Datasets:

Formats:
parquet
Languages:
English
Libraries:
Datasets
Dask
License:
James Briggs commited on
Commit
bd70810
1 Parent(s): e906f87

First version of the Wikipedia BERT 128 dataset

Browse files
Files changed (1) hide show
  1. wikipedia_bert_128.py +167 -0
wikipedia_bert_128.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """TODO: Add a description here."""
16
+
17
+
18
+ import csv
19
+ import json
20
+ import os
21
+
22
+ import numpy as np
23
+ from pathlib import Path
24
+ from tfrecord.reader import tfrecord_loader
25
+ import datasets
26
+
27
+
28
+ # TODO: Add BibTeX citation
29
+ # Find for instance the citation on arxiv or on the dataset repo/website
30
+ _CITATION = """\
31
+ @InProceedings{huggingface:dataset,
32
+ title = {A great new dataset},
33
+ author={huggingface, Inc.
34
+ },
35
+ year={2020}
36
+ }
37
+ """
38
+
39
+ # TODO: Add description of the dataset here
40
+ # You can copy an official description
41
+ _DESCRIPTION = """\
42
+ This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
43
+ """
44
+
45
+ # TODO: Add a link to an official homepage for the dataset here
46
+ _HOMEPAGE = ""
47
+
48
+ # TODO: Add the licence for the dataset here if you can find it
49
+ _LICENSE = ""
50
+
51
+ # TODO: Add link to the official dataset URLs here
52
+ # The HuggingFace dataset library don't host the datasets but only point to the original files
53
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
54
+ _URLs = {
55
+ 'pretraining': "https://huggingface.co/great-new-dataset-first_domain.zip",
56
+ # 'second_domain': "https://huggingface.co/great-new-dataset-second_domain.zip",
57
+ }
58
+
59
+
60
+ # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
61
+ class WikipediaBERT128(datasets.GeneratorBasedBuilder):
62
+ """TODO: Short description of my dataset."""
63
+
64
+ VERSION = datasets.Version("1.1.0")
65
+
66
+ # This is an example of a dataset with multiple configurations.
67
+ # If you don't want/need to define several sub-sets in your dataset,
68
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
69
+
70
+ # If you need to make complex sub-parts in the datasets with configurable options
71
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
72
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
73
+
74
+ # You will be able to load one or the other configurations in the following list with
75
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
76
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
77
+ BUILDER_CONFIGS = [
78
+ datasets.BuilderConfig(name="pretraining", version=VERSION, description="This part of my dataset covers a first domain"),
79
+ ]
80
+
81
+
82
+ def _info(self):
83
+ # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
84
+ print(self.config.name)
85
+ features = datasets.Features(
86
+ {
87
+ "input_ids": datasets.Sequence(datasets.Value("int64")),
88
+ "attention_mask": datasets.Sequence(datasets.Value("int64")),
89
+ "token_type_ids": datasets.Sequence(datasets.Value("int64")),
90
+ "labels": datasets.Sequence(datasets.Value("int64")),
91
+ "next_sentence_label": datasets.Value("int64"),
92
+ # These are the features of your dataset like images, labels ...
93
+ }
94
+ )
95
+ return datasets.DatasetInfo(
96
+ # This is the description that will appear on the datasets page.
97
+ description=_DESCRIPTION,
98
+ # This defines the different columns of the dataset and their types
99
+ features=features, # Here we define them above because they are different between the two configurations
100
+ # If there's a common (input, target) tuple from the features,
101
+ # specify them here. They'll be used if as_supervised=True in
102
+ # builder.as_dataset.
103
+ supervised_keys=None,
104
+ # Homepage of the dataset for documentation
105
+ homepage=_HOMEPAGE,
106
+ # License for the dataset if available
107
+ license=_LICENSE,
108
+ # Citation for the dataset
109
+ citation=_CITATION,
110
+ )
111
+
112
+ def _split_generators(self, dl_manager):
113
+ """Returns SplitGenerators."""
114
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
115
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
116
+
117
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
118
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
119
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
120
+ data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
121
+ return [
122
+ datasets.SplitGenerator(
123
+ name=datasets.Split.TRAIN,
124
+ # These kwargs will be passed to _generate_examples
125
+ gen_kwargs={
126
+ "filepath": data_dir,
127
+ },
128
+ ),
129
+ ]
130
+
131
+ def _generate_examples(self, filepath):
132
+ """ Yields examples as (key, example) tuples. """
133
+ # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
134
+ # The `key` is here for legacy reason (tfds) and is not important in itself.
135
+
136
+ # Convert from tfrecord files
137
+ TFRECORD_KEYS = ( # Torch Model Keys
138
+ 'input_ids', # input_ids : tokens after masking
139
+ 'input_mask', # attention_mask : 1 if padding token, 0 otherwise
140
+ 'segment_ids', # token_type_ids : sentence 0 or 1
141
+ 'masked_lm_positions', # masked_lm_positions : position of masked tokens in input_ids
142
+ 'masked_lm_ids', # masked_lm_labels=None : label of masked tokens with padding as 0.
143
+ 'next_sentence_labels' # next_sentence_label=None : 1 if next sentence, 0 otherwise
144
+ )
145
+ # tfrecords = Path(filepath).glob("*.tfrecord")
146
+ tfrecords = [Path(filepath)/"wiki_000.tfrecord"]
147
+
148
+ highest_id_ = -1
149
+ for rec in tfrecords:
150
+ reader = tfrecord_loader(rec, None, list(TFRECORD_KEYS))
151
+ for id_, d in enumerate(reader, start=highest_id_+1):
152
+ highest_id_ = id_
153
+ input_ids = d["input_ids"]
154
+ labels = np.ones_like(input_ids) * -100
155
+ masked_lm_positions = d["masked_lm_positions"]
156
+ masked_lm_labels = d["masked_lm_ids"]
157
+ masked_lm_positions_ = masked_lm_positions[masked_lm_positions != 0]
158
+ masked_lm_labels_ = masked_lm_labels[:len(masked_lm_positions_)]
159
+ labels[masked_lm_positions_] = masked_lm_labels_
160
+
161
+ yield id_, {
162
+ "input_ids": input_ids,
163
+ "attention_mask": d["input_mask"],
164
+ "token_type_ids": d["segment_ids"],
165
+ "labels": labels,
166
+ "next_sentence_label": d["next_sentence_labels"]
167
+ }