Datasets:

Formats:
parquet
Languages:
English
Libraries:
Datasets
Dask
License:
wikipedia-bert-128 / wikipedia_bert_128.py
James Briggs
First version of the Wikipedia BERT 128 dataset
bd70810
raw
history blame
7.64 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import csv
import json
import os
import numpy as np
from pathlib import Path
from tfrecord.reader import tfrecord_loader
import datasets
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLs = {
'pretraining': "https://huggingface.co/great-new-dataset-first_domain.zip",
# 'second_domain': "https://huggingface.co/great-new-dataset-second_domain.zip",
}
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class WikipediaBERT128(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.1.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="pretraining", version=VERSION, description="This part of my dataset covers a first domain"),
]
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
print(self.config.name)
features = datasets.Features(
{
"input_ids": datasets.Sequence(datasets.Value("int64")),
"attention_mask": datasets.Sequence(datasets.Value("int64")),
"token_type_ids": datasets.Sequence(datasets.Value("int64")),
"labels": datasets.Sequence(datasets.Value("int64")),
"next_sentence_label": datasets.Value("int64"),
# These are the features of your dataset like images, labels ...
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir,
},
),
]
def _generate_examples(self, filepath):
""" Yields examples as (key, example) tuples. """
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is here for legacy reason (tfds) and is not important in itself.
# Convert from tfrecord files
TFRECORD_KEYS = ( # Torch Model Keys
'input_ids', # input_ids : tokens after masking
'input_mask', # attention_mask : 1 if padding token, 0 otherwise
'segment_ids', # token_type_ids : sentence 0 or 1
'masked_lm_positions', # masked_lm_positions : position of masked tokens in input_ids
'masked_lm_ids', # masked_lm_labels=None : label of masked tokens with padding as 0.
'next_sentence_labels' # next_sentence_label=None : 1 if next sentence, 0 otherwise
)
# tfrecords = Path(filepath).glob("*.tfrecord")
tfrecords = [Path(filepath)/"wiki_000.tfrecord"]
highest_id_ = -1
for rec in tfrecords:
reader = tfrecord_loader(rec, None, list(TFRECORD_KEYS))
for id_, d in enumerate(reader, start=highest_id_+1):
highest_id_ = id_
input_ids = d["input_ids"]
labels = np.ones_like(input_ids) * -100
masked_lm_positions = d["masked_lm_positions"]
masked_lm_labels = d["masked_lm_ids"]
masked_lm_positions_ = masked_lm_positions[masked_lm_positions != 0]
masked_lm_labels_ = masked_lm_labels[:len(masked_lm_positions_)]
labels[masked_lm_positions_] = masked_lm_labels_
yield id_, {
"input_ids": input_ids,
"attention_mask": d["input_mask"],
"token_type_ids": d["segment_ids"],
"labels": labels,
"next_sentence_label": d["next_sentence_labels"]
}