James Briggs
commited on
Commit
•
bd70810
1
Parent(s):
e906f87
First version of the Wikipedia BERT 128 dataset
Browse files- wikipedia_bert_128.py +167 -0
wikipedia_bert_128.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""TODO: Add a description here."""
|
16 |
+
|
17 |
+
|
18 |
+
import csv
|
19 |
+
import json
|
20 |
+
import os
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
from pathlib import Path
|
24 |
+
from tfrecord.reader import tfrecord_loader
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
# TODO: Add BibTeX citation
|
29 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
30 |
+
_CITATION = """\
|
31 |
+
@InProceedings{huggingface:dataset,
|
32 |
+
title = {A great new dataset},
|
33 |
+
author={huggingface, Inc.
|
34 |
+
},
|
35 |
+
year={2020}
|
36 |
+
}
|
37 |
+
"""
|
38 |
+
|
39 |
+
# TODO: Add description of the dataset here
|
40 |
+
# You can copy an official description
|
41 |
+
_DESCRIPTION = """\
|
42 |
+
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
|
43 |
+
"""
|
44 |
+
|
45 |
+
# TODO: Add a link to an official homepage for the dataset here
|
46 |
+
_HOMEPAGE = ""
|
47 |
+
|
48 |
+
# TODO: Add the licence for the dataset here if you can find it
|
49 |
+
_LICENSE = ""
|
50 |
+
|
51 |
+
# TODO: Add link to the official dataset URLs here
|
52 |
+
# The HuggingFace dataset library don't host the datasets but only point to the original files
|
53 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
54 |
+
_URLs = {
|
55 |
+
'pretraining': "https://huggingface.co/great-new-dataset-first_domain.zip",
|
56 |
+
# 'second_domain': "https://huggingface.co/great-new-dataset-second_domain.zip",
|
57 |
+
}
|
58 |
+
|
59 |
+
|
60 |
+
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
61 |
+
class WikipediaBERT128(datasets.GeneratorBasedBuilder):
|
62 |
+
"""TODO: Short description of my dataset."""
|
63 |
+
|
64 |
+
VERSION = datasets.Version("1.1.0")
|
65 |
+
|
66 |
+
# This is an example of a dataset with multiple configurations.
|
67 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
68 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
69 |
+
|
70 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
71 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
72 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
73 |
+
|
74 |
+
# You will be able to load one or the other configurations in the following list with
|
75 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
76 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
77 |
+
BUILDER_CONFIGS = [
|
78 |
+
datasets.BuilderConfig(name="pretraining", version=VERSION, description="This part of my dataset covers a first domain"),
|
79 |
+
]
|
80 |
+
|
81 |
+
|
82 |
+
def _info(self):
|
83 |
+
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
84 |
+
print(self.config.name)
|
85 |
+
features = datasets.Features(
|
86 |
+
{
|
87 |
+
"input_ids": datasets.Sequence(datasets.Value("int64")),
|
88 |
+
"attention_mask": datasets.Sequence(datasets.Value("int64")),
|
89 |
+
"token_type_ids": datasets.Sequence(datasets.Value("int64")),
|
90 |
+
"labels": datasets.Sequence(datasets.Value("int64")),
|
91 |
+
"next_sentence_label": datasets.Value("int64"),
|
92 |
+
# These are the features of your dataset like images, labels ...
|
93 |
+
}
|
94 |
+
)
|
95 |
+
return datasets.DatasetInfo(
|
96 |
+
# This is the description that will appear on the datasets page.
|
97 |
+
description=_DESCRIPTION,
|
98 |
+
# This defines the different columns of the dataset and their types
|
99 |
+
features=features, # Here we define them above because they are different between the two configurations
|
100 |
+
# If there's a common (input, target) tuple from the features,
|
101 |
+
# specify them here. They'll be used if as_supervised=True in
|
102 |
+
# builder.as_dataset.
|
103 |
+
supervised_keys=None,
|
104 |
+
# Homepage of the dataset for documentation
|
105 |
+
homepage=_HOMEPAGE,
|
106 |
+
# License for the dataset if available
|
107 |
+
license=_LICENSE,
|
108 |
+
# Citation for the dataset
|
109 |
+
citation=_CITATION,
|
110 |
+
)
|
111 |
+
|
112 |
+
def _split_generators(self, dl_manager):
|
113 |
+
"""Returns SplitGenerators."""
|
114 |
+
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
115 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
116 |
+
|
117 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
|
118 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
119 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
120 |
+
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
|
121 |
+
return [
|
122 |
+
datasets.SplitGenerator(
|
123 |
+
name=datasets.Split.TRAIN,
|
124 |
+
# These kwargs will be passed to _generate_examples
|
125 |
+
gen_kwargs={
|
126 |
+
"filepath": data_dir,
|
127 |
+
},
|
128 |
+
),
|
129 |
+
]
|
130 |
+
|
131 |
+
def _generate_examples(self, filepath):
|
132 |
+
""" Yields examples as (key, example) tuples. """
|
133 |
+
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
134 |
+
# The `key` is here for legacy reason (tfds) and is not important in itself.
|
135 |
+
|
136 |
+
# Convert from tfrecord files
|
137 |
+
TFRECORD_KEYS = ( # Torch Model Keys
|
138 |
+
'input_ids', # input_ids : tokens after masking
|
139 |
+
'input_mask', # attention_mask : 1 if padding token, 0 otherwise
|
140 |
+
'segment_ids', # token_type_ids : sentence 0 or 1
|
141 |
+
'masked_lm_positions', # masked_lm_positions : position of masked tokens in input_ids
|
142 |
+
'masked_lm_ids', # masked_lm_labels=None : label of masked tokens with padding as 0.
|
143 |
+
'next_sentence_labels' # next_sentence_label=None : 1 if next sentence, 0 otherwise
|
144 |
+
)
|
145 |
+
# tfrecords = Path(filepath).glob("*.tfrecord")
|
146 |
+
tfrecords = [Path(filepath)/"wiki_000.tfrecord"]
|
147 |
+
|
148 |
+
highest_id_ = -1
|
149 |
+
for rec in tfrecords:
|
150 |
+
reader = tfrecord_loader(rec, None, list(TFRECORD_KEYS))
|
151 |
+
for id_, d in enumerate(reader, start=highest_id_+1):
|
152 |
+
highest_id_ = id_
|
153 |
+
input_ids = d["input_ids"]
|
154 |
+
labels = np.ones_like(input_ids) * -100
|
155 |
+
masked_lm_positions = d["masked_lm_positions"]
|
156 |
+
masked_lm_labels = d["masked_lm_ids"]
|
157 |
+
masked_lm_positions_ = masked_lm_positions[masked_lm_positions != 0]
|
158 |
+
masked_lm_labels_ = masked_lm_labels[:len(masked_lm_positions_)]
|
159 |
+
labels[masked_lm_positions_] = masked_lm_labels_
|
160 |
+
|
161 |
+
yield id_, {
|
162 |
+
"input_ids": input_ids,
|
163 |
+
"attention_mask": d["input_mask"],
|
164 |
+
"token_type_ids": d["segment_ids"],
|
165 |
+
"labels": labels,
|
166 |
+
"next_sentence_label": d["next_sentence_labels"]
|
167 |
+
}
|