Datasets:
annotations_creators:
- found
language_creators:
- found
language:
- ar
- de
- en
- es
- fr
- ru
- zh
license:
- unknown
multilinguality:
- multilingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- translation
task_ids: []
paperswithcode_id: multiun
pretty_name: MultiUN (Multilingual Corpus from United Nation Documents)
config_names:
- ar-de
- ar-en
- ar-es
- ar-fr
- ar-ru
- ar-zh
- de-en
- de-es
- de-fr
- de-ru
- de-zh
- en-es
- en-fr
- en-ru
- en-zh
- es-fr
- es-ru
- es-zh
- fr-ru
- fr-zh
- ru-zh
dataset_info:
- config_name: ar-de
features:
- name: translation
dtype:
translation:
languages:
- ar
- de
splits:
- name: train
num_bytes: 94466261
num_examples: 165090
download_size: 41124373
dataset_size: 94466261
- config_name: ar-en
features:
- name: translation
dtype:
translation:
languages:
- ar
- en
splits:
- name: train
num_bytes: 4189844561
num_examples: 9759125
download_size: 1926776740
dataset_size: 4189844561
- config_name: ar-es
features:
- name: translation
dtype:
translation:
languages:
- ar
- es
splits:
- name: train
num_bytes: 4509667188
num_examples: 10119379
download_size: 2069474168
dataset_size: 4509667188
- config_name: ar-fr
features:
- name: translation
dtype:
translation:
languages:
- ar
- fr
splits:
- name: train
num_bytes: 4516842065
num_examples: 9929567
download_size: 2083442998
dataset_size: 4516842065
- config_name: ar-ru
features:
- name: translation
dtype:
translation:
languages:
- ar
- ru
splits:
- name: train
num_bytes: 5932858699
num_examples: 10206243
download_size: 2544128334
dataset_size: 5932858699
- config_name: ar-zh
features:
- name: translation
dtype:
translation:
languages:
- ar
- zh
splits:
- name: train
num_bytes: 3781650541
num_examples: 9832293
download_size: 1829880809
dataset_size: 3781650541
- config_name: de-en
features:
- name: translation
dtype:
translation:
languages:
- de
- en
splits:
- name: train
num_bytes: 76684413
num_examples: 162981
download_size: 35105094
dataset_size: 76684413
- config_name: de-es
features:
- name: translation
dtype:
translation:
languages:
- de
- es
splits:
- name: train
num_bytes: 80936517
num_examples: 162078
download_size: 37042740
dataset_size: 80936517
- config_name: de-fr
features:
- name: translation
dtype:
translation:
languages:
- de
- fr
splits:
- name: train
num_bytes: 81888435
num_examples: 164025
download_size: 20692837
dataset_size: 81888435
- config_name: de-ru
features:
- name: translation
dtype:
translation:
languages:
- de
- ru
splits:
- name: train
num_bytes: 111517934
num_examples: 164792
download_size: 23507789
dataset_size: 111517934
- config_name: de-zh
features:
- name: translation
dtype:
translation:
languages:
- de
- zh
splits:
- name: train
num_bytes: 70534818
num_examples: 176933
download_size: 19927209
dataset_size: 70534818
- config_name: en-es
features:
- name: translation
dtype:
translation:
languages:
- en
- es
splits:
- name: train
num_bytes: 4128141663
num_examples: 11350967
download_size: 1123164180
dataset_size: 4128141663
- config_name: en-fr
features:
- name: translation
dtype:
translation:
languages:
- en
- fr
splits:
- name: train
num_bytes: 4678055160
num_examples: 13172019
download_size: 1355002731
dataset_size: 4678055160
- config_name: en-ru
features:
- name: translation
dtype:
translation:
languages:
- en
- ru
splits:
- name: train
num_bytes: 5632662839
num_examples: 11654416
download_size: 1285801078
dataset_size: 5632662839
- config_name: en-zh
features:
- name: translation
dtype:
translation:
languages:
- en
- zh
splits:
- name: train
num_bytes: 2960376046
num_examples: 9564315
download_size: 900076520
dataset_size: 2960376046
- config_name: es-fr
features:
- name: translation
dtype:
translation:
languages:
- es
- fr
splits:
- name: train
num_bytes: 4454712498
num_examples: 11441889
download_size: 1195733510
dataset_size: 4454712498
- config_name: es-ru
features:
- name: translation
dtype:
translation:
languages:
- es
- ru
splits:
- name: train
num_bytes: 5442655730
num_examples: 10605056
download_size: 1228045966
dataset_size: 5442655730
- config_name: es-zh
features:
- name: translation
dtype:
translation:
languages:
- es
- zh
splits:
- name: train
num_bytes: 3223871198
num_examples: 9847770
download_size: 953250084
dataset_size: 3223871198
- config_name: fr-ru
features:
- name: translation
dtype:
translation:
languages:
- fr
- ru
splits:
- name: train
num_bytes: 5979879089
num_examples: 11761738
download_size: 1364307157
dataset_size: 5979879089
- config_name: fr-zh
features:
- name: translation
dtype:
translation:
languages:
- fr
- zh
splits:
- name: train
num_bytes: 3241098333
num_examples: 9690914
download_size: 962824881
dataset_size: 3241098333
- config_name: ru-zh
features:
- name: translation
dtype:
translation:
languages:
- ru
- zh
splits:
- name: train
num_bytes: 4233875537
num_examples: 9557007
download_size: 1037881127
dataset_size: 4233875537
configs:
- config_name: ar-de
data_files:
- split: train
path: ar-de/train-*
- config_name: ar-en
data_files:
- split: train
path: ar-en/train-*
- config_name: ar-es
data_files:
- split: train
path: ar-es/train-*
- config_name: ar-fr
data_files:
- split: train
path: ar-fr/train-*
- config_name: ar-ru
data_files:
- split: train
path: ar-ru/train-*
- config_name: ar-zh
data_files:
- split: train
path: ar-zh/train-*
- config_name: de-en
data_files:
- split: train
path: de-en/train-*
- config_name: de-es
data_files:
- split: train
path: de-es/train-*
Dataset Card for OPUS MultiUN
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: https://opus.nlpl.eu/MultiUN/corpus/version/MultiUN
- Repository: More Information Needed
- Paper: https://aclanthology.org/L10-1473/
- Leaderboard: More Information Needed
- Point of Contact: More Information Needed
Dataset Summary
The MultiUN parallel corpus is extracted from the United Nations Website , and then cleaned and converted to XML at Language Technology Lab in DFKI GmbH (LT-DFKI), Germany. The documents were published by UN from 2000 to 2009.
This is a collection of translated documents from the United Nations originally compiled by Andreas Eisele and Yu Chen (see http://www.euromatrixplus.net/multi-un/).
This corpus is available in all 6 official languages of the UN consisting of around 300 million words per language
Supported Tasks and Leaderboards
The underlying task is machine translation.
Languages
Parallel texts are present in all six official languages: Arabic (ar
), Chinese (zh
), English (en
), French (fr
),
Russian (ru
) and Spanish (es
), with a small part of the documents available also in German (de
).
Dataset Structure
Data Instances
{
"translation": {
"ar": "قرار اتخذته الجمعية العامة",
"de": "Resolution der Generalversammlung"
}
}
Data Fields
translation
(dict
): Parallel sentences for the pair of languages.
Data Splits
The dataset contains a single "train" split for each language pair.
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Initial Data Collection and Normalization
Original MultiUN source data: http://www.euromatrixplus.net/multi-unp
Who are the source language producers?
[More Information Needed]
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
[More Information Needed]
Licensing Information
[More Information Needed]
Citation Information
If you use this corpus in your work, please cite the paper:
@inproceedings{eisele-chen-2010-multiun,
title = "{M}ulti{UN}: A Multilingual Corpus from United Nation Documents",
author = "Eisele, Andreas and
Chen, Yu",
booktitle = "Proceedings of the Seventh International Conference on Language Resources and Evaluation ({LREC}'10)",
month = may,
year = "2010",
address = "Valletta, Malta",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2010/pdf/686_Paper.pdf",
abstract = "This paper describes the acquisition, preparation and properties of a corpus extracted from the official documents of the United Nations (UN). This corpus is available in all 6 official languages of the UN, consisting of around 300 million words per language. We describe the methods we used for crawling, document formatting, and sentence alignment. This corpus also includes a common test set for machine translation. We present the results of a French-Chinese machine translation experiment performed on this corpus.",
}
If you use any part of the corpus (hosted in OPUS) in your own work, please cite the following article:
@inproceedings{tiedemann-2012-parallel,
title = "Parallel Data, Tools and Interfaces in {OPUS}",
author = {Tiedemann, J{\"o}rg},
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Do{\u{g}}an, Mehmet U{\u{g}}ur and
Maegaard, Bente and
Mariani, Joseph and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}'12)",
month = may,
year = "2012",
address = "Istanbul, Turkey",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf",
pages = "2214--2218",
abstract = "This paper presents the current status of OPUS, a growing language resource of parallel corpora and related tools. The focus in OPUS is to provide freely available data sets in various formats together with basic annotation to be useful for applications in computational linguistics, translation studies and cross-linguistic corpus studies. In this paper, we report about new data sets and their features, additional annotation tools and models provided from the website and essential interfaces and on-line services included in the project.",
}
Contributions
Thanks to @patil-suraj for adding this dataset.