant.4 = s32[1]{0} constant({1024}) %tuple.9 = (s32[], s32[], f32[1024,3]{1,0}, s32[1]{0}) tuple(s32[] %constant.3, s32[] %constant.3, f32[1024,3]{1,0} %broadcast.6, s32[1]{0} %constant.4), metadata={op_name="while"} %while.32 = (s32[], s32[], f32[1024,3]{1,0}, s32[1]{0}) while((s32[], s32[], f32[1024,3]{1,0}, s32[1]{0}) %tuple.9), condition=%region_1.27, body=%region_0.10, metadata={op_name="while"} %get-tuple-element.33 = f32[1024,3]{1,0} get-tuple-element((s32[], s32[], f32[1024,3]{1,0}, s32[1]{0}) %while.32), index=2, metadata={op_name="while"} %transpose.34 = f32[3,1024]{0,1} transpose(f32[1024,3]{1,0} %get-tuple-element.33), dimensions={1,0}, metadata={op_name="transpose.transpose/perm"} %reshape.35 = f32[3,32,32,1]{3,2,1,0} reshape(f32[3,1024]{0,1} %transpose.34), metadata={op_name="Reshape"} %broadcast.36 = f32[3,32,32,1]{3,2,1,0} broadcast(f32[3,32,32,1]{3,2,1,0} %reshape.35), dimensions={0,1,2,3}, metadata={op_name="Tile"} %reshape.37 = f32[3,32,32]{2,1,0} reshape(f32[3,32,32,1]{3,2,1,0} %broadcast.36), metadata={op_name="Tile"} %broadcast.38 = f32[3,32,32,3]{3,2,1,0} broadcast(f32[3,32,32]{2,1,0} %reshape.37), dimensions={0,1,2}, metadata={op_name="Tile"} %after-all.7 = token[] after-all(), metadata={op_name="image_sample/write_summary/summary_cond"} %send.39 = (pred[]{:T(256)}, u32[], token[]) send(pred[]{:T(256)} %compare.8, token[] %after-all.7), channel_id=1, is_host_transfer=true, frontend_attributes={_xla_host_transfer_rendezvous="if_predicate_channel_1_dtoh_0"}, metadata={op_name="image_sample/write_summary/summary_cond"} %send-done.40 = token[] send-done((pred[]{:T(256)}, u32[], token[]) %send.39), channel_id=1, is_host_transfer=true, frontend_attributes={_xla_host_transfer_rendezvous="if_predicate_channel_1_dtoh_0"}, metadata={op_name="image_sample/write_summary/summary_cond"} %tuple.41 = (f32[3,32,32,3]{3,2,1,0}, token[]) tuple(f32[3,32,32,3]{3,2,1,0} %broadcast.38, token[] %send-done.40), metadata={op_name="image_sample/write_summary/summary_cond"} %conditional.65 = (pred[], token[]) conditional(pred[]{:T(256)} %compare.8, (f32[3,32,32,3]{3,2,1,0}, token[]) %tuple.41, (f32[3,32,32,3]{3,2,1,0}, token[]) %tuple.41), true_computation=%region_2.42, false_computation=%region_3.60, metadata={op_name="image_sample/write_summary/summary_cond"} ROOT %tuple.66 = () tuple() } )") .value(); const HloLivenessAnalysis& liveness = RunLiveness(module.get()); EXPECT_TRUE( liveness.IsLive(GetInstruction(module.get(), "conditional.65"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "tuple.41"), {})); EXPECT_TRUE(liveness.IsLive( GetInstruction(module.get(), "get-tuple-element.33"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "while.32"), {})); EXPECT_TRUE(liveness.IsLive( GetInstruction(module.get(), "dynamic-update-slice.24"), {})); EXPECT_TRUE(liveness.IsLive(GetInstruction(module.get(), "send.57"), {})); } } }
1,893
cpp
tensorflow/tensorflow
transfer_manager
third_party/xla/xla/service/transfer_manager.cc
third_party/xla/xla/tests/transfer_manager_test.cc
#ifndef XLA_SERVICE_TRANSFER_MANAGER_H_ #define XLA_SERVICE_TRANSFER_MANAGER_H_ #include <cstdint> #include <functional> #include <memory> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/literal.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/service/shaped_buffer.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/stream_executor.h" #include "xla/xla_data.pb.h" namespace xla { class TransferManager { public: virtual ~TransferManager() = default; virtual se::Platform::Id PlatformId() const = 0; virtual Shape HostShapeToDeviceShape(const Shape& host_shape) const { return ShapeUtil::DeviceShapeToHostShape(host_shape); } class TransferMetadata { public: virtual ~TransferMetadata() = default; }; absl::StatusOr<Literal> TransferLiteralFromDevice( se::Stream* stream, const ShapedBuffer& device_buffer, const TransferMetadata* transfer_metadata = nullptr); absl::Status TransferLiteralFromDevice( se::Stream* stream, const ShapedBuffer& device_buffer, const MutableBorrowingLiteral& literal, const TransferMetadata* transfer_metadata = nullptr); virtual void TransferLiteralFromDevice( se::Stream* stream, const ShapedBuffer& device_buffer, MutableBorrowingLiteral literal, std::function<void(absl::Status)> done, const TransferMetadata* transfer_metadata) = 0; void TransferLiteralFromDevice(se::Stream* stream, const ShapedBuffer& device_buffer, MutableBorrowingLiteral literal, std::function<void(absl::Status)> done) { return TransferLiteralFromDevice(stream, device_buffer, literal, done, nullptr); } absl::Status TransferLiteralToDevice( se::Stream* stream, const LiteralSlice& literal, const ShapedBuffer& device_buffer, const TransferMetadata* transfer_metadata = nullptr); virtual absl::Status TransferLiteralToDeviceAsync( se::Stream* stream, const LiteralSlice& literal, const ShapedBuffer& device_buffer, const TransferMetadata* transfer_metadata) = 0; absl::Status TransferLiteralToDeviceAsync(se::Stream* stream, const LiteralSlice& literal, const ShapedBuffer& device_buffer) { return TransferLiteralToDeviceAsync(stream, literal, device_buffer, nullptr); } absl::Status TransferArrayToDevice( se::Stream* stream, const LiteralSlice& literal, const se::DeviceMemoryBase& dest, const TransferMetadata* transfer_metadata = nullptr); absl::Status TransferArrayToDeviceAsync( se::Stream* stream, const LiteralSlice& literal, const se::DeviceMemoryBase& dest, const TransferMetadata* transfer_metadata = nullptr); absl::StatusOr<Literal> TransferArrayFromDevice( se::Stream* stream, const Shape& shape, const se::DeviceMemoryBase& source, const TransferMetadata* transfer_metadata = nullptr); virtual absl::Status ReadDynamicShapes(se::Stream* stream, const ShapedBuffer* device_buffer, Shape* device_shape); virtual absl::Status TransferLiteralToInfeed(se::StreamExecutor* executor, const LiteralSlice& literal) = 0; virtual absl::Status TransferLiteralFromOutfeed( se::StreamExecutor* executor, MutableBorrowingLiteral literal) = 0; virtual absl::Status ResetDevices( absl::Span<se::StreamExecutor* const> executor) = 0; absl::Status WriteTupleIndexTables(se::Stream* stream, const ShapedBuffer& device_buffer); absl::Status WriteTupleIndexTablesAsync(se::Stream* stream, const ShapedBuffer& device_buffer); absl::Status WriteRootTupleIndexTable(se::Stream* stream, const ShapedBuffer& device_buffer); absl::Status WriteRootTupleIndexTable( se::Stream* stream, const ShapeTree<MaybeOwningDeviceMemory>& buffer_tree); virtual int64_t GetByteSizeRequirement(const Shape& shape) const = 0; virtual absl::StatusOr<Shape> ChooseCompactLayoutForShape( const Shape& host_shape) const; virtual Shape ChooseGoodInfeedLayout(const Shape& shape) const; typedef std::function<Shape(const Shape&)> DeviceShapeRepresentationFn; absl::StatusOr<ScopedShapedBuffer> AllocateScopedShapedBuffer( const Shape& on_host_shape, se::DeviceMemoryAllocator* allocator, int device_ordinal, DeviceShapeRepresentationFn shape_representation_fn = nullptr); virtual bool CanShapedBufferBeAccessedNow( se::StreamExecutor* executor, const ShapedBuffer& device_buffer) const { return false; } virtual bool CanBufferBeAccessedNow( se::StreamExecutor* executor, const se::DeviceMemoryBase& device_buffer) const { return false; } typedef std::unique_ptr<TransferManager> (*TransferManagerCreationFunction)(); static void RegisterTransferManager( se::Platform::Id platform_id, TransferManagerCreationFunction transfer_manager); static absl::StatusOr<TransferManager*> GetForPlatform( const se::Platform* platform); virtual absl::Status WriteSingleTupleIndexTable( se::Stream* stream, absl::Span<const se::DeviceMemoryBase> elements, const Shape& shape, se::DeviceMemoryBase* region) = 0; virtual bool PackSubbyteTypes() const { return false; } private: static absl::Mutex platform_transfer_manager_mutex_; struct State { std::unique_ptr<TransferManager> manager; TransferManagerCreationFunction creation_function = nullptr; }; static absl::flat_hash_map<se::Platform::Id, State>* GetPlatformTransferManagers(); }; } #endif #include "xla/service/transfer_manager.h" #include <cstdint> #include <functional> #include <memory> #include <utility> #include <vector> #include "absl/base/const_init.h" #include "absl/cleanup/cleanup.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "xla/literal.h" #include "xla/service/compiler.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/service/shaped_buffer.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/stream.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/notification.h" #include "tsl/platform/statusor.h" namespace xla { absl::Mutex TransferManager::platform_transfer_manager_mutex_( absl::kConstInit); absl::flat_hash_map<se::Platform::Id, TransferManager::State>* TransferManager::GetPlatformTransferManagers() { static auto* r = new absl::flat_hash_map<se::Platform::Id, TransferManager::State>; return r; } absl::StatusOr<Literal> TransferManager::TransferLiteralFromDevice( se::Stream* stream, const ShapedBuffer& device_buffer, const TransferMetadata* transfer_metadata) { Literal literal(device_buffer.on_host_shape()); TF_RETURN_IF_ERROR(TransferLiteralFromDevice(stream, device_buffer, &literal, transfer_metadata)); return std::move(literal); } absl::Status TransferManager::TransferLiteralFromDevice( se::Stream* stream, const ShapedBuffer& device_buffer, const MutableBorrowingLiteral& literal, const TransferMetadata* transfer_metadata) { TF_ASSIGN_OR_RETURN(se::Stream * substream, stream->GetOrCreateSubStream()); TF_RETURN_IF_ERROR(substream->WaitFor(stream)); absl::Cleanup cleanup = [&]() { stream->ReturnSubStream(substream); }; absl::Status ret; tsl::Notification n; TransferLiteralFromDevice( substream, device_buffer, literal, [&](absl::Status status) { ret = status; n.Notify(); }, transfer_metadata); n.WaitForNotification(); return ret; } absl::Status TransferManager::TransferLiteralToDevice( se::Stream* stream, const LiteralSlice& literal, const ShapedBuffer& device_buffer, const TransferMetadata* transfer_metadata) { TF_ASSIGN_OR_RETURN(se::Stream * substream, stream->GetOrCreateSubStream()); TF_RETURN_IF_ERROR(substream->WaitFor(stream)); absl::Cleanup cleanup = [&]() { stream->ReturnSubStream(substream); }; TF_RETURN_IF_ERROR(TransferLiteralToDeviceAsync( substream, literal, device_buffer, transfer_metadata)); return substream->BlockHostUntilDone(); } absl::StatusOr<Literal> TransferManager::TransferArrayFromDevice( se::Stream* stream, const Shape& shape, const se::DeviceMemoryBase& source, const TransferMetadata* transfer_metadata) { TF_RET_CHECK(shape.IsArray()); TF_RET_CHECK(Shape::Equal().MinorToMajorOnlyInLayout()( HostShapeToDeviceShape(shape), shape)); Literal literal(shape); ShapedBuffer shaped_buffer(shape, stream->parent()->device_ordinal()); shaped_buffer.set_buffer(source, {}); TF_RETURN_IF_ERROR(TransferLiteralFromDevice(stream, shaped_buffer, &literal, transfer_metadata)); return std::move(literal); } absl::Status TransferManager::TransferArrayToDevice( se::Stream* stream, const LiteralSlice& literal, const se::DeviceMemoryBase& dest, const TransferMetadata* transfer_metadata) { TF_ASSIGN_OR_RETURN(se::Stream * substream, stream->GetOrCreateSubStream()); TF_RETURN_IF_ERROR(substream->WaitFor(stream)); absl::Cleanup cleanup = [&]() { stream->ReturnSubStream(substream); }; TF_RETURN_IF_ERROR( TransferArrayToDeviceAsync(substream, literal, dest, transfer_metadata)); return substream->BlockHostUntilDone(); } absl::Status TransferManager::TransferArrayToDeviceAsync( se::Stream* stream, const LiteralSlice& literal, const se::DeviceMemoryBase& dest, const TransferMetadata* transfer_metadata) { TF_RET_CHECK(literal.shape().IsArray()); ShapedBuffer shaped_buffer(HostShapeToDeviceShape(literal.shape()), stream->parent()->device_ordinal()); shaped_buffer.set_buffer(dest, {}); return TransferLiteralToDeviceAsync(stream, literal, shaped_buffer, transfer_metadata); } absl::Status TransferManager::ReadDynamicShapes( se::Stream* stream, const ShapedBuffer* device_buffer, Shape* device_shape) { DCHECK(device_shape->is_dynamic()); Shape original_device_shape = *device_shape; TF_RETURN_IF_ERROR(stream->BlockHostUntilDone()); TF_ASSIGN_OR_RETURN( auto compiler, Compiler::GetForPlatform(stream->parent()->GetPlatform())); TF_RETURN_IF_ERROR(device_buffer->buffers().ForEachElementWithStatus( [&](const ShapeIndex& index, const se::DeviceMemoryBase& buffer) -> absl::Status { const Shape& buffer_shape = ShapeUtil::GetSubshape(*device_shape, index); if (buffer_shape.IsTuple()) { return absl::OkStatus(); } Shape& device_sub_shape = *ShapeUtil::GetMutableSubshape(device_shape, index); if (device_sub_shape.is_static()) { return absl::OkStatus(); } auto shape_size_fn = compiler->ShapeSizeBytesFunction(); Shape buffer_shape_static = ShapeUtil::MakeStaticShape(buffer_shape); const int64_t offset = shape_size_fn(buffer_shape_static); int64_t metadata_size = shape_size_fn(buffer_shape) - offset; if (metadata_size == 0) { return InvalidArgument("Dynamic shape metadata size should not be 0"); } auto buffer_8 = se::DeviceMemory<uint8_t>(buffer); auto metadata_buffer = buffer_8.GetSlice(offset, metadata_size); TF_ASSIGN_OR_RETURN( auto metadata, TransferArrayFromDevice( stream, ShapeUtil::MakeShape(S32, {buffer_shape.dimensions_size()}), metadata_buffer)); for (int64_t i = 0; i < metadata.element_count(); ++i) { device_sub_shape.mutable_dimensions()[i] = metadata.Get<int32_t>({i}); } return absl::OkStatus(); })); device_shape->clear_dynamic_dimensions(); TF_RET_CHECK(ShapeUtil::DynamicShapeIsCompatible(*device_shape, original_device_shape)); return absl::OkStatus(); } void TransferManager::RegisterTransferManager( se::Platform::Id platform_id, TransferManagerCreationFunction creation_function) { absl::MutexLock lock(&TransferManager::platform_transfer_manager_mutex_); auto* managers = GetPlatformTransferManagers(); CHECK(managers->find(platform_id) == managers->end()); (*managers)[platform_id].creation_function = creation_function; } absl::StatusOr<TransferManager*> TransferManager::GetForPlatform( const se::Platform* platform) { absl::MutexLock lock(&TransferManager::platform_transfer_manager_mutex_); auto* managers = GetPlatformTransferManagers(); auto it = managers->find(platform->id()); if (it == managers->end()) { return NotFound( "could not find registered transfer manager for platform %s -- check " "target linkage", platform->Name()); } if (it->second.manager == nullptr) { it->second.manager = (*it->second.creation_function)(); } return it->second.manager.get(); } absl::Status TransferManager::WriteTupleIndexTables( se::Stream* stream, const ShapedBuffer& device_buffer) { TF_RETURN_IF_ERROR(WriteTupleIndexTablesAsync(stream, device_buffer)); return stream->BlockHostUntilDone(); } absl::Status TransferManager::WriteTupleIndexTablesAsync( se::Stream* stream, const ShapedBuffer& device_buffer) { VLOG(2) << "Writing tuple index tables for " << device_buffer; return ShapeUtil::ForEachSubshapeWithStatus( device_buffer.on_device_shape(), [&](const Shape& device_subshape, const ShapeIndex& index) -> absl::Status { if (device_subshape.IsTuple() && ShapeUtil::TupleElementCount(device_subshape) > 0) { se::DeviceMemoryBase device_memory = device_buffer.buffer(index); TF_RET_CHECK(GetByteSizeRequirement(device_subshape) == device_memory.size()); std::vector<se::DeviceMemoryBase> elements; ShapeIndex element_index = index; for (int64_t i = 0; i < ShapeUtil::TupleElementCount(device_subshape); ++i) { element_index.push_back(i); elements.push_back(device_buffer.buffer(element_index)); element_index.pop_back(); } return WriteSingleTupleIndexTable(stream, elements, device_subshape, &device_memory); } return absl::OkStatus(); }); } absl::Status TransferManager::WriteRootTupleIndexTable( se::Stream* stream, const ShapedBuffer& device_buffer) { TF_RET_CHECK(device_buffer.on_device_shape().IsTuple()); if (ShapeUtil::TupleElementCount(device_buffer.on_device_shape()) == 0) { return absl::OkStatus(); } se::DeviceMemoryBase device_memory = device_buffer.buffer({}); TF_RET_CHECK(GetByteSizeRequirement(device_buffer.on_device_shape()) == device_memory.size()); std::vector<se::DeviceMemoryBase> elements; for (int64_t i = 0; i < ShapeUtil::TupleElementCount(device_buffer.on_device_shape()); ++i) { elements.push_back(device_buffer.buffer({i})); } return WriteSingleTupleIndexTable( stream, elements, device_buffer.on_device_shape(), &device_memory); } absl::Status TransferManager::WriteRootTupleIndexTable( se::Stream* stream, const ShapeTree<MaybeOwningDeviceMemory>& buffer_tree) { TF_RET_CHECK(buffer_tree.shape().IsTuple()); if (ShapeUtil::TupleElementCount(buffer_tree.shape()) == 0) { return absl::OkStatus(); } se::DeviceMemoryBase device_memory = buffer_tree.element({}).AsDeviceMemoryBase(); TF_RET_CHECK(GetByteSizeRequirement(buffer_tree.shape()) == device_memory.size()); std::vector<se::DeviceMemoryBase> elements; for (int64_t i = 0; i < ShapeUtil::TupleElementCount(buffer_tree.shape()); ++i) { elements.push_back(buffer_tree.element({i}).AsDeviceMemoryBase()); } return WriteSingleTupleIndexTable(stream, elements, buffer_tree.shape(), &device_memory); } absl::StatusOr<ScopedShapedBuffer> TransferManager::AllocateScopedShapedBuffer( const Shape& on_host_shape, se::DeviceMemoryAllocator* allocator, int device_ordinal, DeviceShapeRepresentationFn shape_representation_fn) { if (!LayoutUtil::HasLayout(on_host_shape)) { return InvalidArgument("Shape must have a layout: %s", ShapeUtil::HumanStringWithLayout(on_host_shape)); } TF_RETURN_IF_ERROR(ShapeUtil::ValidateShape(on_host_shape)); Shape on_device_shape = (shape_representation_fn == nullptr) ? HostShapeToDeviceShape(on_host_shape) : shape_representation_fn(on_host_shape); TF_RET_CHECK(LayoutUtil::HasLayout(on_device_shape)); ScopedShapedBuffer shaped_buffer(std::move(on_device_shape), allocator, device_ordinal); for (auto& pair : shaped_buffer.buffers()) { const ShapeIndex& index = pair.first; se::DeviceMemoryBase& memory_base = pair.second; const Shape& subshape = ShapeUtil::GetSubshape(shaped_buffer.on_device_shape(), index); TF_ASSIGN_OR_RETURN(auto memory, allocator->Allocate(shaped_buffer.device_ordinal(), GetByteSizeRequirement(subshape), true, LayoutUtil::MemorySpace(subshape))); memory_base = memory.Release(); } return std::move(shaped_buffer); } absl::StatusOr<Shape> TransferManager::ChooseCompactLayoutForShape( const Shape& host_shape) const { return LayoutUtil::GetWithDefaultLayout(host_shape); } xla::Shape TransferManager::ChooseGoodInfeedLayout(const Shape& shape) const { return LayoutUtil::GetWithDefaultLayout(shape); } }
#include <memory> #include <string> #include <vector> #include "absl/status/statusor.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/service/generic_transfer_manager.h" #include "xla/service/hlo_parser.h" #include "xla/service/shaped_buffer.h" #include "xla/service/stream_pool.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/local_client_test_base.h" #include "xla/tests/test_macros.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" #include "tsl/platform/test_benchmark.h" namespace xla { namespace { class TransferManagerTest : public LocalClientTestBase { protected: TransferManagerTest() : shape_size_fn_([this](const Shape& shape) { return transfer_manager_->GetByteSizeRequirement(shape); }) { stream_ptr_ = local_client_->mutable_backend() ->BorrowStream(stream_executor_) .value(); stream_ = stream_ptr_.get(); } ~TransferManagerTest() override = default; ScopedShapedBuffer AllocateDeviceBuffer(const Shape& shape) { return transfer_manager_ ->AllocateScopedShapedBuffer( shape, GetOrCreateAllocator(local_client_->platform()), 0) .value(); } protected: StreamPool::Ptr stream_ptr_; se::Stream* stream_; private: std::function<int64_t(const Shape&)> shape_size_fn_; }; XLA_TEST_F(TransferManagerTest, TransferR0U32) { Literal literal = LiteralUtil::CreateR0<uint32_t>(42); const Shape& shape = literal.shape(); auto device_buffer = AllocateDeviceBuffer(shape); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); LiteralTestUtil::ExpectR0Equal<uint32_t>(42, result); } XLA_TEST_F(TransferManagerTest, TransferR1F32) { Literal literal = LiteralUtil::CreateR1<float>({1.25f, 2.5f, -17.0f, -20.125f}); const Shape& shape = literal.shape(); auto device_buffer = AllocateDeviceBuffer(shape); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); LiteralTestUtil::ExpectR1Equal<float>({1.25f, 2.5f, -17.0f, -20.125f}, result); } XLA_TEST_F(TransferManagerTest, TransferR1F32AwkwardSizes) { constexpr int kMaxR1Size = (1 << 11); for (int i = 0; i < kMaxR1Size; ++i) { std::vector<float> inputs(i); std::iota(inputs.begin(), inputs.end(), 0); Literal literal = LiteralUtil::CreateR1<float>(inputs); const Shape& shape = literal.shape(); auto device_buffer = AllocateDeviceBuffer(shape); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); LiteralTestUtil::ExpectR1Equal<float>(inputs, result); } } XLA_TEST_F(TransferManagerTest, TransferR1LargeF32) { std::vector<float> test_vector(1024 * 1024); std::iota(test_vector.begin(), test_vector.end(), 0); Literal literal = LiteralUtil::CreateR1<float>(test_vector); const Shape& shape = literal.shape(); auto device_buffer = AllocateDeviceBuffer(shape); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); LiteralTestUtil::ExpectR1Equal<float>(test_vector, result); } XLA_TEST_F(TransferManagerTest, TransferR1LargeUnalignedF32) { std::vector<float> test_vector(1025); std::iota(test_vector.begin(), test_vector.end(), 0); Shape shape = ShapeUtil::MakeShape(F32, {1024}); BorrowingLiteral literal(reinterpret_cast<const char*>(&test_vector[1]), shape); auto device_buffer = AllocateDeviceBuffer(shape); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); std::vector<float> expected_output(1024); std::iota(expected_output.begin(), expected_output.end(), 1); LiteralTestUtil::ExpectR1Equal<float>(expected_output, result); } XLA_TEST_F(TransferManagerTest, TransferR1U8) { const char* test_string = "0123456789abcdef"; Literal literal = LiteralUtil::CreateR1U8(test_string); const Shape& shape = literal.shape(); auto device_buffer = AllocateDeviceBuffer(shape); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); EXPECT_EQ(result.GetR1U8AsString(), test_string); } XLA_TEST_F(TransferManagerTest, TransferR2F32) { Literal literal = LiteralUtil::CreateR2<float>({{1.0f, 2.0f, 3.0f}, {4.0f, 5.0f, 6.0f}}); const Shape& shape = literal.shape(); auto device_buffer = AllocateDeviceBuffer(shape); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); LiteralTestUtil::ExpectR2Equal<float>( {{1.0f, 2.0f, 3.0f}, {4.0f, 5.0f, 6.0f}}, result); } XLA_TEST_F(TransferManagerTest, TransferR2F32AndChangeLayoutTransferringToDevice) { Literal literal = LiteralUtil::CreateR2WithLayout<float>( {{1.0f, 2.0f, 3.0f}, {4.0f, 5.0f, 6.0f}}, LayoutUtil::MakeLayout({0, 1})); const Shape ondevice_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 3}, {1, 0}); auto device_buffer = AllocateDeviceBuffer(ondevice_shape); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); EXPECT_FALSE( LayoutUtil::Equal(result.shape().layout(), literal.shape().layout())); LiteralTestUtil::ExpectR2Equal<float>( {{1.0f, 2.0f, 3.0f}, {4.0f, 5.0f, 6.0f}}, result); } XLA_TEST_F(TransferManagerTest, TransferTuple) { Literal literal = LiteralUtil::MakeTupleFromSlices( {LiteralUtil::CreateR0<float>(123.0f), LiteralUtil::CreateR2<float>({{1.0f, 2.0f}, {4.0f, 5.0f}}), LiteralUtil::CreateR1<float>({44.0f, -10.0f, 3333333.3f})}); auto device_buffer = AllocateDeviceBuffer(literal.shape()); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); EXPECT_TRUE(LiteralTestUtil::Equal(literal, result)); } XLA_TEST_F(TransferManagerTest, TransferEmptyTuple) { Literal literal = LiteralUtil::MakeTuple({}); auto device_buffer = AllocateDeviceBuffer(literal.shape()); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); EXPECT_TRUE(LiteralTestUtil::Equal(literal, result)); } XLA_TEST_F(TransferManagerTest, TransferNestedTuple) { Literal literal = LiteralUtil::MakeTupleFromSlices( {LiteralUtil::CreateR0<float>(123.0f), LiteralUtil::MakeTupleFromSlices( {LiteralUtil::CreateR2<float>({{1.0f, 2.0f}, {4.0f, 5.0f}}), LiteralUtil::CreateR1<float>({44.0f, -10.0f, 3333333.3f})}), LiteralUtil::CreateR1<float>({-10.0f, 123.0f})}); auto device_buffer = AllocateDeviceBuffer(literal.shape()); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); EXPECT_TRUE(LiteralTestUtil::Equal(literal, result)); } XLA_TEST_F(TransferManagerTest, TransferComplexValue) { Literal literal = LiteralUtil::CreateR1<complex64>( {complex64(1.0f, 2.0f), complex64(42.0f, -123.4f)}); auto device_buffer = AllocateDeviceBuffer(literal.shape()); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); EXPECT_TRUE(LiteralTestUtil::Equal(literal, result)); } XLA_TEST_F(TransferManagerTest, TransferComplexValueInTuple) { Literal literal = LiteralUtil::MakeTupleFromSlices( {LiteralUtil::CreateR1<complex64>( {complex64(1.0f, 2.0f), complex64(42.0f, -123.4f)}), LiteralUtil::CreateR1<int32_t>({1, 2, 3, 4, 5, 6}), LiteralUtil::CreateR0<complex64>(complex64(0.3f, -0.4f))}); auto device_buffer = AllocateDeviceBuffer(literal.shape()); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); EXPECT_TRUE(LiteralTestUtil::Equal(literal, result)); } XLA_TEST_F(TransferManagerTest, TransferTokenFromDevice) { auto device_buffer = AllocateDeviceBuffer(ShapeUtil::MakeTokenShape()); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateToken(), result)); } XLA_TEST_F(TransferManagerTest, OVERSIZE_ON_GRM(MultiStreamRoundTripSoak)) { const int64_t kIterationCount = 5000; Literal literal1 = LiteralUtil::MakeTupleFromSlices( {LiteralUtil::CreateR0<float>(123.0f), LiteralUtil::MakeTupleFromSlices( {LiteralUtil::CreateR2<float>({{1.0f, 2.0f}, {4.0f, 5.0f}}), LiteralUtil::CreateR1<float>({44.0f, -10.0f, 3333333.3f})}), LiteralUtil::CreateR1<float>({-10.0f, 123.0f})}); Literal literal2 = LiteralUtil::MakeTupleFromSlices( {LiteralUtil::CreateR0<float>(456.0f), LiteralUtil::MakeTupleFromSlices( {LiteralUtil::CreateR2<float>({{5.0f, 7.0f}, {9.0f, 4.0f}}), LiteralUtil::CreateR1<float>({44.0f, -11.0f, 3333333.3f})}), LiteralUtil::CreateR1<float>({-98.0f, 153.0f})}); auto device_buffer1 = AllocateDeviceBuffer(literal1.shape()); auto device_buffer2 = AllocateDeviceBuffer(literal2.shape()); auto stream1 = stream_; auto stream2 = stream_->GetOrCreateSubStream().value(); Literal result1, result2; for (int i = 0; i < kIterationCount; ++i) { ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream1, literal1, device_buffer1)); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream2, literal2, device_buffer2)); TF_ASSERT_OK_AND_ASSIGN( Literal this_result1, transfer_manager_->TransferLiteralFromDevice(stream1, device_buffer1)); TF_ASSERT_OK_AND_ASSIGN( Literal this_result2, transfer_manager_->TransferLiteralFromDevice(stream2, device_buffer2)); result1 = std::move(this_result1); result2 = std::move(this_result2); } EXPECT_TRUE(LiteralTestUtil::Equal(literal1, result1)); EXPECT_TRUE(LiteralTestUtil::Equal(literal2, result2)); } XLA_TEST_F(TransferManagerTest, DISABLED_ON_TPU(TransferDynamicShape)) { TF_ASSERT_OK_AND_ASSIGN( Shape s, ParseShape("(s64[], s32[<=1048576,3], f32[<=1048576,48])")); Literal literal(s); literal.SetDynamicSize(0, {1}, 1048574); literal.SetDynamicSize(0, {2}, 1048575); ASSERT_IS_OK(MutableBorrowingLiteral(&literal, {0}) .Populate<int64_t>( [](absl::Span<const int64_t> indices) { return 42; })); ASSERT_IS_OK(MutableBorrowingLiteral(&literal, {1}) .Populate<int32_t>([](absl::Span<const int64_t> indices) { return indices[0] + indices[1]; })); ASSERT_IS_OK(MutableBorrowingLiteral(&literal, {2}) .Populate<float>([](absl::Span<const int64_t> indices) { return indices[0] + indices[1]; })); ScopedShapedBuffer device_buffer = AllocateDeviceBuffer(literal.shape()); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); EXPECT_EQ(literal.GetDynamicSize(0, {1}), result.GetDynamicSize(0, {1})); EXPECT_EQ(literal.GetDynamicSize(0, {2}), result.GetDynamicSize(0, {2})); EXPECT_TRUE(LiteralTestUtil::Equal(literal, result)); } class TransferDeviceToHostBenchmark : public TransferManagerTest { public: using TransferManagerTest::TransferManagerTest; ~TransferDeviceToHostBenchmark() override {} void Run(::testing::benchmark::State& state, int num_tuple_elements, int array_size) { SetUp(); std::vector<Literal> tuple_elements; for (int i = 0; i < num_tuple_elements; ++i) { tuple_elements.push_back( LiteralUtil::CreateR2F32Linspace(0.0f, 1.0f, array_size, array_size)); } Literal literal = LiteralUtil::MakeTupleOwned(std::move(tuple_elements)); auto device_buffer = AllocateDeviceBuffer(literal.shape()); TF_CHECK_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); for (auto s : state) { TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); } TearDown(); } void TestBody() override {} }; class TransferHostToDeviceBenchmark : public TransferManagerTest { public: using TransferManagerTest::TransferManagerTest; ~TransferHostToDeviceBenchmark() override {} void Run(::testing::benchmark::State& state, int num_tuple_elements, int array_size) { SetUp(); std::vector<Literal> tuple_elements; for (int i = 0; i < num_tuple_elements; ++i) { tuple_elements.push_back( LiteralUtil::CreateR2F32Linspace(0.0f, 1.0f, array_size, array_size)); } Literal literal = LiteralUtil::MakeTupleOwned(std::move(tuple_elements)); auto device_buffer = AllocateDeviceBuffer(literal.shape()); for (auto s : state) { TF_CHECK_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); } TearDown(); } void TestBody() override {} }; void BM_TransferDeviceToHost(::testing::benchmark::State& state) { const int num_tuple_elements = state.range(0); const int array_size = state.range(1); TransferDeviceToHostBenchmark bm; bm.Run(state, num_tuple_elements, array_size); } void BM_TransferHostToDevice(::testing::benchmark::State& state) { const int num_tuple_elements = state.range(0); const int array_size = state.range(1); TransferHostToDeviceBenchmark bm; bm.Run(state, num_tuple_elements, array_size); } BENCHMARK(BM_TransferHostToDevice) ->ArgPair(1, 256) ->ArgPair(1, 257) ->ArgPair(100, 256) ->ArgPair(100, 257); BENCHMARK(BM_TransferDeviceToHost) ->ArgPair(1, 256) ->ArgPair(1, 257) ->ArgPair(100, 256) ->ArgPair(100, 257); int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); tsl::testing::RunBenchmarks(); return RUN_ALL_TESTS(); } } }
1,894
cpp
tensorflow/tensorflow
multi_output_fusion
third_party/xla/xla/service/gpu/transforms/multi_output_fusion.cc
third_party/xla/xla/service/gpu/transforms/multi_output_fusion_test.cc
#ifndef XLA_SERVICE_GPU_MULTI_OUTPUT_FUSION_H_ #define XLA_SERVICE_GPU_MULTI_OUTPUT_FUSION_H_ #include <memory> #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_dfs_reachability.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/gpu/gpu_fusible.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_pass_interface.h" #include "xla/stream_executor/device_description.h" namespace xla { namespace gpu { class GpuMultiOutputFusion : public HloModulePass { public: explicit GpuMultiOutputFusion( const se::DeviceDescription& device_info, HloCostAnalysis::ShapeSizeFunction shape_size_function) : device_info_(device_info), shape_size_function_(shape_size_function) {} absl::string_view name() const override { return "multi_output_fusion"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: bool FuseSiblings(HloInstruction* parent, FusionInfoCache* fusion_info_cache, GpuHloCostAnalysis* cost_analysis); absl::StatusOr<bool> DoMultiOutputFusion(); void RecomputeReachability(); void DumpFusionState(const HloInstruction& consumer, absl::string_view label, const HloInstruction* producer = nullptr); HloComputation* computation_; std::unique_ptr<HloDfsReachability> reachability_; se::DeviceDescription device_info_; HloCostAnalysis::ShapeSizeFunction shape_size_function_; }; } } #endif #include "xla/service/gpu/multi_output_fusion.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <iterator> #include <memory> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "xla/debug_options_flags.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_dfs_reachability.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/gpu_fusible.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/gpu/model/gpu_performance_model.h" #include "xla/service/gpu/model/gpu_performance_model_base.h" #include "xla/service/hlo_graph_dumper.h" #include "xla/service/instruction_fusion.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { bool IsProfitableOperand(HloInstruction* instr) { return !ShapeUtil::IsEffectiveScalar(instr->shape()); } const HloSliceInstruction* FindUniqueSlice(const HloInstruction* parent, const HloInstruction* instr) { if (const auto* slice = DynCast<HloSliceInstruction>(instr)) { return slice; } else if (const auto* fusion = DynCast<HloFusionInstruction>(instr)) { const HloSliceInstruction* result = nullptr; for (size_t i = 0; i < fusion->operand_count(); ++i) { if (fusion->operand(i) == parent) { if (result) return nullptr; auto* called_param = fusion->fused_parameter(i); if (called_param->user_count() != 1) return nullptr; result = FindUniqueSlice(called_param, called_param->users()[0]); if (!result) return nullptr; } } return result; } else { return nullptr; } } FusionDecision ParameterSlicesAreNonOverlapping(const HloInstruction& instr1, const HloInstruction& instr2, const HloInstruction* parent) { if (parent->shape().IsTuple()) return {}; if (ShapeUtil::ByteSizeOfElements(parent->shape()) < 1024) return {}; const HloSliceInstruction* slice1 = FindUniqueSlice(parent, &instr1); const HloSliceInstruction* slice2 = FindUniqueSlice(parent, &instr2); if (!slice1 || !slice2) return {}; auto& starts1 = slice1->slice_starts(); auto& starts2 = slice2->slice_starts(); auto& limits1 = slice1->slice_limits(); auto& limits2 = slice2->slice_limits(); for (int64_t dim = 0; dim < parent->shape().rank(); ++dim) { bool overlap = starts1[dim] < limits2[dim] && starts2[dim] < limits1[dim]; if (!overlap) { return "slices are non-overlapping"; } } return {}; } FusionDecision LegalToFuse(const HloInstruction& instr1, const HloInstruction& instr2, const se::DeviceDescription& device_info, FusionInfoCache* fusion_info_cache) { CHECK(instr1.opcode() == HloOpcode::kFusion); if (instr1.fused_expression_root()->opcode() == HloOpcode::kDynamicUpdateSlice || (instr2.opcode() == HloOpcode::kFusion && instr2.fused_expression_root()->opcode() == HloOpcode::kDynamicUpdateSlice)) { return "can't fuse multiple DUSs"; } return FusionFitsInBudget(instr1, instr2, device_info, false, fusion_info_cache); } int FusionPriority(const HloInstruction* instr) { if (instr->IsMultiOutputFusion()) { return 2; } if (instr->opcode() == HloOpcode::kFusion) { return 1; } return 0; } HloInstruction* SelectPreferredFusionCandidate( const std::vector<HloInstruction*> candidates) { if (candidates.empty()) { return nullptr; } return *std::max_element( candidates.begin(), candidates.end(), [](const HloInstruction* a, const HloInstruction* b) { return FusionPriority(a) < FusionPriority(b); }); } FusionDecision OperandReachableFromProducer( const HloInstruction& producer, const HloInstruction& consumer, const HloDfsReachability& reachability) { for (const auto* operand : consumer.operands()) { if (!reachability.IsPresent(operand) && operand->opcode() == HloOpcode::kGetTupleElement) { operand = operand->operand(0); } CHECK(reachability.IsPresent(operand) && reachability.IsPresent(&producer)) << "Reachability map is incomplete. This should never " "happen."; if (&producer != operand && reachability.IsReachable(&producer, operand)) { return { absl::StrCat(producer.name(), " would introduce a cycle when fused")}; } } return {}; } FusionDecision ProducerCandidateIsFusible( const HloInstruction& producer, const HloInstruction& consumer, const HloDfsReachability& reachability, FusionInfoCache* fusion_info_cache, GpuHloCostAnalysis* cost_analysis) { if (!IsFusibleAsMultiOutputFusionRoot(consumer)) { return "consumer not eligible as multi-output fusion root."; } RETURN_IF_NOT_FUSIBLE( ShapesCompatibleForMultiOutputFusion(consumer, producer)); RETURN_IF_NOT_FUSIBLE( OperandReachableFromProducer(producer, consumer, reachability)); RETURN_IF_NOT_FUSIBLE(FusionFitsInBudget( producer, consumer, *cost_analysis->device_info_, false, fusion_info_cache)); if (cost_analysis->ProducerConsumerMergedTooLarge(producer, consumer)) { return "will generate too large IR"; } GpuPerformanceModel::RunTimes t = GpuPerformanceModel::EstimateRunTimes( &producer, cost_analysis, GpuPerformanceModelOptions::Default(), {&consumer}, true); if (t.time_fused > t.time_unfused) { return "will execute slower if fused"; } return {}; } std::vector<HloInstruction*> GetProducerConsumerMultiOutputFusionCandidates( const HloInstruction* producer, const HloDfsReachability& reachability, FusionInfoCache* fusion_info_cache, GpuHloCostAnalysis* cost_analysis) { std::vector<HloInstruction*> fusion_candidates; const HloComputation* computation = producer->parent(); const HloModule* module = computation->parent(); bool dump_fusion = module->config().debug_options().xla_dump_fusion_visualization(); if (!IsProducerMultiOutputFusible(*producer)) { return fusion_candidates; } if (producer->user_count() == 1 && !producer->users()[0]->IsMultiOutputFusion()) { return fusion_candidates; } for (HloInstruction* consumer : producer->users()) { VLOG(3) << "Looking at producer " << producer->name() << " and its consumer " << consumer->name(); if (auto decision = ProducerCandidateIsFusible(*producer, *consumer, reachability, fusion_info_cache, cost_analysis)) { fusion_candidates.push_back(consumer); } else if (dump_fusion) { RegisterFusionState( *computation, absl::StrCat("Not considering fusion of producer |", producer->name(), "| into consumer |", consumer->name(), "| due to: ", decision.Explain()), *consumer, producer); } } return fusion_candidates; } bool IsSiblingFusionCandidate(const HloInstruction* instr) { if (instr->users().empty() || !IsFusibleAsMultiOutputFusionRoot(*instr) || IsNestableVariadicReduction(*instr)) { return false; } return (!instr->IsMultiOutputFusion() || absl::c_all_of(instr->users(), [&](const HloInstruction* user) { return user->opcode() == HloOpcode::kGetTupleElement; })); } FusionDecision CanFuseSiblings(const HloInstruction& sibling_consumer_1, const HloInstruction& sibling_consumer_2, const HloInstruction& common_producer, const HloDfsReachability& reachability, FusionInfoCache* fusion_info_cache, GpuHloCostAnalysis* cost_analysis) { if (reachability.IsConnected(&sibling_consumer_1, &sibling_consumer_2)) { return {absl::StrCat(sibling_consumer_1.name(), " and ", sibling_consumer_2.name(), " are connected")}; } RETURN_IF_NOT_FUSIBLE(ShapesCompatibleForMultiOutputFusion( sibling_consumer_1, sibling_consumer_2)); RETURN_IF_NOT_FUSIBLE(ParameterSlicesAreNonOverlapping( sibling_consumer_1, sibling_consumer_2, &common_producer)); RETURN_IF_NOT_FUSIBLE(LegalToFuse(sibling_consumer_1, sibling_consumer_2, *cost_analysis->device_info_, fusion_info_cache)); return {}; } } void GpuMultiOutputFusion::RecomputeReachability() { reachability_ = HloDfsReachability::Build(computation_); } bool GpuMultiOutputFusion::FuseSiblings(HloInstruction* parent, FusionInfoCache* fusion_info_cache, GpuHloCostAnalysis* cost_analysis) { const HloComputation* computation = parent->parent(); const HloModule* module = computation->parent(); bool dump_fusion = module->config().debug_options().xla_dump_fusion_visualization(); if (!IsProfitableOperand(parent)) { VLOG(3) << "Operand " << parent->ToShortString() << " is not profitable"; return false; } bool changed = false; std::vector<HloInstruction*> siblings; absl::c_copy_if(parent->users(), std::back_inserter(siblings), IsSiblingFusionCandidate); absl::c_stable_sort(siblings, [](const HloInstruction* a, const HloInstruction* b) { return FusionPriority(a) > FusionPriority(b); }); for (auto i = siblings.begin(); i != siblings.end(); ++i) { VLOG(3) << "Considering " << (*i)->name(); if ((*i)->opcode() != HloOpcode::kFusion) { continue; } for (auto j = i + 1; j != siblings.end();) { VLOG(3) << "Considering " << (*i)->name() << " and " << (*j)->name(); if (auto fusible = CanFuseSiblings(**i, **j, *parent, *reachability_, fusion_info_cache, cost_analysis); !fusible) { if (dump_fusion) { RegisterFusionState( *computation, absl::StrCat("Not fusing siblings |", (**i).name(), "| and |", (**j).name(), "| due to: ", fusible.Explain()), **i, parent); } ++j; continue; } if (!ConsumeFuel(name(), [&] { return absl::StrFormat("Not fusing siblings %s and %s.", (*i)->name(), (*j)->name()); })) { ++j; continue; } VLOG(2) << "Fuse siblings " << (*i)->name() << " and " << (*j)->name(); fusion_info_cache->Invalidate(*i); fusion_info_cache->Invalidate(*j); HloInstruction* remaining = *i; HloInstruction* fused = *j; TF_CHECK_OK(cost_analysis->RemoveInstruction(remaining)); TF_CHECK_OK(cost_analysis->RemoveInstruction(fused)); DumpFusionState(*remaining, absl::StrCat("About to fuse sibling |", fused->name(), "| into sibling |", remaining->name(), "| inside multi-output fusion"), fused); if (fused->opcode() == HloOpcode::kFusion) { remaining->MergeFusionInstructionIntoMultiOutput(fused); if (fused->IsInputFusion()) { remaining->set_fusion_kind(HloInstruction::FusionKind::kInput); } } else { remaining->FuseInstructionIntoMultiOutput(fused); CHECK_EQ(0, fused->user_count()); TF_CHECK_OK(computation_->RemoveInstruction(fused)); } DumpFusionState(*remaining, absl::StrCat("Fused into |", remaining->name(), "| inside multi-output fusion")); TF_CHECK_OK(cost_analysis->RevisitInstruction(remaining)); changed = true; siblings.erase(j); RecomputeReachability(); } } return changed; } absl::StatusOr<bool> GpuMultiOutputFusion::DoMultiOutputFusion() { bool changed = false; RecomputeReachability(); GpuHloCostAnalysis cost_analysis({shape_size_function_, {}, true}, &device_info_); TF_RETURN_IF_ERROR(computation_->Accept(&cost_analysis)); std::vector<HloInstruction*> defs_before_uses = computation_->MakeInstructionPostOrder(); FusionInfoCache fusion_info_cache; for (auto it = defs_before_uses.rbegin(); it != defs_before_uses.rend(); ++it) { auto* producer = *it; if (producer->opcode() == HloOpcode::kConstant) { VLOG(3) << producer->name() << " is a constant."; continue; } if (producer->IsCustomFusion()) { continue; } if (FuseSiblings(producer, &fusion_info_cache, &cost_analysis)) { changed = true; } const auto candidates = GetProducerConsumerMultiOutputFusionCandidates( producer, *reachability_, &fusion_info_cache, &cost_analysis); auto* consumer_for_fusion = SelectPreferredFusionCandidate(candidates); if (consumer_for_fusion == nullptr) { continue; } if (!ConsumeFuel(name(), [&] { return absl::StrFormat("Not fusing %s and %s.", producer->name(), consumer_for_fusion->name()); })) { continue; } changed = true; fusion_info_cache.Invalidate(producer); fusion_info_cache.Invalidate(consumer_for_fusion); TF_RETURN_IF_ERROR(cost_analysis.RemoveInstruction(producer)); TF_RETURN_IF_ERROR(cost_analysis.RemoveInstruction(consumer_for_fusion)); HloInstruction* input_fusion; if (consumer_for_fusion->opcode() == HloOpcode::kFusion) { input_fusion = consumer_for_fusion; VLOG(2) << "Fuse producer " << producer->name() << " into its consumer " << consumer_for_fusion->name(); } else { input_fusion = computation_->AddInstruction(HloInstruction::CreateFusion( consumer_for_fusion->shape(), ChooseFusionKind(*producer, *consumer_for_fusion), consumer_for_fusion)); VLOG(2) << "Fuse producer " << producer->name() << " and its consumer " << consumer_for_fusion->name() << " into " << input_fusion->name(); TF_CHECK_OK( computation_->ReplaceInstruction(consumer_for_fusion, input_fusion)); } DumpFusionState(*input_fusion, absl::StrCat("About to fuse producer |", producer->name(), "| into consumer |", input_fusion->name(), "| inside multi-output fusion"), producer); if (producer->opcode() == HloOpcode::kFusion) { input_fusion->MergeFusionInstructionIntoMultiOutput(producer); } else { input_fusion->FuseInstructionIntoMultiOutput(producer); CHECK_EQ(0, producer->user_count()); TF_CHECK_OK(computation_->RemoveInstruction(producer)); } TF_RETURN_IF_ERROR(cost_analysis.RevisitInstruction(input_fusion)); DumpFusionState(*input_fusion, absl::StrCat("Fused into |", input_fusion->name(), "| inside multi-output fusion")); RecomputeReachability(); } return changed; } void GpuMultiOutputFusion::DumpFusionState(const HloInstruction& consumer, absl::string_view label, const HloInstruction* producer) { if (consumer.GetModule() ->config() .debug_options() .xla_dump_fusion_visualization()) { RegisterFusionState(*computation_, label, consumer, producer); } } absl::StatusOr<bool> GpuMultiOutputFusion::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (auto* computation : GetFusibleComputations(*module, execution_threads)) { computation_ = computation; TF_ASSIGN_OR_RETURN(bool computation_changed, DoMultiOutputFusion()); changed |= computation_changed; } return changed; } } }
#include "xla/service/gpu/multi_output_fusion.h" #include <cstdint> #include <optional> #include <vector> #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/gpu_fusible.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace gpu { namespace m = ::xla::match; class MultiOutputFusionTest : public HloTestBase { HloCostAnalysis::ShapeSizeFunction ShapeSizeBytesFunction() const { return [&](const Shape& shape) { constexpr int64_t kPointerSize = 8; return ShapeUtil::ByteSizeOf(shape, kPointerSize); }; } public: GpuMultiOutputFusion mof_{ TestGpuDeviceInfo::RTXA6000DeviceInfo(), ShapeSizeBytesFunction()}; void CheckGpuMultiOutputFusion(absl::string_view hlo, std::optional<absl::string_view> expected) { RunAndFilecheckHloRewrite( hlo, GpuMultiOutputFusion{ TestGpuDeviceInfo::RTXA6000DeviceInfo(), ShapeSizeBytesFunction()}, expected); } }; const char kModulePrefix[] = R"( HloModule test_module scalar_add_computation { scalar_lhs.0 = f32[] parameter(0) scalar_rhs.0 = f32[] parameter(1) ROOT add.0 = f32[] add(scalar_lhs.0, scalar_rhs.0) } scalar_mul_computation { scalar_lhs.1 = f32[] parameter(0) scalar_rhs.1 = f32[] parameter(1) ROOT mul.1 = f32[] multiply(scalar_lhs.1, scalar_rhs.1) })"; static int64_t CountMultiOutputFusions(const HloModule* module) { int multi_output_fusion_count = 0; for (auto* computation : module->MakeNonfusionComputations()) { for (auto* instr : computation->instructions()) { if (instr->IsMultiOutputFusion()) { multi_output_fusion_count++; } } } return multi_output_fusion_count; } TEST_F(MultiOutputFusionTest, MultiOutputFusionSiblingReduceAndReduceFusion) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation { p1.1 = f32[128,512,28,28]{3,2,1,0} parameter(1) mul = f32[128,512,28,28]{3,2,1,0} multiply(p1.1, p1.1) const.1 = f32[] parameter(0) ROOT reduce.1 = f32[512]{0} reduce(mul, const.1), dimensions={0,2,3}, to_apply=scalar_add_computation } ENTRY entry { p0 = f32[] parameter(0) p1 = f32[128,512,28,28]{3,2,1,0} parameter(1) const.2 = f32[] constant(1) fusion = f32[512] fusion(p0, p1), kind=kInput, calls=fused_computation reduce.2 = f32[512]{0} reduce(p1, const.2), dimensions={0,2,3}, to_apply=scalar_add_computation ROOT root = (f32[512]{0}, f32[512]{0}) tuple(fusion, reduce.2) })")) .value(); ASSERT_TRUE(mof_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* fusion = module->entry_computation()->root_instruction()->operand(0)->operand(0); ASSERT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Reduce(), m::Reduce()))); } TEST_F(MultiOutputFusionTest, MultiOutputFusionDifferentReduceInputShapes) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p1.1 = f32[6400]{0} parameter(1) mul = f32[6400]{0} multiply(p1.1, p1.1) const.1 = f32[] parameter(0) ROOT reduce.1 = f32[] reduce(mul, const.1), dimensions={0}, to_apply=scalar_add_computation } fused_computation_2 { p1.2 = f32[6400]{0} parameter(1) r1 = f32[64,100]{0,1} reshape(p1.2) const.2 = f32[] parameter(0) ROOT reduce.2 = f32[] reduce(r1, const.2), dimensions={1,0}, to_apply=scalar_mul_computation } ENTRY entry { p0 = f32[] parameter(0) p1 = f32[6400]{0} parameter(1) fusion.1 = f32[] fusion(p0, p1), kind=kInput, calls=fused_computation_1 fusion.2 = f32[] fusion(p0, p1), kind=kInput, calls=fused_computation_2 ROOT root = (f32[], f32[]) tuple(fusion.1, fusion.2) })")) .value(); ASSERT_FALSE(mof_.Run(module.get()).value()); } TEST_F(MultiOutputFusionTest, ReduceMofDifferentTypes) { const char* hlo = R"( HloModule module scalar_add_computation { scalar_lhs.1 = f32[] parameter(0) scalar_rhs.1 = f32[] parameter(1) ROOT add.1 = f32[] add(scalar_lhs.1, scalar_rhs.1) } scalar_add_computation_f16 { scalar_lhs.0 = f16[] parameter(0) scalar_rhs.0 = f16[] parameter(1) ROOT add.0 = f16[] add(scalar_lhs.0, scalar_rhs.0) } fused_computation { param_0.2 = f32[128,512,28,28]{3,2,1,0} parameter(0) c.1 = f16[128,512,28,28]{3,2,1,0} convert(param_0.2) const.0 = f16[] constant(0) ROOT reduce.0 = f16[512]{0} reduce(c.1, const.0), dimensions={0,2,3}, to_apply=scalar_add_computation_f16 } ENTRY entry { p0 = f32[] parameter(0) p1 = f32[128,512,28,28]{3,2,1,0} parameter(1) const.2 = f32[] constant(0) reduce.1 = f32[512]{0} reduce(p1, const.2), dimensions={0,2,3}, to_apply=scalar_add_computation fusion = f16[512]{0} fusion(p1), kind=kInput, calls=fused_computation ROOT root = (f32[512]{0}, f16[512]{0}) tuple(reduce.1, fusion) })"; CheckGpuMultiOutputFusion(hlo, R"( )"); } TEST_F(MultiOutputFusionTest, MultiOutputFusionDifferentReduceOutputShapes) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p1.1 = f32[10,10]{1,0} parameter(1) mul = f32[10,10]{1,0} multiply(p1.1, p1.1) const.1 = f32[] parameter(0) ROOT reduce.1 = f32[] reduce(mul, const.1), dimensions={0,1}, to_apply=scalar_add_computation } fused_computation_2 { p1.2 = f32[10,10]{1,0} parameter(1) const.2 = f32[] parameter(0) ROOT reduce.2 = f32[10]{0} reduce(p1.2, const.2), dimensions={0}, to_apply=scalar_mul_computation } ENTRY entry { p0 = f32[] parameter(0) p1.3 = f32[10,10]{1,0} parameter(1) fusion.1 = f32[] fusion(p0, p1.3), kind=kInput, calls=fused_computation_1 p2 = f32[] parameter(2) fusion.2 = f32[10]{0} fusion(p2, p1.3), kind=kInput, calls=fused_computation_2 ROOT root = (f32[], f32[10]{0}) tuple(fusion.1, fusion.2) })")) .value(); ASSERT_FALSE(mof_.Run(module.get()).value()); } TEST_F(MultiOutputFusionTest, MultiOutputFusionSiblingReduceFusions) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p1.1 = f32[128,512,28,28]{3,2,1,0} parameter(1) mul = f32[128,512,28,28]{3,2,1,0} multiply(p1.1, p1.1) const.1 = f32[] parameter(0) ROOT reduce.1 = f32[512]{0} reduce(mul, const.1), dimensions={0,2,3}, to_apply=scalar_add_computation } fused_computation_2 { p1.2 = f32[128,512,28,28]{3,2,1,0} parameter(1) const.2 = f32[] parameter(0) ROOT reduce.2 = f32[512]{0} reduce(p1.2, const.2), dimensions={0,2,3}, to_apply=scalar_add_computation } ENTRY entry { p0 = f32[] parameter(0) p1 = f32[128,512,28,28]{3,2,1,0} parameter(1) fusion.1 = f32[512] fusion(p0, p1), kind=kInput, calls=fused_computation_1 fusion.2 = f32[512] fusion(p0, p1), kind=kInput, calls=fused_computation_2 ROOT root = (f32[512]{0}, f32[512]{0}) tuple(fusion.1, fusion.2) })")) .value(); ASSERT_TRUE(mof_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* fusion = module->entry_computation()->root_instruction()->operand(0)->operand(0); ASSERT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Reduce(), m::Reduce()))); } TEST_F(MultiOutputFusionTest, MultiOutputFusionNoSiblingFusionForCommonScalar) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { param_0.87 = bf16[32,4096,16384]{2,1,0} parameter(0) param_1.4620 = s32[] parameter(1) constant_3949 = s32[] constant(0) compare.1026 = pred[] compare(param_1.4620, constant_3949), direction=LT constant_5437 = s32[] constant(32) add.6859 = s32[] add(param_1.4620, constant_5437) select.1599 = s32[] select(compare.1026, add.6859, param_1.4620) dynamic-slice.59 = bf16[1,4096,16384]{2,1,0} dynamic-slice(param_0.87, select.1599, constant_3949, constant_3949), dynamic_slice_sizes={1,4096,16384} ROOT bitcast.41089 = bf16[4096,16384]{1,0} bitcast(dynamic-slice.59) } fused_computation_2 { param_0 = bf16[32,4096,16384]{2,1,0} parameter(0) param_1 = s32[] parameter(1) constant = s32[] constant(0) compare = pred[] compare(param_1, constant), direction=LT constant.32 = s32[] constant(32) add = s32[] add(param_1, constant.32) select = s32[] select(compare, add, param_1) dynamic-slice = bf16[1,4096,16384]{2,1,0} dynamic-slice(param_0, select, constant, constant), dynamic_slice_sizes={1,4096,16384} ROOT bitcast.41087 = bf16[4096,16384]{1,0} bitcast(dynamic-slice) } ENTRY entry { p0 = s32[] parameter(0) p1 = bf16[32,4096,16384]{2,1,0} parameter(1) p2 = bf16[32,4096,16384]{2,1,0} parameter(2) fusion.1 = bf16[4096,16384]{1,0} fusion(p1, p0), kind=kLoop, calls=fused_computation_1 fusion.2 = bf16[4096,16384]{1,0} fusion(p2, p0), kind=kLoop, calls=fused_computation_2 ROOT root = (bf16[4096,16384]{1,0}, bf16[4096,16384]{1,0}) tuple(fusion.1, fusion.2) })")) .value(); ASSERT_FALSE(mof_.Run(module.get()).value()); } TEST_F(MultiOutputFusionTest, MultiOutputFusionSiblingReduceAndReduceMultiOutputFusion) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation (p0: f32[128,512,28,28]) -> (f32[512], f32[512]) { const.1 = f32[] constant(1) p0.1 = f32[128,512,28,28]{3,2,1,0} parameter(0) mul = f32[128,512,28,28]{3,2,1,0} multiply(f32[128,512,28,28]{3,2,1,0} p0.1, f32[128,512,28,28]{3,2,1,0} p0.1) reduce.1 = f32[512]{0} reduce(f32[128,512,28,28]{3,2,1,0} mul, f32[] const.1), dimensions={0,2,3}, to_apply=scalar_add_computation reduce.2 = f32[512]{0} reduce(f32[128,512,28,28]{3,2,1,0} p0.1, f32[] const.1), dimensions={0,2,3}, to_apply=scalar_add_computation ROOT tuple = (f32[512]{0}, f32[512]{0}) tuple(f32[512]{0} reduce.1, f32[512]{0} reduce.2) } ENTRY entry (p0: f32[128,512,28,28]) -> (f32[512], f32[512], f32[512]) { p0 = f32[128,512,28,28]{3,2,1,0} parameter(0) const = f32[] constant(1) fusion = (f32[512]{0}, f32[512]{0}) fusion(f32[128,512,28,28]{3,2,1,0} p0), kind=kInput, calls=fused_computation get-tuple-element = f32[512]{0} get-tuple-element((f32[512]{0}, f32[512]{0}) fusion), index=0 get-tuple-element.1 = f32[512]{0} get-tuple-element((f32[512]{0}, f32[512]{0}) fusion), index=1 reduce.3 = f32[512]{0} reduce(p0, const), dimensions={0,2,3}, to_apply=scalar_add_computation ROOT root = (f32[512]{0}, f32[512]{0}, f32[512]{0}) tuple(f32[512]{0} get-tuple-element, f32[512]{0} get-tuple-element.1, f32[512]{0} reduce.3) })")) .value(); ASSERT_TRUE(mof_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* fusion = module->entry_computation()->root_instruction()->operand(0)->operand(0); ASSERT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Reduce(), m::Reduce(), m::Reduce()))); } TEST_F(MultiOutputFusionTest, MultiOutputFusionSiblingFusionCheckAgainstReduceOperand) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p1.1 = f32[10,10]{1,0} parameter(1) mul = f32[10,10]{1,0} multiply(p1.1, p1.1) const.1 = f32[] parameter(0) reduce.1 = f32[] reduce(p1.1, const.1), dimensions={0,1}, to_apply=scalar_add_computation ROOT tuple = (f32[10,10], f32[]) tuple(mul, reduce.1) } fused_computation_2 { p1.2 = f32[10,10]{1,0} parameter(1) const.2 = f32[] parameter(0) ROOT reduce.2 = f32[10] reduce(p1.2, const.2), dimensions={0}, to_apply=scalar_mul_computation } ENTRY entry { p0 = f32[] parameter(0) p1 = f32[10,10]{1,0} parameter(1) p2 = f32[] parameter(2) fusion.1 = (f32[10,10], f32[]) fusion(p0, p1), kind=kInput, calls=fused_computation_1 get-tuple-element.1 = f32[10,10] get-tuple-element((f32[10,10], f32[]) fusion.1), index=0 get-tuple-element.2 = f32[] get-tuple-element((f32[10,10], f32[]) fusion.1), index=1 fusion.2 = f32[10] fusion(p2, p1), kind=kInput, calls=fused_computation_2 ROOT root = (f32[10,10], f32[], f32[10]) tuple(get-tuple-element.1, get-tuple-element.2, fusion.2) })")) .value(); ASSERT_FALSE(mof_.Run(module.get()).value()); } TEST_F(MultiOutputFusionTest, LoopVariadicReductionFusions) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation.94 { tmp_0 = f32[] parameter(0) tmp_1 = f32[] parameter(1) tmp_2 = pred[] compare(tmp_0, tmp_1), direction=GE tmp_3 = f32[] select(tmp_2, tmp_0, tmp_1) tmp_4 = pred[] compare(tmp_0, tmp_1), direction=EQ tmp_5 = s32[] parameter(2) tmp_6 = s32[] parameter(3) tmp_7 = s32[] minimum(tmp_5, tmp_6) tmp_8 = s32[] select(tmp_2, tmp_5, tmp_6) tmp_9 = s32[] select(tmp_4, tmp_7, tmp_8) ROOT tmp_10 = (f32[], s32[]) tuple(tmp_3, tmp_9) } minmax_func.1536 { tmp_0 = f32[] parameter(0) tmp_1 = f32[] parameter(2) tmp_2 = s32[] parameter(1) tmp_3 = s32[] parameter(3) ROOT tmp_4 = (f32[], s32[]) fusion(tmp_0, tmp_1, tmp_2, tmp_3), kind=kLoop, calls=fused_computation.94 } fused_computation { tmp_0 = f32[554112,10]{1,0} parameter(0) tmp_1 = s32[554112,10]{1,0} iota(), iota_dimension=1 tmp_2 = f32[] constant(-inf) tmp_3 = s32[] constant(0) ROOT tmp_4 = (f32[554112]{0}, s32[554112]{0}) reduce(tmp_0, tmp_1, tmp_2, tmp_3), dimensions={1}, to_apply=minmax_func.1536 } fused_computation2 { tmp_0 = f32[554112,10]{1,0} parameter(0) tmp_1 = s32[554112,10]{1,0} iota(), iota_dimension=1 tmp_2 = f32[] constant(inf) tmp_3 = s32[] constant(1) ROOT tmp_4 = (f32[554112]{0}, s32[554112]{0}) reduce(tmp_0, tmp_1, tmp_2, tmp_3), dimensions={1}, to_apply=minmax_func.1536 } ENTRY e { tmp_0 = f32[554112,10]{1,0} parameter(0) tmp_1 = (f32[554112]{0}, s32[554112]{0}) fusion(tmp_0), kind=kLoop, calls=fused_computation tmp_2 = s32[554112]{0} get-tuple-element(tmp_1), index=1 tmp_4 = (f32[554112]{0}, s32[554112]{0}) fusion(tmp_0), kind=kLoop, calls=fused_computation2 tmp_5 = s32[554112]{0} get-tuple-element(tmp_4), index=1 ROOT tmp_6 = s32[554112]{0} add(tmp_2, tmp_5) })")) .value(); EXPECT_FALSE(mof_.Run(module.get()).value()); } TEST_F(MultiOutputFusionTest, InputVariadicReductionFusions) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation.1117 { param_0.2433 = f32[] parameter(0) param_1.2571 = f32[] parameter(1) compare.1770 = pred[] compare(param_0.2433, param_1.2571), direction=LE select.682 = f32[] select(compare.1770, param_0.2433, param_1.2571) compare.1303.clone.1 = pred[] compare(param_0.2433, param_1.2571), direction=EQ param_2.6460 = s32[] parameter(2) param_3.6755 = s32[] parameter(3) minimum.633.clone.1 = s32[] minimum(param_2.6460, param_3.6755) select.398.clone.1 = s32[] select(compare.1770, param_2.6460, param_3.6755) select.397.clone.1 = s32[] select(compare.1303.clone.1, minimum.633.clone.1, select.398.clone.1) ROOT tuple.151 = (f32[], s32[]) tuple(select.682, select.397.clone.1) } minmax_func.223 { lhs_value.224 = f32[] parameter(0) rhs_value.226 = f32[] parameter(2) lhs_index.225 = s32[] parameter(1) rhs_index.227 = s32[] parameter(3) ROOT fusion.1117 = (f32[], s32[]) fusion(lhs_value.224, rhs_value.226, lhs_index.225, rhs_index.227), kind=kLoop, calls=fused_computation.1117 } fused_computation.73 { bitcast.86661 = f32[3,1024,300]{2,1,0} parameter(0) iota.734 = s32[3,1,1024,300]{3,2,1,0} iota(), iota_dimension=3 bitcast.97555 = s32[3,1024,300]{2,1,0} bitcast(iota.734) constant_3917 = f32[] constant(inf) constant_3918 = s32[] constant(0) ROOT reduce.1069 = (f32[3,1024]{1,0}, s32[3,1024]{1,0}) reduce(bitcast.86661, bitcast.97555, constant_3917, constant_3918), dimensions={2}, to_apply=minmax_func.223 } fused_computation.84 { bitcast.86676 = f32[3,1024,300]{2,1,0} parameter(0) iota.732 = s32[3,1,1024,300]{3,2,1,0} iota(), iota_dimension=3 bitcast.97553 = s32[3,1024,300]{2,1,0} bitcast(iota.732) constant_3915 = f32[] constant(inf) constant_3916 = s32[] constant(0) ROOT reduce.1070 = (f32[3,1024]{1,0}, s32[3,1024]{1,0}) reduce(bitcast.86676, bitcast.97553, constant_3915, constant_3916), dimensions={2}, to_apply=minmax_func.223 } ENTRY e { p0 = f32[3,1024,300]{2,1,0} parameter(0) fusion.84 = (f32[3,1024]{1,0}, s32[3,1024]{1,0}) fusion(p0), kind=kInput, calls=fused_computation.84 gte.391 = s32[3,1024]{1,0} get-tuple-element(fusion.84), index=1 fusion.73 = (f32[3,1024]{1,0}, s32[3,1024]{1,0}) fusion(p0), kind=kInput, calls=fused_computation.73 gte.393 = s32[3,1024]{1,0} get-tuple-element(fusion.73), index=1 ROOT r = s32[3,1024]{1,0} add(gte.391, gte.393) })")) .value(); EXPECT_TRUE(mof_.Run(module.get()).value()); EXPECT_EQ(module->entry_computation()->parameter_instruction(0)->user_count(), 1); const HloInstruction* fusion = module->entry_computation()->parameter_instruction(0)->users()[0]; EXPECT_THAT(fusion, GmockMatch(m::Fusion())); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Reduce(), m::Reduce()))); } TEST_F(MultiOutputFusionTest, MultiOutputFusionTwoLoops) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[6400]{0} parameter(0) ROOT mul = f32[6400]{0} multiply(p0.1, p0.1) } fused_computation_2 { p0.2 = f32[6400]{0} parameter(0) const.2 = f32[] constant(1) broadcast = f32[6400]{0} broadcast(const.2), dimensions={} ROOT div = f32[6400]{0} divide(p0.2, broadcast) } ENTRY entry { p0 = f32[6400]{0} parameter(0) fusion.1 = f32[6400]{0} fusion(p0), kind=kLoop, calls=fused_computation_1 fusion.2 = f32[6400]{0} fusion(p0), kind=kLoop, calls=fused_computation_2 ROOT root = (f32[6400]{0}, f32[6400]{0}) tuple(fusion.1, fusion.2) })")) .value(); ASSERT_TRUE(mof_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* fusion = module->entry_computation()->root_instruction()->operand(0)->operand(0); ASSERT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Multiply(), m::Divide()))); } TEST_F(MultiOutputFusionTest, MultiOutputFusionLoopElementwise) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[6400]{0} parameter(0) ROOT mul = f32[6400]{0} multiply(p0.1, p0.1) } ENTRY entry { p0 = f32[6400]{0} parameter(0) fusion.1 = f32[6400]{0} fusion(p0), kind=kLoop, calls=fused_computation_1 const.2 = f32[] constant(1) broadcast = f32[6400]{0} broadcast(const.2), dimensions={} div = f32[6400]{0} divide(p0, broadcast) ROOT root = (f32[6400]{0}, f32[6400]{0}) tuple(fusion.1, div) })")) .value(); ASSERT_TRUE(mof_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* fusion = module->entry_computation()->root_instruction()->operand(0)->operand(0); ASSERT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Multiply(), m::Divide()))); } TEST_F(MultiOutputFusionTest, MultiOutputFusionSiblingLoopsDifferentShapes) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[8,1,5,16,1,2]{5,4,3,2,1,0} parameter(0) ROOT mul = f32[8,1,5,16,1,2]{5,4,3,2,1,0} multiply(p0.1, p0.1) } fused_computation_2 { p0.2 = f32[8,1,5,16,1,2]{5,4,3,2,1,0} parameter(0) const.2 = f32[] constant(0) ROOT reduce = f32[1,5,1,2]{3,2,1,0} reduce(p0.2, const.2), dimensions={0,3}, to_apply=scalar_add_computation } ENTRY entry { p0 = f32[8,1,5,16,1,2]{5,4,3,2,1,0} parameter(0) fusion.1 = f32[8,1,5,16,1,2]{5,4,3,2,1,0} fusion(p0), kind=kLoop, calls=fused_computation_1 fusion.2 = f32[1,5,1,2]{3,2,1,0} fusion(p0), kind=kLoop, calls=fused_computation_2 ROOT root = (f32[8,1,5,16,1,2]{5,4,3,2,1,0}, f32[1,5,1,2]{3,2,1,0}) tuple(fusion.1, fusion.2) })")) .value(); ASSERT_FALSE(mof_.Run(module.get()).value()); } TEST_F(MultiOutputFusionTest, MultiOutputFusionSiblingLoopAndMultiOutputLoop) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} parameter(0) mul = f32[8,1,5,16,1,1]{5,4,3,2,1,0} multiply(p0.1, p0.1) exp = f32[8,1,5,16,1,1]{5,4,3,2,1,0} exponential(p0.1) ROOT tuple = (f32[8,1,5,16,1,1]{5,4,3,2,1,0}, f32[8,1,5,16,1,1]{5,4,3,2,1,0}) tuple(mul, exp) } fused_computation_2 { p0.2 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} parameter(0) const.2 = f32[] constant(0) broadcast = f32[8,1,5,16,1,1]{5,4,3,2,1,0} broadcast(const.2), dimensions={} ROOT add = f32[8,1,5,16,1,1]{5,4,3,2,1,0} add(p0.2, broadcast) } ENTRY entry { p0 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} parameter(0) fusion.1 = (f32[8,1,5,16,1,1]{5,4,3,2,1,0}, f32[8,1,5,16,1,1]{5,4,3,2,1,0}) fusion(p0), kind=kLoop, calls=fused_computation_1 fusion.2 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} fusion(p0), kind=kLoop, calls=fused_computation_2 gte0 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} get-tuple-element(fusion.1), index=0 gte1 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} get-tuple-element(fusion.1), index=1 ROOT root = (f32[8,1,5,16,1,1]{5,4,3,2,1,0}, f32[8,1,5,16,1,1]{5,4,3,2,1,0}, f32[8,1,5,16,1,1]{5,4,3,2,1,0}) tuple(gte0, gte1, fusion.2) })")) .value(); ASSERT_TRUE(mof_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* fusion = module->entry_computation()->root_instruction()->operand(0)->operand(0); ASSERT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Multiply(), m::Exp(), m::Add()))); } TEST_F(MultiOutputFusionTest, MultiOutputFusionSiblingMultiOutputLoopAndMultiOutputLoop) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[8,16]{1,0} parameter(0) mul = f32[8,16]{1,0} multiply(p0.1, p0.1) exp = f32[8,16]{1,0} exponential(p0.1) ROOT tuple = (f32[8,16]{1,0}, f32[8,16]{1,0}) tuple(mul, exp) } fused_computation_2 { p0.2 = f32[8,16]{1,0} parameter(0) const.2 = f32[] constant(0) broadcast = f32[8,16]{1,0} broadcast(const.2), dimensions={} add = f32[8,16]{1,0} add(p0.2, broadcast) ROOT tuple.1 = (f32[8,16]{1,0}, f32[8,16]{1,0}) tuple(add, broadcast) } ENTRY entry { p0 = f32[8,16]{1,0} parameter(0) fusion.1 = (f32[8,16]{1,0}, f32[8,16]{1,0}) fusion(p0), kind=kLoop, calls=fused_computation_1 fusion.2 = (f32[8,16]{1,0}, f32[8,16]{1,0}) fusion(p0), kind=kLoop, calls=fused_computation_2 gte0 = f32[8,16]{1,0} get-tuple-element(fusion.1), index=0 gte1 = f32[8,16]{1,0} get-tuple-element(fusion.1), index=1 gte2 = f32[8,16]{1,0} get-tuple-element(fusion.2), index=0 gte3 = f32[8,16]{1,0} get-tuple-element(fusion.2), index=1 ROOT root = (f32[8,16]{1,0}, f32[8,16]{1,0}, f32[8,16]{1,0}, f32[8,16]{1,0}) tuple(gte0, gte1, gte2, gte3) })")) .value(); ASSERT_TRUE(mof_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* fusion = module->entry_computation()->root_instruction()->operand(0)->operand(0); ASSERT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_THAT( fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Multiply(), m::Exp(), m::Add(), m::Broadcast()))); } TEST_F(MultiOutputFusionTest, MultiOutputFusionSiblingLoopAndMultiOutputLoopDifferentShapes) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[8,1,5,16,1,2]{5,4,3,2,1,0} parameter(0) mul = f32[8,1,5,16,1,2]{5,4,3,2,1,0} multiply(p0.1, p0.1) exp = f32[8,1,5,16,1,2]{5,4,3,2,1,0} exponential(p0.1) ROOT tuple = (f32[8,1,5,16,1,2]{5,4,3,2,1,0}, f32[8,1,5,16,1,2]{5,4,3,2,1,0}) tuple(mul, exp) } fused_computation_2 { p0.2 = f32[8,1,5,16,1,2]{5,4,3,2,1,0} parameter(0) const.2 = f32[] constant(0) ROOT reduce = f32[1,5,1,2]{3,2,1,0} reduce(p0.2, const.2), dimensions={0,3}, to_apply=scalar_add_computation } ENTRY entry { p0 = f32[8,1,5,16,1,2]{5,4,3,2,1,0} parameter(0) fusion.1 = (f32[8,1,5,16,1,2]{5,4,3,2,1,0}, f32[8,1,5,16,1,2]{5,4,3,2,1,0}) fusion(p0), kind=kLoop, calls=fused_computation_1 fusion.2 = f32[1,5,1,2]{3,2,1,0} fusion(p0), kind=kLoop, calls=fused_computation_2 gte0 = f32[8,1,5,16,1,2]{5,4,3,2,1,0} get-tuple-element(fusion.1), index=0 gte1 = f32[8,1,5,16,1,2]{5,4,3,2,1,0} get-tuple-element(fusion.1), index=1 ROOT root = (f32[8,1,5,16,1,2]{5,4,3,2,1,0}, f32[8,1,5,16,1,2]{5,4,3,2,1,0}, f32[1,5,1,2]{3,2,1,0}) tuple(gte0, gte1, fusion.2) })")) .value(); ASSERT_FALSE(mof_.Run(module.get()).value()); } TEST_F(MultiOutputFusionTest, SiblingFusionBitcastAndLoopFusionNotFused) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test fused_computation_1 { p0.1 = f32[2048,16000]{1,0} parameter(0) bitcast = f32[2048,1,16000]{2,1,0} bitcast(p0.1) ROOT exp = f32[2048,1,16000]{2,1,0} exponential(bitcast) } ENTRY main { param_0 = f32[2048,16000]{1,0} parameter(0) fusion = f32[2048,1,16000]{2,1,0} fusion(param_0), kind=kLoop, calls=fused_computation_1 bitcast = f32[16000,1,2048]{2,1,0} bitcast(param_0) ROOT tuple.143 = (f32[16000,1,2048]{2,1,0}, f32[2048,1,16000]{2,1,0}) tuple(bitcast, fusion) })") .value(); EXPECT_FALSE(mof_.Run(module.get()).value()); } TEST_F(MultiOutputFusionTest, ProducerConsumerFusionBitcastAndElementwiseNotFused) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test ENTRY main { param_0 = f32[2048,16000]{1,0} parameter(0) convert = bf16[2048,16000]{1,0} convert(param_0) bitcast = bf16[16000,1,2048]{2,1,0} bitcast(convert) ROOT tuple.143 = (bf16[16000,1,2048]{2,1,0}, bf16[2048,16000]{1,0}) tuple(bitcast, convert) })") .value(); EXPECT_FALSE(mof_.Run(module.get()).value()); } TEST_F(MultiOutputFusionTest, ProducerConsumerFusionElementwiseAndReduce) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( ENTRY reduce { p0 = f32[32,32,32]{2,1,0} parameter(0) c0 = f32[] constant(0) exp = f32[32,32,32]{2,1,0} exponential(p0) reduce = f32[32,32]{1,0} reduce(exp, c0), dimensions={2}, to_apply=scalar_add_computation ROOT root = (f32[32,32]{1,0}, f32[32,32,32]{2,1,0}) tuple(reduce, exp) })")) .value(); ASSERT_TRUE(mof_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(root, GmockMatch(m::Tuple(m::GetTupleElement(m::Fusion(&fusion)), m::GetTupleElement()))); ASSERT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Reduce(), m::Exp()))); } TEST_F(MultiOutputFusionTest, ProducerConsumerFusionLoopFusionAndReduce) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_add { p0.1 = f32[32,32,32]{2,1,0} parameter(0) p1.1 = f32[32,32,32]{2,1,0} parameter(1) ROOT add = f32[32,32,32]{2,1,0} add(p0.1, p1.1) } ENTRY reduce { p0 = f32[32,32,32]{2,1,0} parameter(0) p1 = f32[32,32,32]{2,1,0} parameter(1) c0 = f32[] constant(0) add = f32[32,32,32]{2,1,0} fusion(p0, p1), kind=kLoop, calls=fused_add reduce = f32[32,32]{1,0} reduce(add, c0), dimensions={2}, to_apply=scalar_add_computation ROOT root = (f32[32,32]{1,0}, f32[32,32,32]{2,1,0}) tuple(reduce, add) })")) .value(); ASSERT_TRUE(mof_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(root, GmockMatch(m::Tuple(m::GetTupleElement(m::Fusion(&fusion)), m::GetTupleElement()))); ASSERT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Reduce(), m::Add()))); } TEST_F(MultiOutputFusionTest, ProducerConsumerFusionLoopFusionAndReduceFusion) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_select { p1.1 = f32[32,32,32]{2,1,0} parameter(1) c0 = f32[] constant(0) broadcast = f32[32,32,32]{2,1,0} broadcast(f32[]
1,895
cpp
tensorflow/tensorflow
all_gather_broadcast_reorder
third_party/xla/xla/service/all_gather_broadcast_reorder.cc
third_party/xla/xla/service/all_gather_broadcast_reorder_test.cc
#ifndef XLA_SERVICE_ALL_GATHER_BROADCAST_REORDER_H_ #define XLA_SERVICE_ALL_GATHER_BROADCAST_REORDER_H_ #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class AllGatherBroadcastReorder : public HloModulePass { public: absl::string_view name() const override { return "all-gather-bcast-reorder"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } #endif #include "xla/service/all_gather_broadcast_reorder.h" #include <cstdint> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/errors.h" namespace xla { absl::StatusOr<bool> AllGatherBroadcastReorder::Run( HloModule *module, const absl::flat_hash_set<absl::string_view> &execution_threads) { if (hlo_query::ContainsLayoutConstrainedCollective(*module, HloOpcode::kAllGather)) { VLOG(1) << "Skip AllGatherBroadcastReorder because the module contains " "all-gather with constrained layouts"; return false; } int64_t next_channel_id = hlo_query::NextChannelId(*module); bool changed = false; for (auto computation : module->computations(execution_threads)) { for (HloInstruction *inst : computation->MakeInstructionPostOrder()) { if (inst->opcode() != HloOpcode::kAllGather || !inst->shape().IsArray() || inst->operand(0)->opcode() != HloOpcode::kBroadcast) { continue; } HloAllGatherInstruction *ag = Cast<HloAllGatherInstruction>(inst); HloBroadcastInstruction *bcast = Cast<HloBroadcastInstruction>(inst->mutable_operand(0)); absl::flat_hash_set<int64_t> non_uniform_dims; non_uniform_dims.insert(bcast->dimensions().begin(), bcast->dimensions().end()); const bool all_gather_along_uniform_dim = non_uniform_dims.insert(ag->all_gather_dimension()).second; int64_t uniform_dim_size = 1; for (int64_t i = 0; i < ag->shape().rank(); ++i) { if (non_uniform_dims.count(i) == 0) { uniform_dim_size *= ag->shape().dimensions(i); } } if (uniform_dim_size == 1) { continue; } HloInstruction *replacement; const int64_t ag_dim = ag->all_gather_dimension(); if (!all_gather_along_uniform_dim) { VLOG(2) << "All-gather along non uniform dimension"; auto ag_dim_index = PositionInContainer(bcast->dimensions(), ag_dim); Shape new_ag_shape = bcast->operand(0)->shape(); new_ag_shape.set_dimensions(ag_dim_index, ag->shape().dimensions(ag_dim)); auto *new_ag = Cast<HloAllGatherInstruction>(computation->AddInstruction( ag->CloneWithNewOperands(new_ag_shape, bcast->operands()))); if (ag->channel_id()) { new_ag->set_channel_id(next_channel_id++); } new_ag->set_all_gather_dimension(ag_dim_index); replacement = computation->AddInstruction( bcast->CloneWithNewOperands(ag->shape(), {new_ag})); } else { VLOG(2) << "All-gather along uniform dimension"; HloInstruction *x = bcast->mutable_operand(0); std::vector<int64_t> shape_dims{1}; absl::Span<const int64_t> x_dims = x->shape().dimensions(); shape_dims.insert(shape_dims.end(), x_dims.begin(), x_dims.end()); Shape shape = ShapeUtil::MakeShape(x->shape().element_type(), shape_dims); HloInstruction *rs0 = computation->AddInstruction( HloInstruction::CreateReshape(shape, x)); const int64_t ag_factor = ag->shape().dimensions(ag_dim) / ag->operand(0)->shape().dimensions(ag_dim); shape.set_dimensions(0, ag_factor); auto *new_ag = Cast<HloAllGatherInstruction>(computation->AddInstruction( ag->CloneWithNewOperands(shape, {rs0}))); if (ag->channel_id()) { new_ag->set_channel_id(next_channel_id++); } new_ag->set_all_gather_dimension(0); std::vector<int64_t> bcast_shape_dims = SpanToVector(ag->shape().dimensions()); bcast_shape_dims[ag_dim] = ag_factor; bcast_shape_dims.insert(bcast_shape_dims.begin() + ag_dim + 1, ag->shape().dimensions(ag_dim) / ag_factor); Shape bcast_shape = ShapeUtil::MakeShape(x->shape().element_type(), bcast_shape_dims); std::vector<int64_t> bcast_dims; bcast_dims.push_back(ag_dim); for (int64_t d : bcast->dimensions()) { bcast_dims.push_back(d + (d > ag_dim)); } HloInstruction *bcast = computation->AddInstruction( HloInstruction::CreateBroadcast(bcast_shape, new_ag, bcast_dims)); replacement = computation->AddInstruction( HloInstruction::CreateReshape(ag->shape(), bcast)); } TF_RETURN_IF_ERROR(ag->ReplaceAllUsesWith(replacement)); TF_RETURN_IF_ERROR(computation->RemoveInstructionAndUnusedOperands(ag)); changed = true; } } return changed; } }
#include "xla/service/all_gather_broadcast_reorder.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace m = xla::testing::opcode_matchers; class AllGatherBroadcastReorderTest : public HloTestBase { public: enum class PassOutput { NoChange, NonUniformAGPattern, UniformAGPattern }; void RunPass(absl::string_view hlo_module, PassOutput expected_output) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_module)); auto changed = AllGatherBroadcastReorder().Run(module.get()); ASSERT_TRUE(changed.ok()); if (expected_output == PassOutput::NoChange) { EXPECT_FALSE(changed.value()); } else { EXPECT_TRUE(changed.value()); if (expected_output == PassOutput::NonUniformAGPattern) { EXPECT_THAT(module->entry_computation()->root_instruction(), m::Broadcast(m::AllGather(m::Parameter()))); } else { EXPECT_THAT( module->entry_computation()->root_instruction(), m::Reshape(m::Broadcast(m::AllGather(m::Reshape(m::Parameter()))))); } } } }; TEST_F(AllGatherBroadcastReorderTest, Simple_GatherAlongNonUniformDim) { absl::string_view hlo_string = R"( HloModule m ENTRY main { x = f32[128, 5] parameter(0) bc = f32[5, 4, 8, 128] broadcast(x), dimensions={3, 0} ROOT ag = f32[5, 4, 8, 256] all-gather(bc), dimensions={3}, replica_groups={{0, 1}} } )"; RunPass(hlo_string, PassOutput::NonUniformAGPattern); } TEST_F(AllGatherBroadcastReorderTest, Simple_GatherAlongUniformDim) { absl::string_view hlo_string = R"( HloModule m ENTRY main { x = f32[128, 5] parameter(0) bc = f32[5, 4, 8, 128] broadcast(x), dimensions={3, 0} ROOT ag = f32[5, 12, 8, 128] all-gather(bc), dimensions={1}, replica_groups={{0, 1, 2}} } )"; RunPass(hlo_string, PassOutput::UniformAGPattern); } TEST_F(AllGatherBroadcastReorderTest, Simple_GatherBroadcastScalar) { absl::string_view hlo_string = R"( HloModule m ENTRY main { x = f32[] parameter(0) bc = f32[4, 8] broadcast(x), dimensions={} ROOT ag = f32[12, 8] all-gather(bc), dimensions={0}, replica_groups={{0, 1, 2}} } )"; RunPass(hlo_string, PassOutput::UniformAGPattern); } TEST_F(AllGatherBroadcastReorderTest, T5Test) { absl::string_view hlo_string = R"( HloModule m ENTRY main { x = f32[128] parameter(0) bc = f32[1,4,84,128]{3,2,1,0} broadcast(x), dimensions={3} ROOT ag = f32[8,4,84,128]{3,2,1,0} all-gather(bc), channel_id=6, replica_groups={{0,1,2,3,4,5,6,7}}, dimensions={0}, use_global_device_ids=true } )"; RunPass(hlo_string, PassOutput::UniformAGPattern); } TEST_F(AllGatherBroadcastReorderTest, FailedMatch) { absl::string_view hlo_string = R"( HloModule m ENTRY main { x = f32[1,4,84,128] parameter(0) ROOT ag = f32[8,4,84,128]{3,2,1,0} all-gather(x), channel_id=6, replica_groups={{0,1,2,3,4,5,6,7}}, dimensions={0}, use_global_device_ids=true } )"; RunPass(hlo_string, PassOutput::NoChange); } } }
1,896
cpp
tensorflow/tensorflow
defuser
third_party/xla/xla/service/defuser.cc
third_party/xla/xla/service/defuser_test.cc
#ifndef XLA_SERVICE_DEFUSER_H_ #define XLA_SERVICE_DEFUSER_H_ #include <utility> #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class Defuser : public HloModulePass { public: Defuser() {} ~Defuser() override {} absl::string_view name() const override { return "defuser"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } #endif #include "xla/service/defuser.h" #include <algorithm> #include <memory> #include <numeric> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/call_graph.h" #include "xla/status_macros.h" #include "xla/types.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" namespace xla { absl::StatusOr<bool> Defuser::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { VLOG(1) << "Defusing module " << module->name(); XLA_VLOG_LINES(2, "Before defusion:\n" + module->ToString()); bool changed = false; std::unique_ptr<CallGraph> call_graph = CallGraph::Build(module); TF_RETURN_IF_ERROR(call_graph->VisitNodes( [&](const CallGraphNode& call_graph_node) -> absl::Status { if (call_graph_node.computation()->IsFusionComputation()) { TF_RET_CHECK(call_graph_node.caller_callsites().size() == 1); HloInstruction* fusion_instruction = call_graph_node.caller_callsites()[0].instruction(); TF_RETURN_IF_ERROR(fusion_instruction->Defuse()); changed = true; } return absl::OkStatus(); }, true)); XLA_VLOG_LINES(2, "After defusion:\n" + module->ToString()); return changed; } }
#include "xla/service/defuser.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" namespace op = xla::testing::opcode_matchers; namespace xla { namespace { class DefuserTest : public HloTestBase { protected: int FusionCount(const HloModule* m) { int count = 0; for (HloComputation* computation : m->computations()) { if (computation->IsFusionComputation()) { count++; } } return count; } Defuser defuser_; const Shape shape_ = ShapeUtil::MakeShape(F32, {2, 2}); }; TEST_F(DefuserTest, NoFusionInstruction) { auto m = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape_, "p0")); auto param1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape_, "p1")); builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kAdd, param0, param1)); m->AddEntryComputation(builder.Build()); EXPECT_EQ(0, FusionCount(m.get())); EXPECT_FALSE(defuser_.Run(m.get()).value()); } TEST_F(DefuserTest, TrivialFusionInstructionAsRoot) { auto m = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape_, "p0")); auto param1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape_, "p1")); auto add = builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kAdd, param0, param1)); auto computation = m->AddEntryComputation(builder.Build()); computation->CreateFusionInstruction({add}, HloInstruction::FusionKind::kLoop); EXPECT_THAT(computation->root_instruction(), op::Fusion()); EXPECT_EQ(1, FusionCount(m.get())); EXPECT_TRUE(defuser_.Run(m.get()).value()); EXPECT_EQ(0, FusionCount(m.get())); EXPECT_THAT(computation->root_instruction(), op::Add(op::Parameter(), op::Parameter())); } TEST_F(DefuserTest, TrivialFusionInstructionNotAsRoot) { auto m = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape_, "p0")); auto param1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape_, "p1")); auto add = builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kAdd, param0, param1)); builder.AddInstruction( HloInstruction::CreateUnary(shape_, HloOpcode::kNegate, add)); auto computation = m->AddEntryComputation(builder.Build()); computation->CreateFusionInstruction({add}, HloInstruction::FusionKind::kLoop); EXPECT_THAT(computation->root_instruction(), op::Negate(op::Fusion())); EXPECT_EQ(1, FusionCount(m.get())); EXPECT_TRUE(defuser_.Run(m.get()).value()); EXPECT_EQ(0, FusionCount(m.get())); EXPECT_THAT(computation->root_instruction(), op::Negate(op::Add(op::Parameter(), op::Parameter()))); } TEST_F(DefuserTest, NonTrivialFusionInstruction) { auto m = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape_, "p0")); auto param1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape_, "p1")); auto param3 = builder.AddInstruction(HloInstruction::CreateParameter(2, shape_, "p2")); auto add = builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kAdd, param0, param1)); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(shape_, HloOpcode::kNegate, add)); auto sub = builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kSubtract, add, negate)); auto mul = builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kMultiply, sub, param3)); auto div = builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kDivide, mul, param3)); auto constant = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}))); auto add2 = builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kAdd, constant, div)); auto computation = m->AddEntryComputation(builder.Build()); computation->CreateFusionInstruction( {add2, constant, div, mul, sub, negate, add}, HloInstruction::FusionKind::kLoop); EXPECT_THAT(computation->root_instruction(), op::Fusion()); EXPECT_EQ(1, FusionCount(m.get())); EXPECT_TRUE(defuser_.Run(m.get()).value()); EXPECT_EQ(0, FusionCount(m.get())); EXPECT_THAT(computation->root_instruction(), op::Add(op::Constant(), op::Divide())); } TEST_F(DefuserTest, MultipleFusionInstructions) { auto m = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape_, "p0")); auto param1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape_, "p1")); auto param3 = builder.AddInstruction(HloInstruction::CreateParameter(2, shape_, "p2")); auto add = builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kAdd, param0, param1)); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(shape_, HloOpcode::kNegate, add)); auto sub = builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kSubtract, add, negate)); auto mul = builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kMultiply, sub, param3)); auto div = builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kDivide, mul, param3)); auto constant = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}))); auto add2 = builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kAdd, constant, div)); auto computation = m->AddEntryComputation(builder.Build()); computation->CreateFusionInstruction({add2, constant, div, mul}, HloInstruction::FusionKind::kLoop); computation->CreateFusionInstruction({sub, negate, add}, HloInstruction::FusionKind::kLoop); EXPECT_THAT(computation->root_instruction(), op::Fusion()); EXPECT_EQ(2, FusionCount(m.get())); EXPECT_TRUE(defuser_.Run(m.get()).value()); EXPECT_EQ(0, FusionCount(m.get())); EXPECT_THAT(computation->root_instruction(), op::Add(op::Constant(), op::Divide())); } TEST_F(DefuserTest, NestedFusionInstructions) { auto m = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape_, "p0")); auto param1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape_, "p1")); auto add = builder.AddInstruction( HloInstruction::CreateBinary(shape_, HloOpcode::kAdd, param0, param1)); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(shape_, HloOpcode::kNegate, add)); auto computation = m->AddEntryComputation(builder.Build()); auto outer_fusion = computation->CreateFusionInstruction( {negate, add}, HloInstruction::FusionKind::kLoop); HloInstruction* fused_negate = outer_fusion->fused_expression_root(); ASSERT_EQ(fused_negate->opcode(), HloOpcode::kNegate); outer_fusion->fused_instructions_computation()->CreateFusionInstruction( {fused_negate}, HloInstruction::FusionKind::kLoop); EXPECT_THAT(computation->root_instruction(), op::Fusion()); EXPECT_EQ(2, FusionCount(m.get())); EXPECT_TRUE(defuser_.Run(m.get()).value()); EXPECT_EQ(0, FusionCount(m.get())); EXPECT_THAT(computation->root_instruction(), op::Negate(op::Add())); } } }
1,897
cpp
tensorflow/tensorflow
all_reduce_splitter
third_party/xla/xla/service/gpu/transforms/all_reduce_splitter.cc
third_party/xla/xla/service/gpu/transforms/all_reduce_splitter_test.cc
#ifndef XLA_SERVICE_ALL_REDUCE_SPLITTER_H_ #define XLA_SERVICE_ALL_REDUCE_SPLITTER_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class AllReduceSplitter : public HloModulePass { public: absl::string_view name() const override { return "all-reduce-splitter"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } #endif #include "xla/service/all_reduce_splitter.h" #include <cstdint> #include <optional> #include <string> #include <variant> #include <vector> #include "absl/cleanup/cleanup.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "xla/hlo/ir/collective_device_list.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/collective_opt_utils.h" #include "xla/service/hlo_module_config.h" #include "xla/shape.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { struct ARReplicaGroups { std::vector<ReplicaGroup> first_ar_replica_groups; std::vector<ReplicaGroup> second_ar_replica_groups; }; struct AllReduceRewriteSpec { int split_dim; int group_size; HloAllReduceInstruction* all_reduce; HloDynamicSliceInstruction* dynamic_slice; ARReplicaGroups replica_groups; std::string ToString() { return absl::Substitute( "{\n split_dim=$0\n group_size=$1\n all_reduce=$2\n " "dynamic_slice=$3\n}\n", split_dim, group_size, all_reduce->ToString(), dynamic_slice->ToString()); } }; struct RewriteInfeasibleReason { const HloInstruction* ar; std::string message; }; struct ReplicaGroups { std::vector<ReplicaGroup> replica_groups; template <typename H> friend H AbslHashValue(H h, const ReplicaGroups& rg) { return H::combine(std::move(h), rg.replica_groups.size()); } friend bool operator==(const ReplicaGroups& item, const ReplicaGroups& other) { if (item.replica_groups.size() != other.replica_groups.size()) { return false; } for (int i = 0; i < item.replica_groups.size(); i++) { const ReplicaGroup& item_replica_group = item.replica_groups[i]; const ReplicaGroup& other_replica_group = other.replica_groups[i]; for (int i = 0; i < item_replica_group.replica_ids_size(); i++) { if (item_replica_group.replica_ids(i) != other_replica_group.replica_ids(i)) { return false; } } } return true; } }; using ARReplicaGroupMap = absl::flat_hash_map<ReplicaGroups, std::vector<const HloAllReduceInstruction*>>; using RewriteDecision = std::variant<AllReduceRewriteSpec, RewriteInfeasibleReason>; std::optional<int> GetSplitDim(const HloAllReduceInstruction& ar, const HloDynamicSliceInstruction& ds) { int split_dim = -1; int num_dims = 0; for (int64_t dim = 0; dim < ar.shape().rank(); ++dim) { if (ar.shape().dimensions(dim) != ds.shape().dimensions(dim)) { num_dims++; split_dim = dim; } } if (num_dims != 1) { VLOG(2) << "No support for multiple nor 0 split dims."; return std::nullopt; } return split_dim; } std::optional<int> GetProcessGroupSize(const HloAllReduceInstruction& ar, const HloDynamicSliceInstruction& ds) { CHECK(ds.operand(0) == &ar) << "Irrelevant AR + DS pair."; std::optional<int> split_dim = GetSplitDim(ar, ds); if (!split_dim.has_value()) { return std::nullopt; } return ar.shape().dimensions(*split_dim) / ds.dynamic_slice_sizes()[*split_dim]; } ARReplicaGroupMap GetReplicaGroupsMap(HloComputation& computation) { ARReplicaGroupMap map; hlo_query::ForEachInstructionWithOpcode( computation, HloOpcode::kAllReduce, [&map](const HloInstruction* instruction) { const HloAllReduceInstruction* ar = Cast<HloAllReduceInstruction>(instruction); auto rgs = ReplicaGroups{ar->replica_groups()}; map[rgs].push_back(ar); }); return map; } ARReplicaGroups GetNewReplicaGroups(int group_size, int num_partitions) { CHECK_EQ(num_partitions % group_size, 0); std::vector<ReplicaGroup> first_ar_rgs, second_ar_rgs; int num_units = num_partitions / group_size; first_ar_rgs.reserve(num_units); second_ar_rgs.reserve(group_size); for (int u = 0; u < group_size * num_units; u += group_size) { ReplicaGroup& group = first_ar_rgs.emplace_back(); for (int r = u; r < u + group_size; r++) { group.add_replica_ids(r); } } for (int g = 0; g < group_size; g++) { ReplicaGroup& group = second_ar_rgs.emplace_back(); for (int r = g; r < group_size * num_units; r += group_size) { group.add_replica_ids(r); } } return { first_ar_rgs, second_ar_rgs, }; } bool IsLogicalReduceScatter(const HloModule& module, const AllReduceRewriteSpec& spec, HloComputation& computation) { HloAllReduceInstruction& ar = *spec.all_reduce; CHECK_EQ(ar.user_count(), 1); CHECK_EQ(module.config().replica_count(), 1); HloInstruction* first_ar = computation.AddInstruction(HloInstruction::CreateAllReduce( ar.shape(), ar.operands(), ar.to_apply(), CollectiveDeviceList(spec.replica_groups.first_ar_replica_groups), ar.constrain_layout(), hlo_query::NextChannelId(module), ar.use_global_device_ids())); HloInstruction* ds = ar.users()[0]; auto* old_operand = ds->mutable_operand(0); if (!ds->ReplaceOperandWith(0, first_ar).ok()) { return false; } absl::Cleanup _ = [&] { CHECK_OK(ds->ReplaceOperandWith(0, old_operand)); CHECK_OK(computation.RemoveInstruction(first_ar)); }; return MatchReduceScatter(Cast<HloAllReduceInstruction>(first_ar), module.config().num_partitions(), module.config().replica_count(), false, true) .has_value(); } bool IsProfitableToSplit(const ARReplicaGroupMap& replica_map, const AllReduceRewriteSpec& spec) { auto new_rgs = spec.replica_groups; bool first_replica_exists = replica_map.contains(ReplicaGroups{new_rgs.first_ar_replica_groups}); bool second_replica_exists = replica_map.contains(ReplicaGroups{new_rgs.second_ar_replica_groups}); return first_replica_exists || second_replica_exists; } RewriteDecision CanRewrite(const HloModule& module, const ARReplicaGroupMap& replica_map, HloComputation& computation, HloInstruction& instruction) { const HloModuleConfig& config = module.config(); if (config.use_auto_spmd_partitioning() || !config.use_spmd_partitioning() || config.replica_count() != 1) { return RewriteInfeasibleReason{ &instruction, "Supporting only SPMD partitioning scheme.", }; } if (instruction.opcode() != HloOpcode::kAllReduce) { return RewriteInfeasibleReason{ &instruction, "Cannot rewrite an AllReduce, since it's not AllReduce.", }; } auto* ar = Cast<HloAllReduceInstruction>(&instruction); if (!ar->use_global_device_ids()) { return RewriteInfeasibleReason{ &instruction, "Only global ids are supported currently.", }; } if (ar->user_count() != 1 || ar->users().front()->opcode() != HloOpcode::kDynamicSlice) { return RewriteInfeasibleReason{ &instruction, "Cannot rewrite AllReduce if it is not a logical reduce scatter.", }; } auto* ds = Cast<HloDynamicSliceInstruction>(ar->users().front()); if (ds->user_count() > 1) { return RewriteInfeasibleReason{ &instruction, "Exactly one user of dynamic slice is required for a rewrite.", }; } int num_partitions = config.num_partitions(); std::vector<ReplicaGroup> rgs = ar->replica_groups(); if (rgs.size() != 1 || rgs.front().replica_ids_size() != num_partitions) { return RewriteInfeasibleReason{ &instruction, absl::StrCat("Cannot determine a valid split with num_partitions: ", num_partitions), }; } std::optional<int> split_dim = GetSplitDim(*ar, *ds); if (!split_dim.has_value()) { return RewriteInfeasibleReason{ &instruction, "Cannot get a split dim.", }; } std::optional<int> group_size = GetProcessGroupSize(*ar, *ds); if (!group_size.has_value()) { return RewriteInfeasibleReason{ &instruction, "Cannot determine a group size.", }; } if (num_partitions == group_size) { return RewriteInfeasibleReason{ &instruction, "Nothing to rewrite", }; } if (num_partitions % *group_size != 0) { return RewriteInfeasibleReason{ &instruction, "Group size does not evenly divide the number of partitions", }; } auto spec = AllReduceRewriteSpec{ *split_dim, *group_size, ar, ds, GetNewReplicaGroups(*group_size, num_partitions), }; if (!IsLogicalReduceScatter(module, spec, computation)) { return RewriteInfeasibleReason{ &instruction, "Not a logical reduce scatter.", }; } if (!IsProfitableToSplit(replica_map, spec)) { return RewriteInfeasibleReason{ &instruction, "Splitting is not profitable.", }; } return spec; } absl::StatusOr<bool> SplitAllReduce(const HloModuleConfig& config, AllReduceRewriteSpec spec, HloComputation& computation) { int64_t next_channel_id = hlo_query::NextChannelId(*spec.all_reduce->GetModule()); VLOG(1) << "AR splitting spec: " << spec.ToString(); int num_partitions = config.num_partitions(); int group_size = spec.group_size; CHECK_EQ(num_partitions % group_size, 0); HloAllReduceInstruction& ar = *spec.all_reduce; HloDynamicSliceInstruction& ds = *spec.dynamic_slice; const auto& [first_ar_replica_groups, second_ar_replica_groups] = spec.replica_groups; int channel_id = next_channel_id++; HloInstruction* first_ar = computation.AddInstruction(HloInstruction::CreateAllReduce( ar.shape(), ar.operands(), ar.to_apply(), CollectiveDeviceList(first_ar_replica_groups), ar.constrain_layout(), channel_id, ar.use_global_device_ids())); channel_id = next_channel_id++; HloInstruction* second_ar = computation.AddInstruction(HloInstruction::CreateAllReduce( ds.shape(), {&ds}, ar.to_apply(), CollectiveDeviceList(second_ar_replica_groups), ar.constrain_layout(), channel_id, ar.use_global_device_ids())); TF_RETURN_IF_ERROR(computation.ReplaceInstruction(&ar, first_ar)); if (ds.IsRoot()) { computation.set_root_instruction(second_ar); } TF_RETURN_IF_ERROR(ds.ReplaceAllUsesWith(second_ar)); return true; } absl::StatusOr<bool> SplitAllReduce(const HloModule& module, const ARReplicaGroupMap& replica_map, HloComputation& computation, HloInstruction& instruction) { RewriteDecision spec = CanRewrite(module, replica_map, computation, instruction); if (std::holds_alternative<RewriteInfeasibleReason>(spec)) { auto reason = std::get<RewriteInfeasibleReason>(spec); VLOG(1) << "Cannot process {" << reason.ar->ToString() << "} due to : " << reason.message; return false; } return SplitAllReduce(module.config(), std::get<AllReduceRewriteSpec>(spec), computation); } } absl::StatusOr<bool> AllReduceSplitter::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (auto* computation : module->computations(execution_threads)) { ARReplicaGroupMap replica_map = GetReplicaGroupsMap(*computation); for (HloInstruction* instr : computation->MakeInstructionPostOrder()) { TF_ASSIGN_OR_RETURN(bool rewritten, SplitAllReduce(*module, replica_map, *computation, *instr)); changed |= rewritten; } } return changed; } }
#include "xla/service/all_reduce_splitter.h" #include <cstddef> #include <cstdint> #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/gpu_reduce_scatter_creator.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using ::tsl::testing::IsOkAndHolds; class AllReduceSplitterTest : public HloTestBase { public: absl::StatusOr<std::unique_ptr<HloModule>> PrepareModule( absl::string_view hlo_module, int64_t num_replicas, int64_t num_partitions) { HloModuleConfig config = GetModuleConfigForTest( num_replicas, num_partitions); config.set_use_spmd_partitioning(num_partitions > 1); return ParseAndReturnVerifiedModule(hlo_module, config); } size_t AllReduceCount(const HloModule &module) { return CollectiveCount(module, HloOpcode::kAllReduce); } private: size_t CollectiveCount(const HloModule &module, HloOpcode opcode) { return absl::c_count_if( module.entry_computation()->instructions(), [&opcode](HloInstruction *instr) { return instr->opcode() == opcode; }); } }; class AllReduceSplitterFilecheckTest : public AllReduceSplitterTest { public: absl::Status FileCheck(const std::string &hlo_text, absl::string_view pattern) { TF_ASSIGN_OR_RETURN(bool matched, RunFileCheck(hlo_text, pattern)); if (!matched) { return absl::InternalError("Filecheck failed."); } return absl::OkStatus(); } }; TEST_F( AllReduceSplitterFilecheckTest, MatchBasicPatternIfDynamicSliceIsRootAndThereExistsAllReduceWithSameReplicaGroups) { absl::string_view hlo_string = R"( HloModule m sum { a = bf16[] parameter(0) b = bf16[] parameter(1) ROOT _ = bf16[] add(a,b) } ENTRY main { p = bf16[2,4096,4096] parameter(0) first.ar = bf16[2,4096,4096] all-reduce(p), replica_groups={{0,1,2,3},{4,5,6,7}}, to_apply=sum, use_global_device_ids=true, channel_id=1 zero = bf16[] constant(0) reduce = bf16[4096] reduce(first.ar, zero), dimensions={0,1}, to_apply=sum all-reduce = bf16[4096] all-reduce(reduce), replica_groups={{0,1,2,3,4,5,6,7}}, to_apply=sum, use_global_device_ids=true, channel_id=2 table = s32[8]{0} constant({0,1,2,3,0,1,2,3}) pid = u32[] partition-id() id = s32[1] dynamic-slice(table, pid), dynamic_slice_sizes={1} reshape = s32[] reshape(id) slice_size = s32[] constant(1024) offset = s32[] multiply(reshape, slice_size) ROOT _ = bf16[1024] dynamic-slice(all-reduce, offset), dynamic_slice_sizes={1024} } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, PrepareModule(hlo_string, 1, 8)); EXPECT_THAT(AllReduceSplitter().Run(module.get()), IsOkAndHolds(true)); TF_EXPECT_OK(FileCheck(module->ToString(), R"( CHECK-DAG: %[[P0:.*]] = bf16[2,4096,4096]{2,1,0} parameter(0) CHECK: %[[AR0:.*]] = bf16[2,4096,4096]{2,1,0} all-reduce(bf16[2,4096,4096]{2,1,0} %[[P0]]) CHECK-SAME: replica_groups={[[DESIRED_RGS:.*]]} CHECK-DAG: %[[ZERO:.*]] = bf16[] constant(0) CHECK-DAG: %[[LOCAL_REDUCE:.*]] = bf16[4096]{0} reduce(bf16[2,4096,4096]{2,1,0} %[[AR0]], bf16[] %[[ZERO]]) CHECK: %[[AR1:.*]] = bf16[4096]{0} all-reduce(bf16[4096]{0} %[[LOCAL_REDUCE]]) CHECK-SAME: replica_groups={[[DESIRED_RGS]]} CHECK: %[[DS:.*]] = bf16[1024]{0} dynamic-slice(bf16[4096]{0} %[[AR1]], s32[] %[[_:.*]]) CHECK-SAME: dynamic_slice_sizes={1024} CHECK-NEXT: ROOT %[[AR2:.*]] = bf16[1024]{0} all-reduce(bf16[1024]{0} %[[DS]]) CHECK-SAME: replica_groups={{[{]}}{0,4},{1,5},{2,6},{3,7}{{[}]}} )")); } TEST_F( AllReduceSplitterTest, DoesNotMatchMatchBasicPatternIfDynamicSliceIsRootAndThereIsNoAllReduceWithSameReplicaGroups) { absl::string_view hlo_string = R"( HloModule m sum { a = bf16[] parameter(0) b = bf16[] parameter(1) ROOT _ = bf16[] add(a,b) } ENTRY main { p = bf16[2,4096,4096] parameter(0) zero = bf16[] constant(0) reduce = bf16[4096] reduce(p, zero), dimensions={0,1}, to_apply=sum all-reduce = bf16[4096] all-reduce(reduce), replica_groups={{0,1,2,3,4,5,6,7}}, to_apply=sum, use_global_device_ids=true, channel_id=2 table = s32[8]{0} constant({0,1,2,3,0,1,2,3}) pid = u32[] partition-id() id = s32[1] dynamic-slice(table, pid), dynamic_slice_sizes={1} reshape = s32[] reshape(id) slice_size = s32[] constant(1024) offset = s32[] multiply(reshape, slice_size) ROOT _ = bf16[1024] dynamic-slice(all-reduce, offset), dynamic_slice_sizes={1024} } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, PrepareModule(hlo_string, 1, 8)); EXPECT_THAT(AllReduceSplitter().Run(module.get()), IsOkAndHolds(false)); EXPECT_EQ(AllReduceCount(*module), 1); } TEST_F( AllReduceSplitterFilecheckTest, MatchBasicPatternIfDynamicSliceIsNotRootAndThereExistsAllReduceWithSameReplicaGroups) { absl::string_view hlo_string = R"( HloModule m sum { a = bf16[] parameter(0) b = bf16[] parameter(1) ROOT _ = bf16[] add(a,b) } ENTRY main { p = bf16[2,4096,4096] parameter(0) zero = bf16[] constant(0) first.ar = bf16[2,4096,4096] all-reduce(p), replica_groups={{0,1,2,3},{4,5,6,7}}, to_apply=sum, use_global_device_ids=true, channel_id=1 reduce = bf16[4096] reduce(p, zero), dimensions={0,1}, to_apply=sum all-reduce = bf16[4096] all-reduce(reduce), replica_groups={{0,1,2,3,4,5,6,7}}, to_apply=sum, use_global_device_ids=true, channel_id=1 table = s32[8]{0} constant({0,1,2,3,0,1,2,3}) pid = u32[] partition-id() id = s32[1] dynamic-slice(table, pid), dynamic_slice_sizes={1} reshape = s32[] reshape(id) slice_size = s32[] constant(1024) offset = s32[] multiply(reshape, slice_size) dynamic_slice = bf16[1024] dynamic-slice(all-reduce, offset), dynamic_slice_sizes={1024} broadcast = bf16[1024,1024] broadcast(dynamic_slice), dimensions={0} ROOT _ = tuple(broadcast, first.ar) } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, PrepareModule(hlo_string, 1, 8)); EXPECT_THAT(AllReduceSplitter().Run(module.get()), IsOkAndHolds(true)); TF_EXPECT_OK(FileCheck(module->ToString(), R"( CHECK-DAG: %[[P0:.*]] = bf16[2,4096,4096]{2,1,0} parameter(0) CHECK-DAG: %[[ZERO:.*]] = bf16[] constant(0) CHECK-DAG: %[[LOCAL_REDUCE:.*]] = bf16[4096]{0} reduce(bf16[2,4096,4096]{2,1,0} %[[P0]], bf16[] %[[ZERO]]) CHECK: %[[AR0:.*]] = bf16[4096]{0} all-reduce(bf16[4096]{0} %[[LOCAL_REDUCE]]) CHECK-SAME: replica_groups={[[DESIRED_RGS:.*]]} CHECK: %[[DS:.*]] = bf16[1024]{0} dynamic-slice(bf16[4096]{0} %[[AR0]], s32[] %[[_:.*]]) CHECK-SAME: dynamic_slice_sizes={1024} CHECK-NEXT: %[[AR1:.*]] = bf16[1024]{0} all-reduce(bf16[1024]{0} %[[DS]]) CHECK-SAME: replica_groups={{[{]}}{0,4},{1,5},{2,6},{3,7}{{[}]}} CHECK: %[[EXISTING_AR:.*]] = bf16[2,4096,4096]{2,1,0} all-reduce(bf16[2,4096,4096]{2,1,0} %[[P0]]) CHECK-SAME: replica_groups={[[DESIRED_RGS]]} CHECK: ROOT CHECK-NOT: %[[AR1]] CHECK-SAME: %[[EXISTING_AR]] )")); } TEST_F( AllReduceSplitterTest, DoesNotMatchBasicPatternIfDynamicSliceIsNotRootAndThereIsNoAllReduceWithSameReplicaGroups) { absl::string_view hlo_string = R"( HloModule m sum { a = bf16[] parameter(0) b = bf16[] parameter(1) ROOT _ = bf16[] add(a,b) } ENTRY main { p = bf16[2,4096,4096] parameter(0) p.1 = bf16[2,4096,4096] parameter(1) zero = bf16[] constant(0) reduce = bf16[4096] reduce(p, zero), dimensions={0,1}, to_apply=sum all-reduce = bf16[4096] all-reduce(reduce), replica_groups={{0,1,2,3,4,5,6,7}}, to_apply=sum, use_global_device_ids=true, channel_id=1 table = s32[8]{0} constant({0,1,2,3,0,1,2,3}) pid = u32[] partition-id() id = s32[1] dynamic-slice(table, pid), dynamic_slice_sizes={1} reshape = s32[] reshape(id) slice_size = s32[] constant(1024) offset = s32[] multiply(reshape, slice_size) dynamic_slice = bf16[1024] dynamic-slice(all-reduce, offset), dynamic_slice_sizes={1024} broadcast = bf16[1024,1024] broadcast(dynamic_slice), dimensions={0} add = bf16[2,4096,4096] add(p,p.1) ROOT _ = tuple(broadcast, add) } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, PrepareModule(hlo_string, 1, 8)); EXPECT_THAT(AllReduceSplitter().Run(module.get()), IsOkAndHolds(false)); EXPECT_EQ(AllReduceCount(*module), 1); } TEST_F(AllReduceSplitterTest, DoesNotMatchBasicPatternIfDynamicSliceIsFullySharded) { absl::string_view hlo_string = R"( HloModule m sum { a = bf16[] parameter(0) b = bf16[] parameter(1) ROOT _ = bf16[] add(a,b) } ENTRY main { p = bf16[2,4096,4096] parameter(0) first.ar = bf16[2,4096,4096] all-reduce(p), replica_groups={{0,1,2,3,4,5,6,7}}, to_apply=sum, use_global_device_ids=true, channel_id=1 zero = bf16[] constant(0) reduce = bf16[4096] reduce(first.ar, zero), dimensions={0,1}, to_apply=sum all-reduce = bf16[4096] all-reduce(reduce), replica_groups={{0,1,2,3,4,5,6,7}}, to_apply=sum, use_global_device_ids=true, channel_id=2 table = s32[8]{0} constant({0,1,2,3,0,1,2,3}) pid = u32[] partition-id() id = s32[1] dynamic-slice(table, pid), dynamic_slice_sizes={1} reshape = s32[] reshape(id) slice_size = s32[] constant(512) offset = s32[] multiply(reshape, slice_size) ROOT _ = bf16[512] dynamic-slice(all-reduce, offset), dynamic_slice_sizes={512} } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, PrepareModule(hlo_string, 1, 8)); EXPECT_THAT(AllReduceSplitter().Run(module.get()), IsOkAndHolds(false)); EXPECT_EQ(AllReduceCount(*module), 2); } TEST_F(AllReduceSplitterTest, DoesNotMatchBasicPatternIfItIsNotCompiledWithSPMDPartitioning) { absl::string_view hlo_string = R"( HloModule m sum { a = bf16[] parameter(0) b = bf16[] parameter(1) ROOT _ = bf16[] add(a,b) } ENTRY main { p = bf16[2,4096,4096] parameter(0) first.ar = bf16[2,4096,4096] all-reduce(p), replica_groups={{0,1,2,3},{4,5,6,7}}, to_apply=sum, use_global_device_ids=true, channel_id=1 zero = bf16[] constant(0) reduce = bf16[4096] reduce(first.ar, zero), dimensions={0,1}, to_apply=sum all-reduce = bf16[4096] all-reduce(reduce), replica_groups={{0,1,2,3,4,5,6,7}}, to_apply=sum, use_global_device_ids=true, channel_id=2 table = s32[8]{0} constant({0,1,2,3,0,1,2,3}) pid = u32[] partition-id() id = s32[1] dynamic-slice(table, pid), dynamic_slice_sizes={1} reshape = s32[] reshape(id) slice_size = s32[] constant(1024) offset = s32[] multiply(reshape, slice_size) ROOT _ = bf16[1024] dynamic-slice(all-reduce, offset), dynamic_slice_sizes={1024} } )"; HloModuleConfig config = GetModuleConfigForTest(1, 8); config.set_use_spmd_partitioning(false); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string, config)); EXPECT_THAT(AllReduceSplitter().Run(module.get()), IsOkAndHolds(false)); EXPECT_THAT(AllReduceCount(*module), 2); } TEST_F(AllReduceSplitterTest, DoesNotMatchBasicPatternIfUseGlobalDeviceIdsIsFalse) { absl::string_view hlo_string = R"( HloModule m sum { a = bf16[] parameter(0) b = bf16[] parameter(1) ROOT _ = bf16[] add(a,b) } ENTRY main { p = bf16[2,4096,4096] parameter(0) first.ar = bf16[2,4096,4096] all-reduce(p), replica_groups={{0,1,2,3},{4,5,6,7}}, to_apply=sum, channel_id=1 zero = bf16[] constant(0) reduce = bf16[4096] reduce(first.ar, zero), dimensions={0,1}, to_apply=sum all-reduce = bf16[4096] all-reduce(reduce), replica_groups={{0,1,2,3,4,5,6,7}}, to_apply=sum, channel_id=2 table = s32[8]{0} constant({0,1,2,3,0,1,2,3}) pid = u32[] partition-id() id = s32[1] dynamic-slice(table, pid), dynamic_slice_sizes={1} reshape = s32[] reshape(id) slice_size = s32[] constant(1024) offset = s32[] multiply(reshape, slice_size) ROOT _ = bf16[1024] dynamic-slice(all-reduce, offset), dynamic_slice_sizes={1024} } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, PrepareModule(hlo_string, 1, 8)); EXPECT_THAT(AllReduceSplitter().Run(module.get()), IsOkAndHolds(false)); EXPECT_EQ(AllReduceCount(*module), 2); } TEST_F(AllReduceSplitterTest, DoesNotMatchBasicPatternIfIsNotCrossAllPartitionsAllReduce) { absl::string_view hlo_string = R"( HloModule m sum { a = bf16[] parameter(0) b = bf16[] parameter(1) ROOT _ = bf16[] add(a,b) } ENTRY main { p = bf16[2,4096,4096] parameter(0) first.ar = bf16[2,4096,4096] all-reduce(p), replica_groups={{0,1,2,3},{4,5,6,7}}, to_apply=sum, use_global_device_ids=true, channel_id=1 zero = bf16[] constant(0) reduce = bf16[4096] reduce(first.ar, zero), dimensions={0,1}, to_apply=sum all-reduce = bf16[4096] all-reduce(reduce), replica_groups={{0,1,2,3},{4,5,6,7}}, to_apply=sum, use_global_device_ids=true, channel_id=2 table = s32[8]{0} constant({0,1,2,3,0,1,2,3}) pid = u32[] partition-id() id = s32[1] dynamic-slice(table, pid), dynamic_slice_sizes={1} reshape = s32[] reshape(id) slice_size = s32[] constant(1024) offset = s32[] multiply(reshape, slice_size) ROOT _ = bf16[1024] dynamic-slice(all-reduce, offset), dynamic_slice_sizes={1024} } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, PrepareModule(hlo_string, 1, 8)); EXPECT_THAT(AllReduceSplitter().Run(module.get()), IsOkAndHolds(false)); EXPECT_EQ(AllReduceCount(*module), 2); } TEST_F( AllReduceSplitterFilecheckTest, PipelineMatchesBasicPatternWithDynamicSliceAsRootAndRewritesToReduceScatter) { absl::string_view hlo_string = R"( HloModule m sum { a = bf16[] parameter(0) b = bf16[] parameter(1) ROOT _ = bf16[] add(a,b) } ENTRY main { p = bf16[2,4096,4096] parameter(0) first.ar = bf16[2,4096,4096] all-reduce(p), replica_groups={{0,1,2,3},{4,5,6,7}}, to_apply=sum, use_global_device_ids=true, channel_id=1 zero = bf16[] constant(0) reduce = bf16[4096] reduce(first.ar, zero), dimensions={0,1}, to_apply=sum all-reduce = bf16[4096] all-reduce(reduce), replica_groups={{0,1,2,3,4,5,6,7}}, to_apply=sum, use_global_device_ids=true, channel_id=2 table = s32[8]{0} constant({0,1,2,3,0,1,2,3}) pid = u32[] partition-id() id = s32[1] dynamic-slice(table, pid), dynamic_slice_sizes={1} reshape = s32[] reshape(id) slice_size = s32[] constant(1024) offset = s32[] multiply(reshape, slice_size) ROOT _ = bf16[1024] dynamic-slice(all-reduce, offset), dynamic_slice_sizes={1024} } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, PrepareModule(hlo_string, 1, 8)); HloPassPipeline pipeline("all-reduce-splitter-rewrite"); pipeline.AddPass<AllReduceSplitter>(); pipeline.AddPass<ReduceScatterCreator>(); EXPECT_THAT(pipeline.Run(module.get()), IsOkAndHolds(true)); TF_EXPECT_OK(FileCheck(module->ToString(), R"( CHECK-DAG: %[[P0:.*]] = bf16[2,4096,4096]{2,1,0} parameter(0) CHECK: %[[AR0:.*]] = bf16[2,4096,4096]{2,1,0} all-reduce(bf16[2,4096,4096]{2,1,0} %[[P0]]) CHECK-SAME: replica_groups={[[DESIRED_RGS:.*]]} CHECK-DAG: %[[ZERO:.*]] = bf16[] constant(0) CHECK-DAG: %[[LOCAL_REDUCE:.*]] = bf16[4096]{0} reduce(bf16[2,4096,4096]{2,1,0} %[[AR0]], bf16[] %[[ZERO]]) CHECK: %[[REDUCE_SCATTER:.*]] = bf16[1024]{0} reduce-scatter(bf16[4096]{0} %[[LOCAL_REDUCE]]) CHECK-SAME: replica_groups={[[DESIRED_RGS]]} CHECK-NEXT: ROOT %[[AR2:.*]] = bf16[1024]{0} all-reduce(bf16[1024]{0} %[[REDUCE_SCATTER]]) CHECK-SAME: replica_groups={{[{]}}{0,4},{1,5},{2,6},{3,7}{{[}]}} )")); } TEST_F( AllReduceSplitterFilecheckTest, PipelineMatchesBasicPatternWithDynamicSliceNotAsRootAndRewritesToReduceScatter) { absl::string_view hlo_string = R"( HloModule m sum { a = bf16[] parameter(0) b = bf16[] parameter(1) ROOT _ = bf16[] add(a,b) } ENTRY main { p = bf16[2,4096,4096] parameter(0) zero = bf16[] constant(0) first.ar = bf16[2,4096,4096] all-reduce(p), replica_groups={{0,1,2,3},{4,5,6,7}}, to_apply=sum, use_global_device_ids=true, channel_id=1 reduce = bf16[4096] reduce(p, zero), dimensions={0,1}, to_apply=sum all-reduce = bf16[4096] all-reduce(reduce), replica_groups={{0,1,2,3,4,5,6,7}}, to_apply=sum, use_global_device_ids=true, channel_id=1 table = s32[8]{0} constant({0,1,2,3,0,1,2,3}) pid = u32[] partition-id() id = s32[1] dynamic-slice(table, pid), dynamic_slice_sizes={1} reshape = s32[] reshape(id) slice_size = s32[] constant(1024) offset = s32[] multiply(reshape, slice_size) dynamic_slice = bf16[1024] dynamic-slice(all-reduce, offset), dynamic_slice_sizes={1024} broadcast = bf16[1024,1024] broadcast(dynamic_slice), dimensions={0} ROOT _ = tuple(broadcast, first.ar) } )"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, PrepareModule(hlo_string, 1, 8)); HloPassPipeline pipeline("all-reduce-splitter-rewrite"); pipeline.AddPass<AllReduceSplitter>(); pipeline.AddPass<ReduceScatterCreator>(); EXPECT_THAT(pipeline.Run(module.get()), IsOkAndHolds(true)); TF_EXPECT_OK(FileCheck(module->ToString(), R"( CHECK-DAG: %[[P0:.*]] = bf16[2,4096,4096]{2,1,0} parameter(0) CHECK-DAG: %[[ZERO:.*]] = bf16[] constant(0) CHECK-DAG: %[[LOCAL_REDUCE:.*]] = bf16[4096]{0} reduce(bf16[2,4096,4096]{2,1,0} %[[P0]], bf16[] %[[ZERO]]) CHECK: %[[REDUCE_SCATTER:.*]] = bf16[1024]{0} reduce-scatter(bf16[4096]{0} %[[LOCAL_REDUCE]]) CHECK-NEXT: %[[AR1:.*]] = bf16[1024]{0} all-reduce(bf16[1024]{0} %[[REDUCE_SCATTER]]) CHECK-SAME: replica_groups={{[{]}}{0,4},{1,5},{2,6},{3,7}{{[}]}} CHECK: %[[EXISTING_AR:.*]] = bf16[2,4096,4096]{2,1,0} all-reduce(bf16[2,4096,4096]{2,1,0} %[[P0]]) CHECK: ROOT CHECK-NOT: %[[AR1]] CHECK-SAME: %[[EXISTING_AR]] )")); } } } }
1,898
cpp
tensorflow/tensorflow
bitcast_dtypes_expander
third_party/xla/xla/service/bitcast_dtypes_expander.cc
third_party/xla/xla/service/bitcast_dtypes_expander_test.cc
#include <string> #include "absl/container/flat_hash_map.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/op_expander_pass.h" #ifndef XLA_SERVICE_BITCAST_DTYPES_EXPANDER_H_ #define XLA_SERVICE_BITCAST_DTYPES_EXPANDER_H_ namespace xla { class BitcastDtypesExpander : public OpExpanderPass { public: absl::string_view name() const override { return "bitcast_dtypes_expander"; } protected: bool InstructionMatchesPattern(HloInstruction* instruction) override; absl::StatusOr<HloInstruction*> ExpandInstruction( HloInstruction* instruction) override; private: absl::flat_hash_map<std::string, HloComputation*> computation_cache_; }; } #endif #include "xla/service/bitcast_dtypes_expander.h" #include "absl/algorithm/container.h" #include "absl/strings/str_join.h" #include "xla/client/lib/arithmetic.h" #include "xla/client/lib/broadcast.h" #include "xla/client/lib/constants.h" #include "xla/client/xla_builder.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal_util.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/types.h" #include "tsl/platform/logging.h" namespace xla { absl::StatusOr<HloInstruction*> BitcastDtypesExpander::ExpandInstruction( HloInstruction* instruction) { HloInstruction* input = instruction->mutable_operand(0); const Shape& from_shape = input->shape(); const Shape& to_shape = instruction->shape(); int input_bit_width = primitive_util::BitWidth(from_shape.element_type()); int output_bit_width = primitive_util::BitWidth(to_shape.element_type()); PrimitiveType input_logical_type = primitive_util::UnsignedIntegralTypeForBitWidth(input_bit_width); PrimitiveType output_logical_type = primitive_util::UnsignedIntegralTypeForBitWidth(output_bit_width); if (input_bit_width == output_bit_width) { return instruction; } std::string name = absl::StrFormat("xla.bitcast_convert_%s_2_%s", from_shape.ToString(), to_shape.ToString()); HloModule* module = instruction->GetModule(); HloComputation*& computation = computation_cache_.emplace(name, nullptr).first->second; if (!computation) { XlaBuilder b(name); XlaOp input = Parameter(&b, 0, instruction->operand(0)->shape(), "a"); if (input_bit_width > output_bit_width) { std::vector<int64_t> broadcasted_input_shape( from_shape.dimensions().begin(), from_shape.dimensions().end()); std::vector<int64_t> reshaped_input_shape(from_shape.dimensions().begin(), from_shape.dimensions().end()); broadcasted_input_shape.push_back(input_bit_width / output_bit_width); reshaped_input_shape.push_back(1); int64_t output_bit_width_mask = (int64_t{1} << output_bit_width) - 1; TF_ASSIGN_OR_RETURN(input, BroadcastTo(Reshape(input, reshaped_input_shape), broadcasted_input_shape)); input = BitcastConvertType(input, input_logical_type); TF_ASSIGN_OR_RETURN(Shape input_shape, b.GetShape(input)); XlaOp iota = Iota(&b, input_shape, input_shape.dimensions_size() - 1); XlaOp iota_m = Mul(ScalarLike(input, output_bit_width), iota); input = And(ShiftRightLogical(input, iota_m), ScalarLike(input, output_bit_width_mask)); input = ConvertElementType(input, output_logical_type); } else if (input_bit_width < output_bit_width) { input = BitcastConvertType(input, input_logical_type); input = ConvertElementType(input, output_logical_type); XlaOp iota_m = Mul( ConstantR0WithType(&b, output_logical_type, input_bit_width), Iota(&b, ShapeUtil::ChangeElementType(from_shape, output_logical_type), from_shape.rank() - 1)); input = ShiftLeft(input, iota_m); input = Reduce(input, Zero(&b, output_logical_type), CreateScalarOrComputation(output_logical_type, &b), {from_shape.rank() - 1}); } BitcastConvertType(input, to_shape.element_type()); TF_ASSIGN_OR_RETURN(XlaComputation xla_computation, b.Build()); TF_ASSIGN_OR_RETURN(ProgramShape program_shape, xla_computation.GetProgramShape()); HloModuleConfig config(program_shape); TF_ASSIGN_OR_RETURN(auto new_module, HloModule::CreateFromProto( xla_computation.proto(), config)); HloCloneContext context(module); computation = module->DeepCloneComputation(new_module->entry_computation(), &context); } return instruction->parent()->AddInstruction(HloInstruction::CreateCall( instruction->shape(), instruction->operands(), computation)); } bool BitcastDtypesExpander::InstructionMatchesPattern( HloInstruction* instruction) { return instruction->opcode() == HloOpcode::kBitcastConvert && primitive_util::BitWidth(instruction->shape().element_type()) != primitive_util::BitWidth( instruction->operand(0)->shape().element_type()); } }
#include "xla/service/bitcast_dtypes_expander.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class BitcastDtypesExpanderTest : public HloTestBase {}; TEST_F(BitcastDtypesExpanderTest, S32toS8) { absl::string_view hlo_string = R"( HloModule bitcast_to_smaller ENTRY main { p = s32[10] parameter(0) ROOT out = s8[10,4] bitcast-convert(p) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); BitcastDtypesExpander expander; TF_ASSERT_OK_AND_ASSIGN(bool changed, expander.Run(module.get())); EXPECT_TRUE(changed); EXPECT_TRUE(*RunFileCheck(module->ToString(), R"( )")); } TEST_F(BitcastDtypesExpanderTest, S64toS32) { absl::string_view hlo_string = R"( HloModule bitcast_to_smaller ENTRY main { p = s64[10] parameter(0) ROOT out = s32[10,2] bitcast-convert(p) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); BitcastDtypesExpander expander; TF_ASSERT_OK_AND_ASSIGN(bool changed, expander.Run(module.get())); EXPECT_TRUE(changed); EXPECT_TRUE(*RunFileCheck(module->ToString(), R"( )")); } TEST_F(BitcastDtypesExpanderTest, S8toS32) { absl::string_view hlo_string = R"( HloModule bitcast_to_larger ENTRY main { p = s8[10,4] parameter(0) ROOT out = s32[10] bitcast-convert(p) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); BitcastDtypesExpander expander; TF_ASSERT_OK_AND_ASSIGN(bool changed, expander.Run(module.get())); EXPECT_TRUE(changed); EXPECT_TRUE(*RunFileCheck(module->ToString(), R"( )")); } TEST_F(BitcastDtypesExpanderTest, RewriteInsideWhileTest) { absl::string_view hlo_string = R"( HloModule module body { p_body = (f32[2], s32[]) parameter(0) val1 = f32[2] get-tuple-element(p_body), index=0 val2 = s32[] get-tuple-element(p_body), index=1 const = s32[] constant(42) converted_val2 = s8[4] bitcast-convert(val2) converted_const = s8[4] bitcast-convert(const) add = s8[4] add(converted_val2, converted_const) out_add = s32[] bitcast-convert(add) ROOT root = (f32[2], s32[]) tuple(val1, out_add) } condition { p_cond = (f32[2], s32[]) parameter(0) gte = s32[] get-tuple-element(p_cond), index=1 const = s32[] constant(42) ROOT result = pred[] compare(gte, const), direction=EQ } ENTRY entry { param.0 = f32[2] parameter(0) param.1 = s32[] parameter(1) while_init = (f32[2], s32[]) tuple(param.0, param.1) ROOT while = (f32[2], s32[]) while(while_init), condition=condition, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); BitcastDtypesExpander expander; TF_ASSERT_OK_AND_ASSIGN(bool changed, expander.Run(module.get())); EXPECT_TRUE(changed); } } }
1,899
cpp
tensorflow/tensorflow
reshape_mover
third_party/xla/xla/service/reshape_mover.cc
third_party/xla/xla/service/reshape_mover_test.cc
#ifndef XLA_SERVICE_RESHAPE_MOVER_H_ #define XLA_SERVICE_RESHAPE_MOVER_H_ #include "xla/service/hlo_pass_interface.h" namespace xla { struct ReshapeMoverOptions { bool reshape_of_1d_broadcast_is_cheap = false; }; class ReshapeMover : public HloModulePass { public: explicit ReshapeMover( const ReshapeMoverOptions& options = ReshapeMoverOptions{}) : options_(options) {} absl::string_view name() const override { return "reshape-mover"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: absl::StatusOr<bool> TryReshapeMoveOnCandidates( HloInstructionSet* candidates); absl::StatusOr<bool> SinkRearrangeOperands(HloInstruction* instruction); absl::StatusOr<HloInstruction*> ApplyInverseRearrange( const HloInstruction* rearrange, HloInstruction* operand); bool IsReshapeMoveCandidate(HloInstruction* instruction); const HloInstruction* FirstNontrivialRearrange( absl::Span<const HloInstruction* const> instrs); bool CanTriviallyRearrange(const HloInstruction* instr, const HloInstruction* rearrange); ReshapeMoverOptions options_; }; } #endif #include "xla/service/reshape_mover.h" #include <algorithm> #include <memory> #include <vector> #include "absl/algorithm/container.h" #include "xla/permutation_util.h" #include "xla/service/hlo_creation_utils.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/util.h" #include "tsl/platform/errors.h" namespace xla { namespace { bool IsRearrange(const HloInstruction* instruction) { return instruction->opcode() == HloOpcode::kReshape || instruction->opcode() == HloOpcode::kTranspose; } bool AreEquivalentRearranges(const HloInstruction* a, const HloInstruction* b) { if (a->opcode() != b->opcode() || !ShapeUtil::SameDimensions(a->shape(), b->shape())) { return false; } switch (a->opcode()) { case HloOpcode::kTranspose: return a->dimensions() == b->dimensions(); case HloOpcode::kReshape: return ShapeUtil::SameDimensions(a->operand(0)->shape(), b->operand(0)->shape()); default: return false; } } absl::InlinedVector<int64_t, 4> TransposedBcastDims( absl::Span<const int64_t> bcast_dims, absl::Span<const int64_t> transpose_dims) { auto inv_perm = InversePermutation(transpose_dims); absl::InlinedVector<int64_t, 4> new_bcast_dims; for (int64_t dim : bcast_dims) { new_bcast_dims.push_back(inv_perm[dim]); } return new_bcast_dims; } } bool ReshapeMover::CanTriviallyRearrange(const HloInstruction* instr, const HloInstruction* rearrange) { CHECK(IsRearrange(rearrange)) << rearrange->ToString(); if (rearrange->opcode() == HloOpcode::kReshape && ShapeUtil::Equal(rearrange->shape(), rearrange->operand(0)->shape())) { return true; } if (rearrange->opcode() == HloOpcode::kTranspose && IsIdentityPermutation(rearrange->dimensions())) { return true; } if (instr->opcode() == HloOpcode::kConstant) { return true; } if (instr->opcode() == HloOpcode::kRng && instr->user_count() == 1) { return true; } if (instr->opcode() == HloOpcode::kBroadcast) { if (!absl::c_is_sorted(instr->dimensions())) { return false; } if (rearrange->opcode() == HloOpcode::kReshape) { return ShapeUtil::IsScalar(instr->operand(0)->shape()) || (options_.reshape_of_1d_broadcast_is_cheap && ShapeUtil::TrueRank(instr->operand(0)->shape()) <= 1) || (options_.reshape_of_1d_broadcast_is_cheap && ShapeUtil::ReshapeLeavesDimensionsUnmodified( rearrange->shape(), rearrange->operand(0)->shape(), instr->dimensions()) .has_value()); } if (rearrange->opcode() == HloOpcode::kTranspose) { return absl::c_is_sorted(TransposedBcastDims( instr->dimensions(), InversePermutation(rearrange->dimensions()))); } } return false; } const HloInstruction* ReshapeMover::FirstNontrivialRearrange( absl::Span<const HloInstruction* const> instrs) { auto rearrange_it = absl::c_find_if(instrs, [&](const HloInstruction* instr) { return IsRearrange(instr) && !CanTriviallyRearrange(instr->operand(0), instr); }); if (rearrange_it == instrs.end()) { return nullptr; } return *rearrange_it; } bool ReshapeMover::IsReshapeMoveCandidate(HloInstruction* instruction) { auto print_no_metadata = HloPrintOptions().set_print_metadata(false); VLOG(5) << "** Checking instruction: " << instruction->ToString(print_no_metadata); if (!instruction->IsElementwise()) { return false; } const HloInstruction* rearrange = FirstNontrivialRearrange(instruction->operands()); if (rearrange == nullptr) { return false; } return absl::c_all_of( instruction->operands(), [&](const HloInstruction* operand) { return (IsRearrange(operand) && AreEquivalentRearranges(operand, rearrange)) || (!IsRearrange(operand) && CanTriviallyRearrange(operand, rearrange)); }); } absl::StatusOr<HloInstruction*> ReshapeMover::ApplyInverseRearrange( const HloInstruction* rearrange, HloInstruction* operand) { switch (rearrange->opcode()) { case HloOpcode::kReshape: { Shape new_shape = ShapeUtil::ChangeElementType( rearrange->operand(0)->shape(), operand->shape().element_type()); if (operand->shape() != new_shape) { return MakeReshapeHlo(new_shape, operand); } else { return operand; } } case HloOpcode::kTranspose: { if (!IsIdentityPermutation(rearrange->dimensions())) { return MakeTransposeHlo(operand, InversePermutation(rearrange->dimensions())); } else { return operand; } } default: LOG(FATAL) << "Invalid rearrange op: " << rearrange->ToString(); } } absl::StatusOr<bool> ReshapeMover::SinkRearrangeOperands( HloInstruction* instruction) { auto print_no_metadata = HloPrintOptions().set_print_metadata(false); HloComputation* computation = instruction->parent(); const HloInstruction* rearrange = FirstNontrivialRearrange(instruction->operands()); CHECK(rearrange != nullptr); const Shape& new_operand_shape = rearrange->operand(0)->shape(); VLOG(3) << "** Sinking reshape or transpose: " << instruction->ToString(print_no_metadata) << "\n\tfirst rearrange operand: " << rearrange->ToString(print_no_metadata) << "\n\tnew operand shape: " << ShapeUtil::HumanString(new_operand_shape); auto operands = instruction->operands(); for (size_t i = 0; i < operands.size(); ++i) { VLOG(3) << "Updating operand #" << i << ": " << operands[i]->ToString(print_no_metadata); TF_ASSIGN_OR_RETURN(operands[i], ApplyInverseRearrange(rearrange, operands[i])); VLOG(3) << "Updated operand #" << i << " to: " << operands[i]->ToString(print_no_metadata); } HloInstruction* new_elementwise = computation->AddInstruction(instruction->CloneWithNewOperands( ShapeUtil::ChangeElementType(new_operand_shape, instruction->shape().element_type()), operands)); std::unique_ptr<HloInstruction> new_rearrange; switch (rearrange->opcode()) { case HloOpcode::kReshape: VLOG(3) << "Creating new reshape for new elementwise op: " << new_elementwise->ToString(print_no_metadata); new_rearrange = HloInstruction::CreateReshape(instruction->shape(), new_elementwise); break; case HloOpcode::kTranspose: new_rearrange = HloInstruction::CreateTranspose( instruction->shape(), new_elementwise, rearrange->dimensions()); break; default: LOG(FATAL) << "Bad opcode"; } if (instruction->has_sharding()) { new_elementwise->clear_sharding(); } TF_RETURN_IF_ERROR(computation->ReplaceWithNewInstruction( instruction, std::move(new_rearrange))); return true; } absl::StatusOr<bool> ReshapeMover::TryReshapeMoveOnCandidates( HloInstructionSet* candidates) { bool removed = true; while (!candidates->empty() && removed) { if (VLOG_IS_ON(5)) { for (const HloInstruction* instruction : *candidates) { VLOG(5) << "candidate " << instruction->ToString(); } } ConstHloInstructionSet rearrange_operands; for (const HloInstruction* instruction : *candidates) { for (const auto* operand : instruction->operands()) { if (IsRearrange(operand)) { rearrange_operands.insert(operand); } } } removed = false; for (auto operand : rearrange_operands) { if (absl::c_any_of(operand->users(), [&](HloInstruction* user) { return !candidates->count(user); })) { for (auto* user : operand->users()) { removed |= candidates->erase(user) > 0; } } } } if (candidates->empty()) { return false; } for (HloInstruction* instruction : *candidates) { if (!ConsumeFuel("reshape-mover", [&] { return absl::StrCat("instruction: ", instruction->ToString(), "\nFull module:\n", instruction->GetModule()->ToString()); })) { break; } TF_ASSIGN_OR_RETURN(bool did_change, SinkRearrangeOperands(instruction)); CHECK(did_change); } return true; } absl::StatusOr<bool> ReshapeMover::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (auto* comp : module->MakeNonfusionComputations(execution_threads)) { HloInstructionSet candidates; for (HloInstruction* instruction : comp->instructions()) { if (IsReshapeMoveCandidate(instruction)) { candidates.insert(instruction); } } TF_ASSIGN_OR_RETURN(bool did_change, TryReshapeMoveOnCandidates(&candidates)); changed |= did_change; } return changed; } }
#include "xla/service/reshape_mover.h" #include <memory> #include <string> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/algebraic_simplifier.h" #include "xla/service/hlo_pass_fix.h" #include "xla/service/hlo_verifier.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" namespace xla { namespace { namespace m = xla::match; class ReshapeMoverTest : public HloTestBase { protected: absl::Status RunPass(HloModule* module, bool change_expected, ReshapeMoverOptions options = ReshapeMoverOptions{}) { TF_ASSIGN_OR_RETURN(bool changed, RunHloPass(ReshapeMover(options), module)); SCOPED_TRACE(module->ToString()); EXPECT_EQ(changed, change_expected); TF_EXPECT_OK(RunHloPass(HloVerifier(HloVerifierOpts()), module).status()); TF_EXPECT_OK(RunHloPass(HloPassFix<AlgebraicSimplifier>( AlgebraicSimplifierOptions()), module) .status()); return absl::OkStatus(); } }; TEST_F(ReshapeMoverTest, ReshapesWithDifferentInputShapesNotMoved) { const std::string hlo_string = R"( HloModule test ENTRY test { reshape0 = f32[8,7] reshape(f32[1,8,1,7] parameter(0)) reshape1 = f32[8,7] reshape(f32[1,8,7,1] parameter(1)) ROOT add = add(reshape0, reshape1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), false)); } TEST_F(ReshapeMoverTest, OneConstantAndOneReshapesOnRngNotMoved) { const std::string hlo_string = R"( HloModule test ENTRY test { rng = f32[1,8,1,7,1] rng(f32[] constant(0), f32[] constant(1)), distribution=rng_uniform ROOT add = add(f32[8,7] reshape(rng), f32[8,7] constant({...})) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), false)); } TEST_F(ReshapeMoverTest, EquivalentReshapesMoved) { const std::string hlo_string = R"( HloModule test ENTRY test { reshape0 = f32[8,7] reshape(f32[1,8,1,7] parameter(0)) reshape1 = f32[8,7] reshape(f32[1,8,1,7] parameter(1)) ROOT add = f32[8,7] add(reshape0, reshape1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), true)); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Reshape(m::Add(m::Parameter(0), m::Parameter(1))))); } TEST_F(ReshapeMoverTest, SinkReshapeBelowSelect) { const std::string hlo_string = R"( HloModule test ENTRY test { ROOT select = f32[2,3] select( pred[2,3] reshape(pred[6] parameter(0)), f32[2,3] reshape(f32[6] parameter(1)), f32[2,3] reshape(f32[6] parameter(2))) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), true)); SCOPED_TRACE(m->ToString()); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Reshape(m::Select(m::Parameter(0), m::Parameter(1), m::Parameter(2))))); } TEST_F(ReshapeMoverTest, SinkReshapeBelowSelectWithConstant) { const std::string hlo_string = R"( HloModule test ENTRY test { ROOT select = f32[2,3] select( pred[2,3] reshape(pred[6] parameter(0)), f32[2,3] reshape(f32[6] parameter(1)), f32[2,3] constant({...})) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), true)); SCOPED_TRACE(m->ToString()); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Reshape(m::Select(m::Parameter(0), m::Parameter(1), m::Reshape(m::Constant()))))); } TEST_F(ReshapeMoverTest, OneParameterAndOneReshapeNotMoved) { const std::string hlo_string = R"( HloModule test ENTRY test { reshape0 = f32[8,7] reshape(f32[1,8,1,7] parameter(0)) ROOT add = add(reshape0, f32[8,7] parameter(1)) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), false)); } TEST_F(ReshapeMoverTest, DontSinkReshapesOfConstants) { const std::string hlo_string = R"( HloModule test ENTRY test { ROOT select = select( pred[3,2] parameter(0), f32[3,2] reshape(f32[2,3] constant({...})), f32[3,2] reshape(f32[2,3] constant({...}))) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), false)); } TEST_F(ReshapeMoverTest, OneNontrivialReshapeMoved) { const std::string hlo_string = R"( HloModule test ENTRY test { ROOT add = add( f32[3,2] reshape(f32[2,3] parameter(0)), f32[3,2] constant({...})) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), true)); SCOPED_TRACE(m->ToString()); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Reshape( m::Add(m::Parameter(0), m::Reshape(m::Constant()))))); } TEST_F(ReshapeMoverTest, MultipleReshapes) { const std::string hlo_string = R"( HloModule test ENTRY test { add0 = f32[8,7,1] add( f32[8,7,1] reshape(f32[1,8,1,7] parameter(0)), f32[8,7,1] reshape(f32[1,8,1,7] parameter(1))) ROOT add1 = f32[8,7] add( f32[8,7] reshape(add0), f32[8,7] reshape(f32[8,7,1] parameter(2))) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), true)); SCOPED_TRACE(m->ToString()); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Reshape( m::Add(m::Reshape(m::Add(m::Parameter(0), m::Parameter(1))), m::Parameter(2))))); } TEST_F(ReshapeMoverTest, SinkTransposeAcrossBroadcastScalar) { const std::string hlo_string = R"( HloModule TransposeMulInversedTransposeModule ENTRY TransposeMulInversedTranspose { src0 = f32[20,8]{1,0} parameter(0) transpose0 = f32[8,20]{1,0} transpose(src0), dimensions={1,0} src1 = f32[] parameter(1) broadcast0 = f32[8,20]{1,0} broadcast(src1), dimensions={} ROOT multiply0 = f32[8,20]{1,0} multiply(transpose0, broadcast0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), true)); SCOPED_TRACE(m->ToString()); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Transpose(m::Multiply( m::Parameter(0), m::Broadcast(m::Parameter(1)))))); } TEST_F(ReshapeMoverTest, ReshapeWithUsersOutsideCandidatesNotSink) { const std::string hlo_string = R"( HloModule ReshapeWithUsersOutsideCandidates ENTRY ReshapeWithMultipleUsers { param0 = f32[20,8]{1,0} parameter(0) reshape0 = f32[8,20]{1,0} reshape(param0) param1 = f32[] parameter(1) broadcast0 = f32[8,20]{1,0} broadcast(param1), dimensions={} param2 = f32[20,8]{1,0} parameter(2) reshape1 = f32[8,20]{1,0} reshape(param2) param3 = f32[20,8]{1,0} parameter(3) reshape2 = f32[8,20]{1,0} reshape(param3) param4 = f32[8,20]{1,0} parameter(4) add0 = f32[8,20]{1,0} add(reshape0, broadcast0) add1 = f32[8,20]{1,0} add(reshape0, reshape1) add2 = f32[8,20]{1,0} add(reshape1, param4) ROOT tuple = (f32[8,20]{1,0},f32[8,20]{1,0}, f32[8,20]{1,0}) tuple(add0, add1, add2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), false)); } TEST_F(ReshapeMoverTest, ReshapeNoUsersOutsideCandidatesSink1) { const std::string hlo_string = R"( HloModule ReshapeNoUsersOutsideCandidates1 ENTRY ReshapeWithMultipleUsers1 { param0 = f32[20,8]{1,0} parameter(0) reshape0 = f32[8,20]{1,0} reshape(param0) param1 = f32[] parameter(1) broadcast0 = f32[8,20]{1,0} broadcast(param1), dimensions={} param2 = f32[20,8]{1,0} parameter(2) reshape1 = f32[8,20]{1,0} reshape(param2) param3 = f32[20,8]{1,0} parameter(3) reshape2 = f32[8,20]{1,0} reshape(param3) add0 = f32[8,20]{1,0} add(reshape0, broadcast0) add1 = f32[8,20]{1,0} add(reshape0, reshape1) add2 = f32[8,20]{1,0} add(reshape1, reshape2) ROOT tuple = (f32[8,20]{1,0},f32[8,20]{1,0}, f32[8,20]{1,0}) tuple(add0, add1, add2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), true)); SCOPED_TRACE(m->ToString()); EXPECT_THAT( m->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::Reshape(m::Add(m::Parameter(0), m::Broadcast(m::Parameter(1)))), m::Reshape(m::Add(m::Parameter(0), m::Parameter(2))), m::Reshape(m::Add(m::Parameter(2), m::Parameter(3)))))); } TEST_F(ReshapeMoverTest, ReshapeNoUsersOutsideCandidatesSink2) { const std::string hlo_string = R"( HloModule ReshapeNoUsersOutsideCandidates2 ENTRY ReshapeWithMultipleUsers2 { param0 = f32[20,8]{1,0} parameter(0) reshape0 = f32[8,20]{1,0} reshape(param0) ROOT add0 = f32[8,20]{1,0} add(reshape0, reshape0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), true)); SCOPED_TRACE(m->ToString()); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Reshape(m::Add()))); } TEST_F(ReshapeMoverTest, ReshapeOfRank1BroadcastIsNotTrivial) { const std::string hlo_string = R"( HloModule test ENTRY test { a = f32[2,3] broadcast(f32[2] parameter(0)), dimensions={0} b = f32[2,3] reshape(f32[6] parameter(1)) ROOT add0 = add(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), false)); } TEST_F(ReshapeMoverTest, ReshapeOfRank1BroadcastIsTrivial) { const std::string hlo_string = R"( HloModule test ENTRY test { a = f32[2,3] broadcast(f32[2] parameter(0)), dimensions={0} b = f32[2,3] reshape(f32[6] parameter(1)) ROOT add0 = add(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); ReshapeMoverOptions options; options.reshape_of_1d_broadcast_is_cheap = true; TF_ASSERT_OK(RunPass(m.get(), true, options)); SCOPED_TRACE(m->ToString()); EXPECT_THAT( m->entry_computation()->root_instruction(), GmockMatch(m::Reshape( m::Add(m::Reshape(m::Broadcast(m::Parameter(0))), m::Parameter(1))))); } TEST_F(ReshapeMoverTest, ReshapeOfRank2BroadcastIsAllowed) { const std::string hlo_string = R"( HloModule test ENTRY test { a = f32[2,3,35] broadcast(f32[2,3] parameter(0)), dimensions={0,1} b = f32[2,3,35] reshape(f32[2,3,5,7] parameter(1)) ROOT add0 = add(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); ReshapeMoverOptions options; options.reshape_of_1d_broadcast_is_cheap = true; TF_ASSERT_OK(RunPass(m.get(), true, options)); SCOPED_TRACE(m->ToString()); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Reshape( m::Add(m::Broadcast(m::Parameter(0)), m::Parameter(1))))); } TEST_F(ReshapeMoverTest, SinkDisallowedIfReshapeChangesBroadcastDims) { const std::string hlo_string = R"( HloModule test ENTRY test { a = f32[2,3,35] broadcast(f32[2,3] parameter(0)), dimensions={0,1} b = f32[2,3,35] reshape(f32[6,5,7] parameter(1)) ROOT add0 = add(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), false)); } TEST_F(ReshapeMoverTest, TransposeOfBroadcastIsAllowed) { const std::string hlo_string = R"( HloModule test ENTRY test { a = f32[2,3] broadcast(f32[2] parameter(0)), dimensions={0} b = f32[2,3] transpose(f32[3,2] parameter(1)), dimensions={1,0} ROOT add0 = add(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), true)); SCOPED_TRACE(m->ToString()); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Transpose( m::Add(m::Broadcast(m::Parameter(0)), m::Parameter(1))))); } TEST_F(ReshapeMoverTest, TransposeReordersBroadcastDims) { const std::string hlo_string = R"( HloModule test ENTRY test { a = f32[2,3,5] broadcast(f32[2,3] parameter(0)), dimensions={0,1} b = f32[2,3,5] transpose(f32[3,2,5] parameter(1)), dimensions={1,0,2} ROOT add0 = add(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), false)); } TEST_F(ReshapeMoverTest, ShardingConsistencyPreservation) { const std::string hlo_string = R"( HloModule module ENTRY entry { copy.2424 = bf16[3,16,128]{2,1,0} parameter(0), sharding={replicated} dot.987 = bf16[3,16,128,4096]{3,2,1,0} parameter(1), sharding={devices=[1,8,1,1]0,1,2,3,4,5,6,7} reshape.5843 = bf16[3,16,128,1,4096]{4,3,2,1,0} reshape(dot.987), sharding={devices=[1,8,1,1,1]0,1,2,3,4,5,6,7} transpose.21172 = bf16[3,1,4096,16,128]{2,1,4,3,0} transpose(reshape.5843), dimensions={0,3,4,1,2}, sharding={devices=[1,1,1,8,1]0,1,2,3,4,5,6,7} reshape.291 = bf16[3,16,128]{2,1,0} reshape(copy.2424), sharding={devices=[1,8,1]0,1,2,3,4,5,6,7} broadcast.21176 = bf16[3,1,4096,16,128]{4,3,2,1,0} broadcast(reshape.291), dimensions={0,3,4}, sharding={devices=[1,1,1,8,1]0,1,2,3,4,5,6,7} multiply.21177 = bf16[3,1,4096,16,128]{2,1,4,3,0} multiply(transpose.21172, broadcast.21176), sharding={devices=[1,1,1,8,1]0,1,2,3,4,5,6,7} ROOT slice.21180 = bf16[1,1,4096,16,128]{4,3,2,1,0} slice(multiply.21177), slice={[1:2], [0:1], [0:4096], [0:16], [0:128]}, sharding={devices=[1,1,1,8,1]0,1,2,3,4,5,6,7} } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(m.get(), true)); auto elementwise_op = FindInstruction(m.get(), HloOpcode::kMultiply); EXPECT_FALSE(elementwise_op->has_sharding()); } } }