Datasets:
language:
- yue
license: cc0-1.0
size_categories:
- 10K<n<100K
task_categories:
- automatic-speech-recognition
- text-to-speech
- text-generation
- feature-extraction
- audio-to-audio
- audio-classification
- text-to-audio
pretty_name: c
configs:
- config_name: default
data_files:
- split: saamgwokjinji
path: data/saamgwokjinji-*
- split: seoiwuzyun
path: data/seoiwuzyun-*
- split: mouzaakdung
path: data/mouzaakdung-*
tags:
- cantonese
- audio
- art
dataset_info:
features:
- name: audio
dtype: audio
- name: id
dtype: string
- name: episode_id
dtype: int64
- name: audio_duration
dtype: float64
- name: transcription
dtype: string
splits:
- name: saamgwokjinji
num_bytes: 2398591354.589
num_examples: 39173
- name: seoiwuzyun
num_bytes: 1629539808
num_examples: 24744
- name: mouzaakdung
num_bytes: 89173361.615
num_examples: 1645
download_size: 4136850525
dataset_size: 4117304524.204
張悦楷講《三國演義》《水滸傳》語音數據集
Dataset Description
- Homepage: 張悦楷講古語音數據集 The Zoeng Jyut Gaai Story-telling Speech Dataset
- License: CC0 1.0 Universal
- Total Duration: 107.37 hours
- Average Clip Duration: 5.896 seconds
- Median Clip Duration: 5.438 seconds
- Total number of characters: 1603472
- Language: Cantonese
- Voice Actor: 張悦楷
呢個係張悦楷講《三國演義》同《水滸傳》語音數據集。張悦楷係廣州最出名嘅講古佬 / 粵語説書藝人。佢從上世紀七十年代開始就喺廣東各個收音電台度講古,佢把聲係好多廣州人嘅共同回憶。本數據集《三國演義》係佢最知名嘅作品一。
數據集用途:
- TTS(語音合成)訓練集
- ASR(語音識別)訓練集或測試集
- 各種語言學、文學研究
- 直接聽嚟欣賞藝術!
TTS 效果演示:https://huggingface.co/spaces/laubonghaudoi/zoengjyutgaai_tts
説明
- 所有文本都根據 https://jyutping.org/blog/typo/ 同 https://jyutping.org/blog/particles/ 規範用字。
- 所有文本都使用全角標點,冇半角標點。
- 所有文本都用漢字轉寫,無阿拉伯數字無英文字母
- 所有音頻源都存放喺
/source
,為方便直接用作訓練數據,切分後嘅音頻都放喺opus/
- 所有 opus 音頻皆為 48000 Hz 採樣率。
- 所有源字幕 SRT 文件都存放喺
srt/
路經下,搭配source/
下嘅音源可以直接作為帶字幕嘅錄音直接欣賞。 cut.py
係切分腳本,將對應嘅音源根據 srt 切分成短句並生成一個文本轉寫 csv。stats.py
係統計腳本,運行佢就會顯示成個數據集嘅各項統計數據。
下載使用
要下載使用呢個數據集,可以喺 Python 入面直接跑:
from datasets import load_dataset
ds = load_dataset("CanCLID/zoengjyutgaai")
如果想單純將 opus/
入面所有嘢下載落嚟,可以跑下面嘅 Python 代碼,注意要安裝 pip install --upgrade huggingface_hub
先:
from huggingface_hub import snapshot_download
# 如果你淨係想下載啲字幕或者源音頻,噉就將下面嘅 `wav/*` 改成 `srt/*` 或者 `webm/*`
snapshot_download(repo_id="CanCLID/zoengjyutgaai",allow_patterns="opus/*",local_dir="./",repo_type="dataset")
如果唔想用 python,你亦都可以用命令行叫 git 針對克隆個opus/
或者其他路經,避免將成個 repo 都克隆落嚟浪費空間同下載時間:
mkdir zoengjyutgaai
cd zoengjyutgaai
git init
git remote add origin https://huggingface.co/datasets/CanCLID/zoengjyutgaai
git sparse-checkout init --cone
# 指定凈係下載個別路徑
git sparse-checkout set opus
# 開始下載
git pull origin main
數據集構建流程
本數據集嘅收集、構建過程係:
- 從 YouTube 或者國內評書網站度下載錄音源文件,一般都係每集半個鐘長嘅
.webm
或者.mp3
。 - 用加字幕工具幫呢啲錄音加字幕,得到對應嘅
.srt
文件。 - 將啲源錄音用下面嘅命令儘可能無壓縮噉轉換成
.opus
格式。 - 運行
cut.py
,將每一集.opus
按照.srt
入面嘅時間點切分成一句一個.opus
,然後對應嘅文本寫入本數據集嘅xxx.csv
。 - 然後打開一個 IPython,逐句跑下面嘅命令,將啲數據推上 HuggingFace。
from datasets import load_dataset, DatasetDict
from huggingface_hub import login
sg = load_dataset('audiofolder', data_dir='./opus/saamgwokjinji')
sw = load_dataset('audiofolder', data_dir='./opus/seoiwuzyun')
mzd = load_dataset('audiofolder', data_dir='./opus/mouzaakdung')
dataset = DatasetDict({
"saamgwokjinji": sg["train"],
"seoiwuzyun": sw["train"],
"mouzaakdung": mzd["train"],
})
# 檢查下讀入嘅數據有冇問題
dataset['train'][0]
# 準備好個 token 嚟登入
login()
# 推上 HuggingFace datasets
dataset.push_to_hub("CanCLID/zoengjyutgaai")
音頻格式轉換
首先要安裝 ffmpeg,然後運行:
# 將下載嘅音源由 webm 轉成 opus
ffmpeg -i webm/saamgwokjinji/001.webm -c:a copy source/saamgwokjinji/001.opus
# 或者轉 mp3
ffmpeg -i mp3/mouzaakdung/001.mp3 -c:a libopus -map_metadata -1 -b:a 48k -vbr on source/mouzaakdung/001.opus
# 將 opus 轉成無損 wav
ffmpeg -i source/saamgwokjinji/001.opus wav/saamgwokjinji/001.wav
如果想將所有 opus 文件全部轉換成 wav,可以直接運行to_wav.sh
:
chmod +x to_wav.sh
./to_wav.sh
跟住就會生成一個 wav/
路經,入面都係 opus/
對應嘅音頻。注意 wav 格式非常掗埞,成個 opus/
轉晒後會佔用至少 500GB 儲存空間,所以轉換之前記得確保有足夠空間。如果你想對音頻重採樣,亦都可以修改 to_wav.sh
入面嘅命令順便做重採樣。
The Zoeng Jyut Gaai Story-telling Speech Dataset
This is a speech dataset of Zoeng Jyut Gaai story-telling Romance of the Three Kingdoms and Water Margin. Zoeng Jyut Gaai is a famous actor, stand-up commedian and story-teller (講古佬) in 20th centry Canton. His voice remains in the memories of thousands of Cantonese people. This dataset is built from one of his most well-known story-telling piece: Romance of the Three Kingdoms.
Use case of this dataset:
- TTS (Text-To-Speech) training set
- ASR (Automatic Speech Recognition) training or eval set
- Various linguistics / art analysis
- Just listen and enjoy the art piece!
TTS demo: https://huggingface.co/spaces/laubonghaudoi/zoengjyutgaai_tts
Introduction
- All transcriptions follow the prescribed orthography detailed in https://jyutping.org/blog/typo/ and https://jyutping.org/blog/particles/
- All transcriptions use full-width punctuations, no half-width punctuations is used.
- All transcriptions are in Chinese characters, no Arabic numbers or Latin letters.
- All source audio are stored in
source/
. For the convenice of training, segmented audios are stored inopus/
. - All opus audio are in 48000 Hz sampling rate.
- All source subtitle SRT files are stored in
srt/
. Use them with the webm files to enjoy subtitled storytelling pieces. cut.py
is the script for cutting opus audios into senteneces based on the srt, and generates a csv file for transcriptions.stats.py
is the script for getting stats of this dataset.
Usage
To use this dataset, simply run in Python:
from datasets import load_dataset
ds = load_dataset("CanCLID/zoengjyutgaai")
If you only want to download a certain directory to save time and space from cloning the entire repo, run the Python codes below. Make sure you have pip install --upgrade huggingface_hub
first:
from huggingface_hub import snapshot_download
# If you only want to download the source audio or the subtitles, change the `wav/*` below into `srt/*` or `webm/*`
snapshot_download(repo_id="CanCLID/zoengjyutgaai",allow_patterns="opus/*",local_dir="./",repo_type="dataset")
If you don't want to run python codes and want to do this via command lines, you can selectively clone only a directory of the repo:
mkdir zoengjyutgaai
cd zoengjyutgaai
git init
git remote add origin https://huggingface.co/datasets/CanCLID/zoengjyutgaai
git sparse-checkout init --cone
# Tell git which directory you want
git sparse-checkout set opus
# Pull the content
git pull origin main
Audio format conversion
Install ffmpeg first, then run:
# convert all webm into opus
ffmpeg -i webm/saamgwokjinji/001.webm -c:a copy source/saamgwokjinji/001.opus
# or into mp3
ffmpeg -i mp3/mouzaakdung/001.mp3 -c:a libopus -map_metadata -1 -b:a 48k -vbr on source/mouzaakdung/001.opus
# convert all opus into loseless wav
ffmpeg -i source/saamgwokjinji/001.opus wav/saamgwokjinji/001.wav
If you want to convert all opus to wav, run to_wav.sh
:
chmod +x to_wav.sh
./to_wav.sh
It will generate a wav/
path which contains all audios converted from opus/
. Be aware the wav format is very space-consuming. A full conversion will take up at least 500GB space so make sure you have enough storage. If you want to resample the audio, modify the line within to_wav.sh
to resample the audio while doing the conversion.