voorhs commited on
Commit
0d76d75
·
verified ·
1 Parent(s): 4930ca6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +58 -16
README.md CHANGED
@@ -78,22 +78,64 @@ eurlex = Dataset.from_hub("AutoIntent/eurlex")
78
  This dataset is taken from `coastalcph/multi_eurlex` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):
79
 
80
  ```python
81
- from datasets import load_dataset
82
  from autointent import Dataset
83
 
84
- eurlex = load_dataset("coastalcph/multi_eurlex", "en", trust_remote_code=True)
85
- labels = []
86
- def transform(example: dict):
87
- for intent in example["labels"]:
88
- labels.append(intent)
89
- return {"utterance": example["text"], "label": example["labels"]}
90
-
91
- labels = [{"id": label, "name": None} for label in set(labels)]
92
- multilabel_eurlex_train = eurlex["train"].map(transform, remove_columns=eurlex["train"].features.keys())
93
- multilabel_eurlex_test = eurlex["test"].map(transform, remove_columns=eurlex["test"].features.keys())
94
- eurlex_converted = Dataset.from_dict({
95
- "intents": labels,
96
- "test": multilabel_eurlex_test.to_list(),
97
- "train": multilabel_eurlex_train.to_list()
98
- })
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
  ```
 
78
  This dataset is taken from `coastalcph/multi_eurlex` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):
79
 
80
  ```python
81
+ import datasets
82
  from autointent import Dataset
83
 
84
+
85
+ def get_number_of_classes(ds: datasets.Dataset) -> int:
86
+ return len(set(i for example in ds for labels in example for i in labels))
87
+
88
+
89
+ def parse(ds: datasets.Dataset, n_classes: int) -> datasets.Dataset:
90
+ def transform(example: dict):
91
+ return {"utterance": example["text"], "label": [int(i in example["labels"]) for i in range(n_classes)]}
92
+ return ds.map(transform, remove_columns=ds.features.keys())
93
+
94
+
95
+ def get_low_resource_classes_mask(ds: datasets.Dataset, n_classes: int, fraction_thresh: float = 0.01) -> list[bool]:
96
+ res = [0] * n_classes
97
+ for sample in ds:
98
+ for i, indicator in enumerate(sample["label"]):
99
+ res[i] += indicator
100
+ for i in range(n_classes):
101
+ res[i] /= len(ds)
102
+ return [(frac < fraction_thresh) for frac in res]
103
+
104
+
105
+ def remove_low_resource_classes(ds: datasets.Dataset, mask: list[bool]) -> list[dict]:
106
+ res = []
107
+ for sample in ds:
108
+ if sum(sample["label"]) == 1 and mask[sample["label"].index(1)]:
109
+ continue
110
+ sample["label"] = [
111
+ indicator for indicator, low_resource in
112
+ zip(sample["label"], mask, strict=True) if not low_resource
113
+ ]
114
+ res.append(sample)
115
+ return res
116
+
117
+
118
+ def remove_oos(ds: list[dict]):
119
+ return [sample for sample in ds if sum(sample["label"]) != 0]
120
+
121
+
122
+ if __name__ == "__main__":
123
+ eurlex = datasets.load_dataset("coastalcph/multi_eurlex", "en", trust_remote_code=True)
124
+
125
+ n_classes = get_number_of_classes(eurlex["train"])
126
+
127
+ train = parse(eurlex["train"], n_classes)
128
+ test = parse(eurlex["test"], n_classes)
129
+ validation = parse(eurlex["validation"], n_classes)
130
+
131
+ mask = get_low_resource_classes_mask(train, n_classes)
132
+ train = remove_oos(remove_low_resource_classes(train, mask))
133
+ test = remove_oos(remove_low_resource_classes(test, mask))
134
+ validation = remove_oos(remove_low_resource_classes(validation, mask))
135
+
136
+ eurlex_converted = Dataset.from_dict({
137
+ "train": train,
138
+ "test": test,
139
+ "validation": validation,
140
+ })
141
  ```