|
--- |
|
language: |
|
- yue |
|
license: cc0-1.0 |
|
size_categories: |
|
- 10K<n<100K |
|
task_categories: |
|
- automatic-speech-recognition |
|
- text-to-speech |
|
- text-generation |
|
- feature-extraction |
|
- audio-to-audio |
|
- audio-classification |
|
- text-to-audio |
|
pretty_name: c |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: saamgwokjinji |
|
path: data/saamgwokjinji-* |
|
- split: seoiwuzyun |
|
path: data/seoiwuzyun-* |
|
- split: mouzaakdung |
|
path: data/mouzaakdung-* |
|
tags: |
|
- cantonese |
|
- audio |
|
- art |
|
dataset_info: |
|
features: |
|
- name: audio |
|
dtype: audio |
|
- name: id |
|
dtype: string |
|
- name: episode_id |
|
dtype: int64 |
|
- name: audio_duration |
|
dtype: float64 |
|
- name: transcription |
|
dtype: string |
|
splits: |
|
- name: saamgwokjinji |
|
num_bytes: 2398591354.589 |
|
num_examples: 39173 |
|
- name: seoiwuzyun |
|
num_bytes: 1629539808.0 |
|
num_examples: 24744 |
|
- name: mouzaakdung |
|
num_bytes: 89173361.615 |
|
num_examples: 1645 |
|
download_size: 4136850525 |
|
dataset_size: 4117304524.204 |
|
--- |
|
|
|
# 張悦楷講《三國演義》《水滸傳》語音數據集 |
|
|
|
[English](#the-zoeng-jyut-gaai-story-telling-speech-dataset) |
|
|
|
## Dataset Description |
|
|
|
- **Homepage:** [張悦楷講古語音數據集 The Zoeng Jyut Gaai Story-telling Speech Dataset](https://canclid.github.io/zoengjyutgaai/) |
|
- **License:** [CC0 1.0 Universal](https://creativecommons.org/publicdomain/zero/1.0/) |
|
- **Total Duration:** 107.37 hours |
|
- **Average Clip Duration:** 5.896 seconds |
|
- **Median Clip Duration:** 5.438 seconds |
|
- **Total number of characters:** 1603472 |
|
- **Language:** Cantonese |
|
- **Voice Actor:** [張悦楷](https://zh.wikipedia.org/wiki/%E5%BC%A0%E6%82%A6%E6%A5%B7) |
|
|
|
呢個係張悦楷講《三國演義》同《水滸傳》語音數據集。[張悦楷](https://zh.wikipedia.org/wiki/%E5%BC%A0%E6%82%A6%E6%A5%B7)係廣州最出名嘅講古佬 / 粵語説書藝人。佢從上世紀七十年代開始就喺廣東各個收音電台度講古,佢把聲係好多廣州人嘅共同回憶。本數據集《三國演義》係佢最知名嘅作品一。 |
|
|
|
數據集用途: |
|
|
|
- TTS(語音合成)訓練集 |
|
- ASR(語音識別)訓練集或測試集 |
|
- 各種語言學、文學研究 |
|
- 直接聽嚟欣賞藝術! |
|
|
|
TTS 效果演示:https://huggingface.co/spaces/laubonghaudoi/zoengjyutgaai_tts |
|
|
|
## 説明 |
|
|
|
- 所有文本都根據 https://jyutping.org/blog/typo/ 同 https://jyutping.org/blog/particles/ 規範用字。 |
|
- 所有文本都使用全角標點,冇半角標點。 |
|
- 所有文本都用漢字轉寫,無阿拉伯數字無英文字母 |
|
- 所有音頻源都存放喺`/source`,為方便直接用作訓練數據,切分後嘅音頻都放喺 `opus/` |
|
- 所有 opus 音頻皆為 48000 Hz 採樣率。 |
|
- 所有源字幕 SRT 文件都存放喺 `srt/` 路經下,搭配 `source/` 下嘅音源可以直接作為帶字幕嘅錄音直接欣賞。 |
|
- `cut.py` 係切分腳本,將對應嘅音源根據 srt 切分成短句並生成一個文本轉寫 csv。 |
|
- `stats.py` 係統計腳本,運行佢就會顯示成個數據集嘅各項統計數據。 |
|
|
|
## 下載使用 |
|
|
|
要下載使用呢個數據集,可以喺 Python 入面直接跑: |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
ds = load_dataset("CanCLID/zoengjyutgaai") |
|
``` |
|
|
|
如果想單純將 `opus/` 入面所有嘢下載落嚟,可以跑下面嘅 Python 代碼,注意要安裝 `pip install --upgrade huggingface_hub` 先: |
|
|
|
```python |
|
from huggingface_hub import snapshot_download |
|
|
|
# 如果你淨係想下載啲字幕或者源音頻,噉就將下面嘅 `wav/*` 改成 `srt/*` 或者 `webm/*` |
|
snapshot_download(repo_id="CanCLID/zoengjyutgaai",allow_patterns="opus/*",local_dir="./",repo_type="dataset") |
|
``` |
|
|
|
如果唔想用 python,你亦都可以用命令行叫 git 針對克隆個`opus/`或者其他路經,避免將成個 repo 都克隆落嚟浪費空間同下載時間: |
|
|
|
```bash |
|
mkdir zoengjyutgaai |
|
cd zoengjyutgaai |
|
git init |
|
|
|
git remote add origin https://huggingface.co/datasets/CanCLID/zoengjyutgaai |
|
git sparse-checkout init --cone |
|
|
|
# 指定凈係下載個別路徑 |
|
git sparse-checkout set opus |
|
|
|
# 開始下載 |
|
git pull origin main |
|
``` |
|
|
|
### 數據集構建流程 |
|
|
|
本數據集嘅收集、構建過程係: |
|
|
|
1. 從 YouTube 或者國內評書網站度下載錄音源文件,一般都係每集半個鐘長嘅 `.webm` 或者 `.mp3`。 |
|
1. 用加字幕工具幫呢啲錄音加字幕,得到對應嘅 `.srt` 文件。 |
|
1. 將啲源錄音用下面嘅命令儘可能無壓縮噉轉換成 `.opus` 格式。 |
|
1. 運行`cut.py`,將每一集 `.opus` 按照 `.srt` 入面嘅時間點切分成一句一個 `.opus`,然後對應嘅文本寫入本數據集嘅 `xxx.csv`。 |
|
1. 然後打開一個 IPython,逐句跑下面嘅命令,將啲數據推上 HuggingFace。 |
|
|
|
```python |
|
from datasets import load_dataset, DatasetDict |
|
from huggingface_hub import login |
|
|
|
sg = load_dataset('audiofolder', data_dir='./opus/saamgwokjinji') |
|
sw = load_dataset('audiofolder', data_dir='./opus/seoiwuzyun') |
|
mzd = load_dataset('audiofolder', data_dir='./opus/mouzaakdung') |
|
dataset = DatasetDict({ |
|
"saamgwokjinji": sg["train"], |
|
"seoiwuzyun": sw["train"], |
|
"mouzaakdung": mzd["train"], |
|
}) |
|
|
|
# 檢查下讀入嘅數據有冇問題 |
|
dataset['train'][0] |
|
# 準備好個 token 嚟登入 |
|
login() |
|
# 推上 HuggingFace datasets |
|
dataset.push_to_hub("CanCLID/zoengjyutgaai") |
|
``` |
|
|
|
### 音頻格式轉換 |
|
|
|
首先要安裝 [ffmpeg](https://www.ffmpeg.org/download.html),然後運行: |
|
|
|
```bash |
|
# 將下載嘅音源由 webm 轉成 opus |
|
ffmpeg -i webm/saamgwokjinji/001.webm -c:a copy source/saamgwokjinji/001.opus |
|
# 或者轉 mp3 |
|
ffmpeg -i mp3/mouzaakdung/001.mp3 -c:a libopus -map_metadata -1 -b:a 48k -vbr on source/mouzaakdung/001.opus |
|
# 將 opus 轉成無損 wav |
|
ffmpeg -i source/saamgwokjinji/001.opus wav/saamgwokjinji/001.wav |
|
``` |
|
|
|
如果想將所有 opus 文件全部轉換成 wav,可以直接運行`to_wav.sh`: |
|
|
|
``` |
|
chmod +x to_wav.sh |
|
./to_wav.sh |
|
``` |
|
|
|
跟住就會生成一個 `wav/` 路經,入面都係 `opus/` 對應嘅音頻。注意 wav 格式非常掗埞,成個 `opus/` 轉晒後會佔用至少 500GB 儲存空間,所以轉換之前記得確保有足夠空間。如果你想對音頻重採樣,亦都可以修改 `to_wav.sh` 入面嘅命令順便做重採樣。 |
|
|
|
# The Zoeng Jyut Gaai Story-telling Speech Dataset |
|
|
|
This is a speech dataset of Zoeng Jyut Gaai story-telling _Romance of the Three Kingdoms_ and _Water Margin_. [Zoeng Jyut Gaai](https://zh.wikipedia.org/wiki/%E5%BC%A0%E6%82%A6%E6%A5%B7) is a famous actor, stand-up commedian and story-teller (講古佬) in 20th centry Canton. His voice remains in the memories of thousands of Cantonese people. This dataset is built from one of his most well-known story-telling piece: _Romance of the Three Kingdoms_. |
|
|
|
Use case of this dataset: |
|
|
|
- TTS (Text-To-Speech) training set |
|
- ASR (Automatic Speech Recognition) training or eval set |
|
- Various linguistics / art analysis |
|
- Just listen and enjoy the art piece! |
|
|
|
TTS demo: https://huggingface.co/spaces/laubonghaudoi/zoengjyutgaai_tts |
|
|
|
## Introduction |
|
|
|
- All transcriptions follow the prescribed orthography detailed in https://jyutping.org/blog/typo/ and https://jyutping.org/blog/particles/ |
|
- All transcriptions use full-width punctuations, no half-width punctuations is used. |
|
- All transcriptions are in Chinese characters, no Arabic numbers or Latin letters. |
|
- All source audio are stored in `source/`. For the convenice of training, segmented audios are stored in `opus/`. |
|
- All opus audio are in 48000 Hz sampling rate. |
|
- All source subtitle SRT files are stored in `srt/`. Use them with the webm files to enjoy subtitled storytelling pieces. |
|
- `cut.py` is the script for cutting opus audios into senteneces based on the srt, and generates a csv file for transcriptions. |
|
- `stats.py` is the script for getting stats of this dataset. |
|
|
|
## Usage |
|
|
|
To use this dataset, simply run in Python: |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
ds = load_dataset("CanCLID/zoengjyutgaai") |
|
``` |
|
|
|
If you only want to download a certain directory to save time and space from cloning the entire repo, run the Python codes below. Make sure you have `pip install --upgrade huggingface_hub` first: |
|
|
|
```python |
|
from huggingface_hub import snapshot_download |
|
|
|
# If you only want to download the source audio or the subtitles, change the `wav/*` below into `srt/*` or `webm/*` |
|
snapshot_download(repo_id="CanCLID/zoengjyutgaai",allow_patterns="opus/*",local_dir="./",repo_type="dataset") |
|
``` |
|
|
|
If you don't want to run python codes and want to do this via command lines, you can selectively clone only a directory of the repo: |
|
|
|
```bash |
|
mkdir zoengjyutgaai |
|
cd zoengjyutgaai |
|
git init |
|
|
|
git remote add origin https://huggingface.co/datasets/CanCLID/zoengjyutgaai |
|
git sparse-checkout init --cone |
|
|
|
# Tell git which directory you want |
|
git sparse-checkout set opus |
|
|
|
# Pull the content |
|
git pull origin main |
|
``` |
|
|
|
### Audio format conversion |
|
|
|
Install [ffmpeg](https://www.ffmpeg.org/download.html) first, then run: |
|
|
|
```bash |
|
# convert all webm into opus |
|
ffmpeg -i webm/saamgwokjinji/001.webm -c:a copy source/saamgwokjinji/001.opus |
|
# or into mp3 |
|
ffmpeg -i mp3/mouzaakdung/001.mp3 -c:a libopus -map_metadata -1 -b:a 48k -vbr on source/mouzaakdung/001.opus |
|
# convert all opus into loseless wav |
|
ffmpeg -i source/saamgwokjinji/001.opus wav/saamgwokjinji/001.wav |
|
``` |
|
|
|
If you want to convert all opus to wav, run `to_wav.sh`: |
|
|
|
``` |
|
chmod +x to_wav.sh |
|
./to_wav.sh |
|
``` |
|
|
|
It will generate a `wav/` path which contains all audios converted from `opus/`. Be aware the wav format is very space-consuming. A full conversion will take up at least 500GB space so make sure you have enough storage. If you want to resample the audio, modify the line within `to_wav.sh` to resample the audio while doing the conversion. |
|
|