ID
stringlengths
36
36
Language
stringclasses
1 value
Repository Name
stringclasses
13 values
File Name
stringlengths
2
44
File Path in Repository
stringlengths
11
111
File Path for Unit Test
stringlengths
16
116
Code
stringlengths
0
278k
Unit Test - (Ground Truth)
stringlengths
127
663k
Code Url
stringlengths
91
198
Test Code Url
stringlengths
96
203
Commit Hash
stringclasses
13 values
93ad1401-b7f7-499b-be17-eb2c1f1b45de
cpp
tensorflow/tensorflow
detection_postprocess
tensorflow/lite/kernels/detection_postprocess.cc
tensorflow/lite/kernels/detection_postprocess_test.cc
#include <math.h> #include <stddef.h> #include <stdint.h> #include <algorithm> #include <initializer_list> #include <numeric> #include <vector> #include "flatbuffers/flexbuffers.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace custom { namespace detection_postprocess { constexpr int kInputTensorBoxEncodings = 0; constexpr int kInputTensorClassPredictions = 1; constexpr int kInputTensorAnchors = 2; constexpr int kOutputTensorDetectionBoxes = 0; constexpr int kOutputTensorDetectionClasses = 1; constexpr int kOutputTensorDetectionScores = 2; constexpr int kOutputTensorNumDetections = 3; constexpr int kNumCoordBox = 4; constexpr int kBatchSize = 1; constexpr int kNumDetectionsPerClass = 100; struct BoxCornerEncoding { float ymin; float xmin; float ymax; float xmax; }; struct CenterSizeEncoding { float y; float x; float h; float w; }; static_assert(sizeof(BoxCornerEncoding) == sizeof(float) * kNumCoordBox, "Size of BoxCornerEncoding is 4 float values"); static_assert(sizeof(CenterSizeEncoding) == sizeof(float) * kNumCoordBox, "Size of CenterSizeEncoding is 4 float values"); struct OpData { int max_detections; int max_classes_per_detection; int detections_per_class; float non_max_suppression_score_threshold; float intersection_over_union_threshold; int num_classes; bool use_regular_non_max_suppression; CenterSizeEncoding scale_values; int decoded_boxes_index; int scores_index; }; void* Init(TfLiteContext* context, const char* buffer, size_t length) { auto* op_data = new OpData; const uint8_t* buffer_t = reinterpret_cast<const uint8_t*>(buffer); const flexbuffers::Map& m = flexbuffers::GetRoot(buffer_t, length).AsMap(); op_data->max_detections = m["max_detections"].AsInt32(); op_data->max_classes_per_detection = m["max_classes_per_detection"].AsInt32(); if (m["detections_per_class"].IsNull()) op_data->detections_per_class = kNumDetectionsPerClass; else op_data->detections_per_class = m["detections_per_class"].AsInt32(); if (m["use_regular_nms"].IsNull()) op_data->use_regular_non_max_suppression = false; else op_data->use_regular_non_max_suppression = m["use_regular_nms"].AsBool(); op_data->non_max_suppression_score_threshold = m["nms_score_threshold"].AsFloat(); op_data->intersection_over_union_threshold = m["nms_iou_threshold"].AsFloat(); op_data->num_classes = m["num_classes"].AsInt32(); op_data->scale_values.y = m["y_scale"].AsFloat(); op_data->scale_values.x = m["x_scale"].AsFloat(); op_data->scale_values.h = m["h_scale"].AsFloat(); op_data->scale_values.w = m["w_scale"].AsFloat(); context->AddTensors(context, 1, &op_data->decoded_boxes_index); context->AddTensors(context, 1, &op_data->scores_index); return op_data; } void Free(TfLiteContext* context, void* buffer) { delete static_cast<OpData*>(buffer); } TfLiteStatus SetTensorSizes(TfLiteContext* context, TfLiteTensor* tensor, std::initializer_list<int> values) { TfLiteIntArray* size = TfLiteIntArrayCreate(values.size()); int index = 0; for (const auto& v : values) { size->data[index] = v; ++index; } return context->ResizeTensor(context, tensor, size); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { auto* op_data = static_cast<OpData*>(node->user_data); TF_LITE_ENSURE_EQ(context, NumInputs(node), 3); const TfLiteTensor* input_box_encodings; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensorBoxEncodings, &input_box_encodings)); const TfLiteTensor* input_class_predictions; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensorClassPredictions, &input_class_predictions)); const TfLiteTensor* input_anchors; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensorAnchors, &input_anchors)); TF_LITE_ENSURE_EQ(context, NumDimensions(input_box_encodings), 3); TF_LITE_ENSURE_EQ(context, NumDimensions(input_class_predictions), 3); TF_LITE_ENSURE_EQ(context, NumDimensions(input_anchors), 2); const int num_detected_boxes = op_data->max_detections * op_data->max_classes_per_detection; TF_LITE_ENSURE_EQ(context, NumOutputs(node), 4); TfLiteTensor* detection_boxes; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensorDetectionBoxes, &detection_boxes)); detection_boxes->type = kTfLiteFloat32; SetTensorSizes(context, detection_boxes, {kBatchSize, num_detected_boxes, kNumCoordBox}); TfLiteTensor* detection_classes; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensorDetectionClasses, &detection_classes)); detection_classes->type = kTfLiteFloat32; SetTensorSizes(context, detection_classes, {kBatchSize, num_detected_boxes}); TfLiteTensor* detection_scores; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensorDetectionScores, &detection_scores)); detection_scores->type = kTfLiteFloat32; SetTensorSizes(context, detection_scores, {kBatchSize, num_detected_boxes}); TfLiteTensor* num_detections; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensorNumDetections, &num_detections)); num_detections->type = kTfLiteFloat32; SetTensorSizes(context, num_detections, {1}); TfLiteIntArrayFree(node->temporaries); node->temporaries = TfLiteIntArrayCreate(2); node->temporaries->data[0] = op_data->decoded_boxes_index; node->temporaries->data[1] = op_data->scores_index; TfLiteTensor* decoded_boxes = &context->tensors[op_data->decoded_boxes_index]; decoded_boxes->type = kTfLiteFloat32; decoded_boxes->allocation_type = kTfLiteArenaRw; SetTensorSizes(context, decoded_boxes, {input_box_encodings->dims->data[1], kNumCoordBox}); TfLiteTensor* scores = &context->tensors[op_data->scores_index]; scores->type = kTfLiteFloat32; scores->allocation_type = kTfLiteArenaRw; SetTensorSizes(context, scores, {input_class_predictions->dims->data[1], input_class_predictions->dims->data[2]}); return kTfLiteOk; } class Dequantizer { public: Dequantizer(int zero_point, float scale) : zero_point_(zero_point), scale_(scale) {} float operator()(uint8 x) { return (static_cast<float>(x) - zero_point_) * scale_; } private: int zero_point_; float scale_; }; void DequantizeBoxEncodings(const TfLiteTensor* input_box_encodings, int idx, float quant_zero_point, float quant_scale, int length_box_encoding, CenterSizeEncoding* box_centersize) { const uint8* boxes = GetTensorData<uint8>(input_box_encodings) + length_box_encoding * idx; Dequantizer dequantize(quant_zero_point, quant_scale); box_centersize->y = dequantize(boxes[0]); box_centersize->x = dequantize(boxes[1]); box_centersize->h = dequantize(boxes[2]); box_centersize->w = dequantize(boxes[3]); } template <class T> T ReInterpretTensor(const TfLiteTensor* tensor) { const float* tensor_base = GetTensorData<float>(tensor); return reinterpret_cast<T>(tensor_base); } template <class T> T ReInterpretTensor(TfLiteTensor* tensor) { float* tensor_base = GetTensorData<float>(tensor); return reinterpret_cast<T>(tensor_base); } TfLiteStatus DecodeCenterSizeBoxes(TfLiteContext* context, TfLiteNode* node, OpData* op_data) { const TfLiteTensor* input_box_encodings; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensorBoxEncodings, &input_box_encodings)); TF_LITE_ENSURE_EQ(context, input_box_encodings->dims->data[0], kBatchSize); const int num_boxes = input_box_encodings->dims->data[1]; TF_LITE_ENSURE(context, input_box_encodings->dims->data[2] >= kNumCoordBox); const TfLiteTensor* input_anchors; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensorAnchors, &input_anchors)); CenterSizeEncoding box_centersize; CenterSizeEncoding scale_values = op_data->scale_values; CenterSizeEncoding anchor; for (int idx = 0; idx < num_boxes; ++idx) { switch (input_box_encodings->type) { case kTfLiteUInt8: DequantizeBoxEncodings( input_box_encodings, idx, static_cast<float>(input_box_encodings->params.zero_point), static_cast<float>(input_box_encodings->params.scale), input_box_encodings->dims->data[2], &box_centersize); DequantizeBoxEncodings( input_anchors, idx, static_cast<float>(input_anchors->params.zero_point), static_cast<float>(input_anchors->params.scale), kNumCoordBox, &anchor); break; case kTfLiteFloat32: { const int box_encoding_idx = idx * input_box_encodings->dims->data[2]; const float* boxes = &(GetTensorData<float>(input_box_encodings)[box_encoding_idx]); box_centersize = *reinterpret_cast<const CenterSizeEncoding*>(boxes); TF_LITE_ENSURE_EQ(context, input_anchors->type, kTfLiteFloat32); anchor = ReInterpretTensor<const CenterSizeEncoding*>(input_anchors)[idx]; break; } default: return kTfLiteError; } float ycenter = static_cast<float>(static_cast<double>(box_centersize.y) / static_cast<double>(scale_values.y) * static_cast<double>(anchor.h) + static_cast<double>(anchor.y)); float xcenter = static_cast<float>(static_cast<double>(box_centersize.x) / static_cast<double>(scale_values.x) * static_cast<double>(anchor.w) + static_cast<double>(anchor.x)); float half_h = static_cast<float>(0.5 * (std::exp(static_cast<double>(box_centersize.h) / static_cast<double>(scale_values.h))) * static_cast<double>(anchor.h)); float half_w = static_cast<float>(0.5 * (std::exp(static_cast<double>(box_centersize.w) / static_cast<double>(scale_values.w))) * static_cast<double>(anchor.w)); TfLiteTensor* decoded_boxes = &context->tensors[op_data->decoded_boxes_index]; TF_LITE_ENSURE_EQ(context, decoded_boxes->type, kTfLiteFloat32); auto& box = ReInterpretTensor<BoxCornerEncoding*>(decoded_boxes)[idx]; box.ymin = ycenter - half_h; box.xmin = xcenter - half_w; box.ymax = ycenter + half_h; box.xmax = xcenter + half_w; } return kTfLiteOk; } void DecreasingPartialArgSort(const float* values, int num_values, int num_to_sort, int* indices) { if (num_to_sort == 1) { indices[0] = optimized_ops::ArgMaxVector(values, num_values); } else { std::iota(indices, indices + num_values, 0); std::partial_sort( indices, indices + num_to_sort, indices + num_values, [&values](const int i, const int j) { return values[i] > values[j]; }); } } void DecreasingArgSort(const float* values, int num_values, int* indices) { std::iota(indices, indices + num_values, 0); std::stable_sort( indices, indices + num_values, [&values](const int i, const int j) { return values[i] > values[j]; }); } void SelectDetectionsAboveScoreThreshold(const std::vector<float>& values, const float threshold, std::vector<float>* keep_values, std::vector<int>* keep_indices) { for (int i = 0; i < values.size(); i++) { if (values[i] >= threshold) { keep_values->emplace_back(values[i]); keep_indices->emplace_back(i); } } } bool ValidateBoxes(const TfLiteTensor* decoded_boxes, const int num_boxes) { for (int i = 0; i < num_boxes; ++i) { auto& box = ReInterpretTensor<const BoxCornerEncoding*>(decoded_boxes)[i]; if (box.ymin > box.ymax || box.xmin > box.xmax) { return false; } } return true; } float ComputeIntersectionOverUnion(const TfLiteTensor* decoded_boxes, const int i, const int j) { auto& box_i = ReInterpretTensor<const BoxCornerEncoding*>(decoded_boxes)[i]; auto& box_j = ReInterpretTensor<const BoxCornerEncoding*>(decoded_boxes)[j]; const float area_i = (box_i.ymax - box_i.ymin) * (box_i.xmax - box_i.xmin); const float area_j = (box_j.ymax - box_j.ymin) * (box_j.xmax - box_j.xmin); if (area_i <= 0 || area_j <= 0) return 0.0; const float intersection_ymin = std::max<float>(box_i.ymin, box_j.ymin); const float intersection_xmin = std::max<float>(box_i.xmin, box_j.xmin); const float intersection_ymax = std::min<float>(box_i.ymax, box_j.ymax); const float intersection_xmax = std::min<float>(box_i.xmax, box_j.xmax); const float intersection_area = std::max<float>(intersection_ymax - intersection_ymin, 0.0) * std::max<float>(intersection_xmax - intersection_xmin, 0.0); return intersection_area / (area_i + area_j - intersection_area); } TfLiteStatus NonMaxSuppressionSingleClassHelper( TfLiteContext* context, TfLiteNode* node, OpData* op_data, const std::vector<float>& scores, int max_detections, std::vector<int>* selected) { const TfLiteTensor* input_box_encodings; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensorBoxEncodings, &input_box_encodings)); const TfLiteTensor* decoded_boxes = &context->tensors[op_data->decoded_boxes_index]; const int num_boxes = input_box_encodings->dims->data[1]; const float non_max_suppression_score_threshold = op_data->non_max_suppression_score_threshold; const float intersection_over_union_threshold = op_data->intersection_over_union_threshold; TF_LITE_ENSURE(context, (max_detections >= 0)); TF_LITE_ENSURE(context, (intersection_over_union_threshold > 0.0f) && (intersection_over_union_threshold <= 1.0f)); TF_LITE_ENSURE_EQ(context, decoded_boxes->type, kTfLiteFloat32); TF_LITE_ENSURE(context, ValidateBoxes(decoded_boxes, num_boxes)); std::vector<int> keep_indices; std::vector<float> keep_scores; SelectDetectionsAboveScoreThreshold( scores, non_max_suppression_score_threshold, &keep_scores, &keep_indices); int num_scores_kept = keep_scores.size(); std::vector<int> sorted_indices; sorted_indices.resize(num_scores_kept); DecreasingArgSort(keep_scores.data(), num_scores_kept, sorted_indices.data()); const int num_boxes_kept = num_scores_kept; const int output_size = std::min(num_boxes_kept, max_detections); selected->clear(); int num_active_candidate = num_boxes_kept; std::vector<uint8_t> active_box_candidate(num_boxes_kept, 1); for (int i = 0; i < num_boxes_kept; ++i) { if (num_active_candidate == 0 || selected->size() >= output_size) break; if (active_box_candidate[i] == 1) { selected->push_back(keep_indices[sorted_indices[i]]); active_box_candidate[i] = 0; num_active_candidate--; } else { continue; } for (int j = i + 1; j < num_boxes_kept; ++j) { if (active_box_candidate[j] == 1) { TF_LITE_ENSURE_EQ(context, decoded_boxes->type, kTfLiteFloat32); float intersection_over_union = ComputeIntersectionOverUnion( decoded_boxes, keep_indices[sorted_indices[i]], keep_indices[sorted_indices[j]]); if (intersection_over_union > intersection_over_union_threshold) { active_box_candidate[j] = 0; num_active_candidate--; } } } } return kTfLiteOk; } struct BoxInfo { int index; float score; }; struct NMSTaskParam { TfLiteContext* context; TfLiteNode* node; OpData* op_data; const float* scores; int num_classes; int num_boxes; int label_offset; int num_classes_with_background; int num_detections_per_class; int max_detections; std::vector<int>& num_selected; }; void InplaceMergeBoxInfo(std::vector<BoxInfo>& boxes, int mid_index, int end_index) { std::inplace_merge( boxes.begin(), boxes.begin() + mid_index, boxes.begin() + end_index, [](const BoxInfo& a, const BoxInfo& b) { return a.score >= b.score; }); } TfLiteStatus ComputeNMSResult(const NMSTaskParam& nms_task_param, int col_begin, int col_end, int& sorted_indices_size, std::vector<BoxInfo>& resulted_sorted_box_info) { std::vector<float> class_scores(nms_task_param.num_boxes); std::vector<int> selected; selected.reserve(nms_task_param.num_detections_per_class); for (int col = col_begin; col <= col_end; ++col) { const float* scores_base = nms_task_param.scores + col + nms_task_param.label_offset; for (int row = 0; row < nms_task_param.num_boxes; row++) { class_scores[row] = *scores_base; scores_base += nms_task_param.num_classes_with_background; } selected.clear(); TF_LITE_ENSURE_OK( nms_task_param.context, NonMaxSuppressionSingleClassHelper( nms_task_param.context, nms_task_param.node, nms_task_param.op_data, class_scores, nms_task_param.num_detections_per_class, &selected)); if (selected.empty()) { continue; } for (int i = 0; i < selected.size(); ++i) { resulted_sorted_box_info[sorted_indices_size + i].score = class_scores[selected[i]]; resulted_sorted_box_info[sorted_indices_size + i].index = (selected[i] * nms_task_param.num_classes_with_background + col + nms_task_param.label_offset); } InplaceMergeBoxInfo(resulted_sorted_box_info, sorted_indices_size, sorted_indices_size + selected.size()); sorted_indices_size = std::min(sorted_indices_size + static_cast<int>(selected.size()), nms_task_param.max_detections); } return kTfLiteOk; } struct NonMaxSuppressionWorkerTask : cpu_backend_threadpool::Task { NonMaxSuppressionWorkerTask(NMSTaskParam& nms_task_param, std::atomic<int>& next_col, int col_begin) : nms_task_param(nms_task_param), next_col(next_col), col_begin(col_begin), sorted_indices_size(0) {} void Run() override { sorted_box_info.resize(nms_task_param.num_detections_per_class + nms_task_param.max_detections); for (int col = col_begin; col < nms_task_param.num_classes; col = (++next_col)) { if (ComputeNMSResult(nms_task_param, col, col, sorted_indices_size, sorted_box_info) != kTfLiteOk) { break; } } } NMSTaskParam& nms_task_param; std::atomic<int>& next_col; const int col_begin; int sorted_indices_size; std::vector<BoxInfo> sorted_box_info; }; TfLiteStatus NonMaxSuppressionMultiClassRegularHelper(TfLiteContext* context, TfLiteNode* node, OpData* op_data, const float* scores) { const TfLiteTensor* input_box_encodings; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensorBoxEncodings, &input_box_encodings)); const TfLiteTensor* input_class_predictions; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensorClassPredictions, &input_class_predictions)); const TfLiteTensor* decoded_boxes = &context->tensors[op_data->decoded_boxes_index]; TfLiteTensor* detection_boxes; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensorDetectionBoxes, &detection_boxes)); TfLiteTensor* detection_classes; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensorDetectionClasses, &detection_classes)); TfLiteTensor* detection_scores; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensorDetectionScores, &detection_scores)); TfLiteTensor* num_detections; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensorNumDetections, &num_detections)); const int num_boxes = input_box_encodings->dims->data[1]; const int num_classes = op_data->num_classes; const int num_detections_per_class = std::min(op_data->detections_per_class, op_data->max_detections); const int max_detections = op_data->max_detections; const int num_classes_with_background = input_class_predictions->dims->data[2]; int label_offset = num_classes_with_background - num_classes; TF_LITE_ENSURE(context, num_detections_per_class > 0); int sorted_indices_size = 0; std::vector<BoxInfo> box_info_after_regular_non_max_suppression( max_detections + num_detections_per_class); std::vector<int> num_selected(num_classes); NMSTaskParam nms_task_param{context, node, op_data, scores, num_classes, num_boxes, label_offset, num_classes_with_background, num_detections_per_class, max_detections, num_selected}; int num_threads = CpuBackendContext::GetFromContext(context)->max_num_threads(); if (num_threads == 1) { TF_LITE_ENSURE_OK( context, ComputeNMSResult(nms_task_param, 0, num_classes - 1, sorted_indices_size, box_info_after_regular_non_max_suppression)); } else { std::atomic<int> next_col(num_threads); std::vector<NonMaxSuppressionWorkerTask> tasks; tasks.reserve(num_threads); for (int i = 0; i < num_threads; ++i) { tasks.emplace_back( NonMaxSuppressionWorkerTask(nms_task_param, next_col, i)); } cpu_backend_threadpool::Execute(tasks.size(), tasks.data(), CpuBackendContext::GetFromContext(context)); for (int j = 0; j < tasks.size(); ++j) { if (tasks[j].sorted_indices_size == 0) { continue; } memcpy(&box_info_after_regular_non_max_suppression[sorted_indices_size], &tasks[j].sorted_box_info[0], sizeof(BoxInfo) * tasks[j].sorted_indices_size); InplaceMergeBoxInfo(box_info_after_regular_non_max_suppression, sorted_indices_size, sorted_indices_size + tasks[j].sorted_indices_size); sorted_indices_size = std::min( sorted_indices_size + tasks[j].sorted_indices_size, max_detections); } } for (int output_box_index = 0; output_box_index < max_detections; output_box_index++) { if (output_box_index < sorted_indices_size) { const int anchor_index = floor( box_info_after_regular_non_max_suppression[output_box_index].index / num_classes_with_background); const int class_index = box_info_after_regular_non_max_suppression[output_box_index].index - anchor_index * num_classes_with_background - label_offset; const float selected_score = box_info_after_regular_non_max_suppression[output_box_index].score; TF_LITE_ENSURE_EQ(context, detection_boxes->type, kTfLiteFloat32); TF_LITE_ENSURE_EQ(context, decoded_boxes->type, kTfLiteFloat32); ReInterpretTensor<BoxCornerEncoding*>(detection_boxes)[output_box_index] = ReInterpretTensor<const BoxCornerEncoding*>( decoded_boxes)[anchor_index]; GetTensorData<float>(detection_classes)[output_box_index] = class_index; GetTensorData<float>(detection_scores)[output_box_index] = selected_score; } else { TF_LITE_ENSURE_EQ(context, detection_boxes->type, kTfLiteFloat32); ReInterpretTensor<BoxCornerEncoding*>( detection_boxes)[output_box_index] = {0.0f, 0.0f, 0.0f, 0.0f}; GetTensorData<float>(detection_classes)[output_box_index] = 0.0f; GetTensorData<float>(detection_scores)[output_box_index] = 0.0f; } } GetTensorData<float>(num_detections)[0] = sorted_indices_size; box_info_after_regular_non_max_suppression.clear(); return kTfLiteOk; } TfLiteStatus NonMaxSuppressionMultiClassFastHelper(TfLiteContext* context, TfLiteNode* node, OpData* op_data, const float* scores) { const TfLiteTensor* input_box_encodings; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensorBoxEncodings, &input_box_encodings)); const TfLiteTensor* input_class_predictions; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensorClassPredictions, &input_class_predictions)); const TfLiteTensor* decoded_boxes = &context->tensors[op_data->decoded_boxes_index]; TfLiteTensor* detection_boxes; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensorDetectionBoxes, &detection_boxes)); TfLiteTensor* detection_classes; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensorDetectionClasses, &detection_classes)); TfLiteTensor* detection_scores; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensorDetectionScores, &detection_scores)); TfLiteTensor* num_detections; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensorNumDetections, &num_detections)); const int num_boxes = input_box_encodings->dims->data[1]; const int num_classes = op_data->num_classes; const int max_categories_per_anchor = op_data->max_classes_per_detection; const int num_classes_with_background = input_class_predictions->dims->data[2]; int label_offset = num_classes_with_background - num_classes; TF_LITE_ENSURE(context, (max_categories_per_anchor > 0)); const int num_categories_per_anchor = std::min(max_categories_per_anchor, num_classes); std::vector<float> max_scores; max_scores.resize(num_boxes); std::vector<int> sorted_class_indices; sorted_class_indices.resize(num_boxes * num_classes); for (int row = 0; row < num_boxes; row++) { const float* box_scores = scores + row * num_classes_with_background + label_offset; int* class_indices = sorted_class_indices.data() + row * num_classes; DecreasingPartialArgSort(box_scores, num_classes, num_categories_per_anchor, class_indices); max_scores[row] = box_scores[class_indices[0]]; } std::vector<int> selected; TF_LITE_ENSURE_STATUS(NonMaxSuppressionSingleClassHelper( context, node, op_data, max_scores, op_data->max_detections, &selected)); int output_box_index = 0; for (const auto& selected_index : selected) { const float* box_scores = scores + selected_index * num_classes_with_background + label_offset; const int* class_indices = sorted_class_indices.data() + selected_index * num_classes; for (int col = 0; col < num_categories_per_anchor; ++col) { int box_offset = max_categories_per_anchor * output_box_index + col; TF_LITE_ENSURE_EQ(context, detection_boxes->type, kTfLiteFloat32); TF_LITE_ENSURE_EQ(context, decoded_boxes->type, kTfLiteFloat32); ReInterpretTensor<BoxCornerEncoding*>(detection_boxes)[box_offset] = ReInterpretTensor<const BoxCornerEncoding*>( decoded_boxes)[selected_index]; GetTensorData<float>(detection_classes)[box_offset] = class_indices[col]; GetTensorData<float>(detection_scores)[box_offset] = box_scores[class_indices[col]]; } output_box_index++; } GetTensorData<float>(num_detections)[0] = output_box_index; return kTfLiteOk; } void DequantizeClassPredictions(const TfLiteTensor* input_class_predictions, const int num_boxes, const int num_classes_with_background, TfLiteTensor* scores) { float quant_zero_point = static_cast<float>(input_class_predictions->params.zero_point); float quant_scale = static_cast<float>(input_class_predictions->params.scale); tflite::DequantizationParams op_params; op_params.zero_point = quant_zero_point; op_params.scale = quant_scale; const auto shape = RuntimeShape(1, num_boxes * num_classes_with_background); optimized_ops::Dequantize(op_params, shape, GetTensorData<uint8>(input_class_predictions), shape, GetTensorData<float>(scores)); } TfLiteStatus NonMaxSuppressionMultiClass(TfLiteContext* context, TfLiteNode* node, OpData* op_data) { const TfLiteTensor* input_box_encodings; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensorBoxEncodings, &input_box_encodings)); const TfLiteTensor* input_class_predictions; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensorClassPredictions, &input_class_predictions)); const int num_boxes = input_box_encodings->dims->data[1]; const int num_classes = op_data->num_classes; TF_LITE_ENSURE_EQ(context, input_class_predictions->dims->data[0], kBatchSize); TF_LITE_ENSURE_EQ(context, input_class_predictions->dims->data[1], num_boxes); const int num_classes_with_background = input_class_predictions->dims->data[2]; TF_LITE_ENSURE(context, (num_classes_with_background - num_classes <= 1)); TF_LITE_ENSURE(context, (num_classes_with_background >= num_classes)); const TfLiteTensor* scores; switch (input_class_predictions->type) { case kTfLiteUInt8: { TfLiteTensor* temporary_scores = &context->tensors[op_data->scores_index]; DequantizeClassPredictions(input_class_predictions, num_boxes, num_classes_with_background, temporary_scores); scores = temporary_scores; } break; case kTfLiteFloat32: scores = input_class_predictions; break; default: return kTfLiteError; } if (op_data->use_regular_non_max_suppression) TF_LITE_ENSURE_STATUS(NonMaxSuppressionMultiClassRegularHelper( context, node, op_data, GetTensorData<float>(scores))); else TF_LITE_ENSURE_STATUS(NonMaxSuppressionMultiClassFastHelper( context, node, op_data, GetTensorData<float>(scores))); return kTfLiteOk; } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE(context, (kBatchSize == 1)); auto* op_data = static_cast<OpData*>(node->user_data); TF_LITE_ENSURE_STATUS(DecodeCenterSizeBoxes(context, node, op_data)); TF_LITE_ENSURE_STATUS(NonMaxSuppressionMultiClass(context, node, op_data)); return kTfLiteOk; } } TfLiteRegistration* Register_DETECTION_POSTPROCESS() { static TfLiteRegistration r = { detection_postprocess::Init, detection_postprocess::Free, detection_postprocess::Prepare, detection_postprocess::Eval}; return &r; } TfLiteRegistration* Register_TFLITE_DETECTION_POST_PROCESS() { return Register_DETECTION_POSTPROCESS(); } } } }
#include <stdint.h> #include <initializer_list> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/flexbuffers.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace ops { namespace custom { TfLiteRegistration* Register_DETECTION_POSTPROCESS(); namespace { using ::testing::ElementsAre; using ::testing::ElementsAreArray; class BaseDetectionPostprocessOpModel : public SingleOpModel { public: BaseDetectionPostprocessOpModel( const TensorData& input1, const TensorData& input2, const TensorData& input3, const TensorData& output1, const TensorData& output2, const TensorData& output3, const TensorData& output4, int max_classes_per_detection = 1) { input1_ = AddInput(input1); input2_ = AddInput(input2); input3_ = AddInput(input3); output1_ = AddOutput(output1); output2_ = AddOutput(output2); output3_ = AddOutput(output3); output4_ = AddOutput(output4); flexbuffers::Builder fbb; fbb.Map([&]() { fbb.Int("max_detections", 3); fbb.Int("max_classes_per_detection", max_classes_per_detection); fbb.Float("nms_score_threshold", 0.0); fbb.Float("nms_iou_threshold", 0.5); fbb.Int("num_classes", 2); fbb.Float("y_scale", 10.0); fbb.Float("x_scale", 10.0); fbb.Float("h_scale", 5.0); fbb.Float("w_scale", 5.0); }); fbb.Finish(); SetCustomOp("TFLite_Detection_PostProcess", fbb.GetBuffer(), Register_DETECTION_POSTPROCESS); BuildInterpreter({GetShape(input1_), GetShape(input2_), GetShape(input3_)}); } int input1() { return input1_; } int input2() { return input2_; } int input3() { return input3_; } template <class T> void SetInput1(std::initializer_list<T> data) { PopulateTensor<T>(input1_, data); } template <class T> void SetInput2(std::initializer_list<T> data) { PopulateTensor<T>(input2_, data); } template <class T> void SetInput3(std::initializer_list<T> data) { PopulateTensor<T>(input3_, data); } template <class T> std::vector<T> GetOutput1() { return ExtractVector<T>(output1_); } template <class T> std::vector<T> GetOutput2() { return ExtractVector<T>(output2_); } template <class T> std::vector<T> GetOutput3() { return ExtractVector<T>(output3_); } template <class T> std::vector<T> GetOutput4() { return ExtractVector<T>(output4_); } std::vector<int> GetOutputShape1() { return GetTensorShape(output1_); } std::vector<int> GetOutputShape2() { return GetTensorShape(output2_); } std::vector<int> GetOutputShape3() { return GetTensorShape(output3_); } std::vector<int> GetOutputShape4() { return GetTensorShape(output4_); } protected: int input1_; int input2_; int input3_; int output1_; int output2_; int output3_; int output4_; }; TEST(DetectionPostprocessOpTest, FloatTest) { BaseDetectionPostprocessOpModel m( {TensorType_FLOAT32, {1, 6, 4}}, {TensorType_FLOAT32, {1, 6, 3}}, {TensorType_FLOAT32, {6, 4}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}); m.SetInput1<float>({ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }); m.SetInput2<float>({0., .9, .8, 0., .75, .72, 0., .6, .5, 0., .93, .95, 0., .5, .4, 0., .3, .2}); m.SetInput3<float>({ 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 10.5, 1.0, 1.0, 0.5, 10.5, 1.0, 1.0, 0.5, 100.5, 1.0, 1.0 }); ASSERT_EQ(m.Invoke(), kTfLiteOk); std::vector<int> output_shape1 = m.GetOutputShape1(); EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4)); EXPECT_THAT( m.GetOutput1<float>(), ElementsAreArray(ArrayFloatNear( {0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 1.0, 1.0, 0.0, 100.0, 1.0, 101.0}, 1e-1))); std::vector<int> output_shape2 = m.GetOutputShape2(); EXPECT_THAT(output_shape2, ElementsAre(1, 3)); EXPECT_THAT(m.GetOutput2<float>(), ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-4))); std::vector<int> output_shape3 = m.GetOutputShape3(); EXPECT_THAT(output_shape3, ElementsAre(1, 3)); EXPECT_THAT(m.GetOutput3<float>(), ElementsAreArray(ArrayFloatNear({0.95, 0.9, 0.3}, 1e-4))); std::vector<int> output_shape4 = m.GetOutputShape4(); EXPECT_THAT(output_shape4, ElementsAre(1)); EXPECT_THAT(m.GetOutput4<float>(), ElementsAreArray(ArrayFloatNear({3.0}, 1e-4))); } TEST(DetectionPostprocessOpTest, FloatTestWithDegeneratedBox) { BaseDetectionPostprocessOpModel m( {TensorType_FLOAT32, {1, 2, 4}}, {TensorType_FLOAT32, {1, 2, 3}}, {TensorType_FLOAT32, {2, 4}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}); m.SetInput1<float>({ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, }); m.SetInput2<float>({ 0., .9, .8, 0., .2, .7 }); m.SetInput3<float>({ 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 0.0, 0.0 }); ASSERT_EQ(m.Invoke(), kTfLiteOk); std::vector<int> output_shape4 = m.GetOutputShape4(); EXPECT_THAT(output_shape4, ElementsAre(1)); const int num_detections = static_cast<int>(m.GetOutput4<float>()[0]); EXPECT_EQ(num_detections, 2); std::vector<int> output_shape1 = m.GetOutputShape1(); EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4)); std::vector<float> detection_boxes = m.GetOutput1<float>(); detection_boxes.resize(num_detections * 4); EXPECT_THAT(detection_boxes, ElementsAreArray(ArrayFloatNear({0.0, 0.0, 1.0, 1.0, 0.5, 0.5, 0.5, 0.5}, 1e-1))); std::vector<int> output_shape2 = m.GetOutputShape2(); EXPECT_THAT(output_shape2, ElementsAre(1, 3)); std::vector<float> detection_classes = m.GetOutput2<float>(); detection_classes.resize(num_detections); EXPECT_THAT(detection_classes, ElementsAreArray(ArrayFloatNear({0, 1}, 1e-4))); std::vector<int> output_shape3 = m.GetOutputShape3(); EXPECT_THAT(output_shape3, ElementsAre(1, 3)); std::vector<float> detection_scores = m.GetOutput3<float>(); detection_scores.resize(num_detections); EXPECT_THAT(detection_scores, ElementsAreArray(ArrayFloatNear({0.9, 0.7}, 1e-4))); } TEST(DetectionPostprocessOpTest, QuantizedTest) { BaseDetectionPostprocessOpModel m( {TensorType_UINT8, {1, 6, 4}, -1.0, 1.0}, {TensorType_UINT8, {1, 6, 3}, 0.0, 1.0}, {TensorType_UINT8, {6, 4}, 0.0, 100.5}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}); std::vector<std::vector<float>> inputs1 = {{ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }}; m.QuantizeAndPopulate<uint8_t>(m.input1(), inputs1[0]); std::vector<std::vector<float>> inputs2 = {{0., .9, .8, 0., .75, .72, 0., .6, .5, 0., .93, .95, 0., .5, .4, 0., .3, .2}}; m.QuantizeAndPopulate<uint8_t>(m.input2(), inputs2[0]); std::vector<std::vector<float>> inputs3 = {{ 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 10.5, 1.0, 1.0, 0.5, 10.5, 1.0, 1.0, 0.5, 100.5, 1.0, 1.0 }}; m.QuantizeAndPopulate<uint8_t>(m.input3(), inputs3[0]); ASSERT_EQ(m.Invoke(), kTfLiteOk); std::vector<int> output_shape1 = m.GetOutputShape1(); EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4)); EXPECT_THAT( m.GetOutput1<float>(), ElementsAreArray(ArrayFloatNear( {0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 1.0, 1.0, 0.0, 100.0, 1.0, 101.0}, 3e-1))); std::vector<int> output_shape2 = m.GetOutputShape2(); EXPECT_THAT(output_shape2, ElementsAre(1, 3)); EXPECT_THAT(m.GetOutput2<float>(), ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-1))); std::vector<int> output_shape3 = m.GetOutputShape3(); EXPECT_THAT(output_shape3, ElementsAre(1, 3)); EXPECT_THAT(m.GetOutput3<float>(), ElementsAreArray(ArrayFloatNear({0.95, 0.9, 0.3}, 1e-1))); std::vector<int> output_shape4 = m.GetOutputShape4(); EXPECT_THAT(output_shape4, ElementsAre(1)); EXPECT_THAT(m.GetOutput4<float>(), ElementsAreArray(ArrayFloatNear({3.0}, 1e-1))); } TEST(DetectionPostprocessOpTest, MaxClass2Test) { BaseDetectionPostprocessOpModel m( {TensorType_FLOAT32, {1, 6, 4}}, {TensorType_FLOAT32, {1, 6, 3}}, {TensorType_FLOAT32, {6, 4}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, 2); m.SetInput1<float>({ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }); m.SetInput2<float>({0., .9, .8, 0., .75, .72, 0., .6, .5, 0., .93, .95, 0., .5, .4, 0., .3, .2}); m.SetInput3<float>({ 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 10.5, 1.0, 1.0, 0.5, 10.5, 1.0, 1.0, 0.5, 100.5, 1.0, 1.0 }); ASSERT_EQ(m.Invoke(), kTfLiteOk); std::vector<int> output_shape1 = m.GetOutputShape1(); EXPECT_THAT(output_shape1, ElementsAre(1, 6, 4)); EXPECT_THAT(m.GetOutput1<float>(), ElementsAreArray(ArrayFloatNear( {0.0, 10.0, 1.0, 11.0, 0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 100.0, 1.0, 101.0, 0.0, 100.0, 1.0, 101.0}, 1e-1))); std::vector<int> output_shape2 = m.GetOutputShape2(); EXPECT_THAT(output_shape2, ElementsAre(1, 6)); EXPECT_THAT(m.GetOutput2<float>(), ElementsAreArray(ArrayFloatNear({1, 0, 0, 1, 0, 1}, 1e-4))); std::vector<int> output_shape3 = m.GetOutputShape3(); EXPECT_THAT(output_shape3, ElementsAre(1, 6)); EXPECT_THAT( m.GetOutput3<float>(), ElementsAreArray(ArrayFloatNear({0.95, .93, 0.9, 0.8, 0.3, 0.2}, 1e-4))); std::vector<int> output_shape4 = m.GetOutputShape4(); EXPECT_THAT(output_shape4, ElementsAre(1)); EXPECT_THAT(m.GetOutput4<float>(), ElementsAreArray(ArrayFloatNear({3.0}, 1e-4))); } class DetectionPostprocessOpModelwithRegularNMS : public SingleOpModel { public: DetectionPostprocessOpModelwithRegularNMS( const TensorData& input1, const TensorData& input2, const TensorData& input3, const TensorData& output1, const TensorData& output2, const TensorData& output3, const TensorData& output4, bool use_regular_nms, int num_threads = 1) { input1_ = AddInput(input1); input2_ = AddInput(input2); input3_ = AddInput(input3); output1_ = AddOutput(output1); output2_ = AddOutput(output2); output3_ = AddOutput(output3); output4_ = AddOutput(output4); flexbuffers::Builder fbb; fbb.Map([&]() { fbb.Int("max_detections", 3); fbb.Int("max_classes_per_detection", 1); fbb.Int("detections_per_class", 1); fbb.Bool("use_regular_nms", use_regular_nms); fbb.Float("nms_score_threshold", 0.0); fbb.Float("nms_iou_threshold", 0.5); fbb.Int("num_classes", 2); fbb.Float("y_scale", 10.0); fbb.Float("x_scale", 10.0); fbb.Float("h_scale", 5.0); fbb.Float("w_scale", 5.0); }); fbb.Finish(); SetCustomOp("TFLite_Detection_PostProcess", fbb.GetBuffer(), Register_DETECTION_POSTPROCESS); BuildInterpreter({GetShape(input1_), GetShape(input2_), GetShape(input3_)}, num_threads, false, true); } int input1() { return input1_; } int input2() { return input2_; } int input3() { return input3_; } template <class T> void SetInput1(std::initializer_list<T> data) { PopulateTensor<T>(input1_, data); } template <class T> void SetInput2(std::initializer_list<T> data) { PopulateTensor<T>(input2_, data); } template <class T> void SetInput3(std::initializer_list<T> data) { PopulateTensor<T>(input3_, data); } template <class T> std::vector<T> GetOutput1() { return ExtractVector<T>(output1_); } template <class T> std::vector<T> GetOutput2() { return ExtractVector<T>(output2_); } template <class T> std::vector<T> GetOutput3() { return ExtractVector<T>(output3_); } template <class T> std::vector<T> GetOutput4() { return ExtractVector<T>(output4_); } std::vector<int> GetOutputShape1() { return GetTensorShape(output1_); } std::vector<int> GetOutputShape2() { return GetTensorShape(output2_); } std::vector<int> GetOutputShape3() { return GetTensorShape(output3_); } std::vector<int> GetOutputShape4() { return GetTensorShape(output4_); } protected: int input1_; int input2_; int input3_; int output1_; int output2_; int output3_; int output4_; }; TEST(DetectionPostprocessOpTest, FloatTestFastNMS) { DetectionPostprocessOpModelwithRegularNMS m( {TensorType_FLOAT32, {1, 6, 4}}, {TensorType_FLOAT32, {1, 6, 3}}, {TensorType_FLOAT32, {6, 4}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, false); m.SetInput1<float>({ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }); m.SetInput2<float>({0., .9, .8, 0., .75, .72, 0., .6, .5, 0., .93, .95, 0., .5, .4, 0., .3, .2}); m.SetInput3<float>({ 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 10.5, 1.0, 1.0, 0.5, 10.5, 1.0, 1.0, 0.5, 100.5, 1.0, 1.0 }); ASSERT_EQ(m.Invoke(), kTfLiteOk); std::vector<int> output_shape1 = m.GetOutputShape1(); EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4)); EXPECT_THAT( m.GetOutput1<float>(), ElementsAreArray(ArrayFloatNear( {0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 1.0, 1.0, 0.0, 100.0, 1.0, 101.0}, 1e-1))); std::vector<int> output_shape2 = m.GetOutputShape2(); EXPECT_THAT(output_shape2, ElementsAre(1, 3)); EXPECT_THAT(m.GetOutput2<float>(), ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-4))); std::vector<int> output_shape3 = m.GetOutputShape3(); EXPECT_THAT(output_shape3, ElementsAre(1, 3)); EXPECT_THAT(m.GetOutput3<float>(), ElementsAreArray(ArrayFloatNear({0.95, 0.9, 0.3}, 1e-4))); std::vector<int> output_shape4 = m.GetOutputShape4(); EXPECT_THAT(output_shape4, ElementsAre(1)); EXPECT_THAT(m.GetOutput4<float>(), ElementsAreArray(ArrayFloatNear({3.0}, 1e-4))); } TEST(DetectionPostprocessOpTest, QuantizedTestFastNMS) { DetectionPostprocessOpModelwithRegularNMS m( {TensorType_UINT8, {1, 6, 4}, -1.0, 1.0}, {TensorType_UINT8, {1, 6, 3}, 0.0, 1.0}, {TensorType_UINT8, {6, 4}, 0.0, 100.5}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, false); std::vector<std::vector<float>> inputs1 = {{ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }}; m.QuantizeAndPopulate<uint8_t>(m.input1(), inputs1[0]); std::vector<std::vector<float>> inputs2 = {{0., .9, .8, 0., .75, .72, 0., .6, .5, 0., .93, .95, 0., .5, .4, 0., .3, .2}}; m.QuantizeAndPopulate<uint8_t>(m.input2(), inputs2[0]); std::vector<std::vector<float>> inputs3 = {{ 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 10.5, 1.0, 1.0, 0.5, 10.5, 1.0, 1.0, 0.5, 100.5, 1.0, 1.0 }}; m.QuantizeAndPopulate<uint8_t>(m.input3(), inputs3[0]); ASSERT_EQ(m.Invoke(), kTfLiteOk); std::vector<int> output_shape1 = m.GetOutputShape1(); EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4)); EXPECT_THAT( m.GetOutput1<float>(), ElementsAreArray(ArrayFloatNear( {0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 1.0, 1.0, 0.0, 100.0, 1.0, 101.0}, 3e-1))); std::vector<int> output_shape2 = m.GetOutputShape2(); EXPECT_THAT(output_shape2, ElementsAre(1, 3)); EXPECT_THAT(m.GetOutput2<float>(), ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-1))); std::vector<int> output_shape3 = m.GetOutputShape3(); EXPECT_THAT(output_shape3, ElementsAre(1, 3)); EXPECT_THAT(m.GetOutput3<float>(), ElementsAreArray(ArrayFloatNear({0.95, 0.9, 0.3}, 1e-1))); std::vector<int> output_shape4 = m.GetOutputShape4(); EXPECT_THAT(output_shape4, ElementsAre(1)); EXPECT_THAT(m.GetOutput4<float>(), ElementsAreArray(ArrayFloatNear({3.0}, 1e-1))); } class DetectionPostprocessOpRegularTest : public ::testing::TestWithParam<::testing::tuple<TensorType, int>> { protected: DetectionPostprocessOpRegularTest() : tensor_type_(::testing::get<0>(GetParam())), num_threads_(::testing::get<1>(GetParam())) {} TensorType tensor_type_; int num_threads_; }; INSTANTIATE_TEST_SUITE_P( DetectionPostprocessOpRegularTest, DetectionPostprocessOpRegularTest, ::testing::Combine(::testing::Values(TensorType_FLOAT32, TensorType_UINT8), ::testing::Values(1, 2))); TEST_P(DetectionPostprocessOpRegularTest, RegularNMS) { TensorData input1, input2, input3; if (tensor_type_ == TensorType_UINT8) { input1 = {tensor_type_, {1, 6, 4}, -1.0, 1.0}; input2 = {tensor_type_, {1, 6, 3}, 0.0, 1.0}; input3 = {tensor_type_, {6, 4}, 0.0, 100.5}; } else { input1 = {tensor_type_, {1, 6, 4}}; input2 = {tensor_type_, {1, 6, 3}}; input3 = {tensor_type_, {6, 4}}; } DetectionPostprocessOpModelwithRegularNMS m( input1, input2, input3, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, true, num_threads_); auto inputs1 = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f }; if (tensor_type_ == TensorType_UINT8) { m.QuantizeAndPopulate<uint8_t>(m.input1(), std::vector<float>{inputs1}); } else { m.SetInput1<float>(inputs1); } auto inputs2 = {0.f, .9f, .8f, 0.f, .75f, .72f, 0.f, .6f, .5f, 0.f, .93f, .95f, 0.f, .5f, .4f, 0.f, .3f, .2f}; if (tensor_type_ == TensorType_UINT8) { m.QuantizeAndPopulate<uint8_t>(m.input2(), std::vector<float>{inputs2}); } else { m.SetInput2<float>(inputs2); } auto inputs3 = { 0.5f, 0.5f, 1.0f, 1.0f, 0.5f, 0.5f, 1.0f, 1.0f, 0.5f, 0.5f, 1.0f, 1.0f, 0.5f, 10.5f, 1.0f, 1.0f, 0.5f, 10.5f, 1.0f, 1.0f, 0.5f, 100.5f, 1.0f, 1.0f }; if (tensor_type_ == TensorType_UINT8) { m.QuantizeAndPopulate<uint8_t>(m.input3(), std::vector<float>{inputs3}); } else { m.SetInput3<float>(inputs3); } ASSERT_EQ(m.Invoke(), kTfLiteOk); std::vector<int> output_shape1 = m.GetOutputShape1(); EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4)); if (tensor_type_ == TensorType_UINT8) { EXPECT_THAT( m.GetOutput1<float>(), ElementsAreArray(ArrayFloatNear( {0.0, 10.0, 1.0, 11.0, 0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 0.0, 0.0}, 3e-1))); } else { EXPECT_THAT( m.GetOutput1<float>(), ElementsAreArray(ArrayFloatNear( {0.0, 10.0, 1.0, 11.0, 0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 0.0, 0.0}, 3e-4))); } std::vector<int> output_shape2 = m.GetOutputShape2(); EXPECT_THAT(output_shape2, ElementsAre(1, 3)); if (tensor_type_ == TensorType_UINT8) { EXPECT_THAT(m.GetOutput2<float>(), ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-1))); } else { EXPECT_THAT(m.GetOutput2<float>(), ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-4))); } std::vector<int> output_shape3 = m.GetOutputShape3(); EXPECT_THAT(output_shape3, ElementsAre(1, 3)); if (tensor_type_ == TensorType_UINT8) { EXPECT_THAT(m.GetOutput3<float>(), ElementsAreArray(ArrayFloatNear({0.95, 0.9, 0.0}, 1e-1))); } else { EXPECT_THAT(m.GetOutput3<float>(), ElementsAreArray(ArrayFloatNear({0.95, 0.93, 0.0}, 1e-4))); } std::vector<int> output_shape4 = m.GetOutputShape4(); EXPECT_THAT(output_shape4, ElementsAre(1)); if (tensor_type_ == TensorType_UINT8) { EXPECT_THAT(m.GetOutput4<float>(), ElementsAreArray(ArrayFloatNear({2.0}, 1e-1))); } else { EXPECT_THAT(m.GetOutput4<float>(), ElementsAreArray(ArrayFloatNear({2.0}, 1e-4))); } } TEST(DetectionPostprocessOpTest, FloatTestwithNoBackgroundClassAndNoKeypoints) { DetectionPostprocessOpModelwithRegularNMS m( {TensorType_FLOAT32, {1, 6, 4}}, {TensorType_FLOAT32, {1, 6, 2}}, {TensorType_FLOAT32, {6, 4}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, false); m.SetInput1<float>({ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }); m.SetInput2<float>({.9, .8, .75, .72, .6, .5, .93, .95, .5, .4, .3, .2}); m.SetInput3<float>({ 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 10.5, 1.0, 1.0, 0.5, 10.5, 1.0, 1.0, 0.5, 100.5, 1.0, 1.0 }); ASSERT_EQ(m.Invoke(), kTfLiteOk); std::vector<int> output_shape1 = m.GetOutputShape1(); EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4)); EXPECT_THAT( m.GetOutput1<float>(), ElementsAreArray(ArrayFloatNear( {0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 1.0, 1.0, 0.0, 100.0, 1.0, 101.0}, 1e-1))); std::vector<int> output_shape2 = m.GetOutputShape2(); EXPECT_THAT(output_shape2, ElementsAre(1, 3)); EXPECT_THAT(m.GetOutput2<float>(), ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-1))); std::vector<int> output_shape3 = m.GetOutputShape3(); EXPECT_THAT(output_shape3, ElementsAre(1, 3)); EXPECT_THAT(m.GetOutput3<float>(), ElementsAreArray(ArrayFloatNear({0.95, 0.9, 0.3}, 1e-1))); std::vector<int> output_shape4 = m.GetOutputShape4(); EXPECT_THAT(output_shape4, ElementsAre(1)); EXPECT_THAT(m.GetOutput4<float>(), ElementsAreArray(ArrayFloatNear({3.0}, 1e-1))); } TEST(DetectionPostprocessOpTest, FloatTestwithBackgroundClassAndKeypoints) { DetectionPostprocessOpModelwithRegularNMS m( {TensorType_FLOAT32, {1, 6, 5}}, {TensorType_FLOAT32, {1, 6, 3}}, {TensorType_FLOAT32, {6, 4}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, false); m.SetInput1<float>({ 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, -1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, }); m.SetInput2<float>({0., .9, .8, 0., .75, .72, 0., .6, .5, 0., .93, .95, 0., .5, .4, 0., .3, .2}); m.SetInput3<float>({ 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 10.5, 1.0, 1.0, 0.5, 10.5, 1.0, 1.0, 0.5, 100.5, 1.0, 1.0 }); ASSERT_EQ(m.Invoke(), kTfLiteOk); std::vector<int> output_shape1 = m.GetOutputShape1(); EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4)); EXPECT_THAT( m.GetOutput1<float>(), ElementsAreArray(ArrayFloatNear( {0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 1.0, 1.0, 0.0, 100.0, 1.0, 101.0}, 1e-1))); std::vector<int> output_shape2 = m.GetOutputShape2(); EXPECT_THAT(output_shape2, ElementsAre(1, 3)); EXPECT_THAT(m.GetOutput2<float>(), ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-4))); std::vector<int> output_shape3 = m.GetOutputShape3(); EXPECT_THAT(output_shape3, ElementsAre(1, 3)); EXPECT_THAT(m.GetOutput3<float>(), ElementsAreArray(ArrayFloatNear({0.95, 0.9, 0.3}, 1e-4))); std::vector<int> output_shape4 = m.GetOutputShape4(); EXPECT_THAT(output_shape4, ElementsAre(1)); EXPECT_THAT(m.GetOutput4<float>(), ElementsAreArray(ArrayFloatNear({3.0}, 1e-4))); } TEST(DetectionPostprocessOpTest, QuantizedTestwithNoBackgroundClassAndKeypoints) { DetectionPostprocessOpModelwithRegularNMS m( {TensorType_UINT8, {1, 6, 5}, -1.0, 1.0}, {TensorType_UINT8, {1, 6, 2}, 0.0, 1.0}, {TensorType_UINT8, {6, 4}, 0.0, 100.5}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, false); std::vector<std::vector<float>> inputs1 = {{ 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, -1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0 }}; m.QuantizeAndPopulate<uint8_t>(m.input1(), inputs1[0]); std::vector<std::vector<float>> inputs2 = { {.9, .8, .75, .72, .6, .5, .93, .95, .5, .4, .3, .2}}; m.QuantizeAndPopulate<uint8_t>(m.input2(), inputs2[0]); std::vector<std::vector<float>> inputs3 = {{ 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 10.5, 1.0, 1.0, 0.5, 10.5, 1.0, 1.0, 0.5, 100.5, 1.0, 1.0 }}; m.QuantizeAndPopulate<uint8_t>(m.input3(), inputs3[0]); ASSERT_EQ(m.Invoke(), kTfLiteOk); std::vector<int> output_shape1 = m.GetOutputShape1(); EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4)); EXPECT_THAT( m.GetOutput1<float>(), ElementsAreArray(ArrayFloatNear( {0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 1.0, 1.0, 0.0, 100.0, 1.0, 101.0}, 3e-1))); std::vector<int> output_shape2 = m.GetOutputShape2(); EXPECT_THAT(output_shape2, ElementsAre(1, 3)); EXPECT_THAT(m.GetOutput2<float>(), ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-1))); std::vector<int> output_shape3 = m.GetOutputShape3(); EXPECT_THAT(output_shape3, ElementsAre(1, 3)); EXPECT_THAT(m.GetOutput3<float>(), ElementsAreArray(ArrayFloatNear({0.95, 0.9, 0.3}, 1e-1))); std::vector<int> output_shape4 = m.GetOutputShape4(); EXPECT_THAT(output_shape4, ElementsAre(1)); EXPECT_THAT(m.GetOutput4<float>(), ElementsAreArray(ArrayFloatNear({3.0}, 1e-1))); } TEST(DetectionPostprocessOpTest, FloatTestwithNoBackgroundClassAndKeypoints) { DetectionPostprocessOpModelwithRegularNMS m( {TensorType_FLOAT32, {1, 6, 5}}, {TensorType_FLOAT32, {1, 6, 2}}, {TensorType_FLOAT32, {6, 4}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, false); m.SetInput1<float>({ 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, -1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, }); m.SetInput2<float>({.9, .8, .75, .72, .6, .5, .93, .95, .5, .4, .3, .2}); m.SetInput3<float>({ 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 10.5, 1.0, 1.0, 0.5, 10.5, 1.0, 1.0, 0.5, 100.5, 1.0, 1.0 }); ASSERT_EQ(m.Invoke(), kTfLiteOk); std::vector<int> output_shape1 = m.GetOutputShape1(); EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4)); EXPECT_THAT( m.GetOutput1<float>(), ElementsAreArray(ArrayFloatNear( {0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 1.0, 1.0, 0.0, 100.0, 1.0, 101.0}, 1e-1))); std::vector<int> output_shape2 = m.GetOutputShape2(); EXPECT_THAT(output_shape2, ElementsAre(1, 3)); EXPECT_THAT(m.GetOutput2<float>(), ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-4))); std::vector<int> output_shape3 = m.GetOutputShape3(); EXPECT_THAT(output_shape3, ElementsAre(1, 3)); EXPECT_THAT(m.GetOutput3<float>(), ElementsAreArray(ArrayFloatNear({0.95, 0.9, 0.3}, 1e-4))); std::vector<int> output_shape4 = m.GetOutputShape4(); EXPECT_THAT(output_shape4, ElementsAre(1)); EXPECT_THAT(m.GetOutput4<float>(), ElementsAreArray(ArrayFloatNear({3.0}, 1e-4))); } TEST(DetectionPostprocessOpTest, QuantizedTestwithNoBackgroundClassAndKeypointsStableSort) { DetectionPostprocessOpModelwithRegularNMS m( {TensorType_UINT8, {1, 6, 5}, -1.0, 1.0}, {TensorType_UINT8, {1, 6, 2}, 0.0, 1.0}, {TensorType_UINT8, {6, 4}, 0.0, 100.5}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, false); std::vector<std::vector<float>> inputs1 = {{ 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, -1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0 }}; m.QuantizeAndPopulate<uint8_t>(m.input1(), inputs1[0]); std::vector<std::vector<float>> inputs2 = { {0.015625, 0.007812, 0.003906, 0.015625, 0.015625, 0.007812, 0.019531, 0.019531, 0.007812, 0.003906, 0.003906, 0.003906}}; m.QuantizeAndPopulate<uint8_t>(m.input2(), inputs2[0]); std::vector<std::vector<float>> inputs3 = {{ 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 10.5, 1.0, 1.0, 0.5, 10.5, 1.0, 1.0, 0.5, 100.5, 1.0, 1.0 }}; m.QuantizeAndPopulate<uint8_t>(m.input3(), inputs3[0]); ASSERT_EQ(m.Invoke(), kTfLiteOk); std::vector<int> output_shape1 = m.GetOutputShape1(); EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4)); EXPECT_THAT( m.GetOutput1<float>(), ElementsAreArray(ArrayFloatNear( {0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 1.0, 1.0, 0.0, 100.0, 1.0, 101.0}, 3e-1))); std::vector<int> output_shape2 = m.GetOutputShape2(); EXPECT_THAT(output_shape2, ElementsAre(1, 3)); EXPECT_THAT(m.GetOutput2<float>(), ElementsAreArray(ArrayFloatNear({0, 0, 0}, 1e-1))); std::vector<int> output_shape3 = m.GetOutputShape3(); EXPECT_THAT(output_shape3, ElementsAre(1, 3)); EXPECT_THAT(m.GetOutput3<float>(), ElementsAreArray( ArrayFloatNear({0.0196078, 0.0156863, 0.00392157}, 1e-7))); std::vector<int> output_shape4 = m.GetOutputShape4(); EXPECT_THAT(output_shape4, ElementsAre(1)); EXPECT_THAT(m.GetOutput4<float>(), ElementsAreArray(ArrayFloatNear({3.0}, 1e-1))); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/detection_postprocess.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/detection_postprocess_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0bee8605-291b-4815-9e79-77612b2128b2
cpp
tensorflow/tensorflow
type_to_tflitetype
tensorflow/lite/type_to_tflitetype.h
tensorflow/lite/type_to_tflitetype_test.cc
#ifndef TENSORFLOW_LITE_TYPE_TO_TFLITETYPE_H_ #define TENSORFLOW_LITE_TYPE_TO_TFLITETYPE_H_ #include <complex> #include <string> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/portable_type_to_tflitetype.h" namespace tflite { MATCH_TYPE_AND_TFLITE_TYPE(std::string, kTfLiteString); MATCH_TYPE_AND_TFLITE_TYPE(std::complex<float>, kTfLiteComplex64); MATCH_TYPE_AND_TFLITE_TYPE(std::complex<double>, kTfLiteComplex128); } #endif
#include "tensorflow/lite/type_to_tflitetype.h" #include <string> #include <type_traits> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/portable_type_to_tflitetype.h" namespace tflite { namespace { TEST(TypeToTfLiteType, TypeMapsAreInverseOfEachOther) { EXPECT_EQ(kTfLiteInt16, typeToTfLiteType<TfLiteTypeToType<kTfLiteInt16>::Type>()); EXPECT_EQ(kTfLiteUInt16, typeToTfLiteType<TfLiteTypeToType<kTfLiteUInt16>::Type>()); EXPECT_EQ(kTfLiteInt32, typeToTfLiteType<TfLiteTypeToType<kTfLiteInt32>::Type>()); EXPECT_EQ(kTfLiteUInt32, typeToTfLiteType<TfLiteTypeToType<kTfLiteUInt32>::Type>()); EXPECT_EQ(kTfLiteFloat32, typeToTfLiteType<TfLiteTypeToType<kTfLiteFloat32>::Type>()); EXPECT_EQ(kTfLiteUInt8, typeToTfLiteType<TfLiteTypeToType<kTfLiteUInt8>::Type>()); EXPECT_EQ(kTfLiteInt8, typeToTfLiteType<TfLiteTypeToType<kTfLiteInt8>::Type>()); EXPECT_EQ(kTfLiteBool, typeToTfLiteType<TfLiteTypeToType<kTfLiteBool>::Type>()); EXPECT_EQ(kTfLiteComplex64, typeToTfLiteType<TfLiteTypeToType<kTfLiteComplex64>::Type>()); EXPECT_EQ(kTfLiteComplex128, typeToTfLiteType<TfLiteTypeToType<kTfLiteComplex128>::Type>()); EXPECT_EQ(kTfLiteString, typeToTfLiteType<TfLiteTypeToType<kTfLiteString>::Type>()); EXPECT_EQ(kTfLiteFloat16, typeToTfLiteType<TfLiteTypeToType<kTfLiteFloat16>::Type>()); EXPECT_EQ(kTfLiteFloat64, typeToTfLiteType<TfLiteTypeToType<kTfLiteFloat64>::Type>()); } TEST(TypeToTfLiteType, Sanity) { EXPECT_EQ(kTfLiteFloat32, typeToTfLiteType<float>()); EXPECT_EQ(kTfLiteBool, typeToTfLiteType<bool>()); EXPECT_EQ(kTfLiteString, typeToTfLiteType<std::string>()); static_assert( std::is_same<float, TfLiteTypeToType<kTfLiteFloat32>::Type>::value, "TfLiteTypeToType test failure"); static_assert(std::is_same<bool, TfLiteTypeToType<kTfLiteBool>::Type>::value, "TfLiteTypeToType test failure"); static_assert( std::is_same<std::string, TfLiteTypeToType<kTfLiteString>::Type>::value, "TfLiteTypeToType test failure"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/type_to_tflitetype.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/type_to_tflitetype_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2ab755d8-89d5-4e68-8d5d-83ff2fadfc9a
cpp
google/quiche
quic_interval
quiche/quic/core/quic_interval.h
quiche/quic/core/quic_interval_test.cc
#ifndef QUICHE_QUIC_CORE_QUIC_INTERVAL_H_ #define QUICHE_QUIC_CORE_QUIC_INTERVAL_H_ #include <stddef.h> #include <algorithm> #include <ostream> #include <type_traits> #include <utility> #include <vector> #include "quiche/quic/platform/api/quic_export.h" namespace quic { template <typename T> class QUICHE_NO_EXPORT QuicInterval { private: template <typename U> class QUICHE_NO_EXPORT DiffTypeOrVoid { private: template <typename V> static auto f(const V* v) -> decltype(*v - *v); template <typename V> static void f(...); public: using type = typename std::decay<decltype(f<U>(nullptr))>::type; }; public: QuicInterval() : min_(), max_() {} QuicInterval(const T& min, const T& max) : min_(min), max_(max) {} template <typename U1, typename U2, typename = typename std::enable_if< std::is_convertible<U1, T>::value && std::is_convertible<U2, T>::value>::type> QuicInterval(U1&& min, U2&& max) : min_(std::forward<U1>(min)), max_(std::forward<U2>(max)) {} const T& min() const { return min_; } const T& max() const { return max_; } void SetMin(const T& t) { min_ = t; } void SetMax(const T& t) { max_ = t; } void Set(const T& min, const T& max) { SetMin(min); SetMax(max); } void Clear() { *this = {}; } bool Empty() const { return min() >= max(); } typename DiffTypeOrVoid<T>::type Length() const { return (Empty() ? min() : max()) - min(); } bool Contains(const T& t) const { return min() <= t && max() > t; } bool Contains(const QuicInterval& i) const { return !Empty() && !i.Empty() && min() <= i.min() && max() >= i.max(); } bool Intersects(const QuicInterval& i) const { return !Empty() && !i.Empty() && min() < i.max() && max() > i.min(); } bool Intersects(const QuicInterval& i, QuicInterval* out) const; bool IntersectWith(const QuicInterval& i); bool Separated(const QuicInterval& other) const { if (Empty() || other.Empty()) return true; return other.max() < min() || max() < other.min(); } bool SpanningUnion(const QuicInterval& i); bool Difference(const QuicInterval& i, std::vector<QuicInterval*>* difference) const; bool Difference(const QuicInterval& i, QuicInterval* lo, QuicInterval* hi) const; friend bool operator==(const QuicInterval& a, const QuicInterval& b) { bool ae = a.Empty(); bool be = b.Empty(); if (ae && be) return true; if (ae != be) return false; return a.min() == b.min() && a.max() == b.max(); } friend bool operator!=(const QuicInterval& a, const QuicInterval& b) { return !(a == b); } friend bool operator<(const QuicInterval& a, const QuicInterval& b) { return a.min() < b.min() || (!(b.min() < a.min()) && b.max() < a.max()); } private: T min_; T max_; }; template <typename T> QuicInterval<T> MakeQuicInterval(T&& lhs, T&& rhs) { return QuicInterval<T>(std::forward<T>(lhs), std::forward<T>(rhs)); } template <typename T> auto operator<<(std::ostream& out, const QuicInterval<T>& i) -> decltype(out << i.min()) { return out << "[" << i.min() << ", " << i.max() << ")"; } template <typename T> bool QuicInterval<T>::Intersects(const QuicInterval& i, QuicInterval* out) const { if (!Intersects(i)) return false; if (out != nullptr) { *out = QuicInterval(std::max(min(), i.min()), std::min(max(), i.max())); } return true; } template <typename T> bool QuicInterval<T>::IntersectWith(const QuicInterval& i) { if (Empty()) return false; bool modified = false; if (i.min() > min()) { SetMin(i.min()); modified = true; } if (i.max() < max()) { SetMax(i.max()); modified = true; } return modified; } template <typename T> bool QuicInterval<T>::SpanningUnion(const QuicInterval& i) { if (i.Empty()) return false; if (Empty()) { *this = i; return true; } bool modified = false; if (i.min() < min()) { SetMin(i.min()); modified = true; } if (i.max() > max()) { SetMax(i.max()); modified = true; } return modified; } template <typename T> bool QuicInterval<T>::Difference(const QuicInterval& i, std::vector<QuicInterval*>* difference) const { if (Empty()) { return false; } if (i.Empty()) { difference->push_back(new QuicInterval(*this)); return false; } if (min() < i.max() && min() >= i.min() && max() > i.max()) { difference->push_back(new QuicInterval(i.max(), max())); return true; } if (max() > i.min() && max() <= i.max() && min() < i.min()) { difference->push_back(new QuicInterval(min(), i.min())); return true; } if (min() < i.min() && max() > i.max()) { difference->push_back(new QuicInterval(min(), i.min())); difference->push_back(new QuicInterval(i.max(), max())); return true; } if (min() >= i.min() && max() <= i.max()) { return true; } difference->push_back(new QuicInterval(*this)); return false; } template <typename T> bool QuicInterval<T>::Difference(const QuicInterval& i, QuicInterval* lo, QuicInterval* hi) const { *lo = {}; *hi = {}; if (Empty()) return false; if (i.Empty()) { *lo = *this; return false; } if (min() < i.max() && min() >= i.min() && max() > i.max()) { *hi = QuicInterval(i.max(), max()); return true; } if (max() > i.min() && max() <= i.max() && min() < i.min()) { *lo = QuicInterval(min(), i.min()); return true; } if (min() < i.min() && max() > i.max()) { *lo = QuicInterval(min(), i.min()); *hi = QuicInterval(i.max(), max()); return true; } if (min() >= i.min() && max() <= i.max()) { return true; } *lo = *this; return false; } } #endif
#include "quiche/quic/core/quic_interval.h" #include <ostream> #include <sstream> #include <string> #include <type_traits> #include <utility> #include <vector> #include "quiche/quic/core/quic_time.h" #include "quiche/quic/platform/api/quic_test.h" namespace quic { namespace test { namespace { template <typename ForwardIterator> void STLDeleteContainerPointers(ForwardIterator begin, ForwardIterator end) { while (begin != end) { auto temp = begin; ++begin; delete *temp; } } template <typename T> void STLDeleteElements(T* container) { if (!container) return; STLDeleteContainerPointers(container->begin(), container->end()); container->clear(); } class ConstructorListener { public: ConstructorListener(int* copy_construct_counter, int* move_construct_counter) : copy_construct_counter_(copy_construct_counter), move_construct_counter_(move_construct_counter) { *copy_construct_counter_ = 0; *move_construct_counter_ = 0; } ConstructorListener(const ConstructorListener& other) { copy_construct_counter_ = other.copy_construct_counter_; move_construct_counter_ = other.move_construct_counter_; ++*copy_construct_counter_; } ConstructorListener(ConstructorListener&& other) { copy_construct_counter_ = other.copy_construct_counter_; move_construct_counter_ = other.move_construct_counter_; ++*move_construct_counter_; } bool operator<(const ConstructorListener&) { return false; } bool operator>(const ConstructorListener&) { return false; } bool operator<=(const ConstructorListener&) { return true; } bool operator>=(const ConstructorListener&) { return true; } bool operator==(const ConstructorListener&) { return true; } private: int* copy_construct_counter_; int* move_construct_counter_; }; TEST(QuicIntervalConstructorTest, Move) { int object1_copy_count, object1_move_count; ConstructorListener object1(&object1_copy_count, &object1_move_count); int object2_copy_count, object2_move_count; ConstructorListener object2(&object2_copy_count, &object2_move_count); QuicInterval<ConstructorListener> interval(object1, std::move(object2)); EXPECT_EQ(1, object1_copy_count); EXPECT_EQ(0, object1_move_count); EXPECT_EQ(0, object2_copy_count); EXPECT_EQ(1, object2_move_count); } TEST(QuicIntervalConstructorTest, ImplicitConversion) { struct WrappedInt { WrappedInt(int value) : value(value) {} bool operator<(const WrappedInt& other) { return value < other.value; } bool operator>(const WrappedInt& other) { return value > other.value; } bool operator<=(const WrappedInt& other) { return value <= other.value; } bool operator>=(const WrappedInt& other) { return value >= other.value; } bool operator==(const WrappedInt& other) { return value == other.value; } int value; }; static_assert(std::is_convertible<int, WrappedInt>::value, ""); static_assert( std::is_constructible<QuicInterval<WrappedInt>, int, int>::value, ""); QuicInterval<WrappedInt> i(10, 20); EXPECT_EQ(10, i.min().value); EXPECT_EQ(20, i.max().value); } class QuicIntervalTest : public QuicTest { protected: void TestIntersect(const QuicInterval<int64_t>& i1, const QuicInterval<int64_t>& i2, bool changes_i1, bool changes_i2, const QuicInterval<int64_t>& result) { QuicInterval<int64_t> i; i = i1; EXPECT_TRUE(i.IntersectWith(i2) == changes_i1 && i == result); i = i2; EXPECT_TRUE(i.IntersectWith(i1) == changes_i2 && i == result); } }; TEST_F(QuicIntervalTest, ConstructorsCopyAndClear) { QuicInterval<int32_t> empty; EXPECT_TRUE(empty.Empty()); QuicInterval<int32_t> d2(0, 100); EXPECT_EQ(0, d2.min()); EXPECT_EQ(100, d2.max()); EXPECT_EQ(QuicInterval<int32_t>(0, 100), d2); EXPECT_NE(QuicInterval<int32_t>(0, 99), d2); empty = d2; EXPECT_EQ(0, d2.min()); EXPECT_EQ(100, d2.max()); EXPECT_TRUE(empty == d2); EXPECT_EQ(empty, d2); EXPECT_TRUE(d2 == empty); EXPECT_EQ(d2, empty); QuicInterval<int32_t> max_less_than_min(40, 20); EXPECT_TRUE(max_less_than_min.Empty()); EXPECT_EQ(40, max_less_than_min.min()); EXPECT_EQ(20, max_less_than_min.max()); QuicInterval<int> d3(10, 20); d3.Clear(); EXPECT_TRUE(d3.Empty()); } TEST_F(QuicIntervalTest, MakeQuicInterval) { static_assert( std::is_same<QuicInterval<int>, decltype(MakeQuicInterval(0, 3))>::value, "Type is deduced incorrectly."); static_assert(std::is_same<QuicInterval<double>, decltype(MakeQuicInterval(0., 3.))>::value, "Type is deduced incorrectly."); EXPECT_EQ(MakeQuicInterval(0., 3.), QuicInterval<double>(0, 3)); } TEST_F(QuicIntervalTest, GettersSetters) { QuicInterval<int32_t> d1(100, 200); d1.SetMin(30); EXPECT_EQ(30, d1.min()); EXPECT_EQ(200, d1.max()); d1.SetMax(220); EXPECT_EQ(30, d1.min()); EXPECT_EQ(220, d1.max()); d1.Clear(); d1.Set(30, 220); EXPECT_EQ(30, d1.min()); EXPECT_EQ(220, d1.max()); QuicInterval<int32_t> d2; EXPECT_TRUE(!d1.SpanningUnion(d2)); EXPECT_EQ(30, d1.min()); EXPECT_EQ(220, d1.max()); EXPECT_TRUE(d2.SpanningUnion(d1)); EXPECT_EQ(30, d2.min()); EXPECT_EQ(220, d2.max()); d2.SetMin(40); d2.SetMax(100); EXPECT_TRUE(!d1.SpanningUnion(d2)); EXPECT_EQ(30, d1.min()); EXPECT_EQ(220, d1.max()); d2.SetMin(20); d2.SetMax(100); EXPECT_TRUE(d1.SpanningUnion(d2)); EXPECT_EQ(20, d1.min()); EXPECT_EQ(220, d1.max()); d2.SetMin(50); d2.SetMax(300); EXPECT_TRUE(d1.SpanningUnion(d2)); EXPECT_EQ(20, d1.min()); EXPECT_EQ(300, d1.max()); d2.SetMin(0); d2.SetMax(500); EXPECT_TRUE(d1.SpanningUnion(d2)); EXPECT_EQ(0, d1.min()); EXPECT_EQ(500, d1.max()); d2.SetMin(100); d2.SetMax(0); EXPECT_TRUE(!d1.SpanningUnion(d2)); EXPECT_EQ(0, d1.min()); EXPECT_EQ(500, d1.max()); EXPECT_TRUE(d2.SpanningUnion(d1)); EXPECT_EQ(0, d2.min()); EXPECT_EQ(500, d2.max()); } TEST_F(QuicIntervalTest, CoveringOps) { const QuicInterval<int64_t> empty; const QuicInterval<int64_t> d(100, 200); const QuicInterval<int64_t> d1(0, 50); const QuicInterval<int64_t> d2(50, 110); const QuicInterval<int64_t> d3(110, 180); const QuicInterval<int64_t> d4(180, 220); const QuicInterval<int64_t> d5(220, 300); const QuicInterval<int64_t> d6(100, 150); const QuicInterval<int64_t> d7(150, 200); const QuicInterval<int64_t> d8(0, 300); EXPECT_TRUE(d.Intersects(d)); EXPECT_TRUE(!empty.Intersects(d) && !d.Intersects(empty)); EXPECT_TRUE(!d.Intersects(d1) && !d1.Intersects(d)); EXPECT_TRUE(d.Intersects(d2) && d2.Intersects(d)); EXPECT_TRUE(d.Intersects(d3) && d3.Intersects(d)); EXPECT_TRUE(d.Intersects(d4) && d4.Intersects(d)); EXPECT_TRUE(!d.Intersects(d5) && !d5.Intersects(d)); EXPECT_TRUE(d.Intersects(d6) && d6.Intersects(d)); EXPECT_TRUE(d.Intersects(d7) && d7.Intersects(d)); EXPECT_TRUE(d.Intersects(d8) && d8.Intersects(d)); QuicInterval<int64_t> i; EXPECT_TRUE(d.Intersects(d, &i) && d == i); EXPECT_TRUE(!empty.Intersects(d, nullptr) && !d.Intersects(empty, nullptr)); EXPECT_TRUE(!d.Intersects(d1, nullptr) && !d1.Intersects(d, nullptr)); EXPECT_TRUE(d.Intersects(d2, &i) && i == QuicInterval<int64_t>(100, 110)); EXPECT_TRUE(d2.Intersects(d, &i) && i == QuicInterval<int64_t>(100, 110)); EXPECT_TRUE(d.Intersects(d3, &i) && i == d3); EXPECT_TRUE(d3.Intersects(d, &i) && i == d3); EXPECT_TRUE(d.Intersects(d4, &i) && i == QuicInterval<int64_t>(180, 200)); EXPECT_TRUE(d4.Intersects(d, &i) && i == QuicInterval<int64_t>(180, 200)); EXPECT_TRUE(!d.Intersects(d5, nullptr) && !d5.Intersects(d, nullptr)); EXPECT_TRUE(d.Intersects(d6, &i) && i == d6); EXPECT_TRUE(d6.Intersects(d, &i) && i == d6); EXPECT_TRUE(d.Intersects(d7, &i) && i == d7); EXPECT_TRUE(d7.Intersects(d, &i) && i == d7); EXPECT_TRUE(d.Intersects(d8, &i) && i == d); EXPECT_TRUE(d8.Intersects(d, &i) && i == d); TestIntersect(empty, d, false, true, empty); TestIntersect(d, d1, true, true, empty); TestIntersect(d1, d2, true, true, empty); TestIntersect(d, d2, true, true, QuicInterval<int64_t>(100, 110)); TestIntersect(d8, d, true, false, d); TestIntersect(d8, d1, true, false, d1); TestIntersect(d8, d5, true, false, d5); EXPECT_TRUE(!empty.Contains(d) && !d.Contains(empty)); EXPECT_TRUE(d.Contains(d)); EXPECT_TRUE(!d.Contains(d1) && !d1.Contains(d)); EXPECT_TRUE(!d.Contains(d2) && !d2.Contains(d)); EXPECT_TRUE(d.Contains(d3) && !d3.Contains(d)); EXPECT_TRUE(!d.Contains(d4) && !d4.Contains(d)); EXPECT_TRUE(!d.Contains(d5) && !d5.Contains(d)); EXPECT_TRUE(d.Contains(d6) && !d6.Contains(d)); EXPECT_TRUE(d.Contains(d7) && !d7.Contains(d)); EXPECT_TRUE(!d.Contains(d8) && d8.Contains(d)); EXPECT_TRUE(d.Contains(100)); EXPECT_TRUE(!d.Contains(200)); EXPECT_TRUE(d.Contains(150)); EXPECT_TRUE(!d.Contains(99)); EXPECT_TRUE(!d.Contains(201)); std::vector<QuicInterval<int64_t>*> diff; EXPECT_TRUE(!d.Difference(empty, &diff)); EXPECT_EQ(1u, diff.size()); EXPECT_EQ(100, diff[0]->min()); EXPECT_EQ(200, diff[0]->max()); STLDeleteElements(&diff); EXPECT_TRUE(!empty.Difference(d, &diff) && diff.empty()); EXPECT_TRUE(d.Difference(d, &diff) && diff.empty()); EXPECT_TRUE(!d.Difference(d1, &diff)); EXPECT_EQ(1u, diff.size()); EXPECT_EQ(100, diff[0]->min()); EXPECT_EQ(200, diff[0]->max()); STLDeleteElements(&diff); QuicInterval<int64_t> lo; QuicInterval<int64_t> hi; EXPECT_TRUE(d.Difference(d2, &lo, &hi)); EXPECT_TRUE(lo.Empty()); EXPECT_EQ(110, hi.min()); EXPECT_EQ(200, hi.max()); EXPECT_TRUE(d.Difference(d2, &diff)); EXPECT_EQ(1u, diff.size()); EXPECT_EQ(110, diff[0]->min()); EXPECT_EQ(200, diff[0]->max()); STLDeleteElements(&diff); EXPECT_TRUE(d.Difference(d3, &lo, &hi)); EXPECT_EQ(100, lo.min()); EXPECT_EQ(110, lo.max()); EXPECT_EQ(180, hi.min()); EXPECT_EQ(200, hi.max()); EXPECT_TRUE(d.Difference(d3, &diff)); EXPECT_EQ(2u, diff.size()); EXPECT_EQ(100, diff[0]->min()); EXPECT_EQ(110, diff[0]->max()); EXPECT_EQ(180, diff[1]->min()); EXPECT_EQ(200, diff[1]->max()); STLDeleteElements(&diff); EXPECT_TRUE(d.Difference(d4, &lo, &hi)); EXPECT_EQ(100, lo.min()); EXPECT_EQ(180, lo.max()); EXPECT_TRUE(hi.Empty()); EXPECT_TRUE(d.Difference(d4, &diff)); EXPECT_EQ(1u, diff.size()); EXPECT_EQ(100, diff[0]->min()); EXPECT_EQ(180, diff[0]->max()); STLDeleteElements(&diff); EXPECT_FALSE(d.Difference(d5, &lo, &hi)); EXPECT_EQ(100, lo.min()); EXPECT_EQ(200, lo.max()); EXPECT_TRUE(hi.Empty()); EXPECT_FALSE(d.Difference(d5, &diff)); EXPECT_EQ(1u, diff.size()); EXPECT_EQ(100, diff[0]->min()); EXPECT_EQ(200, diff[0]->max()); STLDeleteElements(&diff); EXPECT_TRUE(d.Difference(d6, &lo, &hi)); EXPECT_TRUE(lo.Empty()); EXPECT_EQ(150, hi.min()); EXPECT_EQ(200, hi.max()); EXPECT_TRUE(d.Difference(d6, &diff)); EXPECT_EQ(1u, diff.size()); EXPECT_EQ(150, diff[0]->min()); EXPECT_EQ(200, diff[0]->max()); STLDeleteElements(&diff); EXPECT_TRUE(d.Difference(d7, &lo, &hi)); EXPECT_EQ(100, lo.min()); EXPECT_EQ(150, lo.max()); EXPECT_TRUE(hi.Empty()); EXPECT_TRUE(d.Difference(d7, &diff)); EXPECT_EQ(1u, diff.size()); EXPECT_EQ(100, diff[0]->min()); EXPECT_EQ(150, diff[0]->max()); STLDeleteElements(&diff); EXPECT_TRUE(d.Difference(d8, &lo, &hi)); EXPECT_TRUE(lo.Empty()); EXPECT_TRUE(hi.Empty()); EXPECT_TRUE(d.Difference(d8, &diff) && diff.empty()); } TEST_F(QuicIntervalTest, Separated) { using QI = QuicInterval<int>; EXPECT_FALSE(QI(100, 200).Separated(QI(100, 200))); EXPECT_FALSE(QI(100, 200).Separated(QI(200, 300))); EXPECT_TRUE(QI(100, 200).Separated(QI(201, 300))); EXPECT_FALSE(QI(100, 200).Separated(QI(0, 100))); EXPECT_TRUE(QI(100, 200).Separated(QI(0, 99))); EXPECT_FALSE(QI(100, 200).Separated(QI(150, 170))); EXPECT_FALSE(QI(150, 170).Separated(QI(100, 200))); EXPECT_FALSE(QI(100, 200).Separated(QI(150, 250))); EXPECT_FALSE(QI(150, 250).Separated(QI(100, 200))); } TEST_F(QuicIntervalTest, Length) { const QuicInterval<int> empty1; const QuicInterval<int> empty2(1, 1); const QuicInterval<int> empty3(1, 0); const QuicInterval<QuicTime> empty4( QuicTime::Zero() + QuicTime::Delta::FromSeconds(1), QuicTime::Zero()); const QuicInterval<int> d1(1, 2); const QuicInterval<int> d2(0, 50); const QuicInterval<QuicTime> d3( QuicTime::Zero(), QuicTime::Zero() + QuicTime::Delta::FromSeconds(1)); const QuicInterval<QuicTime> d4( QuicTime::Zero() + QuicTime::Delta::FromSeconds(3600), QuicTime::Zero() + QuicTime::Delta::FromSeconds(5400)); EXPECT_EQ(0, empty1.Length()); EXPECT_EQ(0, empty2.Length()); EXPECT_EQ(0, empty3.Length()); EXPECT_EQ(QuicTime::Delta::Zero(), empty4.Length()); EXPECT_EQ(1, d1.Length()); EXPECT_EQ(50, d2.Length()); EXPECT_EQ(QuicTime::Delta::FromSeconds(1), d3.Length()); EXPECT_EQ(QuicTime::Delta::FromSeconds(1800), d4.Length()); } TEST_F(QuicIntervalTest, IntervalOfTypeWithNoOperatorMinus) { const QuicInterval<std::string> d1("a", "b"); const QuicInterval<std::pair<int, int>> d2({1, 2}, {4, 3}); EXPECT_EQ("a", d1.min()); EXPECT_EQ("b", d1.max()); EXPECT_EQ(std::make_pair(1, 2), d2.min()); EXPECT_EQ(std::make_pair(4, 3), d2.max()); } struct NoEquals { NoEquals(int v) : value(v) {} int value; bool operator<(const NoEquals& other) const { return value < other.value; } }; TEST_F(QuicIntervalTest, OrderedComparisonForTypeWithoutEquals) { const QuicInterval<NoEquals> d1(0, 4); const QuicInterval<NoEquals> d2(0, 3); const QuicInterval<NoEquals> d3(1, 4); const QuicInterval<NoEquals> d4(1, 5); const QuicInterval<NoEquals> d6(0, 4); EXPECT_TRUE(d1 < d2); EXPECT_TRUE(d1 < d3); EXPECT_TRUE(d1 < d4); EXPECT_FALSE(d1 < d6); } TEST_F(QuicIntervalTest, OutputReturnsOstreamRef) { std::stringstream ss; const QuicInterval<int> v(1, 2); auto return_type_is_a_ref = [](std::ostream&) {}; return_type_is_a_ref(ss << v); } struct NotOstreamable { bool operator<(const NotOstreamable&) const { return false; } bool operator>=(const NotOstreamable&) const { return true; } bool operator==(const NotOstreamable&) const { return true; } }; TEST_F(QuicIntervalTest, IntervalOfTypeWithNoOstreamSupport) { const NotOstreamable v; const QuicInterval<NotOstreamable> d(v, v); EXPECT_EQ(d, d); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_interval.h
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_interval_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
ce5dca60-fff5-4672-8eb0-97c15b454f73
cpp
google/cel-cpp
regex_functions
extensions/regex_functions.cc
extensions/regex_functions_test.cc
#include "extensions/regex_functions.h" #include <memory> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/types/span.h" #include "eval/public/cel_function.h" #include "eval/public/cel_options.h" #include "eval/public/cel_value.h" #include "eval/public/containers/container_backed_map_impl.h" #include "eval/public/portable_cel_function_adapter.h" #include "re2/re2.h" namespace cel::extensions { namespace { using ::google::api::expr::runtime::CelFunction; using ::google::api::expr::runtime::CelFunctionRegistry; using ::google::api::expr::runtime::CelValue; using ::google::api::expr::runtime::CreateErrorValue; using ::google::api::expr::runtime::InterpreterOptions; using ::google::api::expr::runtime::PortableBinaryFunctionAdapter; using ::google::api::expr::runtime::PortableFunctionAdapter; using ::google::protobuf::Arena; CelValue ExtractString(Arena* arena, CelValue::StringHolder target, CelValue::StringHolder regex, CelValue::StringHolder rewrite) { RE2 re2(regex.value()); if (!re2.ok()) { return CreateErrorValue( arena, absl::InvalidArgumentError("Given Regex is Invalid")); } std::string output; auto result = RE2::Extract(target.value(), re2, rewrite.value(), &output); if (!result) { return CreateErrorValue( arena, absl::InvalidArgumentError( "Unable to extract string for the given regex")); } return CelValue::CreateString( google::protobuf::Arena::Create<std::string>(arena, output)); } CelValue CaptureString(Arena* arena, CelValue::StringHolder target, CelValue::StringHolder regex) { RE2 re2(regex.value()); if (!re2.ok()) { return CreateErrorValue( arena, absl::InvalidArgumentError("Given Regex is Invalid")); } std::string output; auto result = RE2::FullMatch(target.value(), re2, &output); if (!result) { return CreateErrorValue( arena, absl::InvalidArgumentError( "Unable to capture groups for the given regex")); } else { auto cel_value = CelValue::CreateString( google::protobuf::Arena::Create<std::string>(arena, output)); return cel_value; } } CelValue CaptureStringN(Arena* arena, CelValue::StringHolder target, CelValue::StringHolder regex) { RE2 re2(regex.value()); if (!re2.ok()) { return CreateErrorValue( arena, absl::InvalidArgumentError("Given Regex is Invalid")); } const int capturing_groups_count = re2.NumberOfCapturingGroups(); const auto& named_capturing_groups_map = re2.CapturingGroupNames(); if (capturing_groups_count <= 0) { return CreateErrorValue(arena, absl::InvalidArgumentError( "Capturing groups were not found in the given " "regex.")); } std::vector<std::string> captured_strings(capturing_groups_count); std::vector<RE2::Arg> captured_string_addresses(capturing_groups_count); std::vector<RE2::Arg*> argv(capturing_groups_count); for (int j = 0; j < capturing_groups_count; j++) { captured_string_addresses[j] = &captured_strings[j]; argv[j] = &captured_string_addresses[j]; } auto result = RE2::FullMatchN(target.value(), re2, argv.data(), capturing_groups_count); if (!result) { return CreateErrorValue( arena, absl::InvalidArgumentError( "Unable to capture groups for the given regex")); } std::vector<std::pair<CelValue, CelValue>> cel_values; for (int index = 1; index <= capturing_groups_count; index++) { auto it = named_capturing_groups_map.find(index); std::string name = it != named_capturing_groups_map.end() ? it->second : std::to_string(index); cel_values.emplace_back( CelValue::CreateString(google::protobuf::Arena::Create<std::string>(arena, name)), CelValue::CreateString(google::protobuf::Arena::Create<std::string>( arena, captured_strings[index - 1]))); } auto container_map = google::api::expr::runtime::CreateContainerBackedMap( absl::MakeSpan(cel_values)); ::google::api::expr::runtime::CelMap* cel_map = container_map->release(); arena->Own(cel_map); return CelValue::CreateMap(cel_map); } absl::Status RegisterRegexFunctions(CelFunctionRegistry* registry) { CEL_RETURN_IF_ERROR( (PortableFunctionAdapter<CelValue, CelValue::StringHolder, CelValue::StringHolder, CelValue::StringHolder>:: CreateAndRegister( kRegexExtract, false, [](Arena* arena, CelValue::StringHolder target, CelValue::StringHolder regex, CelValue::StringHolder rewrite) -> CelValue { return ExtractString(arena, target, regex, rewrite); }, registry))); CEL_RETURN_IF_ERROR(registry->Register( PortableBinaryFunctionAdapter<CelValue, CelValue::StringHolder, CelValue::StringHolder>:: Create(kRegexCapture, false, [](Arena* arena, CelValue::StringHolder target, CelValue::StringHolder regex) -> CelValue { return CaptureString(arena, target, regex); }))); return registry->Register( PortableBinaryFunctionAdapter<CelValue, CelValue::StringHolder, CelValue::StringHolder>:: Create(kRegexCaptureN, false, [](Arena* arena, CelValue::StringHolder target, CelValue::StringHolder regex) -> CelValue { return CaptureStringN(arena, target, regex); })); } } absl::Status RegisterRegexFunctions(CelFunctionRegistry* registry, const InterpreterOptions& options) { if (options.enable_regex) { CEL_RETURN_IF_ERROR(RegisterRegexFunctions(registry)); } return absl::OkStatus(); } }
#include "extensions/regex_functions.h" #include <memory> #include <string> #include <utility> #include <vector> #include "google/protobuf/arena.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "eval/public/activation.h" #include "eval/public/cel_expr_builder_factory.h" #include "eval/public/cel_options.h" #include "eval/public/cel_value.h" #include "eval/public/containers/container_backed_map_impl.h" #include "eval/public/testing/matchers.h" #include "internal/testing.h" #include "parser/parser.h" namespace cel::extensions { namespace { using ::absl_testing::StatusIs; using ::google::api::expr::runtime::CelValue; using Builder = ::google::api::expr::runtime::CelExpressionBuilder; using ::absl_testing::IsOkAndHolds; using ::google::api::expr::parser::Parse; using ::google::api::expr::runtime::test::IsCelError; using ::google::api::expr::runtime::test::IsCelString; struct TestCase { const std::string expr_string; const std::string expected_result; }; class RegexFunctionsTest : public ::testing::TestWithParam<TestCase> { public: RegexFunctionsTest() { options_.enable_regex = true; options_.enable_qualified_identifier_rewrites = true; builder_ = CreateCelExpressionBuilder(options_); } absl::StatusOr<CelValue> TestCaptureStringInclusion( const std::string& expr_string) { CEL_RETURN_IF_ERROR( RegisterRegexFunctions(builder_->GetRegistry(), options_)); CEL_ASSIGN_OR_RETURN(auto parsed_expr, Parse(expr_string)); CEL_ASSIGN_OR_RETURN( auto expr_plan, builder_->CreateExpression(&parsed_expr.expr(), &parsed_expr.source_info())); ::google::api::expr::runtime::Activation activation; return expr_plan->Evaluate(activation, &arena_); } google::protobuf::Arena arena_; google::api::expr::runtime::InterpreterOptions options_; std::unique_ptr<Builder> builder_; }; TEST_F(RegexFunctionsTest, CaptureStringSuccessWithCombinationOfGroups) { std::vector<std::pair<CelValue, CelValue>> cel_values; cel_values.emplace_back(std::make_pair( CelValue::CreateString(google::protobuf::Arena::Create<std::string>(&arena_, "1")), CelValue::CreateString( google::protobuf::Arena::Create<std::string>(&arena_, "user")))); cel_values.emplace_back(std::make_pair( CelValue::CreateString( google::protobuf::Arena::Create<std::string>(&arena_, "Username")), CelValue::CreateString( google::protobuf::Arena::Create<std::string>(&arena_, "testuser")))); cel_values.emplace_back( std::make_pair(CelValue::CreateString( google::protobuf::Arena::Create<std::string>(&arena_, "Domain")), CelValue::CreateString(google::protobuf::Arena::Create<std::string>( &arena_, "testdomain")))); auto container_map = google::api::expr::runtime::CreateContainerBackedMap( absl::MakeSpan(cel_values)); auto* cel_map = container_map->release(); arena_.Own(cel_map); CelValue expected_result = CelValue::CreateMap(cel_map); auto status = TestCaptureStringInclusion( (R"(re.captureN('The user testuser belongs to testdomain', 'The (user|domain) (?P<Username>.*) belongs to (?P<Domain>.*)'))")); ASSERT_OK(status.status()); EXPECT_EQ(status.value().DebugString(), expected_result.DebugString()); } TEST_F(RegexFunctionsTest, CaptureStringSuccessWithSingleNamedGroup) { std::vector<std::pair<CelValue, CelValue>> cel_values; cel_values.push_back(std::make_pair( CelValue::CreateString( google::protobuf::Arena::Create<std::string>(&arena_, "username")), CelValue::CreateString( google::protobuf::Arena::Create<std::string>(&arena_, "testuser")))); auto container_map = google::api::expr::runtime::CreateContainerBackedMap( absl::MakeSpan(cel_values)); auto cel_map = container_map->release(); arena_.Own(cel_map); CelValue expected_result = CelValue::CreateMap(cel_map); auto status = TestCaptureStringInclusion((R"(re.captureN('testuser@', '(?P<username>.*)@'))")); ASSERT_OK(status.status()); EXPECT_EQ(status.value().DebugString(), expected_result.DebugString()); } TEST_F(RegexFunctionsTest, CaptureStringSuccessWithMultipleUnamedGroups) { std::vector<std::pair<CelValue, CelValue>> cel_values; cel_values.emplace_back(std::make_pair( CelValue::CreateString(google::protobuf::Arena::Create<std::string>(&arena_, "1")), CelValue::CreateString( google::protobuf::Arena::Create<std::string>(&arena_, "testuser")))); cel_values.emplace_back(std::make_pair( CelValue::CreateString(google::protobuf::Arena::Create<std::string>(&arena_, "2")), CelValue::CreateString( google::protobuf::Arena::Create<std::string>(&arena_, "testdomain")))); auto container_map = google::api::expr::runtime::CreateContainerBackedMap( absl::MakeSpan(cel_values)); auto cel_map = container_map->release(); arena_.Own(cel_map); CelValue expected_result = CelValue::CreateMap(cel_map); auto status = TestCaptureStringInclusion((R"(re.captureN('testuser@testdomain', '(.*)@([^.]*)'))")); ASSERT_OK(status.status()); EXPECT_EQ(status.value().DebugString(), expected_result.DebugString()); } TEST_F(RegexFunctionsTest, ExtractStringWithNamedAndUnnamedGroups) { auto status = TestCaptureStringInclusion( (R"(re.extract('The user testuser belongs to testdomain', 'The (user|domain) (?P<Username>.*) belongs to (?P<Domain>.*)', '\\3 contains \\1 \\2'))")); ASSERT_TRUE(status.value().IsString()); EXPECT_THAT(status, IsOkAndHolds(IsCelString("testdomain contains user testuser"))); } TEST_F(RegexFunctionsTest, ExtractStringWithEmptyStrings) { std::string expected_result = ""; auto status = TestCaptureStringInclusion((R"(re.extract('', '', ''))")); ASSERT_TRUE(status.value().IsString()); EXPECT_THAT(status, IsOkAndHolds(IsCelString(expected_result))); } TEST_F(RegexFunctionsTest, ExtractStringWithUnnamedGroups) { auto status = TestCaptureStringInclusion( (R"(re.extract('[email protected]', '(.*)@([^.]*)', '\\2!\\1'))")); EXPECT_THAT(status, IsOkAndHolds(IsCelString("google!testuser"))); } TEST_F(RegexFunctionsTest, ExtractStringWithNoGroups) { auto status = TestCaptureStringInclusion((R"(re.extract('foo', '.*', '\'\\0\''))")); EXPECT_THAT(status, IsOkAndHolds(IsCelString("'foo'"))); } TEST_F(RegexFunctionsTest, CaptureStringWithUnnamedGroups) { auto status = TestCaptureStringInclusion((R"(re.capture('foo', 'fo(o)'))")); EXPECT_THAT(status, IsOkAndHolds(IsCelString("o"))); } std::vector<TestCase> createParams() { return { { (R"(re.extract('foo', 'f(o+)(s)', '\\1\\2'))"), "Unable to extract string for the given regex"}, { (R"(re.extract('foo', 'f(o+)', '\\1\\2'))"), "Unable to extract string for the given regex"}, { (R"(re.extract('foo', 'f(o+)(abc', '\\1\\2'))"), "Regex is Invalid"}, { (R"(re.capture('foo', ''))"), "Unable to capture groups for the given regex"}, { (R"(re.capture('foo', '.*'))"), "Unable to capture groups for the given regex"}, { (R"(re.capture('', 'bar'))"), "Unable to capture groups for the given regex"}, { (R"(re.capture('foo', 'fo(o+)(s)'))"), "Unable to capture groups for the given regex"}, { (R"(re.capture('foo', 'fo(o+)(abc'))"), "Regex is Invalid"}, { (R"(re.captureN('foo', ''))"), "Capturing groups were not found in the given regex."}, { (R"(re.captureN('foo', '.*'))"), "Capturing groups were not found in the given regex."}, { (R"(re.captureN('', 'bar'))"), "Capturing groups were not found in the given regex."}, { (R"(re.captureN('foo', 'fo(o+)(s)'))"), "Unable to capture groups for the given regex"}, { (R"(re.captureN('foo', 'fo(o+)(abc'))"), "Regex is Invalid"}, }; } TEST_P(RegexFunctionsTest, RegexFunctionsTests) { const TestCase& test_case = GetParam(); ABSL_LOG(INFO) << "Testing Cel Expression: " << test_case.expr_string; auto status = TestCaptureStringInclusion(test_case.expr_string); EXPECT_THAT( status.value(), IsCelError(StatusIs(absl::StatusCode::kInvalidArgument, testing::HasSubstr(test_case.expected_result)))); } INSTANTIATE_TEST_SUITE_P(RegexFunctionsTest, RegexFunctionsTest, testing::ValuesIn(createParams())); } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/extensions/regex_functions.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/extensions/regex_functions_test.cc
4552db5798fb0853b131b783d8875794334fae7f
b576bd0b-f67d-4f76-a31b-799406585c21
cpp
tensorflow/tensorflow
pjrt_c_api
third_party/xla/xla/pjrt/c/pjrt_c_api.h
third_party/xla/xla/pjrt/c/pjrt_c_api_test.cc
#ifndef XLA_PJRT_C_PJRT_C_API_H_ #define XLA_PJRT_C_PJRT_C_API_H_ #include <stdbool.h> #include <stddef.h> #include <stdint.h> #define PJRT_STRUCT_SIZE(struct_type, last_field) \ offsetof(struct_type, last_field) + sizeof(((struct_type*)0)->last_field) #define PJRT_DEFINE_STRUCT_TRAITS(sname, last_field) \ typedef struct sname sname; \ enum { sname##_STRUCT_SIZE = PJRT_STRUCT_SIZE(sname, last_field) } #ifdef __cplusplus extern "C" { #endif typedef enum { PJRT_Extension_Type_Gpu_Custom_Call = 0, PJRT_Extension_Type_Profiler, PJRT_Extension_Type_Custom_Partitioner, PJRT_Extension_Type_Stream, PJRT_Extension_Type_Layouts, PJRT_Extension_Type_FFI, } PJRT_Extension_Type; typedef struct PJRT_Extension_Base { size_t struct_size; PJRT_Extension_Type type; struct PJRT_Extension_Base* next; } PJRT_Extension_Base; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Extension_Base, next); #define PJRT_API_MAJOR 0 #define PJRT_API_MINOR 55 struct PJRT_Api_Version { size_t struct_size; PJRT_Extension_Base* extension_start; int major_version; int minor_version; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Api_Version, minor_version); typedef struct PJRT_Error PJRT_Error; struct PJRT_Error_Destroy_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Error* error; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Error_Destroy_Args, error); typedef void PJRT_Error_Destroy(PJRT_Error_Destroy_Args* args); struct PJRT_Error_Message_Args { size_t struct_size; PJRT_Extension_Base* extension_start; const PJRT_Error* error; const char* message; size_t message_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Error_Message_Args, message_size); typedef void PJRT_Error_Message(PJRT_Error_Message_Args* args); typedef enum { PJRT_Error_Code_CANCELLED = 1, PJRT_Error_Code_UNKNOWN = 2, PJRT_Error_Code_INVALID_ARGUMENT = 3, PJRT_Error_Code_DEADLINE_EXCEEDED = 4, PJRT_Error_Code_NOT_FOUND = 5, PJRT_Error_Code_ALREADY_EXISTS = 6, PJRT_Error_Code_PERMISSION_DENIED = 7, PJRT_Error_Code_RESOURCE_EXHAUSTED = 8, PJRT_Error_Code_FAILED_PRECONDITION = 9, PJRT_Error_Code_ABORTED = 10, PJRT_Error_Code_OUT_OF_RANGE = 11, PJRT_Error_Code_UNIMPLEMENTED = 12, PJRT_Error_Code_INTERNAL = 13, PJRT_Error_Code_UNAVAILABLE = 14, PJRT_Error_Code_DATA_LOSS = 15, PJRT_Error_Code_UNAUTHENTICATED = 16 } PJRT_Error_Code; struct PJRT_Error_GetCode_Args { size_t struct_size; PJRT_Extension_Base* extension_start; const PJRT_Error* error; PJRT_Error_Code code; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Error_GetCode_Args, code); typedef PJRT_Error* PJRT_Error_GetCode(PJRT_Error_GetCode_Args* args); typedef PJRT_Error* (*PJRT_CallbackError)(PJRT_Error_Code code, const char* message, size_t message_size); typedef enum { PJRT_NamedValue_kString = 0, PJRT_NamedValue_kInt64, PJRT_NamedValue_kInt64List, PJRT_NamedValue_kFloat, PJRT_NamedValue_kBool, } PJRT_NamedValue_Type; struct PJRT_NamedValue { size_t struct_size; PJRT_Extension_Base* extension_start; const char* name; size_t name_size; PJRT_NamedValue_Type type; union { const char* string_value; int64_t int64_value; const int64_t* int64_array_value; float float_value; bool bool_value; }; size_t value_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_NamedValue, value_size); struct PJRT_Plugin_Initialize_Args { size_t struct_size; PJRT_Extension_Base* extension_start; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Plugin_Initialize_Args, extension_start); typedef PJRT_Error* PJRT_Plugin_Initialize(PJRT_Plugin_Initialize_Args* args); struct PJRT_Plugin_Attributes_Args { size_t struct_size; PJRT_Extension_Base* extension_start; const PJRT_NamedValue* attributes; size_t num_attributes; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Plugin_Attributes_Args, attributes); typedef PJRT_Error* PJRT_Plugin_Attributes(PJRT_Plugin_Attributes_Args* args); typedef struct PJRT_Event PJRT_Event; struct PJRT_Event_Destroy_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Event* event; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Event_Destroy_Args, event); typedef PJRT_Error* PJRT_Event_Destroy(PJRT_Event_Destroy_Args* args); struct PJRT_Event_IsReady_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Event* event; bool is_ready; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Event_IsReady_Args, is_ready); typedef PJRT_Error* PJRT_Event_IsReady(PJRT_Event_IsReady_Args* args); struct PJRT_Event_Error_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Event* event; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Event_Error_Args, event); typedef PJRT_Error* PJRT_Event_Error(PJRT_Event_Error_Args* args); struct PJRT_Event_Await_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Event* event; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Event_Await_Args, event); typedef PJRT_Error* PJRT_Event_Await(PJRT_Event_Await_Args* args); typedef void (*PJRT_Event_OnReadyCallback)(PJRT_Error* error, void* user_arg); struct PJRT_Event_OnReady_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Event* event; PJRT_Event_OnReadyCallback callback; void* user_arg; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Event_OnReady_Args, user_arg); typedef PJRT_Error* PJRT_Event_OnReady(PJRT_Event_OnReady_Args* args); typedef struct PJRT_Client PJRT_Client; typedef struct PJRT_Device PJRT_Device; typedef struct PJRT_Memory PJRT_Memory; typedef struct PJRT_DeviceDescription PJRT_DeviceDescription; typedef struct PJRT_TopologyDescription PJRT_TopologyDescription; typedef struct PJRT_Executable PJRT_Executable; typedef struct PJRT_LoadedExecutable PJRT_LoadedExecutable; typedef struct PJRT_Buffer PJRT_Buffer; typedef void (*PJRT_KeyValueGetCallback_ValueDeleter)(char* value); struct PJRT_KeyValueGetCallback_Args { size_t struct_size; PJRT_Extension_Base* extension_start; const char* key; size_t key_size; int timeout_in_ms; PJRT_CallbackError* callback_error; void* user_arg; char* value; size_t value_size; PJRT_KeyValueGetCallback_ValueDeleter value_deleter_callback; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_KeyValueGetCallback_Args, value_deleter_callback); typedef PJRT_Error* (*PJRT_KeyValueGetCallback)( PJRT_KeyValueGetCallback_Args* args); struct PJRT_KeyValuePutCallback_Args { size_t struct_size; PJRT_Extension_Base* extension_start; const char* key; size_t key_size; const char* value; size_t value_size; PJRT_CallbackError* callback_error; void* user_arg; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_KeyValuePutCallback_Args, user_arg); typedef PJRT_Error* (*PJRT_KeyValuePutCallback)( PJRT_KeyValuePutCallback_Args* args); struct PJRT_Client_Create_Args { size_t struct_size; PJRT_Extension_Base* extension_start; const PJRT_NamedValue* create_options; size_t num_options; PJRT_KeyValueGetCallback kv_get_callback; void* kv_get_user_arg; PJRT_KeyValuePutCallback kv_put_callback; void* kv_put_user_arg; PJRT_Client* client; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_Create_Args, client); typedef PJRT_Error* PJRT_Client_Create(PJRT_Client_Create_Args* args); struct PJRT_Client_Destroy_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_Destroy_Args, client); typedef PJRT_Error* PJRT_Client_Destroy(PJRT_Client_Destroy_Args* args); struct PJRT_Client_PlatformName_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; const char* platform_name; size_t platform_name_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_PlatformName_Args, platform_name_size); typedef PJRT_Error* PJRT_Client_PlatformName( PJRT_Client_PlatformName_Args* args); struct PJRT_Client_ProcessIndex_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; int process_index; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_ProcessIndex_Args, process_index); typedef PJRT_Error* PJRT_Client_ProcessIndex( PJRT_Client_ProcessIndex_Args* args); struct PJRT_Client_PlatformVersion_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; const char* platform_version; size_t platform_version_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_PlatformVersion_Args, platform_version_size); typedef PJRT_Error* PJRT_Client_PlatformVersion( PJRT_Client_PlatformVersion_Args* args); struct PJRT_Client_TopologyDescription_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; PJRT_TopologyDescription* topology; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_TopologyDescription_Args, topology); typedef PJRT_Error* PJRT_Client_TopologyDescription( PJRT_Client_TopologyDescription_Args* args); struct PJRT_Client_Devices_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; PJRT_Device* const* devices; size_t num_devices; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_Devices_Args, num_devices); typedef PJRT_Error* PJRT_Client_Devices(PJRT_Client_Devices_Args* args); struct PJRT_Client_AddressableDevices_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; PJRT_Device* const* addressable_devices; size_t num_addressable_devices; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_AddressableDevices_Args, num_addressable_devices); typedef PJRT_Error* PJRT_Client_AddressableDevices( PJRT_Client_AddressableDevices_Args* args); struct PJRT_Client_LookupDevice_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; int id; PJRT_Device* device; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_LookupDevice_Args, device); typedef PJRT_Error* PJRT_Client_LookupDevice( PJRT_Client_LookupDevice_Args* args); struct PJRT_Client_LookupAddressableDevice_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; int local_hardware_id; PJRT_Device* addressable_device; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_LookupAddressableDevice_Args, addressable_device); typedef PJRT_Error* PJRT_Client_LookupAddressableDevice( PJRT_Client_LookupAddressableDevice_Args* args); struct PJRT_Client_AddressableMemories_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; PJRT_Memory* const* addressable_memories; size_t num_addressable_memories; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_AddressableMemories_Args, num_addressable_memories); typedef PJRT_Error* PJRT_Client_AddressableMemories( PJRT_Client_AddressableMemories_Args* args); struct PJRT_Program { size_t struct_size; PJRT_Extension_Base* extension_start; char* code; size_t code_size; const char* format; size_t format_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Program, format_size); struct PJRT_Client_Compile_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; const PJRT_Program* program; const char* compile_options; size_t compile_options_size; PJRT_LoadedExecutable* executable; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_Compile_Args, executable); typedef PJRT_Error* PJRT_Client_Compile(PJRT_Client_Compile_Args* args); struct PJRT_Client_DefaultDeviceAssignment_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; int num_replicas; int num_partitions; size_t default_assignment_size; int* default_assignment; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_DefaultDeviceAssignment_Args, default_assignment); typedef PJRT_Error* PJRT_Client_DefaultDeviceAssignment( PJRT_Client_DefaultDeviceAssignment_Args* args); typedef enum { PJRT_Buffer_Type_INVALID, PJRT_Buffer_Type_PRED, PJRT_Buffer_Type_S8, PJRT_Buffer_Type_S16, PJRT_Buffer_Type_S32, PJRT_Buffer_Type_S64, PJRT_Buffer_Type_U8, PJRT_Buffer_Type_U16, PJRT_Buffer_Type_U32, PJRT_Buffer_Type_U64, PJRT_Buffer_Type_F16, PJRT_Buffer_Type_F32, PJRT_Buffer_Type_F64, PJRT_Buffer_Type_BF16, PJRT_Buffer_Type_C64, PJRT_Buffer_Type_C128, PJRT_Buffer_Type_F8E5M2, PJRT_Buffer_Type_F8E4M3FN, PJRT_Buffer_Type_F8E4M3B11FNUZ, PJRT_Buffer_Type_F8E5M2FNUZ, PJRT_Buffer_Type_F8E4M3FNUZ, PJRT_Buffer_Type_S4, PJRT_Buffer_Type_U4, PJRT_Buffer_Type_TOKEN, PJRT_Buffer_Type_S2, PJRT_Buffer_Type_U2, PJRT_Buffer_Type_F8E4M3, PJRT_Buffer_Type_F8E3M4, } PJRT_Buffer_Type; typedef enum { PJRT_HostBufferSemantics_kImmutableOnlyDuringCall, PJRT_HostBufferSemantics_kImmutableUntilTransferCompletes, PJRT_HostBufferSemantics_kImmutableZeroCopy, PJRT_HostBufferSemantics_kMutableZeroCopy, } PJRT_HostBufferSemantics; typedef enum { PJRT_Buffer_MemoryLayout_Type_Tiled = 0, PJRT_Buffer_MemoryLayout_Type_Strides, } PJRT_Buffer_MemoryLayout_Type; struct PJRT_Buffer_MemoryLayout_Tiled { size_t struct_size; PJRT_Extension_Base* extension_start; const int64_t* minor_to_major; size_t minor_to_major_size; const int64_t* tile_dims; const size_t* tile_dim_sizes; size_t num_tiles; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_MemoryLayout_Tiled, num_tiles); struct PJRT_Buffer_MemoryLayout_Strides { size_t struct_size; PJRT_Extension_Base* extension_start; const int64_t* byte_strides; size_t num_byte_strides; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_MemoryLayout_Strides, num_byte_strides); struct PJRT_Buffer_MemoryLayout { size_t struct_size; PJRT_Extension_Base* extension_start; union { PJRT_Buffer_MemoryLayout_Tiled tiled; PJRT_Buffer_MemoryLayout_Strides strides; }; PJRT_Buffer_MemoryLayout_Type type; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_MemoryLayout, type); struct PJRT_Client_BufferFromHostBuffer_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; const void* data; PJRT_Buffer_Type type; const int64_t* dims; size_t num_dims; const int64_t* byte_strides; size_t num_byte_strides; PJRT_HostBufferSemantics host_buffer_semantics; PJRT_Device* device; PJRT_Memory* memory; PJRT_Buffer_MemoryLayout* device_layout; PJRT_Event* done_with_host_buffer; PJRT_Buffer* buffer; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_BufferFromHostBuffer_Args, buffer); typedef PJRT_Error* PJRT_Client_BufferFromHostBuffer( PJRT_Client_BufferFromHostBuffer_Args* args); struct PJRT_Client_CreateViewOfDeviceBuffer_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; void* device_buffer_ptr; const int64_t* dims; size_t num_dims; PJRT_Buffer_Type element_type; PJRT_Buffer_MemoryLayout* layout; PJRT_Device* device; void (*on_delete_callback)(void* device_buffer_ptr, void* user_arg); void* on_delete_callback_arg; intptr_t stream; PJRT_Buffer* buffer; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Client_CreateViewOfDeviceBuffer_Args, buffer); typedef PJRT_Error* PJRT_Client_CreateViewOfDeviceBuffer( PJRT_Client_CreateViewOfDeviceBuffer_Args* args); struct PJRT_DeviceDescription_Id_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_DeviceDescription* device_description; int id; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_DeviceDescription_Id_Args, id); typedef PJRT_Error* PJRT_DeviceDescription_Id( PJRT_DeviceDescription_Id_Args* args); struct PJRT_DeviceDescription_ProcessIndex_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_DeviceDescription* device_description; int process_index; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_DeviceDescription_ProcessIndex_Args, process_index); typedef PJRT_Error* PJRT_DeviceDescription_ProcessIndex( PJRT_DeviceDescription_ProcessIndex_Args* args); struct PJRT_DeviceDescription_Attributes_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_DeviceDescription* device_description; size_t num_attributes; const PJRT_NamedValue* attributes; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_DeviceDescription_Attributes_Args, attributes); typedef PJRT_Error* PJRT_DeviceDescription_Attributes( PJRT_DeviceDescription_Attributes_Args* args); struct PJRT_DeviceDescription_Kind_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_DeviceDescription* device_description; const char* device_kind; size_t device_kind_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_DeviceDescription_Kind_Args, device_kind_size); typedef PJRT_Error* PJRT_DeviceDescription_Kind( PJRT_DeviceDescription_Kind_Args* args); struct PJRT_DeviceDescription_DebugString_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_DeviceDescription* device_description; const char* debug_string; size_t debug_string_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_DeviceDescription_DebugString_Args, debug_string_size); typedef PJRT_Error* PJRT_DeviceDescription_DebugString( PJRT_DeviceDescription_DebugString_Args* args); struct PJRT_DeviceDescription_ToString_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_DeviceDescription* device_description; const char* to_string; size_t to_string_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_DeviceDescription_ToString_Args, to_string_size); typedef PJRT_Error* PJRT_DeviceDescription_ToString( PJRT_DeviceDescription_ToString_Args* args); struct PJRT_Device_GetDescription_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Device* device; PJRT_DeviceDescription* device_description; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Device_GetDescription_Args, device_description); typedef PJRT_Error* PJRT_Device_GetDescription( PJRT_Device_GetDescription_Args* args); struct PJRT_Device_IsAddressable_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Device* device; bool is_addressable; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Device_IsAddressable_Args, is_addressable); typedef PJRT_Error* PJRT_Device_IsAddressable( PJRT_Device_IsAddressable_Args* args); struct PJRT_Device_LocalHardwareId_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Device* device; int local_hardware_id; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Device_LocalHardwareId_Args, local_hardware_id); typedef PJRT_Error* PJRT_Device_LocalHardwareId( PJRT_Device_LocalHardwareId_Args* args); struct PJRT_Device_AddressableMemories_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Device* device; PJRT_Memory* const* memories; size_t num_memories; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Device_AddressableMemories_Args, num_memories); typedef PJRT_Error* PJRT_Device_AddressableMemories( PJRT_Device_AddressableMemories_Args* args); struct PJRT_Device_DefaultMemory_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Device* device; PJRT_Memory* memory; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Device_DefaultMemory_Args, memory); typedef PJRT_Error* PJRT_Device_DefaultMemory( PJRT_Device_DefaultMemory_Args* args); struct PJRT_Device_MemoryStats_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Device* device; int64_t bytes_in_use; int64_t peak_bytes_in_use; bool peak_bytes_in_use_is_set; int64_t num_allocs; bool num_allocs_is_set; int64_t largest_alloc_size; bool largest_alloc_size_is_set; int64_t bytes_limit; bool bytes_limit_is_set; int64_t bytes_reserved; bool bytes_reserved_is_set; int64_t peak_bytes_reserved; bool peak_bytes_reserved_is_set; int64_t bytes_reservable_limit; bool bytes_reservable_limit_is_set; int64_t largest_free_block_bytes; bool largest_free_block_bytes_is_set; int64_t pool_bytes; bool pool_bytes_is_set; int64_t peak_pool_bytes; bool peak_pool_bytes_is_set; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Device_MemoryStats_Args, peak_pool_bytes_is_set); typedef PJRT_Error* PJRT_Device_MemoryStats(PJRT_Device_MemoryStats_Args* args); struct PJRT_Memory_Id_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Memory* memory; int id; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Memory_Id_Args, id); typedef PJRT_Error* PJRT_Memory_Id(PJRT_Memory_Id_Args* args); struct PJRT_Memory_Kind_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Memory* memory; const char* kind; size_t kind_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Memory_Kind_Args, kind_size); typedef PJRT_Error* PJRT_Memory_Kind(PJRT_Memory_Kind_Args* args); struct PJRT_Memory_Kind_Id_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Memory* memory; int kind_id; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Memory_Kind_Id_Args, kind_id); typedef PJRT_Error* PJRT_Memory_Kind_Id(PJRT_Memory_Kind_Id_Args* args); struct PJRT_Memory_DebugString_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Memory* memory; const char* debug_string; size_t debug_string_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Memory_DebugString_Args, debug_string_size); typedef PJRT_Error* PJRT_Memory_DebugString(PJRT_Memory_DebugString_Args* args); struct PJRT_Memory_ToString_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Memory* memory; const char* to_string; size_t to_string_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Memory_ToString_Args, to_string_size); typedef PJRT_Error* PJRT_Memory_ToString(PJRT_Memory_ToString_Args* args); struct PJRT_Memory_AddressableByDevices_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Memory* memory; PJRT_Device* const* devices; size_t num_devices; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Memory_AddressableByDevices_Args, num_devices); typedef PJRT_Error* PJRT_Memory_AddressableByDevices( PJRT_Memory_AddressableByDevices_Args* args); typedef struct PJRT_ExecuteContext PJRT_ExecuteContext; struct PJRT_ExecuteContext_Create_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_ExecuteContext* context; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_ExecuteContext_Create_Args, context); typedef PJRT_Error* PJRT_ExecuteContext_Create( PJRT_ExecuteContext_Create_Args* args); struct PJRT_ExecuteContext_Destroy_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_ExecuteContext* context; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_ExecuteContext_Destroy_Args, context); typedef PJRT_Error* PJRT_ExecuteContext_Destroy( PJRT_ExecuteContext_Destroy_Args* args); struct PJRT_Executable_Destroy_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Executable* executable; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_Destroy_Args, executable); typedef PJRT_Error* PJRT_Executable_Destroy(PJRT_Executable_Destroy_Args* args); struct PJRT_LoadedExecutable_Destroy_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_LoadedExecutable* executable; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_LoadedExecutable_Destroy_Args, executable); typedef PJRT_Error* PJRT_LoadedExecutable_Destroy( PJRT_LoadedExecutable_Destroy_Args* args); struct PJRT_LoadedExecutable_GetExecutable_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_LoadedExecutable* loaded_executable; PJRT_Executable* executable; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_LoadedExecutable_GetExecutable_Args, executable); typedef PJRT_Error* PJRT_LoadedExecutable_GetExecutable( PJRT_LoadedExecutable_GetExecutable_Args* args); struct PJRT_Executable_Name_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Executable* executable; const char* executable_name; size_t executable_name_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_Name_Args, executable_name_size); typedef PJRT_Error* PJRT_Executable_Name(PJRT_Executable_Name_Args* args); struct PJRT_Executable_NumReplicas_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Executable* executable; size_t num_replicas; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_NumReplicas_Args, num_replicas); typedef PJRT_Error* PJRT_Executable_NumReplicas( PJRT_Executable_NumReplicas_Args* args); struct PJRT_Executable_NumPartitions_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Executable* executable; size_t num_partitions; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_NumPartitions_Args, num_partitions); typedef PJRT_Error* PJRT_Executable_NumPartitions( PJRT_Executable_NumPartitions_Args* args); struct PJRT_LoadedExecutable_AddressableDevices_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_LoadedExecutable* executable; PJRT_Device* const* addressable_devices; size_t num_addressable_devices; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_LoadedExecutable_AddressableDevices_Args, num_addressable_devices); typedef PJRT_Error* PJRT_LoadedExecutable_AddressableDevices( PJRT_LoadedExecutable_AddressableDevices_Args* args); struct PJRT_Executable_OptimizedProgram_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Executable* executable; PJRT_Program* program; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_OptimizedProgram_Args, program); typedef PJRT_Error* PJRT_Executable_OptimizedProgram( PJRT_Executable_OptimizedProgram_Args* args); struct PJRT_LoadedExecutable_Delete_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_LoadedExecutable* executable; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_LoadedExecutable_Delete_Args, executable); typedef PJRT_Error* PJRT_LoadedExecutable_Delete( PJRT_LoadedExecutable_Delete_Args* args); struct PJRT_LoadedExecutable_IsDeleted_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_LoadedExecutable* executable; bool is_deleted; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_LoadedExecutable_IsDeleted_Args, is_deleted); typedef PJRT_Error* PJRT_LoadedExecutable_IsDeleted( PJRT_LoadedExecutable_IsDeleted_Args* args); typedef struct PJRT_Chunk { void* data; size_t size; void (*deleter)(void* data, void* deleter_arg); void* deleter_arg; } PJRT_Chunk; typedef struct PJRT_CopyToDeviceStream PJRT_CopyToDeviceStream; struct PJRT_TransferMetadata; typedef PJRT_Error* (*PJRT_SendCallback)(PJRT_Chunk* chunk, PJRT_CallbackError* callback_error, size_t total_size_in_bytes, bool done, void* user_arg); typedef void (*PJRT_RecvCallback)(PJRT_CopyToDeviceStream* stream, void* user_arg); struct PJRT_SendCallbackInfo { int64_t channel_id; void* user_arg; PJRT_SendCallback send_callback; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_SendCallbackInfo, send_callback); struct PJRT_RecvCallbackInfo { int64_t channel_id; void* user_arg; PJRT_RecvCallback recv_callback; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_RecvCallbackInfo, recv_callback); struct PJRT_ExecuteOptions { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_SendCallbackInfo** send_callbacks; PJRT_RecvCallbackInfo** recv_callbacks; size_t num_send_ops; size_t num_recv_ops; int launch_id; const int64_t* non_donatable_input_indices; size_t num_non_donatable_input_indices; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_ExecuteOptions, num_non_donatable_input_indices); struct PJRT_LoadedExecutable_Execute_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_LoadedExecutable* executable; PJRT_ExecuteOptions* options; PJRT_Buffer* const* const* argument_lists; size_t num_devices; size_t num_args; PJRT_Buffer** const* output_lists; PJRT_Event** device_complete_events; PJRT_Device* execute_device; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_LoadedExecutable_Execute_Args, execute_device); typedef PJRT_Error* PJRT_LoadedExecutable_Execute( PJRT_LoadedExecutable_Execute_Args* args); struct PJRT_Executable_NumOutputs_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Executable* executable; size_t num_outputs; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_NumOutputs_Args, num_outputs); typedef PJRT_Error* PJRT_Executable_NumOutputs( PJRT_Executable_NumOutputs_Args* args); struct PJRT_Executable_SizeOfGeneratedCodeInBytes_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Executable* executable; int64_t size_in_bytes; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_SizeOfGeneratedCodeInBytes_Args, size_in_bytes); typedef PJRT_Error* PJRT_Executable_SizeOfGeneratedCodeInBytes( PJRT_Executable_SizeOfGeneratedCodeInBytes_Args* args); struct PJRT_Executable_Fingerprint_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Executable* executable; const char* executable_fingerprint; size_t executable_fingerprint_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_Fingerprint_Args, executable_fingerprint_size); typedef PJRT_Error* PJRT_Executable_Fingerprint( PJRT_Executable_Fingerprint_Args* args); struct PJRT_Executable_GetCostAnalysis_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Executable* executable; size_t num_properties; const PJRT_NamedValue* properties; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_GetCostAnalysis_Args, properties); typedef PJRT_Error* PJRT_Executable_GetCostAnalysis( PJRT_Executable_GetCostAnalysis_Args* args); struct PJRT_Executable_GetCompiledMemoryStats_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Executable* executable; int64_t generated_code_size_in_bytes; int64_t argument_size_in_bytes; int64_t output_size_in_bytes; int64_t alias_size_in_bytes; int64_t temp_size_in_bytes; int64_t host_generated_code_size_in_bytes; int64_t host_argument_size_in_bytes; int64_t host_output_size_in_bytes; int64_t host_alias_size_in_bytes; int64_t host_temp_size_in_bytes; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_GetCompiledMemoryStats_Args, host_temp_size_in_bytes); typedef PJRT_Error* PJRT_Executable_GetCompiledMemoryStats( PJRT_Executable_GetCompiledMemoryStats_Args* args); struct PJRT_Executable_OutputElementTypes_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Executable* executable; PJRT_Buffer_Type* output_types; size_t num_output_types; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_OutputElementTypes_Args, num_output_types); typedef PJRT_Error* PJRT_Executable_OutputElementTypes( PJRT_Executable_OutputElementTypes_Args* args); struct PJRT_Executable_OutputDimensions_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Executable* executable; size_t num_outputs; const int64_t* dims; const size_t* dim_sizes; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_OutputDimensions_Args, dim_sizes); typedef PJRT_Error* PJRT_Executable_OutputDimensions( PJRT_Executable_OutputDimensions_Args* args); struct PJRT_Executable_OutputMemoryKinds_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Executable* executable; size_t num_outputs; const char* const* memory_kinds; const size_t* memory_kind_sizes; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_OutputMemoryKinds_Args, memory_kind_sizes); typedef PJRT_Error* PJRT_Executable_OutputMemoryKinds( PJRT_Executable_OutputMemoryKinds_Args* args); typedef struct PJRT_SerializedExecutable PJRT_SerializedExecutable; struct PJRT_Executable_Serialize_Args { size_t struct_size; PJRT_Extension_Base* extension_start; const PJRT_Executable* executable; const char* serialized_bytes; size_t serialized_bytes_size; PJRT_SerializedExecutable* serialized_executable; void (*serialized_executable_deleter)( PJRT_SerializedExecutable* exec); }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_Serialize_Args, serialized_executable_deleter); typedef PJRT_Error* PJRT_Executable_Serialize( PJRT_Executable_Serialize_Args* args); struct PJRT_Executable_DeserializeAndLoad_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Client* client; const char* serialized_executable; size_t serialized_executable_size; PJRT_LoadedExecutable* loaded_executable; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Executable_DeserializeAndLoad_Args, loaded_executable); typedef PJRT_Error* PJRT_Executable_DeserializeAndLoad( PJRT_Executable_DeserializeAndLoad_Args* args); struct PJRT_LoadedExecutable_Fingerprint_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_LoadedExecutable* executable; const char* executable_fingerprint; size_t executable_fingerprint_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_LoadedExecutable_Fingerprint_Args, executable_fingerprint_size); typedef PJRT_Error* PJRT_LoadedExecutable_Fingerprint( PJRT_LoadedExecutable_Fingerprint_Args* args); struct PJRT_Buffer_Destroy_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_Destroy_Args, buffer); typedef PJRT_Error* PJRT_Buffer_Destroy(PJRT_Buffer_Destroy_Args* args); struct PJRT_Buffer_ElementType_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; PJRT_Buffer_Type type; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_ElementType_Args, type); typedef PJRT_Error* PJRT_Buffer_ElementType(PJRT_Buffer_ElementType_Args* args); struct PJRT_Buffer_Dimensions_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; const int64_t* dims; size_t num_dims; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_Dimensions_Args, num_dims); typedef PJRT_Error* PJRT_Buffer_Dimensions(PJRT_Buffer_Dimensions_Args* args); struct PJRT_Buffer_UnpaddedDimensions_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; const int64_t* unpadded_dims; size_t num_dims; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_UnpaddedDimensions_Args, num_dims); typedef PJRT_Error* PJRT_Buffer_UnpaddedDimensions( PJRT_Buffer_UnpaddedDimensions_Args* args); struct PJRT_Buffer_DynamicDimensionIndices_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; const size_t* dynamic_dim_indices; size_t num_dynamic_dims; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_DynamicDimensionIndices_Args, num_dynamic_dims); typedef PJRT_Error* PJRT_Buffer_DynamicDimensionIndices( PJRT_Buffer_DynamicDimensionIndices_Args* args); struct PJRT_Buffer_GetMemoryLayout_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; PJRT_Buffer_MemoryLayout layout; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_GetMemoryLayout_Args, layout); typedef PJRT_Error* PJRT_Buffer_GetMemoryLayout( PJRT_Buffer_GetMemoryLayout_Args* args); struct PJRT_Buffer_ToHostBuffer_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* src; PJRT_Buffer_MemoryLayout* host_layout; void* dst; size_t dst_size; PJRT_Event* event; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_ToHostBuffer_Args, event); typedef PJRT_Error* PJRT_Buffer_ToHostBuffer( PJRT_Buffer_ToHostBuffer_Args* args); struct PJRT_Buffer_OnDeviceSizeInBytes_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; size_t on_device_size_in_bytes; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_OnDeviceSizeInBytes_Args, on_device_size_in_bytes); typedef PJRT_Error* PJRT_Buffer_OnDeviceSizeInBytes( PJRT_Buffer_OnDeviceSizeInBytes_Args* args); struct PJRT_Buffer_Delete_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_Delete_Args, buffer); typedef PJRT_Error* PJRT_Buffer_Delete(PJRT_Buffer_Delete_Args* args); struct PJRT_Buffer_IsDeleted_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; bool is_deleted; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_IsDeleted_Args, is_deleted); typedef PJRT_Error* PJRT_Buffer_IsDeleted(PJRT_Buffer_IsDeleted_Args* args); struct PJRT_Buffer_CopyToDevice_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; PJRT_Device* dst_device; PJRT_Buffer* dst_buffer; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_CopyToDevice_Args, dst_buffer); typedef PJRT_Error* PJRT_Buffer_CopyToDevice( PJRT_Buffer_CopyToDevice_Args* args); struct PJRT_Buffer_CopyToMemory_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; PJRT_Memory* dst_memory; PJRT_Buffer* dst_buffer; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_CopyToMemory_Args, dst_buffer); typedef PJRT_Error* PJRT_Buffer_CopyToMemory( PJRT_Buffer_CopyToMemory_Args* args); struct PJRT_Buffer_IsOnCpu_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; bool is_on_cpu; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_IsOnCpu_Args, is_on_cpu); typedef PJRT_Error* PJRT_Buffer_IsOnCpu(PJRT_Buffer_IsOnCpu_Args* args); struct PJRT_Buffer_Device_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; PJRT_Device* device; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_Device_Args, device); typedef PJRT_Error* PJRT_Buffer_Device(PJRT_Buffer_Device_Args* args); struct PJRT_Buffer_Memory_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; PJRT_Memory* memory; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_Memory_Args, memory); typedef PJRT_Error* PJRT_Buffer_Memory(PJRT_Buffer_Memory_Args* args); struct PJRT_Buffer_ReadyEvent_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; PJRT_Event* event; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_ReadyEvent_Args, event); typedef PJRT_Error* PJRT_Buffer_ReadyEvent(PJRT_Buffer_ReadyEvent_Args* args); struct PJRT_Buffer_UnsafePointer_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; uintptr_t buffer_pointer; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_UnsafePointer_Args, buffer_pointer); typedef PJRT_Error* PJRT_Buffer_UnsafePointer( PJRT_Buffer_UnsafePointer_Args* args); struct PJRT_Buffer_IncreaseExternalReferenceCount_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_IncreaseExternalReferenceCount_Args, buffer); typedef PJRT_Error* PJRT_Buffer_IncreaseExternalReferenceCount( PJRT_Buffer_IncreaseExternalReferenceCount_Args* args); struct PJRT_Buffer_DecreaseExternalReferenceCount_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_DecreaseExternalReferenceCount_Args, buffer); typedef PJRT_Error* PJRT_Buffer_DecreaseExternalReferenceCount( PJRT_Buffer_DecreaseExternalReferenceCount_Args* args); struct PJRT_Buffer_OpaqueDeviceMemoryDataPointer_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Buffer* buffer; void* device_memory_ptr; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Buffer_OpaqueDeviceMemoryDataPointer_Args, device_memory_ptr); typedef PJRT_Error* PJRT_Buffer_OpaqueDeviceMemoryDataPointer( PJRT_Buffer_OpaqueDeviceMemoryDataPointer_Args* args); struct PJRT_CopyToDeviceStream_Destroy_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_CopyToDeviceStream* stream; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_CopyToDeviceStream_Destroy_Args, stream); typedef PJRT_Error* PJRT_CopyToDeviceStream_Destroy( PJRT_CopyToDeviceStream_Destroy_Args* args); struct PJRT_CopyToDeviceStream_AddChunk_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_CopyToDeviceStream* stream; PJRT_Chunk* chunk; PJRT_Event* transfer_complete; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_CopyToDeviceStream_AddChunk_Args, transfer_complete); typedef PJRT_Error* PJRT_CopyToDeviceStream_AddChunk( PJRT_CopyToDeviceStream_AddChunk_Args* args); struct PJRT_CopyToDeviceStream_TotalBytes_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_CopyToDeviceStream* stream; int64_t total_bytes; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_CopyToDeviceStream_TotalBytes_Args, total_bytes); typedef PJRT_Error* PJRT_CopyToDeviceStream_TotalBytes( PJRT_CopyToDeviceStream_TotalBytes_Args* args); struct PJRT_CopyToDeviceStream_GranuleSize_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_CopyToDeviceStream* stream; int64_t granule_size_in_bytes; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_CopyToDeviceStream_GranuleSize_Args, granule_size_in_bytes); typedef PJRT_Error* PJRT_CopyToDeviceStream_GranuleSize( PJRT_CopyToDeviceStream_GranuleSize_Args* args); struct PJRT_CopyToDeviceStream_CurrentBytes_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_CopyToDeviceStream* stream; int64_t current_bytes; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_CopyToDeviceStream_CurrentBytes_Args, current_bytes); typedef PJRT_Error* PJRT_CopyToDeviceStream_CurrentBytes( PJRT_CopyToDeviceStream_CurrentBytes_Args* args); struct PJRT_TopologyDescription_Create_Args { size_t struct_size; PJRT_Extension_Base* extension_start; const char* topology_name; size_t topology_name_size; const PJRT_NamedValue* create_options; size_t num_options; PJRT_TopologyDescription* topology; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_TopologyDescription_Create_Args, topology); typedef PJRT_Error* PJRT_TopologyDescription_Create( PJRT_TopologyDescription_Create_Args* args); struct PJRT_TopologyDescription_Destroy_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_TopologyDescription* topology; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_TopologyDescription_Destroy_Args, topology); typedef PJRT_Error* PJRT_TopologyDescription_Destroy( PJRT_TopologyDescription_Destroy_Args* args); struct PJRT_TopologyDescription_PlatformVersion_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_TopologyDescription* topology; const char* platform_version; size_t platform_version_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_TopologyDescription_PlatformVersion_Args, platform_version_size); typedef PJRT_Error* PJRT_TopologyDescription_PlatformVersion( PJRT_TopologyDescription_PlatformVersion_Args* args); struct PJRT_TopologyDescription_PlatformName_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_TopologyDescription* topology; const char* platform_name; size_t platform_name_size; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_TopologyDescription_PlatformName_Args, platform_name_size); typedef PJRT_Error* PJRT_TopologyDescription_PlatformName( PJRT_TopologyDescription_PlatformName_Args* args); struct PJRT_TopologyDescription_GetDeviceDescriptions_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_TopologyDescription* topology; PJRT_DeviceDescription* const* descriptions; size_t num_descriptions; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_TopologyDescription_GetDeviceDescriptions_Args, num_descriptions); typedef PJRT_Error* PJRT_TopologyDescription_GetDeviceDescriptions( PJRT_TopologyDescription_GetDeviceDescriptions_Args* args); typedef struct PJRT_SerializedTopology PJRT_SerializedTopology; struct PJRT_TopologyDescription_Serialize_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_TopologyDescription* topology; const char* serialized_bytes; size_t serialized_bytes_size; PJRT_SerializedTopology* serialized_topology; void (*serialized_topology_deleter)( PJRT_SerializedTopology* serialized_topology); }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_TopologyDescription_Serialize_Args, serialized_topology_deleter); typedef PJRT_Error* PJRT_TopologyDescription_Serialize( PJRT_TopologyDescription_Serialize_Args* args); struct PJRT_TopologyDescription_Attributes_Args { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_TopologyDescription* topology; const PJRT_NamedValue* attributes; size_t num_attributes; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_TopologyDescription_Attributes_Args, num_attributes); typedef PJRT_Error* PJRT_TopologyDescription_Attributes( PJRT_TopologyDescription_Attributes_Args* args); struct PJRT_Compile_Args { size_t struct_size; PJRT_Extension_Base* extension_start; const PJRT_TopologyDescription* topology; const PJRT_Program* program; const char* compile_options; size_t compile_options_size; PJRT_Client* client; PJRT_Executable* executable; }; PJRT_DEFINE_STRUCT_TRAITS(PJRT_Compile_Args, executable); typedef PJRT_Error* PJRT_Compile(PJRT_Compile_Args* args); #define _PJRT_API_STRUCT_FIELD(fn_type) fn_type* fn_type typedef struct PJRT_Api { size_t struct_size; PJRT_Extension_Base* extension_start; PJRT_Api_Version pjrt_api_version; _PJRT_API_STRUCT_FIELD(PJRT_Error_Destroy); _PJRT_API_STRUCT_FIELD(PJRT_Error_Message); _PJRT_API_STRUCT_FIELD(PJRT_Error_GetCode); _PJRT_API_STRUCT_FIELD(PJRT_Plugin_Initialize); _PJRT_API_STRUCT_FIELD(PJRT_Plugin_Attributes); _PJRT_API_STRUCT_FIELD(PJRT_Event_Destroy); _PJRT_API_STRUCT_FIELD(PJRT_Event_IsReady); _PJRT_API_STRUCT_FIELD(PJRT_Event_Error); _PJRT_API_STRUCT_FIELD(PJRT_Event_Await); _PJRT_API_STRUCT_FIELD(PJRT_Event_OnReady); _PJRT_API_STRUCT_FIELD(PJRT_Client_Create); _PJRT_API_STRUCT_FIELD(PJRT_Client_Destroy); _PJRT_API_STRUCT_FIELD(PJRT_Client_PlatformName); _PJRT_API_STRUCT_FIELD(PJRT_Client_ProcessIndex); _PJRT_API_STRUCT_FIELD(PJRT_Client_PlatformVersion); _PJRT_API_STRUCT_FIELD(PJRT_Client_Devices); _PJRT_API_STRUCT_FIELD(PJRT_Client_AddressableDevices); _PJRT_API_STRUCT_FIELD(PJRT_Client_LookupDevice); _PJRT_API_STRUCT_FIELD(PJRT_Client_LookupAddressableDevice); _PJRT_API_STRUCT_FIELD(PJRT_Client_AddressableMemories); _PJRT_API_STRUCT_FIELD(PJRT_Client_Compile); _PJRT_API_STRUCT_FIELD(PJRT_Client_DefaultDeviceAssignment); _PJRT_API_STRUCT_FIELD(PJRT_Client_BufferFromHostBuffer); _PJRT_API_STRUCT_FIELD(PJRT_DeviceDescription_Id); _PJRT_API_STRUCT_FIELD(PJRT_DeviceDescription_ProcessIndex); _PJRT_API_STRUCT_FIELD(PJRT_DeviceDescription_Attributes); _PJRT_API_STRUCT_FIELD(PJRT_DeviceDescription_Kind); _PJRT_API_STRUCT_FIELD(PJRT_DeviceDescription_DebugString); _PJRT_API_STRUCT_FIELD(PJRT_DeviceDescription_ToString); _PJRT_API_STRUCT_FIELD(PJRT_Device_GetDescription); _PJRT_API_STRUCT_FIELD(PJRT_Device_IsAddressable); _PJRT_API_STRUCT_FIELD(PJRT_Device_LocalHardwareId); _PJRT_API_STRUCT_FIELD(PJRT_Device_AddressableMemories); _PJRT_API_STRUCT_FIELD(PJRT_Device_DefaultMemory); _PJRT_API_STRUCT_FIELD(PJRT_Device_MemoryStats); _PJRT_API_STRUCT_FIELD(PJRT_Memory_Id); _PJRT_API_STRUCT_FIELD(PJRT_Memory_Kind); _PJRT_API_STRUCT_FIELD(PJRT_Memory_DebugString); _PJRT_API_STRUCT_FIELD(PJRT_Memory_ToString); _PJRT_API_STRUCT_FIELD(PJRT_Memory_AddressableByDevices); _PJRT_API_STRUCT_FIELD(PJRT_Executable_Destroy); _PJRT_API_STRUCT_FIELD(PJRT_Executable_Name); _PJRT_API_STRUCT_FIELD(PJRT_Executable_NumReplicas); _PJRT_API_STRUCT_FIELD(PJRT_Executable_NumPartitions); _PJRT_API_STRUCT_FIELD(PJRT_Executable_NumOutputs); _PJRT_API_STRUCT_FIELD(PJRT_Executable_SizeOfGeneratedCodeInBytes); _PJRT_API_STRUCT_FIELD(PJRT_Executable_GetCostAnalysis); _PJRT_API_STRUCT_FIELD(PJRT_Executable_OutputMemoryKinds); _PJRT_API_STRUCT_FIELD(PJRT_Executable_OptimizedProgram); _PJRT_API_STRUCT_FIELD(PJRT_Executable_Serialize); _PJRT_API_STRUCT_FIELD(PJRT_LoadedExecutable_Destroy); _PJRT_API_STRUCT_FIELD(PJRT_LoadedExecutable_GetExecutable); _PJRT_API_STRUCT_FIELD(PJRT_LoadedExecutable_AddressableDevices); _PJRT_API_STRUCT_FIELD(PJRT_LoadedExecutable_Delete); _PJRT_API_STRUCT_FIELD(PJRT_LoadedExecutable_IsDeleted); _PJRT_API_STRUCT_FIELD(PJRT_LoadedExecutable_Execute); _PJRT_API_STRUCT_FIELD(PJRT_Executable_DeserializeAndLoad); _PJRT_API_STRUCT_FIELD(PJRT_LoadedExecutable_Fingerprint); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_Destroy); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_ElementType); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_Dimensions); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_UnpaddedDimensions); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_DynamicDimensionIndices); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_GetMemoryLayout); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_OnDeviceSizeInBytes); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_Device); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_Memory); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_Delete); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_IsDeleted); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_CopyToDevice); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_ToHostBuffer); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_IsOnCpu); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_ReadyEvent); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_UnsafePointer); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_IncreaseExternalReferenceCount); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_DecreaseExternalReferenceCount); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_OpaqueDeviceMemoryDataPointer); _PJRT_API_STRUCT_FIELD(PJRT_CopyToDeviceStream_Destroy); _PJRT_API_STRUCT_FIELD(PJRT_CopyToDeviceStream_AddChunk); _PJRT_API_STRUCT_FIELD(PJRT_CopyToDeviceStream_TotalBytes); _PJRT_API_STRUCT_FIELD(PJRT_CopyToDeviceStream_GranuleSize); _PJRT_API_STRUCT_FIELD(PJRT_CopyToDeviceStream_CurrentBytes); _PJRT_API_STRUCT_FIELD(PJRT_TopologyDescription_Create); _PJRT_API_STRUCT_FIELD(PJRT_TopologyDescription_Destroy); _PJRT_API_STRUCT_FIELD(PJRT_TopologyDescription_PlatformName); _PJRT_API_STRUCT_FIELD(PJRT_TopologyDescription_PlatformVersion); _PJRT_API_STRUCT_FIELD(PJRT_TopologyDescription_GetDeviceDescriptions); _PJRT_API_STRUCT_FIELD(PJRT_TopologyDescription_Serialize); _PJRT_API_STRUCT_FIELD(PJRT_TopologyDescription_Attributes); _PJRT_API_STRUCT_FIELD(PJRT_Compile); _PJRT_API_STRUCT_FIELD(PJRT_Executable_OutputElementTypes); _PJRT_API_STRUCT_FIELD(PJRT_Executable_OutputDimensions); _PJRT_API_STRUCT_FIELD(PJRT_Buffer_CopyToMemory); _PJRT_API_STRUCT_FIELD(PJRT_Client_CreateViewOfDeviceBuffer); _PJRT_API_STRUCT_FIELD(PJRT_Executable_Fingerprint); _PJRT_API_STRUCT_FIELD(PJRT_Client_TopologyDescription); _PJRT_API_STRUCT_FIELD(PJRT_Executable_GetCompiledMemoryStats); _PJRT_API_STRUCT_FIELD(PJRT_Memory_Kind_Id); _PJRT_API_STRUCT_FIELD(PJRT_ExecuteContext_Create); _PJRT_API_STRUCT_FIELD(PJRT_ExecuteContext_Destroy); } PJRT_Api; enum { PJRT_Api_STRUCT_SIZE = PJRT_STRUCT_SIZE(PJRT_Api, PJRT_Client_TopologyDescription) }; #undef _PJRT_API_STRUCT_FIELD #ifdef __cplusplus } #endif #endif
#include "xla/pjrt/c/pjrt_c_api_test.h" #include <cstddef> #include <functional> #include <memory> #include <numeric> #include <string> #include <string_view> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/base/thread_annotations.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/client/executable_build_options.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/pjrt/c/pjrt_c_api.h" #include "xla/pjrt/c/pjrt_c_api_helpers.h" #include "xla/pjrt/c/pjrt_c_api_test_base.h" #include "xla/pjrt/compile_options.pb.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_future.h" #include "xla/service/computation_placer.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_parser.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/literal_test_util.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/platform/status.h" namespace pjrt { namespace { constexpr absl::string_view module_add_one = R"(module { func.func @main(%arg0: tensor<f32>) -> tensor<f32> { %0 = "mhlo.copy"(%arg0) : (tensor<f32>) -> tensor<f32> %1 = mhlo.constant dense<1.000000e+00> : tensor<f32> %2 = mhlo.add %0, %1 : tensor<f32> return %2 : tensor<f32> }})"; constexpr absl::string_view kHloString = R"( HloModule TupleCreate_module: ENTRY %TupleCreate.v4 (v1: f32[], v2: f32[3], v3: f32[2,3]) -> (f32[], f32[3], f32[2,3]) { %v1 = f32[] parameter(0) %v2 = f32[3]{0} parameter(1) %v3 = f32[2,3]{1,0} parameter(2) ROOT %tuple = (f32[], f32[3]{0}, f32[2,3]{1,0}) tuple(f32[] %v1, f32[3]{0} %v2, f32[2,3]{1,0} %v3) } )"; class TestCApiFactory { public: void Register(std::function<const PJRT_Api*()> factory, absl::string_view platform_name) { absl::MutexLock lock(&mu_); CHECK(!factory_); factory_ = std::move(factory); CHECK(platform_name_.empty()) << "Platform name already provided"; CHECK(!platform_name.empty()) << "Provided platform name is empty"; platform_name_ = platform_name; } std::function<const PJRT_Api*()> Get() const { absl::MutexLock lock(&mu_); CHECK(factory_) << "Test didn't call RegisterPjRtCApiTestFactory()"; return factory_; } std::string GetPlatformName() const { absl::MutexLock lock(&mu_); CHECK(!platform_name_.empty()) << "Test didn't call RegisterPjRtCApiTestFactory()"; return platform_name_; } private: mutable absl::Mutex mu_; std::function<const PJRT_Api*()> factory_ ABSL_GUARDED_BY(mu_); std::string platform_name_; }; TestCApiFactory& GetGlobalTestCApiFactory() { static auto* const factory = new TestCApiFactory; return *factory; } const PJRT_Api* GetCApi() { return GetGlobalTestCApiFactory().Get()(); } std::string GetPlatformName() { return GetGlobalTestCApiFactory().GetPlatformName(); } } void RegisterPjRtCApiTestFactory(std::function<const PJRT_Api*()> factory, absl::string_view platform_name) { GetGlobalTestCApiFactory().Register(std::move(factory), platform_name); } namespace { class PjrtCApiTest : public PjrtCApiTestBase { protected: PjrtCApiTest() : PjrtCApiTestBase(GetCApi()) {} std::string platform_name_ = GetPlatformName(); }; TEST_F(PjrtCApiTest, ApiVersion) { CHECK_EQ(api_->pjrt_api_version.major_version, PJRT_API_MAJOR); CHECK_EQ(api_->pjrt_api_version.minor_version, PJRT_API_MINOR); } TEST_F(PjrtCApiTest, PlatformName) { PJRT_Client_PlatformName_Args args; args.client = client_; args.struct_size = PJRT_Client_PlatformName_Args_STRUCT_SIZE; args.extension_start = nullptr; PJRT_Error* error = api_->PJRT_Client_PlatformName(&args); ASSERT_EQ(error, nullptr); absl::string_view platform_name(args.platform_name, args.platform_name_size); ASSERT_EQ(platform_name_, platform_name); } TEST_F(PjrtCApiTest, ClientProcessIndex) { PJRT_Client_ProcessIndex_Args process_index_args = PJRT_Client_ProcessIndex_Args{ .struct_size = PJRT_Client_ProcessIndex_Args_STRUCT_SIZE, .extension_start = nullptr, .client = client_, .process_index = -1, }; PJRT_Error* error = api_->PJRT_Client_ProcessIndex(&process_index_args); CHECK_EQ(error, nullptr); CHECK_EQ(process_index_args.process_index, 0); } TEST_F(PjrtCApiTest, ClientDevices) { absl::Span<PJRT_Device* const> devices = GetClientDevices(); ASSERT_FALSE(devices.empty()); for (auto& device : devices) { ASSERT_TRUE(this->IsValidDeviceId(device)); } } TEST_F(PjrtCApiTest, ClientAddressableDevices) { absl::Span<PJRT_Device* const> addressable_devices = GetClientAddressableDevices(); ASSERT_FALSE(addressable_devices.empty()); for (auto& device : addressable_devices) { ASSERT_TRUE(this->IsValidDeviceId(device)); } absl::Span<PJRT_Device* const> client_devices = GetClientDevices(); for (auto& addressable_device : addressable_devices) { ASSERT_THAT(client_devices, ::testing::Contains(addressable_device)); } } TEST_F(PjrtCApiTest, LookupDevice) { PJRT_Client_LookupDevice_Args lookup_device_args = PJRT_Client_LookupDevice_Args{ .struct_size = PJRT_Client_LookupDevice_Args_STRUCT_SIZE, .extension_start = nullptr, .client = client_, .id = 0, .device = nullptr, }; PJRT_Error* lookup_device_error = api_->PJRT_Client_LookupDevice(&lookup_device_args); ASSERT_EQ(lookup_device_error, nullptr); int id = GetDeviceId(lookup_device_args.device); ASSERT_EQ(id, 0); } TEST_F(PjrtCApiTest, LookupAddressableDevice) { PJRT_Client_LookupAddressableDevice_Args lookup_addressable_device_args = PJRT_Client_LookupAddressableDevice_Args{ .struct_size = PJRT_Client_LookupAddressableDevice_Args_STRUCT_SIZE, .extension_start = nullptr, .client = client_, .local_hardware_id = 0, .addressable_device = nullptr, }; PJRT_Error* lookup_addressable_device_error = api_->PJRT_Client_LookupAddressableDevice( &lookup_addressable_device_args); ASSERT_EQ(lookup_addressable_device_error, nullptr); int local_hardware_id = GetLocalHardwareId(lookup_addressable_device_args.addressable_device); ASSERT_EQ(local_hardware_id, 0); } TEST_F(PjrtCApiTest, GetDefaultDeviceAssignmentNominal) { constexpr int kNumReplicas = 2; constexpr int kNumPartitions = 1; std::vector<int> assignment_buffer(kNumReplicas * kNumPartitions); PJRT_Client_DefaultDeviceAssignment_Args args{ .struct_size = PJRT_Client_DefaultDeviceAssignment_Args_STRUCT_SIZE, .extension_start = nullptr, .client = client_, .num_replicas = kNumReplicas, .num_partitions = kNumPartitions, .default_assignment_size = assignment_buffer.size(), .default_assignment = assignment_buffer.data(), }; auto error = ToUniquePtr(api_->PJRT_Client_DefaultDeviceAssignment(&args)); EXPECT_EQ(error, nullptr); } TEST_F(PjrtCApiTest, GetDefaultDeviceAssignmentBufferTooSmall) { constexpr int kNumReplicas = 4; constexpr int kNumPartitions = 2; constexpr size_t kBufferSize = 7; std::vector<int> assignment_buffer(kBufferSize); PJRT_Client_DefaultDeviceAssignment_Args args{ .struct_size = PJRT_Client_DefaultDeviceAssignment_Args_STRUCT_SIZE, .extension_start = nullptr, .client = client_, .num_replicas = kNumReplicas, .num_partitions = kNumPartitions, .default_assignment_size = assignment_buffer.size(), .default_assignment = assignment_buffer.data(), }; auto error = ToUniquePtr(api_->PJRT_Client_DefaultDeviceAssignment(&args)); ASSERT_NE(error, nullptr); absl::Status status = ::pjrt::PjrtErrorToStatus(error.get(), api_); EXPECT_EQ(status.code(), absl::StatusCode::kFailedPrecondition); EXPECT_EQ(status.message(), "PJRT_Client_DefaultDeviceAssignment: `default_assignment_size` 7" " < `num_replicas * num_partitions`, 4 * 2 = 8"); } TEST_F(PjrtCApiTest, LookupDeviceNegativeId) { PJRT_Client_LookupDevice_Args args = PJRT_Client_LookupDevice_Args{ .struct_size = PJRT_Client_LookupDevice_Args_STRUCT_SIZE, .extension_start = nullptr, .client = client_, .id = -1, .device = nullptr, }; absl::Status expected = absl::Status(absl::StatusCode::kInvalidArgument, "No matching device found for device_id -1"); auto error = ToUniquePtr(api_->PJRT_Client_LookupDevice(&args)); ASSERT_NE(error, nullptr); absl::Status status = ::pjrt::PjrtErrorToStatus(error.get(), api_); ASSERT_EQ(status, expected); } TEST_F(PjrtCApiTest, LookupDeviceOutOfRangeId) { int out_of_range_id = GetNumDevices(); PJRT_Client_LookupDevice_Args args = PJRT_Client_LookupDevice_Args{ .struct_size = PJRT_Client_LookupDevice_Args_STRUCT_SIZE, .extension_start = nullptr, .client = client_, .id = out_of_range_id, .device = nullptr, }; absl::Status expected = absl::Status( absl::StatusCode::kInvalidArgument, absl::StrCat("No matching device found for device_id ", out_of_range_id)); auto error = ToUniquePtr(api_->PJRT_Client_LookupDevice(&args)); ASSERT_NE(error, nullptr); absl::Status status = ::pjrt::PjrtErrorToStatus(error.get(), api_); ASSERT_EQ(status, expected); } static constexpr std::string_view kExecutableName = "operation"; void destroy_executable(PJRT_LoadedExecutable* executable, const PJRT_Api* api) { PJRT_LoadedExecutable_Destroy_Args args{ .struct_size = PJRT_LoadedExecutable_Destroy_Args_STRUCT_SIZE, .extension_start = nullptr, .executable = executable, }; PJRT_Error* error = api->PJRT_LoadedExecutable_Destroy(&args); CHECK_EQ(error, nullptr); } TEST_F(PjrtCApiTest, BufferTransferImmutableUntilTransferCompletes) { xla::Shape shape = xla::ShapeUtil::MakeShapeWithType<float>({4}); std::vector<float> float_data(4); std::iota(float_data.begin(), float_data.end(), 41.0f); PJRT_Client_BufferFromHostBuffer_Args args = CreateBufferFromHostBufferArgs( float_data, shape, xla::PjRtClient::HostBufferSemantics::kImmutableUntilTransferCompletes); PJRT_Error* error = api_->PJRT_Client_BufferFromHostBuffer(&args); CHECK_EQ(error, nullptr); std::unique_ptr<PJRT_Buffer, ::pjrt::PJRT_BufferDeleter> buffer( args.buffer, ::pjrt::MakeBufferDeleter(api_)); std::unique_ptr<PJRT_Event, ::pjrt::PJRT_EventDeleter> event( args.done_with_host_buffer, ::pjrt::MakeEventDeleter(api_)); PJRT_Event_Await_Args await_args; await_args.struct_size = PJRT_Event_Await_Args_STRUCT_SIZE; await_args.extension_start = nullptr; await_args.event = event.get(); PJRT_Error* event_error = api_->PJRT_Event_Await(&await_args); ASSERT_EQ(event_error, nullptr); } TEST_F(PjrtCApiTest, Compile) { PJRT_Client_Compile_Args args = PJRT_Client_Compile_Args{ .struct_size = PJRT_Client_Compile_Args_STRUCT_SIZE, .extension_start = nullptr, .client = client_, }; std::string options_str = BuildSingleDeviceCompileOptionStr(); args.compile_options = options_str.c_str(); args.compile_options_size = options_str.size(); std::string format(::pjrt::kMlirFormat); std::string program_code{module_add_one}; PJRT_Program program = PJRT_Program{ .struct_size = PJRT_Program_STRUCT_SIZE, .extension_start = nullptr, .code = program_code.data(), .code_size = program_code.length(), .format = format.c_str(), .format_size = format.size(), }; args.program = &program; PJRT_Error* error = api_->PJRT_Client_Compile(&args); ::pjrt::LogFatalIfPjrtError(error, api_); ASSERT_EQ(error, nullptr); destroy_executable(args.executable, api_); } TEST_F(PjrtCApiTest, CompileXlaComputation) { PJRT_Client_Compile_Args args = PJRT_Client_Compile_Args{ .struct_size = PJRT_Client_Compile_Args_STRUCT_SIZE, .extension_start = nullptr, .client = client_, }; xla::DeviceAssignment device_assignment(1, 1); device_assignment(0, 0) = 0; xla::DeviceAssignmentProto proto; device_assignment.Serialize(&proto); std::string device_assignment_str = proto.SerializeAsString(); std::string options_str = BuildSingleDeviceCompileOptionStr(); args.compile_options = options_str.c_str(); args.compile_options_size = options_str.size(); absl::StatusOr<std::unique_ptr<xla::HloModule>> hlo_module = xla::ParseAndReturnUnverifiedModule(kHloString); ASSERT_EQ(hlo_module.ok(), true); std::string module_str = hlo_module->get()->ToProto().SerializeAsString(); std::string format(::pjrt::kHloFormat); PJRT_Program program = PJRT_Program{ .struct_size = PJRT_Program_STRUCT_SIZE, .extension_start = nullptr, .code = module_str.data(), .code_size = module_str.size(), .format = format.c_str(), .format_size = format.size(), }; args.program = &program; PJRT_Error* error = api_->PJRT_Client_Compile(&args); ::pjrt::LogFatalIfPjrtError(error, api_); ASSERT_EQ(error, nullptr); destroy_executable(args.executable, api_); } TEST_F(PjrtCApiTest, CompileInvalidOption) { PJRT_Client_Compile_Args args = PJRT_Client_Compile_Args{ .struct_size = PJRT_Client_Compile_Args_STRUCT_SIZE, .extension_start = nullptr, .client = client_, }; std::string options_str = "invalid compile options"; args.compile_options = options_str.c_str(); args.compile_options_size = options_str.size(); std::string format(::pjrt::kMlirFormat); std::string program_code{module_add_one}; PJRT_Program program = PJRT_Program{ .struct_size = PJRT_Program_STRUCT_SIZE, .extension_start = nullptr, .code = program_code.data(), .code_size = program_code.length(), .format = format.c_str(), .format_size = format.size(), }; args.program = &program; PJRT_Error* error = api_->PJRT_Client_Compile(&args); absl::Status status = ::pjrt::PjrtErrorToStatus(error, api_); EXPECT_EQ(status.code(), absl::StatusCode::kInvalidArgument); EXPECT_EQ(status.message(), "PJRT_Client_Compile: failed to deserialize CompileOptionsProto"); destroy_executable(args.executable, api_); ::pjrt::MakeErrorDeleter(api_)(error); } TEST_F(PjrtCApiTest, CompileInvalidProgramFormat) { PJRT_Client_Compile_Args args = PJRT_Client_Compile_Args{ .struct_size = PJRT_Client_Compile_Args_STRUCT_SIZE, .extension_start = nullptr, .client = client_, }; xla::DeviceAssignment device_assignment(1, 1); device_assignment(0, 0) = 0; xla::DeviceAssignmentProto proto; device_assignment.Serialize(&proto); std::string device_assignment_str = proto.SerializeAsString(); std::string options_str = BuildSingleDeviceCompileOptionStr(); args.compile_options = options_str.c_str(); args.compile_options_size = options_str.size(); std::string format("invalid"); PJRT_Program program = PJRT_Program{ .struct_size = PJRT_Program_STRUCT_SIZE, .extension_start = nullptr, .code = nullptr, .code_size = 0, .format = format.c_str(), .format_size = format.size(), }; args.program = &program; PJRT_Error* error = api_->PJRT_Client_Compile(&args); absl::Status status = ::pjrt::PjrtErrorToStatus(error, api_); EXPECT_EQ(status.code(), absl::StatusCode::kInvalidArgument); EXPECT_EQ(status.message(), "Unknown program format 'invalid'."); destroy_executable(args.executable, api_); ::pjrt::MakeErrorDeleter(api_)(error); } TEST_F(PjrtCApiTest, DeviceId) { auto* device = GetClientDevices()[0]; int id = GetDeviceId(device); CHECK_EQ(id, 0); } TEST_F(PjrtCApiTest, DeviceProcessIndex) { PJRT_DeviceDescription_ProcessIndex_Args args = PJRT_DeviceDescription_ProcessIndex_Args{ .struct_size = PJRT_DeviceDescription_ProcessIndex_Args_STRUCT_SIZE, .extension_start = nullptr, .device_description = ::pjrt::GetDeviceDescription(api_, GetClientDevices()[0]), .process_index = -1, }; PJRT_Error* error = api_->PJRT_DeviceDescription_ProcessIndex(&args); ASSERT_EQ(error, nullptr); CHECK_EQ(args.process_index, 0); } TEST_F(PjrtCApiTest, DeviceIsAddressable) { PJRT_Device_IsAddressable_Args args = PJRT_Device_IsAddressable_Args{ .struct_size = PJRT_Device_IsAddressable_Args_STRUCT_SIZE, .extension_start = nullptr, .device = GetClientDevices()[0], .is_addressable = false, }; PJRT_Error* error = api_->PJRT_Device_IsAddressable(&args); ASSERT_EQ(error, nullptr); CHECK_EQ(args.is_addressable, true); } TEST_F(PjrtCApiTest, DeviceLocalHardwareId) { PJRT_Device_LocalHardwareId_Args args = PJRT_Device_LocalHardwareId_Args{ .struct_size = PJRT_Device_LocalHardwareId_Args_STRUCT_SIZE, .extension_start = nullptr, .device = GetClientDevices()[0], .local_hardware_id = -1, }; PJRT_Error* error = api_->PJRT_Device_LocalHardwareId(&args); ASSERT_EQ(error, nullptr); CHECK_EQ(args.local_hardware_id, 0); } class PjrtCApiBufferTest : public PjrtCApiTest { protected: void SetUp() override { PjrtCApiTest::SetUp(); auto buffer_and_event = create_buffer(); buffer_ = std::move(buffer_and_event.first); event_ = buffer_and_event.second; } void TearDown() override { TF_CHECK_OK(event_.Await()); buffer_.reset(nullptr); PjrtCApiTest::TearDown(); } std::unique_ptr<PJRT_Buffer, ::pjrt::PJRT_BufferDeleter> buffer_; xla::PjRtFuture<> event_; }; TEST_F(PjrtCApiBufferTest, IsDeleted) { PJRT_Buffer_IsDeleted_Args is_deleted_args; is_deleted_args.struct_size = PJRT_Buffer_IsDeleted_Args_STRUCT_SIZE; is_deleted_args.extension_start = nullptr; is_deleted_args.buffer = buffer_.get(); PJRT_Error* is_deleted_error = api_->PJRT_Buffer_IsDeleted(&is_deleted_args); ASSERT_EQ(is_deleted_error, nullptr); ASSERT_FALSE(is_deleted_args.is_deleted); PJRT_Buffer_Delete_Args delete_args; delete_args.struct_size = PJRT_Buffer_Delete_Args_STRUCT_SIZE; delete_args.extension_start = nullptr; delete_args.buffer = buffer_.get(); PJRT_Error* delete_error = api_->PJRT_Buffer_Delete(&delete_args); ASSERT_EQ(delete_error, nullptr); is_deleted_error = api_->PJRT_Buffer_IsDeleted(&is_deleted_args); ASSERT_EQ(is_deleted_error, nullptr); ASSERT_TRUE(is_deleted_args.is_deleted); } TEST_F(PjrtCApiBufferTest, GetOnDeviceSizeInBytes) { PJRT_Buffer_OnDeviceSizeInBytes_Args args; args.struct_size = PJRT_Buffer_OnDeviceSizeInBytes_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); PJRT_Error* on_device_size_bytes_error = api_->PJRT_Buffer_OnDeviceSizeInBytes(&args); ASSERT_EQ(on_device_size_bytes_error, nullptr); ASSERT_GT(args.on_device_size_in_bytes, 0); } TEST_F(PjrtCApiBufferTest, ReadyEvent) { PJRT_Buffer_ReadyEvent_Args get_event_args; get_event_args.struct_size = PJRT_Buffer_ReadyEvent_Args_STRUCT_SIZE; get_event_args.extension_start = nullptr; get_event_args.buffer = buffer_.get(); auto error = ToUniquePtr(api_->PJRT_Buffer_ReadyEvent(&get_event_args)); ASSERT_EQ(error, nullptr); PJRT_Event* event = get_event_args.event; ASSERT_NE(event, nullptr); PJRT_Event_Await_Args await_args; await_args.struct_size = PJRT_Event_Await_Args_STRUCT_SIZE; await_args.extension_start = nullptr; await_args.event = event; error.reset(api_->PJRT_Event_Await(&await_args)); ASSERT_EQ(error, nullptr); PJRT_Event_IsReady_Args ready_args; ready_args.struct_size = PJRT_Event_IsReady_Args_STRUCT_SIZE; ready_args.extension_start = nullptr; ready_args.event = event; error.reset(api_->PJRT_Event_IsReady(&ready_args)); ASSERT_EQ(error, nullptr); EXPECT_TRUE(ready_args.is_ready); PJRT_Event_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_Event_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.event = event; error.reset(api_->PJRT_Event_Destroy(&destroy_args)); EXPECT_EQ(error, nullptr); } TEST_F(PjrtCApiBufferTest, ToHostBufferNoHostLayout) { PJRT_Buffer_ToHostBuffer_Args args; args.struct_size = PJRT_Buffer_ToHostBuffer_Args_STRUCT_SIZE; args.extension_start = nullptr; args.src = buffer_.get(); xla::Shape host_shape = xla::ShapeUtil::MakeShape(xla::F32, {4}); auto literal = std::make_shared<xla::Literal>(host_shape); args.host_layout = nullptr; args.dst = literal->untyped_data(); args.dst_size = xla::ShapeUtil::ByteSizeOfElements(host_shape); args.event = nullptr; PJRT_Error* error = api_->PJRT_Buffer_ToHostBuffer(&args); xla::PjRtFuture<> transfer_to_host = ::pjrt::ConvertCEventToCppFuture(args.event, api_); TF_CHECK_OK(transfer_to_host.Await()); EXPECT_EQ(error, nullptr); ASSERT_EQ(literal->data<float>().size(), 4); std::vector<float> float_data(4); std::iota(float_data.begin(), float_data.end(), 41.0f); EXPECT_TRUE(xla::LiteralTestUtil::Equal( xla::LiteralUtil::CreateR1<float>(float_data), *literal)); } TEST_F(PjrtCApiBufferTest, IncreaseAndDecreaseReferenceCount) { PJRT_Buffer_IncreaseExternalReferenceCount_Args increase_reference_count_args; increase_reference_count_args.struct_size = PJRT_Buffer_IncreaseExternalReferenceCount_Args_STRUCT_SIZE; increase_reference_count_args.extension_start = nullptr; increase_reference_count_args.buffer = buffer_.get(); PJRT_Error* increase_reference_count_error = api_->PJRT_Buffer_IncreaseExternalReferenceCount( &increase_reference_count_args); EXPECT_EQ(increase_reference_count_error, nullptr); PJRT_Buffer_DecreaseExternalReferenceCount_Args decrease_reference_count_args; decrease_reference_count_args.struct_size = PJRT_Buffer_DecreaseExternalReferenceCount_Args_STRUCT_SIZE; decrease_reference_count_args.extension_start = nullptr; decrease_reference_count_args.buffer = buffer_.get(); PJRT_Error* decrease_reference_error = api_->PJRT_Buffer_DecreaseExternalReferenceCount( &decrease_reference_count_args); EXPECT_EQ(decrease_reference_error, nullptr); } TEST_F(PjrtCApiBufferTest, DecreaseReferenceCountReturnsError) { PJRT_Buffer_DecreaseExternalReferenceCount_Args args; args.struct_size = PJRT_Buffer_DecreaseExternalReferenceCount_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); auto error = ToUniquePtr(api_->PJRT_Buffer_DecreaseExternalReferenceCount(&args)); ASSERT_NE(error, nullptr); absl::Status status = ::pjrt::PjrtErrorToStatus(error.get(), api_); EXPECT_EQ(status.code(), absl::StatusCode::kInvalidArgument); EXPECT_EQ(status.message(), "Attempting to decrease reference on a buffer with zero reference " "count."); } TEST_F(PjrtCApiBufferTest, OpaqueDeviceMemoryDataPointer) { PJRT_Buffer_OpaqueDeviceMemoryDataPointer_Args args; args.struct_size = PJRT_Buffer_OpaqueDeviceMemoryDataPointer_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); PJRT_Error* error = api_->PJRT_Buffer_OpaqueDeviceMemoryDataPointer(&args); EXPECT_EQ(error, nullptr); EXPECT_NE(args.device_memory_ptr, nullptr); } class PjrtCommonCApiHelpersTest : public PjrtCApiTest {}; TEST_F(PjrtCommonCApiHelpersTest, PjrtErrorToStatus) { EXPECT_TRUE(::pjrt::PjrtErrorToStatus(nullptr, api_).ok()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/c/pjrt_c_api.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/c/pjrt_c_api_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
82311f9f-96cf-4304-b0ea-6fd681e6896c
cpp
tensorflow/tensorflow
cpu_backend_threadpool
tensorflow/lite/kernels/cpu_backend_threadpool.h
tensorflow/lite/kernels/cpu_backend_threadpool_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_CPU_BACKEND_THREADPOOL_H_ #define TENSORFLOW_LITE_KERNELS_CPU_BACKEND_THREADPOOL_H_ #include "tensorflow/lite/kernels/cpu_backend_context.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #ifdef TFLITE_WITH_RUY #include "ruy/context.h" #include "ruy/thread_pool.h" #else #include "public/gemmlowp.h" #endif namespace tflite { namespace cpu_backend_threadpool { #ifdef TFLITE_WITH_RUY using Task = ruy::Task; template <typename TaskType> void Execute(int tasks_count, TaskType* tasks, CpuBackendContext* cpu_backend_context) { TFLITE_DCHECK_LE(tasks_count, cpu_backend_context->max_num_threads()); cpu_backend_context->ruy_context()->mutable_thread_pool()->Execute( tasks_count, tasks); } #else using Task = gemmlowp::Task; template <typename TaskType> void Execute(int tasks_count, TaskType* tasks, CpuBackendContext* cpu_backend_context) { TFLITE_DCHECK_LE(tasks_count, cpu_backend_context->max_num_threads()); cpu_backend_context->gemmlowp_context()->workers_pool()->Execute(tasks_count, tasks); } #endif } } #endif
#include "tensorflow/lite/kernels/cpu_backend_threadpool.h" #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/kernels/cpu_backend_context.h" namespace tflite { namespace { class TestGenerateArrayOfIncrementingIntsTask : public cpu_backend_threadpool::Task { public: TestGenerateArrayOfIncrementingIntsTask(int* buffer, int start, int end) : buffer_(buffer), start_(start), end_(end) {} void Run() override { for (int i = start_; i < end_; i++) { buffer_[i] = i; } } private: int* buffer_; int start_; int end_; }; void TestGenerateArrayOfIncrementingInts(int num_threads, int size) { std::vector<int> buffer(size); std::vector<TestGenerateArrayOfIncrementingIntsTask> tasks; int rough_size_per_thread = size / num_threads; int start = 0; for (int thread = 0; thread < num_threads; thread++) { int end = start + rough_size_per_thread; if (thread == num_threads - 1) { end = size; } tasks.emplace_back(buffer.data(), start, end); start = end; } ASSERT_EQ(num_threads, tasks.size()); CpuBackendContext context; context.SetMaxNumThreads(num_threads); cpu_backend_threadpool::Execute(tasks.size(), tasks.data(), &context); for (int i = 0; i < size; i++) { ASSERT_EQ(buffer[i], i); } } TEST(CpuBackendThreadpoolTest, OneThreadSize100) { TestGenerateArrayOfIncrementingInts(1, 100); } TEST(CpuBackendThreadpoolTest, ThreeThreadsSize1000000) { TestGenerateArrayOfIncrementingInts(3, 1000000); } TEST(CpuBackendThreadpoolTest, TenThreadsSize1234567) { TestGenerateArrayOfIncrementingInts(10, 1234567); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/cpu_backend_threadpool.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/cpu_backend_threadpool_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
cf625149-027c-4753-b82c-cd10c5a4c99b
cpp
tensorflow/tensorflow
affine_map_evaluator
third_party/xla/xla/service/gpu/model/affine_map_evaluator.cc
third_party/xla/xla/service/gpu/model/affine_map_evaluator_test.cc
#include "xla/service/gpu/model/affine_map_evaluator.h" #include <cstdint> #include <vector> #include "absl/types/span.h" #include "llvm/Support/MathExtras.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/Support/LLVM.h" #include "tsl/platform/logging.h" namespace xla { namespace gpu { namespace { using llvm::SmallVector; using mlir::AffineBinaryOpExpr; using mlir::AffineConstantExpr; using mlir::AffineDimExpr; using mlir::AffineExpr; using mlir::AffineExprKind; using mlir::AffineMap; using mlir::AffineSymbolExpr; } int64_t EvaluateAffineExpr(AffineExpr expr, absl::Span<int64_t const> dim_values, absl::Span<int64_t const> symbol_values) { AffineExprKind kind = expr.getKind(); if (kind == AffineExprKind::Constant) { return mlir::cast<AffineConstantExpr>(expr).getValue(); } if (kind == AffineExprKind::DimId) { return dim_values[mlir::cast<AffineDimExpr>(expr).getPosition()]; } if (kind == AffineExprKind::SymbolId) { return symbol_values[mlir::cast<AffineSymbolExpr>(expr).getPosition()]; } auto binary_expr = mlir::cast<AffineBinaryOpExpr>(expr); int64_t lhs = EvaluateAffineExpr(binary_expr.getLHS(), dim_values, symbol_values); int64_t rhs = EvaluateAffineExpr(binary_expr.getRHS(), dim_values, symbol_values); switch (kind) { case AffineExprKind::Add: return lhs + rhs; case AffineExprKind::Mul: return lhs * rhs; case AffineExprKind::FloorDiv: return llvm::divideFloorSigned(lhs, rhs); case AffineExprKind::Mod: return lhs % rhs; default: LOG(FATAL) << "Unsupported expression"; } } SmallVector<int64_t> EvaluateAffineMap( AffineMap affine_map, absl::Span<int64_t const> dim_values, absl::Span<int64_t const> symbol_values) { CHECK_EQ(affine_map.getNumDims(), dim_values.size()); CHECK_EQ(affine_map.getNumSymbols(), symbol_values.size()); SmallVector<int64_t> results; results.reserve(affine_map.getNumResults()); for (auto expr : affine_map.getResults()) { results.push_back(EvaluateAffineExpr(expr, dim_values, symbol_values)); } return results; } } }
#include "xla/service/gpu/model/affine_map_evaluator.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/MLIRContext.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { namespace { using ::mlir::AffineExpr; using ::mlir::AffineMap; using ::mlir::bindDims; using ::mlir::bindSymbols; using ::testing::ElementsAre; class AffineMapEvaluator : public HloTestBase { public: mlir::MLIRContext mlir_context_; }; TEST_F(AffineMapEvaluator, EvaluateMap) { AffineExpr d0, d1, s0, s1; bindDims(&mlir_context_, d0, d1); bindSymbols(&mlir_context_, s0, s1); auto affine_map = AffineMap::get(2, 2, {d0 + d1.floorDiv(8), s0 + s1 % 16}, &mlir_context_); auto res = EvaluateAffineMap(affine_map, {1, 2}, {3, 4}); EXPECT_THAT(res, ElementsAre(1, 7)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/model/affine_map_evaluator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/model/affine_map_evaluator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2c67b126-fa63-44ac-8f6f-a4423e067344
cpp
google/cel-cpp
legacy_type_provider
eval/public/structs/legacy_type_provider.cc
eval/public/structs/legacy_type_provider_test.cc
#include "eval/public/structs/legacy_type_provider.h" #include <cstdint> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/strings/strip.h" #include "absl/types/optional.h" #include "common/any.h" #include "common/legacy_value.h" #include "common/memory.h" #include "common/type.h" #include "common/value.h" #include "common/value_factory.h" #include "eval/public/message_wrapper.h" #include "eval/public/structs/legacy_type_adapter.h" #include "eval/public/structs/legacy_type_info_apis.h" #include "extensions/protobuf/memory_manager.h" #include "internal/status_macros.h" namespace google::api::expr::runtime { namespace { using google::api::expr::runtime::LegacyTypeAdapter; using google::api::expr::runtime::MessageWrapper; class LegacyStructValueBuilder final : public cel::StructValueBuilder { public: LegacyStructValueBuilder(cel::MemoryManagerRef memory_manager, LegacyTypeAdapter adapter, MessageWrapper::Builder builder) : memory_manager_(memory_manager), adapter_(adapter), builder_(std::move(builder)) {} absl::Status SetFieldByName(absl::string_view name, cel::Value value) override { CEL_ASSIGN_OR_RETURN( auto legacy_value, LegacyValue(cel::extensions::ProtoMemoryManagerArena(memory_manager_), value)); return adapter_.mutation_apis()->SetField(name, legacy_value, memory_manager_, builder_); } absl::Status SetFieldByNumber(int64_t number, cel::Value value) override { CEL_ASSIGN_OR_RETURN( auto legacy_value, LegacyValue(cel::extensions::ProtoMemoryManagerArena(memory_manager_), value)); return adapter_.mutation_apis()->SetFieldByNumber( number, legacy_value, memory_manager_, builder_); } absl::StatusOr<cel::StructValue> Build() && override { CEL_ASSIGN_OR_RETURN(auto message, adapter_.mutation_apis()->AdaptFromWellKnownType( memory_manager_, std::move(builder_))); if (!message.IsMessage()) { return absl::FailedPreconditionError("expected MessageWrapper"); } auto message_wrapper = message.MessageWrapperOrDie(); return cel::common_internal::LegacyStructValue{ reinterpret_cast<uintptr_t>(message_wrapper.message_ptr()) | (message_wrapper.HasFullProto() ? cel::base_internal::kMessageWrapperTagMessageValue : uintptr_t{0}), reinterpret_cast<uintptr_t>(message_wrapper.legacy_type_info())}; } private: cel::MemoryManagerRef memory_manager_; LegacyTypeAdapter adapter_; MessageWrapper::Builder builder_; }; } absl::StatusOr<absl::optional<cel::Unique<cel::StructValueBuilder>>> LegacyTypeProvider::NewStructValueBuilder(cel::ValueFactory& value_factory, const cel::StructType& type) const { if (auto type_adapter = ProvideLegacyType(type.name()); type_adapter.has_value()) { const auto* mutation_apis = type_adapter->mutation_apis(); if (mutation_apis == nullptr) { return absl::FailedPreconditionError(absl::StrCat( "LegacyTypeMutationApis missing for type: ", type.name())); } CEL_ASSIGN_OR_RETURN(auto builder, mutation_apis->NewInstance( value_factory.GetMemoryManager())); return value_factory.GetMemoryManager() .MakeUnique<LegacyStructValueBuilder>(value_factory.GetMemoryManager(), *type_adapter, std::move(builder)); } return absl::nullopt; } absl::StatusOr<absl::optional<cel::Value>> LegacyTypeProvider::DeserializeValueImpl(cel::ValueFactory& value_factory, absl::string_view type_url, const absl::Cord& value) const { auto type_name = absl::StripPrefix(type_url, cel::kTypeGoogleApisComPrefix); if (auto type_info = ProvideLegacyTypeInfo(type_name); type_info.has_value()) { if (auto type_adapter = ProvideLegacyType(type_name); type_adapter.has_value()) { const auto* mutation_apis = type_adapter->mutation_apis(); if (mutation_apis == nullptr) { return absl::FailedPreconditionError(absl::StrCat( "LegacyTypeMutationApis missing for type: ", type_name)); } CEL_ASSIGN_OR_RETURN(auto builder, mutation_apis->NewInstance( value_factory.GetMemoryManager())); if (!builder.message_ptr()->ParsePartialFromCord(value)) { return absl::UnknownError("failed to parse protocol buffer message"); } CEL_ASSIGN_OR_RETURN( auto legacy_value, mutation_apis->AdaptFromWellKnownType( value_factory.GetMemoryManager(), std::move(builder))); cel::Value modern_value; CEL_RETURN_IF_ERROR(ModernValue(cel::extensions::ProtoMemoryManagerArena( value_factory.GetMemoryManager()), legacy_value, modern_value)); return modern_value; } } return absl::nullopt; } absl::StatusOr<absl::optional<cel::Type>> LegacyTypeProvider::FindTypeImpl( cel::TypeFactory& type_factory, absl::string_view name) const { if (auto type_info = ProvideLegacyTypeInfo(name); type_info.has_value()) { const auto* descriptor = (*type_info)->GetDescriptor(MessageWrapper()); if (descriptor != nullptr) { return cel::MessageType(descriptor); } return cel::common_internal::MakeBasicStructType( (*type_info)->GetTypename(MessageWrapper())); } return absl::nullopt; } absl::StatusOr<absl::optional<cel::StructTypeField>> LegacyTypeProvider::FindStructTypeFieldByNameImpl( cel::TypeFactory& type_factory, absl::string_view type, absl::string_view name) const { if (auto type_info = ProvideLegacyTypeInfo(type); type_info.has_value()) { if (auto field_desc = (*type_info)->FindFieldByName(name); field_desc.has_value()) { return cel::common_internal::BasicStructTypeField( field_desc->name, field_desc->number, cel::DynType{}); } else { const auto* mutation_apis = (*type_info)->GetMutationApis(MessageWrapper()); if (mutation_apis == nullptr || !mutation_apis->DefinesField(name)) { return absl::nullopt; } return cel::common_internal::BasicStructTypeField(name, 0, cel::DynType{}); } } return absl::nullopt; } }
#include "eval/public/structs/legacy_type_provider.h" #include <optional> #include <string> #include "absl/strings/string_view.h" #include "eval/public/structs/legacy_type_info_apis.h" #include "internal/testing.h" namespace google::api::expr::runtime { namespace { class LegacyTypeProviderTestEmpty : public LegacyTypeProvider { public: absl::optional<LegacyTypeAdapter> ProvideLegacyType( absl::string_view name) const override { return absl::nullopt; } }; class LegacyTypeInfoApisEmpty : public LegacyTypeInfoApis { public: std::string DebugString( const MessageWrapper& wrapped_message) const override { return ""; } absl::string_view GetTypename( const MessageWrapper& wrapped_message) const override { return test_string_; } const LegacyTypeAccessApis* GetAccessApis( const MessageWrapper& wrapped_message) const override { return nullptr; } private: const std::string test_string_ = "test"; }; class LegacyTypeProviderTestImpl : public LegacyTypeProvider { public: explicit LegacyTypeProviderTestImpl(const LegacyTypeInfoApis* test_type_info) : test_type_info_(test_type_info) {} absl::optional<LegacyTypeAdapter> ProvideLegacyType( absl::string_view name) const override { if (name == "test") { return LegacyTypeAdapter(nullptr, nullptr); } return absl::nullopt; } absl::optional<const LegacyTypeInfoApis*> ProvideLegacyTypeInfo( absl::string_view name) const override { if (name == "test") { return test_type_info_; } return absl::nullopt; } private: const LegacyTypeInfoApis* test_type_info_ = nullptr; }; TEST(LegacyTypeProviderTest, EmptyTypeProviderHasProvideTypeInfo) { LegacyTypeProviderTestEmpty provider; EXPECT_EQ(provider.ProvideLegacyType("test"), absl::nullopt); EXPECT_EQ(provider.ProvideLegacyTypeInfo("test"), absl::nullopt); } TEST(LegacyTypeProviderTest, NonEmptyTypeProviderProvidesSomeTypes) { LegacyTypeInfoApisEmpty test_type_info; LegacyTypeProviderTestImpl provider(&test_type_info); EXPECT_TRUE(provider.ProvideLegacyType("test").has_value()); EXPECT_TRUE(provider.ProvideLegacyTypeInfo("test").has_value()); EXPECT_EQ(provider.ProvideLegacyType("other"), absl::nullopt); EXPECT_EQ(provider.ProvideLegacyTypeInfo("other"), absl::nullopt); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/structs/legacy_type_provider.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/structs/legacy_type_provider_test.cc
4552db5798fb0853b131b783d8875794334fae7f
8ec5cebe-660a-40ef-881c-5670d88f4be5
cpp
tensorflow/tensorflow
prng
third_party/xla/xla/hlo/builder/lib/prng.cc
third_party/xla/xla/hlo/builder/lib/prng_test.cc
#include "xla/hlo/builder/lib/prng.h" #include <array> #include <cmath> #include <cstdint> #include <iterator> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/hlo/builder/lib/constants.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/primitive_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { xla::XlaOp ConcatScalars(xla::XlaBuilder* builder, absl::Span<const xla::XlaOp> scalars) { std::vector<xla::XlaOp> vectors; absl::c_transform(scalars, std::back_inserter(vectors), [](xla::XlaOp x) { return xla::Reshape(x, {1}); }); return ConcatInDim(builder, vectors, 0); } namespace { XlaOp RotateLeftU32(XlaOp v, int distance) { return (v << ConstantR0<uint32_t>(v.builder(), distance)) | ShiftRightLogical(v, ConstantR0<uint32_t>(v.builder(), 32 - distance)); } using ThreeFry2x32State = std::array<XlaOp, 2>; ThreeFry2x32State ThreeFry2x32(ThreeFry2x32State input, ThreeFry2x32State key) { XlaBuilder* builder = input[0].builder(); key[0] = BitcastConvertType(key[0], U32); key[1] = BitcastConvertType(key[1], U32); constexpr std::array<int, 8> rotations = {13, 15, 26, 6, 17, 29, 16, 24}; ThreeFry2x32State x; std::array<XlaOp, 3> ks; ks[2] = ConstantR0<uint32_t>(builder, 0x1BD11BDA); for (int i = 0; i < 2; ++i) { ks[i] = key[i]; x[i] = input[i]; ks[2] = ks[2] ^ key[i]; } x[0] = x[0] + ks[0]; x[1] = x[1] + ks[1]; auto round = [](ThreeFry2x32State v, int rotation) { v[0] = v[0] + v[1]; v[1] = RotateLeftU32(v[1], rotation); v[1] = v[0] ^ v[1]; return v; }; x = round(x, rotations[0]); x = round(x, rotations[1]); x = round(x, rotations[2]); x = round(x, rotations[3]); x[0] = x[0] + ks[1]; x[1] = x[1] + ks[2] + ConstantR0<uint32_t>(builder, 1); x = round(x, rotations[4]); x = round(x, rotations[5]); x = round(x, rotations[6]); x = round(x, rotations[7]); x[0] = x[0] + ks[2]; x[1] = x[1] + ks[0] + ConstantR0<uint32_t>(builder, 2); x = round(x, rotations[0]); x = round(x, rotations[1]); x = round(x, rotations[2]); x = round(x, rotations[3]); x[0] = x[0] + ks[0]; x[1] = x[1] + ks[1] + ConstantR0<uint32_t>(builder, 3); x = round(x, rotations[4]); x = round(x, rotations[5]); x = round(x, rotations[6]); x = round(x, rotations[7]); x[0] = x[0] + ks[1]; x[1] = x[1] + ks[2] + ConstantR0<uint32_t>(builder, 4); x = round(x, rotations[0]); x = round(x, rotations[1]); x = round(x, rotations[2]); x = round(x, rotations[3]); x[0] = x[0] + ks[2]; x[1] = x[1] + ks[0] + ConstantR0<uint32_t>(builder, 5); return x; } std::array<XlaOp, 2> Uint64ToUint32s(XlaOp u64) { XlaBuilder* builder = u64.builder(); XlaOp const32 = ConstantR0WithType(builder, U64, 32); XlaOp fst = ConvertElementType(u64, U32); XlaOp snd = ConvertElementType(ShiftRightLogical(u64, const32), U32); return {fst, snd}; } XlaOp Uint32sToUint64(std::array<XlaOp, 2> u32s) { XlaBuilder* builder = u32s[0].builder(); return ConvertElementType(u32s[0], U64) | ShiftLeft(ConvertElementType(u32s[1], U64), ConstantR0WithType(builder, U64, 32)); } std::pair<ThreeFry2x32State, XlaOp> GetThreeFryInputsAndUpdatedState( XlaOp initial_state, const Shape& shape) { XlaBuilder* builder = initial_state.builder(); auto u64_shape = ShapeUtil::MakeShape(U64, shape.dimensions()); auto input_u64 = Broadcast(Reshape(initial_state, {}), shape.dimensions()); int64_t trailing_dims_product = 1; for (int64_t i = shape.rank() - 1; i >= 0; --i) { if (shape.dimensions(i) < 2) { continue; } input_u64 = input_u64 + (Iota(builder, u64_shape, i) * ConstantR0<uint64_t>(builder, trailing_dims_product)); trailing_dims_product *= shape.dimensions(i); } XlaOp new_state = initial_state + ConstantR0<uint64_t>(builder, ShapeUtil::ElementsIn(shape)); return std::make_pair(Uint64ToUint32s(input_u64), new_state); } struct SplitShapePair { Shape half_shape; Shape concat_shape; int64_t split_dim; int64_t new_concat_dim; }; SplitShapePair SplitShapeIntoHalves(const Shape& shape) { SplitShapePair pair; if (shape.rank() == 0) { pair.half_shape = ShapeUtil::MakeShape(shape.element_type(), {1}); pair.concat_shape = ShapeUtil::MakeShape(shape.element_type(), {2}); pair.split_dim = 0; pair.new_concat_dim = 0; return pair; } pair.split_dim = -1; for (int64_t i = 0; i < shape.rank(); ++i) { if (shape.dimensions(i) % 2 == 0) { pair.split_dim = i; break; } } if (pair.split_dim == -1) { for (int64_t i = 0; i < shape.rank(); ++i) { if (pair.split_dim == -1 || shape.dimensions(i) > shape.dimensions(pair.split_dim)) { pair.split_dim = i; } } } if (pair.split_dim < 0) { LOG(ERROR) << "This point shouldn't have been reached."; } std::vector<int64_t> half_shape_dims; std::vector<int64_t> concat_shape_dims; const auto rank = shape.rank(); half_shape_dims.reserve(rank + 1); concat_shape_dims.reserve(rank + 1); for (int64_t i = 0; i < rank; ++i) { if (i == pair.split_dim) { half_shape_dims.push_back(CeilOfRatio<int64_t>(shape.dimensions(i), 2)); half_shape_dims.push_back(1); concat_shape_dims.push_back(half_shape_dims[i]); concat_shape_dims.push_back(2); } else { half_shape_dims.push_back(shape.dimensions(i)); concat_shape_dims.push_back(shape.dimensions(i)); } } pair.new_concat_dim = pair.split_dim + 1; pair.half_shape = ShapeUtil::MakeShape(shape.element_type(), half_shape_dims); pair.concat_shape = ShapeUtil::MakeShape(shape.element_type(), concat_shape_dims); return pair; } XlaOp CombineShapePair(absl::Span<const XlaOp> pair, const SplitShapePair& shape_pair, const Shape& original_shape) { if (original_shape.rank() == 0) { return Reshape(pair[0], {}); } XlaBuilder* builder = pair[0].builder(); XlaOp result = ConcatInDim(builder, pair, shape_pair.new_concat_dim); const int64_t pre_split_size = original_shape.dimensions(shape_pair.split_dim); std::vector<int64_t> reshape_dims(original_shape.dimensions().begin(), original_shape.dimensions().end()); reshape_dims[shape_pair.split_dim] = RoundUpTo<int64_t>(pre_split_size, 2); result = Reshape(result, reshape_dims); if (reshape_dims[shape_pair.split_dim] != pre_split_size) { result = Slice(result, std::vector<int64_t>(original_shape.rank(), 0), original_shape.dimensions(), std::vector<int64_t>(original_shape.rank(), 1)); } return result; } RngOutput ThreeFryRngBit32(XlaOp key, XlaOp initial_state, const Shape& shape) { auto shape_pair = SplitShapeIntoHalves(shape); std::pair<ThreeFry2x32State, XlaOp> inputs_state = GetThreeFryInputsAndUpdatedState(initial_state, shape_pair.half_shape); ThreeFry2x32State inputs = inputs_state.first; ThreeFry2x32State outputs = ThreeFry2x32(inputs, Uint64ToUint32s(key)); XlaOp result = CombineShapePair(outputs, shape_pair, shape); return {result, inputs_state.second}; } RngOutput ThreeFryRngBitNarrow(XlaOp op_key, XlaOp initial_state, const Shape& shape) { auto new_shape = shape; new_shape.set_element_type(U32); auto output = ThreeFryRngBit32(op_key, initial_state, new_shape); output.value = ConvertElementType( output.value, primitive_util::UnsignedIntegralTypeForBitWidth( primitive_util::BitWidth(shape.element_type()))); return output; } RngOutput ThreeFryRngBit64(XlaOp key, XlaOp initial_state, const Shape& shape) { std::pair<ThreeFry2x32State, XlaOp> inputs_state = GetThreeFryInputsAndUpdatedState(initial_state, shape); ThreeFry2x32State inputs = inputs_state.first; ThreeFry2x32State outputs = ThreeFry2x32(inputs, Uint64ToUint32s(key)); XlaOp result = Uint32sToUint64(outputs); return {result, inputs_state.second}; } using Philox4x32Key = std::array<XlaOp, 2>; using Philox4x32State = std::array<XlaOp, 4>; Philox4x32State Philox4x32(Philox4x32State state, Philox4x32Key key) { static const uint32_t kPhiloxW32A = 0x9E3779B9; static const uint32_t kPhiloxW32B = 0xBB67AE85; static const uint32_t kPhiloxM4x32A = 0xD2511F53; static const uint32_t kPhiloxM4x32B = 0xCD9E8D57; struct HighLowPair { XlaOp high; XlaOp low; }; auto mul_hi_low = [](XlaOp x, uint32_t k) { auto product = ConvertElementType(x, U64) * ConstantR0<uint64_t>(x.builder(), k); auto low = ConvertElementType(product, U32); auto high = ConvertElementType( product >> ConstantR0<uint64_t>(x.builder(), 32), U32); return HighLowPair{high, low}; }; auto philox_round = [&](Philox4x32State x, Philox4x32Key key) { auto product0 = mul_hi_low(x[0], kPhiloxM4x32A); auto product1 = mul_hi_low(x[2], kPhiloxM4x32B); return Philox4x32State{product1.high ^ x[1] ^ key[0], product1.low, product0.high ^ x[3] ^ key[1], product0.low}; }; auto raise_key = [](Philox4x32Key key) { XlaBuilder* builder = key[0].builder(); return Philox4x32Key{key[0] + ConstantR0<uint32_t>(builder, kPhiloxW32A), key[1] + ConstantR0<uint32_t>(builder, kPhiloxW32B)}; }; static const int kNumRounds = 10; for (int round = 0; round < kNumRounds; ++round, key = raise_key(key)) { state = philox_round(state, key); } return state; } std::pair<Philox4x32State, Philox4x32Key> ScramblePhiloxKey(Philox4x32Key key) { XlaBuilder* builder = key[0].builder(); XlaOp key0 = ConvertElementType(key[0], U64); XlaOp key1 = ConvertElementType(key[1], U64); Philox4x32State state = { ConvertElementType(key0, U32), ConvertElementType(key0 >> ScalarLike(key0, 32), U32), ConvertElementType(key1, U32), ConvertElementType(key1 >> ScalarLike(key1, 32), U32), }; key = {ConstantR0<uint32_t>(builder, 0x3ec8f720), ConstantR0<uint32_t>(builder, 0x02461e29)}; state = Philox4x32(state, key); XlaOp zero = ConstantR0<uint32_t>(builder, 0); return {Philox4x32State{zero, zero, state[2], state[3]}, Philox4x32Key{state[0], state[1]}}; } std::array<XlaOp, 2> Uint128AddUint64( const std::array<XlaOp, 2>& u128, XlaOp u64, absl::Span<const int64_t> broadcast_sizes = {}) { auto u128_low = u128[0]; auto u128_high = u128[1]; XlaOp new_u128_low = u128_low + u64; XlaOp one = ConstantR0<uint64_t>(u128[0].builder(), 1); XlaOp new_u128_high = Select(Lt(new_u128_low, u128_low), Broadcast(u128_high + one, broadcast_sizes), Broadcast(u128_high, broadcast_sizes)); return {new_u128_low, new_u128_high}; } std::array<XlaOp, 2> Uint32sToUint128(const std::array<XlaOp, 4>& u32s) { return {Uint32sToUint64({u32s[0], u32s[1]}), Uint32sToUint64({u32s[2], u32s[3]})}; } std::array<XlaOp, 4> Uint128ToUint32s(const std::array<XlaOp, 2>& u128) { std::array<XlaOp, 2> u128_low_32s = Uint64ToUint32s(u128[0]); std::array<XlaOp, 2> u128_high_32s = Uint64ToUint32s(u128[1]); return {u128_low_32s[0], u128_low_32s[1], u128_high_32s[0], u128_high_32s[1]}; } std::array<XlaOp, 2> Uint128FromOp(XlaOp op) { auto u128_low = xla::Reshape(xla::Slice(op, {0}, {1}, {1}), {}); auto u128_high = xla::Reshape(xla::Slice(op, {1}, {2}, {1}), {}); return {u128_low, u128_high}; } XlaOp Uint128ToOp(std::array<XlaOp, 2> u128) { return ConcatScalars(u128[0].builder(), {u128[0], u128[1]}); } std::pair<Philox4x32State, XlaOp> GetPhiloxInputsAndUpdatedState( const Philox4x32State& state, int64_t n) { XlaBuilder* builder = state[0].builder(); XlaOp iota = Iota(builder, U64, n); auto state_u128 = Uint32sToUint128(state); auto inputs = Uint128ToUint32s(Uint128AddUint64(state_u128, iota, {n})); XlaOp new_state = Uint128ToOp( Uint128AddUint64(state_u128, ConstantR0<uint64_t>(builder, n))); return std::make_pair(inputs, new_state); } std::pair<Philox4x32State, XlaOp> GeneratePhiloxBits(int64_t num_elems, XlaOp initial_state, Philox4x32Key key) { Philox4x32State state; state = Uint128ToUint32s(Uint128FromOp(initial_state)); const int64_t num_vector4 = CeilOfRatio<int64_t>(num_elems, 4); Philox4x32State inputs; XlaOp new_state; std::tie(inputs, new_state) = GetPhiloxInputsAndUpdatedState(state, num_vector4); auto outputs = Philox4x32(inputs, key); return std::make_pair(outputs, new_state); } RngOutput PhiloxRngBit32(XlaOp op_key, XlaOp initial_state, const Shape& shape) { XlaBuilder* builder = op_key.builder(); const int64_t num_elems = ShapeUtil::ElementsIn(shape); Philox4x32Key key = Uint64ToUint32s(op_key); Philox4x32State bits; XlaOp new_state; std::tie(bits, new_state) = GeneratePhiloxBits(num_elems, initial_state, key); int64_t bits_len = (num_elems + 3) / 4; for (auto i = 0; i < 4; ++i) { bits[i] = Reshape(bits[i], {bits_len, 1}); } XlaOp numbers = ConcatInDim(builder, {bits[0], bits[1], bits[2], bits[3]}, 1); numbers = Reshape(numbers, {bits_len * 4}); numbers = Slice(numbers, {0}, {num_elems}, {1}); return {Reshape(numbers, shape.dimensions()), new_state}; } RngOutput PhiloxRngBitNarrow(XlaOp op_key, XlaOp initial_state, const Shape& shape) { auto new_shape = shape; new_shape.set_element_type(U32); auto output = PhiloxRngBit32(op_key, initial_state, new_shape); output.value = ConvertElementType( output.value, primitive_util::UnsignedIntegralTypeForBitWidth( primitive_util::BitWidth(shape.element_type()))); return output; } RngOutput PhiloxRngBit64(XlaOp op_key, XlaOp initial_state, const Shape& shape) { XlaBuilder* builder = op_key.builder(); const int64_t num_elems = ShapeUtil::ElementsIn(shape); Philox4x32Key key = Uint64ToUint32s(op_key); Philox4x32State bits32; XlaOp new_state; std::tie(bits32, new_state) = GeneratePhiloxBits(num_elems * 2, initial_state, key); std::array<XlaOp, 2> bits64; bits64[0] = Uint32sToUint64({bits32[0], bits32[1]}); bits64[1] = Uint32sToUint64({bits32[2], bits32[3]}); int64_t bits64_len = (num_elems + 1) / 2; for (auto i = 0; i < 2; ++i) { bits64[i] = Reshape(bits64[i], {bits64_len, 1}); } XlaOp numbers = ConcatInDim(builder, {bits64[0], bits64[1]}, 1); numbers = Reshape(numbers, {bits64_len * 2}); numbers = Slice(numbers, {0}, {num_elems}, {1}); return {Reshape(numbers, shape.dimensions()), new_state}; } XlaOp ConvertRandomBitsToUniformFloatingPoint(XlaOp bits, XlaOp minval, XlaOp maxval) { XlaBuilder* builder = bits.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* minval_shape, builder->GetShapePtr(minval)); TF_ASSIGN_OR_RETURN(const Shape* bits_shape, builder->GetShapePtr(bits)); PrimitiveType value_type = minval_shape->element_type(); PrimitiveType bit_type = bits_shape->element_type(); if (!primitive_util::IsFloatingPointType(value_type) || !primitive_util::IsIntegralType(bit_type)) { return InvalidArgument( "In ConvertRandomBitsToUniformFloatingPoint, value_type and bit_type " "can only be (floating_type, integer_type). Got combination: (%s, " "%s).", primitive_util::LowercasePrimitiveTypeName(value_type), primitive_util::LowercasePrimitiveTypeName(bit_type)); } if (value_type == F16 && bit_type == U16) { auto mantissa = bits & ScalarLike(bits, 0x3ffu); auto exponent = ScalarLike(bits, static_cast<uint16_t>(15) << 10); auto u16_result = exponent | mantissa; auto result = BitcastConvertType(u16_result, F16); return result - ScalarLike(result, 1.0); } else { int num_bits = primitive_util::BitWidth(bit_type); int num_mantissa_bits = primitive_util::SignificandWidth(value_type) - 1; if (num_mantissa_bits > num_bits) { return InvalidArgument( "%s bit type argument must have enough bits to cover the number of " "mantissa bits of the result type %s", primitive_util::LowercasePrimitiveTypeName(bit_type), primitive_util::LowercasePrimitiveTypeName(value_type)); } bits = ShiftRightLogical(bits, ScalarLike(bits, num_bits - num_mantissa_bits)); XlaOp values = ConvertElementType(bits, value_type); values = values * ScalarLike(values, std::ldexp(1., -num_mantissa_bits)); return values * (maxval - minval) + minval; } }); } XlaOp ConvertRandomBitsToUniformInt(XlaOp bits, XlaOp minval, XlaOp maxval, PrimitiveType type, PrimitiveType unsigned_type) { XlaBuilder* builder = bits.builder(); XlaOp range = BitcastConvertType(maxval, unsigned_type) - BitcastConvertType(minval, unsigned_type); XlaOp dist = Rem(bits, range); XlaOp dist_div_2 = ShiftRightLogical(dist, ConstantR0WithType(builder, unsigned_type, 1)); return minval + BitcastConvertType(dist_div_2, type) + BitcastConvertType(dist - dist_div_2, type); } std::pair<XlaOp, XlaOp> BoxMullerTransform(XlaOp x0, XlaOp x1) { XlaOp u1 = Max(x0, ScalarLike(x0, 1.0e-7f)); XlaOp v1 = ScalarLike(x1, 2.0f * M_PI) * x1; XlaOp u2 = Sqrt(ScalarLike(u1, -2.0f) * Log(u1)); return {Sin(v1) * u2, Cos(v1) * u2}; } } XlaOp PhiloxIncreaseCounter(XlaOp counter, XlaOp delta) { return Uint128ToOp(Uint128AddUint64(Uint128FromOp(counter), delta)); } RngOutput ThreeFryBitGenerator(XlaOp key, XlaOp initial_state, const Shape& shape) { PrimitiveType type = shape.element_type(); return primitive_util::PrimitiveTypeSwitch<RngOutput>( [&](auto primitive_type_constant) -> RngOutput { if constexpr (primitive_util::IsArrayType(primitive_type_constant) && !primitive_util::IsComplexType(primitive_type_constant) && primitive_type_constant != PRED) { const int kBits = primitive_util::BitWidth(primitive_type_constant); if (kBits < 32) { return ThreeFryRngBitNarrow(key, initial_state, shape); } if (kBits == 32) { return ThreeFryRngBit32(key, initial_state, shape); } if (kBits == 64) { return ThreeFryRngBit64(key, initial_state, shape); } } return { key.builder()->ReportError(Unimplemented( "Types other than F16, F32, F64, U16, S16, U32, S32, U64 and " "S64 are not implemented by ThreeFryBitGenerator; got %s", primitive_util::LowercasePrimitiveTypeName(type))), initial_state}; }, type); } RngOutput PhiloxBitGenerator(XlaOp key, XlaOp initial_state, const Shape& shape) { PrimitiveType type = shape.element_type(); return primitive_util::PrimitiveTypeSwitch<RngOutput>( [&](auto primitive_type_constant) -> RngOutput { if constexpr (primitive_util::IsArrayType(primitive_type_constant) && !primitive_util::IsComplexType(primitive_type_constant) && primitive_type_constant != PRED) { const int kBits = primitive_util::BitWidth(primitive_type_constant); if (kBits < 32) { return PhiloxRngBitNarrow(key, initial_state, shape); } if (kBits == 32) { return PhiloxRngBit32(key, initial_state, shape); } if (kBits == 64) { return PhiloxRngBit64(key, initial_state, shape); } } return { key.builder()->ReportError(Unimplemented( "Types other than F16, F32, F64, U16, S16, U32, S32, U64 and " "S64 are not implemented by PhiloxBitGenerator; got %s", primitive_util::LowercasePrimitiveTypeName(type))), initial_state}; }, type); } std::pair<XlaOp, XlaOp> ScramblePhiloxKey(XlaOp key) { Philox4x32Key pkey = Uint64ToUint32s(key); auto state_key = ScramblePhiloxKey(pkey); return std::make_pair(Uint128ToOp(Uint32sToUint128(state_key.first)), Uint32sToUint64(state_key.second)); } RngOutput UniformFloatingPointDistribution(XlaOp key, XlaOp initial_state, BitGeneratorTy bit_generator, XlaOp minval, XlaOp maxval, const Shape& shape) { RngOutput bits_state = bit_generator(key, initial_state, shape); XlaOp bits = bits_state.value; XlaOp new_state = bits_state.state; return {ConvertRandomBitsToUniformFloatingPoint(bits, minval, maxval), new_state}; } RngOutput UniformIntDistribution(XlaOp key, XlaOp initial_state, BitGeneratorTy bit_generator, XlaOp minval, XlaOp maxval, const Shape& shape) { RngOutput bits_state = bit_generator(key, initial_state, shape); XlaOp bits = bits_state.value; XlaOp new_state = bits_state.state; PrimitiveType type = shape.element_type(); PrimitiveType unsigned_type; if (type == U32 || type == S32) { unsigned_type = U32; } else if (type == U64 || type == S64) { unsigned_type = U64; } else { return {key.builder()->ReportError(Unimplemented( "Types other than U32, S32, U64 and S64 " "are not implemented by UniformIntDistribution; got %s", primitive_util::LowercasePrimitiveTypeName(type))), initial_state}; } return { ConvertRandomBitsToUniformInt(bits, minval, maxval, type, unsigned_type), new_state}; } RngOutput NormalFloatingPointDistribution(XlaOp key, XlaOp initial_state, BitGeneratorTy bit_generator, const Shape& shape) { XlaBuilder* builder = key.builder(); PrimitiveType primitive_type = shape.element_type(); if (!(primitive_type == F16 || primitive_type == F32 || primitive_type == F64)) { return { builder->ReportError(Unimplemented( "Types other than F16, F32 and F64 " "are not implemented by NormalFloatingPointDistribution; got %s", primitive_util::LowercasePrimitiveTypeName(primitive_type))), initial_state}; } auto shape_pair = SplitShapeIntoHalves(shape); RngOutput bits_state = UniformFloatingPointDistribution( key, initial_state, bit_generator, xla::ConstantR0WithType(builder, primitive_type, 0.0), xla::ConstantR0WithType(builder, primitive_type, 1.0), shape_pair.concat_shape); XlaOp bits_0 = Slice(bits_state.value, std::vector<int64_t>(shape_pair.half_shape.rank(), 0), shape_pair.half_shape.dimensions(), std::vector<int64_t>(shape_pair.half_shape.rank(), 1)); std::vector<int64_t> bits_1_starts(shape_pair.half_shape.rank(), 0); bits_1_starts[shape_pair.new_concat_dim] = 1; XlaOp bits_1 = Slice(bits_state.value, bits_1_starts, shape_pair.concat_shape.dimensions(), std::vector<int64_t>(shape_pair.half_shape.rank(), 1)); std::tie(bits_0, bits_1) = BoxMullerTransform(bits_0, bits_1); XlaOp normal = CombineShapePair({bits_0, bits_1}, shape_pair, shape); return {normal, bits_state.state}; } }
#include "xla/hlo/builder/lib/prng.h" #include <cstdint> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/hlo/builder/lib/constants.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/primitive_util.h" #include "xla/shape.h" #include "xla/test.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/test_macros.h" #include "xla/xla_data.pb.h" namespace xla { namespace { class PrngTest : public ClientLibraryTestBase { public: template <PrimitiveType value_type, PrimitiveType bit_type, typename ValueT = typename primitive_util::PrimitiveTypeToNative< value_type>::type, typename BitT = typename primitive_util::PrimitiveTypeToNative<bit_type>::type> void TestConvertRandomBitsToUniformFloatingPoint(uint32_t bits, float minval, float maxval) { XlaBuilder builder("convert_random_bits_to_uniform_floating_point"); XlaOp bits_op = ConstantR0<BitT>(&builder, static_cast<BitT>(bits)); XlaOp minval_op = ConstantR0<ValueT>(&builder, static_cast<ValueT>(minval)); XlaOp maxval_op = ConstantR0<ValueT>(&builder, static_cast<ValueT>(maxval)); XlaOp seed = ConstantR0<uint64_t>(&builder, 42); XlaOp initial_state = Zero(&builder, PrimitiveType::U64); BitGeneratorTy bit_generator = [](XlaOp key, XlaOp state, const Shape& shape) { state = ConcatScalars(key.builder(), {key, state}); XlaOp result = RngBitGenerator(RandomAlgorithm::RNG_DEFAULT, state, shape); return RngOutput{GetTupleElement(result, 1), GetTupleElement(result, 0)}; }; const Shape rng_shape = builder.GetShape(bits_op).value(); EXPECT_EQ(rng_shape.element_type(), bit_type); RngOutput rng_output = UniformFloatingPointDistribution( seed, initial_state, bit_generator, minval_op, maxval_op, rng_shape); if (rng_output.value.valid()) { XlaOp result = rng_output.value; EXPECT_EQ(builder.GetShape(result).value().element_type(), value_type); XlaOp result_ge_min = Ge(result, minval_op); XlaOp result_lt_max = Lt(result, maxval_op); And(result_ge_min, result_lt_max); ComputeAndCompareR0<bool>(&builder, true, {}); } else { EXPECT_EQ(builder.first_error().code(), absl::StatusCode::kInvalidArgument); } } }; XLA_TEST_F(PrngTest, RandomBitsToUniformFloatingPointInvalidArguments) { TestConvertRandomBitsToUniformFloatingPoint<PrimitiveType::F32, PrimitiveType::U16>(0x1234, 0.0f, 1.0f); TestConvertRandomBitsToUniformFloatingPoint<PrimitiveType::F16, PrimitiveType::U8>(0x12, 0.0f, 1.0f); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/builder/lib/prng.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/builder/lib/prng_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
23a4b866-72e7-4211-9fcd-13bf74a06165
cpp
tensorflow/tensorflow
optimize_cross_host_control_deps
tensorflow/core/common_runtime/optimize_cross_host_control_deps.cc
tensorflow/core/common_runtime/optimize_cross_host_control_deps_test.cc
#include "tensorflow/core/common_runtime/optimize_cross_host_control_deps.h" #include <algorithm> #include <utility> #include <vector> #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/strcat.h" namespace tensorflow { namespace { Status BuildNoopNode(const Node& source, StringPiece name, const string& device, Graph* graph, Node** node) { NodeDefBuilder builder(name, "NoOp", NodeDebugInfo(source)); if (!device.empty()) { builder.Device(device); } NodeDef def; TF_RETURN_IF_ERROR(builder.Finalize(&def)); TF_ASSIGN_OR_RETURN(*node, graph->AddNode(def)); if (!device.empty()) { (*node)->set_assigned_device_name(device); } return absl::OkStatus(); } Status BuildIdentityNNode(const Node& source, StringPiece name, const string& device, Graph* graph, std::vector<NodeDefBuilder::NodeOut>& inputs, Node** node) { NodeDefBuilder builder(name, "IdentityN", NodeDebugInfo(source)); if (!device.empty()) { builder.Device(device); } builder.Input(inputs); NodeDef def; TF_RETURN_IF_ERROR(builder.Finalize(&def)); TF_ASSIGN_OR_RETURN(*node, graph->AddNode(def)); if (!device.empty()) { (*node)->set_assigned_device_name(device); } return absl::OkStatus(); } Status BuildIdentityNode(const Node& source, StringPiece name, const string& device, Graph* graph, std::vector<NodeDefBuilder::NodeOut>& inputs, Node** node) { NodeDefBuilder builder(name, "Identity", NodeDebugInfo(source)); if (!device.empty()) { builder.Device(device); } builder.Input(inputs[0]); NodeDef def; TF_RETURN_IF_ERROR(builder.Finalize(&def)); TF_ASSIGN_OR_RETURN(*node, graph->AddNode(def)); if (!device.empty()) { (*node)->set_assigned_device_name(device); } return absl::OkStatus(); } const string& RequestedOrAssignedDevice(const Node* n) { if (!n->assigned_device_name().empty()) { return n->assigned_device_name(); } return n->requested_device(); } class DeviceLookup { public: DeviceLookup() = default; static absl::StatusOr<DeviceLookup> FromGraph(Graph* graph) { DeviceLookup lookup; for (Node* n : graph->op_nodes()) { string device; TF_RETURN_IF_ERROR(DeviceNameUtils::DeviceNameToCpuDeviceName( RequestedOrAssignedDevice(n), &device)); auto iter = lookup.device_name_to_id_.find(device); int id; if (iter == lookup.device_name_to_id_.end()) { id = lookup.device_name_to_id_.size(); lookup.device_name_to_id_[device] = id; lookup.device_id_to_name_[id] = device; } else { id = iter->second; } lookup.node_to_device_id_[n] = id; } for (auto& [device1, id1] : lookup.device_name_to_id_) { for (auto& [device2, id2] : lookup.device_name_to_id_) { bool b = DeviceNameUtils::IsSameAddressSpace(device1, device2); lookup.is_same_address_space_[std::make_pair(id1, id2)] = b; } } return lookup; } inline int NodeToDeviceId(const Node* node) { return node_to_device_id_[node]; } inline string DeviceIdToName(int id) { return device_id_to_name_[id]; } inline bool IsSameAddressSpace(int id1, int id2) { return is_same_address_space_[std::make_pair(id1, id2)]; } private: absl::flat_hash_map<int, string> device_id_to_name_; absl::flat_hash_map<string, int> device_name_to_id_; absl::flat_hash_map<const Node*, int> node_to_device_id_; absl::flat_hash_map<std::pair<int, int>, bool> is_same_address_space_; }; } Status OptimizeCrossHostControlOutputEdges(Graph* graph, int cross_host_edges_threshold) { TF_ASSIGN_OR_RETURN(DeviceLookup lookup, DeviceLookup::FromGraph(graph)); for (Node* n : graph->op_nodes()) { if (n->out_edges().size() < cross_host_edges_threshold) { continue; } absl::flat_hash_map<int, std::vector<const Edge*>> cross_host_control_edges; int src_device_id = lookup.NodeToDeviceId(n); for (const Edge* edge : n->out_edges()) { if (!edge->IsControlEdge() || edge->dst()->IsSink()) { continue; } int dst_device_id = lookup.NodeToDeviceId(edge->dst()); if (lookup.IsSameAddressSpace(src_device_id, dst_device_id)) { continue; } auto iter = cross_host_control_edges.find(dst_device_id); if (iter == cross_host_control_edges.end()) { cross_host_control_edges[dst_device_id] = {edge}; } else { iter->second.push_back(edge); } } for (const auto& pair : cross_host_control_edges) { if (pair.second.size() < cross_host_edges_threshold) { continue; } string device = lookup.DeviceIdToName(pair.first); VLOG(1) << "Optmize cross host output control edge, src node: " << n->name() << " src device: " << lookup.DeviceIdToName(src_device_id) << " dst host device: " << device << " edges size: " << pair.second.size(); Node* control_after; TF_RETURN_IF_ERROR(BuildNoopNode( *n, graph->NewName(strings::StrCat(n->name(), "/", "control_after")), device, graph, &control_after)); graph->AddControlEdge(n, control_after, true); for (const Edge* edge : pair.second) { graph->AddControlEdge(control_after, edge->dst(), true); graph->RemoveEdge(edge); } } } return absl::OkStatus(); } Status OptimizeCrossHostDataOutputEdges(Graph* graph, int cross_host_edges_threshold) { TF_ASSIGN_OR_RETURN(DeviceLookup lookup, DeviceLookup::FromGraph(graph)); for (Node* n : graph->op_nodes()) { if (n->out_edges().size() < cross_host_edges_threshold) { continue; } absl::flat_hash_map<int, std::vector<const Edge*>> cross_host_edges; int src_id = lookup.NodeToDeviceId(n); for (const Edge* edge : n->out_edges()) { Node* dst = edge->dst(); if (edge->IsControlEdge() || dst->IsSink()) { continue; } int dst_id = lookup.NodeToDeviceId(dst); if (lookup.IsSameAddressSpace(src_id, dst_id)) { continue; } auto iter = cross_host_edges.find(dst_id); if (iter == cross_host_edges.end()) { cross_host_edges[dst_id] = {edge}; } else { iter->second.push_back(edge); } } for (const auto& pair : cross_host_edges) { if (pair.second.size() < cross_host_edges_threshold) { continue; } if (pair.second.empty()) { continue; } int device_id = pair.first; Node* node0 = pair.second[0]->dst(); if (std::all_of(pair.second.begin(), pair.second.end(), [node0](const Edge* e) { return e->dst() == node0; })) { continue; } string device = lookup.DeviceIdToName(device_id); VLOG(1) << "Optimize cross host output edge, src node: " << n->name() << " src device: " << lookup.DeviceIdToName(src_id) << " dst host device: " << device << " edges size: " << pair.second.size(); Node* data_after; std::vector<NodeDefBuilder::NodeOut> inputs; inputs.reserve(pair.second.size()); const Edge* edge0 = pair.second[0]; if (std::all_of(pair.second.begin(), pair.second.end(), [edge0](const Edge* e) { return e->src() == edge0->src() && e->src_output() == edge0->src_output(); })) { inputs.emplace_back(edge0->src()->name(), edge0->src_output(), edge0->src()->output_type(edge0->src_output())); TF_RETURN_IF_ERROR(BuildIdentityNode( *n, graph->NewName(strings::StrCat(n->name(), "/", "data_after")), device, graph, inputs, &data_after)); graph->AddEdge(edge0->src(), edge0->src_output(), data_after, 0); int i = 0; for (const Edge* edge : pair.second) { graph->AddEdge(data_after, 0, edge->dst(), edge->dst_input()); graph->RemoveEdge(edge); i++; } } else { for (const Edge* edge : pair.second) { inputs.emplace_back(edge->src()->name(), edge->src_output(), edge->src()->output_type(edge->src_output())); } TF_RETURN_IF_ERROR(BuildIdentityNNode( *n, graph->NewName(strings::StrCat(n->name(), "/", "data_after")), device, graph, inputs, &data_after)); int i = 0; for (const Edge* edge : pair.second) { graph->AddEdge(data_after, i, edge->dst(), edge->dst_input()); graph->AddEdge(edge->src(), edge->src_output(), data_after, i); graph->RemoveEdge(edge); i++; } } } } return absl::OkStatus(); } Status OptimizeCrossHostControlInputEdges(Graph* graph, int cross_host_edges_threshold) { TF_ASSIGN_OR_RETURN(DeviceLookup lookup, DeviceLookup::FromGraph(graph)); absl::flat_hash_map<Node*, std::vector<const Edge*>> node_control_input_edges; for (Node* n : graph->op_nodes()) { for (const Edge* edge : n->out_edges()) { if (!edge->IsControlEdge() || edge->dst()->IsSink()) { continue; } Node* dst = edge->dst(); auto iter = node_control_input_edges.find(dst); if (iter == node_control_input_edges.end()) { node_control_input_edges[dst] = {edge}; } else { node_control_input_edges[dst].push_back(edge); } } } for (auto& pair : node_control_input_edges) { Node* dst = pair.first; const std::vector<const Edge*>& input_edges = pair.second; if (input_edges.size() < cross_host_edges_threshold) { continue; } absl::flat_hash_map<int, std::vector<const Edge*>> cross_host_control_edges; int dst_device_id = lookup.NodeToDeviceId(dst); for (const Edge* edge : input_edges) { int src_device_id = lookup.NodeToDeviceId(edge->src()); if (lookup.IsSameAddressSpace(src_device_id, dst_device_id)) { continue; } auto iter = cross_host_control_edges.find(src_device_id); if (iter == cross_host_control_edges.end()) { cross_host_control_edges[src_device_id] = {edge}; } else { iter->second.push_back(edge); } } for (const auto& pair : cross_host_control_edges) { if (pair.second.size() < cross_host_edges_threshold) { continue; } string src_device = lookup.DeviceIdToName(pair.first); VLOG(1) << "Optmize cross host input control edge, dst node: " << dst->name() << " dst device: " << lookup.DeviceIdToName(dst_device_id) << " src host device: " << src_device << " edges size: " << pair.second.size(); Node* control_before; TF_RETURN_IF_ERROR(BuildNoopNode( *dst, graph->NewName(strings::StrCat(dst->name(), "/", "control_before")), src_device, graph, &control_before)); graph->AddControlEdge(control_before, dst, true); for (const Edge* edge : pair.second) { graph->AddControlEdge(edge->src(), control_before, true); graph->RemoveEdge(edge); } } } return absl::OkStatus(); } }
#include "tensorflow/core/common_runtime/optimize_cross_host_control_deps.h" #include <unordered_map> #include <vector> #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/graph_to_functiondef.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { Node* GetNodeByName(const string& name, Graph* graph) { for (Node* node : graph->op_nodes()) { if (node->name() == name) return node; } return nullptr; } TEST(OptimizeCrossHostControlDepsTest, OptimizeCrossHostControlOutputEdges) { tensorflow::Scope scope = tensorflow::Scope::NewRootScope(); auto a = ops::Const(scope.WithOpName("a"), 1.0f); a.node()->set_assigned_device_name("/job:worker/task:0/CPU:0"); auto b = ops::Const(scope.WithOpName("b").WithControlDependencies(a), 2.0f); b.node()->set_assigned_device_name("/job:worker/task:1/CPU:0"); auto c = ops::Const(scope.WithOpName("c").WithControlDependencies(a), 3.0f); c.node()->set_assigned_device_name("/job:worker/task:1/CPU:1"); auto d = ops::Const(scope.WithOpName("d").WithControlDependencies(a), 4.0f); d.node()->set_assigned_device_name("/job:worker/task:1/CPU:2"); Graph graph(OpRegistry::Global()); TF_ASSERT_OK(scope.ToGraph(&graph)); ASSERT_EQ(graph.num_op_nodes(), 4); TF_ASSERT_OK(OptimizeCrossHostControlOutputEdges( &graph, 10)); ASSERT_EQ(graph.num_op_nodes(), 4); TF_ASSERT_OK(OptimizeCrossHostControlOutputEdges( &graph, 2)); ASSERT_EQ(graph.num_op_nodes(), 5); Node* control_after = GetNodeByName("a/control_after/_0", &graph); ASSERT_NE(control_after, nullptr); EXPECT_EQ(control_after->op_def().name(), "NoOp"); EXPECT_EQ(control_after->assigned_device_name(), "/job:worker/task:1/device:CPU:0"); } TEST(OptimizeCrossHostControlDepsTest, OptimizeCrossHostDataOutputEdges) { tensorflow::Scope scope = tensorflow::Scope::NewRootScope(); auto c1 = ops::Const(scope.WithOpName("c1"), 1.0f); auto c2 = ops::Const(scope.WithOpName("c2"), 2.0f); auto a = ops::IdentityN(scope.WithOpName("a"), {c1, c2}); a.operation.node()->set_assigned_device_name("/job:worker/task:0/CPU:0"); auto b = ops::Identity(scope.WithOpName("b"), a[0]); b.node()->set_assigned_device_name("/job:worker/task:1/CPU:0"); auto c = ops::Identity(scope.WithOpName("c"), a[1]); c.node()->set_assigned_device_name("/job:worker/task:1/CPU:1"); auto d = ops::Identity(scope.WithOpName("d"), a[0]); d.node()->set_assigned_device_name("/job:worker/task:2/CPU:0"); auto e = ops::Identity(scope.WithOpName("e"), a[1]); e.node()->set_assigned_device_name("/job:worker/task:2/CPU:1"); Graph graph(OpRegistry::Global()); TF_ASSERT_OK(scope.ToGraph(&graph)); ASSERT_EQ(graph.num_op_nodes(), 7); TF_ASSERT_OK(OptimizeCrossHostDataOutputEdges( &graph, 10)); ASSERT_EQ(graph.num_op_nodes(), 7); TF_ASSERT_OK(OptimizeCrossHostDataOutputEdges( &graph, 2)); ASSERT_EQ(graph.num_op_nodes(), 9); Node* data_after1 = GetNodeByName("a/data_after/_0", &graph); Node* data_after2 = GetNodeByName("a/data_after/_1", &graph); if (data_after1->assigned_device_name() == "/job:worker/task:2/device:CPU:0") { std::swap(data_after1, data_after2); } ASSERT_NE(data_after1, nullptr); EXPECT_EQ(data_after1->op_def().name(), "IdentityN"); EXPECT_EQ(data_after1->assigned_device_name(), "/job:worker/task:1/device:CPU:0"); EXPECT_EQ(data_after1->def().input_size(), 2); EXPECT_EQ(data_after1->def().input(0), "a"); EXPECT_EQ(data_after1->def().input(1), "a:1"); EXPECT_EQ(data_after1->op_def().name(), "IdentityN"); ASSERT_NE(data_after2, nullptr); EXPECT_EQ(data_after2->op_def().name(), "IdentityN"); EXPECT_EQ(data_after2->assigned_device_name(), "/job:worker/task:2/device:CPU:0"); EXPECT_EQ(data_after2->def().input_size(), 2); EXPECT_EQ(data_after2->def().input(0), "a"); EXPECT_EQ(data_after2->def().input(1), "a:1"); EXPECT_EQ(data_after2->op_def().name(), "IdentityN"); GraphDef graph_def; graph.ToGraphDef(&graph_def); std::unordered_map<string, const NodeDef*> map; for (auto& node : graph_def.node()) { map[node.name()] = &node; } EXPECT_EQ(map["b"]->input(0), data_after1->name()); EXPECT_EQ(map["c"]->input(0), data_after1->name() + ":1"); EXPECT_EQ(map["d"]->input(0), data_after2->name()); EXPECT_EQ(map["e"]->input(0), data_after2->name() + ":1"); } TEST(OptimizeCrossHostControlDepsTest, CreatesIdentityNodesWhenInputsIdentical) { tensorflow::Scope scope = tensorflow::Scope::NewRootScope(); auto c1 = ops::Const(scope.WithOpName("c1"), 1.0f); auto c2 = ops::Const(scope.WithOpName("c2"), 2.0f); auto a = ops::IdentityN(scope.WithOpName("a"), {c1, c2}); a.operation.node()->set_assigned_device_name("/job:worker/task:0/CPU:0"); auto b = ops::Identity(scope.WithOpName("b"), a[0]); auto c = ops::Identity(scope.WithOpName("c"), a[0]); auto d = ops::Identity(scope.WithOpName("d"), a[0]); auto e = ops::Identity(scope.WithOpName("e"), a[0]); b.node()->set_assigned_device_name("/job:worker/task:1/CPU:0"); c.node()->set_assigned_device_name("/job:worker/task:1/CPU:0"); d.node()->set_assigned_device_name("/job:worker/task:1/CPU:0"); e.node()->set_assigned_device_name("/job:worker/task:1/CPU:0"); Graph graph(OpRegistry::Global()); TF_ASSERT_OK(scope.ToGraph(&graph)); ASSERT_EQ(graph.num_op_nodes(), 7); TF_ASSERT_OK(OptimizeCrossHostDataOutputEdges( &graph, 2)); ASSERT_EQ(graph.num_op_nodes(), 8); Node* data_after = GetNodeByName("a/data_after/_0", &graph); ASSERT_NE(data_after, nullptr); EXPECT_EQ(data_after->op_def().name(), "Identity"); EXPECT_EQ(data_after->assigned_device_name(), "/job:worker/task:1/device:CPU:0"); EXPECT_EQ(data_after->def().input_size(), 1); EXPECT_EQ(data_after->def().input(0)[0], 'a'); EXPECT_EQ(data_after->op_def().name(), "Identity"); GraphDef graph_def; graph.ToGraphDef(&graph_def); std::unordered_map<string, const NodeDef*> map; for (auto& node : graph_def.node()) { map[node.name()] = &node; } EXPECT_EQ(map["b"]->input(0), data_after->name()); EXPECT_EQ(map["c"]->input(0), data_after->name()); EXPECT_EQ(map["d"]->input(0), data_after->name()); EXPECT_EQ(map["e"]->input(0), data_after->name()); } TEST(OptimizeCrossHostControlDepsTest, OptimizeCrossHostControlInputEdges) { tensorflow::Scope scope = tensorflow::Scope::NewRootScope(); auto a = ops::Const(scope.WithOpName("a"), 1.0f); a.node()->set_assigned_device_name("/job:worker/task:0/CPU:0"); auto b = ops::Const(scope.WithOpName("b"), 2.0f); b.node()->set_assigned_device_name("/job:worker/task:0/CPU:1"); auto c = ops::Const(scope.WithOpName("c"), 1.0f); c.node()->set_assigned_device_name("/job:worker/task:0/CPU:2"); auto d = ops::Const( scope.WithOpName("d").WithControlDependencies({a.op(), b.op(), c.op()}), 4.0f); d.node()->set_assigned_device_name("/job:worker/task:1/CPU:0"); Graph graph(OpRegistry::Global()); TF_ASSERT_OK(scope.ToGraph(&graph)); ASSERT_EQ(graph.num_op_nodes(), 4); TF_ASSERT_OK(OptimizeCrossHostControlOutputEdges( &graph, 10)); ASSERT_EQ(graph.num_op_nodes(), 4); TF_ASSERT_OK(OptimizeCrossHostControlInputEdges( &graph, 2)); ASSERT_EQ(graph.num_op_nodes(), 5); Node* control_before = GetNodeByName("d/control_before/_0", &graph); ASSERT_NE(control_before, nullptr); EXPECT_EQ(control_before->op_def().name(), "NoOp"); EXPECT_EQ(control_before->assigned_device_name(), "/job:worker/task:0/device:CPU:0"); } TEST(OptimizeCrossHostControlDepsTest, LargeGraph) { tensorflow::Scope scope = tensorflow::Scope::NewRootScope(); constexpr int size = 750; std::vector<Operation> layer1; for (int i = 0; i < size; ++i) { auto n = ops::Const(scope, 1.0f); n.node()->set_assigned_device_name("/job:worker/task:0/CPU:0"); layer1.push_back(n.op()); } for (int j = 0; j < size; ++j) { auto d = ops::Const(scope.WithControlDependencies(layer1), 1.0f); d.node()->set_assigned_device_name("/job:worker/task:0/CPU:0"); } Graph graph(OpRegistry::Global()); TF_ASSERT_OK(scope.ToGraph(&graph)); ASSERT_EQ(graph.num_op_nodes(), size * 2); TF_ASSERT_OK(OptimizeCrossHostControlInputEdges( &graph, size)); TF_ASSERT_OK(OptimizeCrossHostControlOutputEdges( &graph, size)); ASSERT_EQ(graph.num_op_nodes(), size * 4); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/optimize_cross_host_control_deps.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/optimize_cross_host_control_deps_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9a5566ba-75db-493f-aca1-ceb37b0190f6
cpp
google/tensorstore
google_auth_provider
tensorstore/internal/oauth2/google_auth_provider.cc
tensorstore/internal/oauth2/google_auth_provider_test.cc
#include "tensorstore/internal/oauth2/google_auth_provider.h" #include <algorithm> #include <fstream> #include <functional> #include <memory> #include <new> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/base/no_destructor.h" #include "absl/base/thread_annotations.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include <nlohmann/json.hpp> #include "tensorstore/internal/env.h" #include "tensorstore/internal/http/http_transport.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/oauth2/auth_provider.h" #include "tensorstore/internal/oauth2/fixed_token_auth_provider.h" #include "tensorstore/internal/oauth2/gce_auth_provider.h" #include "tensorstore/internal/oauth2/google_service_account_auth_provider.h" #include "tensorstore/internal/oauth2/oauth2_auth_provider.h" #include "tensorstore/internal/oauth2/oauth_utils.h" #include "tensorstore/internal/path.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_oauth2 { namespace { using ::tensorstore::internal::GetEnv; using ::tensorstore::internal::JoinPath; constexpr char kGoogleAuthTokenForTesting[] = "GOOGLE_AUTH_TOKEN_FOR_TESTING"; constexpr char kGoogleApplicationCredentials[] = "GOOGLE_APPLICATION_CREDENTIALS"; constexpr char kCloudSdkConfig[] = "CLOUDSDK_CONFIG"; constexpr char kGCloudConfigFolder[] = ".config/gcloud/"; constexpr char kWellKnownCredentialsFile[] = "application_default_credentials.json"; constexpr char kOAuthV3Url[] = "https: bool IsFile(const std::string& filename) { std::ifstream fstream(filename.c_str()); return fstream.good(); } Result<std::string> GetEnvironmentVariableFileName() { auto env = GetEnv(kGoogleApplicationCredentials); if (!env || !IsFile(*env)) { return absl::NotFoundError(tensorstore::StrCat( "$", kGoogleApplicationCredentials, " is not set or corrupt.")); } return *env; } Result<std::string> GetWellKnownFileName() { std::string result; auto config_dir_override = GetEnv(kCloudSdkConfig); if (config_dir_override) { result = JoinPath(*config_dir_override, kWellKnownCredentialsFile); } else { auto home_dir = GetEnv("HOME"); if (!home_dir) { return absl::NotFoundError("Could not read $HOME."); } result = JoinPath(*home_dir, kGCloudConfigFolder, kWellKnownCredentialsFile); } if (!IsFile(result)) { return absl::NotFoundError( tensorstore::StrCat("Could not find the credentials file in the " "standard gcloud location [", result, "]")); } return result; } struct AuthProviderRegistry { std::vector<std::pair<int, GoogleAuthProvider>> providers; absl::Mutex mutex; }; AuthProviderRegistry& GetGoogleAuthProviderRegistry() { static absl::NoDestructor<AuthProviderRegistry> registry; return *registry; } Result<std::unique_ptr<AuthProvider>> GetDefaultGoogleAuthProvider( std::shared_ptr<internal_http::HttpTransport> transport) { std::unique_ptr<AuthProvider> result; auto var = GetEnv(kGoogleAuthTokenForTesting); if (var) { ABSL_LOG(INFO) << "Using GOOGLE_AUTH_TOKEN_FOR_TESTING"; result.reset(new FixedTokenAuthProvider(*std::move(var))); return std::move(result); } absl::Status status; auto credentials_filename = GetEnvironmentVariableFileName(); if (!credentials_filename) { credentials_filename = GetWellKnownFileName(); } if (credentials_filename.ok()) { ABSL_LOG(INFO) << "Using credentials at " << *credentials_filename; std::ifstream credentials_fstream(*credentials_filename); auto json = ::nlohmann::json::parse(credentials_fstream, nullptr, false); auto refresh_token = internal_oauth2::ParseRefreshToken(json); if (refresh_token.ok()) { ABSL_LOG(INFO) << "Using OAuth2 AuthProvider"; result.reset(new OAuth2AuthProvider(*refresh_token, kOAuthV3Url, std::move(transport))); return std::move(result); } auto service_account = internal_oauth2::ParseGoogleServiceAccountCredentials(json); if (service_account.ok()) { ABSL_LOG(INFO) << "Using ServiceAccount AuthProvider"; result.reset(new GoogleServiceAccountAuthProvider(*service_account, std::move(transport))); return std::move(result); } status = absl::UnknownError( tensorstore::StrCat("Unexpected content of the JSON credentials file: ", *credentials_filename)); } if (auto gce_service_account = GceAuthProvider::GetDefaultServiceAccountInfoIfRunningOnGce( transport.get()); gce_service_account.ok()) { ABSL_LOG(INFO) << "Running on GCE, using service account " << gce_service_account->email; result.reset( new GceAuthProvider(std::move(transport), *gce_service_account)); return std::move(result); } if (!credentials_filename.ok()) { ABSL_LOG(ERROR) << credentials_filename.status().message() << ". You may specify a credentials file using $" << kGoogleApplicationCredentials << ", or to use Google application default credentials, run: " "gcloud auth application-default login"; } TENSORSTORE_RETURN_IF_ERROR(status); return absl::NotFoundError( "Could not locate the credentials file and not running on GCE."); } struct SharedGoogleAuthProviderState { absl::Mutex mutex; std::optional<Result<std::shared_ptr<AuthProvider>>> auth_provider ABSL_GUARDED_BY(mutex); }; SharedGoogleAuthProviderState& GetSharedGoogleAuthProviderState() { static absl::NoDestructor<SharedGoogleAuthProviderState> state; return *state; } } void RegisterGoogleAuthProvider(GoogleAuthProvider provider, int priority) { auto& registry = GetGoogleAuthProviderRegistry(); absl::WriterMutexLock lock(&registry.mutex); registry.providers.emplace_back(priority, std::move(provider)); std::sort(registry.providers.begin(), registry.providers.end(), [](const auto& a, const auto& b) { return a.first < b.first; }); } Result<std::unique_ptr<AuthProvider>> GetGoogleAuthProvider( std::shared_ptr<internal_http::HttpTransport> transport) { { auto& registry = GetGoogleAuthProviderRegistry(); absl::ReaderMutexLock lock(&registry.mutex); for (const auto& provider : registry.providers) { auto auth_result = provider.second(); if (auth_result.ok()) return auth_result; } } return internal_oauth2::GetDefaultGoogleAuthProvider(std::move(transport)); } Result<std::shared_ptr<AuthProvider>> GetSharedGoogleAuthProvider() { auto& state = GetSharedGoogleAuthProviderState(); absl::MutexLock lock(&state.mutex); if (!state.auth_provider) { state.auth_provider.emplace(GetGoogleAuthProvider()); } return *state.auth_provider; } void ResetSharedGoogleAuthProvider() { auto& state = GetSharedGoogleAuthProviderState(); absl::MutexLock lock(&state.mutex); state.auth_provider = std::nullopt; } } }
#include "tensorstore/internal/oauth2/google_auth_provider.h" #include <fstream> #include <memory> #include <string> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/escaping.h" #include "absl/strings/match.h" #include "tensorstore/internal/env.h" #include "tensorstore/internal/http/curl_transport.h" #include "tensorstore/internal/http/http_request.h" #include "tensorstore/internal/http/http_response.h" #include "tensorstore/internal/http/http_transport.h" #include "tensorstore/internal/http/mock_http_transport.h" #include "tensorstore/internal/oauth2/auth_provider.h" #include "tensorstore/internal/oauth2/fake_private_key.h" #include "tensorstore/internal/oauth2/fixed_token_auth_provider.h" #include "tensorstore/internal/oauth2/gce_auth_provider.h" #include "tensorstore/internal/oauth2/google_auth_test_utils.h" #include "tensorstore/internal/oauth2/google_service_account_auth_provider.h" #include "tensorstore/internal/oauth2/oauth2_auth_provider.h" #include "tensorstore/internal/oauth2/oauth_utils.h" #include "tensorstore/internal/path.h" #include "tensorstore/internal/testing/scoped_directory.h" #include "tensorstore/internal/uri_utils.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::internal::JoinPath; using ::tensorstore::internal::SetEnv; using ::tensorstore::internal::UnsetEnv; using ::tensorstore::internal_http::ApplyResponseToHandler; using ::tensorstore::internal_http::HttpRequest; using ::tensorstore::internal_http::HttpResponse; using ::tensorstore::internal_http::HttpResponseHandler; using ::tensorstore::internal_http::HttpTransport; using ::tensorstore::internal_http::IssueRequestOptions; using ::tensorstore::internal_http::SetDefaultHttpTransport; using ::tensorstore::internal_oauth2::AuthProvider; using ::tensorstore::internal_oauth2::GetFakePrivateKey; using ::tensorstore::internal_oauth2::GetGoogleAuthProvider; using ::tensorstore::internal_oauth2::GoogleAuthTestScope; class TestData : public tensorstore::internal_testing::ScopedTemporaryDirectory { public: std::string WriteApplicationDefaultCredentials() { auto p = JoinPath(path(), "application_default_credentials.json"); std::ofstream ofs(p); ofs << R"({ "client_id": "fake-client-id.apps.googleusercontent.com", "client_secret": "fake-client-secret", "refresh_token": "fake-refresh-token", "type": "authorized_user" })"; return p; } std::string WriteServiceAccountCredentials() { auto p = JoinPath(path(), "service_account_credentials.json"); std::ofstream ofs(p); ofs << R"({ "type": "service_account", "project_id": "fake_project_id", "private_key_id": "fake_key_id", "client_email": "fake-test-project.iam.gserviceaccount.com", "client_id": "fake_client_id", "auth_uri": "https: "token_uri": "https: "auth_provider_x509_cert_url": "https: "client_x509_cert_url": "https: )"; ofs << " \"private_key\": \"" << absl::CEscape(GetFakePrivateKey()) << "\" }"; return p; } }; class MetadataMockTransport : public HttpTransport { public: void IssueRequestWithHandler(const HttpRequest& request, IssueRequestOptions options, HttpResponseHandler* response_handler) override { ApplyResponseToHandler( [&]() -> tensorstore::Result<HttpResponse> { auto parsed = tensorstore::internal::ParseGenericUri(request.url); if (!absl::StartsWith(parsed.authority_and_path, "metadata.google.internal")) { return absl::UnimplementedError("Mock cannot satisfy the request."); } constexpr char kOAuthPath[] = "metadata.google.internal/computeMetadata/v1/" "instance/service-accounts/[email protected]/token"; if (absl::StartsWith(parsed.authority_and_path, kOAuthPath)) { if (!has_service_account_) { return HttpResponse{404, absl::Cord()}; } return HttpResponse{ 200, absl::Cord( R"({ "token_type" : "refresh", "access_token": "abc", "expires_in": 3600 })")}; } constexpr char kServiceAccountPath[] = "metadata.google.internal/computeMetadata/v1/" "instance/service-accounts/default/"; if (absl::StartsWith(parsed.authority_and_path, kServiceAccountPath)) { if (!has_service_account_) { return HttpResponse{404, absl::Cord()}; } return HttpResponse{ 200, absl::Cord( R"({ "email": "[email protected]", "scopes": [ "test" ] })")}; } return HttpResponse{200, absl::Cord()}; }(), response_handler); } void set_has_service_account(bool has_service_account) { has_service_account_ = has_service_account; } bool has_service_account_ = false; }; class GoogleAuthProviderTest : public ::testing::Test { public: GoogleAuthTestScope google_auth_test_scope; static void SetUpTestSuite() { SetDefaultHttpTransport(mock_transport); tensorstore::internal_oauth2::ResetSharedGoogleAuthProvider(); } static void TearDownTestSuite() { tensorstore::internal_oauth2::ResetSharedGoogleAuthProvider(); SetDefaultHttpTransport(nullptr); } static std::shared_ptr<MetadataMockTransport> mock_transport; }; std::shared_ptr<MetadataMockTransport> GoogleAuthProviderTest::mock_transport = std::make_shared<MetadataMockTransport>(); TEST_F(GoogleAuthProviderTest, Invalid) { SetEnv("GCE_METADATA_ROOT", "invalidmetadata.google.internal"); auto auth_provider = GetGoogleAuthProvider(); EXPECT_FALSE(auth_provider.ok()); UnsetEnv("GCE_METADATA_ROOT"); } TEST_F(GoogleAuthProviderTest, AuthTokenForTesting) { SetEnv("GOOGLE_AUTH_TOKEN_FOR_TESTING", "abc"); auto auth_provider = GetGoogleAuthProvider(); ASSERT_TRUE(auth_provider.ok()) << auth_provider.status(); { auto instance = dynamic_cast<tensorstore::internal_oauth2::FixedTokenAuthProvider*>( auth_provider->get()); EXPECT_FALSE(instance == nullptr); } std::unique_ptr<AuthProvider> auth = std::move(*auth_provider); auto token = auth->GetToken(); ASSERT_TRUE(token.ok()); EXPECT_EQ("abc", token->token); } TEST_F(GoogleAuthProviderTest, GoogleOAuth2AccountCredentialsFromSDKConfig) { TestData test_data; test_data.WriteServiceAccountCredentials(); test_data.WriteApplicationDefaultCredentials(); SetEnv("CLOUDSDK_CONFIG", test_data.path().c_str()); auto auth_provider = GetGoogleAuthProvider(); ASSERT_TRUE(auth_provider.ok()) << auth_provider.status(); { auto instance = dynamic_cast<tensorstore::internal_oauth2::OAuth2AuthProvider*>( auth_provider->get()); EXPECT_FALSE(instance == nullptr); } } TEST_F(GoogleAuthProviderTest, GoogleOAuth2AccountCredentials) { TestData test_data; SetEnv("GOOGLE_APPLICATION_CREDENTIALS", test_data.WriteApplicationDefaultCredentials().c_str()); auto auth_provider = GetGoogleAuthProvider(); ASSERT_TRUE(auth_provider.ok()) << auth_provider.status(); { auto instance = dynamic_cast<tensorstore::internal_oauth2::OAuth2AuthProvider*>( auth_provider->get()); EXPECT_FALSE(instance == nullptr); } } TEST_F(GoogleAuthProviderTest, GoogleServiceAccountCredentials) { TestData test_data; SetEnv("GOOGLE_APPLICATION_CREDENTIALS", test_data.WriteServiceAccountCredentials().c_str()); auto auth_provider = GetGoogleAuthProvider(); ASSERT_TRUE(auth_provider.ok()) << auth_provider.status(); { auto instance = dynamic_cast< tensorstore::internal_oauth2::GoogleServiceAccountAuthProvider*>( auth_provider->get()); EXPECT_FALSE(instance == nullptr); } } TEST_F(GoogleAuthProviderTest, GceWithServiceAccount) { mock_transport->set_has_service_account(true); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto auth_provider, GetGoogleAuthProvider()); { auto instance = dynamic_cast<tensorstore::internal_oauth2::GceAuthProvider*>( auth_provider.get()); EXPECT_FALSE(instance == nullptr); } EXPECT_THAT(auth_provider->GetAuthHeader(), ::testing::Optional(std::string("Authorization: Bearer abc"))); } TEST_F(GoogleAuthProviderTest, GceWithoutServiceAccount) { mock_transport->set_has_service_account(false); EXPECT_THAT(GetGoogleAuthProvider(), tensorstore::MatchesStatus(absl::StatusCode::kNotFound)); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/oauth2/google_auth_provider.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/oauth2/google_auth_provider_test.cc
4f887a6430414cd6088e1743555015b10f116d50
8a5dcfca-2d54-4353-bcdd-af9c476f0366
cpp
tensorflow/tensorflow
rng_converter_utils
tensorflow/compiler/tf2xla/kernels/rng_converter_utils.cc
tensorflow/compiler/tf2xla/kernels/rng_converter_utils_test.cc
#include "tensorflow/compiler/tf2xla/kernels/rng_converter_utils.h" #include "absl/strings/string_view.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/framework/rng_alg.h" namespace tensorflow { Algorithm ToTensorflowAlgorithm(xla::RandomAlgorithm alg) { switch (alg) { case xla::RandomAlgorithm::RNG_PHILOX: return RNG_ALG_PHILOX; case xla::RandomAlgorithm::RNG_THREE_FRY: return RNG_ALG_THREEFRY; case xla::RandomAlgorithm::RNG_DEFAULT: default: return RNG_ALG_AUTO_SELECT; } } xla::RandomAlgorithm DefaultRngAlgForDeviceType( absl::string_view device_type_string) { if (device_type_string == DEVICE_GPU_XLA_JIT || device_type_string == DEVICE_CPU_XLA_JIT) { return xla::RandomAlgorithm::RNG_PHILOX; } else { return xla::RandomAlgorithm::RNG_DEFAULT; } } }
#include "tensorflow/compiler/tf2xla/kernels/rng_converter_utils.h" #include <gtest/gtest.h> #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/framework/rng_alg.h" namespace tensorflow { namespace { TEST(RngConverterUtilsTest, DefaultRngForCPUEqualsGPU) { EXPECT_EQ(DefaultRngAlgForDeviceType(DEVICE_CPU_XLA_JIT), DefaultRngAlgForDeviceType(DEVICE_GPU_XLA_JIT)); } TEST(RngConverterUtilsTest, UnknownDeviceIsDefault) { EXPECT_EQ(DefaultRngAlgForDeviceType("UNKNOWN DEVICE"), xla::RandomAlgorithm::RNG_DEFAULT); } TEST(RngConverterUtilsTest, TensorflowAutoSelects) { EXPECT_EQ(ToTensorflowAlgorithm(xla::RandomAlgorithm::RNG_DEFAULT), tensorflow::RNG_ALG_AUTO_SELECT); } TEST(RngConverterUtilsTest, ToTensorflow) { EXPECT_EQ(ToTensorflowAlgorithm(xla::RandomAlgorithm::RNG_PHILOX), tensorflow::RNG_ALG_PHILOX); EXPECT_EQ(ToTensorflowAlgorithm(xla::RandomAlgorithm::RNG_THREE_FRY), tensorflow::RNG_ALG_THREEFRY); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/kernels/rng_converter_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/kernels/rng_converter_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a5ecc6e9-0c1c-4e01-9180-c293cbfd50be
cpp
tensorflow/tensorflow
reference_util
third_party/xla/xla/reference_util.cc
third_party/xla/xla/reference_util_test.cc
#include "xla/reference_util.h" #include <array> #include <cmath> #include <functional> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/functional/function_ref.h" #include "absl/types/span.h" #include "xla/array2d.h" #include "xla/array3d.h" #include "xla/array4d.h" #include "xla/client/padding.h" #include "xla/client/xla_builder.h" #include "xla/hlo/evaluator/hlo_evaluator.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/hlo_module_config.h" #include "xla/service/shape_inference.h" #include "xla/shape.h" #include "xla/tsl/lib/math/math_util.h" #include "xla/window_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" namespace xla { std::unique_ptr<Array2D<double>> ReferenceUtil::Array2DF32ToF64( const Array2D<float>& input) { auto result = std::make_unique<Array2D<double>>(input.height(), input.width()); for (int64_t rowno = 0; rowno < input.height(); ++rowno) { for (int64_t colno = 0; colno < input.width(); ++colno) { (*result)(rowno, colno) = input(rowno, colno); } } return result; } std::unique_ptr<Array3D<float>> ReferenceUtil::ConvArray3D( const Array3D<float>& lhs, const Array3D<float>& rhs, int64_t kernel_stride, Padding padding) { return ConvArray3DGeneralDimensionsDilated( lhs, rhs, kernel_stride, padding, 1, 1, XlaBuilder::CreateDefaultConvDimensionNumbers(1)); } std::unique_ptr<Array3D<float>> ReferenceUtil::ConvArray3DGeneralDimensionsDilated( const Array3D<float>& lhs, const Array3D<float>& rhs, int64_t kernel_stride, Padding padding, int64_t lhs_dilation, int64_t rhs_dilation, const ConvolutionDimensionNumbers& dnums) { CHECK_EQ(dnums.input_spatial_dimensions_size(), 1); CHECK_EQ(dnums.kernel_spatial_dimensions_size(), 1); CHECK_EQ(dnums.output_spatial_dimensions_size(), 1); Array4D<float> a4dlhs(lhs.n1(), lhs.n2(), lhs.n3(), 1); a4dlhs.Each([&](absl::Span<const int64_t> indices, float* value_ptr) { CHECK_EQ(indices[3], 0); *value_ptr = lhs.operator()(indices[0], indices[1], indices[2]); }); Array4D<float> a4drhs(rhs.n1(), rhs.n2(), rhs.n3(), 1); a4drhs.Each([&](absl::Span<const int64_t> indices, float* value_ptr) { CHECK_EQ(indices[3], 0); *value_ptr = rhs.operator()(indices[0], indices[1], indices[2]); }); ConvolutionDimensionNumbers dnums2d = dnums; dnums2d.add_input_spatial_dimensions(3); dnums2d.add_kernel_spatial_dimensions(3); dnums2d.add_output_spatial_dimensions(3); std::unique_ptr<Array4D<float>> convr4 = ConvArray4DGeneralDimensionsDilated( a4dlhs, a4drhs, {kernel_stride, 1}, padding, {lhs_dilation, 1}, {rhs_dilation, 1}, dnums2d); auto convr3 = std::make_unique<Array3D<float>>( convr4->planes(), convr4->depth(), convr4->height()); convr4->Each([&](absl::Span<const int64_t> indices, float* value_ptr) { CHECK_EQ(indices[3], 0); convr3->operator()(indices[0], indices[1], indices[2]) = *value_ptr; }); return convr3; } std::unique_ptr<Array4D<float>> ReferenceUtil::ConvArray4D( const Array4D<float>& lhs, const Array4D<float>& rhs, std::pair<int64_t, int64_t> kernel_stride, Padding padding) { return ConvArray4DGeneralDimensions( lhs, rhs, kernel_stride, padding, XlaBuilder::CreateDefaultConvDimensionNumbers()); } std::unique_ptr<Array4D<float>> ReferenceUtil::SeparableConvArray4D(const Array4D<float>& input, const Array4D<float>& depthwise_weights, const Array4D<float>& pointwise_weights, std::pair<int64_t, int64_t> kernel_stride, Padding padding) { const int64_t depth_multiplier = depthwise_weights.planes(); CHECK_EQ(pointwise_weights.depth(), input.depth() * depth_multiplier); Array4D<float> weights(pointwise_weights.planes(), input.depth(), depthwise_weights.height(), depthwise_weights.width()); for (int64_t kx = 0; kx < depthwise_weights.width(); ++kx) { for (int64_t ky = 0; ky < depthwise_weights.height(); ++ky) { for (int64_t kz = 0; kz < input.depth(); ++kz) { for (int64_t out = 0; out < pointwise_weights.planes(); ++out) { float weight = 0.0; for (int64_t depth = 0; depth < depth_multiplier; ++depth) { weight += depthwise_weights(depth, kz, ky, kx) * pointwise_weights(out, depth + kz * depth_multiplier, 0, 0); } weights(out, kz, ky, kx) = weight; } } } } return ConvArray4D(input, weights, kernel_stride, padding); } int64_t ReferenceUtil::WindowCount(int64_t unpadded_width, int64_t window_len, int64_t stride, Padding padding) { if (padding == Padding::kValid) { return window_util::StridedBound(unpadded_width, window_len, stride); } return tsl::MathUtil::CeilOfRatio(unpadded_width, stride); } std::unique_ptr<std::vector<float>> ReferenceUtil::ReduceWindow1DGeneric( absl::Span<const float> operand, float init, absl::FunctionRef<float(float, float)> reduce_func, absl::Span<const int64_t> window, absl::Span<const int64_t> stride, absl::Span<const std::pair<int64_t, int64_t>> padding) { CHECK_EQ(window.size(), 1); CHECK_EQ(stride.size(), 1); CHECK_EQ(padding.size(), 1); int64_t padded_width = padding[0].first + operand.size() + padding[0].second; int64_t stride_amount = stride[0]; int64_t window_size = window[0]; int64_t result_size = window_util::StridedBound(padded_width, window_size, stride_amount); int64_t pad_low = padding[0].first; auto result = std::make_unique<std::vector<float>>(result_size); for (int64_t i0 = 0; i0 < result_size; ++i0) { int64_t i0_base = i0 * stride_amount - pad_low; float val = init; for (int64_t i0_win = 0; i0_win < window_size; ++i0_win) { if (i0_base + i0_win >= 0 && i0_base + i0_win < operand.size()) { val = reduce_func(val, operand[i0_base + i0_win]); } } (*result)[i0] = val; } return result; } std::unique_ptr<Array4D<float>> ReferenceUtil::ReduceWindow4DGeneric( const Array4D<float>& operand, float init, absl::FunctionRef<float(float, float)> reduce_func, absl::Span<const int64_t> window, absl::Span<const int64_t> stride, Padding padding) { std::vector<int64_t> dim_lengths{operand.n1(), operand.n2(), operand.n3(), operand.n4()}; return ReduceWindow4DGeneric( operand, init, reduce_func, window, stride, xla::MakePadding(dim_lengths, window, stride, padding)); } std::unique_ptr<Array4D<float>> ReferenceUtil::ReduceWindow4DGeneric( const Array4D<float>& operand, float init, absl::FunctionRef<float(float, float)> reduce_func, absl::Span<const int64_t> window, absl::Span<const int64_t> stride, absl::Span<const std::pair<int64_t, int64_t>> padding) { std::vector<int64_t> dim_lengths{operand.n1(), operand.n2(), operand.n3(), operand.n4()}; std::vector<int64_t> window_counts(window.size(), 0); std::vector<int64_t> pad_low(window.size(), 0); for (int64_t i = 0; i < window.size(); ++i) { int64_t padded_width = padding[i].first + dim_lengths[i] + padding[i].second; window_counts[i] = window_util::StridedBound(padded_width, window[i], stride[i]); pad_low[i] = padding[i].first; } auto result = std::make_unique<Array4D<float>>( window_counts[0], window_counts[1], window_counts[2], window_counts[3]); for (int64_t i0 = 0; i0 < window_counts[0]; ++i0) { for (int64_t i1 = 0; i1 < window_counts[1]; ++i1) { for (int64_t i2 = 0; i2 < window_counts[2]; ++i2) { for (int64_t i3 = 0; i3 < window_counts[3]; ++i3) { int64_t i0_base = i0 * stride[0] - pad_low[0]; int64_t i1_base = i1 * stride[1] - pad_low[1]; int64_t i2_base = i2 * stride[2] - pad_low[2]; int64_t i3_base = i3 * stride[3] - pad_low[3]; float val = init; for (int64_t i0_win = 0; i0_win < window[0]; ++i0_win) { for (int64_t i1_win = 0; i1_win < window[1]; ++i1_win) { for (int64_t i2_win = 0; i2_win < window[2]; ++i2_win) { for (int64_t i3_win = 0; i3_win < window[3]; ++i3_win) { if (i0_base + i0_win >= 0 && i1_base + i1_win >= 0 && i2_base + i2_win >= 0 && i3_base + i3_win >= 0 && i0_base + i0_win < operand.n1() && i1_base + i1_win < operand.n2() && i2_base + i2_win < operand.n3() && i3_base + i3_win < operand.n4()) { val = reduce_func( val, operand(i0_base + i0_win, i1_base + i1_win, i2_base + i2_win, i3_base + i3_win)); } } } } } (*result)(i0, i1, i2, i3) = val; } } } } return result; } std::unique_ptr<Array4D<float>> ReferenceUtil::ReduceWindow4DAdd( const Array4D<float>& operand, float init, absl::Span<const int64_t> window, absl::Span<const int64_t> stride, Padding padding) { const auto add_reduce = [](float arg1, float arg2) { return arg1 + arg2; }; return ReduceWindow4DGeneric(operand, init, add_reduce, window, stride, padding); } std::unique_ptr<Array4D<float>> ReferenceUtil::BatchNorm4D( const Array4D<float>& input, const Array4D<float>& mean, const Array4D<float>& var, const Array4D<float>& scale, const Array4D<float>& offset, float epsilon) { auto normalized = *MapArray4D(input, mean, [](float a, float b) { return a - b; }); normalized = *MapArray4D(normalized, var, [&](float a, float b) { return a / std::sqrt(b + epsilon); }); normalized = *MapArray4D(normalized, scale, [](float a, float b) { return a * b; }); return MapArray4D(normalized, offset, [](float a, float b) { return a + b; }); } std::unique_ptr<Array4D<float>> ReferenceUtil::SelectAndScatter4DGePlus(const Array4D<float>& operand, const Array4D<float>& source, float init, absl::Span<const int64_t> window, absl::Span<const int64_t> stride, bool same_padding) { Padding padding = same_padding ? Padding::kSame : Padding::kValid; auto result = std::make_unique<Array4D<float>>(operand.n1(), operand.n2(), operand.n3(), operand.n4()); std::vector<int64_t> dim_lengths{operand.n1(), operand.n2(), operand.n3(), operand.n4()}; auto padding_both = xla::MakePadding(dim_lengths, window, stride, padding); result->Fill(init); std::vector<int64_t> window_counts(window.size(), 0); std::vector<int64_t> pad_low(window.size(), 0); for (int64_t i = 0; i < window.size(); ++i) { window_counts[i] = WindowCount(dim_lengths[i], window[i], stride[i], padding); pad_low[i] = padding_both[i].first; } CHECK_EQ(window_counts[0], source.n1()); CHECK_EQ(window_counts[1], source.n2()); CHECK_EQ(window_counts[2], source.n3()); CHECK_EQ(window_counts[3], source.n4()); for (int64_t i0 = 0; i0 < window_counts[0]; ++i0) { for (int64_t i1 = 0; i1 < window_counts[1]; ++i1) { for (int64_t i2 = 0; i2 < window_counts[2]; ++i2) { for (int64_t i3 = 0; i3 < window_counts[3]; ++i3) { int64_t i0_base = i0 * stride[0] - pad_low[0]; int64_t i1_base = i1 * stride[1] - pad_low[1]; int64_t i2_base = i2 * stride[2] - pad_low[2]; int64_t i3_base = i3 * stride[3] - pad_low[3]; int64_t scatter_0 = (i0_base >= 0) ? i0_base : 0; int64_t scatter_1 = (i1_base >= 0) ? i1_base : 0; int64_t scatter_2 = (i2_base >= 0) ? i2_base : 0; int64_t scatter_3 = (i3_base >= 0) ? i3_base : 0; float val = operand(scatter_0, scatter_1, scatter_2, scatter_3); for (int64_t i0_win = 0; i0_win < window[0]; ++i0_win) { for (int64_t i1_win = 0; i1_win < window[1]; ++i1_win) { for (int64_t i2_win = 0; i2_win < window[2]; ++i2_win) { for (int64_t i3_win = 0; i3_win < window[3]; ++i3_win) { if (i0_base + i0_win >= 0 && i1_base + i1_win >= 0 && i2_base + i2_win >= 0 && i3_base + i3_win >= 0 && i0_base + i0_win < operand.n1() && i1_base + i1_win < operand.n2() && i2_base + i2_win < operand.n3() && i3_base + i3_win < operand.n4()) { float tmp = operand(i0_base + i0_win, i1_base + i1_win, i2_base + i2_win, i3_base + i3_win); if (tmp > val) { val = tmp; scatter_0 = i0_base + i0_win; scatter_1 = i1_base + i1_win; scatter_2 = i2_base + i2_win; scatter_3 = i3_base + i3_win; } } } } } } (*result)(scatter_0, scatter_1, scatter_2, scatter_3) += source(i0, i1, i2, i3); } } } } return result; } std::unique_ptr<Array4D<float>> ReferenceUtil::ConvArray4DGeneralDimensions( const Array4D<float>& lhs, const Array4D<float>& rhs, std::pair<int64_t, int64_t> kernel_stride, Padding padding, ConvolutionDimensionNumbers dimension_numbers) { return ConvArray4DGeneralDimensionsDilated(lhs, rhs, kernel_stride, padding, {1, 1}, {1, 1}, std::move(dimension_numbers)); } std::unique_ptr<Array4D<float>> ReferenceUtil::ConvArray4DGeneralDimensionsDilated( const Array4D<float>& lhs, const Array4D<float>& rhs, std::pair<int64_t, int64_t> kernel_stride, Padding padding, std::pair<int64_t, int64_t> lhs_dilation, std::pair<int64_t, int64_t> rhs_dilation, ConvolutionDimensionNumbers dnums) { HloComputation::Builder b("ConvArray4DGeneralDimensionDilated"); auto lhs_literal = LiteralUtil::CreateR4FromArray4D<float>(lhs); auto rhs_literal = LiteralUtil::CreateR4FromArray4D<float>(rhs); std::array<int64_t, 2> ordered_kernel_strides; std::array<int64_t, 2> ordered_input_dimensions; std::array<int64_t, 2> ordered_kernel_dimensions; if (dnums.kernel_spatial_dimensions(0) > dnums.kernel_spatial_dimensions(1)) { ordered_kernel_strides[0] = kernel_stride.second; ordered_kernel_strides[1] = kernel_stride.first; } else { ordered_kernel_strides[0] = kernel_stride.first; ordered_kernel_strides[1] = kernel_stride.second; } ordered_input_dimensions[0] = lhs_literal.shape().dimensions(dnums.input_spatial_dimensions(0)); ordered_input_dimensions[1] = lhs_literal.shape().dimensions(dnums.input_spatial_dimensions(1)); ordered_kernel_dimensions[0] = rhs_literal.shape().dimensions(dnums.kernel_spatial_dimensions(0)); ordered_kernel_dimensions[1] = rhs_literal.shape().dimensions(dnums.kernel_spatial_dimensions(1)); std::vector<std::pair<int64_t, int64_t>> paddings = MakePadding(ordered_input_dimensions, ordered_kernel_dimensions, ordered_kernel_strides, padding); CHECK_EQ(paddings.size(), 2); Window window; WindowDimension dim; dim.set_size( rhs_literal.shape().dimensions(dnums.kernel_spatial_dimensions(0))); dim.set_stride(kernel_stride.first); dim.set_padding_low(paddings[0].first); dim.set_padding_high(paddings[0].second); dim.set_window_dilation(rhs_dilation.first); dim.set_base_dilation(lhs_dilation.first); *window.add_dimensions() = dim; WindowDimension dim2; dim2.set_size( rhs_literal.shape().dimensions(dnums.kernel_spatial_dimensions(1))); dim2.set_stride(kernel_stride.second); dim2.set_padding_low(paddings[1].first); dim2.set_padding_high(paddings[1].second); dim2.set_window_dilation(rhs_dilation.second); dim2.set_base_dilation(lhs_dilation.second); *window.add_dimensions() = dim2; const Shape shape = ShapeInference::InferConvolveShape( lhs_literal.shape(), rhs_literal.shape(), 1, 1, window, dnums, std::nullopt) .value(); HloInstruction* lhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs_literal))); HloInstruction* rhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs_literal))); PrecisionConfig precision_config; precision_config.mutable_operand_precision()->Resize( 2, PrecisionConfig::DEFAULT); b.AddInstruction(HloInstruction::CreateConvolve( shape, lhs_instruction, rhs_instruction, 1, 1, window, dnums, precision_config)); HloModuleConfig config; HloModule module("ReferenceUtil", config); auto computation = module.AddEntryComputation(b.Build()); HloEvaluator evaluator; Literal result_literal = evaluator.Evaluate(*computation, {}).value(); CHECK_EQ(result_literal.shape().rank(), 4); auto result = std::make_unique<Array4D<float>>(result_literal.shape().dimensions(0), result_literal.shape().dimensions(1), result_literal.shape().dimensions(2), result_literal.shape().dimensions(3)); result->Each([&](absl::Span<const int64_t> indices, float* value) { *value = result_literal.Get<float>(indices); }); return result; } std::unique_ptr<std::vector<float>> ReferenceUtil::ReduceToColArray2D( const Array2D<float>& matrix, float init, absl::FunctionRef<float(float, float)> reduce_function) { int64_t rows = matrix.height(); int64_t cols = matrix.width(); auto result = std::make_unique<std::vector<float>>(); for (int64_t i = 0; i < rows; ++i) { float acc = init; for (int64_t j = 0; j < cols; ++j) { acc = reduce_function(acc, matrix(i, j)); } result->push_back(acc); } return result; } std::unique_ptr<std::vector<float>> ReferenceUtil::ReduceToRowArray2D( const Array2D<float>& matrix, float init, absl::FunctionRef<float(float, float)> reduce_function) { int64_t rows = matrix.height(); int64_t cols = matrix.width(); auto result = std::make_unique<std::vector<float>>(); for (int64_t i = 0; i < cols; ++i) { float acc = init; for (int64_t j = 0; j < rows; ++j) { acc = reduce_function(acc, matrix(j, i)); } result->push_back(acc); } return result; } std::vector<float> ReferenceUtil::Reduce4DTo1D( const Array4D<float>& array, float init, absl::Span<const int64_t> dims, absl::FunctionRef<float(float, float)> reduce_function) { std::vector<float> result; CHECK_EQ(dims.size(), 3); const absl::flat_hash_set<int64_t> dim_set(dims.begin(), dims.end()); CHECK_EQ(dim_set.size(), 3); for (int64_t a0 = 0; a0 == 0 || (!dim_set.contains(0) && a0 < array.n1()); ++a0) { for (int64_t a1 = 0; a1 == 0 || (!dim_set.contains(1) && a1 < array.n2()); ++a1) { for (int64_t a2 = 0; a2 == 0 || (!dim_set.contains(2) && a2 < array.n3()); ++a2) { for (int64_t a3 = 0; a3 == 0 || (!dim_set.contains(3) && a3 < array.n4()); ++a3) { float accumulator = init; for (int64_t i0 = 0; i0 == 0 || (dim_set.contains(0) && i0 < array.n1()); ++i0) { for (int64_t i1 = 0; i1 == 0 || (dim_set.contains(1) && i1 < array.n2()); ++i1) { for (int64_t i2 = 0; i2 == 0 || (dim_set.contains(2) && i2 < array.n3()); ++i2) { for (int64_t i3 = 0; i3 == 0 || (dim_set.contains(3) && i3 < array.n4()); ++i3) { if (array.n1() > 0 && array.n2() > 0 && array.n3() > 0 && array.n4() > 0) { accumulator = reduce_function( accumulator, array(a0 + i0, a1 + i1, a2 + i2, a3 + i3)); } } } } } result.push_back(accumulator); } } } } return result; } std::unique_ptr<Array4D<float>> ReferenceUtil::Broadcast1DTo4D( const std::vector<float>& array, const std::vector<int64_t>& bounds, int64_t broadcast_from_dim) { auto result = std::make_unique<Array4D<float>>(bounds[0], bounds[1], bounds[2], bounds[3]); for (int64_t i = 0; i < result->n1(); ++i) { for (int64_t j = 0; j < result->n2(); ++j) { for (int64_t k = 0; k < result->n3(); ++k) { for (int64_t l = 0; l < result->n4(); ++l) { switch (broadcast_from_dim) { case 0: (*result)(i, j, k, l) = array[i]; break; case 1: (*result)(i, j, k, l) = array[j]; break; case 2: (*result)(i, j, k, l) = array[k]; break; case 3: (*result)(i, j, k, l) = array[l]; break; default: break; } } } } } return result; } std::unique_ptr<Array2D<float>> ReferenceUtil::Reduce3DTo2D( const Array3D<float>& array, float init, absl::Span<const int64_t> dims, absl::FunctionRef<float(float, float)> reduce_function) { CHECK_EQ(dims.size(), 1); int64_t rows = dims[0] == 0 ? array.n2() : array.n1(); int64_t cols = dims[0] == 2 ? array.n2() : array.n3(); auto result = std::make_unique<Array2D<float>>(rows, cols); result->Fill(init); for (int i0 = 0; i0 < array.n1(); ++i0) { for (int i1 = 0; i1 < array.n2(); ++i1) { for (int i2 = 0; i2 < array.n3(); ++i2) { int64_t row = dims[0] == 0 ? i1 : i0; int64_t col = dims[0] == 2 ? i1 : i2; (*result)(row, col) = reduce_function((*result)(row, col), array(i0, i1, i2)); } } } return result; } std::unique_ptr<Array2D<float>> ReferenceUtil::MapArray2D( const Array2D<float>& matrix, absl::FunctionRef<float(float)> map_function) { int64_t rows = matrix.height(); int64_t cols = matrix.width(); auto result = std::make_unique<Array2D<float>>(rows, cols); for (int64_t i = 0; i < rows; ++i) { for (int64_t j = 0; j < cols; ++j) { (*result)(i, j) = map_function(matrix(i, j)); } } return result; } std::unique_ptr<Array2D<float>> ReferenceUtil::MapArray2D( const Array2D<float>& lhs, const Array2D<float>& rhs, absl::FunctionRef<float(float, float)> map_function) { CHECK_EQ(lhs.height(), rhs.height()); CHECK_EQ(lhs.width(), rhs.width()); int64_t rows = lhs.height(); int64_t cols = rhs.width(); auto result = std::make_unique<Array2D<float>>(rows, cols); for (int64_t i = 0; i < rows; ++i) { for (int64_t j = 0; j < cols; ++j) { (*result)(i, j) = map_function(lhs(i, j), rhs(i, j)); } } return result; } std::unique_ptr<Array3D<float>> ReferenceUtil::MapArray3D( const Array3D<float>& array, absl::FunctionRef<float(float)> map_function) { int64_t n1 = array.n1(); int64_t n2 = array.n2(); int64_t n3 = array.n3(); auto result = std::make_unique<Array3D<float>>(n1, n2, n3); for (int64_t i = 0; i < n1; ++i) { for (int64_t j = 0; j < n2; ++j) { for (int64_t k = 0; k < n3; ++k) { (*result)(i, j, k) = map_function(array(i, j, k)); } } } return result; } std::unique_ptr<Array3D<float>> ReferenceUtil::MapArray3D( const Array3D<float>& lhs, const Array3D<float>& rhs, absl::FunctionRef<float(float, float)> map_function) { CHECK_EQ(lhs.n1(), rhs.n1()); CHECK_EQ(lhs.n2(), rhs.n2()); CHECK_EQ(lhs.n3(), rhs.n3()); int64_t n1 = lhs.n1(); int64_t n2 = rhs.n2(); int64_t n3 = rhs.n3(); auto result = std::make_unique<Array3D<float>>(n1, n2, n3); for (int64_t i = 0; i < n1; ++i) { for (int64_t j = 0; j < n2; ++j) { for (int64_t k = 0; k < n3; ++k) { (*result)(i, j, k) = map_function(lhs(i, j, k), rhs(i, j, k)); } } } return result; } std::unique_ptr<Array2D<float>> ReferenceUtil::MapWithIndexArray2D( const Array2D<float>& matrix, absl::FunctionRef<float(float, int64_t, int64_t)> map_function) { int64_t rows = matrix.height(); int64_t cols = matrix.width(); auto result = std::make_unique<Array2D<float>>(rows, cols); for (int64_t i = 0; i < rows; ++i) { for (int64_t j = 0; j < cols; ++j) { (*result)(i, j) = map_function(matrix(i, j), i, j); } } return result; } }
#include "xla/reference_util.h" #include <cmath> #include <memory> #include "xla/array2d.h" #include "xla/array3d.h" #include "xla/array4d.h" #include "xla/client/padding.h" #include "xla/error_spec.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/test.h" #include "xla/tests/literal_test_util.h" #include "xla/xla_data.pb.h" namespace xla { namespace { class ReferenceUtilTest : public ::testing::Test { protected: ReferenceUtilTest() { matrix_ = std::make_unique<Array2D<float>>(rows_, cols_); for (int64_t i = 0; i < rows_; ++i) { for (int64_t j = 0; j < cols_; ++j) { (*matrix_)(i, j) = i * cols_ + j + 1; } } } const int64_t rows_ = 2; const int64_t cols_ = 3; std::unique_ptr<Array2D<float>> matrix_; }; TEST_F(ReferenceUtilTest, TransposeArray2D) { auto result = ReferenceUtil::TransposeArray2D(*matrix_); auto actual_literal = LiteralUtil::CreateR2FromArray2D(*result); LiteralTestUtil::ExpectR2Near<float>({{1.f, 4.f}, {2.f, 5.f}, {3.f, 6.f}}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, MatmulArray2D) { Array2D<float> rhs({ {7.f, 8.f}, {9.f, 10.f}, {11.f, 12.f}, }); auto result = ReferenceUtil::MatmulArray2D(*matrix_, rhs); auto actual_literal = LiteralUtil::CreateR2FromArray2D(*result); LiteralTestUtil::ExpectR2Near<float>({{58.f, 64.f}, {139.f, 154.f}}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, ReduceToColArray2D) { auto add = [](float lhs, float rhs) { return lhs + rhs; }; auto result = ReferenceUtil::ReduceToColArray2D(*matrix_, 0.0f, add); auto actual_literal = LiteralUtil::CreateR1<float>(*result); LiteralTestUtil::ExpectR1Near<float>({6.f, 15.f}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, ReduceToRowArray2D) { auto add = [](float lhs, float rhs) { return lhs + rhs; }; auto result = ReferenceUtil::ReduceToRowArray2D(*matrix_, 0.0f, add); auto actual_literal = LiteralUtil::CreateR1<float>(*result); LiteralTestUtil::ExpectR1Near<float>({5.f, 7.f, 9.f}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, Array2DF32ToF64Test) { auto result = ReferenceUtil::Array2DF32ToF64(*matrix_); ASSERT_EQ(result->height(), matrix_->height()); ASSERT_EQ(result->width(), matrix_->width()); for (int64_t rowno = 0; rowno < matrix_->height(); ++rowno) { for (int64_t colno = 0; colno < matrix_->width(); ++colno) { EXPECT_EQ(static_cast<double>((*matrix_)(rowno, colno)), (*result)(rowno, colno)); } } } TEST_F(ReferenceUtilTest, Reduce4Dto1DZeroSizedArray) { auto result = LiteralUtil::CreateR1<float>(ReferenceUtil::Reduce4DTo1D( Array4D<float>(1, 0, 1, 1), 0, {0, 1, 2}, [](float a, float b) { return a + b; })); LiteralTestUtil::ExpectR1Equal<float>({0}, result); } TEST_F(ReferenceUtilTest, MapArray2D) { auto identity = [](float value) { return std::log(std::exp(value)); }; auto result = ReferenceUtil::MapArray2D(*matrix_, identity); auto actual_literal = LiteralUtil::CreateR2FromArray2D(*result); LiteralTestUtil::ExpectR2NearArray2D(*matrix_, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, MapArray3D) { auto identity = [](float value) { return std::log(std::exp(value)); }; Array3D<float> input(2, 3, 4); input.FillIota(0); auto result = ReferenceUtil::MapArray3D(input, identity); auto actual_literal = LiteralUtil::CreateR3FromArray3D(*result); LiteralTestUtil::ExpectR3NearArray3D(input, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, MapWithIndexArray2D) { auto add_index = [](float value, int64_t row, int64_t col) { return value + row + col; }; auto result = ReferenceUtil::MapWithIndexArray2D(*matrix_, add_index); auto actual_literal = LiteralUtil::CreateR2FromArray2D(*result); LiteralTestUtil::ExpectR2Near<float>({{1.f, 3.f, 5.f}, {5.f, 7.f, 9.f}}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, MapArray4D) { auto input = std::make_unique<Array4D<float>>(2, 3, 4, 5); input->FillWithMultiples(1.0f); auto multiply_by_two = [](float value) { return 2 * value; }; auto result = ReferenceUtil::MapArray4D(*input, multiply_by_two); auto actual_literal = LiteralUtil::CreateR4FromArray4D(*result); Array4D<float> expected(2, 3, 4, 5); expected.FillWithMultiples(2.0f); LiteralTestUtil::ExpectR4NearArray4D(expected, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, MapWithIndexArray4D) { auto input = std::make_unique<Array4D<float>>(2, 3, 4, 5); input->FillWithMultiples(1.0f); auto subtract_index = [](float value, int64_t plane, int64_t depth, int64_t height, int64_t width) { return value - (3 * 4 * 5 * plane + 4 * 5 * depth + 5 * height + width); }; auto result = ReferenceUtil::MapWithIndexArray4D(*input, subtract_index); auto actual_literal = LiteralUtil::CreateR4FromArray4D(*result); Array4D<float> expected(2, 3, 4, 5); expected.Fill(0.0f); LiteralTestUtil::ExpectR4NearArray4D(expected, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, SliceArray2D) { auto result = ReferenceUtil::Slice2D(*matrix_, {{0, 0}}, {{2, 2}}, {{1, 1}}); auto actual_literal = LiteralUtil::CreateR2FromArray2D(*result); LiteralTestUtil::ExpectR2Near<float>({{1.f, 2.f}, {4.f, 5.f}}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, SliceStridedArray2D) { auto result = ReferenceUtil::Slice2D(*matrix_, {{0, 0}}, {{2, 3}}, {{1, 2}}); auto actual_literal = LiteralUtil::CreateR2FromArray2D(*result); LiteralTestUtil::ExpectR2Near<float>({{1.f, 3.f}, {4.f, 6.f}}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, SliceArray3D) { Array3D<float> input(2, 3, 4); input.FillIota(0); auto result = ReferenceUtil::Slice3D(input, {{0, 0, 0}}, {{2, 2, 2}}, {{1, 1, 1}}); auto actual_literal = LiteralUtil::CreateR3FromArray3D(*result); LiteralTestUtil::ExpectR3Near<float>( {{{0.f, 1.f}, {4.f, 5.f}}, {{12.f, 13.f}, {16.f, 17.f}}}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, SliceStridedArray3D) { Array3D<float> input(2, 3, 4); input.FillIota(0); auto result = ReferenceUtil::Slice3D(input, {{0, 0, 0}}, {{2, 3, 4}}, {{1, 2, 2}}); auto actual_literal = LiteralUtil::CreateR3FromArray3D(*result); LiteralTestUtil::ExpectR3Near<float>( {{{0.f, 2.f}, {8.f, 10.f}}, {{12.f, 14.f}, {20.f, 22.f}}}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, SliceArray4D) { Array4D<float> input(2, 3, 4, 5); input.FillIota(0); auto result = ReferenceUtil::Slice4D(input, {{1, 0, 0, 0}}, {{2, 2, 2, 2}}, {{1, 1, 1, 1}}); auto actual_literal = LiteralUtil::CreateR4FromArray4D(*result); LiteralTestUtil::ExpectR4Near<float>( {{{{60.f, 61.f}, {65.f, 66.f}}, {{80.f, 81.f}, {85.f, 86.f}}}}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, SliceStridedArray4D) { Array4D<float> input(2, 3, 4, 5); input.FillIota(0); auto result = ReferenceUtil::Slice4D(input, {{1, 0, 0, 0}}, {{2, 3, 4, 5}}, {{1, 2, 2, 2}}); auto actual_literal = LiteralUtil::CreateR4FromArray4D(*result); LiteralTestUtil::ExpectR4Near<float>( {{{{60.f, 62.f, 64.f}, {70.f, 72.f, 74.f}}, {{100.f, 102.f, 104.f}, {110.f, 112.f, 114.f}}}}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, ConvArray3DWithSamePadding) { Array3D<float> input = {{{1, 2, 3, 4}}}; Array3D<float> weights = {{{5, 6}}}; std::unique_ptr<Array3D<float>> actual = ReferenceUtil::ConvArray3D(input, weights, 1, Padding::kSame); Array3D<float> expected = {{{17, 28, 39, 20}}}; auto actual_literal = LiteralUtil::CreateR3FromArray3D(*actual); LiteralTestUtil::ExpectR3NearArray3D<float>(expected, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, ConvArray3DWithValidPadding) { Array3D<float> input = {{{1, 2, 3, 4}}}; Array3D<float> weights = {{{5, 6}}}; std::unique_ptr<Array3D<float>> actual = ReferenceUtil::ConvArray3D(input, weights, 1, Padding::kValid); Array3D<float> expected = {{{17, 28, 39}}}; auto actual_literal = LiteralUtil::CreateR3FromArray3D(*actual); LiteralTestUtil::ExpectR3NearArray3D<float>(expected, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, ConvWithSamePadding) { Array4D<float> input(1, 1, 4, 4); input.FillWithYX(Array2D<float>({ {1, 2, 3, 4 }, {5, 6, 7, 8 }, {9, 10, 11, 12}, {13, 14, 15, 16}, })); Array4D<float> weights(1, 1, 2, 2); weights.FillWithYX(Array2D<float>({ {5, 6}, {7, 8}, })); std::unique_ptr<Array4D<float>> actual = ReferenceUtil::ConvArray4D(input, weights, {1, 1}, Padding::kSame); Array4D<float> expected(1, 1, 4, 4); expected.FillWithYX(Array2D<float>({ {100, 126, 152, 76}, {204, 230, 256, 124}, {308, 334, 360, 172}, {149, 160, 171, 80}, })); auto actual_literal = LiteralUtil::CreateR4FromArray4D(*actual); LiteralTestUtil::ExpectR4NearArray4D<float>(expected, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, ConvWithValidPadding) { Array4D<float> input(1, 1, 4, 4); input.FillWithYX(Array2D<float>({ {1, 2, 3, 4 }, {5, 6, 7, 8 }, {9, 10, 11, 12}, {13, 14, 15, 16}, })); Array4D<float> weights(1, 1, 2, 2); weights.FillWithYX(Array2D<float>({ {5, 6}, {7, 8}, })); std::unique_ptr<Array4D<float>> actual = ReferenceUtil::ConvArray4D(input, weights, {1, 1}, Padding::kValid); Array4D<float> expected(1, 1, 3, 3); expected.FillWithYX(Array2D<float>({ {1*5+2*6+5*7+6*8, 126, 152}, {204, 230, 256}, {308, 334, 11*5+12*6+15*7+16*8}, })); auto actual_literal = LiteralUtil::CreateR4FromArray4D(*actual); LiteralTestUtil::ExpectR4NearArray4D<float>(expected, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, ConvGeneralDimensionsWithSamePadding) { Array4D<float> input({ {{{1, 2, 3, 4}}, {{5, 6, 7, 8}}, {{9, 10, 11, 12}}}, {{{13, 14, 15, 16}}, {{17, 18, 19, 20}}, {{21, 22, 23, 24}}} }); Array4D<float> weight({{ {{1, 2, 3}, {4, 5, 6}}, {{7, 8, 9}, {10, 11, 12}}, {{13, 14, 15}, {16, 17, 18}} }}); ConvolutionDimensionNumbers dimension_numbers; dimension_numbers.set_input_batch_dimension(2); dimension_numbers.set_input_feature_dimension(0); dimension_numbers.set_output_batch_dimension(2); dimension_numbers.set_output_feature_dimension(0); dimension_numbers.add_input_spatial_dimensions(1); dimension_numbers.add_output_spatial_dimensions(1); dimension_numbers.add_input_spatial_dimensions(3); dimension_numbers.add_output_spatial_dimensions(3); dimension_numbers.set_kernel_output_feature_dimension(0); dimension_numbers.set_kernel_input_feature_dimension(2); dimension_numbers.add_kernel_spatial_dimensions(1); dimension_numbers.add_kernel_spatial_dimensions(3); std::unique_ptr<Array4D<float>> actual = ReferenceUtil::ConvArray4DGeneralDimensions( input, weight, {1, 1}, Padding::kSame, dimension_numbers); Array4D<float> expected({{ {{1110, 1688, 1838, 1226}}, {{1683, 2514, 2685, 1761}}, {{878, 1280, 1358, 866}} }}); auto actual_literal = LiteralUtil::CreateR4FromArray4D(*actual); LiteralTestUtil::ExpectR4NearArray4D<float>(expected, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, ConvGeneralDimensionsWithValidPadding) { Array4D<float> input({ {{{1, 2, 3, 4}}, {{5, 6, 7, 8}}, {{9, 10, 11, 12}}}, {{{13, 14, 15, 16}}, {{17, 18, 19, 20}}, {{21, 22, 23, 24}}} }); Array4D<float> weight({{ {{1, 7, 13}, {4, 10, 16}}, {{2, 8, 14}, {5, 11, 17}}, {{3, 9, 15}, {6, 12, 18}} }}); ConvolutionDimensionNumbers dimension_numbers; dimension_numbers.set_input_batch_dimension(2); dimension_numbers.set_input_feature_dimension(0); dimension_numbers.set_output_batch_dimension(2); dimension_numbers.set_output_feature_dimension(0); dimension_numbers.add_input_spatial_dimensions(1); dimension_numbers.add_output_spatial_dimensions(1); dimension_numbers.add_input_spatial_dimensions(3); dimension_numbers.add_output_spatial_dimensions(3); dimension_numbers.set_kernel_output_feature_dimension(0); dimension_numbers.set_kernel_input_feature_dimension(2); dimension_numbers.add_kernel_spatial_dimensions(3); dimension_numbers.add_kernel_spatial_dimensions(1); std::unique_ptr<Array4D<float>> actual = ReferenceUtil::ConvArray4DGeneralDimensions( input, weight, {1, 1}, Padding::kValid, dimension_numbers); Array4D<float> expected({{{{2514, 2685}}}}); auto actual_literal = LiteralUtil::CreateR4FromArray4D(*actual); LiteralTestUtil::ExpectR4NearArray4D<float>(expected, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, ApplyElementwise2D) { Array2D<float> a({{1, 2}, {3, 4}}); Array2D<float> b({{10, 20}, {30, 40}}); Array2D<float> c({{100, 200}, {300, 400}}); auto actual = ReferenceUtil::ApplyElementwise2D( [](float x, float y, float z) { return 100 * x + 10 * y + z; }, a, b, c); auto actual_literal = LiteralUtil::CreateR2FromArray2D(*actual); LiteralTestUtil::ExpectR2Near({{300.f, 600.f}, {900.f, 1200.f}}, actual_literal, ErrorSpec(0.0001)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/reference_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/reference_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d825912f-d5a7-4c16-9580-be760349350d
cpp
tensorflow/tensorflow
sample_stable_delegate
tensorflow/lite/delegates/utils/experimental/sample_stable_delegate/sample_stable_delegate.cc
tensorflow/lite/delegates/utils/experimental/sample_stable_delegate/sample_stable_delegate_test.cc
#include "tensorflow/lite/delegates/utils/experimental/sample_stable_delegate/sample_stable_delegate.h" #include <memory> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "tensorflow/lite/c/builtin_op_data.h" #include "tensorflow/lite/c/c_api.h" #include "tensorflow/lite/c/c_api_opaque.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/delegates/utils/simple_opaque_delegate.h" namespace tflite { namespace example { namespace { class SampleStableDelegateKernel : public SimpleOpaqueDelegateKernelInterface { bool IsExternalTensor(const TfLiteOpaqueTensor* opaque_tensor) const { return external_tensors_.count(opaque_tensor) != 0; } void DeriveExternalTensors() { for (const TfLiteOpaqueTensor* tensor : node_input_tensors_set_) { if (node_output_tensors_set_.count(tensor) == 0) { external_tensors_.insert(tensor); } } for (const TfLiteOpaqueTensor* tensor : node_output_tensors_set_) { if (node_input_tensors_set_.count(tensor) == 0) { external_tensors_.insert(tensor); } } } public: TfLiteStatus Init(TfLiteOpaqueContext* context, const TfLiteOpaqueDelegateParams* params) override { if (params->delegate == nullptr) return kTfLiteDelegateError; context_ = context; builtin_code_.resize(params->nodes_to_replace->size); node_input_tensors_.resize(params->nodes_to_replace->size); node_output_tensors_.resize(params->nodes_to_replace->size); for (int i = 0; i < params->nodes_to_replace->size; ++i) { const int node_index = params->nodes_to_replace->data[i]; TfLiteOpaqueNode* delegated_node = nullptr; TfLiteOperator* delegated_node_registration = nullptr; TfLiteOpaqueContextGetNodeAndRegistration( context, node_index, &delegated_node, &delegated_node_registration); auto input_tensor1 = TfLiteOpaqueNodeGetInput(context, delegated_node, 0); node_input_tensors_[i].push_back(input_tensor1); node_input_tensors_set_.insert(input_tensor1); auto input_tensor2 = TfLiteOpaqueNodeGetInput(context, delegated_node, 1); node_input_tensors_[i].push_back(input_tensor2); node_input_tensors_set_.insert(input_tensor2); auto output_tensor = TfLiteOpaqueNodeGetOutput(context, delegated_node, 0); node_output_tensors_[i] = output_tensor; node_output_tensors_set_.insert(output_tensor); builtin_code_[i] = TfLiteOperatorGetBuiltInCode(delegated_node_registration); } DeriveExternalTensors(); return kTfLiteOk; } TfLiteStatus Prepare(TfLiteOpaqueContext* context, TfLiteOpaqueNode* delegated_node) override { if (external_tensors_.empty()) return kTfLiteOk; const int kTheInputTensorSize = helpers::CalculateNumElements((*external_tensors_.begin())); for (std::vector<const TfLiteOpaqueTensor*>& vecs : node_input_tensors_) { for (const TfLiteOpaqueTensor* tensor : vecs) { if (IsExternalTensor(tensor)) continue; std::vector<float>& vec_memory = internal_tensors_memory_[tensor]; vec_memory.resize(kTheInputTensorSize); } } for (const TfLiteOpaqueTensor* tensor : node_output_tensors_) { if (IsExternalTensor(tensor)) continue; std::vector<float>& vec_memory = internal_tensors_memory_[tensor]; vec_memory.resize(kTheInputTensorSize); } return kTfLiteOk; } void ComputeImpl(float* input_1, float* input_2, float* output, int builtin_code, int number_of_elements) { for (int i = 0; i < number_of_elements; ++i) { if (builtin_code == kTfLiteBuiltinAdd) { output[i] = input_1[i] + input_2[i]; } else { output[i] = input_1[i] - input_2[i]; } } } float* GetRawDataSource(TfLiteOpaqueContext* context, const TfLiteOpaqueTensor* tensor) { if (IsExternalTensor(tensor)) { return reinterpret_cast<float*>(TfLiteOpaqueTensorData(tensor)); } else { return internal_tensors_memory_[tensor].data(); } } TfLiteStatus Eval(TfLiteOpaqueContext* context, TfLiteOpaqueNode* delegated_node) override { for (int i = 0; i < node_input_tensors_.size(); ++i) { float* input1 = GetRawDataSource(context, node_input_tensors_[i][0]); float* input2 = GetRawDataSource(context, node_input_tensors_[i][1]); float* output = GetRawDataSource(context, node_output_tensors_[i]); ComputeImpl(input1, input2, output, builtin_code_[i], helpers::CalculateNumElements(node_output_tensors_[i])); } return kTfLiteOk; } private: std::vector<std::vector<const TfLiteOpaqueTensor*>> node_input_tensors_; absl::flat_hash_set<const TfLiteOpaqueTensor*> node_input_tensors_set_; std::vector<const TfLiteOpaqueTensor*> node_output_tensors_; absl::flat_hash_set<const TfLiteOpaqueTensor*> node_output_tensors_set_; absl::flat_hash_set<const TfLiteOpaqueTensor*> external_tensors_; absl::flat_hash_map<const TfLiteOpaqueTensor*, std::vector<float>> internal_tensors_memory_; TfLiteOpaqueContext* context_; std::vector<int> builtin_code_; }; } int helpers::CalculateNumElements(const TfLiteOpaqueTensor* opaque_tensor) { int total_num_elements = 1; for (int i = 0; i < TfLiteOpaqueTensorNumDims(opaque_tensor); ++i) { total_num_elements *= TfLiteOpaqueTensorDim(opaque_tensor, i); } return total_num_elements; } bool SampleStableDelegate::IsNodeSupportedByDelegate( const TfLiteOperator* registration_external, const TfLiteOpaqueNode* node, TfLiteOpaqueContext* context) const { TfLiteBuiltinOperator builtin_operator = TfLiteOperatorGetBuiltInCode(registration_external); void* builtin_data = TfLiteOpaqueNodeGetBuiltinData(node); if (builtin_operator == kTfLiteBuiltinAdd) { TfLiteAddParams* params = reinterpret_cast<TfLiteAddParams*>(builtin_data); if (!params || params->activation != kTfLiteActNone) return false; } else if (builtin_operator == kTfLiteBuiltinSub) { TfLiteSubParams* params = reinterpret_cast<TfLiteSubParams*>(builtin_data); if (!params || params->activation != kTfLiteActNone) return false; } else { return false; } if (TfLiteOpaqueNodeNumberOfInputs(node) != 2) return false; const TfLiteOpaqueTensor* tensor_1 = TfLiteOpaqueNodeGetInput(context, node, 0); const TfLiteOpaqueTensor* tensor_2 = TfLiteOpaqueNodeGetInput(context, node, 1); if (!tensor_1 || TfLiteOpaqueTensorType(tensor_1) != kTfLiteFloat32) return false; if (!tensor_2 || TfLiteOpaqueTensorType(tensor_2) != kTfLiteFloat32) return false; if (TfLiteOpaqueTensorNumDims(tensor_1) != TfLiteOpaqueTensorNumDims(tensor_2)) return false; for (int i = 0; i < TfLiteOpaqueTensorNumDims(tensor_1); ++i) { if (TfLiteOpaqueTensorDim(tensor_1, i) != TfLiteOpaqueTensorDim(tensor_2, i)) { return false; } } return true; } TfLiteStatus SampleStableDelegate::Initialize(TfLiteOpaqueContext* context) { return kTfLiteOk; } const char* SampleStableDelegate::Name() const { return kSampleStableDelegateName; } std::unique_ptr<SimpleOpaqueDelegateKernelInterface> SampleStableDelegate::CreateDelegateKernelInterface() { return std::make_unique<SampleStableDelegateKernel>(); } } }
#include "tensorflow/lite/delegates/utils/experimental/sample_stable_delegate/sample_stable_delegate.h" #include <cstddef> #include <memory> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api.h" #include "tensorflow/lite/c/c_api_opaque.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace { TEST(SampleStableDelegate, StaticallyLinkedDelegateAndModelWithAdd) { tflite::TfLiteOpaqueDelegateUniquePtr opaque_delegate = tflite::TfLiteOpaqueDelegateFactory::Create( std::make_unique<tflite::example::SampleStableDelegate>()); ASSERT_NE(opaque_delegate, nullptr); TfLiteModel* model = TfLiteModelCreateFromFile("tensorflow/lite/testdata/add.bin"); ASSERT_NE(model, nullptr); TfLiteInterpreterOptions* options = TfLiteInterpreterOptionsCreate(); ASSERT_NE(options, nullptr); TfLiteInterpreterOptionsAddDelegate(options, opaque_delegate.get()); TfLiteInterpreter* interpreter = TfLiteInterpreterCreate(model, options); ASSERT_NE(interpreter, nullptr); TfLiteInterpreterOptionsDelete(options); ASSERT_EQ(TfLiteInterpreterAllocateTensors(interpreter), kTfLiteOk); TfLiteTensor* input_tensor = TfLiteInterpreterGetInputTensor(interpreter, 0); ASSERT_NE(input_tensor, nullptr); const float kTensorCellValue = 3.f; int64_t n = tflite::NumElements(input_tensor); std::vector<float> input(n, kTensorCellValue); ASSERT_EQ(TfLiteTensorCopyFromBuffer(input_tensor, input.data(), input.size() * sizeof(float)), kTfLiteOk); ASSERT_EQ(TfLiteInterpreterInvoke(interpreter), kTfLiteOk); const TfLiteTensor* output_tensor = TfLiteInterpreterGetOutputTensor(interpreter, 0); ASSERT_NE(output_tensor, nullptr); std::vector<float> output(n, 0); ASSERT_EQ(TfLiteTensorCopyToBuffer(output_tensor, output.data(), output.size() * sizeof(float)), kTfLiteOk); for (int i = 0; i < output.size(); ++i) { EXPECT_EQ(output[i], kTensorCellValue * 3); } TfLiteInterpreterDelete(interpreter); TfLiteModelDelete(model); } TEST(SampleStableDelegate, StaticallyLinkedDelegateAndModelWithSub) { tflite::TfLiteOpaqueDelegateUniquePtr opaque_delegate = tflite::TfLiteOpaqueDelegateFactory::Create( std::make_unique<tflite::example::SampleStableDelegate>()); ASSERT_NE(opaque_delegate, nullptr); TfLiteModel* model = TfLiteModelCreateFromFile("tensorflow/lite/testdata/sub.bin"); ASSERT_NE(model, nullptr); TfLiteInterpreterOptions* options = TfLiteInterpreterOptionsCreate(); ASSERT_NE(options, nullptr); TfLiteInterpreterOptionsAddDelegate(options, opaque_delegate.get()); TfLiteInterpreter* interpreter = TfLiteInterpreterCreate(model, options); ASSERT_NE(interpreter, nullptr); TfLiteInterpreterOptionsDelete(options); ASSERT_EQ(TfLiteInterpreterAllocateTensors(interpreter), kTfLiteOk); TfLiteTensor* input_tensor_0 = TfLiteInterpreterGetInputTensor(interpreter, 0); ASSERT_NE(input_tensor_0, nullptr); const float kTensor0CellValue = 3.f; int64_t n = tflite::NumElements(input_tensor_0); std::vector<float> input_0(n, kTensor0CellValue); ASSERT_EQ(TfLiteTensorCopyFromBuffer(input_tensor_0, input_0.data(), input_0.size() * sizeof(float)), kTfLiteOk); ASSERT_EQ(TfLiteInterpreterAllocateTensors(interpreter), kTfLiteOk); TfLiteTensor* input_tensor_1 = TfLiteInterpreterGetInputTensor(interpreter, 1); ASSERT_NE(input_tensor_1, nullptr); n = tflite::NumElements(input_tensor_1); const float kTensor1CellValue = 2.f; std::vector<float> input_1(n, kTensor1CellValue); ASSERT_EQ(TfLiteTensorCopyFromBuffer(input_tensor_1, input_1.data(), input_1.size() * sizeof(float)), kTfLiteOk); ASSERT_EQ(TfLiteInterpreterInvoke(interpreter), kTfLiteOk); const TfLiteTensor* output_tensor = TfLiteInterpreterGetOutputTensor(interpreter, 0); ASSERT_NE(output_tensor, nullptr); std::vector<float> output(n, 0); ASSERT_EQ(TfLiteTensorCopyToBuffer(output_tensor, output.data(), output.size() * sizeof(float)), kTfLiteOk); for (int i = 0; i < output.size(); ++i) { EXPECT_EQ(output[i], kTensor0CellValue - kTensor1CellValue); } TfLiteInterpreterDelete(interpreter); TfLiteModelDelete(model); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/utils/experimental/sample_stable_delegate/sample_stable_delegate.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/utils/experimental/sample_stable_delegate/sample_stable_delegate_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b74a0183-94c8-4b66-a1f4-6699c8cbb84c
cpp
tensorflow/tensorflow
tensor_pjrt_buffer_util
tensorflow/c/experimental/next_pluggable_device/tensor_pjrt_buffer_util.cc
tensorflow/c/experimental/next_pluggable_device/tensor_pjrt_buffer_util_test.cc
#include "tensorflow/c/experimental/next_pluggable_device/tensor_pjrt_buffer_util.h" #include <memory> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "tensorflow/compiler/jit/pjrt_tensor_buffer_util.h" #include "xla/pjrt/c/pjrt_c_api.h" #include "xla/pjrt/pjrt_c_api_client.h" #include "xla/pjrt/pjrt_client.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/tfrt/common/async_value_tensor.h" #include "tensorflow/core/tfrt/common/global_state.h" #include "tensorflow/core/tfrt/common/pjrt_state.h" #include "tensorflow/core/tfrt/common/pjrt_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace tensorflow { absl::StatusOr<PJRT_Buffer*> GetPjRtCBufferFromTensor(const Tensor* tensor) { tensorflow::AsyncValueTensor* av_tensor = tensorflow::AsyncValueTensor::FromTensor(tensor); if (av_tensor == nullptr || av_tensor->GetBuffer() == nullptr) { return absl::InternalError("Input tensor does not have PjRtBuffer."); } auto* c_api_buffer = dynamic_cast<xla::PjRtCApiBuffer*>(av_tensor->GetBuffer().get()); if (c_api_buffer == nullptr) { return absl::InternalError( "The PjRtBuffer in the tensor is not type PjRtCApiBuffer."); } return c_api_buffer->c_buffer(); } absl::Status SetPjRtCBufferToTensor(PJRT_Buffer* c_buffer, xla::PjRtCApiClient* c_api_client, Tensor* tensor) { auto buffer = std::make_unique<xla::PjRtCApiBuffer>(c_api_client, c_buffer); tensorflow::AsyncValueTensor* av_tensor = tensorflow::AsyncValueTensor::FromTensor(tensor); if (av_tensor == nullptr) { TF_ASSIGN_OR_RETURN( *tensor, MakeTensorFromPjRtBuffer(tensor->dtype(), tensor->shape(), std::move(buffer))); } else { av_tensor->SetBuffer(std::move(buffer)); } return absl::OkStatus(); } absl::StatusOr<xla::PjRtCApiClient*> GetPjRtCApiClient( const DeviceType& device_type) { TF_ASSIGN_OR_RETURN(absl::StatusOr<xla::PjRtClient*> pjrt_client, tensorflow::GetPjRtClient(device_type)); auto* pjrt_c_api_client = dynamic_cast<xla::PjRtCApiClient*>(*pjrt_client); if (pjrt_c_api_client == nullptr) { return absl::InternalError(absl::StrCat("PjRtClient for ", device_type.type_string(), " is not type PjRtCApiClient")); } return pjrt_c_api_client; } absl::Status ResetPjRtClient(const DeviceType& device_type) { ResourceMgr* rmgr = tfrt_global::GetTFGlobalResourceMgr(); PjRtState* pjrt_state; TF_RETURN_IF_ERROR(rmgr->Lookup(rmgr->default_container(), kPjRtStateResourceName, &pjrt_state)); TF_RETURN_IF_ERROR(pjrt_state->MovePjRtClientToUnused(device_type)); return absl::OkStatus(); } }
#include "tensorflow/c/experimental/next_pluggable_device/tensor_pjrt_buffer_util.h" #include <cstdint> #include <memory> #include <optional> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/log/check.h" #include "xla/pjrt/c/pjrt_c_api.h" #include "xla/pjrt/c/pjrt_c_api_cpu.h" #include "xla/pjrt/c/pjrt_c_api_wrapper_impl.h" #include "xla/pjrt/cpu/cpu_client.h" #include "xla/pjrt/pjrt_api.h" #include "xla/pjrt/pjrt_c_api_client.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/tfrt/common/async_value_tensor.h" #include "tensorflow/core/tfrt/common/pjrt_util.h" #include "tsl/platform/casts.h" #include "tsl/platform/status_matchers.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { namespace { using ::testing::HasSubstr; using ::testing::NotNull; using ::tsl::testing::StatusIs; PJRT_Buffer* CreateCBuffer() { auto status = pjrt::PjrtApi(DEVICE_CPU); if (!status.ok()) { CHECK_OK(pjrt::SetPjrtApi(DEVICE_CPU, GetPjrtApi())); } auto pjrt_client = xla::GetCApiClient(DEVICE_CPU); CHECK_OK(pjrt_client.status()); auto c_api_client = down_cast<xla::PjRtCApiClient*>(pjrt_client->get()); std::vector<int32_t> data(1, 0); xla::Shape shape = xla::ShapeUtil::MakeShape(xla::S32, {1}); auto buffer = c_api_client->pjrt_c_client()->client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, xla::PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, c_api_client->pjrt_c_client()->client->addressable_devices()[0]); CHECK_OK(buffer.status()); return new PJRT_Buffer{std::move(*buffer), c_api_client->pjrt_c_client()}; } TEST(TensorPjRtBufferUtilTest, GetPjRtCBufferFromTensorNoBuffer) { auto allocator = std::make_unique<AsyncValueAllocator>(); tensorflow::Tensor tensor(allocator.get(), DT_FLOAT, {1}); EXPECT_THAT( GetPjRtCBufferFromTensor(&tensor), StatusIs(error::INTERNAL, HasSubstr(absl::StrCat( "Input tensor does not have PjRtBuffer")))); } TEST(TensorPjRtBufferUtilTest, GetPjRtCBufferFromTensorIncoorectType) { auto allocator = std::make_unique<AsyncValueAllocator>(); tensorflow::Tensor tensor(allocator.get(), DT_FLOAT, {1}); TF_ASSERT_OK_AND_ASSIGN( auto pjrt_client, xla::GetTfrtCpuClient(true, 1)); std::vector<int32_t> data(1, 0); xla::Shape shape = xla::ShapeUtil::MakeShape(xla::S32, {1}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, pjrt_client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, xla::PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, pjrt_client->addressable_devices()[0])); tensorflow::AsyncValueTensor* av_tensor = tensorflow::AsyncValueTensor::FromTensor(&tensor); av_tensor->SetBuffer(std::move(buffer)); EXPECT_THAT( GetPjRtCBufferFromTensor(&tensor), StatusIs( error::INTERNAL, HasSubstr(absl::StrCat( "The PjRtBuffer in the tensor is not type PjRtCApiBuffer")))); } TEST(TensorPjRtBufferUtilTest, GetPjRtCBufferFromTensorSuccess) { auto allocator = std::make_unique<AsyncValueAllocator>(); tensorflow::Tensor tensor(allocator.get(), DT_FLOAT, {1}); auto status = pjrt::PjrtApi(DEVICE_CPU); if (!status.ok()) { TF_ASSERT_OK(pjrt::SetPjrtApi(DEVICE_CPU, GetPjrtApi())); } TF_ASSERT_OK_AND_ASSIGN(auto pjrt_client, xla::GetCApiClient(DEVICE_CPU)); std::vector<int32_t> data(1, 0); xla::Shape shape = xla::ShapeUtil::MakeShape(xla::S32, {1}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, pjrt_client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, xla::PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, pjrt_client->addressable_devices()[0])); tensorflow::AsyncValueTensor* av_tensor = tensorflow::AsyncValueTensor::FromTensor(&tensor); av_tensor->SetBuffer(std::move(buffer)); TF_ASSERT_OK_AND_ASSIGN(auto c_buffer, GetPjRtCBufferFromTensor(&tensor)); EXPECT_THAT(c_buffer, NotNull()); } TEST(TensorPjRtBufferUtilTest, SetPjRtCBufferToTensorNotAsyncValueTensor) { tensorflow::Tensor tensor(DT_FLOAT, {1}); TF_ASSERT_OK_AND_ASSIGN(auto pjrt_client, xla::GetCApiClient(DEVICE_CPU)); PJRT_Buffer* c_buffer = CreateCBuffer(); TF_EXPECT_OK(SetPjRtCBufferToTensor( c_buffer, down_cast<xla::PjRtCApiClient*>(pjrt_client.get()), &tensor)); } TEST(TensorPjRtBufferUtilTest, SetPjRtCBufferToTensorSuccess) { auto allocator = std::make_unique<AsyncValueAllocator>(); tensorflow::Tensor tensor(allocator.get(), DT_FLOAT, {1}); TF_ASSERT_OK_AND_ASSIGN(auto pjrt_client, xla::GetCApiClient(DEVICE_CPU)); PJRT_Buffer* c_buffer = CreateCBuffer(); TF_EXPECT_OK(SetPjRtCBufferToTensor( c_buffer, down_cast<xla::PjRtCApiClient*>(pjrt_client.get()), &tensor)); } TEST(TensorPjRtBufferUtilTest, GetPjRtCApiClientNotFound) { EXPECT_THAT( GetPjRtCApiClient(tensorflow::DeviceType(DEVICE_CPU)), StatusIs(error::NOT_FOUND, HasSubstr(absl::StrCat("PjRt client not found for device type ", DEVICE_CPU)))); } TEST(TensorPjRtBufferUtilTest, GetPjRtCApiClientIncorrectType) { TF_ASSERT_OK_AND_ASSIGN( auto pjrt_client, xla::GetTfrtCpuClient(true, 1)); TF_ASSERT_OK(SetPjRtClientInTFGlobalResourceManager(DEVICE_CPU, std::move(pjrt_client))); EXPECT_THAT(GetPjRtCApiClient(tensorflow::DeviceType(DEVICE_CPU)), StatusIs(error::INTERNAL, HasSubstr(absl::StrCat("PjRtClient for ", DEVICE_CPU, " is not type PjRtCApiClient")))); } TEST(TensorPjRtBufferUtilTest, GetPjRtCApiClientSuccess) { auto status = pjrt::PjrtApi(DEVICE_CPU); if (!status.ok()) { TF_ASSERT_OK(pjrt::SetPjrtApi(DEVICE_CPU, GetPjrtApi())); } TF_ASSERT_OK_AND_ASSIGN(auto pjrt_client, xla::GetCApiClient(DEVICE_CPU)); TF_ASSERT_OK(SetPjRtClientInTFGlobalResourceManager(DEVICE_CPU, std::move(pjrt_client))); TF_ASSERT_OK_AND_ASSIGN( auto pjrt_client_get, GetPjRtCApiClient(tensorflow::DeviceType(DEVICE_CPU))); EXPECT_THAT(pjrt_client_get, NotNull()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/next_pluggable_device/tensor_pjrt_buffer_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/next_pluggable_device/tensor_pjrt_buffer_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
31b38434-5c80-41ae-9aa3-f9777e02235e
cpp
google/tensorstore
dimension_selection
tensorstore/index_space/internal/dimension_selection.cc
tensorstore/index_space/dimension_selection_test.cc
#include "tensorstore/index_space/internal/dimension_selection.h" #include <numeric> #include "absl/status/status.h" #include "absl/strings/str_join.h" #include "tensorstore/index_space/dimension_identifier.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { absl::Status CheckAndNormalizeDimensions(DimensionIndex input_rank, span<DimensionIndex> dimensions) { if (dimensions.size() > input_rank) { return absl::InvalidArgumentError( tensorstore::StrCat("Number of dimensions (", dimensions.size(), ") exceeds input rank (", input_rank, ").")); } std::vector<DimensionIndex> error_dimensions; for (DimensionIndex i = 0; i < dimensions.size(); ++i) { TENSORSTORE_ASSIGN_OR_RETURN( const DimensionIndex dim, NormalizeDimensionIndex(dimensions[i], input_rank)); dimensions[i] = dim; for (DimensionIndex j = 0; j < i; ++j) { if (dimensions[j] == dim) { error_dimensions.push_back(dim); } } } if (!error_dimensions.empty()) { return absl::InvalidArgumentError(tensorstore::StrCat( "Input dimensions {", absl::StrJoin(error_dimensions, ", "), "} specified more than once")); } return absl::OkStatus(); } absl::Status GetDimensions(DimensionIndex input_rank, span<const DimensionIndex> dimensions, DimensionIndexBuffer* result) { result->assign(dimensions.begin(), dimensions.end()); return CheckAndNormalizeDimensions(input_rank, *result); } absl::Status GetDimensions(IndexTransformView<> transform, span<const DimensionIndex> dimensions, DimensionIndexBuffer* result) { return GetDimensions(transform.input_rank(), dimensions, result); } absl::Status GetDimensions(IndexTransformView<> transform, span<const DimensionIdentifier> dimensions, DimensionIndexBuffer* result) { const DimensionIndex input_rank = transform.input_rank(); result->resize(dimensions.size()); span<const std::string> input_labels = transform.input_labels(); for (DimensionIndex i = 0; i < dimensions.size(); ++i) { TENSORSTORE_ASSIGN_OR_RETURN( (*result)[i], NormalizeDimensionIdentifier(dimensions[i], input_labels)); } return CheckAndNormalizeDimensions(input_rank, *result); } absl::Status GetNewDimensions(DimensionIndex input_rank, span<const DimensionIndex> dimensions, DimensionIndexBuffer* result) { return GetDimensions(input_rank + dimensions.size(), dimensions, result); } absl::Status GetAllDimensions(DimensionIndex input_rank, DimensionIndexBuffer* result) { result->resize(input_rank); std::iota(result->begin(), result->end(), static_cast<DimensionIndex>(0)); return absl::OkStatus(); } absl::Status GetDimensions(span<const std::string> labels, span<const DynamicDimSpec> dimensions, DimensionIndexBuffer* result) { result->clear(); TENSORSTORE_RETURN_IF_ERROR( NormalizeDynamicDimSpecs(dimensions, labels, result)); return CheckAndNormalizeDimensions(labels.size(), *result); } namespace { Result<DimensionIndex> GetNumNewDimensions(const DimRangeSpec& spec) { const DimensionIndex step = spec.step; if (step == 0) return absl::InvalidArgumentError("step must not be 0"); if (spec.inclusive_start) { const DimensionIndex inclusive_start = *spec.inclusive_start; if (spec.exclusive_stop) { const DimensionIndex exclusive_stop = *spec.exclusive_stop; if ((exclusive_stop < 0) == (inclusive_start < 0) && ((step > 0 && exclusive_stop >= inclusive_start) || (step < 0 && exclusive_stop <= inclusive_start))) { return CeilOfRatio(*spec.exclusive_stop - inclusive_start, step); } } else if (step > 0) { if (inclusive_start < 0) { return CeilOfRatio(-inclusive_start, step); } } else { if (inclusive_start >= 0) { return CeilOfRatio(inclusive_start + 1, -step); } } } else if (spec.exclusive_stop) { const DimensionIndex exclusive_stop = *spec.exclusive_stop; if (step > 0) { if (exclusive_stop >= 0) { return CeilOfRatio(exclusive_stop, step); } } else { if (exclusive_stop < 0) { return CeilOfRatio(-(exclusive_stop + 1), -step); } } } return absl::InvalidArgumentError(tensorstore::StrCat( "`", spec, "` is not a valid specification for new dimensions")); } } absl::Status GetNewDimensions(DimensionIndex input_rank, span<const DynamicDimSpec> dimensions, DimensionIndexBuffer* result) { DimensionIndex new_rank = input_rank; for (const auto& spec : dimensions) { if (auto* r = std::get_if<DimRangeSpec>(&spec)) { TENSORSTORE_ASSIGN_OR_RETURN(DimensionIndex x, GetNumNewDimensions(*r)); new_rank += x; } else { new_rank += 1; } } result->clear(); result->reserve(new_rank); struct Visitor { DimensionIndex new_rank; DimensionIndexBuffer* result; absl::Status operator()(DimensionIndex i) const { TENSORSTORE_ASSIGN_OR_RETURN(DimensionIndex index, NormalizeDimensionIndex(i, new_rank)); result->push_back(index); return absl::OkStatus(); } absl::Status operator()(const std::string& label) const { return absl::InvalidArgumentError( "New dimensions cannot be specified by label"); } absl::Status operator()(const DimRangeSpec& s) const { return NormalizeDimRangeSpec(s, new_rank, result); } }; for (const auto& spec : dimensions) { TENSORSTORE_RETURN_IF_ERROR(std::visit(Visitor{new_rank, result}, spec)); } return CheckAndNormalizeDimensions(new_rank, *result); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/dim_expression_testutil.h" #include "tensorstore/util/status.h" namespace { using ::tensorstore::DimensionIndex; using ::tensorstore::DimensionIndexBuffer; using ::tensorstore::DimRangeSpec; using ::tensorstore::Dims; using ::tensorstore::dynamic_rank; using ::tensorstore::DynamicDims; using ::tensorstore::IndexDomainBuilder; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::span; using ::tensorstore::internal_index_space::TestDimExpressionError; TEST(DimsTest, ErrorHandling) { TestDimExpressionError( IndexTransformBuilder<2, 0>().Finalize().value(), Dims(span<const DimensionIndex>({0, 0, 1})).IndexSlice(0), absl::StatusCode::kInvalidArgument, "Number of dimensions .* exceeds input rank .*"); TestDimExpressionError(IndexTransformBuilder<2, 0>().Finalize().value(), Dims(2).Label("b"), absl::StatusCode::kInvalidArgument, "Dimension index 2 is outside valid range .*"); TestDimExpressionError(IndexTransformBuilder<2, 0>().Finalize().value(), Dims(1, 1).Label("b", "c"), absl::StatusCode::kInvalidArgument, "Input dimensions \\{1\\} specified more than once.*"); } TEST(DimsTest, SelectUsingLabels) { TestDimExpression( IndexTransformBuilder<2, 0>() .input_labels({"x", "y"}) .Finalize() .value(), Dims("x").Label("a"), {0}, IndexTransformBuilder<2, 2>() .input_labels({"a", "y"}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<2, 0>().input_labels({"a", "y"}).Finalize().value(), {}); TestDimExpressionError( IndexTransformBuilder<2, 0>().input_labels({"x", "y"}).Finalize().value(), Dims("a").Label("z"), absl::StatusCode::kInvalidArgument, "Label \"a\" does not match one of \\{\"x\", \"y\"\\}"); TestDimExpressionError( IndexTransformBuilder<2, 0>().input_labels({"", ""}).Finalize().value(), Dims("").Label("z"), absl::StatusCode::kInvalidArgument, "Dimension cannot be specified by empty label"); TestDimExpression( IndexTransformBuilder<2, 0>() .input_labels({"x", "y"}) .Finalize() .value(), Dims({"x", -1}).Label("a", "b"), {0, 1}, IndexTransformBuilder<2, 2>() .input_labels({"a", "b"}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<2, 0>().input_labels({"a", "b"}).Finalize().value(), {}); } TEST(DynamicDimsTest, Existing) { const auto original_transform = IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(); const auto expected_identity_new_transform = IndexTransformBuilder<4, 4>() .input_labels({"a1", "b1", "c1", "d1"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<4, 0>() .input_labels({"a1", "b1", "c1", "d1"}) .Finalize() .value(); TestDimExpression( original_transform, Dims(DimRangeSpec{1, 4, 2}, 0, "c").Label("b1", "d1", "a1", "c1"), {1, 3, 0, 2}, expected_identity_new_transform, expected_new_transform, {}); TestDimExpression( original_transform, DynamicDims({DimRangeSpec{1, 4, 2}, 0, "c"}) .Label("b1", "d1", "a1", "c1"), {1, 3, 0, 2}, expected_identity_new_transform, expected_new_transform, {}); } TEST(DynamicDimsTest, CombinedNew) { TestDimExpression( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{1, 4, 2}, 0, -1).AddNew().Label("e", "f", "g", "h"), {1, 3, 0, 7}, IndexTransformBuilder<dynamic_rank, 4>(8, tensorstore::StaticRank<4>{}) .input_labels({"g", "e", "a", "f", "b", "c", "d", "h"}) .output_single_input_dimension(0, 2) .output_single_input_dimension(1, 4) .output_single_input_dimension(2, 5) .output_single_input_dimension(3, 6) .Finalize() .value(), IndexTransformBuilder<dynamic_rank, 0>(8) .input_labels({"g", "e", "a", "f", "b", "c", "d", "h"}) .Finalize() .value(), {}, false); } TEST(DynamicDimsTest, InvalidNewLabel) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{1, 4, 2}, "x").AddNew(), absl::StatusCode::kInvalidArgument, "New dimensions cannot be specified by label"); } TEST(DynamicDimsTest, InvalidDimRangeSpecNewUnbounded) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{std::nullopt, std::nullopt, 1}).AddNew(), absl::StatusCode::kInvalidArgument, "`:` is not a valid specification for new dimensions"); } TEST(DynamicDimsTest, InvalidDimRangeSpecNewMissingStop) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{5, std::nullopt, 1}).AddNew(), absl::StatusCode::kInvalidArgument, "`5:` is not a valid specification for new dimensions"); } TEST(DynamicDimsTest, InvalidDimRangeSpecNewNegativeStop) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{std::nullopt, -3, 1}).AddNew(), absl::StatusCode::kInvalidArgument, "`:-3` is not a valid specification for new dimensions"); } TEST(DynamicDimsTest, InvalidDimRangeSpecNewNegativeStartNegativeStep) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{-5, std::nullopt, -1}).AddNew(), absl::StatusCode::kInvalidArgument, "`-5::-1` is not a valid specification for new dimensions"); } TEST(DynamicDimsTest, InvalidDimRangeSpecNewMissingStart) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{std::nullopt, 5, -1}).AddNew(), absl::StatusCode::kInvalidArgument, "`:5:-1` is not a valid specification for new dimensions"); } TEST(DynamicDimsTest, InvalidDimRangeSpecNewInvalidInterval) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{6, 5, 1}).AddNew(), absl::StatusCode::kInvalidArgument, "`6:5` is not a valid specification for new dimensions"); } TEST(DynamicDimsTest, InvalidDimRangeSpecNewInvalidMixedSigns) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{-1, 4, 1}).AddNew(), absl::StatusCode::kInvalidArgument, "`-1:4` is not a valid specification for new dimensions"); } TEST(DynamicDimsTest, InvalidDimRangeSpecNewZeroStep) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{1, 4, 0}).AddNew(), absl::StatusCode::kInvalidArgument, "step must not be 0"); } TEST(DynamicDimsTest, InvalidDimRangeSpecNewInvalidIntervalNegativeStep) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{5, 6, -1}).AddNew(), absl::StatusCode::kInvalidArgument, "`5:6:-1` is not a valid specification for new dimensions"); } TEST(DimsTest, DimRangeSpecNegativeStep) { TestDimExpression( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{-4, -7, -2}).AddNew().Label("e", "f"), {2, 0}, IndexTransformBuilder<dynamic_rank, 4>(6) .input_labels({"f", "a", "e", "b", "c", "d"}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 3) .output_single_input_dimension(2, 4) .output_single_input_dimension(3, 5) .Finalize() .value(), IndexTransformBuilder<dynamic_rank, 0>(6) .input_labels({"f", "a", "e", "b", "c", "d"}) .Finalize() .value(), {}, false); } TEST(DimsTest, DimRangeSpecNegativeIndicesNew) { TestDimExpression( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{-6, -3, 2}).AddNew().Label("e", "f"), {0, 2}, IndexTransformBuilder<dynamic_rank, 4>(6) .input_labels({"e", "a", "f", "b", "c", "d"}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 3) .output_single_input_dimension(2, 4) .output_single_input_dimension(3, 5) .Finalize() .value(), IndexTransformBuilder<dynamic_rank, 0>(6) .input_labels({"e", "a", "f", "b", "c", "d"}) .Finalize() .value(), {}, false); } TEST(DimsTest, DimRangeSpecImplicitStopNew) { TestDimExpression( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{-3, std::nullopt, 2}).AddNew().Label("e", "f"), {3, 5}, IndexTransformBuilder<dynamic_rank, 4>(6) .input_labels({"a", "b", "c", "e", "d", "f"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 2) .output_single_input_dimension(3, 4) .Finalize() .value(), IndexTransformBuilder<dynamic_rank, 0>(6) .input_labels({"a", "b", "c", "e", "d", "f"}) .Finalize() .value(), {}, false); } TEST(DimsTest, DimRangeSpecImplicitStopNegativeStepNew) { TestDimExpression( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{1, std::nullopt, -1}).AddNew().Label("e", "f"), {1, 0}, IndexTransformBuilder<dynamic_rank, 4>(6) .input_labels({"f", "e", "a", "b", "c", "d"}) .output_single_input_dimension(0, 2) .output_single_input_dimension(1, 3) .output_single_input_dimension(2, 4) .output_single_input_dimension(3, 5) .Finalize() .value(), IndexTransformBuilder<dynamic_rank, 0>(6) .input_labels({"f", "e", "a", "b", "c", "d"}) .Finalize() .value(), {}, false); } TEST(DimsTest, DimRangeSpecImplicitStartNegativeStepNew) { TestDimExpression( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{std::nullopt, -4, -2}).AddNew().Label("e", "f"), {5, 3}, IndexTransformBuilder<dynamic_rank, 4>(6) .input_labels({"a", "b", "c", "f", "d", "e"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 2) .output_single_input_dimension(3, 4) .Finalize() .value(), IndexTransformBuilder<dynamic_rank, 0>(6) .input_labels({"a", "b", "c", "f", "d", "e"}) .Finalize() .value(), {}, false); } TEST(DimsTest, DimRangeSpecImplicitStartNew) { TestDimExpression( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{std::nullopt, 3, 2}).AddNew().Label("e", "f"), {0, 2}, IndexTransformBuilder<dynamic_rank, 4>(6) .input_labels({"e", "a", "f", "b", "c", "d"}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 3) .output_single_input_dimension(2, 4) .output_single_input_dimension(3, 5) .Finalize() .value(), IndexTransformBuilder<dynamic_rank, 0>(6) .input_labels({"e", "a", "f", "b", "c", "d"}) .Finalize() .value(), {}, false); } TEST(ResolveTest, Example) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto domain, IndexDomainBuilder<3>().labels({"x", "y", "z"}).Finalize()); DimensionIndexBuffer buffer; TENSORSTORE_EXPECT_OK(Dims("x", "z").Resolve(domain, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(0, 2)); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/internal/dimension_selection.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/dimension_selection_test.cc
4f887a6430414cd6088e1743555015b10f116d50
a87ce158-3c36-4244-b5ab-8c4260ede5cd
cpp
google/tensorstore
sender_util
tensorstore/util/execution/sender_util.h
tensorstore/util/execution/sender_util_test.cc
#ifndef TENSORSTORE_UTIL_EXECUTION_SENDER_UTIL_H_ #define TENSORSTORE_UTIL_EXECUTION_SENDER_UTIL_H_ #include <atomic> #include <iterator> #include <utility> #include "tensorstore/util/execution/execution.h" namespace tensorstore { template <typename FlowReceiver> struct FlowSingleReceiver { FlowReceiver receiver; template <typename... V> void set_value(V... v) { execution::set_starting(receiver, [] {}); execution::set_value(receiver, std::move(v)...); execution::set_done(receiver); execution::set_stopping(receiver); } template <typename E> void set_error(E e) { execution::set_starting(receiver, [] {}); execution::set_error(receiver, std::move(e)); execution::set_stopping(receiver); } void set_cancel() { execution::set_starting(receiver, [] {}); execution::set_done(receiver); execution::set_stopping(receiver); } }; template <typename FlowReceiver> FlowSingleReceiver(FlowReceiver receiver) -> FlowSingleReceiver<FlowReceiver>; template <typename Sender> struct FlowSingleSender { Sender sender; template <typename Receiver> void submit(Receiver receiver) { execution::submit(sender, FlowSingleReceiver<Receiver>{std::move(receiver)}); } }; template <typename Sender> FlowSingleSender(Sender sender) -> FlowSingleSender<Sender>; template <typename Range> struct RangeFlowSender { Range range; template <typename Receiver> friend void submit(RangeFlowSender& sender, Receiver receiver) { std::atomic<bool> cancelled{false}; execution::set_starting(receiver, [&cancelled] { cancelled = true; }); using std::begin; using std::end; auto it = begin(sender.range); auto end_it = end(sender.range); for (; !cancelled && it != end_it; ++it) { auto&& value = *it; execution::set_value(receiver, std::forward<decltype(value)>(value)); } execution::set_done(receiver); execution::set_stopping(receiver); } }; } #endif
#include "tensorstore/util/execution/sender_util.h" #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/util/execution/any_receiver.h" #include "tensorstore/util/execution/any_sender.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/execution/sender.h" #include "tensorstore/util/execution/sender_testutil.h" namespace { TEST(FlowSingleSenderTest, SetValue) { std::vector<std::string> log; tensorstore::execution::submit( tensorstore::FlowSingleSender<tensorstore::ValueSender<int, std::string>>{ {3, "hello"}}, tensorstore::LoggingReceiver{&log}); EXPECT_THAT(log, ::testing::ElementsAre("set_starting", "set_value: 3, hello", "set_done", "set_stopping")); } TEST(FlowSingleSenderTest, AnyFlowSenderSetValue) { std::vector<std::string> log; tensorstore::execution::submit( tensorstore::AnyFlowSender<int, int, std::string>( tensorstore::FlowSingleSender< tensorstore::ValueSender<int, std::string>>{{3, "hello"}}), tensorstore::LoggingReceiver{&log}); EXPECT_THAT(log, ::testing::ElementsAre("set_starting", "set_value: 3, hello", "set_done", "set_stopping")); } TEST(FlowSingleSenderTest, SetError) { std::vector<std::string> log; tensorstore::execution::submit( tensorstore::FlowSingleSender<tensorstore::ErrorSender<int>>{{3}}, tensorstore::LoggingReceiver{&log}); EXPECT_THAT(log, ::testing::ElementsAre("set_starting", "set_error: 3", "set_stopping")); } TEST(FlowSingleSenderTest, AnyFlowSenderSetError) { std::vector<std::string> log; tensorstore::execution::submit( tensorstore::AnyFlowSender<int>( tensorstore::FlowSingleSender<tensorstore::ErrorSender<int>>{{3}}), tensorstore::LoggingReceiver{&log}); EXPECT_THAT(log, ::testing::ElementsAre("set_starting", "set_error: 3", "set_stopping")); } TEST(FlowSingleSenderTest, SetCancel) { std::vector<std::string> log; tensorstore::execution::submit( tensorstore::FlowSingleSender<tensorstore::CancelSender>{}, tensorstore::LoggingReceiver{&log}); EXPECT_THAT( log, ::testing::ElementsAre("set_starting", "set_done", "set_stopping")); } TEST(FlowSingleSenderTest, AnyFlowSenderSetCancel) { std::vector<std::string> log; tensorstore::execution::submit( tensorstore::AnyFlowSender<int>( tensorstore::FlowSingleSender<tensorstore::CancelSender>{}), tensorstore::LoggingReceiver{&log}); EXPECT_THAT( log, ::testing::ElementsAre("set_starting", "set_done", "set_stopping")); } TEST(RangeFlowSenderTest, Basic) { std::vector<int> values{1, 2, 3}; std::vector<std::string> log; tensorstore::execution::submit( tensorstore::AnyFlowSender<int, int>( tensorstore::RangeFlowSender<std::vector<int>&>{values}), tensorstore::LoggingReceiver{&log}); EXPECT_THAT(log, ::testing::ElementsAre("set_starting", "set_value: 1", "set_value: 2", "set_value: 3", "set_done", "set_stopping")); } TEST(RangeFlowSenderTest, CancelImmediately) { std::vector<int> values{1, 2, 3}; std::vector<std::string> log; struct Receiver : public tensorstore::LoggingReceiver { tensorstore::AnyCancelReceiver cancel; void set_starting(tensorstore::AnyCancelReceiver cancel) { this->tensorstore::LoggingReceiver::set_starting({}); cancel(); } }; tensorstore::execution::submit( tensorstore::AnyFlowSender<int, int>( tensorstore::RangeFlowSender<std::vector<int>&>{values}), Receiver{{&log}}); EXPECT_THAT( log, ::testing::ElementsAre("set_starting", "set_done", "set_stopping")); } TEST(RangeFlowSenderTest, Cancel) { std::vector<int> values{1, 2, 3}; std::vector<std::string> log; struct Receiver : public tensorstore::LoggingReceiver { tensorstore::AnyCancelReceiver cancel; void set_starting(tensorstore::AnyCancelReceiver cancel) { this->cancel = std::move(cancel); this->tensorstore::LoggingReceiver::set_starting({}); } void set_value(int value) { this->tensorstore::LoggingReceiver::set_value(value); if (value == 2) { this->cancel(); } } }; tensorstore::execution::submit( tensorstore::AnyFlowSender<int, int>( tensorstore::RangeFlowSender<std::vector<int>&>{values}), Receiver{{&log}}); EXPECT_THAT( log, ::testing::ElementsAre("set_starting", "set_value: 1", "set_value: 2", "set_done", "set_stopping")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/execution/sender_util.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/execution/sender_util_test.cc
4f887a6430414cd6088e1743555015b10f116d50
09bea60d-dbf0-4bb3-b457-acc4a46d50db
cpp
tensorflow/tensorflow
collective_rma_distributed
tensorflow/core/distributed_runtime/collective_rma_distributed.cc
tensorflow/core/distributed_runtime/collective_rma_distributed_test.cc
#include "tensorflow/core/distributed_runtime/collective_rma_distributed.h" #include <memory> #include "absl/status/status.h" #include "tensorflow/core/common_runtime/base_collective_executor.h" #include "tensorflow/core/common_runtime/copy_tensor.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/dma_helper.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/distributed_runtime/call_options.h" #include "tensorflow/core/distributed_runtime/cancellable_call.h" #include "tensorflow/core/distributed_runtime/request_id.h" #include "tensorflow/core/distributed_runtime/worker_cache.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/platform/protobuf_internal.h" #include "tensorflow/core/profiler/lib/scoped_memory_debug_annotation.h" #include "tensorflow/core/protobuf/transport_options.pb.h" #include "tensorflow/core/protobuf/worker.pb.h" namespace tensorflow { namespace { class RecvBufCall : public CancellableCall { public: RecvBufCall(int64_t step_id, const string& peer_device, const string& peer_task, const string& key, Device* to_device, DeviceContext* to_device_ctx, const AllocatorAttributes& to_alloc_attr, Tensor* to_tensor, const DeviceLocality& client_locality, const DeviceAttributes& server_attributes, CancellationManager* cancel_mgr, WorkerCacheInterface* wc) : CancellableCall(cancel_mgr, peer_task, wc) { req_.set_step_id(step_id); req_.set_buf_rendezvous_key(key); *req_.mutable_client_locality() = client_locality; *req_.mutable_server_locality() = server_attributes.locality(); req_.set_num_bytes(to_tensor->TotalBytes()); req_.set_buf_ptr(reinterpret_cast<int64_t>(DMAHelper::base(to_tensor))); req_.set_src_device(peer_device); req_.set_src_incarnation(server_attributes.incarnation()); req_.set_dst_device(to_device->name()); req_.set_request_id(GetUniqueRequestId()); } ~RecvBufCall() override {} void IssueCall(const StatusCallback& done) override { wi_->RecvBufAsync(&opts_, &req_, &resp_, done); } RecvBufRequest req_; RecvBufResponse resp_; }; void PopulateTensorFromExtra(const RecvBufRespExtra& extra, Tensor* cpu_tensor) { char* head = reinterpret_cast<char*>(DMAHelper::base(cpu_tensor)); for (const auto& tensor_content_chunk : extra.tensor_content()) { memcpy(head, std::string(tensor_content_chunk).data(), tensor_content_chunk.size()); head += tensor_content_chunk.size(); } } Status PopulateTensorFromResponse(const RecvBufResponse& response, Tensor* cpu_tensor) { const bool has_transport_options = response.has_transport_options(); if (!has_transport_options) return absl::OkStatus(); const int64_t total_bytes = cpu_tensor->TotalBytes(); int64_t num_bytes = 0; RecvBufRespExtra extra; response.transport_options().UnpackTo(&extra); for (const auto& chunk : extra.tensor_content()) { num_bytes += chunk.size(); } if (num_bytes != total_bytes) { return errors::Internal("Tensor Size Mismatch: RecvBufResponse returned ", num_bytes, " bytes, expected: ", cpu_tensor->TotalBytes()); } PopulateTensorFromExtra(extra, cpu_tensor); return absl::OkStatus(); } } void CollectiveRemoteAccessDistributed::RecvFromPeer( const string& peer_device, const string& peer_task, bool peer_is_local, const string& key, Device* to_device, DeviceContext* to_device_ctx, const AllocatorAttributes& to_alloc_attr, Tensor* to_tensor, const DeviceLocality& client_locality, int dev_to_dev_stream_index, CancellationManager* cancellation_manager, const StatusCallback& done) { if (peer_is_local) { CollectiveRemoteAccessLocal::RecvFromPeer( peer_device, peer_task, peer_is_local, key, to_device, to_device_ctx, to_alloc_attr, to_tensor, client_locality, dev_to_dev_stream_index, cancellation_manager, done); return; } struct State { DeviceAttributes server_attributes; std::unique_ptr<RecvBufCall> call; std::unique_ptr<Tensor> cpu_tensor; }; State* state = new State; Status s = dev_resolver_->GetDeviceAttributes(peer_device, &state->server_attributes); if (!s.ok()) { delete state; done(s); return; } Tensor* dst_tensor = nullptr; Device* cpu_dev = nullptr; if (to_device->tensorflow_accelerator_device_info()) { Status status = dev_mgr_->LookupDevice("CPU:0", &cpu_dev); if (!status.ok()) { delete state; done(s); return; } AllocatorAttributes cpu_attr; cpu_attr.set_gpu_compatible(true); tsl::profiler::ScopedMemoryDebugAnnotation op_annotation( "CollectiveRemoteAccessDistributed::RecvFromPeer" "::recv_buf_callback", step_id_, "dynamic", to_tensor->dtype(), [to_tensor]() { return to_tensor->shape().DebugString(); }); state->cpu_tensor = std::make_unique<Tensor>(cpu_dev->GetAllocator(cpu_attr), to_tensor->dtype(), to_tensor->shape()); dst_tensor = state->cpu_tensor.get(); } else { dst_tensor = to_tensor; } auto recv_buf_callback = [this, state, to_device, to_alloc_attr, to_device_ctx, to_tensor, cpu_dev, dev_to_dev_stream_index, dst_tensor, done](const Status& s) { if (s.ok()) { Status status = PopulateTensorFromResponse(state->call->resp_, dst_tensor); if (!status.ok()) { done(status); delete state; return; } if (to_device->tensorflow_accelerator_device_info()) { AllocatorAttributes cpu_attr; cpu_attr.set_gpu_compatible(true); CopyTensor::ViaDMA("", nullptr , to_device_ctx, cpu_dev, to_device, cpu_attr, to_alloc_attr, dst_tensor, to_tensor, dev_to_dev_stream_index, [this, state, done](const Status& s) { delete state; work_queue_->Schedule([s, done] { done(s); }); }); return; } } delete state; done(s); }; state->call = std::make_unique<RecvBufCall>( step_id_, peer_device, peer_task, key, to_device, to_device_ctx, to_alloc_attr, dst_tensor, client_locality, state->server_attributes, cancellation_manager, worker_cache_); CancellationToken abortion_token = abortion_cancel_mgr_.get_cancellation_token(); bool already_aborted = !abortion_cancel_mgr_.RegisterCallback( abortion_token, [state] { state->call->Cancel(); }); if (already_aborted) { recv_buf_callback(errors::Cancelled("collective ops already aborted")); } else { state->call->Start([this, abortion_token, done = std::move(recv_buf_callback)](const Status& s) { abortion_cancel_mgr_.DeregisterCallback(abortion_token); done(s); }); } } void CollectiveRemoteAccessDistributed::CheckPeerHealth( const string& peer_task, int64_t timeout_in_ms, const StatusCallback& done) { if (peer_task == task_name_) { done(absl::OkStatus()); return; } WorkerInterface* wi = worker_cache_->GetOrCreateWorker(peer_task); if (wi == nullptr) { done(errors::InvalidArgument(peer_task, " not found. It's probably invalid. The " "valid form is /job:xxx/replica:0/task:N")); return; } auto opts = new CallOptions(); opts->SetTimeout(timeout_in_ms); auto req = new GetStatusRequest(); auto resp = new GetStatusResponse(); wi->GetStatusAsync( opts, req, resp, true, [this, opts, req, resp, wi, peer_task, done](Status s) { std::vector<DeviceAttributes> cached_attrs; if (s.ok()) { s = dev_resolver_->GetAllDeviceAttributes(peer_task, &cached_attrs); } if (s.ok()) { absl::flat_hash_set<uint64> remote_incarnations; for (const DeviceAttributes& da : resp->device_attributes()) { remote_incarnations.insert(da.incarnation()); } for (const DeviceAttributes& attr : cached_attrs) { if (!remote_incarnations.contains(attr.incarnation())) { s = errors::FailedPrecondition( attr.name(), " with incarnation ", attr.incarnation(), " is not available. This usually means ", peer_task, " has restarted"); break; } } } else if (absl::IsNotFound(s)) { s = absl::OkStatus(); } delete opts; delete req; delete resp; worker_cache_->ReleaseWorker(peer_task, wi); done(s); }); } void CollectiveRemoteAccessDistributed::StartAbort(const Status& s) { CollectiveRemoteAccessLocal::StartAbort(s); abortion_cancel_mgr_.StartCancel(); } }
#include "tensorflow/core/distributed_runtime/collective_rma_distributed.h" #include <memory> #include "google/protobuf/any.pb.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/dma_helper.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/distributed_runtime/device_resolver_distributed.h" #include "tensorflow/core/distributed_runtime/test_utils.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/framework/device_attributes.pb.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/random/random.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mem.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/transport_options.pb.h" #include "tensorflow/core/protobuf/worker.pb.h" namespace tensorflow { namespace { class FakeAllocator : public Allocator { public: string Name() override { return "fake"; } void* AllocateRaw(size_t alignment, size_t num_bytes) override { return port::AlignedMalloc(num_bytes, alignment); } void DeallocateRaw(void* ptr) override { return port::AlignedFree(ptr); } }; static std::unique_ptr<Device> NewDevice(const string& type, const string& name, Allocator* allocator) { class FakeDevice : public Device { public: explicit FakeDevice(const DeviceAttributes& attr, Allocator* allocator) : Device(nullptr, attr), allocator_(allocator) {} Status Sync() override { return absl::OkStatus(); } Allocator* GetAllocator(AllocatorAttributes) override { return allocator_; } private: Allocator* const allocator_; }; DeviceAttributes attr; attr.set_name(name); attr.set_device_type(type); attr.mutable_locality()->set_numa_node(3); attr.set_incarnation(random::New64()); return std::make_unique<FakeDevice>(attr, allocator); } static int64_t kStepId = 123; class FakeWorker : public TestWorkerInterface { public: FakeWorker(const string& name, DeviceMgr* dev_mgr, DeviceResolverDistributed* dres, bool is_failed, bool set_tensor_in_extra) : name_(name), device_mgr_(dev_mgr), device_resolver_(dres), buf_rendezvous_(kStepId, dev_mgr), is_failed_(is_failed), set_tensor_in_extra_(set_tensor_in_extra) {} BufRendezvous* buf_rendezvous() { return &buf_rendezvous_; } void GetStatusAsync(CallOptions* opts, const GetStatusRequest* request, GetStatusResponse* response, bool fail_fast, StatusCallback done) override { if (is_failed_) { done(errors::Unavailable("peer down")); return; } std::vector<DeviceAttributes> dev_attr; device_mgr_->ListDeviceAttributes(&dev_attr); for (const auto& da : dev_attr) { *response->add_device_attributes() = da; } done(absl::OkStatus()); } void RecvBufAsync(CallOptions* opts, const RecvBufRequest* request, RecvBufResponse* response, StatusCallback done) override { if (is_failed_) { done(errors::Unavailable("peer down")); return; } opts->SetCancelCallback([this]() { SchedClosure([this]() { Env::Default()->SleepForMicroseconds(100); buf_rendezvous_.StartAbort(errors::Internal("Cancelled")); }); }); VLOG(2) << "ConsumeBuf key=" << request->buf_rendezvous_key() << " src_device=" << request->src_device() << " src_incarnation=" << request->src_incarnation(); buf_rendezvous_.ConsumeBuf( request->buf_rendezvous_key(), request->src_device(), request->src_incarnation(), [this, opts, request, response, done](const Status& status, BufRendezvous::Hook* h) { Status s = status; if (s.ok()) { opts->ClearCancelCallback(); int64_t num_bytes = h->prod_value->TotalBytes(); if (set_tensor_in_extra_) { RecvBufRespExtra extra; extra.add_tensor_content(string( reinterpret_cast<const char*>(DMAHelper::base(h->prod_value)), num_bytes)); response->mutable_transport_options()->PackFrom(extra); } else { if (request->num_bytes() != num_bytes) { s = errors::Internal("Tensor Size Mismatch."); } else { memcpy(reinterpret_cast<void*>(request->buf_ptr()), DMAHelper::base(h->prod_value), num_bytes); } } } done(s); if (h) BufRendezvous::DoneWithHook(h); }, nullptr ); } private: string name_; DeviceMgr* device_mgr_; DeviceResolverDistributed* device_resolver_; BufRendezvous buf_rendezvous_; bool is_failed_; const bool set_tensor_in_extra_; }; class FakeCache : public TestWorkerCache { public: bool GetDeviceLocalityNonBlocking(const string& device, DeviceLocality* locality) override { return false; } void GetDeviceLocalityAsync(const string& device, DeviceLocality* locality, StatusCallback done) override { string task_name; string dev_part; if (!DeviceNameUtils::SplitDeviceName(device, &task_name, &dev_part)) { done(errors::Internal("failed to parse device name")); return; } auto it = workers_.find(task_name); if (it == workers_.end()) { done(errors::Internal("failed to find worker ", task_name)); return; } WorkerInterface* wi = it->second; GetStatusRequest req; GetStatusResponse resp; Status status = wi->GetStatus(&req, &resp); if (!status.ok()) { done(status); return; } for (const auto& it : resp.device_attributes()) { if (it.name() == device) { *locality = it.locality(); done(absl::OkStatus()); return; } } done(errors::Internal("device not found: ", device)); } }; enum TEST_PARAM_DEVICE_TYPE { TEST_PARAM_DEVICE_TYPE_CPU = 0, TEST_PARAM_DEVICE_TYPE_GPU, }; enum TEST_PARAM_TENSOR_LOC { TEST_PARAM_TENSOR_LOC_AT_BUF_PTR = 0, TEST_PARAM_TENSOR_LOC_IN_EXTRA, }; class CollRMADistTest : public ::testing::TestWithParam< std::tuple<TEST_PARAM_DEVICE_TYPE, TEST_PARAM_TENSOR_LOC>> { protected: CollRMADistTest() : work_queue_( std::make_shared<UnboundedWorkQueue>(Env::Default(), "test")) {} ~CollRMADistTest() override { for (DeviceMgr* dm : device_mgrs_) { delete dm; } for (auto it : dev_resolvers_) { delete it.second; } for (FakeWorker* w : workers_) { delete w; } } void SetUp() override { const int num_workers = 2; const int num_devices = 1; string device_type = "CPU"; string dev0_worker_name; for (int w = 0; w < num_workers; ++w) { string name = strings::StrCat("/job:worker/replica:0/task:", w); if (w == 0) { dev0_worker_name = name; } DefineWorker(name, device_type, num_devices); } rma_ = std::make_unique<CollectiveRemoteAccessDistributed>( device_mgrs_[0], dev_resolvers_[dev0_worker_name], work_queue_, &wc_, kStepId, "/job:worker/replica:0/task:0"); const int kNumElts = 8; expected_value_ = Tensor(DT_FLOAT, {kNumElts}); to_tensor_ = Tensor(DT_FLOAT, {kNumElts}); large_response_ = Tensor(DT_FLOAT, {2 * kNumElts}); auto exp_alias = expected_value_.flat<float>(); auto to_alias = to_tensor_.flat<float>(); auto large_response_alias = large_response_.flat<float>(); for (int i = 0; i < kNumElts; ++i) { exp_alias(i) = i; to_alias(i) = -1; } for (int i = 0; i < 2 * kNumElts; ++i) { large_response_alias(i) = -2; } } void ResolveDeviceAttributes() { for (auto& dev_resolver_item : dev_resolvers_) { DeviceResolverDistributed* dev_resolver = dev_resolver_item.second; for (const auto& item : dev_by_task_) { TF_CHECK_OK(dev_resolver->UpdateDeviceAttributes(item.second)); } } } void DefineWorker(const string& worker_name, const string& device_type, int num_devices, bool is_failed = false) { std::vector<std::unique_ptr<Device>> devices; for (int i = 0; i < num_devices; ++i) { devices.push_back(NewDevice( device_type, strings::StrCat(worker_name, "/device:", device_type, ":", i), &fake_allocator_)); } DeviceMgr* dev_mgr = new StaticDeviceMgr(std::move(devices)); device_mgrs_.push_back(dev_mgr); std::vector<DeviceAttributes>* dv = &dev_by_task_[worker_name]; dv->clear(); for (auto d : dev_mgr->ListDevices()) { dv->push_back(d->attributes()); } DeviceResolverDistributed* dev_res = new DeviceResolverDistributed(dev_mgr); dev_resolvers_[worker_name] = dev_res; FakeWorker* fw = new FakeWorker(worker_name, dev_mgr, dev_res, is_failed, std::get<TEST_PARAM_TENSOR_LOC>(GetParam()) == TEST_PARAM_TENSOR_LOC_IN_EXTRA); workers_.push_back(fw); wc_.AddWorker(worker_name, fw); } void RestartWorker(const string& worker_name, const string& device_type, int num_devices, bool is_failed = false) { auto it = dev_resolvers_.find(worker_name); if (it != dev_resolvers_.end()) { delete it->second; dev_resolvers_.erase(it); } DefineWorker(worker_name, device_type, num_devices, is_failed); } void ValidateResultTensor() { ASSERT_EQ(expected_value_.NumElements(), to_tensor_.NumElements()); for (int i = 0; i < to_tensor_.NumElements(); ++i) { EXPECT_FLOAT_EQ(expected_value_.flat<float>()(i), to_tensor_.flat<float>()(i)); } } void ValidateResultTensorUnchanged() { for (int i = 0; i < to_tensor_.NumElements(); ++i) { EXPECT_FLOAT_EQ(-1, to_tensor_.flat<float>()(i)); } } void MaybeSetGPUDevice(Device* dst_device) { if (std::get<TEST_PARAM_DEVICE_TYPE>(GetParam()) == TEST_PARAM_DEVICE_TYPE_GPU) { dst_device->set_tensorflow_accelerator_device_info( &accelerator_device_info_); } } FakeCache wc_; CancellationManager cm_; std::vector<DeviceMgr*> device_mgrs_; std::unordered_map<string, DeviceResolverDistributed*> dev_resolvers_; std::unordered_map<string, std::vector<DeviceAttributes>> dev_by_task_; std::shared_ptr<UnboundedWorkQueue> work_queue_; std::vector<FakeWorker*> workers_; std::unique_ptr<CollectiveRemoteAccessDistributed> rma_; mutex mu_; int num_done_ TF_GUARDED_BY(mu_); condition_variable done_; CallOptions opts_; DeviceLocality device_locality_; AllocatorAttributes alloc_attr_; FakeAllocator fake_allocator_; DeviceBase::AcceleratorDeviceInfo accelerator_device_info_; Tensor expected_value_; Tensor large_response_; Tensor to_tensor_; }; TEST_P(CollRMADistTest, ProdFirstOK) { ResolveDeviceAttributes(); Notification consumer_note; Notification producer_note; Status consumer_status; Status producer_status; FakeWorker* wi = workers_[1]; const string kBufKey = "fake_buf_key"; wi->buf_rendezvous()->ProvideBuf( kBufKey, nullptr , nullptr , &expected_value_, AllocatorAttributes(), [&producer_note, &producer_status](const Status& s) { producer_status.Update(s); producer_note.Notify(); }, nullptr ); Device* dst_device = nullptr; string dev_name = "CPU:0"; TF_EXPECT_OK(device_mgrs_[0]->LookupDevice(dev_name, &dst_device)); DeviceContext* to_device_ctx = nullptr; MaybeSetGPUDevice(dst_device); rma_->RecvFromPeer( "/job:worker/replica:0/task:1/device:" + dev_name, "/job:worker/replica:0/task:1", false, kBufKey, dst_device, to_device_ctx, alloc_attr_, &to_tensor_, device_locality_, 0 , nullptr , [&consumer_status, &consumer_note](const Status& s) { consumer_status = s; consumer_note.Notify(); }); consumer_note.WaitForNotification(); TF_EXPECT_OK(consumer_status); producer_note.WaitForNotification(); TF_EXPECT_OK(producer_status); ValidateResultTensor(); } TEST_P(CollRMADistTest, ConsFirstOK) { ResolveDeviceAttributes(); Notification consumer_note; Notification producer_note; Status consumer_status; Status producer_status; FakeWorker* wi = workers_[1]; const string kBufKey = "fake_buf_key"; Device* dst_device = nullptr; string dev_name = "CPU:0"; TF_EXPECT_OK(device_mgrs_[0]->LookupDevice(dev_name, &dst_device)); MaybeSetGPUDevice(dst_device); DeviceContext* to_device_ctx = nullptr; rma_->RecvFromPeer( "/job:worker/replica:0/task:1/device:" + dev_name, "/job:worker/replica:0/task:1", false, kBufKey, dst_device, to_device_ctx, alloc_attr_, &to_tensor_, device_locality_, 0 , nullptr , [&consumer_status, &consumer_note](const Status& s) { consumer_status = s; consumer_note.Notify(); }); wi->buf_rendezvous()->ProvideBuf( kBufKey, nullptr , nullptr , &expected_value_, AllocatorAttributes(), [&producer_note, &producer_status](const Status& s) { producer_status.Update(s); producer_note.Notify(); }, nullptr ); consumer_note.WaitForNotification(); TF_EXPECT_OK(consumer_status); producer_note.WaitForNotification(); TF_EXPECT_OK(producer_status); ValidateResultTensor(); } TEST_P(CollRMADistTest, ConsFirstAbort) { ResolveDeviceAttributes(); Notification consumer_note; Status consumer_status; const string kBufKey = "fake_buf_key"; Device* dst_device = nullptr; string dev_name = "CPU:0"; TF_EXPECT_OK(device_mgrs_[0]->LookupDevice(dev_name, &dst_device)); MaybeSetGPUDevice(dst_device); DeviceContext* to_device_ctx = nullptr; rma_->RecvFromPeer( "/job:worker/replica:0/task:1/device:" + dev_name, "/job:worker/replica:0/task:1", false, kBufKey, dst_device, to_device_ctx, alloc_attr_, &to_tensor_, device_locality_, 0 , nullptr , [&consumer_status, &consumer_note](const Status& s) { consumer_status = s; consumer_note.Notify(); }); rma_->StartAbort(errors::Internal("Deliberate Failure")); consumer_note.WaitForNotification(); EXPECT_EQ(consumer_status.message(), "Cancelled"); } TEST_P(CollRMADistTest, ResponseTooLarge) { ResolveDeviceAttributes(); Notification consumer_note; Notification producer_note; Status consumer_status; Status producer_status; FakeWorker* wi = workers_[1]; const string kBufKey = "fake_buf_key"; wi->buf_rendezvous()->ProvideBuf( kBufKey, nullptr , nullptr , &large_response_, AllocatorAttributes(), [&producer_note, &producer_status](const Status& s) { producer_status.Update(s); producer_note.Notify(); }, nullptr ); Device* dst_device = nullptr; string dev_name = "CPU:0"; TF_EXPECT_OK(device_mgrs_[0]->LookupDevice(dev_name, &dst_device)); DeviceContext* to_device_ctx = nullptr; MaybeSetGPUDevice(dst_device); rma_->RecvFromPeer( "/job:worker/replica:0/task:1/device:" + dev_name, "/job:worker/replica:0/task:1", false, kBufKey, dst_device, to_device_ctx, alloc_attr_, &to_tensor_, device_locality_, 0 , nullptr , [&consumer_status, &consumer_note](const Status& s) { consumer_status = s; consumer_note.Notify(); }); consumer_note.WaitForNotification(); EXPECT_THAT(consumer_status.message(), ::testing::HasSubstr("Tensor Size Mismatch")); producer_note.WaitForNotification(); TF_EXPECT_OK(producer_status); ValidateResultTensorUnchanged(); } TEST_P(CollRMADistTest, WorkerRestart) { ResolveDeviceAttributes(); Notification consumer_note; Notification producer_note; Status consumer_status; Status producer_status; FakeWorker* wi = workers_[1]; const string buf_key = "fake_buf_key"; Device* dst_device = nullptr; string dev_name = "CPU:0"; TF_EXPECT_OK(device_mgrs_[0]->LookupDevice(dev_name, &dst_device)); MaybeSetGPUDevice(dst_device); DeviceContext* to_device_ctx = nullptr; rma_->RecvFromPeer( "/job:worker/replica:0/task:1/device:" + dev_name, "/job:worker/replica:0/task:1", false, buf_key, dst_device, to_device_ctx, alloc_attr_, &to_tensor_, device_locality_, 0 , nullptr , [&consumer_status, &consumer_note](const Status& s) { consumer_status = s; consumer_note.Notify(); }); wi->buf_rendezvous()->ProvideBuf( buf_key, nullptr , nullptr , &expected_value_, AllocatorAttributes(), [&producer_note, &producer_status](const Status& s) { producer_status.Update(s); producer_note.Notify(); }, nullptr ); consumer_note.WaitForNotification(); TF_EXPECT_OK(consumer_status); producer_note.WaitForNotification(); TF_EXPECT_OK(producer_status); ValidateResultTensor(); RestartWorker("/job:worker/replica:0/task:1", "CPU", 1); Notification post_restart_note; rma_->RecvFromPeer( "/job:worker/replica:0/task:1/device:" + dev_name, "/job:worker/replica:0/task:1", false, buf_key, dst_device, to_device_ctx, alloc_attr_, &to_tensor_, device_locality_, 0 , nullptr , [&consumer_status, &post_restart_note](const Status& s) { consumer_status = s; post_restart_note.Notify(); }); post_restart_note.WaitForNotification(); EXPECT_TRUE(errors::IsFailedPrecondition(consumer_status)); } TEST_P(CollRMADistTest, CheckHealthOKWithCachedAttr) { ResolveDeviceAttributes(); Status check_health_status; Notification check_health_done; rma_->CheckPeerHealth( "/job:worker/replica:0/task:1", 0, [&check_health_status, &check_health_done](const Status s) { check_health_status = s; check_health_done.Notify(); }); check_health_done.WaitForNotification(); TF_EXPECT_OK(check_health_status); } TEST_P(CollRMADistTest, CheckHealthOKWithoutCachedAttr) { Status check_health_status; Notification check_health_done; rma_->CheckPeerHealth( "/job:worker/replica:0/task:1", 0, [&check_health_status, &check_health_done](const Status s) { check_health_status = s; check_health_done.Notify(); }); check_health_done.WaitForNotification(); EXPECT_TRUE(check_health_status.ok()); } TEST_P(CollRMADistTest, CheckHealthRestarted) { ResolveDeviceAttributes(); RestartWorker("/job:worker/replica:0/task:1", "CPU", 1); Status check_health_status; Notification check_health_done; rma_->CheckPeerHealth( "/job:worker/replica:0/task:1", 0, [&check_health_status, &check_health_done](const Status s) { check_health_status = s; check_health_done.Notify(); }); check_health_done.WaitForNotification(); EXPECT_TRUE(errors::IsFailedPrecondition(check_health_status)); } TEST_P(CollRMADistTest, CheckHealthFailedPeer) { ResolveDeviceAttributes(); RestartWorker("/job:worker/replica:0/task:1", "CPU", 1, true); Status check_health_status; Notification check_health_done; rma_->CheckPeerHealth( "/job:worker/replica:0/task:1", 0, [&check_health_status, &check_health_done](const Status s) { check_health_status = s; check_health_done.Notify(); }); check_health_done.WaitForNotification(); EXPECT_TRUE(errors::IsUnavailable(check_health_status)); } TEST_P(CollRMADistTest, CheckHealthRestartedWithDifferentDevices) { ResolveDeviceAttributes(); RestartWorker("/job:worker/replica:0/task:1", "GPU", 1); Status check_health_status; Notification check_health_done; rma_->CheckPeerHealth( "/job:worker/replica:0/task:1", 0, [&check_health_status, &check_health_done](const Status s) { check_health_status = s; check_health_done.Notify(); }); check_health_done.WaitForNotification(); EXPECT_TRUE(errors::IsFailedPrecondition(check_health_status)); } INSTANTIATE_TEST_SUITE_P( TensorInBufPtrOrExtra, CollRMADistTest, ::testing::Combine(::testing::Values(TEST_PARAM_TENSOR_LOC_AT_BUF_PTR, TEST_PARAM_TENSOR_LOC_IN_EXTRA), ::testing::Values(TEST_PARAM_DEVICE_TYPE_CPU, TEST_PARAM_DEVICE_TYPE_GPU))); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/collective_rma_distributed.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/collective_rma_distributed_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
94825b0c-0378-4fc1-b42d-9a415dd00c59
cpp
tensorflow/tensorflow
hlo_parser
third_party/xla/xla/hlo/parser/hlo_parser.cc
third_party/xla/xla/hlo/parser/hlo_parser_test.cc
#include "xla/hlo/parser/hlo_parser.h" #include <cmath> #include <complex> #include <cstdint> #include <functional> #include <iterator> #include <limits> #include <memory> #include <optional> #include <string> #include <tuple> #include <type_traits> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/casts.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/strings/strip.h" #include "absl/types/span.h" #include "Eigen/Core" #include "xla/array.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/collective_device_list.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_domain_metadata.h" #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_original_value.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/ir/hlo_sharding_metadata.h" #include "xla/hlo/ir/tile_assignment.h" #include "xla/hlo/parser/hlo_lexer.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/primitive_util.h" #include "xla/service/computation_layout.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_module_config.h" #include "xla/service/name_uniquer.h" #include "xla/service/shape_inference.h" #include "xla/shape.h" #include "xla/shape_layout.h" #include "xla/shape_util.h" #include "xla/tsl/lib/gtl/map_util.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" namespace xla { namespace { using absl::StrAppend; using absl::StrCat; using absl::StrFormat; using absl::StrJoin; using std::nullopt; using std::optional; const int8_t kDebugLevel = 10; const int8_t kErrorLevel = 1; HloSchedule ScheduleFromInstructionOrder(HloModule* module) { HloSchedule schedule(module); for (HloComputation* computation : module->computations()) { if (!computation->IsFusionComputation()) { for (HloInstruction* instruction : computation->instructions()) { schedule.GetOrCreateSequence(computation).push_back(instruction); } } } return schedule; } bool CanInferShape(HloOpcode code) { switch (code) { case HloOpcode::kAbs: case HloOpcode::kAdd: case HloOpcode::kAddDependency: case HloOpcode::kAfterAll: case HloOpcode::kAtan2: case HloOpcode::kBatchNormGrad: case HloOpcode::kBatchNormInference: case HloOpcode::kBatchNormTraining: case HloOpcode::kBroadcast: case HloOpcode::kCall: case HloOpcode::kCeil: case HloOpcode::kCholesky: case HloOpcode::kClamp: case HloOpcode::kClz: case HloOpcode::kCompare: case HloOpcode::kComplex: case HloOpcode::kConcatenate: case HloOpcode::kConditional: case HloOpcode::kConvolution: case HloOpcode::kCopy: case HloOpcode::kCos: case HloOpcode::kOptimizationBarrier: case HloOpcode::kDivide: case HloOpcode::kDomain: case HloOpcode::kDot: case HloOpcode::kErf: case HloOpcode::kExp: case HloOpcode::kExpm1: case HloOpcode::kFft: case HloOpcode::kFloor: case HloOpcode::kGather: case HloOpcode::kGetDimensionSize: case HloOpcode::kSetDimensionSize: case HloOpcode::kGetTupleElement: case HloOpcode::kImag: case HloOpcode::kIsFinite: case HloOpcode::kLog: case HloOpcode::kLog1p: case HloOpcode::kLogistic: case HloOpcode::kAnd: case HloOpcode::kNot: case HloOpcode::kOr: case HloOpcode::kXor: case HloOpcode::kMap: case HloOpcode::kMaximum: case HloOpcode::kMinimum: case HloOpcode::kMultiply: case HloOpcode::kNegate: case HloOpcode::kPad: case HloOpcode::kPartitionId: case HloOpcode::kPopulationCount: case HloOpcode::kPower: case HloOpcode::kReal: case HloOpcode::kReduce: case HloOpcode::kRemainder: case HloOpcode::kReplicaId: case HloOpcode::kReverse: case HloOpcode::kRoundNearestAfz: case HloOpcode::kRoundNearestEven: case HloOpcode::kRsqrt: case HloOpcode::kScatter: case HloOpcode::kSelect: case HloOpcode::kShiftLeft: case HloOpcode::kShiftRightArithmetic: case HloOpcode::kShiftRightLogical: case HloOpcode::kSign: case HloOpcode::kSin: case HloOpcode::kSqrt: case HloOpcode::kCbrt: case HloOpcode::kReduceWindow: case HloOpcode::kSelectAndScatter: case HloOpcode::kSort: case HloOpcode::kSubtract: case HloOpcode::kTan: case HloOpcode::kTanh: case HloOpcode::kTranspose: case HloOpcode::kTriangularSolve: case HloOpcode::kTuple: case HloOpcode::kWhile: case HloOpcode::kTopK: return true; case HloOpcode::kAsyncStart: case HloOpcode::kAsyncUpdate: case HloOpcode::kAsyncDone: case HloOpcode::kAllGather: case HloOpcode::kAllGatherStart: case HloOpcode::kAllGatherDone: case HloOpcode::kAllReduce: case HloOpcode::kAllReduceStart: case HloOpcode::kAllReduceDone: case HloOpcode::kAllToAll: case HloOpcode::kCollectiveBroadcast: case HloOpcode::kCollectivePermute: case HloOpcode::kCollectivePermuteStart: case HloOpcode::kCollectivePermuteDone: case HloOpcode::kCopyDone: case HloOpcode::kCopyStart: case HloOpcode::kDynamicReshape: case HloOpcode::kDynamicSlice: case HloOpcode::kDynamicUpdateSlice: case HloOpcode::kRecv: case HloOpcode::kRecvDone: case HloOpcode::kReduceScatter: case HloOpcode::kSend: case HloOpcode::kSendDone: case HloOpcode::kSlice: case HloOpcode::kBitcast: case HloOpcode::kBitcastConvert: case HloOpcode::kConstant: case HloOpcode::kConvert: case HloOpcode::kCustomCall: case HloOpcode::kFusion: case HloOpcode::kInfeed: case HloOpcode::kIota: case HloOpcode::kOutfeed: case HloOpcode::kParameter: case HloOpcode::kReducePrecision: case HloOpcode::kReshape: case HloOpcode::kRng: case HloOpcode::kRngBitGenerator: case HloOpcode::kRngGetAndUpdateState: case HloOpcode::kStochasticConvert: return false; } } class HloParserImpl : public HloParser { public: using LocTy = HloLexer::LocTy; using BoolList = absl::InlinedVector<bool, 1>; explicit HloParserImpl(absl::string_view str, const HloParserOptions& options = HloParserOptions()) : lexer_(str), options_(options) {} absl::Status Run(HloModule* module) override; std::string GetError() const { return StrJoin(error_, "\n"); } absl::StatusOr<Shape> ParseShapeOnly(); absl::StatusOr<Layout> ParseLayoutOnly(); absl::StatusOr<HloSharding> ParseShardingOnly(); absl::StatusOr<FrontendAttributes> ParseFrontendAttributesOnly(); absl::StatusOr<StatisticsViz> ParseStatisticsVizOnly(); absl::StatusOr<std::vector<bool>> ParseParameterReplicationOnly(); absl::StatusOr<BoolList> ParseBooleanListOrSingleBooleanOnly(); absl::StatusOr<Window> ParseWindowOnly(); absl::StatusOr<ConvolutionDimensionNumbers> ParseConvolutionDimensionNumbersOnly(); absl::StatusOr<PaddingConfig> ParsePaddingConfigOnly(); absl::StatusOr<std::vector<ReplicaGroup>> ParseReplicaGroupsOnly(); private: enum class AttrTy { kBool, kInt64, kInt32, kFloat, kString, kLiteral, kBracedInt64List, kBracedInt64ListList, kHloComputation, kBracedHloComputationList, kFftType, kPaddingType, kComparisonDirection, kComparisonType, kWindow, kConvolutionDimensionNumbers, kSharding, kFrontendAttributes, kStatisticsViz, kBracedBoolListOrBool, kParameterReplication, kInstructionList, kSliceRanges, kPaddingConfig, kMetadata, kFusionKind, kDistribution, kDomain, kPrecisionList, kShape, kShapeList, kEnum, kRandomAlgorithm, kPrecisionAlgorithm, kAliasing, kBufferDonor, kComputationLayout, kInstructionAliasing, kCustomCallSchedule, kCustomCallApiVersion, kSparsityDescriptor, kStringOrJsonDict, kCollectiveDeviceList, kOriginalValue, }; struct AttrConfig { bool required; AttrTy attr_type; void* result; }; using InstrNameTable = absl::flat_hash_map<std::string, std::pair<HloInstruction*, LocTy>>; InstrNameTable& current_name_table() { return scoped_name_tables_.back(); } std::pair<HloInstruction*, LocTy>* FindInstruction( const std::string& name, const optional<Shape>& shape = nullopt); bool ParseSingleInstruction(HloModule* module); bool ParseHloModule(HloModule* module, bool parse_module_without_header = false); bool ParseComputations(HloModule* module); bool ParseComputation(HloComputation** entry_computation); bool ParseInstructionList(HloComputation** computation, const std::string& computation_name); bool ParseInstruction(HloComputation::Builder* builder, std::string* root_name); bool ParseInstructionRhs(HloComputation::Builder* builder, std::string name, LocTy name_loc, bool allow_attributes = true); bool ParseControlPredecessors(HloInstruction* instruction); bool ParseLiteral(Literal* literal); bool ParseLiteral(Literal* literal, const Shape& shape); bool ParseTupleLiteral(Literal* literal, const Shape& shape); bool ParseNonTupleLiteral(Literal* literal, const Shape& shape); bool ParseDenseLiteral(Literal* literal, const Shape& shape); HloInstruction* CreateInstruction( HloComputation::Builder* builder, absl::string_view name, std::optional<Shape> shape, HloOpcode opcode, std::optional<HloOpcode> async_wrapped_opcode, absl::flat_hash_map<std::string, AttrConfig>& attrs, bool allow_attributes, std::vector<HloInstruction*>* preset_operands = nullptr); bool SetValueInLiteral(LocTy loc, int64_t value, int64_t index, Literal* literal); bool SetValueInLiteral(LocTy loc, double value, int64_t index, Literal* literal); bool SetValueInLiteral(LocTy loc, bool value, int64_t index, Literal* literal); bool SetValueInLiteral(LocTy loc, std::complex<double> value, int64_t index, Literal* literal); template <typename LiteralNativeT, typename ParsedElemT> bool SetValueInLiteralHelper(LocTy loc, ParsedElemT value, int64_t index, Literal* literal); template <typename LiteralNativeT, typename ParsedElemT> bool CheckParsedValueIsInRange(LocTy loc, ParsedElemT value); template <typename LiteralNativeT> bool CheckParsedValueIsInRange(LocTy loc, std::complex<double> value); bool ParseOperands(std::vector<HloInstruction*>* operands, HloComputation::Builder* builder); bool ParseOperands(std::vector<HloInstruction*>* operands, HloComputation::Builder* builder, int expected_size); struct SliceRanges { std::vector<int64_t> starts; std::vector<int64_t> limits; std::vector<int64_t> strides; }; struct DomainData { std::unique_ptr<DomainMetadata> entry_metadata; std::unique_ptr<DomainMetadata> exit_metadata; }; bool ParseAttributes( const absl::flat_hash_map<std::string, AttrConfig>& attrs, bool allow_attributes = true, const std::optional<Shape>& shape = {}); bool ParseSubAttributes( const absl::flat_hash_map<std::string, AttrConfig>& attrs); bool ParseAttributeHelper( const absl::flat_hash_map<std::string, AttrConfig>& attrs, absl::flat_hash_set<std::string>* seen_attrs, const std::optional<Shape>& shape = {}); bool CopyAttributeToProtoMessage( absl::flat_hash_set<std::string> non_proto_attrs, const absl::flat_hash_map<std::string, AttrConfig>& attrs, tsl::protobuf::Message* message); bool ParseAttributesAsProtoMessage( const absl::flat_hash_map<std::string, AttrConfig>& non_proto_attrs, tsl::protobuf::Message* message); bool ParseComputationName(HloComputation** value); bool ParseInstructionNames(std::vector<HloInstruction*>* instructions); bool ParseWindow(Window* window, bool expect_outer_curlies); bool ParseConvolutionDimensionNumbers(ConvolutionDimensionNumbers* dnums); bool ParsePaddingConfig(PaddingConfig* padding); bool ParseMetadata(OpMetadata& metadata); bool ParseSingleOrListMetadata(std::vector<OpMetadata>& metadata); bool ParseOpShardingType(OpSharding::Type* type); bool ParseListShardingType(std::vector<OpSharding::Type>* types); bool ParseSharding(std::optional<HloSharding>& sharding); bool ParseCollectiveDeviceList(CollectiveDeviceList* device_list); bool ParseFrontendAttributes(FrontendAttributes* frontend_attributes); bool ParseStatisticsViz(StatisticsViz* statistics_viz); bool ParseTileAssignment(std::vector<int64_t>& tile_assignment_dimensions, std::vector<int64_t>& iota_reshape_dims, std::vector<int>& iota_transpose_perm, std::vector<int64_t>* devices); bool ParseSingleSharding(std::optional<HloSharding>& sharding, bool lbrace_pre_lexed); bool ParseParameterReplication(ParameterReplication* parameter_replication); bool ParseBooleanListOrSingleBoolean(BoolList* boolean_list); bool ParseReplicaGroupsOnly(std::vector<ReplicaGroup>* replica_groups); bool ParseDomain(DomainData* domain); bool ParseDxD(const std::string& name, std::vector<int64_t>* result); bool ParseWindowPad(std::vector<std::vector<int64_t>>* pad); bool ParseSliceRanges(SliceRanges* result); bool ParsePrecisionList(std::vector<PrecisionConfig::Precision>* result); bool ParseHloComputation(HloComputation** result); bool ParseHloComputationList(std::vector<HloComputation*>* result); bool ParseShapeList(std::vector<Shape>* result); bool ParseInt64List(TokKind start, TokKind end, TokKind delim, std::vector<int64_t>* result); bool ParseInt64ListList(TokKind start, TokKind end, TokKind delim, std::vector<std::vector<int64_t>>* result); bool ParseList(TokKind start, TokKind end, TokKind delim, absl::FunctionRef<bool()> parse_and_add_item); bool ParseParamListToShape(Shape* shape, LocTy* shape_loc); bool ParseParamList(); bool ParseName(std::string* result); bool ParseAttributeName(std::string* result); bool ParseString(std::string* result); bool ParseJsonDict(std::string* result); bool ParseDimensionSizes(std::vector<int64_t>* dimension_sizes, std::vector<bool>* dynamic_dimensions); bool ParseShape(Shape* result); bool ParseLayout(Layout* layout); bool ParseLayoutIntAttribute(int64_t* attr_value, absl::string_view attr_description); bool ParseDimLevelTypes( absl::InlinedVector<DimLevelType, InlineRank()>* dim_level_types, absl::InlinedVector<bool, InlineRank()>* dim_unique, absl::InlinedVector<bool, InlineRank()>* dim_ordered); bool ParseTiles(std::vector<Tile>* tiles); bool ParseSplitConfigs(std::vector<SplitConfig>& split_configs); bool ParsePhysicalShape(Shape* physical_shape); bool ParseOpcode(HloOpcode* opcode, std::optional<HloOpcode>* async_wrapped_opcode); bool ParseFftType(FftType* result); bool ParsePaddingType(PaddingType* result); bool ParsePrimitiveType(PrimitiveType* result); bool ParseComparisonDirection(ComparisonDirection* result); bool ParseComparisonType(Comparison::Type* result); bool ParseFusionKind(HloInstruction::FusionKind* result); bool ParseRandomDistribution(RandomDistribution* result); bool ParseRandomAlgorithm(RandomAlgorithm* result); bool ParsePrecision(PrecisionConfig::Precision* result); bool ParseAlgorithm(PrecisionConfig::Algorithm* result); bool ParseInt64(int64_t* result); bool ParseDouble(double* result); bool ParseComplex(std::complex<double>* result); bool ParseBool(bool* result); bool ParseToken(TokKind kind, const std::string& msg); bool ParseUnsignedIntegerType(PrimitiveType* primitive_type); bool ParseOriginalValue( optional<std::shared_ptr<OriginalValue>>* original_value, const Shape& shape); using AliasingData = absl::flat_hash_map<ShapeIndex, HloInputOutputAliasConfig::Alias>; using BufferDonor = absl::flat_hash_set<HloBufferDonorConfig::BufferDonor>; bool ParseAliasing(AliasingData* data); bool ParseBufferDonor(BufferDonor* data); bool ParseComputationLayout(ComputationLayout* computation_layout); bool ParseInstructionOutputOperandAliasing( std::vector<std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>>* aliasing_output_operand_pairs); bool ParseCustomCallSchedule(CustomCallSchedule* result); bool ParseCustomCallApiVersion(CustomCallApiVersion* result); bool ParseSparsityDescriptor(std::vector<SparsityDescriptor>* result); bool ParseShapeIndex(ShapeIndex* out); bool CanBeShape(); bool CanBeParamListToShape(); bool TokenError(absl::string_view msg); bool Error(LocTy loc, absl::string_view msg); bool EatIfPresent(TokKind kind); bool AddInstruction(const std::string& name, HloInstruction* instruction, LocTy name_loc); bool AddComputation(const std::string& name, HloComputation* computation, LocTy name_loc); HloLexer lexer_; std::vector<InstrNameTable> scoped_name_tables_; class Scope { public: explicit Scope(std::vector<InstrNameTable>* scoped_name_tables) : scoped_name_tables_(scoped_name_tables) { scoped_name_tables_->emplace_back(); } ~Scope() { scoped_name_tables_->pop_back(); } private: std::vector<InstrNameTable>* scoped_name_tables_; }; absl::flat_hash_map<std::string, std::pair<HloComputation*, LocTy>> computation_pool_; std::vector<std::unique_ptr<HloComputation>> computations_; std::vector<std::string> error_; std::function<std::pair<HloInstruction*, LocTy>*(const std::string& name, const Shape& shape)> create_missing_instruction_; NameUniquer name_uniquer_{"."}; const HloParserOptions options_; }; bool SplitToInt64s(absl::string_view s, char delim, std::vector<int64_t>* out) { for (const auto& split : absl::StrSplit(s, delim)) { int64_t val; if (!absl::SimpleAtoi(split, &val)) { return false; } out->push_back(val); } return true; } std::vector<ReplicaGroup> CreateReplicaGroups( absl::Span<const std::vector<int64_t>> groups) { std::vector<ReplicaGroup> replica_groups; absl::c_transform(groups, std::back_inserter(replica_groups), [](const std::vector<int64_t>& ids) { ReplicaGroup group; *group.mutable_replica_ids() = {ids.begin(), ids.end()}; return group; }); return replica_groups; } bool HloParserImpl::Error(LocTy loc, absl::string_view msg) { auto line_col = lexer_.GetLineAndColumn(loc); const unsigned line = line_col.first; const unsigned col = line_col.second; std::vector<std::string> error_lines; error_lines.push_back( StrCat("was parsing ", line, ":", col, ": error: ", msg)); error_lines.emplace_back(lexer_.GetLine(loc)); error_lines.push_back(col == 0 ? "" : StrCat(std::string(col - 1, ' '), "^")); error_.push_back(StrJoin(error_lines, "\n")); VLOG(kErrorLevel) << "Error: " << error_.back(); return false; } bool HloParserImpl::TokenError(absl::string_view msg) { return Error(lexer_.GetLoc(), msg); } absl::Status HloParserImpl::Run(HloModule* module) { lexer_.Lex(); if ((lexer_.GetKind() == TokKind::kw_HloModule) || (lexer_.GetKind() == TokKind::kw_ENTRY) || (lexer_.LookAhead() == TokKind::kLbrace)) { bool parse_module_without_header = (lexer_.GetKind() == TokKind::kw_HloModule) ? false : true; if (!ParseHloModule(module, parse_module_without_header)) { return InvalidArgument( "Syntax error when trying to parse the text as a HloModule:\n%s", GetError()); } return absl::OkStatus(); } if (!ParseSingleInstruction(module)) { return InvalidArgument( "Syntax error when trying to parse the text as a single " "HloInstruction:\n%s", GetError()); } return absl::OkStatus(); } std::pair<HloInstruction*, HloParserImpl::LocTy>* HloParserImpl::FindInstruction(const std::string& name, const optional<Shape>& shape) { std::pair<HloInstruction*, LocTy>* instr = nullptr; if (!name.empty()) { instr = tsl::gtl::FindOrNull(current_name_table(), name); } if (instr == nullptr && create_missing_instruction_ != nullptr && scoped_name_tables_.size() == 1) { if (!shape.has_value()) { Error(lexer_.GetLoc(), "Operand had no shape in HLO text; cannot create parameter for " "single-instruction module."); return nullptr; } return create_missing_instruction_(name, *shape); } if (instr != nullptr && shape.has_value() && !ShapeUtil::Compatible(instr->first->shape(), shape.value())) { Error( lexer_.GetLoc(), StrCat("The declared operand shape ", ShapeUtil::HumanStringWithLayout(shape.value()), " is not compatible with the shape of the operand instruction ", ShapeUtil::HumanStringWithLayout(instr->first->shape()), ".")); return nullptr; } return instr; } bool HloParserImpl::ParseShapeIndex(ShapeIndex* out) { if (!ParseToken(TokKind::kLbrace, "Expects '{' at the start of ShapeIndex")) { return false; } std::vector<int64_t> idxs; while (lexer_.GetKind() != TokKind::kRbrace) { int64_t idx; if (!ParseInt64(&idx)) { return false; } idxs.push_back(idx); if (!EatIfPresent(TokKind::kComma)) { break; } } if (!ParseToken(TokKind::kRbrace, "Expects '}' at the end of ShapeIndex")) { return false; } *out = ShapeIndex(idxs.begin(), idxs.end()); return true; } bool HloParserImpl::ParseAliasing(AliasingData* data) { if (!ParseToken(TokKind::kLbrace, "Expects '{' at the start of aliasing description")) { return false; } while (lexer_.GetKind() != TokKind::kRbrace) { ShapeIndex out; if (!ParseShapeIndex(&out)) { return false; } std::string errmsg = "Expected format: <output_shape_index>: (<input_param>, " "<input_param_shape_index>) OR <output_shape_index>: <input_param>"; if (!ParseToken(TokKind::kColon, errmsg)) { return false; } if (!ParseToken(TokKind::kLparen, errmsg)) { return false; } int64_t param_num; ParseInt64(&param_num); if (!ParseToken(TokKind::kComma, errmsg)) { return false; } ShapeIndex param_idx; if (!ParseShapeIndex(&param_idx)) { return false; } HloInputOutputAliasConfig::AliasKind alias_kind = HloInputOutputAliasConfig::kMayAlias; if (EatIfPresent(TokKind::kComma)) { std::string type; ParseName(&type); if (type == "must-alias") { alias_kind = HloInputOutputAliasConfig::kMustAlias; } else if (type == "may-alias") { alias_kind = HloInputOutputAliasConfig::kMayAlias; } else { return TokenError("Unexpected aliasing kind; expected SYSTEM or USER"); } } data->emplace(std::piecewise_construct, std::forward_as_tuple(out), std::forward_as_tuple(param_num, param_idx, alias_kind)); if (!ParseToken(TokKind::kRparen, errmsg)) { return false; } if (!EatIfPresent(TokKind::kComma)) { break; } } if (!ParseToken(TokKind::kRbrace, "Expects '}' at the end of aliasing description")) { return false; } return true; } bool HloParserImpl::ParseBufferDonor(BufferDonor* data) { if (!ParseToken(TokKind::kLbrace, "Expects '{' at the start of buffer donor description")) { return false; } std::string errmsg = "Expected format: (<input_param>, <input_param_shape_index>)"; while (lexer_.GetKind() != TokKind::kRbrace) { if (!ParseToken(TokKind::kLparen, errmsg)) { return false; } int64_t param_num; ParseInt64(&param_num); if (!ParseToken(TokKind::kComma, errmsg)) { return false; } ShapeIndex param_idx; if (!ParseShapeIndex(&param_idx)) { return false; } if (!ParseToken(TokKind::kRparen, errmsg)) { return false; } data->emplace(param_num, param_idx); if (!EatIfPresent(TokKind::kComma)) { break; } } if (!ParseToken(TokKind::kRbrace, "Expects '}' at the end of buffer donor description")) { return false; } return true; } bool HloParserImpl::ParseComputationLayout( ComputationLayout* computation_layout) { if (!ParseToken(TokKind::kLbrace, "Expects '{' at the start of aliasing description")) { return false; } if (!ParseToken(TokKind::kLparen, "Expects ( before parameter shape list")) { return false; } while (lexer_.GetKind() != TokKind::kRparen) { Shape param; if (!ParseShape(&param)) { return false; } computation_layout->add_parameter_layout(ShapeLayout(param)); if (lexer_.GetKind() == TokKind::kRparen) { break; } if (!ParseToken(TokKind::kComma, "Expects , between parameter shapes")) { return false; } } if (!ParseToken(TokKind::kRparen, "Expects ) at end of parameter shape list")) { return false; } if (!ParseToken(TokKind::kArrow, "Expects -> before result shape")) { return false; } Shape result; if (!ParseShape(&result)) { return false; } *computation_layout->mutable_result_layout() = ShapeLayout(result); if (!ParseToken(TokKind::kRbrace, "Expects '}' at the end of computation layouts")) { return false; } return true; } bool HloParserImpl::ParseInstructionOutputOperandAliasing( std::vector<std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>>* aliasing_output_operand_pairs) { if (!ParseToken( TokKind::kLbrace, "Expects '{' at the start of instruction aliasing description")) { return false; } while (lexer_.GetKind() != TokKind::kRbrace) { ShapeIndex out; if (!ParseShapeIndex(&out)) { return false; } std::string errmsg = "Expected format: <output_shape_index>: (<operand_index>, " "<operand_shape_index>)"; if (!ParseToken(TokKind::kColon, errmsg)) { return false; } if (!ParseToken(TokKind::kLparen, errmsg)) { return false; } int64_t operand_index; ParseInt64(&operand_index); if (!ParseToken(TokKind::kComma, errmsg)) { return false; } ShapeIndex operand_shape_index; if (!ParseShapeIndex(&operand_shape_index)) { return false; } aliasing_output_operand_pairs->emplace_back( out, std::pair<int64_t, ShapeIndex>{operand_index, operand_shape_index}); if (!ParseToken(TokKind::kRparen, errmsg)) { return false; } if (!EatIfPresent(TokKind::kComma)) { break; } } if (!ParseToken( TokKind::kRbrace, "Expects '}' at the end of instruction aliasing description")) { return false; } return true; } bool HloParserImpl::ParseCustomCallSchedule(CustomCallSchedule* result) { VLOG(kDebugLevel) << "ParseCustomCallSchedule"; if (lexer_.GetKind() != TokKind::kIdent) { return TokenError("expects custom-call schedule"); } std::string val = lexer_.GetStrVal(); auto status_or_result = StringToCustomCallSchedule(val); if (!status_or_result.ok()) { return TokenError( StrFormat("expects custom-call schedule but sees: %s, error: %s", val, status_or_result.status().message())); } *result = status_or_result.value(); lexer_.Lex(); return true; } bool HloParserImpl::ParseCustomCallApiVersion(CustomCallApiVersion* result) { VLOG(kDebugLevel) << "ParseCustomCallApiVersion"; if (lexer_.GetKind() != TokKind::kIdent) { return TokenError("expects custom-call API version"); } std::string val = lexer_.GetStrVal(); auto status_or_result = StringToCustomCallApiVersion(val); if (!status_or_result.ok()) { return TokenError( StrFormat("expects custom-call API version but sees: %s, error: %s", val, status_or_result.status().message())); } *result = status_or_result.value(); lexer_.Lex(); return true; } bool HloParserImpl::ParseSparsityDescriptor( std::vector<SparsityDescriptor>* result) { VLOG(kDebugLevel) << "ParseSparsityDescriptor"; if (lexer_.GetKind() != TokKind::kSparsityDesc) { return TokenError("expects sparsity descriptor, e.g. L.0@2:4"); } std::string val = lexer_.GetStrVal(); std::vector<absl::string_view> split = absl::StrSplit(val, '_'); for (absl::string_view item : split) { std::vector<absl::string_view> splitA = absl::StrSplit(item, '@'); std::vector<absl::string_view> splitB = absl::StrSplit(splitA[0], '.'); std::vector<absl::string_view> splitC = absl::StrSplit(splitA[1], ':'); SparsityDescriptor descriptor; int dim, n, m; if (!absl::SimpleAtoi(splitB[1], &dim) || dim < 0) { return TokenError("Invalid dimension number"); } if (!absl::SimpleAtoi(splitC[0], &n) || !absl::SimpleAtoi(splitC[1], &m) || n < 1 || m <= n) { return TokenError("Invalid structured sparsity type"); } descriptor.set_type(SparsityType::SPARSITY_STRUCTURED_N_M); descriptor.set_index(splitB[0] == "L" ? 0 : 1); descriptor.set_dimension(dim); descriptor.set_n(n); descriptor.set_m(m); result->push_back(descriptor); } lexer_.Lex(); return true; } bool HloParserImpl::ParseHloModule(HloModule* module, bool parse_module_without_header) { std::string name; std::optional<bool> is_scheduled; std::optional<int64_t> replica_count; std::optional<int64_t> num_partitions; std::optional<AliasingData> aliasing_data; std::optional<BufferDonor> buffer_donor_data; std::optional<bool> alias_passthrough_params; absl::flat_hash_map<std::string, AttrConfig> attrs; std::optional<ComputationLayout> entry_computation_layout; std::optional<FrontendAttributes> frontend_attributes; BoolList allow_spmd_sharding_propagation_to_parameters; BoolList allow_spmd_sharding_propagation_to_output; attrs["is_scheduled"] = {false, AttrTy::kBool, &is_scheduled}; attrs["replica_count"] = {false, AttrTy::kInt64, &replica_count}; attrs["num_partitions"] = {false, AttrTy::kInt64, &num_partitions}; attrs["input_output_alias"] = {false, AttrTy::kAliasing, &aliasing_data}; attrs["buffer_donor"] = {false, AttrTy::kBufferDonor, &buffer_donor_data}; attrs["alias_passthrough_params"] = {false, AttrTy::kBool, &alias_passthrough_params}; attrs["entry_computation_layout"] = {false, AttrTy::kComputationLayout, &entry_computation_layout}; attrs["frontend_attributes"] = { false, AttrTy::kFrontendAttributes, &frontend_attributes}; attrs["allow_spmd_sharding_propagation_to_parameters"] = { false, AttrTy::kBracedBoolListOrBool, &allow_spmd_sharding_propagation_to_parameters}; attrs["allow_spmd_sharding_propagation_to_output"] = { false, AttrTy::kBracedBoolListOrBool, &allow_spmd_sharding_propagation_to_output}; if (!parse_module_without_header) { if (lexer_.GetKind() != TokKind::kw_HloModule) { return TokenError("expects HloModule"); } lexer_.Lex(); if (!ParseName(&name)) { return false; } if (!ParseAttributes(attrs)) { return false; } module->set_name(name); } if (!ParseComputations(module)) { return false; } if (parse_module_without_header) { name = absl::StrCat("module_", module->entry_computation()->name()); } module->set_name(name); if (is_scheduled.value_or(false)) { TF_CHECK_OK(module->set_schedule(ScheduleFromInstructionOrder(module))); } HloModuleConfig config = module->config(); bool default_config = true; if (alias_passthrough_params.value_or(false)) { config.set_alias_passthrough_params(true); default_config = false; } if (num_partitions.value_or(1) != 1) { config.set_num_partitions(*num_partitions); config.set_use_spmd_partitioning(true); default_config = false; } if (replica_count.value_or(1) != 1) { config.set_replica_count(*replica_count); default_config = false; } if (entry_computation_layout.has_value()) { *config.mutable_entry_computation_layout() = *entry_computation_layout; default_config = false; } else { HloComputation* entry_computation = module->entry_computation(); for (int64_t p = 0; p < entry_computation->num_parameters(); p++) { const Shape& param_shape = entry_computation->parameter_instruction(p)->shape(); TF_CHECK_OK(module->mutable_entry_computation_layout() ->mutable_parameter_layout(p) ->CopyLayoutFromShape(param_shape)); } const Shape& result_shape = entry_computation->root_instruction()->shape(); TF_CHECK_OK(module->mutable_entry_computation_layout() ->mutable_result_layout() ->CopyLayoutFromShape(result_shape)); } if (frontend_attributes) { module->set_frontend_attributes(frontend_attributes.value()); } if (!allow_spmd_sharding_propagation_to_parameters.empty()) { config.set_allow_spmd_sharding_propagation_to_parameters( allow_spmd_sharding_propagation_to_parameters); default_config = false; } if (!allow_spmd_sharding_propagation_to_output.empty()) { config.set_allow_spmd_sharding_propagation_to_output( allow_spmd_sharding_propagation_to_output); default_config = false; } if (!default_config) { module->set_config(config); } if (aliasing_data) { HloInputOutputAliasConfig alias_config(module->result_shape()); for (auto& p : *aliasing_data) { absl::Status st = alias_config.SetUpAlias(p.first, p.second.parameter_number, p.second.parameter_index, p.second.kind); if (!st.ok()) { return TokenError(st.message()); } } module->input_output_alias_config() = alias_config; } if (buffer_donor_data) { HloBufferDonorConfig buffer_donor_config; for (auto& p : *buffer_donor_data) { absl::Status st = buffer_donor_config.AddBufferDonor(p.param_number, p.param_index); if (!st.ok()) { return TokenError(st.message()); } } module->buffer_donor_config() = buffer_donor_config; } return true; } bool HloParserImpl::ParseComputations(HloModule* module) { HloComputation* entry_computation = nullptr; do { if (!ParseComputation(&entry_computation)) { return false; } } while (lexer_.GetKind() != TokKind::kEof); for (int i = 0; i < computations_.size(); i++) { if ((entry_computation != nullptr && computations_[i].get() != entry_computation) || (entry_computation == nullptr && i != computations_.size() - 1)) { module->AddEmbeddedComputation(std::move(computations_[i])); continue; } module->AddEntryComputation(std::move(computations_[i])); } return true; } bool HloParserImpl::ParseComputation(HloComputation** entry_computation) { LocTy maybe_entry_loc = lexer_.GetLoc(); const bool is_entry_computation = EatIfPresent(TokKind::kw_ENTRY); std::string name; LocTy name_loc = lexer_.GetLoc(); if (!ParseName(&name)) { return false; } LocTy shape_loc = nullptr; Shape shape; if (CanBeParamListToShape() && !ParseParamListToShape(&shape, &shape_loc)) { return false; } HloComputation* computation = nullptr; if (!ParseInstructionList(&computation, name)) { return false; } if (shape_loc != nullptr && !ShapeUtil::Compatible(computation->root_instruction()->shape(), shape)) { return Error( shape_loc, StrCat( "Shape of computation ", name, ", ", ShapeUtil::HumanString(shape), ", is not compatible with that of its root instruction ", computation->root_instruction()->name(), ", ", ShapeUtil::HumanString(computation->root_instruction()->shape()))); } absl::flat_hash_map<std::string, AttrConfig> attrs; optional<std::string> execution_thread = HloInstruction::kMainExecutionThread; attrs["execution_thread"] = {false, AttrTy::kString, &execution_thread}; if (!ParseAttributes(attrs)) { return false; } computation->SetExecutionThread(*execution_thread); if (is_entry_computation) { if (*entry_computation != nullptr) { return Error(maybe_entry_loc, "expects only one ENTRY"); } *entry_computation = computation; } return AddComputation(name, computation, name_loc); } bool HloParserImpl::ParseInstructionList(HloComputation** computation, const std::string& computation_name) { Scope scope(&scoped_name_tables_); HloComputation::Builder builder(computation_name); if (!ParseToken(TokKind::kLbrace, "expects '{' at the beginning of instruction list.")) { return false; } std::string root_name; do { if (!ParseInstruction(&builder, &root_name)) { return false; } } while (lexer_.GetKind() != TokKind::kRbrace); if (!ParseToken(TokKind::kRbrace, "expects '}' at the end of instruction list.")) { return false; } HloInstruction* root = nullptr; if (!root_name.empty()) { std::pair<HloInstruction*, LocTy>* root_node = tsl::gtl::FindOrNull(current_name_table(), root_name); if (root_node == nullptr) { LOG(FATAL) << "instruction " << root_name << " was marked as ROOT but the parser has not seen it before"; } root = root_node->first; } computations_.emplace_back(builder.Build(root)); *computation = computations_.back().get(); return true; } bool HloParserImpl::ParseInstruction(HloComputation::Builder* builder, std::string* root_name) { std::string name; LocTy maybe_root_loc = lexer_.GetLoc(); bool is_root = EatIfPresent(TokKind::kw_ROOT); const LocTy name_loc = lexer_.GetLoc(); if (!ParseName(&name) || !ParseToken(TokKind::kEqual, "expects '=' in instruction")) { return false; } if (is_root) { if (!root_name->empty()) { return Error(maybe_root_loc, "one computation should have only one ROOT"); } *root_name = name; } return ParseInstructionRhs(builder, name, name_loc); } bool HloParserImpl::ParseInstructionRhs(HloComputation::Builder* builder, std::string name, LocTy name_loc, bool allow_attributes) { Shape shape; HloOpcode opcode; std::optional<HloOpcode> async_wrapped_opcode; std::vector<HloInstruction*> operands; const bool parse_shape = CanBeShape(); if ((parse_shape && !ParseShape(&shape)) || !ParseOpcode(&opcode, &async_wrapped_opcode)) { return false; } if (!parse_shape && !CanInferShape(opcode)) { return TokenError(StrFormat("cannot infer shape for opcode: %s", HloOpcodeString(opcode))); } absl::flat_hash_map<std::string, AttrConfig> attrs; optional<HloSharding> sharding; optional<FrontendAttributes> frontend_attributes; optional<StatisticsViz> statistics_viz; attrs["sharding"] = {false, AttrTy::kSharding, &sharding}; attrs["frontend_attributes"] = { false, AttrTy::kFrontendAttributes, &frontend_attributes}; attrs["statistics"] = {false, AttrTy::kStatisticsViz, &statistics_viz}; optional<ParameterReplication> parameter_replication; attrs["parameter_replication"] = {false, AttrTy::kParameterReplication, &parameter_replication}; optional<std::vector<HloInstruction*>> predecessors; attrs["control-predecessors"] = {false, AttrTy::kInstructionList, &predecessors}; optional<std::shared_ptr<OriginalValue>> original_value; attrs["origin"] = {false, AttrTy::kOriginalValue, &original_value}; optional<OpMetadata> metadata; attrs["metadata"] = {false, AttrTy::kMetadata, &metadata}; optional<std::string> backend_config; attrs["backend_config"] = {false, AttrTy::kStringOrJsonDict, &backend_config}; std::optional<Shape> maybe_shape; if (parse_shape) { maybe_shape = shape; } HloInstruction* instruction = CreateInstruction(builder, name, maybe_shape, opcode, async_wrapped_opcode, attrs, allow_attributes); if (instruction == nullptr) { return false; } if (name.empty()) { name = name_uniquer_.GetUniqueName( absl::StrCat(HloOpcodeString(instruction->opcode()), ".anon")); } else { name_uniquer_.GetUniqueName(name); } instruction->SetAndSanitizeName(name); if (instruction->name() != name) { return Error(name_loc, StrCat("illegal instruction name: ", name, "; suggest renaming to: ", instruction->name())); } if (sharding) { instruction->set_sharding( sharding->NormalizeTupleSharding(instruction->shape())); } if (parameter_replication) { int leaf_count = ShapeUtil::GetLeafCount(instruction->shape()); const auto& replicated = parameter_replication->replicated_at_leaf_buffers(); if (leaf_count != replicated.size()) { return Error(lexer_.GetLoc(), StrCat("parameter has ", leaf_count, " leaf buffers, but parameter_replication has ", replicated.size(), " elements.")); } instruction->set_parameter_replicated_at_leaf_buffers(replicated); } if (predecessors) { for (auto* pre : *predecessors) { absl::Status status = pre->AddControlDependencyTo(instruction); if (!status.ok()) { return Error(name_loc, StrCat("error adding control dependency for: ", name, " status: ", status.ToString())); } } } if (metadata) { instruction->set_metadata(*metadata); } if (original_value) { instruction->set_original_value(*original_value); } if (backend_config) { instruction->set_raw_backend_config_string(std::move(*backend_config)); } if (frontend_attributes) { instruction->set_frontend_attributes(*frontend_attributes); } if (statistics_viz) { instruction->set_statistics_viz(*statistics_viz); } return AddInstruction(name, instruction, name_loc); } HloInstruction* HloParserImpl::CreateInstruction( HloComputation::Builder* builder, absl::string_view name, std::optional<Shape> shape, HloOpcode opcode, std::optional<HloOpcode> async_wrapped_opcode, absl::flat_hash_map<std::string, AttrConfig>& attrs, bool allow_attributes, std::vector<HloInstruction*>* preset_operands) { std::vector<HloInstruction*> operands; if (preset_operands) { operands = *preset_operands; } const auto maybe_infer_shape = [&](absl::FunctionRef<absl::StatusOr<Shape>()> infer) { if (shape.has_value()) { return true; } auto inferred = infer(); if (!inferred.ok()) { return TokenError( StrFormat("failed to infer shape for opcode: %s, error: %s", HloOpcodeString(opcode), inferred.status().message())); } shape = std::move(inferred).value(); return true; }; switch (opcode) { case HloOpcode::kParameter: { int64_t parameter_number; if (!ParseToken(TokKind::kLparen, "expects '(' before parameter number") || !ParseInt64(&parameter_number)) { return nullptr; } const LocTy loc = lexer_.GetLoc(); if (parameter_number < 0) { Error(loc, "parameter number must be >= 0"); return nullptr; } if (!ParseToken(TokKind::kRparen, "expects ')' after parameter number") || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } std::string param_name(name); auto result = builder->AddParameter(HloInstruction::CreateParameter( parameter_number, *shape, param_name)); if (!result.ok()) { Error(loc, result.status().message()); return nullptr; } return result.value(); } case HloOpcode::kConstant: { Literal literal; if (!ParseToken(TokKind::kLparen, "expects '(' before constant literal") || !ParseLiteral(&literal, *shape) || !ParseToken(TokKind::kRparen, "expects ')' after constant literal") || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateConstant(std::move(literal))); } case HloOpcode::kIota: { optional<int64_t> iota_dimension; attrs["iota_dimension"] = {true, AttrTy::kInt64, &iota_dimension}; if ((!preset_operands && !ParseOperands(&operands, builder, 0)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateIota(*shape, *iota_dimension)); } case HloOpcode::kTopK: { optional<int64_t> k; attrs["k"] = {true, AttrTy::kInt64, &k}; optional<bool> largest; attrs["largest"] = {false, AttrTy::kBool, &largest}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferTopKShape(operands[0]->shape(), *k); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateTopK( *shape, operands[0], *k, (largest.has_value() ? *largest : true))); } case HloOpcode::kAbs: case HloOpcode::kAllGatherDone: case HloOpcode::kAllReduceDone: case HloOpcode::kRoundNearestAfz: case HloOpcode::kRoundNearestEven: case HloOpcode::kBitcast: case HloOpcode::kCeil: case HloOpcode::kClz: case HloOpcode::kCollectivePermuteDone: case HloOpcode::kCopy: case HloOpcode::kCopyDone: case HloOpcode::kCos: case HloOpcode::kOptimizationBarrier: case HloOpcode::kErf: case HloOpcode::kExp: case HloOpcode::kExpm1: case HloOpcode::kImag: case HloOpcode::kIsFinite: case HloOpcode::kFloor: case HloOpcode::kLog: case HloOpcode::kLog1p: case HloOpcode::kLogistic: case HloOpcode::kNot: case HloOpcode::kNegate: case HloOpcode::kPopulationCount: case HloOpcode::kReal: case HloOpcode::kRsqrt: case HloOpcode::kSign: case HloOpcode::kSin: case HloOpcode::kSqrt: case HloOpcode::kCbrt: case HloOpcode::kTan: case HloOpcode::kTanh: { if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferUnaryOpShape(opcode, operands[0]); })) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateUnary(*shape, opcode, operands[0])); } case HloOpcode::kAdd: case HloOpcode::kDivide: case HloOpcode::kMultiply: case HloOpcode::kSubtract: case HloOpcode::kAtan2: case HloOpcode::kComplex: case HloOpcode::kMaximum: case HloOpcode::kMinimum: case HloOpcode::kPower: case HloOpcode::kRemainder: case HloOpcode::kAnd: case HloOpcode::kOr: case HloOpcode::kXor: case HloOpcode::kShiftLeft: case HloOpcode::kShiftRightArithmetic: case HloOpcode::kShiftRightLogical: case HloOpcode::kStochasticConvert: { if ((!preset_operands && !ParseOperands(&operands, builder, 2)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferBinaryOpShape(opcode, operands[0], operands[1]); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateBinary( *shape, opcode, operands[0], operands[1])); } case HloOpcode::kClamp: case HloOpcode::kSelect: { if ((!preset_operands && !ParseOperands(&operands, builder, 3)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferTernaryOpShape( opcode, operands[0], operands[1], operands[2]); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateTernary( *shape, opcode, operands[0], operands[1], operands[2])); } case HloOpcode::kConvert: { if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateConvert(*shape, operands[0])); } case HloOpcode::kBitcastConvert: { if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateBitcastConvert(*shape, operands[0])); } case HloOpcode::kAllGather: case HloOpcode::kAllGatherStart: { CollectiveDeviceList device_list; optional<int64_t> channel_id; optional<std::vector<int64_t>> dimensions; optional<bool> constrain_layout; optional<bool> use_global_device_ids; attrs["replica_groups"] = {false, AttrTy::kCollectiveDeviceList, &device_list}; attrs["channel_id"] = {false, AttrTy::kInt64, &channel_id}; attrs["dimensions"] = {true, AttrTy::kBracedInt64List, &dimensions}; attrs["constrain_layout"] = {false, AttrTy::kBool, &constrain_layout}; attrs["use_global_device_ids"] = {false, AttrTy::kBool, &use_global_device_ids}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (opcode == HloOpcode::kAllGather) { return builder->AddInstruction(HloInstruction::CreateAllGather( *shape, operands, dimensions->at(0), device_list, constrain_layout ? *constrain_layout : false, channel_id, use_global_device_ids ? *use_global_device_ids : false)); } return builder->AddInstruction(HloInstruction::CreateAllGatherStart( *shape, operands, dimensions->at(0), device_list, constrain_layout ? *constrain_layout : false, channel_id, use_global_device_ids ? *use_global_device_ids : false)); } case HloOpcode::kAllReduce: case HloOpcode::kAllReduceStart: case HloOpcode::kReduceScatter: { CollectiveDeviceList device_list; optional<HloComputation*> to_apply; optional<int64_t> channel_id; optional<bool> constrain_layout; optional<bool> use_global_device_ids; optional<std::vector<int64_t>> dimensions; attrs["to_apply"] = {true, AttrTy::kHloComputation, &to_apply}; attrs["replica_groups"] = {false, AttrTy::kCollectiveDeviceList, &device_list}; attrs["channel_id"] = {false, AttrTy::kInt64, &channel_id}; attrs["constrain_layout"] = {false, AttrTy::kBool, &constrain_layout}; attrs["use_global_device_ids"] = {false, AttrTy::kBool, &use_global_device_ids}; if (opcode == HloOpcode::kReduceScatter) { attrs["dimensions"] = {true, AttrTy::kBracedInt64List, &dimensions}; } if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (opcode == HloOpcode::kAllReduce) { return builder->AddInstruction(HloInstruction::CreateAllReduce( *shape, operands, *to_apply, device_list, constrain_layout ? *constrain_layout : false, channel_id, use_global_device_ids ? *use_global_device_ids : false)); } else if (opcode == HloOpcode::kReduceScatter) { return builder->AddInstruction(HloInstruction::CreateReduceScatter( *shape, operands, *to_apply, device_list, constrain_layout ? *constrain_layout : false, channel_id, use_global_device_ids ? *use_global_device_ids : false, dimensions->at(0))); } return builder->AddInstruction(HloInstruction::CreateAllReduceStart( *shape, operands, *to_apply, device_list, constrain_layout ? *constrain_layout : false, channel_id, use_global_device_ids ? *use_global_device_ids : false)); } case HloOpcode::kAllToAll: { CollectiveDeviceList device_list; attrs["replica_groups"] = {false, AttrTy::kCollectiveDeviceList, &device_list}; optional<int64_t> channel_id; attrs["channel_id"] = {false, AttrTy::kInt64, &channel_id}; optional<std::vector<int64_t>> dimensions; attrs["dimensions"] = {false, AttrTy::kBracedInt64List, &dimensions}; optional<bool> constrain_layout; attrs["constrain_layout"] = {false, AttrTy::kBool, &constrain_layout}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape) || (dimensions && dimensions->size() != 1)) { return nullptr; } optional<int64_t> split_dimension; if (dimensions) { split_dimension = dimensions->at(0); } return builder->AddInstruction(HloInstruction::CreateAllToAll( *shape, operands, device_list, constrain_layout ? *constrain_layout : false, channel_id, split_dimension)); } case HloOpcode::kCollectiveBroadcast: { CollectiveDeviceList device_list; attrs["replica_groups"] = {true, AttrTy::kCollectiveDeviceList, &device_list}; optional<int64_t> channel_id; attrs["channel_id"] = {false, AttrTy::kInt64, &channel_id}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateCollectiveBroadcast( *shape, operands, device_list, false, channel_id)); } case HloOpcode::kCollectivePermute: case HloOpcode::kCollectivePermuteStart: { optional<std::vector<std::vector<int64_t>>> source_targets; attrs["source_target_pairs"] = { true, AttrTy::kBracedInt64ListList, &source_targets}; optional<int64_t> channel_id; attrs["channel_id"] = {false, AttrTy::kInt64, &channel_id}; optional<std::vector<std::vector<int64_t>>> slice_sizes; attrs["slice_sizes"] = {false, AttrTy::kBracedInt64ListList, &slice_sizes}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } std::vector<std::pair<int64_t, int64_t>> pairs(source_targets->size()); for (int i = 0; i < pairs.size(); i++) { if ((*source_targets)[i].size() != 2) { TokenError("expects 'source_target_pairs=' to be a list of pairs"); return nullptr; } pairs[i].first = (*source_targets)[i][0]; pairs[i].second = (*source_targets)[i][1]; } if (!slice_sizes.has_value()) { if (operands.size() != 1) { TokenError( "CollectivePermute and CollectivePermuteStart must have exactly " "one operand (input buffer) unless it performs dynamic-slice and " "in-place update."); return nullptr; } if (opcode == HloOpcode::kCollectivePermute) { return builder->AddInstruction( HloInstruction::CreateCollectivePermute(*shape, operands[0], pairs, channel_id)); } if (opcode == HloOpcode::kCollectivePermuteStart) { return builder->AddInstruction( HloInstruction::CreateCollectivePermuteStart(*shape, operands[0], pairs, channel_id)); } LOG(FATAL) << "Expect opcode to be CollectivePermute or " "CollectivePermuteStart, but got " << opcode; } if (operands.size() != 4) { TokenError( "CollectivePermute and CollectivePermuteStart must " "have exactly four operands for dynamic-slice and " "in-place update."); return nullptr; } if (opcode == HloOpcode::kCollectivePermute) { return builder->AddInstruction(HloInstruction::CreateCollectivePermute( *shape, operands[0], operands[1], operands[2], operands[3], pairs, *slice_sizes, channel_id)); } if (opcode == HloOpcode::kCollectivePermuteStart) { return builder->AddInstruction( HloInstruction::CreateCollectivePermuteStart( *shape, operands[0], operands[1], operands[2], operands[3], pairs, *slice_sizes, channel_id)); } LOG(FATAL) << "Expect opcode to be CollectivePermute or " "CollectivePermuteStart, but got " << opcode; } case HloOpcode::kAsyncStart: case HloOpcode::kAsyncUpdate: case HloOpcode::kAsyncDone: { std::optional<HloComputation*> async_computation; if (!preset_operands && !ParseOperands(&operands, builder)) { return nullptr; } auto is_async_shape_correct = [](const Shape& shape) { return shape.IsTuple() && shape.tuple_shapes_size() >= 2 && shape.tuple_shapes(0).IsTuple(); }; if (opcode == HloOpcode::kAsyncUpdate || opcode == HloOpcode::kAsyncDone) { if (operands.size() != 1 || !is_async_shape_correct(operands[0]->shape())) { TokenError( "AsyncUpdate and AsyncDone expect a single operand in the form " "of ((async-operands), async-outputs, state)."); return nullptr; } } if (opcode == HloOpcode::kAsyncStart || opcode == HloOpcode::kAsyncUpdate) { if (!is_async_shape_correct(*shape)) { TokenError( "AsyncStart and AsyncUpdate expect the op shape to be in the " "form of " "((async-operands), async-outputs, state)."); return nullptr; } } if (opcode == HloOpcode::kAsyncUpdate || opcode == HloOpcode::kAsyncDone) { if (operands.size() != 1 || !is_async_shape_correct(operands[0]->shape())) { TokenError( "AsyncUpdate and AsyncDone expect a single operand in the form " "of ((async-operands), async-outputs, state)."); return nullptr; } if (!operands[0]->IsAsynchronous()) { TokenError( "AsyncUpdate and AsyncDone expect their operand to be the " "previous async op."); return nullptr; } } optional<std::string> async_execution_thread; attrs["async_execution_thread"] = {false, AttrTy::kString, &async_execution_thread}; if (async_wrapped_opcode) { if (opcode == HloOpcode::kAsyncStart) { std::vector<HloInstruction*> async_wrapped_operands; std::vector<Shape> async_wrapped_operand_shapes; Shape async_wrapped_root_shape; async_wrapped_operand_shapes.reserve(operands.size()); for (const HloInstruction* operand : operands) { async_wrapped_operand_shapes.push_back(operand->shape()); } async_wrapped_root_shape = shape->tuple_shapes(1); HloComputation::Builder async_wrapped_builder("async_wrapped"); async_wrapped_operands.reserve(async_wrapped_operand_shapes.size()); for (int i = 0; i < async_wrapped_operand_shapes.size(); ++i) { async_wrapped_operands.push_back( async_wrapped_builder.AddInstruction( HloInstruction::CreateParameter( i, async_wrapped_operand_shapes.at(i), "async_param"))); } HloInstruction* root = CreateInstruction(&async_wrapped_builder, "async_op", async_wrapped_root_shape, *async_wrapped_opcode, std::nullopt, attrs, allow_attributes, &async_wrapped_operands); if (!root) { return nullptr; } computations_.emplace_back(async_wrapped_builder.Build(root)); async_computation = computations_.back().get(); } else { if (operands[0]->async_wrapped_opcode() != *async_wrapped_opcode) { TokenError( StrFormat("Expect async wrapped opcode to be %s, but got %s", HloOpcodeString(operands[0]->async_wrapped_opcode()), HloOpcodeString(*async_wrapped_opcode))); return nullptr; } } } else { attrs["calls"] = {opcode == HloOpcode::kAsyncStart, AttrTy::kHloComputation, &async_computation}; } if (!(async_wrapped_opcode && opcode == HloOpcode::kAsyncStart)) { if (!ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } } if (opcode == HloOpcode::kAsyncUpdate || opcode == HloOpcode::kAsyncDone) { if (async_execution_thread && operands[0]->async_execution_thread() != *async_execution_thread) { TokenError(StrFormat( "Expect async_execution_thread to be %s, but got %s", operands[0]->async_execution_thread(), *async_execution_thread)); return nullptr; } if (async_computation && operands[0]->async_wrapped_computation() != *async_computation) { TokenError( StrFormat("Expect async_wrapped_computation to be %s, but got %s", operands[0]->async_wrapped_computation()->name(), (*async_computation)->name())); return nullptr; } } if (opcode == HloOpcode::kAsyncStart && (*async_computation)->IsAsyncComputation()) { TokenError(StrFormat( "Computation %s is already referenced by another async op", (*async_computation)->name())); return nullptr; } if (opcode == HloOpcode::kAsyncStart) { if (!async_execution_thread) { async_execution_thread = HloInstruction::kMainExecutionThread; } return builder->AddInstruction(HloInstruction::CreateAsyncStart( *shape, operands, *async_computation, *async_execution_thread)); } if (opcode == HloOpcode::kAsyncUpdate) { return builder->AddInstruction( HloInstruction::CreateAsyncUpdate(*shape, operands[0])); } return builder->AddInstruction( HloInstruction::CreateAsyncDone(*shape, operands[0])); } case HloOpcode::kCopyStart: { optional<int> cross_program_prefetch_index = std::nullopt; attrs["cross_program_prefetch_index"] = { false, AttrTy::kInt32, &cross_program_prefetch_index}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateCopyStart( *shape, operands[0], cross_program_prefetch_index)); } case HloOpcode::kReplicaId: { if ((!preset_operands && !ParseOperands(&operands, builder, 0)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (shape.has_value()) { return builder->AddInstruction(HloInstruction::CreateReplicaId(*shape)); } return builder->AddInstruction(HloInstruction::CreateReplicaId()); } case HloOpcode::kPartitionId: { if ((!preset_operands && !ParseOperands(&operands, builder, 0)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (shape.has_value()) { return builder->AddInstruction( HloInstruction::CreatePartitionId(*shape)); } return builder->AddInstruction(HloInstruction::CreatePartitionId()); } case HloOpcode::kDynamicReshape: { if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateDynamicReshape( *shape, operands[0], absl::Span<HloInstruction* const>(operands).subspan(1))); } case HloOpcode::kReshape: { optional<int64_t> inferred_dimension; attrs["inferred_dimension"] = {false, AttrTy::kInt64, &inferred_dimension}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateReshape( *shape, operands[0], inferred_dimension.value_or(-1))); } case HloOpcode::kAfterAll: { if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (operands.empty()) { return builder->AddInstruction(HloInstruction::CreateToken()); } return builder->AddInstruction(HloInstruction::CreateAfterAll(operands)); } case HloOpcode::kAddDependency: { if ((!preset_operands && !ParseOperands(&operands, builder, 2)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateAddDependency(operands[0], operands[1])); } case HloOpcode::kSort: { optional<std::vector<int64_t>> dimensions; attrs["dimensions"] = {true, AttrTy::kBracedInt64List, &dimensions}; optional<bool> is_stable = false; attrs["is_stable"] = {false, AttrTy::kBool, &is_stable}; optional<HloComputation*> to_apply; attrs["to_apply"] = {true, AttrTy::kHloComputation, &to_apply}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape) || dimensions->size() != 1) { return nullptr; } if (!maybe_infer_shape([&] { absl::InlinedVector<const Shape*, 2> arg_shapes; arg_shapes.reserve(operands.size()); for (auto* operand : operands) { arg_shapes.push_back(&operand->shape()); } return ShapeInference::InferVariadicOpShape(opcode, arg_shapes); })) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateSort(*shape, dimensions->at(0), operands, to_apply.value(), is_stable.value())); } case HloOpcode::kTuple: { if ((!preset_operands && !(shape.has_value() ? ParseOperands(&operands, builder, shape->tuple_shapes_size()) : ParseOperands(&operands, builder))) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { absl::InlinedVector<const Shape*, 2> arg_shapes; arg_shapes.reserve(operands.size()); for (auto* operand : operands) { arg_shapes.push_back(&operand->shape()); } return ShapeInference::InferVariadicOpShape(opcode, arg_shapes); })) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateVariadic(*shape, HloOpcode::kTuple, operands)); } case HloOpcode::kWhile: { optional<HloComputation*> condition; optional<HloComputation*> body; attrs["condition"] = {true, AttrTy::kHloComputation, &condition}; attrs["body"] = {true, AttrTy::kHloComputation, &body}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferWhileShape( condition.value()->ComputeProgramShape(), body.value()->ComputeProgramShape(), operands[0]->shape()); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateWhile( *shape, *condition, *body, operands[0])); } case HloOpcode::kRecv: { optional<int64_t> channel_id; optional<bool> is_host_transfer = false; attrs["channel_id"] = {true, AttrTy::kInt64, &channel_id}; attrs["is_host_transfer"] = {false, AttrTy::kBool, &is_host_transfer}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateRecv( shape->tuple_shapes(0), operands[0], *channel_id, *is_host_transfer)); } case HloOpcode::kRecvDone: { optional<int64_t> channel_id; optional<bool> is_host_transfer = false; attrs["channel_id"] = {true, AttrTy::kInt64, &channel_id}; attrs["is_host_transfer"] = {false, AttrTy::kBool, &is_host_transfer}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (dynamic_cast<const HloChannelInstruction*>(operands[0]) != nullptr) { if (channel_id != operands[0]->channel_id()) { return nullptr; } } return builder->AddInstruction(HloInstruction::CreateRecvDone( operands[0], channel_id.value(), *is_host_transfer)); } case HloOpcode::kSend: { optional<int64_t> channel_id; optional<bool> is_host_transfer = false; attrs["channel_id"] = {true, AttrTy::kInt64, &channel_id}; attrs["is_host_transfer"] = {false, AttrTy::kBool, &is_host_transfer}; if ((!preset_operands && !ParseOperands(&operands, builder, 2)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateSend( operands[0], operands[1], *channel_id, *is_host_transfer)); } case HloOpcode::kSendDone: { optional<int64_t> channel_id; optional<bool> is_host_transfer = false; attrs["channel_id"] = {true, AttrTy::kInt64, &channel_id}; attrs["is_host_transfer"] = {false, AttrTy::kBool, &is_host_transfer}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (dynamic_cast<const HloChannelInstruction*>(operands[0]) != nullptr) { if (channel_id != operands[0]->channel_id()) { return nullptr; } } return builder->AddInstruction(HloInstruction::CreateSendDone( operands[0], channel_id.value(), *is_host_transfer)); } case HloOpcode::kGetTupleElement: { optional<int64_t> index; attrs["index"] = {true, AttrTy::kInt64, &index}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeUtil::GetTupleElementShape(operands[0]->shape(), *index); })) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateGetTupleElement(*shape, operands[0], *index)); } case HloOpcode::kCall: { optional<HloComputation*> to_apply; optional<bool> is_composite = false; attrs["to_apply"] = {true, AttrTy::kHloComputation, &to_apply}; attrs["is_composite"] = {false, AttrTy::kBool, &is_composite}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { absl::InlinedVector<const Shape*, 2> arg_shapes; arg_shapes.reserve(operands.size()); for (auto* operand : operands) { arg_shapes.push_back(&operand->shape()); } return ShapeInference::InferCallShape( arg_shapes, to_apply.value()->ComputeProgramShape()); })) { return nullptr; } auto call_op = HloInstruction::CreateCall(*shape, operands, *to_apply); call_op->set_is_composite(is_composite.value()); return builder->AddInstruction(std::move(call_op)); } case HloOpcode::kReduceWindow: { optional<HloComputation*> reduce_computation; optional<Window> window; attrs["window"] = {false, AttrTy::kWindow, &window}; attrs["to_apply"] = {true, AttrTy::kHloComputation, &reduce_computation}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!window) { window.emplace(); } if (operands.size() % 2) { TokenError(StrCat("expects an even number of operands, but has ", operands.size(), " operands")); return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferReduceWindowShape( operands[0]->shape(), operands[1]->shape(), *window, reduce_computation.value()->ComputeProgramShape()); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateReduceWindow( *shape, absl::Span<HloInstruction* const>(operands).subspan( 0, operands.size() / 2), absl::Span<HloInstruction* const>(operands).subspan(operands.size() / 2), *window, *reduce_computation)); } case HloOpcode::kConvolution: { optional<Window> window; optional<ConvolutionDimensionNumbers> dnums; optional<int64_t> feature_group_count; optional<int64_t> batch_group_count; attrs["window"] = {false, AttrTy::kWindow, &window}; attrs["dim_labels"] = {true, AttrTy::kConvolutionDimensionNumbers, &dnums}; attrs["feature_group_count"] = {false, AttrTy::kInt64, &feature_group_count}; attrs["batch_group_count"] = {false, AttrTy::kInt64, &batch_group_count}; optional<std::vector<PrecisionConfig::Precision>> operand_precision; attrs["operand_precision"] = {false, AttrTy::kPrecisionList, &operand_precision}; if ((!preset_operands && !ParseOperands(&operands, builder, 2)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!window) { window.emplace(); } if (!feature_group_count) { feature_group_count = 1; } if (!batch_group_count) { batch_group_count = 1; } PrecisionConfig precision_config; if (operand_precision) { *precision_config.mutable_operand_precision() = { operand_precision->begin(), operand_precision->end()}; } else { precision_config.mutable_operand_precision()->Resize( operands.size(), PrecisionConfig::DEFAULT); } if (!maybe_infer_shape([&] { return ShapeInference::InferConvolveShape( operands[0]->shape(), operands[1]->shape(), *feature_group_count, *batch_group_count, *window, *dnums, std::nullopt); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateConvolve( *shape, operands[0], operands[1], feature_group_count.value(), batch_group_count.value(), *window, *dnums, precision_config)); } case HloOpcode::kFft: { optional<FftType> fft_type; optional<std::vector<int64_t>> fft_length; attrs["fft_type"] = {true, AttrTy::kFftType, &fft_type}; attrs["fft_length"] = {true, AttrTy::kBracedInt64List, &fft_length}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferFftShape(operands[0]->shape(), *fft_type, *fft_length); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateFft( *shape, operands[0], *fft_type, *fft_length)); } case HloOpcode::kTriangularSolve: { TriangularSolveOptions options; if ((!preset_operands && !ParseOperands(&operands, builder, 2)) || (allow_attributes && !ParseAttributesAsProtoMessage( attrs, &options))) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferTriangularSolveShape( operands[0]->shape(), operands[1]->shape(), options); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateTriangularSolve( *shape, operands[0], operands[1], options)); } case HloOpcode::kCompare: { optional<ComparisonDirection> direction; optional<Comparison::Type> type; attrs["direction"] = {true, AttrTy::kComparisonDirection, &direction}; attrs["type"] = {false, AttrTy::kComparisonType, &type}; if ((!preset_operands && !ParseOperands(&operands, builder, 2)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferBinaryOpShape(opcode, operands[0], operands[1]); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateCompare( *shape, operands[0], operands[1], *direction, type)); } case HloOpcode::kCholesky: { CholeskyOptions options; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || (allow_attributes && !ParseAttributesAsProtoMessage( attrs, &options))) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferCholeskyShape(operands[0]->shape()); })) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateCholesky(*shape, operands[0], options)); } case HloOpcode::kBroadcast: { if (!preset_operands && !ParseOperands(&operands, builder, 1)) { return nullptr; } bool operand_is_scalar = ShapeUtil::IsScalar(operands[0]->shape()); optional<std::vector<int64_t>> broadcast_dimensions; attrs["dimensions"] = {!operand_is_scalar, AttrTy::kBracedInt64List, &broadcast_dimensions}; if (!ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (operand_is_scalar && !broadcast_dimensions.has_value()) { broadcast_dimensions.emplace(); } if (!maybe_infer_shape([&] { return ShapeInference::InferBroadcastShape(operands[0]->shape(), *broadcast_dimensions); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateBroadcast( *shape, operands[0], *broadcast_dimensions)); } case HloOpcode::kConcatenate: { optional<std::vector<int64_t>> dimensions; attrs["dimensions"] = {true, AttrTy::kBracedInt64List, &dimensions}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape) || dimensions->size() != 1) { return nullptr; } if (!maybe_infer_shape([&] { absl::InlinedVector<const Shape*, 2> arg_shapes; arg_shapes.reserve(operands.size()); for (auto* operand : operands) { arg_shapes.push_back(&operand->shape()); } return ShapeInference::InferConcatOpShape(arg_shapes, dimensions->at(0)); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateConcatenate( *shape, operands, dimensions->at(0))); } case HloOpcode::kMap: { optional<HloComputation*> to_apply; attrs["to_apply"] = {true, AttrTy::kHloComputation, &to_apply}; optional<std::vector<int64_t>> dimensions; attrs["dimensions"] = {false, AttrTy::kBracedInt64List, &dimensions}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { absl::InlinedVector<const Shape*, 2> arg_shapes; arg_shapes.reserve(operands.size()); for (auto* operand : operands) { arg_shapes.push_back(&operand->shape()); } return ShapeInference::InferMapShape( arg_shapes, to_apply.value()->ComputeProgramShape(), *dimensions); })) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateMap(*shape, operands, *to_apply)); } case HloOpcode::kReduce: { optional<HloComputation*> reduce_computation; attrs["to_apply"] = {true, AttrTy::kHloComputation, &reduce_computation}; optional<std::vector<int64_t>> dimensions_to_reduce; attrs["dimensions"] = {true, AttrTy::kBracedInt64List, &dimensions_to_reduce}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (operands.size() % 2) { TokenError(StrCat("expects an even number of operands, but has ", operands.size(), " operands")); return nullptr; } if (!maybe_infer_shape([&] { absl::InlinedVector<const Shape*, 2> arg_shapes; arg_shapes.reserve(operands.size()); for (auto* operand : operands) { arg_shapes.push_back(&operand->shape()); } return ShapeInference::InferReduceShape( arg_shapes, *dimensions_to_reduce, reduce_computation.value()->ComputeProgramShape()); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateReduce( *shape, absl::Span<HloInstruction* const>(operands).subspan( 0, operands.size() / 2), absl::Span<HloInstruction* const>(operands).subspan(operands.size() / 2), *dimensions_to_reduce, *reduce_computation)); } case HloOpcode::kReverse: { optional<std::vector<int64_t>> dimensions; attrs["dimensions"] = {true, AttrTy::kBracedInt64List, &dimensions}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferReverseShape(operands[0]->shape(), *dimensions); })) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateReverse(*shape, operands[0], *dimensions)); } case HloOpcode::kSelectAndScatter: { optional<HloComputation*> select; attrs["select"] = {true, AttrTy::kHloComputation, &select}; optional<HloComputation*> scatter; attrs["scatter"] = {true, AttrTy::kHloComputation, &scatter}; optional<Window> window; attrs["window"] = {false, AttrTy::kWindow, &window}; if ((!preset_operands && !ParseOperands(&operands, builder, 3)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!window) { window.emplace(); } if (!maybe_infer_shape([&] { return ShapeInference::InferSelectAndScatterShape( operands[0]->shape(), select.value()->ComputeProgramShape(), *window, operands[1]->shape(), operands[2]->shape(), scatter.value()->ComputeProgramShape()); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateSelectAndScatter( *shape, operands[0], *select, *window, operands[1], operands[2], *scatter)); } case HloOpcode::kSlice: { optional<SliceRanges> slice_ranges; attrs["slice"] = {true, AttrTy::kSliceRanges, &slice_ranges}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateSlice( *shape, operands[0], slice_ranges->starts, slice_ranges->limits, slice_ranges->strides)); } case HloOpcode::kDynamicSlice: { optional<std::vector<int64_t>> dynamic_slice_sizes; attrs["dynamic_slice_sizes"] = { true, AttrTy::kBracedInt64List, &dynamic_slice_sizes}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (operands.empty()) { TokenError("Expected at least one operand."); return nullptr; } if (!(operands.size() == 2 && operands[1]->shape().rank() == 1) && operands.size() != 1 + operands[0]->shape().rank()) { TokenError("Wrong number of operands."); return nullptr; } return builder->AddInstruction(HloInstruction::CreateDynamicSlice( *shape, operands[0], absl::MakeSpan(operands).subspan(1), *dynamic_slice_sizes)); } case HloOpcode::kDynamicUpdateSlice: { if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (operands.size() < 2) { TokenError("Expected at least two operands."); return nullptr; } if (!(operands.size() == 3 && operands[2]->shape().rank() == 1) && operands.size() != 2 + operands[0]->shape().rank()) { TokenError("Wrong number of operands."); return nullptr; } return builder->AddInstruction(HloInstruction::CreateDynamicUpdateSlice( *shape, operands[0], operands[1], absl::MakeSpan(operands).subspan(2))); } case HloOpcode::kTranspose: { optional<std::vector<int64_t>> dimensions; attrs["dimensions"] = {true, AttrTy::kBracedInt64List, &dimensions}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferTransposeShape(operands[0]->shape(), *dimensions); })) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateTranspose(*shape, operands[0], *dimensions)); } case HloOpcode::kBatchNormTraining: { optional<float> epsilon; attrs["epsilon"] = {true, AttrTy::kFloat, &epsilon}; optional<int64_t> feature_index; attrs["feature_index"] = {true, AttrTy::kInt64, &feature_index}; if ((!preset_operands && !ParseOperands(&operands, builder, 3)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferBatchNormTrainingShape( operands[0]->shape(), operands[1]->shape(), operands[2]->shape(), *feature_index); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateBatchNormTraining( *shape, operands[0], operands[1], operands[2], *epsilon, *feature_index)); } case HloOpcode::kBatchNormInference: { optional<float> epsilon; attrs["epsilon"] = {true, AttrTy::kFloat, &epsilon}; optional<int64_t> feature_index; attrs["feature_index"] = {true, AttrTy::kInt64, &feature_index}; if ((!preset_operands && !ParseOperands(&operands, builder, 5)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferBatchNormInferenceShape( operands[0]->shape(), operands[1]->shape(), operands[2]->shape(), operands[3]->shape(), operands[4]->shape(), *feature_index); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateBatchNormInference( *shape, operands[0], operands[1], operands[2], operands[3], operands[4], *epsilon, *feature_index)); } case HloOpcode::kBatchNormGrad: { optional<float> epsilon; attrs["epsilon"] = {true, AttrTy::kFloat, &epsilon}; optional<int64_t> feature_index; attrs["feature_index"] = {true, AttrTy::kInt64, &feature_index}; if ((!preset_operands && !ParseOperands(&operands, builder, 5)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferBatchNormGradShape( operands[0]->shape(), operands[1]->shape(), operands[2]->shape(), operands[3]->shape(), operands[4]->shape(), *feature_index); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateBatchNormGrad( *shape, operands[0], operands[1], operands[2], operands[3], operands[4], *epsilon, *feature_index)); } case HloOpcode::kPad: { optional<PaddingConfig> padding; attrs["padding"] = {true, AttrTy::kPaddingConfig, &padding}; if ((!preset_operands && !ParseOperands(&operands, builder, 2)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferPadShape( operands[0]->shape(), operands[1]->shape(), *padding); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreatePad( *shape, operands[0], operands[1], *padding)); } case HloOpcode::kFusion: { optional<HloComputation*> fusion_computation; attrs["calls"] = {true, AttrTy::kHloComputation, &fusion_computation}; optional<HloInstruction::FusionKind> fusion_kind; attrs["kind"] = {true, AttrTy::kFusionKind, &fusion_kind}; optional< std::vector<std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>>> output_to_operand_aliasing; attrs["output_to_operand_aliasing"] = {false, AttrTy::kInstructionAliasing, &output_to_operand_aliasing}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } auto instr = builder->AddInstruction(HloInstruction::CreateFusion( *shape, *fusion_kind, operands, *fusion_computation)); auto fusion_instr = Cast<HloFusionInstruction>(instr); if (output_to_operand_aliasing.has_value()) { fusion_instr->set_output_to_operand_aliasing( std::move(*output_to_operand_aliasing)); } return instr; } case HloOpcode::kInfeed: { optional<std::string> config; attrs["infeed_config"] = {false, AttrTy::kString, &config}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!shape->IsTuple() && !ShapeUtil::IsEmptyTuple(*shape)) { TokenError("infeed must have a non-empty tuple shape"); return nullptr; } return builder->AddInstruction(HloInstruction::CreateInfeed( ShapeUtil::GetTupleElementShape(*shape, 0), operands[0], config ? *config : "")); } case HloOpcode::kOutfeed: { optional<std::string> config; optional<Shape> outfeed_shape; attrs["outfeed_config"] = {false, AttrTy::kString, &config}; attrs["outfeed_shape"] = {false, AttrTy::kShape, &outfeed_shape}; if ((!preset_operands && !ParseOperands(&operands, builder, 2)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } HloInstruction* const outfeed_input = operands[0]; HloInstruction* const outfeed_token = operands[1]; const Shape shape = outfeed_shape.has_value() ? *outfeed_shape : outfeed_input->shape(); return builder->AddInstruction(HloInstruction::CreateOutfeed( shape, outfeed_input, outfeed_token, config ? *config : "")); } case HloOpcode::kRng: { optional<RandomDistribution> distribution; attrs["distribution"] = {true, AttrTy::kDistribution, &distribution}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateRng(*shape, *distribution, operands)); } case HloOpcode::kRngGetAndUpdateState: { optional<int64_t> delta; attrs["delta"] = {true, AttrTy::kInt64, &delta}; if ((!preset_operands && !ParseOperands(&operands, builder, 0)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction( HloInstruction::CreateRngGetAndUpdateState(*shape, *delta)); } case HloOpcode::kRngBitGenerator: { optional<RandomAlgorithm> algorithm; attrs["algorithm"] = {true, AttrTy::kRandomAlgorithm, &algorithm}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateRngBitGenerator( *shape, operands[0], *algorithm)); } case HloOpcode::kReducePrecision: { optional<int64_t> exponent_bits; optional<int64_t> mantissa_bits; attrs["exponent_bits"] = {true, AttrTy::kInt64, &exponent_bits}; attrs["mantissa_bits"] = {true, AttrTy::kInt64, &mantissa_bits}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateReducePrecision( *shape, operands[0], static_cast<int>(*exponent_bits), static_cast<int>(*mantissa_bits))); } case HloOpcode::kConditional: { optional<HloComputation*> true_computation; optional<HloComputation*> false_computation; optional<std::vector<HloComputation*>> branch_computations; if (!preset_operands && !ParseOperands(&operands, builder)) { return nullptr; } if (!ShapeUtil::IsScalar(operands[0]->shape())) { TokenError("The first operand must be a scalar"); return nullptr; } const bool branch_index_is_bool = operands[0]->shape().element_type() == PRED; if (branch_index_is_bool) { attrs["true_computation"] = {true, AttrTy::kHloComputation, &true_computation}; attrs["false_computation"] = { true, AttrTy::kHloComputation, &false_computation}; } else { if (operands[0]->shape().element_type() != S32) { TokenError("The first operand must be a scalar of PRED or S32"); return nullptr; } attrs["branch_computations"] = {true, AttrTy::kBracedHloComputationList, &branch_computations}; } if (!ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (branch_index_is_bool) { branch_computations.emplace({*true_computation, *false_computation}); } if (branch_computations->empty() || operands.size() != branch_computations->size() + 1) { return nullptr; } if (!maybe_infer_shape([&] { absl::InlinedVector<ProgramShape, 2> branch_computation_shapes; branch_computation_shapes.reserve(branch_computations->size()); for (auto* computation : *branch_computations) { branch_computation_shapes.push_back( computation->ComputeProgramShape()); } absl::InlinedVector<Shape, 2> branch_operand_shapes; branch_operand_shapes.reserve(operands.size() - 1); for (int i = 1; i < operands.size(); ++i) { branch_operand_shapes.push_back(operands[i]->shape()); } return ShapeInference::InferConditionalShape( operands[0]->shape(), branch_computation_shapes, branch_operand_shapes); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateConditional( *shape, operands[0], absl::MakeSpan(*branch_computations), absl::MakeSpan(operands).subspan(1))); } case HloOpcode::kCustomCall: { optional<std::string> custom_call_target; optional<Window> window; optional<ConvolutionDimensionNumbers> dnums; optional<int64_t> feature_group_count; optional<int64_t> batch_group_count; optional<std::vector<Shape>> operand_layout_constraints; optional<bool> custom_call_has_side_effect; optional<HloComputation*> to_apply; optional< std::vector<std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>>> output_to_operand_aliasing; optional<PaddingType> padding_type; optional<std::vector<HloComputation*>> called_computations; optional<CustomCallSchedule> custom_call_schedule; optional<CustomCallApiVersion> api_version; attrs["custom_call_target"] = {true, AttrTy::kString, &custom_call_target}; attrs["window"] = {false, AttrTy::kWindow, &window}; attrs["dim_labels"] = {false, AttrTy::kConvolutionDimensionNumbers, &dnums}; attrs["feature_group_count"] = {false, AttrTy::kInt64, &feature_group_count}; attrs["batch_group_count"] = {false, AttrTy::kInt64, &batch_group_count}; attrs["operand_layout_constraints"] = { false, AttrTy::kShapeList, &operand_layout_constraints}; attrs["custom_call_has_side_effect"] = {false, AttrTy::kBool, &custom_call_has_side_effect}; attrs["to_apply"] = {false, AttrTy::kHloComputation, &to_apply}; attrs["called_computations"] = {false, AttrTy::kBracedHloComputationList, &called_computations}; attrs["output_to_operand_aliasing"] = {false, AttrTy::kInstructionAliasing, &output_to_operand_aliasing}; attrs["padding_type"] = {false, AttrTy::kPaddingType, &padding_type}; optional<Literal> literal; attrs["literal"] = {false, AttrTy::kLiteral, &literal}; optional<std::vector<PrecisionConfig::Precision>> operand_precision; attrs["operand_precision"] = {false, AttrTy::kPrecisionList, &operand_precision}; HloInstruction* instruction; if (called_computations.has_value() && to_apply.has_value()) { TokenError( "A single instruction can't have both to_apply and " "calls field"); return nullptr; } attrs["schedule"] = {false, AttrTy::kCustomCallSchedule, &custom_call_schedule}; attrs["api_version"] = {false, AttrTy::kCustomCallApiVersion, &api_version}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (api_version.has_value() && *api_version == CustomCallApiVersion::API_VERSION_UNSPECIFIED) { TokenError(StrCat("Invalid API version: ", CustomCallApiVersion_Name(*api_version))); return nullptr; } if (operand_layout_constraints.has_value()) { if (!LayoutUtil::HasLayout(*shape)) { TokenError("Layout must be set on layout-constrained custom call"); return nullptr; } if (operands.size() != operand_layout_constraints->size()) { TokenError(StrCat("Expected ", operands.size(), " operand layout constraints, ", operand_layout_constraints->size(), " given")); return nullptr; } for (int64_t i = 0; i < operands.size(); ++i) { const Shape& operand_shape_with_layout = (*operand_layout_constraints)[i]; if (!LayoutUtil::HasLayout(operand_shape_with_layout)) { TokenError(StrCat( "Operand layout constraint shape ", ShapeUtil::HumanStringWithLayout(operand_shape_with_layout), " for operand ", i, " does not have a layout")); return nullptr; } if (!ShapeUtil::Compatible(operand_shape_with_layout, operands[i]->shape())) { TokenError(StrCat( "Operand layout constraint shape ", ShapeUtil::HumanStringWithLayout(operand_shape_with_layout), " for operand ", i, " is not compatible with operand shape ", ShapeUtil::HumanStringWithLayout(operands[i]->shape()))); return nullptr; } } instruction = builder->AddInstruction(HloInstruction::CreateCustomCall( *shape, operands, *custom_call_target, *operand_layout_constraints, "")); } else { if (to_apply.has_value()) { instruction = builder->AddInstruction(HloInstruction::CreateCustomCall( *shape, operands, *to_apply, *custom_call_target, "")); } else if (called_computations.has_value()) { instruction = builder->AddInstruction(HloInstruction::CreateCustomCall( *shape, operands, *called_computations, *custom_call_target, "")); } else { instruction = builder->AddInstruction(HloInstruction::CreateCustomCall( *shape, operands, *custom_call_target, "")); } } auto custom_call_instr = Cast<HloCustomCallInstruction>(instruction); if (window.has_value()) { custom_call_instr->set_window(*window); } if (dnums.has_value()) { custom_call_instr->set_convolution_dimension_numbers(*dnums); } if (feature_group_count.has_value()) { custom_call_instr->set_feature_group_count(*feature_group_count); } if (batch_group_count.has_value()) { custom_call_instr->set_batch_group_count(*batch_group_count); } if (padding_type.has_value()) { custom_call_instr->set_padding_type(*padding_type); } if (custom_call_has_side_effect.has_value()) { custom_call_instr->set_custom_call_has_side_effect( *custom_call_has_side_effect); } if (custom_call_schedule.has_value()) { custom_call_instr->set_custom_call_schedule(*custom_call_schedule); } if (api_version.has_value()) { custom_call_instr->set_api_version(*api_version); } if (output_to_operand_aliasing.has_value()) { custom_call_instr->set_output_to_operand_aliasing( std::move(*output_to_operand_aliasing)); } if (literal.has_value()) { custom_call_instr->set_literal(std::move(*literal)); } PrecisionConfig precision_config; if (operand_precision) { *precision_config.mutable_operand_precision() = { operand_precision->begin(), operand_precision->end()}; } else { precision_config.mutable_operand_precision()->Resize( operands.size(), PrecisionConfig::DEFAULT); } *custom_call_instr->mutable_precision_config() = precision_config; return instruction; } case HloOpcode::kDot: { optional<std::vector<int64_t>> lhs_contracting_dims; attrs["lhs_contracting_dims"] = { false, AttrTy::kBracedInt64List, &lhs_contracting_dims}; optional<std::vector<int64_t>> rhs_contracting_dims; attrs["rhs_contracting_dims"] = { false, AttrTy::kBracedInt64List, &rhs_contracting_dims}; optional<std::vector<int64_t>> lhs_batch_dims; attrs["lhs_batch_dims"] = {false, AttrTy::kBracedInt64List, &lhs_batch_dims}; optional<std::vector<int64_t>> rhs_batch_dims; attrs["rhs_batch_dims"] = {false, AttrTy::kBracedInt64List, &rhs_batch_dims}; optional<std::vector<PrecisionConfig::Precision>> operand_precision; attrs["operand_precision"] = {false, AttrTy::kPrecisionList, &operand_precision}; std::vector<SparsityDescriptor> sparsity; attrs["sparsity"] = {false, AttrTy::kSparsityDescriptor, &sparsity}; optional<PrecisionConfig::Algorithm> algorithm; attrs["algorithm"] = {false, AttrTy::kPrecisionAlgorithm, &algorithm}; LocTy loc = lexer_.GetLoc(); if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } int expected_size = HloDotInstruction::kOperands + sparsity.size(); if (sparsity.size() > HloDotInstruction::kOperands) { Error(loc, StrCat("too many sparse dot descriptors: ", sparsity.size())); return nullptr; } if (operands.size() != expected_size) { Error(loc, StrCat("expects ", expected_size, " operands, but has ", operands.size(), " operands")); return nullptr; } DotDimensionNumbers dnum; if (lhs_contracting_dims) { *dnum.mutable_lhs_contracting_dimensions() = { lhs_contracting_dims->begin(), lhs_contracting_dims->end()}; } if (rhs_contracting_dims) { *dnum.mutable_rhs_contracting_dimensions() = { rhs_contracting_dims->begin(), rhs_contracting_dims->end()}; } if (lhs_batch_dims) { *dnum.mutable_lhs_batch_dimensions() = {lhs_batch_dims->begin(), lhs_batch_dims->end()}; } if (rhs_batch_dims) { *dnum.mutable_rhs_batch_dimensions() = {rhs_batch_dims->begin(), rhs_batch_dims->end()}; } PrecisionConfig precision_config; if (operand_precision) { *precision_config.mutable_operand_precision() = { operand_precision->begin(), operand_precision->end()}; } else { precision_config.mutable_operand_precision()->Resize( HloDotInstruction::kOperands, PrecisionConfig::DEFAULT); } if (algorithm) { precision_config.set_algorithm(*algorithm); } if (!maybe_infer_shape([&] { return ShapeInference::InferDotOpShape( operands[0]->shape(), operands[1]->shape(), dnum, std::nullopt, sparsity); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateDot( *shape, operands[0], operands[1], dnum, precision_config, sparsity, absl::MakeSpan(operands).subspan(HloDotInstruction::kOperands))); } case HloOpcode::kGather: { optional<std::vector<int64_t>> offset_dims; attrs["offset_dims"] = {true, AttrTy::kBracedInt64List, &offset_dims}; optional<std::vector<int64_t>> collapsed_slice_dims; attrs["collapsed_slice_dims"] = { true, AttrTy::kBracedInt64List, &collapsed_slice_dims}; optional<std::vector<int64_t>> start_index_map; attrs["start_index_map"] = {true, AttrTy::kBracedInt64List, &start_index_map}; optional<int64_t> index_vector_dim; attrs["index_vector_dim"] = {true, AttrTy::kInt64, &index_vector_dim}; optional<std::vector<int64_t>> slice_sizes; attrs["slice_sizes"] = {true, AttrTy::kBracedInt64List, &slice_sizes}; optional<bool> indices_are_sorted = false; attrs["indices_are_sorted"] = {false, AttrTy::kBool, &indices_are_sorted}; optional<std::vector<int64_t>> operand_batching_dims; attrs["operand_batching_dims"] = { false, AttrTy::kBracedInt64List, &operand_batching_dims}; optional<std::vector<int64_t>> start_indices_batching_dims; attrs["start_indices_batching_dims"] = {false, AttrTy::kBracedInt64List, &start_indices_batching_dims}; if ((!preset_operands && !ParseOperands(&operands, builder, 2)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } GatherDimensionNumbers dim_numbers = HloGatherInstruction::MakeGatherDimNumbers( *offset_dims, *collapsed_slice_dims, *start_index_map, *index_vector_dim, operand_batching_dims ? *operand_batching_dims : std::vector<int64_t>(), start_indices_batching_dims ? *start_indices_batching_dims : std::vector<int64_t>()); if (!maybe_infer_shape([&] { return ShapeInference::InferGatherShape(operands[0]->shape(), operands[1]->shape(), dim_numbers, *slice_sizes); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateGather( *shape, operands[0], operands[1], dim_numbers, *slice_sizes, indices_are_sorted.value())); } case HloOpcode::kScatter: { optional<std::vector<int64_t>> update_window_dims; attrs["update_window_dims"] = { true, AttrTy::kBracedInt64List, &update_window_dims}; optional<std::vector<int64_t>> inserted_window_dims; attrs["inserted_window_dims"] = { true, AttrTy::kBracedInt64List, &inserted_window_dims}; optional<std::vector<int64_t>> scatter_dims_to_operand_dims; attrs["scatter_dims_to_operand_dims"] = {true, AttrTy::kBracedInt64List, &scatter_dims_to_operand_dims}; optional<int64_t> index_vector_dim; attrs["index_vector_dim"] = {true, AttrTy::kInt64, &index_vector_dim}; optional<HloComputation*> update_computation; attrs["to_apply"] = {true, AttrTy::kHloComputation, &update_computation}; optional<bool> indices_are_sorted = false; attrs["indices_are_sorted"] = {false, AttrTy::kBool, &indices_are_sorted}; optional<bool> unique_indices = false; attrs["unique_indices"] = {false, AttrTy::kBool, &unique_indices}; optional<std::vector<int64_t>> input_batching_dims; attrs["input_batching_dims"] = { false, AttrTy::kBracedInt64List, &input_batching_dims}; optional<std::vector<int64_t>> scatter_indices_batching_dims; attrs["scatter_indices_batching_dims"] = {false, AttrTy::kBracedInt64List, &scatter_indices_batching_dims}; if ((!preset_operands && !ParseOperands(&operands, builder)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (operands.size() % 2 == 0) { TokenError(StrCat("expects an odd number of operands, but has ", operands.size(), " operands")); return nullptr; } ScatterDimensionNumbers dim_numbers = HloScatterInstruction::MakeScatterDimNumbers( *update_window_dims, *inserted_window_dims, *scatter_dims_to_operand_dims, *index_vector_dim, input_batching_dims ? *input_batching_dims : std::vector<int64_t>(), scatter_indices_batching_dims ? *scatter_indices_batching_dims : std::vector<int64_t>()); if (!maybe_infer_shape([&] { absl::InlinedVector<const Shape*, 3> arg_shapes; arg_shapes.reserve(operands.size()); for (auto* operand : operands) { arg_shapes.push_back(&operand->shape()); } return ShapeInference::InferScatterShape( arg_shapes, update_computation.value()->ComputeProgramShape(), dim_numbers); })) { return nullptr; } auto input_count = operands.size() / 2; auto operand_span = absl::MakeConstSpan(operands); return builder->AddInstruction(HloInstruction::CreateScatter( *shape, operand_span.first(input_count), operands[input_count], operand_span.last(input_count), *update_computation, dim_numbers, indices_are_sorted.value(), unique_indices.value())); } case HloOpcode::kDomain: { DomainData domain; attrs["domain"] = {true, AttrTy::kDomain, &domain}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferUnaryOpShape(opcode, operands[0]); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateDomain( *shape, operands[0], std::move(domain.exit_metadata), std::move(domain.entry_metadata))); } case HloOpcode::kGetDimensionSize: { optional<std::vector<int64_t>> dimensions; attrs["dimensions"] = {true, AttrTy::kBracedInt64List, &dimensions}; if ((!preset_operands && !ParseOperands(&operands, builder, 1)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferGetDimensionSizeShape( operands[0]->shape(), dimensions->at(0)); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateGetDimensionSize( *shape, operands[0], (*dimensions)[0])); } case HloOpcode::kSetDimensionSize: { optional<std::vector<int64_t>> dimensions; attrs["dimensions"] = {true, AttrTy::kBracedInt64List, &dimensions}; if ((!preset_operands && !ParseOperands(&operands, builder, 2)) || !ParseAttributes(attrs, allow_attributes, shape)) { return nullptr; } if (!maybe_infer_shape([&] { return ShapeInference::InferSetDimensionSizeShape( operands[0]->shape(), operands[1]->shape(), dimensions->at(0)); })) { return nullptr; } return builder->AddInstruction(HloInstruction::CreateSetDimensionSize( *shape, operands[0], operands[1], (*dimensions)[0])); } default: return nullptr; } } bool HloParserImpl::ParseCollectiveDeviceList( CollectiveDeviceList* device_list) { if (lexer_.GetKind() == TokKind::kLbrace) { std::vector<ReplicaGroup> replica_groups; if (!ParseReplicaGroupsOnly(&replica_groups)) { return false; } *device_list = CollectiveDeviceList(replica_groups); return true; } std::vector<int64_t> tile_assignment_dimensions; std::vector<int64_t> iota_reshape_dims; std::vector<int> iota_transpose_perm; if (!ParseTileAssignment(tile_assignment_dimensions, iota_reshape_dims, iota_transpose_perm, nullptr)) { return false; } if (tile_assignment_dimensions.size() != 2) { VLOG(kErrorLevel) << "Expected tile assignment to have 2 dimensions for collective " "device list but got " << tile_assignment_dimensions.size(); return false; } *device_list = CollectiveDeviceList(IotaReplicaGroupList( tile_assignment_dimensions[0], tile_assignment_dimensions[1], iota_reshape_dims, iota_transpose_perm)); return true; } bool HloParserImpl::ParseSharding(std::optional<HloSharding>& sharding) { if (!ParseToken(TokKind::kLbrace, "expected '{' to start sharding attribute")) { return false; } if (lexer_.GetKind() != TokKind::kLbrace && lexer_.GetKind() != TokKind::kRbrace) { return ParseSingleSharding(sharding, true); } std::vector<HloSharding> tuple_shardings; if (lexer_.GetKind() != TokKind::kRbrace) { do { std::optional<HloSharding> tuple_sharding; if (!ParseSingleSharding(tuple_sharding, false)) { return false; } tuple_shardings.push_back(std::move(*tuple_sharding)); } while (EatIfPresent(TokKind::kComma)); } sharding = HloSharding::FlatTuple(std::move(tuple_shardings)); return ParseToken(TokKind::kRbrace, "expected '}' to end sharding attribute"); } bool HloParserImpl::ParseFrontendAttributes( FrontendAttributes* frontend_attributes) { CHECK(frontend_attributes != nullptr); if (!ParseToken(TokKind::kLbrace, "expected '{' to start frontend attributes")) { return false; } if (lexer_.GetKind() == TokKind::kRbrace) { } else { do { std::string attribute; if (!ParseAttributeName(&attribute)) { return false; } std::string result; if (lexer_.GetKind() == TokKind::kString) { if (!ParseString(&result)) { return false; } } else if (lexer_.GetKind() == TokKind::kLbrace) { if (!ParseJsonDict(&result)) { return false; } } else { return false; } (*frontend_attributes->mutable_map())[attribute] = result; } while (EatIfPresent(TokKind::kComma)); } return ParseToken(TokKind::kRbrace, "expects '}' at the end of frontend attributes"); } bool HloParserImpl::ParseStatisticsViz(StatisticsViz* statistics_viz) { CHECK(statistics_viz != nullptr); if (!ParseToken(TokKind::kLbrace, "expected '{' to start statistics")) { return false; } if (lexer_.GetKind() == TokKind::kRbrace) { } else { std::string visualizing_index_attr_name; if (!ParseAttributeName(&visualizing_index_attr_name)) { return false; } if (lexer_.GetKind() != TokKind::kInt) { return false; } statistics_viz->set_stat_index_to_visualize(lexer_.GetInt64Val()); lexer_.Lex(); while (EatIfPresent(TokKind::kComma)) { std::string stat_name; if (!ParseAttributeName(&stat_name)) { return false; } if (lexer_.GetKind() != TokKind::kDecimal && lexer_.GetKind() != TokKind::kInt) { return false; } Statistic statistic; statistic.set_stat_name(stat_name); statistic.set_stat_val(lexer_.GetKind() == TokKind::kDecimal ? lexer_.GetDecimalVal() : lexer_.GetInt64Val()); lexer_.Lex(); *statistics_viz->add_statistics() = std::move(statistic); } } return ParseToken(TokKind::kRbrace, "expects '}' at the end of statistics"); } bool HloParserImpl::ParseTileAssignment( std::vector<int64_t>& tile_assignment_dimensions, std::vector<int64_t>& iota_reshape_dims, std::vector<int>& iota_transpose_perm, std::vector<int64_t>* devices) { if (!ParseToken(TokKind::kLsquare, "expected '[' to start sharding devices shape")) { return false; } do { int64_t dim; if (!ParseInt64(&dim)) { return false; } tile_assignment_dimensions.push_back(dim); } while (EatIfPresent(TokKind::kComma)); if (!ParseToken(TokKind::kRsquare, "expected ']' to end sharding devices shape")) { return false; } if (lexer_.GetKind() == TokKind::kLeq) { lexer_.Lex(); if (!ParseToken(TokKind::kLsquare, "expected '[' to start sharding iota_reshape_dims")) { return false; } do { int64_t dim; if (!ParseInt64(&dim)) { return false; } iota_reshape_dims.push_back(dim); } while (EatIfPresent(TokKind::kComma)); if (iota_reshape_dims.empty()) { return TokenError("expected non-empty iota_reshape_dims"); } if (!ParseToken(TokKind::kRsquare, "expected ']' to end sharding iota_reshape_dims")) { return false; } if (iota_reshape_dims.size() == 1) { iota_transpose_perm.push_back(0); } else { if (lexer_.GetKind() != TokKind::kIdent || lexer_.GetStrVal() != "T") { return TokenError( "expected 'T(' to start sharding devices " "iota_transpose_perm"); } lexer_.Lex(); if (!ParseToken(TokKind::kLparen, "expected 'T(' to start sharding devices " "iota_transpose_perm")) { return false; } do { int64_t dim; if (!ParseInt64(&dim)) { return false; } if (dim >= iota_reshape_dims.size()) { return TokenError(absl::StrFormat( "Out of range iota minor_to_major value %lld.", dim)); } iota_transpose_perm.push_back(dim); } while (EatIfPresent(TokKind::kComma)); if (!ParseToken(TokKind::kRparen, "expected ')' to end sharding devices " "iota_transpose_perm")) { return false; } } } else { if (!devices) { return TokenError( "Caller expected iota tile assignment when parsing, which should not " "have any manual device entries."); } do { int64_t device; if (!ParseInt64(&device)) { return false; } devices->push_back(device); } while (EatIfPresent(TokKind::kComma)); } return true; } bool HloParserImpl::ParseSingleSharding(std::optional<HloSharding>& sharding, bool lbrace_pre_lexed) { if (!lbrace_pre_lexed && !ParseToken(TokKind::kLbrace, "expected '{' to start sharding attribute")) { return false; } LocTy loc = lexer_.GetLoc(); bool maximal = false; bool replicated = false; bool manual = false; bool unknown = false; bool last_tile_dim_replicate = false; bool last_tile_dims = false; bool shard_like = false; bool shard_as = false; int64_t shard_group_id; std::vector<int64_t> devices; std::vector<int64_t> tile_assignment_dimensions; std::vector<int64_t> iota_reshape_dims; std::vector<int> iota_transpose_perm; std::vector<OpSharding::Type> subgroup_types; std::vector<OpMetadata> metadata; while (lexer_.GetKind() != TokKind::kRbrace) { switch (lexer_.GetKind()) { case TokKind::kw_maximal: maximal = true; lexer_.Lex(); break; case TokKind::kw_replicated: replicated = true; lexer_.Lex(); break; case TokKind::kw_manual: manual = true; lexer_.Lex(); break; case TokKind::kw_unknown: unknown = true; lexer_.Lex(); break; case TokKind::kAttributeName: { if (lexer_.GetStrVal() == "device") { if (lexer_.Lex() != TokKind::kInt) { return TokenError("device= attribute must be an integer"); } devices = {lexer_.GetInt64Val()}; lexer_.Lex(); } else if (lexer_.GetStrVal() == "devices") { lexer_.Lex(); if (!ParseTileAssignment(tile_assignment_dimensions, iota_reshape_dims, iota_transpose_perm, &devices)) { return false; } } else if (lexer_.GetStrVal() == "metadata") { lexer_.Lex(); if (!ParseSingleOrListMetadata(metadata)) { return false; } } else if (lexer_.GetStrVal() == "last_tile_dims") { last_tile_dims = true; lexer_.Lex(); if (!ParseListShardingType(&subgroup_types)) { return false; } } else { return TokenError( "unknown attribute in sharding: expected device=, devices= " "metadata= or last_tile_dims= "); } break; } case TokKind::kw_last_tile_dim_replicate: last_tile_dim_replicate = true; lexer_.Lex(); break; case TokKind::kw_shard_as: { shard_as = true; lexer_.Lex(); if (!ParseInt64(&shard_group_id)) { return false; } break; } case TokKind::kw_shard_like: { shard_like = true; lexer_.Lex(); if (!ParseInt64(&shard_group_id)) { return false; } break; } case TokKind::kRbrace: break; default: return TokenError("unexpected token"); } } if (replicated) { if (!devices.empty()) { return Error(loc, "replicated shardings should not have any devices assigned"); } sharding = HloSharding::Replicate(metadata); } else if (maximal) { if (devices.size() != 1) { return Error(loc, "maximal shardings should have exactly one device assigned"); } sharding = HloSharding::AssignDevice(devices[0], metadata); } else if (manual) { if (!devices.empty()) { return Error(loc, "manual shardings should not have any devices assigned"); } sharding = HloSharding::Manual(metadata); } else if (unknown) { if (!devices.empty()) { return Error(loc, "unknown shardings should not have any devices assigned"); } sharding = HloSharding::Unknown(metadata); } else { if (tile_assignment_dimensions.empty()) { return Error( loc, "non-maximal shardings must have a tile assignment list including " "dimensions"); } if (iota_transpose_perm.size() != iota_reshape_dims.size()) { return Error(loc, absl::StrFormat( "iota_transpose_perm should have the same rank as " "iota_reshape_dims : expected %lld, saw %lld.", iota_reshape_dims.size(), iota_transpose_perm.size())); } if (last_tile_dim_replicate) { CHECK(subgroup_types.empty()); subgroup_types.push_back(OpSharding::REPLICATED); } if (!iota_reshape_dims.empty()) { CHECK(devices.empty()); sharding = subgroup_types.empty() ? HloSharding::IotaTile(tile_assignment_dimensions, iota_reshape_dims, iota_transpose_perm, metadata) : HloSharding::Subgroup( TileAssignment(tile_assignment_dimensions, iota_reshape_dims, iota_transpose_perm), subgroup_types, metadata); } else { if (devices.size() <= 1) { return Error( loc, "non-maximal shardings must have more than one device assigned"); } auto tiles = std::make_shared<Array<int64_t>>(tile_assignment_dimensions); absl::c_copy(devices, tiles->begin()); sharding = subgroup_types.empty() ? HloSharding::Tile(TileAssignment(std::move(tiles)), metadata) : HloSharding::Subgroup(TileAssignment(std::move(tiles)), subgroup_types, metadata); } } if (shard_as || shard_like) { sharding = sharding->SetShardGroup( shard_as ? HloSharding::ShardAs(shard_group_id) : HloSharding::ShardLike(shard_group_id)); } lexer_.Lex(); return true; } bool HloParserImpl::ParseParameterReplication( ParameterReplication* parameter_replication) { if (!ParseToken(TokKind::kLbrace, "expected '{' to start parameter_replication attribute")) { return false; } if (lexer_.GetKind() != TokKind::kRbrace) { do { if (lexer_.GetKind() == TokKind::kw_true) { parameter_replication->add_replicated_at_leaf_buffers(true); } else if (lexer_.GetKind() == TokKind::kw_false) { parameter_replication->add_replicated_at_leaf_buffers(false); } else { return false; } lexer_.Lex(); } while (EatIfPresent(TokKind::kComma)); } return ParseToken(TokKind::kRbrace, "expected '}' to end parameter_replication attribute"); } bool HloParserImpl::ParseBooleanListOrSingleBoolean(BoolList* boolean_list) { if (lexer_.GetKind() != TokKind::kLbrace && lexer_.GetKind() != TokKind::kw_true && lexer_.GetKind() != TokKind::kw_false) { TokenError("Expected list of booleans or true/false value"); return false; } auto parse_boolean = [this, boolean_list]() { if (lexer_.GetKind() == TokKind::kw_true) { boolean_list->push_back(true); lexer_.Lex(); return true; } else if (lexer_.GetKind() == TokKind::kw_false) { boolean_list->push_back(false); lexer_.Lex(); return true; } return false; }; if (parse_boolean()) { return true; } if (!ParseToken(TokKind::kLbrace, "expected '{' to start boolean list attribute")) { return false; } if (lexer_.GetKind() != TokKind::kRbrace) { do { if (!parse_boolean()) { return false; } } while (EatIfPresent(TokKind::kComma)); } return ParseToken(TokKind::kRbrace, "expected '}' to end boolean list attribute"); } bool HloParserImpl::ParseReplicaGroupsOnly( std::vector<ReplicaGroup>* replica_groups) { std::vector<std::vector<int64_t>> result; if (!ParseInt64ListList(TokKind::kLbrace, TokKind::kRbrace, TokKind::kComma, &result)) { return false; } *replica_groups = CreateReplicaGroups(result); return true; } bool HloParserImpl::ParseDomain(DomainData* domain) { absl::flat_hash_map<std::string, AttrConfig> attrs; optional<std::string> kind; optional<HloSharding> entry_sharding; optional<HloSharding> exit_sharding; attrs["kind"] = {true, AttrTy::kString, &kind}; attrs["entry"] = {true, AttrTy::kSharding, &entry_sharding}; attrs["exit"] = {true, AttrTy::kSharding, &exit_sharding}; if (!ParseSubAttributes(attrs)) { return false; } if (*kind == ShardingMetadata::KindName()) { auto entry_sharding_ptr = std::make_unique<HloSharding>(std::move(*entry_sharding)); auto exit_sharding_ptr = std::make_unique<HloSharding>(std::move(*exit_sharding)); domain->entry_metadata = std::make_unique<ShardingMetadata>(std::move(entry_sharding_ptr)); domain->exit_metadata = std::make_unique<ShardingMetadata>(std::move(exit_sharding_ptr)); } else { return TokenError(StrCat("unsupported domain kind: ", *kind)); } return true; } bool HloParserImpl::ParseInstructionNames( std::vector<HloInstruction*>* instructions) { if (!ParseToken(TokKind::kLbrace, "expects '{' at the beginning of instruction name list")) { return false; } LocTy loc = lexer_.GetLoc(); do { std::string name; if (!ParseName(&name)) { return Error(loc, "expects a instruction name"); } std::pair<HloInstruction*, LocTy>* instr = FindInstruction(name); if (!instr) { return TokenError(StrFormat("instruction '%s' is not defined", name)); } instructions->push_back(instr->first); } while (EatIfPresent(TokKind::kComma)); return ParseToken(TokKind::kRbrace, "expects '}' at the end of instruction name list"); } template <typename T> std::string StringifyValue(T val) { if constexpr (is_complex_v<T>) { return StrFormat("(%f, %f)", val.real(), val.imag()); } else { return StrCat(val); } } template <class T> uint64_t GetNanPayload(T val) { if constexpr (std::is_same_v<T, double>) { auto rep = absl::bit_cast<uint64_t>(val); if (auto payload = rep & NanPayloadBitMask<double>()) { return payload; } return QuietNanWithoutPayload<double>(); } else { static_assert(!std::numeric_limits<T>::has_quiet_NaN); static_assert(!std::numeric_limits<T>::has_signaling_NaN); return 0; } } template <typename LiteralNativeT, typename LiteralComponentT> LiteralNativeT LiteralNativeFromRealImag(LiteralComponentT real, LiteralComponentT imag) { if constexpr (std::is_same_v<LiteralNativeT, std::complex<LiteralComponentT>>) { return LiteralNativeT(real, imag); } else { return real; } } template <typename T> struct ComponentType { using Type = T; }; template <typename T> struct ComponentType<std::complex<T>> { using Type = T; }; template <typename T> T GetReal(T value) { return value; } template <typename T> T GetReal(std::complex<T> value) { return value.real(); } template <typename T> T GetImag(T value) { return 0; } template <typename T> T GetImag(std::complex<T> value) { return value.imag(); } template <typename T> struct MinMaxFiniteValue { static constexpr T max() { return std::numeric_limits<T>::max(); } static constexpr T min() { return std::numeric_limits<T>::lowest(); } }; template <typename T> bool IsFinite(T val) { if constexpr (std::numeric_limits<T>::has_infinity || std::numeric_limits<T>::has_quiet_NaN || std::numeric_limits<T>::has_signaling_NaN) { return Eigen::numext::isfinite(val); } else { return true; } } template <typename LiteralNativeT, typename ParsedElemT> bool HloParserImpl::CheckParsedValueIsInRange(LocTy loc, ParsedElemT value) { if constexpr (std::is_floating_point_v<ParsedElemT>) { auto value_as_native_t = static_cast<LiteralNativeT>(value); auto value_double_converted = static_cast<ParsedElemT>(value_as_native_t); if (!IsFinite(value) || IsFinite(value_double_converted)) { value = value_double_converted; } } PrimitiveType literal_ty = primitive_util::NativeToPrimitiveType<LiteralNativeT>(); if (!IsFinite(value)) { } else if constexpr (std::is_unsigned<LiteralNativeT>::value) { static_assert(std::is_same_v<ParsedElemT, int64_t> || std::is_same_v<ParsedElemT, bool>, "Unimplemented checking for ParsedElemT"); const uint64_t unsigned_value = value; const uint64_t upper_bound = static_cast<uint64_t>(std::numeric_limits<LiteralNativeT>::max()); if (unsigned_value > upper_bound) { return Error(loc, StrCat("value ", value, " is out of range for literal's primitive type ", PrimitiveType_Name(literal_ty), " namely [0, ", upper_bound, "].")); } } else if (value > static_cast<ParsedElemT>( MinMaxFiniteValue<LiteralNativeT>::max()) || value < static_cast<ParsedElemT>( MinMaxFiniteValue<LiteralNativeT>::min())) { return Error( loc, StrCat( "value ", value, " is out of range for literal's primitive type ", PrimitiveType_Name(literal_ty), " namely [", static_cast<ParsedElemT>(MinMaxFiniteValue<LiteralNativeT>::min()), ", ", static_cast<ParsedElemT>(MinMaxFiniteValue<LiteralNativeT>::max()), "].")); } return true; } template <typename LiteralNativeT> bool HloParserImpl::CheckParsedValueIsInRange(LocTy loc, std::complex<double> value) { using LiteralComplexComponentT = decltype(std::real(std::declval<LiteralNativeT>())); auto check_component = [&](absl::string_view name, double v) { if (!std::isfinite(v)) { return true; } double min = MinMaxFiniteValue<LiteralComplexComponentT>::min(); double max = MinMaxFiniteValue<LiteralComplexComponentT>::max(); if (v < min || v > max) { return Error( loc, StrCat(name, " part ", v, " is out of range for literal's primitive type ", PrimitiveType_Name( primitive_util::NativeToPrimitiveType<LiteralNativeT>()), ", namely [", min, ", ", max, "].")); } return true; }; return check_component("real", std::real(value)) && check_component("imaginary", std::imag(value)); } template <typename LiteralNativeT, typename ParsedElemT> bool HloParserImpl::SetValueInLiteralHelper(LocTy loc, ParsedElemT value, int64_t index, Literal* literal) { if (!CheckParsedValueIsInRange<LiteralNativeT>(loc, value)) { return false; } if (index >= ShapeUtil::ElementsIn(literal->shape())) { return Error(loc, StrCat("tries to set value ", StringifyValue(value), " to a literal in shape ", ShapeUtil::HumanString(literal->shape()), " at linear index ", index, ", but the index is out of range")); } using ParsedElemComponentT = typename ComponentType<ParsedElemT>::Type; using LiteralNativeComponentT = typename ComponentType<LiteralNativeT>::Type; const auto handle_nan = [this, literal, index, loc]( ParsedElemComponentT parsed_value_component, LiteralNativeComponentT* literal_value_component) { if (!std::isnan(static_cast<double>(parsed_value_component))) { return true; } auto nan_payload = GetNanPayload(parsed_value_component); if constexpr (NanPayloadBits<LiteralNativeComponentT>() > 0) { if (nan_payload == QuietNanWithoutPayload<double>()) { nan_payload = QuietNanWithoutPayload<LiteralNativeComponentT>(); } const auto kLargestPayload = NanPayloadBitMask<LiteralNativeComponentT>(); if (nan_payload > kLargestPayload) { return Error( loc, StrCat("tries to set NaN payload 0x", absl::Hex(nan_payload), " to a literal in shape ", ShapeUtil::HumanString(literal->shape()), " at linear index ", index, ", but the NaN payload is out of range (0x", absl::Hex(kLargestPayload), ")")); } *literal_value_component = NanWithSignAndPayload<LiteralNativeComponentT>( std::signbit( static_cast<double>(parsed_value_component)), nan_payload); } else { if (nan_payload != QuietNanWithoutPayload<double>()) { return Error( loc, StrCat("tries to set NaN payload 0x", absl::Hex(nan_payload), " to a literal in shape ", ShapeUtil::HumanString(literal->shape()), " at linear index ", index, ", but ", primitive_util::LowercasePrimitiveTypeName( literal->shape().element_type()), " does not support payloads")); } } return true; }; const ParsedElemComponentT parsed_real_value = GetReal(value); auto literal_real_value = static_cast<LiteralNativeComponentT>(parsed_real_value); if (std::is_floating_point_v<ParsedElemT> || std::is_same_v<ParsedElemT, std::complex<double>>) { if (!handle_nan(parsed_real_value, &literal_real_value)) { return false; } } const ParsedElemComponentT parsed_imag_value = GetImag(value); auto literal_imag_value = static_cast<LiteralNativeComponentT>(parsed_imag_value); if constexpr (std::is_same_v<ParsedElemT, std::complex<double>>) { if (!handle_nan(parsed_real_value, &literal_imag_value)) { return false; } } literal->data<LiteralNativeT>().at(index) = LiteralNativeFromRealImag<LiteralNativeT>(literal_real_value, literal_imag_value); return true; } bool HloParserImpl::SetValueInLiteral(LocTy loc, int64_t value, int64_t index, Literal* literal) { const Shape& shape = literal->shape(); return primitive_util::PrimitiveTypeSwitch<bool>( [&](auto primitive_type_constant) -> bool { if constexpr (primitive_type_constant == PRED) { return SetValueInLiteralHelper<bool>(loc, static_cast<bool>(value), index, literal); } if constexpr (primitive_util::IsIntegralType(primitive_type_constant)) { using NativeT = primitive_util::NativeTypeOf<primitive_type_constant>; return SetValueInLiteralHelper<NativeT>(loc, value, index, literal); } LOG(FATAL) << "unknown integral primitive type " << PrimitiveType_Name(shape.element_type()); }, shape.element_type()); } bool HloParserImpl::SetValueInLiteral(LocTy loc, double value, int64_t index, Literal* literal) { const Shape& shape = literal->shape(); return primitive_util::PrimitiveTypeSwitch<bool>( [&](auto primitive_type_constant) -> bool { if constexpr (primitive_util::IsFloatingPointType( primitive_type_constant)) { using NativeT = primitive_util::NativeTypeOf<primitive_type_constant>; return SetValueInLiteralHelper<NativeT>(loc, value, index, literal); } LOG(FATAL) << "unknown floating point primitive type " << PrimitiveType_Name(shape.element_type()); }, shape.element_type()); } bool HloParserImpl::SetValueInLiteral(LocTy loc, bool value, int64_t index, Literal* literal) { const Shape& shape = literal->shape(); switch (shape.element_type()) { case PRED: return SetValueInLiteralHelper<bool>(loc, value, index, literal); default: LOG(FATAL) << PrimitiveType_Name(shape.element_type()) << " is not PRED type"; } } bool HloParserImpl::SetValueInLiteral(LocTy loc, std::complex<double> value, int64_t index, Literal* literal) { const Shape& shape = literal->shape(); return primitive_util::PrimitiveTypeSwitch<bool>( [&](auto primitive_type_constant) -> bool { if constexpr (primitive_util::IsComplexType(primitive_type_constant)) { using NativeT = primitive_util::NativeTypeOf<primitive_type_constant>; return SetValueInLiteralHelper<NativeT>(loc, value, index, literal); } LOG(FATAL) << PrimitiveType_Name(shape.element_type()) << " is not a complex type"; }, shape.element_type()); } bool HloParserImpl::ParseLiteral(Literal* literal) { if (lexer_.GetKind() == TokKind::kLparen) { lexer_.Lex(); std::vector<Literal> elements; while (lexer_.GetKind() != TokKind::kRparen) { Literal element; if (!ParseLiteral(&element)) { return TokenError("Fails when parsing tuple element"); } elements.emplace_back(std::move(element)); if (lexer_.GetKind() != TokKind::kRparen) { ParseToken(TokKind::kComma, "expects ',' to separate tuple elements"); } } *literal = LiteralUtil::MakeTupleOwned(std::move(elements)); return ParseToken(TokKind::kRparen, "expects ')' to close a tuple literal"); } Shape literal_shape; if (!ParseShape(&literal_shape)) { return false; } return ParseLiteral(literal, literal_shape); } bool HloParserImpl::ParseLiteral(Literal* literal, const Shape& shape) { return shape.IsTuple() ? ParseTupleLiteral(literal, shape) : ParseNonTupleLiteral(literal, shape); } bool HloParserImpl::ParseTupleLiteral(Literal* literal, const Shape& shape) { if (!ParseToken(TokKind::kLparen, "expects '(' in front of tuple elements")) { return false; } std::vector<Literal> elements(ShapeUtil::TupleElementCount(shape)); if (lexer_.GetKind() == TokKind::kRparen) { } else { for (int i = 0; i < elements.size(); i++) { if (i > 0) { ParseToken(TokKind::kComma, "expects ',' to separate tuple elements"); } if (!ParseLiteral(&elements[i], ShapeUtil::GetTupleElementShape(shape, i))) { return TokenError(StrCat("expects the ", i, "th element")); } } } *literal = LiteralUtil::MakeTupleOwned(std::move(elements)); return ParseToken(TokKind::kRparen, StrCat("expects ')' at the end of the tuple with ", ShapeUtil::TupleElementCount(shape), "elements")); } bool HloParserImpl::ParseNonTupleLiteral(Literal* literal, const Shape& shape) { CHECK(LayoutUtil::IsDenseArray(shape)) << shape.ToString(true); return ParseDenseLiteral(literal, shape); } bool HloParserImpl::ParseDenseLiteral(Literal* literal, const Shape& shape) { const int rank = static_cast<int>(shape.rank()); *literal = LiteralUtil::CreateFromDimensions(shape.element_type(), shape.dimensions()); int64_t nest_level = 0; int64_t linear_index = 0; std::vector<int64_t> elems_seen_per_dim(rank); auto get_index_str = [&elems_seen_per_dim](int dim) -> std::string { std::vector<int64_t> elems_seen_until_dim(elems_seen_per_dim.begin(), elems_seen_per_dim.begin() + dim); return StrCat("[", StrJoin(elems_seen_until_dim, ",", [](std::string* out, const int64_t num_elems) { StrAppend(out, num_elems - 1); }), "]"); }; auto add_one_elem_seen = [&] { if (rank > 0) { if (nest_level != rank) { return TokenError(absl::StrFormat( "expects nested array in rank %d, but sees %d", rank, nest_level)); } elems_seen_per_dim[rank - 1]++; if (elems_seen_per_dim[rank - 1] > shape.dimensions(rank - 1)) { return TokenError(absl::StrFormat( "expects %d elements on the minor-most dimension, but " "sees more", shape.dimensions(rank - 1))); } } return true; }; do { switch (lexer_.GetKind()) { default: return TokenError("unexpected token type in a literal"); case TokKind::kLbrace: { nest_level++; if (nest_level > rank) { return TokenError(absl::StrFormat( "expects nested array in rank %d, but sees larger", rank)); } if (nest_level > 1) { elems_seen_per_dim[nest_level - 2]++; if (elems_seen_per_dim[nest_level - 2] > shape.dimensions(nest_level - 2)) { return TokenError(absl::StrFormat( "expects %d elements in the %sth element, but sees more", shape.dimensions(nest_level - 2), get_index_str(nest_level - 2))); } } lexer_.Lex(); break; } case TokKind::kRbrace: { if (nest_level == 0) { return TokenError("unexpected '}' token"); } nest_level--; if (elems_seen_per_dim[nest_level] != shape.dimensions(nest_level)) { return TokenError(absl::StrFormat( "expects %d elements in the %sth element, but sees %d", shape.dimensions(nest_level), get_index_str(nest_level), elems_seen_per_dim[nest_level])); } elems_seen_per_dim[nest_level] = 0; lexer_.Lex(); break; } case TokKind::kLparen: { if (!primitive_util::IsComplexType(shape.element_type())) { return TokenError( absl::StrFormat("unexpected '(' in literal. Parens are only " "valid for complex literals")); } std::complex<double> value; LocTy loc = lexer_.GetLoc(); if (!add_one_elem_seen() || !ParseComplex(&value) || !SetValueInLiteral(loc, value, linear_index++, literal)) { return false; } break; } case TokKind::kDots: { if (nest_level != 1) { return TokenError(absl::StrFormat( "expects `...` at nest level 1, but sees it at nest level %d", nest_level)); } elems_seen_per_dim[0] = shape.dimensions(0); lexer_.Lex(); static uint32_t data = 0; static_assert(sizeof(bool) == 1); constexpr uint32_t kBooleanMask = 0x01010101; constexpr uint32_t kNoMask = 0xFFFFFFFF; const uint32_t mask = (shape.element_type() == PRED) ? kBooleanMask : kNoMask; uint32_t* raw_data = static_cast<uint32_t*>(literal->untyped_data()); for (int64_t i = 0; i < literal->size_bytes() / 4; ++i) { raw_data[i] = data++ & mask; } uint8_t* raw_data_int8 = static_cast<uint8_t*>(literal->untyped_data()); static uint8_t data_int8 = 0; for (int64_t i = 0; i < literal->size_bytes() % 4; ++i) { raw_data_int8[literal->size_bytes() / 4 + i] = data_int8++ & mask; } break; } case TokKind::kComma: lexer_.Lex(); break; case TokKind::kw_true: case TokKind::kw_false: case TokKind::kInt: case TokKind::kDecimal: case TokKind::kw_inf: case TokKind::kNegInf: { add_one_elem_seen(); if (lexer_.GetKind() == TokKind::kw_true || lexer_.GetKind() == TokKind::kw_false) { if (!SetValueInLiteral(lexer_.GetLoc(), lexer_.GetKind() == TokKind::kw_true, linear_index++, literal)) { return false; } lexer_.Lex(); } else if (primitive_util::IsIntegralType(shape.element_type()) || shape.element_type() == PRED) { LocTy loc = lexer_.GetLoc(); int64_t value; if (!ParseInt64(&value)) { return Error(loc, StrCat("expects integer for primitive type: ", PrimitiveType_Name(shape.element_type()))); } if (!SetValueInLiteral(loc, value, linear_index++, literal)) { return false; } } else if (primitive_util::IsFloatingPointType(shape.element_type())) { LocTy loc = lexer_.GetLoc(); double value; if (!ParseDouble(&value)) { return Error( loc, StrCat("expect floating point value for primitive type: ", PrimitiveType_Name(shape.element_type()))); } if (!SetValueInLiteral(loc, value, linear_index++, literal)) { return false; } } else { return TokenError(StrCat("unsupported primitive type ", PrimitiveType_Name(shape.element_type()))); } break; } } } while (nest_level > 0); *literal = literal->Relayout(shape.layout()); return true; } bool HloParserImpl::ParseOperands(std::vector<HloInstruction*>* operands, HloComputation::Builder* builder) { CHECK(operands != nullptr); if (!ParseToken(TokKind::kLparen, "expects '(' at the beginning of operands")) { return false; } if (lexer_.GetKind() == TokKind::kRparen) { } else { do { HloLexer lexer_copy = lexer_; std::vector<std::string> saved_errors; std::swap(saved_errors, error_); bool is_normal_operand = [&] { LocTy loc = lexer_.GetLoc(); std::string name; optional<Shape> shape; if (CanBeShape()) { shape.emplace(); if (!ParseShape(&shape.value())) { return false; } } if (!ParseName(&name)) { if (shape.has_value() && create_missing_instruction_ != nullptr && scoped_name_tables_.size() == 1) { name = ""; } else { return false; } } std::pair<HloInstruction*, LocTy>* instruction = FindInstruction(name, shape); if (instruction == nullptr) { return Error(loc, StrCat("instruction does not exist: ", name)); } auto next = lexer_.GetKind(); if (next != TokKind::kComma && next != TokKind::kRparen) { return false; } operands->push_back(instruction->first); return true; }(); if (is_normal_operand) { error_ = std::move(saved_errors); continue; } std::vector<std::string> normal_operand_errors; std::swap(error_, normal_operand_errors); lexer_ = lexer_copy; LocTy loc = lexer_.GetLoc(); bool is_nested_instruction = ParseInstructionRhs( builder, "", loc, false); if (is_nested_instruction) { operands->push_back(builder->last_added_instruction()); error_ = std::move(saved_errors); continue; } std::vector<std::string> nested_instruction_errors; std::swap(error_, nested_instruction_errors); error_ = std::move(saved_errors); Error(loc, "cannot parse as an instruction name or as a nested instruction:"); error_.insert(error_.end(), std::make_move_iterator(normal_operand_errors.begin()), std::make_move_iterator(normal_operand_errors.end())); error_.insert(error_.end(), std::make_move_iterator(nested_instruction_errors.begin()), std::make_move_iterator(nested_instruction_errors.end())); } while (EatIfPresent(TokKind::kComma)); } return ParseToken(TokKind::kRparen, "expects ')' at the end of operands"); } bool HloParserImpl::ParseOperands(std::vector<HloInstruction*>* operands, HloComputation::Builder* builder, const int expected_size) { CHECK(operands != nullptr); LocTy loc = lexer_.GetLoc(); if (!ParseOperands(operands, builder)) { return false; } if (expected_size != operands->size()) { return Error(loc, StrCat("expects ", expected_size, " operands, but has ", operands->size(), " operands")); } return true; } bool HloParserImpl::ParseSubAttributes( const absl::flat_hash_map<std::string, AttrConfig>& attrs) { LocTy loc = lexer_.GetLoc(); if (!ParseToken(TokKind::kLbrace, "expects '{' to start sub attributes")) { return false; } absl::flat_hash_set<std::string> seen_attrs; if (lexer_.GetKind() == TokKind::kRbrace) { } else { do { EatIfPresent(TokKind::kComma); if (!ParseAttributeHelper(attrs, &seen_attrs)) { return false; } } while (lexer_.GetKind() != TokKind::kRbrace); } for (const auto& attr_it : attrs) { if (attr_it.second.required && seen_attrs.find(attr_it.first) == seen_attrs.end()) { return Error(loc, StrFormat("sub-attribute %s is expected but not seen", attr_it.first)); } } return ParseToken(TokKind::kRbrace, "expects '}' to end sub attributes"); } bool HloParserImpl::ParseAttributes( const absl::flat_hash_map<std::string, AttrConfig>& attrs, bool allow_attributes, const std::optional<Shape>& shape) { LocTy loc = lexer_.GetLoc(); absl::flat_hash_set<std::string> seen_attrs; if (allow_attributes) { while (EatIfPresent(TokKind::kComma)) { if (!ParseAttributeHelper(attrs, &seen_attrs, shape)) { return false; } } } for (const auto& attr_it : attrs) { if (attr_it.second.required && seen_attrs.find(attr_it.first) == seen_attrs.end()) { return Error(loc, StrFormat("attribute %s is expected but not seen", attr_it.first)); } } return true; } bool HloParserImpl::ParseAttributeHelper( const absl::flat_hash_map<std::string, AttrConfig>& attrs, absl::flat_hash_set<std::string>* seen_attrs, const std::optional<Shape>& shape) { LocTy loc = lexer_.GetLoc(); std::string name; if (!ParseAttributeName(&name)) { return Error(loc, "error parsing attributes"); } VLOG(kDebugLevel) << "Parsing attribute " << name; if (!seen_attrs->insert(name).second) { return Error(loc, StrFormat("attribute %s already exists", name)); } auto attr_it = attrs.find(name); if (attr_it == attrs.end()) { std::string allowed_attrs; if (attrs.empty()) { allowed_attrs = "No attributes are allowed here."; } else { allowed_attrs = StrCat("Allowed attributes: ", StrJoin(attrs, ", ", [&](std::string* out, const std::pair<std::string, AttrConfig>& kv) { StrAppend(out, kv.first); })); } return Error( loc, StrFormat("unexpected attribute \"%s\". %s", name, allowed_attrs)); } AttrTy attr_type = attr_it->second.attr_type; void* attr_out_ptr = attr_it->second.result; bool success = [&] { LocTy attr_loc = lexer_.GetLoc(); switch (attr_type) { case AttrTy::kBool: { bool result; if (!ParseBool(&result)) { return false; } static_cast<optional<bool>*>(attr_out_ptr)->emplace(result); return true; } case AttrTy::kBracedBoolListOrBool: { if (!ParseBooleanListOrSingleBoolean( static_cast<BoolList*>(attr_out_ptr))) { return false; } return true; } case AttrTy::kInt64: { int64_t result; if (!ParseInt64(&result)) { return false; } static_cast<optional<int64_t>*>(attr_out_ptr)->emplace(result); return true; } case AttrTy::kInt32: { int64_t result; if (!ParseInt64(&result)) { return false; } if (result != static_cast<int32_t>(result)) { return Error(attr_loc, "value out of range for int32_t"); } static_cast<optional<int32_t>*>(attr_out_ptr) ->emplace(static_cast<int32_t>(result)); return true; } case AttrTy::kFloat: { double result; if (!ParseDouble(&result)) { return false; } if (result > std::numeric_limits<float>::max() || result < std::numeric_limits<float>::lowest()) { return Error(attr_loc, "value out of range for float"); } static_cast<optional<float>*>(attr_out_ptr) ->emplace(static_cast<float>(result)); return true; } case AttrTy::kHloComputation: { HloComputation* result = nullptr; if (!ParseHloComputation(&result)) { return false; } static_cast<optional<HloComputation*>*>(attr_out_ptr)->emplace(result); return true; } case AttrTy::kBracedHloComputationList: { std::vector<HloComputation*> result; if (!ParseHloComputationList(&result)) { return false; } static_cast<optional<std::vector<HloComputation*>>*>(attr_out_ptr) ->emplace(result); return true; } case AttrTy::kFftType: { FftType result; if (!ParseFftType(&result)) { return false; } static_cast<optional<FftType>*>(attr_out_ptr)->emplace(result); return true; } case AttrTy::kPaddingType: { PaddingType result; if (!ParsePaddingType(&result)) { return false; } static_cast<optional<PaddingType>*>(attr_out_ptr)->emplace(result); return true; } case AttrTy::kComparisonDirection: { ComparisonDirection result; if (!ParseComparisonDirection(&result)) { return false; } static_cast<optional<ComparisonDirection>*>(attr_out_ptr) ->emplace(result); return true; } case AttrTy::kComparisonType: { Comparison::Type result; if (!ParseComparisonType(&result)) { return false; } static_cast<optional<Comparison::Type>*>(attr_out_ptr)->emplace(result); return true; } case AttrTy::kEnum: { if (lexer_.GetKind() != TokKind::kIdent) { return TokenError("expects an enumeration value"); } std::string result = lexer_.GetStrVal(); lexer_.Lex(); static_cast<optional<std::string>*>(attr_out_ptr)->emplace(result); return true; } case AttrTy::kWindow: { Window result; if (!ParseWindow(&result, true)) { return false; } static_cast<optional<Window>*>(attr_out_ptr)->emplace(result); return true; } case AttrTy::kConvolutionDimensionNumbers: { ConvolutionDimensionNumbers result; if (!ParseConvolutionDimensionNumbers(&result)) { return false; } static_cast<optional<ConvolutionDimensionNumbers>*>(attr_out_ptr) ->emplace(result); return true; } case AttrTy::kSharding: { std::optional<HloSharding> sharding; if (!ParseSharding(sharding)) { return false; } static_cast<optional<HloSharding>*>(attr_out_ptr) ->emplace(std::move(*sharding)); return true; } case AttrTy::kCollectiveDeviceList: { CollectiveDeviceList device_list; if (!ParseCollectiveDeviceList(&device_list)) { return false; } *(static_cast<CollectiveDeviceList*>(attr_out_ptr)) = device_list; return true; } case AttrTy::kFrontendAttributes: { FrontendAttributes frontend_attributes; if (!ParseFrontendAttributes(&frontend_attributes)) { return false; } static_cast<optional<FrontendAttributes>*>(attr_out_ptr) ->emplace(frontend_attributes); return true; } case AttrTy::kStatisticsViz: { StatisticsViz statistics_viz; if (!ParseStatisticsViz(&statistics_viz)) { return false; } static_cast<optional<StatisticsViz>*>(attr_out_ptr) ->emplace(statistics_viz); return true; } case AttrTy::kParameterReplication: { ParameterReplication parameter_replication; if (!ParseParameterReplication(&parameter_replication)) { return false; } static_cast<optional<ParameterReplication>*>(attr_out_ptr) ->emplace(parameter_replication); return true; } case AttrTy::kInstructionList: { std::vector<HloInstruction*> result; if (!ParseInstructionNames(&result)) { return false; } static_cast<optional<std::vector<HloInstruction*>>*>(attr_out_ptr) ->emplace(result); return true; } case AttrTy::kFusionKind: { HloInstruction::FusionKind result; if (!ParseFusionKind(&result)) { return false; } static_cast<optional<HloInstruction::FusionKind>*>(attr_out_ptr) ->emplace(result); return true; } case AttrTy::kBracedInt64List: { std::vector<int64_t> result; if (!ParseInt64List(TokKind::kLbrace, TokKind::kRbrace, TokKind::kComma, &result)) { return false; } static_cast<optional<std::vector<int64_t>>*>(attr_out_ptr) ->emplace(result); return true; } case AttrTy::kBracedInt64ListList: { std::vector<std::vector<int64_t>> result; if (!ParseInt64ListList(TokKind::kLbrace, TokKind::kRbrace, TokKind::kComma, &result)) { return false; } static_cast<optional<std::vector<std::vector<int64_t>>>*>(attr_out_ptr) ->emplace(result); return true; } case AttrTy::kSliceRanges: { SliceRanges result; if (!ParseSliceRanges(&result)) { return false; } static_cast<optional<SliceRanges>*>(attr_out_ptr)->emplace(result); return true; } case AttrTy::kPaddingConfig: { PaddingConfig result; if (!ParsePaddingConfig(&result)) { return false; } static_cast<optional<PaddingConfig>*>(attr_out_ptr)->emplace(result); return true; } case AttrTy::kString: { std::string result; if (!ParseString(&result)) { return false; } static_cast<optional<std::string>*>(attr_out_ptr) ->emplace(std::move(result)); return true; } case AttrTy::kStringOrJsonDict: { std::string result; if (lexer_.GetKind() == TokKind::kString) { if (!ParseString(&result)) { return false; } } else if (lexer_.GetKind() == TokKind::kLbrace) { if (!ParseJsonDict(&result)) { return false; } } else { return false; } static_cast<optional<std::string>*>(attr_out_ptr) ->emplace(std::move(result)); return true; } case AttrTy::kOriginalValue: { if (!shape) { return TokenError("expects instruction shape"); } return ParseOriginalValue( static_cast<optional<std::shared_ptr<OriginalValue>>*>( attr_out_ptr), *shape); } case AttrTy::kMetadata: { OpMetadata result; if (!ParseMetadata(result)) { return false; } static_cast<optional<OpMetadata>*>(attr_out_ptr) ->emplace(std::move(result)); return true; } case AttrTy::kDistribution: { RandomDistribution result; if (!ParseRandomDistribution(&result)) { return false; } static_cast<optional<RandomDistribution>*>(attr_out_ptr) ->emplace(result); return true; } case AttrTy::kDomain: { return ParseDomain(static_cast<DomainData*>(attr_out_ptr)); } case AttrTy::kPrecisionList: { std::vector<PrecisionConfig::Precision> result; if (!ParsePrecisionList(&result)) { return false; } static_cast<optional<std::vector<PrecisionConfig::Precision>>*>( attr_out_ptr) ->emplace(result); return true; } case AttrTy::kShape: { Shape result; if (!ParseShape(&result)) { return false; } static_cast<optional<Shape>*>(attr_out_ptr)->emplace(result); return true; } case AttrTy::kShapeList: { std::vector<Shape> result; if (!ParseShapeList(&result)) { return false; } static_cast<optional<std::vector<Shape>>*>(attr_out_ptr) ->emplace(result); return true; } case AttrTy::kRandomAlgorithm: { RandomAlgorithm result; if (!ParseRandomAlgorithm(&result)) { return false; } static_cast<optional<RandomAlgorithm>*>(attr_out_ptr)->emplace(result); return true; } case AttrTy::kPrecisionAlgorithm: { PrecisionConfig::Algorithm result; if (!ParseAlgorithm(&result)) { return false; } static_cast<optional<PrecisionConfig::Algorithm>*>(attr_out_ptr) ->emplace(result); return true; } case AttrTy::kAliasing: { AliasingData aliasing_data; if (!ParseAliasing(&aliasing_data)) { return false; } static_cast<optional<AliasingData>*>(attr_out_ptr) ->emplace(aliasing_data); return true; } case AttrTy::kBufferDonor: { BufferDonor buffer_donor; if (!ParseBufferDonor(&buffer_donor)) { return false; } static_cast<optional<BufferDonor>*>(attr_out_ptr) ->emplace(buffer_donor); return true; } case AttrTy::kComputationLayout: { ComputationLayout computation_layout(ShapeLayout(Shape{})); if (!ParseComputationLayout(&computation_layout)) { return false; } static_cast<optional<ComputationLayout>*>(attr_out_ptr) ->emplace(computation_layout); return true; } case AttrTy::kInstructionAliasing: { std::vector<std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>> aliasing_output_operand_pairs; if (!ParseInstructionOutputOperandAliasing( &aliasing_output_operand_pairs)) { return false; } static_cast<optional<std::vector< std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>>>*>( attr_out_ptr) ->emplace(std::move(aliasing_output_operand_pairs)); return true; } case AttrTy::kLiteral: { Literal result; if (!ParseLiteral(&result)) { return false; } static_cast<optional<Literal>*>(attr_out_ptr) ->emplace(std::move(result)); return true; } case AttrTy::kCustomCallSchedule: { CustomCallSchedule result; if (!ParseCustomCallSchedule(&result)) { return false; } static_cast<optional<CustomCallSchedule>*>(attr_out_ptr) ->emplace(result); return true; } case AttrTy::kCustomCallApiVersion: { CustomCallApiVersion result; if (!ParseCustomCallApiVersion(&result)) { return false; } static_cast<optional<CustomCallApiVersion>*>(attr_out_ptr) ->emplace(result); return true; } case AttrTy::kSparsityDescriptor: { std::vector<SparsityDescriptor> result; if (!ParseSparsityDescriptor(&result)) { return false; } *static_cast<std::vector<SparsityDescriptor>*>(attr_out_ptr) = std::move(result); return true; } } }(); if (!success) { return Error(loc, StrFormat("error parsing attribute %s", name)); } return true; } bool HloParserImpl::CopyAttributeToProtoMessage( absl::flat_hash_set<std::string> non_proto_attrs, const absl::flat_hash_map<std::string, AttrConfig>& attrs, tsl::protobuf::Message* message) { const tsl::protobuf::Descriptor* descriptor = message->GetDescriptor(); const tsl::protobuf::Reflection* reflection = message->GetReflection(); for (const auto& p : attrs) { const std::string& name = p.first; if (non_proto_attrs.find(name) != non_proto_attrs.end()) { continue; } const tsl::protobuf::FieldDescriptor* fd = descriptor->FindFieldByName(name); if (!fd) { std::string allowed_attrs = "Allowed attributes: "; for (int i = 0; i < descriptor->field_count(); ++i) { if (i == 0) { absl::StrAppend(&allowed_attrs, descriptor->field(i)->name()); } else { absl::StrAppend(&allowed_attrs, ", ", descriptor->field(i)->name()); } } return TokenError( StrFormat("unexpected attribute \"%s\". %s", name, allowed_attrs)); } CHECK(!fd->is_repeated()); bool success = [&] { switch (fd->type()) { case tsl::protobuf::FieldDescriptor::TYPE_BOOL: { auto attr_value = static_cast<optional<bool>*>(p.second.result); if (attr_value->has_value()) { reflection->SetBool(message, fd, **attr_value); } return true; } case tsl::protobuf::FieldDescriptor::TYPE_ENUM: { auto attr_value = static_cast<optional<std::string>*>(p.second.result); if (attr_value->has_value()) { const tsl::protobuf::EnumValueDescriptor* evd = fd->enum_type()->FindValueByName(**attr_value); reflection->SetEnum(message, fd, evd); } return true; } default: return false; } }(); if (!success) { return TokenError(StrFormat("error parsing attribute %s", name)); } } return true; } bool HloParserImpl::ParseAttributesAsProtoMessage( const absl::flat_hash_map<std::string, AttrConfig>& non_proto_attrs, tsl::protobuf::Message* message) { const tsl::protobuf::Descriptor* descriptor = message->GetDescriptor(); absl::flat_hash_map<std::string, AttrConfig> attrs; std::vector<optional<bool>> bool_params; std::vector<optional<std::string>> string_params; bool_params.reserve(descriptor->field_count()); string_params.reserve(descriptor->field_count()); for (int field_idx = 0; field_idx < descriptor->field_count(); field_idx++) { const tsl::protobuf::FieldDescriptor* fd = descriptor->field(field_idx); absl::string_view field_name = fd->name(); switch (fd->type()) { case tsl::protobuf::FieldDescriptor::TYPE_BOOL: { bool_params.emplace_back(std::nullopt); attrs[field_name] = { false, AttrTy::kBool, &bool_params.back()}; break; } case tsl::protobuf::FieldDescriptor::TYPE_ENUM: { string_params.emplace_back(std::nullopt); attrs[field_name] = { false, AttrTy::kEnum, &string_params.back()}; break; } default: return TokenError(absl::StrFormat( "Unexpected protocol buffer type: %s ", fd->DebugString())); } } absl::flat_hash_set<std::string> non_proto_attrs_names; non_proto_attrs_names.reserve(non_proto_attrs.size()); for (const auto& p : non_proto_attrs) { const std::string& attr_name = p.first; if (attrs.find(attr_name) == attrs.end()) { non_proto_attrs_names.insert(attr_name); attrs[attr_name] = p.second; } } if (!ParseAttributes(attrs)) { return false; } return CopyAttributeToProtoMessage(non_proto_attrs_names, attrs, message); } bool HloParserImpl::ParseComputationName(HloComputation** value) { std::string name; LocTy loc = lexer_.GetLoc(); if (!ParseName(&name)) { return Error(loc, "expects computation name"); } std::pair<HloComputation*, LocTy>* computation = tsl::gtl::FindOrNull(computation_pool_, name); if (computation == nullptr) { return Error(loc, StrCat("computation does not exist: ", name)); } *value = computation->first; return true; } bool HloParserImpl::ParseWindow(Window* window, bool expect_outer_curlies) { LocTy loc = lexer_.GetLoc(); if (expect_outer_curlies && !ParseToken(TokKind::kLbrace, "expected '{' to start window attribute")) { return false; } std::vector<int64_t> size; std::vector<int64_t> stride; std::vector<std::vector<int64_t>> pad; std::vector<int64_t> lhs_dilate; std::vector<int64_t> rhs_dilate; std::vector<int64_t> rhs_reversal; const auto end_token = expect_outer_curlies ? TokKind::kRbrace : TokKind::kEof; while (lexer_.GetKind() != end_token) { LocTy attr_loc = lexer_.GetLoc(); std::string field_name; if (!ParseAttributeName(&field_name)) { return Error(attr_loc, "expects sub-attributes in window"); } bool ok = [&] { if (field_name == "size") { return ParseDxD("size", &size); } if (field_name == "stride") { return ParseDxD("stride", &stride); } if (field_name == "lhs_dilate") { return ParseDxD("lhs_dilate", &lhs_dilate); } if (field_name == "rhs_dilate") { return ParseDxD("rls_dilate", &rhs_dilate); } if (field_name == "pad") { return ParseWindowPad(&pad); } if (field_name == "rhs_reversal") { return ParseDxD("rhs_reversal", &rhs_reversal); } return Error(attr_loc, StrCat("unexpected attribute name: ", field_name)); }(); if (!ok) { return false; } } if (!stride.empty() && stride.size() != size.size()) { return Error(loc, "expects 'stride=' has the same size as 'size='"); } if (!lhs_dilate.empty() && lhs_dilate.size() != size.size()) { return Error(loc, "expects 'lhs_dilate=' has the same size as 'size='"); } if (!rhs_dilate.empty() && rhs_dilate.size() != size.size()) { return Error(loc, "expects 'rhs_dilate=' has the same size as 'size='"); } if (!pad.empty() && pad.size() != size.size()) { return Error(loc, "expects 'pad=' has the same size as 'size='"); } for (int i = 0; i < size.size(); i++) { window->add_dimensions()->set_size(size[i]); if (!pad.empty()) { window->mutable_dimensions(i)->set_padding_low(pad[i][0]); window->mutable_dimensions(i)->set_padding_high(pad[i][1]); } window->mutable_dimensions(i)->set_stride(stride.empty() ? 1 : stride[i]); window->mutable_dimensions(i)->set_base_dilation( lhs_dilate.empty() ? 1 : lhs_dilate[i]); window->mutable_dimensions(i)->set_window_dilation( rhs_dilate.empty() ? 1 : rhs_dilate[i]); window->mutable_dimensions(i)->set_window_reversal( rhs_reversal.empty() ? false : (rhs_reversal[i] == 1)); } return !expect_outer_curlies || ParseToken(TokKind::kRbrace, "expected '}' to end window attribute"); } bool HloParserImpl::ParseConvolutionDimensionNumbers( ConvolutionDimensionNumbers* dnums) { if (lexer_.GetKind() != TokKind::kDimLabels) { return TokenError("expects dim labels pattern, e.g., 'bf0_0io->0bf'"); } std::string str = lexer_.GetStrVal(); std::vector<std::string> split1 = absl::StrSplit(str, '_'); if (split1.size() != 2) { LOG(FATAL) << "expects 3 items: lhs, rhs, and output dims, but sees " << str; } std::vector<std::string> split2 = absl::StrSplit(split1[1], "->"); if (split2.size() != 2) { LOG(FATAL) << "expects 3 items: lhs, rhs, and output dims, but sees " << str; } absl::string_view lhs = split1[0]; absl::string_view rhs = split2[0]; absl::string_view out = split2[1]; auto is_unique = [](absl::string_view str) -> bool { absl::flat_hash_set<char> chars; for (char c : str) { if (c == '?') { continue; } if (!chars.insert(c).second) { return false; } } return true; }; { if (!is_unique(lhs)) { return TokenError( StrCat("expects unique lhs dimension numbers, but sees ", lhs)); } for (char c : lhs) { if (c != 'b' && c != 'f' && c != '?') { dnums->add_input_spatial_dimensions(-1); } } for (int i = 0; i < lhs.size(); i++) { char c = lhs[i]; if (c == '?') { continue; } else if (c == 'b') { dnums->set_input_batch_dimension(i); } else if (c == 'f') { dnums->set_input_feature_dimension(i); } else if (c < '0' + lhs.size() && c >= '0') { dnums->set_input_spatial_dimensions(c - '0', i); } else { return TokenError(StrFormat( "expects [0-%dbf?] in lhs dimension numbers", lhs.size() - 1)); } } } { if (!is_unique(rhs)) { return TokenError( StrCat("expects unique rhs dimension numbers, but sees ", rhs)); } for (char c : rhs) { if (c != 'i' && c != 'o' && c != '?') { dnums->add_kernel_spatial_dimensions(-1); } } for (int i = 0; i < rhs.size(); i++) { char c = rhs[i]; if (c == '?') { continue; } else if (c == 'i') { dnums->set_kernel_input_feature_dimension(i); } else if (c == 'o') { dnums->set_kernel_output_feature_dimension(i); } else if (c < '0' + rhs.size() && c >= '0') { dnums->set_kernel_spatial_dimensions(c - '0', i); } else { return TokenError(StrFormat( "expects [0-%dio?] in rhs dimension numbers", rhs.size() - 1)); } } } { if (!is_unique(out)) { return TokenError( StrCat("expects unique output dimension numbers, but sees ", out)); } for (char c : out) { if (c != 'b' && c != 'f' && c != '?') { dnums->add_output_spatial_dimensions(-1); } } for (int i = 0; i < out.size(); i++) { char c = out[i]; if (c == '?') { continue; } else if (c == 'b') { dnums->set_output_batch_dimension(i); } else if (c == 'f') { dnums->set_output_feature_dimension(i); } else if (c < '0' + out.size() && c >= '0') { dnums->set_output_spatial_dimensions(c - '0', i); } else { return TokenError(StrFormat( "expects [0-%dbf?] in output dimension numbers", out.size() - 1)); } } } if (dnums->input_spatial_dimensions_size() != dnums->output_spatial_dimensions_size() || dnums->input_spatial_dimensions_size() != dnums->kernel_spatial_dimensions_size()) { return TokenError( StrFormat("input, kernel, and output must have same number of spatial " "dimensions, but got %d, %d, %d, respectively.", dnums->input_spatial_dimensions_size(), dnums->kernel_spatial_dimensions_size(), dnums->output_spatial_dimensions_size())); } lexer_.Lex(); return true; } bool HloParserImpl::ParseSliceRanges(SliceRanges* result) { if (!ParseToken(TokKind::kLbrace, "expects '{' to start ranges")) { return false; } std::vector<std::vector<int64_t>> ranges; if (lexer_.GetKind() == TokKind::kRbrace) { return ParseToken(TokKind::kRbrace, "expects '}' to end ranges"); } do { LocTy loc = lexer_.GetLoc(); ranges.emplace_back(); if (!ParseInt64List(TokKind::kLsquare, TokKind::kRsquare, TokKind::kColon, &ranges.back())) { return false; } const auto& range = ranges.back(); if (range.size() != 2 && range.size() != 3) { return Error(loc, StrFormat("expects [start:limit:step] or [start:limit], " "but sees %d elements.", range.size())); } } while (EatIfPresent(TokKind::kComma)); for (const auto& range : ranges) { result->starts.push_back(range[0]); result->limits.push_back(range[1]); result->strides.push_back(range.size() == 3 ? range[2] : 1); } return ParseToken(TokKind::kRbrace, "expects '}' to end ranges"); } bool HloParserImpl::ParsePrecisionList( std::vector<PrecisionConfig::Precision>* result) { auto parse_and_add_item = [&]() { PrecisionConfig::Precision item; if (!ParsePrecision(&item)) { return false; } result->push_back(item); return true; }; return ParseList(TokKind::kLbrace, TokKind::kRbrace, TokKind::kComma, parse_and_add_item); } bool HloParserImpl::ParseHloComputation(HloComputation** result) { if (lexer_.GetKind() == TokKind::kLbrace) { return ParseInstructionList(result, "_"); } return ParseComputationName(result); } bool HloParserImpl::ParseHloComputationList( std::vector<HloComputation*>* result) { auto parse_and_add_item = [&]() { HloComputation* computation; if (!ParseHloComputation(&computation)) { return false; } VLOG(kDebugLevel) << "parsed computation " << computation->name(); result->push_back(computation); return true; }; return ParseList(TokKind::kLbrace, TokKind::kRbrace, TokKind::kComma, parse_and_add_item); } bool HloParserImpl::ParseShapeList(std::vector<Shape>* result) { auto parse_and_add_item = [&]() { Shape shape; if (!ParseShape(&shape)) { return false; } result->push_back(std::move(shape)); return true; }; return ParseList(TokKind::kLbrace, TokKind::kRbrace, TokKind::kComma, parse_and_add_item); } bool HloParserImpl::ParseInt64List(const TokKind start, const TokKind end, const TokKind delim, std::vector<int64_t>* result) { auto parse_and_add_item = [&]() { int64_t i; if (!ParseInt64(&i)) { return false; } result->push_back(i); return true; }; return ParseList(start, end, delim, parse_and_add_item); } bool HloParserImpl::ParseInt64ListList( const TokKind start, const TokKind end, const TokKind delim, std::vector<std::vector<int64_t>>* result) { auto parse_and_add_item = [&]() { std::vector<int64_t> item; if (!ParseInt64List(start, end, delim, &item)) { return false; } result->push_back(item); return true; }; return ParseList(start, end, delim, parse_and_add_item); } bool HloParserImpl::ParseList(const TokKind start, const TokKind end, const TokKind delim, absl::FunctionRef<bool()> parse_and_add_item) { if (!ParseToken(start, StrCat("expects a list starting with ", TokKindToString(start)))) { return false; } if (lexer_.GetKind() == end) { } else { do { if (!parse_and_add_item()) { return false; } } while (EatIfPresent(delim)); } return ParseToken( end, StrCat("expects a list to end with ", TokKindToString(end))); } bool HloParserImpl::ParseParamListToShape(Shape* shape, LocTy* shape_loc) { if (!ParseParamList() || !ParseToken(TokKind::kArrow, "expects '->'")) { return false; } *shape_loc = lexer_.GetLoc(); return ParseShape(shape); } bool HloParserImpl::CanBeParamListToShape() { return lexer_.GetKind() == TokKind::kLparen; } bool HloParserImpl::ParseParamList() { if (!ParseToken(TokKind::kLparen, "expects '(' at the beginning of param list")) { return false; } if (lexer_.GetKind() == TokKind::kRparen) { } else { do { Shape shape; std::string name; if (!ParseName(&name) || !ParseShape(&shape)) { return false; } } while (EatIfPresent(TokKind::kComma)); } return ParseToken(TokKind::kRparen, "expects ')' at the end of param list"); } bool HloParserImpl::ParseDimensionSizes(std::vector<int64_t>* dimension_sizes, std::vector<bool>* dynamic_dimensions) { auto parse_and_add_item = [&]() { int64_t i; bool is_dynamic = false; if (lexer_.GetKind() == TokKind::kQuestionMark) { i = Shape::kUnboundedSize; is_dynamic = true; lexer_.Lex(); } else { if (lexer_.GetKind() == TokKind::kLeq) { is_dynamic = true; lexer_.Lex(); } if (!ParseInt64(&i)) { return false; } } dimension_sizes->push_back(i); dynamic_dimensions->push_back(is_dynamic); return true; }; return ParseList(TokKind::kLsquare, TokKind::kRsquare, TokKind::kComma, parse_and_add_item); } bool HloParserImpl::ParseDimLevelTypes( absl::InlinedVector<DimLevelType, InlineRank()>* dim_level_types, absl::InlinedVector<bool, InlineRank()>* dim_unique, absl::InlinedVector<bool, InlineRank()>* dim_ordered) { auto parse_and_add_item = [&]() { if (lexer_.GetKind() == TokKind::kIdent) { bool dim_level_type_valid = false; DimLevelType dim_level_type; if (lexer_.GetStrVal() == "D") { lexer_.Lex(); dim_level_type = DIM_DENSE; dim_level_type_valid = true; } else if (lexer_.GetStrVal() == "C") { lexer_.Lex(); dim_level_type = DIM_COMPRESSED; dim_level_type_valid = true; } else if (lexer_.GetStrVal() == "S") { lexer_.Lex(); dim_level_type = DIM_SINGLETON; dim_level_type_valid = true; } else if (lexer_.GetStrVal() == "H") { lexer_.Lex(); dim_level_type = DIM_LOOSE_COMPRESSED; dim_level_type_valid = true; } if (dim_level_type_valid) { bool new_dim_unique = true; if (lexer_.GetKind() == TokKind::kPlus) { new_dim_unique = false; lexer_.Lex(); } bool new_dim_ordered = true; if (lexer_.GetKind() == TokKind::kTilde) { new_dim_ordered = false; lexer_.Lex(); } if (!LayoutUtil::ValidateDimLevel(dim_level_type, new_dim_unique, new_dim_ordered)) { return Error( lexer_.GetLoc(), "invalid DimLevelType/unique/ordered combination in shape"); } dim_level_types->push_back(dim_level_type); dim_unique->push_back(new_dim_unique); dim_ordered->push_back(new_dim_ordered); return true; } } return Error(lexer_.GetLoc(), "expected a DimLevelType abbreviation (D, C, or S)"); }; return ParseList(TokKind::kLparen, TokKind::kRparen, TokKind::kComma, parse_and_add_item); } bool HloParserImpl::ParseTiles(std::vector<Tile>* tiles) { auto parse_and_add_tile_dimension = [&]() { int64_t i; if (ParseInt64(&i)) { tiles->back().add_dimensions(i); return true; } if (lexer_.GetKind() == TokKind::kAsterisk) { tiles->back().add_dimensions(Tile::kCombineDimension); lexer_.Lex(); return true; } return false; }; do { tiles->push_back(Tile()); if (!ParseList(TokKind::kLparen, TokKind::kRparen, TokKind::kComma, parse_and_add_tile_dimension)) { return false; } } while (lexer_.GetKind() == TokKind::kLparen); return true; } bool HloParserImpl::ParsePhysicalShape(Shape* physical_shape) { if (!ParseToken(TokKind::kLparen, StrCat("expects physical shape to start with ", TokKindToString(TokKind::kLparen)))) { return false; } ParseShape(physical_shape); if (!ParseToken(TokKind::kRparen, StrCat("expects physical shape to end with ", TokKindToString(TokKind::kRparen)))) { return false; } return true; } bool HloParserImpl::ParsePrimitiveType(PrimitiveType* result) { if (lexer_.GetKind() != TokKind::kPrimitiveType) { return TokenError(absl::StrCat("expected primitive type, saw ", TokKindToString(lexer_.GetKind()))); } *result = lexer_.GetPrimitiveTypeVal(); lexer_.Lex(); return true; } bool HloParserImpl::ParseUnsignedIntegerType(PrimitiveType* primitive_type) { if (!ParsePrimitiveType(primitive_type)) { return false; } if (!primitive_util::IsUnsignedIntegralType(*primitive_type)) { return TokenError("expecting an unsigned integer type"); } return true; } bool HloParserImpl::ParseLayoutIntAttribute( int64_t* attr_value, absl::string_view attr_description) { if (!ParseToken(TokKind::kLparen, StrCat("expects ", attr_description, " to start with ", TokKindToString(TokKind::kLparen)))) { return false; } if (!ParseInt64(attr_value)) { return false; } if (!ParseToken(TokKind::kRparen, StrCat("expects ", attr_description, " to end with ", TokKindToString(TokKind::kRparen)))) { return false; } return true; } bool HloParserImpl::ParseSplitConfigs(std::vector<SplitConfig>& split_configs) { auto parse_and_add_split_index = [&]() { int64_t i; if (ParseInt64(&i)) { split_configs.back().add_split_indices(i); return true; } return false; }; do { if (!ParseToken(TokKind::kLparen, StrCat("expects split configs to start with ", TokKindToString(TokKind::kLparen)))) { return false; } int64_t dimension; if (!ParseInt64(&dimension)) { return false; } split_configs.push_back(SplitConfig(dimension, {})); if (!ParseList(TokKind::kColon, TokKind::kRparen, TokKind::kComma, parse_and_add_split_index)) { return false; } } while (lexer_.GetKind() == TokKind::kLparen); return true; } bool HloParserImpl::ParseLayout(Layout* layout) { absl::InlinedVector<int64_t, InlineRank()> minor_to_major; DimLevelTypeVector dim_level_types; absl::InlinedVector<bool, InlineRank()> dim_unique; absl::InlinedVector<bool, InlineRank()> dim_ordered; std::vector<Tile> tiles; PrimitiveType index_primitive_type = PRIMITIVE_TYPE_INVALID; PrimitiveType pointer_primitive_type = PRIMITIVE_TYPE_INVALID; int64_t element_size_in_bits = 0; int64_t memory_space = 0; std::vector<SplitConfig> split_configs; std::optional<Shape> physical_shape; int64_t dynamic_shape_metadata_prefix_bytes = 0; int64_t tail_padding_alignment_in_elements = 1; auto parse_and_add_item = [&]() { int64_t i; if (!ParseInt64(&i)) { return false; } minor_to_major.push_back(i); return true; }; if (!ParseToken(TokKind::kLbrace, StrCat("expects layout to start with ", TokKindToString(TokKind::kLbrace)))) { return false; } if (lexer_.GetKind() != TokKind::kRbrace) { if (lexer_.GetKind() == TokKind::kInt) { do { if (!parse_and_add_item()) { return false; } } while (EatIfPresent(TokKind::kComma)); } if (lexer_.GetKind() == TokKind::kColon) { lexer_.Lex(); if (lexer_.GetKind() == TokKind::kIdent && lexer_.GetStrVal() == "D") { lexer_.Lex(); ParseDimLevelTypes(&dim_level_types, &dim_unique, &dim_ordered); } if (lexer_.GetKind() == TokKind::kIdent && lexer_.GetStrVal() == "T") { lexer_.Lex(); ParseTiles(&tiles); } if (lexer_.GetKind() == TokKind::kIdent && lexer_.GetStrVal() == "L") { lexer_.Lex(); ParseLayoutIntAttribute(&tail_padding_alignment_in_elements, "multiple padded to in elements"); } if (lexer_.GetKind() == TokKind::kOctothorp) { lexer_.Lex(); ParseToken( TokKind::kLparen, StrCat("expects ", TokKindToString(TokKind::kOctothorp), " to be followed by ", TokKindToString(TokKind::kLparen))); ParseUnsignedIntegerType(&index_primitive_type); ParseToken(TokKind::kRparen, StrCat("expects index primitive type to be followed by ", TokKindToString(TokKind::kRparen))); } if (lexer_.GetKind() == TokKind::kAsterisk) { lexer_.Lex(); ParseToken( TokKind::kLparen, StrCat("expects ", TokKindToString(TokKind::kAsterisk), " to be followed by ", TokKindToString(TokKind::kLparen))); ParseUnsignedIntegerType(&pointer_primitive_type); ParseToken(TokKind::kRparen, StrCat("expects pointer primitive type to be followed by ", TokKindToString(TokKind::kRparen))); } if (lexer_.GetKind() == TokKind::kIdent && lexer_.GetStrVal() == "E") { lexer_.Lex(); ParseLayoutIntAttribute(&element_size_in_bits, "element size in bits"); } if (lexer_.GetKind() == TokKind::kIdent && lexer_.GetStrVal() == "S") { lexer_.Lex(); ParseLayoutIntAttribute(&memory_space, "memory space"); } if (lexer_.GetKind() == TokKind::kIdent && lexer_.GetStrVal() == "SC") { lexer_.Lex(); ParseSplitConfigs(split_configs); } if (lexer_.GetKind() == TokKind::kIdent && lexer_.GetStrVal() == "P") { lexer_.Lex(); physical_shape.emplace(); ParsePhysicalShape(&*physical_shape); } if (lexer_.GetKind() == TokKind::kIdent && lexer_.GetStrVal() == "M") { lexer_.Lex(); ParseLayoutIntAttribute(&dynamic_shape_metadata_prefix_bytes, "dynamic shape metadata prefix bytes"); } } } if (!ParseToken(TokKind::kRbrace, StrCat("expects layout to end with ", TokKindToString(TokKind::kRbrace)))) { return false; } std::vector<Tile> vec_tiles(tiles.size()); for (int i = 0; i < tiles.size(); i++) { vec_tiles[i] = Tile(tiles[i]); } *layout = LayoutUtil::MakeLayout( minor_to_major, dim_level_types, dim_unique, dim_ordered, vec_tiles, tail_padding_alignment_in_elements, index_primitive_type, pointer_primitive_type, element_size_in_bits, memory_space, split_configs, std::move(physical_shape), dynamic_shape_metadata_prefix_bytes); return true; } bool HloParserImpl::ParseShape(Shape* result) { if (EatIfPresent(TokKind::kLparen)) { std::vector<Shape> shapes; if (lexer_.GetKind() == TokKind::kRparen) { } else { do { shapes.emplace_back(); if (!ParseShape(&shapes.back())) { return false; } } while (EatIfPresent(TokKind::kComma)); } *result = ShapeUtil::MakeTupleShape(shapes); return ParseToken(TokKind::kRparen, "expects ')' at the end of tuple."); } PrimitiveType primitive_type; if (!ParsePrimitiveType(&primitive_type)) { return false; } std::vector<int64_t> dimension_sizes; std::vector<bool> dynamic_dimensions; if (!ParseDimensionSizes(&dimension_sizes, &dynamic_dimensions)) { return false; } result->set_element_type(primitive_type); for (int i = 0; i < dimension_sizes.size(); ++i) { result->add_dimensions(dimension_sizes[i]); result->set_dynamic_dimension(i, dynamic_dimensions[i]); } if (options_.fill_missing_layouts() || ShapeUtil::IsScalar(*result)) { LayoutUtil::SetToDefaultLayout(result); } if (lexer_.GetKind() == TokKind::kLbrace && (lexer_.LookAhead() == TokKind::kInt || lexer_.LookAhead() == TokKind::kColon)) { Layout layout; if (!ParseLayout(&layout)) { return false; } if (layout.dim_level_types_size() != 0 && layout.dim_level_types_size() != result->rank()) { return Error( lexer_.GetLoc(), StrFormat("Dimensions size is %ld, but dim level types size is %ld.", result->rank(), layout.dim_level_types_size())); } if (layout.minor_to_major_size() != result->rank()) { return Error( lexer_.GetLoc(), StrFormat("Dimensions size is %ld, but minor to major size is %ld.", result->rank(), layout.minor_to_major_size())); } if (LayoutUtil::IsSparse(layout) && layout.tiles_size() > 0) { return Error(lexer_.GetLoc(), StrFormat("Layout has tiles, but is for a sparse array: %s", layout.ToString())); } if (!LayoutUtil::IsSparse(layout) && layout.has_physical_shape()) { return Error( lexer_.GetLoc(), StrFormat( "Layout has physical shape, but is not for a sparse array: %s", layout.ToString())); } *result->mutable_layout() = layout; } return true; } bool HloParserImpl::CanBeShape() { return lexer_.GetKind() == TokKind::kPrimitiveType || lexer_.GetKind() == TokKind::kLparen; } bool HloParserImpl::ParseName(std::string* result) { VLOG(kDebugLevel) << "ParseName"; if (lexer_.GetKind() != TokKind::kIdent && lexer_.GetKind() != TokKind::kName) { return TokenError("expects name"); } *result = lexer_.GetStrVal(); lexer_.Lex(); return true; } bool HloParserImpl::ParseAttributeName(std::string* result) { if (lexer_.GetKind() != TokKind::kAttributeName) { return TokenError("expects attribute name"); } *result = lexer_.GetStrVal(); lexer_.Lex(); return true; } bool HloParserImpl::ParseString(std::string* result) { VLOG(kDebugLevel) << "ParseString"; if (lexer_.GetKind() != TokKind::kString) { return TokenError("expects string"); } *result = lexer_.GetStrVal(); lexer_.Lex(); return true; } bool HloParserImpl::ParseJsonDict(std::string* result) { VLOG(kDebugLevel) << "ParseJsonDict"; if (lexer_.LexJsonDict() != TokKind::kString) { return TokenError("expects JSON dict"); } *result = lexer_.GetStrVal(); lexer_.Lex(); return true; } bool HloParserImpl::ParseDxD(const std::string& name, std::vector<int64_t>* result) { LocTy loc = lexer_.GetLoc(); if (!result->empty()) { return Error(loc, StrFormat("sub-attribute '%s=' already exists", name)); } if (lexer_.GetKind() == TokKind::kInt) { int64_t number; if (!ParseInt64(&number)) { return Error(loc, StrFormat("expects sub-attribute '%s=i'", name)); } result->push_back(number); return true; } if (lexer_.GetKind() == TokKind::kDxD) { std::string str = lexer_.GetStrVal(); if (!SplitToInt64s(str, 'x', result)) { return Error(loc, StrFormat("expects sub-attribute '%s=ixj...'", name)); } lexer_.Lex(); return true; } return TokenError("expects token type kInt or kDxD"); } bool HloParserImpl::ParseWindowPad(std::vector<std::vector<int64_t>>* pad) { LocTy loc = lexer_.GetLoc(); if (!pad->empty()) { return Error(loc, "sub-attribute 'pad=' already exists"); } if (lexer_.GetKind() != TokKind::kPad) { return TokenError("expects window pad pattern, e.g., '0_0x3_3'"); } std::string str = lexer_.GetStrVal(); for (const auto& padding_dim_str : absl::StrSplit(str, 'x')) { std::vector<int64_t> low_high; if (!SplitToInt64s(padding_dim_str, '_', &low_high) || low_high.size() != 2) { return Error(loc, "expects padding_low and padding_high separated by '_'"); } pad->push_back(low_high); } lexer_.Lex(); return true; } bool HloParserImpl::ParsePaddingConfig(PaddingConfig* padding) { if (lexer_.GetKind() != TokKind::kPad) { return TokenError("expects padding config, e.g., '0_0_0x3_3_1'"); } LocTy loc = lexer_.GetLoc(); std::string str = lexer_.GetStrVal(); for (const auto& padding_dim_str : absl::StrSplit(str, 'x')) { std::vector<int64_t> padding_dim; if (!SplitToInt64s(padding_dim_str, '_', &padding_dim) || (padding_dim.size() != 2 && padding_dim.size() != 3)) { return Error(loc, "expects padding config pattern like 'low_high_interior' or " "'low_high'"); } auto* dim = padding->add_dimensions(); dim->set_edge_padding_low(padding_dim[0]); dim->set_edge_padding_high(padding_dim[1]); dim->set_interior_padding(padding_dim.size() == 3 ? padding_dim[2] : 0); } lexer_.Lex(); return true; } bool HloParserImpl::ParseOriginalValue( optional<std::shared_ptr<OriginalValue>>* original_value, const Shape& shape) { VLOG(kDebugLevel) << "ParseOriginalValue"; if (!ParseToken(TokKind::kLbrace, "Expects '{'")) { return false; } *original_value = std::make_shared<OriginalValue>(shape); ShapeIndex leaf_shape_index; while (lexer_.GetKind() != TokKind::kRbrace) { if (lexer_.GetKind() == TokKind::kLparen) { lexer_.Lex(); leaf_shape_index.push_back(0); } else if (lexer_.GetKind() == TokKind::kRparen) { lexer_.Lex(); leaf_shape_index.pop_back(); } else if (lexer_.GetKind() == TokKind::kComma) { lexer_.Lex(); ++leaf_shape_index.back(); } else if (lexer_.GetKind() == TokKind::kLbrace) { lexer_.Lex(); std::string instruction_name; ShapeIndex shape_index; if (!ParseString(&instruction_name)) { return false; } if (lexer_.GetKind() != TokKind::kRbrace) { if (!ParseShapeIndex(&shape_index)) { return false; } } *(**original_value)->mutable_element(leaf_shape_index) = { instruction_name, shape_index}; if (!ParseToken(TokKind::kRbrace, "Expects '} at end of each OriginalArray'")) { return false; } } else { return false; } } lexer_.Lex(); return true; } bool HloParserImpl::ParseMetadata(OpMetadata& metadata) { absl::flat_hash_map<std::string, AttrConfig> attrs; optional<std::string> op_type; optional<std::string> op_name; optional<std::string> source_file; optional<int32_t> source_line; optional<std::vector<int64_t>> profile_type; optional<std::string> deduplicated_name; optional<bool> preserve_layout; optional<std::string> scheduling_name; attrs["op_type"] = {false, AttrTy::kString, &op_type}; attrs["op_name"] = {false, AttrTy::kString, &op_name}; attrs["source_file"] = {false, AttrTy::kString, &source_file}; attrs["source_line"] = {false, AttrTy::kInt32, &source_line}; attrs["profile_type"] = {false, AttrTy::kBracedInt64List, &profile_type}; attrs["deduplicated_name"] = {false, AttrTy::kString, &deduplicated_name}; attrs["preserve_layout"] = {false, AttrTy::kBool, &preserve_layout}; attrs["scheduling_name"] = {false, AttrTy::kString, &scheduling_name}; if (!ParseSubAttributes(attrs)) { return false; } if (op_type) { metadata.set_op_type(*op_type); } if (op_name) { metadata.set_op_name(*op_name); } if (source_file) { metadata.set_source_file(*source_file); } if (source_line) { metadata.set_source_line(*source_line); } if (profile_type) { for (const auto& type : *profile_type) { if (!ProfileType_IsValid(type)) { return false; } metadata.add_profile_type(static_cast<ProfileType>(type)); } } if (deduplicated_name) { metadata.set_deduplicated_name(*deduplicated_name); } if (preserve_layout) { metadata.set_preserve_layout(*preserve_layout); } else { metadata.set_preserve_layout(false); } if (scheduling_name) { metadata.set_scheduling_name(*scheduling_name); } return true; } bool HloParserImpl::ParseSingleOrListMetadata( std::vector<OpMetadata>& metadata) { if (lexer_.GetKind() == TokKind::kLbrace && lexer_.LookAhead() == TokKind::kLbrace) { if (!ParseToken(TokKind::kLbrace, "expected '{' to start metadata list")) { return false; } if (lexer_.GetKind() != TokKind::kRbrace) { do { if (!ParseMetadata(metadata.emplace_back())) { return false; } } while (EatIfPresent(TokKind::kComma)); } return ParseToken(TokKind::kRbrace, "expected '}' to end metadata list"); } return ParseMetadata(metadata.emplace_back()); } bool HloParserImpl::ParseOpShardingType(OpSharding::Type* type) { switch (lexer_.GetKind()) { case TokKind::kw_maximal: *type = OpSharding::MAXIMAL; lexer_.Lex(); break; case TokKind::kw_replicated: *type = OpSharding::REPLICATED; lexer_.Lex(); break; case TokKind::kw_manual: *type = OpSharding::MANUAL; lexer_.Lex(); break; default: return false; } return true; } bool HloParserImpl::ParseListShardingType( std::vector<OpSharding::Type>* types) { if (!ParseToken(TokKind::kLbrace, "expected '{' to start sharding type list")) { return false; } if (lexer_.GetKind() != TokKind::kRbrace) { do { OpSharding::Type type; if (!ParseOpShardingType(&type)) { return false; } types->emplace_back(type); } while (EatIfPresent(TokKind::kComma)); } return ParseToken(TokKind::kRbrace, "expected '}' to end sharding type list"); } bool HloParserImpl::ParseOpcode( HloOpcode* opcode, std::optional<HloOpcode>* async_wrapped_opcode) { VLOG(kDebugLevel) << "ParseOpcode"; if (lexer_.GetKind() != TokKind::kIdent) { return TokenError("expects opcode"); } std::string val = lexer_.GetStrVal(); auto status_or_result = StringToHloOpcode(val); if (!status_or_result.ok()) { auto try_parsing_async_op = [&](absl::string_view suffix, HloOpcode async_opcode) { absl::string_view wrapped_opcode_view(val); if (absl::ConsumeSuffix(&wrapped_opcode_view, suffix)) { *opcode = async_opcode; std::string wrapped_opcode(wrapped_opcode_view); status_or_result = StringToHloOpcode(wrapped_opcode); return true; } return false; }; if (try_parsing_async_op("-start", HloOpcode::kAsyncStart) || try_parsing_async_op("-update", HloOpcode::kAsyncUpdate) || try_parsing_async_op("-done", HloOpcode::kAsyncDone)) { if (!status_or_result.ok()) { return TokenError( StrFormat("expects async wrapped opcode but sees: %s, error: %s", val, status_or_result.status().message())); } *async_wrapped_opcode = status_or_result.value(); } else { return TokenError(StrFormat("expects opcode but sees: %s, error: %s", val, status_or_result.status().message())); } } else { *opcode = status_or_result.value(); } lexer_.Lex(); return true; } bool HloParserImpl::ParseFftType(FftType* result) { VLOG(kDebugLevel) << "ParseFftType"; if (lexer_.GetKind() != TokKind::kIdent) { return TokenError("expects fft type"); } std::string val = lexer_.GetStrVal(); if (!FftType_Parse(val, result) || !FftType_IsValid(*result)) { return TokenError(StrFormat("expects fft type but sees: %s", val)); } lexer_.Lex(); return true; } bool HloParserImpl::ParsePaddingType(PaddingType* result) { VLOG(kDebugLevel) << "ParsePaddingType"; if (lexer_.GetKind() != TokKind::kIdent) { return TokenError("expects padding type"); } std::string val = lexer_.GetStrVal(); if (!PaddingType_Parse(val, result) || !PaddingType_IsValid(*result)) { return TokenError(StrFormat("expects padding type but sees: %s", val)); } lexer_.Lex(); return true; } bool HloParserImpl::ParseComparisonDirection(ComparisonDirection* result) { VLOG(kDebugLevel) << "ParseComparisonDirection"; if (lexer_.GetKind() != TokKind::kIdent) { return TokenError("expects comparison direction"); } std::string val = lexer_.GetStrVal(); auto status_or_result = StringToComparisonDirection(val); if (!status_or_result.ok()) { return TokenError( StrFormat("expects comparison direction but sees: %s", val)); } *result = status_or_result.value(); lexer_.Lex(); return true; } bool HloParserImpl::ParseComparisonType(Comparison::Type* result) { VLOG(kDebugLevel) << "ParseComparisonType"; if (lexer_.GetKind() != TokKind::kIdent) { return TokenError("expects comparison type"); } std::string val = lexer_.GetStrVal(); auto status_or_result = StringToComparisonType(val); if (!status_or_result.ok()) { return TokenError(StrFormat("expects comparison type but sees: %s", val)); } *result = status_or_result.value(); lexer_.Lex(); return true; } bool HloParserImpl::ParseFusionKind(HloInstruction::FusionKind* result) { VLOG(kDebugLevel) << "ParseFusionKind"; if (lexer_.GetKind() != TokKind::kIdent) { return TokenError("expects fusion kind"); } std::string val = lexer_.GetStrVal(); auto status_or_result = StringToFusionKind(val); if (!status_or_result.ok()) { return TokenError(StrFormat("expects fusion kind but sees: %s, error: %s", val, status_or_result.status().message())); } *result = status_or_result.value(); lexer_.Lex(); return true; } bool HloParserImpl::ParseRandomDistribution(RandomDistribution* result) { VLOG(kDebugLevel) << "ParseRandomDistribution"; if (lexer_.GetKind() != TokKind::kIdent) { return TokenError("expects random distribution"); } std::string val = lexer_.GetStrVal(); auto status_or_result = StringToRandomDistribution(val); if (!status_or_result.ok()) { return TokenError( StrFormat("expects random distribution but sees: %s, error: %s", val, status_or_result.status().message())); } *result = status_or_result.value(); lexer_.Lex(); return true; } bool HloParserImpl::ParseRandomAlgorithm(RandomAlgorithm* result) { VLOG(kDebugLevel) << "ParseRandomAlgorithm"; if (lexer_.GetKind() != TokKind::kIdent) { return TokenError("expects random algorithm"); } std::string val = lexer_.GetStrVal(); auto status_or_result = StringToRandomAlgorithm(val); if (!status_or_result.ok()) { return TokenError( StrFormat("expects random algorithm but sees: %s, error: %s", val, status_or_result.status().message())); } *result = status_or_result.value(); lexer_.Lex(); return true; } bool HloParserImpl::ParsePrecision(PrecisionConfig::Precision* result) { VLOG(kDebugLevel) << "ParsePrecision"; if (lexer_.GetKind() != TokKind::kIdent) { return TokenError("expects random distribution"); } std::string val = lexer_.GetStrVal(); auto status_or_result = StringToPrecision(val); if (!status_or_result.ok()) { return TokenError(StrFormat("expects precision but sees: %s, error: %s", val, status_or_result.status().message())); } *result = status_or_result.value(); lexer_.Lex(); return true; } bool HloParserImpl::ParseAlgorithm(PrecisionConfig::Algorithm* result) { VLOG(kDebugLevel) << "ParseAlgorithm"; if (lexer_.GetKind() != TokKind::kIdent) { return TokenError("expects algorithm"); } std::string val = lexer_.GetStrVal(); auto status_or_result = StringToAlgorithm(val); if (!status_or_result.ok()) { return TokenError(StrFormat("expects algorithm but sees: %s, error: %s", val, status_or_result.status().message())); } *result = status_or_result.value(); lexer_.Lex(); return true; } bool HloParserImpl::ParseInt64(int64_t* result) { VLOG(kDebugLevel) << "ParseInt64"; if (lexer_.GetKind() != TokKind::kInt) { return TokenError("expects integer"); } *result = lexer_.GetInt64Val(); lexer_.Lex(); return true; } bool HloParserImpl::ParseDouble(double* result) { switch (lexer_.GetKind()) { case TokKind::kDecimal: { double val = lexer_.GetDecimalVal(); if (std::isinf(val)) { return TokenError(StrCat("Constant is out of range for double (+/-", std::numeric_limits<double>::max(), ") and so is unparsable.")); } *result = val; break; } case TokKind::kInt: *result = static_cast<double>(lexer_.GetInt64Val()); break; case TokKind::kw_inf: *result = std::numeric_limits<double>::infinity(); break; case TokKind::kNegInf: *result = -std::numeric_limits<double>::infinity(); break; default: return TokenError("expects decimal or integer"); } lexer_.Lex(); return true; } bool HloParserImpl::ParseComplex(std::complex<double>* result) { if (lexer_.GetKind() != TokKind::kLparen) { return TokenError("expects '(' before complex number"); } lexer_.Lex(); double real; LocTy loc = lexer_.GetLoc(); if (!ParseDouble(&real)) { return Error(loc, "expect floating-point value for real part of complex number"); } if (lexer_.GetKind() != TokKind::kComma) { return TokenError( absl::StrFormat("expect comma after real part of complex literal")); } lexer_.Lex(); double imag; loc = lexer_.GetLoc(); if (!ParseDouble(&imag)) { return Error( loc, "expect floating-point value for imaginary part of complex number"); } if (lexer_.GetKind() != TokKind::kRparen) { return TokenError(absl::StrFormat("expect ')' after complex number")); } *result = std::complex<double>(real, imag); lexer_.Lex(); return true; } bool HloParserImpl::ParseBool(bool* result) { if (lexer_.GetKind() != TokKind::kw_true && lexer_.GetKind() != TokKind::kw_false) { return TokenError("expects true or false"); } *result = lexer_.GetKind() == TokKind::kw_true; lexer_.Lex(); return true; } bool HloParserImpl::ParseToken(TokKind kind, const std::string& msg) { VLOG(kDebugLevel) << "ParseToken " << TokKindToString(kind) << " " << msg; if (lexer_.GetKind() != kind) { return TokenError(msg); } lexer_.Lex(); return true; } bool HloParserImpl::EatIfPresent(TokKind kind) { if (lexer_.GetKind() != kind) { return false; } lexer_.Lex(); return true; } bool HloParserImpl::AddInstruction(const std::string& name, HloInstruction* instruction, LocTy name_loc) { auto result = current_name_table().insert({name, {instruction, name_loc}}); if (!result.second) { Error(name_loc, StrCat("instruction already exists: ", name)); return Error(result.first->second.second, "instruction previously defined here"); } return true; } bool HloParserImpl::AddComputation(const std::string& name, HloComputation* computation, LocTy name_loc) { auto result = computation_pool_.insert({name, {computation, name_loc}}); if (!result.second) { Error(name_loc, StrCat("computation already exists: ", name)); return Error(result.first->second.second, "computation previously defined here"); } return true; } absl::StatusOr<Shape> HloParserImpl::ParseShapeOnly() { lexer_.Lex(); Shape shape; if (!ParseShape(&shape)) { return InvalidArgument("Syntax error:\n%s", GetError()); } if (lexer_.GetKind() != TokKind::kEof) { return InvalidArgument("Syntax error:\nExtra content after shape"); } return shape; } absl::StatusOr<Layout> HloParserImpl::ParseLayoutOnly() { lexer_.Lex(); Layout layout; if (!ParseLayout(&layout)) { return InvalidArgument("Syntax error:\n%s", GetError()); } if (lexer_.GetKind() != TokKind::kEof) { return InvalidArgument("Syntax error:\nExtra content after layout"); } return layout; } absl::StatusOr<HloSharding> HloParserImpl::ParseShardingOnly() { lexer_.Lex(); std::optional<HloSharding> sharding; if (!ParseSharding(sharding)) { return InvalidArgument("Syntax error:\n%s", GetError()); } if (lexer_.GetKind() != TokKind::kEof) { return InvalidArgument("Syntax error:\nExtra content after sharding"); } return std::move(*sharding); } absl::StatusOr<FrontendAttributes> HloParserImpl::ParseFrontendAttributesOnly() { lexer_.Lex(); FrontendAttributes attributes; if (!ParseFrontendAttributes(&attributes)) { return InvalidArgument("Syntax error:\n%s", GetError()); } if (lexer_.GetKind() != TokKind::kEof) { return InvalidArgument( "Syntax error:\nExtra content after frontend attributes"); } return attributes; } absl::StatusOr<StatisticsViz> HloParserImpl::ParseStatisticsVizOnly() { lexer_.Lex(); StatisticsViz statistics_viz; if (!ParseStatisticsViz(&statistics_viz)) { return InvalidArgument("Syntax error:\n%s", GetError()); } if (lexer_.GetKind() != TokKind::kEof) { return InvalidArgument("Syntax error:\nExtra content after statistics"); } return statistics_viz; } absl::StatusOr<std::vector<bool>> HloParserImpl::ParseParameterReplicationOnly() { lexer_.Lex(); ParameterReplication parameter_replication; if (!ParseParameterReplication(&parameter_replication)) { return InvalidArgument("Syntax error:\n%s", GetError()); } if (lexer_.GetKind() != TokKind::kEof) { return InvalidArgument( "Syntax error:\nExtra content after parameter replication"); } return std::vector<bool>( parameter_replication.replicated_at_leaf_buffers().begin(), parameter_replication.replicated_at_leaf_buffers().end()); } absl::StatusOr<HloParserImpl::BoolList> HloParserImpl::ParseBooleanListOrSingleBooleanOnly() { lexer_.Lex(); BoolList booleans; if (!ParseBooleanListOrSingleBoolean(&booleans)) { return InvalidArgument("Syntax error:\n%s", GetError()); } if (lexer_.GetKind() != TokKind::kEof) { return InvalidArgument("Syntax error:\nExtra content after boolean list"); } return booleans; } absl::StatusOr<std::vector<ReplicaGroup>> HloParserImpl::ParseReplicaGroupsOnly() { lexer_.Lex(); std::vector<ReplicaGroup> replica_groups; if (!ParseReplicaGroupsOnly(&replica_groups)) { return InvalidArgument("Syntax error:\n%s", GetError()); } if (lexer_.GetKind() != TokKind::kEof) { return InvalidArgument("Syntax error:\nExtra content after replica groups"); } return replica_groups; } absl::StatusOr<Window> HloParserImpl::ParseWindowOnly() { lexer_.Lex(); Window window; if (!ParseWindow(&window, false)) { return InvalidArgument("Syntax error:\n%s", GetError()); } if (lexer_.GetKind() != TokKind::kEof) { return InvalidArgument("Syntax error:\nExtra content after window"); } return window; } absl::StatusOr<ConvolutionDimensionNumbers> HloParserImpl::ParseConvolutionDimensionNumbersOnly() { lexer_.Lex(); ConvolutionDimensionNumbers dnums; if (!ParseConvolutionDimensionNumbers(&dnums)) { return InvalidArgument("Syntax error:\n%s", GetError()); } if (lexer_.GetKind() != TokKind::kEof) { return InvalidArgument( "Syntax error:\nExtra content after convolution dnums"); } return dnums; } absl::StatusOr<PaddingConfig> HloParserImpl::ParsePaddingConfigOnly() { lexer_.Lex(); PaddingConfig padding_config; if (!ParsePaddingConfig(&padding_config)) { return InvalidArgument("Syntax error:\n%s", GetError()); } if (lexer_.GetKind() != TokKind::kEof) { return InvalidArgument("Syntax error:\nExtra content after PaddingConfig"); } return padding_config; } bool HloParserImpl::ParseSingleInstruction(HloModule* module) { if (create_missing_instruction_ != nullptr || !scoped_name_tables_.empty()) { LOG(FATAL) << "Parser state is not clean. Please do not call any other " "methods before calling ParseSingleInstruction."; } HloComputation::Builder builder(module->name()); int64_t parameter_count = 0; create_missing_instruction_ = [this, &builder, &parameter_count]( const std::string& name, const Shape& shape) -> std::pair<HloInstruction*, LocTy>* { std::string new_name = name.empty() ? StrCat("_", parameter_count) : name; HloInstruction* parameter = builder.AddInstruction( HloInstruction::CreateParameter(parameter_count++, shape, new_name)); current_name_table()[new_name] = {parameter, lexer_.GetLoc()}; return tsl::gtl::FindOrNull(current_name_table(), new_name); }; Scope scope(&scoped_name_tables_); if (CanBeShape()) { if (!ParseInstructionRhs(&builder, module->name(), lexer_.GetLoc())) { return false; } } else { std::string root_name; if (!ParseInstruction(&builder, &root_name)) { return false; } } if (lexer_.GetKind() != TokKind::kEof) { Error( lexer_.GetLoc(), "Syntax error:\nExpected eof after parsing single instruction. Did you" " mean to write an HLO module and forget the \"HloModule\" header?"); return false; } module->AddEntryComputation(builder.Build()); for (auto& comp : computations_) { module->AddEmbeddedComputation(std::move(comp)); } TF_CHECK_OK(module->set_schedule(ScheduleFromInstructionOrder(module))); return true; } } absl::StatusOr<std::unique_ptr<HloModule>> ParseAndReturnUnverifiedModule( absl::string_view str, const HloModuleConfig& config, const HloParserOptions& options) { auto module = std::make_unique<HloModule>("_", config); HloParserImpl parser(str, options); TF_RETURN_IF_ERROR(parser.Run(module.get())); return std::move(module); } absl::StatusOr<HloSharding> ParseSharding(absl::string_view str) { HloParserImpl parser(str); return parser.ParseShardingOnly(); } absl::StatusOr<FrontendAttributes> ParseFrontendAttributes( absl::string_view str) { HloParserImpl parser(str); return parser.ParseFrontendAttributesOnly(); } absl::StatusOr<StatisticsViz> ParseStatisticsViz(absl::string_view str) { HloParserImpl parser(str); return parser.ParseStatisticsVizOnly(); } absl::StatusOr<std::vector<bool>> ParseParameterReplication( absl::string_view str) { HloParserImpl parser(str); return parser.ParseParameterReplicationOnly(); } absl::StatusOr<HloParserImpl::BoolList> ParseBooleanListOrSingleBoolean( absl::string_view str) { HloParserImpl parser(str); return parser.ParseBooleanListOrSingleBooleanOnly(); } absl::StatusOr<std::vector<ReplicaGroup>> ParseReplicaGroupsOnly( absl::string_view str) { HloParserImpl parser(str); return parser.ParseReplicaGroupsOnly(); } absl::StatusOr<Window> ParseWindow(absl::string_view str) { HloParserImpl parser(str); return parser.ParseWindowOnly(); } absl::StatusOr<ConvolutionDimensionNumbers> ParseConvolutionDimensionNumbers( absl::string_view str) { HloParserImpl parser(str); return parser.ParseConvolutionDimensionNumbersOnly(); } absl::StatusOr<PaddingConfig> ParsePaddingConfig(absl::string_view str) { HloParserImpl parser(str); return parser.ParsePaddingConfigOnly(); } absl::StatusOr<Shape> ParseShape(absl::string_view str) { HloParserImpl parser(str); return parser.ParseShapeOnly(); } absl::StatusOr<Layout> ParseLayout(absl::string_view str) { HloParserImpl parser(str); return parser.ParseLayoutOnly(); } std::unique_ptr<HloParser> HloParser::CreateHloParserForTests( absl::string_view str) { return std::make_unique<HloParserImpl>(str); } }
#include "xla/hlo/parser/hlo_parser.h" #include <cstdint> #include <memory> #include <string> #include <string_view> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/ascii.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/array.h" #include "xla/hlo/ir/collective_device_list.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/parser/hlo_lexer.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/service/hlo_module_config.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/verified_hlo_module.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/window_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace { namespace m = ::xla::match; using ::absl::string_view; using ::testing::ElementsAre; using ::testing::HasSubstr; struct TestData { std::string test_name; std::string module_string; int64_t replica_count = 1; bool enable_verification = true; }; std::string TestDataToString(const ::testing::TestParamInfo<TestData>& data) { return data.param.test_name; } struct NonRoundtripTestData { std::string test_name; std::string input_module_string; std::string output_module_string; }; std::string NonRoundtripTestDataToString( const ::testing::TestParamInfo<NonRoundtripTestData>& data) { return data.param.test_name; } std::vector<TestData> CreateTestCases() { return std::vector<TestData>({ { "AxpyParam", R"(HloModule axpy_module, entry_computation_layout={(f32[], f32[2,4]{1,0}, f32[2,4]{1,0})->f32[2,4]{1,0}} ENTRY %axpy.v5 (alpha: f32[], x: f32[2,4], y: f32[2,4]) -> f32[2,4] { %alpha = f32[] parameter(0) %broadcast = f32[2,4]{1,0} broadcast(f32[] %alpha), dimensions={} %x = f32[2,4]{1,0} parameter(1) %multiply = f32[2,4]{1,0} multiply(f32[2,4]{1,0} %broadcast, f32[2,4]{1,0} %x) %y = f32[2,4]{1,0} parameter(2) ROOT %add = f32[2,4]{1,0} add(f32[2,4]{1,0} %multiply, f32[2,4]{1,0} %y) } )" }, { "ParamReplication", R"(HloModule param_replication_module, entry_computation_layout={(f32[], (f32[2,4]{1,0}, (f32[2,4]{1,0})))->(f32[], (f32[2,4]{1,0}, (f32[2,4]{1,0})))} ENTRY %param_replication (a: f32[], b: (f32[2,4], (f32[2,4]))) -> (f32[], (f32[2,4], (f32[2,4]))) { %a = f32[] parameter(0), parameter_replication={true} %b = (f32[2,4]{1,0}, (f32[2,4]{1,0})) parameter(1), parameter_replication={false,true} ROOT %tuple = (f32[], (f32[2,4]{1,0}, (f32[2,4]{1,0}))) tuple(f32[] %a, (f32[2,4]{1,0}, (f32[2,4]{1,0})) %b) } )" }, { "ConstantPred", R"(HloModule constant_pred_module, entry_computation_layout={()->pred[]} ENTRY %constant_pred () -> pred[] { ROOT %constant = pred[] constant(true), metadata={op_type="const" op_name="\"it\'s not a problem\n" source_file="path/to/test.cc" source_line=68}, backend_config="foo\" bar" } )" }, { "ConstantPredArray", R"(HloModule module, entry_computation_layout={()->pred[2,3]{1,0}} ENTRY %constant_pred_array () -> pred[2,3] { ROOT %constant = pred[2,3]{1,0} constant({ { 0, 1, 0 }, { 1, 0, 1 } }) } )" }, { "ConstantS32", R"(HloModule constant_s32_module, entry_computation_layout={()->s32[]} ENTRY %constant_s32 () -> s32[] { ROOT %constant = s32[] constant(-42) } )" }, { "ConstantS32WithStatistics", R"(HloModule constant_s32_module, entry_computation_layout={()->s32[]} ENTRY %constant_s32 () -> s32[] { ROOT %constant = s32[] constant(-42), statistics={visualizing_index=1,stat-1=33,stat-2=44} } )" }, { "ConstantF32", R"(HloModule ConstantF32_module, entry_computation_layout={()->f32[]} ENTRY %ConstantF32.v4 () -> f32[] { ROOT %constant = f32[] constant(42), backend_config="this is a configuration" } )" }, { "ConstantF32R1Empty", R"(HloModule ConstantF32Empty_module, entry_computation_layout={()->f32[0]{0}} ENTRY %ConstantF32Empty.v4 () -> f32[0] { ROOT %constant = f32[0]{0} constant({}) } )" }, { "ConstantF32R4Empty", R"(HloModule ConstantF32R4Empty_module, entry_computation_layout={()->f32[2,0,4,3]{3,2,1,0}} ENTRY %ConstantF32R4Empty.v4 () -> f32[2,0,4,3] { ROOT %constant = f32[2,0,4,3]{3,2,1,0} constant({ { }, { } }) } )" }, { "Constant4D", R"(HloModule Small_3x2x1x1_module, entry_computation_layout={()->f32[3,2,1,1]{3,2,1,0}} ENTRY %Small_3x2x1x1.v1 () -> f32[3,2,1,1] { ROOT %constant = f32[3,2,1,1]{3,2,1,0} constant({ { { {-1} }, { {4.1} } }, { { {2} }, { {4.1} } }, { { {5} }, { {4.4} } } }) } )" }, { "ConstantNonFinite", R"(HloModule IsFiniteR1F32s_module, entry_computation_layout={()->pred[6]{0}} ENTRY %IsFiniteR1F32s.v2 () -> pred[6] { %constant = f32[6]{0} constant({nan, 7, nan, -1, inf, -inf}) ROOT %is-finite = pred[6]{0} is-finite(f32[6]{0} %constant) } )" }, { "ConstantNonFiniteE4M3", R"(HloModule ConstantR1F8E4M3FNs_module, entry_computation_layout={()->f8e4m3fn[3]{0}} ENTRY %IsFiniteR1F32s.v2 () -> f8e4m3fn[3] { ROOT %constant = f8e4m3fn[3]{0} constant({nan, 7, -nan}) } )" }, { "ConstantNonFiniteE4M3B11", R"(HloModule ConstantR1F8E4M3B11_module, entry_computation_layout={()->f8e4m3b11fnuz[2]{0}} ENTRY %IsFiniteR1F32s.v2 () -> f8e4m3b11fnuz[2] { ROOT %constant = f8e4m3b11fnuz[2]{0} constant({-nan, 7}) } )" }, { "ConstantF16", R"(HloModule ConstantF16_module, entry_computation_layout={()->f16[]} ENTRY %ConstantF16.v4 () -> f16[] { ROOT %constant = f16[] constant(500) } )" }, { "BF16", R"(HloModule BF16, entry_computation_layout={()->bf16[]} ENTRY %BF16.v4 () -> bf16[] { ROOT %constant = bf16[] constant(500) } )" }, { "AddConstants", R"(HloModule add_constants_module, entry_computation_layout={()->f32[]} ENTRY %add_constants () -> f32[] { %constant = f32[] constant(3.14) ROOT %add = f32[] add(f32[] %constant, f32[] %constant) } )" }, { "TupleConstant", R"(HloModule TupleConstant_module, entry_computation_layout={()->(f32[2,1]{1,0}, f32[2]{0})} ENTRY %TupleConstant.v1 () -> (f32[2,1], f32[2]) { ROOT %constant = (f32[2,1]{1,0}, f32[2]{0}) constant(( { {1}, {2} }, {2, 42} )) } )" }, { "SelectR1F32", R"(HloModule SelectR1F32WithCmpR1F32sFromParamsSmall_module, entry_computation_layout={(f32[4]{0}, f32[4]{0})->f32[4]{0}} ENTRY %SelectR1F32WithCmpR1F32sFromParamsSmall.v4 (v1: f32[4], v2: f32[4]) -> f32[4] { %v1 = f32[4]{0} parameter(0), sharding={maximal device=1} %v2 = f32[4]{0} parameter(1), sharding={maximal device=1} %greater-than = pred[4]{0} compare(f32[4]{0} %v1, f32[4]{0} %v2), direction=GT, type=TOTALORDER, sharding={replicated} ROOT %select = f32[4]{0} select(pred[4]{0} %greater-than, f32[4]{0} %v1, f32[4]{0} %v2), sharding={replicated} } )" }, { "EmptyTupleCreate", R"(HloModule EmptyTupleCreate_module, entry_computation_layout={()->()} ENTRY %EmptyTupleCreate.v1 () -> () { ROOT %tuple = () tuple() } )" }, { "TupleCreate", R"(HloModule TupleCreate_module, entry_computation_layout={(f32[], f32[3]{0}, f32[2,3]{1,0})->(f32[], f32[3]{0}, f32[2,3]{1,0})} ENTRY %TupleCreate.v4 (v1: f32[], v2: f32[3], v3: f32[2,3]) -> (f32[], f32[3], f32[2,3]) { %v1 = f32[] parameter(0) %v2 = f32[3]{0} parameter(1) %v3 = f32[2,3]{1,0} parameter(2) ROOT %tuple = (f32[], f32[3]{0}, f32[2,3]{1,0}) tuple(f32[] %v1, f32[3]{0} %v2, f32[2,3]{1,0} %v3) } )" }, { "LargeTupleRoundTrip", R"(HloModule LargeTupleRoundTrip_module, entry_computation_layout={(f32[])->(f32[], f32[], f32[], f32[], f32[], f32[])} ENTRY %TupleCreate.v4 (v: f32[]) -> (f32[], f32[], f32[], f32[], f32[], f32[]) { %v = f32[] parameter(0) ROOT %tuple = (f32[], f32[], f32[], f32[], f32[], f32[]) tuple(f32[] %v, f32[] %v, f32[] %v, f32[] %v, f32[] %v, f32[] %v) } )" }, { "ShardedTupleCreate", R"(HloModule ShardedTupleCreate_module, entry_computation_layout={(f32[], f32[3]{0}, f32[2,3]{1,0})->(f32[], f32[3]{0}, f32[2,3]{1,0})} ENTRY %ShardedTupleCreate.v4 (v1: f32[], v2: f32[3], v3: f32[2,3]) -> (f32[], f32[3], f32[2,3]) { %v1 = f32[] parameter(0), sharding={manual} %v2 = f32[3]{0} parameter(1) %v3 = f32[2,3]{1,0} parameter(2) ROOT %tuple = (f32[], f32[3]{0}, f32[2,3]{1,0}) tuple(f32[] %v1, f32[3]{0} %v2, f32[2,3]{1,0} %v3), sharding={{manual}, {maximal device=0}, {replicated}} } )" }, { "DomainParsing", R"(HloModule DomainParsing_module, entry_computation_layout={(f32[])->f32[]} ENTRY %DomainParsing (v1: f32[]) -> f32[] { %v1 = f32[] parameter(0) ROOT %dom = f32[] domain(f32[] %v1), domain={kind="sharding", entry={maximal device=0}, exit={maximal device=1}} } )" }, { "WhileWithScalarS32Result", R"(HloModule WhileWithScalarS32Result_module, entry_computation_layout={()->s32[]} %body.v3 (prev.1: s32[]) -> s32[] { %constant = s32[] constant(1) %prev.1 = s32[] parameter(0) ROOT %add = s32[] add(s32[] %constant, s32[] %prev.1) } %condition.v3 (prev.2: s32[]) -> pred[] { %constant.1 = s32[] constant(5) %prev.2 = s32[] parameter(0) ROOT %greater-than = pred[] compare(s32[] %constant.1, s32[] %prev.2), direction=GT } ENTRY %WhileWithScalarS32Result.v2 () -> s32[] { %constant.2 = s32[] constant(0) ROOT %while = s32[] while(s32[] %constant.2), condition=%condition.v3, body=%body.v3 } )" }, { "CopyStartAndCopyDone", R"(HloModule CopyStartAndCopyDone_module, entry_computation_layout={(f32[], f32[2,3]{1,0:S(1)})->(f32[], f32[2,3]{1,0:S(2)})} ENTRY %CopyStartAndCopyDone (v1: f32[], v2: f32[2,3]) -> (f32[], f32[2,3]) { %v1 = f32[] parameter(0) %copy-start.1 = (f32[], f32[], u32[]) copy-start(f32[] %v1), cross_program_prefetch_index=0 %copy-done.1 = f32[] copy-done((f32[], f32[], u32[]) %copy-start.1) %v2 = f32[2,3]{1,0:S(1)} parameter(1) %copy-start.2 = (f32[2,3]{1,0:S(2)}, f32[2,3]{1,0:S(1)}, u32[]) copy-start(f32[2,3]{1,0:S(1)} %v2) %copy-done.2 = f32[2,3]{1,0:S(2)} copy-done((f32[2,3]{1,0:S(2)}, f32[2,3]{1,0:S(1)}, u32[]) %copy-start.2) ROOT %tuple = (f32[], f32[2,3]{1,0:S(2)}) tuple(f32[] %copy-done.1, f32[2,3]{1,0:S(2)} %copy-done.2) } )" }, { "SendRecv", R"(HloModule TwoSendRecvBothWayRecvFist_module, entry_computation_layout={()->(f32[], token[])} ENTRY %TwoSendRecvBothWayRecvFist.v3 () -> (f32[], token[]) { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15, sharding={{maximal device=1}, {replicated}, {replicated}} ROOT %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15, sharding={{maximal device=1}, {replicated}} %constant = f32[] constant(2.1), sharding={maximal device=0} %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0), channel_id=16, sharding={{maximal device=1}, {replicated}, {replicated}}, control-predecessors={%recv} %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16, sharding={maximal device=0} } )" }, { "SendRecvWithHostTransfer", R"(HloModule HostTransferSendRecv_module, entry_computation_layout={()->(f32[], token[])} ENTRY %TwoSendRecvBothWayRecvFist.v3 () -> (f32[], token[]) { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15, is_host_transfer=true ROOT %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15, is_host_transfer=true %constant = f32[] constant(2.1), sharding={maximal device=0} %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0), channel_id=16, is_host_transfer=true %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16, is_host_transfer=true } )" }, { "GetTupleElement", R"(HloModule GetTupleElement_module, entry_computation_layout={()->s32[2,3]{1,0}} ENTRY %GetTupleElement.v4 () -> s32[2,3] { %constant = f32[3]{0} constant({1, 2, 3}) %constant.1 = s32[2,3]{1,0} constant({ { 1, 2, 3 }, { 4, 5, 6 } }) %tuple = (f32[3]{0}, s32[2,3]{1,0}) tuple(f32[3]{0} %constant, s32[2,3]{1,0} %constant.1) ROOT %get-tuple-element = s32[2,3]{1,0} get-tuple-element((f32[3]{0}, s32[2,3]{1,0}) %tuple), index=1, sharding={maximal device=0} } )" }, { "Call", R"(HloModule CallR0F32IdentityScalar_module, entry_computation_layout={()->f32[]} %Identity.v1 (x: f32[]) -> f32[] { ROOT %x = f32[] parameter(0) } ENTRY %CallR0F32IdentityScalar.v2 () -> f32[] { %constant = f32[] constant(42) ROOT %call = f32[] call(f32[] %constant), to_apply=%Identity.v1 } )" }, { "CompositeCall", R"(HloModule CompositeCall, entry_computation_layout={()->f32[]} %add (x: f32[]) -> f32[] { %x = f32[] parameter(0) %constant = f32[] constant(2) ROOT %z = f32[] add(f32[] %x, f32[] %constant) } ENTRY %CompositeCall.v2 () -> f32[] { %constant.1 = f32[] constant(42) ROOT %call = f32[] call(f32[] %constant.1), to_apply=%add, is_composite=true, frontend_attributes={composite.attributes={n = 1 : i32, tensor = dense<1> : tensor<i32>},composite.name="foo.bar",composite.version="1"} } )" }, { "CompositeCallWithExtraFrontendAttributes", R"(HloModule CompositeCall, entry_computation_layout={()->f32[]} %add (x: f32[]) -> f32[] { %x = f32[] parameter(0) %constant = f32[] constant(2) ROOT %z = f32[] add(f32[] %x, f32[] %constant) } ENTRY %CompositeCall.v2 () -> f32[] { %constant.1 = f32[] constant(42) ROOT %call = f32[] call(f32[] %constant.1), to_apply=%add, is_composite=true, frontend_attributes={composite.attributes={n = 1 : i32, tensor = dense<1> : tensor<i32>},composite.name="foo.bar",composite.version="1",foo="bar"} } )" }, { "CompositeCallOptionalAttributesAndVersion", R"(HloModule CompositeCall, entry_computation_layout={()->f32[]} %add (x: f32[]) -> f32[] { %x = f32[] parameter(0) %constant = f32[] constant(2) ROOT %z = f32[] add(f32[] %x, f32[] %constant) } ENTRY %CompositeCall.v2 () -> f32[] { %constant.1 = f32[] constant(42) ROOT %call = f32[] call(f32[] %constant.1), to_apply=%add, is_composite=true, frontend_attributes={composite.name="foo.bar"} } )" }, { "CompositeCallOptionalAttributes", R"(HloModule CompositeCall, entry_computation_layout={()->f32[]} %add (x: f32[]) -> f32[] { %x = f32[] parameter(0) %constant = f32[] constant(2) ROOT %z = f32[] add(f32[] %x, f32[] %constant) } ENTRY %CompositeCall.v2 () -> f32[] { %constant.1 = f32[] constant(42) ROOT %call = f32[] call(f32[] %constant.1), to_apply=%add, is_composite=true, frontend_attributes={composite.name="foo.bar",composite.version="1"} } )" }, { "CompositeCallOptionalVersion", R"(HloModule CompositeCall, entry_computation_layout={()->f32[]} %add (x: f32[]) -> f32[] { %x = f32[] parameter(0) %constant = f32[] constant(2) ROOT %z = f32[] add(f32[] %x, f32[] %constant) } ENTRY %CompositeCall.v2 () -> f32[] { %constant.1 = f32[] constant(42) ROOT %call = f32[] call(f32[] %constant.1), to_apply=%add, is_composite=true, frontend_attributes={composite.attributes={n = 1 : i32, tensor = dense<1> : tensor<i32>},composite.name="foo.bar"} } )" }, { "CustomCallWithOpaque", R"(HloModule custom_call, entry_computation_layout={()->f32[1,2,3]{0,2,1}} ENTRY %CustomCall () -> f32[1,2,3] { %constant = f32[1]{0} constant({12345}) ROOT %custom-call = f32[1,2,3]{0,2,1} custom-call(f32[1]{0} %constant), custom_call_target="foo\"bar", backend_config="this string is opaque" } )" }, { "CustomCallWithBackendConfigInCurlyBraces", R"(HloModule custom_call, entry_computation_layout={()->f32[1,2,3]{0,2,1}} ENTRY %CustomCall () -> f32[1,2,3] { %constant = f32[1]{0} constant({12345}) ROOT %custom-call = f32[1,2,3]{0,2,1} custom-call(f32[1]{0} %constant), custom_call_target="foo\"bar", backend_config={key: "value"} } )" }, { "CustomCallWithLiteral", R"(HloModule custom_call, entry_computation_layout={()->f32[1,2,3]{0,2,1}} ENTRY %CustomCall () -> f32[1,2,3] { %constant = f32[1]{0} constant({12345}) ROOT %custom-call = f32[1,2,3]{0,2,1} custom-call(f32[1]{0} %constant), custom_call_target="foo\"bar", literal=s32[2]{0} {1, 2} } )" }, { "CustomCallWithLiteralTuple", R"(HloModule custom_call, entry_computation_layout={()->f32[1,2,3]{0,2,1}} ENTRY %CustomCall () -> f32[1,2,3] { %constant = f32[1]{0} constant({12345}) ROOT %custom-call = f32[1,2,3]{0,2,1} custom-call(f32[1]{0} %constant), custom_call_target="foo\"bar", literal=( s32[4]{0} {4, 128, 128, 3}, pred[4]{0} {1, 0, 0, 0} ) } )" }, { "CustomCallWithLiteralR0", R"(HloModule custom_call, entry_computation_layout={()->f32[1,2,3]{0,2,1}} ENTRY %CustomCall () -> f32[1,2,3] { %constant = f32[1]{0} constant({12345}) ROOT %custom-call = f32[1,2,3]{0,2,1} custom-call(f32[1]{0} %constant), custom_call_target="foo\"bar", literal=f32[] 0.1 } )" }, { "ReduceWindow", R"(HloModule R4UnitWindow_module, entry_computation_layout={(f32[13,12,8,15]{0,3,2,1})->f32[13,3,8,15]{0,3,2,1}} %add_F32.v3 (lhs: f32[], rhs: f32[]) -> f32[] { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %add = f32[] add(f32[] %lhs, f32[] %rhs) } ENTRY %R4UnitWindow.v3 (operand: f32[13,12,8,15]) -> f32[13,3,8,15] { %operand = f32[13,12,8,15]{0,3,2,1} parameter(0) %constant = f32[] constant(0) ROOT %reduce-window = f32[13,3,8,15]{0,3,2,1} reduce-window(f32[13,12,8,15]{0,3,2,1} %operand, f32[] %constant), window={size=1x1x7x1 stride=1x4x1x1 pad=0_0x0_0x3_3x0_0}, to_apply=%add_F32.v3 } )" }, { "ReduceWindowScalar", R"(HloModule reduce_window_scalar, entry_computation_layout={()->f32[]} %add_F32.v3 (lhs: f32[], rhs: f32[]) -> f32[] { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %add = f32[] add(f32[] %lhs, f32[] %rhs) } ENTRY %R4UnitWindowScalar () -> f32[] { %constant = f32[] constant(42) %constant.1 = f32[] constant(1) ROOT %reduce-window = f32[] reduce-window(f32[] %constant, f32[] %constant.1), to_apply=%add_F32.v3 } )" }, { "ReduceWindowVariadic", R"(HloModule reduce_window_variadic, entry_computation_layout={()->(f32[], f32[])} %add_F32.v3 (lhs1: f32[], lhs2: f32[], rhs1: f32[], rhs2: f32[]) -> (f32[], f32[]) { %lhs1 = f32[] parameter(0) %rhs1 = f32[] parameter(2) %add1 = f32[] add(f32[] %lhs1, f32[] %rhs1) %lhs2 = f32[] parameter(1) %rhs2 = f32[] parameter(3) %add2 = f32[] add(f32[] %lhs2, f32[] %rhs2) ROOT %tuple1 = (f32[], f32[]) tuple(f32[] %add1, f32[] %add2) } ENTRY %R4UnitWindowScalar () -> (f32[], f32[]) { %constant = f32[] constant(42) %constant.1 = f32[] constant(1) ROOT %reduce-window = (f32[], f32[]) reduce-window(f32[] %constant, f32[] %constant, f32[] %constant.1, f32[] %constant.1), to_apply=%add_F32.v3 } )" }, { "Convolution", R"(HloModule Convolve1D1Window_0_module, entry_computation_layout={(f32[1,2,1]{2,1,0}, f32[1,1,1]{2,1,0})->f32[1,2,1]{2,0,1}} ENTRY %Convolve1D1Window_0.v3 (input: f32[1,2,1], filter: f32[1,1,1]) -> f32[1,2,1] { %input = f32[1,2,1]{2,1,0} parameter(0) %copy = f32[1,2,1]{2,0,1} copy(f32[1,2,1]{2,1,0} %input) %filter = f32[1,1,1]{2,1,0} parameter(1) ROOT %convolution = f32[1,2,1]{2,0,1} convolution(f32[1,2,1]{2,0,1} %copy, f32[1,1,1]{2,1,0} %filter), window={size=1}, dim_labels=b0f_0io->b0f, operand_precision={high,default} } )" }, { "ConvolutionDynamic", R"(HloModule Convolve1D1Window_0_module, entry_computation_layout={(f32[1,2,1]{2,1,0}, f32[1,1,1]{2,1,0})->f32[1,2,1]{2,0,1}} ENTRY %Convolve1D1Window_0.v3 (input: f32[1,2,1], filter: f32[1,1,1]) -> f32[1,2,1] { %input = f32[1,2,1]{2,1,0} parameter(0) %copy = f32[1,2,1]{2,0,1} copy(f32[1,2,1]{2,1,0} %input) %filter = f32[1,1,1]{2,1,0} parameter(1) ROOT %custom-call.52 = f32[1,2,1]{2,0,1} custom-call(f32[1,2,1]{2,0,1} %copy, f32[1,1,1]{2,1,0} %filter), window={size=1}, dim_labels=b0f_0io->b0f, operand_precision={high,default}, custom_call_target="DynamicConvolutionForward", metadata={op_type="Conv2D" op_name="conv1d"} } )" }, { "ConvolutionR2", R"(HloModule ConvolveR2_module, entry_computation_layout={(f32[1,2]{1,0}, f32[2,2]{1,0})->f32[1,2]{0,1}} ENTRY %ConvolveR2.v3 (input: f32[1,2], filter: f32[2,2]) -> f32[1,2] { %input = f32[1,2]{1,0} parameter(0) %filter = f32[2,2]{1,0} parameter(1) ROOT %convolution = f32[1,2]{0,1} convolution(f32[1,2]{1,0} %input, f32[2,2]{1,0} %filter), dim_labels=bf_io->bf } )" }, { "ConvolutionBackward", R"(HloModule ConvolveBackward_module, entry_computation_layout={(f32[128,7,7,512]{0,3,2,1}, f32[3,3,512,512]{3,2,1,0})->f32[128,14,14,512]{0,3,2,1}} ENTRY %ConvolveBackward (input: f32[128,7,7,512], filter: f32[3,3,512,512]) -> f32[128,14,14,512] { %input = f32[128,7,7,512]{0,3,2,1} parameter(0) %filter = f32[3,3,512,512]{3,2,1,0} parameter(1) ROOT %convolution-base-dilated = f32[128,14,14,512]{0,3,2,1} convolution(f32[128,7,7,512]{0,3,2,1} %input, f32[3,3,512,512]{3,2,1,0} %filter), window={size=3x3 pad=1_2x1_2 lhs_dilate=2x2 rhs_reversal=1x1}, dim_labels=b01f_01oi->b01f } )" }, { "Reverse4D", R"(HloModule Reverse4DFloatArrayOnDim01_module, entry_computation_layout={()->f32[4,3,2,1]{0,1,2,3}} ENTRY %Reverse4DFloatArrayOnDim01.v2 () -> f32[4,3,2,1] { %constant = f32[4,3,2,1]{0,1,2,3} constant({ { { {1}, {2} }, { {3}, {4} }, { {5}, {6} } }, { { {7}, {8} }, { {9}, {10} }, { {11}, {12} } }, { { {13}, {14} }, { {15}, {16} }, { {17}, {18} } }, { { {19}, {20} }, { {21}, {22} }, { {23}, {24} } } }) ROOT %reverse = f32[4,3,2,1]{0,1,2,3} reverse(f32[4,3,2,1]{0,1,2,3} %constant), dimensions={0,1} } )" }, { "Concat", R"(HloModule Concat2x3With2x5_module, entry_computation_layout={()->f32[2,8]{1,0}} ENTRY %Concat2x3With2x5.v3 () -> f32[2,8] { %constant = f32[2,3]{1,0} constant({ { 0, 1, 2 }, { 1000, 1001, 1002 } }) %constant.1 = f32[2,5]{1,0} constant({ { 64, 65, 66, 67, 68 }, { 1064, 1065, 1066, 1067, 1068 } }) ROOT %concatenate = f32[2,8]{1,0} concatenate(f32[2,3]{1,0} %constant, f32[2,5]{1,0} %constant.1), dimensions={1} } )" }, { "SelectAndScatter", R"(HloModule R4F32OverlapSmall_module, entry_computation_layout={()->f32[4,5,1,1]{3,2,1,0}} %ge_F32.v3 (lhs: f32[], rhs: f32[]) -> pred[] { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %greater-than-or-equal-to = pred[] compare(f32[] %lhs, f32[] %rhs), direction=GE, type=TOTALORDER } %add_F32.v3 (lhs.1: f32[], rhs.1: f32[]) -> f32[] { %lhs.1 = f32[] parameter(0) %rhs.1 = f32[] parameter(1) ROOT %add = f32[] add(f32[] %lhs.1, f32[] %rhs.1) } ENTRY %R4F32OverlapSmall.v4 () -> f32[4,5,1,1] { %constant = f32[4,5,1,1]{3,2,1,0} constant({ { { {7} }, { {2} }, { {5} }, { {3} }, { {8} } }, { { {3} }, { {8} }, { {9} }, { {3} }, { {4} } }, { { {1} }, { {5} }, { {7} }, { {5} }, { {6} } }, { { {0} }, { {6} }, { {2} }, { {10} }, { {2} } } }) %constant.1 = f32[2,2,1,1]{3,2,1,0} constant({ { { {2} }, { {6} } }, { { {3} }, { {1} } } }) %constant.2 = f32[] constant(0) ROOT %select-and-scatter = f32[4,5,1,1]{3,2,1,0} select-and-scatter(f32[4,5,1,1]{3,2,1,0} %constant, f32[2,2,1,1]{3,2,1,0} %constant.1, f32[] %constant.2), window={size=2x3x1x1 stride=2x2x1x1}, select=%ge_F32.v3, scatter=%add_F32.v3 } )" }, { "SelectAndScatterScalar", R"(HloModule select_and_scatter_scalar, entry_computation_layout={()->f32[]} %ge_F32.v3 (lhs: f32[], rhs: f32[]) -> pred[] { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %greater-than-or-equal-to = pred[] compare(f32[] %lhs, f32[] %rhs), direction=GE } %add_F32.v3 (lhs.1: f32[], rhs.1: f32[]) -> f32[] { %lhs.1 = f32[] parameter(0) %rhs.1 = f32[] parameter(1) ROOT %add = f32[] add(f32[] %lhs.1, f32[] %rhs.1) } ENTRY %SelectAndScatterScalar () -> f32[] { %constant = f32[] constant(42) %constant.1 = f32[] constant(1) %constant.2 = f32[] constant(2) ROOT %select-and-scatter = f32[] select-and-scatter(f32[] %constant, f32[] %constant.1, f32[] %constant.2), select=%ge_F32.v3, scatter=%add_F32.v3 } )" }, { "Slice", R"(HloModule slice_module, entry_computation_layout={(f32[3,3,4,4]{3,2,1,0})->f32[3,3,2,4]{3,2,1,0}} ENTRY %slice.v2 (p0: f32[3,3,4,4]) -> f32[3,3,2,4] { %p0 = f32[3,3,4,4]{3,2,1,0} parameter(0) ROOT %slice = f32[3,3,2,4]{3,2,1,0} slice(f32[3,3,4,4]{3,2,1,0} %p0), slice={[0:3:1], [0:3:1], [0:4:2], [0:4:1]} } )" }, { "SliceNoStride", R"(HloModule Slice3x3x3_To_1x3x3_F32_module, entry_computation_layout={()->f32[1,3,3]{2,1,0}} ENTRY %Slice3x3x3_To_1x3x3_F32.v2 () -> f32[1,3,3] { %constant = f32[3,3,3]{2,1,0} constant({ { { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 } }, { { 9, 10, 11 }, { 12, 13, 14 }, { 15, 16, 17 } }, { { 18, 19, 20 }, { 21, 22, 23 }, { 24, 25, 26 } } }) ROOT %slice = f32[1,3,3]{2,1,0} slice(f32[3,3,3]{2,1,0} %constant), slice={[0:1], [0:3], [0:3]} } )" }, { "SliceR0", R"(HloModule SliceR0_module, entry_computation_layout={()->s32[]} ENTRY %SliceR0.v2 () -> s32[] { %constant = s32[] constant(1) ROOT %slice = s32[] slice(s32[] %constant), slice={} } )" }, { "Transpose", R"(HloModule Transpose_module, entry_computation_layout={()->s32[1,2,3]{2,1,0}} ENTRY %Transpose.v2 () -> s32[1,2,3] { %constant = s32[1,2,3]{2,1,0} constant({ { { 1, 2, 3 }, { 4, 5, 6 } } }) ROOT %transpose = s32[1,2,3]{2,1,0} transpose(s32[1,2,3]{2,1,0} %constant), dimensions={0,1,2} } )" }, { "TransposeC128", R"(HloModule TransposeC128_module, entry_computation_layout={(c128[1,2,3]{2,1,0})->c128[1,2,3]{2,1,0}} ENTRY %Transpose.v3 (input: c128[1,2,3]) -> c128[1,2,3] { %input = c128[1,2,3]{2,1,0} parameter(0) ROOT %transpose = c128[1,2,3]{2,1,0} transpose(c128[1,2,3]{2,1,0} %input), dimensions={0,1,2} } )" }, { "TriangularSolve", R"(HloModule TriangularSolve_module, entry_computation_layout={(f32[4,4]{1,0}, f32[3,4]{1,0})->f32[3,4]{1,0}} ENTRY %SimpleRightLowerNotranspose.4 (a.1: f32[4,4], b.2: f32[3,4]) -> f32[3,4] { %a.1 = f32[4,4]{1,0} parameter(0) %b.2 = f32[3,4]{1,0} parameter(1) ROOT %triangular-solve.3 = f32[3,4]{1,0} triangular-solve(f32[4,4]{1,0} %a.1, f32[3,4]{1,0} %b.2), lower=true, transpose_a=NO_TRANSPOSE } )" }, { "DynamicSlice", R"(HloModule DynamicSlice_module, entry_computation_layout={(s32[2,2,258]{2,1,0}, s32[1]{0})->s32[2,2,258]{2,1,0}} ENTRY %DynamicSlice.v5 (original_parameter: s32[2,2,258], start_index: s32[1]) -> s32[2,2,258] { %original_parameter = s32[2,2,258]{2,1,0} parameter(0) %constant = s32[1]{0} constant({0}) %start_index = s32[1]{0} parameter(1) %concatenate = s32[3]{0} concatenate(s32[1]{0} %constant, s32[1]{0} %constant, s32[1]{0} %start_index), dimensions={0} ROOT %dynamic-slice = s32[2,2,258]{2,1,0} dynamic-slice(s32[2,2,258]{2,1,0} %original_parameter, s32[3]{0} %concatenate), dynamic_slice_sizes={2,2,258} } )" }, { "DynamicSliceScalarIndices", R"(HloModule DynamicSlice_module, entry_computation_layout={(s32[2,2,258]{2,1,0}, s32[])->s32[2,2,258]{2,1,0}} ENTRY %DynamicSlice.v5 (original_parameter: s32[2,2,258], start_index: s32[]) -> s32[2,2,258] { %original_parameter = s32[2,2,258]{2,1,0} parameter(0) %constant = s32[] constant(0) %start_index = s32[] parameter(1) ROOT %dynamic-slice = s32[2,2,258]{2,1,0} dynamic-slice(s32[2,2,258]{2,1,0} %original_parameter, s32[] %constant, s32[] %constant, s32[] %start_index), dynamic_slice_sizes={2,2,258} } )" }, { "DynamicUpdateSlice", R"(HloModule DynamicSlice_module, entry_computation_layout={(s32[1,1,25,1]{3,2,1,0}, s32[1,1,2,1]{3,2,1,0}, s32[4]{0})->s32[1,1,25,1]{3,2,1,0}} ENTRY %DynamicUpdateSlice.v4 (input: s32[1,1,25,1], update: s32[1,1,2,1], start_indices: s32[4]) -> s32[1,1,25,1] { %input = s32[1,1,25,1]{3,2,1,0} parameter(0) %update = s32[1,1,2,1]{3,2,1,0} parameter(1) %start_indices = s32[4]{0} parameter(2) ROOT %dynamic-update-slice = s32[1,1,25,1]{3,2,1,0} dynamic-update-slice(s32[1,1,25,1]{3,2,1,0} %input, s32[1,1,2,1]{3,2,1,0} %update, s32[4]{0} %start_indices) } )" }, { "DynamicUpdateSliceScalarIndex", R"(HloModule DynamicUpdateSlice_module, entry_computation_layout={(s32[1,1,25,1]{3,2,1,0}, s32[1,1,2,1]{3,2,1,0}, s32[], s32[], s32[], s32[])->s32[1,1,25,1]{3,2,1,0}} ENTRY %DynamicUpdateSlice.v4 (input: s32[1,1,25,1], update: s32[1,1,2,1], start_index.0: s32[], start_index.1: s32[], start_index.2: s32[], start_index.3: s32[]) -> s32[1,1,25,1] { %input = s32[1,1,25,1]{3,2,1,0} parameter(0) %update = s32[1,1,2,1]{3,2,1,0} parameter(1) %start_index.0 = s32[] parameter(2) %start_index.1 = s32[] parameter(3) %start_index.2 = s32[] parameter(4) %start_index.3 = s32[] parameter(5) ROOT %dynamic-update-slice = s32[1,1,25,1]{3,2,1,0} dynamic-update-slice(s32[1,1,25,1]{3,2,1,0} %input, s32[1,1,2,1]{3,2,1,0} %update, s32[] %start_index.0, s32[] %start_index.1, s32[] %start_index.2, s32[] %start_index.3) } )" }, { "BatchNormTraining", R"(HloModule BasicTraining_module, entry_computation_layout={()->(f32[2,2,1,2]{3,2,1,0}, f32[2]{0}, f32[2]{0})} ENTRY %BasicTraining.v4 () -> (f32[2,2,1,2], f32[2], f32[2]) { %constant = f32[2,2,1,2]{3,2,1,0} constant({ { { { 1, 2 } }, { { 3, 4 } } }, { { { 5, 6 } }, { { 7, 8 } } } }) %constant.1 = f32[2]{0} constant({2, 3}) %constant.2 = f32[2]{0} constant({1, 2}) ROOT %batch-norm-training = (f32[2,2,1,2]{3,2,1,0}, f32[2]{0}, f32[2]{0}) batch-norm-training(f32[2,2,1,2]{3,2,1,0} %constant, f32[2]{0} %constant.1, f32[2]{0} %constant.2), epsilon=0.001, feature_index=3 } )" }, { "BatchNormInference", R"(HloModule BatchNormInference_module, entry_computation_layout={(f32[2,2,2,2]{3,2,1,0}, f32[2]{0}, f32[2]{0}, f32[2]{0}, f32[2]{0})->f32[2,2,2,2]{3,2,1,0}} ENTRY %BatchNormInference.v6 (input: f32[2,2,2,2], offset: f32[2], scale: f32[2], mean: f32[2], variance: f32[2]) -> f32[2,2,2,2] { %input = f32[2,2,2,2]{3,2,1,0} parameter(0) %offset = f32[2]{0} parameter(1) %scale = f32[2]{0} parameter(2) %mean = f32[2]{0} parameter(3) %variance = f32[2]{0} parameter(4) ROOT %batch-norm-inference = f32[2,2,2,2]{3,2,1,0} batch-norm-inference(f32[2,2,2,2]{3,2,1,0} %input, f32[2]{0} %offset, f32[2]{0} %scale, f32[2]{0} %mean, f32[2]{0} %variance), epsilon=0.001, feature_index=0 } )" }, { "BatchNormGrad", R"(HloModule BatchNormGrad_module, entry_computation_layout={(f32[2,2,2,2]{3,2,1,0}, f32[2]{0}, f32[2]{0}, f32[2]{0}, f32[2,2,2,2]{3,2,1,0})->(f32[2,2,2,2]{3,2,1,0}, f32[2]{0}, f32[2]{0})} ENTRY %BatchNormGrad.v4 (input: f32[2,2,2,2], scale: f32[2], mean: f32[2], variance: f32[2], grad_output: f32[2,2,2,2]) -> (f32[2,2,2,2], f32[2], f32[2]) { %input = f32[2,2,2,2]{3,2,1,0} parameter(0) %scale = f32[2]{0} parameter(1) %mean = f32[2]{0} parameter(2) %variance = f32[2]{0} parameter(3) %grad_output = f32[2,2,2,2]{3,2,1,0} parameter(4) ROOT %batch-norm-grad = (f32[2,2,2,2]{3,2,1,0}, f32[2]{0}, f32[2]{0}) batch-norm-grad(f32[2,2,2,2]{3,2,1,0} %input, f32[2]{0} %scale, f32[2]{0} %mean, f32[2]{0} %variance, f32[2,2,2,2]{3,2,1,0} %grad_output), epsilon=0.001, feature_index=0 } )" }, { "Fft", R"(HloModule Fft_module, entry_computation_layout={(c64[8,32]{1,0})->c64[8,32]{1,0}} ENTRY %Fft (input: c64[8,32]) -> c64[8,32] { %input = c64[8,32]{1,0} parameter(0) ROOT %fft = c64[8,32]{1,0} fft(c64[8,32]{1,0} %input), fft_type=FFT, fft_length={32} } )" }, { "Ifft2d", R"(HloModule Ifft2d_module, entry_computation_layout={(c64[5,8,32]{2,1,0})->c64[5,8,32]{2,1,0}} ENTRY %Ifft2d (input: c64[5,8,32]) -> c64[5,8,32] { %input = c64[5,8,32]{2,1,0} parameter(0) ROOT %fft = c64[5,8,32]{2,1,0} fft(c64[5,8,32]{2,1,0} %input), fft_type=IFFT, fft_length={8,32} } )" }, { "Rfft2d", R"(HloModule Rfft2d_module, entry_computation_layout={(f32[5,64,32]{2,1,0})->c64[5,64,17]{2,1,0}} ENTRY %Rfft2d (input: f32[5,64,32]) -> c64[5,64,17] { %input = f32[5,64,32]{2,1,0} parameter(0) ROOT %fft = c64[5,64,17]{2,1,0} fft(f32[5,64,32]{2,1,0} %input), fft_type=RFFT, fft_length={64,32} } )" }, { "Irfft3d", R"(HloModule Irfft3d_module, entry_computation_layout={(c64[5,64,128,33]{3,2,1,0})->f32[5,64,128,64]{3,2,1,0}} ENTRY %Irfft3d (input: c64[5,64,128,33]) -> f32[5,64,128,64] { %input = c64[5,64,128,33]{3,2,1,0} parameter(0) ROOT %fft = f32[5,64,128,64]{3,2,1,0} fft(c64[5,64,128,33]{3,2,1,0} %input), fft_type=IRFFT, fft_length={64,128,64} } )" }, { "Pad", R"(HloModule Pad1DS3Array_module, entry_computation_layout={()->f32[7]{0}} ENTRY %Pad1DS3Array.v3 () -> f32[7] { %constant = f32[3]{0} constant({1, 2, 3}) %constant.1 = f32[] constant(0.1) ROOT %pad = f32[7]{0} pad(f32[3]{0} %constant, f32[] %constant.1), padding=3_1 } )" }, { "PadHasInterior", R"(HloModule PadHasInterior_module, entry_computation_layout={(f32[1,25,7,7]{3,2,1,0})->f32[1,25,17,11]{3,2,1,0}} ENTRY %PadHasInterior.v3 (input: f32[1,25,7,7]) -> f32[1,25,17,11] { %input = f32[1,25,7,7]{3,2,1,0} parameter(0) %constant = f32[] constant(-5.123) ROOT %pad = f32[1,25,17,11]{3,2,1,0} pad(f32[1,25,7,7]{3,2,1,0} %input, f32[] %constant), padding=0_0_0x0_0_0x2_2_1x2_2_0 } )" }, { "RoundNearestEven", R"(HloModule RoundNearestEven_module, entry_computation_layout={(f32[2,2]{1,0})->f32[2,2]{1,0}} ENTRY %RoundNearestEven (input: f32[2,2]) -> f32[2,2] { %input = f32[2,2]{1,0} parameter(0) ROOT %round-nearest-even = f32[2,2]{1,0} round-nearest-even(f32[2,2]{1,0} %input) } )" }, { "PadHasNegativePadding", R"(HloModule PadHasNegativePadding_module, entry_computation_layout={(f32[1,25,7,7,10]{4,3,2,1,0})->f32[1,15,6,3,35]{4,3,2,1,0}} ENTRY %PadHasNegativePadding (input: f32[1,25,7,7,10]) -> f32[1,15,6,3,35] { %input = f32[1,25,7,7,10]{4,3,2,1,0} parameter(0) %constant = f32[] constant(-5.123) ROOT %pad = f32[1,15,6,3,35]{4,3,2,1,0} pad(f32[1,25,7,7,10]{4,3,2,1,0} %input, f32[] %constant), padding=0_0_0x0_-10_0x0_-1_0x-2_-2_0x-1_-1_3 } )" }, { "Fusion", R"(HloModule fusion_module, entry_computation_layout={()->f32[3,2,1,1]{3,2,1,0}} %fused_computation (constant.param_0: f32[3,2,1,1], constant.1.param_1: f32[2]) -> f32[3,2,1,1] { %constant.param_0 = f32[3,2,1,1]{3,2,1,0} parameter(0) %constant.1.param_1 = f32[2]{0} parameter(1) %broadcast = f32[3,2,1,1]{3,2,1,0} broadcast(f32[2]{0} %constant.1.param_1), dimensions={1} ROOT %subtract = f32[3,2,1,1]{3,2,1,0} subtract(f32[3,2,1,1]{3,2,1,0} %constant.param_0, f32[3,2,1,1]{3,2,1,0} %broadcast) } ENTRY %fusion.v3 () -> f32[3,2,1,1] { %constant = f32[3,2,1,1]{3,2,1,0} constant({ { { {-1} }, { {4.1} } }, { { {2} }, { {4.1} } }, { { {5} }, { {4.4} } } }) %constant.1 = f32[2]{0} constant({3.14, 4.25}) ROOT %fusion = f32[3,2,1,1]{3,2,1,0} fusion(f32[3,2,1,1]{3,2,1,0} %constant, f32[2]{0} %constant.1), kind=kLoop, calls=%fused_computation } )" }, { "FusionWithAliasing", R"(HloModule FusionWithAliasing, entry_computation_layout={((f32[2,2]{0,1}, f32[42,2,3]{0,1,2}), f32[123,4]{0,1})->(f32[123,4]{0,1}, f32[2,2]{0,1}, f32[1,2,3]{0,1,2})} %FusedComp (p0: (f32[2,2], f32[42,2,3]), p1: f32[123,4]) -> (f32[123,4], f32[2,2], f32[1,2,3]) { %p1 = f32[123,4]{0,1} parameter(1) %p0 = (f32[2,2]{0,1}, f32[42,2,3]{0,1,2}) parameter(0) %elem1 = f32[2,2]{0,1} get-tuple-element((f32[2,2]{0,1}, f32[42,2,3]{0,1,2}) %p0), index=0 %constant0 = f32[] constant(1) %broadcast0 = f32[1,2,3]{0,1,2} broadcast(f32[] %constant0), dimensions={} ROOT %tuple = (f32[123,4]{0,1}, f32[2,2]{0,1}, f32[1,2,3]{0,1,2}) tuple(f32[123,4]{0,1} %p1, f32[2,2]{0,1} %elem1, f32[1,2,3]{0,1,2} %broadcast0) } ENTRY %FusionWithAliasing (p0.1: (f32[2,2], f32[42,2,3]), p1.1: f32[123,4]) -> (f32[123,4], f32[2,2], f32[1,2,3]) { %p0.1 = (f32[2,2]{0,1}, f32[42,2,3]{0,1,2}) parameter(0) %p1.1 = f32[123,4]{0,1} parameter(1) ROOT %fusion = (f32[123,4]{0,1}, f32[2,2]{0,1}, f32[1,2,3]{0,1,2}) fusion((f32[2,2]{0,1}, f32[42,2,3]{0,1,2}) %p0.1, f32[123,4]{0,1} %p1.1), kind=kLoop, output_to_operand_aliasing={{0}: (1, {}), {1}: (0, {0})}, calls=%FusedComp } )" }, { "Gather", R"(HloModule StringifyGather, entry_computation_layout={(f32[50,49,48,47,46]{4,3,2,1,0}, s64[10,9,8,7,5]{4,3,2,1,0})->f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0}} ENTRY %Gather (input_tensor: f32[50,49,48,47,46], start_indices: s64[10,9,8,7,5]) -> f32[10,9,8,7,30,29,28,27,26] { %input_tensor = f32[50,49,48,47,46]{4,3,2,1,0} parameter(0) %start_indices = s64[10,9,8,7,5]{4,3,2,1,0} parameter(1) ROOT %gather = f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} gather(f32[50,49,48,47,46]{4,3,2,1,0} %input_tensor, s64[10,9,8,7,5]{4,3,2,1,0} %start_indices), offset_dims={4,5,6,7,8}, collapsed_slice_dims={}, start_index_map={0,1,2,3,4}, index_vector_dim=4, slice_sizes={30,29,28,27,26} } )" }, { "SortedGather", R"(HloModule StringifyGather, entry_computation_layout={(f32[50,49,48,47,46]{4,3,2,1,0}, s64[10,9,8,7,5]{4,3,2,1,0})->f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0}} ENTRY %Gather (input_tensor: f32[50,49,48,47,46], start_indices: s64[10,9,8,7,5]) -> f32[10,9,8,7,30,29,28,27,26] { %input_tensor = f32[50,49,48,47,46]{4,3,2,1,0} parameter(0) %start_indices = s64[10,9,8,7,5]{4,3,2,1,0} parameter(1) ROOT %gather = f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} gather(f32[50,49,48,47,46]{4,3,2,1,0} %input_tensor, s64[10,9,8,7,5]{4,3,2,1,0} %start_indices), offset_dims={4,5,6,7,8}, collapsed_slice_dims={}, start_index_map={0,1,2,3,4}, index_vector_dim=4, slice_sizes={30,29,28,27,26}, indices_are_sorted=true } )" }, { "BatchGather", R"(HloModule StringifyGather, entry_computation_layout={(f32[50,49,48,47,46,512]{5,4,3,2,1,0}, s64[10,9,8,7,5,512]{5,4,3,2,1,0})->f32[10,9,8,7,30,29,28,27,26,512]{9,8,7,6,5,4,3,2,1,0}} ENTRY %Gather (input_tensor: f32[50,49,48,47,46,512], start_indices: s64[10,9,8,7,5,512]) -> f32[10,9,8,7,30,29,28,27,26,512] { %input_tensor = f32[50,49,48,47,46,512]{5,4,3,2,1,0} parameter(0) %start_indices = s64[10,9,8,7,5,512]{5,4,3,2,1,0} parameter(1) ROOT %gather = f32[10,9,8,7,30,29,28,27,26,512]{9,8,7,6,5,4,3,2,1,0} gather(f32[50,49,48,47,46,512]{5,4,3,2,1,0} %input_tensor, s64[10,9,8,7,5,512]{5,4,3,2,1,0} %start_indices), offset_dims={4,5,6,7,8}, collapsed_slice_dims={}, start_index_map={0,1,2,3,4}, operand_batching_dims={5}, start_indices_batching_dims={5}, index_vector_dim=4, slice_sizes={30,29,28,27,26,1} } )" }, { "Scatter", R"(HloModule StringifyScatter, entry_computation_layout={(f32[50,49,48,47,46]{4,3,2,1,0}, s64[10,9,8,7,5]{4,3,2,1,0}, f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0})->f32[50,49,48,47,46]{4,3,2,1,0}} %add_F32.v3 (lhs: f32[], rhs: f32[]) -> f32[] { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %add = f32[] add(f32[] %lhs, f32[] %rhs) } ENTRY %Scatter (input_tensor: f32[50,49,48,47,46], scatter_indices: s64[10,9,8,7,5], updates: f32[10,9,8,7,30,29,28,27,26]) -> f32[50,49,48,47,46] { %input_tensor = f32[50,49,48,47,46]{4,3,2,1,0} parameter(0) %scatter_indices = s64[10,9,8,7,5]{4,3,2,1,0} parameter(1) %updates = f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} parameter(2) ROOT %scatter = f32[50,49,48,47,46]{4,3,2,1,0} scatter(f32[50,49,48,47,46]{4,3,2,1,0} %input_tensor, s64[10,9,8,7,5]{4,3,2,1,0} %scatter_indices, f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} %updates), update_window_dims={4,5,6,7,8}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1,2,3,4}, index_vector_dim=4, to_apply=%add_F32.v3 } )" }, { "BatchScatter", R"(HloModule StringifyScatter, entry_computation_layout={(f32[50,49,48,47,46,512]{5,4,3,2,1,0}, s64[10,9,8,7,5,512]{5,4,3,2,1,0}, f32[10,9,8,7,30,29,28,27,26,512]{9,8,7,6,5,4,3,2,1,0})->f32[50,49,48,47,46,512]{5,4,3,2,1,0}} %add_F32.v3 (lhs: f32[], rhs: f32[]) -> f32[] { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %add = f32[] add(f32[] %lhs, f32[] %rhs) } ENTRY %Scatter (input_tensor: f32[50,49,48,47,46,512], scatter_indices: s64[10,9,8,7,5,512], updates: f32[10,9,8,7,30,29,28,27,26,512]) -> f32[50,49,48,47,46,512] { %input_tensor = f32[50,49,48,47,46,512]{5,4,3,2,1,0} parameter(0) %scatter_indices = s64[10,9,8,7,5,512]{5,4,3,2,1,0} parameter(1) %updates = f32[10,9,8,7,30,29,28,27,26,512]{9,8,7,6,5,4,3,2,1,0} parameter(2) ROOT %scatter = f32[50,49,48,47,46,512]{5,4,3,2,1,0} scatter(f32[50,49,48,47,46,512]{5,4,3,2,1,0} %input_tensor, s64[10,9,8,7,5,512]{5,4,3,2,1,0} %scatter_indices, f32[10,9,8,7,30,29,28,27,26,512]{9,8,7,6,5,4,3,2,1,0} %updates), update_window_dims={4,5,6,7,8}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1,2,3,4}, input_batching_dims={5}, scatter_indices_batching_dims={5}, index_vector_dim=4, to_apply=%add_F32.v3 } )" }, { "TupleScatter", R"(HloModule TupleScatter, entry_computation_layout={(f32[50,49,48,47,46]{4,3,2,1,0}, bf16[50,49,48,47,46]{4,3,2,1,0}, s64[10,9,8,7,5]{4,3,2,1,0}, f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0}, bf16[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0})->(f32[50,49,48,47,46]{4,3,2,1,0}, bf16[50,49,48,47,46]{4,3,2,1,0})} %add_F32_mul_BF16 (lhs_0: f32[], lhs_1: bf16[], rhs_0: f32[], rhs_1: bf16[]) -> (f32[], bf16[]) { %lhs_0 = f32[] parameter(0) %rhs_0 = f32[] parameter(2) %add = f32[] add(f32[] %lhs_0, f32[] %rhs_0) %lhs_1 = bf16[] parameter(1) %rhs_1 = bf16[] parameter(3) %mul = bf16[] multiply(bf16[] %lhs_1, bf16[] %rhs_1) ROOT %tuple = (f32[], bf16[]) tuple(f32[] %add, bf16[] %mul) } ENTRY %Scatter (input_0: f32[50,49,48,47,46], input_1: bf16[50,49,48,47,46], scatter_indices: s64[10,9,8,7,5], updates_0: f32[10,9,8,7,30,29,28,27,26], updates_1: bf16[10,9,8,7,30,29,28,27,26]) -> (f32[50,49,48,47,46], bf16[50,49,48,47,46]) { %input_0 = f32[50,49,48,47,46]{4,3,2,1,0} parameter(0) %input_1 = bf16[50,49,48,47,46]{4,3,2,1,0} parameter(1) %scatter_indices = s64[10,9,8,7,5]{4,3,2,1,0} parameter(2) %updates_0 = f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} parameter(3) %updates_1 = bf16[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} parameter(4) ROOT %scatter = (f32[50,49,48,47,46]{4,3,2,1,0}, bf16[50,49,48,47,46]{4,3,2,1,0}) scatter(f32[50,49,48,47,46]{4,3,2,1,0} %input_0, bf16[50,49,48,47,46]{4,3,2,1,0} %input_1, s64[10,9,8,7,5]{4,3,2,1,0} %scatter_indices, f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} %updates_0, bf16[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} %updates_1), update_window_dims={4,5,6,7,8}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1,2,3,4}, index_vector_dim=4, to_apply=%add_F32_mul_BF16 } )" }, { "SortedScatter", R"(HloModule StringifySortedScatter, entry_computation_layout={(f32[50,49,48,47,46]{4,3,2,1,0}, s64[10,9,8,7,5]{4,3,2,1,0}, f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0})->f32[50,49,48,47,46]{4,3,2,1,0}} %add_F32.v3 (lhs: f32[], rhs: f32[]) -> f32[] { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %add = f32[] add(f32[] %lhs, f32[] %rhs) } ENTRY %Scatter (input_tensor: f32[50,49,48,47,46], scatter_indices: s64[10,9,8,7,5], updates: f32[10,9,8,7,30,29,28,27,26]) -> f32[50,49,48,47,46] { %input_tensor = f32[50,49,48,47,46]{4,3,2,1,0} parameter(0) %scatter_indices = s64[10,9,8,7,5]{4,3,2,1,0} parameter(1) %updates = f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} parameter(2) ROOT %scatter = f32[50,49,48,47,46]{4,3,2,1,0} scatter(f32[50,49,48,47,46]{4,3,2,1,0} %input_tensor, s64[10,9,8,7,5]{4,3,2,1,0} %scatter_indices, f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} %updates), update_window_dims={4,5,6,7,8}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1,2,3,4}, index_vector_dim=4, indices_are_sorted=true, to_apply=%add_F32.v3 } )" }, { "UniqueIndicesScatter", R"(HloModule StringifyUniqueIndicesScatter, entry_computation_layout={(f32[50,49,48,47,46]{4,3,2,1,0}, s64[10,9,8,7,5]{4,3,2,1,0}, f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0})->f32[50,49,48,47,46]{4,3,2,1,0}} %add_F32.v3 (lhs: f32[], rhs: f32[]) -> f32[] { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %add = f32[] add(f32[] %lhs, f32[] %rhs) } ENTRY %Scatter (input_tensor: f32[50,49,48,47,46], scatter_indices: s64[10,9,8,7,5], updates: f32[10,9,8,7,30,29,28,27,26]) -> f32[50,49,48,47,46] { %input_tensor = f32[50,49,48,47,46]{4,3,2,1,0} parameter(0) %scatter_indices = s64[10,9,8,7,5]{4,3,2,1,0} parameter(1) %updates = f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} parameter(2) ROOT %scatter = f32[50,49,48,47,46]{4,3,2,1,0} scatter(f32[50,49,48,47,46]{4,3,2,1,0} %input_tensor, s64[10,9,8,7,5]{4,3,2,1,0} %scatter_indices, f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} %updates), update_window_dims={4,5,6,7,8}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1,2,3,4}, index_vector_dim=4, unique_indices=true, to_apply=%add_F32.v3 } )" }, { "ConstantUnsignedNoUnderflow", R"(HloModule ConstantUnsignedNoUnderflow_module, entry_computation_layout={()->u64[]} ENTRY %ConstantUnsignedNoUnderflow () -> u64[] { ROOT %constant = u64[] constant(1) } )" }, { "ConstantUnsignedNoOverflow", R"(HloModule ConstantUnsignedNoOverflow_module, entry_computation_layout={()->u64[]} ENTRY %ConstantUnsignedNoOverflow () -> u64[] { ROOT %constant = u64[] constant(9223372036854775807) } )" }, { "CustomCallWithLayoutConstraints", R"(HloModule CustomCallWithLayoutConstraints, entry_computation_layout={(f32[42,2,3]{0,1,2}, f32[123,4]{0,1})->f32[1,2,3]{0,2,1}} ENTRY %CustomCallWithLayoutConstraints (p0: f32[42,2,3], p1: f32[123,4]) -> f32[1,2,3] { %p0 = f32[42,2,3]{0,1,2} parameter(0) %p1 = f32[123,4]{0,1} parameter(1) ROOT %custom-call = f32[1,2,3]{0,2,1} custom-call(f32[42,2,3]{0,1,2} %p0, f32[123,4]{0,1} %p1), custom_call_target="baz", operand_layout_constraints={f32[42,2,3]{0,1,2}, f32[123,4]{1,0}} } )" }, { "CustomCallWithLayoutConstraintsNoOperands", R"(HloModule CustomCallWithLayoutConstraintsNoOperands, entry_computation_layout={()->f32[1,2,3]{0,2,1}} ENTRY %CustomCallWithLayoutConstraints () -> f32[1,2,3] { ROOT %custom-call = f32[1,2,3]{0,2,1} custom-call(), custom_call_target="baz", operand_layout_constraints={} } )" }, { "CustomCallWithLayoutConstraintsTupleShapes", R"(HloModule CustomCallWithLayoutConstraintsTupleShapes, entry_computation_layout={((f32[2,2]{0,1}, f32[42,2,3]{0,1,2}), f32[123,4]{0,1})->(f32[1,2,3]{0,2,1}, f32[1,2,3]{1,2,0})} ENTRY %CustomCallWithLayoutConstraints (p0: (f32[2,2], f32[42,2,3]), p1: f32[123,4]) -> (f32[1,2,3], f32[1,2,3]) { %p0 = (f32[2,2]{0,1}, f32[42,2,3]{0,1,2}) parameter(0) %p1 = f32[123,4]{0,1} parameter(1) ROOT %custom-call = (f32[1,2,3]{0,2,1}, f32[1,2,3]{1,2,0}) custom-call((f32[2,2]{0,1}, f32[42,2,3]{0,1,2}) %p0, f32[123,4]{0,1} %p1), custom_call_target="baz", operand_layout_constraints={(f32[2,2]{1,0}, f32[42,2,3]{2,0,1}), f32[123,4]{1,0}} } )" }, { "CustomCallWithHasSideEffect", R"(HloModule CustomCallWithHasSideEffect, entry_computation_layout={((f32[2,2]{0,1}, f32[42,2,3]{0,1,2}), f32[123,4]{0,1})->(f32[1,2,3]{0,2,1}, f32[1,2,3]{1,2,0})} ENTRY %CustomCallWithHasSideEffect (p0: (f32[2,2], f32[42,2,3]), p1: f32[123,4]) -> (f32[1,2,3], f32[1,2,3]) { %p0 = (f32[2,2]{0,1}, f32[42,2,3]{0,1,2}) parameter(0) %p1 = f32[123,4]{0,1} parameter(1) ROOT %custom-call = (f32[1,2,3]{0,2,1}, f32[1,2,3]{1,2,0}) custom-call((f32[2,2]{0,1}, f32[42,2,3]{0,1,2}) %p0, f32[123,4]{0,1} %p1), custom_call_target="baz", custom_call_has_side_effect=true } )" }, { "CustomCallWithAliasing", R"(HloModule CustomCallWithAliasing, entry_computation_layout={((f32[2,2]{0,1}, f32[42,2,3]{0,1,2}), f32[123,4]{0,1})->(f32[123,4]{0,1}, f32[2,2]{0,1}, f32[1,2,3]{0,1,2})} ENTRY %CustomCallWithAliasing (p0: (f32[2,2], f32[42,2,3]), p1: f32[123,4]) -> (f32[123,4], f32[2,2], f32[1,2,3]) { %p0 = (f32[2,2]{0,1}, f32[42,2,3]{0,1,2}) parameter(0) %p1 = f32[123,4]{0,1} parameter(1) ROOT %custom-call = (f32[123,4]{0,1}, f32[2,2]{0,1}, f32[1,2,3]{0,1,2}) custom-call((f32[2,2]{0,1}, f32[42,2,3]{0,1,2}) %p0, f32[123,4]{0,1} %p1), custom_call_target="baz", output_to_operand_aliasing={{0}: (1, {}), {1}: (0, {0})} } )" }, { "CustomCallWithSchedule", R"(HloModule custom_call, entry_computation_layout={()->f32[1,2,3]{0,2,1}} ENTRY %CustomCall () -> f32[1,2,3] { %constant = f32[1]{0} constant({12345}) %custom-call.0 = f32[1,2,3]{0,2,1} custom-call(f32[1]{0} %constant), custom_call_target="foo", schedule=SCHEDULE_EARLIEST ROOT %custom-call.1 = f32[1,2,3]{0,2,1} custom-call(f32[1,2,3]{0,2,1} %custom-call.0), custom_call_target="bar", schedule=SCHEDULE_LATEST } )" }, { "CustomCallWithStatusReturningVersion", R"(HloModule custom_call, entry_computation_layout={()->f32[1,2,3]{0,2,1}} ENTRY %CustomCall () -> f32[1,2,3] { %constant = f32[1]{0} constant({12345}) ROOT %custom-call.1 = f32[1,2,3]{0,2,1} custom-call(f32[1]{0} %constant), custom_call_target="foo", api_version=API_VERSION_STATUS_RETURNING } )" }, { "ParseC64Literal", R"(HloModule ParseC64Literal, entry_computation_layout={()->c64[2]{0}} ENTRY %ParseC64Literal () -> c64[2] { ROOT %c = c64[2]{0} constant({(1, 2), (-inf, nan)}) } )" }, { "ParseC128Literal", R"(HloModule ParseC128Literal, entry_computation_layout={()->c128[2]{0}} ENTRY %ParseC128Literal () -> c128[2] { ROOT %c = c128[2]{0} constant({(1, 2), (-inf, nan)}) } )" }, { "IndexedConditional", R"(HloModule indexed_conditional, entry_computation_layout={()->f32[]} %Negate (x: f32[]) -> f32[] { %x = f32[] parameter(0) ROOT %negate = f32[] negate(f32[] %x) } %Identity (y: f32[]) -> f32[] { %y = f32[] parameter(0) ROOT %copy = f32[] copy(f32[] %y) } %Floor (z: f32[]) -> f32[] { %z = f32[] parameter(0) ROOT %floor = f32[] floor(f32[] %z) } ENTRY %Parameters1.v4 () -> f32[] { %constant = s32[] constant(1) %constant.1 = f32[] constant(56) %constant.2 = f32[] constant(12) %constant.3 = f32[] constant(13) ROOT %conditional = f32[] conditional(s32[] %constant, f32[] %constant.1, f32[] %constant.2, f32[] %constant.3), branch_computations={%Negate, %Identity, %Floor} } )" }, { "RngGetAndUpdateState", R"(HloModule rng_get_and_update_state, entry_computation_layout={()->u64[2]{0}} ENTRY %RngGetAndUpdateState () -> u64[2] { ROOT %rng-get-and-update-state = u64[2]{0} rng-get-and-update-state(), delta=4096 } )" }, { "RngBitGenerator", R"(HloModule gng_bit_generator, entry_computation_layout={(u64[2]{0})->(u64[2]{0}, u32[11,17]{1,0})} ENTRY %RngBitGenerator (p0: u64[2]) -> (u64[2], u32[11,17]) { %p0 = u64[2]{0} parameter(0) ROOT %rand = (u64[2]{0}, u32[11,17]{1,0}) rng-bit-generator(u64[2]{0} %p0), algorithm=rng_three_fry } )" }, { "AsyncOpsWithSyntaxSugar", R"(HloModule AsyncOpsWithSyntaxSugar, entry_computation_layout={(f32[10]{0})->f32[20]{0}} ENTRY %Entry (p0: f32[10]) -> f32[20] { %p0 = f32[10]{0} parameter(0) %async-start = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-start(f32[10]{0} %p0), custom_call_target="foo" %async-update = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-update(((f32[10]{0}), f32[20]{0}, s32[]) %async-start) ROOT %async-done = f32[20]{0} custom-call-done(((f32[10]{0}), f32[20]{0}, s32[]) %async-update) } )" }, { "AsyncOpsWithSyntaxSugarAndThreadName", R"(HloModule AsyncOpsWithSyntaxSugarAndThreadName, entry_computation_layout={(f32[10]{0})->f32[20]{0}} ENTRY %Entry (p0: f32[10]) -> f32[20] { %p0 = f32[10]{0} parameter(0) %async-start = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-start(f32[10]{0} %p0), async_execution_thread="parallel_thread", custom_call_target="foo" %async-update = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-update(((f32[10]{0}), f32[20]{0}, s32[]) %async-start) ROOT %async-done = f32[20]{0} custom-call-done(((f32[10]{0}), f32[20]{0}, s32[]) %async-update) } )" }, { "HloComputationWithParallelThreadName", R"(HloModule HloComputationWithParallelThreadName, entry_computation_layout={(f32[10]{0})->f32[20]{0}} ENTRY %Entry (p0: f32[10]) -> f32[20] { %p0 = f32[10]{0} parameter(0) %async-start = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-start(f32[10]{0} %p0), async_execution_thread="parallel_thread", custom_call_target="foo" %async-update = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-update(((f32[10]{0}), f32[20]{0}, s32[]) %async-start) ROOT %async-done = f32[20]{0} custom-call-done(((f32[10]{0}), f32[20]{0}, s32[]) %async-update) }, execution_thread="main_thread" )" }, { "MetadataFields", R"(HloModule test, entry_computation_layout={(f32[100]{0})->u32[100]{0}} ENTRY %test (p: f32[100]) -> u32[100] { %p = f32[100]{0} parameter(0) ROOT %root = u32[100]{0} bitcast-convert(f32[100]{0} %p), metadata={op_type="a" op_name="b" source_file="c" source_line=1 profile_type={1} deduplicated_name="d" scheduling_name="foo"} } )" }, { "MetadataPreserveLayout", R"(HloModule test, entry_computation_layout={(f32[100]{0})->u32[100]{0}} ENTRY %test (p: f32[100]) -> u32[100] { %p = f32[100]{0} parameter(0) ROOT %root = u32[100]{0} bitcast-convert(f32[100]{0} %p), metadata={op_type="a" op_name="b" source_file="c" source_line=1 profile_type={1} deduplicated_name="d" preserve_layout=true} } )" }, { "OriginalValue", R"(HloModule test, entry_computation_layout={(f32[], f32[3]{0}, f32[2,3]{1,0})->((f32[], f32[3]{0}), f32[2,3]{1,0})} ENTRY %test (v1: f32[], v2: f32[3], v3: f32[2,3]) -> ((f32[], f32[3]), f32[2,3]) { %v1 = f32[] parameter(0), origin={{"v1"}} %v2 = f32[3]{0} parameter(1), origin={{"v2"}} %tuple = (f32[], f32[3]{0}) tuple(f32[] %v1, f32[3]{0} %v2), origin={({"v1"}, {"v2"})} %v3 = f32[2,3]{1,0} parameter(2), origin={{"v3"}} ROOT %nested_tuple = ((f32[], f32[3]{0}), f32[2,3]{1,0}) tuple((f32[], f32[3]{0}) %tuple, f32[2,3]{1,0} %v3), origin={(({"v1"}, {"v2"}), {"v3"})} } )" }, }); } std::vector<TestData> CreateShortTestCases() { return std::vector<TestData>({ { "Map", R"(HloModule MapBinaryAdder_module, entry_computation_layout={(f32[4]{0}, f32[4]{0})->f32[4]{0}} add_F32.v3 { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY MapBinaryAdder.v3 { param0 = f32[4]{0} parameter(0) param1 = f32[4]{0} parameter(1) ROOT map = f32[4]{0} map(param0, param1), dimensions={0}, to_apply=add_F32.v3 } )" }, { "Reduce", R"(HloModule ReduceR3ToR2_module, entry_computation_layout={(f32[8,16,256]{2,1,0})->f32[8,16]{1,0}} add_F32.v3 { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY ReduceR3ToR2.v3 { input = f32[8,16,256]{2,1,0} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[8,16]{1,0} reduce(input, constant), dimensions={2}, to_apply=add_F32.v3 } )" }, { "TupleReduce", R"(HloModule TupleReduce, entry_computation_layout={(f32[1024]{0}, s32[1024]{0})->(f32[], s32[])} max_argmax { value = f32[] parameter(2) prev_max = f32[] parameter(0) is_next_larger = pred[] compare(value, prev_max), direction=GE max = f32[] select(is_next_larger, value, prev_max) index = s32[] parameter(3) prev_argmax = s32[] parameter(1) argmax = s32[] select(is_next_larger, index, prev_argmax) ROOT pair = (f32[], s32[]) tuple(max, argmax) } ENTRY reduce_entry { values = f32[1024]{0} parameter(0) indices = s32[1024]{0} parameter(1) init_value = f32[] constant(-inf) init_index = s32[] constant(-1) ROOT result = (f32[], s32[]) reduce(values, indices, init_value, init_index), dimensions={0}, to_apply=max_argmax } )" }, { "InfeedOutfeed", R"(HloModule outfeed_module, entry_computation_layout={()->((u32[3]{0}, pred[]), token[])} ENTRY InfeedToOutfeed { token0 = token[] after-all() infeed = ((u32[3]{0}, pred[]), token[]) infeed(token0) infeed.data = (u32[3]{0}, pred[]) get-tuple-element(infeed), index=0 outfeed = token[] outfeed(infeed.data, token0), outfeed_shape=(u32[3]{0}, pred[]) ROOT infeed.1 = ((u32[3]{0}, pred[]), token[]) infeed(token0) infeed.1.data = (u32[3]{0}, pred[]) get-tuple-element(infeed.1), index=0 infeed.1.token = token[] get-tuple-element(infeed.1), index=1 outfeed.1 = token[] outfeed(infeed.1.data, infeed.1.token), outfeed_shape=(u32[3]{0}, pred[]) } )" }, { "Rng", R"(HloModule rng_module, entry_computation_layout={()->f32[8]{0}} ENTRY Rng { constant = f32[] constant(0) constant.1 = f32[] constant(1) ROOT rng = f32[8]{0} rng(constant, constant.1), distribution=rng_uniform } )" }, { "ReducePrecision", R"(HloModule reduce_precision, entry_computation_layout={()->f32[1]{0}} ENTRY ReducePrecision { constant = f32[1]{0} constant({3.14159}) ROOT reduce-precision = f32[1]{0} reduce-precision(constant), exponent_bits=8, mantissa_bits=10 } )" }, { "SortKey", R"(HloModule sort, entry_computation_layout={(f32[1024]{0})->f32[1024]{0}} compare { p.0.lhs = f32[] parameter(0) p.0.rhs = f32[] parameter(1) ROOT lt = pred[] compare(p.0.lhs, p.0.rhs), direction=LT } ENTRY Sort { x = f32[1024]{0} parameter(0) ROOT sorted = f32[1024]{0} sort(x), dimensions={0}, to_apply=compare } )" }, { "SortKeyValue", R"(HloModule sort, entry_computation_layout={(f32[1024]{0}, s32[1024]{0})->(f32[1024]{0}, s32[1024]{0})} compare { p.1.lhs = s32[] parameter(2) p.1.rhs = s32[] parameter(3) p.0.lhs = f32[] parameter(0) p.0.rhs = f32[] parameter(1) ROOT lt = pred[] compare(p.0.lhs, p.0.rhs), direction=LT } ENTRY Sort { keys = f32[1024]{0} parameter(0) values = s32[1024]{0} parameter(1) ROOT sorted = (f32[1024]{0}, s32[1024]{0}) sort(keys, values), dimensions={0}, to_apply=compare } )" }, { "SortKeyR2", R"(HloModule sort, entry_computation_layout={(f32[1024,16]{0,1})->f32[1024,16]{0,1}} compare { p.0.lhs = f32[] parameter(0) p.0.rhs = f32[] parameter(1) ROOT lt = pred[] compare(p.0.lhs, p.0.rhs), direction=LT } ENTRY Sort { x = f32[1024,16]{0,1} parameter(0) ROOT sorted = f32[1024,16]{0,1} sort(x), dimensions={0}, to_apply=compare } )" }, { "SortKeyValueR2", R"(HloModule sort, entry_computation_layout={(f32[1024,16]{0,1}, s32[1024,16]{0,1})->(f32[1024,16]{0,1}, s32[1024,16]{0,1})} compare { p.1.lhs = s32[] parameter(2) p.1.rhs = s32[] parameter(3) p.0.lhs = f32[] parameter(0) p.0.rhs = f32[] parameter(1) ROOT lt = pred[] compare(p.0.lhs, p.0.rhs), direction=LT } ENTRY Sort { keys = f32[1024,16]{0,1} parameter(0) values = s32[1024,16]{0,1} parameter(1) ROOT sorted = (f32[1024,16]{0,1}, s32[1024,16]{0,1}) sort(keys, values), dimensions={0}, to_apply=compare } )" }, { "SortManyValues", R"(HloModule sort, entry_computation_layout={(f32[1024,16]{0,1}, s32[1024,16]{0,1}, u32[1024,16]{0,1}, f32[1024,16]{0,1})->(f32[1024,16]{0,1}, s32[1024,16]{0,1}, u32[1024,16]{0,1}, f32[1024,16]{0,1})} compare { p.1.lhs = s32[] parameter(2) p.1.rhs = s32[] parameter(3) p.2.lhs = u32[] parameter(4) p.2.rhs = u32[] parameter(5) p.3.lhs = f32[] parameter(6) p.3.rhs = f32[] parameter(7) p.0.lhs = f32[] parameter(0) p.0.rhs = f32[] parameter(1) ROOT lt = pred[] compare(p.0.lhs, p.0.rhs), direction=LT } ENTRY Sort { keys = f32[1024,16]{0,1} parameter(0) values.0 = s32[1024,16]{0,1} parameter(1) values.1 = u32[1024,16]{0,1} parameter(2) values.2 = f32[1024,16]{0,1} parameter(3) ROOT sorted = (f32[1024,16]{0,1}, s32[1024,16]{0,1}, u32[1024,16]{0,1}, f32[1024,16]{0,1}) sort(keys, values.0, values.1, values.2), dimensions={0}, to_apply=compare } )" }, { "SortKeyStable", R"(HloModule sort, entry_computation_layout={(f32[1024]{0})->f32[1024]{0}} compare { p.0.lhs = f32[] parameter(0) p.0.rhs = f32[] parameter(1) ROOT lt = pred[] compare(p.0.lhs, p.0.rhs), direction=LT } ENTRY Sort { x = f32[1024]{0} parameter(0) ROOT sorted = f32[1024]{0} sort(x), dimensions={0}, is_stable=true, to_apply=compare } )" }, { "TopK", R"(HloModule topk, entry_computation_layout={(f32[10,10]{0,1})->(f32[10,2]{0,1}, s32[10,2]{0,1})} ENTRY TopK { x = f32[10,10]{0,1} parameter(0) ROOT topk = (f32[10,2]{0,1}, s32[10,2]{0,1}) topk(x), k=2, largest=true } )" }, { "IndexedConditional", R"(HloModule indexed_conditional, entry_computation_layout={()->f32[]} Negate { x = f32[] parameter(0) ROOT negate = f32[] negate(x) } Identity { y = f32[] parameter(0) ROOT copy = f32[] copy(y) } Floor { z = f32[] parameter(0) ROOT floor = f32[] floor(z) } ENTRY Parameters1.v4 { constant = s32[] constant(1) constant.1 = f32[] constant(56) constant.2 = f32[] constant(12) constant.3 = f32[] constant(13) ROOT conditional = f32[] conditional(constant, constant.1, constant.2, constant.3), branch_computations={Negate, Identity, Floor} } )" }, { "PredicatedConditional", R"(HloModule pred_conditional, entry_computation_layout={()->f32[]} Negate { x = f32[] parameter(0) ROOT negate = f32[] negate(x) } Identity { y = f32[] parameter(0) ROOT copy = f32[] copy(y) } ENTRY Parameters1.v4 { constant = pred[] constant(true) constant.1 = f32[] constant(56) constant.2 = f32[] constant(12) ROOT conditional = f32[] conditional(constant, constant.1, constant.2), true_computation=Negate, false_computation=Identity } )" }, { "CustomCall", R"(HloModule custom_call, entry_computation_layout={()->f32[1,2,3]{0,2,1}} ENTRY CustomCall { constant = f32[1]{0} constant({12345}) ROOT custom-call = f32[1,2,3]{0,2,1} custom-call(constant), custom_call_target="foo\"bar" } )" }, { "CustumCallSingleComp", R"(HloModule custom_call_with_comp, entry_computation_layout={()->f32[1,2,3]{0,2,1}} max_F32 { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT maximum = f32[] maximum(lhs, rhs) } ENTRY CustomCall { constant = f32[1]{0} constant({12345}) ROOT custom-call = f32[1,2,3]{0,2,1} custom-call(constant), custom_call_target="foo\"bar", called_computations={max_F32} } )" }, { "CustumCallMultipleComps", R"(HloModule custom_call_with_comps, entry_computation_layout={()->f32[1,2,3]{0,2,1}} max_F32 { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT maximum = f32[] maximum(lhs, rhs) } ENTRY CustomCall { constant = f32[1]{0} constant({12345}) ROOT custom-call = f32[1,2,3]{0,2,1} custom-call(constant), custom_call_target="foo\"bar", called_computations={max_F32, max_F32} } )" }, { "NonDefaultNames", R"(HloModule add_constants_module, entry_computation_layout={()->f32[]} ENTRY add_constants { foo = f32[] constant(3.14) ROOT bar = f32[] add(foo, foo) } )" }, { "Dot", R"(HloModule dot, entry_computation_layout={(f32[2,10]{1,0}, f32[10,2]{1,0})->f32[2]{0}} ENTRY dot { a = f32[2,10]{1,0} parameter(0) b = f32[10,2]{1,0} parameter(1) ROOT dot = f32[2]{0} dot(a, b), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={1}, rhs_contracting_dims={0} } )" }, { "DotSparseOperand", R"(HloModule dot, entry_computation_layout={(f16[32,32]{1,0}, f16[64,32]{1,0}, u16[32,4]{1,0})->f16[32,32]{1,0}} ENTRY dot { a = f16[32,32]{1,0} parameter(0) b = f16[64,32]{1,0} parameter(1) meta = u16[32,4]{1,0} parameter(2) ROOT dot = f16[32,32]{1,0} dot(a, b, meta), lhs_contracting_dims={1}, rhs_contracting_dims={0}, sparsity=L.1@2:4 } )" }, { "DotSparseOperands", R"(HloModule dot, entry_computation_layout={(f16[32,32]{1,0}, f16[32,32]{1,0}, u16[32,4]{1,0}, u16[4,32]{1,0})->f16[32,32]{1,0}} ENTRY dot { a = f16[32,32]{1,0} parameter(0) b = f16[32,32]{1,0} parameter(1) a_meta = u16[32,4]{1,0} parameter(2) b_meta = u16[4,32]{1,0} parameter(3) ROOT dot = f16[32,32]{1,0} dot(a, b, a_meta, b_meta), lhs_contracting_dims={1}, rhs_contracting_dims={0}, sparsity=L.1@2:4_R.0@2:4 } )" }, { "DotWithAlgorithm", R"(HloModule dot, entry_computation_layout={(f32[2,10]{1,0}, f32[10,2]{1,0})->f32[2]{0}} ENTRY dot { a = f32[2,10]{1,0} parameter(0) b = f32[10,2]{1,0} parameter(1) ROOT dot = f32[2]{0} dot(a, b), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={1}, rhs_contracting_dims={0}, algorithm=dot_tf32_tf32_f32 } )" }, { "gather", R"(HloModule gather, entry_computation_layout={(f32[50,49,48,47,46]{4,3,2,1,0}, s64[10,9,8,7,5]{4,3,2,1,0})->f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0}} ENTRY Gather { input_tensor = f32[50,49,48,47,46]{4,3,2,1,0} parameter(0) start_indices = s64[10,9,8,7,5]{4,3,2,1,0} parameter(1) ROOT gather = f32[10,9,8,7,30,29,28,27,26]{8,7,6,5,4,3,2,1,0} gather(input_tensor, start_indices), offset_dims={4,5,6,7,8}, collapsed_slice_dims={}, start_index_map={0,1,2,3,4}, index_vector_dim=4, slice_sizes={30,29,28,27,26} } )" }, { "AllReduce", R"(HloModule CRS, entry_computation_layout={(f32[8]{0})->f32[8]{0}} add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY CRS { input = f32[8]{0} parameter(0) ROOT crs = f32[8]{0} all-reduce(input), replica_groups={}, to_apply=add } )" }, { "AllReduceWithSubgroups", R"(HloModule CRS_Subgroups, entry_computation_layout={(f32[128,32]{0,1})->f32[128,32]{0,1}}, replica_count=4 add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY AllReduceWithSubgroups { input = f32[128,32]{0,1} parameter(0) ROOT all-reduce = f32[128,32]{0,1} all-reduce(input), replica_groups={{0,1},{2,3}}, to_apply=add } )", 4, }, { "AllReduceWithSubgroupsIotaList", R"(HloModule CRS_Subgroups, entry_computation_layout={(f32[128,32]{0,1})->f32[128,32]{0,1}}, replica_count=20 add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY AllReduceWithSubgroupsIotaList { input = f32[128,32]{0,1} parameter(0) ROOT all-reduce = f32[128,32]{0,1} all-reduce(input), replica_groups=[2,10]<=[20], to_apply=add } )", 20, }, { "AllReduceWithLayout", R"(HloModule CRS, entry_computation_layout={(f32[8]{0})->f32[8]{0}} add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY CRS { input = f32[8]{0} parameter(0) ROOT crs = f32[8]{0} all-reduce(input), replica_groups={}, constrain_layout=true, to_apply=add } )" }, { "AllReduceAllReduce", R"(HloModule CRS, entry_computation_layout={(f32[8]{0})->f32[8]{0}} add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY CRS { input = f32[8]{0} parameter(0) crs.1 = f32[8]{0} all-reduce(input), channel_id=1, replica_groups={{0}}, to_apply=add ROOT crs.0 = f32[8]{0} all-reduce(input), channel_id=1, replica_groups={{0}}, to_apply=add } )" }, { "AllReduceStartAndDone", R"(HloModule CRS, entry_computation_layout={(f32[8]{0})->f32[8]{0}} add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY CRS { input = f32[8]{0} parameter(0) crs = f32[8]{0} all-reduce-start(input), replica_groups={}, to_apply=add ROOT done = f32[8]{0} all-reduce-done(crs) } )" }, { "ReduceScatter", R"(HloModule RS, entry_computation_layout={(f32[8]{0})->f32[4]{0}} add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY CRS { input = f32[8]{0} parameter(0) ROOT ars = f32[4]{0} reduce-scatter(input), replica_groups={{0,1}}, dimensions={0}, to_apply=add } )" }, { "AllGather", R"(HloModule AllGather, entry_computation_layout={(f32[128,32]{0,1})->f32[128,128]{0,1}} ENTRY AllGather { input = f32[128,32]{0,1} parameter(0) ROOT ag = f32[128,128]{0,1} all-gather(input), replica_groups={}, dimensions={1} } )" }, { "AllGatherWithLayout", R"(HloModule AllGather, entry_computation_layout={(f32[128,32]{0,1})->f32[128,128]{0,1}} ENTRY AllGather { input = f32[128,32]{0,1} parameter(0) ROOT ag = f32[128,128]{0,1} all-gather(input), replica_groups={}, constrain_layout=true, dimensions={1} } )" }, { "AllGatherWithSubgroups", R"(HloModule AllGatherWithSubgroups, entry_computation_layout={(f32[128,32]{0,1})->f32[128,64]{0,1}}, replica_count=4 ENTRY AllGatherWithSubgroups { input = f32[128,32]{0,1} parameter(0) ROOT ag = f32[128,64]{0,1} all-gather(input), replica_groups={{0,1},{2,3}}, dimensions={1} } )", 4, }, { "AllGatherWithSubgroupsIotaList", R"(HloModule AllGatherWithSubgroupsIotaList, entry_computation_layout={(f32[128,32]{0,1})->f32[128,320]{0,1}}, replica_count=30 ENTRY AllGatherWithSubgroupsIotaList { input = f32[128,32]{0,1} parameter(0) ROOT ag = f32[128,320]{0,1} all-gather(input), replica_groups=[3,10]<=[6,5]T(1,0), dimensions={1} } )", 30, }, { "AllToAll", R"(HloModule AllToAll, entry_computation_layout={(f32[128,32]{0,1})->(f32[128,32]{0,1})} ENTRY AllToAll { input = f32[128,32]{0,1} parameter(0) ROOT a2a = (f32[128,32]{0,1}) all-to-all(input), replica_groups={} } )" }, { "AllToAllWithSubgroups", R"(HloModule AllToAllWithSubgroups, entry_computation_layout={(f32[128,32]{0,1}, f32[128,32]{0,1})->(f32[128,32]{0,1}, f32[128,32]{0,1})}, replica_count=4 ENTRY AllToAllWithSubgroups { p0 = f32[128,32]{0,1} parameter(0) p1 = f32[128,32]{0,1} parameter(1) ROOT a2a = (f32[128,32]{0,1}, f32[128,32]{0,1}) all-to-all(p0, p1), replica_groups={{1,2},{3,0}} } )", 4, }, { "AllToAllWithSubgroupsIotaList", R"(HloModule AllToAllWithSubgroupsIotaList, entry_computation_layout={(f32[128,32]{0,1})->f32[128,32]{0,1}}, replica_count=32 ENTRY AllToAllWithSubgroupsIotaList { p0 = f32[128,32]{0,1} parameter(0) ROOT a2a = f32[128,32]{0,1} all-to-all(p0), replica_groups=[4,8]<=[4,8]T(1,0), dimensions={0} } )", 40 }, { "CollectiveBroadcast", R"(HloModule CollectiveBroadcast, entry_computation_layout={(f32[128,32]{0,1})->f32[128,32]{0,1}}, replica_count=4 ENTRY CollectiveBroadcast { input = f32[128,32]{0,1} parameter(0) ROOT cb = f32[128,32]{0,1} collective-broadcast(input), replica_groups={{1,0},{2,3}} } )", 4, }, { "CollectivePermute", R"(HloModule CollectivePermute, entry_computation_layout={(f32[128,32]{0,1})->f32[128,32]{0,1}}, replica_count=4 ENTRY CollectivePermute { input = f32[128,32]{0,1} parameter(0) ROOT root = f32[128,32]{0,1} collective-permute(input), source_target_pairs={{0,1},{1,2},{2,3}} } )", 4 }, { "CollectivePermuteInPlaceUpdate", R"(HloModule CollectivePermuteInPlaceUpdate, entry_computation_layout={(f32[128,32]{0,1})->f32[128,128]{0,1}}, replica_count=4 ENTRY CollectivePermuteInPlaceUpdate { input = f32[128,32]{0,1} parameter(0) constant = f32[] constant(1) output = f32[128,128]{0,1} broadcast(constant), dimensions={} constant.1 = s32[] constant(0) tuple.1 = (s32[], s32[]) tuple(constant.1, constant.1) constant.2 = s32[] constant(64) tuple.2 = (s32[], s32[]) tuple(constant.1, constant.2) ROOT root = f32[128,128]{0,1} collective-permute(input, output, tuple.1, tuple.2), source_target_pairs={{0,1},{1,2},{2,3}}, slice_sizes={{128,32}} } )", 4 }, { "CollectivePermuteInPlaceUpdateMultipleReadWrite", R"(HloModule CollectivePermuteInPlaceUpdateMultipleReadWrite, entry_computation_layout={(f32[8,8,128]{2,1,0})->f32[8,8,128]{2,1,0}}, replica_count=4 ENTRY CollectivePermuteInPlaceUpdate { constant.3 = s32[] constant(2) constant.1 = s32[] constant(0) output_offset.3 = (s32[], s32[], s32[]) tuple(constant.3, constant.1, constant.1) constant.4 = s32[] constant(3) output_offset.4 = (s32[], s32[], s32[]) tuple(constant.4, constant.1, constant.1) input = f32[8,8,128]{2,1,0} parameter(0) constant = f32[] constant(1) output = f32[8,8,128]{2,1,0} broadcast(constant), dimensions={} input_offset.1 = (s32[], s32[], s32[]) tuple(constant.1, constant.1, constant.1) constant.2 = s32[] constant(1) input_offset.2 = (s32[], s32[], s32[]) tuple(constant.2, constant.1, constant.1) input_offset = ((s32[], s32[], s32[]), (s32[], s32[], s32[])) tuple(input_offset.1, input_offset.2) output_offset = ((s32[], s32[], s32[]), (s32[], s32[], s32[])) tuple(input_offset.1, input_offset.2) ROOT root = f32[8,8,128]{2,1,0} collective-permute(input, output, input_offset, output_offset), source_target_pairs={{0,1},{1,2},{2,3},{0,3},{2,1},{3,2}}, slice_sizes={{1,8,128},{1,8,128}} } )", 4 }, { "CollectivePermuteInPlaceUpdateTupleMultipleReadWrite", R"(HloModule hlo_runner_test_0.1, entry_computation_layout={()->(u32[2,8,128]{2,1,0:T(2,128)}, u32[4,8,128]{2,1,0:T(2,128)})}, replica_count=4 ENTRY hlo_runner_test_0.1 { replica_id = u32[] replica-id() broadcast.0 = u32[2,8,128]{2,1,0:T(2,128)} broadcast(replica_id), dimensions={} tuple.input = (u32[2,8,128]{2,1,0:T(2,128)}, u32[2,8,128]{2,1,0:T(2,128)}) tuple(broadcast.0, broadcast.0) constant.1 = u32[] constant(1000) broadcast.1 = u32[2,8,128]{2,1,0:T(2,128)} broadcast(constant.1), dimensions={} broadcast.2 = u32[4,8,128]{2,1,0:T(2,128)} broadcast(constant.1), dimensions={} tuple.output = (u32[2,8,128]{2,1,0:T(2,128)}, u32[4,8,128]{2,1,0:T(2,128)}) tuple(broadcast.1, broadcast.2) constant.2 = s32[] constant(0) tuple.2 = (s32[], s32[], s32[]) tuple(constant.2, constant.2, constant.2) constant.3 = s32[] constant(1) tuple.3 = (s32[], s32[], s32[]) tuple(constant.3, constant.2, constant.2) tuple.4 = ((s32[], s32[], s32[]), (s32[], s32[], s32[])) tuple(tuple.2, tuple.3) tuple.7 = ((s32[], s32[], s32[]), (s32[], s32[], s32[])) tuple(tuple.2, tuple.2) tuple.8 = (((s32[], s32[], s32[]), (s32[], s32[], s32[])), ((s32[], s32[], s32[]), (s32[], s32[], s32[]))) tuple(tuple.4, tuple.7) constant.4 = s32[] constant(2) tuple.5 = (s32[], s32[], s32[]) tuple(constant.4, constant.2, constant.2) tuple.6 = ((s32[], s32[], s32[]), (s32[], s32[], s32[])) tuple(tuple.2, tuple.5) tuple.9 = (((s32[], s32[], s32[]), (s32[], s32[], s32[])), ((s32[], s32[], s32[]), (s32[], s32[], s32[]))) tuple(tuple.4, tuple.6) ROOT collective-permute.53 = (u32[2,8,128]{2,1,0:T(2,128)}, u32[4,8,128]{2,1,0:T(2,128)}) collective-permute(tuple.input, tuple.output, tuple.8, tuple.9), source_target_pairs={{0,1},{1,2},{2,3},{3,0},{0,3},{3,2},{2,1},{1,0}}, slice_sizes={{1,8,128},{1,8,128},{2,8,128},{2,8,128}} } )", 4 }, { "CollectivePermuteTupleInPlaceUpdate", R"(HloModule CollectivePermuteTupleInPlaceUpdate, entry_computation_layout={(f32[128,32]{0,1})->(f32[128,128]{0,1}, f32[128,128]{0,1})}, replica_count=4 ENTRY CollectivePermuteInPlaceUpdate { input = f32[128,32]{0,1} parameter(0) tuple.input = (f32[128,32]{0,1}, f32[128,32]{0,1}) tuple(input, input) constant = f32[] constant(1) output = f32[128,128]{0,1} broadcast(constant), dimensions={} tuple.output = (f32[128,128]{0,1}, f32[128,128]{0,1}) tuple(output, output) constant.1 = s32[] constant(0) tuple.1 = (s32[], s32[]) tuple(constant.1, constant.1) constant.2 = s32[] constant(64) tuple.2 = (s32[], s32[]) tuple(constant.2, constant.1) tuple.3 = ((s32[], s32[]), (s32[], s32[])) tuple(tuple.1, tuple.2) tuple.4 = (s32[], s32[]) tuple(constant.1, constant.1) tuple.5 = (s32[], s32[]) tuple(constant.2, constant.2) tuple.6 = ((s32[], s32[]), (s32[], s32[])) tuple(tuple.4, tuple.5) ROOT root = (f32[128,128]{0,1}, f32[128,128]{0,1}) collective-permute(tuple.input, tuple.output, tuple.3, tuple.6), source_target_pairs={{0,1},{1,2},{2,3}}, slice_sizes={{64,32},{64,32}} } )", 4 }, { "CollectivePermuteStartAndDone", R"(HloModule CollectivePermuteStartAndDone, entry_computation_layout={(f32[128,32]{0,1})->f32[128,32]{0,1}}, replica_count=4 ENTRY CollectivePermuteStartAndDone { input = f32[128,32]{0,1} parameter(0) collective-permute-start.1 = (f32[128,32]{0,1}, f32[128,32]{0,1}, u32[], u32[]) collective-permute-start(input), source_target_pairs={{0,1},{1,2},{2,3}} ROOT collective-permute-done.1 = f32[128,32]{0,1} collective-permute-done(collective-permute-start.1) } )", 4 }, { "CollectivePermuteStartAndDoneInplaceUpdate", R"(HloModule CollectivePermuteStartAndDoneInplaceUpdate, entry_computation_layout={(f32[128,32]{0,1})->f32[128,128]{0,1}}, replica_count=4 ENTRY CollectivePermuteStartAndDoneInplaceUpdate { input = f32[128,32]{0,1} parameter(0) constant = f32[] constant(1) output = f32[128,128]{0,1} broadcast(constant), dimensions={} constant.1 = s32[] constant(0) tuple.1 = (s32[], s32[]) tuple(constant.1, constant.1) constant.2 = s32[] constant(64) tuple.2 = (s32[], s32[]) tuple(constant.1, constant.2) collective-permute-start.1 = (f32[128,32]{0,1}, f32[128,128]{0,1}, u32[], u32[]) collective-permute-start(input, output, tuple.1, tuple.2), source_target_pairs={{0,1},{1,2},{2,3}}, slice_sizes={{64,32}} ROOT collective-permute-done.1 = f32[128,128]{0,1} collective-permute-done(collective-permute-start.1) } )", 4 }, { "ReplicaId", R"(HloModule replica-id, entry_computation_layout={()->u32[]} ENTRY Replica-id { ROOT replica-id = u32[] replica-id() } )" }, { "PartitionId", R"(HloModule partition-id, entry_computation_layout={()->u32[]} ENTRY PartitionId { ROOT id = u32[] partition-id() } )" }, { "Iota", R"(HloModule iota, entry_computation_layout={()->f32[100]{0}} ENTRY Iota { ROOT iota = f32[100]{0} iota(), iota_dimension=0 } )" }, { "CustomCallWithWindowAndDimLabelsAndFeatureGroupCount", R"(HloModule CustomCallWithWindowAndDimLabelsAndFeatureGroupCount, entry_computation_layout={()->f32[100]{0}} ENTRY Computation { ROOT r = f32[100]{0} custom-call(), window={size=2x2}, dim_labels=b01f_01io->b01f, feature_group_count=2, custom_call_target="target" } )" }, { "CustomCallWithUnknownDimLabels", R"(HloModule CustomCallWithUnknownDimLabels, entry_computation_layout={()->f32[100]{0}} ENTRY Computation { ROOT r = f32[100]{0} custom-call(), window={size=2x2}, dim_labels=?b01f_0?1io->b01?f, custom_call_target="target" } )" }, { "ScheduledModule", R"(HloModule scheduled_module, is_scheduled=true, entry_computation_layout={(f32[1024]{0}, s32[1024]{0})->(f32[1024]{0}, s32[1024]{0})} compare { p.1.lhs = s32[] parameter(2) p.1.rhs = s32[] parameter(3) p.0.lhs = f32[] parameter(0) p.0.rhs = f32[] parameter(1) ROOT lhs = pred[] compare(p.0.lhs, p.0.rhs), direction=LT } ENTRY Sort { keys = f32[1024]{0} parameter(0) values = s32[1024]{0} parameter(1) ROOT sorted = (f32[1024]{0}, s32[1024]{0}) sort(keys, values), dimensions={0}, to_apply=compare } )" }, { "AfterAllWithMultipleOperands", R"(HloModule AfterAllWithMultipleOperands, entry_computation_layout={(f32[])->token[]} ENTRY AfterAllWithMultipleOperands { p0 = f32[] parameter(0) token0 = token[] after-all() token1 = token[] after-all() ROOT after-all = token[] after-all(p0, token0, token1) } )" }, { "AddDependency", R"(HloModule AddDependency, entry_computation_layout={(f32[])->f32[]} ENTRY AddDependency { p = f32[] parameter(0) neg = f32[] negate(p) token0 = token[] after-all(neg) p_after_token = f32[] add-dependency(p, token0) exp = f32[] exponential(p_after_token) ROOT sum = f32[] add(neg, exp) } )" }, { "MinMaxValues", R"(HloModule MinMaxValues, entry_computation_layout={()->c128[2]{0}} ENTRY MinMaxValues { x.s4 = s4[2]{0} constant({-8, 7}) x.s8 = s8[2]{0} constant({-128, 127}) x.s16 = s16[2]{0} constant({-32768, 32767}) x.s32 = s32[2]{0} constant({-2147483648, 2147483647}) x.u4 = u4[2]{0} constant({0, 15}) x.u8 = u8[2]{0} constant({0, 255}) x.u16 = u16[2]{0} constant({0, 65535}) x.u32 = u32[2]{0} constant({0, 4294967295}) x.f16 = f16[2]{0} constant({-65504, 65504}) x.bf16 = bf16[2]{0} constant({-3.39e+38, 3.39e+38}) x.f32 = f32[2]{0} constant({-3.40282e+38, 3.40282e+38}) x.f64 = f64[2]{0} constant({-1.79769e+308, 1.79769e+308}) x.c64 = c64[2]{0} constant({(-3.40282e+38, 3.40282e+38), (3.40282e+38, -3.40282e+38)}) ROOT c.c128 = c128[2]{0} constant({(-1.79769e+308, 1.79769e+308), (1.79769e+308, -1.79769e+308)}) } )" }, { "BitcastConvert", R"(HloModule BitcastConvert, entry_computation_layout={(f32[100]{0})->u32[100]{0}} ENTRY BitcastConvertUsage { p = f32[100]{0} parameter(0) ROOT out = u32[100]{0} bitcast-convert(p) } )" }, }); } std::vector<NonRoundtripTestData> CreateNonRoundtripTestCases() { return std::vector<NonRoundtripTestData>({ { "SimpleNesting", R"(HloModule test ENTRY test { ROOT root = add(f32[10] parameter(0), multiply(f32[10] parameter(1), f32[10] parameter(2))) })", R"(HloModule test, entry_computation_layout={(f32[10]{0}, f32[10]{0}, f32[10]{0})->f32[10]{0}} ENTRY test { parameter.anon = f32[10]{0} parameter(0) parameter.anon.1 = f32[10]{0} parameter(1) parameter.anon.2 = f32[10]{0} parameter(2) multiply.anon = f32[10]{0} multiply(parameter.anon.1, parameter.anon.2) ROOT root = f32[10]{0} add(parameter.anon, multiply.anon) })" }, { "AmbiguousNames", R"(HloModule test ENTRY test { add = add(f32[10] parameter(0), f32[10] parameter(1)) ROOT add2 = add(add, add(add, add)) })", R"(HloModule test, entry_computation_layout={(f32[10]{0}, f32[10]{0})->f32[10]{0}} ENTRY test { parameter.anon = f32[10]{0} parameter(0) parameter.anon.1 = f32[10]{0} parameter(1) add = f32[10]{0} add(parameter.anon, parameter.anon.1) add.anon = f32[10]{0} add(add, add) ROOT add2 = f32[10]{0} add(add, add.anon) })" }, { "TupleShapeInsideAnonymousInstr", R"(HloModule test ENTRY test { ROOT root = get-tuple-element( (f32[10], f16[10]) tuple(f32[10] parameter(0), f16[10] parameter(1)) ), index=0 })", R"(HloModule test, entry_computation_layout={(f32[10]{0}, f16[10]{0})->f32[10]{0}} ENTRY test { parameter.anon = f32[10]{0} parameter(0) parameter.anon.1 = f16[10]{0} parameter(1) tuple.anon = (f32[10]{0}, f16[10]{0}) tuple(parameter.anon, parameter.anon.1) ROOT root = f32[10]{0} get-tuple-element(tuple.anon), index=0 })" }, { "MixAnonAndNonAnonOperands", R"(HloModule test ENTRY test { add = add(f32[10] parameter(0), f32[10] parameter(1)) ROOT root = tuple(add, add(add, add), add) })", R"(HloModule test, entry_computation_layout={(f32[10]{0}, f32[10]{0})->(f32[10]{0}, f32[10]{0}, f32[10]{0})} ENTRY test { parameter.anon = f32[10]{0} parameter(0) parameter.anon.1 = f32[10]{0} parameter(1) add = f32[10]{0} add(parameter.anon, parameter.anon.1) add.anon = f32[10]{0} add(add, add) ROOT root = (f32[10]{0}, f32[10]{0}, f32[10]{0}) tuple(add, add.anon, add) })" }, { "BroadcastOfScalarDoesntNeedDimensionsAttr", R"(HloModule test ENTRY test { ROOT root = sqrt(f32[10,10] broadcast(f32[] parameter(0))) })", R"(HloModule test, entry_computation_layout={(f32[])->f32[10,10]{1,0}} ENTRY test { parameter.anon = f32[] parameter(0) broadcast.anon = f32[10,10]{1,0} broadcast(parameter.anon), dimensions={} ROOT root = f32[10,10]{1,0} sqrt(broadcast.anon) })" }, { "SparseShape", R"(HloModule test ENTRY test { ROOT root = f32[10,10]{1,0:D(D,C)} parameter(0) })", R"(HloModule test, entry_computation_layout={(f32[10,10]{1,0:D(D,C)})->f32[10,10]{1,0:D(D,C)}} ENTRY test { ROOT root = f32[10,10]{1,0:D(D,C)} parameter(0) })", }, { "SparseShapeWithIndexPrimitiveType", R"(HloModule test ENTRY test { ROOT root = f32[10,10]{1,0:D(D,C)#(u32)} parameter(0) })", R"(HloModule test, entry_computation_layout={(f32[10,10]{1,0:D(D,C)#(u32)})->f32[10,10]{1,0:D(D,C)#(u32)}} ENTRY test { ROOT root = f32[10,10]{1,0:D(D,C)#(u32)} parameter(0) })", }, { "SparseShapeWithPointerPrimitiveType", R"(HloModule test ENTRY test { ROOT root = f32[10,10]{1,0:D(D,C)*(u32)} parameter(0) })", R"(HloModule test, entry_computation_layout={(f32[10,10]{1,0:D(D,C)*(u32)})->f32[10,10]{1,0:D(D,C)*(u32)}} ENTRY test { ROOT root = f32[10,10]{1,0:D(D,C)*(u32)} parameter(0) })", }, { "SparseShapeWithPhysicalShape", R"(HloModule test ENTRY test { ROOT root = f32[10,10]{1,0:D(D,C)P((s32[10]{0:T(100)}, s32[10]{0:T(100)}, f32[10]{0:T(100)}))} parameter(0) })", R"(HloModule test, entry_computation_layout={(f32[10,10]{1,0:D(D,C)P((s32[10]{0:T(100)}, s32[10]{0:T(100)}, f32[10]{0:T(100)}))})->f32[10,10]{1,0:D(D,C)P((s32[10]{0:T(100)}, s32[10]{0:T(100)}, f32[10]{0:T(100)}))}} ENTRY test { ROOT root = f32[10,10]{1,0:D(D,C)P((s32[10]{0:T(100)}, s32[10]{0:T(100)}, f32[10]{0:T(100)}))} parameter(0) })", }, { "SparseShapeFull", R"(HloModule test ENTRY test { ROOT root = f32[10,10]{1,0:D(D,C)#(u64)*(u32)S(42)P((s32[10]{0:T(100)}, s32[10]{0:T(100)}, f32[10]{0:T(100)}))} parameter(0) })", R"(HloModule test, entry_computation_layout={(f32[10,10]{1,0:D(D,C)#(u64)*(u32)S(42)P((s32[10]{0:T(100)}, s32[10]{0:T(100)}, f32[10]{0:T(100)}))})->f32[10,10]{1,0:D(D,C)#(u64)*(u32)S(42)P((s32[10]{0:T(100)}, s32[10]{0:T(100)}, f32[10]{0:T(100)}))}} ENTRY test { ROOT root = f32[10,10]{1,0:D(D,C)#(u64)*(u32)S(42)P((s32[10]{0:T(100)}, s32[10]{0:T(100)}, f32[10]{0:T(100)}))} parameter(0) })", }, { "SparseCOO", R"(HloModule test ENTRY test { ROOT root = f32[10,10]{1,0:D(C+,S)} parameter(0) })", R"(HloModule test, entry_computation_layout={(f32[10,10]{1,0:D(C+,S)})->f32[10,10]{1,0:D(C+,S)}} ENTRY test { ROOT root = f32[10,10]{1,0:D(C+,S)} parameter(0) })", }, { "SparseCOOUnordered", R"(HloModule test ENTRY test { ROOT root = f32[10,10]{1,0:D(C+~,S~)} parameter(0) })", R"(HloModule test, entry_computation_layout={(f32[10,10]{1,0:D(C+~,S~)})->f32[10,10]{1,0:D(C+~,S~)}} ENTRY test { ROOT root = f32[10,10]{1,0:D(C+~,S~)} parameter(0) })", }, }); } template <bool short_form, bool proto_round_trip> class HloParameterizedParserTest : public ::testing::Test, public ::testing::WithParamInterface<TestData> { protected: void ExpectEqual() { std::unique_ptr<HloModule> module; const std::string& original = GetParam().module_string; HloModuleConfig config; config.set_replica_count(GetParam().replica_count); if (GetParam().enable_verification) { auto verified_module = std::make_unique<VerifiedHloModule>( GetParam().test_name, config, false, true, ShapeUtil::ByteSizeOfElements); TF_ASSERT_OK(verified_module->ParseHloStringAndVerifyModule(original)); module = std::move(verified_module); } else { TF_ASSERT_OK_AND_ASSIGN(module, ParseAndReturnUnverifiedModule(original, config)); } if (proto_round_trip) { TF_ASSERT_OK_AND_ASSIGN(module, HloModule::CreateFromProto( module->ToProto(), module->config())); } if (short_form) { EXPECT_EQ(original, module->ToString(HloPrintOptions::ShortParsable())); } else { EXPECT_EQ( original, module->ToString(HloPrintOptions().set_print_large_constants(true))); } for (HloComputation* computation : module->computations()) { for (HloInstruction* instr : computation->instructions()) { if (instr->opcode() == HloOpcode::kWhile) { EXPECT_EQ(instr->while_body()->WhileCallInstruction(), instr); EXPECT_TRUE(instr->while_body()->IsWhileBodyComputation()); } } } } }; using HloParserTestLong = HloParameterizedParserTest<false, false>; using HloParserTestLongProto = HloParameterizedParserTest<false, true>; using HloParserTestShort = HloParameterizedParserTest<true, false>; using HloParserTestShortProto = HloParameterizedParserTest<true, true>; TEST_P(HloParserTestLong, Run) { ExpectEqual(); } TEST_P(HloParserTestLongProto, Run) { ExpectEqual(); } TEST_P(HloParserTestShort, Run) { ExpectEqual(); } TEST_P(HloParserTestShortProto, Run) { ExpectEqual(); } INSTANTIATE_TEST_SUITE_P(HloParserTestSuccessInstantiation, HloParserTestLong, ::testing::ValuesIn(CreateTestCases()), TestDataToString); INSTANTIATE_TEST_SUITE_P(HloParserTestSuccessInstantiation, HloParserTestLongProto, ::testing::ValuesIn(CreateTestCases()), TestDataToString); INSTANTIATE_TEST_SUITE_P(HloParserTestSuccessInstantiation, HloParserTestShort, ::testing::ValuesIn(CreateShortTestCases()), TestDataToString); INSTANTIATE_TEST_SUITE_P(HloParserTestSuccessInstantiation, HloParserTestShortProto, ::testing::ValuesIn(CreateShortTestCases()), TestDataToString); class HloNonRoundtripParserTest : public ::testing::TestWithParam<NonRoundtripTestData> {}; TEST_P(HloNonRoundtripParserTest, Run) { auto module = std::make_unique<VerifiedHloModule>( GetParam().test_name, HloModuleConfig{}, false, true, ShapeUtil::ByteSizeOfElements); TF_ASSERT_OK( module->ParseHloStringAndVerifyModule(GetParam().input_module_string)); EXPECT_EQ(absl::StripAsciiWhitespace(GetParam().output_module_string), absl::StripAsciiWhitespace( module->ToString(HloPrintOptions::ShortParsable()))); } INSTANTIATE_TEST_SUITE_P(HloParserTestSuccessInstantiation, HloNonRoundtripParserTest, ::testing::ValuesIn(CreateNonRoundtripTestCases()), NonRoundtripTestDataToString); class HloParserTest : public ::testing::Test { protected: static void ExpectHasSubstr(string_view s, string_view expected) { EXPECT_TRUE(absl::StrContains(s, expected)) << "'" << s << "' does not contain '" << expected << "'"; } absl::StatusOr<std::unique_ptr<VerifiedHloModule>> ParseAndReturnVerifiedModule(absl::string_view hlo_text) { auto module = std::make_unique<VerifiedHloModule>( ::testing::UnitTest::GetInstance()->current_test_info()->name(), HloModuleConfig(), false, true, ShapeUtil::ByteSizeOfElements); TF_RETURN_IF_ERROR(module->ParseHloStringAndVerifyModule(hlo_text)); return std::move(module); } }; TEST_F(HloParserTest, Empty) { const std::string original = ""; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); } TEST_F(HloParserTest, Garbage) { const std::string original = "HloModule thi$ str1ng makes# N0 sen$e @all!*&^%$"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); } TEST_F(HloParserTest, WrongOpcode) { const std::string original = R"(HloModule wrong_opcode: ENTRY %blabla (x: f32[], y: f32[]) -> f32[] { %x = f32[]{} parameter(0) %y = f32[]{} parameter(1) %le = pred[]{} le(f32[]{} %x, f32[]{} %y) } )"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); } TEST_F(HloParserTest, MetadataWithCholesky) { const std::string original = R"(HloModule metadata_with_cholesky ENTRY %blabla (a: f32[1,291,291]) -> f32[1,291,291] { %a = f32[1,291,291] parameter(0) %out = f32[1,291,291] cholesky(f32[1,291,291] %a), lower=true, metadata={op_type="Cholesky" op_name="Cholesky" profile_type={1}} } )"; auto result = ParseAndReturnVerifiedModule(original); EXPECT_EQ(absl::OkStatus(), result.status()); EXPECT_EQ("Cholesky", result.value() ->entry_computation() ->root_instruction() ->metadata() .op_name()); EXPECT_EQ("Cholesky", result.value() ->entry_computation() ->root_instruction() ->metadata() .op_type()); EXPECT_EQ(WINDOW, *result.value() ->entry_computation() ->root_instruction() ->metadata() .profile_type() .begin()); } TEST_F(HloParserTest, WrongShape) { const std::string original = R"(HloModule wrong_opcode: ENTRY %blabla (x: g32[]) -> g32[] { %x = g32[]{} parameter(0) } )"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); } TEST_F(HloParserTest, WrongOperandsSize) { const std::string original = R"(HloModule wrong_opcode: ENTRY %blabla (x: f32[]) -> pred[] { %x = f32[]{} parameter(0) %eq = pred[]{} compare(f32[]{} %x), direction=EQ } )"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); } TEST_F(HloParserTest, OperandNotFound) { const std::string original = R"(HloModule operand_not_found: ENTRY %blabla (x: f32[]) -> pred[] { %x = f32[]{} parameter(0) %eq = pred[]{} compare(f32[]{} %x, f32[]{} %y), direction=EQ } )"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); } TEST_F(HloParserTest, MoreConstants) { const std::string original = R"(HloModule SelectScalarS32True_module ENTRY %SelectScalarS32True.v4 () -> s32[] { %constant.2 = pred[] constant(true) %constant.1 = s32[] constant(-42), sharding={replicated} %constant = s32[] constant(42) %select = s32[] select(pred[] %constant.2, s32[] %constant.1, s32[] %constant) } )"; auto result = ParseAndReturnVerifiedModule(original); TF_EXPECT_OK(result.status()); } TEST_F(HloParserTest, ConfigurationField) { const std::string original = R"(HloModule AModule ENTRY %configuration_test() -> s32[] { %constant = s32[] constant(42), backend_config="foo bar" })"; auto result = ParseAndReturnVerifiedModule(original); TF_ASSERT_OK(result.status()); EXPECT_EQ("foo bar", result.value() ->entry_computation() ->root_instruction() ->raw_backend_config_string()); } TEST_F(HloParserTest, LiteralDimensionsError) { const std::string original = R"(HloModule some_2x3_module ENTRY %some_2x3 () -> f32[2,3] { ROOT %constant = f32[2,3]{1,0} constant(}{1, 2, 3}, {4, 5, 6}}) } )"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); ExpectHasSubstr(result.status().message(), "unexpected '}' token"); } TEST_F(HloParserTest, LiteralDimensionsMismatch_1) { const std::string original = R"(HloModule some_2_module ENTRY %some_2 () -> f32[2] { ROOT %constant = f32[2]{0} constant({1,{2}}) } )"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); ExpectHasSubstr(result.status().message(), "expects nested array in rank 1, but sees larger"); } TEST_F(HloParserTest, LiteralDimensionsMismatch_2) { const std::string original = R"(HloModule some_2x3_module ENTRY %some_2x3 () -> f32[2,3] { ROOT %constant = f32[2,3]{1,0} constant({1, 2, 3, 4, 5, 6}) } )"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); ExpectHasSubstr(result.status().message(), "expects nested array in rank 2, but sees 1"); } TEST_F(HloParserTest, LiteralDimensionsMismatch_3) { const std::string original = R"(HloModule some_2x3x2_module ENTRY %some_2x3x2 () -> f32[2,3,2] { ROOT %constant = f32[2,3,2]{2,1,0} constant({{{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}}}) } )"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); ExpectHasSubstr(result.status().message(), "expects 3 elements in the [0]th element"); } TEST_F(HloParserTest, ConstantF16Overflow) { const std::string original = R"(HloModule ConstantF16Overflow_module ENTRY %ConstantF16Overflow.v4 () -> f16[] { ROOT %constant = f16[] constant(-65520) } )"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); ExpectHasSubstr(result.status().message(), "is out of range for literal's primitive type F16"); } TEST_F(HloParserTest, ConstantBf16NoOverflow) { const std::string original = R"( HloModule test_module ENTRY test { ROOT c = bf16[] constant(-65505) })"; EXPECT_EQ(absl::OkStatus(), ParseAndReturnVerifiedModule(original).status()); } TEST_F(HloParserTest, ConstantBf16Overflow) { const std::string original = R"( HloModule test_module ENTRY test { ROOT c = bf16[] constant(1e100) })"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "out of range"); } TEST_F(HloParserTest, ConstantU4Underflow) { const std::string original = R"( HloModule ConstantU4Underflow_module ENTRY %ConstantU4Underflow () -> u4[] { ROOT %constant = u4[] constant(-1) })"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); ExpectHasSubstr(result.status().message(), "is out of range for literal's primitive type U4"); } TEST_F(HloParserTest, ConstantU4Overflow) { const std::string original = R"( HloModule ConstantU4Overflow_module ENTRY %ConstantU4Overflow () -> u4[] { ROOT %constant = u4[] constant(16) })"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); ExpectHasSubstr(result.status().message(), "is out of range for literal's primitive type U4"); } TEST_F(HloParserTest, ConstantS4Underflow) { const std::string original = R"( HloModule ConstantS4Underflow_module ENTRY %ConstantS4Underflow () -> s4[] { ROOT %constant = s4[] constant(-9) })"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); ExpectHasSubstr(result.status().message(), "is out of range for literal's primitive type S4"); } TEST_F(HloParserTest, ConstantS4Overflow) { const std::string original = R"( HloModule ConstantS4Overflow_module ENTRY %ConstantS4Overflow () -> s4[] { ROOT %constant = s4[] constant(8) })"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); ExpectHasSubstr(result.status().message(), "is out of range for literal's primitive type S4"); } TEST_F(HloParserTest, ConstantUnsignedUnderflow) { const std::string original = R"( HloModule ConstantUnsignedUnderflow_module ENTRY %ConstantUnsignedUnderflow () -> u64[] { ROOT %constant = u64[] constant(-1) })"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_EQ(absl::OkStatus(), result.status()); } TEST_F(HloParserTest, ConstantUnsignedOverflow) { const std::string original = R"( HloModule ConstantUnsignedOverflow_module ENTRY %ConstantUnsignedOverflow () -> u32[] { ROOT %constant = u32[] constant(4294967296) })"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); ExpectHasSubstr(result.status().message(), "is out of range for literal's primitive type U32"); } TEST_F(HloParserTest, ConstantUnsignedInt64Overflow) { const std::string original = R"( HloModule ConstantUnsignedOverflow_module ENTRY %ConstantUnsignedOverflow () -> u64[] { ROOT %constant = u64[] constant(9223372036854775808) })"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_EQ(absl::OkStatus(), result.status()); } TEST_F(HloParserTest, ConstantC64Overflow) { const std::string original = R"( HloModule test_module ENTRY test () -> c64[] { ROOT c = c64[] constant((1e100, 0)) })"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); } TEST_F(HloParserTest, ConstantC64Underflow) { const std::string original = R"( HloModule test_module ENTRY test () -> c64[] { ROOT c = c64[] constant((0, -1e100)) })"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); } TEST_F(HloParserTest, ConstantF64Overflow) { const std::string original = R"( HloModule test_module ENTRY test { ROOT c = f64[] constant(1.8e308) })"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); } TEST_F(HloParserTest, ConstantF64Underflow) { const std::string original = R"( HloModule test_module ENTRY test { ROOT c = f64[] constant(-1.8e308) })"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_NE(absl::OkStatus(), result.status()); } TEST_F(HloParserTest, ConstantWithExp) { const std::string original = R"(HloModule ConstantWithExp_module ENTRY %ConstantWithExp.v4 () -> f32[] { %constant.1 = f32[] constant(3e+2) } )"; auto result = ParseAndReturnVerifiedModule(original); TF_EXPECT_OK(result.status()); } TEST_F(HloParserTest, ShortConstant) { const std::string original = R"(HloModule ShortConstant_module, entry_computation_layout={()->f32[67,89]{1,0}} ENTRY %ShortConstant.v4 () -> f32[67,89] { ROOT %constant.1 = f32[67,89]{1,0} constant({...}) } )"; auto result = ParseAndReturnVerifiedModule(original); TF_EXPECT_OK(result.status()); EXPECT_EQ(result.value()->ToString(HloPrintOptions()), original); } TEST_F(HloParserTest, NegativeNan) { const std::string original = R"(HloModule NegativeNan_module, entry_computation_layout={()->bf16[2]{0}} ENTRY %NegativeNan () -> bf16[2] { ROOT %constant = bf16[2]{0} constant({-nan, -nan}) } )"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_EQ(absl::OkStatus(), result.status()); EXPECT_EQ(result.value()->ToString(HloPrintOptions()), original); } TEST_F(HloParserTest, NanPayload) { const std::string original = R"(HloModule NanPayload_module, entry_computation_layout={()->bf16[2]{0}} ENTRY %NanPayload () -> bf16[2] { ROOT %constant = bf16[2]{0} constant({-nan(0x7f), -nan(0x3f)}) } )"; auto result = ParseAndReturnUnverifiedModule(original); EXPECT_EQ(absl::OkStatus(), result.status()); EXPECT_EQ(result.value()->ToString(HloPrintOptions()), original); } TEST_F(HloParserTest, InvalidNanPayloadBf16) { const std::string original = R"(HloModule InvalidNanPayloadBf16_module, entry_computation_layout={()->bf16[1]{0}} ENTRY %NanPayload () -> bf16[1] { ROOT %constant = bf16[1]{0} constant({nan(0x3ff)}) } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "tries to set NaN payload 0x3ff"); } TEST_F(HloParserTest, InvalidNanPayloadF8e4m3fn) { const std::string original = R"(HloModule InvalidNanPayloadF8e4m3fn_module, entry_computation_layout={()->f8e4m3fn[1]{0}} ENTRY %NanPayload () -> f8e4m3fn[1] { ROOT %constant = f8e4m3fn[1]{0} constant({nan(0x1)}) } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "tries to set NaN payload 0x1"); } TEST_F(HloParserTest, InvalidNanPayloadF8e4m3b11fnuz) { const std::string original = R"(HloModule InvalidNanPayloadF8e4m3b11fnuz_module, entry_computation_layout={()->f8e4m3b11fnuz[1]{0}} ENTRY %NanPayload () -> f8e4m3b11fnuz[1] { ROOT %constant = f8e4m3b11fnuz[1]{0} constant({nan(0x1)}) } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "tries to set NaN payload 0x1"); } TEST_F(HloParserTest, AttributesAnyOrder) { const std::string original = R"(HloModule any_order_module ENTRY %Convolve1D1Window_0.v3 (input: f32[1,2,1], filter: f32[1,1,1]) -> f32[1,4,1] { %input = f32[1,2,1]{2,1,0} parameter(0) %copy = f32[1,2,1]{2,0,1} copy(f32[1,2,1]{2,1,0} %input) %filter = f32[1,1,1]{2,1,0} parameter(1) ROOT %convolution = f32[1,4,1]{2,0,1} convolution(f32[1,2,1]{2,0,1} %copy, f32[1,1,1]{2,1,0} %filter), feature_group_count=1, sharding={maximal device=1}, backend_config="foo", dim_labels=b0f_0io->b0f, window={pad=1_1 size=1} } )"; TF_EXPECT_OK(ParseAndReturnVerifiedModule(original).status()); } TEST_F(HloParserTest, InvalidDimLabels) { std::string prefix = R"(HloModule invalid_dim_labels_module ENTRY %Convolve1D1Window_0.v3 (input: f32[1,2,1], filter: f32[1,1,1]) -> f32[1,2,1] { %input = f32[1,2,1]{2,1,0} parameter(0) %copy = f32[1,2,1]{2,0,1} copy(f32[1,2,1]{2,1,0} %input) %filter = f32[1,1,1]{2,1,0} parameter(1) ROOT %convolution = f32[1,2,1]{2,0,1} convolution(f32[1,2,1]{2,0,1} %copy, f32[1,1,1]{2,1,0} %filter), window={size=1} )"; std::string suffix = R"( } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule( absl::StrCat(prefix, ",dim_labels=00_01->10", suffix)) .status() .message(), "expects unique"); ExpectHasSubstr(ParseAndReturnUnverifiedModule( absl::StrCat(prefix, ",dim_labels=012_0123->210", suffix)) .status() .message(), "must have same number of spatial dimensions"); ExpectHasSubstr(ParseAndReturnUnverifiedModule( absl::StrCat(prefix, ",dim_labels=013_0123->210", suffix)) .status() .message(), "expects [0-2bf?]"); } TEST_F(HloParserTest, UnexpectedAttribute) { const std::string original = R"(HloModule unexpected_attr_module ENTRY %TwoSendRecvBothWayRecvFist.v3 () -> f32[] { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15 %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15 ROOT %constant = f32[] constant(2.1) %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0), channel_id=16, calls=%recv %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16 } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "unexpected attribute \"calls\""); } TEST_F(HloParserTest, MissingAttribute) { const std::string original = R"(HloModule missing_attr_module ENTRY %TwoSendRecvBothWayRecvFist.v3 () -> f32[] { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15 %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15 ROOT %constant = f32[] constant(-2.1) %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0) %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16 } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "attribute channel_id is expected but not seen"); } TEST_F(HloParserTest, PredecessorUndefined) { const std::string original = R"(HloModule pre_not_found_module ENTRY %TwoSendRecvBothWayRecvFist.v3 () -> f32[] { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15 %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15 ROOT %constant = f32[] constant(2.1) %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0), channel_id=16, control-predecessors={%done} %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16 } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "'done' is not defined"); } TEST_F(HloParserTest, SliceAllowOmitStride1) { const std::string original = R"(HloModule slice_module ENTRY %slice.v2 (p0: f32[3,3,4,4]) -> f32[3,3,2,4] { %p0 = f32[3,3,4,4]{3,2,1,0} parameter(0) ROOT %slice = f32[3,3,2,4]{3,2,1,0} slice(f32[3,3,4,4]{3,2,1,0} %p0), slice={[0:3], [0:3], [0:4:2], [0:4]} } )"; TF_EXPECT_OK(ParseAndReturnVerifiedModule(original).status()); } TEST_F(HloParserTest, PaddingConfigIsNotWindowPad) { const std::string original = R"(HloModule window_pad_module ENTRY %Convolve1D1Window_0.v3 (input: f32[1,2,1], filter: f32[1,1,1]) -> f32[1,2,1] { %input = f32[1,2,1]{2,1,0} parameter(0) %copy = f32[1,2,1]{2,0,1} copy(f32[1,2,1]{2,1,0} %input) %filter = f32[1,1,1]{2,1,0} parameter(1) ROOT %convolution = f32[1,2,1]{2,0,1} convolution(f32[1,2,1]{2,0,1} %copy, f32[1,1,1]{2,1,0} %filter), dim_labels=b0f_0io->b0f, window={pad=1_1_0 size=1} } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "expects padding_low and padding_high separated by '_'"); } TEST_F(HloParserTest, CommaBetweenSubAttributes) { const std::string original = R"(HloModule test_comma_module ENTRY %test_comma.v4 () -> f32[] { ROOT %constant = f32[] constant(-4.2), metadata={source_line=5, op_type="::const"} } )"; TF_EXPECT_OK(ParseAndReturnVerifiedModule(original).status()); } TEST_F(HloParserTest, ComputationShapeDoesNotMatchRootShape) { const std::string original = R"(HloModule custom_call: ENTRY %CustomCall () -> f32[1] { %constant = f32[1]{0} constant({12345}) ROOT %foo = f32[1,2,3]{0,2,1} custom-call(f32[1]{0} %constant), custom_call_target="foo\"bar" })"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "Shape of computation CustomCall, f32[1], is not compatible " "with that of its root instruction foo, f32[1,2,3]"); } TEST_F(HloParserTest, EntryComputationLayoutNotDefined) { const std::string original = R"( HloModule layout_not_defined add_F32.v3 { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %Reduce (input: f32[8,16,256]) -> f32[8,16] { input = f32[8,16,256]{0,1,2} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[8,16]{0,1} reduce(input, constant), dimensions={2}, to_apply=add_F32.v3 })"; auto module = ParseAndReturnVerifiedModule(original); TF_ASSERT_OK(module.status()); auto program_layout = module.value()->entry_computation_layout(); ASSERT_EQ(program_layout.parameter_count(), 1); auto param_layout = program_layout.parameter_layout(0).layout(); auto result_layout = program_layout.result_layout().layout(); EXPECT_TRUE( LayoutUtil::Equal(LayoutUtil::MakeLayout({0, 1, 2}), param_layout)) << "actual layout of parameter(0) is " << LayoutUtil::HumanString(param_layout); EXPECT_TRUE(LayoutUtil::Equal(LayoutUtil::MakeLayout({0, 1}), result_layout)) << "actual layout of result is " << LayoutUtil::HumanString(result_layout); } TEST_F(HloParserTest, EntryComputationLayoutDefined) { const std::string original = R"( HloModule layout_defined, entry_computation_layout={(f32[8,16,256]) -> f32[8,16]} add_F32.v3 { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %Reduce (input: f32[8,16,256]) -> f32[8,16] { input = f32[8,16,256]{0,1,2} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[8,16]{0,1} reduce(input, constant), dimensions={2}, to_apply=add_F32.v3 })"; absl::StatusOr<std::unique_ptr<HloModule>> module = ParseAndReturnUnverifiedModule( original, {}, HloParserOptions().set_fill_missing_layouts(false)); TF_ASSERT_OK(module.status()); EXPECT_FALSE(module.value()->entry_computation_layout().AnyLayoutSet()); } TEST_F(HloParserTest, DoNotSetEntryComputationLayoutIfSet) { const std::string original = R"( HloModule layout_defined, entry_computation_layout={(f32[8,16,256]{1,2,0}) -> f32[8,16]} add_F32.v3 { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %Reduce (input: f32[8,16,256]) -> f32[8,16] { input = f32[8,16,256]{0,1,2} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[8,16]{0,1} reduce(input, constant), dimensions={2}, to_apply=add_F32.v3 })"; absl::StatusOr<std::unique_ptr<HloModule>> module = ParseAndReturnUnverifiedModule( original, {}, HloParserOptions().set_fill_missing_layouts(true)); TF_ASSERT_OK(module.status()); EXPECT_THAT(module.value() ->entry_computation_layout() .parameter_layout(0) .layout() .minor_to_major(), ElementsAre(1, 2, 0)); } TEST_F(HloParserTest, SetEntryComputationLayoutIfNotSet) { const std::string original = R"( HloModule layout_defined, entry_computation_layout={(f32[8,16,256]) -> f32[8,16]} add_F32.v3 { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %Reduce (input: f32[8,16,256]) -> f32[8,16] { input = f32[8,16,256]{0,1,2} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[8,16]{0,1} reduce(input, constant), dimensions={2}, to_apply=add_F32.v3 })"; absl::StatusOr<std::unique_ptr<HloModule>> module = ParseAndReturnUnverifiedModule( original, {}, HloParserOptions().set_fill_missing_layouts(true)); TF_ASSERT_OK(module.status()); EXPECT_THAT(module.value() ->entry_computation_layout() .parameter_layout(0) .layout() .minor_to_major(), ElementsAre(2, 1, 0)); } TEST_F(HloParserTest, DoNotFallBackToDefaultLayoutIfDisabled) { const std::string original = R"( HloModule t ENTRY main { p0 = f16[16,32,48,64]{3,2,1,0} parameter(0) p1 = f16[80,64,48,32]{3,2,1,0} parameter(1) ROOT dot = f16[64,32,16,80] dot(p0, p1), lhs_contracting_dims={2}, rhs_contracting_dims={2}, lhs_batch_dims={3,1}, rhs_batch_dims={1,3} })"; absl::StatusOr<std::unique_ptr<HloModule>> module = ParseAndReturnUnverifiedModule( original, {}, HloParserOptions().set_fill_missing_layouts(false)); TF_ASSERT_OK(module.status()); EXPECT_FALSE(module.value() ->entry_computation() ->root_instruction() ->shape() .has_layout()); } TEST_F(HloParserTest, FallBackToDefaultLayoutIfEnabled) { const std::string original = R"( HloModule t ENTRY main { p0 = f16[16,32,48,64]{3,2,1,0} parameter(0) p1 = f16[80,64,48,32]{3,2,1,0} parameter(1) ROOT dot = f16[64,32,16,80] dot(p0, p1), lhs_contracting_dims={2}, rhs_contracting_dims={2}, lhs_batch_dims={3,1}, rhs_batch_dims={1,3} })"; absl::StatusOr<std::unique_ptr<HloModule>> module = ParseAndReturnUnverifiedModule( original, {}, HloParserOptions().set_fill_missing_layouts(true)); TF_ASSERT_OK(module.status()); EXPECT_THAT(module.value() ->entry_computation() ->root_instruction() ->shape() .layout() .minor_to_major(), ElementsAre(3, 2, 1, 0)); } TEST_F(HloParserTest, FallBackToDefaultLayoutIfAlreadySet) { const std::string original = R"( HloModule t ENTRY main { p0 = f16[16,32,48,64]{3,2,1,0} parameter(0) p1 = f16[80,64,48,32]{3,2,1,0} parameter(1) ROOT dot = f16[64,32,16,80]{1,2,0,3} dot(p0, p1), lhs_contracting_dims={2}, rhs_contracting_dims={2}, lhs_batch_dims={3,1}, rhs_batch_dims={1,3} })"; absl::StatusOr<std::unique_ptr<HloModule>> module = ParseAndReturnUnverifiedModule( original, {}, HloParserOptions().set_fill_missing_layouts(true)); TF_ASSERT_OK(module.status()); EXPECT_THAT(module.value() ->entry_computation() ->root_instruction() ->shape() .layout() .minor_to_major(), ElementsAre(1, 2, 0, 3)); } TEST_F(HloParserTest, NoEntry) { const std::string original = R"(HloModule no_entry: c1 { const1 = f32[1]{0} constant({12345}) } c2 { const2 = f32[1]{0} constant({67890}) })"; auto module = ParseAndReturnVerifiedModule(original); TF_ASSERT_OK(module.status()); EXPECT_EQ(module.value()->entry_computation()->name(), "c2"); } TEST_F(HloParserTest, NoRoot) { const std::string original = R"(HloModule no_root: ENTRY consts { first = f32[1]{0} constant({12345}) last = f32[1]{0} constant({67890}) })"; auto module = ParseAndReturnVerifiedModule(original); TF_ASSERT_OK(module.status()); EXPECT_EQ(module.value()->entry_computation()->root_instruction()->name(), "last"); } TEST_F(HloParserTest, Comments) { const std::string original = R"( HloModule comments: ENTRY c1 { ROOT const1 = f32[1]{0} constant({12345 }) } )"; auto module = ParseAndReturnVerifiedModule(original); TF_ASSERT_OK(module.status()); } TEST_F(HloParserTest, MultilineComments) { const std::string original = R"(HloModule multiline_comment: ENTRY c1 { ROOT const1 = f32[1]{0} constant({12345}) })"; auto module = ParseAndReturnVerifiedModule(original); TF_ASSERT_OK(module.status()); } TEST_F(HloParserTest, UnterminatedComment) { const std::string original = R"(HloModule unterminated_comment: ENTRY c1 { /* unterminated ROOT const1 = f32[1]{0} constant({12345}) })"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "/* unterminated\n^"); } TEST_F(HloParserTest, SlashSlashComments) { const std::string original = R"(HloModule slash_slash_comment: ENTRY c1 { ROOT const1 = f32[1]{0} constant({12345}) })"; auto module = ParseAndReturnVerifiedModule(original); TF_ASSERT_OK(module.status()); } TEST_F(HloParserTest, SlashSlashCommentMsDosEolFormat) { const std::string original = "HloModule slash_slash_comment:\r\n "bar\r\nROOT const1 = f32[1]{0} constant({12345}) auto module = ParseAndReturnVerifiedModule(original); TF_ASSERT_OK(module.status()); } TEST_F(HloParserTest, SlashSlashCommentMacEolFormat) { const std::string original = "HloModule slash_slash_comment:\r "bar\rROOT const1 = f32[1]{0} constant({12345}) auto module = ParseAndReturnVerifiedModule(original); TF_ASSERT_OK(module.status()); } TEST_F(HloParserTest, MultipleEntries) { const std::string original = R"(HloModule multiple_entries: ENTRY c1 { const1 = f32[1]{0} constant({12345}) } ENTRY c2 { const2 = f32[1]{0} constant({67890}) })"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "expects only one ENTRY"); } TEST_F(HloParserTest, SimpleAliasing) { const std::string original = R"( HloModule Module, input_output_alias={ {0}: (0, {0}, must-alias), {1}: (0, {1}) } ENTRY entry { %p = (f32[], f32[]) parameter(0) %p0 = f32[] get-tuple-element((f32[], f32[]) %p), index=0 %p1 = f32[] get-tuple-element((f32[], f32[]) %p), index=1 ROOT %out = (f32[], f32[]) tuple(%p0, %p1) } )"; auto module = ParseAndReturnVerifiedModule(original); TF_ASSERT_OK(module.status()); std::unique_ptr<HloModule> parsed_module = std::move(module).value(); EXPECT_EQ(parsed_module->input_output_alias_config().GetAliasedOutput(0, {0}), ShapeIndex{0}); EXPECT_TRUE( parsed_module->input_output_alias_config().ParameterMustAlias(0, {0})); EXPECT_EQ(parsed_module->input_output_alias_config().GetAliasedOutput(0, {1}), ShapeIndex{1}); EXPECT_FALSE( parsed_module->input_output_alias_config().ParameterMustAlias(0, {1})); } TEST_F(HloParserTest, NestedAliasing) { const std::string original = R"( HloModule Module, input_output_alias={ {0, 0}: (0, {0}), {1, 1}: (0, {1}) } ENTRY entry { %p = (f32[], f32[]) parameter(0) %p0 = f32[] get-tuple-element((f32[], f32[]) %p), index=0 %p1 = f32[] get-tuple-element((f32[], f32[]) %p), index=1 %t0 = (f32[], f32[]) tuple(%p0, %p1) %t1 = (f32[], f32[]) tuple(%p0, %p1) ROOT %out = ((f32[], f32[]), (f32[], f32[])) tuple(%t0, %t1) } )"; auto module = ParseAndReturnVerifiedModule(original); TF_ASSERT_OK(module.status()); std::unique_ptr<HloModule> parsed_module = std::move(module).value(); EXPECT_EQ(parsed_module->input_output_alias_config().GetAliasedOutput(0, {0}), ShapeIndex({0, 0})); EXPECT_EQ(parsed_module->input_output_alias_config().GetAliasedOutput(0, {1}), ShapeIndex({1, 1})); } TEST_F(HloParserTest, AliasingWrongIndex) { const std::string original = R"( HloModule Module, input_output_alias={ {0 : (0, {0}), {1}: (0, {1}) } ENTRY entry { %p = (f32[], f32[]) parameter(0) %p0 = f32[] get-tuple-element((f32[], f32[]) %p), index=0 %p1 = f32[] get-tuple-element((f32[], f32[]) %p), index=1 ROOT %out = (f32[], f32[]) tuple(%p0, %p1) } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "Expects '}' at the end of ShapeIndex"); } TEST_F(HloParserTest, AliasingShapeIndexNotNumerical) { const std::string original = R"( HloModule Module, input_output_alias={ {0, a}: (0, {0}), {1}: (0, {1}) } ENTRY entry { %p = (f32[], f32[]) parameter(0) %p0 = f32[] get-tuple-element((f32[], f32[]) %p), index=0 %p1 = f32[] get-tuple-element((f32[], f32[]) %p), index=1 ROOT %out = (f32[], f32[]) tuple(%p0, %p1) } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "expects integer"); } TEST_F(HloParserTest, AliasingWrongFormatNoColon) { const std::string original = R"( HloModule Module, input_output_alias={ {0, 0}: (0, {0}), (0, {1}) } ENTRY entry { %p = (f32[], f32[]) parameter(0) %p0 = f32[] get-tuple-element((f32[], f32[]) %p), index=0 %p1 = f32[] get-tuple-element((f32[], f32[]) %p), index=1 ROOT %out = (f32[], f32[]) tuple(%p0, %p1) } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "Expects '{' at the start of ShapeIndex"); } TEST_F(HloParserTest, AliasingWrongFormatTwoColons) { const std::string original = R"( HloModule Module, input_output_alias={ {0}: (0, {0}): {0, 1}, {1}: (0, {1}) } ENTRY entry { %p = (f32[], f32[]) parameter(0) %p0 = f32[] get-tuple-element((f32[], f32[]) %p), index=0 %p1 = f32[] get-tuple-element((f32[], f32[]) %p), index=1 ROOT %out = (f32[], f32[]) tuple(%p0, %p1) } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "Expects '}' at the end of aliasing description"); } TEST_F(HloParserTest, AliasingWrongFormatAlphaParam) { const std::string original = R"( HloModule Module, input_output_alias={ {0, a}: (zero, {0}), {1}: (0, {1}) } ENTRY entry { %p = (f32[], f32[]) parameter(0) %p0 = f32[] get-tuple-element((f32[], f32[]) %p), index=0 %p1 = f32[] get-tuple-element((f32[], f32[]) %p), index=1 ROOT %out = (f32[], f32[]) tuple(%p0, %p1) } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "expects integer"); } TEST_F(HloParserTest, SimpleBufferDonor) { const std::string original = R"( HloModule Module, buffer_donor={ (0, {0}), (0, {1}) } ENTRY entry { %p = (f32[], f32[]) parameter(0) %p0 = f32[] get-tuple-element((f32[], f32[]) %p), index=0 %p1 = f32[] get-tuple-element((f32[], f32[]) %p), index=1 ROOT %out = (f32[], f32[]) tuple(%p0, %p1) } )"; auto module = ParseAndReturnVerifiedModule(original); TF_ASSERT_OK(module.status()); std::unique_ptr<HloModule> parsed_module = std::move(module).value(); EXPECT_TRUE( parsed_module->buffer_donor_config().ParameterIsBufferDonor(0, {0})); EXPECT_TRUE( parsed_module->buffer_donor_config().ParameterIsBufferDonor(0, {1})); EXPECT_FALSE( parsed_module->buffer_donor_config().ParameterIsBufferDonor(0, {})); } TEST_F(HloParserTest, BufferDonorShapeIndexNotNumerical) { const std::string original = R"( HloModule Module, buffer_donor={ (0, {0, a}), (0, {1}) } ENTRY entry { %p = (f32[], f32[]) parameter(0) %p0 = f32[] get-tuple-element((f32[], f32[]) %p), index=0 %p1 = f32[] get-tuple-element((f32[], f32[]) %p), index=1 ROOT %out = (f32[], f32[]) tuple(%p0, %p1) } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "expects integer"); } TEST_F(HloParserTest, BufferDonorWrongFormatAlphaParam) { const std::string original = R"( HloModule Module, buffer_donor={ (zero, {0}), (0, {1}) } ENTRY entry { %p = (f32[], f32[]) parameter(0) %p0 = f32[] get-tuple-element((f32[], f32[]) %p), index=0 %p1 = f32[] get-tuple-element((f32[], f32[]) %p), index=1 ROOT %out = (f32[], f32[]) tuple(%p0, %p1) } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "expects integer"); } TEST_F(HloParserTest, MultipleRoots) { const std::string original = R"(HloModule multiple_roots: ENTRY consts { ROOT const1 = f32[1]{0} constant({12345}) ROOT const2 = f32[1]{0} constant({12345}) })"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "one computation should have only one ROOT"); } TEST_F(HloParserTest, ComputationExists) { const std::string original = R"(HloModule comp_exists comp { const1 = f32[1]{0} constant({12345}) } comp { const2 = f32[1]{0} constant({67890}) })"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), R"(was parsing 2:1: error: computation previously defined here comp { ^)"); } TEST_F(HloParserTest, CrossComputationLookup) { const std::string original = R"(HloModule cross_computation_lookup: tcalla (a: (s32[], s32[])) -> (s32[], s32[]) { ROOT aparam = (s32[], s32[]) parameter(0) } tcallb (b: (s32[], s32[])) -> s32[] { rparam = (s32[], s32[]) parameter(0) ROOT gte0 = s32[] get-tuple-element(aparam), index=0 } ENTRY entry { param = (s32[], s32[]) parameter(0) call0 = (s32[], s32[]) call(param), to_apply=tcalla ROOT call1 = s32[] call(param), to_apply=tcallb })"; ExpectHasSubstr( ParseAndReturnUnverifiedModule(original).status().message(), "was parsing 8:39: error: instruction does not exist: aparam"); } TEST_F(HloParserTest, SameNameDiffComputations) { const std::string original = R"(HloModule same_names: add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT result = f32[] add(p0, p1) } ENTRY ReduceR3ToR2 { p0 = f32[8,16,256]{2,1,0} parameter(0) p1 = f32[] constant(0) ROOT result = f32[8,16]{1,0} reduce(p0, p1), dimensions={2}, to_apply=add } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(original)); ASSERT_NE(module->entry_computation(), nullptr); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Reduce())); } TEST_F(HloParserTest, ParseSharding) { const std::string original = "{maximal device=42}"; TF_ASSERT_OK_AND_ASSIGN(HloSharding sharding, ParseSharding(original)); EXPECT_EQ(sharding.ToString(), original); } TEST_F(HloParserTest, ParseShardingPartialReplication) { const std::string original = "{devices=[2,2]0,1,2,3 last_tile_dim_replicate}"; TF_ASSERT_OK_AND_ASSIGN(HloSharding sharding, ParseSharding(original)); EXPECT_EQ(sharding.ToString(), original); Array<int64_t> tiling_last_dim_replicated({{0, 1}, {2, 3}}); EXPECT_EQ(HloSharding::PartialTile(tiling_last_dim_replicated).ToString(), original); } TEST_F(HloParserTest, ParseShardingSubGroup) { const std::string original = "{devices=[2,2,2,2]0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 " "last_tile_dims={manual, replicated}}"; TF_ASSERT_OK_AND_ASSIGN(HloSharding sharding, ParseSharding(original)); EXPECT_EQ(sharding.ToString(), original); Array<int64_t> tile_assignment({2, 2, 2, 2}); tile_assignment.FillIota(0); std::vector<OpSharding::Type> subgroup_types = {OpSharding::MANUAL, OpSharding::REPLICATED}; EXPECT_EQ(HloSharding::Subgroup(tile_assignment, subgroup_types).ToString(), original); } TEST_F(HloParserTest, ParseTrivialIotaShardingPartialReplication) { const std::string original = "{devices=[2,2]<=[4] last_tile_dim_replicate}"; TF_ASSERT_OK_AND_ASSIGN(HloSharding sharding, ParseSharding(original)); EXPECT_EQ(sharding.ToString(), original); TileAssignment tiling_last_dim_replicated((absl::Span<const int64_t>){2, 2}); EXPECT_EQ(HloSharding::PartialTile(tiling_last_dim_replicated).ToString(), original); } TEST_F(HloParserTest, ParseTrivialIotaShardingSubGroup) { const std::string original = "{devices=[2,2,2,2]<=[16] last_tile_dims={manual, replicated}}"; TF_ASSERT_OK_AND_ASSIGN(HloSharding sharding, ParseSharding(original)); EXPECT_EQ(sharding.ToString(), original); TileAssignment tile_assignment({2, 2, 2, 2}); std::vector<OpSharding::Type> subgroup_types = {OpSharding::MANUAL, OpSharding::REPLICATED}; EXPECT_EQ(HloSharding::Subgroup(tile_assignment, subgroup_types).ToString(), original); } TEST_F(HloParserTest, ParseTransposedIotaShardingPartialReplication) { const std::string original = "{devices=[2,2]<=[2,2]T(1,0) last_tile_dim_replicate}"; TF_ASSERT_OK_AND_ASSIGN(HloSharding sharding, ParseSharding(original)); EXPECT_EQ(sharding.ToString(), original); TileAssignment tiling_last_dim_replicated({2, 2}, {2, 2}, {1, 0}); EXPECT_EQ(HloSharding::PartialTile(tiling_last_dim_replicated).ToString(), original); } TEST_F(HloParserTest, ParseTransposedIotaShardingSubGroup) { const std::string original = "{devices=[2,2,2,2]<=[2,2,4]T(2,1,0) last_tile_dims={manual, " "replicated}}"; TF_ASSERT_OK_AND_ASSIGN(HloSharding sharding, ParseSharding(original)); EXPECT_EQ(sharding.ToString(), original); TileAssignment tile_assignment({2, 2, 2, 2}, {2, 2, 4}, {2, 1, 0}); std::vector<OpSharding::Type> subgroup_types = {OpSharding::MANUAL, OpSharding::REPLICATED}; EXPECT_EQ(HloSharding::Subgroup(tile_assignment, subgroup_types).ToString(), original); } TEST_F(HloParserTest, ParseShardAs) { const std::string original = "{manual shard_as 1}"; TF_ASSERT_OK_AND_ASSIGN(HloSharding sharding, ParseSharding(original)); EXPECT_EQ(sharding.ToString(), original); EXPECT_EQ( HloSharding::Manual().SetShardGroup(HloSharding::ShardAs(1)).ToString(), original); } TEST_F(HloParserTest, ParseShardLike) { const std::string original = "{devices=[2,2,2,2]<=[16] last_tile_dims={manual, replicated} shard_like " "1}"; TF_ASSERT_OK_AND_ASSIGN(HloSharding sharding, ParseSharding(original)); EXPECT_EQ(sharding.ToString(), original); TileAssignment tile_assignment({2, 2, 2, 2}); std::vector<OpSharding::Type> subgroup_types = {OpSharding::MANUAL, OpSharding::REPLICATED}; EXPECT_EQ(HloSharding::Subgroup(tile_assignment, subgroup_types) .SetShardGroup(HloSharding::ShardLike(1)) .ToString(), original); } TEST_F(HloParserTest, ParseUnknownSharding) { const std::string original = "{unknown}"; TF_ASSERT_OK_AND_ASSIGN(HloSharding sharding, ParseSharding(original)); EXPECT_EQ(sharding.ToString(), original); EXPECT_EQ(HloSharding::Unknown().ToString(), original); } TEST_F(HloParserTest, ParseFrontendAttributes) { const std::string original = R"({attr_a="test_a",attr_b="b",attr_c="s64",attr_d="a/b"})"; TF_ASSERT_OK_AND_ASSIGN(FrontendAttributes frontend_attributes, ParseFrontendAttributes(original)); EXPECT_EQ(FrontendAttributesToString(frontend_attributes), original); } TEST_F(HloParserTest, ParseWindow) { Window original = window_util::MakeWindow({1, 2, 3}); TF_ASSERT_OK_AND_ASSIGN(Window parsed, ParseWindow(window_util::ToString(original))) EXPECT_EQ(window_util::ToString(original), window_util::ToString(parsed)); } TEST_F(HloParserTest, ParseConvolutionDimensionNumbers) { const std::string original = "b0f_0io->b0f"; TF_ASSERT_OK_AND_ASSIGN(ConvolutionDimensionNumbers dnums, ParseConvolutionDimensionNumbers(original)); EXPECT_EQ(original, ConvolutionDimensionNumbersToString(dnums)); } TEST_F(HloParserTest, ParseConvolutionDimensionNumbersWithUnknownDims) { const std::string original = "b0?f_?0?io->?b?0?f"; TF_ASSERT_OK_AND_ASSIGN(ConvolutionDimensionNumbers dnums, ParseConvolutionDimensionNumbers(original)); EXPECT_EQ(original, ConvolutionDimensionNumbersToString(dnums)); } TEST_F(HloParserTest, ParseReplicaGroups) { const std::string original = "{{0,1},{2,3}}"; TF_ASSERT_OK_AND_ASSIGN(std::vector<ReplicaGroup> replica_groups, ParseReplicaGroupsOnly(original)); EXPECT_EQ(original, ReplicaGroupsToString(replica_groups)); } TEST_F(HloParserTest, ParsePaddingConfigNoInteriorPadding) { const std::string original = "0_1x2_3"; TF_ASSERT_OK_AND_ASSIGN(PaddingConfig dnums, ParsePaddingConfig(original)); EXPECT_EQ(original, PaddingConfigToString(dnums)); } TEST_F(HloParserTest, ParsePaddingConfigInteriorPadding) { const std::string original = "0_1_0x2_3_4"; TF_ASSERT_OK_AND_ASSIGN(PaddingConfig dnums, ParsePaddingConfig(original)); EXPECT_EQ(original, PaddingConfigToString(dnums)); } TEST_F(HloParserTest, ParsePaddingConfigInteriorPaddingImplicitZeroDim) { TF_ASSERT_OK_AND_ASSIGN(PaddingConfig dnums, ParsePaddingConfig("0_1x2_3_4")); EXPECT_EQ("0_1_0x2_3_4", PaddingConfigToString(dnums)); } TEST_F(HloParserTest, NontupleInfeed) { const std::string original = R"(HloModule nontuple_infeed: ENTRY nontuple_infeed { token0 = token[] after-all() ROOT infeed = pred[] infeed(token0) })"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "infeed must have a non-empty tuple shape"); } TEST(HloParserSingleOpTest, SingleOp) { const std::string text = "%multiply = f32[2,4]{1,0} multiply(f32[2,4]{1,0} %broadcast, " "f32[2,4]{1,0} %x)"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(text)); const HloComputation* computation = module->entry_computation(); ASSERT_NE(computation, nullptr); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Multiply(m::Parameter(0), m::Parameter(1)))); } TEST(HloParserSingleOpTest, SingleOpNoShapeProducesError) { const std::string text = "multiply(f32[2,4]{1,0} %broadcast, f32[2,4]{1,0} %x)"; absl::StatusOr<std::unique_ptr<HloModule>> module = ParseAndReturnUnverifiedModule(text); ASSERT_TRUE(!module.status().ok()); LOG(INFO) << "Status: " << module.status(); EXPECT_THAT(module.status().ToString(), HasSubstr("expects '=' in instruction")); } TEST(HloParserSingleOpTest, SingleOpNoOperandShapesProducesError) { const std::string text = "%multiply = f32[2,4]{1,0} multiply(%broadcast, %x)"; absl::StatusOr<std::unique_ptr<HloModule>> module = ParseAndReturnUnverifiedModule(text); ASSERT_TRUE(!module.status().ok()); LOG(INFO) << "Status: " << module.status(); EXPECT_THAT(module.status().ToString(), HasSubstr("Operand had no shape in HLO text")); } TEST(HloParserSingleOpTest, SingleOpNoNames) { const std::string text = "%multiply = f32[2,4]{1,0} multiply(f32[2,4]{1,0}, f32[2,4]{1,0})"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(text)); const HloComputation* computation = module->entry_computation(); ASSERT_NE(computation, nullptr); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Multiply(m::Parameter(0), m::Parameter(1)))); } TEST(HloParserSingleOpTest, CanonicalOp) { const std::string text = "f32[2,4]{1,0} multiply(f32[2,4]{1,0}, f32[2,4]{1,0})"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(text)); const HloComputation* computation = module->entry_computation(); ASSERT_NE(computation, nullptr); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Multiply(m::Parameter(0), m::Parameter(1)))); EXPECT_EQ( computation->root_instruction()->ToString(HloPrintOptions::Canonical()), text); } TEST(HloParserSingleOpTest, CanonicalOpWithNested) { const std::string text = R"(f32[5,20]{1,0} while(f32[5,10]{1,0}), condition= { tmp_0 = f32[5,10]{1,0} parameter(0) tmp_1 = f32[20,10]{1,0} parameter(1) ROOT tmp_2 = f32[5,20]{1,0} fusion(f32[5,10]{1,0} tmp_0, f32[20,10]{1,0} tmp_1), kind=kLoop, calls= { tmp_0 = f32[5,10]{1,0} parameter(0) tmp_1 = f32[20,10]{1,0} parameter(1) tmp_2 = f32[10,20]{1,0} transpose(f32[20,10]{1,0} tmp_1), dimensions={1,0} ROOT tmp_3 = f32[5,20]{1,0} dot(f32[5,10]{1,0} tmp_0, f32[10,20]{1,0} tmp_2), lhs_contracting_dims={1}, rhs_contracting_dims={0} } }, body= { tmp_0 = f32[5,10]{1,0} parameter(0) tmp_1 = f32[20,10]{1,0} parameter(1) ROOT tmp_2 = f32[5,20]{1,0} fusion(f32[5,10]{1,0} tmp_0, f32[20,10]{1,0} tmp_1), kind=kLoop, calls= { tmp_0 = f32[5,10]{1,0} parameter(0) tmp_1 = f32[20,10]{1,0} parameter(1) tmp_2 = f32[10,20]{1,0} transpose(f32[20,10]{1,0} tmp_1), dimensions={1,0} ROOT tmp_3 = f32[5,20]{1,0} dot(f32[5,10]{1,0} tmp_0, f32[10,20]{1,0} tmp_2), lhs_contracting_dims={1}, rhs_contracting_dims={0} } })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(text)); const HloComputation* computation = module->entry_computation(); ASSERT_NE(computation, nullptr); EXPECT_EQ( computation->root_instruction()->ToString(HloPrintOptions::Canonical()), text); } TEST(HloParserSingleOpTest, CanonicalOpIndexedConditionalInlinedBranches) { const std::string text = R"(f32[5,10]{1,0} conditional(s32[], f32[5,10]{1,0}, f32[5,10]{1,0}, f32[5,10]{1,0}), branch_computations={ { tmp_0 = f32[5,10]{1,0} parameter(0) ROOT tmp_1 = f32[5,10]{1,0} ceil(f32[5,10]{1,0} tmp_0) }, { tmp_0 = f32[5,10]{1,0} parameter(0) ROOT tmp_1 = f32[5,10]{1,0} floor(f32[5,10]{1,0} tmp_0) }, { tmp_0 = f32[5,10]{1,0} parameter(0) ROOT tmp_1 = f32[5,10]{1,0} copy(f32[5,10]{1,0} tmp_0) } })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(text)); const HloComputation* computation = module->entry_computation(); ASSERT_NE(computation, nullptr); EXPECT_EQ( computation->root_instruction()->ToString(HloPrintOptions::Canonical()), text); } TEST(HloParserSingleOpTest, SingleOpWithNested) { const std::string text = R"(%fusion = f32[3,2,1,1]{3,2,1,0} fusion(f32[3,2,1,1]{3,2,1,0} %p0, f32[2]{0} %p1), kind=kLoop, calls= { %param_0 = f32[3,2,1,1]{3,2,1,0} parameter(0) %param_1 = f32[2]{0} parameter(1) %broadcast = f32[3,2,1,1]{3,2,1,0} broadcast(f32[2]{0} %param_1), dimensions={1} ROOT %subtract = f32[3,2,1,1]{3,2,1,0} subtract(f32[3,2,1,1]{3,2,1,0} %param_0, f32[3,2,1,1]{3,2,1,0} %broadcast) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(text)); const HloComputation* computation = module->entry_computation(); ASSERT_NE(computation, nullptr); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Op() .WithOpcode(HloOpcode::kFusion) .WithNumOperands(2) .WithOperand(0, m::Parameter(0)) .WithOperand(1, m::Parameter(1)))); } TEST(HloParserSingleOpTest, SingleOpWithNested_DoesNotExist) { const std::string text = R"(reduce = f32[] reduce(f32[10], f32[]), dimensions={1}, to_apply= { result = f32[] add(f32[] x, f32[] y) })"; auto status = ParseAndReturnUnverifiedModule(text).status(); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), HasSubstr("does not exist: x")); } TEST(HloParserSingleOpTest, SingleOpWithNested_NoLhs) { const std::string text = R"(reduce = f32[] reduce(f32[10], f32[]), dimensions={1}, to_apply= { f32[] add(f32[] x, f32[] y) })"; auto status = ParseAndReturnUnverifiedModule(text).status(); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), HasSubstr("expects name")); } TEST(HloParserSingleOpTest, SingleOpWithNested_NoOperandName) { const std::string text = R"(reduce = f32[] reduce(f32[10], f32[]), dimensions={1}, to_apply= { result = f32[] add(f32[], f32[]) })"; auto status = ParseAndReturnUnverifiedModule(text).status(); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), HasSubstr("expects name")); } TEST(HloParserSingleOpTest, ConvolutionTrivialFeatureGroupCount) { const std::string text = R"(%convolution = f32[1,2,1]{2,0,1} convolution(f32[1,2,1]{2,0,1} %copy, f32[1,1,1]{2,1,0} %filter), window={size=1}, dim_labels=b0f_0io->b0f)"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(text)); const HloComputation* computation = module->entry_computation(); ASSERT_NE(computation, nullptr); EXPECT_THAT(computation->root_instruction(), GmockMatch(m::Convolution(m::Parameter(0), m::Parameter(1)))); auto* convolution = Cast<HloConvolutionInstruction>(computation->root_instruction()); EXPECT_EQ(convolution->feature_group_count(), 1); } TEST(HloParserSingleOpTest, MultipleOpsProducesError) { const std::string text = R"( param = f32[2,5,1,3] parameter(0) transpose = f32[1,5,2,3] transpose(param), dimensions={2,1,0,3} )"; auto status = ParseAndReturnUnverifiedModule(text).status(); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), HasSubstr("Expected eof")); } TEST_F(HloParserTest, IsScheduledIsFalse) { const std::string text = R"( HloModule axpy_module, is_scheduled=false ENTRY %axpy.v5 (alpha: f32[], x: f32[2,4], y: f32[2,4]) -> f32[2,4] { %alpha = f32[] parameter(0) %broadcast = f32[2,4]{1,0} broadcast(f32[] %alpha), dimensions={} %x = f32[2,4]{1,0} parameter(1) %multiply = f32[2,4]{1,0} multiply(f32[2,4]{1,0} %broadcast, f32[2,4]{1,0} %x) %y = f32[2,4]{1,0} parameter(2) ROOT %add = f32[2,4]{1,0} add(f32[2,4]{1,0} %multiply, f32[2,4]{1,0} %y) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); ASSERT_FALSE(module->has_schedule()); } TEST_F(HloParserTest, IsScheduledNotPresent) { const std::string text = R"( HloModule axpy_module ENTRY %axpy.v5 (alpha: f32[], x: f32[2,4], y: f32[2,4]) -> f32[2,4] { %alpha = f32[] parameter(0) %broadcast = f32[2,4]{1,0} broadcast(f32[] %alpha), dimensions={} %x = f32[2,4]{1,0} parameter(1) %multiply = f32[2,4]{1,0} multiply(f32[2,4]{1,0} %broadcast, f32[2,4]{1,0} %x) %y = f32[2,4]{1,0} parameter(2) ROOT %add = f32[2,4]{1,0} add(f32[2,4]{1,0} %multiply, f32[2,4]{1,0} %y) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); ASSERT_FALSE(module->has_schedule()); } TEST_F(HloParserTest, IsScheduledIsTrue) { const std::string text = R"( HloModule axpy_module, is_scheduled=true ENTRY %axpy.v5 (alpha: f32[], x: f32[2,4], y: f32[2,4]) -> f32[2,4] { %alpha = f32[] parameter(0) %broadcast = f32[2,4]{1,0} broadcast(f32[] %alpha), dimensions={} %x = f32[2,4]{1,0} parameter(1) %multiply = f32[2,4]{1,0} multiply(f32[2,4]{1,0} %broadcast, f32[2,4]{1,0} %x) %y = f32[2,4]{1,0} parameter(2) ROOT %add = f32[2,4]{1,0} add(f32[2,4]{1,0} %multiply, f32[2,4]{1,0} %y) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); ASSERT_TRUE(module->has_schedule()); TF_ASSERT_OK(module->schedule().Verify()); EXPECT_EQ(module->schedule().sequences().size(), 1); ASSERT_TRUE( module->schedule().is_computation_scheduled(module->entry_computation())); EXPECT_THAT( module->schedule().sequence(module->entry_computation()).instructions(), ElementsAre(GmockMatch(m::Parameter()), GmockMatch(m::Broadcast()), GmockMatch(m::Parameter()), GmockMatch(m::Multiply()), GmockMatch(m::Parameter()), GmockMatch(m::Add()))); } TEST_F(HloParserTest, IsScheduledIsTrueDifferentOrder) { const std::string text = R"( HloModule axpy_module, is_scheduled=true ENTRY %axpy.v5 (alpha: f32[], x: f32[2,4], y: f32[2,4]) -> f32[2,4] { %alpha = f32[] parameter(0) %x = f32[2,4]{1,0} parameter(1) %y = f32[2,4]{1,0} parameter(2) %broadcast = f32[2,4]{1,0} broadcast(f32[] %alpha), dimensions={} %multiply = f32[2,4]{1,0} multiply(f32[2,4]{1,0} %broadcast, f32[2,4]{1,0} %x) ROOT %add = f32[2,4]{1,0} add(f32[2,4]{1,0} %multiply, f32[2,4]{1,0} %y) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); ASSERT_TRUE(module->has_schedule()); TF_ASSERT_OK(module->schedule().Verify()); EXPECT_EQ(module->schedule().sequences().size(), 1); ASSERT_TRUE( module->schedule().is_computation_scheduled(module->entry_computation())); EXPECT_THAT( module->schedule().sequence(module->entry_computation()).instructions(), ElementsAre(GmockMatch(m::Parameter()), GmockMatch(m::Parameter()), GmockMatch(m::Parameter()), GmockMatch(m::Broadcast()), GmockMatch(m::Multiply()), GmockMatch(m::Add()))); } TEST_F(HloParserTest, CustomCallWrongNumberofOperandConstraints) { const std::string original = R"(HloModule CustomCallWrongNumberofOperandConstraints ENTRY %CustomCallWrongNumberofOperandConstraints (p0: f32[42,2,3], p1: f32[123,4]) -> f32[1,2,3] { %p0 = f32[42,2,3]{0,1,2} parameter(0) %p1 = f32[123,4]{0,1} parameter(1) ROOT %custom-call = f32[1,2,3]{0,1,2} custom-call(f32[42,2,3]{0,1,2} %p0, f32[123,4]{0,1} %p1), custom_call_target="baz", operand_layout_constraints={f32[42,2,3]{0,1,2}} } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "Expected 2 operand layout constraints, 1 given"); } TEST_F(HloParserTest, CustomCallIncompatibleOperandConstraints) { const std::string original = R"(HloModule CustomCallIncompatibleOperandConstraints ENTRY %CustomCallIncompatibleOperandConstraints (p0: f32[42,2,3], p1: f32[123,4]) -> f32[1,2,3] { %p0 = f32[42,2,3]{0,1,2} parameter(0) %p1 = f32[123,4]{0,1} parameter(1) ROOT %custom-call = f32[1,2,3]{0,1,2} custom-call(f32[42,2,3]{0,1,2} %p0, f32[123,4]{0,1} %p1), custom_call_target="baz", operand_layout_constraints={f32[42,2,3]{0,1,2}, f32[555,5]{1,0}} } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "operand 1 is not compatible with operand shape"); } TEST_F(HloParserTest, CustomCallWithNonexistentVersion) { const std::string original = R"(HloModule custom_call ENTRY %CustomCall () -> f32[1,2,3] { %constant = f32[1]{0} constant({12345}) ROOT %custom-call.1 = f32[1,2,3]{0,2,1} custom-call(f32[1]{0} %constant), custom_call_target="foo", api_version=API_VERSION_THAT_DOESNT_EXIST } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "Unknown API version"); } TEST_F(HloParserTest, CustomCallWithUnspecifiedVersion) { const std::string original = R"(HloModule custom_call ENTRY %CustomCall () -> f32[1,2,3] { %constant = f32[1]{0} constant({12345}) ROOT %custom-call.1 = f32[1,2,3]{0,2,1} custom-call(f32[1]{0} %constant), custom_call_target="foo", api_version=API_VERSION_UNSPECIFIED } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(original).status().message(), "Invalid API version"); } TEST_F(HloParserTest, AllowShapeWhitespace) { const std::string text = R"( HloModule module ENTRY entry { ROOT root = f32[ 1, 2,3, 4, 5]{0, 1, 2,3, 4 } parameter(0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); } TEST_F(HloParserTest, ShapeMismatchInOperand) { const std::string text = R"( HloModule foobar ENTRY %entrycomp (p: f32[2,2]) -> f32[2,2] { %p = f32[2,2] parameter(0) %constant.1 = f32[2,2] constant({{1, 2}, {3, 4}}) ROOT %add.1 = f32[2,2] add(f32[2,2] %p, f32[2,5] %constant.1) } )"; ExpectHasSubstr(ParseAndReturnUnverifiedModule(text).status().message(), "The declared operand shape f32[2,5]{1,0} is not compatible" " with the shape of the operand instruction f32[2,2]{1,0}."); } TEST_F(HloParserTest, ParseShapeStringR2F32) { std::string shape_string = "f32[123,456]"; TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape(shape_string)); Shape expected = ShapeUtil::MakeShape(F32, {123, 456}); ASSERT_TRUE(ShapeUtil::Equal(expected, actual)) << "expected: " << ShapeUtil::HumanString(expected) << "actual: " << ShapeUtil::HumanString(actual); } TEST_F(HloParserTest, ParseShapeStringUnbounded) { std::string shape_string = "f32[?,784]"; TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape(shape_string)); Shape expected = ShapeUtil::MakeShape(F32, {Shape::kUnboundedSize, 784}, {true, false}); ASSERT_TRUE(ShapeUtil::Equal(expected, actual)) << "expected: " << ShapeUtil::HumanString(expected) << "actual: " << ShapeUtil::HumanString(actual); } TEST_F(HloParserTest, ParseShapeStringTupleOfArrays) { std::string shape_string = "(f32[1572864],s8[5120,1024])"; TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape(shape_string)); Shape expected = ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {1572864}), ShapeUtil::MakeShape(S8, {5120, 1024})}); ASSERT_TRUE(ShapeUtil::Equal(expected, actual)) << "expected: " << ShapeUtil::HumanString(expected) << "actual: " << ShapeUtil::HumanString(actual); } TEST_F(HloParserTest, ParseShapeStringNestedTuple) { std::string shape_string = "(f32[1],(f32[2], token[]), opaque[], f32[3])"; TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape(shape_string)); Shape expected = ShapeUtil::MakeTupleShape({ ShapeUtil::MakeShape(F32, {1}), ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {2}), ShapeUtil::MakeTokenShape()}), ShapeUtil::MakeOpaqueShape(), ShapeUtil::MakeShape(F32, {3}), }); ASSERT_TRUE(ShapeUtil::Equal(expected, actual)) << "expected: " << ShapeUtil::HumanString(expected) << "actual: " << ShapeUtil::HumanString(actual); } TEST_F(HloParserTest, ParseShapeStringWithLayout) { std::string shape_string = "f32[123,456]{0,1}"; TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape(shape_string)); Shape expected = ShapeUtil::MakeShapeWithDenseLayout(F32, {123, 456}, {0, 1}); ASSERT_TRUE(ShapeUtil::Equal(expected, actual)) << "expected: " << ShapeUtil::HumanString(expected) << "actual: " << ShapeUtil::HumanString(actual); } TEST_F(HloParserTest, ParseShapeStringWithTilingLayout) { std::string shape_string = "f32[123,456]{0,1:T(2,128)}"; TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape(shape_string)); Shape expected = ShapeUtil::MakeShapeWithDenseLayout(F32, {123, 456}, {0, 1}, {Tile({2, 128})}); EXPECT_EQ(expected, actual) << "expected: " << ShapeUtil::HumanStringWithLayout(expected) << "actual: " << ShapeUtil::HumanStringWithLayout(actual); shape_string = "f32[123,456,789]{0,1,2:T(2, * , 128)}"; TF_ASSERT_OK_AND_ASSIGN(actual, ParseShape(shape_string)); expected = ShapeUtil::MakeShapeWithDenseLayout( F32, {123, 456, 789}, {0, 1, 2}, {Tile({2, Tile::kCombineDimension, 128})}); EXPECT_EQ(expected, actual) << "expected: " << ShapeUtil::HumanStringWithLayout(expected) << "actual: " << ShapeUtil::HumanStringWithLayout(actual); shape_string = "bf16[123,456,789]{2,1,0:T(2,*,128)(2,1)}"; TF_ASSERT_OK_AND_ASSIGN(actual, ParseShape(shape_string)); expected = ShapeUtil::MakeShapeWithDenseLayout( BF16, {123, 456, 789}, {2, 1, 0}, {Tile({2, Tile::kCombineDimension, 128}), Tile({2, 1})}); EXPECT_EQ(expected, actual) << "expected: " << ShapeUtil::HumanStringWithLayout(expected) << "actual: " << ShapeUtil::HumanStringWithLayout(actual); shape_string = "f32[123,456,789]{1:T(2, * , 128)}"; auto result = ParseShape(shape_string); ExpectHasSubstr(result.status().message(), "Dimensions size is 3, but minor to major size is 1."); } TEST_F(HloParserTest, ParseShapeStringWithElementSizeInBits) { std::string shape_string = "s4[123,456]{1,0:T(2,128)E(4)}"; TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape(shape_string)); Shape expected = ShapeUtil::MakeShapeWithDenseLayout(S4, {123, 456}, {1, 0}, {Tile({2, 128})}, 1, 4); EXPECT_EQ(expected, actual) << "expected: " << ShapeUtil::HumanStringWithLayout(expected) << "actual: " << ShapeUtil::HumanStringWithLayout(actual); } TEST_F(HloParserTest, ParseShapeStringWithMemorySpaceLayout) { std::string shape_string = "pred[123,456]{1,0:T(2,128)S(3)}"; TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape(shape_string)); Shape expected = ShapeUtil::MakeShapeWithDenseLayout( PRED, {123, 456}, {1, 0}, {Tile({2, 128})}, 1, 0, 3); EXPECT_EQ(expected, actual) << "expected: " << ShapeUtil::HumanStringWithLayout(expected) << "actual: " << ShapeUtil::HumanStringWithLayout(actual); shape_string = "pred[123,456]{1,0:S(3)}"; TF_ASSERT_OK_AND_ASSIGN(actual, ParseShape(shape_string)); expected = ShapeUtil::MakeShapeWithDenseLayout(PRED, {123, 456}, {1, 0}, {}, 1, 0, 3); EXPECT_EQ(expected, actual) << "expected: " << ShapeUtil::HumanStringWithLayout(expected) << "actual: " << ShapeUtil::HumanStringWithLayout(actual); shape_string = "pred[123,456]{1,0:S(3)}"; TF_ASSERT_OK_AND_ASSIGN(actual, ParseShape(shape_string)); expected = ShapeUtil::MakeShapeWithDenseLayout(PRED, {123, 456}, {1, 0}, {}, 1, 0, 3); EXPECT_EQ(expected, actual) << "expected: " << ShapeUtil::HumanStringWithLayout(expected) << "actual: " << ShapeUtil::HumanStringWithLayout(actual); } TEST_F(HloParserTest, ParseShapeStringWithDynamicShapeMetadataPrefix) { std::string shape_string = "f32[123,456]{1,0:T(16,128)M(1024)}"; TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape(shape_string)); Shape expected = ShapeUtil::MakeShapeWithDenseLayout(F32, {123, 456}, {1, 0}, {Tile({16, 128})}); expected.mutable_layout()->set_dynamic_shape_metadata_prefix_bytes(1024); EXPECT_EQ(expected, actual) << "expected: " << ShapeUtil::HumanStringWithLayout(expected) << "actual: " << ShapeUtil::HumanStringWithLayout(actual); } TEST_F(HloParserTest, ParseShapeStringWithSplitConfigLayout) { std::string shape_string = "pred[123,456]{1,0:T(2,128)S(3)SC(1:200)}"; TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape(shape_string)); Shape expected = ShapeUtil::MakeShapeWithDenseLayout( PRED, {123, 456}, {1, 0}, {Tile({2, 128})}, 1, 0, 3, {SplitConfig(1, {200})}); EXPECT_EQ(expected, actual) << "expected: " << ShapeUtil::HumanStringWithLayout(expected) << "actual: " << ShapeUtil::HumanStringWithLayout(actual); shape_string = "pred[123,456]{1,0:S(3)SC(0:10)(1:4,5)}"; TF_ASSERT_OK_AND_ASSIGN(actual, ParseShape(shape_string)); expected = ShapeUtil::MakeShapeWithDenseLayout( PRED, {123, 456}, {1, 0}, {}, 1, 0, 3, {SplitConfig(0, {10}), SplitConfig(1, {4, 5})}); EXPECT_EQ(expected, actual) << "expected: " << ShapeUtil::HumanStringWithLayout(expected) << "actual: " << ShapeUtil::HumanStringWithLayout(actual); shape_string = "pred[123,456]{1,0:SC(1:50,200)}"; TF_ASSERT_OK_AND_ASSIGN(actual, ParseShape(shape_string)); expected = ShapeUtil::MakeShapeWithDenseLayout( PRED, {123, 456}, {1, 0}, {}, 1, 0, 0, {SplitConfig(1, {50, 200})}); EXPECT_EQ(expected, actual) << "expected: " << ShapeUtil::HumanStringWithLayout(expected) << "actual: " << ShapeUtil::HumanStringWithLayout(actual); } TEST_F(HloParserTest, ParseOpaqueType) { TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape("opaque[]")); Shape expected = ShapeUtil::MakeOpaqueShape(); ASSERT_TRUE(ShapeUtil::Equal(expected, actual)) << "expected: " << ShapeUtil::HumanString(expected) << "actual: " << ShapeUtil::HumanString(actual); } TEST_F(HloParserTest, ParseTokenType) { TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape("token[]")); Shape expected = ShapeUtil::MakeTokenShape(); ASSERT_TRUE(ShapeUtil::Equal(expected, actual)) << "expected: " << ShapeUtil::HumanString(expected) << "actual: " << ShapeUtil::HumanString(actual); } TEST_F(HloParserTest, ParseInvalidShapeString) { std::string shape_strings[] = {"f32[123,456]foobar{0,1}", "f32[123,456]{foo}", "f32[123,456]dense{foo}"}; for (const std::string& shape_string : shape_strings) { absl::StatusOr<Shape> result = ParseShape(shape_string); ASSERT_FALSE(result.ok()) << "shape: " << shape_string; } } TEST_F(HloParserTest, ParseDynamicArray) { std::string shape_string = "f32[123,<=456]"; TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape(shape_string)); Shape expected = ShapeUtil::MakeShape(F32, {123, 456}, {false, true}); ASSERT_TRUE(ShapeUtil::Equal(expected, actual)) << "expected: " << ShapeUtil::HumanString(expected) << "actual: " << ShapeUtil::HumanString(actual); } TEST_F(HloParserTest, ParseDynamicTuple) { std::string shape_string = "(f32[42], u32[<=123,<=456])"; TF_ASSERT_OK_AND_ASSIGN(Shape actual, ParseShape(shape_string)); Shape expected = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {42}), ShapeUtil::MakeShape(U32, {123, 456}, {true, true})}); ASSERT_TRUE(ShapeUtil::Equal(expected, actual)) << "expected: " << ShapeUtil::HumanString(expected) << "actual: " << ShapeUtil::HumanString(actual); } TEST_F(HloParserTest, ParseInvalidDimLevel) { constexpr std::string_view shape_string = "f32[123]{0:D(D+~)}"; absl::StatusOr<Shape> result = ParseShape(shape_string); ASSERT_THAT( result.status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, testing::HasSubstr( "invalid DimLevelType/unique/ordered combination in shape"))); } TEST_F(HloParserTest, NegativeParameterNumber) { const std::string hlo_string = "par0 = f32[3,5] parameter(-1)"; auto result = ParseAndReturnUnverifiedModule(hlo_string); ASSERT_FALSE(result.status().ok()); EXPECT_THAT(result.status().message(), HasSubstr("parameter number must be >= 0")); } TEST_F(HloParserTest, DuplicateParameterNumberIsDetected) { const std::string kHloString = R"( ENTRY e { a = s8[] parameter(0) b = s8[] parameter(0) ROOT a = s8[] add(a, b) } )"; auto result = ParseAndReturnUnverifiedModule(kHloString); ASSERT_FALSE(result.status().ok()); EXPECT_THAT(result.status().message(), HasSubstr("Duplicate parameter number 0")); } TEST_F(HloParserTest, WrongNumberOfParameterLeafBuffersInReplication) { const std::string hlo_string = "par0 = (f32[3,5], f32[]) parameter(0), " "parameter_replication={true,false,true}"; auto result = ParseAndReturnUnverifiedModule(hlo_string); ASSERT_FALSE(result.status().ok()); EXPECT_THAT(result.status().message(), HasSubstr("parameter has 2 leaf buffers, but " "parameter_replication has 3 elements")); } TEST_F(HloParserTest, CheckIndexedConditionalDimension) { const char* const hlo_string = R"( HloModule Module branch0 { tparam = f32[4] parameter(0) ROOT tgte1 = f32[4] ceil(tparam) } branch1 { fparam = f32[4] parameter(0) ROOT fgte1 = f32[4] floor(fparam) } ENTRY entry { p0 = f32[4] parameter(0) b0 = s32[2] parameter(1) ROOT conditional = f32[4] conditional(b0, p0, p0), branch_computations={branch0, branch1} } )"; auto result = ParseAndReturnUnverifiedModule(hlo_string); EXPECT_NE(absl::OkStatus(), result.status()); EXPECT_THAT(result.status().message(), HasSubstr("The first operand must be a scalar")); } TEST_F(HloParserTest, CheckIndexedConditionalElementType) { const char* const hlo_string = R"( HloModule Module branch0 { tparam = f32[4] parameter(0) ROOT tgte1 = f32[4] ceil(tparam) } branch1 { fparam = f32[4] parameter(0) ROOT fgte1 = f32[4] floor(fparam) } ENTRY entry { p0 = f32[4] parameter(0) b0 = f32[] parameter(1) ROOT conditional = f32[4] conditional(b0, p0, p0), branch_computations={branch0, branch1} } )"; auto result = ParseAndReturnUnverifiedModule(hlo_string); EXPECT_NE(absl::OkStatus(), result.status()); EXPECT_THAT(result.status().message(), HasSubstr("The first operand must be a scalar of PRED or S32")); } TEST_F(HloParserTest, CheckPredicatedConditionalRequiresTrueAndFalseComputation) { const char* const hlo_string = R"( HloModule Module branch0 { tparam = f32[4] parameter(0) ROOT tgte1 = f32[4] ceil(tparam) } branch1 { fparam = f32[4] parameter(0) ROOT fgte1 = f32[4] floor(fparam) } ENTRY entry { p0 = f32[4] parameter(0) b0 = pred[] parameter(1) ROOT conditional = f32[4] conditional(b0, p0, p0), branch_computations={branch0, branch1} } )"; auto result = ParseAndReturnUnverifiedModule(hlo_string); EXPECT_NE(absl::OkStatus(), result.status()); EXPECT_THAT(result.status().message(), HasSubstr("unexpected attribute \"branch_computations\"")); } TEST_F(HloParserTest, InferUnaryShape) { constexpr char text[] = R"(HloModule InferUnaryShapeTest ENTRY InferUnaryShape { a = f32[2,10]{1,0} parameter(0) ROOT v = abs(a) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); } TEST_F(HloParserTest, InferBinaryShape) { constexpr char text[] = R"(HloModule InferBinaryShapeTest ENTRY InferBinaryShape { a = f32[2,10]{1,0} parameter(0) b = f32[2,10]{1,0} parameter(1) ROOT sum = add(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); EXPECT_TRUE(ShapeUtil::Equal( module->entry_computation()->ComputeProgramShape().result(), ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 10}, {1, 0}))); } TEST_F(HloParserTest, InferTernaryShape) { constexpr char text[] = R"(HloModule InferTernaryShapeTest ENTRY InferTernaryShape { p = pred[] constant(true) f = s32[] constant(-42) t = s32[] constant(42) ROOT select = select(p, f, t) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); EXPECT_TRUE(ShapeUtil::Equal( module->entry_computation()->ComputeProgramShape().result(), ShapeUtil::MakeScalarShape(S32))); } TEST_F(HloParserTest, TupleTypo) { constexpr char text[] = R"(HloModule TupleTypoTest ENTRY TupleTypo { pow = s32[] constant(42) ROOT v = (s32[]) tuple(power) } )"; auto result = ParseAndReturnVerifiedModule(text); EXPECT_THAT(result.status(), tsl::testing::StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("instruction does not exist"))); } TEST_F(HloParserTest, InferDotShape) { constexpr char text[] = R"(HloModule InferDotShapeTest ENTRY InferDotShape { a = f32[2,10]{1,0} parameter(0) b = f32[10,2]{1,0} parameter(1) ROOT dot = dot(a, b), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={1}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); EXPECT_TRUE(ShapeUtil::Equal( module->entry_computation()->ComputeProgramShape().result(), ShapeUtil::MakeShape(F32, {2}, {0}))); } TEST_F(HloParserTest, InferSparseDotShape) { constexpr char text[] = R"(HloModule InferSparseDotShapeTest ENTRY InferSparseDotShape { a = f32[2,16]{1,0} parameter(0) b = f32[32,2]{1,0} parameter(1) meta = u16[2,2]{1,0} parameter(2) ROOT dot = dot(a, b, meta), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={1}, rhs_contracting_dims={0}, sparsity=L.1@2:4 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); EXPECT_TRUE(ShapeUtil::Equal( module->entry_computation()->ComputeProgramShape().result(), ShapeUtil::MakeShape(F32, {2}, {0}))); } TEST_F(HloParserTest, InferTupleShape) { constexpr char text[] = R"(HloModule InferTupleShapeTest ENTRY InferTupleShape () -> s32[2,3] { c0 = f32[3]{0} constant({1, 2, 3}) c1 = s32[2,3]{1,0} constant({ { 1, 2, 3 }, { 4, 5, 6 } }) tuple = tuple(c0, c1) ROOT get = get-tuple-element(tuple), index=1, sharding={maximal device=0} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); EXPECT_TRUE(ShapeUtil::Equal( module->entry_computation()->ComputeProgramShape().result(), ShapeUtil::MakeShapeWithDenseLayout(S32, {2, 3}, {1, 0}))); } TEST_F(HloParserTest, InferShapeMixedExplicitShape) { constexpr char text[] = R"(HloModule InferUnaryShapeTest Negate { x = f32[] parameter(0) ROOT negate = negate(x) } Identity { y = f32[] parameter(0) ROOT copy = copy(y) } ENTRY InferUnaryShape { a = f32[] parameter(0) b = f32[] parameter(1) p = pred[] parameter(2) c = f32[] add(a, b) ROOT conditional = conditional(p, a, c), true_computation=Negate, false_computation=Identity } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(text)); EXPECT_TRUE(ShapeUtil::Equal( module->entry_computation()->ComputeProgramShape().result(), ShapeUtil::MakeScalarShape(F32))); } TEST_F(HloParserTest, CheckAliasPassthroughParams) { const char* const hlo_string = R"( HloModule TestModule, alias_passthrough_params=true ENTRY TestComputation { p0 = f16[2048,1024] parameter(0) p1 = f16[2048,1024] parameter(1) ROOT root = (f16[2048,1024], f16[2048,1024]) tuple(p0, p1) } )"; auto result = ParseAndReturnVerifiedModule(hlo_string); TF_EXPECT_OK(result.status()); EXPECT_TRUE(result.value()->config().alias_passthrough_params()); } TEST_F(HloParserTest, CheckReplicaCount) { const char* const hlo_string = R"( HloModule TestModule, replica_count=5 ENTRY TestComputation { p0 = f16[2048,1024] parameter(0) p1 = f16[2048,1024] parameter(1) ROOT root = (f16[2048,1024], f16[2048,1024]) tuple(p0, p1) } )"; auto result = ParseAndReturnVerifiedModule(hlo_string); TF_EXPECT_OK(result.status()); EXPECT_EQ(result.value()->config().replica_count(), 5); } TEST_F(HloParserTest, CheckNumPartitions) { const char* const hlo_string = R"( HloModule TestModule, num_partitions=3 ENTRY TestComputation { p0 = f16[2048,1024] parameter(0) p1 = f16[2048,1024] parameter(1) ROOT root = (f16[2048,1024], f16[2048,1024]) tuple(p0, p1) } )"; auto result = ParseAndReturnVerifiedModule(hlo_string); TF_EXPECT_OK(result.status()); EXPECT_EQ(result.value()->config().num_partitions(), 3); EXPECT_TRUE(result.value()->config().use_spmd_partitioning()); } TEST_F(HloParserTest, CheckFrontendAttributes) { const char* const hlo_string = R"( HloModule TestModule, frontend_attributes={attr_name="attr_value"} ENTRY TestComputation { p0 = f16[2048,1024] parameter(0) p1 = f16[2048,1024] parameter(1) ROOT root = (f16[2048,1024], f16[2048,1024]) tuple(p0, p1) } )"; auto result = ParseAndReturnVerifiedModule(hlo_string); TF_EXPECT_OK(result.status()); EXPECT_EQ(result.value()->frontend_attributes().map().size(), 1); EXPECT_EQ(result.value()->frontend_attributes().map().begin()->first, "attr_name"); EXPECT_EQ(result.value()->frontend_attributes().map().begin()->second, "attr_value"); } TEST_F(HloParserTest, CheckAllowSpmdShardingPropagationToParameters) { const char* const hlo_string = R"( HloModule TestModule, allow_spmd_sharding_propagation_to_parameters=true ENTRY TestComputation { p0 = f16[2048,1024] parameter(0) p1 = f16[2048,1024] parameter(1) ROOT root = (f16[2048,1024], f16[2048,1024]) tuple(p0, p1) } )"; auto result = ParseAndReturnVerifiedModule(hlo_string); TF_EXPECT_OK(result.status()); EXPECT_EQ((*result) ->config() .allow_spmd_sharding_propagation_to_parameters() .size(), 1); EXPECT_TRUE( (*result)->config().allow_spmd_sharding_propagation_to_parameters()[0]); } TEST_F(HloParserTest, CheckAllowSpmdShardingPropagationToParametersVec) { const char* const hlo_string = R"( HloModule TestModule, allow_spmd_sharding_propagation_to_parameters={true,false} ENTRY TestComputation { p0 = f16[2048,1024] parameter(0) p1 = f16[2048,1024] parameter(1) ROOT root = (f16[2048,1024], f16[2048,1024]) tuple(p0, p1) } )"; auto result = ParseAndReturnVerifiedModule(hlo_string); TF_EXPECT_OK(result.status()); EXPECT_EQ((*result) ->config() .allow_spmd_sharding_propagation_to_parameters() .size(), 2); EXPECT_TRUE( (*result)->config().allow_spmd_sharding_propagation_to_parameters()[0]); EXPECT_FALSE( (*result)->config().allow_spmd_sharding_propagation_to_parameters()[1]); } TEST_F(HloParserTest, CheckAllowSpmdShardingPropagationToOutput) { const char* const hlo_string = R"( HloModule TestModule, allow_spmd_sharding_propagation_to_output=true ENTRY TestComputation { p0 = f16[2048,1024] parameter(0) p1 = f16[2048,1024] parameter(1) ROOT root = (f16[2048,1024], f16[2048,1024]) tuple(p0, p1) } )"; auto result = ParseAndReturnVerifiedModule(hlo_string); TF_EXPECT_OK(result.status()); EXPECT_EQ( (*result)->config().allow_spmd_sharding_propagation_to_output().size(), 1); EXPECT_TRUE( (*result)->config().allow_spmd_sharding_propagation_to_output()[0]); } TEST_F(HloParserTest, CheckAllowSpmdShardingPropagationToOutputVec) { const char* const hlo_string = R"( HloModule TestModule, allow_spmd_sharding_propagation_to_output={true,false} ENTRY TestComputation { p0 = f16[2048,1024] parameter(0) p1 = f16[2048,1024] parameter(1) ROOT root = (f16[2048,1024], f16[2048,1024]) tuple(p0, p1) } )"; auto result = ParseAndReturnVerifiedModule(hlo_string); TF_EXPECT_OK(result.status()); EXPECT_EQ( (*result)->config().allow_spmd_sharding_propagation_to_output().size(), 2); EXPECT_TRUE( (*result)->config().allow_spmd_sharding_propagation_to_output()[0]); EXPECT_FALSE( (*result)->config().allow_spmd_sharding_propagation_to_output()[1]); } TEST_F(HloParserTest, NestedBroadcastWithoutDimensionsAttribute) { const char* const hlo_string = R"( HloModule test ENTRY test { ROOT root = sqrt(f32[10,10] broadcast(f32[10] parameter(0))) } )"; auto result = ParseAndReturnVerifiedModule(hlo_string); EXPECT_NE(absl::OkStatus(), result.status()); EXPECT_THAT(result.status().message(), HasSubstr("dimensions")); } TEST_F(HloParserTest, InvalidDimLevelType) { const std::string original = R"(HloModule test ENTRY test { ROOT root = f32[10,10]{1,0:D(X,C)} parameter(0) })"; EXPECT_THAT(ParseAndReturnUnverifiedModule(original).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("expected a DimLevelType abbreviation"))); } TEST_F(HloParserTest, InvalidDimLevelTypeCount) { const std::string original = R"(HloModule test ENTRY test { ROOT root = f32[10,10]{1,0:D(C)} parameter(0) })"; EXPECT_THAT( ParseAndReturnUnverifiedModule(original).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("Dimensions size is 2, but dim level types size is 1"))); } TEST_F(HloParserTest, RejectSparseTiles) { const std::string original = R"(HloModule test ENTRY test { ROOT root = f32[10,10]{1,0:D(D,C)T(128,8)} parameter(0) })"; EXPECT_THAT(ParseAndReturnUnverifiedModule(original).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("Layout has tiles, but is for a sparse array"))); } TEST_F(HloParserTest, RejectDensePhysicalShape) { const std::string original = R"(HloModule test ENTRY test { ROOT root = f32[10,10]{1,0:T(128,8)P(f32[10,10])} parameter(0) })"; EXPECT_THAT( ParseAndReturnUnverifiedModule(original).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr( "Layout has physical shape, but is not for a sparse array"))); } TEST_F(HloParserTest, ParseSingleComputation) { const std::string original = R"( test { ROOT root = f32[1,64,10,128]{1,0,2,3} parameter(0) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(original)); EXPECT_TRUE(module->entry_computation() ->ComputeProgramShape() .parameters()[0] .has_layout()); EXPECT_TRUE( module->entry_computation()->ComputeProgramShape().result().has_layout()); EXPECT_EQ(module->entry_computation() ->ComputeProgramShape() .parameters()[0] .layout(), Layout({1, 0, 2, 3})); EXPECT_EQ( module->entry_computation()->ComputeProgramShape().result().layout(), Layout({1, 0, 2, 3})); } TEST_F(HloParserTest, ParseComputationNameClosingBrace) { const std::string original = R"( test { ROOT root = f32[1,64,10,128]{1,0,2,3} parameter(0) } )"; EXPECT_TRUE(ParseAndReturnUnverifiedModule(original).ok()); } TEST_F(HloParserTest, ParseSingleEntryComputation) { const std::string original = R"( ENTRY test { ROOT root = f32[1,64,10,128]{1,0,2,3} parameter(0) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(original)); EXPECT_TRUE(module->entry_computation() ->ComputeProgramShape() .parameters()[0] .has_layout()); EXPECT_TRUE( module->entry_computation()->ComputeProgramShape().result().has_layout()); EXPECT_EQ(module->entry_computation() ->ComputeProgramShape() .parameters()[0] .layout(), Layout({1, 0, 2, 3})); EXPECT_EQ( module->entry_computation()->ComputeProgramShape().result().layout(), Layout({1, 0, 2, 3})); } TEST_F(HloParserTest, ParseMultiComputations) { const std::string original = R"( comp1 { ROOT root = f32[1,64,10,128]{3,2,1,0} parameter(0) } comp2 { ROOT root = f32[1,64,10,128]{1,0,2,3} parameter(0) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(original)); EXPECT_TRUE(module->entry_computation() ->ComputeProgramShape() .parameters()[0] .has_layout()); EXPECT_TRUE( module->entry_computation()->ComputeProgramShape().result().has_layout()); EXPECT_EQ(module->entry_computation() ->ComputeProgramShape() .parameters()[0] .layout(), Layout({1, 0, 2, 3})); EXPECT_EQ( module->entry_computation()->ComputeProgramShape().result().layout(), Layout({1, 0, 2, 3})); } TEST_F(HloParserTest, ParseMultiComputationsWithEntry) { const std::string original = R"( ENTRY comp1 { ROOT root = f32[1,64,10,128]{1,0,2,3} parameter(0) } comp2 { ROOT root = f32[1,64,10,128]{3,2,1,0} parameter(0) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(original)); EXPECT_TRUE(module->entry_computation() ->ComputeProgramShape() .parameters()[0] .has_layout()); EXPECT_TRUE( module->entry_computation()->ComputeProgramShape().result().has_layout()); EXPECT_EQ(module->entry_computation() ->ComputeProgramShape() .parameters()[0] .layout(), Layout({1, 0, 2, 3})); EXPECT_EQ( module->entry_computation()->ComputeProgramShape().result().layout(), Layout({1, 0, 2, 3})); } TEST_F(HloParserTest, NontrivialAsyncOpRoundTrip) { const std::string original = R"( HloModule module %async_wrapped { %async_param.1 = s32[1024]{0} parameter(0) %copy = s32[1024]{0} copy(s32[1024]{0} %async_param.1) %async_param.2 = s32[256]{0} parameter(1) %async_param.3 = s32[] parameter(2) ROOT %dus = s32[1024]{0} dynamic-update-slice(s32[1024]{0} %copy, s32[256]{0} %async_param.2, s32[] %async_param.3) } ENTRY %main { %input.5 = s32[] parameter(1) %broadcast = s32[1024]{0} broadcast(s32[] %input.5), dimensions={} %input.0 = s32[256]{0} parameter(0) %async-start = ((s32[1024]{0}, s32[256]{0}, s32[]), s32[1024]{0}, u32[]) async-start(%broadcast, %input.0, %input.5), calls=%async_wrapped ROOT %async-done = s32[1024]{0} async-done(((s32[1024]{0}, s32[256]{0}, s32[]), s32[1024]{0}, u32[]) %async-start), calls=%async_wrapped } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(original)); TF_ASSERT_OK_AND_ASSIGN( auto roundtrip_module, ParseAndReturnUnverifiedModule(module->ToString( HloPrintOptions().set_syntax_sugar_async_ops(true)))); auto fp_options = HloPrintOptions::Fingerprint(); EXPECT_EQ(roundtrip_module->ToString(fp_options), module->ToString(fp_options)); } TEST_F(HloParserTest, LexesAsJsonDict) { EXPECT_TRUE(LexesAsJsonDict("{}")); EXPECT_TRUE(LexesAsJsonDict("{abc: 123}")); EXPECT_TRUE(LexesAsJsonDict("{{abc: 123}, {{{d}}}}")); EXPECT_TRUE(LexesAsJsonDict(R"({"}"})")); EXPECT_TRUE(LexesAsJsonDict(R"({"\"}"})")); EXPECT_TRUE(LexesAsJsonDict(R"({"\"{"})")); EXPECT_FALSE(LexesAsJsonDict("")); EXPECT_FALSE(LexesAsJsonDict("{")); EXPECT_FALSE(LexesAsJsonDict("}")); EXPECT_FALSE(LexesAsJsonDict("{{}")); EXPECT_FALSE(LexesAsJsonDict("{}}")); EXPECT_FALSE(LexesAsJsonDict("{}a")); EXPECT_FALSE(LexesAsJsonDict("a{}")); EXPECT_FALSE(LexesAsJsonDict("{{{{}}}")); } TEST_F(HloParserTest, AsyncStartMissingOperandWrapper) { const char* const hlo_string = R"( HloModule Module async_computation { p = f32[2,3] parameter(0) ROOT custom-call = f32[3,2] custom-call(p), custom_call_target="foo" } ENTRY AsyncStartMissingOperandWrapper { p0 = f32[2,3] parameter(0) async-start = (f32[2,3], f32[3,2], s32[]) async-start(p0), calls=async_computation async-update = ((f32[2,3]), f32[3,2], s32[]) async-update(async-start), calls=async_computation ROOT async-done = f32[3,2] async-done(async-update), calls=async_computation } )"; EXPECT_THAT( ParseAndReturnUnverifiedModule(hlo_string).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("AsyncStart and AsyncUpdate expect the op shape to be " "in the form of " "((async-operands), async-outputs, state)."))); } TEST_F(HloParserTest, AsyncUpdateMissingOperandWrapper) { const char* const hlo_string = R"( HloModule Module async_computation { p = f32[2,3] parameter(0) ROOT custom-call = f32[3,2] custom-call(p), custom_call_target="foo" } ENTRY AsyncUpdateMissingOperandWrapper { p0 = f32[2,3] parameter(0) async-start = ((f32[2,3]), f32[3,2], s32[]) async-start(p0), calls=async_computation async-update = (f32[2,3], f32[3,2], s32[]) async-update(async-start), calls=async_computation ROOT async-done = f32[3,2] async-done(async-update), calls=async_computation } )"; EXPECT_THAT( ParseAndReturnUnverifiedModule(hlo_string).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("AsyncStart and AsyncUpdate expect the op shape to be " "in the form of " "((async-operands), async-outputs, state)."))); } TEST_F(HloParserTest, AsyncOpTupleWrongType) { const char* const hlo_string = R"( HloModule Module async_computation { p = f32[2,3] parameter(0) ROOT custom-call = f32[3,2] custom-call(p), custom_call_target="foo" } ENTRY AsyncStartAndAsyncDone { p0 = f32[2,3] parameter(0) async-start = ((f32[2,3])) async-start(p0), calls=async_computation ROOT async-done = f32[3,2] async-done(async-start), calls=async_computation } )"; EXPECT_THAT( ParseAndReturnUnverifiedModule(hlo_string).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("AsyncStart and AsyncUpdate expect the op shape to be " "in the form of " "((async-operands), async-outputs, state)."))); } TEST_F(HloParserTest, AsyncDoneNoAsyncStart) { const char* const hlo_string = R"( HloModule Module ENTRY AsyncStartAndAsyncDone { p0 = f32[2,3] parameter(0) p1 = u32[] parameter(1) tuple = ((f32[2,3]), f32[2,3], u32[]) tuple(p0, p0, p1) ROOT async-done = f32[2,3] custom-call-done(tuple) } )"; EXPECT_THAT( ParseAndReturnUnverifiedModule(hlo_string).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("AsyncUpdate and AsyncDone expect their operand to be " "the previous async op."))); } TEST_F(HloParserTest, AsyncUpdateAndAsyncDoneNoAsyncStart) { const char* const hlo_string = R"( HloModule Module ENTRY AsyncStartAndAsyncDone { p0 = f32[2,3] parameter(0) p1 = u32[] parameter(1) tuple = ((f32[2,3]), f32[2,3], u32[]) tuple(p0, p0, p1) async-update = ((f32[2,3]), f32[2,3], u32[]) custom-call-update(tuple) ROOT async-done = f32[2,3] custom-call-done(tuple) } )"; EXPECT_THAT( ParseAndReturnUnverifiedModule(hlo_string).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("AsyncUpdate and AsyncDone expect their operand to be " "the previous async op."))); } TEST_F(HloParserTest, AsyncUpdateWithSyntaxSugarWrongOp) { const char* const hlo_string = R"( HloModule AsyncUpdateWithSyntaxSugarWrongOp ENTRY %Entry (p0: f32[10]) -> f32[20] { %p0 = f32[10]{0} parameter(0) %async-start = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-start(f32[10]{0} %p0), custom_call_target="foo" %async-update = ((f32[10]{0}), f32[20]{0}, s32[]) add-update(((f32[10]{0}), f32[20]{0}, s32[]) %async-start) ROOT %async-done = f32[20]{0} custom-call-done(((f32[10]{0}), f32[20]{0}, s32[]) %async-update) } )"; EXPECT_THAT(ParseAndReturnUnverifiedModule(hlo_string).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("Expect async wrapped opcode to be custom-call, " "but got add"))); } TEST_F(HloParserTest, AsyncDoneWithSyntaxSugarWrongOp) { const char* const hlo_string = R"( HloModule AsyncUpdateWithSyntaxSugarWrongOp ENTRY %Entry (p0: f32[10]) -> f32[20] { %p0 = f32[10]{0} parameter(0) %async-start = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-start(f32[10]{0} %p0), custom_call_target="foo" %async-update = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-update(((f32[10]{0}), f32[20]{0}, s32[]) %async-start) ROOT %async-done = f32[20]{0} add-done(((f32[10]{0}), f32[20]{0}, s32[]) %async-update) } )"; EXPECT_THAT(ParseAndReturnUnverifiedModule(hlo_string).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("Expect async wrapped opcode to be custom-call, " "but got add"))); } TEST_F(HloParserTest, AsyncOpSharedComputation) { const char* const hlo_string = R"( HloModule AsyncOpSharedComputation %async_wrapped (async_param: f32[10]) -> f32[20] { %async_param = f32[10]{0} parameter(0) ROOT %call = f32[20]{0} custom-call(f32[10]{0} %async_param), custom_call_target="foo" } ENTRY %Entry (p0: f32[10]) -> f32[20] { %p0 = f32[10]{0} parameter(0) %async-start.0 = ((f32[10]{0}), f32[20]{0}, s32[]) async-start(f32[10]{0} %p0), calls=%async_wrapped %async-done.0 = f32[20]{0} async-done(((f32[10]{0}), f32[20]{0}, s32[]) %async-start.0) %async-start.1 = ((f32[10]{0}), f32[20]{0}, s32[]) async-start(f32[10]{0} %p0), calls=%async_wrapped ROOT %async-done.1 = f32[20]{0} async-done(((f32[10]{0}), f32[20]{0}, s32[]) %async-start.1) } )"; EXPECT_THAT(ParseAndReturnUnverifiedModule(hlo_string).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("Computation async_wrapped is already referenced " "by another async op"))); } TEST_F(HloParserTest, AsyncUpdateWrongComputation) { const char* const hlo_string = R"( HloModule AsyncUpdateWrongComputation %async_wrapped.0 (async_param: f32[10]) -> f32[20] { %async_param = f32[10]{0} parameter(0) ROOT %custom-call = f32[20]{0} custom-call(f32[10]{0} %async_param), custom_call_target="foo" } %async_wrapped.1 (async_param: f32[10]) -> f32[20] { %async_param = f32[10]{0} parameter(0) ROOT %custom-call = f32[20]{0} custom-call(f32[10]{0} %async_param), custom_call_target="foo" } ENTRY %Entry (p0: f32[10]) -> f32[20] { %p0 = f32[10]{0} parameter(0) %async-start = ((f32[10]{0}), f32[20]{0}, s32[]) async-start(f32[10]{0} %p0), calls=%async_wrapped.0 %async-update = ((f32[10]{0}), f32[20]{0}, s32[]) async-update(((f32[10]{0}), f32[20]{0}, s32[]) %async-start), calls=%async_wrapped.1 ROOT %async-done = f32[20]{0} async-done(((f32[10]{0}), f32[20]{0}, s32[]) %async-update) } )"; EXPECT_THAT( ParseAndReturnUnverifiedModule(hlo_string).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("Expect async_wrapped_computation to be async_wrapped.0, " "but got async_wrapped.1"))); } TEST_F(HloParserTest, AsyncDoneWrongComputation) { const char* const hlo_string = R"( HloModule AsyncDoneWrongComputation %async_wrapped.0 (async_param: f32[10]) -> f32[20] { %async_param = f32[10]{0} parameter(0) ROOT %custom-call = f32[20]{0} custom-call(f32[10]{0} %async_param), custom_call_target="foo" } %async_wrapped.1 (async_param: f32[10]) -> f32[20] { %async_param = f32[10]{0} parameter(0) ROOT %custom-call = f32[20]{0} custom-call(f32[10]{0} %async_param), custom_call_target="foo" } ENTRY %Entry (p0: f32[10]) -> f32[20] { %p0 = f32[10]{0} parameter(0) %async-start = ((f32[10]{0}), f32[20]{0}, s32[]) async-start(f32[10]{0} %p0), calls=%async_wrapped.0 %async-update = ((f32[10]{0}), f32[20]{0}, s32[]) async-update(((f32[10]{0}), f32[20]{0}, s32[]) %async-start) ROOT %async-done = f32[20]{0} async-done(((f32[10]{0}), f32[20]{0}, s32[]) %async-update), calls=%async_wrapped.1 } )"; EXPECT_THAT( ParseAndReturnUnverifiedModule(hlo_string).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("Expect async_wrapped_computation to be async_wrapped.0, " "but got async_wrapped.1"))); } TEST_F(HloParserTest, AsyncUpdateWrongDefaultThread) { const char* const hlo_string = R"( HloModule AsyncUpdateWrongDefaultThread ENTRY %Entry (p0: f32[10]) -> f32[20] { %p0 = f32[10]{0} parameter(0) %async-start = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-start(f32[10]{0} %p0), custom_call_target="foo" %async-update = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-update(((f32[10]{0}), f32[20]{0}, s32[]) %async-start), async_execution_thread="foo_thread" ROOT %async-done = f32[20]{0} custom-call-done(((f32[10]{0}), f32[20]{0}, s32[]) %async-update) } )"; EXPECT_THAT(ParseAndReturnUnverifiedModule(hlo_string).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("Expect async_execution_thread to be main, " "but got foo_thread"))); } TEST_F(HloParserTest, AsyncDoneWrongDefaultThread) { const char* const hlo_string = R"( HloModule AsyncDoneWrongDefaultThread ENTRY %Entry (p0: f32[10]) -> f32[20] { %p0 = f32[10]{0} parameter(0) %async-start = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-start(f32[10]{0} %p0), custom_call_target="foo" %async-update = ((f32[10]{0}), f32[20]{0}, s32[]) custom-call-update(((f32[10]{0}), f32[20]{0}, s32[]) %async-start) ROOT %async-done = f32[20]{0} custom-call-done(((f32[10]{0}), f32[20]{0}, s32[]) %async-update), async_execution_thread="foo_thread" } )"; EXPECT_THAT(ParseAndReturnUnverifiedModule(hlo_string).status(), tsl::testing::StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("Expect async_execution_thread to be main, " "but got foo_thread"))); } TEST_F(HloParserTest, PipelinedSendRecv) { const std::string hlo_string = R"( HloModule test cond { param = (u32[], (u32[2], u32[], token[]), (u32[2], u32[], token[])) parameter(0) count = get-tuple-element(%param), index=0 ub = u32[] constant(1) ROOT result = pred[] compare(count, ub), direction=LT } body { param = (u32[], (u32[2], u32[], token[]), (u32[2], u32[], token[])) parameter(0) count = get-tuple-element(%param), index=0 recv.0 = (u32[2], u32[], token[]) get-tuple-element(param), index=1 recv-done.0 = (u32[2], token[]) recv-done(recv.0), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } recv-data.0 = u32[2] get-tuple-element(recv-done.0), index=0 c1 = u32[] constant(1) new_count = u32[] add(count, c1) send.0 = (u32[2], u32[], token[]) get-tuple-element(param), index=2 send-done.0 = (u32[2], token[]) recv-done(send.0), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } after-all.0.n = token[] after-all() recv.0.n = (u32[2], u32[], token[]) recv(after-all.0.n), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{1,0}}", _xla_send_recv_pipeline="0" } after-all.1.n = token[] after-all() send.0.n = (u32[2], u32[], token[]) send(recv-data.0, after-all.1.n), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{1,0}}", _xla_send_recv_pipeline="0" } ROOT result = (u32[], (u32[2], u32[], token[]), (u32[2], u32[], token[])) tuple(new_count, recv.0.n, send.0.n) } ENTRY test_computation { c0 = u32[] constant(0) init = u32[2] broadcast(c0), dimensions={} after-all.0.p = token[] after-all() recv.0.p = (u32[2], u32[], token[]) recv(after-all.0.p), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{1,0}}", _xla_send_recv_pipeline="0" } after-all.1.p = token[] after-all() send.0.p = (u32[2], u32[], token[]) send(init, after-all.1.p), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{1,0}}", _xla_send_recv_pipeline="0" } while_init = (u32[], (u32[2], u32[], token[]), (u32[2], u32[], token[])) tuple(c0, recv.0.p, send.0.p) while_result = (u32[], (u32[2], u32[], token[]), (u32[2], u32[], token[])) while(while_init), body=body, condition=cond recv.0.q = (u32[2], u32[], token[]) get-tuple-element(while_result), index=1 recv-done.0.q = (u32[2], token[]) recv-done(recv.0.q), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } send.0.q = (u32[2], u32[], token[]) get-tuple-element(while_result), index=2 send-done.0.q = token[] send-done(send.0.q), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } ROOT recv-data.0.q = u32[2] get-tuple-element(recv-done.0.q), index=0 })"; auto result = ParseAndReturnUnverifiedModule(hlo_string); EXPECT_EQ(absl::OkStatus(), result.status()); } TEST_F(HloParserTest, ReplicaIdWithLayout) { const char* const hlo_string = R"( HloModule ReplicaId ENTRY ReplicaId { ROOT replica-id.18600 = u32[]{:T(128)} replica-id() } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(hlo_string)); EXPECT_TRUE( module->entry_computation()->root_instruction()->shape().has_layout()); EXPECT_FALSE(module->entry_computation() ->root_instruction() ->shape() .layout() .tiles() .empty()); } TEST_F(HloParserTest, OriginalValueWithoutShape) { const std::string hlo_string = R"(HloModule test ENTRY %test { %a = f32[2,10]{1,0} parameter(0), origin={{"a"}} ROOT %v = abs(%a), origin={{"v"}} } )"; EXPECT_THAT(ParseAndReturnUnverifiedModule(hlo_string).status(), tsl::testing::StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("expects instruction shape"))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/parser/hlo_parser.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/parser/hlo_parser_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7e81246b-0365-4530-a3d8-790f88c0fd3b
cpp
tensorflow/tensorflow
unsorted_segment
tensorflow/lite/kernels/unsorted_segment.cc
tensorflow/lite/kernels/unsorted_segment_test.cc
#include <stdint.h> #include <algorithm> #include <functional> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace unsorted_segment { enum SegmentType { kSegmentMax, kSegmentMin, kSegmentProd, kSegmentSum, }; static const int kInputDataTensor = 0; static const int kInputSegmentIdsTensor = 1; static const int kInputNumSegmentsTensor = 2; static const int kOutputTensor = 0; TfLiteStatus ResizeOutputTensor(TfLiteContext* context, const TfLiteTensor* data, const TfLiteTensor* segment_ids, const TfLiteTensor* num_segments, TfLiteTensor* output) { const int segment_ids_rank = NumDimensions(segment_ids); const int data_rank = NumDimensions(data); TF_LITE_ENSURE(context, segment_ids_rank <= data_rank); for (int i = 0; i < segment_ids_rank; ++i) { TF_LITE_ENSURE_EQ(context, segment_ids->dims->data[i], data->dims->data[i]); } TF_LITE_ENSURE(context, (num_segments->dims->size == 1 && num_segments->dims->data[0] == 1) || num_segments->dims->size == 0); int32_t num_segments_ = GetTensorData<int32_t>(num_segments)[0]; const int num_segment_ids = NumElements(segment_ids); int max_index = -1; for (int i = 0; i < num_segment_ids; i++) { max_index = std::max(GetTensorData<int32_t>(segment_ids)[i], max_index); } TF_LITE_ENSURE(context, max_index < num_segments_); const int output_rank = data_rank - segment_ids_rank + 1; TfLiteIntArray* output_shape = TfLiteIntArrayCreate(output_rank); output_shape->data[0] = num_segments_; for (int i = segment_ids_rank; i < data_rank; ++i) { output_shape->data[i - segment_ids_rank + 1] = data->dims->data[i]; } return context->ResizeTensor(context, output, output_shape); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 3); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* data; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputDataTensor, &data)); const TfLiteTensor* segment_ids; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputSegmentIdsTensor, &segment_ids)); const TfLiteTensor* num_segments; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kInputNumSegmentsTensor, &num_segments)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); TF_LITE_ENSURE(context, data->type == kTfLiteInt32 || data->type == kTfLiteFloat32); TF_LITE_ENSURE_EQ(context, segment_ids->type, kTfLiteInt32); TF_LITE_ENSURE_EQ(context, num_segments->type, kTfLiteInt32); if (IsDynamicTensor(data) || !IsConstantOrPersistentTensor(segment_ids) || !IsConstantOrPersistentTensor(num_segments)) { SetTensorToDynamic(output); return kTfLiteOk; } return ResizeOutputTensor(context, data, segment_ids, num_segments, output); } template <typename T> struct SegmenMax { inline T operator()(const T& a, const T& b) const { return std::max(a, b); } static constexpr T kInitialValue = std::numeric_limits<T>::lowest(); }; template <typename T> struct SegmenMin { inline T operator()(const T& a, const T& b) const { return std::min(a, b); } static constexpr T kInitialValue = std::numeric_limits<T>::max(); }; template <typename T> struct SegmenProd { inline T operator()(const T& a, const T& b) const { return a * b; } static constexpr T kInitialValue = T(1); }; template <typename T> struct SegmenSum { inline T operator()(const T& a, const T& b) const { return a + b; } static constexpr T kInitialValue = T(0); }; template <typename T> TfLiteStatus EvalType(TfLiteContext* context, const RuntimeShape& input_shape, const T* input_data, const RuntimeShape& segment_ids_shape, const int32_t* segment_ids_data, const RuntimeShape& output_shape, T* output_data, SegmentType segment_type) { switch (segment_type) { case kSegmentProd: reference_ops::UnsortedSegmentRef<T, SegmenProd>( input_shape, input_data, segment_ids_shape, segment_ids_data, output_shape, output_data); break; case kSegmentMax: reference_ops::UnsortedSegmentRef<T, SegmenMax>( input_shape, input_data, segment_ids_shape, segment_ids_data, output_shape, output_data); break; case kSegmentSum: reference_ops::UnsortedSegmentRef<T, SegmenSum>( input_shape, input_data, segment_ids_shape, segment_ids_data, output_shape, output_data); break; case kSegmentMin: reference_ops::UnsortedSegmentRef<T, SegmenMin>( input_shape, input_data, segment_ids_shape, segment_ids_data, output_shape, output_data); break; default: TF_LITE_KERNEL_LOG(context, "Not recognized segment type: %d", segment_type); return kTfLiteError; } return kTfLiteOk; } TfLiteStatus EvalGeneric(TfLiteContext* context, TfLiteNode* node, SegmentType segment_type) { const TfLiteTensor* data; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputDataTensor, &data)); const TfLiteTensor* segment_ids; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputSegmentIdsTensor, &segment_ids)); const TfLiteTensor* num_segments; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kInputNumSegmentsTensor, &num_segments)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); if (IsDynamicTensor(output)) { TF_LITE_ENSURE_OK(context, ResizeOutputTensor(context, data, segment_ids, num_segments, output)); } TF_LITE_ENSURE_EQ(context, GetTensorShape(data).Dims(0), GetTensorShape(segment_ids).Dims(0)); #define TF_LITE_UNSORTED_SEGMENT(dtype) \ EvalType<dtype>(context, GetTensorShape(data), GetTensorData<dtype>(data), \ GetTensorShape(segment_ids), \ GetTensorData<int32_t>(segment_ids), GetTensorShape(output), \ GetTensorData<dtype>(output), segment_type); switch (data->type) { case kTfLiteInt32: TF_LITE_UNSORTED_SEGMENT(int32_t); break; case kTfLiteFloat32: TF_LITE_UNSORTED_SEGMENT(float); break; default: TF_LITE_KERNEL_LOG( context, "Currently UnsortedSegment doesn't support data type: %s", TfLiteTypeGetName(data->type)); return kTfLiteError; } #undef TF_LITE_UNSORTED_SEGMENT return kTfLiteOk; } TfLiteStatus EvalProd(TfLiteContext* context, TfLiteNode* node) { return EvalGeneric(context, node, kSegmentProd); } TfLiteStatus EvalMax(TfLiteContext* context, TfLiteNode* node) { return EvalGeneric(context, node, kSegmentMax); } TfLiteStatus EvalSum(TfLiteContext* context, TfLiteNode* node) { return EvalGeneric(context, node, kSegmentSum); } TfLiteStatus EvalMin(TfLiteContext* context, TfLiteNode* node) { return EvalGeneric(context, node, kSegmentMin); } } TfLiteRegistration* Register_UNSORTED_SEGMENT_PROD() { static TfLiteRegistration r = {nullptr, nullptr, unsorted_segment::Prepare, unsorted_segment::EvalProd}; return &r; } TfLiteRegistration* Register_UNSORTED_SEGMENT_MAX() { static TfLiteRegistration r = {nullptr, nullptr, unsorted_segment::Prepare, unsorted_segment::EvalMax}; return &r; } TfLiteRegistration* Register_UNSORTED_SEGMENT_SUM() { static TfLiteRegistration r = {nullptr, nullptr, unsorted_segment::Prepare, unsorted_segment::EvalSum}; return &r; } TfLiteRegistration* Register_UNSORTED_SEGMENT_MIN() { static TfLiteRegistration r = {nullptr, nullptr, unsorted_segment::Prepare, unsorted_segment::EvalMin}; return &r; } } } }
#include "tensorflow/lite/kernels/unsorted_segment_test.h" #include <limits.h> #include <stdint.h> #include <initializer_list> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { TEST_P(UnsortedSegmentTest, SegmentIdsSizeNotEqualToDataFirstDimensionFails) { UnsortedSegmentModel<int32_t> model = getModel({TensorType_INT32, {3, 2}}, {TensorType_INT32, {2}}, {TensorType_INT32, {1}}); model.PopulateTensor<int32_t>(model.data(), {1, 2, 3, 4, 5, 6}); model.PopulateTensor<int32_t>(model.segment_ids(), {0, 1}); model.PopulateTensor<int32_t>(model.num_segments(), {2}); ASSERT_EQ(model.Invoke(), kTfLiteError); } TEST_P(UnsortedSegmentTest, LargestSegmentIdPlusOneGreaterThanNumSegmentsFails) { UnsortedSegmentModel<int32_t> model = getModel({TensorType_INT32, {2, 2}}, {TensorType_INT32, {2}}, {TensorType_INT32, {1}}); model.PopulateTensor<int32_t>(model.data(), {1, 2, 3, 4}); model.PopulateTensor<int32_t>(model.segment_ids(), {0, 1}); model.PopulateTensor<int32_t>(model.num_segments(), {1}); ASSERT_EQ(model.Invoke(), kTfLiteError); } TEST_P(UnsortedSegmentTest, NumSegmentsNotScalarShapeFails) { UnsortedSegmentModel<int32_t> model = getModel({TensorType_INT32, {3, 2}}, {TensorType_INT32, {3}}, {TensorType_INT32, {2}}); model.PopulateTensor<int32_t>(model.data(), {1, 2, 3, 4, 5, 6}); model.PopulateTensor<int32_t>(model.segment_ids(), {0, 1, 0}); model.PopulateTensor<int32_t>(model.num_segments(), {2, 1}); ASSERT_EQ(model.Invoke(), kTfLiteError); } TEST_P(UnsortedSegmentTest, Rank2SegIdsNotPrefixFails) { UnsortedSegmentModel<int32_t> model = getModel({TensorType_INT32, {2, 2, 2}}, {TensorType_INT32, {2, 1}}, {TensorType_INT32, {1}}); model.PopulateTensor<int32_t>(model.data(), {1, 2, 3, 4, 5, 6}); model.PopulateTensor<int32_t>(model.segment_ids(), {1, 1}); model.PopulateTensor<int32_t>(model.num_segments(), {3}); ASSERT_EQ(model.Invoke(), kTfLiteError); } TEST_P(UnsortedSegmentTest, Rank2SegIdsHasShapeNumSegDataShapeSuffix) { UnsortedSegmentModel<int32_t> model = getModel({TensorType_INT32, {2, 2, 2}}, {TensorType_INT32, {2, 2}}, {TensorType_INT32, {1}}); model.PopulateTensor<int32_t>(model.data(), {1, 2, 3, 4, 5, 6}); model.PopulateTensor<int32_t>(model.segment_ids(), {1, 2, 0, 8}); model.PopulateTensor<int32_t>(model.num_segments(), {10}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), testing::ElementsAreArray({10, 2})); } TEST_P(UnsortedSegmentTest, Rank2SegIdsHasShapeNumSegDataShapeSuffixConst) { UnsortedSegmentModel<int32_t> model = getConstModel( {TensorType_INT32, {2, 2, 2}}, {1, 2, -1, -1}, {2, 2}, {3}, {1}); model.PopulateTensor<int32_t>(model.data(), {1, 2, 3, 4, 5, 6}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), testing::ElementsAreArray({3, 2})); } TEST_P(UnsortedSegmentTest, SegIdsHasSameShapeAsData2d) { UnsortedSegmentModel<int32_t> model = getModel({TensorType_INT32, {2, 2}}, {TensorType_INT32, {2, 2}}, {TensorType_INT32, {1}}); model.PopulateTensor<int32_t>(model.data(), {1, 2, 3, 4}); model.PopulateTensor<int32_t>(model.segment_ids(), {0, 1, 5, 2, 4}); model.PopulateTensor<int32_t>(model.num_segments(), {10}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), testing::ElementsAreArray({10})); } TEST_P(UnsortedSegmentTest, SegIdsHasSameShapeAsData2dConst) { UnsortedSegmentModel<int32_t> model = getConstModel({TensorType_INT32, {2, 2}}, {1, 1, 1, 1}, {2, 2}, {3}, {1}); model.PopulateTensor<int32_t>(model.data(), {1, 2, 3, 4}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), testing::ElementsAreArray({3})); } TEST_P(UnsortedSegmentTest, SegIdsHasSameShapeAsData3d) { UnsortedSegmentModel<int32_t> model = getModel({TensorType_INT32, {2, 2, 2}}, {TensorType_INT32, {2, 2, 2}}, {TensorType_INT32, {1}}); model.PopulateTensor<int32_t>(model.data(), {1, 2, 3, 4, 5, 6, 7, 8}); model.PopulateTensor<int32_t>(model.segment_ids(), {1, 2, 3, 4, 5, 6, 7, 8}); model.PopulateTensor<int32_t>(model.num_segments(), {10}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), testing::ElementsAreArray({10})); } TEST_P(UnsortedSegmentTest, SegIdsHasSameShapeAsData3dConst) { UnsortedSegmentModel<int32_t> model = getConstModel({TensorType_INT32, {2, 2, 2}}, {0, 1, 2, -1, 3, -1, 4, -1}, {2, 2, 2}, {8}, {1}); model.PopulateTensor<int32_t>(model.data(), {1, 1, 1, 1, 1, 1}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), testing::ElementsAreArray({8})); } TEST_P(UnsortedSegmentTest, Data5dHasShapeNumSegDataShapeSuffix) { UnsortedSegmentModel<int32_t> model = getModel({TensorType_INT32, {2, 1, 2, 1, 2}}, {TensorType_INT32, {2, 1}}, {TensorType_INT32, {1}}); model.PopulateTensor<int32_t>(model.data(), {1, 2, 3, 4, 5, 6, 7, 8}); model.PopulateTensor(model.segment_ids(), {0, 1}); model.PopulateTensor(model.num_segments(), {10}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), testing::ElementsAreArray({10, 2, 1, 2})); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/unsorted_segment.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/unsorted_segment_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
93fad05c-1bed-42af-b8bd-1cf21c7c02af
cpp
tensorflow/tensorflow
model_cmdline_flags
tensorflow/lite/toco/model_cmdline_flags.cc
tensorflow/lite/toco/model_cmdline_flags_test.cc
#include "tensorflow/lite/toco/model_cmdline_flags.h" #include <string> #include <vector> #include "absl/strings/numbers.h" #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/strings/strip.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/util/command_line_flags.h" #include "tensorflow/lite/toco/args.h" #include "tensorflow/lite/toco/toco_graphviz_dump_options.h" #include "tensorflow/lite/toco/toco_port.h" #ifdef PLATFORM_GOOGLE #include "base/commandlineflags.h" #endif namespace toco { bool ParseModelFlagsFromCommandLineFlags( int* argc, char* argv[], std::string* msg, ParsedModelFlags* parsed_model_flags_ptr) { ParsedModelFlags& parsed_flags = *parsed_model_flags_ptr; using tensorflow::Flag; std::vector<tensorflow::Flag> flags = { Flag("input_array", parsed_flags.input_array.bind(), parsed_flags.input_array.default_value(), "Deprecated: use --input_arrays instead. Name of the input array. " "If not specified, will try to read " "that information from the input file."), Flag("input_arrays", parsed_flags.input_arrays.bind(), parsed_flags.input_arrays.default_value(), "Names of the input arrays, comma-separated. If not specified, " "will try to read that information from the input file."), Flag("output_array", parsed_flags.output_array.bind(), parsed_flags.output_array.default_value(), "Deprecated: use --output_arrays instead. Name of the output array, " "when specifying a unique output array. " "If not specified, will try to read that information from the " "input file."), Flag("output_arrays", parsed_flags.output_arrays.bind(), parsed_flags.output_arrays.default_value(), "Names of the output arrays, comma-separated. " "If not specified, will try to read " "that information from the input file."), Flag("input_shape", parsed_flags.input_shape.bind(), parsed_flags.input_shape.default_value(), "Deprecated: use --input_shapes instead. Input array shape. For " "many models the shape takes the form " "batch size, input array height, input array width, input array " "depth."), Flag("input_shapes", parsed_flags.input_shapes.bind(), parsed_flags.input_shapes.default_value(), "Shapes corresponding to --input_arrays, colon-separated. For " "many models each shape takes the form batch size, input array " "height, input array width, input array depth."), Flag("batch_size", parsed_flags.batch_size.bind(), parsed_flags.batch_size.default_value(), "Deprecated. Batch size for the model. Replaces the first dimension " "of an input size array if undefined. Use only with SavedModels " "when --input_shapes flag is not specified. Always use " "--input_shapes flag with frozen graphs."), Flag("input_data_type", parsed_flags.input_data_type.bind(), parsed_flags.input_data_type.default_value(), "Deprecated: use --input_data_types instead. Input array type, if " "not already provided in the graph. " "Typically needs to be specified when passing arbitrary arrays " "to --input_arrays."), Flag("input_data_types", parsed_flags.input_data_types.bind(), parsed_flags.input_data_types.default_value(), "Input arrays types, comma-separated, if not already provided in " "the graph. " "Typically needs to be specified when passing arbitrary arrays " "to --input_arrays."), Flag("mean_value", parsed_flags.mean_value.bind(), parsed_flags.mean_value.default_value(), "Deprecated: use --mean_values instead. mean_value parameter for " "image models, used to compute input " "activations from input pixel data."), Flag("mean_values", parsed_flags.mean_values.bind(), parsed_flags.mean_values.default_value(), "mean_values parameter for image models, comma-separated list of " "doubles, used to compute input activations from input pixel " "data. Each entry in the list should match an entry in " "--input_arrays."), Flag("std_value", parsed_flags.std_value.bind(), parsed_flags.std_value.default_value(), "Deprecated: use --std_values instead. std_value parameter for " "image models, used to compute input " "activations from input pixel data."), Flag("std_values", parsed_flags.std_values.bind(), parsed_flags.std_values.default_value(), "std_value parameter for image models, comma-separated list of " "doubles, used to compute input activations from input pixel " "data. Each entry in the list should match an entry in " "--input_arrays."), Flag("variable_batch", parsed_flags.variable_batch.bind(), parsed_flags.variable_batch.default_value(), "If true, the model accepts an arbitrary batch size. Mutually " "exclusive " "with the 'batch' field: at most one of these two fields can be " "set."), Flag("rnn_states", parsed_flags.rnn_states.bind(), parsed_flags.rnn_states.default_value(), ""), Flag("model_checks", parsed_flags.model_checks.bind(), parsed_flags.model_checks.default_value(), "A list of model checks to be applied to verify the form of the " "model. Applied after the graph transformations after import."), Flag("dump_graphviz", parsed_flags.dump_graphviz.bind(), parsed_flags.dump_graphviz.default_value(), "Dump graphviz during LogDump call. If string is non-empty then " "it defines path to dump, otherwise will skip dumping."), Flag("dump_graphviz_video", parsed_flags.dump_graphviz_video.bind(), parsed_flags.dump_graphviz_video.default_value(), "If true, will dump graphviz at each " "graph transformation, which may be used to generate a video."), Flag("conversion_summary_dir", parsed_flags.conversion_summary_dir.bind(), parsed_flags.conversion_summary_dir.default_value(), "Local file directory to store the conversion logs."), Flag("allow_nonexistent_arrays", parsed_flags.allow_nonexistent_arrays.bind(), parsed_flags.allow_nonexistent_arrays.default_value(), "If true, will allow passing inexistent arrays in --input_arrays " "and --output_arrays. This makes little sense, is only useful to " "more easily get graph visualizations."), Flag("allow_nonascii_arrays", parsed_flags.allow_nonascii_arrays.bind(), parsed_flags.allow_nonascii_arrays.default_value(), "If true, will allow passing non-ascii-printable characters in " "--input_arrays and --output_arrays. By default (if false), only " "ascii printable characters are allowed, i.e. character codes " "ranging from 32 to 127. This is disallowed by default so as to " "catch common copy-and-paste issues where invisible unicode " "characters are unwittingly added to these strings."), Flag( "arrays_extra_info_file", parsed_flags.arrays_extra_info_file.bind(), parsed_flags.arrays_extra_info_file.default_value(), "Path to an optional file containing a serialized ArraysExtraInfo " "proto allowing to pass extra information about arrays not specified " "in the input model file, such as extra MinMax information."), Flag("model_flags_file", parsed_flags.model_flags_file.bind(), parsed_flags.model_flags_file.default_value(), "Path to an optional file containing a serialized ModelFlags proto. " "Options specified on the command line will override the values in " "the proto."), Flag("change_concat_input_ranges", parsed_flags.change_concat_input_ranges.bind(), parsed_flags.change_concat_input_ranges.default_value(), "Boolean to change the behavior of min/max ranges for inputs and" " output of the concat operators."), }; bool asked_for_help = *argc == 2 && (!strcmp(argv[1], "--help") || !strcmp(argv[1], "-help")); if (asked_for_help) { *msg += tensorflow::Flags::Usage(argv[0], flags); return false; } else { if (!tensorflow::Flags::Parse(argc, argv, flags)) return false; } auto& dump_options = *GraphVizDumpOptions::singleton(); dump_options.dump_graphviz_video = parsed_flags.dump_graphviz_video.value(); dump_options.dump_graphviz = parsed_flags.dump_graphviz.value(); return true; } void ReadModelFlagsFromCommandLineFlags( const ParsedModelFlags& parsed_model_flags, ModelFlags* model_flags) { toco::port::CheckInitGoogleIsDone("InitGoogle is not done yet"); if (parsed_model_flags.model_flags_file.specified()) { std::string model_flags_file_contents; QCHECK(port::file::GetContents(parsed_model_flags.model_flags_file.value(), &model_flags_file_contents, port::file::Defaults()) .ok()) << "Specified --model_flags_file=" << parsed_model_flags.model_flags_file.value() << " was not found or could not be read"; QCHECK(ParseFromStringEitherTextOrBinary(model_flags_file_contents, model_flags)) << "Specified --model_flags_file=" << parsed_model_flags.model_flags_file.value() << " could not be parsed"; } #ifdef PLATFORM_GOOGLE CHECK(!((base::WasPresentOnCommandLine("batch") && parsed_model_flags.variable_batch.specified()))) << "The --batch and --variable_batch flags are mutually exclusive."; #endif CHECK(!(parsed_model_flags.output_array.specified() && parsed_model_flags.output_arrays.specified())) << "The --output_array and --vs flags are mutually exclusive."; if (parsed_model_flags.output_array.specified()) { model_flags->add_output_arrays(parsed_model_flags.output_array.value()); } if (parsed_model_flags.output_arrays.specified()) { std::vector<std::string> output_arrays = absl::StrSplit(parsed_model_flags.output_arrays.value(), ','); for (const std::string& output_array : output_arrays) { model_flags->add_output_arrays(output_array); } } const bool uses_single_input_flags = parsed_model_flags.input_array.specified() || parsed_model_flags.mean_value.specified() || parsed_model_flags.std_value.specified() || parsed_model_flags.input_shape.specified(); const bool uses_multi_input_flags = parsed_model_flags.input_arrays.specified() || parsed_model_flags.mean_values.specified() || parsed_model_flags.std_values.specified() || parsed_model_flags.input_shapes.specified(); QCHECK(!(uses_single_input_flags && uses_multi_input_flags)) << "Use either the singular-form input flags (--input_array, " "--input_shape, --mean_value, --std_value) or the plural form input " "flags (--input_arrays, --input_shapes, --mean_values, --std_values), " "but not both forms within the same command line."; if (parsed_model_flags.input_array.specified()) { QCHECK(uses_single_input_flags); model_flags->add_input_arrays()->set_name( parsed_model_flags.input_array.value()); } if (parsed_model_flags.input_arrays.specified()) { QCHECK(uses_multi_input_flags); for (const auto& input_array : absl::StrSplit(parsed_model_flags.input_arrays.value(), ',')) { model_flags->add_input_arrays()->set_name(std::string(input_array)); } } if (parsed_model_flags.mean_value.specified()) { QCHECK(uses_single_input_flags); model_flags->mutable_input_arrays(0)->set_mean_value( parsed_model_flags.mean_value.value()); } if (parsed_model_flags.mean_values.specified()) { QCHECK(uses_multi_input_flags); std::vector<std::string> mean_values = absl::StrSplit(parsed_model_flags.mean_values.value(), ','); QCHECK(static_cast<int>(mean_values.size()) == model_flags->input_arrays_size()); for (size_t i = 0; i < mean_values.size(); ++i) { char* last = nullptr; model_flags->mutable_input_arrays(i)->set_mean_value( strtod(mean_values[i].data(), &last)); CHECK(last != mean_values[i].data()); } } if (parsed_model_flags.std_value.specified()) { QCHECK(uses_single_input_flags); model_flags->mutable_input_arrays(0)->set_std_value( parsed_model_flags.std_value.value()); } if (parsed_model_flags.std_values.specified()) { QCHECK(uses_multi_input_flags); std::vector<std::string> std_values = absl::StrSplit(parsed_model_flags.std_values.value(), ','); QCHECK(static_cast<int>(std_values.size()) == model_flags->input_arrays_size()); for (size_t i = 0; i < std_values.size(); ++i) { char* last = nullptr; model_flags->mutable_input_arrays(i)->set_std_value( strtod(std_values[i].data(), &last)); CHECK(last != std_values[i].data()); } } if (parsed_model_flags.input_data_type.specified()) { QCHECK(uses_single_input_flags); IODataType type; QCHECK(IODataType_Parse(parsed_model_flags.input_data_type.value(), &type)); model_flags->mutable_input_arrays(0)->set_data_type(type); } if (parsed_model_flags.input_data_types.specified()) { QCHECK(uses_multi_input_flags); std::vector<std::string> input_data_types = absl::StrSplit(parsed_model_flags.input_data_types.value(), ','); QCHECK(static_cast<int>(input_data_types.size()) == model_flags->input_arrays_size()); for (size_t i = 0; i < input_data_types.size(); ++i) { IODataType type; QCHECK(IODataType_Parse(input_data_types[i], &type)); model_flags->mutable_input_arrays(i)->set_data_type(type); } } if (parsed_model_flags.input_shape.specified()) { QCHECK(uses_single_input_flags); if (model_flags->input_arrays().empty()) { model_flags->add_input_arrays(); } auto* shape = model_flags->mutable_input_arrays(0)->mutable_shape(); shape->clear_dims(); const IntList& list = parsed_model_flags.input_shape.value(); for (auto& dim : list.elements) { shape->add_dims(dim); } } if (parsed_model_flags.input_shapes.specified()) { QCHECK(uses_multi_input_flags); std::vector<std::string> input_shapes = absl::StrSplit(parsed_model_flags.input_shapes.value(), ':'); QCHECK(static_cast<int>(input_shapes.size()) == model_flags->input_arrays_size()); for (size_t i = 0; i < input_shapes.size(); ++i) { auto* shape = model_flags->mutable_input_arrays(i)->mutable_shape(); shape->clear_dims(); if (input_shapes[i].empty()) { continue; } for (const auto& dim_str : absl::StrSplit(input_shapes[i], ',')) { int size; CHECK(absl::SimpleAtoi(dim_str, &size)) << "Failed to parse input_shape: " << input_shapes[i]; shape->add_dims(size); } } } #define READ_MODEL_FLAG(name) \ do { \ if (parsed_model_flags.name.specified()) { \ model_flags->set_##name(parsed_model_flags.name.value()); \ } \ } while (false) READ_MODEL_FLAG(variable_batch); #undef READ_MODEL_FLAG for (const auto& element : parsed_model_flags.rnn_states.value().elements) { auto* rnn_state_proto = model_flags->add_rnn_states(); for (const auto& kv_pair : element) { const std::string& key = kv_pair.first; const std::string& value = kv_pair.second; if (key == "state_array") { rnn_state_proto->set_state_array(value); } else if (key == "back_edge_source_array") { rnn_state_proto->set_back_edge_source_array(value); } else if (key == "size") { int32_t size = 0; CHECK(absl::SimpleAtoi(value, &size)); CHECK_GT(size, 0); rnn_state_proto->set_size(size); } else if (key == "num_dims") { int32_t size = 0; CHECK(absl::SimpleAtoi(value, &size)); CHECK_GT(size, 0); rnn_state_proto->set_num_dims(size); } else { LOG(FATAL) << "Unknown key '" << key << "' in --rnn_states"; } } CHECK(rnn_state_proto->has_state_array() && rnn_state_proto->has_back_edge_source_array() && rnn_state_proto->has_size()) << "--rnn_states must include state_array, back_edge_source_array and " "size."; } for (const auto& element : parsed_model_flags.model_checks.value().elements) { auto* model_check_proto = model_flags->add_model_checks(); for (const auto& kv_pair : element) { const std::string& key = kv_pair.first; const std::string& value = kv_pair.second; if (key == "count_type") { model_check_proto->set_count_type(value); } else if (key == "count_min") { int32_t count = 0; CHECK(absl::SimpleAtoi(value, &count)); CHECK_GE(count, -1); model_check_proto->set_count_min(count); } else if (key == "count_max") { int32_t count = 0; CHECK(absl::SimpleAtoi(value, &count)); CHECK_GE(count, -1); model_check_proto->set_count_max(count); } else { LOG(FATAL) << "Unknown key '" << key << "' in --model_checks"; } } } if (!model_flags->has_allow_nonascii_arrays()) { model_flags->set_allow_nonascii_arrays( parsed_model_flags.allow_nonascii_arrays.value()); } if (!model_flags->has_allow_nonexistent_arrays()) { model_flags->set_allow_nonexistent_arrays( parsed_model_flags.allow_nonexistent_arrays.value()); } if (!model_flags->has_change_concat_input_ranges()) { model_flags->set_change_concat_input_ranges( parsed_model_flags.change_concat_input_ranges.value()); } if (parsed_model_flags.arrays_extra_info_file.specified()) { std::string arrays_extra_info_file_contents; CHECK(port::file::GetContents( parsed_model_flags.arrays_extra_info_file.value(), &arrays_extra_info_file_contents, port::file::Defaults()) .ok()); ParseFromStringEitherTextOrBinary(arrays_extra_info_file_contents, model_flags->mutable_arrays_extra_info()); } } ParsedModelFlags* UncheckedGlobalParsedModelFlags(bool must_already_exist) { static auto* flags = [must_already_exist]() { if (must_already_exist) { fprintf(stderr, __FILE__ ":" "GlobalParsedModelFlags() used without initialization\n"); fflush(stderr); abort(); } return new toco::ParsedModelFlags; }(); return flags; } ParsedModelFlags* GlobalParsedModelFlags() { return UncheckedGlobalParsedModelFlags(true); } void ParseModelFlagsOrDie(int* argc, char* argv[]) { auto* flags = UncheckedGlobalParsedModelFlags(false); std::string msg; bool model_success = toco::ParseModelFlagsFromCommandLineFlags(argc, argv, &msg, flags); if (!model_success || !msg.empty()) { fprintf(stderr, "%s", msg.c_str()); fflush(stderr); abort(); } } }
#include <string> #include <unordered_map> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/testing/util.h" #include "tensorflow/lite/toco/args.h" #include "tensorflow/lite/toco/model_cmdline_flags.h" namespace toco { namespace { TEST(ModelCmdlineFlagsTest, ParseArgsStringMapList) { int args_count = 3; const char* args[] = { "toco", "--input_arrays=input_1", "--rnn_states={state_array:rnn/BasicLSTMCellZeroState/zeros," "back_edge_source_array:rnn/basic_lstm_cell/Add_1,size:4}," "{state_array:rnn/BasicLSTMCellZeroState/zeros_1," "back_edge_source_array:rnn/basic_lstm_cell/Mul_2,size:4}", nullptr}; std::string expected_input_arrays = "input_1"; std::vector<std::unordered_map<std::string, std::string>> expected_rnn_states; expected_rnn_states.push_back( {{"state_array", "rnn/BasicLSTMCellZeroState/zeros"}, {"back_edge_source_array", "rnn/basic_lstm_cell/Add_1"}, {"size", "4"}}); expected_rnn_states.push_back( {{"state_array", "rnn/BasicLSTMCellZeroState/zeros_1"}, {"back_edge_source_array", "rnn/basic_lstm_cell/Mul_2"}, {"size", "4"}}); std::string message; ParsedModelFlags result_flags; EXPECT_TRUE(ParseModelFlagsFromCommandLineFlags( &args_count, const_cast<char**>(args), &message, &result_flags)); EXPECT_EQ(result_flags.input_arrays.value(), expected_input_arrays); EXPECT_EQ(result_flags.rnn_states.value().elements, expected_rnn_states); } } } int main(int argc, char** argv) { ::tflite::LogToStderr(); ::testing::InitGoogleTest(&argc, argv); ::toco::port::InitGoogleWasDoneElsewhere(); return RUN_ALL_TESTS(); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/toco/model_cmdline_flags.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/toco/model_cmdline_flags_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4f18fb34-6236-41ee-9f97-e4b07328de32
cpp
tensorflow/tensorflow
gather_nd_op
tensorflow/core/kernels/gather_nd_op.cc
tensorflow/core/kernels/gather_nd_op_test.cc
#define EIGEN_USE_THREADS #include "tensorflow/core/kernels/gather_nd_op.h" #include <string> #include "tensorflow/core/framework/bounds_check.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mem.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/util/bad_indices_policy.h" namespace tensorflow { namespace { constexpr char kBadIndicesPolicyAtrr[] = "bad_indices_policy"; } typedef Eigen::ThreadPoolDevice CPUDevice; typedef Eigen::GpuDevice GPUDevice; template <typename Device, typename T, typename Index> class GatherNdOp : public OpKernel { public: explicit GatherNdOp(OpKernelConstruction* c) : OpKernel(c) { const DataType dt = DataTypeToEnum<T>::v(); const DataType index_t = DataTypeToEnum<Index>::v(); OP_REQUIRES_OK(c, c->MatchSignature({dt, index_t}, {dt})); if (c->HasAttr(kBadIndicesPolicyAtrr)) { std::string bad_indices_policy_str; OP_REQUIRES_OK( c, c->GetAttr(kBadIndicesPolicyAtrr, &bad_indices_policy_str)); absl::StatusOr<BadIndicesPolicy> bad_indices_policy = BadIndicesPolicyFromString(bad_indices_policy_str); OP_REQUIRES_OK(c, bad_indices_policy.status()); bad_indices_policy_ = *bad_indices_policy; } } void Compute(OpKernelContext* c) override { const Tensor& params = c->input(0); const Tensor& indices = c->input(1); Tensor out; OP_REQUIRES_OK(c, functor::DoGatherNd<Device, T, Index>( c, params, indices, &out, bad_indices_policy_)); c->set_output(0, out); } private: BadIndicesPolicy bad_indices_policy_ = BadIndicesPolicy::kDefault; }; #define REGISTER_GATHER_ND_FULL(dev, type, index_type) \ REGISTER_KERNEL_BUILDER( \ Name("GatherNd") \ .Device(DEVICE_##dev) \ .TypeConstraint<type>("Tparams") \ .TypeConstraint<index_type>("Tindices") \ .AttrConstraint<std::string>( \ "bad_indices_policy", \ {"", "DEFAULT", "ERROR", "IGNORE"}), \ GatherNdOp<dev##Device, type, index_type>) #define REGISTER_GATHER_ND_CPU(type) \ REGISTER_GATHER_ND_FULL(CPU, type, int16); \ REGISTER_GATHER_ND_FULL(CPU, type, int32); \ REGISTER_GATHER_ND_FULL(CPU, type, int64_t) TF_CALL_ALL_TYPES(REGISTER_GATHER_ND_CPU); TF_CALL_QUANTIZED_TYPES(REGISTER_GATHER_ND_CPU); TF_CALL_float8_e5m2(REGISTER_GATHER_ND_CPU); TF_CALL_float8_e4m3fn(REGISTER_GATHER_ND_CPU); #undef REGISTER_GATHER_ND_CPU #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM namespace functor { #define DECLARE_GPU_SPECS_INDEX_NDIM(T, Index, NDIM) \ template <> \ Index GatherNdSlice<GPUDevice, T, Index, NDIM>::operator()( \ const GPUDevice& d, const Index slice_size, \ typename TTypes<int32>::Scalar Tscratch, \ typename TTypes<T, NDIM + 1>::ConstTensor Tparams, \ typename TTypes<Index>::ConstMatrix Tindices, \ typename TTypes<T>::Matrix Tout); \ extern template struct GatherNdSlice<GPUDevice, T, Index, NDIM>; #define DECLARE_GPU_SPECS_INDEX(T, Index) \ DECLARE_GPU_SPECS_INDEX_NDIM(T, Index, 0); \ DECLARE_GPU_SPECS_INDEX_NDIM(T, Index, 1); \ DECLARE_GPU_SPECS_INDEX_NDIM(T, Index, 2); \ DECLARE_GPU_SPECS_INDEX_NDIM(T, Index, 3); \ DECLARE_GPU_SPECS_INDEX_NDIM(T, Index, 4); \ DECLARE_GPU_SPECS_INDEX_NDIM(T, Index, 5); \ DECLARE_GPU_SPECS_INDEX_NDIM(T, Index, 6); \ DECLARE_GPU_SPECS_INDEX_NDIM(T, Index, 7); #define DECLARE_GPU_SPECS(T) \ DECLARE_GPU_SPECS_INDEX(T, int32); \ DECLARE_GPU_SPECS_INDEX(T, int64_t) TF_CALL_int32(DECLARE_GPU_SPECS); TF_CALL_int64(DECLARE_GPU_SPECS); TF_CALL_GPU_NUMBER_TYPES(DECLARE_GPU_SPECS); TF_CALL_COMPLEX_TYPES(DECLARE_GPU_SPECS); #undef DECLARE_GPU_SPECS #undef DECLARE_GPU_SPECS_INDEX } #undef REGISTER_GATHER_ND_FULL #define REGISTER_GATHER_ND_FULL(dev, type, index_type) \ REGISTER_KERNEL_BUILDER( \ Name("GatherNd") \ .Device(DEVICE_##dev) \ .TypeConstraint<type>("Tparams") \ .TypeConstraint<index_type>("Tindices") \ .AttrConstraint<std::string>("bad_indices_policy", \ {"", "DEFAULT", "IGNORE"}), \ GatherNdOp<dev##Device, type, index_type>) #define REGISTER_GATHER_ND_GPU(type) \ REGISTER_GATHER_ND_FULL(GPU, type, int32); \ REGISTER_GATHER_ND_FULL(GPU, type, int64_t) TF_CALL_int32(REGISTER_GATHER_ND_GPU); TF_CALL_int64(REGISTER_GATHER_ND_GPU); TF_CALL_GPU_NUMBER_TYPES(REGISTER_GATHER_ND_GPU); TF_CALL_COMPLEX_TYPES(REGISTER_GATHER_ND_GPU); #undef REGISTER_GATHER_ND_GPU #endif #undef REGISTER_GATHER_ND_FULL }
#include <functional> #include <memory> #include <vector> #include "absl/strings/match.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/graph/testlib.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/gtl/array_slice.h" #include "tensorflow/core/lib/random/simple_philox.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace test { namespace graph { class Node* GatherNd(Graph* g, class Node* in0, class Node* in1) { class Node* ret; TF_CHECK_OK(NodeBuilder(g->NewName("n"), "GatherNd") .Input(in0) .Input(in1) .Finalize(g, &ret)); return ret; } } } namespace { class GatherNdOpTest : public OpsTestBase { protected: void MakeOp(DataType param_type, DataType index_type) { TF_ASSERT_OK(NodeDefBuilder("myop", "GatherNd") .Input(FakeInput(param_type)) .Input(FakeInput(index_type)) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); } }; TEST_F(GatherNdOpTest, Simple) { MakeOp(DT_FLOAT, DT_INT32); AddInputFromArray<float>(TensorShape({5}), {0, 1, 2, 8, 4}); AddInputFromArray<int32>(TensorShape({2, 1}), {3, 4}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({2})); test::FillValues<float>(&expected, {8, 4}); test::ExpectTensorEqual<float>(expected, *GetOutput(0)); } TEST_F(GatherNdOpTest, Error_OutOfRange) { MakeOp(DT_FLOAT, DT_INT32); AddInputFromArray<float>(TensorShape({5}), {0, 1, 2, 8, 4}); AddInputFromArray<int32>(TensorShape({2, 1}), {3, 5}); Status s = RunOpKernel(); EXPECT_TRUE(absl::StrContains( s.message(), "indices[1] = [5] does not index into param shape [5]")) << s.message(); } TEST_F(GatherNdOpTest, Quantized_UINT8) { MakeOp(DT_QUINT8, DT_INT32); AddInputFromArray<quint8>(TensorShape({5}), {0, 1, 2, 8, 4}); AddInputFromArray<int32>(TensorShape({2, 1}), {3, 4}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QUINT8, TensorShape({2})); test::FillValues<quint8>(&expected, {8, 4}); test::ExpectTensorEqual<quint8>(expected, *GetOutput(0)); } TEST_F(GatherNdOpTest, Quantized_INT8) { MakeOp(DT_QINT8, DT_INT32); AddInputFromArray<qint8>(TensorShape({5}), {0, 1, 2, 8, 4}); AddInputFromArray<int32>(TensorShape({2, 1}), {3, 4}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QINT8, TensorShape({2})); test::FillValues<qint8>(&expected, {8, 4}); test::ExpectTensorEqual<qint8>(expected, *GetOutput(0)); } class GatherNdOpIgnoreBadIndicesTest : public OpsTestBase { protected: void MakeOp(DataType param_type, DataType index_type) { TF_ASSERT_OK(NodeDefBuilder("myop", "GatherNd") .Input(FakeInput(param_type)) .Input(FakeInput(index_type)) .Attr("bad_indices_policy", "IGNORE") .Finalize(node_def())); TF_ASSERT_OK(InitOp()); } }; TEST_F(GatherNdOpIgnoreBadIndicesTest, IgnoreOutOfRange) { MakeOp(DT_FLOAT, DT_INT32); AddInputFromArray<float>(TensorShape({5}), {9, 1, 2, 8, 4}); AddInputFromArray<int32>(TensorShape({3, 1}), {3, 5, 1}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({3})); test::FillValues<float>(&expected, {8, 0, 1}); test::ExpectTensorEqual<float>(expected, *GetOutput(0)); } class GatherNdOpConstructionTest : public OpsTestBase {}; TEST_F(GatherNdOpConstructionTest, Error_BadIndicesPolicyInvalid) { TF_ASSERT_OK(NodeDefBuilder("myop", "GatherNd") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("bad_indices_policy", "AN_UNRECOGNIZED_POLICY") .Finalize(node_def())); EXPECT_NE(InitOp(), absl::OkStatus()); } constexpr int kLookups = 2000; template <typename Index> static Graph* GatherNd(int dim) { Graph* g = new Graph(OpRegistry::Global()); Tensor params(DT_FLOAT, TensorShape({dim, 8, 16, 32})); params.flat<float>().setRandom(); random::PhiloxRandom philox(301, 17); random::SimplePhilox rnd(&philox); Tensor indices(DataTypeToEnum<Index>::value, TensorShape({kLookups, 4})); auto indices_mat = indices.matrix<Index>(); for (int i = 0; i < kLookups; i++) { indices_mat(i, 0) = rnd.Uniform(dim); indices_mat(i, 1) = rnd.Uniform(8); indices_mat(i, 2) = rnd.Uniform(16); indices_mat(i, 3) = rnd.Uniform(32); } test::graph::GatherNd(g, test::graph::Constant(g, params), test::graph::Constant(g, indices)); return g; } #define BM_GATHER_ND(DEVICE, INDEX) \ static void BM_##DEVICE##_gather_nd_##INDEX( \ ::testing::benchmark::State& state) { \ const int dim = state.range(0); \ test::Benchmark(#DEVICE, GatherNd<INDEX>(dim), \ false) \ .Run(state); \ const int64_t tot = \ static_cast<int64_t>(state.iterations()) * kLookups * 4; \ state.SetItemsProcessed(tot); \ state.SetBytesProcessed(tot * sizeof(float)); \ } \ BENCHMARK(BM_##DEVICE##_gather_nd_##INDEX) \ ->UseRealTime() \ ->Arg(10) \ ->Arg(100) \ ->Arg(1000) \ ->Arg(10000) BM_GATHER_ND(cpu, int32); BM_GATHER_ND(gpu, int32); BM_GATHER_ND(cpu, int64_t); BM_GATHER_ND(gpu, int64_t); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/gather_nd_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/gather_nd_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ac17a735-6f0a-4a24-a913-698d9809b098
cpp
tensorflow/tensorflow
conv_padding_legalization
third_party/xla/xla/service/gpu/transforms/conv_padding_legalization.cc
third_party/xla/xla/service/gpu/transforms/conv_padding_legalization_test.cc
#include "xla/service/gpu/transforms/conv_padding_legalization.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <cstdlib> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/literal_util.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/shape_inference.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/window_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { bool IsForwardConvolutionCanonical(const HloInstruction& conv) { CHECK(conv.custom_call_target() == kCudnnConvForwardCallTarget || conv.custom_call_target() == kCudnnConvBiasActivationForwardCallTarget || conv.custom_call_target() == kCudnnConvForwardGraphCallTarget); return window_util::HasSymmetricPadding(conv.window()) && !window_util::HasNegativePadding(conv.window()) && !window_util::HasDilation(conv.window()); } HloInstruction* MaybePaddedAndSlicedInput( Window* conv_window, const ConvolutionDimensionNumbers& conv_dnums, HloInstruction* input) { HloComputation* computation = input->parent(); if (!window_util::HasSymmetricPadding(*conv_window) || window_util::HasBaseDilation(*conv_window)) { PaddingConfig padding_config = MakeNoPaddingConfig(input->shape().dimensions_size()); for (size_t i = 0; i < conv_dnums.input_spatial_dimensions().size(); ++i) { int64_t dim = conv_dnums.input_spatial_dimensions(i); if (conv_window->dimensions(i).padding_low() > 0) { padding_config.mutable_dimensions(dim)->set_edge_padding_low( conv_window->dimensions(i).padding_low()); conv_window->mutable_dimensions(i)->set_padding_low(0); } if (conv_window->dimensions(i).padding_high() > 0) { padding_config.mutable_dimensions(dim)->set_edge_padding_high( conv_window->dimensions(i).padding_high()); conv_window->mutable_dimensions(i)->set_padding_high(0); } if (conv_window->dimensions(i).base_dilation() != 1) { padding_config.mutable_dimensions(dim)->set_interior_padding( conv_window->dimensions(i).base_dilation() - 1); conv_window->mutable_dimensions(i)->set_base_dilation(1); } } PrimitiveType element_type = input->shape().element_type(); HloInstruction* padding = computation->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::Zero(element_type))); input = MakePadHlo(input, padding, padding_config, &input->metadata()).value(); } if (window_util::HasNegativePadding(*conv_window)) { std::vector<int64_t> start_indices(input->shape().dimensions_size(), 0); std::vector<int64_t> limit_indices(input->shape().dimensions().begin(), input->shape().dimensions().end()); std::vector<int64_t> strides(input->shape().dimensions_size(), 1); for (size_t i = 0; i < conv_dnums.input_spatial_dimensions().size(); ++i) { int64_t dim = conv_dnums.input_spatial_dimensions(i); if (conv_window->dimensions(i).padding_low() < 0) { start_indices[dim] += -conv_window->dimensions(i).padding_low(); conv_window->mutable_dimensions(i)->set_padding_low(0); } if (conv_window->dimensions(i).padding_high() < 0) { limit_indices[dim] -= -conv_window->dimensions(i).padding_high(); conv_window->mutable_dimensions(i)->set_padding_high(0); } } input = MakeSliceHlo(input, start_indices, limit_indices, strides).value(); } return input; } HloInstruction* MaybePaddedKernel(const Window& conv_window, const ConvolutionDimensionNumbers& conv_dnums, HloInstruction* kernel) { if (!window_util::HasWindowDilation(conv_window)) { return kernel; } PaddingConfig padding_config; padding_config.mutable_dimensions()->Reserve( kernel->shape().dimensions_size()); for (size_t i = 0; i < kernel->shape().dimensions_size(); ++i) { padding_config.add_dimensions(); } for (size_t i = 0; i < conv_dnums.kernel_spatial_dimensions().size(); ++i) { int64_t dim = conv_dnums.kernel_spatial_dimensions(i); padding_config.mutable_dimensions(dim)->set_interior_padding( conv_window.dimensions(i).window_dilation() - 1); } HloComputation* computation = kernel->parent(); PrimitiveType element_type = kernel->shape().element_type(); HloInstruction* padding = computation->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::Zero(element_type))); return MakePadHlo(kernel, padding, padding_config, &kernel->metadata()) .value(); } } bool ConvPaddingLegalization::CanonicalizeForwardConvolution( HloInstruction* conv) { if (IsForwardConvolutionCanonical(*conv)) { return false; } Window new_conv_window = conv->window(); HloInstruction* new_input = MaybePaddedAndSlicedInput( &new_conv_window, conv->convolution_dimension_numbers(), conv->mutable_operand(0)); HloInstruction* new_kernel = MaybePaddedKernel(new_conv_window, conv->convolution_dimension_numbers(), conv->mutable_operand(1)); for (size_t i = 0; i < new_conv_window.dimensions_size(); ++i) { WindowDimension* dim = new_conv_window.mutable_dimensions(i); dim->set_size(new_kernel->shape().dimensions( conv->convolution_dimension_numbers().kernel_spatial_dimensions(i))); dim->set_window_dilation(1); } VLOG(1) << "Canonicalizing forward conv"; std::vector<HloInstruction*> operands(conv->operands().begin(), conv->operands().end()); operands[0] = new_input; operands[1] = new_kernel; auto new_conv = conv->parent()->AddInstruction( conv->CloneWithNewOperands(conv->shape(), operands)); new_conv->set_window(new_conv_window); VLOG(1) << "Replacing:\n " << conv->ToString() << "\nwith:\n " << new_conv->ToString(); TF_CHECK_OK(conv->parent()->ReplaceInstruction(conv, new_conv)); return true; } namespace { void IncreasePaddingLowBy(int64_t delta, WindowDimension* window_dim) { window_dim->set_padding_low(window_dim->padding_low() + delta); } void IncreasePaddingHighBy(int64_t delta, WindowDimension* window_dim) { window_dim->set_padding_high(window_dim->padding_high() + delta); } } bool ConvPaddingLegalization::CanonicalizeBackwardFilterConvolution( HloInstruction* backward_conv) { CHECK_EQ(backward_conv->custom_call_target(), kCudnnConvBackwardFilterCallTarget); if (window_util::HasSymmetricPadding(backward_conv->window())) { return false; } HloInstruction* input = backward_conv->mutable_operand(0); Window new_backward_conv_window = backward_conv->window(); PaddingConfig input_padding_config = MakeNoPaddingConfig(input->shape().rank()); ConvolutionDimensionNumbers backward_conv_dnums = backward_conv->convolution_dimension_numbers(); for (size_t i = 0; i < backward_conv->window().dimensions_size(); ++i) { int64_t padding_low = backward_conv->window().dimensions(i).padding_low(); int64_t padding_high = backward_conv->window().dimensions(i).padding_high(); if (padding_low < 0 || padding_high < 0) { return false; } int64_t new_conv_padding = std::min(padding_low, padding_high); int64_t dim = backward_conv_dnums.input_spatial_dimensions(i); input_padding_config.mutable_dimensions(dim)->set_edge_padding_low( padding_low - new_conv_padding); input_padding_config.mutable_dimensions(dim)->set_edge_padding_high( padding_high - new_conv_padding); auto* new_dim = new_backward_conv_window.mutable_dimensions(i); new_dim->set_padding_low(new_conv_padding); new_dim->set_padding_high(new_conv_padding); } HloComputation* computation = backward_conv->parent(); HloInstruction* output = backward_conv->mutable_operand(1); HloInstruction* padding = computation->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(input->shape().element_type()))); HloInstruction* padded_input = MakePadHlo(input, padding, input_padding_config).value(); HloInstruction* new_backward_conv = computation->AddInstruction(backward_conv->CloneWithNewOperands( backward_conv->shape(), {padded_input, output})); new_backward_conv->set_window(new_backward_conv_window); VLOG(1) << "Canonicalizing backward filter conv"; VLOG(1) << "Replacing:\n " << backward_conv->ToString() << "\nwith:\n " << new_backward_conv->ToString(); TF_CHECK_OK( computation->ReplaceInstruction(backward_conv, new_backward_conv)); return true; } bool ConvPaddingLegalization::CanonicalizeBackwardInputConvolution( HloInstruction* backward_conv) { if (window_util::HasSymmetricPadding(backward_conv->window())) { return false; } Window new_backward_conv_window = backward_conv->window(); ConvolutionDimensionNumbers backward_conv_dnums = backward_conv->convolution_dimension_numbers(); Shape backward_conv_shape = backward_conv->shape().tuple_shapes(0); Shape new_backward_conv_shape = backward_conv_shape; for (size_t i = 0; i < backward_conv->window().dimensions_size(); ++i) { int64_t padding_low = backward_conv->window().dimensions(i).padding_low(); int64_t padding_high = backward_conv->window().dimensions(i).padding_high(); if (padding_low < 0 || padding_high < 0) { return false; } if (padding_low > padding_high) { IncreasePaddingLowBy(padding_high - padding_low, new_backward_conv_window.mutable_dimensions(i)); } else if (padding_low < padding_high) { IncreasePaddingHighBy(padding_low - padding_high, new_backward_conv_window.mutable_dimensions(i)); } int64_t dim = backward_conv_dnums.input_spatial_dimensions(i); new_backward_conv_shape.set_dimensions( dim, new_backward_conv_shape.dimensions(dim) + std::abs(padding_low - padding_high)); } HloComputation* computation = backward_conv->parent(); HloInstruction* output = backward_conv->mutable_operand(0); HloInstruction* filter = backward_conv->mutable_operand(1); HloInstruction* new_backward_conv_call = computation->AddInstruction(backward_conv->CloneWithNewOperands( ShapeUtil::MakeTupleShape( {new_backward_conv_shape, ShapeUtil::MakeShape(U8, {0})}), {output, filter})); new_backward_conv_call->set_window(new_backward_conv_window); HloInstruction* new_backward_conv = computation->AddInstruction(HloInstruction::CreateGetTupleElement( new_backward_conv_shape, new_backward_conv_call, 0)); HloInstruction* new_backward_conv_scratch = computation->AddInstruction(HloInstruction::CreateGetTupleElement( new_backward_conv_call->shape().tuple_shapes(1), new_backward_conv_call, 1)); std::vector<int64_t> start_indices( new_backward_conv->shape().dimensions_size(), 0LL); std::vector<int64_t> limit_indices( new_backward_conv->shape().dimensions().begin(), new_backward_conv->shape().dimensions().end()); std::vector<int64_t> strides(new_backward_conv->shape().dimensions_size(), 1LL); for (size_t i = 0; i < backward_conv->window().dimensions_size(); ++i) { int64_t padding_low = backward_conv->window().dimensions(i).padding_low(); int64_t padding_high = backward_conv->window().dimensions(i).padding_high(); int64_t dim = backward_conv_dnums.input_spatial_dimensions(i); if (padding_low > padding_high) { start_indices[dim] += padding_low - padding_high; } else if (padding_low < padding_high) { limit_indices[dim] -= padding_high - padding_low; } } Shape slice_shape = ShapeInference::InferSliceShape(new_backward_conv->shape(), start_indices, limit_indices, strides) .value(); CHECK(ShapeUtil::Compatible(slice_shape, backward_conv_shape)) << ShapeUtil::HumanString(slice_shape) << " vs " << ShapeUtil::HumanString(backward_conv_shape); HloInstruction* slice = computation->AddInstruction( HloInstruction::CreateSlice(backward_conv_shape, new_backward_conv, start_indices, limit_indices, strides)); HloInstruction* new_tuple = computation->AddInstruction( HloInstruction::CreateTuple({slice, new_backward_conv_scratch})); VLOG(1) << "Canonicalizing backward input conv"; VLOG(1) << "Replacing:\n " << backward_conv->ToString() << "\nwith:\n " << new_tuple->ToString(); TF_CHECK_OK(computation->ReplaceInstruction(backward_conv, new_tuple)); return true; } absl::StatusOr<bool> ConvPaddingLegalization::RunOnComputation( HloComputation* computation) { bool changed = false; std::vector<HloCustomCallInstruction*> convs; for (auto* instr : computation->instructions()) { if (IsCustomCallToDnnConvolution(*instr)) { convs.push_back(Cast<HloCustomCallInstruction>(instr)); } } for (HloCustomCallInstruction* instruction : convs) { TF_ASSIGN_OR_RETURN(auto kind, GetCudnnConvKind(instruction)); changed |= [&] { switch (kind) { case CudnnConvKind::kForward: case CudnnConvKind::kForwardActivation: case CudnnConvKind::kForwardGraph: return CanonicalizeForwardConvolution(instruction); case CudnnConvKind::kBackwardInput: return CanonicalizeBackwardInputConvolution(instruction); case CudnnConvKind::kBackwardFilter: return CanonicalizeBackwardFilterConvolution(instruction); } }(); } return changed; } absl::StatusOr<bool> ConvPaddingLegalization::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { TF_ASSIGN_OR_RETURN(bool result, RunOnComputation(computation)); changed |= result; } return changed; } } }
#include "xla/service/gpu/transforms/conv_padding_legalization.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { namespace { namespace m = ::xla::match; using ConvPaddingLegalizationTest = HloTestBase; TEST_F(ConvPaddingLegalizationTest, BackwardInputConvolve) { auto module = ParseAndReturnVerifiedModule(R"( HloModule convolution_module ENTRY %convolution (operand f64[2,2,2,3]{3,2,1,0}) -> (f64[2,2,4,4]{3,2,1,0}, u8[0]) { %operand = f64[2,2,2,3]{3,2,1,0} parameter(0) %kernel = f64[2,3,2,3]{3,2,1,0} constant( { { { { 0.29629629629629628, 0.30246913580246915, 0.30864197530864196 }, { 0.31481481481481483, 0.32098765432098764, 0.3271604938271605 } }, { { 0.25925925925925924, 0.26543209876543211, 0.27160493827160492 }, { 0.27777777777777779, 0.2839506172839506, 0.29012345679012347 } }, { { 0.22222222222222221, 0.22839506172839505, 0.23456790123456789 }, { 0.24074074074074073, 0.24691358024691357, 0.25308641975308643 } } }, { { { 0.18518518518518517, 0.19135802469135801, 0.19753086419753085 }, { 0.20370370370370369, 0.20987654320987653, 0.21604938271604937 } }, { { 0.14814814814814814, 0.15432098765432098, 0.16049382716049382 }, { 0.16666666666666666, 0.1728395061728395, 0.17901234567901234 } }, { { 0.1111111111111111, 0.11728395061728394, 0.12345679012345678 }, { 0.12962962962962962, 0.13580246913580246, 0.1419753086419753 } } } }) %reverse = f64[2,3,2,3]{3,2,1,0} reverse(%kernel), dimensions={0,1} ROOT %custom-call = (f64[2,2,4,4]{3,2,1,0}, u8[0]{0}) custom-call(f64[2,2,2,3]{3,2,1,0} %operand, f64[2,3,2,3]{3,2,1,0} %reverse), window={size=2x3 stride=2x2 pad=0_0x0_1}, dim_labels=bf01_01io->b01f, custom_call_target="__cudnn$convBackwardInput", backend_config="{\"algorithm\":\"0\",\"tensor_ops_enabled\":false,\"conv_result_scale\":1,\"activation_mode\":\"0\",\"side_input_scale\":0}" } )") .value(); ASSERT_TRUE(ConvPaddingLegalization().Run(module.get()).value()); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Tuple( m::Slice(m::GetTupleElement( m::CustomCall({kCudnnConvBackwardInputCallTarget}, m::Op(), m::Reverse(m::Constant())), 0)), m::GetTupleElement()))); auto slice = root->operand(0); Shape expected_slice_shape = ShapeUtil::MakeShape(F64, {2, 2, 4, 4}); EXPECT_TRUE(ShapeUtil::Equal(slice->shape(), expected_slice_shape)); auto conv = slice->operand(0); Shape expected_conv_shape = ShapeUtil::MakeShape(F64, {2, 2, 4, 5}); EXPECT_TRUE(ShapeUtil::Equal(conv->shape(), expected_conv_shape)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/conv_padding_legalization.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/conv_padding_legalization_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a9d6e50b-861a-4c55-b233-20860fc7a291
cpp
google/quiche
web_transport_http3
quiche/quic/core/http/web_transport_http3.cc
quiche/quic/core/http/web_transport_http3_test.cc
#include "quiche/quic/core/http/web_transport_http3.h" #include <limits> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/strings/string_view.h" #include "quiche/quic/core/http/quic_spdy_session.h" #include "quiche/quic/core/http/quic_spdy_stream.h" #include "quiche/quic/core/quic_data_reader.h" #include "quiche/quic/core/quic_data_writer.h" #include "quiche/quic/core/quic_error_codes.h" #include "quiche/quic/core/quic_stream.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/core/quic_versions.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" #include "quiche/common/capsule.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/web_transport/web_transport.h" #define ENDPOINT \ (session_->perspective() == Perspective::IS_SERVER ? "Server: " : "Client: ") namespace quic { namespace { class NoopWebTransportVisitor : public WebTransportVisitor { void OnSessionReady() override {} void OnSessionClosed(WebTransportSessionError , const std::string& ) override {} void OnIncomingBidirectionalStreamAvailable() override {} void OnIncomingUnidirectionalStreamAvailable() override {} void OnDatagramReceived(absl::string_view ) override {} void OnCanCreateNewOutgoingBidirectionalStream() override {} void OnCanCreateNewOutgoingUnidirectionalStream() override {} }; } WebTransportHttp3::WebTransportHttp3(QuicSpdySession* session, QuicSpdyStream* connect_stream, WebTransportSessionId id) : session_(session), connect_stream_(connect_stream), id_(id), visitor_(std::make_unique<NoopWebTransportVisitor>()) { QUICHE_DCHECK(session_->SupportsWebTransport()); QUICHE_DCHECK(IsValidWebTransportSessionId(id, session_->version())); QUICHE_DCHECK_EQ(connect_stream_->id(), id); connect_stream_->RegisterHttp3DatagramVisitor(this); } void WebTransportHttp3::AssociateStream(QuicStreamId stream_id) { streams_.insert(stream_id); ParsedQuicVersion version = session_->version(); if (QuicUtils::IsOutgoingStreamId(version, stream_id, session_->perspective())) { return; } if (QuicUtils::IsBidirectionalStreamId(stream_id, version)) { incoming_bidirectional_streams_.push_back(stream_id); visitor_->OnIncomingBidirectionalStreamAvailable(); } else { incoming_unidirectional_streams_.push_back(stream_id); visitor_->OnIncomingUnidirectionalStreamAvailable(); } } void WebTransportHttp3::OnConnectStreamClosing() { std::vector<QuicStreamId> streams(streams_.begin(), streams_.end()); streams_.clear(); for (QuicStreamId id : streams) { session_->ResetStream(id, QUIC_STREAM_WEBTRANSPORT_SESSION_GONE); } connect_stream_->UnregisterHttp3DatagramVisitor(); MaybeNotifyClose(); } void WebTransportHttp3::CloseSession(WebTransportSessionError error_code, absl::string_view error_message) { if (close_sent_) { QUIC_BUG(WebTransportHttp3 close sent twice) << "Calling WebTransportHttp3::CloseSession() more than once is not " "allowed."; return; } close_sent_ = true; if (close_received_) { QUIC_DLOG(INFO) << "Not sending CLOSE_WEBTRANSPORT_SESSION as we've " "already sent one from peer."; return; } error_code_ = error_code; error_message_ = std::string(error_message); QuicConnection::ScopedPacketFlusher flusher( connect_stream_->spdy_session()->connection()); connect_stream_->WriteCapsule( quiche::Capsule::CloseWebTransportSession(error_code, error_message), true); } void WebTransportHttp3::OnCloseReceived(WebTransportSessionError error_code, absl::string_view error_message) { if (close_received_) { QUIC_BUG(WebTransportHttp3 notified of close received twice) << "WebTransportHttp3::OnCloseReceived() may be only called once."; } close_received_ = true; if (close_sent_) { QUIC_DLOG(INFO) << "Ignoring received CLOSE_WEBTRANSPORT_SESSION as we've " "already sent our own."; return; } error_code_ = error_code; error_message_ = std::string(error_message); connect_stream_->WriteOrBufferBody("", true); MaybeNotifyClose(); } void WebTransportHttp3::OnConnectStreamFinReceived() { if (close_received_) { return; } close_received_ = true; if (close_sent_) { QUIC_DLOG(INFO) << "Ignoring received FIN as we've already sent our close."; return; } connect_stream_->WriteOrBufferBody("", true); MaybeNotifyClose(); } void WebTransportHttp3::CloseSessionWithFinOnlyForTests() { QUICHE_DCHECK(!close_sent_); close_sent_ = true; if (close_received_) { return; } connect_stream_->WriteOrBufferBody("", true); } void WebTransportHttp3::HeadersReceived( const quiche::HttpHeaderBlock& headers) { if (session_->perspective() == Perspective::IS_CLIENT) { int status_code; if (!QuicSpdyStream::ParseHeaderStatusCode(headers, &status_code)) { QUIC_DVLOG(1) << ENDPOINT << "Received WebTransport headers from server without " "a valid status code, rejecting."; rejection_reason_ = WebTransportHttp3RejectionReason::kNoStatusCode; return; } bool valid_status = status_code >= 200 && status_code <= 299; if (!valid_status) { QUIC_DVLOG(1) << ENDPOINT << "Received WebTransport headers from server with " "status code " << status_code << ", rejecting."; rejection_reason_ = WebTransportHttp3RejectionReason::kWrongStatusCode; return; } } QUIC_DVLOG(1) << ENDPOINT << "WebTransport session " << id_ << " ready."; ready_ = true; visitor_->OnSessionReady(); session_->ProcessBufferedWebTransportStreamsForSession(this); } WebTransportStream* WebTransportHttp3::AcceptIncomingBidirectionalStream() { while (!incoming_bidirectional_streams_.empty()) { QuicStreamId id = incoming_bidirectional_streams_.front(); incoming_bidirectional_streams_.pop_front(); QuicSpdyStream* stream = session_->GetOrCreateSpdyDataStream(id); if (stream == nullptr) { continue; } return stream->web_transport_stream(); } return nullptr; } WebTransportStream* WebTransportHttp3::AcceptIncomingUnidirectionalStream() { while (!incoming_unidirectional_streams_.empty()) { QuicStreamId id = incoming_unidirectional_streams_.front(); incoming_unidirectional_streams_.pop_front(); QuicStream* stream = session_->GetOrCreateStream(id); if (stream == nullptr) { continue; } return static_cast<WebTransportHttp3UnidirectionalStream*>(stream) ->interface(); } return nullptr; } bool WebTransportHttp3::CanOpenNextOutgoingBidirectionalStream() { return session_->CanOpenOutgoingBidirectionalWebTransportStream(id_); } bool WebTransportHttp3::CanOpenNextOutgoingUnidirectionalStream() { return session_->CanOpenOutgoingUnidirectionalWebTransportStream(id_); } WebTransportStream* WebTransportHttp3::OpenOutgoingBidirectionalStream() { QuicSpdyStream* stream = session_->CreateOutgoingBidirectionalWebTransportStream(this); if (stream == nullptr) { return nullptr; } return stream->web_transport_stream(); } WebTransportStream* WebTransportHttp3::OpenOutgoingUnidirectionalStream() { WebTransportHttp3UnidirectionalStream* stream = session_->CreateOutgoingUnidirectionalWebTransportStream(this); if (stream == nullptr) { return nullptr; } return stream->interface(); } webtransport::Stream* WebTransportHttp3::GetStreamById( webtransport::StreamId id) { if (!streams_.contains(id)) { return nullptr; } QuicStream* stream = session_->GetActiveStream(id); const bool bidi = QuicUtils::IsBidirectionalStreamId( id, ParsedQuicVersion::RFCv1()); if (bidi) { return static_cast<QuicSpdyStream*>(stream)->web_transport_stream(); } else { return static_cast<WebTransportHttp3UnidirectionalStream*>(stream) ->interface(); } } webtransport::DatagramStatus WebTransportHttp3::SendOrQueueDatagram( absl::string_view datagram) { return MessageStatusToWebTransportStatus( connect_stream_->SendHttp3Datagram(datagram)); } QuicByteCount WebTransportHttp3::GetMaxDatagramSize() const { return connect_stream_->GetMaxDatagramSize(); } void WebTransportHttp3::SetDatagramMaxTimeInQueue( absl::Duration max_time_in_queue) { connect_stream_->SetMaxDatagramTimeInQueue(QuicTimeDelta(max_time_in_queue)); } void WebTransportHttp3::NotifySessionDraining() { if (!drain_sent_) { connect_stream_->WriteCapsule( quiche::Capsule(quiche::DrainWebTransportSessionCapsule())); drain_sent_ = true; } } void WebTransportHttp3::OnHttp3Datagram(QuicStreamId stream_id, absl::string_view payload) { QUICHE_DCHECK_EQ(stream_id, connect_stream_->id()); visitor_->OnDatagramReceived(payload); } void WebTransportHttp3::MaybeNotifyClose() { if (close_notified_) { return; } close_notified_ = true; visitor_->OnSessionClosed(error_code_, error_message_); } void WebTransportHttp3::OnGoAwayReceived() { if (drain_callback_ != nullptr) { std::move(drain_callback_)(); drain_callback_ = nullptr; } } void WebTransportHttp3::OnDrainSessionReceived() { OnGoAwayReceived(); } WebTransportHttp3UnidirectionalStream::WebTransportHttp3UnidirectionalStream( PendingStream* pending, QuicSpdySession* session) : QuicStream(pending, session, false), session_(session), adapter_(session, this, sequencer(), std::nullopt), needs_to_send_preamble_(false) { sequencer()->set_level_triggered(true); } WebTransportHttp3UnidirectionalStream::WebTransportHttp3UnidirectionalStream( QuicStreamId id, QuicSpdySession* session, WebTransportSessionId session_id) : QuicStream(id, session, false, WRITE_UNIDIRECTIONAL), session_(session), adapter_(session, this, sequencer(), session_id), session_id_(session_id), needs_to_send_preamble_(true) {} void WebTransportHttp3UnidirectionalStream::WritePreamble() { if (!needs_to_send_preamble_ || !session_id_.has_value()) { QUIC_BUG(WebTransportHttp3UnidirectionalStream duplicate preamble) << ENDPOINT << "Sending preamble on stream ID " << id() << " at the wrong time."; OnUnrecoverableError(QUIC_INTERNAL_ERROR, "Attempting to send a WebTransport unidirectional " "stream preamble at the wrong time."); return; } QuicConnection::ScopedPacketFlusher flusher(session_->connection()); char buffer[sizeof(uint64_t) * 2]; QuicDataWriter writer(sizeof(buffer), buffer); bool success = true; success = success && writer.WriteVarInt62(kWebTransportUnidirectionalStream); success = success && writer.WriteVarInt62(*session_id_); QUICHE_DCHECK(success); WriteOrBufferData(absl::string_view(buffer, writer.length()), false, nullptr); QUIC_DVLOG(1) << ENDPOINT << "Sent stream type and session ID (" << *session_id_ << ") on WebTransport stream " << id(); needs_to_send_preamble_ = false; } bool WebTransportHttp3UnidirectionalStream::ReadSessionId() { iovec iov; if (!sequencer()->GetReadableRegion(&iov)) { return false; } QuicDataReader reader(static_cast<const char*>(iov.iov_base), iov.iov_len); WebTransportSessionId session_id; uint8_t session_id_length = reader.PeekVarInt62Length(); if (!reader.ReadVarInt62(&session_id)) { if (sequencer()->IsAllDataAvailable()) { QUIC_DLOG(WARNING) << ENDPOINT << "Failed to associate WebTransport stream " << id() << " with a session because the stream ended prematurely."; sequencer()->MarkConsumed(sequencer()->NumBytesBuffered()); } return false; } sequencer()->MarkConsumed(session_id_length); session_id_ = session_id; adapter_.SetSessionId(session_id); session_->AssociateIncomingWebTransportStreamWithSession(session_id, id()); return true; } void WebTransportHttp3UnidirectionalStream::OnDataAvailable() { if (!session_id_.has_value()) { if (!ReadSessionId()) { return; } } adapter_.OnDataAvailable(); } void WebTransportHttp3UnidirectionalStream::OnCanWriteNewData() { adapter_.OnCanWriteNewData(); } void WebTransportHttp3UnidirectionalStream::OnClose() { QuicStream::OnClose(); if (!session_id_.has_value()) { return; } WebTransportHttp3* session = session_->GetWebTransportSession(*session_id_); if (session == nullptr) { QUIC_DLOG(WARNING) << ENDPOINT << "WebTransport stream " << id() << " attempted to notify parent session " << *session_id_ << ", but the session could not be found."; return; } session->OnStreamClosed(id()); } void WebTransportHttp3UnidirectionalStream::OnStreamReset( const QuicRstStreamFrame& frame) { if (adapter_.visitor() != nullptr) { adapter_.visitor()->OnResetStreamReceived( Http3ErrorToWebTransportOrDefault(frame.ietf_error_code)); } QuicStream::OnStreamReset(frame); } bool WebTransportHttp3UnidirectionalStream::OnStopSending( QuicResetStreamError error) { if (adapter_.visitor() != nullptr) { adapter_.visitor()->OnStopSendingReceived( Http3ErrorToWebTransportOrDefault(error.ietf_application_code())); } return QuicStream::OnStopSending(error); } void WebTransportHttp3UnidirectionalStream::OnWriteSideInDataRecvdState() { if (adapter_.visitor() != nullptr) { adapter_.visitor()->OnWriteSideInDataRecvdState(); } QuicStream::OnWriteSideInDataRecvdState(); } namespace { constexpr uint64_t kWebTransportMappedErrorCodeFirst = 0x52e4a40fa8db; constexpr uint64_t kWebTransportMappedErrorCodeLast = 0x52e5ac983162; constexpr WebTransportStreamError kDefaultWebTransportError = 0; } std::optional<WebTransportStreamError> Http3ErrorToWebTransport( uint64_t http3_error_code) { if (http3_error_code < kWebTransportMappedErrorCodeFirst || http3_error_code > kWebTransportMappedErrorCodeLast) { return std::nullopt; } if ((http3_error_code - 0x21) % 0x1f == 0) { return std::nullopt; } uint64_t shifted = http3_error_code - kWebTransportMappedErrorCodeFirst; uint64_t result = shifted - shifted / 0x1f; QUICHE_DCHECK_LE(result, std::numeric_limits<webtransport::StreamErrorCode>::max()); return static_cast<WebTransportStreamError>(result); } WebTransportStreamError Http3ErrorToWebTransportOrDefault( uint64_t http3_error_code) { std::optional<WebTransportStreamError> result = Http3ErrorToWebTransport(http3_error_code); return result.has_value() ? *result : kDefaultWebTransportError; } uint64_t WebTransportErrorToHttp3( WebTransportStreamError webtransport_error_code) { return kWebTransportMappedErrorCodeFirst + webtransport_error_code + webtransport_error_code / 0x1e; } }
#include "quiche/quic/core/http/web_transport_http3.h" #include <cstdint> #include <limits> #include <optional> #include "quiche/quic/platform/api/quic_test.h" namespace quic { namespace { using ::testing::Optional; TEST(WebTransportHttp3Test, ErrorCodesToHttp3) { EXPECT_EQ(0x52e4a40fa8dbu, WebTransportErrorToHttp3(0x00)); EXPECT_EQ(0x52e4a40fa9e2u, WebTransportErrorToHttp3(0xff)); EXPECT_EQ(0x52e5ac983162u, WebTransportErrorToHttp3(0xffffffff)); EXPECT_EQ(0x52e4a40fa8f7u, WebTransportErrorToHttp3(0x1c)); EXPECT_EQ(0x52e4a40fa8f8u, WebTransportErrorToHttp3(0x1d)); EXPECT_EQ(0x52e4a40fa8fau, WebTransportErrorToHttp3(0x1e)); } TEST(WebTransportHttp3Test, ErrorCodesToWebTransport) { EXPECT_THAT(Http3ErrorToWebTransport(0x52e4a40fa8db), Optional(0x00)); EXPECT_THAT(Http3ErrorToWebTransport(0x52e4a40fa9e2), Optional(0xff)); EXPECT_THAT(Http3ErrorToWebTransport(0x52e5ac983162u), Optional(0xffffffff)); EXPECT_THAT(Http3ErrorToWebTransport(0x52e4a40fa8f7), Optional(0x1cu)); EXPECT_THAT(Http3ErrorToWebTransport(0x52e4a40fa8f8), Optional(0x1du)); EXPECT_THAT(Http3ErrorToWebTransport(0x52e4a40fa8f9), std::nullopt); EXPECT_THAT(Http3ErrorToWebTransport(0x52e4a40fa8fa), Optional(0x1eu)); EXPECT_EQ(Http3ErrorToWebTransport(0), std::nullopt); EXPECT_EQ(Http3ErrorToWebTransport(std::numeric_limits<uint64_t>::max()), std::nullopt); } TEST(WebTransportHttp3Test, ErrorCodeRoundTrip) { for (int error = 0; error <= 65536; error++) { uint64_t http_error = WebTransportErrorToHttp3(error); std::optional<WebTransportStreamError> mapped_back = quic::Http3ErrorToWebTransport(http_error); ASSERT_THAT(mapped_back, Optional(error)); } for (int64_t error = 0; error < std::numeric_limits<uint32_t>::max(); error += 65537) { uint64_t http_error = WebTransportErrorToHttp3(error); std::optional<WebTransportStreamError> mapped_back = quic::Http3ErrorToWebTransport(http_error); ASSERT_THAT(mapped_back, Optional(error)); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/http/web_transport_http3.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/http/web_transport_http3_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
50beb168-8ca5-4457-99cd-a70833c5bb18
cpp
tensorflow/tensorflow
device_compilation_cluster_signature
tensorflow/compiler/jit/device_compilation_cluster_signature.cc
tensorflow/compiler/jit/device_compilation_cluster_signature_test.cc
#include "tensorflow/compiler/jit/device_compilation_cluster_signature.h" #include <string> #include <utility> #include <variant> namespace tensorflow { namespace { using Signature = DeviceCompilationClusterSignature; using TensorTypeAndShape = Signature::TensorTypeAndShape; struct SignatureHumanStringAppender { explicit SignatureHumanStringAppender(std::string* dest) : dest(dest) {} std::string* dest; void operator()(const Tensor& arg) { absl::StrAppend(dest, "; ", arg.DebugString()); } void operator()(const TensorTypeAndShape& arg) { absl::StrAppend(dest, ",", DataTypeString(arg.first)); absl::StrAppend(dest, " [", absl::StrJoin(arg.second, ","), "]"); } }; struct SignatureNotEqual { bool operator()(const Tensor& arg, const Tensor& other) { return arg.dtype() != other.dtype() || arg.shape() != other.shape() || arg.tensor_data() != other.tensor_data(); } bool operator()(const TensorTypeAndShape& arg, const TensorTypeAndShape& other) { return arg.first != other.first || arg.second != other.second; } bool operator()(const Tensor& arg, const TensorTypeAndShape& other) { return true; } bool operator()(const TensorTypeAndShape& arg, const Tensor& other) { return true; } }; struct SignatureHashCombiner { explicit SignatureHashCombiner(const uint64 h) : h(h) {} uint64 h; uint64 operator()(const Tensor& arg) { h = Hash64Combine(h, std::hash<int>()(static_cast<int>(arg.dtype()))); h = Hash64Combine( h, Hash64(arg.tensor_data().data(), arg.tensor_data().size())); for (int dim = 0; dim < arg.dims(); ++dim) { h = Hash64Combine(h, std::hash<int>()(arg.dim_size(dim))); } return h; } uint64 operator()(const TensorTypeAndShape& arg) { h = Hash64Combine(h, std::hash<int>()(static_cast<int>(arg.first))); h = Hash64Combine(h, std::hash<int>()(arg.second.size())); for (int dim : arg.second) { h = Hash64Combine(h, std::hash<int>()(dim)); } return h; } }; } std::string Signature::HumanString() const { std::string result = name; for (const auto& arg : args) { std::visit(SignatureHumanStringAppender(&result), arg); } return result; } bool Signature::operator==(const Signature& other) const { if (name != other.name) return false; if (args.size() != other.args.size()) return false; for (int i = 0, end = args.size(); i < end; ++i) { if (std::visit(SignatureNotEqual(), args[i], other.args[i])) { return false; } } return true; } uint64 Signature::Hash::operator()(const Signature& signature) const { uint64 h = std::hash<string>()(signature.name); for (const auto& arg : signature.args) { h = std::visit(SignatureHashCombiner(h), arg); } return h; } absl::StatusOr<Signature> Signature::Build( const NameAttrList& function, absl::Span<const XlaCompiler::Argument> args) { Signature signature; signature.name = Canonicalize(function.name(), AttrSlice(&function.attr())); for (const XlaCompiler::Argument& arg : args) { switch (arg.kind) { case XlaCompiler::Argument::kConstant: case XlaCompiler::Argument::kConstantResource: signature.args.push_back(arg.constant_value); break; case XlaCompiler::Argument::kParameter: case XlaCompiler::Argument::kResource: signature.args.push_back( TensorTypeAndShape(arg.type, arg.DimensionSizesAsInlinedVector())); break; default: return errors::InvalidArgument( "Unhandled argument kind in XlaCompilationCache: ", arg.HumanString()); } } return std::move(signature); } }
#include "tensorflow/compiler/jit/device_compilation_cluster_signature.h" #include <utility> #include <vector> #include "tensorflow/compiler/jit/flags.h" #include "tensorflow/compiler/tf2xla/shape_util.h" #include "xla/client/client_library.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace { using SignatureHash = DeviceCompilationClusterSignature::Hash; TEST(DeviceCompilationClusterSignatureTest, SignatureEquality) { NameAttrList fn; fn.set_name("afunction"); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kConstant; args[0].type = DT_INT32; args[0].shape = TensorShape({4, 0}); args[0].constant_value = Tensor(DT_INT32, {4, 0}); TF_ASSERT_OK_AND_ASSIGN(DeviceCompilationClusterSignature s1, DeviceCompilationClusterSignature::Build(fn, args)); args[0].type = DT_FLOAT; args[0].constant_value = Tensor(DT_FLOAT, {4, 0}); TF_ASSERT_OK_AND_ASSIGN(DeviceCompilationClusterSignature s2, DeviceCompilationClusterSignature::Build(fn, args)); args[0].shape = TensorShape({0, 4}); args[0].constant_value = Tensor(DT_FLOAT, {0, 4}); TF_ASSERT_OK_AND_ASSIGN(DeviceCompilationClusterSignature s3, DeviceCompilationClusterSignature::Build(fn, args)); std::vector<DeviceCompilationClusterSignature> signatures = {s1, s2, s3}; for (int i = 0; i < signatures.size(); ++i) { for (int j = 0; j < signatures.size(); ++j) { EXPECT_EQ(i == j, signatures[i] == signatures[j]) << "s1: " << signatures[i].HumanString() << "\n" << "s2: " << signatures[j].HumanString(); EXPECT_EQ(i == j, signatures[i].HumanString() == signatures[j].HumanString()) << "s1: " << signatures[i].HumanString() << "\n" << "s2: " << signatures[j].HumanString(); EXPECT_EQ(i == j, SignatureHash()(signatures[i]) == SignatureHash()(signatures[j])) << "s1: " << signatures[i].HumanString() << "\n" << "s1_hash: " << SignatureHash()(signatures[i]) << "\n" << "s2: " << signatures[j].HumanString() << "\n" << "s2_hash: " << SignatureHash()(signatures[j]); } } } TEST(DeviceCompilationClusterSignatureTest, SignatureUniqueness) { NameAttrList fn; fn.set_name("afunction"); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kConstant; args[0].type = DT_INT32; args[0].constant_value = Tensor(DT_INT32, {4, 0}); args[1].kind = XlaCompiler::Argument::kParameter; args[1].type = DT_INT32; args[1].shape = TensorShape({4, 0}); TF_ASSERT_OK_AND_ASSIGN(DeviceCompilationClusterSignature s1, DeviceCompilationClusterSignature::Build(fn, args)); using std::swap; swap(args[0], args[1]); TF_ASSERT_OK_AND_ASSIGN(DeviceCompilationClusterSignature s2, DeviceCompilationClusterSignature::Build(fn, args)); EXPECT_NE(s1.HumanString(), s2.HumanString()); EXPECT_NE(SignatureHash()(s1), SignatureHash()(s2)); EXPECT_FALSE(s1 == s2); } void BM_BuildSignature(::testing::benchmark::State& state) { const int n_args = state.range(0); NameAttrList fn; fn.set_name("afunction"); for (int i = 0; i < n_args; i++) { (*fn.mutable_attr())[absl::StrCat("T", i)].set_type(DT_FLOAT); } std::vector<XlaCompiler::Argument> args(n_args); for (int i = 0; i < n_args; i++) { args[i].kind = (((i % 3) == 0) ? XlaCompiler::Argument::kConstant : XlaCompiler::Argument::kParameter); args[i].type = DT_INT32; args[i].shape = TensorShape({4, 0}); args[i].constant_value = Tensor(DT_INT32, {4, 0}); } for (auto i : state) { auto s = DeviceCompilationClusterSignature::Build(fn, args); CHECK(s.ok()); DeviceCompilationClusterSignature sig = std::move(s.value()); } } BENCHMARK(BM_BuildSignature)->Arg(0)->Arg(1)->Arg(2)->Arg(5)->Arg(10); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/device_compilation_cluster_signature.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/device_compilation_cluster_signature_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c6163921-3eb0-4635-9477-0c8012ec8a36
cpp
tensorflow/tensorflow
shape_refiner
tensorflow/core/common_runtime/shape_refiner.cc
tensorflow/core/common_runtime/shape_refiner_test.cc
#include "tensorflow/core/common_runtime/shape_refiner.h" #include <deque> #include <limits> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "tensorflow/core/common_runtime/eval_const_tensor.h" #include "tensorflow/core/common_runtime/function_utils.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/framework/bounds_check.h" #include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/lib/core/errors.h" #include "tsl/platform/statusor.h" namespace tensorflow { using shape_inference::DimensionHandle; using shape_inference::InferenceContext; using shape_inference::ShapeAndType; using shape_inference::ShapeHandle; ShapeRefiner::ShapeRefiner(int graph_def_version, const OpRegistryInterface* ops) : graph_def_version_(graph_def_version), ops_registry_(ops), graph_runner_(Env::Default()) {} ShapeRefiner::ShapeRefiner(const VersionDef& versions, const OpRegistryInterface* ops) : ShapeRefiner(versions.producer(), ops) {} ShapeRefiner::~ShapeRefiner() { const_tensor_map_.clear(); } namespace { constexpr char kArgOp[] = "_Arg"; constexpr char kRetvalOp[] = "_Retval"; } Status ShapeRefiner::InferShapesForFunctionSubNode( const Node* node, InferenceContext* outer_context) { TF_RETURN_IF_ERROR(AddNodeInternal(node, outer_context)); InferenceContext* node_context = CHECK_NOTNULL(GetContext(node)); if (StringPiece(node->type_string()) == kArgOp) { int index; TF_RETURN_IF_ERROR(GetNodeAttr(AttrSlice(node->def()), "index", &index)); if (index < 0 || outer_context->num_inputs() <= index) { return errors::Internal( "Function instantiation included invalid input index: ", index, " not in [0, ", outer_context->num_inputs(), ")."); } if (outer_context->input(index).SameHandle(ShapeHandle())) { VLOG(1) << "Function instantiation has undefined input shape at " << "index: " << index << " in the outer inference context."; node_context->set_output(0, node_context->UnknownShape()); } else { node_context->set_output(0, outer_context->input(index)); } auto* resource = outer_context->input_handle_shapes_and_types(index); if (resource) { node_context->set_output_handle_shapes_and_types(0, *resource); } } else if (StringPiece(node->type_string()) == kRetvalOp) { int index; TF_RETURN_IF_ERROR(GetNodeAttr(AttrSlice(node->def()), "index", &index)); if (index < 0 || outer_context->num_outputs() <= index) { return errors::Internal( "Function instantiation included invalid output index: ", index, " not in [0, ", outer_context->num_outputs(), ")."); } ShapeHandle handle; TensorShapeProto proto; node_context->ShapeHandleToProto(node_context->input(0), &proto); TF_RETURN_IF_ERROR(outer_context->MakeShapeFromShapeProto(proto, &handle)); outer_context->set_output(index, handle); const std::vector<ShapeAndType>* resource = node_context->input_handle_shapes_and_types(0); if (resource) { std::vector<ShapeAndType> copied_shapes_and_types; for (auto& shape_and_type : *resource) { ShapeHandle handle; TensorShapeProto proto; node_context->ShapeHandleToProto(shape_and_type.shape, &proto); TF_RETURN_IF_ERROR( outer_context->MakeShapeFromShapeProto(proto, &handle)); copied_shapes_and_types.push_back( ShapeAndType(handle, shape_and_type.dtype, shape_and_type.type)); } outer_context->set_output_handle_shapes_and_types( index, copied_shapes_and_types); } } return absl::OkStatus(); } Status ShapeRefiner::InferShapesForFunction(const FunctionDef* function_def, AttrSlice attributes, InferenceContext* outer_context) { const Graph* graph; const string& fname = function_def->signature().name(); auto it = functions_.find(fname); if (it != functions_.end()) { graph = it->second.get(); } else { InstantiationResult result; TF_RETURN_IF_ERROR(InstantiateFunction( *function_def, attributes, [this](const string& op, const OpDef** sig) { return this->function_library_->LookUpOpDef(op, sig); }, &result)); Graph* new_graph = new Graph(function_library_); GraphConstructorOptions options; options.allow_internal_ops = true; TF_RETURN_IF_ERROR( ConvertNodeDefsToGraph(options, result.nodes, new_graph)); functions_[fname].reset(new_graph); graph = new_graph; } absl::flat_hash_set<const Node*> function_nodes; Status inference_status = absl::OkStatus(); { auto node_shape_inference_lambda = [this, &outer_context, &function_nodes, &inference_status](const Node* node) { if (!inference_status.ok()) return; inference_status = InferShapesForFunctionSubNode(node, outer_context); function_nodes.insert(node); }; ReverseDFS(*graph, {}, node_shape_inference_lambda); } for (const Node* node : function_nodes) { node_to_context_.erase(node); } return inference_status; } Status ShapeRefiner::AddNode(const Node* node) { return AddNodeInternal(node, nullptr); } Status ShapeRefiner::AddNodeInternal( const Node* node, shape_inference::InferenceContext* outer_context) { std::unique_ptr<InferenceContext> ic(new InferenceContext( graph_def_version_, node->def(), node->op_def(), std::vector<ShapeHandle>(node->num_inputs()), {}, {}, {})); TF_RETURN_IF_ERROR(ic->construction_status()); for (const Edge* e : node->in_edges()) { if (e->IsControlEdge()) continue; if (e->dst_input() < 0) { return tensorflow::errors::Internal( "Index ", e->dst_input(), " is negative but not a control edge."); } const Node* input = e->src(); auto it = node_to_context_.find(input); if (it == node_to_context_.end()) { ic->SetInput(e->dst_input(), ic->UnknownShape()); continue; } InferenceContext* input_ic = it->second.get(); ic->SetInput(e->dst_input(), input_ic->output(e->src_output())); const auto* in_v = input_ic->output_handle_shapes_and_types(e->src_output()); if (in_v != nullptr) { DataType input_type = e->src()->output_type(e->src_output()); DCHECK(input_type == DT_RESOURCE || input_type == DT_VARIANT); ic->set_input_handle_shapes_and_types(e->dst_input(), std::vector<ShapeAndType>(*in_v)); } } const OpRegistrationData* op_reg_data; TF_RETURN_IF_ERROR(ops_registry_->LookUp(node->type_string(), &op_reg_data)); if (op_reg_data->shape_inference_fn == nullptr && require_shape_inference_fns_) { return errors::InvalidArgument( "No shape inference function exists for op '", node->type_string(), "', did you forget to define it?"); } TF_RETURN_IF_ERROR(RunShapeFn(node, op_reg_data, ic.get(), outer_context)); node_to_context_[node].swap(ic); return absl::OkStatus(); } Status ShapeRefiner::SetShape(const Node* node, int output_port, ShapeHandle shape) { auto c = GetContext(node); if (c == nullptr) { return errors::Internal("Could not find context for ", node->name()); } if (output_port < 0 || output_port >= node->num_outputs()) { return errors::InvalidArgument( "output_port '", output_port, "' is out of range, ", "node '", node->name(), "' has ", node->num_outputs(), " outputs"); } if (node->num_outputs() > c->num_outputs()) { TF_RETURN_IF_ERROR(c->ExpandOutputs(node->num_outputs())); } ShapeHandle existing_shape = c->output(output_port); TF_RETURN_IF_ERROR(c->Merge(existing_shape, shape, &shape)); c->set_output(output_port, shape); return absl::OkStatus(); } Status ShapeRefiner::UpdateNode(const Node* node, bool relax, bool* refined) { auto it = node_to_context_.find(node); if (it == node_to_context_.end()) { *refined = true; return AddNode(node); } InferenceContext* node_context = it->second.get(); TF_RETURN_IF_ERROR(node_context->construction_status()); for (const Edge* e : node->in_edges()) { if (e->IsControlEdge()) continue; int dst_input = e->dst_input(); int src_output = e->src_output(); Node* input = e->src(); auto iter = node_to_context_.find(input); if (iter == node_to_context_.end()) { return errors::FailedPrecondition( "Input ", dst_input, " ('", input->name(), "') for '", node->name(), "' was not previously added to ShapeRefiner."); } InferenceContext* c = iter->second.get(); DCHECK_GE(dst_input, 0); ShapeHandle existing_input = node_context->input(dst_input); if (!relax) { if (node_context->MergeInput(dst_input, c->output(src_output))) { if (!SameDefinedShape(node_context, node_context->input(dst_input), existing_input)) { *refined = true; } } } else { if (node_context->RelaxInput(dst_input, c->output(src_output))) { if (!SameDefinedShape(node_context, node_context->input(dst_input), existing_input)) { *refined = true; } } } if (node_context->requested_input_tensor_as_partial_shape(dst_input)) { *refined = true; } if (e->src()->output_type(src_output) == DT_RESOURCE) { auto* outputs = c->output_handle_shapes_and_types(src_output); if (!outputs) continue; if (!relax && node_context->MergeInputHandleShapesAndTypes(dst_input, *outputs)) { *refined = true; } else if (relax) { std::vector<ShapeAndType> existing_inputs; const std::vector<ShapeAndType>* inputs = node_context->input_handle_shapes_and_types(dst_input); if (inputs) { existing_inputs = *inputs; } if (node_context->RelaxInputHandleShapesAndMergeTypes(dst_input, *outputs)) { if (IsUpdatedShapesOrTypes( node_context, existing_inputs, *node_context->input_handle_shapes_and_types(dst_input))) { *refined = true; } } } } } if (!*refined) { return absl::OkStatus(); } const OpRegistrationData* op_reg_data; TF_RETURN_IF_ERROR(ops_registry_->LookUp(node->type_string(), &op_reg_data)); if (op_reg_data->shape_inference_fn == nullptr && require_shape_inference_fns_) { return errors::InvalidArgument( "No shape inference function exists for op '", node->type_string(), "', did you forget to define it?"); } if (!op_reg_data->shape_inference_fn) { return absl::OkStatus(); } return RunShapeFn(node, op_reg_data, node_context); } Status ShapeRefiner::EvaluateConstantTensorForEdge( const Node* node, int dst_idx, bool* evaluated, Tensor* result, InferenceContext* outer_context) { const Edge* input_edge; TF_RETURN_IF_ERROR(node->input_edge(dst_idx, &input_edge)); const Node& src = *input_edge->src(); const int src_output = input_edge->src_output(); auto lookup = [&](const Node& node, int index) -> std::optional<Tensor> { if (node.IsArg() && outer_context != nullptr) { int index; if (GetNodeAttr(node.def(), "index", &index).ok() && 0 <= index && index < outer_context->num_inputs()) { const auto* tensor = outer_context->input_tensor(index); outer_context->request_input_tensor(index); if (tensor != nullptr) { return *tensor; } } } auto it = const_tensor_map_.find({node.id(), index}); if (it != const_tensor_map_.end()) { return it->second; } return std::optional<Tensor>(); }; std::optional<EvaluateConstantTensorRunner> runner; if (!disable_constant_propagation_) { runner = EvaluateConstantTensorRunner{ ops_registry_, graph_def_version_, &graph_runner_, }; } TF_ASSIGN_OR_RETURN(auto tensor, EvaluateConstantTensor( src, src_output, *this, lookup, runner)); *evaluated = tensor.has_value(); if (tensor.has_value()) { if (tensor->TotalBytes() <= kMaxTensorSize) { const_tensor_map_.emplace(std::make_pair(src.id(), src_output), *tensor); } *result = *std::move(tensor); } return absl::OkStatus(); } Status ShapeRefiner::EvaluateConstantIntScalarEdge( const Node* node, int dst_idx, bool* evaluated, int64_t* result, shape_inference::InferenceContext* outer_context) { Tensor scalar; TF_RETURN_IF_ERROR(EvaluateConstantTensorForEdge(node, dst_idx, evaluated, &scalar, outer_context)); if (*evaluated) { if (scalar.NumElements() != 1) { return errors::InvalidArgument( "EvaluateConstantIntScalarEdge called on non-scalar edge: ", scalar.NumElements()); } if (scalar.dtype() == DT_INT32) { *result = scalar.scalar<int32>()(); } else { if (scalar.dtype() != DT_INT64) { return errors::InvalidArgument( "EvaluateConstantIntScalarEdge called on non-integer edge: ", scalar.dtype()); } *result = scalar.scalar<int64_t>()(); } } return absl::OkStatus(); } Status ShapeRefiner::ConstantPartialShape( InferenceContext* target_context, const Node* node, int dst_idx, ShapeHandle* result, shape_inference::InferenceContext* outer_context) { const Edge* input_edge; TF_RETURN_IF_ERROR(node->input_edge(dst_idx, &input_edge)); InferenceContext* src_context = GetContext(input_edge->src()); if (src_context == nullptr) return errors::Internal("Missing src context"); ShapeHandle src_shape = src_context->output(input_edge->src_output()); if (src_context->Value(src_context->Rank(src_shape)) == 0) { Tensor t; bool evaluated = false; TF_RETURN_IF_ERROR(EvaluateConstantTensorForEdge(node, dst_idx, &evaluated, &t, outer_context)); if (!evaluated) { return errors::InvalidArgument( "Received a shape scalar with unknown static value. A static value " "of '-1' is required to represent an unknown shape."); } if (t.dims() == 0) { if (t.dtype() == DT_INT32 && t.scalar<int32>()() == -1) { *result = target_context->UnknownShape(); return absl::OkStatus(); } else if (t.dtype() == DT_INT64 && t.scalar<int64_t>()() == -1) { *result = target_context->UnknownShape(); return absl::OkStatus(); } } return errors::InvalidArgument( "Received an invalid shape scalar with a static value that is not " "'-1': ", t.DebugString()); } TF_RETURN_IF_ERROR(src_context->WithRank(src_shape, 1, &src_shape)); const string& src_op = input_edge->src()->type_string(); if (src_context->Value(src_context->Dim(src_shape, 0)) == 0) { *result = target_context->Scalar(); } else if (src_op == "Cast") { Tensor t; bool evaluated = false; if (EvaluateConstantTensorForEdge(node, dst_idx, &evaluated, &t, outer_context) .ok()) { if (evaluated && target_context->MakeShapeFromTensor(&t, src_shape, result).ok()) { return absl::OkStatus(); } } ShapeHandle pre_cast_shape; if (!ConstantPartialShape(target_context, input_edge->src(), 0, &pre_cast_shape, outer_context) .ok()) { TF_RETURN_IF_ERROR( target_context->MakeShapeFromTensor(nullptr, src_shape, result)); } if (!target_context->RankKnown(pre_cast_shape)) { *result = target_context->UnknownShape(); return absl::OkStatus(); } auto* dest_type = input_edge->src()->attrs().Find("DstT"); if (dest_type == nullptr || dest_type->value_case() != AttrValue::kType || (dest_type->type() != DT_INT32 && dest_type->type() != DT_INT64)) { *result = target_context->MakeShape(std::vector<DimensionHandle>( target_context->Rank(pre_cast_shape), target_context->UnknownDim())); return absl::OkStatus(); } *result = pre_cast_shape; } else if (src_op == "Shape") { *result = src_context->input(0); } else if (src_op == "ShapeN") { *result = src_context->input(input_edge->src_output()); } else if (src_op == "Pack") { std::vector<DimensionHandle> dims; for (int i = 0; i < src_context->num_inputs(); ++i) { int64_t size; bool evaluated; TF_RETURN_IF_ERROR(EvaluateConstantIntScalarEdge( input_edge->src(), i, &evaluated, &size, outer_context)); if (evaluated) { dims.push_back(size < 0 ? target_context->UnknownDim() : target_context->MakeDim(size)); } else { dims.push_back(target_context->UnknownDim()); } } *result = target_context->MakeShape(dims); } else if (src_op == "Concat" || src_op == "ConcatV2") { *result = target_context->Scalar(); const int concat_dim = src_op == "Concat" ? 0 : src_context->num_inputs() - 1; for (int i = 0; i < src_context->num_inputs(); ++i) { if (i == concat_dim) continue; ShapeHandle sub_result; TF_RETURN_IF_ERROR(ConstantPartialShape(target_context, input_edge->src(), i, &sub_result, outer_context)); if (!target_context->RankKnown(sub_result)) { *result = target_context->UnknownShape(); return absl::OkStatus(); } TF_RETURN_IF_ERROR( target_context->Concatenate(*result, sub_result, result)); } } else if (src_op == "StridedSlice") { TF_RETURN_IF_ERROR(PartialStridedSliceShape(input_edge->src(), src_context, result, outer_context)); } else if (src_op == "VariableShape") { auto* handle_data = src_context->input_handle_shapes_and_types(0); if (handle_data != nullptr && !handle_data->empty()) { *result = handle_data->at(0).shape; } else { *result = target_context->UnknownShape(); } } else { Tensor t; bool evaluated = false; TF_RETURN_IF_ERROR(EvaluateConstantTensorForEdge(node, dst_idx, &evaluated, &t, outer_context)); TF_RETURN_IF_ERROR(target_context->MakeShapeFromTensor( evaluated ? &t : nullptr, src_shape, result)); } return absl::OkStatus(); } Status ShapeRefiner::PartialStridedSliceShape( Node* slice_node, InferenceContext* ctx, ShapeHandle* result, shape_inference::InferenceContext* outer_context) { for (int i = 1; i <= 3; ++i) { ShapeHandle input_shape = ctx->input(i); if (ctx->Value(ctx->Dim(input_shape, 0)) != 1) { *result = ctx->UnknownShape(); return absl::OkStatus(); } } int begin_mask, end_mask, ellipsis_mask, new_axis_mask, shrink_axis_mask; TF_RETURN_IF_ERROR( GetNodeAttr(slice_node->attrs(), "begin_mask", &begin_mask)); TF_RETURN_IF_ERROR(GetNodeAttr(slice_node->attrs(), "end_mask", &end_mask)); TF_RETURN_IF_ERROR( GetNodeAttr(slice_node->attrs(), "ellipsis_mask", &ellipsis_mask)); TF_RETURN_IF_ERROR( GetNodeAttr(slice_node->attrs(), "new_axis_mask", &new_axis_mask)); TF_RETURN_IF_ERROR( GetNodeAttr(slice_node->attrs(), "shrink_axis_mask", &shrink_axis_mask)); if (!(begin_mask == 0 || begin_mask == 1) || !(end_mask == 0 || end_mask == 1) || ellipsis_mask != 0 || new_axis_mask != 0 || shrink_axis_mask != 0) { *result = ctx->UnknownShape(); return absl::OkStatus(); } bool evaluated; int64_t begin; if (begin_mask == 1) { begin = 0; } else { TF_RETURN_IF_ERROR(EvaluateConstantIntScalarEdge(slice_node, 1, &evaluated, &begin, outer_context)); if (!evaluated) { *result = ctx->UnknownShape(); return absl::OkStatus(); } } int64_t end; if (end_mask == 1) { end = std::numeric_limits<int64_t>::max(); } else { TF_RETURN_IF_ERROR(EvaluateConstantIntScalarEdge(slice_node, 2, &evaluated, &end, outer_context)); if (!evaluated) { *result = ctx->UnknownShape(); return absl::OkStatus(); } } int64_t stride; TF_RETURN_IF_ERROR(EvaluateConstantIntScalarEdge(slice_node, 3, &evaluated, &stride, outer_context)); if (!evaluated) { *result = ctx->UnknownShape(); return absl::OkStatus(); } ShapeHandle input; TF_RETURN_IF_ERROR( ConstantPartialShape(ctx, slice_node, 0, &input, outer_context)); TF_RETURN_IF_ERROR(ctx->Subshape(input, begin, end, stride, result)); return absl::OkStatus(); } Status ShapeRefiner::RunShapeFn(const Node* node, const OpRegistrationData* op_reg_data, InferenceContext* c, InferenceContext* outer_context) { std::vector<const Tensor*> input_tensors(node->num_inputs(), nullptr); std::vector<Tensor> real_tensors(node->num_inputs()); std::vector<bool> attempted_materialization(node->num_inputs()); std::vector<bool> attempted_tensor_as_shape_conversion(node->num_inputs()); std::vector<ShapeHandle> input_tensors_as_shapes; c->set_input_tensors(input_tensors); c->set_input_tensors_as_shapes(input_tensors_as_shapes); auto run_inference_lambda = [&]() { if (function_library_ && IsFunctionCall(*function_library_, *node)) { bool disable_shape_inference; if (!GetNodeAttr(AttrSlice(node->def()), "_disable_call_shape_inference", &disable_shape_inference) .ok() || !disable_shape_inference) { NameAttrList function; TF_RETURN_IF_ERROR( NameAndAttrsFromFunctionCall(node->def(), &function)); const FunctionDef* function_def = function_library_->Find(function.name()); if (function_def != nullptr) { auto const_tensor_map_copy = const_tensor_map_; const_tensor_map_.clear(); VLOG(4) << "Running shape inference for function \"" << function.name() << "\"."; Status function_inference_status = InferShapesForFunction( function_def, AttrSlice(&function.attr()), c); const_tensor_map_ = const_tensor_map_copy; VLOG(4) << "Shape inference for function \"" << function.name() << "\" returned status " << function_inference_status << "."; return function_inference_status; } } } if (op_reg_data->shape_inference_fn) { VLOG(4) << "Running shape inference function for node \"" << node->name() << "\" of type \"" << node->type_string() << "\"."; TF_RETURN_IF_ERROR(c->Run(op_reg_data->shape_inference_fn)); } else { VLOG(4) << "Unknown shape inference function for node \"" << node->name() << "\" of type \"" << node->type_string() << "\"."; TF_RETURN_IF_ERROR(c->Run(shape_inference::UnknownShape)); } VLOG(4) << "Shape inference passed for node \"" << node->name() << "\" of type \"" << node->type_string() << "\"."; return absl::OkStatus(); }; TF_RETURN_IF_ERROR(run_inference_lambda()); bool rerun_shape_fn; do { rerun_shape_fn = false; for (int i = 0; i < c->num_inputs(); ++i) { if (!c->requested_input_tensor(i)) { continue; } if (!attempted_materialization[i]) { attempted_materialization[i] = true; Tensor result; bool evaluated = false; TF_RETURN_IF_ERROR(EvaluateConstantTensorForEdge( node, i, &evaluated, &result, outer_context)); if (evaluated) { real_tensors[i] = result; input_tensors[i] = &real_tensors[i]; rerun_shape_fn = true; } } if (c->requested_input_tensor_as_partial_shape(i) && !attempted_tensor_as_shape_conversion[i]) { attempted_tensor_as_shape_conversion[i] = true; if (i >= input_tensors_as_shapes.size()) { input_tensors_as_shapes.resize(i + 1); } ShapeHandle s; TF_RETURN_IF_ERROR(ConstantPartialShape(c, node, i, &s, outer_context)); input_tensors_as_shapes[i] = s; rerun_shape_fn = true; } } if (rerun_shape_fn) { c->set_input_tensors(input_tensors); c->set_input_tensors_as_shapes(input_tensors_as_shapes); TF_RETURN_IF_ERROR(run_inference_lambda()); } } while (rerun_shape_fn); return absl::OkStatus(); } bool ShapeRefiner::SameDefinedShape(InferenceContext* c, ShapeHandle s0, ShapeHandle s1) { if (s0.SameHandle(s1)) { return true; } if (c->Rank(s0) != c->Rank(s1)) { return false; } if (!c->RankKnown(s0) && !c->RankKnown(s1)) { return false; } for (int i = 0; i < c->Rank(s0); ++i) { if (!c->Dim(s0, i).SameHandle(c->Dim(s1, i))) { int64_t val0 = c->Value(c->Dim(s0, i)); int64_t val1 = c->Value(c->Dim(s1, i)); if (val0 < 0 || val1 < 0 || val0 != val1) { return false; } } } return true; } bool ShapeRefiner::IsUpdatedShapesOrTypes( InferenceContext* c, const std::vector<ShapeAndType>& existing, const std::vector<ShapeAndType>& updated) { if (existing.size() != updated.size()) { return true; } for (int i = 0; i < existing.size(); i++) { if (!SameDefinedShape(c, existing[i].shape, updated[i].shape) || existing[i].dtype != updated[i].dtype) { return true; } } return false; } }
#include "tensorflow/core/common_runtime/shape_refiner.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/resource_variable_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/common_runtime/function_testlib.h" #include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/graph/testlib.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/version.h" namespace tensorflow { class ShapeRefinerTest : public ::testing::Test { protected: bool SameHandle(shape_inference::DimensionHandle a, shape_inference::DimensionHandle b) { return a.SameHandle(b); } bool SameHandle(shape_inference::ShapeHandle a, shape_inference::ShapeHandle b) { return a.SameHandle(b); } bool SameDefinedShape(shape_inference::InferenceContext* c, shape_inference::ShapeHandle s0, shape_inference::ShapeHandle s1) { return ShapeRefiner::SameDefinedShape(c, s0, s1); } bool IsUpdatedShapesOrTypes( shape_inference::InferenceContext* c, const std::vector<shape_inference::ShapeAndType>& existing, const std::vector<shape_inference::ShapeAndType>& updated) { return ShapeRefiner::IsUpdatedShapesOrTypes(c, existing, updated); } static constexpr int64_t kMaxTensorSize = ShapeRefiner::kMaxTensorSize; void TestStridedSlice(const PartialTensorShape& input_shape, int begin, int end, int stride, const char* expected, int begin_mask = 0, int end_mask = 0, int ellipsis_mask = 0, int shrink_axis_mask = 0, StringPiece test_op = "TensorAsShapeInt32") { Scope root = Scope::DisabledShapeInferenceScope(); auto placeholder = ops::Placeholder(root, DT_INT32, ops::Placeholder::Shape(input_shape)); auto input = ops::Shape(root, placeholder); auto begin_op = ops::Const(root, {begin}); auto end_op = ops::Const(root, {end}); auto stride_op = ops::Const(root, {stride}); auto slice = ops::StridedSlice(root, input, begin_op, end_op, stride_op, ops::StridedSlice::BeginMask(begin_mask) .EndMask(end_mask) .EllipsisMask(ellipsis_mask) .ShrinkAxisMask(shrink_axis_mask)); Node* result; TF_ASSERT_OK(NodeBuilder("test", test_op) .Input(slice.node()) .Finalize(root.graph(), &result)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(placeholder.node())); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(begin_op.node())); TF_ASSERT_OK(m.AddNode(end_op.node())); TF_ASSERT_OK(m.AddNode(stride_op.node())); TF_ASSERT_OK(m.AddNode(slice.node())); TF_ASSERT_OK(m.AddNode(result)); shape_inference::InferenceContext* ctx = m.GetContext(result); EXPECT_EQ(ctx->DebugString(ctx->output(0)), expected); } }; namespace { #define EXPECT_SHAPE(EXPECTED, M, OP, IDX) \ do { \ shape_inference::InferenceContext* ctx = M.GetContext(OP.node()); \ EXPECT_EQ(EXPECTED, ctx->DebugString(ctx->output(IDX))); \ } while (0); #define EXPECT_RESOURCE_SINGLE_SHAPE(EXPECTED, M, OP, IDX) \ do { \ shape_inference::InferenceContext* ctx = M.GetContext(OP.node()); \ auto* v = ctx->output_handle_shapes_and_types(IDX); \ EXPECT_NE(v, nullptr); \ EXPECT_EQ(v->size(), 1); \ EXPECT_EQ(EXPECTED, ctx->DebugString((*v)[0].shape)); \ } while (0); #define EXPECT_RESOURCE_SINGLE_TYPE(EXPECTED, M, OP, IDX) \ do { \ shape_inference::InferenceContext* ctx = M.GetContext(OP.node()); \ auto* v = ctx->output_handle_shapes_and_types(IDX); \ EXPECT_NE(v, nullptr); \ EXPECT_EQ(v->size(), 1); \ EXPECT_EQ(EXPECTED, (*v)[0].dtype); \ } while (0); TEST_F(ShapeRefinerTest, Constant) { Scope root = Scope::NewRootScope(); auto c = ops::Const(root, 42.0f); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(c.node())); EXPECT_SHAPE("[]", m, c, 0); } TEST_F(ShapeRefinerTest, MatMul) { ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); Scope root = Scope::NewRootScope(); auto a = ops::Const(root, {{1.0f}, {2.0f}}); auto b = ops::Const(root, {{1.0f, 2.0f}}); auto mm = ops::MatMul(root, a, b); TF_ASSERT_OK(m.AddNode(a.node())); TF_ASSERT_OK(m.AddNode(b.node())); TF_ASSERT_OK(m.AddNode(mm.node())); EXPECT_SHAPE("[2,1]", m, a, 0); EXPECT_SHAPE("[1,2]", m, b, 0); EXPECT_SHAPE("[2,2]", m, mm, 0); } TEST_F(ShapeRefinerTest, BadShapes) { ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); Scope root = Scope::NewRootScope(); auto a = ops::Const(root, {{1.0f}, {2.0f}}); auto b = ops::Const(root, {{1.0f}, {2.0f}}); auto mm = ops::MatMul(root, a, b); TF_ASSERT_OK(m.AddNode(a.node())); TF_ASSERT_OK(m.AddNode(b.node())); Status s = m.AddNode(mm.node()); ASSERT_FALSE(s.ok()); ASSERT_TRUE(absl::StrContains(s.message(), "Dimensions must be equal, but are 1 and 2")); } TEST_F(ShapeRefinerTest, SetShape) { ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); Scope root = Scope::NewRootScope(); auto a = ops::Placeholder(root, DT_FLOAT); TF_ASSERT_OK(m.AddNode(a.node())); auto ic = m.GetContext(a.node()); ASSERT_NE(nullptr, ic); shape_inference::ShapeHandle h = ic->MakeShape({2, ic->UnknownDim()}); TF_ASSERT_OK(m.SetShape(a.node(), 0, h)); EXPECT_SHAPE("[2,?]", m, a, 0); shape_inference::ShapeHandle h2 = ic->MakeShape({ic->UnknownDim(), 2}); TF_ASSERT_OK(m.SetShape(a.node(), 0, h2)); EXPECT_SHAPE("[2,2]", m, a, 0); ASSERT_FALSE(m.SetShape(a.node(), 1, h).ok()); ASSERT_FALSE(m.SetShape(a.node(), -1, h).ok()); auto b = ops::Const(root, {{1.0f}, {2.0f}}); ASSERT_FALSE(m.SetShape(b.node(), 0, h).ok()); h = ic->MakeShape({3, ic->UnknownDim()}); ASSERT_FALSE(m.SetShape(a.node(), 0, h).ok()); } namespace { REGISTER_OP("TestOpWithNoShapeFn").Input("a: int32").Output("o: int32"); } TEST_F(ShapeRefinerTest, MissingShapeInferenceFns) { Scope root = Scope::NewRootScope(); auto a = ops::Const(root, 42); Node* b; TF_ASSERT_OK(NodeBuilder("b", "TestOpWithNoShapeFn") .Input(a.node()) .Finalize(root.graph(), &b)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(a.node())); EXPECT_FALSE(m.AddNode(b).ok()); m.set_require_shape_inference_fns(false); TF_EXPECT_OK(m.AddNode(b)); } TEST_F(ShapeRefinerTest, PropagateConstants) { { Scope root = Scope::NewRootScope(); auto input = ops::Const(root, {{1.0, 2.0}, {3.0, 4.0}, {5.0, 6.0}}); auto dim = ops::Variable(root, {}, DT_INT32); auto am = ops::ArgMax(root, input, dim); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(dim.node())); TF_ASSERT_OK(m.AddNode(am.node())); EXPECT_SHAPE("[?]", m, am, 0); } { Scope root = Scope::NewRootScope(); auto input = ops::Const(root, {{1.0, 2.0}, {3.0, 4.0}, {5.0, 6.0}}); auto dim = ops::Const(root, 1); auto am = ops::ArgMax(root, input, dim); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(dim.node())); TF_ASSERT_OK(m.AddNode(am.node())); EXPECT_SHAPE("[3]", m, am, 0); } { Scope root = Scope::NewRootScope(); auto input = ops::Const(root, {{1.0, 2.0}, {3.0, 4.0}, {5.0, 6.0}}); auto dim = ops::Const(root, 0); auto am = ops::ArgMax(root, input, dim); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(dim.node())); TF_ASSERT_OK(m.AddNode(am.node())); EXPECT_SHAPE("[2]", m, am, 0); } } TEST_F(ShapeRefinerTest, ExtractConstantSubgraphMultiOutput) { { Scope root = Scope::NewRootScope(); auto small = ops::Const(root, {static_cast<int32>(1), TensorShape({1, 1})}); auto large = ops::Const( root, {static_cast<int32>(2), TensorShape({4, kMaxTensorSize / 2})}); Node* multi; TF_ASSERT_OK(NodeBuilder("MI", "MultiIdentity") .Input(std::vector<NodeBuilder::NodeOut>{small.node(), large.node()}) .Attr("N", 2) .Finalize(root.graph(), &multi)); Node* shape_v; TF_ASSERT_OK(NodeBuilder("Test", "ShapeVectorForAllElements") .Input(multi, 0) .Finalize(root.graph(), &shape_v)); auto add = ops::Add(root, Output(multi, 0), Output(multi, 1)); Node* shape_v2; TF_ASSERT_OK(NodeBuilder("Test", "ShapeVectorForAllElements") .Input(add.node()) .Finalize(root.graph(), &shape_v2)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(small.node())); TF_ASSERT_OK(m.AddNode(large.node())); TF_ASSERT_OK(m.AddNode(multi)); TF_ASSERT_OK(m.AddNode(shape_v)); TF_ASSERT_OK(m.AddNode(add.node())); TF_ASSERT_OK(m.AddNode(shape_v2)); shape_inference::InferenceContext* ctx = m.GetContext(shape_v2); EXPECT_EQ(strings::StrCat("[", kMaxTensorSize * 2 * 3, "]"), ctx->DebugString(ctx->output(0))); } } namespace { REGISTER_OP("TestOp") .Input("a: float") .Input("b: float") .Output("o: float") .SetShapeFn([](shape_inference::InferenceContext* c) { if (c->input_tensor(0)) { if (c->input_tensor(1)) { c->set_output(0, c->Matrix(10, 10)); return absl::OkStatus(); } return shape_inference::ScalarShape(c); } return shape_inference::UnknownShape(c); }); } TEST_F(ShapeRefinerTest, InputTensorDependencies) { ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); Graph graph(OpRegistry::Global()); Node* node; Tensor a(DT_FLOAT, TensorShape({})); a.scalar<float>()() = 1.0; Tensor b(DT_FLOAT, TensorShape({})); b.scalar<float>()() = 2.0; Node* input_a = test::graph::Constant(&graph, a); Node* input_b = test::graph::Constant(&graph, b); TF_ASSERT_OK(NodeBuilder("Test", "TestOp") .Input(input_a) .Input(input_b) .Finalize(&graph, &node)); TF_ASSERT_OK(m.AddNode(input_a)); TF_ASSERT_OK(m.AddNode(input_b)); TF_ASSERT_OK(m.AddNode(node)); shape_inference::InferenceContext* ctx = m.GetContext(node); EXPECT_EQ("[10,10]", ctx->DebugString(ctx->output(0))); } namespace { REGISTER_OP("ShapeData") .Input("a: int32") .Output("o: int32") .SetShapeFn([](shape_inference::InferenceContext* c) { const Tensor* shape_data = c->input_tensor(0); if (shape_data == nullptr) { return shape_inference::UnknownShape(c); } std::vector<shape_inference::DimensionHandle> dims; dims.reserve(shape_data->NumElements()); for (int i = 0; i < shape_data->NumElements(); ++i) { dims.emplace_back(c->MakeDim(shape_data->flat<int32>()(i))); } c->set_output(0, c->MakeShape(dims)); return absl::OkStatus(); }); REGISTER_OP("ShapeDataInt64") .Input("a: int64") .Output("o: int64") .SetShapeFn([](shape_inference::InferenceContext* c) { const Tensor* shape_data = c->input_tensor(0); if (shape_data == nullptr) { return shape_inference::UnknownShape(c); } std::vector<shape_inference::DimensionHandle> dims; dims.reserve(shape_data->NumElements()); for (int i = 0; i < shape_data->NumElements(); ++i) { dims.emplace_back(c->MakeDim(shape_data->flat<int64_t>()(i))); } c->set_output(0, c->MakeShape(dims)); return absl::OkStatus(); }); REGISTER_OP("ShapeVectorForAllElements") .Input("a: int32") .Output("o: int32") .SetShapeFn([](shape_inference::InferenceContext* c) { const Tensor* shape_data = c->input_tensor(0); if (shape_data == nullptr) { return shape_inference::UnknownShape(c); } int64_t total = 0; for (int i = 0; i < shape_data->NumElements(); ++i) { total += shape_data->flat<int32>()(i); } c->set_output(0, c->Vector(total)); return absl::OkStatus(); }); REGISTER_OP("MultiIdentity") .Input("a: N * int32") .Output("o: N * int32") .Attr("N: int >= 1") .SetShapeFn([](shape_inference::InferenceContext* c) { for (int i = 0; i < c->num_inputs(); ++i) { c->set_output(i, c->input(i)); } return absl::OkStatus(); }); class MultiIdentity : public OpKernel { public: explicit MultiIdentity(OpKernelConstruction* c) : OpKernel(c) {} void Compute(OpKernelContext* c) override { for (int i = 0; i < c->num_inputs(); ++i) { c->set_output(i, c->input(i)); } } }; REGISTER_KERNEL_BUILDER(Name("MultiIdentity").Device(DEVICE_CPU), MultiIdentity); } TEST_F(ShapeRefinerTest, PropagateShapeAcrossTensorContent) { Scope root = Scope::NewRootScope(); auto input = ops::Variable(root, {2, 4}, DT_INT32); auto shape = ops::Shape(root, input); auto ones = ops::Const(root, {1}); auto sliced = ops::Slice(root, shape, ones, ones); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeData") .Input(sliced.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(ones.node())); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(shape.node())); TF_ASSERT_OK(m.AddNode(sliced.node())); TF_ASSERT_OK(m.AddNode(shape_data)); shape_inference::InferenceContext* ctx = m.GetContext(shape_data); EXPECT_EQ("[4]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, PropagateShapeAcrossTensorContentInt64) { Scope root = Scope::NewRootScope(); auto input = ops::Variable( root, {2, 4, static_cast<int64_t>(std::numeric_limits<int32>::max()) * 2}, DT_INT64); auto attrs = ops::Shape::OutType(DT_INT64); auto shape = ops::Shape(root, input, attrs); auto ones = ops::Const(root, {1}); auto sliced = ops::Slice(root, shape, ones, ones); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeDataInt64") .Input(sliced.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(ones.node())); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(shape.node())); TF_ASSERT_OK(m.AddNode(sliced.node())); TF_ASSERT_OK(m.AddNode(shape_data)); shape_inference::InferenceContext* ctx = m.GetContext(shape_data); EXPECT_EQ("[4]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, PropagateShapeAcrossTensorContentInt32Overflow) { Scope root = Scope::NewRootScope(); auto input = ops::Variable( root, {2, 4, static_cast<int64_t>(std::numeric_limits<int32>::max()) * 2}, DT_INT32); auto shape = ops::Shape(root, input); auto ones = ops::Const(root, {1}); auto sliced = ops::Slice(root, shape, ones, ones); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeData") .Input(sliced.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(ones.node())); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(shape.node())); TF_ASSERT_OK(m.AddNode(sliced.node())); EXPECT_FALSE(m.AddNode(shape_data).ok()); } TEST_F(ShapeRefinerTest, PropagateRankAcrossTensorContent) { Scope root = Scope::NewRootScope(); auto input = ops::Variable(root, {2, 4, 3}, DT_INT32); auto rank = ops::Rank(root, input); auto identity = ops::Identity(root, rank); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeData") .Input(identity.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(rank.node())); TF_ASSERT_OK(m.AddNode(identity.node())); TF_ASSERT_OK(m.AddNode(shape_data)); shape_inference::InferenceContext* ctx = m.GetContext(shape_data); EXPECT_EQ("[3]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, PropagateSizeAcrossTensorContent) { Scope root = Scope::NewRootScope(); auto input = ops::Variable(root, {1, 2, 3, 4, 5}, DT_INT32); auto size = ops::Size(root, input); auto identity = ops::Identity(root, size); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeData") .Input(identity.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(size.node())); TF_ASSERT_OK(m.AddNode(identity.node())); TF_ASSERT_OK(m.AddNode(shape_data)); shape_inference::InferenceContext* ctx = m.GetContext(shape_data); EXPECT_EQ("[120]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, PropagateSizeAcrossTensorContentInt64) { Scope root = Scope::NewRootScope(); auto input = ops::Variable( root, {1, 2, 3, 4, 5, static_cast<int64_t>(std::numeric_limits<int32>::max()) * 2}, DT_INT64); auto attrs = ops::Size::OutType(DT_INT64); auto size = ops::Size(root, input, attrs); auto identity = ops::Identity(root, size); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeDataInt64") .Input(identity.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(size.node())); TF_ASSERT_OK(m.AddNode(identity.node())); TF_ASSERT_OK(m.AddNode(shape_data)); shape_inference::InferenceContext* ctx = m.GetContext(shape_data); EXPECT_EQ("[515396075280]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, PropagateSizeAcrossTensorContentInt32Overflow) { Scope root = Scope::NewRootScope(); auto input = ops::Variable( root, {1, 2, 3, 4, 5, static_cast<int64_t>(std::numeric_limits<int32>::max()) * 2}, DT_INT32); auto size = ops::Size(root, input); auto identity = ops::Identity(root, size); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeData") .Input(identity.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(size.node())); TF_ASSERT_OK(m.AddNode(identity.node())); EXPECT_FALSE(m.AddNode(shape_data).ok()); } TEST_F(ShapeRefinerTest, PropagateShape) { Scope root = Scope::NewRootScope(); auto input = ops::Const(root, {{1.0, 2.0}, {3.0, 4.0}, {5.0, 6.0}}); auto shape = ops::Shape(root, input); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeData") .Input(shape.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(shape.node())); TF_ASSERT_OK(m.AddNode(shape_data)); shape_inference::InferenceContext* ctx = m.GetContext(shape_data); EXPECT_EQ("[3,2]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, PropagateSize) { Scope root = Scope::NewRootScope(); auto input = ops::Const(root, {{1.0, 2.0}, {3.0, 4.0}, {5.0, 6.0}}); auto size = ops::Size(root, input); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeData") .Input(size.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(size.node())); TF_ASSERT_OK(m.AddNode(shape_data)); shape_inference::InferenceContext* ctx = m.GetContext(shape_data); EXPECT_EQ("[6]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, PropagateRank) { Scope root = Scope::NewRootScope(); auto input = ops::Const(root, {{1.0, 2.0}, {3.0, 4.0}, {5.0, 6.0}}); auto rank = ops::Rank(root, input); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeData") .Input(rank.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(rank.node())); TF_ASSERT_OK(m.AddNode(shape_data)); shape_inference::InferenceContext* ctx = m.GetContext(shape_data); EXPECT_EQ("[2]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, PropagateRange) { Scope root = Scope::NewRootScope(); auto begin = ops::Const(root, 1); auto limit = ops::Const(root, 11); auto delta = ops::Const(root, 3); auto range = ops::Range(root, begin, limit, delta); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeData") .Input(range.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(begin.node())); TF_ASSERT_OK(m.AddNode(limit.node())); TF_ASSERT_OK(m.AddNode(delta.node())); TF_ASSERT_OK(m.AddNode(range.node())); TF_ASSERT_OK(m.AddNode(shape_data)); shape_inference::InferenceContext* ctx = m.GetContext(shape_data); EXPECT_EQ("[1,4,7,10]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, NoPropagatePlaceholderWithDefault) { Scope root = Scope::NewRootScope(); auto constant = ops::Const<int>(root, 2); auto placeholder = ops::PlaceholderWithDefault(root, constant, PartialTensorShape()); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeData") .Input(placeholder.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(constant.node())); TF_ASSERT_OK(m.AddNode(placeholder.node())); TF_ASSERT_OK(m.AddNode(shape_data)); shape_inference::InferenceContext* ic = m.GetContext(shape_data); EXPECT_EQ(ic->DebugString(ic->output(0)), "?"); } TEST_F(ShapeRefinerTest, ConstantValueTwoInputsToSameNode) { Scope root = Scope::NewRootScope(); auto begin_and_delta = ops::Const(root, 1); auto limit = ops::Const(root, 4); auto range = ops::Range(root, begin_and_delta, limit, begin_and_delta); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeData") .Input(range.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(begin_and_delta.node())); TF_ASSERT_OK(m.AddNode(limit.node())); TF_ASSERT_OK(m.AddNode(range.node())); TF_ASSERT_OK(m.AddNode(shape_data)); shape_inference::InferenceContext* ctx = m.GetContext(shape_data); EXPECT_EQ("[1,2,3]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, ConstantValueVisitNodeTwice) { Scope root = Scope::NewRootScope(); auto begin = ops::Const(root, 1); auto limit = ops::Const(root, 8); auto delta = ops::Const(root, 3); auto d1 = ops::Add(root, begin, limit); auto d2 = ops::Add(root, begin, delta); auto flimit = ops::Sub(root, begin, d1); auto fdelta = ops::Sub(root, begin, d2); auto nl = ops::Abs(root, flimit); auto nd = ops::Abs(root, fdelta); auto range = ops::Range(root, begin, nl, nd); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeData") .Input(range.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(begin.node())); TF_ASSERT_OK(m.AddNode(limit.node())); TF_ASSERT_OK(m.AddNode(delta.node())); TF_ASSERT_OK(m.AddNode(d1.node())); TF_ASSERT_OK(m.AddNode(d2.node())); TF_ASSERT_OK(m.AddNode(flimit.node())); TF_ASSERT_OK(m.AddNode(fdelta.node())); TF_ASSERT_OK(m.AddNode(nl.node())); TF_ASSERT_OK(m.AddNode(nd.node())); TF_ASSERT_OK(m.AddNode(range.node())); TF_ASSERT_OK(m.AddNode(shape_data)); shape_inference::InferenceContext* ctx = m.GetContext(shape_data); EXPECT_EQ("[1,4,7]", ctx->DebugString(ctx->output(0))); } namespace { Status TensorAsShapeShapeFn(shape_inference::InferenceContext* c) { shape_inference::ShapeHandle out; TF_RETURN_IF_ERROR(c->MakeShapeFromShapeTensor(0 , &out)); c->set_output(0, out); return absl::OkStatus(); } Status PartialTensorAsShapeShapeFn(shape_inference::InferenceContext* c) { shape_inference::ShapeHandle out; const Tensor* t = c->input_tensor(0); if (t == nullptr || t->NumElements() != 1) { c->set_output(0, c->UnknownShape()); return absl::OkStatus(); } TF_RETURN_IF_ERROR( c->MakeShapeFromTensorShape(TensorShape({t->flat<int32>()(0)}), &out)); c->set_output(0, out); return absl::OkStatus(); } REGISTER_OP("PartialTensorAsShapeInt32") .Input("a: int32") .Output("o: int32") .SetShapeFn(PartialTensorAsShapeShapeFn); REGISTER_OP("TensorAsShapeInt32") .Input("a: int32") .Output("o: int32") .SetShapeFn(TensorAsShapeShapeFn); REGISTER_OP("TensorAsShapeInt64") .Input("a: int64") .Output("o: int64") .SetShapeFn(TensorAsShapeShapeFn); REGISTER_OP("NonConstScalarInt32") .Output("o: int32") .SetDoNotOptimize() .SetShapeFn(shape_inference::ScalarShape); REGISTER_OP("NonConstScalarInt64") .Output("o: int64") .SetDoNotOptimize() .SetShapeFn(shape_inference::ScalarShape); REGISTER_OP("WithEmptyVectorShape") .Output("o: int32") .SetDoNotOptimize() .SetShapeFn([](shape_inference::InferenceContext* c) { c->set_output(0, c->Vector(0)); return absl::OkStatus(); }); REGISTER_OP("WithPartialShape") .Output("o: int32") .SetDoNotOptimize() .SetShapeFn([](shape_inference::InferenceContext* c) { c->set_output( 0, c->MakeShape({1, shape_inference::InferenceContext::kUnknownDim, 3, shape_inference::InferenceContext::kUnknownDim, 5})); return absl::OkStatus(); }); REGISTER_OP("WithPartialShape2") .Output("o: int32") .SetDoNotOptimize() .SetShapeFn([](shape_inference::InferenceContext* c) { c->set_output( 0, c->MakeShape({6, shape_inference::InferenceContext::kUnknownDim, 8})); return absl::OkStatus(); }); REGISTER_OP("WithUnknownShape") .Output("o: int32") .SetDoNotOptimize() .SetShapeFn([](shape_inference::InferenceContext* c) { c->set_output(0, c->UnknownShape()); return absl::OkStatus(); }); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_EmptyVector) { Scope root = Scope::NewRootScope(); Node* input; TF_ASSERT_OK( NodeBuilder("in", "WithEmptyVectorShape").Finalize(root.graph(), &input)); Node* result; TF_ASSERT_OK(NodeBuilder("test", "TensorAsShapeInt32") .Input(input) .Finalize(root.graph(), &result)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(input)); TF_ASSERT_OK(m.AddNode(result)); shape_inference::InferenceContext* ctx = m.GetContext(result); EXPECT_EQ("[]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_Shape) { for (int pass = 0; pass < 2; ++pass) { Scope root = Scope::NewRootScope(); Node* input; TF_ASSERT_OK( NodeBuilder("in", pass == 0 ? "WithPartialShape" : "WithUnknownShape") .Finalize(root.graph(), &input)); auto shape = ops::Shape(root, Output(input)); Node* result; TF_ASSERT_OK(NodeBuilder("test", "TensorAsShapeInt32") .Input(shape.node()) .Finalize(root.graph(), &result)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(input)); TF_ASSERT_OK(m.AddNode(shape.node())); TF_ASSERT_OK(m.AddNode(result)); shape_inference::InferenceContext* ctx = m.GetContext(result); if (pass == 0) { EXPECT_EQ("[1,?,3,?,5]", ctx->DebugString(ctx->output(0))); } else { EXPECT_EQ("?", ctx->DebugString(ctx->output(0))); } } } TEST_F(ShapeRefinerTest, ConstantValueAsShape_PackInt32) { Scope root = Scope::DisabledShapeInferenceScope(); Node* scalar_non_const; TF_ASSERT_OK(NodeBuilder("in", "NonConstScalarInt32") .Finalize(root.graph(), &scalar_non_const)); InputList inputs{ Input(ops::Const<int32>(root, 10)), Input(ops::Const<int32>(root, 20)), Input(Output(scalar_non_const)), Input(ops::Const<int32>(root, 40)), }; auto pack = ops::Stack(root, inputs); TF_ASSERT_OK(root.status()); Node* result; TF_ASSERT_OK(NodeBuilder("test", "TensorAsShapeInt32") .Input(pack.node()) .Finalize(root.graph(), &result)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); for (const auto& input : inputs) { TF_ASSERT_OK(m.AddNode(input.node())); } TF_ASSERT_OK(m.AddNode(pack.node())); TF_ASSERT_OK(m.AddNode(result)); shape_inference::InferenceContext* ctx = m.GetContext(result); EXPECT_EQ("[10,20,?,40]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_PackInt64) { Scope root = Scope::DisabledShapeInferenceScope(); Node* scalar_non_const; TF_ASSERT_OK(NodeBuilder("in", "NonConstScalarInt64") .Finalize(root.graph(), &scalar_non_const)); InputList inputs{ Input(ops::Const<int64_t>(root, int64_t{10})), Input(ops::Const<int64_t>(root, int64_t{20})), Input(Output(scalar_non_const)), Input(ops::Const<int64_t>(root, int64_t{1} << 40)), }; auto pack = ops::Stack(root, inputs); TF_ASSERT_OK(root.status()); Node* result; TF_ASSERT_OK(NodeBuilder("test", "TensorAsShapeInt64") .Input(pack.node()) .Finalize(root.graph(), &result)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); for (const auto& input : inputs) { TF_ASSERT_OK(m.AddNode(input.node())); } TF_ASSERT_OK(m.AddNode(pack.node())); TF_ASSERT_OK(m.AddNode(result)); shape_inference::InferenceContext* ctx = m.GetContext(result); EXPECT_EQ("[10,20,?,1099511627776]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_PackUnknownDim) { Scope root = Scope::NewRootScope(); InputList inputs{ Input(ops::Const<int64_t>(root, int64_t{10})), Input(ops::Const<int64_t>(root, int64_t{-1})), }; auto pack = ops::Stack(root, inputs); TF_ASSERT_OK(root.status()); Node* result; TF_ASSERT_OK(NodeBuilder("test", "TensorAsShapeInt64") .Input(pack.node()) .Finalize(root.graph(), &result)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); for (const auto& input : inputs) { TF_ASSERT_OK(m.AddNode(input.node())); } TF_ASSERT_OK(m.AddNode(pack.node())); TF_ASSERT_OK(m.AddNode(result)); shape_inference::InferenceContext* ctx = m.GetContext(result); EXPECT_EQ("[10,?]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_PackInvalidInput) { Scope root = Scope::NewRootScope(); InputList inputs{ Input(ops::Const<int64_t>(root, {int64_t{10}, int64_t{20}})), Input(ops::Const<int64_t>(root, {int64_t{10}, int64_t{21}})), }; auto pack = ops::Stack(root, inputs); TF_ASSERT_OK(root.status()); Node* result; TF_ASSERT_OK(NodeBuilder("test", "TensorAsShapeInt64") .Input(pack.node()) .Finalize(root.graph(), &result)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); for (const auto& input : inputs) { TF_ASSERT_OK(m.AddNode(input.node())); } TF_ASSERT_OK(m.AddNode(pack.node())); EXPECT_TRUE(absl::StrContains(m.AddNode(result).message(), "but is rank 2")); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_Concat) { Scope root = Scope::DisabledShapeInferenceScope(); Graph* g = root.graph(); Node* partial_1; Node* partial_2; TF_ASSERT_OK(NodeBuilder("in", "WithPartialShape").Finalize(g, &partial_1)); TF_ASSERT_OK(NodeBuilder("in", "WithPartialShape2").Finalize(g, &partial_2)); auto const_input = ops::Const(root, {9, 10, 11}); OutputList concat_inputs{ ops::Shape(root, Output(partial_1)), ops::Shape(root, Output(partial_2)), const_input, }; auto concat_dim = ops::Const(root, 0); auto concat = ops::Concat(root, concat_inputs, concat_dim); TF_ASSERT_OK(root.status()); Node* result; TF_ASSERT_OK(NodeBuilder("test", "TensorAsShapeInt32") .Input(concat.node()) .Finalize(g, &result)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(partial_1)); TF_ASSERT_OK(m.AddNode(partial_2)); for (const auto& o : concat_inputs) { TF_ASSERT_OK(m.AddNode(o.node())); } TF_ASSERT_OK(m.AddNode(concat_dim.node())); TF_ASSERT_OK(m.AddNode(concat.node())); TF_ASSERT_OK(m.AddNode(result)); shape_inference::InferenceContext* ctx = m.GetContext(result); EXPECT_EQ("[1,?,3,?,5,6,?,8,9,10,11]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_ConcatWithUnknown) { Scope root = Scope::DisabledShapeInferenceScope(); Graph* g = root.graph(); Node* scalar_non_const; TF_ASSERT_OK(NodeBuilder("in", "NonConstScalarInt32") .Finalize(root.graph(), &scalar_non_const)); Node* partial_1; Node* partial_2; Node* unknown; TF_ASSERT_OK(NodeBuilder("in", "WithPartialShape").Finalize(g, &partial_1)); TF_ASSERT_OK(NodeBuilder("in", "WithPartialShape2").Finalize(g, &partial_2)); TF_ASSERT_OK(NodeBuilder("in", "WithUnknownShape").Finalize(g, &unknown)); OutputList concat_inputs{ ops::Shape(root, Output(partial_1)), ops::Shape(root, Output(partial_2)), ops::Shape(root, Output(unknown)), }; auto concat_dim = ops::Const(root, 0); auto concat = ops::Concat(root, concat_inputs, concat_dim); TF_ASSERT_OK(root.status()); Node* result; TF_ASSERT_OK(NodeBuilder("test", "TensorAsShapeInt32") .Input(concat.node()) .Finalize(g, &result)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(partial_1)); TF_ASSERT_OK(m.AddNode(partial_2)); TF_ASSERT_OK(m.AddNode(unknown)); for (const auto& o : concat_inputs) { TF_ASSERT_OK(m.AddNode(o.node())); } TF_ASSERT_OK(m.AddNode(concat_dim.node())); TF_ASSERT_OK(m.AddNode(concat.node())); TF_ASSERT_OK(m.AddNode(result)); shape_inference::InferenceContext* ctx = m.GetContext(result); EXPECT_EQ("?", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_ConcatInvalidDimValue) { Scope root = Scope::DisabledShapeInferenceScope(); Graph* g = root.graph(); Node* scalar_non_const; TF_ASSERT_OK(NodeBuilder("in", "NonConstScalarInt32") .Finalize(root.graph(), &scalar_non_const)); Node* partial_1; Node* partial_2; TF_ASSERT_OK(NodeBuilder("in", "WithPartialShape").Finalize(g, &partial_1)); TF_ASSERT_OK(NodeBuilder("in", "WithPartialShape2").Finalize(g, &partial_2)); auto const_input = ops::Const(root, {9, -2, 11}); OutputList concat_inputs{ ops::Shape(root, Output(partial_1)), ops::Shape(root, Output(partial_2)), const_input, }; auto concat_dim = ops::Const(root, 0); auto concat = ops::Concat(root, concat_inputs, concat_dim); TF_ASSERT_OK(root.status()); Node* result; TF_ASSERT_OK(NodeBuilder("test", "TensorAsShapeInt32") .Input(concat.node()) .Finalize(g, &result)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(partial_1)); TF_ASSERT_OK(m.AddNode(partial_2)); for (const auto& o : concat_inputs) { TF_ASSERT_OK(m.AddNode(o.node())); } TF_ASSERT_OK(m.AddNode(concat_dim.node())); TF_ASSERT_OK(m.AddNode(concat.node())); EXPECT_EQ("Invalid value in tensor used for shape: -2", m.AddNode(result).message()); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_StridedSlice) { TestStridedSlice( {1, -1, 3, -1, 5}, 2, 5, 1, "[3,?,5]"); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_StridedSliceNegativeStride) { TestStridedSlice( {1, -1, 3, -1, 5}, 10, 0, -1, "[5,?,3,?]"); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_StridedSliceMasks) { TestStridedSlice( {1, -1, 3, -1, 5}, 3, 4, 1, "[1,?,3,?,5]", 1, 1); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_StridedSliceInvalidMask) { TestStridedSlice( {1, -1, 3}, 2, 3, 1, "[?,?,?]", 0, 0, 1); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_StridedSliceWithShrinkAxis) { TestStridedSlice( {1, -1, 3, -1, 5}, 2, 3, 1, "[3]", 0, 0, 0, 1, "PartialTensorAsShapeInt32"); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_StridedSliceWithShrinkAxisOnUnknownDim) { TestStridedSlice( {1, -1, 3, -1, 5}, 1, 2, 1, "?", 0, 0, 0, 1, "PartialTensorAsShapeInt32"); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_StridedSliceMulti) { Scope root = Scope::DisabledShapeInferenceScope(); auto input = ops::Placeholder(root, DT_INT32); auto begin = ops::Const(root, {0, 0}); auto end = ops::Const(root, {2, 2}); auto stride = ops::Const(root, {1, 1}); auto slice = ops::StridedSlice(root, input, begin, end, stride); Node* result; TF_ASSERT_OK(NodeBuilder("test", "TensorAsShapeInt32") .Input(slice.node()) .Finalize(root.graph(), &result)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(begin.node())); TF_ASSERT_OK(m.AddNode(end.node())); TF_ASSERT_OK(m.AddNode(stride.node())); TF_ASSERT_OK(m.AddNode(slice.node())); TF_ASSERT_OK(m.AddNode(result)); shape_inference::InferenceContext* ctx = m.GetContext(result); EXPECT_EQ(ctx->DebugString(ctx->output(0)), "?"); } namespace { REGISTER_OP("Dummy"); } TEST_F(ShapeRefinerTest, SameDefinedShape) { Scope root = Scope::NewRootScope(); Graph* g = root.graph(); Node* test; TF_CHECK_OK(NodeBuilder("test", "Dummy").Finalize(g, &test)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); m.set_require_shape_inference_fns(false); TF_ASSERT_OK(m.AddNode(test)); shape_inference::InferenceContext* ctx = m.GetContext(test); auto unknown = ctx->UnknownShape(); auto unknown_b = ctx->UnknownShape(); auto s_1_2 = ctx->MakeShape({1, 2}); auto s_1_2_b = ctx->MakeShape({1, 2}); auto s_2_2 = ctx->MakeShape({2, 2}); auto s_unknown_2 = ctx->MakeShape({-1, 2}); auto s_unknown_2_b = ctx->MakeShape({-1, 2}); EXPECT_TRUE(SameDefinedShape(ctx, unknown, unknown)); EXPECT_FALSE(SameDefinedShape(ctx, unknown, unknown_b)); EXPECT_FALSE(SameDefinedShape(ctx, unknown, s_1_2)); EXPECT_TRUE(SameDefinedShape(ctx, s_1_2, s_1_2_b)); EXPECT_FALSE(SameDefinedShape(ctx, s_1_2, s_2_2)); EXPECT_TRUE(SameDefinedShape(ctx, s_unknown_2, s_unknown_2)); EXPECT_FALSE(SameDefinedShape(ctx, s_unknown_2, s_unknown_2_b)); } TEST_F(ShapeRefinerTest, IsUpdatedShapesOrTypes) { Scope root = Scope::NewRootScope(); Graph* g = root.graph(); Node* test; TF_CHECK_OK(NodeBuilder("test", "Dummy").Finalize(g, &test)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); m.set_require_shape_inference_fns(false); TF_ASSERT_OK(m.AddNode(test)); shape_inference::InferenceContext* ctx = m.GetContext(test); shape_inference::ShapeHandle unknown = ctx->UnknownShape(); std::vector<shape_inference::ShapeAndType> t0{ {ctx->MakeShape({1, 2, 3}), DT_FLOAT}, {unknown, DT_INVALID}, {ctx->MakeShape({4, 3, 2, 1}), DT_INT32}}; std::vector<shape_inference::ShapeAndType> t1{ {ctx->MakeShape({1, 2, 3}), DT_FLOAT}, {unknown, DT_INVALID}, {ctx->MakeShape({4, 3, 2, 1}), DT_INT32}}; std::vector<shape_inference::ShapeAndType> t2{ {ctx->MakeShape({1, 2, 4}), DT_FLOAT}, {ctx->UnknownShape(), DT_INVALID}, {ctx->MakeShape({4, 3, 2, 1}), DT_INT32}}; std::vector<shape_inference::ShapeAndType> t3{ {ctx->MakeShape({1, 2, 3}), DT_INT32}, {ctx->UnknownShape(), DT_INVALID}, {ctx->MakeShape({4, 3, 2, 1}), DT_INT32}}; EXPECT_FALSE(IsUpdatedShapesOrTypes(ctx, t0, t1)); EXPECT_TRUE(IsUpdatedShapesOrTypes(ctx, t0, t2)); EXPECT_TRUE(IsUpdatedShapesOrTypes(ctx, t0, t3)); } TEST_F(ShapeRefinerTest, IncrementalUpdates) { Scope root = Scope::NewRootScope(); Graph* g = root.graph(); Node* queue; TF_CHECK_OK(NodeBuilder("queue", "FIFOQueueV2") .Attr("component_types", {DT_FLOAT}) .Finalize(g, &queue)); Node* dequeue; TF_CHECK_OK(NodeBuilder("dequeue", "QueueDequeueV2") .Attr("component_types", {DT_FLOAT}) .Input(queue) .Finalize(g, &dequeue)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(queue)); TF_ASSERT_OK(m.AddNode(dequeue)); shape_inference::InferenceContext* ctx = m.GetContext(dequeue); EXPECT_EQ("?", ctx->DebugString(ctx->output(0))); ctx = m.GetContext(queue); shape_inference::ShapeHandle shp = ctx->MakeShape({3, 7}); ctx->set_output_handle_shapes_and_types( 0, std::vector<shape_inference::ShapeAndType>{{shp, DT_FLOAT}}); bool refined = false; TF_ASSERT_OK(m.UpdateNode(dequeue, false , &refined)); EXPECT_TRUE(refined); ctx = m.GetContext(dequeue); EXPECT_EQ("[3,7]", ctx->DebugString(ctx->output(0))); ctx = m.GetContext(queue); shp = ctx->MakeShape({2, 7}); ctx->set_output_handle_shapes_and_types( 0, std::vector<shape_inference::ShapeAndType>{{shp, DT_FLOAT}}); refined = false; TF_ASSERT_OK(m.UpdateNode(dequeue, true , &refined)); EXPECT_TRUE(refined); ctx = m.GetContext(dequeue); EXPECT_EQ("[?,7]", ctx->DebugString(ctx->output(0))); ctx = m.GetContext(queue); shp = ctx->MakeShape({shape_inference::InferenceContext::kUnknownDim, 7}); ctx->set_output_handle_shapes_and_types( 0, std::vector<shape_inference::ShapeAndType>{{shp, DT_FLOAT}}); refined = false; TF_ASSERT_OK(m.UpdateNode(dequeue, true , &refined)); EXPECT_TRUE(refined); ctx = m.GetContext(dequeue); EXPECT_EQ("[?,7]", ctx->DebugString(ctx->output(0))); EXPECT_TRUE(SameHandle(ctx->Dim(ctx->output(0), 0), ctx->Dim(shp, 0))); ctx = m.GetContext(queue); shape_inference::ShapeHandle shp2 = shp; ctx->set_output_handle_shapes_and_types( 0, std::vector<shape_inference::ShapeAndType>{{shp2, DT_FLOAT}}); refined = false; TF_ASSERT_OK(m.UpdateNode(dequeue, false, &refined)); EXPECT_FALSE(refined); EXPECT_TRUE(SameHandle(ctx->Dim(shp, 0), ctx->Dim(shp2, 0))); } void TestSimpleFunctionInference(bool enable_function_inference) { FunctionDefLibrary f_lib_proto; *(f_lib_proto.add_function()) = test::function::XTimesTwo(); FunctionLibraryDefinition f_lib(OpRegistry::Global(), f_lib_proto); Scope root = Scope::NewRootScope(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(f_lib_proto)); auto x = ops::Const(root, {{1.0f, 2.0f}}); auto x2 = test::function::Call(&root, "x2", "XTimesTwo", {x}); ShapeRefiner m(TF_GRAPH_DEF_VERSION, &f_lib); if (enable_function_inference) { m.set_function_library_for_shape_inference(&f_lib); } TF_ASSERT_OK(m.AddNode(x.node())); TF_ASSERT_OK(m.AddNode(x2.node())); EXPECT_SHAPE("[1,2]", m, x, 0); if (enable_function_inference) { EXPECT_SHAPE("[1,2]", m, x2, 0); } else { EXPECT_SHAPE("?", m, x2, 0); } } TEST_F(ShapeRefinerTest, SimpleFunctionShapeInference_Disabled) { TestSimpleFunctionInference(false ); } TEST_F(ShapeRefinerTest, SimpleFunctionShapeInference) { TestSimpleFunctionInference(true ); } TEST_F(ShapeRefinerTest, FunctionShapeInferenceFallback) { FunctionDefLibrary f_lib_proto; *(f_lib_proto.add_function()) = test::function::XTimesTwo(); FunctionLibraryDefinition f_lib(OpRegistry::Global(), f_lib_proto); Scope root = Scope::NewRootScope(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(f_lib_proto)); auto x = ops::Const(root, {{.0f, .0f}}); auto x2 = test::function::Call(&root, "x2", "XTimesTwo", {x}); FunctionDefLibrary empty_f_lib_proto; FunctionLibraryDefinition empty_f_lib(OpRegistry::Global(), empty_f_lib_proto); ShapeRefiner m(TF_GRAPH_DEF_VERSION, &f_lib); m.set_function_library_for_shape_inference(&empty_f_lib); TF_ASSERT_OK(m.AddNode(x.node())); TF_ASSERT_OK(m.AddNode(x2.node())); EXPECT_SHAPE("[1,2]", m, x, 0); EXPECT_SHAPE("?", m, x2, 0); } TEST_F(ShapeRefinerTest, ChainedFunctionShapeInferenceWithMultipleInputs) { FunctionDefLibrary f_lib_proto; *(f_lib_proto.add_function()) = test::function::XTimesTwo(); *(f_lib_proto.add_function()) = test::function::XTimesFour(); *(f_lib_proto.add_function()) = test::function::XTimes16(); *(f_lib_proto.add_function()) = test::function::WXPlusB(); FunctionLibraryDefinition f_lib(OpRegistry::Global(), f_lib_proto); Scope root = Scope::NewRootScope(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(f_lib_proto)); auto w = ops::Const(root, {{.0f}, {.0f}, {.0f}}); auto x = ops::Const(root, {{.0f, .0f, .0f}}); auto b = ops::Const(root, {{.0f}}); auto wxplusb = test::function::Call(&root, "wxplusb", "WXPlusB", {w, x, b}); auto wxplusb16 = test::function::Call(&root, "wxplusb16", "XTimes16", {wxplusb}); ShapeRefiner m(TF_GRAPH_DEF_VERSION, &f_lib); m.set_function_library_for_shape_inference(&f_lib); TF_ASSERT_OK(m.AddNode(w.node())); TF_ASSERT_OK(m.AddNode(x.node())); TF_ASSERT_OK(m.AddNode(b.node())); TF_ASSERT_OK(m.AddNode(wxplusb.node())); TF_ASSERT_OK(m.AddNode(wxplusb16.node())); EXPECT_SHAPE("[3,1]", m, w, 0); EXPECT_SHAPE("[1,3]", m, x, 0); EXPECT_SHAPE("[1,1]", m, b, 0); EXPECT_SHAPE("[3,3]", m, wxplusb, 0); EXPECT_SHAPE("[3,3]", m, wxplusb16, 0); } TEST_F(ShapeRefinerTest, FunctionShapeInferenceWorksForResourceHandles) { FunctionDefLibrary f_lib_proto; *(f_lib_proto.add_function()) = test::function::Swap(); FunctionLibraryDefinition f_lib(OpRegistry::Global(), f_lib_proto); Scope root = Scope::NewRootScope().ExitOnError(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(f_lib_proto)); auto x1 = ops::VarHandleOp(root, DataType::DT_FLOAT, TensorShape({128, 256})); auto x2 = ops::VarHandleOp(root, DataType::DT_DOUBLE, TensorShape({1024})); auto swap = test::function::Call(&root, "swap", "Swap", {x1, x2}); EXPECT_EQ(swap.node()->num_outputs(), 2); ShapeRefiner m(TF_GRAPH_DEF_VERSION, &f_lib); m.set_function_library_for_shape_inference(&f_lib); TF_ASSERT_OK(m.AddNode(x1.node())); TF_ASSERT_OK(m.AddNode(x2.node())); TF_ASSERT_OK(m.AddNode(swap.node())); EXPECT_EQ(m.GetContext(swap.node())->num_outputs(), 2); EXPECT_RESOURCE_SINGLE_SHAPE("[128,256]", m, x1, 0); EXPECT_RESOURCE_SINGLE_SHAPE("[1024]", m, x2, 0); EXPECT_RESOURCE_SINGLE_SHAPE("[1024]", m, swap, 0); EXPECT_RESOURCE_SINGLE_SHAPE("[128,256]", m, swap, 1); EXPECT_RESOURCE_SINGLE_TYPE(DataType::DT_DOUBLE, m, swap, 0); EXPECT_RESOURCE_SINGLE_TYPE(DataType::DT_FLOAT, m, swap, 1); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/shape_refiner.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/shape_refiner_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3a9c3669-9b4c-4efe-bafe-3ce365d94cce
cpp
google/arolla
qtype_constraint
arolla/expr/operator_loader/qtype_constraint.cc
arolla/expr/operator_loader/qtype_constraint_test.cc
#include "arolla/expr/operator_loader/qtype_constraint.h" #include <cstddef> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/str_replace.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "arolla/expr/eval/thread_safe_model_executor.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_debug_string.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/operator_loader/helper.h" #include "arolla/expr/operator_loader/parameter_qtypes.h" #include "arolla/expr/qtype_utils.h" #include "arolla/expr/tuple_expr_operator.h" #include "arolla/memory/optional_value.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/tuple_qtype.h" #include "arolla/qtype/typed_value.h" #include "arolla/util/unit.h" #include "arolla/util/status_macros_backport.h" namespace arolla::operator_loader { namespace { using ::arolla::expr::BindOp; using ::arolla::expr::ExprNodePtr; using ::arolla::expr::GetLeafKeys; using ::arolla::expr::Literal; using ::arolla::expr::MakeTupleOperator; using ::arolla::expr::PopulateQTypes; using ::arolla::expr::ToDebugString; absl::StatusOr<std::pair<ExprNodePtr, ExprNodePtr>> PreprocessQTypeConstraint(ExprNodePtr expr) { ExprNodePtr nothing_literal = Literal(GetNothingQType()); ASSIGN_OR_RETURN(auto predicate_expr, ReplacePlaceholdersWithLeaves(expr)); ExprNodePtr presence_expr = nullptr; absl::flat_hash_map<std::string, QTypePtr> leaf_qtypes; for (const auto& leaf_key : GetLeafKeys(predicate_expr)) { leaf_qtypes[leaf_key] = GetQTypeQType(); ASSIGN_OR_RETURN(auto arg_is_present, expr::CallOp("core.not_equal", {nothing_literal, expr::Leaf(leaf_key)})); if (presence_expr == nullptr) { presence_expr = std::move(arg_is_present); } else { ASSIGN_OR_RETURN( presence_expr, expr::CallOp("core.presence_and", {std::move(presence_expr), std::move(arg_is_present)})); } } if (presence_expr == nullptr) { presence_expr = Literal(OptionalUnit(kUnit)); } auto deduce_output_qtype = [&leaf_qtypes](const ExprNodePtr& e) -> const QType* { if (auto annotated_expr = PopulateQTypes(e, leaf_qtypes); annotated_expr.ok()) { return (*annotated_expr)->qtype(); } else { return nullptr; } }; DCHECK_EQ(deduce_output_qtype(presence_expr), GetQType<OptionalUnit>()); const QType* output_qtype = deduce_output_qtype(predicate_expr); if (output_qtype == nullptr) { return absl::InvalidArgumentError( "error while computing output QType of a QType constraint predicate: " + ToDebugString(expr)); } if (output_qtype != GetQType<OptionalUnit>()) { return absl::InvalidArgumentError(absl::StrFormat( "expected a constraint predicate to return %s, got %s: %s", GetQType<OptionalUnit>()->name(), output_qtype->name(), ToDebugString(expr))); } return std::pair(std::move(predicate_expr), std::move(presence_expr)); } std::string FormatQTypeNames(absl::string_view message, const ParameterQTypes& parameter_qtypes) { absl::flat_hash_map<std::string, std::string> replacements; replacements.reserve(parameter_qtypes.size()); for (const auto& [param_name, param_qtype] : parameter_qtypes) { replacements[absl::StrFormat("{%s}", param_name)] = std::string(param_qtype->name()); if (IsTupleQType(param_qtype)) { replacements[absl::StrFormat("{*%s}", param_name)] = "(" + absl::StrJoin(param_qtype->type_fields(), ", ", [](std::string* out, const auto& field_slot) { const absl::string_view name = field_slot.GetType()->name(); out->append(name.data(), name.size()); }) + ")"; } } return absl::StrReplaceAll(message, replacements); } } absl::StatusOr<QTypeConstraintFn> MakeQTypeConstraintFn( absl::Span<const QTypeConstraint> constraints) { if (constraints.empty()) { return [](const ParameterQTypes&) -> absl::StatusOr<bool> { return true; }; } std::vector<std::string> error_messages; std::vector<ExprNodePtr> exprs; exprs.reserve(constraints.size() * 2); error_messages.reserve(constraints.size()); for (const auto& constraint : constraints) { ASSIGN_OR_RETURN( (auto [predicate_expr, presence_expr]), PreprocessQTypeConstraint(constraint.predicate_expr)); exprs.emplace_back(std::move(predicate_expr)); exprs.emplace_back(std::move(presence_expr)); error_messages.emplace_back(constraint.error_message); } ASSIGN_OR_RETURN(auto expr, BindOp(MakeTupleOperator::Make(), exprs, {})); ASSIGN_OR_RETURN(auto executor, MakeParameterQTypeModelExecutor(expr)); return [executor = std::move(executor), error_messages = std::move(error_messages)]( const ParameterQTypes& parameter_qtypes) -> absl::StatusOr<bool> { ASSIGN_OR_RETURN(auto values, executor(parameter_qtypes)); DCHECK(IsTupleQType(values.GetType())); DCHECK(values.GetFieldCount() == error_messages.size() * 2); bool all_args_present = true; for (size_t i = 0; i < error_messages.size(); ++i) { ASSIGN_OR_RETURN(OptionalUnit fulfilled, values.GetField(i * 2 + 0).As<OptionalUnit>()); ASSIGN_OR_RETURN(OptionalUnit args_present, values.GetField(i * 2 + 1).As<OptionalUnit>()); all_args_present = all_args_present && args_present; if (args_present && !fulfilled) { return absl::InvalidArgumentError( FormatQTypeNames(error_messages[i], parameter_qtypes)); } } return all_args_present; }; } }
#include "arolla/expr/operator_loader/qtype_constraint.h" #include <cstdint> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "absl/status/statusor.h" #include "arolla/expr/expr.h" #include "arolla/memory/optional_value.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/shape_qtype.h" #include "arolla/qtype/tuple_qtype.h" #include "arolla/util/bytes.h" #include "arolla/util/status_macros_backport.h" namespace arolla::operator_loader { namespace { using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::arolla::expr::CallOp; using ::arolla::expr::Literal; using ::arolla::expr::Placeholder; using ::testing::HasSubstr; class QTypeConstraintTest : public ::testing::Test { protected: static absl::StatusOr<QTypeConstraintFn> SampleConstraintFn() { ASSIGN_OR_RETURN(auto x_is_scalar_qtype_expr, CallOp("qtype.is_scalar_qtype", {Placeholder("x")})); ASSIGN_OR_RETURN(auto y_is_scalar_qtype_expr, CallOp("qtype.is_scalar_qtype", {Placeholder("y")})); ASSIGN_OR_RETURN( auto x_y_has_common_qtype_expr, CallOp("core.not_equal", {CallOp("qtype.common_qtype", {Placeholder("x"), Placeholder("y")}), Literal(GetNothingQType())})); return MakeQTypeConstraintFn({ {x_is_scalar_qtype_expr, "expected `x` to be scalar, got {x}"}, {y_is_scalar_qtype_expr, "expected `y` to be scalar, got {y}"}, {x_y_has_common_qtype_expr, "no common qtype for x:{x} and y:{y}"}, }); } static absl::StatusOr<QTypeConstraintFn> SampleConstraintWithVariadicFn() { auto false_expr = Literal(OptionalUnit{}); return MakeQTypeConstraintFn({ {false_expr, "*x: {*x}"}, }); } }; TEST_F(QTypeConstraintTest, Trivial) { ASSERT_OK_AND_ASSIGN(auto fn, MakeQTypeConstraintFn({})); EXPECT_THAT(fn({}), IsOkAndHolds(true)); } TEST_F(QTypeConstraintTest, Ok) { ASSERT_OK_AND_ASSIGN(auto fn, SampleConstraintFn()); EXPECT_THAT(fn({ {"x", GetQType<int64_t>()}, {"y", GetQType<int32_t>()}, }), IsOkAndHolds(true)); EXPECT_THAT(fn({ {"x", GetQType<int64_t>()}, {"y", GetNothingQType()}, }), IsOkAndHolds(false)); EXPECT_THAT(fn({ {"x", GetNothingQType()}, {"y", GetQType<int32_t>()}, }), IsOkAndHolds(false)); } TEST_F(QTypeConstraintTest, ErrorMessage) { ASSERT_OK_AND_ASSIGN(auto fn, SampleConstraintFn()); EXPECT_THAT( fn({ {"x", GetQType<int64_t>()}, {"y", GetQType<ScalarShape>()}, }), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected `y` to be scalar, got SCALAR_SHAPE"))); EXPECT_THAT( fn({ {"x", GetNothingQType()}, {"y", GetQType<ScalarShape>()}, }), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected `y` to be scalar, got SCALAR_SHAPE"))); EXPECT_THAT(fn({ {"x", GetQType<int32_t>()}, {"y", GetQType<Bytes>()}, }), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("no common qtype for x:INT32 and y:BYTES"))); } TEST_F(QTypeConstraintTest, NoOutputQType) { ASSERT_OK_AND_ASSIGN( auto expr, CallOp("core.get_nth", {Placeholder("x"), Placeholder("y")})); EXPECT_THAT( MakeQTypeConstraintFn({{expr, ""}}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("error while computing output QType of a QType " "constraint predicate: " "M.core.get_nth(P.x, P.y)"))); } TEST_F(QTypeConstraintTest, BadOutputQType) { auto x = Placeholder("x"); EXPECT_THAT(MakeQTypeConstraintFn({{x, ""}}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected a constraint predicate to return " "OPTIONAL_UNIT, got QTYPE: P.x"))); } TEST_F(QTypeConstraintTest, VariadicConstraint) { ASSERT_OK_AND_ASSIGN(auto fn, SampleConstraintWithVariadicFn()); EXPECT_THAT( fn({{"x", MakeTupleQType({})}}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("*x: ()"))); EXPECT_THAT(fn({ {"x", MakeTupleQType({GetQType<int32_t>(), GetQType<float>(), GetQType<bool>()})}, }), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("*x: (INT32, FLOAT32, BOOLEAN)"))); EXPECT_THAT( fn({ {"x", GetQType<int64_t>()}, }), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("*x: {*x}"))); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/operator_loader/qtype_constraint.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/operator_loader/qtype_constraint_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
871d31db-5559-4d8e-9619-1a704c808ec6
cpp
google/tsl
status
tsl/platform/status.cc
tsl/platform/status_test.cc
#include "tsl/platform/status.h" #include <stdio.h> #include <deque> #include <functional> #include <memory> #include <ostream> #include <sstream> #include <string> #include <unordered_map> #include <utility> #include <vector> #include "absl/base/call_once.h" #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/escaping.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_replace.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "tsl/platform/mutex.h" #include "tsl/platform/stack_frame.h" #include "tsl/platform/stacktrace.h" #include "tsl/platform/str_util.h" #include "tsl/platform/strcat.h" #include "tsl/platform/stringprintf.h" #include "tsl/protobuf/error_codes.pb.h" namespace tsl { namespace { class StatusLogSink : public TFLogSink { public: static StatusLogSink* GetInstance() { static StatusLogSink* sink = new StatusLogSink(); return sink; } void enable() { absl::call_once(flag_, [this] { num_messages_ = 5; if (const char* num_msgs_str = getenv("TF_WORKER_NUM_FORWARDED_LOG_MESSAGES")) { if (!absl::SimpleAtoi(num_msgs_str, &num_messages_)) { LOG(WARNING) << "Failed to parse env variable " "TF_WORKER_NUM_WARNING_ERROR_LOG_IN_STATUS=" << num_msgs_str << " as int. Using the default value " << num_messages_ << "."; } } if (num_messages_ > 0) { TFAddLogSink(this); } }); } void GetMessages(std::vector<std::string>* logs) TF_LOCKS_EXCLUDED(mu_) { mutex_lock lock(mu_); for (auto& msg : messages_) { logs->push_back(msg); } } void Send(const TFLogEntry& entry) override TF_LOCKS_EXCLUDED(mu_) { if (entry.log_severity() < absl::LogSeverity::kWarning) return; mutex_lock lock(mu_); messages_.emplace_back(entry.ToString()); if (messages_.size() > static_cast<size_t>(num_messages_)) { messages_.pop_front(); } } private: mutex mu_; absl::once_flag flag_; int num_messages_ = 0; std::deque<std::string> messages_ TF_GUARDED_BY(mu_); }; } namespace errors { static constexpr const char kStackTraceProtoUrl[] = "type.googleapis.com/tensorflow.StackTracePayload"; void SetStackTrace(absl::Status& status, std::vector<StackFrame> stack_trace) { std::vector<std::string> items; items.reserve(stack_trace.size()); for (StackFrame& frame : stack_trace) { items.push_back( absl::StrCat(absl::StrReplaceAll(frame.file_name, {{"\n", ""}}), "\n", frame.line_number, "\n", absl::StrReplaceAll(frame.function_name, {{"\n", ""}}))); } status.SetPayload(kStackTraceProtoUrl, absl::Cord(absl::StrJoin(items, "\n"))); } std::vector<StackFrame> GetStackTrace(const absl::Status& status) { std::vector<StackFrame> stack_trace; absl::optional<absl::Cord> maybe_serialized_payload = status.GetPayload(kStackTraceProtoUrl); if (maybe_serialized_payload.has_value()) { std::vector<std::string> split = absl::StrSplit(maybe_serialized_payload.value().Flatten(), '\n'); assert(split.size() % 3 == 0); for (int i = 0; i < split.size() / 3; ++i) { const int idx = 3 * i; int line_number = -1; CHECK(absl::SimpleAtoi(split[idx + 1], &line_number)); stack_trace.emplace_back(std::move(split[idx]), line_number, std::move(split[idx + 2])); } } return stack_trace; } } #ifdef _WIN32 const char* NullTerminatedMessage(const absl::Status& status) { return absl::StatusMessageAsCStr(status); } #endif std::string* TfCheckOpHelperOutOfLine(const absl::Status& v, const char* msg) { std::stringstream ss; ss << "Non-OK-status: " << msg << "\nStatus: " << v; return new std::string(ss.str()); } StatusGroup::StatusGroup() {} StatusGroup::StatusGroup(std::initializer_list<absl::Status> statuses) { for (const absl::Status& s : statuses) { Update(s); } } static constexpr const char kDerivedStatusProtoUrl[] = "type.googleapis.com/tensorflow.DerivedStatus"; absl::Status StatusGroup::MakeDerived(const absl::Status& s) { if (IsDerived(s)) { return s; } else { absl::Status derived(s); derived.SetPayload(kDerivedStatusProtoUrl, absl::Cord("")); return derived; } } bool StatusGroup::IsDerived(const absl::Status& s) { return s.GetPayload(kDerivedStatusProtoUrl).has_value(); } void StatusGroup::ConfigureLogHistory() { StatusLogSink::GetInstance()->enable(); } void StatusGroup::Update(const absl::Status& s) { if (s.ok()) { ++num_ok_; } else { ok_ = false; if (IsDerived(s)) { derived_.insert(s); } else { non_derived_.insert(s); } } } static constexpr int kMaxAggregatedStatusMessageSize = 8 * 1024; static constexpr int kMaxAttachedLogMessageSize = 512; std::unordered_map<std::string, absl::Cord> StatusGroup::GetPayloads() const { std::unordered_map<std::string, absl::Cord> payloads; auto capture_payload = [&payloads](absl::string_view key, const absl::Cord& value) { payloads[std::string(key)] = value; }; for (const auto& status : derived_) { status.ForEachPayload(capture_payload); } for (const auto& status : non_derived_) { status.ForEachPayload(capture_payload); } payloads.erase(kDerivedStatusProtoUrl); return payloads; } absl::Status MakeStatus( absl::StatusCode code, absl::string_view message, const std::unordered_map<std::string, absl::Cord>& payloads) { absl::Status status(code, message); for (const auto& payload : payloads) { status.SetPayload(payload.first, payload.second); } return status; } std::string MakeString(const absl::Status& status) { return absl::StrCat(absl::StatusCodeToString(status.code()), ": ", status.message()); } absl::Status StatusGroup::as_summary_status() const { if (ok_) { return absl::OkStatus(); } auto get_recent_logs = [this]() -> std::string { if (!recent_logs_.empty()) { std::vector<std::string> fmt; fmt.push_back("\nRecent warning and error logs:"); for (auto& log : recent_logs_) { fmt.push_back(" " + log.substr(0, kMaxAttachedLogMessageSize)); } return absl::StrJoin(fmt, "\n"); } else { return ""; } }; if (non_derived_.size() == 1) { return MakeStatus( non_derived_.begin()->code(), strings::StrCat(non_derived_.begin()->message(), get_recent_logs()), GetPayloads()); } if (!non_derived_.empty()) { std::vector<std::string> fmt; fmt.push_back( strings::Printf("%zu root error(s) found.", non_derived_.size())); int index = 0; auto code = absl::StatusCode::kCancelled; for (const auto& s : non_derived_) { if (code == absl::StatusCode::kCancelled && s.code() != absl::StatusCode::kCancelled) { code = s.code(); } fmt.emplace_back(strings::StrCat(" (", index, ") ", MakeString(s))); ++index; } fmt.push_back(strings::Printf("%zu successful operations.", num_ok_)); fmt.push_back( strings::Printf("%zu derived errors ignored.", derived_.size())); std::string error_msg = absl::StrJoin(fmt, "\n").substr(0, kMaxAggregatedStatusMessageSize); return MakeStatus(code, strings::StrCat(error_msg, get_recent_logs()), GetPayloads()); } else { return MakeDerived(MakeStatus(derived_.begin()->code(), derived_.begin()->message(), GetPayloads())); } } absl::Status StatusGroup::as_concatenated_status() const { if (ok_) { return absl::OkStatus(); } if (non_derived_.size() == 1) { return MakeStatus(non_derived_.begin()->code(), non_derived_.begin()->message(), GetPayloads()); } if (!non_derived_.empty()) { std::vector<string> fmt; fmt.emplace_back("\n====================="); for (const auto& s : non_derived_) { fmt.emplace_back(MakeString(s)); } fmt.emplace_back("=====================\n"); return MakeStatus( non_derived_.begin()->code(), absl::StrJoin(fmt, "\n").substr(0, kMaxAggregatedStatusMessageSize), GetPayloads()); } else { return MakeDerived(MakeStatus(derived_.begin()->code(), derived_.begin()->message(), GetPayloads())); } } void StatusGroup::AttachLogMessages() { recent_logs_.clear(); StatusLogSink::GetInstance()->GetMessages(&recent_logs_); } }
#include "tsl/platform/status.h" #include <unordered_map> #include <vector> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_format.h" #include "xla/tsl/protobuf/status.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/stack_frame.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/status_to_from_proto.h" #include "tsl/platform/test.h" #include "tsl/protobuf/error_codes.pb.h" namespace tsl { namespace { using ::testing::IsEmpty; using ::tsl::testing::IsOk; using ::tsl::testing::StatusIs; TEST(ToStringTest, PayloadsArePrinted) { absl::Status status = errors::Aborted("Aborted Error Message"); status.SetPayload("payload_key", absl::Cord(absl::StrFormat( "payload_value %c%c%c", 1, 2, 3))); EXPECT_EQ(status.ToString(), "ABORTED: Aborted Error Message [payload_key='payload_value " "\\x01\\x02\\x03']"); } TEST(ToStringTest, MatchesAbslStatus) { absl::Status status = errors::Aborted("Aborted Error Message"); status.SetPayload("payload_key", absl::Cord(absl::StrFormat( "payload_value %c%c%c", 1, 2, 3))); absl::Status absl_status = absl::Status(absl::StatusCode::kAborted, status.message()); absl_status.SetPayload("payload_key", absl::Cord(absl::StrFormat( "payload_value %c%c%c", 1, 2, 3))); EXPECT_EQ(status.ToString(), absl_status.ToString()); } TEST(StackTrace, SerializeAndDeserializeCorrectly) { absl::Status status = errors::Aborted("Aborted Error Message"); std::vector<StackFrame> stack_trace; stack_trace.push_back(StackFrame("filename_1", 33, "func_name_1")); stack_trace.push_back(StackFrame("filename_2", 66, "func_name_2")); errors::SetStackTrace(status, stack_trace); std::vector<StackFrame> deserialized = errors::GetStackTrace(status); EXPECT_EQ(stack_trace.size(), deserialized.size()); for (size_t i = 0; i < stack_trace.size(); ++i) { EXPECT_EQ(stack_trace[i], deserialized[i]); } } TEST(StatusGroupTest, DeterministicOrderWithoutPayloads) { absl::Status status_a = errors::Aborted("Status A"); absl::Status status_b = errors::Aborted("Status B"); absl::Status status_c = errors::Aborted("Status C"); absl::Status combined = StatusGroup({status_a, status_b, status_c}).as_summary_status(); EXPECT_EQ(combined, StatusGroup({status_a, status_b, status_c}).as_summary_status()); EXPECT_EQ(combined, StatusGroup({status_a, status_c, status_b}).as_summary_status()); EXPECT_EQ(combined, StatusGroup({status_b, status_a, status_c}).as_summary_status()); EXPECT_EQ(combined, StatusGroup({status_b, status_c, status_a}).as_summary_status()); EXPECT_EQ(combined, StatusGroup({status_c, status_a, status_b}).as_summary_status()); EXPECT_EQ(combined, StatusGroup({status_c, status_b, status_a}).as_summary_status()); } TEST(StatusGroupTest, DeterministicOrderWithPayloads) { absl::Status status_a = errors::Aborted("Status A"); status_a.SetPayload("payload_key", absl::Cord("payload_value_a")); absl::Status status_b = errors::Aborted("Status B"); status_b.SetPayload("payload_key", absl::Cord("payload_value_b")); absl::Status status_c = errors::Aborted("Status C"); status_c.SetPayload("payload_key", absl::Cord("payload_value_c")); absl::Status combined = StatusGroup({status_a, status_b, status_c}).as_summary_status(); ASSERT_TRUE(combined.GetPayload("payload_key").has_value()); std::string payload(combined.GetPayload("payload_key").value()); EXPECT_EQ(payload, StatusGroup({status_a, status_b, status_c}) .as_summary_status() .GetPayload("payload_key")); EXPECT_EQ(payload, StatusGroup({status_a, status_c, status_b}) .as_summary_status() .GetPayload("payload_key")); EXPECT_EQ(payload, StatusGroup({status_b, status_a, status_c}) .as_summary_status() .GetPayload("payload_key")); EXPECT_EQ(payload, StatusGroup({status_b, status_c, status_a}) .as_summary_status() .GetPayload("payload_key")); EXPECT_EQ(payload, StatusGroup({status_c, status_a, status_b}) .as_summary_status() .GetPayload("payload_key")); EXPECT_EQ(payload, StatusGroup({status_c, status_b, status_a}) .as_summary_status() .GetPayload("payload_key")); } TEST(StatusGroupTest, PayloadsMergedProperly) { absl::Status status_a = errors::Aborted("Status A"); status_a.SetPayload("payload_key_a", absl::Cord(std::string("payload_value_a"))); absl::Status status_b = errors::Aborted("Status B"); status_b.SetPayload("payload_key_b", absl::Cord(std::string("payload_value_b"))); absl::Status status_c = errors::Aborted("Status C"); status_c.SetPayload("payload_key_c", absl::Cord(std::string("payload_value_c"))); absl::Status derived_status_c = StatusGroup::MakeDerived(errors::Aborted("Status C")); derived_status_c.SetPayload( "payload_key_c", absl::Cord(std::string("derived_payload_value_c"))); StatusGroup status_group({status_a, status_b, status_c, derived_status_c}); EXPECT_THAT(status_group.GetPayloads(), ::testing::SizeIs(3)); absl::Status combined = status_group.as_summary_status(); EXPECT_EQ(combined.GetPayload("payload_key_a"), "payload_value_a"); EXPECT_EQ(combined.GetPayload("payload_key_b"), "payload_value_b"); EXPECT_EQ(combined.GetPayload("payload_key_c"), "payload_value_c"); } TEST(Status, ErrorStatusForEachPayloadIteratesOverAll) { absl::Status s(absl::StatusCode::kInternal, "Error message"); s.SetPayload("key1", absl::Cord("value1")); s.SetPayload("key2", absl::Cord("value2")); s.SetPayload("key3", absl::Cord("value3")); std::unordered_map<std::string, absl::Cord> payloads; s.ForEachPayload([&payloads](absl::string_view key, const absl::Cord& value) { payloads[std::string(key)] = value; }); EXPECT_EQ(payloads.size(), 3); EXPECT_EQ(payloads["key1"], "value1"); EXPECT_EQ(payloads["key2"], "value2"); EXPECT_EQ(payloads["key3"], "value3"); } TEST(Status, OkStatusForEachPayloadNoIteration) { absl::Status s = absl::OkStatus(); s.SetPayload("key1", absl::Cord("value1")); s.SetPayload("key2", absl::Cord("value2")); s.SetPayload("key3", absl::Cord("value3")); std::unordered_map<std::string, absl::Cord> payloads; s.ForEachPayload([&payloads](absl::string_view key, const absl::Cord& value) { payloads[std::string(key)] = value; }); EXPECT_EQ(payloads.size(), 0); } TEST(Status, SaveOKStatusToProto) { tensorflow::StatusProto status_proto = StatusToProto(absl::OkStatus()); EXPECT_EQ(status_proto.code(), error::OK); EXPECT_THAT(status_proto.message(), IsEmpty()); } TEST(Status, SaveErrorStatusToProto) { tensorflow::StatusProto status_proto = StatusToProto(errors::NotFound("Not found")); EXPECT_EQ(status_proto.code(), error::NOT_FOUND); EXPECT_EQ(status_proto.message(), "Not found"); } TEST(Status, SaveEmptyStatusToProto) { tensorflow::StatusProto status_proto = StatusToProto(absl::Status()); EXPECT_EQ(status_proto.code(), error::OK); EXPECT_THAT(status_proto.message(), IsEmpty()); } TEST(Status, MakeOKStatusFromProto) { tensorflow::StatusProto status_proto; status_proto.set_code(error::OK); EXPECT_THAT(StatusFromProto(status_proto), IsOk()); } TEST(Status, MakeErrorStatusFromProto) { tensorflow::StatusProto status_proto; status_proto.set_code(error::INVALID_ARGUMENT); status_proto.set_message("Invalid argument"); EXPECT_THAT(StatusFromProto(status_proto), StatusIs(error::INVALID_ARGUMENT, "Invalid argument")); } TEST(Status, MakeStatusFromEmptyProto) { EXPECT_THAT(StatusFromProto(tensorflow::StatusProto()), IsOk()); } } }
https://github.com/google/tsl/blob/6d708fdcdd4f40537b7fa273371215a6fa3d4423/tsl/platform/status.cc
https://github.com/google/tsl/blob/6d708fdcdd4f40537b7fa273371215a6fa3d4423/tsl/platform/status_test.cc
6d708fdcdd4f40537b7fa273371215a6fa3d4423
97a52a24-2e0a-4ad9-a56f-7f2e75f9a551
cpp
tensorflow/tensorflow
parse_example
tensorflow/lite/kernels/parse_example/parse_example.cc
tensorflow/lite/kernels/parse_example/parse_example_test.cc
#include "tensorflow/lite/kernels/parse_example/parse_example.h" #include <algorithm> #include <cstddef> #include <memory> #include <string> #include <unordered_map> #include <utility> #include "flatbuffers/flexbuffers.h" #include "tensorflow/core/example/feature.pb.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/platform/blocking_counter.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/fingerprint.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/util/example_proto_fast_parsing.h" #include "tensorflow/core/util/presized_cuckoo_map.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/kernels/parse_example/example_proto_fast_parsing.h" #include "tensorflow/lite/mutable_op_resolver.h" #include "tensorflow/lite/string_util.h" namespace tflite { namespace ops { namespace custom { namespace parse_example { namespace { namespace tf = ::tensorflow; using tf::Status; using tf::StringPiece; using tf::tstring; using tf::example::CopyOrMoveBlock; using tf::example::FastParseExampleConfig; using tf::example::GetListFromBuffer; using tf::example::LimitedArraySlice; using tf::example::ParseExample; using tf::example::SeededHasher; using tf::example::SmallVector; using tf::example::SparseBuffer; using tf::example::Type; using tf::example::parsed::Example; using ConfigIndex = tf::PresizedCuckooMap<std::pair<int32_t, Type>>; struct TfLiteResult { std::vector<TfLiteTensor*> dense_values; std::vector<TfLiteTensor*> sparse_values; std::vector<TfLiteTensor*> sparse_indices; std::vector<TfLiteTensor*> sparse_shapes; std::map<int, tf::Tensor> dense_tensors; }; template <typename T> void FillAndCopyVarLen(const int d, const size_t num_elements, const size_t num_elements_per_minibatch, const FastParseExampleConfig& config, std::vector<SparseBuffer>& varlen_dense_buffers, TfLiteTensor* values) { const tf::Tensor& default_value = config.dense[d].default_value; std::fill(reinterpret_cast<T*>(values->data.raw), reinterpret_cast<T*>(values->data.raw) + num_elements, default_value.flat<T>()(0)); auto data = reinterpret_cast<T*>(values->data.raw); const SparseBuffer& buffer = varlen_dense_buffers[d]; const auto& end_indices = buffer.example_end_indices; const size_t examples_in_buffer = end_indices.size(); const auto& list = GetListFromBuffer<T>(buffer); auto list_ptr = list.begin(); size_t elements_tally = 0; for (size_t j = 0; j < examples_in_buffer; ++j) { const size_t num_elems = end_indices[j] - elements_tally; CopyOrMoveBlock(list_ptr, list_ptr + num_elems, data); list_ptr += num_elems; data += num_elements_per_minibatch; elements_tally = end_indices[j]; } DCHECK(elements_tally == list.size()); } bool ParseExample(StringRef serialized, Example* example) { DCHECK(example != nullptr); tf::protobuf::io::CodedInputStream stream( reinterpret_cast<const uint8_t*>(serialized.str), serialized.len); tensorflow::example::EnableAliasing(&stream); return ParseExample(&stream, example); } Status FastParseSerializedExample( StringRef serialized_example, const tstring& example_name, const size_t example_index, const FastParseExampleConfig& config, bool* quick_filter, int quick_filter_size, const std::unique_ptr<ConfigIndex>& config_index, int config_index_size, SeededHasher* hasher, std::vector<TfLiteTensor*>* output_dense, std::vector<SparseBuffer>* output_varlen_dense, std::vector<SparseBuffer>* output_sparse, std::map<absl::string_view, int>& stats, TfLiteResult* result) { DCHECK(output_dense != nullptr); tensorflow::example::parsed::Example parsed_example; if (!ParseExample(serialized_example, &parsed_example)) { return tf::errors::Internal("Failed to parse example"); } std::vector<int64_t> dense_feature_last_example(config.dense.size(), -1); std::vector<int64_t> sparse_feature_last_example(config.sparse.size(), -1); const size_t parsed_example_size = parsed_example.size(); for (size_t i = 0; i < parsed_example_size; ++i) { tensorflow::example::parsed::FeatureMapEntry& name_and_feature = parsed_example[parsed_example_size - i - 1]; const StringPiece feature_name = name_and_feature.first; tensorflow::example::parsed::Feature& feature = name_and_feature.second; if (feature_name.length() >= quick_filter_size || !quick_filter[feature_name.length()]) { continue; } const uint64_t h = (*hasher)(feature_name); std::pair<int32_t, Type> d_and_type; if (!config_index->Find(h, &d_and_type)) { continue; } size_t d = d_and_type.first; bool is_dense = d_and_type.second == Type::Dense; auto example_error = [&](StringPiece suffix) { return tf::errors::Internal("Name: ", example_name, ", Key: ", feature_name, ", Index: ", example_index, ". ", suffix); }; auto parse_error = [&] { return example_error("Can't parse serialized Example."); }; tf::DataType example_dtype; if (feature.ParseDataType(&example_dtype) != absl::OkStatus()) { return parse_error(); } if (is_dense) { if (example_dtype == tf::DT_INVALID) continue; dense_feature_last_example[d] = example_index; if (example_dtype != config.dense[d].dtype) { return example_error(absl::StrCat( "Data types don't match. Data type: ", DataTypeString(example_dtype), " but expected type: ", DataTypeString(config.dense[d].dtype))); } if (!config.dense[d].variable_length) { TfLiteTensor* out = (*output_dense)[d]; const std::size_t num_elements = config.dense[d].elements_per_stride; const std::size_t offset = example_index * num_elements; auto shape_error = [&](size_t size, StringPiece type_str) { return example_error(absl::StrCat( "Number of ", type_str, " values != expected. " "Values size:", size, " but output shape: ", config.dense[d].shape.DebugString())); }; switch (config.dense[d].dtype) { case tf::DT_INT64: { auto out_p = reinterpret_cast<int64_t*>(out->data.raw) + offset; LimitedArraySlice<int64_t> slice(out_p, num_elements); if (!feature.ParseInt64List(&slice)) return parse_error(); if (slice.EndDistance() != 0) { return shape_error(num_elements - slice.EndDistance(), "int64"); } break; } case tf::DT_FLOAT: { auto out_p = reinterpret_cast<float*>(out->data.raw) + offset; LimitedArraySlice<float> slice(out_p, num_elements); if (!feature.ParseFloatList(&slice)) return parse_error(); if (slice.EndDistance() != 0) { return shape_error(num_elements - slice.EndDistance(), "float"); } break; } case tf::DT_STRING: { auto& out_tensor = result->dense_tensors[d]; auto out_p = out_tensor.flat<tstring>().data() + offset; LimitedArraySlice<tstring> slice(out_p, num_elements); if (!feature.ParseBytesList(&slice)) return parse_error(); if (slice.EndDistance() != 0) { return shape_error(num_elements - slice.EndDistance(), "bytes"); } break; } default: return tf::errors::Internal("Unrecognized dense type: ", config.dense[d].dtype); } } else { SparseBuffer& out = (*output_varlen_dense)[d]; const std::size_t num_elements = config.dense[d].elements_per_stride; if (example_dtype != tf::DT_INVALID && example_dtype != config.dense[d].dtype) { return example_error(absl::StrCat( "Data types don't match. ", "Expected type: ", DataTypeString(config.dense[d].dtype))); } auto shape_error = [&](size_t size, StringPiece type_str) { return example_error( absl::StrCat("Number of ", type_str, " values is not a multiple of stride length. Saw ", size, " values but output shape is: ", config.dense[d].shape.DebugString())); }; switch (config.dense[d].dtype) { case tf::DT_INT64: { if (example_dtype != tf::DT_INVALID) { if (!feature.ParseInt64List(&out.int64_list)) { return parse_error(); } if (out.int64_list.size() % num_elements != 0) { return shape_error(out.int64_list.size(), "int64"); } } out.example_end_indices.push_back(out.int64_list.size()); break; } case tf::DT_FLOAT: { if (example_dtype != tf::DT_INVALID) { if (!feature.ParseFloatList(&out.float_list)) { return parse_error(); } if (out.float_list.size() % num_elements != 0) { return shape_error(out.float_list.size(), "float"); } } out.example_end_indices.push_back(out.float_list.size()); break; } case tf::DT_STRING: { if (example_dtype != tf::DT_INVALID) { if (!feature.ParseBytesList(&out.bytes_list)) { return parse_error(); } if (out.bytes_list.size() % num_elements != 0) { return shape_error(out.bytes_list.size(), "byte"); } } out.example_end_indices.push_back(out.bytes_list.size()); break; } default: return tf::errors::Internal("Should not happen: ", config.dense[d].dtype); } } } else { auto& last_example = sparse_feature_last_example; if (last_example[d] == example_index) { continue; } last_example[d] = example_index; SparseBuffer& out = (*output_sparse)[d]; tf::DataType feature_dtype = config.sparse[d].dtype; if (example_dtype != tf::DT_INVALID && example_dtype != feature_dtype) { return tf::errors::Internal("Data types don't match:", example_dtype, " != ", feature_dtype); } switch (feature_dtype) { case tf::DT_INT64: { if (example_dtype != tf::DT_INVALID) { if (!feature.ParseInt64List(&out.int64_list)) { return parse_error(); } } out.example_end_indices.push_back(out.int64_list.size()); break; } case tf::DT_FLOAT: { if (example_dtype != tf::DT_INVALID) { if (!feature.ParseFloatList(&out.float_list)) { return parse_error(); } } out.example_end_indices.push_back(out.float_list.size()); break; } case tf::DT_STRING: { if (example_dtype != tf::DT_INVALID) { if (!feature.ParseBytesList(&out.bytes_list)) { return parse_error(); } } out.example_end_indices.push_back(out.bytes_list.size()); break; } default: return tf::errors::Internal("Should not happen: ", feature_dtype); } } } for (size_t d = 0; d < config.dense.size(); ++d) { if (config.dense[d].variable_length) continue; if (dense_feature_last_example[d] == example_index) continue; if (config.dense[d].default_value.NumElements() == 0) { return tf::errors::Internal( "Name: ", example_name, ", Feature: ", config.dense[d].feature_name, " (data type: ", DataTypeString(config.dense[d].dtype), ")", " is required but could not be found."); } const tf::Tensor& in = config.dense[d].default_value; TfLiteTensor* out = result->dense_values[d]; const std::size_t num_elements = in.shape().num_elements(); const std::size_t offset = example_index * num_elements; switch (config.dense[d].dtype) { case tf::DT_INT64: { std::copy_n(in.flat<int64_t>().data(), num_elements, out->data.i64 + offset); break; } case tf::DT_FLOAT: { std::copy_n(in.flat<float>().data(), num_elements, out->data.f + offset); break; } case tf::DT_STRING: { auto& out_tensor = result->dense_tensors[d]; std::copy_n(in.flat<tstring>().data(), num_elements, out_tensor.flat<tstring>().data() + offset); break; } default: return tf::errors::Internal("Should not happen: ", config.dense[d].dtype); } } for (size_t d = 0; d < config.dense.size(); ++d) { if (!config.dense[d].variable_length) continue; if (dense_feature_last_example[d] == example_index) continue; SparseBuffer& out = (*output_varlen_dense)[d]; size_t prev_example_end_index = out.example_end_indices.empty() ? 0 : out.example_end_indices.back(); out.example_end_indices.push_back(prev_example_end_index); } for (size_t d = 0; d < config.sparse.size(); ++d) { if (sparse_feature_last_example[d] == example_index) continue; SparseBuffer& out = (*output_sparse)[d]; size_t prev_example_end_index = out.example_end_indices.empty() ? 0 : out.example_end_indices.back(); out.example_end_indices.push_back(prev_example_end_index); } return absl::OkStatus(); } void CountSparseFeatures(const SparseBuffer& sparse_buffer, size_t* total_num_features, size_t* max_num_features) { const std::vector<size_t>& end_indices = sparse_buffer.example_end_indices; *total_num_features += end_indices.back(); *max_num_features = std::max(*max_num_features, end_indices[0]); for (size_t i = 1; i < end_indices.size(); ++i) { size_t example_size = end_indices[i] - end_indices[i - 1]; *max_num_features = std::max(*max_num_features, example_size); } } void CopySparseBufferToTensor(tf::DataType dtype, size_t offset, SparseBuffer* src, TfLiteTensor* dst) { switch (dtype) { case tf::DT_INT64: { std::copy(src->int64_list.begin(), src->int64_list.end(), reinterpret_cast<int64_t*>(dst->data.raw) + offset); break; } case tf::DT_FLOAT: { std::copy(src->float_list.begin(), src->float_list.end(), reinterpret_cast<float*>(dst->data.raw) + offset); break; } case tf::DT_STRING: { DynamicBuffer buffer; for (auto* begin = src->bytes_list.begin(); begin != src->bytes_list.end(); begin++) { buffer.AddString(begin->c_str(), begin->size()); } buffer.WriteToTensor(dst, nullptr); break; } default: DCHECK(false) << "Encountered unexpected DataType " << DataTypeString(dtype) << "in variable that should have been checked."; } } inline void CopyToBuffer(absl::Span<const tstring> vec, char* tensor_buffer, int num_examples, int batch_size, int elements_per_stride) { int i = 0, k = 0; int start = 0; for (; i < num_examples; ++i) { for (int j = 0; j < elements_per_stride; ++j) { memcpy(tensor_buffer + start, vec[k].c_str(), vec[k].size()); start += vec[k].size(); k++; } } for (; i < batch_size; ++i) { for (int j = 0; j < elements_per_stride; ++j) { memcpy(tensor_buffer + start, vec[k].c_str(), vec[k].size()); start += vec[k].size(); k++; } } } Status FastParseExampleLite( const FastParseExampleConfig& config, const TfLiteTensor* serialized, absl::Span<const tstring> example_names, bool* quick_filter, int quick_filter_size, const std::unique_ptr<ConfigIndex>& config_index, int config_index_size, SeededHasher* hasher, TfLiteResult* result, std::map<absl::string_view, int>& stats, TfLiteContext* context) { if (result == nullptr) { return tf::errors::Internal("Result is null"); } const int count = GetStringCount(serialized); std::vector<tf::Tensor> fixed_dense_values(config.dense.size()); std::vector<SparseBuffer> sparse_buffers(config.sparse.size()); std::vector<SparseBuffer> varlen_dense_buffers(config.dense.size()); Status status_of_minibatch; for (size_t e = 0; e < count; ++e) { status_of_minibatch = FastParseSerializedExample( GetString(serialized, e), (!example_names.empty() ? example_names[e] : "<unknown>"), e, config, quick_filter, quick_filter_size, config_index, config_index_size, hasher, &result->dense_values, &varlen_dense_buffers, &sparse_buffers, stats, result); if (!status_of_minibatch.ok()) break; } if (!status_of_minibatch.ok()) { return status_of_minibatch; } for (size_t d = 0; d < config.sparse.size(); ++d) { size_t total_num_features = 0; size_t max_num_features = 0; CountSparseFeatures(sparse_buffers[d], &total_num_features, &max_num_features); tf::TensorShape indices_shape; TfLiteTensor* indices = result->sparse_indices[d]; TfLiteTensor* values = result->sparse_values[d]; TfLiteTensor* sparse_shape = result->sparse_shapes[d]; auto* sparse_shape_ptr = reinterpret_cast<int64_t*>(sparse_shape->data.raw); sparse_shape_ptr[1] = max_num_features; TfLiteIntArray* index_shape = TfLiteIntArrayCreate(2); index_shape->data[0] = total_num_features; index_shape->data[1] = 2; context->ResizeTensor(context, indices, index_shape); TfLiteIntArray* output_shape = TfLiteIntArrayCreate(1); output_shape->data[0] = total_num_features; context->ResizeTensor(context, values, output_shape); SparseBuffer& buffer = sparse_buffers[d]; auto* indices_p = reinterpret_cast<int64_t*>(indices->data.raw); if (!indices_p) { return tf::errors::Internal("Indices tensor not allocated!"); } if (total_num_features > 0) { int64_t* ix_p = indices_p; size_t example_index = 0; int idx0 = 0; size_t delta = 0; for (size_t example_end_index : buffer.example_end_indices) { size_t feature_index = 0; for (; delta < example_end_index; ++delta) { if (idx0 < total_num_features) { *ix_p = example_index; *(ix_p + 1) = feature_index; ix_p += 2; } ++feature_index; ++idx0; } ++example_index; } CopySparseBufferToTensor(config.sparse[d].dtype, 0, &buffer, values); } } for (size_t d = 0; d < config.dense.size(); ++d) { if (!config.dense[d].variable_length) { continue; } size_t max_num_features = 0; std::vector<size_t>& end_indices = varlen_dense_buffers[d].example_end_indices; max_num_features = std::max(max_num_features, end_indices[0]); for (size_t i = 1; i < end_indices.size(); ++i) { size_t example_size = end_indices[i] - end_indices[i - 1]; max_num_features = std::max(max_num_features, example_size); } const size_t stride_size = config.dense[d].elements_per_stride; const size_t max_num_elements = max_num_features / stride_size; tf::TensorShape values_shape; DCHECK_EQ(max_num_features % config.dense[d].elements_per_stride, 0); const size_t batch_size = GetStringCount(serialized); TF_RETURN_IF_ERROR(values_shape.AddDimWithStatus(batch_size)); TF_RETURN_IF_ERROR(values_shape.AddDimWithStatus(max_num_elements)); for (int i = 1; i < config.dense[d].shape.dims(); ++i) { TF_RETURN_IF_ERROR( values_shape.AddDimWithStatus(config.dense[d].shape.dim_size(i))); } TfLiteTensor* values = result->dense_values[d]; const size_t num_elements = GetTensorShape(values).FlatSize(); if (num_elements == 0) { continue; } const size_t num_elements_per_minibatch = num_elements / batch_size; switch (config.dense[d].dtype) { case tf::DT_INT64: { FillAndCopyVarLen<int64_t>(d, num_elements, num_elements_per_minibatch, config, varlen_dense_buffers, values); break; } case tf::DT_FLOAT: { FillAndCopyVarLen<float>(d, num_elements, num_elements_per_minibatch, config, varlen_dense_buffers, values); break; } default: DCHECK(false) << "Encountered unexpected DataType " << config.dense[d].dtype << "in variable that should have been checked"; } } for (size_t d = 0; d < config.dense.size(); ++d) { if (config.dense[d].variable_length) { continue; } if (result->dense_values[d]->type == kTfLiteString) { auto& in = result->dense_tensors[d]; auto vec = in.vec<tstring>(); const int batch_size = result->dense_values[d]->dims->data[0]; const int elements_per_stride = config.dense[d].elements_per_stride; int total_size = 0; std::vector<int32_t> offsets; offsets.reserve(vec.size() + 1); offsets.push_back(0); int k = 0; for (int i = 0; i < batch_size; ++i) { for (int j = 0; j < elements_per_stride; ++j) { if (i < count) { total_size += vec(k++).size(); offsets.push_back(total_size); } else { offsets.push_back(total_size); } } } const int32_t num_strings = offsets.size() - 1; const size_t required_bytes = sizeof(int32_t) * (num_strings + 2) + total_size; char* tensor_buffer = reinterpret_cast<char*>(result->dense_values[d]->data.raw); if (result->dense_values[d]->bytes < required_bytes) { if (result->dense_values[d]->data.raw) { free(result->dense_values[d]->data.raw); } tensor_buffer = reinterpret_cast<char*>(malloc(required_bytes)); result->dense_values[d]->data.raw = tensor_buffer; result->dense_values[d]->bytes = required_bytes; } const int32_t start = sizeof(int32_t) * (num_strings + 2); memcpy(tensor_buffer, &num_strings, sizeof(int32_t)); for (size_t i = 0; i < offsets.size(); i++) { int32_t offset_i = start + offsets[i]; memcpy(tensor_buffer + sizeof(int32_t) * (i + 1), &offset_i, sizeof(int32_t)); } absl::Span<const tstring> slice(vec.data(), vec.size()); CopyToBuffer(slice, tensor_buffer + start, count, batch_size, elements_per_stride); } } return absl::OkStatus(); } } enum InputTensor { kExampleTensor = 0, kNamesTensor = 1, kSparseKeysTensor = 2, kDenseKeysTensor = 3, kRaggedKeysTensor = 4, }; struct OpData { FastParseExampleConfig config; std::vector<tf::TensorShape> dense_shapes; int dense_size = 0; int sparse_size = 0; std::unique_ptr<ConfigIndex> config_index; int config_index_size; SeededHasher hasher; TfLiteResult got; bool* quick_filter = nullptr; int quick_filter_size; bool created = false; ~OpData() { if (quick_filter) { free(quick_filter); } } }; void* Init(TfLiteContext* context, const char* buffer, size_t length) { return new OpData; } template <typename T> tf::Tensor AsTensor(const std::vector<T>& val) { tf::Tensor ret(tf::DataTypeToEnum<T>::value, {static_cast<int64_t>(val.size())}); std::copy_n(val.begin(), val.size(), ret.flat<T>().data()); return ret; } enum Version { V1, V2, }; tf::TensorShape TfLiteToTfShape(TfLiteIntArray* array) { tf::TensorShape shape; for (int i = 0; i < array->size; i++) { shape.AddDim(array->data[i]); } return shape; } template <Version version> TfLiteStatus PrepareParseExample(TfLiteContext* context, TfLiteNode* node) { OpData* data = reinterpret_cast<OpData*>(node->user_data); TF_LITE_ENSURE(context, node->custom_initial_data); data->config.dense.clear(); data->config.sparse.clear(); data->got.dense_values.clear(); const flexbuffers::Vector& v = flexbuffers::GetRoot( reinterpret_cast<const uint8_t*>(node->custom_initial_data), node->custom_initial_data_size) .AsVector(); if (v.size() == 2) { tf::NodeDef nodedef; TF_LITE_ENSURE_EQ(context, nodedef.ParseFromString(v[1].AsString().str()), true); if (version == V1) { data->dense_size = nodedef.attr().at("Ndense").i(); data->sparse_size = nodedef.attr().at("Nsparse").i(); } else if (version == V2) { data->dense_size = nodedef.attr().at("Tdense").list().type_size(); data->sparse_size = nodedef.attr().at("num_sparse").i(); } auto dense_shapes = nodedef.attr().at("dense_shapes").list(); if (data->dense_shapes.empty()) { for (int i = 0; i < dense_shapes.shape_size(); ++i) { data->dense_shapes.push_back(dense_shapes.shape(i)); } } } else { const flexbuffers::Map& m = flexbuffers::GetRoot( reinterpret_cast<const uint8_t*>(node->custom_initial_data), node->custom_initial_data_size) .AsMap(); const flexbuffers::TypedVector keys = m.Keys(); int num_sparse = 0; int num_dense = 0; for (int k = 0; k < keys.size(); ++k) { const std::string key = keys[k].ToString(); const auto value = m[key]; if (key == "Nsparse" || key == "num_sparse") { num_sparse = value.AsInt32(); } if (key == "Ndense") { num_dense = value.AsInt32(); } } data->sparse_size = num_sparse; data->dense_size = num_dense; if (version == V2) { const TfLiteTensor* dense_key_tensor = GetInput(context, node, kDenseKeysTensor); data->dense_size = GetTensorShape(dense_key_tensor).FlatSize(); } } data->config.dense.reserve(data->dense_size); data->config.sparse.reserve(data->sparse_size); data->dense_shapes.reserve(data->dense_size); const auto* serialized = GetInput(context, node, 0); const int batch_size = serialized->dims->size > 0 ? serialized->dims->data[0] : 1; const bool missing_shape_info = data->dense_shapes.empty(); for (int i = 0; i < data->dense_size; i++) { TfLiteTensor* dense_key_tensor = GetOutput(context, node, data->sparse_size * 3 + i); TfLiteIntArray* output_size = TfLiteIntArrayCopy(dense_key_tensor->dims); if (missing_shape_info) { data->dense_shapes.push_back(TfLiteToTfShape(output_size)); } const int original_size = data->dense_shapes[i].dims() > 0 ? data->dense_shapes[i].dim_size(0) : 1; output_size->data[0] = batch_size * original_size; context->ResizeTensor(context, dense_key_tensor, output_size); } size_t offset = 0; for (int i = 0; i < data->sparse_size; i++) { auto* parse_output = GetOutput(context, node, i + offset); SetTensorToDynamic(parse_output); TfLiteIntArray* sparse_size = TfLiteIntArrayCreate(2); sparse_size->data[0] = batch_size; sparse_size->data[1] = 2; context->ResizeTensor(context, parse_output, sparse_size); data->got.sparse_indices.push_back(parse_output); } offset += data->sparse_size; for (int i = 0; i < data->sparse_size; i++) { auto* parse_output = GetOutput(context, node, i + offset); SetTensorToDynamic(parse_output); TfLiteIntArray* sparse_size = TfLiteIntArrayCreate(1); sparse_size->data[0] = 0; context->ResizeTensor(context, parse_output, sparse_size); data->got.sparse_values.push_back(parse_output); } offset += data->sparse_size; for (int i = 0; i < data->sparse_size; i++) { TfLiteTensor* parse_output = GetOutput(context, node, i + offset); SetTensorToDynamic(parse_output); TfLiteIntArray* sparse_size = TfLiteIntArrayCreate(1); sparse_size->data[0] = 2; context->ResizeTensor(context, parse_output, sparse_size); auto* shapes_shape_t = reinterpret_cast<int64_t*>(parse_output->data.i64); shapes_shape_t[0] = batch_size; shapes_shape_t[1] = 1; data->got.sparse_shapes.push_back(parse_output); } data->created = false; return kTfLiteOk; } template <Version version> TfLiteStatus EvalParseExample(TfLiteContext* context, TfLiteNode* node) { OpData* data = reinterpret_cast<OpData*>(node->user_data); if (!data->created) { for (int i = 0; i < data->sparse_size; i++) { int input_index = version == V1 ? kSparseKeysTensor + i : kSparseKeysTensor; int string_index = version == V1 ? 0 : i; const TfLiteTensor* sparse_key_tensor = GetInput(context, node, input_index); const auto key = GetString(sparse_key_tensor, string_index); const auto* sparse_output = GetOutput(context, node, i + data->sparse_size); std::string k(key.str, key.len); switch (sparse_output->type) { case kTfLiteInt64: data->config.sparse.emplace_back(k, tf::DataTypeToEnum<int64_t>::value); break; case kTfLiteFloat32: data->config.sparse.emplace_back(k, tf::DataTypeToEnum<float>::value); break; case kTfLiteString: data->config.sparse.emplace_back(k, tf::DataTypeToEnum<tstring>::value); break; default: return kTfLiteError; } } const auto& dense_shapes = data->dense_shapes; for (int i = 0; i < data->dense_size; i++) { const int input_index = version == V1 ? kSparseKeysTensor + data->sparse_size + i : kDenseKeysTensor; const int dense_defaults_index = version == V1 ? kSparseKeysTensor + data->sparse_size + data->dense_size + i : kRaggedKeysTensor + i + 1; int string_index = version == V1 ? 0 : i; const TfLiteTensor* dense_key_tensor = GetInput(context, node, input_index); const auto* dense_output = GetOutput(context, node, i + data->sparse_size * 3); const auto* dense_defaults = GetInput(context, node, dense_defaults_index); const auto key = GetString(dense_key_tensor, string_index); std::string k(key.str, key.len); const int elements_per_stride = dense_shapes[i].dims() ? dense_shapes[i].num_elements() : 1; switch (dense_output->type) { case kTfLiteInt64: data->config.dense.emplace_back( k, tf::DataTypeToEnum<int64_t>::value, dense_shapes[i], AsTensor<int64_t>(std::vector<int64_t>( dense_defaults->data.i64, dense_defaults->data.i64 + elements_per_stride)), false, elements_per_stride); break; case kTfLiteFloat32: data->config.dense.emplace_back( k, tf::DataTypeToEnum<float>::value, dense_shapes[i], AsTensor<float>(std::vector<float>( dense_defaults->data.f, dense_defaults->data.f + elements_per_stride)), false, elements_per_stride); break; case kTfLiteString: { const int num_strings = GetStringCount(dense_defaults); std::vector<tstring> values; for (int i = 0; i < num_strings; ++i) { auto ref = GetString(dense_defaults, i); values.emplace_back(ref.str, ref.len); } data->config.dense.emplace_back( k, tf::DataTypeToEnum<tstring>::value, dense_shapes[i], AsTensor<tstring>(values), false, elements_per_stride); break; } default: return kTfLiteError; } } int offset = 3 * data->sparse_size; for (int i = 0; i < data->dense_size; i++) { auto* parse_output = GetOutput(context, node, i + offset); data->got.dense_values.push_back(parse_output); if (parse_output->type == kTfLiteString) { tf::TensorShape shape; if (parse_output->dims->size == 1) { shape.AddDim(parse_output->dims->data[0]); } else { shape.AddDim(GetTensorShape(parse_output).FlatSize()); } data->got.dense_tensors[i] = tf::Tensor(tf::DataTypeToEnum<tstring>::value, shape); } } size_t config_size = data->config.dense.size(); config_size += data->config.sparse.size(); data->config_index_size = config_size; auto config_index = std::make_unique<ConfigIndex>(config_size); bool ok = true; int max_length = 0; for (size_t d = 0; d < data->config.dense.size(); ++d) { auto s = data->config.dense[d].feature_name; max_length = s.length() > max_length ? s.length() : max_length; } for (size_t d = 0; d < data->config.sparse.size(); ++d) { auto s = data->config.sparse[d].feature_name; max_length = s.length() > max_length ? s.length() : max_length; } if (data->quick_filter) { free(data->quick_filter); } data->quick_filter = static_cast<bool*>(malloc(++max_length * sizeof(bool))); memset(data->quick_filter, 0, max_length * sizeof(bool)); data->quick_filter_size = max_length; for (size_t d = 0; d < data->config.dense.size(); ++d) { const auto& s = data->config.dense[d].feature_name; data->quick_filter[s.length()] = true; } for (size_t d = 0; d < data->config.sparse.size(); ++d) { const auto& s = data->config.sparse[d].feature_name; data->quick_filter[s.length()] = true; } for (int i = 0; i < 1000; ++i) { for (size_t d = 0; d < data->config.dense.size(); ++d) { ok &= config_index->InsertUnique( data->hasher(data->config.dense[d].feature_name), {d, Type::Dense}); } for (size_t d = 0; d < data->config.sparse.size(); ++d) { ok &= config_index->InsertUnique( data->hasher(data->config.sparse[d].feature_name), {d, Type::Sparse}); } if (ok) { break; } data->hasher.seed++; config_index->Clear(config_size); ok = true; } if (!ok) { return kTfLiteError; } data->config_index = std::move(config_index); data->created = true; } const TfLiteTensor* serialized = GetInput(context, node, kExampleTensor); std::map<absl::string_view, int> stats; const auto status = FastParseExampleLite( data->config, serialized, {}, data->quick_filter, data->quick_filter_size, data->config_index, data->config_index_size, &data->hasher, &data->got, stats, context); if (status != absl::OkStatus()) { TF_LITE_KERNEL_LOG(context, status.ToString().c_str()); return kTfLiteError; } return kTfLiteOk; } void Free(TfLiteContext* context, void* buffer) { auto* obj = reinterpret_cast<OpData*>(buffer); delete obj; } } TfLiteRegistration* Register_PARSE_EXAMPLE() { static TfLiteRegistration r = { parse_example::Init, parse_example::Free, parse_example::PrepareParseExample<parse_example::V1>, parse_example::EvalParseExample<parse_example::V1>}; return &r; } TfLiteRegistration* Register_PARSE_EXAMPLE_V2() { static TfLiteRegistration r = { parse_example::Init, parse_example::Free, parse_example::PrepareParseExample<parse_example::V2>, parse_example::EvalParseExample<parse_example::V2>}; return &r; } extern "C" void AddParseExampleOp(::tflite::MutableOpResolver* resolver) { resolver->AddCustom("ParseExample", Register_PARSE_EXAMPLE()); resolver->AddCustom("ParseExampleV2", Register_PARSE_EXAMPLE_V2()); } } } }
#include "tensorflow/lite/kernels/parse_example/parse_example.h" #include <cstdint> #include <initializer_list> #include <string> #include "flatbuffers/flexbuffers.h" #include "tensorflow/core/example/feature_util.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/tstring.h" #include "tensorflow/lite/core/api/op_resolver.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/core/interpreter_builder.h" #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/core/model_builder.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/string_util.h" namespace tflite { namespace ops { namespace custom { namespace tf = ::tensorflow; const char* kNodeDefTxt = R"pb( name: "ParseExample/ParseExample" op: "ParseExample" input: "serialized" input: "ParseExample/ParseExample/names" input: "ParseExample/ParseExample/dense_keys_0" input: "ParseExample/Const" attr { key: "Ndense" value { i: 1 } } attr { key: "Nsparse" value { i: 0 } } attr { key: "Tdense" value { list { type: DT_FLOAT } } } attr { key: "dense_shapes" value { list { shape { dim { size: 2 } } } } } attr { key: "sparse_types" value { list { type: DT_FLOAT } } } )pb"; const char* kNodeDefTxt2 = R"pb( name: "ParseExample/ParseExample" op: "ParseExample" input: "serialized" input: "ParseExample/ParseExample/names" input: "ParseExample/ParseExample/sparse_keys_0" attr { key: "Ndense" value { i: 0 } } attr { key: "Nsparse" value { i: 1 } } attr { key: "Tdense" value {} } attr { key: "dense_shapes" value {} } attr { key: "sparse_types" value { list { type: DT_FLOAT } } } )pb"; const char* kNodeDefTxt3 = R"pb( name: "ParseExample/ParseExample" op: "ParseExample" input: "serialized" input: "ParseExample/ParseExample/names" input: "ParseExample/ParseExample/sparse_keys_0" attr { key: "Ndense" value { i: 1 } } attr { key: "Nsparse" value { i: 0 } } attr { key: "Tdense" value { list { type: DT_STRING } } } attr { key: "dense_shapes" value { list { shape { dim { size: 1 } } } } } attr { key: "sparse_types" value { list { type: DT_FLOAT } } } )pb"; const char* kNodeDefTxt4 = R"pb( name: "ParseExample/ParseExample" op: "ParseExample" input: "serialized" input: "ParseExample/ParseExample/names" input: "ParseExample/ParseExample/sparse_keys_0" attr { key: "Ndense" value { i: 0 } } attr { key: "Nsparse" value { i: 1 } } attr { key: "Tdense" value {} } attr { key: "dense_shapes" value {} } attr { key: "sparse_types" value { list { type: DT_STRING } } } )pb"; const char* kNodeDefTxt5 = R"pb( name: "ParseExample/ParseExample" op: "ParseExample" input: "serialized" input: "ParseExample/ParseExample/names" input: "ParseExample/ParseExample/dense_keys_0" input: "ParseExample/Const" attr { key: "Ndense" value { i: 1 } } attr { key: "Nsparse" value { i: 0 } } attr { key: "Tdense" value { list { type: DT_FLOAT } } } attr { key: "dense_shapes" value {} } attr { key: "sparse_types" value { list { type: DT_FLOAT } } } )pb"; template <typename DefaultType> class ParseExampleOpModel : public SingleOpModel { public: ParseExampleOpModel(std::vector<std::string> serialized_examples, std::vector<std::string> sparse_keys, std::vector<std::string> dense_keys, std::initializer_list<DefaultType> dense_defaults, std::vector<TensorType> dense_types, std::vector<TensorType> sparse_types, const char* text_def, int dense_size = 2) { const int input_size = serialized_examples.size(); auto input_tensor_data = TensorData(TensorType_STRING, {input_size}); string_indices_.push_back(AddInput(input_tensor_data)); string_indices_.push_back( AddConstInput<std::string>(TensorData(TensorType_STRING, {0}), {""})); std::for_each(sparse_keys.begin(), sparse_keys.end(), [&](auto&&) { string_indices_.push_back(AddInput(TensorData(TensorType_STRING, {1}))); }); std::for_each(dense_keys.begin(), dense_keys.end(), [&](auto&&) { string_indices_.push_back(AddInput(TensorData(TensorType_STRING, {1}))); }); if (dense_size > 0) { dense_defaults_ = AddConstInput<DefaultType>( TensorData(dense_types[0], {dense_size}), dense_defaults); } if (!sparse_keys.empty()) { for (int i = 0; i < sparse_keys.size(); i++) { sparse_indices_outputs_.push_back(AddOutput(TensorType_INT64)); } for (int i = 0; i < sparse_keys.size(); i++) { sparse_values_outputs_.push_back(AddOutput(sparse_types[i])); } for (int i = 0; i < sparse_keys.size(); i++) { sparse_shapes_outputs_.push_back(AddOutput({TensorType_INT64, {2}})); } } for (int i = 0; i < dense_keys.size(); i++) { dense_outputs_.push_back(AddOutput({dense_types[i], {dense_size}})); } tf::NodeDef nodedef; tf::protobuf::TextFormat::Parser parser; tf::protobuf::io::ArrayInputStream input_stream(text_def, strlen(text_def)); if (!parser.Parse(&input_stream, &nodedef)) { abort(); } std::string serialized_nodedef; nodedef.SerializeToString(&serialized_nodedef); flexbuffers::Builder fbb; fbb.Vector([&]() { fbb.String(nodedef.op()); fbb.String(serialized_nodedef); }); fbb.Finish(); const auto buffer = fbb.GetBuffer(); SetCustomOp("ParseExample", buffer, Register_PARSE_EXAMPLE); BuildInterpreter({{input_size}}); int idx = 0; PopulateStringTensor(string_indices_[idx++], serialized_examples); PopulateStringTensor(string_indices_[idx++], {""}); for (const auto& key : sparse_keys) { PopulateStringTensor(string_indices_[idx++], {key}); } for (const auto& key : dense_keys) { PopulateStringTensor(string_indices_[idx++], {key}); } } void ResizeInputTensor(std::vector<std::vector<int>> input_shapes) { for (size_t i = 0; i < input_shapes.size(); ++i) { const int input_idx = interpreter_->inputs()[i]; if (input_idx == kTfLiteOptionalTensor) continue; const auto& shape = input_shapes[i]; if (shape.empty()) continue; CHECK(interpreter_->ResizeInputTensor(input_idx, shape) == kTfLiteOk); } } template <typename T> std::vector<T> GetSparseIndicesOutput(int i) { return ExtractVector<T>(sparse_indices_outputs_[i]); } template <typename T> std::vector<T> GetSparseValuesOutput(int i) { return ExtractVector<T>(sparse_values_outputs_[i]); } template <typename T> std::vector<T> GetSparseShapesOutput(int i) { return ExtractVector<T>(sparse_shapes_outputs_[i]); } template <typename T> std::vector<T> GetDenseOutput(int i) { return ExtractVector<T>(dense_outputs_[i]); } std::vector<std::string> GetStringOutput(int i) { auto* t = interpreter_->tensor(i); int count = GetStringCount(t); std::vector<std::string> v; for (int i = 0; i < count; ++i) { auto ref = GetString(t, i); v.emplace_back(ref.str, ref.len); } return v; } int DenseDefaults() { return dense_defaults_; } int SparseValuesOutputs(int i) { return sparse_values_outputs_[i]; } int DenseOutputs(int i) { return dense_outputs_[i]; } std::vector<int> dense_outputs_; std::vector<int> sparse_indices_outputs_; std::vector<int> sparse_shapes_outputs_; std::vector<int> sparse_values_outputs_; std::vector<int> string_indices_; int dense_defaults_ = -1; }; TEST(ParseExampleOpsTest, SimpleTest) { tf::Example example; tf::AppendFeatureValues<float>({1.5f, 1.5f}, "time", &example); tf::AppendFeatureValues<float>({1.0f, 1.0f}, "num", &example); ParseExampleOpModel<float> m({example.SerializeAsString()}, {}, {"time"}, {0.f, 0.f}, {TensorType_FLOAT32}, {}, kNodeDefTxt); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetDenseOutput<float>(0), ElementsAreArray(ArrayFloatNear({1.5f, 1.5f}))); } TEST(ParseExampleOpsTest, SparseTest) { tf::Example example; tf::AppendFeatureValues<float>({1.5f}, "time", &example); ParseExampleOpModel<float> m({example.SerializeAsString()}, {"time"}, {}, {}, {}, {TensorType_FLOAT32}, kNodeDefTxt2, 0); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetSparseIndicesOutput<int64_t>(0), ElementsAreArray(ArrayFloatNear({0, 0}))); EXPECT_THAT(m.GetSparseValuesOutput<float>(0), ElementsAreArray(ArrayFloatNear({1.5f}))); EXPECT_THAT(m.GetSparseShapesOutput<int64_t>(0), ElementsAreArray(ArrayFloatNear({1, 1}))); } TEST(ParseExampleOpsTest, SimpleBytesTest) { tf::Example example; const std::string test_data = "simpletest"; tf::AppendFeatureValues<tensorflow::tstring>({test_data}, "time", &example); tf::AppendFeatureValues<float>({1.0f, 1.0f}, "num", &example); std::string default_value = "missing"; ParseExampleOpModel<std::string> m({example.SerializeAsString()}, {}, {"time"}, {default_value}, {TensorType_STRING}, {}, kNodeDefTxt3, 1); m.PopulateStringTensor(m.DenseDefaults(), {default_value}); ASSERT_EQ(m.Invoke(), kTfLiteOk); std::vector<string> c = m.GetStringOutput(m.DenseOutputs(0)); EXPECT_EQ(1, c.size()); EXPECT_EQ(test_data, c[0]); } TEST(ParseExampleOpsTest, SparseBytesTest) { tf::Example example; const std::string test_data = "simpletest"; tf::AppendFeatureValues<tensorflow::tstring>({test_data, test_data}, "time", &example); tf::AppendFeatureValues<float>({1.0f, 1.0f}, "num", &example); ParseExampleOpModel<std::string> m({example.SerializeAsString()}, {"time"}, {}, {}, {}, {TensorType_STRING}, kNodeDefTxt4, 0); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetSparseIndicesOutput<int64_t>(0), testing::ElementsAreArray({0, 0, 0, 1})); auto values = m.GetStringOutput(m.SparseValuesOutputs(0)); EXPECT_EQ(2, values.size()); EXPECT_EQ(test_data, values[0]); EXPECT_EQ(test_data, values[1]); EXPECT_THAT(m.GetSparseShapesOutput<int64_t>(0), testing::ElementsAreArray({1, 2})); } TEST(ParseExampleOpsTest, ResizeTest) { const int num_tests = 3; std::vector<tf::Example> examples(num_tests); std::vector<std::vector<float>> expected(num_tests); std::vector<std::vector<std::string>> inputs(num_tests); std::vector<int> sizes; for (int i = 0; i < num_tests; ++i) { float val = i; std::initializer_list<float> floats = {val + val / 10.f, -val - val / 10.f}; tf::AppendFeatureValues<float>({val, val}, "num", &examples[i]); tf::AppendFeatureValues<float>(floats, "time", &examples[i]); sizes.push_back((num_tests - i) * 2); for (int j = 0; j < sizes.back(); ++j) { inputs[i].push_back(examples[i].SerializeAsString()); expected[i].insert(expected[i].end(), floats.begin(), floats.end()); } } ParseExampleOpModel<float> m(inputs[0], {}, {"time"}, {0.f, 0.f}, {TensorType_FLOAT32}, {}, kNodeDefTxt); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetDenseOutput<float>(0), ElementsAreArray(ArrayFloatNear(expected[0]))); for (int i = 1; i < num_tests; ++i) { m.ResizeInputTensor({{sizes[i]}}); m.AllocateAndDelegate(false); m.PopulateStringTensor(0, inputs[i]); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetDenseOutput<float>(0), ElementsAreArray(ArrayFloatNear(expected[i]))); } } TEST(ParseExampleOpsTest, ResizeMissingInfoTest) { const int num_tests = 3; std::vector<tf::Example> examples(num_tests); std::vector<std::vector<float>> expected(num_tests); std::vector<std::vector<std::string>> inputs(num_tests); std::vector<int> sizes; for (int i = 0; i < num_tests; ++i) { float val = i; std::initializer_list<float> floats = {val + val / 10.f, -val - val / 10.f}; tf::AppendFeatureValues<float>({val, val}, "num", &examples[i]); tf::AppendFeatureValues<float>(floats, "time", &examples[i]); sizes.push_back((num_tests - i) * 2); for (int j = 0; j < sizes.back(); ++j) { inputs[i].push_back(examples[i].SerializeAsString()); expected[i].insert(expected[i].end(), floats.begin(), floats.end()); } } ParseExampleOpModel<float> m(inputs[0], {}, {"time"}, {0.f, 0.f}, {TensorType_FLOAT32}, {}, kNodeDefTxt5); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetDenseOutput<float>(0), ElementsAreArray(ArrayFloatNear(expected[0]))); for (int i = 1; i < num_tests; ++i) { m.ResizeInputTensor({{sizes[i]}}); m.AllocateAndDelegate(false); m.PopulateStringTensor(0, inputs[i]); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetDenseOutput<float>(0), ElementsAreArray(ArrayFloatNear(expected[i]))); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/parse_example/parse_example.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/parse_example/parse_example_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
905c7aba-44b7-45a2-bde2-d929d4789674
cpp
google/quiche
hpack_string_decoder
quiche/http2/hpack/decoder/hpack_string_decoder.cc
quiche/http2/hpack/decoder/hpack_string_decoder_test.cc
#include "quiche/http2/hpack/decoder/hpack_string_decoder.h" #include <ostream> #include <string> #include "absl/strings/str_cat.h" namespace http2 { std::string HpackStringDecoder::DebugString() const { return absl::StrCat("HpackStringDecoder(state=", StateToString(state_), ", length=", length_decoder_.DebugString(), ", remaining=", remaining_, ", huffman=", huffman_encoded_ ? "true)" : "false)"); } std::string HpackStringDecoder::StateToString(StringDecoderState v) { switch (v) { case kStartDecodingLength: return "kStartDecodingLength"; case kDecodingString: return "kDecodingString"; case kResumeDecodingLength: return "kResumeDecodingLength"; } return absl::StrCat("UNKNOWN_STATE(", static_cast<uint32_t>(v), ")"); } std::ostream& operator<<(std::ostream& out, const HpackStringDecoder& v) { return out << v.DebugString(); } }
#include "quiche/http2/hpack/decoder/hpack_string_decoder.h" #include <string> #include "absl/strings/string_view.h" #include "quiche/http2/hpack/decoder/hpack_string_decoder_listener.h" #include "quiche/http2/test_tools/hpack_block_builder.h" #include "quiche/http2/test_tools/hpack_string_collector.h" #include "quiche/http2/test_tools/http2_random.h" #include "quiche/http2/test_tools/random_decoder_test_base.h" #include "quiche/http2/test_tools/verify_macros.h" #include "quiche/common/platform/api/quiche_test.h" namespace http2 { namespace test { namespace { const bool kMayReturnZeroOnFirst = false; const bool kCompressed = true; const bool kUncompressed = false; class HpackStringDecoderTest : public RandomDecoderTest { protected: HpackStringDecoderTest() : listener_(&collector_) {} DecodeStatus StartDecoding(DecodeBuffer* b) override { ++start_decoding_calls_; collector_.Clear(); return decoder_.Start(b, &listener_); } DecodeStatus ResumeDecoding(DecodeBuffer* b) override { QUICHE_VLOG(1) << decoder_.DebugString(); QUICHE_VLOG(2) << collector_; return decoder_.Resume(b, &listener_); } AssertionResult Collected(absl::string_view s, bool huffman_encoded) { QUICHE_VLOG(1) << collector_; return collector_.Collected(s, huffman_encoded); } Validator MakeValidator(const std::string& expected_str, bool expected_huffman) { return [expected_str, expected_huffman, this]( const DecodeBuffer& , DecodeStatus ) -> AssertionResult { AssertionResult result = Collected(expected_str, expected_huffman); if (result) { HTTP2_VERIFY_EQ(collector_, HpackStringCollector(expected_str, expected_huffman)); } else { HTTP2_VERIFY_NE(collector_, HpackStringCollector(expected_str, expected_huffman)); } QUICHE_VLOG(2) << collector_.ToString(); collector_.Clear(); QUICHE_VLOG(2) << collector_; return result; }; } HpackStringDecoder decoder_; HpackStringCollector collector_; HpackStringDecoderVLoggingListener listener_; size_t start_decoding_calls_ = 0; }; TEST_F(HpackStringDecoderTest, DecodeEmptyString) { { Validator validator = ValidateDoneAndEmpty(MakeValidator("", kCompressed)); const char kData[] = {'\x80'}; DecodeBuffer b(kData); EXPECT_TRUE( DecodeAndValidateSeveralWays(&b, kMayReturnZeroOnFirst, validator)); } { Validator validator = ValidateDoneAndOffset(1, MakeValidator("", kUncompressed)); const char kData[] = {'\x00', '\xff'}; DecodeBuffer b(kData); EXPECT_EQ(2u, b.Remaining()); EXPECT_TRUE( DecodeAndValidateSeveralWays(&b, kMayReturnZeroOnFirst, validator)); EXPECT_EQ(1u, b.Remaining()); } } TEST_F(HpackStringDecoderTest, DecodeShortString) { { Validator validator = ValidateDoneAndOffset(11, MakeValidator("start end.", kCompressed)); const char kData[] = "\x8astart end.Don't peek at this."; DecodeBuffer b(kData); EXPECT_TRUE( DecodeAndValidateSeveralWays(&b, kMayReturnZeroOnFirst, validator)); } { Validator validator = ValidateDoneAndOffset(11, MakeValidator("start end.", kUncompressed)); absl::string_view data("\x0astart end."); DecodeBuffer b(data); EXPECT_TRUE( DecodeAndValidateSeveralWays(&b, kMayReturnZeroOnFirst, validator)); } } TEST_F(HpackStringDecoderTest, DecodeLongStrings) { std::string name = Random().RandString(1024); std::string value = Random().RandString(65536); HpackBlockBuilder hbb; hbb.AppendString(false, name); uint32_t offset_after_name = hbb.size(); EXPECT_EQ(3 + name.size(), offset_after_name); hbb.AppendString(true, value); uint32_t offset_after_value = hbb.size(); EXPECT_EQ(3 + name.size() + 4 + value.size(), offset_after_value); DecodeBuffer b(hbb.buffer()); EXPECT_TRUE(DecodeAndValidateSeveralWays( &b, kMayReturnZeroOnFirst, ValidateDoneAndOffset(offset_after_name, MakeValidator(name, kUncompressed)))); EXPECT_EQ(offset_after_name, b.Offset()); EXPECT_EQ(offset_after_value - offset_after_name, b.Remaining()); EXPECT_TRUE(DecodeAndValidateSeveralWays( &b, kMayReturnZeroOnFirst, ValidateDoneAndOffset(offset_after_value - offset_after_name, MakeValidator(value, kCompressed)))); EXPECT_EQ(offset_after_value, b.Offset()); EXPECT_EQ(0u, b.Remaining()); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/hpack/decoder/hpack_string_decoder.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/hpack/decoder/hpack_string_decoder_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
08971125-e01f-4a75-81b3-81a1c6420689
cpp
google/tensorstore
index_transform_builder
tensorstore/index_space/index_transform_builder.cc
tensorstore/index_space/index_transform_builder_test.cc
#include "tensorstore/index_space/index_transform_builder.h" #include "absl/base/optimization.h" #include "absl/status/status.h" #include "tensorstore/index.h" #include "tensorstore/index_space/internal/transform_rep_impl.h" #include "tensorstore/internal/dimension_labels.h" #include "tensorstore/internal/integer_overflow.h" namespace tensorstore { namespace internal_index_space { void InitializeTransformRepForBuilder(TransformRep* data) { assert(data != nullptr); const DimensionIndex output_rank = data->output_rank; span<OutputIndexMap> maps = data->output_index_maps().first(output_rank); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { auto& map = maps[output_dim]; map.stride() = 0; map.offset() = 0; } } absl::Status SetOutputIndexMapsAndValidateTransformRep( TransformRep* data, span<const OutputIndexMapInitializer> output_index_maps, IntervalForm interval_form, BuilderFlags flags) { const DimensionIndex input_rank = data->input_rank; const DimensionIndex output_rank = data->output_rank; assert(output_index_maps.size() == output_rank); span<Index> input_origin = data->input_origin().first(input_rank); span<Index> input_shape = data->input_shape().first(input_rank); auto& implicit_lower_bounds = data->implicit_lower_bounds; auto& implicit_upper_bounds = data->implicit_upper_bounds; const auto implicit_mask = DimensionSet::UpTo(input_rank); if ((flags & BuilderFlags::kSetLower) == BuilderFlags::kDefault) { Index val = (interval_form == IntervalForm::sized) && ((flags & BuilderFlags::kSetUpper) == BuilderFlags::kSetUpper) ? 0 : -kInfIndex; std::fill(input_origin.begin(), input_origin.end(), val); } if ((flags & BuilderFlags::kSetUpper) == BuilderFlags::kDefault) { interval_form = IntervalForm::half_open; std::fill(input_shape.begin(), input_shape.end(), kInfIndex + 1); } if ((flags & BuilderFlags::kSetImplicitLower) == BuilderFlags::kDefault) { implicit_lower_bounds = ((flags & BuilderFlags::kSetLower) == BuilderFlags::kDefault) && interval_form != IntervalForm::sized; } if ((flags & BuilderFlags::kSetImplicitUpper) == BuilderFlags::kDefault) { implicit_upper_bounds = (flags & BuilderFlags::kSetUpper) == BuilderFlags::kDefault; } implicit_lower_bounds &= implicit_mask; implicit_upper_bounds &= implicit_mask; TENSORSTORE_RETURN_IF_ERROR(internal::ValidateDimensionLabelsAreUnique( data->input_labels().first(input_rank))); span<OutputIndexMap> maps = data->output_index_maps().first(output_rank); switch (interval_form) { case IntervalForm::sized: for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { Index& size = input_shape[input_dim]; if (size == kInfSize) { size = kInfIndex + 1 - input_origin[input_dim]; } TENSORSTORE_RETURN_IF_ERROR( IndexInterval::Sized(input_origin[input_dim], size)); } break; case IntervalForm::closed: for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { TENSORSTORE_ASSIGN_OR_RETURN( auto interval, IndexInterval::Closed(input_origin[input_dim], input_shape[input_dim])); input_shape[input_dim] = interval.size(); } break; case IntervalForm::half_open: for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { TENSORSTORE_ASSIGN_OR_RETURN( auto interval, IndexInterval::HalfOpen(input_origin[input_dim], input_shape[input_dim])); input_shape[input_dim] = interval.size(); } break; default: ABSL_UNREACHABLE(); } const bool domain_is_explicitly_empty = IsDomainExplicitlyEmpty(data); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { const auto& initializer = output_index_maps[output_dim]; auto& map = maps[output_dim]; if (initializer.index_array.valid()) { TENSORSTORE_RETURN_IF_ERROR(initializer.index_array_bounds); span<const Index> shape = initializer.index_array.shape(); const Index* byte_strides = initializer.index_array.byte_strides().data(); if (shape.size() != input_rank) { return absl::InvalidArgumentError(tensorstore::StrCat( "Index array for output dimension ", output_dim, " has rank ", shape.size(), " but must have rank ", input_rank)); } auto& index_array_data = map.SetArrayIndexing(shape.size()); for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { const Index array_dim_size = shape[input_dim]; if (array_dim_size == 1) { index_array_data.byte_strides[input_dim] = 0; continue; } const Index input_size = input_shape[input_dim]; if (array_dim_size != input_size) { return absl::InvalidArgumentError(tensorstore::StrCat( "Index array for output dimension ", output_dim, " has shape ", shape, " which does not match input_shape ", input_shape)); } if (byte_strides[input_dim] == 0 && array_dim_size != 0) { index_array_data.byte_strides[input_dim] = 0; continue; } if (implicit_lower_bounds[input_dim] || implicit_upper_bounds[input_dim]) { return absl::InvalidArgumentError( tensorstore::StrCat("Index array for output dimension ", output_dim, " depends on input dimension ", input_dim, " with implicit bounds")); } if (!IsFinite(IndexInterval::UncheckedSized(input_origin[input_dim], input_size))) { return absl::InvalidArgumentError( tensorstore::StrCat("Index array for output dimension ", output_dim, " depends on input dimension ", input_dim, " with infinite bounds")); } index_array_data.byte_strides[input_dim] = byte_strides[input_dim]; } if (domain_is_explicitly_empty) { map.SetConstant(); map.offset() = 0; map.stride() = 0; } else { index_array_data.index_range = *initializer.index_array_bounds; index_array_data.element_pointer = AddByteOffset( initializer.index_array.element_pointer(), internal::wrap_on_overflow::Subtract( initializer.index_array.layout().origin_byte_offset(), IndexInnerProduct(input_rank, input_origin.data(), index_array_data.byte_strides))); } } else if (initializer.input_dimension) { const DimensionIndex input_dim = *initializer.input_dimension; if (input_dim < 0 || input_dim >= input_rank) { return absl::InvalidArgumentError(tensorstore::StrCat( "Input dimension ", input_dim, " specified for output dimension ", output_dim, " is outside valid range [0, ", input_rank, ")")); } if (map.stride() == 0) { map.SetConstant(); } else { map.SetSingleInputDimension(input_dim); } } else { map.SetConstant(); map.stride() = 0; } } internal_index_space::DebugCheckInvariants(data); return absl::OkStatus(); } } }
#include "tensorstore/index_space/index_transform_builder.h" #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::DimensionSet; using ::tensorstore::Index; using ::tensorstore::IndexDomainBuilder; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransform; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::kInfIndex; using ::tensorstore::kInfSize; using ::tensorstore::MakeArray; using ::tensorstore::MatchesStatus; using ::tensorstore::OutputIndexMethod; using ::tensorstore::span; using ::tensorstore::internal_index_space::TransformAccess; TEST(IndexTransformTest, BuilderValid) { auto index_array = MakeArray<Index>({{{1, 0, 2, 2}}}); auto t = IndexTransformBuilder<3, 4>() .input_origin({1, 2, 3}) .input_shape({2, 2, 4}) .implicit_lower_bounds({0, 1, 0}) .implicit_upper_bounds({1, 0, 0}) .input_labels({"x", "y", "z"}) .output_constant(0, 4) .output_single_input_dimension(1, 5, 7, 2) .output_constant(2, 6) .output_index_array(3, 7, 9, index_array, IndexInterval::Closed(0, 3)) .Finalize() .value(); static_assert(std::is_same_v<decltype(t), IndexTransform<3, 4>>); EXPECT_THAT(t.input_origin(), ::testing::ElementsAre(1, 2, 3)); EXPECT_THAT(t.input_shape(), ::testing::ElementsAre(2, 2, 4)); EXPECT_THAT(t.input_labels(), ::testing::ElementsAre("x", "y", "z")); EXPECT_THAT(t.implicit_lower_bounds(), DimensionSet::FromBools({0, 1, 0})); EXPECT_THAT(t.implicit_upper_bounds(), DimensionSet::FromBools({1, 0, 0})); EXPECT_EQ(IndexInterval::UncheckedSized(1, 2), t.input_domain()[0].interval()); EXPECT_EQ(IndexInterval::UncheckedSized(2, 2), t.input_domain()[1].interval()); EXPECT_EQ(IndexInterval::UncheckedSized(3, 4), t.input_domain()[2].interval()); { auto map = t.output_index_map(0); EXPECT_EQ(OutputIndexMethod::constant, map.method()); EXPECT_EQ(4, map.offset()); EXPECT_EQ(0, map.stride()); } { auto map = t.output_index_map(1); EXPECT_EQ(OutputIndexMethod::single_input_dimension, map.method()); EXPECT_EQ(2, map.input_dimension()); EXPECT_EQ(5, map.offset()); EXPECT_EQ(7, map.stride()); } { auto map = t.output_index_map(2); EXPECT_EQ(OutputIndexMethod::constant, map.method()); EXPECT_EQ(6, map.offset()); EXPECT_EQ(0, map.stride()); } { auto map = t.output_index_map(3); EXPECT_EQ(OutputIndexMethod::array, map.method()); EXPECT_EQ(7, map.offset()); EXPECT_EQ(9, map.stride()); auto index_array_ref = map.index_array(); EXPECT_EQ(&index_array(0, 0, 0), &index_array_ref.array_ref()(1, 2, 3)); EXPECT_THAT(index_array_ref.layout().byte_strides(), ::testing::ElementsAre(0, 0, sizeof(Index))); } { std::array<Index, 4> output_indices; ASSERT_EQ( absl::OkStatus(), t.TransformIndices(span<const Index, 3>({1, 2, 3}), output_indices)); EXPECT_THAT(output_indices, ::testing::ElementsAre(4, 26, 6, 16)); } } TEST(IndexTransformBuilderTest, Nullptr) { IndexTransformBuilder<> builder(nullptr); EXPECT_FALSE(builder.valid()); { IndexTransformBuilder<> other_builder(builder); EXPECT_FALSE(other_builder.valid()); } { IndexTransformBuilder<> other_builder(nullptr); other_builder = builder; EXPECT_FALSE(other_builder.valid()); } } TEST(IndexTransformBuilderTest, Move) { IndexTransformBuilder<> builder(1, 1); EXPECT_TRUE(builder.valid()); builder.input_origin({1}); auto builder2 = std::move(builder); EXPECT_TRUE(builder2.valid()); EXPECT_FALSE(builder.valid()); builder2.output_constant(0, 5); EXPECT_THAT(builder2.Finalize().value(), IndexTransformBuilder<>(1, 1) .input_origin({1}) .output_constant(0, 5) .Finalize() .value()); } TEST(IndexTransformBuilderTest, Copy) { IndexTransformBuilder<> builder(1, 1); EXPECT_TRUE(builder.valid()); builder.input_origin({1}); auto builder2 = builder; EXPECT_TRUE(builder.valid()); EXPECT_TRUE(builder2.valid()); builder.output_constant(0, 4); builder2.output_constant(0, 5); EXPECT_THAT(builder.Finalize().value(), IndexTransformBuilder<>(1, 1) .input_origin({1}) .output_constant(0, 4) .Finalize() .value()); EXPECT_THAT(builder2.Finalize().value(), IndexTransformBuilder<>(1, 1) .input_origin({1}) .output_constant(0, 5) .Finalize() .value()); } TEST(IndexTransformBuilderTest, Default) { auto t = IndexTransformBuilder<>(2, 1).Finalize().value(); EXPECT_THAT(t.input_origin(), ::testing::ElementsAre(-kInfIndex, -kInfIndex)); EXPECT_THAT(t.input_shape(), ::testing::ElementsAre(kInfSize, kInfSize)); EXPECT_THAT(t.implicit_lower_bounds(), DimensionSet::FromBools({1, 1})); EXPECT_THAT(t.implicit_upper_bounds(), DimensionSet::FromBools({1, 1})); EXPECT_THAT(t.input_labels(), ::testing::ElementsAre("", "")); auto map = t.output_index_map(0); EXPECT_EQ(0, map.offset()); EXPECT_EQ(0, map.stride()); EXPECT_EQ(OutputIndexMethod::constant, map.method()); } TEST(IndexTransformBuilderTest, InputOriginSpecified) { auto t = IndexTransformBuilder<>(2, 0).input_origin({1, 2}).Finalize().value(); EXPECT_EQ(t.domain()[0].interval(), IndexInterval::UncheckedClosed(1, kInfIndex)); EXPECT_EQ(t.domain()[1].interval(), IndexInterval::UncheckedClosed(2, kInfIndex)); EXPECT_THAT(t.implicit_lower_bounds(), DimensionSet::FromBools({0, 0})); EXPECT_THAT(t.implicit_upper_bounds(), DimensionSet::FromBools({1, 1})); EXPECT_THAT(t.input_labels(), ::testing::ElementsAre("", "")); } TEST(IndexTransformBuilderTest, ImplicitLowerBoundsSpecified) { auto t = IndexTransformBuilder<>(2, 0) .implicit_lower_bounds({1, 0}) .Finalize() .value(); EXPECT_EQ(t.domain()[0].interval(), IndexInterval::UncheckedClosed(-kInfIndex, kInfIndex)); EXPECT_EQ(t.domain()[1].interval(), IndexInterval::UncheckedClosed(-kInfIndex, kInfIndex)); EXPECT_THAT(t.implicit_lower_bounds(), DimensionSet::FromBools({1, 0})); EXPECT_THAT(t.implicit_upper_bounds(), DimensionSet::FromBools({1, 1})); EXPECT_THAT(t.input_labels(), ::testing::ElementsAre("", "")); } TEST(IndexTransformBuilderTest, InputShapeSpecified) { auto t = IndexTransformBuilder<>(2, 0).input_shape({5, 10}).Finalize().value(); EXPECT_EQ(t.domain()[0].interval(), IndexInterval::UncheckedSized(0, 5)); EXPECT_EQ(t.domain()[1].interval(), IndexInterval::UncheckedSized(0, 10)); EXPECT_THAT(t.implicit_lower_bounds(), DimensionSet::FromBools({0, 0})); EXPECT_THAT(t.implicit_upper_bounds(), DimensionSet::FromBools({0, 0})); EXPECT_THAT(t.input_labels(), ::testing::ElementsAre("", "")); } TEST(IndexTransformBuilderTest, InputInclusiveMaxSpecified) { auto t = IndexTransformBuilder<>(2, 0) .input_inclusive_max({5, 10}) .Finalize() .value(); EXPECT_EQ(t.domain()[0].interval(), IndexInterval::UncheckedClosed(-kInfIndex, 5)); EXPECT_EQ(t.domain()[1].interval(), IndexInterval::UncheckedClosed(-kInfIndex, 10)); EXPECT_THAT(t.implicit_lower_bounds(), DimensionSet::FromBools({1, 1})); EXPECT_THAT(t.implicit_upper_bounds(), DimensionSet::FromBools({0, 0})); EXPECT_THAT(t.input_labels(), ::testing::ElementsAre("", "")); } TEST(IndexTransformBuilderTest, InputExclusiveMaxSpecified) { auto t = IndexTransformBuilder<>(2, 0) .input_exclusive_max({5, 10}) .Finalize() .value(); EXPECT_EQ(t.domain()[0].interval(), IndexInterval::UncheckedHalfOpen(-kInfIndex, 5)); EXPECT_EQ(t.domain()[1].interval(), IndexInterval::UncheckedHalfOpen(-kInfIndex, 10)); EXPECT_THAT(t.implicit_lower_bounds(), DimensionSet::FromBools({1, 1})); EXPECT_THAT(t.implicit_upper_bounds(), DimensionSet::FromBools({0, 0})); EXPECT_THAT(t.input_labels(), ::testing::ElementsAre("", "")); } TEST(IndexTransformBuilderTest, ImplicitUpperBoundsSpecified) { auto t = IndexTransformBuilder<>(2, 0) .implicit_upper_bounds({1, 0}) .Finalize() .value(); EXPECT_EQ(t.domain()[0].interval(), IndexInterval::UncheckedClosed(-kInfIndex, kInfIndex)); EXPECT_EQ(t.domain()[1].interval(), IndexInterval::UncheckedClosed(-kInfIndex, kInfIndex)); EXPECT_THAT(t.implicit_lower_bounds(), DimensionSet::FromBools({1, 1})); EXPECT_THAT(t.implicit_upper_bounds(), DimensionSet::FromBools({1, 0})); EXPECT_THAT(t.input_labels(), ::testing::ElementsAre("", "")); } TEST(IndexTransformBuilderTest, SingleInputDimensionDefaults) { EXPECT_EQ(IndexTransformBuilder<>(3, 1) .output_single_input_dimension(0, 2) .Finalize() .value(), IndexTransformBuilder<>(3, 1) .output_single_input_dimension(0, 2) .Finalize() .value()); } TEST(IndexTransformBuilderTest, InputOriginOutOfRange) { EXPECT_THAT( IndexTransformBuilder<>(2, 1) .input_origin({-kInfIndex - 1, -kInfIndex}) .Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, ".* do not specify a valid half-open index interval")); } TEST(IndexTransformBuilderTest, InputShapeOutOfRange) { EXPECT_THAT( IndexTransformBuilder<>(2, 1).input_shape({1, -1}).Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "\\(0, -1\\) do not specify a valid sized index interval")); } TEST(IndexTransformBuilderTest, InvalidInputDimensionNegative) { EXPECT_THAT( IndexTransformBuilder<>(2, 1) .output_single_input_dimension(0, 0, 1, -1) .Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Input dimension -1 specified for output dimension 0 " "is outside valid range \\[0, 2\\)")); } TEST(IndexTransformBuilderTest, InvalidInputDimensionPositive) { EXPECT_THAT( IndexTransformBuilder<>(2, 1) .output_single_input_dimension(0, 2) .Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Input dimension 2 specified for output dimension 0 " "is outside valid range \\[0, 2\\)")); } TEST(IndexTransformBuilderTest, InvalidIndexArrayRank) { EXPECT_THAT(IndexTransformBuilder<>(2, 1) .output_index_array(0, 0, 1, MakeArray<Index>({1})) .Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Index array for output dimension 0 " "has rank 1 but must have rank 2")); } TEST(IndexTransformBuilderTest, InvalidIndexArrayShape) { EXPECT_THAT( IndexTransformBuilder<>(2, 1) .input_shape({2, 2}) .output_index_array(0, 0, 1, MakeArray<Index>({{1, 2}, {3, 4}, {5, 6}})) .Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Index array for output dimension 0 has shape \\{3, 2\\} " "which does not match input_shape \\{2, 2\\}")); } TEST(IndexTransformBuilderTest, InvalidIndexArrayImplicitLowerBound) { EXPECT_THAT( IndexTransformBuilder<>(2, 1) .input_shape({3, 2}) .implicit_lower_bounds({1, 0}) .output_index_array(0, 0, 1, MakeArray<Index>({{1, 2}, {3, 4}, {5, 6}})) .Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Index array for output dimension 0 " "depends on input dimension 0 with implicit bounds")); } TEST(IndexTransformBuilderTest, InvalidIndexArrayImplicitUpperBound) { EXPECT_THAT( IndexTransformBuilder<>(2, 1) .input_shape({3, 2}) .implicit_upper_bounds({1, 0}) .output_index_array(0, 0, 1, MakeArray<Index>({{1, 2}, {3, 4}, {5, 6}})) .Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Index array for output dimension 0 " "depends on input dimension 0 with implicit bounds")); } TEST(IndexTransformBuilderTest, InvalidIndexArrayIndexRange) { EXPECT_THAT( IndexTransformBuilder<>(2, 1) .input_shape({2, 2}) .output_index_array(0, 0, 1, MakeArray<Index>({{1, 2}, {3, 4}}), IndexInterval::Sized(3, -1)) .Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "\\(3, -1\\) do not specify a valid sized index interval")); } TEST(IndexTransformBuilderTest, InvalidIndexArrayWithUnboundedDomain) { EXPECT_THAT( IndexTransformBuilder(1, 1) .input_origin({tensorstore::kMaxFiniteIndex}) .input_shape({2}) .output_index_array(0, 0, 1, MakeArray<Index>({1, 2})) .Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Index array for output dimension 0 " "depends on input dimension 0 with infinite bounds")); } TEST(IndexTransformBuilderDeathTest, InvalidArguments) { EXPECT_DEATH((IndexTransformBuilder<>(2, 1).input_origin({1, 2, 3})), "range size mismatch"); EXPECT_DEATH((IndexTransformBuilder<>(2, 1).input_shape({1, 2, 3})), "range size mismatch"); EXPECT_DEATH((IndexTransformBuilder<>(2, 1).implicit_lower_bounds({1, 1, 0})), "range size mismatch"); EXPECT_DEATH((IndexTransformBuilder<>(2, 1).implicit_upper_bounds({1, 1, 0})), "range size mismatch"); EXPECT_DEATH((IndexTransformBuilder<>(2, 1).input_labels({"a"})), "range size mismatch"); EXPECT_DEATH((IndexTransformBuilder<>(2, 1).output_constant(1, 0)), "invalid output dimension"); } TEST(IndexTransformBuilderTest, OutputStrideZero) { auto t = IndexTransformBuilder<>(1, 1) .output_single_input_dimension(0, 1, 0, 0) .Finalize() .value(); auto map = t.output_index_map(0); EXPECT_EQ(1, map.offset()); EXPECT_EQ(0, map.stride()); EXPECT_EQ(OutputIndexMethod::constant, map.method()); } TEST(IndexTransformBuilderTest, InclusiveMax) { auto t = IndexTransformBuilder<>(2, 2) .input_origin({1, 2}) .input_inclusive_max({3, 5}) .Finalize() .value(); EXPECT_THAT(t.input_origin(), ::testing::ElementsAre(1, 2)); EXPECT_THAT(t.input_shape(), ::testing::ElementsAre(3, 4)); } TEST(IndexTransformBuilderTest, InputShapeInfSize) { auto t = IndexTransformBuilder<>(2, 2) .input_origin({1, 2}) .input_shape({3, kInfSize}) .Finalize() .value(); EXPECT_THAT(t.input_origin(), ::testing::ElementsAre(1, 2)); EXPECT_THAT(t.input_shape(), ::testing::ElementsAre(3, kInfIndex + 1 - 2)); } TEST(IndexTransformBuilderTest, ExclusiveMax) { auto t = IndexTransformBuilder<>(2, 2) .input_origin({1, 2}) .input_exclusive_max({3, 5}) .Finalize() .value(); EXPECT_THAT(t.input_origin(), ::testing::ElementsAre(1, 2)); EXPECT_THAT(t.input_shape(), ::testing::ElementsAre(2, 3)); } TEST(IndexTransformBuilderTest, ExclusiveMaxAfterShape) { auto t = IndexTransformBuilder<>(2, 2) .input_origin({1, 2}) .input_shape({15, 16}) .input_exclusive_max({3, 5}) .Finalize() .value(); EXPECT_THAT(t.input_origin(), ::testing::ElementsAre(1, 2)); EXPECT_THAT(t.input_shape(), ::testing::ElementsAre(2, 3)); } TEST(IndexTransformBuilderTest, InputDomainBox) { auto t = IndexTransformBuilder<>(2, 2) .input_bounds(tensorstore::BoxView({1, 2}, {2, 3})) .Finalize() .value(); EXPECT_THAT(t.input_origin(), ::testing::ElementsAre(1, 2)); EXPECT_THAT(t.input_shape(), ::testing::ElementsAre(2, 3)); } TEST(IndexTransformBuilderTest, InputDomain) { tensorstore::IndexDomain<2> domain(IndexTransformBuilder<2, 0>() .input_origin({1, 2}) .input_shape({3, 4}) .implicit_lower_bounds({0, 1}) .implicit_upper_bounds({1, 0}) .input_labels({"x", "y"}) .Finalize() .value() .domain()); auto t = IndexTransformBuilder<>(2, 2).input_domain(domain).Finalize().value(); EXPECT_EQ(domain, t.domain()); } TEST(IndexTransformBuilderTest, OutputIdentityTransform) { EXPECT_THAT( IndexTransformBuilder(2, 2).output_identity_transform().Finalize(), ::testing::Optional(tensorstore::IdentityTransform(2))); EXPECT_EQ(IndexTransformBuilder(3, 2) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), IndexTransformBuilder(3, 2) .output_identity_transform() .Finalize() .value()); EXPECT_EQ(IndexTransformBuilder(2, 3) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_constant(2, 0) .Finalize() .value(), IndexTransformBuilder(2, 3) .output_identity_transform() .Finalize() .value()); } TEST(IndexTransformBuilderTest, CopyOutputMap) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto t, IndexTransformBuilder(3, 4) .input_origin({1, 2, 3}) .input_shape({2, 2, 4}) .implicit_lower_bounds({0, 1, 0}) .implicit_upper_bounds({1, 0, 0}) .input_labels({"x", "y", "z"}) .output_constant(0, 4) .output_single_input_dimension(1, 5, 7, 2) .output_constant(2, 6) .output_index_array(3, 7, 9, MakeArray<Index>({{{1, 0, 2, 2}}}), IndexInterval::Closed(0, 3)) .Finalize()); EXPECT_THAT(IndexTransformBuilder(3, 4) .input_domain(t.domain()) .output_maps(t.output_index_maps()) .Finalize(), ::testing::Optional(t)); EXPECT_THAT(IndexTransformBuilder(3, 4) .input_domain(t.domain()) .output_constant(0, 4) .output_map(1, t.output_index_maps()[1]) .output_map(2, t.output_index_maps()[2]) .output_map(3, t.output_index_maps()[3]) .Finalize(), ::testing::Optional(t)); } TEST(InitializeTransformRepForBuilder, Basic) { auto source = tensorstore::internal_index_space::TransformRep::Allocate(1, 2); source->output_rank = 2; tensorstore::internal_index_space::InitializeTransformRepForBuilder( source.get()); EXPECT_EQ(0, source->output_index_maps()[0].offset()); EXPECT_EQ(0, source->output_index_maps()[0].stride()); EXPECT_EQ(0, source->output_index_maps()[1].offset()); EXPECT_EQ(0, source->output_index_maps()[1].stride()); } TEST(IndexTransformBuilder, NonUniqueLabels) { EXPECT_THAT( IndexTransformBuilder<>(3, 0).input_labels({"a", "", "a"}).Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Dimension label\\(s\\) \"a\" not unique")); } TEST(IndexTransformBuilderTest, IndexArrayWithEmptyExplicitDomain) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto expected, IndexTransformBuilder(2, 2) .input_shape({0, 2}) .output_constant(0, 0) .output_constant(1, 1) .Finalize()); EXPECT_THAT(IndexTransformBuilder(2, 2) .input_shape({0, 2}) .output_index_array(0, 0, 1, MakeArray<Index>({{2, 3}})) .output_constant(1, 1) .Finalize(), ::testing::Optional(expected)); } TEST(IndexDomainBuilderTest, Null) { IndexDomainBuilder builder(nullptr); EXPECT_FALSE(builder.valid()); } TEST(IndexDomainBuilderTest, Basic) { IndexDomainBuilder builder(3); EXPECT_EQ(3, builder.rank()); builder.origin(span<const Index, 3>({1, 2, 3})); EXPECT_THAT(builder.origin(), ::testing::ElementsAre(1, 2, 3)); builder.shape(span<const Index, 3>({4, 5, 6})); EXPECT_THAT(builder.shape(), ::testing::ElementsAre(4, 5, 6)); builder.exclusive_max(span<const Index, 3>({4, 5, 6})); EXPECT_THAT(builder.exclusive_max(), ::testing::ElementsAre(4, 5, 6)); builder.inclusive_max(span<const Index, 3>({4, 5, 6})); EXPECT_THAT(builder.inclusive_max(), ::testing::ElementsAre(4, 5, 6)); builder.implicit_lower_bounds({0, 1, 1}); builder.implicit_upper_bounds({1, 0, 1}); EXPECT_THAT(builder.implicit_lower_bounds(), DimensionSet::FromBools({0, 1, 1})); EXPECT_THAT(builder.implicit_upper_bounds(), DimensionSet::FromBools({1, 0, 1})); builder.labels(std::vector<std::string>{"x", "y", "z"}); EXPECT_THAT(builder.labels(), ::testing::ElementsAre("x", "y", "z")); } TEST(IndexDomainBuilderTest, Labels) { auto d = IndexDomainBuilder(2).labels({"x", "y"}).Finalize().value(); EXPECT_THAT(d.labels(), ::testing::ElementsAre("x", "y")); } TEST(IndexDomainBuilderTest, InclusiveMax) { auto d = IndexDomainBuilder(2) .origin({1, 2}) .inclusive_max({3, 5}) .Finalize() .value(); EXPECT_THAT(d.origin(), ::testing::ElementsAre(1, 2)); EXPECT_THAT(d.shape(), ::testing::ElementsAre(3, 4)); } TEST(IndexDomainBuilderTest, Shape) { auto d = IndexDomainBuilder(2).origin({1, 2}).shape({3, 5}).Finalize().value(); EXPECT_THAT(d.origin(), ::testing::ElementsAre(1, 2)); EXPECT_THAT(d.shape(), ::testing::ElementsAre(3, 5)); } TEST(IndexDomainBuilderTest, ExclusiveMax) { auto d = IndexDomainBuilder(2) .origin({1, 2}) .exclusive_max({3, 5}) .Finalize() .value(); EXPECT_THAT(d.origin(), ::testing::ElementsAre(1, 2)); EXPECT_THAT(d.shape(), ::testing::ElementsAre(2, 3)); } TEST(IndexDomainBuilderTest, InputDomainBox) { auto d = IndexDomainBuilder(2) .bounds(tensorstore::BoxView({1, 2}, {2, 3})) .Finalize() .value(); EXPECT_THAT(d.origin(), ::testing::ElementsAre(1, 2)); EXPECT_THAT(d.shape(), ::testing::ElementsAre(2, 3)); } TEST(IndexDomainBuilderTest, InputDomain) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(tensorstore::IndexDomain<2> domain, IndexDomainBuilder<2>() .origin({1, 2}) .shape({3, 4}) .implicit_lower_bounds({0, 1}) .implicit_upper_bounds({1, 0}) .labels({"x", "y"}) .Finalize()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto d, IndexDomainBuilder<>(2).domain(domain).Finalize()); EXPECT_EQ(domain, d); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/index_transform_builder.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/index_transform_builder_test.cc
4f887a6430414cd6088e1743555015b10f116d50
5c8c878a-fc1d-4763-a675-7908c10fe949
cpp
tensorflow/tensorflow
unique
tensorflow/lite/kernels/unique.cc
tensorflow/lite/kernels/unique_test.cc
#include <stddef.h> #include <stdint.h> #include <map> #include <memory> #include <vector> #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace unique { void* Init(TfLiteContext* context, const char* buffer, size_t length) { return nullptr; } void Free(TfLiteContext* context, void* buffer) {} TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { static const int kOutputUniqueTensor = 0; static const int kOutputIndexTensor = 1; TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 2); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); TfLiteTensor* output_unique_tensor; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputUniqueTensor, &output_unique_tensor)); TfLiteTensor* output_index_tensor; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputIndexTensor, &output_index_tensor)); TF_LITE_ENSURE_EQ(context, NumDimensions(input), 1); TfLiteIntArray* output_index_shape = TfLiteIntArrayCopy(input->dims); SetTensorToDynamic(output_unique_tensor); return context->ResizeTensor(context, output_index_tensor, output_index_shape); } namespace { template <typename T, typename I> TfLiteStatus EvalImpl(TfLiteContext* context, const TfLiteTensor* input, TfLiteNode* node) { std::map<T, int> unique_values; TfLiteTensor* output_indexes; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 1, &output_indexes)); std::vector<T> output_values; I* indexes = GetTensorData<I>(output_indexes); const T* data = GetTensorData<T>(input); const int num_elements = NumElements(input); for (int i = 0; i < num_elements; ++i) { const auto element_it = unique_values.find(data[i]); if (element_it != unique_values.end()) { indexes[i] = element_it->second; } else { const int unique_index = unique_values.size(); unique_values[data[i]] = unique_index; indexes[i] = unique_index; output_values.push_back(data[i]); } } TfLiteTensor* unique_output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &unique_output)); std::unique_ptr<TfLiteIntArray, void (*)(TfLiteIntArray*)> shape( TfLiteIntArrayCreate(NumDimensions(input)), TfLiteIntArrayFree); shape->data[0] = unique_values.size(); TF_LITE_ENSURE_STATUS( context->ResizeTensor(context, unique_output, shape.release())); T* output_unique_values = GetTensorData<T>(unique_output); for (int i = 0; i < output_values.size(); ++i) { output_unique_values[i] = output_values[i]; } return kTfLiteOk; } template <typename T> TfLiteStatus EvalImpl(TfLiteContext* context, const TfLiteTensor* input, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteUniqueParams*>(node->builtin_data); if (params == nullptr) { TF_LITE_KERNEL_LOG(context, "Null params passed"); return kTfLiteError; } switch (params->index_out_type) { case kTfLiteInt32: return EvalImpl<T, int32_t>(context, input, node); case kTfLiteInt64: return EvalImpl<T, int64_t>(context, input, node); default: TF_LITE_KERNEL_LOG( context, "Unique index output array can only be Int32 or In64, requested: %s", TfLiteTypeGetName(params->index_out_type)); } return kTfLiteError; } } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); TfLiteTensor* output_index_tensor; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 1, &output_index_tensor)); TF_LITE_ENSURE_EQ(context, NumElements(output_index_tensor), NumElements(input)); switch (input->type) { case kTfLiteInt8: TF_LITE_ENSURE_STATUS(EvalImpl<int8_t>(context, input, node)); break; case kTfLiteInt16: TF_LITE_ENSURE_STATUS(EvalImpl<int16_t>(context, input, node)); break; case kTfLiteInt32: TF_LITE_ENSURE_STATUS(EvalImpl<int32_t>(context, input, node)); break; case kTfLiteInt64: TF_LITE_ENSURE_STATUS(EvalImpl<int64_t>(context, input, node)); break; case kTfLiteFloat32: TF_LITE_ENSURE_STATUS(EvalImpl<float>(context, input, node)); break; case kTfLiteUInt8: TF_LITE_ENSURE_STATUS(EvalImpl<uint8_t>(context, input, node)); break; default: TF_LITE_KERNEL_LOG(context, "Currently Unique doesn't support type: %s", TfLiteTypeGetName(input->type)); return kTfLiteError; } return kTfLiteOk; } } TfLiteRegistration* Register_UNIQUE() { static TfLiteRegistration r = {unique::Init, unique::Free, unique::Prepare, unique::Eval}; return &r; } } } }
#include <stdint.h> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { using ::testing::ElementsAreArray; template <typename T, typename I> class UniqueOpModel : public SingleOpModel { public: UniqueOpModel(const TensorData& input, TensorType input_type, TensorType index_out_type) { input_id_ = AddInput(input); output_id_ = AddOutput(input_type); output_index_id_ = AddOutput(index_out_type); SetBuiltinOp(BuiltinOperator_UNIQUE, BuiltinOptions_UniqueOptions, CreateUniqueOptions(builder_, index_out_type).Union()); BuildInterpreter({GetShape(input_id_)}); } int input_tensor_id() { return input_id_; } std::vector<T> GetOutput() { return ExtractVector<T>(output_id_); } std::vector<I> GetIndexesOutput() { return ExtractVector<I>(output_index_id_); } protected: int input_id_; int output_id_; int output_index_id_; }; TEST(UniqueOpModelTest, OneElement) { UniqueOpModel<float, int32_t> model({TensorType_FLOAT32, {1}}, TensorType_FLOAT32, TensorType_INT32); model.PopulateTensor<float>(model.input_tensor_id(), {5}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAreArray({5})); EXPECT_THAT(model.GetIndexesOutput(), ElementsAreArray({0})); } TEST(UniqueOpModelTest, MultipleElements_AllUnique) { UniqueOpModel<float, int32_t> model({TensorType_FLOAT32, {8}}, TensorType_FLOAT32, TensorType_INT32); model.PopulateTensor<float>(model.input_tensor_id(), {5, 2, 3, 51, 6, 72, 7, 8}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAreArray({5, 2, 3, 51, 6, 72, 7, 8})); EXPECT_THAT(model.GetIndexesOutput(), ElementsAreArray({0, 1, 2, 3, 4, 5, 6, 7})); } TEST(UniqueOpModelTest, MultipleElements_AllDuplicates) { UniqueOpModel<float, int32_t> model({TensorType_FLOAT32, {7}}, TensorType_FLOAT32, TensorType_INT32); model.PopulateTensor<float>(model.input_tensor_id(), {5, 5, 5, 5, 5, 5, 5}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAreArray({5})); EXPECT_THAT(model.GetIndexesOutput(), ElementsAreArray({0, 0, 0, 0, 0, 0, 0})); } TEST(UniqueOpModelTest, MultipleElements_SomeDuplicates) { UniqueOpModel<float, int32_t> model({TensorType_FLOAT32, {7}}, TensorType_FLOAT32, TensorType_INT32); model.PopulateTensor<float>(model.input_tensor_id(), {2, 3, 5, 7, 2, 7, 3}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAreArray({2, 3, 5, 7})); EXPECT_THAT(model.GetIndexesOutput(), ElementsAreArray({0, 1, 2, 3, 0, 3, 1})); } TEST(UniqueOpModelTest, MultipleElements_RepeatedDuplicates) { UniqueOpModel<float, int32_t> model({TensorType_FLOAT32, {6}}, TensorType_FLOAT32, TensorType_INT32); model.PopulateTensor<float>(model.input_tensor_id(), {-1, -1, -2, -2, -3, -3}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAreArray({-1, -2, -3})); EXPECT_THAT(model.GetIndexesOutput(), ElementsAreArray({0, 0, 1, 1, 2, 2})); } TEST(UniqueOpModelTest, MultipleElements_SomeDuplicates_IndexInt64) { UniqueOpModel<float, int64_t> model({TensorType_FLOAT32, {7}}, TensorType_FLOAT32, TensorType_INT64); model.PopulateTensor<float>(model.input_tensor_id(), {2, 3, 5, 7, 2, 7, 3}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAreArray({2, 3, 5, 7})); EXPECT_THAT(model.GetIndexesOutput(), ElementsAreArray({0, 1, 2, 3, 0, 3, 1})); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/unique.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/unique_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0dda2eaf-2fed-45a0-a247-17e9f1f0761c
cpp
tensorflow/tensorflow
filter_parallelization
tensorflow/core/grappler/optimizers/data/filter_parallelization.cc
tensorflow/core/grappler/optimizers/data/filter_parallelization_test.cc
#include "tensorflow/core/grappler/optimizers/data/filter_parallelization.h" #include "absl/container/flat_hash_set.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/function_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils.h" namespace tensorflow { namespace grappler { namespace { constexpr char kFilterDataset[] = "FilterDataset"; constexpr char kParallelFilterDataset[] = "ParallelFilterDataset"; NodeDef MakeParallelFilter(const string& name, MutableGraphView* graph) { int index = graph_utils::FindGraphNodeWithName(name, *graph->graph()); DCHECK_NE(index, -1) << "Failed to find node " << name << " in the optimized graph."; NodeDef parallel_filter = graph->graph()->node(index); graph_utils::SetUniqueGraphNodeName(kParallelFilterDataset, graph->graph(), &parallel_filter); parallel_filter.set_op(kParallelFilterDataset); auto* num_parallel_calls = graph_utils::AddScalarConstNode( static_cast<int64_t>(data::model::kAutotune), graph); parallel_filter.add_input(num_parallel_calls->name()); AddNodeAttr("deterministic", "true", &parallel_filter); return parallel_filter; } } Status FilterParallelization::OptimizeAndCollectStats( Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; if (!autotune_) { VLOG(1) << "The optimization filter_parallelization is not applied if " "autotune is off."; return absl::OkStatus(); } MutableGraphView graph(output); if (graph_utils::IsItemDerivedFromFunctionDef(item, graph)) return absl::OkStatus(); absl::flat_hash_set<string> nodes_to_delete; FunctionLibraryDefinition function_library(OpRegistry::Global(), item.graph.library()); auto get_filter_node = [](const NodeDef& node) -> const NodeDef* { if (node.op() == kFilterDataset) return &node; return nullptr; }; for (const NodeDef& node : item.graph.node()) { const NodeDef* filter_node = get_filter_node(node); if (!filter_node) continue; auto* function = function_library.Find( filter_node->attr().at("predicate").func().name()); if (function_utils::IsFunctionStateful(function_library, *function, true)) { continue; } auto* parallel_filter = graph.AddNode(MakeParallelFilter(filter_node->name(), &graph)); TF_RETURN_IF_ERROR( graph.UpdateFanouts(filter_node->name(), parallel_filter->name())); nodes_to_delete.insert(filter_node->name()); stats->num_changes++; } TF_RETURN_IF_ERROR(graph.DeleteNodes(nodes_to_delete)); return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(FilterParallelization, "filter_parallelization"); } }
#include "tensorflow/core/grappler/optimizers/data/filter_parallelization.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { Status OptimizeWithFilterParallelization(const GrapplerItem& item, GraphDef* output, bool autotune) { FilterParallelization optimizer; RewriterConfig_CustomGraphOptimizer config; if (autotune) { (*config.mutable_parameter_map())["autotune"].set_s("true"); } else { (*config.mutable_parameter_map())["autotune"].set_s("false"); } TF_RETURN_IF_ERROR(optimizer.Init(&config)); return optimizer.Optimize(nullptr, item, output); } using graph_tests_utils::MakeFilterNode; const char stateless_fun_name[] = "NonZero"; const char stateful_fun_name[] = "RandomUniformLess"; class AutotuneSetting : public ::testing::TestWithParam<bool> {}; TEST_P(AutotuneSetting, FilterParallelizationTest) { const bool autotune = GetParam(); using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), MakeFilterNode("filter", "range", stateless_fun_name), NDef("Sink", "Identity", {"filter"}, {})}, { test::function::NonZero(), }); item.fetch.push_back("Sink"); GraphDef output; TF_ASSERT_OK(OptimizeWithFilterParallelization(item, &output, autotune)); EXPECT_EQ(graph_utils::ContainsNodeWithOp("ParallelFilterDataset", output), autotune); EXPECT_EQ(graph_utils::ContainsGraphNodeWithName("filter", output), !autotune); } INSTANTIATE_TEST_SUITE_P(Test, AutotuneSetting, ::testing::Values(false, true)); class FromFunctionDef : public ::testing::TestWithParam<string> {}; TEST_P(FromFunctionDef, FilterParallelizationTest) { const string op = GetParam(); bool from_function_def = (op == "_Retval"); using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), MakeFilterNode("filter", "range", stateless_fun_name), NDef("Sink", op, {"filter"}, {})}, { test::function::NonZero(), }); item.fetch.push_back("Sink"); GraphDef output; TF_ASSERT_OK(OptimizeWithFilterParallelization(item, &output, true)); EXPECT_EQ(graph_utils::ContainsNodeWithOp("ParallelFilterDataset", output), !from_function_def); EXPECT_EQ(graph_utils::ContainsGraphNodeWithName("filter", output), from_function_def); } INSTANTIATE_TEST_SUITE_P(Test, FromFunctionDef, ::testing::Values("Identity", "_Retval")); TEST(ParallelizeAssert, FilterParallelizationTest) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("filename", "Const", {}, {{"value", ""}, {"dtype", DT_STRING}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), MakeFilterNode("filter1", "range", stateful_fun_name), MakeFilterNode("filter2", "filter1", stateless_fun_name), NDef("cache", "CacheDataset", {"filter2", "filename"}, {}), NDef("Sink", "Identity", {"cache"}, {})}, { test::function::NonZero(), test::function::RandomUniformLess(), }); item.fetch.push_back("Sink"); GraphDef output; TF_ASSERT_OK(OptimizeWithFilterParallelization(item, &output, true)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("ParallelFilterDataset", output)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("FilterDataset", output)); EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName("filter1", output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("filter2", output)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/filter_parallelization.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/filter_parallelization_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c6ee76f1-6ebb-49a4-b2a3-6cc5517b6271
cpp
tensorflow/tensorflow
gpu_hlo_schedule
third_party/xla/xla/service/gpu/gpu_hlo_schedule.cc
third_party/xla/xla/service/gpu/gpu_hlo_schedule_test.cc
#include "xla/service/gpu/gpu_hlo_schedule.h" #include <cstddef> #include <cstdint> #include <deque> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/numbers.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/hlo/pass/hlo_pass_pipeline.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/buffer_value.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/gpu_latency_hiding_scheduler.h" #include "xla/service/gpu/model/analytical_latency_estimator.h" #include "xla/service/gpu/transforms/pgle_accuracy_checker.h" #include "xla/service/gpu/transforms/schedule_postprocessing.h" #include "xla/service/gpu/transforms/scheduling_instruction_annotator.h" #include "xla/service/hlo_memory_scheduler.h" #include "xla/service/latency_hiding_scheduler.h" #include "xla/service/p2p_schedule_preparation.h" #include "xla/service/profile_guided_latency_estimator.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/util.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/statusor.h" #include "tsl/profiler/lib/traceme.h" namespace xla { namespace gpu { namespace { bool ShouldScheduleAsEarlyAsPossible(const HloInstruction& instr) { switch (instr.opcode()) { case HloOpcode::kAllReduceStart: case HloOpcode::kCollectivePermuteStart: return !IsSyncCollective(&instr); case HloOpcode::kAsyncStart: return true; case HloOpcode::kCustomCall: return static_cast<const HloCustomCallInstruction&>(instr) .custom_call_schedule() == CustomCallSchedule::SCHEDULE_EARLIEST; default: return false; } } bool ShouldScheduleSuccessor(const HloInstruction& sussessor, const HloPredicate& is_scheduled) { return ShouldScheduleAsEarlyAsPossible(sussessor) && absl::c_all_of(sussessor.operands(), is_scheduled) && absl::c_all_of(sussessor.control_predecessors(), is_scheduled); } bool ShouldScheduleAsLateAsPossible(const HloInstruction& instr) { switch (instr.opcode()) { case HloOpcode::kAllReduceDone: case HloOpcode::kCollectivePermuteDone: return ShouldScheduleAsEarlyAsPossible(*instr.operand(0)); case HloOpcode::kAsyncDone: return true; case HloOpcode::kCustomCall: return static_cast<const HloCustomCallInstruction&>(instr) .custom_call_schedule() == CustomCallSchedule::SCHEDULE_LATEST; default: return false; } } bool ShouldSchedulePredecessor(const HloInstruction& predecessor, const HloPredicate& is_scheduled) { return ShouldScheduleAsLateAsPossible(predecessor) && absl::c_all_of(predecessor.users(), is_scheduled) && absl::c_all_of(predecessor.control_successors(), is_scheduled); } HloInstructionSequence PostprocessorToScheduleAsEarlyOrLateAsPossible( const HloInstructionSequence& input) { std::vector<HloInstruction*> earliest_scheduled; { absl::flat_hash_set<HloInstruction*> scheduled; auto is_scheduled = [&](const HloInstruction* instr) -> bool { return scheduled.contains(instr); }; auto add_to_schedule = [&](HloInstruction* instr) { earliest_scheduled.push_back(instr); scheduled.insert(instr); }; for (HloInstruction* instr : input.instructions()) { if (is_scheduled(instr)) continue; add_to_schedule(instr); for (HloInstruction* user : instr->users()) { if (is_scheduled(user)) continue; if (ShouldScheduleSuccessor(*user, is_scheduled)) { add_to_schedule(user); } } for (HloInstruction* successor : instr->control_successors()) { if (is_scheduled(successor)) continue; if (ShouldScheduleSuccessor(*successor, is_scheduled)) { add_to_schedule(successor); } } } } std::deque<HloInstruction*> latest_scheduled; { absl::flat_hash_set<HloInstruction*> scheduled; auto is_scheduled = [&](const HloInstruction* instr) -> bool { return scheduled.contains(instr); }; auto add_to_schedule = [&](HloInstruction* instr) { latest_scheduled.push_front(instr); scheduled.insert(instr); }; for (auto it = earliest_scheduled.rbegin(); it != earliest_scheduled.rend(); it++) { if (is_scheduled(*it)) continue; add_to_schedule(*it); for (HloInstruction* operand : (*it)->operands()) { if (is_scheduled(operand)) continue; if (ShouldSchedulePredecessor(*operand, is_scheduled)) { add_to_schedule(operand); } } for (HloInstruction* predecessor : (*it)->control_predecessors()) { if (is_scheduled(predecessor)) continue; if (ShouldSchedulePredecessor(*predecessor, is_scheduled)) { add_to_schedule(predecessor); } } } } HloInstructionSequence result; absl::c_for_each(latest_scheduled, [&](HloInstruction* i) { result.push_back(i); }); CHECK(input.instructions().size() == result.size()) << "schedule as early or late post-processing changed schedule size from " << input.instructions().size() << " to " << result.size(); return result; } HloInstructionSequence PostprocessorToScheduleSyncCollectives( const HloInstructionSequence& input) { HloInstructionSequence result; auto is_sync_start = [](const HloInstruction* instr) { return hlo_query::IsAsyncCollectiveStartOp(instr, true) && IsSyncCollective(instr); }; for (HloInstruction* instr : input.instructions()) { if (is_sync_start(instr)) continue; if (hlo_query::IsAsyncCollectiveDoneOp(instr, true)) { HloInstruction* start = instr->mutable_operand(0); if (is_sync_start(start)) result.push_back(start); } result.push_back(instr); } CHECK(input.instructions().size() == result.size()) << "sync collectives post-processing changed schedule size from " << input.instructions().size() << " to " << result.size(); return result; } SchedulerConfig GetSchedulerConfig(int64_t memory_limit) { SchedulerConfig config; config.all_reduce_overlap_limit = 1; config.collective_broadcast_overlap_limit = 1; config.collective_permute_overlap_limit = 1; config.use_real_cost_model = false; config.aggressive_scheduling_policies = true; config.schedule_send_recvs = true; config.memory_limit = memory_limit; return config; } tensorflow::profiler::ProfiledInstructionsProto GetProfileForFingerprint( tensorflow::profiler::ProfiledInstructionsProto& profile, const std::string& fingerprint) { tensorflow::profiler::ProfiledInstructionsProto result; bool merge_remat_clones = false; for (const auto& cost : profile.costs()) { absl::string_view cost_name = cost.name(); std::string new_cost_name = cost.name(); absl::string_view cost_sep = "::"; if (absl::StrContains(cost_name, cost_sep)) { std::vector<std::string> split_names = absl::StrSplit(cost_name, cost_sep); if (split_names.size() != 2 || split_names[0] != fingerprint) { continue; } new_cost_name = split_names[1]; } merge_remat_clones |= absl::StrContains(new_cost_name, ".remat"); auto* new_cost = result.add_costs(); new_cost->set_cost_us(cost.cost_us()); new_cost->set_name(new_cost_name); } if (!merge_remat_clones) { return result; } auto strip_remat_suffix = [](absl::string_view name) -> absl::string_view { absl::string_view suffix = ".remat"; size_t index = name.rfind(suffix); if (index == std::string::npos) { return name; } auto after_suffix = name.substr(index + suffix.size()); int64_t numeric_suffix; if (after_suffix.empty() || absl::SimpleAtoi(after_suffix, &numeric_suffix)) { return name.substr(0, index); } return name; }; absl::flat_hash_map<absl::string_view, std::pair<double, int64_t>> costs; for (const auto& cost : result.costs()) { std::pair<double, int64_t>& data = costs[strip_remat_suffix(cost.name())]; data.first += cost.cost_us(); data.second++; } tensorflow::profiler::ProfiledInstructionsProto merged_result; for (const auto& cost : costs) { auto* new_cost = merged_result.add_costs(); double average = cost.second.first / cost.second.second; new_cost->set_cost_us(average); new_cost->set_name(std::string(cost.first)); } return merged_result; } std::optional<tensorflow::profiler::ProfiledInstructionsProto> ReadPGLEProfile( const HloModule* module, const std::string& fingerprint) { tensorflow::profiler::ProfiledInstructionsProto profile; absl::string_view fdo_profile = module->config().fdo_profile(); if (!fdo_profile.empty()) { if (tsl::ParseProtoUnlimited(&profile, fdo_profile.data(), fdo_profile.size())) { LOG(INFO) << "Using PGLE profile for module from fdo_profile (binary)"; return GetProfileForFingerprint(profile, fingerprint); } profile.Clear(); if (tsl::protobuf::TextFormat::ParseFromString(std::string(fdo_profile), &profile)) { LOG(INFO) << "Using PGLE profile for module from fdo_profile (text)"; return GetProfileForFingerprint(profile, fingerprint); } LOG(ERROR) << "Unable to prase FDO profile: not a valid text or binary " "ProfiledInstructionsProto"; } const std::string& pgle_profile_file_or_dir_path = module->config() .debug_options() .xla_gpu_pgle_profile_file_or_directory_path(); if (pgle_profile_file_or_dir_path.empty()) { return std::nullopt; } tsl::Env* env = tsl::Env::Default(); auto read_text_or_binary_profile = [&profile, env, &fingerprint]( const std::string& text_path, const std::string& binary_path) -> std::optional<tensorflow::profiler::ProfiledInstructionsProto> { if (env->FileExists(text_path).ok()) { absl::Status s = tsl::ReadTextProto(env, text_path, &profile); if (s.ok()) { LOG(INFO) << "Using PGLE profile from " << text_path; return GetProfileForFingerprint(profile, fingerprint); } else { LOG(ERROR) << "Unable to read PGLE text proto from " << text_path << ": " << s.message(); } profile.Clear(); } if (env->FileExists(binary_path).ok()) { absl::Status s = tsl::ReadBinaryProto(env, binary_path, &profile); if (s.ok()) { LOG(INFO) << "Using PGLE profile from " << binary_path; return GetProfileForFingerprint(profile, fingerprint); } else { LOG(ERROR) << "Unable to read PGLE binary proto from " << binary_path << ": " << s.message(); } profile.Clear(); } return std::nullopt; }; if (env->IsDirectory(pgle_profile_file_or_dir_path).ok()) { std::string pgle_profile_path_prefix = pgle_profile_file_or_dir_path + "/" + fingerprint; return read_text_or_binary_profile(pgle_profile_path_prefix + ".pbtxt", pgle_profile_path_prefix + ".pb"); } auto extension = tsl::io::Extension(pgle_profile_file_or_dir_path); if (extension == "pbtxt") { return read_text_or_binary_profile(pgle_profile_file_or_dir_path, ""); } else if (extension == "pb") { return read_text_or_binary_profile("", pgle_profile_file_or_dir_path); } else { return read_text_or_binary_profile(pgle_profile_file_or_dir_path, pgle_profile_file_or_dir_path); } } } static int64_t GetSchedulerMemoryLimit( const HloModule* module, const se::DeviceDescription& gpu_device_info, int pointer_size); absl::StatusOr<ScheduleMetadata> ScheduleGpuModule( HloModule* module, int64_t pointer_size, const se::DeviceDescription& gpu_device_info) { tsl::profiler::TraceMe traceme("GpuCompiler::CompileToBackendResult"); int64_t memory_limit = GetSchedulerMemoryLimit(module, gpu_device_info, pointer_size); if (module->has_schedule()) { return ScheduleMetadata{memory_limit}; } HloPassPipeline prepare_pipeline("p2p-schedule-preparation"); prepare_pipeline.AddPass<P2PSchedulePreparation>(); TF_RETURN_IF_ERROR(prepare_pipeline.Run(module).status()); TF_ASSIGN_OR_RETURN( HloSchedule schedule, ScheduleGpuModuleWithMemoryScheduler(module, pointer_size)); TF_RETURN_IF_ERROR(module->set_schedule(std::move(schedule))); std::string fingerprint = module->GetFingerprint128( HloPrintOptions::Canonical().set_print_backend_config(true)); FrontendAttributes attributes; (*attributes.mutable_map())[std::string(kFingerprintBeforeLHS)] = fingerprint; module->add_frontend_attributes(attributes); VLOG(1) << "Fingerprint before LHS for module " << module->name() << "(" << module->unique_id() << ") = " << fingerprint; const bool enable_latency_hiding_scheduler = module->config() .debug_options() .xla_gpu_enable_latency_hiding_scheduler(); if (!enable_latency_hiding_scheduler) { return ScheduleMetadata{memory_limit}; } SchedulerConfig config = GetSchedulerConfig(memory_limit); auto gpu_latency_estimator = std::make_unique<GpuLatencyEstimator>(pointer_size); std::unique_ptr<LatencyEstimator> latency_estimator; std::optional<tensorflow::profiler::ProfiledInstructionsProto> profile = ReadPGLEProfile(module, fingerprint); const bool enable_analytical_latency_estimator = module->config() .debug_options() .xla_gpu_enable_analytical_latency_estimator(); HloPassPipeline pipeline("latency-hiding-scheduler"); if (profile.has_value()) { auto aggregator = std::make_unique<GPUProfileStatisticsAggregator>(); auto pg_latency_estimator = std::make_unique<ProfileGuidedLatencyEstimator>( config, std::move(gpu_latency_estimator), profile.value(), std::move(aggregator)); LOG(INFO) << "Found profile, using profile guided latency estimator"; VLOG(1) << "Profile:\n" << profile->DebugString(); if (module->config() .debug_options() .xla_gpu_enable_pgle_accuracy_checker()) { pipeline.AddPass<PGLEAccuracyChecker>(*pg_latency_estimator); } latency_estimator = std::move(pg_latency_estimator); } else if (enable_analytical_latency_estimator) { latency_estimator = std::make_unique<AnalyticalLatencyEstimator>( config, std::move(gpu_latency_estimator), gpu_device_info, [input_pointer_size = pointer_size](const Shape& shape) { return GetSizeOfShape(shape, input_pointer_size); }, module->entry_computation()); LOG(INFO) << "Using analytical latency estimator"; } else { latency_estimator = std::move(gpu_latency_estimator); } auto async_tracker = [&]() -> std::unique_ptr<AsyncTracker> { return module->config() .debug_options() .xla_gpu_lhs_enable_gpu_async_tracker() ? std::make_unique<GpuAsyncTracker>(config) : std::make_unique<GpuAsyncTrackerBase>(config); }(); auto shape_size_in_bytes = [pointer_size](const Shape& shape) { return GetSizeOfShape(shape, pointer_size); }; auto scheduler_core = std::make_unique<DefaultSchedulerCore>( shape_size_in_bytes, async_tracker.get(), latency_estimator.get(), config); pipeline.AddPass<SchedulingInstructionAnnotator>(); pipeline.AddPass<LatencyHidingScheduler>( std::move(latency_estimator), std::move(async_tracker), std::move(scheduler_core), shape_size_in_bytes); TF_RETURN_IF_ERROR(pipeline.Run(module).status()); HloPassPipeline postprocessing_pipeline("schedule-postprocessing"); postprocessing_pipeline.AddPass<SchedulePostprocessing>(); TF_RETURN_IF_ERROR(postprocessing_pipeline.Run(module).status()); return ScheduleMetadata{memory_limit}; } absl::StatusOr<HloSchedule> ScheduleGpuModuleWithMemoryScheduler( const HloModule* module, int64_t pointer_size, int64_t* peak_memory_bytes) { return ScheduleModule( module, [pointer_size](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape(), pointer_size); }, ComputationSchedulerToModuleScheduler(DefaultMemoryScheduler, PostProcessSchedule), {}, peak_memory_bytes); } HloInstructionSequence PostProcessSchedule( const HloInstructionSequence& input) { HloInstructionSequence result = PostprocessorToScheduleSyncCollectives(input); return PostprocessorToScheduleAsEarlyOrLateAsPossible(result); } static int64_t GetSchedulerMemoryLimit( const HloModule* module, const se::DeviceDescription& gpu_device_info, int pointer_size) { const int64_t base_limit = module->config().device_memory_size() != 0 ? module->config().device_memory_size() : gpu_device_info.device_memory_size() * 80 / 100; int64_t total_io_size = 0; for (HloInstruction* param : module->entry_computation()->parameter_instructions()) { ShapeUtil::ForEachSubshape( param->shape(), [&](const Shape& subshape, const ShapeIndex& ) { total_io_size += GetSizeOfShape(subshape, pointer_size); }); } ShapeUtil::ForEachSubshape( module->result_shape(), [&](const Shape& subshape, const ShapeIndex& ) { total_io_size += GetSizeOfShape(subshape, pointer_size); }); module->input_output_alias_config().ForEachAlias( [&](const ShapeIndex& output_index, const HloInputOutputAliasConfig::Alias&) { const Shape& subshape = ShapeUtil::GetSubshape(module->result_shape(), output_index); total_io_size -= GetSizeOfShape(subshape, pointer_size); }); int64_t limit = (base_limit - total_io_size) * module->config().debug_options().xla_gpu_memory_limit_slop_factor() / 100; return limit; } } }
#include "xla/service/gpu/gpu_hlo_schedule.h" #include <algorithm> #include <cstdint> #include <cstdlib> #include <memory> #include <optional> #include <string> #include <string_view> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/collective_device_list.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/backend.h" #include "xla/service/gpu/gpu_compiler.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_ordering.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/test_utils.h" #include "xla/tests/verified_hlo_module.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/status.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/profiler/protobuf/profiled_instructions.pb.h" namespace xla { namespace gpu { using ::testing::ElementsAre; using ::tsl::testing::StatusIs; class GpuHloScheduleTest : public HloTestBase { protected: using HloVec = std::vector<HloInstruction*>; Shape f32_2x2_ = ShapeUtil::MakeShape(F32, {2, 2}); SequentialHloOrdering BuildHloOrdering(HloModule* module) { Backend& test_backend = backend(); const se::DeviceDescription& gpu_device_info = test_backend.default_stream_executor()->GetDeviceDescription(); TF_CHECK_OK(ScheduleGpuModule(module, 8, gpu_device_info) .status()); return SequentialHloOrdering{module->schedule()}; } HloModuleConfig GetModuleConfig(bool enable_latency_hiding_scheduler, bool enable_gpu_async_tracker = false, absl::string_view fdo_profile = "") { HloModuleConfig config; DebugOptions debug_options = GetDebugOptionsForTest(); debug_options.set_xla_gpu_enable_latency_hiding_scheduler( enable_latency_hiding_scheduler); debug_options.set_xla_gpu_lhs_enable_gpu_async_tracker( enable_gpu_async_tracker); config.set_debug_options(debug_options); *config.mutable_fdo_profile() = fdo_profile; return config; } std::unique_ptr<HloModule> CreateNewVerifiedModule( bool enable_latency_hiding_scheduler = false) { return std::make_unique<HloModule>( "test_module", GetModuleConfig(enable_latency_hiding_scheduler)); } static bool HasValidFingerprint(HloModule* module) { const FrontendAttributes& attrs = module->frontend_attributes(); auto it = attrs.map().find(kFingerprintBeforeLHS); return it != attrs.map().end() && it->second.size() == 128 / 4; } }; TEST_F(GpuHloScheduleTest, SequentialMatMul) { HloComputation::Builder builder("entry_computation"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter( 0, f32_2x2_, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter( 1, f32_2x2_, "y")); HloInstruction* z = builder.AddInstruction(HloInstruction::CreateParameter( 2, f32_2x2_, "z")); HloInstruction* dot1 = builder.AddInstruction(CreateCanonicalDot(f32_2x2_, x, y)); HloInstruction* dot2 = builder.AddInstruction(CreateCanonicalDot(f32_2x2_, dot1, z)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build(dot2)); SequentialHloOrdering order = BuildHloOrdering(module.get()); EXPECT_TRUE(order.ExecutesBefore(y, x)); EXPECT_TRUE(order.ExecutesBefore(y, dot1)); EXPECT_TRUE(order.ExecutesBefore(z, dot1)); EXPECT_TRUE(order.ExecutesBefore(z, dot2)); EXPECT_TRUE(order.ExecutesBefore(dot1, dot2)); EXPECT_TRUE(HasValidFingerprint(module.get())); } TEST_F(GpuHloScheduleTest, SequentialAdd) { HloComputation::Builder builder("entry_computation"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter( 0, f32_2x2_, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter( 1, f32_2x2_, "y")); HloInstruction* z = builder.AddInstruction(HloInstruction::CreateParameter( 2, f32_2x2_, "z")); HloInstruction* add1 = builder.AddInstruction( HloInstruction::CreateBinary(f32_2x2_, HloOpcode::kAdd, x, y)); HloInstruction* add2 = builder.AddInstruction( HloInstruction::CreateBinary(f32_2x2_, HloOpcode::kAdd, y, z)); HloInstruction* add3 = builder.AddInstruction( HloInstruction::CreateBinary(f32_2x2_, HloOpcode::kAdd, add1, add2)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build(add3)); SequentialHloOrdering order = BuildHloOrdering(module.get()); EXPECT_TRUE(order.ExecutesBefore(y, x)); EXPECT_TRUE(order.ExecutesBefore(y, add1)); EXPECT_TRUE(order.ExecutesBefore(z, add1)); EXPECT_TRUE(order.ExecutesBefore(z, add2)); EXPECT_TRUE(order.ExecutesBefore(add1, add2)); EXPECT_TRUE(order.ExecutesBefore(add2, add3)); EXPECT_TRUE(HasValidFingerprint(module.get())); } TEST_F(GpuHloScheduleTest, AsyncCustomCall) { HloComputation::Builder builder("entry_computation"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter( 0, f32_2x2_, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter( 1, f32_2x2_, "y")); HloInstruction* z = builder.AddInstruction(HloInstruction::CreateParameter( 2, f32_2x2_, "z")); HloInstruction* add0 = builder.AddInstruction( HloInstruction::CreateBinary(f32_2x2_, HloOpcode::kAdd, x, y)); HloInstruction* add1 = builder.AddInstruction( HloInstruction::CreateBinary(f32_2x2_, HloOpcode::kAdd, add0, y)); HloInstruction* add2 = builder.AddInstruction( HloInstruction::CreateBinary(f32_2x2_, HloOpcode::kAdd, add1, z)); HloInstruction* nonblocking_call = builder.AddInstruction(HloInstruction::CreateCustomCall( f32_2x2_, {add0}, "nonblocking-call-start", "")); static_cast<HloCustomCallInstruction*>(nonblocking_call) ->set_custom_call_schedule(SCHEDULE_EARLIEST); TF_CHECK_OK(add1->AddControlDependencyTo(nonblocking_call)); HloInstruction* blocking_call = builder.AddInstruction(HloInstruction::CreateCustomCall( f32_2x2_, {nonblocking_call}, "blocking-call-done", "")); static_cast<HloCustomCallInstruction*>(blocking_call) ->set_custom_call_schedule(SCHEDULE_LATEST); HloInstruction* add3 = builder.AddInstruction( HloInstruction::CreateBinary(f32_2x2_, HloOpcode::kAdd, add1, add2)); HloInstruction* add4 = builder.AddInstruction(HloInstruction::CreateBinary( f32_2x2_, HloOpcode::kAdd, add3, blocking_call)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build(add4)); SequentialHloOrdering order = BuildHloOrdering(module.get()); VLOG(2) << order.ToString(); EXPECT_TRUE(order.ExecutesBefore(add0, nonblocking_call)); EXPECT_TRUE(order.ExecutesBefore(add1, nonblocking_call)); EXPECT_TRUE(order.ExecutesBefore(nonblocking_call, add2)); EXPECT_TRUE(order.ExecutesBefore(nonblocking_call, add3)); EXPECT_TRUE(order.ExecutesBefore(nonblocking_call, add4)); EXPECT_TRUE(order.ExecutesBefore(add3, blocking_call)); EXPECT_TRUE(order.ExecutesBefore(blocking_call, add4)); EXPECT_TRUE(HasValidFingerprint(module.get())); } TEST_F(GpuHloScheduleTest, AsyncCollectivePermute) { std::unique_ptr<HloModule> module = CreateNewVerifiedModule(); HloComputation::Builder builder("entry_computation"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter( 0, f32_2x2_, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter( 1, f32_2x2_, "y")); HloInstruction* z = builder.AddInstruction(HloInstruction::CreateParameter( 2, f32_2x2_, "z")); HloInstruction* add0 = builder.AddInstruction( HloInstruction::CreateBinary(f32_2x2_, HloOpcode::kAdd, x, y)); HloInstruction* add1 = builder.AddInstruction( HloInstruction::CreateBinary(f32_2x2_, HloOpcode::kAdd, add0, y)); HloInstruction* add2 = builder.AddInstruction( HloInstruction::CreateBinary(f32_2x2_, HloOpcode::kAdd, add1, z)); Shape u32_scalar = ShapeUtil::MakeShape(U32, {}); Shape collective_permute_start_shape = ShapeUtil::MakeTupleShape({f32_2x2_, f32_2x2_}); HloInstruction* collective_permute_start = builder.AddInstruction(HloInstruction::CreateCollectivePermuteStart( collective_permute_start_shape, add0, {{0, 1}}, std::nullopt)); TF_CHECK_OK(add1->AddControlDependencyTo(collective_permute_start)); HloInstruction* collective_permute_done = builder.AddInstruction( HloInstruction::CreateUnary(f32_2x2_, HloOpcode::kCollectivePermuteDone, collective_permute_start)); HloInstruction* add3 = builder.AddInstruction( HloInstruction::CreateBinary(f32_2x2_, HloOpcode::kAdd, add1, add2)); HloInstruction* add4 = builder.AddInstruction(HloInstruction::CreateBinary( f32_2x2_, HloOpcode::kAdd, add3, collective_permute_done)); module->AddEntryComputation(builder.Build(add4)); SequentialHloOrdering order = BuildHloOrdering(module.get()); VLOG(2) << order.ToString(); EXPECT_TRUE(order.ExecutesBefore(add0, collective_permute_start)); EXPECT_TRUE(order.ExecutesBefore(add1, collective_permute_start)); EXPECT_TRUE(order.ExecutesBefore(collective_permute_start, add2)); EXPECT_TRUE(order.ExecutesBefore(collective_permute_start, add3)); EXPECT_TRUE(order.ExecutesBefore(collective_permute_start, add4)); EXPECT_TRUE(order.ExecutesBefore(add3, collective_permute_done)); EXPECT_TRUE(order.ExecutesBefore(collective_permute_done, add4)); EXPECT_TRUE(HasValidFingerprint(module.get())); } TEST_F(GpuHloScheduleTest, LHSCostModel) { const char* hlo_text = R"( HloModule AsyncAR apply_op { x = f32[] parameter(0) y = f32[] parameter(1) ROOT apply_op = f32[] add(x, y) } ENTRY ar { p0 = f32[32] parameter(0) p1 = f32[32, 32] parameter(1) p2 = f32[32, 32] parameter(2) p3 = f32[32] parameter(3) dot0 = f32[32,32]{1,0} custom-call(p1, p2), custom_call_target="__cublas$gemm" dot1 = f32[32,32]{1,0} custom-call(dot0, p2), custom_call_target="__cublas$gemm" dot2 = f32[32,32]{1,0} custom-call(dot1, p2), custom_call_target="__cublas$gemm" dot3 = f32[32,32]{1,0} custom-call(dot2, p2), custom_call_target="__cublas$gemm" dot4 = f32[32,32]{1,0} custom-call(dot3, p2), custom_call_target="__cublas$gemm" dot5 = f32[32,32]{1,0} custom-call(dot4, p2), custom_call_target="__cublas$gemm" dot6 = f32[32,32]{1,0} custom-call(dot5, p2), custom_call_target="__cublas$gemm" ar-start = f32[32] all-reduce-start(p0), to_apply=apply_op ar-done = f32[32] all-reduce-done(ar-start) ar-start1 = f32[32] all-reduce-start(p3), to_apply=apply_op ar-done1 = f32[32] all-reduce-done(ar-start1) add0 = f32[32,32] add(dot0, dot1) add1 = f32[32,32] add(add0, dot2) add2 = f32[32,32] add(add1, dot3) add3 = f32[32,32] add(add2, dot4) add4 = f32[32,32] add(add3, dot5) add5 = f32[32,32] add(add4, dot6) ROOT t = (f32[32], f32[32], f32[32,32]) tuple(ar-done, ar-done1, add5) })"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule( hlo_text, GetModuleConfig(true))); SequentialHloOrdering order = BuildHloOrdering(module.get()); HloComputation* entry = module->entry_computation(); std::vector<int64_t> count_between_pairs; bool in_between = false; for (const HloInstruction* inst : order.SequentialOrder(*entry)->instructions()) { if (inst->opcode() == HloOpcode::kAllReduceStart) { in_between = true; count_between_pairs.push_back(0); } else if (inst->opcode() == HloOpcode::kAllReduceDone) { in_between = false; } else if (in_between && inst->opcode() == HloOpcode::kCustomCall) { count_between_pairs.back()++; } } EXPECT_EQ(count_between_pairs.size(), 2); EXPECT_GT(count_between_pairs[0], 0); EXPECT_GT(count_between_pairs[1], 0); EXPECT_TRUE(HasValidFingerprint(module.get())); } TEST_F(GpuHloScheduleTest, ScheduleGpuModuleWithMemorySchedulerReturnsPeakMemoryBytes) { absl::string_view kHloText = R"( HloModule m ENTRY ar { p0 = f32[32,32] parameter(0) p1 = f32[32,32] parameter(1) ROOT _ = f32[32,32]{1,0} custom-call(p0, p1), custom_call_target="__cublas$gemm" })"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule( kHloText, GetModuleConfig(true))); int64_t pointer_size = dynamic_cast<GpuCompiler*>(backend().compiler())->GetPointerSize(); int64_t peak_memory_bytes = -1; TF_ASSERT_OK_AND_ASSIGN(auto schedule, ScheduleGpuModuleWithMemoryScheduler( module.get(), pointer_size, &peak_memory_bytes)); EXPECT_GT(peak_memory_bytes, 0); } TEST_F(GpuHloScheduleTest, LHSCostModelCostlyAR) { const char* hlo_text = R"( HloModule AsyncAR apply_op { x = bf16[] parameter(0) y = bf16[] parameter(1) ROOT apply_op = bf16[] add(x, y) } ENTRY ar { p0 = bf16[32505856] parameter(0) p1 = f32[32, 32] parameter(1) p2 = f32[32, 32] parameter(2) dot0 = f32[32,32]{1,0} custom-call(p1, p2), custom_call_target="__cublas$gemm" dot1 = f32[32,32]{1,0} custom-call(dot0, p2), custom_call_target="__cublas$gemm" dot2 = f32[32,32]{1,0} custom-call(dot1, p2), custom_call_target="__cublas$gemm" dot3 = f32[32,32]{1,0} custom-call(dot2, p2), custom_call_target="__cublas$gemm" dot4 = f32[32,32]{1,0} custom-call(dot3, p2), custom_call_target="__cublas$gemm" dot5 = f32[32,32]{1,0} custom-call(dot4, p2), custom_call_target="__cublas$gemm" dot6 = f32[32,32]{1,0} custom-call(dot5, p2), custom_call_target="__cublas$gemm" ar-start = bf16[32505856] all-reduce-start(p0), to_apply=apply_op ar-done = bf16[32505856] all-reduce-done(ar-start) ROOT t = (bf16[32505856], f32[32,32]) tuple(ar-done, dot6) })"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule( hlo_text, GetModuleConfig(true))); SequentialHloOrdering order = BuildHloOrdering(module.get()); HloComputation* entry = module->entry_computation(); std::vector<int64_t> count_between_pairs; bool in_between = false; for (const HloInstruction* inst : order.SequentialOrder(*entry)->instructions()) { if (inst->opcode() == HloOpcode::kAllReduceStart) { in_between = true; count_between_pairs.push_back(0); } else if (inst->opcode() == HloOpcode::kAllReduceDone) { in_between = false; } else if (in_between && inst->opcode() == HloOpcode::kCustomCall) { count_between_pairs.back()++; } } EXPECT_EQ(count_between_pairs.size(), 1); EXPECT_EQ(count_between_pairs[0], 7); EXPECT_TRUE(HasValidFingerprint(module.get())); } TEST_F(GpuHloScheduleTest, ProfileGuidedCostModel) { const char* hlo_text = R"( HloModule AsyncAR apply_op { x = f32[] parameter(0) y = f32[] parameter(1) ROOT apply_op = f32[] add(x, y) } ENTRY ar { p0 = f32[32] parameter(0) p1 = f32[32, 32] parameter(1) p2 = f32[32, 32] parameter(2) p3 = f32[32] parameter(3) dot0 = f32[32,32]{1,0} custom-call(p1, p2), custom_call_target="__cublas$gemm" dot1 = f32[32,32]{1,0} custom-call(p1, p2), custom_call_target="__cublas$gemm" add0 = f32[32,32] add(dot0, dot1) ar-start = f32[32] all-reduce-start(p0), to_apply=apply_op ar-done = f32[32] all-reduce-done(ar-start) ar-start1 = f32[32] all-reduce-start(p3), to_apply=apply_op ar-done1 = f32[32] all-reduce-done(ar-start1) ROOT t = (f32[32], f32[32], f32[32,32]) tuple(ar-done, ar-done1, add0) })"; struct SubTest { std::string profile; std::string target_start, target_done; }; std::vector<SubTest> subtests; const std::string ar_long_latency_proto_text = R"pb( costs { name: "dot0" cost_us: 100.0 } costs { name: "dot1" cost_us: 100.0 } costs { name: "add0" cost_us: 10.0 } costs { name: "ar-start" cost_us: 1000.0 } costs { name: "ar-start1" cost_us: 10.0 } )pb"; subtests.push_back({ar_long_latency_proto_text, "ar-start", "ar-done"}); const std::string ar1_long_latency_proto_text = R"pb( costs { name: "dot0" cost_us: 100.0 } costs { name: "dot1" cost_us: 100.0 } costs { name: "add0" cost_us: 10.0 } costs { name: "ar-start" cost_us: 10.0 } costs { name: "ar-start1" cost_us: 1000.0 } )pb"; tensorflow::profiler::ProfiledInstructionsProto profile; ASSERT_TRUE(tsl::protobuf::TextFormat::ParseFromString( ar1_long_latency_proto_text, &profile)); std::string ar1_long_latency_proto_binary = profile.SerializeAsString(); subtests.push_back({profile.SerializeAsString(), "ar-start1", "ar-done1"}); for (const SubTest& subtest : subtests) { TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule( hlo_text, GetModuleConfig(true, true, subtest.profile))); SequentialHloOrdering order = BuildHloOrdering(module.get()); HloComputation* entry = module->entry_computation(); bool between_target_collective_pair = false; for (const HloInstruction* inst : order.SequentialOrder(*entry)->instructions()) { if (inst->name() == subtest.target_start) { between_target_collective_pair = true; } else if (inst->name() == subtest.target_done) { between_target_collective_pair = false; } else if (inst->opcode() == HloOpcode::kDot || inst->opcode() == HloOpcode::kAdd) { EXPECT_TRUE(between_target_collective_pair); } } } } TEST_F(GpuHloScheduleTest, ProfileGuidedCostModelFailsWithIncompleteProfile) { const absl::string_view kHloString = R"( HloModule m apply_op { x = f32[] parameter(0) y = f32[] parameter(1) ROOT apply_op = f32[] add(x, y) } ENTRY ar { p0 = f32[32] parameter(0) p1 = f32[32,32] parameter(1) p2 = f32[32,32] parameter(2) p3 = f32[32] parameter(3) dot0 = f32[32,32]{1,0} custom-call(p1, p2), custom_call_target="__cublas$gemm" dot1 = f32[32,32]{1,0} custom-call(p1, p2), custom_call_target="__cublas$gemm" add0 = f32[32,32] add(dot0, dot1) ar-start = f32[32] all-reduce-start(p0), to_apply=apply_op ar-done = f32[32] all-reduce-done(ar-start) ar-start1 = f32[32] all-reduce-start(p3), to_apply=apply_op ar-done1 = f32[32] all-reduce-done(ar-start1) ROOT t = (f32[32],f32[32],f32[32,32]) tuple(ar-done, ar-done1, add0) })"; const absl::string_view kProfile = R"pb( costs { name: "dot0" cost_us: 100.0 } costs { name: "add0" cost_us: 10.0 } costs { name: "ar-start" cost_us: 1000.0 } )pb"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule( kHloString, GetModuleConfig(true, true, kProfile))); HloModuleConfig config(module->config()); DebugOptions dboptions(config.debug_options()); dboptions.set_xla_gpu_enable_pgle_accuracy_checker(true); config.set_debug_options(dboptions); module->set_config(config); EXPECT_THAT(ScheduleGpuModule( module.get(), 8, backend().default_stream_executor()->GetDeviceDescription()) .status(), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST_F( GpuHloScheduleTest, ProfileGuidedCostModelDoesNotFailWithIncompleteProfileIfAccuracyCheckerIsDisabled) { const absl::string_view kHloString = R"( HloModule m apply_op { x = f32[] parameter(0) y = f32[] parameter(1) ROOT apply_op = f32[] add(x, y) } ENTRY ar { p0 = f32[32] parameter(0) p1 = f32[32,32] parameter(1) p2 = f32[32,32] parameter(2) p3 = f32[32] parameter(3) dot0 = f32[32,32]{1,0} custom-call(p1, p2), custom_call_target="__cublas$gemm" dot1 = f32[32,32]{1,0} custom-call(p1, p2), custom_call_target="__cublas$gemm" add0 = f32[32,32] add(dot0, dot1) ar-start = f32[32] all-reduce-start(p0), to_apply=apply_op ar-done = f32[32] all-reduce-done(ar-start) ar-start1 = f32[32] all-reduce-start(p3), to_apply=apply_op ar-done1 = f32[32] all-reduce-done(ar-start1) ROOT t = (f32[32],f32[32],f32[32,32]) tuple(ar-done, ar-done1, add0) })"; const absl::string_view kProfile = R"pb( costs { name: "dot0" cost_us: 100.0 } costs { name: "add0" cost_us: 10.0 } costs { name: "ar-start" cost_us: 1000.0 } )pb"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule( kHloString, GetModuleConfig(true, true, kProfile))); module->mutable_config().mutable_debug_options().add_xla_disable_hlo_passes( "pgle-accuracy-checker"); TF_EXPECT_OK(ScheduleGpuModule( module.get(), 8, backend().default_stream_executor()->GetDeviceDescription()) .status()); } TEST_F(GpuHloScheduleTest, ProfileGuidedCostModelWithRematData) { const char* hlo_text = R"( HloModule AsyncAR apply_op { x = f32[] parameter(0) y = f32[] parameter(1) ROOT apply_op = f32[] add(x, y) } ENTRY ar { p0 = f32[32] parameter(0) p1 = f32[32, 32] parameter(1) p2 = f32[32, 32] parameter(2) p3 = f32[32] parameter(3) dot0 = f32[32,32]{1,0} custom-call(p1, p2), custom_call_target="__cublas$gemm" dot1 = f32[32,32]{1,0} custom-call(p1, p2), custom_call_target="__cublas$gemm" add0 = f32[32,32] add(dot0, dot1) ar-start = f32[32] all-reduce-start(p0), to_apply=apply_op ar-done = f32[32] all-reduce-done(ar-start) ar-start1 = f32[32] all-reduce-start(p3), to_apply=apply_op ar-done1 = f32[32] all-reduce-done(ar-start1) ROOT t = (f32[32], f32[32], f32[32,32]) tuple(ar-done, ar-done1, add0) })"; const std::string ar_long_latency_proto_text = R"pb( costs { name: "dot0" cost_us: 100.0 } costs { name: "dot1" cost_us: 100.0 } costs { name: "add0" cost_us: 10.0 } costs { name: "ar-start" cost_us: 1.0 } costs { name: "ar-start1" cost_us: 1.0 } costs { name: "ar-start.remat100" cost_us: 2000.0 } )pb"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule( hlo_text, GetModuleConfig(true, true, ar_long_latency_proto_text))); SequentialHloOrdering order = BuildHloOrdering(module.get()); HloComputation* entry = module->entry_computation(); bool between_target_collective_pair = false; for (const HloInstruction* inst : order.SequentialOrder(*entry)->instructions()) { if (inst->name() == "ar-start") { between_target_collective_pair = true; } else if (inst->name() == "ar-done") { between_target_collective_pair = false; } else if (inst->opcode() == HloOpcode::kDot || inst->opcode() == HloOpcode::kAdd) { EXPECT_TRUE(between_target_collective_pair); } } } TEST_F(GpuHloScheduleTest, LHSSendRecv) { const char* hlo_text = R"( HloModule test while_cond { param = (u32[], f32[1, 1024, 1024]) parameter(0) count = get-tuple-element(%param), index=0 ub = u32[] constant(25) ROOT cond_result = pred[] compare(count, ub), direction=LT } while_body { param = (u32[], f32[1, 1024, 1024]) parameter(0) count = get-tuple-element(%param), index=0 send-data = get-tuple-element(%param), index=1 after-all = token[] after-all() recv = (f32[1, 1024, 1024], u32[], token[]) recv(after-all), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0, 1}}" } send = (f32[1, 1024, 1024], u32[], token[]) send(send-data, after-all), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0, 1}}" } recv-done = (f32[1, 1024, 1024], token[]) recv-done(recv), channel_id=1 send-done = token[] send-done(send), channel_id=1 recv-data = f32[1, 1024, 1024] get-tuple-element(recv-done), index=0 c1 = u32[] constant(1) new_count = u32[] add(count, c1) replica = u32[] replica-id() c10 = u32[] constant(10) sum = u32[] add(replica, c10) sum2 = u32[] add(sum, count) conv = f32[] convert(sum2) p = f32[1, 1024, 1024] broadcast(conv), dimensions={} b = f32[1, 1024, 1024] add(p, recv-data) c = f32[1, 1024, 1024] multiply(b, b) d = f32[1, 1024, 1024] tan(c) s = f32[1, 1024, 1024] dot(c, d), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1} ROOT result = (u32[], f32[1, 1024, 1024]) tuple(new_count, s) } ENTRY test_computation { c0 = u32[] constant(0) f0 = f32[] constant(0.0) init = f32[1, 1024, 1024] broadcast(f0), dimensions={} while_init = (u32[], f32[1, 1024, 1024]) tuple(c0, init) while_result = (u32[], f32[1, 1024, 1024]) while(while_init), body=while_body, condition=while_cond ROOT entry_result = f32[1, 1024, 1024] get-tuple-element(while_result), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule( hlo_text, GetModuleConfig(true))); SequentialHloOrdering order = BuildHloOrdering(module.get()); HloComputation* while_body = module->GetComputationWithName("while_body"); const std::vector<HloInstruction*>& instruction_sequence = order.SequentialOrder(*while_body)->instructions(); auto get_index = [&](absl::string_view hlo_name) { return absl::c_find_if(instruction_sequence, [hlo_name](HloInstruction* instruction) { return instruction->name() == hlo_name; }) - instruction_sequence.begin(); }; EXPECT_LT(get_index("recv"), get_index("send")); EXPECT_LT(get_index("send"), get_index("recv-done")); EXPECT_GE(get_index("send-done") - get_index("recv-done"), 8); EXPECT_LT(abs(get_index("send-done") - get_index("result")), 2); EXPECT_TRUE(HasValidFingerprint(module.get())); } TEST_F(GpuHloScheduleTest, LHSSendRecvPairs2) { const char* hlo_text = R"( HloModule test while_cond { param = (u32[], f32[1, 1024, 1024]) parameter(0) count = get-tuple-element(%param), index=0 ub = u32[] constant(25) ROOT cond_result = pred[] compare(count, ub), direction=LT } while_body { param = (u32[], f32[1, 1024, 1024]) parameter(0) count = get-tuple-element(%param), index=0 send-data = get-tuple-element(%param), index=1 after-all-0 = token[] after-all() recv-0 = (f32[1, 1024, 1024], u32[], token[]) recv(after-all-0), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0, 1}}" } send-0 = (f32[1, 1024, 1024], u32[], token[]) send(send-data, after-all-0), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0, 1}}" } recv-done-0 = (f32[1, 1024, 1024], token[]) recv-done(recv-0), channel_id=1 send-done-0 = token[] send-done(send-0), channel_id=1 recv-data-0 = f32[1, 1024, 1024] get-tuple-element(recv-done-0), index=0 c1 = u32[] constant(1) new_count = u32[] add(count, c1) replica = u32[] replica-id() c10 = u32[] constant(10) sum = u32[] add(replica, c10) sum2 = u32[] add(sum, count) conv = f32[] convert(sum2) bc1 = f32[1, 1024, 1024] broadcast(conv), dimensions={} after-all-1 = token[] after-all() recv-1 = (f32[1, 1024, 1024], u32[], token[]) recv(after-all-1), channel_id=2, frontend_attributes={ _xla_send_recv_source_target_pairs="{{1, 0}}" } send-1 = (f32[1, 1024, 1024], u32[], token[]) send(send-data, after-all-1), channel_id=2, frontend_attributes={ _xla_send_recv_source_target_pairs="{{1, 0}}" } recv-done-1 = (f32[1, 1024, 1024], token[]) recv-done(recv-1), channel_id=2 send-done-1 = token[] send-done(send-1), channel_id=2 recv-data-1 = f32[1, 1024, 1024] get-tuple-element(recv-done-1), index=0 add2 = f32[1, 1024, 1024] add(recv-data-0, bc1) add = f32[1, 1024, 1024] add(recv-data-1, add2) ROOT result = (u32[], f32[1, 1024, 1024]) tuple(new_count, add) } ENTRY test_computation { c0 = u32[] constant(0) f0 = f32[] constant(0.0) init = f32[1, 1024, 1024] broadcast(f0), dimensions={} while_init = (u32[], f32[1, 1024, 1024]) tuple(c0, init) while_result = (u32[], f32[1, 1024, 1024]) while(while_init), body=while_body, condition=while_cond ROOT entry_result = f32[1, 1024, 1024] get-tuple-element(while_result), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule( hlo_text, GetModuleConfig(true, true))); SequentialHloOrdering order = BuildHloOrdering(module.get()); HloComputation* while_body = module->GetComputationWithName("while_body"); const std::vector<HloInstruction*>& instruction_sequence = order.SequentialOrder(*while_body)->instructions(); auto get_index = [&](absl::string_view hlo_name) { return absl::c_find_if(instruction_sequence, [hlo_name](HloInstruction* instruction) { return instruction->name() == hlo_name; }) - instruction_sequence.begin(); }; EXPECT_TRUE(HasValidFingerprint(module.get())); EXPECT_LT(get_index("recv-1"), get_index("send-1")); EXPECT_LT(get_index("send-1"), get_index("recv-done-1")); EXPECT_GT(get_index("send-done-1"), get_index("send-1")); EXPECT_LT(get_index("send-done-1"), get_index("recv-0")); EXPECT_LT(abs(get_index("send-done-0") - get_index("result")), 2); } TEST_F(GpuHloScheduleTest, LHSSendRecvAllReduce) { const char* hlo_text = R"( HloModule test add (x: f32[], y: f32[]) -> f32[] { x = f32[] parameter(0) y = f32[] parameter(1) ROOT add = f32[] add(f32[] x, f32[] y) } while_cond { param = (u32[], f32[1, 1024, 1024]) parameter(0) count = get-tuple-element(%param), index=0 ub = u32[] constant(25) ROOT cond_result = pred[] compare(count, ub), direction=LT } while_body { param = (u32[], f32[1, 1024, 1024]) parameter(0) count = get-tuple-element(%param), index=0 send-data = get-tuple-element(%param), index=1 after-all = token[] after-all() recv = (f32[1, 1024, 1024], u32[], token[]) recv(after-all), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0, 1}}" } send = (f32[1, 1024, 1024], u32[], token[]) send(send-data, after-all), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0, 1}}" } recv-done = (f32[1, 1024, 1024], token[]) recv-done(recv), channel_id=1 send-done = token[] send-done(send), channel_id=1 recv-data = f32[1, 1024, 1024] get-tuple-element(recv-done), index=0 c1 = u32[] constant(1) new_count = u32[] add(count, c1) replica = u32[] replica-id() c10 = u32[] constant(10) sum = u32[] add(replica, c10) sum2 = u32[] add(sum, count) conv = f32[] convert(sum2) p = f32[1, 1024, 1024] broadcast(conv), dimensions={} b = f32[1, 1024, 1024] add(p, recv-data) c = f32[1, 1024, 1024] multiply(b, b) d = f32[1, 1024, 1024] tan(c) s = f32[1, 1024, 1024] dot(c, d), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1} all-reduce-start = f32[1, 1024, 1024] all-reduce-start(f32[1, 1024, 1024] p), replica_groups={{0,1}}, to_apply=add, backend_config={"collective_backend_config":{"is_sync":false}} all-reduce-done = f32[1, 1024, 1024] all-reduce-done(f32[1, 1024, 1024] all-reduce-start) new-data = f32[1, 1024, 1024] add(s, all-reduce-done) ROOT result = (u32[], f32[1, 1024, 1024]) tuple(new_count, new-data) } ENTRY test_computation { c0 = u32[] constant(0) f0 = f32[] constant(0.0) init = f32[1, 1024, 1024] broadcast(f0), dimensions={} while_init = (u32[], f32[1, 1024, 1024]) tuple(c0, init) while_result = (u32[], f32[1, 1024, 1024]) while(while_init), body=while_body, condition=while_cond ROOT entry_result = f32[1, 1024, 1024] get-tuple-element(while_result), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule( hlo_text, GetModuleConfig(true, true))); SequentialHloOrdering order = BuildHloOrdering(module.get()); HloComputation* while_body = module->GetComputationWithName("while_body"); const std::vector<HloInstruction*>& instruction_sequence = order.SequentialOrder(*while_body)->instructions(); auto get_index = [&](absl::string_view hlo_name) { return absl::c_find_if(instruction_sequence, [hlo_name](HloInstruction* instruction) { return instruction->name() == hlo_name; }) - instruction_sequence.begin(); }; EXPECT_LT(get_index("recv"), get_index("send")); EXPECT_LT(get_index("send"), get_index("recv-done")); EXPECT_GE(get_index("send-done") - get_index("recv-done"), 3); EXPECT_TRUE(get_index("send-done") < get_index("all-reduce-start") || get_index("recv") > get_index("all-reduce-start")); EXPECT_TRUE(HasValidFingerprint(module.get())); } TEST_F(GpuHloScheduleTest, LHSSendRecvPipelined1) { const char* hlo_text = R"( HloModule test while_cond { param = (u32[], (f32[1,1024,1024], token[]), token[]) parameter(0) count = get-tuple-element(param), index=0 ub = u32[] constant(25) ROOT cond-result = pred[] compare(count, ub), direction=LT } while_body { param = (u32[], (f32[1,1024,1024], token[]), token[]) parameter(0) count = get-tuple-element(param), index=0 recv-done.1.q = (f32[1,1024,1024], token[]) get-tuple-element(param), index=1 recv-data = f32[1, 1024, 1024] get-tuple-element(recv-done.1.q), index=0 c1 = u32[] constant(1) new-count = u32[] add(count, c1) replica = u32[] replica-id() c10 = u32[] constant(10) sum = u32[] add(replica, c10) sum2 = u32[] add(sum, count) conv = f32[] convert(sum2) p = f32[1, 1024, 1024] broadcast(conv), dimensions={} b = f32[1, 1024, 1024] add(p, recv-data) c = f32[1, 1024, 1024] multiply(b, b) d = f32[1, 1024, 1024] tan(c) s = f32[1, 1024, 1024] dot(c, d), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1} send-data = f32[1, 1024, 1024] add(c, s) after-all.1 = token[] after-all() send.1 = (f32[1, 1024, 1024], u32[], token[]) send(send-data, after-all.1), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } recv.1 = (f32[1, 1024, 1024], u32[], token[]) recv(after-all.1), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } recv-done.1 = (f32[1,1024,1024], token[]) recv-done(recv.1), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } send-done.1 = token[] send-done(send.1), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } ROOT body-result = (u32[], (f32[1,1024,1024], token[]), token[]) tuple(new-count, recv-done.1, send-done.1) } ENTRY main { c0 = u32[] constant(0) f0 = f32[] constant(0.0) init = f32[1, 1024, 1024] broadcast(f0), dimensions={} after-all.2 = token[] after-all() recv.2 = (f32[1, 1024, 1024], u32[], token[]) recv(after-all.2), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } send.2 = (f32[1, 1024, 1024], u32[], token[]) send(init, after-all.2), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } recv-done.2 = (f32[1,1024,1024], token[]) recv-done(recv.2), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } send-done.2 = token[] send-done(send.2), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } while-init = (u32[], (f32[1,1024,1024], token[]), token[]) tuple(c0, recv-done.2, send-done.2) while-result = (u32[], (f32[1,1024,1024], token[]), token[]) while(while-init), body=while_body, condition=while_cond, backend_config={"known_trip_count":{"n":"25"}} recv-done.2.q = (f32[1,1024,1024], token[]) get-tuple-element(while-result), index=1 ROOT entry-result = f32[1, 1024, 1024] get-tuple-element(recv-done.2.q), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule( hlo_text, GetModuleConfig(true, true))); SequentialHloOrdering order = BuildHloOrdering(module.get()); const std::vector<HloInstruction*>& while_body = order.SequentialOrder(*module->GetComputationWithName("while_body")) ->instructions(); const std::vector<HloInstruction*>& main = order.SequentialOrder(*module->GetComputationWithName("main")) ->instructions(); auto get_index = [](absl::string_view hlo_name, const std::vector<HloInstruction*>& instruction_sequence) { return absl::c_find_if(instruction_sequence, [hlo_name](HloInstruction* instruction) { return instruction->name() == hlo_name; }) - instruction_sequence.begin(); }; EXPECT_TRUE(HasValidFingerprint(module.get())); EXPECT_EQ(get_index("recv.2", main) + 1, get_index("send.2", main)); EXPECT_LT(get_index("send.2", main), get_index("recv-done.2", main)); EXPECT_LT(get_index("recv-done.2", main), get_index("send-done.2", main)); EXPECT_LT(get_index("send-done.2", main), get_index("while-result", main)); EXPECT_EQ(get_index("recv.1", while_body) + 1, get_index("send.1", while_body)); EXPECT_LT(get_index("send.1", while_body), get_index("recv-done.1", while_body)); EXPECT_LT(get_index("recv-done.1", while_body), get_index("send-done.1", while_body)); } TEST_F(GpuHloScheduleTest, LHSSendRecvPipelined2) { const char* hlo_text = R"( HloModule test while_cond { param = (u32[], (f32[1,1024,1024], token[]), token[], (f32[1,1024,1024], token[]), token[]) parameter(0) count = get-tuple-element(param), index=0 ub = u32[] constant(25) ROOT cond-result = pred[] compare(count, ub), direction=LT } while_body { param = (u32[], (f32[1,1024,1024], token[]), token[], (f32[1,1024,1024], token[]), token[]) parameter(0) count = get-tuple-element(param), index=0 recv-done.0.q = (f32[1,1024,1024], token[]) get-tuple-element(param), index=1 recv-data.0 = f32[1, 1024, 1024] get-tuple-element(recv-done.0.q), index=0 recv-done.1.q = (f32[1,1024,1024], token[]) get-tuple-element(param), index=3 recv-data.1 = f32[1, 1024, 1024] get-tuple-element(recv-done.1.q), index=0 replica = u32[] replica-id() constant0 = u32[] constant(0) compare0 = pred[] compare(replica, constant0), direction=EQ compare = pred[1, 1024, 1024] broadcast(compare0), dimensions={} recv-data = f32[1, 1024, 1024] select(compare, recv-data.0, recv-data.1) c1 = u32[] constant(1) new-count = u32[] add(count, c1) c10 = u32[] constant(10) sum = u32[] add(replica, c10) sum2 = u32[] add(sum, count) conv = f32[] convert(sum2) p = f32[1, 1024, 1024] broadcast(conv), dimensions={} b = f32[1, 1024, 1024] add(p, recv-data) c = f32[1, 1024, 1024] multiply(b, b) d = f32[1, 1024, 1024] tan(c) s = f32[1, 1024, 1024] dot(c, d), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1} send-data = f32[1, 1024, 1024] add(c, s) after-all.0 = token[] after-all() send.0 = (f32[1, 1024, 1024], u32[], token[]) send(send-data, after-all.0), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{3,0}}", _xla_send_recv_pipeline="0" } recv.0 = (f32[1, 1024, 1024], u32[], token[]) recv(after-all.0), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{3,0}}", _xla_send_recv_pipeline="0" } recv-done.0 = (f32[1,1024,1024], token[]) recv-done(recv.0), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } send-done.0 = token[] send-done(send.0), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } after-all.1 = token[] after-all() send.1 = (f32[1, 1024, 1024], u32[], token[]) send(send-data, after-all.1), channel_id=2, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}}", _xla_send_recv_pipeline="1" } recv.1 = (f32[1, 1024, 1024], u32[], token[]) recv(after-all.1), channel_id=2, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}}", _xla_send_recv_pipeline="1" } recv-done.1 = (f32[1,1024,1024], token[]) recv-done(recv.1), channel_id=2, frontend_attributes={ _xla_send_recv_pipeline="1" } send-done.1 = token[] send-done(send.1), channel_id=2, frontend_attributes={ _xla_send_recv_pipeline="1" } ROOT body-result = (u32[], (f32[1,1024,1024], token[]), token[], (f32[1,1024,1024], token[]), token[]) tuple(new-count, recv-done.0, send-done.0, recv-done.1, send-done.1) } ENTRY main { c0 = u32[] constant(0) f0 = f32[] constant(0.0) init = f32[1, 1024, 1024] broadcast(f0), dimensions={} after-all.2 = token[] after-all() recv.2 = (f32[1, 1024, 1024], u32[], token[]) recv(after-all.2), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{3,0}}", _xla_send_recv_pipeline="0" } send.2 = (f32[1, 1024, 1024], u32[], token[]) send(init, after-all.2), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{3,0}}", _xla_send_recv_pipeline="0" } recv-done.2 = (f32[1,1024,1024], token[]) recv-done(recv.2), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } send-done.2 = token[] send-done(send.2), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } after-all.3 = token[] after-all() recv.3 = (f32[1, 1024, 1024], u32[], token[]) recv(after-all.3), channel_id=2, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}}", _xla_send_recv_pipeline="1" } send.3 = (f32[1, 1024, 1024], u32[], token[]) send(init, after-all.3), channel_id=2, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}}", _xla_send_recv_pipeline="1" } recv-done.3 = (f32[1,1024,1024], token[]) recv-done(recv.3), channel_id=2, frontend_attributes={ _xla_send_recv_pipeline="1" } send-done.3 = token[] send-done(send.3), channel_id=2, frontend_attributes={ _xla_send_recv_pipeline="1" } while-init = (u32[], (f32[1,1024,1024], token[]), token[], (f32[1,1024,1024], token[]), token[]) tuple(c0, recv-done.2, send-done.2, recv-done.3, send-done.3) while-result = (u32[], (f32[1,1024,1024], token[]), token[], (f32[1,1024,1024], token[]), token[]) while(while-init), body=while_body, condition=while_cond, backend_config={"known_trip_count":{"n":"25"}} recv-done.2.q = (f32[1,1024,1024], token[]) get-tuple-element(while-result), index=1 recv-data.2 = f32[1, 1024, 1024] get-tuple-element(recv-done.2.q), index=0 recv-done.3.q = (f32[1,1024,1024], token[]) get-tuple-element(while-result), index=3 recv-data.3 = f32[1, 1024, 1024] get-tuple-element(recv-done.3.q), index=0 replica = u32[] replica-id() constant0 = u32[] constant(0) compare0 = pred[] compare(replica, constant0), direction=EQ compare = pred[1, 1024, 1024] broadcast(compare0), dimensions={} ROOT entry-result = f32[1, 1024, 1024] select(compare, recv-data.2, recv-data.3) } )"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule( hlo_text, GetModuleConfig(true, true))); SequentialHloOrdering order = BuildHloOrdering(module.get()); const std::vector<HloInstruction*>& while_body = order.SequentialOrder(*module->GetComputationWithName("while_body")) ->instructions(); const std::vector<HloInstruction*>& main = order.SequentialOrder(*module->GetComputationWithName("main")) ->instructions(); auto get_index = [](absl::string_view hlo_name, const std::vector<HloInstruction*>& instruction_sequence) { return absl::c_find_if(instruction_sequence, [hlo_name](HloInstruction* instruction) { return instruction->name() == hlo_name; }) - instruction_sequence.begin(); }; EXPECT_TRUE(HasValidFingerprint(module.get())); EXPECT_EQ(get_index("recv.2", main) + 1, get_index("send.2", main)); EXPECT_LT(get_index("send.2", main), get_index("recv.3", main)); EXPECT_EQ(get_index("recv.3", main) + 1, get_index("send.3", main)); EXPECT_LT(get_index("send.3", main), get_index("recv-done.2", main)); EXPECT_LT(get_index("recv-done.2", main), get_index("recv-done.3", main)); EXPECT_LT(get_index("recv-done.3", main), get_index("send-done.2", main)); EXPECT_LT(get_index("send-done.2", main), get_index("send-done.3", main)); EXPECT_LT(get_index("send-done.3", main), get_index("while-result", main)); EXPECT_EQ(get_index("recv.0", while_body) + 1, get_index("send.0", while_body)); EXPECT_LT(get_index("send.0", while_body), get_index("recv.1", while_body)); EXPECT_EQ(get_index("recv.1", while_body) + 1, get_index("send.1", while_body)); EXPECT_LT(get_index("send.1", while_body), get_index("recv-done.0", while_body)); EXPECT_LT(get_index("recv-done.0", while_body), get_index("recv-done.1", while_body)); EXPECT_LT(get_index("recv-done.1", while_body), get_index("send-done.0", while_body)); EXPECT_LT(get_index("send-done.0", while_body), get_index("send-done.1", while_body)); } TEST_F(GpuHloScheduleTest, SkipAlreadyScheduled) { auto module = ParseAndReturnVerifiedModule(R"( HloModule m, is_scheduled=true fused_computation { param_0 = f32[1024,1024]{1,0} parameter(0) ROOT exponential.1 = f32[1024,1024]{1,0} exponential(param_0) } fused_computation.1 { param_0.1 = f32[1024,1024]{1,0} parameter(0) ROOT negate.1 = f32[1024,1024]{1,0} negate(param_0.1) } ENTRY e { p = f32[1024,1024]{1,0} parameter(0) wrapped_negate = f32[1024,1024]{1,0} fusion(p), kind=kLoop, calls=fused_computation.1 wrapped_exponential = f32[1024,1024]{1,0} fusion(p), kind=kLoop, calls=fused_computation ROOT t = (f32[1024,1024]{1,0}, f32[1024,1024]{1,0}) tuple(wrapped_exponential, wrapped_negate) })") .value(); TF_CHECK_OK(ScheduleGpuModule( module.get(), 8, backend().default_stream_executor()->GetDeviceDescription()) .status()); EXPECT_TRUE(*RunFileCheck(module->ToString(), R"( )")); } TEST_F(GpuHloScheduleTest, ProfileGuidedCostModelWithForceEarliestSchedule) { const char* hlo_text = R"( HloModule AsyncAR apply_op { x = f32[] parameter(0) y = f32[] parameter(1) ROOT apply_op = f32[] add(x, y) } ENTRY main { p0 = f32[32] parameter(0) p1 = f32[32, 32] parameter(1) p2 = f32[32, 32] parameter(2) p3 = f32[32] parameter(3) dot0 = f32[32,32]{1,0} custom-call(p1, p2), custom_call_target="__cublas$gemm", backend_config={"force_earliest_schedule":true} dot1 = f32[32,32]{1,0} custom-call(p1, p2), custom_call_target="__cublas$gemm" add0 = f32[32,32] add(dot0, dot1) ar-start = f32[32] all-reduce-start(p0), to_apply=apply_op ar-done = f32[32] all-reduce-done(ar-start) ROOT t = (f32[32], f32[32,32]) tuple(ar-done, add0) })"; const std::string ar_long_latency_proto_text = R"pb( costs { name: "dot0" cost_us: 100.0 } costs { name: "dot1" cost_us: 100.0 } costs { name: "add0" cost_us: 10.0 } costs { name: "ar-start" cost_us: 1000.0 } )pb"; tensorflow::profiler::ProfiledInstructionsProto profile; ASSERT_TRUE(tsl::protobuf::TextFormat::ParseFromString( ar_long_latency_proto_text, &profile)); std::string ar_long_latency_proto_binary = profile.SerializeAsString(); TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule( hlo_text, GetModuleConfig(true, false, ar_long_latency_proto_binary))); SequentialHloOrdering order = BuildHloOrdering(module.get()); const std::vector<HloInstruction*>& main = order.SequentialOrder(*module->GetComputationWithName("main")) ->instructions(); auto get_index = [](absl::string_view hlo_name, const std::vector<HloInstruction*>& instruction_sequence) { return absl::c_find_if(instruction_sequence, [hlo_name](HloInstruction* instruction) { return instruction->name() == hlo_name; }) - instruction_sequence.begin(); }; EXPECT_LT(get_index("dot0", main), get_index("ar-start", main)); EXPECT_GT(get_index("dot1", main), get_index("ar-start", main)); EXPECT_LT(get_index("dot1", main), get_index("ar-done", main)); } class GpuHloScheduleParameterizedTest : public GpuHloScheduleTest, public ::testing::WithParamInterface<bool> {}; TEST_P(GpuHloScheduleParameterizedTest, AsyncAllReduce) { HloComputation::Builder reduction_builder("add"); HloInstruction* x0 = reduction_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeScalarShape(F32), "x")); HloInstruction* y0 = reduction_builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeScalarShape(F32), "y")); HloInstruction* add = reduction_builder.AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeScalarShape(F32), HloOpcode::kAdd, x0, y0)); const bool use_latency_hiding_scheduler = GetParam(); std::unique_ptr<HloModule> module = CreateNewVerifiedModule(use_latency_hiding_scheduler); HloComputation* reduction_computation = module->AddEmbeddedComputation(reduction_builder.Build(add)); HloComputation::Builder builder("entry_computation"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter( 0, f32_2x2_, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter( 1, f32_2x2_, "y")); HloInstruction* z = builder.AddInstruction(HloInstruction::CreateParameter( 2, f32_2x2_, "z")); HloInstruction* add0 = builder.AddInstruction( HloInstruction::CreateBinary(f32_2x2_, HloOpcode::kAdd, x, y)); HloInstruction* add1 = builder.AddInstruction( HloInstruction::CreateBinary(f32_2x2_, HloOpcode::kAdd, add0, y)); HloInstruction* add2 = builder.AddInstruction( HloInstruction::CreateBinary(f32_2x2_, HloOpcode::kAdd, add1, z)); Shape all_reduce_start_shape = ShapeUtil::MakeTupleShape({f32_2x2_, f32_2x2_}); HloInstruction* all_reduce_start = builder.AddInstruction(HloInstruction::CreateAllReduceStart( all_reduce_start_shape, {add0}, reduction_computation, CollectiveDeviceList(), false, std::nullopt, true)); TF_CHECK_OK(add1->AddControlDependencyTo(all_reduce_start)); HloInstruction* all_reduce_done = builder.AddInstruction(HloInstruction::CreateUnary( f32_2x2_, HloOpcode::kAllReduceDone, all_reduce_start)); HloInstruction* add3 = builder.AddInstruction( HloInstruction::CreateBinary(f32_2x2_, HloOpcode::kAdd, add1, add2)); HloInstruction* add4 = builder.AddInstruction(HloInstruction::CreateBinary( f32_2x2_, HloOpcode::kAdd, add3, all_reduce_done)); module->AddEntryComputation(builder.Build(add4)); SequentialHloOrdering order = BuildHloOrdering(module.get()); VLOG(2) << order.ToString(); EXPECT_TRUE(order.ExecutesBefore(add0, all_reduce_start)); EXPECT_TRUE(order.ExecutesBefore(add1, all_reduce_start)); EXPECT_TRUE(order.ExecutesBefore(all_reduce_start, add2)); EXPECT_TRUE(order.ExecutesBefore(all_reduce_start, add3)); EXPECT_TRUE(order.ExecutesBefore(all_reduce_start, add4)); EXPECT_TRUE(order.ExecutesBefore(add3, all_reduce_done)); EXPECT_TRUE(order.ExecutesBefore(all_reduce_done, add4)); EXPECT_TRUE(HasValidFingerprint(module.get())); } TEST_P(GpuHloScheduleParameterizedTest, LHSResourceModel) { const char* hlo_text = R"( HloModule AsyncModule apply_op { x = f32[] parameter(0) y = f32[] parameter(1) ROOT apply_op = f32[] add(x, y) } ENTRY ar { p0 = f32[32] parameter(0) p1 = f32[32, 32] parameter(1) p2 = f32[32, 32] parameter(2) p3 = f32[32] parameter(3) dot0 = f32[32,32]{1,0} custom-call(p1, p2), custom_call_target="__cublas$gemm" dot1 = f32[32,32]{1,0} custom-call(dot0, p2), custom_call_target="__cublas$gemm" dot2 = f32[32,32]{1,0} custom-call(dot1, p2), custom_call_target="__cublas$gemm" dot3 = f32[32,32]{1,0} custom-call(dot2, p2), custom_call_target="__cublas$gemm" dot4 = f32[32,32]{1,0} custom-call(dot3, p2), custom_call_target="__cublas$gemm" dot5 = f32[32,32]{1,0} custom-call(dot4, p2), custom_call_target="__cublas$gemm" dot6 = f32[32,32]{1,0} custom-call(dot5, p2), custom_call_target="__cublas$gemm" ar-start = f32[32] all-reduce-start(p0), to_apply=apply_op ar-done = f32[32] all-reduce-done(ar-start) %ag-start = (f32[32], f32[64]) all-gather-start(p3), dimensions={0} %ag-done = f32[64] all-gather-done(%ag-start) add0 = f32[32,32] add(dot0, dot1) add1 = f32[32,32] add(add0, dot2) add2 = f32[32,32] add(add1, dot3) add3 = f32[32,32] add(add2, dot4) add4 = f32[32,32] add(add3, dot5) add5 = f32[32,32] add(add4, dot6) ROOT t = (f32[32], f32[64], f32[32,32]) tuple(ar-done, %ag-done, add5) })"; const bool enable_gpu_async_tracker = GetParam(); TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule( hlo_text, GetModuleConfig( true, enable_gpu_async_tracker))); SequentialHloOrdering order = BuildHloOrdering(module.get()); uint32_t in_flight = 0; uint32_t max_in_flight = 0; for (const HloInstruction* inst : order.SequentialOrder(*module->entry_computation())->instructions()) { if (hlo_query::IsAsyncCollectiveStartOp(inst)) { in_flight++; max_in_flight = std::max(max_in_flight, in_flight); } else if (hlo_query::IsAsyncCollectiveDoneOp(inst)) { in_flight--; } } const uint32_t expected_max_in_flight = enable_gpu_async_tracker ? 1 : 2; EXPECT_EQ(expected_max_in_flight, max_in_flight); EXPECT_TRUE(HasValidFingerprint(module.get())); } INSTANTIATE_TEST_SUITE_P(GpuHloScheduleParameterizedTest, GpuHloScheduleParameterizedTest, ::testing::Bool()); using GpuHloSchedulePostProcessTest = HloTestBase; TEST_F(GpuHloSchedulePostProcessTest, PostProcessAsyncCollectives) { const char* hlo_text = R"( HloModule AsyncModule, is_scheduled=true apply_op { x = f32[] parameter(0) y = f32[] parameter(1) ROOT apply_op = f32[] add(x, y) } ENTRY ar { p0 = f32[32] parameter(0) p1 = f32[32] parameter(1) ar-start = f32[32] all-reduce-start(p0), to_apply=apply_op add0 = f32[32] add(p0, p0) ar-done = f32[32] all-reduce-done(ar-start) ag-start = (f32[32], f32[64]) all-gather-start(p1), dimensions={0}, backend_config="{\"collective_backend_config\":{\"is_sync\":true}}" add1 = f32[32] add(p1, p1) ag-done = f32[64] all-gather-done(ag-start) add2 = f32[32] add(add0, add1) add3 = f32[32] add(add2, ar-done) ROOT result = (f32[32], f32[64]) tuple(add3, ag-done) })"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule(hlo_text, 2)); const HloInstructionSequence& input = module->schedule().sequence(module->entry_computation()); HloInstructionSequence result = PostProcessSchedule(input); const std::vector<std::string_view> expected_sequence = { "p0", "ar-start", "p1", "add0", "add1", "ag-start", "ag-done", "add2", "ar-done", "add3", "result"}; ASSERT_EQ(expected_sequence.size(), result.size()); for (int i = 0; i < result.size(); ++i) { EXPECT_EQ(expected_sequence[i], result.instructions()[i]->name()); } } TEST_F(GpuHloScheduleTest, AsyncOps) { const char* hlo_text = R"( HloModule m op1 { p0 = f32[2,2] parameter(0) ROOT add = f32[2,2] add(p0, p0) } op2 { p0 = f32[2,2] parameter(0) ROOT add = f32[2,2] add(p0, p0) } ENTRY main { p0 = f32[2,2] parameter(0) acc1_start = ((f32[2,2]), f32[2,2], s32[]) fusion-start(p0), kind=kLoop, calls=op1 acc1_done = f32[2,2] fusion-done(acc1_start) acc2_start = ((f32[2,2]), f32[2,2], s32[]) fusion-start(p0), kind=kLoop, calls=op2 acc2_done = f32[2,2] fusion-done(acc2_start) ROOT done = f32[2,2] add(acc1_done, acc2_done) })"; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<xla::VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text, HloModuleConfig{})); SequentialHloOrdering order = BuildHloOrdering(module.get()); std::vector<HloOpcode> opcodes; for (HloInstruction* instruction : order.SequentialOrder(*module->entry_computation())->instructions()) { opcodes.push_back(instruction->opcode()); } EXPECT_THAT(opcodes, ElementsAre(HloOpcode::kParameter, HloOpcode::kAsyncStart, HloOpcode::kAsyncStart, HloOpcode::kAsyncDone, HloOpcode::kAsyncDone, HloOpcode::kAdd)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/gpu_hlo_schedule.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/gpu_hlo_schedule_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9ed3e975-ab7f-4ee0-99bc-cac0be8541df
cpp
tensorflow/tensorflow
eigen_backward_cuboid_convolutions
tensorflow/core/kernels/eigen_backward_cuboid_convolutions.h
tensorflow/core/kernels/eigen_backward_cuboid_convolutions_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_EIGEN_BACKWARD_CUBOID_CONVOLUTIONS_H_ #define TENSORFLOW_CORE_KERNELS_EIGEN_BACKWARD_CUBOID_CONVOLUTIONS_H_ #include "unsupported/Eigen/CXX11/Tensor" #include "tensorflow/core/kernels/eigen_cuboid_convolution.h" namespace Eigen { template <typename OutputBackward, typename Kernel> EIGEN_ALWAYS_INLINE static const std::conditional_t< internal::traits<OutputBackward>::Layout == ColMajor, TensorReshapingOp< const DSizes<typename internal::traits<OutputBackward>::Index, internal::traits<OutputBackward>::NumDimensions>, const TensorContractionOp< const array< IndexPair<typename internal::traits<OutputBackward>::Index>, 1>, const Eigen::TensorForcedEvalOp<const TensorReshapingOp< const DSizes<typename internal::traits<OutputBackward>::Index, 2>, const TensorShufflingOp< const array< typename internal::traits<OutputBackward>::Index, 5>, const TensorReverseOp<const Eigen::array<bool, 5>, const Kernel>>>>, const TensorReshapingOp< const DSizes<typename internal::traits<OutputBackward>::Index, 2>, const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const OutputBackward>>>>, TensorReshapingOp< const DSizes<typename internal::traits<OutputBackward>::Index, internal::traits<OutputBackward>::NumDimensions>, const TensorContractionOp< const array< IndexPair<typename internal::traits<OutputBackward>::Index>, 1>, const TensorReshapingOp< const DSizes<typename internal::traits<OutputBackward>::Index, 2>, const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const OutputBackward>>, const Eigen::TensorForcedEvalOp<const TensorReshapingOp< const DSizes<typename internal::traits<OutputBackward>::Index, 2>, const TensorShufflingOp< const array< typename internal::traits<OutputBackward>::Index, 5>, const TensorReverseOp<const Eigen::array<bool, 5>, const Kernel>>>>>>> CuboidConvolutionBackwardInput( const Kernel& kernel, const OutputBackward& output_backward, typename internal::traits<OutputBackward>::Index inputPlanes, typename internal::traits<OutputBackward>::Index inputRows, typename internal::traits<OutputBackward>::Index inputCols, const DenseIndex plane_stride = 1, const DenseIndex row_stride = 1, const DenseIndex col_stride = 1) { typedef typename internal::traits<OutputBackward>::Index TensorIndex; const TensorRef<const Tensor<typename internal::traits<Kernel>::Scalar, internal::traits<Kernel>::NumDimensions, internal::traits<Kernel>::Layout, TensorIndex>> kern(kernel); const TensorRef< const Tensor<typename internal::traits<OutputBackward>::Scalar, internal::traits<OutputBackward>::NumDimensions, internal::traits<OutputBackward>::Layout, TensorIndex>> out(output_backward); EIGEN_STATIC_ASSERT(internal::traits<Kernel>::Layout == internal::traits<OutputBackward>::Layout, YOU_MADE_A_PROGRAMMING_MISTAKE); static const bool isColMajor = (internal::traits<OutputBackward>::Layout == ColMajor); static const int NumDims = internal::traits<OutputBackward>::NumDimensions; const TensorIndex kernelFilters = isColMajor ? kern.dimensions()[0] : kern.dimensions()[4]; const TensorIndex kernelChannels = isColMajor ? kern.dimensions()[1] : kern.dimensions()[3]; const TensorIndex kernelPlanes = isColMajor ? kern.dimensions()[2] : kern.dimensions()[2]; const TensorIndex kernelRows = isColMajor ? kern.dimensions()[3] : kern.dimensions()[1]; const TensorIndex kernelCols = isColMajor ? kern.dimensions()[4] : kern.dimensions()[0]; const TensorIndex outputPlanes = isColMajor ? out.dimensions()[1] : out.dimensions()[NumDims - 2]; const TensorIndex outputRows = isColMajor ? out.dimensions()[2] : out.dimensions()[NumDims - 3]; const TensorIndex outputCols = isColMajor ? out.dimensions()[3] : out.dimensions()[NumDims - 4]; const TensorIndex kernelPlanesEff = kernelPlanes; const TensorIndex kernelRowsEff = kernelRows; const TensorIndex kernelColsEff = kernelCols; const TensorIndex forward_pad_top_z = numext::maxi<Index>( 0, ((outputPlanes - 1) * plane_stride + kernelPlanesEff - inputPlanes) / 2); const TensorIndex forward_pad_top = numext::maxi<Index>( 0, ((outputRows - 1) * row_stride + kernelRowsEff - inputRows) / 2); const TensorIndex forward_pad_left = numext::maxi<Index>( 0, ((outputCols - 1) * col_stride + kernelColsEff - inputCols) / 2); const TensorIndex padding_top_z = kernelPlanesEff - 1 - forward_pad_top_z; const TensorIndex padding_top = kernelRowsEff - 1 - forward_pad_top; const TensorIndex padding_left = kernelColsEff - 1 - forward_pad_left; const TensorIndex padding_bottom_z = inputPlanes - (outputPlanes - 1) * plane_stride - 2 - padding_top_z + kernelPlanesEff; const TensorIndex padding_bottom = inputRows - (outputRows - 1) * row_stride - 2 - padding_top + kernelRowsEff; const TensorIndex padding_right = inputCols - (outputCols - 1) * col_stride - 2 - padding_left + kernelColsEff; eigen_assert(padding_top_z >= 0); eigen_assert(padding_top >= 0); eigen_assert(padding_left >= 0); eigen_assert(padding_bottom_z >= 0); eigen_assert(padding_bottom >= 0); eigen_assert(padding_right >= 0); Eigen::array<bool, 5> kernel_reverse; if (isColMajor) { kernel_reverse[0] = false; kernel_reverse[1] = false; kernel_reverse[2] = true; kernel_reverse[3] = true; kernel_reverse[4] = true; } else { kernel_reverse[0] = true; kernel_reverse[1] = true; kernel_reverse[2] = true; kernel_reverse[3] = false; kernel_reverse[4] = false; } array<TensorIndex, 5> kernel_shuffle; if (isColMajor) { kernel_shuffle[0] = 0; kernel_shuffle[1] = 2; kernel_shuffle[2] = 3; kernel_shuffle[3] = 4; kernel_shuffle[4] = 1; } else { kernel_shuffle[0] = 3; kernel_shuffle[1] = 0; kernel_shuffle[2] = 1; kernel_shuffle[3] = 2; kernel_shuffle[4] = 4; } DSizes<TensorIndex, 2> kernel_dims; if (isColMajor) { kernel_dims[0] = kernelFilters * kernelPlanes * kernelRows * kernelCols; kernel_dims[1] = kernelChannels; } else { kernel_dims[1] = kernelFilters * kernelPlanes * kernelRows * kernelCols; kernel_dims[0] = kernelChannels; } DSizes<TensorIndex, 2> pre_contract_dims; if (isColMajor) { pre_contract_dims[0] = kernelFilters * kernelPlanes * kernelRows * kernelCols; pre_contract_dims[1] = inputPlanes * inputRows * inputCols; for (int i = 4; i < NumDims; ++i) { pre_contract_dims[1] *= out.dimension(i); } } else { pre_contract_dims[1] = kernelFilters * kernelPlanes * kernelRows * kernelCols; pre_contract_dims[0] = inputPlanes * inputRows * inputCols; for (int i = 0; i < NumDims - 4; ++i) { pre_contract_dims[0] *= out.dimension(i); } } array<IndexPair<TensorIndex>, 1> contract_dims; if (isColMajor) { contract_dims[0] = IndexPair<TensorIndex>(0, 0); } else { contract_dims[0] = IndexPair<TensorIndex>(1, 1); } DSizes<TensorIndex, NumDims> post_contract_dims; if (isColMajor) { post_contract_dims[0] = kernelChannels; post_contract_dims[1] = inputPlanes; post_contract_dims[2] = inputRows; post_contract_dims[3] = inputCols; for (int i = 4; i < NumDims; ++i) { post_contract_dims[i] = out.dimension(i); } } else { post_contract_dims[NumDims - 1] = kernelChannels; post_contract_dims[NumDims - 2] = inputPlanes; post_contract_dims[NumDims - 3] = inputRows; post_contract_dims[NumDims - 4] = inputCols; for (int i = 0; i < NumDims - 4; ++i) { post_contract_dims[i] = out.dimension(i); } } return choose( Cond<internal::traits<OutputBackward>::Layout == ColMajor>(), kernel.reverse(kernel_reverse) .shuffle(kernel_shuffle) .reshape(kernel_dims) .eval() .contract(output_backward .extract_volume_patches( kernelPlanes, kernelRows, kernelCols, 1, 1, 1, plane_stride, row_stride, col_stride, padding_top_z, padding_bottom_z, padding_top, padding_bottom, padding_left, padding_right) .reshape(pre_contract_dims), contract_dims) .reshape(post_contract_dims), output_backward .extract_volume_patches(kernelPlanes, kernelRows, kernelCols, 1, 1, 1, plane_stride, row_stride, col_stride, padding_top_z, padding_bottom_z, padding_top, padding_bottom, padding_left, padding_right) .reshape(pre_contract_dims) .contract(kernel.reverse(kernel_reverse) .shuffle(kernel_shuffle) .reshape(kernel_dims) .eval(), contract_dims) .reshape(post_contract_dims)); } template <typename OutputBackward, typename Input> EIGEN_ALWAYS_INLINE static const std::conditional_t< internal::traits<Input>::Layout == ColMajor, const TensorReverseOp< const Eigen::array<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const Eigen::TensorShufflingOp< const Eigen::array<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const Eigen::TensorReshapingOp< const Eigen::DSizes<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const TensorContractionOp< const array< IndexPair<typename internal::traits<Input>::Index>, 1>, const Eigen::TensorForcedEvalOp<const TensorReshapingOp< const DSizes<typename internal::traits<Input>::Index, 2>, const Eigen::TensorShufflingOp< const Eigen::array< typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const OutputBackward>>>, const TensorReshapingOp< const DSizes<typename internal::traits<Input>::Index, 2>, const TensorVolumePatchOp< Dynamic, Dynamic, Dynamic, const Eigen::TensorForcedEvalOp< const Eigen::TensorShufflingOp< const Eigen::array< typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const Input>>>>>>>>, const TensorReverseOp< const Eigen::array<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const Eigen::TensorShufflingOp< const Eigen::array<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const Eigen::TensorReshapingOp< const Eigen::DSizes<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const TensorContractionOp< const array< IndexPair<typename internal::traits<Input>::Index>, 1>, const TensorReshapingOp< const DSizes<typename internal::traits<Input>::Index, 2>, const TensorVolumePatchOp< Dynamic, Dynamic, Dynamic, const Eigen::TensorForcedEvalOp< const Eigen::TensorShufflingOp< const Eigen::array< typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const Input>>>>, const Eigen::TensorForcedEvalOp<const TensorReshapingOp< const DSizes<typename internal::traits<Input>::Index, 2>, const Eigen::TensorShufflingOp< const Eigen::array< typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const OutputBackward>>>>>>>> CuboidConvolutionBackwardKernel( const Input& input, const OutputBackward& output_backward, typename internal::traits<Input>::Index kernelPlanes, typename internal::traits<Input>::Index kernelRows, typename internal::traits<Input>::Index kernelCols, const DenseIndex stridePlanes = 1, const DenseIndex strideRows = 1, const DenseIndex strideCols = 1) { typedef typename internal::traits<Input>::Index TensorIndex; TensorRef<Tensor<typename internal::traits<Input>::Scalar, internal::traits<Input>::NumDimensions, internal::traits<Input>::Layout, TensorIndex>> in(input); TensorRef<Tensor<typename internal::traits<OutputBackward>::Scalar, internal::traits<OutputBackward>::NumDimensions, internal::traits<OutputBackward>::Layout, TensorIndex>> out(output_backward); EIGEN_STATIC_ASSERT(internal::traits<Input>::Layout == internal::traits<OutputBackward>::Layout, YOU_MADE_A_PROGRAMMING_MISTAKE); static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor); static const int NumDims = internal::traits<Input>::NumDimensions; EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == internal::traits<OutputBackward>::NumDimensions, YOU_MADE_A_PROGRAMMING_MISTAKE); EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == 5, YOU_MADE_A_PROGRAMMING_MISTAKE); const TensorIndex inputPlanes = isColMajor ? in.dimension(1) : in.dimension(NumDims - 2); const TensorIndex inputRows = isColMajor ? in.dimension(2) : in.dimension(NumDims - 3); const TensorIndex inputCols = isColMajor ? in.dimension(3) : in.dimension(NumDims - 4); const TensorIndex outputPlanes = isColMajor ? out.dimension(1) : out.dimension(NumDims - 2); const TensorIndex outputRows = isColMajor ? out.dimension(2) : out.dimension(NumDims - 3); const TensorIndex outputCols = isColMajor ? out.dimension(3) : out.dimension(NumDims - 4); const TensorIndex kernelFilters = isColMajor ? out.dimension(0) : out.dimension(NumDims - 1); const TensorIndex kernelChannels = isColMajor ? in.dimension(0) : in.dimension(NumDims - 1); const TensorIndex batch = isColMajor ? in.dimension(4) : in.dimension(NumDims - 5); const TensorIndex kernelPlanesEff = kernelPlanes; const TensorIndex kernelRowsEff = kernelRows; const TensorIndex kernelColsEff = kernelCols; const TensorIndex padPlanes = numext::maxi<Index>( 0, (outputPlanes - 1) * stridePlanes + kernelPlanesEff - inputPlanes); const TensorIndex padRows = numext::maxi<Index>( 0, (outputRows - 1) * strideRows + kernelRowsEff - inputRows); const TensorIndex padCols = numext::maxi<Index>( 0, (outputCols - 1) * strideCols + kernelColsEff - inputCols); const TensorIndex padding_top_z = padPlanes / 2; const TensorIndex padding_top = padRows / 2; const TensorIndex padding_left = padCols / 2; const auto expanded_out_planes = (outputPlanes - 1) * stridePlanes + 1; const auto expanded_out_rows = (outputRows - 1) * strideRows + 1; const auto expanded_out_cols = (outputCols - 1) * strideCols + 1; const auto padded_out_planes = inputPlanes + kernelPlanes - 1; const auto padded_out_rows = inputRows + kernelRows - 1; const auto padded_out_cols = inputCols + kernelCols - 1; const auto top_pad_planes = kernelPlanes - 1 - padding_top_z; const auto top_pad_rows = kernelRows - 1 - padding_top; const auto left_pad_cols = kernelCols - 1 - padding_left; const auto bottom_pad_planes = padded_out_planes - expanded_out_planes - top_pad_planes; const auto bottom_pad_rows = padded_out_rows - expanded_out_rows - top_pad_rows; const auto right_pad_cols = padded_out_cols - expanded_out_cols - left_pad_cols; array<TensorIndex, 5> output_backward_shuffle; if (isColMajor) { output_backward_shuffle = {4, 1, 2, 3, 0}; } else { output_backward_shuffle = {4, 1, 2, 3, 0}; } array<TensorIndex, 5> input_shuffle; if (isColMajor) { input_shuffle = {0, 4, 1, 2, 3}; } else { input_shuffle = {1, 2, 3, 0, 4}; } DSizes<TensorIndex, 2> input_dims; if (isColMajor) { input_dims[0] = kernelChannels; input_dims[1] = batch * inputPlanes * inputRows * inputCols; } else { input_dims[1] = kernelChannels; input_dims[0] = inputCols * inputRows * inputPlanes * batch; } DSizes<TensorIndex, 2> pre_contract_dims; if (isColMajor) { pre_contract_dims[0] = batch * inputPlanes * inputRows * inputCols; pre_contract_dims[1] = kernelPlanes * kernelRows * kernelCols * kernelFilters; } else { pre_contract_dims[1] = inputCols * inputRows * inputPlanes * batch; pre_contract_dims[0] = kernelFilters * kernelCols * kernelRows * kernelPlanes; } array<IndexPair<TensorIndex>, 1> contract_dims; contract_dims[0] = IndexPair<TensorIndex>(1, 0); DSizes<TensorIndex, NumDims> post_contract_dims; if (isColMajor) { post_contract_dims[0] = kernelChannels; post_contract_dims[1] = kernelPlanes; post_contract_dims[2] = kernelRows; post_contract_dims[3] = kernelCols; post_contract_dims[4] = kernelFilters; } else { post_contract_dims[0] = kernelFilters; post_contract_dims[1] = kernelCols; post_contract_dims[2] = kernelRows; post_contract_dims[3] = kernelPlanes; post_contract_dims[4] = kernelChannels; } array<TensorIndex, 5> kernel_shuffle; if (isColMajor) { kernel_shuffle = {4, 0, 1, 2, 3}; } else { kernel_shuffle = {1, 2, 3, 4, 0}; } array<TensorIndex, 5> kernel_reverse; if (isColMajor) { kernel_reverse = {false, false, true, true, true}; } else { kernel_reverse = {true, true, true, false, false}; } const auto the_input = output_backward.shuffle(output_backward_shuffle).eval(); const auto the_kernel = input.shuffle(input_shuffle).reshape(input_dims).eval(); return choose(Cond<internal::traits<Input>::Layout == ColMajor>(), the_kernel.contract( the_input .extract_volume_patches( inputPlanes, inputRows, inputCols, 1, 1, 1, stridePlanes, strideRows, strideCols, top_pad_planes, bottom_pad_planes, top_pad_rows, bottom_pad_rows, left_pad_cols, right_pad_cols) .reshape(pre_contract_dims), contract_dims), the_input .extract_volume_patches( inputPlanes, inputRows, inputCols, 1, 1, 1, stridePlanes, strideRows, strideCols, top_pad_planes, bottom_pad_planes, top_pad_rows, bottom_pad_rows, left_pad_cols, right_pad_cols) .reshape(pre_contract_dims) .contract(the_kernel, contract_dims)) .reshape(post_contract_dims) .shuffle(kernel_shuffle) .reverse(kernel_reverse); } } #endif
#include "tensorflow/core/kernels/eigen_backward_cuboid_convolutions.h" #include "tensorflow/core/platform/test.h" namespace Eigen { namespace { void EigenApprox(float a, float b) { ASSERT_TRUE(std::abs(a - b) <= std::min(std::abs(a), std::abs(b)) * 1e-3); } static int ceil_div(int a, int b) { return (a + b - 1) / b; } } TEST(EigenBackwardSpatialConvolutionsTest, test_simple_cuboid_convolution_backward_input_valid) { const int input_depth = 2; const int input_planes = 5; const int input_rows = 3; const int input_cols = 4; const int patch_rows = 2; const int patch_cols = 2; const int patch_planes = 2; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; const int output_planes = input_planes - patch_planes + 1; const int output_depth = 5; Tensor<float, 4> input_backward(input_depth, input_planes, input_rows, input_cols); Tensor<float, 5> kernel(output_depth, input_depth, patch_planes, patch_rows, patch_cols); Tensor<float, 4> output_backward(output_depth, output_planes, output_rows, output_cols); output_backward = output_backward.constant(11.0f) + output_backward.random(); kernel = kernel.constant(2.0f) + kernel.random(); input_backward.setRandom(); input_backward = CuboidConvolutionBackwardInput( kernel, output_backward, input_planes, input_rows, input_cols); EXPECT_EQ(input_backward.dimension(3), input_cols); EXPECT_EQ(input_backward.dimension(2), input_rows); EXPECT_EQ(input_backward.dimension(1), input_planes); EXPECT_EQ(input_backward.dimension(0), input_depth); for (int id = 0; id < input_depth; ++id) { for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int p = 0; p < patch_planes; ++p) { for (int od = 0; od < output_depth; ++od) { int output_j = j - r; int output_k = k - c; int output_i = i - p; if (output_i >= 0 && output_i < output_planes && output_j >= 0 && output_j < output_rows && output_k >= 0 && output_k < output_cols) { expected += output_backward(od, output_i, output_j, output_k) * kernel(od, id, p, r, c); } } } } } EigenApprox(input_backward(id, i, j, k), expected); } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_simple_cuboid_convolution_backward_input_valid_row_major) { const int input_depth = 2; const int input_planes = 5; const int input_rows = 3; const int input_cols = 4; const int patch_rows = 2; const int patch_cols = 2; const int patch_planes = 2; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; const int output_planes = input_planes - patch_planes + 1; const int output_depth = 5; Tensor<float, 4, RowMajor> input_backward(input_cols, input_rows, input_planes, input_depth); Tensor<float, 5, RowMajor> kernel(patch_cols, patch_rows, patch_planes, input_depth, output_depth); Tensor<float, 4, RowMajor> output_backward(output_cols, output_rows, output_planes, output_depth); output_backward = output_backward.constant(11.0f) + output_backward.random(); kernel = kernel.constant(2.0f) + kernel.random(); input_backward.setRandom(); input_backward = CuboidConvolutionBackwardInput( kernel, output_backward, input_planes, input_rows, input_cols); EXPECT_EQ(input_backward.dimension(0), input_cols); EXPECT_EQ(input_backward.dimension(1), input_rows); EXPECT_EQ(input_backward.dimension(2), input_planes); EXPECT_EQ(input_backward.dimension(3), input_depth); for (int id = 0; id < input_depth; ++id) { for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int p = 0; p < patch_planes; ++p) { for (int od = 0; od < output_depth; ++od) { int output_j = j - r; int output_k = k - c; int output_i = i - p; if (output_i >= 0 && output_i < output_planes && output_j >= 0 && output_j < output_rows && output_k >= 0 && output_k < output_cols) { expected += output_backward(output_k, output_j, output_i, od) * kernel(c, r, p, id, od); } } } } } EigenApprox(input_backward(k, j, i, id), expected); } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_simple_cuboid_convolution_backward_input_same) { const int input_depth = 2; const int input_planes = 5; const int input_rows = 3; const int input_cols = 4; const int patch_rows = 3; const int patch_cols = 2; const int patch_planes = 4; const int output_rows = input_rows; const int output_cols = input_cols; const int output_planes = input_planes; const int output_depth = 5; Tensor<float, 4> input_backward(input_depth, input_planes, input_rows, input_cols); Tensor<float, 5> kernel(output_depth, input_depth, patch_planes, patch_rows, patch_cols); Tensor<float, 4> output_backward(output_depth, output_planes, output_rows, output_cols); output_backward = output_backward.constant(11.0f) + output_backward.random(); kernel = kernel.constant(2.0f) + kernel.random(); input_backward.setRandom(); input_backward = CuboidConvolutionBackwardInput( kernel, output_backward, input_planes, input_rows, input_cols); EXPECT_EQ(input_backward.dimension(3), input_cols); EXPECT_EQ(input_backward.dimension(2), input_rows); EXPECT_EQ(input_backward.dimension(1), input_planes); EXPECT_EQ(input_backward.dimension(0), input_depth); const int dz = patch_planes - 1; const int dy = patch_rows - 1; const int dx = patch_cols - 1; const int forward_pad_x = dx / 2; const int forward_pad_y = dy / 2; const int forward_pad_z = dz / 2; for (int id = 0; id < input_depth; ++id) { for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int p = 0; p < patch_planes; ++p) { for (int od = 0; od < output_depth; ++od) { int output_i = i - p + forward_pad_z; int output_j = j - r + forward_pad_y; int output_k = k - c + forward_pad_x; if (output_i >= 0 && output_i < output_planes && output_j >= 0 && output_j < output_rows && output_k >= 0 && output_k < output_cols) { expected += output_backward(od, output_i, output_j, output_k) * kernel(od, id, p, r, c); } } } } } EigenApprox(input_backward(id, i, j, k), expected); } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_simple_cuboid_convolution_backward_input_same_row_major) { const int input_depth = 2; const int input_planes = 5; const int input_rows = 3; const int input_cols = 4; const int patch_rows = 2; const int patch_cols = 3; const int patch_planes = 4; const int output_rows = input_rows; const int output_cols = input_cols; const int output_planes = input_planes; const int output_depth = 5; Tensor<float, 4, RowMajor> input_backward(input_cols, input_rows, input_planes, input_depth); Tensor<float, 5, RowMajor> kernel(patch_cols, patch_rows, patch_planes, input_depth, output_depth); Tensor<float, 4, RowMajor> output_backward(output_cols, output_rows, output_planes, output_depth); output_backward = output_backward.constant(11.0f) + output_backward.random(); kernel = kernel.constant(2.0f) + kernel.random(); input_backward.setRandom(); input_backward = CuboidConvolutionBackwardInput( kernel, output_backward, input_planes, input_rows, input_cols); EXPECT_EQ(input_backward.dimension(0), input_cols); EXPECT_EQ(input_backward.dimension(1), input_rows); EXPECT_EQ(input_backward.dimension(2), input_planes); EXPECT_EQ(input_backward.dimension(3), input_depth); const int dz = patch_planes - 1; const int dy = patch_rows - 1; const int dx = patch_cols - 1; const int forward_pad_x = dx / 2; const int forward_pad_y = dy / 2; const int forward_pad_z = dz / 2; for (int id = 0; id < input_depth; ++id) { for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int p = 0; p < patch_planes; ++p) { for (int od = 0; od < output_depth; ++od) { int output_i = i - p + forward_pad_z; int output_j = j - r + forward_pad_y; int output_k = k - c + forward_pad_x; if (output_i >= 0 && output_i < output_planes && output_j >= 0 && output_j < output_rows && output_k >= 0 && output_k < output_cols) { expected += output_backward(output_k, output_j, output_i, od) * kernel(c, r, p, id, od); } } } } } EigenApprox(input_backward(k, j, i, id), expected); } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_cuboid_convolution_backward_input_valid) { const int num_batches = 13; const int input_depth = 2; const int input_planes = 5; const int input_rows = 3; const int input_cols = 4; const int patch_rows = 2; const int patch_cols = 2; const int patch_planes = 2; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; const int output_planes = input_planes - patch_planes + 1; const int output_depth = 5; Tensor<float, 5> input_backward(input_depth, input_planes, input_rows, input_cols, num_batches); Tensor<float, 5> kernel(output_depth, input_depth, patch_planes, patch_rows, patch_cols); Tensor<float, 5> output_backward(output_depth, output_planes, output_rows, output_cols, num_batches); output_backward = output_backward.constant(11.0f) + output_backward.random(); kernel = kernel.constant(2.0f) + kernel.random(); input_backward.setRandom(); input_backward = CuboidConvolutionBackwardInput( kernel, output_backward, input_planes, input_rows, input_cols); EXPECT_EQ(input_backward.dimension(4), num_batches); EXPECT_EQ(input_backward.dimension(3), input_cols); EXPECT_EQ(input_backward.dimension(2), input_rows); EXPECT_EQ(input_backward.dimension(1), input_planes); EXPECT_EQ(input_backward.dimension(0), input_depth); for (int b = 0; b < num_batches; ++b) { for (int id = 0; id < input_depth; ++id) { for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int p = 0; p < patch_planes; ++p) { for (int od = 0; od < output_depth; ++od) { int output_i = i - p; int output_j = j - r; int output_k = k - c; if (output_i >= 0 && output_i < output_planes && output_j >= 0 && output_j < output_rows && output_k >= 0 && output_k < output_cols) { expected += output_backward(od, output_i, output_j, output_k, b) * kernel(od, id, p, r, c); } } } } } EigenApprox(input_backward(id, i, j, k, b), expected); } } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_cuboid_convolution_backward_input_valid_row_major) { const int num_batches = 13; const int input_depth = 2; const int input_planes = 5; const int input_rows = 3; const int input_cols = 4; const int patch_rows = 2; const int patch_cols = 2; const int patch_planes = 2; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; const int output_planes = input_planes - patch_planes + 1; const int output_depth = 5; Tensor<float, 5, RowMajor> input_backward(num_batches, input_cols, input_rows, input_planes, input_depth); Tensor<float, 5, RowMajor> kernel(patch_cols, patch_rows, patch_planes, input_depth, output_depth); Tensor<float, 5, RowMajor> output_backward( num_batches, output_cols, output_rows, output_planes, output_depth); output_backward = output_backward.constant(11.0f) + output_backward.random(); kernel = kernel.constant(2.0f) + kernel.random(); input_backward.setRandom(); input_backward = CuboidConvolutionBackwardInput( kernel, output_backward, input_planes, input_rows, input_cols); EXPECT_EQ(input_backward.dimension(0), num_batches); EXPECT_EQ(input_backward.dimension(1), input_cols); EXPECT_EQ(input_backward.dimension(2), input_rows); EXPECT_EQ(input_backward.dimension(3), input_planes); EXPECT_EQ(input_backward.dimension(4), input_depth); for (int b = 0; b < num_batches; ++b) { for (int id = 0; id < input_depth; ++id) { for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int p = 0; p < patch_planes; ++p) { for (int od = 0; od < output_depth; ++od) { int output_i = i - p; int output_j = j - r; int output_k = k - c; if (output_i >= 0 && output_i < output_planes && output_j >= 0 && output_j < output_rows && output_k >= 0 && output_k < output_cols) { expected += output_backward(b, output_k, output_j, output_i, od) * kernel(c, r, p, id, od); } } } } } EigenApprox(input_backward(b, k, j, i, id), expected); } } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_simple_cuboid_convolution_backward_kernel_valid) { const int input_depth = 2; const int input_planes = 5; const int input_rows = 3; const int input_cols = 4; const int output_depth = 5; const int patch_rows = 2; const int patch_cols = 2; const int patch_planes = 3; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; const int output_planes = input_planes - patch_planes + 1; Tensor<float, 5> input(input_depth, input_planes, input_rows, input_cols, 1); Tensor<float, 5> kernel(output_depth, input_depth, patch_planes, patch_rows, patch_cols); Tensor<float, 5> output_backward(output_depth, output_planes, output_rows, output_cols, 1); output_backward = output_backward.constant(11.0f) + output_backward.random(); input = input.constant(2.0f) + input.random(); kernel.setRandom(); kernel = CuboidConvolutionBackwardKernel(input, output_backward, patch_planes, patch_rows, patch_cols, 1, 1, 1); EXPECT_EQ(kernel.dimension(0), output_depth); EXPECT_EQ(kernel.dimension(1), input_depth); EXPECT_EQ(kernel.dimension(2), patch_planes); EXPECT_EQ(kernel.dimension(3), patch_rows); EXPECT_EQ(kernel.dimension(4), patch_cols); for (int od = 0; od < output_depth; ++od) { for (int id = 0; id < input_depth; ++id) { for (int p = 0; p < patch_planes; ++p) { for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { float expected = 0.0f; for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { int output_j = j - r; int output_k = k - c; int output_i = i - p; if (output_i >= 0 && output_i < output_planes && output_j >= 0 && output_j < output_rows && output_k >= 0 && output_k < output_cols) { expected += input(id, i, j, k, 0) * output_backward(od, output_i, output_j, output_k, 0); } } } } EigenApprox(kernel(od, id, p, r, c), expected); } } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_simple_cuboid_convolution_backward_kernel_valid_row_major) { const int input_depth = 2; const int input_planes = 5; const int input_rows = 3; const int input_cols = 4; const int output_depth = 5; const int patch_rows = 2; const int patch_cols = 2; const int patch_planes = 3; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; const int output_planes = input_planes - patch_planes + 1; Tensor<float, 5, RowMajor> input( 1, input_cols, input_rows, input_planes, input_depth); Tensor<float, 5, RowMajor> kernel(patch_cols, patch_rows, patch_planes, input_depth, output_depth); Tensor<float, 5, RowMajor> output_backward( 1, output_cols, output_rows, output_planes, output_depth); output_backward = output_backward.constant(11.0f) + output_backward.random(); input = input.constant(2.0f) + input.random(); kernel.setRandom(); kernel = CuboidConvolutionBackwardKernel(input, output_backward, patch_planes, patch_rows, patch_cols, 1, 1, 1); EXPECT_EQ(kernel.dimension(4), output_depth); EXPECT_EQ(kernel.dimension(3), input_depth); EXPECT_EQ(kernel.dimension(2), patch_planes); EXPECT_EQ(kernel.dimension(1), patch_rows); EXPECT_EQ(kernel.dimension(0), patch_cols); for (int od = 0; od < output_depth; ++od) { for (int id = 0; id < input_depth; ++id) { for (int p = 0; p < patch_planes; ++p) { for (int r = 0; r < patch_rows; ++r) { for (int c = 0; c < patch_cols; ++c) { float expected = 0.0f; for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { int output_j = j - r; int output_k = k - c; int output_i = i - p; if (output_i >= 0 && output_i < output_planes && output_j >= 0 && output_j < output_rows && output_k >= 0 && output_k < output_cols) { expected += input( 0, k, j, i, id) * output_backward( 0, output_k, output_j, output_i, od); } } } } EigenApprox(kernel(c, r, p, id, od), expected); } } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_cuboid_convolution_backward_kernel_valid) { const int num_batches = 13; const int input_depth = 2; const int input_planes = 5; const int input_rows = 7; const int input_cols = 9; const int output_depth = 3; const int patch_rows = 5; const int patch_cols = 5; const int patch_planes = 3; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; const int output_planes = input_planes - patch_planes + 1; Tensor<float, 5> input(input_depth, input_planes, input_rows, input_cols, num_batches); Tensor<float, 5> kernel_backward(output_depth, input_depth, patch_planes, patch_rows, patch_cols); Tensor<float, 5> output_backward(output_depth, output_planes, output_rows, output_cols, num_batches); output_backward = output_backward.constant(11.0f) + output_backward.random(); input = input.constant(2.0f) + input.random(); kernel_backward.setRandom(); kernel_backward = CuboidConvolutionBackwardKernel( input, output_backward, patch_planes, patch_rows, patch_cols, 1, 1, 1); EXPECT_EQ(kernel_backward.dimension(0), output_depth); EXPECT_EQ(kernel_backward.dimension(1), input_depth); EXPECT_EQ(kernel_backward.dimension(2), patch_planes); EXPECT_EQ(kernel_backward.dimension(3), patch_rows); EXPECT_EQ(kernel_backward.dimension(4), patch_cols); for (int od = 0; od < output_depth; ++od) { for (int id = 0; id < input_depth; ++id) { for (int p = 0; p < patch_planes; ++p) { for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { float expected = 0.0f; for (int b = 0; b < num_batches; ++b) { for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { int output_j = j - r; int output_k = k - c; int output_i = i - p; if (output_i >= 0 && output_i < output_planes && output_j >= 0 && output_j < output_rows && output_k >= 0 && output_k < output_cols) { expected += input(id, i, j, k, b) * output_backward(od, output_i, output_j, output_k, b); } } } } } EigenApprox(kernel_backward(od, id, p, r, c), expected); } } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_cuboid_convolution_backward_kernel_valid_row_major) { const int num_batches = 13; const int input_depth = 2; const int input_planes = 5; const int input_rows = 7; const int input_cols = 9; const int output_depth = 3; const int patch_rows = 5; const int patch_cols = 5; const int patch_planes = 3; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; const int output_planes = input_planes - patch_planes + 1; Tensor<float, 5, RowMajor> input(num_batches, input_cols, input_rows, input_planes, input_depth); Tensor<float, 5, RowMajor> kernel_backward( patch_cols, patch_rows, patch_planes, input_depth, output_depth); Tensor<float, 5, RowMajor> output_backward( num_batches, output_cols, output_rows, output_planes, output_depth); output_backward = output_backward.constant(11.0f) + output_backward.random(); input = input.constant(2.0f) + input.random(); kernel_backward.setRandom(); kernel_backward = CuboidConvolutionBackwardKernel( input, output_backward, patch_planes, patch_rows, patch_cols, 1, 1, 1); EXPECT_EQ(kernel_backward.dimension(4), output_depth); EXPECT_EQ(kernel_backward.dimension(3), input_depth); EXPECT_EQ(kernel_backward.dimension(2), patch_planes); EXPECT_EQ(kernel_backward.dimension(1), patch_rows); EXPECT_EQ(kernel_backward.dimension(0), patch_cols); for (int od = 0; od < output_depth; ++od) { for (int id = 0; id < input_depth; ++id) { for (int p = 0; p < patch_planes; ++p) { for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { float expected = 0.0f; for (int b = 0; b < num_batches; ++b) { for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { int output_j = j - r; int output_k = k - c; int output_i = i - p; if (output_i >= 0 && output_i < output_planes && output_j >= 0 && output_j < output_rows && output_k >= 0 && output_k < output_cols) { expected += input(b, k, j, i, id) * output_backward(b, output_k, output_j, output_i, od); } } } } } EigenApprox(kernel_backward(c, r, p, id, od), expected); } } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_strided_cuboid_convolution_backward_kernel_valid) { const int num_batches = 13; const int input_depth = 2; const int input_planes = 8; const int input_rows = 7; const int input_cols = 9; const int output_depth = 3; const int patch_planes = 3; const int patch_rows = 3; const int patch_cols = 2; const int stride_planes = 2; const int stride_cols = 3; const int stride_rows = 1; const int output_rows = ceil_div(input_rows - patch_rows + 1, stride_rows); const int output_cols = ceil_div(input_cols - patch_cols + 1, stride_cols); const int output_planes = ceil_div(input_planes - patch_planes + 1, stride_planes); Tensor<float, 5> input(input_depth, input_planes, input_rows, input_cols, num_batches); Tensor<float, 5> kernel_backward(output_depth, input_depth, patch_planes, patch_rows, patch_cols); Tensor<float, 5> output_backward(output_depth, output_planes, output_rows, output_cols, num_batches); output_backward = output_backward.constant(11.0f) + output_backward.random(); input = input.constant(2.0f) + input.random(); kernel_backward.setRandom(); kernel_backward = CuboidConvolutionBackwardKernel( input, output_backward, patch_planes, patch_rows, patch_cols, stride_planes, stride_rows, stride_cols); EXPECT_EQ(kernel_backward.dimension(0), output_depth); EXPECT_EQ(kernel_backward.dimension(1), input_depth); EXPECT_EQ(kernel_backward.dimension(2), patch_planes); EXPECT_EQ(kernel_backward.dimension(3), patch_rows); EXPECT_EQ(kernel_backward.dimension(4), patch_cols); for (int od = 0; od < output_depth; ++od) { for (int id = 0; id < input_depth; ++id) { for (int p = 0; p < patch_planes; ++p) { for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { float expected = 0.0f; for (int b = 0; b < num_batches; ++b) { for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { int output_j = j - r; int output_k = k - c; int output_i = i - p; if (output_i >= 0 && output_i / stride_planes < output_planes && output_j >= 0 && output_j / stride_rows < output_rows && output_k >= 0 && output_k / stride_cols < output_cols && output_i % stride_planes == 0 && output_j % stride_rows == 0 && output_k % stride_cols == 0) { expected += input(id, i, j, k, b) * output_backward(od, output_i / stride_planes, output_j / stride_rows, output_k / stride_cols, b); } } } } } EigenApprox(kernel_backward(od, id, p, r, c), expected); } } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_strided_cuboid_convolution_backward_kernel_valid_row_major) { const int num_batches = 13; const int input_depth = 2; const int input_planes = 8; const int input_rows = 7; const int input_cols = 9; const int output_depth = 3; const int patch_planes = 3; const int patch_rows = 3; const int patch_cols = 2; const int stride_planes = 2; const int stride_cols = 3; const int stride_rows = 1; const int output_rows = ceil_div(input_rows - patch_rows + 1, stride_rows); const int output_cols = ceil_div(input_cols - patch_cols + 1, stride_cols); const int output_planes = ceil_div(input_planes - patch_planes + 1, stride_planes); Tensor<float, 5, RowMajor> input(num_batches, input_cols, input_rows, input_planes, input_depth); Tensor<float, 5, RowMajor> kernel_backward( patch_cols, patch_rows, patch_planes, input_depth, output_depth); Tensor<float, 5, RowMajor> output_backward( num_batches, output_cols, output_rows, output_planes, output_depth); output_backward = output_backward.constant(11.0f) + output_backward.random(); input = input.constant(2.0f) + input.random(); kernel_backward.setRandom(); kernel_backward = CuboidConvolutionBackwardKernel( input, output_backward, patch_planes, patch_rows, patch_cols, stride_planes, stride_rows, stride_cols); EXPECT_EQ(kernel_backward.dimension(4), output_depth); EXPECT_EQ(kernel_backward.dimension(3), input_depth); EXPECT_EQ(kernel_backward.dimension(2), patch_planes); EXPECT_EQ(kernel_backward.dimension(1), patch_rows); EXPECT_EQ(kernel_backward.dimension(0), patch_cols); for (int od = 0; od < output_depth; ++od) { for (int id = 0; id < input_depth; ++id) { for (int p = 0; p < patch_planes; ++p) { for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { float expected = 0.0f; for (int b = 0; b < num_batches; ++b) { for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { int output_j = j - r; int output_k = k - c; int output_i = i - p; if (output_i >= 0 && output_i / stride_planes < output_planes && output_j >= 0 && output_j / stride_rows < output_rows && output_k >= 0 && output_k / stride_cols < output_cols && output_i % stride_planes == 0 && output_j % stride_rows == 0 && output_k % stride_cols == 0) { expected += input(b, k, j, i, id) * output_backward(b, output_k / stride_cols, output_j / stride_rows, output_i / stride_planes, od); } } } } } EigenApprox(kernel_backward(c, r, p, id, od), expected); } } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_strided_cuboid_convolution_backward_input_valid) { const int num_batches = 13; const int input_depth = 2; const int input_planes = 14; const int input_rows = 13; const int input_cols = 15; const int patch_rows = 3; const int patch_cols = 2; const int patch_planes = 4; const int stride_rows = 3; const int stride_cols = 2; const int stride_planes = 3; const int output_rows = ceil_div(input_rows - patch_rows + 1, stride_rows); const int output_cols = ceil_div(input_cols - patch_cols + 1, stride_cols); const int output_planes = ceil_div(input_planes - patch_planes + 1, stride_planes); const int output_depth = 5; Tensor<float, 5> input_backward(input_depth, input_planes, input_rows, input_cols, num_batches); Tensor<float, 5> kernel(output_depth, input_depth, patch_planes, patch_rows, patch_cols); Tensor<float, 5> output_backward(output_depth, output_planes, output_rows, output_cols, num_batches); output_backward = output_backward.constant(11.0f) + output_backward.random(); kernel = kernel.constant(2.0f) + kernel.random(); input_backward.setRandom(); input_backward = CuboidConvolutionBackwardInput( kernel, output_backward, input_planes, input_rows, input_cols, stride_planes, stride_rows, stride_cols); EXPECT_EQ(input_backward.dimension(4), num_batches); EXPECT_EQ(input_backward.dimension(3), input_cols); EXPECT_EQ(input_backward.dimension(2), input_rows); EXPECT_EQ(input_backward.dimension(1), input_planes); EXPECT_EQ(input_backward.dimension(0), input_depth); for (int b = 0; b < num_batches; ++b) { for (int id = 0; id < input_depth; ++id) { for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int p = 0; p < patch_planes; ++p) { for (int od = 0; od < output_depth; ++od) { int output_j = j - r; int output_k = k - c; int output_i = i - p; if (output_i >= 0 && output_i / stride_planes < output_planes && output_j >= 0 && output_j / stride_rows < output_rows && output_k >= 0 && output_k / stride_cols < output_cols && output_i % stride_planes == 0 && output_j % stride_rows == 0 && output_k % stride_cols == 0) { expected += output_backward(od, output_i / stride_planes, output_j / stride_rows, output_k / stride_cols, b) * kernel(od, id, p, r, c); } } } } } EigenApprox(input_backward(id, i, j, k, b), expected); } } } } } } TEST(EigenBackwardSpatialConvolutionsTest, test_batched_strided_cuboid_convolution_backward_input_valid_row_major) { const int num_batches = 13; const int input_depth = 2; const int input_planes = 14; const int input_rows = 13; const int input_cols = 15; const int patch_rows = 3; const int patch_cols = 2; const int patch_planes = 4; const int stride_rows = 3; const int stride_cols = 2; const int stride_planes = 3; const int output_rows = ceil_div(input_rows - patch_rows + 1, stride_rows); const int output_cols = ceil_div(input_cols - patch_cols + 1, stride_cols); const int output_planes = ceil_div(input_planes - patch_planes + 1, stride_planes); const int output_depth = 5; Tensor<float, 5, RowMajor> input_backward(num_batches, input_cols, input_rows, input_planes, input_depth); Tensor<float, 5, RowMajor> kernel(patch_cols, patch_rows, patch_planes, input_depth, output_depth); Tensor<float, 5, RowMajor> output_backward( num_batches, output_cols, output_rows, output_planes, output_depth); output_backward = output_backward.constant(11.0f) + output_backward.random(); kernel = kernel.constant(2.0f) + kernel.random(); input_backward.setRandom(); input_backward = CuboidConvolutionBackwardInput( kernel, output_backward, input_planes, input_rows, input_cols, stride_planes, stride_rows, stride_cols); EXPECT_EQ(input_backward.dimension(0), num_batches); EXPECT_EQ(input_backward.dimension(1), input_cols); EXPECT_EQ(input_backward.dimension(2), input_rows); EXPECT_EQ(input_backward.dimension(3), input_planes); EXPECT_EQ(input_backward.dimension(4), input_depth); for (int b = 0; b < num_batches; ++b) { for (int id = 0; id < input_depth; ++id) { for (int i = 0; i < input_planes; ++i) { for (int j = 0; j < input_rows; ++j) { for (int k = 0; k < input_cols; ++k) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int p = 0; p < patch_planes; ++p) { for (int od = 0; od < output_depth; ++od) { int output_j = j - r; int output_k = k - c; int output_i = i - p; if (output_i >= 0 && output_i / stride_planes < output_planes && output_j >= 0 && output_j / stride_rows < output_rows && output_k >= 0 && output_k / stride_cols < output_cols && output_i % stride_planes == 0 && output_j % stride_rows == 0 && output_k % stride_cols == 0) { expected += output_backward(b, output_k / stride_cols, output_j / stride_rows, output_i / stride_planes, od) * kernel(c, r, p, id, od); } } } } } EigenApprox(input_backward(b, k, j, i, id), expected); } } } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/eigen_backward_cuboid_convolutions.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/eigen_backward_cuboid_convolutions_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
58fd0fed-e6ea-4f5d-b2d5-9570483b8c99
cpp
google/tensorstore
single_index_slice_op
tensorstore/index_space/internal/single_index_slice_op.cc
tensorstore/index_space/single_index_slice_op_test.cc
#include "tensorstore/index_space/internal/single_index_slice_op.h" #include "absl/status/status.h" #include "tensorstore/index_space/internal/transform_rep_impl.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { namespace { struct InputDimensionSingletonSliceInfo { DimensionIndex new_input_dim; Index offset; }; struct SingletonSlicingInfo { explicit SingletonSlicingInfo(DimensionIndex original_input_rank, DimensionIndex new_input_rank) : original_input_rank(original_input_rank), new_input_rank(new_input_rank) { std::fill_n(&original_input_dimension_info[0], original_input_rank, InputDimensionSingletonSliceInfo{0, 0}); } DimensionIndex original_input_rank; DimensionIndex new_input_rank; InputDimensionSingletonSliceInfo original_input_dimension_info[kMaxRank]; }; Result<SingletonSlicingInfo> GetSingletonSlicingInfo( TransformRep* original, DimensionIndexBuffer* dimensions_buffer, IndexVectorOrScalarView indices) { const span<const DimensionIndex> dimensions(*dimensions_buffer); const DimensionIndex num_dims = dimensions.size(); const DimensionIndex original_input_rank = original->input_rank; const DimensionIndex new_input_rank = original_input_rank - num_dims; TENSORSTORE_RETURN_IF_ERROR(CheckIndexVectorSize(indices, num_dims)); Result<SingletonSlicingInfo> result(tensorstore::in_place, original_input_rank, new_input_rank); const Index* indices_pointer = indices.pointer ? indices.pointer : &indices.size_or_scalar; const Index indices_stride = indices.pointer ? 1 : 0; std::string slice_error; for (DimensionIndex i = 0; i < num_dims; ++i) { const DimensionIndex original_input_dim = dimensions[i]; const Index index = indices_pointer[i * indices_stride]; const auto domain = original->input_dimension(original_input_dim) .optionally_implicit_domain(); if (!Contains(domain.effective_interval(), index)) { tensorstore::StrAppend(&slice_error, (slice_error.empty() ? "" : ", "), "in input dimension ", original_input_dim, " index ", index, " is outside valid domain ", domain); } result->original_input_dimension_info[original_input_dim] = InputDimensionSingletonSliceInfo{-1, index}; } if (!slice_error.empty()) { result = absl::OutOfRangeError( tensorstore::StrCat("Slice mismatch: ", slice_error)); return result; } for (DimensionIndex original_input_dim = 0, new_input_dim = 0; original_input_dim < original_input_rank; ++original_input_dim) { auto& new_dim = result->original_input_dimension_info[original_input_dim].new_input_dim; if (new_dim == -1) continue; new_dim = new_input_dim; ++new_input_dim; } dimensions_buffer->clear(); return result; } absl::Status PerformSingleIndexSlice(TransformRep* original_transform, TransformRep* new_transform, const SingletonSlicingInfo& info, bool domain_only) { const DimensionIndex original_input_rank = original_transform->input_rank; const DimensionIndex new_input_rank = info.new_input_rank; span<const InputDimensionSingletonSliceInfo> original_input_dimension_info = info.original_input_dimension_info; bool domain_is_explicitly_empty = false; for (DimensionIndex original_input_dim = 0, new_input_dim = 0; original_input_dim < original_input_rank; ++original_input_dim) { if (original_input_dimension_info[original_input_dim].new_input_dim < 0) continue; const InputDimensionRef new_dim_ref = new_transform->input_dimension(new_input_dim); new_dim_ref = original_transform->input_dimension(original_input_dim); if (new_dim_ref.domain().empty() && !new_dim_ref.implicit_lower_bound() && !new_dim_ref.implicit_upper_bound()) { domain_is_explicitly_empty = true; } ++new_input_dim; } const DimensionIndex output_rank = domain_only ? 0 : original_transform->output_rank; span<const OutputIndexMap> original_maps = original_transform->output_index_maps().first(output_rank); span<OutputIndexMap> new_maps = new_transform->output_index_maps().first(output_rank); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { const OutputIndexMap& original_map = original_maps[output_dim]; OutputIndexMap& new_map = new_maps[output_dim]; switch (original_map.method()) { case OutputIndexMethod::constant: { new_map.offset() = original_map.offset(); new_map.SetConstant(); new_map.stride() = 0; break; } case OutputIndexMethod::single_input_dimension: { const DimensionIndex original_input_dim = original_map.input_dimension(); assert(original_input_dim >= 0 && original_input_dim < original_input_rank); const auto slice_info = original_input_dimension_info[original_input_dim]; const Index output_stride = original_map.stride(); const Index output_offset = original_map.offset(); if (slice_info.new_input_dim == -1) { Index new_offset; if (internal::MulOverflow(slice_info.offset, output_stride, &new_offset) || internal::AddOverflow(new_offset, output_offset, &new_map.offset())) { return absl::InvalidArgumentError(tensorstore::StrCat( "Integer overflow computing offset for output dimension ", output_dim, ".")); } new_map.SetConstant(); new_map.stride() = 0; } else { new_map.SetSingleInputDimension(slice_info.new_input_dim); new_map.stride() = output_stride; new_map.offset() = output_offset; } break; } case OutputIndexMethod::array: { if (domain_is_explicitly_empty) { new_map.SetConstant(); new_map.offset() = 0; new_map.stride() = 0; break; } const IndexArrayData& original_index_array_data = original_map.index_array_data(); IndexArrayData& new_index_array_data = new_map.SetArrayIndexing(new_input_rank); new_index_array_data.index_range = original_index_array_data.index_range; Index array_byte_offset = 0; bool has_non_zero_byte_strides = false; for (DimensionIndex original_input_dim = 0; original_input_dim < original_input_rank; ++original_input_dim) { const auto slice_info = original_input_dimension_info[original_input_dim]; const Index byte_stride = original_index_array_data.byte_strides[original_input_dim]; if (slice_info.new_input_dim == -1) { array_byte_offset = internal::wrap_on_overflow::Add( array_byte_offset, internal::wrap_on_overflow::Multiply( byte_stride, slice_info.offset)); } else { new_index_array_data.byte_strides[slice_info.new_input_dim] = byte_stride; if (byte_stride != 0) has_non_zero_byte_strides = true; } } Index output_stride = original_map.stride(); Index output_offset = original_map.offset(); if (has_non_zero_byte_strides) { new_index_array_data.element_pointer = AddByteOffset( original_index_array_data.element_pointer, array_byte_offset); } else { TENSORSTORE_RETURN_IF_ERROR(ReplaceZeroRankIndexArrayIndexMap( original_index_array_data.element_pointer .byte_strided_pointer()[array_byte_offset], new_index_array_data.index_range, &output_offset, &output_stride)); new_map.SetConstant(); } new_map.stride() = output_stride; new_map.offset() = output_offset; break; } } } new_transform->input_rank = new_input_rank; new_transform->output_rank = output_rank; NormalizeImplicitBounds(*new_transform); internal_index_space::DebugCheckInvariants(new_transform); return absl::OkStatus(); } } Result<IndexTransform<>> ApplySingleIndexSlice(IndexTransform<> transform, DimensionIndexBuffer* dimensions, IndexVectorOrScalarView indices, bool domain_only) { TransformRep* rep = TransformAccess::rep(transform); auto slicing_info = GetSingletonSlicingInfo(rep, dimensions, indices); if (!slicing_info) return slicing_info.status(); auto new_rep = NewOrMutableRep(rep, slicing_info->new_input_rank, rep->output_rank, domain_only); TENSORSTORE_RETURN_IF_ERROR( PerformSingleIndexSlice(rep, new_rep.get(), *slicing_info, domain_only)); return TransformAccess::Make<IndexTransform<>>(new_rep); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/dim_expression_testutil.h" #include "tensorstore/util/status.h" namespace { using ::tensorstore::AllDims; using ::tensorstore::DimensionIndex; using ::tensorstore::Dims; using ::tensorstore::Index; using ::tensorstore::IndexDomainBuilder; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::kInfIndex; using ::tensorstore::MakeArray; using ::tensorstore::span; using ::tensorstore::internal_index_space::EquivalentIndices; using ::tensorstore::internal_index_space::TestDimExpression; TEST(SingleIndexSliceTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<1, 3>() .input_origin({2}) .input_shape({4}) .input_labels({"y"}) .output_constant(0, 2) .output_single_input_dimension(1, 0) .output_constant(2, 4) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{2, 3, 4}, {3}}, }; TestDimExpression(original_transform, Dims(0, 2).IndexSlice({2, 4}), {}, expected_new_transform, expected_new_transform, equivalent_indices); TestDimExpression(original_transform, Dims("x", "z").IndexSlice({2, 4}), {}, expected_new_transform, expected_new_transform, equivalent_indices); } TEST(SingleIndexSliceTest, ImplicitLowerBound) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .implicit_lower_bounds({1, 1, 0}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<1, 3>() .input_origin({2}) .implicit_lower_bounds({1}) .input_shape({4}) .input_labels({"y"}) .output_constant(0, -7) .output_single_input_dimension(1, 0) .output_constant(2, 4) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{-7, 3, 4}, {3}}, }; TestDimExpression(original_transform, Dims(0, 2).IndexSlice({-7, 4}), {}, expected_new_transform, expected_new_transform, equivalent_indices); } TEST(SingleIndexSliceTest, DimSubsetUniformIndexArrayRetained) { TestDimExpression( IndexTransformBuilder<3, 4>() .input_origin({1, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7}) .output_single_input_dimension(0, 1, 4, 0) .output_single_input_dimension(1, 2, 3, 2) .output_constant(2, 3) .output_index_array( 3, 4, 1, MakeArray<Index>({{{5}, {6}, {7}, {8}, {9}}, {{15}, {16}, {17}, {18}, {19}}, {{25}, {26}, {27}, {28}, {29}}, {{35}, {36}, {37}, {38}, {39}}})) .Finalize() .value(), Dims(1, 2).IndexSlice(3), {}, IndexTransformBuilder<1, 3>() .input_origin({1}) .input_shape({4}) .output_single_input_dimension(0, 0) .output_constant(1, 3) .output_constant(2, 3) .Finalize() .value(), IndexTransformBuilder<1, 4>() .input_origin({1}) .input_shape({4}) .output_single_input_dimension(0, 1, 4, 0) .output_constant(1, 2 + 3 * 3) .output_constant(2, 3) .output_index_array(3, 4, 1, MakeArray<Index>({6, 16, 26, 36})) .Finalize() .value(), {{{4, 3, 3}, {4}}}); } TEST(SingleIndexSliceTest, DimSubsetUniformIndexArrayEliminated) { TestDimExpression( IndexTransformBuilder<3, 4>() .input_origin({1, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7}) .output_single_input_dimension(0, 1, 4, 0) .output_single_input_dimension(1, 2, 3, 2) .output_constant(2, 3) .output_index_array( 3, 4, 1, MakeArray<Index>({{{5}, {6}, {7}, {8}, {9}}})) .Finalize() .value(), Dims(1, 2).IndexSlice(3), {}, IndexTransformBuilder<1, 3>() .input_origin({1}) .input_shape({4}) .output_single_input_dimension(0, 0) .output_constant(1, 3) .output_constant(2, 3) .Finalize() .value(), IndexTransformBuilder<1, 4>() .input_origin({1}) .input_shape({4}) .output_single_input_dimension(0, 1, 4, 0) .output_constant(1, 2 + 3 * 3) .output_constant(2, 3) .output_constant(3, 4 + 1 * 6) .Finalize() .value(), {{{4, 3, 3}, {4}}}); } TEST(SingleIndexSliceTest, DimSubsetNonUniform) { TestDimExpression( IndexTransformBuilder<3, 4>() .input_origin({1, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7}) .output_single_input_dimension(0, 1, 4, 0) .output_single_input_dimension(1, 2, 3, 2) .output_constant(2, 3) .output_index_array( 3, 4, 1, MakeArray<Index>({{{5}, {6}, {7}, {8}, {9}}, {{15}, {16}, {17}, {18}, {19}}, {{25}, {26}, {27}, {28}, {29}}, {{35}, {36}, {37}, {38}, {39}}})) .Finalize() .value(), Dims(1, 2).IndexSlice({3, 4}), {}, IndexTransformBuilder<1, 3>() .input_origin({1}) .input_shape({4}) .output_single_input_dimension(0, 0) .output_constant(1, 3) .output_constant(2, 4) .Finalize() .value(), IndexTransformBuilder<1, 4>() .input_origin({1}) .input_shape({4}) .output_single_input_dimension(0, 1, 4, 0) .output_constant(1, 2 + 4 * 3) .output_constant(2, 3) .output_index_array(3, 4, 1, MakeArray<Index>({6, 16, 26, 36})) .Finalize() .value(), {{{4, 3, 4}, {4}}}); } TEST(SingleIndexSliceTest, DimSubsetNonUniformLabeled) { TestDimExpression( IndexTransformBuilder<3, 4>() .input_origin({1, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7}) .input_labels({"x", "y", "z"}) .output_single_input_dimension(0, 1, 4, 0) .output_single_input_dimension(1, 2, 3, 2) .output_constant(2, 3) .output_index_array( 3, 4, 1, MakeArray<Index>({{{5}, {6}, {7}, {8}, {9}}, {{15}, {16}, {17}, {18}, {19}}, {{25}, {26}, {27}, {28}, {29}}, {{35}, {36}, {37}, {38}, {39}}})) .Finalize() .value(), Dims(1, 2).IndexSlice({3, 4}), {}, IndexTransformBuilder<1, 3>() .input_origin({1}) .input_shape({4}) .input_labels({"x"}) .output_single_input_dimension(0, 0) .output_constant(1, 3) .output_constant(2, 4) .Finalize() .value(), IndexTransformBuilder<1, 4>() .input_origin({1}) .input_shape({4}) .input_labels({"x"}) .output_single_input_dimension(0, 1, 4, 0) .output_constant(1, 2 + 4 * 3) .output_constant(2, 3) .output_index_array(3, 4, 1, MakeArray<Index>({6, 16, 26, 36})) .Finalize() .value(), {{{4, 3, 4}, {4}}}); } TEST(SingleIndexSliceTest, EmptyDomain) { TestDimExpression( IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({0, 3}) .input_labels({"x", "y"}) .output_single_input_dimension(0, 2, 7, 0) .output_index_array(1, 4, 3, MakeArray<Index>({{1, 2, 3}})) .Finalize() .value(), Dims(1).IndexSlice({3}), {}, IndexTransformBuilder<1, 2>() .input_origin({1}) .input_shape({0}) .input_labels({"x"}) .output_single_input_dimension(0, 0) .output_constant(1, 3) .Finalize() .value(), IndexTransformBuilder<1, 2>() .input_origin({1}) .input_shape({0}) .input_labels({"x"}) .output_single_input_dimension(0, 2, 7, 0) .output_constant(1, 0) .Finalize() .value(), {}); } TEST(ErrorHandlingTest, DimensionSelectionRankMismatch) { TestDimExpressionError(IndexTransformBuilder<1, 1>().Finalize().value(), AllDims().IndexSlice(span<const Index>({1, 2})), absl::StatusCode::kInvalidArgument, "Number of dimensions .* does not match number of " "indices .*"); } TEST(ErrorHandlingTest, OutOfBounds) { TestDimExpressionError(IndexTransformBuilder<1, 1>() .input_origin({-10}) .input_shape({15}) .Finalize() .value(), AllDims().IndexSlice({5}), absl::StatusCode::kOutOfRange, "Slice mismatch: .* is outside valid domain .*"); } TEST(ErrorHandlingTest, OutOfBoundsInfinity) { TestDimExpressionError(IndexTransformBuilder<1, 1>() .input_origin({-kInfIndex}) .input_shape({15}) .Finalize() .value(), AllDims().IndexSlice({-kInfIndex}), absl::StatusCode::kOutOfRange, "Slice mismatch: .* is outside valid domain .*"); } TEST(ErrorHandlingTest, SingleInputDimensionMapIntegerOverflow) { TestDimExpressionErrorTransformOnly( IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({10}) .output_single_input_dimension(0, std::numeric_limits<Index>::max(), 1, 0) .Finalize() .value(), AllDims().IndexSlice({1}), absl::StatusCode::kInvalidArgument, "Integer overflow computing offset for output dimension.*", IndexDomainBuilder<0>().Finalize().value()); } TEST(ErrorHandlingTest, IndexArrayMapIntegerOverflow) { TestDimExpressionErrorTransformOnly( IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({3}) .output_index_array(0, std::numeric_limits<Index>::max(), 1, MakeArray<Index>({0, 1, 2})) .Finalize() .value(), AllDims().IndexSlice({1}), absl::StatusCode::kInvalidArgument, "Integer overflow computing offset for output dimension.*", IndexDomainBuilder<0>().Finalize().value()); } TEST(ErrorHandlingTest, IndexArrayMapOutOfBounds) { TestDimExpressionErrorTransformOnly( IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({3}) .output_index_array(0, 0, 1, MakeArray<Index>({0, 1, 2}), IndexInterval::Closed(-5, -3)) .Finalize() .value(), AllDims().IndexSlice({1}), absl::StatusCode::kOutOfRange, "Index .* is outside valid range .*", IndexDomainBuilder<0>().Finalize().value()); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/internal/single_index_slice_op.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/single_index_slice_op_test.cc
4f887a6430414cd6088e1743555015b10f116d50
c3c28df6-a38d-4086-b3c6-3e6008037f50
cpp
google/arolla
struct_io
arolla/io/struct_io.cc
arolla/io/struct_io_test.cc
#include "arolla/io/struct_io.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <cstring> #include <string> #include <type_traits> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "arolla/memory/frame.h" #include "arolla/memory/optional_value.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/optional_qtype.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/typed_slot.h" namespace arolla::struct_io_impl { std::vector<std::string> SuggestAvailableNames( const absl::flat_hash_map<std::string, TypedSlot>& slots) { std::vector<std::string> names; names.reserve(slots.size()); for (const auto& [name, _] : slots) { names.emplace_back(name); } return names; } absl::Status ValidateStructSlots( const absl::flat_hash_map<std::string, TypedSlot>& slots, size_t struct_size) { for (const auto& [name, slot] : slots) { if (slot.byte_offset() + slot.GetType()->type_layout().AllocSize() > struct_size) { return absl::InvalidArgumentError( absl::StrCat("slot '", name, "' is not within the struct")); } } return absl::OkStatus(); } StructIO::StructIO( const absl::flat_hash_map<std::string, TypedSlot>& struct_slots, const absl::flat_hash_map<std::string, TypedSlot>& frame_slots) { QTypePtr b = GetQType<bool>(); std::vector<QTypePtr> types32{GetQType<float>(), GetQType<int32_t>()}; std::vector<QTypePtr> types64{GetQType<double>(), GetQType<int64_t>(), GetQType<uint64_t>(), GetOptionalQType<float>(), GetOptionalQType<int32_t>()}; static_assert(sizeof(OptionalValue<float>) == 8); static_assert(sizeof(OptionalValue<int32_t>) == 8); static_assert(std::is_trivially_copyable_v<OptionalValue<float>>); static_assert(std::is_trivially_copyable_v<OptionalValue<int32_t>>); for (const auto& [name, frame_slot] : frame_slots) { QTypePtr t = frame_slot.GetType(); size_t struct_offset = struct_slots.at(name).byte_offset(); size_t frame_offset = frame_slot.byte_offset(); if (t == b) { offsets_bool_.emplace_back(struct_offset, frame_offset); } else if (absl::c_find(types32, t) != types32.end()) { DCHECK_EQ(t->type_layout().AllocSize(), 4); offsets_32bits_.emplace_back(struct_offset, frame_offset); } else if (absl::c_find(types64, t) != types64.end()) { DCHECK_EQ(t->type_layout().AllocSize(), 8); offsets_64bits_.emplace_back(struct_offset, frame_offset); } else { offsets_other_[t].emplace_back(struct_offset, frame_offset); } } std::sort(offsets_bool_.begin(), offsets_bool_.end()); std::sort(offsets_32bits_.begin(), offsets_32bits_.end()); std::sort(offsets_64bits_.begin(), offsets_64bits_.end()); for (auto& [_, v] : offsets_other_) { std::sort(v.begin(), v.end()); } } void StructIO::CopyStructToFrame(const void* struct_ptr, FramePtr frame) const { const char* src_base = reinterpret_cast<const char*>(struct_ptr); for (const auto& [src, dst] : offsets_bool_) { std::memcpy(frame.GetRawPointer(dst), src_base + src, sizeof(bool)); } for (const auto& [src, dst] : offsets_32bits_) { std::memcpy(frame.GetRawPointer(dst), src_base + src, 4); } for (const auto& [src, dst] : offsets_64bits_) { std::memcpy(frame.GetRawPointer(dst), src_base + src, 8); } for (const auto& [t, offsets] : offsets_other_) { for (const auto& [src, dst] : offsets) { t->UnsafeCopy(src_base + src, frame.GetRawPointer(dst)); } } } void StructIO::CopyFrameToStruct(ConstFramePtr frame, void* struct_ptr) const { char* dst_base = reinterpret_cast<char*>(struct_ptr); for (const auto& [dst, src] : offsets_bool_) { std::memcpy(dst_base + dst, frame.GetRawPointer(src), sizeof(bool)); } for (const auto& [dst, src] : offsets_32bits_) { std::memcpy(dst_base + dst, frame.GetRawPointer(src), 4); } for (const auto& [dst, src] : offsets_64bits_) { std::memcpy(dst_base + dst, frame.GetRawPointer(src), 8); } for (const auto& [t, offsets] : offsets_other_) { for (const auto& [dst, src] : offsets) { t->UnsafeCopy(frame.GetRawPointer(src), dst_base + dst); } } } }
#include "arolla/io/struct_io.h" #include <cstddef> #include <cstdint> #include <optional> #include <string> #include <utility> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "arolla/dense_array/dense_array.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/memory/frame.h" #include "arolla/memory/memory_allocation.h" #include "arolla/memory/optional_value.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/typed_slot.h" #include "arolla/util/bytes.h" namespace arolla { namespace { using ::absl_testing::StatusIs; using ::testing::ElementsAre; using ::testing::UnorderedElementsAreArray; struct TestStruct { int32_t a = 1; bool b = true; float c = 3.0f; int32_t d = 4; int32_t j = 10; DenseArray<int32_t> e; Bytes f; double g = 7.0; int64_t h = 8; OptionalValue<int32_t> i = 9; OptionalValue<float> k = 11.0f; }; #define STRUCT_SLOT(STRUCT, FIELD) \ { \ #FIELD, TypedSlot::UnsafeFromOffset(GetQType<typeof(STRUCT::FIELD)>(), \ offsetof(STRUCT, FIELD)) \ } absl::flat_hash_map<std::string, TypedSlot> GetStructSlots() { return absl::flat_hash_map<std::string, TypedSlot>{ STRUCT_SLOT(TestStruct, a), STRUCT_SLOT(TestStruct, b), STRUCT_SLOT(TestStruct, c), STRUCT_SLOT(TestStruct, d), STRUCT_SLOT(TestStruct, e), STRUCT_SLOT(TestStruct, f), STRUCT_SLOT(TestStruct, g), STRUCT_SLOT(TestStruct, h), STRUCT_SLOT(TestStruct, i), STRUCT_SLOT(TestStruct, j), STRUCT_SLOT(TestStruct, k), }; } TEST(StructIO, GetNamesAndTypes) { ASSERT_OK_AND_ASSIGN(auto input_loader, StructInputLoader<TestStruct>::Create(GetStructSlots())); ASSERT_OK_AND_ASSIGN( auto slot_listener, StructSlotListener<TestStruct>::Create(GetStructSlots())); std::vector<std::string> expected_names{"a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k"}; EXPECT_THAT(input_loader->SuggestAvailableNames(), UnorderedElementsAreArray(expected_names)); EXPECT_THAT(slot_listener->SuggestAvailableNames(), UnorderedElementsAreArray(expected_names)); EXPECT_EQ(input_loader->GetQTypeOf("e"), GetDenseArrayQType<int32_t>()); EXPECT_EQ(slot_listener->GetQTypeOf("g"), GetQType<double>()); } TEST(StructIO, BasicTest) { ASSERT_OK_AND_ASSIGN(auto input_loader, StructInputLoader<TestStruct>::Create(GetStructSlots())); ASSERT_OK_AND_ASSIGN( auto slot_listener, StructSlotListener<TestStruct>::Create(GetStructSlots())); FrameLayout::Builder bldr; auto a_slot = bldr.AddSlot<int32_t>(); auto d_slot = bldr.AddSlot<int32_t>(); auto j_slot = bldr.AddSlot<int32_t>(); auto k_slot = bldr.AddSlot<OptionalValue<float>>(); auto b_slot = bldr.AddSlot<bool>(); auto c_slot = bldr.AddSlot<float>(); auto i_slot = bldr.AddSlot<OptionalValue<int32_t>>(); FrameLayout layout = std::move(bldr).Build(); absl::flat_hash_map<std::string, TypedSlot> frame_slots{ {"a", TypedSlot::FromSlot(a_slot)}, {"d", TypedSlot::FromSlot(d_slot)}, {"j", TypedSlot::FromSlot(j_slot)}, {"b", TypedSlot::FromSlot(b_slot)}, {"c", TypedSlot::FromSlot(c_slot)}, {"i", TypedSlot::FromSlot(i_slot)}, {"k", TypedSlot::FromSlot(k_slot)}, }; ASSERT_OK_AND_ASSIGN(auto bound_loader, input_loader->Bind(frame_slots)); ASSERT_OK_AND_ASSIGN(auto bound_listener, slot_listener->Bind(frame_slots)); MemoryAllocation alloc(&layout); FramePtr frame = alloc.frame(); TestStruct ts; ASSERT_OK(bound_loader(ts, frame)); EXPECT_EQ(frame.Get(a_slot), 1); EXPECT_EQ(frame.Get(b_slot), true); EXPECT_EQ(frame.Get(c_slot), 3.0f); EXPECT_EQ(frame.Get(d_slot), 4); EXPECT_EQ(frame.Get(i_slot), 9); EXPECT_EQ(frame.Get(j_slot), 10); EXPECT_EQ(frame.Get(k_slot), 11.0f); frame.Set(a_slot, 100); frame.Set(b_slot, false); frame.Set(c_slot, 3.14f); frame.Set(d_slot, 57); frame.Set(i_slot, std::nullopt); frame.Set(j_slot, 19); frame.Set(k_slot, 0.5f); ASSERT_OK(bound_listener(frame, &ts)); EXPECT_EQ(ts.a, 100); EXPECT_EQ(ts.b, false); EXPECT_EQ(ts.c, 3.14f); EXPECT_EQ(ts.d, 57); EXPECT_EQ(ts.i, std::nullopt); EXPECT_EQ(ts.j, 19); EXPECT_EQ(ts.k, 0.5f); } TEST(StructIO, ComplicatedQType) { ASSERT_OK_AND_ASSIGN(auto input_loader, StructInputLoader<TestStruct>::Create(GetStructSlots())); ASSERT_OK_AND_ASSIGN( auto slot_listener, StructSlotListener<TestStruct>::Create(GetStructSlots())); FrameLayout::Builder bldr; auto f_slot = bldr.AddSlot<Bytes>(); auto e_slot = bldr.AddSlot<DenseArray<int32_t>>(); FrameLayout layout = std::move(bldr).Build(); absl::flat_hash_map<std::string, TypedSlot> frame_slots{ {"e", TypedSlot::FromSlot(e_slot)}, {"f", TypedSlot::FromSlot(f_slot)}, }; ASSERT_OK_AND_ASSIGN(auto bound_loader, input_loader->Bind(frame_slots)); ASSERT_OK_AND_ASSIGN(auto bound_listener, slot_listener->Bind(frame_slots)); MemoryAllocation alloc(&layout); FramePtr frame = alloc.frame(); TestStruct ts; ts.e = CreateDenseArray<int32_t>({1, 2, 3}); ts.f = Bytes("abacaba"); ASSERT_OK(bound_loader(ts, frame)); ts.e = DenseArray<int32_t>(); ts.f = Bytes(); EXPECT_THAT(frame.Get(e_slot), ElementsAre(1, 2, 3)); EXPECT_EQ(frame.Get(f_slot), Bytes("abacaba")); ASSERT_OK(bound_listener(frame, &ts)); EXPECT_THAT(ts.e, ElementsAre(1, 2, 3)); EXPECT_EQ(ts.f, Bytes("abacaba")); } TEST(StructIO, Errors) { absl::flat_hash_map<std::string, TypedSlot> struct_slots1{ {"a", TypedSlot::UnsafeFromOffset(GetQType<int32_t>(), 0)}, {"b", TypedSlot::UnsafeFromOffset(GetQType<int32_t>(), 5)}, {"c", TypedSlot::UnsafeFromOffset(GetQType<int32_t>(), 100500)}, }; EXPECT_THAT(StructInputLoader<TestStruct>::Create(struct_slots1), StatusIs(absl::StatusCode::kInvalidArgument, "slot 'c' is not within the struct")); absl::flat_hash_map<std::string, TypedSlot> struct_slots2{ {"a", TypedSlot::UnsafeFromOffset(GetQType<int32_t>(), 4)}, {"b", TypedSlot::UnsafeFromOffset(GetQType<int32_t>(), sizeof(TestStruct) - 3)}, {"c", TypedSlot::UnsafeFromOffset(GetQType<int32_t>(), 0)}, }; EXPECT_THAT(StructSlotListener<TestStruct>::Create(struct_slots2), StatusIs(absl::StatusCode::kInvalidArgument, "slot 'b' is not within the struct")); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/io/struct_io.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/io/struct_io_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
b3ddb9f4-1b05-4c52-952e-978d27be77a3
cpp
tensorflow/tensorflow
debug_data_dumper
tensorflow/core/util/debug_data_dumper.cc
tensorflow/core/util/debug_data_dumper_test.cc
#include "tensorflow/core/util/debug_data_dumper.h" #include <optional> #include <set> #include <string> #include <vector> #include "absl/strings/str_format.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/util/dump_graph.h" namespace tensorflow { DebugDataDumper* DebugDataDumper::Global() { static DebugDataDumper* global_instance_ = new DebugDataDumper(); return global_instance_; } DebugDataDumper::DebugDataDumper() { LoadEnvvars(); } void DebugDataDumper::LoadEnvvars() { const char* dump_wrapped = getenv("TF_DUMP_GRAPH_WRAPPED"); dump_wrapped_ = static_cast<bool>(dump_wrapped); const char* name_filter = getenv("TF_DUMP_GRAPH_NAME_FILTER"); name_filter_ = name_filter ? std::optional<std::string>{name_filter} : std::nullopt; const char* groups_filter = getenv("TF_DUMP_GRAPH_GROUPS"); groups_filter_ = groups_filter ? std::set<std::string>(absl::StrSplit(groups_filter, ',')) : std::set<std::string>({kDebugGroupMain}); } bool DebugDataDumper::ShouldDump(const std::string& name, const std::string& group) const { if (!dump_wrapped_ && absl::StartsWith(name, "__wrapped__")) return false; if (name_filter_ == std::nullopt) { VLOG(1) << "Skip dumping graph '" << name << "', because TF_DUMP_GRAPH_NAME_FILTER is not set"; return false; } if (!absl::EqualsIgnoreCase(*name_filter_, "*") && !absl::StrContains(name, *name_filter_)) { VLOG(1) << "Skip dumping graph '" << name << "', because TF_DUMP_GRAPH_NAME_FILTER is not '*' and " << "it is not contained by the graph name"; return false; } if (groups_filter_.find(group) == groups_filter_.end() && groups_filter_.find("*") == groups_filter_.end()) return false; return true; } void DebugDataDumper::DumpOpCreationStackTraces(const std::string& name, const std::string& group, const std::string& tag, const Graph* graph) { if (!ShouldDump(name, group)) return; std::string dump_filename = GetDumpFilename(name, group, tag); DumpToFile(dump_filename, "", ".csv", "StackTrace", [graph, &dump_filename](WritableFile* file) { auto status = file->Append("node_id,node_name,stackframes\n"); if (!status.ok()) { LOG(WARNING) << "error writing to file to " << dump_filename << ": " << status.message(); return status; } for (Node* node : graph->nodes()) { auto stack_trace = node->GetStackTrace(); if (stack_trace == nullptr) continue; int node_id = node->id(); const std::string& node_name = node->name(); std::vector<std::string> stackframes; stackframes.reserve(stack_trace->ToFrames().size()); for (auto& frame : stack_trace->ToFrames()) { stackframes.push_back( absl::StrFormat("%s(%d): %s", frame.file_name, frame.line_number, frame.function_name)); } status = file->Append( absl::StrFormat("%d,%s,%s\n", node_id, node_name, absl::StrJoin(stackframes, ";"))); if (!status.ok()) { LOG(WARNING) << "error writing to file to " << dump_filename << ": " << status.message(); return status; } } return file->Close(); }); } void DebugDataDumper::DumpGraph(const std::string& name, const std::string& group, const std::string& tag, const Graph* graph, const FunctionLibraryDefinition* func_lib_def, bool bypass_filter) { if (!ShouldDump(name, group) && !bypass_filter) return; std::string dump_filename = GetDumpFilename(name, group, tag); if (dump_filename.size() > 255) { LOG(WARNING) << "Failed to dump graph " << dump_filename << " to " << ", because the file name is longer than 255"; return; } GraphDef graph_def; graph->ToGraphDef(&graph_def); if (func_lib_def) { FunctionLibraryDefinition reachable_lib_def = func_lib_def->ReachableDefinitions(graph_def); *graph_def.mutable_library() = reachable_lib_def.ToProto(); } DumpGraphDefToFile(dump_filename, graph_def); } std::string DebugDataDumper::GetDumpFilename(const std::string& name, const std::string& group, const std::string& tag) { std::string dump_name = name.empty() ? "unknown_graph" : name; return absl::StrFormat("%s.%04d.%s.%s", dump_name, GetNextDumpId(name), group, tag); } }
#include "tensorflow/core/util/debug_data_dumper.h" #include <string> #include "absl/strings/str_format.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { TEST(DebugDataDumper, NoPrefixTest) { EXPECT_EQ(false, DEBUG_DATA_DUMPER()->ShouldDump("DumpGraphToFileTest", kDebugGroupMain)); } TEST(DebugDataDumper, NoNameFilterTest) { std::string dir = testing::TmpDir(); setenv("TF_DUMP_GRAPH_PREFIX", dir.c_str(), 1); DEBUG_DATA_DUMPER()->LoadEnvvars(); EXPECT_EQ(false, DEBUG_DATA_DUMPER()->ShouldDump("DumpGraphToFileTest", kDebugGroupMain)); } TEST(DebugDataDumper, ShouldDumpTest) { std::string dir = testing::TmpDir(); setenv("TF_DUMP_GRAPH_PREFIX", dir.c_str(), 1); setenv("TF_DUMP_GRAPH_NAME_FILTER", "*", 1); DEBUG_DATA_DUMPER()->LoadEnvvars(); EXPECT_EQ(true, DEBUG_DATA_DUMPER()->ShouldDump("DumpGraphToFileTest", kDebugGroupMain)); setenv("TF_DUMP_GRAPH_NAME_FILTER", "DumpGraph", 1); DEBUG_DATA_DUMPER()->LoadEnvvars(); EXPECT_EQ(true, DEBUG_DATA_DUMPER()->ShouldDump("DumpGraphToFileTest", kDebugGroupMain)); setenv("TF_DUMP_GRAPH_NAME_FILTER", "DoNotDumpGraph", 1); DEBUG_DATA_DUMPER()->LoadEnvvars(); EXPECT_EQ(false, DEBUG_DATA_DUMPER()->ShouldDump("DumpGraphToFileTest", kDebugGroupMain)); setenv("TF_DUMP_GRAPH_NAME_FILTER", "*", 1); DEBUG_DATA_DUMPER()->LoadEnvvars(); EXPECT_EQ(false, DEBUG_DATA_DUMPER()->ShouldDump("DumpGraphToFileTest", kDebugGroupBridgePhase1Clustering)); setenv("TF_DUMP_GRAPH_GROUPS", "main,bridge_phase1_clustering", 1); DEBUG_DATA_DUMPER()->LoadEnvvars(); EXPECT_EQ(true, DEBUG_DATA_DUMPER()->ShouldDump("DumpGraphToFileTest", kDebugGroupBridgePhase1Clustering)); DEBUG_DATA_DUMPER()->LoadEnvvars(); EXPECT_EQ(false, DEBUG_DATA_DUMPER()->ShouldDump( "__wrapped__DumpGraphToFileTest", kDebugGroupMain)); setenv("TF_DUMP_GRAPH_WRAPPED", "true", 1); DEBUG_DATA_DUMPER()->LoadEnvvars(); EXPECT_EQ(true, DEBUG_DATA_DUMPER()->ShouldDump( "__wrapped__DumpGraphToFileTest", kDebugGroupMain)); } TEST(DebugDataDumper, DumpFileBasenameTest) { EXPECT_EQ("DumpFileBasenameTest1.0000.main.tag1", DEBUG_DATA_DUMPER()->GetDumpFilename("DumpFileBasenameTest1", kDebugGroupMain, "tag1")); EXPECT_EQ("DumpFileBasenameTest1.0001.main.tag2", DEBUG_DATA_DUMPER()->GetDumpFilename("DumpFileBasenameTest1", kDebugGroupMain, "tag2")); EXPECT_EQ("DumpFileBasenameTest2.0000.main.tag1", DEBUG_DATA_DUMPER()->GetDumpFilename("DumpFileBasenameTest2", kDebugGroupMain, "tag1")); } TEST(DebugDataDumper, DumpGraphToFileTest) { Graph graph(OpRegistry::Global()); Node* node; TF_CHECK_OK(NodeBuilder("A", "NoOp").Finalize(&graph, &node)); std::string dir = testing::TmpDir(); setenv("TF_DUMP_GRAPH_PREFIX", dir.c_str(), 1); setenv("TF_DUMP_GRAPH_NAME_FILTER", "*", 1); DEBUG_DATA_DUMPER()->LoadEnvvars(); DEBUG_DATA_DUMPER()->DumpGraph("DumpGraphToFileTest", kDebugGroupMain, "tag", &graph, nullptr, false); std::string dumpFilename = io::JoinPath(dir, "DumpGraphToFileTest.0000.main.tag.pbtxt"); EXPECT_EQ(absl::OkStatus(), Env::Default()->FileExists(dumpFilename)); } TEST(DebugDataDumper, DumpGraphLongFileNameCrashTest) { Graph graph(OpRegistry::Global()); Node* node; TF_CHECK_OK(NodeBuilder("A", "NoOp").Finalize(&graph, &node)); std::string dir = testing::TmpDir(); setenv("TF_DUMP_GRAPH_PREFIX", dir.c_str(), 1); setenv("TF_DUMP_GRAPH_NAME_FILTER", "*", 1); DEBUG_DATA_DUMPER()->LoadEnvvars(); std::string name = std::string(256, 'x'); DEBUG_DATA_DUMPER()->DumpGraph(name, kDebugGroupMain, "tag", &graph, nullptr, false); std::string dumpFilename = io::JoinPath( dir, absl::StrFormat("%s.0000.main.tag.pbtxt", name.c_str())); EXPECT_EQ(absl::StatusCode::kNotFound, Env::Default()->FileExists(dumpFilename).code()); } TEST(DebugDataDumper, DumpOpCreationStacktracesTest) { Graph graph(OpRegistry::Global()); Node* node; TF_CHECK_OK(NodeBuilder("A", "NoOp").Finalize(&graph, &node)); std::string dir = testing::TmpDir(); setenv("TF_DUMP_GRAPH_PREFIX", dir.c_str(), 1); setenv("TF_DUMP_GRAPH_NAME_FILTER", "*", 1); setenv("TF_DUMP_OP_CREATION_STACKTRACES", "1", 1); DEBUG_DATA_DUMPER()->LoadEnvvars(); DEBUG_DATA_DUMPER()->DumpOpCreationStackTraces( "DumpOpCreationStacktracesTest", kDebugGroupMain, "test", &graph); std::string dumpFilename = io::JoinPath(dir, "DumpOpCreationStacktracesTest.0000.main.test.csv"); EXPECT_EQ(absl::OkStatus(), Env::Default()->FileExists(dumpFilename)); } TEST(DebugDataDumper, NoDumpOpCreationStacktracesTest) { Graph graph(OpRegistry::Global()); Node* node; TF_CHECK_OK(NodeBuilder("A", "NoOp").Finalize(&graph, &node)); std::string dir = testing::TmpDir(); setenv("TF_DUMP_GRAPH_PREFIX", dir.c_str(), 1); setenv("TF_DUMP_GRAPH_NAME_FILTER", "*", 1); DEBUG_DATA_DUMPER()->LoadEnvvars(); DEBUG_DATA_DUMPER()->DumpOpCreationStackTraces( "DumpOpCreationStacktracesTest", kDebugGroupMain, "test", &graph); std::string dumpFilename = io::JoinPath(dir, "DumpOpCreationStacktracesTest.0000.main.test.json"); EXPECT_EQ(absl::StatusCode::kNotFound, Env::Default()->FileExists(dumpFilename).code()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/debug_data_dumper.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/debug_data_dumper_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e0018a36-efb1-402e-a04d-3986a28f728c
cpp
google/tensorstore
zarr3_sharding_indexed
tensorstore/kvstore/zarr3_sharding_indexed/zarr3_sharding_indexed.cc
tensorstore/kvstore/zarr3_sharding_indexed/zarr3_sharding_indexed_test.cc
#include "tensorstore/kvstore/zarr3_sharding_indexed/zarr3_sharding_indexed.h" #include <stddef.h> #include <stdint.h> #include <cassert> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/base/optimization.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_format.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include <nlohmann/json.hpp> #include "tensorstore/batch.h" #include "tensorstore/context.h" #include "tensorstore/driver/zarr3/codec/codec_chain_spec.h" #include "tensorstore/index.h" #include "tensorstore/internal/cache/async_cache.h" #include "tensorstore/internal/cache/cache.h" #include "tensorstore/internal/cache/cache_pool_resource.h" #include "tensorstore/internal/cache/kvs_backed_cache.h" #include "tensorstore/internal/cache_key/cache_key.h" #include "tensorstore/internal/data_copy_concurrency_resource.h" #include "tensorstore/internal/estimate_heap_usage/estimate_heap_usage.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/dimension_indexed.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/mutex.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/kvstore/batch_util.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/driver.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_modify_write.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/registry.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/supported_features.h" #include "tensorstore/kvstore/transaction.h" #include "tensorstore/kvstore/zarr3_sharding_indexed/key.h" #include "tensorstore/kvstore/zarr3_sharding_indexed/shard_format.h" #include "tensorstore/transaction.h" #include "tensorstore/util/bit_vec.h" #include "tensorstore/util/execution/any_receiver.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/execution/flow_sender_operation_state.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/future.h" #include "tensorstore/util/garbage_collection/fwd.h" #include "tensorstore/util/garbage_collection/garbage_collection.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" #include "tensorstore/internal/cache_key/std_vector.h" #include "tensorstore/internal/estimate_heap_usage/std_optional.h" #include "tensorstore/internal/estimate_heap_usage/std_vector.h" #include "tensorstore/serialization/std_vector.h" #include "tensorstore/util/execution/result_sender.h" #include "tensorstore/util/garbage_collection/std_vector.h" namespace tensorstore { namespace zarr3_sharding_indexed { namespace { using ::tensorstore::internal_kvstore::DeleteRangeEntry; using ::tensorstore::internal_kvstore::kReadModifyWrite; using ::tensorstore::kvstore::ListEntry; using ::tensorstore::kvstore::ListReceiver; class ShardIndexKeyValueStore : public kvstore::Driver { public: explicit ShardIndexKeyValueStore(kvstore::DriverPtr base, ShardIndexLocation index_location, int64_t index_size_in_bytes) : base_(std::move(base)), index_location_(index_location), index_size_in_bytes_(index_size_in_bytes) {} Future<kvstore::ReadResult> Read(kvstore::Key key, kvstore::ReadOptions options) override { assert(options.byte_range == OptionalByteRangeRequest{}); switch (index_location_) { case ShardIndexLocation::kStart: options.byte_range = OptionalByteRangeRequest::Range(0, index_size_in_bytes_); break; case ShardIndexLocation::kEnd: options.byte_range = OptionalByteRangeRequest::SuffixLength(index_size_in_bytes_); break; } return MapFutureError( InlineExecutor{}, [](const absl::Status& status) { return internal::ConvertInvalidArgumentToFailedPrecondition(status); }, base_->Read(std::move(key), std::move(options))); } std::string DescribeKey(std::string_view key) override { return tensorstore::StrCat("shard index in ", base_->DescribeKey(key)); } void GarbageCollectionVisit( garbage_collection::GarbageCollectionVisitor& visitor) const final { } kvstore::Driver* base() { return base_.get(); } private: kvstore::DriverPtr base_; ShardIndexLocation index_location_; int64_t index_size_in_bytes_; }; class ShardIndexCache : public internal::KvsBackedCache<ShardIndexCache, internal::AsyncCache> { using Base = internal::KvsBackedCache<ShardIndexCache, internal::AsyncCache>; public: using ReadData = ShardIndex; class Entry : public Base::Entry { public: using OwningCache = ShardIndexCache; size_t ComputeReadDataSizeInBytes(const void* read_data) override { const auto& cache = GetOwningCache(*this); return read_data ? cache.shard_index_params().num_entries * sizeof(uint64_t) * 2 : 0; } std::string GetKeyValueStoreKey() override { return GetOwningCache(*this).base_kvstore_path_; } void DoDecode(std::optional<absl::Cord> value, DecodeReceiver receiver) override { GetOwningCache(*this).executor()( [this, value = std::move(value), receiver = std::move(receiver)]() mutable { std::shared_ptr<ReadData> read_data; if (value) { TENSORSTORE_ASSIGN_OR_RETURN( auto shard_index, DecodeShardIndex(*value, GetOwningCache(*this).shard_index_params()), static_cast<void>(execution::set_error(receiver, _))); read_data = std::make_shared<ReadData>(std::move(shard_index)); } execution::set_value(receiver, std::move(read_data)); }); } }; Entry* DoAllocateEntry() final { return new Entry; } size_t DoGetSizeofEntry() final { return sizeof(Entry); } TransactionNode* DoAllocateTransactionNode(AsyncCache::Entry& entry) final { ABSL_UNREACHABLE(); } explicit ShardIndexCache(kvstore::DriverPtr base_kvstore, std::string base_kvstore_path, Executor executor, ShardIndexParameters&& params) : Base(kvstore::DriverPtr(new ShardIndexKeyValueStore( std::move(base_kvstore), params.index_location, params.index_codec_state->encoded_size()))), base_kvstore_path_(std::move(base_kvstore_path)), executor_(std::move(executor)), shard_index_params_(std::move(params)) {} ShardIndexKeyValueStore* shard_index_kvstore_driver() { return static_cast<ShardIndexKeyValueStore*>(this->Base::kvstore_driver()); } kvstore::Driver* base_kvstore_driver() { return shard_index_kvstore_driver()->base(); } const std::string& base_kvstore_path() const { return base_kvstore_path_; } const Executor& executor() { return executor_; } span<const Index> grid_shape() const { return span<const Index>(shard_index_params_.index_shape.data(), shard_index_params_.index_shape.size() - 1); } const ShardIndexParameters& shard_index_params() const { return shard_index_params_; } std::string base_kvstore_path_; Executor executor_; ShardIndexParameters shard_index_params_; }; class ShardedKeyValueStoreWriteCache : public internal::KvsBackedCache<ShardedKeyValueStoreWriteCache, internal::AsyncCache> { using Base = internal::KvsBackedCache<ShardedKeyValueStoreWriteCache, internal::AsyncCache>; public: using ReadData = ShardEntries; explicit ShardedKeyValueStoreWriteCache( internal::CachePtr<ShardIndexCache> shard_index_cache) : Base(kvstore::DriverPtr(shard_index_cache->base_kvstore_driver())), shard_index_cache_(std::move(shard_index_cache)) {} class Entry : public Base::Entry { public: using OwningCache = ShardedKeyValueStoreWriteCache; size_t ComputeReadDataSizeInBytes(const void* data) override { return internal::EstimateHeapUsage(*static_cast<const ReadData*>(data)); } void DoDecode(std::optional<absl::Cord> value, DecodeReceiver receiver) override { GetOwningCache(*this).executor()( [this, value = std::move(value), receiver = std::move(receiver)]() mutable { ShardEntries entries; const auto& shard_index_params = GetOwningCache(*this).shard_index_params(); if (value) { TENSORSTORE_ASSIGN_OR_RETURN( entries, DecodeShard(*value, shard_index_params), static_cast<void>(execution::set_error(receiver, _))); } else { entries.entries.resize(shard_index_params.num_entries); } execution::set_value( receiver, std::make_shared<ShardEntries>(std::move(entries))); }); } void DoEncode(std::shared_ptr<const ShardEntries> data, EncodeReceiver receiver) override { TENSORSTORE_ASSIGN_OR_RETURN( auto encoded_shard, EncodeShard(*data, GetOwningCache(*this).shard_index_params()), static_cast<void>(execution::set_error(receiver, _))); execution::set_value(receiver, std::move(encoded_shard)); } std::string GetKeyValueStoreKey() override { return GetOwningCache(*this).base_kvstore_path(); } }; class TransactionNode : public Base::TransactionNode, public internal_kvstore::AtomicMultiPhaseMutation { public: using OwningCache = ShardedKeyValueStoreWriteCache; using Base::TransactionNode::TransactionNode; absl::Mutex& mutex() override { return this->mutex_; } void PhaseCommitDone(size_t next_phase) override {} internal::TransactionState::Node& GetTransactionNode() override { return *this; } void Abort() override { this->AbortRemainingPhases(); Base::TransactionNode::Abort(); } std::string DescribeKey(std::string_view key) override { auto& cache = GetOwningCache(*this); return tensorstore::StrCat( DescribeInternalKey(key, cache.shard_index_params().grid_shape()), " in ", cache.kvstore_driver()->DescribeKey(cache.base_kvstore_path())); } void DoApply(ApplyOptions options, ApplyReceiver receiver) override; void StartApply(); void AllEntriesDone( internal_kvstore::SinglePhaseMutation& single_phase_mutation) override; void MergeForWriteback(bool conditional); void RecordEntryWritebackError( internal_kvstore::ReadModifyWriteEntry& entry, absl::Status error) override { absl::MutexLock lock(&mutex_); if (apply_status_.ok()) { apply_status_ = std::move(error); } } void Revoke() override { Base::TransactionNode::Revoke(); { UniqueWriterLock(*this); } this->RevokeAllEntries(); } void WritebackSuccess(ReadState&& read_state) override; void WritebackError() override; void InvalidateReadState() override; bool MultiPhaseReadsCommitted() override { return this->reads_committed_; } void Read( internal_kvstore::ReadModifyWriteEntry& entry, kvstore::ReadModifyWriteTarget::TransactionalReadOptions&& options, kvstore::ReadModifyWriteTarget::ReadReceiver&& receiver) override { this->AsyncCache::TransactionNode::Read({options.staleness_bound}) .ExecuteWhenReady(WithExecutor( GetOwningCache(*this).executor(), [&entry, if_not_equal = std::move(options.generation_conditions.if_not_equal), receiver = std::move(receiver)]( ReadyFuture<const void> future) mutable { if (!future.result().ok()) { execution::set_error(receiver, future.result().status()); return; } execution::submit(HandleShardReadSuccess(entry, if_not_equal), receiver); })); } static Result<kvstore::ReadResult> HandleShardReadSuccess( internal_kvstore::ReadModifyWriteEntry& entry, const StorageGeneration& if_not_equal) { auto& self = static_cast<TransactionNode&>(entry.multi_phase()); TimestampedStorageGeneration stamp; std::shared_ptr<const ShardEntries> entries; { AsyncCache::ReadLock<ShardEntries> lock{self}; stamp = lock.stamp(); entries = lock.shared_data(); } if (!StorageGeneration::IsUnknown(stamp.generation) && stamp.generation == if_not_equal) { return kvstore::ReadResult::Unspecified(std::move(stamp)); } if (StorageGeneration::IsDirty(stamp.generation)) { stamp.generation = StorageGeneration::AddLayer(std::move(stamp.generation)); } auto entry_id = InternalKeyToEntryId(entry.key_); const auto& shard_entry = entries->entries[entry_id]; if (!shard_entry) { return kvstore::ReadResult::Missing(std::move(stamp)); } else { return kvstore::ReadResult::Value(*shard_entry, std::move(stamp)); } } ApplyReceiver apply_receiver_; ApplyOptions apply_options_; absl::Status apply_status_; }; Entry* DoAllocateEntry() final { return new Entry; } size_t DoGetSizeofEntry() final { return sizeof(Entry); } TransactionNode* DoAllocateTransactionNode(AsyncCache::Entry& entry) final { return new TransactionNode(static_cast<Entry&>(entry)); } const internal::CachePtr<ShardIndexCache>& shard_index_cache() const { return shard_index_cache_; } const Executor& executor() { return shard_index_cache()->executor(); } const ShardIndexParameters& shard_index_params() const { return shard_index_cache_->shard_index_params(); } int64_t num_entries_per_shard() const { return shard_index_cache_->shard_index_params().num_entries; } const std::string& base_kvstore_path() const { return shard_index_cache_->base_kvstore_path(); } internal::CachePtr<ShardIndexCache> shard_index_cache_; }; void ShardedKeyValueStoreWriteCache::TransactionNode::InvalidateReadState() { Base::TransactionNode::InvalidateReadState(); internal_kvstore::InvalidateReadState(phases_); } void ShardedKeyValueStoreWriteCache::TransactionNode::DoApply( ApplyOptions options, ApplyReceiver receiver) { apply_receiver_ = std::move(receiver); apply_options_ = options; apply_status_ = absl::OkStatus(); GetOwningCache(*this).executor()([this] { this->StartApply(); }); } void ShardedKeyValueStoreWriteCache::TransactionNode::StartApply() { RetryAtomicWriteback(apply_options_.staleness_bound); } void ShardedKeyValueStoreWriteCache::TransactionNode::AllEntriesDone( internal_kvstore::SinglePhaseMutation& single_phase_mutation) { if (!apply_status_.ok()) { execution::set_error(std::exchange(apply_receiver_, {}), std::exchange(apply_status_, {})); return; } auto& self = *this; GetOwningCache(*this).executor()([&self] { TimestampedStorageGeneration stamp; bool mismatch = false; bool modified = false; int64_t num_entries = 0; auto& cache = GetOwningCache(self); const int64_t num_entries_per_shard = cache.num_entries_per_shard(); for (auto& entry : self.phases_.entries_) { if (entry.entry_type() != kReadModifyWrite) { auto& dr_entry = static_cast<DeleteRangeEntry&>(entry); auto [begin_id, end_id] = InternalKeyRangeToEntryRange( dr_entry.key_, dr_entry.exclusive_max_, num_entries_per_shard); modified = true; num_entries += end_id - begin_id; continue; } auto& buffered_entry = static_cast<AtomicMultiPhaseMutation::BufferedReadModifyWriteEntry&>( entry); if (buffered_entry.value_state_ != kvstore::ReadResult::kUnspecified) { modified = true; ++num_entries; } auto& entry_stamp = buffered_entry.stamp(); if (StorageGeneration::IsConditional(entry_stamp.generation)) { if (!StorageGeneration::IsUnknown(stamp.generation) && StorageGeneration::Clean(stamp.generation) != StorageGeneration::Clean(entry_stamp.generation)) { mismatch = true; break; } else { stamp = entry_stamp; } } } if (mismatch) { self.apply_options_.staleness_bound = absl::Now(); self.StartApply(); return; } if (!modified && StorageGeneration::IsUnknown(stamp.generation) && self.apply_options_.apply_mode != ApplyOptions::ApplyMode::kSpecifyUnchanged) { internal::AsyncCache::ReadState update; update.stamp = TimestampedStorageGeneration::Unconditional(); execution::set_value(std::exchange(self.apply_receiver_, {}), std::move(update)); return; } if (!StorageGeneration::IsUnknown(stamp.generation) || num_entries != num_entries_per_shard) { self.internal::AsyncCache::TransactionNode::Read( {self.apply_options_.staleness_bound}) .ExecuteWhenReady([&self](ReadyFuture<const void> future) { if (!future.result().ok()) { execution::set_error(std::exchange(self.apply_receiver_, {}), future.result().status()); return; } GetOwningCache(self).executor()( [&self] { self.MergeForWriteback(true); }); }); return; } self.MergeForWriteback(false); }); } void ShardedKeyValueStoreWriteCache::TransactionNode::MergeForWriteback( bool conditional) { TimestampedStorageGeneration stamp; ShardEntries new_entries; if (conditional) { auto lock = internal::AsyncCache::ReadLock<ShardEntries>{*this}; stamp = lock.stamp(); new_entries = *lock.shared_data(); } else { stamp = TimestampedStorageGeneration::Unconditional(); } auto& cache = GetOwningCache(*this); const int64_t num_entries_per_shard = cache.num_entries_per_shard(); const bool has_existing_entries = !new_entries.entries.empty(); new_entries.entries.resize(num_entries_per_shard); bool mismatch = false; bool changed = false; for (auto& entry : phases_.entries_) { if (entry.entry_type() != kReadModifyWrite) { auto& dr_entry = static_cast<DeleteRangeEntry&>(entry); auto [begin_id, end_id] = InternalKeyRangeToEntryRange( dr_entry.key_, dr_entry.exclusive_max_, num_entries_per_shard); if (has_existing_entries) { for (EntryId id = begin_id; id < end_id; ++id) { new_entries.entries[id] = std::nullopt; } } changed = true; continue; } auto& buffered_entry = static_cast<internal_kvstore::AtomicMultiPhaseMutation:: BufferedReadModifyWriteEntry&>(entry); auto& entry_stamp = buffered_entry.stamp(); if (StorageGeneration::IsConditional(entry_stamp.generation) && StorageGeneration::Clean(entry_stamp.generation) != StorageGeneration::Clean(stamp.generation)) { mismatch = true; break; } if (buffered_entry.value_state_ == kvstore::ReadResult::kUnspecified || !StorageGeneration::IsInnerLayerDirty(entry_stamp.generation)) { continue; } auto entry_id = InternalKeyToEntryId(buffered_entry.key_); auto& new_entry = new_entries.entries[entry_id]; if (buffered_entry.value_state_ == kvstore::ReadResult::kValue) { new_entry = buffered_entry.value_; changed = true; } else if (new_entry) { new_entry = std::nullopt; changed = true; } else if (!conditional) { changed = true; } } if (mismatch) { apply_options_.staleness_bound = absl::Now(); this->StartApply(); return; } internal::AsyncCache::ReadState update; update.stamp = std::move(stamp); if (changed) { update.stamp.generation.MarkDirty(); } update.data = std::make_shared<ShardEntries>(std::move(new_entries)); execution::set_value(std::exchange(apply_receiver_, {}), std::move(update)); } void ShardedKeyValueStoreWriteCache::TransactionNode::WritebackSuccess( ReadState&& read_state) { for (auto& entry : phases_.entries_) { if (entry.entry_type() != kReadModifyWrite) { internal_kvstore::WritebackSuccess(static_cast<DeleteRangeEntry&>(entry)); } else { internal_kvstore::WritebackSuccess( static_cast<internal_kvstore::ReadModifyWriteEntry&>(entry), read_state.stamp); } } internal_kvstore::DestroyPhaseEntries(phases_); Base::TransactionNode::WritebackSuccess(std::move(read_state)); } void ShardedKeyValueStoreWriteCache::TransactionNode::WritebackError() { internal_kvstore::WritebackError(phases_); internal_kvstore::DestroyPhaseEntries(phases_); Base::TransactionNode::WritebackError(); } struct ShardedKeyValueStoreSpecData { Context::Resource<internal::CachePoolResource> cache_pool; Context::Resource<internal::DataCopyConcurrencyResource> data_copy_concurrency; kvstore::Spec base; std::vector<Index> grid_shape; internal_zarr3::ZarrCodecChainSpec index_codecs; ShardIndexLocation index_location; TENSORSTORE_DECLARE_JSON_DEFAULT_BINDER(ShardedKeyValueStoreSpecData, internal_json_binding::NoOptions, IncludeDefaults, ::nlohmann::json::object_t) constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.cache_pool, x.data_copy_concurrency, x.base, x.grid_shape, x.index_codecs, x.index_location); }; }; namespace jb = ::tensorstore::internal_json_binding; TENSORSTORE_DEFINE_JSON_DEFAULT_BINDER( ShardedKeyValueStoreSpecData, jb::Object( jb::Member("base", jb::Projection<&ShardedKeyValueStoreSpecData::base>()), jb::Member( "grid_shape", jb::Projection<&ShardedKeyValueStoreSpecData::grid_shape>( jb::Validate([](const auto& options, auto* obj) { return ValidateGridShape(*obj); }, jb::ChunkShapeVector(nullptr)))), jb::Member("index_codecs", jb::Projection<&ShardedKeyValueStoreSpecData::index_codecs>( internal_zarr3::ZarrCodecChainJsonBinder< false>)), jb::Member( "index_location", jb::Projection<&ShardedKeyValueStoreSpecData::index_location>( jb::DefaultValue<jb::kAlwaysIncludeDefaults>([](auto* x) { *x = ShardIndexLocation::kEnd; }))), jb::Member(internal::CachePoolResource::id, jb::Projection<&ShardedKeyValueStoreSpecData::cache_pool>()), jb::Member( internal::DataCopyConcurrencyResource::id, jb::Projection< &ShardedKeyValueStoreSpecData::data_copy_concurrency>()))); class ShardedKeyValueStoreSpec : public internal_kvstore::RegisteredDriverSpec< ShardedKeyValueStoreSpec, ShardedKeyValueStoreSpecData> { public: static constexpr char id[] = "zarr3_sharding_indexed"; Future<kvstore::DriverPtr> DoOpen() const override; Result<kvstore::Spec> GetBase(std::string_view path) const override { return data_.base; } }; class ShardedKeyValueStore : public internal_kvstore::RegisteredDriver<ShardedKeyValueStore, ShardedKeyValueStoreSpec> { public: explicit ShardedKeyValueStore(ShardedKeyValueStoreParameters&& params, std::string_view shared_cache_key = {}); Future<ReadResult> Read(Key key, ReadOptions options) override; void ListImpl(ListOptions options, ListReceiver receiver) override; Future<TimestampedStorageGeneration> Write(Key key, std::optional<Value> value, WriteOptions options) override; absl::Status ReadModifyWrite(internal::OpenTransactionPtr& transaction, size_t& phase, Key key, ReadModifyWriteSource& source) override; absl::Status TransactionalDeleteRange( const internal::OpenTransactionPtr& transaction, KeyRange range) override; Future<const void> DeleteRange(KeyRange range) override; std::string DescribeKey(std::string_view key) override; kvstore::SupportedFeatures GetSupportedFeatures( const KeyRange& key_range) const final; Result<KvStore> GetBase(std::string_view path, const Transaction& transaction) const override; kvstore::Driver* base_kvstore_driver() const { return shard_index_cache()->base_kvstore_driver(); } const ShardIndexParameters& shard_index_params() const { return shard_index_cache()->shard_index_params(); } const Executor& executor() const { return shard_index_cache()->executor(); } const std::string& base_kvstore_path() const { return shard_index_cache()->base_kvstore_path(); } const internal::CachePtr<ShardIndexCache>& shard_index_cache() const { return write_cache_->shard_index_cache_; } absl::Status GetBoundSpecData(ShardedKeyValueStoreSpecData& spec) const; internal::CachePtr<ShardedKeyValueStoreWriteCache> write_cache_; struct DataForSpec { Context::Resource<internal::CachePoolResource> cache_pool_resource; Context::Resource<internal::DataCopyConcurrencyResource> data_copy_concurrency_resource; ZarrCodecChainSpec index_codecs; }; std::unique_ptr<DataForSpec> data_for_spec_; }; ShardedKeyValueStore::ShardedKeyValueStore( ShardedKeyValueStoreParameters&& params, std::string_view shared_cache_key) { write_cache_ = internal::GetCache<ShardedKeyValueStoreWriteCache>( params.cache_pool.get(), shared_cache_key, [&] { return std::make_unique<ShardedKeyValueStoreWriteCache>( internal::GetCache<ShardIndexCache>( params.cache_pool.get(), "", [&] { return std::make_unique<ShardIndexCache>( std::move(params.base_kvstore), std::move(params.base_kvstore_path), std::move(params.executor), std::move(params.index_params)); })); }); this->SetBatchNestingDepth( this->base_kvstore_driver()->BatchNestingDepth() + 1 + 1 ); } class ReadOperationState; using ReadOperationStateBase = internal_kvstore_batch::BatchReadEntry< ShardedKeyValueStore, internal_kvstore_batch::ReadRequest< EntryId, kvstore::ReadGenerationConditions>>; class ReadOperationState : public ReadOperationStateBase, public internal::AtomicReferenceCount<ReadOperationState> { public: explicit ReadOperationState(BatchEntryKey&& batch_entry_key_) : ReadOperationStateBase(std::move(batch_entry_key_)), internal::AtomicReferenceCount<ReadOperationState>( 1) {} private: internal::PinnedCacheEntry<ShardIndexCache> shard_index_cache_entry_; Batch successor_batch_{no_batch}; void Submit(Batch::View batch) override { const auto& executor = driver().executor(); executor( [this, batch = Batch(batch)] { this->ProcessBatch(std::move(batch)); }); } void ProcessBatch(Batch batch) { internal::IntrusivePtr<ReadOperationState> self(this, internal::adopt_object_ref); if (ShouldReadEntireShard()) { ReadEntireShard(std::move(self), std::move(batch)); return; } shard_index_cache_entry_ = GetCacheEntry(driver().shard_index_cache(), std::string_view{}); auto shard_index_read_future = shard_index_cache_entry_->Read( {this->request_batch.staleness_bound, batch}); if (batch) { if (!shard_index_read_future.ready()) { successor_batch_ = Batch::New(); } else { successor_batch_ = std::move(batch); } } std::move(shard_index_read_future) .ExecuteWhenReady( [self = std::move(self)](ReadyFuture<const void> future) mutable { const auto& executor = self->driver().executor(); executor([self = std::move(self), status = future.status()] { if (!status.ok()) { internal_kvstore_batch::SetCommonResult<Request>( self->request_batch.requests, {status}); return; } OnShardIndexReady(std::move(self)); }); }); } bool ShouldReadEntireShard() { const int64_t num_entries_per_shard = driver().shard_index_params().num_entries; if (request_batch.requests.size() < num_entries_per_shard) { return false; } const auto& first_request = request_batch.requests[0]; BitVec<> covered_entries(num_entries_per_shard); int64_t num_covered = 0; for (const auto& request : request_batch.requests) { if (std::get<kvstore::ReadGenerationConditions>(request) != std::get<kvstore::ReadGenerationConditions>(first_request)) { return false; } if (std::get<internal_kvstore_batch::ByteRangeReadRequest>(request) .byte_range.IsFull()) { auto ref = covered_entries[std::get<EntryId>(request)]; if (!ref) ++num_covered; ref = true; } } if (num_covered != num_entries_per_shard) { return false; } return true; } static void ReadEntireShard(internal::IntrusivePtr<ReadOperationState> self, Batch batch) { auto& first_request = self->request_batch.requests[0]; kvstore::ReadOptions read_options; read_options.batch = std::move(batch); read_options.generation_conditions = std::move(std::get<kvstore::ReadGenerationConditions>(first_request)); read_options.staleness_bound = self->request_batch.staleness_bound; auto& driver = self->driver(); driver.base_kvstore_driver() ->Read(driver.base_kvstore_path(), std::move(read_options)) .ExecuteWhenReady([self = std::move(self)]( ReadyFuture<kvstore::ReadResult> future) mutable { const auto& executor = self->driver().executor(); executor([self = std::move(self), future = std::move(future)] { OnFullShardReady(std::move(self), std::move(future.result())); }); }); } static void OnFullShardReady(internal::IntrusivePtr<ReadOperationState> self, Result<kvstore::ReadResult>&& result) { if (!result.ok() || !result->has_value()) { internal_kvstore_batch::SetCommonResult(self->request_batch.requests, std::move(result)); return; } auto& read_result = *result; TENSORSTORE_ASSIGN_OR_RETURN( auto shard_index, DecodeShardIndexFromFullShard(read_result.value, self->driver().shard_index_params()), internal_kvstore_batch::SetCommonResult(self->request_batch.requests, _)); const auto complete_request = [&](Request& request) { auto& byte_range_request = std::get<internal_kvstore_batch::ByteRangeReadRequest>(request); const auto index_entry = shard_index[std::get<EntryId>(request)]; if (index_entry.IsMissing()) { byte_range_request.promise.SetResult( kvstore::ReadResult::Missing(read_result.stamp)); return; } TENSORSTORE_RETURN_IF_ERROR( index_entry.Validate(std::get<EntryId>(request), read_result.value.size()), static_cast<void>(byte_range_request.promise.SetResult(_))); TENSORSTORE_ASSIGN_OR_RETURN( auto validated_byte_range, byte_range_request.byte_range.Validate(index_entry.length), static_cast<void>(byte_range_request.promise.SetResult(_))); validated_byte_range.inclusive_min += index_entry.offset; validated_byte_range.exclusive_max += index_entry.offset; kvstore::ReadResult request_read_result; request_read_result.stamp = read_result.stamp; request_read_result.state = kvstore::ReadResult::kValue; request_read_result.value = internal::GetSubCord(read_result.value, validated_byte_range); byte_range_request.promise.SetResult(std::move(request_read_result)); }; for (auto& request : self->request_batch.requests) { complete_request(request); } } static void OnShardIndexReady( internal::IntrusivePtr<ReadOperationState> self) { std::shared_ptr<const ShardIndex> shard_index; TimestampedStorageGeneration stamp; { auto lock = internal::AsyncCache::ReadLock<ShardIndexCache::ReadData>( *self->shard_index_cache_entry_); stamp = lock.stamp(); shard_index = lock.shared_data(); } assert(!StorageGeneration::IsUnknown(stamp.generation)); if (!shard_index) { internal_kvstore_batch::SetCommonResult( self->request_batch.requests, kvstore::ReadResult::Missing(std::move(stamp))); return; } auto successor_batch = std::move(self->successor_batch_); if (successor_batch) { self->successor_batch_ = Batch::New(); } const auto process_request = [&](Request& request) { ShardIndexEntry index_entry = ShardIndexEntry::Missing(); kvstore::ReadResult::State state; if (!std::get<kvstore::ReadGenerationConditions>(request).Matches( stamp.generation)) { state = kvstore::ReadResult::kUnspecified; } else { index_entry = (*shard_index)[std::get<EntryId>(request)]; state = kvstore::ReadResult::kMissing; } auto& byte_range_request = std::get<internal_kvstore_batch::ByteRangeReadRequest>(request); if (index_entry.IsMissing()) { byte_range_request.promise.SetResult( kvstore::ReadResult{state, {}, stamp}); return; } TENSORSTORE_RETURN_IF_ERROR( index_entry.Validate(std::get<EntryId>(request)), static_cast<void>(byte_range_request.promise.SetResult( self->shard_index_cache_entry_->AnnotateError( _, true)))); assert(byte_range_request.byte_range.SatisfiesInvariants()); TENSORSTORE_ASSIGN_OR_RETURN( auto validated_byte_range, byte_range_request.byte_range.Validate(index_entry.length), static_cast<void>(byte_range_request.promise.SetResult(_))); if (validated_byte_range.inclusive_min == validated_byte_range.exclusive_max) { byte_range_request.promise.SetResult(kvstore::ReadResult{ kvstore::ReadResult::kValue, absl::Cord(), stamp}); return; } kvstore::ReadOptions kvs_read_options; kvs_read_options.generation_conditions.if_equal = stamp.generation; kvs_read_options.staleness_bound = self->request_batch.staleness_bound; kvs_read_options.batch = successor_batch; kvs_read_options.byte_range = ByteRange{static_cast<int64_t>(index_entry.offset + validated_byte_range.inclusive_min), static_cast<int64_t>(index_entry.offset + validated_byte_range.exclusive_max)}; self->driver() .base_kvstore_driver() ->Read(std::string(self->driver().base_kvstore_path()), std::move(kvs_read_options)) .ExecuteWhenReady([self, &request](ReadyFuture<kvstore::ReadResult> future) mutable { const auto& status = future.status(); if (!status.ok()) { std::get<internal_kvstore_batch::ByteRangeReadRequest>(request) .promise.SetResult(status); return; } const auto& executor = self->driver().executor(); executor([self = std::move(self), &request, future = std::move(future)] { OnValueReady(std::move(self), request, std::move(future.value())); }); }); }; for (auto& request : self->request_batch.requests) { process_request(request); } } static void OnValueReady(internal::IntrusivePtr<ReadOperationState> self, Request& request, kvstore::ReadResult&& value) { if (value.aborted()) { MakeRequest<ReadOperationState>(self->driver(), self->successor_batch_, value.stamp.time, std::move(request)); return; } std::get<internal_kvstore_batch::ByteRangeReadRequest>(request) .promise.SetResult(std::move(value)); } }; Future<kvstore::ReadResult> ShardedKeyValueStore::Read(Key key, ReadOptions options) { TENSORSTORE_ASSIGN_OR_RETURN( EntryId entry_id, KeyToEntryIdOrError(key, shard_index_params().grid_shape())); auto [promise, future] = PromiseFuturePair<kvstore::ReadResult>::Make(); ReadOperationState::MakeRequest<ReadOperationState>( *this, options.batch, options.staleness_bound, ReadOperationState::Request{{std::move(promise), options.byte_range}, {entry_id}, std::move(options.generation_conditions)}); return std::move(future); } struct ListOperationState : public internal::FlowSenderOperationState<kvstore::ListEntry> { using Base = internal::FlowSenderOperationState<kvstore::ListEntry>; using Base::Base; internal::PinnedCacheEntry<ShardIndexCache> shard_index_cache_entry_; kvstore::ListOptions options_; static void Start(ShardedKeyValueStore& store, kvstore::ListOptions&& options, ListReceiver&& receiver) { options.range = KeyRangeToInternalKeyRange( options.range, store.shard_index_params().grid_shape()); auto self = internal::MakeIntrusivePtr<ListOperationState>(std::move(receiver)); self->options_ = std::move(options); self->shard_index_cache_entry_ = GetCacheEntry(store.shard_index_cache(), std::string_view{}); auto shard_index_read_future = self->shard_index_cache_entry_->Read({self->options_.staleness_bound}); auto* self_ptr = self.get(); LinkValue( WithExecutor(store.executor(), [self = std::move(self)](Promise<void> promise, ReadyFuture<const void> future) { if (self->cancelled()) return; self->OnShardIndexReady(); }), self_ptr->promise, std::move(shard_index_read_future)); } void OnShardIndexReady() { auto shard_index = internal::AsyncCache::ReadLock<ShardIndex>(*shard_index_cache_entry_) .shared_data(); if (!shard_index) { return; } const auto& shard_index_params = GetOwningCache(*shard_index_cache_entry_).shard_index_params(); span<const Index> grid_shape = shard_index_params.grid_shape(); auto start_index = InternalKeyToEntryId(options_.range.inclusive_min); auto end_index = InternalKeyToEntryId(options_.range.exclusive_max); auto& receiver = shared_receiver->receiver; for (EntryId i = start_index; i < end_index; ++i) { auto index_entry = (*shard_index)[i]; if (index_entry.IsMissing()) continue; auto key = EntryIdToKey(i, grid_shape); key.erase(0, options_.strip_prefix_length); execution::set_value(receiver, ListEntry{ std::move(key), ListEntry::checked_size(index_entry.length), }); } } }; void ShardedKeyValueStore::ListImpl(ListOptions options, ListReceiver receiver) { ListOperationState::Start(*this, std::move(options), std::move(receiver)); } Future<TimestampedStorageGeneration> ShardedKeyValueStore::Write( Key key, std::optional<Value> value, WriteOptions options) { return internal_kvstore::WriteViaTransaction( this, std::move(key), std::move(value), std::move(options)); } absl::Status ShardedKeyValueStore::ReadModifyWrite( internal::OpenTransactionPtr& transaction, size_t& phase, Key key, ReadModifyWriteSource& source) { TENSORSTORE_ASSIGN_OR_RETURN( EntryId entry_id, KeyToEntryIdOrError(key, shard_index_params().grid_shape())); key = EntryIdToInternalKey(entry_id); auto entry = GetCacheEntry(write_cache_, std::string_view{}); TENSORSTORE_ASSIGN_OR_RETURN( auto node, GetWriteLockedTransactionNode(*entry, transaction)); node->ReadModifyWrite(phase, std::move(key), source); if (!transaction) { transaction.reset(node.unlock()->transaction()); } return absl::OkStatus(); } absl::Status ShardedKeyValueStore::TransactionalDeleteRange( const internal::OpenTransactionPtr& transaction, KeyRange range) { range = KeyRangeToInternalKeyRange(range, shard_index_params().grid_shape()); auto entry = GetCacheEntry(write_cache_, std::string_view{}); TENSORSTORE_ASSIGN_OR_RETURN( auto node, GetWriteLockedTransactionNode(*entry, transaction)); node->DeleteRange(std::move(range)); return absl::OkStatus(); } Future<const void> ShardedKeyValueStore::DeleteRange(KeyRange range) { range = KeyRangeToInternalKeyRange(range, shard_index_params().grid_shape()); internal::OpenTransactionPtr transaction; auto entry = GetCacheEntry(write_cache_, std::string_view{}); TENSORSTORE_ASSIGN_OR_RETURN( auto node, GetWriteLockedTransactionNode(*entry, transaction)); node->DeleteRange(std::move(range)); return node->transaction()->future(); } std::string ShardedKeyValueStore::DescribeKey(std::string_view key) { return tensorstore::StrCat( zarr3_sharding_indexed::DescribeKey(key, shard_index_params().grid_shape()), " in ", base_kvstore_driver()->DescribeKey(base_kvstore_path())); } kvstore::SupportedFeatures ShardedKeyValueStore::GetSupportedFeatures( const KeyRange& key_range) const { return base_kvstore_driver()->GetSupportedFeatures( KeyRange::Singleton(base_kvstore_path())); } Result<KvStore> ShardedKeyValueStore::GetBase( std::string_view path, const Transaction& transaction) const { return KvStore(kvstore::DriverPtr(base_kvstore_driver()), base_kvstore_path(), transaction); } } } namespace garbage_collection { template <> struct GarbageCollection<zarr3_sharding_indexed::ShardedKeyValueStore> { static void Visit(GarbageCollectionVisitor& visitor, const zarr3_sharding_indexed::ShardedKeyValueStore& value) { garbage_collection::GarbageCollectionVisit(visitor, *value.base_kvstore_driver()); } }; } namespace zarr3_sharding_indexed { absl::Status ShardedKeyValueStore::GetBoundSpecData( ShardedKeyValueStoreSpecData& spec) const { if (!data_for_spec_) { return absl::UnimplementedError(""); } TENSORSTORE_ASSIGN_OR_RETURN(spec.base.driver, base_kvstore_driver()->GetBoundSpec()); spec.base.path = base_kvstore_path(); spec.data_copy_concurrency = data_for_spec_->data_copy_concurrency_resource; spec.cache_pool = data_for_spec_->cache_pool_resource; spec.index_codecs = data_for_spec_->index_codecs; const auto& shard_index_params = this->shard_index_params(); spec.index_location = shard_index_params.index_location; spec.grid_shape.assign(shard_index_params.index_shape.begin(), shard_index_params.index_shape.end() - 1); return absl::OkStatus(); } Future<kvstore::DriverPtr> ShardedKeyValueStoreSpec::DoOpen() const { ShardIndexParameters index_params; index_params.index_location = data_.index_location; TENSORSTORE_RETURN_IF_ERROR( index_params.Initialize(data_.index_codecs, data_.grid_shape)); return MapFutureValue( InlineExecutor{}, [spec = internal::IntrusivePtr<const ShardedKeyValueStoreSpec>(this), index_params = std::move(index_params)](kvstore::KvStore& base_kvstore) mutable -> Result<kvstore::DriverPtr> { std::string cache_key; internal::EncodeCacheKey( &cache_key, base_kvstore.driver, base_kvstore.path, spec->data_.data_copy_concurrency, spec->data_.grid_shape, spec->data_.index_codecs); ShardedKeyValueStoreParameters params; params.base_kvstore = std::move(base_kvstore.driver); params.base_kvstore_path = std::move(base_kvstore.path); params.executor = spec->data_.data_copy_concurrency->executor; params.cache_pool = *spec->data_.cache_pool; params.index_params = std::move(index_params); auto driver = internal::MakeIntrusivePtr<ShardedKeyValueStore>( std::move(params), cache_key); driver->data_for_spec_.reset(new ShardedKeyValueStore::DataForSpec{ spec->data_.cache_pool, spec->data_.data_copy_concurrency, spec->data_.index_codecs, }); return driver; }, kvstore::Open(data_.base)); } kvstore::DriverPtr GetShardedKeyValueStore( ShardedKeyValueStoreParameters&& parameters) { return kvstore::DriverPtr(new ShardedKeyValueStore(std::move(parameters))); } } } namespace { const tensorstore::internal_kvstore::DriverRegistration< tensorstore::zarr3_sharding_indexed::ShardedKeyValueStoreSpec> registration; }
#include "tensorstore/kvstore/zarr3_sharding_indexed/zarr3_sharding_indexed.h" #include <stddef.h> #include <stdint.h> #include <functional> #include <initializer_list> #include <map> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/log/absl_check.h" #include "absl/random/random.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "re2/re2.h" #include "riegeli/bytes/cord_writer.h" #include "riegeli/bytes/write.h" #include "riegeli/digests/crc32c_digester.h" #include "tensorstore/batch.h" #include "tensorstore/context.h" #include "tensorstore/driver/zarr3/codec/codec_chain_spec.h" #include "tensorstore/index.h" #include "tensorstore/internal/cache/cache.h" #include "tensorstore/internal/cache/kvs_backed_cache_testutil.h" #include "tensorstore/internal/global_initializer.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/riegeli/digest_suffixed_writer.h" #include "tensorstore/internal/testing/scoped_directory.h" #include "tensorstore/internal/thread/thread_pool.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/memory/memory_key_value_store.h" #include "tensorstore/kvstore/mock_kvstore.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/test_matchers.h" #include "tensorstore/kvstore/test_util.h" #include "tensorstore/kvstore/zarr3_sharding_indexed/key.h" #include "tensorstore/transaction.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/extents.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { namespace kvstore = ::tensorstore::kvstore; using ::tensorstore::Batch; using ::tensorstore::Executor; using ::tensorstore::Future; using ::tensorstore::Index; using ::tensorstore::KvStore; using ::tensorstore::MatchesStatus; using ::tensorstore::OptionalByteRangeRequest; using ::tensorstore::Result; using ::tensorstore::span; using ::tensorstore::StorageGeneration; using ::tensorstore::TimestampedStorageGeneration; using ::tensorstore::Transaction; using ::tensorstore::internal::CachePool; using ::tensorstore::internal::GetCache; using ::tensorstore::internal::KvsBackedTestCache; using ::tensorstore::internal::MatchesKvsReadResult; using ::tensorstore::internal::MatchesKvsReadResultNotFound; using ::tensorstore::internal::MatchesTimestampedStorageGeneration; using ::tensorstore::internal::MockKeyValueStore; using ::tensorstore::internal::UniqueNow; using ::tensorstore::internal_zarr3::ZarrCodecChainSpec; using ::tensorstore::kvstore::ReadResult; using ::tensorstore::zarr3_sharding_indexed::EntryId; using ::tensorstore::zarr3_sharding_indexed::EntryIdToKey; using ::tensorstore::zarr3_sharding_indexed::GetShardedKeyValueStore; using ::tensorstore::zarr3_sharding_indexed::ShardedKeyValueStoreParameters; using ::tensorstore::zarr3_sharding_indexed::ShardIndexLocation; constexpr CachePool::Limits kSmallCacheLimits{10000000}; absl::Cord Bytes(std::initializer_list<unsigned char> x) { return absl::Cord(std::string(x.begin(), x.end())); } absl::Cord WithCrc32c(absl::Cord input) { absl::Cord output; riegeli::CordWriter writer{&output}; TENSORSTORE_CHECK_OK(riegeli::Write( input, tensorstore::internal::DigestSuffixedWriter< riegeli::Crc32cDigester, tensorstore::internal::LittleEndianDigestWriter>{&writer})); ABSL_CHECK(writer.Close()); return output; } class GetKey { public: GetKey(bool sequential, std::vector<Index> grid_shape) : sequential_(sequential), grid_shape_(std::move(grid_shape)), num_entries_( tensorstore::ProductOfExtents(span<const Index>(grid_shape_))) {} std::string operator()(std::string key) const { auto it = key_to_entry_id_.find(key); if (it == key_to_entry_id_.end()) { ABSL_CHECK_LT(entry_id_to_key_.size(), num_entries_); while (true) { auto x = sequential_ ? next_entry_id_++ : absl::Uniform<EntryId>(gen_); x = x % num_entries_; if (entry_id_to_key_.emplace(x, key).second) { it = key_to_entry_id_.emplace(key, x).first; break; } } } return EntryIdToKey(it->second, grid_shape_); } private: bool sequential_; std::vector<Index> grid_shape_; EntryId num_entries_; mutable EntryId next_entry_id_ = 0; mutable absl::BitGen gen_; mutable absl::flat_hash_map<std::string, EntryId> key_to_entry_id_; mutable absl::flat_hash_map<EntryId, std::string> entry_id_to_key_; }; kvstore::DriverPtr GetDefaultStore(kvstore::DriverPtr base_kvstore, std::string base_kvstore_path, Executor executor, CachePool::StrongPtr cache_pool, const std::vector<Index>& grid_shape) { ShardedKeyValueStoreParameters params; params.base_kvstore = base_kvstore; params.base_kvstore_path = base_kvstore_path; params.executor = executor; params.cache_pool = CachePool::WeakPtr(cache_pool); TENSORSTORE_CHECK_OK_AND_ASSIGN( auto index_codecs, ZarrCodecChainSpec::FromJson( {{{"name", "bytes"}, {"configuration", {{"endian", "little"}}}}, {{"name", "crc32c"}}})); params.index_params.index_location = ShardIndexLocation::kEnd; TENSORSTORE_CHECK_OK( params.index_params.Initialize(index_codecs, grid_shape)); return GetShardedKeyValueStore(std::move(params)); } TEST(ShardedKeyValueStoreTest, BasicFunctionality) { std::vector<std::pair<std::string, tensorstore::Executor>> executors{ {"inline", tensorstore::InlineExecutor{}}, {"thread_pool", tensorstore::internal::DetachedThreadPool(2)}}; for (const auto& [executor_name, executor] : executors) { for (const auto sequential_ids : {true, false}) { auto cache_pool = CachePool::Make(kSmallCacheLimits); auto base_kv_store = tensorstore::GetMemoryKeyValueStore(); const int64_t num_entries = 100; SCOPED_TRACE(executor_name); auto store = GetDefaultStore(base_kv_store, "shard_path", executor, cache_pool, {num_entries}); GetKey get_key_fn(sequential_ids, {num_entries}); tensorstore::internal::TestKeyValueReadWriteOps(store, get_key_fn); } } } TEST(ShardedKeyValueStoreTest, DescribeKey) { CachePool::StrongPtr cache_pool = CachePool::Make(kSmallCacheLimits); kvstore::DriverPtr base_kv_store = tensorstore::GetMemoryKeyValueStore(); int64_t num_entries = 100; std::vector<Index> grid_shape{num_entries}; kvstore::DriverPtr store = GetDefaultStore(base_kv_store, "shard_path", tensorstore::InlineExecutor{}, cache_pool, grid_shape); for (const auto& [key, description] : std::vector<std::pair<uint32_t, std::string>>{ {0, "shard entry {0}/{100} in \"shard_path\""}, {1, "shard entry {1}/{100} in \"shard_path\""}, }) { EXPECT_EQ(description, store->DescribeKey(EntryIdToKey(key, grid_shape))); } } class RawEncodingTest : public ::testing::Test { protected: CachePool::StrongPtr cache_pool = CachePool::Make(kSmallCacheLimits); kvstore::DriverPtr base_kv_store = tensorstore::GetMemoryKeyValueStore(); kvstore::DriverPtr GetStore(const std::vector<Index>& grid_shape) { return GetDefaultStore(base_kv_store, "shard_path", tensorstore::InlineExecutor{}, cache_pool, grid_shape); } }; TEST_F(RawEncodingTest, MultipleUnconditionalWrites) { std::vector<Index> grid_shape{100}; kvstore::DriverPtr store = GetStore(grid_shape); std::vector<absl::Cord> values{absl::Cord("abc"), absl::Cord("aaaaa"), absl::Cord("efgh")}; std::vector<Future<TimestampedStorageGeneration>> futures; auto key = EntryIdToKey(10, grid_shape); tensorstore::Transaction txn(tensorstore::isolated); for (auto value : values) { futures.push_back(kvstore::WriteCommitted(KvStore{store, txn}, key, value)); } txn.CommitAsync().IgnoreFuture(); std::vector<Result<TimestampedStorageGeneration>> results; for (const auto& future : futures) { results.push_back(future.result()); } TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto shard_read, base_kv_store->Read("shard_path").result()); EXPECT_THAT( results, ::testing::UnorderedElementsAre( MatchesTimestampedStorageGeneration(StorageGeneration::Invalid()), MatchesTimestampedStorageGeneration(StorageGeneration::Invalid()), MatchesTimestampedStorageGeneration(shard_read.stamp.generation))); for (size_t i = 0; i < results.size(); ++i) { if (results[i] && results[i]->generation == shard_read.stamp.generation) { EXPECT_THAT(store->Read(key).result(), MatchesKvsReadResult(values[i], results[i]->generation)); } } } TEST_F(RawEncodingTest, List) { std::vector<Index> grid_shape{100}; kvstore::DriverPtr store = GetStore(grid_shape); std::map<std::string, absl::Cord> values{ {EntryIdToKey(1, grid_shape), absl::Cord("a")}, {EntryIdToKey(2, grid_shape), absl::Cord("bc")}, {EntryIdToKey(3, grid_shape), absl::Cord("def")}, {EntryIdToKey(10, grid_shape), absl::Cord("xyz")}}; for (auto [key, value] : values) { TENSORSTORE_EXPECT_OK(store->Write(key, value)); } EXPECT_THAT(tensorstore::internal::GetMap(store), ::testing::Optional(::testing::ElementsAreArray(values))); } TEST_F(RawEncodingTest, WritesAndDeletes) { std::vector<Index> grid_shape{100}; kvstore::DriverPtr store = GetStore(grid_shape); StorageGeneration gen1, gen2, gen3; { tensorstore::Transaction txn(tensorstore::isolated); auto init_future1 = kvstore::WriteCommitted( KvStore{store, txn}, EntryIdToKey(1, grid_shape), absl::Cord("a")); auto init_future2 = kvstore::WriteCommitted( KvStore{store, txn}, EntryIdToKey(2, grid_shape), absl::Cord("bc")); auto init_future3 = kvstore::WriteCommitted( KvStore{store, txn}, EntryIdToKey(3, grid_shape), absl::Cord("def")); txn.CommitAsync().IgnoreFuture(); gen1 = init_future1.value().generation; gen2 = init_future2.value().generation; gen3 = init_future3.value().generation; } tensorstore::Transaction txn(tensorstore::isolated); auto future1 = kvstore::DeleteCommitted(KvStore{store, txn}, EntryIdToKey(1, grid_shape), {StorageGeneration::NoValue()}); auto future2 = kvstore::WriteCommitted(KvStore{store, txn}, EntryIdToKey(2, grid_shape), absl::Cord("ww"), {gen2}); auto future3 = kvstore::WriteCommitted(KvStore{store, txn}, EntryIdToKey(2, grid_shape), absl::Cord("xx"), {gen2}); auto future4 = kvstore::WriteCommitted(KvStore{store, txn}, EntryIdToKey(4, grid_shape), absl::Cord("zz"), {StorageGeneration::NoValue()}); auto future5 = kvstore::DeleteCommitted(KvStore{store, txn}, EntryIdToKey(3, grid_shape), {gen3}); txn.CommitAsync().IgnoreFuture(); EXPECT_THAT(future1.result(), MatchesTimestampedStorageGeneration( StorageGeneration::Unknown())); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto shard_read, base_kv_store->Read("shard_path").result()); EXPECT_THAT( std::vector({future2.result(), future3.result()}), ::testing::UnorderedElementsAre( MatchesTimestampedStorageGeneration(StorageGeneration::Unknown()), MatchesTimestampedStorageGeneration(shard_read.stamp.generation))); EXPECT_THAT(store->Read(EntryIdToKey(1, grid_shape)).result(), MatchesKvsReadResult(absl::Cord("a"))); EXPECT_THAT(store->Read(EntryIdToKey(2, grid_shape)).result(), MatchesKvsReadResult( !StorageGeneration::IsUnknown(future2.result()->generation) ? absl::Cord("ww") : absl::Cord("xx"))); EXPECT_THAT(store->Read(EntryIdToKey(3, grid_shape)).result(), MatchesKvsReadResultNotFound()); EXPECT_THAT(store->Read(EntryIdToKey(4, grid_shape)).result(), MatchesKvsReadResult(absl::Cord("zz"))); } std::vector<std::vector<Result<TimestampedStorageGeneration>>> TestOrderDependentWrites( std::function<void()> init, std::function<Future<TimestampedStorageGeneration>()> op0, std::function<Future<TimestampedStorageGeneration>()> op1, std::function<void()> finalize) { std::vector<std::vector<Result<TimestampedStorageGeneration>>> all_results; for (int i = 0; i < 2; ++i) { std::vector<Future<TimestampedStorageGeneration>> futures(2); init(); if (i == 0) { futures[0] = op0(); futures[1] = op1(); } else { futures[1] = op1(); futures[0] = op0(); } finalize(); all_results.push_back({futures[0].result(), futures[1].result()}); } return all_results; } TEST_F(RawEncodingTest, WriteThenDelete) { std::vector<Index> grid_shape{100}; kvstore::DriverPtr store = GetStore(grid_shape); TENSORSTORE_ASSERT_OK( store->Write(EntryIdToKey(1, grid_shape), absl::Cord("a")).result()); EXPECT_THAT(store->Read(EntryIdToKey(1, grid_shape)).result(), MatchesKvsReadResult(absl::Cord("a"))); TENSORSTORE_ASSERT_OK(store->Delete(EntryIdToKey(1, grid_shape)).result()); EXPECT_THAT(store->Read(EntryIdToKey(1, grid_shape)).result(), MatchesKvsReadResultNotFound()); } TEST_F(RawEncodingTest, MultipleDeleteExisting) { std::vector<Index> grid_shape{100}; kvstore::DriverPtr store = GetStore(grid_shape); StorageGeneration gen; tensorstore::Transaction txn{tensorstore::no_transaction}; EXPECT_THAT( TestOrderDependentWrites( [&] { gen = store->Write(EntryIdToKey(1, grid_shape), absl::Cord("a")) .value() .generation; txn = tensorstore::Transaction(tensorstore::isolated); }, [&] { return kvstore::DeleteCommitted(KvStore{store, txn}, EntryIdToKey(1, grid_shape), {gen}); }, [&] { return kvstore::DeleteCommitted( KvStore{store, txn}, EntryIdToKey(1, grid_shape), {StorageGeneration::NoValue()}); }, [&] { txn.CommitAsync().IgnoreFuture(); }), ::testing::UnorderedElementsAre( ::testing::ElementsAre( MatchesTimestampedStorageGeneration(StorageGeneration::Invalid()), MatchesTimestampedStorageGeneration( StorageGeneration::NoValue())), ::testing::ElementsAre( MatchesTimestampedStorageGeneration(StorageGeneration::NoValue()), MatchesTimestampedStorageGeneration( StorageGeneration::Unknown())))); } TEST_F(RawEncodingTest, WriteWithUnmatchedConditionAfterDelete) { std::vector<Index> grid_shape{100}; kvstore::DriverPtr store = GetStore(grid_shape); tensorstore::Transaction txn{tensorstore::no_transaction}; EXPECT_THAT( TestOrderDependentWrites( [&] { store->Delete(EntryIdToKey(0, grid_shape)).value(); txn = tensorstore::Transaction(tensorstore::isolated); }, [&] { return kvstore::WriteCommitted(KvStore{store, txn}, EntryIdToKey(0, grid_shape), absl::Cord("a")); }, [&] { return kvstore::WriteCommitted( KvStore{store, txn}, EntryIdToKey(0, grid_shape), absl::Cord("b"), {StorageGeneration::FromString("g")}); }, [&] { txn.CommitAsync().IgnoreFuture(); }), ::testing::Each(::testing::ElementsAre( MatchesTimestampedStorageGeneration( ::testing::AllOf(::testing::Not(StorageGeneration::NoValue()), ::testing::Not(StorageGeneration::Invalid()))), MatchesTimestampedStorageGeneration(StorageGeneration::Unknown())))); } TEST_F(RawEncodingTest, MultipleDeleteNonExisting) { std::vector<Index> grid_shape{100}; kvstore::DriverPtr store = GetStore(grid_shape); tensorstore::Transaction txn(tensorstore::isolated); std::vector futures{ kvstore::DeleteCommitted(KvStore{store, txn}, EntryIdToKey(1, grid_shape), {StorageGeneration::NoValue()}), kvstore::DeleteCommitted(KvStore{store, txn}, EntryIdToKey(1, grid_shape), {StorageGeneration::NoValue()})}; txn.CommitAsync().IgnoreFuture(); std::vector results{futures[0].result(), futures[1].result()}; EXPECT_THAT( results, ::testing::UnorderedElementsAre( MatchesTimestampedStorageGeneration(StorageGeneration::Invalid()), MatchesTimestampedStorageGeneration(StorageGeneration::NoValue()))); } TEST_F(RawEncodingTest, ShardIndexTooShort) { std::vector<Index> grid_shape{100}; kvstore::DriverPtr store = GetStore(grid_shape); base_kv_store->Write("shard_path", Bytes({1, 2, 3})).value(); EXPECT_THAT(store->Read(EntryIdToKey(1, grid_shape)).result(), MatchesStatus( absl::StatusCode::kFailedPrecondition, RE2::QuoteMeta("Error reading shard index in \"shard_path\": " "Requested byte range [-1604, ?) is not valid " "for value of size 3"))); EXPECT_THAT( store->Write(EntryIdToKey(10, grid_shape), absl::Cord("abc")).result(), MatchesStatus(absl::StatusCode::kDataLoss, "Error reading \"shard_path\": " "Existing shard has size of 3 bytes, but expected at least " "1604 bytes")); } TEST_F(RawEncodingTest, ShardIndexByteRangeOverflow) { std::vector<Index> grid_shape{2}; kvstore::DriverPtr store = GetStore(grid_shape); auto content = WithCrc32c(Bytes({ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, })); TENSORSTORE_ASSERT_OK(base_kv_store->Write("shard_path", content)); EXPECT_THAT( store->Read(EntryIdToKey(1, grid_shape)).result(), MatchesStatus(absl::StatusCode::kDataLoss, "Error reading shard index in \"shard_path\": " "Invalid shard index entry 1 with offset=.*, length=.*")); } TEST_F(RawEncodingTest, ShardIndexEntryByteRangeOutOfRange) { std::vector<Index> grid_shape{2}; kvstore::DriverPtr store = GetStore(grid_shape); auto content = WithCrc32c(Bytes({ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 37, 0, 0, 0, 0, 0, 0, 0, })); TENSORSTORE_ASSERT_OK(base_kv_store->Write("shard_path", content)); EXPECT_THAT( store->Write(EntryIdToKey(1, grid_shape), absl::Cord("x")).result(), MatchesStatus(absl::StatusCode::kDataLoss, "Error reading \"shard_path\": " "Shard index entry 1 with byte range .* is invalid " "for shard of size .*")); } TEST_F(RawEncodingTest, ShardIndexInvalidChecksum) { std::vector<Index> grid_shape{2}; kvstore::DriverPtr store = GetStore(grid_shape); auto content = Bytes({ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, }); content.Append("abcd"); TENSORSTORE_ASSERT_OK(base_kv_store->Write("shard_path", content)); EXPECT_THAT(store->Read(EntryIdToKey(1, grid_shape)).result(), MatchesStatus(absl::StatusCode::kDataLoss, "Error reading shard index in \"shard_path\": " "Digest mismatch.*")); } class UnderlyingKeyValueStoreTest : public ::testing::Test { protected: CachePool::StrongPtr cache_pool = CachePool::Make(kSmallCacheLimits); MockKeyValueStore::MockPtr mock_store = MockKeyValueStore::Make(); kvstore::DriverPtr GetStore(std::vector<Index> grid_shape) { return GetDefaultStore(mock_store, "shard_path", tensorstore::InlineExecutor{}, cache_pool, grid_shape); } std::vector<Index> grid_shape{5}; kvstore::DriverPtr store = GetStore(grid_shape); }; TEST_F(UnderlyingKeyValueStoreTest, Read) { absl::Time init_time = UniqueNow(); absl::Time shard_index_time; { auto future = store->Read(EntryIdToKey(2, grid_shape), {}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest::SuffixLength(5 * 16 + 4), req.options.byte_range); EXPECT_THAT(req.options.staleness_bound, ::testing::Gt(init_time)); shard_index_time = absl::Now(); req.promise.SetResult( ReadResult{ReadResult::kValue, WithCrc32c(Bytes({ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 10, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, })), {StorageGeneration::FromString("g0"), shard_index_time}}); } ASSERT_FALSE(future.ready()) << future.status(); absl::Time read_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(10, 15), req.options.byte_range); read_time = absl::Now(); req.promise.SetResult( ReadResult{ReadResult::kValue, Bytes({5, 6, 7, 8, 9}), {StorageGeneration::FromString("g0"), read_time}}); } ASSERT_EQ(0, mock_store->read_requests.size()); ASSERT_TRUE(future.ready()); EXPECT_THAT( future.result(), MatchesKvsReadResult(Bytes({5, 6, 7, 8, 9}), StorageGeneration::FromString("g0"), read_time)); } { kvstore::ReadOptions options; options.staleness_bound = init_time; auto future = store->Read(EntryIdToKey(3, grid_shape), options); ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesKvsReadResultNotFound(shard_index_time)); } { auto req_time = UniqueNow(); auto future = store->Read(EntryIdToKey(3, grid_shape), {}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest::SuffixLength(5 * 16 + 4), req.options.byte_range); EXPECT_THAT(req.options.staleness_bound, ::testing::Gt(req_time)); shard_index_time = absl::Now(); req.promise.SetResult(ReadResult::Unspecified( {StorageGeneration::FromString("g0"), shard_index_time})); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesKvsReadResultNotFound(shard_index_time)); } { kvstore::ReadOptions options; options.staleness_bound = init_time; auto future = store->Read(EntryIdToKey(2, grid_shape), options); absl::Time read_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(10, 15), req.options.byte_range); EXPECT_EQ(init_time, req.options.staleness_bound); read_time = absl::Now(); req.promise.SetResult( ReadResult{ReadResult::kValue, Bytes({5, 6, 7, 8, 9}), {StorageGeneration::FromString("g0"), read_time}}); } ASSERT_EQ(0, mock_store->read_requests.size()); ASSERT_TRUE(future.ready()); EXPECT_THAT( future.result(), MatchesKvsReadResult(Bytes({5, 6, 7, 8, 9}), StorageGeneration::FromString("g0"), read_time)); } { kvstore::ReadOptions options; options.staleness_bound = init_time; auto future = store->Read(EntryIdToKey(2, grid_shape), options); absl::Time abort_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(init_time, req.options.staleness_bound); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(10, 15), req.options.byte_range); abort_time = absl::Now(); req.promise.SetResult(ReadResult::Unspecified( {StorageGeneration::FromString("g0"), abort_time})); } { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest::SuffixLength(5 * 16 + 4), req.options.byte_range); EXPECT_THAT(req.options.staleness_bound, ::testing::Ge(abort_time)); shard_index_time = absl::Now(); req.promise.SetResult( ReadResult{ReadResult::kValue, WithCrc32c(Bytes({ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 10, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, })), {StorageGeneration::FromString("g1"), shard_index_time}}); } absl::Time read_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g1"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(10, 16), req.options.byte_range); read_time = absl::Now(); req.promise.SetResult( ReadResult{ReadResult::kValue, Bytes({4, 5, 6, 7, 8, 9}), {StorageGeneration::FromString("g1"), read_time}}); } ASSERT_EQ(0, mock_store->read_requests.size()); ASSERT_TRUE(future.ready()); EXPECT_THAT( future.result(), MatchesKvsReadResult(Bytes({4, 5, 6, 7, 8, 9}), StorageGeneration::FromString("g1"), read_time)); } } TEST_F(UnderlyingKeyValueStoreTest, TransactionReadThenCommit) { tensorstore::Transaction txn(tensorstore::isolated); auto memory_store = tensorstore::GetMemoryKeyValueStore(); { auto future = kvstore::Read(KvStore{store, txn}, EntryIdToKey(2, grid_shape), {}); { auto req = mock_store->read_requests.pop(); req(memory_store); ASSERT_EQ(0, mock_store->read_requests.size()); } EXPECT_THAT(future.result(), ::testing::Optional(MatchesKvsReadResultNotFound())); } auto commit_future = txn.CommitAsync(); TENSORSTORE_ASSERT_OK(commit_future.result()); EXPECT_EQ(0, mock_store->read_requests.size()); } TEST_F(UnderlyingKeyValueStoreTest, ReadConcurrentDeleteAfterReadingMinishardIndex) { auto req_time = UniqueNow(); auto future = store->Read(EntryIdToKey(2, grid_shape), {}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_THAT(req.options.staleness_bound, ::testing::Gt(req_time)); EXPECT_EQ(OptionalByteRangeRequest::SuffixLength(5 * 16 + 4), req.options.byte_range); req.promise.SetResult( ReadResult{ReadResult::kValue, WithCrc32c(Bytes({ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 10, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, })), {StorageGeneration::FromString("g0"), absl::Now()}}); } absl::Time read_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(10, 15), req.options.byte_range); read_time = absl::Now(); req.promise.SetResult(ReadResult{ ReadResult::kMissing, {}, {StorageGeneration::NoValue(), read_time}}); } ASSERT_EQ(0, mock_store->read_requests.size()); ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesKvsReadResultNotFound(read_time)); } TEST_F(UnderlyingKeyValueStoreTest, ReadErrorReadingShardIndex) { auto future = store->Read(EntryIdToKey(2, grid_shape), {}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(OptionalByteRangeRequest::SuffixLength(5 * 16 + 4), req.options.byte_range); req.promise.SetResult(absl::UnknownError("Read error")); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesStatus(absl::StatusCode::kUnknown, "Error reading shard index in \"shard_path\": " "Read error")); } TEST_F(UnderlyingKeyValueStoreTest, ReadErrorReadingData) { auto future = store->Read(EntryIdToKey(0x2, grid_shape), {}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(OptionalByteRangeRequest::SuffixLength(5 * 16 + 4), req.options.byte_range); req.promise.SetResult( ReadResult{ReadResult::kValue, WithCrc32c(Bytes({ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 10, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, })), {StorageGeneration::FromString("g0"), absl::Now()}}); } ASSERT_FALSE(future.ready()) << future.status(); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(OptionalByteRangeRequest(10, 15), req.options.byte_range); req.promise.SetResult(absl::UnknownError("Read error")); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesStatus(absl::StatusCode::kUnknown, "Read error")); } TEST_F(UnderlyingKeyValueStoreTest, ReadInvalidKey) { auto future = store->Read("abc", {}); ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST_F(UnderlyingKeyValueStoreTest, WriteInvalidKey) { auto future = store->Write("abc", absl::Cord("x")); ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST_F(UnderlyingKeyValueStoreTest, DeleteInvalidKey) { auto future = store->Delete("abc"); ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST_F(UnderlyingKeyValueStoreTest, WriteWithNoExistingShard) { grid_shape = {2}; store = GetStore(grid_shape); auto future = store->Write(EntryIdToKey(1, grid_shape), Bytes({1, 2, 3})); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); req.promise.SetResult(ReadResult{ ReadResult::kMissing, {}, {StorageGeneration::NoValue(), absl::Now()}}); } absl::Time write_time; { auto req = mock_store->write_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->write_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::NoValue(), req.options.generation_conditions.if_equal); auto expected = Bytes({ 1, 2, 3, }); expected.Append(WithCrc32c(Bytes({ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, }))); EXPECT_THAT(req.value, ::testing::Optional(expected)); write_time = absl::Now(); req.promise.SetResult(std::in_place, StorageGeneration::FromString("g0"), write_time); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesTimestampedStorageGeneration( StorageGeneration::FromString("g0"), write_time)); } TEST_F(UnderlyingKeyValueStoreTest, UnconditionalWrite) { grid_shape = {2}; store = GetStore(grid_shape); auto txn = Transaction(tensorstore::isolated); auto future1 = kvstore::WriteCommitted( KvStore{store, txn}, EntryIdToKey(0, grid_shape), Bytes({1, 2, 3})); auto future2 = kvstore::WriteCommitted( KvStore{store, txn}, EntryIdToKey(1, grid_shape), Bytes({4, 5, 6})); ASSERT_EQ(0, mock_store->read_requests.size()); ASSERT_EQ(0, mock_store->write_requests.size()); txn.CommitAsync().IgnoreFuture(); ASSERT_EQ(0, mock_store->read_requests.size()); absl::Time write_time; { auto req = mock_store->write_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->write_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); auto expected = Bytes({ 1, 2, 3, 4, 5, 6, }); expected.Append(WithCrc32c(Bytes({ 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, }))); EXPECT_THAT(req.value, ::testing::Optional(expected)); write_time = absl::Now(); req.promise.SetResult(std::in_place, StorageGeneration::FromString("g0"), write_time); } ASSERT_TRUE(future1.ready()); ASSERT_TRUE(future2.ready()); EXPECT_THAT(future1.result(), MatchesTimestampedStorageGeneration( StorageGeneration::FromString("g0"), write_time)); EXPECT_THAT(future2.result(), MatchesTimestampedStorageGeneration( StorageGeneration::FromString("g0"), write_time)); } TEST_F(UnderlyingKeyValueStoreTest, ConditionalWriteDespiteMaxChunks) { grid_shape = {2}; store = GetStore(grid_shape); auto future = store->Write(EntryIdToKey(0, grid_shape), Bytes({1, 2, 3}), {StorageGeneration::NoValue()}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); req.promise.SetResult(ReadResult{ ReadResult::kMissing, {}, {StorageGeneration::NoValue(), absl::Now()}}); } { auto req = mock_store->write_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->write_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::NoValue(), req.options.generation_conditions.if_equal); } } TEST_F(UnderlyingKeyValueStoreTest, WriteWithNoExistingShardError) { auto future = store->Write(EntryIdToKey(1, grid_shape), Bytes({1, 2, 3})); future.Force(); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); req.promise.SetResult(ReadResult{ ReadResult::kMissing, {}, {StorageGeneration::NoValue(), absl::Now()}}); } { auto req = mock_store->write_requests.pop_nonblock().value(); req.promise.SetResult(absl::UnknownError("Write error")); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesStatus(absl::StatusCode::kUnknown, "Error writing \"shard_path\": " "Write error")); } TEST_F(UnderlyingKeyValueStoreTest, WriteWithExistingShard) { grid_shape = {2}; store = GetStore(grid_shape); auto future = store->Write(EntryIdToKey(0, grid_shape), Bytes({1, 2, 3})); ASSERT_FALSE(future.ready()) << future.status(); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); auto content = Bytes({ 4, 5, 6, }); content.Append(WithCrc32c(Bytes({ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, }))); req.promise.SetResult( ReadResult{ReadResult::kValue, content, {StorageGeneration::FromString("g0"), absl::Now()}}); } ASSERT_FALSE(future.ready()) << future.status(); absl::Time write_time; { auto req = mock_store->write_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->write_requests.size()); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_equal); auto content = Bytes({ 1, 2, 3, 4, 5, 6, }); content.Append(WithCrc32c(Bytes({ 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, }))); EXPECT_THAT(req.value, content); write_time = absl::Now(); req.promise.SetResult(std::in_place, StorageGeneration::FromString("g1"), write_time); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesTimestampedStorageGeneration( StorageGeneration::FromString("g1"), write_time)); } TEST_F(UnderlyingKeyValueStoreTest, WriteWithExistingShardReadError) { auto future = store->Write(EntryIdToKey(1, grid_shape), Bytes({1, 2, 3})); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); req.promise.SetResult(absl::UnknownError("Read error")); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesStatus(absl::StatusCode::kUnknown, "Error reading \"shard_path\": " "Read error")); } TEST_F(UnderlyingKeyValueStoreTest, DeleteRangeWhenEmpty) { grid_shape = {2}; store = GetStore(grid_shape); auto future = store->DeleteRange({}); future.Force(); { auto req = mock_store->write_requests.pop(); ASSERT_EQ(0, mock_store->write_requests.size()); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_TRUE(StorageGeneration::IsUnknown( req.options.generation_conditions.if_equal)); EXPECT_EQ(std::nullopt, req.value); req.promise.SetResult(std::in_place, StorageGeneration::FromString("g1"), absl::Now()); } ASSERT_TRUE(future.ready()); TENSORSTORE_ASSERT_OK(future); } TEST_F(UnderlyingKeyValueStoreTest, BatchRead) { cache_pool = CachePool::Make({}); auto memory_store = tensorstore::GetMemoryKeyValueStore(); mock_store->forward_to = memory_store; mock_store->log_requests = true; mock_store->handle_batch_requests = true; grid_shape = {3}; store = GetStore(grid_shape); TENSORSTORE_ASSERT_OK( store->Write(EntryIdToKey(0, grid_shape), absl::Cord("abc")).result()); TENSORSTORE_ASSERT_OK( store->Write(EntryIdToKey(1, grid_shape), absl::Cord("def")).result()); mock_store->request_log.pop_all(); { std::vector<Future<kvstore::ReadResult>> futures; { kvstore::ReadOptions options; options.batch = Batch::New(); futures = { store->Read(EntryIdToKey(0, grid_shape), options), store->Read(EntryIdToKey(1, grid_shape), options), }; } EXPECT_THAT(futures[0].result(), MatchesKvsReadResult(absl::Cord("abc"))); EXPECT_THAT(futures[1].result(), MatchesKvsReadResult(absl::Cord("def"))); EXPECT_THAT(mock_store->request_log.pop_all(), ::testing::SizeIs(2)); } { std::vector<Future<kvstore::ReadResult>> futures; { kvstore::ReadOptions options; options.batch = Batch::New(); futures = { store->Read(EntryIdToKey(0, grid_shape), options), store->Read(EntryIdToKey(1, grid_shape), options), store->Read(EntryIdToKey(2, grid_shape), options), }; } EXPECT_THAT(futures[0].result(), MatchesKvsReadResult(absl::Cord("abc"))); EXPECT_THAT(futures[1].result(), MatchesKvsReadResult(absl::Cord("def"))); EXPECT_THAT(futures[2].result(), MatchesKvsReadResultNotFound()); EXPECT_THAT(mock_store->request_log.pop_all(), ::testing::SizeIs(1)); } { std::vector<Future<kvstore::ReadResult>> futures; { kvstore::ReadOptions options1; options1.batch = Batch::New(); kvstore::ReadOptions options2; options2.batch = options1.batch; options2.generation_conditions.if_not_equal = StorageGeneration::Invalid(); futures = { store->Read(EntryIdToKey(0, grid_shape), options1), store->Read(EntryIdToKey(1, grid_shape), options1), store->Read(EntryIdToKey(2, grid_shape), options2), }; } EXPECT_THAT(futures[0].result(), MatchesKvsReadResult(absl::Cord("abc"))); EXPECT_THAT(futures[1].result(), MatchesKvsReadResult(absl::Cord("def"))); EXPECT_THAT(futures[2].result(), MatchesKvsReadResultNotFound()); EXPECT_THAT(mock_store->request_log.pop_all(), ::testing::SizeIs(2)); } } class ReadModifyWriteTest : public ::testing::Test { protected: MockKeyValueStore::MockPtr mock_store = MockKeyValueStore::Make(); tensorstore::kvstore::DriverPtr memory_store = tensorstore::GetMemoryKeyValueStore(); kvstore::DriverPtr GetStore(int64_t num_entries = 100) { return GetDefaultStore(mock_store, "shard_path", tensorstore::InlineExecutor{}, CachePool::Make(CachePool::Limits{}), {num_entries}); } auto GetKvsBackedCache(kvstore::DriverPtr store = {}) { if (!store) store = GetStore(); return GetCache<KvsBackedTestCache>( CachePool::Make(CachePool::Limits{}).get(), "", [&] { return std::make_unique<KvsBackedTestCache>(store); }); } }; TEST_F(ReadModifyWriteTest, MultipleCaches) { std::vector<Index> grid_shape{100}; auto cache1 = GetKvsBackedCache(); auto cache2 = GetKvsBackedCache(); auto transaction = Transaction(tensorstore::isolated); { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto open_transaction, tensorstore::internal::AcquireOpenTransactionPtrOrError(transaction)); TENSORSTORE_ASSERT_OK(GetCacheEntry(cache1, EntryIdToKey(0x0, grid_shape)) ->Modify(open_transaction, false, "abc")); TENSORSTORE_ASSERT_OK(GetCacheEntry(cache2, EntryIdToKey(0x0, grid_shape)) ->Modify(open_transaction, false, "def")); auto read_future = GetCacheEntry(cache1, EntryIdToKey(0x0, grid_shape)) ->ReadValue(open_transaction); mock_store->read_requests.pop()(memory_store); mock_store->read_requests.pop()(memory_store); EXPECT_THAT(read_future.result(), ::testing::Optional(absl::Cord("abcdef"))); } transaction.CommitAsync().IgnoreFuture(); auto write_req = mock_store->write_requests.pop(); write_req(memory_store); TENSORSTORE_EXPECT_OK(transaction.future()); } TEST_F(ReadModifyWriteTest, MultiplePhasesMultipleCaches) { std::vector<Index> grid_shape{100}; auto cache1 = GetKvsBackedCache(); auto cache2 = GetKvsBackedCache(); auto transaction = Transaction(tensorstore::isolated); { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto open_transaction, tensorstore::internal::AcquireOpenTransactionPtrOrError(transaction)); TENSORSTORE_ASSERT_OK(GetCacheEntry(cache1, EntryIdToKey(0x0, grid_shape)) ->Modify(open_transaction, false, "abc")); TENSORSTORE_ASSERT_OK(GetCacheEntry(cache2, EntryIdToKey(0x0, grid_shape)) ->Modify(open_transaction, false, "def")); open_transaction->Barrier(); TENSORSTORE_ASSERT_OK(GetCacheEntry(cache1, EntryIdToKey(0x0, grid_shape)) ->Modify(open_transaction, false, "ghi")); TENSORSTORE_ASSERT_OK(GetCacheEntry(cache2, EntryIdToKey(0x0, grid_shape)) ->Modify(open_transaction, false, "jkl")); auto read_future = GetCacheEntry(cache1, EntryIdToKey(0x0, grid_shape)) ->ReadValue(open_transaction); mock_store->read_requests.pop()(memory_store); mock_store->read_requests.pop()(memory_store); EXPECT_THAT(read_future.result(), ::testing::Optional(absl::Cord("abcdefghijkl"))); } transaction.CommitAsync().IgnoreFuture(); mock_store->write_requests.pop()(memory_store); mock_store->read_requests.pop()(memory_store); mock_store->read_requests.pop()(memory_store); mock_store->read_requests.pop()(memory_store); mock_store->write_requests.pop()(memory_store); TENSORSTORE_EXPECT_OK(transaction.future()); } TENSORSTORE_GLOBAL_INITIALIZER { using ::tensorstore::internal::KvsBackedCacheBasicTransactionalTestOptions; using ::tensorstore::internal::RegisterKvsBackedCacheBasicTransactionalTest; for (bool underlying_atomic : {false, true}) { KvsBackedCacheBasicTransactionalTestOptions options; const int64_t num_entries = 100; options.test_name = tensorstore::StrCat( "ZarrShardingIndexed/underlying_atomic=", underlying_atomic); options.get_store = [=] { return GetDefaultStore( tensorstore::GetMemoryKeyValueStore(underlying_atomic), "shard_path", tensorstore::InlineExecutor{}, CachePool::Make(CachePool::Limits{}), {num_entries}); }; options.delete_range_supported = true; options.multi_key_atomic_supported = true; options.get_key_getter = [=] { return [getter = std::make_shared<GetKey>( true, std::vector<Index>{num_entries})]( auto key) { return (*getter)(key); }; }; RegisterKvsBackedCacheBasicTransactionalTest(options); } } TEST(ShardedKeyValueStoreTest, SpecRoundtrip) { tensorstore::internal::KeyValueStoreSpecRoundtripOptions options; options.roundtrip_key = std::string(8, '\0'); options.full_base_spec = {{"driver", "memory"}, {"path", "shard_path"}}; options.full_spec = { {"driver", "zarr3_sharding_indexed"}, {"base", options.full_base_spec}, {"grid_shape", {100, 200}}, {"index_location", "end"}, {"index_codecs", {{{"name", "bytes"}, {"configuration", {{"endian", "little"}}}}}}, }; options.check_data_after_serialization = false; tensorstore::internal::TestKeyValueStoreSpecRoundtrip(options); } TEST(ShardedKeyValueStoreTest, SpecRoundtripFile) { tensorstore::internal_testing::ScopedTemporaryDirectory tempdir; tensorstore::internal::KeyValueStoreSpecRoundtripOptions options; options.roundtrip_key = std::string(8, '\0'); options.full_base_spec = {{"driver", "file"}, {"path", tempdir.path() + "/shard_path"}}; options.full_spec = { {"driver", "zarr3_sharding_indexed"}, {"base", options.full_base_spec}, {"grid_shape", {100, 200}}, {"index_location", "end"}, {"index_codecs", {{{"name", "bytes"}, {"configuration", {{"endian", "little"}}}}}}, }; tensorstore::internal::TestKeyValueStoreSpecRoundtrip(options); } TEST(ShardedKeyValueStoreTest, Base) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto spec, kvstore::Spec::FromJson( {{"driver", "zarr3_sharding_indexed"}, {"base", "memory: {"grid_shape", {100, 200}}, {"index_location", "end"}, {"index_codecs", {{{"name", "bytes"}, {"configuration", {{"endian", "little"}}}}}}, {"path", "1"}})); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto base_spec, kvstore::Spec::FromJson("memory: EXPECT_THAT(spec.base(), ::testing::Optional(base_spec)); auto context = tensorstore::Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto store, kvstore::Open(spec, context).result()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto base_store, kvstore::Open(base_spec, context).result()); EXPECT_THAT(store.base(), ::testing::Optional(base_store)); auto transaction = tensorstore::Transaction(tensorstore::atomic_isolated); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto store_with_txn, store | transaction); EXPECT_THAT(store_with_txn.base(), base_store | transaction); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/zarr3_sharding_indexed/zarr3_sharding_indexed.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/zarr3_sharding_indexed/zarr3_sharding_indexed_test.cc
4f887a6430414cd6088e1743555015b10f116d50
c2c26fb1-265a-4feb-9f4d-8261e92daeb4
cpp
tensorflow/tensorflow
tf_dialect_to_executor
tensorflow/compiler/mlir/tf2xla/api/v2/tf_dialect_to_executor.cc
tensorflow/compiler/mlir/tf2xla/api/v2/tf_dialect_to_executor_test.cc
#include "tensorflow/compiler/mlir/tf2xla/api/v2/tf_dialect_to_executor.h" #include <memory> #include <string> #include "absl/log/log.h" #include "absl/status/status.h" #include "llvm/ADT/StringRef.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/Pass/PassManager.h" #include "mlir/Pass/PassRegistry.h" #include "mlir/Support/LogicalResult.h" #include "mlir/Transforms/Passes.h" #include "tensorflow/compiler/jit/flags.h" #include "tensorflow/compiler/mlir/tensorflow/transforms/passes.h" #include "tensorflow/compiler/mlir/tensorflow/utils/data_dumper_logger_config.h" #include "tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.h" #include "tensorflow/compiler/mlir/tf2xla/internal/logging_hooks.h" #include "xla/tsl/lib/monitoring/counter.h" #include "tensorflow/core/platform/error_payloads.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/util/debug_data_dumper.h" #include "tsl/platform/error_logging.h" #include "tsl/platform/status.h" namespace tensorflow { namespace tf2xla { namespace v2 { using mlir::LogicalResult; using mlir::ModuleOp; using mlir::OpPassManager; using mlir::PassManager; using mlir::func::FuncOp; auto *tf_dialect_to_executor_dialect_status = tsl::monitoring::Counter<1>::New( "/tensorflow/core/tf2xla/api/v2/tf_dialect_to_executor_dialect_status", "Counts how often a successful export from TF Dialect to Executor Dialect " "is", "status"); constexpr char kExportSuccess[] = "success"; constexpr char kExportFailed[] = "failed"; namespace { void AddTfDialectToExecutorPasses(OpPassManager &pm) { pm.addPass(mlir::TF::CreateTFRegionControlFlowToFunctional()); pm.addNestedPass<FuncOp>( mlir::CreateFunctionalToExecutorDialectConversionPass()); pm.addNestedPass<FuncOp>(mlir::TF::CreateSplitIntoIslandPerOpPass()); pm.addNestedPass<FuncOp>(mlir::TFDevice::CreateReplicateToIslandPass( false)); pm.addNestedPass<FuncOp>( mlir::TFDevice::CreateReplicaIDToDeviceOrdinalPass()); pm.addNestedPass<FuncOp>(mlir::TFDevice::CreateParallelExecuteToIslandsPass( false)); pm.addNestedPass<FuncOp>(mlir::TFDevice::CreateLaunchToDeviceAttributePass( false)); pm.addPass( mlir::tf_executor::CreateTFExecutorUpdateControlDependenciesPass()); pm.addNestedPass<FuncOp>(mlir::TFTPU::CreateTPUDevicePropagationPass()); pm.addNestedPass<FuncOp>(mlir::TFTPU::CreateTPUColocateSplitsPass()); pm.addPass(mlir::createSymbolDCEPass()); pm.addNestedPass<FuncOp>( mlir::tf_executor::CreateTFExecutorGraphPruningPass()); if (tensorflow::GetMlirCommonFlags() ->tf_mlir_enable_convert_control_to_data_outputs_pass) { bool composite_tpuexecute_side_effects = tensorflow::GetMlirCommonFlags() ->tf_mlir_enable_composite_tpuexecute_side_effects; pm.addPass( mlir::tf_executor::CreateTFExecutorConvertControlToDataOutputsPass( composite_tpuexecute_side_effects)); } pm.addPass(mlir::TF::CreateVerifySuitableForExportPass()); } tensorflow::Status RecordStatusIfError(absl::Status status) { if (status.ok()) { return absl::OkStatus(); } tf_dialect_to_executor_dialect_status->GetCell(kExportFailed)->IncrementBy(1); VLOG(1) << "Failed to export from TF Dialect to TF Executor Dialect. " << status; constexpr char bridge_subcomponent[] = "TFXLA_TF_FUNCTIONAL_TO_EXECUTOR_EXPORT_v2"; constexpr char kBridgeComponent[] = "TFXLABridge"; tsl::OkOrSetErrorCounterPayload( tensorflow::core::platform::ErrorSourceProto::MLIR_BRIDGE_PHASE_1, status); tsl::error_logging::Log(kBridgeComponent, bridge_subcomponent, status.ToString()) .IgnoreError(); return status; } } tensorflow::Status ExportFromTensorflowDialectToExecutor( ModuleOp module, llvm::StringRef module_name) { PassManager tf_to_executor(module.getContext()); ::tensorflow::applyTensorflowAndCLOptions(tf_to_executor); tf_to_executor.enableVerifier(); AddTfDialectToExecutorPasses(tf_to_executor); if (VLOG_IS_ON(1) || DEBUG_DATA_DUMPER()->ShouldDump(module_name.str(), kDebugGroupMain)) { ::tensorflow::DumpMlirOpToFile( DEBUG_DATA_DUMPER()->GetDumpFilename( module_name.str(), kDebugGroupMain, "tfxla_bridge_v2_tfdialect_to_executor_before"), module, llvm::StringRef(), &tf_to_executor); if (VLOG_IS_ON(2) || DEBUG_DATA_DUMPER()->ShouldDump( module_name.str(), kDebugGroupBridgePhase1ExecutorExport)) { internal::EnablePassIRPrinting( tf_to_executor, kDebugGroupBridgePhase1ExecutorExport, module_name); } } LogicalResult result = tf_to_executor.run(module); if (VLOG_IS_ON(1) || DEBUG_DATA_DUMPER()->ShouldDump(module_name.str(), kDebugGroupMain)) { ::tensorflow::DumpMlirOpToFile( DEBUG_DATA_DUMPER()->GetDumpFilename( module_name.str(), kDebugGroupMain, "tfxla_bridge_v2_tfdialect_to_executor_after"), module, llvm::StringRef(), &tf_to_executor); } if (result.failed()) { return RecordStatusIfError( absl::InternalError("Failed to export from TF Dialect to TF Executor " "Dialect. Read LLVM Pipeline Error")); } tf_dialect_to_executor_dialect_status->GetCell(kExportSuccess) ->IncrementBy(1); return absl::OkStatus(); } mlir::PassPipelineRegistration<> tf_dialect_to_executor_pipeline( "tf-dialect-to-executor-v2", "Run passes to convert from TF Dialect to Executor in preparation for " "exporting module back to TF Graph.", AddTfDialectToExecutorPasses); } } }
#include "tensorflow/compiler/mlir/tf2xla/api/v2/tf_dialect_to_executor.h" #include <stdlib.h> #include <cstdint> #include <string> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "llvm/Support/raw_ostream.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/DialectRegistry.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Parser/Parser.h" #include "tensorflow/compiler/mlir/register_common_dialects.h" #include "tensorflow/compiler/mlir/tf2xla/api/v2/testing/utils.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/lib/monitoring/cell_reader.h" #include "tensorflow/core/platform/resource_loader.h" namespace tensorflow { namespace tf2xla { namespace v2 { namespace { constexpr char kExportStreamzName[] = "/tensorflow/core/tf2xla/api/v2/tf_dialect_to_executor_dialect_status"; constexpr char kExportSuccess[] = "success"; constexpr char kExportFailed[] = "failed"; using mlir::DialectRegistry; using mlir::MLIRContext; using mlir::ModuleOp; using mlir::OwningOpRef; using ::tensorflow::monitoring::testing::CellReader; using ::tensorflow::tf2xla::v2::testing::TestDataPath; size_t CountSubstring(absl::string_view str, absl::string_view substr) { size_t count = 0; size_t idx = str.find(substr); while (idx != std::string::npos) { count++; idx = str.find(substr, idx + 1); } return count; } class TensorflowDialectToExecutorTest : public ::testing::Test { public: TensorflowDialectToExecutorTest() { mlir::RegisterCommonToolingDialects(registry_); context_.appendDialectRegistry(registry_); context_.loadAllAvailableDialects(); } absl::Status CreateMlirModule(std::string mlir_module_filename) { std::string mlir_module_path = TestDataPath() + mlir_module_filename; mlir_module_ = mlir::parseSourceFile<mlir::ModuleOp>(mlir_module_path, &context_); if (!mlir_module_) { return absl::Status( absl::StatusCode::kNotFound, absl::StrCat("Could not find MLIR module at ", mlir_module_path)); } return absl::OkStatus(); } DialectRegistry registry_; MLIRContext context_; OwningOpRef<mlir::ModuleOp> mlir_module_; }; TEST_F(TensorflowDialectToExecutorTest, ConvertsToExecutor) { CellReader<int64_t> compilation_status(kExportStreamzName); TF_ASSERT_OK(CreateMlirModule("empty_func.mlir")); TF_EXPECT_OK(ExportFromTensorflowDialectToExecutor(*mlir_module_)); EXPECT_EQ(compilation_status.Delta(kExportSuccess), 1); EXPECT_EQ(compilation_status.Delta(kExportFailed), 0); } TEST_F(TensorflowDialectToExecutorTest, ErrorsWhenCannotConvert) { CellReader<int64_t> compilation_status(kExportStreamzName); TF_ASSERT_OK(CreateMlirModule("invalid_executor.mlir")); EXPECT_FALSE(ExportFromTensorflowDialectToExecutor(*mlir_module_).ok()); EXPECT_EQ(compilation_status.Delta(kExportSuccess), 0); EXPECT_EQ(compilation_status.Delta(kExportFailed), 1); } TEST_F(TensorflowDialectToExecutorTest, PrunesDeadOps) { CellReader<int64_t> compilation_status(kExportStreamzName); TF_ASSERT_OK(CreateMlirModule("func_with_dead_ops.mlir")); TF_EXPECT_OK(ExportFromTensorflowDialectToExecutor(*mlir_module_)); std::string module_dump; llvm::raw_string_ostream raw_stream(module_dump); mlir_module_->print(raw_stream); EXPECT_EQ(compilation_status.Delta(kExportSuccess), 1); EXPECT_EQ(compilation_status.Delta(kExportFailed), 0); EXPECT_EQ( CountSubstring(module_dump, "tf_executor.island wraps \"tf.Concat\""), 2); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/api/v2/tf_dialect_to_executor.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/api/v2/tf_dialect_to_executor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
01db218e-89d2-4dfd-b6a3-1d368f61f0d1
cpp
abseil/abseil-cpp
fast_type_id
absl/base/internal/fast_type_id.h
absl/base/internal/fast_type_id_test.cc
#ifndef ABSL_BASE_INTERNAL_FAST_TYPE_ID_H_ #define ABSL_BASE_INTERNAL_FAST_TYPE_ID_H_ #include "absl/base/config.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace base_internal { template <typename Type> struct FastTypeTag { constexpr static char dummy_var = 0; }; #ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL template <typename Type> constexpr char FastTypeTag<Type>::dummy_var; #endif using FastTypeIdType = const void*; template <typename Type> constexpr inline FastTypeIdType FastTypeId() { return &FastTypeTag<Type>::dummy_var; } } ABSL_NAMESPACE_END } #endif
#include "absl/base/internal/fast_type_id.h" #include <cstdint> #include <map> #include <vector> #include "gtest/gtest.h" namespace { namespace bi = absl::base_internal; #define PRIM_TYPES(A) \ A(bool) \ A(short) \ A(unsigned short) \ A(int) \ A(unsigned int) \ A(long) \ A(unsigned long) \ A(long long) \ A(unsigned long long) \ A(float) \ A(double) \ A(long double) TEST(FastTypeIdTest, PrimitiveTypes) { bi::FastTypeIdType type_ids[] = { #define A(T) bi::FastTypeId<T>(), PRIM_TYPES(A) #undef A #define A(T) bi::FastTypeId<const T>(), PRIM_TYPES(A) #undef A #define A(T) bi::FastTypeId<volatile T>(), PRIM_TYPES(A) #undef A #define A(T) bi::FastTypeId<const volatile T>(), PRIM_TYPES(A) #undef A }; size_t total_type_ids = sizeof(type_ids) / sizeof(bi::FastTypeIdType); for (int i = 0; i < total_type_ids; ++i) { EXPECT_EQ(type_ids[i], type_ids[i]); for (int j = 0; j < i; ++j) { EXPECT_NE(type_ids[i], type_ids[j]); } } } #define FIXED_WIDTH_TYPES(A) \ A(int8_t) \ A(uint8_t) \ A(int16_t) \ A(uint16_t) \ A(int32_t) \ A(uint32_t) \ A(int64_t) \ A(uint64_t) TEST(FastTypeIdTest, FixedWidthTypes) { bi::FastTypeIdType type_ids[] = { #define A(T) bi::FastTypeId<T>(), FIXED_WIDTH_TYPES(A) #undef A #define A(T) bi::FastTypeId<const T>(), FIXED_WIDTH_TYPES(A) #undef A #define A(T) bi::FastTypeId<volatile T>(), FIXED_WIDTH_TYPES(A) #undef A #define A(T) bi::FastTypeId<const volatile T>(), FIXED_WIDTH_TYPES(A) #undef A }; size_t total_type_ids = sizeof(type_ids) / sizeof(bi::FastTypeIdType); for (int i = 0; i < total_type_ids; ++i) { EXPECT_EQ(type_ids[i], type_ids[i]); for (int j = 0; j < i; ++j) { EXPECT_NE(type_ids[i], type_ids[j]); } } } TEST(FastTypeIdTest, AliasTypes) { using int_alias = int; EXPECT_EQ(bi::FastTypeId<int_alias>(), bi::FastTypeId<int>()); } TEST(FastTypeIdTest, TemplateSpecializations) { EXPECT_NE(bi::FastTypeId<std::vector<int>>(), bi::FastTypeId<std::vector<long>>()); EXPECT_NE((bi::FastTypeId<std::map<int, float>>()), (bi::FastTypeId<std::map<int, double>>())); } struct Base {}; struct Derived : Base {}; struct PDerived : private Base {}; TEST(FastTypeIdTest, Inheritance) { EXPECT_NE(bi::FastTypeId<Base>(), bi::FastTypeId<Derived>()); EXPECT_NE(bi::FastTypeId<Base>(), bi::FastTypeId<PDerived>()); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/base/internal/fast_type_id.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/base/internal/fast_type_id_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
3b4a14ae-fa50-425d-8ad4-aec55977753d
cpp
tensorflow/tensorflow
metric_def
tensorflow/core/lib/monitoring/metric_def.h
tensorflow/core/lib/monitoring/metric_def_test.cc
#ifndef TENSORFLOW_CORE_LIB_MONITORING_METRIC_DEF_H_ #define TENSORFLOW_CORE_LIB_MONITORING_METRIC_DEF_H_ #include <array> #include <functional> #include <string> #include <vector> #include "xla/tsl/lib/monitoring/metric_def.h" #include "tensorflow/core/framework/summary.pb.h" #include "tensorflow/core/lib/monitoring/types.h" #include "tensorflow/core/platform/stringpiece.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace monitoring { using tsl::monitoring::MetricDef; using tsl::monitoring::MetricKind; using tsl::monitoring::ValueType; } } #endif
#include "tensorflow/core/lib/monitoring/metric_def.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace monitoring { namespace { TEST(MetricDefTest, Simple) { const MetricDef<MetricKind::kCumulative, int64_t, 0> metric_def0( "/tensorflow/metric0", "An example metric with no labels."); const MetricDef<MetricKind::kGauge, HistogramProto, 1> metric_def1( "/tensorflow/metric1", "An example metric with one label.", "LabelName"); EXPECT_EQ("/tensorflow/metric0", metric_def0.name()); EXPECT_EQ("/tensorflow/metric1", metric_def1.name()); EXPECT_EQ(MetricKind::kCumulative, metric_def0.kind()); EXPECT_EQ(MetricKind::kGauge, metric_def1.kind()); EXPECT_EQ("An example metric with no labels.", metric_def0.description()); EXPECT_EQ("An example metric with one label.", metric_def1.description()); EXPECT_EQ(0, metric_def0.label_descriptions().size()); ASSERT_EQ(1, metric_def1.label_descriptions().size()); EXPECT_EQ("LabelName", metric_def1.label_descriptions()[0]); } TEST(MetricDefTest, StringsPersist) { string name = "/tensorflow/metric0"; string description = "test description"; string label_description = "test label description"; const MetricDef<MetricKind::kCumulative, int64_t, 1> metric_def( name, description, label_description); name[4] = 'A'; description[4] = 'B'; label_description[4] = 'C'; EXPECT_NE(name, metric_def.name()); EXPECT_NE(description, metric_def.description()); EXPECT_NE(label_description, metric_def.label_descriptions()[0]); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/monitoring/metric_def.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/monitoring/metric_def_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
81478791-4647-44ad-a8fe-a105c9dcf9ae
cpp
tensorflow/tensorflow
heap_simulator
third_party/xla/xla/service/heap_simulator/heap_simulator.cc
third_party/xla/xla/service/heap_simulator/heap_simulator_test.cc
#include "xla/service/heap_simulator/heap_simulator.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <cstdlib> #include <functional> #include <iterator> #include <limits> #include <list> #include <memory> #include <numeric> #include <optional> #include <ostream> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/types/span.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/hlo/utils/hlo_live_range.h" #include "xla/map_util.h" #include "xla/service/buffer_value.h" #include "xla/service/heap_simulator/allocation_block.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_buffer.h" #include "xla/service/hlo_dataflow_analysis.h" #include "xla/service/hlo_value.h" #include "xla/service/logical_buffer.h" #include "xla/service/time_utils.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { constexpr int64_t kMaxMemoryMapDimensionSize = 100; struct AsciiMemoryMapParameters { int64_t memory_block_size = 1; int64_t end_of_last_occupied_chunk = -1; }; AsciiMemoryMapParameters GetAsciiMemoryMapParameters( std::vector<const BufferIntervalTreeNode*>& nodes) { CHECK(!nodes.empty()); int64_t min_chunk_offset = std::numeric_limits<int64_t>::max(); int64_t end_of_last_occupied_chunk = -1; int64_t memory_block_size = nodes.front()->chunk.offset; for (const BufferIntervalTreeNode* node : nodes) { min_chunk_offset = std::min(min_chunk_offset, node->chunk.offset); end_of_last_occupied_chunk = std::max(end_of_last_occupied_chunk, node->chunk.chunk_end()); memory_block_size = std::gcd(memory_block_size, node->chunk.offset); memory_block_size = std::gcd(memory_block_size, node->chunk.chunk_end()); } VLOG(3) << " min_chunk_offset: " << min_chunk_offset << " end_of_last_occupied_chunk: " << end_of_last_occupied_chunk << " memory_block_size: " << memory_block_size; return {memory_block_size, end_of_last_occupied_chunk}; } std::vector<std::vector<bool>> GetMemoryMap( int64_t start, int64_t end, int64_t memory_block_size, int64_t num_memory_blocks, std::vector<const BufferIntervalTreeNode*>& nodes) { int64_t total_time = end - start + 1; std::vector<std::vector<bool>> memory_map( num_memory_blocks, std::vector<bool>(total_time, false)); for (const BufferIntervalTreeNode* node : nodes) { for (int64_t i = node->chunk.offset / memory_block_size; i < node->chunk.chunk_end() / memory_block_size; ++i) { for (int64_t j = std::max(node->start - start, int64_t{0}); j <= std::min(node->end - start, end - start); ++j) { memory_map[i][j] = true; } } } return memory_map; } std::string BufferIntervalTreeNodesToString( absl::Span<const BufferIntervalTreeNode* const> nodes) { std::string output; for (const BufferIntervalTreeNode* node : nodes) { absl::StrAppend(&output, node->ToString(), "\n"); } return output; } std::string MemoryMapToString(int64_t start, int64_t end, int64_t memory_block_size, int64_t group_size, std::vector<std::vector<bool>>& memory_map) { int64_t num_memory_blocks = memory_map.size(); int64_t total_time = memory_map.front().size(); std::string output = "\n"; absl::StrAppend(&output, "Memory map for time: [", start, ",", end, "], memory_block_size: ", memory_block_size, ", group_size: ", group_size, "\n\n"); for (int64_t i = num_memory_blocks - 1; i >= 0; --i) { for (int64_t j = 0; j < total_time; ++j) { if (group_size && j % group_size == 0) { absl::StrAppend(&output, " "); } absl::StrAppend(&output, memory_map[i][j] ? "#" : "."); } absl::StrAppend(&output, " ", std::to_string((i + 1) * memory_block_size), "\n"); } for (int64_t j = start; j <= end; ++j) { if (group_size && j % group_size == 0) { absl::StrAppend(&output, " "); } absl::StrAppend(&output, std::to_string(j % 10)); } absl::StrAppend(&output, "\n\n"); return output; } } using absl::flat_hash_map; using absl::flat_hash_set; bool IsOdd(int x) { return (x % 2) == 1; } bool IsEven(int x) { return (x % 2) == 0; } HeapSimulator::Chunk HeapSimulator::Chunk::FromOffsetEnd(int64_t offset, int64_t end) { return FromOffsetSize(offset, end - offset); } HeapSimulator::Chunk HeapSimulator::Chunk::FromOffsetSize(int64_t offset, int64_t size) { return Chunk(offset, size); } std::string HeapSimulator::Chunk::ToString() const { return absl::StrCat("[", offset, ",", chunk_end(), ")"); } std::string BufferIntervalTreeNode::ToString() const { return absl::StrCat("start: ", start, " end: ", end, " chunk: ", chunk.ToString()); } bool HeapSimulator::Chunk::OverlapsWith(Chunk other_chunk) const { CHECK_NE(size, 0); CHECK_NE(other_chunk.size, 0); return offset < other_chunk.chunk_end() && other_chunk.offset < chunk_end(); } std::ostream& operator<<(std::ostream& stream, const HeapSimulator::Chunk& chunk) { stream << chunk.ToString(); return stream; } absl::StatusOr<int64_t> HeapSimulator::MinimumMemoryForModule( const HloSchedule& schedule, const LogicalBuffer::SizeFunction& size_function) { if (schedule.empty()) { return 0; } const HloModule* module = schedule.module(); TF_ASSIGN_OR_RETURN(std::unique_ptr<HloAliasAnalysis> alias_analysis, HloAliasAnalysis::Run(module)); TF_ASSIGN_OR_RETURN( HeapSimulator::Result<HloValue> result, HeapSimulator::Run(std::make_unique<NoFragmentationStatsHeap<HloValue>>(), *module, schedule, *alias_analysis, size_function)); return result.heap_size; } absl::StatusOr<int64_t> HeapSimulator::MinimumMemoryForComputation( const HloComputation& computation, const HloInstructionSequence& sequence, const HloAliasAnalysis& alias_analysis, const LogicalBuffer::SizeFunction& size_function) { TF_ASSIGN_OR_RETURN( HeapSimulator::Result<HloValue> result, HeapSimulator::Run(std::make_unique<NoFragmentationStatsHeap<HloValue>>(), computation, sequence, alias_analysis, size_function, HeapSimulator::Options())); return result.heap_size; } absl::StatusOr<int64_t> HeapSimulator::MinimumMemoryForComputation( const HloComputation& computation, const HloInstructionSequence& sequence, const HloAliasAnalysis& alias_analysis, const LogicalBuffer::SizeFunction& size_function, const HloSchedule* schedule) { TF_ASSIGN_OR_RETURN( HeapSimulator::Result<HloValue> result, HeapSimulator::Run(std::make_unique<NoFragmentationStatsHeap<HloValue>>(), computation, sequence, alias_analysis, size_function, schedule, HeapSimulator::Options())); return result.heap_size; } absl::StatusOr<HeapSimulator::Result<HloValue>> HeapSimulator::Run( std::unique_ptr<HeapAlgorithm<HloValue>> algorithm, const HloModule& module, const HloSchedule& schedule, const HloAliasAnalysis& alias_analysis, const BufferValue::SizeFunction& size_fn, const Options& options) { HeapSimulator heap(std::move(algorithm), size_fn, options, &schedule); const HloComputation* entry_computation = module.entry_computation(); const HloInstructionSequence& instruction_sequence = schedule.sequence(entry_computation); TF_ASSIGN_OR_RETURN( std::unique_ptr<HloLiveRange> hlo_live_range, HloLiveRange::Run(schedule, alias_analysis, entry_computation)); TF_RETURN_IF_ERROR(heap.RunComputation(*entry_computation, instruction_sequence, alias_analysis, hlo_live_range.get())); return heap.Finish(); } absl::StatusOr<HeapSimulator::Result<HloValue>> HeapSimulator::Run( std::unique_ptr<HeapAlgorithm<HloValue>> algorithm, const HloComputation& computation, const HloInstructionSequence& instruction_sequence, const HloAliasAnalysis& alias_analysis, const BufferValue::SizeFunction& size_fn, const Options& options) { HeapSimulator heap(std::move(algorithm), size_fn, options, nullptr); HloSchedule schedule(computation.parent()); schedule.set_sequence(&computation, instruction_sequence); TF_ASSIGN_OR_RETURN(std::unique_ptr<HloLiveRange> hlo_live_range, HloLiveRange::Run(schedule, alias_analysis, &computation, false)); TF_RETURN_IF_ERROR(heap.RunComputation(computation, instruction_sequence, alias_analysis, hlo_live_range.get())); return heap.Finish(); } absl::StatusOr<HeapSimulator::Result<HloValue>> HeapSimulator::Run( std::unique_ptr<HeapAlgorithm<HloValue>> algorithm, const HloComputation& computation, const HloInstructionSequence& instruction_sequence, const HloAliasAnalysis& alias_analysis, const BufferValue::SizeFunction& size_fn, const HloSchedule* schedule, const Options& options) { HeapSimulator heap(std::move(algorithm), size_fn, options, schedule); TF_ASSIGN_OR_RETURN( std::unique_ptr<HloLiveRange> hlo_live_range, HloLiveRange::Run(*schedule, alias_analysis, &computation)); TF_RETURN_IF_ERROR(heap.RunComputation(computation, instruction_sequence, alias_analysis, hlo_live_range.get())); return heap.Finish(); } absl::Status HeapSimulator::RunComputation( const HloComputation& computation, const HloInstructionSequence& instruction_sequence, const HloAliasAnalysis& alias_analysis, HloLiveRange* hlo_live_range) { XLA_VLOG_LINES(1, computation.parent()->ToString()); XLA_VLOG_LINES(2, computation.ToString()); VLOG(1) << hlo_live_range->ToString(); HloDataflowAnalysis& dataflow_analysis = alias_analysis.dataflow_analysis(); std::vector<std::vector<const HloValue*>> buffers_defined( hlo_live_range->schedule_end_time() + 1); std::vector<std::vector<const HloValue*>> buffers_freed( hlo_live_range->schedule_end_time() + 1); std::vector<const HloValue*> values_to_assign; values_to_assign.reserve(dataflow_analysis.values().size()); auto& buffer_live_ranges = hlo_live_range->buffer_live_ranges(); for (const HloValue* value : dataflow_analysis.values()) { if (!buffer_live_ranges.contains(value)) { continue; } if (IgnoreBuffer(value)) { continue; } values_to_assign.push_back(value); } absl::c_sort(values_to_assign, [&](const HloValue* value1, const HloValue* value2) { const auto& live_range1 = buffer_live_ranges.at(value1); const auto& live_range2 = buffer_live_ranges.at(value2); return std::forward_as_tuple(live_range1.start, live_range1.end, value1->id()) < std::forward_as_tuple(live_range2.start, live_range2.end, value2->id()); }); for (const HloValue* value : values_to_assign) { auto live_range = buffer_live_ranges.at(value); buffers_defined[live_range.start].push_back(value); buffers_freed[live_range.end].push_back(value); } absl::flat_hash_map<const HloBuffer*, const HloValue*> first_allocated_value; VLOG(1) << "Program time" << hlo_live_range->schedule_end_time(); for (const HloBuffer& buffer : alias_analysis.buffers()) { int64_t size = 0; for (const HloValue* value : buffer.values()) { size = std::max(size, size_fn_(*value)); } for (const HloValue* value : buffer.values()) { buffer_sizes_[value] = size; } } for (int64_t i = 0; i < hlo_live_range->schedule_end_time() + 1; ++i) { VLOG(1) << "Time step: " << i; for (const HloValue* value : buffers_defined[i]) { bool shared = false; VLOG(1) << "Start buffer: " << value->ToShortString(); const HloBuffer* hlo_buffer = &alias_analysis.GetBufferContainingValue(*value); if (first_allocated_value.count(hlo_buffer) != 0) { ShareBuffer(value, first_allocated_value[hlo_buffer], value->instruction()); VLOG(1) << " ShareWith" << first_allocated_value[hlo_buffer]->ToShortString(); continue; } if (options_.may_reuse_operand_buffers && hlo_buffer->values().size() == 1) { for (const HloInstruction* operand : value->instruction()->operands()) { const HloValueSet operand_value_set = dataflow_analysis.GetValueSet(operand); for (const HloValue* operand_value : operand_value_set.values()) { const HloBuffer* operand_buffer = &alias_analysis.GetBufferContainingValue(*operand_value); if (operand_buffer->values().size() > 1) { continue; } auto it = buffer_live_ranges.find(operand_value); if (it == buffer_live_ranges.end()) { continue; } auto& operand_live_range = it->second; auto& user_live_range = buffer_live_ranges[value]; if (operand_live_range.end != i) { continue; } if (IgnoreBuffer(operand_value)) { continue; } if (!absl::c_linear_search(buffers_freed[i], operand_value)) { continue; } if (value->instruction()->IsUserOf(operand_value->instruction()) && value->instruction()->opcode() != HloOpcode::kCopy && dataflow_analysis.CanShareOperandBufferWithUser( operand_value->instruction(), operand_value->index(), value->instruction(), value->index())) { Free(operand_value, operand_value->instruction()); buffers_freed[i].erase( std::remove(buffers_freed[i].begin(), buffers_freed[i].end(), operand_value), buffers_freed[i].end()); ShareBuffer(value, operand_value, value->instruction()); operand_live_range.end = user_live_range.end; VLOG(1) << "Sharing " << value->ToShortString() << " with " << operand_value->ToShortString() << ", size:" << size_fn_(*value); shared = true; break; } } if (shared) { break; } } } if (!shared) { Alloc(value, value->instruction()); first_allocated_value[hlo_buffer] = value; } } if (!buffers_freed[i].empty()) { VLOG(1) << "Free Buffer: "; } for (const HloValue* value : buffers_freed[i]) { VLOG(1) << " " << value->ToShortString(); Free(value, value->instruction()); } } return absl::OkStatus(); } HeapSimulator::HeapSimulator(std::unique_ptr<HeapAlgorithm<HloValue>> algorithm, const BufferValue::SizeFunction& size_fn, const Options& options, const HloSchedule* schedule) : no_fragmentation_stats_( std::make_unique<NoFragmentationStatsHeap<HloValue>>()), algorithm_(std::move(algorithm)), size_fn_(size_fn), options_(options), schedule_(schedule) { debug_trace_.set_whole_module_simulation(schedule_ != nullptr); } HeapSimulator::~HeapSimulator() {} bool HeapSimulator::IgnoreBuffer(const HloValue* buffer) const { if (!options_.alloc_constants && buffer->instruction()->opcode() == HloOpcode::kConstant) { return true; } return options_.buffers_to_assign != nullptr && !options_.buffers_to_assign->contains(buffer); } void HeapSimulator::Alloc(const HloValue* buffer, const HloInstruction* instruction) { CHECK(!allocated_buffers_.contains(buffer)) << "Alloc called on allocated buffer: " << *buffer; CHECK(!freed_buffers_.contains(buffer)) << "Alloc called on freed buffer: " << *buffer; allocated_buffers_.insert(buffer); const int64_t size = GetBufferSize(buffer); algorithm_->Alloc(buffer, size); no_fragmentation_stats_->Alloc(buffer, size); FillDebugTrace(HeapSimulatorTrace::Event::ALLOC, buffer, instruction, nullptr); } void HeapSimulator::Free(const HloValue* buffer, const HloInstruction* instruction) { const int64_t size = GetBufferSize(buffer); algorithm_->Free(buffer, size); no_fragmentation_stats_->Free(buffer, size); FillDebugTrace(HeapSimulatorTrace::Event::FREE, buffer, instruction, nullptr); } void HeapSimulator::ShareBuffer(const HloValue* buffer, const HloValue* shared, const HloInstruction* instruction) { algorithm_->ShareWith(buffer, shared, GetBufferSize(shared)); no_fragmentation_stats_->ShareWith(buffer, shared, GetBufferSize(shared)); FillDebugTrace(HeapSimulatorTrace::Event::SHARE_WITH, buffer, instruction, shared); } int64_t HeapSimulator::GetBufferSize(const HloValue* buffer) const { auto it = buffer_sizes_.find(buffer); CHECK(it != buffer_sizes_.end()); return it->second; } absl::StatusOr<HeapSimulator::Result<HloValue>> HeapSimulator::Finish() { TF_ASSIGN_OR_RETURN(Result<HloValue> result, algorithm_->Finish()); size_t total_chunk_count = absl::c_accumulate( result.heap_results, static_cast<size_t>(0), [&](size_t lhs, const HeapResult<HloValue>& rhs) -> size_t { return lhs + rhs.chunk_map.size(); }); if (total_chunk_count != 0) { if (options_.buffers_to_assign != nullptr) { CHECK_EQ(options_.buffers_to_assign->size(), total_chunk_count); } } TF_ASSIGN_OR_RETURN(const Result<HloValue> no_frag_result, no_fragmentation_stats_->Finish()); result.fragmentation_size = result.heap_size - no_frag_result.heap_size; result.debug_trace.Swap(&debug_trace_); return result; } void HeapSimulator::FillDebugTrace(HeapSimulatorTrace::Event::Kind kind, const HloValue* buffer, const HloInstruction* instruction, const HloValue* share_with_canonical) { HeapSimulatorTrace::Event* event = debug_trace_.add_events(); event->set_kind(kind); event->set_buffer_id(buffer->id()); *event->mutable_computation_name() = std::string(instruction->parent()->name()); *event->mutable_instruction_name() = std::string(instruction->name()); if (kind == HeapSimulatorTrace::Event::SHARE_WITH) { CHECK(share_with_canonical != nullptr); event->set_share_with_canonical_id(share_with_canonical->id()); } else { CHECK(share_with_canonical == nullptr); } } template <typename BufferType> void NoFragmentationStatsHeap<BufferType>::Alloc(const BufferType* buffer, int64_t size) { current_heap_size_ += size; if (current_heap_size_ > max_heap_size_) { max_heap_size_ = current_heap_size_; } } template <typename BufferType> void NoFragmentationStatsHeap<BufferType>::AccountForSubcomputationMemory( const HloInstruction* instruction, int64_t alloc_size_by_instruction) { int64_t max_subcomputation_bytes = 0; if (max_subcomputation_bytes > 0 && (instruction->opcode() == HloOpcode::kWhile || instruction->opcode() == HloOpcode::kCall || instruction->opcode() == HloOpcode::kConditional)) { max_subcomputation_bytes -= alloc_size_by_instruction; } max_heap_size_ = std::max(max_heap_size_, current_heap_size_ + max_subcomputation_bytes); } template <typename BufferType> void NoFragmentationStatsHeap<BufferType>::Free(const BufferType* buffer, int64_t size) { current_heap_size_ -= size; } template <typename BufferType> absl::StatusOr<HeapSimulator::Result<BufferType>> NoFragmentationStatsHeap<BufferType>::Finish() { Result result; result.heap_size = max_heap_size_; return result; } template <typename BufferType> GlobalDecreasingSizeBestFitHeap<BufferType>::GlobalDecreasingSizeBestFitHeap( int64_t alignment, Type type, BufferIntervalCompare buffer_interval_compare, SliceTimePermutationIterator::Ty slice_time_permutation_iterator_type) : alignment_(alignment), slice_time_permutation_iteration_type_( slice_time_permutation_iterator_type) { if (type == kTemporal) { buffer_interval_compare_ = GetTemporalBufferIntervalCompare(); CHECK(buffer_interval_compare == nullptr); } else if (type == kSpatial) { buffer_interval_compare_ = GetSpatialBufferIntervalCompare(); CHECK(buffer_interval_compare == nullptr); } else { CHECK(type == kCustom); CHECK(buffer_interval_compare != nullptr); buffer_interval_compare_ = buffer_interval_compare; } } template <typename BufferType> typename GlobalDecreasingSizeBestFitHeap<BufferType>::BufferIntervalCompare GlobalDecreasingSizeBestFitHeap<BufferType>::GetTemporalBufferIntervalCompare() const { return LessThanByKey([this](const BufferInterval& x) { int64_t x_end = x.end; for (auto colocation : GetTransitiveColocations(x)) { x_end = std::max(x_end, buffer_intervals_.at(colocation).end); } return std::make_tuple(x.start - x_end, -x.size, std::cref(*x.buffer)); }); } template <typename BufferType> SliceTimePermutationIterator::Ty GlobalDecreasingSizeBestFitHeap< BufferType>::slice_time_permutation_iterator_type() const { return slice_time_permutation_iteration_type_; } template <typename BufferType> typename GlobalDecreasingSizeBestFitHeap< BufferType>::BufferIntervalCompare GlobalDecreasingSizeBestFitHeap<BufferType>::GetSpatialBufferIntervalCompare() { return LessThanByKey([](const BufferInterval& x) { return std::make_tuple(-x.size, x.start - x.end, std::cref(*x.buffer)); }); } template <typename BufferType> void GlobalDecreasingSizeBestFitHeap<BufferType>::Alloc( const BufferType* buffer, int64_t size) { if (size == 0) { result_.chunk_map.emplace(buffer, Chunk::FromOffsetSize(0, 0)); return; } auto emplace_result = buffer_intervals_.emplace( buffer, BufferInterval{buffer, size, current_time_, -1, {}, true}); CHECK(emplace_result.second); ++current_time_; } template <typename BufferType> void GlobalDecreasingSizeBestFitHeap<BufferType>::ShareWith( const BufferType* buffer, const BufferType* share_with, int64_t size) { if (size == 0) { result_.chunk_map.emplace(buffer, Chunk::FromOffsetSize(0, 0)); return; } CHECK_NE(buffer_intervals_.count(share_with), 0); buffer_intervals_[share_with].colocations.push_back(buffer); auto emplace_result = buffer_intervals_.emplace( buffer, BufferInterval{buffer, size, current_time_, -1, {}, false}); CHECK(emplace_result.second); ++current_time_; } template <typename BufferType> absl::flat_hash_set<const BufferType*> GlobalDecreasingSizeBestFitHeap<BufferType>::GetTransitiveColocations( const BufferInterval& interval) const { absl::flat_hash_set<const BufferType*> result; std::vector<const BufferInterval*> worklist = {&interval}; while (!worklist.empty()) { const BufferInterval* item = worklist.back(); worklist.pop_back(); for (const BufferType* buffer_colocated : item->colocations) { if (result.insert(buffer_colocated).second) { worklist.push_back(&buffer_intervals_.at(buffer_colocated)); } } } return result; } template <typename BufferType> void GlobalDecreasingSizeBestFitHeap<BufferType>::Free(const BufferType* buffer, int64_t size) { if (size == 0) { return; } BufferInterval& buffer_interval = FindOrDie(buffer_intervals_, buffer); CHECK_EQ(buffer_interval.buffer, buffer); CHECK_EQ(buffer_interval.size, size); CHECK_EQ(buffer_interval.end, -1); if (buffer_interval.end != -1) { return; } buffer_interval.end = current_time_; ++current_time_; } using Chunk = HeapSimulator::Chunk; void BufferIntervalTree::Add(int64_t start, int64_t end, const Chunk& chunk) { node_storage_.emplace_back(BufferIntervalTreeNode{ start, end, end, chunk, nullptr, nullptr, nullptr}); if (root_ == nullptr) { root_ = &node_storage_.back(); return; } BufferIntervalTreeNode* parent = root_; while (true) { parent->subtree_end = std::max(parent->subtree_end, end); if (parent->start > start) { if (parent->left == nullptr) { parent->left = &node_storage_.back(); node_storage_.back().parent = parent; return; } parent = parent->left; } else { if (parent->right == nullptr) { parent->right = &node_storage_.back(); node_storage_.back().parent = parent; return; } parent = parent->right; } } } bool BufferIntervalTree::Remove(int64_t start, int64_t end, const Chunk& chunk) { BufferIntervalTreeNode* to_delete = root_; while (to_delete != nullptr) { if (to_delete->start == start && to_delete->end == end && to_delete->chunk.offset == chunk.offset) { break; } if (start < to_delete->start) { to_delete = to_delete->left; } else { to_delete = to_delete->right; } } if (to_delete == nullptr) { return false; } std::function<void(BufferIntervalTreeNode*)> fix_up = [&](BufferIntervalTreeNode* node) { if (node == nullptr) { return; } node->subtree_end = node->end; if (node->left) { node->subtree_end = std::max(node->subtree_end, node->left->subtree_end); } if (node->right) { node->subtree_end = std::max(node->subtree_end, node->right->subtree_end); } fix_up(node->parent); }; if (to_delete->right == nullptr) { if (root_ == to_delete) { root_ = to_delete->left; return true; } if (to_delete == to_delete->parent->left) { to_delete->parent->left = to_delete->left; } if (to_delete == to_delete->parent->right) { to_delete->parent->right = to_delete->left; } if (to_delete->left) { to_delete->left->parent = to_delete->parent; } fix_up(to_delete); } else { BufferIntervalTreeNode* to_promote = to_delete->right; while (to_promote->left != nullptr) { to_promote = to_promote->left; } to_delete->start = to_promote->start; to_delete->end = to_promote->end; to_delete->subtree_end = to_promote->subtree_end; to_delete->chunk = to_promote->chunk; auto to_promote_parent = to_promote->parent; if (to_promote_parent->left == to_promote) { to_promote_parent->left = to_promote->right; } else { to_promote_parent->right = to_promote->right; } if (to_promote->right) { to_promote->right->parent = to_promote_parent; } fix_up(to_promote_parent); } return true; } std::vector<Chunk> BufferIntervalTree::ChunksOverlappingInTime( int64_t start, int64_t end) const { std::vector<Chunk> result; for (const BufferIntervalTreeNode* node : NodesOverlappingInTime(start, end)) { result.push_back(node->chunk); } return result; } std::vector<const BufferIntervalTreeNode*> BufferIntervalTree::NodesOverlappingInTime(int64_t start, int64_t end) const { std::vector<const BufferIntervalTreeNode*> result; if (root_ == nullptr) { return result; } std::vector<const BufferIntervalTreeNode*> visiting_stack; visiting_stack.push_back(root_); while (!visiting_stack.empty()) { const BufferIntervalTreeNode* top = visiting_stack.back(); visiting_stack.pop_back(); if (start > top->subtree_end) { continue; } if (top->left != nullptr) { visiting_stack.push_back(top->left); } if (top->start <= end && top->end >= start) { result.push_back(top); } if (end < top->start) { continue; } if (top->right != nullptr) { visiting_stack.push_back(top->right); } } return result; } std::string BufferIntervalTree::NodesOverlappingInTimeToAsciiArt( int64_t start, int64_t end, int64_t group_size) const { std::vector<const BufferIntervalTreeNode*> nodes = NodesOverlappingInTime(start, end); if (nodes.empty()) { return "No nodes overlapping in time. Memory is free!"; } auto [memory_block_size, end_of_last_occupied_chunk] = GetAsciiMemoryMapParameters(nodes); CHECK_GE(end_of_last_occupied_chunk, 0); CHECK_NE(memory_block_size, 0); int64_t total_time = end - start + 1; int64_t num_memory_blocks = end_of_last_occupied_chunk / memory_block_size; if (total_time > kMaxMemoryMapDimensionSize || num_memory_blocks > kMaxMemoryMapDimensionSize) { std::string output; absl::StrAppend( &output, "\nCannot print memory usage to ASCII art. Printing nodes instead!\n\n", BufferIntervalTreeNodesToString(nodes)); return output; } std::vector<std::vector<bool>> memory_map = GetMemoryMap(start, end, memory_block_size, num_memory_blocks, nodes); return MemoryMapToString(start, end, memory_block_size, group_size, memory_map); } std::vector<int64_t> BufferIntervalTree::MemoryUsedInInterval( int64_t start, int64_t end) const { int64_t total_time = end - start + 1; CHECK_GE(total_time, 0); std::vector<const BufferIntervalTreeNode*> nodes = NodesOverlappingInTime(start, end); std::vector<int64_t> memory_used_in_interval(total_time, 0); for (const BufferIntervalTreeNode* node : nodes) { int64_t node_start = std::max(node->start, start); int64_t node_end = std::min(node->end, end); for (int64_t time = node_start; time <= node_end; ++time) { memory_used_in_interval[time - start] += node->chunk.size; } } return memory_used_in_interval; } int64_t BufferIntervalTree::HeapSizeInInterval(const int64_t start, const int64_t end) const { CHECK_LE(start, end); std::vector<const BufferIntervalTreeNode*> nodes = NodesOverlappingInTime(start, end); int64_t max_memory_used = 0; for (const BufferIntervalTreeNode* node : nodes) { max_memory_used = std::max(max_memory_used, node->chunk.chunk_end()); } return max_memory_used; } template <typename BufferType> std::string GlobalDecreasingSizeBestFitHeap<BufferType>::BufferInterval::ToString() const { return absl::StrCat("{ ", "buffer: {", (buffer ? buffer->ToString() : "null"), "}, ", "size: ", size, ", ", "start: ", start, ", ", "end: ", end, ", ", "num_colocations: ", colocations.size(), ", ", "need_allocation: ", need_allocation, " }"); } template <typename BufferType> const typename GlobalDecreasingSizeBestFitHeap<BufferType>::SlicedBufferInterval GlobalDecreasingSizeBestFitHeap<BufferType>::SlicedBufferInterval:: CreateConstInterval(const BufferInterval& full_buffer_interval) { return SlicedBufferInterval(full_buffer_interval); } template <typename BufferType> typename GlobalDecreasingSizeBestFitHeap<BufferType>::SlicedBufferInterval GlobalDecreasingSizeBestFitHeap<BufferType>::SlicedBufferInterval:: CreateMutableInterval(BufferInterval& full_buffer_interval) { return SlicedBufferInterval(full_buffer_interval, &full_buffer_interval); } template <typename BufferType> void GlobalDecreasingSizeBestFitHeap<BufferType>::SlicedBufferInterval::Slice( absl::Span<const int64_t> slice_sizes_sorted_by_offset) { if (slice_sizes_sorted_by_offset.empty()) { slice_sizes_sorted_by_offset_ = {full_buffer_interval_.size}; make_free_chunks_intervals_ = {full_buffer_interval_}; return; } const int64_t min_slice_size = *absl::c_min_element(slice_sizes_sorted_by_offset); slice_sizes_sorted_by_offset_ = std::vector<int64_t>( slice_sizes_sorted_by_offset.begin(), slice_sizes_sorted_by_offset.end()); size_t num_slices = slice_sizes_sorted_by_offset.size(); make_free_chunks_intervals_.clear(); make_free_chunks_intervals_.reserve(num_slices); int64_t size_total = 0; absl::InlinedVector<const BufferType*, 2> empty_colocations; for (int i = 0; i < num_slices; ++i) { int64_t new_size = slice_sizes_sorted_by_offset[i]; size_total += new_size; make_free_chunks_intervals_.push_back(BufferInterval{ full_buffer_interval_.buffer, (i == num_slices - 1 ? full_buffer_interval_.size : min_slice_size), 0, full_buffer_interval_.end, (i == num_slices - 1 ? full_buffer_interval_.colocations : empty_colocations), full_buffer_interval_.need_allocation}); } CHECK_EQ(size_total, full_buffer_interval_.size) << " slice sizes: {" << absl::StrJoin(slice_sizes_sorted_by_offset, ", ") << "};"; } template <typename BufferType> void GlobalDecreasingSizeBestFitHeap<BufferType>::SlicedBufferInterval:: UpdateExclusiveSliceStartTimes( const std::vector<int64_t>& exclusive_start_times) { std::vector<int64_t> inclusive_start_times = exclusive_start_times; absl::c_for_each(inclusive_start_times, [](int64_t& t) { t = ExclusiveToInclusiveStartTime(t); }); UpdateInclusiveSliceStartTimes(inclusive_start_times); } template <typename BufferType> void GlobalDecreasingSizeBestFitHeap<BufferType>::SlicedBufferInterval:: UpdateInclusiveSliceStartTimes( const std::vector<int64_t>& inclusive_start_times) { CHECK_EQ(inclusive_start_times.size(), num_slices()); CHECK(mutable_full_buffer_interval_ != nullptr); mutable_full_buffer_interval_->start = inclusive_start_times.front(); for (size_t slice_time = 0; slice_time < num_slices(); ++slice_time) { make_free_chunks_intervals_[slice_time].start = inclusive_start_times[slice_time]; if (slice_time != num_slices() - 1) { make_free_chunks_intervals_[slice_time].end = ExclusiveToInclusiveEndTime(inclusive_start_times[slice_time + 1]); } else { make_free_chunks_intervals_[slice_time].end = full_buffer_interval_.end; } } } template <typename BufferType> void GlobalDecreasingSizeBestFitHeap< BufferType>::SlicedBufferInterval::UpdateEndTime(int64_t end_time) { CHECK(mutable_full_buffer_interval_ != nullptr); mutable_full_buffer_interval_->end = end_time; make_free_chunks_intervals_.back().end = end_time; } template <typename BufferType> const typename GlobalDecreasingSizeBestFitHeap<BufferType>::BufferInterval& GlobalDecreasingSizeBestFitHeap< BufferType>::SlicedBufferInterval::full_buffer_interval() const { return full_buffer_interval_; } template <typename BufferType> const std::vector<int64_t>& GlobalDecreasingSizeBestFitHeap< BufferType>::SlicedBufferInterval::SliceSizesSortedByOffset() const { return slice_sizes_sorted_by_offset_; } template <typename BufferType> std::vector<int64_t> GlobalDecreasingSizeBestFitHeap< BufferType>::SlicedBufferInterval::inclusive_start_times() const { std::vector<int64_t> inclusive_start_times; inclusive_start_times.reserve(num_slices()); for (const BufferInterval& buffer_interval : make_free_chunks_intervals_) { inclusive_start_times.push_back(buffer_interval.start); } return inclusive_start_times; } template <typename BufferType> const typename GlobalDecreasingSizeBestFitHeap<BufferType>::BufferInterval& GlobalDecreasingSizeBestFitHeap<BufferType>::SlicedBufferInterval:: IntervalForMakeFreeChunks(int64_t slice_time) const { CHECK_LT(slice_time, num_slices()); return make_free_chunks_intervals_[slice_time]; } template <typename BufferType> GlobalDecreasingSizeBestFitHeap<BufferType>::SlicedBufferInterval:: SlicedBufferInterval(const BufferInterval& full_buffer_interval, BufferInterval* mutable_full_buffer_interval) : full_buffer_interval_(full_buffer_interval), mutable_full_buffer_interval_(mutable_full_buffer_interval) { Slice({}); } template <typename BufferType> std::string GlobalDecreasingSizeBestFitHeap< BufferType>::SlicedBufferInterval::ToString() const { return absl::StrCat( "{ full_buffer_interval: ", full_buffer_interval_.ToString(), ", ", "MakeFreeChunks intervals: { ", absl::StrJoin(make_free_chunks_intervals_, ", ", [](std::string* out, const BufferInterval& interval) { absl::StrAppend(out, interval.ToString()); }), " }, ", "slize_sizes_sorted_by_offsets: { ", absl::StrJoin(slice_sizes_sorted_by_offset_, ", "), " } }"); } namespace { class SliceTimePermutationValidator { public: explicit SliceTimePermutationValidator( const SlicedAllocationData* original_slices) : original_num_slices_(original_slices ? original_slices->num_slices() : 0) { if (original_num_slices_ <= 0) { return; } slice_time_to_inclusive_schedule_time_ = original_slices->SortedInclusiveStartTimes(); absl::c_sort(slice_time_to_inclusive_schedule_time_); original_slice_sizes_and_start_times_pairwise_sorted_.reserve( original_num_slices_); for (const AllocatedSlice& slice : original_slices->slices_sorted_by_offset) { original_slice_sizes_and_start_times_pairwise_sorted_.push_back( std::make_pair(slice.size, slice.inclusive_start_time)); } absl::c_sort(original_slice_sizes_and_start_times_pairwise_sorted_); sizes_sorted_by_offset_ = original_slices->SizesSortedByOffset(); } bool IsValid(absl::Span<const int64_t> permutation) { if (original_num_slices_ <= 0) { return true; } std::vector<std::pair<int64_t, int64_t>> proposed_slice_sizes_and_start_times_pairwise_sorted; proposed_slice_sizes_and_start_times_pairwise_sorted.reserve( original_num_slices_); CHECK_EQ(sizes_sorted_by_offset_.size(), original_num_slices_); CHECK_EQ(permutation.size(), original_num_slices_); for (int i = 0; i < original_num_slices_; ++i) { proposed_slice_sizes_and_start_times_pairwise_sorted.push_back( std::make_pair( sizes_sorted_by_offset_[i], slice_time_to_inclusive_schedule_time_[permutation[i]])); } absl::c_sort(proposed_slice_sizes_and_start_times_pairwise_sorted); bool allowed = (original_slice_sizes_and_start_times_pairwise_sorted_ == proposed_slice_sizes_and_start_times_pairwise_sorted); VLOG(3) << [&]() { auto export_pair = [](std::string* out, const std::pair<int64_t, int64_t>& p) { absl::StrAppend(out, "<", p.first, ", ", p.second, ">"); }; return absl::StrCat( "Slice permutation ", (allowed ? "allowed" : "disallowed"), ". Original slice <size, start_time> mapping: ", absl::StrJoin(original_slice_sizes_and_start_times_pairwise_sorted_, ", ", export_pair), ". Proposed mapping: ", absl::StrJoin(proposed_slice_sizes_and_start_times_pairwise_sorted, ", ", export_pair), "."); }(); return allowed; } private: int64_t original_num_slices_; std::vector<int64_t> slice_time_to_inclusive_schedule_time_; std::vector<std::pair<int64_t, int64_t>> original_slice_sizes_and_start_times_pairwise_sorted_; std::vector<int64_t> sizes_sorted_by_offset_; }; class ObservedPermutationManager { public: explicit ObservedPermutationManager( absl::Span<const int64_t> inclusive_start_times) { slice_time_to_inclusive_start_time_ = std::vector<int64_t>( inclusive_start_times.begin(), inclusive_start_times.end()); absl::c_sort(slice_time_to_inclusive_start_time_); } bool Insert(absl::Span<const int64_t> permutation) { std::vector<int64_t> permutation_inclusive_start_times; permutation_inclusive_start_times.reserve(permutation.size()); for (int64_t slice_time : permutation) { permutation_inclusive_start_times.push_back( slice_time_to_inclusive_start_time_[slice_time]); } return observed_inclusive_start_time_permutation_ .insert(permutation_inclusive_start_times) .second; } void Clear() { observed_inclusive_start_time_permutation_.clear(); } protected: std::vector<int64_t> slice_time_to_inclusive_start_time_; absl::flat_hash_set<std::vector<int64_t>> observed_inclusive_start_time_permutation_; }; class SliceTimeAllPermutationIterator : public SliceTimePermutationIterator { public: explicit SliceTimeAllPermutationIterator(int64_t num_slices) : num_slices_(num_slices), permutation_(num_slices, 0) {} ~SliceTimeAllPermutationIterator() override = default; void Begin() override { done_ = (num_slices_ <= 0); for (int64_t i = 0; i < num_slices_; ++i) { permutation_[i] = i; } } bool Done() const override { return done_; } void Next() override { if (Done()) { return; } done_ = !absl::c_next_permutation(permutation_); } absl::Span<const int64_t> Get() const override { return permutation_; } private: SliceTimeAllPermutationIterator() = default; int64_t num_slices_; bool done_ = true; std::vector<int64_t> permutation_; }; class SliceTimePreferredPermutationIterator : public SliceTimePermutationIterator { public: SliceTimePreferredPermutationIterator( int64_t num_slices, const SlicedAllocationData* original_sliced_allocation) : num_slices_(num_slices), fixed_permutation_values_(num_slices, false), permutation_(num_slices, 0) { if (!original_sliced_allocation) { slice_times_available_for_permutation_.reserve(num_slices_); for (int64_t slice_time = 0; slice_time < num_slices_; ++slice_time) { slice_times_available_for_permutation_.push_back(slice_time); } return; } absl::flat_hash_map<const AllocatedSlice*, int64_t> slice_to_slice_time_map = BuildSliceToSliceTimeMap(original_sliced_allocation); const AllocatedSlice* first_slice = nullptr; if (!original_sliced_allocation->slices_sorted_by_offset.empty()) { first_slice = &original_sliced_allocation->slices_sorted_by_offset.front(); } for (int offset_index = 0; offset_index < num_slices_; ++offset_index) { CHECK(first_slice); const AllocatedSlice& slice = original_sliced_allocation->slices_sorted_by_offset[offset_index]; if (slice.size != first_slice->size) { fixed_permutation_values_[offset_index] = true; permutation_[offset_index] = slice_to_slice_time_map[&slice]; continue; } slice_times_available_for_permutation_.push_back( slice_to_slice_time_map[&slice]); } absl::c_sort(slice_times_available_for_permutation_); } ~SliceTimePreferredPermutationIterator() override = default; void Begin() override { permutation_type_ = NextPermutationType(PermutationType::kUninitialized); SetUpPermutationForCurrentType(); } bool Done() const override { return permutation_type_ == PermutationType::kDone; } void Next() override { permutation_type_ = NextPermutationType(permutation_type_); SetUpPermutationForCurrentType(); } absl::Span<const int64_t> Get() const override { return permutation_; } private: enum class PermutationType { kUninitialized, kSmallerOffsetSmallerSliceTime, kSmallerOffsetLargerSliceTime, kDistributeSmallSliceTimesAroundMiddleOffset, kDone, }; SliceTimePreferredPermutationIterator() = default; PermutationType NextPermutationType(PermutationType ty) { switch (ty) { case PermutationType::kUninitialized: if (num_slices_ <= 0) { return PermutationType::kDone; } return PermutationType::kSmallerOffsetSmallerSliceTime; case PermutationType::kSmallerOffsetSmallerSliceTime: if (num_slices_ <= 1) { return PermutationType::kDone; } return PermutationType::kSmallerOffsetLargerSliceTime; case PermutationType::kSmallerOffsetLargerSliceTime: if (num_slices_ <= 2) { return PermutationType::kDone; } return PermutationType::kDistributeSmallSliceTimesAroundMiddleOffset; case PermutationType::kDistributeSmallSliceTimesAroundMiddleOffset: case PermutationType::kDone: return PermutationType::kDone; } } absl::flat_hash_map<const AllocatedSlice*, int64_t> BuildSliceToSliceTimeMap( const SlicedAllocationData* original_sliced_allocation) { CHECK(original_sliced_allocation); std::vector<const AllocatedSlice*> slice_time_to_slice; slice_time_to_slice.reserve(num_slices_); for (const AllocatedSlice& slice : original_sliced_allocation->slices_sorted_by_offset) { slice_time_to_slice.push_back(&slice); } absl::c_sort(slice_time_to_slice, [](const AllocatedSlice* lhs, const AllocatedSlice* rhs) { return std::make_tuple(lhs->inclusive_start_time, lhs->offset) < std::make_tuple(rhs->inclusive_start_time, rhs->offset); }); absl::flat_hash_map<const AllocatedSlice*, int64_t> map; for (int slice_time = 0; slice_time < slice_time_to_slice.size(); ++slice_time) { map[slice_time_to_slice[slice_time]] = slice_time; } return map; } void SetUpPermutationForCurrentType() { CHECK(permutation_type_ != PermutationType::kUninitialized); if (Done()) { return; } int permutation_index = NextAvailablePermutationIndex(-1); for (int i = slice_times_available_for_permutation_.size() - 1; i >= 0; --i) { if (permutation_type_ == PermutationType::kSmallerOffsetLargerSliceTime || (permutation_type_ == PermutationType::kDistributeSmallSliceTimesAroundMiddleOffset && IsOdd(i))) { CHECK_LT(permutation_index, permutation_.size()); permutation_[permutation_index] = slice_times_available_for_permutation_[i]; permutation_index = NextAvailablePermutationIndex(permutation_index); } } for (int i = 0; i < slice_times_available_for_permutation_.size(); ++i) { if (permutation_type_ == PermutationType::kSmallerOffsetSmallerSliceTime || (permutation_type_ == PermutationType::kDistributeSmallSliceTimesAroundMiddleOffset && IsEven(i))) { CHECK_LT(permutation_index, permutation_.size()); permutation_[permutation_index] = slice_times_available_for_permutation_[i]; permutation_index = NextAvailablePermutationIndex(permutation_index); } } CHECK_EQ(permutation_index, permutation_.size()); } int NextAvailablePermutationIndex(int permutation_index) { do { ++permutation_index; } while (permutation_index < permutation_.size() && fixed_permutation_values_[permutation_index]); return permutation_index; } int64_t num_slices_; std::vector<bool> fixed_permutation_values_; std::vector<int64_t> slice_times_available_for_permutation_; PermutationType permutation_type_ = PermutationType::kUninitialized; std::vector<int64_t> permutation_; }; class ComposedSliceTimePermutationIterator : public SliceTimePermutationIterator { public: ComposedSliceTimePermutationIterator( SliceTimePermutationValidator validator, ObservedPermutationManager seen_manager, std::unique_ptr<SliceTimePermutationIterator> base_iterator) : validator_(std::move(validator)), seen_(std::move(seen_manager)), base_iterator_(std::move(base_iterator)) {} ~ComposedSliceTimePermutationIterator() override = default; void Begin() override { NextImpl(true); } bool Done() const override { return base_iterator_->Done(); } void Next() override { NextImpl(false); } absl::Span<const int64_t> Get() const override { return base_iterator_->Get(); } private: void NextImpl(bool initialize) { if (initialize) { seen_.Clear(); base_iterator_->Begin(); } if (Done()) { return; } if (!initialize) { base_iterator_->Next(); } while (!Done() && (!validator_.IsValid(Get()) || !seen_.Insert(Get()))) { base_iterator_->Next(); } } SliceTimePermutationValidator validator_; ObservedPermutationManager seen_; std::unique_ptr<SliceTimePermutationIterator> base_iterator_; }; } std::unique_ptr<SliceTimePermutationIterator> SliceTimePermutationIterator::CreateForNewAllocation( Ty ty, absl::Span<const int64_t> inclusive_slice_start_times) { switch (ty) { case Ty::kAll: return std::make_unique<ComposedSliceTimePermutationIterator>( SliceTimePermutationValidator(nullptr), ObservedPermutationManager(inclusive_slice_start_times), std::make_unique<SliceTimeAllPermutationIterator>( inclusive_slice_start_times.size())); case Ty::kPreferred: return std::make_unique<ComposedSliceTimePermutationIterator>( SliceTimePermutationValidator(nullptr), ObservedPermutationManager(inclusive_slice_start_times), std::make_unique<SliceTimePreferredPermutationIterator>( inclusive_slice_start_times.size(), nullptr)); } } std::unique_ptr<SliceTimePermutationIterator> SliceTimePermutationIterator::CreateForRepack( Ty ty, const SlicedAllocationData* original_sliced_allocation) { int64_t num_slices = 1; if (original_sliced_allocation) { num_slices = original_sliced_allocation->num_slices(); } std::vector<int64_t> inclusive_start_times; if (original_sliced_allocation) { inclusive_start_times = original_sliced_allocation->SortedInclusiveStartTimes(); } else { inclusive_start_times.push_back(0); } switch (ty) { case Ty::kAll: return std::make_unique<ComposedSliceTimePermutationIterator>( SliceTimePermutationValidator(original_sliced_allocation), ObservedPermutationManager(inclusive_start_times), std::make_unique<SliceTimeAllPermutationIterator>(num_slices)); case Ty::kPreferred: return std::make_unique<ComposedSliceTimePermutationIterator>( SliceTimePermutationValidator(original_sliced_allocation), ObservedPermutationManager(inclusive_start_times), std::make_unique<SliceTimePreferredPermutationIterator>( num_slices, original_sliced_allocation)); } } template <typename BufferType> std::string GlobalDecreasingSizeBestFitHeap< BufferType>::SlicedAllocationFinder::FreeChunkPiece::ToString() const { return absl::StrCat("{ dimensions: ", dimensions.ToString(), ", free at: t", earliest_free_slice_time, " }"); } template <typename BufferType> std::string GlobalDecreasingSizeBestFitHeap< BufferType>::SlicedAllocationFinder::FreeChunkRoot::ToString() const { return absl::StrCat( "{ chunk: ", chunk.ToString(), ", pieces: { ", absl::StrJoin( pieces.rbegin(), pieces.rend(), ", ", [](std::string* out, const auto& offset_sliced_free_chunk_pair) { absl::StrAppend(out, offset_sliced_free_chunk_pair.second.ToString()); }), " } }"); } template <typename BufferType> GlobalDecreasingSizeBestFitHeap<BufferType>::SlicedAllocationFinder:: FreeChunkRoot::FreeChunkRoot(const Chunk& free_chunk, int64_t free_chunk_slice_time) : chunk(free_chunk), pieces({{free_chunk.offset, {free_chunk_slice_time, free_chunk}}}) {} template <typename BufferType> void GlobalDecreasingSizeBestFitHeap<BufferType>::SlicedAllocationFinder:: FreeChunkRoot::Update(const Chunk& free_chunk, int64_t free_chunk_slice_time) { VLOG(4) << "Updating root " << chunk.ToString() << " with " << free_chunk.ToString() << ", free at t" << free_chunk_slice_time; std::vector<FreeChunkPiece> new_pieces; for (auto it = pieces.lower_bound(free_chunk.chunk_end() - 1); it != pieces.end() && it->second.dimensions.chunk_end() >= free_chunk.offset;) { const FreeChunkPiece& piece = it->second; if (!free_chunk.OverlapsWith(piece.dimensions) || free_chunk_slice_time != piece.earliest_free_slice_time - 1) { ++it; continue; } if (free_chunk.offset > piece.dimensions.offset) { FreeChunkPiece new_piece0( {piece.earliest_free_slice_time, Chunk::FromOffsetEnd( piece.dimensions.offset, std::min(free_chunk.offset, piece.dimensions.chunk_end()))}); new_pieces.push_back(new_piece0); } FreeChunkPiece new_piece1( {free_chunk_slice_time, Chunk::FromOffsetEnd( std::max(free_chunk.offset, piece.dimensions.offset), std::min(free_chunk.chunk_end(), piece.dimensions.chunk_end()))}); new_pieces.push_back(new_piece1); if (free_chunk.chunk_end() < piece.dimensions.chunk_end()) { FreeChunkPiece new_piece2( {piece.earliest_free_slice_time, Chunk::FromOffsetEnd(free_chunk.chunk_end(), piece.dimensions.chunk_end())}); new_pieces.push_back(new_piece2); } it = pieces.erase(it); } for (auto it = new_pieces.begin(); it != new_pieces.end(); ++it) { pieces.insert({it->dimensions.offset, *it}); } VLOG(4) << "Root after update: " << ToString(); } namespace { constexpr int64_t kMaxRenderOffset = 200; constexpr int64_t kMaxRenderSliceTime = 9; std::string RenderTimeByFreeChunks( const std::vector<std::vector<Chunk>>& time_by_chunks) { if (time_by_chunks.size() - 1 > kMaxRenderSliceTime) { return "too many time slices to render"; } std::vector<std::string> time_by_memory_units; for (int i = 0; i < time_by_chunks.size(); ++i) { time_by_memory_units.push_back(std::string(kMaxRenderOffset + 1, 'X')); for (const Chunk& chunk : time_by_chunks[i]) { if (chunk.chunk_end() > kMaxRenderOffset) { return "largest offset is too large to render"; } for (int j = chunk.offset; j < chunk.chunk_end(); ++j) { time_by_memory_units[i][j] = ' '; } } } std::vector<std::string> lines; lines.push_back(" ^"); for (int i = time_by_memory_units.size() - 1; i >= 0; --i) { lines.push_back(absl::StrCat("t", i, " |", time_by_memory_units[i])); } std::string yaxis = " +"; for (int i = 0; i < kMaxRenderOffset + 1; ++i) { if (i % 10 == 0) { yaxis += "!"; continue; } if (i % 5 == 0) { yaxis += "|"; continue; } yaxis += "-"; } lines.push_back(absl::StrCat(yaxis, ">")); lines.push_back(" space"); return absl::StrJoin(lines, "\n"); } } template <typename BufferType> GlobalDecreasingSizeBestFitHeap<BufferType>::SlicedAllocationFinder:: SlicedAllocationFinder( absl::Span<const FreeChunks> free_chunks_per_slice_time, std::vector<int64_t> sorted_slice_sizes, int64_t max_colocation_size, int64_t preferred_offset, int64_t alignment, std::unique_ptr<SliceTimePermutationIterator> slice_time_permutation_iterator, absl::AnyInvocable<bool(int64_t) const> is_offset_allowed) : sorted_slice_sizes_(std::move(sorted_slice_sizes)), slice_size_sum_(std::accumulate(sorted_slice_sizes_.begin(), sorted_slice_sizes_.end(), static_cast<int64_t>(0))), max_colocation_size_(max_colocation_size), preferred_offset_(preferred_offset), alignment_(alignment), slice_time_permutation_iterator_( std::move(slice_time_permutation_iterator)), is_offset_allowed_(std::move(is_offset_allowed)) { CHECK_EQ(sorted_slice_sizes_.size(), free_chunks_per_slice_time.size()) << "We expect a data structure explaining the free chunks at each slice " "time."; CHECK(!free_chunks_per_slice_time.empty()) << "Even an unsliced allocation is expected to have a list of free " "chunks at slice time t0."; if (VLOG_IS_ON(1)) { std::vector<std::vector<Chunk>> time_by_chunks; for (int64_t i = 0; i < free_chunks_per_slice_time.size(); ++i) { std::vector<Chunk> chunks; for (const auto& free_chunk : free_chunks_per_slice_time[i]) { chunks.push_back( Chunk::FromOffsetEnd(free_chunk.first, free_chunk.second)); } time_by_chunks.push_back(chunks); } LOG(INFO) << "Initial free space:\n" << RenderTimeByFreeChunks(time_by_chunks); } if (max_colocation_size_ < slice_size_sum_) { max_colocation_size_ = slice_size_sum_; } for (const std::pair<const int64_t, int64_t>& free_chunk_pair : free_chunks_per_slice_time.back()) { Chunk free_chunk = Chunk::FromOffsetEnd(free_chunk_pair.first, free_chunk_pair.second); if (free_chunk.size == 0) { continue; } CHECK_GT(free_chunk.size, 0); free_chunks_.insert( {free_chunk_pair.first, FreeChunkRoot(free_chunk, LatestSliceTime())}); } for (int64_t free_chunk_slice_time = LatestSliceTime() - 1; free_chunk_slice_time >= EarliestSliceTime(); --free_chunk_slice_time) { auto it = free_chunks_.begin(); for (const std::pair<const int64_t, int64_t>& free_chunk_pair : free_chunks_per_slice_time[free_chunk_slice_time]) { Chunk free_chunk = Chunk::FromOffsetEnd(free_chunk_pair.first, free_chunk_pair.second); if (free_chunk.size == 0) { continue; } CHECK_GT(free_chunk.size, 0); for (; it != free_chunks_.end() && free_chunk.chunk_end() - 1 < it->second.chunk.offset; ++it) { } if (it == free_chunks_.end()) { break; } auto previous_it = it; for (; it != free_chunks_.end() && it->second.chunk.OverlapsWith(free_chunk); previous_it = it, ++it) { FreeChunkRoot& root = it->second; root.Update(free_chunk, free_chunk_slice_time); } it = previous_it; } } VLOG(2) << "Initial candidates:\n" << FreeChunksToAsciiArt(); VLOG(2) << "SlicedAllocationFinder:\n" << ToString(); } template <typename BufferType> std::string GlobalDecreasingSizeBestFitHeap< BufferType>::SlicedAllocationFinder::FreeChunksToAsciiArt() const { auto it = free_chunks_.begin(); if (it == free_chunks_.end()) { return "no candidate data"; } int64_t final_offset = it->second.chunk.chunk_end(); if (LatestSliceTime() > kMaxRenderSliceTime || final_offset > kMaxRenderOffset) { return "candidates too large to render"; } std::vector<std::vector<Chunk>> time_by_chunks; for (int64_t i = EarliestSliceTime(); i <= LatestSliceTime(); ++i) { time_by_chunks.push_back({}); } for (const std::pair<const int64_t, FreeChunkRoot>& offset_root_pair : free_chunks_) { for (const std::pair<const int64_t, FreeChunkPiece>& offset_piece_pair : offset_root_pair.second.pieces) { for (int64_t slice_time = offset_piece_pair.second.earliest_free_slice_time; slice_time <= LatestSliceTime(); ++slice_time) { time_by_chunks[slice_time].push_back( offset_piece_pair.second.dimensions); } } } return RenderTimeByFreeChunks(time_by_chunks); } template <typename BufferType> std::string GlobalDecreasingSizeBestFitHeap< BufferType>::SlicedAllocationFinder::ToString() const { std::vector<std::string> lines; lines.push_back(absl::StrCat("slices: { ", absl::StrJoin(sorted_slice_sizes_, ", "), " }")); lines.push_back(absl::StrCat("max_colocation_size: ", max_colocation_size_)); lines.push_back(absl::StrCat("preferred_offset: ", preferred_offset_)); lines.push_back("free chunks:"); int i = 0; for (auto it = free_chunks_.rbegin(); it != free_chunks_.rend(); ++it) { lines.push_back(absl::StrCat(" chunk ", i, ": ", it->second.ToString())); ++i; } return absl::StrJoin(lines, "\n"); } template <typename BufferType> typename GlobalDecreasingSizeBestFitHeap< BufferType>::SlicedAllocationFinder::ChunksSortedBySliceTime GlobalDecreasingSizeBestFitHeap<BufferType>::SlicedAllocationFinder::Find() const { if (preferred_offset_ >= 0) { ChunksSortedBySliceTime chunks = FindForOffset(preferred_offset_); if (!chunks.empty()) { VLOG(1) << "SlicedAllocationFinder found chunks: " << "{ " << absl::StrJoin(chunks, ", ", absl::StreamFormatter()) << " }"; return chunks; } } std::vector<const FreeChunkRoot*> root_heap; for (auto it = free_chunks_.rbegin(); it != free_chunks_.rend(); ++it) { root_heap.push_back(&it->second); } auto heap_cmp = [](const FreeChunkRoot* lhs, const FreeChunkRoot* rhs) { if (lhs->chunk.size != rhs->chunk.size) { return lhs->chunk.size > rhs->chunk.size; } return lhs->chunk.offset > rhs->chunk.offset; }; auto heap_next = [&]() -> const FreeChunkRoot* { if (root_heap.empty()) { return nullptr; } absl::c_pop_heap(root_heap, heap_cmp); const FreeChunkRoot* root = root_heap.back(); root_heap.pop_back(); return root; }; absl::c_make_heap(root_heap, heap_cmp); for (const FreeChunkRoot* root = heap_next(); root != nullptr; root = heap_next()) { VLOG(3) << "SlicedAllocationFinder::Find() searching " << root->ToString(); ChunksSortedBySliceTime chunks = FindInRoot(*root); if (!chunks.empty()) { VLOG(1) << "SlicedAllocationFinder found chunks: " << "{ " << absl::StrJoin(chunks, ", ", absl::StreamFormatter()) << " }"; return chunks; } } LOG(ERROR) << "We did not find a place for our sliced allocation. This " "should not happen because MSA operates on an infinitely " "sized heap."; return {}; } template <typename BufferType> typename GlobalDecreasingSizeBestFitHeap< BufferType>::SlicedAllocationFinder::ChunksSortedBySliceTime GlobalDecreasingSizeBestFitHeap< BufferType>::SlicedAllocationFinder::FindForOffset(int64_t offset) const { VLOG(3) << "SlicedAllocationFinder::FindForOffset() searching offset " << offset; auto it = free_chunks_.lower_bound(offset); if (it != free_chunks_.end()) { const FreeChunkRoot* root = &it->second; ChunksSortedBySliceTime chunks = FindInRoot(*root, offset); if (!chunks.empty()) { VLOG(3) << "SlicedAllocationFinder found chunks at " << offset << ": " << "{ " << absl::StrJoin(chunks, ", ", absl::StreamFormatter()) << " }"; return chunks; } } return {}; } template <typename BufferType> absl::Status GlobalDecreasingSizeBestFitHeap<BufferType>:: SlicedAllocationFinder::DoesPermutationFit( absl::Span<const int64_t> permutation_of_slice_times, const FreeChunkRoot& root, int64_t offset) const { absl::Status result = DoesPermutationFitImpl(permutation_of_slice_times, root, offset); VLOG(3) << "SlicedAllocationFinder::DoesPermutationFit\n" << " permutation of slice times: [ " << absl::StrJoin(permutation_of_slice_times, ",") << " ]\n" << " offset: " << offset << "\n" << " root: " << root.ToString() << "\n" << " -> " << result; return result; } template <typename BufferType> absl::Status GlobalDecreasingSizeBestFitHeap<BufferType>:: SlicedAllocationFinder::DoesPermutationFitImpl( absl::Span<const int64_t> permutation_of_slice_times, const FreeChunkRoot& root, int64_t offset) const { if (permutation_of_slice_times.size() != sorted_slice_sizes_.size()) { return InvalidArgumentStrCat( sorted_slice_sizes_.size(), " slices times expected in permutation. ", permutation_of_slice_times.size(), " specified."); } if (offset >= root.chunk.chunk_end()) { return FailedPrecondition( "%s", absl::StrCat("Free chunk root ", root.chunk.ToString(), " does not overlap with offset ", offset, ".")); } if (offset + max_colocation_size_ > root.chunk.chunk_end()) { return FailedPrecondition( "%s", absl::StrCat("Not enough space to fit enitre allocation [", offset, ", ", offset + max_colocation_size_, ") in free chunk root ", root.chunk.ToString())); } if (!is_offset_allowed_(offset)) { return FailedPrecondition( "%s", absl::StrCat("We are not permitted to place an allocation at ", "offset ", offset, ".")); } auto piece_fwd_it = root.pieces.lower_bound(offset); if (piece_fwd_it == root.pieces.end()) { return FailedPrecondition( "%s", absl::StrCat("Offset ", offset, " comes before free chunk root ", root.chunk.ToString())); } ++piece_fwd_it; auto piece_reverse_it = std::make_reverse_iterator(piece_fwd_it); auto at_pieces_end = [&](auto it) { return it == root.pieces.rend(); }; size_t slice_index = 0; auto out_of_slices = [&](size_t index) { return index > LatestSliceTime(); }; int64_t amount_of_current_slice_consumed = 0; int64_t current_offset = offset; while (!at_pieces_end(piece_reverse_it) && !out_of_slices(slice_index)) { int64_t current_slice_time = permutation_of_slice_times[slice_index]; int64_t current_slice_size = sorted_slice_sizes_[slice_index]; int64_t remaining_in_slice = current_slice_size - amount_of_current_slice_consumed; int64_t current_piece_time = piece_reverse_it->second.earliest_free_slice_time; int64_t remaining_in_piece = piece_reverse_it->second.dimensions.chunk_end() - current_offset; int64_t amount_to_consume = std::min(remaining_in_slice, remaining_in_piece); if (current_piece_time > current_slice_time) { return FailedPrecondition( "%s", absl::StrCat("At slice time t", current_slice_time, ", slice ", slice_index, " does not fit at offset ", current_offset, " in root ", root.chunk.ToString())); } if (remaining_in_slice >= remaining_in_piece) { ++piece_reverse_it; amount_of_current_slice_consumed += amount_to_consume; } if (remaining_in_slice <= remaining_in_piece) { ++slice_index; amount_of_current_slice_consumed = 0; } current_offset += amount_to_consume; } if (!out_of_slices(slice_index)) { return InternalStrCat("Ran out of space in root ", root.chunk.ToString(), " to fit slice permutation; however, we should " "have caught such a condition earlier."); } return absl::OkStatus(); } template <typename BufferType> typename GlobalDecreasingSizeBestFitHeap< BufferType>::SlicedAllocationFinder::ChunksSortedBySliceTime GlobalDecreasingSizeBestFitHeap<BufferType>::SlicedAllocationFinder::FindInRoot( const FreeChunkRoot& root, std::optional<int64_t> only_try_this_offset) const { int64_t first_offset = root.chunk.offset; int64_t last_end = root.chunk.chunk_end(); if (only_try_this_offset.has_value()) { first_offset = *only_try_this_offset; last_end = *only_try_this_offset + max_colocation_size_; if (*only_try_this_offset % alignment_ != 0) { return {}; } } else if (first_offset % alignment_ != 0) { first_offset = first_offset + (alignment_ - (first_offset % alignment_)); } CHECK_EQ(first_offset % alignment_, 0); for (int64_t offset = first_offset; offset + max_colocation_size_ <= last_end; offset += alignment_) { for (slice_time_permutation_iterator_->Begin(); !slice_time_permutation_iterator_->Done(); slice_time_permutation_iterator_->Next()) { if (DoesPermutationFit(slice_time_permutation_iterator_->Get(), root, offset) .ok()) { return PermutationToChunks(slice_time_permutation_iterator_->Get(), offset); } } if (root.pieces.size() == 1) { break; } } return {}; } template <typename BufferType> typename GlobalDecreasingSizeBestFitHeap< BufferType>::SlicedAllocationFinder::ChunksSortedBySliceTime GlobalDecreasingSizeBestFitHeap<BufferType>::SlicedAllocationFinder:: PermutationToChunks(absl::Span<const int64_t> permutation_of_slice_times, int64_t offset) const { ChunksSortedBySliceTime chunks(permutation_of_slice_times.size() + 1, Chunk::FromOffsetSize(-1, 1)); int64_t current_offset = offset; for (int64_t slice_index = 0; slice_index <= LatestSliceTime(); ++slice_index) { int64_t size = sorted_slice_sizes_[slice_index]; chunks[permutation_of_slice_times[slice_index]] = Chunk::FromOffsetSize(current_offset, size); current_offset += size; } chunks.back() = Chunk::FromOffsetSize( current_offset, max_colocation_size_ - (current_offset - offset)); DCHECK(std::all_of(chunks.begin(), chunks.end(), [](const Chunk& chunk) { return chunk.offset >= 0 && chunk.size >= 0; })); return chunks; } template <typename BufferType> absl::StatusOr<HeapSimulator::Result<BufferType>> GlobalDecreasingSizeBestFitHeap<BufferType>::Finish() { std::vector<BufferInterval> sorted_buffer_intervals = GetSortedBufferIntervals(); for (auto& buffer_interval : sorted_buffer_intervals) { if (!buffer_interval.need_allocation) { continue; } CommitChunk(buffer_interval, FindChunkCandidate(buffer_interval)); } VLOG(1) << "result heap_size: " << result_.heap_size; Result result; result.heap_size = result_.heap_size; result.heap_results.emplace_back(result_); return result; } template <typename BufferType> std::vector< typename GlobalDecreasingSizeBestFitHeap<BufferType>::BufferInterval> GlobalDecreasingSizeBestFitHeap<BufferType>::GetSortedBufferIntervals() const { std::vector<BufferInterval> sorted_buffer_intervals; sorted_buffer_intervals.reserve(buffer_intervals_.size()); for (auto& entry : buffer_intervals_) { sorted_buffer_intervals.push_back(entry.second); } absl::c_sort(sorted_buffer_intervals, buffer_interval_compare_); return sorted_buffer_intervals; } template <typename BufferType> typename GlobalDecreasingSizeBestFitHeap<BufferType>::Chunk GlobalDecreasingSizeBestFitHeap<BufferType>::FindChunkCandidate( const GlobalDecreasingSizeBestFitHeap::BufferInterval& buffer_interval, int64_t preferred_offset) const { const SlicedBufferInterval sliced_buffer_interval = SlicedBufferInterval::CreateConstInterval(buffer_interval); std::vector<Chunk> chunks = FindChunkCandidates(sliced_buffer_interval, preferred_offset); CHECK_EQ(chunks.size(), 1); return chunks[0]; } template <typename BufferType> typename GlobalDecreasingSizeBestFitHeap<BufferType>::FreeChunks GlobalDecreasingSizeBestFitHeap<BufferType>::MakeFreeChunks( const BufferInterval& buffer_interval, int64_t max_colocation_size) const { FreeChunks free_chunks{ {0, INT64_MAX}}; auto subtract_used_chunks = [&](const std::vector<Chunk>& used_chunks) { for (const Chunk& used_chunk : used_chunks) { auto it_end = free_chunks.lower_bound(used_chunk.chunk_end()); if (it_end == free_chunks.end()) continue; auto it_start = free_chunks.lower_bound(used_chunk.offset); int64_t free_chunk_end = it_end->second; if (it_start != free_chunks.end()) { if (used_chunk.offset - it_start->first >= buffer_interval.size) { it_start->second = std::min(it_start->second, used_chunk.offset); } else { ++it_start; } } free_chunks.erase(it_end, it_start); int64_t chunk_end_aligned = RoundUpTo(used_chunk.chunk_end(), alignment_); if (free_chunk_end - chunk_end_aligned >= max_colocation_size) { CHECK(free_chunks.insert({chunk_end_aligned, free_chunk_end}).second); } } }; subtract_used_chunks(interval_tree_.ChunksOverlappingInTime( buffer_interval.start, buffer_interval.end)); for (const BufferType* colocation : GetTransitiveColocations(buffer_interval)) { const BufferInterval& interval = buffer_intervals_.at(colocation); VLOG(1) << " Alias size " << interval.size << ", start " << interval.start << ", end " << interval.end << " " << interval.buffer->ToString(); subtract_used_chunks( interval_tree_.ChunksOverlappingInTime(interval.start, interval.end)); } return free_chunks; } template <typename BufferType> std::vector<typename GlobalDecreasingSizeBestFitHeap<BufferType>::Chunk> GlobalDecreasingSizeBestFitHeap<BufferType>::FindChunkCandidates( const SlicedBufferInterval& sliced_buffer_interval, int64_t preferred_offset) const { VLOG(1) << "Finding chunks for sliced buffer interval: " << sliced_buffer_interval.ToString(); int64_t max_colocation_size = GetMaxColocationSize(sliced_buffer_interval.full_buffer_interval()); auto chunks = CreateSlicedAllocationFinder( sliced_buffer_interval, max_colocation_size, preferred_offset, SliceTimePermutationIterator::CreateForNewAllocation( slice_time_permutation_iteration_type_, sliced_buffer_interval.inclusive_start_times())) .Find(); return PostProcessFindChunkCandidatesResult(sliced_buffer_interval, std::move(chunks)); } template <typename BufferType> int64_t GlobalDecreasingSizeBestFitHeap<BufferType>::GetMaxColocationSize( const BufferInterval& buffer_interval) const { int64_t max_colocation_size = buffer_interval.size; for (const BufferType* colocation : GetTransitiveColocations(buffer_interval)) { max_colocation_size = std::max(max_colocation_size, buffer_intervals_.at(colocation).size); } return max_colocation_size; } template <typename BufferType> typename GlobalDecreasingSizeBestFitHeap<BufferType>::SlicedAllocationFinder GlobalDecreasingSizeBestFitHeap<BufferType>::CreateSlicedAllocationFinder( const SlicedBufferInterval& sliced_interval, int64_t max_colocation_size, int64_t preferred_offset, std::unique_ptr<SliceTimePermutationIterator> slice_time_permutation_iterator, absl::AnyInvocable<bool(int64_t) const> is_offset_allowed) const { std::vector<FreeChunks> free_chunks_per_slice_time; free_chunks_per_slice_time.reserve(sliced_interval.num_slices()); for (int slice_time = 0; slice_time < sliced_interval.num_slices() - 1; ++slice_time) { free_chunks_per_slice_time.push_back( MakeFreeChunks(sliced_interval.IntervalForMakeFreeChunks(slice_time), -1)); } free_chunks_per_slice_time.push_back(MakeFreeChunks( sliced_interval.IntervalForMakeFreeChunks(sliced_interval.num_slices() - 1), max_colocation_size)); return SlicedAllocationFinder( free_chunks_per_slice_time, sliced_interval.SliceSizesSortedByOffset(), max_colocation_size, preferred_offset, alignment_, std::move(slice_time_permutation_iterator), std::move(is_offset_allowed)); } template <typename BufferType> std::vector<typename GlobalDecreasingSizeBestFitHeap<BufferType>::Chunk> GlobalDecreasingSizeBestFitHeap<BufferType>:: PostProcessFindChunkCandidatesResult( const SlicedBufferInterval& sliced_interval, std::vector<Chunk> chunks) const { if (chunks.empty()) { return {}; } CHECK_EQ(chunks.size(), sliced_interval.num_slices() + 1); chunks.pop_back(); return chunks; } template <typename BufferType> void GlobalDecreasingSizeBestFitHeap<BufferType>::CommitChunk( const GlobalDecreasingSizeBestFitHeap<BufferType>::BufferInterval& buffer_interval, GlobalDecreasingSizeBestFitHeap<BufferType>::Chunk chunk) { CHECK_EQ(chunk.size, buffer_interval.size); result_.heap_size = result_.UpdatedHeapSize(chunk); interval_tree_.Add(buffer_interval.start, buffer_interval.end, chunk); for (auto colocation : GetTransitiveColocations(buffer_interval)) { auto colocation_interval = buffer_intervals_[colocation]; Chunk colocation_chunk = Chunk::FromOffsetSize(chunk.offset, colocation_interval.size); result_.heap_size = result_.UpdatedHeapSize(colocation_chunk); interval_tree_.Add(colocation_interval.start, colocation_interval.end, colocation_chunk); AddToChunkMap(colocation, colocation_chunk); } AddToChunkMap(buffer_interval.buffer, chunk); } template <typename BufferType> void GlobalDecreasingSizeBestFitHeap<BufferType>::AddToChunkMap( const BufferType* buffer, Chunk chunk) { const auto emplace_result = result_.chunk_map.emplace(buffer, chunk); DCHECK(emplace_result.second); } absl::StatusOr<HeapSimulator::Result<HloValue>> ConstrainedGlobalDecreasingSizeBestFitHeap::Finish() { std::vector<BufferInterval> sorted_buffer_vec = GetSortedBufferIntervals(); std::list<BufferInterval> sorted_buffer_intervals(sorted_buffer_vec.begin(), sorted_buffer_vec.end()); Result multi_heap_result; do { for (auto it = sorted_buffer_intervals.begin(); it != sorted_buffer_intervals.end();) { BufferInterval buffer_interval = *it; if (!buffer_interval.need_allocation) { it = sorted_buffer_intervals.erase(it); continue; } if (buffer_interval.size > size_limit_per_heap_) { LOG(WARNING) << "Alloc buffer size " << buffer_interval.size << " larger than the per-heap size limit " << size_limit_per_heap_; } Chunk chunk_candidate = FindChunkCandidate(buffer_interval); if (chunk_candidate.chunk_end() <= size_limit_per_heap_ || result_.heap_size == 0) { CommitChunk(buffer_interval, chunk_candidate); it = sorted_buffer_intervals.erase(it); continue; } ++it; } multi_heap_result.heap_size += result_.heap_size; multi_heap_result.heap_results.push_back(std::move(result_)); result_ = {}; interval_tree_ = {}; } while (!sorted_buffer_intervals.empty()); VLOG(1) << "Number of heaps produced = " << multi_heap_result.heap_results.size(); return multi_heap_result; } template <typename BufferType> absl::StatusOr<HeapSimulator::Result<BufferType>> ChooseBestHeapAlgorithm<BufferType>::Finish() { DCHECK(!algorithms_.empty()); std::vector<Result> results(algorithms_.size()); int64_t min_size = INT64_MAX; int min_size_index = -1; for (int i = 0; i < algorithms_.size(); ++i) { TF_ASSIGN_OR_RETURN(results[i], algorithms_[i]->Finish()); if (results[i].heap_size < min_size) { min_size = results[i].heap_size; min_size_index = i; } } DCHECK_GE(min_size_index, 0); return results[min_size_index]; } template class GlobalDecreasingSizeBestFitHeap<HloValue>; template class GlobalDecreasingSizeBestFitHeap<AllocationBlock>; template class ChooseBestHeapAlgorithm<HloValue>; }
#include "xla/service/heap_simulator/heap_simulator.h" #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/literal_util.h" #include "xla/service/buffer_value.h" #include "xla/service/heap_simulator/allocation_block.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_dataflow_analysis.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_parser.h" #include "xla/service/hlo_value.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace { using ::testing::ContainerEq; using ::testing::HasSubstr; using ::testing::StrEq; class MinimumMemoryForSequenceTest : public HloTestBase {}; TEST_F(MinimumMemoryForSequenceTest, MultiComputation) { auto module = CreateNewVerifiedModule(); const Shape scalar_shape = ShapeUtil::MakeShape(xla::F32, {}); const Shape tuple_shape = ShapeUtil::MakeTupleShape({scalar_shape, scalar_shape}); auto cond_builder = HloComputation::Builder("WhileCond"); HloInstruction* cond_param = cond_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "cond_param")); HloInstruction* cond_iter = cond_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape, cond_param, 0)); HloInstruction* cond_data = cond_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape, cond_param, 1)); HloInstruction* cond_lt = cond_builder.AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), cond_iter, cond_data, ComparisonDirection::kLt)); HloComputation* cond_computation = module->AddEmbeddedComputation(cond_builder.Build()); auto body_builder = HloComputation::Builder("WhileBody"); HloInstruction* body_param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "body_param")); HloComputation* body_computation = module->AddEmbeddedComputation(body_builder.Build()); auto builder = HloComputation::Builder(TestName()); HloInstruction* iter = builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "param_iter")); HloInstruction* data = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "param_data")); HloInstruction* tuple = builder.AddInstruction(HloInstruction::CreateTuple({iter, data})); HloInstruction* while_op = builder.AddInstruction(HloInstruction::CreateWhile( tuple_shape, cond_computation, body_computation, tuple)); HloComputation* entry_computation = module->AddEntryComputation(builder.Build()); auto size_fn = [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape(), 8); }; HloSchedule schedule(module.get()); schedule.set_sequence(cond_computation, {cond_param, cond_iter, cond_data, cond_lt}); schedule.set_sequence(body_computation, {body_param}); schedule.set_sequence(entry_computation, {iter, data, tuple, while_op}); TF_ASSERT_OK(schedule.Verify()); EXPECT_EQ(25, HeapSimulator::MinimumMemoryForModule(schedule, size_fn).value()); } TEST_F(MinimumMemoryForSequenceTest, SubcomputationAccounting) { auto module = CreateNewVerifiedModule(); const Shape r0f32 = ShapeUtil::MakeShape(F32, {}); const Shape r1f32 = ShapeUtil::MakeShape(F32, {4}); const Shape r2f32 = ShapeUtil::MakeShape(F32, {2, 4}); auto cond_builder = HloComputation::Builder("WhileCond"); HloInstruction* cond_param = cond_builder.AddInstruction( HloInstruction::CreateParameter(0, r1f32, "cond_param")); HloInstruction* slice = cond_builder.AddInstruction(HloInstruction::CreateSlice( ShapeUtil::MakeShape(F32, {1}), cond_param, {0}, {1}, {1})); HloInstruction* reshape = cond_builder.AddInstruction(HloInstruction::CreateReshape(r0f32, slice)); HloInstruction* zero = cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0))); HloInstruction* cond_comparison = cond_builder.AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), reshape, zero, ComparisonDirection::kNe)); auto cond_computation = module->AddEmbeddedComputation(cond_builder.Build()); auto body_builder = HloComputation::Builder("WhileBody"); HloInstruction* body_param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, r1f32, "body_param")); HloInstruction* one_vector = body_builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({1, 1, 1, 1}))); HloInstruction* subtract = body_builder.AddInstruction(HloInstruction::CreateBinary( r1f32, HloOpcode::kSubtract, body_param, one_vector)); auto body_computation = module->AddEmbeddedComputation(body_builder.Build()); auto builder = HloComputation::Builder(TestName()); HloInstruction* while_init = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({1, 1, 1, 1}))); HloInstruction* while_loop = builder.AddInstruction(HloInstruction::CreateWhile( r1f32, cond_computation, body_computation, while_init)); HloInstruction* bcast = builder.AddInstruction( HloInstruction::CreateBroadcast(r2f32, while_loop, {1})); HloInstruction* matrix = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR2<float>( {{1.0, 2.0, 3.0, 4.0}, {1.0, 2.0, 3.0, 4.0}}))); HloInstruction* transpose = builder.AddInstruction( HloInstruction::CreateTranspose(r2f32, matrix, {0, 1})); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(r2f32, HloOpcode::kAdd, transpose, bcast)); auto entry_computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); std::vector<HloInstruction*> cond_vec = {cond_param, slice, reshape, zero, cond_comparison}; std::vector<HloInstruction*> while_body_vec = {body_param, one_vector, subtract}; std::vector<HloInstruction*> entry_comp_vec = {while_init, while_loop, bcast, matrix, transpose, add}; schedule.set_sequence(cond_computation, cond_vec); schedule.set_sequence(body_computation, while_body_vec); schedule.set_sequence(entry_computation, entry_comp_vec); auto size_fn = [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape()); }; std::unique_ptr<HloAliasAnalysis> alias_analysis = HloAliasAnalysis::Run(module.get()).value(); EXPECT_EQ(64, HeapSimulator::MinimumMemoryForComputation( *entry_computation, schedule.sequence(entry_computation), *alias_analysis, size_fn) .value()); } const char kAlloc[] = "Alloc"; const char kFree[] = "Free"; const char kShare[] = "Share"; const char kFinish[] = "Finish"; using CallSequence = std::vector<std::pair<std::string, const HloValue*>>; class HeapCallRecorder : public HeapAlgorithm<HloValue> { public: explicit HeapCallRecorder(CallSequence* calls) : calls_(calls) {} ~HeapCallRecorder() override {} void Alloc(const HloValue* buffer, int64_t size) override { calls_->emplace_back(kAlloc, buffer); const int64_t offset = result_.chunk_map.size(); result_.chunk_map.emplace(buffer, Chunk::FromOffsetSize(offset, size)); } void ShareWith(const HloValue* buffer, const HloValue* shared, int64_t size) override { calls_->emplace_back(kShare, buffer); const int64_t offset = result_.chunk_map[shared].offset; result_.chunk_map.emplace(buffer, Chunk::FromOffsetSize(offset, size)); } void Free(const HloValue* buffer, int64_t size) override { calls_->emplace_back(kFree, buffer); } absl::StatusOr<Result> Finish() override { calls_->emplace_back(kFinish, nullptr); HeapSimulator::Result<HloValue> result; result.heap_size = result_.heap_size; result.heap_results.emplace_back(std::move(result_)); return result; } private: CallSequence* calls_; HeapSimulator::HeapResult<HloValue> result_; }; class HeapSimulatorTracker { public: explicit HeapSimulatorTracker( std::unique_ptr<HloModule> module, const std::vector<HloInstruction*>& instruction_sequence, const std::vector<HloInstruction*>& must_alias_set = {}, const HloDataflowAnalysis::CanShareBuffer& can_share_buffer = nullptr) { module_ = std::move(module); Init(instruction_sequence, can_share_buffer); } explicit HeapSimulatorTracker( const std::string& name, std::unique_ptr<HloComputation> entry_computation, const std::vector<HloInstruction*>& instruction_sequence, const std::vector<HloInstruction*>& must_alias_set = {}, const HloDataflowAnalysis::CanShareBuffer& can_share_buffer = nullptr) { HloModuleConfig config; module_ = std::make_unique<HloModule>(name, config); module_->AddEntryComputation(std::move(entry_computation)); Init(instruction_sequence, can_share_buffer); } explicit HeapSimulatorTracker(const std::string& name) { HloModuleConfig config; module_ = std::make_unique<HloModule>(name, config); } void RunWholeModule( const std::vector<HloInstruction*>& full_module_sequence) { alias_analysis_ = HloAliasAnalysis::Run(module_.get()).value(); HloSchedule schedule(module_.get()); absl::flat_hash_map<const HloInstruction*, int> reverse_position; for (int i = 0; i < full_module_sequence.size(); ++i) { HloInstruction* instruction = full_module_sequence[i]; schedule.GetOrCreateSequence(instruction->parent()) .push_back(instruction); reverse_position[instruction] = full_module_sequence.size() - i; } auto size_fn = [&reverse_position](const BufferValue& buffer) { return reverse_position[buffer.instruction()]; }; auto algorithm = std::make_unique<HeapCallRecorder>(&actual_calls_); result_ = HeapSimulator::Run(std::move(algorithm), *module_, schedule, *alias_analysis_, size_fn) .value(); } HloModule* module() { return module_.get(); } const HloValue* BufferAt(const HloInstruction* instruction, const ShapeIndex& index) const { return &alias_analysis_->dataflow_analysis().GetUniqueValueAt(instruction, index); } int64_t OffsetAt(const HloInstruction* instruction, const ShapeIndex& index) { const HloValue* buffer = BufferAt(instruction, index); CHECK_EQ(1, result_.heap_results.size()); return result_.heap_results.at(0).chunk_map.at(buffer).offset; } void ExpectCallSequence(const CallSequence& expected) const { auto to_string = [](const CallSequence& sequence) { std::string output; for (int64_t i = 0; i < sequence.size(); ++i) { auto pair = sequence.at(i); absl::StrAppendFormat(&output, "%d", i); absl::StrAppendFormat(&output, " :%s", pair.first); if (pair.second != nullptr) { absl::StrAppendFormat(&output, " - %s{%s}\n", pair.second->instruction()->name(), pair.second->index().ToString()); } } return output; }; EXPECT_EQ(expected, actual_calls_) << "Expected:\n" << to_string(expected) << " \nActual:\n" << to_string(actual_calls_) << "\n"; } void ExpectSharedBuffers(const HloInstruction* instruction_a, const ShapeIndex& index_a, const HloInstruction* instruction_b, const ShapeIndex& index_b) { int64_t offset_a = OffsetAt(instruction_a, index_a); int64_t offset_b = OffsetAt(instruction_b, index_b); EXPECT_EQ(offset_a, offset_b); } private: void Init(const std::vector<HloInstruction*>& instruction_sequence, const HloDataflowAnalysis::CanShareBuffer& can_share_buffer) { auto zero_size = [](const BufferValue& buffer) { return 0; }; auto algorithm = std::make_unique<HeapCallRecorder>(&actual_calls_); alias_analysis_ = HloAliasAnalysis::Run(module_.get(), can_share_buffer).value(); HeapSimulator::Options options; result_ = HeapSimulator::Run(std::move(algorithm), *module_->entry_computation(), HloInstructionSequence(instruction_sequence), *alias_analysis_, zero_size, options) .value(); } std::unique_ptr<HloModule> module_; std::unique_ptr<HloAliasAnalysis> alias_analysis_; CallSequence actual_calls_; HeapSimulator::Result<HloValue> result_; }; class HeapSimulatorTest : public HloTestBase { protected: HeapSimulatorTest() {} ~HeapSimulatorTest() override {} Shape f32scalar_ = ShapeUtil::MakeShape(xla::F32, {}); Shape f32vec4_ = ShapeUtil::MakeShape(F32, {4}); }; TEST_F(HeapSimulatorTest, ScalarConstant) { auto builder = HloComputation::Builder(TestName()); auto const0 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); HeapSimulatorTracker tracker(TestName(), builder.Build(), {const0}); tracker.ExpectCallSequence({{kFinish, nullptr}}); } TEST_F(HeapSimulatorTest, OneParam) { auto builder = HloComputation::Builder(TestName()); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, f32scalar_, "param0")); HeapSimulatorTracker tracker(TestName(), builder.Build(), {param0}); tracker.ExpectCallSequence({ {kAlloc, tracker.BufferAt(param0, {})}, {kFree, tracker.BufferAt(param0, {})}, {kFinish, nullptr}, }); } TEST_F(HeapSimulatorTest, Multiply) { auto builder = HloComputation::Builder(TestName()); auto paramA = builder.AddInstruction( HloInstruction::CreateParameter(0, f32scalar_, "paramA")); auto paramX = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec4_, "paramX")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec4_, HloOpcode::kMultiply, paramA, paramX)); HeapSimulatorTracker tracker(TestName(), builder.Build(), {paramA, paramX, mul}); tracker.ExpectCallSequence({ {kAlloc, tracker.BufferAt(paramA, {})}, {kAlloc, tracker.BufferAt(paramX, {})}, {kAlloc, tracker.BufferAt(mul, {})}, {kFree, tracker.BufferAt(paramA, {})}, {kFree, tracker.BufferAt(paramX, {})}, {kFree, tracker.BufferAt(mul, {})}, {kFinish, nullptr}, }); } TEST_F(HeapSimulatorTest, MultiplyAdd) { auto builder = HloComputation::Builder(TestName()); auto paramA = builder.AddInstruction( HloInstruction::CreateParameter(0, f32scalar_, "paramA")); auto paramX = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec4_, "paramX")); auto paramY = builder.AddInstruction( HloInstruction::CreateParameter(2, f32vec4_, "paramY")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec4_, HloOpcode::kMultiply, paramA, paramX)); auto add = builder.AddInstruction( HloInstruction::CreateBinary(f32vec4_, HloOpcode::kAdd, mul, paramY)); HeapSimulatorTracker tracker(TestName(), builder.Build(), {paramA, paramX, mul, paramY, add}); tracker.ExpectCallSequence({ {kAlloc, tracker.BufferAt(paramA, {})}, {kAlloc, tracker.BufferAt(paramX, {})}, {kAlloc, tracker.BufferAt(paramY, {})}, {kAlloc, tracker.BufferAt(mul, {})}, {kFree, tracker.BufferAt(mul, {})}, {kShare, tracker.BufferAt(add, {})}, {kFree, tracker.BufferAt(paramA, {})}, {kFree, tracker.BufferAt(paramX, {})}, {kFree, tracker.BufferAt(paramY, {})}, {kFree, tracker.BufferAt(add, {})}, {kFinish, nullptr}, }); tracker.ExpectSharedBuffers(add, {}, mul, {}); } TEST_F(HeapSimulatorTest, FusionOutputsOnlyShareOnce) { auto can_share_buffer = [](const HloInstruction* instr, const HloInstruction* operand, const ShapeIndex& user_index) -> std::optional<bool> { return instr->opcode() == HloOpcode::kFusion && operand->shape().IsArray() && ShapeUtil::Equal(operand->shape(), ShapeUtil::GetSubshape(instr->shape(), user_index)); }; HloModuleConfig config; auto module = std::make_unique<HloModule>(TestName(), config); auto builder = HloComputation::Builder(TestName()); auto paramA = builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec4_, "paramA")); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(f32vec4_, HloOpcode::kNegate, paramA)); auto fusion_builder = HloComputation::Builder("simple_two_way_forwarding"); { auto param = fusion_builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec4_, "x")); fusion_builder.AddInstruction(HloInstruction::CreateTuple({param, param})); } auto fusion_computation = module->AddEmbeddedComputation(fusion_builder.Build()); auto fusion = builder.AddInstruction(HloInstruction::CreateFusion( ShapeUtil::MakeTupleShape({f32vec4_, f32vec4_}), HloInstruction::FusionKind::kLoop, {negate}, fusion_computation)); auto element0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(f32scalar_, fusion, 0)); auto element1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(f32scalar_, fusion, 1)); auto negate0 = builder.AddInstruction( HloInstruction::CreateUnary(f32vec4_, HloOpcode::kNegate, element0)); auto negate1 = builder.AddInstruction( HloInstruction::CreateUnary(f32vec4_, HloOpcode::kNegate, element1)); builder.AddInstruction(HloInstruction::CreateBinary(f32vec4_, HloOpcode::kAdd, negate0, negate1)); module->AddEntryComputation(builder.Build()); HeapSimulatorTracker tracker( std::move(module), {paramA, negate, fusion, element0, element1, negate0, negate1}, {}, can_share_buffer); tracker.ExpectCallSequence({ {kAlloc, tracker.BufferAt(paramA, {})}, {kAlloc, tracker.BufferAt(negate, {})}, {kAlloc, tracker.BufferAt(fusion, {})}, {kFree, tracker.BufferAt(negate, {})}, {kShare, tracker.BufferAt(fusion, {0})}, {kAlloc, tracker.BufferAt(fusion, {1})}, {kFree, tracker.BufferAt(fusion, {})}, {kAlloc, tracker.BufferAt(negate0, {})}, {kFree, tracker.BufferAt(fusion, {0})}, {kFree, tracker.BufferAt(negate0, {})}, {kAlloc, tracker.BufferAt(negate1, {})}, {kFree, tracker.BufferAt(fusion, {1})}, {kFree, tracker.BufferAt(negate1, {})}, {kFree, tracker.BufferAt(paramA, {})}, {kFinish, nullptr}, }); } TEST_F(HeapSimulatorTest, FusionOutputsOnlyShareOnceOutputShortLived) { auto can_share_buffer = [](const HloInstruction* instr, const HloInstruction* operand, const ShapeIndex& user_index) -> std::optional<bool> { if (instr->opcode() == HloOpcode::kFusion) { return true; } return false; }; HloModuleConfig config; auto module = std::make_unique<HloModule>(TestName(), config); auto builder = HloComputation::Builder(TestName()); auto paramA = builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec4_, "paramA")); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(f32vec4_, HloOpcode::kNegate, paramA)); auto fusion_builder = HloComputation::Builder("simple_two_way_forwarding"); { auto param = fusion_builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec4_, "x")); fusion_builder.AddInstruction(HloInstruction::CreateTuple({param, param})); } auto fusion_computation = module->AddEmbeddedComputation(fusion_builder.Build()); auto fusion = builder.AddInstruction(HloInstruction::CreateFusion( ShapeUtil::MakeTupleShape({f32vec4_, f32vec4_}), HloInstruction::FusionKind::kLoop, {negate}, fusion_computation)); auto element1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(f32scalar_, fusion, 1)); auto negate1 = builder.AddInstruction( HloInstruction::CreateUnary(f32vec4_, HloOpcode::kNegate, element1)); module->AddEntryComputation(builder.Build()); HeapSimulatorTracker tracker(std::move(module), {paramA, negate, fusion, element1, negate1}, {}, can_share_buffer); tracker.ExpectCallSequence({ {kAlloc, tracker.BufferAt(paramA, {})}, {kAlloc, tracker.BufferAt(negate, {})}, {kFree, tracker.BufferAt(negate, {})}, {kShare, tracker.BufferAt(fusion, {0})}, {kAlloc, tracker.BufferAt(fusion, {})}, {kAlloc, tracker.BufferAt(fusion, {1})}, {kFree, tracker.BufferAt(fusion, {0})}, {kFree, tracker.BufferAt(fusion, {})}, {kAlloc, tracker.BufferAt(negate1, {})}, {kFree, tracker.BufferAt(fusion, {1})}, {kFree, tracker.BufferAt(paramA, {})}, {kFree, tracker.BufferAt(negate1, {})}, {kFinish, nullptr}, }); } TEST_F(HeapSimulatorTest, BufferReusedOnce) { HeapSimulatorTracker tracker(TestName()); auto builder = HloComputation::Builder(TestName()); HloComputation::Builder fusion_builder("fusion"); { HloComputation::Builder& builder = fusion_builder; auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, f32vec4_, "A")); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(f32vec4_, HloOpcode::kExp, a_param)); auto neg = builder.AddInstruction( HloInstruction::CreateUnary(f32vec4_, HloOpcode::kNegate, a_param)); builder.AddInstruction(HloInstruction::CreateTuple({exp, neg})); } auto fusion_computation = tracker.module()->AddEmbeddedComputation(fusion_builder.Build()); auto a_param = builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec4_, "paramA")); auto neg = builder.AddInstruction( HloInstruction::CreateUnary(f32vec4_, HloOpcode::kNegate, a_param)); auto fusion = builder.AddInstruction(HloInstruction::CreateFusion( ShapeUtil::MakeTupleShape({f32vec4_, f32vec4_}), HloInstruction::FusionKind::kLoop, {neg}, fusion_computation)); tracker.module()->AddEntryComputation(builder.Build()); tracker.RunWholeModule({a_param, neg, fusion}); auto neg_buffer = tracker.OffsetAt(neg, {}); int64_t output_buffer_0 = tracker.OffsetAt(fusion, {0}); int64_t output_buffer_1 = tracker.OffsetAt(fusion, {1}); EXPECT_TRUE((neg_buffer == output_buffer_0) ^ (neg_buffer == output_buffer_1)); } TEST_F(HeapSimulatorTest, MultiplyDot) { auto builder = HloComputation::Builder(TestName()); auto paramA = builder.AddInstruction( HloInstruction::CreateParameter(0, f32scalar_, "paramA")); auto paramX = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec4_, "paramX")); auto paramY = builder.AddInstruction( HloInstruction::CreateParameter(2, f32scalar_, "paramY")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec4_, HloOpcode::kMultiply, paramA, paramX)); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); auto dot = builder.AddInstruction(HloInstruction::CreateDot( f32vec4_, mul, paramY, dot_dnums, DefaultPrecisionConfig(2))); HeapSimulatorTracker tracker(TestName(), builder.Build(), {paramA, paramX, mul, paramY, dot}); tracker.ExpectCallSequence({ {kAlloc, tracker.BufferAt(paramA, {})}, {kAlloc, tracker.BufferAt(paramX, {})}, {kAlloc, tracker.BufferAt(paramY, {})}, {kAlloc, tracker.BufferAt(mul, {})}, {kAlloc, tracker.BufferAt(dot, {})}, {kFree, tracker.BufferAt(mul, {})}, {kFree, tracker.BufferAt(paramA, {})}, {kFree, tracker.BufferAt(paramX, {})}, {kFree, tracker.BufferAt(paramY, {})}, {kFree, tracker.BufferAt(dot, {})}, {kFinish, nullptr}, }); } TEST_F(HeapSimulatorTest, MultiplyDotAdd) { auto builder = HloComputation::Builder(TestName()); auto paramA = builder.AddInstruction( HloInstruction::CreateParameter(0, f32scalar_, "paramA")); auto paramX = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec4_, "paramX")); auto paramY = builder.AddInstruction( HloInstruction::CreateParameter(2, f32scalar_, "paramY")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec4_, HloOpcode::kMultiply, paramA, paramX)); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); auto dot = builder.AddInstruction(HloInstruction::CreateDot( f32vec4_, mul, paramY, dot_dnums, DefaultPrecisionConfig(2))); auto add = builder.AddInstruction( HloInstruction::CreateBinary(f32vec4_, HloOpcode::kAdd, dot, paramA)); HeapSimulatorTracker tracker(TestName(), builder.Build(), {paramA, paramX, mul, paramY, dot, add}); tracker.ExpectCallSequence({ {kAlloc, tracker.BufferAt(paramA, {})}, {kAlloc, tracker.BufferAt(paramX, {})}, {kAlloc, tracker.BufferAt(paramY, {})}, {kAlloc, tracker.BufferAt(mul, {})}, {kAlloc, tracker.BufferAt(dot, {})}, {kFree, tracker.BufferAt(mul, {})}, {kFree, tracker.BufferAt(dot, {})}, {kShare, tracker.BufferAt(add, {})}, {kFree, tracker.BufferAt(paramA, {})}, {kFree, tracker.BufferAt(paramX, {})}, {kFree, tracker.BufferAt(paramY, {})}, {kFree, tracker.BufferAt(add, {})}, {kFinish, nullptr}, }); tracker.ExpectSharedBuffers(add, {}, dot, {}); } TEST_F(HeapSimulatorTest, MultiplyDotDot) { auto builder = HloComputation::Builder(TestName()); auto paramA = builder.AddInstruction( HloInstruction::CreateParameter(0, f32scalar_, "paramA")); auto paramX = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec4_, "paramX")); auto paramY = builder.AddInstruction( HloInstruction::CreateParameter(2, f32scalar_, "paramY")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec4_, HloOpcode::kMultiply, paramA, paramX)); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); auto dot0 = builder.AddInstruction(HloInstruction::CreateDot( f32vec4_, mul, paramY, dot_dnums, DefaultPrecisionConfig(2))); auto dot1 = builder.AddInstruction(HloInstruction::CreateDot( f32vec4_, dot0, paramY, dot_dnums, DefaultPrecisionConfig(2))); HeapSimulatorTracker tracker(TestName(), builder.Build(), {paramA, paramX, mul, paramY, dot0, dot1}); tracker.ExpectCallSequence({ {kAlloc, tracker.BufferAt(paramA, {})}, {kAlloc, tracker.BufferAt(paramX, {})}, {kAlloc, tracker.BufferAt(paramY, {})}, {kAlloc, tracker.BufferAt(mul, {})}, {kAlloc, tracker.BufferAt(dot0, {})}, {kFree, tracker.BufferAt(mul, {})}, {kAlloc, tracker.BufferAt(dot1, {})}, {kFree, tracker.BufferAt(dot0, {})}, {kFree, tracker.BufferAt(paramA, {})}, {kFree, tracker.BufferAt(paramX, {})}, {kFree, tracker.BufferAt(paramY, {})}, {kFree, tracker.BufferAt(dot1, {})}, {kFinish, nullptr}, }); } TEST_F(HeapSimulatorTest, MultiplyDotDotTuple) { auto builder = HloComputation::Builder(TestName()); auto paramA = builder.AddInstruction( HloInstruction::CreateParameter(0, f32scalar_, "paramA")); auto paramX = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec4_, "paramX")); auto paramY = builder.AddInstruction( HloInstruction::CreateParameter(2, f32scalar_, "paramY")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32vec4_, HloOpcode::kMultiply, paramA, paramX)); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); auto dot0 = builder.AddInstruction(HloInstruction::CreateDot( f32vec4_, mul, paramY, dot_dnums, DefaultPrecisionConfig(2))); auto dot1 = builder.AddInstruction(HloInstruction::CreateDot( f32vec4_, dot0, paramY, dot_dnums, DefaultPrecisionConfig(2))); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({dot0, dot1})); HeapSimulatorTracker tracker( TestName(), builder.Build(), {paramA, paramX, mul, paramY, dot0, dot1, tuple}); tracker.ExpectCallSequence({ {kAlloc, tracker.BufferAt(paramA, {})}, {kAlloc, tracker.BufferAt(paramX, {})}, {kAlloc, tracker.BufferAt(paramY, {})}, {kAlloc, tracker.BufferAt(mul, {})}, {kAlloc, tracker.BufferAt(dot0, {})}, {kFree, tracker.BufferAt(mul, {})}, {kAlloc, tracker.BufferAt(dot1, {})}, {kAlloc, tracker.BufferAt(tuple, {})}, {kFree, tracker.BufferAt(paramA, {})}, {kFree, tracker.BufferAt(paramX, {})}, {kFree, tracker.BufferAt(paramY, {})}, {kFree, tracker.BufferAt(dot0, {})}, {kFree, tracker.BufferAt(dot1, {})}, {kFree, tracker.BufferAt(tuple, {})}, {kFinish, nullptr}, }); } TEST_F(HeapSimulatorTest, IndependentTupleElements) { auto builder = HloComputation::Builder(TestName()); auto paramA = builder.AddInstruction( HloInstruction::CreateParameter(0, f32scalar_, "paramA")); auto paramB = builder.AddInstruction( HloInstruction::CreateParameter(1, f32scalar_, "paramB")); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( f32scalar_, HloOpcode::kMultiply, paramA, paramB)); auto add = builder.AddInstruction(HloInstruction::CreateBinary( f32scalar_, HloOpcode::kAdd, paramA, paramB)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({mul, add})); auto element0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(f32scalar_, tuple, 0)); auto broadcast = builder.AddInstruction( HloInstruction::CreateBroadcast(f32vec4_, element0, {0})); auto sub = builder.AddInstruction(HloInstruction::CreateBinary( f32scalar_, HloOpcode::kSubtract, paramA, paramB)); auto element1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(f32scalar_, tuple, 1)); auto output = builder.AddInstruction( HloInstruction::CreateTuple({broadcast, sub, element1})); HeapSimulatorTracker tracker(TestName(), builder.Build(), {paramA, paramB, mul, add, tuple, element0, broadcast, sub, element1, output}); tracker.ExpectCallSequence({ {kAlloc, tracker.BufferAt(paramA, {})}, {kAlloc, tracker.BufferAt(paramB, {})}, {kAlloc, tracker.BufferAt(mul, {})}, {kAlloc, tracker.BufferAt(add, {})}, {kAlloc, tracker.BufferAt(tuple, {})}, {kAlloc, tracker.BufferAt(broadcast, {})}, {kFree, tracker.BufferAt(mul, {})}, {kAlloc, tracker.BufferAt(sub, {})}, {kFree, tracker.BufferAt(tuple, {})}, {kAlloc, tracker.BufferAt(output, {})}, {kFree, tracker.BufferAt(paramA, {})}, {kFree, tracker.BufferAt(paramB, {})}, {kFree, tracker.BufferAt(add, {})}, {kFree, tracker.BufferAt(broadcast, {})}, {kFree, tracker.BufferAt(sub, {})}, {kFree, tracker.BufferAt(output, {})}, {kFinish, nullptr}, }); } TEST_F(HeapSimulatorTest, WholeModule) { HeapSimulatorTracker tracker(TestName()); const Shape scalar_shape = ShapeUtil::MakeShape(xla::F32, {}); const Shape tuple_shape = ShapeUtil::MakeTupleShape({scalar_shape, scalar_shape}); auto cond_builder = HloComputation::Builder("WhileCond"); HloInstruction* cond_param = cond_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "cond_param")); HloInstruction* cond_iter = cond_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape, cond_param, 0)); HloInstruction* cond_data = cond_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape, cond_param, 1)); HloInstruction* cond_lt = cond_builder.AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), cond_iter, cond_data, ComparisonDirection::kLt)); HloComputation* cond_computation = tracker.module()->AddEmbeddedComputation(cond_builder.Build()); auto body_builder = HloComputation::Builder("WhileBody"); HloInstruction* body_param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "body_param")); HloComputation* body_computation = tracker.module()->AddEmbeddedComputation(body_builder.Build()); auto builder = HloComputation::Builder(TestName()); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "param")); HloInstruction* while_op = builder.AddInstruction(HloInstruction::CreateWhile( tuple_shape, cond_computation, body_computation, param)); tracker.module()->AddEntryComputation(builder.Build()); tracker.RunWholeModule( {param, while_op, body_param, cond_param, cond_iter, cond_data, cond_lt}); tracker.ExpectCallSequence({ {kAlloc, tracker.BufferAt(param, {})}, {kAlloc, tracker.BufferAt(param, {0})}, {kAlloc, tracker.BufferAt(param, {1})}, {kAlloc, tracker.BufferAt(cond_lt, {})}, {kFree, tracker.BufferAt(cond_lt, {})}, {kFree, tracker.BufferAt(param, {})}, {kFree, tracker.BufferAt(param, {0})}, {kFree, tracker.BufferAt(param, {1})}, {kFinish, nullptr}, }); } TEST_F(HeapSimulatorTest, AsyncCallImplicitSharding) { std::string hlo_string = R"( HloModule module, is_scheduled=true called_computation { param0 = f32[4] parameter(0) constant = f32[1] constant(1) dynamic-update-slice = f32[4] dynamic-update-slice(param0, constant, constant) ROOT negate = f32[4] negate(dynamic-update-slice) } ENTRY entry { p0 = f32[8] parameter(0) call-start = ((f32[8]), f32[8], s32[]) call-start(p0), async_execution_thread="foo", to_apply=called_computation ROOT call-done = f32[8] call-done(call-start) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(auto alias_analysis, HloAliasAnalysis::Run(module.get())); auto size_fn = [](const BufferValue& buffer) -> int64_t { const Shape& shape = buffer.shape(); if (!shape.IsArray()) { return 0; } return ShapeUtil::ByteSizeOf(shape); }; auto algorithm = std::make_unique<GlobalDecreasingSizeBestFitHeap<HloValue>>( 1); HeapSimulator::Result<HloValue> result = HeapSimulator::Run(std::move(algorithm), *module, module->schedule(), *alias_analysis, size_fn) .value(); for (const auto& [value, chunk] : result.heap_results[0].chunk_map) { if (value->instruction()->name() == "dynamic-update-slice") { EXPECT_EQ(chunk.size, 32); } } } class HeapAlgorithmTestBase : public ::testing::Test { protected: HeapAlgorithmTestBase() : builder_("heap_simulator_test") { buffer_a_ = DummyBufferValue(); buffer_b_ = DummyBufferValue(); buffer_c_ = DummyBufferValue(); buffer_d_ = DummyBufferValue(); buffer_e_ = DummyBufferValue(); buffer_f_ = DummyBufferValue(); buffer_g_ = DummyBufferValue(); buffer_h_ = DummyBufferValue(); buffer_i_ = DummyBufferValue(); } ~HeapAlgorithmTestBase() override {} const HloValue* buffer_a_; const HloValue* buffer_b_; const HloValue* buffer_c_; const HloValue* buffer_d_; const HloValue* buffer_e_; const HloValue* buffer_f_; const HloValue* buffer_g_; const HloValue* buffer_h_; const HloValue* buffer_i_; private: const HloValue* DummyBufferValue() { const HloValue::Id id = buffers_.size(); auto const0 = builder_.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); buffers_.emplace_back(std::make_unique<HloValue>(id, const0, ShapeIndex{})); return buffers_.back().get(); } HloComputation::Builder builder_; std::vector<std::unique_ptr<HloValue>> buffers_; }; class NoFragmentationStatsHeapTest : public HeapAlgorithmTestBase {}; TEST_F(NoFragmentationStatsHeapTest, Empty) { NoFragmentationStatsHeap<HloValue> heap; TF_ASSERT_OK_AND_ASSIGN(const HeapSimulator::Result<HloValue> result, heap.Finish()); EXPECT_EQ(0, result.heap_size); } TEST_F(NoFragmentationStatsHeapTest, Simple) { NoFragmentationStatsHeap<HloValue> heap; heap.Alloc(buffer_a_, 10); heap.Alloc(buffer_b_, 20); heap.Alloc(buffer_c_, 30); heap.Alloc(buffer_d_, 30); heap.Free(buffer_a_, 10); heap.Free(buffer_b_, 20); heap.Free(buffer_c_, 30); heap.Free(buffer_d_, 30); TF_ASSERT_OK_AND_ASSIGN(const HeapSimulator::Result<HloValue> result, heap.Finish()); EXPECT_EQ(90, result.heap_size); } TEST_F(NoFragmentationStatsHeapTest, Mixed) { NoFragmentationStatsHeap<HloValue> heap; heap.Alloc(buffer_a_, 10); heap.Alloc(buffer_b_, 20); heap.Free(buffer_b_, 20); heap.Alloc(buffer_c_, 30); heap.Free(buffer_c_, 30); heap.Alloc(buffer_d_, 5); heap.Free(buffer_d_, 5); heap.Free(buffer_a_, 10); TF_ASSERT_OK_AND_ASSIGN(const HeapSimulator::Result<HloValue> result, heap.Finish()); EXPECT_EQ(40, result.heap_size); } class GlobalDecreasingSizeBestFitHeapTest : public HeapAlgorithmTestBase {}; TEST_F(GlobalDecreasingSizeBestFitHeapTest, Empty) { GlobalDecreasingSizeBestFitHeap<HloValue> heap(1); TF_ASSERT_OK_AND_ASSIGN(const HeapSimulator::Result<HloValue> result, heap.Finish()); EXPECT_EQ(0, result.heap_size); EXPECT_EQ(1, result.heap_results.size()); EXPECT_EQ(0, result.heap_results.at(0).chunk_map.size()); } TEST_F(GlobalDecreasingSizeBestFitHeapTest, DecreasingSize) { GlobalDecreasingSizeBestFitHeap<HloValue> heap(1); heap.Alloc(buffer_a_, 10); heap.Alloc(buffer_b_, 30); heap.Alloc(buffer_c_, 20); heap.Alloc(buffer_d_, 40); heap.Free(buffer_a_, 10); heap.Free(buffer_b_, 30); heap.Free(buffer_c_, 20); heap.Free(buffer_d_, 40); TF_ASSERT_OK_AND_ASSIGN(const HeapSimulator::Result<HloValue> results, heap.Finish()); EXPECT_EQ(1, results.heap_results.size()); const HeapSimulator::HeapResult<HloValue>& result = results.heap_results.at(0); EXPECT_EQ(100, result.heap_size); EXPECT_EQ(10, result.chunk_map.at(buffer_a_).size); EXPECT_EQ(30, result.chunk_map.at(buffer_b_).size); EXPECT_EQ(20, result.chunk_map.at(buffer_c_).size); EXPECT_EQ(40, result.chunk_map.at(buffer_d_).size); EXPECT_EQ(90, result.chunk_map.at(buffer_a_).offset); EXPECT_EQ(40, result.chunk_map.at(buffer_b_).offset); EXPECT_EQ(70, result.chunk_map.at(buffer_c_).offset); EXPECT_EQ(0, result.chunk_map.at(buffer_d_).offset); } TEST_F(GlobalDecreasingSizeBestFitHeapTest, DecreasingSizeWithAlignment) { GlobalDecreasingSizeBestFitHeap<HloValue> heap(20); heap.Alloc(buffer_a_, 10); heap.Alloc(buffer_b_, 20); heap.Alloc(buffer_c_, 50); heap.Free(buffer_a_, 10); heap.Alloc(buffer_d_, 40); heap.Free(buffer_b_, 20); heap.Free(buffer_c_, 50); heap.Free(buffer_d_, 40); TF_ASSERT_OK_AND_ASSIGN(const HeapSimulator::Result<HloValue> results, heap.Finish()); EXPECT_EQ(1, results.heap_results.size()); const HeapSimulator::HeapResult<HloValue>& result = results.heap_results.at(0); EXPECT_EQ(120, result.heap_size); EXPECT_EQ(10, result.chunk_map.at(buffer_a_).size); EXPECT_EQ(20, result.chunk_map.at(buffer_b_).size); EXPECT_EQ(50, result.chunk_map.at(buffer_c_).size); EXPECT_EQ(40, result.chunk_map.at(buffer_d_).size); EXPECT_EQ(60, result.chunk_map.at(buffer_a_).offset); EXPECT_EQ(100, result.chunk_map.at(buffer_b_).offset); EXPECT_EQ(0, result.chunk_map.at(buffer_c_).offset); EXPECT_EQ(60, result.chunk_map.at(buffer_d_).offset); } TEST_F(GlobalDecreasingSizeBestFitHeapTest, BestFit) { GlobalDecreasingSizeBestFitHeap<HloValue> heap(1); heap.Alloc(buffer_a_, 10); heap.Alloc(buffer_b_, 20); heap.Alloc(buffer_c_, 40); heap.Free(buffer_a_, 10); heap.Alloc(buffer_d_, 30); heap.Alloc(buffer_e_, 50); heap.Free(buffer_b_, 20); heap.Free(buffer_c_, 40); heap.Free(buffer_d_, 30); heap.Free(buffer_e_, 50); TF_ASSERT_OK_AND_ASSIGN(const HeapSimulator::Result<HloValue> results, heap.Finish()); EXPECT_EQ(1, results.heap_results.size()); const HeapSimulator::HeapResult<HloValue>& result = results.heap_results.at(0); EXPECT_EQ(140, result.heap_size); EXPECT_EQ(10, result.chunk_map.at(buffer_a_).size); EXPECT_EQ(20, result.chunk_map.at(buffer_b_).size); EXPECT_EQ(40, result.chunk_map.at(buffer_c_).size); EXPECT_EQ(30, result.chunk_map.at(buffer_d_).size); EXPECT_EQ(50, result.chunk_map.at(buffer_e_).size); EXPECT_EQ(90, result.chunk_map.at(buffer_a_).offset); EXPECT_EQ(120, result.chunk_map.at(buffer_b_).offset); EXPECT_EQ(50, result.chunk_map.at(buffer_c_).offset); EXPECT_EQ(90, result.chunk_map.at(buffer_d_).offset); EXPECT_EQ(0, result.chunk_map.at(buffer_e_).offset); } TEST_F(GlobalDecreasingSizeBestFitHeapTest, Colocated) { GlobalDecreasingSizeBestFitHeap<HloValue> heap(1); heap.Alloc(buffer_a_, 40); heap.Free(buffer_a_, 40); heap.Alloc(buffer_b_, 20); heap.Free(buffer_b_, 20); heap.ShareWith(buffer_c_, buffer_a_, 40); heap.Free(buffer_c_, 40); TF_ASSERT_OK_AND_ASSIGN(const HeapSimulator::Result<HloValue> results, heap.Finish()); EXPECT_EQ(1, results.heap_results.size()); const HeapSimulator::HeapResult<HloValue>& result = results.heap_results.at(0); EXPECT_EQ(40, result.heap_size); EXPECT_EQ(40, result.chunk_map.at(buffer_a_).size); EXPECT_EQ(20, result.chunk_map.at(buffer_b_).size); EXPECT_EQ(40, result.chunk_map.at(buffer_c_).size); EXPECT_EQ(0, result.chunk_map.at(buffer_a_).offset); EXPECT_EQ(0, result.chunk_map.at(buffer_b_).offset); EXPECT_EQ(0, result.chunk_map.at(buffer_c_).offset); } TEST_F(GlobalDecreasingSizeBestFitHeapTest, ColocatedII) { GlobalDecreasingSizeBestFitHeap<HloValue> heap(1); heap.Alloc(buffer_a_, 40); heap.Free(buffer_a_, 40); heap.Alloc(buffer_b_, 20); heap.ShareWith(buffer_c_, buffer_a_, 40); heap.Free(buffer_c_, 40); heap.Free(buffer_b_, 20); TF_ASSERT_OK_AND_ASSIGN(const HeapSimulator::Result<HloValue> results, heap.Finish()); EXPECT_EQ(1, results.heap_results.size()); const HeapSimulator::HeapResult<HloValue>& result = results.heap_results.at(0); EXPECT_EQ(60, result.heap_size); EXPECT_EQ(40, result.chunk_map.at(buffer_a_).size); EXPECT_EQ(20, result.chunk_map.at(buffer_b_).size); EXPECT_EQ(40, result.chunk_map.at(buffer_c_).size); EXPECT_EQ(0, result.chunk_map.at(buffer_a_).offset); EXPECT_EQ(40, result.chunk_map.at(buffer_b_).offset); EXPECT_EQ(0, result.chunk_map.at(buffer_c_).offset); } TEST_F(GlobalDecreasingSizeBestFitHeapTest, ColocatedIII) { GlobalDecreasingSizeBestFitHeap<HloValue> heap(1); heap.Alloc(buffer_a_, 10); heap.Free(buffer_a_, 10); heap.Alloc(buffer_b_, 30); heap.ShareWith(buffer_c_, buffer_a_, 10); heap.Free(buffer_c_, 10); heap.Free(buffer_b_, 30); TF_ASSERT_OK_AND_ASSIGN(const HeapSimulator::Result<HloValue> results, heap.Finish()); EXPECT_EQ(1, results.heap_results.size()); const HeapSimulator::HeapResult<HloValue>& result = results.heap_results.at(0); EXPECT_EQ(40, result.heap_size); EXPECT_EQ(10, result.chunk_map.at(buffer_a_).size); EXPECT_EQ(30, result.chunk_map.at(buffer_b_).size); EXPECT_EQ(10, result.chunk_map.at(buffer_c_).size); EXPECT_EQ(30, result.chunk_map.at(buffer_a_).offset); EXPECT_EQ(0, result.chunk_map.at(buffer_b_).offset); EXPECT_EQ(30, result.chunk_map.at(buffer_c_).offset); } TEST_F(GlobalDecreasingSizeBestFitHeapTest, ColocatedDifferentSize1) { GlobalDecreasingSizeBestFitHeap<HloValue> heap(1); heap.Alloc(buffer_a_, 40); heap.Free(buffer_a_, 40); heap.Alloc(buffer_b_, 20); heap.ShareWith(buffer_c_, buffer_a_, 30); heap.Free(buffer_c_, 30); heap.Free(buffer_b_, 20); TF_ASSERT_OK_AND_ASSIGN(const HeapSimulator::Result<HloValue> results, heap.Finish()); EXPECT_EQ(1, results.heap_results.size()); const HeapSimulator::HeapResult<HloValue>& result = results.heap_results.at(0); EXPECT_EQ(50, result.heap_size); EXPECT_EQ(40, result.chunk_map.at(buffer_a_).size); EXPECT_EQ(20, result.chunk_map.at(buffer_b_).size); EXPECT_EQ(30, result.chunk_map.at(buffer_c_).size); EXPECT_EQ(0, result.chunk_map.at(buffer_a_).offset); EXPECT_EQ(30, result.chunk_map.at(buffer_b_).offset); EXPECT_EQ(0, result.chunk_map.at(buffer_c_).offset); } TEST_F(GlobalDecreasingSizeBestFitHeapTest, ColocatedDifferentSize2) { GlobalDecreasingSizeBestFitHeap<HloValue> heap(1); heap.Alloc(buffer_a_, 40); heap.Free(buffer_a_, 40); heap.Alloc(buffer_b_, 20); heap.ShareWith(buffer_c_, buffer_a_, 50); heap.Free(buffer_c_, 50); heap.Free(buffer_b_, 20); TF_ASSERT_OK_AND_ASSIGN(const HeapSimulator::Result<HloValue> results, heap.Finish()); EXPECT_EQ(1, results.heap_results.size()); const HeapSimulator::HeapResult<HloValue>& result = results.heap_results.at(0); EXPECT_EQ(70, result.heap_size); EXPECT_EQ(40, result.chunk_map.at(buffer_a_).size); EXPECT_EQ(20, result.chunk_map.at(buffer_b_).size); EXPECT_EQ(50, result.chunk_map.at(buffer_c_).size); EXPECT_EQ(0, result.chunk_map.at(buffer_a_).offset); EXPECT_EQ(50, result.chunk_map.at(buffer_b_).offset); EXPECT_EQ(0, result.chunk_map.at(buffer_c_).offset); } class FindGlobalDecreasingSizeBestFitTest : public HeapAlgorithmTestBase { protected: class InheritedGlobalDecreasingSizeBestFitHeap : public GlobalDecreasingSizeBestFitHeap<HloValue> { public: InheritedGlobalDecreasingSizeBestFitHeap() : GlobalDecreasingSizeBestFitHeap(1) {} std::pair<int64_t, int64_t> MakeFindAndCommit( const HloValue* buffer, int64_t size, int64_t start, int64_t end, int64_t preferred_offset = -1) { MakeBufferInterval(buffer, size, start, end); BufferInterval* buffer_interval = &GetBufferInterval(buffer); Chunk chunk_candidate = FindChunkCandidate(*buffer_interval, preferred_offset); EXPECT_EQ(chunk_candidate.size, size); std::pair<int64_t, int64_t> result = std::make_pair( chunk_candidate.offset, result_.UpdatedHeapSize(chunk_candidate)); CommitChunk(*buffer_interval, chunk_candidate); return result; } void MakeBufferInterval(const HloValue* buffer, int64_t size, int64_t start, int64_t end) { BufferInterval* buffer_interval = &buffer_intervals_[buffer]; buffer_interval->buffer = buffer; buffer_interval->size = size; buffer_interval->start = start; buffer_interval->end = end; } void AddColocationToBuffer(const HloValue* buffer, const HloValue* colocation) { CHECK(buffer_intervals_.contains(buffer)); buffer_intervals_[buffer].colocations.push_back(colocation); } BufferInterval& GetBufferInterval(const HloValue* buffer) { CHECK(buffer_intervals_.contains(buffer)); return buffer_intervals_[buffer]; } std::vector<Chunk> FindChunkCandidates( const SlicedBufferInterval& sliced_buffer_interval, int64_t preferred_offset = -1) const { return GlobalDecreasingSizeBestFitHeap<HloValue>::FindChunkCandidates( sliced_buffer_interval, preferred_offset); } void CommitChunk(const BufferInterval& buffer_interval, Chunk chunk) { GlobalDecreasingSizeBestFitHeap<HloValue>::CommitChunk(buffer_interval, chunk); } void AddToChunkMap(const HloValue* buffer, Chunk chunk) override { committed_[buffer].push_back(chunk); } const absl::flat_hash_map<const HloValue*, std::vector<Chunk>>& committed() const { return committed_; } int64_t heap_size() const { return result_.heap_size; } private: absl::flat_hash_map<const HloValue*, std::vector<Chunk>> committed_; }; using BufferInterval = InheritedGlobalDecreasingSizeBestFitHeap::BufferInterval; using SlicedBufferInterval = InheritedGlobalDecreasingSizeBestFitHeap::SlicedBufferInterval; using Chunk = InheritedGlobalDecreasingSizeBestFitHeap::Chunk; InheritedGlobalDecreasingSizeBestFitHeap heap_; }; TEST_F(FindGlobalDecreasingSizeBestFitTest, ChunkCandidate) { using pair = std::pair<int64_t, int64_t>; EXPECT_EQ(pair(5, 10), heap_.MakeFindAndCommit(buffer_a_, 5, 6, 10, 5)); EXPECT_EQ(pair(0, 10), heap_.MakeFindAndCommit(buffer_b_, 10, 3, 5)); EXPECT_EQ(pair(10, 15), heap_.MakeFindAndCommit(buffer_c_, 5, 2, 8)); EXPECT_EQ(pair(0, 15), heap_.MakeFindAndCommit(buffer_d_, 5, 0, 2, 10)); EXPECT_EQ(pair(10, 20), heap_.MakeFindAndCommit(buffer_e_, 10, 11, 13, 10)); EXPECT_EQ(pair(20, 25), heap_.MakeFindAndCommit(buffer_f_, 5, 3, 5, 20)); EXPECT_EQ(pair(25, 35), heap_.MakeFindAndCommit(buffer_g_, 10, 4, 8, 15)); } TEST_F(FindGlobalDecreasingSizeBestFitTest, FindChunkCandidates) { { heap_.MakeBufferInterval(buffer_a_, 10, 5, 15); auto sliced_buffer_a = SlicedBufferInterval::CreateMutableInterval( heap_.GetBufferInterval(buffer_a_)); auto chunks = heap_.FindChunkCandidates(sliced_buffer_a); EXPECT_THAT(chunks, ::testing::ElementsAre(Chunk::FromOffsetSize(0, 10))); heap_.CommitChunk(sliced_buffer_a.full_buffer_interval(), Chunk::FromOffsetSize(0, 10)); EXPECT_THAT( heap_.committed(), ::testing::UnorderedElementsAre(::testing::Pair( buffer_a_, ::testing::ElementsAre(Chunk::FromOffsetSize(0, 10))))); EXPECT_EQ(heap_.heap_size(), 10); } { heap_.MakeBufferInterval(buffer_b_, 10, 25, 35); heap_.MakeBufferInterval(buffer_c_, 15, 10, 20); heap_.AddColocationToBuffer(buffer_b_, buffer_c_); auto sliced_buffer_b = SlicedBufferInterval::CreateMutableInterval( heap_.GetBufferInterval(buffer_b_)); auto sliced_buffer_c = SlicedBufferInterval::CreateMutableInterval( heap_.GetBufferInterval(buffer_c_)); sliced_buffer_b.Slice({5, 5}); sliced_buffer_b.UpdateInclusiveSliceStartTimes({25, 30}); auto chunks = heap_.FindChunkCandidates(sliced_buffer_b); EXPECT_THAT(chunks, ::testing::ElementsAre(Chunk::FromOffsetSize(10, 5), Chunk::FromOffsetSize(15, 5))); heap_.CommitChunk(BufferInterval{buffer_b_, 5, 25, 30, {}, true}, Chunk::FromOffsetSize(10, 5)); heap_.CommitChunk( BufferInterval{buffer_b_, 10, 30, 35, {buffer_c_}, true}, Chunk::FromOffsetSize(10, 10)); EXPECT_THAT( heap_.committed(), ::testing::UnorderedElementsAre( ::testing::Pair(buffer_a_, ::testing::ElementsAre( Chunk::FromOffsetSize(0, 10))), ::testing::Pair(buffer_b_, ::testing::ElementsAre( Chunk::FromOffsetSize(10, 5), Chunk::FromOffsetSize(10, 10))), ::testing::Pair(buffer_c_, ::testing::ElementsAre( Chunk::FromOffsetSize(10, 15))))); EXPECT_EQ(heap_.heap_size(), 25); } { heap_.MakeBufferInterval(buffer_d_, 5, 25, 35); auto sliced_buffer_d = SlicedBufferInterval::CreateMutableInterval( heap_.GetBufferInterval(buffer_d_)); auto chunks = heap_.FindChunkCandidates(sliced_buffer_d); EXPECT_THAT(chunks, ::testing::ElementsAre(Chunk::FromOffsetSize(0, 5))); heap_.CommitChunk(sliced_buffer_d.full_buffer_interval(), Chunk::FromOffsetSize(0, 5)); EXPECT_THAT( heap_.committed(), ::testing::UnorderedElementsAre( ::testing::Pair(buffer_a_, ::testing::ElementsAre( Chunk::FromOffsetSize(0, 10))), ::testing::Pair(buffer_b_, ::testing::ElementsAre( Chunk::FromOffsetSize(10, 5), Chunk::FromOffsetSize(10, 10))), ::testing::Pair(buffer_c_, ::testing::ElementsAre( Chunk::FromOffsetSize(10, 15))), ::testing::Pair(buffer_d_, ::testing::ElementsAre( Chunk::FromOffsetSize(0, 5))))); EXPECT_EQ(heap_.heap_size(), 25); } { heap_.MakeBufferInterval(buffer_e_, 10, 30, 35); auto sliced_buffer_e = SlicedBufferInterval::CreateMutableInterval( heap_.GetBufferInterval(buffer_e_)); auto chunks = heap_.FindChunkCandidates(sliced_buffer_e); EXPECT_THAT(chunks, ::testing::ElementsAre(Chunk::FromOffsetSize(20, 10))); heap_.CommitChunk(sliced_buffer_e.full_buffer_interval(), Chunk::FromOffsetSize(20, 10)); EXPECT_THAT( heap_.committed(), ::testing::UnorderedElementsAre( ::testing::Pair(buffer_a_, ::testing::ElementsAre( Chunk::FromOffsetSize(0, 10))), ::testing::Pair(buffer_b_, ::testing::ElementsAre( Chunk::FromOffsetSize(10, 5), Chunk::FromOffsetSize(10, 10))), ::testing::Pair(buffer_c_, ::testing::ElementsAre( Chunk::FromOffsetSize(10, 15))), ::testing::Pair( buffer_d_, ::testing::ElementsAre(Chunk::FromOffsetSize(0, 5))), ::testing::Pair(buffer_e_, ::testing::ElementsAre( Chunk::FromOffsetSize(20, 10))))); EXPECT_EQ(heap_.heap_size(), 30); } { heap_.MakeBufferInterval(buffer_f_, 10, 25, 29); auto sliced_buffer_f = SlicedBufferInterval::CreateMutableInterval( heap_.GetBufferInterval(buffer_f_)); auto chunks = heap_.FindChunkCandidates(sliced_buffer_f); EXPECT_THAT(chunks, ::testing::ElementsAre(Chunk::FromOffsetSize(15, 10))); heap_.CommitChunk(sliced_buffer_f.full_buffer_interval(), Chunk::FromOffsetSize(15, 10)); EXPECT_THAT( heap_.committed(), ::testing::UnorderedElementsAre( ::testing::Pair(buffer_a_, ::testing::ElementsAre( Chunk::FromOffsetSize(0, 10))), ::testing::Pair(buffer_b_, ::testing::ElementsAre( Chunk::FromOffsetSize(10, 5), Chunk::FromOffsetSize(10, 10))), ::testing::Pair(buffer_c_, ::testing::ElementsAre( Chunk::FromOffsetSize(10, 15))), ::testing::Pair( buffer_d_, ::testing::ElementsAre(Chunk::FromOffsetSize(0, 5))), ::testing::Pair(buffer_e_, ::testing::ElementsAre( Chunk::FromOffsetSize(20, 10))), ::testing::Pair(buffer_f_, ::testing::ElementsAre( Chunk::FromOffsetSize(15, 10))))); EXPECT_EQ(heap_.heap_size(), 30); } } class ConstrainedGlobalDecreasingSizeBestFitHeapTest : public HeapAlgorithmTestBase {}; TEST_F(ConstrainedGlobalDecreasingSizeBestFitHeapTest, DecreasingSize) { ConstrainedGlobalDecreasingSizeBestFitHeap heap(50, 1); heap.Alloc(buffer_a_, 10); heap.Alloc(buffer_b_, 30); heap.Alloc(buffer_c_, 20); heap.Alloc(buffer_d_, 40); heap.Free(buffer_a_, 10); heap.Free(buffer_b_, 30); heap.Free(buffer_c_, 20); heap.Free(buffer_d_, 40); TF_ASSERT_OK_AND_ASSIGN(const HeapSimulator::Result<HloValue> result, heap.Finish()); EXPECT_EQ(100, result.heap_size); EXPECT_EQ(2, result.heap_results.size()); EXPECT_TRUE(result.heap_results[0].chunk_map.contains(buffer_a_)); EXPECT_TRUE(result.heap_results[0].chunk_map.contains(buffer_d_)); EXPECT_EQ(10, result.heap_results[0].chunk_map.at(buffer_a_).size); EXPECT_EQ(40, result.heap_results[0].chunk_map.at(buffer_d_).size); EXPECT_EQ(40, result.heap_results[0].chunk_map.at(buffer_a_).offset); EXPECT_EQ(0, result.heap_results[0].chunk_map.at(buffer_d_).offset); } TEST_F(ConstrainedGlobalDecreasingSizeBestFitHeapTest, DecreasingSizeWithAlignment) { ConstrainedGlobalDecreasingSizeBestFitHeap heap(70, 20); heap.Alloc(buffer_a_, 10); heap.Alloc(buffer_b_, 20); heap.Alloc(buffer_c_, 50); heap.Free(buffer_a_, 10); heap.Alloc(buffer_d_, 40); heap.Free(buffer_b_, 20); heap.Free(buffer_c_, 50); heap.Free(buffer_d_, 40); TF_ASSERT_OK_AND_ASSIGN(const HeapSimulator::Result<HloValue> result, heap.Finish()); EXPECT_EQ(130, result.heap_size); EXPECT_EQ(2, result.heap_results.size()); EXPECT_TRUE(result.heap_results[0].chunk_map.contains(buffer_a_)); EXPECT_TRUE(result.heap_results[0].chunk_map.contains(buffer_c_)); EXPECT_EQ(10, result.heap_results[0].chunk_map.at(buffer_a_).size); EXPECT_EQ(50, result.heap_results[0].chunk_map.at(buffer_c_).size); EXPECT_EQ(60, result.heap_results[0].chunk_map.at(buffer_a_).offset); EXPECT_EQ(0, result.heap_results[0].chunk_map.at(buffer_c_).offset); } TEST_F(ConstrainedGlobalDecreasingSizeBestFitHeapTest, ColocatedII) { ConstrainedGlobalDecreasingSizeBestFitHeap heap(50, 20); heap.Alloc(buffer_a_, 30); heap.Free(buffer_a_, 30); heap.Alloc(buffer_b_, 20); heap.ShareWith(buffer_c_, buffer_a_, 40); heap.Free(buffer_c_, 40); heap.Free(buffer_b_, 20); TF_ASSERT_OK_AND_ASSIGN(const HeapSimulator::Result<HloValue> result, heap.Finish()); EXPECT_EQ(60, result.heap_size); EXPECT_EQ(2, result.heap_results.size()); EXPECT_TRUE(result.heap_results[0].chunk_map.contains(buffer_a_)); EXPECT_TRUE(result.heap_results[0].chunk_map.contains(buffer_c_)); EXPECT_EQ(30, result.heap_results[0].chunk_map.at(buffer_a_).size); EXPECT_EQ(40, result.heap_results[0].chunk_map.at(buffer_c_).size); EXPECT_EQ(0, result.heap_results[0].chunk_map.at(buffer_a_).offset); EXPECT_EQ(0, result.heap_results[0].chunk_map.at(buffer_c_).offset); } class IntervalTreeTest : public ::testing::Test {}; TEST_F(IntervalTreeTest, InsertAndRemove) { HeapSimulator::Chunk chunk = HeapSimulator::Chunk::FromOffsetSize(1, 2); BufferIntervalTree tree; tree.Add(1, 2, chunk); EXPECT_TRUE(tree.Remove(1, 2, chunk)); EXPECT_FALSE(tree.Remove(1, 2, chunk)); ASSERT_EQ(tree.GetRoot(), nullptr); tree.Add(1, 2, chunk); EXPECT_TRUE(tree.Remove(1, 2, chunk)); EXPECT_FALSE(tree.Remove(1, 2, chunk)); ASSERT_EQ(tree.GetRoot(), nullptr); } TEST_F(IntervalTreeTest, InsertAndRemoveTwoLevelsLeft) { HeapSimulator::Chunk chunk = HeapSimulator::Chunk::FromOffsetSize( 1, 2); BufferIntervalTree tree; tree.Add(20, 36, chunk); tree.Add(1, 45, chunk); EXPECT_TRUE(tree.Remove(1, 45, chunk)); EXPECT_EQ(tree.GetRoot()->subtree_end, 36); EXPECT_TRUE(tree.Remove(20, 36, chunk)); ASSERT_EQ(tree.GetRoot(), nullptr); } TEST_F(IntervalTreeTest, InsertAndRemoveTwoLevelsRight) { HeapSimulator::Chunk chunk = HeapSimulator::Chunk::FromOffsetSize( 1, 2); BufferIntervalTree tree; tree.Add(20, 36, chunk); tree.Add(21, 45, chunk); EXPECT_TRUE(tree.Remove(21, 45, chunk)); EXPECT_EQ(tree.GetRoot()->subtree_end, 36); EXPECT_TRUE(tree.Remove(20, 36, chunk)); ASSERT_EQ(tree.GetRoot(), nullptr); } TEST_F(IntervalTreeTest, TwoLevelsRight_RootFirst) { HeapSimulator::Chunk chunk = HeapSimulator::Chunk::FromOffsetSize( 1, 2); BufferIntervalTree tree; tree.Add(20, 36, chunk); tree.Add(21, 45, chunk); EXPECT_TRUE(tree.Remove(20, 36, chunk)); EXPECT_EQ(tree.GetRoot()->subtree_end, 45); EXPECT_EQ(tree.GetRoot()->start, 21); EXPECT_EQ(tree.GetRoot()->end, 45); EXPECT_EQ(tree.GetRoot()->left, nullptr); EXPECT_EQ(tree.GetRoot()->right, nullptr); EXPECT_TRUE(tree.Remove(21, 45, chunk)); ASSERT_EQ(tree.GetRoot(), nullptr); } TEST_F(IntervalTreeTest, TwoLevelsLeft_RootFirst) { HeapSimulator::Chunk chunk = HeapSimulator::Chunk::FromOffsetSize( 1, 2); BufferIntervalTree tree; tree.Add(20, 36, chunk); tree.Add(1, 45, chunk); EXPECT_TRUE(tree.Remove(20, 36, chunk)); EXPECT_EQ(tree.GetRoot()->subtree_end, 45); EXPECT_EQ(tree.GetRoot()->start, 1); EXPECT_EQ(tree.GetRoot()->end, 45); EXPECT_EQ(tree.GetRoot()->left, nullptr); EXPECT_EQ(tree.GetRoot()->right, nullptr); EXPECT_TRUE(tree.Remove(1, 45, chunk)); ASSERT_EQ(tree.GetRoot(), nullptr); } TEST_F(IntervalTreeTest, ThreeLevelsRight) { HeapSimulator::Chunk chunk = HeapSimulator::Chunk::FromOffsetSize( 1, 2); BufferIntervalTree tree; tree.Add(20, 36, chunk); tree.Add(21, 45, chunk); tree.Add(22, 40, chunk); EXPECT_TRUE(tree.Remove(21, 45, chunk)); EXPECT_EQ(tree.GetRoot()->subtree_end, 40); EXPECT_TRUE(tree.Remove(20, 36, chunk)); EXPECT_EQ(tree.GetRoot()->subtree_end, 40); EXPECT_TRUE(tree.Remove(22, 40, chunk)); ASSERT_EQ(tree.GetRoot(), nullptr); } TEST_F(IntervalTreeTest, ThreeLevelsLeftLeft) { HeapSimulator::Chunk chunk = HeapSimulator::Chunk::FromOffsetSize( 1, 2); BufferIntervalTree tree; tree.Add(20, 36, chunk); tree.Add(10, 45, chunk); tree.Add(1, 40, chunk); EXPECT_TRUE(tree.Remove(10, 45, chunk)); EXPECT_EQ(tree.GetRoot()->subtree_end, 40); EXPECT_TRUE(tree.Remove(1, 40, chunk)); EXPECT_EQ(tree.GetRoot()->subtree_end, 36); EXPECT_TRUE(tree.Remove(20, 36, chunk)); ASSERT_EQ(tree.GetRoot(), nullptr); } TEST_F(IntervalTreeTest, ThreeLevelsLeftRight) { HeapSimulator::Chunk chunk = HeapSimulator::Chunk::FromOffsetSize( 1, 2); BufferIntervalTree tree; tree.Add(20, 36, chunk); tree.Add(10, 45, chunk); tree.Add(15, 40, chunk); EXPECT_TRUE(tree.Remove(10, 45, chunk)); EXPECT_EQ(tree.GetRoot()->subtree_end, 40); EXPECT_TRUE(tree.Remove(15, 40, chunk)); EXPECT_EQ(tree.GetRoot()->subtree_end, 36); EXPECT_TRUE(tree.Remove(20, 36, chunk)); ASSERT_EQ(tree.GetRoot(), nullptr); } TEST_F(IntervalTreeTest, ThreeLevelsRightLeft) { HeapSimulator::Chunk chunk = HeapSimulator::Chunk::FromOffsetSize( 1, 2); BufferIntervalTree tree; tree.Add(20, 36, chunk); tree.Add(25, 45, chunk); tree.Add(22, 40, chunk); EXPECT_TRUE(tree.Remove(25, 45, chunk)); EXPECT_EQ(tree.GetRoot()->subtree_end, 40); EXPECT_TRUE(tree.Remove(20, 36, chunk)); EXPECT_EQ(tree.GetRoot()->subtree_end, 40); EXPECT_TRUE(tree.Remove(22, 40, chunk)); ASSERT_EQ(tree.GetRoot(), nullptr); } TEST_F(IntervalTreeTest, ThreeLevelsRightLeftChunkDifferent) { HeapSimulator::Chunk chunk1 = HeapSimulator::Chunk::FromOffsetSize(1, 2); HeapSimulator::Chunk chunk2 = HeapSimulator::Chunk::FromOffsetSize(2, 3); HeapSimulator::Chunk chunk3 = HeapSimulator::Chunk::FromOffsetSize(3, 4); BufferIntervalTree tree; tree.Add(20, 36, chunk1); tree.Add(25, 45, chunk2); tree.Add(22, 40, chunk3); EXPECT_TRUE(tree.Remove(25, 45, chunk2)); EXPECT_EQ(tree.GetRoot()->subtree_end, 40); EXPECT_EQ(tree.GetRoot()->chunk.offset, 1); EXPECT_EQ(tree.GetRoot()->chunk.size, 2); EXPECT_TRUE(tree.Remove(20, 36, chunk1)); EXPECT_EQ(tree.GetRoot()->subtree_end, 40); EXPECT_EQ(tree.GetRoot()->chunk.offset, 3); EXPECT_EQ(tree.GetRoot()->chunk.size, 4); EXPECT_TRUE(tree.Remove(22, 40, chunk3)); ASSERT_EQ(tree.GetRoot(), nullptr); } TEST_F(IntervalTreeTest, BufferIntervalTreeToAsciiArt) { BufferIntervalTree tree; tree.Add(15, 25, HeapSimulator::Chunk::FromOffsetEnd(0, 16)); tree.Add(15, 19, HeapSimulator::Chunk::FromOffsetEnd(16, 48)); tree.Add(20, 22, HeapSimulator::Chunk::FromOffsetEnd(32, 64)); std::string output = tree.NodesOverlappingInTimeToAsciiArt( 18, 23, 3); EXPECT_THAT(output, HasSubstr("Memory map for time: [18,23], " "memory_block_size: 16, group_size: 3")); EXPECT_THAT(output, HasSubstr("..# ##. 64")); EXPECT_THAT(output, HasSubstr("### ##. 48")); EXPECT_THAT(output, HasSubstr("##. ... 32")); EXPECT_THAT(output, HasSubstr("### ### 16")); EXPECT_THAT(output, HasSubstr("890 123")); } TEST_F(IntervalTreeTest, BufferIntervalTreeToAsciiArtTooLarge) { BufferIntervalTree tree; tree.Add(0, 4, HeapSimulator::Chunk::FromOffsetEnd(0, 128)); tree.Add(5, 10, HeapSimulator::Chunk::FromOffsetEnd(1, 129)); std::string output = tree.NodesOverlappingInTimeToAsciiArt( 0, 10, 3); EXPECT_THAT( output, HasSubstr( "Cannot print memory usage to ASCII art. Printing nodes instead!")); EXPECT_THAT(output, HasSubstr("start: 0 end: 4 chunk: [0,128)")); EXPECT_THAT(output, HasSubstr("start: 5 end: 10 chunk: [1,129)")); } TEST_F(IntervalTreeTest, BufferIntervalTreeToAsciiArtFreeMemory) { BufferIntervalTree tree; tree.Add(5, 10, HeapSimulator::Chunk::FromOffsetEnd(0, 16)); std::string output = tree.NodesOverlappingInTimeToAsciiArt( 0, 4, 10); EXPECT_THAT(output, StrEq("No nodes overlapping in time. Memory is free!")); } TEST_F(IntervalTreeTest, BufferIntervalTreeMemoryUsedInInterval) { BufferIntervalTree tree; tree.Add(15, 25, HeapSimulator::Chunk::FromOffsetEnd(0, 16)); tree.Add(15, 19, HeapSimulator::Chunk::FromOffsetEnd(16, 48)); tree.Add(20, 22, HeapSimulator::Chunk::FromOffsetEnd(32, 64)); std::vector<int64_t> memory_used_by_time = tree.MemoryUsedInInterval( 18, 23); std::vector<int64_t> expected_memory_used_by_time = {48, 48, 48, 48, 48, 16}; EXPECT_THAT(memory_used_by_time, ContainerEq(expected_memory_used_by_time)); } TEST_F(IntervalTreeTest, BufferIntervalTreeHeapSize) { BufferIntervalTree tree; tree.Add(15, 26, HeapSimulator::Chunk::FromOffsetEnd(0, 16)); tree.Add(17, 24, HeapSimulator::Chunk::FromOffsetEnd(16, 48)); tree.Add(20, 22, HeapSimulator::Chunk::FromOffsetEnd(32, 64)); EXPECT_THAT(tree.HeapSizeInInterval(15, 16), 16); EXPECT_THAT(tree.HeapSizeInInterval(15, 19), 48); EXPECT_THAT(tree.HeapSizeInInterval(15, 22), 64); EXPECT_THAT(tree.HeapSizeInInterval(23, 24), 48); EXPECT_THAT(tree.HeapSizeInInterval(25, 26), 16); } class SlicedBufferIntervalTest : public ::testing::Test { public: using HeapTy = GlobalDecreasingSizeBestFitHeap<HloValue>; using ColocationTy = absl::InlinedVector<const HloValue*, 2>; static std::tuple<const HloValue*, int64_t, int64_t, int64_t, const ColocationTy&, bool> BufferIntervalToTuple(const HeapTy::BufferInterval& buffer_interval) { return std::make_tuple(buffer_interval.buffer, buffer_interval.size, buffer_interval.start, buffer_interval.end, std::ref(buffer_interval.colocations), buffer_interval.need_allocation); } SlicedBufferIntervalTest() { HloModuleConfig config; module_ = std::make_unique<HloModule>("TestModule", config); Shape f32vec4 = ShapeUtil::MakeShape(F32, {4}); auto builder = HloComputation::Builder("TestComputation"); auto p0 = builder.AddInstruction( HloInstruction::CreateParameter(0, f32vec4, "p0")); auto p1 = builder.AddInstruction( HloInstruction::CreateParameter(1, f32vec4, "p1")); builder.AddInstruction( HloInstruction::CreateBinary(f32vec4, HloOpcode::kAdd, p0, p1)); module_->AddEntryComputation(builder.Build()); p0_value_ = std::make_unique<HloValue>(0, p0, ShapeIndex{}); p1_value_ = std::make_unique<HloValue>(0, p1, ShapeIndex{}); full_buffer_interval_ = HeapTy::BufferInterval({ p0_value_.get(), 20, 100, 200, {p1_value_.get()}, true, }); sliced_buffer_interval_ = std::make_unique<HeapTy::SlicedBufferInterval>( HeapTy::SlicedBufferInterval::CreateConstInterval( full_buffer_interval_)); mutable_sliced_buffer_interval_ = std::make_unique<HeapTy::SlicedBufferInterval>( HeapTy::SlicedBufferInterval::CreateMutableInterval( full_buffer_interval_)); } protected: std::unique_ptr<HloModule> module_; std::unique_ptr<HloValue> p0_value_; std::unique_ptr<HloValue> p1_value_; HeapTy::BufferInterval full_buffer_interval_; std::unique_ptr<const HeapTy::SlicedBufferInterval> sliced_buffer_interval_; std::unique_ptr<HeapTy::SlicedBufferInterval> mutable_sliced_buffer_interval_; }; TEST_F(SlicedBufferIntervalTest, NoSlices) { EXPECT_EQ( BufferIntervalToTuple(sliced_buffer_interval_->full_buffer_interval()), BufferIntervalToTuple(full_buffer_interval_)); EXPECT_EQ(sliced_buffer_interval_->num_slices(), 1); EXPECT_THAT(sliced_buffer_interval_->SliceSizesSortedByOffset(), ::testing::ElementsAre(20)); EXPECT_EQ(BufferIntervalToTuple( sliced_buffer_interval_->IntervalForMakeFreeChunks(0)), BufferIntervalToTuple(full_buffer_interval_)); EXPECT_EQ(BufferIntervalToTuple( mutable_sliced_buffer_interval_->full_buffer_interval()), BufferIntervalToTuple(full_buffer_interval_)); } TEST_F(SlicedBufferIntervalTest, Sliced) { std::vector<int64_t> slice_sizes = {4, 5, 5, 6}; mutable_sliced_buffer_interval_->Slice(absl::Span<int64_t>(slice_sizes)); EXPECT_EQ(mutable_sliced_buffer_interval_->num_slices(), 4); EXPECT_THAT(mutable_sliced_buffer_interval_->SliceSizesSortedByOffset(), ::testing::ElementsAre(4, 5, 5, 6)); mutable_sliced_buffer_interval_->UpdateInclusiveSliceStartTimes( {100, 125, 150, 175}); EXPECT_EQ(BufferIntervalToTuple( mutable_sliced_buffer_interval_->IntervalForMakeFreeChunks(0)), BufferIntervalToTuple( {p0_value_.get(), 4, 100, 124, ColocationTy(), true})); EXPECT_EQ(BufferIntervalToTuple( mutable_sliced_buffer_interval_->IntervalForMakeFreeChunks(1)), BufferIntervalToTuple( {p0_value_.get(), 4, 125, 149, ColocationTy(), true})); EXPECT_EQ(BufferIntervalToTuple( mutable_sliced_buffer_interval_->IntervalForMakeFreeChunks(2)), BufferIntervalToTuple( {p0_value_.get(), 4, 150, 174, ColocationTy(), true})); EXPECT_EQ(BufferIntervalToTuple( mutable_sliced_buffer_interval_->IntervalForMakeFreeChunks(3)), BufferIntervalToTuple({p0_value_.get(), 20, 175, 200, ColocationTy({p1_value_.get()}), true})); EXPECT_EQ(BufferIntervalToTuple( mutable_sliced_buffer_interval_->full_buffer_interval()), BufferIntervalToTuple({p0_value_.get(), 20, 100, 200, ColocationTy({p1_value_.get()}), true})); mutable_sliced_buffer_interval_->UpdateExclusiveSliceStartTimes( {100, 125, 150, 175}); EXPECT_EQ(BufferIntervalToTuple( mutable_sliced_buffer_interval_->IntervalForMakeFreeChunks(0)), BufferIntervalToTuple( {p0_value_.get(), 4, 101, 125, ColocationTy(), true})); EXPECT_EQ(BufferIntervalToTuple( mutable_sliced_buffer_interval_->IntervalForMakeFreeChunks(1)), BufferIntervalToTuple( {p0_value_.get(), 4, 126, 150, ColocationTy(), true})); EXPECT_EQ(BufferIntervalToTuple( mutable_sliced_buffer_interval_->IntervalForMakeFreeChunks(2)), BufferIntervalToTuple( {p0_value_.get(), 4, 151, 175, ColocationTy(), true})); EXPECT_EQ(BufferIntervalToTuple( mutable_sliced_buffer_interval_->IntervalForMakeFreeChunks(3)), BufferIntervalToTuple({p0_value_.get(), 20, 176, 200, ColocationTy({p1_value_.get()}), true})); EXPECT_EQ(BufferIntervalToTuple( mutable_sliced_buffer_interval_->full_buffer_interval()), BufferIntervalToTuple({p0_value_.get(), 20, 101, 200, ColocationTy({p1_value_.get()}), true})); mutable_sliced_buffer_interval_->UpdateEndTime(300); EXPECT_EQ(mutable_sliced_buffer_interval_->IntervalForMakeFreeChunks(2).end, 175); EXPECT_EQ(BufferIntervalToTuple( mutable_sliced_buffer_interval_->IntervalForMakeFreeChunks(3)), BufferIntervalToTuple({p0_value_.get(), 20, 176, 300, ColocationTy({p1_value_.get()}), true})); EXPECT_EQ(BufferIntervalToTuple( mutable_sliced_buffer_interval_->full_buffer_interval()), BufferIntervalToTuple({p0_value_.get(), 20, 101, 300, ColocationTy({p1_value_.get()}), true})); } class SlicedAllocationFinderTest : public ::testing::Test { public: using HeapTy = GlobalDecreasingSizeBestFitHeap<HloValue>; using FreeChunks = typename HeapTy::FreeChunks; using Chunk = HeapSimulator::Chunk; using Finder = typename HeapTy::SlicedAllocationFinder; protected: std::unique_ptr<SliceTimePermutationIterator> NewPermutationIterator( int64_t num_slices) { std::vector<int64_t> inclusive_start_times; inclusive_start_times.reserve(num_slices); for (int64_t start_time = 0; start_time < num_slices; ++start_time) { inclusive_start_times.push_back(start_time); } return SliceTimePermutationIterator::CreateForNewAllocation( SliceTimePermutationIterator::Ty::kAll, inclusive_start_times); } }; TEST_F(SlicedAllocationFinderTest, NoSlices) { std::vector<FreeChunks> free_chunks_per_slice_time = { { {5, 7}, {10, 40}, {45, 48}, {60, 70}, }, }; std::vector<int64_t> sorted_slice_sizes = {3}; int64_t max_colocation_size = -1; int64_t preferred_offset = -1; int64_t alignment = 1; Finder finder(free_chunks_per_slice_time, sorted_slice_sizes, max_colocation_size, preferred_offset, alignment, NewPermutationIterator(sorted_slice_sizes.size())); EXPECT_THAT(finder.Find(), ::testing::ElementsAre(Chunk::FromOffsetSize(45, 3), Chunk::FromOffsetSize(48, 0))); } TEST_F(SlicedAllocationFinderTest, NoSlicesLargerMaxColloc) { std::vector<FreeChunks> free_chunks_per_slice_time = { { {5, 7}, {10, 40}, {45, 48}, {60, 70}, }, }; std::vector<int64_t> sorted_slice_sizes = {3}; int64_t max_colocation_size = 6; int64_t preferred_offset = -1; int64_t alignment = 1; Finder finder(free_chunks_per_slice_time, sorted_slice_sizes, max_colocation_size, preferred_offset, alignment, NewPermutationIterator(sorted_slice_sizes.size())); EXPECT_THAT(finder.Find(), ::testing::ElementsAre(Chunk::FromOffsetSize(60, 3), Chunk::FromOffsetSize(63, 3))); } TEST_F(SlicedAllocationFinderTest, NoSlicesSmallestTie) { std::vector<FreeChunks> free_chunks_per_slice_time = { { {5, 7}, {10, 13}, {15, 40}, {45, 48}, {60, 70}, }, }; std::vector<int64_t> sorted_slice_sizes = {3}; int64_t max_colocation_size = -1; int64_t preferred_offset = -1; int64_t alignment = 1; Finder finder(free_chunks_per_slice_time, sorted_slice_sizes, max_colocation_size, preferred_offset, alignment, NewPermutationIterator(sorted_slice_sizes.size())); EXPECT_THAT(finder.Find(), ::testing::ElementsAre(Chunk::FromOffsetSize(10, 3), Chunk::FromOffsetSize(13, 0))); } TEST_F(SlicedAllocationFinderTest, LeftHole) { std::vector<FreeChunks> free_chunks_per_slice_time = { { {5, 7}, {10, 40}, {45, 48}, {60, 70}, }, { {5, 7}, {10, 40}, {45, 51}, {60, 70}, }, { {5, 7}, {10, 40}, {45, 54}, {60, 70}, }, }; std::vector<int64_t> sorted_slice_sizes = {3, 3, 3}; int64_t max_colocation_size = -1; int64_t preferred_offset = -1; int64_t alignment = 1; Finder finder(free_chunks_per_slice_time, sorted_slice_sizes, max_colocation_size, preferred_offset, alignment, NewPermutationIterator(sorted_slice_sizes.size())); EXPECT_THAT(finder.Find(), ::testing::ElementsAre( Chunk::FromOffsetSize(45, 3), Chunk::FromOffsetSize(48, 3), Chunk::FromOffsetSize(51, 3), Chunk::FromOffsetSize(54, 0))); } TEST_F(SlicedAllocationFinderTest, RightHole) { std::vector<FreeChunks> free_chunks_per_slice_time = { { {5, 7}, {10, 40}, {51, 54}, {60, 70}, }, { {5, 7}, {10, 40}, {48, 54}, {60, 70}, }, { {5, 7}, {10, 40}, {45, 54}, {60, 70}, }, }; std::vector<int64_t> sorted_slice_sizes = {3, 3, 3}; int64_t max_colocation_size = -1; int64_t preferred_offset = -1; int64_t alignment = 1; Finder finder(free_chunks_per_slice_time, sorted_slice_sizes, max_colocation_size, preferred_offset, alignment, NewPermutationIterator(sorted_slice_sizes.size())); EXPECT_THAT(finder.Find(), ::testing::ElementsAre( Chunk::FromOffsetSize(51, 3), Chunk::FromOffsetSize(48, 3), Chunk::FromOffsetSize(45, 3), Chunk::FromOffsetSize(54, 0))); } TEST_F(SlicedAllocationFinderTest, MiddleHole) { std::vector<FreeChunks> free_chunks_per_slice_time = { { {5, 7}, {10, 40}, {48, 51}, {60, 70}, }, { {5, 7}, {10, 40}, {48, 54}, {60, 70}, }, { {5, 7}, {10, 40}, {45, 54}, {60, 70}, }, }; std::vector<int64_t> sorted_slice_sizes = {3, 3, 3}; int64_t max_colocation_size = -1; int64_t preferred_offset = -1; int64_t alignment = 1; Finder finder(free_chunks_per_slice_time, sorted_slice_sizes, max_colocation_size, preferred_offset, alignment, NewPermutationIterator(sorted_slice_sizes.size())); EXPECT_THAT(finder.Find(), ::testing::ElementsAre( Chunk::FromOffsetSize(48, 3), Chunk::FromOffsetSize(51, 3), Chunk::FromOffsetSize(45, 3), Chunk::FromOffsetSize(54, 0))); } TEST_F(SlicedAllocationFinderTest, ManyHoles) { std::vector<FreeChunks> free_chunks_per_slice_time = { { {5, 31}, {39, 42}, {46, 51}, {54, 60}, {62, 64}, }, { {5, 31}, {38, 44}, {46, 51}, {54, 59}, {62, 64}, }, { {5, 31}, {36, 59}, {62, 64}, }, }; std::vector<int64_t> sorted_slice_sizes = {3, 3, 3}; int64_t max_colocation_size = -1; int64_t preferred_offset = -1; int64_t alignment = 1; Finder finder(free_chunks_per_slice_time, sorted_slice_sizes, max_colocation_size, preferred_offset, alignment, NewPermutationIterator(sorted_slice_sizes.size())); EXPECT_THAT(finder.Find(), ::testing::ElementsAre( Chunk::FromOffsetSize(46, 3), Chunk::FromOffsetSize(40, 3), Chunk::FromOffsetSize(43, 3), Chunk::FromOffsetSize(49, 0))); } TEST_F(SlicedAllocationFinderTest, EarlySliceTimesHaveLargeFreeChunks) { std::vector<FreeChunks> free_chunks_per_slice_time = { { {6, 68}, }, { {5, 25}, {28, 40}, {48, 54}, {60, 70}, }, { {5, 7}, {10, 40}, {45, 54}, {60, 70}, }, }; std::vector<int64_t> sorted_slice_sizes = {3, 3, 3}; int64_t max_colocation_size = -1; int64_t preferred_offset = -1; int64_t alignment = 1; Finder finder(free_chunks_per_slice_time, sorted_slice_sizes, max_colocation_size, preferred_offset, alignment, NewPermutationIterator(sorted_slice_sizes.size())); EXPECT_THAT(finder.Find(), ::testing::ElementsAre( Chunk::FromOffsetSize(48, 3), Chunk::FromOffsetSize(51, 3), Chunk::FromOffsetSize(45, 3), Chunk::FromOffsetSize(54, 0))); } TEST_F(SlicedAllocationFinderTest, DifferentSliceSizes1) { std::vector<FreeChunks> free_chunks_per_slice_time = { { {5, 7}, {10, 40}, {46, 51}, {60, 70}, }, { {5, 7}, {10, 40}, {46, 54}, {60, 70}, }, { {5, 7}, {10, 40}, {42, 54}, {60, 70}, }, }; std::vector<int64_t> sorted_slice_sizes = {5, 3, 4}; int64_t max_colocation_size = -1; int64_t preferred_offset = -1; int64_t alignment = 1; Finder finder(free_chunks_per_slice_time, sorted_slice_sizes, max_colocation_size, preferred_offset, alignment, NewPermutationIterator(sorted_slice_sizes.size())); EXPECT_THAT(finder.Find(), ::testing::ElementsAre( Chunk::FromOffsetSize(47, 3), Chunk::FromOffsetSize(50, 4), Chunk::FromOffsetSize(42, 5), Chunk::FromOffsetSize(54, 0))); } TEST_F(SlicedAllocationFinderTest, DifferentSliceSizes2) { std::vector<FreeChunks> free_chunks_per_slice_time = { { {5, 7}, {10, 40}, {46, 49}, {60, 70}, }, { {5, 7}, {10, 40}, {46, 54}, {60, 70}, }, { {5, 7}, {10, 40}, {42, 54}, {60, 70}, }, }; std::vector<int64_t> sorted_slice_sizes = {5, 3, 4}; int64_t max_colocation_size = -1; int64_t preferred_offset = -1; int64_t alignment = 1; Finder finder(free_chunks_per_slice_time, sorted_slice_sizes, max_colocation_size, preferred_offset, alignment, NewPermutationIterator(sorted_slice_sizes.size())); EXPECT_THAT(finder.Find(), ::testing::ElementsAre( Chunk::FromOffsetSize(10, 5), Chunk::FromOffsetSize(15, 3), Chunk::FromOffsetSize(18, 4), Chunk::FromOffsetSize(22, 0))); } TEST_F(SlicedAllocationFinderTest, ZeroSizeFreeChunk) { std::vector<FreeChunks> free_chunks_per_slice_time = { { {5, 5}, {10, 40}, {45, 48}, {60, 70}, }, { {5, 7}, {10, 40}, {45, 51}, {60, 70}, }, { {5, 7}, {10, 40}, {45, 45}, {60, 70}, }, }; std::vector<int64_t> sorted_slice_sizes = {3, 3, 3}; int64_t max_colocation_size = -1; int64_t preferred_offset = -1; int64_t alignment = 1; Finder finder(free_chunks_per_slice_time, sorted_slice_sizes, max_colocation_size, preferred_offset, alignment, NewPermutationIterator(sorted_slice_sizes.size())); EXPECT_THAT(finder.Find(), ::testing::ElementsAre( Chunk::FromOffsetSize(60, 3), Chunk::FromOffsetSize(63, 3), Chunk::FromOffsetSize(66, 3), Chunk::FromOffsetSize(69, 0))); } TEST_F(SlicedAllocationFinderTest, LargerMaxColloc) { std::vector<FreeChunks> free_chunks_per_slice_time = { { {5, 7}, {10, 40}, {48, 51}, {60, 70}, }, { {5, 7}, {10, 40}, {48, 54}, {60, 70}, }, { {5, 7}, {10, 40}, {45, 54}, {60, 70}, }, }; std::vector<int64_t> sorted_slice_sizes = {3, 3, 3}; int64_t max_colocation_size = 10; int64_t preferred_offset = -1; int64_t alignment = 1; Finder finder(free_chunks_per_slice_time, sorted_slice_sizes, max_colocation_size, preferred_offset, alignment, NewPermutationIterator(sorted_slice_sizes.size())); EXPECT_THAT(finder.Find(), ::testing::ElementsAre( Chunk::FromOffsetSize(60, 3), Chunk::FromOffsetSize(63, 3), Chunk::FromOffsetSize(66, 3), Chunk::FromOffsetSize(69, 1))); } TEST_F(SlicedAllocationFinderTest, PreferredOffsetFit) { std::vector<FreeChunks> free_chunks_per_slice_time = { { {5, 7}, {10, 40}, {48, 51}, {60, 70}, }, { {5, 7}, {10, 40}, {48, 54}, {60, 70}, }, { {5, 7}, {10, 40}, {45, 54}, {60, 70}, }, }; std::vector<int64_t> sorted_slice_sizes = {3, 3, 3}; int64_t max_colocation_size = -1; int64_t preferred_offset = 20; int64_t alignment = 1; Finder finder(free_chunks_per_slice_time, sorted_slice_sizes, max_colocation_size, preferred_offset, alignment, NewPermutationIterator(sorted_slice_sizes.size())); EXPECT_THAT(finder.Find(), ::testing::ElementsAre( Chunk::FromOffsetSize(20, 3), Chunk::FromOffsetSize(23, 3), Chunk::FromOffsetSize(26, 3), Chunk::FromOffsetSize(29, 0))); } TEST_F(SlicedAllocationFinderTest, PreferredOffsetNoFit) { std::vector<FreeChunks> free_chunks_per_slice_time = { { {5, 7}, {10, 40}, {48, 51}, {60, 70}, }, { {5, 7}, {10, 40}, {48, 54}, {60, 70}, }, { {5, 7}, {10, 40}, {45, 54}, {60, 70}, }, }; std::vector<int64_t> sorted_slice_sizes = {3, 3, 3}; int64_t max_colocation_size = -1; int64_t preferred_offset = 35; int64_t alignment = 1; Finder finder(free_chunks_per_slice_time, sorted_slice_sizes, max_colocation_size, preferred_offset, alignment, NewPermutationIterator(sorted_slice_sizes.size())); EXPECT_THAT(finder.Find(), ::testing::ElementsAre( Chunk::FromOffsetSize(48, 3), Chunk::FromOffsetSize(51, 3), Chunk::FromOffsetSize(45, 3), Chunk::FromOffsetSize(54, 0))); } TEST_F(SlicedAllocationFinderTest, Misaligned) { std::vector<FreeChunks> free_chunks_per_slice_time = { { {5, 7}, {10, 40}, {47, 53}, {60, 70}, }, { {5, 7}, {10, 40}, {47, 57}, {60, 70}, }, { {5, 7}, {10, 40}, {43, 57}, {60, 70}, }, }; std::vector<int64_t> sorted_slice_sizes = {4, 4, 4}; int64_t max_colocation_size = -1; int64_t preferred_offset = -1; int64_t alignment = 2; Finder finder(free_chunks_per_slice_time, sorted_slice_sizes, max_colocation_size, preferred_offset, alignment, NewPermutationIterator(sorted_slice_sizes.size())); EXPECT_THAT(finder.Find(), ::testing::ElementsAre( Chunk::FromOffsetSize(48, 4), Chunk::FromOffsetSize(52, 4), Chunk::FromOffsetSize(44, 4), Chunk::FromOffsetSize(56, 0))); } TEST_F(SlicedAllocationFinderTest, PreferredOffsetMisaligned) { std::vector<FreeChunks> free_chunks_per_slice_time = { { {5, 7}, {10, 40}, {47, 53}, {60, 70}, }, { {5, 7}, {10, 40}, {47, 57}, {60, 70}, }, { {5, 7}, {10, 40}, {43, 57}, {60, 70}, }, }; std::vector<int64_t> sorted_slice_sizes = {4, 4, 4}; int64_t max_colocation_size = -1; int64_t preferred_offset = 21; int64_t alignment = 2; Finder finder(free_chunks_per_slice_time, sorted_slice_sizes, max_colocation_size, preferred_offset, alignment, NewPermutationIterator(sorted_slice_sizes.size())); EXPECT_THAT(finder.Find(), ::testing::ElementsAre( Chunk::FromOffsetSize(48, 4), Chunk::FromOffsetSize(52, 4), Chunk::FromOffsetSize(44, 4), Chunk::FromOffsetSize(56, 0))); } TEST_F(SlicedAllocationFinderTest, CorrectInitialization1) { std::vector<FreeChunks> free_chunks_per_slice_time = { { {5, 11}, {15, 21}, }, { {5, 11}, {25, 31}, }, }; std::vector<int64_t> sorted_slice_sizes = {3, 3}; int64_t max_colocation_size = -1; int64_t preferred_offset = -1; int64_t alignment = 1; Finder finder(free_chunks_per_slice_time, sorted_slice_sizes, max_colocation_size, preferred_offset, alignment, NewPermutationIterator(sorted_slice_sizes.size())); EXPECT_THAT(finder.Find(), ::testing::ElementsAre(Chunk::FromOffsetSize(5, 3), Chunk::FromOffsetSize(8, 3), Chunk::FromOffsetSize(11, 0))); } TEST_F(SlicedAllocationFinderTest, CorrectInitialization2) { std::vector<FreeChunks> free_chunks_per_slice_time = { { {5, 16}, {20, 26}, {40, 43}, }, { {5, 16}, {26, 32}, {42, 45}, }, }; std::vector<int64_t> sorted_slice_sizes = {3, 3}; int64_t max_colocation_size = -1; int64_t preferred_offset = -1; int64_t alignment = 1; Finder finder(free_chunks_per_slice_time, sorted_slice_sizes, max_colocation_size, preferred_offset, alignment, NewPermutationIterator(sorted_slice_sizes.size())); EXPECT_THAT(finder.Find(), ::testing::ElementsAre(Chunk::FromOffsetSize(5, 3), Chunk::FromOffsetSize(8, 3), Chunk::FromOffsetSize(11, 0))); } TEST_F(SlicedAllocationFinderTest, LeftHoleNotAllowedToStartAtFirstOffset) { std::vector<FreeChunks> free_chunks_per_slice_time = { { {5, 7}, {10, 40}, {45, 49}, {60, 70}, }, { {5, 7}, {10, 40}, {45, 52}, {60, 70}, }, { {5, 7}, {10, 40}, {45, 55}, {60, 70}, }, }; std::vector<int64_t> sorted_slice_sizes = {3, 3, 3}; int64_t max_colocation_size = -1; int64_t preferred_offset = -1; int64_t alignment = 1; Finder finder( free_chunks_per_slice_time, sorted_slice_sizes, max_colocation_size, preferred_offset, alignment, NewPermutationIterator(sorted_slice_sizes.size()), [](int64_t offset) { return offset != 45; }); EXPECT_THAT(finder.Find(), ::testing::ElementsAre( Chunk::FromOffsetSize(46, 3), Chunk::FromOffsetSize(49, 3), Chunk::FromOffsetSize(52, 3), Chunk::FromOffsetSize(55, 0))); } TEST_F(SlicedAllocationFinderTest, LeftHoleAllowedToIncludeNoStartOffset) { std::vector<FreeChunks> free_chunks_per_slice_time = { { {5, 7}, {10, 40}, {45, 48}, {60, 70}, }, { {5, 7}, {10, 40}, {45, 51}, {60, 70}, }, { {5, 7}, {10, 40}, {45, 54}, {60, 70}, }, }; std::vector<int64_t> sorted_slice_sizes = {3, 3, 3}; int64_t max_colocation_size = -1; int64_t preferred_offset = -1; int64_t alignment = 1; Finder finder( free_chunks_per_slice_time, sorted_slice_sizes, max_colocation_size, preferred_offset, alignment, NewPermutationIterator(sorted_slice_sizes.size()), [](int64_t offset) { return offset != 46; }); EXPECT_THAT(finder.Find(), ::testing::ElementsAre( Chunk::FromOffsetSize(45, 3), Chunk::FromOffsetSize(48, 3), Chunk::FromOffsetSize(51, 3), Chunk::FromOffsetSize(54, 0))); } TEST_F(SlicedAllocationFinderTest, RightHoleNotAllowedToStartAtFirstOffset) { std::vector<FreeChunks> free_chunks_per_slice_time = { { {5, 7}, {10, 40}, {51, 55}, {60, 70}, }, { {5, 7}, {10, 40}, {48, 55}, {60, 70}, }, { {5, 7}, {10, 40}, {45, 55}, {60, 70}, }, }; std::vector<int64_t> sorted_slice_sizes = {3, 3, 3}; int64_t max_colocation_size = -1; int64_t preferred_offset = -1; int64_t alignment = 1; Finder finder( free_chunks_per_slice_time, sorted_slice_sizes, max_colocation_size, preferred_offset, alignment, NewPermutationIterator(sorted_slice_sizes.size()), [](int64_t offset) { return offset != 45; }); EXPECT_THAT(finder.Find(), ::testing::ElementsAre( Chunk::FromOffsetSize(52, 3), Chunk::FromOffsetSize(49, 3), Chunk::FromOffsetSize(46, 3), Chunk::FromOffsetSize(55, 0))); } TEST_F(SlicedAllocationFinderTest, RightHoleNotAllowedOffsetsFindsNewHole) { std::vector<FreeChunks> free_chunks_per_slice_time = { { {5, 7}, {10, 40}, {51, 54}, {60, 70}, }, { {5, 7}, {10, 40}, {48, 54}, {60, 70}, }, { {5, 7}, {10, 40}, {45, 54}, {60, 70}, }, }; std::vector<int64_t> sorted_slice_sizes = {3, 3, 3}; int64_t max_colocation_size = -1; int64_t preferred_offset = -1; int64_t alignment = 1; Finder finder( free_chunks_per_slice_time, sorted_slice_sizes, max_colocation_size, preferred_offset, alignment, NewPermutationIterator(sorted_slice_sizes.size()), [](int64_t offset) { return offset != 45; }); EXPECT_THAT(finder.Find(), ::testing::ElementsAre( Chunk::FromOffsetSize(60, 3), Chunk::FromOffsetSize(63, 3), Chunk::FromOffsetSize(66, 3), Chunk::FromOffsetSize(69, 0))); } TEST_F(SlicedAllocationFinderTest, FindForOffset) { std::vector<FreeChunks> free_chunks_per_slice_time = { { {5, 7}, {10, 40}, {45, 49}, {60, 70}, }, { {5, 7}, {10, 40}, {45, 52}, {60, 70}, }, { {5, 7}, {10, 40}, {45, 55}, {60, 70}, }, }; std::vector<int64_t> sorted_slice_sizes = {3, 3, 3}; int64_t max_colocation_size = -1; int64_t preferred_offset = -1; int64_t alignment = 1; Finder finder( free_chunks_per_slice_time, sorted_slice_sizes, max_colocation_size, preferred_offset, alignment, NewPermutationIterator(sorted_slice_sizes.size()), [](int64_t offset) { return offset != 45; }); EXPECT_THAT(finder.FindForOffset(10), ::testing::ElementsAre( Chunk::FromOffsetSize(10, 3), Chunk::FromOffsetSize(13, 3), Chunk::FromOffsetSize(16, 3), Chunk::FromOffsetSize(19, 0))); EXPECT_THAT(finder.FindForOffset(20), ::testing::ElementsAre( Chunk::FromOffsetSize(20, 3), Chunk::FromOffsetSize(23, 3), Chunk::FromOffsetSize(26, 3), Chunk::FromOffsetSize(29, 0))); EXPECT_THAT(finder.FindForOffset(45), ::testing::IsEmpty()); EXPECT_THAT(finder.FindForOffset(46), ::testing::ElementsAre( Chunk::FromOffsetSize(46, 3), Chunk::FromOffsetSize(49, 3), Chunk::FromOffsetSize(52, 3), Chunk::FromOffsetSize(55, 0))); EXPECT_THAT(finder.FindForOffset(59), ::testing::IsEmpty()); EXPECT_THAT(finder.FindForOffset(61), ::testing::ElementsAre( Chunk::FromOffsetSize(61, 3), Chunk::FromOffsetSize(64, 3), Chunk::FromOffsetSize(67, 3), Chunk::FromOffsetSize(70, 0))); } class SliceTimePermutationIteratorTest : public ::testing::Test { protected: struct NewAllocationTestCase { void Test() const { auto iterator = SliceTimePermutationIterator::CreateForNewAllocation( ty, inclusive_start_times); for (int i = 0; i < 5; ++i) { VLOG(2) << "Test case try #" << i << ": NewAllocation, " << name; EXPECT_THAT(GetPermutations(iterator.get()), ::testing::ElementsAreArray(expected_permutations)) << "Failed NewAllocation, " << name; } } std::string name; SliceTimePermutationIterator::Ty ty; std::vector<int64_t> inclusive_start_times; std::vector<std::vector<int64_t>> expected_permutations; }; struct RepackTestCase { void Test() const { auto iterator = SliceTimePermutationIterator::CreateForRepack( ty, (original_slice_data.has_value() ? &(*original_slice_data) : nullptr)); for (int i = 0; i < 5; ++i) { VLOG(2) << "Test case try #" << i << ": Repack, " << name; EXPECT_THAT(GetPermutations(iterator.get()), ::testing::ElementsAreArray(expected_permutations)) << "Failed Repack, " << name; } } std::string name; SliceTimePermutationIterator::Ty ty; std::optional<SlicedAllocationData> original_slice_data; std::vector<std::vector<int64_t>> expected_permutations; }; static std::vector<std::vector<int64_t>> GetPermutations( SliceTimePermutationIterator* it) { std::vector<std::vector<int64_t>> results; for (it->Begin(); !it->Done(); it->Next()) { absl::Span<const int64_t> permutation = it->Get(); results.push_back( std::vector<int64_t>(permutation.begin(), permutation.end())); } return results; } }; TEST_F(SliceTimePermutationIteratorTest, NewAllocations) { std::vector<NewAllocationTestCase> test_cases = { { "0 slices, all permutations", SliceTimePermutationIterator::Ty::kAll, {}, {}, }, { "1 slice, all permutations", SliceTimePermutationIterator::Ty::kAll, {0}, {{0}}, }, { "2 slices, all permutations", SliceTimePermutationIterator::Ty::kAll, {10, 20}, {{0, 1}, {1, 0}}, }, { "many slices, all permutations, unique start times", SliceTimePermutationIterator::Ty::kAll, {40, 10, 450}, {{0, 1, 2}, {0, 2, 1}, {1, 0, 2}, {1, 2, 0}, {2, 0, 1}, {2, 1, 0}}, }, { "many slices, all permutations, non-unique start times", SliceTimePermutationIterator::Ty::kAll, {40, 10, 450, 10}, { {0, 1, 2, 3}, {0, 1, 3, 2}, {0, 2, 1, 3}, {0, 2, 3, 1}, {0, 3, 1, 2}, {0, 3, 2, 1}, {2, 0, 1, 3}, {2, 0, 3, 1}, {2, 3, 0, 1}, {3, 0, 1, 2}, {3, 0, 2, 1}, {3, 2, 0, 1}, }, }, { "0 slices, preferred permutations", SliceTimePermutationIterator::Ty::kPreferred, {}, {}, }, { "1 slice, preferred permutations", SliceTimePermutationIterator::Ty::kPreferred, {0}, {{0}}, }, { "2 slices, preferred permutations", SliceTimePermutationIterator::Ty::kPreferred, {10, 20}, {{0, 1}, {1, 0}}, }, { "many slices, preferred permutations, unique start times", SliceTimePermutationIterator::Ty::kPreferred, {40, 10, 450, 12, 14}, {{0, 1, 2, 3, 4}, {4, 3, 2, 1, 0}, {3, 1, 0, 2, 4}}, }, { "many slices, preferred permutations, non-unique start times 1", SliceTimePermutationIterator::Ty::kPreferred, {40, 10, 450, 10}, { {0, 1, 2, 3}, {3, 2, 1, 0}, {3, 1, 0, 2}}, }, { "many slices, preferred permutations, non-unique start times 2", SliceTimePermutationIterator::Ty::kPreferred, {40, 40}, { {0, 1}, }, }, }; for (const NewAllocationTestCase& test_case : test_cases) { test_case.Test(); } } TEST_F(SliceTimePermutationIteratorTest, Repacks) { std::vector<RepackTestCase> test_cases = { { "no slice data, all permutations", SliceTimePermutationIterator::Ty::kAll, std::nullopt, {{0}}, }, { "0 slices, all permutations", SliceTimePermutationIterator::Ty::kAll, SlicedAllocationData{}, {}, }, { "1 slice, all permutations", SliceTimePermutationIterator::Ty::kAll, SlicedAllocationData{{ {1, 1, 1}, }}, {{0}}, }, { "2 slices, uniform slice size, all permutations", SliceTimePermutationIterator::Ty::kAll, SlicedAllocationData{{ {1, 1, 1}, {1, 2, 2}, }}, {{0, 1}, {1, 0}}, }, { "many slices, uniform slice size, unique start times, all " "permutations", SliceTimePermutationIterator::Ty::kAll, SlicedAllocationData{{ {1, 1, 1}, {1, 2, 2}, {1, 3, 3}, }}, {{0, 1, 2}, {0, 2, 1}, {1, 0, 2}, {1, 2, 0}, {2, 0, 1}, {2, 1, 0}}, }, { "many slices, non-uniform slice size, unique start times, all " "permutations", SliceTimePermutationIterator::Ty::kAll, SlicedAllocationData{{ {1, 1, 1}, {2, 2, 3}, {1, 3, 2}, }}, { {0, 2, 1}, {1, 2, 0}, }, }, { "many slices, non-uniform slice size, non-unique start times, all " "permutations", SliceTimePermutationIterator::Ty::kAll, SlicedAllocationData{{ {1, 1, 1}, {1, 2, 2}, {2, 3, 1}, {1, 5, 1}, {2, 6, 3}, {3, 8, 4}, }}, { {0, 1, 2, 3, 4, 5}, {0, 1, 4, 3, 2, 5}, {0, 3, 1, 2, 4, 5}, {0, 3, 4, 1, 2, 5}, {3, 0, 1, 2, 4, 5}, {3, 0, 4, 1, 2, 5}, }, }, { "no slice data, preferred permutations", SliceTimePermutationIterator::Ty::kPreferred, std::nullopt, {{0}}, }, { "0 slices, preferred permutations", SliceTimePermutationIterator::Ty::kPreferred, SlicedAllocationData{}, {}, }, { "1 slice, preferred permutations", SliceTimePermutationIterator::Ty::kPreferred, SlicedAllocationData{{ {1, 1, 1}, }}, {{0}}, }, { "2 slices, uniform slice size, preferred permutations", SliceTimePermutationIterator::Ty::kPreferred, SlicedAllocationData{{ {1, 1, 1}, {1, 2, 2}, }}, {{0, 1}, {1, 0}}, }, { "many slices, uniform slice size, unique start times, preferred " "permutations", SliceTimePermutationIterator::Ty::kPreferred, SlicedAllocationData{{ {1, 1, 1}, {1, 2, 2}, {1, 3, 3}, }}, {{0, 1, 2}, {2, 1, 0}, {1, 0, 2}}, }, { "many slices, non-uniform slice size, unique start times, preferred " "permutations", SliceTimePermutationIterator::Ty::kPreferred, SlicedAllocationData{{ {1, 1, 1}, {2, 2, 3}, {1, 3, 2}, }}, { {0, 2, 1}, {1, 2, 0}, }, }, { "many slices, non-uniform slice size, non-unique start times, " "preferred permutations", SliceTimePermutationIterator::Ty::kPreferred, SlicedAllocationData{{ {1, 1, 1}, {1, 2, 2}, {2, 3, 1}, {1, 5, 1}, {2, 6, 3}, {3, 8, 4}, }}, { {0, 2, 1, 3, 4, 5}, {3, 2, 1, 0, 4, 5}, }, }, }; for (const RepackTestCase& test_case : test_cases) { test_case.Test(); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/heap_simulator/heap_simulator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/heap_simulator/heap_simulator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4158aec7-4771-4a69-b0de-b4fe7c30f13e
cpp
tensorflow/tensorflow
ctc_beam_search_decoder
tensorflow/lite/kernels/ctc/ctc_beam_search_decoder.cc
tensorflow/lite/kernels/ctc/ctc_beam_search_decoder_test.cc
#include <algorithm> #include <vector> #include "flatbuffers/flexbuffers.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/ctc/ctc_beam_search.h" #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/kernels/op_macros.h" namespace tflite { namespace ops { namespace custom { namespace ctc_beam_search_decoder { constexpr int kInputsTensor = 0; constexpr int kSequenceLengthTensor = 1; typedef struct { int beam_width; int top_paths; bool merge_repeated; } CTCBeamSearchDecoderParams; void* Init(TfLiteContext* context, const char* buffer, size_t length) { TFLITE_CHECK(buffer != nullptr); const uint8_t* buffer_t = reinterpret_cast<const uint8_t*>(buffer); const flexbuffers::Map& m = flexbuffers::GetRoot(buffer_t, length).AsMap(); CTCBeamSearchDecoderParams* option = new CTCBeamSearchDecoderParams; option->beam_width = m["beam_width"].AsInt32(); option->top_paths = m["top_paths"].AsInt32(); option->merge_repeated = m["merge_repeated"].AsBool(); return option; } void Free(TfLiteContext* context, void* buffer) { delete reinterpret_cast<CTCBeamSearchDecoderParams*>(buffer); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { const CTCBeamSearchDecoderParams* option = reinterpret_cast<CTCBeamSearchDecoderParams*>(node->user_data); const int top_paths = option->top_paths; TF_LITE_ENSURE(context, option->beam_width >= top_paths); TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 3 * top_paths + 1); const TfLiteTensor* inputs; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputsTensor, &inputs)); TF_LITE_ENSURE_EQ(context, NumDimensions(inputs), 3); TF_LITE_ENSURE_EQ(context, inputs->type, kTfLiteFloat32); const int batch_size = SizeOfDimension(inputs, 1); const TfLiteTensor* sequence_length; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kSequenceLengthTensor, &sequence_length)); TF_LITE_ENSURE_EQ(context, NumDimensions(sequence_length), 1); TF_LITE_ENSURE_EQ(context, NumElements(sequence_length), batch_size); TF_LITE_ENSURE_EQ(context, sequence_length->type, kTfLiteInt32); for (int i = 0; i < top_paths; ++i) { TfLiteTensor* indices; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, i, &indices)); SetTensorToDynamic(indices); TfLiteTensor* values; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, i + top_paths, &values)); SetTensorToDynamic(values); TfLiteTensor* output_shape; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, i + 2 * top_paths, &output_shape)); SetTensorToDynamic(output_shape); } TfLiteTensor* log_probability_output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, top_paths * 3, &log_probability_output)); TfLiteIntArray* log_probability_output_shape_array = TfLiteIntArrayCreate(2); log_probability_output_shape_array->data[0] = batch_size; log_probability_output_shape_array->data[1] = top_paths; return context->ResizeTensor(context, log_probability_output, log_probability_output_shape_array); } TfLiteStatus Resize(TfLiteContext* context, std::initializer_list<int32_t> output_shape, TfLiteTensor* output) { const int dimensions = output_shape.size(); TfLiteIntArray* output_shape_array = TfLiteIntArrayCreate(dimensions); int i = 0; for (const int v : output_shape) { output_shape_array->data[i++] = v; } return context->ResizeTensor(context, output, output_shape_array); } TfLiteStatus StoreAllDecodedSequences( TfLiteContext* context, const std::vector<std::vector<std::vector<int>>>& sequences, TfLiteNode* node, int top_paths) { const int32_t batch_size = sequences.size(); std::vector<int32_t> num_entries(top_paths, 0); for (const auto& batch_s : sequences) { TF_LITE_ENSURE_EQ(context, batch_s.size(), top_paths); for (int p = 0; p < top_paths; ++p) { num_entries[p] += batch_s[p].size(); } } for (int p = 0; p < top_paths; ++p) { const int32_t p_num = num_entries[p]; TfLiteTensor* indices; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, p, &indices)); TF_LITE_ENSURE_OK(context, Resize(context, {p_num, 2}, indices)); TfLiteTensor* values; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, p + top_paths, &values)); TF_LITE_ENSURE_OK(context, Resize(context, {p_num}, values)); TfLiteTensor* decoded_shape; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, p + 2 * top_paths, &decoded_shape)); TF_LITE_ENSURE_OK(context, Resize(context, {2}, decoded_shape)); int32_t max_decoded = 0; int32_t offset = 0; int32_t* indices_data = GetTensorData<int32_t>(indices); int32_t* values_data = GetTensorData<int32_t>(values); int32_t* decoded_shape_data = GetTensorData<int32_t>(decoded_shape); for (int b = 0; b < batch_size; ++b) { auto& p_batch = sequences[b][p]; int32_t num_decoded = p_batch.size(); max_decoded = std::max(max_decoded, num_decoded); std::copy_n(p_batch.begin(), num_decoded, values_data + offset); for (int32_t t = 0; t < num_decoded; ++t, ++offset) { indices_data[offset * 2] = b; indices_data[offset * 2 + 1] = t; } } decoded_shape_data[0] = batch_size; decoded_shape_data[1] = max_decoded; } return kTfLiteOk; } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* inputs; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputsTensor, &inputs)); const TfLiteTensor* sequence_length; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kSequenceLengthTensor, &sequence_length)); const CTCBeamSearchDecoderParams* option = reinterpret_cast<CTCBeamSearchDecoderParams*>(node->user_data); const int max_time = SizeOfDimension(inputs, 0); const int batch_size = SizeOfDimension(inputs, 1); const int num_classes = SizeOfDimension(inputs, 2); const int beam_width = option->beam_width; const int top_paths = option->top_paths; const bool merge_repeated = option->merge_repeated; for (int i = 0; i < batch_size; ++i) { TF_LITE_ENSURE(context, max_time >= GetTensorData<int32_t>(sequence_length)[i]); } std::vector<optimized_ops::TTypes<float>::UnalignedConstMatrix> input_list_t; input_list_t.reserve(max_time); for (std::size_t t = 0; t < max_time; ++t) { input_list_t.emplace_back( GetTensorData<float>(inputs) + t * batch_size * num_classes, batch_size, num_classes); } ::tflite::custom::ctc::CTCBeamSearchDecoder<>::DefaultBeamScorer beam_scorer; ::tflite::custom::ctc::CTCBeamSearchDecoder<> beam_search( num_classes, beam_width, &beam_scorer, 1 , merge_repeated); float* input_chip_t_data = static_cast<float*>(malloc(num_classes * sizeof(float))); Eigen::array<Eigen::DenseIndex, 1> dims; dims[0] = num_classes; optimized_ops::TTypes<float>::Flat input_chip_t(input_chip_t_data, dims); std::vector<std::vector<std::vector<int>>> best_paths(batch_size); std::vector<float> log_probs; TfLiteTensor* log_probabilities; TF_LITE_ENSURE_OK( context, GetOutputSafe(context, node, 3 * top_paths, &log_probabilities)); float* log_probabilities_output = GetTensorData<float>(log_probabilities); for (int b = 0; b < batch_size; ++b) { auto& best_paths_b = best_paths[b]; best_paths_b.resize(top_paths); for (int t = 0; t < GetTensorData<int32_t>(sequence_length)[b]; ++t) { input_chip_t = input_list_t[t].chip(b, 0); auto input_bi = Eigen::Map<const Eigen::ArrayXf>(input_chip_t.data(), num_classes); beam_search.Step(input_bi); } TF_LITE_ENSURE(context, beam_search.TopPaths(top_paths, &best_paths_b, &log_probs, merge_repeated)); beam_search.Reset(); for (int bp = 0; bp < top_paths; ++bp) { log_probabilities_output[b * top_paths + bp] = log_probs[bp]; } } free(input_chip_t_data); return StoreAllDecodedSequences(context, best_paths, node, top_paths); } } TfLiteRegistration* Register_CTC_BEAM_SEARCH_DECODER() { static TfLiteRegistration r = { ctc_beam_search_decoder::Init, ctc_beam_search_decoder::Free, ctc_beam_search_decoder::Prepare, ctc_beam_search_decoder::Eval}; return &r; } } } }
#include <functional> #include <memory> #include <vector> #include <gtest/gtest.h> #include "flatbuffers/flexbuffers.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/kernels/test_util.h" namespace tflite { namespace ops { namespace custom { using ::testing::ElementsAre; using ::testing::ElementsAreArray; TfLiteRegistration* Register_CTC_BEAM_SEARCH_DECODER(); namespace { using ::testing::ElementsAre; using ::testing::ElementsAreArray; class CTCBeamSearchDecoderOpModel : public SingleOpModel { public: CTCBeamSearchDecoderOpModel(std::initializer_list<int> input_shape, std::initializer_list<int> sequence_length_shape, int beam_width, int top_paths, bool merge_repeated) { inputs_ = AddInput(TensorType_FLOAT32); sequence_length_ = AddInput(TensorType_INT32); for (int i = 0; i < top_paths * 3; ++i) { outputs_.push_back(AddOutput(TensorType_INT32)); } outputs_.push_back(AddOutput(TensorType_FLOAT32)); flexbuffers::Builder fbb; fbb.Map([&]() { fbb.Int("beam_width", beam_width); fbb.Int("top_paths", top_paths); fbb.Bool("merge_repeated", merge_repeated); }); fbb.Finish(); SetCustomOp("CTCBeamSearchDecoder", fbb.GetBuffer(), Register_CTC_BEAM_SEARCH_DECODER); BuildInterpreter({input_shape, sequence_length_shape}); } int inputs() { return inputs_; } int sequence_length() { return sequence_length_; } std::vector<std::vector<int>> GetDecodedOutpus() { std::vector<std::vector<int>> outputs; for (int i = 0; i < outputs_.size() - 1; ++i) { outputs.push_back(ExtractVector<int>(outputs_[i])); } return outputs; } std::vector<float> GetLogProbabilitiesOutput() { return ExtractVector<float>(outputs_[outputs_.size() - 1]); } std::vector<std::vector<int>> GetOutputShapes() { std::vector<std::vector<int>> output_shapes; for (const int output : outputs_) { output_shapes.push_back(GetTensorShape(output)); } return output_shapes; } private: int inputs_; int sequence_length_; std::vector<int> outputs_; }; TEST(CTCBeamSearchTest, SimpleTest) { CTCBeamSearchDecoderOpModel m({2, 1, 2}, {1}, 1, 1, true); m.PopulateTensor<float>(m.inputs(), {-0.50922557, -1.35512652, -2.55445064, -1.58419356}); m.PopulateTensor<int>(m.sequence_length(), {2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); const std::vector<std::vector<int>>& output_shapes = m.GetOutputShapes(); EXPECT_EQ(output_shapes.size(), 4); EXPECT_THAT(output_shapes[0], ElementsAre(1, 2)); EXPECT_THAT(output_shapes[1], ElementsAre(1)); EXPECT_THAT(output_shapes[2], ElementsAre(2)); EXPECT_THAT(output_shapes[3], ElementsAre(1, 1)); const std::vector<std::vector<int>>& decoded_outputs = m.GetDecodedOutpus(); EXPECT_EQ(decoded_outputs.size(), 3); EXPECT_THAT(decoded_outputs[0], ElementsAre(0, 0)); EXPECT_THAT(decoded_outputs[1], ElementsAre(0)); EXPECT_THAT(decoded_outputs[2], ElementsAre(1, 1)); EXPECT_THAT(m.GetLogProbabilitiesOutput(), ElementsAreArray(ArrayFloatNear({-0.357094}))); } TEST(CTCBeamSearchTest, MultiBatchTest) { CTCBeamSearchDecoderOpModel m({3, 3, 3}, {3}, 1, 1, true); m.PopulateTensor<float>( m.inputs(), {-0.63649208, -0.00487571, -0.04249819, -0.67754697, -1.0341399, -2.14717721, -0.77686821, -3.41973774, -0.05151402, -0.21482619, -0.57411168, -1.45039917, -0.73769373, -2.10941739, -0.44818325, -0.25287673, -2.80057302, -0.54748312, -0.73334867, -0.86537719, -0.2065197, -0.18725838, -1.42770405, -0.86051965, -1.61642301, -2.07275114, -0.9201845}); m.PopulateTensor<int>(m.sequence_length(), {3, 3, 3}); ASSERT_EQ(m.Invoke(), kTfLiteOk); const std::vector<std::vector<int>>& output_shapes = m.GetOutputShapes(); EXPECT_EQ(output_shapes.size(), 4); EXPECT_THAT(output_shapes[0], ElementsAre(4, 2)); EXPECT_THAT(output_shapes[1], ElementsAre(4)); EXPECT_THAT(output_shapes[2], ElementsAre(2)); EXPECT_THAT(output_shapes[3], ElementsAre(3, 1)); const std::vector<std::vector<int>>& decoded_outputs = m.GetDecodedOutpus(); EXPECT_EQ(decoded_outputs.size(), 3); EXPECT_THAT(decoded_outputs[0], ElementsAre(0, 0, 0, 1, 1, 0, 2, 0)); EXPECT_THAT(decoded_outputs[1], ElementsAre(1, 0, 0, 0)); EXPECT_THAT(decoded_outputs[2], ElementsAre(3, 2)); EXPECT_THAT(m.GetLogProbabilitiesOutput(), ElementsAreArray(ArrayFloatNear({-1.88343, -1.41188, -1.20958}))); } TEST(CTCBeamSearchTest, MultiPathsTest) { CTCBeamSearchDecoderOpModel m({3, 2, 5}, {2}, 3, 2, true); m.PopulateTensor<float>( m.inputs(), {-2.206851, -0.09542714, -0.2393415, -3.81866197, -0.27241158, -0.20371124, -0.68236623, -1.1397166, -0.17422639, -1.85224048, -0.9406037, -0.32544678, -0.21846784, -0.38377237, -0.33498676, -0.10139782, -0.51886883, -0.21678554, -0.15267063, -1.91164412, -0.31328673, -0.27462716, -0.65975336, -1.53671973, -2.76554225, -0.23920634, -1.2370502, -4.98751576, -3.12995717, -0.43129368}); m.PopulateTensor<int>(m.sequence_length(), {3, 3}); ASSERT_EQ(m.Invoke(), kTfLiteOk); const std::vector<std::vector<int>>& output_shapes = m.GetOutputShapes(); EXPECT_EQ(output_shapes.size(), 7); EXPECT_THAT(output_shapes[0], ElementsAre(4, 2)); EXPECT_THAT(output_shapes[1], ElementsAre(3, 2)); EXPECT_THAT(output_shapes[2], ElementsAre(4)); EXPECT_THAT(output_shapes[3], ElementsAre(3)); EXPECT_THAT(output_shapes[4], ElementsAre(2)); EXPECT_THAT(output_shapes[5], ElementsAre(2)); EXPECT_THAT(output_shapes[6], ElementsAre(2, 2)); const std::vector<std::vector<int>>& decoded_outputs = m.GetDecodedOutpus(); EXPECT_EQ(decoded_outputs.size(), 6); EXPECT_THAT(decoded_outputs[0], ElementsAre(0, 0, 0, 1, 1, 0, 1, 1)); EXPECT_THAT(decoded_outputs[1], ElementsAre(0, 0, 0, 1, 1, 0)); EXPECT_THAT(decoded_outputs[2], ElementsAre(1, 2, 3, 0)); EXPECT_THAT(decoded_outputs[3], ElementsAre(2, 1, 0)); EXPECT_THAT(decoded_outputs[4], ElementsAre(2, 2)); EXPECT_THAT(decoded_outputs[5], ElementsAre(2, 2)); EXPECT_THAT(m.GetLogProbabilitiesOutput(), ElementsAreArray( ArrayFloatNear({-2.65148, -2.65864, -2.17914, -2.61357}))); } TEST(CTCBeamSearchTest, NonEqualSequencesTest) { CTCBeamSearchDecoderOpModel m({3, 3, 4}, {3}, 3, 1, true); m.PopulateTensor<float>( m.inputs(), {-1.26658163, -0.25760023, -0.03917975, -0.63772235, -0.03794756, -0.45063099, -0.27706473, -0.01569179, -0.59940385, -0.35700127, -0.48920721, -1.42635476, -1.3462478, -0.02565498, -0.30179568, -0.6491698, -0.55017719, -2.92291466, -0.92522973, -0.47592022, -0.07099135, -0.31575624, -0.86345281, -0.36017021, -0.79208612, -1.75306124, -0.65089224, -0.00912786, -0.42915003, -1.72606203, -1.66337589, -0.70800793, -2.52272352, -0.67329562, -2.49145522, -0.49786342}); m.PopulateTensor<int>(m.sequence_length(), {1, 2, 3}); ASSERT_EQ(m.Invoke(), kTfLiteOk); const std::vector<std::vector<int>>& output_shapes = m.GetOutputShapes(); EXPECT_EQ(output_shapes.size(), 4); EXPECT_THAT(output_shapes[0], ElementsAre(3, 2)); EXPECT_THAT(output_shapes[1], ElementsAre(3)); EXPECT_THAT(output_shapes[2], ElementsAre(2)); EXPECT_THAT(output_shapes[3], ElementsAre(3, 1)); const std::vector<std::vector<int>>& decoded_outputs = m.GetDecodedOutpus(); EXPECT_EQ(decoded_outputs.size(), 3); EXPECT_THAT(decoded_outputs[0], ElementsAre(0, 0, 1, 0, 2, 0)); EXPECT_THAT(decoded_outputs[1], ElementsAre(2, 0, 1)); EXPECT_THAT(decoded_outputs[2], ElementsAre(3, 1)); EXPECT_THAT(m.GetLogProbabilitiesOutput(), ElementsAreArray(ArrayFloatNear({-0.97322, -1.16334, -2.15553}))); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/ctc/ctc_beam_search_decoder.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/ctc/ctc_beam_search_decoder_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d75b907d-df98-4296-ba6f-3db885a2d24f
cpp
tensorflow/tensorflow
mlir_pass_instrumentation
tensorflow/compiler/mlir/tf2xla/internal/mlir_pass_instrumentation.cc
tensorflow/compiler/mlir/tf2xla/internal/mlir_pass_instrumentation_test.cc
#include "tensorflow/compiler/mlir/tf2xla/internal/mlir_pass_instrumentation.h" #include <algorithm> #include <functional> #include <iterator> #include <memory> #include <string> #include <unordered_map> #include <vector> #include "tensorflow/core/platform/logging.h" namespace mlir { class MlirPassInstrumentationRegistry { public: static MlirPassInstrumentationRegistry& Instance() { static MlirPassInstrumentationRegistry* r = new MlirPassInstrumentationRegistry; return *r; } std::unordered_map<std::string, std::function<std::unique_ptr<PassInstrumentation>()>> instrumentors_; }; void RegisterPassInstrumentor( const std::string& name, std::function<std::unique_ptr<PassInstrumentation>()> creator) { MlirPassInstrumentationRegistry& r = MlirPassInstrumentationRegistry::Instance(); auto result = r.instrumentors_.emplace(name, creator); if (!result.second) { VLOG(1) << "Duplicate MLIR pass instrumentor registration"; } } std::vector<std::function<std::unique_ptr<PassInstrumentation>()>> GetPassInstrumentors() { MlirPassInstrumentationRegistry& r = MlirPassInstrumentationRegistry::Instance(); std::vector<std::function<std::unique_ptr<PassInstrumentation>()>> result; result.reserve(r.instrumentors_.size()); std::transform(r.instrumentors_.begin(), r.instrumentors_.end(), std::back_inserter(result), [](auto v) { return v.second; }); return result; } }
#include "tensorflow/compiler/mlir/tf2xla/internal/mlir_pass_instrumentation.h" #include <cstddef> #include <memory> #include <sstream> #include <string> #include <unordered_map> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/compiler/mlir/tf2xla/api/v1/compile_mlir_util.h" #include "tensorflow/core/lib/core/status_test_util.h" namespace mlir { namespace { static const char* kTestInstrumentationName = "test-intrumentatron"; static const char* kTestInstrumentationSearch = "tf.Identity"; struct StringStream : public llvm::raw_ostream { StringStream() { SetUnbuffered(); } ~StringStream() override = default; uint64_t current_pos() const override { return 0; } void write_impl(const char* ptr, size_t size) override { ss.write(ptr, size); } std::stringstream ss; }; class TestPassInstrumentation : public ::testing::Test { public: void SetPassThatChangedIdentity(absl::string_view pass_name) { pass_that_changed_identity_ = pass_name; } absl::string_view GetPassThatChangedIdentity() { return pass_that_changed_identity_; } private: std::string pass_that_changed_identity_; friend class TestInstrumentor; }; class TestInstrumentor : public PassInstrumentation { public: explicit TestInstrumentor(TestPassInstrumentation* test) : test_(test) {} private: void runBeforePass(Pass* pass, Operation* op) override { StringStream stream; op->print(stream, mlir::OpPrintingFlags().useLocalScope()); ops_seen_by_pass_[pass] = stream.ss.str(); } void runAfterPass(Pass* pass, Operation* op) override { StringStream stream; op->print(stream, mlir::OpPrintingFlags().useLocalScope()); if (!absl::StrContains(stream.ss.str(), kTestInstrumentationSearch) && absl::StrContains(ops_seen_by_pass_[pass], kTestInstrumentationSearch)) { test_->SetPassThatChangedIdentity(pass->getName().str()); } } private: TestPassInstrumentation* test_; std::unordered_map<mlir::Pass*, std::string> ops_seen_by_pass_; }; TEST_F(TestPassInstrumentation, CreatedCalledAndSetsPassName) { RegisterPassInstrumentor(kTestInstrumentationName, [&]() { return std::make_unique<TestInstrumentor>(this); }); constexpr char legalization[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 268 : i32}} { func.func @main(%arg0: tensor<?xi32, #mhlo.type_extensions<bounds = [1]>>) -> tensor<?xi32, #mhlo.type_extensions<bounds = [1]>> { %0 = "tf.Identity"(%arg0) : (tensor<?xi32, #mhlo.type_extensions<bounds = [1]>>) -> tensor<?xi32, #mhlo.type_extensions<bounds = [1]>> func.return %0 : tensor<?xi32, #mhlo.type_extensions<bounds = [1]>> } })"; SetPassThatChangedIdentity(""); std::vector<::tensorflow::TensorShape> arg_shapes = {{1}}; auto compilation_result = tensorflow::XlaCompilationResult(); TF_EXPECT_OK(tensorflow::CompileSerializedMlirToXlaHlo( legalization, arg_shapes, "XLA_TPU_JIT", true, false, {}, &compilation_result) .status()); EXPECT_FALSE(GetPassThatChangedIdentity().empty()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/internal/mlir_pass_instrumentation.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/internal/mlir_pass_instrumentation_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d899afcc-2a19-49aa-8032-5f951e1034ad
cpp
tensorflow/tensorflow
reduction_dimension_grouper
third_party/xla/xla/service/gpu/transforms/reduction_dimension_grouper.cc
third_party/xla/xla/service/gpu/transforms/reduction_dimension_grouper_test.cc
#include "xla/service/gpu/transforms/reduction_dimension_grouper.h" #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/layout_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { class ReduceDimensionGroupVisitor : public DfsHloRewriteVisitor { public: absl::Status HandleReduce(HloInstruction *hlo) override { auto reduce = Cast<HloReduceInstruction>(hlo); VLOG(4) << "Input: " << reduce->ToString(); absl::InlinedVector<HloInstruction *, 2> reduce_inputs_grouped; std::vector<int64_t> reduced_dims_grouped; int idx = -1; for (HloInstruction *operand : reduce->inputs()) { idx++; std::vector<int64_t> new_grouped_dims; const Shape &shape = operand->shape(); CHECK(shape == LayoutUtil::GetWithDefaultLayout(shape)) << "Default layout should be enforced on reduction operand"; auto is_reduced = [&](int dim) { return absl::c_linear_search(reduce->dimensions(), dim); }; bool changed = false; int64_t next_dim_size = 1; for (int logical_dim = 0; logical_dim < shape.rank(); logical_dim++) { VLOG(5) << "Processing dimension " << logical_dim << " of size " << shape.dimensions(logical_dim); if (is_reduced(logical_dim) && logical_dim < shape.rank() - 1 && is_reduced(logical_dim + 1)) { VLOG(5) << "This and consecutive dimension are reduced, merging"; changed = true; next_dim_size *= shape.dimensions(logical_dim); continue; } if (is_reduced(logical_dim)) { new_grouped_dims.push_back(next_dim_size * shape.dimensions(logical_dim)); if (idx == 0) { reduced_dims_grouped.push_back(new_grouped_dims.size() - 1); } next_dim_size = 1; } else { new_grouped_dims.push_back(shape.dimensions(logical_dim)); } } if (!changed) { return absl::OkStatus(); } Shape grouped_shape = ShapeUtil::MakeShape(shape.element_type(), new_grouped_dims); reduce_inputs_grouped.push_back(reduce->parent()->AddInstruction( HloInstruction::CreateBitcast(grouped_shape, operand), &operand->metadata())); VLOG(5) << "Adding bitcast: " << reduce_inputs_grouped.back()->ToString(); } std::unique_ptr<HloInstruction> new_reduce = HloInstruction::CreateReduce( reduce->shape(), reduce_inputs_grouped, reduce->init_values(), reduced_dims_grouped, reduce->to_apply()); VLOG(5) << "Generated new reduction: " << new_reduce->ToString(); return ReplaceWithNewInstruction(reduce, std::move(new_reduce)); } }; absl::StatusOr<bool> ReductionDimensionGrouper::Run( HloModule *module, const absl::flat_hash_set<absl::string_view> &execution_threads) { TF_ASSIGN_OR_RETURN(bool changed, ReduceDimensionGroupVisitor().RunOnModule( module, execution_threads)); return changed; } } }
#include "xla/service/gpu/transforms/reduction_dimension_grouper.h" #include <optional> #include "absl/strings/string_view.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/test.h" namespace xla { namespace { class ReductionDimensionGrouperTest : public HloTestBase { public: void CheckDimensionGrouper(absl::string_view hlo, std::optional<absl::string_view> expected) { RunAndFilecheckHloRewrite(hlo, gpu::ReductionDimensionGrouper{}, expected); } }; TEST_F(ReductionDimensionGrouperTest, ReductionWithGrouping) { const char* hlo = R"( HloModule ReductionWithGrouping add { accum = f32[] parameter(0) op = f32[] parameter(1) ROOT out = f32[] add(accum, op) } ENTRY main { input = f32[100,10,32,3]{3,2,1,0} parameter(0) zero = f32[] constant(0) ROOT out = f32[100,10]{0,1} reduce(input, zero), dimensions={2,3}, to_apply=add } )"; CheckDimensionGrouper(hlo, R"( )"); } TEST_F(ReductionDimensionGrouperTest, ReductionWithGroupingVariadic) { const char* hlo = R"( HloModule ReductionWithGrouping argmax { running_max = f32[] parameter(0) running_max_idx = u32[] parameter(1) current_value = f32[] parameter(2) current_value_idx = u32[] parameter(3) current = (f32[], u32[]) tuple(running_max, running_max_idx) potential = (f32[], u32[]) tuple(current_value, current_value_idx) cmp_code = pred[] compare(current_value, running_max), direction=GT new_max = f32[] select(cmp_code, current_value, running_max) new_idx = u32[] select(cmp_code, current_value_idx, running_max_idx) ROOT out = (f32[], u32[]) tuple(new_max, new_idx) } ENTRY main { input = f32[100,10,32,3]{3,2,1,0} parameter(0) idxs = u32[100,10,32,3]{3,2,1,0} parameter(1) zero = f32[] constant(0) zero_idx = u32[] constant(0) ROOT out = (f32[100,10]{1,0}, u32[100,10]{1,0}) reduce(input, idxs, zero, zero_idx), dimensions={2,3}, to_apply=argmax } )"; CheckDimensionGrouper(hlo, R"( )"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/reduction_dimension_grouper.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/reduction_dimension_grouper_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
885c633f-e336-4b1d-baa1-74c080d9a5ac
cpp
tensorflow/tensorflow
dense_image_warp
tensorflow/lite/kernels/perception/dense_image_warp.cc
tensorflow/lite/kernels/perception/dense_image_warp_test.cc
#include <algorithm> #include <cmath> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/internal/runtime_shape.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace custom { namespace dense_image_warp { constexpr int kInputTensor = 0; constexpr int kFlowTensor = 1; constexpr int kOutputTensor = 0; inline void DenseImageWarp(const RuntimeShape& input_shape, const float* input_data, const RuntimeShape& flow_shape, const float* flow_data, float* output_data) { const int batches = MatchingDim(input_shape, 0, flow_shape, 0); const int height = MatchingDim(input_shape, 1, flow_shape, 1); const int width = MatchingDim(input_shape, 2, flow_shape, 2); const int channels = input_shape.Dims(3); TFLITE_CHECK_EQ(flow_shape.Dims(3), 2); const int max_floor_y = height - 2; const int max_floor_x = width - 2; for (int batch = 0; batch < batches; ++batch) { for (int in_y = 0; in_y < height; ++in_y) { for (int in_x = 0; in_x < width; ++in_x) { float querry_point_y = in_y - flow_data[Offset(flow_shape, batch, in_y, in_x, 0)]; float querry_point_x = in_x - flow_data[Offset(flow_shape, batch, in_y, in_x, 1)]; int floor_y = std::min(std::max(0, static_cast<int>(std::floor(querry_point_y))), max_floor_y); int floor_x = std::min(std::max(0, static_cast<int>(std::floor(querry_point_x))), max_floor_x); float alpha_y = std::min(std::max(0.0f, querry_point_y - floor_y), 1.0f); float alpha_x = std::min(std::max(0.0f, querry_point_x - floor_x), 1.0f); for (int c = 0; c < channels; ++c) { float top_left = input_data[Offset(input_shape, batch, floor_y, floor_x, c)]; float top_right = input_data[Offset(input_shape, batch, floor_y, floor_x + 1, c)]; float bottom_left = input_data[Offset(input_shape, batch, floor_y + 1, floor_x, c)]; float bottom_right = input_data[Offset(input_shape, batch, floor_y + 1, floor_x + 1, c)]; float interp_top = alpha_x * (top_right - top_left) + top_left; float interp_bottom = alpha_x * (bottom_right - bottom_left) + bottom_left; float interp = alpha_y * (interp_bottom - interp_top) + interp_top; output_data[Offset(input_shape, batch, in_y, in_x, c)] = interp; } } } } } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); TF_LITE_ENSURE(context, output != nullptr); const TfLiteTensor* input = GetInput(context, node, kInputTensor); TF_LITE_ENSURE(context, input != nullptr); const TfLiteTensor* flow = GetInput(context, node, kFlowTensor); TF_LITE_ENSURE(context, flow != nullptr); TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32); TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteFloat32); TF_LITE_ENSURE_TYPES_EQ(context, flow->type, kTfLiteFloat32); TF_LITE_ENSURE_EQ(context, NumDimensions(flow), 4); TF_LITE_ENSURE_EQ(context, NumDimensions(input), 4); const RuntimeShape input_shape = GetTensorShape(input); const RuntimeShape flow_shape = GetTensorShape(flow); TF_LITE_ENSURE_EQ(context, input_shape.Dims(0), flow_shape.Dims(0)); TF_LITE_ENSURE_EQ(context, input_shape.Dims(1), flow_shape.Dims(1)); TF_LITE_ENSURE_EQ(context, input_shape.Dims(2), flow_shape.Dims(2)); TF_LITE_ENSURE_MSG(context, input_shape.Dims(1) >= 2, "Image height must be at least 2."); TF_LITE_ENSURE_MSG(context, input_shape.Dims(2) >= 2, "Image width must be at least 2."); TF_LITE_ENSURE_MSG(context, flow_shape.Dims(3) == 2, "The last dimension of flow tensor must be 2."); TfLiteIntArray* output_size = TfLiteIntArrayCopy(input->dims); return context->ResizeTensor(context, output, output_size); } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { TfLiteTensor* output = GetOutput(context, node, kOutputTensor); TF_LITE_ENSURE(context, output != nullptr); const TfLiteTensor* input = GetInput(context, node, kInputTensor); TF_LITE_ENSURE(context, input != nullptr); const TfLiteTensor* flow = GetInput(context, node, kFlowTensor); TF_LITE_ENSURE(context, flow != nullptr); DenseImageWarp(GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(flow), GetTensorData<float>(flow), GetTensorData<float>(output)); return kTfLiteOk; } } TfLiteRegistration* RegisterDenseImageWarp() { static TfLiteRegistration reg = {nullptr, nullptr, dense_image_warp::Prepare, dense_image_warp::Eval}; return &reg; } TfLiteRegistration* Register_DENSE_IMAGE_WARP() { return RegisterDenseImageWarp(); } } } }
#include <cstdint> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/kernels/perception/perception_ops.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace ops { namespace custom { namespace { using testing::ElementsAreArray; class DenseImageWarpOpModel : public SingleOpModel { public: DenseImageWarpOpModel(const TensorData& input, const TensorData& flow, const TensorData& output) { input_ = AddInput(input); flow_ = AddInput(flow); output_ = AddOutput(output); std::vector<uint8_t> custom_option; SetCustomOp("DenseImageWarp", custom_option, RegisterDenseImageWarp); BuildInterpreter({GetShape(input_), GetShape(flow_)}); } void SetInput(const std::vector<float>& data) { PopulateTensor(input_, data); } void SetFlow(const std::vector<float>& data) { PopulateTensor(flow_, data); } std::vector<float> GetOutput() { return ExtractVector<float>(output_); } std::vector<int> GetOutputShape() { return GetTensorShape(output_); } protected: int input_; int flow_; int output_; }; TEST(DenseImageWarpOpTest, MismatchedSizeTest) { EXPECT_DEATH_IF_SUPPORTED( DenseImageWarpOpModel model( {TensorType_FLOAT32, {1, 4, 4, 1}}, {TensorType_FLOAT32, {1, 4, 2, 2}}, {TensorType_FLOAT32, {}}); , "input_shape.Dims.2. != flow_shape.Dims.2. .4 != 2."); } TEST(DenseImageWarpOpTest, WrongFlowSizeTest) { EXPECT_DEATH_IF_SUPPORTED(DenseImageWarpOpModel model( {TensorType_FLOAT32, {1, 4, 4, 1}}, {TensorType_FLOAT32, {1, 4, 4, 1}}, {TensorType_FLOAT32, {}}); , "The last dimension of flow tensor must be 2."); } TEST(DenseImageWarpOpTest, SimpleTest) { DenseImageWarpOpModel model( {TensorType_FLOAT32, {1, 4, 4, 1}}, {TensorType_FLOAT32, {1, 4, 4, 2}}, {TensorType_FLOAT32, {}}); model.SetInput({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}); model.SetFlow({4, 10, 6, 10, 4, 2, 6, 6, 10, -4, 2, -2, 6, 8, 6, 0, 2, -2, 10, 6, 4, 4, 2, -4, -4, 10, -4, -4, -2, 6, 4, 6}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 4, 4, 1})); EXPECT_THAT(model.GetOutput(), ElementsAreArray({0, 0, 0, 0, 3, 3, 0, 3, 2, 0, 0, 3, 12, 15, 12, 0})); } TEST(DenseImageWarpOpTest, RoundTest) { DenseImageWarpOpModel model( {TensorType_FLOAT32, {1, 4, 4, 1}}, {TensorType_FLOAT32, {1, 4, 4, 2}}, {TensorType_FLOAT32, {}}); model.SetInput({0.2, 1.5, 2.4, 3.5, 4.6, 5.1, 6.3, 7.2, 8.5, 9.6, 10.9, 11.6, 12.8, 13.2, 14.4, 15.5}); model.SetFlow({4, 10, 6, 10, 4, 2, 6, 6, 10, -4, 2, -2, 6, 8, 6, 0, 2, -2, 10, 6, 4, 4, 2, -4, -4, 10, -4, -4, -2, 6, 4, 6}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 4, 4, 1})); EXPECT_THAT(model.GetOutput(), ElementsAreArray({0.2, 0.2, 0.2, 0.2, 3.5, 3.5, 0.2, 3.5, 2.4, 0.2, 0.2, 3.5, 12.8, 15.5, 12.8, 0.2})); } TEST(DenseImageWarpOpTest, WithBatchandChannelTest) { DenseImageWarpOpModel model( {TensorType_FLOAT32, {2, 4, 4, 3}}, {TensorType_FLOAT32, {2, 4, 4, 2}}, {TensorType_FLOAT32, {}}); std::vector<float> input_data; for (int i = 0; i < 96; ++i) input_data.push_back(i); model.SetInput(input_data); model.SetFlow({2, -2, 10, 6, 4, 4, 2, -4, -4, 10, -4, -4, -2, 6, 4, 6, 4, 10, 6, 10, 4, 2, 6, 6, 10, -4, 2, -2, 6, 8, 6, 0, 2, -2, 10, 6, 4, 4, 2, -4, -4, 10, -4, -4, -2, 6, 4, 6, 4, 10, 6, 10, 4, 2, 6, 6, 10, -4, 2, -2, 6, 8, 6, 0}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 4, 4, 3})); EXPECT_THAT( model.GetOutput(), ElementsAreArray({6, 7, 8, 0, 1, 2, 0, 1, 2, 9, 10, 11, 36, 37, 38, 45, 46, 47, 36, 37, 38, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 9, 10, 11, 21, 22, 23, 0, 1, 2, 9, 10, 11, 54, 55, 56, 48, 49, 50, 48, 49, 50, 57, 58, 59, 84, 85, 86, 93, 94, 95, 84, 85, 86, 48, 49, 50, 48, 49, 50, 48, 49, 50, 48, 49, 50, 48, 49, 50, 57, 58, 59, 69, 70, 71, 48, 49, 50, 57, 58, 59})); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/perception/dense_image_warp.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/perception/dense_image_warp_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1d8752e4-7dbe-4dac-8754-ecd8df904db3
cpp
abseil/abseil-cpp
inlined_vector
absl/container/internal/inlined_vector.h
absl/container/inlined_vector_test.cc
#ifndef ABSL_CONTAINER_INTERNAL_INLINED_VECTOR_H_ #define ABSL_CONTAINER_INTERNAL_INLINED_VECTOR_H_ #include <algorithm> #include <cstddef> #include <cstring> #include <iterator> #include <limits> #include <memory> #include <new> #include <type_traits> #include <utility> #include "absl/base/attributes.h" #include "absl/base/config.h" #include "absl/base/internal/identity.h" #include "absl/base/macros.h" #include "absl/container/internal/compressed_tuple.h" #include "absl/memory/memory.h" #include "absl/meta/type_traits.h" #include "absl/types/span.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace inlined_vector_internal { #if !defined(__clang__) && defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Warray-bounds" #endif template <typename A> using AllocatorTraits = std::allocator_traits<A>; template <typename A> using ValueType = typename AllocatorTraits<A>::value_type; template <typename A> using SizeType = typename AllocatorTraits<A>::size_type; template <typename A> using Pointer = typename AllocatorTraits<A>::pointer; template <typename A> using ConstPointer = typename AllocatorTraits<A>::const_pointer; template <typename A> using SizeType = typename AllocatorTraits<A>::size_type; template <typename A> using DifferenceType = typename AllocatorTraits<A>::difference_type; template <typename A> using Reference = ValueType<A>&; template <typename A> using ConstReference = const ValueType<A>&; template <typename A> using Iterator = Pointer<A>; template <typename A> using ConstIterator = ConstPointer<A>; template <typename A> using ReverseIterator = typename std::reverse_iterator<Iterator<A>>; template <typename A> using ConstReverseIterator = typename std::reverse_iterator<ConstIterator<A>>; template <typename A> using MoveIterator = typename std::move_iterator<Iterator<A>>; template <typename Iterator> using IsAtLeastForwardIterator = std::is_convertible< typename std::iterator_traits<Iterator>::iterator_category, std::forward_iterator_tag>; template <typename A> using IsMoveAssignOk = std::is_move_assignable<ValueType<A>>; template <typename A> using IsSwapOk = absl::type_traits_internal::IsSwappable<ValueType<A>>; template <typename A, bool IsTriviallyDestructible = absl::is_trivially_destructible<ValueType<A>>::value> struct DestroyAdapter; template <typename A> struct DestroyAdapter<A, false> { static void DestroyElements(A& allocator, Pointer<A> destroy_first, SizeType<A> destroy_size) { for (SizeType<A> i = destroy_size; i != 0;) { --i; AllocatorTraits<A>::destroy(allocator, destroy_first + i); } } }; template <typename A> struct DestroyAdapter<A, true> { static void DestroyElements(A& allocator, Pointer<A> destroy_first, SizeType<A> destroy_size) { static_cast<void>(allocator); static_cast<void>(destroy_first); static_cast<void>(destroy_size); } }; template <typename A> struct Allocation { Pointer<A> data = nullptr; SizeType<A> capacity = 0; }; template <typename A, bool IsOverAligned = (alignof(ValueType<A>) > ABSL_INTERNAL_DEFAULT_NEW_ALIGNMENT)> struct MallocAdapter { static Allocation<A> Allocate(A& allocator, SizeType<A> requested_capacity) { return {AllocatorTraits<A>::allocate(allocator, requested_capacity), requested_capacity}; } static void Deallocate(A& allocator, Pointer<A> pointer, SizeType<A> capacity) { AllocatorTraits<A>::deallocate(allocator, pointer, capacity); } }; template <typename A, typename ValueAdapter> void ConstructElements(absl::internal::type_identity_t<A>& allocator, Pointer<A> construct_first, ValueAdapter& values, SizeType<A> construct_size) { for (SizeType<A> i = 0; i < construct_size; ++i) { ABSL_INTERNAL_TRY { values.ConstructNext(allocator, construct_first + i); } ABSL_INTERNAL_CATCH_ANY { DestroyAdapter<A>::DestroyElements(allocator, construct_first, i); ABSL_INTERNAL_RETHROW; } } } template <typename A, typename ValueAdapter> void AssignElements(Pointer<A> assign_first, ValueAdapter& values, SizeType<A> assign_size) { for (SizeType<A> i = 0; i < assign_size; ++i) { values.AssignNext(assign_first + i); } } template <typename A> struct StorageView { Pointer<A> data; SizeType<A> size; SizeType<A> capacity; }; template <typename A, typename Iterator> class IteratorValueAdapter { public: explicit IteratorValueAdapter(const Iterator& it) : it_(it) {} void ConstructNext(A& allocator, Pointer<A> construct_at) { AllocatorTraits<A>::construct(allocator, construct_at, *it_); ++it_; } void AssignNext(Pointer<A> assign_at) { *assign_at = *it_; ++it_; } private: Iterator it_; }; template <typename A> class CopyValueAdapter { public: explicit CopyValueAdapter(ConstPointer<A> p) : ptr_(p) {} void ConstructNext(A& allocator, Pointer<A> construct_at) { AllocatorTraits<A>::construct(allocator, construct_at, *ptr_); } void AssignNext(Pointer<A> assign_at) { *assign_at = *ptr_; } private: ConstPointer<A> ptr_; }; template <typename A> class DefaultValueAdapter { public: explicit DefaultValueAdapter() {} void ConstructNext(A& allocator, Pointer<A> construct_at) { AllocatorTraits<A>::construct(allocator, construct_at); } void AssignNext(Pointer<A> assign_at) { *assign_at = ValueType<A>(); } }; template <typename A> class AllocationTransaction { public: explicit AllocationTransaction(A& allocator) : allocator_data_(allocator, nullptr), capacity_(0) {} ~AllocationTransaction() { if (DidAllocate()) { MallocAdapter<A>::Deallocate(GetAllocator(), GetData(), GetCapacity()); } } AllocationTransaction(const AllocationTransaction&) = delete; void operator=(const AllocationTransaction&) = delete; A& GetAllocator() { return allocator_data_.template get<0>(); } Pointer<A>& GetData() { return allocator_data_.template get<1>(); } SizeType<A>& GetCapacity() { return capacity_; } bool DidAllocate() { return GetData() != nullptr; } Pointer<A> Allocate(SizeType<A> requested_capacity) { Allocation<A> result = MallocAdapter<A>::Allocate(GetAllocator(), requested_capacity); GetData() = result.data; GetCapacity() = result.capacity; return result.data; } ABSL_MUST_USE_RESULT Allocation<A> Release() && { Allocation<A> result = {GetData(), GetCapacity()}; Reset(); return result; } private: void Reset() { GetData() = nullptr; GetCapacity() = 0; } container_internal::CompressedTuple<A, Pointer<A>> allocator_data_; SizeType<A> capacity_; }; template <typename A> class ConstructionTransaction { public: explicit ConstructionTransaction(A& allocator) : allocator_data_(allocator, nullptr), size_(0) {} ~ConstructionTransaction() { if (DidConstruct()) { DestroyAdapter<A>::DestroyElements(GetAllocator(), GetData(), GetSize()); } } ConstructionTransaction(const ConstructionTransaction&) = delete; void operator=(const ConstructionTransaction&) = delete; A& GetAllocator() { return allocator_data_.template get<0>(); } Pointer<A>& GetData() { return allocator_data_.template get<1>(); } SizeType<A>& GetSize() { return size_; } bool DidConstruct() { return GetData() != nullptr; } template <typename ValueAdapter> void Construct(Pointer<A> data, ValueAdapter& values, SizeType<A> size) { ConstructElements<A>(GetAllocator(), data, values, size); GetData() = data; GetSize() = size; } void Commit() && { GetData() = nullptr; GetSize() = 0; } private: container_internal::CompressedTuple<A, Pointer<A>> allocator_data_; SizeType<A> size_; }; template <typename T, size_t N, typename A> class Storage { public: struct MemcpyPolicy {}; struct ElementwiseAssignPolicy {}; struct ElementwiseSwapPolicy {}; struct ElementwiseConstructPolicy {}; using MoveAssignmentPolicy = absl::conditional_t< absl::conjunction<absl::is_trivially_move_assignable<ValueType<A>>, absl::is_trivially_destructible<ValueType<A>>, std::is_same<A, std::allocator<ValueType<A>>>>::value, MemcpyPolicy, absl::conditional_t<IsMoveAssignOk<A>::value, ElementwiseAssignPolicy, ElementwiseConstructPolicy>>; using SwapInlinedElementsPolicy = absl::conditional_t< absl::conjunction<absl::is_trivially_relocatable<ValueType<A>>, std::is_same<A, std::allocator<ValueType<A>>>>::value, MemcpyPolicy, absl::conditional_t<IsSwapOk<A>::value, ElementwiseSwapPolicy, ElementwiseConstructPolicy>>; static SizeType<A> NextCapacity(SizeType<A> current_capacity) { return current_capacity * 2; } static SizeType<A> ComputeCapacity(SizeType<A> current_capacity, SizeType<A> requested_capacity) { return (std::max)(NextCapacity(current_capacity), requested_capacity); } Storage() : metadata_(A(), 0u) {} explicit Storage(const A& allocator) : metadata_(allocator, 0u) {} ~Storage() { if (GetSizeAndIsAllocated() == 0) { return; } if (absl::is_trivially_destructible<ValueType<A>>::value && std::is_same<A, std::allocator<ValueType<A>>>::value) { DeallocateIfAllocated(); return; } DestroyContents(); } SizeType<A>& GetSizeAndIsAllocated() { return metadata_.template get<1>(); } const SizeType<A>& GetSizeAndIsAllocated() const { return metadata_.template get<1>(); } SizeType<A> GetSize() const { return GetSizeAndIsAllocated() >> 1; } bool GetIsAllocated() const { return GetSizeAndIsAllocated() & 1; } Pointer<A> GetAllocatedData() { #if ABSL_INTERNAL_HAVE_MIN_GNUC_VERSION(12, 0) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wmaybe-uninitialized" #endif return data_.allocated.allocated_data; #if ABSL_INTERNAL_HAVE_MIN_GNUC_VERSION(12, 0) #pragma GCC diagnostic pop #endif } ConstPointer<A> GetAllocatedData() const { return data_.allocated.allocated_data; } ABSL_ATTRIBUTE_NO_SANITIZE_CFI Pointer<A> GetInlinedData() { return reinterpret_cast<Pointer<A>>(data_.inlined.inlined_data); } ABSL_ATTRIBUTE_NO_SANITIZE_CFI ConstPointer<A> GetInlinedData() const { return reinterpret_cast<ConstPointer<A>>(data_.inlined.inlined_data); } SizeType<A> GetAllocatedCapacity() const { return data_.allocated.allocated_capacity; } SizeType<A> GetInlinedCapacity() const { return static_cast<SizeType<A>>(kOptimalInlinedSize); } StorageView<A> MakeStorageView() { return GetIsAllocated() ? StorageView<A>{GetAllocatedData(), GetSize(), GetAllocatedCapacity()} : StorageView<A>{GetInlinedData(), GetSize(), GetInlinedCapacity()}; } A& GetAllocator() { return metadata_.template get<0>(); } const A& GetAllocator() const { return metadata_.template get<0>(); } ABSL_ATTRIBUTE_NOINLINE void InitFrom(const Storage& other); template <typename ValueAdapter> void Initialize(ValueAdapter values, SizeType<A> new_size); template <typename ValueAdapter> void Assign(ValueAdapter values, SizeType<A> new_size); template <typename ValueAdapter> void Resize(ValueAdapter values, SizeType<A> new_size); template <typename ValueAdapter> Iterator<A> Insert(ConstIterator<A> pos, ValueAdapter values, SizeType<A> insert_count); template <typename... Args> Reference<A> EmplaceBack(Args&&... args); Iterator<A> Erase(ConstIterator<A> from, ConstIterator<A> to); void Reserve(SizeType<A> requested_capacity); void ShrinkToFit(); void Swap(Storage* other_storage_ptr); void SetIsAllocated() { GetSizeAndIsAllocated() |= static_cast<SizeType<A>>(1); } void UnsetIsAllocated() { GetSizeAndIsAllocated() &= ((std::numeric_limits<SizeType<A>>::max)() - 1); } void SetSize(SizeType<A> size) { GetSizeAndIsAllocated() = (size << 1) | static_cast<SizeType<A>>(GetIsAllocated()); } void SetAllocatedSize(SizeType<A> size) { GetSizeAndIsAllocated() = (size << 1) | static_cast<SizeType<A>>(1); } void SetInlinedSize(SizeType<A> size) { GetSizeAndIsAllocated() = size << static_cast<SizeType<A>>(1); } void AddSize(SizeType<A> count) { GetSizeAndIsAllocated() += count << static_cast<SizeType<A>>(1); } void SubtractSize(SizeType<A> count) { ABSL_HARDENING_ASSERT(count <= GetSize()); GetSizeAndIsAllocated() -= count << static_cast<SizeType<A>>(1); } void SetAllocation(Allocation<A> allocation) { data_.allocated.allocated_data = allocation.data; data_.allocated.allocated_capacity = allocation.capacity; } void MemcpyFrom(const Storage& other_storage) { { using V = ValueType<A>; ABSL_HARDENING_ASSERT( other_storage.GetIsAllocated() || (std::is_same<A, std::allocator<V>>::value && ( absl::is_trivially_relocatable<V>::value || (absl::is_trivially_move_assignable<V>::value && absl::is_trivially_destructible<V>::value) || (absl::is_trivially_copy_constructible<V>::value || absl::is_trivially_copy_assignable<V>::value)))); } GetSizeAndIsAllocated() = other_storage.GetSizeAndIsAllocated(); data_ = other_storage.data_; } void DeallocateIfAllocated() { if (GetIsAllocated()) { MallocAdapter<A>::Deallocate(GetAllocator(), GetAllocatedData(), GetAllocatedCapacity()); } } private: ABSL_ATTRIBUTE_NOINLINE void DestroyContents(); using Metadata = container_internal::CompressedTuple<A, SizeType<A>>; struct Allocated { Pointer<A> allocated_data; SizeType<A> allocated_capacity; }; static constexpr size_t kOptimalInlinedSize = (std::max)(N, sizeof(Allocated) / sizeof(ValueType<A>)); struct Inlined { alignas(ValueType<A>) char inlined_data[sizeof( ValueType<A>[kOptimalInlinedSize])]; }; union Data { Allocated allocated; Inlined inlined; }; void SwapN(ElementwiseSwapPolicy, Storage* other, SizeType<A> n); void SwapN(ElementwiseConstructPolicy, Storage* other, SizeType<A> n); void SwapInlinedElements(MemcpyPolicy, Storage* other); template <typename NotMemcpyPolicy> void SwapInlinedElements(NotMemcpyPolicy, Storage* other); template <typename... Args> ABSL_ATTRIBUTE_NOINLINE Reference<A> EmplaceBackSlow(Args&&... args); Metadata metadata_; Data data_; }; template <typename T, size_t N, typename A> void Storage<T, N, A>::DestroyContents() { Pointer<A> data = GetIsAllocated() ? GetAllocatedData() : GetInlinedData(); DestroyAdapter<A>::DestroyElements(GetAllocator(), data, GetSize()); DeallocateIfAllocated(); } template <typename T, size_t N, typename A> void Storage<T, N, A>::InitFrom(const Storage& other) { const SizeType<A> n = other.GetSize(); ABSL_HARDENING_ASSERT(n > 0); ConstPointer<A> src; Pointer<A> dst; if (!other.GetIsAllocated()) { dst = GetInlinedData(); src = other.GetInlinedData(); } else { SizeType<A> requested_capacity = ComputeCapacity(GetInlinedCapacity(), n); Allocation<A> allocation = MallocAdapter<A>::Allocate(GetAllocator(), requested_capacity); SetAllocation(allocation); dst = allocation.data; src = other.GetAllocatedData(); } if (absl::is_trivially_copy_constructible<ValueType<A>>::value && std::is_same<A, std::allocator<ValueType<A>>>::value) { std::memcpy(reinterpret_cast<char*>(dst), reinterpret_cast<const char*>(src), n * sizeof(ValueType<A>)); } else { auto values = IteratorValueAdapter<A, ConstPointer<A>>(src); ConstructElements<A>(GetAllocator(), dst, values, n); } GetSizeAndIsAllocated() = other.GetSizeAndIsAllocated(); } template <typename T, size_t N, typename A> template <typename ValueAdapter> auto Storage<T, N, A>::Initialize(ValueAdapter values, SizeType<A> new_size) -> void { ABSL_HARDENING_ASSERT(!GetIsAllocated()); ABSL_HARDENING_ASSERT(GetSize() == 0); Pointer<A> construct_data; if (new_size > GetInlinedCapacity()) { SizeType<A> requested_capacity = ComputeCapacity(GetInlinedCapacity(), new_size); Allocation<A> allocation = MallocAdapter<A>::Allocate(GetAllocator(), requested_capacity); construct_data = allocation.data; SetAllocation(allocation); SetIsAllocated(); } else { construct_data = GetInlinedData(); } ConstructElements<A>(GetAllocator(), construct_data, values, new_size); AddSize(new_size); } template <typename T, size_t N, typename A> template <typename ValueAdapter> auto Storage<T, N, A>::Assign(ValueAdapter values, SizeType<A> new_size) -> void { StorageView<A> storage_view = MakeStorageView(); AllocationTransaction<A> allocation_tx(GetAllocator()); absl::Span<ValueType<A>> assign_loop; absl::Span<ValueType<A>> construct_loop; absl::Span<ValueType<A>> destroy_loop; if (new_size > storage_view.capacity) { SizeType<A> requested_capacity = ComputeCapacity(storage_view.capacity, new_size); construct_loop = {allocation_tx.Allocate(requested_capacity), new_size}; destroy_loop = {storage_view.data, storage_view.size}; } else if (new_size > storage_view.size) { assign_loop = {storage_view.data, storage_view.size}; construct_loop = {storage_view.data + storage_view.size, new_size - storage_view.size}; } else { assign_loop = {storage_view.data, new_size}; destroy_loop = {storage_view.data + new_size, storage_view.size - new_size}; } AssignElements<A>(assign_loop.data(), values, assign_loop.size()); ConstructElements<A>(GetAllocator(), construct_loop.data(), values, construct_loop.size()); DestroyAdapter<A>::DestroyElements(GetAllocator(), destroy_loop.data(), destroy_loop.size()); if (allocation_tx.DidAllocate()) { DeallocateIfAllocated(); SetAllocation(std::move(allocation_tx).Release()); SetIsAllocated(); } SetSize(new_size); } template <typename T, size_t N, typename A> template <typename ValueAdapter> auto Storage<T, N, A>::Resize(ValueAdapter values, SizeType<A> new_size) -> void { StorageView<A> storage_view = MakeStorageView(); Pointer<A> const base = storage_view.data; const SizeType<A> size = storage_view.size; A& alloc = GetAllocator(); if (new_size <= size) { DestroyAdapter<A>::DestroyElements(alloc, base + new_size, size - new_size); } else if (new_size <= storage_view.capacity) { ConstructElements<A>(alloc, base + size, values, new_size - size); } else { AllocationTransaction<A> allocation_tx(alloc); SizeType<A> requested_capacity = ComputeCapacity(storage_view.capacity, new_size); Pointer<A> new_data = allocation_tx.Allocate(requested_capacity); ConstructionTransaction<A> construction_tx(alloc); construction_tx.Construct(new_data + size, values, new_size - size); IteratorValueAdapter<A, MoveIterator<A>> move_values( (MoveIterator<A>(base))); ConstructElements<A>(alloc, new_data, move_values, size); DestroyAdapter<A>::DestroyElements(alloc, base, size); std::move(construction_tx).Commit(); DeallocateIfAllocated(); SetAllocation(std::move(allocation_tx).Release()); SetIsAllocated(); } SetSize(new_size); } template <typename T, size_t N, typename A> template <typename ValueAdapter> auto Storage<T, N, A>::Insert(ConstIterator<A> pos, ValueAdapter values, SizeType<A> insert_count) -> Iterator<A> { StorageView<A> storage_view = MakeStorageView(); auto insert_index = static_cast<SizeType<A>>( std::distance(ConstIterator<A>(storage_view.data), pos)); SizeType<A> insert_end_index = insert_index + insert_count; SizeType<A> new_size = storage_view.size + insert_count; if (new_size > storage_view.capacity) { AllocationTransaction<A> allocation_tx(GetAllocator()); ConstructionTransaction<A> construction_tx(GetAllocator()); ConstructionTransaction<A> move_construction_tx(GetAllocator()); IteratorValueAdapter<A, MoveIterator<A>> move_values( MoveIterator<A>(storage_view.data)); SizeType<A> requested_capacity = ComputeCapacity(storage_view.capacity, new_size); Pointer<A> new_data = allocation_tx.Allocate(requested_capacity); construction_tx.Construct(new_data + insert_index, values, insert_count); move_construction_tx.Construct(new_data, move_values, insert_index); ConstructElements<A>(GetAllocator(), new_data + insert_end_index, move_values, storage_view.size - insert_index); DestroyAdapter<A>::DestroyElements(GetAllocator(), storage_view.data, storage_view.size); std::move(construction_tx).Commit(); std::move(move_construction_tx).Commit(); DeallocateIfAllocated(); SetAllocation(std::move(allocation_tx).Release()); SetAllocatedSize(new_size); return Iterator<A>(new_data + insert_index); } else { SizeType<A> move_construction_destination_index = (std::max)(insert_end_index, storage_view.size); ConstructionTransaction<A> move_construction_tx(GetAllocator()); IteratorValueAdapter<A, MoveIterator<A>> move_construction_values( MoveIterator<A>(storage_view.data + (move_construction_destination_index - insert_count))); absl::Span<ValueType<A>> move_construction = { storage_view.data + move_construction_destination_index, new_size - move_construction_destination_index}; Pointer<A> move_assignment_values = storage_view.data + insert_index; absl::Span<ValueType<A>> move_assignment = { storage_view.data + insert_end_index, move_construction_destination_index - insert_end_index}; absl::Span<ValueType<A>> insert_assignment = {move_assignment_values, move_construction.size()}; absl::Span<ValueType<A>> insert_construction = { insert_assignment.data() + insert_assignment.size(), insert_count - insert_assignment.size()}; move_construction_tx.Construct(move_construction.data(), move_construction_values, move_construction.size()); for (Pointer<A> destination = move_assignment.data() + move_assignment.size(), last_destination = move_assignment.data(), source = move_assignment_values + move_assignment.size(); ;) { --destination; --source; if (destination < last_destination) break; *destination = std::move(*source); } AssignElements<A>(insert_assignment.data(), values, insert_assignment.size()); ConstructElements<A>(GetAllocator(), insert_construction.data(), values, insert_construction.size()); std::move(move_construction_tx).Commit(); AddSize(insert_count); return Iterator<A>(storage_view.data + insert_index); } } template <typename T, size_t N, typename A> template <typename... Args> auto Storage<T, N, A>::EmplaceBack(Args&&... args) -> Reference<A> { StorageView<A> storage_view = MakeStorageView(); const SizeType<A> n = storage_view.size; if (ABSL_PREDICT_TRUE(n != storage_view.capacity)) { Pointer<A> last_ptr = storage_view.data + n; AllocatorTraits<A>::construct(GetAllocator(), last_ptr, std::forward<Args>(args)...); AddSize(1); return *last_ptr; } return EmplaceBackSlow(std::forward<Args>(args)...); } template <typename T, size_t N, typename A> template <typename... Args> auto Storage<T, N, A>::EmplaceBackSlow(Args&&... args) -> Reference<A> { StorageView<A> storage_view = MakeStorageView(); AllocationTransaction<A> allocation_tx(GetAllocator()); IteratorValueAdapter<A, MoveIterator<A>> move_values( MoveIterator<A>(storage_view.data)); SizeType<A> requested_capacity = NextCapacity(storage_view.capacity); Pointer<A> construct_data = allocation_tx.Allocate(requested_capacity); Pointer<A> last_ptr = construct_data + storage_view.size; AllocatorTraits<A>::construct(GetAllocator(), last_ptr, std::forward<Args>(args)...); ABSL_INTERNAL_TRY { ConstructElements<A>(GetAllocator(), allocation_tx.GetData(), move_values, storage_view.size); } ABSL_INTERNAL_CATCH_ANY { AllocatorTraits<A>::destroy(GetAllocator(), last_ptr); ABSL_INTERNAL_RETHROW; } DestroyAdapter<A>::DestroyElements(GetAllocator(), storage_view.data, storage_view.size); DeallocateIfAllocated(); SetAllocation(std::move(allocation_tx).Release()); SetIsAllocated(); AddSize(1); return *last_ptr; } template <typename T, size_t N, typename A> auto Storage<T, N, A>::Erase(ConstIterator<A> from, ConstIterator<A> to) -> Iterator<A> { StorageView<A> storage_view = MakeStorageView(); auto erase_size = static_cast<SizeType<A>>(std::distance(from, to)); auto erase_index = static_cast<SizeType<A>>( std::distance(ConstIterator<A>(storage_view.data), from)); SizeType<A> erase_end_index = erase_index + erase_size; if (absl::is_trivially_relocatable<ValueType<A>>::value && std::is_nothrow_destructible<ValueType<A>>::value && std::is_same<A, std::allocator<ValueType<A>>>::value) { DestroyAdapter<A>::DestroyElements( GetAllocator(), storage_view.data + erase_index, erase_size); std::memmove( reinterpret_cast<char*>(storage_view.data + erase_index), reinterpret_cast<const char*>(storage_view.data + erase_end_index), (storage_view.size - erase_end_index) * sizeof(ValueType<A>)); } else { IteratorValueAdapter<A, MoveIterator<A>> move_values( MoveIterator<A>(storage_view.data + erase_end_index)); AssignElements<A>(storage_view.data + erase_index, move_values, storage_view.size - erase_end_index); DestroyAdapter<A>::DestroyElements( GetAllocator(), storage_view.data + (storage_view.size - erase_size), erase_size); } SubtractSize(erase_size); return Iterator<A>(storage_view.data + erase_index); } template <typename T, size_t N, typename A> auto Storage<T, N, A>::Reserve(SizeType<A> requested_capacity) -> void { StorageView<A> storage_view = MakeStorageView(); if (ABSL_PREDICT_FALSE(requested_capacity <= storage_view.capacity)) return; AllocationTransaction<A> allocation_tx(GetAllocator()); IteratorValueAdapter<A, MoveIterator<A>> move_values( MoveIterator<A>(storage_view.data)); SizeType<A> new_requested_capacity = ComputeCapacity(storage_view.capacity, requested_capacity); Pointer<A> new_data = allocation_tx.Allocate(new_requested_capacity); ConstructElements<A>(GetAllocator(), new_data, move_values, storage_view.size); DestroyAdapter<A>::DestroyElements(GetAllocator(), storage_view.data, storage_view.size); DeallocateIfAllocated(); SetAllocation(std::move(allocation_tx).Release()); SetIsAllocated(); } template <typename T, size_t N, typename A> auto Storage<T, N, A>::ShrinkToFit() -> void { ABSL_HARDENING_ASSERT(GetIsAllocated()); StorageView<A> storage_view{GetAllocatedData(), GetSize(), GetAllocatedCapacity()}; if (ABSL_PREDICT_FALSE(storage_view.size == storage_view.capacity)) return; AllocationTransaction<A> allocation_tx(GetAllocator()); IteratorValueAdapter<A, MoveIterator<A>> move_values( MoveIterator<A>(storage_view.data)); Pointer<A> construct_data; if (storage_view.size > GetInlinedCapacity()) { SizeType<A> requested_capacity = storage_view.size; construct_data = allocation_tx.Allocate(requested_capacity); if (allocation_tx.GetCapacity() >= storage_view.capacity) { return; } } else { construct_data = GetInlinedData(); } ABSL_INTERNAL_TRY { ConstructElements<A>(GetAllocator(), construct_data, move_values, storage_view.size); } ABSL_INTERNAL_CATCH_ANY { SetAllocation({storage_view.data, storage_view.capacity}); ABSL_INTERNAL_RETHROW; } DestroyAdapter<A>::DestroyElements(GetAllocator(), storage_view.data, storage_view.size); MallocAdapter<A>::Deallocate(GetAllocator(), storage_view.data, storage_view.capacity); if (allocation_tx.DidAllocate()) { SetAllocation(std::move(allocation_tx).Release()); } else { UnsetIsAllocated(); } } template <typename T, size_t N, typename A> auto Storage<T, N, A>::Swap(Storage* other_storage_ptr) -> void { using std::swap; ABSL_HARDENING_ASSERT(this != other_storage_ptr); if (GetIsAllocated() && other_storage_ptr->GetIsAllocated()) { swap(data_.allocated, other_storage_ptr->data_.allocated); } else if (!GetIsAllocated() && !other_storage_ptr->GetIsAllocated()) { SwapInlinedElements(SwapInlinedElementsPolicy{}, other_storage_ptr); } else { Storage* allocated_ptr = this; Storage* inlined_ptr = other_storage_ptr; if (!allocated_ptr->GetIsAllocated()) swap(allocated_ptr, inlined_ptr); StorageView<A> allocated_storage_view{ allocated_ptr->GetAllocatedData(), allocated_ptr->GetSize(), allocated_ptr->GetAllocatedCapacity()}; IteratorValueAdapter<A, MoveIterator<A>> move_values( MoveIterator<A>(inlined_ptr->GetInlinedData())); ABSL_INTERNAL_TRY { ConstructElements<A>(inlined_ptr->GetAllocator(), allocated_ptr->GetInlinedData(), move_values, inlined_ptr->GetSize()); } ABSL_INTERNAL_CATCH_ANY { allocated_ptr->SetAllocation(Allocation<A>{ allocated_storage_view.data, allocated_storage_view.capacity}); ABSL_INTERNAL_RETHROW; } DestroyAdapter<A>::DestroyElements(inlined_ptr->GetAllocator(), inlined_ptr->GetInlinedData(), inlined_ptr->GetSize()); inlined_ptr->SetAllocation(Allocation<A>{allocated_storage_view.data, allocated_storage_view.capacity}); } swap(GetSizeAndIsAllocated(), other_storage_ptr->GetSizeAndIsAllocated()); swap(GetAllocator(), other_storage_ptr->GetAllocator()); } template <typename T, size_t N, typename A> void Storage<T, N, A>::SwapN(ElementwiseSwapPolicy, Storage* other, SizeType<A> n) { std::swap_ranges(GetInlinedData(), GetInlinedData() + n, other->GetInlinedData()); } template <typename T, size_t N, typename A> void Storage<T, N, A>::SwapN(ElementwiseConstructPolicy, Storage* other, SizeType<A> n) { Pointer<A> a = GetInlinedData(); Pointer<A> b = other->GetInlinedData(); A& allocator_a = GetAllocator(); A& allocator_b = other->GetAllocator(); for (SizeType<A> i = 0; i < n; ++i, ++a, ++b) { ValueType<A> tmp(std::move(*a)); AllocatorTraits<A>::destroy(allocator_a, a); AllocatorTraits<A>::construct(allocator_b, a, std::move(*b)); AllocatorTraits<A>::destroy(allocator_b, b); AllocatorTraits<A>::construct(allocator_a, b, std::move(tmp)); } } template <typename T, size_t N, typename A> void Storage<T, N, A>::SwapInlinedElements(MemcpyPolicy, Storage* other) { Data tmp = data_; data_ = other->data_; other->data_ = tmp; } template <typename T, size_t N, typename A> template <typename NotMemcpyPolicy> void Storage<T, N, A>::SwapInlinedElements(NotMemcpyPolicy policy, Storage* other) { Storage* small_ptr = this; Storage* large_ptr = other; if (small_ptr->GetSize() > large_ptr->GetSize()) { std::swap(small_ptr, large_ptr); } auto small_size = small_ptr->GetSize(); auto diff = large_ptr->GetSize() - small_size; SwapN(policy, other, small_size); IteratorValueAdapter<A, MoveIterator<A>> move_values( MoveIterator<A>(large_ptr->GetInlinedData() + small_size)); ConstructElements<A>(large_ptr->GetAllocator(), small_ptr->GetInlinedData() + small_size, move_values, diff); DestroyAdapter<A>::DestroyElements(large_ptr->GetAllocator(), large_ptr->GetInlinedData() + small_size, diff); } #if !defined(__clang__) && defined(__GNUC__) #pragma GCC diagnostic pop #endif } ABSL_NAMESPACE_END } #endif
#include "absl/container/inlined_vector.h" #include <algorithm> #include <cstddef> #include <forward_list> #include <iterator> #include <list> #include <memory> #include <scoped_allocator> #include <sstream> #include <stdexcept> #include <string> #include <utility> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/attributes.h" #include "absl/base/internal/exception_testing.h" #include "absl/base/macros.h" #include "absl/base/options.h" #include "absl/container/internal/test_allocator.h" #include "absl/container/internal/test_instance_tracker.h" #include "absl/hash/hash_testing.h" #include "absl/log/check.h" #include "absl/memory/memory.h" #include "absl/strings/str_cat.h" namespace { using absl::container_internal::CountingAllocator; using absl::test_internal::CopyableMovableInstance; using absl::test_internal::CopyableOnlyInstance; using absl::test_internal::InstanceTracker; using testing::AllOf; using testing::Each; using testing::ElementsAre; using testing::ElementsAreArray; using testing::Eq; using testing::Gt; using testing::Pointee; using testing::Pointwise; using testing::PrintToString; using testing::SizeIs; using IntVec = absl::InlinedVector<int, 8>; MATCHER_P(CapacityIs, n, "") { return testing::ExplainMatchResult(n, arg.capacity(), result_listener); } MATCHER_P(ValueIs, e, "") { return testing::ExplainMatchResult(e, arg.value(), result_listener); } template <typename T> class InstanceTest : public ::testing::Test {}; TYPED_TEST_SUITE_P(InstanceTest); class RefCounted { public: RefCounted(int value, int* count) : value_(value), count_(count) { Ref(); } RefCounted(const RefCounted& v) : value_(v.value_), count_(v.count_) { Ref(); } ~RefCounted() { Unref(); count_ = nullptr; } friend void swap(RefCounted& a, RefCounted& b) { using std::swap; swap(a.value_, b.value_); swap(a.count_, b.count_); } RefCounted& operator=(RefCounted v) { using std::swap; swap(*this, v); return *this; } void Ref() const { CHECK_NE(count_, nullptr); ++(*count_); } void Unref() const { --(*count_); CHECK_GE(*count_, 0); } int value_; int* count_; }; using RefCountedVec = absl::InlinedVector<RefCounted, 8>; class Dynamic { public: virtual ~Dynamic() {} }; using DynamicVec = absl::InlinedVector<Dynamic, 8>; template <typename Container> static void Fill(Container* v, size_t len, int offset = 0) { for (size_t i = 0; i < len; i++) { v->push_back(static_cast<int>(i) + offset); } } static IntVec Fill(size_t len, int offset = 0) { IntVec v; Fill(&v, len, offset); return v; } TEST(IntVec, SimpleOps) { for (size_t len = 0; len < 20; len++) { IntVec v; const IntVec& cv = v; Fill(&v, len); EXPECT_EQ(len, v.size()); EXPECT_LE(len, v.capacity()); for (size_t i = 0; i < len; i++) { EXPECT_EQ(static_cast<int>(i), v[i]); EXPECT_EQ(static_cast<int>(i), v.at(i)); } EXPECT_EQ(v.begin(), v.data()); EXPECT_EQ(cv.begin(), cv.data()); size_t counter = 0; for (IntVec::iterator iter = v.begin(); iter != v.end(); ++iter) { EXPECT_EQ(static_cast<int>(counter), *iter); counter++; } EXPECT_EQ(counter, len); counter = 0; for (IntVec::const_iterator iter = v.begin(); iter != v.end(); ++iter) { EXPECT_EQ(static_cast<int>(counter), *iter); counter++; } EXPECT_EQ(counter, len); counter = 0; for (IntVec::const_iterator iter = v.cbegin(); iter != v.cend(); ++iter) { EXPECT_EQ(static_cast<int>(counter), *iter); counter++; } EXPECT_EQ(counter, len); if (len > 0) { EXPECT_EQ(0, v.front()); EXPECT_EQ(static_cast<int>(len - 1), v.back()); v.pop_back(); EXPECT_EQ(len - 1, v.size()); for (size_t i = 0; i < v.size(); ++i) { EXPECT_EQ(static_cast<int>(i), v[i]); EXPECT_EQ(static_cast<int>(i), v.at(i)); } } } } TEST(IntVec, PopBackNoOverflow) { IntVec v = {1}; v.pop_back(); EXPECT_EQ(v.size(), 0u); } TEST(IntVec, AtThrows) { IntVec v = {1, 2, 3}; EXPECT_EQ(v.at(2), 3); ABSL_BASE_INTERNAL_EXPECT_FAIL(v.at(3), std::out_of_range, "failed bounds check"); } TEST(IntVec, ReverseIterator) { for (size_t len = 0; len < 20; len++) { IntVec v; Fill(&v, len); size_t counter = len; for (IntVec::reverse_iterator iter = v.rbegin(); iter != v.rend(); ++iter) { counter--; EXPECT_EQ(static_cast<int>(counter), *iter); } EXPECT_EQ(counter, 0u); counter = len; for (IntVec::const_reverse_iterator iter = v.rbegin(); iter != v.rend(); ++iter) { counter--; EXPECT_EQ(static_cast<int>(counter), *iter); } EXPECT_EQ(counter, 0u); counter = len; for (IntVec::const_reverse_iterator iter = v.crbegin(); iter != v.crend(); ++iter) { counter--; EXPECT_EQ(static_cast<int>(counter), *iter); } EXPECT_EQ(counter, 0u); } } TEST(IntVec, Erase) { for (size_t len = 1; len < 20; len++) { for (size_t i = 0; i < len; ++i) { IntVec v; Fill(&v, len); v.erase(v.begin() + i); EXPECT_EQ(len - 1, v.size()); for (size_t j = 0; j < i; ++j) { EXPECT_EQ(static_cast<int>(j), v[j]); } for (size_t j = i; j < len - 1; ++j) { EXPECT_EQ(static_cast<int>(j + 1), v[j]); } } } } TEST(IntVec, Hardened) { IntVec v; Fill(&v, 10); EXPECT_EQ(v[9], 9); #if !defined(NDEBUG) || ABSL_OPTION_HARDENED EXPECT_DEATH_IF_SUPPORTED(v[10], ""); EXPECT_DEATH_IF_SUPPORTED(v[static_cast<size_t>(-1)], ""); EXPECT_DEATH_IF_SUPPORTED(v.resize(v.max_size() + 1), ""); #endif } TEST(UniquePtr, MoveConstruct) { for (size_t size = 0; size < 16; ++size) { SCOPED_TRACE(size); absl::InlinedVector<std::unique_ptr<size_t>, 2> a; for (size_t i = 0; i < size; ++i) { a.push_back(std::make_unique<size_t>(i)); } absl::InlinedVector<std::unique_ptr<size_t>, 2> b(std::move(a)); ASSERT_THAT(b, SizeIs(size)); for (size_t i = 0; i < size; ++i) { ASSERT_THAT(b[i], Pointee(i)); } } } TEST(UniquePtr, MoveAssign) { for (size_t size = 0; size < 16; ++size) { SCOPED_TRACE(size); absl::InlinedVector<std::unique_ptr<size_t>, 2> a; for (size_t i = 0; i < size; ++i) { a.push_back(std::make_unique<size_t>(i)); } absl::InlinedVector<std::unique_ptr<size_t>, 2> b; b = std::move(a); ASSERT_THAT(b, SizeIs(size)); for (size_t i = 0; i < size; ++i) { ASSERT_THAT(b[i], Pointee(i)); } } } TEST(UniquePtr, Swap) { for (size_t size1 = 0; size1 < 5; ++size1) { for (size_t size2 = 0; size2 < 5; ++size2) { absl::InlinedVector<std::unique_ptr<size_t>, 2> a; absl::InlinedVector<std::unique_ptr<size_t>, 2> b; for (size_t i = 0; i < size1; ++i) { a.push_back(std::make_unique<size_t>(i + 10)); } for (size_t i = 0; i < size2; ++i) { b.push_back(std::make_unique<size_t>(i + 20)); } a.swap(b); ASSERT_THAT(a, SizeIs(size2)); ASSERT_THAT(b, SizeIs(size1)); for (size_t i = 0; i < a.size(); ++i) { ASSERT_THAT(a[i], Pointee(i + 20)); } for (size_t i = 0; i < b.size(); ++i) { ASSERT_THAT(b[i], Pointee(i + 10)); } } } } TEST(UniquePtr, EraseSingle) { for (size_t size = 4; size < 16; ++size) { absl::InlinedVector<std::unique_ptr<size_t>, 8> a; for (size_t i = 0; i < size; ++i) { a.push_back(std::make_unique<size_t>(i)); } a.erase(a.begin()); ASSERT_THAT(a, SizeIs(size - 1)); for (size_t i = 0; i < size - 1; ++i) { ASSERT_THAT(a[i], Pointee(i + 1)); } a.erase(a.begin() + 2); ASSERT_THAT(a, SizeIs(size - 2)); ASSERT_THAT(a[0], Pointee(1)); ASSERT_THAT(a[1], Pointee(2)); for (size_t i = 2; i < size - 2; ++i) { ASSERT_THAT(a[i], Pointee(i + 2)); } } } TEST(UniquePtr, EraseMulti) { for (size_t size = 5; size < 16; ++size) { absl::InlinedVector<std::unique_ptr<size_t>, 8> a; for (size_t i = 0; i < size; ++i) { a.push_back(std::make_unique<size_t>(i)); } a.erase(a.begin(), a.begin() + 2); ASSERT_THAT(a, SizeIs(size - 2)); for (size_t i = 0; i < size - 2; ++i) { ASSERT_THAT(a[i], Pointee(i + 2)); } a.erase(a.begin() + 1, a.begin() + 3); ASSERT_THAT(a, SizeIs(size - 4)); ASSERT_THAT(a[0], Pointee(2)); for (size_t i = 1; i < size - 4; ++i) { ASSERT_THAT(a[i], Pointee(i + 4)); } } } TEST(RefCountedVec, EraseBeginEnd) { for (size_t len = 1; len < 20; ++len) { for (size_t erase_begin = 0; erase_begin < len; ++erase_begin) { for (size_t erase_end = erase_begin; erase_end <= len; ++erase_end) { std::vector<int> counts(len, 0); RefCountedVec v; for (size_t i = 0; i < len; ++i) { v.push_back(RefCounted(static_cast<int>(i), &counts[i])); } size_t erase_len = erase_end - erase_begin; v.erase(v.begin() + erase_begin, v.begin() + erase_end); EXPECT_EQ(len - erase_len, v.size()); for (size_t i = 0; i < erase_begin; ++i) { EXPECT_EQ(static_cast<int>(i), v[i].value_); } for (size_t i = erase_begin; i < v.size(); ++i) { EXPECT_EQ(static_cast<int>(i + erase_len), v[i].value_); } for (size_t i = 0; i < erase_begin; ++i) { EXPECT_EQ(1, counts[i]); } for (size_t i = erase_begin; i < erase_end; ++i) { EXPECT_EQ(0, counts[i]); } for (size_t i = erase_end; i < len; ++i) { EXPECT_EQ(1, counts[i]); } } } } } struct NoDefaultCtor { explicit NoDefaultCtor(int) {} }; struct NoCopy { NoCopy() {} NoCopy(const NoCopy&) = delete; }; struct NoAssign { NoAssign() {} NoAssign& operator=(const NoAssign&) = delete; }; struct MoveOnly { MoveOnly() {} MoveOnly(MoveOnly&&) = default; MoveOnly& operator=(MoveOnly&&) = default; }; TEST(InlinedVectorTest, NoDefaultCtor) { absl::InlinedVector<NoDefaultCtor, 1> v(10, NoDefaultCtor(2)); (void)v; } TEST(InlinedVectorTest, NoCopy) { absl::InlinedVector<NoCopy, 1> v(10); (void)v; } TEST(InlinedVectorTest, NoAssign) { absl::InlinedVector<NoAssign, 1> v(10); (void)v; } TEST(InlinedVectorTest, MoveOnly) { absl::InlinedVector<MoveOnly, 2> v; v.push_back(MoveOnly{}); v.push_back(MoveOnly{}); v.push_back(MoveOnly{}); v.erase(v.begin()); v.push_back(MoveOnly{}); v.erase(v.begin(), v.begin() + 1); v.insert(v.begin(), MoveOnly{}); v.emplace(v.begin()); v.emplace(v.begin(), MoveOnly{}); } TEST(InlinedVectorTest, Noexcept) { EXPECT_TRUE(std::is_nothrow_move_constructible<IntVec>::value); EXPECT_TRUE((std::is_nothrow_move_constructible< absl::InlinedVector<MoveOnly, 2>>::value)); struct MoveCanThrow { MoveCanThrow(MoveCanThrow&&) {} }; EXPECT_EQ(absl::default_allocator_is_nothrow::value, (std::is_nothrow_move_constructible< absl::InlinedVector<MoveCanThrow, 2>>::value)); } TEST(InlinedVectorTest, EmplaceBack) { absl::InlinedVector<std::pair<std::string, int>, 1> v; auto& inlined_element = v.emplace_back("answer", 42); EXPECT_EQ(&inlined_element, &v[0]); EXPECT_EQ(inlined_element.first, "answer"); EXPECT_EQ(inlined_element.second, 42); auto& allocated_element = v.emplace_back("taxicab", 1729); EXPECT_EQ(&allocated_element, &v[1]); EXPECT_EQ(allocated_element.first, "taxicab"); EXPECT_EQ(allocated_element.second, 1729); } TEST(InlinedVectorTest, ShrinkToFitGrowingVector) { absl::InlinedVector<std::pair<std::string, int>, 1> v; v.shrink_to_fit(); EXPECT_EQ(v.capacity(), 1u); v.emplace_back("answer", 42); v.shrink_to_fit(); EXPECT_EQ(v.capacity(), 1u); v.emplace_back("taxicab", 1729); EXPECT_GE(v.capacity(), 2u); v.shrink_to_fit(); EXPECT_EQ(v.capacity(), 2u); v.reserve(100); EXPECT_GE(v.capacity(), 100u); v.shrink_to_fit(); EXPECT_EQ(v.capacity(), 2u); } TEST(InlinedVectorTest, ShrinkToFitEdgeCases) { { absl::InlinedVector<std::pair<std::string, int>, 1> v; v.emplace_back("answer", 42); v.emplace_back("taxicab", 1729); EXPECT_GE(v.capacity(), 2u); v.pop_back(); v.shrink_to_fit(); EXPECT_EQ(v.capacity(), 1u); EXPECT_EQ(v[0].first, "answer"); EXPECT_EQ(v[0].second, 42); } { absl::InlinedVector<std::string, 2> v(100); v.resize(0); v.shrink_to_fit(); EXPECT_EQ(v.capacity(), 2u); } { absl::InlinedVector<std::string, 2> v(100); v.resize(1); v.shrink_to_fit(); EXPECT_EQ(v.capacity(), 2u); } { absl::InlinedVector<std::string, 2> v(100); v.resize(2); v.shrink_to_fit(); EXPECT_EQ(v.capacity(), 2u); } { absl::InlinedVector<std::string, 2> v(100); v.resize(3); v.shrink_to_fit(); EXPECT_EQ(v.capacity(), 3u); } } TEST(IntVec, Insert) { for (size_t len = 0; len < 20; len++) { for (ptrdiff_t pos = 0; pos <= static_cast<ptrdiff_t>(len); pos++) { { std::vector<int> std_v; Fill(&std_v, len); IntVec v; Fill(&v, len); std_v.insert(std_v.begin() + pos, 9999); IntVec::iterator it = v.insert(v.cbegin() + pos, 9999); EXPECT_THAT(v, ElementsAreArray(std_v)); EXPECT_EQ(it, v.cbegin() + pos); } { std::vector<int> std_v; Fill(&std_v, len); IntVec v; Fill(&v, len); IntVec::size_type n = 5; std_v.insert(std_v.begin() + pos, n, 9999); IntVec::iterator it = v.insert(v.cbegin() + pos, n, 9999); EXPECT_THAT(v, ElementsAreArray(std_v)); EXPECT_EQ(it, v.cbegin() + pos); } { std::vector<int> std_v; Fill(&std_v, len); IntVec v; Fill(&v, len); const std::vector<int> input = {9999, 8888, 7777}; std_v.insert(std_v.begin() + pos, input.cbegin(), input.cend()); IntVec::iterator it = v.insert(v.cbegin() + pos, input.cbegin(), input.cend()); EXPECT_THAT(v, ElementsAreArray(std_v)); EXPECT_EQ(it, v.cbegin() + pos); } { std::vector<int> std_v; Fill(&std_v, len); IntVec v; Fill(&v, len); const std::forward_list<int> input = {9999, 8888, 7777}; std_v.insert(std_v.begin() + pos, input.cbegin(), input.cend()); IntVec::iterator it = v.insert(v.cbegin() + pos, input.cbegin(), input.cend()); EXPECT_THAT(v, ElementsAreArray(std_v)); EXPECT_EQ(it, v.cbegin() + pos); } { std::vector<int> std_v; Fill(&std_v, len); IntVec v; Fill(&v, len); std_v.insert(std_v.begin() + pos, {9999, 8888, 7777}); std::istringstream input("9999 8888 7777"); IntVec::iterator it = v.insert(v.cbegin() + pos, std::istream_iterator<int>(input), std::istream_iterator<int>()); EXPECT_THAT(v, ElementsAreArray(std_v)); EXPECT_EQ(it, v.cbegin() + pos); } { std::vector<int> std_v; Fill(&std_v, len); IntVec v; Fill(&v, len); std_v.insert(std_v.begin() + pos, {9999, 8888}); IntVec::iterator it = v.insert(v.cbegin() + pos, {9999, 8888}); EXPECT_THAT(v, ElementsAreArray(std_v)); EXPECT_EQ(it, v.cbegin() + pos); } } } } TEST(RefCountedVec, InsertConstructorDestructor) { for (size_t len = 0; len < 20; len++) { SCOPED_TRACE(len); for (size_t pos = 0; pos <= len; pos++) { SCOPED_TRACE(pos); std::vector<int> counts(len, 0); int inserted_count = 0; RefCountedVec v; for (size_t i = 0; i < len; ++i) { SCOPED_TRACE(i); v.push_back(RefCounted(static_cast<int>(i), &counts[i])); } EXPECT_THAT(counts, Each(Eq(1))); RefCounted insert_element(9999, &inserted_count); EXPECT_EQ(1, inserted_count); v.insert(v.begin() + pos, insert_element); EXPECT_EQ(2, inserted_count); EXPECT_THAT(counts, Each(Eq(1))); EXPECT_EQ(2, inserted_count); } } } TEST(IntVec, Resize) { for (size_t len = 0; len < 20; len++) { IntVec v; Fill(&v, len); static const int kResizeElem = 1000000; for (size_t k = 0; k < 10; k++) { v.resize(len + k, kResizeElem); EXPECT_EQ(len + k, v.size()); EXPECT_LE(len + k, v.capacity()); for (size_t i = 0; i < len + k; i++) { if (i < len) { EXPECT_EQ(static_cast<int>(i), v[i]); } else { EXPECT_EQ(kResizeElem, v[i]); } } v.resize(len, kResizeElem); EXPECT_EQ(len, v.size()); EXPECT_LE(len, v.capacity()); for (size_t i = 0; i < len; i++) { EXPECT_EQ(static_cast<int>(i), v[i]); } } } } TEST(IntVec, InitWithLength) { for (size_t len = 0; len < 20; len++) { IntVec v(len, 7); EXPECT_EQ(len, v.size()); EXPECT_LE(len, v.capacity()); for (size_t i = 0; i < len; i++) { EXPECT_EQ(7, v[i]); } } } TEST(IntVec, CopyConstructorAndAssignment) { for (size_t len = 0; len < 20; len++) { IntVec v; Fill(&v, len); EXPECT_EQ(len, v.size()); EXPECT_LE(len, v.capacity()); IntVec v2(v); EXPECT_TRUE(v == v2) << PrintToString(v) << PrintToString(v2); for (size_t start_len = 0; start_len < 20; start_len++) { IntVec v3; Fill(&v3, start_len, 99); v3 = v; EXPECT_TRUE(v == v3) << PrintToString(v) << PrintToString(v3); } } } TEST(IntVec, AliasingCopyAssignment) { for (size_t len = 0; len < 20; ++len) { IntVec original; Fill(&original, len); IntVec dup = original; dup = *&dup; EXPECT_EQ(dup, original); } } TEST(IntVec, MoveConstructorAndAssignment) { for (size_t len = 0; len < 20; len++) { IntVec v_in; const size_t inlined_capacity = v_in.capacity(); Fill(&v_in, len); EXPECT_EQ(len, v_in.size()); EXPECT_LE(len, v_in.capacity()); { IntVec v_temp(v_in); auto* old_data = v_temp.data(); IntVec v_out(std::move(v_temp)); EXPECT_TRUE(v_in == v_out) << PrintToString(v_in) << PrintToString(v_out); if (v_in.size() > inlined_capacity) { EXPECT_TRUE(v_out.data() == old_data); } else { EXPECT_FALSE(v_out.data() == old_data); } } for (size_t start_len = 0; start_len < 20; start_len++) { IntVec v_out; Fill(&v_out, start_len, 99); IntVec v_temp(v_in); auto* old_data = v_temp.data(); v_out = std::move(v_temp); EXPECT_TRUE(v_in == v_out) << PrintToString(v_in) << PrintToString(v_out); if (v_in.size() > inlined_capacity) { EXPECT_TRUE(v_out.data() == old_data); } else { EXPECT_FALSE(v_out.data() == old_data); } } } } class NotTriviallyDestructible { public: NotTriviallyDestructible() : p_(new int(1)) {} explicit NotTriviallyDestructible(int i) : p_(new int(i)) {} NotTriviallyDestructible(const NotTriviallyDestructible& other) : p_(new int(*other.p_)) {} NotTriviallyDestructible& operator=(const NotTriviallyDestructible& other) { p_ = absl::make_unique<int>(*other.p_); return *this; } bool operator==(const NotTriviallyDestructible& other) const { return *p_ == *other.p_; } private: std::unique_ptr<int> p_; }; TEST(AliasingTest, Emplace) { for (size_t i = 2; i < 20; ++i) { absl::InlinedVector<NotTriviallyDestructible, 10> vec; for (size_t j = 0; j < i; ++j) { vec.push_back(NotTriviallyDestructible(static_cast<int>(j))); } vec.emplace(vec.begin(), vec[0]); EXPECT_EQ(vec[0], vec[1]); vec.emplace(vec.begin() + i / 2, vec[i / 2]); EXPECT_EQ(vec[i / 2], vec[i / 2 + 1]); vec.emplace(vec.end() - 1, vec.back()); EXPECT_EQ(vec[vec.size() - 2], vec.back()); } } TEST(AliasingTest, InsertWithCount) { for (size_t i = 1; i < 20; ++i) { absl::InlinedVector<NotTriviallyDestructible, 10> vec; for (size_t j = 0; j < i; ++j) { vec.push_back(NotTriviallyDestructible(static_cast<int>(j))); } for (size_t n = 0; n < 5; ++n) { vec.insert(vec.begin(), n, vec.back()); auto b = vec.begin(); EXPECT_TRUE( std::all_of(b, b + n, [&vec](const NotTriviallyDestructible& x) { return x == vec.back(); })); auto m_idx = vec.size() / 2; vec.insert(vec.begin() + m_idx, n, vec.back()); auto m = vec.begin() + m_idx; EXPECT_TRUE( std::all_of(m, m + n, [&vec](const NotTriviallyDestructible& x) { return x == vec.back(); })); auto old_e = vec.size() - 1; auto val = vec[old_e]; vec.insert(vec.end(), n, vec[old_e]); auto e = vec.begin() + old_e; EXPECT_TRUE(std::all_of( e, e + n, [&val](const NotTriviallyDestructible& x) { return x == val; })); } } } TEST(OverheadTest, Storage) { struct T { void* val; }; size_t expected_overhead = sizeof(T); EXPECT_EQ((2 * expected_overhead), sizeof(absl::InlinedVector<T, 1>) - sizeof(T[1])); EXPECT_EQ(expected_overhead, sizeof(absl::InlinedVector<T, 2>) - sizeof(T[2])); EXPECT_EQ(expected_overhead, sizeof(absl::InlinedVector<T, 3>) - sizeof(T[3])); EXPECT_EQ(expected_overhead, sizeof(absl::InlinedVector<T, 4>) - sizeof(T[4])); EXPECT_EQ(expected_overhead, sizeof(absl::InlinedVector<T, 5>) - sizeof(T[5])); EXPECT_EQ(expected_overhead, sizeof(absl::InlinedVector<T, 6>) - sizeof(T[6])); EXPECT_EQ(expected_overhead, sizeof(absl::InlinedVector<T, 7>) - sizeof(T[7])); EXPECT_EQ(expected_overhead, sizeof(absl::InlinedVector<T, 8>) - sizeof(T[8])); } TEST(IntVec, Clear) { for (size_t len = 0; len < 20; len++) { SCOPED_TRACE(len); IntVec v; Fill(&v, len); v.clear(); EXPECT_EQ(0u, v.size()); EXPECT_EQ(v.begin(), v.end()); } } TEST(IntVec, Reserve) { for (size_t len = 0; len < 20; len++) { IntVec v; Fill(&v, len); for (size_t newlen = 0; newlen < 100; newlen++) { const int* start_rep = v.data(); v.reserve(newlen); const int* final_rep = v.data(); if (newlen <= len) { EXPECT_EQ(start_rep, final_rep); } EXPECT_LE(newlen, v.capacity()); while (v.size() < newlen) { v.push_back(0); } EXPECT_EQ(final_rep, v.data()); } } } TEST(StringVec, SelfRefPushBack) { std::vector<std::string> std_v; absl::InlinedVector<std::string, 4> v; const std::string s = "A quite long string to ensure heap."; std_v.push_back(s); v.push_back(s); for (int i = 0; i < 20; ++i) { EXPECT_THAT(v, ElementsAreArray(std_v)); v.push_back(v.back()); std_v.push_back(std_v.back()); } EXPECT_THAT(v, ElementsAreArray(std_v)); } TEST(StringVec, SelfRefPushBackWithMove) { std::vector<std::string> std_v; absl::InlinedVector<std::string, 4> v; const std::string s = "A quite long string to ensure heap."; std_v.push_back(s); v.push_back(s); for (int i = 0; i < 20; ++i) { EXPECT_EQ(v.back(), std_v.back()); v.push_back(std::move(v.back())); std_v.push_back(std::move(std_v.back())); } EXPECT_EQ(v.back(), std_v.back()); } TEST(StringVec, SelfMove) { const std::string s = "A quite long string to ensure heap."; for (int len = 0; len < 20; len++) { SCOPED_TRACE(len); absl::InlinedVector<std::string, 8> v; for (int i = 0; i < len; ++i) { SCOPED_TRACE(i); v.push_back(s); } v = std::move(*(&v)); std::vector<std::string> copy(v.begin(), v.end()); } } TEST(IntVec, Swap) { for (size_t l1 = 0; l1 < 20; l1++) { SCOPED_TRACE(l1); for (size_t l2 = 0; l2 < 20; l2++) { SCOPED_TRACE(l2); IntVec a = Fill(l1, 0); IntVec b = Fill(l2, 100); { using std::swap; swap(a, b); } EXPECT_EQ(l1, b.size()); EXPECT_EQ(l2, a.size()); for (size_t i = 0; i < l1; i++) { SCOPED_TRACE(i); EXPECT_EQ(static_cast<int>(i), b[i]); } for (size_t i = 0; i < l2; i++) { SCOPED_TRACE(i); EXPECT_EQ(100 + static_cast<int>(i), a[i]); } } } } TYPED_TEST_P(InstanceTest, Swap) { using Instance = TypeParam; using InstanceVec = absl::InlinedVector<Instance, 8>; for (size_t l1 = 0; l1 < 20; l1++) { SCOPED_TRACE(l1); for (size_t l2 = 0; l2 < 20; l2++) { SCOPED_TRACE(l2); InstanceTracker tracker; InstanceVec a, b; const size_t inlined_capacity = a.capacity(); auto min_len = std::min(l1, l2); auto max_len = std::max(l1, l2); for (size_t i = 0; i < l1; i++) a.push_back(Instance(static_cast<int>(i))); for (size_t i = 0; i < l2; i++) b.push_back(Instance(100 + static_cast<int>(i))); EXPECT_EQ(tracker.instances(), static_cast<int>(l1 + l2)); tracker.ResetCopiesMovesSwaps(); { using std::swap; swap(a, b); } EXPECT_EQ(tracker.instances(), static_cast<int>(l1 + l2)); if (a.size() > inlined_capacity && b.size() > inlined_capacity) { EXPECT_EQ(tracker.swaps(), 0); EXPECT_EQ(tracker.moves(), 0); } else if (a.size() <= inlined_capacity && b.size() <= inlined_capacity) { EXPECT_EQ(tracker.swaps(), static_cast<int>(min_len)); EXPECT_EQ((tracker.moves() ? tracker.moves() : tracker.copies()), static_cast<int>(max_len - min_len)); } else { EXPECT_EQ(tracker.swaps(), 0); EXPECT_EQ((tracker.moves() ? tracker.moves() : tracker.copies()), static_cast<int>(min_len)); } EXPECT_EQ(l1, b.size()); EXPECT_EQ(l2, a.size()); for (size_t i = 0; i < l1; i++) { EXPECT_EQ(static_cast<int>(i), b[i].value()); } for (size_t i = 0; i < l2; i++) { EXPECT_EQ(100 + static_cast<int>(i), a[i].value()); } } } } TEST(IntVec, EqualAndNotEqual) { IntVec a, b; EXPECT_TRUE(a == b); EXPECT_FALSE(a != b); a.push_back(3); EXPECT_FALSE(a == b); EXPECT_TRUE(a != b); b.push_back(3); EXPECT_TRUE(a == b); EXPECT_FALSE(a != b); b.push_back(7); EXPECT_FALSE(a == b); EXPECT_TRUE(a != b); a.push_back(6); EXPECT_FALSE(a == b); EXPECT_TRUE(a != b); a.clear(); b.clear(); for (size_t i = 0; i < 100; i++) { a.push_back(static_cast<int>(i)); b.push_back(static_cast<int>(i)); EXPECT_TRUE(a == b); EXPECT_FALSE(a != b); b[i] = b[i] + 1; EXPECT_FALSE(a == b); EXPECT_TRUE(a != b); b[i] = b[i] - 1; EXPECT_TRUE(a == b); EXPECT_FALSE(a != b); } } TEST(IntVec, RelationalOps) { IntVec a, b; EXPECT_FALSE(a < b); EXPECT_FALSE(b < a); EXPECT_FALSE(a > b); EXPECT_FALSE(b > a); EXPECT_TRUE(a <= b); EXPECT_TRUE(b <= a); EXPECT_TRUE(a >= b); EXPECT_TRUE(b >= a); b.push_back(3); EXPECT_TRUE(a < b); EXPECT_FALSE(b < a); EXPECT_FALSE(a > b); EXPECT_TRUE(b > a); EXPECT_TRUE(a <= b); EXPECT_FALSE(b <= a); EXPECT_FALSE(a >= b); EXPECT_TRUE(b >= a); } TYPED_TEST_P(InstanceTest, CountConstructorsDestructors) { using Instance = TypeParam; using InstanceVec = absl::InlinedVector<Instance, 8>; InstanceTracker tracker; for (size_t len = 0; len < 20; len++) { SCOPED_TRACE(len); tracker.ResetCopiesMovesSwaps(); InstanceVec v; const size_t inlined_capacity = v.capacity(); for (size_t i = 0; i < len; i++) { v.push_back(Instance(static_cast<int>(i))); } EXPECT_EQ(tracker.instances(), static_cast<int>(len)); EXPECT_GE(tracker.copies() + tracker.moves(), static_cast<int>(len)); tracker.ResetCopiesMovesSwaps(); tracker.ResetCopiesMovesSwaps(); v.resize(len + 10, Instance(100)); EXPECT_EQ(tracker.instances(), static_cast<int>(len) + 10); if (len <= inlined_capacity && len + 10 > inlined_capacity) { EXPECT_EQ(tracker.copies() + tracker.moves(), 10 + static_cast<int>(len)); } else { EXPECT_GE(tracker.copies() + tracker.moves(), 10); } tracker.ResetCopiesMovesSwaps(); v.resize(len, Instance(100)); EXPECT_EQ(tracker.instances(), static_cast<int>(len)); EXPECT_EQ(tracker.copies(), 0); EXPECT_EQ(tracker.moves(), 0); SCOPED_TRACE("reserve"); v.reserve(len + 1000); EXPECT_EQ(tracker.instances(), static_cast<int>(len)); EXPECT_EQ(tracker.copies() + tracker.moves(), static_cast<int>(len)); if (len > 0) { tracker.ResetCopiesMovesSwaps(); v.pop_back(); EXPECT_EQ(tracker.instances(), static_cast<int>(len) - 1); EXPECT_EQ(tracker.copies(), 0); EXPECT_EQ(tracker.moves(), 0); if (!v.empty()) { tracker.ResetCopiesMovesSwaps(); v.erase(v.begin()); EXPECT_EQ(tracker.instances(), static_cast<int>(len) - 2); EXPECT_EQ(tracker.copies() + tracker.moves(), static_cast<int>(len) - 2); } } tracker.ResetCopiesMovesSwaps(); int instances_before_empty_erase = tracker.instances(); v.erase(v.begin(), v.begin()); EXPECT_EQ(tracker.instances(), instances_before_empty_erase); EXPECT_EQ(tracker.copies() + tracker.moves(), 0); } } TYPED_TEST_P(InstanceTest, CountConstructorsDestructorsOnCopyConstruction) { using Instance = TypeParam; using InstanceVec = absl::InlinedVector<Instance, 8>; InstanceTracker tracker; for (int len = 0; len < 20; len++) { SCOPED_TRACE(len); tracker.ResetCopiesMovesSwaps(); InstanceVec v; for (int i = 0; i < len; i++) { v.push_back(Instance(i)); } EXPECT_EQ(tracker.instances(), len); EXPECT_GE(tracker.copies() + tracker.moves(), len); tracker.ResetCopiesMovesSwaps(); { InstanceVec v_copy(v); EXPECT_EQ(tracker.instances(), len + len); EXPECT_EQ(tracker.copies(), len); EXPECT_EQ(tracker.moves(), 0); } EXPECT_EQ(tracker.instances(), len); } } TYPED_TEST_P(InstanceTest, CountConstructorsDestructorsOnMoveConstruction) { using Instance = TypeParam; using InstanceVec = absl::InlinedVector<Instance, 8>; InstanceTracker tracker; for (int len = 0; len < 20; len++) { SCOPED_TRACE(len); tracker.ResetCopiesMovesSwaps(); InstanceVec v; const size_t inlined_capacity = v.capacity(); for (int i = 0; i < len; i++) { v.push_back(Instance(i)); } EXPECT_EQ(tracker.instances(), len); EXPECT_GE(tracker.copies() + tracker.moves(), len); tracker.ResetCopiesMovesSwaps(); { InstanceVec v_copy(std::move(v)); if (static_cast<size_t>(len) > inlined_capacity) { EXPECT_EQ(tracker.instances(), len); EXPECT_EQ(tracker.live_instances(), len); EXPECT_EQ(v.size(), 0u); EXPECT_EQ(tracker.copies(), 0); EXPECT_EQ(tracker.moves(), 0); } else { EXPECT_EQ(tracker.instances(), len + len); if (Instance::supports_move()) { EXPECT_EQ(tracker.live_instances(), len); EXPECT_EQ(tracker.copies(), 0); EXPECT_EQ(tracker.moves(), len); } else { EXPECT_EQ(tracker.live_instances(), len + len); EXPECT_EQ(tracker.copies(), len); EXPECT_EQ(tracker.moves(), 0); } } EXPECT_EQ(tracker.swaps(), 0); } } } TYPED_TEST_P(InstanceTest, CountConstructorsDestructorsOnAssignment) { using Instance = TypeParam; using InstanceVec = absl::InlinedVector<Instance, 8>; InstanceTracker tracker; for (int len = 0; len < 20; len++) { SCOPED_TRACE(len); for (int longorshort = 0; longorshort <= 1; ++longorshort) { SCOPED_TRACE(longorshort); tracker.ResetCopiesMovesSwaps(); InstanceVec longer, shorter; for (int i = 0; i < len; i++) { longer.push_back(Instance(i)); shorter.push_back(Instance(i)); } longer.push_back(Instance(len)); EXPECT_EQ(tracker.instances(), len + len + 1); EXPECT_GE(tracker.copies() + tracker.moves(), len + len + 1); tracker.ResetCopiesMovesSwaps(); if (longorshort) { shorter = longer; EXPECT_EQ(tracker.instances(), (len + 1) + (len + 1)); EXPECT_GE(tracker.copies() + tracker.moves(), len + 1); } else { longer = shorter; EXPECT_EQ(tracker.instances(), len + len); EXPECT_EQ(tracker.copies() + tracker.moves(), len); } } } } TYPED_TEST_P(InstanceTest, CountConstructorsDestructorsOnMoveAssignment) { using Instance = TypeParam; using InstanceVec = absl::InlinedVector<Instance, 8>; InstanceTracker tracker; for (int len = 0; len < 20; len++) { SCOPED_TRACE(len); for (int longorshort = 0; longorshort <= 1; ++longorshort) { SCOPED_TRACE(longorshort); tracker.ResetCopiesMovesSwaps(); InstanceVec longer, shorter; const size_t inlined_capacity = longer.capacity(); for (int i = 0; i < len; i++) { longer.push_back(Instance(i)); shorter.push_back(Instance(i)); } longer.push_back(Instance(len)); EXPECT_EQ(tracker.instances(), len + len + 1); EXPECT_GE(tracker.copies() + tracker.moves(), len + len + 1); tracker.ResetCopiesMovesSwaps(); int src_len; if (longorshort) { src_len = len + 1; shorter = std::move(longer); } else { src_len = len; longer = std::move(shorter); } if (static_cast<size_t>(src_len) > inlined_capacity) { EXPECT_EQ(tracker.instances(), src_len); EXPECT_EQ(tracker.live_instances(), src_len); EXPECT_EQ(tracker.copies(), 0); EXPECT_EQ(tracker.moves(), 0); } else { EXPECT_EQ(tracker.instances(), src_len + src_len); if (Instance::supports_move()) { EXPECT_EQ(tracker.copies(), 0); EXPECT_EQ(tracker.moves(), src_len); EXPECT_EQ(tracker.live_instances(), src_len); } else { EXPECT_EQ(tracker.copies(), src_len); EXPECT_EQ(tracker.moves(), 0); EXPECT_EQ(tracker.live_instances(), src_len + src_len); } } EXPECT_EQ(tracker.swaps(), 0); } } } TEST(CountElemAssign, SimpleTypeWithInlineBacking) { const size_t inlined_capacity = absl::InlinedVector<int, 2>().capacity(); for (size_t original_size = 0; original_size <= 5; ++original_size) { SCOPED_TRACE(original_size); std::vector<int> original_contents(original_size, 12345); absl::InlinedVector<int, 2> v(original_contents.begin(), original_contents.end()); v.assign(2, 123); EXPECT_THAT(v, AllOf(SizeIs(2u), ElementsAre(123, 123))); if (original_size <= inlined_capacity) { EXPECT_EQ(v.capacity(), inlined_capacity); } } } TEST(CountElemAssign, SimpleTypeWithAllocation) { for (size_t original_size = 0; original_size <= 5; ++original_size) { SCOPED_TRACE(original_size); std::vector<int> original_contents(original_size, 12345); absl::InlinedVector<int, 2> v(original_contents.begin(), original_contents.end()); v.assign(3, 123); EXPECT_THAT(v, AllOf(SizeIs(3u), ElementsAre(123, 123, 123))); EXPECT_LE(v.size(), v.capacity()); } } TYPED_TEST_P(InstanceTest, CountElemAssignInlineBacking) { using Instance = TypeParam; for (size_t original_size = 0; original_size <= 5; ++original_size) { SCOPED_TRACE(original_size); std::vector<Instance> original_contents(original_size, Instance(12345)); absl::InlinedVector<Instance, 2> v(original_contents.begin(), original_contents.end()); v.assign(2, Instance(123)); EXPECT_THAT(v, AllOf(SizeIs(2u), ElementsAre(ValueIs(123), ValueIs(123)))); if (original_size <= 2) { EXPECT_EQ(2u, v.capacity()); } } } template <typename Instance> void InstanceCountElemAssignWithAllocationTest() { for (size_t original_size = 0; original_size <= 5; ++original_size) { SCOPED_TRACE(original_size); std::vector<Instance> original_contents(original_size, Instance(12345)); absl::InlinedVector<Instance, 2> v(original_contents.begin(), original_contents.end()); v.assign(3, Instance(123)); EXPECT_THAT(v, AllOf(SizeIs(3u), ElementsAre(ValueIs(123), ValueIs(123), ValueIs(123)))); EXPECT_LE(v.size(), v.capacity()); } } TEST(CountElemAssign, WithAllocationCopyableInstance) { InstanceCountElemAssignWithAllocationTest<CopyableOnlyInstance>(); } TEST(CountElemAssign, WithAllocationCopyableMovableInstance) { InstanceCountElemAssignWithAllocationTest<CopyableMovableInstance>(); } TEST(RangedConstructor, SimpleType) { std::vector<int> source_v = {4, 5, 6}; absl::InlinedVector<int, 4> v(source_v.begin(), source_v.end()); EXPECT_EQ(3u, v.size()); EXPECT_EQ(4u, v.capacity()); EXPECT_EQ(4, v[0]); EXPECT_EQ(5, v[1]); EXPECT_EQ(6, v[2]); absl::InlinedVector<int, 2> realloc_v(source_v.begin(), source_v.end()); EXPECT_EQ(3u, realloc_v.size()); EXPECT_LT(2u, realloc_v.capacity()); EXPECT_EQ(4, realloc_v[0]); EXPECT_EQ(5, realloc_v[1]); EXPECT_EQ(6, realloc_v[2]); } template <typename Instance, typename SourceContainer, int inlined_capacity> void InstanceRangedConstructorTestForContainer() { InstanceTracker tracker; SourceContainer source_v = {Instance(0), Instance(1)}; tracker.ResetCopiesMovesSwaps(); absl::InlinedVector<Instance, inlined_capacity> v(source_v.begin(), source_v.end()); EXPECT_EQ(2u, v.size()); EXPECT_LT(1u, v.capacity()); EXPECT_EQ(0, v[0].value()); EXPECT_EQ(1, v[1].value()); EXPECT_EQ(tracker.copies(), 2); EXPECT_EQ(tracker.moves(), 0); } template <typename Instance, int inlined_capacity> void InstanceRangedConstructorTestWithCapacity() { { SCOPED_TRACE("std::list"); InstanceRangedConstructorTestForContainer<Instance, std::list<Instance>, inlined_capacity>(); { SCOPED_TRACE("const std::list"); InstanceRangedConstructorTestForContainer< Instance, const std::list<Instance>, inlined_capacity>(); } { SCOPED_TRACE("std::vector"); InstanceRangedConstructorTestForContainer<Instance, std::vector<Instance>, inlined_capacity>(); } { SCOPED_TRACE("const std::vector"); InstanceRangedConstructorTestForContainer< Instance, const std::vector<Instance>, inlined_capacity>(); } } } TYPED_TEST_P(InstanceTest, RangedConstructor) { using Instance = TypeParam; SCOPED_TRACE("capacity=1"); InstanceRangedConstructorTestWithCapacity<Instance, 1>(); SCOPED_TRACE("capacity=2"); InstanceRangedConstructorTestWithCapacity<Instance, 2>(); } TEST(RangedConstructor, ElementsAreConstructed) { std::vector<std::string> source_v = {"cat", "dog"}; absl::InlinedVector<std::string, 1> v(source_v.begin(), source_v.end()); EXPECT_EQ("cat", v[0]); EXPECT_EQ("dog", v[1]); } TEST(RangedAssign, SimpleType) { const size_t inlined_capacity = absl::InlinedVector<int, 3>().capacity(); for (size_t original_size = 0; original_size <= 5; ++original_size) { SCOPED_TRACE(original_size); std::vector<int> original_contents(original_size, 12345); for (size_t target_size = 0; target_size <= 5; ++target_size) { SCOPED_TRACE(target_size); std::vector<int> new_contents; for (size_t i = 0; i < target_size; ++i) { new_contents.push_back(static_cast<int>(i + 3)); } absl::InlinedVector<int, 3> v(original_contents.begin(), original_contents.end()); v.assign(new_contents.begin(), new_contents.end()); EXPECT_EQ(new_contents.size(), v.size()); EXPECT_LE(new_contents.size(), v.capacity()); if (target_size <= inlined_capacity && original_size <= inlined_capacity) { EXPECT_EQ(v.capacity(), inlined_capacity); } EXPECT_THAT(v, ElementsAreArray(new_contents)); } } } template <typename Instance> static bool InstanceValuesEqual(const Instance& lhs, const Instance& rhs) { return lhs.value() == rhs.value(); } template <typename Instance, typename SourceContainer> void InstanceRangedAssignTestForContainer() { for (size_t original_size = 0; original_size <= 5; ++original_size) { SCOPED_TRACE(original_size); std::vector<Instance> original_contents(original_size, Instance(12345)); for (size_t target_size = 0; target_size <= 5; ++target_size) { SCOPED_TRACE(target_size); std::vector<Instance> new_contents_in; for (size_t i = 0; i < target_size; ++i) { new_contents_in.push_back(Instance(static_cast<int>(i) + 3)); } SourceContainer new_contents(new_contents_in.begin(), new_contents_in.end()); absl::InlinedVector<Instance, 3> v(original_contents.begin(), original_contents.end()); v.assign(new_contents.begin(), new_contents.end()); EXPECT_EQ(new_contents.size(), v.size()); EXPECT_LE(new_contents.size(), v.capacity()); if (target_size <= 3 && original_size <= 3) { EXPECT_EQ(3u, v.capacity()); } EXPECT_TRUE(std::equal(v.begin(), v.end(), new_contents.begin(), InstanceValuesEqual<Instance>)); } } } TYPED_TEST_P(InstanceTest, RangedAssign) { using Instance = TypeParam; SCOPED_TRACE("std::list"); InstanceRangedAssignTestForContainer<Instance, std::list<Instance>>(); SCOPED_TRACE("const std::list"); InstanceRangedAssignTestForContainer<Instance, const std::list<Instance>>(); SCOPED_TRACE("std::vector"); InstanceRangedAssignTestForContainer<Instance, std::vector<Instance>>(); SCOPED_TRACE("const std::vector"); InstanceRangedAssignTestForContainer<Instance, const std::vector<Instance>>(); } TEST(InitializerListConstructor, SimpleTypeWithInlineBacking) { EXPECT_THAT((absl::InlinedVector<int, 4>{4, 5, 6}), AllOf(SizeIs(3u), CapacityIs(4u), ElementsAre(4, 5, 6))); } TEST(InitializerListConstructor, SimpleTypeWithReallocationRequired) { EXPECT_THAT((absl::InlinedVector<int, 2>{4, 5, 6}), AllOf(SizeIs(3u), CapacityIs(Gt(2u)), ElementsAre(4, 5, 6))); } TEST(InitializerListConstructor, DisparateTypesInList) { EXPECT_THAT((absl::InlinedVector<int, 2>{-7, 8ULL}), ElementsAre(-7, 8)); EXPECT_THAT((absl::InlinedVector<std::string, 2>{"foo", std::string("bar")}), ElementsAre("foo", "bar")); } TEST(InitializerListConstructor, ComplexTypeWithInlineBacking) { const size_t inlined_capacity = absl::InlinedVector<CopyableMovableInstance, 1>().capacity(); EXPECT_THAT( (absl::InlinedVector<CopyableMovableInstance, 1>{ CopyableMovableInstance(0)}), AllOf(SizeIs(1u), CapacityIs(inlined_capacity), ElementsAre(ValueIs(0)))); } TEST(InitializerListConstructor, ComplexTypeWithReallocationRequired) { EXPECT_THAT((absl::InlinedVector<CopyableMovableInstance, 1>{ CopyableMovableInstance(0), CopyableMovableInstance(1)}), AllOf(SizeIs(2u), CapacityIs(Gt(1u)), ElementsAre(ValueIs(0), ValueIs(1)))); } TEST(InitializerListAssign, SimpleTypeFitsInlineBacking) { for (size_t original_size = 0; original_size <= 4; ++original_size) { SCOPED_TRACE(original_size); absl::InlinedVector<int, 2> v1(original_size, 12345); const size_t original_capacity_v1 = v1.capacity(); v1.assign({3}); EXPECT_THAT(v1, AllOf(SizeIs(1u), CapacityIs(original_capacity_v1), ElementsAre(3))); absl::InlinedVector<int, 2> v2(original_size, 12345); const size_t original_capacity_v2 = v2.capacity(); v2 = {3}; EXPECT_THAT(v2, AllOf(SizeIs(1u), CapacityIs(original_capacity_v2), ElementsAre(3))); } } TEST(InitializerListAssign, SimpleTypeDoesNotFitInlineBacking) { for (size_t original_size = 0; original_size <= 4; ++original_size) { SCOPED_TRACE(original_size); absl::InlinedVector<int, 2> v1(original_size, 12345); v1.assign({3, 4, 5}); EXPECT_THAT(v1, AllOf(SizeIs(3u), ElementsAre(3, 4, 5))); EXPECT_LE(3u, v1.capacity()); absl::InlinedVector<int, 2> v2(original_size, 12345); v2 = {3, 4, 5}; EXPECT_THAT(v2, AllOf(SizeIs(3u), ElementsAre(3, 4, 5))); EXPECT_LE(3u, v2.capacity()); } } TEST(InitializerListAssign, DisparateTypesInList) { absl::InlinedVector<int, 2> v_int1; v_int1.assign({-7, 8ULL}); EXPECT_THAT(v_int1, ElementsAre(-7, 8)); absl::InlinedVector<int, 2> v_int2; v_int2 = {-7, 8ULL}; EXPECT_THAT(v_int2, ElementsAre(-7, 8)); absl::InlinedVector<std::string, 2> v_string1; v_string1.assign({"foo", std::string("bar")}); EXPECT_THAT(v_string1, ElementsAre("foo", "bar")); absl::InlinedVector<std::string, 2> v_string2; v_string2 = {"foo", std::string("bar")}; EXPECT_THAT(v_string2, ElementsAre("foo", "bar")); } TYPED_TEST_P(InstanceTest, InitializerListAssign) { using Instance = TypeParam; for (size_t original_size = 0; original_size <= 4; ++original_size) { SCOPED_TRACE(original_size); absl::InlinedVector<Instance, 2> v(original_size, Instance(12345)); const size_t original_capacity = v.capacity(); v.assign({Instance(3)}); EXPECT_THAT(v, AllOf(SizeIs(1u), CapacityIs(original_capacity), ElementsAre(ValueIs(3)))); } for (size_t original_size = 0; original_size <= 4; ++original_size) { SCOPED_TRACE(original_size); absl::InlinedVector<Instance, 2> v(original_size, Instance(12345)); v.assign({Instance(3), Instance(4), Instance(5)}); EXPECT_THAT( v, AllOf(SizeIs(3u), ElementsAre(ValueIs(3), ValueIs(4), ValueIs(5)))); EXPECT_LE(3u, v.capacity()); } } REGISTER_TYPED_TEST_SUITE_P(InstanceTest, Swap, CountConstructorsDestructors, CountConstructorsDestructorsOnCopyConstruction, CountConstructorsDestructorsOnMoveConstruction, CountConstructorsDestructorsOnAssignment, CountConstructorsDestructorsOnMoveAssignment, CountElemAssignInlineBacking, RangedConstructor, RangedAssign, InitializerListAssign); using InstanceTypes = ::testing::Types<CopyableOnlyInstance, CopyableMovableInstance>; INSTANTIATE_TYPED_TEST_SUITE_P(InstanceTestOnTypes, InstanceTest, InstanceTypes); TEST(DynamicVec, DynamicVecCompiles) { DynamicVec v; (void)v; } TEST(DynamicVec, CreateNonEmptyDynamicVec) { DynamicVec v(1); EXPECT_EQ(v.size(), 1u); } TEST(DynamicVec, EmplaceBack) { DynamicVec v; v.emplace_back(Dynamic{}); EXPECT_EQ(v.size(), 1u); } TEST(DynamicVec, EmplaceBackAfterHeapAllocation) { DynamicVec v; v.reserve(10); v.emplace_back(Dynamic{}); EXPECT_EQ(v.size(), 1u); } TEST(DynamicVec, EmptyIteratorComparison) { DynamicVec v; EXPECT_EQ(v.begin(), v.end()); EXPECT_EQ(v.cbegin(), v.cend()); } TEST(AllocatorSupportTest, Constructors) { using MyAlloc = CountingAllocator<int>; using AllocVec = absl::InlinedVector<int, 4, MyAlloc>; const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7}; int64_t allocated = 0; MyAlloc alloc(&allocated); { AllocVec ABSL_ATTRIBUTE_UNUSED v; } { AllocVec ABSL_ATTRIBUTE_UNUSED v(alloc); } { AllocVec ABSL_ATTRIBUTE_UNUSED v(ia, ia + ABSL_ARRAYSIZE(ia), alloc); } { AllocVec ABSL_ATTRIBUTE_UNUSED v({1, 2, 3}, alloc); } AllocVec v2; { AllocVec ABSL_ATTRIBUTE_UNUSED v(v2, alloc); } { AllocVec ABSL_ATTRIBUTE_UNUSED v(std::move(v2), alloc); } } TEST(AllocatorSupportTest, CountAllocations) { using MyAlloc = CountingAllocator<int>; using AllocVec = absl::InlinedVector<int, 4, MyAlloc>; const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7}; int64_t allocated = 0; MyAlloc alloc(&allocated); { AllocVec ABSL_ATTRIBUTE_UNUSED v(ia, ia + 4, alloc); EXPECT_THAT(allocated, Eq(0)); } EXPECT_THAT(allocated, Eq(0)); { AllocVec ABSL_ATTRIBUTE_UNUSED v(ia, ia + ABSL_ARRAYSIZE(ia), alloc); EXPECT_THAT(allocated, Eq(static_cast<int64_t>(v.size() * sizeof(int)))); } EXPECT_THAT(allocated, Eq(0)); { AllocVec v(4, 1, alloc); EXPECT_THAT(allocated, Eq(0)); int64_t allocated2 = 0; MyAlloc alloc2(&allocated2); AllocVec v2(v, alloc2); EXPECT_THAT(allocated2, Eq(0)); int64_t allocated3 = 0; MyAlloc alloc3(&allocated3); AllocVec v3(std::move(v), alloc3); EXPECT_THAT(allocated3, Eq(0)); } EXPECT_THAT(allocated, 0); { AllocVec v(8, 2, alloc); EXPECT_THAT(allocated, Eq(static_cast<int64_t>(v.size() * sizeof(int)))); int64_t allocated2 = 0; MyAlloc alloc2(&allocated2); AllocVec v2(v, alloc2); EXPECT_THAT(allocated2, Eq(static_cast<int64_t>(v2.size() * sizeof(int)))); int64_t allocated3 = 0; MyAlloc alloc3(&allocated3); AllocVec v3(std::move(v), alloc3); EXPECT_THAT(allocated3, Eq(static_cast<int64_t>(v3.size() * sizeof(int)))); } EXPECT_EQ(allocated, 0); { AllocVec v(8, 2, alloc); EXPECT_EQ(allocated, static_cast<int64_t>(8 * sizeof(int))); v.resize(5); EXPECT_EQ(allocated, static_cast<int64_t>(8 * sizeof(int))); v.shrink_to_fit(); EXPECT_EQ(allocated, static_cast<int64_t>(5 * sizeof(int))); v.resize(4); EXPECT_EQ(allocated, static_cast<int64_t>(5 * sizeof(int))); v.shrink_to_fit(); EXPECT_EQ(allocated, 0); } } TEST(AllocatorSupportTest, SwapBothAllocated) { using MyAlloc = CountingAllocator<int>; using AllocVec = absl::InlinedVector<int, 4, MyAlloc>; int64_t allocated1 = 0; int64_t allocated2 = 0; { const int ia1[] = {0, 1, 2, 3, 4, 5, 6, 7}; const int ia2[] = {0, 1, 2, 3, 4, 5, 6, 7, 8}; MyAlloc a1(&allocated1); MyAlloc a2(&allocated2); AllocVec v1(ia1, ia1 + ABSL_ARRAYSIZE(ia1), a1); AllocVec v2(ia2, ia2 + ABSL_ARRAYSIZE(ia2), a2); EXPECT_LT(v1.capacity(), v2.capacity()); EXPECT_THAT(allocated1, Eq(static_cast<int64_t>(v1.capacity() * sizeof(int)))); EXPECT_THAT(allocated2, Eq(static_cast<int64_t>(v2.capacity() * sizeof(int)))); v1.swap(v2); EXPECT_THAT(v1, ElementsAreArray(ia2)); EXPECT_THAT(v2, ElementsAreArray(ia1)); EXPECT_THAT(allocated1, Eq(static_cast<int64_t>(v2.capacity() * sizeof(int)))); EXPECT_THAT(allocated2, Eq(static_cast<int64_t>(v1.capacity() * sizeof(int)))); } EXPECT_THAT(allocated1, 0); EXPECT_THAT(allocated2, 0); } TEST(AllocatorSupportTest, SwapOneAllocated) { using MyAlloc = CountingAllocator<int>; using AllocVec = absl::InlinedVector<int, 4, MyAlloc>; int64_t allocated1 = 0; int64_t allocated2 = 0; { const int ia1[] = {0, 1, 2, 3, 4, 5, 6, 7}; const int ia2[] = {0, 1, 2, 3}; MyAlloc a1(&allocated1); MyAlloc a2(&allocated2); AllocVec v1(ia1, ia1 + ABSL_ARRAYSIZE(ia1), a1); AllocVec v2(ia2, ia2 + ABSL_ARRAYSIZE(ia2), a2); EXPECT_THAT(allocated1, Eq(static_cast<int64_t>(v1.capacity() * sizeof(int)))); EXPECT_THAT(allocated2, Eq(0)); v1.swap(v2); EXPECT_THAT(v1, ElementsAreArray(ia2)); EXPECT_THAT(v2, ElementsAreArray(ia1)); EXPECT_THAT(allocated1, Eq(static_cast<int64_t>(v2.capacity() * sizeof(int)))); EXPECT_THAT(allocated2, Eq(0)); EXPECT_TRUE(v2.get_allocator() == a1); EXPECT_TRUE(v1.get_allocator() == a2); } EXPECT_THAT(allocated1, 0); EXPECT_THAT(allocated2, 0); } TEST(AllocatorSupportTest, ScopedAllocatorWorksInlined) { using StdVector = std::vector<int, CountingAllocator<int>>; using Alloc = CountingAllocator<StdVector>; using ScopedAlloc = std::scoped_allocator_adaptor<Alloc>; using AllocVec = absl::InlinedVector<StdVector, 1, ScopedAlloc>; int64_t total_allocated_byte_count = 0; AllocVec inlined_case(ScopedAlloc(Alloc(+&total_allocated_byte_count))); inlined_case.emplace_back(); int64_t absl_responsible_for_count = total_allocated_byte_count; #if !defined(_MSC_VER) EXPECT_EQ(absl_responsible_for_count, 0); #endif inlined_case[0].emplace_back(); EXPECT_GT(total_allocated_byte_count, absl_responsible_for_count); inlined_case.clear(); inlined_case.shrink_to_fit(); EXPECT_EQ(total_allocated_byte_count, 0); } TEST(AllocatorSupportTest, ScopedAllocatorWorksAllocated) { using StdVector = std::vector<int, CountingAllocator<int>>; using Alloc = CountingAllocator<StdVector>; using ScopedAlloc = std::scoped_allocator_adaptor<Alloc>; using AllocVec = absl::InlinedVector<StdVector, 1, ScopedAlloc>; int64_t total_allocated_byte_count = 0; AllocVec allocated_case(ScopedAlloc(Alloc(+&total_allocated_byte_count))); allocated_case.emplace_back(); allocated_case.emplace_back(); int64_t absl_responsible_for_count = total_allocated_byte_count; EXPECT_GT(absl_responsible_for_count, 0); allocated_case[1].emplace_back(); EXPECT_GT(total_allocated_byte_count, absl_responsible_for_count); allocated_case.clear(); allocated_case.shrink_to_fit(); EXPECT_EQ(total_allocated_byte_count, 0); } TEST(AllocatorSupportTest, SizeAllocConstructor) { constexpr size_t inlined_size = 4; using Alloc = CountingAllocator<int>; using AllocVec = absl::InlinedVector<int, inlined_size, Alloc>; { auto len = inlined_size / 2; int64_t allocated = 0; auto v = AllocVec(len, Alloc(&allocated)); EXPECT_THAT(allocated, Eq(0)); EXPECT_THAT(v, AllOf(SizeIs(len), Each(0))); } { auto len = inlined_size * 2; int64_t allocated = 0; auto v = AllocVec(len, Alloc(&allocated)); EXPECT_THAT(allocated, Eq(static_cast<int64_t>(len * sizeof(int)))); EXPECT_THAT(v, AllOf(SizeIs(len), Each(0))); } } TEST(InlinedVectorTest, MinimumAllocatorCompilesUsingTraits) { using T = int; using A = std::allocator<T>; using ATraits = absl::allocator_traits<A>; struct MinimumAllocator { using value_type = T; value_type* allocate(size_t n) { A a; return ATraits::allocate(a, n); } void deallocate(value_type* p, size_t n) { A a; ATraits::deallocate(a, p, n); } }; absl::InlinedVector<T, 1, MinimumAllocator> vec; vec.emplace_back(); vec.resize(0); } TEST(InlinedVectorTest, AbslHashValueWorks) { using V = absl::InlinedVector<int, 4>; std::vector<V> cases; for (size_t i = 0; i < 10; ++i) { V v; for (int j = 0; j < static_cast<int>(i); ++j) { v.push_back(j); } cases.push_back(v); v.resize(i % 4); cases.push_back(v); } EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(cases)); } class MoveConstructibleOnlyInstance : public absl::test_internal::BaseCountedInstance { public: explicit MoveConstructibleOnlyInstance(int x) : BaseCountedInstance(x) {} MoveConstructibleOnlyInstance(MoveConstructibleOnlyInstance&& other) = default; MoveConstructibleOnlyInstance& operator=( MoveConstructibleOnlyInstance&& other) = delete; }; MATCHER(HasValue, "") { return ::testing::get<0>(arg).value() == ::testing::get<1>(arg); } TEST(NonAssignableMoveAssignmentTest, AllocatedToInline) { using X = MoveConstructibleOnlyInstance; InstanceTracker tracker; absl::InlinedVector<X, 2> inlined; inlined.emplace_back(1); absl::InlinedVector<X, 2> allocated; allocated.emplace_back(1); allocated.emplace_back(2); allocated.emplace_back(3); tracker.ResetCopiesMovesSwaps(); inlined = std::move(allocated); EXPECT_EQ(tracker.moves(), 0); EXPECT_EQ(tracker.live_instances(), 3); EXPECT_THAT(inlined, Pointwise(HasValue(), {1, 2, 3})); } TEST(NonAssignableMoveAssignmentTest, InlineToAllocated) { using X = MoveConstructibleOnlyInstance; InstanceTracker tracker; absl::InlinedVector<X, 2> inlined; inlined.emplace_back(1); absl::InlinedVector<X, 2> allocated; allocated.emplace_back(1); allocated.emplace_back(2); allocated.emplace_back(3); tracker.ResetCopiesMovesSwaps(); allocated = std::move(inlined); EXPECT_EQ(tracker.moves(), 1); EXPECT_EQ(tracker.live_instances(), 1); EXPECT_THAT(allocated, Pointwise(HasValue(), {1})); } TEST(NonAssignableMoveAssignmentTest, InlineToInline) { using X = MoveConstructibleOnlyInstance; InstanceTracker tracker; absl::InlinedVector<X, 2> inlined_a; inlined_a.emplace_back(1); absl::InlinedVector<X, 2> inlined_b; inlined_b.emplace_back(1); tracker.ResetCopiesMovesSwaps(); inlined_a = std::move(inlined_b); EXPECT_EQ(tracker.moves(), 1); EXPECT_EQ(tracker.live_instances(), 1); EXPECT_THAT(inlined_a, Pointwise(HasValue(), {1})); } TEST(NonAssignableMoveAssignmentTest, AllocatedToAllocated) { using X = MoveConstructibleOnlyInstance; InstanceTracker tracker; absl::InlinedVector<X, 2> allocated_a; allocated_a.emplace_back(1); allocated_a.emplace_back(2); allocated_a.emplace_back(3); absl::InlinedVector<X, 2> allocated_b; allocated_b.emplace_back(4); allocated_b.emplace_back(5); allocated_b.emplace_back(6); allocated_b.emplace_back(7); tracker.ResetCopiesMovesSwaps(); allocated_a = std::move(allocated_b); EXPECT_EQ(tracker.moves(), 0); EXPECT_EQ(tracker.live_instances(), 4); EXPECT_THAT(allocated_a, Pointwise(HasValue(), {4, 5, 6, 7})); } TEST(NonAssignableMoveAssignmentTest, AssignThis) { using X = MoveConstructibleOnlyInstance; InstanceTracker tracker; absl::InlinedVector<X, 2> v; v.emplace_back(1); v.emplace_back(2); v.emplace_back(3); tracker.ResetCopiesMovesSwaps(); v = std::move(*std::addressof(v)); EXPECT_EQ(tracker.moves(), 0); EXPECT_EQ(tracker.live_instances(), 3); EXPECT_THAT(v, Pointwise(HasValue(), {1, 2, 3})); } class NonSwappableInstance : public absl::test_internal::BaseCountedInstance { public: explicit NonSwappableInstance(int x) : BaseCountedInstance(x) {} NonSwappableInstance(const NonSwappableInstance& other) = default; NonSwappableInstance& operator=(const NonSwappableInstance& other) = default; NonSwappableInstance(NonSwappableInstance&& other) = default; NonSwappableInstance& operator=(NonSwappableInstance&& other) = default; }; void swap(NonSwappableInstance&, NonSwappableInstance&) = delete; TEST(NonSwappableSwapTest, InlineAndAllocatedTransferStorageAndMove) { using X = NonSwappableInstance; InstanceTracker tracker; absl::InlinedVector<X, 2> inlined; inlined.emplace_back(1); absl::InlinedVector<X, 2> allocated; allocated.emplace_back(1); allocated.emplace_back(2); allocated.emplace_back(3); tracker.ResetCopiesMovesSwaps(); inlined.swap(allocated); EXPECT_EQ(tracker.moves(), 1); EXPECT_EQ(tracker.live_instances(), 4); EXPECT_THAT(inlined, Pointwise(HasValue(), {1, 2, 3})); } TEST(NonSwappableSwapTest, InlineAndInlineMoveIndividualElements) { using X = NonSwappableInstance; InstanceTracker tracker; absl::InlinedVector<X, 2> inlined_a; inlined_a.emplace_back(1); absl::InlinedVector<X, 2> inlined_b; inlined_b.emplace_back(2); tracker.ResetCopiesMovesSwaps(); inlined_a.swap(inlined_b); EXPECT_EQ(tracker.moves(), 3); EXPECT_EQ(tracker.live_instances(), 2); EXPECT_THAT(inlined_a, Pointwise(HasValue(), {2})); EXPECT_THAT(inlined_b, Pointwise(HasValue(), {1})); } TEST(NonSwappableSwapTest, AllocatedAndAllocatedOnlyTransferStorage) { using X = NonSwappableInstance; InstanceTracker tracker; absl::InlinedVector<X, 2> allocated_a; allocated_a.emplace_back(1); allocated_a.emplace_back(2); allocated_a.emplace_back(3); absl::InlinedVector<X, 2> allocated_b; allocated_b.emplace_back(4); allocated_b.emplace_back(5); allocated_b.emplace_back(6); allocated_b.emplace_back(7); tracker.ResetCopiesMovesSwaps(); allocated_a.swap(allocated_b); EXPECT_EQ(tracker.moves(), 0); EXPECT_EQ(tracker.live_instances(), 7); EXPECT_THAT(allocated_a, Pointwise(HasValue(), {4, 5, 6, 7})); EXPECT_THAT(allocated_b, Pointwise(HasValue(), {1, 2, 3})); } TEST(NonSwappableSwapTest, SwapThis) { using X = NonSwappableInstance; InstanceTracker tracker; absl::InlinedVector<X, 2> v; v.emplace_back(1); v.emplace_back(2); v.emplace_back(3); tracker.ResetCopiesMovesSwaps(); v.swap(v); EXPECT_EQ(tracker.moves(), 0); EXPECT_EQ(tracker.live_instances(), 3); EXPECT_THAT(v, Pointwise(HasValue(), {1, 2, 3})); } template <size_t N> using CharVec = absl::InlinedVector<char, N>; template <typename T> struct MySpan { T* data; size_t size; }; TEST(StorageTest, InlinedCapacityAutoIncrease) { EXPECT_GT(CharVec<1>().capacity(), 1); EXPECT_EQ(CharVec<1>().capacity(), sizeof(MySpan<char>)); EXPECT_EQ(CharVec<1>().capacity(), CharVec<2>().capacity()); EXPECT_EQ(sizeof(CharVec<1>), sizeof(CharVec<2>)); EXPECT_GT((absl::InlinedVector<int, 1>().capacity()), 1); EXPECT_EQ((absl::InlinedVector<int, 1>().capacity()), sizeof(MySpan<int>) / sizeof(int)); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/container/internal/inlined_vector.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/container/inlined_vector_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
f090185f-76b0-4a65-9cb4-8dd42979e2c4
cpp
tensorflow/tensorflow
operator
tensorflow/lite/toco/tflite/operator.cc
tensorflow/lite/toco/tflite/operator_test.cc
#include "tensorflow/lite/toco/tflite/operator.h" #include <map> #include <memory> #include <string> #include <utility> #include "absl/log/check.h" #include "absl/log/log.h" #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "flatbuffers/flexbuffers.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/compiler/mlir/lite/delegates/flex/allowlisted_flex_ops.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/toco/graph_transformations/lstm_utils.h" #include "tensorflow/lite/toco/model.h" #include "tensorflow/lite/toco/runtime/types.h" #include "tensorflow/lite/toco/tflite/builtin_operator.h" #include "tensorflow/lite/toco/tflite/custom_operator.h" #include "tensorflow/lite/toco/tflite/simple_operator.h" #include "tensorflow/lite/toco/tflite/types.h" #include "tensorflow/lite/toco/toco_types.h" #include "tensorflow/lite/tools/versioning/op_signature.h" #include "tensorflow/lite/tools/versioning/op_version.h" namespace toco { namespace tflite { TfLiteType GetTensorType(const ArrayDataType type) { const std::map<ArrayDataType, TfLiteType> tensor_type_map = { {ArrayDataType::kBool, kTfLiteBool}, {ArrayDataType::kFloat, kTfLiteFloat32}, {ArrayDataType::kInt8, kTfLiteInt8}, {ArrayDataType::kUint8, kTfLiteUInt8}, {ArrayDataType::kInt16, kTfLiteInt16}, {ArrayDataType::kUint16, kTfLiteUInt16}, {ArrayDataType::kInt32, kTfLiteInt32}, {ArrayDataType::kUint32, kTfLiteUInt32}, {ArrayDataType::kInt64, kTfLiteInt64}, {ArrayDataType::kUint64, kTfLiteUInt64}, {ArrayDataType::kString, kTfLiteString}, {ArrayDataType::kComplex64, kTfLiteComplex64}, {ArrayDataType::kComplex128, kTfLiteComplex128}, {ArrayDataType::kFloat16, kTfLiteFloat16}, {ArrayDataType::kFloat64, kTfLiteFloat64}}; auto it = tensor_type_map.find(type); if (it != tensor_type_map.end()) { return it->second; } return kTfLiteNoType; } ::tflite::OpSignature GetVersioningOpSig( const ::tflite::BuiltinOperator op, const OperatorSignature& op_signature) { std::vector<::tflite::OpSignatureTensorSpec> inputs, outputs; for (const auto& input_name : op_signature.op->inputs) { ::tflite::OpSignatureTensorSpec tensor = {kTfLiteNoType}; if (op_signature.model->HasArray(input_name)) { const Array& input_array = op_signature.model->GetArray(input_name); tensor.type = GetTensorType(input_array.data_type); if (input_array.has_shape()) { tensor.dims = input_array.shape().dims(); } } inputs.push_back(tensor); } for (const auto& output_name : op_signature.op->outputs) { ::tflite::OpSignatureTensorSpec tensor = {kTfLiteNoType}; if (op_signature.model->HasArray(output_name)) { const Array& output_array = op_signature.model->GetArray(output_name); tensor.type = GetTensorType(output_array.data_type); if (output_array.has_shape()) { tensor.dims = output_array.shape().dims(); } } outputs.push_back(tensor); } return ::tflite::OpSignature{op, inputs, outputs}; } class AveragePool : public BuiltinOperator<AveragePoolOperator, ::tflite::Pool2DOptions, ::tflite::BuiltinOptions_Pool2DOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto padding = Padding::Serialize(op.padding.type); auto activation_function = ActivationFunction::Serialize(op.fused_activation_function); return ::tflite::CreatePool2DOptions(*builder, padding, op.stride_width, op.stride_height, op.kwidth, op.kheight, activation_function); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->padding.type = Padding::Deserialize(options.padding()); op->stride_width = options.stride_w(); op->stride_height = options.stride_h(); op->kwidth = options.filter_width(); op->kheight = options.filter_height(); op->fused_activation_function = ActivationFunction::Deserialize(options.fused_activation_function()); } }; class Convolution : public BuiltinOperator<ConvOperator, ::tflite::Conv2DOptions, ::tflite::BuiltinOptions_Conv2DOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto padding = Padding::Serialize(op.padding.type); auto activation_function = ActivationFunction::Serialize(op.fused_activation_function); return ::tflite::CreateConv2DOptions(*builder, padding, op.stride_width, op.stride_height, activation_function, op.dilation_width_factor, op.dilation_height_factor); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->padding.type = Padding::Deserialize(options.padding()); op->stride_width = options.stride_w(); op->stride_height = options.stride_h(); op->dilation_width_factor = options.dilation_w_factor(); op->dilation_height_factor = options.dilation_h_factor(); op->fused_activation_function = ActivationFunction::Deserialize(options.fused_activation_function()); } }; class DepthwiseConvolution : public BuiltinOperator<DepthwiseConvOperator, ::tflite::DepthwiseConv2DOptions, ::tflite::BuiltinOptions_DepthwiseConv2DOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto padding = Padding::Serialize(op.padding.type); auto activation_function = ActivationFunction::Serialize(op.fused_activation_function); return ::tflite::CreateDepthwiseConv2DOptions( *builder, padding, op.stride_width, op.stride_height, op.depth_multiplier, activation_function, op.dilation_width_factor, op.dilation_height_factor); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->padding.type = Padding::Deserialize(options.padding()); op->stride_width = options.stride_w(); op->stride_height = options.stride_h(); op->depth_multiplier = options.depth_multiplier(); op->fused_activation_function = ActivationFunction::Deserialize(options.fused_activation_function()); op->dilation_width_factor = options.dilation_w_factor(); op->dilation_height_factor = options.dilation_h_factor(); } int GetVersion(const OperatorSignature& op_signature) const override { const auto& conv_op = static_cast<const DepthwiseConvOperator&>(*op_signature.op); ::tflite::OpSignature op_sig = GetVersioningOpSig(builtin_op(), op_signature); TfLiteDepthwiseConvParams depthwise_conv_params = {}; depthwise_conv_params.dilation_width_factor = conv_op.dilation_width_factor; depthwise_conv_params.dilation_height_factor = conv_op.dilation_height_factor; op_sig.builtin_data = reinterpret_cast<void*>(&depthwise_conv_params); return ::tflite::GetBuiltinOperatorVersion(op_sig); } }; class Add : public BuiltinOperator<AddOperator, ::tflite::AddOptions, ::tflite::BuiltinOptions_AddOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto activation_function = ActivationFunction::Serialize(op.fused_activation_function); return ::tflite::CreateAddOptions(*builder, activation_function); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->fused_activation_function = ActivationFunction::Deserialize(options.fused_activation_function()); } }; class AddN : public BuiltinOperator<AddNOperator, ::tflite::AddNOptions, ::tflite::BuiltinOptions_AddNOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateAddNOptions(*builder); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override {} }; class SpaceToBatchND : public BuiltinOperator<SpaceToBatchNDOperator, ::tflite::SpaceToBatchNDOptions, ::tflite::BuiltinOptions_SpaceToBatchNDOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateSpaceToBatchNDOptions(*builder); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override {} int GetVersion(const OperatorSignature& op_signature) const override { ::tflite::OpSignature op_sig = GetVersioningOpSig(builtin_op(), op_signature); return ::tflite::GetBuiltinOperatorVersion(op_sig); } }; class Sub : public BuiltinOperator<SubOperator, ::tflite::SubOptions, ::tflite::BuiltinOptions_SubOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto activation_function = ActivationFunction::Serialize(op.fused_activation_function); return ::tflite::CreateSubOptions(*builder, activation_function); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->fused_activation_function = ActivationFunction::Deserialize(options.fused_activation_function()); } int GetVersion(const OperatorSignature& op_signature) const override { ::tflite::OpSignature op_sig = GetVersioningOpSig(builtin_op(), op_signature); return ::tflite::GetBuiltinOperatorVersion(op_sig); } }; class Div : public BuiltinOperator<DivOperator, ::tflite::DivOptions, ::tflite::BuiltinOptions_DivOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto activation_function = ActivationFunction::Serialize(op.fused_activation_function); return ::tflite::CreateDivOptions(*builder, activation_function); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->fused_activation_function = ActivationFunction::Deserialize(options.fused_activation_function()); } int GetVersion(const OperatorSignature& op_signature) const override { ::tflite::OpSignature op_sig = GetVersioningOpSig(builtin_op(), op_signature); return ::tflite::GetBuiltinOperatorVersion(op_sig); } }; class BatchToSpaceND : public BuiltinOperator<BatchToSpaceNDOperator, ::tflite::BatchToSpaceNDOptions, ::tflite::BuiltinOptions_BatchToSpaceNDOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateBatchToSpaceNDOptions(*builder); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override {} int GetVersion(const OperatorSignature& op_signature) const override { ::tflite::OpSignature op_sig = GetVersioningOpSig(builtin_op(), op_signature); return ::tflite::GetBuiltinOperatorVersion(op_sig); } }; class Cast : public BuiltinOperator<CastOperator, ::tflite::CastOptions, ::tflite::BuiltinOptions_CastOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateCastOptions(*builder, DataType::Serialize(op.src_data_type), DataType::Serialize(op.dst_data_type)); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->src_data_type = DataType::Deserialize(options.in_data_type()); op->dst_data_type = DataType::Deserialize(options.out_data_type()); } }; class Concatenation : public BuiltinOperator<ConcatenationOperator, ::tflite::ConcatenationOptions, ::tflite::BuiltinOptions_ConcatenationOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateConcatenationOptions(*builder, op.axis); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->axis = options.axis(); } }; class DepthToSpace : public BuiltinOperator<DepthToSpaceOperator, ::tflite::DepthToSpaceOptions, ::tflite::BuiltinOptions_DepthToSpaceOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateDepthToSpaceOptions(*builder, op.block_size); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->block_size = options.block_size(); } }; class FakeQuant : public BuiltinOperator<FakeQuantOperator, ::tflite::FakeQuantOptions, ::tflite::BuiltinOptions_FakeQuantOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateFakeQuantOptions( *builder, op.minmax->min, op.minmax->max, op.num_bits, op.narrow_range); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { auto* minmax = new MinMax; minmax->min = options.min(); minmax->max = options.max(); op->minmax.reset(minmax); op->num_bits = options.num_bits(); op->narrow_range = options.narrow_range(); } int GetVersion(const OperatorSignature& op_signature) const override { const auto& fq_op = static_cast<const FakeQuantOperator&>(*op_signature.op); ::tflite::OpSignature op_sig = GetVersioningOpSig(builtin_op(), op_signature); TfLiteFakeQuantParams fake_quant_params = {}; fake_quant_params.narrow_range = fq_op.narrow_range; op_sig.builtin_data = reinterpret_cast<void*>(&fake_quant_params); return ::tflite::GetBuiltinOperatorVersion(op_sig); } }; class FullyConnected : public BuiltinOperator<FullyConnectedOperator, ::tflite::FullyConnectedOptions, ::tflite::BuiltinOptions_FullyConnectedOptions> { public: using BuiltinOperator::BuiltinOperator; ::tflite::FullyConnectedOptionsWeightsFormat GetWeightFormat( FullyConnectedWeightsFormat fmt) const { switch (fmt) { case FullyConnectedWeightsFormat::kDefault: return ::tflite::FullyConnectedOptionsWeightsFormat_DEFAULT; case FullyConnectedWeightsFormat::kShuffled4x16Int8: return ::tflite::FullyConnectedOptionsWeightsFormat_SHUFFLED4x16INT8; default: LOG(ERROR) << "Unhandled FC weights format"; return ::tflite::FullyConnectedOptionsWeightsFormat_DEFAULT; } } flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto activation_function = ActivationFunction::Serialize(op.fused_activation_function); return ::tflite::CreateFullyConnectedOptions( *builder, activation_function, GetWeightFormat(op.weights_format)); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->fused_activation_function = ActivationFunction::Deserialize(options.fused_activation_function()); switch (options.weights_format()) { case ::tflite::FullyConnectedOptionsWeightsFormat_DEFAULT: op->weights_format = FullyConnectedWeightsFormat::kDefault; break; case ::tflite::FullyConnectedOptionsWeightsFormat_SHUFFLED4x16INT8: op->weights_format = FullyConnectedWeightsFormat::kShuffled4x16Int8; break; default: LOG(ERROR) << "Unhandled FC weights format"; op->weights_format = FullyConnectedWeightsFormat::kDefault; } } int GetVersion(const OperatorSignature& op_signature) const override { const auto& fc_op = static_cast<const FullyConnectedOperator&>(*op_signature.op); ::tflite::OpSignature op_sig = GetVersioningOpSig(builtin_op(), op_signature); TfLiteFullyConnectedParams fully_connected_params = {}; fully_connected_params.keep_num_dims = fc_op.keep_num_dims; fully_connected_params.weights_format = static_cast<TfLiteFullyConnectedWeightsFormat>( GetWeightFormat(fc_op.weights_format)); op_sig.builtin_data = reinterpret_cast<void*>(&fully_connected_params); return ::tflite::GetBuiltinOperatorVersion(op_sig); } }; class Gather : public BuiltinOperator<GatherOperator, ::tflite::GatherOptions, ::tflite::BuiltinOptions_GatherOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { int axis = op.axis ? op.axis.value() : 0; return ::tflite::CreateGatherOptions(*builder, axis); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->axis = {options.axis()}; } }; class GatherNd : public BuiltinOperator<GatherNdOperator, ::tflite::GatherNdOptions, ::tflite::BuiltinOptions_GatherNdOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateGatherNdOptions(*builder); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override {} }; class Svdf : public BuiltinOperator<SvdfOperator, ::tflite::SVDFOptions, ::tflite::BuiltinOptions_SVDFOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto activation_function = ActivationFunction::Serialize(op.fused_activation_function); return ::tflite::CreateSVDFOptions(*builder, op.rank, activation_function); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->fused_activation_function = ActivationFunction::Deserialize(options.fused_activation_function()); op->rank = options.rank(); } }; class L2Normalization : public BuiltinOperator<L2NormalizationOperator, ::tflite::L2NormOptions, ::tflite::BuiltinOptions_L2NormOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto activation_function = ActivationFunction::Serialize(op.fused_activation_function); return ::tflite::CreateL2NormOptions(*builder, activation_function); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->fused_activation_function = ActivationFunction::Deserialize(options.fused_activation_function()); } }; class L2Pool : public BuiltinOperator<L2PoolOperator, ::tflite::Pool2DOptions, ::tflite::BuiltinOptions_Pool2DOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto padding = Padding::Serialize(op.padding.type); auto activation_function = ActivationFunction::Serialize(op.fused_activation_function); return ::tflite::CreatePool2DOptions(*builder, padding, op.stride_width, op.stride_height, op.kwidth, op.kheight, activation_function); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->padding.type = Padding::Deserialize(options.padding()); op->stride_width = options.stride_w(); op->stride_height = options.stride_h(); op->kwidth = options.filter_width(); op->kheight = options.filter_height(); op->fused_activation_function = ActivationFunction::Deserialize(options.fused_activation_function()); } }; class LocalResponseNormalization : public BuiltinOperator< LocalResponseNormalizationOperator, ::tflite::LocalResponseNormalizationOptions, ::tflite::BuiltinOptions_LocalResponseNormalizationOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateLocalResponseNormalizationOptions( *builder, op.range, op.bias, op.alpha, op.beta); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->range = options.radius(); op->bias = options.bias(); op->alpha = options.alpha(); op->beta = options.beta(); } }; class MaxPool : public BuiltinOperator<MaxPoolOperator, ::tflite::Pool2DOptions, ::tflite::BuiltinOptions_Pool2DOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto padding = Padding::Serialize(op.padding.type); auto activation_function = ActivationFunction::Serialize(op.fused_activation_function); return ::tflite::CreatePool2DOptions(*builder, padding, op.stride_width, op.stride_height, op.kwidth, op.kheight, activation_function); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->padding.type = Padding::Deserialize(options.padding()); op->stride_width = options.stride_w(); op->stride_height = options.stride_h(); op->kwidth = options.filter_width(); op->kheight = options.filter_height(); op->fused_activation_function = ActivationFunction::Deserialize(options.fused_activation_function()); } }; class Mul : public BuiltinOperator<MulOperator, ::tflite::MulOptions, ::tflite::BuiltinOptions_MulOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto activation_function = ActivationFunction::Serialize(op.fused_activation_function); return ::tflite::CreateMulOptions(*builder, activation_function); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->fused_activation_function = ActivationFunction::Deserialize(options.fused_activation_function()); } int GetVersion(const OperatorSignature& op_signature) const override { const std::string& input1_name = op_signature.op->inputs[0]; const std::string& input2_name = op_signature.op->inputs[1]; const std::string& output_name = op_signature.op->outputs[0]; const Array& input1_array = op_signature.model->GetArray(input1_name); const Array& input2_array = op_signature.model->GetArray(input2_name); const Array& output_array = op_signature.model->GetArray(output_name); const auto& input1_quant = input1_array.quantization_params; const auto& input2_quant = input2_array.quantization_params; const auto& output_quant = output_array.quantization_params; const float input1_scale = input1_quant ? input1_quant->scale : 0.0f; const float input2_scale = input2_quant ? input2_quant->scale : 0.0f; const float output_scale = output_quant ? output_quant->scale : 0.0f; const bool input_quantized = input1_quant || input2_quant; ::tflite::OpSignature op_sig = GetVersioningOpSig(builtin_op(), op_signature); op_sig.ext_options.mul.input1_scale = input1_scale; op_sig.ext_options.mul.input2_scale = input2_scale; op_sig.ext_options.mul.output_scale = output_scale; op_sig.ext_options.mul.input_quantized = input_quantized; return ::tflite::GetBuiltinOperatorVersion(op_sig); } }; class Pad : public BuiltinOperator<PadOperator, ::tflite::PadOptions, ::tflite::BuiltinOptions_PadOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreatePadOptions(*builder); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override {} }; class Tile : public BuiltinOperator<TensorFlowTileOperator, ::tflite::TileOptions, ::tflite::BuiltinOptions_TileOptions> { using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateTileOptions(*builder); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override {} }; class PadV2 : public BuiltinOperator<PadV2Operator, ::tflite::PadV2Options, ::tflite::BuiltinOptions_PadV2Options> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreatePadV2Options(*builder); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override {} }; class Reshape : public BuiltinOperator<TensorFlowReshapeOperator, ::tflite::ReshapeOptions, ::tflite::BuiltinOptions_ReshapeOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateReshapeOptions(*builder, builder->CreateVector(op.shape)); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->shape.insert(op->shape.end(), options.new_shape()->begin(), options.new_shape()->end()); } }; class Softmax : public BuiltinOperator<SoftmaxOperator, ::tflite::SoftmaxOptions, ::tflite::BuiltinOptions_SoftmaxOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateSoftmaxOptions(*builder, op.beta); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->beta = options.beta(); } }; class SpaceToDepth : public BuiltinOperator<SpaceToDepthOperator, ::tflite::SpaceToDepthOptions, ::tflite::BuiltinOptions_SpaceToDepthOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateSpaceToDepthOptions(*builder, op.block_size); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->block_size = options.block_size(); } }; class Transpose : public BuiltinOperator<TransposeOperator, ::tflite::TransposeOptions, ::tflite::BuiltinOptions_TransposeOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateTransposeOptions(*builder); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override {} }; class Lstm : public BuiltinOperator<LstmCellOperator, ::tflite::LSTMOptions, ::tflite::BuiltinOptions_LSTMOptions> { public: using BuiltinOperator::BuiltinOperator; ::tflite::LSTMKernelType GetKernelType( LstmCellOperator::KernelType type) const { switch (type) { case LstmCellOperator::KERNEL_BASIC: return ::tflite::LSTMKernelType_BASIC; break; case LstmCellOperator::KERNEL_FULL: return ::tflite::LSTMKernelType_FULL; break; default: LOG(ERROR) << "Unhandled Kernel Type"; return static_cast<::tflite::LSTMKernelType>(-1); } } flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { ::tflite::LSTMKernelType kernel_type = GetKernelType(op.kernel_type); return ::tflite::CreateLSTMOptions(*builder, ::tflite::ActivationFunctionType_TANH, 0.0, 0.0, kernel_type); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { CHECK(options.fused_activation_function() == ::tflite::ActivationFunctionType_TANH); switch (options.kernel_type()) { case ::tflite::LSTMKernelType_BASIC: op->kernel_type = LstmCellOperator::KERNEL_BASIC; break; case ::tflite::LSTMKernelType_FULL: op->kernel_type = LstmCellOperator::KERNEL_FULL; break; } } int GetVersion(const OperatorSignature& op_signature) const override { const auto& lstm_op = static_cast<const LstmCellOperator&>(*op_signature.op); ::tflite::OpSignature op_sig = GetVersioningOpSig(builtin_op(), op_signature); TfLiteLSTMParams lstm_params = {}; lstm_params.kernel_type = static_cast<TfLiteLSTMKernelType>(GetKernelType(lstm_op.kernel_type)); op_sig.builtin_data = reinterpret_cast<void*>(&lstm_params); return ::tflite::GetBuiltinOperatorVersion(op_sig); } std::vector<bool> GetMutatingInputVariables( const Operator& op) const override { const auto& lstm_op = static_cast<const LstmCellOperator&>(op); std::vector<bool> mutating_input_variables(op.inputs.size(), false); switch (lstm_op.kernel_type) { case LstmCellOperator::KERNEL_FULL: { mutating_input_variables[kInputActivationStateTensor] = true; mutating_input_variables[kInputCellStateTensor] = true; break; } case LstmCellOperator::KERNEL_BASIC: { mutating_input_variables[LstmCellOperator::PREV_ACTIV_INPUT] = true; mutating_input_variables[LstmCellOperator::PREV_STATE_INPUT] = true; break; } } return mutating_input_variables; } }; class UnidirectionalSequenceLstm : public BuiltinOperator< UnidirectionalSequenceLstmOperator, ::tflite::UnidirectionalSequenceLSTMOptions, ::tflite::BuiltinOptions_UnidirectionalSequenceLSTMOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateUnidirectionalSequenceLSTMOptions( *builder, ::tflite::ActivationFunctionType_TANH, 0.0, 0.0, true); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { DCHECK(options.fused_activation_function() == ::tflite::ActivationFunctionType_TANH); } std::vector<bool> GetMutatingInputVariables( const Operator& op) const override { std::vector<bool> mutating_input_variables(op.inputs.size(), false); mutating_input_variables[kInputActivationStateTensor] = true; mutating_input_variables[kInputCellStateTensor] = true; return mutating_input_variables; } }; class BidirectionalSequenceLstm : public BuiltinOperator< BidirectionalSequenceLstmOperator, ::tflite::BidirectionalSequenceLSTMOptions, ::tflite::BuiltinOptions_BidirectionalSequenceLSTMOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateBidirectionalSequenceLSTMOptions( *builder, ::tflite::ActivationFunctionType_TANH, 0.0, 0.0, op.merge_outputs, true); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { DCHECK(options.fused_activation_function() == ::tflite::ActivationFunctionType_TANH); op->merge_outputs = options.merge_outputs(); } std::vector<bool> GetMutatingInputVariables( const Operator& op) const override { std::vector<bool> mutating_input_variables(op.inputs.size(), false); mutating_input_variables[35] = true; mutating_input_variables[36] = true; mutating_input_variables[37] = true; mutating_input_variables[38] = true; return mutating_input_variables; } }; class BidirectionalSequenceRnn : public BuiltinOperator< BidirectionalSequenceRnnOperator, ::tflite::BidirectionalSequenceRNNOptions, ::tflite::BuiltinOptions_BidirectionalSequenceRNNOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateBidirectionalSequenceRNNOptions( *builder, true, ::tflite::ActivationFunctionType_TANH, op.merge_outputs); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { DCHECK(options.fused_activation_function() == ::tflite::ActivationFunctionType_TANH); op->merge_outputs = options.merge_outputs(); } std::vector<bool> GetMutatingInputVariables( const Operator& op) const override { std::vector<bool> mutating_input_variables(op.inputs.size(), false); mutating_input_variables[4] = true; mutating_input_variables[8] = true; return mutating_input_variables; } }; class Mean : public BuiltinOperator<MeanOperator, ::tflite::ReducerOptions, ::tflite::BuiltinOptions_ReducerOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateReducerOptions(*builder, op.keep_dims); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->keep_dims = options.keep_dims(); } }; class Sum : public BuiltinOperator<TensorFlowSumOperator, ::tflite::ReducerOptions, ::tflite::BuiltinOptions_ReducerOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateReducerOptions(*builder, op.keep_dims); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->keep_dims = options.keep_dims(); } }; class ReduceMax : public BuiltinOperator<TensorFlowMaxOperator, ::tflite::ReducerOptions, ::tflite::BuiltinOptions_ReducerOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateReducerOptions(*builder, op.keep_dims); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->keep_dims = options.keep_dims(); } }; class ReduceMin : public BuiltinOperator<TensorFlowMinOperator, ::tflite::ReducerOptions, ::tflite::BuiltinOptions_ReducerOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateReducerOptions(*builder, op.keep_dims); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->keep_dims = options.keep_dims(); } }; class ReduceProd : public BuiltinOperator<TensorFlowProdOperator, ::tflite::ReducerOptions, ::tflite::BuiltinOptions_ReducerOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateReducerOptions(*builder, op.keep_dims); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->keep_dims = options.keep_dims(); } }; class ReduceAny : public BuiltinOperator<TensorFlowAnyOperator, ::tflite::ReducerOptions, ::tflite::BuiltinOptions_ReducerOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateReducerOptions(*builder, op.keep_dims); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->keep_dims = options.keep_dims(); } }; class ResizeBilinear : public BuiltinOperator<ResizeBilinearOperator, ::tflite::ResizeBilinearOptions, ::tflite::BuiltinOptions_ResizeBilinearOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateResizeBilinearOptions(*builder, op.align_corners, op.half_pixel_centers); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->align_corners = options.align_corners(); op->half_pixel_centers = options.half_pixel_centers(); } int GetVersion(const OperatorSignature& op_signature) const override { const auto& resize_bilinear_op = static_cast<const ResizeBilinearOperator&>(*op_signature.op); ::tflite::OpSignature op_sig = GetVersioningOpSig(builtin_op(), op_signature); TfLiteResizeBilinearParams resize_bilinear_params = {}; resize_bilinear_params.half_pixel_centers = resize_bilinear_op.half_pixel_centers; resize_bilinear_params.align_corners = resize_bilinear_op.align_corners; op_sig.builtin_data = reinterpret_cast<void*>(&resize_bilinear_params); return ::tflite::GetBuiltinOperatorVersion(op_sig); } }; class ResizeNearestNeighbor : public BuiltinOperator< ResizeNearestNeighborOperator, ::tflite::ResizeNearestNeighborOptions, ::tflite::BuiltinOptions_ResizeNearestNeighborOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateResizeNearestNeighborOptions( *builder, op.align_corners, op.half_pixel_centers); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->align_corners = options.align_corners(); op->half_pixel_centers = options.half_pixel_centers(); } int GetVersion(const OperatorSignature& op_signature) const override { const auto& resize_nn_op = static_cast<const ResizeNearestNeighborOperator&>(*op_signature.op); ::tflite::OpSignature op_sig = GetVersioningOpSig(builtin_op(), op_signature); TfLiteResizeNearestNeighborParams resize_nearest_neighbor_params = {}; resize_nearest_neighbor_params.half_pixel_centers = resize_nn_op.half_pixel_centers; resize_nearest_neighbor_params.align_corners = resize_nn_op.align_corners; op_sig.builtin_data = reinterpret_cast<void*>(&resize_nearest_neighbor_params); return ::tflite::GetBuiltinOperatorVersion(op_sig); } }; class Squeeze : public BuiltinOperator<SqueezeOperator, ::tflite::SqueezeOptions, ::tflite::BuiltinOptions_SqueezeOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto squeeze_dims = builder->CreateVector(op.squeeze_dims); return ::tflite::CreateSqueezeOptions(*builder, squeeze_dims); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->squeeze_dims.insert(op->squeeze_dims.end(), options.squeeze_dims()->begin(), options.squeeze_dims()->end()); } }; class Split : public BuiltinOperator<TensorFlowSplitOperator, ::tflite::SplitOptions, ::tflite::BuiltinOptions_SplitOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateSplitOptions(*builder, op.num_split); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->num_split = options.num_splits(); } }; class SplitV : public BuiltinOperator<TensorFlowSplitVOperator, ::tflite::SplitVOptions, ::tflite::BuiltinOptions_SplitVOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateSplitVOptions(*builder, op.num_split); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->num_split = options.num_splits(); } }; class StridedSlice : public BuiltinOperator<StridedSliceOperator, ::tflite::StridedSliceOptions, ::tflite::BuiltinOptions_StridedSliceOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateStridedSliceOptions( *builder, op.begin_mask, op.end_mask, op.ellipsis_mask, op.new_axis_mask, op.shrink_axis_mask); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->begin_mask = options.begin_mask(); op->end_mask = options.end_mask(); op->ellipsis_mask = options.ellipsis_mask(); op->new_axis_mask = options.new_axis_mask(); op->shrink_axis_mask = options.shrink_axis_mask(); } int GetVersion(const OperatorSignature& op_signature) const override { const auto& ss_op = static_cast<const StridedSliceOperator&>(*op_signature.op); ::tflite::OpSignature op_sig = GetVersioningOpSig(builtin_op(), op_signature); op_sig.ext_options.strided_slice.num_dims = ss_op.start_indices.size(); TfLiteStridedSliceParams strided_slice_params = {}; strided_slice_params.ellipsis_mask = ss_op.ellipsis_mask; strided_slice_params.new_axis_mask = ss_op.new_axis_mask; op_sig.builtin_data = reinterpret_cast<void*>(&strided_slice_params); return ::tflite::GetBuiltinOperatorVersion(op_sig); } }; class TopK_V2 : public BuiltinOperator<TopKV2Operator, ::tflite::TopKV2Options, ::tflite::BuiltinOptions_TopKV2Options> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateTopKV2Options(*builder); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override {} }; class ArgMax : public BuiltinOperator<ArgMaxOperator, ::tflite::ArgMaxOptions, ::tflite::BuiltinOptions_ArgMaxOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateArgMaxOptions( *builder, DataType::Serialize(op.output_data_type)); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->output_data_type = DataType::Deserialize(options.output_type()); } }; class ArgMin : public BuiltinOperator<ArgMinOperator, ::tflite::ArgMinOptions, ::tflite::BuiltinOptions_ArgMinOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateArgMinOptions( *builder, DataType::Serialize(op.output_data_type)); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->output_data_type = DataType::Deserialize(options.output_type()); } }; class TransposeConv : public BuiltinOperator<TransposeConvOperator, ::tflite::TransposeConvOptions, ::tflite::BuiltinOptions_TransposeConvOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto padding = Padding::Serialize(op.padding.type); return ::tflite::CreateTransposeConvOptions( *builder, padding, op.stride_width, op.stride_height); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->padding.type = Padding::Deserialize(options.padding()); op->stride_width = options.stride_w(); op->stride_height = options.stride_h(); } }; class SparseToDense : public BuiltinOperator<SparseToDenseOperator, ::tflite::SparseToDenseOptions, ::tflite::BuiltinOptions_SparseToDenseOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateSparseToDenseOptions(*builder, op.validate_indices); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->validate_indices = options.validate_indices(); } }; class ExpandDims : public BuiltinOperator<ExpandDimsOperator, ::tflite::ExpandDimsOptions, ::tflite::BuiltinOptions_ExpandDimsOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateExpandDimsOptions(*builder); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override {} }; class Pack : public BuiltinOperator<PackOperator, ::tflite::PackOptions, ::tflite::BuiltinOptions_PackOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreatePackOptions(*builder, op.values_count, op.axis); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->values_count = options.values_count(); op->axis = options.axis(); } }; class Shape : public BuiltinOperator<TensorFlowShapeOperator, ::tflite::ShapeOptions, ::tflite::BuiltinOptions_ShapeOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateShapeOptions( *builder, DataType::Serialize(op.output_data_type)); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->output_data_type = DataType::Deserialize(options.out_type()); } }; class OneHot : public BuiltinOperator<OneHotOperator, ::tflite::OneHotOptions, ::tflite::BuiltinOptions_OneHotOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateOneHotOptions(*builder, op.axis); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->axis = options.axis(); } }; class CTCBeamSearchDecoder : public CustomOperator<CTCBeamSearchDecoderOperator> { public: using CustomOperator::CustomOperator; void WriteOptions(const TocoOperator& op, flexbuffers::Builder* fbb) const override { fbb->Int("beam_width", op.beam_width); fbb->Int("top_paths", op.top_paths); fbb->Bool("merge_repeated", op.merge_repeated); } void ReadOptions(const flexbuffers::Map& m, TocoOperator* op) const override { op->beam_width = m["beam_width"].AsInt32(); op->top_paths = m["top_paths"].AsInt32(); op->merge_repeated = m["merge_repeated"].AsBool(); } int GetVersion(const OperatorSignature& op_signature) const override { return 1; } }; class Unpack : public BuiltinOperator<UnpackOperator, ::tflite::UnpackOptions, ::tflite::BuiltinOptions_UnpackOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateUnpackOptions(*builder, op.num, op.axis); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->num = options.num(); op->axis = options.axis(); } int GetVersion(const OperatorSignature& op_signature) const override { const std::string& input_name = op_signature.op->inputs[0]; const Array& input_array = op_signature.model->GetArray(input_name); if (input_array.data_type == ArrayDataType::kInt8 || input_array.data_type == ArrayDataType::kUint8) { return 2; } if (input_array.data_type == ArrayDataType::kBool) { return 3; } return 1; } }; class LeakyRelu : public BuiltinOperator<LeakyReluOperator, ::tflite::LeakyReluOptions, ::tflite::BuiltinOptions_LeakyReluOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateLeakyReluOptions(*builder, op.alpha); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->alpha = options.alpha(); } }; class SquaredDifference : public BuiltinOperator< SquaredDifferenceOperator, ::tflite::SquaredDifferenceOptions, ::tflite::BuiltinOptions_SquaredDifferenceOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateSquaredDifferenceOptions(*builder); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override {} }; class MirrorPad : public BuiltinOperator<MirrorPadOperator, ::tflite::MirrorPadOptions, ::tflite::BuiltinOptions_MirrorPadOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateMirrorPadOptions( *builder, op.mode == MirrorPadMode::kReflect ? ::tflite::MirrorPadMode::MirrorPadMode_REFLECT : ::tflite::MirrorPadMode::MirrorPadMode_SYMMETRIC); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->mode = options.mode() == ::tflite::MirrorPadMode::MirrorPadMode_REFLECT ? MirrorPadMode::kReflect : MirrorPadMode::kSymmetric; } }; class Unique : public BuiltinOperator<UniqueOperator, ::tflite::UniqueOptions, ::tflite::BuiltinOptions_UniqueOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { const UniqueOperator& unique_op = static_cast<const UniqueOperator&>(op); return ::tflite::CreateUniqueOptions( *builder, unique_op.idx_out_type == toco::ArrayDataType::kInt64 ? ::tflite::TensorType::TensorType_INT64 : ::tflite::TensorType_INT32); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { UniqueOperator* unique_op = static_cast<UniqueOperator*>(op); unique_op->idx_out_type = options.idx_out_type() == ::tflite::TensorType_INT64 ? toco::ArrayDataType::kInt64 : toco::ArrayDataType::kInt32; } }; class UnidirectionalSequenceRnn : public BuiltinOperator<UnidirectionalSequenceRnnOperator, ::tflite::SequenceRNNOptions, ::tflite::BuiltinOptions_SequenceRNNOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateSequenceRNNOptions( *builder, true, ::tflite::ActivationFunctionType_TANH); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { DCHECK(options.fused_activation_function() == ::tflite::ActivationFunctionType_TANH); } std::vector<bool> GetMutatingInputVariables( const Operator& op) const override { std::vector<bool> mutating_input_variables(op.inputs.size(), false); mutating_input_variables[4] = true; return mutating_input_variables; } }; class Where : public BuiltinOperator<WhereOperator, ::tflite::WhereOptions, ::tflite::BuiltinOptions_WhereOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateWhereOptions(*builder); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override {} }; std::unique_ptr<flexbuffers::Builder> WriteFlexOpOptions( const std::string& tensorflow_node_def) { auto fbb = std::make_unique<flexbuffers::Builder>(); ::tensorflow::NodeDef node_def; if (!node_def.ParseFromString(tensorflow_node_def)) { LOG(ERROR) << "Failed to parse TensorFlow NodeDef"; return {}; } fbb->Vector([&]() { fbb->String(node_def.op()); fbb->String(tensorflow_node_def); }); fbb->Finish(); LOG(INFO) << "Writing flex op: " << node_def.op(); return std::unique_ptr<flexbuffers::Builder>(fbb.release()); } class TensorFlowUnsupported : public BaseOperator { public: TensorFlowUnsupported(const std::string& name, OperatorType type, bool enable_select_tf_ops) : BaseOperator(name, type), enable_select_tf_ops_(enable_select_tf_ops) {} Options Serialize(const Operator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto fbb = WriteOptions(static_cast<const TensorFlowUnsupportedOperator&>(op)); if (fbb) { return Options::Custom(builder->CreateVector(fbb->GetBuffer())); } else { return Options::Custom(0); } } std::unique_ptr<Operator> Deserialize( const BuiltinOptions* builtin_options, const CustomOptions* custom_options) const override { auto op = std::make_unique<TensorFlowUnsupportedOperator>(); if (custom_options) { auto flexbuffer_map = flexbuffers::GetRoot(custom_options->data(), custom_options->size()) .AsMap(); ReadOptions(flexbuffer_map, op.get()); } return std::unique_ptr<Operator>(op.release()); } std::unique_ptr<flexbuffers::Builder> WriteOptions( const TensorFlowUnsupportedOperator& op) const { if (enable_select_tf_ops_) { return WriteFlexOpOptions(op.tensorflow_node_def); } auto fbb = std::make_unique<flexbuffers::Builder>(); ::tensorflow::NodeDef node_def; if (!node_def.ParseFromString(op.tensorflow_node_def)) { LOG(ERROR) << "Failed to parse TensorFlow NodeDef"; return std::unique_ptr<flexbuffers::Builder>(); } if (ShouldExportAsFlexOp(enable_select_tf_ops_, node_def.op())) { fbb->Vector([&]() { fbb->String(node_def.op()); fbb->String(op.tensorflow_node_def); }); fbb->Finish(); LOG(INFO) << "Writing flex op: " << node_def.op(); return std::unique_ptr<flexbuffers::Builder>(fbb.release()); } bool has_valid_attr = false; size_t map_start = fbb->StartMap(); for (const auto& pair : node_def.attr()) { const char* key = pair.first.c_str(); const auto& attr = pair.second; switch (attr.value_case()) { case ::tensorflow::AttrValue::kS: fbb->String(key, attr.s()); has_valid_attr = true; break; case ::tensorflow::AttrValue::kI: fbb->Int(key, attr.i()); has_valid_attr = true; break; case ::tensorflow::AttrValue::kF: fbb->Float(key, attr.f()); has_valid_attr = true; break; case ::tensorflow::AttrValue::kB: fbb->Bool(key, attr.b()); has_valid_attr = true; break; case tensorflow::AttrValue::kList: if (attr.list().s_size() > 0) { auto start = fbb->StartVector(key); for (const std::string& v : attr.list().s()) { fbb->Add(v); } fbb->EndVector(start, true, false); has_valid_attr = true; } else if (attr.list().i_size() > 0) { auto start = fbb->StartVector(key); for (const int64_t v : attr.list().i()) { fbb->Add(v); } fbb->EndVector(start, true, false); has_valid_attr = true; } else if (attr.list().f_size() > 0) { auto start = fbb->StartVector(key); for (const float v : attr.list().f()) { fbb->Add(v); } fbb->EndVector(start, true, false); has_valid_attr = true; } else { LOG(WARNING) << "Ignoring unsupported type in list attribute with key '" << key << "'"; } break; default: LOG(WARNING) << "Ignoring unsupported attribute type with key '" << key << "'"; break; } } if (!has_valid_attr) { return std::unique_ptr<flexbuffers::Builder>(); } fbb->EndMap(map_start); fbb->Finish(); return std::unique_ptr<flexbuffers::Builder>(fbb.release()); } void ReadOptions(const flexbuffers::Map& m, TensorFlowUnsupportedOperator* op) const { ::tensorflow::NodeDef node_def; auto attr = node_def.mutable_attr(); const auto& keys = m.Keys(); for (size_t i = 0; i < keys.size(); ++i) { const auto key = keys[i].AsKey(); const auto& value = m[key]; switch (value.GetType()) { case flexbuffers::FBT_STRING: (*attr)[key].set_s(value.AsString().c_str()); break; case flexbuffers::FBT_INT: (*attr)[key].set_i(value.AsInt64()); break; case flexbuffers::FBT_FLOAT: (*attr)[key].set_f(value.AsFloat()); break; case flexbuffers::FBT_BOOL: (*attr)[key].set_b(value.AsBool()); if (std::string(key) == "_output_quantized") { op->quantized = value.AsBool(); } if (std::string(key) == "_support_output_type_float_in_quantized_op") { op->support_output_type_float_in_quantized_op = value.AsBool(); } break; case flexbuffers::FBT_VECTOR_INT: { auto* list = (*attr)[key].mutable_list(); const auto& vector = value.AsTypedVector(); for (size_t i = 0; i < vector.size(); i++) { list->add_i(vector[i].AsInt64()); } break; } case flexbuffers::FBT_VECTOR_FLOAT: { auto* list = (*attr)[key].mutable_list(); const auto& vector = value.AsTypedVector(); for (size_t i = 0; i < vector.size(); i++) { list->add_f(vector[i].AsFloat()); } break; } case 15 : { auto* list = (*attr)[key].mutable_list(); const auto& vector = value.AsTypedVector(); for (size_t i = 0; i < vector.size(); i++) { list->add_s(vector[i].AsString().str()); } break; } default: LOG(WARNING) << "Ignoring unsupported attribute type with key '" << key << "'"; break; } } node_def.SerializeToString(&op->tensorflow_node_def); } int GetVersion(const OperatorSignature& op_signature) const override { return 1; } private: const bool enable_select_tf_ops_; }; class Dequantize : public BuiltinOperator<DequantizeOperator, ::tflite::DequantizeOptions, ::tflite::BuiltinOptions_DequantizeOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateDequantizeOptions(*builder); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override {} }; class ReverseSequence : public BuiltinOperator<ReverseSequenceOperator, ::tflite::ReverseSequenceOptions, ::tflite::BuiltinOptions_ReverseSequenceOptions> { public: using BuiltinOperator::BuiltinOperator; flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { return ::tflite::CreateReverseSequenceOptions(*builder, op.seq_dim, op.batch_dim); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->seq_dim = options.seq_dim(); op->batch_dim = options.batch_dim(); } }; namespace { std::vector<std::unique_ptr<BaseOperator>> BuildOperatorList( bool enable_select_tf_ops = false) { std::vector<std::unique_ptr<BaseOperator>> ops; ops.push_back( std::make_unique<Add>(::tflite::BuiltinOperator_ADD, OperatorType::kAdd)); ops.push_back(std::make_unique<AddN>(::tflite::BuiltinOperator_ADD_N, OperatorType::kAddN)); ops.push_back( std::make_unique<Div>(::tflite::BuiltinOperator_DIV, OperatorType::kDiv)); ops.push_back( std::make_unique<Sub>(::tflite::BuiltinOperator_SUB, OperatorType::kSub)); ops.push_back(std::make_unique<AveragePool>( ::tflite::BuiltinOperator_AVERAGE_POOL_2D, OperatorType::kAveragePool)); ops.push_back(std::make_unique<SpaceToBatchND>( ::tflite::BuiltinOperator_SPACE_TO_BATCH_ND, OperatorType::kSpaceToBatchND)); ops.push_back(std::make_unique<BatchToSpaceND>( ::tflite::BuiltinOperator_BATCH_TO_SPACE_ND, OperatorType::kBatchToSpaceND)); ops.push_back(std::make_unique<Concatenation>( ::tflite::BuiltinOperator_CONCATENATION, OperatorType::kConcatenation)); ops.push_back(std::make_unique<Convolution>(::tflite::BuiltinOperator_CONV_2D, OperatorType::kConv)); ops.push_back(std::make_unique<DepthwiseConvolution>( ::tflite::BuiltinOperator_DEPTHWISE_CONV_2D, OperatorType::kDepthwiseConv)); ops.push_back(std::make_unique<Dequantize>( ::tflite::BuiltinOperator_DEQUANTIZE, OperatorType::kDequantize)); ops.push_back(std::make_unique<FullyConnected>( ::tflite::BuiltinOperator_FULLY_CONNECTED, OperatorType::kFullyConnected)); ops.push_back(std::make_unique<Gather>(::tflite::BuiltinOperator_GATHER, OperatorType::kGather)); ops.push_back(std::make_unique<GatherNd>(::tflite::BuiltinOperator_GATHER_ND, OperatorType::kGatherNd)); ops.push_back(std::make_unique<L2Normalization>( ::tflite::BuiltinOperator_L2_NORMALIZATION, OperatorType::kL2Normalization)); ops.push_back(std::make_unique<L2Pool>(::tflite::BuiltinOperator_L2_POOL_2D, OperatorType::kL2Pool)); ops.push_back(std::make_unique<LocalResponseNormalization>( ::tflite::BuiltinOperator_LOCAL_RESPONSE_NORMALIZATION, OperatorType::kLocalResponseNormalization)); ops.push_back(std::make_unique<MaxPool>(::tflite::BuiltinOperator_MAX_POOL_2D, OperatorType::kMaxPool)); ops.push_back( std::make_unique<Mul>(::tflite::BuiltinOperator_MUL, OperatorType::kMul)); ops.push_back( std::make_unique<Pad>(::tflite::BuiltinOperator_PAD, OperatorType::kPad)); ops.push_back(std::make_unique<PadV2>(::tflite::BuiltinOperator_PADV2, OperatorType::kPadV2)); ops.push_back(std::make_unique<Reshape>(::tflite::BuiltinOperator_RESHAPE, OperatorType::kReshape)); ops.push_back(std::make_unique<Softmax>(::tflite::BuiltinOperator_SOFTMAX, OperatorType::kSoftmax)); ops.push_back(std::make_unique<SpaceToDepth>( ::tflite::BuiltinOperator_SPACE_TO_DEPTH, OperatorType::kSpaceToDepth)); ops.push_back(std::make_unique<DepthToSpace>( ::tflite::BuiltinOperator_DEPTH_TO_SPACE, OperatorType::kDepthToSpace)); ops.push_back(std::make_unique<Svdf>(::tflite::BuiltinOperator_SVDF, OperatorType::kSvdf)); ops.push_back(std::make_unique<Transpose>(::tflite::BuiltinOperator_TRANSPOSE, OperatorType::kTranspose)); ops.push_back(std::make_unique<Mean>(::tflite::BuiltinOperator_MEAN, OperatorType::kMean)); ops.push_back( std::make_unique<Sum>(::tflite::BuiltinOperator_SUM, OperatorType::kSum)); ops.push_back(std::make_unique<ReduceProd>( ::tflite::BuiltinOperator_REDUCE_PROD, OperatorType::kReduceProd)); ops.push_back(std::make_unique<ReduceMax>( ::tflite::BuiltinOperator_REDUCE_MAX, OperatorType::kReduceMax)); ops.push_back(std::make_unique<ReduceMin>( ::tflite::BuiltinOperator_REDUCE_MIN, OperatorType::kReduceMin)); ops.push_back(std::make_unique<ReduceAny>( ::tflite::BuiltinOperator_REDUCE_ANY, OperatorType::kAny)); ops.push_back(std::make_unique<ResizeBilinear>( ::tflite::BuiltinOperator_RESIZE_BILINEAR, OperatorType::kResizeBilinear)); ops.push_back(std::make_unique<ResizeNearestNeighbor>( ::tflite::BuiltinOperator_RESIZE_NEAREST_NEIGHBOR, OperatorType::kResizeNearestNeighbor)); ops.push_back(std::make_unique<Squeeze>(::tflite::BuiltinOperator_SQUEEZE, OperatorType::kSqueeze)); ops.push_back(std::make_unique<Split>(::tflite::BuiltinOperator_SPLIT, OperatorType::kSplit)); ops.push_back(std::make_unique<SplitV>(::tflite::BuiltinOperator_SPLIT_V, OperatorType::kSplitV)); ops.push_back(std::make_unique<StridedSlice>( ::tflite::BuiltinOperator_STRIDED_SLICE, OperatorType::kStridedSlice)); ops.push_back(std::make_unique<TopK_V2>(::tflite::BuiltinOperator_TOPK_V2, OperatorType::kTopK_V2)); ops.push_back(std::make_unique<Lstm>(::tflite::BuiltinOperator_LSTM, OperatorType::kLstmCell)); ops.push_back(std::make_unique<Cast>(::tflite::BuiltinOperator_CAST, OperatorType::kCast)); ops.push_back(std::make_unique<ArgMax>(::tflite::BuiltinOperator_ARG_MAX, OperatorType::kArgMax)); ops.push_back(std::make_unique<ArgMin>(::tflite::BuiltinOperator_ARG_MIN, OperatorType::kArgMin)); ops.push_back(std::make_unique<Tile>(::tflite::BuiltinOperator_TILE, OperatorType::kTile)); ops.push_back(std::make_unique<ExpandDims>( ::tflite::BuiltinOperator_EXPAND_DIMS, OperatorType::kExpandDims)); ops.push_back(std::make_unique<TransposeConv>( ::tflite::BuiltinOperator_TRANSPOSE_CONV, OperatorType::kTransposeConv)); ops.push_back(std::make_unique<SparseToDense>( ::tflite::BuiltinOperator_SPARSE_TO_DENSE, OperatorType::kSparseToDense)); ops.push_back(std::make_unique<Shape>(::tflite::BuiltinOperator_SHAPE, OperatorType::kShape)); ops.push_back(std::make_unique<FakeQuant>( ::tflite::BuiltinOperator_FAKE_QUANT, OperatorType::kFakeQuant)); ops.push_back(std::make_unique<Pack>(::tflite::BuiltinOperator_PACK, OperatorType::kPack)); ops.emplace_back(std::make_unique<UnidirectionalSequenceLstm>( ::tflite::BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_LSTM, OperatorType::kUnidirectionalSequenceLstm)); ops.emplace_back(std::make_unique<BidirectionalSequenceLstm>( ::tflite::BuiltinOperator_BIDIRECTIONAL_SEQUENCE_LSTM, OperatorType::kBidirectionalSequenceLstm)); ops.emplace_back(std::make_unique<BidirectionalSequenceRnn>( ::tflite::BuiltinOperator_BIDIRECTIONAL_SEQUENCE_RNN, OperatorType::kBidirectionalSequenceRnn)); ops.push_back(std::make_unique<OneHot>(::tflite::BuiltinOperator_ONE_HOT, OperatorType::kOneHot)); ops.push_back(std::make_unique<Unpack>(::tflite::BuiltinOperator_UNPACK, OperatorType::kUnpack)); ops.push_back(std::make_unique<LeakyRelu>( ::tflite::BuiltinOperator_LEAKY_RELU, OperatorType::kLeakyRelu)); ops.push_back(std::make_unique<SquaredDifference>( ::tflite::BuiltinOperator_SQUARED_DIFFERENCE, OperatorType::kSquaredDifference)); ops.push_back(std::make_unique<MirrorPad>( ::tflite::BuiltinOperator_MIRROR_PAD, OperatorType::kMirrorPad)); ops.push_back(std::make_unique<Unique>(::tflite::BuiltinOperator_UNIQUE, OperatorType::kUnique)); ops.push_back(std::make_unique<UnidirectionalSequenceRnn>( ::tflite::BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_RNN, OperatorType::kUnidirectionalSequenceRnn)); ops.push_back(std::make_unique<Where>(::tflite::BuiltinOperator_WHERE, OperatorType::kWhere)); ops.push_back(std::make_unique<ReverseSequence>( ::tflite::BuiltinOperator_REVERSE_SEQUENCE, OperatorType::kReverseSequence)); ops.push_back(std::make_unique<SimpleOperator<MatrixDiagOperator>>( ::tflite::BuiltinOperator_MATRIX_DIAG, OperatorType::kMatrixDiag)); ops.push_back(std::make_unique<SimpleOperator<MatrixSetDiagOperator>>( ::tflite::BuiltinOperator_MATRIX_SET_DIAG, OperatorType::kMatrixSetDiag)); ops.push_back(std::make_unique<CTCBeamSearchDecoder>( "CTC_BEAM_SEARCH_DECODER", OperatorType::kCTCBeamSearchDecoder)); ops.push_back(std::make_unique<TensorFlowUnsupported>( "TENSORFLOW_UNSUPPORTED", OperatorType::kUnsupported, enable_select_tf_ops)); ops.push_back(std::make_unique<SimpleOperator<FloorOperator>>( ::tflite::BuiltinOperator_FLOOR, OperatorType::kFloor)); ops.push_back(std::make_unique<SimpleOperator<CeilOperator>>( ::tflite::BuiltinOperator_CEIL, OperatorType::kCeil)); ops.push_back(std::make_unique<SimpleOperator<EluOperator>>( ::tflite::BuiltinOperator_ELU, OperatorType::kElu)); ops.push_back(std::make_unique<SimpleOperator<RoundOperator>>( ::tflite::BuiltinOperator_ROUND, OperatorType::kRound)); ops.push_back(std::make_unique<SimpleOperator<ReluOperator>>( ::tflite::BuiltinOperator_RELU, OperatorType::kRelu)); ops.push_back(std::make_unique<SimpleOperator<Relu1Operator>>( ::tflite::BuiltinOperator_RELU_N1_TO_1, OperatorType::kRelu1)); ops.push_back(std::make_unique<SimpleOperator<Relu6Operator>>( ::tflite::BuiltinOperator_RELU6, OperatorType::kRelu6)); ops.push_back(std::make_unique<SimpleOperator<PReluOperator>>( ::tflite::BuiltinOperator_PRELU, OperatorType::kPRelu)); ops.push_back(std::make_unique<SimpleOperator<LogisticOperator>>( ::tflite::BuiltinOperator_LOGISTIC, OperatorType::kLogistic)); ops.push_back(std::make_unique<SimpleOperator<TanhOperator>>( ::tflite::BuiltinOperator_TANH, OperatorType::kTanh)); ops.push_back(std::make_unique<SimpleOperator<ExpOperator>>( ::tflite::BuiltinOperator_EXP, OperatorType::kExp)); ops.push_back(std::make_unique<SimpleOperator<CosOperator>>( ::tflite::BuiltinOperator_COS, OperatorType::kCos)); ops.push_back(std::make_unique<SimpleOperator<LogSoftmaxOperator>>( ::tflite::BuiltinOperator_LOG_SOFTMAX, OperatorType::kLogSoftmax)); ops.push_back(std::make_unique<SimpleOperator<TensorFlowMaximumOperator>>( ::tflite::BuiltinOperator_MAXIMUM, OperatorType::kMaximum)); ops.push_back(std::make_unique<SimpleOperator<TensorFlowMinimumOperator>>( ::tflite::BuiltinOperator_MINIMUM, OperatorType::kMinimum)); ops.push_back(std::make_unique<SimpleOperator<TensorFlowGreaterOperator>>( ::tflite::BuiltinOperator_GREATER, OperatorType::kGreater)); ops.push_back( std::make_unique<SimpleOperator<TensorFlowGreaterEqualOperator>>( ::tflite::BuiltinOperator_GREATER_EQUAL, OperatorType::kGreaterEqual)); ops.push_back(std::make_unique<SimpleOperator<TensorFlowLessOperator>>( ::tflite::BuiltinOperator_LESS, OperatorType::kLess)); ops.push_back(std::make_unique<SimpleOperator<TensorFlowLessEqualOperator>>( ::tflite::BuiltinOperator_LESS_EQUAL, OperatorType::kLessEqual)); ops.push_back(std::make_unique<SimpleOperator<TensorFlowEqualOperator>>( ::tflite::BuiltinOperator_EQUAL, OperatorType::kEqual)); ops.push_back(std::make_unique<SimpleOperator<TensorFlowNotEqualOperator>>( ::tflite::BuiltinOperator_NOT_EQUAL, OperatorType::kNotEqual)); ops.push_back(std::make_unique<SimpleOperator<NegOperator>>( ::tflite::BuiltinOperator_NEG, OperatorType::kNeg)); ops.push_back(std::make_unique<SimpleOperator<SelectOperator>>( ::tflite::BuiltinOperator_SELECT, OperatorType::kSelect)); ops.push_back(std::make_unique<SimpleOperator<SliceOperator>>( ::tflite::BuiltinOperator_SLICE, OperatorType::kSlice)); ops.push_back(std::make_unique<SimpleOperator<PowOperator>>( ::tflite::BuiltinOperator_POW, OperatorType::kPow)); ops.push_back(std::make_unique<SimpleOperator<LogicalOrOperator>>( ::tflite::BuiltinOperator_LOGICAL_OR, OperatorType::kLogicalOr)); ops.emplace_back(new SimpleOperator<LogicalAndOperator>( ::tflite::BuiltinOperator_LOGICAL_AND, OperatorType::kLogicalAnd)); ops.emplace_back(new SimpleOperator<LogicalNotOperator>( ::tflite::BuiltinOperator_LOGICAL_NOT, OperatorType::kLogicalNot)); ops.emplace_back(new SimpleOperator<FloorDivOperator>( ::tflite::BuiltinOperator_FLOOR_DIV, OperatorType::kFloorDiv)); ops.emplace_back(new SimpleOperator<FloorModOperator>( ::tflite::BuiltinOperator_FLOOR_MOD, OperatorType::kFloorMod)); ops.emplace_back(new SimpleOperator<RangeOperator>( ::tflite::BuiltinOperator_RANGE, OperatorType::kRange)); ops.push_back(std::make_unique<SimpleOperator<SinOperator>>( ::tflite::BuiltinOperator_SIN, OperatorType::kSin)); ops.push_back(std::make_unique<SimpleOperator<LogOperator>>( ::tflite::BuiltinOperator_LOG, OperatorType::kLog)); ops.push_back(std::make_unique<SimpleOperator<TensorFlowSqrtOperator>>( ::tflite::BuiltinOperator_SQRT, OperatorType::kSqrt)); ops.push_back(std::make_unique<SimpleOperator<TensorFlowRsqrtOperator>>( ::tflite::BuiltinOperator_RSQRT, OperatorType::kRsqrt)); ops.push_back(std::make_unique<SimpleOperator<TensorFlowSquareOperator>>( ::tflite::BuiltinOperator_SQUARE, OperatorType::kSquare)); ops.push_back(std::make_unique<SimpleOperator<TensorFlowZerosLikeOperator>>( ::tflite::BuiltinOperator_ZEROS_LIKE, OperatorType::kZerosLike)); ops.push_back(std::make_unique<SimpleOperator<AbsOperator>>( ::tflite::BuiltinOperator_ABS, OperatorType::kAbs)); ops.push_back(std::make_unique<SimpleOperator<HardSwishOperator>>( ::tflite::BuiltinOperator_HARD_SWISH, OperatorType::kHardSwish)); ops.push_back(std::make_unique<SimpleOperator<FillOperator>>( ::tflite::BuiltinOperator_FILL, OperatorType::kFill)); ops.push_back(std::make_unique<SimpleOperator<ReverseV2Operator>>( ::tflite::BuiltinOperator_REVERSE_V2, OperatorType::kReverseV2)); ops.push_back(std::make_unique<SimpleOperator<TensorFlowRankOperator>>( ::tflite::BuiltinOperator_RANK, OperatorType::kRank)); ops.emplace_back(new SimpleOperator<SegmentSumOperator>( ::tflite::BuiltinOperator_SEGMENT_SUM, OperatorType::kSegmentSum)); ops.emplace_back(std::make_unique<SimpleOperator<ScatterNdOperator>>( ::tflite::BuiltinOperator_SCATTER_ND, OperatorType::kScatterNd)); return ops; } } std::map<OperatorType, std::unique_ptr<BaseOperator>> BuildOperatorByTypeMap( bool enable_select_tf_ops) { std::map<OperatorType, std::unique_ptr<BaseOperator>> result; std::vector<std::unique_ptr<BaseOperator>> ops = BuildOperatorList(enable_select_tf_ops); for (auto& op : ops) { result[op->type()] = std::move(op); } return result; } std::map<std::string, std::unique_ptr<BaseOperator>> BuildOperatorByNameMap( bool enable_select_tf_ops) { std::map<std::string, std::unique_ptr<BaseOperator>> result; std::vector<std::unique_ptr<BaseOperator>> ops = BuildOperatorList(enable_select_tf_ops); for (auto& op : ops) { result[op->name()] = std::move(op); } return result; } bool ShouldExportAsFlexOp(bool enable_select_tf_ops, const std::string& tensorflow_op_name) { if (!enable_select_tf_ops) { return false; } const tensorflow::OpDef* op_def = nullptr; if (!tensorflow::OpRegistry::Global() ->LookUpOpDef(tensorflow_op_name, &op_def) .ok()) { return false; } if (!::tflite::flex::IsAllowlistedFlexOp(tensorflow_op_name)) { LOG(WARNING) << "Op " << tensorflow_op_name << " is a valid TensorFlow op but has not been allowlisted for" " the TensorFlow Lite flex op set."; return false; } return true; } } }
#include "tensorflow/lite/toco/tflite/operator.h" #include <string> #include <gtest/gtest.h> #include "absl/log/check.h" #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/toco/model.h" #include "tensorflow/lite/toco/runtime/types.h" #include "tensorflow/lite/toco/tooling_util.h" namespace toco { namespace tflite { namespace { class OperatorTest : public ::testing::Test { protected: const BaseOperator& GetOperator(const std::string& name, OperatorType type) { using OpsByName = std::map<std::string, std::unique_ptr<BaseOperator>>; using OpsByType = std::map<OperatorType, std::unique_ptr<BaseOperator>>; static auto* by_name = new OpsByName(BuildOperatorByNameMap()); static auto* by_type = new OpsByType(BuildOperatorByTypeMap()); CHECK(by_name->count(name)) << "No operator for '" << name << "'."; BaseOperator* op1 = by_name->at(name).get(); CHECK(op1->type() == type) << "while verifying '" << name << "'."; CHECK(by_type->count(type)) << "No operator for '" << OperatorTypeName(type) << "'."; BaseOperator* op2 = by_type->at(type).get(); CHECK(op2->name() == name) << "while verifying '" << OperatorTypeName(type) << "'."; return *op1; } template <typename T> std::unique_ptr<T> SerializeAndDeserialize(const BaseOperator& op, const T& toco_op, Options* options = nullptr) { flatbuffers::FlatBufferBuilder builder; Options input_options = op.Serialize(toco_op, &builder); if (options) { *options = input_options; } builder.Finish(CreateOperator(builder, 0, 0, 0, input_options.type, input_options.builtin, input_options.custom, ::tflite::CustomOptionsFormat_FLEXBUFFERS)); auto* output_options = flatbuffers::GetRoot<::tflite::Operator>(builder.GetBufferPointer()); auto new_toco_op = op.Deserialize(output_options->builtin_options(), output_options->custom_options()); CHECK(new_toco_op->type == toco_op.type) << "The type of the serialized and deserialized" << HelpfulOperatorTypeName(*new_toco_op) << " does not match the type of the original " << HelpfulOperatorTypeName(toco_op); return std::unique_ptr<T>(dynamic_cast<T*>(new_toco_op.release())); } template <typename T> void CheckSimpleOperator(const std::string& name, OperatorType type) { Options options; auto output_toco_op = SerializeAndDeserialize(GetOperator(name, type), T(), &options); ASSERT_EQ(0, options.builtin.o); ASSERT_EQ(0, options.custom.o); ASSERT_EQ(::tflite::BuiltinOptions_NONE, options.type); ASSERT_NE(nullptr, output_toco_op.get()); } template <typename T> void CheckReducerOperator(const std::string& name, OperatorType type) { T op; op.keep_dims = false; auto output_toco_op = SerializeAndDeserialize(GetOperator(name, type), op); EXPECT_EQ(op.keep_dims, output_toco_op->keep_dims); } }; TEST_F(OperatorTest, SimpleOperators) { CheckSimpleOperator<FloorOperator>("FLOOR", OperatorType::kFloor); CheckSimpleOperator<CeilOperator>("CEIL", OperatorType::kCeil); CheckSimpleOperator<EluOperator>("ELU", OperatorType::kElu); CheckSimpleOperator<RoundOperator>("ROUND", OperatorType::kRound); CheckSimpleOperator<ReluOperator>("RELU", OperatorType::kRelu); CheckSimpleOperator<Relu1Operator>("RELU_N1_TO_1", OperatorType::kRelu1); CheckSimpleOperator<Relu6Operator>("RELU6", OperatorType::kRelu6); CheckSimpleOperator<LogisticOperator>("LOGISTIC", OperatorType::kLogistic); CheckSimpleOperator<TanhOperator>("TANH", OperatorType::kTanh); CheckSimpleOperator<ExpOperator>("EXP", OperatorType::kExp); CheckSimpleOperator<CosOperator>("COS", OperatorType::kCos); CheckSimpleOperator<LogSoftmaxOperator>("LOG_SOFTMAX", OperatorType::kLogSoftmax); CheckSimpleOperator<TensorFlowMaximumOperator>( "MAXIMUM", OperatorType::kMaximum); CheckSimpleOperator<TensorFlowMinimumOperator>( "MINIMUM", OperatorType::kMinimum); CheckSimpleOperator<TensorFlowLessOperator>("LESS", OperatorType::kLess); CheckSimpleOperator<NegOperator>("NEG", OperatorType::kNeg); CheckSimpleOperator<SelectOperator>("SELECT", OperatorType::kSelect); CheckSimpleOperator<SliceOperator>("SLICE", OperatorType::kSlice); CheckSimpleOperator<SinOperator>("SIN", OperatorType::kSin); CheckSimpleOperator<TensorFlowEqualOperator>("EQUAL", OperatorType::kEqual); CheckSimpleOperator<TensorFlowNotEqualOperator>("NOT_EQUAL", OperatorType::kNotEqual); CheckSimpleOperator<LogOperator>("LOG", OperatorType::kLog); CheckSimpleOperator<TensorFlowSqrtOperator>("SQRT", OperatorType::kSqrt); CheckSimpleOperator<TensorFlowRsqrtOperator>("RSQRT", OperatorType::kRsqrt); CheckSimpleOperator<PowOperator>("POW", OperatorType::kPow); CheckSimpleOperator<LogicalOrOperator>("LOGICAL_OR", OperatorType::kLogicalOr); CheckSimpleOperator<LogicalAndOperator>("LOGICAL_AND", OperatorType::kLogicalAnd); CheckSimpleOperator<LogicalNotOperator>("LOGICAL_NOT", OperatorType::kLogicalNot); CheckSimpleOperator<FloorDivOperator>("FLOOR_DIV", OperatorType::kFloorDiv); CheckSimpleOperator<TensorFlowSquareOperator>("SQUARE", OperatorType::kSquare); CheckSimpleOperator<TensorFlowZerosLikeOperator>("ZEROS_LIKE", OperatorType::kZerosLike); CheckSimpleOperator<FloorModOperator>("FLOOR_MOD", OperatorType::kFloorMod); CheckSimpleOperator<RangeOperator>("RANGE", OperatorType::kRange); CheckSimpleOperator<FillOperator>("FILL", OperatorType::kFill); CheckSimpleOperator<ReverseV2Operator>("REVERSE_V2", OperatorType::kReverseV2); CheckSimpleOperator<TensorFlowRankOperator>("RANK", OperatorType::kRank); } TEST_F(OperatorTest, BuiltinAdd) { AddOperator op; op.fused_activation_function = FusedActivationFunctionType::kRelu6; auto output_toco_op = SerializeAndDeserialize(GetOperator("ADD", OperatorType::kAdd), op); EXPECT_EQ(op.fused_activation_function, output_toco_op->fused_activation_function); } TEST_F(OperatorTest, BuiltinAddN) { AddNOperator op; auto output_toco_op = SerializeAndDeserialize(GetOperator("ADD_N", OperatorType::kAddN), op); ASSERT_NE(output_toco_op.get(), nullptr); } TEST_F(OperatorTest, BuiltinReducerOps) { CheckReducerOperator<MeanOperator>("MEAN", OperatorType::kMean); CheckReducerOperator<TensorFlowSumOperator>("SUM", OperatorType::kSum); CheckReducerOperator<TensorFlowProdOperator>("REDUCE_PROD", OperatorType::kReduceProd); CheckReducerOperator<TensorFlowMaxOperator>("REDUCE_MAX", OperatorType::kReduceMax); CheckReducerOperator<TensorFlowMinOperator>("REDUCE_MIN", OperatorType::kReduceMin); CheckReducerOperator<TensorFlowAnyOperator>("REDUCE_ANY", OperatorType::kAny); } TEST_F(OperatorTest, BuiltinCast) { CastOperator op; op.src_data_type = ArrayDataType::kFloat; op.dst_data_type = ArrayDataType::kUint8; auto output_toco_op = SerializeAndDeserialize(GetOperator("CAST", OperatorType::kCast), op); EXPECT_EQ(op.src_data_type, output_toco_op->src_data_type); EXPECT_EQ(op.dst_data_type, output_toco_op->dst_data_type); } TEST_F(OperatorTest, CustomConcatenation) { ConcatenationOperator op; op.axis = 123; auto output_toco_op = SerializeAndDeserialize( GetOperator("CONCATENATION", OperatorType::kConcatenation), op); EXPECT_EQ(op.axis, output_toco_op->axis); } TEST_F(OperatorTest, CustomDepthToSpace) { DepthToSpaceOperator op; op.block_size = 123; auto output_toco_op = SerializeAndDeserialize( GetOperator("DEPTH_TO_SPACE", OperatorType::kDepthToSpace), op); EXPECT_EQ(op.block_size, output_toco_op->block_size); } TEST_F(OperatorTest, CustomFakeQuant) { FakeQuantOperator op; auto* minmax = new MinMax; minmax->min = -10; minmax->max = 200; op.minmax.reset(minmax); op.num_bits = 16; auto output_toco_op = SerializeAndDeserialize( GetOperator("FAKE_QUANT", OperatorType::kFakeQuant), op); EXPECT_EQ(op.minmax->min, output_toco_op->minmax->min); EXPECT_EQ(op.minmax->max, output_toco_op->minmax->max); EXPECT_EQ(op.num_bits, output_toco_op->num_bits); } TEST_F(OperatorTest, CustomFullyConnected) { FullyConnectedOperator op; op.fused_activation_function = FusedActivationFunctionType::kRelu6; auto output_toco_op = SerializeAndDeserialize( GetOperator("FULLY_CONNECTED", OperatorType::kFullyConnected), op); EXPECT_EQ(op.fused_activation_function, output_toco_op->fused_activation_function); } TEST_F(OperatorTest, BuiltinGather) { GatherOperator op; auto output_toco_op = SerializeAndDeserialize(GetOperator("GATHER", OperatorType::kGather), op); ASSERT_NE(nullptr, output_toco_op.get()); } TEST_F(OperatorTest, BuiltinGatherNd) { GatherNdOperator op; auto output_toco_op = SerializeAndDeserialize( GetOperator("GATHER_ND", OperatorType::kGatherNd), op); ASSERT_NE(output_toco_op.get(), nullptr); } TEST_F(OperatorTest, BuiltinWhere) { WhereOperator op; auto output_toco_op = SerializeAndDeserialize(GetOperator("WHERE", OperatorType::kWhere), op); ASSERT_NE(output_toco_op.get(), nullptr); } TEST_F(OperatorTest, BuiltinL2Pool) { L2PoolOperator op; op.stride_width = 123; op.stride_height = 124; op.padding.type = PaddingType::kValid; op.kwidth = 480; op.kheight = 1080; auto output_toco_op = SerializeAndDeserialize( GetOperator("L2_POOL_2D", OperatorType::kL2Pool), op); EXPECT_EQ(op.stride_width, output_toco_op->stride_width); EXPECT_EQ(op.stride_height, output_toco_op->stride_height); EXPECT_EQ(op.padding.type, output_toco_op->padding.type); EXPECT_EQ(op.kwidth, output_toco_op->kwidth); EXPECT_EQ(op.kheight, output_toco_op->kheight); } TEST_F(OperatorTest, BuiltinLocalResponseNormalization) { LocalResponseNormalizationOperator op; op.range = 123; op.bias = 1.23; op.alpha = 12.3; op.beta = .123; auto output_toco_op = SerializeAndDeserialize( GetOperator("LOCAL_RESPONSE_NORMALIZATION", OperatorType::kLocalResponseNormalization), op); EXPECT_EQ(op.range, output_toco_op->range); EXPECT_EQ(op.bias, output_toco_op->bias); EXPECT_EQ(op.alpha, output_toco_op->alpha); EXPECT_EQ(op.beta, output_toco_op->beta); } TEST_F(OperatorTest, BuiltinMaxPool) { MaxPoolOperator op; op.stride_width = 123; op.stride_height = 124; op.padding.type = PaddingType::kValid; op.kwidth = 480; op.kheight = 1080; auto output_toco_op = SerializeAndDeserialize( GetOperator("MAX_POOL_2D", OperatorType::kMaxPool), op); EXPECT_EQ(op.stride_width, output_toco_op->stride_width); EXPECT_EQ(op.stride_height, output_toco_op->stride_height); EXPECT_EQ(op.padding.type, output_toco_op->padding.type); EXPECT_EQ(op.kwidth, output_toco_op->kwidth); EXPECT_EQ(op.kheight, output_toco_op->kheight); } TEST_F(OperatorTest, BuiltinReshape) { TensorFlowReshapeOperator op; op.shape = {1, 2, 4, 5, 8}; auto output_toco_op = SerializeAndDeserialize( GetOperator("RESHAPE", OperatorType::kReshape), op); EXPECT_EQ(op.shape, output_toco_op->shape); } TEST_F(OperatorTest, CustomSoftmax) { SoftmaxOperator op; op.beta = 123.1; auto output_toco_op = SerializeAndDeserialize( GetOperator("SOFTMAX", OperatorType::kSoftmax), op); EXPECT_EQ(op.beta, output_toco_op->beta); } TEST_F(OperatorTest, BuiltinSpaceToDepth) { SpaceToDepthOperator op; op.block_size = 123; auto output_toco_op = SerializeAndDeserialize( GetOperator("SPACE_TO_DEPTH", OperatorType::kSpaceToDepth), op); EXPECT_EQ(op.block_size, output_toco_op->block_size); } TEST_F(OperatorTest, CustomSplit) { TensorFlowSplitOperator op; op.num_split = 123; auto output_toco_op = SerializeAndDeserialize(GetOperator("SPLIT", OperatorType::kSplit), op); EXPECT_EQ(op.num_split, output_toco_op->num_split); } TEST_F(OperatorTest, CustomSplitV) { TensorFlowSplitVOperator op; op.num_split = 123; auto output_toco_op = SerializeAndDeserialize( GetOperator("SPLIT_V", OperatorType::kSplitV), op); EXPECT_EQ(op.num_split, output_toco_op->num_split); } TEST_F(OperatorTest, BuiltinAveragePool) { AveragePoolOperator op; op.fused_activation_function = FusedActivationFunctionType::kRelu6; op.stride_width = 123; op.stride_height = 124; op.padding.type = PaddingType::kValid; op.kwidth = 480; op.kheight = 1080; auto output_toco_op = SerializeAndDeserialize( GetOperator("AVERAGE_POOL_2D", OperatorType::kAveragePool), op); EXPECT_EQ(op.fused_activation_function, output_toco_op->fused_activation_function); EXPECT_EQ(op.stride_width, output_toco_op->stride_width); EXPECT_EQ(op.stride_height, output_toco_op->stride_height); EXPECT_EQ(op.padding.type, output_toco_op->padding.type); EXPECT_EQ(op.kwidth, output_toco_op->kwidth); EXPECT_EQ(op.kheight, output_toco_op->kheight); } TEST_F(OperatorTest, BuiltinConvolution) { ConvOperator op; op.stride_width = 123; op.stride_height = 124; op.padding.type = PaddingType::kValid; op.fused_activation_function = FusedActivationFunctionType::kRelu6; auto output_toco_op = SerializeAndDeserialize(GetOperator("CONV_2D", OperatorType::kConv), op); EXPECT_EQ(op.stride_width, output_toco_op->stride_width); EXPECT_EQ(op.stride_height, output_toco_op->stride_height); EXPECT_EQ(op.padding.type, output_toco_op->padding.type); EXPECT_EQ(op.fused_activation_function, output_toco_op->fused_activation_function); } TEST_F(OperatorTest, BuiltinDepthwiseConvolution) { DepthwiseConvOperator op; op.stride_width = 123; op.stride_height = 124; op.padding.type = PaddingType::kValid; op.depth_multiplier = 6; op.fused_activation_function = FusedActivationFunctionType::kRelu6; auto output_toco_op = SerializeAndDeserialize( GetOperator("DEPTHWISE_CONV_2D", OperatorType::kDepthwiseConv), op); EXPECT_EQ(op.stride_width, output_toco_op->stride_width); EXPECT_EQ(op.stride_height, output_toco_op->stride_height); EXPECT_EQ(op.padding.type, output_toco_op->padding.type); EXPECT_EQ(op.depth_multiplier, output_toco_op->depth_multiplier); EXPECT_EQ(op.fused_activation_function, output_toco_op->fused_activation_function); } TEST_F(OperatorTest, BuiltinL2Norm) { L2NormalizationOperator op; op.fused_activation_function = FusedActivationFunctionType::kRelu6; auto output_toco_op = SerializeAndDeserialize( GetOperator("L2_NORMALIZATION", OperatorType::kL2Normalization), op); EXPECT_EQ(op.fused_activation_function, output_toco_op->fused_activation_function); } TEST_F(OperatorTest, BuiltinMul) { MulOperator op; op.fused_activation_function = FusedActivationFunctionType::kRelu6; auto output_toco_op = SerializeAndDeserialize(GetOperator("MUL", OperatorType::kMul), op); EXPECT_EQ(op.fused_activation_function, output_toco_op->fused_activation_function); } TEST_F(OperatorTest, ResizeBilinear) { ResizeBilinearOperator op; op.align_corners = true; op.half_pixel_centers = false; auto output_toco_op = SerializeAndDeserialize( GetOperator("RESIZE_BILINEAR", OperatorType::kResizeBilinear), op); EXPECT_EQ(op.align_corners, output_toco_op->align_corners); EXPECT_EQ(op.half_pixel_centers, output_toco_op->half_pixel_centers); } TEST_F(OperatorTest, ResizeBilinear_HalfPixelCenters) { ResizeBilinearOperator op; op.align_corners = true; op.half_pixel_centers = true; auto output_toco_op = SerializeAndDeserialize( GetOperator("RESIZE_BILINEAR", OperatorType::kResizeBilinear), op); EXPECT_EQ(op.align_corners, output_toco_op->align_corners); EXPECT_EQ(op.half_pixel_centers, output_toco_op->half_pixel_centers); } TEST_F(OperatorTest, ResizeNearestNeighbor) { ResizeNearestNeighborOperator op; op.align_corners = true; op.half_pixel_centers = false; auto output_toco_op = SerializeAndDeserialize(GetOperator("RESIZE_NEAREST_NEIGHBOR", OperatorType::kResizeNearestNeighbor), op); EXPECT_EQ(op.align_corners, output_toco_op->align_corners); EXPECT_EQ(op.half_pixel_centers, output_toco_op->half_pixel_centers); } TEST_F(OperatorTest, ResizeNearestNeighbor_HalfPixelCenters) { ResizeNearestNeighborOperator op; op.align_corners = true; op.half_pixel_centers = true; auto output_toco_op = SerializeAndDeserialize(GetOperator("RESIZE_NEAREST_NEIGHBOR", OperatorType::kResizeNearestNeighbor), op); EXPECT_EQ(op.align_corners, output_toco_op->align_corners); EXPECT_EQ(op.half_pixel_centers, output_toco_op->half_pixel_centers); } TEST_F(OperatorTest, Svdf) { SvdfOperator op; op.fused_activation_function = FusedActivationFunctionType::kRelu; op.rank = 1; auto output_toco_op = SerializeAndDeserialize(GetOperator("SVDF", OperatorType::kSvdf), op); EXPECT_EQ(op.fused_activation_function, output_toco_op->fused_activation_function); EXPECT_EQ(op.rank, output_toco_op->rank); } TEST_F(OperatorTest, Squeeze) { SqueezeOperator op; op.squeeze_dims = {-2, -3, 4, 1, 4}; auto output_toco_op = SerializeAndDeserialize( GetOperator("SQUEEZE", OperatorType::kSqueeze), op); EXPECT_EQ(op.squeeze_dims, output_toco_op->squeeze_dims); } TEST_F(OperatorTest, StridedSlice) { StridedSliceOperator op; op.begin_mask = 1; op.end_mask = 2; op.ellipsis_mask = 1; op.new_axis_mask = 1; op.shrink_axis_mask = 2; auto output_toco_op = SerializeAndDeserialize( GetOperator("STRIDED_SLICE", OperatorType::kStridedSlice), op); EXPECT_EQ(op.start_indices, output_toco_op->start_indices); EXPECT_EQ(op.stop_indices, output_toco_op->stop_indices); EXPECT_EQ(op.strides, output_toco_op->strides); EXPECT_EQ(op.begin_mask, output_toco_op->begin_mask); EXPECT_EQ(op.end_mask, output_toco_op->end_mask); EXPECT_EQ(op.end_mask, output_toco_op->end_mask); EXPECT_EQ(op.ellipsis_mask, output_toco_op->ellipsis_mask); EXPECT_EQ(op.new_axis_mask, output_toco_op->new_axis_mask); EXPECT_EQ(op.shrink_axis_mask, output_toco_op->shrink_axis_mask); } TEST_F(OperatorTest, BuiltinTopKV2) { TopKV2Operator op; auto output_toco_op = SerializeAndDeserialize( GetOperator("TOPK_V2", OperatorType::kTopK_V2), op); ASSERT_NE(nullptr, output_toco_op.get()); } TEST_F(OperatorTest, BuiltinArgMax) { ArgMaxOperator op; auto output_toco_op = SerializeAndDeserialize( GetOperator("ARG_MAX", OperatorType::kArgMax), op); EXPECT_EQ(op.output_data_type, output_toco_op->output_data_type); } TEST_F(OperatorTest, BuiltinArgMin) { ArgMinOperator op; auto output_toco_op = SerializeAndDeserialize( GetOperator("ARG_MIN", OperatorType::kArgMin), op); EXPECT_EQ(op.output_data_type, output_toco_op->output_data_type); } TEST_F(OperatorTest, BuiltinDequantize) { DequantizeOperator op; auto output_toco_op = SerializeAndDeserialize( GetOperator("DEQUANTIZE", OperatorType::kDequantize), op); } TEST_F(OperatorTest, BuiltinTransposeConv) { TransposeConvOperator op; op.stride_width = 123; op.stride_height = 124; op.padding.type = PaddingType::kValid; auto output_toco_op = SerializeAndDeserialize( GetOperator("TRANSPOSE_CONV", OperatorType::kTransposeConv), op); EXPECT_EQ(op.stride_width, output_toco_op->stride_width); EXPECT_EQ(op.stride_height, output_toco_op->stride_height); EXPECT_EQ(op.padding.type, output_toco_op->padding.type); } TEST_F(OperatorTest, BuiltinShape) { TensorFlowShapeOperator op; op.output_data_type = ArrayDataType::kInt64; auto output_toco_op = SerializeAndDeserialize(GetOperator("SHAPE", OperatorType::kShape), op); EXPECT_EQ(op.output_data_type, output_toco_op->output_data_type); } TEST_F(OperatorTest, BuiltinSparseToDense) { SparseToDenseOperator op; op.validate_indices = false; std::unique_ptr<toco::SparseToDenseOperator> output_toco_op = SerializeAndDeserialize( GetOperator("SPARSE_TO_DENSE", OperatorType::kSparseToDense), op); EXPECT_EQ(op.validate_indices, output_toco_op->validate_indices); } TEST_F(OperatorTest, VersioningSpareToDense) { SparseToDenseOperator op; op.inputs = {"indices", "output_shape", "input_values", "default_value"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* base_op = operator_by_type_map.at(op.type).get(); Model int32_model; Array& int32_array = int32_model.GetOrCreateArray(op.inputs[2]); int32_array.data_type = ArrayDataType::kInt32; OperatorSignature int32_signature = {.op = &op, .model = &int32_model}; EXPECT_EQ(base_op->GetVersion(int32_signature), 1); Model int64_model; Array& int64_array = int64_model.GetOrCreateArray(op.inputs[2]); int64_array.data_type = ArrayDataType::kInt64; OperatorSignature int64_signature = {.op = &op, .model = &int64_model}; EXPECT_EQ(base_op->GetVersion(int64_signature), 2); Model int8_model; Array& int8_array = int8_model.GetOrCreateArray(op.inputs[2]); int8_array.data_type = ArrayDataType::kInt8; OperatorSignature int8_signature = {.op = &op, .model = &int8_model}; EXPECT_EQ(base_op->GetVersion(int8_signature), 3); Model uint8_model; Array& uint8_array = uint8_model.GetOrCreateArray(op.inputs[2]); uint8_array.data_type = ArrayDataType::kUint8; OperatorSignature uint8_signature = {.op = &op, .model = &uint8_model}; EXPECT_EQ(base_op->GetVersion(uint8_signature), 3); } TEST_F(OperatorTest, BuiltinPack) { PackOperator op; op.values_count = 3; op.axis = 1; std::unique_ptr<toco::PackOperator> output_toco_op = SerializeAndDeserialize(GetOperator("PACK", OperatorType::kPack), op); EXPECT_EQ(op.values_count, output_toco_op->values_count); EXPECT_EQ(op.axis, output_toco_op->axis); } TEST_F(OperatorTest, BuiltinOneHot) { OneHotOperator op; op.axis = 2; auto output_toco_op = SerializeAndDeserialize( GetOperator("ONE_HOT", OperatorType::kOneHot), op); EXPECT_EQ(op.axis, output_toco_op->axis); } TEST_F(OperatorTest, BuiltinUnpack) { UnpackOperator op; op.num = 5; op.axis = 2; auto output_toco_op = SerializeAndDeserialize(GetOperator("UNPACK", OperatorType::kUnpack), op); EXPECT_EQ(op.num, output_toco_op->num); EXPECT_EQ(op.axis, output_toco_op->axis); } TEST_F(OperatorTest, BuiltinLeakyRelu) { LeakyReluOperator op; op.alpha = 3; auto output_toco_op = SerializeAndDeserialize( GetOperator("LEAKY_RELU", OperatorType::kLeakyRelu), op); EXPECT_EQ(op.alpha, output_toco_op->alpha); } TEST_F(OperatorTest, BuiltinSquaredDifference) { SquaredDifferenceOperator op; auto output_toco_op = SerializeAndDeserialize( GetOperator("SQUARED_DIFFERENCE", OperatorType::kSquaredDifference), op); ASSERT_NE(nullptr, output_toco_op.get()); } TEST_F(OperatorTest, BuiltinScatterNd) { ScatterNdOperator op; auto output_toco_op = SerializeAndDeserialize( GetOperator("SCATTER_ND", OperatorType::kScatterNd), op); ASSERT_NE(nullptr, output_toco_op.get()); } TEST_F(OperatorTest, CustomCTCBeamSearchDecoder) { CTCBeamSearchDecoderOperator op; op.beam_width = 3; op.top_paths = 2; op.merge_repeated = false; std::unique_ptr<toco::CTCBeamSearchDecoderOperator> output_toco_op = SerializeAndDeserialize(GetOperator("CTC_BEAM_SEARCH_DECODER", OperatorType::kCTCBeamSearchDecoder), op); EXPECT_EQ(op.beam_width, output_toco_op->beam_width); EXPECT_EQ(op.top_paths, output_toco_op->top_paths); EXPECT_EQ(op.merge_repeated, output_toco_op->merge_repeated); } TEST_F(OperatorTest, TensorFlowUnsupported) { TensorFlowUnsupportedOperator op; op.tensorflow_op = "MyCustomUnsupportedOp"; ::tensorflow::NodeDef node_def; auto attr = node_def.mutable_attr(); (*attr)["float_attr"].set_f(2.0); (*attr)["str_attr"].set_s("Hello World"); (*attr)["int_attr"].set_i(17); (*attr)["bool_attr"].set_b(true); { auto* list = (*attr)["list_string_attr"].mutable_list(); list->add_s("abcde"); list->add_s("1234"); list->add_s(""); list->add_s("zyxwv"); list->add_s("!-."); } { auto* list = (*attr)["list_float_attr"].mutable_list(); list->add_f(std::numeric_limits<float>::min()); list->add_f(2.0); list->add_f(-std::numeric_limits<float>::max()); } { auto* list = (*attr)["list_int_attr"].mutable_list(); list->add_i(1); list->add_i(20); list->add_i(1LL << 40); list->add_i(-(1LL << 40)); } node_def.SerializeToString(&op.tensorflow_node_def); auto output_toco_op = SerializeAndDeserialize( GetOperator("TENSORFLOW_UNSUPPORTED", OperatorType::kUnsupported), op); ::tensorflow::NodeDef output_node_def; output_node_def.ParseFromString(output_toco_op->tensorflow_node_def); const auto& output_attr = output_node_def.attr(); EXPECT_EQ(2.0, output_attr.at("float_attr").f()); EXPECT_EQ("Hello World", output_attr.at("str_attr").s()); EXPECT_EQ(17, output_attr.at("int_attr").i()); EXPECT_EQ(true, output_attr.at("bool_attr").b()); { const auto& list = output_attr.at("list_string_attr").list(); ASSERT_EQ(5, list.s_size()); EXPECT_EQ("abcde", list.s(0)); EXPECT_EQ("1234", list.s(1)); EXPECT_EQ("", list.s(2)); EXPECT_EQ("zyxwv", list.s(3)); EXPECT_EQ("!-.", list.s(4)); } { const auto& list = output_attr.at("list_float_attr").list(); ASSERT_EQ(3, list.f_size()); EXPECT_EQ(std::numeric_limits<float>::min(), list.f(0)); EXPECT_EQ(2.0, list.f(1)); EXPECT_EQ(-std::numeric_limits<float>::max(), list.f(2)); } { const auto& list = output_attr.at("list_int_attr").list(); ASSERT_EQ(4, list.i_size()); EXPECT_EQ(1, list.i(0)); EXPECT_EQ(20, list.i(1)); EXPECT_EQ(1LL << 40, list.i(2)); EXPECT_EQ(-(1LL << 40), list.i(3)); } } TEST_F(OperatorTest, TensorFlowUnsupportedWithoutAttr) { TensorFlowUnsupportedOperator op; op.tensorflow_op = "MyCustomUnsupportedOp"; auto output_toco_op = SerializeAndDeserialize( GetOperator("TENSORFLOW_UNSUPPORTED", OperatorType::kUnsupported), op); ::tensorflow::NodeDef output_node_def; output_node_def.ParseFromString(output_toco_op->tensorflow_node_def); EXPECT_TRUE(output_node_def.attr().empty()); } TEST_F(OperatorTest, TestShouldExportAsFlexOp) { EXPECT_FALSE(ShouldExportAsFlexOp(false, "Conv2D")); EXPECT_TRUE(ShouldExportAsFlexOp(true, "Conv2D")); EXPECT_TRUE(ShouldExportAsFlexOp(true, "EluGrad")); EXPECT_TRUE(ShouldExportAsFlexOp(true, "RFFT")); EXPECT_FALSE(ShouldExportAsFlexOp(true, "MyAwesomeCustomOp")); EXPECT_TRUE(ShouldExportAsFlexOp(true, "RandomShuffle")); } TEST_F(OperatorTest, BuiltinMirrorPad) { MirrorPadOperator op; op.mode = MirrorPadMode::kReflect; auto output_toco_op = SerializeAndDeserialize( GetOperator("MIRROR_PAD", OperatorType::kMirrorPad), op); EXPECT_EQ(op.mode, output_toco_op->mode); } TEST_F(OperatorTest, BuiltinUnique) { UniqueOperator op; op.idx_out_type = ArrayDataType::kInt64; auto output_toco_op = SerializeAndDeserialize(GetOperator("UNIQUE", OperatorType::kUnique), op); ASSERT_NE(nullptr, output_toco_op.get()); EXPECT_EQ(output_toco_op->idx_out_type, op.idx_out_type); } TEST_F(OperatorTest, BuiltinSegmentSum) { SegmentSumOperator op; auto output_toco_op = SerializeAndDeserialize( GetOperator("SEGMENT_SUM", OperatorType::kSegmentSum), op); ASSERT_NE(nullptr, output_toco_op.get()); } TEST_F(OperatorTest, BuiltinReverseSequence) { ReverseSequenceOperator op; op.seq_dim = 3; op.batch_dim = 1; std::unique_ptr<toco::ReverseSequenceOperator> output_toco_op = SerializeAndDeserialize( GetOperator("REVERSE_SEQUENCE", OperatorType::kReverseSequence), op); EXPECT_EQ(op.seq_dim, output_toco_op->seq_dim); EXPECT_EQ(op.batch_dim, output_toco_op->batch_dim); } TEST_F(OperatorTest, BuiltinMatrixDiag) { MatrixDiagOperator op; std::unique_ptr<toco::MatrixDiagOperator> output_toco_op = SerializeAndDeserialize( GetOperator("MATRIX_DIAG", OperatorType::kMatrixDiag), op); } TEST_F(OperatorTest, BuiltinMatrixSetDiag) { MatrixSetDiagOperator op; std::unique_ptr<toco::MatrixSetDiagOperator> output_toco_op = SerializeAndDeserialize( GetOperator("MATRIX_SET_DIAG", OperatorType::kMatrixSetDiag), op); } template <typename Op> void SimpleVersioningTest() { Op op; op.inputs = {"input1"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* base_op = operator_by_type_map.at(op.type).get(); Model uint8_model; Array& uint8_array = uint8_model.GetOrCreateArray(op.inputs[0]); uint8_array.data_type = ArrayDataType::kUint8; OperatorSignature uint8_signature = {.op = &op, .model = &uint8_model}; EXPECT_EQ(base_op->GetVersion(uint8_signature), 1); Model int8_model; Array& int8_array = int8_model.GetOrCreateArray(op.inputs[0]); int8_array.data_type = ArrayDataType::kInt8; OperatorSignature int8_signature = {.op = &op, .model = &int8_model}; EXPECT_EQ(base_op->GetVersion(int8_signature), 2); } template <typename Op> void SimpleOutputVersioningTest() { Op op; op.outputs = {"output1"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* base_op = operator_by_type_map.at(op.type).get(); Model uint8_model; Array& uint8_array = uint8_model.GetOrCreateArray(op.outputs[0]); uint8_array.data_type = ArrayDataType::kUint8; OperatorSignature uint8_signature = {.op = &op, .model = &uint8_model}; EXPECT_EQ(base_op->GetVersion(uint8_signature), 1); Model int8_model; Array& int8_array = int8_model.GetOrCreateArray(op.outputs[0]); int8_array.data_type = ArrayDataType::kInt8; OperatorSignature int8_signature = {.op = &op, .model = &int8_model}; EXPECT_EQ(base_op->GetVersion(int8_signature), 2); } TEST_F(OperatorTest, VersioningEqualTest) { SimpleVersioningTest<TensorFlowEqualOperator>(); } TEST_F(OperatorTest, VersioningNotEqualTest) { SimpleVersioningTest<TensorFlowNotEqualOperator>(); } TEST_F(OperatorTest, VersioningLessTest) { SimpleVersioningTest<TensorFlowLessOperator>(); } TEST_F(OperatorTest, VersioningLessEqualTest) { SimpleVersioningTest<TensorFlowLessEqualOperator>(); } TEST_F(OperatorTest, VersioningGreaterTest) { SimpleVersioningTest<TensorFlowGreaterOperator>(); } TEST_F(OperatorTest, VersioningGreaterEqualTest) { SimpleVersioningTest<TensorFlowGreaterEqualOperator>(); } TEST_F(OperatorTest, VersioningSpaceToBatchNDTest) { SpaceToBatchNDOperator op; op.inputs = {"input1"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* base_op = operator_by_type_map.at(op.type).get(); Model uint8_model; Array& uint8_array = uint8_model.GetOrCreateArray(op.inputs[0]); uint8_array.copy_shape({1, 2, 2, 2}); uint8_array.data_type = ArrayDataType::kUint8; OperatorSignature uint8_signature = {.op = &op, .model = &uint8_model}; EXPECT_EQ(base_op->GetVersion(uint8_signature), 1); Model int8_model; Array& int8_array = int8_model.GetOrCreateArray(op.inputs[0]); int8_array.copy_shape({1, 2, 2, 2}); int8_array.data_type = ArrayDataType::kInt8; OperatorSignature int8_signature = {.op = &op, .model = &int8_model}; EXPECT_EQ(base_op->GetVersion(int8_signature), 2); Model float_model; Array& float_array = float_model.GetOrCreateArray(op.inputs[0]); float_array.copy_shape({1, 2, 2}); float_array.data_type = ArrayDataType::kFloat; OperatorSignature float_signature = {.op = &op, .model = &float_model}; EXPECT_EQ(base_op->GetVersion(float_signature), 3); } TEST_F(OperatorTest, VersioningLogSoftmaxTest) { SimpleVersioningTest<LogSoftmaxOperator>(); } TEST_F(OperatorTest, VersioningPackTest) { SimpleVersioningTest<PackOperator>(); } TEST_F(OperatorTest, VersioningUnpackTest) { UnpackOperator op; op.inputs = {"input1"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* base_op = operator_by_type_map.at(op.type).get(); Model int32_model; Array& int32_array = int32_model.GetOrCreateArray(op.inputs[0]); int32_array.data_type = ArrayDataType::kInt32; OperatorSignature int32_signature = {.op = &op, .model = &int32_model}; EXPECT_EQ(base_op->GetVersion(int32_signature), 1); Model uint8_model; Array& uint8_array = uint8_model.GetOrCreateArray(op.inputs[0]); uint8_array.data_type = ArrayDataType::kUint8; OperatorSignature uint8_signature = {.op = &op, .model = &uint8_model}; EXPECT_EQ(base_op->GetVersion(uint8_signature), 2); Model int8_model; Array& int8_array = int8_model.GetOrCreateArray(op.inputs[0]); int8_array.data_type = ArrayDataType::kInt8; OperatorSignature int8_signature = {.op = &op, .model = &int8_model}; EXPECT_EQ(base_op->GetVersion(int8_signature), 2); } TEST_F(OperatorTest, VersioningBatchToSpaceNDTest) { BatchToSpaceNDOperator op; op.inputs = {"input1"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* base_op = operator_by_type_map.at(op.type).get(); Model uint8_model; Array& uint8_array = uint8_model.GetOrCreateArray(op.inputs[0]); uint8_array.data_type = ArrayDataType::kUint8; uint8_array.copy_shape({1, 2, 2, 2}); OperatorSignature uint8_signature = {.op = &op, .model = &uint8_model}; EXPECT_EQ(base_op->GetVersion(uint8_signature), 1); Model int8_model; Array& int8_array = int8_model.GetOrCreateArray(op.inputs[0]); int8_array.data_type = ArrayDataType::kInt8; int8_array.copy_shape({1, 2, 2, 2}); OperatorSignature int8_signature = {.op = &op, .model = &int8_model}; EXPECT_EQ(base_op->GetVersion(int8_signature), 2); Model float_model; Array& float_array = float_model.GetOrCreateArray(op.inputs[0]); float_array.copy_shape({1, 2, 2}); float_array.data_type = ArrayDataType::kFloat; OperatorSignature float_signature = {.op = &op, .model = &float_model}; EXPECT_EQ(base_op->GetVersion(float_signature), 3); } TEST_F(OperatorTest, VersioningTanhTest) { SimpleVersioningTest<TanhOperator>(); } TEST_F(OperatorTest, VersioningStridedSliceTest) { StridedSliceOperator op; op.inputs = {"input1"}; op.ellipsis_mask = 0; op.new_axis_mask = 0; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* base_op = operator_by_type_map.at(op.type).get(); Model uint8_model; Array& uint8_array = uint8_model.GetOrCreateArray(op.inputs[0]); uint8_array.data_type = ArrayDataType::kUint8; OperatorSignature uint8_signature = {.op = &op, .model = &uint8_model}; EXPECT_EQ(base_op->GetVersion(uint8_signature), 1); Model int8_model; Array& int8_array = int8_model.GetOrCreateArray(op.inputs[0]); int8_array.data_type = ArrayDataType::kInt8; OperatorSignature int8_signature = {.op = &op, .model = &int8_model}; EXPECT_EQ(base_op->GetVersion(int8_signature), 2); Model bool_model; Array& bool_array = bool_model.GetOrCreateArray(op.inputs[0]); bool_array.data_type = ArrayDataType::kBool; OperatorSignature bool_signature = {.op = &op, .model = &bool_model}; EXPECT_EQ(base_op->GetVersion(bool_signature), 3); op.start_indices = {0, 0, 0, 0, 0}; op.stop_indices = {1, 2, 2, 2, 2}; op.strides = {1, 1, 1, 1, 1}; EXPECT_EQ(base_op->GetVersion(uint8_signature), 4); EXPECT_EQ(base_op->GetVersion(int8_signature), 4); EXPECT_EQ(base_op->GetVersion(bool_signature), 4); } TEST_F(OperatorTest, VersioningSpaceToDepthTest) { SimpleVersioningTest<SpaceToDepthOperator>(); } TEST_F(OperatorTest, VersioningSliceTest) { SimpleVersioningTest<SliceOperator>(); SliceOperator op; op.inputs = {"input1"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* base_op = operator_by_type_map.at(op.type).get(); Model string_model; Array& string_array = string_model.GetOrCreateArray(op.inputs[0]); string_array.data_type = ArrayDataType::kString; OperatorSignature string_signature = {.op = &op, .model = &string_model}; EXPECT_EQ(base_op->GetVersion(string_signature), 3); } TEST_F(OperatorTest, VersioningLogisticTest) { SimpleVersioningTest<LogisticOperator>(); } TEST_F(OperatorTest, VersioningL2NormTest) { SimpleOutputVersioningTest<L2NormalizationOperator>(); } TEST_F(OperatorTest, VersioningMaxTest) { SimpleVersioningTest<TensorFlowMaximumOperator>(); } TEST_F(OperatorTest, VersioningMinTest) { SimpleVersioningTest<TensorFlowMinimumOperator>(); } TEST_F(OperatorTest, VersioningMeanTest) { SimpleVersioningTest<MeanOperator>(); } TEST_F(OperatorTest, VersioningSumTest) { SimpleVersioningTest<TensorFlowSumOperator>(); } TEST_F(OperatorTest, VersioningAddTest) { SimpleVersioningTest<AddOperator>(); } void SimpleMulVersioningTest(ArrayDataType data_type, float multiplier, int version) { MulOperator op; op.inputs = {"input1", "input2"}; op.outputs = {"output"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* base_op = operator_by_type_map.at(op.type).get(); Model model; Array& input0 = model.GetOrCreateArray(op.inputs[0]); Array& input1 = model.GetOrCreateArray(op.inputs[1]); Array& output = model.GetOrCreateArray(op.outputs[0]); input0.data_type = data_type; input0.GetOrCreateQuantizationParams().scale = 1.0f; input1.data_type = data_type; input1.GetOrCreateQuantizationParams().scale = 1.0f; output.data_type = data_type; output.GetOrCreateQuantizationParams().scale = 1.0f / multiplier; OperatorSignature signature = {.op = &op, .model = &model}; EXPECT_EQ(base_op->GetVersion(signature), version); } TEST_F(OperatorTest, VersioningMulTest) { SimpleMulVersioningTest(ArrayDataType::kUint8, 0.5f, 1); SimpleMulVersioningTest(ArrayDataType::kInt8, 0.5f, 2); SimpleMulVersioningTest(ArrayDataType::kInt8, 2.0f, 3); } template <typename OpType> void SimpleTwoInputsVersioningTest(ArrayDataType data_type, Shape shape1, Shape shape2, int version) { OpType op; op.inputs = {"input1", "input2"}; op.outputs = {"output"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* base_op = operator_by_type_map.at(op.type).get(); Model model; Array& input0 = model.GetOrCreateArray(op.inputs[0]); Array& input1 = model.GetOrCreateArray(op.inputs[1]); Array& output = model.GetOrCreateArray(op.outputs[0]); input0.data_type = data_type; input0.copy_shape(shape1); input1.data_type = data_type; input1.copy_shape(shape2); output.data_type = data_type; OperatorSignature signature = {.op = &op, .model = &model}; EXPECT_EQ(base_op->GetVersion(signature), version); } template <typename OpType> void SimpleThreeInputsVersioningTest(ArrayDataType data_type, Shape shape1, Shape shape2, Shape shape3, int version) { OpType op; op.inputs = {"input1", "input2", "input3"}; op.outputs = {"output"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* base_op = operator_by_type_map.at(op.type).get(); Model model; Array& input0 = model.GetOrCreateArray(op.inputs[0]); Array& input1 = model.GetOrCreateArray(op.inputs[1]); Array& input2 = model.GetOrCreateArray(op.inputs[2]); Array& output = model.GetOrCreateArray(op.outputs[0]); input0.data_type = data_type; input0.copy_shape(shape1); input1.data_type = data_type; input1.copy_shape(shape2); input2.data_type = data_type; input2.copy_shape(shape3); output.data_type = data_type; OperatorSignature signature = {.op = &op, .model = &model}; EXPECT_EQ(base_op->GetVersion(signature), version); } TEST_F(OperatorTest, VersioningSubTest) { SimpleTwoInputsVersioningTest<SubOperator>(ArrayDataType::kUint8, {1, 2, 2, 2}, {1, 2, 2, 2}, 1); SimpleTwoInputsVersioningTest<SubOperator>(ArrayDataType::kInt8, {1, 2, 2, 2}, {1, 2, 2, 2}, 2); SimpleTwoInputsVersioningTest<SubOperator>(ArrayDataType::kUint8, {1, 2, 2}, {1, 2, 2}, 1); SimpleTwoInputsVersioningTest<SubOperator>(ArrayDataType::kInt8, {1, 2, 2}, {1, 2, 2}, 2); SimpleTwoInputsVersioningTest<SubOperator>(ArrayDataType::kUint8, {1, 2, 2, 2}, {1, 2, 2, 1}, 1); SimpleTwoInputsVersioningTest<SubOperator>(ArrayDataType::kInt8, {1, 2, 2, 2}, {1, 2, 2, 1}, 2); SimpleTwoInputsVersioningTest<SubOperator>( ArrayDataType::kUint8, {1, 2, 2, 2, 2}, {1, 2, 2, 2, 1}, 3); SimpleTwoInputsVersioningTest<SubOperator>( ArrayDataType::kInt8, {1, 2, 2, 2, 2}, {1, 2, 2, 2, 1}, 3); } TEST_F(OperatorTest, VersioningDivTest) { SimpleTwoInputsVersioningTest<DivOperator>(ArrayDataType::kUint8, {1, 2, 2, 2}, {1, 2, 2, 2}, 1); SimpleTwoInputsVersioningTest<DivOperator>(ArrayDataType::kInt8, {1, 2, 2}, {1, 2, 2}, 1); SimpleTwoInputsVersioningTest<DivOperator>(ArrayDataType::kUint8, {1, 2, 2, 2}, {1, 2, 2, 1}, 1); SimpleTwoInputsVersioningTest<DivOperator>( ArrayDataType::kInt8, {1, 2, 2, 2, 2}, {1, 2, 2, 2, 1}, 2); } TEST_F(OperatorTest, VersioningPadTest) { SimpleVersioningTest<PadOperator>(); } TEST_F(OperatorTest, VersioningPadV2Test) { SimpleVersioningTest<PadV2Operator>(); } TEST_F(OperatorTest, VersioningConcatenationTest) { SimpleVersioningTest<ConcatenationOperator>(); } TEST_F(OperatorTest, VersioningSelectTest) { SimpleThreeInputsVersioningTest<SelectOperator>( ArrayDataType::kUint8, {1, 2, 2, 2}, {1, 2, 2, 1}, {1, 2, 2, 1}, 1); SimpleThreeInputsVersioningTest<SelectOperator>( ArrayDataType::kInt8, {1, 2, 2, 2}, {1, 2, 2, 1}, {1, 2, 2, 1}, 2); SimpleThreeInputsVersioningTest<SelectOperator>( ArrayDataType::kInt8, {1, 2, 2, 2, 1}, {1, 2, 2, 1, 1}, {1, 2, 2, 1, 1}, 3); } TEST_F(OperatorTest, VersioningRelu6Test) { SimpleVersioningTest<Relu6Operator>(); } TEST_F(OperatorTest, VersioningFullyConnectedTest) { FullyConnectedOperator fully_connected_op; fully_connected_op.inputs = {"input", "weight"}; fully_connected_op.outputs = {"output"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* op = operator_by_type_map.at(fully_connected_op.type).get(); Model uint8_model; Array& input_uint8_array = uint8_model.GetOrCreateArray(fully_connected_op.inputs[0]); input_uint8_array.data_type = ArrayDataType::kUint8; Array& weight_uint8_array = uint8_model.GetOrCreateArray(fully_connected_op.inputs[1]); weight_uint8_array.data_type = ArrayDataType::kUint8; Array& output_uint8_array = uint8_model.GetOrCreateArray(fully_connected_op.outputs[0]); output_uint8_array.data_type = ArrayDataType::kUint8; OperatorSignature uint8_signature = {.op = &fully_connected_op, .model = &uint8_model}; EXPECT_EQ(op->GetVersion(uint8_signature), 6); Model int8_model; Array& input_int8_array = int8_model.GetOrCreateArray(fully_connected_op.inputs[0]); input_int8_array.data_type = ArrayDataType::kInt8; Array& weight_int8_array = int8_model.GetOrCreateArray(fully_connected_op.inputs[1]); weight_int8_array.data_type = ArrayDataType::kInt8; Array& output_int8_array = int8_model.GetOrCreateArray(fully_connected_op.outputs[0]); output_int8_array.data_type = ArrayDataType::kInt8; OperatorSignature int8_signature = {.op = &fully_connected_op, .model = &int8_model}; EXPECT_EQ(op->GetVersion(int8_signature), 6); } TEST_F(OperatorTest, VersioningDequantizeTest) { DequantizeOperator dequant_op; dequant_op.inputs = {"input"}; dequant_op.outputs = {"output"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* op = operator_by_type_map.at(dequant_op.type).get(); Model int16_model; Array& input_int16_array = int16_model.GetOrCreateArray(dequant_op.inputs[0]); input_int16_array.data_type = ArrayDataType::kInt16; OperatorSignature int16_signature = {.op = &dequant_op, .model = &int16_model}; EXPECT_EQ(op->GetVersion(int16_signature), 3); Model float16_model; Array& input_float16_array = float16_model.GetOrCreateArray(dequant_op.inputs[0]); input_float16_array.data_type = ArrayDataType::kFloat16; OperatorSignature float16_signature = {.op = &dequant_op, .model = &float16_model}; EXPECT_EQ(op->GetVersion(float16_signature), 3); Model int8_model; Array& input_int8_array = int8_model.GetOrCreateArray(dequant_op.inputs[0]); input_int8_array.data_type = ArrayDataType::kInt8; OperatorSignature int8_signature = {.op = &dequant_op, .model = &int8_model}; EXPECT_EQ(op->GetVersion(int8_signature), 2); Model float_model; Array& input_float_array = float_model.GetOrCreateArray(dequant_op.inputs[0]); input_float_array.data_type = ArrayDataType::kFloat; OperatorSignature float_signature = {.op = &dequant_op, .model = &float_model}; EXPECT_EQ(op->GetVersion(float_signature), 1); } TEST_F(OperatorTest, VersioningConv2DTest) { ConvOperator conv_op; conv_op.inputs = {"input", "filter"}; conv_op.outputs = {"output"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* op = operator_by_type_map.at(conv_op.type).get(); Model uint8_model; Array& input_uint8_array = uint8_model.GetOrCreateArray(conv_op.inputs[0]); input_uint8_array.data_type = ArrayDataType::kUint8; Array& filter_uint8_array = uint8_model.GetOrCreateArray(conv_op.inputs[1]); filter_uint8_array.data_type = ArrayDataType::kUint8; Array& output_uint8_array = uint8_model.GetOrCreateArray(conv_op.outputs[0]); output_uint8_array.data_type = ArrayDataType::kUint8; OperatorSignature uint8_signature = {.op = &conv_op, .model = &uint8_model}; EXPECT_EQ(op->GetVersion(uint8_signature), 1); Model int8_model; Array& input_int8_array = int8_model.GetOrCreateArray(conv_op.inputs[0]); input_int8_array.data_type = ArrayDataType::kInt8; Array& filter_int8_array = int8_model.GetOrCreateArray(conv_op.inputs[1]); filter_int8_array.data_type = ArrayDataType::kInt8; Array& output_int8_array = int8_model.GetOrCreateArray(conv_op.outputs[0]); output_int8_array.data_type = ArrayDataType::kInt8; OperatorSignature int8_signature = {.op = &conv_op, .model = &int8_model}; EXPECT_EQ(op->GetVersion(int8_signature), 3); Model float_model; Array& input_float_array = float_model.GetOrCreateArray(conv_op.inputs[0]); input_float_array.data_type = ArrayDataType::kFloat; Array& filter_int8_array1 = float_model.GetOrCreateArray(conv_op.inputs[1]); filter_int8_array1.data_type = ArrayDataType::kInt8; Array& output_float_array = float_model.GetOrCreateArray(conv_op.outputs[0]); output_float_array.data_type = ArrayDataType::kFloat; OperatorSignature float_signature = {.op = &conv_op, .model = &float_model}; EXPECT_EQ(op->GetVersion(float_signature), 2); } TEST_F(OperatorTest, VersioningFloorDivOperatorTest) { FloorDivOperator floordiv_op; floordiv_op.inputs = {"input1"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* op = operator_by_type_map.at(floordiv_op.type).get(); Model int32_model; Array& input_int32_array = int32_model.GetOrCreateArray(floordiv_op.inputs[0]); input_int32_array.data_type = ArrayDataType::kInt32; OperatorSignature int32_signature = {.op = &floordiv_op, .model = &int32_model}; EXPECT_EQ(op->GetVersion(int32_signature), 1); Model float_model; Array& input_float_array = float_model.GetOrCreateArray(floordiv_op.inputs[0]); input_float_array.data_type = ArrayDataType::kFloat; OperatorSignature float_signature = {.op = &floordiv_op, .model = &float_model}; EXPECT_EQ(op->GetVersion(float_signature), 2); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/toco/tflite/operator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/toco/tflite/operator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2557a474-7929-4212-8a22-7076742f216a
cpp
google/leveldb
write_batch
db/write_batch.cc
db/write_batch_test.cc
#include "leveldb/write_batch.h" #include "db/dbformat.h" #include "db/memtable.h" #include "db/write_batch_internal.h" #include "leveldb/db.h" #include "util/coding.h" namespace leveldb { static const size_t kHeader = 12; WriteBatch::WriteBatch() { Clear(); } WriteBatch::~WriteBatch() = default; WriteBatch::Handler::~Handler() = default; void WriteBatch::Clear() { rep_.clear(); rep_.resize(kHeader); } size_t WriteBatch::ApproximateSize() const { return rep_.size(); } Status WriteBatch::Iterate(Handler* handler) const { Slice input(rep_); if (input.size() < kHeader) { return Status::Corruption("malformed WriteBatch (too small)"); } input.remove_prefix(kHeader); Slice key, value; int found = 0; while (!input.empty()) { found++; char tag = input[0]; input.remove_prefix(1); switch (tag) { case kTypeValue: if (GetLengthPrefixedSlice(&input, &key) && GetLengthPrefixedSlice(&input, &value)) { handler->Put(key, value); } else { return Status::Corruption("bad WriteBatch Put"); } break; case kTypeDeletion: if (GetLengthPrefixedSlice(&input, &key)) { handler->Delete(key); } else { return Status::Corruption("bad WriteBatch Delete"); } break; default: return Status::Corruption("unknown WriteBatch tag"); } } if (found != WriteBatchInternal::Count(this)) { return Status::Corruption("WriteBatch has wrong count"); } else { return Status::OK(); } } int WriteBatchInternal::Count(const WriteBatch* b) { return DecodeFixed32(b->rep_.data() + 8); } void WriteBatchInternal::SetCount(WriteBatch* b, int n) { EncodeFixed32(&b->rep_[8], n); } SequenceNumber WriteBatchInternal::Sequence(const WriteBatch* b) { return SequenceNumber(DecodeFixed64(b->rep_.data())); } void WriteBatchInternal::SetSequence(WriteBatch* b, SequenceNumber seq) { EncodeFixed64(&b->rep_[0], seq); } void WriteBatch::Put(const Slice& key, const Slice& value) { WriteBatchInternal::SetCount(this, WriteBatchInternal::Count(this) + 1); rep_.push_back(static_cast<char>(kTypeValue)); PutLengthPrefixedSlice(&rep_, key); PutLengthPrefixedSlice(&rep_, value); } void WriteBatch::Delete(const Slice& key) { WriteBatchInternal::SetCount(this, WriteBatchInternal::Count(this) + 1); rep_.push_back(static_cast<char>(kTypeDeletion)); PutLengthPrefixedSlice(&rep_, key); } void WriteBatch::Append(const WriteBatch& source) { WriteBatchInternal::Append(this, &source); } namespace { class MemTableInserter : public WriteBatch::Handler { public: SequenceNumber sequence_; MemTable* mem_; void Put(const Slice& key, const Slice& value) override { mem_->Add(sequence_, kTypeValue, key, value); sequence_++; } void Delete(const Slice& key) override { mem_->Add(sequence_, kTypeDeletion, key, Slice()); sequence_++; } }; } Status WriteBatchInternal::InsertInto(const WriteBatch* b, MemTable* memtable) { MemTableInserter inserter; inserter.sequence_ = WriteBatchInternal::Sequence(b); inserter.mem_ = memtable; return b->Iterate(&inserter); } void WriteBatchInternal::SetContents(WriteBatch* b, const Slice& contents) { assert(contents.size() >= kHeader); b->rep_.assign(contents.data(), contents.size()); } void WriteBatchInternal::Append(WriteBatch* dst, const WriteBatch* src) { SetCount(dst, Count(dst) + Count(src)); assert(src->rep_.size() >= kHeader); dst->rep_.append(src->rep_.data() + kHeader, src->rep_.size() - kHeader); } }
#include "gtest/gtest.h" #include "db/memtable.h" #include "db/write_batch_internal.h" #include "leveldb/db.h" #include "leveldb/env.h" #include "util/logging.h" namespace leveldb { static std::string PrintContents(WriteBatch* b) { InternalKeyComparator cmp(BytewiseComparator()); MemTable* mem = new MemTable(cmp); mem->Ref(); std::string state; Status s = WriteBatchInternal::InsertInto(b, mem); int count = 0; Iterator* iter = mem->NewIterator(); for (iter->SeekToFirst(); iter->Valid(); iter->Next()) { ParsedInternalKey ikey; EXPECT_TRUE(ParseInternalKey(iter->key(), &ikey)); switch (ikey.type) { case kTypeValue: state.append("Put("); state.append(ikey.user_key.ToString()); state.append(", "); state.append(iter->value().ToString()); state.append(")"); count++; break; case kTypeDeletion: state.append("Delete("); state.append(ikey.user_key.ToString()); state.append(")"); count++; break; } state.append("@"); state.append(NumberToString(ikey.sequence)); } delete iter; if (!s.ok()) { state.append("ParseError()"); } else if (count != WriteBatchInternal::Count(b)) { state.append("CountMismatch()"); } mem->Unref(); return state; } TEST(WriteBatchTest, Empty) { WriteBatch batch; ASSERT_EQ("", PrintContents(&batch)); ASSERT_EQ(0, WriteBatchInternal::Count(&batch)); } TEST(WriteBatchTest, Multiple) { WriteBatch batch; batch.Put(Slice("foo"), Slice("bar")); batch.Delete(Slice("box")); batch.Put(Slice("baz"), Slice("boo")); WriteBatchInternal::SetSequence(&batch, 100); ASSERT_EQ(100, WriteBatchInternal::Sequence(&batch)); ASSERT_EQ(3, WriteBatchInternal::Count(&batch)); ASSERT_EQ( "Put(baz, boo)@102" "Delete(box)@101" "Put(foo, bar)@100", PrintContents(&batch)); } TEST(WriteBatchTest, Corruption) { WriteBatch batch; batch.Put(Slice("foo"), Slice("bar")); batch.Delete(Slice("box")); WriteBatchInternal::SetSequence(&batch, 200); Slice contents = WriteBatchInternal::Contents(&batch); WriteBatchInternal::SetContents(&batch, Slice(contents.data(), contents.size() - 1)); ASSERT_EQ( "Put(foo, bar)@200" "ParseError()", PrintContents(&batch)); } TEST(WriteBatchTest, Append) { WriteBatch b1, b2; WriteBatchInternal::SetSequence(&b1, 200); WriteBatchInternal::SetSequence(&b2, 300); b1.Append(b2); ASSERT_EQ("", PrintContents(&b1)); b2.Put("a", "va"); b1.Append(b2); ASSERT_EQ("Put(a, va)@200", PrintContents(&b1)); b2.Clear(); b2.Put("b", "vb"); b1.Append(b2); ASSERT_EQ( "Put(a, va)@200" "Put(b, vb)@201", PrintContents(&b1)); b2.Delete("foo"); b1.Append(b2); ASSERT_EQ( "Put(a, va)@200" "Put(b, vb)@202" "Put(b, vb)@201" "Delete(foo)@203", PrintContents(&b1)); } TEST(WriteBatchTest, ApproximateSize) { WriteBatch batch; size_t empty_size = batch.ApproximateSize(); batch.Put(Slice("foo"), Slice("bar")); size_t one_key_size = batch.ApproximateSize(); ASSERT_LT(empty_size, one_key_size); batch.Put(Slice("baz"), Slice("boo")); size_t two_keys_size = batch.ApproximateSize(); ASSERT_LT(one_key_size, two_keys_size); batch.Delete(Slice("box")); size_t post_delete_size = batch.ApproximateSize(); ASSERT_LT(two_keys_size, post_delete_size); } }
https://github.com/google/leveldb/blob/23e35d792b9154f922b8b575b12596a4d8664c65/db/write_batch.cc
https://github.com/google/leveldb/blob/23e35d792b9154f922b8b575b12596a4d8664c65/db/write_batch_test.cc
23e35d792b9154f922b8b575b12596a4d8664c65
802b3b11-0f4c-4890-b4d4-7fec4156a47f
cpp
google/arolla
qtype
arolla/jagged_shape/dense_array/qtype/qtype.cc
arolla/jagged_shape/dense_array/qtype/qtype_test.cc
#include "arolla/jagged_shape/dense_array/qtype/qtype.h" #include "absl/base/no_destructor.h" #include "arolla/dense_array/edge.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/jagged_shape/dense_array/jagged_shape.h" #include "arolla/jagged_shape/qtype/qtype.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/util/init_arolla.h" #include "arolla/util/meta.h" namespace arolla { namespace { class JaggedDenseArrayShapeQType final : public JaggedShapeQType { public: static const JaggedDenseArrayShapeQType* GetInstance() { static absl::NoDestructor<JaggedDenseArrayShapeQType> result; return result.get(); } JaggedDenseArrayShapeQType() : JaggedShapeQType(meta::type<JaggedDenseArrayShape>(), "JAGGED_DENSE_ARRAY_SHAPE") {} QTypePtr edge_qtype() const override { return GetQType<DenseArrayEdge>(); }; }; } QTypePtr QTypeTraits<JaggedDenseArrayShape>::type() { return JaggedDenseArrayShapeQType::GetInstance(); } AROLLA_INITIALIZER( .reverse_deps = {arolla::initializer_dep::kQTypes}, .init_fn = [] { return SetEdgeQTypeToJaggedShapeQType( GetQType<DenseArrayEdge>(), GetQType<JaggedDenseArrayShape>()); }) }
#include "arolla/jagged_shape/dense_array/qtype/qtype.h" #include <cstdint> #include <string> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "arolla/dense_array/dense_array.h" #include "arolla/dense_array/edge.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/jagged_shape/array/jagged_shape.h" #include "arolla/jagged_shape/array/qtype/qtype.h" #include "arolla/jagged_shape/dense_array/jagged_shape.h" #include "arolla/jagged_shape/qtype/qtype.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/typed_value.h" #include "arolla/util/testing/repr_token_eq.h" namespace arolla { namespace { using ::absl_testing::StatusIs; using ::arolla::testing::ReprTokenEq; TEST(QTypeTest, TypedValueRepr) { ASSERT_OK_AND_ASSIGN(auto edge, DenseArrayEdge::FromSplitPoints( CreateDenseArray<int64_t>({0, 2}))); ASSERT_OK_AND_ASSIGN(auto shape, JaggedDenseArrayShape::FromEdges({edge})); auto tv = TypedValue::FromValue(shape); EXPECT_THAT(tv.GenReprToken(), ReprTokenEq("JaggedShape(2)")); } TEST(QTypeTest, JaggedDenseArrayShapeQType) { QTypePtr type = GetQType<JaggedDenseArrayShape>(); EXPECT_NE(type, nullptr); EXPECT_EQ(type->name(), "JAGGED_DENSE_ARRAY_SHAPE"); EXPECT_EQ(type->type_info(), typeid(JaggedDenseArrayShape)); EXPECT_EQ(type->value_qtype(), nullptr); EXPECT_TRUE(IsJaggedShapeQType(type)); EXPECT_EQ(type, GetQType<JaggedDenseArrayShape>()); EXPECT_NE(type, GetQType<JaggedArrayShape>()); } TEST(QTypeTest, JaggedDenseArrayShapeFingerprint) { ASSERT_OK_AND_ASSIGN(auto edge1, DenseArrayEdge::FromSplitPoints( CreateDenseArray<int64_t>({0, 2}))); ASSERT_OK_AND_ASSIGN(auto edge2, DenseArrayEdge::FromSplitPoints( CreateDenseArray<int64_t>({0, 1, 3}))); ASSERT_OK_AND_ASSIGN(auto shape1, JaggedDenseArrayShape::FromEdges({edge1, edge2})); ASSERT_OK_AND_ASSIGN(auto shape2, JaggedDenseArrayShape::FromEdges({edge1, edge2})); auto tv1 = TypedValue::FromValue(shape1); auto tv2 = TypedValue::FromValue(shape2); EXPECT_EQ(tv1.GetFingerprint(), tv2.GetFingerprint()); ASSERT_OK_AND_ASSIGN(auto edge3, DenseArrayEdge::FromSplitPoints( CreateDenseArray<int64_t>({0, 1, 4}))); ASSERT_OK_AND_ASSIGN(auto shape3, JaggedDenseArrayShape::FromEdges({edge1, edge3})); auto tv3 = TypedValue::FromValue(shape3); EXPECT_NE(tv1.GetFingerprint(), tv3.GetFingerprint()); } TEST(QTypeTest, CopyTo) { ASSERT_OK_AND_ASSIGN(auto edge1, DenseArrayEdge::FromSplitPoints( CreateDenseArray<int64_t>({0, 2}))); ASSERT_OK_AND_ASSIGN(auto edge2, DenseArrayEdge::FromSplitPoints( CreateDenseArray<int64_t>({0, 1, 3}))); ASSERT_OK_AND_ASSIGN(auto shape, JaggedDenseArrayShape::FromEdges({edge1, edge2})); auto tv = TypedValue::FromValue(shape); auto tv_copy = TypedValue(tv.AsRef()); EXPECT_EQ(tv.GetFingerprint(), tv_copy.GetFingerprint()); } TEST(QTypeTest, JaggedShapeQTypeFromEdgeQType) { { ASSERT_OK_AND_ASSIGN(auto shape_qtype, GetJaggedShapeQTypeFromEdgeQType( GetQType<DenseArrayEdge>())); EXPECT_EQ(shape_qtype, GetQType<JaggedDenseArrayShape>()); } { EXPECT_THAT( GetJaggedShapeQTypeFromEdgeQType(GetQType<DenseArrayGroupScalarEdge>()), StatusIs(absl::StatusCode::kInvalidArgument, "DENSE_ARRAY_TO_SCALAR_EDGE key is not registered")); } { EXPECT_THAT( SetEdgeQTypeToJaggedShapeQType(GetQType<DenseArrayEdge>(), GetQType<DenseArrayGroupScalarEdge>()), StatusIs(absl::StatusCode::kInvalidArgument, "DENSE_ARRAY_EDGE key is already registered")); } } TEST(QTypeTest, EdgeQType) { auto type = GetQType<JaggedDenseArrayShape>(); auto shape_qtype = dynamic_cast<const JaggedShapeQType*>(type); EXPECT_EQ(shape_qtype->edge_qtype(), GetQType<DenseArrayEdge>()); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/jagged_shape/dense_array/qtype/qtype.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/jagged_shape/dense_array/qtype/qtype_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
82d02e5a-7dfd-45a3-8fb6-a86cc367b6a7
cpp
google/tensorstore
contiguous_layout
tensorstore/contiguous_layout.cc
tensorstore/contiguous_layout_test.cc
#include "tensorstore/contiguous_layout.h" #include <stddef.h> #include <cassert> #include <ostream> #include "tensorstore/index.h" #include "tensorstore/util/span.h" namespace tensorstore { void ComputeStrides(ContiguousLayoutOrder order, ptrdiff_t element_stride, tensorstore::span<const Index> shape, tensorstore::span<Index> strides) { const DimensionIndex rank = shape.size(); assert(strides.size() == rank); if (order == ContiguousLayoutOrder::right) { for (DimensionIndex i = rank - 1; i >= 0; --i) { strides[i] = element_stride; element_stride *= shape[i]; } } else { for (DimensionIndex i = 0; i < rank; ++i) { strides[i] = element_stride; element_stride *= shape[i]; } } } std::ostream& operator<<(std::ostream& os, ContiguousLayoutOrder order) { return os << (order == ContiguousLayoutOrder::c ? 'C' : 'F'); } }
#include "tensorstore/contiguous_layout.h" #include <array> #include <sstream> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index.h" #include "tensorstore/util/span.h" namespace { using ::tensorstore::ComputeStrides; using ::tensorstore::ContiguousLayoutOrder; using ::tensorstore::GetContiguousIndices; using ::tensorstore::GetContiguousOffset; using ::tensorstore::Index; TEST(ContiguousLayoutOrderTest, PrintToOstream) { { std::ostringstream ostr; ostr << ContiguousLayoutOrder::c; EXPECT_EQ("C", ostr.str()); } { std::ostringstream ostr; ostr << ContiguousLayoutOrder::fortran; EXPECT_EQ("F", ostr.str()); } } TEST(ComputeStridesTest, COrder) { { std::array<Index, 3> strides; ComputeStrides(ContiguousLayoutOrder::c, 1, tensorstore::span<const Index>({3l, 4l, 5l}), strides); EXPECT_THAT(strides, ::testing::ElementsAre(20, 5, 1)); } { std::array<Index, 3> strides; ComputeStrides(ContiguousLayoutOrder::c, 2, tensorstore::span<const Index>({3l, 4l, 5l}), strides); EXPECT_THAT(strides, ::testing::ElementsAre(40, 10, 2)); } } TEST(ComputeStridesTest, FOrder) { std::array<Index, 3> strides; ComputeStrides(ContiguousLayoutOrder::fortran, 1, tensorstore::span<const Index>({3l, 4l, 5l}), strides); EXPECT_THAT(strides, ::testing::ElementsAre(1, 3, 12)); } TEST(GetContiguousOffsetTest, Basic) { Index indices[2]; EXPECT_EQ(3 * 11 + 4, GetContiguousOffset<ContiguousLayoutOrder::c>({{7, 11}}, {{3, 4}})); GetContiguousIndices<ContiguousLayoutOrder::c, Index>(3 * 11 + 4, {{7, 11}}, indices); EXPECT_THAT(indices, ::testing::ElementsAre(3, 4)); EXPECT_EQ(3 + 4 * 7, GetContiguousOffset<ContiguousLayoutOrder::fortran>( {{7, 11}}, {{3, 4}})); GetContiguousIndices<ContiguousLayoutOrder::fortran, Index>( 3 + 4 * 7, {{7, 11}}, indices); EXPECT_THAT(indices, ::testing::ElementsAre(3, 4)); EXPECT_EQ( 2 * (7 * 11) + 3 * 11 + 4, GetContiguousOffset<ContiguousLayoutOrder::c>({{5, 7, 11}}, {{2, 3, 4}})); EXPECT_EQ(2 + 5 * 3 + (5 * 7) * 4, GetContiguousOffset<ContiguousLayoutOrder::fortran>({{5, 7, 11}}, {{2, 3, 4}})); EXPECT_EQ(0, GetContiguousOffset<ContiguousLayoutOrder::c>({}, {})); EXPECT_EQ(0, GetContiguousOffset<ContiguousLayoutOrder::fortran>({}, {})); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/contiguous_layout.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/contiguous_layout_test.cc
4f887a6430414cd6088e1743555015b10f116d50
be356233-8fba-4b09-a422-fc77a6275b18
cpp
tensorflow/tensorflow
proto_serialization
third_party/xla/xla/tsl/lib/strings/proto_serialization.cc
tensorflow/core/lib/strings/proto_serialization_test.cc
#include "xla/tsl/lib/strings/proto_serialization.h" #include <cstring> #include <memory> #include "absl/memory/memory.h" #include "absl/strings/string_view.h" #include "xla/tsl/lib/gtl/inlined_vector.h" #include "tsl/platform/hash.h" #include "tsl/platform/logging.h" #include "tsl/platform/macros.h" namespace tsl { namespace { class DeterministicSerializer { public: explicit DeterministicSerializer(const protobuf::MessageLite& msg) : DeterministicSerializer(msg, msg.ByteSizeLong()) {} DeterministicSerializer(const protobuf::MessageLite& msg, size_t size) : size_(size) { char* ptr = space_; if (size_ > sizeof(space_)) { ptr = new char[size_]; alloc_.reset(ptr); } bool ok = SerializeToBufferDeterministic(msg, ptr, size_); DCHECK(ok); } size_t size() const { return size_; } const char* data() const { return alloc_ == nullptr ? space_ : alloc_.get(); } private: static constexpr int kInlinedBufferSize = 256; const size_t size_; std::unique_ptr<char[]> alloc_; char space_[kInlinedBufferSize]; }; } bool SerializeToStringDeterministic(const protobuf::MessageLite& msg, string* result) { const size_t size = msg.ByteSizeLong(); DCHECK_LE(size, static_cast<size_t>(INT_MAX)); *result = string(size, '\0'); return SerializeToBufferDeterministic(msg, const_cast<char*>(result->data()), result->size()); } bool SerializeToBufferDeterministic(const protobuf::MessageLite& msg, char* buffer, size_t size) { DCHECK(msg.ByteSizeLong() == size && size <= static_cast<size_t>(INT_MAX)); protobuf::io::ArrayOutputStream array_stream(buffer, size); protobuf::io::CodedOutputStream output_stream(&array_stream); output_stream.SetSerializationDeterministic(true); msg.SerializeWithCachedSizes(&output_stream); return !output_stream.HadError() && size == static_cast<size_t>(output_stream.ByteCount()); } bool AreSerializedProtosEqual(const protobuf::MessageLite& x, const protobuf::MessageLite& y) { const size_t size = x.ByteSizeLong(); if (size != y.ByteSizeLong()) return false; if (size == 0) return true; DeterministicSerializer x_serialized(x, size); DeterministicSerializer y_serialized(y, size); return memcmp(x_serialized.data(), y_serialized.data(), size) == 0; } uint64 DeterministicProtoHash64(const protobuf::MessageLite& proto, uint64 seed) { DeterministicSerializer serialized(proto); return Hash64(serialized.data(), serialized.size(), seed); } uint64 DeterministicProtoHash64(const protobuf::MessageLite& proto) { DeterministicSerializer serialized(proto); return Hash64(serialized.data(), serialized.size()); } }
#include "tensorflow/core/lib/strings/proto_serialization.h" #include <string> #include "absl/memory/memory.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/lib/gtl/inlined_vector.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace { GraphDef MakeGraphDef(int num_nodes) { GraphDef graph_def; for (int i = 0; i < num_nodes; ++i) { NodeDef* node = graph_def.add_node(); node->set_name(strings::StrCat("node", i)); node->set_op(strings::StrCat("op", i % 10)); (*node->mutable_attr())["foo"].set_f(3.14f); (*node->mutable_attr())["bar"].set_s("baz"); } return graph_def; } } static void BM_ProtoSerializationToString(::testing::benchmark::State& state) { int num_nodes = state.range(0); GraphDef graph_def = MakeGraphDef(num_nodes); for (auto i : state) { string serialized; testing::DoNotOptimize( SerializeToStringDeterministic(graph_def, &serialized)); } } BENCHMARK(BM_ProtoSerializationToString)->Range(1, 10000); static void BM_ProtoSerializationToBuffer(::testing::benchmark::State& state) { int num_nodes = state.range(0); GraphDef graph_def = MakeGraphDef(num_nodes); const size_t size = graph_def.ByteSizeLong(); for (auto i : state) { gtl::InlinedVector<char, 1024> buf(size); testing::DoNotOptimize( SerializeToBufferDeterministic(graph_def, buf.data(), size)); } } BENCHMARK(BM_ProtoSerializationToBuffer)->Range(1, 10000); static void BM_DeterministicProtoHash64(::testing::benchmark::State& state) { int num_nodes = state.range(0); GraphDef graph_def = MakeGraphDef(num_nodes); for (auto i : state) { testing::DoNotOptimize(DeterministicProtoHash64(graph_def)); } } BENCHMARK(BM_DeterministicProtoHash64)->Range(1, 10000); static void BM_AreSerializedProtosEqual(::testing::benchmark::State& state) { int num_nodes = state.range(0); GraphDef graph_def_a = MakeGraphDef(num_nodes); GraphDef graph_def_b = MakeGraphDef(num_nodes); graph_def_b.mutable_node(0)->mutable_name()[0] = 'l'; for (auto i : state) { testing::DoNotOptimize(AreSerializedProtosEqual(graph_def_a, graph_def_a)); } } BENCHMARK(BM_AreSerializedProtosEqual)->Range(1, 10000); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/strings/proto_serialization.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/strings/proto_serialization_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
22592641-0513-4ddb-bc56-908b24bd89c8
cpp
google/tensorstore
gce_auth_provider
tensorstore/internal/oauth2/gce_auth_provider.cc
tensorstore/internal/oauth2/gce_auth_provider_test.cc
#include "tensorstore/internal/oauth2/gce_auth_provider.h" #include <functional> #include <memory> #include <optional> #include <set> #include <string> #include <string_view> #include <utility> #include "absl/flags/flag.h" #include "absl/status/status.h" #include "absl/time/time.h" #include <nlohmann/json.hpp> #include "tensorstore/internal/env.h" #include "tensorstore/internal/http/http_request.h" #include "tensorstore/internal/http/http_response.h" #include "tensorstore/internal/http/http_transport.h" #include "tensorstore/internal/json/json.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/json_binding/std_array.h" #include "tensorstore/internal/oauth2/auth_provider.h" #include "tensorstore/internal/oauth2/bearer_token.h" #include "tensorstore/internal/oauth2/oauth_utils.h" #include "tensorstore/internal/oauth2/refreshable_auth_provider.h" #include "tensorstore/internal/path.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" ABSL_FLAG(std::optional<std::string>, tensorstore_gce_metadata_root, std::nullopt, "Url to used for http access metadata.google.internal. " "Overrides GCE_METADATA_ROOT."); namespace tensorstore { namespace internal_oauth2 { namespace { namespace jb = tensorstore::internal_json_binding; using ::tensorstore::internal::GetFlagOrEnvValue; using ::tensorstore::internal_http::HttpRequestBuilder; using ::tensorstore::internal_http::HttpResponse; constexpr static auto ServiceAccountInfoBinder = jb::Object( jb::Member("email", jb::Projection(&GceAuthProvider::ServiceAccountInfo::email, jb::NonEmptyStringBinder)), jb::Member("scopes", jb::Projection(&GceAuthProvider::ServiceAccountInfo::scopes)), jb::DiscardExtraMembers); } std::string GceMetadataHostname() { return GetFlagOrEnvValue(FLAGS_tensorstore_gce_metadata_root, "GCE_METADATA_ROOT") .value_or("metadata.google.internal"); } GceAuthProvider::GceAuthProvider( std::shared_ptr<internal_http::HttpTransport> transport, const ServiceAccountInfo& service_account_info, std::function<absl::Time()> clock) : RefreshableAuthProvider(std::move(clock)), service_account_email_(service_account_info.email), scopes_(service_account_info.scopes.begin(), service_account_info.scopes.end()), transport_(std::move(transport)) {} Result<HttpResponse> GceAuthProvider::IssueRequest(std::string path, bool recursive) { HttpRequestBuilder request_builder( "GET", internal::JoinPath("http: request_builder.AddHeader("Metadata-Flavor: Google"); if (recursive) { request_builder.AddQueryParameter("recursive", "true"); } return transport_->IssueRequest(request_builder.BuildRequest(), {}).result(); } Result<GceAuthProvider::ServiceAccountInfo> GceAuthProvider::GetDefaultServiceAccountInfoIfRunningOnGce( internal_http::HttpTransport* transport) { TENSORSTORE_ASSIGN_OR_RETURN( auto response, transport ->IssueRequest( HttpRequestBuilder( "GET", internal::JoinPath( "http: "/computeMetadata/v1/instance/service-accounts/default/")) .AddHeader("Metadata-Flavor: Google") .AddQueryParameter("recursive", "true") .BuildRequest(), {}) .result()); TENSORSTORE_RETURN_IF_ERROR(HttpResponseCodeToStatus(response)); auto info_response = internal::ParseJson(response.payload.Flatten()); if (info_response.is_discarded()) { return absl::InvalidArgumentError( tensorstore::StrCat("Failed to parse service account response: ", response.payload.Flatten())); } return jb::FromJson<ServiceAccountInfo>(info_response, ServiceAccountInfoBinder); } Result<BearerTokenWithExpiration> GceAuthProvider::Refresh() { const auto now = GetCurrentTime(); TENSORSTORE_ASSIGN_OR_RETURN( auto response, IssueRequest( tensorstore::StrCat("/computeMetadata/v1/instance/service-accounts/", service_account_email_, "/token"), false)); TENSORSTORE_RETURN_IF_ERROR(HttpResponseCodeToStatus(response)); TENSORSTORE_ASSIGN_OR_RETURN(auto result, internal_oauth2::ParseOAuthResponse( response.payload.Flatten())); return BearerTokenWithExpiration{std::move(result.access_token), now + absl::Seconds(result.expires_in)}; } } }
#include "tensorstore/internal/oauth2/gce_auth_provider.h" #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/time/clock.h" #include "tensorstore/internal/env.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" namespace { using ::tensorstore::Result; using ::tensorstore::internal_http::HttpResponse; using ::tensorstore::internal_oauth2::GceAuthProvider; const char kOAuthResponse[] = R"( { "token_type" : "refresh", "access_token": "abc", "expires_in": 456 } )"; class TestAuthProvider : public GceAuthProvider { public: TestAuthProvider() : GceAuthProvider(nullptr, {"[email protected]", {"abc", "xyz"}}, [this] { return this->time; }), time(absl::Now()), idx(0) {} virtual Result<HttpResponse> IssueRequest(std::string path, bool recursive) { request.emplace_back(std::move(path)); if (responses.count(idx) != 0) { return responses[idx++]; } return HttpResponse{}; } absl::Time time; int idx; absl::flat_hash_map<int, HttpResponse> responses; std::vector<std::string> request; }; TEST(GceAuthProviderTest, InitialState) { TestAuthProvider auth; EXPECT_FALSE(auth.IsValid()); EXPECT_TRUE(auth.IsExpired()); } TEST(GceAuthProviderTest, Status200) { TestAuthProvider auth; auth.responses = { {0, {200, absl::Cord(kOAuthResponse), {}}}, {1, {200, absl::Cord(kOAuthResponse), {}}}, }; EXPECT_FALSE(auth.IsValid()); { auto result = auth.GetToken(); EXPECT_EQ(1, auth.idx); EXPECT_TRUE(result.ok()) << result.status(); EXPECT_EQ(auth.time + absl::Seconds(456), result->expiration); EXPECT_EQ("abc", result->token); } EXPECT_FALSE(auth.IsExpired()); EXPECT_TRUE(auth.IsValid()); auth.time += absl::Seconds(600); { auto result = auth.GetToken(); EXPECT_EQ(2, auth.idx); EXPECT_TRUE(result.ok()) << result.status(); EXPECT_EQ(auth.time + absl::Seconds(456), result->expiration); EXPECT_EQ("abc", result->token); } } TEST(GceAuthProviderTest, NoResponse) { TestAuthProvider auth; auto result = auth.GetToken(); EXPECT_FALSE(result.ok()) << result.status(); ASSERT_EQ(1, auth.request.size()); EXPECT_EQ( "/computeMetadata/v1/instance/service-accounts/[email protected]/token", auth.request[0]); } TEST(GceAuthProviderTest, Status400) { TestAuthProvider auth; auth.responses = { {0, {400, absl::Cord(kOAuthResponse), {}}}, }; auto result = auth.GetToken(); EXPECT_EQ(1, auth.idx); EXPECT_FALSE(result.ok()) << result.status(); } TEST(GceAuthProviderTest, Hostname) { EXPECT_EQ("metadata.google.internal", tensorstore::internal_oauth2::GceMetadataHostname()); tensorstore::internal::SetEnv("GCE_METADATA_ROOT", "localhost"); EXPECT_EQ("localhost", tensorstore::internal_oauth2::GceMetadataHostname()); tensorstore::internal::UnsetEnv("GCE_METADATA_ROOT"); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/oauth2/gce_auth_provider.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/oauth2/gce_auth_provider_test.cc
4f887a6430414cd6088e1743555015b10f116d50
b2d66996-ec37-441c-9dba-74eedda21742
cpp
tensorflow/tensorflow
all_reduce_simplifier
third_party/xla/xla/service/all_reduce_simplifier.cc
third_party/xla/xla/service/all_reduce_simplifier_test.cc
#include "xla/service/all_reduce_simplifier.h" #include <cstdint> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal_util.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_replication_analysis.h" #include "xla/shape_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { absl::StatusOr<bool> AllReduceSimplifier::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { TF_ASSIGN_OR_RETURN( auto replication, HloReplicationAnalysis::Run(module, false)); std::vector<std::pair<HloInstruction*, int64_t>> all_reduces_to_replace; auto get_participant_counts_for_replica_group = [](const HloInstruction* all_reduce) -> absl::StatusOr<int64_t> { const HloModuleConfig& config = all_reduce->GetModule()->config(); TF_ASSIGN_OR_RETURN( CollectiveOpGroupMode group_mode, GetCollectiveOpGroupMode(all_reduce->channel_id().has_value(), Cast<HloAllReduceInstruction>(all_reduce) ->use_global_device_ids())); int64_t num_devices = config.num_partitions(); int64_t num_replicas = config.replica_count(); TF_ASSIGN_OR_RETURN(std::vector<int64_t> participant_counts, GetPariticipantCountsForReplicaGroups( num_replicas, num_devices, all_reduce->replica_groups(), group_mode)); if (participant_counts.empty()) { return -1; } if (!absl::c_all_of(participant_counts, [&](int64_t participant_count) { return participant_count == participant_counts[0]; })) { return -1; } return participant_counts[0]; }; bool changed = false; for (auto computation : module->computations(execution_threads)) { for (HloInstruction* inst : computation->MakeInstructionPostOrder()) { if ((inst->opcode() == HloOpcode::kAllGather || inst->opcode() == HloOpcode::kReduceScatter) && ShapeUtil::Compatible(inst->shape(), inst->operand(0)->shape())) { changed = true; TF_RETURN_IF_ERROR( computation->ReplaceInstruction(inst, inst->mutable_operand(0))); } } } for (auto computation : module->computations(execution_threads)) { for (HloInstruction* inst : computation->MakeInstructionPostOrder()) { if (!inst->shape().IsArray()) { continue; } if (!inst->IsCrossReplicaAllReduce() && !inst->IsCrossModuleAllReduce()) { continue; } TF_ASSIGN_OR_RETURN(int64_t group_size, get_participant_counts_for_replica_group(inst)); if (group_size == -1 || (!inst->IsCrossReplicaAllReduce() && group_size != 1) || (!inst->IsCrossReplicaAllReduce() && !module->config().use_spmd_partitioning())) { continue; } if (replication->HloInstructionIsReplicatedAt(inst->operand(0), {}) || group_size == 1) { all_reduces_to_replace.push_back({inst, group_size}); } } } for (auto all_reduce_and_group_size : all_reduces_to_replace) { auto all_reduce = all_reduce_and_group_size.first; const int64_t replica_group_size = all_reduce_and_group_size.second; if (replica_group_size == 1) { TF_RETURN_IF_ERROR(all_reduce->parent()->ReplaceInstruction( all_reduce, all_reduce->mutable_operand(0))); changed = true; continue; } if (all_reduce->to_apply()->instruction_count() != 3 || all_reduce->to_apply()->num_parameters() != 2) { continue; } HloInstruction* replacement; switch (all_reduce->to_apply()->root_instruction()->opcode()) { case HloOpcode::kAdd: { auto multiplier = all_reduce->parent()->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR0<int32_t>(replica_group_size))); if (all_reduce->shape().element_type() != S32) { multiplier = all_reduce->parent()->AddInstruction( HloInstruction::CreateConvert( ShapeUtil::ChangeElementType( multiplier->shape(), all_reduce->shape().element_type()), multiplier)); } if (all_reduce->shape().rank() > 0) { multiplier = all_reduce->parent()->AddInstruction( HloInstruction::CreateBroadcast(all_reduce->shape(), multiplier, {})); } replacement = all_reduce->parent()->AddInstruction(HloInstruction::CreateBinary( all_reduce->shape(), HloOpcode::kMultiply, all_reduce->mutable_operand(0), multiplier)); break; } case HloOpcode::kMinimum: case HloOpcode::kMaximum: case HloOpcode::kOr: case HloOpcode::kAnd: replacement = all_reduce->mutable_operand(0); break; default: continue; } VLOG(2) << "Replacing " << all_reduce->ToString() << " with " << replacement->ToString(); TF_RETURN_IF_ERROR(all_reduce->ReplaceAllUsesWith(replacement)); changed = true; } return changed; } }
#include "xla/service/all_reduce_simplifier.h" #include <memory> #include <utility> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_parser.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace m = match; using AllReduceSimplifierTest = HloTestBase; TEST_F(AllReduceSimplifierTest, ReplicatedParameters) { const char* kModuleStr = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } max { a.1 = f32[] parameter(0) b.1 = f32[] parameter(1) ROOT max = f32[] maximum(a.1, b.1) } min { a.2 = f32[] parameter(0) b.2 = f32[] parameter(1) ROOT min = f32[] minimum(a.2, b.2) } sum.1 { a.3 = f32[] parameter(0) b.3 = f32[] parameter(1) ROOT add.1 = f32[] add(a.3, b.3) } test { p0 = f32[8,16] parameter(0), parameter_replication={true} p1 = f32[8,16] parameter(1), parameter_replication={false} p2 = f32[] parameter(2), parameter_replication={true} all-reduce = f32[8,16] all-reduce(p0), replica_groups={}, to_apply=sum all-reduce.1 = f32[8,16] all-reduce(p0), replica_groups={}, to_apply=max all-reduce.2 = f32[8,16] all-reduce(p1), replica_groups={}, to_apply=min all-reduce.3 = f32[] all-reduce(p2), replica_groups={}, to_apply=sum.1 ROOT tuple = (f32[8,16], f32[8,16], f32[8,16], f32[]) tuple(all-reduce, all-reduce.1, all-reduce.2, all-reduce.3) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule( kModuleStr, 8)); AllReduceSimplifier simplifier(8); ASSERT_TRUE(simplifier.Run(module.get()).value()); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::MultiplyAnyOrder(m::Parameter(0), m::Broadcast(m::Convert(m::ConstantScalar(8)))), m::Parameter(0), m::AllReduce(m::Parameter(1)), m::MultiplyAnyOrder(m::Parameter(2), m::Convert(m::ConstantScalar(8)))))); } TEST_F(AllReduceSimplifierTest, AllReduceAfterAllReduce) { const char* kModuleStr = R"( HloModule m max { a.1 = f32[] parameter(0) b.1 = f32[] parameter(1) ROOT max = f32[] maximum(a.1, b.1) } sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } test { p0 = f32[8,16] parameter(0), parameter_replication={false} all-reduce = f32[8,16] all-reduce(p0), replica_groups={}, to_apply=max ROOT all-reduce.1 = f32[8,16] all-reduce(all-reduce), replica_groups={}, to_apply=sum } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule( kModuleStr, 8)); AllReduceSimplifier simplifier(8); ASSERT_TRUE(simplifier.Run(module.get()).value()); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::MultiplyAnyOrder( m::AllReduce(m::Parameter(0)), m::Broadcast(m::Convert(m::ConstantScalar(8)))))); } TEST_F(AllReduceSimplifierTest, SubgroupAllReduce) { const char* kModuleStr = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } max { a.1 = f32[] parameter(0) b.1 = f32[] parameter(1) ROOT max = f32[] maximum(a.1, b.1) } min { a.2 = f32[] parameter(0) b.2 = f32[] parameter(1) ROOT min = f32[] minimum(a.2, b.2) } test { p0 = f32[8,16] parameter(0), parameter_replication={true} p1 = f32[8,16] parameter(1), parameter_replication={false} all-reduce = f32[8,16] all-reduce(p0), replica_groups={{0,1,2,3},{4,5,6,7}}, to_apply=sum all-reduce.1 = f32[8,16] all-reduce(p0), replica_groups={{0,1,2,3},{4,5,6,7}}, to_apply=max all-reduce.2 = f32[8,16] all-reduce(p1), replica_groups={{0,1,2,3},{4,5,6,7}}, to_apply=min ROOT tuple = (f32[8,16], f32[8,16], f32[8,16]) tuple(all-reduce, all-reduce.1, all-reduce.2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule( kModuleStr, 8)); AllReduceSimplifier simplifier(8); ASSERT_TRUE(simplifier.Run(module.get()).value()); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::MultiplyAnyOrder(m::Parameter(0), m::Broadcast(m::Convert(m::ConstantScalar(4)))), m::Parameter(0), m::AllReduce(m::Parameter(1))))); } TEST_F(AllReduceSimplifierTest, TrivialSubgroupAllReduce) { const char* kModuleStr = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } test { p0 = f32[8,16] parameter(0), parameter_replication={false} ROOT all-reduce = f32[8,16] all-reduce(p0), replica_groups={{0},{1},{2},{3},{4},{5},{6},{7}}, to_apply=sum } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule( kModuleStr, 8)); AllReduceSimplifier simplifier(8); EXPECT_TRUE(simplifier.Run(module.get()).value()); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Parameter(0))); } TEST_F(AllReduceSimplifierTest, TrivialSubgroupNonCrossReplicaAllReduce) { const char* kModuleStr = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } test { p0 = f32[8,16] parameter(0), parameter_replication={false} ROOT all-reduce = f32[8,16] all-reduce(p0), channel_id=1, use_global_device_ids=true, replica_groups={{0},{1},{2},{3},{4},{5},{6},{7}}, to_apply=sum } )"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule(kModuleStr, 1, 8)); module->mutable_config().set_use_spmd_partitioning(true); AllReduceSimplifier simplifier(1); EXPECT_TRUE(simplifier.Run(module.get()).value()); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Parameter(0))); } TEST_F(AllReduceSimplifierTest, NonCrossReplicaAllReduceAfterAllReduce) { const char* kModuleStr = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } test { p0 = f32[8,16] parameter(0), parameter_replication={false} all-reduce = f32[8,16] all-reduce(p0), channel_id=1, use_global_device_ids=true, replica_groups={{0,2},{1,3},{4,6},{5,7}}, to_apply=sum ROOT all-reduce.1 = f32[8,16] all-reduce(all-reduce), channel_id=2, use_global_device_ids=true, replica_groups={{0,4},{1,5},{2,6},{3,7}}, to_apply=sum } )"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule(kModuleStr, 1, 8)); module->mutable_config().set_use_spmd_partitioning(true); AllReduceSimplifier simplifier(1); EXPECT_FALSE(simplifier.Run(module.get()).value()); } TEST_F(AllReduceSimplifierTest, MPMDNonCrossReplicaAllReduce) { const char* kModuleStr = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } test { p0 = f32[8,16] parameter(0), parameter_replication={false} ROOT all-reduce = f32[8,16] all-reduce(p0), channel_id=1, replica_groups={{0},{1}}, to_apply=sum } )"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule(kModuleStr, 2, 1)); module->mutable_config().set_use_spmd_partitioning(false); AllReduceSimplifier simplifier(2); EXPECT_FALSE(simplifier.Run(module.get()).value()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/all_reduce_simplifier.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/all_reduce_simplifier_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
efb6078c-2e87-4404-afaf-515287b1e7eb
cpp
tensorflow/tensorflow
multiply
tensorflow/lite/experimental/shlo/ops/multiply.cc
tensorflow/lite/experimental/shlo/ops/multiply_test.cc
#include "tensorflow/lite/experimental/shlo/ops/multiply.h" #include <functional> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/data_type.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { template <DataType expressed_type> struct Multiply : std::multiplies<void> {}; template <> struct Multiply<DataType::kI1> { template <class T> T operator()(const T& lhs, const T& rhs) const { return static_cast<T>(lhs && rhs); } }; MultiplyOp Create(MultiplyOp::Attributes) { return {}; } absl::Status Prepare(MultiplyOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(lhs.shape(), rhs.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR( CheckSupportedTypes(CheckCtx("multiply"), lhs, IsBoolTensor, IsIntTensor, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("multiply"), lhs, output)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("multiply"), rhs, output)); return absl::OkStatus(); } absl::Status Evaluate(MultiplyOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { if (IsBoolTensor(lhs)) { detail::EvaluateNoQuantization<DataType::kI1>(Multiply<DataType::kI1>(), lhs, rhs, output); return absl::OkStatus(); } else if (IsIntTensor(lhs) || IsFloatTensor(lhs)) { Multiply<DataType::kF32> multiply; DISPATCH_INT_FLOAT(detail::EvaluateNoQuantization, lhs.tensor_element_type(), multiply, lhs, rhs, output); } else if (IsQuantizedPerTensorTensor(lhs)) { Multiply<DataType::kF32> multiply; DISPATCH_QUANTIZED(detail::DequantizeOpQuantizePerTensor, lhs.quantized_per_tensor_element_type().StorageType(), lhs.quantized_per_tensor_element_type().ExpressedType(), multiply, lhs, rhs, output) } return absl::FailedPreconditionError( "stablehlo.multiply: Unsupported tensor type."); } }
#include "tensorflow/lite/experimental/shlo/ops/multiply.h" #include <functional> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/data_type.h" #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise_test_util.h" #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/quantize.h" #include "tensorflow/lite/experimental/shlo/quantized_tensor_element_type.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::FloatEq; using testing::Pointwise; namespace shlo_ref { template <> struct ParamName<MultiplyOp> { static std::string Get() { return "Multiply"; } }; template <DataType expressed_type> struct Multiply : std::multiplies<void> {}; template <> struct Multiply<DataType::kI1> { template <class T> T operator()(const T& lhs, const T& rhs) const { return static_cast<T>(lhs && rhs); } }; namespace { INSTANTIATE_TYPED_TEST_SUITE_P(Multiply, BinaryElementwiseOpShapePropagationTest, MultiplyOp, TestParamNames); using MultipyBaselineContraintTypes = BinaryElementwiseBaselineConstraintTypes< MultiplyOp, ConcatTypes<BoolTestType, BaselineConstraintIntTypes, BaselineConstraintFloatTypes, BaselineConstraintQuantizedPerTensorTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P( Multiply, BinaryElementwiseSameBaselineElementTypeConstraintTest, MultipyBaselineContraintTypes, TestParamNames); using UnsupportedTypes = WithOpTypes<MultiplyOp, PerAxisQuantizedTestTypes>; INSTANTIATE_TYPED_TEST_SUITE_P(Multiply, BinaryElementwiseUnsupportedTypeTest, UnsupportedTypes, TestParamNames); using ArithmeticTypes = ConcatTypes<BoolTestType, ArithmeticTestTypes>; template <class T> struct MultiplyTest : ::testing::Test {}; TYPED_TEST_SUITE(MultiplyTest, ArithmeticTypes, TestParamNames); TYPED_TEST(MultiplyTest, ArithmeticTestTypesTensorsWork) { using StorageT = typename TypeParam::StorageT; const Shape shape({2, 3, 4}); Vector<StorageT> lhs_data = RandomBuffer<TypeParam::kStorage>(shape, -5, 5); Vector<StorageT> rhs_data = RandomBuffer<TypeParam::kStorage>(shape, -5, 5); Vector<StorageT> output_data(shape.NumElements()); Tensor lhs_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = lhs_data.data()}; Tensor rhs_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = rhs_data.data()}; Tensor output_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(lhs_data, rhs_data, expected_data.begin(), Multiply<TypeParam::kStorage>()); auto op = Create(MultiplyOp::Attributes{}); ASSERT_OK(Prepare(op, lhs_tensor, rhs_tensor, output_tensor)); ASSERT_OK(Evaluate(op, lhs_tensor, rhs_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(FloatEq(), expected_data)); } template <class T> struct QuantizedMultiplyTest : ::testing::Test {}; TYPED_TEST_SUITE(QuantizedMultiplyTest, QuantizedTestTypes, TestParamNames); TYPED_TEST(QuantizedMultiplyTest, PerTensorWorks) { using StorageT = typename TypeParam::StorageT; using ExpressedT = typename TypeParam::ExpressedT; const Shape shape({2, 3, 4}); Vector<StorageT> lhs_data = RandomBuffer<TypeParam::kStorage>(shape, -5, 5); Vector<StorageT> rhs_data = RandomBuffer<TypeParam::kStorage>(shape, -5, 5); Vector<StorageT> output_data(shape.NumElements()); const ExpressedT scale = static_cast<ExpressedT>(1.5); const StorageT zero_point = static_cast<StorageT>(5); const QuantizedElementTypePerTensor tensor_type = QuantizedElementTypePerTensor(TypeParam::kStorage, zero_point, TypeParam::kExpressed, scale); Tensor lhs_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = lhs_data.data()}; Tensor rhs_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = rhs_data.data()}; Tensor output_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform( lhs_data, rhs_data, expected_data.begin(), [zero_point, scale](auto lhs, auto rhs) { const ExpressedT dequantized_lhs = Dequantize(lhs, zero_point, scale); const ExpressedT dequantized_rhs = Dequantize(rhs, zero_point, scale); const ExpressedT dequantized_res = Multiply<TypeParam::kExpressed>()(dequantized_lhs, dequantized_rhs); return Quantize<TypeParam::kStorage, TypeParam::kExpressed>( dequantized_res, zero_point, static_cast<ExpressedT>(1.) / scale); }); auto op = Create(MultiplyOp::Attributes{}); ASSERT_OK(Prepare(op, lhs_tensor, rhs_tensor, output_tensor)); ASSERT_OK(Evaluate(op, lhs_tensor, rhs_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(FloatEq(), expected_data)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/multiply.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/multiply_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e38f2614-c0c8-476a-930c-933b2ee50af8
cpp
google/quiche
icmp_packet
quiche/quic/qbone/platform/icmp_packet.cc
quiche/quic/qbone/platform/icmp_packet_test.cc
#include "quiche/quic/qbone/platform/icmp_packet.h" #include <netinet/ip6.h> #include <algorithm> #include "absl/strings/string_view.h" #include "quiche/quic/core/internet_checksum.h" #include "quiche/common/quiche_callbacks.h" #include "quiche/common/quiche_endian.h" namespace quic { namespace { constexpr size_t kIPv6AddressSize = sizeof(in6_addr); constexpr size_t kIPv6HeaderSize = sizeof(ip6_hdr); constexpr size_t kICMPv6HeaderSize = sizeof(icmp6_hdr); constexpr size_t kIPv6MinPacketSize = 1280; constexpr size_t kIcmpTtl = 255; constexpr size_t kICMPv6BodyMaxSize = kIPv6MinPacketSize - kIPv6HeaderSize - kICMPv6HeaderSize; struct ICMPv6Packet { ip6_hdr ip_header; icmp6_hdr icmp_header; uint8_t body[kICMPv6BodyMaxSize]; }; struct IPv6PseudoHeader { uint32_t payload_size{}; uint8_t zeros[3] = {0, 0, 0}; uint8_t next_header = IPPROTO_ICMPV6; }; } void CreateIcmpPacket(in6_addr src, in6_addr dst, const icmp6_hdr& icmp_header, absl::string_view body, quiche::UnretainedCallback<void(absl::string_view)> cb) { const size_t body_size = std::min(body.size(), kICMPv6BodyMaxSize); const size_t payload_size = kICMPv6HeaderSize + body_size; ICMPv6Packet icmp_packet{}; icmp_packet.ip_header.ip6_vfc = 0x6 << 4; icmp_packet.ip_header.ip6_plen = quiche::QuicheEndian::HostToNet16(payload_size); icmp_packet.ip_header.ip6_nxt = IPPROTO_ICMPV6; icmp_packet.ip_header.ip6_hops = kIcmpTtl; icmp_packet.ip_header.ip6_src = src; icmp_packet.ip_header.ip6_dst = dst; icmp_packet.icmp_header = icmp_header; icmp_packet.icmp_header.icmp6_cksum = 0; IPv6PseudoHeader pseudo_header{}; pseudo_header.payload_size = quiche::QuicheEndian::HostToNet32(payload_size); InternetChecksum checksum; checksum.Update(icmp_packet.ip_header.ip6_src.s6_addr, kIPv6AddressSize); checksum.Update(icmp_packet.ip_header.ip6_dst.s6_addr, kIPv6AddressSize); checksum.Update(reinterpret_cast<char*>(&pseudo_header), sizeof(pseudo_header)); checksum.Update(reinterpret_cast<const char*>(&icmp_packet.icmp_header), sizeof(icmp_packet.icmp_header)); checksum.Update(body.data(), body_size); icmp_packet.icmp_header.icmp6_cksum = checksum.Value(); memcpy(icmp_packet.body, body.data(), body_size); const char* packet = reinterpret_cast<char*>(&icmp_packet); const size_t packet_size = offsetof(ICMPv6Packet, body) + body_size; cb(absl::string_view(packet, packet_size)); } }
#include "quiche/quic/qbone/platform/icmp_packet.h" #include <netinet/ip6.h> #include <cstdint> #include "absl/strings/string_view.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/common/quiche_text_utils.h" namespace quic { namespace { constexpr char kReferenceSourceAddress[] = "fe80:1:2:3:4::1"; constexpr char kReferenceDestinationAddress[] = "fe80:4:3:2:1::1"; constexpr uint8_t kReferenceICMPMessageBody[] { 0xd2, 0x61, 0x29, 0x5b, 0x00, 0x00, 0x00, 0x00, 0x0d, 0x59, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37 }; constexpr uint8_t kReferenceICMPPacket[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x40, 0x3a, 0xFF, 0xfe, 0x80, 0x00, 0x01, 0x00, 0x02, 0x00, 0x03, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xfe, 0x80, 0x00, 0x04, 0x00, 0x03, 0x00, 0x02, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x80, 0x00, 0xec, 0x00, 0xcb, 0x82, 0x00, 0x01, 0xd2, 0x61, 0x29, 0x5b, 0x00, 0x00, 0x00, 0x00, 0x0d, 0x59, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37 }; } TEST(IcmpPacketTest, CreatedPacketMatchesReference) { QuicIpAddress src; ASSERT_TRUE(src.FromString(kReferenceSourceAddress)); in6_addr src_addr; memcpy(src_addr.s6_addr, src.ToPackedString().data(), sizeof(in6_addr)); QuicIpAddress dst; ASSERT_TRUE(dst.FromString(kReferenceDestinationAddress)); in6_addr dst_addr; memcpy(dst_addr.s6_addr, dst.ToPackedString().data(), sizeof(in6_addr)); icmp6_hdr icmp_header{}; icmp_header.icmp6_type = ICMP6_ECHO_REQUEST; icmp_header.icmp6_id = 0x82cb; icmp_header.icmp6_seq = 0x0100; absl::string_view message_body = absl::string_view( reinterpret_cast<const char*>(kReferenceICMPMessageBody), 56); absl::string_view expected_packet = absl::string_view( reinterpret_cast<const char*>(kReferenceICMPPacket), 104); CreateIcmpPacket(src_addr, dst_addr, icmp_header, message_body, [&expected_packet](absl::string_view packet) { QUIC_LOG(INFO) << quiche::QuicheTextUtils::HexDump(packet); ASSERT_EQ(packet, expected_packet); }); } TEST(IcmpPacketTest, NonZeroChecksumIsIgnored) { QuicIpAddress src; ASSERT_TRUE(src.FromString(kReferenceSourceAddress)); in6_addr src_addr; memcpy(src_addr.s6_addr, src.ToPackedString().data(), sizeof(in6_addr)); QuicIpAddress dst; ASSERT_TRUE(dst.FromString(kReferenceDestinationAddress)); in6_addr dst_addr; memcpy(dst_addr.s6_addr, dst.ToPackedString().data(), sizeof(in6_addr)); icmp6_hdr icmp_header{}; icmp_header.icmp6_type = ICMP6_ECHO_REQUEST; icmp_header.icmp6_id = 0x82cb; icmp_header.icmp6_seq = 0x0100; icmp_header.icmp6_cksum = 0x1234; absl::string_view message_body = absl::string_view( reinterpret_cast<const char*>(kReferenceICMPMessageBody), 56); absl::string_view expected_packet = absl::string_view( reinterpret_cast<const char*>(kReferenceICMPPacket), 104); CreateIcmpPacket(src_addr, dst_addr, icmp_header, message_body, [&expected_packet](absl::string_view packet) { QUIC_LOG(INFO) << quiche::QuicheTextUtils::HexDump(packet); ASSERT_EQ(packet, expected_packet); }); } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/qbone/platform/icmp_packet.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/qbone/platform/icmp_packet_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
65e114f5-b5fd-4148-9e57-cab65cb9be29
cpp
tensorflow/tensorflow
eigen_activations
tensorflow/core/kernels/eigen_activations.h
tensorflow/core/kernels/eigen_activations_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_EIGEN_ACTIVATIONS_H_ #define TENSORFLOW_CORE_KERNELS_EIGEN_ACTIVATIONS_H_ #include "unsupported/Eigen/CXX11/Tensor" namespace Eigen { template <typename T> struct scalar_sigmoid_fast_derivative_op { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator()(const T& y) const { const T one = T(1); return (one - y) * y; } template <typename Packet> inline Packet packetOp(const Packet& y) const { const Packet one = internal::pset1<Packet>(1); return internal::pmul(internal::psub(one, y), y); } }; namespace internal { template <typename T> struct functor_traits<scalar_sigmoid_fast_derivative_op<T> > { enum { Cost = NumTraits<T>::AddCost * 2 + NumTraits<T>::MulCost, PacketAccess = packet_traits<T>::HasAdd && packet_traits<T>::HasMul && packet_traits<T>::HasNegate }; }; } template <typename T> struct scalar_tanh_fast_derivative_op { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator()(const T& y) const { const T one = T(1); return one - (y * y); } template <typename Packet> inline Packet packetOp(const Packet& y) const { const Packet one = internal::pset1<Packet>(1); return internal::psub(one, internal::pmul(y, y)); } }; namespace internal { template <typename T> struct functor_traits<scalar_tanh_fast_derivative_op<T> > { enum { Cost = NumTraits<T>::AddCost * 2 + NumTraits<T>::MulCost * 1, PacketAccess = packet_traits<T>::HasAdd && packet_traits<T>::HasMul && packet_traits<T>::HasNegate }; }; } template <typename Scalar> struct scalar_clip_op { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& a, const Scalar& b) const { return numext::mini(numext::maxi(a, -b), b); } template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return internal::pmin(internal::pmax(a, internal::pnegate(b)), b); } }; namespace internal { template <typename Scalar> struct functor_traits<scalar_clip_op<Scalar> > { enum { Cost = NumTraits<Scalar>::AddCost * 3, PacketAccess = packet_traits<Scalar>::HasMax && packet_traits<Scalar>::HasMin && packet_traits<Scalar>::HasNegate }; }; } } #endif
#include "tensorflow/core/kernels/eigen_activations.h" #include "tensorflow/core/platform/test.h" namespace Eigen { namespace { void EigenApprox(float a, float b) { ASSERT_TRUE(std::abs(a - b) <= std::min(std::abs(a), std::abs(b)) * 1e-3); } } TEST(EigenBackwardSpatialConvolutionsTest, SigmoidFastDerivative) { const ptrdiff_t depth = 3; const ptrdiff_t batch = 10; const ptrdiff_t rows = 32; const ptrdiff_t cols = 48; Tensor<float, 4> input(depth, rows, cols, batch); input.setRandom(); Tensor<float, 4> result(depth, rows, cols, batch); result = input.unaryExpr(scalar_sigmoid_fast_derivative_op<float>()); for (int b = 0; b < batch; ++b) { for (int c = 0; c < cols; ++c) { for (int r = 0; r < rows; ++r) { for (int d = 0; d < depth; ++d) { float val = input(d, r, c, b); EigenApprox(result(d, r, c, b), (1 - val) * val); } } } } } TEST(EigenBackwardSpatialConvolutionsTest, TanhFastDerivative) { const ptrdiff_t depth = 3; const ptrdiff_t batch = 10; const ptrdiff_t rows = 32; const ptrdiff_t cols = 48; Tensor<float, 4> input(depth, rows, cols, batch); input.setRandom(); Tensor<float, 4> result(depth, rows, cols, batch); result = input.unaryExpr(scalar_tanh_fast_derivative_op<float>()); for (int b = 0; b < batch; ++b) { for (int c = 0; c < cols; ++c) { for (int r = 0; r < rows; ++r) { for (int d = 0; d < depth; ++d) { float val = input(d, r, c, b); EigenApprox(result(d, r, c, b), 1 - (val * val)); } } } } } TEST(EigenBackwardSpatialConvolutionsTest, Clip) { const ptrdiff_t depth = 3; const ptrdiff_t batch = 10; const ptrdiff_t rows = 32; const ptrdiff_t cols = 48; Tensor<float, 4> input(depth, rows, cols, batch); input.setRandom(); Tensor<float, 4> result(depth, rows, cols, batch); result = input.binaryExpr(input.constant(0.01), scalar_clip_op<float>()); for (int b = 0; b < batch; ++b) { for (int c = 0; c < cols; ++c) { for (int r = 0; r < rows; ++r) { for (int d = 0; d < depth; ++d) { float val = input(d, r, c, b); EigenApprox(result(d, r, c, b), (std::min)((std::max)(val, -0.01f), 0.01f)); } } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/eigen_activations.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/eigen_activations_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
88c2c198-269a-40f5-b83c-69515f289132
cpp
google/langsvr
block_allocator
src/utils/block_allocator.h
src/utils/block_allocator_test.cc
#ifndef SRC_LANGSVR_UTILS_BLOCK_ALLOCATOR_H_ #define SRC_LANGSVR_UTILS_BLOCK_ALLOCATOR_H_ #include <stdint.h> #include <array> #include <cstring> #include <utility> namespace langsvr { template <typename T> inline constexpr T RoundUp(T alignment, T value) { return ((value + alignment - 1) / alignment) * alignment; } template <typename TO, typename FROM> inline TO Bitcast(FROM&& from) { static_assert(sizeof(FROM) == sizeof(TO)); static_assert(std::is_trivially_copyable_v<std::decay_t<FROM>>); static_assert(std::is_trivially_copyable_v<std::decay_t<TO>>); TO to; memcpy(reinterpret_cast<std::byte*>(&to), reinterpret_cast<const std::byte*>(&from), sizeof(TO)); return to; } template <typename T, size_t BLOCK_SIZE = 64 * 1024, size_t BLOCK_ALIGNMENT = 16> class BlockAllocator { struct Pointers { static constexpr size_t kMax = 32; std::array<T*, kMax> ptrs; Pointers* next; Pointers* prev; size_t count; }; struct alignas(BLOCK_ALIGNMENT) Block { uint8_t data[BLOCK_SIZE]; Block* next = nullptr; }; template <bool IS_CONST> class TView; template <bool IS_CONST> class TIterator { using PointerTy = std::conditional_t<IS_CONST, const T*, T*>; public: bool operator==(const TIterator& other) const { return ptrs == other.ptrs && idx == other.idx; } bool operator!=(const TIterator& other) const { return !(*this == other); } TIterator& operator++() { if (ptrs != nullptr) { ++idx; if (idx >= ptrs->count) { idx = 0; ptrs = ptrs->next; } } return *this; } TIterator& operator--() { if (ptrs != nullptr) { if (idx == 0) { ptrs = ptrs->prev; idx = ptrs->count - 1; } --idx; } return *this; } PointerTy operator*() const { return ptrs->ptrs[idx]; } private: friend TView<IS_CONST>; explicit TIterator(const Pointers* p, size_t i) : ptrs(p), idx(i) {} const Pointers* ptrs = nullptr; size_t idx = 0; }; template <bool IS_CONST> class TView { public: TIterator<IS_CONST> begin() const { return TIterator<IS_CONST>{allocator_->data.pointers.root, 0}; } TIterator<IS_CONST> end() const { return TIterator<IS_CONST>{nullptr, 0}; } private: friend BlockAllocator; explicit TView(BlockAllocator const* allocator) : allocator_(allocator) {} BlockAllocator const* const allocator_; }; public: using Iterator = TIterator< false>; using ConstIterator = TIterator< true>; using View = TView<false>; using ConstView = TView<true>; BlockAllocator() = default; BlockAllocator(BlockAllocator&& rhs) { std::swap(data, rhs.data); } BlockAllocator& operator=(BlockAllocator&& rhs) { if (this != &rhs) { Reset(); std::swap(data, rhs.data); } return *this; } ~BlockAllocator() { Reset(); } View Objects() { return View(this); } ConstView Objects() const { return ConstView(this); } template <typename TYPE = T, typename... ARGS> TYPE* Create(ARGS&&... args) { static_assert(std::is_same<T, TYPE>::value || std::is_base_of<T, TYPE>::value, "TYPE does not derive from T"); static_assert(std::is_same<T, TYPE>::value || std::has_virtual_destructor<T>::value, "TYPE requires a virtual destructor when calling Create() for a type " "that is not T"); auto* ptr = Allocate<TYPE>(); new (ptr) TYPE(std::forward<ARGS>(args)...); AddObjectPointer(ptr); data.count++; return ptr; } void Reset() { for (auto ptr : Objects()) { ptr->~T(); } auto* block = data.block.root; while (block != nullptr) { auto* next = block->next; delete block; block = next; } data = {}; } size_t Count() const { return data.count; } private: BlockAllocator(const BlockAllocator&) = delete; BlockAllocator& operator=(const BlockAllocator&) = delete; template <typename TYPE> TYPE* Allocate() { static_assert(sizeof(TYPE) <= BLOCK_SIZE, "Cannot construct TYPE with size greater than BLOCK_SIZE"); static_assert(alignof(TYPE) <= BLOCK_ALIGNMENT, "alignof(TYPE) is greater than ALIGNMENT"); auto& block = data.block; block.current_offset = RoundUp(alignof(TYPE), block.current_offset); if (block.current_offset + sizeof(TYPE) > BLOCK_SIZE) { auto* prev_block = block.current; block.current = new Block; if (!block.current) { return nullptr; } block.current->next = nullptr; block.current_offset = 0; if (prev_block) { prev_block->next = block.current; } else { block.root = block.current; } } auto* base = &block.current->data[0]; auto* ptr = Bitcast<TYPE*>(base + block.current_offset); block.current_offset += sizeof(TYPE); return ptr; } void AddObjectPointer(T* ptr) { auto& pointers = data.pointers; if (!pointers.current || pointers.current->count == Pointers::kMax) { auto* prev_pointers = pointers.current; pointers.current = Allocate<Pointers>(); if (!pointers.current) { return; } pointers.current->next = nullptr; pointers.current->prev = prev_pointers; pointers.current->count = 0; if (prev_pointers) { prev_pointers->next = pointers.current; } else { pointers.root = pointers.current; } } pointers.current->ptrs[pointers.current->count++] = ptr; } struct { struct { Block* root = nullptr; Block* current = nullptr; size_t current_offset = BLOCK_SIZE; } block; struct { Pointers* root = nullptr; Pointers* current = nullptr; } pointers; size_t count = 0; } data; }; } #endif
#include "src/utils/block_allocator.h" #include <vector> #include "gtest/gtest.h" namespace langsvr { namespace { struct LifetimeCounter { explicit LifetimeCounter(size_t* count) : count_(count) { (*count)++; } ~LifetimeCounter() { (*count_)--; } size_t* const count_; }; using BlockAllocatorTest = testing::Test; TEST_F(BlockAllocatorTest, Empty) { using Allocator = BlockAllocator<int>; Allocator allocator; EXPECT_EQ(allocator.Count(), 0u); for (int* i : allocator.Objects()) { (void)i; if ((true)) { FAIL() << "BlockAllocator should be empty"; } } for (const int* i : static_cast<const Allocator&>(allocator).Objects()) { (void)i; if ((true)) { FAIL() << "BlockAllocator should be empty"; } } } TEST_F(BlockAllocatorTest, Count) { using Allocator = BlockAllocator<int>; for (size_t n : {0u, 1u, 10u, 16u, 20u, 32u, 50u, 64u, 100u, 256u, 300u, 512u, 500u, 512u}) { Allocator allocator; EXPECT_EQ(allocator.Count(), 0u); for (size_t i = 0; i < n; i++) { allocator.Create(123); } EXPECT_EQ(allocator.Count(), n); } } TEST_F(BlockAllocatorTest, ObjectLifetime) { using Allocator = BlockAllocator<LifetimeCounter>; size_t count = 0; { Allocator allocator; EXPECT_EQ(count, 0u); allocator.Create(&count); EXPECT_EQ(count, 1u); allocator.Create(&count); EXPECT_EQ(count, 2u); allocator.Create(&count); EXPECT_EQ(count, 3u); } EXPECT_EQ(count, 0u); } TEST_F(BlockAllocatorTest, MoveConstruct) { using Allocator = BlockAllocator<LifetimeCounter>; for (size_t n : {0u, 1u, 10u, 16u, 20u, 32u, 50u, 64u, 100u, 256u, 300u, 512u, 500u, 512u}) { size_t count = 0; { Allocator allocator_a; for (size_t i = 0; i < n; i++) { allocator_a.Create(&count); } EXPECT_EQ(count, n); EXPECT_EQ(allocator_a.Count(), n); Allocator allocator_b{std::move(allocator_a)}; EXPECT_EQ(count, n); EXPECT_EQ(allocator_b.Count(), n); } EXPECT_EQ(count, 0u); } } TEST_F(BlockAllocatorTest, MoveAssign) { using Allocator = BlockAllocator<LifetimeCounter>; for (size_t n : {0u, 1u, 10u, 16u, 20u, 32u, 50u, 64u, 100u, 256u, 300u, 512u, 500u, 512u}) { size_t count_a = 0; size_t count_b = 0; { Allocator allocator_a; for (size_t i = 0; i < n; i++) { allocator_a.Create(&count_a); } EXPECT_EQ(count_a, n); EXPECT_EQ(allocator_a.Count(), n); Allocator allocator_b; for (size_t i = 0; i < n; i++) { allocator_b.Create(&count_b); } EXPECT_EQ(count_b, n); EXPECT_EQ(allocator_b.Count(), n); allocator_b = std::move(allocator_a); EXPECT_EQ(count_a, n); EXPECT_EQ(count_b, 0u); EXPECT_EQ(allocator_b.Count(), n); } EXPECT_EQ(count_a, 0u); EXPECT_EQ(count_b, 0u); } } TEST_F(BlockAllocatorTest, ObjectOrder) { using Allocator = BlockAllocator<int>; Allocator allocator; constexpr int N = 10000; for (int i = 0; i < N; i++) { allocator.Create(i); } { int i = 0; for (int* p : allocator.Objects()) { EXPECT_EQ(*p, i); i++; } EXPECT_EQ(i, N); } { int i = 0; for (const int* p : static_cast<const Allocator&>(allocator).Objects()) { EXPECT_EQ(*p, i); i++; } EXPECT_EQ(i, N); } } TEST_F(BlockAllocatorTest, AddWhileIterating) { using Allocator = BlockAllocator<size_t>; Allocator allocator; for (int i = 0; i < 20; i++) { allocator.Create(allocator.Count()); std::vector<size_t*> seen; for (auto* j : allocator.Objects()) { if (*j % 3 == 0) { allocator.Create(allocator.Count()); } seen.push_back(j); } size_t n = 0; for (auto* obj : allocator.Objects()) { ASSERT_TRUE(n < seen.size()); EXPECT_EQ(seen[n++], obj); } } } } }
https://github.com/google/langsvr/blob/303c526231a90049a3e384549720f3fbd453cf66/src/utils/block_allocator.h
https://github.com/google/langsvr/blob/303c526231a90049a3e384549720f3fbd453cf66/src/utils/block_allocator_test.cc
303c526231a90049a3e384549720f3fbd453cf66
7f3aca48-7578-4d48-bd73-bdc90e971678
cpp
tensorflow/tensorflow
conv3d_transpose
tensorflow/lite/kernels/conv3d_transpose.cc
tensorflow/lite/kernels/conv3d_transpose_test.cc
#include "tensorflow/lite/kernels/internal/reference/conv3d_transpose.h" #include <cstddef> #include <cstdint> #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/cpu_backend_context.h" #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/kernels/padding.h" namespace tflite { namespace ops { namespace builtin { namespace conv3d_transpose { enum KernelType { kReference, kGenericOptimized, }; const int kTensorNotAllocated = -1; struct OpData { Padding3DValues padding; int col2im_id = kTensorNotAllocated; int col2im_index; bool need_col2im = false; }; void* Init(TfLiteContext* context, const char* buffer, size_t length) { auto* opdata = new OpData; return opdata; } void Free(TfLiteContext* context, void* buffer) { delete static_cast<OpData*>(buffer); } static TfLiteStatus AllocateTemporaryTensorsIfRequired(TfLiteContext* context, TfLiteNode* node, KernelType kernel_type) { OpData* data = reinterpret_cast<OpData*>(node->user_data); int temporaries_count = 0; if (kernel_type == kGenericOptimized) { if (data->col2im_id == kTensorNotAllocated) { context->AddTensors(context, 1, &data->col2im_id); } data->col2im_index = temporaries_count++; data->need_col2im = true; } TfLiteIntArrayFree(node->temporaries); node->temporaries = TfLiteIntArrayCreate(temporaries_count); return kTfLiteOk; } TfLiteStatus ResizeOutputAndTemporaryTensors( TfLiteContext* context, OpData* opdata, TfLiteConv3DTransposeParams* params, const TfLiteTensor* shape_tensor, const TfLiteTensor* filter, const TfLiteTensor* input, TfLiteTensor* col2im, TfLiteTensor* output) { auto shape_data = GetTensorData<int32_t>(shape_tensor); TF_LITE_ENSURE_EQ(context, shape_data[0], SizeOfDimension(input, 0)); TF_LITE_ENSURE_EQ(context, shape_data[4] % SizeOfDimension(filter, 3), 0); const RuntimeShape& filter_shape = GetTensorShape(filter); const int depth = shape_data[1]; const int height = shape_data[2]; const int width = shape_data[3]; const int filter_depth = filter_shape.Dims(0); const int filter_height = filter_shape.Dims(1); const int filter_width = filter_shape.Dims(2); int unused_out_width, unused_out_height, unused_out_depth; opdata->padding = ComputePadding3DValues( params->stride_height, params->stride_width, params->stride_depth, params->dilation_height_factor, params->dilation_width_factor, params->dilation_depth_factor, height, width, depth, filter_height, filter_width, filter_depth, params->padding, &unused_out_height, &unused_out_width, &unused_out_depth); TF_LITE_ENSURE_EQ(context, unused_out_depth, SizeOfDimension(input, 1)); TF_LITE_ENSURE_EQ(context, unused_out_height, SizeOfDimension(input, 2)); TF_LITE_ENSURE_EQ(context, unused_out_width, SizeOfDimension(input, 3)); TfLiteIntArray* output_shape = TfLiteIntArrayCreate(NumElements(shape_tensor)); for (int i = 0; i < output_shape->size; ++i) { output_shape->data[i] = GetTensorData<int32_t>(shape_tensor)[i]; } TF_LITE_ENSURE_STATUS(context->ResizeTensor(context, output, output_shape)); if (opdata->need_col2im) { TfLiteIntArray* col2im_shape_array = TfLiteIntArrayCreate(2); const RuntimeShape& input_shape = GetTensorShape(input); col2im_shape_array->data[0] = input_shape.Dims(1) * input_shape.Dims(2) * input_shape.Dims(3); col2im_shape_array->data[1] = filter_depth * filter_height * filter_width * filter_shape.Dims(3); col2im->type = kTfLiteFloat32; col2im->allocation_type = kTfLiteDynamic; return context->ResizeTensor(context, col2im, col2im_shape_array); } return kTfLiteOk; } TfLiteStatus Prepare(KernelType kernel_type, TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteConv3DTransposeParams*>(node->builtin_data); OpData* opdata = reinterpret_cast<OpData*>(node->user_data); TF_LITE_ENSURE(context, node->inputs->size == 3 || node->inputs->size == 4); TF_LITE_ENSURE_EQ(context, node->outputs->size, 1); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); const TfLiteTensor* output_shape; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &output_shape)); const TfLiteTensor* filter; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 1, &filter)); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 2, &input)); TF_LITE_ENSURE_EQ(context, output_shape->dims->size, 1); TF_LITE_ENSURE_EQ(context, NumElements(output_shape), 5); TF_LITE_ENSURE_EQ(context, input->dims->size, 5); TF_LITE_ENSURE_EQ(context, filter->dims->size, 5); TF_LITE_ENSURE_EQ(context, SizeOfDimension(input, 4), SizeOfDimension(filter, 4)); TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32); TF_LITE_ENSURE_TYPES_EQ(context, filter->type, kTfLiteFloat32); TF_LITE_ENSURE_TYPES_EQ(context, output->type, input->type); TF_LITE_ENSURE_TYPES_EQ(context, output_shape->type, kTfLiteInt32); const TfLiteTensor* bias = GetInput(context, node, 3); if (bias) { TF_LITE_ENSURE_TYPES_EQ(context, bias->type, input->type); TF_LITE_ENSURE_EQ(context, NumElements(bias), SizeOfDimension(filter, 3)); } if (params->dilation_depth_factor > 1 || params->dilation_height_factor > 1 || params->dilation_width_factor > 1) { kernel_type = kReference; } TF_LITE_ENSURE_STATUS( AllocateTemporaryTensorsIfRequired(context, node, kernel_type)); TfLiteTensor* col2im = nullptr; if (opdata->need_col2im) { node->temporaries->data[opdata->col2im_index] = opdata->col2im_id; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, opdata->col2im_index, &col2im)); } if (!IsConstantOrPersistentTensor(output_shape)) { SetTensorToDynamic(output); if (opdata->need_col2im) { SetTensorToDynamic(col2im); } } else { TF_LITE_ENSURE_STATUS(ResizeOutputAndTemporaryTensors( context, opdata, params, output_shape, filter, input, col2im, output)); } return kTfLiteOk; } template <KernelType kernel_type> TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { return Prepare(kernel_type, context, node); } void EvalFloat(KernelType kernel_type, TfLiteContext* context, TfLiteNode* node, TfLiteConv3DTransposeParams* params, OpData* opdata, const TfLiteTensor* input, const TfLiteTensor* filter, const TfLiteTensor* bias, TfLiteTensor* col2im, TfLiteTensor* output) { float output_activation_min, output_activation_max; CalculateActivationRange(params->activation, &output_activation_min, &output_activation_max); Conv3DTransposeParams runtime_params; runtime_params.padding_values = opdata->padding; runtime_params.stride_depth = params->stride_depth; runtime_params.stride_height = params->stride_height; runtime_params.stride_width = params->stride_width; runtime_params.dilation_depth = params->dilation_depth_factor; runtime_params.dilation_height = params->dilation_height_factor; runtime_params.dilation_width = params->dilation_width_factor; runtime_params.float_activation_min = output_activation_min; runtime_params.float_activation_max = output_activation_max; switch (kernel_type) { case kReference: { reference_ops::Conv3DTranspose( runtime_params, GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(filter), GetTensorData<float>(filter), GetTensorShape(bias), GetTensorData<float>(bias), GetTensorShape(output), GetTensorData<float>(output)); break; } case kGenericOptimized: { optimized_ops::Conv3DTranspose( runtime_params, GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(filter), GetTensorData<float>(filter), GetTensorShape(bias), GetTensorData<float>(bias), GetTensorShape(output), GetTensorData<float>(output), GetTensorShape(col2im), GetTensorData<float>(col2im), CpuBackendContext::GetFromContext(context)); } break; } } TfLiteStatus Eval(KernelType kernel_type, TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteConv3DTransposeParams*>(node->builtin_data); OpData* opdata = reinterpret_cast<OpData*>(node->user_data); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); const TfLiteTensor* output_shape; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &output_shape)); const TfLiteTensor* filter; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 1, &filter)); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 2, &input)); const TfLiteTensor* bias = GetInput(context, node, 3); TfLiteTensor* col2im = opdata->need_col2im ? GetTemporary(context, node, opdata->col2im_index) : nullptr; if (IsDynamicTensor(output)) { TF_LITE_ENSURE_OK(context, ResizeOutputAndTemporaryTensors( context, opdata, params, output_shape, filter, input, col2im, output)); } if (params->dilation_depth_factor > 1 || params->dilation_height_factor > 1 || params->dilation_width_factor > 1) { kernel_type = kReference; } switch (input->type) { case kTfLiteFloat32: EvalFloat(kernel_type, context, node, params, opdata, input, filter, bias, col2im, output); break; default: TF_LITE_KERNEL_LOG(context, "Type %s currently not supported.", TfLiteTypeGetName(input->type)); return kTfLiteError; } return kTfLiteOk; } template <KernelType kernel_type> TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { return Eval(kernel_type, context, node); } } TfLiteRegistration* Register_CONV_3D_TRANSPOSE_REF() { static TfLiteRegistration r = { conv3d_transpose::Init, conv3d_transpose::Free, conv3d_transpose::Prepare<conv3d_transpose::kReference>, conv3d_transpose::Eval<conv3d_transpose::kReference>}; return &r; } TfLiteRegistration* Register_CONV_3D_TRANSPOSE_GENERIC_OPT() { static TfLiteRegistration r = { conv3d_transpose::Init, conv3d_transpose::Free, conv3d_transpose::Prepare<conv3d_transpose::kGenericOptimized>, conv3d_transpose::Eval<conv3d_transpose::kGenericOptimized>}; return &r; } TfLiteRegistration* Register_CONV_3D_TRANSPOSE() { return Register_CONV_3D_TRANSPOSE_GENERIC_OPT(); } } } }
#include <cstdint> #include <initializer_list> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { using ::testing::ElementsAre; using ::testing::ElementsAreArray; enum class TestType { kConst = 0, kDynamic = 1, }; class Conv3dTransposeOpModel : public SingleOpModel { public: Conv3dTransposeOpModel( std::initializer_list<int> output_shape_data, const TensorData& filter, const TensorData& input, const TensorData& bias, const TensorData& output, TestType test_type, Padding padding = Padding_VALID, int32_t stride_depth = 1, int32_t stride_width = 1, int32_t stride_height = 1, ActivationFunctionType activation = ActivationFunctionType_NONE, int32_t dilation_depth = 1, int32_t dilation_width = 1, int32_t dilation_height = 1) { if (test_type == TestType::kDynamic) { output_shape_ = AddInput({TensorType_INT32, {5}}); } else { output_shape_ = AddConstInput(TensorType_INT32, output_shape_data, {5}); } filter_ = AddInput(filter); input_ = AddInput(input); bias_ = AddInput(bias); output_ = AddOutput(output); SetBuiltinOp( BuiltinOperator_CONV_3D_TRANSPOSE, BuiltinOptions_Conv3DOptions, CreateConv3DOptions(builder_, padding, stride_depth, stride_width, stride_height, activation, dilation_depth, dilation_width, dilation_height) .Union()); BuildInterpreter({GetShape(output_shape_), GetShape(filter_), GetShape(input_), GetShape(bias_)}); if (test_type == TestType::kDynamic) { PopulateTensor(output_shape_, output_shape_data); } } Conv3dTransposeOpModel( std::initializer_list<int> output_shape_data, const TensorData& filter, const TensorData& input, const TensorData& output, TestType test_type, Padding padding = Padding_VALID, int32_t stride_depth = 1, int32_t stride_width = 1, int32_t stride_height = 1, ActivationFunctionType activation = ActivationFunctionType_NONE, int32_t dilation_depth = 1, int32_t dilation_width = 1, int32_t dilation_height = 1) { if (test_type == TestType::kDynamic) { output_shape_ = AddInput({TensorType_INT32, {5}}); } else { output_shape_ = AddConstInput(TensorType_INT32, output_shape_data, {5}); } filter_ = AddInput(filter); input_ = AddInput(input); output_ = AddOutput(output); SetBuiltinOp( BuiltinOperator_CONV_3D_TRANSPOSE, BuiltinOptions_Conv3DOptions, CreateConv3DOptions(builder_, padding, stride_depth, stride_width, stride_height, activation, dilation_depth, dilation_width, dilation_height) .Union()); BuildInterpreter( {GetShape(output_shape_), GetShape(filter_), GetShape(input_)}); if (test_type == TestType::kDynamic) { PopulateTensor(output_shape_, output_shape_data); } } void SetFilter(std::vector<float> f) { PopulateTensor(filter_, f); } void SetBias(std::initializer_list<float> f) { PopulateTensor(bias_, f); } void SetInput(std::vector<float> data) { PopulateTensor(input_, data); } std::vector<float> GetOutput() { return ExtractVector<float>(output_); } std::vector<int> GetOutputShape() { return GetTensorShape(output_); } private: int output_shape_; int input_; int filter_; int bias_; int output_; }; template <typename T> std::vector<T> CreateRangeVector(int N) { std::vector<T> result; for (int i = 0; i < N; ++i) result.push_back(i); return result; } class Conv3dTransposeOpTest : public ::testing::TestWithParam<TestType> {}; TEST_P(Conv3dTransposeOpTest, InvalidInputDimsTest) { EXPECT_DEATH_IF_SUPPORTED( Conv3dTransposeOpModel m( {1, 2, 3, 4, 5}, {TensorType_FLOAT32, {2, 2, 4, 1}}, {TensorType_FLOAT32, {3, 2, 2, 1}}, {TensorType_FLOAT32, {}}, Conv3dTransposeOpTest::GetParam()), "input->dims->size != 5"); } TEST_P(Conv3dTransposeOpTest, InvalidFilterDimsTest) { EXPECT_DEATH_IF_SUPPORTED( Conv3dTransposeOpModel m( {1, 2, 3, 4, 5}, {TensorType_FLOAT32, {2, 2, 4, 1}}, {TensorType_FLOAT32, {1, 3, 2, 2, 1}}, {TensorType_FLOAT32, {}}, Conv3dTransposeOpTest::GetParam()), "filter->dims->size != 5"); } TEST_P(Conv3dTransposeOpTest, MismatchChannelSizeTest) { EXPECT_DEATH_IF_SUPPORTED( Conv3dTransposeOpModel m( {1, 2, 3, 4, 5}, {TensorType_FLOAT32, {1, 2, 2, 4, 1}}, {TensorType_FLOAT32, {1, 3, 2, 2, 2}}, {TensorType_FLOAT32, {}}, Conv3dTransposeOpTest::GetParam()), "SizeOfDimension.input, 4. != SizeOfDimension.filter, 4."); } TEST_P(Conv3dTransposeOpTest, MismatchBiasSizeTest) { EXPECT_DEATH_IF_SUPPORTED( Conv3dTransposeOpModel m( {1, 2, 3, 4, 5}, {TensorType_FLOAT32, {1, 3, 2, 2, 2}}, {TensorType_FLOAT32, {1, 2, 2, 4, 2}}, {TensorType_FLOAT32, {3}}, {TensorType_FLOAT32, {}}, Conv3dTransposeOpTest::GetParam()), "NumElements.bias. != SizeOfDimension.filter, 3."); } TEST_P(Conv3dTransposeOpTest, SimpleFloat32Test) { Conv3dTransposeOpModel m( {1, 3, 3, 5, 2}, {TensorType_FLOAT32, {2, 2, 2, 2, 2}}, {TensorType_FLOAT32, {1, 2, 2, 4, 2}}, {TensorType_FLOAT32, {}}, Conv3dTransposeOpTest::GetParam()); m.SetInput(CreateRangeVector<float>(32)); m.SetFilter({-1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAre(1, 3, 3, 5, 2)); EXPECT_THAT( m.GetOutput(), ElementsAreArray( {-1, -1, -4, -4, -8, -8, -12, -12, 1, 1, -16, -16, -18, -16, -18, -20, -18, -24, 14, -12, 1, 17, 18, 4, 22, 4, 26, 4, 29, -29, -34, -32, -36, -30, -36, -30, -36, -30, 14, 2, -50, 2, -8, -26, -8, -26, -8, -26, 74, -44, -16, 50, 28, 4, 28, 4, 28, 4, 60, -62, -1, 33, 32, 38, 36, 42, 40, 46, 45, 1, -34, 50, 10, 54, 10, 58, 10, 62, 60, 0, -49, 1, -54, 0, -58, 0, -62, 0, -1, -1})); } TEST_P(Conv3dTransposeOpTest, PaddingValidTest) { Conv3dTransposeOpModel m( {1, 4, 5, 6, 2}, {TensorType_FLOAT32, {2, 2, 2, 2, 2}}, {TensorType_FLOAT32, {1, 3, 4, 5, 2}}, {TensorType_FLOAT32, {}}, Conv3dTransposeOpTest::GetParam()); m.SetInput(CreateRangeVector<float>(120)); m.SetFilter({-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAre(1, 4, 5, 6, 2)); EXPECT_THAT( m.GetOutput(), ElementsAreArray( {-1, -1, -6, -6, -14, -14, -22, -22, -30, -30, -17, -17, -22, -20, -50, -46, -58, -58, -66, -70, -74, -82, -20, -54, -62, -40, -90, -106, -98, -118, -106, -130, -114, -142, -20, -94, -102, -60, -130, -166, -138, -178, -146, -190, -154, -202, -20, -134, -61, 1, -4, -60, -4, -64, -4, -68, -4, -72, 77, -77, -80, -80, -160, -164, -164, -172, -168, -180, -172, -188, -96, -96, -162, -98, -188, -282, -196, -290, -204, -298, -212, -306, -18, -196, -202, -118, -228, -322, -236, -330, -244, -338, -252, -346, -18, -216, -242, -138, -268, -362, -276, -370, -284, -378, -292, -386, -18, -236, -202, 2, -68, -78, -72, -78, -76, -78, -80, -78, 158, -80, -80, -160, -240, -324, -244, -332, -248, -340, -252, -348, -176, -176, -322, -178, -348, -442, -356, -450, -364, -458, -372, -466, -18, -276, -362, -198, -388, -482, -396, -490, -404, -498, -412, -506, -18, -296, -402, -218, -428, -522, -436, -530, -444, -538, -452, -546, -18, -316, -362, 2, -148, -78, -152, -78, -156, -78, -160, -78, 238, -80, 161, 1, 166, 2, 170, 2, 174, 2, 178, 2, 1, 1, 20, 2, 22, 164, 22, 168, 22, 172, 22, 176, 2, 178, 20, 2, 22, 184, 22, 188, 22, 192, 22, 196, 2, 198, 20, 2, 22, 204, 22, 208, 22, 212, 22, 216, 2, 218, -221, 1, -224, 222, -228, 226, -232, 230, -236, 234, 1, 237})); } TEST_P(Conv3dTransposeOpTest, PaddingSameTest) { Conv3dTransposeOpModel m( {1, 3, 4, 5, 2}, {TensorType_FLOAT32, {2, 2, 2, 2, 2}}, {TensorType_FLOAT32, {1, 3, 4, 5, 2}}, {TensorType_FLOAT32, {}}, Conv3dTransposeOpTest::GetParam(), Padding_SAME); m.SetInput(CreateRangeVector<float>(120)); m.SetFilter({1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAre(1, 3, 4, 5, 2)); EXPECT_THAT( m.GetOutput(), ElementsAreArray( {-1, -1, -2, 0, -2, 0, -2, 0, -2, 0, -2, 0, -4, 2, -4, 2, -4, 2, -4, 2, -2, 0, -4, 2, -4, 2, -4, 2, -4, 2, -2, 0, -4, 2, -4, 2, -4, 2, -4, 2, 0, 0, -2, 2, -6, 2, -10, 2, -14, 2, 0, 2, -18, 10, -18, 14, -18, 18, -18, 22, 20, 22, -18, 30, -18, 34, -18, 38, -18, 42, 40, 42, -18, 50, -18, 54, -18, 58, -18, 62, 0, 0, -82, 2, -86, 2, -90, 2, -94, 2, 80, 82, -18, 90, -18, 94, -18, 98, -18, 102, 100, 102, -18, 110, -18, 114, -18, 118, -18, 122, 120, 122, -18, 130, -18, 134, -18, 138, -18, 142})); } TEST_P(Conv3dTransposeOpTest, PaddingValidComplexTest) { Conv3dTransposeOpModel m( {2, 4, 3, 2, 2}, {TensorType_FLOAT32, {2, 2, 2, 2, 2}}, {TensorType_FLOAT32, {2, 3, 2, 1, 2}}, {TensorType_FLOAT32, {}}, Conv3dTransposeOpTest::GetParam(), Padding_VALID); m.SetInput(CreateRangeVector<float>(24)); m.SetFilter({1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAre(2, 4, 3, 2, 2)); EXPECT_THAT( m.GetOutput(), ElementsAreArray( {-1, 1, 1, -1, -2, 4, 2, 0, -1, -5, 1, 5, -2, 10, 2, -2, -4, 8, 4, 8, -2, -18, 2, 18, -2, 26, 2, -2, -4, 8, 4, 24, -2, -34, 2, 34, -1, 17, 1, -1, -2, 4, 2, 16, -1, -21, 1, 21, -1, 25, 1, -1, -2, 4, 2, 24, -1, -29, 1, 29, -2, 58, 2, -2, -4, 8, 4, 56, -2, -66, 2, 66, -2, 74, 2, -2, -4, 8, 4, 72, -2, -82, 2, 82, -1, 41, 1, -1, -2, 4, 2, 40, -1, -45, 1, 45})); } TEST_P(Conv3dTransposeOpTest, StrideTest) { Conv3dTransposeOpModel m( {2, 4, 3, 2, 2}, {TensorType_FLOAT32, {2, 2, 2, 2, 2}}, {TensorType_FLOAT32, {2, 2, 2, 1, 2}}, {TensorType_FLOAT32, {}}, Conv3dTransposeOpTest::GetParam(), Padding_VALID, 2, 1, 1); m.SetInput(CreateRangeVector<float>(16)); m.SetFilter({1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAre(2, 4, 3, 2, 2)); EXPECT_THAT( m.GetOutput(), ElementsAreArray( {-1, 1, 1, -1, -2, 4, 2, 0, -1, -5, 1, 5, -1, 1, 1, -1, -2, 4, 2, 0, -1, -5, 1, 5, -1, 9, 1, -1, -2, 4, 2, 8, -1, -13, 1, 13, -1, 9, 1, -1, -2, 4, 2, 8, -1, -13, 1, 13, -1, 17, 1, -1, -2, 4, 2, 16, -1, -21, 1, 21, -1, 17, 1, -1, -2, 4, 2, 16, -1, -21, 1, 21, -1, 25, 1, -1, -2, 4, 2, 24, -1, -29, 1, 29, -1, 25, 1, -1, -2, 4, 2, 24, -1, -29, 1, 29})); } TEST_P(Conv3dTransposeOpTest, StrideAndPaddingSameTest) { Conv3dTransposeOpModel m( {2, 4, 2, 1, 2}, {TensorType_FLOAT32, {2, 2, 2, 2, 2}}, {TensorType_FLOAT32, {2, 2, 2, 1, 2}}, {TensorType_FLOAT32, {}}, Conv3dTransposeOpTest::GetParam(), Padding_SAME, 2, 1, 1); m.SetInput(CreateRangeVector<float>(16)); m.SetFilter({1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAre(2, 4, 2, 1, 2)); EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1, 1, -2, 4, -1, 1, -2, 4, -1, 9, -2, 4, -1, 9, -2, 4, -1, 17, -2, 4, -1, 17, -2, 4, -1, 25, -2, 4, -1, 25, -2, 4})); } TEST_P(Conv3dTransposeOpTest, DilationTest) { Conv3dTransposeOpModel m( {1, 3, 3, 2, 2}, {TensorType_FLOAT32, {1, 2, 2, 2, 1}}, {TensorType_FLOAT32, {1, 3, 1, 1, 1}}, {TensorType_FLOAT32, {}}, Conv3dTransposeOpTest::GetParam(), Padding_VALID, 1, 1, 1, ActivationFunctionType_NONE, 1, 1, 2); m.SetInput(CreateRangeVector<float>(3)); m.SetFilter({1, -1, 1, 1, -1, 1, 1, -1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAre(1, 3, 3, 2, 2)); EXPECT_THAT(m.GetOutput(), ElementsAreArray({0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, 1, 0, 0, 0, 0, -1, 1, 1, -1, 2, -2, 2, 2, 0, 0, 0, 0, -2, 2, 2, -2})); } TEST_P(Conv3dTransposeOpTest, BiasTest) { Conv3dTransposeOpModel m({2, 4, 3, 2, 2}, {TensorType_FLOAT32, {2, 2, 2, 2, 2}}, {TensorType_FLOAT32, {2, 3, 2, 1, 2}}, {TensorType_FLOAT32, {2}}, {TensorType_FLOAT32, {}}, Conv3dTransposeOpTest::GetParam(), Padding_VALID); m.SetInput(CreateRangeVector<float>(24)); m.SetFilter({1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1}); m.SetBias({1, 2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAre(2, 4, 3, 2, 2)); EXPECT_THAT( m.GetOutput(), ElementsAreArray( {0, 3, 2, 1, -1, 6, 3, 2, 0, -3, 2, 7, -1, 12, 3, 0, -3, 10, 5, 10, -1, -16, 3, 20, -1, 28, 3, 0, -3, 10, 5, 26, -1, -32, 3, 36, 0, 19, 2, 1, -1, 6, 3, 18, 0, -19, 2, 23, 0, 27, 2, 1, -1, 6, 3, 26, 0, -27, 2, 31, -1, 60, 3, 0, -3, 10, 5, 58, -1, -64, 3, 68, -1, 76, 3, 0, -3, 10, 5, 74, -1, -80, 3, 84, 0, 43, 2, 1, -1, 6, 3, 42, 0, -43, 2, 47})); } INSTANTIATE_TEST_SUITE_P(Conv3dTransposeOpTest, Conv3dTransposeOpTest, ::testing::Values(TestType::kConst, TestType::kDynamic)); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/conv3d_transpose.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/conv3d_transpose_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ab71cfba-e3ad-4152-9ff5-0fff1613d9b5
cpp
tensorflow/tensorflow
feature_util
tensorflow/core/example/feature_util.cc
tensorflow/core/example/feature_util_test.cc
#include "tensorflow/core/example/feature_util.h" #include <string> #include "absl/strings/string_view.h" namespace tensorflow { namespace internal { Feature& ExampleFeature(absl::string_view name, Example* example) { return *GetFeature(name, example); } } template <> bool HasFeature<>(absl::string_view key, const Features& features) { return features.feature().contains(internal::ProtoMapKey(key)); } template <> bool HasFeature<protobuf_int64>(absl::string_view key, const Features& features) { auto it = features.feature().find(internal::ProtoMapKey(key)); return (it != features.feature().end()) && (it->second.kind_case() == Feature::KindCase::kInt64List); } template <> bool HasFeature<float>(absl::string_view key, const Features& features) { auto it = features.feature().find(internal::ProtoMapKey(key)); return (it != features.feature().end()) && (it->second.kind_case() == Feature::KindCase::kFloatList); } template <> bool HasFeature<std::string>(absl::string_view key, const Features& features) { auto it = features.feature().find(internal::ProtoMapKey(key)); return (it != features.feature().end()) && (it->second.kind_case() == Feature::KindCase::kBytesList); } template <> bool HasFeature<tstring>(absl::string_view key, const Features& features) { auto it = features.feature().find(internal::ProtoMapKey(key)); return (it != features.feature().end()) && (it->second.kind_case() == Feature::KindCase::kBytesList); } bool HasFeatureList(absl::string_view key, const SequenceExample& sequence_example) { return sequence_example.feature_lists().feature_list().contains( internal::ProtoMapKey(key)); } template <> const protobuf::RepeatedField<protobuf_int64>& GetFeatureValues<protobuf_int64>( const Feature& feature) { return feature.int64_list().value(); } template <> protobuf::RepeatedField<protobuf_int64>* GetFeatureValues<protobuf_int64>( Feature* feature) { return feature->mutable_int64_list()->mutable_value(); } template <> const protobuf::RepeatedField<float>& GetFeatureValues<float>( const Feature& feature) { return feature.float_list().value(); } template <> protobuf::RepeatedField<float>* GetFeatureValues<float>(Feature* feature) { return feature->mutable_float_list()->mutable_value(); } template <> const protobuf::RepeatedPtrField<std::string>& GetFeatureValues<tstring>( const Feature& feature) { return feature.bytes_list().value(); } template <> const protobuf::RepeatedPtrField<std::string>& GetFeatureValues<std::string>( const Feature& feature) { return feature.bytes_list().value(); } template <> protobuf::RepeatedPtrField<std::string>* GetFeatureValues<tstring>( Feature* feature) { return feature->mutable_bytes_list()->mutable_value(); } template <> protobuf::RepeatedPtrField<std::string>* GetFeatureValues<std::string>( Feature* feature) { return feature->mutable_bytes_list()->mutable_value(); } const protobuf::RepeatedPtrField<Feature>& GetFeatureList( absl::string_view key, const SequenceExample& sequence_example) { return sequence_example.feature_lists() .feature_list() .at(internal::ProtoMapKey(key)) .feature(); } protobuf::RepeatedPtrField<Feature>* GetFeatureList( absl::string_view feature_list_key, SequenceExample* sequence_example) { return (*sequence_example->mutable_feature_lists() ->mutable_feature_list())[internal::ProtoMapKey( feature_list_key)] .mutable_feature(); } template <> void ClearFeatureValues<protobuf_int64>(Feature* feature) { feature->mutable_int64_list()->Clear(); } template <> void ClearFeatureValues<float>(Feature* feature) { feature->mutable_float_list()->Clear(); } template <> void ClearFeatureValues<std::string>(Feature* feature) { feature->mutable_bytes_list()->Clear(); } template <> void ClearFeatureValues<tstring>(Feature* feature) { feature->mutable_bytes_list()->Clear(); } template <> Features* GetFeatures<Features>(Features* proto) { return proto; } template <> Features* GetFeatures<Example>(Example* proto) { return proto->mutable_features(); } template <> Features* GetFeatures<SequenceExample>(SequenceExample* proto) { return proto->mutable_context(); } template <> const Features& GetFeatures<Features>(const Features& proto) { return proto; } template <> const Features& GetFeatures<Example>(const Example& proto) { return proto.features(); } template <> const Features& GetFeatures<SequenceExample>(const SequenceExample& proto) { return proto.context(); } }
#include "tensorflow/core/example/feature_util.h" #include <algorithm> #include <string> #include <vector> #include "absl/strings/string_view.h" #include "tensorflow/core/example/example.pb.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace { const float kTolerance = 1e-5; TEST(GetFeatureValuesInt64Test, ReadsASingleValue) { Example example; (*example.mutable_features()->mutable_feature())["tag"] .mutable_int64_list() ->add_value(42); auto tag = GetFeatureValues<protobuf_int64>("tag", example); ASSERT_EQ(1, tag.size()); EXPECT_EQ(42, tag.Get(0)); } TEST(GetFeatureValuesInt64Test, ReadsASingleValueFromFeature) { Feature feature; feature.mutable_int64_list()->add_value(42); auto values = GetFeatureValues<protobuf_int64>(feature); ASSERT_EQ(1, values.size()); EXPECT_EQ(42, values.Get(0)); } TEST(GetFeatureValuesInt64Test, ReadsASingleValueFromSequenceExampleContext) { SequenceExample example; (*example.mutable_context()->mutable_feature())["tag"] .mutable_int64_list() ->add_value(42); auto tag = GetFeatureValues<protobuf_int64>("tag", example); ASSERT_EQ(1, tag.size()); EXPECT_EQ(42, tag.Get(0)); } TEST(GetFeatureValuesInt64Test, WritesASingleValue) { Example example; GetFeatureValues<protobuf_int64>("tag", &example)->Add(42); ASSERT_EQ(1, example.features().feature().at("tag").int64_list().value_size()); EXPECT_EQ(42, example.features().feature().at("tag").int64_list().value(0)); } TEST(GetFeatureValuesInt64Test, WritesASingleValueToFeature) { Feature feature; GetFeatureValues<protobuf_int64>(&feature)->Add(42); ASSERT_EQ(1, feature.int64_list().value_size()); EXPECT_EQ(42, feature.int64_list().value(0)); } TEST(GetFeatureValuesInt64Test, WritesASingleValueToSequenceExample) { SequenceExample example; GetFeatureValues<protobuf_int64>("tag", &example)->Add(42); ASSERT_EQ(1, example.context().feature().at("tag").int64_list().value_size()); EXPECT_EQ(42, example.context().feature().at("tag").int64_list().value(0)); } TEST(GetFeatureValuesInt64Test, CheckUntypedFieldExistence) { Example example; ASSERT_FALSE(HasFeature("tag", example)); GetFeatureValues<protobuf_int64>("tag", &example)->Add(0); EXPECT_TRUE(HasFeature("tag", example)); } TEST(GetFeatureValuesInt64Test, CheckUntypedFieldExistenceForSequenceExample) { SequenceExample seq_example; ASSERT_FALSE(HasFeature("tag", seq_example)); GetFeatureValues<protobuf_int64>("tag", &seq_example)->Add(0); EXPECT_TRUE(HasFeature("tag", seq_example)); } TEST(GetFeatureValuesInt64Test, CheckTypedFieldExistence) { Example example; GetFeatureValues<float>("tag", &example)->Add(3.14); ASSERT_FALSE(HasFeature<protobuf_int64>("tag", example)); GetFeatureValues<protobuf_int64>("tag", &example)->Add(42); EXPECT_TRUE(HasFeature<protobuf_int64>("tag", example)); auto tag_ro = GetFeatureValues<protobuf_int64>("tag", example); ASSERT_EQ(1, tag_ro.size()); EXPECT_EQ(42, tag_ro.Get(0)); } TEST(GetFeatureValuesInt64Test, CheckTypedFieldExistenceForSequenceExample) { SequenceExample sequence_example; GetFeatureValues<float>("tag", &sequence_example)->Add(3.14); ASSERT_FALSE(HasFeature<protobuf_int64>("tag", sequence_example)); GetFeatureValues<protobuf_int64>("tag", &sequence_example)->Add(42); EXPECT_TRUE(HasFeature<protobuf_int64>("tag", sequence_example)); auto tag_ro = GetFeatureValues<protobuf_int64>("tag", sequence_example); ASSERT_EQ(1, tag_ro.size()); EXPECT_EQ(42, tag_ro.Get(0)); } TEST(GetFeatureValuesInt64Test, CopyIterableToAField) { Example example; std::vector<int> values{1, 2, 3}; std::copy(values.begin(), values.end(), protobuf::RepeatedFieldBackInserter( GetFeatureValues<protobuf_int64>("tag", &example))); auto tag_ro = GetFeatureValues<protobuf_int64>("tag", example); ASSERT_EQ(3, tag_ro.size()); EXPECT_EQ(1, tag_ro.Get(0)); EXPECT_EQ(2, tag_ro.Get(1)); EXPECT_EQ(3, tag_ro.Get(2)); } TEST(GetFeatureValuesFloatTest, ReadsASingleValueFromFeature) { Feature feature; feature.mutable_float_list()->add_value(3.14); auto values = GetFeatureValues<float>(feature); ASSERT_EQ(1, values.size()); EXPECT_NEAR(3.14, values.Get(0), kTolerance); } TEST(GetFeatureValuesFloatTest, ReadsASingleValue) { Example example; (*example.mutable_features()->mutable_feature())["tag"] .mutable_float_list() ->add_value(3.14); auto tag = GetFeatureValues<float>("tag", example); ASSERT_EQ(1, tag.size()); EXPECT_NEAR(3.14, tag.Get(0), kTolerance); } TEST(GetFeatureValuesFloatTest, ReadsASingleValueFromSequenceExample) { SequenceExample example; (*example.mutable_context()->mutable_feature())["tag"] .mutable_float_list() ->add_value(3.14); auto tag = GetFeatureValues<float>("tag", example); ASSERT_EQ(1, tag.size()); EXPECT_NEAR(3.14, tag.Get(0), kTolerance); } TEST(GetFeatureValuesFloatTest, WritesASingleValueToFeature) { Feature feature; GetFeatureValues<float>(&feature)->Add(3.14); ASSERT_EQ(1, feature.float_list().value_size()); EXPECT_NEAR(3.14, feature.float_list().value(0), kTolerance); } TEST(GetFeatureValuesFloatTest, WritesASingleValue) { Example example; GetFeatureValues<float>("tag", &example)->Add(3.14); ASSERT_EQ(1, example.features().feature().at("tag").float_list().value_size()); EXPECT_NEAR(3.14, example.features().feature().at("tag").float_list().value(0), kTolerance); } TEST(GetFeatureValuesFloatTest, WritesASingleValueToSequenceExample) { SequenceExample example; GetFeatureValues<float>("tag", &example)->Add(3.14); ASSERT_EQ(1, example.context().feature().at("tag").float_list().value_size()); EXPECT_NEAR(3.14, example.context().feature().at("tag").float_list().value(0), kTolerance); } TEST(GetFeatureValuesFloatTest, CheckTypedFieldExistence) { Example example; GetFeatureValues<protobuf_int64>("tag", &example)->Add(42); ASSERT_FALSE(HasFeature<float>("tag", example)); GetFeatureValues<float>("tag", &example)->Add(3.14); EXPECT_TRUE(HasFeature<float>("tag", example)); auto tag_ro = GetFeatureValues<float>("tag", example); ASSERT_EQ(1, tag_ro.size()); EXPECT_NEAR(3.14, tag_ro.Get(0), kTolerance); } TEST(GetFeatureValuesFloatTest, CheckTypedFieldExistenceForDeprecatedMethod) { Example example; GetFeatureValues<protobuf_int64>("tag", &example)->Add(42); ASSERT_FALSE(ExampleHasFeature<float>("tag", example)); GetFeatureValues<float>("tag", &example)->Add(3.14); EXPECT_TRUE(ExampleHasFeature<float>("tag", example)); auto tag_ro = GetFeatureValues<float>("tag", example); ASSERT_EQ(1, tag_ro.size()); EXPECT_NEAR(3.14, tag_ro.Get(0), kTolerance); } TEST(GetFeatureValuesStringTest, ReadsASingleValueFromFeature) { Feature feature; feature.mutable_bytes_list()->add_value("FOO"); auto values = GetFeatureValues<std::string>(feature); ASSERT_EQ(1, values.size()); EXPECT_EQ("FOO", values.Get(0)); } TEST(GetFeatureValuesStringTest, ReadsASingleValue) { Example example; (*example.mutable_features()->mutable_feature())["tag"] .mutable_bytes_list() ->add_value("FOO"); auto tag = GetFeatureValues<std::string>("tag", example); ASSERT_EQ(1, tag.size()); EXPECT_EQ("FOO", tag.Get(0)); } TEST(GetFeatureValuesStringTest, ReadsASingleValueFromSequenceExample) { SequenceExample example; (*example.mutable_context()->mutable_feature())["tag"] .mutable_bytes_list() ->add_value("FOO"); auto tag = GetFeatureValues<std::string>("tag", example); ASSERT_EQ(1, tag.size()); EXPECT_EQ("FOO", tag.Get(0)); } TEST(GetFeatureValuesStringTest, WritesASingleValueToFeature) { Feature feature; *GetFeatureValues<std::string>(&feature)->Add() = "FOO"; ASSERT_EQ(1, feature.bytes_list().value_size()); EXPECT_EQ("FOO", feature.bytes_list().value(0)); } TEST(GetFeatureValuesStringTest, WritesASingleValue) { Example example; *GetFeatureValues<std::string>("tag", &example)->Add() = "FOO"; ASSERT_EQ(1, example.features().feature().at("tag").bytes_list().value_size()); EXPECT_EQ("FOO", example.features().feature().at("tag").bytes_list().value(0)); } TEST(GetFeatureValuesStringTest, WritesASingleValueSequenceExample) { SequenceExample example; *GetFeatureValues<std::string>("tag", &example)->Add() = "FOO"; ASSERT_EQ(1, example.context().feature().at("tag").bytes_list().value_size()); EXPECT_EQ("FOO", example.context().feature().at("tag").bytes_list().value(0)); } TEST(GetFeatureValuesStringTest, CheckTypedFieldExistence) { Example example; GetFeatureValues<protobuf_int64>("tag", &example)->Add(42); ASSERT_FALSE(HasFeature<std::string>("tag", example)); *GetFeatureValues<std::string>("tag", &example)->Add() = "FOO"; EXPECT_TRUE(HasFeature<std::string>("tag", example)); auto tag_ro = GetFeatureValues<std::string>("tag", example); ASSERT_EQ(1, tag_ro.size()); EXPECT_EQ("FOO", tag_ro.Get(0)); } TEST(AppendFeatureValuesTest, FloatValuesFromContainer) { Example example; std::vector<double> values{1.1, 2.2, 3.3}; AppendFeatureValues(values, "tag", &example); auto tag_ro = GetFeatureValues<float>("tag", example); ASSERT_EQ(3, tag_ro.size()); EXPECT_NEAR(1.1, tag_ro.Get(0), kTolerance); EXPECT_NEAR(2.2, tag_ro.Get(1), kTolerance); EXPECT_NEAR(3.3, tag_ro.Get(2), kTolerance); } TEST(AppendFeatureValuesTest, FloatValuesFromContainerWithStringViewKey) { Example example; std::vector<double> values{1.1, 2.2, 3.3}; absl::string_view key("tag"); AppendFeatureValues(values, key, &example); auto tag_ro = GetFeatureValues<float>("tag", example); ASSERT_EQ(3, tag_ro.size()); EXPECT_NEAR(1.1, tag_ro.Get(0), kTolerance); EXPECT_NEAR(2.2, tag_ro.Get(1), kTolerance); EXPECT_NEAR(3.3, tag_ro.Get(2), kTolerance); } TEST(AppendFeatureValuesTest, FloatValuesUsingInitializerList) { Example example; AppendFeatureValues({1.1, 2.2, 3.3}, "tag", &example); auto tag_ro = GetFeatureValues<float>("tag", example); ASSERT_EQ(3, tag_ro.size()); EXPECT_NEAR(1.1, tag_ro.Get(0), kTolerance); EXPECT_NEAR(2.2, tag_ro.Get(1), kTolerance); EXPECT_NEAR(3.3, tag_ro.Get(2), kTolerance); } TEST(AppendFeatureValuesTest, FloatValuesUsingInitializerListWithStringViewKey) { Example example; absl::string_view key("tag"); AppendFeatureValues({1.1, 2.2, 3.3}, key, &example); auto tag_ro = GetFeatureValues<float>("tag", example); ASSERT_EQ(3, tag_ro.size()); EXPECT_NEAR(1.1, tag_ro.Get(0), kTolerance); EXPECT_NEAR(2.2, tag_ro.Get(1), kTolerance); EXPECT_NEAR(3.3, tag_ro.Get(2), kTolerance); } TEST(AppendFeatureValuesTest, FloatValuesUsingIterators) { Example example; std::vector<double> values{1.1, 2.2, 3.3}; AppendFeatureValues(values.begin(), values.end(), "tag", &example); auto tag_ro = GetFeatureValues<float>("tag", example); ASSERT_EQ(3, tag_ro.size()); EXPECT_NEAR(1.1, tag_ro.Get(0), kTolerance); EXPECT_NEAR(2.2, tag_ro.Get(1), kTolerance); EXPECT_NEAR(3.3, tag_ro.Get(2), kTolerance); } TEST(AppendFeatureValuesTest, FloatValuesUsingIteratorsWithStringViewKey) { Example example; absl::string_view key("tag"); std::vector<double> values{1.1, 2.2, 3.3}; AppendFeatureValues(values.begin(), values.end(), key, &example); auto tag_ro = GetFeatureValues<float>("tag", example); ASSERT_EQ(3, tag_ro.size()); EXPECT_NEAR(1.1, tag_ro.Get(0), kTolerance); EXPECT_NEAR(2.2, tag_ro.Get(1), kTolerance); EXPECT_NEAR(3.3, tag_ro.Get(2), kTolerance); } TEST(SetFeatureValuesTest, FloatValuesUsingInitializerList) { Example example; AppendFeatureValues({1.1, 2.2, 3.3}, "tag", &example); SetFeatureValues({10.1, 20.2, 30.3}, "tag", &example); auto tag_ro = GetFeatureValues<float>("tag", example); ASSERT_EQ(3, tag_ro.size()); EXPECT_NEAR(10.1, tag_ro.Get(0), kTolerance); EXPECT_NEAR(20.2, tag_ro.Get(1), kTolerance); EXPECT_NEAR(30.3, tag_ro.Get(2), kTolerance); } TEST(SetFeatureValuesTest, ContainerOfStringView) { Example example; std::vector<std::string> values = {"hello", "world"}; std::vector<absl::string_view> values_string_view(values.begin(), values.end()); SetFeatureValues(values_string_view, "tag", &example); auto tag_ro = GetFeatureValues<std::string>("tag", example); ASSERT_EQ(tag_ro.size(), 2); EXPECT_EQ(tag_ro.Get(0), "hello"); EXPECT_EQ(tag_ro.Get(1), "world"); } TEST(AppendFeatureValuesTest, Int64ValuesUsingInitializerList) { Example example; std::vector<protobuf_int64> values{1, 2, 3}; AppendFeatureValues(values, "tag", &example); auto tag_ro = GetFeatureValues<protobuf_int64>("tag", example); ASSERT_EQ(3, tag_ro.size()); EXPECT_EQ(1, tag_ro.Get(0)); EXPECT_EQ(2, tag_ro.Get(1)); EXPECT_EQ(3, tag_ro.Get(2)); } TEST(AppendFeatureValuesTest, StringValuesUsingInitializerList) { Example example; AppendFeatureValues({"FOO", "BAR", "BAZ"}, "tag", &example); auto tag_ro = GetFeatureValues<std::string>("tag", example); ASSERT_EQ(3, tag_ro.size()); EXPECT_EQ("FOO", tag_ro.Get(0)); EXPECT_EQ("BAR", tag_ro.Get(1)); EXPECT_EQ("BAZ", tag_ro.Get(2)); } TEST(AppendFeatureValuesTest, StringVariablesUsingInitializerList) { Example example; string string1("FOO"); string string2("BAR"); string string3("BAZ"); AppendFeatureValues({string1, string2, string3}, "tag", &example); auto tag_ro = GetFeatureValues<std::string>("tag", example); ASSERT_EQ(3, tag_ro.size()); EXPECT_EQ("FOO", tag_ro.Get(0)); EXPECT_EQ("BAR", tag_ro.Get(1)); EXPECT_EQ("BAZ", tag_ro.Get(2)); } TEST(AppendFeatureValuesTest, StringViewVariablesUsingInitializerList) { Example example; AppendFeatureValues({absl::string_view("FOO"), absl::string_view("BAR"), absl::string_view("BAZ")}, "tag", &example); auto tag_ro = GetFeatureValues<std::string>("tag", example); ASSERT_EQ(3, tag_ro.size()); EXPECT_EQ("FOO", tag_ro.Get(0)); EXPECT_EQ("BAR", tag_ro.Get(1)); EXPECT_EQ("BAZ", tag_ro.Get(2)); } TEST(AppendFeatureValuesTest, StringViewVariablesUsingIterators) { Example example; std::vector<absl::string_view> strings; strings.push_back("FOO"); strings.push_back("BAR"); strings.push_back("BAZ"); AppendFeatureValues(strings.begin(), strings.end(), "tag", &example); auto tag_ro = GetFeatureValues<std::string>("tag", example); ASSERT_EQ(3, tag_ro.size()); EXPECT_EQ("FOO", tag_ro.Get(0)); EXPECT_EQ("BAR", tag_ro.Get(1)); EXPECT_EQ("BAZ", tag_ro.Get(2)); } TEST(GetFeatureTest, WritesAVectorToFeature) { Example example; Feature* feature = GetFeature("tag", &example); AppendFeatureValues<float>({1.1, 2.2, 3.3}, feature); auto tag_ro = GetFeatureValues<float>("tag", example); ASSERT_EQ(3, tag_ro.size()); EXPECT_NEAR(1.1, tag_ro.Get(0), kTolerance); EXPECT_NEAR(2.2, tag_ro.Get(1), kTolerance); EXPECT_NEAR(3.3, tag_ro.Get(2), kTolerance); } TEST(GetFeatureTest, ReadsAVectorFromFeature) { Example example; AppendFeatureValues<float>({1.1, 2.2, 3.3}, "tag", &example); const Feature& feature = GetFeature("tag", example); auto tag_ro = GetFeatureValues<float>(feature); ASSERT_EQ(3, tag_ro.size()); EXPECT_NEAR(1.1, tag_ro.Get(0), kTolerance); EXPECT_NEAR(2.2, tag_ro.Get(1), kTolerance); EXPECT_NEAR(3.3, tag_ro.Get(2), kTolerance); } TEST(SequenceExampleTest, ReadsASingleValueFromContext) { SequenceExample se; (*se.mutable_context()->mutable_feature())["tag"] .mutable_int64_list() ->add_value(42); auto values = GetFeatureValues<protobuf_int64>("tag", se.context()); ASSERT_EQ(1, values.size()); EXPECT_EQ(42, values.Get(0)); } TEST(SequenceExampleTest, WritesASingleValueToContext) { SequenceExample se; GetFeatureValues<protobuf_int64>("tag", se.mutable_context())->Add(42); ASSERT_EQ(1, se.context().feature().at("tag").int64_list().value_size()); EXPECT_EQ(42, se.context().feature().at("tag").int64_list().value(0)); } TEST(SequenceExampleTest, AppendFeatureValuesToContextSingleArg) { SequenceExample se; AppendFeatureValues({1.1, 2.2, 3.3}, "tag", se.mutable_context()); auto tag_ro = GetFeatureValues<float>("tag", se.context()); ASSERT_EQ(3, tag_ro.size()); EXPECT_NEAR(1.1, tag_ro.Get(0), kTolerance); EXPECT_NEAR(2.2, tag_ro.Get(1), kTolerance); EXPECT_NEAR(3.3, tag_ro.Get(2), kTolerance); } TEST(SequenceExampleTest, CheckTypedFieldExistence) { SequenceExample se; GetFeatureValues<float>("tag", se.mutable_context())->Add(3.14); ASSERT_FALSE(HasFeature<protobuf_int64>("tag", se.context())); GetFeatureValues<protobuf_int64>("tag", se.mutable_context())->Add(42); EXPECT_TRUE(HasFeature<protobuf_int64>("tag", se.context())); auto tag_ro = GetFeatureValues<protobuf_int64>("tag", se.context()); ASSERT_EQ(1, tag_ro.size()); EXPECT_EQ(42, tag_ro.Get(0)); } TEST(SequenceExampleTest, ReturnsExistingFeatureLists) { SequenceExample se; (*se.mutable_feature_lists()->mutable_feature_list())["tag"] .mutable_feature() ->Add(); auto feature = GetFeatureList("tag", se); ASSERT_EQ(1, feature.size()); } TEST(SequenceExampleTest, CreatesNewFeatureLists) { SequenceExample se; GetFeatureList("tag", &se)->Add(); EXPECT_EQ(1, se.feature_lists().feature_list().at("tag").feature_size()); } TEST(SequenceExampleTest, CheckFeatureListExistence) { SequenceExample se; ASSERT_FALSE(HasFeatureList("tag", se)); GetFeatureList("tag", &se)->Add(); ASSERT_TRUE(HasFeatureList("tag", se)); } TEST(SequenceExampleTest, AppendFeatureValuesWithInitializerList) { SequenceExample se; AppendFeatureValues({1, 2, 3}, "ids", se.mutable_context()); AppendFeatureValues({"cam1-0", "cam2-0"}, GetFeatureList("images", &se)->Add()); AppendFeatureValues({"cam1-1", "cam2-2"}, GetFeatureList("images", &se)->Add()); SequenceExample expected_proto; protobuf::TextFormat::ParseFromString( "context {\n" " feature {\n" " key: \"ids\"\n" " value {\n" " int64_list {\n" " value: 1\n" " value: 2\n" " value: 3\n" " }\n" " }\n" " }\n" "}\n" "feature_lists {\n" " feature_list {\n" " key: \"images\"\n" " value {\n" " feature {\n" " bytes_list {\n" " value: \"cam1-0\"\n" " value: \"cam2-0\"\n" " }\n" " }\n" " feature {\n" " bytes_list {\n" " value: \"cam1-1\"\n" " value: \"cam2-2\"\n" " }\n" " }\n" " }\n" " }\n" "}\n", &expected_proto); EXPECT_EQ(se.DebugString(), expected_proto.DebugString()); } TEST(SequenceExampleTest, AppendFeatureValuesWithVectors) { SequenceExample se; std::vector<float> readings{1.0, 2.5, 5.0}; AppendFeatureValues(readings, GetFeatureList("movie_ratings", &se)->Add()); SequenceExample expected_proto; protobuf::TextFormat::ParseFromString( "feature_lists {\n" " feature_list {\n" " key: \"movie_ratings\"\n" " value {\n" " feature {\n" " float_list {\n" " value: 1\n" " value: 2.5\n" " value: 5\n" " }\n" " }\n" " }\n" " }\n" "}\n", &expected_proto); EXPECT_EQ(se.DebugString(), expected_proto.DebugString()); } TEST(SequenceExampleTest, SetContextFeatureValuesWithInitializerList) { SequenceExample se; SetFeatureValues({101, 102, 103}, "ids", se.mutable_context()); SetFeatureValues({1, 2, 3}, "ids", se.mutable_context()); AppendFeatureValues({4, 5, 6}, "ids", se.mutable_context()); SequenceExample expected_proto; protobuf::TextFormat::ParseFromString( "context {\n" " feature {\n" " key: \"ids\"\n" " value {\n" " int64_list {\n" " value: 1\n" " value: 2\n" " value: 3\n" " value: 4\n" " value: 5\n" " value: 6\n" " }\n" " }\n" " }\n" "}\n", &expected_proto); EXPECT_EQ(se.DebugString(), expected_proto.DebugString()); } TEST(SequenceExampleTest, SetFeatureValuesWithInitializerList) { SequenceExample se; AppendFeatureValues({1, 2, 3}, "ids", se.mutable_context()); SetFeatureValues({4, 5, 6}, "ids", se.mutable_context()); AppendFeatureValues({"cam1-0", "cam2-0"}, GetFeatureList("images", &se)->Add()); SetFeatureValues({"cam1-1", "cam2-1"}, GetFeatureList("images", &se)->Add()); AppendFeatureValues({"cam1-0", "cam2-0"}, GetFeatureList("more-images", &se)->Add()); SetFeatureValues({"cam1-1", "cam2-1"}, GetFeatureList("more-images", &se)->Mutable(0)); SequenceExample expected_proto; protobuf::TextFormat::ParseFromString( "context {\n" " feature {\n" " key: \"ids\"\n" " value {\n" " int64_list {\n" " value: 4\n" " value: 5\n" " value: 6\n" " }\n" " }\n" " }\n" "}\n" "feature_lists {\n" " feature_list {\n" " key: \"images\"\n" " value {\n" " feature {\n" " bytes_list {\n" " value: \"cam1-0\"\n" " value: \"cam2-0\"\n" " }\n" " }\n" " feature {\n" " bytes_list {\n" " value: \"cam1-1\"\n" " value: \"cam2-1\"\n" " }\n" " }\n" " }\n" " }\n" " feature_list {\n" " key: \"more-images\"\n" " value {\n" " feature {\n" " bytes_list {\n" " value: \"cam1-1\"\n" " value: \"cam2-1\"\n" " }\n" " }\n" " }\n" " }\n" "}\n", &expected_proto); EXPECT_EQ(se.DebugString(), expected_proto.DebugString()); } TEST(MaybeGetFeatureValuesTest, ReturnsNullPtr) { const Example example; auto tag = MaybeGetFeatureValues<protobuf_int64>("tag", example); ASSERT_EQ(tag, nullptr); } TEST(MaybeGetFeatureValuesTest, ReadsASingleInt) { Example example; (*example.mutable_features()->mutable_feature())["tag"] .mutable_int64_list() ->add_value(42); auto tag = MaybeGetFeatureValues<protobuf_int64>("tag", example); ASSERT_EQ(1, tag->size()); EXPECT_EQ(42, tag->Get(0)); } TEST(MaybeGetFeatureValuesTest, ReadsASingleFloat) { Example example; (*example.mutable_features()->mutable_feature())["tag"] .mutable_float_list() ->add_value(0.3); auto tag = MaybeGetFeatureValues<float>("tag", example); ASSERT_EQ(1, tag->size()); EXPECT_FLOAT_EQ(0.3, tag->Get(0)); } TEST(MaybeGetFeatureValuesTest, ReadsASingleString) { Example example; (*example.mutable_features()->mutable_feature())["tag"] .mutable_bytes_list() ->add_value("entry"); auto tag = MaybeGetFeatureValues<std::string>("tag", example); ASSERT_EQ(1, tag->size()); EXPECT_EQ("entry", tag->Get(0)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/example/feature_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/example/feature_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
732385c8-9ae6-42da-980c-ef56b8243f9a
cpp
tensorflow/tensorflow
xplane_to_op_stats
tensorflow/core/profiler/convert/xplane_to_op_stats.cc
tensorflow/core/profiler/convert/xplane_to_op_stats_test.cc
#include "tensorflow/core/profiler/convert/xplane_to_op_stats.h" #include <string> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/strings/match.h" #include "absl/strings/string_view.h" #include "xla/tsl/profiler/utils/math_utils.h" #include "xla/tsl/profiler/utils/tf_xplane_visitor.h" #include "xla/tsl/profiler/utils/tpu_xplane_utils.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "xla/tsl/profiler/utils/xplane_utils.h" #include "tensorflow/core/profiler/convert/op_metrics_db_combiner.h" #include "tensorflow/core/profiler/convert/step_events_to_steps_db.h" #include "tensorflow/core/profiler/convert/xplane_to_kernel_stats_db.h" #include "tensorflow/core/profiler/convert/xplane_to_op_metrics_db.h" #include "tensorflow/core/profiler/convert/xplane_to_step_events.h" #include "tensorflow/core/profiler/protobuf/diagnostics.pb.h" #include "tensorflow/core/profiler/protobuf/hardware_types.pb.h" #include "tensorflow/core/profiler/protobuf/op_metrics.pb.h" #include "tensorflow/core/profiler/protobuf/op_stats.pb.h" #include "tensorflow/core/profiler/protobuf/steps_db.pb.h" #include "tensorflow/core/profiler/protobuf/tf_function.pb.h" #include "tensorflow/core/profiler/utils/device_caps_utils.h" #include "tensorflow/core/profiler/utils/event_span.h" #include "tensorflow/core/profiler/utils/hardware_type_utils.h" #include "tensorflow/core/profiler/utils/hlo_proto_map.h" #include "tensorflow/core/profiler/utils/kernel_stats_utils.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_utils.h" #include "tensorflow/core/profiler/utils/xplane_visitor.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace tensorflow { namespace profiler { namespace { using tsl::profiler::FindPlanesWithPrefix; using tsl::profiler::FindTensorCorePlanes; std::string Hostname(const XSpace& space) { if (space.hostnames().empty()) return "localhost"; DCHECK_EQ(space.hostnames_size(), 1); const std::string& hostname = space.hostnames(0); return hostname; } } PerfEnv MakePerfEnv(double peak_tera_flops_per_second, std::vector<double> peak_bws) { PerfEnv result; result.set_peak_tera_flops_per_second(peak_tera_flops_per_second); for (const auto bw : peak_bws) { result.add_peak_bws_giga_bytes_per_second(bw); } result.set_ridge_point(tsl::profiler::TeraToGiga(peak_tera_flops_per_second) / peak_bws[MemBwType::MEM_BW_TYPE_HBM_RW]); return result; } PerfEnv GetPerfEnvFromXPlane(const XPlane& device_plane) { DeviceCapabilities cap = GetDeviceCaps(device_plane); if (!absl::StartsWith(device_plane.name(), kTpuPlanePrefix)) { double peak_tera_flops_per_second = cap.num_cores() * tsl::profiler::GigaToTera(GetFlopMaxThroughputPerSM(cap)); double hbm_bw_giga_bytes_per_second = tsl::profiler::UniToGiga(cap.memory_bandwidth()); double shm_giga_bytes_per_second = cap.num_cores() * tsl::profiler::UniToGiga(GetSharedMemoryBandwidthPerSM(cap)); return MakePerfEnv(peak_tera_flops_per_second, {hbm_bw_giga_bytes_per_second, shm_giga_bytes_per_second, shm_giga_bytes_per_second}); } else { XPlaneVisitor visitor = tsl::profiler::CreateTfXPlaneVisitor(&device_plane); auto peak_tera_flops_per_second = visitor.GetStat(StatType::kDevCapPeakTeraflopsPerSecond); auto peak_tera_flops_per_second_val = peak_tera_flops_per_second.has_value() ? peak_tera_flops_per_second->DoubleValue() : 0.0; auto peak_hbm_bw_giga_bytes_per_second = visitor.GetStat(StatType::kDevCapPeakHbmBwGigabytesPerSecond); auto peak_hbm_bw_giga_bytes_per_second_val = peak_hbm_bw_giga_bytes_per_second.has_value() ? peak_hbm_bw_giga_bytes_per_second->DoubleValue() : 0.0; auto peak_sram_rd_bw_giga_bytes_per_second = visitor.GetStat(StatType::kDevCapPeakSramRdBwGigabytesPerSecond); auto peak_sram_rd_bw_giga_bytes_per_second_val = peak_sram_rd_bw_giga_bytes_per_second.has_value() ? peak_sram_rd_bw_giga_bytes_per_second->DoubleValue() : 0.0; auto peak_sram_wr_bw_giga_bytes_per_second = visitor.GetStat(StatType::kDevCapPeakSramWrBwGigabytesPerSecond); auto peak_sram_wr_bw_giga_bytes_per_second_val = peak_sram_wr_bw_giga_bytes_per_second.has_value() ? peak_sram_wr_bw_giga_bytes_per_second->DoubleValue() : 0.0; return MakePerfEnv(peak_tera_flops_per_second_val, {peak_hbm_bw_giga_bytes_per_second_val, peak_sram_rd_bw_giga_bytes_per_second_val, peak_sram_wr_bw_giga_bytes_per_second_val}); } } void SetRunEnvironment(const XSpace& space, RunEnvironment* env) { env->set_host_count(1); env->set_task_count(1); env->mutable_hostnames()->insert({Hostname(space), true}); std::vector<const XPlane*> gpu_planes = FindPlanesWithPrefix(space, kGpuPlanePrefix); if (!gpu_planes.empty()) { absl::string_view gpu_model = GpuModelName(GetDeviceCaps(*gpu_planes.front())); if (!gpu_model.empty()) { env->set_device_type(std::string(gpu_model)); } else { env->set_device_type("GPU"); } env->set_device_core_count(gpu_planes.size()); } else if (std::vector<const XPlane*> tpu_planes = FindTensorCorePlanes(space); !tpu_planes.empty()) { XPlaneVisitor visitor = tsl::profiler::CreateTfXPlaneVisitor(tpu_planes.at(0)); auto xstat = visitor.GetStat(StatType::kDeviceTypeString); if (xstat.has_value()) { env->set_device_type(std::string(xstat->StrOrRefValue())); } env->set_device_core_count(tpu_planes.size()); } else { env->set_device_type("CPU"); env->set_device_core_count(0); } } void PropagateXSpaceDiagnosticsToOpStats(const XSpace& space, OpStats* op_stats) { if (!space.errors().empty()) { absl::flat_hash_set<std::string> unique_errors; unique_errors.insert(space.errors().begin(), space.errors().end()); *op_stats->mutable_diagnostics()->mutable_errors() = {unique_errors.begin(), unique_errors.end()}; } if (!space.warnings().empty()) { absl::flat_hash_set<std::string> unique_warnings; unique_warnings.insert(space.warnings().begin(), space.warnings().end()); *op_stats->mutable_diagnostics()->mutable_warnings() = { unique_warnings.begin(), unique_warnings.end()}; } } void SetProgramIdToNameMap(const HloProtoMap& hlo_proto_map, tensorflow::profiler::OpStats& op_stats) { auto& program_id_to_name_map = *op_stats.mutable_program_id_to_name_map(); for (const auto& [program_id, hlo_proto] : hlo_proto_map) { program_id_to_name_map[program_id] = hlo_proto->hlo_module().name(); } } OpStats ConvertXSpaceToOpStats(const XSpace& space, const OpStatsOptions& options) { OpStats op_stats; StepEvents step_events; PropagateXSpaceDiagnosticsToOpStats(space, &op_stats); OpMetricsDbCombiner op_metrics_db_combiner( op_stats.mutable_device_op_metrics_db()); SetRunEnvironment(space, op_stats.mutable_run_environment()); KernelReportMap reports; std::vector<const XPlane*> device_planes = FindPlanesWithPrefix(space, kTpuPlanePrefix); const bool is_gpu = device_planes.empty(); if (is_gpu) { device_planes = FindPlanesWithPrefix(space, kGpuPlanePrefix); } const bool is_tpu = !is_gpu; for (const XPlane* device_trace : device_planes) { XPlane aggregated_xplane; bool use_aggregated_xplane = false; if (options.generate_op_metrics_db) { if (!op_stats.has_perf_env()) { *op_stats.mutable_perf_env() = GetPerfEnvFromXPlane(*device_trace); } if (!is_tpu) { OpMetricsDb device_op_metrics_db = ConvertDeviceTraceXPlaneToOpMetricsDb(*device_trace); op_metrics_db_combiner.Combine(device_op_metrics_db); } else { AggregateXPlane(*device_trace, aggregated_xplane); use_aggregated_xplane = true; OpMetricsDb device_op_metrics_db = ConvertTpuDeviceTraceXPlaneToOpMetricsDb(aggregated_xplane); op_metrics_db_combiner.Combine(device_op_metrics_db); } } if (options.generate_step_db) { StepEvents device_step_events = ConvertDeviceTraceXPlaneToStepEvents( use_aggregated_xplane ? aggregated_xplane : *device_trace); if (is_tpu) { IntersectCombineStepEvents(device_step_events, &step_events); } else { UnionCombineStepEvents(device_step_events, &step_events); } } if (options.generate_kernel_stats_db) { ConvertDeviceTraceXPlaneToKernelReports(*device_trace, {}, &reports); } } if (options.generate_kernel_stats_db) { CopyTopKDurationKernelReportsToDb(reports, op_stats.mutable_kernel_stats_db()); } bool has_device = !device_planes.empty(); const XPlane* host_plane = FindPlaneWithName(space, kHostThreadsPlaneName); if (host_plane) { if (options.generate_op_metrics_db) { *op_stats.mutable_host_op_metrics_db() = ConvertHostThreadsXPlaneToOpMetricsDb(*host_plane); } if (options.generate_step_db && !has_device) { StepEvents host_step_events = ConvertHostThreadsXPlaneToStepEvents(*host_plane, nullptr); UnionCombineStepEvents(host_step_events, &step_events); } XPlaneVisitor visitor = tsl::profiler::CreateTfXPlaneVisitor(host_plane); auto stat = visitor.GetStat(StatType::kMatrixUnitUtilizationPercent); if (stat.has_value()) { op_stats.mutable_performance_counter_result() ->set_matrix_unit_utilization_percent(stat->DoubleValue()); } } if (options.generate_step_db) { if (is_tpu) { *op_stats.mutable_step_db() = ConvertStepEventsToStepDb( has_device, false, step_events); *op_stats.mutable_device_op_metrics_db()->mutable_precision_stats() = ComputePrecisionStats(step_events); } else { StepEvents nonoverlapped_step_events = ToNonOverlappedStepEvents(step_events); *op_stats.mutable_step_db() = ConvertStepEventsToStepDb( has_device, options.maybe_drop_incomplete_steps, nonoverlapped_step_events); *op_stats.mutable_device_op_metrics_db()->mutable_precision_stats() = ComputePrecisionStats(nonoverlapped_step_events); } } if (!is_tpu) { CoreDetails& details = (*op_stats.mutable_core_id_to_details())[kDefaultGpuLocalCoreId]; details.set_hostname(Hostname(space)); } HloProtoMap hlo_proto_map; hlo_proto_map.AddHloProtosFromXSpace(space); SetProgramIdToNameMap(hlo_proto_map, op_stats); return op_stats; } } }
#include "tensorflow/core/profiler/convert/xplane_to_op_stats.h" #include <memory> #include <string> #include <utility> #include <vector> #include "xla/tsl/profiler/utils/group_events.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/convert/multi_xplanes_to_op_stats.h" #include "tensorflow/core/profiler/convert/repository.h" #include "tensorflow/core/profiler/convert/step_events_to_steps_db.h" #include "tensorflow/core/profiler/protobuf/diagnostics.pb.h" #include "tensorflow/core/profiler/protobuf/op_metrics.pb.h" #include "tensorflow/core/profiler/protobuf/op_stats.pb.h" #include "tensorflow/core/profiler/protobuf/steps_db.pb.h" #include "tensorflow/core/profiler/protobuf/tf_function.pb.h" #include "tensorflow/core/profiler/protobuf/xplane.pb.h" #include "tensorflow/core/profiler/utils/xplane_builder.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_test_utils.h" #include "tsl/platform/status.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace tensorflow { namespace profiler { namespace { using ::testing::Property; using ::testing::UnorderedElementsAre; TEST(ConvertXPlaneToOpStats, GpuPerfEnv) { auto space = std::make_unique<XSpace>(); constexpr double kMaxError = 0.01; constexpr int kClockRateKHz = 1530000; constexpr int kCoreCount = 80; constexpr uint64 kMemoryBandwidthBytesPerSecond = uint64{900} * 1000 * 1000 * 1000; constexpr int kComputeCapMajor = 7; constexpr int kComputeCapMinor = 0; XPlaneBuilder device_plane( GetOrCreateGpuXPlane(space.get(), 0)); device_plane.AddStatValue(*device_plane.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kDevVendor)), kDeviceVendorNvidia); device_plane.AddStatValue(*device_plane.GetOrCreateStatMetadata("clock_rate"), kClockRateKHz); device_plane.AddStatValue(*device_plane.GetOrCreateStatMetadata("core_count"), kCoreCount); device_plane.AddStatValue( *device_plane.GetOrCreateStatMetadata("memory_bandwidth"), kMemoryBandwidthBytesPerSecond); device_plane.AddStatValue( *device_plane.GetOrCreateStatMetadata("compute_cap_major"), kComputeCapMajor); device_plane.AddStatValue( *device_plane.GetOrCreateStatMetadata("compute_cap_minor"), kComputeCapMinor); std::vector<std::unique_ptr<XSpace>> xspaces; xspaces.push_back(std::move(space)); auto session_snapshot_or = SessionSnapshot::Create({"test_xspace"}, std::move(xspaces)); TF_CHECK_OK(session_snapshot_or.status()); OpStatsOptions options; options.generate_op_metrics_db = true; OpStats op_stats; TF_CHECK_OK(ConvertMultiXSpacesToCombinedOpStats(session_snapshot_or.value(), options, &op_stats)); const PerfEnv& perf_env = op_stats.perf_env(); EXPECT_NEAR(125.34, perf_env.peak_tera_flops_per_second(), kMaxError); EXPECT_NEAR( 900, perf_env.peak_bws_giga_bytes_per_second(MemBwType::MEM_BW_TYPE_HBM_RW), kMaxError); EXPECT_NEAR(139.26, perf_env.ridge_point(), kMaxError); } TEST(ConvertXPlaneToOpStats, GpuRunEnvironment) { auto space = std::make_unique<XSpace>(); XPlaneBuilder device_plane1( GetOrCreateGpuXPlane(space.get(), 0)); device_plane1.AddStatValue(*device_plane1.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kDevVendor)), kDeviceVendorNvidia); XPlaneBuilder device_plane2( GetOrCreateGpuXPlane(space.get(), 1)); device_plane2.AddStatValue(*device_plane2.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kDevVendor)), kDeviceVendorNvidia); std::vector<std::unique_ptr<XSpace>> xspaces; xspaces.push_back(std::move(space)); auto session_snapshot_or = SessionSnapshot::Create({"test_xspace"}, std::move(xspaces)); TF_CHECK_OK(session_snapshot_or.status()); OpStats op_stats; TF_CHECK_OK(ConvertMultiXSpacesToCombinedOpStats( session_snapshot_or.value(), OpStatsOptions(), &op_stats)); const RunEnvironment& run_env = op_stats.run_environment(); EXPECT_EQ("Nvidia GPU", run_env.device_type()); EXPECT_EQ(1, run_env.host_count()); EXPECT_EQ(1, run_env.task_count()); EXPECT_EQ(2, run_env.device_core_count()); } TEST(ConvertXPlaneToOpStats, CpuOnlyStepDbTest) { constexpr int64_t kStepNum = 123; constexpr int64_t kStepId = 0; auto space = std::make_unique<XSpace>(); XPlaneBuilder host_plane_builder(GetOrCreateHostXPlane(space.get())); host_plane_builder.ReserveLines(2); auto main_thread = host_plane_builder.GetOrCreateLine(0); CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kTraceContext, 0, 100, {{StatType::kStepNum, kStepNum}}); CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kFunctionRun, 10, 90, {{StatType::kStepId, kStepId}, {StatType::kProducerType, int64_t{1}}, {StatType::kProducerId, kStepId}}); auto tf_executor_thread = host_plane_builder.GetOrCreateLine(1); CreateXEvent(&host_plane_builder, &tf_executor_thread, HostEventType::kExecutorStateProcess, 20, 80, {{StatType::kStepId, kStepId}, {StatType::kConsumerType, int64_t{1}}, {StatType::kConsumerId, kStepId}}); CreateXEvent(&host_plane_builder, &tf_executor_thread, "matmul", 30, 70); OpStatsOptions options; options.generate_op_metrics_db = true; options.generate_step_db = true; std::vector<std::unique_ptr<XSpace>> xspaces; xspaces.push_back(std::move(space)); auto session_snapshot_or = SessionSnapshot::Create({"test_xspace"}, std::move(xspaces)); TF_CHECK_OK(session_snapshot_or.status()); OpStats op_stats; TF_CHECK_OK(ConvertMultiXSpacesToCombinedOpStats(session_snapshot_or.value(), options, &op_stats)); const StepDatabaseResult& step_db = op_stats.step_db(); EXPECT_EQ(step_db.step_sequence_size(), 1); } TEST(ConvertXPlaneToOpStats, GpuStepDbTest) { constexpr int64_t kStepNum = 123; constexpr int64_t kStepId = 0; constexpr int64_t kCorrelationId = 100; auto space = std::make_unique<XSpace>(); XPlaneBuilder host_plane_builder(GetOrCreateHostXPlane(space.get())); host_plane_builder.ReserveLines(2); auto main_thread = host_plane_builder.GetOrCreateLine(0); CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kTraceContext, 0, 100, {{StatType::kStepNum, kStepNum}}); CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kFunctionRun, 10, 90, {{StatType::kStepId, kStepId}, {StatType::kProducerType, int64_t{1}}, {StatType::kProducerId, kStepId}}); auto tf_executor_thread = host_plane_builder.GetOrCreateLine(1); CreateXEvent(&host_plane_builder, &tf_executor_thread, HostEventType::kExecutorStateProcess, 20, 20, {{StatType::kStepId, kStepId}, {StatType::kConsumerType, int64_t{1}}, {StatType::kConsumerId, kStepId}}); CreateXEvent(&host_plane_builder, &tf_executor_thread, "matmul", 30, 10, {{StatType::kCorrelationId, kCorrelationId}}); XPlaneBuilder device_plane_builder( GetOrCreateGpuXPlane(space.get(), 0)); device_plane_builder.ReserveLines(1); auto stream = device_plane_builder.GetOrCreateLine(0); CreateXEvent(&device_plane_builder, &stream, "matmul", 50, 40, {{StatType::kCorrelationId, kCorrelationId}}); OpStatsOptions options; options.generate_op_metrics_db = true; options.generate_step_db = true; std::vector<std::unique_ptr<XSpace>> xspaces; xspaces.push_back(std::move(space)); auto session_snapshot_or = SessionSnapshot::Create({"test_xspace"}, std::move(xspaces)); TF_CHECK_OK(session_snapshot_or.status()); OpStats op_stats; TF_CHECK_OK(ConvertMultiXSpacesToCombinedOpStats(session_snapshot_or.value(), options, &op_stats)); const StepDatabaseResult& step_db = op_stats.step_db(); EXPECT_EQ(step_db.step_sequence_size(), 0); PrecisionStats precision_stats = op_stats.device_op_metrics_db().precision_stats(); EXPECT_EQ(precision_stats.compute_16bit_ps(), 0); EXPECT_EQ(precision_stats.compute_32bit_ps(), 40); } TEST(ConvertXPlaneToOpStats, PropagateAndDedupErrors) { XSpace space; static constexpr char kError[] = "host: error"; *space.add_errors() = kError; *space.add_errors() = kError; OpStats op_stats = ConvertXSpaceToOpStats(space, OpStatsOptions()); EXPECT_EQ(1, op_stats.diagnostics().errors_size()); EXPECT_EQ(kError, op_stats.diagnostics().errors(0)); } TEST(ConvertXPlaneToOpStats, Hostnames) { XSpace space; static constexpr char kHost[] = "host1"; *space.add_hostnames() = kHost; OpStats op_stats = ConvertXSpaceToOpStats(space, OpStatsOptions()); EXPECT_EQ( kHost, op_stats.core_id_to_details().at(kDefaultGpuLocalCoreId).hostname()); } void BuildXSpaceForTest(XSpace& xspace, absl::string_view hostname) { constexpr int64_t kStepNum = 123; constexpr int64_t kStepId = 456; XPlaneBuilder host_plane_builder(GetOrCreateHostXPlane(&xspace)); host_plane_builder.ReserveLines(2); auto main_thread = host_plane_builder.GetOrCreateLine(0); CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kTraceContext, 0, 100, {{StatType::kStepNum, kStepNum}}); CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kFunctionRun, 10, 90, {{StatType::kStepId, kStepId}, {StatType::kProducerType, int64_t{1}}, {StatType::kProducerId, kStepId}}); auto executor_thread = host_plane_builder.GetOrCreateLine(1); CreateXEvent(&host_plane_builder, &executor_thread, HostEventType::kExecutorStateProcess, 20, 80, {{StatType::kStepId, kStepId}, {StatType::kConsumerType, int64_t{1}}, {StatType::kConsumerId, kStepId}}); CreateXEvent(&host_plane_builder, &executor_thread, "aaa:bbb", 30, 70); xspace.add_hostnames(std::string(hostname)); } TEST(ConvertXPlaneToOpStats, TestConvertMultiXSpacesToCombinedOpStats) { static constexpr char kHost1[] = "host1"; static constexpr char kHost2[] = "host2"; auto xspace1 = std::make_unique<XSpace>(); auto xspace2 = std::make_unique<XSpace>(); BuildXSpaceForTest(*xspace1, kHost1); BuildXSpaceForTest(*xspace2, kHost2); std::vector<std::string> xspace_paths; xspace_paths.push_back("host1.pb"); xspace_paths.push_back("host2.pb"); std::vector<std::unique_ptr<XSpace>> xspaces; xspaces.push_back(std::move(xspace1)); xspaces.push_back(std::move(xspace2)); auto session_snapshot_or = SessionSnapshot::Create(std::move(xspace_paths), std::move(xspaces)); TF_CHECK_OK(session_snapshot_or.status()); OpStatsOptions options; options.generate_op_metrics_db = true; options.generate_step_db = true; OpStats combined_op_stats; TF_CHECK_OK(ConvertMultiXSpacesToCombinedOpStats(session_snapshot_or.value(), options, &combined_op_stats)) << "Failed to convert multi XSpace to OpStats"; ASSERT_EQ(combined_op_stats.host_op_metrics_db().metrics_db_size(), 2); const auto& metric = combined_op_stats.host_op_metrics_db().metrics_db(1); EXPECT_EQ(metric.name(), "aaa"); EXPECT_EQ(metric.category(), "bbb"); EXPECT_EQ(metric.self_time_ps(), 140); ASSERT_EQ(combined_op_stats.step_db().step_sequence_size(), 1); ASSERT_EQ( combined_op_stats.step_db().step_sequence(0).step_info_per_core_size(), 2); const auto& step_info_per_core = combined_op_stats.step_db().step_sequence(0).step_info_per_core(); EXPECT_TRUE(step_info_per_core.contains(kDefaultGpuLocalCoreId)); EXPECT_TRUE(step_info_per_core.contains(1000 + kDefaultGpuLocalCoreId)); const auto& core_details_map = combined_op_stats.core_id_to_details(); EXPECT_EQ(kHost1, core_details_map.at(kDefaultGpuLocalCoreId).hostname()); EXPECT_EQ(kHost2, core_details_map.at(1000 + kDefaultGpuLocalCoreId).hostname()); } TEST(ConvertXPlaneToOpStats, RunEnvironmentExtractedFromTpuPlane) { XSpace xspace; for (int i : {0, 1, 2, 3}) { GetOrCreateTpuXPlane(&xspace, i, "TPU V4", 0, 0); } OpStats op_stats = ConvertXSpaceToOpStats(xspace, OpStatsOptions()); EXPECT_EQ(op_stats.run_environment().device_type(), "TPU V4"); EXPECT_EQ(op_stats.run_environment().device_core_count(), 4); } TEST(ConvertXPlaneToOpStats, TpuPerfEnv) { auto space = std::make_unique<XSpace>(); constexpr double kMaxError = 0.01; constexpr int kClockRateKHz = 1530000; constexpr int kCoreCount = 80; constexpr uint64 kMemoryBandwidthBytesPerSecond = uint64{900} * 1000 * 1000 * 1000; constexpr int kComputeCapMajor = 7; constexpr int kComputeCapMinor = 0; constexpr double kDevCapPeakTeraflopsPerSecond = 141.0; constexpr double kDevCapPeakHbmBwGigabytesPerSecond = 900.0; XPlaneBuilder device_plane(GetOrCreateTpuXPlane( space.get(), 0, "TPU V4", kDevCapPeakTeraflopsPerSecond, kDevCapPeakHbmBwGigabytesPerSecond)); device_plane.AddStatValue(*device_plane.GetOrCreateStatMetadata("clock_rate"), kClockRateKHz); device_plane.AddStatValue(*device_plane.GetOrCreateStatMetadata("core_count"), kCoreCount); device_plane.AddStatValue( *device_plane.GetOrCreateStatMetadata("memory_bandwidth"), kMemoryBandwidthBytesPerSecond); device_plane.AddStatValue( *device_plane.GetOrCreateStatMetadata("compute_cap_major"), kComputeCapMajor); device_plane.AddStatValue( *device_plane.GetOrCreateStatMetadata("compute_cap_minor"), kComputeCapMinor); OpStatsOptions options; options.generate_op_metrics_db = true; std::vector<std::unique_ptr<XSpace>> xspaces; xspaces.push_back(std::move(space)); auto session_snapshot_or = SessionSnapshot::Create({"test_xspace"}, std::move(xspaces)); TF_CHECK_OK(session_snapshot_or.status()); OpStats op_stats; TF_CHECK_OK(ConvertMultiXSpacesToCombinedOpStats(session_snapshot_or.value(), options, &op_stats)); const PerfEnv& perf_env = op_stats.perf_env(); EXPECT_NEAR(141, perf_env.peak_tera_flops_per_second(), kMaxError); EXPECT_NEAR( 900, perf_env.peak_bws_giga_bytes_per_second(MemBwType::MEM_BW_TYPE_HBM_RW), kMaxError); EXPECT_NEAR(156.67, perf_env.ridge_point(), kMaxError); } TEST(ConvertXPlaneToOpStats, TpuRunEnvironment) { auto space = std::make_unique<XSpace>(); XPlaneBuilder device_plane1( GetOrCreateTpuXPlane(space.get(), 0, "TPU V4", 0, 0)); XPlaneBuilder device_plane2( GetOrCreateTpuXPlane(space.get(), 1, "TPU V4", 0, 0)); std::vector<std::unique_ptr<XSpace>> xspaces; xspaces.push_back(std::move(space)); auto session_snapshot_or = SessionSnapshot::Create({"test_xspace"}, std::move(xspaces)); TF_CHECK_OK(session_snapshot_or.status()); OpStats op_stats; TF_CHECK_OK(ConvertMultiXSpacesToCombinedOpStats( session_snapshot_or.value(), OpStatsOptions(), &op_stats)); const RunEnvironment& run_env = op_stats.run_environment(); EXPECT_EQ("TPU V4", run_env.device_type()); EXPECT_EQ(1, run_env.host_count()); EXPECT_EQ(1, run_env.task_count()); EXPECT_EQ(2, run_env.device_core_count()); } TEST(ConvertXPlaneToOpStats, TpuDeviceTraceToStepDb) { auto space = std::make_unique<XSpace>(); constexpr double kDevCapPeakTeraflopsPerSecond = 141.0; constexpr double kDevCapPeakHbmBwGigabytesPerSecond = 1000.0; XPlaneBuilder xplane_builder(GetOrCreateTpuXPlane( space.get(), 0, "TPU V4", kDevCapPeakTeraflopsPerSecond, kDevCapPeakHbmBwGigabytesPerSecond)); XEventMetadata* event_metadata = xplane_builder.GetOrCreateEventMetadata(1); event_metadata->set_name("op_name"); XStatsBuilder<XEventMetadata> stats(event_metadata, &xplane_builder); stats.AddStatValue(*xplane_builder.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kProgramId)), 1); stats.AddStatValue(*xplane_builder.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kSymbolId)), 1); stats.AddStatValue(*xplane_builder.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kSelfDurationPs)), 10); stats.AddStatValue( *xplane_builder.GetOrCreateStatMetadata(GetStatTypeStr(StatType::kTfOp)), "tf_op_name"); stats.AddStatValue(*xplane_builder.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kHloCategory)), "category"); XLineBuilder line = xplane_builder.GetOrCreateLine(1); line.SetName(kTensorFlowOpLineName); XEventBuilder event = line.AddEvent(*event_metadata); event.SetOffsetNs(0); event.SetDurationNs(10); OpStatsOptions options; options.generate_op_metrics_db = true; std::vector<std::unique_ptr<XSpace>> xspaces; xspaces.push_back(std::move(space)); auto session_snapshot_or = SessionSnapshot::Create({"test_xspace"}, std::move(xspaces)); TF_CHECK_OK(session_snapshot_or.status()); OpStats op_stats; TF_CHECK_OK(ConvertMultiXSpacesToCombinedOpStats(session_snapshot_or.value(), options, &op_stats)); EXPECT_THAT(op_stats.device_op_metrics_db().metrics_db(), UnorderedElementsAre(Property(&OpMetrics::name, "op_name"), Property(&OpMetrics::name, "IDLE"))); } TEST(ConvertXPlaneToOpStats, TpuMultiDeviceStepDbTest) { auto space = std::make_unique<XSpace>(); XPlaneBuilder device_plane_builder1( GetOrCreateTpuXPlane(space.get(), 0, "TPU V4", 0, 0)); XPlaneBuilder device_plane_builder2( GetOrCreateTpuXPlane(space.get(), 1, "TPU V4", 0, 0)); device_plane_builder1.ReserveLines(1); device_plane_builder2.ReserveLines(1); XStatMetadata* kGroupId1 = device_plane_builder1.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kGroupId)); XLineBuilder line = device_plane_builder1.GetOrCreateLine(1); line.SetName(kXlaOpLineName); XEventMetadata* event_metadata = device_plane_builder1.GetOrCreateEventMetadata(1); event_metadata->set_name("Step 1"); XEventBuilder event_builder = line.AddEvent(*event_metadata); event_builder.AddStatValue(*kGroupId1, 1); event_builder.SetDurationNs(100); event_builder.SetOffsetNs(100); line = device_plane_builder2.GetOrCreateLine(1); line.SetName(kXlaOpLineName); XStatMetadata* kGroupId2 = device_plane_builder2.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kGroupId)); XEventMetadata* event_metadata2 = device_plane_builder2.GetOrCreateEventMetadata(2); event_metadata2->set_name("Step 1"); XEventBuilder event_builder2 = line.AddEvent(*event_metadata2); event_builder2.AddStatValue(*kGroupId2, 1); event_builder2.SetDurationNs(100); event_builder2.SetOffsetNs(300); XStatMetadata* kGroupId3 = device_plane_builder2.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kGroupId)); XEventMetadata* event_metadata3 = device_plane_builder2.GetOrCreateEventMetadata(2); event_metadata3->set_name("Step 2"); XEventBuilder event_builder3 = line.AddEvent(*event_metadata3); event_builder3.AddStatValue(*kGroupId3, 2); event_builder3.SetDurationNs(100); event_builder3.SetOffsetNs(300); OpStatsOptions options; options.generate_op_metrics_db = true; options.generate_step_db = true; OpStats op_stats = ConvertXSpaceToOpStats(*space, options); const StepDatabaseResult& step_db = op_stats.step_db(); EXPECT_EQ(step_db.step_sequence_size(), 1); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_op_stats.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_op_stats_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f6caa2d5-6866-43cc-a9a0-f63d605eeb98
cpp
tensorflow/tensorflow
buffer_pool
third_party/xla/xla/tsl/profiler/utils/buffer_pool.cc
third_party/xla/xla/tsl/profiler/utils/buffer_pool_test.cc
#include "xla/tsl/profiler/utils/buffer_pool.h" #include <ios> #include "tsl/platform/logging.h" #include "tsl/platform/mem.h" #include "tsl/platform/mutex.h" namespace tsl { namespace profiler { BufferPool::BufferPool(size_t buffer_size_in_bytes) : buffer_size_in_bytes_(buffer_size_in_bytes) {} BufferPool::~BufferPool() { DestroyAllBuffers(); } uint8_t* BufferPool::GetOrCreateBuffer() { { mutex_lock lock(buffers_mutex_); if (!buffers_.empty()) { uint8_t* buffer = buffers_.back(); buffers_.pop_back(); if (!buffer) { LOG(ERROR) << "A reused buffer must not be null!"; return nullptr; } VLOG(3) << "Reused Buffer, buffer=" << std::hex << reinterpret_cast<uintptr_t>(buffer) << std::dec; return buffer; } } constexpr size_t kBufferAlignSize = 8; uint8_t* buffer = reinterpret_cast<uint8_t*>( port::AlignedMalloc(buffer_size_in_bytes_, kBufferAlignSize)); if (buffer == nullptr) { LOG(WARNING) << "Buffer not allocated."; return nullptr; } VLOG(3) << "Allocated Buffer, buffer=" << std::hex << reinterpret_cast<uintptr_t>(buffer) << std::dec << " size=" << buffer_size_in_bytes_; return buffer; } void BufferPool::ReclaimBuffer(uint8_t* buffer) { mutex_lock lock(buffers_mutex_); buffers_.push_back(buffer); VLOG(3) << "Reclaimed Buffer, buffer=" << std::hex << reinterpret_cast<uintptr_t>(buffer) << std::dec; } void BufferPool::DestroyAllBuffers() { mutex_lock lock(buffers_mutex_); for (uint8_t* buffer : buffers_) { VLOG(3) << "Freeing Buffer, buffer:" << std::hex << reinterpret_cast<uintptr_t>(buffer) << std::dec; port::AlignedFree(buffer); } buffers_.clear(); } size_t BufferPool::GetBufferSizeInBytes() const { return buffer_size_in_bytes_; } } }
#include "xla/tsl/profiler/utils/buffer_pool.h" #include "tsl/platform/test.h" namespace tsl { namespace profiler { namespace { TEST(BufferPoolTest, GetOrCreateBufferAlloc) { constexpr size_t kBufferSizeInBytes = 32 * 1024; BufferPool buffer_pool(kBufferSizeInBytes); uint8_t* first_buffer = buffer_pool.GetOrCreateBuffer(); EXPECT_NE(first_buffer, nullptr); uint8_t* second_buffer = buffer_pool.GetOrCreateBuffer(); EXPECT_NE(second_buffer, first_buffer); for (size_t idx = 0; idx < kBufferSizeInBytes; ++idx) { first_buffer[idx] = 0xAB; } buffer_pool.ReclaimBuffer(first_buffer); buffer_pool.ReclaimBuffer(second_buffer); } TEST(BufferPoolTest, GetOrCreateBufferReuse) { constexpr size_t kBufferSizeInBytes = 32 * 1024; BufferPool buffer_pool(kBufferSizeInBytes); uint8_t* buffer = buffer_pool.GetOrCreateBuffer(); EXPECT_NE(buffer, nullptr); buffer[0] = 0xFF; uint8_t* previous_buffer = buffer; buffer_pool.ReclaimBuffer(buffer); uint8_t* reused_buffer = buffer_pool.GetOrCreateBuffer(); EXPECT_EQ(reused_buffer, previous_buffer); for (size_t idx = 0; idx < kBufferSizeInBytes; ++idx) { reused_buffer[idx] = 0xCD; } buffer_pool.ReclaimBuffer(reused_buffer); } TEST(BufferPoolTest, DestroyAllBuffers) { constexpr size_t kBufferSizeInBytes = 32 * 1024; BufferPool buffer_pool(kBufferSizeInBytes); uint8_t* first_buffer = buffer_pool.GetOrCreateBuffer(); EXPECT_NE(first_buffer, nullptr); buffer_pool.DestroyAllBuffers(); for (size_t idx = 0; idx < kBufferSizeInBytes; ++idx) { first_buffer[idx] = 0xEF; } uint8_t* second_buffer = buffer_pool.GetOrCreateBuffer(); for (size_t idx = 0; idx < kBufferSizeInBytes; ++idx) { second_buffer[idx] = 0xAB; } buffer_pool.ReclaimBuffer(first_buffer); buffer_pool.ReclaimBuffer(second_buffer); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/utils/buffer_pool.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/utils/buffer_pool_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
67126d38-e555-4752-b7c6-e14f7ad54bc5
cpp
google/cel-cpp
test_ast_helpers
checker/internal/test_ast_helpers.cc
checker/internal/test_ast_helpers_test.cc
#include "checker/internal/test_ast_helpers.h" #include <memory> #include <utility> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "common/ast.h" #include "extensions/protobuf/ast_converters.h" #include "internal/status_macros.h" #include "parser/parser.h" namespace cel::checker_internal { using ::cel::extensions::CreateAstFromParsedExpr; using ::google::api::expr::parser::Parse; absl::StatusOr<std::unique_ptr<Ast>> MakeTestParsedAst( absl::string_view expression) { CEL_ASSIGN_OR_RETURN(auto parsed, Parse(expression)); return CreateAstFromParsedExpr(std::move(parsed)); } }
#include "checker/internal/test_ast_helpers.h" #include <memory> #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "base/ast_internal/ast_impl.h" #include "common/ast.h" #include "internal/testing.h" namespace cel::checker_internal { namespace { using ::absl_testing::StatusIs; using ::cel::ast_internal::AstImpl; TEST(MakeTestParsedAstTest, Works) { ASSERT_OK_AND_ASSIGN(std::unique_ptr<Ast> ast, MakeTestParsedAst("123")); AstImpl& impl = AstImpl::CastFromPublicAst(*ast); EXPECT_TRUE(impl.root_expr().has_const_expr()); } TEST(MakeTestParsedAstTest, ForwardsParseError) { EXPECT_THAT(MakeTestParsedAst("%123"), StatusIs(absl::StatusCode::kInvalidArgument)); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/checker/internal/test_ast_helpers.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/checker/internal/test_ast_helpers_test.cc
4552db5798fb0853b131b783d8875794334fae7f
87fe2bee-23db-45e0-a461-fab9ad7c0991
cpp
tensorflow/tensorflow
null_request_cost_accessor
tensorflow/core/common_runtime/null_request_cost_accessor.cc
tensorflow/core/common_runtime/null_request_cost_accessor_test.cc
#include "tensorflow/core/common_runtime/null_request_cost_accessor.h" namespace tensorflow { RequestCost* NullRequestCostAccessor::GetRequestCost() const { return nullptr; } REGISTER_REQUEST_COST_ACCESSOR("null", NullRequestCostAccessor); }
#include "tensorflow/core/common_runtime/null_request_cost_accessor.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { TEST(NullRequestCostAccessorTest, Basic) { NullRequestCostAccessor accessor; EXPECT_EQ(accessor.GetRequestCost(), nullptr); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/null_request_cost_accessor.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/null_request_cost_accessor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6b0970d5-609b-4189-820c-8068b1d8b2d2
cpp
tensorflow/tensorflow
memory_management
tensorflow/lite/delegates/gpu/common/memory_management.cc
tensorflow/lite/delegates/gpu/common/memory_management_test.cc
#include "tensorflow/lite/delegates/gpu/common/memory_management.h" #include <cstddef> #include <numeric> #include <utility> #include <vector> #include "tensorflow/lite/delegates/gpu/common/memory_management/equality_assignment.h" #include "tensorflow/lite/delegates/gpu/common/memory_management/greedy_by_breadth_assignment.h" #include "tensorflow/lite/delegates/gpu/common/memory_management/greedy_by_size_assignment.h" #include "tensorflow/lite/delegates/gpu/common/memory_management/greedy_in_order_assignment.h" #include "tensorflow/lite/delegates/gpu/common/memory_management/min_cost_flow_assignment.h" #include "tensorflow/lite/delegates/gpu/common/memory_management/naive_assignment.h" #include "tensorflow/lite/delegates/gpu/common/memory_management/types.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" namespace tflite { namespace gpu { namespace { size_t TotalSize(const ObjectsAssignment<size_t>& assignment) { return std::accumulate(assignment.object_sizes.begin(), assignment.object_sizes.end(), static_cast<size_t>(0)); } } OffsetsAssignment ObjectsToOffsets( const ObjectsAssignment<size_t>& obj_assignment) { size_t num_tensors = obj_assignment.object_ids.size(); size_t num_objects = obj_assignment.object_sizes.size(); OffsetsAssignment result = {std::vector<size_t>(num_tensors), 0}; std::vector<size_t> ids_to_offset(num_objects); for (size_t i = 0; i < num_objects; ++i) { ids_to_offset[i] = result.total_size; result.total_size += obj_assignment.object_sizes[i]; } for (size_t i = 0; i < num_tensors; ++i) { result.offsets[i] = ids_to_offset[obj_assignment.object_ids[i]]; } return result; } absl::Status BestGreedy( const std::vector<TensorUsageRecord<size_t>>& usage_records, ObjectsAssignment<size_t>* assignment) { RETURN_IF_ERROR( GreedyBySizeDistPriorityAssignment(usage_records, assignment)); ObjectsAssignment<size_t> assignment_by_breadth; if (GreedyByBreadthAssignment(usage_records, &assignment_by_breadth).ok() && TotalSize(assignment_by_breadth) < TotalSize(*assignment)) { std::swap(*assignment, assignment_by_breadth); } return absl::OkStatus(); } template <> absl::Status AssignObjectsToTensors( const std::vector<TensorUsageRecord<size_t>>& usage_records, MemoryStrategy strategy, ObjectsAssignment<size_t>* assignment, const UsageGraph* reallocation_graph) { switch (strategy) { case MemoryStrategy::NAIVE: return NaiveAssignment(usage_records, assignment); case MemoryStrategy::EQUALITY: return EqualityAssignmentWithHash(usage_records, assignment); case MemoryStrategy::GREEDY_IN_ORDER: return GreedyInOrderAssignment(usage_records, assignment, reallocation_graph); case MemoryStrategy::GREEDY_BY_BREADTH: return GreedyByBreadthAssignment(usage_records, assignment); case MemoryStrategy::GREEDY_BY_SIZE: return GreedyBySizeDistPriorityAssignment(usage_records, assignment); case MemoryStrategy::GREEDY_BEST: return BestGreedy(usage_records, assignment); case MemoryStrategy::MINCOSTFLOW: return MinCostFlowAssignment(usage_records, assignment); default: return absl::InternalError( "MemoryStrategy is not supported with current tensor size type."); } return absl::OkStatus(); } template <> absl::Status AssignObjectsToTensors( const std::vector<TensorUsageRecord<BHWC>>& usage_records, MemoryStrategy strategy, ObjectsAssignment<BHWC>* assignment, const UsageGraph* reallocation_graph) { switch (strategy) { case MemoryStrategy::NAIVE: return NaiveAssignment(usage_records, assignment); case MemoryStrategy::EQUALITY: return EqualityAssignmentWithHash(usage_records, assignment); default: return absl::InternalError( "MemoryStrategy is not supported with current tensor size type."); } return absl::OkStatus(); } template <> absl::Status AssignObjectsToTensors( const std::vector<TensorUsageRecord<uint2>>& usage_records, MemoryStrategy strategy, ObjectsAssignment<uint2>* assignment, const UsageGraph* reallocation_graph) { switch (strategy) { case MemoryStrategy::NAIVE: return NaiveAssignment(usage_records, assignment); case MemoryStrategy::EQUALITY: return EqualityAssignment(usage_records, assignment); case MemoryStrategy::GREEDY_IN_ORDER: return GreedyInOrderAssignmentMultidimensional(usage_records, assignment); default: return absl::InternalError( "MemoryStrategy is not supported with current tensor size type."); } return absl::OkStatus(); } template <> absl::Status AssignObjectsToTensors( const std::vector<TensorUsageRecord<uint3>>& usage_records, MemoryStrategy strategy, ObjectsAssignment<uint3>* assignment, const UsageGraph* reallocation_graph) { switch (strategy) { case MemoryStrategy::NAIVE: return NaiveAssignment(usage_records, assignment); case MemoryStrategy::EQUALITY: return EqualityAssignment(usage_records, assignment); case MemoryStrategy::GREEDY_IN_ORDER: return GreedyInOrderAssignmentMultidimensional(usage_records, assignment); default: return absl::InternalError( "MemoryStrategy is not supported with current tensor size type."); } return absl::OkStatus(); } absl::Status AssignOffsetsToTensors( const std::vector<TensorUsageRecord<size_t>>& usage_records, const MemoryStrategy& strategy, OffsetsAssignment* assignment, size_t base_addr_align_bytes, const UsageGraph* reallocation_graph) { if (strategy == MemoryStrategy::GREEDY_BY_SIZE) { return GreedyBySizeAssignment(usage_records, base_addr_align_bytes, assignment); } ObjectsAssignment<size_t> objects_assignment; RETURN_IF_ERROR(AssignObjectsToTensors( usage_records, strategy, &objects_assignment, reallocation_graph)); *assignment = ObjectsToOffsets(objects_assignment); return absl::OkStatus(); } } }
#include "tensorflow/lite/delegates/gpu/common/memory_management.h" #include <cstddef> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorflow/lite/delegates/gpu/common/memory_management/types.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/types.h" namespace tflite { namespace gpu { namespace { using ::testing::ElementsAre; TEST(Model, EmptyAssignment) { ObjectsAssignment<size_t> objects_assignment; OffsetsAssignment result = ObjectsToOffsets(objects_assignment); EXPECT_TRUE(result.offsets.empty()); EXPECT_EQ(result.total_size, 0); } TEST(Model, OneObjectAssignment) { ObjectsAssignment<size_t> objects_assignment; objects_assignment.object_sizes = {16}; objects_assignment.object_ids = {0}; OffsetsAssignment result = ObjectsToOffsets(objects_assignment); EXPECT_EQ(result.total_size, 16); EXPECT_THAT(result.offsets, ElementsAre(0)); objects_assignment.object_ids = {0, 0, 0}; result = ObjectsToOffsets(objects_assignment); EXPECT_EQ(result.total_size, 16); EXPECT_THAT(result.offsets, ElementsAre(0, 0, 0)); } TEST(Model, ManyObjectsAssignment) { ObjectsAssignment<size_t> objects_assignment; objects_assignment.object_sizes = {16, 8, 32, 32, 4, 16}; objects_assignment.object_ids = {2, 0, 2, 1, 3, 3, 1, 5}; OffsetsAssignment result = ObjectsToOffsets(objects_assignment); EXPECT_THAT(result.offsets, ElementsAre(24, 0, 24, 16, 56, 56, 16, 92)); } TEST(Model, EmptyRecords) { ObjectsAssignment<size_t> assignment; ASSERT_TRUE( AssignObjectsToTensors({}, MemoryStrategy::NAIVE, &assignment).ok()); EXPECT_TRUE(assignment.object_ids.empty()); EXPECT_TRUE(assignment.object_sizes.empty()); ASSERT_TRUE( AssignObjectsToTensors({}, MemoryStrategy::EQUALITY, &assignment).ok()); EXPECT_TRUE(assignment.object_ids.empty()); EXPECT_TRUE(assignment.object_sizes.empty()); ASSERT_TRUE( AssignObjectsToTensors({}, MemoryStrategy::GREEDY_IN_ORDER, &assignment) .ok()); EXPECT_TRUE(assignment.object_ids.empty()); EXPECT_TRUE(assignment.object_sizes.empty()); ASSERT_TRUE( AssignObjectsToTensors({}, MemoryStrategy::MINCOSTFLOW, &assignment) .ok()); EXPECT_TRUE(assignment.object_ids.empty()); EXPECT_TRUE(assignment.object_sizes.empty()); ASSERT_TRUE( AssignObjectsToTensors({}, MemoryStrategy::GREEDY_BY_BREADTH, &assignment) .ok()); EXPECT_TRUE(assignment.object_ids.empty()); EXPECT_TRUE(assignment.object_sizes.empty()); ASSERT_TRUE( AssignObjectsToTensors({}, MemoryStrategy::GREEDY_BY_SIZE, &assignment) .ok()); EXPECT_TRUE(assignment.object_ids.empty()); EXPECT_TRUE(assignment.object_sizes.empty()); OffsetsAssignment offsets_assignment; ASSERT_TRUE(AssignOffsetsToTensors({}, MemoryStrategy::GREEDY_BY_SIZE, &offsets_assignment) .ok()); EXPECT_TRUE(offsets_assignment.offsets.empty()); EXPECT_EQ(offsets_assignment.total_size, 0); } TEST(Model, OneRecord) { std::vector<TensorUsageRecord<size_t>> usage_records{ {16, 0, 1}}; ObjectsAssignment<size_t> assignment; ASSERT_TRUE( AssignObjectsToTensors(usage_records, MemoryStrategy::NAIVE, &assignment) .ok()); EXPECT_THAT(assignment.object_ids, ElementsAre(0)); EXPECT_THAT(assignment.object_sizes, ElementsAre(16)); ASSERT_TRUE(AssignObjectsToTensors(usage_records, MemoryStrategy::EQUALITY, &assignment) .ok()); EXPECT_THAT(assignment.object_ids, ElementsAre(0)); EXPECT_THAT(assignment.object_sizes, ElementsAre(16)); ASSERT_TRUE(AssignObjectsToTensors( usage_records, MemoryStrategy::GREEDY_IN_ORDER, &assignment) .ok()); EXPECT_THAT(assignment.object_ids, ElementsAre(0)); EXPECT_THAT(assignment.object_sizes, ElementsAre(16)); ASSERT_TRUE(AssignObjectsToTensors(usage_records, MemoryStrategy::MINCOSTFLOW, &assignment) .ok()); EXPECT_THAT(assignment.object_ids, ElementsAre(0)); EXPECT_THAT(assignment.object_sizes, ElementsAre(16)); ASSERT_TRUE(AssignObjectsToTensors( usage_records, MemoryStrategy::GREEDY_BY_BREADTH, &assignment) .ok()); EXPECT_THAT(assignment.object_ids, ElementsAre(0)); EXPECT_THAT(assignment.object_sizes, ElementsAre(16)); ASSERT_TRUE(AssignObjectsToTensors( usage_records, MemoryStrategy::GREEDY_BY_SIZE, &assignment) .ok()); EXPECT_THAT(assignment.object_ids, ElementsAre(0)); EXPECT_THAT(assignment.object_sizes, ElementsAre(16)); OffsetsAssignment offsets_assignment; ASSERT_TRUE(AssignOffsetsToTensors(usage_records, MemoryStrategy::GREEDY_BY_SIZE, &offsets_assignment) .ok()); EXPECT_THAT(offsets_assignment.offsets, ElementsAre(0)); EXPECT_EQ(offsets_assignment.total_size, 16); } TEST(Model, ChainRecords) { std::vector<TensorUsageRecord<size_t>> usage_records{ {16, 0, 1}, {8, 1, 2}, {64, 2, 3}, {32, 3, 4}, {8, 4, 5}, }; ObjectsAssignment<size_t> assignment; ASSERT_TRUE( AssignObjectsToTensors(usage_records, MemoryStrategy::NAIVE, &assignment) .ok()); EXPECT_THAT(assignment.object_ids, ElementsAre(0, 1, 2, 3, 4)); EXPECT_THAT(assignment.object_sizes, ElementsAre(16, 8, 64, 32, 8)); ASSERT_TRUE(AssignObjectsToTensors(usage_records, MemoryStrategy::EQUALITY, &assignment) .ok()); EXPECT_THAT(assignment.object_ids, ElementsAre(0, 1, 2, 3, 1)); EXPECT_THAT(assignment.object_sizes, ElementsAre(16, 8, 64, 32)); ASSERT_TRUE(AssignObjectsToTensors(usage_records, MemoryStrategy::MINCOSTFLOW, &assignment) .ok()); EXPECT_THAT(assignment.object_ids, ElementsAre(0, 1, 0, 1, 0)); EXPECT_THAT(assignment.object_sizes, ElementsAre(64, 32)); ASSERT_TRUE(AssignObjectsToTensors( usage_records, MemoryStrategy::GREEDY_IN_ORDER, &assignment) .ok()); EXPECT_THAT(assignment.object_ids, ElementsAre(0, 1, 0, 1, 0)); EXPECT_THAT(assignment.object_sizes, ElementsAre(64, 32)); ASSERT_TRUE(AssignObjectsToTensors( usage_records, MemoryStrategy::GREEDY_BY_BREADTH, &assignment) .ok()); EXPECT_THAT(assignment.object_ids, ElementsAre(0, 1, 0, 1, 0)); EXPECT_THAT(assignment.object_sizes, ElementsAre(64, 32)); ASSERT_TRUE(AssignObjectsToTensors( usage_records, MemoryStrategy::GREEDY_BY_SIZE, &assignment) .ok()); EXPECT_THAT(assignment.object_ids, ElementsAre(0, 1, 0, 1, 0)); EXPECT_THAT(assignment.object_sizes, ElementsAre(64, 32)); OffsetsAssignment offsets_assignment; ASSERT_TRUE(AssignOffsetsToTensors(usage_records, MemoryStrategy::GREEDY_BY_SIZE, &offsets_assignment) .ok()); EXPECT_THAT(offsets_assignment.offsets, ElementsAre(0, 64, 0, 64, 0)); EXPECT_EQ(offsets_assignment.total_size, 96); } TEST(Model, ComplexRecords) { std::vector<TensorUsageRecord<size_t>> usage_records{ {32, 0, 1}, {32, 1, 4}, {8, 2, 5}, {16, 3, 5}, {8, 4, 5}, {64, 5, 7}, {8, 6, 8}, {8, 7, 8}, {16, 8, 9}}; ObjectsAssignment<size_t> assignment; ASSERT_TRUE( AssignObjectsToTensors(usage_records, MemoryStrategy::NAIVE, &assignment) .ok()); EXPECT_THAT(assignment.object_ids, ElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8)); EXPECT_THAT(assignment.object_sizes, ElementsAre(32, 32, 8, 16, 8, 64, 8, 8, 16)); ASSERT_TRUE(AssignObjectsToTensors(usage_records, MemoryStrategy::EQUALITY, &assignment) .ok()); EXPECT_THAT(assignment.object_ids, ElementsAre(0, 1, 2, 3, 4, 5, 4, 2, 3)); EXPECT_THAT(assignment.object_sizes, ElementsAre(32, 32, 8, 16, 8, 64)); ASSERT_TRUE(AssignObjectsToTensors(usage_records, MemoryStrategy::MINCOSTFLOW, &assignment) .ok()); EXPECT_THAT(assignment.object_ids, ElementsAre(0, 1, 2, 0, 3, 1, 3, 2, 0)); EXPECT_THAT(assignment.object_sizes, ElementsAre(32, 64, 8, 8)); ASSERT_TRUE(AssignObjectsToTensors( usage_records, MemoryStrategy::GREEDY_IN_ORDER, &assignment) .ok()); EXPECT_THAT(assignment.object_ids, ElementsAre(0, 1, 0, 2, 3, 1, 3, 2, 0)); EXPECT_THAT(assignment.object_sizes, ElementsAre(32, 64, 16, 8)); ASSERT_TRUE(AssignObjectsToTensors( usage_records, MemoryStrategy::GREEDY_BY_BREADTH, &assignment) .ok()); EXPECT_THAT(assignment.object_ids, ElementsAre(0, 4, 2, 1, 3, 0, 2, 3, 1)); EXPECT_THAT(assignment.object_sizes, ElementsAre(64, 16, 8, 8, 32)); ASSERT_TRUE(AssignObjectsToTensors( usage_records, MemoryStrategy::GREEDY_BY_SIZE, &assignment) .ok()); EXPECT_THAT(assignment.object_ids, ElementsAre(1, 0, 2, 1, 3, 0, 1, 2, 0)); EXPECT_THAT(assignment.object_sizes, ElementsAre(64, 32, 8, 8)); OffsetsAssignment offsets_assignment; ASSERT_TRUE(AssignOffsetsToTensors(usage_records, MemoryStrategy::GREEDY_BY_SIZE, &offsets_assignment) .ok()); EXPECT_THAT(offsets_assignment.offsets, ElementsAre(0, 32, 80, 64, 88, 0, 64, 72, 0)); EXPECT_EQ(offsets_assignment.total_size, 96); } TEST(Model, BHWCRecords) { std::vector<TensorUsageRecord<BHWC>> usage_records{ {BHWC(1, 1, 2, 8), 0, 1}, {BHWC(1, 1, 2, 8), 1, 2}, {BHWC(1, 1, 1, 16), 2, 4}, {BHWC(1, 1, 2, 8), 3, 5}, {BHWC(1, 1, 8, 2), 4, 5}, {BHWC(1, 1, 2, 8), 5, 7}, {BHWC(1, 16, 1, 1), 6, 8}, {BHWC(16, 1, 1, 1), 7, 8}, {BHWC(1, 1, 1, 16), 8, 9}}; ObjectsAssignment<BHWC> assignment; ASSERT_TRUE( AssignObjectsToTensors(usage_records, MemoryStrategy::NAIVE, &assignment) .ok()); EXPECT_THAT(assignment.object_ids, ElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8)); EXPECT_THAT( assignment.object_sizes, ElementsAre(BHWC(1, 1, 2, 8), BHWC(1, 1, 2, 8), BHWC(1, 1, 1, 16), BHWC(1, 1, 2, 8), BHWC(1, 1, 8, 2), BHWC(1, 1, 2, 8), BHWC(1, 16, 1, 1), BHWC(16, 1, 1, 1), BHWC(1, 1, 1, 16))); ASSERT_TRUE(AssignObjectsToTensors(usage_records, MemoryStrategy::EQUALITY, &assignment) .ok()); EXPECT_THAT(assignment.object_ids, ElementsAre(0, 1, 2, 1, 3, 0, 4, 5, 2)); EXPECT_THAT( assignment.object_sizes, ElementsAre(BHWC(1, 1, 2, 8), BHWC(1, 1, 2, 8), BHWC(1, 1, 1, 16), BHWC(1, 1, 8, 2), BHWC(1, 16, 1, 1), BHWC(16, 1, 1, 1))); } TEST(Model, UInt2Records) { std::vector<TensorUsageRecord<uint2>> usage_records{ {uint2(2, 8), 0, 1}, {uint2(2, 8), 1, 2}, {uint2(1, 12), 2, 4}, {uint2(2, 8), 3, 5}, {uint2(8, 2), 4, 5}, {uint2(2, 8), 5, 7}, {uint2(1, 8), 6, 8}, {uint2(2, 8), 7, 8}, {uint2(4, 1), 8, 9}}; ObjectsAssignment<uint2> assignment; ASSERT_TRUE( AssignObjectsToTensors(usage_records, MemoryStrategy::NAIVE, &assignment) .ok()); EXPECT_THAT(assignment.object_ids, ElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8)); EXPECT_THAT(assignment.object_sizes, ElementsAre(uint2(2, 8), uint2(2, 8), uint2(1, 12), uint2(2, 8), uint2(8, 2), uint2(2, 8), uint2(1, 8), uint2(2, 8), uint2(4, 1))); ASSERT_TRUE(AssignObjectsToTensors(usage_records, MemoryStrategy::EQUALITY, &assignment) .ok()); EXPECT_THAT(assignment.object_ids, ElementsAre(0, 1, 2, 0, 3, 1, 4, 0, 5)); EXPECT_THAT(assignment.object_sizes, ElementsAre(uint2(2, 8), uint2(2, 8), uint2(1, 12), uint2(8, 2), uint2(1, 8), uint2(4, 1))); ASSERT_TRUE(AssignObjectsToTensors( usage_records, MemoryStrategy::GREEDY_IN_ORDER, &assignment) .ok()); EXPECT_THAT(assignment.object_ids, ElementsAre(0, 1, 2, 0, 3, 1, 2, 0, 3)); EXPECT_THAT(assignment.object_sizes, ElementsAre(uint2(2, 8), uint2(2, 8), uint2(1, 12), uint2(8, 2))); } TEST(Model, UInt3Records) { std::vector<TensorUsageRecord<uint3>> usage_records{ {uint3(1, 2, 8), 0, 1}, {uint3(4, 3, 2), 1, 2}, {uint3(1, 1, 1), 2, 4}, {uint3(2, 4, 1), 3, 5}, {uint3(2, 2, 2), 4, 5}, {uint3(8, 1, 2), 5, 7}, {uint3(1, 2, 1), 6, 8}, {uint3(1, 1, 1), 7, 8}, {uint3(2, 2, 2), 8, 9}}; ObjectsAssignment<uint3> assignment; ASSERT_TRUE( AssignObjectsToTensors(usage_records, MemoryStrategy::NAIVE, &assignment) .ok()); EXPECT_THAT(assignment.object_ids, ElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8)); EXPECT_THAT(assignment.object_sizes, ElementsAre(uint3(1, 2, 8), uint3(4, 3, 2), uint3(1, 1, 1), uint3(2, 4, 1), uint3(2, 2, 2), uint3(8, 1, 2), uint3(1, 2, 1), uint3(1, 1, 1), uint3(2, 2, 2))); ASSERT_TRUE(AssignObjectsToTensors(usage_records, MemoryStrategy::EQUALITY, &assignment) .ok()); EXPECT_THAT(assignment.object_ids, ElementsAre(0, 1, 2, 3, 4, 5, 6, 2, 4)); EXPECT_THAT(assignment.object_sizes, ElementsAre(uint3(1, 2, 8), uint3(4, 3, 2), uint3(1, 1, 1), uint3(2, 4, 1), uint3(2, 2, 2), uint3(8, 1, 2), uint3(1, 2, 1))); ASSERT_TRUE(AssignObjectsToTensors( usage_records, MemoryStrategy::GREEDY_IN_ORDER, &assignment) .ok()); EXPECT_THAT(assignment.object_ids, ElementsAre(0, 1, 0, 2, 1, 3, 2, 0, 1)); EXPECT_THAT(assignment.object_sizes, ElementsAre(uint3(1, 2, 8), uint3(4, 3, 2), uint3(2, 4, 1), uint3(8, 1, 2))); } TEST(Model, OffsetAssignmentWithAlignment) { std::vector<TensorUsageRecord<size_t>> usage_records{ {16, 0, 1}, {8, 1, 2}, {64, 2, 3}, {32, 3, 4}, {8, 4, 5}, }; OffsetsAssignment offsets_assignment; ASSERT_TRUE(AssignOffsetsToTensors(usage_records, MemoryStrategy::GREEDY_BY_SIZE, &offsets_assignment, 128) .ok()); EXPECT_THAT(offsets_assignment.offsets, ElementsAre(0, 128, 0, 128, 0)); EXPECT_EQ(offsets_assignment.total_size, 160); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/common/memory_management.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/common/memory_management_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
cbdbbcd9-531f-44a7-8c9c-6d54780b1a2c
cpp
google/quiche
web_transport_headers
quiche/web_transport/web_transport_headers.cc
quiche/web_transport/web_transport_headers_test.cc
#include "quiche/web_transport/web_transport_headers.h" #include <array> #include <cstdint> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/base/attributes.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "quiche/common/quiche_status_utils.h" #include "quiche/common/structured_headers.h" namespace webtransport { namespace { using ::quiche::structured_headers::Dictionary; using ::quiche::structured_headers::DictionaryMember; using ::quiche::structured_headers::Item; using ::quiche::structured_headers::ItemTypeToString; using ::quiche::structured_headers::List; using ::quiche::structured_headers::ParameterizedItem; using ::quiche::structured_headers::ParameterizedMember; absl::Status CheckItemType(const ParameterizedItem& item, Item::ItemType expected_type) { if (item.item.Type() != expected_type) { return absl::InvalidArgumentError(absl::StrCat( "Expected all members to be of type ", ItemTypeToString(expected_type), ", found ", ItemTypeToString(item.item.Type()), " instead")); } return absl::OkStatus(); } absl::Status CheckMemberType(const ParameterizedMember& member, Item::ItemType expected_type) { if (member.member_is_inner_list || member.member.size() != 1) { return absl::InvalidArgumentError(absl::StrCat( "Expected all members to be of type", ItemTypeToString(expected_type), ", found a nested list instead")); } return CheckItemType(member.member[0], expected_type); } ABSL_CONST_INIT std::array kInitHeaderFields{ std::make_pair("u", &WebTransportInitHeader::initial_unidi_limit), std::make_pair("bl", &WebTransportInitHeader::initial_incoming_bidi_limit), std::make_pair("br", &WebTransportInitHeader::initial_outgoing_bidi_limit), }; } absl::StatusOr<std::vector<std::string>> ParseSubprotocolRequestHeader( absl::string_view value) { std::optional<List> parsed = quiche::structured_headers::ParseList(value); if (!parsed.has_value()) { return absl::InvalidArgumentError( "Failed to parse the header as an sf-list"); } std::vector<std::string> result; result.reserve(parsed->size()); for (ParameterizedMember& member : *parsed) { QUICHE_RETURN_IF_ERROR(CheckMemberType(member, Item::kTokenType)); result.push_back(std::move(member.member[0].item).TakeString()); } return result; } absl::StatusOr<std::string> SerializeSubprotocolRequestHeader( absl::Span<const std::string> subprotocols) { for (const std::string& token : subprotocols) { if (!quiche::structured_headers::IsValidToken(token)) { return absl::InvalidArgumentError(absl::StrCat("Invalid token: ", token)); } } return absl::StrJoin(subprotocols, ", "); } absl::StatusOr<std::string> ParseSubprotocolResponseHeader( absl::string_view value) { std::optional<ParameterizedItem> parsed = quiche::structured_headers::ParseItem(value); if (!parsed.has_value()) { return absl::InvalidArgumentError("Failed to parse sf-item"); } QUICHE_RETURN_IF_ERROR(CheckItemType(*parsed, Item::kTokenType)); return std::move(parsed->item).TakeString(); } absl::StatusOr<std::string> SerializeSubprotocolResponseHeader( absl::string_view subprotocol) { if (!quiche::structured_headers::IsValidToken(subprotocol)) { return absl::InvalidArgumentError("Invalid token value supplied"); } return std::string(subprotocol); } absl::StatusOr<WebTransportInitHeader> ParseInitHeader( absl::string_view header) { std::optional<Dictionary> parsed = quiche::structured_headers::ParseDictionary(header); if (!parsed.has_value()) { return absl::InvalidArgumentError( "Failed to parse WebTransport-Init header as an sf-dictionary"); } WebTransportInitHeader output; for (const auto& [field_name_a, field_value] : *parsed) { for (const auto& [field_name_b, field_accessor] : kInitHeaderFields) { if (field_name_a != field_name_b) { continue; } QUICHE_RETURN_IF_ERROR(CheckMemberType(field_value, Item::kIntegerType)); int64_t value = field_value.member[0].item.GetInteger(); if (value < 0) { return absl::InvalidArgumentError( absl::StrCat("Received negative value for ", field_name_a)); } output.*field_accessor = value; } } return output; } absl::StatusOr<std::string> SerializeInitHeader( const WebTransportInitHeader& header) { std::vector<DictionaryMember> members; members.reserve(kInitHeaderFields.size()); for (const auto& [field_name, field_accessor] : kInitHeaderFields) { Item item(static_cast<int64_t>(header.*field_accessor)); members.push_back(std::make_pair( field_name, ParameterizedMember({ParameterizedItem(item, {})}, false, {}))); } std::optional<std::string> result = quiche::structured_headers::SerializeDictionary( Dictionary(std::move(members))); if (!result.has_value()) { return absl::InternalError("Failed to serialize the dictionary"); } return *std::move(result); } }
#include "quiche/web_transport/web_transport_headers.h" #include "absl/status/status.h" #include "quiche/common/platform/api/quiche_test.h" #include "quiche/common/test_tools/quiche_test_utils.h" namespace webtransport { namespace { using ::quiche::test::IsOkAndHolds; using ::quiche::test::StatusIs; using ::testing::ElementsAre; using ::testing::HasSubstr; TEST(WebTransportHeaders, ParseSubprotocolRequestHeader) { EXPECT_THAT(ParseSubprotocolRequestHeader("test"), IsOkAndHolds(ElementsAre("test"))); EXPECT_THAT(ParseSubprotocolRequestHeader("moqt-draft01, moqt-draft02"), IsOkAndHolds(ElementsAre("moqt-draft01", "moqt-draft02"))); EXPECT_THAT(ParseSubprotocolRequestHeader("moqt-draft01; a=b, moqt-draft02"), IsOkAndHolds(ElementsAre("moqt-draft01", "moqt-draft02"))); EXPECT_THAT(ParseSubprotocolRequestHeader("moqt-draft01, moqt-draft02; a=b"), IsOkAndHolds(ElementsAre("moqt-draft01", "moqt-draft02"))); EXPECT_THAT(ParseSubprotocolRequestHeader("\"test\""), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("found string instead"))); EXPECT_THAT(ParseSubprotocolRequestHeader("42"), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("found integer instead"))); EXPECT_THAT(ParseSubprotocolRequestHeader("a, (b)"), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("found a nested list instead"))); EXPECT_THAT(ParseSubprotocolRequestHeader("a, (b c)"), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("found a nested list instead"))); EXPECT_THAT(ParseSubprotocolRequestHeader("foo, ?1, bar"), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("found boolean instead"))); EXPECT_THAT(ParseSubprotocolRequestHeader("(a"), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("parse the header as an sf-list"))); } TEST(WebTransportHeaders, SerializeSubprotocolRequestHeader) { EXPECT_THAT(SerializeSubprotocolRequestHeader({"test"}), IsOkAndHolds("test")); EXPECT_THAT(SerializeSubprotocolRequestHeader({"foo", "bar"}), IsOkAndHolds("foo, bar")); EXPECT_THAT(SerializeSubprotocolRequestHeader({"moqt-draft01", "a/b/c"}), IsOkAndHolds("moqt-draft01, a/b/c")); EXPECT_THAT( SerializeSubprotocolRequestHeader({"abcd", "0123", "efgh"}), StatusIs(absl::StatusCode::kInvalidArgument, "Invalid token: 0123")); } TEST(WebTransportHeader, ParseSubprotocolResponseHeader) { EXPECT_THAT(ParseSubprotocolResponseHeader("foo"), IsOkAndHolds("foo")); EXPECT_THAT(ParseSubprotocolResponseHeader("foo; a=b"), IsOkAndHolds("foo")); EXPECT_THAT( ParseSubprotocolResponseHeader("1234"), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("found integer"))); EXPECT_THAT( ParseSubprotocolResponseHeader("(a"), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("parse sf-item"))); } TEST(WebTransportHeader, SerializeSubprotocolResponseHeader) { EXPECT_THAT(SerializeSubprotocolResponseHeader("foo"), IsOkAndHolds("foo")); EXPECT_THAT(SerializeSubprotocolResponseHeader("moqt-draft01"), IsOkAndHolds("moqt-draft01")); EXPECT_THAT(SerializeSubprotocolResponseHeader("123abc"), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(WebTransportHeader, ParseInitHeader) { WebTransportInitHeader expected_header; expected_header.initial_unidi_limit = 100; expected_header.initial_incoming_bidi_limit = 200; expected_header.initial_outgoing_bidi_limit = 400; EXPECT_THAT(ParseInitHeader("br=400, bl=200, u=100"), IsOkAndHolds(expected_header)); EXPECT_THAT(ParseInitHeader("br=300, bl=200, u=100, br=400"), IsOkAndHolds(expected_header)); EXPECT_THAT(ParseInitHeader("br=400, bl=200; foo=bar, u=100"), IsOkAndHolds(expected_header)); EXPECT_THAT(ParseInitHeader("br=400, bl=200, u=100.0"), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("found decimal instead"))); EXPECT_THAT(ParseInitHeader("br=400, bl=200, u=?1"), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("found boolean instead"))); EXPECT_THAT(ParseInitHeader("br=400, bl=200, u=(a b)"), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("found a nested list instead"))); EXPECT_THAT(ParseInitHeader("br=400, bl=200, u=:abcd:"), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("found byte sequence instead"))); EXPECT_THAT(ParseInitHeader("br=400, bl=200, u=-1"), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("negative value"))); EXPECT_THAT(ParseInitHeader("br=400, bl=200, u=18446744073709551615"), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("Failed to parse"))); } TEST(WebTransportHeaders, SerializeInitHeader) { EXPECT_THAT(SerializeInitHeader(WebTransportInitHeader{}), IsOkAndHolds("u=0, bl=0, br=0")); WebTransportInitHeader test_header; test_header.initial_unidi_limit = 100; test_header.initial_incoming_bidi_limit = 200; test_header.initial_outgoing_bidi_limit = 400; EXPECT_THAT(SerializeInitHeader(test_header), IsOkAndHolds("u=100, bl=200, br=400")); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/web_transport/web_transport_headers.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/web_transport/web_transport_headers_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
45ed9816-f665-43c8-84d3-daee2ca567a2
cpp
google/arolla
py_object_ptr_impl
py/arolla/py_utils/py_object_ptr_impl.h
py/arolla/py_utils/py_object_ptr_impl_test.cc
#ifndef THIRD_PARTY_PY_AROLLA_PY_UTILS_PY_OBJECT_PTR_IMPL_H_ #define THIRD_PARTY_PY_AROLLA_PY_UTILS_PY_OBJECT_PTR_IMPL_H_ #include <Python.h> #include <cstddef> #include <utility> #include "absl/base/attributes.h" namespace arolla::python::py_object_ptr_impl_internal { template <typename SelfType, typename Traits> class BasePyObjectPtr { using GILGuardType = typename Traits::GILGuardType; using PyObjectType = typename Traits::PyObjectType; ABSL_ATTRIBUTE_ALWAYS_INLINE static void inc_ref(PyObjectType* ptr) { Traits().inc_ref(ptr); } ABSL_ATTRIBUTE_ALWAYS_INLINE static void dec_ref(PyObjectType* ptr) { Traits().dec_ref(ptr); } public: [[nodiscard]] static SelfType Own(PyObjectType* ptr) { SelfType result; result.ptr_ = ptr; return result; } [[nodiscard]] static SelfType NewRef(PyObjectType* ptr) { SelfType result; if (ptr != nullptr) { GILGuardType gil_guard; result.ptr_ = ptr; inc_ref(result.ptr_); } return result; } BasePyObjectPtr() = default; ~BasePyObjectPtr() { reset(); } BasePyObjectPtr(const BasePyObjectPtr& other) { if (other.ptr_ != nullptr) { GILGuardType gil_guard; ptr_ = other.ptr_; inc_ref(ptr_); } } BasePyObjectPtr& operator=(const BasePyObjectPtr& other) { if (ptr_ != other.ptr_) { GILGuardType gil_guard; PyObjectType* old_ptr = std::exchange(ptr_, other.ptr_); if (ptr_ != nullptr) { inc_ref(ptr_); } if (old_ptr != nullptr) { dec_ref(old_ptr); } } return *this; } BasePyObjectPtr(BasePyObjectPtr&& other) : ptr_(other.release()) {} BasePyObjectPtr& operator=(BasePyObjectPtr&& other) { PyObjectType* old_ptr = std::exchange(ptr_, other.release()); if (old_ptr != nullptr) { GILGuardType gil_guard; dec_ref(old_ptr); } return *this; } [[nodiscard]] PyObjectType* get() const { return ptr_; } bool operator==(std::nullptr_t) const { return ptr_ == nullptr; } bool operator!=(std::nullptr_t) const { return ptr_ != nullptr; } [[nodiscard]] PyObjectType* release() { return std::exchange(ptr_, nullptr); } void reset() { if (PyObjectType* old_ptr = release()) { GILGuardType gil_guard; dec_ref(old_ptr); } } private: PyObjectType* ptr_ = nullptr; }; } #endif
#include "py/arolla/py_utils/py_object_ptr_impl.h" #include <Python.h> #include <utility> #include "gtest/gtest.h" namespace arolla::python::py_object_ptr_impl_internal::testing { namespace { struct DummyGILGuard { static int active; static int total; static void reset() { active = 0; total = 0; } DummyGILGuard() { ++active; ++total; } ~DummyGILGuard() { --active; } DummyGILGuard(const DummyGILGuard&) = delete; DummyGILGuard& operator=(const DummyGILGuard&) = delete; }; int DummyGILGuard::active; int DummyGILGuard::total; struct DummyPyObject { int ref_counter = {1}; }; struct DummyTraits { using GILGuardType = DummyGILGuard; using PyObjectType = DummyPyObject; void inc_ref(PyObjectType* ptr) { ++ptr->ref_counter; } void dec_ref(PyObjectType* ptr) { --ptr->ref_counter; } }; class DummyPyObjectPtr final : public BasePyObjectPtr<DummyPyObjectPtr, DummyTraits> { public: DummyPyObjectPtr() = default; DummyPyObjectPtr(const DummyPyObjectPtr&) = default; DummyPyObjectPtr& operator=(const DummyPyObjectPtr&) = default; DummyPyObjectPtr(DummyPyObjectPtr&&) = default; DummyPyObjectPtr& operator=(DummyPyObjectPtr&&) = default; }; class BasePyObjectPtrTest : public ::testing::Test { protected: void SetUp() override { DummyGILGuard::reset(); } }; TEST_F(BasePyObjectPtrTest, OwnFactoryNull) { { auto ptr = DummyPyObjectPtr::Own(nullptr); ASSERT_EQ(ptr.get(), nullptr); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 0); } ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 0); } TEST_F(BasePyObjectPtrTest, OwnNullFactory) { DummyPyObject obj; { auto ptr = DummyPyObjectPtr::Own(&obj); ASSERT_EQ(ptr.get(), &obj); ASSERT_EQ(obj.ref_counter, 1); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 0); } ASSERT_EQ(obj.ref_counter, 0); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 1); } TEST_F(BasePyObjectPtrTest, NewRefNullFactory) { { auto ptr = DummyPyObjectPtr::NewRef(nullptr); ASSERT_EQ(ptr.get(), nullptr); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 0); } ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 0); } TEST_F(BasePyObjectPtrTest, NewRefFactory) { DummyPyObject obj; { auto ptr = DummyPyObjectPtr::NewRef(&obj); ASSERT_EQ(ptr.get(), &obj); ASSERT_EQ(obj.ref_counter, 2); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 1); } ASSERT_EQ(obj.ref_counter, 1); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 2); } TEST_F(BasePyObjectPtrTest, DefaultCtor) { { DummyPyObjectPtr ptr; ASSERT_EQ(ptr.get(), nullptr); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 0); } ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 0); } TEST_F(BasePyObjectPtrTest, CopyNullCtor) { { DummyPyObjectPtr ptr1; DummyPyObjectPtr ptr2 = ptr1; ASSERT_EQ(ptr1.get(), nullptr); ASSERT_EQ(ptr2.get(), nullptr); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 0); } ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 0); } TEST_F(BasePyObjectPtrTest, CopyCtor) { DummyPyObject obj; { DummyPyObjectPtr ptr1 = DummyPyObjectPtr::Own(&obj); DummyPyObjectPtr ptr2 = ptr1; ASSERT_EQ(ptr1.get(), &obj); ASSERT_EQ(ptr2.get(), &obj); ASSERT_EQ(obj.ref_counter, 2); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 1); } ASSERT_EQ(obj.ref_counter, 0); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 3); } TEST_F(BasePyObjectPtrTest, MoveNullCtor) { { DummyPyObjectPtr ptr1; DummyPyObjectPtr ptr2 = std::move(ptr1); ASSERT_EQ(ptr1.get(), nullptr); ASSERT_EQ(ptr2.get(), nullptr); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 0); } ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 0); } TEST_F(BasePyObjectPtrTest, MoveCtor) { DummyPyObject obj; { DummyPyObjectPtr ptr1 = DummyPyObjectPtr::Own(&obj); DummyPyObjectPtr ptr2 = std::move(ptr1); ASSERT_EQ(ptr1.get(), nullptr); ASSERT_EQ(ptr2.get(), &obj); ASSERT_EQ(obj.ref_counter, 1); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 0); } ASSERT_EQ(obj.ref_counter, 0); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 1); } TEST_F(BasePyObjectPtrTest, CopyOp_Null_Null) { { DummyPyObjectPtr ptr1; DummyPyObjectPtr ptr2; ptr1 = ptr2; ASSERT_EQ(ptr1.get(), nullptr); ASSERT_EQ(ptr2.get(), nullptr); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 0); } ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 0); } TEST_F(BasePyObjectPtrTest, CopyOp_Null_Obj) { DummyPyObject obj; { DummyPyObjectPtr ptr1; DummyPyObjectPtr ptr2 = DummyPyObjectPtr::Own(&obj); ptr1 = ptr2; ASSERT_EQ(ptr1.get(), &obj); ASSERT_EQ(ptr2.get(), &obj); ASSERT_EQ(obj.ref_counter, 2); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 1); } ASSERT_EQ(obj.ref_counter, 0); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 3); } TEST_F(BasePyObjectPtrTest, CopyOp_Obj_Null) { DummyPyObject obj; { DummyPyObjectPtr ptr1 = DummyPyObjectPtr::Own(&obj); DummyPyObjectPtr ptr2; ptr1 = ptr2; ASSERT_EQ(ptr1.get(), nullptr); ASSERT_EQ(ptr2.get(), nullptr); ASSERT_EQ(obj.ref_counter, 0); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 1); } ASSERT_EQ(obj.ref_counter, 0); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 1); } TEST_F(BasePyObjectPtrTest, CopyOp_Obj1_Obj1) { DummyPyObject obj1; { DummyPyObjectPtr ptr1 = DummyPyObjectPtr::Own(&obj1); DummyPyObjectPtr ptr2 = DummyPyObjectPtr::NewRef( &obj1); ptr1 = ptr2; ASSERT_EQ(ptr1.get(), &obj1); ASSERT_EQ(ptr2.get(), &obj1); ASSERT_EQ(obj1.ref_counter, 2); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 1); } ASSERT_EQ(obj1.ref_counter, 0); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 3); } TEST_F(BasePyObjectPtrTest, CopyOp_Obj1_Obj2) { DummyPyObject obj1; DummyPyObject obj2; { DummyPyObjectPtr ptr1 = DummyPyObjectPtr::Own(&obj1); DummyPyObjectPtr ptr2 = DummyPyObjectPtr::Own(&obj2); ptr1 = ptr2; ASSERT_EQ(ptr1.get(), &obj2); ASSERT_EQ(ptr2.get(), &obj2); ASSERT_EQ(obj1.ref_counter, 0); ASSERT_EQ(obj2.ref_counter, 2); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 1); } ASSERT_EQ(obj1.ref_counter, 0); ASSERT_EQ(obj2.ref_counter, 0); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 3); } TEST_F(BasePyObjectPtrTest, MoveOp_Null_Null) { { DummyPyObjectPtr ptr1; DummyPyObjectPtr ptr2; ptr1 = std::move(ptr2); ASSERT_EQ(ptr1.get(), nullptr); ASSERT_EQ(ptr2.get(), nullptr); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 0); } ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 0); } TEST_F(BasePyObjectPtrTest, MoveOp_Null_Obj) { DummyPyObject obj; { DummyPyObjectPtr ptr1; DummyPyObjectPtr ptr2 = DummyPyObjectPtr::Own(&obj); ptr1 = std::move(ptr2); ASSERT_EQ(ptr1.get(), &obj); ASSERT_EQ(ptr2.get(), nullptr); ASSERT_EQ(obj.ref_counter, 1); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 0); } ASSERT_EQ(obj.ref_counter, 0); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 1); } TEST_F(BasePyObjectPtrTest, MoveOp_Obj_Null) { DummyPyObject obj; { DummyPyObjectPtr ptr1 = DummyPyObjectPtr::Own(&obj); DummyPyObjectPtr ptr2; ptr1 = std::move(ptr2); ASSERT_EQ(ptr1.get(), nullptr); ASSERT_EQ(ptr2.get(), nullptr); ASSERT_EQ(obj.ref_counter, 0); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 1); } ASSERT_EQ(obj.ref_counter, 0); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 1); } TEST_F(BasePyObjectPtrTest, MoveOp_Obj1_Obj1) { DummyPyObject obj1; { DummyPyObjectPtr ptr1 = DummyPyObjectPtr::Own(&obj1); DummyPyObjectPtr ptr2 = DummyPyObjectPtr::NewRef( &obj1); ptr1 = std::move(ptr2); ASSERT_EQ(ptr1.get(), &obj1); ASSERT_EQ(ptr2.get(), nullptr); ASSERT_EQ(obj1.ref_counter, 1); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 2); } ASSERT_EQ(obj1.ref_counter, 0); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 3); } TEST_F(BasePyObjectPtrTest, MoveOp_Obj1_Obj2) { DummyPyObject obj1; DummyPyObject obj2; { DummyPyObjectPtr ptr1 = DummyPyObjectPtr::Own(&obj1); DummyPyObjectPtr ptr2 = DummyPyObjectPtr::Own(&obj2); ptr1 = std::move(ptr2); ASSERT_EQ(ptr1.get(), &obj2); ASSERT_EQ(ptr2.get(), nullptr); ASSERT_EQ(obj1.ref_counter, 0); ASSERT_EQ(obj2.ref_counter, 1); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 1); } ASSERT_EQ(obj1.ref_counter, 0); ASSERT_EQ(obj2.ref_counter, 0); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 2); } TEST_F(BasePyObjectPtrTest, Equality) { DummyPyObject obj; const DummyPyObjectPtr null_ptr; const DummyPyObjectPtr not_null_ptr = DummyPyObjectPtr::Own(&obj); ASSERT_TRUE(null_ptr == nullptr); ASSERT_FALSE(null_ptr != nullptr); ASSERT_FALSE(not_null_ptr == nullptr); ASSERT_TRUE(not_null_ptr != nullptr); ASSERT_EQ(obj.ref_counter, 1); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 0); } TEST_F(BasePyObjectPtrTest, Release) { DummyPyObject obj; { DummyPyObjectPtr ptr = DummyPyObjectPtr::Own(&obj); ASSERT_EQ(ptr.release(), &obj); ASSERT_EQ(ptr.get(), nullptr); ASSERT_EQ(obj.ref_counter, 1); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 0); } ASSERT_EQ(obj.ref_counter, 1); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 0); } TEST_F(BasePyObjectPtrTest, ResetNull) { { DummyPyObjectPtr ptr; ptr.reset(); ASSERT_EQ(ptr.get(), nullptr); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 0); } ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 0); } TEST_F(BasePyObjectPtrTest, Reset) { DummyPyObject obj; { DummyPyObjectPtr ptr = DummyPyObjectPtr::Own(&obj); ptr.reset(); ASSERT_EQ(ptr.get(), nullptr); ASSERT_EQ(obj.ref_counter, 0); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 1); } ASSERT_EQ(obj.ref_counter, 0); ASSERT_EQ(DummyGILGuard::active, 0); ASSERT_EQ(DummyGILGuard::total, 1); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/py/arolla/py_utils/py_object_ptr_impl.h
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/py/arolla/py_utils/py_object_ptr_impl_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
458e0be5-a6e4-4cfb-b5e8-68bac274c1b0
cpp
google/cel-cpp
field_backed_map_impl
eval/public/containers/field_backed_map_impl.h
eval/public/containers/field_backed_map_impl_test.cc
#ifndef THIRD_PARTY_CEL_CPP_EVAL_PUBLIC_CONTAINERS_FIELD_BACKED_MAP_IMPL_H_ #define THIRD_PARTY_CEL_CPP_EVAL_PUBLIC_CONTAINERS_FIELD_BACKED_MAP_IMPL_H_ #include "google/protobuf/descriptor.h" #include "google/protobuf/message.h" #include "absl/status/statusor.h" #include "eval/public/cel_value.h" #include "eval/public/containers/internal_field_backed_map_impl.h" #include "eval/public/structs/cel_proto_wrapper.h" namespace google::api::expr::runtime { class FieldBackedMapImpl : public internal::FieldBackedMapImpl { public: FieldBackedMapImpl(const google::protobuf::Message* message, const google::protobuf::FieldDescriptor* descriptor, google::protobuf::Arena* arena) : internal::FieldBackedMapImpl( message, descriptor, &CelProtoWrapper::InternalWrapMessage, arena) { } }; } #endif
#include "eval/public/containers/field_backed_map_impl.h" #include <array> #include <limits> #include <memory> #include <string> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "eval/testutil/test_message.pb.h" #include "internal/testing.h" namespace google::api::expr::runtime { namespace { using ::absl_testing::StatusIs; using ::testing::Eq; using ::testing::HasSubstr; using ::testing::UnorderedPointwise; std::unique_ptr<FieldBackedMapImpl> CreateMap(const TestMessage* message, const std::string& field, google::protobuf::Arena* arena) { const google::protobuf::FieldDescriptor* field_desc = message->GetDescriptor()->FindFieldByName(field); return std::make_unique<FieldBackedMapImpl>(message, field_desc, arena); } TEST(FieldBackedMapImplTest, BadKeyTypeTest) { TestMessage message; google::protobuf::Arena arena; constexpr std::array<absl::string_view, 6> map_types = { "int64_int32_map", "uint64_int32_map", "string_int32_map", "bool_int32_map", "int32_int32_map", "uint32_uint32_map", }; for (auto map_type : map_types) { auto cel_map = CreateMap(&message, std::string(map_type), &arena); auto result = cel_map->Has(CelValue::CreateNull()); EXPECT_FALSE(result.ok()); EXPECT_THAT(result.status().code(), Eq(absl::StatusCode::kInvalidArgument)); EXPECT_FALSE(result.ok()); EXPECT_THAT(result.status().code(), Eq(absl::StatusCode::kInvalidArgument)); auto lookup = (*cel_map)[CelValue::CreateNull()]; EXPECT_TRUE(lookup.has_value()); EXPECT_TRUE(lookup->IsError()); EXPECT_THAT(lookup->ErrorOrDie()->code(), Eq(absl::StatusCode::kInvalidArgument)); } } TEST(FieldBackedMapImplTest, Int32KeyTest) { TestMessage message; auto field_map = message.mutable_int32_int32_map(); (*field_map)[0] = 1; (*field_map)[1] = 2; google::protobuf::Arena arena; auto cel_map = CreateMap(&message, "int32_int32_map", &arena); EXPECT_EQ((*cel_map)[CelValue::CreateInt64(0)]->Int64OrDie(), 1); EXPECT_EQ((*cel_map)[CelValue::CreateInt64(1)]->Int64OrDie(), 2); EXPECT_TRUE(cel_map->Has(CelValue::CreateInt64(1)).value_or(false)); EXPECT_FALSE((*cel_map)[CelValue::CreateInt64(3)].has_value()); EXPECT_FALSE(cel_map->Has(CelValue::CreateInt64(3)).value_or(true)); } TEST(FieldBackedMapImplTest, Int32KeyOutOfRangeTest) { TestMessage message; google::protobuf::Arena arena; auto cel_map = CreateMap(&message, "int32_int32_map", &arena); auto result = cel_map->Has( CelValue::CreateInt64(std::numeric_limits<int32_t>::max() + 1L)); EXPECT_THAT(result.status(), StatusIs(absl::StatusCode::kOutOfRange, HasSubstr("overflow"))); result = cel_map->Has( CelValue::CreateInt64(std::numeric_limits<int32_t>::lowest() - 1L)); EXPECT_FALSE(result.ok()); EXPECT_THAT(result.status().code(), Eq(absl::StatusCode::kOutOfRange)); } TEST(FieldBackedMapImplTest, Int64KeyTest) { TestMessage message; auto field_map = message.mutable_int64_int32_map(); (*field_map)[0] = 1; (*field_map)[1] = 2; google::protobuf::Arena arena; auto cel_map = CreateMap(&message, "int64_int32_map", &arena); EXPECT_EQ((*cel_map)[CelValue::CreateInt64(0)]->Int64OrDie(), 1); EXPECT_EQ((*cel_map)[CelValue::CreateInt64(1)]->Int64OrDie(), 2); EXPECT_TRUE(cel_map->Has(CelValue::CreateInt64(1)).value_or(false)); EXPECT_EQ((*cel_map)[CelValue::CreateInt64(3)].has_value(), false); } TEST(FieldBackedMapImplTest, BoolKeyTest) { TestMessage message; auto field_map = message.mutable_bool_int32_map(); (*field_map)[false] = 1; google::protobuf::Arena arena; auto cel_map = CreateMap(&message, "bool_int32_map", &arena); EXPECT_EQ((*cel_map)[CelValue::CreateBool(false)]->Int64OrDie(), 1); EXPECT_TRUE(cel_map->Has(CelValue::CreateBool(false)).value_or(false)); EXPECT_EQ((*cel_map)[CelValue::CreateBool(true)].has_value(), false); (*field_map)[true] = 2; EXPECT_EQ((*cel_map)[CelValue::CreateBool(true)]->Int64OrDie(), 2); } TEST(FieldBackedMapImplTest, Uint32KeyTest) { TestMessage message; auto field_map = message.mutable_uint32_uint32_map(); (*field_map)[0] = 1u; (*field_map)[1] = 2u; google::protobuf::Arena arena; auto cel_map = CreateMap(&message, "uint32_uint32_map", &arena); EXPECT_EQ((*cel_map)[CelValue::CreateUint64(0)]->Uint64OrDie(), 1UL); EXPECT_EQ((*cel_map)[CelValue::CreateUint64(1)]->Uint64OrDie(), 2UL); EXPECT_TRUE(cel_map->Has(CelValue::CreateUint64(1)).value_or(false)); EXPECT_EQ((*cel_map)[CelValue::CreateUint64(3)].has_value(), false); EXPECT_EQ(cel_map->Has(CelValue::CreateUint64(3)).value_or(true), false); } TEST(FieldBackedMapImplTest, Uint32KeyOutOfRangeTest) { TestMessage message; google::protobuf::Arena arena; auto cel_map = CreateMap(&message, "uint32_uint32_map", &arena); auto result = cel_map->Has( CelValue::CreateUint64(std::numeric_limits<uint32_t>::max() + 1UL)); EXPECT_FALSE(result.ok()); EXPECT_THAT(result.status().code(), Eq(absl::StatusCode::kOutOfRange)); } TEST(FieldBackedMapImplTest, Uint64KeyTest) { TestMessage message; auto field_map = message.mutable_uint64_int32_map(); (*field_map)[0] = 1; (*field_map)[1] = 2; google::protobuf::Arena arena; auto cel_map = CreateMap(&message, "uint64_int32_map", &arena); EXPECT_EQ((*cel_map)[CelValue::CreateUint64(0)]->Int64OrDie(), 1); EXPECT_EQ((*cel_map)[CelValue::CreateUint64(1)]->Int64OrDie(), 2); EXPECT_TRUE(cel_map->Has(CelValue::CreateUint64(1)).value_or(false)); EXPECT_EQ((*cel_map)[CelValue::CreateUint64(3)].has_value(), false); } TEST(FieldBackedMapImplTest, StringKeyTest) { TestMessage message; auto field_map = message.mutable_string_int32_map(); (*field_map)["test0"] = 1; (*field_map)["test1"] = 2; google::protobuf::Arena arena; auto cel_map = CreateMap(&message, "string_int32_map", &arena); std::string test0 = "test0"; std::string test1 = "test1"; std::string test_notfound = "test_notfound"; EXPECT_EQ((*cel_map)[CelValue::CreateString(&test0)]->Int64OrDie(), 1); EXPECT_EQ((*cel_map)[CelValue::CreateString(&test1)]->Int64OrDie(), 2); EXPECT_TRUE(cel_map->Has(CelValue::CreateString(&test1)).value_or(false)); EXPECT_EQ((*cel_map)[CelValue::CreateString(&test_notfound)].has_value(), false); } TEST(FieldBackedMapImplTest, EmptySizeTest) { TestMessage message; google::protobuf::Arena arena; auto cel_map = CreateMap(&message, "string_int32_map", &arena); EXPECT_EQ(cel_map->size(), 0); } TEST(FieldBackedMapImplTest, RepeatedAddTest) { TestMessage message; auto field_map = message.mutable_string_int32_map(); (*field_map)["test0"] = 1; (*field_map)["test1"] = 2; (*field_map)["test0"] = 3; google::protobuf::Arena arena; auto cel_map = CreateMap(&message, "string_int32_map", &arena); EXPECT_EQ(cel_map->size(), 2); } TEST(FieldBackedMapImplTest, KeyListTest) { TestMessage message; auto field_map = message.mutable_string_int32_map(); std::vector<std::string> keys; std::vector<std::string> keys1; for (int i = 0; i < 100; i++) { keys.push_back(absl::StrCat("test", i)); (*field_map)[keys.back()] = i; } google::protobuf::Arena arena; auto cel_map = CreateMap(&message, "string_int32_map", &arena); const CelList* key_list = cel_map->ListKeys().value(); EXPECT_EQ(key_list->size(), 100); for (int i = 0; i < key_list->size(); i++) { keys1.push_back(std::string((*key_list)[i].StringOrDie().value())); } EXPECT_THAT(keys, UnorderedPointwise(Eq(), keys1)); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/containers/field_backed_map_impl.h
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/containers/field_backed_map_impl_test.cc
4552db5798fb0853b131b783d8875794334fae7f
3237f930-4e86-4d74-98a8-7753c2534621
cpp
tensorflow/tensorflow
summary_audio_op
tensorflow/core/kernels/summary_audio_op.cc
tensorflow/core/kernels/summary_audio_op_test.cc
#include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/summary.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/wav/wav_io.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { class SummaryAudioOp : public OpKernel { public: explicit SummaryAudioOp(OpKernelConstruction* context) : OpKernel(context) { OP_REQUIRES_OK(context, context->GetAttr("max_outputs", &max_outputs_)); OP_REQUIRES(context, max_outputs_ > 0, errors::InvalidArgument("max_outputs must be > 0")); has_sample_rate_attr_ = context->GetAttr("sample_rate", &sample_rate_attr_).ok(); } void Compute(OpKernelContext* c) override { const Tensor& tag = c->input(0); const Tensor& tensor = c->input(1); OP_REQUIRES(c, TensorShapeUtils::IsScalar(tag.shape()), errors::InvalidArgument("Tag must be a scalar")); OP_REQUIRES(c, tensor.dims() >= 2 && tensor.dims() <= 3, errors::InvalidArgument("Tensor must be 3-D or 2-D, got: ", tensor.shape().DebugString())); const string& base_tag = tag.scalar<tstring>()(); float sample_rate = sample_rate_attr_; if (!has_sample_rate_attr_) { const Tensor& sample_rate_tensor = c->input(2); OP_REQUIRES(c, sample_rate_tensor.IsAligned() && sample_rate_tensor.NumElements() == 1, errors::InvalidArgument( "sample_rate must be rank-0 or contain a single value")); sample_rate = sample_rate_tensor.scalar<float>()(); } OP_REQUIRES(c, sample_rate > 0.0f, errors::InvalidArgument("sample_rate must be > 0")); const int batch_size = tensor.dim_size(0); const int64_t length_frames = tensor.dim_size(1); const int64_t num_channels = tensor.dims() == 2 ? 1 : tensor.dim_size(tensor.dims() - 1); Summary s; const int N = std::min<int>(max_outputs_, batch_size); for (int i = 0; i < N; ++i) { Summary::Value* v = s.add_value(); if (max_outputs_ > 1) { v->set_tag(strings::StrCat(base_tag, "/audio/", i)); } else { v->set_tag(strings::StrCat(base_tag, "/audio")); } Summary::Audio* sa = v->mutable_audio(); sa->set_sample_rate(sample_rate); sa->set_num_channels(num_channels); sa->set_length_frames(length_frames); sa->set_content_type("audio/wav"); auto values = tensor.shaped<float, 3>({batch_size, length_frames, num_channels}); const float* data = tensor.NumElements() == 0 ? nullptr : &values(i, 0, 0); size_t sample_rate_truncated = lrintf(sample_rate); if (sample_rate_truncated == 0) { sample_rate_truncated = 1; } OP_REQUIRES_OK(c, wav::EncodeAudioAsS16LEWav( data, sample_rate_truncated, num_channels, length_frames, sa->mutable_encoded_audio_string())); } Tensor* summary_tensor = nullptr; OP_REQUIRES_OK(c, c->allocate_output(0, TensorShape({}), &summary_tensor)); CHECK(SerializeToTString(s, &summary_tensor->scalar<tstring>()())); } private: int max_outputs_; bool has_sample_rate_attr_; float sample_rate_attr_; }; REGISTER_KERNEL_BUILDER(Name("AudioSummaryV2").Device(DEVICE_CPU), SummaryAudioOp); REGISTER_KERNEL_BUILDER(Name("AudioSummary").Device(DEVICE_CPU), SummaryAudioOp); }
#include <functional> #include <memory> #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/summary.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/histogram/histogram.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { static void EXPECT_SummaryMatches(const Summary& actual, const string& expected_str) { Summary expected; CHECK(protobuf::TextFormat::ParseFromString(expected_str, &expected)); EXPECT_EQ(expected.DebugString(), actual.DebugString()); } class SummaryAudioOpTest : public OpsTestBase { protected: void MakeOp(const int max_outputs) { TF_ASSERT_OK(NodeDefBuilder("myop", "AudioSummaryV2") .Input(FakeInput()) .Input(FakeInput()) .Input(FakeInput()) .Attr("max_outputs", max_outputs) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); } void CheckAndRemoveEncodedAudio(Summary* summary) { for (int i = 0; i < summary->value_size(); ++i) { Summary::Value* value = summary->mutable_value(i); ASSERT_TRUE(value->has_audio()) << "No audio for value: " << value->tag(); ASSERT_FALSE(value->audio().encoded_audio_string().empty()) << "No encoded_audio_string for value: " << value->tag(); if (VLOG_IS_ON(2)) { TF_CHECK_OK(WriteStringToFile( Env::Default(), strings::StrCat("/tmp/", value->tag(), ".wav"), value->audio().encoded_audio_string())); } value->mutable_audio()->clear_encoded_audio_string(); } } }; TEST_F(SummaryAudioOpTest, Basic3D) { const float kSampleRate = 44100.0f; const int kMaxOutputs = 3; MakeOp(kMaxOutputs); AddInputFromArray<tstring>(TensorShape({}), {"tag"}); AddInputFromArray<float>(TensorShape({4, 2, 2}), {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}); AddInputFromArray<float>(TensorShape({}), {kSampleRate}); TF_ASSERT_OK(RunOpKernel()); Tensor* out_tensor = GetOutput(0); ASSERT_EQ(0, out_tensor->dims()); Summary summary; ParseProtoUnlimited(&summary, out_tensor->scalar<tstring>()()); CheckAndRemoveEncodedAudio(&summary); EXPECT_SummaryMatches(summary, R"( value { tag: 'tag/audio/0' audio { content_type: "audio/wav" sample_rate: 44100 num_channels: 2 length_frames: 2 } } value { tag: 'tag/audio/1' audio { content_type: "audio/wav" sample_rate: 44100 num_channels: 2 length_frames: 2 } } value { tag: 'tag/audio/2' audio { content_type: "audio/wav" sample_rate: 44100 num_channels: 2 length_frames: 2 } } )"); } TEST_F(SummaryAudioOpTest, Basic2D) { const float kSampleRate = 44100.0f; const int kMaxOutputs = 3; MakeOp(kMaxOutputs); AddInputFromArray<tstring>(TensorShape({}), {"tag"}); AddInputFromArray<float>(TensorShape({4, 4}), {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}); AddInputFromArray<float>(TensorShape({}), {kSampleRate}); TF_ASSERT_OK(RunOpKernel()); Tensor* out_tensor = GetOutput(0); ASSERT_EQ(0, out_tensor->dims()); Summary summary; ParseProtoUnlimited(&summary, out_tensor->scalar<tstring>()()); CheckAndRemoveEncodedAudio(&summary); EXPECT_SummaryMatches(summary, R"( value { tag: 'tag/audio/0' audio { content_type: "audio/wav" sample_rate: 44100 num_channels: 1 length_frames: 4 } } value { tag: 'tag/audio/1' audio { content_type: "audio/wav" sample_rate: 44100 num_channels: 1 length_frames: 4 } } value { tag: 'tag/audio/2' audio { content_type: "audio/wav" sample_rate: 44100 num_channels: 1 length_frames: 4 } } )"); } TEST_F(SummaryAudioOpTest, ZeroLength) { const float kSampleRate = 44100.0f; const int kMaxOutputs = 3; MakeOp(kMaxOutputs); AddInputFromArray<tstring>(TensorShape({}), {"tag"}); AddInputFromArray<float>(TensorShape({4, 0}), {}); AddInputFromArray<float>(TensorShape({}), {kSampleRate}); TF_ASSERT_OK(RunOpKernel()); Tensor* out_tensor = GetOutput(0); ASSERT_EQ(0, out_tensor->dims()); Summary summary; ParseProtoUnlimited(&summary, out_tensor->scalar<tstring>()()); CheckAndRemoveEncodedAudio(&summary); EXPECT_SummaryMatches(summary, R"( value { tag: 'tag/audio/0' audio { content_type: "audio/wav" sample_rate: 44100 num_channels: 1 length_frames: 0 } } value { tag: 'tag/audio/1' audio { content_type: "audio/wav" sample_rate: 44100 num_channels: 1 length_frames: 0 } } value { tag: 'tag/audio/2' audio { content_type: "audio/wav" sample_rate: 44100 num_channels: 1 length_frames: 0 } } )"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/summary_audio_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/summary_audio_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7d0c65d5-2cb4-4db6-a272-128a033d924c
cpp
tensorflow/tensorflow
dynamic_partition_op
tensorflow/compiler/tf2xla/kernels/dynamic_partition_op.cc
tensorflow/core/kernels/dynamic_partition_op_test.cc
#include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "tensorflow/compiler/tf2xla/literal_util.h" #include "tensorflow/compiler/tf2xla/type_util.h" #include "tensorflow/compiler/tf2xla/xla_helpers.h" #include "tensorflow/compiler/tf2xla/xla_op_kernel.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/comparison_util.h" #include "xla/hlo/builder/lib/arithmetic.h" #include "xla/hlo/builder/lib/comparators.h" #include "xla/hlo/builder/lib/constants.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/ops_util.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/tpu/tpu_defs.h" namespace tensorflow { namespace { class DynamicPartitionOp : public XlaOpKernel { public: explicit DynamicPartitionOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) { OP_REQUIRES_OK(ctx, ctx->GetAttr("num_partitions", &num_partitions_)); } xla::XlaOp CountS32(XlaOpKernelContext* ctx, xla::XlaOp input, int64_t target) { xla::XlaOp equal_dim = xla::Compare(input, xla::ConstantR0<int32>(ctx->builder(), target), {}, xla::ComparisonDirection::kEq); xla::XlaOp casted = xla::ConvertElementType(equal_dim, xla::S32); return xla::ReduceAll( casted, xla::Zero(ctx->builder(), xla::S32), xla::CreateScalarAddComputation(xla::S32, ctx->builder())); } std::pair<std::vector<xla::XlaOp>, std::vector<xla::XlaOp>> DynamicPartition1D(XlaOpKernelContext* ctx, xla::XlaOp data_1d, xla::XlaOp partitions_1d, const xla::Shape& data_1d_shape, const xla::Shape& partition_1d_shape) { int64_t input_count = data_1d_shape.dimensions(0); std::vector<xla::XlaOp> to_sort = {partitions_1d, data_1d}; std::vector<xla::PrimitiveType> types_to_sort = { partition_1d_shape.element_type(), data_1d_shape.element_type()}; xla::XlaOp sorted = xla::Sort( to_sort, xla::CreateScalarLtComputation(types_to_sort, ctx->builder()), 0, true); xla::XlaOp sorted_partitions = xla::GetTupleElement(sorted, 0); xla::XlaOp sorted_data = xla::GetTupleElement(sorted, 1); std::vector<xla::XlaOp> partition_length(num_partitions_); std::vector<xla::XlaOp> partition_start(num_partitions_); xla::XlaOp count_so_far = xla::Zero(ctx->builder(), xla::S32); for (int64_t i = 0; i < num_partitions_; ++i) { xla::XlaOp count = CountS32(ctx, sorted_partitions, i); partition_length[i] = count; partition_start[i] = count_so_far; count_so_far = xla::Add(count_so_far, count); } xla::PaddingConfig padding_config; auto* dims = padding_config.add_dimensions(); dims->set_edge_padding_low(0); dims->set_edge_padding_high(input_count); dims->set_interior_padding(0); auto padded_data = xla::Pad(sorted_data, xla::Zero(ctx->builder(), ctx->input_xla_type(0)), padding_config); std::vector<xla::XlaOp> output(num_partitions_); for (int64_t i = 0; i < num_partitions_; ++i) { padded_data = xla::RemoveDynamicDimension(padded_data, 0); auto sliced = xla::DynamicSlice(padded_data, {partition_start[i]}, {input_count}); output[i] = sliced; } return {output, partition_length}; } void Compile(XlaOpKernelContext* ctx) override { xla::Shape data_shape = ctx->InputXlaShape(0).value(); xla::Shape partition_shape = ctx->InputXlaShape(1).value(); xla::XlaOp data = ctx->Input(0); xla::XlaOp partitions = ctx->Input(1); std::vector<int64_t> partitions_static; bool partitions_are_static = ctx->ConstantInputReshapedToIntVector(1, &partitions_static).ok(); if (data_shape.rank() > partition_shape.rank()) { std::vector<int64_t> broadcasted_dims; auto rank = partition_shape.rank(); broadcasted_dims.reserve(rank); for (int64_t i = 0; i < rank; ++i) { broadcasted_dims.push_back(i); } partitions = xla::BroadcastInDim(partitions, data_shape.dimensions(), broadcasted_dims); } std::vector<int64_t> output_shape_bound_dims; output_shape_bound_dims.push_back( xla::ShapeUtil::ElementsIn(partition_shape)); int64_t count_diff = 1; for (int64_t i = partition_shape.rank(); i < data_shape.rank(); ++i) { output_shape_bound_dims.push_back(data_shape.dimensions(i)); count_diff *= data_shape.dimensions(i); } int64_t input_count = xla::ShapeUtil::ElementsIn(data_shape); auto data_1d = xla::Reshape(data, {input_count}); auto partitions_1d = xla::Reshape(partitions, {input_count}); xla::Shape data_1d_shape = xla::ShapeUtil::MakeShape(data_shape.element_type(), {input_count}); xla::Shape partitions_1d_shape = xla::ShapeUtil::MakeShape( partition_shape.element_type(), {input_count}); std::vector<xla::XlaOp> output, partition_length; std::tie(output, partition_length) = DynamicPartition1D( ctx, data_1d, partitions_1d, data_1d_shape, partitions_1d_shape); for (int64_t i = 0; i < num_partitions_; ++i) { auto reshape = xla::Reshape(output[i], output_shape_bound_dims); if (partitions_are_static) { int64_t size = absl::c_count(partitions_static, i); ctx->SetOutput(i, xla::SliceInDim(reshape, 0, size, 1, 0)); } else { xla::XlaOp length; if (count_diff != 0) { length = xla::Div(partition_length[i], xla::ConstantR0<int32>(ctx->builder(), count_diff)); } else { length = CountS32(ctx, ctx->Input(1), i); } ctx->SetOutput(i, xla::SetDimensionSize(reshape, length, 0)); } } } private: int64_t num_partitions_; }; REGISTER_XLA_OP(Name("DynamicPartition"), DynamicPartitionOp); } }
#include <functional> #include <memory> #include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/graph/testlib.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/random/simple_philox.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace { class DynamicPartitionOpTest : public OpsTestBase { protected: void MakeOp() { TF_ASSERT_OK(NodeDefBuilder("myop", "DynamicPartition") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("num_partitions", 4) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); } }; TEST_F(DynamicPartitionOpTest, Simple_OneD) { MakeOp(); AddInputFromArray<float>(TensorShape({6}), {0, 13, 2, 39, 4, 17}); AddInputFromArray<int32>(TensorShape({6}), {0, 0, 2, 3, 2, 1}); TF_ASSERT_OK(RunOpKernel()); { Tensor expected(allocator(), DT_FLOAT, TensorShape({2})); test::FillValues<float>(&expected, {0, 13}); test::ExpectTensorEqual<float>(expected, *GetOutput(0)); } { Tensor expected(allocator(), DT_FLOAT, TensorShape({1})); test::FillValues<float>(&expected, {17}); test::ExpectTensorEqual<float>(expected, *GetOutput(1)); } { Tensor expected(allocator(), DT_FLOAT, TensorShape({2})); test::FillValues<float>(&expected, {2, 4}); test::ExpectTensorEqual<float>(expected, *GetOutput(2)); } { Tensor expected(allocator(), DT_FLOAT, TensorShape({1})); test::FillValues<float>(&expected, {39}); test::ExpectTensorEqual<float>(expected, *GetOutput(3)); } } TEST_F(DynamicPartitionOpTest, Simple_TwoD) { MakeOp(); AddInputFromArray<float>( TensorShape({6, 3}), {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17}); AddInputFromArray<int32>(TensorShape({6}), {0, 0, 2, 3, 2, 1}); TF_ASSERT_OK(RunOpKernel()); { Tensor expected(allocator(), DT_FLOAT, TensorShape({2, 3})); test::FillValues<float>(&expected, {0, 1, 2, 3, 4, 5}); test::ExpectTensorEqual<float>(expected, *GetOutput(0)); } { Tensor expected(allocator(), DT_FLOAT, TensorShape({1, 3})); test::FillValues<float>(&expected, {15, 16, 17}); test::ExpectTensorEqual<float>(expected, *GetOutput(1)); } { Tensor expected(allocator(), DT_FLOAT, TensorShape({2, 3})); test::FillValues<float>(&expected, {6, 7, 8, 12, 13, 14}); test::ExpectTensorEqual<float>(expected, *GetOutput(2)); } { Tensor expected(allocator(), DT_FLOAT, TensorShape({1, 3})); test::FillValues<float>(&expected, {9, 10, 11}); test::ExpectTensorEqual<float>(expected, *GetOutput(3)); } } TEST_F(DynamicPartitionOpTest, SomeOutputsEmpty) { MakeOp(); AddInputFromArray<float>(TensorShape({6}), {0, 13, 2, 39, 4, 17}); AddInputFromArray<int32>(TensorShape({6}), {0, 0, 2, 2, 0, 2}); TF_ASSERT_OK(RunOpKernel()); TensorShape empty_one_dim; empty_one_dim.AddDim(0); Tensor expected_empty(allocator(), DT_FLOAT, empty_one_dim); { Tensor expected(allocator(), DT_FLOAT, TensorShape({3})); test::FillValues<float>(&expected, {0, 13, 4}); test::ExpectTensorEqual<float>(expected, *GetOutput(0)); } { test::ExpectTensorEqual<float>(expected_empty, *GetOutput(1)); } { Tensor expected(allocator(), DT_FLOAT, TensorShape({3})); test::FillValues<float>(&expected, {2, 39, 17}); test::ExpectTensorEqual<float>(expected, *GetOutput(2)); } { test::ExpectTensorEqual<float>(expected_empty, *GetOutput(3)); } } TEST_F(DynamicPartitionOpTest, Error_IndexOutOfRange) { MakeOp(); AddInputFromArray<float>(TensorShape({5, 3}), {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}); AddInputFromArray<int32>(TensorShape({5}), {0, 2, 99, 2, 2}); Status s = RunOpKernel(); EXPECT_TRUE( absl::StrContains(s.ToString(), "partitions[2] = 99 is not in [0, 4)")) << s; } Node* DynamicPartitionNode(Graph* g, Node* in0, Node* in1, int num_partitions) { Node* ret; TF_CHECK_OK(NodeBuilder(g->NewName("n"), "DynamicPartition") .Input(in0) .Input(in1) .Attr("num_partitions", num_partitions) .Finalize(g, &ret)); return ret; } template <typename T> static Graph* DynamicPartition(int num_partitions, int dim) { Graph* g = new Graph(OpRegistry::Global()); const int kRows = ((128 << 20) / sizeof(T)) / dim; Tensor data(DataTypeToEnum<T>::value, TensorShape({kRows, dim})); data.flat<T>().setRandom(); random::PhiloxRandom philox(301, 17); random::SimplePhilox rnd(&philox); Tensor partitions(DT_INT32, TensorShape({kRows})); for (int i = 0; i < kRows; i++) { partitions.flat<int32>()(i) = rnd.Uniform(num_partitions); } DynamicPartitionNode(g, test::graph::Constant(g, data), test::graph::Constant(g, partitions), num_partitions); return g; } #define BM_DYNAMIC_PARTITION(DEVICE, T, num) \ static void BM_##DEVICE##_dynpart_##T##_##num( \ ::testing::benchmark::State& state) { \ const int dim = state.range(0); \ \ const int64_t items = ((128 << 20) / sizeof(T)); \ test::Benchmark(#DEVICE, DynamicPartition<T>(num, dim), \ false) \ .Run(state); \ const int64_t tot = static_cast<int64_t>(state.iterations()) * items; \ state.SetItemsProcessed(tot); \ } \ BENCHMARK(BM_##DEVICE##_dynpart_##T##_##num)->UseRealTime()->Arg(1)->Arg(256) BM_DYNAMIC_PARTITION(cpu, float, 2); BM_DYNAMIC_PARTITION(cpu, float, 100); BM_DYNAMIC_PARTITION(cpu, double, 2); BM_DYNAMIC_PARTITION(cpu, double, 100); BM_DYNAMIC_PARTITION(cpu, complex64, 2); BM_DYNAMIC_PARTITION(cpu, complex64, 100); BM_DYNAMIC_PARTITION(gpu, int32, 2); BM_DYNAMIC_PARTITION(gpu, int32, 100); BM_DYNAMIC_PARTITION(gpu, int64, 2); BM_DYNAMIC_PARTITION(gpu, int64, 100); BM_DYNAMIC_PARTITION(gpu, float, 2); BM_DYNAMIC_PARTITION(gpu, float, 100); BM_DYNAMIC_PARTITION(gpu, double, 2); BM_DYNAMIC_PARTITION(gpu, double, 100); BM_DYNAMIC_PARTITION(gpu, complex64, 2); BM_DYNAMIC_PARTITION(gpu, complex64, 100); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/kernels/dynamic_partition_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/dynamic_partition_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0b8a4b1c-0153-4d36-9ce3-49d6b157c049
cpp
google/cel-cpp
bool_value
common/values/bool_value.cc
common/values/bool_value_test.cc
#include <cstddef> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "common/any.h" #include "common/casting.h" #include "common/json.h" #include "common/value.h" #include "internal/serialize.h" #include "internal/status_macros.h" namespace cel { namespace { std::string BoolDebugString(bool value) { return value ? "true" : "false"; } } std::string BoolValue::DebugString() const { return BoolDebugString(NativeValue()); } absl::StatusOr<Json> BoolValue::ConvertToJson(AnyToJsonConverter&) const { return NativeValue(); } absl::Status BoolValue::SerializeTo(AnyToJsonConverter&, absl::Cord& value) const { return internal::SerializeBoolValue(NativeValue(), value); } absl::Status BoolValue::Equal(ValueManager&, const Value& other, Value& result) const { if (auto other_value = As<BoolValue>(other); other_value.has_value()) { result = BoolValue{NativeValue() == other_value->NativeValue()}; return absl::OkStatus(); } result = BoolValue{false}; return absl::OkStatus(); } absl::StatusOr<Value> BoolValue::Equal(ValueManager& value_manager, const Value& other) const { Value result; CEL_RETURN_IF_ERROR(Equal(value_manager, other, result)); return result; } }
#include <sstream> #include "absl/hash/hash.h" #include "absl/strings/cord.h" #include "absl/types/optional.h" #include "common/any.h" #include "common/casting.h" #include "common/json.h" #include "common/native_type.h" #include "common/value.h" #include "common/value_testing.h" #include "internal/testing.h" namespace cel { namespace { using ::absl_testing::IsOkAndHolds; using ::testing::An; using ::testing::Ne; using BoolValueTest = common_internal::ThreadCompatibleValueTest<>; TEST_P(BoolValueTest, Kind) { EXPECT_EQ(BoolValue(true).kind(), BoolValue::kKind); EXPECT_EQ(Value(BoolValue(true)).kind(), BoolValue::kKind); } TEST_P(BoolValueTest, DebugString) { { std::ostringstream out; out << BoolValue(true); EXPECT_EQ(out.str(), "true"); } { std::ostringstream out; out << Value(BoolValue(true)); EXPECT_EQ(out.str(), "true"); } } TEST_P(BoolValueTest, ConvertToJson) { EXPECT_THAT(BoolValue(false).ConvertToJson(value_manager()), IsOkAndHolds(Json(false))); } TEST_P(BoolValueTest, NativeTypeId) { EXPECT_EQ(NativeTypeId::Of(BoolValue(true)), NativeTypeId::For<BoolValue>()); EXPECT_EQ(NativeTypeId::Of(Value(BoolValue(true))), NativeTypeId::For<BoolValue>()); } TEST_P(BoolValueTest, InstanceOf) { EXPECT_TRUE(InstanceOf<BoolValue>(BoolValue(true))); EXPECT_TRUE(InstanceOf<BoolValue>(Value(BoolValue(true)))); } TEST_P(BoolValueTest, Cast) { EXPECT_THAT(Cast<BoolValue>(BoolValue(true)), An<BoolValue>()); EXPECT_THAT(Cast<BoolValue>(Value(BoolValue(true))), An<BoolValue>()); } TEST_P(BoolValueTest, As) { EXPECT_THAT(As<BoolValue>(Value(BoolValue(true))), Ne(absl::nullopt)); } TEST_P(BoolValueTest, HashValue) { EXPECT_EQ(absl::HashOf(BoolValue(true)), absl::HashOf(true)); } TEST_P(BoolValueTest, Equality) { EXPECT_NE(BoolValue(false), true); EXPECT_NE(true, BoolValue(false)); EXPECT_NE(BoolValue(false), BoolValue(true)); } TEST_P(BoolValueTest, LessThan) { EXPECT_LT(BoolValue(false), true); EXPECT_LT(false, BoolValue(true)); EXPECT_LT(BoolValue(false), BoolValue(true)); } INSTANTIATE_TEST_SUITE_P( BoolValueTest, BoolValueTest, ::testing::Combine(::testing::Values(MemoryManagement::kPooling, MemoryManagement::kReferenceCounting)), BoolValueTest::ToString); } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/values/bool_value.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/values/bool_value_test.cc
4552db5798fb0853b131b783d8875794334fae7f
6e8c1f82-a063-4a88-b2c7-c93d33ccf681
cpp
google/quiche
qpack_required_insert_count
quiche/quic/core/qpack/qpack_required_insert_count.cc
quiche/quic/core/qpack/qpack_required_insert_count_test.cc
#include "quiche/quic/core/qpack/qpack_required_insert_count.h" #include <limits> #include "quiche/quic/platform/api/quic_logging.h" namespace quic { uint64_t QpackEncodeRequiredInsertCount(uint64_t required_insert_count, uint64_t max_entries) { if (required_insert_count == 0) { return 0; } return required_insert_count % (2 * max_entries) + 1; } bool QpackDecodeRequiredInsertCount(uint64_t encoded_required_insert_count, uint64_t max_entries, uint64_t total_number_of_inserts, uint64_t* required_insert_count) { if (encoded_required_insert_count == 0) { *required_insert_count = 0; return true; } QUICHE_DCHECK_LE(max_entries, std::numeric_limits<uint64_t>::max() / 32); if (encoded_required_insert_count > 2 * max_entries) { return false; } *required_insert_count = encoded_required_insert_count - 1; QUICHE_DCHECK_LT(*required_insert_count, std::numeric_limits<uint64_t>::max() / 16); uint64_t current_wrapped = total_number_of_inserts % (2 * max_entries); QUICHE_DCHECK_LT(current_wrapped, std::numeric_limits<uint64_t>::max() / 16); if (current_wrapped >= *required_insert_count + max_entries) { *required_insert_count += 2 * max_entries; } else if (current_wrapped + max_entries < *required_insert_count) { current_wrapped += 2 * max_entries; } if (*required_insert_count > std::numeric_limits<uint64_t>::max() - total_number_of_inserts) { return false; } *required_insert_count += total_number_of_inserts; if (current_wrapped >= *required_insert_count) { return false; } *required_insert_count -= current_wrapped; return true; } }
#include "quiche/quic/core/qpack/qpack_required_insert_count.h" #include "absl/base/macros.h" #include "quiche/quic/platform/api/quic_test.h" namespace quic { namespace test { namespace { TEST(QpackRequiredInsertCountTest, QpackEncodeRequiredInsertCount) { EXPECT_EQ(0u, QpackEncodeRequiredInsertCount(0, 0)); EXPECT_EQ(0u, QpackEncodeRequiredInsertCount(0, 8)); EXPECT_EQ(0u, QpackEncodeRequiredInsertCount(0, 1024)); EXPECT_EQ(2u, QpackEncodeRequiredInsertCount(1, 8)); EXPECT_EQ(5u, QpackEncodeRequiredInsertCount(20, 8)); EXPECT_EQ(7u, QpackEncodeRequiredInsertCount(106, 10)); } struct { uint64_t required_insert_count; uint64_t max_entries; uint64_t total_number_of_inserts; } kTestData[] = { {0, 0, 0}, {0, 100, 0}, {0, 100, 500}, {15, 100, 25}, {20, 100, 10}, {90, 100, 110}, {234, 100, 180}, {5678, 100, 5701}, {401, 100, 500}, {600, 100, 500}}; TEST(QpackRequiredInsertCountTest, QpackDecodeRequiredInsertCount) { for (size_t i = 0; i < ABSL_ARRAYSIZE(kTestData); ++i) { const uint64_t required_insert_count = kTestData[i].required_insert_count; const uint64_t max_entries = kTestData[i].max_entries; const uint64_t total_number_of_inserts = kTestData[i].total_number_of_inserts; if (required_insert_count != 0) { ASSERT_LT(0u, max_entries) << i; ASSERT_LT(total_number_of_inserts, required_insert_count + max_entries) << i; ASSERT_LE(required_insert_count, total_number_of_inserts + max_entries) << i; } uint64_t encoded_required_insert_count = QpackEncodeRequiredInsertCount(required_insert_count, max_entries); uint64_t decoded_required_insert_count = required_insert_count + 1; EXPECT_TRUE(QpackDecodeRequiredInsertCount( encoded_required_insert_count, max_entries, total_number_of_inserts, &decoded_required_insert_count)) << i; EXPECT_EQ(decoded_required_insert_count, required_insert_count) << i; } } struct { uint64_t encoded_required_insert_count; uint64_t max_entries; uint64_t total_number_of_inserts; } kInvalidTestData[] = { {1, 0, 0}, {9, 0, 0}, {1, 10, 2}, {18, 10, 2}, {400, 100, 500}, {601, 100, 500}}; TEST(QpackRequiredInsertCountTest, DecodeRequiredInsertCountError) { for (size_t i = 0; i < ABSL_ARRAYSIZE(kInvalidTestData); ++i) { uint64_t decoded_required_insert_count = 0; EXPECT_FALSE(QpackDecodeRequiredInsertCount( kInvalidTestData[i].encoded_required_insert_count, kInvalidTestData[i].max_entries, kInvalidTestData[i].total_number_of_inserts, &decoded_required_insert_count)) << i; } } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/qpack/qpack_required_insert_count.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/qpack/qpack_required_insert_count_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
6abeb031-0f9b-4d31-b673-75daf31fd982
cpp
google/glog
stacktrace
src/stacktrace.cc
src/stacktrace_unittest.cc
#include "stacktrace.h" #if defined(STACKTRACE_H) # include STACKTRACE_H #endif
#include "stacktrace.h" #include <cstdio> #include <cstdlib> #include "base/commandlineflags.h" #include "config.h" #include "glog/logging.h" #include "utilities.h" #ifdef HAVE_EXECINFO_BACKTRACE_SYMBOLS # include <execinfo.h> #endif #ifdef HAVE_STACKTRACE const int BACKTRACE_STEPS = 6; struct AddressRange { const void *start, *end; }; AddressRange expected_range[BACKTRACE_STEPS]; # if __GNUC__ # define INIT_ADDRESS_RANGE(fn, start_label, end_label, prange) \ do { \ (prange)->start = &&start_label; \ (prange)->end = &&end_label; \ CHECK_LT((prange)->start, (prange)->end); \ } while (0) # define DECLARE_ADDRESS_LABEL(a_label) \ a_label: \ do { \ __asm__ __volatile__(""); \ } while (0) # define ADJUST_ADDRESS_RANGE_FROM_RA(prange) \ do { \ void* ra = __builtin_return_address(0); \ CHECK_LT((prange)->start, ra); \ if (ra > (prange)->end) { \ printf("Adjusting range from %p..%p to %p..%p\n", (prange)->start, \ (prange)->end, (prange)->start, ra); \ (prange)->end = ra; \ } \ } while (0) # else # define INIT_ADDRESS_RANGE(fn, start_label, end_label, prange) \ do { \ (prange)->start = reinterpret_cast<const void*>(&fn); \ (prange)->end = reinterpret_cast<const char*>(&fn) + 256; \ } while (0) # define DECLARE_ADDRESS_LABEL(a_label) \ do { \ } while (0) # define ADJUST_ADDRESS_RANGE_FROM_RA(prange) \ do { \ } while (0) # endif static void CheckRetAddrIsInFunction(void* ret_addr, const AddressRange& range) { CHECK_GE(ret_addr, range.start); CHECK_LE(ret_addr, range.end); } # if defined(__clang__) # pragma clang diagnostic push # pragma clang diagnostic ignored "-Wgnu-label-as-value" # endif void ATTRIBUTE_NOINLINE CheckStackTrace(int); static void ATTRIBUTE_NOINLINE CheckStackTraceLeaf() { const int STACK_LEN = 10; void* stack[STACK_LEN]; int size; ADJUST_ADDRESS_RANGE_FROM_RA(&expected_range[1]); INIT_ADDRESS_RANGE(CheckStackTraceLeaf, start, end, &expected_range[0]); DECLARE_ADDRESS_LABEL(start); size = google::GetStackTrace(stack, STACK_LEN, 0); printf("Obtained %d stack frames.\n", size); CHECK_GE(size, 1); CHECK_LE(size, STACK_LEN); if (true) { # ifdef HAVE_EXECINFO_BACKTRACE_SYMBOLS char** strings = backtrace_symbols(stack, size); printf("Obtained %d stack frames.\n", size); for (int i = 0; i < size; i++) { printf("%s %p\n", strings[i], stack[i]); } union { void (*p1)(int); void* p2; } p = {&CheckStackTrace}; printf("CheckStackTrace() addr: %p\n", p.p2); free(strings); # endif } for (int i = 0; i < BACKTRACE_STEPS; i++) { printf("Backtrace %d: expected: %p..%p actual: %p ... ", i, expected_range[i].start, expected_range[i].end, stack[i]); fflush(stdout); CheckRetAddrIsInFunction(stack[i], expected_range[i]); printf("OK\n"); } DECLARE_ADDRESS_LABEL(end); } static void ATTRIBUTE_NOINLINE CheckStackTrace4(int i) { ADJUST_ADDRESS_RANGE_FROM_RA(&expected_range[2]); INIT_ADDRESS_RANGE(CheckStackTrace4, start, end, &expected_range[1]); DECLARE_ADDRESS_LABEL(start); for (int j = i; j >= 0; j--) { CheckStackTraceLeaf(); } DECLARE_ADDRESS_LABEL(end); } static void ATTRIBUTE_NOINLINE CheckStackTrace3(int i) { ADJUST_ADDRESS_RANGE_FROM_RA(&expected_range[3]); INIT_ADDRESS_RANGE(CheckStackTrace3, start, end, &expected_range[2]); DECLARE_ADDRESS_LABEL(start); for (int j = i; j >= 0; j--) { CheckStackTrace4(j); } DECLARE_ADDRESS_LABEL(end); } static void ATTRIBUTE_NOINLINE CheckStackTrace2(int i) { ADJUST_ADDRESS_RANGE_FROM_RA(&expected_range[4]); INIT_ADDRESS_RANGE(CheckStackTrace2, start, end, &expected_range[3]); DECLARE_ADDRESS_LABEL(start); for (int j = i; j >= 0; j--) { CheckStackTrace3(j); } DECLARE_ADDRESS_LABEL(end); } static void ATTRIBUTE_NOINLINE CheckStackTrace1(int i) { ADJUST_ADDRESS_RANGE_FROM_RA(&expected_range[5]); INIT_ADDRESS_RANGE(CheckStackTrace1, start, end, &expected_range[4]); DECLARE_ADDRESS_LABEL(start); for (int j = i; j >= 0; j--) { CheckStackTrace2(j); } DECLARE_ADDRESS_LABEL(end); } # ifndef __GNUC__ static # endif void ATTRIBUTE_NOINLINE CheckStackTrace(int i) { INIT_ADDRESS_RANGE(CheckStackTrace, start, end, &expected_range[5]); DECLARE_ADDRESS_LABEL(start); for (int j = i; j >= 0; j--) { CheckStackTrace1(j); } DECLARE_ADDRESS_LABEL(end); } # if defined(__clang__) # pragma clang diagnostic pop # endif int main(int, char** argv) { FLAGS_logtostderr = true; google::InitGoogleLogging(argv[0]); CheckStackTrace(0); printf("PASS\n"); return 0; } #else int main() { # ifdef GLOG_BAZEL_BUILD printf("HAVE_STACKTRACE is expected to be defined in Bazel tests\n"); exit(EXIT_FAILURE); # endif printf("PASS (no stacktrace support)\n"); return 0; } #endif
https://github.com/google/glog/blob/de309c08c05382fee0792380de7df1bd65332da2/src/stacktrace.cc
https://github.com/google/glog/blob/de309c08c05382fee0792380de7df1bd65332da2/src/stacktrace_unittest.cc
de309c08c05382fee0792380de7df1bd65332da2
c60900b9-5117-4a35-921c-e7e73ded1358
cpp
tensorflow/tensorflow
xplane_to_dcn_collective_stats
tensorflow/core/profiler/convert/xplane_to_dcn_collective_stats.cc
tensorflow/core/profiler/convert/xplane_to_dcn_collective_stats_test.cc
#include "tensorflow/core/profiler/convert/xplane_to_dcn_collective_stats.h" #include <memory> #include <string> #include <utility> #include "absl/strings/match.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/profiler/convert/dcn_slack_analysis_combiner.h" #include "tensorflow/core/profiler/convert/repository.h" #include "tensorflow/core/profiler/convert/xspace_to_dcn_slack_analysis.h" #include "tensorflow/core/profiler/protobuf/dcn_slack_analysis.pb.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_utils.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace tensorflow { namespace profiler { namespace { bool HasDcnCollectiveStatsInXSpace(const XSpace& xspace) { if (const tensorflow::profiler::XPlane* xplane = FindPlaneWithName( xspace, tensorflow::profiler::kHostThreadsPlaneName); xplane != nullptr) { for (const auto& [_, metadata] : xplane->event_metadata()) { if (absl::StartsWith(metadata.name(), "MegaScale:")) { return true; } } } return false; } absl::StatusOr<bool> GetDcnCollectiveStatsFromMultiXSpaceAndSaveToFile( const SessionSnapshot& session_snapshot) { DcnSlackAnalysisCombiner combiner; for (int idx = 0; idx < session_snapshot.XSpaceSize(); idx++) { std::string hostname = session_snapshot.GetHostname(idx); TF_ASSIGN_OR_RETURN(std::unique_ptr<XSpace> xspace, session_snapshot.GetXSpace(idx)); if (!HasDcnCollectiveStatsInXSpace(*xspace)) { DcnSlackAnalysis dcnSlackAnalysis; TF_RETURN_IF_ERROR(WriteBinaryProto(session_snapshot, StoredDataType::DCN_COLLECTIVE_STATS, kNoHostIdentifier, dcnSlackAnalysis)); return false; } DcnSlackAnalysis dcnSlackAnalysis = ConvertXSpaceToDcnSlackAnalysis(*xspace, nullptr, nullptr); TF_RETURN_IF_ERROR(WriteBinaryProto(session_snapshot, StoredDataType::DCN_COLLECTIVE_STATS, hostname, dcnSlackAnalysis)); combiner.Combine(dcnSlackAnalysis); } DcnSlackAnalysis dcnSlackAnalysis = combiner.Finalize(); TF_RETURN_IF_ERROR(WriteBinaryProto(session_snapshot, StoredDataType::DCN_COLLECTIVE_STATS, kAllHostsIdentifier, dcnSlackAnalysis)); return true; } } absl::StatusOr<bool> HasDcnCollectiveStatsInMultiXSpace( const SessionSnapshot& session_snapshot) { std::pair<bool, std::string> hasCacheFile; TF_ASSIGN_OR_RETURN(hasCacheFile, session_snapshot.HasCacheFile( StoredDataType::DCN_COLLECTIVE_STATS)); if (!hasCacheFile.first) { for (int idx = 0; idx < session_snapshot.XSpaceSize(); idx++) { std::string hostname = session_snapshot.GetHostname(idx); TF_ASSIGN_OR_RETURN(std::unique_ptr<XSpace> xspace, session_snapshot.GetXSpace(idx)); if (HasDcnCollectiveStatsInXSpace(*xspace)) { return true; } } return false; } if (hasCacheFile.second.empty()) { return false; } else { return true; } } absl::StatusOr<bool> ConvertMultiXSpaceToDcnCollectiveStats( const SessionSnapshot& session_snapshot) { std::pair<bool, std::string> hasCacheFile; TF_ASSIGN_OR_RETURN(hasCacheFile, session_snapshot.HasCacheFile( StoredDataType::DCN_COLLECTIVE_STATS)); if (!hasCacheFile.first) { return GetDcnCollectiveStatsFromMultiXSpaceAndSaveToFile(session_snapshot); } if (hasCacheFile.second.empty()) { return false; } else { return true; } } absl::StatusOr<DcnSlackAnalysis> GetDcnSlackAnalysisByHostName( const SessionSnapshot& session_snapshot, const std::string hostname) { TF_ASSIGN_OR_RETURN(bool hasDcnCollectiveStats, ConvertMultiXSpaceToDcnCollectiveStats(session_snapshot)); DcnSlackAnalysis dcnSlackAnalysis; if (hasDcnCollectiveStats) { TF_RETURN_IF_ERROR(ReadBinaryProto(session_snapshot, StoredDataType::DCN_COLLECTIVE_STATS, hostname, &dcnSlackAnalysis)); } return dcnSlackAnalysis; } } }
#include "tensorflow/core/profiler/convert/xplane_to_dcn_collective_stats.h" #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/file_system.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/profiler/convert/repository.h" #include "tensorflow/core/profiler/protobuf/dcn_slack_analysis.pb.h" #include "tensorflow/core/profiler/utils/xplane_builder.h" #include "tensorflow/core/profiler/utils/xplane_utils.h" #include "tsl/platform/status.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace tensorflow { namespace profiler { namespace { DcnSlackAnalysis CreateDcnSlackAnalysisProto() { DcnSlackAnalysis dcn_slack_analysis; DcnSlackSummary* dcn_slack_summary = dcn_slack_analysis.add_dcn_slack_summary(); dcn_slack_summary->set_rendezvous("collective"); dcn_slack_summary->set_recv_op_name("recv-done"); dcn_slack_summary->set_send_op_name("send"); dcn_slack_summary->set_slack_us(2); dcn_slack_summary->set_observed_duration_us(12); dcn_slack_summary->set_stall_duration_us(5); dcn_slack_summary->set_occurrences(4); dcn_slack_summary->set_bytes_transmitted_over_network(819200); return dcn_slack_analysis; } SessionSnapshot CreateSessionSnapshot(bool create_cache_file, bool has_dcn_collective_stats) { std::string test_name = ::testing::UnitTest::GetInstance()->current_test_info()->name(); std::string path = absl::StrCat("ram: std::unique_ptr<WritableFile> xplane_file; std::vector<std::string> paths = {absl::StrCat(path, "hostname.xplane.pb")}; auto xspace = std::make_unique<XSpace>(); XPlane* xplane = FindOrAddMutablePlaneWithName(xspace.get(), "/host:CPU"); if (has_dcn_collective_stats) { XPlaneBuilder xplane_builder(xplane); xplane_builder.GetOrCreateEventMetadata("MegaScale:"); } if (create_cache_file) { if (has_dcn_collective_stats) { tensorflow::Env::Default() ->NewAppendableFile( absl::StrCat(path, "hostname.dcn_collective_stats.pb"), &xplane_file) .IgnoreError(); tensorflow::Env::Default() ->NewAppendableFile( absl::StrCat(path, "ALL_HOSTS.dcn_collective_stats.pb"), &xplane_file) .IgnoreError(); } else { tensorflow::Env::Default() ->NewAppendableFile( absl::StrCat(path, "NO_HOST.dcn_collective_stats.pb"), &xplane_file) .IgnoreError(); } } std::vector<std::unique_ptr<XSpace>> xspaces; xspaces.push_back(std::move(xspace)); absl::StatusOr<SessionSnapshot> session_snapshot_status = SessionSnapshot::Create(paths, std::move(xspaces)); TF_CHECK_OK(session_snapshot_status.status()); SessionSnapshot session_snapshot = std::move(session_snapshot_status.value()); if (has_dcn_collective_stats) { DcnSlackAnalysis dcn_slack_analysis = CreateDcnSlackAnalysisProto(); TF_CHECK_OK(session_snapshot.WriteBinaryProto( DCN_COLLECTIVE_STATS, "hostname", dcn_slack_analysis)); TF_CHECK_OK(session_snapshot.WriteBinaryProto( DCN_COLLECTIVE_STATS, kAllHostsIdentifier, dcn_slack_analysis)); } return session_snapshot; } TEST(ConvertXplaneToDcnCollectiveStats, HasAllHostsDcnCollectiveStatsCacheFile) { SessionSnapshot session_snapshot = CreateSessionSnapshot(true, true); absl::StatusOr<bool> status = HasDcnCollectiveStatsInMultiXSpace(session_snapshot); EXPECT_EQ(status.value(), true); } TEST(ConvertXplaneToDcnCollectiveStats, HasNoHostDcnCollectiveStatsCacheFile) { SessionSnapshot session_snapshot = CreateSessionSnapshot(true, false); absl::StatusOr<bool> status = HasDcnCollectiveStatsInMultiXSpace(session_snapshot); EXPECT_EQ(status.value(), false); } TEST(ConvertXplaneToDcnCollectiveStats, NoCacheFileButTraceHasDcnCollectiveStats) { SessionSnapshot session_snapshot = CreateSessionSnapshot(false, true); absl::StatusOr<bool> status = HasDcnCollectiveStatsInMultiXSpace(session_snapshot); EXPECT_EQ(status.value(), true); } TEST(ConvertXplaneToDcnCollectiveStats, NoCacheFileNoDcnCollectiveStatsPresent) { SessionSnapshot session_snapshot = CreateSessionSnapshot(false, false); absl::StatusOr<bool> status = HasDcnCollectiveStatsInMultiXSpace(session_snapshot); EXPECT_EQ(status.value(), false); } TEST(ConvertXplaneToDcnCollectiveStats, ConvertXSpaceToDcnCollectiveStatsWhenStatsPresent) { SessionSnapshot session_snapshot = CreateSessionSnapshot(false, true); absl::StatusOr<bool> status = ConvertMultiXSpaceToDcnCollectiveStats(session_snapshot); absl::StatusOr<std::optional<std::string>> all_hosts_filepath = session_snapshot.GetHostDataFilePath(StoredDataType::DCN_COLLECTIVE_STATS, kAllHostsIdentifier); absl::StatusOr<std::optional<std::string>> host_filepath = session_snapshot.GetHostDataFilePath(StoredDataType::DCN_COLLECTIVE_STATS, "hostname"); EXPECT_EQ(status.value(), true); TF_EXPECT_OK(all_hosts_filepath.status()); EXPECT_TRUE(all_hosts_filepath.value().has_value()); EXPECT_FALSE(all_hosts_filepath.value().value().empty()); TF_EXPECT_OK(host_filepath.status()); EXPECT_TRUE(host_filepath.value().has_value()); EXPECT_FALSE(host_filepath.value().value().empty()); } TEST(ConvertXplaneToDcnCollectiveStats, ConvertXSpaceToDcnCollectiveStatsWhenStatsNotPresent) { SessionSnapshot session_snapshot = CreateSessionSnapshot(false, false); absl::StatusOr<bool> status = ConvertMultiXSpaceToDcnCollectiveStats(session_snapshot); absl::StatusOr<std::optional<std::string>> filepath = session_snapshot.GetHostDataFilePath(StoredDataType::DCN_COLLECTIVE_STATS, kNoHostIdentifier); EXPECT_EQ(status.value(), false); TF_EXPECT_OK(filepath.status()); EXPECT_TRUE(filepath.value().has_value()); EXPECT_FALSE(filepath.value().value().empty()); } TEST(ConvertXplaneToDcnCollectiveStats, GetHostDcnSlackAnalysisWhenStatsNotPresent) { SessionSnapshot session_snapshot = CreateSessionSnapshot(false, false); absl::StatusOr<DcnSlackAnalysis> host_dcn_slack_analysis = GetDcnSlackAnalysisByHostName(session_snapshot, "hostname"); TF_EXPECT_OK(host_dcn_slack_analysis.status()); EXPECT_EQ(host_dcn_slack_analysis.value().dcn_slack_summary_size(), 0); } TEST(ConvertXplaneToDcnCollectiveStats, GetHostDcnSlackAnalysisWhenStatsPresent) { SessionSnapshot session_snapshot = CreateSessionSnapshot(true, true); absl::StatusOr<DcnSlackAnalysis> host_dcn_slack_analysis = GetDcnSlackAnalysisByHostName(session_snapshot, "hostname"); TF_EXPECT_OK(host_dcn_slack_analysis.status()); EXPECT_EQ(host_dcn_slack_analysis.value().dcn_slack_summary_size(), 1); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_dcn_collective_stats.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_dcn_collective_stats_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4645f1f3-7545-471e-aacc-a06c1b1d4adb
cpp
google/quiche
quic_ping_manager
quiche/quic/core/quic_ping_manager.cc
quiche/quic/core/quic_ping_manager_test.cc
#include "quiche/quic/core/quic_ping_manager.h" #include <algorithm> #include "quiche/quic/platform/api/quic_flags.h" namespace quic { namespace { const int kMaxRetransmittableOnWireDelayShift = 10; } QuicPingManager::QuicPingManager(Perspective perspective, Delegate* delegate, QuicAlarm* alarm) : perspective_(perspective), delegate_(delegate), alarm_(*alarm) {} void QuicPingManager::SetAlarm(QuicTime now, bool should_keep_alive, bool has_in_flight_packets) { UpdateDeadlines(now, should_keep_alive, has_in_flight_packets); const QuicTime earliest_deadline = GetEarliestDeadline(); if (!earliest_deadline.IsInitialized()) { alarm_.Cancel(); return; } if (earliest_deadline == keep_alive_deadline_) { alarm_.Update(earliest_deadline, QuicTime::Delta::FromSeconds(1)); return; } alarm_.Update(earliest_deadline, kAlarmGranularity); } void QuicPingManager::OnAlarm() { const QuicTime earliest_deadline = GetEarliestDeadline(); if (!earliest_deadline.IsInitialized()) { QUIC_BUG(quic_ping_manager_alarm_fires_unexpectedly) << "QuicPingManager alarm fires unexpectedly."; return; } if (earliest_deadline == retransmittable_on_wire_deadline_) { retransmittable_on_wire_deadline_ = QuicTime::Zero(); if (GetQuicFlag(quic_max_aggressive_retransmittable_on_wire_ping_count) != 0) { ++consecutive_retransmittable_on_wire_count_; } ++retransmittable_on_wire_count_; delegate_->OnRetransmittableOnWireTimeout(); return; } if (earliest_deadline == keep_alive_deadline_) { keep_alive_deadline_ = QuicTime::Zero(); delegate_->OnKeepAliveTimeout(); } } void QuicPingManager::Stop() { alarm_.PermanentCancel(); retransmittable_on_wire_deadline_ = QuicTime::Zero(); keep_alive_deadline_ = QuicTime::Zero(); } void QuicPingManager::UpdateDeadlines(QuicTime now, bool should_keep_alive, bool has_in_flight_packets) { keep_alive_deadline_ = QuicTime::Zero(); if (perspective_ == Perspective::IS_SERVER && initial_retransmittable_on_wire_timeout_.IsInfinite()) { QUICHE_DCHECK(!retransmittable_on_wire_deadline_.IsInitialized()); return; } if (!should_keep_alive) { retransmittable_on_wire_deadline_ = QuicTime::Zero(); return; } if (perspective_ == Perspective::IS_CLIENT) { keep_alive_deadline_ = now + keep_alive_timeout_; } if (initial_retransmittable_on_wire_timeout_.IsInfinite() || has_in_flight_packets || retransmittable_on_wire_count_ > GetQuicFlag(quic_max_retransmittable_on_wire_ping_count)) { retransmittable_on_wire_deadline_ = QuicTime::Zero(); return; } QUICHE_DCHECK_LT(initial_retransmittable_on_wire_timeout_, keep_alive_timeout_); QuicTime::Delta retransmittable_on_wire_timeout = initial_retransmittable_on_wire_timeout_; const int max_aggressive_retransmittable_on_wire_count = GetQuicFlag(quic_max_aggressive_retransmittable_on_wire_ping_count); QUICHE_DCHECK_LE(0, max_aggressive_retransmittable_on_wire_count); if (consecutive_retransmittable_on_wire_count_ > max_aggressive_retransmittable_on_wire_count) { int shift = std::min(consecutive_retransmittable_on_wire_count_ - max_aggressive_retransmittable_on_wire_count, kMaxRetransmittableOnWireDelayShift); retransmittable_on_wire_timeout = initial_retransmittable_on_wire_timeout_ * (1 << shift); } if (retransmittable_on_wire_deadline_.IsInitialized() && retransmittable_on_wire_deadline_ < now + retransmittable_on_wire_timeout) { return; } retransmittable_on_wire_deadline_ = now + retransmittable_on_wire_timeout; } QuicTime QuicPingManager::GetEarliestDeadline() const { QuicTime earliest_deadline = QuicTime::Zero(); for (QuicTime t : {retransmittable_on_wire_deadline_, keep_alive_deadline_}) { if (!t.IsInitialized()) { continue; } if (!earliest_deadline.IsInitialized() || t < earliest_deadline) { earliest_deadline = t; } } return earliest_deadline; } }
#include "quiche/quic/core/quic_ping_manager.h" #include "quiche/quic/core/quic_connection_alarms.h" #include "quiche/quic/core/quic_one_block_arena.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/mock_quic_connection_alarms.h" #include "quiche/quic/test_tools/quic_test_utils.h" namespace quic { namespace test { class QuicPingManagerPeer { public: static QuicAlarm* GetAlarm(QuicPingManager* manager) { return &manager->alarm_; } static void SetPerspective(QuicPingManager* manager, Perspective perspective) { manager->perspective_ = perspective; } }; namespace { const bool kShouldKeepAlive = true; const bool kHasInflightPackets = true; class MockDelegate : public QuicPingManager::Delegate { public: MOCK_METHOD(void, OnKeepAliveTimeout, (), (override)); MOCK_METHOD(void, OnRetransmittableOnWireTimeout, (), (override)); }; class QuicPingManagerTest : public QuicTest { public: QuicPingManagerTest() : alarms_(&connection_alarms_delegate_, alarm_factory_, arena_), manager_(Perspective::IS_CLIENT, &delegate_, &alarms_.ping_alarm()), alarm_(static_cast<MockAlarmFactory::TestAlarm*>( QuicPingManagerPeer::GetAlarm(&manager_))) { clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); ON_CALL(connection_alarms_delegate_, OnPingAlarm()).WillByDefault([&] { manager_.OnAlarm(); }); } protected: testing::StrictMock<MockDelegate> delegate_; MockConnectionAlarmsDelegate connection_alarms_delegate_; MockClock clock_; QuicConnectionArena arena_; MockAlarmFactory alarm_factory_; QuicConnectionAlarms alarms_; QuicPingManager manager_; MockAlarmFactory::TestAlarm* alarm_; }; TEST_F(QuicPingManagerTest, KeepAliveTimeout) { EXPECT_FALSE(alarm_->IsSet()); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, kHasInflightPackets); EXPECT_TRUE(alarm_->IsSet()); EXPECT_EQ(QuicTime::Delta::FromSeconds(kPingTimeoutSecs), alarm_->deadline() - clock_.ApproximateNow()); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, !kHasInflightPackets); EXPECT_TRUE(alarm_->IsSet()); EXPECT_EQ(QuicTime::Delta::FromSeconds(kPingTimeoutSecs) - QuicTime::Delta::FromMilliseconds(5), alarm_->deadline() - clock_.ApproximateNow()); clock_.AdvanceTime(QuicTime::Delta::FromSeconds(kPingTimeoutSecs)); EXPECT_CALL(delegate_, OnKeepAliveTimeout()); alarm_->Fire(); EXPECT_FALSE(alarm_->IsSet()); manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, kHasInflightPackets); EXPECT_TRUE(alarm_->IsSet()); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); manager_.SetAlarm(clock_.ApproximateNow(), !kShouldKeepAlive, kHasInflightPackets); EXPECT_FALSE(alarm_->IsSet()); } TEST_F(QuicPingManagerTest, CustomizedKeepAliveTimeout) { EXPECT_FALSE(alarm_->IsSet()); manager_.set_keep_alive_timeout(QuicTime::Delta::FromSeconds(10)); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, kHasInflightPackets); EXPECT_TRUE(alarm_->IsSet()); EXPECT_EQ(QuicTime::Delta::FromSeconds(10), alarm_->deadline() - clock_.ApproximateNow()); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, !kHasInflightPackets); EXPECT_TRUE(alarm_->IsSet()); EXPECT_EQ( QuicTime::Delta::FromSeconds(10) - QuicTime::Delta::FromMilliseconds(5), alarm_->deadline() - clock_.ApproximateNow()); clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); EXPECT_CALL(delegate_, OnKeepAliveTimeout()); alarm_->Fire(); EXPECT_FALSE(alarm_->IsSet()); manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, kHasInflightPackets); EXPECT_TRUE(alarm_->IsSet()); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); manager_.SetAlarm(clock_.ApproximateNow(), !kShouldKeepAlive, kHasInflightPackets); EXPECT_FALSE(alarm_->IsSet()); } TEST_F(QuicPingManagerTest, RetransmittableOnWireTimeout) { const QuicTime::Delta kRtransmittableOnWireTimeout = QuicTime::Delta::FromMilliseconds(50); manager_.set_initial_retransmittable_on_wire_timeout( kRtransmittableOnWireTimeout); EXPECT_FALSE(alarm_->IsSet()); manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, kHasInflightPackets); EXPECT_TRUE(alarm_->IsSet()); EXPECT_EQ(QuicTime::Delta::FromSeconds(kPingTimeoutSecs), alarm_->deadline() - clock_.ApproximateNow()); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, !kHasInflightPackets); EXPECT_TRUE(alarm_->IsSet()); EXPECT_EQ(kRtransmittableOnWireTimeout, alarm_->deadline() - clock_.ApproximateNow()); clock_.AdvanceTime(kRtransmittableOnWireTimeout); EXPECT_CALL(delegate_, OnRetransmittableOnWireTimeout()); alarm_->Fire(); EXPECT_FALSE(alarm_->IsSet()); manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, kHasInflightPackets); ASSERT_TRUE(alarm_->IsSet()); EXPECT_EQ(QuicTime::Delta::FromSeconds(kPingTimeoutSecs), alarm_->deadline() - clock_.ApproximateNow()); } TEST_F(QuicPingManagerTest, RetransmittableOnWireTimeoutExponentiallyBackOff) { const int kMaxAggressiveRetransmittableOnWireCount = 5; SetQuicFlag(quic_max_aggressive_retransmittable_on_wire_ping_count, kMaxAggressiveRetransmittableOnWireCount); const QuicTime::Delta initial_retransmittable_on_wire_timeout = QuicTime::Delta::FromMilliseconds(200); manager_.set_initial_retransmittable_on_wire_timeout( initial_retransmittable_on_wire_timeout); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); EXPECT_FALSE(alarm_->IsSet()); manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, kHasInflightPackets); EXPECT_TRUE(alarm_->IsSet()); EXPECT_EQ(QuicTime::Delta::FromSeconds(kPingTimeoutSecs), alarm_->deadline() - clock_.ApproximateNow()); for (int i = 0; i <= kMaxAggressiveRetransmittableOnWireCount; ++i) { clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, !kHasInflightPackets); EXPECT_TRUE(alarm_->IsSet()); EXPECT_EQ(initial_retransmittable_on_wire_timeout, alarm_->deadline() - clock_.ApproximateNow()); clock_.AdvanceTime(initial_retransmittable_on_wire_timeout); EXPECT_CALL(delegate_, OnRetransmittableOnWireTimeout()); alarm_->Fire(); EXPECT_FALSE(alarm_->IsSet()); manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, kHasInflightPackets); } QuicTime::Delta retransmittable_on_wire_timeout = initial_retransmittable_on_wire_timeout; while (retransmittable_on_wire_timeout * 2 < QuicTime::Delta::FromSeconds(kPingTimeoutSecs)) { retransmittable_on_wire_timeout = retransmittable_on_wire_timeout * 2; clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, !kHasInflightPackets); EXPECT_TRUE(alarm_->IsSet()); EXPECT_EQ(retransmittable_on_wire_timeout, alarm_->deadline() - clock_.ApproximateNow()); clock_.AdvanceTime(retransmittable_on_wire_timeout); EXPECT_CALL(delegate_, OnRetransmittableOnWireTimeout()); alarm_->Fire(); EXPECT_FALSE(alarm_->IsSet()); manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, kHasInflightPackets); } EXPECT_TRUE(alarm_->IsSet()); EXPECT_EQ(QuicTime::Delta::FromSeconds(kPingTimeoutSecs), alarm_->deadline() - clock_.ApproximateNow()); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, !kHasInflightPackets); EXPECT_TRUE(alarm_->IsSet()); EXPECT_EQ(QuicTime::Delta::FromSeconds(kPingTimeoutSecs) - QuicTime::Delta::FromMilliseconds(5), alarm_->deadline() - clock_.ApproximateNow()); clock_.AdvanceTime(QuicTime::Delta::FromSeconds(kPingTimeoutSecs) - QuicTime::Delta::FromMilliseconds(5)); EXPECT_CALL(delegate_, OnKeepAliveTimeout()); alarm_->Fire(); EXPECT_FALSE(alarm_->IsSet()); } TEST_F(QuicPingManagerTest, ResetRetransmitableOnWireTimeoutExponentiallyBackOff) { const int kMaxAggressiveRetransmittableOnWireCount = 3; SetQuicFlag(quic_max_aggressive_retransmittable_on_wire_ping_count, kMaxAggressiveRetransmittableOnWireCount); const QuicTime::Delta initial_retransmittable_on_wire_timeout = QuicTime::Delta::FromMilliseconds(200); manager_.set_initial_retransmittable_on_wire_timeout( initial_retransmittable_on_wire_timeout); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); EXPECT_FALSE(alarm_->IsSet()); manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, kHasInflightPackets); EXPECT_TRUE(alarm_->IsSet()); EXPECT_EQ(QuicTime::Delta::FromSeconds(kPingTimeoutSecs), alarm_->deadline() - clock_.ApproximateNow()); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, !kHasInflightPackets); EXPECT_TRUE(alarm_->IsSet()); EXPECT_EQ(initial_retransmittable_on_wire_timeout, alarm_->deadline() - clock_.ApproximateNow()); EXPECT_CALL(delegate_, OnRetransmittableOnWireTimeout()); clock_.AdvanceTime(initial_retransmittable_on_wire_timeout); alarm_->Fire(); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, !kHasInflightPackets); EXPECT_TRUE(alarm_->IsSet()); EXPECT_EQ(initial_retransmittable_on_wire_timeout, alarm_->deadline() - clock_.ApproximateNow()); manager_.reset_consecutive_retransmittable_on_wire_count(); manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, !kHasInflightPackets); EXPECT_EQ(initial_retransmittable_on_wire_timeout, alarm_->deadline() - clock_.ApproximateNow()); EXPECT_CALL(delegate_, OnRetransmittableOnWireTimeout()); clock_.AdvanceTime(initial_retransmittable_on_wire_timeout); alarm_->Fire(); for (int i = 0; i < kMaxAggressiveRetransmittableOnWireCount; i++) { manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, !kHasInflightPackets); EXPECT_TRUE(alarm_->IsSet()); EXPECT_EQ(initial_retransmittable_on_wire_timeout, alarm_->deadline() - clock_.ApproximateNow()); clock_.AdvanceTime(initial_retransmittable_on_wire_timeout); EXPECT_CALL(delegate_, OnRetransmittableOnWireTimeout()); alarm_->Fire(); manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, kHasInflightPackets); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); } manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, !kHasInflightPackets); EXPECT_TRUE(alarm_->IsSet()); EXPECT_EQ(initial_retransmittable_on_wire_timeout * 2, alarm_->deadline() - clock_.ApproximateNow()); clock_.AdvanceTime(2 * initial_retransmittable_on_wire_timeout); EXPECT_CALL(delegate_, OnRetransmittableOnWireTimeout()); alarm_->Fire(); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); manager_.reset_consecutive_retransmittable_on_wire_count(); manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, !kHasInflightPackets); EXPECT_TRUE(alarm_->IsSet()); EXPECT_EQ(initial_retransmittable_on_wire_timeout, alarm_->deadline() - clock_.ApproximateNow()); } TEST_F(QuicPingManagerTest, RetransmittableOnWireLimit) { static constexpr int kMaxRetransmittableOnWirePingCount = 3; SetQuicFlag(quic_max_retransmittable_on_wire_ping_count, kMaxRetransmittableOnWirePingCount); static constexpr QuicTime::Delta initial_retransmittable_on_wire_timeout = QuicTime::Delta::FromMilliseconds(200); static constexpr QuicTime::Delta kShortDelay = QuicTime::Delta::FromMilliseconds(5); ASSERT_LT(kShortDelay * 10, initial_retransmittable_on_wire_timeout); manager_.set_initial_retransmittable_on_wire_timeout( initial_retransmittable_on_wire_timeout); clock_.AdvanceTime(kShortDelay); EXPECT_FALSE(alarm_->IsSet()); manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, kHasInflightPackets); EXPECT_TRUE(alarm_->IsSet()); EXPECT_EQ(QuicTime::Delta::FromSeconds(kPingTimeoutSecs), alarm_->deadline() - clock_.ApproximateNow()); for (int i = 0; i <= kMaxRetransmittableOnWirePingCount; i++) { clock_.AdvanceTime(kShortDelay); manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, !kHasInflightPackets); EXPECT_TRUE(alarm_->IsSet()); EXPECT_EQ(initial_retransmittable_on_wire_timeout, alarm_->deadline() - clock_.ApproximateNow()); clock_.AdvanceTime(initial_retransmittable_on_wire_timeout); EXPECT_CALL(delegate_, OnRetransmittableOnWireTimeout()); alarm_->Fire(); manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, kHasInflightPackets); } manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, !kHasInflightPackets); EXPECT_TRUE(alarm_->IsSet()); EXPECT_EQ(QuicTime::Delta::FromSeconds(kPingTimeoutSecs), alarm_->deadline() - clock_.ApproximateNow()); clock_.AdvanceTime(QuicTime::Delta::FromSeconds(kPingTimeoutSecs)); EXPECT_CALL(delegate_, OnKeepAliveTimeout()); alarm_->Fire(); EXPECT_FALSE(alarm_->IsSet()); } TEST_F(QuicPingManagerTest, MaxRetransmittableOnWireDelayShift) { QuicPingManagerPeer::SetPerspective(&manager_, Perspective::IS_SERVER); const int kMaxAggressiveRetransmittableOnWireCount = 3; SetQuicFlag(quic_max_aggressive_retransmittable_on_wire_ping_count, kMaxAggressiveRetransmittableOnWireCount); const QuicTime::Delta initial_retransmittable_on_wire_timeout = QuicTime::Delta::FromMilliseconds(200); manager_.set_initial_retransmittable_on_wire_timeout( initial_retransmittable_on_wire_timeout); for (int i = 0; i <= kMaxAggressiveRetransmittableOnWireCount; i++) { manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, !kHasInflightPackets); EXPECT_TRUE(alarm_->IsSet()); EXPECT_EQ(initial_retransmittable_on_wire_timeout, alarm_->deadline() - clock_.ApproximateNow()); clock_.AdvanceTime(initial_retransmittable_on_wire_timeout); EXPECT_CALL(delegate_, OnRetransmittableOnWireTimeout()); alarm_->Fire(); manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, kHasInflightPackets); } for (int i = 1; i <= 20; ++i) { manager_.SetAlarm(clock_.ApproximateNow(), kShouldKeepAlive, !kHasInflightPackets); EXPECT_TRUE(alarm_->IsSet()); if (i <= 10) { EXPECT_EQ(initial_retransmittable_on_wire_timeout * (1 << i), alarm_->deadline() - clock_.ApproximateNow()); } else { EXPECT_EQ(initial_retransmittable_on_wire_timeout * (1 << 10), alarm_->deadline() - clock_.ApproximateNow()); } clock_.AdvanceTime(alarm_->deadline() - clock_.ApproximateNow()); EXPECT_CALL(delegate_, OnRetransmittableOnWireTimeout()); alarm_->Fire(); } } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_ping_manager.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_ping_manager_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
28bbb614-9b57-4c27-aa28-be37452264de
cpp
google/tensorstore
curl_transport
tensorstore/internal/http/curl_transport.cc
tensorstore/internal/http/curl_transport_test.cc
#include "tensorstore/internal/http/curl_transport.h" #include <stddef.h> #include <stdint.h> #include <algorithm> #include <atomic> #include <cassert> #include <cerrno> #include <cstdio> #include <cstdlib> #include <limits> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/base/attributes.h" #include "absl/base/const_init.h" #include "absl/flags/flag.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include <curl/curl.h> #include "tensorstore/internal/container/circular_queue.h" #include "tensorstore/internal/cord_util.h" #include "tensorstore/internal/env.h" #include "tensorstore/internal/http/curl_factory.h" #include "tensorstore/internal/http/curl_handle.h" #include "tensorstore/internal/http/curl_wrappers.h" #include "tensorstore/internal/http/http_request.h" #include "tensorstore/internal/http/http_transport.h" #include "tensorstore/internal/metrics/counter.h" #include "tensorstore/internal/metrics/gauge.h" #include "tensorstore/internal/metrics/histogram.h" #include "tensorstore/internal/metrics/metadata.h" #include "tensorstore/internal/thread/thread.h" ABSL_FLAG(std::optional<uint32_t>, tensorstore_http_threads, std::nullopt, "Threads to use for http requests. " "Overrides TENSORSTORE_HTTP_THREADS."); using ::tensorstore::internal::GetFlagOrEnvValue; using ::tensorstore::internal_container::CircularQueue; using ::tensorstore::internal_metrics::MetricMetadata; namespace tensorstore { namespace internal_http { namespace { auto& http_request_started = internal_metrics::Counter<int64_t>::New( "/tensorstore/http/request_started", MetricMetadata("HTTP requests started")); auto& http_request_completed = internal_metrics::Counter<int64_t>::New( "/tensorstore/http/request_completed", MetricMetadata("HTTP requests completed")); auto& http_request_bytes = internal_metrics::Histogram<internal_metrics::DefaultBucketer>::New( "/tensorstore/http/request_bytes", MetricMetadata("HTTP request bytes transmitted", internal_metrics::Units::kBytes)); auto& http_request_header_bytes = internal_metrics::Histogram<internal_metrics::DefaultBucketer>::New( "/tensorstore/http/request_header_bytes", MetricMetadata("HTTP request bytes transmitted", internal_metrics::Units::kBytes)); auto& http_response_codes = internal_metrics::Counter<int64_t, int>::New( "/tensorstore/http/response_codes", "code", MetricMetadata("HTTP response status code counts")); auto& http_response_bytes = internal_metrics::Histogram<internal_metrics::DefaultBucketer>::New( "/tensorstore/http/response_bytes", MetricMetadata("HTTP response bytes received", internal_metrics::Units::kBytes)); auto& http_active = internal_metrics::Gauge<int64_t>::New( "/tensorstore/http/active", MetricMetadata("HTTP requests considered active")); auto& http_total_time_ms = internal_metrics::Histogram<internal_metrics::DefaultBucketer>::New( "/tensorstore/http/total_time_ms", MetricMetadata("HTTP total latency (ms)", internal_metrics::Units::kMilliseconds)); auto& http_first_byte_latency_us = internal_metrics::Histogram<internal_metrics::DefaultBucketer>::New( "/tensorstore/http/first_byte_latency_us", MetricMetadata("HTTP first byte received latency (us)", internal_metrics::Units::kMicroseconds)); auto& http_poll_time_ns = internal_metrics::Histogram<internal_metrics::DefaultBucketer>::New( "/tensorstore/http/http_poll_time_ns", MetricMetadata("HTTP time spent in curl_multi_poll (ns)", internal_metrics::Units::kNanoseconds)); uint32_t GetHttpThreads() { return std::max(1u, GetFlagOrEnvValue(FLAGS_tensorstore_http_threads, "TENSORSTORE_HTTP_THREADS") .value_or(4u)); } struct CurlRequestState { std::shared_ptr<CurlHandleFactory> factory_; CurlHandle handle_; CurlHeaders headers_; absl::Cord payload_; absl::Cord::CharIterator payload_it_; size_t payload_remaining_; HttpResponseHandler* response_handler_ = nullptr; size_t response_payload_size_ = 0; bool status_set = false; char error_buffer_[CURL_ERROR_SIZE]; CurlRequestState(std::shared_ptr<CurlHandleFactory> factory) : factory_(std::move(factory)), handle_(CurlHandle::Create(*factory_)) { error_buffer_[0] = 0; handle_.SetOption(CURLOPT_ERRORBUFFER, error_buffer_); handle_.SetOption(CURLOPT_BUFFERSIZE, 512 * 1024); handle_.SetOption(CURLOPT_TCP_NODELAY, 1L); handle_.SetOption(CURLOPT_WRITEDATA, this); handle_.SetOption(CURLOPT_WRITEFUNCTION, &CurlRequestState::CurlWriteCallback); handle_.SetOption(CURLOPT_HEADERDATA, this); handle_.SetOption(CURLOPT_HEADERFUNCTION, &CurlRequestState::CurlHeaderCallback); } ~CurlRequestState() { handle_.SetOption(CURLOPT_WRITEDATA, nullptr); handle_.SetOption(CURLOPT_WRITEFUNCTION, nullptr); handle_.SetOption(CURLOPT_READDATA, nullptr); handle_.SetOption(CURLOPT_READFUNCTION, nullptr); handle_.SetOption(CURLOPT_SEEKDATA, nullptr); handle_.SetOption(CURLOPT_SEEKFUNCTION, nullptr); handle_.SetOption(CURLOPT_HEADERDATA, nullptr); handle_.SetOption(CURLOPT_HEADERFUNCTION, nullptr); handle_.SetOption(CURLOPT_ERRORBUFFER, nullptr); CurlHandle::Cleanup(*factory_, std::move(handle_)); } void Prepare(const HttpRequest& request, IssueRequestOptions options) { handle_.SetOption(CURLOPT_URL, request.url.c_str()); std::string user_agent = request.user_agent + GetCurlUserAgentSuffix(); handle_.SetOption(CURLOPT_USERAGENT, user_agent.c_str()); curl_slist* head = nullptr; size_t header_bytes_ = 0; for (const std::string& h : request.headers) { head = curl_slist_append(head, h.c_str()); header_bytes_ += h.size(); } headers_.reset(head); handle_.SetOption(CURLOPT_HTTPHEADER, headers_.get()); if (request.accept_encoding) { handle_.SetOption(CURLOPT_ACCEPT_ENCODING, ""); } if (options.request_timeout > absl::ZeroDuration()) { auto ms = absl::ToInt64Milliseconds(options.request_timeout); handle_.SetOption(CURLOPT_TIMEOUT_MS, ms > 0 ? ms : 1); } if (options.connect_timeout > absl::ZeroDuration()) { auto ms = absl::ToInt64Milliseconds(options.connect_timeout); handle_.SetOption(CURLOPT_CONNECTTIMEOUT_MS, ms > 0 ? ms : 1); } payload_ = std::move(options.payload); payload_remaining_ = payload_.size(); if (payload_remaining_ > 0) { payload_it_ = payload_.char_begin(); handle_.SetOption(CURLOPT_READDATA, this); handle_.SetOption(CURLOPT_READFUNCTION, &CurlRequestState::CurlReadCallback); handle_.SetOption(CURLOPT_SEEKDATA, this); handle_.SetOption(CURLOPT_SEEKFUNCTION, &CurlRequestState::CurlSeekCallback); } if (request.method == "GET") { handle_.SetOption(CURLOPT_PIPEWAIT, 1L); handle_.SetOption(CURLOPT_HTTPGET, 1L); } else if (request.method == "HEAD") { handle_.SetOption(CURLOPT_NOBODY, 1L); } else if (request.method == "PUT") { handle_.SetOption(CURLOPT_UPLOAD, 1L); handle_.SetOption(CURLOPT_PUT, 1L); handle_.SetOption(CURLOPT_INFILESIZE_LARGE, payload_remaining_); } else if (request.method == "POST") { handle_.SetOption(CURLOPT_POST, 1L); handle_.SetOption(CURLOPT_POSTFIELDSIZE_LARGE, payload_remaining_); } else if (request.method == "PATCH") { handle_.SetOption(CURLOPT_UPLOAD, 1L); handle_.SetOption(CURLOPT_CUSTOMREQUEST, "PATCH"); handle_.SetOption(CURLOPT_POSTFIELDSIZE_LARGE, payload_remaining_); } else { handle_.SetOption(CURLOPT_CUSTOMREQUEST, request.method.c_str()); } switch (options.http_version) { case IssueRequestOptions::HttpVersion::kHttp1: handle_.SetOption(CURLOPT_HTTP_VERSION, CURL_HTTP_VERSION_1_1); break; case IssueRequestOptions::HttpVersion::kHttp2: handle_.SetOption(CURLOPT_HTTP_VERSION, CURL_HTTP_VERSION_2_0); break; case IssueRequestOptions::HttpVersion::kHttp2TLS: handle_.SetOption(CURLOPT_HTTP_VERSION, CURL_HTTP_VERSION_2TLS); break; case IssueRequestOptions::HttpVersion::kHttp2PriorKnowledge: handle_.SetOption(CURLOPT_HTTP_VERSION, CURL_HTTP_VERSION_2_PRIOR_KNOWLEDGE); break; default: break; } http_request_started.Increment(); http_request_bytes.Observe(payload_remaining_); http_request_header_bytes.Observe(header_bytes_); } void SetForbidReuse() { handle_.SetOption(CURLOPT_FORBID_REUSE, 1); } bool MaybeSetStatusAndProcess() { if (status_set) return true; auto status_code = handle_.GetResponseCode(); if (status_code < 200) return false; response_handler_->OnStatus(status_code); status_set = true; return true; } static size_t CurlHeaderCallback(void* contents, size_t size, size_t nmemb, void* userdata) { auto* self = static_cast<CurlRequestState*>(userdata); auto data = std::string_view(static_cast<char const*>(contents), size * nmemb); if (self->MaybeSetStatusAndProcess()) { self->response_handler_->OnResponseHeader(data); } return data.size(); } static size_t CurlWriteCallback(void* contents, size_t size, size_t nmemb, void* userdata) { auto* self = static_cast<CurlRequestState*>(userdata); auto data = std::string_view(static_cast<char const*>(contents), size * nmemb); if (self->MaybeSetStatusAndProcess()) { self->response_payload_size_ += data.size(); self->response_handler_->OnResponseBody(data); } return data.size(); } static size_t CurlReadCallback(void* contents, size_t size, size_t nmemb, void* userdata) { auto* self = static_cast<CurlRequestState*>(userdata); size_t n = std::min(size * nmemb, self->payload_remaining_); internal::CopyCordToSpan(self->payload_it_, {static_cast<char*>(contents), static_cast<ptrdiff_t>(n)}); self->payload_remaining_ -= n; return n; } static int CurlSeekCallback(void* userdata, curl_off_t offset, int origin) { if (origin != SEEK_SET) { return CURL_SEEKFUNC_CANTSEEK; } auto* self = static_cast<CurlRequestState*>(userdata); if (offset < 0 || offset > self->payload_.size()) { return CURL_SEEKFUNC_FAIL; } self->payload_it_ = self->payload_.char_begin(); absl::Cord::Advance(&self->payload_it_, static_cast<size_t>(offset)); self->payload_remaining_ = self->payload_.size() - static_cast<size_t>(offset); return CURL_SEEKFUNC_OK; } }; class MultiTransportImpl { public: MultiTransportImpl(std::shared_ptr<CurlHandleFactory> factory, size_t nthreads); ~MultiTransportImpl(); void EnqueueRequest(const HttpRequest& request, IssueRequestOptions options, HttpResponseHandler* response_handler); void FinishRequest(std::unique_ptr<CurlRequestState> state, CURLcode code); private: struct ThreadData { std::atomic<int64_t> count = 0; CurlMulti multi; absl::Mutex mutex; CircularQueue<std::unique_ptr<CurlRequestState>> pending{16}; bool done = false; }; void Run(ThreadData& thread_data); void MaybeAddPendingTransfers(ThreadData& thread_data); void RemoveCompletedTransfers(ThreadData& thread_data); std::shared_ptr<CurlHandleFactory> factory_; std::atomic<bool> done_{false}; std::unique_ptr<ThreadData[]> thread_data_; std::vector<internal::Thread> threads_; }; MultiTransportImpl::MultiTransportImpl( std::shared_ptr<CurlHandleFactory> factory, size_t nthreads) : factory_(std::move(factory)) { assert(factory_); threads_.reserve(nthreads); thread_data_ = std::make_unique<ThreadData[]>(nthreads); for (size_t i = 0; i < nthreads; ++i) { thread_data_[i].multi = factory_->CreateMultiHandle(); threads_.push_back( internal::Thread({"curl_multi_thread"}, [this, index = i] { Run(thread_data_[index]); })); } } MultiTransportImpl::~MultiTransportImpl() { done_ = true; for (size_t i = 0; i < threads_.size(); ++i) { auto& thread_data = thread_data_[i]; absl::MutexLock l(&thread_data.mutex); thread_data.done = true; curl_multi_wakeup(thread_data.multi.get()); } for (auto& thread : threads_) { thread.Join(); } for (size_t i = 0; i < threads_.size(); ++i) { factory_->CleanupMultiHandle(std::move(thread_data_[i].multi)); } } void MultiTransportImpl::EnqueueRequest(const HttpRequest& request, IssueRequestOptions options, HttpResponseHandler* response_handler) { if (done_.load()) { response_handler->OnFailure( absl::InternalError("MultiTransportImpl is shutting down")); return; } auto state = std::make_unique<CurlRequestState>(factory_); state->response_handler_ = response_handler; state->Prepare(request, std::move(options)); size_t selected_index = 0; for (size_t i = 1; i < threads_.size(); ++i) { if (thread_data_[i].count < thread_data_[selected_index].count) { selected_index = i; } } auto& selected = thread_data_[selected_index]; absl::MutexLock l(&selected.mutex); selected.pending.push_back(std::move(state)); selected.count++; curl_multi_wakeup(selected.multi.get()); } void MultiTransportImpl::FinishRequest(std::unique_ptr<CurlRequestState> state, CURLcode code) { if (code == CURLE_HTTP2) { ABSL_LOG(WARNING) << "CURLE_HTTP2 " << state->error_buffer_; state->SetForbidReuse(); } http_request_completed.Increment(); http_response_bytes.Observe(state->response_payload_size_); { curl_off_t first_byte_us = 0; state->handle_.GetInfo(CURLINFO_STARTTRANSFER_TIME_T, &first_byte_us); http_first_byte_latency_us.Observe(first_byte_us); } { curl_off_t total_time_us = 0; state->handle_.GetInfo(CURLINFO_TOTAL_TIME_T, &total_time_us); http_total_time_ms.Observe(total_time_us / 1000); } if (code != CURLE_OK) { state->response_handler_->OnFailure( CurlCodeToStatus(code, state->error_buffer_)); return; } http_response_codes.Increment(state->handle_.GetResponseCode()); assert(state->status_set); state->response_handler_->OnComplete(); } void MultiTransportImpl::Run(ThreadData& thread_data) { for (;;) { MaybeAddPendingTransfers(thread_data); if (thread_data.count == 0) { absl::MutexLock l(&thread_data.mutex); if (thread_data.done) break; thread_data.mutex.Await(absl::Condition( +[](ThreadData* td) { return !td->pending.empty() || td->done; }, &thread_data)); if (thread_data.done) break; continue; } const int timeout_ms = std::numeric_limits<int>::max(); int numfds = 0; errno = 0; auto start_poll = absl::Now(); CURLMcode mcode = curl_multi_poll(thread_data.multi.get(), nullptr, 0, timeout_ms, &numfds); if (mcode != CURLM_OK) { ABSL_LOG(WARNING) << CurlMCodeToStatus(mcode, "in curl_multi_poll"); } http_poll_time_ns.Observe( absl::ToInt64Nanoseconds(absl::Now() - start_poll)); { int running_handles = 0; CURLMcode mcode; do { mcode = curl_multi_perform(thread_data.multi.get(), &running_handles); http_active.Set(running_handles); } while (mcode == CURLM_CALL_MULTI_PERFORM); if (mcode != CURLM_OK) { ABSL_LOG(WARNING) << CurlMCodeToStatus(mcode, "in curl_multi_perform"); } } RemoveCompletedTransfers(thread_data); } assert(thread_data.count == 0); } void MultiTransportImpl::MaybeAddPendingTransfers(ThreadData& thread_data) { absl::MutexLock l(&thread_data.mutex); while (!thread_data.pending.empty()) { std::unique_ptr<CurlRequestState> state = std::move(thread_data.pending.front()); thread_data.pending.pop_front(); assert(state != nullptr); state->handle_.SetOption(CURLOPT_PRIVATE, state.get()); CURL* e = state->handle_.get(); CURLMcode mcode = curl_multi_add_handle(thread_data.multi.get(), e); if (mcode == CURLM_OK) { state.release(); } else { thread_data.count--; state->handle_.SetOption(CURLOPT_PRIVATE, nullptr); state->response_handler_->OnFailure( CurlMCodeToStatus(mcode, "in curl_multi_add_handle")); } }; } void MultiTransportImpl::RemoveCompletedTransfers(ThreadData& thread_data) { CURLMsg* m = nullptr; do { int messages_in_queue; m = curl_multi_info_read(thread_data.multi.get(), &messages_in_queue); if (m && m->msg == CURLMSG_DONE) { CURLcode result = m->data.result; CURL* e = m->easy_handle; curl_multi_remove_handle(thread_data.multi.get(), e); thread_data.count--; CurlRequestState* pvt = nullptr; curl_easy_getinfo(e, CURLINFO_PRIVATE, &pvt); assert(pvt); std::unique_ptr<CurlRequestState> state(pvt); state->handle_.SetOption(CURLOPT_PRIVATE, nullptr); FinishRequest(std::move(state), result); } } while (m != nullptr); } } class CurlTransport::Impl : public MultiTransportImpl { public: using MultiTransportImpl::MultiTransportImpl; }; CurlTransport::CurlTransport(std::shared_ptr<CurlHandleFactory> factory) : impl_(std::make_unique<Impl>(std::move(factory), GetHttpThreads())) {} CurlTransport::~CurlTransport() = default; void CurlTransport::IssueRequestWithHandler( const HttpRequest& request, IssueRequestOptions options, HttpResponseHandler* response_handler) { assert(impl_); impl_->EnqueueRequest(request, std::move(options), response_handler); } namespace { struct GlobalTransport { std::shared_ptr<HttpTransport> transport_; std::shared_ptr<HttpTransport> Get() { if (!transport_) { transport_ = std::make_shared<CurlTransport>(GetDefaultCurlHandleFactory()); } return transport_; } void Set(std::shared_ptr<HttpTransport> transport) { transport_ = std::move(transport); } }; ABSL_CONST_INIT absl::Mutex global_mu(absl::kConstInit); static GlobalTransport& GetGlobalTransport() { static auto* g = new GlobalTransport(); return *g; } } std::shared_ptr<HttpTransport> GetDefaultHttpTransport() { absl::MutexLock l(&global_mu); return GetGlobalTransport().Get(); } void SetDefaultHttpTransport(std::shared_ptr<HttpTransport> t) { absl::MutexLock l(&global_mu); return GetGlobalTransport().Set(std::move(t)); } } }
#ifdef _WIN32 #undef UNICODE #define WIN32_LEAN_AND_MEAN #endif #include "tensorstore/internal/http/curl_transport.h" #include <optional> #include <string> #include <string_view> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/absl_check.h" #include "absl/log/absl_log.h" #include "absl/strings/cord.h" #include "absl/strings/str_cat.h" #include "tensorstore/internal/http/http_transport.h" #include "tensorstore/internal/http/transport_test_utils.h" #include "tensorstore/internal/thread/thread.h" using ::tensorstore::internal_http::HttpRequestBuilder; using ::tensorstore::internal_http::IssueRequestOptions; using ::tensorstore::transport_test_utils::AcceptNonBlocking; using ::tensorstore::transport_test_utils::AssertSend; using ::tensorstore::transport_test_utils::CloseSocket; using ::tensorstore::transport_test_utils::CreateBoundSocket; using ::tensorstore::transport_test_utils::FormatSocketAddress; using ::tensorstore::transport_test_utils::ReceiveAvailable; using ::tensorstore::transport_test_utils::socket_t; using ::testing::HasSubstr; namespace { class CurlTransportTest : public ::testing::Test { public: }; TEST_F(CurlTransportTest, Http1) { auto transport = ::tensorstore::internal_http::GetDefaultHttpTransport(); auto socket = CreateBoundSocket(); ABSL_CHECK(socket.has_value()); auto hostport = FormatSocketAddress(*socket); ABSL_CHECK(!hostport.empty()); static constexpr char kResponse[] = "HTTP/1.1 200 OK\r\n" "Content-Type: text/html\r\n" "\r\n" "<html>\n<body>\n<h1>Hello, World!</h1>\n</body>\n</html>\n"; std::string initial_request; tensorstore::internal::Thread serve_thread({"serve_thread"}, [&] { auto client_fd = AcceptNonBlocking(*socket); ABSL_CHECK(client_fd.has_value()); initial_request = ReceiveAvailable(*client_fd); AssertSend(*client_fd, kResponse); CloseSocket(*client_fd); }); auto response = transport->IssueRequest( HttpRequestBuilder("POST", absl::StrCat("http: .AddHeader("X-foo: bar") .AddQueryParameter("name", "dragon") .AddQueryParameter("age", "1234") .EnableAcceptEncoding() .BuildRequest(), IssueRequestOptions(absl::Cord("Hello"))); ABSL_LOG(INFO) << response.status(); ABSL_LOG(INFO) << "Wait on server"; serve_thread.Join(); CloseSocket(*socket); EXPECT_THAT(initial_request, HasSubstr("POST /?name=dragon&age=1234")); EXPECT_THAT(initial_request, HasSubstr(absl::StrCat("Host: ", hostport, "\r\n"))); EXPECT_THAT(initial_request, HasSubstr("Accept: **\r\n")); EXPECT_THAT(request, HasSubstr("X-foo: bar\r\n")); EXPECT_THAT(request, HasSubstr("Content-Length: 5")); EXPECT_THAT( request, HasSubstr("Content-Type: application/x-www-form-urlencoded\r\n")); EXPECT_THAT(request, HasSubstr("Hello")); } } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/http/curl_transport.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/http/curl_transport_test.cc
4f887a6430414cd6088e1743555015b10f116d50
1ee979de-8d4e-44bc-bbbc-6a20fdeda327
cpp
tensorflow/tensorflow
case_format
tensorflow/c/experimental/ops/gen/common/case_format.cc
tensorflow/c/experimental/ops/gen/common/case_format_test.cc
#include "tensorflow/c/experimental/ops/gen/common/case_format.h" #include "absl/strings/ascii.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace generator { namespace { enum CaseFormatType { LOWER_CAMEL, UPPER_CAMEL, LOWER_SNAKE, UPPER_SNAKE, }; string FormatStringCase(const string &str, CaseFormatType to, const char delimiter = '_') { const bool from_snake = (str == absl::AsciiStrToUpper(str)) || (str == absl::AsciiStrToLower(str)); const bool toUpper = (to == UPPER_CAMEL || to == UPPER_SNAKE); const bool toSnake = (to == LOWER_SNAKE || to == UPPER_SNAKE); string result; bool inputStart = true; bool wordStart = true; for (const char c : str) { if (c == delimiter) { if (wordStart) { result.push_back(delimiter); } wordStart = true; continue; } if (!from_snake && isupper(c)) { wordStart = true; } if (wordStart && toSnake && !inputStart) { result.push_back(delimiter); } const bool shouldCapIfSnake = toUpper; const bool shouldCapIfCamel = wordStart && (toUpper || !inputStart); if ((toSnake && shouldCapIfSnake) || (!toSnake && shouldCapIfCamel)) { result += toupper(c); } else { result += tolower(c); } wordStart = false; inputStart = false; } if (wordStart) { result.push_back(delimiter); } return result; } } string toLowerCamel(const string &s, const char delimiter) { return FormatStringCase(s, LOWER_CAMEL, delimiter); } string toLowerSnake(const string &s, const char delimiter) { return FormatStringCase(s, LOWER_SNAKE, delimiter); } string toUpperCamel(const string &s, const char delimiter) { return FormatStringCase(s, UPPER_CAMEL, delimiter); } string toUpperSnake(const string &s, const char delimiter) { return FormatStringCase(s, UPPER_SNAKE, delimiter); } } }
#include "tensorflow/c/experimental/ops/gen/common/case_format.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace generator { namespace { struct Variations { string lower_camel; string lower_snake; string upper_camel; string upper_snake; }; void TestSingleVariation(const string &str, Variations expected, char delimiter = '_') { EXPECT_EQ(expected.lower_camel, toLowerCamel(str, delimiter)); EXPECT_EQ(expected.lower_snake, toLowerSnake(str, delimiter)); EXPECT_EQ(expected.upper_camel, toUpperCamel(str, delimiter)); EXPECT_EQ(expected.upper_snake, toUpperSnake(str, delimiter)); } void TestAllVariations(Variations variations, char delimiter = '_') { TestSingleVariation(variations.lower_camel, variations, delimiter); TestSingleVariation(variations.lower_snake, variations, delimiter); TestSingleVariation(variations.upper_camel, variations, delimiter); TestSingleVariation(variations.upper_snake, variations, delimiter); } TEST(CppOpGenCaseFormat, test_single_word) { TestAllVariations(Variations{ "three", "three", "Three", "THREE", }); } TEST(CppOpGenCaseFormat, test_complex_string) { TestAllVariations(Variations{ "threeNTest33Words", "three_n_test33_words", "ThreeNTest33Words", "THREE_N_TEST33_WORDS", }); } TEST(CppOpGenCaseFormat, test_hyphen_delimiter) { TestAllVariations( Variations{ "threeNTest33Words", "three-n-test33-words", "ThreeNTest33Words", "THREE-N-TEST33-WORDS", }, '-'); } TEST(CppOpGenCaseFormat, test_trailing_underscore) { TestAllVariations(Variations{ "threeNTest33Words_", "three_n_test33_words_", "ThreeNTest33Words_", "THREE_N_TEST33_WORDS_", }); } TEST(CppOpGenCaseFormat, test_double_trailing_underscores) { TestAllVariations(Variations{ "xxY__", "xx_y__", "XxY__", "XX_Y__", }); } TEST(CppOpGenCaseFormat, test_leading_underscore) { TestAllVariations(Variations{ "_threeNTest33Words", "_three_n_test33_words", "_ThreeNTest33Words", "_THREE_N_TEST33_WORDS", }); } TEST(CppOpGenCaseFormat, test_double_leading_underscores) { TestAllVariations(Variations{ "__threeNTest33Words", "__three_n_test33_words", "__ThreeNTest33Words", "__THREE_N_TEST33_WORDS", }); } TEST(CppOpGenCaseFormat, test_leading_and_trailing_underscores) { TestAllVariations(Variations{ "__threeNTest33Words____", "__three_n_test33_words____", "__ThreeNTest33Words____", "__THREE_N_TEST33_WORDS____", }); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/ops/gen/common/case_format.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/ops/gen/common/case_format_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b306449e-1028-4a65-a9cd-5129cd3fe38b
cpp
abseil/abseil-cpp
cordz_info
absl/strings/internal/cordz_info.cc
absl/strings/internal/cordz_info_test.cc
#include "absl/strings/internal/cordz_info.h" #include <cstdint> #include "absl/base/config.h" #include "absl/base/internal/spinlock.h" #include "absl/container/inlined_vector.h" #include "absl/debugging/stacktrace.h" #include "absl/strings/internal/cord_internal.h" #include "absl/strings/internal/cord_rep_btree.h" #include "absl/strings/internal/cord_rep_crc.h" #include "absl/strings/internal/cordz_handle.h" #include "absl/strings/internal/cordz_statistics.h" #include "absl/strings/internal/cordz_update_tracker.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/types/span.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace cord_internal { #ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL constexpr size_t CordzInfo::kMaxStackDepth; #endif ABSL_CONST_INIT CordzInfo::List CordzInfo::global_list_{absl::kConstInit}; namespace { class CordRepAnalyzer { public: explicit CordRepAnalyzer(CordzStatistics& statistics) : statistics_(statistics) {} void AnalyzeCordRep(const CordRep* rep) { ABSL_ASSERT(rep != nullptr); size_t refcount = rep->refcount.Get(); RepRef repref{rep, (refcount > 1) ? refcount - 1 : 1}; if (repref.tag() == CRC) { statistics_.node_count++; statistics_.node_counts.crc++; memory_usage_.Add(sizeof(CordRepCrc), repref.refcount); repref = repref.Child(repref.rep->crc()->child); } repref = CountLinearReps(repref, memory_usage_); switch (repref.tag()) { case CordRepKind::BTREE: AnalyzeBtree(repref); break; default: ABSL_ASSERT(repref.tag() == CordRepKind::UNUSED_0); break; } statistics_.estimated_memory_usage += memory_usage_.total; statistics_.estimated_fair_share_memory_usage += static_cast<size_t>(memory_usage_.fair_share); } private: struct RepRef { const CordRep* rep; size_t refcount; RepRef Child(const CordRep* child) const { if (child == nullptr) return RepRef{nullptr, 0}; return RepRef{child, refcount * child->refcount.Get()}; } constexpr CordRepKind tag() const { ABSL_ASSERT(rep == nullptr || rep->tag != CordRepKind::UNUSED_0); return rep ? static_cast<CordRepKind>(rep->tag) : CordRepKind::UNUSED_0; } }; struct MemoryUsage { size_t total = 0; double fair_share = 0.0; void Add(size_t size, size_t refcount) { total += size; fair_share += static_cast<double>(size) / refcount; } }; void CountFlat(size_t size) { statistics_.node_count++; statistics_.node_counts.flat++; if (size <= 64) { statistics_.node_counts.flat_64++; } else if (size <= 128) { statistics_.node_counts.flat_128++; } else if (size <= 256) { statistics_.node_counts.flat_256++; } else if (size <= 512) { statistics_.node_counts.flat_512++; } else if (size <= 1024) { statistics_.node_counts.flat_1k++; } } RepRef CountLinearReps(RepRef rep, MemoryUsage& memory_usage) { while (rep.tag() == SUBSTRING) { statistics_.node_count++; statistics_.node_counts.substring++; memory_usage.Add(sizeof(CordRepSubstring), rep.refcount); rep = rep.Child(rep.rep->substring()->child); } if (rep.tag() >= FLAT) { size_t size = rep.rep->flat()->AllocatedSize(); CountFlat(size); memory_usage.Add(size, rep.refcount); return RepRef{nullptr, 0}; } if (rep.tag() == EXTERNAL) { statistics_.node_count++; statistics_.node_counts.external++; size_t size = rep.rep->length + sizeof(CordRepExternalImpl<intptr_t>); memory_usage.Add(size, rep.refcount); return RepRef{nullptr, 0}; } return rep; } void AnalyzeBtree(RepRef rep) { statistics_.node_count++; statistics_.node_counts.btree++; memory_usage_.Add(sizeof(CordRepBtree), rep.refcount); const CordRepBtree* tree = rep.rep->btree(); if (tree->height() > 0) { for (CordRep* edge : tree->Edges()) { AnalyzeBtree(rep.Child(edge)); } } else { for (CordRep* edge : tree->Edges()) { CountLinearReps(rep.Child(edge), memory_usage_); } } } CordzStatistics& statistics_; MemoryUsage memory_usage_; }; } CordzInfo* CordzInfo::Head(const CordzSnapshot& snapshot) { ABSL_ASSERT(snapshot.is_snapshot()); CordzInfo* head = global_list_.head.load(std::memory_order_acquire); ABSL_ASSERT(snapshot.DiagnosticsHandleIsSafeToInspect(head)); return head; } CordzInfo* CordzInfo::Next(const CordzSnapshot& snapshot) const { ABSL_ASSERT(snapshot.is_snapshot()); CordzInfo* next = ci_next_.load(std::memory_order_acquire); ABSL_ASSERT(snapshot.DiagnosticsHandleIsSafeToInspect(this)); ABSL_ASSERT(snapshot.DiagnosticsHandleIsSafeToInspect(next)); return next; } void CordzInfo::TrackCord(InlineData& cord, MethodIdentifier method, int64_t sampling_stride) { assert(cord.is_tree()); assert(!cord.is_profiled()); CordzInfo* cordz_info = new CordzInfo(cord.as_tree(), nullptr, method, sampling_stride); cord.set_cordz_info(cordz_info); cordz_info->Track(); } void CordzInfo::TrackCord(InlineData& cord, const InlineData& src, MethodIdentifier method) { assert(cord.is_tree()); assert(src.is_tree()); CordzInfo* cordz_info = cord.cordz_info(); if (cordz_info != nullptr) cordz_info->Untrack(); cordz_info = new CordzInfo(cord.as_tree(), src.cordz_info(), method, src.cordz_info()->sampling_stride()); cord.set_cordz_info(cordz_info); cordz_info->Track(); } void CordzInfo::MaybeTrackCordImpl(InlineData& cord, const InlineData& src, MethodIdentifier method) { if (src.is_profiled()) { TrackCord(cord, src, method); } else if (cord.is_profiled()) { cord.cordz_info()->Untrack(); cord.clear_cordz_info(); } } CordzInfo::MethodIdentifier CordzInfo::GetParentMethod(const CordzInfo* src) { if (src == nullptr) return MethodIdentifier::kUnknown; return src->parent_method_ != MethodIdentifier::kUnknown ? src->parent_method_ : src->method_; } size_t CordzInfo::FillParentStack(const CordzInfo* src, void** stack) { assert(stack); if (src == nullptr) return 0; if (src->parent_stack_depth_) { memcpy(stack, src->parent_stack_, src->parent_stack_depth_ * sizeof(void*)); return src->parent_stack_depth_; } memcpy(stack, src->stack_, src->stack_depth_ * sizeof(void*)); return src->stack_depth_; } CordzInfo::CordzInfo(CordRep* rep, const CordzInfo* src, MethodIdentifier method, int64_t sampling_stride) : rep_(rep), stack_depth_( static_cast<size_t>(absl::GetStackTrace(stack_, kMaxStackDepth, 1))), parent_stack_depth_(FillParentStack(src, parent_stack_)), method_(method), parent_method_(GetParentMethod(src)), create_time_(absl::Now()), sampling_stride_(sampling_stride) { update_tracker_.LossyAdd(method); if (src) { update_tracker_.LossyAdd(src->update_tracker_); } } CordzInfo::~CordzInfo() { if (ABSL_PREDICT_FALSE(rep_)) { CordRep::Unref(rep_); } } void CordzInfo::Track() { SpinLockHolder l(&list_->mutex); CordzInfo* const head = list_->head.load(std::memory_order_acquire); if (head != nullptr) { head->ci_prev_.store(this, std::memory_order_release); } ci_next_.store(head, std::memory_order_release); list_->head.store(this, std::memory_order_release); } void CordzInfo::Untrack() { ODRCheck(); { SpinLockHolder l(&list_->mutex); CordzInfo* const head = list_->head.load(std::memory_order_acquire); CordzInfo* const next = ci_next_.load(std::memory_order_acquire); CordzInfo* const prev = ci_prev_.load(std::memory_order_acquire); if (next) { ABSL_ASSERT(next->ci_prev_.load(std::memory_order_acquire) == this); next->ci_prev_.store(prev, std::memory_order_release); } if (prev) { ABSL_ASSERT(head != this); ABSL_ASSERT(prev->ci_next_.load(std::memory_order_acquire) == this); prev->ci_next_.store(next, std::memory_order_release); } else { ABSL_ASSERT(head == this); list_->head.store(next, std::memory_order_release); } } if (SafeToDelete()) { UnsafeSetCordRep(nullptr); delete this; return; } { absl::MutexLock lock(&mutex_); if (rep_) CordRep::Ref(rep_); } CordzHandle::Delete(this); } void CordzInfo::Lock(MethodIdentifier method) ABSL_EXCLUSIVE_LOCK_FUNCTION(mutex_) { mutex_.Lock(); update_tracker_.LossyAdd(method); assert(rep_); } void CordzInfo::Unlock() ABSL_UNLOCK_FUNCTION(mutex_) { bool tracked = rep_ != nullptr; mutex_.Unlock(); if (!tracked) { Untrack(); } } absl::Span<void* const> CordzInfo::GetStack() const { return absl::MakeConstSpan(stack_, stack_depth_); } absl::Span<void* const> CordzInfo::GetParentStack() const { return absl::MakeConstSpan(parent_stack_, parent_stack_depth_); } CordzStatistics CordzInfo::GetCordzStatistics() const { CordzStatistics stats; stats.method = method_; stats.parent_method = parent_method_; stats.update_tracker = update_tracker_; if (CordRep* rep = RefCordRep()) { stats.size = rep->length; CordRepAnalyzer analyzer(stats); analyzer.AnalyzeCordRep(rep); CordRep::Unref(rep); } return stats; } } ABSL_NAMESPACE_END }
#include "absl/strings/internal/cordz_info.h" #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/config.h" #include "absl/debugging/stacktrace.h" #include "absl/debugging/symbolize.h" #include "absl/strings/cordz_test_helpers.h" #include "absl/strings/internal/cord_rep_flat.h" #include "absl/strings/internal/cordz_handle.h" #include "absl/strings/internal/cordz_statistics.h" #include "absl/strings/internal/cordz_update_tracker.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace cord_internal { namespace { using ::testing::ElementsAre; using ::testing::Eq; using ::testing::HasSubstr; using ::testing::Ne; using ::testing::SizeIs; auto constexpr kUnknownMethod = CordzUpdateTracker::kUnknown; auto constexpr kTrackCordMethod = CordzUpdateTracker::kConstructorString; auto constexpr kChildMethod = CordzUpdateTracker::kConstructorCord; auto constexpr kUpdateMethod = CordzUpdateTracker::kAppendString; std::vector<const CordzHandle*> DeleteQueue() { return CordzHandle::DiagnosticsGetDeleteQueue(); } std::string FormatStack(absl::Span<void* const> raw_stack) { static constexpr size_t buf_size = 1 << 14; std::unique_ptr<char[]> buf(new char[buf_size]); std::string output; for (void* stackp : raw_stack) { if (absl::Symbolize(stackp, buf.get(), buf_size)) { absl::StrAppend(&output, " ", buf.get(), "\n"); } } return output; } TEST(CordzInfoTest, TrackCord) { TestCordData data; CordzInfo::TrackCord(data.data, kTrackCordMethod, 1); CordzInfo* info = data.data.cordz_info(); ASSERT_THAT(info, Ne(nullptr)); EXPECT_FALSE(info->is_snapshot()); EXPECT_THAT(CordzInfo::Head(CordzSnapshot()), Eq(info)); EXPECT_THAT(info->GetCordRepForTesting(), Eq(data.rep.rep)); info->Untrack(); } TEST(CordzInfoTest, MaybeTrackChildCordWithoutSampling) { CordzSamplingIntervalHelper sample_none(99999); TestCordData parent, child; CordzInfo::MaybeTrackCord(child.data, parent.data, kTrackCordMethod); EXPECT_THAT(child.data.cordz_info(), Eq(nullptr)); } TEST(CordzInfoTest, MaybeTrackChildCordWithSampling) { CordzSamplingIntervalHelper sample_all(1); TestCordData parent, child; CordzInfo::MaybeTrackCord(child.data, parent.data, kTrackCordMethod); EXPECT_THAT(child.data.cordz_info(), Eq(nullptr)); } TEST(CordzInfoTest, MaybeTrackChildCordWithoutSamplingParentSampled) { CordzSamplingIntervalHelper sample_none(99999); TestCordData parent, child; CordzInfo::TrackCord(parent.data, kTrackCordMethod, 1); CordzInfo::MaybeTrackCord(child.data, parent.data, kTrackCordMethod); CordzInfo* parent_info = parent.data.cordz_info(); CordzInfo* child_info = child.data.cordz_info(); ASSERT_THAT(child_info, Ne(nullptr)); EXPECT_THAT(child_info->GetCordRepForTesting(), Eq(child.rep.rep)); EXPECT_THAT(child_info->GetParentStack(), parent_info->GetStack()); parent_info->Untrack(); child_info->Untrack(); } TEST(CordzInfoTest, MaybeTrackChildCordWithoutSamplingChildSampled) { CordzSamplingIntervalHelper sample_none(99999); TestCordData parent, child; CordzInfo::TrackCord(child.data, kTrackCordMethod, 1); CordzInfo::MaybeTrackCord(child.data, parent.data, kTrackCordMethod); EXPECT_THAT(child.data.cordz_info(), Eq(nullptr)); } TEST(CordzInfoTest, MaybeTrackChildCordWithSamplingChildSampled) { CordzSamplingIntervalHelper sample_all(1); TestCordData parent, child; CordzInfo::TrackCord(child.data, kTrackCordMethod, 1); CordzInfo::MaybeTrackCord(child.data, parent.data, kTrackCordMethod); EXPECT_THAT(child.data.cordz_info(), Eq(nullptr)); } TEST(CordzInfoTest, UntrackCord) { TestCordData data; CordzInfo::TrackCord(data.data, kTrackCordMethod, 1); CordzInfo* info = data.data.cordz_info(); info->Untrack(); EXPECT_THAT(DeleteQueue(), SizeIs(0u)); } TEST(CordzInfoTest, UntrackCordWithSnapshot) { TestCordData data; CordzInfo::TrackCord(data.data, kTrackCordMethod, 1); CordzInfo* info = data.data.cordz_info(); CordzSnapshot snapshot; info->Untrack(); EXPECT_THAT(CordzInfo::Head(CordzSnapshot()), Eq(nullptr)); EXPECT_THAT(info->GetCordRepForTesting(), Eq(data.rep.rep)); EXPECT_THAT(DeleteQueue(), ElementsAre(info, &snapshot)); } TEST(CordzInfoTest, SetCordRep) { TestCordData data; CordzInfo::TrackCord(data.data, kTrackCordMethod, 1); CordzInfo* info = data.data.cordz_info(); TestCordRep rep; info->Lock(CordzUpdateTracker::kAppendCord); info->SetCordRep(rep.rep); info->Unlock(); EXPECT_THAT(info->GetCordRepForTesting(), Eq(rep.rep)); info->Untrack(); } TEST(CordzInfoTest, SetCordRepNullUntracksCordOnUnlock) { TestCordData data; CordzInfo::TrackCord(data.data, kTrackCordMethod, 1); CordzInfo* info = data.data.cordz_info(); info->Lock(CordzUpdateTracker::kAppendString); info->SetCordRep(nullptr); EXPECT_THAT(info->GetCordRepForTesting(), Eq(nullptr)); EXPECT_THAT(CordzInfo::Head(CordzSnapshot()), Eq(info)); info->Unlock(); EXPECT_THAT(CordzInfo::Head(CordzSnapshot()), Eq(nullptr)); } TEST(CordzInfoTest, RefCordRep) { TestCordData data; CordzInfo::TrackCord(data.data, kTrackCordMethod, 1); CordzInfo* info = data.data.cordz_info(); size_t refcount = data.rep.rep->refcount.Get(); EXPECT_THAT(info->RefCordRep(), Eq(data.rep.rep)); EXPECT_THAT(data.rep.rep->refcount.Get(), Eq(refcount + 1)); CordRep::Unref(data.rep.rep); info->Untrack(); } #if GTEST_HAS_DEATH_TEST TEST(CordzInfoTest, SetCordRepRequiresMutex) { TestCordData data; CordzInfo::TrackCord(data.data, kTrackCordMethod, 1); CordzInfo* info = data.data.cordz_info(); TestCordRep rep; EXPECT_DEBUG_DEATH(info->SetCordRep(rep.rep), ".*"); info->Untrack(); } #endif TEST(CordzInfoTest, TrackUntrackHeadFirstV2) { CordzSnapshot snapshot; EXPECT_THAT(CordzInfo::Head(snapshot), Eq(nullptr)); TestCordData data; CordzInfo::TrackCord(data.data, kTrackCordMethod, 1); CordzInfo* info1 = data.data.cordz_info(); ASSERT_THAT(CordzInfo::Head(snapshot), Eq(info1)); EXPECT_THAT(info1->Next(snapshot), Eq(nullptr)); TestCordData data2; CordzInfo::TrackCord(data2.data, kTrackCordMethod, 1); CordzInfo* info2 = data2.data.cordz_info(); ASSERT_THAT(CordzInfo::Head(snapshot), Eq(info2)); EXPECT_THAT(info2->Next(snapshot), Eq(info1)); EXPECT_THAT(info1->Next(snapshot), Eq(nullptr)); info2->Untrack(); ASSERT_THAT(CordzInfo::Head(snapshot), Eq(info1)); EXPECT_THAT(info1->Next(snapshot), Eq(nullptr)); info1->Untrack(); ASSERT_THAT(CordzInfo::Head(snapshot), Eq(nullptr)); } TEST(CordzInfoTest, TrackUntrackTailFirstV2) { CordzSnapshot snapshot; EXPECT_THAT(CordzInfo::Head(snapshot), Eq(nullptr)); TestCordData data; CordzInfo::TrackCord(data.data, kTrackCordMethod, 1); CordzInfo* info1 = data.data.cordz_info(); ASSERT_THAT(CordzInfo::Head(snapshot), Eq(info1)); EXPECT_THAT(info1->Next(snapshot), Eq(nullptr)); TestCordData data2; CordzInfo::TrackCord(data2.data, kTrackCordMethod, 1); CordzInfo* info2 = data2.data.cordz_info(); ASSERT_THAT(CordzInfo::Head(snapshot), Eq(info2)); EXPECT_THAT(info2->Next(snapshot), Eq(info1)); EXPECT_THAT(info1->Next(snapshot), Eq(nullptr)); info1->Untrack(); ASSERT_THAT(CordzInfo::Head(snapshot), Eq(info2)); EXPECT_THAT(info2->Next(snapshot), Eq(nullptr)); info2->Untrack(); ASSERT_THAT(CordzInfo::Head(snapshot), Eq(nullptr)); } TEST(CordzInfoTest, StackV2) { TestCordData data; static constexpr int kMaxStackDepth = 50; CordzInfo::TrackCord(data.data, kTrackCordMethod, 1); CordzInfo* info = data.data.cordz_info(); std::vector<void*> local_stack; local_stack.resize(kMaxStackDepth); local_stack.resize(static_cast<size_t>( absl::GetStackTrace(local_stack.data(), kMaxStackDepth, 1))); std::string got_stack = FormatStack(info->GetStack()); std::string expected_stack = FormatStack(local_stack); EXPECT_THAT(got_stack, HasSubstr(expected_stack)); info->Untrack(); } CordzInfo* TrackChildCord(InlineData& data, const InlineData& parent) { CordzInfo::TrackCord(data, parent, kChildMethod); return data.cordz_info(); } CordzInfo* TrackParentCord(InlineData& data) { CordzInfo::TrackCord(data, kTrackCordMethod, 1); return data.cordz_info(); } TEST(CordzInfoTest, GetStatistics) { TestCordData data; CordzInfo* info = TrackParentCord(data.data); CordzStatistics statistics = info->GetCordzStatistics(); EXPECT_THAT(statistics.size, Eq(data.rep.rep->length)); EXPECT_THAT(statistics.method, Eq(kTrackCordMethod)); EXPECT_THAT(statistics.parent_method, Eq(kUnknownMethod)); EXPECT_THAT(statistics.update_tracker.Value(kTrackCordMethod), Eq(1)); info->Untrack(); } TEST(CordzInfoTest, LockCountsMethod) { TestCordData data; CordzInfo* info = TrackParentCord(data.data); info->Lock(kUpdateMethod); info->Unlock(); info->Lock(kUpdateMethod); info->Unlock(); CordzStatistics statistics = info->GetCordzStatistics(); EXPECT_THAT(statistics.update_tracker.Value(kUpdateMethod), Eq(2)); info->Untrack(); } TEST(CordzInfoTest, FromParent) { TestCordData parent; TestCordData child; CordzInfo* info_parent = TrackParentCord(parent.data); CordzInfo* info_child = TrackChildCord(child.data, parent.data); std::string stack = FormatStack(info_parent->GetStack()); std::string parent_stack = FormatStack(info_child->GetParentStack()); EXPECT_THAT(stack, Eq(parent_stack)); CordzStatistics statistics = info_child->GetCordzStatistics(); EXPECT_THAT(statistics.size, Eq(child.rep.rep->length)); EXPECT_THAT(statistics.method, Eq(kChildMethod)); EXPECT_THAT(statistics.parent_method, Eq(kTrackCordMethod)); EXPECT_THAT(statistics.update_tracker.Value(kChildMethod), Eq(1)); info_parent->Untrack(); info_child->Untrack(); } } } ABSL_NAMESPACE_END }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/internal/cordz_info.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/internal/cordz_info_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
b838e648-4281-4f28-8219-c370a373b8cf
cpp
google/quiche
btree_scheduler
quiche/common/btree_scheduler.h
quiche/common/btree_scheduler_test.cc
#ifndef QUICHE_COMMON_BTREE_SCHEDULER_H_ #define QUICHE_COMMON_BTREE_SCHEDULER_H_ #include <cstddef> #include <limits> #include <optional> #include <utility> #include "absl/base/attributes.h" #include "absl/container/btree_map.h" #include "absl/container/node_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "quiche/common/platform/api/quiche_bug_tracker.h" #include "quiche/common/platform/api/quiche_export.h" #include "quiche/common/platform/api/quiche_logging.h" namespace quiche { template <typename Id, typename Priority> class QUICHE_NO_EXPORT BTreeScheduler { public: bool HasRegistered() const { return !streams_.empty(); } bool HasScheduled() const { return !schedule_.empty(); } size_t NumScheduled() const { return schedule_.size(); } size_t NumRegistered() const { return streams_.size(); } size_t NumScheduledInPriorityRange(std::optional<Priority> min, std::optional<Priority> max) const; absl::StatusOr<bool> ShouldYield(Id id) const; std::optional<Priority> GetPriorityFor(Id id) const { auto it = streams_.find(id); if (it == streams_.end()) { return std::nullopt; } return it->second.priority; } absl::StatusOr<Id> PopFront(); absl::Status Register(Id stream_id, const Priority& priority); absl::Status Unregister(Id stream_id); absl::Status UpdatePriority(Id stream_id, const Priority& new_priority); absl::Status Schedule(Id stream_id); bool IsScheduled(Id stream_id) const; private: struct StreamEntry { ABSL_ATTRIBUTE_NO_UNIQUE_ADDRESS Priority priority; std::optional<int> current_sequence_number = std::nullopt; bool scheduled() const { return current_sequence_number.has_value(); } }; using FullStreamEntry = std::pair<const Id, StreamEntry>; struct ScheduleKey { ABSL_ATTRIBUTE_NO_UNIQUE_ADDRESS Priority priority; int sequence_number; bool operator<(const ScheduleKey& other) const { return std::make_tuple(priority, sequence_number) > std::make_tuple(other.priority, other.sequence_number); } static ScheduleKey MinForPriority(Priority priority) { return ScheduleKey{priority, std::numeric_limits<int>::max()}; } static ScheduleKey MaxForPriority(Priority priority) { return ScheduleKey{priority, std::numeric_limits<int>::min()}; } }; using FullScheduleEntry = std::pair<const ScheduleKey, FullStreamEntry*>; using ScheduleIterator = typename absl::btree_map<ScheduleKey, FullStreamEntry*>::const_iterator; static Id StreamId(const FullScheduleEntry& entry) { return entry.second->first; } absl::StatusOr<FullScheduleEntry> DescheduleStream(const StreamEntry& entry); absl::node_hash_map<Id, StreamEntry> streams_; absl::btree_map<ScheduleKey, FullStreamEntry*> schedule_; int current_write_sequence_number_ = 0; }; template <typename Id, typename Priority> size_t BTreeScheduler<Id, Priority>::NumScheduledInPriorityRange( std::optional<Priority> min, std::optional<Priority> max) const { if (min.has_value() && max.has_value()) { QUICHE_DCHECK(*min <= *max); } ScheduleIterator begin = max.has_value() ? schedule_.lower_bound(ScheduleKey::MinForPriority(*max)) : schedule_.begin(); ScheduleIterator end = min.has_value() ? schedule_.upper_bound(ScheduleKey::MaxForPriority(*min)) : schedule_.end(); return end - begin; } template <typename Id, typename Priority> absl::Status BTreeScheduler<Id, Priority>::Register(Id stream_id, const Priority& priority) { auto [it, success] = streams_.insert({stream_id, StreamEntry{priority}}); if (!success) { return absl::AlreadyExistsError("ID already registered"); } return absl::OkStatus(); } template <typename Id, typename Priority> auto BTreeScheduler<Id, Priority>::DescheduleStream(const StreamEntry& entry) -> absl::StatusOr<FullScheduleEntry> { QUICHE_DCHECK(entry.scheduled()); auto it = schedule_.find( ScheduleKey{entry.priority, *entry.current_sequence_number}); if (it == schedule_.end()) { return absl::InternalError( "Calling DescheduleStream() on an entry that is not in the schedule at " "the expected key."); } FullScheduleEntry result = *it; schedule_.erase(it); return result; } template <typename Id, typename Priority> absl::Status BTreeScheduler<Id, Priority>::Unregister(Id stream_id) { auto it = streams_.find(stream_id); if (it == streams_.end()) { return absl::NotFoundError("Stream not registered"); } const StreamEntry& stream = it->second; if (stream.scheduled()) { if (!DescheduleStream(stream).ok()) { QUICHE_BUG(BTreeSchedule_Unregister_NotInSchedule) << "UnregisterStream() called on a stream ID " << stream_id << ", which is marked ready, but is not in the schedule"; } } streams_.erase(it); return absl::OkStatus(); } template <typename Id, typename Priority> absl::Status BTreeScheduler<Id, Priority>::UpdatePriority( Id stream_id, const Priority& new_priority) { auto it = streams_.find(stream_id); if (it == streams_.end()) { return absl::NotFoundError("ID not registered"); } StreamEntry& stream = it->second; std::optional<int> sequence_number; if (stream.scheduled()) { absl::StatusOr<FullScheduleEntry> old_entry = DescheduleStream(stream); if (old_entry.ok()) { sequence_number = old_entry->first.sequence_number; QUICHE_DCHECK_EQ(old_entry->second, &*it); } else { QUICHE_BUG(BTreeScheduler_Update_Not_In_Schedule) << "UpdatePriority() called on a stream ID " << stream_id << ", which is marked ready, but is not in the schedule"; } } stream.priority = new_priority; if (sequence_number.has_value()) { schedule_.insert({ScheduleKey{stream.priority, *sequence_number}, &*it}); } return absl::OkStatus(); } template <typename Id, typename Priority> absl::StatusOr<bool> BTreeScheduler<Id, Priority>::ShouldYield( Id stream_id) const { const auto stream_it = streams_.find(stream_id); if (stream_it == streams_.end()) { return absl::NotFoundError("ID not registered"); } const StreamEntry& stream = stream_it->second; if (schedule_.empty()) { return false; } const FullScheduleEntry& next = *schedule_.begin(); if (StreamId(next) == stream_id) { return false; } return next.first.priority >= stream.priority; } template <typename Id, typename Priority> absl::StatusOr<Id> BTreeScheduler<Id, Priority>::PopFront() { if (schedule_.empty()) { return absl::NotFoundError("No streams scheduled"); } auto schedule_it = schedule_.begin(); QUICHE_DCHECK(schedule_it->second->second.scheduled()); schedule_it->second->second.current_sequence_number = std::nullopt; Id result = StreamId(*schedule_it); schedule_.erase(schedule_it); return result; } template <typename Id, typename Priority> absl::Status BTreeScheduler<Id, Priority>::Schedule(Id stream_id) { const auto stream_it = streams_.find(stream_id); if (stream_it == streams_.end()) { return absl::NotFoundError("ID not registered"); } if (stream_it->second.scheduled()) { return absl::OkStatus(); } auto [schedule_it, success] = schedule_.insert({ScheduleKey{stream_it->second.priority, --current_write_sequence_number_}, &*stream_it}); QUICHE_BUG_IF(WebTransportWriteBlockedList_AddStream_conflict, !success) << "Conflicting key in scheduler for stream " << stream_id; stream_it->second.current_sequence_number = schedule_it->first.sequence_number; return absl::OkStatus(); } template <typename Id, typename Priority> bool BTreeScheduler<Id, Priority>::IsScheduled(Id stream_id) const { const auto stream_it = streams_.find(stream_id); if (stream_it == streams_.end()) { return false; } return stream_it->second.scheduled(); } } #endif
#include "quiche/common/btree_scheduler.h" #include <optional> #include <ostream> #include <string> #include <tuple> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "quiche/common/platform/api/quiche_test.h" #include "quiche/common/test_tools/quiche_test_utils.h" namespace quiche::test { namespace { using ::testing::ElementsAre; using ::testing::Optional; template <typename Id, typename Priority> void ScheduleIds(BTreeScheduler<Id, Priority>& scheduler, absl::Span<const Id> ids) { for (Id id : ids) { QUICHE_EXPECT_OK(scheduler.Schedule(id)); } } template <typename Id, typename Priority> std::vector<Id> PopAll(BTreeScheduler<Id, Priority>& scheduler) { std::vector<Id> result; result.reserve(scheduler.NumScheduled()); for (;;) { absl::StatusOr<Id> id = scheduler.PopFront(); if (id.ok()) { result.push_back(*id); } else { EXPECT_THAT(id, StatusIs(absl::StatusCode::kNotFound)); break; } } return result; } TEST(BTreeSchedulerTest, SimplePop) { BTreeScheduler<int, int> scheduler; QUICHE_EXPECT_OK(scheduler.Register(1, 100)); QUICHE_EXPECT_OK(scheduler.Register(2, 101)); QUICHE_EXPECT_OK(scheduler.Register(3, 102)); EXPECT_THAT(scheduler.GetPriorityFor(1), Optional(100)); EXPECT_THAT(scheduler.GetPriorityFor(3), Optional(102)); EXPECT_EQ(scheduler.GetPriorityFor(5), std::nullopt); EXPECT_EQ(scheduler.NumScheduled(), 0u); EXPECT_FALSE(scheduler.HasScheduled()); QUICHE_EXPECT_OK(scheduler.Schedule(1)); QUICHE_EXPECT_OK(scheduler.Schedule(2)); QUICHE_EXPECT_OK(scheduler.Schedule(3)); EXPECT_EQ(scheduler.NumScheduled(), 3u); EXPECT_TRUE(scheduler.HasScheduled()); EXPECT_THAT(scheduler.PopFront(), IsOkAndHolds(3)); EXPECT_THAT(scheduler.PopFront(), IsOkAndHolds(2)); EXPECT_THAT(scheduler.PopFront(), IsOkAndHolds(1)); QUICHE_EXPECT_OK(scheduler.Schedule(2)); QUICHE_EXPECT_OK(scheduler.Schedule(1)); QUICHE_EXPECT_OK(scheduler.Schedule(3)); EXPECT_THAT(scheduler.PopFront(), IsOkAndHolds(3)); EXPECT_THAT(scheduler.PopFront(), IsOkAndHolds(2)); EXPECT_THAT(scheduler.PopFront(), IsOkAndHolds(1)); QUICHE_EXPECT_OK(scheduler.Schedule(3)); QUICHE_EXPECT_OK(scheduler.Schedule(1)); EXPECT_THAT(scheduler.PopFront(), IsOkAndHolds(3)); EXPECT_THAT(scheduler.PopFront(), IsOkAndHolds(1)); } TEST(BTreeSchedulerTest, FIFO) { BTreeScheduler<int, int> scheduler; QUICHE_EXPECT_OK(scheduler.Register(1, 100)); QUICHE_EXPECT_OK(scheduler.Register(2, 100)); QUICHE_EXPECT_OK(scheduler.Register(3, 100)); ScheduleIds(scheduler, {2, 1, 3}); EXPECT_THAT(PopAll(scheduler), ElementsAre(2, 1, 3)); QUICHE_EXPECT_OK(scheduler.Register(4, 101)); QUICHE_EXPECT_OK(scheduler.Register(5, 99)); ScheduleIds(scheduler, {5, 1, 2, 3, 4}); EXPECT_THAT(PopAll(scheduler), ElementsAre(4, 1, 2, 3, 5)); ScheduleIds(scheduler, {1, 5, 2, 4, 3}); EXPECT_THAT(PopAll(scheduler), ElementsAre(4, 1, 2, 3, 5)); ScheduleIds(scheduler, {3, 5, 2, 4, 1}); EXPECT_THAT(PopAll(scheduler), ElementsAre(4, 3, 2, 1, 5)); ScheduleIds(scheduler, {3, 2, 1, 2, 3}); EXPECT_THAT(PopAll(scheduler), ElementsAre(3, 2, 1)); } TEST(BTreeSchedulerTest, NumEntriesInRange) { BTreeScheduler<int, int> scheduler; QUICHE_EXPECT_OK(scheduler.Register(1, 0)); QUICHE_EXPECT_OK(scheduler.Register(2, 0)); QUICHE_EXPECT_OK(scheduler.Register(3, 0)); QUICHE_EXPECT_OK(scheduler.Register(4, -2)); QUICHE_EXPECT_OK(scheduler.Register(5, -5)); QUICHE_EXPECT_OK(scheduler.Register(6, 10)); QUICHE_EXPECT_OK(scheduler.Register(7, 16)); QUICHE_EXPECT_OK(scheduler.Register(8, 32)); QUICHE_EXPECT_OK(scheduler.Register(9, 64)); EXPECT_EQ(scheduler.NumScheduled(), 0u); EXPECT_EQ(scheduler.NumScheduledInPriorityRange(std::nullopt, std::nullopt), 0u); EXPECT_EQ(scheduler.NumScheduledInPriorityRange(-1, 1), 0u); for (int stream = 1; stream <= 9; ++stream) { QUICHE_ASSERT_OK(scheduler.Schedule(stream)); } EXPECT_EQ(scheduler.NumScheduled(), 9u); EXPECT_EQ(scheduler.NumScheduledInPriorityRange(std::nullopt, std::nullopt), 9u); EXPECT_EQ(scheduler.NumScheduledInPriorityRange(0, 0), 3u); EXPECT_EQ(scheduler.NumScheduledInPriorityRange(std::nullopt, -1), 2u); EXPECT_EQ(scheduler.NumScheduledInPriorityRange(1, std::nullopt), 4u); } TEST(BTreeSchedulerTest, Registration) { BTreeScheduler<int, int> scheduler; QUICHE_EXPECT_OK(scheduler.Register(1, 0)); QUICHE_EXPECT_OK(scheduler.Register(2, 0)); QUICHE_EXPECT_OK(scheduler.Schedule(1)); QUICHE_EXPECT_OK(scheduler.Schedule(2)); EXPECT_EQ(scheduler.NumScheduled(), 2u); EXPECT_TRUE(scheduler.IsScheduled(2)); EXPECT_THAT(scheduler.Register(2, 0), StatusIs(absl::StatusCode::kAlreadyExists)); QUICHE_EXPECT_OK(scheduler.Unregister(2)); EXPECT_EQ(scheduler.NumScheduled(), 1u); EXPECT_FALSE(scheduler.IsScheduled(2)); EXPECT_THAT(scheduler.UpdatePriority(2, 1234), StatusIs(absl::StatusCode::kNotFound)); EXPECT_THAT(scheduler.Unregister(2), StatusIs(absl::StatusCode::kNotFound)); EXPECT_THAT(scheduler.Schedule(2), StatusIs(absl::StatusCode::kNotFound)); QUICHE_EXPECT_OK(scheduler.Register(2, 0)); EXPECT_EQ(scheduler.NumScheduled(), 1u); EXPECT_TRUE(scheduler.IsScheduled(1)); EXPECT_FALSE(scheduler.IsScheduled(2)); } TEST(BTreeSchedulerTest, UpdatePriorityUp) { BTreeScheduler<int, int> scheduler; QUICHE_EXPECT_OK(scheduler.Register(1, 0)); QUICHE_EXPECT_OK(scheduler.Register(2, 0)); QUICHE_EXPECT_OK(scheduler.Register(3, 0)); ScheduleIds(scheduler, {1, 2, 3}); QUICHE_EXPECT_OK(scheduler.UpdatePriority(2, 1000)); EXPECT_THAT(PopAll(scheduler), ElementsAre(2, 1, 3)); } TEST(BTreeSchedulerTest, UpdatePriorityDown) { BTreeScheduler<int, int> scheduler; QUICHE_EXPECT_OK(scheduler.Register(1, 0)); QUICHE_EXPECT_OK(scheduler.Register(2, 0)); QUICHE_EXPECT_OK(scheduler.Register(3, 0)); ScheduleIds(scheduler, {1, 2, 3}); QUICHE_EXPECT_OK(scheduler.UpdatePriority(2, -1000)); EXPECT_THAT(PopAll(scheduler), ElementsAre(1, 3, 2)); } TEST(BTreeSchedulerTest, UpdatePriorityEqual) { BTreeScheduler<int, int> scheduler; QUICHE_EXPECT_OK(scheduler.Register(1, 0)); QUICHE_EXPECT_OK(scheduler.Register(2, 0)); QUICHE_EXPECT_OK(scheduler.Register(3, 0)); ScheduleIds(scheduler, {1, 2, 3}); QUICHE_EXPECT_OK(scheduler.UpdatePriority(2, 0)); EXPECT_THAT(PopAll(scheduler), ElementsAre(1, 2, 3)); } TEST(BTreeSchedulerTest, UpdatePriorityIntoSameBucket) { BTreeScheduler<int, int> scheduler; QUICHE_EXPECT_OK(scheduler.Register(1, 0)); QUICHE_EXPECT_OK(scheduler.Register(2, -100)); QUICHE_EXPECT_OK(scheduler.Register(3, 0)); ScheduleIds(scheduler, {1, 2, 3}); QUICHE_EXPECT_OK(scheduler.UpdatePriority(2, 0)); EXPECT_THAT(PopAll(scheduler), ElementsAre(1, 2, 3)); } TEST(BTreeSchedulerTest, ShouldYield) { BTreeScheduler<int, int> scheduler; QUICHE_EXPECT_OK(scheduler.Register(10, 100)); QUICHE_EXPECT_OK(scheduler.Register(20, 101)); QUICHE_EXPECT_OK(scheduler.Register(21, 101)); QUICHE_EXPECT_OK(scheduler.Register(30, 102)); EXPECT_THAT(scheduler.ShouldYield(10), IsOkAndHolds(false)); EXPECT_THAT(scheduler.ShouldYield(20), IsOkAndHolds(false)); EXPECT_THAT(scheduler.ShouldYield(21), IsOkAndHolds(false)); EXPECT_THAT(scheduler.ShouldYield(30), IsOkAndHolds(false)); EXPECT_THAT(scheduler.ShouldYield(40), StatusIs(absl::StatusCode::kNotFound)); QUICHE_EXPECT_OK(scheduler.Schedule(20)); EXPECT_THAT(scheduler.ShouldYield(10), IsOkAndHolds(true)); EXPECT_THAT(scheduler.ShouldYield(20), IsOkAndHolds(false)); EXPECT_THAT(scheduler.ShouldYield(21), IsOkAndHolds(true)); EXPECT_THAT(scheduler.ShouldYield(30), IsOkAndHolds(false)); } struct CustomPriority { int a; int b; bool operator<(const CustomPriority& other) const { return std::make_tuple(a, b) < std::make_tuple(other.a, other.b); } }; TEST(BTreeSchedulerTest, CustomPriority) { BTreeScheduler<int, CustomPriority> scheduler; QUICHE_EXPECT_OK(scheduler.Register(10, CustomPriority{0, 1})); QUICHE_EXPECT_OK(scheduler.Register(11, CustomPriority{0, 0})); QUICHE_EXPECT_OK(scheduler.Register(12, CustomPriority{0, 0})); QUICHE_EXPECT_OK(scheduler.Register(13, CustomPriority{10, 0})); QUICHE_EXPECT_OK(scheduler.Register(14, CustomPriority{-10, 0})); ScheduleIds(scheduler, {10, 11, 12, 13, 14}); EXPECT_THAT(PopAll(scheduler), ElementsAre(13, 10, 11, 12, 14)); } struct CustomId { int a; std::string b; bool operator==(const CustomId& other) const { return a == other.a && b == other.b; } template <typename H> friend H AbslHashValue(H h, const CustomId& c) { return H::combine(std::move(h), c.a, c.b); } }; std::ostream& operator<<(std::ostream& os, const CustomId& id) { os << id.a << ":" << id.b; return os; } TEST(BTreeSchedulerTest, CustomIds) { BTreeScheduler<CustomId, int> scheduler; QUICHE_EXPECT_OK(scheduler.Register(CustomId{1, "foo"}, 10)); QUICHE_EXPECT_OK(scheduler.Register(CustomId{1, "bar"}, 12)); QUICHE_EXPECT_OK(scheduler.Register(CustomId{2, "foo"}, 11)); EXPECT_THAT(scheduler.Register(CustomId{1, "foo"}, 10), StatusIs(absl::StatusCode::kAlreadyExists)); ScheduleIds(scheduler, {CustomId{1, "foo"}, CustomId{1, "bar"}, CustomId{2, "foo"}}); EXPECT_THAT(scheduler.ShouldYield(CustomId{1, "foo"}), IsOkAndHolds(true)); EXPECT_THAT(scheduler.ShouldYield(CustomId{1, "bar"}), IsOkAndHolds(false)); EXPECT_THAT( PopAll(scheduler), ElementsAre(CustomId{1, "bar"}, CustomId{2, "foo"}, CustomId{1, "foo"})); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/common/btree_scheduler.h
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/common/btree_scheduler_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
7bd23866-5039-481b-92b9-5f3198d60d37
cpp
tensorflow/tensorflow
reshapex4
tensorflow/lite/delegates/gpu/common/tasks/reshapex4.cc
tensorflow/lite/delegates/gpu/cl/kernels/reshapex4_test.cc
#include "tensorflow/lite/delegates/gpu/common/tasks/reshapex4.h" #include <string> #include "tensorflow/lite/delegates/gpu/common/task/work_group_picking.h" namespace tflite { namespace gpu { namespace { std::string GetReshapeCode(const OperationDef& op_def) { std::string c; c += "MAIN_FUNCTION($0) {\n"; if (op_def.dst_tensors[0].HasAxis(Axis::BATCH)) { c += " int linear_id = GLOBAL_ID_0;\n"; c += " int X = linear_id / args.dst_tensor.Batch();\n"; c += " int B = linear_id % args.dst_tensor.Batch();\n"; c += " args.dst_tensor.SetBatchRef(B);\n"; } else { c += " int X = GLOBAL_ID_0;\n"; } c += " int Y = GLOBAL_ID_1;\n"; c += " int Z = GLOBAL_ID_2;\n"; c += " if (X >= args.dst_tensor.Width() || Y >= args.dst_tensor.Height() || " "Z >= args.dst_tensor.Slices()) { \n"; c += " return; \n"; c += " } \n"; if (op_def.dst_tensors[0].HasAxis(Axis::BATCH)) { c += " int dst_bhwc4 = B;\n"; } else { c += " int dst_bhwc4 = 0;\n"; } c += " dst_bhwc4 = ((dst_bhwc4 * args.dst_tensor.Height() + Y) * " "args.dst_tensor.Width() + X) * args.dst_tensor.Slices() + Z;\n"; c += " int src_z = dst_bhwc4 % args.src_tensor.Slices();\n"; c += " dst_bhwc4 = dst_bhwc4 / args.src_tensor.Slices();\n"; c += " int src_x = dst_bhwc4 % args.src_tensor.Width();\n"; c += " dst_bhwc4 = dst_bhwc4 / args.src_tensor.Width();\n"; c += " int src_y = dst_bhwc4 % args.src_tensor.Height();\n"; if (op_def.src_tensors[0].HasAxis(Axis::BATCH)) { c += " int src_b = dst_bhwc4 / args.src_tensor.Height();\n"; c += " args.src_tensor.SetBatchRef(src_b);\n"; } c += " args.src_tensor::type result = args.src_tensor.Read(src_x, src_y, " "src_z);\n"; c += " args.dst_tensor.Write(result, X, Y, Z);\n"; c += "}\n"; return c; } } GPUOperation CreateReshapex4(const OperationDef& definition) { GPUOperation op(definition); op.AddSrcTensor("src_tensor", definition.src_tensors[0]); op.AddDstTensor("dst_tensor", definition.dst_tensors[0]); op.code_ = GetReshapeCode(definition); op.tensor_to_grid_ = TensorToGrid::kWBToX_HDToY_SToZ; return op; } } }
#include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/cl/kernels/cl_test.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tasks/reshape_test_util.h" namespace tflite { namespace gpu { namespace cl { namespace { TEST_F(OpenCLOperationTest, Reshapex4) { auto status = Reshapex4Test(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/common/tasks/reshapex4.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/cl/kernels/reshapex4_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
06a605f6-b2f0-43a5-adfd-11795f4448f4
cpp
tensorflow/tensorflow
scatter
tensorflow/compiler/mlir/lite/stablehlo/transforms/legalize_hlo_conversions/scatter.cc
third_party/xla/xla/service/gpu/fusions/legacy/scatter_test.cc
#include "tensorflow/compiler/mlir/lite/stablehlo/transforms/legalize_hlo_conversions/scatter.h" #include <cstdint> #include <type_traits> #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Sequence.h" #include "llvm/ADT/SmallVector.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinTypeInterfaces.h" #include "mlir/IR/ImplicitLocOpBuilder.h" #include "mlir/IR/Operation.h" #include "mlir/IR/ValueRange.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "mlir/Transforms/DialectConversion.h" #include "tensorflow/compiler/mlir/lite/stablehlo/transforms/legalize_hlo_conversions/util.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" namespace mlir { namespace odml { LogicalResult CanonicalizeScatterUpdates( Operation* scatter_op, llvm::ArrayRef<int64_t> update_window_dims, const Value& indices, const ShapedType& indices_type, Value& updates, ShapedType& updates_type, ConversionPatternRewriter& rewriter) { auto canonical_update_window_dims = llvm::to_vector( llvm::seq<int64_t>(indices_type.getRank() - 1, updates_type.getRank())); if (canonical_update_window_dims == update_window_dims) return success(); if (!IsIotaAttr(update_window_dims, update_window_dims.size())) return rewriter.notifyMatchFailure( scatter_op, "update_window_dims are not leading or trailing indices"); SmallVector<int64_t, 4> permutation_array(updates_type.getRank()); int64_t dim = 0; const auto permutation_array_size = permutation_array.size(); for (int64_t i = update_window_dims.size(); i < permutation_array_size; ++i) { permutation_array[i] = dim; ++dim; } for (int64_t i = 0; i < update_window_dims.size(); ++i) { permutation_array[i] = dim; ++dim; } auto permutation_and_shape = GetPermutationAndTransposedShape( permutation_array, updates_type, rewriter); auto transposed_updates = rewriter.create<mhlo::TransposeOp>( scatter_op->getLoc(), permutation_and_shape.shape, updates, permutation_and_shape.permutation); updates = transposed_updates; updates_type = permutation_and_shape.shape; return success(); } template <typename BinaryOp, typename TfOp> LogicalResult ConvertScatterOp<BinaryOp, TfOp>::matchAndRewrite( mhlo::ScatterOp scatter_op, OpAdaptor adaptor, ConversionPatternRewriter& rewriter) const { OperandRange operands = scatter_op.getInputs(); Value indices = scatter_op.getScatterIndices(); OperandRange updates = scatter_op.getUpdates(); if (operands.size() != 1 || updates.size() != 1) return failure(); ShapedType operand_type = mlir::cast<ShapedType>(operands[0].getType()); ShapedType indices_type = mlir::cast<ShapedType>(indices.getType()); ShapedType updates_type = mlir::cast<ShapedType>(updates[0].getType()); Value new_updates = updates[0]; if (!operand_type.hasStaticShape() || !indices_type.hasStaticShape() || !updates_type.hasStaticShape()) { return failure(); } if (failed(MatchBinaryReduceFunction<BinaryOp>( scatter_op.getUpdateComputation()))) { return failure(); } auto scatter_dimension_numbers = scatter_op.getScatterDimensionNumbers(); int64_t index_vector_dim = scatter_dimension_numbers.getIndexVectorDim(); if (failed(NormalizeIndexVector(scatter_op, indices, indices_type, index_vector_dim, rewriter))) { return failure(); } auto update_window_dims = scatter_dimension_numbers.getUpdateWindowDims(); if (failed(CanonicalizeScatterUpdates(scatter_op, update_window_dims, indices, indices_type, new_updates, updates_type, rewriter))) { return failure(); } auto inserted_window_dims = scatter_dimension_numbers.getInsertedWindowDims(); auto scatter_dims_to_operand_dims = scatter_dimension_numbers.getScatterDimsToOperandDims(); if (IsIotaAttr(inserted_window_dims, indices_type.getShape().back()) && IsIotaAttr(scatter_dims_to_operand_dims, indices_type.getShape().back())) { rewriter.replaceOpWithNewOp<TfOp>(scatter_op, scatter_op.getResult(0).getType(), operands[0], indices, new_updates); return success(); } if (scatter_dims_to_operand_dims != inserted_window_dims) { return rewriter.notifyMatchFailure( scatter_op, "unsupported scatter_dims_to_operand_dims"); } SmallVector<int64_t, 4> permutation_array; for (int64_t i = 0; i < scatter_dims_to_operand_dims.size(); ++i) { permutation_array.push_back(scatter_dims_to_operand_dims[i]); } for (int64_t i = 0; i < operand_type.getRank(); ++i) { if (!llvm::is_contained(scatter_dims_to_operand_dims, i)) { permutation_array.push_back(i); } } auto permutation_and_shape = GetPermutationAndTransposedShape( permutation_array, operand_type, rewriter); Location loc = scatter_op.getLoc(); auto transposed_operand = rewriter.create<mhlo::TransposeOp>( loc, permutation_and_shape.shape, operands[0], permutation_and_shape.permutation); Value new_indices = indices; int64_t index_depth = permutation_and_shape.shape.getRank() - inserted_window_dims.size(); int64_t num_updates = indices_type.getDimSize(0); if (std::is_same<TfOp, TF::TensorScatterUpdateOp>::value && indices_type.getRank() == 1 && updates_type.getRank() == 1 && index_depth == 1 && num_updates == 1) { ImplicitLocOpBuilder builder(loc, rewriter); auto indices_shape = BuildIntArrayConstOp( builder, rewriter, llvm::SmallVector<int64_t>({num_updates, index_depth}), rewriter.getI32Type()); new_indices = rewriter.create<TF::ReshapeOp>( loc, RankedTensorType::get({num_updates, index_depth}, indices_type.getElementType()), indices, indices_shape); auto updates_shape = BuildIntArrayConstOp( builder, rewriter, llvm::SmallVector<int64_t>({num_updates, updates_type.getDimSize(0)}), rewriter.getI32Type()); new_updates = rewriter.create<TF::ReshapeOp>( loc, RankedTensorType::get({1, updates_type.getDimSize(0)}, updates_type.getElementType()), new_updates, updates_shape); } auto tf_scatter_op = rewriter.create<TfOp>(loc, permutation_and_shape.shape, transposed_operand, new_indices, new_updates); auto inverse_permutation = GetInversePermutation(permutation_array, rewriter); rewriter.replaceOpWithNewOp<mhlo::TransposeOp>( scatter_op, scatter_op.getResult(0).getType(), tf_scatter_op, inverse_permutation); return success(); } } }
#include "xla/service/gpu/fusions/legacy/scatter.h" #include <optional> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "mlir/IR/MLIRContext.h" #include "xla/service/gpu/fusions/fusions.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/model/indexing_map_serialization.h" #include "xla/service/gpu/model/indexing_test_utils.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { class ScatterFusionTest : public HloTestBase { DebugOptions GetDebugOptionsForTest() override { auto opts = HloTestBase::GetDebugOptionsForTest(); opts.set_xla_gpu_mlir_emitter_level(0); return opts; } protected: mlir::MLIRContext mlir_context_; }; TEST_F(ScatterFusionTest, ScatterFusion) { auto module = ParseAndReturnVerifiedModule(R"( HloModule module add (lhs: f32[], rhs: f32[]) -> f32[] { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT sum = f32[] add(lhs, rhs) } fused_computation { %input = f32[2,9] parameter(0) %indices = s32[3] parameter(1) %updates = f32[3,9] parameter(2) ROOT %scatter = f32[2,9] scatter(%input, %indices, %updates), to_apply=add, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 } ENTRY entry { %input = f32[2,9] parameter(0) %indices = s32[3] parameter(1) %updates = f32[3,9] parameter(2) ROOT %fusion = f32[2,9] fusion(%input, %indices, %updates), kind=kLoop, calls=fused_computation })") .value(); stream_executor::DeviceDescription device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto* root = module->entry_computation()->root_instruction(); auto analysis_fused = HloFusionAnalysis::Create(*root, device_info); auto emitter = GetFusionEmitter(PreBufferAssignmentFusionInfo{analysis_fused}); auto scatter_fusion = dynamic_cast<ScatterFusion*>(emitter.get()); ASSERT_NE(scatter_fusion, nullptr); EXPECT_EQ(scatter_fusion->launch_dimensions().launch_bound(), 3 * 9 ); } TEST_F(ScatterFusionTest, ThreadIdIndexing) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule module computation { %p0 = f32[] parameter(0) %p1 = f32[] parameter(1) %p2 = f32[] parameter(2) %p3 = f32[] parameter(3) ROOT %tuple = (f32[], f32[]) tuple(f32[] %p2, f32[] %p3) } scatter { %operand0 = f32[300,200] parameter(0) %operand1 = f32[300,200] parameter(1) %indices = s32[42,1] parameter(2) %update.1 = f32[42,10,20] parameter(3) %update.2 = f32[42,10,20]parameter(4) ROOT %scatter = (f32[300,200], f32[300,200]) scatter( f32[300,200] %operand0, f32[300,200] %operand1, s32[42,1] %indices, f32[42,10,20] %update.1, f32[42,10,20] %update.2 ), update_window_dims={1,2}, inserted_window_dims={}, scatter_dims_to_operand_dims={0}, index_vector_dim=1, to_apply=computation } ENTRY entry { %operand0 = f32[300,200] parameter(0) %operand1 = f32[300,200] parameter(1) %indices = s32[42,1] parameter(2) %update.1 = f32[42,10,20] parameter(3) %update.2 = f32[42,10,20]parameter(4) ROOT %fusion = (f32[300,200], f32[300,200]) fusion( %operand0, %operand1, %indices, %update.1, %update.2), kind=kLoop, calls=scatter } )")); stream_executor::DeviceDescription device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto* root = module->entry_computation()->root_instruction(); auto analysis_fused = HloFusionAnalysis::Create(*root, device_info); auto emitter = GetFusionEmitter(PreBufferAssignmentFusionInfo{analysis_fused}); auto fusion = dynamic_cast<ScatterFusion*>(emitter.get()); ASSERT_NE(fusion, nullptr); constexpr auto kUpdatesIndexing = R"( (th_x, th_y, th_z, bl_x, bl_y, bl_z)[chunk_id, unroll_id] -> ( (bl_x * 128 + th_x) floordiv 200, ((bl_x * 128 + th_x) floordiv 20) mod 10, (bl_x * 128 + th_x) mod 20 ), domain: th_x in [0, 127], th_y in [0, 0], th_z in [0, 0], bl_x in [0, 65], bl_y in [0, 0], bl_z in [0, 0], chunk_id in [0, 0], unroll_id in [0, 0], bl_x * 128 + th_x in [0, 8399] )"; mlir::SmallVector<std::string> dim_names = {"th_x", "th_y", "th_z", "bl_x", "bl_y", "bl_z"}; mlir::SmallVector<std::string> range_names = {"chunk_id", "unroll_id"}; EXPECT_THAT( ToString(*fusion->ComputeThreadIdToInputIndexing( 0, 3, &mlir_context_), dim_names, range_names, {}), MatchIndexingString(kUpdatesIndexing)); EXPECT_THAT( ToString(*fusion->ComputeThreadIdToInputIndexing( 0, 4, &mlir_context_), dim_names, range_names, {}), MatchIndexingString(kUpdatesIndexing)); EXPECT_THAT( ToString(*fusion->ComputeThreadIdToInputIndexing( 1, 3, &mlir_context_), dim_names, range_names, {}), MatchIndexingString(kUpdatesIndexing)); EXPECT_THAT( ToString(*fusion->ComputeThreadIdToInputIndexing( 1, 4, &mlir_context_), dim_names, range_names, {}), MatchIndexingString(kUpdatesIndexing)); range_names.push_back("index_id"); constexpr auto kIndicesIndexing = R"( (th_x, th_y, th_z, bl_x, bl_y, bl_z)[chunk_id, unroll_id, index_id] -> ((bl_x * 128 + th_x) floordiv 200, 0), domain: th_x in [0, 127], th_y in [0, 0], th_z in [0, 0], bl_x in [0, 65], bl_y in [0, 0], bl_z in [0, 0], chunk_id in [0, 0], unroll_id in [0, 0], index_id in [0, 0], bl_x * 128 + th_x in [0, 8399] )"; EXPECT_THAT( ToString(*fusion->ComputeThreadIdToInputIndexing( 0, 2, &mlir_context_), dim_names, range_names, {}), MatchIndexingString(kIndicesIndexing)); EXPECT_THAT( ToString(*fusion->ComputeThreadIdToInputIndexing( 1, 2, &mlir_context_), dim_names, range_names, {}), MatchIndexingString(kIndicesIndexing)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/lite/stablehlo/transforms/legalize_hlo_conversions/scatter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/fusions/legacy/scatter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c1f8f33e-1147-4fa1-b5d6-6457a9b6e08e
cpp
tensorflow/tensorflow
flatbuffer_conversions
tensorflow/lite/core/api/flatbuffer_conversions.cc
tensorflow/lite/core/api/flatbuffer_conversions_test.cc
#include "tensorflow/lite/core/api/flatbuffer_conversions.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <memory> #include "flatbuffers/vector.h" #include "tensorflow/compiler/mlir/lite/core/api/error_reporter.h" #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { class SafeBuiltinDataAllocator { public: class BuiltinDataDeleter { public: explicit BuiltinDataDeleter(BuiltinDataAllocator* allocator) : allocator_(allocator) {} void operator()(void* data) { allocator_->Deallocate(data); } private: BuiltinDataAllocator* allocator_; }; template <typename T> using BuiltinDataPtr = std::unique_ptr<T, BuiltinDataDeleter>; explicit SafeBuiltinDataAllocator(BuiltinDataAllocator* allocator) : allocator_(allocator) {} template <typename T> BuiltinDataPtr<T> Allocate() { return BuiltinDataPtr<T>(allocator_->AllocatePOD<T>(), BuiltinDataDeleter(allocator_)); } private: BuiltinDataAllocator* allocator_; }; void CheckParsePointerParams(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { TFLITE_DCHECK(op != nullptr); TFLITE_DCHECK(error_reporter != nullptr); TFLITE_DCHECK(allocator != nullptr); TFLITE_DCHECK(builtin_data != nullptr); } template <typename DataType = int32_t> static TfLiteStatus FlatBufferIntVectorToArray( int max_size_of_buffer, const flatbuffers::Vector<DataType>* flat_vector, DataType* buffer, ErrorReporter* error_reporter, const char* op_name) { if (!flat_vector) { TF_LITE_REPORT_ERROR(error_reporter, "Input array not provided for operation '%s'.\n", op_name); return kTfLiteError; } else { size_t num_dimensions = flat_vector->size(); if (num_dimensions > max_size_of_buffer / sizeof(DataType)) { TF_LITE_REPORT_ERROR( error_reporter, "Found too many dimensions in the input array of operation '%s'.\n", op_name); return kTfLiteError; } else { for (size_t i = 0; i < num_dimensions; ++i) { buffer[i] = flat_vector->Get(i); } } } return kTfLiteOk; } TfLiteFusedActivation ConvertActivation(ActivationFunctionType activation) { switch (activation) { case ActivationFunctionType_NONE: return kTfLiteActNone; case ActivationFunctionType_RELU: return kTfLiteActRelu; case ActivationFunctionType_RELU_N1_TO_1: return kTfLiteActReluN1To1; case ActivationFunctionType_RELU6: return kTfLiteActRelu6; case ActivationFunctionType_TANH: return kTfLiteActTanh; case ActivationFunctionType_SIGN_BIT: return kTfLiteActSignBit; } return kTfLiteActNone; } TfLitePadding ConvertPadding(Padding padding) { switch (padding) { case Padding_SAME: return kTfLitePaddingSame; case Padding_VALID: return kTfLitePaddingValid; } return kTfLitePaddingUnknown; } TfLiteMirrorPaddingMode ConvertMirrorPadding(MirrorPadMode padding) { switch (padding) { case MirrorPadMode_REFLECT: return kTfLiteMirrorPaddingReflect; case MirrorPadMode_SYMMETRIC: return kTfLiteMirrorPaddingSymmetric; } return kTfLiteMirrorPaddingUnknown; } TfLiteRngAlgorithm ConvertRngAlgorithm(RngAlgorithm algorithm) { switch (algorithm) { case RngAlgorithm_THREEFRY: return kTfLiteRngAlgorithmThreefry; case RngAlgorithm_PHILOX: return kTfLiteRngAlgorithmPhilox; case RngAlgorithm_DEFAULT: return kTfLiteRngAlgorithmDefault; } return kTfLiteRngAlgorithmUnknown; } #ifndef TF_LITE_STATIC_MEMORY TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { auto parseLSHProjectionType = [](LSHProjectionType type) { switch (type) { case LSHProjectionType_SPARSE: return kTfLiteLshProjectionSparse; case LSHProjectionType_DENSE: return kTfLiteLshProjectionDense; default: return kTfLiteLshProjectionUnknown; } }; auto parseCombinerType = [](CombinerType type) { switch (type) { case CombinerType_MEAN: return kTfLiteCombinerTypeMean; case CombinerType_SQRTN: return kTfLiteCombinerTypeSqrtn; case CombinerType_SUM: default: return kTfLiteCombinerTypeSum; } }; SafeBuiltinDataAllocator safe_allocator(allocator); *builtin_data = nullptr; switch (op_type) { case BuiltinOperator_ABS: { return ParseAbs(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_ADD: { return ParseAdd(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_ADD_N: { return ParseAddN(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_ARG_MAX: { return ParseArgMax(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_ARG_MIN: { return ParseArgMin(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_ASSIGN_VARIABLE: { return ParseAssignVariable(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_AVERAGE_POOL_2D: { return ParsePool(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_BATCH_MATMUL: { return ParseBatchMatMul(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_BATCH_TO_SPACE_ND: { return ParseBatchToSpaceNd(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_BROADCAST_ARGS: { return ParseBroadcastArgs(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_BROADCAST_TO: { return ParseBroadcastTo(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_CALL_ONCE: { return ParseCallOnce(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_CEIL: { return ParseCeil(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_CONCATENATION: { return ParseConcatenation(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_CONV_2D: { return ParseConv2D(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_CUMSUM: { return ParseCumsum(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_DEPTH_TO_SPACE: { return ParseDepthToSpace(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_DEPTHWISE_CONV_2D: { return ParseDepthwiseConv2D(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_DEQUANTIZE: { return ParseDequantize(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_DIV: { return ParseDiv(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_ELU: { return ParseElu(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_EMBEDDING_LOOKUP: { return ParseEmbeddingLookup(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_EXP: { return ParseExp(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_EXPAND_DIMS: { return ParseExpandDims(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_FILL: { return ParseFill(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_FLOOR: { return ParseFloor(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_FLOOR_DIV: { return ParseFloorDiv(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_FLOOR_MOD: { return ParseFloorMod(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_FULLY_CONNECTED: { return ParseFullyConnected(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_GATHER_ND: { return ParseGatherNd(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_GREATER: { return ParseGreater(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_GREATER_EQUAL: { return ParseGreaterEqual(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_HARD_SWISH: { return ParseHardSwish(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_L2_NORMALIZATION: { return ParseL2Normalization(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_L2_POOL_2D: { return ParsePool(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_LEAKY_RELU: { return ParseLeakyRelu(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_LESS: { return ParseLess(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_LESS_EQUAL: { return ParseLessEqual(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_LOG: { return ParseLog(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_LOGICAL_AND: { return ParseLogicalAnd(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_LOGICAL_NOT: { return ParseLogicalNot(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_LOGICAL_OR: { return ParseLogicalOr(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_LOGISTIC: { return ParseLogistic(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_LOG_SOFTMAX: { return ParseLogSoftmax(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_LSTM: { return ParseLSTM(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_MAXIMUM: { return ParseMaximum(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_MAX_POOL_2D: { return ParsePool(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_MIRROR_PAD: { return ParseMirrorPad(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_MEAN: { return ParseReducer(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_MINIMUM: { return ParseMinimum(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_MUL: { return ParseMul(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_NEG: { return ParseNeg(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_NOT_EQUAL: { return ParseNotEqual(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_PACK: { return ParsePack(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_PAD: { return ParsePad(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_PADV2: { return ParsePadV2(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_POW: { return ParsePow(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_PRELU: { return ParsePrelu(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_QUANTIZE: { return ParseQuantize(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_READ_VARIABLE: { return ParseReadVariable(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_REDUCE_ANY: { return ParseReducer(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_REDUCE_ALL: { return ParseReducer(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_REDUCE_MAX: { return ParseReducer(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_REDUCE_MIN: { return ParseReducer(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_REDUCE_PROD: { return ParseReducer(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_RELU: { return ParseRelu(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_RELU6: { return ParseRelu6(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_RESHAPE: { return ParseReshape(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_RESIZE_BILINEAR: { return ParseResizeBilinear(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_RESIZE_NEAREST_NEIGHBOR: { return ParseResizeNearestNeighbor(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_ROUND: { return ParseRound(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_RSQRT: { return ParseRsqrt(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SELECT_V2: { return ParseSelectV2(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SHAPE: { return ParseShape(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SIN: { return ParseSin(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SOFTMAX: { return ParseSoftmax(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SPACE_TO_BATCH_ND: { return ParseSpaceToBatchNd(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SPACE_TO_DEPTH: { return ParseSpaceToDepth(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SPLIT: { return ParseSplit(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SPLIT_V: { return ParseSplitV(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SQRT: { return ParseSqrt(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SQUARE: { return ParseSquare(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SQUARED_DIFFERENCE: { return ParseSquaredDifference(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SQUEEZE: { return ParseSqueeze(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_STRIDED_SLICE: { return ParseStridedSlice(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SUB: { return ParseSub(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SUM: { return ParseReducer(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SVDF: { return ParseSvdf(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_TANH: { return ParseTanh(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_TRANSPOSE_CONV: { return ParseTransposeConv(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_UNPACK: { return ParseUnpack(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_VAR_HANDLE: { return ParseVarHandle(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_ZEROS_LIKE: { return ParseZerosLike(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_BITWISE_XOR: { return ParseBitwiseXor(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_RIGHT_SHIFT: { return ParseRightShift(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_CAST: { return ParseCast(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_LSH_PROJECTION: { auto params = safe_allocator.Allocate<TfLiteLSHProjectionParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* lshParams = op->builtin_options_as_LSHProjectionOptions()) { params->type = parseLSHProjectionType(lshParams->type()); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_RNN: { auto params = safe_allocator.Allocate<TfLiteSequenceRNNParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* sequence_rnn_params = op->builtin_options_as_SequenceRNNOptions()) { params->activation = ConvertActivation(sequence_rnn_params->fused_activation_function()); params->time_major = sequence_rnn_params->time_major(); params->asymmetric_quantize_inputs = sequence_rnn_params->asymmetric_quantize_inputs(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_BIDIRECTIONAL_SEQUENCE_RNN: { auto params = safe_allocator.Allocate<TfLiteBidirectionalSequenceRNNParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* bidi_sequence_rnn_params = op->builtin_options_as_BidirectionalSequenceRNNOptions()) { params->activation = ConvertActivation( bidi_sequence_rnn_params->fused_activation_function()); params->time_major = bidi_sequence_rnn_params->time_major(); params->merge_outputs = bidi_sequence_rnn_params->merge_outputs(); params->asymmetric_quantize_inputs = bidi_sequence_rnn_params->asymmetric_quantize_inputs(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_RNN: { auto params = safe_allocator.Allocate<TfLiteRNNParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* rnn_params = op->builtin_options_as_RNNOptions()) { params->activation = ConvertActivation(rnn_params->fused_activation_function()); params->asymmetric_quantize_inputs = rnn_params->asymmetric_quantize_inputs(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_EMBEDDING_LOOKUP_SPARSE: { auto params = safe_allocator.Allocate<TfLiteEmbeddingLookupSparseParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* embedding_params = op->builtin_options_as_EmbeddingLookupSparseOptions()) { params->combiner = parseCombinerType(embedding_params->combiner()); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_HASHTABLE_LOOKUP: return kTfLiteOk; case BuiltinOperator_LOCAL_RESPONSE_NORMALIZATION: { auto params = safe_allocator.Allocate<TfLiteLocalResponseNormParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* schema_params = op->builtin_options_as_LocalResponseNormalizationOptions()) { params->radius = schema_params->radius(); params->bias = schema_params->bias(); params->alpha = schema_params->alpha(); params->beta = schema_params->beta(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_LSTM: { return ParseUnidirectionalSequenceLSTM(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_BIDIRECTIONAL_SEQUENCE_LSTM: { auto params = safe_allocator.Allocate<TfLiteBidirectionalSequenceLSTMParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* bidi_lstm_params = op->builtin_options_as_BidirectionalSequenceLSTMOptions()) { params->activation = ConvertActivation(bidi_lstm_params->fused_activation_function()); params->cell_clip = bidi_lstm_params->cell_clip(); params->proj_clip = bidi_lstm_params->proj_clip(); params->merge_outputs = bidi_lstm_params->merge_outputs(); params->time_major = bidi_lstm_params->time_major(); params->asymmetric_quantize_inputs = bidi_lstm_params->asymmetric_quantize_inputs(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_SKIP_GRAM: { auto params = safe_allocator.Allocate<TfLiteSkipGramParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* skip_gram_params = op->builtin_options_as_SkipGramOptions()) { params->ngram_size = skip_gram_params->ngram_size(); params->max_skip_size = skip_gram_params->max_skip_size(); params->include_all_ngrams = skip_gram_params->include_all_ngrams(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_GATHER: { return ParseGather(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_SPARSE_TO_DENSE: { auto params = safe_allocator.Allocate<TfLiteSparseToDenseParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* sparse_to_dense_params = op->builtin_options_as_SparseToDenseOptions()) { params->validate_indices = sparse_to_dense_params->validate_indices(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_DELEGATE: { TF_LITE_REPORT_ERROR(error_reporter, "DELEGATE op shouldn't exist in model."); return kTfLiteError; } case BuiltinOperator_FAKE_QUANT: { auto params = safe_allocator.Allocate<TfLiteFakeQuantParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* schema_params = op->builtin_options_as_FakeQuantOptions()) { params->min = schema_params->min(); params->max = schema_params->max(); params->num_bits = schema_params->num_bits(); params->narrow_range = schema_params->narrow_range(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_ONE_HOT: { auto params = safe_allocator.Allocate<TfLiteOneHotParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* schema_params = op->builtin_options_as_OneHotOptions()) { params->axis = schema_params->axis(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_UNIQUE: { auto params = safe_allocator.Allocate<TfLiteUniqueParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const auto* unique_params = op->builtin_options_as_UniqueOptions(); if (unique_params != nullptr) { params->index_out_type = unique_params->idx_out_type() == tflite::TensorType_INT64 ? TfLiteType::kTfLiteInt64 : TfLiteType::kTfLiteInt32; } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_REVERSE_SEQUENCE: { auto params = safe_allocator.Allocate<TfLiteReverseSequenceParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* reverse_seq_params = op->builtin_options_as_ReverseSequenceOptions()) { params->seq_dim = reverse_seq_params->seq_dim(); params->batch_dim = reverse_seq_params->batch_dim(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_IF: { auto params = safe_allocator.Allocate<TfLiteIfParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* if_params = op->builtin_options_as_IfOptions()) { params->then_subgraph_index = if_params->then_subgraph_index(); params->else_subgraph_index = if_params->else_subgraph_index(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_WHILE: { auto params = safe_allocator.Allocate<TfLiteWhileParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* while_params = op->builtin_options_as_WhileOptions()) { params->cond_subgraph_index = while_params->cond_subgraph_index(); params->body_subgraph_index = while_params->body_subgraph_index(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_CONV_3D: case BuiltinOperator_CONV_3D_TRANSPOSE: { auto params = safe_allocator.Allocate<TfLiteConv3DParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* conv3d_params = op->builtin_options_as_Conv3DOptions()) { params->padding = ConvertPadding(conv3d_params->padding()); params->activation = ConvertActivation(conv3d_params->fused_activation_function()); params->stride_depth = conv3d_params->stride_d(); params->stride_height = conv3d_params->stride_h(); params->stride_width = conv3d_params->stride_w(); params->dilation_depth_factor = conv3d_params->dilation_d_factor(); params->dilation_height_factor = conv3d_params->dilation_h_factor(); params->dilation_width_factor = conv3d_params->dilation_w_factor(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_HASHTABLE: { auto params = safe_allocator.Allocate<TfLiteHashtableParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* hashtable_params = op->builtin_options_as_HashtableOptions()) { params->table_id = hashtable_params->table_id(); TF_LITE_ENSURE_STATUS(ConvertTensorType( hashtable_params->key_dtype(), &params->key_dtype, error_reporter)); TF_LITE_ENSURE_STATUS(ConvertTensorType(hashtable_params->value_dtype(), &params->value_dtype, error_reporter)); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_MULTINOMIAL: { auto params = safe_allocator.Allocate<TfLiteRandomParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* multinomial_params = op->builtin_options_as_RandomOptions()) { params->seed = multinomial_params->seed(); params->seed2 = multinomial_params->seed2(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_RANDOM_STANDARD_NORMAL: { auto params = safe_allocator.Allocate<TfLiteRandomParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* random_std_normal_params = op->builtin_options_as_RandomOptions()) { params->seed = random_std_normal_params->seed(); params->seed2 = random_std_normal_params->seed2(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_BUCKETIZE: { auto params = safe_allocator.Allocate<TfLiteBucketizeParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* bucketize_params = op->builtin_options_as_BucketizeOptions()) { const flatbuffers::Vector<float>* boundaries = bucketize_params->boundaries(); if (boundaries == nullptr) { TF_LITE_REPORT_ERROR( error_reporter, "boundaries array not provided for operation 'bucketize'.\n"); return kTfLiteError; } params->num_boundaries = boundaries->size(); if (boundaries->data() == nullptr) { TF_LITE_REPORT_ERROR(error_reporter, "boundaries.data() returned nullptr for " "operation 'bucketize'.\n"); return kTfLiteError; } params->boundaries = boundaries->data(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_RANDOM_UNIFORM: { auto params = safe_allocator.Allocate<TfLiteRandomParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* random_uniform_params = op->builtin_options_as_RandomOptions()) { params->seed = random_uniform_params->seed(); params->seed2 = random_uniform_params->seed2(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_GELU: { auto params = safe_allocator.Allocate<TfLiteGeluParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* gelu_params = op->builtin_options_as_GeluOptions()) { params->approximate = gelu_params->approximate(); } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_STABLEHLO_SCATTER: { return ParseStablehloScatter(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_STABLEHLO_RNG_BIT_GENERATOR: { return ParseStablehloRngBitGenerator(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_STABLEHLO_GATHER: { return ParseStablehloGather(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_STABLEHLO_REDUCE_WINDOW: { return ParseStablehloReduceWindow(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_REDUCE_WINDOW: { auto params = safe_allocator.Allocate<TfLiteReduceWindowParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* reduce_params = op->builtin_options_2_as_ReduceWindowOptions()) { switch (reduce_params->reduce_function()) { case ReduceWindowFunction_ADD: params->reduce_function = TfLiteReduceWindowFunctionAdd; break; case ReduceWindowFunction_MUL: params->reduce_function = TfLiteReduceWindowFunctionMul; break; case ReduceWindowFunction_MINIMUM: params->reduce_function = TfLiteReduceWindowFunctionMin; break; case ReduceWindowFunction_MAXIMUM: params->reduce_function = TfLiteReduceWindowFunctionMax; break; case ReduceWindowFunction_ALL: params->reduce_function = TfLiteReduceWindowFunctionAll; break; case ReduceWindowFunction_ANY: params->reduce_function = TfLiteReduceWindowFunctionAny; break; case ReduceWindowFunction_UNSUPPORTED: default: return kTfLiteError; } } *builtin_data = params.release(); return kTfLiteOk; } case BuiltinOperator_STABLEHLO_PAD: { return ParseStablehloPad(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_STABLEHLO_COMPOSITE: { return ParseStablehloComposite(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_STABLEHLO_SHIFT_LEFT: { return ParseStablehloShiftLeft(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_STABLEHLO_SLICE: case BuiltinOperator_STABLEHLO_BROADCAST_IN_DIM: case BuiltinOperator_STABLEHLO_CONVOLUTION: case BuiltinOperator_STABLEHLO_LOGISTIC: case BuiltinOperator_STABLEHLO_ADD: case BuiltinOperator_STABLEHLO_DIVIDE: case BuiltinOperator_STABLEHLO_MULTIPLY: case BuiltinOperator_STABLEHLO_MAXIMUM: case BuiltinOperator_STABLEHLO_RESHAPE: case BuiltinOperator_STABLEHLO_CLAMP: case BuiltinOperator_STABLEHLO_CONCATENATE: case BuiltinOperator_STABLEHLO_CUSTOM_CALL: case BuiltinOperator_STABLEHLO_REDUCE: case BuiltinOperator_STABLEHLO_ABS: case BuiltinOperator_STABLEHLO_AND: case BuiltinOperator_STABLEHLO_COSINE: case BuiltinOperator_STABLEHLO_EXPONENTIAL: case BuiltinOperator_STABLEHLO_FLOOR: case BuiltinOperator_STABLEHLO_LOG: case BuiltinOperator_STABLEHLO_MINIMUM: case BuiltinOperator_STABLEHLO_NEGATE: case BuiltinOperator_STABLEHLO_OR: case BuiltinOperator_STABLEHLO_POWER: case BuiltinOperator_STABLEHLO_REMAINDER: case BuiltinOperator_STABLEHLO_RSQRT: case BuiltinOperator_STABLEHLO_SELECT: case BuiltinOperator_STABLEHLO_SUBTRACT: case BuiltinOperator_STABLEHLO_TANH: case BuiltinOperator_STABLEHLO_DYNAMIC_SLICE: case BuiltinOperator_STABLEHLO_DYNAMIC_UPDATE_SLICE: case BuiltinOperator_STABLEHLO_IOTA: case BuiltinOperator_STABLEHLO_COMPARE: case BuiltinOperator_STABLEHLO_CONVERT: case BuiltinOperator_STABLEHLO_DOT_GENERAL: case BuiltinOperator_STABLEHLO_SORT: case BuiltinOperator_STABLEHLO_WHILE: case BuiltinOperator_STABLEHLO_TRANSPOSE: case BuiltinOperator_STABLEHLO_CBRT: case BuiltinOperator_CALL: case BuiltinOperator_COMPLEX_ABS: case BuiltinOperator_CONCAT_EMBEDDINGS: case BuiltinOperator_COS: case BuiltinOperator_CUSTOM: case BuiltinOperator_DENSIFY: case BuiltinOperator_DYNAMIC_UPDATE_SLICE: case BuiltinOperator_EQUAL: case BuiltinOperator_HASHTABLE_FIND: case BuiltinOperator_HASHTABLE_IMPORT: case BuiltinOperator_HASHTABLE_SIZE: case BuiltinOperator_IMAG: case BuiltinOperator_MATRIX_DIAG: case BuiltinOperator_MATRIX_SET_DIAG: case BuiltinOperator_NON_MAX_SUPPRESSION_V4: case BuiltinOperator_NON_MAX_SUPPRESSION_V5: case BuiltinOperator_RELU_N1_TO_1: case BuiltinOperator_RELU_0_TO_1: case BuiltinOperator_SCATTER_ND: case BuiltinOperator_SELECT: case BuiltinOperator_SLICE: case BuiltinOperator_TILE: case BuiltinOperator_TOPK_V2: case BuiltinOperator_TRANSPOSE: case BuiltinOperator_RANGE: case BuiltinOperator_RANK: case BuiltinOperator_REAL: case BuiltinOperator_RFFT2D: case BuiltinOperator_SEGMENT_SUM: case BuiltinOperator_REVERSE_V2: case BuiltinOperator_UNSORTED_SEGMENT_MAX: case BuiltinOperator_UNSORTED_SEGMENT_MIN: case BuiltinOperator_UNSORTED_SEGMENT_PROD: case BuiltinOperator_UNSORTED_SEGMENT_SUM: case BuiltinOperator_ATAN2: case BuiltinOperator_SIGN: case BuiltinOperator_BITCAST: case BuiltinOperator_WHERE: case BuiltinOperator_DILATE: return kTfLiteOk; case BuiltinOperator_PLACEHOLDER_FOR_GREATER_OP_CODES: return kTfLiteError; } return kTfLiteError; } #endif } TfLiteStatus ConvertTensorType(TensorType tensor_type, TfLiteType* type, ErrorReporter* error_reporter) { switch (tensor_type) { case TensorType_FLOAT16: *type = kTfLiteFloat16; return kTfLiteOk; case TensorType_BFLOAT16: *type = kTfLiteBFloat16; return kTfLiteOk; case TensorType_FLOAT32: *type = kTfLiteFloat32; return kTfLiteOk; case TensorType_FLOAT64: *type = kTfLiteFloat64; return kTfLiteOk; case TensorType_INT16: *type = kTfLiteInt16; return kTfLiteOk; case TensorType_UINT16: *type = kTfLiteUInt16; return kTfLiteOk; case TensorType_INT32: *type = kTfLiteInt32; return kTfLiteOk; case TensorType_UINT32: *type = kTfLiteUInt32; return kTfLiteOk; case TensorType_UINT8: *type = kTfLiteUInt8; return kTfLiteOk; case TensorType_INT8: *type = kTfLiteInt8; return kTfLiteOk; case TensorType_INT64: *type = kTfLiteInt64; return kTfLiteOk; case TensorType_UINT64: *type = kTfLiteUInt64; return kTfLiteOk; case TensorType_STRING: *type = kTfLiteString; return kTfLiteOk; case TensorType_BOOL: *type = kTfLiteBool; return kTfLiteOk; case TensorType_COMPLEX64: *type = kTfLiteComplex64; return kTfLiteOk; case TensorType_COMPLEX128: *type = kTfLiteComplex128; return kTfLiteOk; case TensorType_RESOURCE: *type = kTfLiteResource; return kTfLiteOk; case TensorType_VARIANT: *type = kTfLiteVariant; return kTfLiteOk; case TensorType_INT4: *type = kTfLiteInt4; return kTfLiteOk; default: *type = kTfLiteNoType; TF_LITE_REPORT_ERROR(error_reporter, "Unsupported data type %d in tensor\n", tensor_type); return kTfLiteError; } } TfLiteStatus ParseAbs(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseAdd(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteAddParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteAddParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const AddOptions* schema_params = op->builtin_options_as_AddOptions(); if (schema_params != nullptr) { params->activation = ConvertActivation(schema_params->fused_activation_function()); params->pot_scale_int16 = schema_params->pot_scale_int16(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseAddN(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { return kTfLiteOk; } TfLiteStatus ParseArgMax(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteArgMaxParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteArgMaxParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const ArgMaxOptions* schema_params = op->builtin_options_as_ArgMaxOptions(); if (schema_params != nullptr) { TF_LITE_ENSURE_STATUS(ConvertTensorType( schema_params->output_type(), &params->output_type, error_reporter)); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseArgMin(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteArgMinParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteArgMinParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const ArgMinOptions* schema_params = op->builtin_options_as_ArgMinOptions(); if (schema_params != nullptr) { TF_LITE_ENSURE_STATUS(ConvertTensorType( schema_params->output_type(), &params->output_type, error_reporter)); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseAssignVariable(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseBatchMatMul(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); auto params = safe_allocator.Allocate<TfLiteBatchMatMulParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* bmm_params = op->builtin_options_as_BatchMatMulOptions()) { params->adj_x = bmm_params->adj_x(); params->adj_y = bmm_params->adj_y(); params->asymmetric_quantize_inputs = bmm_params->asymmetric_quantize_inputs(); } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseBatchToSpaceNd(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseBroadcastArgs(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseBroadcastTo(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseCallOnce(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteCallOnceParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteCallOnceParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const CallOnceOptions* schema_params = op->builtin_options_as_CallOnceOptions(); if (schema_params != nullptr) { params->init_subgraph_index = schema_params->init_subgraph_index(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseCast(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); auto params = safe_allocator.Allocate<TfLiteCastParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* schema_params = op->builtin_options_as_CastOptions()) { TF_LITE_ENSURE_STATUS(ConvertTensorType( schema_params->in_data_type(), &params->in_data_type, error_reporter)); TF_LITE_ENSURE_STATUS(ConvertTensorType(schema_params->out_data_type(), &params->out_data_type, error_reporter)); } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseCeil(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseConcatenation(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteConcatenationParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteConcatenationParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const ConcatenationOptions* schema_params = op->builtin_options_as_ConcatenationOptions(); if (schema_params != nullptr) { params->activation = ConvertActivation(schema_params->fused_activation_function()); params->axis = schema_params->axis(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseConv2D(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteConvParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteConvParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const Conv2DOptions* schema_params = op->builtin_options_as_Conv2DOptions(); if (schema_params != nullptr) { params->padding = ConvertPadding(schema_params->padding()); params->stride_width = schema_params->stride_w(); params->stride_height = schema_params->stride_h(); params->activation = ConvertActivation(schema_params->fused_activation_function()); params->dilation_width_factor = schema_params->dilation_w_factor(); params->dilation_height_factor = schema_params->dilation_h_factor(); TF_LITE_ENSURE_STATUS( ConvertTensorType(schema_params->quantized_bias_type(), &params->quantized_bias_type, error_reporter)); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseCumsum(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); auto params = safe_allocator.Allocate<TfLiteCumsumParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* cumsum_params = op->builtin_options_as_CumsumOptions()) { params->exclusive = cumsum_params->exclusive(); params->reverse = cumsum_params->reverse(); } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseCos(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseDepthToSpace(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteDepthToSpaceParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteDepthToSpaceParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const auto* schema_params = op->builtin_options_as_DepthToSpaceOptions(); if (schema_params != nullptr) { params->block_size = schema_params->block_size(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseDepthwiseConv2D(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteDepthwiseConvParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteDepthwiseConvParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const DepthwiseConv2DOptions* schema_params = op->builtin_options_as_DepthwiseConv2DOptions(); if (schema_params != nullptr) { params->padding = ConvertPadding(schema_params->padding()); params->stride_width = schema_params->stride_w(); params->stride_height = schema_params->stride_h(); params->depth_multiplier = schema_params->depth_multiplier(); params->activation = ConvertActivation(schema_params->fused_activation_function()); params->dilation_width_factor = schema_params->dilation_w_factor(); params->dilation_height_factor = schema_params->dilation_h_factor(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseDequantize(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseDiv(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); auto params = safe_allocator.Allocate<TfLiteDivParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* schema_params = op->builtin_options_as_DivOptions()) { params->activation = ConvertActivation(schema_params->fused_activation_function()); } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseElu(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseEmbeddingLookup(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseEqual(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseExp(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseExpandDims(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseFill(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseFloor(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseFloorDiv(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseFloorMod(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseFullyConnected(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteFullyConnectedParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteFullyConnectedParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const FullyConnectedOptions* schema_params = op->builtin_options_as_FullyConnectedOptions(); if (schema_params != nullptr) { params->activation = ConvertActivation(schema_params->fused_activation_function()); params->keep_num_dims = schema_params->keep_num_dims(); params->asymmetric_quantize_inputs = schema_params->asymmetric_quantize_inputs(); TF_LITE_ENSURE_STATUS( ConvertTensorType(schema_params->quantized_bias_type(), &params->quantized_bias_type, error_reporter)); switch (schema_params->weights_format()) { case FullyConnectedOptionsWeightsFormat_DEFAULT: params->weights_format = kTfLiteFullyConnectedWeightsFormatDefault; break; case FullyConnectedOptionsWeightsFormat_SHUFFLED4x16INT8: params->weights_format = kTfLiteFullyConnectedWeightsFormatShuffled4x16Int8; break; default: TF_LITE_REPORT_ERROR(error_reporter, "Unhandled fully-connected weights format."); return kTfLiteError; } } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseGather(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); auto params = safe_allocator.Allocate<TfLiteGatherParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); params->axis = 0; params->batch_dims = 0; if (const auto* gather_params = op->builtin_options_as_GatherOptions()) { params->axis = gather_params->axis(); params->batch_dims = gather_params->batch_dims(); } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseGatherNd(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseGreater(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseGreaterEqual(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseHardSwish(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseIf(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteIfParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteIfParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const IfOptions* schema_params = op->builtin_options_as_IfOptions(); if (schema_params != nullptr) { params->then_subgraph_index = schema_params->then_subgraph_index(); params->else_subgraph_index = schema_params->else_subgraph_index(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseL2Normalization(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteL2NormParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteL2NormParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const L2NormOptions* schema_params = op->builtin_options_as_L2NormOptions(); if (schema_params != nullptr) { params->activation = ConvertActivation(schema_params->fused_activation_function()); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseLeakyRelu(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); auto params = safe_allocator.Allocate<TfLiteLeakyReluParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* leaky_relu_params = op->builtin_options_as_LeakyReluOptions()) { params->alpha = leaky_relu_params->alpha(); } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseLess(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseLessEqual(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseLog(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseLogicalAnd(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseLogicalNot(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseLogicalOr(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseLogistic(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseLogSoftmax(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseLSTM(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); auto params = safe_allocator.Allocate<TfLiteLSTMParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* lstm_params = op->builtin_options_as_LSTMOptions()) { params->activation = ConvertActivation(lstm_params->fused_activation_function()); params->cell_clip = lstm_params->cell_clip(); params->proj_clip = lstm_params->proj_clip(); switch (lstm_params->kernel_type()) { case LSTMKernelType_FULL: params->kernel_type = kTfLiteLSTMFullKernel; break; case LSTMKernelType_BASIC: params->kernel_type = kTfLiteLSTMBasicKernel; break; default: TF_LITE_REPORT_ERROR(error_reporter, "Unhandled LSTM kernel type: %d", lstm_params->kernel_type()); return kTfLiteError; } params->asymmetric_quantize_inputs = lstm_params->asymmetric_quantize_inputs(); } else { TF_LITE_REPORT_ERROR(error_reporter, "No valid LSTM builtin options exist"); return kTfLiteError; } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseMaximum(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseMinimum(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseMirrorPad(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteMirrorPaddingParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteMirrorPaddingParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const MirrorPadOptions* schema_params = op->builtin_options_as_MirrorPadOptions(); if (schema_params != nullptr) { params->mode = ConvertMirrorPadding(schema_params->mode()); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseMul(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteMulParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteMulParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const MulOptions* schema_params = op->builtin_options_as_MulOptions(); if (schema_params != nullptr) { params->activation = ConvertActivation(schema_params->fused_activation_function()); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseNeg(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseNotEqual(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParsePack(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLitePackParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLitePackParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const PackOptions* schema_params = op->builtin_options_as_PackOptions(); if (schema_params != nullptr) { params->values_count = schema_params->values_count(); params->axis = schema_params->axis(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParsePad(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParsePadV2(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParsePool(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLitePoolParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLitePoolParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const Pool2DOptions* schema_params = op->builtin_options_as_Pool2DOptions(); if (schema_params != nullptr) { params->padding = ConvertPadding(schema_params->padding()); params->stride_width = schema_params->stride_w(); params->stride_height = schema_params->stride_h(); params->filter_width = schema_params->filter_width(); params->filter_height = schema_params->filter_height(); params->activation = ConvertActivation(schema_params->fused_activation_function()); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParsePow(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParsePrelu(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseQuantize(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseReadVariable(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseReducer(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteReducerParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteReducerParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const ReducerOptions* schema_params = op->builtin_options_as_ReducerOptions(); if (schema_params != nullptr) { params->keep_dims = schema_params->keep_dims(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseRelu(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseRelu6(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseReshape(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteReshapeParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteReshapeParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const ReshapeOptions* schema_params = op->builtin_options_as_ReshapeOptions(); if (schema_params != nullptr) { const flatbuffers::Vector<int32_t>* new_shape = schema_params->new_shape(); if (new_shape != nullptr) { TF_LITE_ENSURE_STATUS( FlatBufferIntVectorToArray(sizeof(params->shape), new_shape, params->shape, error_reporter, "reshape")); params->num_dimensions = new_shape->size(); } else { } } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseResizeBilinear(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteResizeBilinearParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteResizeBilinearParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const ResizeBilinearOptions* schema_params = op->builtin_options_as_ResizeBilinearOptions(); if (schema_params != nullptr) { params->align_corners = schema_params->align_corners(); params->half_pixel_centers = schema_params->half_pixel_centers(); } else { params->align_corners = false; params->half_pixel_centers = false; } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseResizeNearestNeighbor(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteResizeNearestNeighborParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteResizeNearestNeighborParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const ResizeNearestNeighborOptions* schema_params = op->builtin_options_as_ResizeNearestNeighborOptions(); if (schema_params != nullptr) { params->align_corners = schema_params->align_corners(); params->half_pixel_centers = schema_params->half_pixel_centers(); } else { params->align_corners = false; params->half_pixel_centers = false; } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseStablehloReduceWindow(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); auto params = safe_allocator.Allocate<TfLiteStablehloReduceWindowParams>(); const StablehloReduceWindowOptions* schema_params = op->builtin_options_2_as_StablehloReduceWindowOptions(); if (schema_params) { if (!schema_params->window_dimensions() || schema_params->window_dimensions()->size() == 0) { TF_LITE_REPORT_ERROR(error_reporter, "'window_dimensions' attribute is not optional for " "'stablehlo.reduce_window' and cannot be empty."); return kTfLiteError; } const size_t rank = schema_params->window_dimensions()->size(); auto LoadAttr = [&error_reporter]( int64_t* params_array, size_t params_array_size_bytes, const flatbuffers::Vector<int64_t>* flatbuffer_vector, const char* attr_name, const size_t expected_size, const int64_t fill_value) -> TfLiteStatus { if (flatbuffer_vector && flatbuffer_vector->size()) { if (expected_size != 0 && flatbuffer_vector->size() != expected_size) { TF_LITE_REPORT_ERROR( error_reporter, "'%s' attribute of 'stablehlo.reduce_window' does not have the " "expected size (%llu != %llu).", attr_name, flatbuffer_vector->size(), expected_size); return kTfLiteError; } TfLiteStatus status = FlatBufferIntVectorToArray( params_array_size_bytes, flatbuffer_vector, params_array, error_reporter, "stablehlo.reduce_window"); if (status != kTfLiteOk) { TF_LITE_REPORT_ERROR(error_reporter, "Check the '%s' attribute.", attr_name); return status; } } else { std::fill_n(params_array, params_array_size_bytes / sizeof(int64_t), fill_value); } return kTfLiteOk; }; TF_LITE_ENSURE_STATUS( LoadAttr(params->window_dimensions, sizeof(params->window_dimensions), schema_params->window_dimensions(), "window_dimensions", rank, 1)); TF_LITE_ENSURE_STATUS( LoadAttr(params->window_strides, sizeof(params->window_strides), schema_params->window_strides(), "window_strides", rank, 1)); TF_LITE_ENSURE_STATUS( LoadAttr(params->base_dilations, sizeof(params->base_dilations), schema_params->base_dilations(), "base_dilations", rank, 1)); TF_LITE_ENSURE_STATUS( LoadAttr(params->window_dilations, sizeof(params->window_dilations), schema_params->window_dilations(), "window_dilations", rank, 1)); TF_LITE_ENSURE_STATUS(LoadAttr(params->padding, sizeof(params->padding), schema_params->padding(), "padding", 2 * rank, 0)); params->body_subgraph_index = schema_params->body_subgraph_index(); *builtin_data = params.release(); return kTfLiteOk; } TF_LITE_REPORT_ERROR( error_reporter, "Could not get 'stablehlo.reduce_window' operation parameters."); return kTfLiteError; } TfLiteStatus ParseStablehloScatter(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteStablehloScatterParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteStablehloScatterParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const StablehloScatterOptions* schema_params = op->builtin_options_2_as_StablehloScatterOptions(); if (schema_params) { params->indices_are_sorted = schema_params->indices_are_sorted(); if (schema_params->update_window_dims()) { TF_LITE_ENSURE_STATUS(FlatBufferIntVectorToArray<int64_t>( schema_params->update_window_dims()->size() * sizeof(int64_t), schema_params->update_window_dims(), params->update_window_dims, error_reporter, "stablehlo_scatter")); params->num_update_window_dims = schema_params->update_window_dims()->size(); } if (schema_params->inserted_window_dims()) { TF_LITE_ENSURE_STATUS(FlatBufferIntVectorToArray<int64_t>( schema_params->inserted_window_dims()->size() * sizeof(int64_t), schema_params->inserted_window_dims(), params->inserted_window_dims, error_reporter, "stablehlo_scatter")); params->num_inserted_window_dims = schema_params->inserted_window_dims()->size(); } if (schema_params->scatter_dims_to_operand_dims()) { TF_LITE_ENSURE_STATUS(FlatBufferIntVectorToArray<int64_t>( schema_params->scatter_dims_to_operand_dims()->size() * sizeof(int64_t), schema_params->scatter_dims_to_operand_dims(), params->scatter_dims_to_operand_dims, error_reporter, "stablehlo_scatter")); params->num_scatter_dims_to_operand_dims = schema_params->scatter_dims_to_operand_dims()->size(); } params->index_vector_dim = schema_params->index_vector_dim(); params->unique_indices = schema_params->unique_indices(); params->update_computation_subgraph_index = schema_params->update_computation_subgraph_index(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseStablehloRngBitGenerator(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteStablehloRngBitGeneratorParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteStablehloRngBitGeneratorParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const StablehloRngBitGeneratorOptions* schema_params = op->builtin_options_2_as_StablehloRngBitGeneratorOptions(); if (schema_params != nullptr) { params->algorithm = ConvertRngAlgorithm(schema_params->algorithm()); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseStablehloGather(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteStablehloGatherParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteStablehloGatherParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const StablehloGatherOptions* schema_params = op->builtin_options_2_as_StablehloGatherOptions(); if (schema_params != nullptr) { TF_LITE_ENSURE_STATUS(FlatBufferIntVectorToArray<int64_t>( schema_params->offset_dims()->size() * sizeof(int64_t), schema_params->offset_dims(), params->offset_dims, error_reporter, "stablehlo_gather")); params->num_offset_dims = schema_params->offset_dims()->size(); TF_LITE_ENSURE_STATUS(FlatBufferIntVectorToArray<int64_t>( schema_params->collapsed_slice_dims()->size() * sizeof(int64_t), schema_params->collapsed_slice_dims(), params->collapsed_slice_dims, error_reporter, "stablehlo_gather")); params->num_collapsed_slice_dims = schema_params->collapsed_slice_dims()->size(); TF_LITE_ENSURE_STATUS(FlatBufferIntVectorToArray<int64_t>( schema_params->start_index_map()->size() * sizeof(int64_t), schema_params->start_index_map(), params->start_index_map, error_reporter, "stablehlo_gather")); params->num_start_index_map = schema_params->start_index_map()->size(); params->index_vector_dim = schema_params->index_vector_dim(); TF_LITE_ENSURE_STATUS(FlatBufferIntVectorToArray<int64_t>( schema_params->slice_sizes()->size() * sizeof(int64_t), schema_params->slice_sizes(), params->slice_sizes, error_reporter, "stablehlo_gather")); params->num_slice_sizes = schema_params->slice_sizes()->size(); params->indices_are_sorted = schema_params->indices_are_sorted(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseStablehloPad(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); auto params = safe_allocator.Allocate<TfLiteStablehloPadParams>(); const StablehloPadOptions* schema_params = op->builtin_options_2_as_StablehloPadOptions(); if (schema_params) { auto LoadAttr = [&error_reporter]( int64_t* params_array, const size_t params_array_size_bytes, const flatbuffers::Vector<int64_t>* const flatbuffer_vector, const char* const attr_name) -> TfLiteStatus { TfLiteStatus status = FlatBufferIntVectorToArray( params_array_size_bytes, flatbuffer_vector, params_array, error_reporter, "stablehlo.pad"); if (status != kTfLiteOk) { TF_LITE_REPORT_ERROR(error_reporter, "Check the '%s' attribute.", attr_name); } return status; }; TF_LITE_ENSURE_STATUS( LoadAttr(params->edge_padding_low, sizeof(params->edge_padding_low), schema_params->edge_padding_low(), "edge_padding_low")); TF_LITE_ENSURE_STATUS( LoadAttr(params->edge_padding_high, sizeof(params->edge_padding_high), schema_params->edge_padding_high(), "edge_padding_high")); TF_LITE_ENSURE_STATUS( LoadAttr(params->interior_padding, sizeof(params->interior_padding), schema_params->interior_padding(), "interior_padding")); if (schema_params->edge_padding_low()->size() != schema_params->edge_padding_high()->size() || schema_params->edge_padding_low()->size() != schema_params->interior_padding()->size()) { TF_LITE_REPORT_ERROR(error_reporter, "'stablehlo.pad' operation parameter array sizes " "are not consistent."); return kTfLiteError; } *builtin_data = params.release(); return kTfLiteOk; } TF_LITE_REPORT_ERROR(error_reporter, "Could not get 'stablehlo.pad' operation parameters."); return kTfLiteError; } TfLiteStatus ParseStablehloComposite(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); auto params = safe_allocator.Allocate<TfLiteStablehloCompositeParams>(); const StableHLOCompositeOptions* schema_params = op->builtin_options_2_as_StableHLOCompositeOptions(); if (schema_params) { params->name = schema_params->name()->c_str(); params->version = schema_params->version(); params->subgraph_index = schema_params->decomposition_subgraph_index(); params->attributes = schema_params->composite_attributes()->data(); params->attributes_size = schema_params->composite_attributes()->size(); *builtin_data = params.release(); return kTfLiteOk; } TF_LITE_REPORT_ERROR( error_reporter, "Could not get 'stablehlo.composite' operation parameters."); return kTfLiteError; } TfLiteStatus ParseStablehloShiftLeft(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { return kTfLiteOk; } TfLiteStatus ParseRound(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseRsqrt(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseSelectV2(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseShape(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteShapeParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteShapeParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const ShapeOptions* schema_params = op->builtin_options_as_ShapeOptions(); if (schema_params != nullptr) { TF_LITE_ENSURE_STATUS(ConvertTensorType(schema_params->out_type(), &params->out_type, error_reporter)); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseSin(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseSlice(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseSoftmax(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteSoftmaxParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteSoftmaxParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const SoftmaxOptions* schema_params = op->builtin_options_as_SoftmaxOptions(); if (schema_params != nullptr) { params->beta = schema_params->beta(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseSpaceToBatchNd(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseSpaceToDepth(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteSpaceToDepthParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteSpaceToDepthParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const auto* schema_params = op->builtin_options_as_SpaceToDepthOptions(); if (schema_params != nullptr) { params->block_size = schema_params->block_size(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseSplit(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteSplitParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteSplitParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const SplitOptions* schema_params = op->builtin_options_as_SplitOptions(); if (schema_params != nullptr) { params->num_splits = schema_params->num_splits(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseSplitV(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteSplitVParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteSplitVParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const SplitVOptions* schema_params = op->builtin_options_as_SplitVOptions(); if (schema_params != nullptr) { params->num_splits = schema_params->num_splits(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseUnidirectionalSequenceLSTM(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); auto params = safe_allocator.Allocate<TfLiteUnidirectionalSequenceLSTMParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); if (const auto* seq_lstm_params = op->builtin_options_as_UnidirectionalSequenceLSTMOptions()) { params->activation = ConvertActivation(seq_lstm_params->fused_activation_function()); params->cell_clip = seq_lstm_params->cell_clip(); params->proj_clip = seq_lstm_params->proj_clip(); params->time_major = seq_lstm_params->time_major(); params->asymmetric_quantize_inputs = seq_lstm_params->asymmetric_quantize_inputs(); params->diagonal_recurrent_tensors = seq_lstm_params->diagonal_recurrent_tensors(); } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseSqueeze(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteSqueezeParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteSqueezeParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const SqueezeOptions* schema_params = op->builtin_options_as_SqueezeOptions(); if (schema_params != nullptr) { const auto* squeeze_dims = schema_params->squeeze_dims(); if (squeeze_dims != nullptr) { TF_LITE_ENSURE_STATUS(FlatBufferIntVectorToArray( sizeof(params->squeeze_dims), squeeze_dims, params->squeeze_dims, error_reporter, "squeeze")); params->num_squeeze_dims = squeeze_dims->size(); } else { params->num_squeeze_dims = 0; } } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseSqrt(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseSquare(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseSquaredDifference(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseStridedSlice(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteStridedSliceParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteStridedSliceParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const StridedSliceOptions* schema_params = op->builtin_options_as_StridedSliceOptions(); if (schema_params != nullptr) { params->begin_mask = schema_params->begin_mask(); params->end_mask = schema_params->end_mask(); params->ellipsis_mask = schema_params->ellipsis_mask(); params->new_axis_mask = schema_params->new_axis_mask(); params->shrink_axis_mask = schema_params->shrink_axis_mask(); params->offset = schema_params->offset(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseSub(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteSubParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteSubParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const SubOptions* schema_params = op->builtin_options_as_SubOptions(); if (schema_params != nullptr) { params->activation = ConvertActivation(schema_params->fused_activation_function()); params->pot_scale_int16 = schema_params->pot_scale_int16(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseSvdf(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteSVDFParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteSVDFParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const SVDFOptions* schema_params = op->builtin_options_as_SVDFOptions(); if (schema_params != nullptr) { params->rank = schema_params->rank(); params->activation = ConvertActivation(schema_params->fused_activation_function()); params->asymmetric_quantize_inputs = schema_params->asymmetric_quantize_inputs(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseTanh(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseTranspose(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseTransposeConv(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteTransposeConvParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteTransposeConvParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const TransposeConvOptions* transpose_conv_params = op->builtin_options_as_TransposeConvOptions(); if (transpose_conv_params != nullptr) { params->padding = ConvertPadding(transpose_conv_params->padding()); params->stride_width = transpose_conv_params->stride_w(); params->stride_height = transpose_conv_params->stride_h(); params->activation = ConvertActivation(transpose_conv_params->fused_activation_function()); TF_LITE_ENSURE_STATUS( ConvertTensorType(transpose_conv_params->quantized_bias_type(), &params->quantized_bias_type, error_reporter)); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseUnpack(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteUnpackParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteUnpackParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const UnpackOptions* schema_params = op->builtin_options_as_UnpackOptions(); if (schema_params != nullptr) { params->num = schema_params->num(); params->axis = schema_params->axis(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseVarHandle(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteVarHandleParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteVarHandleParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const VarHandleOptions* schema_params = op->builtin_options_as_VarHandleOptions(); if (schema_params != nullptr) { if (schema_params->container()) { params->container = schema_params->container()->c_str(); } if (schema_params->shared_name()) { params->shared_name = schema_params->shared_name()->c_str(); } } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseWhile(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { CheckParsePointerParams(op, error_reporter, allocator, builtin_data); SafeBuiltinDataAllocator safe_allocator(allocator); std::unique_ptr<TfLiteWhileParams, SafeBuiltinDataAllocator::BuiltinDataDeleter> params = safe_allocator.Allocate<TfLiteWhileParams>(); TF_LITE_ENSURE(error_reporter, params != nullptr); const WhileOptions* schema_params = op->builtin_options_as_WhileOptions(); if (schema_params != nullptr) { params->cond_subgraph_index = schema_params->cond_subgraph_index(); params->body_subgraph_index = schema_params->body_subgraph_index(); } else { } *builtin_data = params.release(); return kTfLiteOk; } TfLiteStatus ParseZerosLike(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseBitwiseXor(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseRightShift(const Operator*, ErrorReporter*, BuiltinDataAllocator*, void**) { return kTfLiteOk; } TfLiteStatus ParseOpData(const Operator* op, BuiltinOperator op_type, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { #ifdef TF_LITE_STATIC_MEMORY TF_LITE_REPORT_ERROR( error_reporter, "ParseOpData is unsupported on TfLiteMicro, please use the operator " "specific parse functions (e.g. ParseAdd etc.).\n"); return kTfLiteError; #else return ParseOpDataTfLite(op, op_type, error_reporter, allocator, builtin_data); #endif } }
#include "tensorflow/lite/core/api/flatbuffer_conversions.h" #include <cstdarg> #include <cstdint> #include <cstdio> #include <cstring> #include <tuple> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "tensorflow/compiler/mlir/lite/core/api/error_reporter.h" #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/string_type.h" using testing::AllOf; using testing::Each; using testing::ElementsAre; using testing::Eq; using testing::HasSubstr; using testing::StrEq; namespace tflite { namespace { class MockErrorReporter : public ErrorReporter { public: MockErrorReporter() : buffer_size_(0) {} int Report(const char* format, va_list args) override { buffer_size_ += vsnprintf(buffer_ + buffer_size_, kBufferSize - buffer_size_, format, args); return buffer_size_; } const char* GetBuffer() const { return buffer_; } int GetBufferSize() const { return buffer_size_; } bool IsEmpty() const { return !buffer_size_; } string GetString() const { return string(buffer_, buffer_size_); } private: static constexpr int kBufferSize = 256; char buffer_[kBufferSize]; int buffer_size_; }; class MockDataAllocator : public BuiltinDataAllocator { public: MockDataAllocator() : is_allocated_(false) {} void* Allocate(size_t size, size_t alignment_hint) override { EXPECT_FALSE(is_allocated_); const int max_size = kBufferSize; EXPECT_LE(size, max_size); is_allocated_ = true; return buffer_; } void Deallocate(void* data) override { is_allocated_ = false; } private: static constexpr int kBufferSize = 1024; char buffer_[kBufferSize]; bool is_allocated_; }; } class FlatbufferConversionsTest : public ::testing::Test { public: const Operator* BuildTestOperator(BuiltinOptions op_type, flatbuffers::Offset<void> options) { flatbuffers::Offset<Operator> offset = CreateOperatorDirect(builder_, 0, nullptr, nullptr, op_type, options, nullptr, CustomOptionsFormat_FLEXBUFFERS, nullptr); builder_.Finish(offset); void* pointer = builder_.GetBufferPointer(); return flatbuffers::GetRoot<Operator>(pointer); } const Operator* BuildTestOperator(BuiltinOptions2 op_type, flatbuffers::Offset<void> options) { flatbuffers::Offset<Operator> offset = CreateOperatorDirect( builder_, 0, nullptr, nullptr, tflite::BuiltinOptions_NONE, 0, nullptr, tflite::CustomOptionsFormat_FLEXBUFFERS, nullptr, nullptr, 0, 0, op_type, options); builder_.Finish(offset); void* pointer = builder_.GetBufferPointer(); return flatbuffers::GetRoot<Operator>(pointer); } protected: MockErrorReporter mock_reporter_; MockDataAllocator mock_allocator_; flatbuffers::FlatBufferBuilder builder_; }; TEST_F(FlatbufferConversionsTest, ParseSqueezeAll) { const Operator* op = BuildTestOperator( BuiltinOptions_SqueezeOptions, CreateSqueezeOptions(builder_).Union()); void* output_data = nullptr; EXPECT_EQ(kTfLiteOk, ParseOpData(op, BuiltinOperator_SQUEEZE, &mock_reporter_, &mock_allocator_, &output_data)); } TEST_F(FlatbufferConversionsTest, ParseDynamicReshape) { const Operator* op = BuildTestOperator( BuiltinOptions_ReshapeOptions, CreateReshapeOptions(builder_).Union()); void* output_data = nullptr; EXPECT_EQ(kTfLiteOk, ParseOpData(op, BuiltinOperator_RESHAPE, &mock_reporter_, &mock_allocator_, &output_data)); } TEST_F(FlatbufferConversionsTest, TestParseOpDataConv) { const Operator* conv_op = BuildTestOperator(BuiltinOptions_Conv2DOptions, CreateConv2DOptions(builder_, Padding_SAME, 1, 2, ActivationFunctionType_RELU, 3, 4) .Union()); void* output_data = nullptr; EXPECT_EQ(kTfLiteOk, ParseOpData(conv_op, BuiltinOperator_CONV_2D, &mock_reporter_, &mock_allocator_, &output_data)); EXPECT_NE(nullptr, output_data); TfLiteConvParams* params = reinterpret_cast<TfLiteConvParams*>(output_data); EXPECT_EQ(kTfLitePaddingSame, params->padding); EXPECT_EQ(1, params->stride_width); EXPECT_EQ(2, params->stride_height); EXPECT_EQ(kTfLiteActRelu, params->activation); EXPECT_EQ(3, params->dilation_width_factor); EXPECT_EQ(4, params->dilation_height_factor); } TEST_F(FlatbufferConversionsTest, ParseBadFullyConnected) { const Operator* conv_op = BuildTestOperator( BuiltinOptions_FullyConnectedOptions, CreateFullyConnectedOptions( builder_, ActivationFunctionType_RELU, static_cast<FullyConnectedOptionsWeightsFormat>(-1), true) .Union()); void* output_data = nullptr; EXPECT_EQ(kTfLiteError, ParseOpData(conv_op, BuiltinOperator_FULLY_CONNECTED, &mock_reporter_, &mock_allocator_, &output_data)); } TEST_F(FlatbufferConversionsTest, TestParseOpDataCustom) { const Operator* custom_op = BuildTestOperator(BuiltinOptions_NONE, flatbuffers::Offset<void>()); void* output_data = nullptr; EXPECT_EQ(kTfLiteOk, ParseOpData(custom_op, BuiltinOperator_CUSTOM, &mock_reporter_, &mock_allocator_, &output_data)); EXPECT_EQ(nullptr, output_data); } TEST_F(FlatbufferConversionsTest, TestConvertTensorType) { TfLiteType type; EXPECT_EQ(kTfLiteOk, ConvertTensorType(TensorType_FLOAT32, &type, &mock_reporter_)); EXPECT_EQ(kTfLiteFloat32, type); } TEST_F(FlatbufferConversionsTest, TestConvertTensorTypeFloat16) { TfLiteType type; EXPECT_EQ(kTfLiteOk, ConvertTensorType(TensorType_FLOAT16, &type, &mock_reporter_)); EXPECT_EQ(kTfLiteFloat16, type); } TEST_F(FlatbufferConversionsTest, TestConvertTensorTypeBFloat16) { TfLiteType type; EXPECT_EQ(kTfLiteOk, ConvertTensorType(TensorType_BFLOAT16, &type, &mock_reporter_)); EXPECT_EQ(kTfLiteBFloat16, type); } TEST_F(FlatbufferConversionsTest, TestConvertTensorTypeInt4) { TfLiteType type; EXPECT_EQ(kTfLiteOk, ConvertTensorType(TensorType_INT4, &type, &mock_reporter_)); EXPECT_EQ(kTfLiteInt4, type); } class StablehloReduceWindowFlatbufferConversionsTest : public FlatbufferConversionsTest { public: static constexpr int kMaxDims = TFLITE_STABLEHLO_REDUCE_WINDOW_PARAMS_MAX_DIMENSION_COUNT; static constexpr int64_t kValidValue = 5; auto ValidAttr() { return builder_.CreateVector(std::vector<int64_t>(kMaxDims, kValidValue)); } auto InvalidAttr() { return builder_.CreateVector( std::vector<int64_t>(kMaxDims + 1, kValidValue)); } auto ValidPaddingAttr() { return builder_.CreateVector( std::vector<int64_t>(2 * kMaxDims, kValidValue)); } auto InvalidPaddingAttr() { return builder_.CreateVector( std::vector<int64_t>(2 * kMaxDims + 1, kValidValue)); } auto EmptyAttr() { return builder_.CreateVector<int64_t>({}); } }; TEST_F(StablehloReduceWindowFlatbufferConversionsTest, Succeeds) { const Operator* stablehlo_reduce_window_op = BuildTestOperator( BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, builder_.CreateVector<int64_t>({1, 2}), builder_.CreateVector<int64_t>({3, 4}), builder_.CreateVector<int64_t>({5, 6}), builder_.CreateVector<int64_t>({7, 8}), builder_.CreateVector<int64_t>({9, 10, 11, 12}), 13) .Union()); TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ( ParseOpData(stablehlo_reduce_window_op, BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(std::make_tuple(output_data->window_dimensions, 2), ElementsAre(1, 2)); EXPECT_THAT(std::make_tuple(output_data->window_strides, 2), ElementsAre(3, 4)); EXPECT_THAT(std::make_tuple(output_data->base_dilations, 2), ElementsAre(5, 6)); EXPECT_THAT(std::make_tuple(output_data->window_dilations, 2), ElementsAre(7, 8)); EXPECT_THAT(std::make_tuple(output_data->padding, 4), ElementsAre(9, 10, 11, 12)); EXPECT_THAT(output_data->body_subgraph_index, Eq(13)); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, FailsWithNoWindowDimensions) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, 0, ValidAttr(), ValidAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT(mock_reporter_.GetString(), HasSubstr("'window_dimensions' attribute is not optional for " "'stablehlo.reduce_window' and cannot be empty.")); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, SucceedsWithNoWindowStrides) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), 0, ValidAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(mock_reporter_.GetString(), StrEq("")); EXPECT_THAT(std::make_tuple(output_data->window_dimensions, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_strides, kMaxDims), Each(1)); EXPECT_THAT(std::make_tuple(output_data->base_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->padding, 2 * kMaxDims), Each(kValidValue)); EXPECT_THAT(output_data->body_subgraph_index, Eq(13)); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, SucceedsWithNoBaseDilations) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), 0, ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(mock_reporter_.GetString(), StrEq("")); EXPECT_THAT(std::make_tuple(output_data->window_dimensions, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_strides, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->base_dilations, kMaxDims), Each(1)); EXPECT_THAT(std::make_tuple(output_data->window_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->padding, 2 * kMaxDims), Each(kValidValue)); EXPECT_THAT(output_data->body_subgraph_index, Eq(13)); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, SucceedsWithNoWindowDilations) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), ValidAttr(), 0, ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(mock_reporter_.GetString(), StrEq("")); EXPECT_THAT(std::make_tuple(output_data->window_dimensions, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_strides, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->base_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_dilations, kMaxDims), Each(1)); EXPECT_THAT(std::make_tuple(output_data->padding, 2 * kMaxDims), Each(kValidValue)); EXPECT_THAT(output_data->body_subgraph_index, Eq(13)); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, SucceedsWithNoPadding) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), ValidAttr(), ValidAttr(), 0, 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(mock_reporter_.GetString(), StrEq("")); EXPECT_THAT(std::make_tuple(output_data->window_dimensions, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_strides, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->base_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->padding, 2 * kMaxDims), Each(0)); EXPECT_THAT(output_data->body_subgraph_index, Eq(13)); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, FailsWithEmptyWindowDimensions) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, EmptyAttr(), ValidAttr(), ValidAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT(mock_reporter_.GetString(), HasSubstr("'window_dimensions' attribute is not optional for " "'stablehlo.reduce_window' and cannot be empty.")); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, SucceedsWithEmptyWindowStrides) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), EmptyAttr(), ValidAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(mock_reporter_.GetString(), StrEq("")); EXPECT_THAT(std::make_tuple(output_data->window_dimensions, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_strides, kMaxDims), Each(1)); EXPECT_THAT(std::make_tuple(output_data->base_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->padding, 2 * kMaxDims), Each(kValidValue)); EXPECT_THAT(output_data->body_subgraph_index, Eq(13)); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, SucceedsWithEmptyBaseDilations) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), EmptyAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(mock_reporter_.GetString(), StrEq("")); EXPECT_THAT(std::make_tuple(output_data->window_dimensions, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_strides, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->base_dilations, kMaxDims), Each(1)); EXPECT_THAT(std::make_tuple(output_data->window_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->padding, 2 * kMaxDims), Each(kValidValue)); EXPECT_THAT(output_data->body_subgraph_index, Eq(13)); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, SucceedsWithEmptyWindowDilations) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), ValidAttr(), EmptyAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(mock_reporter_.GetString(), StrEq("")); EXPECT_THAT(std::make_tuple(output_data->window_dimensions, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_strides, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->base_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_dilations, kMaxDims), Each(1)); EXPECT_THAT(std::make_tuple(output_data->padding, 2 * kMaxDims), Each(kValidValue)); EXPECT_THAT(output_data->body_subgraph_index, Eq(13)); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, SucceedsWithEmptyPadding) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), ValidAttr(), ValidAttr(), EmptyAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(mock_reporter_.GetString(), StrEq("")); EXPECT_THAT(std::make_tuple(output_data->window_dimensions, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_strides, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->base_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->padding, 2 * kMaxDims), Each(0)); EXPECT_THAT(output_data->body_subgraph_index, Eq(13)); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, SucceedsWithParamsAtMaxDims) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), ValidAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(mock_reporter_.GetString(), StrEq("")); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, FailsWhenWindowDimensionsHasMoreThanMaxDims) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, InvalidAttr(), ValidAttr(), ValidAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT(mock_reporter_.GetString(), AllOf(HasSubstr("Found too many dimensions in the input array of " "operation 'stablehlo.reduce_window'."), HasSubstr("Check the 'window_dimensions' attribute."))); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, FailsWhenWindowStridesHasWrongDimCount) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), InvalidAttr(), ValidAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT( mock_reporter_.GetString(), HasSubstr("'window_strides' attribute of 'stablehlo.reduce_window' does " "not have the expected size")); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, FailsWhenBaseDilationsHasWrongDimCount) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), InvalidAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT( mock_reporter_.GetString(), HasSubstr("'base_dilations' attribute of 'stablehlo.reduce_window' does " "not have the expected size")); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, FailsWhenWindowDilationsHasWrongDimCount) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), ValidAttr(), InvalidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT( mock_reporter_.GetString(), HasSubstr( "'window_dilations' attribute of 'stablehlo.reduce_window' does " "not have the expected size")); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, FailsWhenPaddingHasWrongDimCount) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), ValidAttr(), ValidAttr(), InvalidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT(mock_reporter_.GetString(), HasSubstr("'padding' attribute of 'stablehlo.reduce_window' does " "not have the expected size")); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, FailsWithWrongOptions) { const Operator* stablehlo_reduce_window_op = BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, 0); TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ( ParseOpData(stablehlo_reduce_window_op, BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT( mock_reporter_.GetString(), HasSubstr( "Could not get 'stablehlo.reduce_window' operation parameters.")); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, DeathTests) { const Operator* stablehlo_reduce_window_op = BuildTestOperator( BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), ValidAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()); TfLiteStablehloReduceWindowParams* output_data = nullptr; #ifdef NDEBUG GTEST_SKIP(); #endif EXPECT_DEATH( ParseOpData(nullptr, BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), ""); EXPECT_DEATH(ParseOpData(stablehlo_reduce_window_op, BuiltinOperator_STABLEHLO_REDUCE_WINDOW, nullptr, &mock_allocator_, (void**)&output_data), ""); EXPECT_DEATH(ParseOpData(stablehlo_reduce_window_op, BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, nullptr, (void**)&output_data), ""); EXPECT_DEATH(ParseOpData(stablehlo_reduce_window_op, BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, nullptr), ""); } class StablehloPadFlatbufferConversionsTest : public FlatbufferConversionsTest { public: static constexpr int kMaxDims = TFLITE_STABLEHLO_PAD_PARAMS_MAX_DIMENSION_COUNT; static constexpr int64_t kValidValue = 5; }; TEST_F(StablehloPadFlatbufferConversionsTest, Succeeds) { const Operator* stablehlo_pad_op = BuildTestOperator( BuiltinOptions2_StablehloPadOptions, CreateStablehloPadOptions( builder_, builder_.CreateVector<int64_t>({1, 0, -1}), builder_.CreateVector<int64_t>({2, 0, -2}), builder_.CreateVector<int64_t>({3, 0, 3})) .Union()); TfLiteStablehloPadParams* output_data = nullptr; EXPECT_EQ( ParseOpData(stablehlo_pad_op, BuiltinOperator_STABLEHLO_PAD, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(std::make_tuple(output_data->edge_padding_low, 3), ElementsAre(1, 0, -1)); EXPECT_THAT(std::make_tuple(output_data->edge_padding_high, 3), ElementsAre(2, 0, -2)); EXPECT_THAT(std::make_tuple(output_data->interior_padding, 3), ElementsAre(3, 0, 3)); } TEST_F(StablehloPadFlatbufferConversionsTest, FailsWithMissingLowPadding) { const Operator* stablehlo_pad_op = BuildTestOperator( BuiltinOptions2_StablehloPadOptions, CreateStablehloPadOptions( builder_, 0, builder_.CreateVector<int64_t>({2, 0, -2}), builder_.CreateVector<int64_t>({3, 0, 3})) .Union()); TfLiteStablehloPadParams* output_data = nullptr; EXPECT_EQ( ParseOpData(stablehlo_pad_op, BuiltinOperator_STABLEHLO_PAD, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT( mock_reporter_.GetString(), AllOf( HasSubstr("Input array not provided for operation 'stablehlo.pad'."), HasSubstr("Check the 'edge_padding_low' attribute."))); } TEST_F(StablehloPadFlatbufferConversionsTest, FailsWithMissingHighPadding) { const Operator* stablehlo_pad_op = BuildTestOperator( BuiltinOptions2_StablehloPadOptions, CreateStablehloPadOptions( builder_, builder_.CreateVector<int64_t>({1, 0, -1}), 0, builder_.CreateVector<int64_t>({3, 0, 3})) .Union()); TfLiteStablehloPadParams* output_data = nullptr; EXPECT_EQ( ParseOpData(stablehlo_pad_op, BuiltinOperator_STABLEHLO_PAD, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT( mock_reporter_.GetString(), AllOf( HasSubstr("Input array not provided for operation 'stablehlo.pad'."), HasSubstr("Check the 'edge_padding_high' attribute."))); } TEST_F(StablehloPadFlatbufferConversionsTest, FailsWithMissingInteriorPadding) { const Operator* stablehlo_pad_op = BuildTestOperator( BuiltinOptions2_StablehloPadOptions, CreateStablehloPadOptions( builder_, builder_.CreateVector<int64_t>({1, 0, -1}), builder_.CreateVector<int64_t>({2, 0, -2}), 0) .Union()); TfLiteStablehloPadParams* output_data = nullptr; EXPECT_EQ( ParseOpData(stablehlo_pad_op, BuiltinOperator_STABLEHLO_PAD, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT( mock_reporter_.GetString(), AllOf( HasSubstr("Input array not provided for operation 'stablehlo.pad'."), HasSubstr("Check the 'interior_padding' attribute."))); } TEST_F(StablehloPadFlatbufferConversionsTest, FailsInconsistentSizes) { const Operator* stablehlo_pad_op = BuildTestOperator( BuiltinOptions2_StablehloPadOptions, CreateStablehloPadOptions( builder_, builder_.CreateVector<int64_t>({1, 0, -1}), builder_.CreateVector<int64_t>({2, 0, -2}), builder_.CreateVector<int64_t>({3, 0, -3, 5})) .Union()); TfLiteStablehloPadParams* output_data = nullptr; EXPECT_EQ( ParseOpData(stablehlo_pad_op, BuiltinOperator_STABLEHLO_PAD, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT(mock_reporter_.GetString(), HasSubstr("'stablehlo.pad' operation parameter array sizes are " "not consistent.")); } TEST_F(StablehloPadFlatbufferConversionsTest, FailsWithWrongOptions) { const Operator* stablehlo_pad_op = BuildTestOperator(BuiltinOptions_NONE, 0); TfLiteStablehloPadParams* output_data = nullptr; EXPECT_EQ( ParseOpData(stablehlo_pad_op, BuiltinOperator_STABLEHLO_PAD, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT(mock_reporter_.GetString(), HasSubstr("Could not get 'stablehlo.pad' operation parameters.")); } TEST_F(StablehloPadFlatbufferConversionsTest, DeathTests) { const Operator* stablehlo_pad_op = BuildTestOperator(BuiltinOptions_NONE, 0); TfLiteStablehloPadParams* output_data = nullptr; #ifdef NDEBUG GTEST_SKIP(); #endif EXPECT_DEATH( ParseOpData(nullptr, BuiltinOperator_STABLEHLO_PAD, &mock_reporter_, &mock_allocator_, (void**)&output_data), ""); EXPECT_DEATH(ParseOpData(stablehlo_pad_op, BuiltinOperator_STABLEHLO_PAD, nullptr, &mock_allocator_, (void**)&output_data), ""); EXPECT_DEATH(ParseOpData(stablehlo_pad_op, BuiltinOperator_STABLEHLO_PAD, &mock_reporter_, nullptr, (void**)&output_data), ""); EXPECT_DEATH(ParseOpData(stablehlo_pad_op, BuiltinOperator_STABLEHLO_PAD, &mock_reporter_, &mock_allocator_, nullptr), ""); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/api/flatbuffer_conversions.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/api/flatbuffer_conversions_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
71d031db-472c-419f-8962-e94574569eb3
cpp
tensorflow/tensorflow
incremental_barrier
tensorflow/core/util/incremental_barrier.cc
tensorflow/core/util/incremental_barrier_test.cc
#include "tensorflow/core/util/incremental_barrier.h" #include <atomic> #include <functional> #include <utility> #include "absl/functional/bind_front.h" #include "tensorflow/core/platform/logging.h" namespace tensorflow { class InternalIncrementalBarrier { public: explicit InternalIncrementalBarrier(IncrementalBarrier::DoneCallback callback) : left_(1), done_callback_(std::move(callback)) {} void operator()() { DCHECK_GE(left_.load(std::memory_order_relaxed), 0); if (left_.fetch_sub(1, std::memory_order_acq_rel) - 1 == 0) { IncrementalBarrier::DoneCallback done_callback = std::move(done_callback_); delete this; done_callback(); } } IncrementalBarrier::BarrierCallback Inc() { left_.fetch_add(1, std::memory_order_acq_rel); return absl::bind_front(&InternalIncrementalBarrier::operator(), this); } private: std::atomic<int> left_; IncrementalBarrier::DoneCallback done_callback_; }; IncrementalBarrier::IncrementalBarrier(DoneCallback done_callback) : internal_barrier_( new InternalIncrementalBarrier(std::move(done_callback))) {} IncrementalBarrier::~IncrementalBarrier() { (*internal_barrier_)(); } IncrementalBarrier::BarrierCallback IncrementalBarrier::Inc() { return internal_barrier_->Inc(); } }
#include "tensorflow/core/util/incremental_barrier.h" #include <atomic> #include "absl/functional/bind_front.h" #include "absl/time/time.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/platform.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/platform/thread_annotations.h" #include "tensorflow/core/platform/threadpool.h" namespace tensorflow { namespace { class Counter { public: void Increment() TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); ++count_; } int GetCount() TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); return count_; } private: mutex mu_; int count_ = 0; }; TEST(IncrementalBarrierTest, RunInstantlyWhenZeroClosure) { Counter counter; EXPECT_EQ(counter.GetCount(), 0); { IncrementalBarrier::DoneCallback done_callback = absl::bind_front(&Counter::Increment, &counter); IncrementalBarrier barrier(done_callback); EXPECT_EQ(counter.GetCount(), 0); } EXPECT_EQ(counter.GetCount(), 1); } TEST(IncrementalBarrierTest, RunAfterNumClosuresOneNowTwoLater) { Counter counter; IncrementalBarrier::BarrierCallback bc1, bc2; { IncrementalBarrier::DoneCallback done_callback = absl::bind_front(&Counter::Increment, &counter); IncrementalBarrier barrier(done_callback); CHECK_EQ(counter.GetCount(), 0); bc1 = barrier.Inc(); bc2 = barrier.Inc(); IncrementalBarrier::BarrierCallback bc3 = barrier.Inc(); bc3(); CHECK_EQ(counter.GetCount(), 0); } CHECK_EQ(counter.GetCount(), 0); bc1(); CHECK_EQ(counter.GetCount(), 0); bc2(); CHECK_EQ(counter.GetCount(), 1); } TEST(IncrementalBarrierTest, RunAfterNumClosuresConcurrency) { const int num_closure = 100, num_thread = 2; std::atomic<int> schedule_count{0}; Counter counter; { IncrementalBarrier::DoneCallback done_callback = absl::bind_front(&Counter::Increment, &counter); IncrementalBarrier barrier(done_callback); CHECK_EQ(counter.GetCount(), 0); tensorflow::thread::ThreadPool pool(tensorflow::Env::Default(), "BarrierClosure", num_thread); for (int i = 0; i < num_closure; ++i) { pool.Schedule([&barrier, &schedule_count]() { schedule_count.fetch_add(1); IncrementalBarrier::BarrierCallback bc = barrier.Inc(); Env::Default()->SleepForMicroseconds(100); bc(); }); } CHECK_EQ(counter.GetCount(), 0); } CHECK_EQ(schedule_count.load(std::memory_order_relaxed), 100); CHECK_EQ(counter.GetCount(), 1); } #if defined(PLATFORM_GOOGLE) void BM_FunctionInc(benchmark::State& state) { IncrementalBarrier barrier([] {}); for (auto _ : state) { barrier.Inc()(); } } BENCHMARK(BM_FunctionInc); #endif } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/incremental_barrier.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/incremental_barrier_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1314d878-27b7-445b-b083-af17ea4b6829
cpp
tensorflow/tensorflow
executor
tensorflow/core/common_runtime/executor.cc
tensorflow/core/common_runtime/executor_test.cc
#include "tensorflow/core/common_runtime/executor.h" #include <algorithm> #include <atomic> #include <memory> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "absl/strings/str_join.h" #include "absl/time/time.h" #include "absl/types/optional.h" #include "tensorflow/core/activity_watcher/activity.h" #include "tensorflow/core/common_runtime/costmodel_manager.h" #include "tensorflow/core/common_runtime/entry.h" #include "tensorflow/core/common_runtime/executor_factory.h" #include "tensorflow/core/common_runtime/graph_view.h" #include "tensorflow/core/common_runtime/immutable_executor_state.h" #include "tensorflow/core/common_runtime/pending_counts.h" #include "tensorflow/core/common_runtime/propagator_state.h" #include "tensorflow/core/common_runtime/renamed_device.h" #include "tensorflow/core/common_runtime/simple_propagator_state.h" #include "tensorflow/core/common_runtime/step_stats_collector.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/framework/collective.h" #include "tensorflow/core/framework/control_flow.h" #include "tensorflow/core/framework/device_attributes.pb.h" #include "tensorflow/core/framework/log_memory.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/op_segment.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_reference.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/edgeset.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_node_util.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/lib/gtl/flatmap.h" #include "tensorflow/core/lib/gtl/inlined_vector.h" #include "tensorflow/core/lib/gtl/manual_constructor.h" #include "tensorflow/core/lib/hash/hash.h" #include "tensorflow/core/platform/context.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/profile_utils/cpu_utils.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/thread_annotations.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/lib/annotated_traceme.h" #include "tensorflow/core/profiler/lib/connected_traceme.h" #include "tensorflow/core/profiler/lib/context_types.h" #include "tensorflow/core/profiler/lib/scoped_annotation.h" #include "tensorflow/core/profiler/lib/traceme.h" #include "tensorflow/core/profiler/lib/traceme_encode.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/util/determinism.h" #include "tensorflow/core/util/managed_stack_trace.h" #include "tensorflow/core/util/tensor_slice_reader_cache.h" #include "tsl/platform/tracing.h" namespace tensorflow { namespace { static const Tensor* const kEmptyTensor = new Tensor; namespace nodestats { inline int64_t NowInNsec() { return EnvTime::NowNanos(); } void SetScheduled(NodeExecStatsInterface* stats, int64_t micros) { if (!stats) return; stats->SetScheduled(micros * EnvTime::kMicrosToNanos); } void SetAllStart(NodeExecStatsInterface* stats) { if (!stats) return; stats->RecordExecutorStarted(); } void SetOpStart(NodeExecStatsInterface* stats) { if (!stats) return; stats->RecordComputeStarted(); } void SetOpEnd(NodeExecStatsInterface* stats) { if (!stats) return; stats->RecordComputeEnded(); } void SetAllEnd(NodeExecStatsInterface* stats) { if (!stats) return; stats->RecordExecutorEnded(); } void SetOutput(NodeExecStatsInterface* stats, int slot, const Tensor* v) { if (!stats) return; stats->SetOutput(slot, v); } void SetMemory(NodeExecStatsInterface* stats, OpKernelContext* ctx) { if (!stats) return; stats->SetMemory(ctx); } } struct KernelTimer { uint64 start_cycles = profile_utils::CpuUtils::GetCurrentClockCycle(); uint64 ElapsedCycles() { return profile_utils::CpuUtils::GetCurrentClockCycle() - start_cycles; } }; typedef absl::InlinedVector<TensorValue, 4UL> TensorValueVec; typedef absl::InlinedVector<AllocatorAttributes, 4UL> AllocatorAttributeVec; class ExecutorImpl : public Executor { public: explicit ExecutorImpl(const LocalExecutorParams& p) : immutable_state_(p) {} Status Initialize(const Graph& graph) { TF_RETURN_IF_ERROR(immutable_state_.Initialize(graph)); kernel_stats_.Initialize(immutable_state_.graph_view()); return absl::OkStatus(); } private: void RunAsyncInternal(const Args& args, DoneCallback done) override; template <class PropagatorStateType> friend class ExecutorState; class KernelStats { public: KernelStats() = default; void Initialize(const GraphView& gview) { is_expensive_.resize(gview.num_nodes()); cost_estimates_ = std::make_unique<std::atomic_uint_fast64_t[]>(gview.num_nodes()); for (int32_t i = 0; i < gview.num_nodes(); ++i) { if (gview.node(i)) { is_expensive_[i] = gview.node(i)->kernel && gview.node(i)->kernel->IsExpensive(); cost_estimates_[i] = kInitialCostEstimateCycles; } } } bool IsExpensive(const NodeItem& node) const { return is_expensive_[node.node_id] && (cost_estimates_[node.node_id].load(std::memory_order_relaxed) > kOpIsExpensiveThresholdCycles); } bool HasExpensiveMarker(const NodeItem& node) const { return is_expensive_[node.node_id]; } void UpdateCostEstimate(const NodeItem& node, uint64 elapsed_cycles) { std::atomic_uint_fast64_t& cost_estimate = cost_estimates_[node.node_id]; auto prev_estimate = cost_estimate.load(std::memory_order_relaxed); uint64 new_estimate = ((kCostDecay - 1) * prev_estimate + elapsed_cycles) / kCostDecay; cost_estimate.store(new_estimate, std::memory_order_relaxed); } private: static constexpr uint64 kInitialCostEstimateCycles = 100 * 1000 * 1000; static constexpr uint64 kOpIsExpensiveThresholdCycles = 8000; static constexpr uint64 kCostDecay = 10; std::vector<bool> is_expensive_; std::unique_ptr<std::atomic_uint_fast64_t[]> cost_estimates_; }; ImmutableExecutorState immutable_state_; KernelStats kernel_stats_; ExecutorImpl(const ExecutorImpl&) = delete; void operator=(const ExecutorImpl&) = delete; }; template <class PropagatorStateType> class ExecutorState { public: ExecutorState(const Executor::Args& args, const ImmutableExecutorState& immutable_state_, ExecutorImpl::KernelStats* kernel_stats_); ~ExecutorState(); void RunAsync(Executor::DoneCallback done); private: typedef typename PropagatorStateType::TaggedNode TaggedNode; typedef typename PropagatorStateType::TaggedNodeReadyQueue TaggedNodeReadyQueue; typedef typename PropagatorStateType::TaggedNodeSeq TaggedNodeSeq; struct AsyncState; void Process(const TaggedNode& node, int64_t scheduled_nsec); void ProcessInline(TaggedNodeReadyQueue* inline_ready, int64_t scheduled_nsec); Status ProcessSync(const NodeItem& item, OpKernelContext::Params* params, EntryVector* outputs, NodeExecStatsInterface* stats); void ProcessAsync(const NodeItem& item, const OpKernelContext::Params& params, const TaggedNode& tagged_node, Entry* first_input, NodeExecStatsInterface* stats, activity_watcher::ActivityId activity_id); void ProcessNoop(NodeExecStatsInterface* stats); void ProcessConstTensor(const NodeItem& item, EntryVector* outputs, NodeExecStatsInterface* stats); Status PrepareInputs(const NodeItem& item, Entry* first_input, TensorValueVec* inputs, AllocatorAttributeVec* input_alloc_attrs, bool* is_input_dead); Status ProcessOutputs(const NodeItem& item, OpKernelContext* ctx, Entry* outputs, NodeExecStatsInterface* stats); bool NodeDone(const Status& s, TaggedNodeSeq* ready, NodeExecStatsInterface* stats, TaggedNodeReadyQueue* inline_ready); void ScheduleReady(TaggedNodeSeq* ready, TaggedNodeReadyQueue* inline_ready); template <typename Closure> void RunTask(Closure&& c, int sample_rate = 0); void Finish(); void ScheduleFinish(); DeviceContext* device_context_ = nullptr; const bool vlog_; const bool log_memory_; int64_t step_id_; int64_t trace_id_; int64_t start_time_usecs_ = 0; absl::optional<absl::Time> deadline_; static constexpr uint64 kInlineScheduleReadyThreshold = 500; RendezvousInterface* rendezvous_; CollectiveExecutor* collective_executor_ = nullptr; const ConfigProto* const session_config_; SessionState* session_state_; string session_handle_; const SessionMetadata* session_metadata_ = nullptr; TensorStore* tensor_store_; ScopedStepContainer* step_container_; StepStatsCollectorInterface* const stats_collector_; const tsl::tracing::EventCollector* const event_collector_; Context context_; checkpoint::TensorSliceReaderCacheWrapper* slice_reader_cache_; CallFrameInterface* call_frame_; const ImmutableExecutorState& immutable_state_; ExecutorImpl::KernelStats* const kernel_stats_; CancellationManager* cancellation_manager_; tsl::CoordinationServiceAgent* coordination_service_agent_; absl::optional<ManagedStackTrace> stack_trace_ = absl::nullopt; std::unique_ptr<DeviceBase> user_device_; Executor::Args::Runner runner_; bool sync_on_finish_; const bool run_all_kernels_inline_; PropagatorStateType propagator_; Executor::DoneCallback done_cb_; std::atomic_int_fast32_t num_outstanding_ops_; mutex num_deferred_ops_mu_; int64_t num_deferred_ops_ TF_GUARDED_BY(num_deferred_ops_mu_) = 0; bool finish_when_deferred_ops_done_ TF_GUARDED_BY(num_deferred_ops_mu_) = false; mutex mu_; Status status_ TF_GUARDED_BY(mu_); }; template <class PropagatorStateType> ExecutorState<PropagatorStateType>::ExecutorState( const Executor::Args& args, const ImmutableExecutorState& immutable_state, ExecutorImpl::KernelStats* kernel_stats) : vlog_(VLOG_IS_ON(1)), log_memory_(LogMemory::IsEnabled()), step_id_(args.step_id), trace_id_(args.function_trace_id ? *args.function_trace_id : step_id_), start_time_usecs_(args.start_time_usecs), deadline_(args.deadline), rendezvous_(args.rendezvous), collective_executor_(args.collective_executor), session_config_(args.session_config), session_state_(args.session_state), session_handle_(args.session_handle), session_metadata_(immutable_state.params().session_metadata), tensor_store_(args.tensor_store), step_container_(args.step_container), stats_collector_(args.stats_collector), event_collector_(tsl::tracing::GetEventCollector( tsl::tracing::EventCategory::kCompute)), context_(ContextKind::kThread), slice_reader_cache_(new checkpoint::TensorSliceReaderCacheWrapper), call_frame_(args.call_frame), immutable_state_(immutable_state), kernel_stats_(kernel_stats), cancellation_manager_(args.cancellation_manager), coordination_service_agent_(args.coordination_service_agent), stack_trace_(args.stack_trace), runner_(args.runner), sync_on_finish_(args.sync_on_finish), run_all_kernels_inline_(args.run_all_kernels_inline), propagator_(immutable_state, step_id_, vlog_), num_outstanding_ops_(0) { if (args.user_intra_op_threadpool != nullptr) { Device* device = immutable_state_.params().device; user_device_ = RenamedDevice::NewRenamedDevice( device->name(), device, false, false, args.user_intra_op_threadpool); } } template <class PropagatorStateType> ExecutorState<PropagatorStateType>::~ExecutorState() { if (device_context_) { device_context_->Unref(); } delete slice_reader_cache_; } template <class PropagatorStateType> template <typename Closure> void ExecutorState<PropagatorStateType>::RunTask(Closure&& c, int sample_rate) { alignas(64) static std::atomic<int64_t> num_enqueue_ops{0}; alignas(64) static std::atomic<int64_t> num_dequeue_ops{0}; auto n_enqueues = num_enqueue_ops.fetch_add(1, std::memory_order_relaxed); if (n_enqueues % std::max(16, sample_rate) == 0) { auto n_dequeues = num_dequeue_ops.load(std::memory_order_relaxed); metrics::UpdateGraphPendingQueueLength(n_enqueues - n_dequeues); } runner_([c = std::forward<Closure>(c)]() mutable { num_dequeue_ops.fetch_add(1, std::memory_order_relaxed); std::forward<Closure>(c)(); }); } template <class PropagatorStateType> void ExecutorState<PropagatorStateType>::RunAsync(Executor::DoneCallback done) { TaggedNodeSeq ready; Device* device = immutable_state_.params().device; const Status get_context_status = device->TryGetDeviceContext(&device_context_); if (!get_context_status.ok()) { delete this; done(get_context_status); return; } ready.reserve(immutable_state_.root_nodes().size()); propagator_.ActivateRoots(immutable_state_.root_nodes(), &ready); num_outstanding_ops_ = ready.size(); if (ready.empty()) { delete this; done(absl::OkStatus()); } else { done_cb_ = std::move(done); ScheduleReady(&ready, nullptr); } } template <class PropagatorStateType> struct ExecutorState<PropagatorStateType>::AsyncState { AsyncState(const OpKernelContext::Params& p, const TaggedNode& _tagged_node, const NodeItem* _item, Entry* _first_input, NodeExecStatsInterface* _stats) : saved_inputs(p.inputs.begin(), p.inputs.end()), saved_input_alloc_attrs(p.input_alloc_attrs.begin(), p.input_alloc_attrs.end()), params(p), tagged_node(_tagged_node), item(_item), first_input(_first_input), ctx(ParamsButClearingEigenGPUDevice(&params), item->num_outputs), stats(_stats) { params.inputs = saved_inputs; params.input_alloc_attrs = saved_input_alloc_attrs; } TensorValueVec saved_inputs; AllocatorAttributeVec saved_input_alloc_attrs; OpKernelContext::Params params; TaggedNode tagged_node; const NodeItem* item; Entry* first_input; OpKernelContext ctx; NodeExecStatsInterface* stats; private: OpKernelContext::Params* ParamsButClearingEigenGPUDevice( OpKernelContext::Params* p) { p->eigen_gpu_device = nullptr; return p; } }; bool MightTrace(const tsl::tracing::EventCollector* event_collector, bool is_expensive) { if (event_collector != nullptr) { return true; } if (tsl::profiler::ScopedAnnotation::IsEnabled()) return true; return tsl::profiler::TraceMe::Active( tsl::profiler::GetTFTraceMeLevel(is_expensive)); } template <class PropagatorStateType> Status ExecutorState<PropagatorStateType>::ProcessSync( const NodeItem& item, OpKernelContext::Params* params, EntryVector* outputs, NodeExecStatsInterface* stats) { Status s; OpKernelContext ctx(params, item.num_outputs); nodestats::SetOpStart(stats); OpKernel* op_kernel = item.kernel; Device* device = immutable_state_.params().device; const bool is_expensive = kernel_stats_->IsExpensive(item); if (TF_PREDICT_FALSE(MightTrace(event_collector_, is_expensive))) { tsl::tracing::ScopedRegion region(tsl::tracing::EventCategory::kCompute, op_kernel->name_view()); profiler::AnnotatedTraceMe activity( [op_kernel, &ctx] { return op_kernel->TraceString( ctx, tsl::profiler::TfOpDetailsEnabled()); }, tsl::profiler::GetTFTraceMeLevel(is_expensive)); device->Compute(op_kernel, &ctx); } else if (kernel_stats_->HasExpensiveMarker(item)) { KernelTimer timer; device->Compute(op_kernel, &ctx); constexpr int kKernelExecutionTrackingInvocationSkipCount = 16; if (is_expensive || timer.start_cycles % kKernelExecutionTrackingInvocationSkipCount == 0) { kernel_stats_->UpdateCostEstimate(item, timer.ElapsedCycles()); } } else { device->Compute(op_kernel, &ctx); } nodestats::SetOpEnd(stats); if (outputs->size() < item.num_outputs) outputs->resize(item.num_outputs); s = ProcessOutputs(item, &ctx, outputs->data(), stats); nodestats::SetMemory(stats, &ctx); return s; } template <class PropagatorStateType> void ExecutorState<PropagatorStateType>::ProcessAsync( const NodeItem& item, const OpKernelContext::Params& params, const TaggedNode& tagged_node, Entry* first_input, NodeExecStatsInterface* stats, activity_watcher::ActivityId activity_id) { AsyncOpKernel* async_kernel = item.kernel->AsAsync(); DCHECK(async_kernel != nullptr); AsyncState* state = new AsyncState(params, tagged_node, &item, first_input, stats); nodestats::SetOpStart(stats); { profiler::AnnotatedTraceMe activity( [async_kernel, state] { return async_kernel->TraceString( state->ctx, tsl::profiler::TfOpDetailsEnabled()); }, tsl::profiler::GetTFTraceMeLevel(false)); tsl::profiler::TraceMeProducer producer( [&] { return tsl::profiler::TraceMeEncode( "ExecutorState::ProcessAsync::Start", {{"name", async_kernel->name()}, {"kernel_type", async_kernel->type_string()}, {"step_id", step_id_}}); }, tsl::profiler::ContextType::kTfExecutor); auto done = [this, state, activity_id, ctx_id = producer.GetContextId()]() { tsl::profiler::TraceMeConsumer consumer( [&] { return profiler::TraceMeEncode( "ExecutorState::ProcessAsync::Done", {{"name", state->item->kernel->name()}, {"kernel_type", state->item->kernel->type_string()}, {"step_id", step_id_}}); }, tsl::profiler::ContextType::kTfExecutor, ctx_id); Device* device = immutable_state_.params().device; NodeExecStatsInterface* stats = state->stats; Entry* first_input = state->first_input; nodestats::SetOpEnd(stats); EntryVector outputs(state->item->num_outputs); Status s = ProcessOutputs(*state->item, &state->ctx, outputs.data(), stats); nodestats::SetMemory(stats, &state->ctx); if (vlog_) { VLOG(2) << "Async kernel done: " << state->item->node_id << " step " << step_id_ << " " << SummarizeNodeDef(state->item->kernel->def()) << (state->tagged_node.get_is_dead() ? " is dead" : "") << " device: " << device->name(); } const int num_inputs = state->item->num_inputs; for (int i = 0; i < num_inputs; ++i) { (first_input + i)->ClearVal(); } propagator_.MaybeMarkCompleted(state->tagged_node); activity_watcher::ActivityEnd(activity_id); TaggedNodeSeq ready; if (s.ok()) { propagator_.PropagateOutputs(state->tagged_node, &outputs, &ready); } outputs.clear(); const bool completed = NodeDone(s, &ready, stats, nullptr); delete state; if (completed) ScheduleFinish(); }; immutable_state_.params().device->ComputeAsync(async_kernel, &state->ctx, std::move(done)); } } template <class PropagatorStateType> void ExecutorState<PropagatorStateType>::ProcessNoop( NodeExecStatsInterface* stats) { nodestats::SetOpStart(stats); nodestats::SetOpEnd(stats); } template <class PropagatorStateType> void ExecutorState<PropagatorStateType>::ProcessConstTensor( const NodeItem& item, EntryVector* outputs, NodeExecStatsInterface* stats) { nodestats::SetOpStart(stats); nodestats::SetOpEnd(stats); Entry& output = (*outputs)[0]; output.state = Entry::State::HAS_CONST_TENSOR; output.const_tensor = item.const_tensor; output.alloc_attr = item.output_attrs()[0]; } template <class PropagatorStateType> void ExecutorState<PropagatorStateType>::Process(const TaggedNode& tagged_node, int64_t scheduled_nsec) { tsl::profiler::TraceMe traceme("ExecutorState::Process Scheduled", tsl::profiler::TraceMeLevel::kVerbose); TaggedNodeReadyQueue inline_ready; inline_ready.push_back(tagged_node); return ProcessInline(&inline_ready, scheduled_nsec); } template <class PropagatorStateType> void ExecutorState<PropagatorStateType>::ProcessInline( TaggedNodeReadyQueue* inline_ready, int64_t scheduled_nsec) { WithContext wc(context_); auto ready = std::make_unique<TaggedNodeSeq>(); auto inputs = std::make_unique<TensorValueVec>(); AllocatorAttributeVec input_alloc_attrs; auto params = std::make_unique<OpKernelContext::Params>(); params->step_id = step_id_; Device* device = immutable_state_.params().device; if (user_device_) { params->device = user_device_.get(); } else { params->device = device; } params->start_time_usecs = start_time_usecs_; params->deadline = deadline_; params->log_memory = log_memory_; params->rendezvous = rendezvous_; params->collective_executor = collective_executor_; params->session_config = session_config_; params->session_state = session_state_; params->session_handle = session_handle_; params->session_metadata = session_metadata_; params->tensor_store = tensor_store_; params->cancellation_manager = cancellation_manager_; params->coordination_service_agent = coordination_service_agent_; params->stack_trace = stack_trace_; params->call_frame = call_frame_; params->function_library = immutable_state_.params().function_library; params->resource_manager = device->resource_manager(); params->step_container = step_container_; params->slice_reader_cache = slice_reader_cache_; params->runner = &runner_; params->run_all_kernels_inline = run_all_kernels_inline_; params->stats_collector = stats_collector_; params->inc_num_deferred_ops_function = [this]() { mutex_lock lock(num_deferred_ops_mu_); num_deferred_ops_++; }; params->dec_num_deferred_ops_function = [this]() { bool finish_when_deferred_ops_done = false; { mutex_lock lock(num_deferred_ops_mu_); num_deferred_ops_--; if (num_deferred_ops_ == 0) { finish_when_deferred_ops_done = finish_when_deferred_ops_done_; } } if (finish_when_deferred_ops_done) Finish(); }; params->op_device_context = device_context_; Status s; NodeExecStatsInterface* stats = nullptr; EntryVector outputs(1); bool completed = false; int64_t last_iter_num = -1; std::unique_ptr<tsl::profiler::TraceMeConsumer> iteration_scope; while (!inline_ready->empty()) { TaggedNode tagged_node = inline_ready->front(); int64_t current_iter_num = tagged_node.get_iter_num(); if (current_iter_num != last_iter_num) { iteration_scope = std::make_unique<tsl::profiler::TraceMeConsumer>( [&] { return profiler::TraceMeEncode( "ExecutorState::Process", {{"id", step_id_}, {"iter_num", tagged_node.get_iter_num()}}); }, tsl::profiler::ContextType::kTfExecutor, trace_id_, tsl::profiler::TraceMeLevel::kInfo); last_iter_num = current_iter_num; } inline_ready->pop_front(); const NodeItem& item = tagged_node.get_node_item(); const int id = item.node_id; propagator_.MaybeMarkStarted(tagged_node); const activity_watcher::ActivityId activity_id = activity_watcher::ActivityStart( [&]() { return std::make_unique<activity_watcher::Activity>( "ExecutorState::Process", activity_watcher::ActivityCategory::kMisc, activity_watcher::Activity::Attributes{ {"node_name", item.kernel->def().name()}, {"op", item.kernel->def().op()}, {"iter_num", absl::StrCat(tagged_node.get_iter_num())}, {"step_id", absl::StrCat(params->step_id)}, {"node_id", absl::StrCat(id)}, {"device", device->name()}, {"inputs", absl::StrJoin(item.kernel->def().input(), "; ")}, {"original_node_names", absl::StrJoin(item.kernel->def() .experimental_debug_info() .original_node_names(), "; ")}, {"original_func_names", absl::StrJoin(item.kernel->def() .experimental_debug_info() .original_func_names(), "; ")}, }); }, 2); params->track_allocations = false; stats = nullptr; if (stats_collector_ && !tagged_node.get_is_dead()) { stats = stats_collector_->CreateNodeExecStats(&item.kernel->def()); params->track_allocations = stats ? stats->TrackAllocations() : false; nodestats::SetScheduled(stats, scheduled_nsec); nodestats::SetAllStart(stats); } if (vlog_) { VLOG(1) << "Process node: " << id << " step " << params->step_id << " " << SummarizeNodeDef(item.kernel->def()) << (tagged_node.get_is_dead() ? " is dead" : "") << " device: " << device->name(); } Entry* first_input = propagator_.GetInputTensors(tagged_node); bool launched_asynchronously = false; if (tagged_node.get_is_dead() && !item.is_transfer_node) { if (outputs.size() < item.num_outputs) outputs.resize(item.num_outputs); } else if (TF_PREDICT_FALSE(item.is_noop)) { ProcessNoop(stats); } else if (item.const_tensor != nullptr && !params->track_allocations) { ProcessConstTensor(item, &outputs, stats); } else { bool is_input_dead = false; s = PrepareInputs(item, first_input, inputs.get(), &input_alloc_attrs, &is_input_dead); if (!s.ok()) { const int num_inputs = item.num_inputs; for (int i = 0; i < num_inputs; ++i) { (first_input + i)->ClearVal(); } propagator_.MaybeMarkCompleted(tagged_node); activity_watcher::ActivityEnd(activity_id); completed = NodeDone(s, ready.get(), stats, inline_ready); continue; } params->op_kernel = item.kernel; params->frame_iter = propagator_.GetFrameAndIter(tagged_node); params->is_input_dead = is_input_dead; params->output_attr_array = item.output_attrs(); params->forward_from_array = item.forward_from(); params->outputs_required_array = item.outputs_required.get(); params->inputs = *inputs; params->input_alloc_attrs = input_alloc_attrs; if (item.kernel_is_async) { ProcessAsync(item, *params, tagged_node, first_input, stats, activity_id); launched_asynchronously = true; } else { s = ProcessSync(item, params.get(), &outputs, stats); } } if (!launched_asynchronously) { if (vlog_) { VLOG(2) << "Synchronous kernel done: " << id << " step " << params->step_id << " " << SummarizeNodeDef(item.kernel->def()) << (tagged_node.get_is_dead() ? " is dead: " : "") << " device: " << device->name(); } const int num_inputs = item.num_inputs; for (int i = 0; i < num_inputs; ++i) { (first_input + i)->ClearVal(); } propagator_.MaybeMarkCompleted(tagged_node); activity_watcher::ActivityEnd(activity_id); if (s.ok()) { propagator_.PropagateOutputs(tagged_node, &outputs, ready.get()); } const int num_outputs = item.num_outputs; for (int i = 0; i < num_outputs; ++i) { outputs[i].ClearVal(); } if (stats) { scheduled_nsec = nodestats::NowInNsec(); } completed = NodeDone(s, ready.get(), stats, inline_ready); } } if (completed) ScheduleFinish(); } template <class PropagatorStateType> Status ExecutorState<PropagatorStateType>::PrepareInputs( const NodeItem& item, Entry* first_input, TensorValueVec* inputs, AllocatorAttributeVec* input_alloc_attrs, bool* is_input_dead) { inputs->resize(item.num_inputs); input_alloc_attrs->resize(item.num_inputs); *is_input_dead = false; for (int i = 0; i < item.num_inputs; ++i) { const bool expect_ref = TF_PREDICT_FALSE(item.is_any_input_ref_typed) && IsRefType(item.input_type(i)); Entry* entry = first_input + i; (*input_alloc_attrs)[i] = entry->alloc_attr; TensorValue* inp = &(*inputs)[i]; switch (entry->state) { case Entry::State::NO_VALUE: { inp->mutex_if_ref = nullptr; if (item.is_merge) { inp->tensor = nullptr; } else { DCHECK(item.is_transfer_node) << item.kernel->name() << " - input " << i; entry->state = Entry::State::HAS_CONST_TENSOR; entry->const_tensor = kEmptyTensor; inp->tensor = const_cast<Tensor*>(kEmptyTensor); *is_input_dead = true; } break; } case Entry::State::HAS_VALUE: { if (TF_PREDICT_FALSE(expect_ref)) { return AttachDef( errors::InvalidArgument(i, "-th input expects a ref type"), item.kernel->def()); } inp->mutex_if_ref = nullptr; inp->tensor = entry->val.get(); break; } case Entry::State::HAS_CONST_TENSOR: { if (TF_PREDICT_FALSE(expect_ref)) { return AttachDef( errors::InvalidArgument(i, "-th input expects a ref type"), item.kernel->def()); } inp->mutex_if_ref = nullptr; inp->tensor = const_cast<Tensor*>(entry->const_tensor); break; } case Entry::State::HAS_REF_TENSOR: { { tf_shared_lock ml(*entry->ref_tensor.mu); if (TF_PREDICT_FALSE(!entry->ref_tensor.tensor->IsInitialized() && !item.is_initialization_op)) { return AttachDef(errors::FailedPrecondition( "Attempting to use uninitialized value ", item.kernel->requested_input(i)), item.kernel->def()); } } if (expect_ref) { inp->mutex_if_ref = entry->ref_tensor.mu; inp->tensor = entry->ref_tensor.tensor; } else { { mutex* ref_mu = entry->ref_tensor.mu; Tensor* ref_tensor = entry->ref_tensor.tensor; tf_shared_lock l(*ref_mu); entry->val.Init(*ref_tensor); } entry->state = Entry::State::HAS_VALUE; inp->mutex_if_ref = nullptr; inp->tensor = entry->val.get(); if (TF_PREDICT_FALSE(item.input_type(i) != inp->tensor->dtype())) { return AttachDef( errors::InvalidArgument( i, "-th input expects type ", DataTypeString(item.input_type(i)), " but automatically dereferenced input tensor has type ", DataTypeString(inp->tensor->dtype())), item.kernel->def()); } } break; } } } return absl::OkStatus(); } template <class PropagatorStateType> Status ExecutorState<PropagatorStateType>::ProcessOutputs( const NodeItem& item, OpKernelContext* ctx, Entry* outputs, NodeExecStatsInterface* stats) { Status s = ctx->status(); if (!s.ok()) { s = AttachDef(s, item.kernel->def()); if (vlog_ && VLOG_IS_ON(1)) { LOG(WARNING) << this << " Compute status: " << s; } if (s.code() == error::RESOURCE_EXHAUSTED) { if (stats_collector_) { string err = stats_collector_->ReportAllocsOnResourceExhausted(s.message()); s = errors::CreateWithUpdatedMessage(s, strings::StrCat(s.message(), err)); } else { s = errors::CreateWithUpdatedMessage( s, strings::StrCat( s.message(), "\nHint: If you want to see a list of allocated tensors when " "OOM happens, add report_tensor_allocations_upon_oom " "to RunOptions for current allocation info. This isn't " "available when running in Eager mode.\n")); } } else if (s.code() == error::UNAVAILABLE && !item.is_distributed_communication) { s = errors::ReplaceErrorFromNonCommunicationOps(s, item.kernel->name()); } return ADD_SOURCE_LOCATION(s); } for (int i = 0; i < item.num_outputs; ++i) { const TensorValue val = ctx->release_output(i); Entry* out = &outputs[i]; DCHECK(out->state == Entry::State::NO_VALUE); if (val.tensor == nullptr) { if (!(item.is_recv_or_switch || (item.outputs_required && !item.outputs_required[i]))) { s.Update(errors::Internal("Missing ", i, "-th output from ", FormatNodeDefForError(item.kernel->def()))); } } else { out->alloc_attr = ctx->output_alloc_attr(i); DataType dtype = val.dtype_safe(); if (dtype == item.output_type(i)) { if (stats && val.tensor->IsInitialized()) { nodestats::SetOutput(stats, i, val.tensor); } if (val.is_ref()) { out->state = Entry::State::HAS_REF_TENSOR; out->ref_tensor.tensor = val.tensor; out->ref_tensor.mu = val.mutex_if_ref; if (log_memory_) { Tensor to_log; { tf_shared_lock l(*out->ref_tensor.mu); to_log = *out->ref_tensor.tensor; } LogMemory::RecordTensorOutput(ctx->op_kernel().name(), ctx->step_id(), i, to_log); } } else { out->state = Entry::State::HAS_VALUE; out->val.Init(std::move(*val.tensor)); if (log_memory_) { LogMemory::RecordTensorOutput(ctx->op_kernel().name(), ctx->step_id(), i, *out->val); } } } else { s.Update( errors::Internal("Output ", i, " of type ", DataTypeString(dtype), " does not match declared output type ", DataTypeString(item.output_type(i)), " for node ", FormatNodeDefForError(item.kernel->def()))); } } if (!val.is_ref()) { delete val.tensor; } } return s; } template <class PropagatorStateType> bool ExecutorState<PropagatorStateType>::NodeDone( const Status& s, TaggedNodeSeq* ready, NodeExecStatsInterface* stats, TaggedNodeReadyQueue* inline_ready) { if (stats) { nodestats::SetAllEnd(stats); DCHECK_NE(stats_collector_, nullptr); stats->Done(immutable_state_.params().device->name()); } if (TF_PREDICT_TRUE(s.ok())) { const size_t ready_size = ready->size(); if (ready_size == 0) { return num_outstanding_ops_.fetch_sub(1) == 1; } else { if (ready_size > 1) { num_outstanding_ops_.fetch_add(ready_size - 1, std::memory_order_relaxed); } ScheduleReady(ready, inline_ready); return false; } } else { bool abort_run = false; Status maybe_derived_s(s); { mutex_lock l(mu_); if (status_.ok()) { abort_run = true; if (cancellation_manager_ && cancellation_manager_->IsCancelled() && (errors::IsCancelled(s) || errors::IsAborted(s))) { status_ = StatusGroup::MakeDerived(s); maybe_derived_s = status_; } else { status_ = s; } } } if (abort_run) { TRACEPRINTF("StartAbort: %s", s.ToString()); if (cancellation_manager_) { VLOG(1) << "[" << immutable_state_.params().device->name() << "] Executor start aborting: " << s; } if (rendezvous_) { rendezvous_->StartAbort(s); } if (cancellation_manager_) { cancellation_manager_->StartCancelWithStatus(maybe_derived_s); } else if (collective_executor_) { collective_executor_->StartAbort(s); } } return num_outstanding_ops_.fetch_sub(1) == 1; } } template <class PropagatorStateType> void ExecutorState<PropagatorStateType>::ScheduleReady( TaggedNodeSeq* ready, TaggedNodeReadyQueue* inline_ready) { tsl::profiler::TraceMe activity( [&]() { return strings::StrCat( "ExecutorState::ScheduleReady#", "ready_size=", (ready == nullptr ? -1 : ready->size()), ",inline_ready_size=", (inline_ready == nullptr ? -1 : inline_ready->size()), "#"); }, tsl::profiler::GetTFTraceMeLevel(false)); DCHECK(!ready->empty()); int64_t scheduled_nsec = 0; if (stats_collector_) { scheduled_nsec = nodestats::NowInNsec(); } if (run_all_kernels_inline_) { if (inline_ready == nullptr) { RunTask([this, ready = std::move(*ready), scheduled_nsec]() { for (auto& tagged_node : ready) { Process(tagged_node, scheduled_nsec); } }); } else { for (auto& tagged_node : *ready) { inline_ready->push_back(tagged_node); } } } else { const TaggedNode* curr_expensive_node = nullptr; TaggedNodeSeq expensive_nodes; if (inline_ready == nullptr) { for (auto& tagged_node : *ready) { RunTask([=]() { Process(tagged_node, scheduled_nsec); }, ready->size()); } } else { for (auto& tagged_node : *ready) { const NodeItem& item = *tagged_node.node_item; if (tagged_node.get_is_dead() || !kernel_stats_->IsExpensive(item)) { inline_ready->push_back(tagged_node); } else { if (curr_expensive_node) { expensive_nodes.push_back(*curr_expensive_node); } curr_expensive_node = &tagged_node; } } } if (curr_expensive_node) { if (inline_ready->empty()) { inline_ready->push_back(*curr_expensive_node); } else { expensive_nodes.push_back(*curr_expensive_node); } } if (!expensive_nodes.empty()) { if (expensive_nodes.size() < kInlineScheduleReadyThreshold) { for (auto& tagged_node : expensive_nodes) { RunTask(std::bind(&ExecutorState::Process, this, tagged_node, scheduled_nsec), expensive_nodes.size()); } } else { auto it = expensive_nodes.begin(); while (it < expensive_nodes.end()) { auto end = it; std::advance(end, kInlineScheduleReadyThreshold); if (end > expensive_nodes.end()) { end = expensive_nodes.end(); } TaggedNodeSeq ready_chunk{it, end}; RunTask( [this, ready_chunk = std::move(ready_chunk), scheduled_nsec]() { tsl::profiler::TraceMe activity( [&]() { return strings::StrCat( "ExecutorState::ScheduleReady::" "ChildThreadExpensiveNodes#", "ready_chunk_size=", ready_chunk.size(), "#"); }, tsl::profiler::GetTFTraceMeLevel(false)); for (auto& tagged_node : ready_chunk) { RunTask(std::bind(&ExecutorState::Process, this, tagged_node, scheduled_nsec), ready_chunk.size()); } }); it = end; } } } } ready->clear(); } template <class PropagatorStateType> void ExecutorState<PropagatorStateType>::ScheduleFinish() { { mutex_lock lock(num_deferred_ops_mu_); if (num_deferred_ops_ > 0) { finish_when_deferred_ops_done_ = true; return; } } Finish(); } template <class PropagatorStateType> void ExecutorState<PropagatorStateType>::Finish() { mu_.lock(); auto status = status_; auto done_cb = std::move(done_cb_); auto runner = std::move(runner_); mu_.unlock(); int64_t trace_id = trace_id_; int64_t step_id = step_id_; CHECK(done_cb != nullptr); Device* device = immutable_state_.params().device; if (vlog_ && !status.ok() && VLOG_IS_ON(1)) { propagator_.DumpState(); } if (!device->AllowsSyncOnCompletion()) { status.Update(device->RefreshStatus()); if (!status.ok()) { if (rendezvous_) { rendezvous_->StartAbort(status); } if (cancellation_manager_) { cancellation_manager_->StartCancelWithStatus(status); } else if (collective_executor_) { collective_executor_->StartAbort(status); } } delete this; runner([step_id, trace_id, status, done_cb = std::move(done_cb)]() { tsl::profiler::TraceMeConsumer activity( [&] { return tsl::profiler::TraceMeEncode("ExecutorDoneCallback", {{"id", step_id}}); }, tsl::profiler::ContextType::kTfExecutor, trace_id, tsl::profiler::TraceMeLevel::kInfo); done_cb(status); }); return; } if (sync_on_finish_ && status.ok()) { device->Sync([this, step_id, trace_id, runner = std::move(runner), done_cb = std::move(done_cb)](const Status& status) mutable { delete this; runner([step_id, trace_id, status, done_cb = std::move(done_cb)]() { tsl::profiler::TraceMeConsumer activity( [&] { return tsl::profiler::TraceMeEncode("ExecutorDoneCallback", {{"id", step_id}}); }, tsl::profiler::ContextType::kTfExecutor, trace_id, tsl::profiler::TraceMeLevel::kInfo); done_cb(status); }); }); } else { delete this; runner([step_id, trace_id, status, done_cb = std::move(done_cb)]() { tsl::profiler::TraceMeConsumer activity( [&] { return tsl::profiler::TraceMeEncode("ExecutorDoneCallback", {{"id", step_id}}); }, tsl::profiler::ContextType::kTfExecutor, trace_id, tsl::profiler::TraceMeLevel::kInfo); done_cb(status); }); } } void ExecutorImpl::RunAsyncInternal(const Args& args, DoneCallback done) { if (OpOrderDeterminismRequired()) { (new ExecutorState<OrderedPropagatorState>(args, immutable_state_, &kernel_stats_)) ->RunAsync(std::move(done)); } else if (immutable_state_.requires_control_flow_support()) { (new ExecutorState<PropagatorState>(args, immutable_state_, &kernel_stats_)) ->RunAsync(std::move(done)); } else { (new ExecutorState<SimplePropagatorState>(args, immutable_state_, &kernel_stats_)) ->RunAsync(std::move(done)); } } } Status NewLocalExecutor(const LocalExecutorParams& params, const Graph& graph, Executor** executor) { ExecutorImpl* impl = new ExecutorImpl(params); const Status s = impl->Initialize(graph); if (s.ok()) { *executor = impl; } else { delete impl; } return s; } Status CreateNonCachedKernel(Device* device, FunctionLibraryRuntime* flib, const std::shared_ptr<const NodeProperties>& props, int graph_def_version, OpKernel** kernel) { const auto device_type = DeviceType(device->attributes().device_type()); auto allocator = device->GetAllocator(AllocatorAttributes()); return CreateOpKernel(device_type, device, allocator, flib, device->resource_manager(), props, graph_def_version, kernel); } void DeleteNonCachedKernel(OpKernel* kernel) { delete kernel; } namespace { class DefaultExecutorRegistrar { public: DefaultExecutorRegistrar() { Factory* factory = new Factory; ExecutorFactory::Register("", factory); ExecutorFactory::Register("DEFAULT", factory); } private: class Factory : public ExecutorFactory { Status NewExecutor(const LocalExecutorParams& params, const Graph& graph, std::unique_ptr<Executor>* out_executor) override { Executor* ret = nullptr; TF_RETURN_IF_ERROR(NewLocalExecutor(params, std::move(graph), &ret)); out_executor->reset(ret); return absl::OkStatus(); } }; }; static DefaultExecutorRegistrar registrar; } }
#include "tensorflow/core/common_runtime/executor.h" #include <algorithm> #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/control_flow_ops_internal.h" #include "tensorflow/cc/ops/function_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h" #include "tensorflow/core/common_runtime/lower_functional_ops.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/common_runtime/step_stats_collector.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/local_rendezvous.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/rendezvous.h" #include "tensorflow/core/framework/step_stats.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/testlib.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/random/simple_philox.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/strcat.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { class ExecutorTest : public ::testing::Test { protected: ExecutorTest() : device_(DeviceFactory::NewDevice("CPU", {}, "/job:localhost/replica:0/task:0")), step_stats_collector_(&step_stats_) { SessionOptions options; thread_pool_ = ComputePool(options); } ~ExecutorTest() override { while (!rendez_->RefCountIsOne()) { LOG(INFO) << "Waiting for rendezvous to release. Current refcount: " << rendez_->RefCount(); absl::SleepFor(absl::Milliseconds(200)); LocalRendezvous::ReleaseAbortedRendezvous(); } CHECK(rendez_->Unref()); delete exec_; } void Create(std::unique_ptr<const Graph> graph) { const int version = graph->versions().producer(); LocalExecutorParams params; params.device = device_.get(); params.create_kernel = [this, version](const std::shared_ptr<const NodeProperties>& props, OpKernel** kernel) { return CreateNonCachedKernel(device_.get(), nullptr, props, version, kernel); }; params.delete_kernel = [](OpKernel* kernel) { DeleteNonCachedKernel(kernel); }; rendez_ = NewLocalRendezvous(); delete exec_; TF_CHECK_OK(NewLocalExecutor(params, *graph, &exec_)); runner_ = [this](std::function<void()> fn) { thread_pool_->Schedule(fn); }; } Status Run(Rendezvous* rendez) { Executor::Args args; args.rendezvous = rendez; args.stats_collector = &step_stats_collector_; args.runner = runner_; return exec_->Run(args); } thread::ThreadPool* thread_pool_ = nullptr; std::unique_ptr<Device> device_; Executor* exec_ = nullptr; StepStatsCollector step_stats_collector_; StepStats step_stats_; Executor::Args::Runner runner_; Rendezvous* rendez_ = nullptr; }; Tensor V(const float val) { Tensor tensor(DT_FLOAT, TensorShape({})); tensor.scalar<float>()() = val; return tensor; } Tensor VI(const int32_t val) { Tensor tensor(DT_INT32, TensorShape({})); tensor.scalar<int32>()() = val; return tensor; } Tensor VB(const bool val) { Tensor tensor(DT_BOOL, TensorShape({})); tensor.scalar<bool>()() = val; return tensor; } Tensor VD(const double val) { Tensor tensor(DT_DOUBLE, TensorShape({})); tensor.scalar<double>()() = val; return tensor; } float V(const Tensor& tensor) { CHECK_EQ(tensor.dtype(), DT_FLOAT); CHECK(TensorShapeUtils::IsScalar(tensor.shape())); return tensor.scalar<float>()(); } static uint64 kIncarnation = 1; Rendezvous::ParsedKey Key(const string& sender, const uint64 incarnation, const string& receiver, const string& name) { Rendezvous::ParsedKey result; CHECK( Rendezvous::ParseKey(Rendezvous::CreateKey(sender, incarnation, receiver, name, FrameAndIter(0, 0)), &result) .ok()); return result; } #define ALICE "/job:j/replica:0/task:0/cpu:0" #define BOB "/job:j/replica:0/task:0/device:GPU:0" TEST_F(ExecutorTest, SimpleAdd) { auto g = std::make_unique<Graph>(OpRegistry::Global()); auto in0 = test::graph::Recv(g.get(), "a", "float", ALICE, 1, BOB); auto in1 = test::graph::Recv(g.get(), "b", "float", ALICE, 1, BOB); auto tmp = test::graph::Add(g.get(), in0, in1); test::graph::Send(g.get(), tmp, "c", BOB, 1, ALICE); Create(std::move(g)); Rendezvous::Args args; TF_ASSERT_OK(rendez_->Send(Key(ALICE, kIncarnation, BOB, "a"), args, V(1.0), false)); TF_ASSERT_OK(rendez_->Send(Key(ALICE, kIncarnation, BOB, "b"), args, V(1.0), false)); TF_ASSERT_OK(Run(rendez_)); Tensor out = V(-1); bool is_dead = false; TF_ASSERT_OK( rendez_->Recv(Key(BOB, kIncarnation, ALICE, "c"), args, &out, &is_dead)); EXPECT_EQ(2.0, V(out)); } TEST_F(ExecutorTest, SelfAdd) { auto g = std::make_unique<Graph>(OpRegistry::Global()); auto v = test::graph::Recv(g.get(), "a", "float", ALICE, 1, BOB); const int N = 10; for (int i = 1; i <= N; ++i) { v = test::graph::Add(g.get(), v, v); } test::graph::Send(g.get(), v, "b", BOB, 1, ALICE); Create(std::move(g)); Rendezvous::Args args; TF_ASSERT_OK( rendez_->Send(Key(ALICE, kIncarnation, BOB, "a"), args, V(1.0), false)); TF_ASSERT_OK(Run(rendez_)); Tensor out = V(-1); bool is_dead = false; TF_ASSERT_OK( rendez_->Recv(Key(BOB, kIncarnation, ALICE, "b"), args, &out, &is_dead)); EXPECT_EQ(1024.0, V(out)); } void BuildTree(int N, Graph* g) { CHECK_GT(N, 1); auto in = test::graph::Recv(g, "a", "float", ALICE, 1, BOB); std::vector<Node*> nodes; int i = 0; for (; i < N; ++i) { nodes.push_back(test::graph::Identity(g, in, 0)); } random::PhiloxRandom philox(testing::RandomSeed(), 17); random::SimplePhilox rnd(&philox); while (nodes.size() > 1) { int x = rnd.Uniform(nodes.size()); auto in0 = nodes[x]; nodes[x] = nodes.back(); nodes.resize(nodes.size() - 1); x = rnd.Uniform(nodes.size()); auto in1 = nodes[x]; nodes[x] = test::graph::Add(g, in0, in1); } test::graph::Send(g, nodes.back(), "b", BOB, 1, ALICE); } TEST_F(ExecutorTest, RandomTree) { auto g = std::make_unique<Graph>(OpRegistry::Global()); BuildTree(4096, g.get()); Create(std::move(g)); Rendezvous::Args args; TF_ASSERT_OK( rendez_->Send(Key(ALICE, kIncarnation, BOB, "a"), args, V(1.0), false)); TF_ASSERT_OK(Run(rendez_)); Tensor out = V(-1); bool is_dead = false; TF_ASSERT_OK( rendez_->Recv(Key(BOB, kIncarnation, ALICE, "b"), args, &out, &is_dead)); EXPECT_EQ(4096.0, V(out)); } void BuildConcurrentAddAssign(Graph* g) { auto one = test::graph::Constant(g, V(1.0)); auto var = test::graph::Var(g, DT_FLOAT, TensorShape({})); auto init = test::graph::Assign(g, var, one); auto out = test::graph::Send(g, var, "out", ALICE, kIncarnation, BOB); for (int i = 0; i < 1024; ++i) { auto add = test::graph::Add(g, var, one); g->AddControlEdge(init, add); auto assign = test::graph::Assign(g, var, add); g->AddControlEdge(assign, out); } } #ifndef THREAD_SANITIZER TEST_F(ExecutorTest, ConcurrentAddAssign) { auto g = std::make_unique<Graph>(OpRegistry::Global()); BuildConcurrentAddAssign(g.get()); Create(std::move(g)); for (int iters = 0; iters < 16; ++iters) { Rendezvous* rendez = NewLocalRendezvous(); TF_ASSERT_OK(Run(rendez)); Rendezvous::Args args; Tensor out; bool is_dead; TF_ASSERT_OK(rendez->Recv(Key(ALICE, kIncarnation, BOB, "out"), args, &out, &is_dead)); VLOG(1) << "Get " << V(out); EXPECT_LE(V(out), 1025.0); rendez->Unref(); } } #endif TEST_F(ExecutorTest, SimpleSwitchLive) { auto g = std::make_unique<Graph>(OpRegistry::Global()); auto in0 = test::graph::Recv(g.get(), "a", "float", ALICE, 1, BOB); auto in1 = test::graph::Constant(g.get(), VB(false)); auto tmp = test::graph::Switch(g.get(), in0, in1); test::graph::Send(g.get(), tmp, "c", BOB, 1, ALICE); Create(std::move(g)); Rendezvous::Args args; TF_ASSERT_OK(rendez_->Send(Key(ALICE, kIncarnation, BOB, "a"), args, V(1.0), false)); TF_ASSERT_OK(Run(rendez_)); Tensor out = V(-1); bool is_dead = false; TF_ASSERT_OK( rendez_->Recv(Key(BOB, kIncarnation, ALICE, "c"), args, &out, &is_dead)); EXPECT_EQ(1.0, V(out)); EXPECT_FALSE(is_dead); } TEST_F(ExecutorTest, SimpleSwitchDead) { auto g = std::make_unique<Graph>(OpRegistry::Global()); auto in0 = test::graph::Recv(g.get(), "a", "float", ALICE, 1, BOB); auto in1 = test::graph::Constant(g.get(), VB(true)); auto tmp = test::graph::Switch(g.get(), in0, in1); test::graph::Send(g.get(), tmp, "c", BOB, 1, ALICE); Create(std::move(g)); Rendezvous::Args args; TF_ASSERT_OK(rendez_->Send(Key(ALICE, kIncarnation, BOB, "a"), args, V(1.0), false)); TF_ASSERT_OK(Run(rendez_)); Tensor out = V(-1); bool is_dead = false; TF_ASSERT_OK( rendez_->Recv(Key(BOB, kIncarnation, ALICE, "c"), args, &out, &is_dead)); EXPECT_TRUE(is_dead); } TEST_F(ExecutorTest, Abort) { auto g = std::make_unique<Graph>(OpRegistry::Global()); auto in0 = test::graph::Recv(g.get(), "a", "float", ALICE, 1, BOB); auto in1 = test::graph::Recv(g.get(), "b", "float", ALICE, 1, BOB); auto in2 = test::graph::Recv(g.get(), "c", "float", ALICE, 1, BOB); auto in3 = test::graph::Recv(g.get(), "d", "float", ALICE, 1, BOB); auto add0 = test::graph::Add(g.get(), in0, in1); auto add1 = test::graph::Add(g.get(), in2, in3); auto add2 = test::graph::Add(g.get(), add0, add1); test::graph::Send(g.get(), add2, "e", BOB, 1, ALICE); Create(std::move(g)); rendez_->Ref(); SchedClosure([this]() { Env::Default()->SleepForMicroseconds(100 * 1000); Status s = rendez_->Send(Key(ALICE, kIncarnation, BOB, "a"), Rendezvous::Args(), V(1.0), false); rendez_->Unref(); }); rendez_->Ref(); SchedClosure([this]() { Env::Default()->SleepForMicroseconds(100 * 1000); Status s = rendez_->Send(Key(ALICE, kIncarnation, BOB, "b"), Rendezvous::Args(), V(1.0), false); rendez_->Unref(); }); rendez_->Ref(); SchedClosure([this]() { Env::Default()->SleepForMicroseconds(100 * 1000); Status s = rendez_->Send(Key(ALICE, kIncarnation, BOB, "c"), Rendezvous::Args(), V(1.0), false); rendez_->Unref(); }); rendez_->Ref(); SchedClosure([this]() { Env::Default()->SleepForMicroseconds(100 * 1000); rendez_->StartAbort(errors::Aborted("")); rendez_->Unref(); }); EXPECT_TRUE(errors::IsAborted(Run(rendez_))); Tensor out = V(-1); bool is_dead = false; EXPECT_TRUE(errors::IsAborted(rendez_->Recv( Key(BOB, kIncarnation, ALICE, "c"), Rendezvous::Args(), &out, &is_dead))); } TEST_F(ExecutorTest, RecvInvalidDtype) { auto g = std::make_unique<Graph>(OpRegistry::Global()); auto one = test::graph::Recv(g.get(), "one", "float", ALICE, 1, BOB); auto var = test::graph::Var(g.get(), DT_FLOAT, TensorShape({1})); auto init = test::graph::Assign(g.get(), var, one); auto* two = test::graph::Send(g.get(), var, "two", BOB, 1, ALICE); g->AddControlEdge(init, two); Create(std::move(g)); Rendezvous* rendez = NewLocalRendezvous(); TF_ASSERT_OK(rendez->Send(Key(ALICE, 1, BOB, "one"), Rendezvous::Args(), VD(1.0), false)); EXPECT_TRUE(errors::IsInternal(Run(rendez))); Tensor output; bool is_dead; EXPECT_TRUE(errors::IsInternal(rendez->Recv( Key(BOB, 1, ALICE, "two"), Rendezvous::Args(), &output, &is_dead))); rendez->Unref(); } TEST_F(ExecutorTest, RecvInvalidRefDtype) { auto g = std::make_unique<Graph>(OpRegistry::Global()); auto var = test::graph::InvalidRefType(g.get(), DT_FLOAT, DT_DOUBLE); test::graph::Send(g.get(), var, "out", BOB, 1, ALICE); Create(std::move(g)); Rendezvous* rendez = NewLocalRendezvous(); EXPECT_TRUE(errors::IsInternal(Run(rendez))); Tensor output; bool is_dead; EXPECT_TRUE(errors::IsInternal(rendez->Recv( Key(BOB, 1, ALICE, "out"), Rendezvous::Args(), &output, &is_dead))); rendez->Unref(); } TEST_F(ExecutorTest, NoInputTensors) { auto g = std::make_unique<Graph>(OpRegistry::Global()); test::graph::Constant(g.get(), V(1.0)); Create(std::move(g)); TF_ASSERT_OK(Run(rendez_)); } static void BM_executor(::testing::benchmark::State& state) { const int width = state.range(0); const int depth = state.range(1); Graph* g = new Graph(OpRegistry::Global()); random::PhiloxRandom philox(1729, 17); random::SimplePhilox rand(&philox); uint64 cur = 0; uint32 r = 1 + rand.Rand32() % width; std::vector<Node*> ready_nodes; for (int i = 0; i < r; ++i) { ready_nodes.push_back(test::graph::NoOp(g, {})); ++cur; } std::random_device random_device; std::mt19937 rng(random_device()); for (int i = 0; i < depth; ++i) { std::shuffle(ready_nodes.begin(), ready_nodes.end(), rng); r = 1 + rand.Rand32() % (ready_nodes.size()); std::vector<Node*> control_inputs; for (int j = 0; j < r; ++j) { control_inputs.push_back(ready_nodes.back()); ready_nodes.pop_back(); } Node* n = test::graph::NoOp(g, control_inputs); ++cur; r = 1 + rand.Rand32() % width; for (int j = 0; j < r; ++j) { ready_nodes.push_back(test::graph::NoOp(g, {n})); ++cur; } } FixupSourceAndSinkEdges(g); test::Benchmark("cpu", g, false).Run(state); state.SetLabel(strings::StrCat("Nodes = ", cur)); state.SetItemsProcessed(cur * static_cast<int64_t>(state.iterations())); } BENCHMARK(BM_executor)->UseRealTime()->ArgPair(16, 1024); BENCHMARK(BM_executor)->UseRealTime()->ArgPair(32, 8192); BENCHMARK(BM_executor)->UseRealTime()->ArgPair(1024, 16); BENCHMARK(BM_executor)->UseRealTime()->ArgPair(8192, 32); BENCHMARK(BM_executor)->UseRealTime()->ArgPair(1024, 1024); static void BM_const_identity(::testing::benchmark::State& state) { const int width = state.range(0); const int outputs_per_const = state.range(1); Graph* g = new Graph(OpRegistry::Global()); for (int i = 0; i < width; ++i) { Tensor i_t(i); Node* const_node = test::graph::Constant(g, i_t); for (int j = 0; j < outputs_per_const; ++j) { test::graph::Identity(g, const_node); } } FixupSourceAndSinkEdges(g); test::Benchmark("cpu", g, false).Run(state); state.SetLabel(strings::StrCat("Nodes = ", (1 + outputs_per_const) * width)); state.SetItemsProcessed((1 + outputs_per_const) * width * static_cast<int64_t>(state.iterations())); } BENCHMARK(BM_const_identity) ->UseRealTime() ->ArgPair(1, 1) ->ArgPair(1, 100) ->ArgPair(100, 1) ->ArgPair(100, 100); static void BM_FeedInputFetchOutput(::testing::benchmark::State& state) { Graph* g = new Graph(OpRegistry::Global()); Node* x = test::graph::Recv(g, "x", "float", ALICE, 1, BOB); Node* y = test::graph::Recv(g, "y", "float", ALICE, 1, BOB); Node* sum = test::graph::Add(g, x, y); Node* z = test::graph::Send(g, sum, "z", BOB, 1, ALICE); string x_key = test::GetRendezvousKey(x); string y_key = test::GetRendezvousKey(y); string z_key = test::GetRendezvousKey(z); Tensor val(DT_FLOAT, TensorShape({})); val.scalar<float>()() = 3.14; FixupSourceAndSinkEdges(g); test::Benchmark("cpu", g, false) .RunWithRendezvousArgs({{x_key, val}, {y_key, val}}, {z_key}, state); state.SetItemsProcessed(static_cast<int64_t>(state.iterations())); } BENCHMARK(BM_FeedInputFetchOutput); Status ReplaceEdgeWithSendRecv(Graph* g, const Edge* edge, const string& tensor, const string& sender, const uint64 sender_incarnation, const string& receiver) { Node* send; NodeDef send_def; TF_CHECK_OK(NodeDefBuilder(g->NewName("n"), "_Send") .Input(edge->src()->name(), edge->src_output(), edge->src()->output_type(edge->src_output())) .Attr("tensor_name", tensor) .Attr("send_device", sender) .Attr("send_device_incarnation", static_cast<int64_t>(sender_incarnation)) .Attr("recv_device", receiver) .Finalize(&send_def)); TF_ASSIGN_OR_RETURN(send, g->AddNode(send_def)); Node* recv; NodeDef recv_def; TF_CHECK_OK( NodeDefBuilder(g->NewName("n"), "_Recv") .Attr("tensor_name", tensor) .Attr("send_device", sender) .Attr("send_device_incarnation", static_cast<int64_t>(sender_incarnation)) .Attr("recv_device", receiver) .Attr("tensor_type", edge->dst()->input_type(edge->dst_input())) .Finalize(&recv_def)); TF_ASSIGN_OR_RETURN(recv, g->AddNode(recv_def)); g->AddEdge(edge->src(), edge->src_output(), send, 0); g->AddEdge(recv, 0, edge->dst(), edge->dst_input()); g->AddControlEdge(edge->src(), recv); g->RemoveEdge(edge); return absl::OkStatus(); } static void BM_WhileLoopHelper(::testing::benchmark::State& state, int loop_iters, int loop_vars, bool lower, bool transfer) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); FunctionDefLibrary f_lib_proto; const Tensor one_t = test::AsScalar<int32>(1); std::vector<string> args; args.reserve(loop_vars); args.push_back("x: int32"); for (int i = 1; i < loop_vars; ++i) { args.push_back(strings::StrCat("x", i, ": int32")); } std::vector<string> body_rets; body_rets.reserve(loop_vars); body_rets.push_back("y: int32"); for (int i = 1; i < loop_vars; ++i) { body_rets.push_back(strings::StrCat("y", i, ": int32")); } std::vector<FunctionDefHelper::Node> body_nodes; body_nodes.reserve(1 + loop_vars); body_nodes.push_back( {{"one"}, "Const", {}, {{"value", one_t}, {"dtype", DT_INT32}}}); body_nodes.push_back({{"y"}, "Add", {"x", "one"}, {{"T", DT_INT32}}}); for (int i = 1; i < loop_vars; ++i) { body_nodes.push_back({{strings::StrCat("y", i)}, "Relu", {strings::StrCat("x", i)}, {{"T", DT_INT32}}}); } *f_lib_proto.add_function() = FunctionDefHelper::Define( "XPlusOne", args, body_rets, {}, body_nodes); const Tensor loop_iters_t = test::AsScalar<int32>(loop_iters); *f_lib_proto.add_function() = FunctionDefHelper::Define( "LessThanOrEqualToN", args, {"z: bool"}, {}, { {{"N"}, "Const", {}, {{"value", loop_iters_t}, {"dtype", DT_INT32}}}, {{"z"}, "LessEqual", {"x", "N"}, {{"T", DT_INT32}}}, }); Scope root = Scope::NewRootScope().ExitOnError(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(f_lib_proto)); auto a = ops::Const(root.WithOpName("A"), 0, {}); Node* while_node; std::vector<NodeBuilder::NodeOut> inputs; std::vector<DataType> input_types(loop_vars, DT_INT32); inputs.reserve(loop_vars); for (int i = 0; i < loop_vars; ++i) { inputs.push_back(NodeBuilder::NodeOut(a.node())); } AttrValue int32_attr; int32_attr.set_type(DT_INT32); AttrValue cond_func; cond_func.mutable_func()->set_name("LessThanOrEqualToN"); AttrValue body_func; body_func.mutable_func()->set_name("XPlusOne"); TF_ASSERT_OK( NodeBuilder("while", "While", &root.graph()->flib_def()) .Input(inputs) .Attr("T", input_types) .Attr("cond", cond_func) .Attr("body", body_func) .Attr("parallel_iterations", 20) .Attr(LowerFunctionalOpsPass::kLowerUsingSwitchMergeAttr, true) .Finalize(root.graph(), &while_node)); auto c = ops::Identity( root.WithOpName("C").WithControlDependencies(Output(while_node)), Output(while_node)); TF_ASSERT_OK(root.DoShapeInference(while_node)); TF_ASSERT_OK(root.ToGraph(graph.get())); if (lower) { FunctionLibraryDefinition flib_def(graph->flib_def()); GraphOptimizationPassOptions opt_options; SessionOptions session_options; session_options.config.mutable_graph_options() ->mutable_optimizer_options() ->set_do_function_inlining(true); opt_options.session_options = &session_options; opt_options.graph = &graph; opt_options.flib_def = &flib_def; LowerFunctionalOpsPass pass; TF_ASSERT_OK(pass.Run(opt_options)); if (transfer) { for (Node* node : graph->nodes()) { if (node->type_string() != "LoopCond") { continue; } for (const Edge* edge : node->out_edges()) { if (edge->dst()->type_string() != "Switch") { continue; } string tensor_name = strings::StrCat("c", edge->id()); TF_ASSERT_OK(ReplaceEdgeWithSendRecv(graph.get(), edge, tensor_name, BOB, 1, ALICE)); } } } } SessionOptions options; options.config.set_inter_op_parallelism_threads(4); FixupSourceAndSinkEdges(graph.get()); test::Benchmark("cpu", graph.release(), &options, nullptr, nullptr, "", false) .Run(state); } static void BM_LoweredWhileLoop(::testing::benchmark::State& state) { const int loop_iters = state.range(0); const int loop_vars = state.range(1); BM_WhileLoopHelper(state, loop_iters, loop_vars, true, false); } BENCHMARK(BM_LoweredWhileLoop) ->ArgPair(0, 1) ->ArgPair(1, 1) ->ArgPair(10, 1) ->ArgPair(100, 1) ->ArgPair(1000, 1) ->ArgPair(0, 100) ->ArgPair(1, 100) ->ArgPair(10, 100) ->ArgPair(100, 100) ->ArgPair(1000, 100); static void BM_LoweredWhileLoopWithTransfer( ::testing::benchmark::State& state) { const int loop_iters = state.range(0); const int loop_vars = state.range(1); BM_WhileLoopHelper(state, loop_iters, loop_vars, true, true); } BENCHMARK(BM_LoweredWhileLoopWithTransfer) ->ArgPair(0, 100) ->ArgPair(1, 100) ->ArgPair(10, 100) ->ArgPair(100, 100) ->ArgPair(1000, 100) ->ArgPair(1, 5000) ->ArgPair(10, 5000) ->ArgPair(100, 5000) ->ArgPair(1000, 5000); static void BM_FunctionalWhileLoop(::testing::benchmark::State& state) { const int loop_iters = state.range(0); const int loop_vars = state.range(1); BM_WhileLoopHelper(state, loop_iters, loop_vars, false, false); } BENCHMARK(BM_FunctionalWhileLoop) ->ArgPair(0, 1) ->ArgPair(1, 1) ->ArgPair(10, 1) ->ArgPair(100, 1) ->ArgPair(1000, 1) ->ArgPair(0, 100) ->ArgPair(1, 100) ->ArgPair(10, 100) ->ArgPair(100, 100) ->ArgPair(1000, 100); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/executor.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/executor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0ef74f11-3523-4202-9791-2c1beb9227af
cpp
tensorflow/tensorflow
grpc_worker_cache
tensorflow/core/distributed_runtime/rpc/grpc_worker_cache.cc
tensorflow/core/distributed_runtime/rpc/grpc_worker_cache_test.cc
#include "tensorflow/core/distributed_runtime/rpc/grpc_worker_cache.h" #include "tensorflow/core/distributed_runtime/rpc/coordination/grpc_coordination_client.h" #include "tensorflow/core/distributed_runtime/rpc/eager/grpc_eager_client.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_remote_worker.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_util.h" #include "tensorflow/core/distributed_runtime/worker_cache_logger.h" #include "tensorflow/core/distributed_runtime/worker_cache_partial.h" #include "tensorflow/core/distributed_runtime/worker_interface.h" #include "tensorflow/core/platform/cpu_info.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/util/env_var.h" namespace tensorflow { namespace { class GrpcWorkerCache : public WorkerCachePartial { public: explicit GrpcWorkerCache(std::shared_ptr<GrpcChannelCache> channel_cache, WorkerInterface* local_worker, const string& local_target, GrpcWorkerEnv* worker_env) : local_target_(local_target), local_worker_(local_worker), channel_cache_(channel_cache), worker_env_(worker_env), next_round_robin_assignment_(0) {} void ListWorkers(std::vector<string>* workers) const override { channel_cache_->ListWorkers(workers); } void ListWorkersInJob(const string& job_name, std::vector<string>* workers) const override { channel_cache_->ListWorkersInJob(job_name, workers); } WorkerInterface* GetOrCreateWorker(const string& target) override { if (target == local_target_) { return local_worker_; } else { SharedGrpcChannelPtr channel = channel_cache_->FindWorkerChannel(target); if (!channel) { return nullptr; } size_t index = AssignWorkerToThread(target); return NewGrpcRemoteWorker( channel, worker_env_->GetCompletionQueue(index), worker_env_->GetThreadPool(), &logger_, target); } } void ReleaseWorker(const string& target, WorkerInterface* worker) override { if (target == local_target_) { CHECK_EQ(worker, local_worker_) << "Releasing a worker that was not returned by this WorkerCache"; } else { WorkerCacheInterface::ReleaseWorker(target, worker); } } Status GetEagerClientCache( std::unique_ptr<eager::EagerClientCache>* eager_client_cache) override { eager_client_cache->reset(eager::NewGrpcEagerClientCache(channel_cache_)); return absl::OkStatus(); } Status GetCoordinationClientCache(std::unique_ptr<CoordinationClientCache>* coordination_client_cache) override { coordination_client_cache->reset( NewGrpcCoordinationClientCache(channel_cache_)); return absl::OkStatus(); } void SetLogging(bool v) override { logger_.SetLogging(v); } void ClearLogs() override { logger_.ClearLogs(); } bool RetrieveLogs(int64_t step_id, StepStats* ss) override { return logger_.RetrieveLogs(step_id, ss); } private: size_t AssignWorkerToThread(const string& target) { mutex_lock lock(assignment_mu_); auto it = target_assignments_.find(target); if (it == target_assignments_.end()) { it = target_assignments_ .insert(std::make_pair(target, (next_round_robin_assignment_++) % worker_env_->CompletionQueueSize())) .first; } return it->second; } const string local_target_; WorkerInterface* const local_worker_; std::shared_ptr<GrpcChannelCache> channel_cache_; WorkerCacheLogger logger_; GrpcWorkerEnv* worker_env_; mutex assignment_mu_; std::unordered_map<std::string, size_t> target_assignments_ TF_GUARDED_BY(assignment_mu_); size_t next_round_robin_assignment_ TF_GUARDED_BY(assignment_mu_); }; } GrpcWorkerEnv::GrpcWorkerEnv(size_t num_completion_queues, size_t num_threads) : threadpool_(new thread::ThreadPool( Env::Default(), ThreadOptions(), "GrpcWorkerEnvQueues", num_threads, false, nullptr)), threads_(num_completion_queues) {} GrpcWorkerEnv::~GrpcWorkerEnv() { threads_.clear(); } GrpcWorkerEnv::GrpcWorkerCacheThread::GrpcWorkerCacheThread() { thread_.reset(Env::Default()->StartThread( ThreadOptions(), "GrpcWorkerEnvPool", [this]() { void* tag; bool ok; while (completion_queue_.Next(&tag, &ok)) { GrpcClientCQTag* callback_tag = static_cast<GrpcClientCQTag*>(tag); callback_tag->OnCompleted(ok); } })); } GrpcWorkerEnv::GrpcWorkerCacheThread::~GrpcWorkerCacheThread() { completion_queue_.Shutdown(); thread_.reset(); } GrpcWorkerEnv* CreateGrpcWorkerEnv() { int num_cpus = port::NumSchedulableCPUs(); int64_t num_completion_queues; Status status = ReadInt64FromEnvVar("TF_GRPC_WORKER_CACHE_QUEUES", 64, &num_completion_queues); if (!status.ok()) { LOG(ERROR) << "Error parsing TF_GRPC_WORKER_CACHE_QUEUES: " << status; } int64_t num_threads; status = ReadInt64FromEnvVar("TF_GRPC_WORKER_CACHE_THREADS", num_cpus, &num_threads); if (!status.ok()) { LOG(ERROR) << "Error parsing TF_GRPC_WORKER_CACHE_THREADS: " << status; } return new GrpcWorkerEnv(num_completion_queues, num_threads); } WorkerCacheInterface* NewGrpcWorkerCache(std::shared_ptr<GrpcChannelCache> cc, GrpcWorkerEnv* worker_env) { return new GrpcWorkerCache(cc, nullptr, "", worker_env); } WorkerCacheInterface* NewGrpcWorkerCacheWithLocalWorker( std::shared_ptr<GrpcChannelCache> cc, GrpcWorkerEnv* worker_env, WorkerInterface* local_worker, const string& local_target) { return new GrpcWorkerCache(cc, local_worker, local_target, worker_env); } }
#include "tensorflow/core/distributed_runtime/rpc/grpc_worker_cache.h" #include "tensorflow/c/tf_status.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_channel.h" #include "tensorflow/core/distributed_runtime/test_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/strcat.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/threadpool.h" namespace tensorflow { TEST(GrpcWorkerCacheTest, NewGrpcWorkerCache) { GrpcChannelSpec spec; TF_ASSERT_OK( spec.AddHostPortsJob("worker", {{0, "a:0"}, {1, "b:1"}, {2, "c:2"}})); ChannelCreationFunction channel_func = ConvertToChannelCreationFunction(NewHostPortGrpcChannel); auto channel_cache = std::shared_ptr<GrpcChannelCache>( NewGrpcChannelCache(spec, channel_func)); std::unique_ptr<GrpcWorkerEnv> grpc_worker_env(CreateGrpcWorkerEnv()); std::unique_ptr<WorkerCacheInterface> worker_cache( NewGrpcWorkerCache(channel_cache, grpc_worker_env.get())); WorkerInterface* wi; wi = worker_cache->GetOrCreateWorker("/job:worker/replica:0/task:0"); EXPECT_NE(wi, nullptr); worker_cache->ReleaseWorker("/job:worker/replica:0/task:0", wi); wi = worker_cache->GetOrCreateWorker("/job:worker/replica:0/task:1"); EXPECT_NE(wi, nullptr); worker_cache->ReleaseWorker("/job:worker/replica:0/task:1", wi); wi = worker_cache->GetOrCreateWorker("/job:worker/replica:0/task:2"); EXPECT_NE(wi, nullptr); worker_cache->ReleaseWorker("/job:worker/replica:0/task:2", wi); wi = worker_cache->GetOrCreateWorker("/job:worker/replica:0/task:3"); EXPECT_EQ(wi, nullptr); std::unique_ptr<TestWorkerInterface> local_wi; worker_cache.reset(NewGrpcWorkerCacheWithLocalWorker( channel_cache, grpc_worker_env.get(), local_wi.get(), "local_target")); wi = worker_cache->GetOrCreateWorker("local_target"); EXPECT_EQ(wi, local_wi.get()); } TEST(GrpcWorkerCacheTest, DestructWorkerCacheInThreadPool) { GrpcChannelSpec spec; TF_ASSERT_OK( spec.AddHostPortsJob("worker", {{0, "a:0"}, {1, "b:1"}, {2, "c:2"}})); ChannelCreationFunction channel_func = ConvertToChannelCreationFunction(NewHostPortGrpcChannel); auto channel_cache = std::shared_ptr<GrpcChannelCache>( NewGrpcChannelCache(spec, channel_func)); std::unique_ptr<GrpcWorkerEnv> grpc_worker_env(CreateGrpcWorkerEnv()); WorkerCacheInterface* worker_cache = NewGrpcWorkerCache(channel_cache, grpc_worker_env.get()); thread::ThreadPool* tp = grpc_worker_env->GetThreadPool(); Notification n; tp->Schedule([worker_cache, &n] { delete worker_cache; n.Notify(); }); n.WaitForNotification(); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/rpc/grpc_worker_cache.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/rpc/grpc_worker_cache_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0ea8a6b6-b2a9-416e-9b86-777aa27c03fe
cpp
google/cel-cpp
proto_time_encoding
internal/proto_time_encoding.cc
internal/proto_time_encoding_test.cc
#include "internal/proto_time_encoding.h" #include <string> #include "google/protobuf/duration.pb.h" #include "google/protobuf/timestamp.pb.h" #include "google/protobuf/util/time_util.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/time/time.h" #include "internal/status_macros.h" #include "internal/time.h" namespace cel::internal { namespace { absl::Status Validate(absl::Time time) { if (time < cel::internal::MinTimestamp()) { return absl::InvalidArgumentError("time below min"); } if (time > cel::internal::MaxTimestamp()) { return absl::InvalidArgumentError("time above max"); } return absl::OkStatus(); } absl::Status CelValidateDuration(absl::Duration duration) { if (duration < cel::internal::MinDuration()) { return absl::InvalidArgumentError("duration below min"); } if (duration > cel::internal::MaxDuration()) { return absl::InvalidArgumentError("duration above max"); } return absl::OkStatus(); } } absl::Duration DecodeDuration(const google::protobuf::Duration& proto) { return absl::Seconds(proto.seconds()) + absl::Nanoseconds(proto.nanos()); } absl::Time DecodeTime(const google::protobuf::Timestamp& proto) { return absl::FromUnixSeconds(proto.seconds()) + absl::Nanoseconds(proto.nanos()); } absl::Status EncodeDuration(absl::Duration duration, google::protobuf::Duration* proto) { CEL_RETURN_IF_ERROR(CelValidateDuration(duration)); const int64_t s = absl::IDivDuration(duration, absl::Seconds(1), &duration); const int64_t n = absl::IDivDuration(duration, absl::Nanoseconds(1), &duration); proto->set_seconds(s); proto->set_nanos(n); return absl::OkStatus(); } absl::StatusOr<std::string> EncodeDurationToString(absl::Duration duration) { google::protobuf::Duration d; auto status = EncodeDuration(duration, &d); if (!status.ok()) { return status; } return google::protobuf::util::TimeUtil::ToString(d); } absl::Status EncodeTime(absl::Time time, google::protobuf::Timestamp* proto) { CEL_RETURN_IF_ERROR(Validate(time)); const int64_t s = absl::ToUnixSeconds(time); proto->set_seconds(s); proto->set_nanos((time - absl::FromUnixSeconds(s)) / absl::Nanoseconds(1)); return absl::OkStatus(); } absl::StatusOr<std::string> EncodeTimeToString(absl::Time time) { google::protobuf::Timestamp t; auto status = EncodeTime(time, &t); if (!status.ok()) { return status; } return google::protobuf::util::TimeUtil::ToString(t); } }
#include "internal/proto_time_encoding.h" #include "google/protobuf/duration.pb.h" #include "google/protobuf/timestamp.pb.h" #include "absl/time/time.h" #include "internal/testing.h" #include "testutil/util.h" namespace cel::internal { namespace { using ::google::api::expr::testutil::EqualsProto; TEST(EncodeDuration, Basic) { google::protobuf::Duration proto_duration; ASSERT_OK( EncodeDuration(absl::Seconds(2) + absl::Nanoseconds(3), &proto_duration)); EXPECT_THAT(proto_duration, EqualsProto("seconds: 2 nanos: 3")); } TEST(EncodeDurationToString, Basic) { ASSERT_OK_AND_ASSIGN( std::string json, EncodeDurationToString(absl::Seconds(5) + absl::Nanoseconds(20))); EXPECT_EQ(json, "5.000000020s"); } TEST(EncodeTime, Basic) { google::protobuf::Timestamp proto_timestamp; ASSERT_OK(EncodeTime(absl::FromUnixMillis(300000), &proto_timestamp)); EXPECT_THAT(proto_timestamp, EqualsProto("seconds: 300")); } TEST(EncodeTimeToString, Basic) { ASSERT_OK_AND_ASSIGN(std::string json, EncodeTimeToString(absl::FromUnixMillis(80030))); EXPECT_EQ(json, "1970-01-01T00:01:20.030Z"); } TEST(DecodeDuration, Basic) { google::protobuf::Duration proto_duration; proto_duration.set_seconds(450); proto_duration.set_nanos(4); EXPECT_EQ(DecodeDuration(proto_duration), absl::Seconds(450) + absl::Nanoseconds(4)); } TEST(DecodeTime, Basic) { google::protobuf::Timestamp proto_timestamp; proto_timestamp.set_seconds(450); EXPECT_EQ(DecodeTime(proto_timestamp), absl::FromUnixSeconds(450)); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/internal/proto_time_encoding.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/internal/proto_time_encoding_test.cc
4552db5798fb0853b131b783d8875794334fae7f
c8984e03-8b10-44e4-81f8-3b0019417a42
cpp
abseil/abseil-cpp
str_replace
absl/strings/str_replace.cc
absl/strings/str_replace_test.cc
#include "absl/strings/str_replace.h" #include <cstddef> #include <initializer_list> #include <string> #include <utility> #include <vector> #include "absl/base/config.h" #include "absl/base/nullability.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace strings_internal { using FixedMapping = std::initializer_list<std::pair<absl::string_view, absl::string_view>>; int ApplySubstitutions( absl::string_view s, absl::Nonnull<std::vector<strings_internal::ViableSubstitution>*> subs_ptr, absl::Nonnull<std::string*> result_ptr) { auto& subs = *subs_ptr; int substitutions = 0; size_t pos = 0; while (!subs.empty()) { auto& sub = subs.back(); if (sub.offset >= pos) { if (pos <= s.size()) { StrAppend(result_ptr, s.substr(pos, sub.offset - pos), sub.replacement); } pos = sub.offset + sub.old.size(); substitutions += 1; } sub.offset = s.find(sub.old, pos); if (sub.offset == s.npos) { subs.pop_back(); } else { size_t index = subs.size(); while (--index && subs[index - 1].OccursBefore(subs[index])) { std::swap(subs[index], subs[index - 1]); } } } result_ptr->append(s.data() + pos, s.size() - pos); return substitutions; } } std::string StrReplaceAll(absl::string_view s, strings_internal::FixedMapping replacements) { return StrReplaceAll<strings_internal::FixedMapping>(s, replacements); } int StrReplaceAll(strings_internal::FixedMapping replacements, absl::Nonnull<std::string*> target) { return StrReplaceAll<strings_internal::FixedMapping>(replacements, target); } ABSL_NAMESPACE_END }
#include "absl/strings/str_replace.h" #include <list> #include <map> #include <string> #include <tuple> #include <utility> #include <vector> #include "gtest/gtest.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" TEST(StrReplaceAll, OneReplacement) { std::string s; s = absl::StrReplaceAll(s, {{"", ""}}); EXPECT_EQ(s, ""); s = absl::StrReplaceAll(s, {{"x", ""}}); EXPECT_EQ(s, ""); s = absl::StrReplaceAll(s, {{"", "y"}}); EXPECT_EQ(s, ""); s = absl::StrReplaceAll(s, {{"x", "y"}}); EXPECT_EQ(s, ""); s = absl::StrReplaceAll("abc", {{"", ""}}); EXPECT_EQ(s, "abc"); s = absl::StrReplaceAll("abc", {{"", "y"}}); EXPECT_EQ(s, "abc"); s = absl::StrReplaceAll("abc", {{"x", ""}}); EXPECT_EQ(s, "abc"); s = absl::StrReplaceAll("abc", {{"xyz", "123"}}); EXPECT_EQ(s, "abc"); s = absl::StrReplaceAll("abc", {{"abc", "xyz"}}); EXPECT_EQ(s, "xyz"); s = absl::StrReplaceAll("abc", {{"a", "x"}}); EXPECT_EQ(s, "xbc"); s = absl::StrReplaceAll("abc", {{"b", "x"}}); EXPECT_EQ(s, "axc"); s = absl::StrReplaceAll("abc", {{"c", "x"}}); EXPECT_EQ(s, "abx"); s = absl::StrReplaceAll("ababa", {{"a", "xxx"}}); EXPECT_EQ(s, "xxxbxxxbxxx"); s = absl::StrReplaceAll("ababa", {{"b", "xxx"}}); EXPECT_EQ(s, "axxxaxxxa"); s = absl::StrReplaceAll("aaabaaabaaa", {{"aaa", "x"}}); EXPECT_EQ(s, "xbxbx"); s = absl::StrReplaceAll("abbbabbba", {{"bbb", "x"}}); EXPECT_EQ(s, "axaxa"); s = absl::StrReplaceAll("aaa", {{"aa", "x"}}); EXPECT_EQ(s, "xa"); s = absl::StrReplaceAll("aaa", {{"aa", "a"}}); EXPECT_EQ(s, "aa"); } TEST(StrReplaceAll, ManyReplacements) { std::string s; s = absl::StrReplaceAll("", {{"", ""}, {"x", ""}, {"", "y"}, {"x", "y"}}); EXPECT_EQ(s, ""); s = absl::StrReplaceAll("abc", {{"", ""}, {"", "y"}, {"x", ""}}); EXPECT_EQ(s, "abc"); s = absl::StrReplaceAll("abc", {{"a", "x"}, {"b", "y"}, {"c", "z"}}); EXPECT_EQ(s, "xyz"); s = absl::StrReplaceAll("zxy", {{"z", "x"}, {"x", "y"}, {"y", "z"}}); EXPECT_EQ(s, "xyz"); s = absl::StrReplaceAll("abc", {{"a", "x"}, {"ab", "xy"}, {"abc", "xyz"}}); EXPECT_EQ(s, "xyz"); s = absl::StrReplaceAll( "Abc!", {{"a", "x"}, {"ab", "xy"}, {"b", "y"}, {"bc", "yz"}, {"c", "z"}}); EXPECT_EQ(s, "Ayz!"); s = absl::StrReplaceAll( "Abc!", {{"a", "x"}, {"ab", "xy"}, {"b", "y"}, {"bc!", "yz?"}, {"c!", "z;"}}); EXPECT_EQ(s, "Ayz?"); s = absl::StrReplaceAll("ababa", {{"a", "xxx"}, {"b", "XXXX"}}); EXPECT_EQ(s, "xxxXXXXxxxXXXXxxx"); s = absl::StrReplaceAll("aaa", {{"aa", "x"}, {"a", "X"}}); EXPECT_EQ(s, "xX"); s = absl::StrReplaceAll("aaa", {{"a", "X"}, {"aa", "x"}}); EXPECT_EQ(s, "xX"); s = absl::StrReplaceAll("the quick brown fox jumped over the lazy dogs", { {"brown", "box"}, {"dogs", "jugs"}, {"fox", "with"}, {"jumped", "five"}, {"over", "dozen"}, {"quick", "my"}, {"the", "pack"}, {"the lazy", "liquor"}, }); EXPECT_EQ(s, "pack my box with five dozen liquor jugs"); } TEST(StrReplaceAll, ManyReplacementsInMap) { std::map<const char *, const char *> replacements; replacements["$who"] = "Bob"; replacements["$count"] = "5"; replacements["#Noun"] = "Apples"; std::string s = absl::StrReplaceAll("$who bought $count #Noun. Thanks $who!", replacements); EXPECT_EQ("Bob bought 5 Apples. Thanks Bob!", s); } TEST(StrReplaceAll, ReplacementsInPlace) { std::string s = std::string("$who bought $count #Noun. Thanks $who!"); int count; count = absl::StrReplaceAll({{"$count", absl::StrCat(5)}, {"$who", "Bob"}, {"#Noun", "Apples"}}, &s); EXPECT_EQ(count, 4); EXPECT_EQ("Bob bought 5 Apples. Thanks Bob!", s); } TEST(StrReplaceAll, ReplacementsInPlaceInMap) { std::string s = std::string("$who bought $count #Noun. Thanks $who!"); std::map<absl::string_view, absl::string_view> replacements; replacements["$who"] = "Bob"; replacements["$count"] = "5"; replacements["#Noun"] = "Apples"; int count; count = absl::StrReplaceAll(replacements, &s); EXPECT_EQ(count, 4); EXPECT_EQ("Bob bought 5 Apples. Thanks Bob!", s); } struct Cont { Cont() = default; explicit Cont(absl::string_view src) : data(src) {} absl::string_view data; }; template <int index> absl::string_view get(const Cont& c) { auto splitter = absl::StrSplit(c.data, ':'); auto it = splitter.begin(); for (int i = 0; i < index; ++i) ++it; return *it; } TEST(StrReplaceAll, VariableNumber) { std::string s; { std::vector<std::pair<std::string, std::string>> replacements; s = "abc"; EXPECT_EQ(0, absl::StrReplaceAll(replacements, &s)); EXPECT_EQ("abc", s); s = "abc"; replacements.push_back({"a", "A"}); EXPECT_EQ(1, absl::StrReplaceAll(replacements, &s)); EXPECT_EQ("Abc", s); s = "abc"; replacements.push_back({"b", "B"}); EXPECT_EQ(2, absl::StrReplaceAll(replacements, &s)); EXPECT_EQ("ABc", s); s = "abc"; replacements.push_back({"d", "D"}); EXPECT_EQ(2, absl::StrReplaceAll(replacements, &s)); EXPECT_EQ("ABc", s); EXPECT_EQ("ABcABc", absl::StrReplaceAll("abcabc", replacements)); } { std::map<const char*, const char*> replacements; replacements["aa"] = "x"; replacements["a"] = "X"; s = "aaa"; EXPECT_EQ(2, absl::StrReplaceAll(replacements, &s)); EXPECT_EQ("xX", s); EXPECT_EQ("xxX", absl::StrReplaceAll("aaaaa", replacements)); } { std::list<std::pair<absl::string_view, absl::string_view>> replacements = { {"a", "x"}, {"b", "y"}, {"c", "z"}}; std::string s = absl::StrReplaceAll("abc", replacements); EXPECT_EQ(s, "xyz"); } { using X = std::tuple<absl::string_view, std::string, int>; std::vector<X> replacements(3); replacements[0] = X{"a", "x", 1}; replacements[1] = X{"b", "y", 0}; replacements[2] = X{"c", "z", -1}; std::string s = absl::StrReplaceAll("abc", replacements); EXPECT_EQ(s, "xyz"); } { std::vector<Cont> replacements(3); replacements[0] = Cont{"a:x"}; replacements[1] = Cont{"b:y"}; replacements[2] = Cont{"c:z"}; std::string s = absl::StrReplaceAll("abc", replacements); EXPECT_EQ(s, "xyz"); } } TEST(StrReplaceAll, Inplace) { std::string s; int reps; s = ""; reps = absl::StrReplaceAll({{"", ""}, {"x", ""}, {"", "y"}, {"x", "y"}}, &s); EXPECT_EQ(reps, 0); EXPECT_EQ(s, ""); s = "abc"; reps = absl::StrReplaceAll({{"", ""}, {"", "y"}, {"x", ""}}, &s); EXPECT_EQ(reps, 0); EXPECT_EQ(s, "abc"); s = "abc"; reps = absl::StrReplaceAll({{"a", "x"}, {"b", "y"}, {"c", "z"}}, &s); EXPECT_EQ(reps, 3); EXPECT_EQ(s, "xyz"); s = "zxy"; reps = absl::StrReplaceAll({{"z", "x"}, {"x", "y"}, {"y", "z"}}, &s); EXPECT_EQ(reps, 3); EXPECT_EQ(s, "xyz"); s = "abc"; reps = absl::StrReplaceAll({{"a", "x"}, {"ab", "xy"}, {"abc", "xyz"}}, &s); EXPECT_EQ(reps, 1); EXPECT_EQ(s, "xyz"); s = "Abc!"; reps = absl::StrReplaceAll( {{"a", "x"}, {"ab", "xy"}, {"b", "y"}, {"bc", "yz"}, {"c", "z"}}, &s); EXPECT_EQ(reps, 1); EXPECT_EQ(s, "Ayz!"); s = "Abc!"; reps = absl::StrReplaceAll( {{"a", "x"}, {"ab", "xy"}, {"b", "y"}, {"bc!", "yz?"}, {"c!", "z;"}}, &s); EXPECT_EQ(reps, 1); EXPECT_EQ(s, "Ayz?"); s = "ababa"; reps = absl::StrReplaceAll({{"a", "xxx"}, {"b", "XXXX"}}, &s); EXPECT_EQ(reps, 5); EXPECT_EQ(s, "xxxXXXXxxxXXXXxxx"); s = "aaa"; reps = absl::StrReplaceAll({{"aa", "x"}, {"a", "X"}}, &s); EXPECT_EQ(reps, 2); EXPECT_EQ(s, "xX"); s = "aaa"; reps = absl::StrReplaceAll({{"a", "X"}, {"aa", "x"}}, &s); EXPECT_EQ(reps, 2); EXPECT_EQ(s, "xX"); s = "the quick brown fox jumped over the lazy dogs"; reps = absl::StrReplaceAll( { {"brown", "box"}, {"dogs", "jugs"}, {"fox", "with"}, {"jumped", "five"}, {"over", "dozen"}, {"quick", "my"}, {"the", "pack"}, {"the lazy", "liquor"}, }, &s); EXPECT_EQ(reps, 8); EXPECT_EQ(s, "pack my box with five dozen liquor jugs"); }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/str_replace.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/str_replace_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
914cb876-e268-4338-974a-bdc42eb9ee1a
cpp
tensorflow/tensorflow
triton_tiling_propagation
third_party/xla/xla/service/gpu/triton_tiling_propagation.cc
third_party/xla/xla/service/gpu/triton_tiling_propagation_test.cc
#include "xla/service/gpu/triton_tiling_propagation.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <iterator> #include <list> #include <optional> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/layout.h" #include "xla/permutation_util.h" #include "xla/service/gpu/fusions/triton/triton_support.h" #include "xla/service/gpu/fusions/triton/triton_support_legacy.h" #include "xla/service/instruction_fusion.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" namespace xla { namespace gpu { namespace { absl::flat_hash_map<int, TensorIterationSpec::DimIterationSpec> FilterTrivialDims( const absl::flat_hash_map<int, TensorIterationSpec::DimIterationSpec>& dim_iter_specs) { absl::flat_hash_map<int, TensorIterationSpec::DimIterationSpec> non_trivial_dim_iteration_specs; for (const auto& [dim, dim_spec] : dim_iter_specs) { if (dim_spec.size() == 1 && dim_spec[0].count == 1) { continue; } non_trivial_dim_iteration_specs[dim] = dim_spec; } return non_trivial_dim_iteration_specs; } } const TensorIterationSpec::DimIterationSpec* TensorIterationSpec::Find( const int dimension) const { if (auto it = dim_iteration_specs_.find(dimension); it != dim_iteration_specs_.end()) { return &it->second; } return nullptr; } std::vector<int> TensorIterationSpec::GetDimensions() const { std::vector<int> result; result.reserve(dim_iteration_specs_.size()); for (const auto& [dim, _] : dim_iteration_specs_) { result.push_back(dim); } return result; } bool TensorIterationSpec::IsPhysicallyEquivalent( const TensorIterationSpec& other) const { const absl::flat_hash_map<int, DimIterationSpec> non_trivial_dim_iteration_specs = FilterTrivialDims(dim_iteration_specs_); const absl::flat_hash_map<int, DimIterationSpec> other_non_trivial_dim_iteration_specs = FilterTrivialDims(other.dim_iteration_specs_); if (non_trivial_dim_iteration_specs.size() != other_non_trivial_dim_iteration_specs.size()) { return false; } for (const auto& pair : non_trivial_dim_iteration_specs) { int dimension = pair.first; const DimIterationSpec& dim_iter_spec = pair.second; auto other_it = other_non_trivial_dim_iteration_specs.find(dimension); if (other_it == other_non_trivial_dim_iteration_specs.end()) { return false; } const DimIterationSpec& other_dim_iter_spec = other_it->second; if (dim_iter_spec.size() != other_dim_iter_spec.size()) { return false; } for (size_t i = 0; i < dim_iter_spec.size(); i++) { if (!dim_iter_spec[i].IsPhysicallyEquivalent(other_dim_iter_spec[i])) { return false; } } } return true; } std::string TensorIterationSpec::IterationSpecFragment::ToString() const { return absl::StrCat("{stride=", stride, ", count=", count, ", slice_start=", slice_start, ", sliced_count=", sliced_count, ", subfragments=[", absl::StrJoin(subfragments, ", "), "]}"); } std::string TensorIterationSpec::ToString() const { return absl::StrCat( "{", absl::StrJoin(dim_iteration_specs_, ", ", [&](std::string* s, const auto& kv) { absl::StrAppend( s, kv.first, ": ", "[", absl::StrJoin(kv.second, ", ", [&](std::string* ss, const auto& v) { absl::StrAppend(ss, v.ToString()); }), "]"); }), "}"); } namespace triton_fusion { using Fragment = DimensionOrder::Fragment; using Fragments = DimensionOrder::Fragments; using FragmentOrders = DimensionOrder::FragmentOrders; DimensionOrder DimensionOrder::FromDotOperandOrOutput( const HloInstruction& hlo, const int split_k_dimension_index) { DimensionOrder dim_order; dim_order.tensor_fragments_order_.reserve(hlo.shape().rank()); for (const int i : hlo.shape().layout().minor_to_major()) { int target_dim_number = i; if (i == split_k_dimension_index) { CHECK(!dim_order.tensor_fragments_order_.empty()) << "The split-K batch dimension has be preceded by the contracting " "dimension it originates from by construction."; target_dim_number = dim_order.tensor_fragments_order_.back().dst_dim_number(); } dim_order.dim_fragments_orders_[target_dim_number].push_back( dim_order.tensor_fragments_order_.size()); dim_order.tensor_fragments_order_.push_back( Fragment{target_dim_number, hlo.shape().dimensions(i)}); } return dim_order; } std::string DimensionOrder::Fragment::ToString() const { return absl::StrCat(dst_dim_number_, ":", count_, ":", slice_start_, "-", sliced_count_); } std::string DimensionOrder::ToString() const { std::string ret = absl::StrJoin(tensor_fragments_order_, " - ", [](std::string* out, const Fragment& f) { absl::StrAppend(out, f.ToString(), " "); }); absl::StrAppend(&ret, "|"); for (const auto& [dim, fragments] : dim_fragments_orders_) { absl::StrAppend(&ret, dim, ":", absl::StrJoin(fragments, ","), " "); } return ret; } TensorIterationSpec DimensionOrder::ToTensorIterationSpec() const { const Fragments& dim_fragments = TensorFragmentsOrder(); TensorIterationSpec tensor_spec; int64_t accumulated_stride = 1; int last_dim = -1; for (int dim_order_index = 0; dim_order_index < dim_fragments.size(); ++dim_order_index) { const DimensionOrder::Fragment& fragment = dim_fragments[dim_order_index]; VLOG(6) << fragment.ToString(); TensorIterationSpec::DimIterationSpec& dim_spec = tensor_spec[fragment.dst_dim_number()]; if (last_dim == fragment.dst_dim_number()) { if (!dim_spec.empty() && !dim_spec.back().subfragments.empty() && dim_spec.back().subfragments.back() == 1) { dim_spec.back().subfragments.pop_back(); } if (fragment.full_count() > 1) { CHECK(!dim_spec.empty()); CHECK(!dim_spec.back().is_sliced()) << "Only the major-most fragment can have an offset."; dim_spec.back().slice_start = fragment.slice_start() * dim_spec.back().count; dim_spec.back().sliced_count = fragment.sliced_count() * dim_spec.back().count; dim_spec.back().count *= fragment.full_count(); dim_spec.back().subfragments.push_back(fragment.sliced_count()); } } else { dim_spec.push_back(TensorIterationSpec::IterationSpecFragment{ accumulated_stride, fragment.full_count(), fragment.slice_start(), fragment.sliced_count(), {fragment.sliced_count()}}); } accumulated_stride *= fragment.full_count(); last_dim = fragment.dst_dim_number(); } for (int dim_idx : tensor_spec.GetDimensions()) { TensorIterationSpec::DimIterationSpec& dim_spec = tensor_spec[dim_idx]; if (dim_spec.size() <= 1) continue; TensorIterationSpec::DimIterationSpec filtered_dim_spec; absl::c_copy_if(dim_spec, std::back_inserter(filtered_dim_spec), [](const TensorIterationSpec::IterationSpecFragment& f) { return f.count != 1; }); tensor_spec[dim_idx] = filtered_dim_spec; } tensor_spec.RemoveEmptyDimensions(); return tensor_spec; } namespace { std::optional<int> LogicalIndexOfLabeledDimension( const Shape& shape, const DimensionOrder& dim_order, const int label) { auto fragment_it = dim_order.TensorFragmentsOrder().cbegin(); for (int dim : shape.layout().minor_to_major()) { const int64_t dim_size = shape.dimensions()[dim]; int64_t fragments_size = 1; while (fragments_size < dim_size) { fragments_size *= fragment_it->full_count(); if (fragment_it->dst_dim_number() == label) { return dim; } ++fragment_it; } } return std::nullopt; } using Int64OrError = std::variant<int64_t, FusionDecision>; Int64OrError CombineSplitDimMajorPartSizeReqs(int64_t a, int64_t b) { if (a == b || b == kNoSplitRequirement) { return a; } if (a == kNoSplitRequirement) { return b; } return FusionDecision::Forbid("Conflicting splits of splittable dimension"); } } DotRequirementsOrError CombineDotRequirements( DotRequirements a, DotRequirementsOrError b_or_error) { if (std::holds_alternative<FusionDecision>(b_or_error)) { return b_or_error; } const DotRequirements& b = std::get<DotRequirements>(b_or_error); Int64OrError combined_size_req = CombineSplitDimMajorPartSizeReqs(a.splittable_dimension_major_part_size, b.splittable_dimension_major_part_size); if (std::holds_alternative<FusionDecision>(combined_size_req)) { return std::get<FusionDecision>(combined_size_req); } return DotRequirements(std::get<int64_t>(combined_size_req)); } namespace { DotRequirementsOrError GetRequirementsIfSupportedOrder( const DimensionOrder& order, const DotProperties& properties) { VLOG(8) << order.ToString(); int64_t split_dim_major_part = kNoSplitRequirement; const Fragments& tensor_dim_fragments = order.TensorFragmentsOrder(); for (const auto& [dim_index, dim_fragments] : order.DimFragmentsOrders()) { CHECK(!dim_fragments.empty()); for (int i = 0; i < dim_fragments.size() - 1; ++i) { if (tensor_dim_fragments[dim_fragments[i]].is_sliced()) { return FusionDecision::Forbid("Sliced non-major-most fragment."); } } int group_counter = 0; int last_seen_group_last_fragment_index = -1; auto fragment_it = dim_fragments.cbegin(); while (true) { if (fragment_it == dim_fragments.cend()) { break; } int64_t grouped_size = tensor_dim_fragments[*fragment_it].full_count(); while ((fragment_it + 1) != dim_fragments.cend() && *(fragment_it + 1) == *fragment_it + 1) { ++fragment_it; grouped_size *= tensor_dim_fragments[*fragment_it].full_count(); } if (grouped_size == 1) { ++fragment_it; continue; } if (last_seen_group_last_fragment_index > *fragment_it) { return FusionDecision::Forbid("Transpose within a dimension."); } ++group_counter; if (group_counter > 1) { const int splittable_dimension_index = properties.splittable_dimension_index; if (dim_index == splittable_dimension_index) { if (group_counter == 2) { if (split_dim_major_part != kNoSplitRequirement && split_dim_major_part != grouped_size) { return FusionDecision::Forbid( "Conflicting splits of splittable dimension"); } split_dim_major_part = grouped_size; } else if (group_counter > 2) { return FusionDecision::Forbid( "2nd split of a splittable dimension."); } } else { return FusionDecision::Forbid("Unsupported split of a dimension."); } } last_seen_group_last_fragment_index = *fragment_it; ++fragment_it; } } return DotRequirements(split_dim_major_part); } DotRequirementsOrError GetRequirementsIfSupportedOrders( const HloInstruction& hlo, const DimOrderMap& dim_orders, const DotProperties& properties) { const DotRequirements empty_requirements(kNoSplitRequirement); auto get_requirements = [&](const HloInstruction& instr) -> DotRequirementsOrError { if (auto it = dim_orders.find(&instr); it != dim_orders.end()) { return GetRequirementsIfSupportedOrder(it->second, properties); } return empty_requirements; }; DotRequirements requirements = empty_requirements; for (const HloInstruction* operand : hlo.operands()) { DotRequirementsOrError requirements_or_error = CombineDotRequirements(requirements, get_requirements(*operand)); if (std::holds_alternative<FusionDecision>(requirements_or_error)) { return requirements_or_error; } requirements = std::get<DotRequirements>(requirements_or_error); } return CombineDotRequirements(requirements, get_requirements(hlo)); } DimOrderMap GetPropagatedDimOrdersForElementwise( const HloInstruction& hlo, TransformDirection direction, const DimensionOrder& src_dim_order) { if (direction == TransformDirection::kOutputToInput) { DimOrderMap map; for (const HloInstruction* operand : hlo.operands()) { map.insert({operand, src_dim_order}); } return map; } return {{&hlo, src_dim_order}}; } const HloInstruction& GetSourceHlo(const HloInstruction& hlo, TransformDirection direction) { CHECK_GE(hlo.operand_count(), 1); if (direction == TransformDirection::kOutputToInput) { return hlo; } return *hlo.operand(0); } using ConstInstructionVector = absl::InlinedVector<const HloInstruction*, 2>; ConstInstructionVector GetDestHlos(const HloInstruction& hlo, TransformDirection direction) { if (direction == TransformDirection::kInputToOutput) { return {&hlo}; } ConstInstructionVector hlos; hlos.reserve(hlo.operands().size()); for (const HloInstruction* operand : hlo.operands()) { hlos.push_back(operand); } return hlos; } const HloInstruction& GetDestHlo(const HloInstruction& hlo, TransformDirection direction) { CHECK_EQ(hlo.operand_count(), 1); if (direction == TransformDirection::kInputToOutput) { return hlo; } return *hlo.operand(0); } DimOrderMapOrError GetPropagatedDimOrdersForBitcast( const HloInstruction& hlo, const TransformDirection direction, const DimensionOrder& src_dim_order, const DotProperties& properties) { const HloInstruction& dst = GetDestHlo(hlo, direction); const Shape& dst_shape = dst.shape(); const Fragments& src_fragments_order = src_dim_order.TensorFragmentsOrder(); DimOrderMap dst_dim_orders; DimensionOrder& dst_dim_order = dst_dim_orders.insert({&dst, DimensionOrder()}).first->second; Fragments& dst_fragments_order = dst_dim_order.TensorFragmentsOrder(); int64_t dst_remaining_size = 1; absl::flat_hash_map<const Fragment*, std::vector<int>> src_to_dst; auto dst_dim_it = dst_shape.layout().minor_to_major().cbegin(); const auto dst_dim_end = dst_shape.layout().minor_to_major().cend(); for (auto src_dim = src_fragments_order.cbegin(); src_dim != src_fragments_order.cend(); ++src_dim) { auto add_new_fragment = [&](const Fragment& fragment) { dst_fragments_order.push_back(fragment); src_to_dst[&*src_dim].push_back(dst_fragments_order.size() - 1); }; if (dst_remaining_size >= src_dim->full_count()) { if (dst_remaining_size % src_dim->full_count()) { return FusionDecision::Forbid("Unsupported bitcast"); } add_new_fragment(*src_dim); dst_remaining_size /= src_dim->full_count(); } else { int64_t src_remaining_size = src_dim->full_count(); if (dst_remaining_size > 1) { if (src_remaining_size % dst_remaining_size || (src_dim->is_sliced())) { return FusionDecision::Forbid("Unsupported bitcast"); } add_new_fragment( Fragment{src_dim->dst_dim_number(), dst_remaining_size}); src_remaining_size /= dst_remaining_size; dst_remaining_size = 1; } while (src_remaining_size > 1) { CHECK(dst_dim_it != dst_dim_end); int64_t dst_dim_size = dst_shape.dimensions(*dst_dim_it); int64_t new_fragment_size = dst_dim_size; if (dst_dim_size > src_remaining_size) { if (dst_dim_size % src_remaining_size) { return FusionDecision::Forbid("Unsupported bitcast"); } dst_remaining_size = dst_dim_size / src_remaining_size; new_fragment_size = src_remaining_size; } if (src_dim->is_sliced()) { return FusionDecision::Forbid("Unsupported bitcast"); } add_new_fragment( Fragment{src_dim->dst_dim_number(), new_fragment_size}); src_remaining_size /= new_fragment_size; ++dst_dim_it; } } } CHECK_EQ(dst_remaining_size, 1); while (dst_dim_it != dst_dim_end) { if (dst_shape.dimensions(*dst_dim_it) != 1) { return FusionDecision::Forbid("Unsupported bitcast"); } if (!dst_fragments_order.empty()) { dst_fragments_order.push_back( Fragment{dst_fragments_order.back().dst_dim_number(), 1}); src_to_dst[&src_fragments_order.back()].push_back( dst_fragments_order.size() - 1); } ++dst_dim_it; } FragmentOrders& dst_dim_fragment_orders = dst_dim_order.DimFragmentsOrders(); for (const auto& [dim_index, dim_sequence] : src_dim_order.DimFragmentsOrders()) { std::vector<int>& dst = dst_dim_fragment_orders[dim_index]; dst.reserve(dim_sequence.size()); for (const int src : dim_sequence) { std::copy(src_to_dst[&src_fragments_order[src]].cbegin(), src_to_dst[&src_fragments_order[src]].cend(), std::back_inserter(dst)); } } return dst_dim_orders; } DimOrderMapOrError GetPropagatedDimOrdersForDimAlteringOp( const HloInstruction& hlo, const TransformDirection direction, const DimensionOrder& src_dim_order, const DotProperties& properties) { std::list<Fragment> new_fragments; const HloInstruction& src = GetSourceHlo(hlo, direction); Fragments src_fragments_order = src_dim_order.TensorFragmentsOrder(); if (hlo.opcode() == HloOpcode::kSlice && ShapeUtil::IsEffectiveScalar(hlo.shape())) { return FusionDecision::Forbid("Slice to scalar is not implemented yet."); } std::vector<std::vector<Fragment*>> src_physical; src_physical.reserve(src.shape().rank()); if (src_fragments_order.size() < src.shape().rank()) { return FusionDecision::Forbid( "Cannot propagate further from trivial sized tensor"); } auto src_fragment_it = src_fragments_order.begin(); for (int64_t dim_index : src.shape().layout().minor_to_major()) { const int64_t dim_size = src.shape().dimensions(dim_index); int64_t subdim_size_accumulator = 1; std::vector<Fragment*> subdim_group; do { CHECK(src_fragment_it != src_fragments_order.end()); subdim_size_accumulator *= src_fragment_it->full_count(); subdim_group.push_back(&*src_fragment_it); ++src_fragment_it; } while (subdim_size_accumulator < dim_size); CHECK_EQ(subdim_size_accumulator, dim_size); src_physical.push_back(subdim_group); } std::vector<std::vector<Fragment*>> src_logical; src_logical.resize(src_physical.size()); for (int i = 0; i < src_physical.size(); ++i) { src_logical[src.shape().layout().minor_to_major(i)] = src_physical[i]; } DimOrderMap dst_dim_orders; int64_t concat_accumulated_size = 0; for (const HloInstruction* dst : GetDestHlos(hlo, direction)) { DimensionOrder& dst_dim_order = dst_dim_orders.insert({dst, DimensionOrder()}).first->second; std::vector<std::vector<Fragment*>> dst_logical; if (hlo.opcode() == HloOpcode::kTranspose) { const auto* transpose = Cast<HloTransposeInstruction>(&hlo); std::vector<int64_t> permutation(transpose->dimensions().cbegin(), transpose->dimensions().cend()); if (direction == TransformDirection::kInputToOutput) { permutation = InversePermutation(permutation); } dst_logical.resize(permutation.size()); for (int i = 0; i < permutation.size(); ++i) { dst_logical[permutation[i]] = src_logical[i]; } } else if (hlo.opcode() == HloOpcode::kBroadcast) { const auto* broadcast = Cast<HloBroadcastInstruction>(&hlo); dst_logical.resize(broadcast->dimensions().size()); for (int i = 0; i < broadcast->dimensions().size(); ++i) { dst_logical[i] = src_logical[broadcast->dimensions()[i]]; } } else if (hlo.opcode() == HloOpcode::kReduce) { if (dst != &hlo && hlo.operand_index(dst) == 1) { continue; } const auto* reduce = Cast<HloReduceInstruction>(&hlo); dst_logical.resize(src_logical.size() + reduce->dimensions().size()); if (reduce->dimensions().size() != 1) { return FusionDecision::Forbid("Unsupported reduction."); } else if (reduce->dimensions().front() != reduce->operand(0)->shape().rank() - 1) { return FusionDecision::Forbid("Only row reductions are supported."); } } else if (hlo.opcode() == HloOpcode::kConcatenate) { dst_logical.resize(src_logical.size()); for (int i = 0; i < src_logical.size(); ++i) { if (i == hlo.concatenate_dimension()) { if (src_logical[i].size() != 1 || src_logical[i][0]->is_sliced()) { return FusionDecision::Forbid("Unsupported concatenation."); } const Fragment& src_fragment = *src_logical[i][0]; Fragment& dst_fragment = new_fragments.emplace_back( src_fragment.dst_dim_number(), dst->shape().dimensions(i)); dst_fragment.set_slice(-concat_accumulated_size, dst->shape().dimensions(i)); concat_accumulated_size += dst->shape().dimensions(i); dst_logical[i].push_back(&dst_fragment); } else { dst_logical[i] = src_logical[i]; } } } else if (hlo.opcode() == HloOpcode::kCopy) { CHECK(ShapeUtil::SameDimensions(src.shape(), dst->shape())); dst_logical = src_logical; } else if (hlo.opcode() == HloOpcode::kPad) { if (dst != &hlo && hlo.operand_index(dst) == 1) { continue; } const auto* pad = Cast<HloPadInstruction>(&hlo); dst_logical.resize(src_logical.size()); for (int i = 0; i < src_logical.size(); ++i) { const int padding = pad->padding_config().dimensions(i).edge_padding_high(); CHECK_EQ(pad->padding_config().dimensions(i).edge_padding_low(), 0); CHECK_EQ(pad->padding_config().dimensions(i).interior_padding(), 0); if (padding == 0) { dst_logical[i] = src_logical[i]; } else { const std::vector<Fragment*>& fragments = src_logical[i]; CHECK_GE(fragments.size(), 2); CHECK(absl::c_all_of(fragments, [&](const Fragment* fragment) { return fragment->dst_dim_number() == fragments.front()->dst_dim_number(); })); std::vector<Fragment*> non_trivial_fragments; absl::c_copy_if(fragments, std::back_inserter(non_trivial_fragments), [](const Fragment* fragment) { return fragment->full_count() > 1; }); CHECK_EQ(non_trivial_fragments.size(), 2); new_fragments.emplace_back( non_trivial_fragments[0]->dst_dim_number(), non_trivial_fragments[0]->full_count() * non_trivial_fragments[1]->full_count() - padding); dst_logical[i] = {&new_fragments.back()}; } } } else if (hlo.opcode() == HloOpcode::kSlice) { const auto slice = Cast<HloSliceInstruction>(&hlo); dst_logical.resize(src_logical.size()); for (int dim = 0; dim < src_logical.size(); ++dim) { dst_logical[dim] = src_logical[dim]; if (slice->slice_limits(dim) - slice->slice_starts(dim) != dst->shape().dimensions(dim)) { if (dst_logical[dim].size() > 1) { return FusionDecision::Forbid("Slicing of fragmented dimension."); } auto fragment = dst_logical[dim].front(); fragment->set_count(dst->shape().dimensions(dim)); fragment->set_slice( fragment->slice_start() + slice->slice_starts(dim), fragment->sliced_count()); } } } else if (hlo.opcode() == HloOpcode::kDynamicSlice) { if (dst != &hlo && hlo.operand_index(dst) >= 1) { continue; } const auto dynamic_slice = Cast<HloDynamicSliceInstruction>(&hlo); dst_logical.resize(src_logical.size()); for (int dim = 0; dim < src_logical.size(); ++dim) { dst_logical[dim] = src_logical[dim]; if (dynamic_slice->slice_sizes(dim) != dst->shape().dimensions(dim)) { if (dst_logical[dim].size() > 1) { return FusionDecision::Forbid("Slicing of fragmented dimension."); } auto fragment = dst_logical[dim].front(); fragment->set_count(dst->shape().dimensions(dim)); fragment->set_slice(fragment->slice_start(), dst->shape().dimensions(dim)); } } } else { return FusionDecision::Forbid("Function called on a wrong instruction."); } absl::flat_hash_map<const Fragment*, int> src_to_dst; Fragments& dst_fragments_order = dst_dim_order.TensorFragmentsOrder(); FragmentOrders& dst_dim_fragments_order = dst_dim_order.DimFragmentsOrders(); absl::flat_hash_set<int> dim_numbers_present_in_dst; for (const int64_t dim_idx : dst->shape().layout().minor_to_major()) { for (const Fragment* subdim : dst_logical[dim_idx]) { dst_fragments_order.push_back(*subdim); src_to_dst[subdim] = dst_fragments_order.size() - 1; dim_numbers_present_in_dst.insert(subdim->dst_dim_number()); } } for (const auto& [dim_index, dim_sequence] : src_dim_order.DimFragmentsOrders()) { for (const int fragment_number : dim_sequence) { const auto it = src_to_dst.find(&src_fragments_order[fragment_number]); if (it == src_to_dst.cend()) { if (hlo.opcode() == HloOpcode::kBroadcast && src_fragments_order[fragment_number].full_count() > 1 && dim_numbers_present_in_dst.contains(dim_index)) { return FusionDecision::Forbid("Unsupported broadcast"); } continue; } dst_dim_fragments_order[dim_index].push_back(it->second); } } } return dst_dim_orders; } DimOrderMapOrError GetPropagatedDimOrders(const HloInstruction& hlo, const TransformDirection direction, const DimensionOrder& src_dim_order, const DotProperties& properties) { VLOG(7) << "Analyzing " << hlo.ToString(); if (hlo.opcode() != HloOpcode::kParameter && direction == TransformDirection::kOutputToInput && absl::c_any_of(hlo.users(), [](const HloInstruction* user) { return (user->opcode() == HloOpcode::kConcatenate || user->opcode() == HloOpcode::kDynamicSlice); })) { return FusionDecision::Forbid( "No fusion into concatenations or dynamic slice."); } if (hlo.opcode() == HloOpcode::kParameter || hlo_query::IsScalarConstant(&hlo)) { CHECK(direction == TransformDirection::kOutputToInput); return DimOrderMap{}; } else if (hlo.opcode() == HloOpcode::kTranspose || hlo.opcode() == HloOpcode::kCopy) { return GetPropagatedDimOrdersForDimAlteringOp(hlo, direction, src_dim_order, properties); } else if (hlo.opcode() == HloOpcode::kBroadcast) { if (direction != TransformDirection::kOutputToInput) { return FusionDecision::Forbid("Unsupported broadcast direction."); } return GetPropagatedDimOrdersForDimAlteringOp(hlo, direction, src_dim_order, properties); } else if (hlo.opcode() == HloOpcode::kPad) { if (direction != TransformDirection::kOutputToInput) { return FusionDecision::Forbid("Unsupported pad direction."); } return GetPropagatedDimOrdersForDimAlteringOp(hlo, direction, src_dim_order, properties); } else if (hlo.operand_count() > 0 && legacy_triton::IsTritonSupportedElementwiseUpToFloatNormalization( hlo.opcode(), hlo.operand(0)->shape().element_type())) { return GetPropagatedDimOrdersForElementwise(hlo, direction, src_dim_order); } else if (hlo.opcode() == HloOpcode::kBitcast) { return GetPropagatedDimOrdersForBitcast(hlo, direction, src_dim_order, properties); } else if (hlo.opcode() == HloOpcode::kSlice) { if (direction != TransformDirection::kOutputToInput) { return FusionDecision::Forbid("Unsupported slice direction."); } return GetPropagatedDimOrdersForDimAlteringOp(hlo, direction, src_dim_order, properties); } else if (hlo.opcode() == HloOpcode::kDynamicSlice && direction == TransformDirection::kOutputToInput) { if (CodegenDecision decision = legacy_triton::IsTritonSupportedDynamicSlice( *Cast<HloDynamicSliceInstruction>(&hlo)); !decision.CanFuse()) { return decision; } return GetPropagatedDimOrdersForDimAlteringOp(hlo, direction, src_dim_order, properties); } else if (hlo.opcode() == HloOpcode::kReshape) { if (!ShapeUtil::ReshapeIsBitcast(hlo.operand(0)->shape(), hlo.shape())) { return FusionDecision::Forbid("Non-bitcast reshape."); } return GetPropagatedDimOrdersForBitcast(hlo, direction, src_dim_order, properties); } else if (hlo.opcode() == HloOpcode::kConcatenate && direction == TransformDirection::kOutputToInput) { int64_t noncontracting_dim_label = properties.noncontracting_dimension; const FragmentOrders& src_dim_fragments_orders = src_dim_order.DimFragmentsOrders(); auto noncontracting_dim_fragment_order_it = src_dim_fragments_orders.find(noncontracting_dim_label); if (noncontracting_dim_fragment_order_it != src_dim_fragments_orders.end()) { if (noncontracting_dim_fragment_order_it->second.size() > 1) { return FusionDecision::Forbid( "Concatenations on split non-contracting dimensions are " "unsupported."); } } auto dim = LogicalIndexOfLabeledDimension(hlo.shape(), src_dim_order, noncontracting_dim_label); if (!dim.has_value() || dim.value() != hlo.concatenate_dimension()) { return FusionDecision::Forbid("Unsupported concatenation."); } if (absl::c_any_of(hlo.operands(), [&hlo](const HloInstruction* operand) { constexpr int kMinConcatFragmentSize = 64; return operand->shape().dimensions(hlo.concatenate_dimension()) % kMinConcatFragmentSize != 0; })) { return FusionDecision::Forbid( "At least one operand of concatenation can not be perfectly tiled."); } return GetPropagatedDimOrdersForDimAlteringOp(hlo, direction, src_dim_order, properties); } return FusionDecision::Forbid("Unimplemented instruction."); } int64_t InputMinusOutputBytes(const HloInstruction& hlo) { CHECK(!hlo.shape().IsTuple()); int64_t input_size = 0; for (const HloInstruction* operand : hlo.operands()) { CHECK(!operand->shape().IsTuple()); input_size += ShapeUtil::ByteSizeOf(operand->shape()); } return input_size - ShapeUtil::ByteSizeOf(hlo.shape()); } bool CanNotBeFusedIntoAUser(const HloInstruction& hlo) { return hlo.IsRoot() || (hlo.user_count() == 1 && hlo.users()[0]->IsRoot() && hlo.users()[0]->opcode() == HloOpcode::kTuple); } constexpr int kIoToleranceBytes = 1024; bool IsInputWorthFusing(const HloInstruction& hlo) { if (InputMinusOutputBytes(hlo) <= kIoToleranceBytes) { return true; } if (hlo.user_count() > 1) { return false; } if (hlo.opcode() == HloOpcode::kSlice && hlo_query::AllOperandsAreParametersOrConstants(hlo)) { return true; } return hlo_query::AllOperandsAreParametersOrConstantsWithSingleUser(hlo); } bool IsOutputWorthFusing(const HloInstruction& hlo) { return CanNotBeFusedIntoAUser(hlo) || InputMinusOutputBytes(hlo) >= -kIoToleranceBytes; } FusionDecision IsConversionWorthFusing(const HloInstruction& input, se::GpuComputeCapability gpu_version) { if (ShapeUtil::ByteSizeOf(input.operand(0)->shape()) > ShapeUtil::ByteSizeOf(input.shape())) { return FusionDecision::Forbid("Narrowing conversion."); } return FusionDecision::Allow(); } } DimOrdersAndReqsOrError GetPropagatedDimOrdersAndRequirements( const HloInstruction& hlo, const DimensionOrder& src_dim_order, TransformDirection direction, const DotProperties& properties) { DimOrderMapOrError propagated_dim_orders_or_error = GetPropagatedDimOrders(hlo, direction, src_dim_order, properties); if (std::holds_alternative<FusionDecision>(propagated_dim_orders_or_error)) { return std::get<FusionDecision>(propagated_dim_orders_or_error); } DimOrderMap propagated_dim_orders = std::move(std::get<DimOrderMap>(propagated_dim_orders_or_error)); DotRequirementsOrError requirements_or_error = GetRequirementsIfSupportedOrders(hlo, propagated_dim_orders, properties); if (std::holds_alternative<FusionDecision>(requirements_or_error)) { return std::get<FusionDecision>(requirements_or_error); } return DimOrdersAndReqs{propagated_dim_orders, std::get<DotRequirements>(requirements_or_error)}; } DimOrdersAndReqsOrError GetPropagatedDimOrdersAndRequirementsIfProfitablyFusible( const HloInstruction& hlo, TransformDirection transform_direction, const std::optional<int>& src_operand_index, const DimensionOrder& src_dim_order, const se::GpuComputeCapability& gpu_version, const DotProperties& properties) { CHECK_EQ(transform_direction == TransformDirection::kInputToOutput, src_operand_index.has_value()); if (hlo.opcode() == HloOpcode::kTuple || hlo.opcode() == HloOpcode::kGetTupleElement) { return FusionDecision::Forbid("Unsupported instruction."); } if (hlo.opcode() == HloOpcode::kReduce || hlo.opcode() == HloOpcode::kAllReduce || hlo.opcode() == HloOpcode::kAllReduceStart || hlo.opcode() == HloOpcode::kAllReduceDone) { return FusionDecision::Forbid("Reductions are not fused yet."); } if (hlo.opcode() == HloOpcode::kPad) { return FusionDecision::Forbid("Pads are not fused yet."); } if (auto decision = legacy_triton::IsTritonSupportedInstruction(hlo, gpu_version); !decision.CanFuse()) { return decision; } DimOrdersAndReqsOrError result_or_error = GetPropagatedDimOrdersAndRequirements(hlo, src_dim_order, transform_direction, properties); if (std::holds_alternative<FusionDecision>(result_or_error)) { VLOG(5) << "Not fusing " << hlo.ToString() << " to the output due to the decision: " << std::get<FusionDecision>(result_or_error).Explain(); return result_or_error; } DimOrdersAndReqs dim_orders_and_requirements = std::move(std::get<DimOrdersAndReqs>(result_or_error)); int fusion_level = hlo.GetModule()->config().debug_options().xla_gpu_triton_fusion_level(); if (transform_direction == TransformDirection::kOutputToInput) { if (fusion_level < 2) { if (hlo.opcode() == HloOpcode::kConvert) { if (FusionDecision decision = IsConversionWorthFusing(hlo, gpu_version); !decision) { return decision; } } else if (hlo.IsElementwise() && hlo.opcode() != HloOpcode::kCopy) { return FusionDecision::Forbid("Ignored elementwise operation"); } } else { bool accepted = false; if (hlo.IsElementwise() && hlo.operand_count() == 2) { for (const HloInstruction* operand : hlo.operands()) { if (operand->opcode() == HloOpcode::kBroadcast && (operand->operand(0)->opcode() == HloOpcode::kParameter || operand->operand(0)->opcode() == HloOpcode::kConstant) && std::holds_alternative<DimOrdersAndReqs>( GetPropagatedDimOrdersAndRequirementsIfProfitablyFusible( *operand, TransformDirection::kOutputToInput, std::nullopt, dim_orders_and_requirements.dim_orders.at(operand), gpu_version, properties))) { accepted = true; break; } } } if (!accepted && !IsInputWorthFusing(hlo)) { return FusionDecision::Forbid( "Not obviously profitable to fuse as input."); } } } else { if (fusion_level < 2) { return FusionDecision::Forbid( "Skipping fusing outputs at low fusion levels."); } for (int i = 0; i < hlo.operand_count(); ++i) { const HloInstruction* operand = hlo.operand(i); if (i == *src_operand_index) { continue; } if ((operand->opcode() == HloOpcode::kBroadcast && ShapeUtil::IsScalar(operand->operand(0)->shape())) || operand->opcode() == HloOpcode::kParameter) { continue; } return FusionDecision::Forbid( "Has multiple inputs - not properly analyzed yet."); } if (!IsOutputWorthFusing(hlo)) { return FusionDecision::Forbid( "Not obviously profitable to fuse as output."); } } return dim_orders_and_requirements; } } } }
#include "xla/service/gpu/triton_tiling_propagation.h" #include <vector> #include <gtest/gtest.h> #include "xla/tests/hlo_test_base.h" namespace xla::gpu { namespace { using TritonTilingPropagationTest = HloTestBase; using triton_fusion::DimensionOrder; DimensionOrder FromFragments(DimensionOrder::Fragments fragments) { DimensionOrder dim_order; DimensionOrder::Fragments& tensor_fragments_order = dim_order.TensorFragmentsOrder(); DimensionOrder::FragmentOrders& dim_fragments_orders = dim_order.DimFragmentsOrders(); for (const DimensionOrder::Fragment& fragment : fragments) { tensor_fragments_order.push_back(fragment); dim_fragments_orders[fragment.dst_dim_number()].push_back( tensor_fragments_order.size()); } return dim_order; } TEST_F( TritonTilingPropagationTest, DimensionOrdersRemainPhysicallyEquivalentAfterInsertingTrivialDimensions) { DimensionOrder::Fragment fragment_1(0, 97); DimensionOrder::Fragment fragment_2(0, 1); DimensionOrder dimension_order_1 = FromFragments({fragment_1, fragment_2}); DimensionOrder::Fragment fragment_3(0, 97); DimensionOrder::Fragment fragment_4(1, 1); DimensionOrder dimension_order_2 = FromFragments({fragment_3, fragment_4}); EXPECT_TRUE(dimension_order_1.IsPhysicallyEquivalent(dimension_order_2)); } TEST_F( TritonTilingPropagationTest, IterationSpecsRemainPhysicallyEquivalentAfterInsertingTrivialDimensions) { TensorIterationSpec::IterationSpecFragment fragment_1 = { 1, 97, 0, 97, {97}}; TensorIterationSpec spec_1; spec_1[0].push_back(fragment_1); TensorIterationSpec::IterationSpecFragment fragment_2 = { 1, 97, 0, 97, {97}}; TensorIterationSpec::IterationSpecFragment fragment_3 = { 97, 1, 0, 1, {1}}; TensorIterationSpec spec_2; spec_2[0].push_back(fragment_2); spec_2[1].push_back(fragment_3); EXPECT_TRUE(spec_1.IsPhysicallyEquivalent(spec_2)); } TEST_F(TritonTilingPropagationTest, DimensionsShouldNotBeRemovedByToTensorIterationSpec) { DimensionOrder::Fragment fragment_0(0, 97); DimensionOrder::Fragment fragment_1(1, 1); DimensionOrder dimension_order = FromFragments({fragment_0, fragment_1}); TensorIterationSpec spec = dimension_order.ToTensorIterationSpec(); const TensorIterationSpec::DimIterationSpec* dim_spec_0 = spec.Find(0); EXPECT_NE(dim_spec_0, nullptr); EXPECT_EQ(dim_spec_0->size(), 1); EXPECT_EQ(dim_spec_0->at(0).count, 97); const TensorIterationSpec::DimIterationSpec* dim_spec_1 = spec.Find(1); EXPECT_NE(dim_spec_1, nullptr); EXPECT_EQ(dim_spec_1->size(), 1); EXPECT_EQ(dim_spec_1->at(0).count, 1); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/triton_tiling_propagation.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/triton_tiling_propagation_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
94fd6b98-724b-4a98-b0f9-05dcbf12c062
cpp
tensorflow/tensorflow
async_wrapper
third_party/xla/xla/service/gpu/transforms/async_wrapper.cc
third_party/xla/xla/service/gpu/transforms/async_wrapper_test.cc
#include "xla/service/gpu/transforms/async_wrapper.h" #include <algorithm> #include <deque> #include <iterator> #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/errors.h" namespace xla::gpu { absl::StatusOr<bool> AsyncWrapper::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; XLA_VLOG_LINES( 1, absl::StrCat("AsyncWrapper will process the following module:\n", module->ToString())); std::deque<HloComputation*> computations; computations.push_back(module->entry_computation()); while (!computations.empty()) { HloComputation* computation = computations.front(); computations.pop_front(); for (HloInstruction* instruction : computation->MakeInstructionPostOrder()) { if (predicate_(instruction)) { XLA_VLOG_LINES( 1, absl::StrCat( "AsyncWrapper will make the following instruction async:\n", instruction->ToString())); TF_RETURN_IF_ERROR( computation ->CreateAsyncInstructions(instruction, {ShapeUtil::MakeScalarShape(U32)}) .status()); changed = true; continue; } if (instruction->opcode() == HloOpcode::kCall) { std::copy(instruction->called_computations().begin(), instruction->called_computations().end(), std::back_inserter(computations)); } } } XLA_VLOG_LINES( 1, absl::StrCat("AsyncWrapper finished processing the following module:\n", module->ToString())); return changed; } }
#include "xla/service/gpu/transforms/async_wrapper.h" #include <memory> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/pass/hlo_pass_interface.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/verified_hlo_module.h" #include "tsl/platform/status_matchers.h" namespace xla::gpu { namespace { using ::tsl::testing::IsOkAndHolds; class AsyncWrapperTest : public HloTestBase {}; int CountAsyncInstructions(HloComputation* computation) { int count = 0; for (const HloInstruction* instruction : computation->instructions()) { if (instruction->IsAsynchronous()) ++count; } return count; } TEST_F(AsyncWrapperTest, BasicFusion) { const char* hlo_text = R"( HloModule m double1 { p0 = f32[1] parameter(0) ROOT add = f32[1] add(p0, p0) } double2 { p0 = f32[1] parameter(0) ROOT add = f32[1] add(p0, p0) } ENTRY main { p0 = f32[1] parameter(0) agg1 = f32[1] fusion(p0), kind=kLoop, calls=double1 agg2 = f32[1] fusion(p0), kind=kLoop, calls=double2 ROOT done = f32[1] add(agg1, agg2) })"; std::unique_ptr<VerifiedHloModule> module = ParseAndReturnVerifiedModule(hlo_text).value(); AsyncWrapper wrapper([](const HloInstruction* instruction) { return instruction->opcode() == HloOpcode::kFusion; }); EXPECT_THAT(wrapper.HloModulePass::Run(module.get()), IsOkAndHolds(true)); EXPECT_EQ(CountAsyncInstructions(module->entry_computation()), 4); Literal argument = LiteralUtil::CreateR1<float>({1.0}); Literal expected = LiteralUtil::CreateR1<float>({4.0}); Literal result = ExecuteNoHloPasses(std::move(module), {&argument}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/async_wrapper.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/async_wrapper_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
72eef4bf-eeb4-4ef8-b020-011e9d46a778
cpp
tensorflow/tensorflow
broadcast_to_op
tensorflow/compiler/tf2xla/kernels/broadcast_to_op.cc
tensorflow/core/kernels/broadcast_to_op_test.cc
#include <vector> #include "tensorflow/compiler/tf2xla/lib/broadcast.h" #include "tensorflow/compiler/tf2xla/xla_op_kernel.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/hlo/builder/xla_builder.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace { class BroadcastToOp : public XlaOpKernel { public: explicit BroadcastToOp(OpKernelConstruction* context) : XlaOpKernel(context) {} void Compile(XlaOpKernelContext* context) override { TensorShape output_shape; OP_REQUIRES_OK(context, context->ConstantInputAsShape( 1, &output_shape, xla::ValueInferenceMode::kUpperBound)); auto output_status_or = BroadcastTo(context->Input(0), output_shape.dim_sizes()); OP_REQUIRES_OK(context, output_status_or.status()); auto output = output_status_or.value(); std::vector<bool> dynamic_dims; OP_REQUIRES_OK( context, context->ResolveInputDynamismIntoPredVector(1, &dynamic_dims)); for (int64_t dim = 0; dim < dynamic_dims.size(); ++dim) { if (dynamic_dims[dim]) { output = xla::SetDimensionSize( output, xla::Reshape(xla::Slice(context->Input(1), {dim}, {dim + 1}, {1}), {}), dim); } } context->SetOutput(0, output); } }; REGISTER_XLA_OP(Name("BroadcastTo").CompileTimeConstantInput("shape"), BroadcastToOp); } }
#include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { template <typename InputShape> static Graph* BroadcastTo(int dim0, int dim1, InputShape input_shape) { Graph* g = new Graph(OpRegistry::Global()); Tensor input(DT_FLOAT, input_shape(dim0, dim1)); input.flat<float>() = input.flat<float>().setRandom(); Tensor shape(DT_INT32, TensorShape({2})); shape.flat<int32>()(0) = dim0; shape.flat<int32>()(1) = dim1; Node* node; TF_CHECK_OK(NodeBuilder(g->NewName("n"), "BroadcastTo") .Input(test::graph::Constant(g, input)) .Input(test::graph::Constant(g, shape)) .Attr("T", DT_FLOAT) .Attr("Tidx", DT_INT32) .Finalize(g, &node)); return g; } #define BM_BroadcastTo_InnerDim(DIM0, DIM1, type) \ static void BM_BroadcastTo_Inner##_##type##_##DIM0##_##DIM1( \ ::testing::benchmark::State& state) { \ test::Benchmark(#type, \ BroadcastTo(DIM0, DIM1, \ [](int dim0, int dim1) { \ return TensorShape({dim0, 1}); \ }), \ false) \ .Run(state); \ state.SetItemsProcessed(static_cast<int64_t>(state.iterations()) * DIM0 * \ DIM1); \ } \ BENCHMARK(BM_BroadcastTo_Inner##_##type##_##DIM0##_##DIM1)->UseRealTime(); #define BM_BroadcastTo_OuterDim(DIM0, DIM1, type) \ static void BM_BroadcastTo_Outer##_##type##_##DIM0##_##DIM1( \ ::testing::benchmark::State& state) { \ test::Benchmark(#type, \ BroadcastTo(DIM0, DIM1, \ [](int dim0, int dim1) { \ return TensorShape({1, dim1}); \ }), \ false) \ .Run(state); \ state.SetItemsProcessed(static_cast<int64_t>(state.iterations()) * DIM0 * \ DIM1); \ } \ BENCHMARK(BM_BroadcastTo_Outer##_##type##_##DIM0##_##DIM1)->UseRealTime(); BM_BroadcastTo_InnerDim(64, 64, cpu); BM_BroadcastTo_InnerDim(128, 128, cpu); BM_BroadcastTo_InnerDim(256, 256, cpu); BM_BroadcastTo_InnerDim(512, 512, cpu); BM_BroadcastTo_InnerDim(1024, 1024, cpu); BM_BroadcastTo_InnerDim(500, 20000, cpu); BM_BroadcastTo_OuterDim(64, 64, cpu); BM_BroadcastTo_OuterDim(128, 128, cpu); BM_BroadcastTo_OuterDim(256, 256, cpu); BM_BroadcastTo_OuterDim(512, 512, cpu); BM_BroadcastTo_OuterDim(1024, 1024, cpu); BM_BroadcastTo_OuterDim(500, 20000, cpu); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/kernels/broadcast_to_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/broadcast_to_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3c74241c-37bf-4b8c-8147-6df223966067
cpp
google/tensorstore
stringify
tensorstore/internal/preprocessor/stringify.h
tensorstore/internal/preprocessor/stringify_test.cc
#ifndef TENSORSTORE_INTERNAL_PREPROCESSOR_STRINGIFY_H_ #define TENSORSTORE_INTERNAL_PREPROCESSOR_STRINGIFY_H_ #define TENSORSTORE_PP_STRINGIFY(...) TENSORSTORE_PP_STRINGIFY_IMPL(__VA_ARGS__) #define TENSORSTORE_PP_STRINGIFY_IMPL(...) #__VA_ARGS__ #endif
#include "tensorstore/internal/preprocessor/stringify.h" #include <string_view> namespace { inline constexpr bool Equal(std::string_view a, std::string_view b) { return a == b; } #define X abc #define Y abc, def static_assert(Equal(TENSORSTORE_PP_STRINGIFY(X), "abc")); static_assert(Equal(TENSORSTORE_PP_STRINGIFY(Y), "abc, def")); }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/preprocessor/stringify.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/preprocessor/stringify_test.cc
4f887a6430414cd6088e1743555015b10f116d50
7221b1d8-3e12-4d64-a79a-9293f0400d31
cpp
google/quiche
test_utils
quiche/http2/adapter/test_utils.cc
quiche/http2/adapter/test_utils_test.cc
#include "quiche/http2/adapter/test_utils.h" #include <cstring> #include <optional> #include <ostream> #include <vector> #include "absl/strings/str_format.h" #include "quiche/http2/adapter/http2_visitor_interface.h" #include "quiche/http2/core/spdy_protocol.h" #include "quiche/http2/hpack/hpack_encoder.h" #include "quiche/common/quiche_data_reader.h" namespace http2 { namespace adapter { namespace test { namespace { using ConnectionError = Http2VisitorInterface::ConnectionError; std::string EncodeHeaders(const quiche::HttpHeaderBlock& entries) { spdy::HpackEncoder encoder; encoder.DisableCompression(); return encoder.EncodeHeaderBlock(entries); } } TestVisitor::DataFrameHeaderInfo TestVisitor::OnReadyToSendDataForStream( Http2StreamId stream_id, size_t max_length) { auto it = data_map_.find(stream_id); if (it == data_map_.end()) { QUICHE_DVLOG(1) << "Source not in map; returning blocked."; return {0, false, false}; } DataPayload& payload = it->second; if (payload.return_error) { QUICHE_DVLOG(1) << "Simulating error response for stream " << stream_id; return {DataFrameSource::kError, false, false}; } const absl::string_view prefix = payload.data.GetPrefix(); const size_t frame_length = std::min(max_length, prefix.size()); const bool is_final_fragment = payload.data.Read().size() <= 1; const bool end_data = payload.end_data && is_final_fragment && frame_length == prefix.size(); const bool end_stream = payload.end_stream && end_data; return {static_cast<int64_t>(frame_length), end_data, end_stream}; } bool TestVisitor::SendDataFrame(Http2StreamId stream_id, absl::string_view frame_header, size_t payload_bytes) { const int64_t frame_result = OnReadyToSend(frame_header); if (frame_result < 0 || static_cast<size_t>(frame_result) != frame_header.size()) { return false; } auto it = data_map_.find(stream_id); if (it == data_map_.end()) { if (payload_bytes > 0) { return false; } else { return true; } } DataPayload& payload = it->second; absl::string_view frame_payload = payload.data.GetPrefix(); if (frame_payload.size() < payload_bytes) { return false; } frame_payload = frame_payload.substr(0, payload_bytes); const int64_t payload_result = OnReadyToSend(frame_payload); if (payload_result < 0 || static_cast<size_t>(payload_result) != frame_payload.size()) { return false; } payload.data.RemovePrefix(payload_bytes); return true; } void TestVisitor::AppendPayloadForStream(Http2StreamId stream_id, absl::string_view payload) { auto char_data = std::unique_ptr<char[]>(new char[payload.size()]); std::copy(payload.begin(), payload.end(), char_data.get()); data_map_[stream_id].data.Append(std::move(char_data), payload.size()); } void TestVisitor::SetEndData(Http2StreamId stream_id, bool end_stream) { DataPayload& payload = data_map_[stream_id]; payload.end_data = true; payload.end_stream = end_stream; } void TestVisitor::SimulateError(Http2StreamId stream_id) { DataPayload& payload = data_map_[stream_id]; payload.return_error = true; } std::pair<int64_t, bool> TestVisitor::PackMetadataForStream( Http2StreamId stream_id, uint8_t* dest, size_t dest_len) { auto it = outbound_metadata_map_.find(stream_id); if (it == outbound_metadata_map_.end()) { return {-1, false}; } const size_t to_copy = std::min(it->second.size(), dest_len); auto* src = reinterpret_cast<uint8_t*>(it->second.data()); std::copy(src, src + to_copy, dest); it->second = it->second.substr(to_copy); if (it->second.empty()) { outbound_metadata_map_.erase(it); return {to_copy, true}; } return {to_copy, false}; } void TestVisitor::AppendMetadataForStream( Http2StreamId stream_id, const quiche::HttpHeaderBlock& payload) { outbound_metadata_map_.insert({stream_id, EncodeHeaders(payload)}); } VisitorDataSource::VisitorDataSource(Http2VisitorInterface& visitor, Http2StreamId stream_id) : visitor_(visitor), stream_id_(stream_id) {} bool VisitorDataSource::send_fin() const { return has_fin_; } std::pair<int64_t, bool> VisitorDataSource::SelectPayloadLength( size_t max_length) { auto [payload_length, end_data, end_stream] = visitor_.OnReadyToSendDataForStream(stream_id_, max_length); has_fin_ = end_stream; return {payload_length, end_data}; } bool VisitorDataSource::Send(absl::string_view frame_header, size_t payload_length) { return visitor_.SendDataFrame(stream_id_, frame_header, payload_length); } TestMetadataSource::TestMetadataSource(const quiche::HttpHeaderBlock& entries) : encoded_entries_(EncodeHeaders(entries)) { remaining_ = encoded_entries_; } std::pair<int64_t, bool> TestMetadataSource::Pack(uint8_t* dest, size_t dest_len) { if (fail_when_packing_) { return {-1, false}; } const size_t copied = std::min(dest_len, remaining_.size()); std::memcpy(dest, remaining_.data(), copied); remaining_.remove_prefix(copied); return std::make_pair(copied, remaining_.empty()); } namespace { using TypeAndOptionalLength = std::pair<spdy::SpdyFrameType, std::optional<size_t>>; std::ostream& operator<<( std::ostream& os, const std::vector<TypeAndOptionalLength>& types_and_lengths) { for (const auto& type_and_length : types_and_lengths) { os << "(" << spdy::FrameTypeToString(type_and_length.first) << ", " << (type_and_length.second ? absl::StrCat(type_and_length.second.value()) : "<unspecified>") << ") "; } return os; } std::string FrameTypeToString(uint8_t frame_type) { if (spdy::IsDefinedFrameType(frame_type)) { return spdy::FrameTypeToString(spdy::ParseFrameType(frame_type)); } else { return absl::StrFormat("0x%x", static_cast<int>(frame_type)); } } class SpdyControlFrameMatcher : public testing::MatcherInterface<absl::string_view> { public: explicit SpdyControlFrameMatcher( std::vector<TypeAndOptionalLength> types_and_lengths) : expected_types_and_lengths_(std::move(types_and_lengths)) {} bool MatchAndExplain(absl::string_view s, testing::MatchResultListener* listener) const override { quiche::QuicheDataReader reader(s.data(), s.size()); for (TypeAndOptionalLength expected : expected_types_and_lengths_) { if (!MatchAndExplainOneFrame(expected.first, expected.second, &reader, listener)) { return false; } } if (!reader.IsDoneReading()) { *listener << "; " << reader.BytesRemaining() << " bytes left to read!"; return false; } return true; } bool MatchAndExplainOneFrame(spdy::SpdyFrameType expected_type, std::optional<size_t> expected_length, quiche::QuicheDataReader* reader, testing::MatchResultListener* listener) const { uint32_t payload_length; if (!reader->ReadUInt24(&payload_length)) { *listener << "; unable to read length field for expected_type " << FrameTypeToString(expected_type) << ". data too short!"; return false; } if (expected_length && payload_length != expected_length.value()) { *listener << "; actual length: " << payload_length << " but expected length: " << expected_length.value(); return false; } uint8_t raw_type; if (!reader->ReadUInt8(&raw_type)) { *listener << "; unable to read type field for expected_type " << FrameTypeToString(expected_type) << ". data too short!"; return false; } if (raw_type != static_cast<uint8_t>(expected_type)) { *listener << "; actual type: " << FrameTypeToString(raw_type) << " but expected type: " << FrameTypeToString(expected_type); return false; } reader->Seek(5 + payload_length); return true; } void DescribeTo(std::ostream* os) const override { *os << "Data contains frames of types in sequence " << expected_types_and_lengths_; } void DescribeNegationTo(std::ostream* os) const override { *os << "Data does not contain frames of types in sequence " << expected_types_and_lengths_; } private: const std::vector<TypeAndOptionalLength> expected_types_and_lengths_; }; } testing::Matcher<absl::string_view> EqualsFrames( std::vector<std::pair<spdy::SpdyFrameType, std::optional<size_t>>> types_and_lengths) { return MakeMatcher(new SpdyControlFrameMatcher(std::move(types_and_lengths))); } testing::Matcher<absl::string_view> EqualsFrames( std::vector<spdy::SpdyFrameType> types) { std::vector<std::pair<spdy::SpdyFrameType, std::optional<size_t>>> types_and_lengths; types_and_lengths.reserve(types.size()); for (spdy::SpdyFrameType type : types) { types_and_lengths.push_back({type, std::nullopt}); } return MakeMatcher(new SpdyControlFrameMatcher(std::move(types_and_lengths))); } } } }
#include "quiche/http2/adapter/test_utils.h" #include <optional> #include <string> #include <utility> #include "quiche/http2/core/spdy_framer.h" #include "quiche/common/platform/api/quiche_test.h" namespace http2 { namespace adapter { namespace test { namespace { using spdy::SpdyFramer; TEST(EqualsFrames, Empty) { EXPECT_THAT("", EqualsFrames(std::vector<spdy::SpdyFrameType>{})); } TEST(EqualsFrames, SingleFrameWithLength) { SpdyFramer framer{SpdyFramer::ENABLE_COMPRESSION}; spdy::SpdyPingIR ping{511}; EXPECT_THAT(framer.SerializeFrame(ping), EqualsFrames({{spdy::SpdyFrameType::PING, 8}})); spdy::SpdyWindowUpdateIR window_update{1, 101}; EXPECT_THAT(framer.SerializeFrame(window_update), EqualsFrames({{spdy::SpdyFrameType::WINDOW_UPDATE, 4}})); spdy::SpdyDataIR data{3, "Some example data, ha ha!"}; EXPECT_THAT(framer.SerializeFrame(data), EqualsFrames({{spdy::SpdyFrameType::DATA, 25}})); } TEST(EqualsFrames, SingleFrameWithoutLength) { SpdyFramer framer{SpdyFramer::ENABLE_COMPRESSION}; spdy::SpdyRstStreamIR rst_stream{7, spdy::ERROR_CODE_REFUSED_STREAM}; EXPECT_THAT(framer.SerializeFrame(rst_stream), EqualsFrames({{spdy::SpdyFrameType::RST_STREAM, std::nullopt}})); spdy::SpdyGoAwayIR goaway{13, spdy::ERROR_CODE_ENHANCE_YOUR_CALM, "Consider taking some deep breaths."}; EXPECT_THAT(framer.SerializeFrame(goaway), EqualsFrames({{spdy::SpdyFrameType::GOAWAY, std::nullopt}})); quiche::HttpHeaderBlock block; block[":method"] = "GET"; block[":path"] = "/example"; block[":authority"] = "example.com"; spdy::SpdyHeadersIR headers{17, std::move(block)}; EXPECT_THAT(framer.SerializeFrame(headers), EqualsFrames({{spdy::SpdyFrameType::HEADERS, std::nullopt}})); } TEST(EqualsFrames, MultipleFrames) { SpdyFramer framer{SpdyFramer::ENABLE_COMPRESSION}; spdy::SpdyPingIR ping{511}; spdy::SpdyWindowUpdateIR window_update{1, 101}; spdy::SpdyDataIR data{3, "Some example data, ha ha!"}; spdy::SpdyRstStreamIR rst_stream{7, spdy::ERROR_CODE_REFUSED_STREAM}; spdy::SpdyGoAwayIR goaway{13, spdy::ERROR_CODE_ENHANCE_YOUR_CALM, "Consider taking some deep breaths."}; quiche::HttpHeaderBlock block; block[":method"] = "GET"; block[":path"] = "/example"; block[":authority"] = "example.com"; spdy::SpdyHeadersIR headers{17, std::move(block)}; const std::string frame_sequence = absl::StrCat(absl::string_view(framer.SerializeFrame(ping)), absl::string_view(framer.SerializeFrame(window_update)), absl::string_view(framer.SerializeFrame(data)), absl::string_view(framer.SerializeFrame(rst_stream)), absl::string_view(framer.SerializeFrame(goaway)), absl::string_view(framer.SerializeFrame(headers))); absl::string_view frame_sequence_view = frame_sequence; EXPECT_THAT(frame_sequence, EqualsFrames({{spdy::SpdyFrameType::PING, std::nullopt}, {spdy::SpdyFrameType::WINDOW_UPDATE, std::nullopt}, {spdy::SpdyFrameType::DATA, 25}, {spdy::SpdyFrameType::RST_STREAM, std::nullopt}, {spdy::SpdyFrameType::GOAWAY, 42}, {spdy::SpdyFrameType::HEADERS, 19}})); EXPECT_THAT(frame_sequence_view, EqualsFrames({{spdy::SpdyFrameType::PING, std::nullopt}, {spdy::SpdyFrameType::WINDOW_UPDATE, std::nullopt}, {spdy::SpdyFrameType::DATA, 25}, {spdy::SpdyFrameType::RST_STREAM, std::nullopt}, {spdy::SpdyFrameType::GOAWAY, 42}, {spdy::SpdyFrameType::HEADERS, 19}})); EXPECT_THAT( frame_sequence, EqualsFrames( {spdy::SpdyFrameType::PING, spdy::SpdyFrameType::WINDOW_UPDATE, spdy::SpdyFrameType::DATA, spdy::SpdyFrameType::RST_STREAM, spdy::SpdyFrameType::GOAWAY, spdy::SpdyFrameType::HEADERS})); EXPECT_THAT( frame_sequence_view, EqualsFrames( {spdy::SpdyFrameType::PING, spdy::SpdyFrameType::WINDOW_UPDATE, spdy::SpdyFrameType::DATA, spdy::SpdyFrameType::RST_STREAM, spdy::SpdyFrameType::GOAWAY, spdy::SpdyFrameType::HEADERS})); EXPECT_THAT( frame_sequence, testing::Not(EqualsFrames( {spdy::SpdyFrameType::PING, spdy::SpdyFrameType::WINDOW_UPDATE, spdy::SpdyFrameType::DATA, spdy::SpdyFrameType::RST_STREAM, spdy::SpdyFrameType::GOAWAY}))); EXPECT_THAT( frame_sequence_view, testing::Not(EqualsFrames( {spdy::SpdyFrameType::PING, spdy::SpdyFrameType::WINDOW_UPDATE, spdy::SpdyFrameType::DATA, spdy::SpdyFrameType::RST_STREAM, spdy::SpdyFrameType::GOAWAY}))); } } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/adapter/test_utils.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/adapter/test_utils_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
732356cd-3b81-4dfa-8545-9e40ed39711b
cpp
tensorflow/tensorflow
stablehlo_type_utils
tensorflow/compiler/mlir/quantization/stablehlo/utils/stablehlo_type_utils.h
tensorflow/compiler/mlir/quantization/stablehlo/utils/stablehlo_type_utils_test.cc
#ifndef TENSORFLOW_COMPILER_MLIR_QUANTIZATION_STABLEHLO_UTILS_STABLEHLO_TYPE_UTILS_H_ #define TENSORFLOW_COMPILER_MLIR_QUANTIZATION_STABLEHLO_UTILS_STABLEHLO_TYPE_UTILS_H_ #include "llvm/ADT/StringRef.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/Transforms/DialectConversion.h" #include "stablehlo/dialect/StablehloOps.h" namespace mlir::quant::stablehlo { inline bool IsStablehloOp(Operation* op) { return op->getDialect()->getNamespace() == mlir::stablehlo::StablehloDialect::getDialectNamespace(); } } #endif
#include "tensorflow/compiler/mlir/quantization/stablehlo/utils/stablehlo_type_utils.h" #include <gtest/gtest.h> #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Builders.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "stablehlo/dialect/StablehloOps.h" namespace mlir::quant::stablehlo { namespace { using ::testing::Test; class StablehloTypeUtilsTest : public Test { protected: StablehloTypeUtilsTest() { ctx_.loadDialect<mlir::stablehlo::StablehloDialect, mlir::arith::ArithDialect, mlir::func::FuncDialect>(); } MLIRContext ctx_; OpBuilder builder_{&ctx_}; }; TEST_F(StablehloTypeUtilsTest, IsStablehloOpSucceedsWithStablehloOp) { const OwningOpRef<mlir::stablehlo::ConstantOp> constant_op = builder_.create<mlir::stablehlo::ConstantOp>( builder_.getUnknownLoc(), builder_.getI32IntegerAttr(0)); EXPECT_TRUE(IsStablehloOp(*constant_op)); } TEST_F(StablehloTypeUtilsTest, IsStablehloOpFailsWithArithOp) { const OwningOpRef<mlir::arith::ConstantOp> constant_op = builder_.create<mlir::arith::ConstantOp>(builder_.getUnknownLoc(), builder_.getI32IntegerAttr(0)); EXPECT_FALSE(IsStablehloOp(*constant_op)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/stablehlo/utils/stablehlo_type_utils.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/stablehlo/utils/stablehlo_type_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d5254719-24c1-4a2c-931b-bfce7b9085fb
cpp
google/tensorstore
virtual_chunked
tensorstore/driver/virtual_chunked/virtual_chunked.cc
tensorstore/driver/virtual_chunked/virtual_chunked_test.cc
#include "tensorstore/virtual_chunked.h" #include <stddef.h> #include <algorithm> #include <atomic> #include <memory> #include <numeric> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/base/optimization.h" #include "absl/status/status.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/chunk_layout.h" #include "tensorstore/codec_spec.h" #include "tensorstore/context.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/driver/chunk_cache_driver.h" #include "tensorstore/driver/driver.h" #include "tensorstore/driver/driver_handle.h" #include "tensorstore/driver/driver_spec.h" #include "tensorstore/driver/registry.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/dimension_units.h" #include "tensorstore/index_space/index_domain.h" #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/internal/async_write_array.h" #include "tensorstore/internal/cache/async_cache.h" #include "tensorstore/internal/cache/cache.h" #include "tensorstore/internal/cache/cache_pool_resource.h" #include "tensorstore/internal/cache/chunk_cache.h" #include "tensorstore/internal/chunk_grid_specification.h" #include "tensorstore/internal/data_copy_concurrency_resource.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/internal/memory.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/open_mode.h" #include "tensorstore/open_options.h" #include "tensorstore/rank.h" #include "tensorstore/serialization/absl_time.h" #include "tensorstore/serialization/std_optional.h" #include "tensorstore/staleness_bound.h" #include "tensorstore/strided_layout.h" #include "tensorstore/transaction.h" #include "tensorstore/util/byte_strided_pointer.h" #include "tensorstore/util/element_pointer.h" #include "tensorstore/util/future.h" #include "tensorstore/util/garbage_collection/garbage_collection.h" #include "tensorstore/util/garbage_collection/std_optional.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace virtual_chunked { namespace { class VirtualChunkedCache : public internal::ConcreteChunkCache { using Base = internal::ConcreteChunkCache; public: using Base::Base; template <typename EntryOrNode> void DoRead(EntryOrNode& node, AsyncCacheReadRequest request); class Entry : public internal::ChunkCache::Entry { public: using OwningCache = VirtualChunkedCache; using internal::ChunkCache::Entry::Entry; void DoRead(AsyncCacheReadRequest request) override { GetOwningCache(*this).DoRead(*this, std::move(request)); } }; class TransactionNode : public internal::ChunkCache::TransactionNode { public: using OwningCache = VirtualChunkedCache; using internal::ChunkCache::TransactionNode::TransactionNode; std::atomic<bool> marked_as_terminal_{false}; absl::Status DoInitialize( internal::OpenTransactionPtr& transaction) override { SetReadsCommitted(); return internal::ChunkCache::TransactionNode::DoInitialize(transaction); } absl::Status OnModified() override { if (!marked_as_terminal_.exchange(true, std::memory_order_acq_rel)) { return this->MarkAsTerminal(); } return absl::OkStatus(); } std::string Describe() override; void DoRead(AsyncCacheReadRequest request) override { GetOwningCache(*this).DoRead(*this, std::move(request)); } void Commit() override; void InitiateWriteback(absl::Time staleness_bound); }; Entry* DoAllocateEntry() final { return new Entry; } size_t DoGetSizeofEntry() final { return sizeof(Entry); } TransactionNode* DoAllocateTransactionNode( internal::AsyncCache::Entry& entry) final { return new TransactionNode(static_cast<Entry&>(entry)); } std::vector<Index> grid_origin_for_read_function_; DimensionUnitsVector dimension_units_; std::vector<DimensionIndex> inner_order_; ReadFunction read_function_; WriteFunction write_function_; Context::Resource<internal::DataCopyConcurrencyResource> data_copy_concurrency_; Context::Resource<internal::CachePoolResource> cache_pool_; }; bool GetPermutedPartialArray( VirtualChunkedCache::Entry& entry, ArrayView<const void> full_array, Array<const void, dynamic_rank, offset_origin>& partial_array) { auto& cache = static_cast<VirtualChunkedCache&>(GetOwningCache(entry)); const auto& component_spec = cache.grid().components.front(); const DimensionIndex rank = component_spec.rank(); span<const Index> cell_shape = component_spec.shape(); span<const Index> cell_indices = entry.cell_indices(); span<const DimensionIndex> inner_order = cache.inner_order_; span<const Index> grid_origin_for_read_function = cache.grid_origin_for_read_function_; BoxView<> domain_bounds = component_spec.array_spec.valid_data_bounds; partial_array.layout().set_rank(rank); ByteStridedPointer<const void> data = full_array.byte_strided_pointer(); for (DimensionIndex component_dim = 0; component_dim < rank; ++component_dim) { const DimensionIndex external_dim = inner_order[component_dim]; const Index byte_stride = full_array.byte_strides()[component_dim]; partial_array.byte_strides()[external_dim] = byte_stride; Index grid_origin_value = grid_origin_for_read_function[external_dim]; Index chunk_start = cell_indices[component_dim] * cell_shape[component_dim]; Index chunk_end = chunk_start + cell_shape[component_dim]; Index request_start = std::max(chunk_start, domain_bounds.origin()[component_dim]); Index request_end = std::min(chunk_end, domain_bounds[component_dim].exclusive_max()); if (request_start >= request_end) { return false; } partial_array.origin()[external_dim] = request_start + grid_origin_value; partial_array.shape()[external_dim] = request_end - request_start; data -= internal::wrap_on_overflow::Multiply( byte_stride, chunk_start + grid_origin_value); } partial_array.element_pointer() = ElementPointer<const void>(data, full_array.dtype()); return true; } template <typename EntryOrNode> void VirtualChunkedCache::DoRead(EntryOrNode& node, AsyncCacheReadRequest request) { auto& cache = GetOwningCache(node); if (!cache.read_function_) { node.ReadError(absl::InvalidArgumentError( "Write-only virtual chunked view requires chunk-aligned writes")); return; } auto& executor = cache.executor(); executor([&node, staleness_bound = request.staleness_bound] { auto& entry = GetOwningEntry(node); auto& cache = GetOwningCache(entry); const auto& component_spec = cache.grid().components.front(); span<const Index> cell_shape = component_spec.shape(); auto full_array = AllocateArray(cell_shape, c_order, default_init, component_spec.dtype()); Array<const void, dynamic_rank, offset_origin> partial_array; auto read_data = tensorstore::internal::make_shared_for_overwrite<ReadData[]>(1); if (!GetPermutedPartialArray(entry, full_array, partial_array)) { node.ReadSuccess( {std::move(read_data), {StorageGeneration::NoValue(), absl::InfiniteFuture()}}); return; } read_data.get()[0] = full_array; ReadParameters read_params; read_params.executor_ = cache.executor(); { ReadLock<ReadData> lock{node}; read_params.if_not_equal_ = lock.stamp().generation; } read_params.staleness_bound_ = staleness_bound; auto read_future = cache.read_function_(ConstDataTypeCast<void>(std::move(partial_array)), std::move(read_params)); read_future.Force(); read_future.ExecuteWhenReady( [&node, read_data = std::move(read_data)]( ReadyFuture<TimestampedStorageGeneration> future) mutable { auto& r = future.result(); if (!r.ok()) { node.ReadError(std::move(r).status()); return; } if (StorageGeneration::IsUnknown(r->generation)) { ReadState read_state; { ReadLock<ReadData> lock{node}; read_state = lock.read_state(); } read_state.stamp.time = r->time; node.ReadSuccess(std::move(read_state)); return; } node.ReadSuccess({std::move(read_data), std::move(*r)}); return; }); }); } std::string VirtualChunkedCache::TransactionNode::Describe() { auto& entry = GetOwningEntry(*this); auto& cache = GetOwningCache(entry); auto domain = cache.grid().GetValidCellDomain(0, entry.cell_indices()); if (domain.is_empty()) return {}; return tensorstore::StrCat("write to virtual chunk ", domain); } void VirtualChunkedCache::TransactionNode::Commit() { if (!GetOwningCache(*this).write_function_) { SetError(absl::InternalError( "No write function specified to virtual_chunked driver")); this->WritebackError(); return; } InitiateWriteback(absl::InfinitePast()); internal::ChunkCache::TransactionNode::Commit(); } void VirtualChunkedCache::TransactionNode::InitiateWriteback( absl::Time staleness_bound) { struct ApplyReceiver { TransactionNode& self; void set_value(AsyncCache::ReadState update) { GetOwningCache(self).executor()( [node = &self, update = std::move(update)] { auto* read_data = static_cast<const ReadData*>(update.data.get()); SharedArray<const void> full_array; auto& entry = GetOwningEntry(*node); auto& cache = GetOwningCache(*node); if (read_data && read_data[0].valid()) { full_array = read_data[0]; } else { full_array = node->component_specs()[0].array_spec.GetFillValueForDomain( cache.grid().GetCellDomain(0, entry.cell_indices())); } Array<const void, dynamic_rank, offset_origin> partial_array; if (!GetPermutedPartialArray(entry, full_array, partial_array)) { node->WritebackSuccess( {std::move(update.data), {StorageGeneration::NoValue(), absl::InfiniteFuture()}}); return; } WriteParameters write_params; write_params.if_equal_ = StorageGeneration::Clean(update.stamp.generation); write_params.executor_ = cache.executor(); auto write_future = cache.write_function_(std::move(partial_array), std::move(write_params)); write_future.Force(); write_future.ExecuteWhenReady( [node = node, update = std::move(update), full_array = std::move(full_array)]( ReadyFuture<TimestampedStorageGeneration> future) mutable { auto& r = future.result(); if (!r.ok()) { node->SetError(std::move(r).status()); node->WritebackError(); return; } if (StorageGeneration::IsUnknown(r->generation)) { node->InitiateWriteback(r->time); return; } update.stamp = std::move(*r); node->WritebackSuccess(std::move(update)); }); }); } void set_error(absl::Status error) { self.SetError(std::move(error)); self.WritebackError(); } void set_cancel() { ABSL_UNREACHABLE(); } }; AsyncCache::TransactionNode::ApplyOptions apply_options; apply_options.staleness_bound = staleness_bound; this->DoApply(std::move(apply_options), ApplyReceiver{*this}); } class VirtualChunkedDriverSpec : public internal::RegisteredDriverSpec<VirtualChunkedDriverSpec, internal::DriverSpec> { public: constexpr static const char id[] = "virtual_chunked"; std::optional<ReadFunction> read_function; std::optional<WriteFunction> write_function; Context::Resource<internal::DataCopyConcurrencyResource> data_copy_concurrency; Context::Resource<internal::CachePoolResource> cache_pool; StalenessBound data_staleness; constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(internal::BaseCast<internal::DriverSpec>(x), x.read_function, x.write_function, x.data_copy_concurrency, x.cache_pool, x.data_staleness); }; OpenMode open_mode() const override { return OpenMode::open; } Future<internal::Driver::Handle> Open( internal::DriverOpenRequest request) const override; absl::Status ApplyOptions(SpecOptions&& options) override { if (options.kvstore.valid()) { return absl::InvalidArgumentError( "virtual_chunked driver does not support a kvstore"); } if (options.recheck_cached_data.specified()) { data_staleness = StalenessBound(options.recheck_cached_data); } if (options.recheck_cached_metadata.specified()) { return absl::InvalidArgumentError( "virtual_chunked driver does not support recheck_cached_metadata"); } return schema.Set(static_cast<Schema&&>(options)); } }; class VirtualChunkedDriver; using VirtualChunkedDriverBase = internal::RegisteredDriver< VirtualChunkedDriver, internal::ChunkGridSpecificationDriver< VirtualChunkedCache, internal::ChunkCacheReadWriteDriverMixin< VirtualChunkedDriver, internal::Driver>>>; class VirtualChunkedDriver : public VirtualChunkedDriverBase { using Base = VirtualChunkedDriverBase; public: using Base::Base; Result<internal::TransformedDriverSpec> GetBoundSpec( internal::OpenTransactionPtr transaction, IndexTransformView<> transform) override; static Result<internal::Driver::Handle> OpenFromSpecData( Transaction transaction, const VirtualChunkedDriverSpec& spec, ReadWriteMode read_write_mode = ReadWriteMode::dynamic); Result<CodecSpec> GetCodec() override { return CodecSpec{}; } Result<DimensionUnitsVector> GetDimensionUnits() override { return cache()->dimension_units_; } Result<SharedArray<const void>> GetFillValue( IndexTransformView<> transform) override { return {std::in_place}; } Result<ChunkLayout> GetChunkLayout(IndexTransformView<> transform) override { return internal::GetChunkLayoutFromGrid(cache()->grid().components[0]) | transform; } }; Result<internal::TransformedDriverSpec> VirtualChunkedDriver::GetBoundSpec( internal::OpenTransactionPtr transaction, IndexTransformView<> transform) { auto driver_spec = internal::DriverSpec::Make<VirtualChunkedDriverSpec>(); driver_spec->context_binding_state_ = ContextBindingState::bound; auto& cache = *this->cache(); if (cache.read_function_) { driver_spec->read_function = cache.read_function_; } if (cache.write_function_) { driver_spec->write_function = cache.write_function_; } driver_spec->data_copy_concurrency = cache.data_copy_concurrency_; driver_spec->cache_pool = cache.cache_pool_; driver_spec->data_staleness = this->data_staleness_bound(); const DimensionIndex rank = this->rank(); TENSORSTORE_RETURN_IF_ERROR(driver_spec->schema.Set(RankConstraint{rank})); TENSORSTORE_RETURN_IF_ERROR(driver_spec->schema.Set(dtype())); TENSORSTORE_RETURN_IF_ERROR( driver_spec->schema.Set(Schema::DimensionUnits(cache.dimension_units_))); TENSORSTORE_RETURN_IF_ERROR( driver_spec->schema.Set(ChunkLayout::InnerOrder(cache.inner_order_))); TENSORSTORE_RETURN_IF_ERROR(driver_spec->schema.Set( ChunkLayout::GridOrigin(cache.grid_origin_for_read_function_))); span<const DimensionIndex> inner_order = cache.inner_order_; span<const Index> grid_origin_for_read_function = cache.grid_origin_for_read_function_; const auto& component_spec = cache.grid().components[component_index()]; IndexTransformBuilder external_to_output_transform_builder(rank, rank); IndexDomainBuilder external_domain_builder(rank); Index chunk_shape[kMaxRank]; for (DimensionIndex component_dim = 0; component_dim < rank; ++component_dim) { const DimensionIndex external_dim = inner_order[component_dim]; const Index offset = grid_origin_for_read_function[external_dim]; chunk_shape[external_dim] = component_spec.shape()[component_dim]; external_to_output_transform_builder.output_single_input_dimension( external_dim, offset, 1, component_dim); TENSORSTORE_ASSIGN_OR_RETURN( external_domain_builder.bounds()[external_dim], ShiftInterval( component_spec.array_spec.valid_data_bounds[component_dim], offset)); } TENSORSTORE_ASSIGN_OR_RETURN(auto external_to_output_transform, external_to_output_transform_builder.Finalize()); TENSORSTORE_ASSIGN_OR_RETURN(auto external_domain, external_domain_builder.Finalize()); TENSORSTORE_RETURN_IF_ERROR(driver_spec->schema.Set( ChunkLayout::ChunkShape(span<const Index>(&chunk_shape[0], rank)))); TENSORSTORE_RETURN_IF_ERROR( driver_spec->schema.Set(std::move(external_domain))); internal::TransformedDriverSpec spec; TENSORSTORE_ASSIGN_OR_RETURN( spec.transform, ComposeTransforms(external_to_output_transform, transform)); spec.driver_spec = std::move(driver_spec); return spec; } Result<internal::Driver::Handle> VirtualChunkedDriver::OpenFromSpecData( Transaction transaction, const VirtualChunkedDriverSpec& spec, ReadWriteMode read_write_mode) { if ((read_write_mode & ReadWriteMode::read) == ReadWriteMode::read && !spec.read_function) { return absl::InvalidArgumentError("Reading not supported"); } if ((read_write_mode & ReadWriteMode::write) == ReadWriteMode::write && !spec.write_function) { return absl::InvalidArgumentError("Writing not supported"); } if (read_write_mode == ReadWriteMode::dynamic) { read_write_mode = (spec.read_function ? ReadWriteMode::read : ReadWriteMode{}) | (spec.write_function ? ReadWriteMode::write : ReadWriteMode{}); } const DimensionIndex rank = spec.schema.rank(); if (rank == dynamic_rank) { return absl::InvalidArgumentError("rank must be specified"); } DataType dtype = spec.schema.dtype(); if (!dtype.valid()) { return absl::InvalidArgumentError("dtype must be specified"); } IndexDomain<> domain = spec.schema.domain(); if (!domain.valid()) { domain = IndexDomain<>(rank); } domain = WithImplicitDimensions(std::move(domain), false, false); Box<> chunk_template(rank); std::vector<DimensionIndex> inner_order(rank); { ChunkLayout chunk_layout = spec.schema.chunk_layout(); if (chunk_layout.codec_chunk_shape().hard_constraint) { return absl::InvalidArgumentError("codec_chunk_shape not supported"); } if (spec.schema.fill_value().valid()) { return absl::InvalidArgumentError("fill_value not supported"); } TENSORSTORE_RETURN_IF_ERROR( internal::ChooseReadWriteChunkGrid(chunk_layout, domain.box(), chunk_template), tensorstore::MaybeAnnotateStatus(_, "Failed to compute chunk grid")); if (auto requested_inner_order = chunk_layout.inner_order(); requested_inner_order.valid()) { std::copy_n(requested_inner_order.begin(), rank, inner_order.begin()); } else { std::iota(inner_order.begin(), inner_order.end(), DimensionIndex(0)); } } auto external_dimension_units = spec.schema.dimension_units(); Box<> adjusted_component_domain(rank); DimensionUnitsVector component_units(rank); for (DimensionIndex component_dim = 0; component_dim < rank; ++component_dim) { const DimensionIndex external_dim = inner_order[component_dim]; TENSORSTORE_ASSIGN_OR_RETURN( adjusted_component_domain[component_dim], ShiftIntervalBackward(domain[external_dim], chunk_template.origin()[external_dim])); if (external_dimension_units.valid()) { component_units[component_dim] = external_dimension_units[external_dim]; } } internal::Driver::Handle handle; handle.transaction = std::move(transaction); { IndexTransformBuilder transform_builder(rank, rank); transform_builder.input_domain(domain); for (DimensionIndex component_dim = 0; component_dim < rank; ++component_dim) { const DimensionIndex external_dim = inner_order[component_dim]; transform_builder.output_single_input_dimension( component_dim, -chunk_template.origin()[external_dim], 1, external_dim); } TENSORSTORE_ASSIGN_OR_RETURN(handle.transform, transform_builder.Finalize()); } auto cache = internal::GetCache<VirtualChunkedCache>(spec.cache_pool->get(), "", [&] { auto fill_value = BroadcastArray(AllocateArray(span<const Index>{}, c_order, value_init, spec.schema.dtype()), BoxView<>(rank)) .value(); std::vector<Index> chunk_shape(rank); for (DimensionIndex component_dim = 0; component_dim < rank; ++component_dim) { const DimensionIndex external_dim = inner_order[component_dim]; chunk_shape[component_dim] = chunk_template.shape()[external_dim]; } internal::ChunkGridSpecification::ComponentList components; components.emplace_back( internal::AsyncWriteArray::Spec{ std::move(fill_value), std::move(adjusted_component_domain)}, std::move(chunk_shape)); auto cache = std::make_unique<VirtualChunkedCache>( internal::ChunkGridSpecification(std::move(components)), spec.data_copy_concurrency->executor); cache->dimension_units_ = std::move(component_units); if (spec.read_function) { cache->read_function_ = *spec.read_function; } if (spec.write_function) { cache->write_function_ = *spec.write_function; } cache->inner_order_ = std::move(inner_order); cache->grid_origin_for_read_function_.assign( chunk_template.origin().begin(), chunk_template.origin().end()); cache->cache_pool_ = spec.cache_pool; cache->data_copy_concurrency_ = spec.data_copy_concurrency; return cache; }); handle.driver = internal::MakeReadWritePtr<VirtualChunkedDriver>( read_write_mode, VirtualChunkedDriver::Initializer{ std::move(cache), 0, spec.data_staleness.BoundAtOpen(absl::Now())}); return handle; } Future<internal::Driver::Handle> VirtualChunkedDriverSpec::Open( internal::DriverOpenRequest request) const { return VirtualChunkedDriver::OpenFromSpecData( internal::TransactionState::ToTransaction(std::move(request.transaction)), *this, request.read_write_mode); } } namespace internal_virtual_chunked { Result<internal::Driver::Handle> MakeDriver( virtual_chunked::ReadFunction read_function, virtual_chunked::WriteFunction write_function, OpenOptions&& options) { VirtualChunkedDriverSpec spec; if (read_function) { spec.read_function = std::move(read_function); } if (write_function) { spec.write_function = std::move(write_function); } spec.schema = static_cast<Schema&&>(options); if (!options.context) { options.context = Context::Default(); } TENSORSTORE_ASSIGN_OR_RETURN( spec.cache_pool, options.context.GetResource<internal::CachePoolResource>()); TENSORSTORE_ASSIGN_OR_RETURN( spec.data_copy_concurrency, options.context.GetResource<internal::DataCopyConcurrencyResource>()); if (options.recheck_cached_data.specified()) { spec.data_staleness = StalenessBound(options.recheck_cached_data); } return VirtualChunkedDriver::OpenFromSpecData(std::move(options.transaction), spec); } } } namespace garbage_collection { template <> struct GarbageCollection<virtual_chunked::VirtualChunkedDriver> { static void Visit(GarbageCollectionVisitor& visitor, const virtual_chunked::VirtualChunkedDriver& value) { garbage_collection::GarbageCollectionVisit(visitor, value.cache()->read_function_); garbage_collection::GarbageCollectionVisit(visitor, value.cache()->write_function_); } }; } } namespace { const tensorstore::internal::SerializationOnlyDriverRegistration< tensorstore::virtual_chunked::VirtualChunkedDriverSpec> driver_registration; }
#include "tensorstore/virtual_chunked.h" #include <memory> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorstore/array.h" #include "tensorstore/chunk_layout.h" #include "tensorstore/context.h" #include "tensorstore/data_type.h" #include "tensorstore/index.h" #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/internal/queue_testutil.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/test_util.h" #include "tensorstore/open_mode.h" #include "tensorstore/rank.h" #include "tensorstore/schema.h" #include "tensorstore/serialization/function.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/test_util.h" #include "tensorstore/staleness_bound.h" #include "tensorstore/strided_layout.h" #include "tensorstore/tensorstore.h" #include "tensorstore/transaction.h" #include "tensorstore/util/future.h" #include "tensorstore/util/iterate_over_index_range.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::DimensionIndex; using ::tensorstore::dynamic_rank; using ::tensorstore::Future; using ::tensorstore::Index; using ::tensorstore::MatchesStatus; using ::tensorstore::Promise; using ::tensorstore::Result; using ::tensorstore::span; using ::tensorstore::StorageGeneration; using ::tensorstore::TimestampedStorageGeneration; using ::tensorstore::internal::ConcurrentQueue; using ::tensorstore::internal::UniqueNow; using ::tensorstore::serialization::SerializationRoundTrip; template <typename... Option> Result<tensorstore::TensorStore<Index, dynamic_rank, tensorstore::ReadWriteMode::read>> CoordinatesView(DimensionIndex dim, Option&&... option) { return tensorstore::VirtualChunked<Index>( tensorstore::NonSerializable{[dim](auto output, auto read_params) -> Future<TimestampedStorageGeneration> { tensorstore::IterateOverIndexRange( output.domain(), [&](span<const Index> indices) { output(indices) = indices[dim]; }); return TimestampedStorageGeneration{StorageGeneration::FromString(""), absl::Now()}; }}, std::forward<Option>(option)...); } template <typename... Option> Result<tensorstore::TensorStore<Index, dynamic_rank, tensorstore::ReadWriteMode::read>> SerializableCoordinatesView(DimensionIndex dim, Option&&... option) { return tensorstore::VirtualChunked<Index>( tensorstore::serialization::BindFront( [](DimensionIndex dim, auto output, auto read_params) -> Future<TimestampedStorageGeneration> { tensorstore::IterateOverIndexRange(output.domain(), [&](span<const Index> indices) { output(indices) = indices[dim]; }); return TimestampedStorageGeneration{ StorageGeneration::FromString(""), absl::Now()}; }, dim), std::forward<Option>(option)...); } using RequestLayout = ::tensorstore::StridedLayout<dynamic_rank, ::tensorstore::offset_origin>; template <typename... Option> Result<tensorstore::TensorStore<void, dynamic_rank, tensorstore::ReadWriteMode::read>> LoggingView(std::vector<RequestLayout>& requests, Option&&... option) { auto mutex = std::make_shared<absl::Mutex>(); return tensorstore::VirtualChunked( tensorstore::NonSerializable{ [mutex, &requests](auto output, auto read_params) -> Future<TimestampedStorageGeneration> { tensorstore::InitializeArray(output); absl::MutexLock lock(mutex.get()); requests.emplace_back(output.layout()); return TimestampedStorageGeneration{ StorageGeneration::FromString(""), absl::Now()}; }}, std::forward<Option>(option)...); } template <typename Element, DimensionIndex Rank, typename Parameters> struct Request { tensorstore::Array<Element, Rank, tensorstore::offset_origin> array; Parameters params; Promise<TimestampedStorageGeneration> promise; }; template <typename Element, DimensionIndex Rank, typename Parameters> auto EnqueueRequestHandler( ConcurrentQueue<Request<Element, Rank, Parameters>>& queue) { return tensorstore::NonSerializable{ [&queue]( tensorstore::Array<Element, Rank, tensorstore::offset_origin> array, Parameters params) -> Future<TimestampedStorageGeneration> { auto [promise, future] = tensorstore::PromiseFuturePair< TimestampedStorageGeneration>::Make(); queue.push({std::move(array), std::move(params), std::move(promise)}); return future; }}; } template <typename Element, DimensionIndex Rank> using ReadRequest = Request<Element, Rank, tensorstore::virtual_chunked::ReadParameters>; template <typename Element, DimensionIndex Rank> using WriteRequest = Request<const Element, Rank, tensorstore::virtual_chunked::WriteParameters>; template <typename Element, DimensionIndex Rank, typename... Option> Result< tensorstore::TensorStore<Element, Rank, tensorstore::ReadWriteMode::read>> MockView(ConcurrentQueue<ReadRequest<Element, Rank>>& queue, Option&&... option) { return tensorstore::VirtualChunked<Element, Rank>( EnqueueRequestHandler(queue), std::forward<Option>(option)...); } template <typename Element, DimensionIndex Rank, typename... Option> Result<tensorstore::TensorStore<Element, Rank, tensorstore::ReadWriteMode::read_write>> MockView(ConcurrentQueue<ReadRequest<Element, Rank>>& read_queue, ConcurrentQueue<WriteRequest<Element, Rank>>& write_queue, Option&&... option) { return tensorstore::VirtualChunked<Element, Rank>( EnqueueRequestHandler(read_queue), EnqueueRequestHandler(write_queue), std::forward<Option>(option)...); } template <typename Element, DimensionIndex Rank, typename... Option> Result< tensorstore::TensorStore<Element, Rank, tensorstore::ReadWriteMode::write>> MockView(ConcurrentQueue<WriteRequest<Element, Rank>>& write_queue, Option&&... option) { return tensorstore::VirtualChunkedWriteOnly<Element, Rank>( EnqueueRequestHandler(write_queue), std::forward<Option>(option)...); } TEST(VirtualChunkedTest, Coordinates) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto coords0, CoordinatesView(0, tensorstore::Schema::Shape({2, 3}))); EXPECT_THAT(tensorstore::Read(coords0).result(), ::testing::Optional( tensorstore::MakeArray<Index>({{0, 0, 0}, {1, 1, 1}}))); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto coords1, CoordinatesView(1, tensorstore::Schema::Shape({2, 3}))); EXPECT_THAT(tensorstore::Read(coords1).result(), ::testing::Optional( tensorstore::MakeArray<Index>({{0, 1, 2}, {0, 1, 2}}))); } TEST(VirtualChunkedTest, CoordinatesUnbounded) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto coords0, CoordinatesView(0, tensorstore::RankConstraint{2})); EXPECT_THAT( tensorstore::Read<tensorstore::zero_origin>( coords0 | tensorstore::Dims(0, 1).SizedInterval({1000, 2}, {2, 3})) .result(), ::testing::Optional(tensorstore::MakeArray<Index>( {{1000, 1000, 1000}, {1001, 1001, 1001}}))); } TEST(VirtualChunkedTest, CoordinatesInnerOrder) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto coords0, CoordinatesView(0, tensorstore::Schema::Shape({2, 3}), tensorstore::ChunkLayout::InnerOrder({1, 0}))); EXPECT_THAT(tensorstore::Read(coords0).result(), ::testing::Optional( tensorstore::MakeArray<Index>({{0, 0, 0}, {1, 1, 1}}))); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto coords1, CoordinatesView(1, tensorstore::Schema::Shape({2, 3}), tensorstore::ChunkLayout::InnerOrder({1, 0}))); EXPECT_THAT(tensorstore::Read(coords1).result(), ::testing::Optional( tensorstore::MakeArray<Index>({{0, 1, 2}, {0, 1, 2}}))); } TEST(VirtualChunkedTest, SerializableCoordinatesInnerOrder) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto coords0_orig, SerializableCoordinatesView( 0, tensorstore::Schema::Shape({2, 3}), tensorstore::ChunkLayout::InnerOrder({1, 0}))); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto coords0, SerializationRoundTrip(coords0_orig)); EXPECT_THAT(tensorstore::Read(coords0).result(), ::testing::Optional( tensorstore::MakeArray<Index>({{0, 0, 0}, {1, 1, 1}}))); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto coords1_orig, SerializableCoordinatesView( 1, tensorstore::Schema::Shape({2, 3}), tensorstore::ChunkLayout::InnerOrder({1, 0}))); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto coords1, SerializationRoundTrip(coords1_orig)); EXPECT_THAT(tensorstore::Read(coords1).result(), ::testing::Optional( tensorstore::MakeArray<Index>({{0, 1, 2}, {0, 1, 2}}))); } TEST(VirtualChunkedTest, ReadChunkShape) { std::vector<RequestLayout> requests; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto view, LoggingView(requests, tensorstore::dtype_v<bool>, tensorstore::Schema::Shape({2, 3}), tensorstore::ChunkLayout::ReadChunkShape({2, 1}))); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto chunk_layout, view.chunk_layout()); EXPECT_THAT(chunk_layout.read_chunk_shape(), ::testing::ElementsAre(2, 1)); TENSORSTORE_ASSERT_OK(tensorstore::Read(view)); EXPECT_THAT(requests, ::testing::UnorderedElementsAre( RequestLayout({0, 0}, {2, 1}, {1, 1}), RequestLayout({0, 1}, {2, 1}, {1, 1}), RequestLayout({0, 2}, {2, 1}, {1, 1}))); } TEST(VirtualChunkedTest, InnerOrder) { std::vector<RequestLayout> requests; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto view, LoggingView(requests, tensorstore::dtype_v<bool>, tensorstore::Schema::Shape({3, 4, 5}), tensorstore::ChunkLayout::InnerOrder({2, 0, 1}), tensorstore::ChunkLayout::ReadChunkShape({2, 3, 4}))); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto chunk_layout, view.chunk_layout()); EXPECT_THAT(chunk_layout.read_chunk_shape(), ::testing::ElementsAre(2, 3, 4)); EXPECT_THAT(chunk_layout.inner_order(), ::testing::ElementsAre(2, 0, 1)); TENSORSTORE_ASSERT_OK(tensorstore::Read(view)); EXPECT_THAT(requests, ::testing::UnorderedElementsAreArray({ RequestLayout({0, 0, 0}, {2, 3, 4}, {3, 1, 6}), RequestLayout({2, 0, 0}, {1, 3, 4}, {3, 1, 6}), RequestLayout({0, 3, 0}, {2, 1, 4}, {3, 1, 6}), RequestLayout({2, 3, 0}, {1, 1, 4}, {3, 1, 6}), RequestLayout({0, 0, 4}, {2, 3, 1}, {3, 1, 6}), RequestLayout({2, 0, 4}, {1, 3, 1}, {3, 1, 6}), RequestLayout({0, 3, 4}, {2, 1, 1}, {3, 1, 6}), RequestLayout({2, 3, 4}, {1, 1, 1}, {3, 1, 6}), })); } TEST(VirtualChunkedTest, NoRecheckCache) { ConcurrentQueue<ReadRequest<int, 0>> requests; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto context, tensorstore::Context::FromJson( {{"cache_pool", {{"total_bytes_limit", 10000000}}}})); auto mock_view = MockView<int, 0>( requests, tensorstore::RecheckCachedData{false}, context); auto read_future = tensorstore::Read(mock_view); { auto request = requests.pop(); EXPECT_EQ(StorageGeneration::Unknown(), request.params.if_not_equal()); request.array() = 42; request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::FromString("abc"), absl::Now())); } EXPECT_THAT(read_future.result(), ::testing::Optional(tensorstore::MakeScalarArray<int>(42))); read_future = tensorstore::Read(mock_view); EXPECT_THAT(read_future.result(), ::testing::Optional(tensorstore::MakeScalarArray<int>(42))); } TEST(VirtualChunkedTest, RecheckCache) { ConcurrentQueue<ReadRequest<int, 0>> requests; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto context, tensorstore::Context::FromJson( {{"cache_pool", {{"total_bytes_limit", 10000000}}}})); auto mock_view = MockView<int, 0>(requests, context); auto read_future = tensorstore::Read(mock_view); { auto request = requests.pop(); EXPECT_EQ(StorageGeneration::Unknown(), request.params.if_not_equal()); request.array() = 42; request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::FromString("abc"), absl::Now())); } EXPECT_THAT(read_future.result(), ::testing::Optional(tensorstore::MakeScalarArray<int>(42))); UniqueNow(); read_future = tensorstore::Read(mock_view); { auto request = requests.pop(); EXPECT_EQ(StorageGeneration::FromString("abc"), request.params.if_not_equal()); request.array() = 43; request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::Unknown(), absl::Now())); } EXPECT_THAT(read_future.result(), ::testing::Optional(tensorstore::MakeScalarArray<int>(42))); } TEST(VirtualChunkedTest, RecheckCacheImmutable) { ConcurrentQueue<ReadRequest<int, 0>> requests; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto context, tensorstore::Context::FromJson( {{"cache_pool", {{"total_bytes_limit", 10000000}}}})); auto mock_view = MockView<int, 0>(requests, tensorstore::RecheckCachedData{true}, context); auto read_future = tensorstore::Read(mock_view); { auto request = requests.pop(); EXPECT_EQ(StorageGeneration::Unknown(), request.params.if_not_equal()); request.array() = 42; request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::FromString(""), absl::InfiniteFuture())); } EXPECT_THAT(read_future.result(), ::testing::Optional(tensorstore::MakeScalarArray<int>(42))); UniqueNow(); read_future = tensorstore::Read(mock_view); EXPECT_THAT(read_future.result(), ::testing::Optional(tensorstore::MakeScalarArray<int>(42))); } TEST(VirtualChunkedTest, ReadWrite) { ConcurrentQueue<ReadRequest<int, 1>> read_requests; ConcurrentQueue<WriteRequest<int, 1>> write_requests; auto mock_view = MockView<int, 1>(read_requests, write_requests, tensorstore::Schema::Shape({2})); auto write_future = tensorstore::Write(tensorstore::MakeScalarArray<int>(42), mock_view | tensorstore::Dims(0).IndexSlice(0)); write_future.Force(); { auto request = read_requests.pop(); EXPECT_EQ(StorageGeneration::Unknown(), request.params.if_not_equal()); request.array(0) = 1; request.array(1) = 2; request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::FromString("gen1"), absl::Now())); } { auto request = write_requests.pop(); EXPECT_EQ(StorageGeneration::FromString("gen1"), request.params.if_equal()); EXPECT_EQ(tensorstore::MakeArray<int>({42, 2}), request.array); request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::FromString("gen2"), absl::Now())); } TENSORSTORE_ASSERT_OK(write_future); } TEST(VirtualChunkedTest, ReadWriteWrite) { ConcurrentQueue<ReadRequest<int, 1>> read_requests; ConcurrentQueue<WriteRequest<int, 1>> write_requests; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto context, tensorstore::Context::FromJson( {{"cache_pool", {{"total_bytes_limit", 1000000}}}})); auto mock_view = MockView<int, 1>(read_requests, write_requests, context, tensorstore::Schema::Shape({2})); { auto write_future = tensorstore::Write(tensorstore::MakeScalarArray<int>(42), mock_view | tensorstore::Dims(0).IndexSlice(0)); write_future.Force(); { auto request = read_requests.pop(); EXPECT_EQ(StorageGeneration::Unknown(), request.params.if_not_equal()); request.array(0) = 1; request.array(1) = 2; request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::FromString(""), absl::InfiniteFuture())); } { auto request = write_requests.pop(); EXPECT_EQ(StorageGeneration::FromString(""), request.params.if_equal()); EXPECT_EQ(tensorstore::MakeArray<int>({42, 2}), request.array); request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::FromString(""), absl::InfiniteFuture())); } TENSORSTORE_ASSERT_OK(write_future); } { auto write_future = tensorstore::Write(tensorstore::MakeScalarArray<int>(50), mock_view | tensorstore::Dims(0).IndexSlice(1)); write_future.Force(); { auto request = write_requests.pop(); EXPECT_EQ(StorageGeneration::FromString(""), request.params.if_equal()); EXPECT_EQ(tensorstore::MakeArray<int>({42, 50}), request.array); request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::FromString(""), absl::InfiniteFuture())); } TENSORSTORE_ASSERT_OK(write_future); } } TEST(VirtualChunkedTest, Write) { ConcurrentQueue<WriteRequest<int, 1>> write_requests; auto mock_view = MockView<int, 1>(write_requests, tensorstore::Schema::Shape({6}), tensorstore::ChunkLayout::ChunkShape({4})); { auto write_future = tensorstore::Write( tensorstore::MakeScalarArray<int>(42), mock_view | tensorstore::Dims(0).SizedInterval(0, 4)); write_future.Force(); { auto request = write_requests.pop(); EXPECT_EQ(StorageGeneration::Unknown(), request.params.if_equal()); EXPECT_EQ(tensorstore::MakeArray<int>({42, 42, 42, 42}), request.array); request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::FromString(""), absl::Now())); } TENSORSTORE_ASSERT_OK(write_future); } { auto write_future = tensorstore::Write( tensorstore::MakeScalarArray<int>(42), mock_view | tensorstore::Dims(0).SizedInterval(4, 2)); write_future.Force(); { auto request = write_requests.pop(); EXPECT_EQ(StorageGeneration::Unknown(), request.params.if_equal()); EXPECT_EQ(tensorstore::MakeOffsetArray<int>({4}, {42, 42}), request.array); request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::FromString(""), absl::Now())); } TENSORSTORE_ASSERT_OK(write_future); } } TEST(VirtualChunkedTest, WriteFillValue) { ConcurrentQueue<WriteRequest<int, 0>> write_requests; auto mock_view = MockView<int, 0>(write_requests); auto write_future = tensorstore::Write(tensorstore::MakeScalarArray<int>(0), mock_view); write_future.Force(); { auto request = write_requests.pop(); EXPECT_EQ(StorageGeneration::Unknown(), request.params.if_equal()); EXPECT_EQ(tensorstore::MakeScalarArray<int>(0), request.array); request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::FromString(""), absl::Now())); } TENSORSTORE_ASSERT_OK(write_future); } TEST(VirtualChunkedTest, WriteOnlyError) { ConcurrentQueue<WriteRequest<int, 1>> write_requests; auto mock_view = MockView<int, 1>(write_requests, tensorstore::Schema::Shape({2})); EXPECT_THAT( tensorstore::Write(tensorstore::MakeScalarArray<int>(42), mock_view | tensorstore::Dims(0).IndexSlice(0)) .result(), MatchesStatus( absl::StatusCode::kInvalidArgument, "Write-only virtual chunked view requires chunk-aligned writes")); } TEST(VirtualChunkedTest, AtomicSingleChunk) { tensorstore::Transaction transaction(tensorstore::atomic_isolated); ConcurrentQueue<WriteRequest<int, 1>> write_requests; auto mock_view = MockView<int, 1>(write_requests, tensorstore::Schema::Shape({6}), tensorstore::ChunkLayout::ChunkShape({4}), transaction); TENSORSTORE_ASSERT_OK(tensorstore::Write( tensorstore::MakeScalarArray<int>(42), mock_view | tensorstore::Dims(0).HalfOpenInterval(0, 4))); auto future = transaction.CommitAsync(); { auto request = write_requests.pop(); EXPECT_EQ(StorageGeneration::Unknown(), request.params.if_equal()); EXPECT_EQ(tensorstore::MakeArray<int>({42, 42, 42, 42}), request.array); request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::FromString(""), absl::Now())); } TENSORSTORE_ASSERT_OK(future); } TEST(VirtualChunkedTest, AtomicMultipleChunks) { tensorstore::Transaction transaction(tensorstore::atomic_isolated); ConcurrentQueue<WriteRequest<int, 1>> write_requests; auto mock_view = MockView<int, 1>(write_requests, tensorstore::Schema::Shape({6}), tensorstore::ChunkLayout::ChunkShape({4}), transaction); EXPECT_THAT( tensorstore::Write(tensorstore::MakeScalarArray<int>(42), mock_view) .result(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Cannot write to virtual chunk .* and write to virtual " "chunk .* as single atomic transaction")); } TEST(VirtualChunkedTest, NonAtomicSingleChunk) { tensorstore::Transaction transaction(tensorstore::isolated); ConcurrentQueue<WriteRequest<int, 1>> write_requests; auto mock_view = MockView<int, 1>(write_requests, tensorstore::Schema::Shape({6}), tensorstore::ChunkLayout::ChunkShape({4}), transaction); TENSORSTORE_ASSERT_OK( tensorstore::Write(tensorstore::MakeScalarArray<int>(42), mock_view)); auto future = transaction.CommitAsync(); for (int i = 0; i < 2; ++i) { auto request = write_requests.pop(); EXPECT_EQ(StorageGeneration::Unknown(), request.params.if_equal()); request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::FromString(""), absl::Now())); } TENSORSTORE_ASSERT_OK(future); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/driver/virtual_chunked/virtual_chunked.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/driver/virtual_chunked/virtual_chunked_test.cc
4f887a6430414cd6088e1743555015b10f116d50
7d164151-1d9b-4732-8ebc-8497172ea862
cpp
tensorflow/tensorflow
memmapped_file_system
tensorflow/core/util/memmapped_file_system.cc
tensorflow/core/util/memmapped_file_system_test.cc
#include "tensorflow/core/util/memmapped_file_system.h" #include <algorithm> #include <memory> #include <utility> #include <vector> #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/util/memmapped_file_system.pb.h" namespace tensorflow { namespace { uint64 DecodeUint64LittleEndian(const uint8* buffer) { uint64 result = 0; for (int i = 0; i < static_cast<int>(sizeof(uint64)); ++i) { result |= static_cast<uint64>(buffer[i]) << (8 * i); } return result; } } namespace { class ReadOnlyMemoryRegionFromMemmapped : public ReadOnlyMemoryRegion { public: ReadOnlyMemoryRegionFromMemmapped(const void* data, uint64 length) : data_(data), length_(length) {} ~ReadOnlyMemoryRegionFromMemmapped() override = default; const void* data() override { return data_; } uint64 length() override { return length_; } private: const void* const data_; const uint64 length_; }; class RandomAccessFileFromMemmapped : public RandomAccessFile { public: RandomAccessFileFromMemmapped(const void* data, uint64 length) : data_(data), length_(length) {} ~RandomAccessFileFromMemmapped() override = default; Status Name(StringPiece* result) const override { return errors::Unimplemented( "RandomAccessFileFromMemmapped does not support Name()"); } Status Read(uint64 offset, size_t to_read, StringPiece* result, char* scratch) const override { if (offset >= length_) { *result = StringPiece(scratch, 0); return Status(absl::StatusCode::kOutOfRange, "Read after file end"); } const uint64 region_left = std::min(length_ - offset, static_cast<uint64>(to_read)); *result = StringPiece(reinterpret_cast<const char*>(data_) + offset, region_left); return (region_left == to_read) ? absl::OkStatus() : Status(absl::StatusCode::kOutOfRange, "Read less bytes than requested"); } private: const void* const data_; const uint64 length_; }; } MemmappedFileSystem::MemmappedFileSystem() = default; Status MemmappedFileSystem::FileExists(const string& fname, TransactionToken* token) { if (!mapped_memory_) { return errors::FailedPrecondition("MemmappedEnv is not initialized"); } const auto dir_element = directory_.find(fname); if (dir_element != directory_.end()) { return absl::OkStatus(); } return errors::NotFound(fname, " not found"); } Status MemmappedFileSystem::NewRandomAccessFile( const string& filename, TransactionToken* token, std::unique_ptr<RandomAccessFile>* result) { if (!mapped_memory_) { return errors::FailedPrecondition("MemmappedEnv is not initialized"); } const auto dir_element = directory_.find(filename); if (dir_element == directory_.end()) { return errors::NotFound("Region ", filename, " is not found"); } *result = std::make_unique<RandomAccessFileFromMemmapped>( GetMemoryWithOffset(dir_element->second.offset), dir_element->second.length); return absl::OkStatus(); } Status MemmappedFileSystem::NewReadOnlyMemoryRegionFromFile( const string& filename, TransactionToken* token, std::unique_ptr<ReadOnlyMemoryRegion>* result) { if (!mapped_memory_) { return errors::FailedPrecondition("MemmappedEnv is not initialized"); } const auto dir_element = directory_.find(filename); if (dir_element == directory_.end()) { return errors::NotFound("Region ", filename, " is not found"); } *result = std::make_unique<ReadOnlyMemoryRegionFromMemmapped>( GetMemoryWithOffset(dir_element->second.offset), dir_element->second.length); return absl::OkStatus(); } Status MemmappedFileSystem::GetFileSize(const string& filename, TransactionToken* token, uint64* size) { if (!mapped_memory_) { return errors::FailedPrecondition("MemmappedEnv is not initialized"); } const auto dir_element = directory_.find(filename); if (dir_element == directory_.end()) { return errors::NotFound("Region ", filename, " is not found"); } *size = dir_element->second.length; return absl::OkStatus(); } Status MemmappedFileSystem::Stat(const string& fname, TransactionToken* token, FileStatistics* stat) { uint64 size; auto status = GetFileSize(fname, token, &size); if (status.ok()) { stat->length = size; } return status; } Status MemmappedFileSystem::NewWritableFile(const string& filename, TransactionToken* token, std::unique_ptr<WritableFile>* wf) { return errors::Unimplemented("memmapped format doesn't support writing"); } Status MemmappedFileSystem::NewAppendableFile( const string& filename, TransactionToken* token, std::unique_ptr<WritableFile>* result) { return errors::Unimplemented("memmapped format doesn't support writing"); } Status MemmappedFileSystem::GetChildren(const string& filename, TransactionToken* token, std::vector<string>* strings) { return errors::Unimplemented("memmapped format doesn't support GetChildren"); } Status MemmappedFileSystem::GetMatchingPaths(const string& pattern, TransactionToken* token, std::vector<string>* results) { return errors::Unimplemented( "memmapped format doesn't support GetMatchingPaths"); } Status MemmappedFileSystem::DeleteFile(const string& filename, TransactionToken* token) { return errors::Unimplemented("memmapped format doesn't support DeleteFile"); } Status MemmappedFileSystem::CreateDir(const string& dirname, TransactionToken* token) { return errors::Unimplemented("memmapped format doesn't support CreateDir"); } Status MemmappedFileSystem::DeleteDir(const string& dirname, TransactionToken* token) { return errors::Unimplemented("memmapped format doesn't support DeleteDir"); } Status MemmappedFileSystem::RenameFile(const string& filename_from, const string& filename_to, TransactionToken* token) { return errors::Unimplemented("memmapped format doesn't support RenameFile"); } const void* MemmappedFileSystem::GetMemoryWithOffset(uint64 offset) const { return reinterpret_cast<const uint8*>(mapped_memory_->data()) + offset; } constexpr const char MemmappedFileSystem::kMemmappedPackagePrefix[]; constexpr const char MemmappedFileSystem::kMemmappedPackageDefaultGraphDef[]; Status MemmappedFileSystem::InitializeFromFile(Env* env, const string& filename) { TF_RETURN_IF_ERROR( env->NewReadOnlyMemoryRegionFromFile(filename, &mapped_memory_)); directory_.clear(); if (mapped_memory_->length() <= sizeof(uint64)) { return errors::DataLoss("Corrupted memmapped model file: ", filename, " Invalid package size"); } const auto memory_start = reinterpret_cast<const uint8*>(mapped_memory_->data()); const uint64 directory_offset = DecodeUint64LittleEndian( memory_start + mapped_memory_->length() - sizeof(uint64)); if (directory_offset > mapped_memory_->length() - sizeof(uint64)) { return errors::DataLoss("Corrupted memmapped model file: ", filename, " Invalid directory offset"); } MemmappedFileSystemDirectory proto_directory; if (!ParseProtoUnlimited( &proto_directory, memory_start + directory_offset, mapped_memory_->length() - directory_offset - sizeof(uint64))) { return errors::DataLoss("Corrupted memmapped model file: ", filename, " Can't parse its internal directory"); } uint64 prev_element_offset = directory_offset; for (auto element_iter = proto_directory.element().rbegin(); element_iter != proto_directory.element().rend(); ++element_iter) { if (element_iter->offset() >= prev_element_offset) { return errors::DataLoss("Corrupted memmapped model file: ", filename, " Invalid offset of internal component"); } if (!directory_ .insert(std::make_pair( element_iter->name(), FileRegion(element_iter->offset(), element_iter->length()))) .second) { return errors::DataLoss("Corrupted memmapped model file: ", filename, " Duplicate name of internal component ", element_iter->name()); } prev_element_offset = element_iter->offset(); } return absl::OkStatus(); } bool MemmappedFileSystem::IsMemmappedPackageFilename(const string& filename) { return absl::StartsWith(filename, kMemmappedPackagePrefix); } namespace { bool IsValidRegionChar(char c) { return (c >= 'A' && c <= 'Z') || (c >= 'a' && c <= 'z') || (c >= '0' && c <= '9') || c == '_' || c == '.'; } } bool MemmappedFileSystem::IsWellFormedMemmappedPackageFilename( const string& filename) { if (!IsMemmappedPackageFilename(filename)) { return false; } for (char c : filename.substr(strlen(kMemmappedPackagePrefix), filename.length() - strlen(kMemmappedPackagePrefix))) { if (!IsValidRegionChar(c)) { return false; } } return true; } MemmappedEnv::MemmappedEnv(Env* env) : EnvWrapper(env) {} Status MemmappedEnv::GetFileSystemForFile(const string& fname, FileSystem** result) { if (MemmappedFileSystem::IsMemmappedPackageFilename(fname)) { if (!memmapped_file_system_) { return errors::FailedPrecondition( "MemmappedEnv is not initialized from a file."); } *result = memmapped_file_system_.get(); return absl::OkStatus(); } return EnvWrapper::GetFileSystemForFile(fname, result); } Status MemmappedEnv::GetRegisteredFileSystemSchemes( std::vector<string>* schemes) { const auto status = EnvWrapper::GetRegisteredFileSystemSchemes(schemes); if (status.ok()) { schemes->emplace_back(MemmappedFileSystem::kMemmappedPackagePrefix); } return status; } Status MemmappedEnv::InitializeFromFile(const string& package_filename) { std::unique_ptr<MemmappedFileSystem> file_system_ptr(new MemmappedFileSystem); const auto status = file_system_ptr->InitializeFromFile(target(), package_filename); if (status.ok()) { memmapped_file_system_ = std::move(file_system_ptr); } return status; } }
#include "tensorflow/core/util/memmapped_file_system.h" #include <memory> #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/util/memmapped_file_system_writer.h" #ifdef PLATFORM_WINDOWS #undef DeleteFile #endif namespace tensorflow { namespace { constexpr char kTensor1FileName[] = "memmapped_package: constexpr char kTensor2FileName[] = "memmapped_package: constexpr char kProtoFileName[] = "memmapped_package: constexpr int kTestGraphDefVersion = 666; Status CreateMemmappedFileSystemFile(const string& filename, bool corrupted, Tensor* test_tensor) { Env* env = Env::Default(); MemmappedFileSystemWriter writer; TF_RETURN_IF_ERROR(writer.InitializeToFile(env, filename)); test::FillFn<float>(test_tensor, [](int i) { return static_cast<float>(i * i); }); TF_RETURN_IF_ERROR(writer.SaveTensor(*test_tensor, kTensor1FileName)); GraphDef graph_def; graph_def.mutable_versions()->set_producer(kTestGraphDefVersion); graph_def.mutable_versions()->set_min_consumer(kTestGraphDefVersion); TF_RETURN_IF_ERROR(writer.SaveProtobuf(graph_def, kProtoFileName)); test::FillFn<float>(test_tensor, [](int i) { return static_cast<float>(i) * i * i; }); TF_RETURN_IF_ERROR(writer.SaveTensor(*test_tensor, kTensor2FileName)); if (!corrupted) { TF_RETURN_IF_ERROR(writer.FlushAndClose()); } return absl::OkStatus(); } TEST(MemmappedFileSystemTest, SimpleTest) { const TensorShape test_tensor_shape = {10, 200}; Tensor test_tensor(DT_FLOAT, test_tensor_shape); const string dir = testing::TmpDir(); const string filename = io::JoinPath(dir, "memmapped_env_test"); TF_ASSERT_OK(CreateMemmappedFileSystemFile(filename, false, &test_tensor)); MemmappedEnv memmapped_env(Env::Default()); TF_ASSERT_OK(memmapped_env.InitializeFromFile(filename)); GraphDef test_graph_def; TF_EXPECT_OK( ReadBinaryProto(&memmapped_env, kProtoFileName, &test_graph_def)); EXPECT_EQ(kTestGraphDefVersion, test_graph_def.versions().producer()); EXPECT_EQ(kTestGraphDefVersion, test_graph_def.versions().min_consumer()); std::unique_ptr<ReadOnlyMemoryRegion> memory_region; TF_ASSERT_OK(memmapped_env.NewReadOnlyMemoryRegionFromFile(kTensor2FileName, &memory_region)); ASSERT_GE(memory_region->length(), test_tensor.TotalBytes()); EXPECT_EQ(test_tensor.tensor_data(), StringPiece(static_cast<const char*>(memory_region->data()), test_tensor.TotalBytes())); uint64 file_size = 0; TF_ASSERT_OK(memmapped_env.GetFileSize(kTensor2FileName, &file_size)); EXPECT_EQ(test_tensor.TotalBytes(), file_size); FileStatistics stat; TF_ASSERT_OK(memmapped_env.Stat(kTensor2FileName, &stat)); EXPECT_EQ(test_tensor.TotalBytes(), stat.length); EXPECT_EQ( error::NOT_FOUND, memmapped_env.NewReadOnlyMemoryRegionFromFile("bla-bla", &memory_region) .code()); TF_EXPECT_OK(memmapped_env.FileExists(kTensor2FileName)); EXPECT_EQ(error::Code::NOT_FOUND, memmapped_env.FileExists("bla-bla-bla").code()); } TEST(MemmappedFileSystemTest, NotInitialized) { MemmappedEnv memmapped_env(Env::Default()); std::unique_ptr<ReadOnlyMemoryRegion> memory_region; EXPECT_EQ( error::FAILED_PRECONDITION, memmapped_env .NewReadOnlyMemoryRegionFromFile(kTensor1FileName, &memory_region) .code()); std::unique_ptr<RandomAccessFile> file; EXPECT_EQ(error::FAILED_PRECONDITION, memmapped_env.NewRandomAccessFile(kProtoFileName, &file).code()); } TEST(MemmappedFileSystemTest, Corrupted) { const TensorShape test_tensor_shape = {100, 200}; Tensor test_tensor(DT_FLOAT, test_tensor_shape); const string dir = testing::TmpDir(); const string filename = io::JoinPath(dir, "memmapped_env_corrupted_test"); TF_ASSERT_OK(CreateMemmappedFileSystemFile(filename, true, &test_tensor)); MemmappedFileSystem memmapped_env; ASSERT_NE(memmapped_env.InitializeFromFile(Env::Default(), filename), absl::OkStatus()); } TEST(MemmappedFileSystemTest, ProxyToDefault) { MemmappedEnv memmapped_env(Env::Default()); const string dir = testing::TmpDir(); const string filename = io::JoinPath(dir, "test_file"); std::unique_ptr<WritableFile> writable_file_temp; TF_ASSERT_OK(memmapped_env.NewAppendableFile(filename, &writable_file_temp)); const auto adh = [&memmapped_env, &filename](WritableFile* f) { delete f; TF_CHECK_OK(memmapped_env.DeleteFile(filename)); }; std::unique_ptr<WritableFile, decltype(adh)> writable_file( writable_file_temp.release(), adh); const string test_string = "bla-bla-bla"; TF_ASSERT_OK(writable_file->Append(test_string)); TF_ASSERT_OK(writable_file->Close()); uint64 file_length = 0; TF_EXPECT_OK(memmapped_env.GetFileSize(filename, &file_length)); EXPECT_EQ(test_string.length(), file_length); FileStatistics stat; TF_EXPECT_OK(memmapped_env.Stat(filename, &stat)); EXPECT_EQ(test_string.length(), stat.length); std::unique_ptr<RandomAccessFile> random_access_file; TF_ASSERT_OK( memmapped_env.NewRandomAccessFile(filename, &random_access_file)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/memmapped_file_system.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/memmapped_file_system_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
746af95a-344b-481c-9b17-a794ea3ed4f6
cpp
tensorflow/tensorflow
padding
tensorflow/lite/delegates/gpu/common/tasks/padding.cc
tensorflow/lite/delegates/gpu/cl/kernels/padding_test.cc
#include "tensorflow/lite/delegates/gpu/common/tasks/padding.h" #include <string> #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/task/work_group_picking.h" namespace tflite { namespace gpu { namespace { std::string GetPaddingCode(const OperationDef& op_def, const PadAttributes& attr, GPUOperation* op) { op->AddSrcTensor("src_tensor", op_def.src_tensors[0]); op->AddDstTensor("dst_tensor", op_def.dst_tensors[0]); op->args_.AddInt("prepended_x", attr.prepended.w); op->args_.AddInt("prepended_y", attr.prepended.h); op->args_.AddInt("prepended_z", attr.prepended.c); op->args_.AddInt("prepended_w", attr.prepended.b); const std::string dst_batch = op_def.dst_tensors[0].HasAxis(Axis::BATCH) ? "B" : "0"; std::string c; const std::string channels[] = {".x", ".y", ".z", ".w"}; if (attr.type == PaddingContentType::REFLECT) { c += "int reflect_coord(int x, int size) {\n"; c += " int t = abs(x) - size + 1;\n"; c += " return size - 1 - abs(t);\n"; c += "}\n\n"; } c += "MAIN_FUNCTION($0) {\n"; if (op_def.dst_tensors[0].HasAxis(Axis::BATCH)) { c += " int linear_id = GLOBAL_ID_0;\n"; c += " int X = linear_id / args.dst_tensor.Batch();\n"; c += " int B = linear_id % args.dst_tensor.Batch();\n"; c += " args.src_tensor.SetBatchRef(B);\n"; c += " args.dst_tensor.SetBatchRef(B);\n"; } else { c += " int X = GLOBAL_ID_0;\n"; } c += " int Y = GLOBAL_ID_1;\n"; c += " int Z = GLOBAL_ID_2;\n"; c += " if (X >= args.dst_tensor.Width() || Y >= args.dst_tensor.Height() || " "Z >= args.dst_tensor.Slices()) { \n"; c += " return; \n"; c += " } \n"; c += " args.src_tensor::type result = (" + ToCLDataType(op_def.src_tensors[0].GetDataType(), 4) + ")(" + std::to_string(attr.constant_values) + ");\n"; c += " int s_x = X - args.prepended_x;\n"; c += " int s_y = Y - args.prepended_y;\n"; if (op_def.dst_tensors[0].HasAxis(Axis::BATCH)) { c += " int s_b = " + dst_batch + " - args.prepended_w;\n"; c += " args.src_tensor.SetBatchRef(s_b);\n"; } if (attr.type == PaddingContentType::REFLECT) { c += " s_x = reflect_coord(s_x, args.src_tensor.Width());\n"; c += " s_y = reflect_coord(s_y, args.src_tensor.Height());\n"; if (op_def.dst_tensors[0].HasAxis(Axis::BATCH)) { c += " int s_b = reflect_coord(s_b, args.src_tensor.Batch());\n"; } if (attr.prepended.c == 0 && attr.appended.c == 0) { c += " result = args.src_tensor.Read(s_x, s_y, Z);\n"; } else { c += " int start_channel = Z * 4;\n"; for (int i = 0; i < 4; ++i) { const auto& s = channels[i]; c += " {\n"; c += " int channel = start_channel + " + std::to_string(i) + ";\n"; c += " int s_z = channel - args.prepended_z;\n"; c += " s_z = clamp(reflect_coord(s_z, args.src_tensor.Channels()), " "0, " "args.src_tensor.Channels() - " "1);\n"; c += " args.src_tensor.ReadPerChannel(result" + s + ", s_x, s_y, s_z);\n"; c += " }\n"; } } } else { c += " bool inside_x = s_x >= 0 && s_x < args.src_tensor.Width();\n"; c += " bool inside_y = s_y >= 0 && s_y < args.src_tensor.Height();\n"; if (op_def.dst_tensors[0].HasAxis(Axis::BATCH)) { c += " inside_y = inside_y && (s_b >= 0 && s_b < " "args.src_tensor.Batch());\n"; } c += " if (inside_x && inside_y) {\n"; if (attr.prepended.c == 0 && attr.appended.c == 0) { c += " result = args.src_tensor.Read(s_x, s_y, Z);\n"; } else if (attr.prepended.c % 4 == 0 && attr.prepended.b == attr.appended.b) { c += " int s_z = Z - args.prepended_z / 4;\n"; c += " if (s_z >= 0 && s_z < args.src_tensor.Slices()) {\n"; c += " result = args.src_tensor.Read(s_x, s_y, s_z);\n"; c += " }\n"; } else { c += " int start_channel = Z * 4;\n"; for (int i = 0; i < 4; ++i) { const auto& s = channels[i]; c += " {\n"; c += " int channel = start_channel + " + std::to_string(i) + ";\n"; c += " int s_z = channel - args.prepended_z;\n"; c += " if (s_z >= 0 && s_z < args.src_tensor.Channels()) {\n"; c += " args.src_tensor.ReadPerChannel(result" + s + ", s_x, s_y, s_z);\n"; c += " }\n"; c += " }\n"; } } c += " }\n"; } c += " args.dst_tensor.Write(result, X, Y, Z);\n"; c += "}\n"; return c; } } GPUOperation CreatePadding(const OperationDef& definition, const PadAttributes& attr) { GPUOperation op(definition); op.code_ = GetPaddingCode(definition, attr, &op); op.tensor_to_grid_ = TensorToGrid::kWBToX_HDToY_SToZ; return op; } } }
#include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/cl/kernels/cl_test.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tasks/padding_test_util.h" namespace tflite { namespace gpu { namespace cl { namespace { TEST_F(OpenCLOperationTest, PaddingAppendWidth) { auto status = PaddingAppendWidthTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, PaddingAppendWidthConstValues) { auto status = PaddingAppendWidthConstValuesTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, PaddingPrependWidth) { auto status = PaddingPrependWidthTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, PaddingAppendHeight) { auto status = PaddingAppendHeightTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, PaddingPrependHeight) { auto status = PaddingPrependHeightTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, PaddingAppendChannels) { auto status = PaddingAppendChannelsTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, PaddingPrependChannels) { auto status = PaddingPrependChannelsTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, PaddingPrependChannelsX4) { auto status = PaddingPrependChannelsX4Test(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, PaddingComplex) { auto status = PaddingComplexTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, PaddingReflectWidth) { auto status = PaddingReflectWidthTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, PaddingReflectChannels) { auto status = PaddingReflectChannelsTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/common/tasks/padding.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/cl/kernels/padding_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
142edbef-bb7f-49ca-8044-b0c2a9bdfa53
cpp
google/quiche
spdy_utils
quiche/quic/core/http/spdy_utils.cc
quiche/quic/core/http/spdy_utils_test.cc
#include "quiche/quic/core/http/spdy_utils.h" #include <memory> #include <optional> #include <string> #include <vector> #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "quiche/http2/core/spdy_protocol.h" #include "quiche/quic/core/quic_versions.h" #include "quiche/quic/platform/api/quic_flag_utils.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_logging.h" #include "quiche/common/quiche_text_utils.h" using quiche::HttpHeaderBlock; namespace quic { bool SpdyUtils::ExtractContentLengthFromHeaders(int64_t* content_length, HttpHeaderBlock* headers) { auto it = headers->find("content-length"); if (it == headers->end()) { return false; } else { absl::string_view content_length_header = it->second; std::vector<absl::string_view> values = absl::StrSplit(content_length_header, '\0'); for (const absl::string_view& value : values) { uint64_t new_value; if (!absl::SimpleAtoi(value, &new_value) || !quiche::QuicheTextUtils::IsAllDigits(value)) { QUIC_DLOG(ERROR) << "Content length was either unparseable or negative."; return false; } if (*content_length < 0) { *content_length = new_value; continue; } if (new_value != static_cast<uint64_t>(*content_length)) { QUIC_DLOG(ERROR) << "Parsed content length " << new_value << " is " << "inconsistent with previously detected content length " << *content_length; return false; } } return true; } } bool SpdyUtils::CopyAndValidateHeaders(const QuicHeaderList& header_list, int64_t* content_length, HttpHeaderBlock* headers) { for (const auto& p : header_list) { const std::string& name = p.first; if (name.empty()) { QUIC_DLOG(ERROR) << "Header name must not be empty."; return false; } if (quiche::QuicheTextUtils::ContainsUpperCase(name)) { QUIC_DLOG(ERROR) << "Malformed header: Header name " << name << " contains upper-case characters."; return false; } headers->AppendValueOrAddHeader(name, p.second); } if (headers->contains("content-length") && !ExtractContentLengthFromHeaders(content_length, headers)) { return false; } QUIC_DVLOG(1) << "Successfully parsed headers: " << headers->DebugString(); return true; } bool SpdyUtils::CopyAndValidateTrailers(const QuicHeaderList& header_list, bool expect_final_byte_offset, size_t* final_byte_offset, HttpHeaderBlock* trailers) { bool found_final_byte_offset = false; for (const auto& p : header_list) { const std::string& name = p.first; if (expect_final_byte_offset && !found_final_byte_offset && name == kFinalOffsetHeaderKey && absl::SimpleAtoi(p.second, final_byte_offset)) { found_final_byte_offset = true; continue; } if (name.empty() || name[0] == ':') { QUIC_DLOG(ERROR) << "Trailers must not be empty, and must not contain pseudo-" << "headers. Found: '" << name << "'"; return false; } if (quiche::QuicheTextUtils::ContainsUpperCase(name)) { QUIC_DLOG(ERROR) << "Malformed header: Header name " << name << " contains upper-case characters."; return false; } trailers->AppendValueOrAddHeader(name, p.second); } if (expect_final_byte_offset && !found_final_byte_offset) { QUIC_DLOG(ERROR) << "Required key '" << kFinalOffsetHeaderKey << "' not present"; return false; } QUIC_DVLOG(1) << "Successfully parsed Trailers: " << trailers->DebugString(); return true; } bool SpdyUtils::PopulateHeaderBlockFromUrl(const std::string url, HttpHeaderBlock* headers) { (*headers)[":method"] = "GET"; size_t pos = url.find(": if (pos == std::string::npos) { return false; } (*headers)[":scheme"] = url.substr(0, pos); size_t start = pos + 3; pos = url.find('/', start); if (pos == std::string::npos) { (*headers)[":authority"] = url.substr(start); (*headers)[":path"] = "/"; return true; } (*headers)[":authority"] = url.substr(start, pos - start); (*headers)[":path"] = url.substr(pos); return true; } ParsedQuicVersion SpdyUtils::ExtractQuicVersionFromAltSvcEntry( const spdy::SpdyAltSvcWireFormat::AlternativeService& alternative_service_entry, const ParsedQuicVersionVector& supported_versions) { for (const ParsedQuicVersion& version : supported_versions) { if (version.AlpnDeferToRFCv1()) { continue; } if (AlpnForVersion(version) == alternative_service_entry.protocol_id) { return version; } } return ParsedQuicVersion::Unsupported(); } }
#include "quiche/quic/core/http/spdy_utils.h" #include <memory> #include <string> #include "absl/base/macros.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/quic_versions.h" #include "quiche/quic/platform/api/quic_test.h" using quiche::HttpHeaderBlock; using testing::Pair; using testing::UnorderedElementsAre; namespace quic { namespace test { namespace { const bool kExpectFinalByteOffset = true; const bool kDoNotExpectFinalByteOffset = false; static std::unique_ptr<QuicHeaderList> FromList( const QuicHeaderList::ListType& src) { auto headers = std::make_unique<QuicHeaderList>(); for (const auto& p : src) { headers->OnHeader(p.first, p.second); } headers->OnHeaderBlockEnd(0, 0); return headers; } } using CopyAndValidateHeaders = QuicTest; TEST_F(CopyAndValidateHeaders, NormalUsage) { auto headers = FromList({ {"cookie", " part 1"}, {"cookie", "part 2 "}, {"cookie", "part3"}, {"passed-through", std::string("foo\0baz", 7)}, {"joined", "value 1"}, {"joined", "value 2"}, {"empty", ""}, {"empty-joined", ""}, {"empty-joined", "foo"}, {"empty-joined", ""}, {"empty-joined", ""}, {"cookie", " fin!"}}); int64_t content_length = -1; HttpHeaderBlock block; ASSERT_TRUE( SpdyUtils::CopyAndValidateHeaders(*headers, &content_length, &block)); EXPECT_THAT(block, UnorderedElementsAre( Pair("cookie", " part 1; part 2 ; part3; fin!"), Pair("passed-through", absl::string_view("foo\0baz", 7)), Pair("joined", absl::string_view("value 1\0value 2", 15)), Pair("empty", ""), Pair("empty-joined", absl::string_view("\0foo\0\0", 6)))); EXPECT_EQ(-1, content_length); } TEST_F(CopyAndValidateHeaders, EmptyName) { auto headers = FromList({{"foo", "foovalue"}, {"", "barvalue"}, {"baz", ""}}); int64_t content_length = -1; HttpHeaderBlock block; ASSERT_FALSE( SpdyUtils::CopyAndValidateHeaders(*headers, &content_length, &block)); } TEST_F(CopyAndValidateHeaders, UpperCaseName) { auto headers = FromList({{"foo", "foovalue"}, {"bar", "barvalue"}, {"bAz", ""}}); int64_t content_length = -1; HttpHeaderBlock block; ASSERT_FALSE( SpdyUtils::CopyAndValidateHeaders(*headers, &content_length, &block)); } TEST_F(CopyAndValidateHeaders, MultipleContentLengths) { auto headers = FromList({{"content-length", "9"}, {"foo", "foovalue"}, {"content-length", "9"}, {"bar", "barvalue"}, {"baz", ""}}); int64_t content_length = -1; HttpHeaderBlock block; ASSERT_TRUE( SpdyUtils::CopyAndValidateHeaders(*headers, &content_length, &block)); EXPECT_THAT(block, UnorderedElementsAre( Pair("foo", "foovalue"), Pair("bar", "barvalue"), Pair("content-length", absl::string_view("9\09", 3)), Pair("baz", ""))); EXPECT_EQ(9, content_length); } TEST_F(CopyAndValidateHeaders, InconsistentContentLengths) { auto headers = FromList({{"content-length", "9"}, {"foo", "foovalue"}, {"content-length", "8"}, {"bar", "barvalue"}, {"baz", ""}}); int64_t content_length = -1; HttpHeaderBlock block; ASSERT_FALSE( SpdyUtils::CopyAndValidateHeaders(*headers, &content_length, &block)); } TEST_F(CopyAndValidateHeaders, LargeContentLength) { auto headers = FromList({{"content-length", "9000000000"}, {"foo", "foovalue"}, {"bar", "barvalue"}, {"baz", ""}}); int64_t content_length = -1; HttpHeaderBlock block; ASSERT_TRUE( SpdyUtils::CopyAndValidateHeaders(*headers, &content_length, &block)); EXPECT_THAT(block, UnorderedElementsAre( Pair("foo", "foovalue"), Pair("bar", "barvalue"), Pair("content-length", absl::string_view("9000000000")), Pair("baz", ""))); EXPECT_EQ(9000000000, content_length); } TEST_F(CopyAndValidateHeaders, NonDigitContentLength) { auto headers = FromList({{"content-length", "+123"}, {"foo", "foovalue"}, {"bar", "barvalue"}, {"baz", ""}}); int64_t content_length = -1; HttpHeaderBlock block; EXPECT_FALSE( SpdyUtils::CopyAndValidateHeaders(*headers, &content_length, &block)); } TEST_F(CopyAndValidateHeaders, MultipleValues) { auto headers = FromList({{"foo", "foovalue"}, {"bar", "barvalue"}, {"baz", ""}, {"foo", "boo"}, {"baz", "buzz"}}); int64_t content_length = -1; HttpHeaderBlock block; ASSERT_TRUE( SpdyUtils::CopyAndValidateHeaders(*headers, &content_length, &block)); EXPECT_THAT(block, UnorderedElementsAre( Pair("foo", absl::string_view("foovalue\0boo", 12)), Pair("bar", "barvalue"), Pair("baz", absl::string_view("\0buzz", 5)))); EXPECT_EQ(-1, content_length); } TEST_F(CopyAndValidateHeaders, MoreThanTwoValues) { auto headers = FromList({{"set-cookie", "value1"}, {"set-cookie", "value2"}, {"set-cookie", "value3"}}); int64_t content_length = -1; HttpHeaderBlock block; ASSERT_TRUE( SpdyUtils::CopyAndValidateHeaders(*headers, &content_length, &block)); EXPECT_THAT(block, UnorderedElementsAre(Pair( "set-cookie", absl::string_view("value1\0value2\0value3", 20)))); EXPECT_EQ(-1, content_length); } TEST_F(CopyAndValidateHeaders, Cookie) { auto headers = FromList({{"foo", "foovalue"}, {"bar", "barvalue"}, {"cookie", "value1"}, {"baz", ""}}); int64_t content_length = -1; HttpHeaderBlock block; ASSERT_TRUE( SpdyUtils::CopyAndValidateHeaders(*headers, &content_length, &block)); EXPECT_THAT(block, UnorderedElementsAre( Pair("foo", "foovalue"), Pair("bar", "barvalue"), Pair("cookie", "value1"), Pair("baz", ""))); EXPECT_EQ(-1, content_length); } TEST_F(CopyAndValidateHeaders, MultipleCookies) { auto headers = FromList({{"foo", "foovalue"}, {"bar", "barvalue"}, {"cookie", "value1"}, {"baz", ""}, {"cookie", "value2"}}); int64_t content_length = -1; HttpHeaderBlock block; ASSERT_TRUE( SpdyUtils::CopyAndValidateHeaders(*headers, &content_length, &block)); EXPECT_THAT(block, UnorderedElementsAre( Pair("foo", "foovalue"), Pair("bar", "barvalue"), Pair("cookie", "value1; value2"), Pair("baz", ""))); EXPECT_EQ(-1, content_length); } using CopyAndValidateTrailers = QuicTest; TEST_F(CopyAndValidateTrailers, SimplestValidList) { auto trailers = FromList({{kFinalOffsetHeaderKey, "1234"}}); size_t final_byte_offset = 0; HttpHeaderBlock block; EXPECT_TRUE(SpdyUtils::CopyAndValidateTrailers( *trailers, kExpectFinalByteOffset, &final_byte_offset, &block)); EXPECT_EQ(1234u, final_byte_offset); } TEST_F(CopyAndValidateTrailers, EmptyTrailerListWithFinalByteOffsetExpected) { QuicHeaderList trailers; size_t final_byte_offset = 0; HttpHeaderBlock block; EXPECT_FALSE(SpdyUtils::CopyAndValidateTrailers( trailers, kExpectFinalByteOffset, &final_byte_offset, &block)); } TEST_F(CopyAndValidateTrailers, EmptyTrailerListWithFinalByteOffsetNotExpected) { QuicHeaderList trailers; size_t final_byte_offset = 0; HttpHeaderBlock block; EXPECT_TRUE(SpdyUtils::CopyAndValidateTrailers( trailers, kDoNotExpectFinalByteOffset, &final_byte_offset, &block)); EXPECT_TRUE(block.empty()); } TEST_F(CopyAndValidateTrailers, FinalByteOffsetExpectedButNotPresent) { auto trailers = FromList({{"key", "value"}}); size_t final_byte_offset = 0; HttpHeaderBlock block; EXPECT_FALSE(SpdyUtils::CopyAndValidateTrailers( *trailers, kExpectFinalByteOffset, &final_byte_offset, &block)); } TEST_F(CopyAndValidateTrailers, FinalByteOffsetNotExpectedButPresent) { auto trailers = FromList({{"key", "value"}, {kFinalOffsetHeaderKey, "1234"}}); size_t final_byte_offset = 0; HttpHeaderBlock block; EXPECT_FALSE(SpdyUtils::CopyAndValidateTrailers( *trailers, kDoNotExpectFinalByteOffset, &final_byte_offset, &block)); } TEST_F(CopyAndValidateTrailers, FinalByteOffsetNotExpectedAndNotPresent) { auto trailers = FromList({{"key", "value"}}); size_t final_byte_offset = 0; HttpHeaderBlock block; EXPECT_TRUE(SpdyUtils::CopyAndValidateTrailers( *trailers, kDoNotExpectFinalByteOffset, &final_byte_offset, &block)); EXPECT_THAT(block, UnorderedElementsAre(Pair("key", "value"))); } TEST_F(CopyAndValidateTrailers, EmptyName) { auto trailers = FromList({{"", "value"}, {kFinalOffsetHeaderKey, "1234"}}); size_t final_byte_offset = 0; HttpHeaderBlock block; EXPECT_FALSE(SpdyUtils::CopyAndValidateTrailers( *trailers, kExpectFinalByteOffset, &final_byte_offset, &block)); } TEST_F(CopyAndValidateTrailers, PseudoHeaderInTrailers) { auto trailers = FromList({{":pseudo_key", "value"}, {kFinalOffsetHeaderKey, "1234"}}); size_t final_byte_offset = 0; HttpHeaderBlock block; EXPECT_FALSE(SpdyUtils::CopyAndValidateTrailers( *trailers, kExpectFinalByteOffset, &final_byte_offset, &block)); } TEST_F(CopyAndValidateTrailers, DuplicateTrailers) { auto trailers = FromList({{"key", "value0"}, {"key", "value1"}, {"key", ""}, {"key", ""}, {"key", "value2"}, {"key", ""}, {kFinalOffsetHeaderKey, "1234"}, {"other_key", "value"}, {"key", "non_contiguous_duplicate"}}); size_t final_byte_offset = 0; HttpHeaderBlock block; EXPECT_TRUE(SpdyUtils::CopyAndValidateTrailers( *trailers, kExpectFinalByteOffset, &final_byte_offset, &block)); EXPECT_THAT( block, UnorderedElementsAre( Pair("key", absl::string_view( "value0\0value1\0\0\0value2\0\0non_contiguous_duplicate", 48)), Pair("other_key", "value"))); } TEST_F(CopyAndValidateTrailers, DuplicateCookies) { auto headers = FromList({{"cookie", " part 1"}, {"cookie", "part 2 "}, {"cookie", "part3"}, {"key", "value"}, {kFinalOffsetHeaderKey, "1234"}, {"cookie", " non_contiguous_cookie!"}}); size_t final_byte_offset = 0; HttpHeaderBlock block; EXPECT_TRUE(SpdyUtils::CopyAndValidateTrailers( *headers, kExpectFinalByteOffset, &final_byte_offset, &block)); EXPECT_THAT( block, UnorderedElementsAre( Pair("cookie", " part 1; part 2 ; part3; non_contiguous_cookie!"), Pair("key", "value"))); } using PopulateHeaderBlockFromUrl = QuicTest; TEST_F(PopulateHeaderBlockFromUrl, NormalUsage) { std::string url = "https: HttpHeaderBlock headers; EXPECT_TRUE(SpdyUtils::PopulateHeaderBlockFromUrl(url, &headers)); EXPECT_EQ("https", headers[":scheme"].as_string()); EXPECT_EQ("www.google.com", headers[":authority"].as_string()); EXPECT_EQ("/index.html", headers[":path"].as_string()); } TEST_F(PopulateHeaderBlockFromUrl, UrlWithNoPath) { std::string url = "https: HttpHeaderBlock headers; EXPECT_TRUE(SpdyUtils::PopulateHeaderBlockFromUrl(url, &headers)); EXPECT_EQ("https", headers[":scheme"].as_string()); EXPECT_EQ("www.google.com", headers[":authority"].as_string()); EXPECT_EQ("/", headers[":path"].as_string()); } TEST_F(PopulateHeaderBlockFromUrl, Failure) { HttpHeaderBlock headers; EXPECT_FALSE(SpdyUtils::PopulateHeaderBlockFromUrl("/", &headers)); EXPECT_FALSE(SpdyUtils::PopulateHeaderBlockFromUrl("/index.html", &headers)); EXPECT_FALSE( SpdyUtils::PopulateHeaderBlockFromUrl("www.google.com/", &headers)); } using ExtractQuicVersionFromAltSvcEntry = QuicTest; TEST_F(ExtractQuicVersionFromAltSvcEntry, SupportedVersion) { ParsedQuicVersionVector supported_versions = AllSupportedVersions(); spdy::SpdyAltSvcWireFormat::AlternativeService entry; for (const ParsedQuicVersion& version : supported_versions) { entry.protocol_id = AlpnForVersion(version); ParsedQuicVersion expected_version = version; if (entry.protocol_id == AlpnForVersion(ParsedQuicVersion::RFCv1()) && version != ParsedQuicVersion::RFCv1()) { expected_version = ParsedQuicVersion::RFCv1(); } EXPECT_EQ(expected_version, SpdyUtils::ExtractQuicVersionFromAltSvcEntry( entry, supported_versions)) << "version: " << version; } } TEST_F(ExtractQuicVersionFromAltSvcEntry, UnsupportedVersion) { spdy::SpdyAltSvcWireFormat::AlternativeService entry; entry.protocol_id = "quic"; EXPECT_EQ(ParsedQuicVersion::Unsupported(), SpdyUtils::ExtractQuicVersionFromAltSvcEntry( entry, AllSupportedVersions())); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/http/spdy_utils.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/http/spdy_utils_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
5e8694bc-5801-48fa-903c-52aec37caa65
cpp
google/quiche
qbone_tunnel_silo
quiche/quic/qbone/bonnet/qbone_tunnel_silo.cc
quiche/quic/qbone/bonnet/qbone_tunnel_silo_test.cc
#include "quiche/quic/qbone/bonnet/qbone_tunnel_silo.h" namespace quic { void QboneTunnelSilo::Run() { while (ShouldRun()) { tunnel_->WaitForEvents(); } QUIC_LOG(INFO) << "Tunnel has disconnected in state: " << tunnel_->StateToString(tunnel_->Disconnect()); } void QboneTunnelSilo::Quit() { QUIC_LOG(INFO) << "Quit called on QboneTunnelSilo"; quitting_.Notify(); tunnel_->Wake(); } bool QboneTunnelSilo::ShouldRun() { bool post_init_shutdown_ready = only_setup_tun_ && tunnel_->state() == quic::QboneTunnelInterface::STARTED; return !quitting_.HasBeenNotified() && !post_init_shutdown_ready; } }
#include "quiche/quic/qbone/bonnet/qbone_tunnel_silo.h" #include "absl/synchronization/notification.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/qbone/bonnet/mock_qbone_tunnel.h" namespace quic { namespace { using ::testing::Eq; using ::testing::Invoke; using ::testing::Return; TEST(QboneTunnelSiloTest, SiloRunsEventLoop) { MockQboneTunnel mock_tunnel; absl::Notification event_loop_run; EXPECT_CALL(mock_tunnel, WaitForEvents) .WillRepeatedly(Invoke([&event_loop_run]() { if (!event_loop_run.HasBeenNotified()) { event_loop_run.Notify(); } return false; })); QboneTunnelSilo silo(&mock_tunnel, false); silo.Start(); event_loop_run.WaitForNotification(); absl::Notification client_disconnected; EXPECT_CALL(mock_tunnel, Disconnect) .WillOnce(Invoke([&client_disconnected]() { client_disconnected.Notify(); return QboneTunnelInterface::ENDED; })); silo.Quit(); client_disconnected.WaitForNotification(); silo.Join(); } TEST(QboneTunnelSiloTest, SiloCanShutDownAfterInit) { MockQboneTunnel mock_tunnel; int iteration_count = 0; EXPECT_CALL(mock_tunnel, WaitForEvents) .WillRepeatedly(Invoke([&iteration_count]() { iteration_count++; return false; })); EXPECT_CALL(mock_tunnel, state) .WillOnce(Return(QboneTunnelInterface::START_REQUESTED)) .WillOnce(Return(QboneTunnelInterface::STARTED)); absl::Notification client_disconnected; EXPECT_CALL(mock_tunnel, Disconnect) .WillOnce(Invoke([&client_disconnected]() { client_disconnected.Notify(); return QboneTunnelInterface::ENDED; })); QboneTunnelSilo silo(&mock_tunnel, true); silo.Start(); client_disconnected.WaitForNotification(); silo.Join(); EXPECT_THAT(iteration_count, Eq(1)); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/qbone/bonnet/qbone_tunnel_silo.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/qbone/bonnet/qbone_tunnel_silo_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
e1c22087-66df-40a5-a4bc-a00b88a25171
cpp
google/cel-cpp
field_mask
extensions/protobuf/internal/field_mask.cc
extensions/protobuf/internal/field_mask_test.cc
#include "extensions/protobuf/internal/field_mask.h" #include <string> #include "google/protobuf/field_mask.pb.h" #include "absl/base/optimization.h" #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "common/json.h" #include "extensions/protobuf/internal/field_mask_lite.h" #include "extensions/protobuf/internal/is_generated_message.h" #include "extensions/protobuf/internal/is_message_lite.h" #include "google/protobuf/descriptor.h" #include "google/protobuf/message.h" #include "google/protobuf/reflection.h" namespace cel::extensions::protobuf_internal { absl::StatusOr<JsonString> DynamicFieldMaskProtoToJsonString( const google::protobuf::Message& message) { ABSL_DCHECK_EQ(message.GetTypeName(), "google.protobuf.FieldMask"); const auto* desc = message.GetDescriptor(); if (ABSL_PREDICT_FALSE(desc == nullptr)) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " missing descriptor")); } if constexpr (NotMessageLite<google::protobuf::FieldMask>) { if (IsGeneratedMessage(message)) { return GeneratedFieldMaskProtoToJsonString( google::protobuf::DownCastMessage<google::protobuf::FieldMask>(message)); } } const auto* reflection = message.GetReflection(); if (ABSL_PREDICT_FALSE(reflection == nullptr)) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " missing reflection")); } const auto* paths_field = desc->FindFieldByNumber(google::protobuf::FieldMask::kPathsFieldNumber); if (ABSL_PREDICT_FALSE(paths_field == nullptr)) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " missing paths field descriptor")); } if (ABSL_PREDICT_FALSE(paths_field->cpp_type() != google::protobuf::FieldDescriptor::CPPTYPE_STRING)) { return absl::InternalError(absl::StrCat( message.GetTypeName(), " has unexpected paths field type: ", paths_field->cpp_type_name())); } if (ABSL_PREDICT_FALSE(!paths_field->is_repeated())) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " has unexpected paths field cardinality: UNKNOWN")); } return JsonString(absl::StrJoin( reflection->GetRepeatedFieldRef<std::string>(message, paths_field), ",")); } }
#include "extensions/protobuf/internal/field_mask.h" #include <memory> #include "google/protobuf/field_mask.pb.h" #include "google/protobuf/descriptor.pb.h" #include "absl/memory/memory.h" #include "extensions/protobuf/internal/field_mask_lite.h" #include "internal/testing.h" #include "google/protobuf/descriptor.h" #include "google/protobuf/descriptor_database.h" #include "google/protobuf/dynamic_message.h" namespace cel::extensions::protobuf_internal { namespace { using ::absl_testing::IsOkAndHolds; using ::testing::Eq; TEST(FieldMask, GeneratedFromProto) { google::protobuf::FieldMask proto; proto.add_paths("foo"); proto.add_paths("bar"); EXPECT_THAT(GeneratedFieldMaskProtoToJsonString(proto), IsOkAndHolds(Eq(JsonString("foo,bar")))); } TEST(Any, CustomFromProto) { google::protobuf::SimpleDescriptorDatabase database; { google::protobuf::FileDescriptorProto fd; google::protobuf::FieldMask::descriptor()->file()->CopyTo(&fd); ASSERT_TRUE(database.Add(fd)); } google::protobuf::DescriptorPool pool(&database); pool.AllowUnknownDependencies(); google::protobuf::DynamicMessageFactory factory(&pool); factory.SetDelegateToGeneratedFactory(false); std::unique_ptr<google::protobuf::Message> proto = absl::WrapUnique( factory .GetPrototype(pool.FindMessageTypeByName("google.protobuf.FieldMask")) ->New()); const auto* descriptor = proto->GetDescriptor(); const auto* reflection = proto->GetReflection(); const auto* paths_field = descriptor->FindFieldByName("paths"); ASSERT_NE(paths_field, nullptr); reflection->AddString(proto.get(), paths_field, "foo"); reflection->AddString(proto.get(), paths_field, "bar"); EXPECT_THAT(DynamicFieldMaskProtoToJsonString(*proto), IsOkAndHolds(Eq(JsonString("foo,bar")))); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/extensions/protobuf/internal/field_mask.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/extensions/protobuf/internal/field_mask_test.cc
4552db5798fb0853b131b783d8875794334fae7f