Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -78,22 +78,64 @@ eurlex = Dataset.from_hub("AutoIntent/eurlex")
|
|
78 |
This dataset is taken from `coastalcph/multi_eurlex` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):
|
79 |
|
80 |
```python
|
81 |
-
|
82 |
from autointent import Dataset
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
```
|
|
|
78 |
This dataset is taken from `coastalcph/multi_eurlex` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):
|
79 |
|
80 |
```python
|
81 |
+
import datasets
|
82 |
from autointent import Dataset
|
83 |
|
84 |
+
|
85 |
+
def get_number_of_classes(ds: datasets.Dataset) -> int:
|
86 |
+
return len(set(i for example in ds for labels in example for i in labels))
|
87 |
+
|
88 |
+
|
89 |
+
def parse(ds: datasets.Dataset, n_classes: int) -> datasets.Dataset:
|
90 |
+
def transform(example: dict):
|
91 |
+
return {"utterance": example["text"], "label": [int(i in example["labels"]) for i in range(n_classes)]}
|
92 |
+
return ds.map(transform, remove_columns=ds.features.keys())
|
93 |
+
|
94 |
+
|
95 |
+
def get_low_resource_classes_mask(ds: datasets.Dataset, n_classes: int, fraction_thresh: float = 0.01) -> list[bool]:
|
96 |
+
res = [0] * n_classes
|
97 |
+
for sample in ds:
|
98 |
+
for i, indicator in enumerate(sample["label"]):
|
99 |
+
res[i] += indicator
|
100 |
+
for i in range(n_classes):
|
101 |
+
res[i] /= len(ds)
|
102 |
+
return [(frac < fraction_thresh) for frac in res]
|
103 |
+
|
104 |
+
|
105 |
+
def remove_low_resource_classes(ds: datasets.Dataset, mask: list[bool]) -> list[dict]:
|
106 |
+
res = []
|
107 |
+
for sample in ds:
|
108 |
+
if sum(sample["label"]) == 1 and mask[sample["label"].index(1)]:
|
109 |
+
continue
|
110 |
+
sample["label"] = [
|
111 |
+
indicator for indicator, low_resource in
|
112 |
+
zip(sample["label"], mask, strict=True) if not low_resource
|
113 |
+
]
|
114 |
+
res.append(sample)
|
115 |
+
return res
|
116 |
+
|
117 |
+
|
118 |
+
def remove_oos(ds: list[dict]):
|
119 |
+
return [sample for sample in ds if sum(sample["label"]) != 0]
|
120 |
+
|
121 |
+
|
122 |
+
if __name__ == "__main__":
|
123 |
+
eurlex = datasets.load_dataset("coastalcph/multi_eurlex", "en", trust_remote_code=True)
|
124 |
+
|
125 |
+
n_classes = get_number_of_classes(eurlex["train"])
|
126 |
+
|
127 |
+
train = parse(eurlex["train"], n_classes)
|
128 |
+
test = parse(eurlex["test"], n_classes)
|
129 |
+
validation = parse(eurlex["validation"], n_classes)
|
130 |
+
|
131 |
+
mask = get_low_resource_classes_mask(train, n_classes)
|
132 |
+
train = remove_oos(remove_low_resource_classes(train, mask))
|
133 |
+
test = remove_oos(remove_low_resource_classes(test, mask))
|
134 |
+
validation = remove_oos(remove_low_resource_classes(validation, mask))
|
135 |
+
|
136 |
+
eurlex_converted = Dataset.from_dict({
|
137 |
+
"train": train,
|
138 |
+
"test": test,
|
139 |
+
"validation": validation,
|
140 |
+
})
|
141 |
```
|