Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
Dask
License:
File size: 13,054 Bytes
8506346
 
 
 
 
dd56032
f1f9a6e
 
 
 
 
 
 
dd56032
8506346
 
 
 
 
 
 
 
f1ccb3e
 
77d7efe
7fff6b3
463b70a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ed67dc
 
 
 
 
 
 
 
 
 
 
463b70a
4ed67dc
463b70a
 
4ed67dc
 
 
 
 
 
 
 
 
 
31393b6
4ed67dc
31393b6
 
4ed67dc
 
 
 
 
 
 
 
 
 
a225fd2
4ed67dc
a225fd2
 
4ed67dc
 
 
 
 
 
 
 
 
 
23db975
4ed67dc
23db975
 
4ed67dc
 
 
 
 
 
 
 
 
 
247947e
4ed67dc
247947e
 
4ed67dc
 
 
 
 
 
 
 
 
 
b8263c2
4ed67dc
b8263c2
 
4ed67dc
 
 
 
 
 
 
 
 
 
abd640f
4ed67dc
abd640f
 
4ed67dc
 
 
 
 
 
 
 
 
 
67b758a
4ed67dc
67b758a
 
4ed67dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
463b70a
 
 
 
 
31393b6
 
 
 
a225fd2
 
 
 
23db975
 
 
 
247947e
 
 
 
b8263c2
 
 
 
abd640f
 
 
 
67b758a
 
 
 
8506346
 
7fff6b3
8506346
 
 
 
77d7efe
8506346
 
 
77d7efe
 
8506346
 
 
 
 
 
 
 
 
 
 
 
 
ab21ec6
8506346
 
 
3107b02
 
 
 
 
8506346
 
 
3107b02
 
 
 
 
8506346
 
 
 
 
 
 
7fff6b3
 
8506346
 
 
 
 
7fff6b3
 
 
 
 
 
 
 
8506346
 
 
7fff6b3
8506346
 
 
7fff6b3
8506346
 
 
 
 
 
 
 
 
 
 
3107b02
8506346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3107b02
8506346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3107b02
8506346
3107b02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8506346
ab21ec6
3107b02
ab21ec6
 
4ed67dc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
---
annotations_creators:
- found
language_creators:
- found
language:
- ar
- de
- en
- es
- fr
- ru
- zh
license:
- unknown
multilinguality:
- multilingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- translation
task_ids: []
paperswithcode_id: multiun
pretty_name: MultiUN (Multilingual Corpus from United Nation Documents)
config_names:
- ar-de
- ar-en
- ar-es
- ar-fr
- ar-ru
- ar-zh
- de-en
- de-es
- de-fr
- de-ru
- de-zh
- en-es
- en-fr
- en-ru
- en-zh
- es-fr
- es-ru
- es-zh
- fr-ru
- fr-zh
- ru-zh
dataset_info:
- config_name: ar-de
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - ar
        - de
  splits:
  - name: train
    num_bytes: 94466261
    num_examples: 165090
  download_size: 41124373
  dataset_size: 94466261
- config_name: ar-en
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - ar
        - en
  splits:
  - name: train
    num_bytes: 4189844561
    num_examples: 9759125
  download_size: 1926776740
  dataset_size: 4189844561
- config_name: ar-es
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - ar
        - es
  splits:
  - name: train
    num_bytes: 4509667188
    num_examples: 10119379
  download_size: 2069474168
  dataset_size: 4509667188
- config_name: ar-fr
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - ar
        - fr
  splits:
  - name: train
    num_bytes: 4516842065
    num_examples: 9929567
  download_size: 2083442998
  dataset_size: 4516842065
- config_name: ar-ru
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - ar
        - ru
  splits:
  - name: train
    num_bytes: 5932858699
    num_examples: 10206243
  download_size: 2544128334
  dataset_size: 5932858699
- config_name: ar-zh
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - ar
        - zh
  splits:
  - name: train
    num_bytes: 3781650541
    num_examples: 9832293
  download_size: 1829880809
  dataset_size: 3781650541
- config_name: de-en
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - de
        - en
  splits:
  - name: train
    num_bytes: 76684413
    num_examples: 162981
  download_size: 35105094
  dataset_size: 76684413
- config_name: de-es
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - de
        - es
  splits:
  - name: train
    num_bytes: 80936517
    num_examples: 162078
  download_size: 37042740
  dataset_size: 80936517
- config_name: de-fr
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - de
        - fr
  splits:
  - name: train
    num_bytes: 81888435
    num_examples: 164025
  download_size: 20692837
  dataset_size: 81888435
- config_name: de-ru
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - de
        - ru
  splits:
  - name: train
    num_bytes: 111517934
    num_examples: 164792
  download_size: 23507789
  dataset_size: 111517934
- config_name: de-zh
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - de
        - zh
  splits:
  - name: train
    num_bytes: 70534818
    num_examples: 176933
  download_size: 19927209
  dataset_size: 70534818
- config_name: en-es
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - en
        - es
  splits:
  - name: train
    num_bytes: 4128141663
    num_examples: 11350967
  download_size: 1123164180
  dataset_size: 4128141663
- config_name: en-fr
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - en
        - fr
  splits:
  - name: train
    num_bytes: 4678055160
    num_examples: 13172019
  download_size: 1355002731
  dataset_size: 4678055160
- config_name: en-ru
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - en
        - ru
  splits:
  - name: train
    num_bytes: 5632662839
    num_examples: 11654416
  download_size: 1285801078
  dataset_size: 5632662839
- config_name: en-zh
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - en
        - zh
  splits:
  - name: train
    num_bytes: 2960376046
    num_examples: 9564315
  download_size: 900076520
  dataset_size: 2960376046
- config_name: es-fr
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - es
        - fr
  splits:
  - name: train
    num_bytes: 4454712498
    num_examples: 11441889
  download_size: 1195733510
  dataset_size: 4454712498
- config_name: es-ru
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - es
        - ru
  splits:
  - name: train
    num_bytes: 5442655730
    num_examples: 10605056
  download_size: 1228045966
  dataset_size: 5442655730
- config_name: es-zh
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - es
        - zh
  splits:
  - name: train
    num_bytes: 3223871198
    num_examples: 9847770
  download_size: 953250084
  dataset_size: 3223871198
- config_name: fr-ru
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - fr
        - ru
  splits:
  - name: train
    num_bytes: 5979879089
    num_examples: 11761738
  download_size: 1364307157
  dataset_size: 5979879089
- config_name: fr-zh
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - fr
        - zh
  splits:
  - name: train
    num_bytes: 3241098333
    num_examples: 9690914
  download_size: 962824881
  dataset_size: 3241098333
- config_name: ru-zh
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - ru
        - zh
  splits:
  - name: train
    num_bytes: 4233875537
    num_examples: 9557007
  download_size: 1037881127
  dataset_size: 4233875537
configs:
- config_name: ar-de
  data_files:
  - split: train
    path: ar-de/train-*
- config_name: ar-en
  data_files:
  - split: train
    path: ar-en/train-*
- config_name: ar-es
  data_files:
  - split: train
    path: ar-es/train-*
- config_name: ar-fr
  data_files:
  - split: train
    path: ar-fr/train-*
- config_name: ar-ru
  data_files:
  - split: train
    path: ar-ru/train-*
- config_name: ar-zh
  data_files:
  - split: train
    path: ar-zh/train-*
- config_name: de-en
  data_files:
  - split: train
    path: de-en/train-*
- config_name: de-es
  data_files:
  - split: train
    path: de-es/train-*
---

# Dataset Card for OPUS MultiUN

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://opus.nlpl.eu/MultiUN/corpus/version/MultiUN
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** https://aclanthology.org/L10-1473/
- **Leaderboard:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Dataset Summary

The MultiUN parallel corpus is extracted from the United Nations Website , and then cleaned and converted to XML at Language Technology Lab in DFKI GmbH (LT-DFKI), Germany. The documents were published by UN from 2000 to 2009.

This is a collection of translated documents from the United Nations originally compiled by Andreas Eisele and Yu Chen (see http://www.euromatrixplus.net/multi-un/).

This corpus is available in all 6 official languages of the UN consisting of around 300 million words per language

### Supported Tasks and Leaderboards

The underlying task is machine translation.

### Languages

Parallel texts are present in all six official languages: Arabic (`ar`), Chinese (`zh`), English (`en`), French (`fr`),
Russian (`ru`) and Spanish (`es`), with a small part of the documents available also in German (`de`).

## Dataset Structure

### Data Instances

```
{
  "translation": {
    "ar": "قرار اتخذته الجمعية العامة",
    "de": "Resolution der Generalversammlung"
  }
}
```

### Data Fields

- `translation` (`dict`): Parallel sentences for the pair of languages.

### Data Splits

The dataset contains a single "train" split for each language pair.

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

Original MultiUN source data: http://www.euromatrixplus.net/multi-unp

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

If you use this corpus in your work, please cite the paper:
```
@inproceedings{eisele-chen-2010-multiun,
    title = "{M}ulti{UN}: A Multilingual Corpus from United Nation Documents",
    author = "Eisele, Andreas  and
      Chen, Yu",
    booktitle = "Proceedings of the Seventh International Conference on Language Resources and Evaluation ({LREC}'10)",
    month = may,
    year = "2010",
    address = "Valletta, Malta",
    publisher = "European Language Resources Association (ELRA)",
    url = "http://www.lrec-conf.org/proceedings/lrec2010/pdf/686_Paper.pdf",
    abstract = "This paper describes the acquisition, preparation and properties of a corpus extracted from the official documents of the United Nations (UN). This corpus is available in all 6 official languages of the UN, consisting of around 300 million words per language. We describe the methods we used for crawling, document formatting, and sentence alignment. This corpus also includes a common test set for machine translation. We present the results of a French-Chinese machine translation experiment performed on this corpus.",
}
```

If you use any part of the corpus (hosted in OPUS) in your own work, please cite the following article:
```
@inproceedings{tiedemann-2012-parallel,
    title = "Parallel Data, Tools and Interfaces in {OPUS}",
    author = {Tiedemann, J{\"o}rg},
    editor = "Calzolari, Nicoletta  and
      Choukri, Khalid  and
      Declerck, Thierry  and
      Do{\u{g}}an, Mehmet U{\u{g}}ur  and
      Maegaard, Bente  and
      Mariani, Joseph  and
      Moreno, Asuncion  and
      Odijk, Jan  and
      Piperidis, Stelios",
    booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}'12)",
    month = may,
    year = "2012",
    address = "Istanbul, Turkey",
    publisher = "European Language Resources Association (ELRA)",
    url = "http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf",
    pages = "2214--2218",
    abstract = "This paper presents the current status of OPUS, a growing language resource of parallel corpora and related tools. The focus in OPUS is to provide freely available data sets in various formats together with basic annotation to be useful for applications in computational linguistics, translation studies and cross-linguistic corpus studies. In this paper, we report about new data sets and their features, additional annotation tools and models provided from the website and essential interfaces and on-line services included in the project.",
}
```

### Contributions

Thanks to [@patil-suraj](https://github.com/patil-suraj) for adding this dataset.