Datasets:
metadata
dataset_info:
- config_name: default
features:
- name: utterance
dtype: string
- name: label
sequence: int64
splits:
- name: train
num_bytes: 380277965
num_examples: 53203
- name: validation
num_bytes: 40200731
num_examples: 4834
- name: test
num_bytes: 57450762
num_examples: 4774
download_size: 389851249
dataset_size: 477929458
- config_name: intents
features:
- name: id
dtype: int64
- name: name
dtype: 'null'
- name: tags
sequence: 'null'
- name: regex_full_match
sequence: 'null'
- name: regex_partial_match
sequence: 'null'
- name: description
dtype: 'null'
splits:
- name: intents
num_bytes: 40
num_examples: 2
download_size: 2862
dataset_size: 40
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- split: validation
path: data/validation-*
- config_name: intents
data_files:
- split: intents
path: intents/intents-*
task_categories:
- text-classification
language:
- en
eurlex
This is a text classification dataset. It is intended for machine learning research and experimentation.
This dataset is obtained via formatting another publicly available data to be compatible with our AutoIntent Library.
Usage
It is intended to be used with our AutoIntent Library:
from autointent import Dataset
eurlex = Dataset.from_hub("AutoIntent/eurlex")
Source
This dataset is taken from coastalcph/multi_eurlex
and formatted with our AutoIntent Library:
import datasets
from autointent import Dataset
def get_number_of_classes(ds: datasets.Dataset) -> int:
return len(set(i for example in ds for labels in example for i in labels))
def parse(ds: datasets.Dataset, n_classes: int) -> datasets.Dataset:
def transform(example: dict):
return {"utterance": example["text"], "label": [int(i in example["labels"]) for i in range(n_classes)]}
return ds.map(transform, remove_columns=ds.features.keys())
def get_low_resource_classes_mask(ds: datasets.Dataset, n_classes: int, fraction_thresh: float = 0.01) -> list[bool]:
res = [0] * n_classes
for sample in ds:
for i, indicator in enumerate(sample["label"]):
res[i] += indicator
for i in range(n_classes):
res[i] /= len(ds)
return [(frac < fraction_thresh) for frac in res]
def remove_low_resource_classes(ds: datasets.Dataset, mask: list[bool]) -> list[dict]:
res = []
for sample in ds:
if sum(sample["label"]) == 1 and mask[sample["label"].index(1)]:
continue
sample["label"] = [
indicator for indicator, low_resource in
zip(sample["label"], mask, strict=True) if not low_resource
]
res.append(sample)
return res
def remove_oos(ds: list[dict]):
return [sample for sample in ds if sum(sample["label"]) != 0]
if __name__ == "__main__":
eurlex = datasets.load_dataset("coastalcph/multi_eurlex", "en", trust_remote_code=True)
n_classes = get_number_of_classes(eurlex["train"])
train = parse(eurlex["train"], n_classes)
test = parse(eurlex["test"], n_classes)
validation = parse(eurlex["validation"], n_classes)
mask = get_low_resource_classes_mask(train, n_classes)
train = remove_oos(remove_low_resource_classes(train, mask))
test = remove_oos(remove_low_resource_classes(test, mask))
validation = remove_oos(remove_low_resource_classes(validation, mask))
eurlex_converted = Dataset.from_dict({
"train": train,
"test": test,
"validation": validation,
})