Datasets:

Formats:
parquet
Languages:
English
Libraries:
Datasets
Dask
License:
File size: 7,642 Bytes
bd70810
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""


import csv
import json
import os

import numpy as np
from pathlib import Path
from tfrecord.reader import tfrecord_loader
import datasets


# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

# TODO: Add link to the official dataset URLs here
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLs = {
    'pretraining': "https://huggingface.co/great-new-dataset-first_domain.zip",
    # 'second_domain': "https://huggingface.co/great-new-dataset-second_domain.zip",
}


# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class WikipediaBERT128(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("1.1.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="pretraining", version=VERSION, description="This part of my dataset covers a first domain"),
    ]


    def _info(self):
        # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
        print(self.config.name)
        features = datasets.Features(
            {
                "input_ids": datasets.Sequence(datasets.Value("int64")),
                "attention_mask": datasets.Sequence(datasets.Value("int64")),
                "token_type_ids": datasets.Sequence(datasets.Value("int64")),
                "labels": datasets.Sequence(datasets.Value("int64")),
                "next_sentence_label": datasets.Value("int64"),
                # These are the features of your dataset like images, labels ...
            }
        )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir,
                },
            ),
        ]

    def _generate_examples(self, filepath):
        """ Yields examples as (key, example) tuples. """
        # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is here for legacy reason (tfds) and is not important in itself.

        # Convert from tfrecord files
        TFRECORD_KEYS = (           # Torch Model Keys
            'input_ids',            # input_ids                  : tokens after masking
            'input_mask',           # attention_mask             : 1 if padding token, 0 otherwise
            'segment_ids',          # token_type_ids             : sentence 0 or 1
            'masked_lm_positions',  # masked_lm_positions        : position of masked tokens in input_ids
            'masked_lm_ids',        # masked_lm_labels=None      : label of masked tokens with padding as 0.
            'next_sentence_labels'  # next_sentence_label=None   : 1 if next sentence, 0 otherwise
        )
        # tfrecords = Path(filepath).glob("*.tfrecord")
        tfrecords = [Path(filepath)/"wiki_000.tfrecord"]

        highest_id_ = -1
        for rec in tfrecords:
            reader = tfrecord_loader(rec, None, list(TFRECORD_KEYS))
            for id_, d in enumerate(reader, start=highest_id_+1):
                highest_id_ = id_
                input_ids = d["input_ids"]
                labels = np.ones_like(input_ids) * -100
                masked_lm_positions = d["masked_lm_positions"]
                masked_lm_labels = d["masked_lm_ids"]
                masked_lm_positions_ = masked_lm_positions[masked_lm_positions != 0]
                masked_lm_labels_ = masked_lm_labels[:len(masked_lm_positions_)]
                labels[masked_lm_positions_] = masked_lm_labels_

                yield id_, {
                    "input_ids": input_ids,
                    "attention_mask": d["input_mask"],
                    "token_type_ids": d["segment_ids"],
                    "labels": labels,
                    "next_sentence_label": d["next_sentence_labels"]
                }