ID
stringlengths
36
36
Language
stringclasses
1 value
Repository Name
stringclasses
13 values
File Name
stringlengths
2
44
File Path in Repository
stringlengths
11
111
File Path for Unit Test
stringlengths
16
116
Code
stringlengths
0
278k
Unit Test - (Ground Truth)
stringlengths
127
663k
Code Url
stringlengths
91
198
Test Code Url
stringlengths
96
203
Commit Hash
stringclasses
13 values
e323db2b-0e80-4d90-9be3-3874744cbaa2
cpp
google/arolla
delegating_slot_listener
arolla/io/delegating_slot_listener.h
arolla/io/delegating_slot_listener_test.cc
#ifndef AROLLA_IO_DELEGATING_SLOT_LISTENER_H_ #define AROLLA_IO_DELEGATING_SLOT_LISTENER_H_ #include <functional> #include <memory> #include <string> #include <type_traits> #include <utility> #include <vector> #include "absl/base/nullability.h" #include "absl/container/flat_hash_map.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/strings/strip.h" #include "arolla/io/input_loader.h" #include "arolla/io/slot_listener.h" #include "arolla/memory/frame.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/typed_slot.h" #include "arolla/util/status_macros_backport.h" namespace arolla { namespace delegating_output_listener_impl { template <class Output, class DelegateOutput> class DelegatingSlotListener final : public SlotListener<Output> { struct PrivateConstructorTag {}; public: template <class Accessor> static absl::StatusOr<std::unique_ptr<SlotListener<Output>>> Build( std::unique_ptr<SlotListener<DelegateOutput>> delegate_listener, const Accessor& accessor, std::string name_prefix) { static_assert(std::is_same_v<decltype(accessor(std::declval<Output*>())), DelegateOutput*>, "Accessor must have `DelegateOutput*` result type."); return absl::make_unique<DelegatingSlotListener>( PrivateConstructorTag{}, std::move(delegate_listener), accessor, std::move(name_prefix)); } absl::Nullable<const QType*> GetQTypeOf( absl::string_view name, absl::Nullable<const QType*> desired_qtype) const final { if (!absl::ConsumePrefix(&name, name_prefix_)) { return nullptr; } return delegate_listener_->GetQTypeOf(name, desired_qtype); } std::vector<std::string> SuggestAvailableNames() const final { std::vector<std::string> names = delegate_listener_->SuggestAvailableNames(); for (auto& name : names) { name = absl::StrCat(name_prefix_, name); } return names; } DelegatingSlotListener( PrivateConstructorTag, std::unique_ptr<SlotListener<DelegateOutput>> delegate_listener, std::function<DelegateOutput*(Output*)> accessor, std::string name_prefix) : delegate_listener_(std::move(delegate_listener)), accessor_(accessor), name_prefix_(name_prefix) {} private: absl::StatusOr<BoundSlotListener<Output>> BindImpl( const absl::flat_hash_map<std::string, TypedSlot>& input_slots) const final { absl::flat_hash_map<std::string, TypedSlot> delegate_input_slots; for (const auto& [name, slot] : input_slots) { absl::string_view name_view = name; if (absl::ConsumePrefix(&name_view, name_prefix_)) { delegate_input_slots.emplace(std::string(name_view), slot); } } ASSIGN_OR_RETURN(BoundSlotListener<DelegateOutput> bound_delegate_listener, delegate_listener_->Bind(delegate_input_slots)); return BoundSlotListener<Output>( [bound_delegate_listener(std::move(bound_delegate_listener)), accessor(accessor_)](ConstFramePtr frame, Output* output) -> absl::Status { return bound_delegate_listener(frame, accessor(output)); }); } std::unique_ptr<SlotListener<DelegateOutput>> delegate_listener_; std::function<DelegateOutput*(Output*)> accessor_; absl::flat_hash_map<std::string, QTypePtr> types_; std::string name_prefix_; }; } template <class Output, class DelegateOutput, class Accessor> absl::StatusOr<std::unique_ptr<SlotListener<Output>>> CreateDelegatingSlotListener( std::unique_ptr<SlotListener<DelegateOutput>> delegate_listener, const Accessor& accessor, std::string name_prefix = "") { return delegating_output_listener_impl::DelegatingSlotListener< Output, DelegateOutput>::Build(std::move(delegate_listener), accessor, std::move(name_prefix)); } } #endif
#include "arolla/io/delegating_slot_listener.h" #include <cstdint> #include <functional> #include <memory> #include <string> #include <utility> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "arolla/io/accessors_slot_listener.h" #include "arolla/io/slot_listener.h" #include "arolla/memory/frame.h" #include "arolla/memory/memory_allocation.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" namespace arolla { namespace { using ::testing::ElementsAre; using ::testing::Eq; struct TestStruct { int a; double b; }; struct OuterTestStruct { TestStruct* a; int b; }; TEST(SlotListenerTest, DelegateSlotListener) { ASSERT_OK_AND_ASSIGN(auto listener_struct, CreateAccessorsSlotListener<TestStruct>( "a", [](int a, TestStruct* s) { s->a = a; }, "b", [](double b, TestStruct* s) { s->b = b; })); auto accessor = [](OuterTestStruct* s) -> TestStruct* { return s->a; }; ASSERT_OK_AND_ASSIGN( std::unique_ptr<SlotListener<OuterTestStruct>> delegate_slot_listener, CreateDelegatingSlotListener<OuterTestStruct>( MakeNotOwningSlotListener(listener_struct.get()), accessor)); ASSERT_OK_AND_ASSIGN( std::unique_ptr<SlotListener<OuterTestStruct>> renamed_delegate_slot_listener, CreateDelegatingSlotListener<OuterTestStruct>( MakeNotOwningSlotListener(listener_struct.get()), accessor, "p_")); for (const auto& [prefix, slot_listener] : std::vector< std::pair<std::string, const SlotListener<OuterTestStruct>*>>{ {"", delegate_slot_listener.get()}, {"p_", renamed_delegate_slot_listener.get()}}) { EXPECT_THAT(slot_listener->GetQTypeOf(prefix + "a"), Eq(GetQType<int32_t>())); EXPECT_THAT(slot_listener->GetQTypeOf(prefix + "b"), Eq(GetQType<double>())); EXPECT_THAT(slot_listener->SuggestAvailableNames(), ElementsAre(prefix + "a", prefix + "b")); FrameLayout::Builder layout_builder; auto a_slot = layout_builder.AddSlot<int>(); auto b_slot = layout_builder.AddSlot<double>(); ASSERT_OK_AND_ASSIGN(BoundSlotListener<OuterTestStruct> bound_slot_listener, slot_listener->Bind({ {prefix + "a", TypedSlot::FromSlot(a_slot)}, {prefix + "b", TypedSlot::FromSlot(b_slot)}, })); FrameLayout memory_layout = std::move(layout_builder).Build(); MemoryAllocation alloc(&memory_layout); alloc.frame().Set(a_slot, 5); alloc.frame().Set(b_slot, 3.5); TestStruct ts; OuterTestStruct ots{&ts, -1}; ASSERT_OK(bound_slot_listener(alloc.frame(), &ots)); EXPECT_EQ(ts.a, 5); EXPECT_EQ(ts.b, 3.5); } } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/io/delegating_slot_listener.h
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/io/delegating_slot_listener_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
baefae19-7d40-4274-aa5f-dd3fcbdc247e
cpp
google/arolla
prepare_expression
arolla/expr/eval/prepare_expression.cc
arolla/expr/eval/prepare_expression_test.cc
#include "arolla/expr/eval/prepare_expression.h" #include <cstddef> #include <memory> #include <optional> #include <set> #include <string> #include <utility> #include <vector> #include "absl/base/no_destructor.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/types/span.h" #include "arolla/expr/annotation_expr_operators.h" #include "arolla/expr/annotation_utils.h" #include "arolla/expr/basic_expr_operator.h" #include "arolla/expr/eval/casting.h" #include "arolla/expr/eval/compile_where_operator.h" #include "arolla/expr/eval/eval.h" #include "arolla/expr/eval/extensions.h" #include "arolla/expr/eval/invoke.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_attributes.h" #include "arolla/expr/expr_debug_string.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/expr/expr_stack_trace.h" #include "arolla/expr/expr_visitor.h" #include "arolla/qtype/qtype.h" #include "arolla/util/fingerprint.h" #include "arolla/util/string.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr::eval_internal { namespace { using Stage = DynamicEvaluationEngineOptions::PreparationStage; class InternalRootOperatorImpl final : public BuiltinExprOperatorTag, public ExprOperatorWithFixedSignature { public: InternalRootOperatorImpl() : ExprOperatorWithFixedSignature( "_internal_root_operator_", ExprOperatorSignature{{.name = "arg0"}, {.name = "args", .kind = ExprOperatorSignature::Parameter:: Kind::kVariadicPositional}}, "", FingerprintHasher("::arolla::expr::InternalRootOperator") .Finish()) {} absl::StatusOr<ExprAttributes> InferAttributes( absl::Span<const ExprAttributes> inputs) const final { RETURN_IF_ERROR(ValidateOpInputsCount(inputs)); return inputs[0]; } }; bool AllDepsAreLiterals(const ExprNodePtr& node) { for (const auto& d : node->node_deps()) { if (!d->qvalue()) { return false; } } return true; } absl::Status MissingInputTypesError( const absl::flat_hash_map<std::string, QTypePtr>& input_types, const ExprNodePtr& root) { std::set<std::string> missing_types; for (const auto& node : VisitorOrder(root)) { if (!node->is_op() || IsQTypeAnnotation(node)) { continue; } for (const auto& d : node->node_deps()) { if (d->is_leaf() && !input_types.contains(d->leaf_key())) { missing_types.insert(d->leaf_key()); } } } if (root->is_leaf() && !input_types.contains(root->leaf_key())) { missing_types.insert(root->leaf_key()); } return absl::InvalidArgumentError( absl::StrFormat("missing QType information for inputs {%s}", Truncate(absl::StrJoin(missing_types, ", "), 200))); } absl::StatusOr<ExprNodePtr> AnnotateLeafWithQType( ExprNodePtr leaf, const absl::flat_hash_map<std::string, QTypePtr>& input_types, const ExprNodePtr& root) { auto it = input_types.find(leaf->leaf_key()); if (it == input_types.end()) { return MissingInputTypesError(input_types, root); } return CallOp(QTypeAnnotation::Make(), {std::move(leaf), Literal(it->second)}); } NodeTransformationFn PopulateQTypesTransformation( const absl::flat_hash_map<std::string, QTypePtr>& input_types, const ExprNodePtr& root) { return [&input_types, &root](const DynamicEvaluationEngineOptions&, ExprNodePtr node) -> absl::StatusOr<ExprNodePtr> { if (!node->is_op()) { return node; } if (const QType* annotated_qtype = ReadQTypeAnnotation(node); annotated_qtype != nullptr) { if (node->node_deps()[0]->is_leaf()) { auto it = input_types.find(node->node_deps()[0]->leaf_key()); if (it != input_types.end() && it->second != annotated_qtype) { return absl::FailedPreconditionError(absl::StrFormat( "inconsistent qtype annotation and input qtype: %s", JoinTypeNames({annotated_qtype, it->second}))); } return node; } else if (node->node_deps()[0]->qtype() != nullptr) { return node->node_deps()[0]; } } bool has_leaf_dep = false; for (const auto& d : node->node_deps()) { if (d->is_leaf()) { has_leaf_dep = true; } } if (!has_leaf_dep) { return node; } std::vector<ExprNodePtr> new_deps = node->node_deps(); for (auto& d : new_deps) { if (d->is_leaf()) { ASSIGN_OR_RETURN( d, AnnotateLeafWithQType(std::move(d), input_types, root)); } } return WithNewDependencies(node, std::move(new_deps)); }; } absl::StatusOr<ExprNodePtr> LiteralFoldingTransformation( const DynamicEvaluationEngineOptions& options, ExprNodePtr node) { if (!node->is_op() || !AllDepsAreLiterals(node) || node->op() == InternalRootOperator()) { return node; } if (node->qvalue()) { return Literal(*node->qvalue()); } DynamicEvaluationEngineOptions invoke_options = options; invoke_options.enabled_preparation_stages &= ~(Stage::kLiteralFolding | Stage::kPopulateQTypes | Stage::kOptimization | Stage::kWhereOperatorsTransformation); ASSIGN_OR_RETURN(auto result, Invoke(node, {}, invoke_options), _ << "while doing literal folding"); return Literal(result); } absl::StatusOr<ExprNodePtr> ToLowerTransformation( const DynamicEvaluationEngineOptions&, ExprNodePtr expr) { return ToLowerNode(expr); } absl::StatusOr<ExprNodePtr> StripAnnotationsTransformation( const DynamicEvaluationEngineOptions&, const ExprNodePtr& node) { ASSIGN_OR_RETURN(bool is_annotation, IsAnnotation(node)); if (is_annotation && node->node_deps().empty()) { return absl::FailedPreconditionError(absl::StrFormat( "invalid annotation %s: expected at least 1 argument, got 0", GetDebugSnippet(node))); } return (is_annotation && !IsQTypeAnnotation(node) ) ? node->node_deps()[0] : node; } absl::Status CheckForTypeMismatchAndSetType( absl::flat_hash_map<Fingerprint, QTypePtr>* resulting_types, const ExprNodePtr& expr, QTypePtr qtype) { auto it = resulting_types->find(expr->fingerprint()); if (it != resulting_types->end() && it->second != nullptr) { if (it->second != qtype) { return absl::FailedPreconditionError(absl::StrFormat( "different QTypes found for the same Expr %s: %s vs %s", GetDebugSnippet(expr), it->second->name(), qtype->name())); } } else { (*resulting_types)[expr->fingerprint()] = qtype; } return absl::OkStatus(); } absl::StatusOr<ExprNodePtr> ApplyNodeTransformations( const DynamicEvaluationEngineOptions& options, ExprNodePtr expr, absl::Span<const std::pair<TransformationType, NodeTransformationFn>> transformations, std::shared_ptr<ExprStackTrace> stack_trace) { return DeepTransform( expr, [&options, &transformations, &stack_trace](ExprNodePtr node) -> absl::StatusOr<ExprNodePtr> { for (const auto& t : transformations) { ASSIGN_OR_RETURN(auto result, t.second(options, node)); if (result->fingerprint() == node->fingerprint()) { continue; } if (!node->attr().IsSubsetOf(result->attr())) { return absl::FailedPreconditionError(absl::StrFormat( "expression %s attributes changed from %s to %s during " "compilation", GetDebugSnippet(node), absl::FormatStreamed(node->attr()), absl::FormatStreamed(result->attr()))); } if (stack_trace != nullptr) { stack_trace->AddTrace(result, node, t.first); } return result; } return node; }, [&stack_trace](ExprNodePtr node, ExprNodePtr prev_node, DeepTransformStage stage) { if (stack_trace != nullptr) { if (stage == DeepTransformStage::kWithNewDeps) { stack_trace->AddTrace(node, prev_node, TransformationType::kChildTransform); } else if (stage == DeepTransformStage::kNewChildAfterTransformation) { stack_trace->AddTrace( node, prev_node, TransformationType::kCausedByAncestorTransform); } } }); } absl::StatusOr<ExprNodePtr> PrepareSingleLeafExpression( const ExprNodePtr& expr, const absl::flat_hash_map<std::string, QTypePtr>& input_types, const DynamicEvaluationEngineOptions& options) { if (options.enabled_preparation_stages & Stage::kPopulateQTypes) { return AnnotateLeafWithQType(expr, input_types, expr); } else { return expr; } } } absl::StatusOr<ExprNodePtr> PrepareExpression( const ExprNodePtr& expr, const absl::flat_hash_map<std::string, QTypePtr>& input_types, const DynamicEvaluationEngineOptions& options, std::shared_ptr<ExprStackTrace> stack_trace) { if (expr->is_leaf()) { return PrepareSingleLeafExpression(expr, input_types, options); } ExprNodePtr current_expr = expr; std::vector<std::pair<TransformationType, NodeTransformationFn>> transformations; if (options.enabled_preparation_stages & Stage::kPopulateQTypes) { transformations.push_back( {TransformationType::kUntraced, PopulateQTypesTransformation(input_types, expr)}); } if (options.enabled_preparation_stages & Stage::kLiteralFolding) { transformations.push_back( {TransformationType::kUntraced, LiteralFoldingTransformation}); } if (options.enabled_preparation_stages & Stage::kToLower) { transformations.push_back( {TransformationType::kLowering, ToLowerTransformation}); } if (options.enabled_preparation_stages & Stage::kStripAnnotations) { transformations.push_back( {TransformationType::kUntraced, StripAnnotationsTransformation}); } if (options.enabled_preparation_stages & Stage::kBackendCompatibilityCasting) { transformations.push_back( {TransformationType::kUntraced, CastingTransformation}); } if (options.enabled_preparation_stages & Stage::kOptimization && options.optimizer.has_value()) { transformations.push_back( {TransformationType::kOptimization, [](const DynamicEvaluationEngineOptions& options, ExprNodePtr expr) { return (*options.optimizer)(std::move(expr)); }}); } if (options.enabled_preparation_stages & Stage::kExtensions) { transformations.push_back( {TransformationType::kUntraced, CompilerExtensionRegistry::GetInstance() .GetCompilerExtensionSet() .node_transformation_fn}); } ASSIGN_OR_RETURN(current_expr, ApplyNodeTransformations(options, current_expr, transformations, stack_trace)); if (options.enabled_preparation_stages & Stage::kWhereOperatorsTransformation) { ASSIGN_OR_RETURN(current_expr, WhereOperatorGlobalTransformation(options, current_expr)); } return current_expr; } ExprOperatorPtr InternalRootOperator() { static absl::NoDestructor<ExprOperatorPtr> first_op( std::make_shared<InternalRootOperatorImpl>()); return (*first_op); } absl::StatusOr<absl::flat_hash_map<std::string, QTypePtr>> LookupNamedOutputTypes( const ExprNodePtr& prepared_expr, const std::vector<std::string>& side_output_names, const absl::flat_hash_map<Fingerprint, QTypePtr>& node_types) { absl::flat_hash_map<std::string, QTypePtr> named_output_types; if (!side_output_names.empty()) { const auto& root_deps = prepared_expr->node_deps(); if (root_deps.size() != side_output_names.size() + 1) { return absl::InternalError("inconsistent side_output_names size"); } named_output_types.reserve(side_output_names.size()); for (size_t i = 0; i != side_output_names.size(); ++i) { const auto& name = side_output_names[i]; if (auto it = node_types.find(root_deps[i + 1]->fingerprint()); it != node_types.end()) { named_output_types.emplace(name, it->second); } else { return absl::FailedPreconditionError( absl::StrFormat("unable to deduce named output type for %s in " "the expression %s.", name, GetDebugSnippet(prepared_expr))); } } } return named_output_types; } absl::StatusOr<ExprNodePtr> ExtractQTypesForCompilation( const ExprNodePtr& expr, absl::flat_hash_map<Fingerprint, QTypePtr>* resulting_types, std::shared_ptr<ExprStackTrace> stack_trace) { return PostOrderTraverse( expr, [&resulting_types, &stack_trace]( const ExprNodePtr& node, absl::Span<const ExprNodePtr* const> visits) -> absl::StatusOr<ExprNodePtr> { if (IsQTypeAnnotation(node) && !visits.empty()) { QTypePtr qtype = node->qtype(); ExprNodePtr wrapped_node = *(visits[0]); RETURN_IF_ERROR(CheckForTypeMismatchAndSetType(resulting_types, wrapped_node, qtype)); ASSIGN_OR_RETURN(bool is_annotation, IsAnnotation(wrapped_node)); while (is_annotation && !wrapped_node->node_deps().empty()) { wrapped_node = wrapped_node->node_deps()[0]; RETURN_IF_ERROR(CheckForTypeMismatchAndSetType( resulting_types, wrapped_node, qtype)); ASSIGN_OR_RETURN(is_annotation, IsAnnotation(wrapped_node)); } if (stack_trace != nullptr) { stack_trace->AddTrace(*(visits[0]), node, TransformationType::kUntraced); } return *(visits[0]); } std::vector<expr::ExprNodePtr> node_deps = DereferenceVisitPointers(visits); ASSIGN_OR_RETURN(auto new_node, WithNewDependencies(node, std::move(node_deps))); RETURN_IF_ERROR(CheckForTypeMismatchAndSetType( resulting_types, new_node, node->qtype())); if (stack_trace != nullptr) { stack_trace->AddTrace(new_node, node, TransformationType::kUntraced); } return new_node; }); } absl::StatusOr<QTypePtr> LookupQType( const ExprNodePtr node, const absl::flat_hash_map<Fingerprint, QTypePtr>& types) { if (auto it = types.find(node->fingerprint()); it != types.end()) { return it->second; } return absl::InternalError( absl::StrFormat("unknown QType for node %s", GetDebugSnippet(node))); } absl::StatusOr<absl::flat_hash_map<std::string, QTypePtr>> LookupLeafQTypes( const ExprNodePtr& expr, const absl::flat_hash_map<Fingerprint, QTypePtr>& types) { absl::flat_hash_map<std::string, QTypePtr> result; for (const auto& node : VisitorOrder(expr)) { if (node->is_leaf()) { ASSIGN_OR_RETURN(result[node->leaf_key()], LookupQType(node, types)); } } return result; } }
#include "arolla/expr/eval/prepare_expression.h" #include <cstdint> #include <memory> #include <string> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/expr/annotation_expr_operators.h" #include "arolla/expr/basic_expr_operator.h" #include "arolla/expr/eval/eval.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_attributes.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/expr/expr_stack_trace.h" #include "arolla/expr/lambda_expr_operator.h" #include "arolla/expr/optimization/optimizer.h" #include "arolla/expr/testing/test_operators.h" #include "arolla/expr/testing/testing.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/util/bytes.h" #include "arolla/util/fingerprint.h" #include "arolla/util/text.h" namespace arolla::expr::eval_internal { namespace { using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::arolla::expr::testing::DummyOp; using ::arolla::testing::EqualsExpr; using ::arolla::testing::WithQTypeAnnotation; using ::testing::Eq; using ::testing::HasSubstr; class IdentityAnnotation final : public AnnotationExprOperatorTag, public ExprOperatorWithFixedSignature { public: IdentityAnnotation() : ExprOperatorWithFixedSignature( "id", ExprOperatorSignature::MakeArgsN(1), "", FingerprintHasher("arolla::expr::IdentityAnnotation").Finish()) {} absl::StatusOr<ExprAttributes> InferAttributes( absl::Span<const ExprAttributes> inputs) const final { return inputs[0]; } }; class OperatorWithBadGetOutputQType : public ExprOperatorWithFixedSignature { public: OperatorWithBadGetOutputQType() : ExprOperatorWithFixedSignature( "bad_op", ExprOperatorSignature::MakeArgsN(1), "", FingerprintHasher("arolla::expr::OperatorWithBadGetOutputQType") .Finish()) {} absl::StatusOr<ExprAttributes> InferAttributes( absl::Span<const ExprAttributes> inputs) const final { return ExprAttributes(GetQType<int64_t>()); } absl::StatusOr<ExprNodePtr> ToLowerLevel( const ExprNodePtr& node) const final { return node->node_deps()[0]; } }; class OperatorWithNoInferAttributes final : public ExprOperatorWithFixedSignature { public: OperatorWithNoInferAttributes() : ExprOperatorWithFixedSignature( "no_infer_attr", ExprOperatorSignature::MakeArgsN(1), "", FingerprintHasher("arolla::expr::OperatorWithNoInferAttributes") .Finish()) {} absl::StatusOr<ExprAttributes> InferAttributes( absl::Span<const ExprAttributes> inputs) const final { return ExprAttributes{}; } }; TEST(PrepareExpressionTest, ExtractQTypeForCompilation) { const auto id_annotation = std::make_shared<IdentityAnnotation>(); auto x = Leaf("x"); ASSERT_OK_AND_ASSIGN(auto id_expr, CallOp(id_annotation, {x})); ASSERT_OK_AND_ASSIGN(auto expr, WithQTypeAnnotation(id_expr, GetQType<float>())); absl::flat_hash_map<Fingerprint, QTypePtr> types; ASSERT_OK_AND_ASSIGN(auto stripped_expr, ExtractQTypesForCompilation(expr, &types)); EXPECT_THAT(stripped_expr, EqualsExpr(id_expr)); EXPECT_EQ(types[x->fingerprint()], GetQType<float>()); EXPECT_EQ(types[id_expr->fingerprint()], GetQType<float>()); } TEST(PrepareExpressionTest, Optimizations) { auto pattern_op = std::make_shared<DummyOp>( "pattern_op", ExprOperatorSignature::MakeArgsN(2)); auto pattern_x = Literal(2); Optimizer literals_optimizer = [pattern_op, pattern_x](ExprNodePtr node) { if (node->op() == pattern_op && node->node_deps()[0]->fingerprint() == pattern_x->fingerprint()) { return Literal(57); } return node; }; const absl::flat_hash_map<std::string, QTypePtr> input_qtypes = { {"u", GetQType<Text>()}, {"v", GetQType<Bytes>()}}; DynamicEvaluationEngineOptions options{.optimizer = literals_optimizer}; { ASSERT_OK_AND_ASSIGN( auto expr, CallOp("math.add", {CallOp(pattern_op, {pattern_x, Leaf("u")}), CallOp(pattern_op, {pattern_x, Leaf("v")})})); EXPECT_THAT(PrepareExpression(expr, input_qtypes, options), IsOkAndHolds(EqualsExpr(Literal(114)))); } { ASSERT_OK_AND_ASSIGN( auto expr, CallOp(pattern_op, {CallOp("math.add", {Literal(1), Literal(1)}), Leaf("u")})); EXPECT_THAT(PrepareExpression(expr, input_qtypes, options), IsOkAndHolds(EqualsExpr(Literal(57)))); } ASSERT_OK_AND_ASSIGN( auto add_1_lambda, MakeLambdaOperator(ExprOperatorSignature{{"x"}}, CallOp("math.add", {Placeholder("x"), Literal(1)}))); { ASSERT_OK_AND_ASSIGN( auto expr, CallOp(add_1_lambda, {CallOp(pattern_op, {pattern_x, Leaf("u")})})); EXPECT_THAT(PrepareExpression(expr, input_qtypes, options), IsOkAndHolds(EqualsExpr(Literal(58)))); } { ASSERT_OK_AND_ASSIGN( auto expr, CallOp(pattern_op, {CallOp(add_1_lambda, {Literal(1)}), Leaf("u")})); EXPECT_THAT(PrepareExpression(expr, input_qtypes, options), IsOkAndHolds(EqualsExpr(Literal(57)))); } } TEST(PrepareExpressionTest, DetailedStackTraceBuilding) { ASSERT_OK_AND_ASSIGN( auto add_2_lambda, MakeLambdaOperator("add_2_lambda", ExprOperatorSignature{{"x"}}, CallOp("math.add", {Placeholder("x"), Literal(2)}))); auto pattern_op = std::make_shared<DummyOp>( "pattern_op", ExprOperatorSignature::MakeArgsN(2)); Optimizer dummy_optimizer = [pattern_op, add_2_lambda](ExprNodePtr node) -> absl::StatusOr<ExprNodePtr> { if (node->op() == pattern_op && node->node_deps()[0]->fingerprint() == Literal(2)->fingerprint()) { return CallOp(add_2_lambda, {node->node_deps()[1]}); } return node; }; DynamicEvaluationEngineOptions options{.optimizer = dummy_optimizer}; auto stack_trace = std::make_shared<DetailedExprStackTrace>(); ASSERT_OK_AND_ASSIGN( auto expr, CallOp(pattern_op, {CallOp("math.add", {Literal(1), Literal(1)}), Leaf("u")})); ASSERT_OK_AND_ASSIGN( auto prepared_expr, PrepareExpression(expr, {{"u", GetQType<int>()}}, options, stack_trace)); EXPECT_EQ(stack_trace->FullTrace(prepared_expr->fingerprint()), "ORIGINAL NODE: pattern_op(M.math.add(..., ...):INT32, L.u)\n" "COMPILED NODE: M.math.add(annotation.qtype(..., ...), 2):INT32\n" "DETAILED STACK TRACE:\n" "pattern_op(M.math.add(..., ...):INT32, L.u)\n" " had transformations applied to its children\n" "pattern_op(2, L.u)\n" " was optimized to\n" "add_2_lambda(annotation.qtype(..., ...)):INT32\n" " was lowered to\n" "M.math.add(annotation.qtype(..., ...), 2):INT32"); } TEST(PrepareExpressionTest, LightweightStackTraceBuilding) { ASSERT_OK_AND_ASSIGN( auto add_2_lambda, MakeLambdaOperator("add_2_lambda", ExprOperatorSignature{{"x"}}, CallOp("math.add", {Placeholder("x"), Literal(2)}))); auto pattern_op = std::make_shared<DummyOp>( "pattern_op", ExprOperatorSignature::MakeArgsN(2)); Optimizer dummy_optimizer = [pattern_op, add_2_lambda](ExprNodePtr node) -> absl::StatusOr<ExprNodePtr> { if (node->op() == pattern_op && node->node_deps()[0]->fingerprint() == Literal(2)->fingerprint()) { return CallOp(add_2_lambda, {node->node_deps()[1]}); } return node; }; DynamicEvaluationEngineOptions options{.optimizer = dummy_optimizer}; auto stack_trace = std::make_shared<LightweightExprStackTrace>(); ASSERT_OK_AND_ASSIGN( auto expr, CallOp(pattern_op, {CallOp("math.add", {Literal(1), Literal(1)}), Leaf("u")})); ASSERT_OK_AND_ASSIGN( auto prepared_expr, PrepareExpression(expr, {{"u", GetQType<int>()}}, options, stack_trace)); stack_trace->AddRepresentations(prepared_expr, expr); EXPECT_EQ(stack_trace->FullTrace(prepared_expr->fingerprint()), "ORIGINAL NODE: pattern_op(M.math.add(..., ...):INT32, L.u)\n" "COMPILED NODE: M.math.add(annotation.qtype(..., ...), 2):INT32"); } TEST(PrepareExpressionTest, StackTraceWithErrorNestedUnderLambda) { ASSERT_OK_AND_ASSIGN( auto lambda_with_nested_error, MakeLambdaOperator( "lambda_with_nested_error", ExprOperatorSignature{{"x"}, {"y"}}, CallOp("math.add", {Literal(2.0), CallOp("math.divide", {Placeholder("x"), Placeholder("y")})}))); auto stack_trace = std::make_shared<DetailedExprStackTrace>(); ASSERT_OK_AND_ASSIGN( auto expr, CallOp(lambda_with_nested_error, {Leaf("x"), Leaf("y")})); ASSERT_OK_AND_ASSIGN( auto prepared_expr, PrepareExpression(expr, {{"x", GetQType<float>()}, {"y", GetQType<float>()}}, DynamicEvaluationEngineOptions{}, stack_trace)); ASSERT_OK_AND_ASSIGN(auto faulty_node, CallOp("math.divide", {Leaf("x"), Leaf("y")})); ASSERT_OK_AND_ASSIGN( faulty_node, PrepareExpression(faulty_node, {{"x", GetQType<float>()}, {"y", GetQType<float>()}}, DynamicEvaluationEngineOptions{})); EXPECT_THAT( stack_trace->FullTrace(faulty_node->fingerprint()), Eq("ORIGINAL NODE: lambda_with_nested_error(L.x, L.y)\n" "COMPILED NODE: M.math.divide(annotation.qtype(..., ...), " "annotation.qtype(..., ...)):FLOAT32\n" "DETAILED STACK TRACE:\n" "lambda_with_nested_error(L.x, L.y)\n" " was lowered to\n" "M.math.add(float64{2}, M.math.divide(..., ...):FLOAT32):FLOAT64\n" " which contains\n" "M.math.divide(annotation.qtype(..., ...)," " annotation.qtype(..., ...)):FLOAT32")); } TEST(PrepareExpressionTest, StackTraceBuildingNoTransformations) { ASSERT_OK_AND_ASSIGN( auto expr, CallOp("edge.from_sizes", {CallOp("annotation.qtype", {Leaf("x"), Literal(GetDenseArrayQType<int64_t>())})})); auto stack_trace = std::make_shared<DetailedExprStackTrace>(); ASSERT_OK_AND_ASSIGN( auto prepared_expr, PrepareExpression(expr, {{"x", GetDenseArrayQType<int64_t>()}}, DynamicEvaluationEngineOptions{}, stack_trace)); BoundExprStackTraceBuilder stack_trace_builder(stack_trace); stack_trace_builder.RegisterIp(0, prepared_expr); auto bound_stack_trace = stack_trace_builder.Build(10); EXPECT_EQ(bound_stack_trace[0], ""); } TEST(PrepareExpressionTest, StackTraceAnnotationCycle) { ASSERT_OK_AND_ASSIGN( auto expr, CallOp("edge.from_sizes", {Leaf("x")})); auto stack_trace = std::make_shared<DetailedExprStackTrace>(); ASSERT_OK_AND_ASSIGN( auto prepared_expr, PrepareExpression(expr, {{"x", GetDenseArrayQType<int64_t>()}}, DynamicEvaluationEngineOptions{}, stack_trace)); absl::flat_hash_map<Fingerprint, QTypePtr> node_types; ASSERT_OK_AND_ASSIGN(prepared_expr, eval_internal::ExtractQTypesForCompilation( prepared_expr, &node_types, stack_trace)); BoundExprStackTraceBuilder stack_trace_builder(stack_trace); stack_trace_builder.RegisterIp(0, prepared_expr); auto bound_stack_trace = stack_trace_builder.Build(10); EXPECT_EQ(bound_stack_trace[0], ""); } TEST(PrepareExpressionTest, OperatorWithBadGetOutputQType) { ASSERT_OK_AND_ASSIGN(auto expr, CallOp(std::make_shared<OperatorWithBadGetOutputQType>(), {Literal(2.0)})); EXPECT_THAT( PrepareExpression(expr, {}, DynamicEvaluationEngineOptions{}), StatusIs(absl::StatusCode::kFailedPrecondition, "expression bad_op(float64{2}):INT64 attributes changed in " "ToLower from Attr(qtype=INT64) to Attr(qvalue=float64{2}); " "this indicates incorrect InferAttributes() or GetOutputType() " "of the operator bad_op; while transforming " "bad_op(float64{2}):INT64; while doing literal folding; while " "transforming bad_op(float64{2}):INT64")); } TEST(PrepareExpressionTest, StripAnnotations) { const auto id_annotation = std::make_shared<IdentityAnnotation>(); ASSERT_OK_AND_ASSIGN(auto x, WithQTypeAnnotation(Leaf("x"), GetQType<float>())); ASSERT_OK_AND_ASSIGN( auto expr, CallOp(id_annotation, {CallOp("math.neg", {CallOp(id_annotation, {x})})})); EXPECT_THAT(PrepareExpression(expr, {}, DynamicEvaluationEngineOptions{}), IsOkAndHolds(EqualsExpr(CallOp("math.neg", {x})))); } TEST(PrepareExpressionTest, SingleLeafExpression) { auto expr = Leaf("x"); EXPECT_THAT( PrepareExpression(expr, {{"x", GetQType<float>()}}, DynamicEvaluationEngineOptions{}), IsOkAndHolds(EqualsExpr(CallOp( QTypeAnnotation::Make(), {Leaf("x"), Literal(GetQType<float>())})))); EXPECT_THAT(PrepareExpression(expr, {}, DynamicEvaluationEngineOptions{}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("missing QType information for inputs {x}"))); } TEST(PrepareExpressionTest, QTypeAnnotations) { ASSERT_OK_AND_ASSIGN( auto expr, CallOp("math.neg", {WithQTypeAnnotation(Leaf("x"), GetQType<float>())})); EXPECT_THAT(PrepareExpression(expr, {}, DynamicEvaluationEngineOptions{}), IsOkAndHolds(EqualsExpr(expr))); EXPECT_THAT(PrepareExpression(expr, {{"x", GetQType<float>()}}, DynamicEvaluationEngineOptions{}), IsOkAndHolds(EqualsExpr(expr))); EXPECT_THAT(PrepareExpression(expr, {{"x", GetQType<double>()}}, DynamicEvaluationEngineOptions{}), StatusIs(absl::StatusCode::kFailedPrecondition, HasSubstr("inconsistent qtype annotation and input " "qtype: FLOAT32,FLOAT64"))); EXPECT_THAT(PrepareExpression(expr, {{"x", nullptr}}, DynamicEvaluationEngineOptions{}), StatusIs(absl::StatusCode::kFailedPrecondition, HasSubstr("inconsistent qtype annotation and input " "qtype: FLOAT32,NULL"))); } TEST(PrepareExpressionTest, QTypeAnnotations_WithPartiallyAnnotatedLeaves) { auto x = Leaf("x"); ASSERT_OK_AND_ASSIGN(auto typed_x, CallOp(QTypeAnnotation::Make(), {x, Literal(GetQType<float>())})); ASSERT_OK_AND_ASSIGN(auto expr, CallOp("core.make_tuple", {typed_x, x})); EXPECT_THAT(PrepareExpression(expr, {}, DynamicEvaluationEngineOptions{}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("missing QType information for inputs {x}"))); EXPECT_THAT( PrepareExpression(expr, {{"x", GetQType<float>()}}, DynamicEvaluationEngineOptions{}), IsOkAndHolds(EqualsExpr(CallOp("core.make_tuple", {typed_x, typed_x})))); } TEST(PrepareExpressionTest, StripExtraQTypeAnnotations) { ASSERT_OK_AND_ASSIGN(auto typed_x, WithQTypeAnnotation(Leaf("x"), GetQType<float>())); ASSERT_OK_AND_ASSIGN(auto typed_typed_x, WithQTypeAnnotation(typed_x, GetQType<float>())); EXPECT_THAT( PrepareExpression(typed_typed_x, {}, DynamicEvaluationEngineOptions{}), IsOkAndHolds(EqualsExpr(typed_x))); ASSERT_OK_AND_ASSIGN( auto expr_with_non_deducible_type_annotation, WithQTypeAnnotation( CallOp(std::make_shared<OperatorWithNoInferAttributes>(), {typed_x}), GetQType<float>())); EXPECT_THAT( PrepareExpression(expr_with_non_deducible_type_annotation, {}, DynamicEvaluationEngineOptions{}), IsOkAndHolds(EqualsExpr(expr_with_non_deducible_type_annotation))); ASSERT_OK_AND_ASSIGN( auto expr_with_double_type_annotation, WithQTypeAnnotation(expr_with_non_deducible_type_annotation, GetQType<float>())); EXPECT_THAT( PrepareExpression(expr_with_double_type_annotation, {}, DynamicEvaluationEngineOptions{}), IsOkAndHolds(EqualsExpr(expr_with_non_deducible_type_annotation))); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/eval/prepare_expression.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/eval/prepare_expression_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
1fa7adaf-94c9-45aa-bdf9-54656547fa6f
cpp
google/cel-cpp
comparison_functions
eval/public/comparison_functions.cc
eval/public/comparison_functions_test.cc
#include "eval/public/comparison_functions.h" #include "absl/status/status.h" #include "eval/public/cel_function_registry.h" #include "eval/public/cel_options.h" #include "runtime/function_registry.h" #include "runtime/runtime_options.h" #include "runtime/standard/comparison_functions.h" namespace google::api::expr::runtime { absl::Status RegisterComparisonFunctions(CelFunctionRegistry* registry, const InterpreterOptions& options) { cel::RuntimeOptions modern_options = ConvertToRuntimeOptions(options); cel::FunctionRegistry& modern_registry = registry->InternalGetRegistry(); return cel::RegisterComparisonFunctions(modern_registry, modern_options); } }
#include "eval/public/comparison_functions.h" #include <memory> #include <tuple> #include "google/api/expr/v1alpha1/syntax.pb.h" #include "google/rpc/context/attribute_context.pb.h" #include "google/protobuf/arena.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/time/time.h" #include "eval/public/activation.h" #include "eval/public/cel_expr_builder_factory.h" #include "eval/public/cel_expression.h" #include "eval/public/cel_function_registry.h" #include "eval/public/cel_options.h" #include "eval/public/cel_value.h" #include "eval/public/testing/matchers.h" #include "internal/status_macros.h" #include "internal/testing.h" #include "parser/parser.h" namespace google::api::expr::runtime { namespace { using ::google::api::expr::v1alpha1::ParsedExpr; using ::google::rpc::context::AttributeContext; using ::testing::Combine; using ::testing::ValuesIn; MATCHER_P2(DefinesHomogenousOverload, name, argument_type, absl::StrCat(name, " for ", CelValue::TypeName(argument_type))) { const CelFunctionRegistry& registry = arg; return !registry .FindOverloads(name, false, {argument_type, argument_type}) .empty(); return false; } struct ComparisonTestCase { absl::string_view expr; bool result; CelValue lhs = CelValue::CreateNull(); CelValue rhs = CelValue::CreateNull(); }; class ComparisonFunctionTest : public testing::TestWithParam<std::tuple<ComparisonTestCase, bool>> { public: ComparisonFunctionTest() { options_.enable_heterogeneous_equality = std::get<1>(GetParam()); options_.enable_empty_wrapper_null_unboxing = true; builder_ = CreateCelExpressionBuilder(options_); } CelFunctionRegistry& registry() { return *builder_->GetRegistry(); } absl::StatusOr<CelValue> Evaluate(absl::string_view expr, const CelValue& lhs, const CelValue& rhs) { CEL_ASSIGN_OR_RETURN(ParsedExpr parsed_expr, parser::Parse(expr)); Activation activation; activation.InsertValue("lhs", lhs); activation.InsertValue("rhs", rhs); CEL_ASSIGN_OR_RETURN(auto expression, builder_->CreateExpression( &parsed_expr.expr(), &parsed_expr.source_info())); return expression->Evaluate(activation, &arena_); } protected: std::unique_ptr<CelExpressionBuilder> builder_; InterpreterOptions options_; google::protobuf::Arena arena_; }; TEST_P(ComparisonFunctionTest, SmokeTest) { ComparisonTestCase test_case = std::get<0>(GetParam()); google::protobuf::LinkMessageReflection<AttributeContext>(); ASSERT_OK(RegisterComparisonFunctions(&registry(), options_)); ASSERT_OK_AND_ASSIGN(auto result, Evaluate(test_case.expr, test_case.lhs, test_case.rhs)); EXPECT_THAT(result, test::IsCelBool(test_case.result)); } INSTANTIATE_TEST_SUITE_P( LessThan, ComparisonFunctionTest, Combine(ValuesIn<ComparisonTestCase>( { {"false < true", true}, {"1 < 2", true}, {"-2 < -1", true}, {"1.1 < 1.2", true}, {"'a' < 'b'", true}, {"lhs < rhs", true, CelValue::CreateBytesView("a"), CelValue::CreateBytesView("b")}, {"lhs < rhs", true, CelValue::CreateDuration(absl::Seconds(1)), CelValue::CreateDuration(absl::Seconds(2))}, {"lhs < rhs", true, CelValue::CreateTimestamp(absl::FromUnixSeconds(20)), CelValue::CreateTimestamp(absl::FromUnixSeconds(30))}}), testing::Bool())); INSTANTIATE_TEST_SUITE_P( GreaterThan, ComparisonFunctionTest, testing::Combine( testing::ValuesIn<ComparisonTestCase>( {{"false > true", false}, {"1 > 2", false}, {"-2 > -1", false}, {"1.1 > 1.2", false}, {"'a' > 'b'", false}, {"lhs > rhs", false, CelValue::CreateBytesView("a"), CelValue::CreateBytesView("b")}, {"lhs > rhs", false, CelValue::CreateDuration(absl::Seconds(1)), CelValue::CreateDuration(absl::Seconds(2))}, {"lhs > rhs", false, CelValue::CreateTimestamp(absl::FromUnixSeconds(20)), CelValue::CreateTimestamp(absl::FromUnixSeconds(30))}}), testing::Bool())); INSTANTIATE_TEST_SUITE_P( GreaterOrEqual, ComparisonFunctionTest, Combine(ValuesIn<ComparisonTestCase>( {{"false >= true", false}, {"1 >= 2", false}, {"-2 >= -1", false}, {"1.1 >= 1.2", false}, {"'a' >= 'b'", false}, {"lhs >= rhs", false, CelValue::CreateBytesView("a"), CelValue::CreateBytesView("b")}, {"lhs >= rhs", false, CelValue::CreateDuration(absl::Seconds(1)), CelValue::CreateDuration(absl::Seconds(2))}, {"lhs >= rhs", false, CelValue::CreateTimestamp(absl::FromUnixSeconds(20)), CelValue::CreateTimestamp(absl::FromUnixSeconds(30))}}), testing::Bool())); INSTANTIATE_TEST_SUITE_P( LessOrEqual, ComparisonFunctionTest, Combine(testing::ValuesIn<ComparisonTestCase>( {{"false <= true", true}, {"1 <= 2", true}, {"-2 <= -1", true}, {"1.1 <= 1.2", true}, {"'a' <= 'b'", true}, {"lhs <= rhs", true, CelValue::CreateBytesView("a"), CelValue::CreateBytesView("b")}, {"lhs <= rhs", true, CelValue::CreateDuration(absl::Seconds(1)), CelValue::CreateDuration(absl::Seconds(2))}, {"lhs <= rhs", true, CelValue::CreateTimestamp(absl::FromUnixSeconds(20)), CelValue::CreateTimestamp(absl::FromUnixSeconds(30))}}), testing::Bool())); INSTANTIATE_TEST_SUITE_P(HeterogeneousNumericComparisons, ComparisonFunctionTest, Combine(testing::ValuesIn<ComparisonTestCase>( { {"1 < 2u", true}, {"2 < 1u", false}, {"1 < 2.1", true}, {"3 < 2.1", false}, {"1u < 2", true}, {"2u < 1", false}, {"1u < -1.1", false}, {"1u < 2.1", true}, {"1.1 < 2", true}, {"1.1 < 1", false}, {"1.0 < 1u", false}, {"1.0 < 3u", true}, {"1 <= 2u", true}, {"2 <= 1u", false}, {"1 <= 2.1", true}, {"3 <= 2.1", false}, {"1u <= 2", true}, {"1u <= 0", false}, {"1u <= -1.1", false}, {"2u <= 1.0", false}, {"1.1 <= 2", true}, {"2.1 <= 2", false}, {"1.0 <= 1u", true}, {"1.1 <= 1u", false}, {"3 > 2u", true}, {"3 > 4u", false}, {"3 > 2.1", true}, {"3 > 4.1", false}, {"3u > 2", true}, {"3u > 4", false}, {"3u > -1.1", true}, {"3u > 4.1", false}, {"3.1 > 2", true}, {"3.1 > 4", false}, {"3.0 > 1u", true}, {"3.0 > 4u", false}, {"3 >= 2u", true}, {"3 >= 4u", false}, {"3 >= 2.1", true}, {"3 >= 4.1", false}, {"3u >= 2", true}, {"3u >= 4", false}, {"3u >= -1.1", true}, {"3u >= 4.1", false}, {"3.1 >= 2", true}, {"3.1 >= 4", false}, {"3.0 >= 1u", true}, {"3.0 >= 4u", false}, {"1u >= -1", true}, {"1 >= 4u", false}, {"-1 < 1u", true}, {"1 < 9223372036854775808u", true}}), testing::Values<bool>(true))); } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/comparison_functions.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/comparison_functions_test.cc
4552db5798fb0853b131b783d8875794334fae7f
31510ab2-ecd4-4755-b6bd-8f4bd89138d6
cpp
google/tensorstore
raw_bytes_hex
tensorstore/internal/json_binding/raw_bytes_hex.cc
tensorstore/internal/json_binding/raw_bytes_hex_test.cc
#include "tensorstore/internal/json_binding/raw_bytes_hex.h" #include <string_view> #include "absl/status/status.h" #include "absl/strings/escaping.h" #include "absl/strings/str_format.h" namespace tensorstore { namespace internal_json_binding { namespace { bool IsHexString(std::string_view s) { for (char c : s) { if (!(c >= '0' && c <= '9') && !(c >= 'a' && c <= 'f') && !(c >= 'A' && c <= 'F')) { return false; } } return true; } } namespace raw_bytes_hex_binder { absl::Status RawBytesHexImpl::operator()(std::true_type is_loading, NoOptions, void* obj, ::nlohmann::json* j) const { auto* s = j->get_ptr<const std::string*>(); if (!s || s->size() != 2 * num_bytes || !internal_json_binding::IsHexString(*s)) { return absl::InvalidArgumentError( absl::StrFormat("Expected string with %d hex digits, but received: %s", num_bytes * 2, j->dump())); } std::string temp = absl::HexStringToBytes(*s); assert(temp.size() == num_bytes); std::memcpy(obj, temp.data(), num_bytes); return absl::OkStatus(); } absl::Status RawBytesHexImpl::operator()(std::false_type is_loading, NoOptions, const void* obj, ::nlohmann::json* j) const { *j = absl::BytesToHexString( absl::string_view(reinterpret_cast<const char*>(obj), num_bytes)); return absl::OkStatus(); } } } }
#include "tensorstore/internal/json_binding/raw_bytes_hex.h" #include <string> #include <tuple> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include <nlohmann/json_fwd.hpp> #include "tensorstore/internal/json_binding/gtest.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/util/status_testutil.h" namespace jb = tensorstore::internal_json_binding; namespace { using ::tensorstore::MatchesStatus; TEST(RawBytesHexTest, RoundTrip) { tensorstore::TestJsonBinderRoundTrip<std::array<unsigned char, 3>>( { {{{1, 2, 0xab}}, "0102ab"}, }, jb::RawBytesHex); tensorstore::TestJsonBinderRoundTripJsonOnlyInexact< std::array<unsigned char, 3>>( { {"0102AB", "0102ab"}, }, jb::RawBytesHex); } TEST(RawBytesHexTest, Invalid) { tensorstore::TestJsonBinderFromJson<std::array<unsigned char, 3>>( { {1, MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected string with 6 hex digits, but received: 1")}, {"0102zb", MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected string with 6 hex " "digits, but received: \"0102zb\"")}, }, jb::RawBytesHex); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/json_binding/raw_bytes_hex.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/json_binding/raw_bytes_hex_test.cc
4f887a6430414cd6088e1743555015b10f116d50
61064559-7093-4c01-8255-fe9997c3c16e
cpp
google/tensorstore
index_interval
tensorstore/index_interval.cc
tensorstore/index_interval_test.cc
#include "tensorstore/index_interval.h" #include <ostream> #include "absl/status/status.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/util/division.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/result.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { Result<IndexInterval> IndexInterval::Closed(Index inclusive_min, Index inclusive_max) { if (!ValidClosed(inclusive_min, inclusive_max)) { return absl::InvalidArgumentError( tensorstore::StrCat("(", inclusive_min, ", ", inclusive_max, ") do not specify a valid closed index interval")); } return UncheckedClosed(inclusive_min, inclusive_max); } Result<IndexInterval> IndexInterval::HalfOpen(Index inclusive_min, Index exclusive_max) { if (!ValidHalfOpen(inclusive_min, exclusive_max)) { return absl::InvalidArgumentError(tensorstore::StrCat( "(", inclusive_min, ", ", exclusive_max, ") do not specify a valid half-open index interval")); } return UncheckedHalfOpen(inclusive_min, exclusive_max); } Result<IndexInterval> IndexInterval::Sized(Index inclusive_min, Index size) { if (!ValidSized(inclusive_min, size)) { return absl::InvalidArgumentError( tensorstore::StrCat("(", inclusive_min, ", ", size, ") do not specify a valid sized index interval")); } return UncheckedSized(inclusive_min, size); } std::ostream& operator<<(std::ostream& os, const OptionallyImplicitIndexInterval& x) { if (x.inclusive_min() == -kInfIndex) { os << "(-inf"; } else { os << '[' << x.inclusive_min(); } if (x.implicit_lower()) os << '*'; os << ", "; if (x.inclusive_max() == +kInfIndex) { os << "+inf"; } else { os << x.exclusive_max(); } if (x.implicit_upper()) os << '*'; return os << ")"; } std::ostream& operator<<(std::ostream& os, IndexInterval x) { return os << OptionallyImplicitIndexInterval(x, false, false); } namespace { template <ContainerKind CKindA, ContainerKind CKindB> bool EqualImpl(const IndexDomainDimension<CKindA>& a, const IndexDomainDimension<CKindB>& b) { return (a.optionally_implicit_interval() == b.optionally_implicit_interval() && a.label() == b.label()); } } bool operator==(const IndexDomainDimension<container>& a, const IndexDomainDimension<container>& b) { return EqualImpl(a, b); } bool operator==(const IndexDomainDimension<view>& a, const IndexDomainDimension<view>& b) { return EqualImpl(a, b); } bool operator==(const IndexDomainDimension<view>& a, const IndexDomainDimension<container>& b) { return EqualImpl(a, b); } bool operator==(const IndexDomainDimension<container>& a, const IndexDomainDimension<view>& b) { return EqualImpl(a, b); } std::ostream& operator<<(std::ostream& os, const IndexDomainDimension<view>& x) { if (!x.label().empty()) { os << QuoteString(x.label()) << ": "; } return os << x.optionally_implicit_interval(); } std::ostream& operator<<(std::ostream& os, const IndexDomainDimension<container>& x) { return os << IndexDomainDimension<view>(x); } bool AreCompatibleOrUnbounded(IndexInterval a, IndexInterval b) { Index a_lower = a.inclusive_min(); Index a_upper = a.inclusive_max(); Index b_lower = b.inclusive_min(); Index b_upper = b.inclusive_max(); return (a_lower == b_lower || a_lower == -kInfIndex || b_lower == -kInfIndex) && (a_upper == b_upper || a_upper == kInfIndex || b_upper == kInfIndex); } IndexInterval Hull(IndexInterval a, IndexInterval b) { if (a.empty()) return b; if (b.empty()) return a; const Index lower = std::min(a.inclusive_min(), b.inclusive_min()); const Index upper = std::max(a.inclusive_max(), b.inclusive_max()); return IndexInterval::UncheckedClosed(lower, upper); } IndexInterval Intersect(IndexInterval a, IndexInterval b) { const Index lower = std::max(a.inclusive_min(), b.inclusive_min()); const Index upper = std::min(a.inclusive_max(), b.inclusive_max()); const Index size = upper < lower ? 0 : upper - lower + 1; return IndexInterval::UncheckedSized(lower, size); } OptionallyImplicitIndexInterval Hull(OptionallyImplicitIndexInterval a, OptionallyImplicitIndexInterval b) { IndexInterval interval = Hull(a.interval(), b.interval()); bool implicit_lower = (a.inclusive_min() == b.inclusive_min()) ? (a.implicit_lower() && b.implicit_lower()) : (interval.inclusive_min() == a.inclusive_min() ? a.implicit_lower() : b.implicit_lower()); bool implicit_upper = (a.inclusive_max() == b.inclusive_max()) ? (a.implicit_upper() && b.implicit_upper()) : (a.inclusive_max() == interval.inclusive_max() ? a.implicit_upper() : b.implicit_upper()); return OptionallyImplicitIndexInterval{interval, implicit_lower, implicit_upper}; } OptionallyImplicitIndexInterval Intersect(OptionallyImplicitIndexInterval a, OptionallyImplicitIndexInterval b) { IndexInterval interval = Intersect(a.interval(), b.interval()); bool implicit_lower = (a.inclusive_min() == b.inclusive_min()) ? (a.implicit_lower() && b.implicit_lower()) : (interval.inclusive_min() == a.inclusive_min() ? a.implicit_lower() : b.implicit_lower()); bool implicit_upper = (a.inclusive_max() == b.inclusive_max()) ? (a.implicit_upper() && b.implicit_upper()) : (a.inclusive_max() == interval.inclusive_max() ? a.implicit_upper() : b.implicit_upper()); return OptionallyImplicitIndexInterval{interval, implicit_lower, implicit_upper}; } OptionallyImplicitIndexInterval IntersectPreferringExplicit( OptionallyImplicitIndexInterval a, OptionallyImplicitIndexInterval b) { const Index inclusive_min = a.implicit_lower() == b.implicit_lower() ? std::max(a.inclusive_min(), b.inclusive_min()) : std::max(a.effective_interval().inclusive_min(), b.effective_interval().inclusive_min()); const Index inclusive_max = a.implicit_upper() == b.implicit_upper() ? std::min(a.inclusive_max(), b.inclusive_max()) : std::min(a.effective_interval().inclusive_max(), b.effective_interval().inclusive_max()); return OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed( inclusive_min, std::max(inclusive_min - 1, inclusive_max)), a.implicit_lower() && b.implicit_lower(), a.implicit_upper() && b.implicit_upper()}; } bool ContainsOrUnbounded(IndexInterval outer, IndexInterval inner) { return (inner.inclusive_min() == -kInfIndex || inner.inclusive_min() >= outer.inclusive_min()) && (inner.inclusive_max() == kInfIndex || inner.inclusive_max() <= outer.inclusive_max()); } Result<IndexInterval> ShiftInterval(IndexInterval interval, Index min_offset, Index max_offset) { Index inclusive_min; if (interval.inclusive_min() == -kInfIndex) { inclusive_min = -kInfIndex; } else if (internal::AddOverflow(interval.inclusive_min(), min_offset, &inclusive_min) || !IsFiniteIndex(inclusive_min)) { return absl::InvalidArgumentError(tensorstore::StrCat( interval.inclusive_min(), " + ", min_offset, " is outside valid range ", IndexInterval::FiniteRange())); } Index inclusive_max; if (interval.inclusive_max() == kInfIndex) { inclusive_max = kInfIndex; } else if (internal::AddOverflow(interval.inclusive_max(), max_offset, &inclusive_max) || !IsFiniteIndex(inclusive_max)) { return absl::InvalidArgumentError(tensorstore::StrCat( interval.inclusive_max(), " + ", max_offset, " is outside valid range ", IndexInterval::FiniteRange())); } return IndexInterval::UncheckedClosed(inclusive_min, inclusive_max); } Result<IndexInterval> ShiftIntervalBackward(IndexInterval interval, Index min_offset, Index max_offset) { return ShiftInterval( interval, internal::wrap_on_overflow::Multiply(min_offset, Index(-1)), internal::wrap_on_overflow::Multiply(max_offset, Index(-1))); } Result<IndexInterval> ShiftInterval(IndexInterval interval, Index offset) { return ShiftInterval(interval, offset, offset); } Result<IndexInterval> ShiftIntervalBackward(IndexInterval interval, Index offset) { return ShiftIntervalBackward(interval, offset, offset); } Result<IndexInterval> ShiftIntervalTo(IndexInterval interval, Index origin) { if (!IsFiniteIndex(origin)) { return absl::OutOfRangeError( tensorstore::StrCat("Origin ", origin, " is outside valid range ", IndexInterval::FiniteRange())); } if (interval.inclusive_min() == -kInfIndex) { return absl::InvalidArgumentError( tensorstore::StrCat("Interval ", interval, " is not bounded below")); } Index offset; [[maybe_unused]] const bool overflow = internal::SubOverflow(origin, interval.inclusive_min(), &offset); assert(!overflow); return ShiftInterval(interval, offset); } absl::Status CheckContains(IndexInterval interval, Index index) { if (Contains(interval, index)) return absl::OkStatus(); return absl::OutOfRangeError(tensorstore::StrCat( "Index ", index, " is outside valid range ", interval)); } Result<std::pair<OptionallyImplicitIndexInterval, Index>> ExtractStridedSlice( OptionallyImplicitIndexInterval orig, IntervalForm interval_form, Index start, Index stop_or_size, Index stride) { const IndexInterval constraint = IndexInterval::UncheckedClosed( orig.implicit_lower() ? -kInfIndex : orig.inclusive_min(), orig.implicit_upper() ? kInfIndex : orig.inclusive_max()); if (stride == 0 || stride == std::numeric_limits<Index>::min()) { return absl::InvalidArgumentError( tensorstore::StrCat("Invalid stride ", stride)); } if (start == kImplicit) { start = stride > 0 ? orig.inclusive_min() : orig.inclusive_max(); } else { if (!IsValidIndex(start)) { return absl::InvalidArgumentError( tensorstore::StrCat("Invalid start index ", start)); } orig.implicit_lower() = false; } Index inclusive_stop; if (interval_form == IntervalForm::sized) { Index size = stop_or_size; if (size == kImplicit) { inclusive_stop = stride > 0 ? orig.inclusive_max() : orig.inclusive_min(); } else { if (size < 0) { return absl::InvalidArgumentError(tensorstore::StrCat( "Negative size ", size, " specified for sized interval")); } orig.implicit_upper() = false; if (size == 0) { inclusive_stop = start + (stride > 0 ? -1 : 1); } else { if (internal::MulOverflow(stride, size - 1, &inclusive_stop) || internal::AddOverflow(start, inclusive_stop, &inclusive_stop)) { return absl::OutOfRangeError( tensorstore::StrCat("Integer overflow computing slice result")); } } } } else { if (stop_or_size == kImplicit) { inclusive_stop = stride > 0 ? orig.inclusive_max() : orig.inclusive_min(); } else { orig.implicit_upper() = false; if (interval_form == IntervalForm::closed || !IsFiniteIndex(stop_or_size)) { inclusive_stop = stop_or_size; } else { assert(interval_form == IntervalForm::half_open); inclusive_stop = stop_or_size + (stride > 0 ? -1 : 1); } } } if (std::abs(stride) != 1 && !IsFiniteIndex(start)) { return absl::InvalidArgumentError( tensorstore::StrCat("Slicing with non-unit stride of ", stride, " requires a finite start index")); } Index adjusted_inclusive_min, adjusted_inclusive_max; if (stride > 0) { adjusted_inclusive_min = start; adjusted_inclusive_max = inclusive_stop; } else { adjusted_inclusive_min = inclusive_stop; adjusted_inclusive_max = start; std::swap(orig.implicit_lower(), orig.implicit_upper()); } TENSORSTORE_ASSIGN_OR_RETURN( auto adjusted_interval, IndexInterval::Closed(adjusted_inclusive_min, adjusted_inclusive_max)); if (!Contains(constraint, adjusted_interval)) { return absl::OutOfRangeError( tensorstore::StrCat("Slice interval ", adjusted_interval, " is not contained within domain ", constraint)); } Index new_start = start / stride; Index new_size = std::abs(inclusive_stop) == kInfIndex ? kInfIndex + 1 - new_start : CeilOfRatio(adjusted_interval.size(), std::abs(stride)); orig.interval() = IndexInterval::UncheckedSized(new_start, new_size); return {std::in_place, orig, start}; } Result<std::pair<OptionallyImplicitIndexInterval, Index>> ExtractHalfOpenStridedSlice(OptionallyImplicitIndexInterval orig, Index start, Index stop, Index stride) { return ExtractStridedSlice(orig, IntervalForm::half_open, start, stop, stride); } Result<std::pair<OptionallyImplicitIndexInterval, Index>> ExtractClosedStridedSlice(OptionallyImplicitIndexInterval orig, Index start, Index stop, Index stride) { return ExtractStridedSlice(orig, IntervalForm::closed, start, stop, stride); } Result<std::pair<OptionallyImplicitIndexInterval, Index>> ExtractSizedStridedSlice(OptionallyImplicitIndexInterval orig, Index start, Index size, Index stride) { return ExtractStridedSlice(orig, IntervalForm::sized, start, size, stride); } absl::Status ComputeStridedSliceMap(OptionallyImplicitIndexInterval orig, IntervalForm interval_form, Index translate_origin_to, Index start, Index stop_or_size, Index stride, OptionallyImplicitIndexInterval* new_domain, Index* output_offset) { TENSORSTORE_ASSIGN_OR_RETURN( auto new_interval_and_adjusted_start, ExtractStridedSlice(orig, interval_form, start, stop_or_size, stride)); OptionallyImplicitIndexInterval& new_interval = new_interval_and_adjusted_start.first; Index adjusted_start = new_interval_and_adjusted_start.second; if (translate_origin_to != kImplicit) { TENSORSTORE_ASSIGN_OR_RETURN( new_interval.interval(), ShiftIntervalTo(new_interval.interval(), translate_origin_to)); } *new_domain = new_interval; *output_offset = adjusted_start - new_interval.inclusive_min() * stride; return absl::OkStatus(); } Result<IndexInterval> GetAffineTransformDomain(IndexInterval interval, Index offset, Index divisor) { assert(divisor != 0); if (interval == IndexInterval()) { return interval; } do { Index result_lower, result_size; Index lower, upper; if (divisor < 0) { if (divisor == std::numeric_limits<Index>::min() || offset == std::numeric_limits<Index>::min()) { break; } divisor = -divisor; offset = -offset; lower = -interval.inclusive_max(); upper = -interval.inclusive_min(); if (interval.empty()) { --lower; --upper; } } else { lower = interval.inclusive_min(); upper = interval.inclusive_max(); } if (lower == -kInfIndex) { result_lower = -kInfIndex; } else { if (internal::SubOverflow(lower, offset, &result_lower)) break; result_lower = CeilOfRatio(result_lower, divisor); if (!IsFiniteIndex(result_lower)) break; } if (interval.empty()) { result_size = 0; } else if (upper == kInfIndex) { result_size = kInfIndex - result_lower + 1; } else { Index result_upper; if (internal::SubOverflow(upper, offset, &result_upper)) break; result_upper = FloorOfRatio(result_upper, divisor); if (!IsFiniteIndex(result_upper)) break; result_size = result_upper - result_lower + 1; } return IndexInterval::UncheckedSized(result_lower, result_size); } while (false); return absl::InvalidArgumentError( tensorstore::StrCat("Integer overflow propagating range ", interval, " through inverse affine transform with offset ", offset, " and multiplier ", divisor)); } Result<OptionallyImplicitIndexInterval> GetAffineTransformDomain( OptionallyImplicitIndexInterval interval, Index offset, Index divisor) { TENSORSTORE_ASSIGN_OR_RETURN( interval.interval(), GetAffineTransformDomain(interval.interval(), offset, divisor)); if (divisor < 0) { std::swap(interval.implicit_lower(), interval.implicit_upper()); } return interval; } namespace { absl::Status GetAffineTransformError(IndexInterval interval, Index offset, Index multiplier) { return absl::InvalidArgumentError(tensorstore::StrCat( "Integer overflow computing affine transform of domain ", interval, " with offset ", offset, " and multiplier ", multiplier)); } } Result<IndexInterval> GetAffineTransformRange(IndexInterval interval, Index offset, Index multiplier) { const auto transform_bound_overflow = [&](Index* bound) { if (*bound == -kInfIndex || *bound == kInfIndex) { if (multiplier < 0) *bound *= -1; return false; } return (internal::MulOverflow(*bound, multiplier, bound) || internal::AddOverflow(*bound, offset, bound) || !IsFiniteIndex(*bound)); }; Index lower = interval.inclusive_min(), upper = interval.inclusive_max(); if (transform_bound_overflow(&lower) || transform_bound_overflow(&upper)) { return GetAffineTransformError(interval, offset, multiplier); } if (interval.empty()) { return IndexInterval::UncheckedSized(lower, 0); } if (multiplier == 0) { return IndexInterval::UncheckedSized(lower, 1); } if (multiplier < 0) std::swap(lower, upper); return IndexInterval::UncheckedClosed(lower, upper); } Result<IndexInterval> GetAffineTransformInverseDomain(IndexInterval interval, Index offset, Index divisor) { TENSORSTORE_ASSIGN_OR_RETURN( auto new_interval, GetAffineTransformRange(interval, offset, divisor)); if (new_interval.empty()) return new_interval; if (divisor > 0 && new_interval.inclusive_max() != kInfIndex) { Index new_inclusive_max; if (internal::AddOverflow(new_interval.inclusive_max(), divisor - 1, &new_inclusive_max) || !IsFiniteIndex(new_inclusive_max)) { return GetAffineTransformError(interval, offset, divisor); } return IndexInterval::UncheckedClosed(new_interval.inclusive_min(), new_inclusive_max); } if (divisor < 0 && new_interval.inclusive_min() != -kInfIndex) { Index new_inclusive_min; if (internal::AddOverflow(new_interval.inclusive_min(), divisor + 1, &new_inclusive_min) || !IsFiniteIndex(new_inclusive_min)) { return GetAffineTransformError(interval, offset, divisor); } return IndexInterval::UncheckedClosed(new_inclusive_min, new_interval.inclusive_max()); } return new_interval; } Result<OptionallyImplicitIndexInterval> GetAffineTransformRange( OptionallyImplicitIndexInterval interval, Index offset, Index multiplier) { TENSORSTORE_ASSIGN_OR_RETURN( interval.interval(), GetAffineTransformRange(interval.interval(), offset, multiplier)); if (multiplier < 0) { std::swap(interval.implicit_lower(), interval.implicit_upper()); } return interval; } Result<std::string_view> MergeDimensionLabels(std::string_view a, std::string_view b) { if (a.empty()) return b; if (b.empty()) return a; if (a == b) return a; return absl::InvalidArgumentError("Dimension labels do not match"); } Result<OptionallyImplicitIndexInterval> MergeOptionallyImplicitIndexIntervals( OptionallyImplicitIndexInterval a, OptionallyImplicitIndexInterval b) { if (a == b) return a; Index inclusive_min, inclusive_max; bool implicit_lower, implicit_upper; if (a.inclusive_min() == -kInfIndex && a.implicit_lower() == true) { inclusive_min = b.inclusive_min(); implicit_lower = b.implicit_lower(); } else if (b.inclusive_min() == -kInfIndex && b.implicit_lower() == true) { inclusive_min = a.inclusive_min(); implicit_lower = a.implicit_lower(); } else if (a.inclusive_min() != b.inclusive_min()) { return absl::InvalidArgumentError("Lower bounds do not match"); } else { inclusive_min = a.inclusive_min(); implicit_lower = a.implicit_lower() && b.implicit_lower(); } if (a.inclusive_max() == kInfIndex && a.implicit_upper() == true) { inclusive_max = b.inclusive_max(); implicit_upper = b.implicit_upper(); } else if (b.inclusive_max() == kInfIndex && b.implicit_upper() == true) { inclusive_max = a.inclusive_max(); implicit_upper = a.implicit_upper(); } else if (a.inclusive_max() != b.inclusive_max()) { return absl::InvalidArgumentError("Upper bounds do not match"); } else { inclusive_max = a.inclusive_max(); implicit_upper = a.implicit_upper() && b.implicit_upper(); } TENSORSTORE_ASSIGN_OR_RETURN( auto interval, IndexInterval::Closed(inclusive_min, inclusive_max)); return OptionallyImplicitIndexInterval{interval, implicit_lower, implicit_upper}; } namespace serialization { bool Serializer<IndexInterval>::Encode(EncodeSink& sink, const IndexInterval& value) { return serialization::EncodeTuple(sink, value.inclusive_min(), value.size()); } bool Serializer<IndexInterval>::Decode(DecodeSource& source, IndexInterval& value) { Index inclusive_min, size; if (!serialization::DecodeTuple(source, inclusive_min, size)) { return false; } TENSORSTORE_ASSIGN_OR_RETURN(value, IndexInterval::Sized(inclusive_min, size), (source.Fail(_), false)); return true; } } }
#include "tensorstore/index_interval.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/hash/hash_testing.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/test_util.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::AreCompatibleOrUnbounded; using ::tensorstore::ComputeStridedSliceMap; using ::tensorstore::container; using ::tensorstore::DividePositiveRoundOut; using ::tensorstore::ExplicitIndexOr; using ::tensorstore::ExtractClosedStridedSlice; using ::tensorstore::ExtractHalfOpenStridedSlice; using ::tensorstore::ExtractSizedStridedSlice; using ::tensorstore::GetAffineTransformInverseDomain; using ::tensorstore::ImplicitOrEqual; using ::tensorstore::Index; using ::tensorstore::IndexDomainDimension; using ::tensorstore::IndexInterval; using ::tensorstore::IndexIntervalRef; using ::tensorstore::Intersect; using ::tensorstore::IntervalForm; using ::tensorstore::kImplicit; using ::tensorstore::kInfIndex; using ::tensorstore::kInfSize; using ::tensorstore::kMaxFiniteIndex; using ::tensorstore::kMinFiniteIndex; using ::tensorstore::MatchesStatus; using ::tensorstore::MergeDimensionLabels; using ::tensorstore::MergeOptionallyImplicitIndexIntervals; using ::tensorstore::OptionallyImplicitIndexInterval; using ::tensorstore::ShiftInterval; using ::tensorstore::ShiftIntervalBackward; using ::tensorstore::ShiftIntervalTo; using ::tensorstore::StrCat; using ::tensorstore::view; using ::tensorstore::serialization::TestSerializationRoundTrip; using ::testing::Optional; using ::testing::Pair; TEST(IndexIntervalTest, DefaultConstruct) { IndexInterval x; EXPECT_EQ(-kInfIndex, x.inclusive_min()); EXPECT_EQ(-kInfIndex - 1, x.exclusive_min()); EXPECT_EQ(kInfIndex, x.inclusive_max()); EXPECT_EQ(kInfIndex + 1, x.exclusive_max()); EXPECT_EQ(kInfSize, x.size()); EXPECT_FALSE(x.empty()); } TEST(IndexIntervalTest, Empty) { EXPECT_TRUE(IndexInterval::UncheckedSized(1, 0).empty()); } TEST(IndexIntervalTest, ValidSized) { EXPECT_TRUE(IndexInterval::ValidSized(0, 0)); EXPECT_TRUE(IndexInterval::ValidSized(-kInfIndex, kInfSize)); EXPECT_TRUE(IndexInterval::ValidSized(-kInfIndex, 100)); EXPECT_TRUE(IndexInterval::ValidSized(kInfIndex - 5, 6)); EXPECT_TRUE(IndexInterval::ValidSized(-kInfIndex, 2)); EXPECT_FALSE(IndexInterval::ValidSized(-kInfIndex - 1, 0)); EXPECT_FALSE(IndexInterval::ValidSized(5, -1)); EXPECT_FALSE(IndexInterval::ValidSized(kInfIndex - 5, 7)); EXPECT_FALSE(IndexInterval::ValidSized(-kInfIndex, 0)); EXPECT_FALSE(IndexInterval::ValidSized(-kInfIndex, 1)); EXPECT_FALSE(IndexInterval::ValidSized(kInfIndex, 1)); EXPECT_FALSE(IndexInterval::ValidSized(kInfIndex, 0)); } TEST(IndexIntervalTest, ValidClosed) { EXPECT_TRUE(IndexInterval::ValidClosed(0, 0)); EXPECT_TRUE(IndexInterval::ValidClosed(0, -1)); EXPECT_TRUE(IndexInterval::ValidClosed(-kInfIndex, kInfIndex)); EXPECT_TRUE(IndexInterval::ValidClosed(-5, kInfIndex)); EXPECT_TRUE(IndexInterval::ValidClosed(-kInfIndex, -kInfIndex + 1)); EXPECT_FALSE(IndexInterval::ValidClosed(0, -2)); EXPECT_FALSE(IndexInterval::ValidClosed(-kInfIndex - 1, 0)); EXPECT_FALSE(IndexInterval::ValidClosed(0, kInfIndex + 1)); EXPECT_FALSE(IndexInterval::ValidClosed(-kInfIndex, -kInfIndex)); EXPECT_FALSE(IndexInterval::ValidClosed(+kInfIndex, +kInfIndex)); } TEST(IndexIntervalTest, ValidHalfOpen) { EXPECT_TRUE(IndexInterval::ValidHalfOpen(0, 0)); EXPECT_FALSE(IndexInterval::ValidHalfOpen(0, -1)); EXPECT_TRUE(IndexInterval::ValidHalfOpen(-kInfIndex, kInfIndex + 1)); EXPECT_TRUE(IndexInterval::ValidHalfOpen(-5, kInfIndex + 1)); EXPECT_TRUE(IndexInterval::ValidHalfOpen(-kInfIndex, -kInfIndex + 2)); EXPECT_FALSE(IndexInterval::ValidHalfOpen(-kInfIndex - 1, 0)); EXPECT_FALSE(IndexInterval::ValidHalfOpen(0, kInfIndex + 2)); EXPECT_FALSE(IndexInterval::ValidHalfOpen(-kInfIndex, -kInfIndex)); EXPECT_FALSE(IndexInterval::ValidHalfOpen(-kInfIndex, -kInfIndex + 1)); EXPECT_FALSE(IndexInterval::ValidHalfOpen(kInfIndex, kInfIndex)); EXPECT_FALSE(IndexInterval::ValidHalfOpen(kInfIndex, kInfIndex + 1)); } TEST(IndexIntervalTest, Sized) { EXPECT_EQ(IndexInterval::UncheckedSized(0, 5), IndexInterval::Sized(0, 5)); EXPECT_THAT(IndexInterval::Sized(0, -1), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(IndexIntervalTest, UncheckedSized) { auto x = IndexInterval::UncheckedSized(1, 5); EXPECT_EQ(1, x.inclusive_min()); EXPECT_EQ(0, x.exclusive_min()); EXPECT_EQ(5, x.size()); EXPECT_EQ(5, x.inclusive_max()); EXPECT_EQ(6, x.exclusive_max()); } TEST(IndexIntervalTest, Equality) { EXPECT_TRUE(IndexInterval::UncheckedSized(1, 2) == IndexInterval::UncheckedSized(1, 2)); EXPECT_FALSE(IndexInterval::UncheckedSized(1, 2) != IndexInterval::UncheckedSized(1, 2)); EXPECT_FALSE(IndexInterval::UncheckedSized(1, 3) == IndexInterval::UncheckedSized(1, 2)); EXPECT_FALSE(IndexInterval::UncheckedSized(2, 2) == IndexInterval::UncheckedSized(1, 2)); EXPECT_TRUE(IndexInterval::UncheckedSized(2, 3) == IndexInterval::UncheckedClosed(2, 4)); EXPECT_TRUE(IndexInterval::UncheckedSized(2, 3) == IndexInterval::UncheckedHalfOpen(2, 5)); } TEST(IndexIntervalTest, UncheckedClosed) { EXPECT_EQ(IndexInterval::UncheckedSized(2, 3), IndexInterval::UncheckedClosed(2, 4)); } TEST(IndexIntervalTest, Closed) { EXPECT_EQ(IndexInterval::UncheckedClosed(2, 4), IndexInterval::Closed(2, 4)); EXPECT_THAT(IndexInterval::Closed(2, 0), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(IndexIntervalTest, UncheckedHalfOpen) { EXPECT_EQ(IndexInterval::UncheckedSized(2, 2), IndexInterval::UncheckedHalfOpen(2, 4)); } TEST(IndexIntervalTest, HalfOpen) { EXPECT_EQ(IndexInterval::UncheckedHalfOpen(2, 4), IndexInterval::HalfOpen(2, 4)); EXPECT_THAT(IndexInterval::HalfOpen(2, 0), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(IndexIntervalTest, ContainsIndex) { EXPECT_TRUE(Contains(IndexInterval::UncheckedClosed(3, 15), 5)); EXPECT_TRUE(Contains(IndexInterval::UncheckedClosed(3, 15), 3)); EXPECT_TRUE(Contains(IndexInterval::UncheckedClosed(3, 15), 15)); EXPECT_FALSE(Contains(IndexInterval::UncheckedClosed(3, 15), 2)); EXPECT_FALSE(Contains(IndexInterval::UncheckedClosed(3, 15), 16)); EXPECT_TRUE(Contains(IndexInterval::UncheckedClosed(-kInfIndex, 15), kMinFiniteIndex)); EXPECT_FALSE( Contains(IndexInterval::UncheckedClosed(-kInfIndex, 15), -kInfIndex)); EXPECT_FALSE(Contains(IndexInterval::UncheckedClosed(-kInfIndex, 15), 16)); EXPECT_TRUE(Contains(IndexInterval::UncheckedClosed(3, kInfIndex), 16)); EXPECT_TRUE( Contains(IndexInterval::UncheckedClosed(3, kInfIndex), kMaxFiniteIndex)); EXPECT_FALSE( Contains(IndexInterval::UncheckedClosed(3, kInfIndex), kInfIndex)); EXPECT_FALSE(Contains(IndexInterval::UncheckedClosed(-kInfIndex, kInfIndex), -kInfIndex)); EXPECT_FALSE(Contains(IndexInterval::UncheckedClosed(-kInfIndex, kInfIndex), kInfIndex)); EXPECT_TRUE( Contains(IndexInterval::UncheckedClosed(-kInfIndex, kInfIndex), 3)); } TEST(IndexIntervalTest, ContainsInterval) { EXPECT_TRUE(Contains(IndexInterval::UncheckedClosed(3, 15), IndexInterval::UncheckedClosed(3, 15))); EXPECT_TRUE(Contains(IndexInterval::UncheckedClosed(3, 15), IndexInterval::UncheckedClosed(4, 15))); EXPECT_TRUE(Contains(IndexInterval::UncheckedClosed(3, 15), IndexInterval::UncheckedClosed(3, 14))); EXPECT_TRUE(Contains(IndexInterval::UncheckedClosed(3, 15), IndexInterval::UncheckedClosed(6, 8))); EXPECT_TRUE(Contains(IndexInterval::UncheckedClosed(3, 15), IndexInterval::UncheckedSized(20, 0))); EXPECT_FALSE(Contains(IndexInterval::UncheckedClosed(3, 15), IndexInterval::UncheckedClosed(2, 10))); EXPECT_FALSE(Contains(IndexInterval::UncheckedClosed(3, 15), IndexInterval::UncheckedClosed(3, 16))); EXPECT_FALSE(Contains(IndexInterval::UncheckedClosed(3, 15), IndexInterval::UncheckedClosed(5, 16))); } TEST(IndexIntervalTest, IsFinite) { EXPECT_TRUE(IsFinite(IndexInterval::UncheckedClosed(3, 15))); EXPECT_FALSE(IsFinite(IndexInterval::UncheckedClosed(-kInfIndex, 15))); EXPECT_FALSE(IsFinite(IndexInterval::UncheckedClosed(3, kInfIndex))); EXPECT_FALSE(IsFinite(IndexInterval::UncheckedClosed(-kInfIndex, kInfIndex))); } TEST(IndexIntervalTest, Intersect) { EXPECT_EQ(IndexInterval::UncheckedClosed(3, 5), Intersect(IndexInterval::UncheckedClosed(-3, 5), IndexInterval::UncheckedClosed(3, 10))); EXPECT_EQ(IndexInterval::UncheckedClosed(3, 5), Intersect(IndexInterval::UncheckedClosed(3, 10), IndexInterval::UncheckedClosed(-3, 5))); EXPECT_EQ(IndexInterval::UncheckedClosed(3, 10), Intersect(IndexInterval::UncheckedClosed(3, 10), IndexInterval::UncheckedClosed(-3, 11))); EXPECT_EQ(IndexInterval::UncheckedSized(3, 0), Intersect(IndexInterval::UncheckedClosed(-3, 0), IndexInterval::UncheckedClosed(3, 5))); } TEST(IndexIntervalTest, IntersectOptionallyImplicit) { using OIII = OptionallyImplicitIndexInterval; EXPECT_THAT( Intersect(OIII{IndexInterval::UncheckedClosed(1, 5), false, false}, OIII{IndexInterval::UncheckedClosed(2, 6), false, true}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(2, 5), false, false})); EXPECT_THAT( Intersect(OIII{IndexInterval::UncheckedClosed(2, 5), false, true}, OIII{IndexInterval::UncheckedClosed(1, 6), true, true}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(2, 5), false, true})); for (int x = 0; x < 16; x++) { const bool a = ((x & 1) != 0); const bool b = ((x & 2) != 0); const bool c = ((x & 4) != 0); const bool d = ((x & 8) != 0); EXPECT_THAT(Intersect(OIII{IndexInterval::UncheckedClosed(1, 5), a, b}, OIII{IndexInterval::UncheckedClosed(1, 5), c, d}), ::testing::Eq( OIII{IndexInterval::UncheckedClosed(1, 5), a && c, b && d})) << x; EXPECT_THAT(Intersect(OIII{IndexInterval::UncheckedClosed(-3, 5), a, b}, OIII{IndexInterval::UncheckedClosed(3, 10), c, d}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(3, 5), c, b})) << x; } EXPECT_THAT( Intersect( OIII{IndexInterval::UncheckedClosed(-kInfIndex, kMaxFiniteIndex), true, true}, OIII{IndexInterval::UncheckedClosed(0, 10), false, false}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(0, 10), false, false})); EXPECT_THAT( Intersect( OIII{IndexInterval::UncheckedClosed(-kInfIndex, kMaxFiniteIndex), true, true}, OIII{IndexInterval::UncheckedClosed(kMinFiniteIndex, kInfIndex), false, false}), ::testing::Eq( OIII{IndexInterval::UncheckedClosed(kMinFiniteIndex, kMaxFiniteIndex), false, true})); EXPECT_THAT( Intersect( OIII{IndexInterval::UncheckedClosed(-kInfIndex, kMaxFiniteIndex), false, false}, OIII{IndexInterval::UncheckedClosed(0, 10), true, true}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(0, 10), true, true})); } TEST(IndexIntervalTest, IntersectPreferringExplicit) { using OIII = OptionallyImplicitIndexInterval; for (int x = 0; x < 16; x++) { const bool a = ((x & 1) != 0); const bool b = ((x & 2) != 0); const bool c = ((x & 4) != 0); const bool d = ((x & 8) != 0); EXPECT_THAT(Intersect(OIII{IndexInterval::UncheckedClosed(1, 5), a, b}, OIII{IndexInterval::UncheckedClosed(1, 5), c, d}), ::testing::Eq( OIII{IndexInterval::UncheckedClosed(1, 5), a && c, b && d})) << x; EXPECT_THAT(Intersect(OIII{IndexInterval::UncheckedClosed(-3, 5), a, b}, OIII{IndexInterval::UncheckedClosed(3, 10), a, b}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(3, 5), a, b})) << x; } EXPECT_THAT( IntersectPreferringExplicit( OIII{IndexInterval::UncheckedClosed(1, 5), false, false}, OIII{IndexInterval::UncheckedClosed(2, 6), false, true}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(2, 5), false, false})); EXPECT_THAT( IntersectPreferringExplicit( OIII{IndexInterval::UncheckedClosed(2, 5), false, true}, OIII{IndexInterval::UncheckedClosed(1, 6), true, true}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(2, 5), false, true})); EXPECT_THAT( IntersectPreferringExplicit( OIII{IndexInterval::UncheckedClosed(-3, 5), true, false}, OIII{IndexInterval::UncheckedClosed(3, 10), true, false}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(3, 5), true, false})); EXPECT_THAT( IntersectPreferringExplicit( OIII{IndexInterval::UncheckedClosed(-3, 5), false, false}, OIII{IndexInterval::UncheckedClosed(3, 10), false, false}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(3, 5), false, false})); EXPECT_THAT( IntersectPreferringExplicit( OIII{IndexInterval::UncheckedClosed(-3, 5), false, true}, OIII{IndexInterval::UncheckedClosed(3, 10), false, true}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(3, 5), false, true})); EXPECT_THAT( IntersectPreferringExplicit( OIII{IndexInterval::UncheckedClosed(-3, 5), true, true}, OIII{IndexInterval::UncheckedClosed(3, 10), true, true}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(3, 5), true, true})); EXPECT_THAT( IntersectPreferringExplicit( OIII{IndexInterval::UncheckedClosed(-3, 5), true, false}, OIII{IndexInterval::UncheckedClosed(-5, 10), false, false}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(-5, 5), false, false})); EXPECT_THAT( IntersectPreferringExplicit( OIII{IndexInterval::UncheckedClosed(-5, 10), false, false}, OIII{IndexInterval::UncheckedClosed(-3, 5), true, false}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(-5, 5), false, false})); EXPECT_THAT(IntersectPreferringExplicit( OIII{IndexInterval::UncheckedClosed(-3, 12), true, false}, OIII{IndexInterval::UncheckedClosed(-5, 10), false, true}), ::testing::Eq( OIII{IndexInterval::UncheckedClosed(-5, 12), false, false})); EXPECT_THAT(IntersectPreferringExplicit( OIII{IndexInterval::UncheckedClosed(-5, 10), false, true}, OIII{IndexInterval::UncheckedClosed(-3, 12), true, false}), ::testing::Eq( OIII{IndexInterval::UncheckedClosed(-5, 12), false, false})); EXPECT_THAT( IntersectPreferringExplicit( OIII{IndexInterval::UncheckedClosed(-kInfIndex, kMaxFiniteIndex), true, true}, OIII{IndexInterval::UncheckedClosed(0, 10), false, false}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(0, 10), false, false})); EXPECT_THAT( IntersectPreferringExplicit( OIII{IndexInterval::UncheckedClosed(-kInfIndex, kMaxFiniteIndex), true, true}, OIII{IndexInterval::UncheckedClosed(kMinFiniteIndex, kInfIndex), false, false}), ::testing::Eq( OIII{IndexInterval::UncheckedClosed(kMinFiniteIndex, kInfIndex), false, false})); EXPECT_THAT( IntersectPreferringExplicit( OIII{IndexInterval::UncheckedClosed(-kInfIndex, kMaxFiniteIndex), false, false}, OIII{IndexInterval::UncheckedClosed(0, 10), true, true}), ::testing::Eq( OIII{IndexInterval::UncheckedClosed(-kInfIndex, kMaxFiniteIndex), false, false})); } TEST(IndexIntervalTest, Hull) { EXPECT_EQ(IndexInterval::UncheckedClosed(3, 15), Hull(IndexInterval::UncheckedClosed(3, 5), IndexInterval::UncheckedClosed(10, 15))); EXPECT_EQ(IndexInterval::UncheckedClosed(5, 15), Hull(IndexInterval::UncheckedClosed(0, -1), IndexInterval::UncheckedClosed(5, 15))); EXPECT_EQ(IndexInterval::UncheckedClosed(5, 15), Hull(IndexInterval::UncheckedClosed(5, 15), IndexInterval::UncheckedClosed(0, -1))); EXPECT_EQ(IndexInterval::UncheckedClosed(0, -1), Hull(IndexInterval::UncheckedClosed(5, 4), IndexInterval::UncheckedClosed(0, -1))); } TEST(IndexIntervalTest, HullOptionallyImplicit) { using OIII = OptionallyImplicitIndexInterval; EXPECT_THAT( Hull(OIII{IndexInterval::UncheckedClosed(1, 5), false, true}, OIII{IndexInterval::UncheckedClosed(2, 6), false, true}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(1, 6), false, true})); for (int x = 0; x < 16; x++) { const bool a = ((x & 1) != 0); const bool b = ((x & 2) != 0); const bool c = ((x & 4) != 0); const bool d = ((x & 8) != 0); EXPECT_THAT(Hull(OIII{IndexInterval::UncheckedClosed(1, 5), a, b}, OIII{IndexInterval::UncheckedClosed(1, 5), c, d}), ::testing::Eq( OIII{IndexInterval::UncheckedClosed(1, 5), a && c, b && d})) << x; EXPECT_THAT( Hull(OIII{IndexInterval::UncheckedClosed(-3, 5), a, b}, OIII{IndexInterval::UncheckedClosed(3, 10), c, d}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(-3, 10), a, d})) << x; } EXPECT_THAT( Hull(OIII{IndexInterval::UncheckedClosed(-kInfIndex, kMaxFiniteIndex), true, true}, OIII{IndexInterval::UncheckedClosed(kMinFiniteIndex, kInfIndex), false, false}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(-kInfIndex, kInfIndex), true, false})); } TEST(IndexIntervalTest, ContainsOrUnbounded) { EXPECT_TRUE( ContainsOrUnbounded(IndexInterval::UncheckedClosed(5, 10), IndexInterval::UncheckedClosed(-kInfIndex, 10))); EXPECT_TRUE(ContainsOrUnbounded(IndexInterval::UncheckedClosed(5, 10), IndexInterval::UncheckedClosed(6, 9))); EXPECT_FALSE(ContainsOrUnbounded(IndexInterval::UncheckedClosed(5, 10), IndexInterval::UncheckedClosed(4, 10))); EXPECT_TRUE( ContainsOrUnbounded(IndexInterval::UncheckedClosed(5, 10), IndexInterval::UncheckedClosed(5, kInfIndex))); EXPECT_FALSE(ContainsOrUnbounded(IndexInterval::UncheckedClosed(5, 10), IndexInterval::UncheckedClosed(5, 11))); EXPECT_TRUE(ContainsOrUnbounded( IndexInterval::UncheckedClosed(5, 10), IndexInterval::UncheckedClosed(-kInfIndex, +kInfIndex))); } TEST(IndexIntervalTest, AreCompatibleOrUnbounded) { EXPECT_TRUE(AreCompatibleOrUnbounded(IndexInterval(), IndexInterval())); EXPECT_TRUE(AreCompatibleOrUnbounded(IndexInterval(), IndexInterval::UncheckedSized(1, 4))); EXPECT_TRUE(AreCompatibleOrUnbounded(IndexInterval::UncheckedSized(1, 4), IndexInterval())); EXPECT_FALSE(AreCompatibleOrUnbounded(IndexInterval::UncheckedSized(1, 4), IndexInterval::UncheckedSized(1, 5))); EXPECT_FALSE(AreCompatibleOrUnbounded(IndexInterval::UncheckedSized(1, 4), IndexInterval::UncheckedSized(2, 3))); EXPECT_TRUE( AreCompatibleOrUnbounded(IndexInterval::UncheckedClosed(1, 4), IndexInterval::UncheckedClosed(-kInfIndex, 4))); EXPECT_TRUE( AreCompatibleOrUnbounded(IndexInterval::UncheckedClosed(1, 4), IndexInterval::UncheckedClosed(1, kInfIndex))); } TEST(IndexIntervalTest, Ostream) { EXPECT_EQ("[1, 3)", StrCat(IndexInterval::UncheckedClosed(1, 2))); EXPECT_EQ("(-inf, 3)", StrCat(IndexInterval::UncheckedClosed(-kInfIndex, 2))); EXPECT_EQ("[7, +inf)", StrCat(IndexInterval::UncheckedClosed(7, kInfIndex))); } TEST(IndexIntervalTest, Hash) { EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({ IndexInterval(), IndexInterval::UncheckedSized(0, 1), IndexInterval::UncheckedSized(0, 0), IndexInterval::UncheckedSized(0, 2), IndexInterval::UncheckedSized(1, 2), })); } TEST(IndexIntervalTest, ShiftInterval) { EXPECT_THAT(ShiftInterval(IndexInterval::UncheckedClosed(1, 8), 2), Optional(IndexInterval::UncheckedClosed(3, 10))); EXPECT_THAT(ShiftInterval(IndexInterval::UncheckedClosed(-kInfIndex, 8), 2), Optional(IndexInterval::UncheckedClosed(-kInfIndex, 10))); EXPECT_THAT(ShiftInterval(IndexInterval::UncheckedClosed(1, kInfIndex), 2), Optional(IndexInterval::UncheckedClosed(3, kInfIndex))); EXPECT_THAT(ShiftInterval( IndexInterval::UncheckedClosed(kMinFiniteIndex + 1, 101), -1), Optional(IndexInterval::Closed(kMinFiniteIndex, 100))); EXPECT_THAT(ShiftInterval(IndexInterval::UncheckedClosed(5, 10), -kInfIndex), Optional(IndexInterval::UncheckedClosed(-kInfIndex + 5, -kInfIndex + 10))); EXPECT_THAT(ShiftInterval(IndexInterval::UncheckedClosed(5, 10), kInfIndex), MatchesStatus(absl::StatusCode::kInvalidArgument, "5 \\+ [0-9]+ is outside valid range .*")); EXPECT_THAT( ShiftInterval(IndexInterval::UncheckedClosed(5, 10), kMaxFiniteIndex), MatchesStatus(absl::StatusCode::kInvalidArgument, "5 \\+ [0-9]+ is outside valid range .*")); EXPECT_THAT( ShiftInterval(IndexInterval::UncheckedClosed(-1, 10), kMinFiniteIndex), MatchesStatus(absl::StatusCode::kInvalidArgument, "-1 \\+ -[0-9]+ is outside valid range .*")); EXPECT_THAT(ShiftInterval(IndexInterval::UncheckedClosed(-kInfIndex, -5), kMinFiniteIndex), MatchesStatus(absl::StatusCode::kInvalidArgument, "-5 \\+ -[0-9]+ is outside valid range .*")); } TEST(IndexIntervalTest, ShiftIntervalBackward) { EXPECT_THAT( ShiftIntervalBackward(IndexInterval(), std::numeric_limits<Index>::min()), Optional(IndexInterval())); EXPECT_THAT(ShiftIntervalBackward(IndexInterval::UncheckedClosed(1, 8), -2), Optional(IndexInterval::UncheckedClosed(3, 10))); EXPECT_THAT( ShiftIntervalBackward(IndexInterval::UncheckedClosed(-kInfIndex, 8), -2), Optional(IndexInterval::UncheckedClosed(-kInfIndex, 10))); EXPECT_THAT( ShiftIntervalBackward(IndexInterval::UncheckedClosed(1, kInfIndex), -2), Optional(IndexInterval::UncheckedClosed(3, kInfIndex))); EXPECT_THAT(ShiftIntervalBackward( IndexInterval::UncheckedClosed(kMinFiniteIndex + 1, 101), 1), Optional(IndexInterval::Closed(kMinFiniteIndex, 100))); EXPECT_THAT( ShiftIntervalBackward(IndexInterval::UncheckedClosed(5, 10), kInfIndex), Optional( IndexInterval::UncheckedClosed(-kInfIndex + 5, -kInfIndex + 10))); EXPECT_THAT( ShiftIntervalBackward(IndexInterval::UncheckedClosed(5, 10), -kInfIndex), MatchesStatus(absl::StatusCode::kInvalidArgument, "5 \\+ [0-9]+ is outside valid range .*")); EXPECT_THAT(ShiftIntervalBackward(IndexInterval::UncheckedClosed(5, 10), kMinFiniteIndex), MatchesStatus(absl::StatusCode::kInvalidArgument, "5 \\+ [0-9]+ is outside valid range .*")); EXPECT_THAT(ShiftIntervalBackward(IndexInterval::UncheckedClosed(-1, 10), kMaxFiniteIndex), MatchesStatus(absl::StatusCode::kInvalidArgument, "-1 \\+ -[0-9]+ is outside valid range .*")); EXPECT_THAT( ShiftIntervalBackward(IndexInterval::UncheckedClosed(-kInfIndex, -5), kMaxFiniteIndex), MatchesStatus(absl::StatusCode::kInvalidArgument, "-5 \\+ -[0-9]+ is outside valid range .*")); } TEST(IndexIntervalTest, ShiftIntervalSeparateOffsets) { EXPECT_THAT(ShiftInterval(IndexInterval::UncheckedClosed(1, 8), 2, 5), Optional(IndexInterval::UncheckedClosed(3, 13))); EXPECT_THAT( ShiftInterval(IndexInterval::UncheckedClosed(-kMaxFiniteIndex, 8), 0, 5), Optional(IndexInterval::UncheckedClosed(-kMaxFiniteIndex, 13))); EXPECT_THAT( ShiftInterval(IndexInterval::UncheckedClosed(-kMaxFiniteIndex, 8), 1, 5), Optional(IndexInterval::UncheckedClosed(-kMaxFiniteIndex + 1, 13))); EXPECT_THAT( ShiftInterval(IndexInterval::UncheckedClosed(-kMaxFiniteIndex, 8), -1, 5), MatchesStatus(absl::StatusCode::kInvalidArgument, "-[0-9]+ \\+ -1 is outside valid range .*")); EXPECT_THAT(ShiftInterval(IndexInterval::UncheckedClosed(-1, 8), std::numeric_limits<Index>::min(), 5), MatchesStatus(absl::StatusCode::kInvalidArgument, "-1 \\+ -[0-9]+ is outside valid range .*")); EXPECT_THAT( ShiftInterval(IndexInterval::UncheckedClosed(2, kMaxFiniteIndex), -1, 0), Optional(IndexInterval::UncheckedClosed(1, kMaxFiniteIndex))); EXPECT_THAT( ShiftInterval(IndexInterval::UncheckedClosed(2, kMaxFiniteIndex), -1, 1), MatchesStatus(absl::StatusCode::kInvalidArgument, "[0-9]+ \\+ 1 is outside valid range .*")); EXPECT_THAT(ShiftInterval(IndexInterval::UncheckedClosed(2, 1), -1, std::numeric_limits<Index>::max()), MatchesStatus(absl::StatusCode::kInvalidArgument, "1 \\+ [0-9]+ is outside valid range .*")); EXPECT_THAT(ShiftInterval(IndexInterval::UncheckedClosed(0, 8), std::numeric_limits<Index>::min(), 5), MatchesStatus(absl::StatusCode::kInvalidArgument, "0 \\+ -[0-9]+ is outside valid range .*")); EXPECT_THAT(ShiftInterval(IndexInterval::UncheckedClosed(1, 8), 2, 5), Optional(IndexInterval::UncheckedClosed(3, 13))); EXPECT_THAT( ShiftInterval(IndexInterval::UncheckedClosed(-kInfIndex, 8), 2, 5), Optional(IndexInterval::UncheckedClosed(-kInfIndex, 13))); EXPECT_THAT( ShiftInterval(IndexInterval::UncheckedClosed(1, +kInfIndex), 2, 5), Optional(IndexInterval::UncheckedClosed(3, +kInfIndex))); EXPECT_THAT(ShiftInterval( IndexInterval::UncheckedClosed(-kInfIndex, +kInfIndex), 2, 5), Optional(IndexInterval::UncheckedClosed(-kInfIndex, +kInfIndex))); } TEST(IndexIntervalTest, ShiftIntervalBackwardSeparateOffsets) { EXPECT_THAT( ShiftIntervalBackward(IndexInterval::UncheckedClosed(1, 8), -2, -5), Optional(IndexInterval::UncheckedClosed(3, 13))); EXPECT_THAT(ShiftIntervalBackward( IndexInterval::UncheckedClosed(-kMaxFiniteIndex, 8), 0, -5), Optional(IndexInterval::UncheckedClosed(-kMaxFiniteIndex, 13))); EXPECT_THAT( ShiftIntervalBackward(IndexInterval::UncheckedClosed(-kMaxFiniteIndex, 8), -1, -5), Optional(IndexInterval::UncheckedClosed(-kMaxFiniteIndex + 1, 13))); EXPECT_THAT(ShiftIntervalBackward( IndexInterval::UncheckedClosed(-kMaxFiniteIndex, 8), 1, -5), MatchesStatus(absl::StatusCode::kInvalidArgument, "-[0-9]+ \\+ -1 is outside valid range .*")); EXPECT_THAT(ShiftIntervalBackward(IndexInterval::UncheckedClosed(-1, 8), std::numeric_limits<Index>::max(), -5), MatchesStatus(absl::StatusCode::kInvalidArgument, "-1 \\+ -[0-9]+ is outside valid range .*")); EXPECT_THAT(ShiftIntervalBackward( IndexInterval::UncheckedClosed(2, kMaxFiniteIndex), 1, 0), Optional(IndexInterval::UncheckedClosed(1, kMaxFiniteIndex))); EXPECT_THAT(ShiftIntervalBackward( IndexInterval::UncheckedClosed(2, kMaxFiniteIndex), 1, -1), MatchesStatus(absl::StatusCode::kInvalidArgument, "[0-9]+ \\+ 1 is outside valid range .*")); EXPECT_THAT(ShiftIntervalBackward(IndexInterval::UncheckedClosed(2, 1), 1, std::numeric_limits<Index>::min()), MatchesStatus(absl::StatusCode::kInvalidArgument, "1 \\+ -[0-9]+ is outside valid range .*")); EXPECT_THAT(ShiftIntervalBackward(IndexInterval::UncheckedClosed(0, 8), std::numeric_limits<Index>::max(), -5), MatchesStatus(absl::StatusCode::kInvalidArgument, "0 \\+ -[0-9]+ is outside valid range .*")); EXPECT_THAT( ShiftIntervalBackward(IndexInterval::UncheckedClosed(1, 8), -2, -5), Optional(IndexInterval::UncheckedClosed(3, 13))); EXPECT_THAT(ShiftIntervalBackward( IndexInterval::UncheckedClosed(-kInfIndex, 8), -2, -5), Optional(IndexInterval::UncheckedClosed(-kInfIndex, 13))); EXPECT_THAT(ShiftIntervalBackward( IndexInterval::UncheckedClosed(1, +kInfIndex), -2, -5), Optional(IndexInterval::UncheckedClosed(3, +kInfIndex))); EXPECT_THAT( ShiftIntervalBackward( IndexInterval::UncheckedClosed(-kInfIndex, +kInfIndex), -2, -5), Optional(IndexInterval::UncheckedClosed(-kInfIndex, +kInfIndex))); } TEST(IndexIntervalTest, ShiftIntervalTo) { EXPECT_THAT(ShiftIntervalTo(IndexInterval::UncheckedClosed(1, 8), 3), Optional(IndexInterval::UncheckedClosed(3, 10))); EXPECT_THAT(ShiftIntervalTo(IndexInterval::UncheckedClosed(-kInfIndex, 8), 2), MatchesStatus(absl::StatusCode::kInvalidArgument, "Interval .* is not bounded below")); EXPECT_THAT(ShiftIntervalTo(IndexInterval::UncheckedClosed(1, kInfIndex), 3), Optional(IndexInterval::UncheckedClosed(3, kInfIndex))); EXPECT_THAT( ShiftIntervalTo(IndexInterval::UncheckedClosed(kMinFiniteIndex + 1, 101), kMinFiniteIndex), Optional(IndexInterval::Closed(kMinFiniteIndex, 100))); EXPECT_THAT( ShiftIntervalTo(IndexInterval::UncheckedClosed(5, 10), -kInfIndex), MatchesStatus(absl::StatusCode::kOutOfRange, "Origin -[0-9]+ is outside valid range .*")); EXPECT_THAT(ShiftIntervalTo(IndexInterval::UncheckedClosed(5, 10), kInfIndex), MatchesStatus(absl::StatusCode::kOutOfRange, "Origin [0-9]+ is outside valid range .*")); EXPECT_THAT( ShiftIntervalTo(IndexInterval::UncheckedClosed(5, 10), kMaxFiniteIndex), MatchesStatus(absl::StatusCode::kInvalidArgument, "10 \\+ [0-9]+ is outside valid range .*")); } TEST(ExtractStridedSliceTest, Closed) { using OIII = tensorstore::OptionallyImplicitIndexInterval; EXPECT_THAT( ExtractClosedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, false}, 6, 9, 1) .value(), Pair(OIII{IndexInterval::UncheckedSized(6, 4), false, false}, 6)); EXPECT_THAT( ExtractClosedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), true, true}, 3, 15, 1) .value(), Pair(OIII{IndexInterval::UncheckedClosed(3, 15), false, false}, 3)); EXPECT_THAT( ExtractClosedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), true, false}, kImplicit, kImplicit, -1) .value(), Pair(OIII{IndexInterval::UncheckedClosed(-10, -5), false, true}, 10)); EXPECT_THAT( ExtractClosedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, true}, kImplicit, kImplicit, -1) .value(), Pair(OIII{IndexInterval::UncheckedClosed(-10, -5), true, false}, 10)); EXPECT_THAT( ExtractClosedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, false}, 9, 6, -2) .value(), Pair(OIII{IndexInterval::UncheckedSized(-4, 2), false, false}, 9)); EXPECT_THAT(ExtractClosedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, false}, kImplicit, 9, 1) .value(), Pair(OIII{IndexInterval::UncheckedSized(5, 5), false, false}, 5)); EXPECT_THAT(ExtractClosedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, false}, -kInfIndex, 9, 1), MatchesStatus(absl::StatusCode::kOutOfRange, "Slice interval \\(-inf, 10\\) is not contained " "within domain \\[5, 11\\)")); EXPECT_THAT( ExtractClosedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, false}, kImplicit, 6, -2) .value(), Pair(OIII{IndexInterval::UncheckedSized(-5, 3), false, false}, 10)); EXPECT_THAT(ExtractClosedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, false}, 9, -kInfIndex, -2), MatchesStatus(absl::StatusCode::kOutOfRange, "Slice interval \\(-inf, 10\\) is not contained " "within domain \\[5, 11\\)")); EXPECT_THAT( ExtractClosedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, false}, 9, kImplicit, -2) .value(), Pair(OIII{IndexInterval::UncheckedSized(-4, 3), false, false}, 9)); EXPECT_THAT(ExtractClosedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, false}, 7, kImplicit, 2) .value(), Pair(OIII{IndexInterval::UncheckedSized(3, 2), false, false}, 7)); EXPECT_THAT( ExtractClosedStridedSlice( {IndexInterval::UncheckedClosed(-kInfIndex, kInfIndex), false, false}, kImplicit, 10, 1) .value(), Pair(OIII{IndexInterval::UncheckedClosed(-kInfIndex, 10), false, false}, -kInfIndex)); EXPECT_THAT( ExtractClosedStridedSlice( {IndexInterval::UncheckedClosed(-kInfIndex, kInfIndex), false, false}, 5, kImplicit, 1) .value(), Pair(OIII{IndexInterval::UncheckedClosed(5, kInfIndex), false, false}, 5)); EXPECT_THAT( ExtractClosedStridedSlice( {IndexInterval::UncheckedClosed(-kInfIndex, kInfIndex), false, false}, kImplicit, 5, -1) .value(), Pair(OIII{IndexInterval::UncheckedClosed(-kInfIndex, -5), false, false}, kInfIndex)); EXPECT_THAT( ExtractClosedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, false}, kImplicit, 6, 0), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid stride 0")); EXPECT_THAT(ExtractClosedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, false}, kImplicit, 6, std::numeric_limits<Index>::min()), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid stride -[0-9]+")); EXPECT_THAT( ExtractClosedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, false}, 4, 6, 1), MatchesStatus(absl::StatusCode::kOutOfRange, "Slice interval \\[4, 7\\) is not contained within domain " "\\[5, 11\\)")); EXPECT_THAT(ExtractClosedStridedSlice( {IndexInterval::UncheckedClosed(3, 10), false, false}, -kInfIndex - 1, 10, 1), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid start index -[0-9]+")); } TEST(ExtractStridedSliceTest, Sized) { using OIII = tensorstore::OptionallyImplicitIndexInterval; EXPECT_THAT( ExtractSizedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, false}, 9, 3, -2) .value(), Pair(OIII{IndexInterval::UncheckedClosed(-4, -2), false, false}, 9)); EXPECT_THAT( ExtractSizedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, true}, 7, kImplicit, 1) .value(), Pair(OIII{IndexInterval::UncheckedClosed(7, 10), false, true}, 7)); EXPECT_THAT(ExtractSizedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), true, true}, kImplicit, kImplicit, 1) .value(), Pair(OIII{IndexInterval::UncheckedClosed(5, 10), true, true}, 5)); EXPECT_THAT( ExtractSizedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), true, false}, kImplicit, kImplicit, -1) .value(), Pair(OIII{IndexInterval::UncheckedClosed(-10, -5), false, true}, 10)); EXPECT_THAT( ExtractSizedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, true}, kImplicit, kImplicit, -1) .value(), Pair(OIII{IndexInterval::UncheckedClosed(-10, -5), true, false}, 10)); EXPECT_THAT( ExtractSizedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, false}, 9, kImplicit, -2) .value(), Pair(OIII{IndexInterval::UncheckedClosed(-4, -2), false, false}, 9)); EXPECT_THAT( ExtractSizedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, false}, 7, kImplicit, 2) .value(), Pair(OIII{IndexInterval::UncheckedClosed(3, 4), false, false}, 7)); EXPECT_THAT( ExtractSizedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, false}, 7, 0, 2) .value(), Pair(OIII{IndexInterval::UncheckedSized(3, 0), false, false}, 7)); EXPECT_THAT( ExtractSizedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, false}, 7, 0, -2) .value(), Pair(OIII{IndexInterval::UncheckedSized(-3, 0), false, false}, 7)); EXPECT_THAT( ExtractSizedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, false}, 9, -1, -2), MatchesStatus(absl::StatusCode::kInvalidArgument, "Negative size -1 specified for sized interval")); EXPECT_THAT(ExtractSizedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, false}, std::numeric_limits<Index>::min() + 1, 0, 2), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid start index -[0-9]+")); EXPECT_THAT(ExtractSizedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, false}, std::numeric_limits<Index>::max(), 0, -2), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid start index [0-9]+")); EXPECT_THAT(ExtractSizedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, false}, 5, 100, kInfIndex), MatchesStatus(absl::StatusCode::kOutOfRange, "Integer overflow computing slice result")); EXPECT_THAT(ExtractSizedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, false}, 5, kInfIndex, 2), MatchesStatus(absl::StatusCode::kOutOfRange, "Integer overflow computing slice result")); EXPECT_THAT( ExtractSizedStridedSlice( {IndexInterval::UncheckedClosed(-kInfIndex, 10), false, false}, kImplicit, kImplicit, 2), MatchesStatus(absl::StatusCode::kInvalidArgument, "Slicing with non-unit stride of 2 requires a " "finite start index")); EXPECT_THAT(ExtractSizedStridedSlice( {IndexInterval::UncheckedClosed(3, kInfIndex), false, false}, kImplicit, kImplicit, -2), MatchesStatus(absl::StatusCode::kInvalidArgument, "Slicing with non-unit stride of -2 requires a " "finite start index")); } TEST(ExtractStridedSliceTest, HalfOpen) { using OIII = tensorstore::OptionallyImplicitIndexInterval; EXPECT_THAT( ExtractHalfOpenStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, false}, 9, 7, -2) .value(), Pair(OIII{IndexInterval::UncheckedClosed(-4, -4), false, false}, 9)); EXPECT_THAT( ExtractHalfOpenStridedSlice( {IndexInterval::UncheckedClosed(5, 10), true, false}, kImplicit, 8, 1) .value(), Pair(OIII{IndexInterval::UncheckedHalfOpen(5, 8), true, false}, 5)); EXPECT_THAT( ExtractHalfOpenStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, true}, 6, kImplicit, 1) .value(), Pair(OIII{IndexInterval::UncheckedHalfOpen(6, 11), false, true}, 6)); EXPECT_THAT( ExtractHalfOpenStridedSlice( {IndexInterval::UncheckedClosed(5, 10), true, false}, 3, 8, 1) .value(), Pair(OIII{IndexInterval::UncheckedHalfOpen(3, 8), false, false}, 3)); EXPECT_THAT( ExtractHalfOpenStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, true}, 6, 15, 1) .value(), Pair(OIII{IndexInterval::UncheckedHalfOpen(6, 15), false, false}, 6)); EXPECT_THAT(ExtractHalfOpenStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, false}, 9, std::numeric_limits<Index>::min() + 1, 2), MatchesStatus(absl::StatusCode::kInvalidArgument, ".* do not specify a valid closed index interval")); EXPECT_THAT(ExtractHalfOpenStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, false}, 9, std::numeric_limits<Index>::max(), -2), MatchesStatus(absl::StatusCode::kInvalidArgument, ".* do not specify a valid closed index interval")); } TEST(ComputeStridedSliceMapTest, NoTranslationStride1) { OptionallyImplicitIndexInterval new_domain; Index output_offset; EXPECT_EQ(absl::OkStatus(), ComputeStridedSliceMap( OptionallyImplicitIndexInterval{ IndexInterval::UncheckedHalfOpen(1, 10), false, false}, IntervalForm::half_open, kImplicit, 2, 8, 1, &new_domain, &output_offset)); EXPECT_EQ((OptionallyImplicitIndexInterval{ IndexInterval::UncheckedHalfOpen(2, 8), false, false}), new_domain); EXPECT_EQ(0, output_offset); } TEST(ComputeStridedSliceMapTest, NoTranslationStride2) { OptionallyImplicitIndexInterval new_domain; Index output_offset; EXPECT_EQ(absl::OkStatus(), ComputeStridedSliceMap( OptionallyImplicitIndexInterval{ IndexInterval::UncheckedHalfOpen(1, 10), false, false}, IntervalForm::half_open, kImplicit, 2, 8, 2, &new_domain, &output_offset)); EXPECT_EQ((OptionallyImplicitIndexInterval{ IndexInterval::UncheckedHalfOpen(1, 4), false, false}), new_domain); EXPECT_EQ(0, output_offset); } TEST(ComputeStridedSliceMapTest, NoTranslationStrideNegative2) { OptionallyImplicitIndexInterval new_domain; Index output_offset; EXPECT_EQ(absl::OkStatus(), ComputeStridedSliceMap( OptionallyImplicitIndexInterval{ IndexInterval::UncheckedHalfOpen(1, 10), false, false}, IntervalForm::half_open, kImplicit, 9, 2, -2, &new_domain, &output_offset)); EXPECT_EQ((OptionallyImplicitIndexInterval{ IndexInterval::UncheckedHalfOpen(-4, 0), false, false}), new_domain); EXPECT_EQ(1, output_offset); } TEST(ComputeStridedSliceMapTest, TranslationStride1) { OptionallyImplicitIndexInterval new_domain; Index output_offset; EXPECT_EQ(absl::OkStatus(), ComputeStridedSliceMap( OptionallyImplicitIndexInterval{ IndexInterval::UncheckedHalfOpen(1, 10), false, false}, IntervalForm::half_open, 7, 2, 8, 1, &new_domain, &output_offset)); EXPECT_EQ((OptionallyImplicitIndexInterval{ IndexInterval::UncheckedHalfOpen(7, 13), false, false}), new_domain); EXPECT_EQ(-5, output_offset); } TEST(ComputeStridedSliceMapTest, TranslationError) { OptionallyImplicitIndexInterval new_domain; Index output_offset; EXPECT_THAT(ComputeStridedSliceMap( OptionallyImplicitIndexInterval{ IndexInterval::UncheckedHalfOpen(1, 10), false, false}, IntervalForm::half_open, kMaxFiniteIndex, 2, 8, 1, &new_domain, &output_offset), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(ComputeStridedSliceMapTest, SliceError) { OptionallyImplicitIndexInterval new_domain; Index output_offset; EXPECT_THAT(ComputeStridedSliceMap( OptionallyImplicitIndexInterval{ IndexInterval::UncheckedHalfOpen(3, 10), false, false}, IntervalForm::half_open, kMaxFiniteIndex, 2, 8, 1, &new_domain, &output_offset), MatchesStatus(absl::StatusCode::kOutOfRange)); } TEST(GetAffineTransformDomainTest, Divisor1) { EXPECT_EQ(IndexInterval::UncheckedClosed(-9, -1), GetAffineTransformDomain(IndexInterval::UncheckedClosed(1, 9), 10, 1) .value()); } TEST(GetAffineTransformDomainTest, Divisor2) { EXPECT_EQ(IndexInterval::UncheckedClosed(-2, 1), GetAffineTransformDomain(IndexInterval::UncheckedClosed(1, 9), 6, 2) .value()); } TEST(GetAffineTransformDomainTest, DivisorNegative1) { EXPECT_EQ(IndexInterval::UncheckedClosed(-3, 5), GetAffineTransformDomain(IndexInterval::UncheckedClosed(1, 9), 6, -1) .value()); } TEST(GetAffineTransformDomainTest, DivisorNegative2) { EXPECT_EQ(IndexInterval::UncheckedClosed(-1, 2), GetAffineTransformDomain(IndexInterval::UncheckedClosed(1, 9), 6, -2) .value()); } TEST(GetAffineTransformDomainTest, DivisorNegative2LargeMagnitude) { EXPECT_EQ(IndexInterval::UncheckedClosed(-(kInfIndex - 10) / 2, 5), GetAffineTransformDomain( IndexInterval::UncheckedClosed(-10, kInfIndex - 10), 0, -2) .value()); } TEST(GetAffineTransformDomainTest, EmptyInterval) { EXPECT_EQ(IndexInterval::UncheckedSized(-2, 0), GetAffineTransformDomain(IndexInterval::UncheckedSized(10, 0), 5, -2) .value()); } TEST(GetAffineTransformDomainTest, DivisorInvalid) { EXPECT_THAT(GetAffineTransformDomain( IndexInterval::UncheckedClosed(1, 10), 0, std::numeric_limits<Index>::min()), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(GetAffineTransformDomainTest, OffsetInvalid) { EXPECT_THAT(GetAffineTransformDomain( IndexInterval::UncheckedClosed(1, 10), std::numeric_limits<Index>::min(), -1), MatchesStatus(absl::StatusCode::kInvalidArgument)); } void TestGetAffineTransformRangeRoundTrip(IndexInterval domain, Index offset, Index multiplier, IndexInterval range) { EXPECT_THAT(GetAffineTransformRange(domain, offset, multiplier), ::testing::Optional(range)) << "domain=" << domain << ", offset=" << offset << ", multiplier=" << multiplier << ", range=" << range; EXPECT_THAT(GetAffineTransformDomain(range, offset, multiplier), ::testing::Optional(domain)) << "domain=" << domain << ", offset=" << offset << ", multiplier=" << multiplier << ", range=" << range; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto inv_domain, GetAffineTransformInverseDomain(domain, offset, multiplier)); EXPECT_THAT(GetAffineTransformDomain(inv_domain, offset, multiplier), ::testing::Optional(domain)) << "domain=" << domain << ", offset=" << offset << ", multiplier=" << multiplier << ", range=" << range << ", inv_domain=" << inv_domain; } TEST(GetAffineTransformRangeTest, SerializationRoundTrip) { TestGetAffineTransformRangeRoundTrip( IndexInterval::UncheckedClosed(1, 10), 3, 1, IndexInterval::UncheckedClosed(4, 13)); TestGetAffineTransformRangeRoundTrip( IndexInterval::UncheckedClosed(1, 10), 3, 2, IndexInterval::UncheckedClosed(2 + 3, 10 * 2 + 3)); TestGetAffineTransformRangeRoundTrip( IndexInterval::UncheckedSized(4, 0), 3, 2, IndexInterval::UncheckedSized(2 * 4 + 3, 0)); TestGetAffineTransformRangeRoundTrip( IndexInterval::UncheckedSized(4, 0), 3, -2, IndexInterval::UncheckedSized(-2 * 4 + 3, 0)); TestGetAffineTransformRangeRoundTrip( IndexInterval(), std::numeric_limits<Index>::min(), 1, IndexInterval()); TestGetAffineTransformRangeRoundTrip( IndexInterval(), std::numeric_limits<Index>::max(), 1, IndexInterval()); TestGetAffineTransformRangeRoundTrip( IndexInterval(), 0, 1, IndexInterval()); TestGetAffineTransformRangeRoundTrip( IndexInterval(), std::numeric_limits<Index>::min(), -1, IndexInterval()); TestGetAffineTransformRangeRoundTrip( IndexInterval(), std::numeric_limits<Index>::max(), -1, IndexInterval()); TestGetAffineTransformRangeRoundTrip( IndexInterval(), 0, -1, IndexInterval()); } TEST(GetAffineTransformRangeTest, ZeroMultiplier) { EXPECT_EQ(IndexInterval::UncheckedSized(3, 1), GetAffineTransformRange(IndexInterval::UncheckedClosed(4, 10), 3, 0) .value()); } TEST(GetAffineTransformRangeTest, ErrorCases) { EXPECT_THAT(GetAffineTransformRange(IndexInterval::UncheckedClosed(3, 10), kInfIndex, 1), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(GetAffineTransformRange(IndexInterval::UncheckedClosed(3, 10), 5, kInfIndex), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(GetAffineTransformRange( IndexInterval::UncheckedClosed(-1, 1), std::numeric_limits<Index>::max() - kInfIndex + 1, kInfIndex), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(GetAffineTransformInverseDomainTest, Examples) { EXPECT_THAT( GetAffineTransformRange(IndexInterval::UncheckedClosed(2, 4), 1, 3), ::testing::Optional(IndexInterval::UncheckedClosed(7, 13))); EXPECT_THAT(GetAffineTransformInverseDomain( IndexInterval::UncheckedClosed(2, 4), 1, 3), ::testing::Optional(IndexInterval::UncheckedClosed(7, 15))); EXPECT_THAT( GetAffineTransformRange(IndexInterval::UncheckedClosed(2, 4), 1, -3), ::testing::Optional(IndexInterval::UncheckedClosed(-11, -5))); EXPECT_THAT(GetAffineTransformInverseDomain( IndexInterval::UncheckedClosed(2, 4), 1, -3), ::testing::Optional(IndexInterval::UncheckedClosed(-13, -5))); } void TestGetAffineTransformRangeOptionallyImplicitRoundTrip( OptionallyImplicitIndexInterval domain, Index offset, Index multiplier, OptionallyImplicitIndexInterval range) { EXPECT_EQ(GetAffineTransformRange(domain, offset, multiplier).value(), range) << "domain=" << domain << ", offset=" << offset << ", multiplier=" << multiplier << ", range=" << range; EXPECT_EQ(GetAffineTransformDomain(range, offset, multiplier).value(), domain) << "domain=" << domain << ", offset=" << offset << ", multiplier=" << multiplier << ", range=" << range; } TEST(GetAffineTransformRangeTest, OptionallyImplicitRoundTrip) { TestGetAffineTransformRangeOptionallyImplicitRoundTrip( {IndexInterval::UncheckedClosed(1, 10), true, false}, 3, 1, {IndexInterval::UncheckedClosed(4, 13), true, false}); TestGetAffineTransformRangeOptionallyImplicitRoundTrip( {IndexInterval::UncheckedClosed(1, 10), true, true}, 3, 1, {IndexInterval::UncheckedClosed(4, 13), true, true}); TestGetAffineTransformRangeOptionallyImplicitRoundTrip( {IndexInterval::UncheckedClosed(1, 10), false, false}, 3, 1, {IndexInterval::UncheckedClosed(4, 13), false, false}); TestGetAffineTransformRangeOptionallyImplicitRoundTrip( {IndexInterval::UncheckedClosed(1, 10), false, true}, 3, 1, {IndexInterval::UncheckedClosed(4, 13), false, true}); TestGetAffineTransformRangeOptionallyImplicitRoundTrip( {IndexInterval::UncheckedClosed(1, 10), false, true}, -3, 1, {IndexInterval::UncheckedClosed(-2, 7), false, true}); TestGetAffineTransformRangeOptionallyImplicitRoundTrip( {IndexInterval::UncheckedClosed(1, 10), false, true}, 3, -1, {IndexInterval::UncheckedClosed(-7, 2), true, false}); TestGetAffineTransformRangeOptionallyImplicitRoundTrip( {IndexInterval::UncheckedClosed(1, 10), true, false}, 3, -1, {IndexInterval::UncheckedClosed(-7, 2), false, true}); TestGetAffineTransformRangeOptionallyImplicitRoundTrip( {IndexInterval::UncheckedSized(4, 0), true, false}, 3, -2, {IndexInterval::UncheckedSized(-2 * 4 + 3, 0), false, true}); } TEST(GetAffineTransformRangeTest, OptionallyImplicitErrorCases) { using OIII = tensorstore::OptionallyImplicitIndexInterval; EXPECT_THAT(GetAffineTransformRange( OIII{IndexInterval::UncheckedClosed(3, 10), true, false}, kInfIndex, 1), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(GetAffineTransformDomainTest, OptionallyImplicitErrorCases) { using OIII = tensorstore::OptionallyImplicitIndexInterval; EXPECT_THAT(GetAffineTransformDomain( OIII{IndexInterval::UncheckedClosed(1, 10), true, false}, std::numeric_limits<Index>::min(), -1), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(IndexIntervalRefTest, Basic) { Index inclusive_min = 5, size = 10; IndexIntervalRef ref = IndexIntervalRef::UncheckedSized(inclusive_min, size); EXPECT_EQ(5, ref.inclusive_min()); EXPECT_EQ(4, ref.exclusive_min()); EXPECT_EQ(10, ref.size()); EXPECT_EQ(15, ref.exclusive_max()); EXPECT_EQ(14, ref.inclusive_max()); EXPECT_EQ(IndexInterval::UncheckedSized(5, 10), static_cast<IndexInterval>(ref)); ref = IndexInterval::UncheckedSized(6, 9); EXPECT_EQ(6, inclusive_min); EXPECT_EQ(9, size); EXPECT_FALSE(ref.empty()); size = 0; EXPECT_TRUE(ref.empty()); } TEST(IndexIntervalRefTest, ConstructFromIndexInterval) { IndexInterval interval = IndexInterval::UncheckedSized(5, 10); IndexIntervalRef ref(interval); ref = IndexInterval::UncheckedSized(3, 6); EXPECT_EQ(interval, IndexInterval::UncheckedSized(3, 6)); } TEST(IndexIntervalRefTest, ImplicitConversion) { IndexInterval interval = IndexInterval::UncheckedSized(5, 10); IndexIntervalRef ref(interval); IndexInterval interval2 = ref; EXPECT_EQ(interval, interval2); EXPECT_TRUE(IsFinite(ref)); EXPECT_TRUE(Contains(ref, ref.inclusive_min())); EXPECT_TRUE(Contains(ref, ref)); EXPECT_EQ(ref, Intersect(ref, ref)); EXPECT_EQ(ref, Hull(ref, ref)); } TEST(IndexIntervalRefTest, Assignment) { IndexInterval interval = IndexInterval::UncheckedSized(5, 10); IndexIntervalRef ref(interval); IndexInterval interval2 = ref; IndexIntervalRef ref2(interval2); ref2 = ref; EXPECT_EQ(IndexInterval::UncheckedSized(5, 10), interval2); EXPECT_EQ(IndexInterval::UncheckedSized(5, 10), interval); } TEST(OptionallyImplicitIndexIntervalTest, EffectiveInterval) { EXPECT_EQ(IndexInterval::UncheckedClosed(-kInfIndex, 2), OptionallyImplicitIndexInterval( IndexInterval::UncheckedClosed(1, 2), true, false) .effective_interval()); EXPECT_EQ(IndexInterval::UncheckedClosed(1, +kInfIndex), OptionallyImplicitIndexInterval( IndexInterval::UncheckedClosed(1, 2), false, true) .effective_interval()); EXPECT_EQ(IndexInterval(), OptionallyImplicitIndexInterval( IndexInterval::UncheckedClosed(1, 2), true, true) .effective_interval()); } TEST(OptionallyImplicitIndexIntervalTest, Ostream) { EXPECT_EQ("[1*, 3)", StrCat(OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, 2), true, false})); EXPECT_EQ("(-inf, 3*)", StrCat(OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(-kInfIndex, 2), false, true})); EXPECT_EQ("[7*, +inf*)", StrCat(OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(7, kInfIndex), true, true})); } TEST(OptionallyImplicitIndexIntervalTest, Comparison) { OptionallyImplicitIndexInterval a{}; OptionallyImplicitIndexInterval b{IndexInterval::UncheckedSized(0, 1), false, false}; OptionallyImplicitIndexInterval c{IndexInterval::UncheckedSized(0, 1), false, true}; OptionallyImplicitIndexInterval d{IndexInterval::UncheckedSized(0, 1), true, false}; OptionallyImplicitIndexInterval e{IndexInterval::UncheckedSized(0, 1), true, true}; OptionallyImplicitIndexInterval f{IndexInterval::UncheckedSized(0, 0), false, false}; OptionallyImplicitIndexInterval g{IndexInterval::UncheckedSized(0, 2), false, false}; OptionallyImplicitIndexInterval h{IndexInterval::UncheckedSized(1, 2), false, false}; OptionallyImplicitIndexInterval i{IndexInterval::UncheckedSized(1, 2), false, true}; OptionallyImplicitIndexInterval j{IndexInterval::UncheckedSized(1, 2), true, false}; EXPECT_EQ(a, a); EXPECT_EQ(b, b); EXPECT_EQ(c, c); EXPECT_EQ(d, d); EXPECT_EQ(e, e); EXPECT_EQ(f, f); EXPECT_EQ(g, g); EXPECT_EQ(h, h); EXPECT_EQ(i, i); EXPECT_EQ(j, j); EXPECT_NE(a, b); EXPECT_NE(a, c); EXPECT_NE(a, d); EXPECT_NE(a, e); EXPECT_NE(a, f); EXPECT_NE(a, g); EXPECT_NE(a, h); EXPECT_NE(a, i); EXPECT_NE(a, j); EXPECT_NE(g, j); EXPECT_NE(g, h); EXPECT_NE(g, i); EXPECT_NE(g, j); } TEST(OptionallyImplicitIndexIntervalTest, Hash) { EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({ OptionallyImplicitIndexInterval{}, OptionallyImplicitIndexInterval{IndexInterval::UncheckedSized(0, 1), false, false}, OptionallyImplicitIndexInterval{IndexInterval::UncheckedSized(0, 1), false, true}, OptionallyImplicitIndexInterval{IndexInterval::UncheckedSized(0, 1), true, false}, OptionallyImplicitIndexInterval{IndexInterval::UncheckedSized(0, 1), true, true}, OptionallyImplicitIndexInterval{IndexInterval::UncheckedSized(0, 0), false, false}, OptionallyImplicitIndexInterval{IndexInterval::UncheckedSized(0, 2), false, false}, OptionallyImplicitIndexInterval{IndexInterval::UncheckedSized(1, 2), false, false}, OptionallyImplicitIndexInterval{IndexInterval::UncheckedSized(1, 2), false, true}, OptionallyImplicitIndexInterval{IndexInterval::UncheckedSized(1, 2), true, false}, })); } static_assert(std::is_convertible_v<IndexDomainDimension<container>, IndexDomainDimension<view>>); static_assert(std::is_convertible_v<IndexDomainDimension<view>, IndexDomainDimension<container>>); static_assert(std::is_assignable_v<IndexDomainDimension<container>, IndexDomainDimension<view>>); static_assert(std::is_assignable_v<IndexDomainDimension<view>, IndexDomainDimension<container>>); TEST(IndexDomainDimensionTest, DefaultConstruct) { IndexDomainDimension<> d; EXPECT_EQ(OptionallyImplicitIndexInterval(), d.optionally_implicit_interval()); EXPECT_EQ("", d.label()); } TEST(IndexDomainDimensionTest, ConstructFromOptionallyImplicitIndexInterval) { OptionallyImplicitIndexInterval interval{IndexInterval::UncheckedSized(0, 10), false, true}; IndexDomainDimension<> d = interval; EXPECT_EQ(interval, d.optionally_implicit_interval()); EXPECT_EQ("", d.label()); } TEST(IndexDomainDimensionTest, ConstructLabel) { OptionallyImplicitIndexInterval interval{IndexInterval::UncheckedSized(0, 10), false, true}; IndexDomainDimension<> d = {interval, "label"}; EXPECT_EQ(interval, d.optionally_implicit_interval()); EXPECT_EQ("label", d.label()); } TEST(IndexDomainDimensionTest, ConstructContainerFromView) { OptionallyImplicitIndexInterval interval{IndexInterval::UncheckedSized(0, 10), false, true}; IndexDomainDimension<view> d_view = {interval, "label"}; IndexDomainDimension<> d(d_view); EXPECT_EQ(interval, d.optionally_implicit_interval()); EXPECT_EQ("label", d.label()); } TEST(IndexDomainDimensionTest, ConstructViewFromContainer) { OptionallyImplicitIndexInterval interval{IndexInterval::UncheckedSized(0, 10), false, true}; IndexDomainDimension<> d = {interval, "label"}; IndexDomainDimension<view> d_view = d; EXPECT_EQ(interval, d_view.optionally_implicit_interval()); EXPECT_EQ("label", d_view.label()); } TEST(IndexDomainDimensionTest, AssignContainerFromView) { OptionallyImplicitIndexInterval interval{IndexInterval::UncheckedSized(0, 10), false, true}; IndexDomainDimension<view> d_view = {interval, "label"}; IndexDomainDimension<> d; d = d_view; EXPECT_EQ(interval, d.optionally_implicit_interval()); EXPECT_EQ("label", d.label()); } TEST(IndexDomainDimensionTest, AssignViewFromContainer) { OptionallyImplicitIndexInterval interval{IndexInterval::UncheckedSized(0, 10), false, true}; IndexDomainDimension<> d = {interval, "label"}; IndexDomainDimension<view> d_view; d_view = d; EXPECT_EQ(interval, d_view.optionally_implicit_interval()); EXPECT_EQ("label", d_view.label()); } TEST(IndexDomainDimensionTest, PrintToOstream) { EXPECT_EQ("[0, 10*)", StrCat(IndexDomainDimension<>{ {IndexInterval::UncheckedSized(0, 10), false, true}, ""})); EXPECT_EQ("[0, 10*)", StrCat(IndexDomainDimension<view>{ {IndexInterval::UncheckedSized(0, 10), false, true}, ""})); EXPECT_EQ("\"label\": [0, 10*)", StrCat(IndexDomainDimension<>{ {IndexInterval::UncheckedSized(0, 10), false, true}, "label"})); } TEST(IndexDomainDimensionTest, Compare) { IndexDomainDimension<> d1 = { {IndexInterval::UncheckedSized(0, 10), false, true}, "label"}; IndexDomainDimension<view> d1_view = { {IndexInterval::UncheckedSized(0, 10), false, true}, "label"}; IndexDomainDimension<> d2 = { {IndexInterval::UncheckedSized(3, 10), false, true}, "label"}; IndexDomainDimension<view> d2_view = { {IndexInterval::UncheckedSized(3, 10), false, true}, "label"}; IndexDomainDimension<> d3 = { {IndexInterval::UncheckedSized(0, 10), false, true}, "label2"}; EXPECT_EQ(d1, d1); EXPECT_EQ(d1, d1_view); EXPECT_EQ(d1_view, d1); EXPECT_EQ(d1_view, d1_view); EXPECT_EQ(d2, d2); EXPECT_EQ(d3, d3); EXPECT_NE(d1, d2); EXPECT_NE(d1, d2_view); EXPECT_NE(d1_view, d2); EXPECT_NE(d1_view, d2_view); EXPECT_NE(d1, d3); } TEST(IndexDomainDimensionTest, Hash) { IndexDomainDimension<> d1 = { {IndexInterval::UncheckedSized(0, 10), false, true}, "label"}; IndexDomainDimension<view> d1_view = { {IndexInterval::UncheckedSized(0, 10), false, true}, "label"}; IndexDomainDimension<> d2 = { {IndexInterval::UncheckedSized(3, 10), false, true}, "label"}; IndexDomainDimension<view> d2_view = { {IndexInterval::UncheckedSized(3, 10), false, true}, "label"}; IndexDomainDimension<> d3 = { {IndexInterval::UncheckedSized(0, 10), false, true}, "label2"}; EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({d1, d2, d3})); EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({d1_view, d2_view})); } static_assert(ExplicitIndexOr(10, 11) == 10); static_assert(ExplicitIndexOr(kImplicit, 11) == 11); static_assert(ImplicitOrEqual(10, 10)); static_assert(ImplicitOrEqual(kImplicit, 10)); static_assert(!ImplicitOrEqual(10, 11)); static_assert(DividePositiveRoundOut(IndexInterval::UncheckedHalfOpen(3, 10), 2) == IndexInterval::UncheckedHalfOpen(1, 5)); static_assert(DividePositiveRoundOut(IndexInterval::UncheckedHalfOpen(3, 11), 2) == IndexInterval::UncheckedHalfOpen(1, 6)); static_assert(DividePositiveRoundOut(IndexInterval::UncheckedHalfOpen(-3, 10), 2) == IndexInterval::UncheckedHalfOpen(-2, 5)); TEST(IndexIntervalTest, Negate) { EXPECT_EQ(IndexInterval::UncheckedSized(0, 0), -IndexInterval::UncheckedSized(0, 0)); EXPECT_EQ(IndexInterval::UncheckedSized(5, 0), -IndexInterval::UncheckedSized(-5, 0)); EXPECT_EQ( IndexInterval::UncheckedClosed(kMaxFiniteIndex, kMaxFiniteIndex), -IndexInterval::UncheckedClosed(-kMaxFiniteIndex, -kMaxFiniteIndex)); EXPECT_EQ(IndexInterval(), -IndexInterval()); EXPECT_EQ(IndexInterval::UncheckedClosed(-5, 6), -IndexInterval::UncheckedClosed(-6, 5)); EXPECT_EQ(IndexInterval::UncheckedClosed(5, 30), -IndexInterval::UncheckedClosed(-30, -5)); } TEST(MergeDimensionLabelsTest, Basic) { EXPECT_THAT(MergeDimensionLabels("a", ""), ::testing::Optional(std::string("a"))); EXPECT_THAT(MergeDimensionLabels("a", "a"), ::testing::Optional(std::string("a"))); EXPECT_THAT(MergeDimensionLabels("", "a"), ::testing::Optional(std::string("a"))); EXPECT_THAT(MergeDimensionLabels("", ""), ::testing::Optional(std::string(""))); EXPECT_THAT(MergeDimensionLabels("a", "b"), MatchesStatus(absl::StatusCode::kInvalidArgument, "Dimension labels do not match")); } TEST(MergeOptionallyImplicitIndexIntervalsTest, EqualExplicit) { EXPECT_THAT(MergeOptionallyImplicitIndexIntervals( OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, 5), false, false}, OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, 5), false, false}), ::testing::Optional(OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, 5), false, false})); } TEST(MergeOptionallyImplicitIndexIntervalsTest, EqualImplicit) { EXPECT_THAT(MergeOptionallyImplicitIndexIntervals( OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, 5), true, false}, OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, 5), true, false}), ::testing::Optional(OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, 5), true, false})); EXPECT_THAT(MergeOptionallyImplicitIndexIntervals( OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, 5), false, true}, OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, 5), false, true}), ::testing::Optional(OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, 5), false, true})); } TEST(MergeOptionallyImplicitIndexIntervalsTest, UpperUnspecified) { EXPECT_THAT( MergeOptionallyImplicitIndexIntervals( OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, kInfIndex), false, true}, OptionallyImplicitIndexInterval{IndexInterval::UncheckedClosed(1, 5), false, false}), ::testing::Optional(OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, 5), false, false})); EXPECT_THAT( MergeOptionallyImplicitIndexIntervals( OptionallyImplicitIndexInterval{IndexInterval::UncheckedClosed(1, 5), false, false}, OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, kInfIndex), false, true}), ::testing::Optional(OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, 5), false, false})); } TEST(MergeOptionallyImplicitIndexIntervalsTest, LowerUnspecified) { EXPECT_THAT( MergeOptionallyImplicitIndexIntervals( OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(-kInfIndex, 5), true, false}, OptionallyImplicitIndexInterval{IndexInterval::UncheckedClosed(1, 5), false, false}), ::testing::Optional(OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, 5), false, false})); EXPECT_THAT( MergeOptionallyImplicitIndexIntervals( OptionallyImplicitIndexInterval{IndexInterval::UncheckedClosed(1, 5), false, false}, OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(-kInfIndex, 5), true, false}), ::testing::Optional(OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, 5), false, false})); } TEST(MergeOptionallyImplicitIndexIntervalsTest, MismatchLower) { EXPECT_THAT(MergeOptionallyImplicitIndexIntervals( OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, 5), false, false}, OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(2, 5), false, false}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Lower bounds do not match")); } TEST(MergeOptionallyImplicitIndexIntervalsTest, MismatchLowerInfinite) { EXPECT_THAT( MergeOptionallyImplicitIndexIntervals( OptionallyImplicitIndexInterval{IndexInterval::UncheckedClosed(1, 5), false, false}, OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(-kInfIndex, 5), false, false}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Lower bounds do not match")); } TEST(MergeOptionallyImplicitIndexIntervalsTest, LowerImplicitMerge) { EXPECT_THAT(MergeOptionallyImplicitIndexIntervals( OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, 5), false, false}, OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, 5), true, false}), ::testing::Optional(OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, 5), false, false})); } TEST(MergeOptionallyImplicitIndexIntervalsTest, UpperImplicitMerge) { EXPECT_THAT(MergeOptionallyImplicitIndexIntervals( OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, 5), false, true}, OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, 5), false, false}), ::testing::Optional(OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, 5), false, false})); } TEST(MergeOptionallyImplicitIndexIntervalsTest, MismatchUpper) { EXPECT_THAT(MergeOptionallyImplicitIndexIntervals( OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, 5), false, false}, OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, 6), false, false}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Upper bounds do not match")); } TEST(MergeOptionallyImplicitIndexIntervalsTest, MismatchUpperInfinite) { EXPECT_THAT( MergeOptionallyImplicitIndexIntervals( OptionallyImplicitIndexInterval{IndexInterval::UncheckedClosed(1, 5), false, false}, OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, kInfIndex), false, false}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Upper bounds do not match")); } TEST(MergeOptionallyImplicitIndexIntervalsTest, MismatchUpperImplicit) { EXPECT_THAT(MergeOptionallyImplicitIndexIntervals( OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, 5), false, false}, OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(1, 6), false, true}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Upper bounds do not match")); } TEST(MergeOptionallyImplicitIndexIntervalsTest, InvalidInterval) { EXPECT_THAT( MergeOptionallyImplicitIndexIntervals( OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(-kInfIndex, -5), true, false}, OptionallyImplicitIndexInterval{ IndexInterval::UncheckedClosed(5, kInfIndex), false, true}), MatchesStatus( absl::StatusCode::kInvalidArgument, "\\(5, -5\\) do not specify a valid closed index interval")); } TEST(IndexIntervalSerializationTest, Basic) { TestSerializationRoundTrip(IndexInterval::UncheckedSized(1, 2)); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_interval.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_interval_test.cc
4f887a6430414cd6088e1743555015b10f116d50
5d78d715-f803-4538-adf8-a21734a52fc6
cpp
google/cel-cpp
any_type
common/types/any_type.h
common/types/any_type_test.cc
#ifndef THIRD_PARTY_CEL_CPP_COMMON_TYPES_ANY_TYPE_H_ #define THIRD_PARTY_CEL_CPP_COMMON_TYPES_ANY_TYPE_H_ #include <ostream> #include <string> #include <utility> #include "absl/strings/string_view.h" #include "common/type_kind.h" namespace cel { class Type; class TypeParameters; class AnyType final { public: static constexpr TypeKind kKind = TypeKind::kAny; static constexpr absl::string_view kName = "google.protobuf.Any"; AnyType() = default; AnyType(const AnyType&) = default; AnyType(AnyType&&) = default; AnyType& operator=(const AnyType&) = default; AnyType& operator=(AnyType&&) = default; static TypeKind kind() { return kKind; } static absl::string_view name() { return kName; } static TypeParameters GetParameters(); static std::string DebugString() { return std::string(name()); } constexpr void swap(AnyType&) noexcept {} }; inline constexpr void swap(AnyType& lhs, AnyType& rhs) noexcept { lhs.swap(rhs); } inline constexpr bool operator==(AnyType, AnyType) { return true; } inline constexpr bool operator!=(AnyType lhs, AnyType rhs) { return !operator==(lhs, rhs); } template <typename H> H AbslHashValue(H state, AnyType) { return std::move(state); } inline std::ostream& operator<<(std::ostream& out, const AnyType& type) { return out << type.DebugString(); } } #endif
#include <sstream> #include "absl/hash/hash.h" #include "common/type.h" #include "internal/testing.h" namespace cel { namespace { TEST(AnyType, Kind) { EXPECT_EQ(AnyType().kind(), AnyType::kKind); EXPECT_EQ(Type(AnyType()).kind(), AnyType::kKind); } TEST(AnyType, Name) { EXPECT_EQ(AnyType().name(), AnyType::kName); EXPECT_EQ(Type(AnyType()).name(), AnyType::kName); } TEST(AnyType, DebugString) { { std::ostringstream out; out << AnyType(); EXPECT_EQ(out.str(), AnyType::kName); } { std::ostringstream out; out << Type(AnyType()); EXPECT_EQ(out.str(), AnyType::kName); } } TEST(AnyType, Hash) { EXPECT_EQ(absl::HashOf(AnyType()), absl::HashOf(AnyType())); } TEST(AnyType, Equal) { EXPECT_EQ(AnyType(), AnyType()); EXPECT_EQ(Type(AnyType()), AnyType()); EXPECT_EQ(AnyType(), Type(AnyType())); EXPECT_EQ(Type(AnyType()), Type(AnyType())); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/types/any_type.h
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/types/any_type_test.cc
4552db5798fb0853b131b783d8875794334fae7f
17337708-4d38-49da-ac30-9296214bfc5a
cpp
google/tensorstore
file_credential_provider
tensorstore/kvstore/s3/credentials/file_credential_provider.cc
tensorstore/kvstore/s3/credentials/file_credential_provider_test.cc
#include "tensorstore/kvstore/s3/credentials/file_credential_provider.h" #include <optional> #include <string> #include <string_view> #include <utility> #include "absl/base/attributes.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/ascii.h" #include "absl/strings/str_format.h" #include "absl/strings/str_split.h" #include "absl/time/time.h" #include "riegeli/bytes/fd_reader.h" #include "riegeli/lines/line_reading.h" #include "tensorstore/internal/env.h" #include "tensorstore/internal/log/verbose_flag.h" #include "tensorstore/internal/path.h" #include "tensorstore/kvstore/s3/credentials/aws_credentials.h" #include "tensorstore/util/result.h" using ::tensorstore::internal::GetEnv; using ::tensorstore::internal::JoinPath; namespace tensorstore { namespace internal_kvstore_s3 { namespace { ABSL_CONST_INIT internal_log::VerboseFlag s3_logging("s3"); static constexpr char kEnvAwsCredentialsFile[] = "AWS_SHARED_CREDENTIALS_FILE"; static constexpr char kDefaultAwsCredentialsFilePath[] = ".aws/credentials"; static constexpr char kCfgAwsAccessKeyId[] = "aws_access_key_id"; static constexpr char kCfgAwsSecretAccessKeyId[] = "aws_secret_access_key"; static constexpr char kCfgAwsSessionToken[] = "aws_session_token"; static constexpr char kEnvAwsProfile[] = "AWS_PROFILE"; static constexpr char kDefaultProfile[] = "default"; std::optional<std::string> GetAwsCredentialsFileName() { if (auto credentials_file = GetEnv(kEnvAwsCredentialsFile); credentials_file) { return credentials_file; } if (auto home_dir = GetEnv("HOME"); home_dir) { return JoinPath(*home_dir, kDefaultAwsCredentialsFilePath); } return std::nullopt; } } FileCredentialProvider::FileCredentialProvider(std::string_view filename, std::string_view profile) : filename_(filename), profile_(profile) { if (filename_.empty()) { if (auto credentials_file = GetAwsCredentialsFileName(); credentials_file) { filename_ = *std::move(credentials_file); } } if (profile_.empty()) { profile_ = GetEnv(kEnvAwsProfile).value_or(kDefaultProfile); } } Result<AwsCredentials> FileCredentialProvider::GetCredentials() { if (filename_.empty()) { return absl::NotFoundError("No credentials file specified"); } riegeli::FdReader reader(filename_); if (!reader.ok()) { return absl::NotFoundError( absl::StrFormat("Could not open credentials file [%s]", filename_)); } AwsCredentials credentials{}; std::string_view line; bool profile_found = false; while (riegeli::ReadLine(reader, line)) { auto sline = absl::StripAsciiWhitespace(line); if (sline.empty() || sline[0] == '#') continue; if (sline[0] == '[' && sline[sline.size() - 1] == ']') { if (profile_found) break; auto section_name = absl::StripAsciiWhitespace(sline.substr(1, sline.size() - 2)); ABSL_LOG_IF(INFO, s3_logging) << "Found section name [" << section_name << "] in file [" << filename_ << "]"; profile_found = (section_name == profile_); continue; } if (profile_found) { std::pair<std::string_view, std::string_view> kv = absl::StrSplit(sline, absl::MaxSplits('=', 1)); kv.first = absl::StripAsciiWhitespace(kv.first); kv.second = absl::StripAsciiWhitespace(kv.second); if (kv.first == kCfgAwsAccessKeyId) { credentials.access_key = kv.second; } else if (kv.first == kCfgAwsSecretAccessKeyId) { credentials.secret_key = kv.second; } else if (kv.first == kCfgAwsSessionToken) { credentials.session_token = kv.second; } } } if (!profile_found) { return absl::NotFoundError( absl::StrFormat("Profile [%s] not found in credentials file [%s]", profile_, filename_)); } ABSL_LOG_FIRST_N(INFO, 1) << "Using profile [" << profile_ << "] in file [" << filename_ << "]"; credentials.expires_at = absl::InfiniteFuture(); return credentials; } } }
#include "tensorstore/kvstore/s3/credentials/file_credential_provider.h" #include <fstream> #include <memory> #include <string> #include <gtest/gtest.h> #include "absl/time/time.h" #include "tensorstore/internal/env.h" #include "tensorstore/internal/path.h" #include "tensorstore/internal/testing/scoped_directory.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::internal::JoinPath; using ::tensorstore::internal::SetEnv; using ::tensorstore::internal::UnsetEnv; using ::tensorstore::internal_kvstore_s3::FileCredentialProvider; class TestData : public tensorstore::internal_testing::ScopedTemporaryDirectory { public: std::string WriteCredentialsFile() { auto p = JoinPath(path(), "aws_config"); std::ofstream ofs(p); ofs << "discarded_value = 500\n" "\n" "[default]\n" "aws_access_key_id =AKIAIOSFODNN7EXAMPLE\n" "aws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY\n" "aws_session_token= abcdef1234567890 \n" "\n" "[alice]\n" "aws_access_key_id = AKIAIOSFODNN6EXAMPLE\n" "aws_secret_access_key = " "wJalrXUtnFEMI/K7MDENG/bPxRfiCZEXAMPLEKEY\n" "\n"; ofs.close(); return p; } }; class FileCredentialProviderTest : public ::testing::Test { protected: void SetUp() override { UnsetEnv("AWS_SHARED_CREDENTIALS_FILE"); UnsetEnv("AWS_PROFILE"); } }; TEST_F(FileCredentialProviderTest, ProviderAwsCredentialsFromFileDefault) { TestData test_data; std::string credentials_filename = test_data.WriteCredentialsFile(); SetEnv("AWS_SHARED_CREDENTIALS_FILE", credentials_filename.c_str()); auto provider = FileCredentialProvider("", ""); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto credentials, provider.GetCredentials()); ASSERT_EQ(provider.GetFileName(), credentials_filename); ASSERT_EQ(provider.GetProfile(), "default"); ASSERT_EQ(credentials.access_key, "AKIAIOSFODNN7EXAMPLE"); ASSERT_EQ(credentials.secret_key, "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"); ASSERT_EQ(credentials.session_token, "abcdef1234567890"); ASSERT_EQ(credentials.expires_at, absl::InfiniteFuture()); } TEST_F(FileCredentialProviderTest, ProviderAwsCredentialsFromFileProfileOverride) { TestData test_data; auto credentials_filename = test_data.WriteCredentialsFile(); SetEnv("AWS_SHARED_CREDENTIALS_FILE", credentials_filename.c_str()); auto provider = FileCredentialProvider("", "alice"); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto credentials, provider.GetCredentials()); ASSERT_EQ(provider.GetFileName(), credentials_filename); ASSERT_EQ(provider.GetProfile(), "alice"); ASSERT_EQ(credentials.access_key, "AKIAIOSFODNN6EXAMPLE"); ASSERT_EQ(credentials.secret_key, "wJalrXUtnFEMI/K7MDENG/bPxRfiCZEXAMPLEKEY"); ASSERT_EQ(credentials.session_token, ""); ASSERT_EQ(credentials.expires_at, absl::InfiniteFuture()); } TEST_F(FileCredentialProviderTest, ProviderAwsCredentialsFromFileProfileEnv) { TestData test_data; auto credentials_filename = test_data.WriteCredentialsFile(); SetEnv("AWS_SHARED_CREDENTIALS_FILE", credentials_filename.c_str()); SetEnv("AWS_PROFILE", "alice"); auto provider = FileCredentialProvider("", ""); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto credentials, provider.GetCredentials()); ASSERT_EQ(provider.GetFileName(), credentials_filename); ASSERT_EQ(provider.GetProfile(), "alice"); ASSERT_EQ(credentials.access_key, "AKIAIOSFODNN6EXAMPLE"); ASSERT_EQ(credentials.secret_key, "wJalrXUtnFEMI/K7MDENG/bPxRfiCZEXAMPLEKEY"); ASSERT_EQ(credentials.session_token, ""); ASSERT_EQ(credentials.expires_at, absl::InfiniteFuture()); } TEST_F(FileCredentialProviderTest, ProviderAwsCredentialsFromFileInvalidProfileEnv) { TestData test_data; auto credentials_filename = test_data.WriteCredentialsFile(); SetEnv("AWS_SHARED_CREDENTIALS_FILE", credentials_filename.c_str()); SetEnv("AWS_PROFILE", "bob"); auto provider = FileCredentialProvider("", ""); ASSERT_FALSE(provider.GetCredentials().ok()); ASSERT_EQ(provider.GetFileName(), credentials_filename); ASSERT_EQ(provider.GetProfile(), "bob"); } TEST_F(FileCredentialProviderTest, ProviderAwsCredentialsFromFileOverride) { TestData test_data; auto credentials_filename = test_data.WriteCredentialsFile(); auto provider = std::make_unique<FileCredentialProvider>(credentials_filename, ""); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto credentials, provider->GetCredentials()); ASSERT_EQ(provider->GetFileName(), credentials_filename); ASSERT_EQ(provider->GetProfile(), "default"); ASSERT_EQ(credentials.access_key, "AKIAIOSFODNN7EXAMPLE"); ASSERT_EQ(credentials.secret_key, "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"); ASSERT_EQ(credentials.session_token, "abcdef1234567890"); ASSERT_EQ(credentials.expires_at, absl::InfiniteFuture()); provider = std::make_unique<FileCredentialProvider>(credentials_filename, "alice"); TENSORSTORE_ASSERT_OK_AND_ASSIGN(credentials, provider->GetCredentials()); ASSERT_EQ(provider->GetFileName(), credentials_filename); ASSERT_EQ(provider->GetProfile(), "alice"); ASSERT_EQ(credentials.access_key, "AKIAIOSFODNN6EXAMPLE"); ASSERT_EQ(credentials.secret_key, "wJalrXUtnFEMI/K7MDENG/bPxRfiCZEXAMPLEKEY"); ASSERT_EQ(credentials.session_token, ""); ASSERT_EQ(credentials.expires_at, absl::InfiniteFuture()); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/s3/credentials/file_credential_provider.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/s3/credentials/file_credential_provider_test.cc
4f887a6430414cd6088e1743555015b10f116d50
02a0ac9b-8137-474c-8c98-7dfed739d9d5
cpp
tensorflow/tensorflow
data_type
tensorflow/lite/delegates/gpu/common/data_type.cc
tensorflow/lite/delegates/gpu/common/data_type_test.cc
#include "tensorflow/lite/delegates/gpu/common/data_type.h" #include <stddef.h> #include <string> #include "absl/strings/str_cat.h" namespace tflite { namespace gpu { namespace { std::string ToGlslType(const std::string& scalar_type, const std::string& vec_type, int vec_size) { return vec_size == 1 ? scalar_type : absl::StrCat(vec_type, vec_size); } std::string GetGlslPrecisionModifier(DataType data_type) { switch (data_type) { case DataType::UINT8: case DataType::INT8: return "lowp "; case DataType::FLOAT16: case DataType::INT16: case DataType::UINT16: return "mediump "; case DataType::FLOAT32: case DataType::INT32: case DataType::UINT32: return "highp "; case DataType::BOOL: return ""; default: return ""; } } } size_t SizeOf(DataType data_type) { switch (data_type) { case DataType::UINT8: case DataType::INT8: case DataType::BOOL: return 1; case DataType::FLOAT16: case DataType::INT16: case DataType::UINT16: return 2; case DataType::FLOAT32: case DataType::INT32: case DataType::UINT32: return 4; case DataType::FLOAT64: case DataType::INT64: case DataType::UINT64: return 8; case DataType::UNKNOWN: return 0; } return 0; } std::string ToString(DataType data_type) { switch (data_type) { case DataType::FLOAT16: return "float16"; case DataType::FLOAT32: return "float32"; case DataType::FLOAT64: return "float64"; case DataType::INT16: return "int16"; case DataType::INT32: return "int32"; case DataType::INT64: return "int64"; case DataType::INT8: return "int8"; case DataType::UINT16: return "uint16"; case DataType::UINT32: return "uint32"; case DataType::UINT64: return "uint64"; case DataType::UINT8: return "uint8"; case DataType::BOOL: return "bool"; case DataType::UNKNOWN: return "unknown"; } return "undefined"; } std::string ToCLDataType(DataType data_type, int vec_size) { const std::string postfix = vec_size == 1 ? "" : std::to_string(vec_size); switch (data_type) { case DataType::FLOAT16: return "half" + postfix; case DataType::FLOAT32: return "float" + postfix; case DataType::FLOAT64: return "double" + postfix; case DataType::INT16: return "short" + postfix; case DataType::INT32: return "int" + postfix; case DataType::INT64: return "long" + postfix; case DataType::INT8: return "char" + postfix; case DataType::UINT16: return "ushort" + postfix; case DataType::UINT32: return "uint" + postfix; case DataType::UINT64: return "ulong" + postfix; case DataType::UINT8: return "uchar" + postfix; case DataType::BOOL: return "bool" + postfix; case DataType::UNKNOWN: return "unknown"; } return "undefined"; } std::string ToMetalDataType(DataType data_type, int vec_size) { const std::string postfix = vec_size == 1 ? "" : std::to_string(vec_size); switch (data_type) { case DataType::FLOAT16: return "half" + postfix; case DataType::FLOAT32: return "float" + postfix; case DataType::FLOAT64: return "double" + postfix; case DataType::INT16: return "short" + postfix; case DataType::INT32: return "int" + postfix; case DataType::INT64: return "long" + postfix; case DataType::INT8: return "char" + postfix; case DataType::UINT16: return "ushort" + postfix; case DataType::UINT32: return "uint" + postfix; case DataType::UINT64: return "ulong" + postfix; case DataType::UINT8: return "uchar" + postfix; case DataType::BOOL: return "bool" + postfix; case DataType::UNKNOWN: return "unknown"; } return "undefined"; } DataType ToMetalTextureType(DataType data_type) { switch (data_type) { case DataType::FLOAT32: case DataType::FLOAT16: case DataType::INT32: case DataType::INT16: case DataType::UINT32: case DataType::UINT16: return data_type; case DataType::INT8: return DataType::INT16; case DataType::UINT8: case DataType::BOOL: return DataType::UINT16; default: return DataType::UNKNOWN; } } std::string ToGlslShaderDataType(DataType data_type, int vec_size, bool add_precision, bool explicit_fp16) { const std::string precision_modifier = add_precision ? GetGlslPrecisionModifier(data_type) : ""; switch (data_type) { case DataType::FLOAT16: if (explicit_fp16) { return ToGlslType("float16_t", "f16vec", vec_size); } else { return precision_modifier + ToGlslType("float", "vec", vec_size); } case DataType::FLOAT32: return precision_modifier + ToGlslType("float", "vec", vec_size); case DataType::FLOAT64: return precision_modifier + ToGlslType("double", "dvec", vec_size); case DataType::INT8: case DataType::INT16: case DataType::INT32: case DataType::INT64: return precision_modifier + ToGlslType("int", "ivec", vec_size); case DataType::UINT8: case DataType::UINT16: case DataType::UINT32: case DataType::UINT64: return precision_modifier + ToGlslType("uint", "uvec", vec_size); case DataType::BOOL: return ToGlslType("bool", "bvec", vec_size); case DataType::UNKNOWN: return "unknown"; } return "unknown"; } } }
#include "tensorflow/lite/delegates/gpu/common/data_type.h" #include <gtest/gtest.h> namespace tflite { namespace gpu { namespace { TEST(DataTypeTest, GlslShaderDataTypes) { EXPECT_EQ("float", ToGlslShaderDataType(DataType::FLOAT16)); EXPECT_EQ("mediump float", ToGlslShaderDataType(DataType::FLOAT16, 1, true, false)); EXPECT_EQ("float16_t", ToGlslShaderDataType(DataType::FLOAT16, 1, false, true)); EXPECT_EQ("float16_t", ToGlslShaderDataType(DataType::FLOAT16, 1, true, true)); EXPECT_EQ("vec4", ToGlslShaderDataType(DataType::FLOAT16, 4)); EXPECT_EQ("mediump vec4", ToGlslShaderDataType(DataType::FLOAT16, 4, true, false)); EXPECT_EQ("f16vec4", ToGlslShaderDataType(DataType::FLOAT16, 4, false, true)); EXPECT_EQ("f16vec4", ToGlslShaderDataType(DataType::FLOAT16, 4, true, true)); EXPECT_EQ("float", ToGlslShaderDataType(DataType::FLOAT32)); EXPECT_EQ("highp float", ToGlslShaderDataType(DataType::FLOAT32, 1, true)); EXPECT_EQ("float", ToGlslShaderDataType(DataType::FLOAT32, 1, false)); EXPECT_EQ("vec2", ToGlslShaderDataType(DataType::FLOAT32, 2)); EXPECT_EQ("highp vec2", ToGlslShaderDataType(DataType::FLOAT32, 2, true)); EXPECT_EQ("vec2", ToGlslShaderDataType(DataType::FLOAT32, 2, false)); EXPECT_EQ("int", ToGlslShaderDataType(DataType::INT64, 1, false)); EXPECT_EQ("int", ToGlslShaderDataType(DataType::INT32, 1, false)); EXPECT_EQ("int", ToGlslShaderDataType(DataType::INT16, 1, false)); EXPECT_EQ("int", ToGlslShaderDataType(DataType::INT8, 1, false)); EXPECT_EQ("int", ToGlslShaderDataType(DataType::INT64, 1, true)); EXPECT_EQ("highp int", ToGlslShaderDataType(DataType::INT32, 1, true)); EXPECT_EQ("mediump int", ToGlslShaderDataType(DataType::INT16, 1, true)); EXPECT_EQ("lowp int", ToGlslShaderDataType(DataType::INT8, 1, true)); EXPECT_EQ("uint", ToGlslShaderDataType(DataType::UINT64, 1, false)); EXPECT_EQ("uint", ToGlslShaderDataType(DataType::UINT32, 1, false)); EXPECT_EQ("uint", ToGlslShaderDataType(DataType::UINT16, 1, false)); EXPECT_EQ("uint", ToGlslShaderDataType(DataType::UINT8, 1, false)); EXPECT_EQ("uint", ToGlslShaderDataType(DataType::UINT64, 1, true)); EXPECT_EQ("highp uint", ToGlslShaderDataType(DataType::UINT32, 1, true)); EXPECT_EQ("mediump uint", ToGlslShaderDataType(DataType::UINT16, 1, true)); EXPECT_EQ("lowp uint", ToGlslShaderDataType(DataType::UINT8, 1, true)); EXPECT_EQ("bool", ToGlslShaderDataType(DataType::BOOL)); EXPECT_EQ("bvec4", ToGlslShaderDataType(DataType::BOOL, 4)); EXPECT_EQ("bool", ToGlslShaderDataType(DataType::BOOL, 1, true)); EXPECT_EQ("bool", ToGlslShaderDataType(DataType::BOOL, 1, false)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/common/data_type.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/common/data_type_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
af3f2af3-6f07-4e3c-b1f8-a9fbaaa3332c
cpp
tensorflow/tensorflow
hlo_opcode
third_party/xla/xla/hlo/ir/hlo_opcode.cc
third_party/xla/xla/service/hlo_opcode_test.cc
#include "xla/hlo/ir/hlo_opcode.h" #include <optional> #include <string> #include "absl/container/flat_hash_map.h" #include "xla/util.h" namespace xla { absl::string_view HloOpcodeString(HloOpcode opcode) { switch (opcode) { #define CASE_OPCODE_STRING(enum_name, opcode_name, ...) \ case HloOpcode::enum_name: \ return opcode_name; HLO_OPCODE_LIST(CASE_OPCODE_STRING) #undef CASE_OPCODE_STRING } } absl::StatusOr<HloOpcode> StringToHloOpcode(absl::string_view opcode_name) { static auto* opcode_map = new absl::flat_hash_map<std::string, HloOpcode>({ #define STRING_TO_OPCODE_ENTRY(enum_name, opcode_name, ...) \ {opcode_name, HloOpcode::enum_name}, HLO_OPCODE_LIST(STRING_TO_OPCODE_ENTRY) #undef STRING_TO_OPCODE_ENTRY }); auto it = opcode_map->find(opcode_name); if (it == opcode_map->end()) { return InvalidArgument("Unknown opcode: %s", opcode_name); } return it->second; } bool HloOpcodeIsComparison(HloOpcode opcode) { return opcode == HloOpcode::kCompare; } bool HloOpcodeIsVariadic(HloOpcode opcode) { switch (opcode) { #define CASE_IS_VARIADIC(enum_name, opcode_name, arity, ...) \ case HloOpcode::enum_name: \ return arity == kHloOpcodeIsVariadic; HLO_OPCODE_LIST(CASE_IS_VARIADIC) #undef CASE_IS_VARIADIC } } std::optional<int> HloOpcodeArity(HloOpcode opcode) { switch (opcode) { #define CASE_ARITY(enum_name, opcode_name, arity, ...) \ case HloOpcode::enum_name: \ return arity == kHloOpcodeIsVariadic ? std::nullopt \ : std::make_optional(arity); HLO_OPCODE_LIST(CASE_ARITY) #undef CASE_ARITY } } bool HloOpcodeIsAsync(HloOpcode opcode) { return opcode == HloOpcode::kAsyncStart || opcode == HloOpcode::kAsyncUpdate || opcode == HloOpcode::kAsyncDone; } }
#include "xla/hlo/ir/hlo_opcode.h" #include "xla/test.h" #include "xla/types.h" namespace xla { namespace { TEST(HloOpcodeTest, StringifyMultiply) { ASSERT_EQ("multiply", HloOpcodeString(HloOpcode::kMultiply)); } TEST(HloOpcodeTest, OpcodeProperties) { #define SOME_LIST(X) \ X(One) \ X(Two) \ X(Three) EXPECT_EQ(3, HLO_XLIST_LENGTH(SOME_LIST)); #undef SOME_LIST for (int i = 0; i < HloOpcodeCount(); ++i) { auto opcode = static_cast<HloOpcode>(i); EXPECT_EQ(opcode, StringToHloOpcode(HloOpcodeString(opcode)).value()); switch (opcode) { case HloOpcode::kCompare: EXPECT_TRUE(HloOpcodeIsComparison(opcode)); break; default: EXPECT_FALSE(HloOpcodeIsComparison(opcode)); } switch (opcode) { case HloOpcode::kAfterAll: case HloOpcode::kAllGather: case HloOpcode::kAllGatherStart: case HloOpcode::kAllReduce: case HloOpcode::kAsyncStart: case HloOpcode::kReduceScatter: case HloOpcode::kAllReduceStart: case HloOpcode::kAllToAll: case HloOpcode::kCall: case HloOpcode::kCollectiveBroadcast: case HloOpcode::kCollectivePermute: case HloOpcode::kCollectivePermuteStart: case HloOpcode::kConcatenate: case HloOpcode::kConditional: case HloOpcode::kCustomCall: case HloOpcode::kDot: case HloOpcode::kDynamicSlice: case HloOpcode::kDynamicUpdateSlice: case HloOpcode::kDynamicReshape: case HloOpcode::kFusion: case HloOpcode::kMap: case HloOpcode::kReduce: case HloOpcode::kRng: case HloOpcode::kScatter: case HloOpcode::kSort: case HloOpcode::kTuple: case HloOpcode::kReduceWindow: EXPECT_TRUE(HloOpcodeIsVariadic(opcode)); break; default: EXPECT_FALSE(HloOpcodeIsVariadic(opcode)); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/hlo_opcode.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_opcode_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
94fa025d-5568-47c6-8195-73a16c710571
cpp
tensorflow/tensorflow
parallel_device
tensorflow/c/eager/parallel_device/parallel_device.cc
tensorflow/c/eager/parallel_device/parallel_device_test.cc
#include "tensorflow/c/eager/parallel_device/parallel_device.h" #include <cstring> #include <memory> #include "absl/strings/str_cat.h" #include "absl/types/optional.h" #include "absl/types/variant.h" #include "tensorflow/c/eager/c_api.h" #include "tensorflow/c/eager/c_api_experimental.h" #include "tensorflow/c/eager/parallel_device/parallel_device_lib.h" #include "tensorflow/c/eager/tfe_tensorhandle_internal.h" #include "tensorflow/c/tf_buffer.h" #include "tensorflow/c/tf_status.h" #include "tensorflow/c/tf_status_helper.h" #include "tensorflow/core/platform/status.h" namespace tensorflow { namespace parallel_device { namespace { class OpDeleter { public: void operator()(TFE_Op* to_delete) const { TFE_DeleteOp(to_delete); } }; using OpPtr = std::unique_ptr<TFE_Op, OpDeleter>; using MaybeParallelTensorOwned = absl::variant<std::unique_ptr<ParallelTensor>, TensorHandlePtr>; using MaybeParallelTensorUnowned = absl::variant<ParallelTensor*, TFE_TensorHandle*>; class NamedParallelDevice { public: NamedParallelDevice(const std::string& name, std::unique_ptr<ParallelDevice> parallel_device) : device_name_(name), parallel_device_(std::move(parallel_device)) {} const std::string& name() const { return device_name_; } const ParallelDevice& device() const { return *parallel_device_; } private: std::string device_name_; std::unique_ptr<ParallelDevice> parallel_device_; }; absl::optional<std::vector<MaybeParallelTensorOwned>> ExecuteWithSpecialOps( const ParallelDevice& parallel_device, const std::string& parallel_device_name, TFE_Context* context, std::vector<MaybeParallelTensorUnowned> inputs, const char* operation_name, const TFE_OpAttrs* attributes, int expected_max_outputs, TF_Status* status) { absl::optional<std::vector<MaybeParallelTensorOwned>> result; if (operation_name == std::string("TPUReplicatedInput")) { if (inputs.size() != parallel_device.num_underlying_devices()) { std::string message(absl::StrCat( "The parallel device ", parallel_device_name, " expected ", parallel_device.num_underlying_devices(), " inputs to TPUReplicatedInput, but got ", inputs.size())); TF_SetStatus(status, TF_INVALID_ARGUMENT, message.c_str()); return result; } std::vector<TensorHandlePtr> components; components.reserve(inputs.size()); for (int i = 0; i < inputs.size(); ++i) { if (absl::holds_alternative<ParallelTensor*>(inputs[i])) { std::string message(absl::StrCat( "Expected all inputs to TPUReplicatedInput to be non-parallel " "TensorHandles. The input ", i, " was a parallel tensor (already " "placed on the parallel device).")); TF_SetStatus(status, TF_INVALID_ARGUMENT, message.c_str()); return result; } components.emplace_back(TFE_TensorHandleCopySharingTensor( absl::get<TFE_TensorHandle*>(inputs[i]), status)); } std::vector<MaybeParallelTensorOwned> result_content; result_content.reserve(1); result_content.push_back(ParallelTensor::FromTensorHandles( parallel_device, std::move(components), status)); if (TF_GetCode(status) != TF_OK) return result; result.emplace(std::move(result_content)); return result; } else if (operation_name == std::string("TPUReplicatedOutput")) { OpPtr op(TFE_NewOp(context, operation_name, status)); TFE_OpAddAttrs(op.get(), attributes); int expected_outputs = TFE_OpGetOutputLength(op.get(), "outputs", status); if (TF_GetCode(status) != TF_OK) return result; if (expected_outputs != parallel_device.num_underlying_devices()) { std::string message(absl::StrCat( "The parallel device ", parallel_device_name, " expected ", parallel_device.num_underlying_devices(), " outputs for TPUReplicatedOutput, but got ", expected_outputs)); TF_SetStatus(status, TF_INVALID_ARGUMENT, message.c_str()); return result; } if (absl::holds_alternative<TFE_TensorHandle*>(inputs[0])) { TF_SetStatus(status, TF_INVALID_ARGUMENT, "Expected the input to " "TPUReplicatedOutput to be a parallel tensor (placed on the " "parallel device)."); return result; } ParallelTensor* t = absl::get<ParallelTensor*>(inputs[0]); std::vector<MaybeParallelTensorOwned> outputs; outputs.reserve(t->num_tensors()); for (int i = 0; i < t->num_tensors(); ++i) { TensorHandlePtr this_output( TFE_TensorHandleCopySharingTensor(t->tensor(i), status)); outputs.emplace_back(std::move(this_output)); if (TF_GetCode(status) != TF_OK) return result; } result.emplace(std::move(outputs)); return result; } std::vector<ParallelTensor*> parallel_inputs; std::vector<std::unique_ptr<ParallelTensor>> implicitly_broadcast_tensors; parallel_inputs.reserve(inputs.size()); implicitly_broadcast_tensors.reserve(inputs.size()); for (const auto& input : inputs) { if (absl::holds_alternative<TFE_TensorHandle*>(input)) { if (operation_name == std::string("_EagerConst")) { std::unique_ptr<ParallelTensor> parallel_tensor( parallel_device.CopyToParallelDevice( context, absl::get<TFE_TensorHandle*>(input), status)); if (TF_GetCode(status) != TF_OK) return absl::nullopt; parallel_inputs.push_back(parallel_tensor.get()); implicitly_broadcast_tensors.emplace_back(std::move(parallel_tensor)); } else { TF_SetStatus( status, TF_INVALID_ARGUMENT, absl::StrCat( "Got a non-parallel tensor ", tensorflow::unwrap(absl::get<TFE_TensorHandle*>(input)) ->DebugString(), " as input to a parallel operation. First pack non-parallel " "tensors for each device into a parallel tensor explicitly.") .c_str()); return absl::nullopt; } } else { parallel_inputs.push_back(absl::get<ParallelTensor*>(input)); } } absl::optional<std::vector<std::unique_ptr<ParallelTensor>>> maybe_parallel_results( parallel_device.Execute(context, parallel_inputs, operation_name, attributes, expected_max_outputs, status)); if (!maybe_parallel_results.has_value()) return result; std::vector<std::unique_ptr<ParallelTensor>> parallel_results( std::move(maybe_parallel_results.value())); std::vector<MaybeParallelTensorOwned> result_content; result_content.reserve(parallel_results.size()); for (std::unique_ptr<ParallelTensor>& parallel_result : parallel_results) { result_content.push_back( MaybeParallelTensorOwned(std::move(parallel_result))); } result.emplace(std::move(result_content)); return result; } void ParallelTensorDeallocator(void* data) { delete reinterpret_cast<ParallelTensor*>(data); } int ParallelTensorNumDims(void* data, TF_Status* status) { const std::vector<int64_t>* shape; Status s = reinterpret_cast<ParallelTensor*>(data)->Shape(&shape); if (!s.ok()) { tsl::Set_TF_Status_from_Status(status, s); return -1; } return shape->size(); } int64_t ParallelTensorDim(void* data, int dim_index, TF_Status* status) { const std::vector<int64_t>* shape; Status s = reinterpret_cast<ParallelTensor*>(data)->Shape(&shape); if (!s.ok()) { tsl::Set_TF_Status_from_Status(status, s); return -1; } return (*shape)[dim_index]; } TF_Buffer* ParallelTensorSummarize(void* data, TF_Status* status) { ParallelTensor* parallel_tensor = reinterpret_cast<ParallelTensor*>(data); std::string summary; Status cpp_status = parallel_tensor->SummarizeValue(summary); if (!cpp_status.ok()) { tsl::Set_TF_Status_from_Status(status, cpp_status); return nullptr; } return TF_NewBufferFromString(summary.data(), summary.size()); } TensorHandlePtr ParallelTensorToTensorHandle( const std::string& parallel_device_name, TFE_Context* context, std::unique_ptr<ParallelTensor> t, TF_Status* status) { ParallelTensor* t_released = t.release(); TFE_CustomDeviceTensorHandleMethods handle_methods; handle_methods.num_dims = &ParallelTensorNumDims; handle_methods.dim = &ParallelTensorDim; handle_methods.deallocator = &ParallelTensorDeallocator; handle_methods.summarize = &ParallelTensorSummarize; return TensorHandlePtr(TFE_NewCustomDeviceTensorHandle( context, parallel_device_name.c_str(), t_released->dtype(), t_released, handle_methods, status)); } TFE_TensorHandle* CopyToParallelDevice(TFE_Context* context, TFE_TensorHandle* tensor, TF_Status* status, void* device_info) { TF_SetStatus( status, TF_UNIMPLEMENTED, absl::StrCat("Trying to copy a tensor ", tensorflow::unwrap(tensor)->DebugString(), " on to a parallel device. Pack non-parallel " "tensors for each device into a parallel tensor explicitly.") .c_str()); return nullptr; } TFE_TensorHandle* CopyTensorFromParallelDevice(TFE_Context* context, TFE_TensorHandle* tensor, const char* target_device_name, TF_Status* status, void* device_info) { ParallelTensor* parallel_tensor = reinterpret_cast<ParallelTensor*>( TFE_TensorHandleDevicePointer(tensor, status)); if (TF_GetCode(status) != TF_OK) return nullptr; if (parallel_tensor->num_tensors() == 1) { return TFE_TensorHandleCopySharingTensor(parallel_tensor->tensor(0), status); } else { TF_SetStatus( status, TF_UNIMPLEMENTED, absl::StrCat( "Trying to copy a tensor out of a parallel device. Since there " "are multiple components to parallel tensors, they must be " "unpacked explicitly.\n", tensorflow::unwrap(tensor)->DebugString()) .c_str()); return nullptr; } } void ParallelDeviceExecute(const TFE_Op* original_op, int* num_outputs, TFE_TensorHandle** outputs, TF_Status* status, void* device_info) { const char* requested_placement = TFE_OpGetDevice(original_op, status); if (*requested_placement == '\0') { TF_SetStatus( status, TF_INTERNAL, "Ops must be placed on the parallel device explicitly, or their inputs " "first un-packed. Got an un-placed op with an input placed on the " "parallel device."); return; } TFE_Context* context = TFE_OpGetContext(original_op, status); if (TF_GetCode(status) != TF_OK) return; const char* operation_name = TFE_OpGetName(original_op, status); if (TF_GetCode(status) != TF_OK) return; const TFE_OpAttrs* attributes = TFE_OpGetAttrs(original_op); NamedParallelDevice* named_device = reinterpret_cast<NamedParallelDevice*>(device_info); std::vector<MaybeParallelTensorUnowned> typed_inputs; int num_inputs = TFE_OpGetFlatInputCount(original_op, status); if (TF_GetCode(status) != TF_OK) return; typed_inputs.reserve(num_inputs); for (int i = 0; i < num_inputs; ++i) { TFE_TensorHandle* input = TFE_OpGetFlatInput(original_op, i, status); if (TF_GetCode(status) != TF_OK) return; const char* tensor_handle_device = TFE_TensorHandleDeviceName(input, status); if (TF_GetCode(status) != TF_OK) return; if (named_device->name() == tensor_handle_device) { typed_inputs.emplace_back(reinterpret_cast<ParallelTensor*>( TFE_TensorHandleDevicePointer(input, status))); if (TF_GetCode(status) != TF_OK) return; } else { typed_inputs.emplace_back(input); } } absl::optional<std::vector<MaybeParallelTensorOwned>> maybe_typed_outputs( ExecuteWithSpecialOps(named_device->device(), named_device->name(), context, std::move(typed_inputs), operation_name, attributes, *num_outputs, status)); if (TF_GetCode(status) != TF_OK) return; if (!maybe_typed_outputs.has_value()) { TF_SetStatus(status, TF_INTERNAL, "OK status but no value was returned."); return; } std::vector<MaybeParallelTensorOwned> typed_outputs( std::move(maybe_typed_outputs.value())); if (typed_outputs.size() > *num_outputs) { TF_SetStatus(status, TF_INTERNAL, "The allocated output buffer was too small."); return; } for (int i = 0; i < typed_outputs.size(); ++i) { MaybeParallelTensorOwned typed_output(std::move(typed_outputs[i])); if (absl::holds_alternative<TensorHandlePtr>(typed_output)) { outputs[i] = absl::get<TensorHandlePtr>(typed_output).release(); } else { outputs[i] = ParallelTensorToTensorHandle( named_device->name(), context, std::move(absl::get<std::unique_ptr<ParallelTensor>>( typed_output)), status) .release(); if (TF_GetCode(status) != TF_OK) return; } } *num_outputs = typed_outputs.size(); } void DeleteParallelDevice(void* device_info) { delete reinterpret_cast<NamedParallelDevice*>(device_info); } } void AllocateParallelDevice(const char* device_name, const char* const* underlying_devices, int num_underlying_devices, TFE_CustomDevice* device, void** device_info) { device->copy_tensor_to_device = &CopyToParallelDevice; device->copy_tensor_from_device = &CopyTensorFromParallelDevice; device->delete_device = &DeleteParallelDevice; device->execute = &ParallelDeviceExecute; std::vector<std::string> underlying_devices_vector; underlying_devices_vector.reserve(num_underlying_devices); for (int device_index = 0; device_index < num_underlying_devices; ++device_index) { underlying_devices_vector.push_back(underlying_devices[device_index]); } std::unique_ptr<ParallelDevice> parallel_device( new ParallelDevice(underlying_devices_vector)); *device_info = new NamedParallelDevice{device_name, std::move(parallel_device)}; } } }
#include <array> #include <gmock/gmock.h> #include "tensorflow/c/c_api.h" #include "tensorflow/c/c_api_experimental.h" #include "tensorflow/c/eager/c_api.h" #include "tensorflow/c/eager/immediate_execution_tensor_handle.h" #include "tensorflow/c/eager/parallel_device/parallel_device_lib.h" #include "tensorflow/c/eager/parallel_device/parallel_device_testlib.h" #include "tensorflow/c/eager/tfe_tensorhandle_internal.h" #include "tensorflow/c/tf_buffer.h" #include "tensorflow/c/tf_datatype.h" #include "tensorflow/c/tf_status.h" #include "tensorflow/c/tf_status_internal.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace parallel_device { using ::testing::HasSubstr; TEST(PARALLEL_DEVICE, TestBasicCPU) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); std::unique_ptr<TFE_ContextOptions, decltype(&TFE_DeleteContextOptions)> opts( TFE_NewContextOptions(), TFE_DeleteContextOptions); std::unique_ptr<TF_Buffer, decltype(&TF_DeleteBuffer)> config( TF_CreateConfig( false, true, 2), TF_DeleteBuffer); TFE_ContextOptionsSetConfig(opts.get(), config->data, config->length, status.get()); std::unique_ptr<TFE_Context, decltype(&TFE_DeleteContext)> context( TFE_NewContext(opts.get(), status.get()), TFE_DeleteContext); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); BasicTestsForTwoDevices(context.get(), "/job:localhost/replica:0/task:0/device:CPU:0", "/job:localhost/replica:0/task:0/device:CPU:1"); } TEST(PARALLEL_DEVICE, TestBasicCPUAliased) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); std::unique_ptr<TFE_ContextOptions, decltype(&TFE_DeleteContextOptions)> opts( TFE_NewContextOptions(), TFE_DeleteContextOptions); std::unique_ptr<TFE_Context, decltype(&TFE_DeleteContext)> context( TFE_NewContext(opts.get(), status.get()), TFE_DeleteContext); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); BasicTestsForTwoDevices(context.get(), "/job:localhost/replica:0/task:0/device:CPU:0", "/job:localhost/replica:0/task:0/device:CPU:0"); } TEST(PARALLEL_DEVICE, TestBasicTPUAliased) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); std::unique_ptr<TFE_ContextOptions, decltype(&TFE_DeleteContextOptions)> opts( TFE_NewContextOptions(), TFE_DeleteContextOptions); std::unique_ptr<TFE_Context, decltype(&TFE_DeleteContext)> context( TFE_NewContext(opts.get(), status.get()), TFE_DeleteContext); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); std::unique_ptr<TF_DeviceList, decltype(&TF_DeleteDeviceList)> devices( TFE_ContextListDevices(context.get(), status.get()), TF_DeleteDeviceList); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); bool has_tpu = false; for (int device_index = 0; device_index < TF_DeviceListCount(devices.get()); ++device_index) { std::string device_type = TF_DeviceListType(devices.get(), device_index, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); if (device_type == "TPU") { has_tpu = true; break; } } if (has_tpu) { BasicTestsForTwoDevices(context.get(), "/job:localhost/replica:0/task:0/device:TPU:0", "/job:localhost/replica:0/task:0/device:TPU:0"); } } TEST(PARALLEL_DEVICE, TestExplicitCopies) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); std::unique_ptr<TFE_ContextOptions, decltype(&TFE_DeleteContextOptions)> opts( TFE_NewContextOptions(), TFE_DeleteContextOptions); std::unique_ptr<TF_Buffer, decltype(&TF_DeleteBuffer)> config( TF_CreateConfig( false, true, 2), TF_DeleteBuffer); TFE_ContextOptionsSetConfig(opts.get(), config->data, config->length, status.get()); std::unique_ptr<TFE_Context, decltype(&TFE_DeleteContext)> context( TFE_NewContext(opts.get(), status.get()), TFE_DeleteContext); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); const char* device_name = "/job:localhost/replica:0/task:0/device:CUSTOM:0"; const char* first_device_name = "/job:localhost/replica:0/task:0/device:CPU:0"; const char* second_device_name = "/job:localhost/replica:0/task:0/device:CPU:1"; std::array<const char*, 2> underlying_devices{first_device_name, second_device_name}; RegisterParallelDevice(context.get(), device_name, underlying_devices, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); TensorHandlePtr cpu_value(FloatTensorHandle(3., status.get())); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); TensorHandlePtr failed_copy_on_result(TFE_TensorHandleCopyToDevice( cpu_value.get(), context.get(), device_name, status.get())); EXPECT_EQ(TF_GetCode(status.get()), TF_UNIMPLEMENTED); std::array<TFE_TensorHandle*, 2> components{cpu_value.get(), cpu_value.get()}; TensorHandlePtr device_value = CreatePerDeviceValues( context.get(), components, device_name, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); TensorHandlePtr copy_off(TFE_TensorHandleCopyToDevice( device_value.get(), context.get(), first_device_name, status.get())); EXPECT_EQ(TF_GetCode(status.get()), TF_UNIMPLEMENTED); } TEST(PARALLEL_DEVICE, TestDifferentShapes) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); std::unique_ptr<TFE_ContextOptions, decltype(&TFE_DeleteContextOptions)> opts( TFE_NewContextOptions(), TFE_DeleteContextOptions); std::unique_ptr<TF_Buffer, decltype(&TF_DeleteBuffer)> config( TF_CreateConfig( false, true, 2), TF_DeleteBuffer); TFE_ContextOptionsSetConfig(opts.get(), config->data, config->length, status.get()); std::unique_ptr<TFE_Context, decltype(&TFE_DeleteContext)> context( TFE_NewContext(opts.get(), status.get()), TFE_DeleteContext); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); const char* device_name = "/job:localhost/replica:0/task:0/device:CUSTOM:0"; std::array<const char*, 2> underlying_devices{ "/job:localhost/replica:0/task:0/device:CPU:0", "/job:localhost/replica:0/task:0/device:CPU:1"}; RegisterParallelDevice(context.get(), device_name, underlying_devices, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); std::vector<float> size_two_value{1., 2.}; std::vector<float> size_three_value{1., 2., 3.}; TensorHandlePtr size_two( VectorFloatTensorHandle(size_two_value, status.get())); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); TensorHandlePtr size_three( VectorFloatTensorHandle(size_three_value, status.get())); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); std::array<TFE_TensorHandle*, 2> components{size_two.get(), size_three.get()}; TensorHandlePtr combined_value = CreatePerDeviceValues( context.get(), components, device_name, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); int num_axes = TFE_TensorHandleNumDims(combined_value.get(), status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); EXPECT_EQ(num_axes, 1); } TEST(PARALLEL_DEVICE, TestNestedParallelDevices) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); std::unique_ptr<TFE_ContextOptions, decltype(&TFE_DeleteContextOptions)> opts( TFE_NewContextOptions(), TFE_DeleteContextOptions); std::unique_ptr<TF_Buffer, decltype(&TF_DeleteBuffer)> config( TF_CreateConfig( false, true, 3), TF_DeleteBuffer); TFE_ContextOptionsSetConfig(opts.get(), config->data, config->length, status.get()); std::unique_ptr<TFE_Context, decltype(&TFE_DeleteContext)> context( TFE_NewContext(opts.get(), status.get()), TFE_DeleteContext); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); const char* first_device_name = "/job:localhost/replica:0/task:0/device:CUSTOM:0"; std::array<const char*, 2> first_underlying_devices{ "/job:localhost/replica:0/task:0/device:CPU:0", "/job:localhost/replica:0/task:0/device:CPU:1"}; RegisterParallelDevice(context.get(), first_device_name, first_underlying_devices, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); const char* second_device_name = "/job:localhost/replica:0/task:0/device:CUSTOM:1"; std::array<const char*, 2> second_underlying_devices{ "/job:localhost/replica:0/task:0/device:CUSTOM:0", "/job:localhost/replica:0/task:0/device:CPU:2"}; RegisterParallelDevice(context.get(), second_device_name, second_underlying_devices, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); TensorHandlePtr value_one(FloatTensorHandle(1., status.get())); TensorHandlePtr value_two(FloatTensorHandle(2., status.get())); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); std::array<TFE_TensorHandle*, 2> components{value_one.get(), value_two.get()}; TensorHandlePtr first_combined_value = CreatePerDeviceValues( context.get(), components, first_device_name, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); TensorHandlePtr value_three(FloatTensorHandle(3., status.get())); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); components[0] = first_combined_value.get(); components[1] = value_three.get(); TensorHandlePtr second_combined_value = CreatePerDeviceValues( context.get(), components, second_device_name, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); TensorHandlePtr negative_one_cpu(FloatTensorHandle(3., status.get())); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); components[0] = negative_one_cpu.get(); components[1] = negative_one_cpu.get(); TensorHandlePtr first_negative_one = CreatePerDeviceValues( context.get(), components, first_device_name, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); components[0] = first_negative_one.get(); components[1] = negative_one_cpu.get(); TensorHandlePtr second_negative_one = CreatePerDeviceValues( context.get(), components, second_device_name, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); TensorHandlePtr multiply_result( Multiply(context.get(), second_combined_value.get(), second_negative_one.get(), status.get())); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); std::array<TensorHandlePtr, 2> second_components; ExtractPerDeviceValues(context.get(), multiply_result.get(), &second_components, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); ExpectScalarEq<float>(second_components[1].get(), 9.); std::string first_device = TFE_TensorHandleBackingDeviceName( second_components[0].get(), status.get()); ASSERT_EQ(second_underlying_devices[0], first_device); std::string second_device = TFE_TensorHandleBackingDeviceName( second_components[1].get(), status.get()); ASSERT_EQ(second_underlying_devices[1], second_device); std::array<TensorHandlePtr, 2> first_components; ExtractPerDeviceValues(context.get(), second_components[0].get(), &first_components, status.get()); ExpectScalarEq<float>(first_components[0].get(), 3.); ExpectScalarEq<float>(first_components[1].get(), 6.); first_device = TFE_TensorHandleBackingDeviceName(first_components[0].get(), status.get()); ASSERT_EQ(first_underlying_devices[0], first_device); second_device = TFE_TensorHandleBackingDeviceName(first_components[1].get(), status.get()); ASSERT_EQ(first_underlying_devices[1], second_device); } TEST(PARALLEL_DEVICE, TestInvalidPacking) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); std::unique_ptr<TFE_ContextOptions, decltype(&TFE_DeleteContextOptions)> opts( TFE_NewContextOptions(), TFE_DeleteContextOptions); std::unique_ptr<TFE_Context, decltype(&TFE_DeleteContext)> context( TFE_NewContext(opts.get(), status.get()), TFE_DeleteContext); const char* device_name = "/job:localhost/replica:0/task:0/device:CUSTOM:0"; std::array<const char*, 1> underlying_devices{ "/job:localhost/replica:0/task:0/device:CPU:0"}; RegisterParallelDevice(context.get(), device_name, underlying_devices, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); TensorHandlePtr value_one(FloatTensorHandle(1., status.get())); TensorHandlePtr value_two(FloatTensorHandle(2., status.get())); { ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); std::array<TFE_TensorHandle*, 2> components{value_one.get(), value_two.get()}; TensorHandlePtr combined_value = CreatePerDeviceValues( context.get(), components, device_name, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_INVALID_ARGUMENT) << TF_Message(status.get()); } { std::array<TFE_TensorHandle*, 1> correct_components{value_one.get()}; TensorHandlePtr combined_value = CreatePerDeviceValues( context.get(), correct_components, device_name, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); std::array<TensorHandlePtr, 2> incorrect_components; ExtractPerDeviceValues(context.get(), combined_value.get(), &incorrect_components, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_INVALID_ARGUMENT) << TF_Message(status.get()); } { std::array<TFE_TensorHandle*, 1> correct_components{value_one.get()}; TensorHandlePtr combined_value = CreatePerDeviceValues( context.get(), correct_components, device_name, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); std::array<TFE_TensorHandle*, 1> incorrect_components{combined_value.get()}; TensorHandlePtr recombined_value = CreatePerDeviceValues( context.get(), incorrect_components, device_name, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_INVALID_ARGUMENT) << TF_Message(status.get()); } { std::unique_ptr<TFE_Op, decltype(&TFE_DeleteOp)> op( TFE_NewOp(context.get(), "TPUReplicatedOutput", status.get()), TFE_DeleteOp); if (TF_GetCode(status.get()) != TF_OK) return; TFE_OpSetAttrInt(op.get(), "num_replicas", 1); TFE_OpAddInput(op.get(), value_one.get(), status.get()); if (TF_GetCode(status.get()) != TF_OK) return; TFE_OpSetDevice(op.get(), device_name, status.get()); if (TF_GetCode(status.get()) != TF_OK) return; TFE_TensorHandle* result_handles; int num_retvals = 1; TFE_Execute(op.get(), &result_handles, &num_retvals, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_INVALID_ARGUMENT) << TF_Message(status.get()); } } TensorHandlePtr CollectiveSum(TFE_Context* context, TFE_TensorHandle* input, int group_size, TF_Status* status) { std::unique_ptr<TFE_Op, decltype(&TFE_DeleteOp)> op( TFE_NewOp(context, "CollectiveReduce", status), TFE_DeleteOp); if (TF_GetCode(status) != TF_OK) return nullptr; const char* device = TFE_TensorHandleDeviceName(input, status); if (TF_GetCode(status) != TF_OK) return nullptr; TFE_OpSetDevice(op.get(), device, status); if (TF_GetCode(status) != TF_OK) return nullptr; TFE_OpSetAttrType(op.get(), "T", TFE_TensorHandleDataType(input)); TFE_OpSetAttrInt(op.get(), "group_size", group_size); TFE_OpSetAttrInt(op.get(), "group_key", 0); TFE_OpSetAttrInt(op.get(), "instance_key", 0); const std::string merge_op("Add"); TFE_OpSetAttrString(op.get(), "merge_op", merge_op.c_str(), merge_op.length()); const std::string final_op("Id"); TFE_OpSetAttrString(op.get(), "final_op", final_op.c_str(), final_op.length()); TFE_OpSetAttrIntList(op.get(), "subdiv_offsets", nullptr, 0); TFE_OpAddInput(op.get(), input, status); if (TF_GetCode(status) != TF_OK) return nullptr; TFE_TensorHandle* result_handle; int num_retvals = 1; TFE_Execute(op.get(), &result_handle, &num_retvals, status); if (TF_GetCode(status) != TF_OK) return nullptr; return TensorHandlePtr(result_handle); } void TestCollective(bool async) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); std::unique_ptr<TFE_ContextOptions, decltype(&TFE_DeleteContextOptions)> opts( TFE_NewContextOptions(), TFE_DeleteContextOptions); TFE_ContextOptionsSetAsync(opts.get(), async); std::unique_ptr<TF_Buffer, decltype(&TF_DeleteBuffer)> config( TF_CreateConfig( false, true, 2), TF_DeleteBuffer); TFE_ContextOptionsSetConfig(opts.get(), config->data, config->length, status.get()); std::unique_ptr<TFE_Context, decltype(&TFE_DeleteContext)> context( TFE_NewContext(opts.get(), status.get()), TFE_DeleteContext); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); const char* device_name = "/job:localhost/replica:0/task:0/device:CUSTOM:0"; std::array<const char*, 2> underlying_devices{ "/job:localhost/replica:0/task:0/device:CPU:0", "/job:localhost/replica:0/task:0/device:CPU:1"}; RegisterParallelDevice(context.get(), device_name, underlying_devices, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); TensorHandlePtr value_one(FloatTensorHandle(1., status.get())); TensorHandlePtr value_two(FloatTensorHandle(2., status.get())); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); std::array<TFE_TensorHandle*, 2> components{value_one.get(), value_two.get()}; TensorHandlePtr parallel_value = CreatePerDeviceValues( context.get(), components, device_name, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); TensorHandlePtr reduced( CollectiveSum(context.get(), parallel_value.get(), 2, status.get())); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); std::array<TensorHandlePtr, 2> result_components; ExtractPerDeviceValues(context.get(), reduced.get(), &result_components, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); ExpectScalarEq<float>(result_components[0].get(), 3.); ExpectScalarEq<float>(result_components[1].get(), 3.); } TEST(PARALLEL_DEVICE, TestCollectiveSync) { TestCollective(false); } TEST(PARALLEL_DEVICE, TestCollectiveAsync) { TestCollective(true); } void RegisterCollectiveMulFunction(TFE_Context* context, const char* function_name, int group_size, TF_Status* status) { std::unique_ptr<TF_Graph, decltype(&TF_DeleteGraph)> body(TF_NewGraph(), TF_DeleteGraph); TF_OperationDescription* placeholder_desc = TF_NewOperation(body.get(), "Placeholder", "Placeholder"); TF_SetAttrType(placeholder_desc, "dtype", TF_FLOAT); TF_Operation* placeholder_op = TF_FinishOperation(placeholder_desc, status); if (TF_GetCode(status) != TF_OK) return; TF_Output x{placeholder_op, 0}; TF_OperationDescription* reduce_desc = TF_NewOperation(body.get(), "CollectiveReduce", "CollectiveReduce"); TF_SetAttrType(reduce_desc, "T", TF_FLOAT); TF_SetAttrInt(reduce_desc, "group_size", group_size); TF_SetAttrInt(reduce_desc, "group_key", 0); TF_SetAttrInt(reduce_desc, "instance_key", 0); const std::string merge_op("Mul"); TF_SetAttrString(reduce_desc, "merge_op", merge_op.c_str(), merge_op.length()); const std::string final_op("Id"); TF_SetAttrString(reduce_desc, "final_op", final_op.c_str(), final_op.length()); TF_SetAttrIntList(reduce_desc, "subdiv_offsets", nullptr, 0); TF_AddInput(reduce_desc, x); TF_Operation* reduce_op = TF_FinishOperation(reduce_desc, status); if (TF_GetCode(status) != TF_OK) return; TF_Operation* operations[]{placeholder_op, reduce_op}; TF_Output y{reduce_op, 0}; const char* output_name = "y"; std::unique_ptr<TF_Function, decltype(&TF_DeleteFunction)> function( TF_GraphToFunction( body.get(), function_name, 0, 2, operations, 1, &x, 1, &y, &output_name, nullptr, "", status), TF_DeleteFunction); if (TF_GetCode(status) != TF_OK) return; TFE_ContextAddFunction(context, function.get(), status); } TEST(PARALLEL_DEVICE, TestFunction) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); std::unique_ptr<TFE_ContextOptions, decltype(&TFE_DeleteContextOptions)> opts( TFE_NewContextOptions(), TFE_DeleteContextOptions); std::unique_ptr<TF_Buffer, decltype(&TF_DeleteBuffer)> config( TF_CreateConfig( false, true, 2), TF_DeleteBuffer); TFE_ContextOptionsSetConfig(opts.get(), config->data, config->length, status.get()); std::unique_ptr<TFE_Context, decltype(&TFE_DeleteContext)> context( TFE_NewContext(opts.get(), status.get()), TFE_DeleteContext); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); const char* device_name = "/job:localhost/replica:0/task:0/device:CUSTOM:0"; std::array<const char*, 2> underlying_devices{ "/job:localhost/replica:0/task:0/device:CPU:0", "/job:localhost/replica:0/task:0/device:CPU:1"}; RegisterParallelDevice(context.get(), device_name, underlying_devices, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); const char* function_name = "test_reduce_mul"; RegisterCollectiveMulFunction(context.get(), function_name, 2, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); TensorHandlePtr value_one(FloatTensorHandle(7., status.get())); TensorHandlePtr value_two(FloatTensorHandle(9., status.get())); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); std::array<TFE_TensorHandle*, 2> components{value_one.get(), value_two.get()}; TensorHandlePtr parallel_value = CreatePerDeviceValues( context.get(), components, device_name, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); std::unique_ptr<TFE_Op, decltype(&TFE_DeleteOp)> op( TFE_NewOp(context.get(), function_name, status.get()), TFE_DeleteOp); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); TFE_OpSetDevice(op.get(), device_name, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); TFE_OpAddInput(op.get(), parallel_value.get(), status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); TFE_TensorHandle* raw_result_handle; int num_retvals = 1; TFE_Execute(op.get(), &raw_result_handle, &num_retvals, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); TensorHandlePtr reduced(raw_result_handle); std::array<TensorHandlePtr, 2> result_components; ExtractPerDeviceValues(context.get(), reduced.get(), &result_components, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); ExpectScalarEq<float>(result_components[0].get(), 7. * 9.); ExpectScalarEq<float>(result_components[1].get(), 7. * 9.); std::string first_device = TFE_TensorHandleBackingDeviceName( result_components[0].get(), status.get()); ASSERT_EQ(underlying_devices[0], first_device); std::string second_device = TFE_TensorHandleBackingDeviceName( result_components[1].get(), status.get()); ASSERT_EQ(underlying_devices[1], second_device); } TEST(PARALLEL_DEVICE, TestSummaryString) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); std::unique_ptr<TFE_ContextOptions, decltype(&TFE_DeleteContextOptions)> opts( TFE_NewContextOptions(), TFE_DeleteContextOptions); std::unique_ptr<TF_Buffer, decltype(&TF_DeleteBuffer)> config( TF_CreateConfig( false, true, 2), TF_DeleteBuffer); TFE_ContextOptionsSetConfig(opts.get(), config->data, config->length, status.get()); std::unique_ptr<TFE_Context, decltype(&TFE_DeleteContext)> context( TFE_NewContext(opts.get(), status.get()), TFE_DeleteContext); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); const char* device_name = "/job:localhost/replica:0/task:0/device:CUSTOM:0"; std::array<const char*, 2> underlying_devices{ "/job:localhost/replica:0/task:0/device:CPU:0", "/job:localhost/replica:0/task:0/device:CPU:1"}; RegisterParallelDevice(context.get(), device_name, underlying_devices, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); TensorHandlePtr cpu_value(FloatTensorHandle(3., status.get())); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); std::array<TFE_TensorHandle*, 2> components{cpu_value.get(), cpu_value.get()}; TensorHandlePtr device_value = CreatePerDeviceValues( context.get(), components, device_name, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); ImmediateExecutionTensorHandle* unwrapped_handle = tensorflow::unwrap(device_value.get()); std::string summarized; TF_ASSERT_OK(unwrapped_handle->SummarizeValue(summarized)); EXPECT_THAT(summarized, HasSubstr("\"CPU:0\": 3")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/eager/parallel_device/parallel_device.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/eager/parallel_device/parallel_device_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c18dc50b-44db-4d22-ad51-b6e9d1082d44
cpp
google/tensorstore
grid_partition
tensorstore/internal/grid_partition.cc
tensorstore/internal/grid_partition_test.cc
#include "tensorstore/internal/grid_partition.h" #include <algorithm> #include <array> #include <cassert> #include <cstddef> #include <utility> #include <vector> #include "absl/container/fixed_array.h" #include "absl/container/inlined_vector.h" #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "tensorstore/box.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/index_space/output_index_map.h" #include "tensorstore/index_space/output_index_method.h" #include "tensorstore/internal/grid_partition_impl.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/rank.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" using ::tensorstore::internal::OutputToGridCellFn; using ::tensorstore::internal_index_space::TransformAccess; namespace tensorstore { namespace internal_grid_partition { namespace { using IndexArraySet = IndexTransformGridPartition::IndexArraySet; using StridedSet = IndexTransformGridPartition::StridedSet; struct ConnectedSetIterateParameters { const IndexTransformGridPartition& info; tensorstore::span<const DimensionIndex> grid_output_dimensions; OutputToGridCellFn output_to_grid_cell; IndexTransformView<> transform; absl::FunctionRef<absl::Status( tensorstore::span<const Index> grid_cell_indices, IndexTransformView<> cell_transform)> func; }; void InitializeConstantGridCellIndices( IndexTransformView<> transform, tensorstore::span<const DimensionIndex> grid_output_dimensions, OutputToGridCellFn output_to_grid_cell, tensorstore::span<Index> grid_cell_indices) { for (DimensionIndex grid_dim = 0; grid_dim < grid_output_dimensions.size(); ++grid_dim) { const DimensionIndex output_dim = grid_output_dimensions[grid_dim]; const OutputIndexMapRef<> map = transform.output_index_map(output_dim); if (map.method() != OutputIndexMethod::constant) continue; grid_cell_indices[grid_dim] = output_to_grid_cell(grid_dim, map.offset(), nullptr); } } class StridedSetGridCellIterator { public: explicit StridedSetGridCellIterator( IndexTransformView<> transform, tensorstore::span<const DimensionIndex> grid_output_dimensions, OutputToGridCellFn output_to_grid_cell, StridedSet strided_set) : transform_(transform), grid_output_dimensions_(grid_output_dimensions), output_to_grid_cell_(output_to_grid_cell), strided_set_(strided_set) { Reset(); } void Reset() { const IndexInterval domain = transform_.input_domain()[strided_set_.input_dimension]; input_end_index_ = domain.exclusive_max(); input_index_ = domain.inclusive_min(); } bool AtEnd() const { return input_index_ == input_end_index_; } IndexInterval Next(tensorstore::span<Index> output_grid_cell_indices) { assert(!AtEnd()); IndexInterval restricted_domain = IndexInterval::UncheckedHalfOpen(input_index_, input_end_index_); for (const DimensionIndex grid_dim : strided_set_.grid_dimensions.index_view()) { const DimensionIndex output_dim = grid_output_dimensions_[grid_dim]; const OutputIndexMapRef<> map = transform_.output_index_map(output_dim); IndexInterval cell_range; output_grid_cell_indices[grid_dim] = output_to_grid_cell_( grid_dim, input_index_ * map.stride() + map.offset(), &cell_range); const IndexInterval cell_domain = GetAffineTransformDomain(cell_range, map.offset(), map.stride()) .value(); restricted_domain = Intersect(restricted_domain, cell_domain); } assert(!restricted_domain.empty()); input_index_ = restricted_domain.exclusive_max(); return restricted_domain; } private: IndexTransformView<> transform_; tensorstore::span<const DimensionIndex> grid_output_dimensions_; OutputToGridCellFn output_to_grid_cell_; StridedSet strided_set_; Index input_end_index_; Index input_index_; }; class IndexArraySetIterator { public: IndexArraySetIterator(const IndexArraySet& index_array_set) : grid_dimensions_(index_array_set.grid_dimensions), grid_cell_indices_(index_array_set.grid_cell_indices), partition_end_index_(index_array_set.num_partitions()), partition_index_(0) {} void Reset() { partition_index_ = 0; } bool AtEnd() const { return partition_index_ == partition_end_index_; } Index Next(tensorstore::span<Index> output_grid_cell_indices) { assert(!AtEnd()); const Index grid_cell_indices_offset = partition_index_ * grid_dimensions_.count(); DimensionIndex grid_i = 0; for (DimensionIndex grid_dim : grid_dimensions_.index_view()) { output_grid_cell_indices[grid_dim] = grid_cell_indices_[grid_cell_indices_offset + grid_i++]; } return partition_index_++; } private: DimensionSet grid_dimensions_; tensorstore::span<const Index> grid_cell_indices_; Index partition_end_index_; Index partition_index_; }; class ConnectedSetIterateHelper { public: explicit ConnectedSetIterateHelper(ConnectedSetIterateParameters params) : params_(std::move(params)), grid_cell_indices_(params_.grid_output_dimensions.size()), cell_transform_(internal_grid_partition::InitializeCellTransform( params_.info, params_.transform)) { InitializeConstantGridCellIndices( params_.transform, params_.grid_output_dimensions, params_.output_to_grid_cell, grid_cell_indices_); } absl::Status Iterate() { return IterateOverIndexArraySets(0); } private: absl::Status IterateOverIndexArraySets(DimensionIndex set_i) { if (set_i == params_.info.index_array_sets().size()) { return IterateOverStridedSets(0); } const IndexArraySet& index_array_set = params_.info.index_array_sets()[set_i]; IndexArraySetIterator iterator(index_array_set); while (!iterator.AtEnd()) { Index partition_i = iterator.Next(grid_cell_indices_); UpdateCellTransformForIndexArraySetPartition( index_array_set, set_i, partition_i, cell_transform_.get()); TENSORSTORE_RETURN_IF_ERROR(IterateOverIndexArraySets(set_i + 1)); } return absl::OkStatus(); } absl::Status IterateOverStridedSets(DimensionIndex set_i) { if (set_i == params_.info.strided_sets().size()) return InvokeCallback(); StridedSetGridCellIterator iterator( params_.transform, params_.grid_output_dimensions, params_.output_to_grid_cell, params_.info.strided_sets()[set_i]); const DimensionIndex cell_input_dim = set_i + params_.info.index_array_sets().size(); while (!iterator.AtEnd()) { auto restricted_domain = iterator.Next(grid_cell_indices_); cell_transform_->input_origin()[cell_input_dim] = restricted_domain.inclusive_min(); cell_transform_->input_shape()[cell_input_dim] = restricted_domain.size(); TENSORSTORE_RETURN_IF_ERROR(IterateOverStridedSets(set_i + 1)); } return absl::OkStatus(); } absl::Status InvokeCallback() { internal_index_space::DebugCheckInvariants(cell_transform_.get()); auto status = params_.func( grid_cell_indices_, TransformAccess::Make<IndexTransformView<>>(cell_transform_.get())); cell_transform_ = MutableRep(std::move(cell_transform_)); return status; } ConnectedSetIterateParameters params_; absl::FixedArray<Index, internal::kNumInlinedDims> grid_cell_indices_; internal_index_space::TransformRep::Ptr<> cell_transform_; }; bool GetStridedGridCellRanges( IndexTransformView<> transform, OutputToGridCellFn output_to_grid_cell, DimensionIndex grid_dim, DimensionIndex output_dim, absl::FunctionRef<bool(IndexInterval grid_cell_range)> callback) { const auto output_map = transform.output_index_maps()[output_dim]; assert(output_map.method() == OutputIndexMethod::single_input_dimension); const Index output_offset = output_map.offset(); const Index output_stride = output_map.stride(); const DimensionIndex input_dim = output_map.input_dimension(); const IndexInterval input_domain = transform.domain().box()[input_dim]; if (output_map.stride() == 1 || output_map.stride() == -1) { auto output_range = tensorstore::GetAffineTransformRange( input_domain, output_offset, output_stride) .value(); Index min_cell_index = output_to_grid_cell(grid_dim, output_range.inclusive_min(), nullptr); Index max_cell_index = output_to_grid_cell(grid_dim, output_range.inclusive_max(), nullptr); return callback( IndexInterval::UncheckedClosed(min_cell_index, max_cell_index)); } IndexInterval prev_interval; for (Index input_index = input_domain.inclusive_min(); input_index < input_domain.exclusive_max();) { IndexInterval output_range; Index grid_cell = output_to_grid_cell( grid_dim, input_index * output_stride + output_offset, &output_range); const IndexInterval cell_domain = GetAffineTransformDomain(output_range, output_offset, output_stride) .value(); assert(!cell_domain.empty()); if (grid_cell == prev_interval.exclusive_min() || grid_cell == prev_interval.exclusive_max()) { prev_interval = IndexInterval::UncheckedClosed( std::min(prev_interval.inclusive_min(), grid_cell), std::max(prev_interval.inclusive_max(), grid_cell)); } else { if (IsFinite(prev_interval)) { if (!callback(prev_interval)) return false; } prev_interval = IndexInterval::UncheckedClosed(grid_cell, grid_cell); } input_index = cell_domain.exclusive_max(); } return callback(prev_interval); } struct GetGridCellRangesIterateParameters { const IndexTransformGridPartition& info; tensorstore::span<const DimensionIndex> grid_output_dimensions; OutputToGridCellFn output_to_grid_cell; IndexTransformView<> transform; absl::FunctionRef<absl::Status(BoxView<> bounds)> func; DimensionIndex outer_prefix_rank; BoxView<> grid_bounds; tensorstore::span<const IndexInterval> inner_intervals; tensorstore::span<const StridedSet*> strided_sets_in_prefix; tensorstore::span<const IndexArraySet*> index_array_sets_in_prefix; }; class GetGridCellRangesIterateHelper { public: explicit GetGridCellRangesIterateHelper( GetGridCellRangesIterateParameters params) : params_(params) { InitializeConstantGridCellIndices( params_.transform, params_.grid_output_dimensions, params_.output_to_grid_cell, tensorstore::span<Index>(&grid_bounds_origin_[0], params_.transform.output_rank())); for (DimensionIndex i = 0; i < params.outer_prefix_rank; ++i) { grid_bounds_shape_[i] = 1; } for (DimensionIndex i = params.outer_prefix_rank + 1, rank = params.grid_bounds.rank(); i < rank; ++i) { grid_bounds_origin_[i] = params.grid_bounds.origin()[i]; grid_bounds_shape_[i] = params.grid_bounds.shape()[i]; } if (params.inner_intervals.size() == 1) { const auto& inner_interval = params.inner_intervals[0]; grid_bounds_origin_[params.outer_prefix_rank] = inner_interval.inclusive_min(); grid_bounds_shape_[params.outer_prefix_rank] = inner_interval.size(); } } absl::Status Iterate() { return IterateOverIndexArraySets(0); } private: GetGridCellRangesIterateParameters params_; Index grid_bounds_origin_[kMaxRank]; Index grid_bounds_shape_[kMaxRank]; absl::Status IterateOverIndexArraySets(DimensionIndex set_i) { if (set_i == params_.index_array_sets_in_prefix.size()) { return IterateOverStridedSets(0); } const IndexArraySet& index_array_set = *params_.index_array_sets_in_prefix[set_i]; const auto grid_dimensions = index_array_set.grid_dimensions; const DimensionIndex num_grid_dimensions = grid_dimensions.count(); for (Index partition_i = 0, num_partitions = index_array_set.num_partitions(); partition_i < num_partitions; ++partition_i) { const Index grid_cell_indices_offset = partition_i * num_grid_dimensions; DimensionIndex grid_i = 0; for (DimensionIndex grid_dim : grid_dimensions.index_view()) { grid_bounds_origin_[grid_dim] = index_array_set .grid_cell_indices[grid_cell_indices_offset + grid_i++]; } TENSORSTORE_RETURN_IF_ERROR(IterateOverIndexArraySets(set_i + 1)); } return absl::OkStatus(); } absl::Status IterateOverStridedSets(DimensionIndex set_i) { if (set_i == params_.strided_sets_in_prefix.size()) return InvokeCallback(); StridedSetGridCellIterator iterator( params_.transform, params_.grid_output_dimensions, params_.output_to_grid_cell, *params_.strided_sets_in_prefix[set_i]); while (!iterator.AtEnd()) { iterator.Next(grid_bounds_origin_); TENSORSTORE_RETURN_IF_ERROR(IterateOverStridedSets(set_i + 1)); } return absl::OkStatus(); } absl::Status InvokeCallback() { MutableBoxView<> bounds(params_.grid_bounds.rank(), grid_bounds_origin_, grid_bounds_shape_); if (params_.inner_intervals.size() == 1) { return params_.func(bounds); } DimensionIndex outer_prefix_rank = params_.outer_prefix_rank; for (const auto& inner_interval : params_.inner_intervals) { bounds[outer_prefix_rank] = inner_interval; TENSORSTORE_RETURN_IF_ERROR(params_.func(bounds)); } return absl::OkStatus(); } }; } } namespace internal { absl::Status PartitionIndexTransformOverGrid( tensorstore::span<const DimensionIndex> grid_output_dimensions, OutputToGridCellFn output_to_grid_cell, IndexTransformView<> transform, absl::FunctionRef< absl::Status(tensorstore::span<const Index> grid_cell_indices, IndexTransformView<> cell_transform)> func) { internal_grid_partition::IndexTransformGridPartition partition_info; auto status = internal_grid_partition::PrePartitionIndexTransformOverGrid( transform, grid_output_dimensions, output_to_grid_cell, partition_info); if (!status.ok()) return status; return internal_grid_partition::ConnectedSetIterateHelper( {partition_info, grid_output_dimensions, output_to_grid_cell, transform, std::move(func)}) .Iterate(); } } namespace internal_grid_partition { absl::Status GetGridCellRanges( const IndexTransformGridPartition& grid_partition, tensorstore::span<const DimensionIndex> grid_output_dimensions, BoxView<> grid_bounds, OutputToGridCellFn output_to_grid_cell, IndexTransformView<> transform, absl::FunctionRef<absl::Status(BoxView<> bounds)> callback) { assert(grid_output_dimensions.size() == grid_bounds.rank()); if (transform.domain().box().is_empty()) { return absl::OkStatus(); } if (grid_output_dimensions.empty()) { return callback({}); } std::array<DimensionIndex, kMaxRank> dim_to_indexed_set; dim_to_indexed_set.fill(-1); DimensionSet one_to_one_grid_dims; for (const auto& strided_set : grid_partition.strided_sets()) { if (strided_set.grid_dimensions.count() != 1) { continue; } const DimensionIndex grid_dim = strided_set.grid_dimensions.index_view().front(); one_to_one_grid_dims[grid_dim] = true; } for (size_t i = 0; i < grid_partition.index_array_sets().size(); ++i) { const auto& set = grid_partition.index_array_sets()[i]; if (set.grid_dimensions.count() != 1) { continue; } const DimensionIndex grid_dim = set.grid_dimensions.index_view().front(); one_to_one_grid_dims[grid_dim] = true; dim_to_indexed_set[grid_dim] = i; } absl::InlinedVector<IndexInterval, 1> inner_intervals; DimensionSet grid_dimensions_outside_prefix; DimensionIndex range_queryable_grid_dim = grid_output_dimensions.size() - 1; for (; range_queryable_grid_dim >= 0; --range_queryable_grid_dim) { const DimensionIndex grid_dim = range_queryable_grid_dim; const IndexInterval grid_interval = grid_bounds[grid_dim]; if (grid_interval.size() == 1) { inner_intervals.clear(); inner_intervals.push_back(grid_interval); continue; } if (!one_to_one_grid_dims[grid_dim]) { break; } grid_dimensions_outside_prefix[grid_dim] = true; const DimensionIndex output_dim = grid_output_dimensions[grid_dim]; inner_intervals.clear(); DimensionIndex indexed_set_i = dim_to_indexed_set[grid_dim]; if (indexed_set_i == -1) { internal_grid_partition::GetStridedGridCellRanges( transform, output_to_grid_cell, grid_dim, output_dim, [&](IndexInterval grid_cell_range) { inner_intervals.push_back(grid_cell_range); return true; }); } else { const auto& set = grid_partition.index_array_sets()[indexed_set_i]; const auto& grid_cell_indices = set.grid_cell_indices; size_t i = 0; while (i < grid_cell_indices.size()) { size_t last_i = i; while (last_i + 1 < grid_cell_indices.size() && grid_cell_indices[last_i] + 1 == grid_cell_indices[last_i + 1]) { ++last_i; } inner_intervals.push_back(IndexInterval::UncheckedClosed( grid_cell_indices[i], grid_cell_indices[last_i])); i = last_i + 1; } } if (inner_intervals.size() == 1 && tensorstore::Contains(inner_intervals[0], grid_interval)) { inner_intervals.clear(); inner_intervals.push_back(grid_interval); continue; } --range_queryable_grid_dim; break; } const StridedSet* strided_sets_in_prefix_storage[kMaxRank]; const IndexArraySet* index_array_sets_in_prefix_storage[kMaxRank]; const auto get_sets_in_prefix = [&](auto sets, auto* buffer) { ptrdiff_t i = 0; for (const auto& set : sets) { if (grid_dimensions_outside_prefix[set.grid_dimensions.index_view() .front()]) { continue; } buffer[i++] = &set; } return tensorstore::span(buffer, i); }; auto strided_sets_in_prefix = get_sets_in_prefix( grid_partition.strided_sets(), strided_sets_in_prefix_storage); auto index_array_sets_in_prefix = get_sets_in_prefix( grid_partition.index_array_sets(), index_array_sets_in_prefix_storage); if (range_queryable_grid_dim == grid_output_dimensions.size() - 1) { inner_intervals.push_back(grid_bounds[range_queryable_grid_dim]); } internal_grid_partition::GetGridCellRangesIterateHelper iterate_helper( internal_grid_partition::GetGridCellRangesIterateParameters{ grid_partition, grid_output_dimensions, output_to_grid_cell, transform, callback, range_queryable_grid_dim + 1, grid_bounds, inner_intervals, strided_sets_in_prefix, index_array_sets_in_prefix}); return iterate_helper.Iterate(); } } namespace internal { absl::Status GetGridCellRanges( tensorstore::span<const DimensionIndex> grid_output_dimensions, BoxView<> grid_bounds, OutputToGridCellFn output_to_grid_cell, IndexTransformView<> transform, absl::FunctionRef<absl::Status(BoxView<> bounds)> callback) { using internal_grid_partition::StridedSet; assert(grid_output_dimensions.size() == grid_bounds.rank()); if (transform.domain().box().is_empty()) { return absl::OkStatus(); } if (grid_output_dimensions.empty()) { return callback({}); } internal_grid_partition::IndexTransformGridPartition grid_partition; TENSORSTORE_RETURN_IF_ERROR( internal_grid_partition::PrePartitionIndexTransformOverGrid( transform, grid_output_dimensions, output_to_grid_cell, grid_partition)); return internal_grid_partition::GetGridCellRanges( grid_partition, grid_output_dimensions, grid_bounds, output_to_grid_cell, transform, callback); } } }
#include "tensorstore/internal/grid_partition.h" #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/internal/grid_partition_impl.h" #include "tensorstore/internal/irregular_grid.h" #include "tensorstore/internal/regular_grid.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" namespace { using ::tensorstore::Box; using ::tensorstore::BoxView; using ::tensorstore::DimensionIndex; using ::tensorstore::Index; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransform; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::IndexTransformView; using ::tensorstore::MakeArray; using ::tensorstore::Result; using ::tensorstore::internal::GetGridCellRanges; using ::tensorstore::internal::IrregularGrid; using ::tensorstore::internal::OutputToGridCellFn; using ::tensorstore::internal_grid_partition::IndexTransformGridPartition; using ::tensorstore::internal_grid_partition:: PrePartitionIndexTransformOverGrid; using ::tensorstore::internal_grid_partition::RegularGridRef; using ::testing::ElementsAre; namespace partition_tests { using R = std::pair<std::vector<Index>, IndexTransform<>>; std::vector<R> GetPartitions( const std::vector<DimensionIndex>& grid_output_dimensions, const std::vector<Index>& grid_cell_shape, IndexTransformView<> transform) { std::vector<R> results; IndexTransformGridPartition info; RegularGridRef grid{grid_cell_shape}; TENSORSTORE_CHECK_OK(PrePartitionIndexTransformOverGrid( transform, grid_output_dimensions, grid, info)); TENSORSTORE_CHECK_OK( tensorstore::internal::PartitionIndexTransformOverGrid( grid_output_dimensions, grid, transform, [&](tensorstore::span<const Index> grid_cell_indices, IndexTransformView<> cell_transform) { auto cell_transform_direct = info.GetCellTransform( transform, grid_cell_indices, grid_output_dimensions, [&](DimensionIndex dim, Index cell_index) { return grid.GetCellOutputInterval(dim, cell_index); }); EXPECT_EQ(cell_transform_direct, cell_transform); results.emplace_back(std::vector<Index>(grid_cell_indices.begin(), grid_cell_indices.end()), IndexTransform<>(cell_transform)); return absl::OkStatus(); })); return results; } TEST(PartitionIndexTransformOverRegularGrid, ConstantOneDimensional) { const auto results = GetPartitions({0}, {2}, IndexTransformBuilder<>(1, 1) .input_origin({2}) .input_shape({4}) .output_constant(0, 3) .Finalize() .value()); EXPECT_THAT( results, ElementsAre( R{{1}, IndexTransformBuilder<>(1, 1) .input_origin({2}) .input_shape({4}) .output_single_input_dimension(0, 0) .Finalize() .value()})); } TEST(PartitionIndexTransformOverRegularGrid, ConstantTwoDimensional) { const auto results = GetPartitions({0, 1}, {2, 3}, IndexTransformBuilder<>(2, 2) .input_origin({2, 3}) .input_shape({4, 5}) .output_constant(0, 3) .output_constant(1, 7) .Finalize() .value()); EXPECT_THAT( results, ElementsAre( R{{1, 2}, IndexTransformBuilder<>(2, 2) .input_origin({2, 3}) .input_shape({4, 5}) .output_identity_transform() .Finalize() .value()})); } TEST(PartitionIndexTransformOverRegularGrid, OneDimensionalUnitStride) { const auto results = GetPartitions({0}, {2}, IndexTransformBuilder<>(1, 1) .input_origin({-4}) .input_shape({5}) .output_identity_transform() .Finalize() .value()); EXPECT_THAT( results, ElementsAre( R{{-2}, IndexTransformBuilder<>(1, 1) .input_origin({-4}) .input_shape({2}) .output_identity_transform() .Finalize() .value()}, R{{-1}, IndexTransformBuilder<>(1, 1) .input_origin({-2}) .input_shape({2}) .output_identity_transform() .Finalize() .value()}, R{{0}, IndexTransformBuilder<>(1, 1) .input_origin({0}) .input_shape({1}) .output_identity_transform() .Finalize() .value()})); } TEST(PartitionIndexTransformOverRegularGrid, TwoDimensionalIdentity) { const auto results = GetPartitions({0, 1}, {20, 10}, IndexTransformBuilder<>(2, 2) .input_origin({0, 0}) .input_shape({30, 30}) .output_identity_transform() .Finalize() .value()); EXPECT_THAT( results, ElementsAre( R{{0, 0}, IndexTransformBuilder<>(2, 2) .input_origin({0, 0}) .input_shape({20, 10}) .output_identity_transform() .Finalize() .value()}, R{{0, 1}, IndexTransformBuilder<>(2, 2) .input_origin({0, 10}) .input_shape({20, 10}) .output_identity_transform() .Finalize() .value()}, R{{0, 2}, IndexTransformBuilder<>(2, 2) .input_origin({0, 20}) .input_shape({20, 10}) .output_identity_transform() .Finalize() .value()}, R{{1, 0}, IndexTransformBuilder<>(2, 2) .input_origin({20, 0}) .input_shape({10, 10}) .output_identity_transform() .Finalize() .value()}, R{{1, 1}, IndexTransformBuilder<>(2, 2) .input_origin({20, 10}) .input_shape({10, 10}) .output_identity_transform() .Finalize() .value()}, R{{1, 2}, IndexTransformBuilder<>(2, 2) .input_origin({20, 20}) .input_shape({10, 10}) .output_identity_transform() .Finalize() .value()})); } TEST(PartitionIndexTransformOverRegularGrid, SingleStridedDimension) { const auto results = GetPartitions({0}, {10}, IndexTransformBuilder<>(1, 1) .input_origin({-4}) .input_shape({6}) .output_single_input_dimension(0, 5, 3, 0) .Finalize() .value()); EXPECT_THAT( results, ElementsAre( R{{-1}, IndexTransformBuilder<>(1, 1) .input_origin({-4}) .input_shape({3}) .output_identity_transform() .Finalize() .value()}, R{{0}, IndexTransformBuilder<>(1, 1) .input_origin({-1}) .input_shape({3}) .output_identity_transform() .Finalize() .value()})); } TEST(PartitionIndexTransformOverRegularGrid, DiagonalStridedDimensions) { const auto results = GetPartitions({0, 1}, {10, 8}, IndexTransformBuilder<>(1, 2) .input_origin({-4}) .input_shape({6}) .output_single_input_dimension(0, 5, 3, 0) .output_single_input_dimension(1, 7, -2, 0) .Finalize() .value()); EXPECT_THAT( results, ElementsAre( R{{-1, 1}, IndexTransformBuilder<>(1, 1) .input_origin({-4}) .input_shape({3}) .output_identity_transform() .Finalize() .value()}, R{{0, 1}, IndexTransformBuilder<>(1, 1) .input_origin({-1}) .input_shape({1}) .output_identity_transform() .Finalize() .value()}, R{{0, 0}, IndexTransformBuilder<>(1, 1) .input_origin({0}) .input_shape({2}) .output_identity_transform() .Finalize() .value()})); } TEST(PartitionIndexTransformOverRegularGrid, SingleIndexArrayDimension) { const auto results = GetPartitions({0}, {3}, IndexTransformBuilder<>(1, 1) .input_origin({100}) .input_shape({8}) .output_index_array( 0, 0, 1, MakeArray<Index>({1, 2, 3, 4, 5, 6, 7, 8})) .Finalize() .value()); EXPECT_THAT( results, ElementsAre( R{{0}, IndexTransformBuilder<>(1, 1) .input_origin({0}) .input_shape({2}) .output_index_array(0, 0, 1, MakeArray<Index>({100, 101})) .Finalize() .value()}, R{{1}, IndexTransformBuilder<>(1, 1) .input_origin({0}) .input_shape({3}) .output_index_array(0, 0, 1, MakeArray<Index>({102, 103, 104})) .Finalize() .value()}, R{{2}, IndexTransformBuilder<>(1, 1) .input_origin({0}) .input_shape({3}) .output_index_array(0, 0, 1, MakeArray<Index>({105, 106, 107})) .Finalize() .value()})); } TEST(PartitionIndexTransformOverRegularGrid, SingleIndexArrayDimensionStrided) { const auto results = GetPartitions( {0}, {10}, IndexTransformBuilder<>(1, 1) .input_origin({100}) .input_shape({6}) .output_index_array(0, 5, 3, MakeArray<Index>({10, 3, 4, -5, -6, 11})) .Finalize() .value()); EXPECT_THAT( results, ElementsAre( R{{-2}, IndexTransformBuilder<>(1, 1) .input_origin({0}) .input_shape({1}) .output_index_array(0, 0, 1, MakeArray<Index>({104})) .Finalize() .value()}, R{{-1}, IndexTransformBuilder<>(1, 1) .input_origin({0}) .input_shape({1}) .output_index_array(0, 0, 1, MakeArray<Index>({103})) .Finalize() .value()}, R{{1}, IndexTransformBuilder<>(1, 1) .input_origin({0}) .input_shape({2}) .output_index_array(0, 0, 1, MakeArray<Index>({101, 102})) .Finalize() .value()}, R{{3}, IndexTransformBuilder<>(1, 1) .input_origin({0}) .input_shape({2}) .output_index_array(0, 0, 1, MakeArray<Index>({100, 105})) .Finalize() .value()})); } TEST(PartitionIndexTransformOverRegularGrid, TwoIndexArrayDimensions) { const auto results = GetPartitions( {0, 1}, {10, 8}, IndexTransformBuilder<>(1, 2) .input_origin({100}) .input_shape({6}) .output_index_array(0, 5, 3, MakeArray<Index>({10, 3, 4, -5, -6, 11})) .output_index_array(1, 4, -2, MakeArray<Index>({5, 1, 7, -3, -2, 5})) .Finalize() .value()); EXPECT_THAT( results, ElementsAre( R{{-2, 1}, IndexTransformBuilder<>(1, 1) .input_origin({0}) .input_shape({1}) .output_index_array(0, 0, 1, MakeArray<Index>({104})) .Finalize() .value()}, R{{-1, 1}, IndexTransformBuilder<>(1, 1) .input_origin({0}) .input_shape({1}) .output_index_array(0, 0, 1, MakeArray<Index>({103})) .Finalize() .value()}, R{{1, -2}, IndexTransformBuilder<>(1, 1) .input_origin({0}) .input_shape({1}) .output_index_array(0, 0, 1, MakeArray<Index>({102})) .Finalize() .value()}, R{{1, 0}, IndexTransformBuilder<>(1, 1) .input_origin({0}) .input_shape({1}) .output_index_array(0, 0, 1, MakeArray<Index>({101})) .Finalize() .value()}, R{{3, -1}, IndexTransformBuilder<>(1, 1) .input_origin({0}) .input_shape({2}) .output_index_array(0, 0, 1, MakeArray<Index>({100, 105})) .Finalize() .value()})); } TEST(PartitionIndexTransformOverRegularGrid, IndexArrayAndStridedDimensions) { const auto results = GetPartitions( {0, 1}, {10, 8}, IndexTransformBuilder<>(2, 2) .input_origin({-4, 100}) .input_shape({6, 3}) .output_index_array(0, 5, 3, MakeArray<Index>({{10, 3, 4}})) .output_single_input_dimension(1, 4, -2, 0) .Finalize() .value()); EXPECT_THAT( results, ElementsAre( R{{1, 1}, IndexTransformBuilder<>(2, 2) .input_origin({0, -4}) .input_shape({2, 3}) .output_single_input_dimension(0, 1) .output_index_array(1, 0, 1, MakeArray<Index>({{101}, {102}})) .Finalize() .value()}, R{{1, 0}, IndexTransformBuilder<>(2, 2) .input_origin({0, -1}) .input_shape({2, 3}) .output_single_input_dimension(0, 1) .output_index_array(1, 0, 1, MakeArray<Index>({{101}, {102}})) .Finalize() .value()}, R{{3, 1}, IndexTransformBuilder<>(2, 2) .input_origin({0, -4}) .input_shape({1, 3}) .output_single_input_dimension(0, 1) .output_index_array(1, 0, 1, MakeArray<Index>({{100}})) .Finalize() .value()}, R{{3, 0}, IndexTransformBuilder<>(2, 2) .input_origin({0, -1}) .input_shape({1, 3}) .output_single_input_dimension(0, 1) .output_index_array(1, 0, 1, MakeArray<Index>({{100}})) .Finalize() .value()})); } std::vector<R> GetIrregularPartitions( const std::vector<DimensionIndex>& grid_output_dimensions, const IrregularGrid& grid, IndexTransformView<> transform) { std::vector<R> results; TENSORSTORE_CHECK_OK(tensorstore::internal::PartitionIndexTransformOverGrid( grid_output_dimensions, grid, transform, [&](tensorstore::span<const Index> grid_cell_indices, IndexTransformView<> cell_transform) { results.emplace_back(std::vector<Index>(grid_cell_indices.begin(), grid_cell_indices.end()), IndexTransform<>(cell_transform)); return absl::OkStatus(); })); return results; } TEST(PartitionIndexTransformOverIrregularGrid, TwoDimensionalIdentity) { const std::vector<DimensionIndex> grid_output_dimensions{0, 1}; std::vector<Index> dimension0{15}; std::vector<Index> dimension1{-10, 10, 100}; IrregularGrid grid({dimension0, dimension1}); std::vector<R> results = GetIrregularPartitions(grid_output_dimensions, grid, IndexTransformBuilder<>(2, 2) .input_origin({0, 0}) .input_shape({30, 30}) .output_identity_transform() .Finalize() .value()); EXPECT_THAT( results, ElementsAre( R{{-1, 0}, IndexTransformBuilder<>(2, 2) .input_origin({0, 0}) .input_shape({15, 10}) .output_identity_transform() .Finalize() .value()}, R{{-1, 1}, IndexTransformBuilder<>(2, 2) .input_origin({0, 10}) .input_shape({15, 20}) .output_identity_transform() .Finalize() .value()}, R{{0, 0}, IndexTransformBuilder<>(2, 2) .input_origin({15, 0}) .input_shape({15, 10}) .output_identity_transform() .Finalize() .value()}, R{{0, 1}, IndexTransformBuilder<>(2, 2) .input_origin({15, 10}) .input_shape({15, 20}) .output_identity_transform() .Finalize() .value()} )); } TEST(PartitionIndexTransformOverIrregularGrid, IndexArrayAndStridedDimensions) { std::vector<Index> dimension0{10, 15, 20, 30, 50}; std::vector<Index> dimension1{0, 1, 5, 10, 13}; IrregularGrid grid({dimension0, dimension1}); std::vector<R> results = GetIrregularPartitions( {0, 1}, grid, IndexTransformBuilder<>(2, 2) .input_origin({-4, 100}) .input_shape({6, 3}) .output_index_array(0, 5, 3, MakeArray<Index>({{10, 3, 4}})) .output_single_input_dimension(1, 4, -2, 0) .Finalize() .value()); EXPECT_THAT( results, ElementsAre(R{{0, 3}, IndexTransformBuilder<>(2, 2) .input_origin({0, -4}) .input_shape({1, 2}) .output_single_input_dimension(0, 1) .output_index_array(1, 0, 1, MakeArray<Index>({{101}})) .Finalize() .value()}, R{{0, 2}, IndexTransformBuilder<>(2, 2) .input_origin({0, -2}) .input_shape({1, 2}) .output_single_input_dimension(0, 1) .output_index_array(1, 0, 1, MakeArray<Index>({{101}})) .Finalize() .value()}, R{{0, 1}, IndexTransformBuilder<>(2, 2) .input_origin({0, 0}) .input_shape({1, 2}) .output_single_input_dimension(0, 1) .output_index_array(1, 0, 1, MakeArray<Index>({{101}})) .Finalize() .value()}, R{{1, 3}, IndexTransformBuilder<>(2, 2) .input_origin({0, -4}) .input_shape({1, 2}) .output_single_input_dimension(0, 1) .output_index_array(1, 0, 1, MakeArray<Index>({{102}})) .Finalize() .value()}, R{{1, 2}, IndexTransformBuilder<>(2, 2) .input_origin({0, -2}) .input_shape({1, 2}) .output_single_input_dimension(0, 1) .output_index_array(1, 0, 1, MakeArray<Index>({{102}})) .Finalize() .value()}, R{{1, 1}, IndexTransformBuilder<>(2, 2) .input_origin({0, 0}) .input_shape({1, 2}) .output_single_input_dimension(0, 1) .output_index_array(1, 0, 1, MakeArray<Index>({{102}})) .Finalize() .value()}, R{{3, 3}, IndexTransformBuilder<>(2, 2) .input_origin({0, -4}) .input_shape({1, 2}) .output_single_input_dimension(0, 1) .output_index_array(1, 0, 1, MakeArray<Index>({{100}})) .Finalize() .value()}, R{{3, 2}, IndexTransformBuilder<>(2, 2) .input_origin({0, -2}) .input_shape({1, 2}) .output_single_input_dimension(0, 1) .output_index_array(1, 0, 1, MakeArray<Index>({{100}})) .Finalize() .value()}, R{{3, 1}, IndexTransformBuilder<>(2, 2) .input_origin({0, 0}) .input_shape({1, 2}) .output_single_input_dimension(0, 1) .output_index_array(1, 0, 1, MakeArray<Index>({{100}})) .Finalize() .value()} )); } } namespace get_grid_cell_ranges_tests { using R = Box<>; Result<std::vector<R>> GetRanges( tensorstore::span<const DimensionIndex> grid_output_dimensions, BoxView<> grid_bounds, OutputToGridCellFn output_to_grid_cell, IndexTransformView<> transform) { std::vector<R> results; IndexTransformGridPartition grid_partition; TENSORSTORE_RETURN_IF_ERROR(PrePartitionIndexTransformOverGrid( transform, grid_output_dimensions, output_to_grid_cell, grid_partition)); TENSORSTORE_RETURN_IF_ERROR(GetGridCellRanges( grid_output_dimensions, grid_bounds, output_to_grid_cell, transform, [&](BoxView<> bounds) -> absl::Status { results.emplace_back(bounds); return absl::OkStatus(); })); return results; } TEST(GetGridCellRangesTest, Rank0) { EXPECT_THAT(GetRanges({}, {}, RegularGridRef{{}}, IndexTransformBuilder(0, 0).Finalize().value()), ::testing::Optional(ElementsAre(R{}))); } TEST(GetGridCellRangesTest, Rank1Unconstrained) { EXPECT_THAT(GetRanges({{0}}, Box<>{{0}, {10}}, RegularGridRef{{{5}}}, IndexTransformBuilder(1, 1) .input_shape({50}) .output_identity_transform() .Finalize() .value()), ::testing::Optional(ElementsAre(R{{0}, {10}}))); } TEST(GetGridCellRangesTest, Rank1Constrained) { EXPECT_THAT(GetRanges({{0}}, Box<>{{0}, {10}}, RegularGridRef{{{5}}}, IndexTransformBuilder(1, 1) .input_origin({7}) .input_shape({30}) .output_identity_transform() .Finalize() .value()), ::testing::Optional(ElementsAre(R({1}, {7})))); } TEST(GetGridCellRangesTest, Rank2ConstrainedBothDims) { EXPECT_THAT(GetRanges({{0, 1}}, Box<>{{0, 0}, {5, 10}}, RegularGridRef{{{5, 10}}}, IndexTransformBuilder(2, 2) .input_origin({6, 7}) .input_shape({8, 30}) .output_identity_transform() .Finalize() .value()), ::testing::Optional(ElementsAre( R{{1, 0}, {1, 4}}, R{{2, 0}, {1, 4}} ))); } TEST(GetGridCellRangesTest, Rank2ConstrainedFirstDimOnly) { EXPECT_THAT(GetRanges({{0, 1}}, Box<>{{0, 0}, {5, 10}}, RegularGridRef{{{5, 5}}}, IndexTransformBuilder(2, 2) .input_origin({6, 0}) .input_shape({8, 50}) .output_identity_transform() .Finalize() .value()), ::testing::Optional(ElementsAre(R{{1, 0}, {2, 10}}))); } TEST(GetGridCellRangesTest, Rank2ConstrainedSecondDimOnly) { EXPECT_THAT(GetRanges({{0, 1}}, Box<>{{0, 0}, {5, 10}}, RegularGridRef{{{5, 5}}}, IndexTransformBuilder(2, 2) .input_origin({0, 7}) .input_shape({25, 30}) .output_identity_transform() .Finalize() .value()), ::testing::Optional(ElementsAre( R{{0, 1}, {1, 7}}, R{{1, 1}, {1, 7}}, R{{2, 1}, {1, 7}}, R{{3, 1}, {1, 7}}, R{{4, 1}, {1, 7}} ))); } TEST(GetGridCellRangesTest, Rank2IndexArrayFirstDimUnconstrainedSecondDim) { EXPECT_THAT( GetRanges( {{0, 1}}, Box<>{{0, 0}, {5, 10}}, RegularGridRef{{{5, 5}}}, IndexTransformBuilder(2, 2) .input_origin({0, 0}) .input_shape({3, 50}) .output_index_array(0, 0, 1, MakeArray<Index>({{6}, {15}, {20}})) .output_single_input_dimension(1, 1) .Finalize() .value()), ::testing::Optional(ElementsAre( R{{1, 0}, {1, 10}}, R{{3, 0}, {2, 10}} ))); } TEST(GetGridCellRangesTest, Rank2IndexArrayFirstDimConstrainedSecondDim) { EXPECT_THAT( GetRanges( {{0, 1}}, Box<>{{0, 0}, {5, 10}}, RegularGridRef{{{5, 5}}}, IndexTransformBuilder(2, 2) .input_origin({0, 7}) .input_shape({3, 30}) .output_index_array(0, 0, 1, MakeArray<Index>({{6}, {15}, {20}})) .output_single_input_dimension(1, 1) .Finalize() .value()), ::testing::Optional(ElementsAre( R{{1, 1}, {1, 7}}, R{{3, 1}, {1, 7}}, R{{4, 1}, {1, 7}} ))); } TEST(GetGridCellRangesTest, Rank2Diagonal) { EXPECT_THAT(GetRanges({{0, 1}}, Box<>{{0, 0}, {5, 10}}, RegularGridRef{{{5, 10}}}, IndexTransformBuilder(1, 2) .input_origin({6}) .input_shape({8}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 0) .Finalize() .value()), ::testing::Optional(ElementsAre( R{{1, 0}, {1, 1}}, R{{2, 1}, {1, 1}} ))); } } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/grid_partition.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/grid_partition_test.cc
4f887a6430414cd6088e1743555015b10f116d50
e97785da-47c3-461f-9298-9579bfd4fba6
cpp
google/arolla
frame_iter
arolla/qtype/array_like/frame_iter.cc
arolla/qtype/array_like/frame_iter_test.cc
#include "arolla/qtype/array_like/frame_iter.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "arolla/memory/frame.h" #include "arolla/memory/raw_buffer_factory.h" #include "arolla/qtype/array_like/array_like_qtype.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/typed_ref.h" #include "arolla/util/status_macros_backport.h" namespace arolla { namespace { absl::StatusOr<std::vector<std::unique_ptr<BatchToFramesCopier>>> CreateInputCopiers(absl::Span<const TypedRef> input_arrays, absl::Span<const TypedSlot> input_scalar_slots) { if (input_arrays.size() != input_scalar_slots.size()) { return absl::InvalidArgumentError( absl::StrFormat("size of input_arrays and input_scalar_slots should be " "the same: %d vs %d", input_arrays.size(), input_scalar_slots.size())); } absl::flat_hash_map<QTypePtr, std::unique_ptr<BatchToFramesCopier>> input_copiers; for (size_t i = 0; i < input_arrays.size(); ++i) { QTypePtr array_type = input_arrays[i].GetType(); if (!input_copiers.contains(array_type)) { ASSIGN_OR_RETURN(input_copiers[array_type], CreateBatchToFramesCopier(array_type)); } RETURN_IF_ERROR(input_copiers[array_type]->AddMapping( input_arrays[i], input_scalar_slots[i])); } std::vector<std::unique_ptr<BatchToFramesCopier>> input_copiers_vector; for (auto& [_, v] : input_copiers) input_copiers_vector.push_back(std::move(v)); return input_copiers_vector; } absl::StatusOr<std::vector<std::unique_ptr<BatchFromFramesCopier>>> CreateOutputCopiers(absl::Span<const TypedSlot> output_array_slots, absl::Span<const TypedSlot> output_scalar_slots, RawBufferFactory* buffer_factory) { if (output_array_slots.size() != output_scalar_slots.size()) { return absl::InvalidArgumentError(absl::StrFormat( "size of output_array_slots and output_scalar_slots should be " "the same: %d vs %d", output_array_slots.size(), output_scalar_slots.size())); } absl::flat_hash_map<QTypePtr, std::unique_ptr<BatchFromFramesCopier>> output_copiers; for (size_t i = 0; i < output_array_slots.size(); ++i) { QTypePtr array_type = output_array_slots[i].GetType(); if (!output_copiers.contains(array_type)) { ASSIGN_OR_RETURN(output_copiers[array_type], CreateBatchFromFramesCopier(array_type, buffer_factory)); } RETURN_IF_ERROR(output_copiers[array_type]->AddMapping( output_scalar_slots[i], output_array_slots[i])); } std::vector<std::unique_ptr<BatchFromFramesCopier>> output_copiers_vector; for (auto& [_, v] : output_copiers) output_copiers_vector.push_back(std::move(v)); return output_copiers_vector; } } absl::StatusOr<FrameIterator> FrameIterator::Create( absl::Span<const TypedRef> input_arrays, absl::Span<const TypedSlot> input_scalar_slots, absl::Span<const TypedSlot> output_array_slots, absl::Span<const TypedSlot> output_scalar_slots, const FrameLayout* scalar_layout, FrameIterator::Options options) { ASSIGN_OR_RETURN( std::vector<std::unique_ptr<BatchToFramesCopier>> input_copiers, CreateInputCopiers(input_arrays, input_scalar_slots)); RawBufferFactory* buf_factory = options.buffer_factory; if (!buf_factory) buf_factory = GetHeapBufferFactory(); ASSIGN_OR_RETURN( std::vector<std::unique_ptr<BatchFromFramesCopier>> output_copiers, CreateOutputCopiers(output_array_slots, output_scalar_slots, buf_factory)); std::optional<int64_t> row_count = std::nullopt; for (const auto& copier : input_copiers) { if (!copier->row_count() || (row_count && *row_count != *copier->row_count())) { return absl::InvalidArgumentError( absl::StrFormat("input arrays have different sizes: %d vs %d", *row_count, *copier->row_count())); } row_count = copier->row_count(); } if (!row_count.has_value()) { if (!options.row_count.has_value()) { return absl::InvalidArgumentError( "options.row_count can not be missed if there is no input arrays"); } row_count = options.row_count; } else if (options.row_count.has_value() && *options.row_count != *row_count) { return absl::InvalidArgumentError( absl::StrFormat("sizes of input arrays don't correspond " "to options.row_count: %d vs %d", *row_count, *options.row_count)); } return FrameIterator(std::move(input_copiers), std::move(output_copiers), *row_count, options.frame_buffer_count, scalar_layout); } FrameIterator::FrameIterator( std::vector<std::unique_ptr<BatchToFramesCopier>>&& input_copiers, std::vector<std::unique_ptr<BatchFromFramesCopier>>&& output_copiers, size_t row_count, size_t frame_buffer_count, const FrameLayout* scalar_layout) : row_count_(row_count), input_copiers_(std::move(input_copiers)), output_copiers_(std::move(output_copiers)), scalar_layout_(scalar_layout) { frame_buffer_count = std::min(row_count, frame_buffer_count); dense_scalar_layout_size_ = (scalar_layout_->AllocSize() + 7) & ~7; buffer_.resize(dense_scalar_layout_size_ * frame_buffer_count); for (size_t i = 0; i < frame_buffer_count; ++i) { void* alloc_ptr = GetAllocByIndex(i); scalar_layout->InitializeAlignedAlloc(alloc_ptr); frames_.emplace_back(alloc_ptr, scalar_layout); const_frames_.emplace_back(alloc_ptr, scalar_layout); } for (auto& copier : input_copiers_) copier->Start(); for (auto& copier : output_copiers_) copier->Start(row_count); } FrameIterator::~FrameIterator() { for (size_t i = 0; i < frames_.size(); ++i) { scalar_layout_->DestroyAlloc(GetAllocByIndex(i)); } } absl::Status FrameIterator::StoreOutput(FramePtr output_frame) { for (std::unique_ptr<BatchFromFramesCopier>& copier : output_copiers_) { RETURN_IF_ERROR(copier->Finalize(output_frame)); } return absl::OkStatus(); } void FrameIterator::PreloadFrames(size_t frames_count) { for (auto& copier : input_copiers_) { copier->CopyNextBatch({frames_.data(), frames_count}); } } void FrameIterator::SaveOutputsOfProcessedFrames(size_t frames_count) { for (auto& copier : output_copiers_) { absl::Status status = copier->CopyNextBatch({const_frames_.data(), frames_count}); DCHECK_OK(status); } } }
#include "arolla/qtype/array_like/frame_iter.h" #include <cstdint> #include <optional> #include <utility> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "arolla/dense_array/dense_array.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/memory/frame.h" #include "arolla/memory/memory_allocation.h" #include "arolla/memory/optional_value.h" #include "arolla/qtype/typed_ref.h" #include "arolla/qtype/typed_slot.h" #include "arolla/util/threading.h" namespace arolla { namespace { using ::absl_testing::StatusIs; using ::testing::ElementsAre; using ::testing::HasSubstr; using ::testing::Test; TEST(FrameIterator, Iterate) { FrameLayout::Builder scalar_bldr; auto scalar_f_slot1 = scalar_bldr.AddSlot<OptionalValue<float>>(); auto scalar_i_slot1 = scalar_bldr.AddSlot<OptionalValue<int64_t>>(); auto scalar_i_slot2 = scalar_bldr.AddSlot<OptionalValue<int64_t>>(); auto scalar_f_slot2 = scalar_bldr.AddSlot<OptionalValue<float>>(); auto scalar_layout = std::move(scalar_bldr).Build(); std::vector<TypedSlot> scalar_slots = { TypedSlot::FromSlot(scalar_f_slot1), TypedSlot::FromSlot(scalar_i_slot1), TypedSlot::FromSlot(scalar_i_slot2), TypedSlot::FromSlot(scalar_f_slot2)}; DenseArray<float> arr_f1 = CreateDenseArray<float>({1.5, std::nullopt, 2.5, 3.5}); DenseArray<int64_t> arr_i1 = CreateDenseArray<int64_t>({3, 4, 5, 6}); DenseArray<int64_t> arr_i2 = CreateDenseArray<int64_t>({2, std::nullopt, 0, std::nullopt}); DenseArray<float> arr_f2 = CreateDenseArray<float>({3.2, 2.2, std::nullopt, 1.2}); FrameLayout::Builder vector_bldr; auto arr_output_f1 = vector_bldr.AddSlot<DenseArray<float>>(); auto arr_output_i1 = vector_bldr.AddSlot<DenseArray<int64_t>>(); auto arr_output_i2 = vector_bldr.AddSlot<DenseArray<int64_t>>(); auto arr_output_f2 = vector_bldr.AddSlot<DenseArray<float>>(); auto output_vector_layout = std::move(vector_bldr).Build(); std::vector<TypedRef> input_refs = { TypedRef::FromValue(arr_f1), TypedRef::FromValue(arr_i1), TypedRef::FromValue(arr_i2), TypedRef::FromValue(arr_f2)}; std::vector<TypedSlot> output_slots = { TypedSlot::FromSlot(arr_output_f1), TypedSlot::FromSlot(arr_output_i1), TypedSlot::FromSlot(arr_output_i2), TypedSlot::FromSlot(arr_output_f2)}; auto scalar_processing_fn = [&](FramePtr frame) { OptionalValue<float> f1 = frame.Get(scalar_f_slot1); OptionalValue<float> f2 = frame.Get(scalar_f_slot2); if (f1.present) frame.Set(scalar_f_slot1, f1.value + 1.0); if (f2.present) frame.Set(scalar_f_slot2, f2.value + 2.0); OptionalValue<int64_t> i1 = frame.Get(scalar_i_slot1); OptionalValue<int64_t> i2 = frame.Get(scalar_i_slot2); if (i1.present) frame.Set(scalar_i_slot1, i1.value + 3); if (i2.present) frame.Set(scalar_i_slot2, i2.value + 4); }; auto check_output_fn = [&](FrameIterator& frame_iterator) { MemoryAllocation alloc(&output_vector_layout); FramePtr output_frame = alloc.frame(); EXPECT_OK(frame_iterator.StoreOutput(output_frame)); EXPECT_THAT(output_frame.Get(arr_output_f1), ElementsAre(2.5, std::nullopt, 3.5, 4.5)); EXPECT_THAT(output_frame.Get(arr_output_f2), ElementsAre(5.2, 4.2, std::nullopt, 3.2)); EXPECT_THAT(output_frame.Get(arr_output_i1), ElementsAre(6, 7, 8, 9)); EXPECT_THAT(output_frame.Get(arr_output_i2), ElementsAre(6, std::nullopt, 4, std::nullopt)); }; { ASSERT_OK_AND_ASSIGN( auto frame_iterator, FrameIterator::Create(input_refs, scalar_slots, output_slots, scalar_slots, &scalar_layout, {.frame_buffer_count = 2})); frame_iterator.ForEachFrame(scalar_processing_fn); check_output_fn(frame_iterator); } StdThreading threading(4); for (int threads = 1; threads <= 4; ++threads) { ASSERT_OK_AND_ASSIGN( auto frame_iterator, FrameIterator::Create(input_refs, scalar_slots, output_slots, scalar_slots, &scalar_layout, {.frame_buffer_count = 3})); frame_iterator.ForEachFrame(scalar_processing_fn, threading, threads); check_output_fn(frame_iterator); } } TEST(FrameIterator, EmptyArrays) { FrameLayout::Builder scalar_bldr; auto scalar_slot = scalar_bldr.AddSlot<OptionalValue<float>>(); auto scalar_layout = std::move(scalar_bldr).Build(); std::vector<TypedSlot> scalar_slots = {TypedSlot::FromSlot(scalar_slot)}; FrameLayout::Builder arrays_layout_bldr; auto arr_output = arrays_layout_bldr.AddSlot<DenseArray<float>>(); auto output_arrays_layout = std::move(arrays_layout_bldr).Build(); DenseArray<float> arr; std::vector<TypedRef> input_refs = {TypedRef::FromValue(arr)}; std::vector<TypedSlot> output_slots = {TypedSlot::FromSlot(arr_output)}; auto scalar_processing_fn = [&](FramePtr frame) { ADD_FAILURE(); }; ASSERT_OK_AND_ASSIGN(auto frame_iterator, FrameIterator::Create( input_refs, scalar_slots, output_slots, scalar_slots, &scalar_layout, {.frame_buffer_count = 2})); frame_iterator.ForEachFrame(scalar_processing_fn); MemoryAllocation alloc(&output_arrays_layout); FramePtr output_frame = alloc.frame(); EXPECT_OK(frame_iterator.StoreOutput(output_frame)); EXPECT_EQ(output_frame.Get(arr_output).size(), 0); } TEST(FrameIterator, EmptyInputAndOutput) { FrameLayout::Builder scalar_bldr; auto scalar_layout = std::move(scalar_bldr).Build(); { auto frame_iterator_or_status = FrameIterator::Create({}, {}, {}, {}, &scalar_layout); EXPECT_THAT( frame_iterator_or_status, StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("options.row_count can not be missed if there " "is no input arrays"))); } { ASSERT_OK_AND_ASSIGN(auto frame_iterator, FrameIterator::Create({}, {}, {}, {}, &scalar_layout, {.row_count = 4})); EXPECT_EQ(frame_iterator.row_count(), 4); } } TEST(FrameIterator, IncorrectInputType) { FrameLayout::Builder scalar_bldr; auto scalar_slot = scalar_bldr.AddSlot<float>(); auto scalar_layout = std::move(scalar_bldr).Build(); std::vector<TypedSlot> scalar_slots = {TypedSlot::FromSlot(scalar_slot)}; DenseArray<int64_t> arr = CreateDenseArray<int64_t>({1, std::nullopt, 2, 3}); auto frame_iterator_or_status = FrameIterator::Create( {TypedRef::FromValue(arr)}, scalar_slots, {}, {}, &scalar_layout); EXPECT_THAT(frame_iterator_or_status, StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("slot type does not match"))); } TEST(FrameIterator, IncorrectOutputType) { FrameLayout::Builder vector_bldr; auto vector_slot = vector_bldr.AddSlot<DenseArray<float>>(); auto vector_layout = std::move(vector_bldr).Build(); FrameLayout::Builder scalar_bldr; auto scalar_slot = scalar_bldr.AddSlot<int64_t>(); auto scalar_layout = std::move(scalar_bldr).Build(); auto frame_iterator_or_status = FrameIterator::Create({}, {}, {TypedSlot::FromSlot(vector_slot)}, {TypedSlot::FromSlot(scalar_slot)}, &scalar_layout); EXPECT_THAT(frame_iterator_or_status, StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("slot type does not match"))); } TEST(FrameIterator, WrongSize) { FrameLayout::Builder scalar_bldr; auto scalar_f_slot1 = scalar_bldr.AddSlot<OptionalValue<float>>(); auto scalar_i_slot1 = scalar_bldr.AddSlot<OptionalValue<int64_t>>(); auto scalar_layout = std::move(scalar_bldr).Build(); std::vector<TypedSlot> scalar_slots = {TypedSlot::FromSlot(scalar_f_slot1), TypedSlot::FromSlot(scalar_i_slot1)}; DenseArray<float> arr_f1 = CreateDenseArray<float>({1.5, std::nullopt, 2.5, 3.5}); DenseArray<int64_t> arr_i1 = CreateDenseArray<int64_t>({3, 4, 5}); auto frame_iterator_or_status = FrameIterator::Create( {TypedRef::FromValue(arr_f1), TypedRef::FromValue(arr_i1)}, scalar_slots, {}, {}, &scalar_layout); EXPECT_THAT(frame_iterator_or_status, StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("input arrays have different sizes"))); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qtype/array_like/frame_iter.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qtype/array_like/frame_iter_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
c5c247b6-696e-48cf-bbe8-95daf7a893d3
cpp
tensorflow/tensorflow
gemm_rewriter
third_party/xla/xla/service/gpu/transforms/gemm_rewriter.cc
third_party/xla/xla/service/gpu/transforms/gemm_rewriter_test.cc
#include "xla/service/gpu/transforms/gemm_rewriter.h" #include <algorithm> #include <array> #include <cmath> #include <cstddef> #include <cstdint> #include <initializer_list> #include <limits> #include <memory> #include <numeric> #include <optional> #include <tuple> #include <utility> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/evaluator/hlo_evaluator.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/permutation_util.h" #include "xla/primitive_util.h" #include "xla/service/algorithm_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/pattern_matcher.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/blas.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/gpu/gpu_blas_lt.h" #include "xla/stream_executor/semantic_version.h" #include "xla/tsl/protobuf/dnn.pb.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/ml_dtypes.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { namespace m = match; absl::Status SetName(HloModule *module, HloInstruction *gemm) { if (IsCublasLtMatmul(*gemm)) { module->SetAndUniquifyInstrName(gemm, "cublas-lt-matmul"); return absl::OkStatus(); } TF_ASSIGN_OR_RETURN(GpuBackendConfig gpu_config, gemm->backend_config<GpuBackendConfig>()); const GemmBackendConfig &config = gpu_config.gemm_backend_config(); const DotDimensionNumbers &dot_dims = config.dot_dimension_numbers(); bool is_batch_dot = !dot_dims.lhs_batch_dimensions().empty() || !dot_dims.rhs_batch_dimensions().empty(); module->SetAndUniquifyInstrName( gemm, is_batch_dot ? "cublas-batch-gemm" : "cublas-gemm"); return absl::OkStatus(); } bool SupportsEpilogueFusion(PrimitiveType type) { switch (type) { case F8E4M3FN: case F8E5M2: case F16: case BF16: case F32: case F64: return true; default: return false; } } bool IsF8Type(const HloInstruction *instr) { return primitive_util::IsF8Type(instr->shape().element_type()); } Shape PadShapeToMultipleOf16(const Shape old_shape, const absl::Span<const int64_t> batch_dims) { Shape padded_shape = old_shape; for (int i = 0; i < old_shape.rank(); ++i) { if (!absl::c_linear_search(batch_dims, i)) { int64_t padded_dimension = RoundUpTo<int64_t>(old_shape.dimensions(i), 16); padded_shape.set_dimensions(i, padded_dimension); } } return padded_shape; } HloInstruction *PadOperandToTargetShape(const Shape &target, HloInstruction *x) { if (ShapeUtil::Equal(target, x->shape()) || !ShapeUtil::SameElementType(x->shape(), target)) { return x; } PaddingConfig padding_config; for (int i = 0; i < x->shape().rank(); ++i) { auto dimension = padding_config.add_dimensions(); dimension->set_edge_padding_low(0); dimension->set_edge_padding_high(target.dimensions(i) - x->shape().dimensions(i)); dimension->set_interior_padding(0); } HloInstruction *zero = x->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(x->shape().element_type()))); return x->AddInstruction( HloInstruction::CreatePad(target, x, zero, padding_config)); } HloInstruction *PadOperandToMultipleOf16(absl::Span<const int64_t> batch_dims, HloInstruction *x) { Shape padded_shape = PadShapeToMultipleOf16(x->shape(), batch_dims); return PadOperandToTargetShape(padded_shape, x); } absl::StatusOr<HloInstruction *> InvertAndConvertScalar(HloInstruction *scalar, bool invert) { DCHECK(ShapeUtil::IsScalar(scalar->shape())); if (invert) { Literal one_literal = LiteralUtil::One(scalar->shape().element_type()); HloInstruction *one = scalar->parent()->AddInstruction( HloInstruction::CreateConstant(one_literal.Clone())); TF_ASSIGN_OR_RETURN(scalar, MakeBinaryHlo(HloOpcode::kDivide, one, scalar, &scalar->metadata())); } if (scalar->shape().element_type() != F32) { scalar = MakeConvertToHlo(scalar, F32, &scalar->metadata()); } return scalar; } using InstrPath = std::vector<std::pair<HloInstruction *, int>>; std::optional<InstrPath> FindF8SubgraphRecursive( HloInstruction *instr, absl::flat_hash_set<int> &visited_instrs) { if (!visited_instrs.emplace(instr->unique_id()).second) { return std::nullopt; } if (IsF8Type(instr)) { return InstrPath{{instr, -1}}; } if (instr->operand_count() == 1 || instr->opcode() == HloOpcode::kDivide || instr->opcode() == HloOpcode::kDynamicSlice || instr->opcode() == HloOpcode::kPad) { std::optional<InstrPath> subgraph = FindF8SubgraphRecursive(instr->mutable_operand(0), visited_instrs); if (subgraph) { subgraph->emplace_back(std::make_pair(instr, 0)); } return subgraph; } else if (instr->opcode() == HloOpcode::kMultiply || instr->opcode() == HloOpcode::kSelect) { for (int k = 0; k < 2; ++k) { int operand_idx = k + (instr->opcode() == HloOpcode::kSelect); std::optional<InstrPath> subgraph = FindF8SubgraphRecursive( instr->mutable_operand(operand_idx), visited_instrs); if (subgraph) { subgraph->emplace_back(std::make_pair(instr, operand_idx)); return subgraph; } } } return std::nullopt; } struct MatchedFp8Param { HloInstruction *fp8_input = nullptr; HloInstruction *scale = nullptr; bool mult_scale = false; InstrPath commutative_ops; }; std::optional<MatchedFp8Param> MatchFp8Param(HloInstruction *instr) { absl::flat_hash_set<int> visited_instrs; std::optional<InstrPath> maybe_subgraph = FindF8SubgraphRecursive(instr, visited_instrs); if (!maybe_subgraph) { return std::nullopt; } InstrPath &subgraph = maybe_subgraph.value(); MatchedFp8Param param; if (subgraph.size() == 1) { CHECK(IsF8Type(subgraph[0].first)); param.fp8_input = subgraph[0].first; return param; } int num_dequant_ops; if (subgraph.size() > 2 && Match(subgraph[2].first, m::MultiplyAnyOrder(m::Convert(m::Op(&param.fp8_input)), m::Broadcast(m::Op(&param.scale))))) { param.mult_scale = true; num_dequant_ops = 2; } else if (subgraph.size() > 2 && Match(subgraph[2].first, m::Divide(m::Convert(m::Op(&param.fp8_input)), m::Broadcast(m::Op(&param.scale))))) { param.mult_scale = false; num_dequant_ops = 2; } else if (subgraph.size() > 1 && Match(subgraph[1].first, m::Convert(m::Op(&param.fp8_input)))) { param.scale = nullptr; num_dequant_ops = 1; } else { VLOG(1) << "Possible intended FP8 GEMM operating on " << instr->ToShortString() << " not rewritten into FP8 Custom Call."; return std::nullopt; } auto preserves_element_type = [](const HloInstruction *instr) -> bool { return ShapeUtil::SameElementType(instr->shape(), instr->operand(0)->shape()); }; auto use_spmd_partitioning = [](const HloInstruction *instr) -> bool { return instr->GetModule()->config().use_spmd_partitioning(); }; int start = 1 + num_dequant_ops; for (int i = start; i < subgraph.size(); ++i) { if (!Match( subgraph[i].first, m::AnyOf<HloInstruction>( m::Bitcast().WithPredicate(preserves_element_type), m::Broadcast(), m::Copy(), m::DynamicSlice(), m::Pad(), m::Reshape(), m::Select(), m::Slice(), m::Transpose(), m::AllGather().WithPredicate(use_spmd_partitioning), m::AllToAll().WithPredicate(use_spmd_partitioning), m::CollectivePermute().WithPredicate(use_spmd_partitioning)))) { VLOG(1) << "Possible intended FP8 GEMM operating on " << instr->ToShortString() << " not rewritten into FP8 Custom Call."; return std::nullopt; } if (Match(subgraph[i].first, m::Select()) && !Match(subgraph[i].first->operand(subgraph[i].second == 2 ? 1 : 2), m::Broadcast(m::ConstantScalar(0)))) { VLOG(1) << "Possible intended FP8 GEMM operating on " << instr->ToShortString() << " not rewritten into FP8 Custom Call. Select requires a zero " "operand to be exchanged with dequantization."; return std::nullopt; } } param.commutative_ops = {subgraph.begin() + start, subgraph.end()}; return param; } HloInstruction *TransposeMatrix(HloInstruction *instr, int64_t contracting_dim, absl::Span<const int64_t> batch_dims) { auto input_shape = instr->shape(); std::vector<int64_t> permutation(input_shape.dimensions_size(), -1); for (int64_t batch_dim : batch_dims) { permutation[batch_dim] = batch_dim; } int non_contracting_dim; for (int i = 0; i < input_shape.dimensions_size(); ++i) { if (permutation[i] == -1 && contracting_dim != i) { non_contracting_dim = i; } } if (Layout::Equal()(input_shape.layout(), LayoutUtil::GetDefaultLayoutForShape(input_shape))) { permutation[non_contracting_dim] = contracting_dim; permutation[contracting_dim] = non_contracting_dim; Shape new_shape = ShapeUtil::PermuteDimensions(permutation, input_shape); *new_shape.mutable_layout() = input_shape.layout(); return instr->AddInstruction( HloInstruction::CreateTranspose(new_shape, instr, permutation)); } Shape normalized_input_shape = ShapeUtil::MakeShapeWithDescendingLayoutAndSamePhysicalLayout( input_shape); auto a0 = MakeBitcastHlo(instr, normalized_input_shape); std::vector<int64_t> layout_permuation( input_shape.layout().minor_to_major().begin(), input_shape.layout().minor_to_major().end()); absl::c_reverse(layout_permuation); auto inv_perm = InversePermutation(layout_permuation); int new_contracting_dim = inv_perm[contracting_dim]; int new_non_contracting_dim = inv_perm[non_contracting_dim]; absl::c_iota(permutation, 0); std::swap(permutation[new_contracting_dim], permutation[new_non_contracting_dim]); Shape transpose_shape = ShapeUtil::PermuteDimensions(permutation, a0->shape()); *transpose_shape.mutable_layout() = a0->shape().layout(); HloInstruction *normalized_transpose = instr->AddInstruction( HloInstruction::CreateTranspose(transpose_shape, a0, permutation)); Shape final_shape = ShapeUtil::PermuteDimensions(inv_perm, transpose_shape); *final_shape.mutable_layout() = input_shape.layout(); return MakeBitcastHlo(normalized_transpose, final_shape); } HloInstruction *MaybeConstantFoldBias(HloInstruction *bias) { constexpr int kMaxMaterializeBiasBytes = 8 * 1024 * 1024; auto is_nonscalar = [](const HloInstruction *instr) { return !ShapeUtil::IsEffectiveScalar(instr->shape()); }; auto broadcast_of_nonscalar = m::Broadcast(m::Constant().WithPredicate(is_nonscalar)); if (ShapeUtil::ByteSizeOf(bias->shape()) <= kMaxMaterializeBiasBytes && (Match(bias, broadcast_of_nonscalar) || Match(bias, m::Reshape(broadcast_of_nonscalar)) || Match(bias, m::Transpose(broadcast_of_nonscalar)) || Match(bias, m::Bitcast(broadcast_of_nonscalar)))) { HloEvaluator evaluator(0); Literal result; if (evaluator.TryEvaluate( bias, &result, true)) { return bias->parent()->AddInstruction( HloInstruction::CreateConstant(std::move(result))); } } return bias; } auto Gemm(HloInstruction **instr) { return m::CustomCall(instr, {kGemmCallTarget}); } auto CublasLtMatmul(HloInstruction **instr) { return m::CustomCall(instr, {kCublasLtMatmulCallTarget}); } auto CublasLtMatmulF8(HloInstruction **instr) { return m::CustomCall(instr, {kCublasLtMatmulF8CallTarget}); } auto CublasLtMatmulMaybeF8(HloInstruction **instr) { return m::CustomCall( instr, {kCublasLtMatmulCallTarget, kCublasLtMatmulF8CallTarget}); } auto GemmOrCublasLtMatmul(HloInstruction **instr) { return m::CustomCall(instr, {kGemmCallTarget, kCublasLtMatmulCallTarget}); } auto GemmOrCublasLtMatmulMaybeF8(HloInstruction **instr) { return m::CustomCall(instr, {kGemmCallTarget, kCublasLtMatmulCallTarget, kCublasLtMatmulF8CallTarget}); } auto BcastConstScalar(HloInstruction **instr, double value) { return m::Broadcast(instr, m::ConstantScalar(value)); } auto BcastConstScalar(double value) { return BcastConstScalar(nullptr, value); } auto BcastConstScalarNear(double value) { return m::Broadcast(m::ConstantScalar().WithPredicate( [expected = value](const HloInstruction *instr) { std::optional<double> actual = xla::Cast<const HloConstantInstruction>(instr) ->literal() .GetAsDouble({}); if (!actual.has_value()) return false; double epsilon; switch (instr->shape().element_type()) { case F16: epsilon = 128 * std::numeric_limits<Eigen::half>::epsilon(); break; case BF16: epsilon = 128 * std::numeric_limits<bfloat16>::epsilon(); break; case F32: epsilon = 128 * std::numeric_limits<float>::epsilon(); break; case F64: epsilon = 128 * std::numeric_limits<double>::epsilon(); break; default: return false; } return abs(*actual - expected) < (abs(*actual + expected) * epsilon); })); } template <typename Pattern> auto OptionalSlice(HloInstruction **optional_slice, Pattern pattern) { return m::AnyOf<HloInstruction>(m::Slice(optional_slice, pattern), std::move(pattern)); } template <typename Pattern> auto OptionalConvert(HloInstruction **optional_convert, Pattern pattern) { return m::AnyOf<HloInstruction>(m::Convert(optional_convert, pattern), std::move(pattern)); } template <typename Pattern> auto OptionalBitcast(HloInstruction **optional_bitcast, Pattern pattern) { return m::AnyOf<HloInstruction>(m::Bitcast(optional_bitcast, pattern), std::move(pattern)); } class GemmRewriterVisitor : public DfsHloRewriteVisitor { public: explicit GemmRewriterVisitor(const se::GpuComputeCapability &gpu_version, se::SemanticVersion toolkit_version, const GemmRewriterOptions options) : gpu_version_(gpu_version), toolkit_version_(toolkit_version), options_(options) {} absl::Status HandleDot(HloInstruction *instr) override { if (!IsMatrixMultiplication(*instr) && !IsMatrixVectorMultiplication(*instr)) { return absl::OkStatus(); } if (Cast<HloDotInstruction>(instr)->sparse_operands()) { return absl::OkStatus(); } int64_t gemm_rewrite_size_threshold = instr->GetModule() ->config() .debug_options() .xla_gpu_gemm_rewrite_size_threshold(); TF_ASSIGN_OR_RETURN(bool is_matmul_tiny, IsMatrixMultiplicationTooSmallForRewriting( *instr, gemm_rewrite_size_threshold)); if (is_matmul_tiny && IsDotSupportedByClassicalEmitters(*instr)) { return absl::OkStatus(); } CHECK(!instr->IsRank2Transpose()); if (instr->operand(0)->IsRank2Transpose() || instr->operand(1)->IsRank2Transpose()) { return absl::OkStatus(); } TF_ASSIGN_OR_RETURN(GpuBackendConfig gpu_backend_config, instr->backend_config<GpuBackendConfig>()); GemmBackendConfig &gemm_backend_config = *gpu_backend_config.mutable_gemm_backend_config(); gemm_backend_config.set_alpha_real(1.0); gemm_backend_config.set_alpha_imag(0.0); gemm_backend_config.set_beta(0.0); *gemm_backend_config.mutable_dot_dimension_numbers() = instr->dot_dimension_numbers(); *gemm_backend_config.mutable_precision_config() = instr->precision_config(); HloInstruction *lhs = instr->mutable_operand(0); HloInstruction *rhs = instr->mutable_operand(1); auto attributes = instr->frontend_attributes().map(); gemm_backend_config.set_grad_x(attributes["grad_x"] == "true"); gemm_backend_config.set_grad_y(attributes["grad_y"] == "true"); int64_t lhs_batch_dims_size = instr->dot_dimension_numbers().lhs_batch_dimensions_size(); bool is_lhs_vector = lhs->shape().dimensions_size() == lhs_batch_dims_size + 1; bool is_rhs_vector = rhs->shape().dimensions_size() == lhs_batch_dims_size + 1; int64_t lhs_stride = is_lhs_vector ? lhs->shape().dimensions(lhs_batch_dims_size) : lhs->shape().dimensions(lhs_batch_dims_size) * lhs->shape().dimensions(lhs_batch_dims_size + 1); int64_t rhs_stride = is_rhs_vector ? rhs->shape().dimensions(lhs_batch_dims_size) : rhs->shape().dimensions(lhs_batch_dims_size) * rhs->shape().dimensions(lhs_batch_dims_size + 1); gemm_backend_config.set_lhs_stride(lhs_stride); gemm_backend_config.set_rhs_stride(rhs_stride); switch (options_.dtype) { case GemmRewriterOptions::DType::kFp8Only: { TF_ASSIGN_OR_RETURN( bool supported_by_cublaslt, GemmIsSupportedByCublasLt(*instr, gemm_backend_config)); std::optional<MatchedFp8Param> a, b; if (supported_by_cublaslt && instr->opcode() == HloOpcode::kDot && (a = MatchFp8Param( const_cast<HloInstruction *>(instr->operand(0)))) && (b = MatchFp8Param( const_cast<HloInstruction *>(instr->operand(1))))) { if (IsRocm(gpu_version_) && toolkit_version_ < stream_executor::SemanticVersion{6, 2, 0} && instr->shape().element_type() != F16 && instr->shape().element_type() != F32) { TF_ASSIGN_OR_RETURN( instr, TurnF8DotWithUnsupportedOutputTypeIntoF32(instr)); } TF_ASSIGN_OR_RETURN(bool created_call, CreateF8CustomCall(instr, gpu_backend_config, a.value(), b.value())); if (created_call) { return absl::OkStatus(); } } if (IsF8Type(instr->operand(0))) { TF_ASSIGN_OR_RETURN(instr, TurnF8DotIntoF16Dot(instr)); } break; } case GemmRewriterOptions::DType::kNonFp8Only: { TF_ASSIGN_OR_RETURN( absl::string_view gemm_custom_call_target, GetNonFp8GemmCustomCallTarget(*instr, gemm_backend_config)); const Shape &output_shape = instr->shape(); HloInstruction *gemm_call = instr->AddInstruction(HloInstruction::CreateCustomCall( output_shape, {instr->mutable_operand(0), instr->mutable_operand(1)}, gemm_custom_call_target)); TF_RETURN_IF_ERROR(gemm_call->set_backend_config(gpu_backend_config)); TF_RETURN_IF_ERROR(ReplaceInstruction(instr, gemm_call)); } break; }; return absl::OkStatus(); } absl::Status HandleMultiply(HloInstruction *instr) override { HloInstruction *alpha, *existing_gemm; if (Match(instr, m::MultiplyAnyOrder( GemmOrCublasLtMatmulMaybeF8(&existing_gemm).WithOneUser(), m::Broadcast(m::ConstantScalar(&alpha)).WithOneUser()))) { TF_ASSIGN_OR_RETURN(auto gpu_config, existing_gemm->backend_config<GpuBackendConfig>()); GemmBackendConfig &config = *gpu_config.mutable_gemm_backend_config(); if (existing_gemm->shape().element_type() == S32) { return absl::OkStatus(); } if (config.beta() == 0.0 && existing_gemm->user_count() == 1) { complex128 prev_alpha = {config.alpha_real(), config.alpha_imag()}; complex128 new_alpha = *alpha->literal().GetAsComplex128({}) * prev_alpha; config.set_alpha_real(new_alpha.real()); config.set_alpha_imag(new_alpha.imag()); TF_RETURN_IF_ERROR(existing_gemm->set_backend_config(gpu_config)); return ReplaceInstruction(instr, existing_gemm); } } HloInstruction *d_scale; if (Match(instr, m::MultiplyAnyOrder( CublasLtMatmulF8(&existing_gemm).WithOneUser(), m::Broadcast(m::Op(&d_scale)).WithOneUser()))) { return F8ScaleD(instr, existing_gemm, d_scale); } HloInstruction *cdf, *slice_or_bitcast = nullptr; if (Match(instr, m::MultiplyAnyOrder( m::AnyOf<HloInstruction>( m::Slice(&slice_or_bitcast, CublasLtMatmulMaybeF8(&existing_gemm)), m::Bitcast(&slice_or_bitcast, CublasLtMatmulMaybeF8(&existing_gemm)), CublasLtMatmulMaybeF8(&existing_gemm)), m::Op(&cdf).WithOneUser())) && Match(cdf, m::MultiplyAnyOrder( BcastConstScalar(0.5), m::AddAnyOrder( BcastConstScalar(1.0), m::Tanh( m::MultiplyAnyOrder( BcastConstScalarNear(sqrt(M_2_PI)), m::AddAnyOrder( m::Op().Is(slice_or_bitcast ? slice_or_bitcast : existing_gemm), m::MultiplyAnyOrder( BcastConstScalarNear(0.044715), m::MultiplyAnyOrder( m::Op().Is(slice_or_bitcast ? slice_or_bitcast : existing_gemm), m::MultiplyAnyOrder( m::Op().Is(slice_or_bitcast ? slice_or_bitcast : existing_gemm), m::Op().Is(slice_or_bitcast ? slice_or_bitcast : existing_gemm)) .WithOneUser()) .WithOneUser()) .WithOneUser()) .WithOneUser()) .WithOneUser()) .WithOneUser())))) { return FuseGeluActivation(instr, existing_gemm, slice_or_bitcast); } return absl::OkStatus(); } absl::Status HandleDivide(HloInstruction *instr) override { HloInstruction *existing_gemm, *d_scale; if (Match(instr, m::Divide(CublasLtMatmulF8(&existing_gemm).WithOneUser(), m::Broadcast(m::Op(&d_scale)).WithOneUser()))) { return F8ScaleD(instr, existing_gemm, d_scale); } return absl::OkStatus(); } absl::Status HandleAdd(HloInstruction *instr) override { if (options_.bias_mode == GemmRewriterOptions::BiasMode::kNoBias) { return absl::OkStatus(); } HloInstruction *bias, *existing_gemm = nullptr; HloInstruction *optional_slice = nullptr; HloInstruction *optional_convert = nullptr; HloInstruction *optional_bitcast = nullptr; if (Match(instr, m::AddAnyOrder( OptionalBitcast( &optional_bitcast, OptionalSlice( &optional_slice, CublasLtMatmulMaybeF8(&existing_gemm).WithOneUser()) .WithOneUser()) .WithOneUser(), m::Broadcast(&bias, OptionalConvert(&optional_convert, m::Op()))))) { TF_ASSIGN_OR_RETURN( bool was_fused, FuseVectorBiasAdd(instr, bias, existing_gemm, optional_slice, optional_convert, optional_bitcast)); if (was_fused) { return absl::OkStatus(); } } if (Match( instr, m::AddAnyOrder( m::Bitcast(CublasLtMatmulMaybeF8(&existing_gemm).WithOneUser()) .WithOneUser(), m::Broadcast(&bias, m::Op()).WithOneUser()))) { TF_ASSIGN_OR_RETURN( HloInstruction * new_add, MakeBinaryHlo(HloOpcode::kAdd, existing_gemm, MakeBitcastHlo(bias, existing_gemm->shape()))); TF_RETURN_IF_ERROR( ReplaceInstruction(instr, MakeBitcastHlo(new_add, instr->shape()))); instr = new_add; } auto is_not_broadcast = [](const HloInstruction *instr) { return instr->opcode() != HloOpcode::kBroadcast; }; if (Match(instr, m::AddAnyOrder( m::Bitcast( GemmOrCublasLtMatmulMaybeF8(&existing_gemm).WithOneUser()) .WithOneUser(), m::Op(&bias).WithPredicate(is_not_broadcast)))) { HloInstruction *new_bitcast = MakeBitcastHlo(bias, existing_gemm->shape(), &bias->metadata()); TF_ASSIGN_OR_RETURN(HloInstruction * new_add, MakeBinaryHlo(HloOpcode::kAdd, existing_gemm, new_bitcast, &bias->metadata())); TF_RETURN_IF_ERROR( ReplaceInstruction(instr, MakeBitcastHlo(new_add, instr->shape()))); instr = new_add; } if (Match(instr, m::AddAnyOrder( m::AnyOf<HloInstruction>( GemmOrCublasLtMatmul(&existing_gemm).WithOneUser(), m::Convert( GemmOrCublasLtMatmul(&existing_gemm).WithOneUser()) .WithOneUser()), m::Op(&bias).WithPredicate(is_not_broadcast)))) { TF_ASSIGN_OR_RETURN(GpuBackendConfig gpu_backend_config, existing_gemm->backend_config<GpuBackendConfig>()); const GemmBackendConfig &gemm_backend_config = gpu_backend_config.gemm_backend_config(); TF_ASSIGN_OR_RETURN( bool types_are_supported, IsLegacyCublasMatmul(*existing_gemm) ? TypesAreSupportedByLegacyCublas(*existing_gemm, gemm_backend_config, instr) : TypesAreSupportedByCublasLt(*existing_gemm, gemm_backend_config, instr)); bool has_no_consumer = instr->shape().element_type() == existing_gemm->shape().element_type() || instr->user_count() == 0 || (instr->user_count() == 1 && instr->users()[0]->opcode() == HloOpcode::kTuple && instr->users()[0]->user_count() == 0); if (types_are_supported && has_no_consumer) { return FuseMatrixBiasAdd(instr, bias, existing_gemm); } } HloInstruction *optional_bitcast_matrix = nullptr; HloInstruction *optional_slice_matrix = nullptr; if (Match(instr, m::AddAnyOrder( OptionalBitcast( &optional_bitcast_matrix, OptionalSlice(&optional_slice_matrix, GemmOrCublasLtMatmulMaybeF8(&existing_gemm) .WithOneUser())) .WithOneUser(), m::Op(&bias).WithPredicate(is_not_broadcast)))) { if (!IsF8Type(bias)) { return FuseMatrixBiasAdd(instr, bias, existing_gemm, optional_bitcast_matrix, optional_slice_matrix); } } return absl::OkStatus(); } absl::Status HandleMaximum(HloInstruction *instr) override { HloInstruction *existing_gemm, *zeros; HloInstruction *optional_slice_or_bitcast = nullptr; if (Match(instr, m::MaximumAnyOrder( m::AnyOf<HloInstruction>( m::Slice( &optional_slice_or_bitcast, CublasLtMatmulMaybeF8(&existing_gemm).WithOneUser()), m::Bitcast( &optional_slice_or_bitcast, CublasLtMatmulMaybeF8(&existing_gemm).WithOneUser()), CublasLtMatmulMaybeF8(&existing_gemm)) .WithOneUser(), m::Broadcast(&zeros, m::ConstantScalar(0))))) { TF_RETURN_IF_ERROR(FuseReluActivation(instr, zeros, existing_gemm, optional_slice_or_bitcast)); } return absl::OkStatus(); } absl::Status HandleConvert(HloInstruction *instr) override { HloInstruction *clamp_lower, *clamp_upper, *existing_gemm, *d_scale = nullptr, *binary = nullptr; if (Match(instr, m::Convert( m::Clamp( m::Broadcast(m::ConstantScalar(&clamp_lower)), m::AnyOf<HloInstruction>( CublasLtMatmulF8(&existing_gemm), m::Divide(&binary, CublasLtMatmulF8(&existing_gemm), m::Broadcast(m::Op(&d_scale))), m::MultiplyAnyOrder(&binary, CublasLtMatmulF8(&existing_gemm), m::Broadcast(m::Op(&d_scale)))), m::Broadcast(m::ConstantScalar(&clamp_upper))) .WithOneUser()))) { return F8ConvertD( instr, existing_gemm, d_scale, clamp_lower, clamp_upper, (binary && binary->opcode() == HloOpcode::kMultiply)); } return absl::OkStatus(); } static bool IsCuda(const se::GpuComputeCapability &gpu_version) { return std::holds_alternative<se::CudaComputeCapability>(gpu_version); } static absl::StatusOr<se::CudaComputeCapability> GetCudaComputeCapability( const se::GpuComputeCapability &gpu_version) { auto *cuda_cc = std::get_if<se::CudaComputeCapability>(&gpu_version); if (cuda_cc == nullptr) { return absl::InvalidArgumentError("Compute Capability is not CUDA."); } return *cuda_cc; } static bool IsRocm(const se::GpuComputeCapability &gpu_version) { return std::holds_alternative<se::RocmComputeCapability>(gpu_version); } static absl::StatusOr<se::RocmComputeCapability> GetRocmComputeCapability( const se::GpuComputeCapability &gpu_version) { auto rocm_cc = std::get_if<se::RocmComputeCapability>(&gpu_version); if (rocm_cc == nullptr) { return absl::InvalidArgumentError("Compute Capability is not ROCm."); } return *rocm_cc; } absl::StatusOr<bool> CreateF8CustomCall(HloInstruction *instr, GpuBackendConfig &gpu_backend_config, MatchedFp8Param a, MatchedFp8Param b) { GemmBackendConfig &gemm_backend_config = *gpu_backend_config.mutable_gemm_backend_config(); if (IsCuda(gpu_version_)) { TF_ASSIGN_OR_RETURN(auto cuda_compute_capability, GetCudaComputeCapability(gpu_version_)); if (!cuda_compute_capability.IsAtLeast(8, 9)) { VLOG(1) << "FP8 Custom Calls require Ada, Hopper, or later " "architectures. Got: " << cuda_compute_capability.ToString() << " and toolkit version: " << toolkit_version_; return false; } if (toolkit_version_ < stream_executor::SemanticVersion{12, 0, 0}) { VLOG(1) << "FP8 Custom Calls require CUDA 12.0 or newer."; return false; } } if (IsRocm(gpu_version_)) { TF_ASSIGN_OR_RETURN(auto rocm_compute_capability, GetRocmComputeCapability(gpu_version_)); if (!rocm_compute_capability.has_fp8_support()) { VLOG(1) << "FP8 Custom Calls require MI300, or later architectures."; return false; } if (toolkit_version_ < stream_executor::SemanticVersion{6, 0, 0}) { VLOG(1) << "FP8 Custom Calls require ROCm 6.0 or newer."; return false; } } PrimitiveType a_type = a.fp8_input->shape().element_type(); PrimitiveType b_type = b.fp8_input->shape().element_type(); if (IsCuda(gpu_version_)) { if (a_type == F8E5M2 && b_type == F8E5M2) { VLOG(1) << "Failed to rewrite " << instr->ToShortString() << " into FP8 Custom Call. The element type of one of the operands " "must be F8E4M3FN."; return false; } if ((a_type != F8E5M2 && a_type != F8E4M3FN) || (b_type != F8E5M2 && b_type != F8E4M3FN)) { VLOG(1) << "Failed to rewrite " << instr->ToShortString() << " into FP8 Custom Call. The input types must be F8E5M2 or " "F8E4M3FN, but got " << PrimitiveType_Name(a_type) << " and " << PrimitiveType_Name(b_type); return false; } } if (IsRocm(gpu_version_)) { if (a_type == F8E5M2FNUZ && b_type == F8E5M2FNUZ) { VLOG(1) << "Failed to rewrite " << instr->ToShortString() << " into FP8 Custom Call. The element type of one of the operands " "must be F8E4M3FNUZ."; return false; } if ((a_type != F8E5M2FNUZ && a_type != F8E4M3FNUZ) || (b_type != F8E5M2FNUZ && b_type != F8E4M3FNUZ)) { VLOG(1) << "Failed to rewrite " << instr->ToShortString() << " into FP8 Custom Call. The input types must be F8E5M2FNUZ or " "F8E4M3FNUZ, but got " << PrimitiveType_Name(a_type) << " and " << PrimitiveType_Name(b_type); return false; } } absl::Span<const int64_t> a_batch_dims = gemm_backend_config.dot_dimension_numbers().lhs_batch_dimensions(); absl::Span<const int64_t> b_batch_dims = gemm_backend_config.dot_dimension_numbers().rhs_batch_dimensions(); const size_t num_batch_dims = a_batch_dims.size(); std::array<bool, 2> mult_scale{a.mult_scale, b.mult_scale}; std::array<HloInstruction *, 2> scales{a.scale, b.scale}, inv_scales, scales_f32; HloInstruction *one_constant = nullptr; auto one = [&one_constant, instr]() -> HloInstruction * { if (!one_constant) { one_constant = instr->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::One(F32))); } return one_constant; }; for (int i = 0; i < scales.size(); ++i) { if (scales[i]) { if (!ShapeUtil::IsScalar(scales[i]->shape())) { VLOG(1) << "Failed to rewrite " << instr->ToShortString() << " into FP8 Custom Call. The scaling factors must be " "scalars."; return false; } if (!mult_scale[i]) { inv_scales[i] = instr->AddInstruction(HloInstruction::CreateBinary( scales[i]->shape(), HloOpcode::kDivide, one(), scales[i])); } scales_f32[i] = mult_scale[i] ? scales[i] : inv_scales[i]; if (scales_f32[i]->shape().element_type() != F32) { scales_f32[i] = instr->AddInstruction(HloInstruction::CreateConvert( ShapeUtil::MakeScalarShape(F32), scales_f32[i])); } } else { scales_f32[i] = one(); } } PrimitiveType d_type = instr->shape().element_type(); bool supported_d_type = (d_type == BF16 || d_type == F16 || d_type == F32); if (IsCuda(gpu_version_) && (d_type == F8E4M3FN || d_type == F8E5M2)) { supported_d_type = true; } if (IsRocm(gpu_version_) && toolkit_version_ >= stream_executor::SemanticVersion{6, 2, 0} && (d_type == F8E4M3FNUZ || d_type == F8E5M2FNUZ)) { supported_d_type = true; } if (!supported_d_type) { VLOG(1) << "Failed to rewrite " << instr->ToShortString() << " into FP8 Custom Call. Output element type must be " << (IsCuda(gpu_version_) ? "F8E4M3FN, F8E5M2, BF16, F16 or F32. " : toolkit_version_ >= stream_executor::SemanticVersion{6, 2, 0} ? "F8E4M3FNUZ, F8E5M2FNUZ, BF16, F16 or F32. " : "BF16, F16 or F32. ") << "Actual element type is " << PrimitiveType_Name(d_type); return false; } absl::Span<const int64_t> a_contracting_dims = gemm_backend_config.dot_dimension_numbers() .lhs_contracting_dimensions(); absl::Span<const int64_t> b_contracting_dims = gemm_backend_config.dot_dimension_numbers() .rhs_contracting_dimensions(); if (a_contracting_dims.size() != 1 || b_contracting_dims.size() != 1) { VLOG(1) << "Failed to rewrite " << instr->ToShortString() << " into FP8 Custom Call. A and B must have one contracting " "dimension."; return false; } for (const MatchedFp8Param &param : {a, b}) { const HloInstruction *input = param.commutative_ops.empty() ? param.fp8_input : param.commutative_ops.back().first; if (input->shape().rank() != num_batch_dims + 2) { VLOG(1) << "Failed to rewrite " << instr->ToShortString() << "into FP8 Custom Call. Inputs must have exactly one " "contracting and one non-contracting dimension."; return false; } } auto shift_ops = [&instr](HloInstruction *&x, InstrPath &x_ops) -> void { for (std::pair<HloInstruction *, int> op : x_ops) { std::vector<HloInstruction *> operands = {x}; if (op.first->opcode() == HloOpcode::kDynamicSlice) { for (int i = 1; i < op.first->operand_count(); ++i) { operands.emplace_back(op.first->mutable_operand(i)); } } if (op.first->opcode() == HloOpcode::kPad) { HloInstruction *convert = instr->AddInstruction(HloInstruction::CreateConvert( ShapeUtil::ChangeElementType(op.first->operand(1)->shape(), x->shape().element_type()), op.first->mutable_operand(1))); operands.emplace_back(convert); } if (op.first->opcode() == HloOpcode::kSelect) { operands.emplace(operands.begin(), op.first->mutable_operand(0)); int operand_idx = op.second == 2 ? 1 : 2; HloInstruction *convert = instr->AddInstruction(HloInstruction::CreateConvert( ShapeUtil::ChangeElementType( op.first->operand(operand_idx)->shape(), x->shape().element_type()), op.first->mutable_operand(operand_idx))); operands.emplace(operands.begin() + operand_idx, convert); } x = instr->AddInstruction(op.first->CloneWithNewOperands( ShapeUtil::MakeShapeWithDenseLayout( x->shape().element_type(), op.first->shape().dimensions(), op.first->shape().layout().minor_to_major()), operands)); } return; }; shift_ops(a.fp8_input, a.commutative_ops); shift_ops(b.fp8_input, b.commutative_ops); TF_ASSIGN_OR_RETURN(GemmConfig gemm_config, GemmConfig::For(instr, gemm_backend_config)); DotDimensionNumbers *dim_nums = gemm_backend_config.mutable_dot_dimension_numbers(); if (gemm_config.lhs_layout.order == MatrixLayout::Order::kColumnMajor) { CHECK(a_contracting_dims[0] == num_batch_dims || a_contracting_dims[0] == num_batch_dims + 1); if (a_contracting_dims[0] == num_batch_dims) { dim_nums->set_lhs_contracting_dimensions(0, num_batch_dims + 1); } else { dim_nums->set_lhs_contracting_dimensions(0, num_batch_dims); } a.fp8_input = TransposeMatrix(a.fp8_input, a_contracting_dims[0], a_batch_dims); } if (gemm_config.rhs_layout.order == MatrixLayout::Order::kRowMajor) { CHECK(b_contracting_dims[0] == num_batch_dims || b_contracting_dims[0] == num_batch_dims + 1); if (b_contracting_dims[0] == num_batch_dims) { dim_nums->set_rhs_contracting_dimensions(0, num_batch_dims + 1); } else { dim_nums->set_rhs_contracting_dimensions(0, num_batch_dims); } b.fp8_input = TransposeMatrix(b.fp8_input, b_contracting_dims[0], b_batch_dims); } a.fp8_input = PadOperandToMultipleOf16(a_batch_dims, a.fp8_input); b.fp8_input = PadOperandToMultipleOf16(b_batch_dims, b.fp8_input); std::vector<int64_t> out_batch_dims(num_batch_dims); std::iota(out_batch_dims.begin(), out_batch_dims.end(), 0); Shape new_output_shape = PadShapeToMultipleOf16(instr->shape(), out_batch_dims); std::vector<HloInstruction *> operands_list = { a.fp8_input, b.fp8_input, scales_f32[0], scales_f32[1]}; HloInstruction *new_custom_call = instr->AddInstruction(HloInstruction::CreateCustomCall( ShapeUtil::MakeShapeWithDenseLayout( instr->shape().element_type(), new_output_shape.dimensions(), instr->shape().layout().minor_to_major()), operands_list, kCublasLtMatmulF8CallTarget)); TF_RETURN_IF_ERROR(new_custom_call->set_backend_config(gpu_backend_config)); TF_RETURN_IF_ERROR(SetName(instr->GetModule(), new_custom_call)); HloInstruction *slice = nullptr; if (new_output_shape.dimensions() != instr->shape().dimensions()) { std::vector<int64_t> start_indices(instr->shape().rank(), 0); std::vector<int64_t> strides(instr->shape().rank(), 1); slice = instr->AddInstruction(HloInstruction::CreateSlice( instr->shape(), new_custom_call, start_indices, instr->shape().dimensions(), strides)); } TF_RETURN_IF_ERROR( ReplaceInstruction(instr, slice ? slice : new_custom_call)); VLOG(1) << instr->ToString() << " rewritten into FP8 Custom Call."; return true; } absl::Status F8ScaleD(HloInstruction *instr, HloInstruction *existing_gemm, HloInstruction *d_scale) { if (!ShapeUtil::IsScalar(d_scale->shape())) { return absl::OkStatus(); } if (!existing_gemm->operand(2)->IsConstant() || existing_gemm->operand(2)->literal().GetAsDouble({}) != 1.) { return absl::OkStatus(); } TF_ASSIGN_OR_RETURN(auto gpu_backend_config, existing_gemm->backend_config<GpuBackendConfig>()); const GemmBackendConfig &config = gpu_backend_config.gemm_backend_config(); if ((config.epilogue() != GemmBackendConfig::DEFAULT && config.epilogue() != GemmBackendConfig::RELU) || config.beta() != 0.) { return absl::OkStatus(); } TF_ASSIGN_OR_RETURN( d_scale, InvertAndConvertScalar(d_scale, instr->opcode() == HloOpcode::kDivide)); TF_RETURN_IF_ERROR(existing_gemm->ReplaceOperandWith(2, d_scale)); TF_RETURN_IF_ERROR(ReplaceInstruction(instr, existing_gemm)); VLOG(1) << "Scaling of FP8 GEMM fused into Custom Call."; return absl::OkStatus(); } absl::Status F8ConvertD(HloInstruction *instr, HloInstruction *existing_gemm, HloInstruction *d_scale, HloInstruction *clamp_lower, HloInstruction *clamp_upper, bool mult_scale = false) { if (instr->shape().element_type() == F8E4M3FN) { if (!clamp_lower->literal().IsAllFloat(static_cast<float>( std::numeric_limits<tsl::float8_e4m3fn>::lowest())) || !clamp_upper->literal().IsAllFloat(static_cast<float>( std::numeric_limits<tsl::float8_e4m3fn>::max()))) { return absl::OkStatus(); } } else if (instr->shape().element_type() == F8E5M2) { if (!clamp_lower->literal().IsAllFloat(static_cast<float>( std::numeric_limits<tsl::float8_e5m2>::lowest())) || !clamp_upper->literal().IsAllFloat(static_cast<float>( std::numeric_limits<tsl::float8_e5m2>::max()))) { return absl::OkStatus(); } } else { return absl::OkStatus(); } if (d_scale && !ShapeUtil::IsScalar(d_scale->shape())) { return absl::OkStatus(); } const std::vector<HloInstruction *> gemm_users = existing_gemm->users(); HloInstruction *reduce_damax = nullptr; if (gemm_users.size() == 2) { TF_ASSIGN_OR_RETURN(auto gpu_config, existing_gemm->backend_config<GpuBackendConfig>()); const GemmBackendConfig &config = gpu_config.gemm_backend_config(); for (int i = 0; i < gemm_users.size(); ++i) { HloInstruction *maybe_reduce = nullptr; if (gemm_users[i]->opcode() == HloOpcode::kAbs) { if (gemm_users[i]->users().size() != 1) continue; maybe_reduce = gemm_users[i]->users()[0]; } else { if (config.epilogue() != GemmBackendConfig::BIAS_RELU && config.epilogue() != GemmBackendConfig::RELU) continue; maybe_reduce = gemm_users[i]; } if (maybe_reduce->opcode() == HloOpcode::kReduce && maybe_reduce->operands().size() == 2 && maybe_reduce->operand(1)->opcode() == HloOpcode::kConstant && ShapeUtil::IsScalar(maybe_reduce->operand(1)->shape())) { HloInstruction *reduce = maybe_reduce; HloComputation *reduce_comp = reduce->to_apply(); HloInstruction *reduce_comp_root = reduce_comp->root_instruction(); if (reduce->operand(1)->literal().GetAsDouble({}) <= 0. && reduce_comp_root->opcode() == HloOpcode::kMaximum && reduce_comp_root->operand(0)->opcode() == HloOpcode::kParameter && reduce_comp_root->operand(1)->opcode() == HloOpcode::kParameter) { reduce_damax = reduce; } } } if (!reduce_damax) { return absl::OkStatus(); } } else if (gemm_users.size() > 2) { return absl::OkStatus(); } TF_ASSIGN_OR_RETURN(auto gpu_backend_config, existing_gemm->backend_config<GpuBackendConfig>()); const GemmBackendConfig &gemm_backend_config = gpu_backend_config.gemm_backend_config(); if (gemm_backend_config.beta() != 0.0) { if (existing_gemm->operand(2)->shape().element_type() != BF16 && existing_gemm->operand(2)->shape().element_type() != F16) { VLOG(1) << "The scaling and conversion of the result of " << existing_gemm->ToShortString() << " is not fused into the FP8 Custom Call because it " "conflicts with the existing fusion of the addition of a " "matrix bias with element type other than BF16 or F16."; return absl::OkStatus(); } else { xla::Cast<HloCustomCallInstruction>(existing_gemm) ->set_output_to_operand_aliasing({}); } } if (d_scale) { TF_ASSIGN_OR_RETURN(d_scale, InvertAndConvertScalar(d_scale, !mult_scale)); } else { d_scale = instr->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::One(F32))); } existing_gemm->AppendOperand(d_scale); if (reduce_damax) { return F8AddDAmax(instr, existing_gemm, reduce_damax); } std::unique_ptr<HloInstruction> new_gemm = existing_gemm->CloneWithNewShape(instr->shape()); TF_RETURN_IF_ERROR(ReplaceWithNewInstruction(instr, std::move(new_gemm))); VLOG(1) << "Conversion" << (reduce_damax ? " and amax calculation" : "") << " fused into FP8 GEMM."; return absl::OkStatus(); } absl::Status F8AddDAmax(HloInstruction *instr, HloInstruction *existing_gemm, HloInstruction *reduce_damax) { Shape damax_shape = ShapeUtil::MakeScalarShape(F32); Shape tuple_shape = ShapeUtil::MakeTupleShape({instr->shape(), damax_shape}); HloInstruction *gemm_and_damax = instr->AddInstruction(existing_gemm->CloneWithNewShape(tuple_shape)); TF_ASSIGN_OR_RETURN(auto gpu_config, gemm_and_damax->backend_config<GpuBackendConfig>()); GemmBackendConfig &config = *gpu_config.mutable_gemm_backend_config(); config.set_damax_output(true); TF_RETURN_IF_ERROR(gemm_and_damax->set_backend_config(gpu_config)); HloInstruction *d = instr->AddInstruction(HloInstruction::CreateGetTupleElement( instr->shape(), gemm_and_damax, 0)); HloInstruction *damax = instr->AddInstruction( HloInstruction::CreateGetTupleElement(damax_shape, gemm_and_damax, 1)); HloInstruction *damax_converted = instr->AddInstruction( HloInstruction::CreateConvert(reduce_damax->shape(), damax)); TF_RETURN_IF_ERROR(ReplaceInstruction(reduce_damax, damax_converted)); TF_RETURN_IF_ERROR(ReplaceInstruction(instr, d)); return absl::OkStatus(); } absl::Status FuseMatrixBiasAdd(HloInstruction *instr, HloInstruction *bias, const HloInstruction *gemm, HloInstruction *bitcast = nullptr, HloInstruction *slice = nullptr) { TF_RET_CHECK(Shape::Equal().IgnoreElementType()(bias->shape(), bitcast ? bitcast->shape() : slice ? slice->shape() : gemm->shape())); if (gemm->shape().element_type() == S32) { return absl::OkStatus(); } if (slice) { int slice_op_dim = slice->operand(0)->shape().rank(); if (slice->slice_starts() != std::vector<int64_t>(slice_op_dim, 0) || slice->slice_strides() != std::vector<int64_t>(slice_op_dim, 1)) { return absl::OkStatus(); } } bool can_overwrite_bias = [bias]() { if (bias->user_count() > 1) { return false; } if (bias->opcode() != HloOpcode::kParameter) { return true; } if (!bias->parent()->IsEntryComputation()) { return false; } const auto &in_out_alias_config = bias->GetModule()->input_output_alias_config(); return in_out_alias_config.ParameterHasAlias(bias->parameter_number(), {}); }(); bool want_to_fuse_bias = IsCublasLtMatmulF8(*gemm) || IsCublasLtMatmul(*gemm) || can_overwrite_bias; auto gpu_config = gemm->backend_config<GpuBackendConfig>().value(); GemmBackendConfig &config = *gpu_config.mutable_gemm_backend_config(); bool supported_epilogue = ((config.epilogue() == GemmBackendConfig::DEFAULT) || (config.epilogue() == GemmBackendConfig::BIAS)); if ((config.beta() != 0) || !want_to_fuse_bias || (gemm->user_count() != 1) || !supported_epilogue) { return absl::OkStatus(); } config.set_beta(1.0); std::vector<HloInstruction *> operands(gemm->operands().begin(), gemm->operands().end()); HloInstruction *maybe_constant_folded_bias = MaybeConstantFoldBias(bias); if (bitcast) { maybe_constant_folded_bias = instr->AddInstruction(HloInstruction::CreateBitcast( slice->shape(), maybe_constant_folded_bias)); } maybe_constant_folded_bias = PadOperandToTargetShape(gemm->shape(), maybe_constant_folded_bias); operands.insert(operands.begin() + 2, maybe_constant_folded_bias); std::unique_ptr<HloInstruction> fused_op = gemm->CloneWithNewOperands(gemm->shape(), operands); fused_op->mutable_shape()->set_element_type(bias->shape().element_type()); TF_RETURN_IF_ERROR(fused_op->set_backend_config(gpu_config)); if (IsLegacyCublasMatmul(*fused_op) || can_overwrite_bias) { xla::Cast<HloCustomCallInstruction>(fused_op.get()) ->set_output_to_operand_aliasing({{{}, {2, {}}}}); } TF_RETURN_IF_ERROR(SetName(instr->GetModule(), fused_op.get())); if (slice) { fused_op = slice->CloneWithNewOperands( slice->shape(), {slice->parent()->AddInstruction(std::move(fused_op))}); } if (bitcast) { fused_op = bitcast->CloneWithNewOperands( bitcast->shape(), {bitcast->parent()->AddInstruction(std::move(fused_op))}); } return ReplaceWithNewInstruction(instr, std::move(fused_op)); } absl::StatusOr<bool> FuseVectorBiasAdd(HloInstruction *instr, HloInstruction *broadcast, HloInstruction *gemm, HloInstruction *slice = nullptr, HloInstruction *convert = nullptr, HloInstruction *bitcast = nullptr) { if (!bitcast) { TF_RET_CHECK(ShapeUtil::Compatible( broadcast->shape(), (slice ? slice->shape() : gemm->shape()))); } if (!SupportsEpilogueFusion(gemm->shape().element_type())) { return false; } HloInstruction *bias = broadcast->mutable_operand(0); TF_ASSIGN_OR_RETURN(auto gpu_config, gemm->backend_config<GpuBackendConfig>()); GemmBackendConfig &config = *gpu_config.mutable_gemm_backend_config(); const DotDimensionNumbers &dot_dims = config.dot_dimension_numbers(); size_t num_col_dims = gemm->operand(1)->shape().rank() - dot_dims.rhs_batch_dimensions_size() - dot_dims.rhs_contracting_dimensions_size(); if ((gemm->user_count() != 1) || (config.epilogue() != GemmBackendConfig::DEFAULT) || (bias->shape().rank() != num_col_dims)) { return false; } absl::Span<const int64_t> broadcast_dims = broadcast->dimensions(); for (size_t i = 0; i < num_col_dims; ++i) { int64_t dim = (bitcast ? bitcast : gemm)->shape().layout().minor_to_major(i); auto it = absl::c_find(broadcast_dims, dim); if (it == broadcast_dims.end()) { return false; } int64_t vector_dim = it - broadcast_dims.begin(); if (bias->shape().layout().minor_to_major(i) != vector_dim) { return false; } } std::vector<HloInstruction *> operands(gemm->operands().begin(), gemm->operands().end()); if (gemm->custom_call_target() == kCublasLtMatmulF8CallTarget && config.beta() != 0.0) { return true; } if (gemm->custom_call_target() == kCublasLtMatmulF8CallTarget && bias->shape().element_type() == F32) { if (convert == nullptr) { return false; } HloInstruction *bias_f16_or_bf16 = convert->mutable_operand(0); auto compatible_bias_type = [](const PrimitiveType bias_type, const PrimitiveType output_type) { if (bias_type == BF16) { return output_type == F8E4M3FN || output_type == F8E5M2 || output_type == F32 || output_type == BF16; } else if (bias_type == F16) { return output_type == F16 || output_type == F8E4M3FN || output_type == F8E5M2; } return false; }; if (compatible_bias_type(bias_f16_or_bf16->shape().element_type(), gemm->shape().element_type())) { bias = bias_f16_or_bf16; } else { VLOG(1) << "Epilogue fusion of FP32 vector bias into FP8 GEMM is " "currently not supported. See the cublasLT support matrix."; return false; } } if (gemm->custom_call_target() == kCublasLtMatmulF8CallTarget && bitcast) { bias = PadOperandToMultipleOf16( config.dot_dimension_numbers().rhs_batch_dimensions(), bias); } operands.push_back(bias); config.set_epilogue(GemmBackendConfig::BIAS); std::unique_ptr<HloInstruction> result = gemm->CloneWithNewOperands(gemm->shape(), operands); TF_RETURN_IF_ERROR(result->set_backend_config(gpu_config)); TF_RETURN_IF_ERROR(SetName(result->GetModule(), result.get())); if (slice) { result = slice->CloneWithNewOperands( slice->shape(), {slice->parent()->AddInstruction(std::move(result))}); } if (bitcast) { result = bitcast->CloneWithNewOperands( bitcast->shape(), {bitcast->parent()->AddInstruction(std::move(result))}); } TF_RETURN_IF_ERROR(ReplaceWithNewInstruction(instr, std::move(result))); return true; } absl::Status FuseReluActivation(HloInstruction *instr, HloInstruction *broadcast, HloInstruction *gemm, HloInstruction *slice_or_bitcast = nullptr) { TF_RET_CHECK(ShapeUtil::Compatible( broadcast->shape(), (slice_or_bitcast ? slice_or_bitcast->shape() : gemm->shape()))); if (!SupportsEpilogueFusion(gemm->shape().element_type())) { return absl::OkStatus(); } if (gemm->user_count() != 1) { return absl::OkStatus(); } TF_ASSIGN_OR_RETURN(auto gpu_config, gemm->backend_config<GpuBackendConfig>()); GemmBackendConfig &config = *gpu_config.mutable_gemm_backend_config(); if (config.epilogue() == GemmBackendConfig::DEFAULT) { config.set_epilogue(GemmBackendConfig::RELU); } else if (config.epilogue() == GemmBackendConfig::BIAS) { config.set_epilogue(GemmBackendConfig::BIAS_RELU); } else { return absl::OkStatus(); } std::unique_ptr<HloInstruction> result = gemm->Clone(); TF_RETURN_IF_ERROR(result->set_backend_config(gpu_config)); TF_RETURN_IF_ERROR(SetName(result->GetModule(), result.get())); if (slice_or_bitcast) { result = slice_or_bitcast->CloneWithNewOperands( slice_or_bitcast->shape(), {slice_or_bitcast->parent()->AddInstruction(std::move(result))}); } return ReplaceWithNewInstruction(instr, std::move(result)); } absl::Status FuseGeluActivation(HloInstruction *multiply, HloInstruction *gemm, HloInstruction *slice_or_bitcast = nullptr) { if (!SupportsEpilogueFusion(gemm->shape().element_type())) { return absl::OkStatus(); } if (IsCuda(gpu_version_) && toolkit_version_ < stream_executor::SemanticVersion{12, 4, 0} && IsCublasLtMatmulF8(*gemm)) { return absl::OkStatus(); } bool has_aux = gemm->user_count() > 4; TF_ASSIGN_OR_RETURN(auto gpu_config, gemm->backend_config<GpuBackendConfig>()); GemmBackendConfig &config = *gpu_config.mutable_gemm_backend_config(); if (config.epilogue() == GemmBackendConfig::DEFAULT) { config.set_epilogue(has_aux ? GemmBackendConfig::GELU_AUX : GemmBackendConfig::GELU); } else if (config.epilogue() == GemmBackendConfig::BIAS) { config.set_epilogue(has_aux ? GemmBackendConfig::BIAS_GELU_AUX : GemmBackendConfig::BIAS_GELU); } else { return absl::OkStatus(); } std::unique_ptr<HloInstruction> output = gemm->CloneWithNewShape( has_aux ? ShapeUtil::MakeTupleShape({gemm->shape(), gemm->shape()}) : gemm->shape()); TF_RETURN_IF_ERROR(output->set_backend_config(gpu_config)); TF_RETURN_IF_ERROR(SetName(multiply->GetModule(), output.get())); if (slice_or_bitcast) { output = slice_or_bitcast->CloneWithNewOperands( slice_or_bitcast->shape(), {gemm->parent()->AddInstruction(std::move(output))}); } if (has_aux) { HloInstruction *tuple_output = gemm->parent()->AddInstruction(std::move(output)); TF_RETURN_IF_ERROR(ReplaceWithNewInstruction( gemm, HloInstruction::CreateGetTupleElement(tuple_output, 1))); output = HloInstruction::CreateGetTupleElement(tuple_output, 0); } return ReplaceWithNewInstruction(multiply, std::move(output)); } private: se::GpuComputeCapability gpu_version_; stream_executor::SemanticVersion toolkit_version_; GemmRewriterOptions options_; absl::StatusOr<absl::string_view> GetNonFp8GemmCustomCallTarget( const HloInstruction &instr, const GemmBackendConfig &gemm_backend_config) const { if (!instr.GetModule() ->config() .debug_options() .xla_gpu_enable_cublaslt()) { return absl::string_view(kGemmCallTarget); } const HloInstruction *lhs = instr.operand(0); const HloInstruction *rhs = instr.operand(1); if (lhs->shape().element_type() == S8 || rhs->shape().element_type() == S8) { return absl::string_view(kGemmCallTarget); } TF_ASSIGN_OR_RETURN(bool gemm_is_supported_by_cublas_lt, GemmIsSupportedByCublasLt(instr, gemm_backend_config)); if (gemm_is_supported_by_cublas_lt) { return absl::string_view(kCublasLtMatmulCallTarget); } return absl::string_view(kGemmCallTarget); } absl::StatusOr<bool> TypesAreSupportedByLegacyCublas( const HloInstruction &instr, const GemmBackendConfig &gemm_backend_config, const HloInstruction *bias = nullptr) const { const PrimitiveType a_dtype = instr.operand(0)->shape().element_type(); const PrimitiveType b_dtype = instr.operand(1)->shape().element_type(); const PrimitiveType output_type = bias ? bias->shape().element_type() : instr.shape().element_type(); const std::array<PrimitiveType, 12> supported_type = { PrimitiveType::S8, PrimitiveType::F16, PrimitiveType::BF16, PrimitiveType::F32, PrimitiveType::S32, PrimitiveType::F64, PrimitiveType::C64, PrimitiveType::C128}; if (!absl::c_linear_search(supported_type, output_type)) return false; TF_ASSIGN_OR_RETURN(const se::blas::DataType output_dtype, se::gpu::AsBlasDataType(output_type)); TF_ASSIGN_OR_RETURN( const se::blas::ComputationType compute_type, se::gpu::GetBlasComputationType( instr.precision_config().algorithm(), a_dtype, output_type, stream_executor::blas::kDefaultComputePrecision)); se::blas::DataType scale_type = se::gpu::GetScaleType(output_dtype, compute_type); using se::blas::ComputationType; using se::blas::DataType; const std::array< std::tuple<ComputationType, DataType , PrimitiveType , PrimitiveType , DataType >, 32> supported_type_combinations = {{ {ComputationType::kF16, DataType::kHalf, PrimitiveType::F16, PrimitiveType::F16, DataType::kHalf}, {ComputationType::kI32, DataType::kInt32, PrimitiveType::S8, PrimitiveType::S8, DataType::kInt32}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::BF16, PrimitiveType::BF16, DataType::kBF16}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F16, PrimitiveType::F16, DataType::kHalf}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::S8, PrimitiveType::S8, DataType::kFloat}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::BF16, PrimitiveType::BF16, DataType::kFloat}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F16, PrimitiveType::F16, DataType::kFloat}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F32, PrimitiveType::F32, DataType::kFloat}, {ComputationType::kF32, DataType::kComplexFloat, PrimitiveType::C64, PrimitiveType::C64, DataType::kComplexFloat}, {ComputationType::kF16AsF32, DataType::kFloat, PrimitiveType::F32, PrimitiveType::F32, DataType::kFloat}, {ComputationType::kF16AsF32, DataType::kComplexFloat, PrimitiveType::C64, PrimitiveType::C64, DataType::kComplexFloat}, {ComputationType::kBF16AsF32, DataType::kFloat, PrimitiveType::F32, PrimitiveType::F32, DataType::kFloat}, {ComputationType::kBF16AsF32, DataType::kComplexFloat, PrimitiveType::C64, PrimitiveType::C64, DataType::kComplexFloat}, {ComputationType::kTF32AsF32, DataType::kFloat, PrimitiveType::F32, PrimitiveType::F32, DataType::kFloat}, {ComputationType::kTF32AsF32, DataType::kComplexFloat, PrimitiveType::C64, PrimitiveType::C64, DataType::kComplexFloat}, {ComputationType::kF64, DataType::kDouble, PrimitiveType::F64, PrimitiveType::F64, DataType::kDouble}, {ComputationType::kF64, DataType::kComplexDouble, PrimitiveType::C128, PrimitiveType::C128, DataType::kComplexDouble}, }}; return absl::c_linear_search( supported_type_combinations, std::make_tuple(compute_type, scale_type, a_dtype, b_dtype, output_dtype)); } absl::StatusOr<bool> TypesAreSupportedByCublasLt( const HloInstruction &instr, const GemmBackendConfig &backend_config, const HloInstruction *bias = nullptr) const { const PrimitiveType a_dtype = instr.operand(0)->shape().element_type(); const PrimitiveType b_dtype = instr.operand(1)->shape().element_type(); const PrimitiveType output_type = bias ? bias->shape().element_type() : instr.shape().element_type(); const std::array<PrimitiveType, 12> supported_type = { PrimitiveType::F8E5M2FNUZ, PrimitiveType::F8E4M3FNUZ, PrimitiveType::F8E5M2, PrimitiveType::F8E4M3FN, PrimitiveType::S8, PrimitiveType::F16, PrimitiveType::BF16, PrimitiveType::F32, PrimitiveType::S32, PrimitiveType::F64, PrimitiveType::C64, PrimitiveType::C128}; if (!absl::c_linear_search(supported_type, output_type)) return false; TF_ASSIGN_OR_RETURN(const se::blas::DataType output_dtype, se::gpu::AsBlasDataType(output_type)); const int max_precision = *absl::c_max_element( backend_config.precision_config().operand_precision()); const PrecisionConfig::Algorithm algorithm = backend_config.precision_config().algorithm(); if (!algorithm_util::IsSupportedByCublasOrCublasLt(algorithm, gpu_version_)) return false; TF_ASSIGN_OR_RETURN( const se::blas::ComputationType compute_type, se::gpu::GetBlasComputationType( algorithm, a_dtype, instr.shape().element_type(), max_precision)); se::blas::DataType scale_type = se::gpu::GetScaleType(output_dtype, compute_type); using se::blas::ComputationType; using se::blas::DataType; using TypeCombinations = std::initializer_list<std::tuple< ComputationType, DataType , PrimitiveType , PrimitiveType , DataType >>; const TypeCombinations supported_cublas_type_combinations = { {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E4M3FN, PrimitiveType::F8E4M3FN, DataType::kBF16}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E4M3FN, PrimitiveType::F8E4M3FN, DataType::kF8E4M3FN}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E4M3FN, PrimitiveType::F8E4M3FN, DataType::kHalf}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E4M3FN, PrimitiveType::F8E4M3FN, DataType::kFloat}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E4M3FN, PrimitiveType::F8E5M2, DataType::kBF16}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E4M3FN, PrimitiveType::F8E5M2, DataType::kF8E4M3FN}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E4M3FN, PrimitiveType::F8E5M2, DataType::kF8E5M2}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E4M3FN, PrimitiveType::F8E5M2, DataType::kHalf}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E4M3FN, PrimitiveType::F8E5M2, DataType::kFloat}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E5M2, PrimitiveType::F8E4M3FN, DataType::kBF16}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E5M2, PrimitiveType::F8E4M3FN, DataType::kF8E4M3FN}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E5M2, PrimitiveType::F8E4M3FN, DataType::kF8E5M2}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E5M2, PrimitiveType::F8E4M3FN, DataType::kHalf}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E5M2, PrimitiveType::F8E4M3FN, DataType::kFloat}, {ComputationType::kF32, DataType::kComplexFloat, PrimitiveType::C64, PrimitiveType::C64, DataType::kComplexFloat}, {ComputationType::kF16AsF32, DataType::kFloat, PrimitiveType::F32, PrimitiveType::F32, DataType::kFloat}, {ComputationType::kF16AsF32, DataType::kComplexFloat, PrimitiveType::C64, PrimitiveType::C64, DataType::kComplexFloat}, {ComputationType::kBF16AsF32, DataType::kFloat, PrimitiveType::F32, PrimitiveType::F32, DataType::kFloat}, {ComputationType::kBF16AsF32, DataType::kComplexFloat, PrimitiveType::C64, PrimitiveType::C64, DataType::kComplexFloat}, {ComputationType::kTF32AsF32, DataType::kFloat, PrimitiveType::F32, PrimitiveType::F32, DataType::kFloat}, {ComputationType::kTF32AsF32, DataType::kComplexFloat, PrimitiveType::C64, PrimitiveType::C64, DataType::kComplexFloat}, {ComputationType::kF64, DataType::kDouble, PrimitiveType::F64, PrimitiveType::F64, DataType::kDouble}, {ComputationType::kF64, DataType::kComplexDouble, PrimitiveType::C128, PrimitiveType::C128, DataType::kComplexDouble}, }; if (IsCuda(gpu_version_) && absl::c_linear_search(supported_cublas_type_combinations, std::tuple{compute_type, scale_type, a_dtype, b_dtype, output_dtype})) { return true; } const TypeCombinations supported_hipblas_type_combinations = { {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E4M3FNUZ, PrimitiveType::F8E4M3FNUZ, DataType::kBF16}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E4M3FNUZ, PrimitiveType::F8E4M3FNUZ, DataType::kF8E4M3FNUZ}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E4M3FNUZ, PrimitiveType::F8E4M3FNUZ, DataType::kHalf}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E4M3FNUZ, PrimitiveType::F8E4M3FNUZ, DataType::kFloat}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E4M3FNUZ, PrimitiveType::F8E5M2FNUZ, DataType::kBF16}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E4M3FNUZ, PrimitiveType::F8E5M2FNUZ, DataType::kF8E4M3FNUZ}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E4M3FNUZ, PrimitiveType::F8E5M2FNUZ, DataType::kF8E5M2FNUZ}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E4M3FNUZ, PrimitiveType::F8E5M2FNUZ, DataType::kHalf}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E4M3FNUZ, PrimitiveType::F8E5M2FNUZ, DataType::kFloat}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E5M2FNUZ, PrimitiveType::F8E4M3FNUZ, DataType::kBF16}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E5M2FNUZ, PrimitiveType::F8E4M3FNUZ, DataType::kF8E4M3FNUZ}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E5M2FNUZ, PrimitiveType::F8E4M3FNUZ, DataType::kF8E5M2FNUZ}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E5M2FNUZ, PrimitiveType::F8E4M3FNUZ, DataType::kHalf}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F8E5M2FNUZ, PrimitiveType::F8E4M3FNUZ, DataType::kFloat}, }; if (IsRocm(gpu_version_) && absl::c_linear_search(supported_hipblas_type_combinations, std::tuple{compute_type, scale_type, a_dtype, b_dtype, output_dtype})) { return true; } const TypeCombinations supported_type_combinations = { {ComputationType::kF16, DataType::kHalf, PrimitiveType::F16, PrimitiveType::F16, DataType::kHalf}, {ComputationType::kI32, DataType::kInt32, PrimitiveType::S8, PrimitiveType::S8, DataType::kInt32}, {ComputationType::kI32, DataType::kFloat, PrimitiveType::S8, PrimitiveType::S8, DataType::kInt8}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::BF16, PrimitiveType::BF16, DataType::kBF16}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F16, PrimitiveType::F16, DataType::kHalf}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::S8, PrimitiveType::S8, DataType::kFloat}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::BF16, PrimitiveType::BF16, DataType::kFloat}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F16, PrimitiveType::F16, DataType::kFloat}, {ComputationType::kF32, DataType::kFloat, PrimitiveType::F32, PrimitiveType::F32, DataType::kFloat}, }; return absl::c_linear_search( supported_type_combinations, std::make_tuple(compute_type, scale_type, a_dtype, b_dtype, output_dtype)); } absl::StatusOr<bool> GemmIsSupportedByCublasLt( const HloInstruction &instr, const GemmBackendConfig &gemm_backend_config) const { const HloInstruction *lhs = instr.operand(0); const Shape &output_shape = instr.shape(); TF_ASSIGN_OR_RETURN( bool types_are_supported_by_cublas_lt, TypesAreSupportedByCublasLt(instr, gemm_backend_config)); if (!types_are_supported_by_cublas_lt) { return false; } constexpr int64_t kMaxBatchCount = 65535; const auto &batch_dimensions = gemm_backend_config.dot_dimension_numbers().lhs_batch_dimensions(); int batch_count = (batch_dimensions.empty() ? 0 : 1); for (auto batch_dimension : batch_dimensions) { batch_count *= lhs->shape().dimensions(batch_dimension); } if (batch_count > kMaxBatchCount) { return false; } if (auto isrocm = std::get_if<se::RocmComputeCapability>(&gpu_version_); isrocm) { if (!isrocm->has_hipblaslt()) { return false; } } constexpr int kMaxDimensionSize{4194240}; if (output_shape.element_type() != C64) { return true; } if (std::holds_alternative<se::CudaComputeCapability>(gpu_version_)) { if (std::get<se::CudaComputeCapability>(gpu_version_).IsAtLeastAmpere()) { return true; } } TF_ASSIGN_OR_RETURN(GemmConfig gemm_config, GemmConfig::For(&instr, gemm_backend_config)); return gemm_config.rhs_layout.num_cols <= kMaxDimensionSize; } absl::StatusOr<HloInstruction *> TurnF8DotWithUnsupportedOutputTypeIntoF32( HloInstruction *instr) { Shape output_f32_shape = instr->shape(); output_f32_shape.set_element_type(F32); HloInstruction *f32_dot = instr->AddInstruction(instr->CloneWithNewShape(output_f32_shape)); HloInstruction *convert = instr->AddInstruction( HloInstruction::CreateConvert(instr->shape(), f32_dot)); TF_RETURN_IF_ERROR(ReplaceInstruction(instr, convert)); return f32_dot; } absl::StatusOr<HloInstruction *> TurnF8DotIntoF16Dot(HloInstruction *instr) { DCHECK(IsF8Type(instr->operand(0))); DCHECK(IsF8Type(instr->operand(1))); PrimitiveType conv_type = instr->shape().element_type() == BF16 ? BF16 : F16; for (int i = 0; i < 2; ++i) { Shape operand_f16_shape = instr->operand(i)->shape(); operand_f16_shape.set_element_type(conv_type); HloInstruction *convert = instr->AddInstruction(HloInstruction::CreateConvert( operand_f16_shape, instr->mutable_operand(i))); TF_RETURN_IF_ERROR(instr->ReplaceOperandWith(i, convert)); } if (IsF8Type(instr)) { Shape output_f16_shape = instr->shape(); output_f16_shape.set_element_type(F16); HloInstruction *f16_dot = instr->AddInstruction(instr->CloneWithNewShape(output_f16_shape)); HloInstruction *convert_to_f8 = instr->AddInstruction( HloInstruction::CreateConvert(instr->shape(), f16_dot)); TF_RETURN_IF_ERROR(ReplaceInstruction(instr, convert_to_f8)); return f16_dot; } else { return instr; } } }; class GemmWorkspaceRewriteVisitor : public DfsHloRewriteVisitor { public: explicit GemmWorkspaceRewriteVisitor( const se::GpuComputeCapability &gpu_version) : gpu_version_(gpu_version) {} absl::Status HandleCustomCall(HloInstruction *instr) override { bool has_aux_output = false; if (instr->custom_call_target() == kCublasLtMatmulCallTarget || instr->custom_call_target() == kCublasLtMatmulF8CallTarget) { TF_ASSIGN_OR_RETURN(const auto gpu_config, instr->backend_config<xla::gpu::GpuBackendConfig>()); const xla::gpu::GemmBackendConfig &config = gpu_config.gemm_backend_config(); xla::gpu::GemmBackendConfig_Epilogue epilogue = config.epilogue(); TF_ASSIGN_OR_RETURN( has_aux_output, xla::gpu::gpublas_lt::EpilogueHasAuxiliaryOutput(epilogue)); if (!((instr->shape().IsTuple() && instr->shape().tuple_shapes_size() == has_aux_output + config.damax_output() + 1) || instr->shape().IsArray())) { return absl::OkStatus(); } } else if (instr->custom_call_target() != kGemmCallTarget || !instr->shape().IsArray()) { return absl::OkStatus(); } auto *cuda_cc = std::get_if<se::CudaComputeCapability>(&gpu_version_); int64_t workspace = cuda_cc == nullptr ? GemmConfig::kDefaultWorkspace : cuda_cc->IsAtLeastHopper() ? GemmConfig::kHopperWorkspace : GemmConfig::kDefaultWorkspace; if (instr->custom_call_target() == kGemmCallTarget) { int64_t operands_byte_size = 0; for (auto &operand : instr->operands()) { operands_byte_size += ShapeUtil::ByteSizeOf(operand->shape()); } workspace = std::min(workspace, operands_byte_size); } std::vector<Shape> output_shapes = instr->shape().IsArray() ? std::vector<Shape>{instr->shape()} : instr->shape().tuple_shapes(); output_shapes.emplace_back(ShapeUtil::MakeShape(S8, {workspace})); Shape output_shape = ShapeUtil::MakeTupleShape(output_shapes); HloInstruction *new_call = instr->AddInstruction( instr->CloneWithNewOperands(output_shape, instr->operands())); auto *custom_call = xla::Cast<HloCustomCallInstruction>(new_call); if (!custom_call->output_to_operand_aliasing().empty()) { custom_call->set_output_to_operand_aliasing({{{0}, {2, {}}}}); } if (instr->shape().IsTuple()) { for (auto user : instr->users()) { auto user_get_tuple = dynamic_cast<HloGetTupleElementInstruction *>(user); TF_RET_CHECK(user_get_tuple); HloInstruction *get_output = instr->AddInstruction(HloInstruction::CreateGetTupleElement( new_call, user_get_tuple->tuple_index())); TF_RETURN_IF_ERROR(ReplaceInstruction(user_get_tuple, get_output)); } return absl::OkStatus(); } else { HloInstruction *get_output = instr->AddInstruction( HloInstruction::CreateGetTupleElement(new_call, 0)); return ReplaceInstruction(instr, get_output); } } private: se::GpuComputeCapability gpu_version_; }; absl::StatusOr<bool> RunOnComputation(HloComputation *computation, se::GpuComputeCapability gpu_version, se::SemanticVersion toolkit_version, GemmRewriterOptions options) { GemmRewriterVisitor visitor(gpu_version, toolkit_version, options); TF_RETURN_IF_ERROR(computation->Accept(&visitor)); GemmWorkspaceRewriteVisitor workspace_visitor(gpu_version); TF_RETURN_IF_ERROR(computation->Accept(&workspace_visitor)); return visitor.changed(); } } GemmRewriter::GemmRewriter(se::GpuComputeCapability gpu_version, se::SemanticVersion toolkit_version, GemmRewriterOptions options) : gpu_version_(gpu_version), toolkit_version_(toolkit_version), options_(options) {} absl::StatusOr<bool> GemmRewriter::Run( HloModule *module, const absl::flat_hash_set<absl::string_view> &execution_threads) { bool changed = false; for (HloComputation *computation : module->MakeNonfusionComputations(execution_threads)) { TF_ASSIGN_OR_RETURN(bool result, RunOnComputation(computation, gpu_version_, toolkit_version_, options_)); changed |= result; } return changed; } } }
#include "xla/service/gpu/transforms/gemm_rewriter.h" #include <array> #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <tuple> #include <utility> #include <variant> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/statusor.h" #include "absl/strings/str_replace.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/error_spec.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/pass/hlo_pass_interface.h" #include "xla/service/buffer_assignment.h" #include "xla/service/executable.h" #include "xla/service/gpu/gpu_executable.h" #include "xla/service/gpu/tests/gpu_codegen_test.h" #include "xla/service/hlo_module_config.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/semantic_version.h" #include "xla/stream_executor/stream_executor_memory_allocator.h" #include "xla/test.h" #include "xla/tests/filecheck.h" #include "xla/tests/verified_hlo_module.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/xla.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { namespace m = ::xla::match; class GemmRewriteTest : public GpuCodegenTest { const auto& device_desc() const { return backend().default_stream_executor()->GetDeviceDescription(); } protected: const se::GpuComputeCapability& Capability() const { return device_desc().gpu_compute_capability(); } stream_executor::SemanticVersion GetToolkitVersion() const { return backend() .default_stream_executor() ->GetDeviceDescription() .runtime_version(); } bool IsCuda() const { return std::holds_alternative<se::CudaComputeCapability>(Capability()); } bool IsRocm() const { return std::holds_alternative<se::RocmComputeCapability>(Capability()); } se::GpuComputeCapability CudaHopperOrRocmMI300() { if (IsCuda()) { return se::CudaComputeCapability::Hopper(); } else { return se::RocmComputeCapability{"gfx942"}; } } DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = GpuCodegenTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_enable_triton_gemm(false); debug_options.set_xla_gpu_gemm_rewrite_size_threshold(0); return debug_options; } bool SkipGpuBlasLtTest() { return !IsCuda() && !std::get<se::RocmComputeCapability>(Capability()).has_hipblaslt() && GetDebugOptionsForTest().xla_gpu_enable_cublaslt(); } bool HasFp8Support() const { if (IsCuda()) { return std::get<se::CudaComputeCapability>(Capability()).IsAtLeast(8, 9); } return std::get<se::RocmComputeCapability>(Capability()).has_fp8_support(); } bool HasCudaComputeCapability(const se::CudaComputeCapability& cc) const { return IsCuda() && std::get<se::CudaComputeCapability>(Capability()).IsAtLeast(cc); } }; TEST_F(GemmRewriteTest, CheckCustomCallTarget) { if (SkipGpuBlasLtTest()) { GTEST_SKIP() << "BlasLt is not supported on this GPU architecture"; } const char* hlo_text = R"( HloModule SimpleGemm ENTRY AddDotsFunc { x = f32[2,3] parameter(0) y = f32[3,4] parameter(1) ROOT dot_a = f32[2,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; DebugOptions debug_options = GetDebugOptionsForTest(); if (debug_options.xla_gpu_enable_cublaslt()) { MatchOptimizedHlo(hlo_text, R"(; CHECK: custom_call_target="__cublas$lt$matmul")"); } else { MatchOptimizedHlo(hlo_text, R"(; CHECK: custom_call_target="__cublas$gemm")"); } } TEST_F(GemmRewriteTest, TestBatchedAutotuning) { if (HasCudaComputeCapability(se::CudaComputeCapability::Ampere())) { GTEST_SKIP() << "There is no autotuning starting with the Nvidia Ampere generation"; } const char* hlo_text = R"( HloModule ComplexDotMultipleNonContracting ENTRY %test { %lhs = f32[7,17,10,13]{3,2,1,0} parameter(0) %rhs = f32[7,9,10,13,6]{4,3,2,1,0} parameter(1) ROOT %dot = f32[10,7,17,9,6]{4,3,2,1,0} dot(%lhs, %rhs), lhs_batch_dims={2,0}, rhs_batch_dims={2,0}, lhs_contracting_dims={3}, rhs_contracting_dims={3} } )"; MatchOptimizedHlo(hlo_text, R"( ; CHECK: selected_algorithm )"); } TEST_F(GemmRewriteTest, SimpleRewriteDeterministic) { if (SkipGpuBlasLtTest()) { GTEST_SKIP() << "BlasLt is not supported on this GPU architecture"; } const char* hlo_text = R"( HloModule SimpleGemm ENTRY AddDotsFunc { x = f32[128,128] parameter(0) y = f32[128,128] parameter(1) ROOT dot_a = f32[128,128] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; ErrorSpec error_spec = [&] { DebugOptions debug_options = GetDebugOptionsForTest(); if (debug_options.xla_gpu_enable_cublaslt()) { return ErrorSpec{1e-3, 1e-3}; } else { return ErrorSpec{1e-3, 1e-3}; } }(); auto get_module = [&]() { HloModuleConfig config; DebugOptions debug_options = GetDebugOptionsForTest(); debug_options.set_xla_gpu_exclude_nondeterministic_ops(true); config.set_debug_options(debug_options); return ParseAndReturnVerifiedModule(hlo_text, config); }; se::StreamExecutorMemoryAllocator allocator( backend().default_stream_executor()); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> optimized_module, backend().compiler()->RunHloPasses( *get_module(), backend().default_stream_executor(), &allocator)); absl::StatusOr<bool> filecheck_result = RunFileCheck(optimized_module->ToString(), R"( ; CHECK: custom_call_target="__cublas${{(lt\$matmul|gemm)}}" )"); TF_ASSERT_OK(filecheck_result.status()); EXPECT_TRUE(filecheck_result.value()); EXPECT_TRUE(RunAndCompare(*get_module(), error_spec)); } TEST_F(GemmRewriteTest, BF16GemmCodeGen) { const char* hlo_text = R"( HloModule bf16codegendgemm ENTRY bf16gemm { %parameter.1 = bf16[3]{0} parameter(0) %parameter.2 = bf16[3]{0} parameter(1) ROOT %dot.3 = bf16[] dot(bf16[3]{0} %parameter.1, bf16[3]{0} %parameter.2), lhs_contracting_dims={0}, rhs_contracting_dims={0}, operand_precision={highest,highest} } )"; if (HasCudaComputeCapability(se::CudaComputeCapability::Hopper())) { MatchOptimizedHlo(hlo_text, R"( ; CHECK: [[P0:%[^ ]+]] = bf16[3]{0} parameter(0) ; CHECK: [[P1:%[^ ]+]] = bf16[3]{0} parameter(1) ; CHECK: [[INSTR_2:%[^ ]+]] = bf16[3]{0} multiply([[P0]], [[P1]]) ; CHECK: [[INSTR_3:%[^ ]+]] = f32[3]{0} convert([[INSTR_2]]) ; CHECK: [[INSTR_4:%[^ ]+]] = f32[] constant(0) ; CHECK: [[INSTR_5:%[^ ]+]] = f32[] reduce([[INSTR_3]], [[INSTR_4]]), dimensions={0}, to_apply=[[INSTR_6:%[^ ]+]] ; CHECK: ROOT [[INSTR_7:%[^ ]+]] = bf16[] convert([[INSTR_5]]) )"); } else { MatchOptimizedHlo(hlo_text, R"( ; CHECK: [[P1:%[^ ]+]] = bf16[3]{0} parameter(1) ; CHECK: [[INSTR_1:%[^ ]+]] = f32[3]{0} convert([[P1]]) ; CHECK: [[P0:%[^ ]+]] = bf16[3]{0} parameter(0) ; CHECK: [[INSTR_3:%[^ ]+]] = f32[3]{0} convert([[P0]]) ; CHECK: [[INSTR_4:%[^ ]+]] = f32[3]{0} multiply([[INSTR_1]], [[INSTR_3]]) ; CHECK: [[INSTR_5:%[^ ]+]] = f32[] constant(0) ; CHECK: [[INSTR_6:%[^ ]+]] = f32[] reduce([[INSTR_4]], [[INSTR_5]]), dimensions={0}, to_apply=[[INSTR_7:%[^ ]+]] ; CHECK: ROOT [[INSTR_8:%[^ ]+]] = bf16[] convert([[INSTR_6]]) )"); } EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-4, 1e-4})); } TEST_F(GemmRewriteTest, BF16Transpose) { const char* hlo_text = R"( HloModule broadcast ENTRY broadcast { p = bf16[9] parameter(0) ROOT out = bf16[1,9] broadcast(p), dimensions={1} } )"; MatchOptimizedHlo(hlo_text, R"( ; CHECK: bf16[1,9]{1,0} bitcast ; CHECK: bf16[1,9]{1,0} copy )"); EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); } class ParameterizedGemmRewriteTest : public GemmRewriteTest, public ::testing::WithParamInterface<bool> { public: ParameterizedGemmRewriteTest() { const bool kUsingCublasLt = GetParam(); replacements_[kCustomCallTargetPlaceholder] = kUsingCublasLt ? "__cublas$lt$matmul" : "__cublas$gemm"; } DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = GemmRewriteTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_enable_cublaslt(GetParam()); debug_options.set_xla_gpu_enable_triton_gemm(false); return debug_options; } void MatchOptimizedHlo(absl::string_view hlo, const absl::string_view pattern, bool print_operand_shape = false) { GemmRewriteTest::MatchOptimizedHlo( hlo, absl::StrReplaceAll(pattern, replacements_), print_operand_shape); } absl::string_view CustomCallTarget() { return replacements_[kCustomCallTargetPlaceholder]; } protected: void SetUp() override { if (SkipGpuBlasLtTest()) { GTEST_SKIP() << "BlasLt is not supported on this GPU architecture"; } } protected: absl::flat_hash_map<absl::string_view, absl::string_view> replacements_; private: static constexpr const char* kCustomCallTargetPlaceholder{ "<<CUBLAS_CUSTOM_CALL_TARGET_PLACEHOLDER>>"}; }; TEST_P(ParameterizedGemmRewriteTest, Simple) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,3] parameter(0) y = f32[3,4] parameter(1) ROOT dot_a = f32[2,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,3], {{.*}}: f32[3,4]) -> f32[2,4] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[2,3]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[3,4]{1,0} parameter(1) ; CHECK-NEXT: [[GEMM:%[^ ]+]] = {{.*}} custom-call([[P0]], [[P1]]), ; CHECK: custom_call_target="<<CUBLAS_CUSTOM_CALL_TARGET_PLACEHOLDER>>", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedGemmRewriteTest, SimpleRewrite) { const char* hlo_text = R"( HloModule SimpleGemm ENTRY AddDotsFunc { x = f32[2,3] parameter(0) y = f32[3,4] parameter(1) ROOT dot_a = f32[2,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %AddDotsFunc ({{.*}}: f32[2,3], {{.*}}: f32[3,4]) -> f32[2,4] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[2,3]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[3,4]{1,0} parameter(1) ; CHECK-NEXT: [[GEMM:%[^ ]+]] = {{.*}} custom-call([[P0]], [[P1]]), ; CHECK: custom_call_target="<<CUBLAS_CUSTOM_CALL_TARGET_PLACEHOLDER>>", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedGemmRewriteTest, MultipleContractingDims) { const char* hlo_text = R"( HloModule MultipleContractingCheckGemm ENTRY AddDotsFunc { x = f32[3,4,2] parameter(0) y = f32[3,4,5] parameter(1) ROOT dot_a = f32[2,5] dot(x, y), lhs_contracting_dims={0,1}, rhs_contracting_dims={0,1}, operand_precision={highest,highest} } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-NOT: copy ; ; CHECK-LABEL: ENTRY %AddDotsFunc ({{.*}}: f32[3,4,2], {{.*}}: f32[3,4,5]) -> f32[2,5] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[3,4,2]{2,1,0} parameter(0) ; CHECK-DAG: [[P1:%[^ ]+]] = f32[3,4,5]{2,1,0} parameter(1) ; CHECK-DAG: [[BITCAST0:%[^ ]+]] = f32[2,12]{0,1} bitcast([[P0]]) ; CHECK-DAG: [[BITCAST1:%[^ ]+]] = f32[12,5]{1,0} bitcast([[P1]]) ; CHECK-NEXT: [[GEMM:%[^ ]+]] = {{.*}} custom-call([[BITCAST0]], [[BITCAST1]]), ; CHECK: custom_call_target="<<CUBLAS_CUSTOM_CALL_TARGET_PLACEHOLDER>>", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["HIGHEST","HIGHEST"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedGemmRewriteTest, ArgTransposeFoldCheck) { const char* hlo_text = R"( HloModule ArgTransposeFoldGemm ENTRY AddDotsFunc { x = f32[3,2] parameter(0) y = f32[3,4] parameter(1) x_transposed = f32[2,3] transpose(x), dimensions={1, 0} ROOT dot_a = f32[2,4] dot(x_transposed, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %AddDotsFunc ({{.*}}: f32[3,2], {{.*}}: f32[3,4]) -> f32[2,4] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[3,2]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[3,4]{1,0} parameter(1) ; CHECK-NEXT: [[GEMM:%[^ ]+]] = {{.*}} custom-call([[P0]], [[P1]]), ; CHECK: custom_call_target="<<CUBLAS_CUSTOM_CALL_TARGET_PLACEHOLDER>>", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["0"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedGemmRewriteTest, BatchedArgRowColTransposeFoldCheck) { const char* hlo_text = R"( HloModule BatchedArgRowColTransposeFoldGemm ENTRY AddDotsFunc { x = f32[5,3,2] parameter(0) y = f32[5,3,4] parameter(1) x_transposed = f32[5,2,3] transpose(x), dimensions={0, 2, 1} ROOT dot_a = f32[5,2,4] dot(x_transposed, y), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-3, 1e-3})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %AddDotsFunc ({{.*}}: f32[5,3,2], {{.*}}: f32[5,3,4]) -> f32[5,2,4] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[5,3,2]{2,1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[5,3,4]{2,1,0} parameter(1) ; CHECK-NEXT: [[GEMM:%[^ ]+]] = {{.*}} custom-call([[P0]], [[P1]]), ; CHECK: custom_call_target="<<CUBLAS_CUSTOM_CALL_TARGET_PLACEHOLDER>>", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":["0"] ; CHECK-DAG: "rhs_batch_dimensions":["0"] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedGemmRewriteTest, BatchRowTransposeFoldCheck) { const char* hlo_text = R"( HloModule BatchRowTransposeFoldCheck ENTRY AddDotsFunc { x = f32[2,5,3] parameter(0) y = f32[5,3,4] parameter(1) x_transposed = f32[5,2,3] transpose(x), dimensions={1, 0, 2} ROOT dot_a = f32[5,2,4] dot(x_transposed, y), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{2.5e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %AddDotsFunc ({{.*}}: f32[2,5,3], {{.*}}: f32[5,3,4]) -> f32[5,2,4] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[2,5,3]{2,1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[5,3,4]{2,1,0} parameter(1) ; CHECK-NEXT: [[GEMM:%[^ ]+]] = {{.*}} custom-call([[P0]], [[P1]]), ; CHECK: custom_call_target="<<CUBLAS_CUSTOM_CALL_TARGET_PLACEHOLDER>>", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["2"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":["1"] ; CHECK-DAG: "rhs_batch_dimensions":["0"] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedGemmRewriteTest, BatchFromMinorDimTransposeIsNotFolded) { const char* hlo_text = R"( HloModule BatchFromMinorDimTransposeDoesntFold ENTRY AddDotsFunc { x = f32[3,2,5] parameter(0) y = f32[5,3,4] parameter(1) x_transposed = f32[5,2,3] transpose(x), dimensions={2, 1, 0} ROOT dot_a = f32[5,2,4] dot(x_transposed, y), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{2.5e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %AddDotsFunc ({{.*}}: f32[3,2,5], {{.*}}: f32[5,3,4]) -> f32[5,2,4] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[3,2,5]{2,1,0} parameter(0) ; CHECK-DAG: [[P1:%[^ ]+]] = f32[5,3,4]{2,1,0} parameter(1) ; CHECK-DAG: [[FUSION:%[^ ]+]] = f32[5,2,3]{2,1,0} transpose([[P0]]) ; CHECK-NEXT: [[GEMM:%[^ ]+]] = {{.*}} custom-call([[FUSION]], [[P1]]), ; CHECK: custom_call_target="<<CUBLAS_CUSTOM_CALL_TARGET_PLACEHOLDER>>", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["2"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":["0"] ; CHECK-DAG: "rhs_batch_dimensions":["0"] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedGemmRewriteTest, LargeBatch) { const char* hlo_text = R"( HloModule BatchedArgRowColTransposeFoldGemm ENTRY AddDotsFunc { x = f32[20000,4,3,2] parameter(0) y = f32[20000,4,3,4] parameter(1) ROOT dot_a = f32[20000,4,2,4] dot(x, y), lhs_contracting_dims={2}, rhs_contracting_dims={2}, lhs_batch_dims={0,1}, rhs_batch_dims={0,1} } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-3, 1e-3})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %AddDotsFunc ({{.*}}: f32[20000,4,3,2], {{.*}}: f32[20000,4,3,4]) -> f32[20000,4,2,4] { ; CHECK: [[P0:%[^ ]+]] = f32[20000,4,3,2]{3,2,1,0} parameter(0) ; CHECK: [[BC0:%[^ ]+]] = f32[80000,3,2]{2,1,0} bitcast([[P0]]) ; CHECK: [[P1:%[^ ]+]] = f32[20000,4,3,4]{3,2,1,0} parameter(1) ; CHECK: [[BC1:%[^ ]+]] = f32[80000,3,4]{2,1,0} bitcast([[P1]]) ; CHECK: [[GEMM:%[^ ]+]] = (f32[80000,2,4]{2,1,0}, s8[{{[0-9]+}}]{0}) custom-call([[BC0]], [[BC1]]), ; CHECK: custom_call_target="__cublas$gemm", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":["0"] ; CHECK-DAG: "rhs_batch_dimensions":["0"] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK: } ; CHECK: [[OUT:%[^ ]+]] = f32[80000,2,4]{2,1,0} get-tuple-element([[GEMM]]), index=0 ; CHECK: ROOT {{[^ ]+}} = f32[20000,4,2,4]{3,2,1,0} bitcast([[OUT]]) )"); } TEST_P(ParameterizedGemmRewriteTest, InstrTransposeFoldCheck) { const char* hlo_text = R"( HloModule InstrTransposeFoldGemm ENTRY AddDotsFunc { x = f32[2,3] parameter(0) y = f32[3,4] parameter(1) dot_a = f32[2,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT out = f32[4,2] transpose(dot_a), dimensions={1, 0} } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %AddDotsFunc ({{.*}}: f32[2,3], {{.*}}: f32[3,4]) -> f32[4,2] { ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[3,4]{1,0} parameter(1) ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[2,3]{1,0} parameter(0) ; CHECK-NEXT: [[GEMM:%[^ ]+]] = {{.*}} custom-call([[P1]], [[P0]]), ; CHECK: custom_call_target="<<CUBLAS_CUSTOM_CALL_TARGET_PLACEHOLDER>>", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["0"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedGemmRewriteTest, BatchedInstrLayoutTransposed) { const char* hlo_text = R"( HloModule BatchedInstrLayoutCheck ENTRY AddDotsFunc { x = f32[5,2,3] parameter(0) y = f32[5,3,4] parameter(1) dot_a = f32[5,2,4] dot(x, y), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} ROOT out = f32[2,5,4] transpose(dot_a), dimensions={1, 0, 2} } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{2.5e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %AddDotsFunc ({{.*}}: f32[5,2,3], {{.*}}: f32[5,3,4]) -> f32[2,5,4] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[5,2,3]{2,1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[5,3,4]{2,1,0} parameter(1) ; CHECK-NEXT: [[GEMM:%[^ ]+]] = {{.*}} custom-call([[P0]], [[P1]]), ; CHECK: custom_call_target="<<CUBLAS_CUSTOM_CALL_TARGET_PLACEHOLDER>>", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["2"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":["0"] ; CHECK-DAG: "rhs_batch_dimensions":["0"] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } ; CHECK: ROOT [[OUT:%[^ ]+]] = f32[2,5,4]{2,1,0} bitcast )"); } TEST_P(ParameterizedGemmRewriteTest, BatchedInstrLayoutBatchNotInMinorDim) { const char* hlo_text = R"( HloModule BatchedInstrLayoutBatchNotInMinorDim ENTRY AddDotsFunc { x = f32[5,2,3] parameter(0) y = f32[5,3,4] parameter(1) dot_a = f32[5,2,4] dot(x, y), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} ROOT out = f32[2,4,5] transpose(dot_a), dimensions={1, 2, 0} } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{2.5e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %AddDotsFunc ({{.*}}: f32[5,2,3], {{.*}}: f32[5,3,4]) -> f32[2,4,5] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[5,2,3]{2,1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[5,3,4]{2,1,0} parameter(1) ; CHECK-NEXT: [[GEMM:%[^ ]+]] = {{.*}} custom-call([[P0]], [[P1]]), ; CHECK: custom_call_target="<<CUBLAS_CUSTOM_CALL_TARGET_PLACEHOLDER>>", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["2"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":["0"] ; CHECK-DAG: "rhs_batch_dimensions":["0"] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } ; CHECK: ROOT [[OUT:%[^ ]+]] = f32[2,4,5]{2,1,0} [[OP:[^ ]+]] )"); } TEST_P(ParameterizedGemmRewriteTest, AlphaSimpleRewrite) { const char* hlo_text = R"( HloModule AlphaSimpleRewrite ENTRY AddDotsFunc { x = f32[2,2] parameter(0) y = f32[2,2] parameter(1) k = f32[] constant(3.0) k_broadcast = f32[2, 2] broadcast(k), dimensions={} dot_a = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0}, operand_precision={highest,highest} ROOT dot_a_multiplied = f32[2, 2] multiply(dot_a, k_broadcast) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %AddDotsFunc ({{.*}}: f32[2,2], {{.*}}: f32[2,2]) -> f32[2,2] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[2,2]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[2,2]{1,0} parameter(1) ; CHECK-NEXT: [[GEMM:%[^ ]+]] = {{.*}} custom-call([[P0]], [[P1]]), ; CHECK: custom_call_target="<<CUBLAS_CUSTOM_CALL_TARGET_PLACEHOLDER>>", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":3 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["HIGHEST","HIGHEST"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedGemmRewriteTest, F64C64_CublasLtSupportTest) { { const char* hlo_text = R"( HloModule F64_rewrite ENTRY AddDotsFunc { x = f64[2,2] parameter(0) y = f64[2,2] parameter(1) k = f64[] constant(3.0) k_broadcast = f64[2, 2] broadcast(k), dimensions={} dot_a = f64[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT dot_a_multiplied = f64[2, 2] multiply(dot_a, k_broadcast) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-4, 1e-5})); } { const char* hlo_text = R"( HloModule C64_rewrite ENTRY AddDotsFunc { x = c64[2,2] parameter(0) y = c64[2,2] parameter(1) k = c64[] constant((3.0, 3.0)) k_broadcast = c64[2, 2] broadcast(k), dimensions={} dot_a = c64[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT dot_a_multiplied = c64[2, 2] multiply(dot_a, k_broadcast) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-4, 1e-5})); } } TEST_P(ParameterizedGemmRewriteTest, ComplexAlphaSimpleRewrite) { if (!IsCuda() && GetDebugOptionsForTest().xla_gpu_enable_cublaslt()) { GTEST_SKIP() << "TODO: Unsupported C64 gpublas-lt datatype on ROCM"; } const char* hlo_text = R"( HloModule ComplexAlphaSimpleRewrite ENTRY AddDotsFunc { x = c64[2,2] parameter(0) y = c64[2,2] parameter(1) k = c64[] constant((3.0, 3.0)) k_broadcast = c64[2, 2] broadcast(k), dimensions={} dot_a = c64[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT dot_a_multiplied = c64[2, 2] multiply(dot_a, k_broadcast) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-4, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %AddDotsFunc ({{.*}}: c64[2,2], {{.*}}: c64[2,2]) -> c64[2,2] { ; CHECK-NEXT: [[P0:%[^ ]+]] = c64[2,2]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = c64[2,2]{1,0} parameter(1) ; CHECK-NEXT: [[GEMM:%[^ ]+]] = {{.*}} custom-call([[P0]], [[P1]]), ; CHECK: custom_call_target="<<CUBLAS_CUSTOM_CALL_TARGET_PLACEHOLDER>>", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":3 ; CHECK-DAG: "alpha_imag":3 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedGemmRewriteTest, AlphaMultipleUsersNoRewrite) { const char* hlo_text = R"( HloModule AlphaMultipleUsersNoRewrite ENTRY AddDotsFunc { x = f32[2,2] parameter(0) y = f32[2,2] parameter(1) k = f32[] constant(3.0) k_broadcast = f32[2, 2] broadcast(k), dimensions={} dot_a = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0}, operand_precision={highest,highest} dot_a_multiplied = f32[2, 2] multiply(dot_a, k_broadcast) ROOT out = f32[2,2] add(dot_a_multiplied, dot_a) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK: {{[^ ]+}} = {{.*}} custom-call({{[^,]+}}, {{[^)]+}}), ; CHECK: custom_call_target="<<CUBLAS_CUSTOM_CALL_TARGET_PLACEHOLDER>>", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["HIGHEST","HIGHEST"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedGemmRewriteTest, AlphaVectorNoRewrite) { const char* hlo_text = R"( HloModule AlphaVectorNoRewrite ENTRY AddDotsFunc { x = f32[2,2] parameter(0) y = f32[2,2] parameter(1) alpha = f32[2] constant({1, 2}) alpha_broadcast = f32[2,2] broadcast(alpha), dimensions={1} dot = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT dot_a_multiplied = f32[2, 2] multiply(dot, alpha_broadcast) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %AddDotsFunc ({{.*}}: f32[2,2], {{.*}}: f32[2,2]) -> f32[2,2] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[2,2]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[2,2]{1,0} parameter(1) ; CHECK-NEXT: [[GEMM:%[^ ]+]] = {{.*}} custom-call([[P0]], [[P1]]), ; CHECK: custom_call_target="<<CUBLAS_CUSTOM_CALL_TARGET_PLACEHOLDER>>", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedGemmRewriteTest, BF16Gemm) { const char* hlo_text = R"( HloModule bf16gemm ENTRY bf16gemm { %parameter.1 = bf16[12,4]{1,0} parameter(0) %parameter.2 = bf16[4,8]{1,0} parameter(1) ROOT %dot.8 = bf16[12,8] dot(bf16[12,4] %parameter.1, bf16[4,8] %parameter.2), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); if (!IsCuda() || HasCudaComputeCapability(se::CudaComputeCapability::Ampere())) { MatchOptimizedHlo(hlo_text, R"( ; CHECK: {{.*}} custom-call(bf16[16,8]{1,0} {{.*}}, bf16[8,8]{1,0} {{.*}}), custom_call_target="<<CUBLAS_CUSTOM_CALL_TARGET_PLACEHOLDER>>" )", true); } else { GTEST_SKIP() << "Pre-Ampere casts up bf16 to fp32"; } } TEST_P(ParameterizedGemmRewriteTest, BF16GemmStrided) { const char* hlo_text = R"( HloModule bf16gemm ENTRY bf16gemm { %parameter.1 = bf16[3,3,4] parameter(0) %parameter.2 = bf16[3,3,2] parameter(1) ROOT %dot.3 = bf16[3,4,2]{2,1,0} dot(bf16[3,3,4]{2,1,0} %parameter.1, bf16[3,3,2]{2,1,0} %parameter.2), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1}, operand_precision={highest,highest} } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); if (!IsCuda() || HasCudaComputeCapability(se::CudaComputeCapability::Ampere())) { MatchOptimizedHlo(hlo_text, R"( ; CHECK: {{.*}} custom-call(bf16[3,8,8]{2,1,0} {{.*}}, bf16[3,8,8]{2,1,0} {{.*}}), custom_call_target="<<CUBLAS_CUSTOM_CALL_TARGET_PLACEHOLDER>>" )", true); } else { GTEST_SKIP() << "Pre-Ampere casts up bf16 to fp32"; } } TEST_P(ParameterizedGemmRewriteTest, Int8Gemm) { const char* hlo_text = R"( HloModule int8gemm ENTRY int8gemm { %parameter.1 = s8[12,4]{1,0} parameter(0) %parameter.2 = s8[4,8]{1,0} parameter(1) ROOT %dot.8 = s32[12,8] dot(s8[12,4] %parameter.1, s8[4,8] %parameter.2), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); if (!IsCuda() || HasCudaComputeCapability(se::CudaComputeCapability::Volta())) { MatchOptimizedHlo(hlo_text, R"( ; CHECK: {{.*}} custom-call(s8[12,4]{1,0} [[A:%[^ ]+]], s8[4,8]{0,1} [[B:%[^ ]+]]), custom_call_target="__cublas$gemm" )", true); } else { MatchOptimizedHlo(hlo_text, R"( ; CHECK: {{.*}} dot(s32[12,4]{1,0} [[A:%[^ ]+]], s32[4,8]{1,0} [[B:%[^ ]+]]), lhs_contracting_dims={1}, rhs_contracting_dims={0} )", true); } } TEST_F(GemmRewriteTest, Int8GemmRankGreaterThanTwo) { if (!IsCuda()) { GTEST_SKIP() << "DoBlasGemmWithAlgorithm is not yet implemented on ROCm"; } const char* hlo_text = R"( HloModule int8gemm ENTRY main.4 { Arg_0.1 = s8[1,8,2]{2,1,0} parameter(0) Arg_1.2 = s8[2,4]{1,0} parameter(1) ROOT dot.3 = s32[1,8,4]{2,1,0} dot(Arg_0.1, Arg_1.2), lhs_contracting_dims={2}, rhs_contracting_dims={0} } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); if (!IsCuda() || HasCudaComputeCapability(se::CudaComputeCapability::Volta())) { MatchOptimizedHlo(hlo_text, R"( ; CHECK: [[GEMM:%[^ ]+]] = (s32[8,4]{1,0}, s8[{{[0-9]+}}]{0}) custom-call(s8[8,4]{1,0} %{{.*}}, s8[4,4]{0,1} %{{.*}}), custom_call_target="__cublas$gemm", )", true); } } TEST_P(ParameterizedGemmRewriteTest, Int8GemmNoAlphaRewrite) { const char* hlo_text = R"( HloModule int8gemm ENTRY int8gemm { %parameter.1 = s8[12,4]{1,0} parameter(0) %parameter.2 = s8[4,8]{1,0} parameter(1) k = s32[] constant(2) k_broadcast = s32[12,8] broadcast(k), dimensions={} %dot.8 = s32[12,8] dot(s8[12,4] %parameter.1, s8[4,8] %parameter.2), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT dot_multiplied = s32[12,8] multiply(%dot.8, k_broadcast) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); if (!IsCuda() || HasCudaComputeCapability(se::CudaComputeCapability::Volta())) { MatchOptimizedHlo(hlo_text, R"( ; CHECK: {{.*}} custom-call(s8[12,4]{1,0} [[A:%[^ ]+]], s8[4,8]{0,1} [[B:%[^ ]+]]), ; CHECK: custom_call_target="__cublas$gemm", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 )", true); } else { MatchOptimizedHlo(hlo_text, R"( ; CHECK: {{.*}} dot(s32[12,4]{1,0} [[A:%[^ ]+]], s32[4,8]{1,0} [[B:%[^ ]+]]), lhs_contracting_dims={1}, rhs_contracting_dims={0} )", true); } } TEST_P(ParameterizedGemmRewriteTest, Int8GemmNoBetaRewrite) { const char* hlo_text = R"( HloModule int8gemm ENTRY int8gemm { %parameter.1 = s8[12,4]{1,0} parameter(0) %parameter.2 = s8[4,8]{1,0} parameter(1) bias = s32[12,8] parameter(2) %dot.8 = s32[12,8] dot(s8[12,4] %parameter.1, s8[4,8] %parameter.2), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT out = s32[12,8] add(%dot.8, bias) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); if (!IsCuda() || HasCudaComputeCapability(se::CudaComputeCapability::Volta())) { MatchOptimizedHlo(hlo_text, R"( ; CHECK: {{.*}} custom-call(s8[12,4]{1,0} [[A:%[^ ]+]], s8[4,8]{0,1} [[B:%[^ ]+]]), ; CHECK: custom_call_target="__cublas$gemm", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 )", true); } else { MatchOptimizedHlo(hlo_text, R"( ; CHECK: {{.*}} dot(s32[12,4]{1,0} [[A:%[^ ]+]], s32[4,8]{1,0} [[B:%[^ ]+]]), lhs_contracting_dims={1}, rhs_contracting_dims={0} )", true); } } TEST_P(ParameterizedGemmRewriteTest, Int8GemmNotMultipleOfFour) { if (!IsCuda()) { GTEST_SKIP() << "DoBlasGemmWithAlgorithm is not yet implemented on ROCm"; } const char* hlo_text = R"( HloModule int8gemm ENTRY int8gemm { %parameter.1 = s8[13,4]{1,0} parameter(0) %parameter.2 = s8[4,9]{1,0} parameter(1) ROOT %dot.9 = s32[13,9] dot(s8[13,4] %parameter.1, s8[4,9] %parameter.2), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); if (!IsCuda() || HasCudaComputeCapability(se::CudaComputeCapability::Volta())) { MatchOptimizedHlo(hlo_text, R"( ; CHECK: {{.*}} custom-call(s8[16,4]{1,0} [[A:%[^ ]+]], s8[4,12]{0,1} [[B:%[^ ]+]]), custom_call_target="__cublas$gemm" )", true); } else { MatchOptimizedHlo(hlo_text, R"( ; CHECK: {{.*}} dot(s32[13,4]{1,0} [[A:%[^ ]+]], s32[4,9]{1,0} [[B:%[^ ]+]]), lhs_contracting_dims={1}, rhs_contracting_dims={0} )", true); } } TEST_P(ParameterizedGemmRewriteTest, GemmTypeCombinationCheck) { if (!IsCuda()) { GTEST_SKIP() << "DoBlasGemmWithAlgorithm is not yet implemented on ROCm"; } std::vector<std::tuple<absl::string_view, absl::string_view, bool>> type_combinations = {{"s8", "s8", true}, {"s32", "s32", true}, {"bf16", "bf16", true}, {"f16", "f16", true}, {"f32", "f32", true}, {"f64", "f64", true}, {"c64", "c64", true}, {"c128", "c128", true}, {"s8", "s32", true}, {"s8", "f32", true}, {"f16", "f32", true}, {"bf16", "f32", true}}; if (!IsCuda() || HasCudaComputeCapability(se::CudaComputeCapability::Ampere())) { std::vector<std::tuple<absl::string_view, absl::string_view, bool>> more_type_combinations = { {"s8", "bf16", false}, {"s8", "f16", false}, {"s8", "f64", false}, {"s8", "c64", false}, {"s8", "c128", false}, {"s32", "f32", false}, {"s32", "f64", false}, {"s32", "c64", false}, {"s32", "c128", false}, {"f16", "bf16", false}, {"f16", "f64", false}, {"f16", "c64", false}, {"f16", "c128", false}, {"bf16", "f16", false}, {"bf16", "f64", false}, {"bf16", "c64", false}, {"bf16", "c128", false}, {"f32", "f64", false}, {"f32", "c64", false}, {"f32", "c128", false}, {"f64", "c64", false}, {"f64", "c128", false}, }; type_combinations.insert(type_combinations.end(), more_type_combinations.begin(), more_type_combinations.end()); } for (const auto& type_combination : type_combinations) { absl::flat_hash_map<absl::string_view, absl::string_view> replacements; replacements["<<ABType>>"] = std::get<0>(type_combination); replacements["<<DType>>"] = std::get<1>(type_combination); const char* hlo_template = R"( HloModule type_combo ENTRY type_combo { %parameter.1 = <<ABType>>[4,4]{1,0} parameter(0) %parameter.2 = <<ABType>>[4,4]{1,0} parameter(1) ROOT %dot = <<DType>>[4,4] dot(%parameter.1, %parameter.2), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; const auto hlo_text = absl::StrReplaceAll(hlo_template, replacements); if (std::get<2>(type_combination)) { EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-3, 1e-3})); } else { EXPECT_FALSE(RunAndCompare(hlo_text, ErrorSpec{1e-3, 1e-3})); } } } TEST_P(ParameterizedGemmRewriteTest, UpcastingBf16ToF64) { const char* hlo_text = R"( HloModule test ENTRY test { Arg_0.1 = bf16[4,3]{1,0} parameter(0) Arg_1.2 = bf16[3,6]{1,0} parameter(1) ROOT dot.3 = f64[4,6]{1,0} dot(Arg_0.1, Arg_1.2), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GemmRewriter pass(Capability(), GetToolkitVersion()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement(m::CustomCall({"__cublas$gemm"}), 0))); } TEST_P(ParameterizedGemmRewriteTest, UpcastingC64ToC128) { const char* hlo_text = R"( HloModule test ENTRY test { Arg_0.1 = c64[4,3]{1,0} parameter(0) Arg_1.2 = c64[3,6]{1,0} parameter(1) ROOT dot.3 = c128[4,6]{1,0} dot(Arg_0.1, Arg_1.2), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GemmRewriter pass(Capability(), GetToolkitVersion()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement(m::CustomCall({"__cublas$gemm"}), 0))); } TEST_P(ParameterizedGemmRewriteTest, UpcastingF16ToF32) { const char* hlo_text = R"( HloModule test ENTRY test { Arg_0.1 = f16[4,3]{1,0} parameter(0) Arg_1.2 = f16[3,6]{1,0} parameter(1) ROOT dot.3 = f32[4,6]{1,0} dot(Arg_0.1, Arg_1.2), lhs_contracting_dims={1}, rhs_contracting_dims={0}, operand_precision={highest, highest} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GemmRewriter pass(Capability(), GetToolkitVersion()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement(m::CustomCall({CustomCallTarget()}), 0))); } TEST_P(ParameterizedGemmRewriteTest, UpcastingF16ToF64) { const char* hlo_text = R"( HloModule test ENTRY test { Arg_0.1 = f16[4,3]{1,0} parameter(0) Arg_1.2 = f16[3,6]{1,0} parameter(1) ROOT dot.3 = f64[4,6]{1,0} dot(Arg_0.1, Arg_1.2), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GemmRewriter pass(Capability(), GetToolkitVersion()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement(m::CustomCall({"__cublas$gemm"}), 0))); } TEST_P(ParameterizedGemmRewriteTest, UpcastingF32ToF64) { const char* hlo_text = R"( HloModule test ENTRY test { Arg_0.1 = f32[4,3]{1,0} parameter(0) Arg_1.2 = f32[3,6]{1,0} parameter(1) ROOT dot.3 = f64[4,6]{1,0} dot(Arg_0.1, Arg_1.2), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GemmRewriter pass(Capability(), GetToolkitVersion()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement(m::CustomCall({"__cublas$gemm"}), 0))); } TEST_P(ParameterizedGemmRewriteTest, DoNotUpconvertOutput) { const char* hlo_text = R"( HloModule test ENTRY main { param_0 = f16[240,88]{1,0} parameter(0) param_1 = f16[88,4]{1,0} parameter(1) dot = f16[240,4]{1,0} dot(param_0, param_1), lhs_contracting_dims={1}, rhs_contracting_dims={0}, operand_precision={highest,highest} constant_255 = f16[] constant(255) broadcast = f16[240,4]{1,0} broadcast(constant_255), dimensions={} multiply = f16[240,4]{1,0} multiply(dot, broadcast) ROOT result = f32[240,4]{1,0} convert(multiply) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GemmRewriter pass(Capability(), GetToolkitVersion()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Convert( m::GetTupleElement(m::CustomCall({CustomCallTarget()}), 0)))); } TEST_P(ParameterizedGemmRewriteTest, UnsupportedMixTypeGemm) { const char* hlo_text = R"( HloModule test ENTRY main { param_0 = f32[240,88]{1,0} parameter(0) param_1 = f32[88,4]{1,0} parameter(1) dot = f32[240,4]{1,0} dot(param_0, param_1), lhs_contracting_dims={1}, rhs_contracting_dims={0}, operand_precision={highest,highest} constant_255 = f32[] constant(255) broadcast = f32[240,4]{1,0} broadcast(constant_255), dimensions={} multiply = f32[240,4]{1,0} multiply(dot, broadcast) ROOT result = u8[240,4]{1,0} convert(multiply) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GemmRewriter pass(Capability(), GetToolkitVersion()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Convert( m::GetTupleElement(m::CustomCall({CustomCallTarget()}), 0)))); } TEST_P(ParameterizedGemmRewriteTest, CheckIsGemmAliasedBeforeFusion) { const char* hlo_text = R"( HloModule test ENTRY main { Arg_0.1 = f16[8,16]{1,0} parameter(0) Arg_1.2 = f16[16,32]{1,0} parameter(1) dot.8 = f16[8,32]{1,0} dot(Arg_0.1, Arg_1.2), lhs_contracting_dims={1}, rhs_contracting_dims={0} Arg_2.3 = f16[8,32]{1,0} parameter(2) constant.5 = f16[] constant(1) broadcast.6 = f16[8,32]{1,0} broadcast(constant.5), dimensions={} add.7 = f16[8,32]{1,0} add(Arg_2.3, broadcast.6) add.9 = f16[8,32]{1,0} add(dot.8, add.7) convert.10 = f32[8,32]{1,0} convert(add.9) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GemmRewriter pass(Capability(), GetToolkitVersion()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Convert( m::GetTupleElement(m::CustomCall({CustomCallTarget()}), 0)))); } INSTANTIATE_TEST_SUITE_P(CublasTestsBothLegacyAndLt, ParameterizedGemmRewriteTest, ::testing::Bool()); class LegacyCublasGemmRewriteTest : public GemmRewriteTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = GemmRewriteTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_enable_triton_gemm(false); debug_options.set_xla_gpu_enable_cublaslt(false); return debug_options; } }; TEST_F(LegacyCublasGemmRewriteTest, MatrixVectorMultiplication) { const char* hlo_text = R"( HloModule m ENTRY e { p0 = f32[2048] parameter(0) p1 = f32[2048, 16384] parameter(1) ROOT d = f32[16384] dot(p0, p1), lhs_contracting_dims={0}, rhs_contracting_dims={0} })"; RunAndFilecheckHloRewrite( hlo_text, GemmRewriter( se::CudaComputeCapability{se::CudaComputeCapability::AMPERE, 0}, stream_executor::SemanticVersion{12, 4, 0}), R"( ; CHECK: %[[P0:.+]] = f32[2048]{0} parameter(0) ; CHECK: %[[P1:.+]] = f32[2048,16384]{1,0} parameter(1) ; CHECK: %[[CUSTOM_CALL:.+]] = (f32[16384]{0}, s8[4194304]{0}) custom-call(%[[P0]], %[[P1]]), custom_call_target="__cublas$gemm" )"); } TEST_F(LegacyCublasGemmRewriteTest, MatrixVectorMultiplicationWithBatch) { const char* hlo_text = R"( HloModule m ENTRY e { p0 = f32[10, 10, 2048] parameter(0) p1 = f32[10, 10, 2048, 16384] parameter(1) ROOT d = f32[10, 10, 16384] dot(p0, p1), lhs_batch_dims={0, 1}, rhs_batch_dims={0, 1}, lhs_contracting_dims={2}, rhs_contracting_dims={2} })"; RunAndFilecheckHloRewrite( hlo_text, GemmRewriter( se::CudaComputeCapability{se::CudaComputeCapability::AMPERE, 0}, stream_executor::SemanticVersion{12, 4, 0}), R"( ; CHECK: %[[P0:.+]] = f32[10,10,2048]{2,1,0} parameter(0) ; CHECK: %[[P1:.+]] = f32[10,10,2048,16384]{3,2,1,0} parameter(1) ; CHECK: %[[CUSTOM_CALL:.+]] = (f32[10,10,16384]{2,1,0}, s8[4194304]{0}) custom-call(%[[P0]], %[[P1]]), custom_call_target="__cublas$gemm" )"); } TEST_F(LegacyCublasGemmRewriteTest, SparseDotNotSupported) { const char* hlo_text = R"( HloModule test ENTRY main { lhs = f16[5,16] parameter(0) rhs = f16[32,10] parameter(1) meta = u16[5,2] parameter(2) ROOT dot = f32[5,10] dot(lhs, rhs, meta), lhs_contracting_dims={1}, rhs_contracting_dims={0}, sparsity=L.1@2:4 })"; auto hlo_pass = GemmRewriter( se::CudaComputeCapability{se::CudaComputeCapability::AMPERE, 0}, stream_executor::SemanticVersion{12, 4, 0}); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&hlo_pass, module.get())); EXPECT_FALSE(changed); } TEST_F(LegacyCublasGemmRewriteTest, AlphaBetaRewrite) { const char* hlo_text = R"( HloModule NonZeroAlphaBeta ENTRY AddDotsFunc { x = f32[2,2] parameter(0) y = f32[2,2] parameter(1) param_2 = f32[2,2] parameter(2) bias = f32[2,2] negate(param_2) k = f32[] constant(3.0) k_broadcast = f32[2, 2] broadcast(k), dimensions={} dot_a = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0}, operand_precision={highest,highest} dot_a_multiplied = f32[2, 2] multiply(dot_a, k_broadcast) ROOT out = f32[2,2] add(dot_a_multiplied, bias) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %AddDotsFunc ({{.*}}: f32[2,2], {{.*}}: f32[2,2], {{.*}}: f32[2,2]) -> f32[2,2] { ; CHECK-DAG: [[X:%[^ ]+]] = f32[2,2]{1,0} parameter(0) ; CHECK-DAG: [[Y:%[^ ]+]] = f32[2,2]{1,0} parameter(1) ; CHECK: [[O:%[^ ]+]] = (f32[2,2]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[X]], [[Y]], {{[^,)]+}}), ; CHECK: custom_call_target="__cublas$gemm", ; CHECK: output_to_operand_aliasing={ ; CHECK-SAME: {0}: (2, {}) ; CHECK-SAME: } ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":3 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["HIGHEST","HIGHEST"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } ; CHECK: ROOT [[OUT:%[^ ]+]] = f32[2,2]{1,0} get-tuple-element([[O]]), index=0 )"); } TEST_F(LegacyCublasGemmRewriteTest, BiasMultipleUsersNoOverwrite) { const char* hlo_text = R"( HloModule BiasMultipleUsersNoOverwrite ENTRY AddDotsFunc { x = f32[2,2] parameter(0) y = f32[2,2] parameter(1) bias = f32[2,2] parameter(2) k = f32[] constant(3.0) k_broadcast = f32[2, 2] broadcast(k), dimensions={} dot_a = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0}, operand_precision={highest,highest} dot_a_multiplied = f32[2, 2] multiply(dot_a, k_broadcast) biased_out = f32[2,2] add(dot_a_multiplied, bias) ROOT out = f32[2,2] add(biased_out, bias) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %AddDotsFunc ({{.*}}: f32[2,2], {{.*}}: f32[2,2], {{.*}}: f32[2,2]) -> f32[2,2] { ; CHECK-DAG: [[P0:%[^ ]+]] = f32[2,2]{1,0} parameter(0) ; CHECK-DAG: [[P1:%[^ ]+]] = f32[2,2]{1,0} parameter(1) ; CHECK-NEXT: [[CUSTOM_CALL:%[^ ]+]] = (f32[2,2]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]]), ; CHECK: custom_call_target="__cublas$gemm", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":3 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["HIGHEST","HIGHEST"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_F(LegacyCublasGemmRewriteTest, BiasParameterNoOverwrite) { const char* hlo_text = R"( HloModule BiasParameterNoOverwrite ENTRY AddDotsFunc { x = f32[2,2] parameter(0) y = f32[2,2] parameter(1) bias = f32[2,2] parameter(2) dot_a = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT out = f32[2,2] add(dot_a, bias) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %AddDotsFunc ({{.*}}: f32[2,2], {{.*}}: f32[2,2], {{.*}}: f32[2,2]) -> f32[2,2] { ; CHECK-DAG: [[P0:%[^ ]+]] = f32[2,2]{1,0} parameter(0) ; CHECK-DAG: [[P1:%[^ ]+]] = f32[2,2]{1,0} parameter(1) ; CHECK-NEXT: [[GEMM:%[^ ]+]] = (f32[2,2]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]]), ; CHECK: custom_call_target="__cublas$gemm", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_F(LegacyCublasGemmRewriteTest, BiasTupleParameterOverwrite) { const char* hlo_text = R"( HloModule BiasTupleParameterOverwrite ENTRY AddDotsFunc { x = f32[2,2] parameter(0) y = f32[2,2] parameter(1) param_2 = (f32[2,2], f32[3,3]) parameter(2) bias = f32[2,2] get-tuple-element(param_2), index=0 dot_a = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT out = f32[2,2] add(dot_a, bias) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %AddDotsFunc ({{.*}}: f32[2,2], {{.*}}: f32[2,2], {{.*}}: (f32[2,2], f32[3,3])) -> f32[2,2] { ; CHECK-DAG: [[P0:%[^ ]+]] = f32[2,2]{1,0} parameter(0) ; CHECK-DAG: [[P1:%[^ ]+]] = f32[2,2]{1,0} parameter(1) ; CHECK-DAG: [[P2:%[^ ]+]] = (f32[2,2]{1,0}, f32[3,3]{1,0}) parameter(2) ; CHECK-DAG: [[BIAS:%[^ ]+]] = f32[2,2]{1,0} get-tuple-element([[P2]]), index=0 ; CHECK-DAG: [[BIAS_COPY:%[^ ]+]] = f32[2,2]{1,0} copy([[BIAS]]) ; CHECK-NEXT: [[GEMM:%[^ ]+]] = (f32[2,2]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]], [[BIAS_COPY]]), ; CHECK: custom_call_target="__cublas$gemm", ; CHECK: output_to_operand_aliasing={ ; CHECK-SAME: {0}: (2, {}) ; CHECK-SAME: } ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_F(LegacyCublasGemmRewriteTest, AliasedBiasOverwrite) { const char* hlo_text = R"( HloModule AliasedBiasOverwrite, input_output_alias={ {}: (2, {}, must-alias) } ENTRY AddDotsFunc { x = f32[2,2] parameter(0) y = f32[2,2] parameter(1) bias = f32[2,2] parameter(2) k = f32[] constant(3.0) k_broadcast = f32[2, 2] broadcast(k), dimensions={} dot_a = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0}, operand_precision={highest,highest} dot_a_multiplied = f32[2, 2] multiply(dot_a, k_broadcast) ROOT out = f32[2,2] add(dot_a_multiplied, bias) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %AddDotsFunc ({{.*}}: f32[2,2], {{.*}}: f32[2,2], {{.*}}: f32[2,2]) -> f32[2,2] { ; CHECK-DAG: [[X:%[^ ]+]] = f32[2,2]{1,0} parameter(0) ; CHECK-DAG: [[Y:%[^ ]+]] = f32[2,2]{1,0} parameter(1) ; CHECK-DAG: [[BIAS:%[^ ]+]] = f32[2,2]{1,0} parameter(2) ; CHECK: [[GEMM:%[^ ]+]] = (f32[2,2]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[X]], [[Y]], [[BIAS]]), ; CHECK: custom_call_target="__cublas$gemm", ; CHECK: output_to_operand_aliasing={ ; CHECK-SAME: {0}: (2, {}) ; CHECK-SAME: } ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":3 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["HIGHEST","HIGHEST"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_F(LegacyCublasGemmRewriteTest, LargerBiasMultipleUsersNoRewrite) { const char* hlo_text = R"( HloModule LargerBiasMultipleUsersNoRewrite ENTRY AddDotsFunc { x = f32[1024,1024] parameter(0) y = f32[1024,1024] parameter(1) bias = f32[1024,1024] parameter(2) dot_a = f32[1024,1024] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} biased_out = f32[1024,1024] add(dot_a, bias) ROOT out = f32[1024,1024] add(biased_out, bias) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-3, 1e-3})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %AddDotsFunc ({{.*}}: f32[1024,1024], {{.*}}: f32[1024,1024], {{.*}}: f32[1024,1024]) -> f32[1024,1024] { ; CHECK-DAG: [[P0:%[^ ]+]] = f32[1024,1024]{1,0} parameter(0) ; CHECK-DAG: [[P1:%[^ ]+]] = f32[1024,1024]{1,0} parameter(1) ; CHECK-NEXT: [[GEMM:%[^ ]+]] = (f32[1024,1024]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]]), ; CHECK: custom_call_target="__cublas$gemm", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_F(LegacyCublasGemmRewriteTest, BF16GemmWithBias) { const char* hlo_text = R"( HloModule BF16GemmWithBias ENTRY BF16GemmWithBias { x = bf16[8,8]{1,0} parameter(0) y = bf16[8,8]{1,0} parameter(1) dot.5 = bf16[8,8]{1,0} dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} param_2 = bf16[8,8]{1,0} parameter(2) bias = bf16[8,8]{1,0} negate(param_2) ROOT add.6 = bf16[8,8]{1,0} add(dot.5, bias) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{2e-3, 2e-3})); if (IsCuda() && !HasCudaComputeCapability(se::CudaComputeCapability::Ampere())) { GTEST_SKIP() << "Pre-Ampere casts up bf16 to fp32"; } MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %BF16GemmWithBias ({{.*}}: bf16[8,8], {{.*}}: bf16[8,8], {{.*}}: bf16[8,8]) -> bf16[8,8] { ; CHECK-DAG: [[X:%[^ ]+]] = bf16[8,8]{1,0} parameter(0) ; CHECK-DAG: [[Y:%[^ ]+]] = bf16[8,8]{1,0} parameter(1) ; CHECK: [[GEMM:%[^ ]+]] = (bf16[8,8]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[X]], [[Y]], {{[^,)]+}}), ; CHECK: custom_call_target="__cublas$gemm", ; CHECK: output_to_operand_aliasing={ ; CHECK-SAME: {0}: (2, {}) ; CHECK-SAME: } ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_F(LegacyCublasGemmRewriteTest, MatrixBias) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,3] parameter(0) y = f32[3,4] parameter(1) param_2 = f32[2,4] parameter(2) bias = f32[2,4] negate(param_2) dot_a = f32[2,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT out = f32[2,4] add(dot_a, bias) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,3], {{.*}}: f32[3,4], {{.*}}: f32[2,4]) -> f32[2,4] { ; CHECK-DAG: [[P0:%[^ ]+]] = f32[2,3]{1,0} parameter(0) ; CHECK-DAG: [[P1:%[^ ]+]] = f32[3,4]{1,0} parameter(1) ; CHECK: [[GEMM:%[^ ]+]] = (f32[2,4]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]], {{[^,)]+}}), ; CHECK: custom_call_target="__cublas$gemm", ; CHECK: output_to_operand_aliasing={ ; CHECK-SAME: {0}: (2, {}) ; CHECK-SAME: } ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_F(LegacyCublasGemmRewriteTest, MatrixBiasWhereBiasIsNotAParameter) { const char* hlo_text = R"( HloModule test ENTRY test { w = f32[2,3] parameter(0) x = f32[3,4] parameter(1) first_dot = f32[2,4] dot(w, x), lhs_contracting_dims={1}, rhs_contracting_dims={0} y = f32[2,3] parameter(2) z = f32[3,4] parameter(3) second_dot = f32[2,4] dot(y, z), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT out = f32[2,4] add(second_dot, first_dot) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,3], {{.*}}: f32[3,4], {{.*}}: f32[2,3], {{.*}}: f32[3,4]) -> f32[2,4] { ; CHECK-DAG: [[P0:%[^ ]+]] = f32[2,3]{1,0} parameter(0) ; CHECK-DAG: [[P1:%[^ ]+]] = f32[3,4]{1,0} parameter(1) ; CHECK-DAG: [[P2:%[^ ]+]] = f32[2,3]{1,0} parameter(2) ; CHECK-DAG: [[P3:%[^ ]+]] = f32[3,4]{1,0} parameter(3) ; CHECK-NEXT: [[FIRST_GEMM:%[^ ]+]] = (f32[2,4]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]]), ; CHECK: custom_call_target="__cublas$gemm", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } ; CHECK: [[FIRST_GEMM_OUT:%[^ ]+]] = f32[2,4]{1,0} get-tuple-element([[FIRST_GEMM]]), index=0 ; CHECK-NEXT: [[SECOND_GEMM:%[^ ]+]] = (f32[2,4]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P2]], [[P3]], [[FIRST_GEMM_OUT]]), ; CHECK: custom_call_target="__cublas$gemm", ; CHECK: output_to_operand_aliasing={ ; CHECK-SAME: {0}: (2, {}) ; CHECK-SAME: } ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_F(LegacyCublasGemmRewriteTest, MatrixBiasMixType) { std::vector<std::tuple<absl::string_view, absl::string_view>> type_combinations = { {"f16", "f32"}, {"bf16", "f32"}, }; const char* hlo_text_template = R"( HloModule test ENTRY test { x = <<ABType>>[16,32] parameter(0) y = <<ABType>>[32,16] parameter(1) z = <<DType>>[16,16] parameter(2) dot_a = <<ABType>>[16,16] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} bias = <<DType>>[16,16] negate(z) convert = <<DType>>[16,16] convert(dot_a) ROOT out = <<DType>>[16,16] add(convert, bias) } )"; for (const auto& type_combination : type_combinations) { absl::flat_hash_map<absl::string_view, absl::string_view> replacements; replacements["<<ABType>>"] = std::get<0>(type_combination); replacements["<<DType>>"] = std::get<1>(type_combination); const auto hlo_text = absl::StrReplaceAll(hlo_text_template, replacements); EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-3, 1e-3})); if (std::get<0>(type_combination) == "bf16" && IsCuda() && !HasCudaComputeCapability(se::CudaComputeCapability::Ampere())) { continue; } TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> optimized_module, GetOptimizedModule(hlo_text)); EXPECT_THAT(optimized_module->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall(m::Parameter(0), m::Parameter(1), m::Negate(m::Parameter(2))), 0))); } } TEST_F(LegacyCublasGemmRewriteTest, MatrixBiasMixTypeBatched) { std::vector<std::tuple<absl::string_view, absl::string_view>> type_combinations = { {"f16", "f32"}, {"bf16", "f32"}, }; const char* hlo_text_template = R"( HloModule test ENTRY test { x = <<ABType>>[4,16,32] parameter(0) y = <<ABType>>[4,32,16] parameter(1) z = <<DType>>[4,16,16] parameter(2) dot_a = <<ABType>>[4,16,16] dot(x, y), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} bias = <<DType>>[4,16,16] negate(z) convert = <<DType>>[4,16,16] convert(dot_a) ROOT out = <<DType>>[4,16,16] add(convert, bias) })"; for (const auto& type_combination : type_combinations) { absl::flat_hash_map<absl::string_view, absl::string_view> replacements; replacements["<<ABType>>"] = std::get<0>(type_combination); replacements["<<DType>>"] = std::get<1>(type_combination); const auto hlo_text = absl::StrReplaceAll(hlo_text_template, replacements); EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-3, 1e-3})); if (std::get<0>(type_combination) == "bf16" && IsCuda() && !HasCudaComputeCapability(se::CudaComputeCapability::Ampere())) { continue; } TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> optimized_module, GetOptimizedModule(hlo_text)); EXPECT_THAT(optimized_module->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall(m::Parameter(0), m::Parameter(1), m::Negate(m::Parameter(2))), 0))); } } TEST_F(LegacyCublasGemmRewriteTest, MatrixBiasMixTypeNotSupported) { if (IsCuda() && !HasCudaComputeCapability(se::CudaComputeCapability::Ampere())) { GTEST_SKIP() << "Pre-Ampere rewrites to cutlass_gemm_with_upcast instead of cublas."; } const char* hlo_text = R"( HloModule test ENTRY test { x = bf16[16,32] parameter(0) y = bf16[32,16] parameter(1) z = f64[16,16] parameter(2) dot_a = bf16[16,16] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} bias = f64[16,16] negate(z) convert = f64[16,16] convert(dot_a) ROOT out = f64[16,16] add(convert, bias) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-3, 1e-3})); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> optimized_module, GetOptimizedModule(hlo_text)); MatchOptimizedHlo(hlo_text, R"( ; CHECK: %[[custom_call:.*]] = {{.*}} custom-call{{.*}}__cublas$gemm ; CHECK: %[[gte:.*]] = {{.*}} get-tuple-element{{.*}}%[[custom_call]] ; CHECK: ROOT {{.*}} fusion({{.*}}%[[gte]] )"); } TEST_F(LegacyCublasGemmRewriteTest, MatrixBiasMixTypeAddWithMoreConsumers) { const char* hlo_text = R"( HloModule test ENTRY test { x = bf16[16,32] parameter(0) y = bf16[32,16] parameter(1) z = f32[16,16] parameter(2) dot_a = bf16[16,16] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} bias = f32[16,16] negate(z) convert = f32[16,16] convert(dot_a) add_bias = f32[16,16] add(convert, bias) ROOT out = f32[16,16] negate(add_bias) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-3, 1e-3})); if (IsCuda() && !HasCudaComputeCapability(se::CudaComputeCapability::Ampere())) { GTEST_SKIP() << "Pre-Ampere casts up bf16 to fp32"; } TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> optimized_module, GetOptimizedModule(hlo_text)); MatchOptimizedHlo(hlo_text, R"( ; CHECK: %[[custom_call:.*]] = {{.*}} custom-call{{.*}}__cublas$gemm ; CHECK: %[[gte:.*]] = {{.*}} get-tuple-element{{.*}}%[[custom_call]] ; CHECK: ROOT {{.*}} fusion({{.*}}%[[gte]] )"); } TEST_F(LegacyCublasGemmRewriteTest, MergeBitcastAndAdd) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,2] parameter(0) y = f32[2,2] parameter(1) bias = f32[4] parameter(2) dot = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT out = f32[4] add(f32[4] bitcast(dot), bias) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GemmRewriter pass(Capability(), GetToolkitVersion()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch( m::Bitcast( m::GetTupleElement( m::CustomCall( {"__cublas$gemm"}, m::Parameter(0), m::Parameter(1), m::Bitcast(m::Parameter(2)).WithShape(F32, {2, 2})), 0)) .WithShape(F32, {4}))); } TEST_F(LegacyCublasGemmRewriteTest, FoldConstantBias) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,2] parameter(0) y = f32[2,2] parameter(1) bias = f32[2,2] broadcast(f32[2] constant({0, 0})), dimensions={0} dot1 = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} param_2 = f32[2,2] parameter(2) bias1 = f32[2,2] negate(param_2) sum1 = add(dot1, bias1) dot2 = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} sum2 = add(dot2, f32[2,2] reshape(bias)) dot3 = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} bias3 = f32[2,2] transpose(bias), dimensions={1,0} sum3 = add(dot3, bias3) dot4 = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} sum4 = add(dot4, f32[2,2] bitcast(bias)) ROOT root = tuple(sum1, sum2, sum3, sum4) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GemmRewriter pass(Capability(), GetToolkitVersion()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::GetTupleElement(m::CustomCall(m::Parameter(0), m::Parameter(1), m::Negate(m::Parameter(2))), 0), m::GetTupleElement( m::CustomCall(m::Parameter(0), m::Parameter(1), m::Constant()), 0), m::GetTupleElement( m::CustomCall(m::Parameter(0), m::Parameter(1), m::Constant()), 0), m::GetTupleElement( m::CustomCall(m::Parameter(0), m::Parameter(1), m::Constant()), 0)))); } class CublasLtGemmRewriteTest : public GemmRewriteTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = GemmRewriteTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_enable_cublaslt(true); debug_options.set_xla_gpu_enable_triton_gemm(false); return debug_options; } protected: void SetUp() override { if (SkipGpuBlasLtTest()) { GTEST_SKIP() << "BlasLt is not supported on this GPU architecture"; } } }; TEST_F(CublasLtGemmRewriteTest, AlphaBetaRewrite) { const char* hlo_text = R"( HloModule NonZeroAlphaBeta ENTRY AddDotsFunc { x = f32[2,2] parameter(0) y = f32[2,2] parameter(1) bias = f32[2,2] parameter(2) k = f32[] constant(3.0) k_broadcast = f32[2, 2] broadcast(k), dimensions={} dot_a = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0}, operand_precision={highest,highest} dot_a_multiplied = f32[2, 2] multiply(dot_a, k_broadcast) ROOT out = f32[2,2] add(dot_a_multiplied, bias) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %AddDotsFunc ({{.*}}: f32[2,2], {{.*}}: f32[2,2], {{.*}}: f32[2,2]) -> f32[2,2] { ; CHECK-DAG: [[X:%[^ ]+]] = f32[2,2]{1,0} parameter(0) ; CHECK-DAG: [[Y:%[^ ]+]] = f32[2,2]{1,0} parameter(1) ; CHECK-DAG: [[BIAS:%[^ ]+]] = f32[2,2]{1,0} parameter(2) ; CHECK-NEXT: [[GEMM:%[^ ]+]] = (f32[2,2]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[X]], [[Y]], [[BIAS]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":3 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["HIGHEST","HIGHEST"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } ; CHECK-NEXT ROOT [[OUT:%[^ ]+]] = f32[2,2]{1,0} get-tuple-element(%cublas-lt-matmul.2.0), index=0 )"); } TEST_F(CublasLtGemmRewriteTest, BiasMultipleUsersNoOverwrite) { const char* hlo_text = R"( HloModule BiasMultipleUsersNoOverwrite ENTRY AddDotsFunc { x = f32[2,2] parameter(0) y = f32[2,2] parameter(1) bias = f32[2,2] parameter(2) k = f32[] constant(3.0) k_broadcast = f32[2, 2] broadcast(k), dimensions={} dot_a = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0}, operand_precision={highest,highest} dot_a_multiplied = f32[2, 2] multiply(dot_a, k_broadcast) biased_out = f32[2,2] add(dot_a_multiplied, bias) ROOT out = f32[2,2] add(biased_out, bias) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %AddDotsFunc ({{.*}}: f32[2,2], {{.*}}: f32[2,2], {{.*}}: f32[2,2]) -> f32[2,2] { ; CHECK-DAG: [[P0:%[^ ]+]] = f32[2,2]{1,0} parameter(0) ; CHECK-DAG: [[P1:%[^ ]+]] = f32[2,2]{1,0} parameter(1) ; CHECK-DAG: [[BIAS:%[^ ]+]] = f32[2,2]{1,0} parameter(2) ; CHECK-NEXT: [[GEMM:%[^ ]+]] = (f32[2,2]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]], [[BIAS]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK-NOT: output_to_operand_aliasing ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":3 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["HIGHEST","HIGHEST"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_F(CublasLtGemmRewriteTest, LargerBiasMultipleUsersNoRewrite) { const char* hlo_text = R"( HloModule LargerBiasMultipleUsersNoRewrite ENTRY AddDotsFunc { x = f32[1024,1024] parameter(0) y = f32[1024,1024] parameter(1) bias = f32[1024,1024] parameter(2) dot_a = f32[1024,1024] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} biased_out = f32[1024,1024] add(dot_a, bias) ROOT out = f32[1024,1024] add(biased_out, bias) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-3, 1e-3})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %AddDotsFunc ({{.*}}: f32[1024,1024], {{.*}}: f32[1024,1024], {{.*}}: f32[1024,1024]) -> f32[1024,1024] { ; CHECK-DAG: [[P0:%[^ ]+]] = f32[1024,1024]{1,0} parameter(0) ; CHECK-DAG: [[P1:%[^ ]+]] = f32[1024,1024]{1,0} parameter(1) ; CHECK-DAG: [[BIAS:%[^ ]+]] = f32[1024,1024]{1,0} parameter(2) ; CHECK-NEXT: [[GEMM_TUPLE:%[^ ]+]] = (f32[1024,1024]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]], [[BIAS]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } ; CHECK-NEXT: [[GEMM:%[^ ]+]] = f32[1024,1024]{1,0} get-tuple-element([[GEMM_TUPLE]]), index=0 ; CHECK-NEXT: ROOT [[OUT:%[^ ]+]] = f32[1024,1024]{1,0} add([[GEMM]], [[BIAS]]) )"); } TEST_F(CublasLtGemmRewriteTest, BF16GemmWithBias) { const char* hlo_text = R"( HloModule test ENTRY BF16GemmWithBias { x = bf16[8,8]{1,0} parameter(0) y = bf16[8,8]{1,0} parameter(1) dot.5 = bf16[8,8]{1,0} dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} bias = bf16[8,8]{1,0} parameter(2) ROOT add.6 = bf16[8,8]{1,0} add(dot.5, bias) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-3, 1e-3})); if (IsCuda() && !HasCudaComputeCapability(se::CudaComputeCapability::Ampere())) { GTEST_SKIP() << "Pre-Ampere casts up bf16 to fp32"; } MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %BF16GemmWithBias ({{.*}}: bf16[8,8], {{.*}}: bf16[8,8], {{.*}}: bf16[8,8]) -> bf16[8,8] { ; CHECK-DAG: [[X:%[^ ]+]] = bf16[8,8]{1,0} parameter(0) ; CHECK-DAG: [[Y:%[^ ]+]] = bf16[8,8]{1,0} parameter(1) ; CHECK-DAG: [[BIAS:%[^ ]+]] = bf16[8,8]{1,0} parameter(2) ; CHECK-NEXT: [[GEMM:%[^ ]+]] = (bf16[8,8]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[X]], [[Y]], [[BIAS]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_F(CublasLtGemmRewriteTest, MatrixBias) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,3] parameter(0) y = f32[3,4] parameter(1) z = f32[2,4] parameter(2) dot_a = f32[2,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT out = f32[2,4] add(dot_a, z) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,3], {{.*}}: f32[3,4], {{.*}}: f32[2,4]) -> f32[2,4] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[2,3]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[3,4]{1,0} parameter(1) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[2,4]{1,0} parameter(2) ; CHECK-NEXT: [[GEMM:%[^ ]+]] = (f32[2,4]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]], [[P2]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_F(CublasLtGemmRewriteTest, MatrixBiasWhereBiasIsNotAParameter) { const char* hlo_text = R"( HloModule test ENTRY test { w = f32[2,3] parameter(0) x = f32[3,4] parameter(1) first_dot = f32[2,4] dot(w, x), lhs_contracting_dims={1}, rhs_contracting_dims={0} y = f32[2,3] parameter(2) z = f32[3,4] parameter(3) second_dot = f32[2,4] dot(y, z), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT out = f32[2,4] add(second_dot, first_dot) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,3], {{.*}}: f32[3,4], {{.*}}: f32[2,3], {{.*}}: f32[3,4]) -> f32[2,4] { ; CHECK-DAG: [[P0:%[^ ]+]] = f32[2,3]{1,0} parameter(0) ; CHECK-DAG: [[P1:%[^ ]+]] = f32[3,4]{1,0} parameter(1) ; CHECK-DAG: [[P2:%[^ ]+]] = f32[2,3]{1,0} parameter(2) ; CHECK-DAG: [[P3:%[^ ]+]] = f32[3,4]{1,0} parameter(3) ; CHECK-NEXT: [[FIRST_GEMM_TUPLE:%[^ ]+]] = (f32[2,4]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } ; CHECK: [[FIRST_GEMM:%[^ ]+]] = f32[2,4]{1,0} get-tuple-element([[FIRST_GEMM_TUPLE]]), index=0 ; CHECK-NEXT: [[SECOND_GEMM:%[^ ]+]] = (f32[2,4]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P2]], [[P3]], [[FIRST_GEMM]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: output_to_operand_aliasing={ ; CHECK: {0}: (2, {}) ; CHECK: } ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_F(CublasLtGemmRewriteTest, VectorBias) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,3] parameter(0) y = f32[3,4] parameter(1) z = f32[4] parameter(2) dot_a = f32[2,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} z_bcast = f32[2,4] broadcast(z), dimensions={1} ROOT out = f32[2,4] add(dot_a, z_bcast) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,3], {{.*}}: f32[3,4], {{.*}}: f32[4]) -> f32[2,4] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[2,3]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[3,4]{1,0} parameter(1) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[4]{0} parameter(2) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[2,4]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]], [[P2]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"BIAS" ; CHECK: } )"); } TEST_F(CublasLtGemmRewriteTest, VectorBiasMultipleUsers) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[4,4] parameter(0) y = f32[4,4] parameter(1) z = f32[4] parameter(2) c = f32[] constant(5) dot_a = f32[4,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0}, operand_precision={highest,highest} z_bcast = f32[4,4] broadcast(z), dimensions={1} add_a = f32[4,4] add(dot_a, z_bcast) c_bcast = f32[4,4] broadcast(c), dimensions={} dot_b = f32[4,4] dot(dot_a, c_bcast), lhs_contracting_dims={1}, rhs_contracting_dims={0}, operand_precision={highest,highest} ROOT out = f32[4,4] dot(add_a, dot_b), lhs_contracting_dims={1}, rhs_contracting_dims={0}, operand_precision={highest,highest} } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK: [[FUSED_COMPUTATION:%[^ ]+]] ([[DUMMY0:[^ ]+]]: f32[4,4], [[DUMMY1:[^ ]+]]: f32[4]) -> f32[4,4] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[4,4]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[4]{0} parameter(1) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[4,4]{1,0} broadcast([[P1]]), dimensions={1} ; CHECK-NEXT: ROOT [[OUT:%[^ ]+]] = f32[4,4]{1,0} add([[P0]], [[P2]]) } ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[4,4], {{.*}}: f32[4,4], {{.*}}: f32[4]) -> f32[4,4] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[4,4]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[4,4]{1,0} parameter(1) ; CHECK-NEXT: [[MATMUL0_TUPLE:%[^ ]+]] = (f32[4,4]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["HIGHEST","HIGHEST"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } ; CHECK-NEXT: [[MATMUL0:%[^ ]+]] = f32[4,4]{1,0} get-tuple-element([[MATMUL0_TUPLE]]), index=0 ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[4]{0} parameter(2) ; CHECK-NEXT: [[FUSION:%[^ ]+]] = f32[4,4]{1,0} fusion([[MATMUL0]], [[P2]]), kind=kLoop, calls=[[FUSED_COMPUTATION]] ; CHECK: [[MATMUL1_TUPLE:%[^ ]+]] = (f32[4,4]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[MATMUL0]] ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["HIGHEST","HIGHEST"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } ; CHECK-NEXT: [[MATMUL1:%[^ ]+]] = f32[4,4]{1,0} get-tuple-element([[MATMUL1_TUPLE]]), index=0 ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[4,4]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[FUSION]], [[MATMUL1]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["HIGHEST","HIGHEST"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_F(CublasLtGemmRewriteTest, BatchedVectorBias) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,3,4] parameter(0) y = f32[4,5,6] parameter(1) z = f32[3,5,6] parameter(2) dot_a = f32[2,3,5,6] dot(x, y), lhs_contracting_dims={2}, rhs_contracting_dims={0}, operand_precision={highest,highest} z_bcast = f32[2,3,5,6] broadcast(z), dimensions={1,2,3} ROOT out = f32[2,3,5,6] add(dot_a, z_bcast) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,3,4], {{.*}}: f32[4,5,6], {{.*}}: f32[3,5,6]) -> f32[2,3,5,6] { ; CHECK: [[MATMUL_TUPLE:%[^ ]+]] = (f32[6,30]{1,0}, s8[{{[0-9]+}}]{0}) custom-call( ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: output_to_operand_aliasing={ ; CHECK: {0}: (2, {}) ; CHECK: } ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["HIGHEST","HIGHEST"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } ; CHECK-NEXT: [[MATMUL:%[^ ]+]] = f32[6,30]{1,0} get-tuple-element([[MATMUL_TUPLE]]), index=0 ; CHECK-NEXT: ROOT [[OUT:%[^ ]+]] = f32[2,3,5,6]{3,2,1,0} bitcast([[MATMUL]]) )"); } TEST_F(CublasLtGemmRewriteTest, BatchedSharedVectorBias) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,3,4] parameter(0) y = f32[4,5,6] parameter(1) z = f32[6] parameter(2) dot_a = f32[2,3,5,6] dot(x, y), lhs_contracting_dims={2}, rhs_contracting_dims={0}, operand_precision={highest,highest} z_bcast = f32[2,3,5,6] broadcast(z), dimensions={3} ROOT out = f32[2,3,5,6] add(dot_a, z_bcast) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,3,4], {{.*}}: f32[4,5,6], {{.*}}: f32[6]) -> f32[2,3,5,6] { ; CHECK: [[MATMUL_TUPLE:%[^ ]+]] = (f32[6,30]{1,0}, s8[{{[0-9]+}}]{0}) custom-call( ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: output_to_operand_aliasing={ ; CHECK: {0}: (2, {}) ; CHECK: } ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["HIGHEST","HIGHEST"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } ; CHECK: [[MATMUL:%[^ ]+]] = f32[6,30]{1,0} get-tuple-element([[MATMUL_TUPLE]]), index=0 ; CHECK-NEXT: ROOT [[OUT:%[^ ]+]] = f32[2,3,5,6]{3,2,1,0} bitcast([[MATMUL]]) )"); } TEST_F(CublasLtGemmRewriteTest, VectorBiasIncorrectAxisFusedAsMatrix) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,3] parameter(0) y = f32[3,4] parameter(1) z = f32[2] parameter(2) dot_a = f32[2,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} z_bcast = f32[2,4] broadcast(z), dimensions={0} add = f32[2,4] add(dot_a, z_bcast) ROOT out = f32[4,2] transpose(add), dimensions={1,0} } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,3], {{.*}}: f32[3,4], {{.*}}: f32[2]) -> f32[4,2] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[2,3]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[3,4]{1,0} parameter(1) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[2]{0} parameter(2) ; CHECK-NEXT: [[MATMUL_TUPLE:%[^ ]+]] = (f32[2,4]{0,1}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]], [[P2]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"BIAS" ; CHECK: } ; CHECK-NEXT: [[MATMUL:%[^ ]+]] = f32[2,4]{0,1} get-tuple-element([[MATMUL_TUPLE]]), index=0 ; CHECK-NEXT: ROOT [[OUT:%[^ ]+]] = f32[4,2]{1,0} bitcast([[MATMUL]]) )"); } TEST_F(CublasLtGemmRewriteTest, VectorBiasSliced) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[4,3] parameter(0) y = f32[3,4] parameter(1) z = f32[3] parameter(2) dot_a = f32[4,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} slice_a = f32[2,3] slice(dot_a), slice={[0:2], [0:3]} z_bcast = f32[2,3] broadcast(z), dimensions={1} ROOT out = f32[2,3] add(slice_a, z_bcast) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[4,3], {{.*}}: f32[3,4], {{.*}}: f32[3]) -> f32[2,3] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[4,3]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[3,4]{1,0} parameter(1) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[3]{0} parameter(2) ; CHECK-NEXT: [[MATMUL:%[^ ]+]] = (f32[4,4]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]], [[P2]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"BIAS" ; CHECK: } ; CHECK-NEXT: [[GETTUPLE:%[^ ]+]] = f32[4,4]{1,0} get-tuple-element([[MATMUL]]), index=0 ; CHECK-NEXT: ROOT [[OUT:%[^ ]+]] = f32[2,3]{1,0} slice([[GETTUPLE]]), slice={[0:2], [0:3]} )"); } TEST_F(CublasLtGemmRewriteTest, VectorBiasSlicedMultipleUsers) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,3] parameter(0) y = f32[3,4] parameter(1) z = f32[2] parameter(2) c = f32[] constant(5) dot_a = f32[2,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} slice_a = f32[2,2] slice(dot_a), slice={[0:2], [0:2]} z_bcast = f32[2,2] broadcast(z), dimensions={1} add_a = f32[2,2] add(slice_a, z_bcast) c_bcast = f32[2,2] broadcast(c), dimensions={} dot_b = f32[2,2] dot(slice_a, c_bcast), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT out = f32[2,2] dot(add_a, dot_b), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,3], {{.*}}: f32[3,4], {{.*}}: f32[2]) -> f32[2,2] { ; CHECK-DAG: [[P0:%[^ ]+]] = f32[2,3]{1,0} parameter(0) ; CHECK-DAG: [[P1:%[^ ]+]] = f32[3,4]{1,0} parameter(1) ; CHECK-DAG: [[P2:%[^ ]+]] = f32[2]{0} parameter(2) ; CHECK-NEXT: [[MATMUL0_TUPLE:%[^ ]+]] = (f32[2,4]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } ; CHECK: [[MATMUL1_TUPLE:%[^ ]+]] = (f32[2,2]{1,0}, s8[{{[0-9]+}}]{0}) custom-call( ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } ; CHECK: [[MATMUL1:%[^ ]+]] = f32[2,2]{1,0} get-tuple-element([[MATMUL1_TUPLE]]), index=0 ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[2,2]{1,0}, s8[{{[0-9]+}}]{0}) custom-call{{.*}}[[MATMUL1]] ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_F(CublasLtGemmRewriteTest, VectorBiasTransposed) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,3] parameter(0) y = f32[3,4] parameter(1) z = f32[2] parameter(2) dot_a = f32[2,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} z_bcast = f32[2,4] parameter(3) ROOT out = f32[2,4] add(dot_a, z_bcast) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK: [[P0:%[^ ]+]] = f32[2,3]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[3,4]{1,0} parameter(1) ; CHECK-NEXT: [[P2_BCAST:%[^ ]+]] = f32[2,4]{1,0} parameter(3) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[2,4]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]], [[P2_BCAST]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_F(CublasLtGemmRewriteTest, VectorBiasThenMatrixBias) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,3] parameter(0) y = f32[3,4] parameter(1) z = f32[4] parameter(2) z2 = f32[2,4] parameter(3) dot_a = f32[2,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} z_bcast = f32[2,4] broadcast(z), dimensions={1} add0 = f32[2,4] add(dot_a, z_bcast) ROOT add1 = f32[2,4] add(add0, z2) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,3], {{.*}}: f32[3,4], {{.*}}: f32[4], {{.*}}: f32[2,4]) -> f32[2,4] { ; CHECK-DAG: [[P0:%[^ ]+]] = f32[2,3]{1,0} parameter(0) ; CHECK-DAG: [[P1:%[^ ]+]] = f32[3,4]{1,0} parameter(1) ; CHECK-DAG: [[VECTOR_BIAS:%[^ ]+]] = f32[4]{0} parameter(2) ; CHECK-DAG: [[MATRIX_BIAS:%[^ ]+]] = f32[2,4]{1,0} parameter(3) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[2,4]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]], [[MATRIX_BIAS]], [[VECTOR_BIAS]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"BIAS" ; CHECK: } )"); } TEST_F(CublasLtGemmRewriteTest, BF16VectorBias) { const char* hlo_text = R"( HloModule test ENTRY test { x = bf16[16,24] parameter(0) y = bf16[24,32] parameter(1) z = bf16[32] parameter(2) dot_a = bf16[16,32] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} z_bcast = bf16[16,32] broadcast(z), dimensions={1} ROOT out = bf16[16,32] add(dot_a, z_bcast) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{3e-3, 1e-3})); if (IsCuda() && !HasCudaComputeCapability(se::CudaComputeCapability::Ampere())) { GTEST_SKIP() << "Pre-Ampere casts up bf16 to fp32"; } MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: bf16[16,24], {{.*}}: bf16[24,32], {{.*}}: bf16[32]) -> bf16[16,32] { ; CHECK-NEXT: [[P0:%[^ ]+]] = bf16[16,24]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = bf16[24,32]{1,0} parameter(1) ; CHECK-NEXT: [[P2:%[^ ]+]] = bf16[32]{0} parameter(2) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (bf16[16,32]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]], [[P2]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"BIAS" )"); } TEST_F(CublasLtGemmRewriteTest, BF16VectorBiasPadded) { if (IsCuda() && !HasCudaComputeCapability(se::CudaComputeCapability::Ampere())) { GTEST_SKIP() << "Padding of GEMM bf16 operands only implemented on " "architectures with bf16 Tensor Cores."; } const char* hlo_text = R"( HloModule test ENTRY test { x = bf16[2,3] parameter(0) y = bf16[3,4] parameter(1) z = bf16[4] parameter(2) dot_a = bf16[2,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} z_bcast = bf16[2,4] broadcast(z), dimensions={1} ROOT out = bf16[2,4] add(dot_a, z_bcast) })"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-3, 1e-3})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-DAG: ENTRY %test ({{.*}}: bf16[2,3], {{.*}}: bf16[3,4], {{.*}}: bf16[4]) -> bf16[2,4] { ; CHECK-DAG: bf16[8,8]{1,0} pad({{.*}}), padding=0_6x0_5 ; CHECK-DAG: bf16[8,8]{1,0} pad({{.*}}), padding=0_5x0_4 )"); } TEST_F(CublasLtGemmRewriteTest, ReluActivation) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,3] parameter(0) y = f32[3,4] parameter(1) dot_a = f32[2,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} c = f32[] constant(0) c_bcast = f32[2,4] broadcast(c), dimensions={} ROOT out = f32[2,4] maximum(dot_a, c_bcast) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,3], {{.*}}: f32[3,4]) -> f32[2,4] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[2,3]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[3,4]{1,0} parameter(1) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[2,4]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"RELU" ; CHECK: } )"); } TEST_F(CublasLtGemmRewriteTest, BatchedReluActivation) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,3,4] parameter(0) y = f32[4,5,6] parameter(1) dot_a = f32[2,3,5,6] dot(x, y), lhs_contracting_dims={2}, rhs_contracting_dims={0}, operand_precision={highest,highest} c = f32[] constant(0) c_bcast = f32[2,3,5,6] broadcast(c), dimensions={} ROOT out = f32[2,3,5,6] maximum(dot_a, c_bcast) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,3,4], {{.*}}: f32[4,5,6]) -> f32[2,3,5,6] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[2,3,4]{2,1,0} parameter(0) ; CHECK-NEXT: [[P0_BITCAST:%[^ ]+]] = f32[6,4]{1,0} bitcast([[P0]]) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[4,5,6]{2,1,0} parameter(1) ; CHECK-NEXT: [[P1_BITCAST:%[^ ]+]] = f32[4,30]{1,0} ; CHECK-NEXT: [[MATMUL_TUPLE:%[^ ]+]] = (f32[6,30]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0_BITCAST]], [[P1_BITCAST]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["HIGHEST","HIGHEST"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"RELU" ; CHECK: } ; CHECK: [[MATMUL:%[^ ]+]] = f32[6,30]{1,0} get-tuple-element([[MATMUL_TUPLE]]), index=0 ; CHECK-NEXT: ROOT [[OUT:%[^ ]+]] = f32[2,3,5,6]{3,2,1,0} bitcast([[MATMUL]]) )"); } TEST_F(CublasLtGemmRewriteTest, ReluActivationSliced) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,3] parameter(0) y = f32[3,4] parameter(1) dot_a = f32[2,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} c = f32[] constant(0) c_bcast = f32[2,2] broadcast(c), dimensions={} slice_a = f32[2,2] slice(dot_a), slice={[0:2], [0:2]} ROOT out = f32[2,2] maximum(slice_a, c_bcast) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,3], {{.*}}: f32[3,4]) -> f32[2,2] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[2,3]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[3,4]{1,0} parameter(1) ; CHECK-NEXT: [[MATMUL_TUPLE:%[^ ]+]] = (f32[2,4]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"RELU" ; CHECK: } ; CHECK: [[MATMUL:%[^ ]+]] = f32[2,4]{1,0} get-tuple-element([[MATMUL_TUPLE]]), index=0 ; CHECK-NEXT: ROOT [[OUT:%[^ ]+]] = f32[2,2]{1,0} slice([[MATMUL]]), slice={[0:2], [0:2]} )"); } TEST_F(CublasLtGemmRewriteTest, MatrixBiasReluActivation) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,3] parameter(0) y = f32[3,4] parameter(1) z = f32[2,4] parameter(2) dot_a = f32[2,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} add = f32[2,4] add(dot_a, z) c = f32[] constant(0) c_bcast = f32[2,4] broadcast(c), dimensions={} ROOT out = f32[2,4] maximum(add, c_bcast) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,3], {{.*}}: f32[3,4], {{.*}}: f32[2,4]) -> f32[2,4] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[2,3]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[3,4]{1,0} parameter(1) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[2,4]{1,0} parameter(2) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[2,4]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]], [[P2]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"RELU" ; CHECK: } )"); } TEST_F(CublasLtGemmRewriteTest, SquareMatrixBiasReluActivation) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[4,4] parameter(0) y = f32[4,4] parameter(1) z = f32[4,4] parameter(2) dot_a = f32[4,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} add = f32[4,4] add(dot_a, z) c = f32[] constant(0) c_bcast = f32[4,4] broadcast(c), dimensions={} ROOT out = f32[4,4] maximum(add, c_bcast) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[4,4], {{.*}}: f32[4,4], {{.*}}: f32[4,4]) -> f32[4,4] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[4,4]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[4,4]{1,0} parameter(1) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[4,4]{1,0} parameter(2) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[4,4]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]], [[P2]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"RELU" ; CHECK: } )"); } TEST_F(CublasLtGemmRewriteTest, VectorBiasReluActivation) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,3] parameter(0) y = f32[3,4] parameter(1) z = f32[4] parameter(2) dot_a = f32[2,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} z_bcast = f32[2,4] broadcast(z), dimensions={1} add = f32[2,4] add(dot_a, z_bcast) c = f32[] constant(0) c_bcast = f32[2,4] broadcast(c), dimensions={} ROOT out = f32[2,4] maximum(add, c_bcast) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,3], {{.*}}: f32[3,4], {{.*}}: f32[4]) -> f32[2,4] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[2,3]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[3,4]{1,0} parameter(1) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[4]{0} parameter(2) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[2,4]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]], [[P2]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"BIAS_RELU" ; CHECK: } )"); } TEST_F(CublasLtGemmRewriteTest, BatchedVectorBiasReluActivation) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,3,4] parameter(0) y = f32[4,5,6] parameter(1) z = f32[3,5,6] parameter(2) dot_a = f32[2,3,5,6] dot(x, y), lhs_contracting_dims={2}, rhs_contracting_dims={0}, operand_precision={highest,highest} z_bcast = f32[2,3,5,6] broadcast(z), dimensions={1,2,3} add = f32[2,3,5,6] add(dot_a, z_bcast) c = f32[] constant(0) c_bcast = f32[2,3,5,6] broadcast(c), dimensions={} ROOT out = f32[2,3,5,6] maximum(add, c_bcast) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,3,4], {{.*}}: f32[4,5,6], {{.*}}: f32[3,5,6]) -> f32[2,3,5,6] { ; CHECK: [[MATMUL_TUPLE:%[^ ]+]] = (f32[6,30]{1,0}, s8[{{[0-9]+}}]{0}) custom-call( ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["HIGHEST","HIGHEST"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"RELU" ; CHECK: } ; CHECK-NEXT: [[MATMUL:%[^ ]+]] = f32[6,30]{1,0} get-tuple-element([[MATMUL_TUPLE]]), index=0 ; CHECK-NEXT: ROOT [[OUT:%[^ ]+]] = f32[2,3,5,6]{3,2,1,0} bitcast([[MATMUL]]) )"); } TEST_F(CublasLtGemmRewriteTest, VectorBiasTransposedReluActivation) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,3] parameter(0) y = f32[3,4] parameter(1) z = f32[2] parameter(2) dot_a = f32[2,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} z_bcast = f32[2,4] broadcast(z), dimensions={0} add = f32[2,4] add(dot_a, z_bcast) c = f32[] constant(0) c_bcast = f32[2,4] broadcast(c), dimensions={} maximum = f32[2,4] maximum(add, c_bcast) ROOT out = f32[4,2] transpose(maximum), dimensions={1,0} } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,3], {{.*}}: f32[3,4], {{.*}}: f32[2]) -> f32[4,2] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[2,3]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[3,4]{1,0} parameter(1) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[2]{0} parameter(2) ; CHECK-NEXT: [[MATMUL_TUPLE:%[^ ]+]] = (f32[2,4]{0,1}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]], [[P2]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"BIAS_RELU" ; CHECK: } ; CHECK-NEXT: [[MATMUL:%[^ ]+]] = f32[2,4]{0,1} get-tuple-element([[MATMUL_TUPLE]]), index=0 ; CHECK-NEXT: ROOT [[OUT:%[^ ]+]] = f32[4,2]{1,0} bitcast([[MATMUL]]) )"); } TEST_F(CublasLtGemmRewriteTest, VectorBiasThenMatrixBiasReluActivation) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,3] parameter(0) y = f32[3,4] parameter(1) z_vec = f32[4] parameter(2) z_matrix = f32[2,4] parameter(3) dot_a = f32[2,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} z_bcast = f32[2,4] broadcast(z_vec), dimensions={1} add0 = f32[2,4] add(dot_a, z_bcast) add1 = f32[2,4] add(add0, z_matrix) c = f32[] constant(0) c_bcast = f32[2,4] broadcast(c), dimensions={} ROOT out = f32[2,4] maximum(add1, c_bcast) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,3], {{.*}}: f32[3,4], {{.*}}: f32[4], {{.*}}: f32[2,4]) -> f32[2,4] { ; CHECK-DAG: [[P0:%[^ ]+]] = f32[2,3]{1,0} parameter(0) ; CHECK-DAG: [[P1:%[^ ]+]] = f32[3,4]{1,0} parameter(1) ; CHECK-DAG: [[P2:%[^ ]+]] = f32[4]{0} parameter(2) ; CHECK-DAG: [[P3:%[^ ]+]] = f32[2,4]{1,0} parameter(3) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[2,4]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]], [[P3]], [[P2]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"BIAS_RELU" ; CHECK: } )"); } TEST_F(CublasLtGemmRewriteTest, ApproxGeluActivation) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,3] parameter(0) y = f32[3,4] parameter(1) dot = f32[2,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} mul.0 = f32[2,4] multiply(dot, dot) mul.1 = f32[2,4] multiply(dot, mul.0) const.0 = f32[] constant(0.044715) bcast.0 = f32[2,4] broadcast(const.0), dimensions={} mul.2 = f32[2,4] multiply(mul.1, bcast.0) add.0 = f32[2,4] add(dot, mul.2) const.1 = f32[] constant(0.797884583) bcast.1 = f32[2,4] broadcast(const.1), dimensions={} mul.3 = f32[2,4] multiply(add.0, bcast.1) tanh = f32[2,4] tanh(mul.3) const.2 = f32[] constant(1) bcast.2 = f32[2,4] broadcast(const.2), dimensions={} add.2 = f32[2,4] add(tanh, bcast.2) const.3 = f32[] constant(0.5) bcast.3 = f32[2,4] broadcast(const.3), dimensions={} mul.4 = f32[2,4] multiply(add.2, bcast.3) ROOT out = f32[2,4] multiply(dot, mul.4) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,3], {{.*}}: f32[3,4]) -> f32[2,4] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[2,3]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[3,4]{1,0} parameter(1) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[2,4]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"GELU" ; CHECK: } )"); } TEST_F(CublasLtGemmRewriteTest, ApproxGeluActivationWrongConstant) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,3] parameter(0) y = f32[3,4] parameter(1) dot = f32[2,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} mul.0 = f32[2,4] multiply(dot, dot) mul.1 = f32[2,4] multiply(dot, mul.0) const.0 = f32[] constant(0.05) bcast.0 = f32[2,4] broadcast(const.0), dimensions={} mul.2 = f32[2,4] multiply(mul.1, bcast.0) add.0 = f32[2,4] add(dot, mul.2) const.1 = f32[] constant(0.797884583) bcast.1 = f32[2,4] broadcast(const.1), dimensions={} mul.3 = f32[2,4] multiply(add.0, bcast.1) tanh = f32[2,4] tanh(mul.3) const.2 = f32[] constant(1) bcast.2 = f32[2,4] broadcast(const.2), dimensions={} add.2 = f32[2,4] add(tanh, bcast.2) const.3 = f32[] constant(0.5) bcast.3 = f32[2,4] broadcast(const.3), dimensions={} mul.4 = f32[2,4] multiply(add.2, bcast.3) ROOT out = f32[2,4] multiply(dot, mul.4) } )"; MatchOptimizedHlo(hlo_text, R"( ; CHECK-NOT: GELU )"); } TEST_F(CublasLtGemmRewriteTest, VectorBiasThenApproxGeluActivation) { #if TENSORFLOW_USE_ROCM && TF_ROCM_VERSION >= 60000 auto rocm_switch = false; #else auto rocm_switch = true; #endif if (!IsCuda() && rocm_switch) { GTEST_SKIP() << "TODO: Unsupported blas-lt epilogue on ROCM"; } const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,3] parameter(0) y = f32[3,4] parameter(1) z = f32[4] parameter(2) dot = f32[2,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} z_bcast = f32[2,4] broadcast(z), dimensions={1} add = f32[2,4] add(dot, z_bcast) mul.0 = f32[2,4] multiply(add, add) mul.1 = f32[2,4] multiply(add, mul.0) const.0 = f32[] constant(0.044715) bcast.0 = f32[2,4] broadcast(const.0), dimensions={} mul.2 = f32[2,4] multiply(mul.1, bcast.0) add.0 = f32[2,4] add(add, mul.2) const.1 = f32[] constant(0.797884583) bcast.1 = f32[2,4] broadcast(const.1), dimensions={} mul.3 = f32[2,4] multiply(add.0, bcast.1) tanh = f32[2,4] tanh(mul.3) const.2 = f32[] constant(1) bcast.2 = f32[2,4] broadcast(const.2), dimensions={} add.2 = f32[2,4] add(tanh, bcast.2) const.3 = f32[] constant(0.5) bcast.3 = f32[2,4] broadcast(const.3), dimensions={} mul.4 = f32[2,4] multiply(add.2, bcast.3) ROOT out = f32[2,4] multiply(add, mul.4) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,3], {{.*}}: f32[3,4], {{.*}}: f32[4]) -> f32[2,4] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[2,3]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[3,4]{1,0} parameter(1) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[4]{0} parameter(2) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[2,4]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]], [[P2]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"BIAS_GELU" ; CHECK: } )"); } TEST_F(CublasLtGemmRewriteTest, ApproxGeluActivationWithAux) { if (!IsCuda()) { GTEST_SKIP() << "TODO: Unsupported blas-lt epilogue on ROCM"; } const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,3] parameter(0) y = f32[3,4] parameter(1) dot = f32[2,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} mul.0 = f32[2,4] multiply(dot, dot) mul.1 = f32[2,4] multiply(dot, mul.0) const.0 = f32[] constant(0.044715) bcast.0 = f32[2,4] broadcast(const.0), dimensions={} mul.2 = f32[2,4] multiply(mul.1, bcast.0) add.0 = f32[2,4] add(dot, mul.2) const.1 = f32[] constant(0.797884583) bcast.1 = f32[2,4] broadcast(const.1), dimensions={} mul.3 = f32[2,4] multiply(add.0, bcast.1) tanh = f32[2,4] tanh(mul.3) const.2 = f32[] constant(1) bcast.2 = f32[2,4] broadcast(const.2), dimensions={} add.2 = f32[2,4] add(tanh, bcast.2) const.3 = f32[] constant(0.5) bcast.3 = f32[2,4] broadcast(const.3), dimensions={} mul.4 = f32[2,4] multiply(add.2, bcast.3) mul.5 = f32[2,4] multiply(dot, mul.4) ROOT out = (f32[2,4], f32[2,4]) tuple(mul.5, dot) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,3], {{.*}}: f32[3,4]) -> (f32[2,4], f32[2,4]) { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[2,3]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[3,4]{1,0} parameter(1) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[2,4]{1,0}, f32[2,4]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"GELU_AUX" ; CHECK: } )"); } TEST_F(CublasLtGemmRewriteTest, VectorBiasThenApproxGeluActivationWithAux) { if (!IsCuda()) { GTEST_SKIP() << "TODO: Unsupported blas-lt epilogue on ROCM"; } const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,3] parameter(0) y = f32[3,4] parameter(1) z = f32[4] parameter(2) dot = f32[2,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} z_bcast = f32[2,4] broadcast(z), dimensions={1} add = f32[2,4] add(dot, z_bcast) mul.0 = f32[2,4] multiply(add, add) mul.1 = f32[2,4] multiply(add, mul.0) const.0 = f32[] constant(0.044715) bcast.0 = f32[2,4] broadcast(const.0), dimensions={} mul.2 = f32[2,4] multiply(mul.1, bcast.0) add.0 = f32[2,4] add(add, mul.2) const.1 = f32[] constant(0.797884583) bcast.1 = f32[2,4] broadcast(const.1), dimensions={} mul.3 = f32[2,4] multiply(add.0, bcast.1) tanh = f32[2,4] tanh(mul.3) const.2 = f32[] constant(1) bcast.2 = f32[2,4] broadcast(const.2), dimensions={} add.2 = f32[2,4] add(tanh, bcast.2) const.3 = f32[] constant(0.5) bcast.3 = f32[2,4] broadcast(const.3), dimensions={} mul.4 = f32[2,4] multiply(add.2, bcast.3) mul.5 = f32[2,4] multiply(add, mul.4) ROOT out = (f32[2,4], f32[2,4]) tuple(mul.5, add) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,3], {{.*}}: f32[3,4], {{.*}}: f32[4]) -> (f32[2,4], f32[2,4]) { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[2,3]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[3,4]{1,0} parameter(1) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[4]{0} parameter(2) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[2,4]{1,0}, f32[2,4]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]], [[P2]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"BIAS_GELU_AUX" ; CHECK: } )"); } TEST_F(CublasLtGemmRewriteTest, ApproxGeluActivationBF16) { if (IsCuda() && !HasCudaComputeCapability(se::CudaComputeCapability::Ampere())) { GTEST_SKIP() << "Padding of GEMM bf16 operands only implemented on " "architectures with bf16 Tensor Cores."; } const char* hlo_text = R"( HloModule test ENTRY test { x = bf16[2,3] parameter(0) y = bf16[3,4] parameter(1) dot = bf16[2,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} mul.0 = bf16[2,4] multiply(dot, dot) mul.1 = bf16[2,4] multiply(dot, mul.0) const.0 = bf16[] constant(0.044715) bcast.0 = bf16[2,4] broadcast(const.0), dimensions={} mul.2 = bf16[2,4] multiply(mul.1, bcast.0) add.0 = bf16[2,4] add(dot, mul.2) const.1 = bf16[] constant(0.797884583) bcast.1 = bf16[2,4] broadcast(const.1), dimensions={} mul.3 = bf16[2,4] multiply(add.0, bcast.1) tanh = bf16[2,4] tanh(mul.3) const.2 = bf16[] constant(1) bcast.2 = bf16[2,4] broadcast(const.2), dimensions={} add.2 = bf16[2,4] add(tanh, bcast.2) const.3 = bf16[] constant(0.5) bcast.3 = bf16[2,4] broadcast(const.3), dimensions={} mul.4 = bf16[2,4] multiply(add.2, bcast.3) ROOT out = bf16[2,4] multiply(dot, mul.4) })"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{5e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-DAG: ENTRY %test ({{.*}}: bf16[2,3], {{.*}}: bf16[3,4]) -> bf16[2,4] { ; CHECK-DAG: bf16[8,8]{1,0} pad({{.*}}), padding=0_6x0_5 ; CHECK-DAG: bf16[8,8]{1,0} pad({{.*}}), padding=0_5x0_4 )"); } TEST_F(CublasLtGemmRewriteTest, ApproxGeluActivationBitcast) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,3] parameter(0) y = f32[3,4] parameter(1) dot = f32[2,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot_bitcast = f32[2,2,2] bitcast(dot) mul.0 = f32[2,2,2] multiply(dot_bitcast, dot_bitcast) mul.1 = f32[2,2,2] multiply(dot_bitcast, mul.0) const.0 = f32[] constant(0.044715) bcast.0 = f32[2,2,2] broadcast(const.0), dimensions={} mul.2 = f32[2,2,2] multiply(mul.1, bcast.0) add.0 = f32[2,2,2] add(dot_bitcast, mul.2) const.1 = f32[] constant(0.797884583) bcast.1 = f32[2,2,2] broadcast(const.1), dimensions={} mul.3 = f32[2,2,2] multiply(add.0, bcast.1) tanh = f32[2,2,2] tanh(mul.3) const.2 = f32[] constant(1) bcast.2 = f32[2,2,2] broadcast(const.2), dimensions={} add.2 = f32[2,2,2] add(tanh, bcast.2) const.3 = f32[] constant(0.5) bcast.3 = f32[2,2,2] broadcast(const.3), dimensions={} mul.4 = f32[2,2,2] multiply(add.2, bcast.3) ROOT out = f32[2,2,2] multiply(dot_bitcast, mul.4) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GemmRewriter pass(Capability(), GetToolkitVersion()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch( m::Bitcast(m::GetTupleElement( m::CustomCall({"__cublas$lt$matmul"}, m::Parameter(0).WithShape(F32, {2, 3}), m::Parameter(1).WithShape(F32, {3, 4})), 0)) .WithShape(F32, {2, 2, 2}))); } TEST_F(CublasLtGemmRewriteTest, MatrixBiasF16) { const char* hlo_text = R"( HloModule test ENTRY test { x = f16[8,16] parameter(0) y = f16[16,8] parameter(1) z = f16[8,8] parameter(2) dot_a = f16[8,8] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT out = f16[8,8] add(dot_a, z) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-3, 1e-3})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f16[8,16], {{.*}}: f16[16,8], {{.*}}: f16[8,8]) -> f16[8,8] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f16[8,16]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f16[16,8]{1,0} parameter(1) ; CHECK-NEXT: [[P2:%[^ ]+]] = f16[8,8]{1,0} parameter(2) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f16[8,8]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]], [[P2]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_F(CublasLtGemmRewriteTest, VectorBiasF32UnpaddedWithBitcast) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,3]{1,0} parameter(0) y = f32[3,4]{1,0} parameter(1) z = f32[2]{0} parameter(2) dot_a = f32[2,4]{0,1} dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} bitc = f32[4,2]{1,0} bitcast(f32[2,4]{0,1} dot_a) z_bcast = f32[4,2] broadcast(z), dimensions={1} ROOT add = f32[4,2]{1,0} add(bitc, z_bcast) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GemmRewriter pass(Capability(), GetToolkitVersion()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch( m::Bitcast(m::GetTupleElement( m::CustomCall({"__cublas$lt$matmul"}, m::Parameter(0), m::Parameter(1), m::Parameter(2).WithShape(F32, {2})), 0) .WithShape(F32, {2, 4})) .WithShape(F32, {4, 2}))); } TEST_F(CublasLtGemmRewriteTest, VectorBiasF16Unpadded) { const char* hlo_text = R"( HloModule test ENTRY test { x = f16[8,16] parameter(0) y = f16[16,8] parameter(1) z = f16[8] parameter(2) dot_a = f16[8,8] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} z_bcast = f16[8,8] broadcast(z), dimensions={1} ROOT add = f16[8,8] add(dot_a, z_bcast) })"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{8e-3, 2e-3})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-NOT: pad(" ; CHECK: custom-call ; CHECK-SAME: custom_call_target="__cublas$lt$matmul" )"); } TEST_F(CublasLtGemmRewriteTest, VectorBiasF16Padded) { if (IsCuda() && !HasCudaComputeCapability(se::CudaComputeCapability::Volta())) { GTEST_SKIP() << "Padding of GEMM operands only implemented on " "architectures with Tensor Cores."; } const char* hlo_text = R"( HloModule test ENTRY test { x = f16[6,12] parameter(0) y = f16[12,6] parameter(1) z = f16[6] parameter(2) dot_a = f16[6,6] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} z_bcast = f16[6,6] broadcast(z), dimensions={1} ROOT add = f16[6,6] add(dot_a, z_bcast) })"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-3, 1e-3})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-DAG: ENTRY %test ({{.*}}: f16[6,12], {{.*}}: f16[12,6], {{.*}}: f16[6]) -> f16[6,6] { ; CHECK-DAG: f16[8,16]{1,0} pad({{.*}}), padding=0_2x0_4 ; CHECK-DAG: f16[16,8]{1,0} pad({{.*}}), padding=0_4x0_2 )"); } TEST_F(CublasLtGemmRewriteTest, ReluActivationF16Unpadded) { const char* hlo_text = R"( HloModule test ENTRY test { x = f16[8,16] parameter(0) y = f16[16,8] parameter(1) dot_a = f16[8,8] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} c = f16[] constant(0) c_bcast = f16[8,8] broadcast(c), dimensions={} ROOT out = f16[8,8] maximum(dot_a, c_bcast) })"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-3, 1e-3})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-NOT: pad(" ; CHECK: custom-call ; CHECK-SAME: custom_call_target="__cublas$lt$matmul" )"); } TEST_F(CublasLtGemmRewriteTest, ReluActivationF16Padded) { if (IsCuda() && !HasCudaComputeCapability(se::CudaComputeCapability::Volta())) { GTEST_SKIP() << "Padding of GEMM operands only implemented on " "architectures with Tensor Cores."; } const char* hlo_text = R"( HloModule test ENTRY test { x = f16[6,12] parameter(0) y = f16[12,6] parameter(1) dot_a = f16[6,6] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} c = f16[] constant(0) c_bcast = f16[6,6] broadcast(c), dimensions={} ROOT out = f16[6,6] maximum(dot_a, c_bcast) })"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-DAG: ENTRY %test ({{.*}}: f16[6,12], {{.*}}: f16[12,6]) -> f16[6,6] { ; CHECK-DAG: f16[8,16]{1,0} pad({{.*}}), padding=0_2x0_4 ; CHECK-DAG: f16[16,8]{1,0} pad({{.*}}), padding=0_4x0_2 )"); } TEST_F(CublasLtGemmRewriteTest, MatrixBiasReluActivationF16) { const char* hlo_text = R"( HloModule test ENTRY test { x = f16[8,16] parameter(0) y = f16[16,8] parameter(1) z = f16[8,8] parameter(2) dot_a = f16[8,8] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} add = f16[8,8] add(dot_a, z) c = f16[] constant(0) c_bcast = f16[8,8] broadcast(c), dimensions={} ROOT out = f16[8,8] maximum(add, c_bcast) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-3, 1e-3})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f16[8,16], {{.*}}: f16[16,8], {{.*}}: f16[8,8]) -> f16[8,8] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f16[8,16]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f16[16,8]{1,0} parameter(1) ; CHECK-NEXT: [[P2:%[^ ]+]] = f16[8,8]{1,0} parameter(2) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f16[8,8]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]], [[P2]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"RELU" ; CHECK: } )"); } TEST_F(CublasLtGemmRewriteTest, VectorBiasReluActivationF16Unpadded) { const char* hlo_text = R"( HloModule test ENTRY test { x = f16[8,16] parameter(0) y = f16[16,8] parameter(1) z = f16[8] parameter(2) dot_a = f16[8,8] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} z_bcast = f16[8,8] broadcast(z), dimensions={1} add = f16[8,8] add(dot_a, z_bcast) c = f16[] constant(0) c_bcast = f16[8,8] broadcast(c), dimensions={} ROOT out = f16[8,8] maximum(add, c_bcast) })"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-3, 1e-3})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-NOT: pad(" ; CHECK: custom-call ; CHECK-SAME: custom_call_target="__cublas$lt$matmul" )"); } TEST_F(CublasLtGemmRewriteTest, VectorBiasReluActivationF16Padded) { if (IsCuda() && !HasCudaComputeCapability(se::CudaComputeCapability::Volta())) { GTEST_SKIP() << "Padding of GEMM operands only implemented on " "architectures with Tensor Cores."; } const char* hlo_text = R"( HloModule test ENTRY test { x = f16[6,12] parameter(0) y = f16[12,6] parameter(1) z = f16[6] parameter(2) dot_a = f16[6,6] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} z_bcast = f16[6,6] broadcast(z), dimensions={1} add = f16[6,6] add(dot_a, z_bcast) c = f16[] constant(0) c_bcast = f16[6,6] broadcast(c), dimensions={} ROOT out = f16[6,6] maximum(add, c_bcast) })"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-3, 1e-3})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-DAG: ENTRY %test ({{.*}}: f16[6,12], {{.*}}: f16[12,6], {{.*}}: f16[6]) -> f16[6,6] { ; CHECK-DAG: f16[8,16]{1,0} pad({{.*}}), padding=0_2x0_4 ; CHECK-DAG: f16[16,8]{1,0} pad({{.*}}), padding=0_4x0_2 )"); } TEST_F(CublasLtGemmRewriteTest, MatrixBiasBF16) { const char* hlo_text = R"( HloModule test ENTRY test { x = bf16[8,16] parameter(0) y = bf16[16,8] parameter(1) z = bf16[8,8] parameter(2) dot_a = bf16[8,8] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT out = bf16[8,8] add(dot_a, z) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-3, 1e-3})); if (IsCuda() && !HasCudaComputeCapability(se::CudaComputeCapability::Ampere())) { GTEST_SKIP() << "Pre-Ampere casts up bf16 to fp32"; } MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: bf16[8,16], {{.*}}: bf16[16,8], {{.*}}: bf16[8,8]) -> bf16[8,8] { ; CHECK-DAG: [[P0:%[^ ]+]] = bf16[8,16]{1,0} parameter(0) ; CHECK-DAG: [[P1:%[^ ]+]] = bf16[16,8]{1,0} parameter(1) ; CHECK-DAG: [[P2:%[^ ]+]] = bf16[8,8]{1,0} parameter(2) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (bf16[8,8]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]], [[P2]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_F(CublasLtGemmRewriteTest, MatrixBiasBitcastBF16) { const char* hlo_text = R"( HloModule test ENTRY test { x = bf16[8,16] parameter(0) y = bf16[16,8] parameter(1) bias = bf16[2,4,8] parameter(2) dot = bf16[8,8] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} bitcast = bf16[2,4,8] bitcast(dot) ROOT out = bf16[2,4,8] add(bitcast, bias) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GemmRewriter pass(Capability(), GetToolkitVersion()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch( m::Bitcast( m::GetTupleElement( m::CustomCall( {"__cublas$lt$matmul"}, m::Parameter(0).WithShape(BF16, {8, 16}), m::Parameter(1).WithShape(BF16, {16, 8}), m::Bitcast(m::Parameter(2)).WithShape(BF16, {8, 8})), 0)) .WithShape(BF16, {2, 4, 8}))); } TEST_F(CublasLtGemmRewriteTest, VectorBiasBF16Unpadded) { if (IsCuda() && !HasCudaComputeCapability(se::CudaComputeCapability::Ampere())) { GTEST_SKIP() << "Pre-Ampere rewrites to cutlass_gemm_with_upcast instead of cublas."; } const char* hlo_text = R"( HloModule test ENTRY test { x = bf16[8,16] parameter(0) y = bf16[16,8] parameter(1) z = bf16[8] parameter(2) dot_a = bf16[8,8] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} z_bcast = bf16[8,8] broadcast(z), dimensions={1} ROOT add = bf16[8,8] add(dot_a, z_bcast) })"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{8e-3, 2e-3})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-NOT: pad(" ; CHECK: custom-call ; CHECK-SAME: custom_call_target="__cublas$lt$matmul" )"); } TEST_F(CublasLtGemmRewriteTest, VectorBiasBF16Padded) { if (IsCuda() && !HasCudaComputeCapability(se::CudaComputeCapability::Ampere())) { GTEST_SKIP() << "Padding of GEMM operands in bfloat16 only implemented on " "Ampere and newer architectures."; } const char* hlo_text = R"( HloModule test ENTRY test { x = bf16[6,12] parameter(0) y = bf16[12,6] parameter(1) z = bf16[6] parameter(2) dot_a = bf16[6,6] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} z_bcast = bf16[6,6] broadcast(z), dimensions={1} ROOT add = bf16[6,6] add(dot_a, z_bcast) })"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-3, 1e-3})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-DAG: ENTRY %test ({{.*}}: bf16[6,12], {{.*}}: bf16[12,6], {{.*}}: bf16[6]) -> bf16[6,6] { ; CHECK-DAG: bf16[8,16]{1,0} pad({{.*}}), padding=0_2x0_4 ; CHECK-DAG: bf16[16,8]{1,0} pad({{.*}}), padding=0_4x0_2 )"); } TEST_F(CublasLtGemmRewriteTest, ReluActivationBF16Unpadded) { if (IsCuda() && !HasCudaComputeCapability(se::CudaComputeCapability::Ampere())) { GTEST_SKIP() << "Pre-Ampere rewrites to cutlass_gemm_with_upcast instead of cublas."; } const char* hlo_text = R"( HloModule test ENTRY test { x = bf16[8,16] parameter(0) y = bf16[16,8] parameter(1) dot_a = bf16[8,8] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} c = bf16[] constant(0) c_bcast = bf16[8,8] broadcast(c), dimensions={} ROOT out = bf16[8,8] maximum(dot_a, c_bcast) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-3, 1e-3})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-NOT: pad(" ; CHECK: custom-call ; CHECK-SAME: custom_call_target="__cublas$lt$matmul" )"); } TEST_F(CublasLtGemmRewriteTest, ReluActivationBF16Padded) { if (IsCuda() && !HasCudaComputeCapability(se::CudaComputeCapability::Ampere())) { GTEST_SKIP() << "Padding of GEMM operands in bfloat16 only implemented on " "Ampere and newer architectures."; } const char* hlo_text = R"( HloModule test ENTRY test { x = bf16[6,12] parameter(0) y = bf16[12,6] parameter(1) dot_a = bf16[6,6] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} c = bf16[] constant(0) c_bcast = bf16[6,6] broadcast(c), dimensions={} ROOT out = bf16[6,6] maximum(dot_a, c_bcast) })"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-DAG: ENTRY %test ({{.*}}: bf16[6,12], {{.*}}: bf16[12,6]) -> bf16[6,6] { ; CHECK-DAG: bf16[8,16]{1,0} pad({{.*}}), padding=0_2x0_4 ; CHECK-DAG: bf16[16,8]{1,0} pad({{.*}}), padding=0_4x0_2 )"); } TEST_F(CublasLtGemmRewriteTest, VectorBiasReluActivationBF16Unpadded) { if (IsCuda() && !HasCudaComputeCapability(se::CudaComputeCapability::Ampere())) { GTEST_SKIP() << "Pre-Ampere rewrites to cutlass_gemm_with_upcast instead of cublas."; } const char* hlo_text = R"( HloModule test ENTRY test { x = bf16[8,16] parameter(0) y = bf16[16,8] parameter(1) z = bf16[8] parameter(2) dot_a = bf16[8,8] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} z_bcast = bf16[8,8] broadcast(z), dimensions={1} add = bf16[8,8] add(dot_a, z_bcast) c = bf16[] constant(0) c_bcast = bf16[8,8] broadcast(c), dimensions={} ROOT out = bf16[8,8] maximum(add, c_bcast) })"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{8e-3, 2e-3})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-NOT: pad(" ; CHECK: custom-call ; CHECK-SAME: custom_call_target="__cublas$lt$matmul" )"); } TEST_F(CublasLtGemmRewriteTest, VectorBiasReluActivationBF16Padded) { if (IsCuda() && !HasCudaComputeCapability(se::CudaComputeCapability::Ampere())) { GTEST_SKIP() << "Padding of GEMM operands in bfloat16 only implemented on " "Ampere and newer architectures."; } const char* hlo_text = R"( HloModule test ENTRY test { x = bf16[6,12] parameter(0) y = bf16[12,6] parameter(1) z = bf16[6] parameter(2) dot_a = bf16[6,6] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} z_bcast = bf16[6,6] broadcast(z), dimensions={1} add = bf16[6,6] add(dot_a, z_bcast) c = bf16[] constant(0) c_bcast = bf16[6,6] broadcast(c), dimensions={} ROOT out = bf16[6,6] maximum(add, c_bcast) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-3, 1e-3})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-DAG: ENTRY %test ({{.*}}: bf16[6,12], {{.*}}: bf16[12,6], {{.*}}: bf16[6]) -> bf16[6,6] { ; CHECK-DAG: bf16[8,16]{1,0} pad({{.*}}), padding=0_2x0_4 ; CHECK-DAG: bf16[16,8]{1,0} pad({{.*}}), padding=0_4x0_2 )"); } TEST_F(CublasLtGemmRewriteTest, VectorBiasReluActivationF64) { if (!IsCuda()) { GTEST_SKIP() << "TODO: Unsupported blas-lt F64 datatype on ROCM"; } const char* hlo_text = R"( HloModule test ENTRY test { x = f64[2,3] parameter(0) y = f64[3,4] parameter(1) z = f64[4] parameter(2) dot_a = f64[2,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} z_bcast = f64[2,4] broadcast(z), dimensions={1} add = f64[2,4] add(dot_a, z_bcast) c = f64[] constant(0) c_bcast = f64[2,4] broadcast(c), dimensions={} ROOT out = f64[2,4] maximum(add, c_bcast) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-10, 1e-10})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f64[2,3], {{.*}}: f64[3,4], {{.*}}: f64[4]) -> f64[2,4] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f64[2,3]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f64[3,4]{1,0} parameter(1) ; CHECK-NEXT: [[P2:%[^ ]+]] = f64[4]{0} parameter(2) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f64[2,4]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]], [[P2]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"BIAS_RELU" ; CHECK: } )"); } TEST_F(CublasLtGemmRewriteTest, AlphaSimpleRewriteBiasAddActivation) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,3] parameter(0) y = f32[3,4] parameter(1) z = f32[4] parameter(2) k = f32[] constant(3.0) k_bcast = f32[2,4] broadcast(k), dimensions={} dot_a = f32[2,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0}, operand_precision={highest,highest} dot_a_multiplied = f32[2, 4] multiply(dot_a, k_bcast) z_bcast = f32[2,4] broadcast(z), dimensions={1} add = f32[2,4] add(dot_a_multiplied, z_bcast) c = f32[] constant(0) c_bcast = f32[2,4] broadcast(c), dimensions={} ROOT out = f32[2,4] maximum(add, c_bcast) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,3], {{.*}}: f32[3,4], {{.*}}: f32[4]) -> f32[2,4] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[2,3]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[3,4]{1,0} parameter(1) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[4]{0} parameter(2) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[2,4]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1]], [[P2]]), ; CHECK: custom_call_target="__cublas$lt$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":3 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["HIGHEST","HIGHEST"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"BIAS_RELU" ; CHECK: } )"); } TEST_F(CublasLtGemmRewriteTest, FoldConstantBias) { const char* hlo_text = R"( HloModule test ENTRY test { x = f32[2,2] parameter(0) y = f32[2,2] parameter(1) bias = f32[2,2] broadcast(f32[2] constant({0, 0})), dimensions={0} dot1 = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} bias1 = f32[2,2] parameter(2) sum1 = add(dot1, bias1) dot2 = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} sum2 = add(dot2, f32[2,2] reshape(bias)) dot3 = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} bias3 = f32[2,2] transpose(bias), dimensions={1,0} sum3 = add(dot3, bias3) dot4 = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} sum4 = add(dot4, f32[2,2] bitcast(bias)) ROOT root = tuple(sum1, sum2, sum3, sum4) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GemmRewriter pass(Capability(), GetToolkitVersion()); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::GetTupleElement( m::CustomCall(m::Parameter(0), m::Parameter(1), m::Parameter()), 0), m::GetTupleElement( m::CustomCall(m::Parameter(0), m::Parameter(1), m::Constant()), 0), m::GetTupleElement( m::CustomCall(m::Parameter(0), m::Parameter(1), m::Constant()), 0), m::GetTupleElement( m::CustomCall(m::Parameter(0), m::Parameter(1), m::Constant()), 0)))); } TEST_F(CublasLtGemmRewriteTest, MultipleMaximumUsers) { const char* hlo_text = R"( HloModule multiple_maximum_users relu { Arg_0 = f32[3,896,54]{2,1,0} parameter(0) constant = f32[] constant(0) broadcast = f32[3,896,54]{2,1,0} broadcast(constant), dimensions={} ROOT maximum = f32[3,896,54]{2,1,0} maximum(Arg_0, broadcast) } ENTRY main { constant = f32[] constant(1) broadcast_1 = f32[3,896,1024]{2,1,0} broadcast(constant), dimensions={} Arg_2 = f32[1024,54]{1,0} parameter(2) dot = f32[3,896,54]{2,1,0} dot(broadcast_1, Arg_2), lhs_contracting_dims={2}, rhs_contracting_dims={0} Arg_1 = f32[54]{0} parameter(1) broadcast_2 = f32[3,896,54]{2,1,0} broadcast(Arg_1), dimensions={2} add = f32[3,896,54]{2,1,0} add(dot, broadcast_2) call = f32[3,896,54]{2,1,0} call(add), to_apply=relu Arg_0 = f32[1]{0} parameter(0) reshape_1 = f32[1,1,1]{2,1,0} reshape(Arg_0) broadcast_3 = f32[1,1,1]{2,1,0} broadcast(reshape_1), dimensions={0,1,2} reshape_2 = f32[] reshape(broadcast_3) broadcast_4 = f32[3,896,54]{2,1,0} broadcast(reshape_2), dimensions={} multiply = f32[3,896,54]{2,1,0} multiply(call, broadcast_4) ROOT tuple = (f32[3,896,54]{2,1,0}, f32[3,896,54]{2,1,0}) tuple(multiply, call) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-4})); MatchOptimizedHlo(hlo_text, R"( ; CHECK: custom_call_target="__cublas$lt$matmul", )"); } TEST_F(CublasLtGemmRewriteTest, MatrixBiasMixTypeOutOfPlace) { if (!IsCuda()) { GTEST_SKIP() << "TODO: Unsupported mixed datatypes on ROCM"; } std::vector<std::tuple<absl::string_view, absl::string_view>> type_combinations = { {"f16", "f32"}, {"bf16", "f32"}, }; const char* hlo_text_template = R"( HloModule test ENTRY test { x = <<ABType>>[16,32] parameter(0) y = <<ABType>>[32,16] parameter(1) z = <<DType>>[16,16] parameter(2) dot_a = <<ABType>>[16,16] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} convert = <<DType>>[16,16] convert(dot_a) ROOT out = <<DType>>[16,16] add(convert, z) })"; for (const auto& type_combination : type_combinations) { absl::flat_hash_map<absl::string_view, absl::string_view> replacements; replacements["<<ABType>>"] = std::get<0>(type_combination); replacements["<<DType>>"] = std::get<1>(type_combination); const auto hlo_text = absl::StrReplaceAll(hlo_text_template, replacements); EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-3, 1e-3})); if (std::get<0>(type_combination) == "bf16" && IsCuda() && !HasCudaComputeCapability(se::CudaComputeCapability::Ampere())) { continue; } TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> optimized_module, GetOptimizedModule(hlo_text)); EXPECT_THAT( optimized_module->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall(m::Parameter(0), m::Parameter(1), m::Parameter(2)), 0))); } } TEST_F(CublasLtGemmRewriteTest, MatrixBiasMixTypeOutOfPlaceBatched) { if (!IsCuda()) { GTEST_SKIP() << "TODO: Unsupported mixed datatypes on ROCM"; } std::vector<std::tuple<absl::string_view, absl::string_view>> type_combinations = { {"f16", "f32"}, {"bf16", "f32"}, }; const char* hlo_text_template = R"( HloModule test ENTRY test { x = <<ABType>>[4,16,32] parameter(0) y = <<ABType>>[4,32,16] parameter(1) z = <<DType>>[4,16,16] parameter(2) dot_a = <<ABType>>[4,16,16] dot(x, y), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} convert = <<DType>>[4,16,16] convert(dot_a) ROOT out = <<DType>>[4,16,16] add(convert, z) })"; for (const auto& type_combination : type_combinations) { absl::flat_hash_map<absl::string_view, absl::string_view> replacements; replacements["<<ABType>>"] = std::get<0>(type_combination); replacements["<<DType>>"] = std::get<1>(type_combination); const auto hlo_text = absl::StrReplaceAll(hlo_text_template, replacements); EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-3, 1e-3})); if (std::get<0>(type_combination) == "bf16" && IsCuda() && !HasCudaComputeCapability(se::CudaComputeCapability::Ampere())) { continue; } TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> optimized_module, GetOptimizedModule(hlo_text)); EXPECT_THAT( optimized_module->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall(m::Parameter(0), m::Parameter(1), m::Parameter(2)), 0))); } } TEST_F(CublasLtGemmRewriteTest, MatrixBiasMixTypeInPlace) { if (!IsCuda()) { GTEST_SKIP() << "TODO: Unsupported mixed datatypes on ROCM"; } std::vector<std::tuple<absl::string_view, absl::string_view>> type_combinations = { {"f16", "f32"}, {"bf16", "f32"}, }; const char* hlo_text_template = R"( HloModule test ENTRY test { x = <<ABType>>[16,32] parameter(0) y = <<ABType>>[32,16] parameter(1) z = <<DType>>[16,16] parameter(2) dot_a = <<ABType>>[16,16] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} bias = <<DType>>[16,16] negate(z) convert = <<DType>>[16,16] convert(dot_a) ROOT out = <<DType>>[16,16] add(convert, bias) })"; for (const auto& type_combination : type_combinations) { absl::flat_hash_map<absl::string_view, absl::string_view> replacements; replacements["<<ABType>>"] = std::get<0>(type_combination); replacements["<<DType>>"] = std::get<1>(type_combination); const auto hlo_text = absl::StrReplaceAll(hlo_text_template, replacements); EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-3, 1e-3})); if (std::get<0>(type_combination) == "bf16" && IsCuda() && !HasCudaComputeCapability(se::CudaComputeCapability::Ampere())) { continue; } TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> optimized_module, GetOptimizedModule(hlo_text)); EXPECT_THAT(optimized_module->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall(m::Parameter(0), m::Parameter(1), m::Negate(m::Parameter(2))), 0))); } } TEST_F(CublasLtGemmRewriteTest, MatrixBiasMixTypeNotSupported) { const char* hlo_text = R"( HloModule test ENTRY test { x = bf16[16,32] parameter(0) y = bf16[32,16] parameter(1) z = f64[16,16] parameter(2) dot_a = bf16[16,16] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} bias = f64[16,16] negate(z) convert = f64[16,16] convert(dot_a) ROOT out = f64[16,16] add(convert, bias) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-3, 1e-3})); if (IsCuda() && !HasCudaComputeCapability(se::CudaComputeCapability::Ampere())) { GTEST_SKIP() << "Pre-Ampere casts up bf16 to fp32"; } TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> optimized_module, GetOptimizedModule(hlo_text)); MatchOptimizedHlo(hlo_text, R"( ; CHECK: %[[custom_call:.*]] = {{.*}} custom-call{{.*}}__cublas$lt$matmul ; CHECK: %[[tuple:.*]] = bf16[16,16]{1,0} get-tuple-element(%[[custom_call]]), index=0 ; CHECK: ROOT {{.*}} fusion({{.*}}%[[tuple]] )"); } class ParameterizedFp8GemmRewriteTest : public ParameterizedGemmRewriteTest { public: ParameterizedFp8GemmRewriteTest() { replacements_[kF8E4M3DatatypePlaceholder] = IsCuda() ? "f8e4m3fn" : "f8e4m3fnuz"; replacements_[kF8E5M2DatatypePlaceholder] = IsCuda() ? "f8e5m2" : "f8e5m2fnuz"; replacements_[kF8E4M3AmaxPlaceholder] = IsCuda() ? "448." : "240."; } void SetUp() override { if (IsCuda() && GetToolkitVersion() < se::SemanticVersion{12, 0, 0}) { GTEST_SKIP() << "F8 gemm rewrite is only supported in CUDA 12 and above."; } if (IsRocm() && GetToolkitVersion() < se::SemanticVersion{6, 0, 0}) { GTEST_SKIP() << "F8 gemm rewrite is only supported in ROCm 6.0 and above."; } } protected: void CheckFp8IfSupported(absl::string_view hlo_text, ErrorSpec error_spec = ErrorSpec{1e-2, 1e-2}) { if (!HasFp8Support()) { return; } std::string replaced_hlo_text = absl::StrReplaceAll(hlo_text, replacements_); EXPECT_TRUE(RunAndCompare(absl::StrReplaceAll(hlo_text, replacements_), error_spec)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> optimized_module, GetOptimizedModule(replaced_hlo_text)); const HloInstruction* call = FindInstruction(optimized_module.get(), HloOpcode::kCustomCall); ASSERT_NE(call, nullptr); EXPECT_EQ(call->custom_call_target(), "__cublas$lt$matmul$f8"); } void MatchOptimizedHlo(absl::string_view hlo, const absl::string_view pattern, bool print_operand_shape = false) { GemmRewriteTest::MatchOptimizedHlo( absl::StrReplaceAll(hlo, replacements_), absl::StrReplaceAll(pattern, replacements_), print_operand_shape); } void RunAndFilecheckHloRewrite( absl::string_view hlo, HloPassInterface&& hlo_pass, std::optional<absl::string_view> expected, std::function<void(HloModule*)> after_pass_checks = nullptr, const HloModuleConfig* config = nullptr) { if (expected.has_value()) { std::string replaced_pattern = absl::StrReplaceAll(expected.value(), replacements_); GemmRewriteTest::RunAndFilecheckHloRewrite( absl::StrReplaceAll(hlo, replacements_), std::move(hlo_pass), replaced_pattern, after_pass_checks, config); } } absl::StatusOr<std::unique_ptr<VerifiedHloModule>> ParseAndReturnVerifiedModule(absl::string_view hlo_text, int64_t replica_count = 1, int64_t num_partitions = 1) { return GemmRewriteTest::ParseAndReturnVerifiedModule( absl::StrReplaceAll(hlo_text, replacements_)); } private: static constexpr const char* kF8E4M3DatatypePlaceholder{"<<F8E4M3>>"}; static constexpr const char* kF8E5M2DatatypePlaceholder{"<<F8E5M2>>"}; static constexpr const char* kF8E4M3AmaxPlaceholder{"<<F8E4M3_AMAX>>"}; }; TEST_P(ParameterizedFp8GemmRewriteTest, SupportsF8NonMajorBatchDim) { const char* hlo_text = R"( HloModule t ENTRY main { %bitcast.73421 = f8e4m3fn[16,8,640]{2,1,0} parameter(0) %parameter_1.5 = f8e4m3fn[8,640,5120]{2,1,0} parameter(1) %parameter_2 = f8e4m3fn[8,640,5120]{2,1,0} parameter(2) %concatenate.2145 = f8e4m3fn[8,640,10240]{2,1,0} concatenate( f8e4m3fn[8,640,5120]{2,1,0} %parameter_1.5, f8e4m3fn[8,640,5120]{2,1,0} %parameter_2), dimensions={2} %dot.6237 = f32[8,16,10240]{2,1,0} dot( f8e4m3fn[16,8,640]{2,1,0} %bitcast.73421, f8e4m3fn[8,640,10240]{2,1,0} %concatenate.2145), lhs_batch_dims={1}, lhs_contracting_dims={2}, rhs_batch_dims={0}, rhs_contracting_dims={1} ROOT %convert.20480 = bf16[8,16,10240]{2,1,0} convert( f32[8,16,10240]{2,1,0} %dot.6237) })"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-2, 1e-2})); MatchOptimizedHlo(hlo_text, R"( ; CHECK: custom-call({{.*}}"lhs_batch_dimensions":["1"],"rhs_batch_dimensions":["0"] )"); } TEST_P(ParameterizedFp8GemmRewriteTest, DoNotRewriteToF8OnPreAda) { if (!IsCuda()) { GTEST_SKIP() << "FP8 Rewrite pattern is different on ROCM-6.2 "; } if (HasFp8Support()) { GTEST_SKIP() << "Test requires a pre-Ada GPU"; } const char* hlo_text = R"( HloModule test ENTRY PreAdaTest { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) ROOT out = <<F8E4M3>>[16,16] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; EXPECT_TRUE(RunAndCompare(absl::StrReplaceAll(hlo_text, replacements_), ErrorSpec{1e-2, 1e-2})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %PreAdaTest ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[32,16]) -> <<F8E4M3>>[16,16] { ; CHECK: {{.*}} = {{.*}} custom-call({{.*}}, {{.*}}) ; CHECK-DAG: custom_call_target="<<CUBLAS_CUSTOM_CALL_TARGET_PLACEHOLDER>>" )"); } TEST_P(ParameterizedFp8GemmRewriteTest, DoNotRewriteOnPreAdaWithF32Output) { if (HasFp8Support()) { GTEST_SKIP() << "Test requires a pre-Ada GPU or an AMD GPU prior to MI300."; } const char* hlo_text = R"( HloModule test ENTRY PreAdaTest { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) ROOT out = f32[16,16] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; EXPECT_TRUE(RunAndCompare(absl::StrReplaceAll(hlo_text, replacements_), ErrorSpec{1e-2, 1e-2})); MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %PreAdaTest ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[32,16]) -> f32[16,16] { ; CHECK: {{.*}} = {{.*}} custom-call({{.*}}, {{.*}}) ; CHECK-DAG: custom_call_target="<<CUBLAS_CUSTOM_CALL_TARGET_PLACEHOLDER>>" )"); } TEST_P(ParameterizedFp8GemmRewriteTest, UnsupportedTypesF8) { const char* hlo_text = R"( HloModule test ENTRY unsupported_types { x = <<F8E5M2>>[16,16] parameter(0) y = <<F8E5M2>>[16,16] parameter(1) ROOT out = <<F8E5M2>>[16,16] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; EXPECT_TRUE(RunAndCompare(absl::StrReplaceAll(hlo_text, replacements_), ErrorSpec{1e-2, 1e-2})); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(Capability(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %unsupported_types ({{.*}}: <<F8E5M2>>[16,16], {{.*}}: <<F8E5M2>>[16,16]) -> <<F8E5M2>>[16,16] { ; CHECK-NEXT: [[P0:%[^ ]+]] = <<F8E5M2>>[16,16]{1,0} parameter(0) ; CHECK-NEXT: [[P0_CONVERT:%[^ ]+]] = f16[16,16]{1,0} convert([[P0]]) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E5M2>>[16,16]{1,0} parameter(1) ; CHECK-NEXT: [[P1_CONVERT:%[^ ]+]] = f16[16,16]{1,0} convert([[P1]]) ; CHECK-NEXT: [[DOT:%[^ ]+]] = f16[16,16]{1,0} dot([[P0_CONVERT]], [[P1_CONVERT]]), lhs_contracting_dims={1}, rhs_contracting_dims={0} ; CHECK-NEXT: ROOT [[OUT:%[^ ]+]] = <<F8E5M2>>[16,16]{1,0} convert([[DOT]]) )"); } TEST_P(ParameterizedFp8GemmRewriteTest, UnscaledABUnscaledDF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) ROOT out = <<F8E4M3>>[16,16] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; CheckFp8IfSupported(hlo_text); std::string checks = R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[32,16]) -> <<F8E4M3>>[16,16] { ; CHECK-NEXT: [[P0:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK-NEXT: [[C1:[^ ]+]] = f32[] constant(1) )"; if (IsRocm() && GetToolkitVersion() < se::SemanticVersion{6, 2, 0}) { checks.append( R"(; CHECK-GCN-NEXT: [[OUT:%[^ ]+]] = (f32[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[C1]], [[C1]]), )"); } else { checks.append( R"(; CHECK-NEXT: [[OUT:%[^ ]+]] = (<<F8E4M3>>[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[C1]], [[C1]]), )"); } checks.append( R"(; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), checks); } TEST_P(ParameterizedFp8GemmRewriteTest, UnscaledABUnscaledDMatrixBiasF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) dot_a = <<F8E4M3>>[16,16] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} b = <<F8E4M3>>[16,16] parameter(2) ROOT out = <<F8E4M3>>[16,16] add(dot_a, b) } )"; CheckFp8IfSupported(hlo_text); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[32,16], {{.*}}: <<F8E4M3>>[16,16]) -> <<F8E4M3>>[16,16] { ; CHECK-NEXT: [[P0:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK-NEXT: [[C1:[^ ]+]] = f32[] constant(1) ; CHECK-NEXT: [[DOT_TUPLE:%[^ ]+]] = (<<F8E4M3>>[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[C1]], [[C1]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } ; CHECK: [[DOT:%[^ ]+]] = <<F8E4M3>>[16,16]{1,0} get-tuple-element([[DOT_TUPLE]]), index=0 ; CHECK-NEXT: [[P2:%[^ ]+]] = <<F8E4M3>>[16,16]{1,0} parameter(2) ; CHECK-NEXT: ROOT [[OUT:%[^ ]+]] = <<F8E4M3>>[16,16]{1,0} add([[DOT]], [[P2]]) )"); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABUnscaledDColMajorLhsF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[2,64,32]{1,2,0} parameter(0) y = <<F8E4M3>>[2,32,16]{2,1,0} parameter(1) x_scale = f32[] parameter(2) y_scale = f32[] parameter(3) dq_scale = f32[] multiply(x_scale, y_scale) dq_scale_bcast = f32[2,64,16] broadcast(dq_scale), dimensions={} out.0 = f32[2,64,16] dot(x, y), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} ROOT out = f32[2,64,16] multiply(out.0, dq_scale_bcast) } )"; CheckFp8IfSupported(hlo_text); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[2,64,32], {{.*}}: <<F8E4M3>>[2,32,16], {{.*}}: f32[], {{.*}}: f32[]) -> f32[2,64,16] { ; CHECK-NEXT: [[P0:%[^ ]+]] = <<F8E4M3>>[2,64,32]{1,2,0} parameter(0) ; CHECK-NEXT: [[P0_BT:%[^ ]+]] = <<F8E4M3>>[2,32,64]{2,1,0} bitcast([[P0]]) ; CHECK-NEXT: [[P0_TR:%[^ ]+]] = <<F8E4M3>>[2,64,32]{2,1,0} transpose([[P0_BT]]), dimensions={0,2,1} ; CHECK-NEXT: [[P0_BT1:%[^ ]+]] = <<F8E4M3>>[2,32,64]{1,2,0} bitcast([[P0_TR]]) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[2,32,16]{2,1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[2,16,32]{2,1,0} transpose([[P1]]), dimensions={0,2,1} ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[] parameter(2) ; CHECK-NEXT: [[P3:%[^ ]+]] = f32[] parameter(3) ; CHECK-NEXT: [[DQ:%[^ ]+]] = f32[] multiply([[P2]], [[P3]]) ; CHECK-NEXT: [[C1:%[^ ]+]] = f32[] constant(1) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[2,64,16]{2,1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0_BT1]], [[P1_TRANSPOSE]], [[DQ]], [[C1]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["2"] ; CHECK-DAG: "lhs_batch_dimensions":["0"] ; CHECK-DAG: "rhs_batch_dimensions":["0"] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABUnscaledDF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) x_f32 = f32[16,32] convert(x) y_f32 = f32[32,16] convert(y) x_scale = f32[] parameter(2) y_scale = f32[] parameter(3) x_scale_bcast = f32[16,32] broadcast(x_scale), dimensions={} y_scale_bcast = f32[32,16] broadcast(y_scale), dimensions={} x_unscaled = f32[16,32] multiply(x_f32, x_scale_bcast) y_unscaled = f32[32,16] multiply(y_f32, y_scale_bcast) ROOT out = f32[16,16] dot(x_unscaled, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; CheckFp8IfSupported(hlo_text); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[32,16], {{.*}}: f32[], {{.*}}: f32[]) -> f32[16,16] { ; CHECK-NEXT: [[P0:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[] parameter(2) ; CHECK-NEXT: [[P3:%[^ ]+]] = f32[] parameter(3) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[P2]], [[P3]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABUnscaledDPaddedF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[13,17] parameter(0) y = <<F8E4M3>>[17,31] parameter(1) x_f32 = f32[13,17] convert(x) y_f32 = f32[17,31] convert(y) x_scale = f32[] parameter(2) y_scale = f32[] parameter(3) x_scale_bcast = f32[13,17] broadcast(x_scale), dimensions={} y_scale_bcast = f32[17,31] broadcast(y_scale), dimensions={} x_unscaled = f32[13,17] multiply(x_f32, x_scale_bcast) y_unscaled = f32[17,31] multiply(y_f32, y_scale_bcast) ROOT out = f32[13,31] dot(x_unscaled, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; CheckFp8IfSupported(hlo_text); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[13,17], {{.*}}: <<F8E4M3>>[17,31], {{.*}}: f32[], {{.*}}: f32[]) -> f32[13,31] { ; CHECK-NEXT: [[P0:%[^ ]+]] = <<F8E4M3>>[13,17]{1,0} parameter(0) ; CHECK-NEXT: [[C0:%[^ ]+]] = <<F8E4M3>>[] constant(0) ; CHECK-NEXT: [[P0_PADDED:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} pad([[P0]], [[C0]]), padding=0_3x0_15 ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[17,31]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[31,17]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK-NEXT: [[C1:%[^ ]+]] = <<F8E4M3>>[] constant(0) ; CHECK-NEXT: [[P1_TRANSPOSE_PADDED:%[^ ]+]] = <<F8E4M3>>[32,32]{1,0} pad([[P1_TRANSPOSE]], [[C1]]) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[] parameter(2) ; CHECK-NEXT: [[P3:%[^ ]+]] = f32[] parameter(3) ; CHECK-NEXT: [[DOT_TUPLE:%[^ ]+]] = (f32[16,32]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0_PADDED]], [[P1_TRANSPOSE_PADDED]], [[P2]], [[P3]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } ; CHECK-NEXT: [[DOT:%[^ ]+]] = f32[16,32]{1,0} get-tuple-element([[DOT_TUPLE]]), index=0 ; CHECK-NEXT: ROOT [[OUT:%[^ ]+]] = f32[13,31]{1,0} slice([[DOT]]), slice={[0:13], [0:31]} )"); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABUnscaledDBitcastF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[2,8,16] parameter(0) y = <<F8E4M3>>[16,16] parameter(1) x_f32 = f32[2,8,16] convert(x) y_f32 = f32[16,16] convert(y) x_scale = f32[] parameter(2) y_scale = f32[] parameter(3) x_scale_bcast = f32[2,8,16] broadcast(x_scale), dimensions={} y_scale_bcast = f32[16,16] broadcast(y_scale), dimensions={} x_unscaled = f32[2,8,16] multiply(x_f32, x_scale_bcast) y_unscaled = f32[16,16] multiply(y_f32, y_scale_bcast) x_bitcast = f32[16,16] bitcast(x_unscaled) ROOT out = f32[16,16] dot(x_bitcast, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GemmRewriter pass(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement(m::CustomCall({"__cublas$lt$matmul$f8"}), 0) .WithShape(F32, {16, 16}))); } TEST_P(ParameterizedFp8GemmRewriteTest, UnscaledABUnscaledDWithConvertF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) x_f32 = f32[16,32] convert(x) y_f32 = f32[32,16] convert(y) ROOT out = f32[16,16] dot(x_f32, y_f32), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; CheckFp8IfSupported(hlo_text); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[32,16]) -> f32[16,16] { ; CHECK-NEXT: [[P0:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK-NEXT: [[C1:%[^ ]+]] = f32[] constant(1) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[C1]], [[C1]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABUnscaledDUnaryOpsF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[3] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) x_f32 = f32[3] convert(x) y_f32 = f32[32,16] convert(y) x_scale = f32[] parameter(2) y_scale = f32[] parameter(3) x_scale_bcast = f32[3] broadcast(x_scale), dimensions={} y_scale_bcast = f32[32,16] broadcast(y_scale), dimensions={} x_unscaled = f32[3] multiply(x_f32, x_scale_bcast) zero = f32[] constant(0) x_unscaled_padded = f32[30] pad(x_unscaled, zero), padding=0_27 x_unscaled_padded_bcast = f32[30,8,5] broadcast(x_unscaled_padded), dimensions={0} x_unscaled_padded_bcast_sliced = f32[16,8,4] slice(x_unscaled_padded_bcast), slice={[2:18], [0:8], [0:4]} x_unscaled_padded_bcast_sliced_reshaped = f32[16,32] reshape(x_unscaled_padded_bcast_sliced) y_unscaled = f32[32,16] multiply(y_f32, y_scale_bcast) ROOT out = f32[16,16] dot(x_unscaled_padded_bcast_sliced_reshaped, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; CheckFp8IfSupported(hlo_text); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[3], {{.*}}: <<F8E4M3>>[32,16], {{.*}}: f32[], {{.*}}: f32[]) -> f32[16,16] { ; CHECK-NEXT: [[P0:%[^ ]+]] = <<F8E4M3>>[3]{0} parameter(0) ; CHECK-NEXT: [[C0:%[^ ]+]] = f32[] constant(0) ; CHECK-NEXT: [[C0_CONVERT:%[^ ]+]] = <<F8E4M3>>[] convert([[C0]]) ; CHECK-NEXT: [[P0_U0:%[^ ]+]] = <<F8E4M3>>[30]{0} pad([[P0]], [[C0_CONVERT]]), padding=0_27 ; CHECK-NEXT: [[P0_U1:%[^ ]+]] = <<F8E4M3>>[30,8,5]{2,1,0} broadcast([[P0_U0]]), dimensions={0} ; CHECK-NEXT: [[P0_U2:%[^ ]+]] = <<F8E4M3>>[16,8,4]{2,1,0} slice([[P0_U1]]), slice={[2:18], [0:8], [0:4]} ; CHECK-NEXT: [[P0_U3:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} reshape([[P0_U2]]) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[] parameter(2) ; CHECK-NEXT: [[P3:%[^ ]+]] = f32[] parameter(3) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0_U3]], [[P1_TRANSPOSE]], [[P2]], [[P3]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedFp8GemmRewriteTest, UnscaledABUnscaledDUnaryOpsWithConvertF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[3] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) x_f32 = f32[3] convert(x) y_f32 = f32[32,16] convert(y) zero = f32[] constant(0) x_padded = f32[30] pad(x_f32, zero), padding=0_27 x_padded_bcast = f32[30,8,5] broadcast(x_padded), dimensions={0} x_padded_bcast_sliced = f32[16,8,4] slice(x_padded_bcast), slice={[2:18], [0:8], [0:4]} x_padded_bcast_sliced_reshaped = f32[16,32] reshape(x_padded_bcast_sliced) ROOT out = f32[16,16] dot(x_padded_bcast_sliced_reshaped, y_f32), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; CheckFp8IfSupported(hlo_text); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[3], {{.*}}: <<F8E4M3>>[32,16]) -> f32[16,16] { ; CHECK-NEXT: [[P0:%[^ ]+]] = <<F8E4M3>>[3]{0} parameter(0) ; CHECK-NEXT: [[C0:%[^ ]+]] = f32[] constant(0) ; CHECK-NEXT: [[C0_CONVERT:%[^ ]+]] = <<F8E4M3>>[] convert([[C0]]) ; CHECK-NEXT: [[P0_U0:%[^ ]+]] = <<F8E4M3>>[30]{0} pad([[P0]], [[C0_CONVERT]]), padding=0_27 ; CHECK-NEXT: [[P0_U1:%[^ ]+]] = <<F8E4M3>>[30,8,5]{2,1,0} broadcast([[P0_U0]]), dimensions={0} ; CHECK-NEXT: [[P0_U2:%[^ ]+]] = <<F8E4M3>>[16,8,4]{2,1,0} slice([[P0_U1]]), slice={[2:18], [0:8], [0:4]} ; CHECK-NEXT: [[P0_U3:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} reshape([[P0_U2]]) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK-NEXT: [[C2:%[^ ]+]] = f32[] constant(1) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0_U3]], [[P1_TRANSPOSE]], [[C2]], [[C2]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABUnscaledDDynamicSliceF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[32,32] parameter(0) y = <<F8E4M3>>[16,32] parameter(1) zero = s32[] constant(0) x_f32 = f32[32,32] convert(x) y_f32 = f32[16,32] convert(y) x_scale = f32[] parameter(2) y_scale = f32[] parameter(3) x_scale_bcast = f32[32,32] broadcast(x_scale), dimensions={} y_scale_bcast = f32[16,32] broadcast(y_scale), dimensions={} x_unscaled = f32[32,32] multiply(x_f32, x_scale_bcast) y_unscaled = f32[16,32] multiply(y_f32, y_scale_bcast) dyn_slice = f32[16,32]{1,0} dynamic-slice(x_unscaled, zero, zero), dynamic_slice_sizes={16,32} ROOT dot_a = f32[16,16] dot(dyn_slice, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GemmRewriter pass(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); CheckFp8IfSupported(hlo_text); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[32,32], {{.*}}: <<F8E4M3>>[16,32], {{.*}}: f32[], {{.*}}: f32[]) -> f32[16,16] { ; CHECK-NEXT: [[P0:%[^ ]+]] = <<F8E4M3>>[32,32]{1,0} parameter(0) ; CHECK-NEXT: [[C0:%[^ ]+]] = s32[] constant(0) ; CHECK-NEXT: [[DYN_SLICE:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} dynamic-slice([[P0]], [[C0]], [[C0]]), dynamic_slice_sizes={16,32} ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(1) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[] parameter(2) ; CHECK-NEXT: [[P3:%[^ ]+]] = f32[] parameter(3) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[DYN_SLICE]], [[P1]], [[P2]], [[P3]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABUnscaledDSelectF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[16,32] parameter(1) x_f32 = f32[16,32] convert(x) y_f32 = f32[16,32] convert(y) x_scale = f32[] parameter(2) y_scale = f32[] parameter(3) x_scale_bcast = f32[16,32] broadcast(x_scale), dimensions={} y_scale_bcast = f32[16,32] broadcast(y_scale), dimensions={} x_unscaled = f32[16,32] multiply(x_f32, x_scale_bcast) y_unscaled = f32[16,32] multiply(y_f32, y_scale_bcast) k = pred[16,32] parameter(4) c = f32[] constant(0) c_bcast = f32[16,32] broadcast(c), dimensions={} select_a = f32[16,32] select(k, y_unscaled, c_bcast) ROOT dot_a = f32[16,16] dot(x_unscaled, select_a), lhs_contracting_dims={1}, rhs_contracting_dims={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GemmRewriter pass(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); CheckFp8IfSupported(hlo_text); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[16,32], {{.*}}: f32[], {{.*}}: f32[], {{.*}}: pred[16,32]) -> f32[16,16] { ; CHECK-NEXT: [[P0:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(0) ; CHECK-NEXT: [[P4:%[^ ]+]] = pred[16,32]{1,0} parameter(4) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(1) ; CHECK-NEXT: [[C0:%[^ ]+]] = f32[] constant(0) ; CHECK-NEXT: [[C0_BCAST:%[^ ]+]] = f32[16,32]{1,0} broadcast([[C0]]), dimensions={} ; CHECK-NEXT: [[C0_CONVERT:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} convert([[C0_BCAST]]) ; CHECK-NEXT: [[SELECT:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} select([[P4]], [[P1]], [[C0_CONVERT]]) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[] parameter(2) ; CHECK-NEXT: [[P3:%[^ ]+]] = f32[] parameter(3) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[SELECT]], [[P2]], [[P3]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABUnscaledDSelectNonzeroConstantF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[16,32] parameter(1) x_f32 = f32[16,32] convert(x) y_f32 = f32[16,32] convert(y) x_scale = f32[] parameter(2) y_scale = f32[] parameter(3) x_scale_bcast = f32[16,32] broadcast(x_scale), dimensions={} y_scale_bcast = f32[16,32] broadcast(y_scale), dimensions={} x_unscaled = f32[16,32] multiply(x_f32, x_scale_bcast) y_unscaled = f32[16,32] multiply(y_f32, y_scale_bcast) k = pred[16,32] parameter(4) c = f32[] constant(1) c_bcast = f32[16,32] broadcast(c), dimensions={} select_a = f32[16,32] select(k, y_unscaled, c_bcast) ROOT dot_a = f32[16,16] dot(x_unscaled, select_a), lhs_contracting_dims={1}, rhs_contracting_dims={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GemmRewriter pass(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_FALSE(changed); } TEST_P(ParameterizedFp8GemmRewriteTest, BatchedScaledABUnscaledDF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[10,16,32] parameter(0) y = <<F8E4M3>>[10,32,16] parameter(1) x_f32 = f32[10,16,32] convert(x) y_f32 = f32[10,32,16] convert(y) x_scale = f32[] parameter(2) y_scale = f32[] parameter(3) x_scale_bcast = f32[10,16,32] broadcast(x_scale), dimensions={} y_scale_bcast = f32[10,32,16] broadcast(y_scale), dimensions={} x_unscaled = f32[10,16,32] multiply(x_f32, x_scale_bcast) y_unscaled = f32[10,32,16] multiply(y_f32, y_scale_bcast) ROOT out = f32[10,16,16] dot(x_unscaled, y_unscaled), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} } )"; CheckFp8IfSupported(hlo_text); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[10,16,32], {{.*}}: <<F8E4M3>>[10,32,16], {{.*}}: f32[], {{.*}}: f32[]) -> f32[10,16,16] { ; CHECK-NEXT: [[P0:%[^ ]+]] = <<F8E4M3>>[10,16,32]{2,1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[10,32,16]{2,1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[10,16,32]{2,1,0} transpose([[P1]]), dimensions={0,2,1} ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[] parameter(2) ; CHECK-NEXT: [[P3:%[^ ]+]] = f32[] parameter(3) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[10,16,16]{2,1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[P2]], [[P3]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["2"] ; CHECK-DAG: "rhs_contracting_dimensions":["2"] ; CHECK-DAG: "lhs_batch_dimensions":["0"] ; CHECK-DAG: "rhs_batch_dimensions":["0"] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABAlphaDF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) x_f32 = f32[16,32] convert(x) y_f32 = f32[32,16] convert(y) x_scale = f32[] parameter(2) y_scale = f32[] parameter(3) x_scale_bcast = f32[16,32] broadcast(x_scale), dimensions={} y_scale_bcast = f32[32,16] broadcast(y_scale), dimensions={} x_unscaled = f32[16,32] multiply(x_f32, x_scale_bcast) y_unscaled = f32[32,16] multiply(y_f32, y_scale_bcast) k = f32[] constant(3.0) k_bcast = f32[16,16] broadcast(k), dimensions={} dot_a = f32[16,16] dot(x_unscaled, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT out = f32[16,16] multiply(dot_a, k_bcast) } )"; CheckFp8IfSupported(hlo_text); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[32,16], {{.*}}: f32[], {{.*}}: f32[]) -> f32[16,16] { ; CHECK-NEXT: [[P0:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[] parameter(2) ; CHECK-NEXT: [[P3:%[^ ]+]] = f32[] parameter(3) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[P2]], [[P3]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":3 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABUnscaledDReluActivationF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) x_f32 = f32[16,32] convert(x) y_f32 = f32[32,16] convert(y) x_scale = f32[] parameter(2) y_scale = f32[] parameter(3) x_scale_bcast = f32[16,32] broadcast(x_scale), dimensions={} y_scale_bcast = f32[32,16] broadcast(y_scale), dimensions={} x_unscaled = f32[16,32] multiply(x_f32, x_scale_bcast) y_unscaled = f32[32,16] multiply(y_f32, y_scale_bcast) dot_a = f32[16,16] dot(x_unscaled, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} c = f32[] constant(0) c_bcast = f32[16,16] broadcast(c), dimensions={} ROOT out = f32[16,16] maximum(dot_a, c_bcast) } )"; CheckFp8IfSupported(hlo_text); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[32,16], {{.*}}: f32[], {{.*}}: f32[]) -> f32[16,16] { ; CHECK-NEXT: [[P0:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[] parameter(2) ; CHECK-NEXT: [[P3:%[^ ]+]] = f32[] parameter(3) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[P2]], [[P3]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"RELU" ; CHECK: } )"); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABUnscaledDVectorBiasThenApproxGeluActivationF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) x_bf16 = bf16[16,32] convert(x) y_bf16 = bf16[32,16] convert(y) x_scale = bf16[] parameter(2) y_scale = bf16[] parameter(3) bias = bf16[16] parameter(4) x_scale_bcast = bf16[16,32] broadcast(x_scale), dimensions={} y_scale_bcast = bf16[32,16] broadcast(y_scale), dimensions={} x_unscaled = bf16[16,32] multiply(x_bf16, x_scale_bcast) y_unscaled = bf16[32,16] multiply(y_bf16, y_scale_bcast) dot1 = bf16[16,16] dot(x_unscaled, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} b_bcast = bf16[16,16] broadcast(bias), dimensions={1} dot = bf16[16,16] add(dot1, b_bcast) mul.0 = bf16[16,16] multiply(dot, dot) mul.1 = bf16[16,16] multiply(dot, mul.0) const.0 = bf16[] constant(0.044715) bcast.0 = bf16[16,16] broadcast(const.0), dimensions={} mul.2 = bf16[16,16] multiply(mul.1, bcast.0) add.0 = bf16[16,16] add(dot, mul.2) const.1 = bf16[] constant(0.797884583) bcast.1 = bf16[16,16] broadcast(const.1), dimensions={} mul.3 = bf16[16,16] multiply(add.0, bcast.1) tanh = bf16[16,16] tanh(mul.3) const.2 = bf16[] constant(1) bcast.2 = bf16[16,16] broadcast(const.2), dimensions={} add.2 = bf16[16,16] add(tanh, bcast.2) const.3 = bf16[] constant(0.5) bcast.3 = bf16[16,16] broadcast(const.3), dimensions={} mul.4 = bf16[16,16] multiply(add.2, bcast.3) ROOT out = bf16[16,16] multiply(dot, mul.4) } )"; CheckFp8IfSupported(hlo_text); if ((IsCuda() && GetToolkitVersion() >= se::SemanticVersion{12, 4, 0}) || IsRocm()) { std::string checks = R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[32,16], {{.*}}: bf16[], {{.*}}: bf16[], {{.*}}: bf16[16]) -> bf16[16,16] { ; CHECK-NEXT: [[P0:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK-NEXT: [[P2:%[^ ]+]] = bf16[] parameter(2) ; CHECK-NEXT: [[XS:%[^ ]+]] = f32[] convert([[P2]]) ; CHECK-NEXT: [[P3:%[^ ]+]] = bf16[] parameter(3) ; CHECK-NEXT: [[XS1:%[^ ]+]] = f32[] convert([[P3]]) )"; if (IsRocm() && GetToolkitVersion() < se::SemanticVersion{6, 2, 0}) { checks += R"(; CHECK-GCN-NEXT: [[OUT:%[^ ]+]] = (f32[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[XS]], [[XS1]]), )"; } else { checks += R"(; CHECK-NEXT: [[B:%[^ ]+]] = bf16[16]{0} parameter(4) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (bf16[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[XS]], [[XS1]], [[B]]), )"; } checks += R"(; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } )"; if (IsRocm() && GetToolkitVersion() < se::SemanticVersion{6, 2, 0}) { checks += R"(; CHECK-GCN-DAG: "epilogue":"DEFAULT" )"; } else { checks += R"(; CHECK-DAG: "epilogue":"BIAS_GELU" )"; } checks += R"(; CHECK: } )"; RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), checks); } } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABUnscaledDApproxGeluActivationF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) x_bf16 = bf16[16,32] convert(x) y_bf16 = bf16[32,16] convert(y) x_scale = bf16[] parameter(2) y_scale = bf16[] parameter(3) x_scale_bcast = bf16[16,32] broadcast(x_scale), dimensions={} y_scale_bcast = bf16[32,16] broadcast(y_scale), dimensions={} x_unscaled = bf16[16,32] multiply(x_bf16, x_scale_bcast) y_unscaled = bf16[32,16] multiply(y_bf16, y_scale_bcast) dot = bf16[16,16] dot(x_unscaled, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} mul.0 = bf16[16,16] multiply(dot, dot) mul.1 = bf16[16,16] multiply(dot, mul.0) const.0 = bf16[] constant(0.044715) bcast.0 = bf16[16,16] broadcast(const.0), dimensions={} mul.2 = bf16[16,16] multiply(mul.1, bcast.0) add.0 = bf16[16,16] add(dot, mul.2) const.1 = bf16[] constant(0.797884583) bcast.1 = bf16[16,16] broadcast(const.1), dimensions={} mul.3 = bf16[16,16] multiply(add.0, bcast.1) tanh = bf16[16,16] tanh(mul.3) const.2 = bf16[] constant(1) bcast.2 = bf16[16,16] broadcast(const.2), dimensions={} add.2 = bf16[16,16] add(tanh, bcast.2) const.3 = bf16[] constant(0.5) bcast.3 = bf16[16,16] broadcast(const.3), dimensions={} mul.4 = bf16[16,16] multiply(add.2, bcast.3) ROOT out = bf16[16,16] multiply(dot, mul.4) } )"; CheckFp8IfSupported(hlo_text); if ((IsCuda() && GetToolkitVersion() >= se::SemanticVersion{12, 4, 0}) || IsRocm()) { std::string checks = R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[32,16], {{.*}}: bf16[], {{.*}}: bf16[]) -> bf16[16,16] { ; CHECK-NEXT: [[P0:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK-NEXT: [[P2:%[^ ]+]] = bf16[] parameter(2) ; CHECK-NEXT: [[XS:%[^ ]+]] = f32[] convert([[P2]]) ; CHECK-NEXT: [[P3:%[^ ]+]] = bf16[] parameter(3) ; CHECK-NEXT: [[XS1:%[^ ]+]] = f32[] convert([[P3]]) )"; if (IsRocm() && GetToolkitVersion() < se::SemanticVersion{6, 2, 0}) { checks += R"(; CHECK-GCN-NEXT: [[OUT:%[^ ]+]] = (f32[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[XS]], [[XS1]]), )"; } else { checks += R"(; CHECK-NEXT: [[OUT:%[^ ]+]] = (bf16[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[XS]], [[XS1]]), )"; } checks += R"(; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } )"; if (IsRocm() && GetToolkitVersion() < se::SemanticVersion{6, 2, 0}) { checks += R"(; CHECK-GCN-DAG: "epilogue":"DEFAULT" )"; } else { checks += R"(; CHECK-DAG: "epilogue":"GELU" )"; } checks += R"(; CHECK: } )"; RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), checks); } } TEST_P(ParameterizedFp8GemmRewriteTest, InvScaledABUnscaledDF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) x_f32 = f32[16,32] convert(x) y_f32 = f32[32,16] convert(y) x_scale = f32[] parameter(2) y_scale = f32[] parameter(3) x_scale_bcast = f32[16,32] broadcast(x_scale), dimensions={} y_scale_bcast = f32[32,16] broadcast(y_scale), dimensions={} x_unscaled = f32[16,32] divide(x_f32, x_scale_bcast) y_unscaled = f32[32,16] divide(y_f32, y_scale_bcast) ROOT out = f32[16,16] dot(x_unscaled, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; CheckFp8IfSupported(hlo_text); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK: custom_call_target="__cublas$lt$matmul$f8", )"); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABUnscaledDMatrixBiasF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) b = f32[16,16] parameter(2) one = f32[] constant(1) ones = f32[16,16] broadcast(one), dimensions={} b_ones = f32[16,16] add(b, ones) x_f32 = f32[16,32] convert(x) y_f32 = f32[32,16] convert(y) x_scale = f32[] parameter(3) y_scale = f32[] parameter(4) x_scale_bcast = f32[16,32] broadcast(x_scale), dimensions={} y_scale_bcast = f32[32,16] broadcast(y_scale), dimensions={} x_unscaled = f32[16,32] multiply(x_f32, x_scale_bcast) y_unscaled = f32[32,16] multiply(y_f32, y_scale_bcast) dot_a = f32[16,16] dot(x_unscaled, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT out = add(dot_a, b_ones) } )"; CheckFp8IfSupported(hlo_text); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[32,16], {{.*}}: f32[16,16], {{.*}}: f32[], {{.*}}: f32[]) -> f32[16,16] { ; CHECK-NEXT: [[P0:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK: [[C0:%[^ ]+]] = f32[16,16]{1,0} add({{.*}}) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[] parameter(3) ; CHECK-NEXT: [[P3:%[^ ]+]] = f32[] parameter(4) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[C0]], [[P2]], [[P3]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: output_to_operand_aliasing={ ; CHECK-SAME: {0}: (2, {}) ; CHECK-SAME: } ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABUnscaledDMatrixBiasPaddedF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[14,31] parameter(0) y = <<F8E4M3>>[31,14] parameter(1) b = f32[14,14] parameter(2) x_f32 = f32[14,31] convert(x) y_f32 = f32[31,14] convert(y) x_scale = f32[] parameter(3) y_scale = f32[] parameter(4) x_scale_bcast = f32[14,31] broadcast(x_scale), dimensions={} y_scale_bcast = f32[31,14] broadcast(y_scale), dimensions={} x_unscaled = f32[14,31] multiply(x_f32, x_scale_bcast) y_unscaled = f32[31,14] multiply(y_f32, y_scale_bcast) dot_a = f32[14,14] dot(x_unscaled, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT out = add(dot_a, b) } )"; CheckFp8IfSupported(hlo_text); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[14,31], {{.*}}: <<F8E4M3>>[31,14], {{.*}}: f32[14,14], {{.*}}: f32[], {{.*}}: f32[]) -> f32[14,14] { ; CHECK-NEXT: [[P0:%[^ ]+]] = <<F8E4M3>>[14,31]{1,0} parameter(0) ; CHECK-NEXT: [[C0:%[^ ]+]] = <<F8E4M3>>[] constant(0) ; CHECK-NEXT: [[P0_PADDED:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} pad([[P0]], [[C0]]), padding=0_2x0_1 ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[31,14]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[14,31]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK-NEXT: [[C1:%[^ ]+]] = <<F8E4M3>>[] constant(0) ; CHECK-NEXT: [[P1_TRANSPOSE_PADDED:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} pad([[P1_TRANSPOSE]], [[C1]]), padding=0_2x0_1 ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[14,14]{1,0} parameter(2) ; CHECK-NEXT: [[C2:%[^ ]+]] = f32[] constant(0) ; CHECK-NEXT: [[P2_PADDED:%[^ ]+]] = f32[16,16]{1,0} pad([[P2]], [[C2]]), padding=0_2x0_2 ; CHECK-NEXT: [[P3:%[^ ]+]] = f32[] parameter(3) ; CHECK-NEXT: [[P4:%[^ ]+]] = f32[] parameter(4) ; CHECK-NEXT: [[DOT_TUPLE:%[^ ]+]] = (f32[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0_PADDED]], [[P1_TRANSPOSE_PADDED]], [[P2_PADDED]], [[P3]], [[P4]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } ; CHECK: [[DOT:%[^ ]+]] = f32[16,16]{1,0} get-tuple-element([[DOT_TUPLE]]), index=0 ; CHECK-NEXT: ROOT [[OUT:%[^ ]+]] = f32[14,14]{1,0} slice([[DOT]]), slice={[0:14], [0:14]} )"); } TEST_P(ParameterizedFp8GemmRewriteTest, UnscaledABScaledDF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) z_scale = f32[] parameter(2) z_scale_bcast = f32[16,16] broadcast(z_scale), dimensions={} dot_a = f32[16,16] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot_a_scaled = f32[16,16] divide(dot_a, z_scale_bcast) c1 = f32[] constant(-448.) c1_bcast = f32[16,16] broadcast(c1), dimensions={} c2 = f32[] constant(448.) c2_bcast = f32[16,16] broadcast(c2), dimensions={} dot_a_clamped = f32[16,16] clamp(c1_bcast, dot_a_scaled, c2_bcast) ROOT dot_a_f8 = <<F8E4M3>>[16,16] convert(dot_a_clamped) } )"; CheckFp8IfSupported(hlo_text, ErrorSpec{1e-2, 1e-1}); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[32,16], {{.*}}: f32[]) -> <<F8E4M3>>[16,16] { ; CHECK: [[P0:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK-NEXT: [[C0:%[^ ]+]] = f32[] constant(1) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[] parameter(2) ; CHECK-NEXT: [[P2_INV:%[^ ]+]] = f32[] divide([[C0]], [[P2]]) ; CHECK-NEXT: [[C1:%[^ ]+]] = f32[] constant(1) ; CHECK-NEXT: [[C2:%[^ ]+]] = f32[] constant(1) ; CHECK-PTX-NEXT: [[OUT:%[^ ]+]] = (<<F8E4M3>>[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[P2_INV]], [[C1]], [[C2]]), ; CHECK-GCN-NEXT: [[OUT:%[^ ]+]] = (f32[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[P2_INV]], [[C1]], [[C2]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedFp8GemmRewriteTest, UnscaledABScaledF32DF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) z_scale = f32[] parameter(2) z_scale_bcast = f32[16,16] broadcast(z_scale), dimensions={} dot_a = f32[16,16] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT dot_a_scaled = f32[16,16] divide(dot_a, z_scale_bcast) } )"; CheckFp8IfSupported(hlo_text, ErrorSpec{1e-2, 1e-1}); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[32,16], {{.*}}: f32[]) -> f32[16,16] { ; CHECK: [[P0:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK-NEXT: [[C0:%[^ ]+]] = f32[] constant(1) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[] parameter(2) ; CHECK-NEXT: [[P2_INV:%[^ ]+]] = f32[] divide([[C0]], [[P2]]) ; CHECK-NEXT: [[C1:%[^ ]+]] = f32[] constant(1) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[P2_INV]], [[C1]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedFp8GemmRewriteTest, UnscaledABInvScaledF32DF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) z_scale = f32[] parameter(2) z_scale_bcast = f32[16,16] broadcast(z_scale), dimensions={} dot_a = f32[16,16] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT dot_a_scaled = f32[16,16] multiply(dot_a, z_scale_bcast) } )"; CheckFp8IfSupported(hlo_text, ErrorSpec{1e-2, 1e-1}); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[32,16], {{.*}}: f32[]) -> f32[16,16] { ; CHECK: [[P0:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[] parameter(2) ; CHECK-NEXT: [[C0:%[^ ]+]] = f32[] constant(1) ; CHECK-NEXT: [[OUT:%[^ ]+]] = (f32[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[P2]], [[C0]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedFp8GemmRewriteTest, UnscaledABScaledF32DMatrixBiasF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) b = f32[16,16] parameter(2) z_scale = f32[] parameter(3) z_scale_bcast = f32[16,16] broadcast(z_scale), dimensions={} dot_a = f32[16,16] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot_a_bias = f32[16,16] add(dot_a, b) ROOT dot_a_scaled = f32[16,16] divide(dot_a_bias, z_scale_bcast) } )"; CheckFp8IfSupported(hlo_text, ErrorSpec{1e-2, 1e-1}); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[32,16], {{.*}}: f32[]) -> f32[16,16] { ; CHECK: [[P0:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[16,16]{1,0} parameter(2) ; CHECK-NEXT: [[C0:%[^ ]+]] = f32[] constant(1) ; CHECK-NEXT: [[GEMM_TUPLE:%[^ ]+]] = (f32[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[P2]], [[C0]], [[C0]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK-PTX-NEXT: [[GEMM:%[^ ]+]] = f32[16,16]{1,0} get-tuple-element([[GEMM_TUPLE]]), index=0 ; CHECK-PTX-NEXT: [[P3:%[^ ]+]] = f32[] parameter(3) ; CHECK-PTX-NEXT: [[P3_BCAST:%[^ ]+]] = f32[16,16]{1,0} broadcast([[P3]]), dimensions={} ; CHECK-PTX-NEXT: ROOT [[OUT:%[^ ]+]] = f32[16,16]{1,0} divide([[GEMM]], [[P3_BCAST]]) ; CHECK: } )"); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABScaledDF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) x_f32 = f32[16,32] convert(x) y_f32 = f32[32,16] convert(y) x_scale = f32[] parameter(2) y_scale = f32[] parameter(3) z_scale = f32[] parameter(4) x_scale_bcast = f32[16,32] broadcast(x_scale), dimensions={} y_scale_bcast = f32[32,16] broadcast(y_scale), dimensions={} z_scale_bcast = f32[16,16] broadcast(z_scale), dimensions={} x_unscaled = f32[16,32] multiply(x_f32, x_scale_bcast) y_unscaled = f32[32,16] multiply(y_f32, y_scale_bcast) dot_a = f32[16,16] dot(x_unscaled, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot_a_scaled = f32[16,16] divide(dot_a, z_scale_bcast) c1 = f32[] constant(-<<F8E4M3_AMAX>>) c1_bcast = f32[16,16] broadcast(c1), dimensions={} c2 = f32[] constant(<<F8E4M3_AMAX>>) c2_bcast = f32[16,16] broadcast(c2), dimensions={} dot_a_clamped = f32[16,16] clamp(c1_bcast, dot_a_scaled, c2_bcast) ROOT dot_a_f8 = <<F8E4M3>>[16,16] convert(dot_a_clamped) } )"; CheckFp8IfSupported(hlo_text); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[32,16], {{.*}}: f32[], {{.*}}: f32[], {{.*}}: f32[]) -> <<F8E4M3>>[16,16] { ; CHECK: [[P0:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[] parameter(2) ; CHECK-NEXT: [[P3:%[^ ]+]] = f32[] parameter(3) ; CHECK-PTX-NEXT: [[C2:%[^ ]+]] = f32[] constant(1) ; CHECK-PTX-NEXT: [[P4:%[^ ]+]] = f32[] parameter(4) ; CHECK-PTX-NEXT: [[P4_INV:%[^ ]+]] = f32[] divide([[C2]], [[P4]]) ; CHECK-PTX-NEXT: [[OUT:%[^ ]+]] = (<<F8E4M3>>[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[P2]], [[P3]], [[P4_INV]]), ; CHECK-GCN-NEXT: [[C1:%[^ ]+]] = f32[] constant(1) ; CHECK-GCN-NEXT: [[OUT:%[^ ]+]] = (f32[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[P2]], [[P3]], [[C1]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABInvScaledDF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) x_f32 = f32[16,32] convert(x) y_f32 = f32[32,16] convert(y) x_scale = f32[] parameter(2) y_scale = f32[] parameter(3) z_scale = f32[] parameter(4) x_scale_bcast = f32[16,32] broadcast(x_scale), dimensions={} y_scale_bcast = f32[32,16] broadcast(y_scale), dimensions={} z_scale_bcast = f32[16,16] broadcast(z_scale), dimensions={} x_unscaled = f32[16,32] multiply(x_f32, x_scale_bcast) y_unscaled = f32[32,16] multiply(y_f32, y_scale_bcast) dot_a = f32[16,16] dot(x_unscaled, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot_a_scaled = f32[16,16] multiply(dot_a, z_scale_bcast) c1 = f32[] constant(-<<F8E4M3_AMAX>>) c1_bcast = f32[16,16] broadcast(c1), dimensions={} c2 = f32[] constant(<<F8E4M3_AMAX>>) c2_bcast = f32[16,16] broadcast(c2), dimensions={} dot_a_clamped = f32[16,16] clamp(c1_bcast, dot_a_scaled, c2_bcast) ROOT dot_a_f8 = <<F8E4M3>>[16,16] convert(dot_a_clamped) } )"; CheckFp8IfSupported(hlo_text); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-NOT: divide ; CHECK: custom_call_target="__cublas$lt$matmul$f8", )"); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABScaledDReluActivationF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) x_f32 = f32[16,32] convert(x) y_f32 = f32[32,16] convert(y) x_scale = f32[] parameter(2) y_scale = f32[] parameter(3) z_scale = f32[] parameter(4) x_scale_bcast = f32[16,32] broadcast(x_scale), dimensions={} y_scale_bcast = f32[32,16] broadcast(y_scale), dimensions={} z_scale_bcast = f32[16,16] broadcast(z_scale), dimensions={} x_unscaled = f32[16,32] multiply(x_f32, x_scale_bcast) y_unscaled = f32[32,16] multiply(y_f32, y_scale_bcast) c = f32[] constant(0) c_bcast = f32[16,16] broadcast(c), dimensions={} dot_a = f32[16,16] dot(x_unscaled, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} relu_a = f32[16,16] maximum(dot_a, c_bcast) relu_a_scaled = f32[16,16] divide(relu_a, z_scale_bcast) c1 = f32[] constant(-<<F8E4M3_AMAX>>) c1_bcast = f32[16,16] broadcast(c1), dimensions={} c2 = f32[] constant(<<F8E4M3_AMAX>>) c2_bcast = f32[16,16] broadcast(c2), dimensions={} relu_a_clamped = f32[16,16] clamp(c1_bcast, relu_a_scaled, c2_bcast) ROOT out = <<F8E4M3>>[16,16] convert(relu_a_clamped) } )"; CheckFp8IfSupported(hlo_text); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[32,16], {{.*}}: f32[], {{.*}}: f32[], {{.*}}: f32[]) -> <<F8E4M3>>[16,16] { ; CHECK: [[P0:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[] parameter(2) ; CHECK-NEXT: [[P3:%[^ ]+]] = f32[] parameter(3) ; CHECK-PTX-NEXT: [[C2:%[^ ]+]] = f32[] constant(1) ; CHECK-PTX-NEXT: [[P4:%[^ ]+]] = f32[] parameter(4) ; CHECK-PTX-NEXT: [[P4_INV:%[^ ]+]] = f32[] divide([[C2]], [[P4]]) ; CHECK-PTX-NEXT: [[OUT:%[^ ]+]] = (<<F8E4M3>>[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[P2]], [[P3]], [[P4_INV]]), ; CHECK-CGN-NEXT: [[C1:%[^ ]+]] = f32[] constant(1) ; CHECK-GCN-NEXT: [[OUT:%[^ ]+]] = (f32[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[P2]], [[P3]], [[C1]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"RELU" ; CHECK: } )"); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABScaledDMatrixBiasWithDAmaxF8) { const char* hlo_text = R"( HloModule test apply { a = f16[] parameter(0) b = f16[] parameter(1) ROOT c = f16[] maximum(a, b) } ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) x_f16 = f16[16,32] convert(x) y_f16 = f16[32,16] convert(y) b = f16[16,16] parameter(2) one = f16[] constant(1) ones = f16[16,16] broadcast(one), dimensions={} b_ones = f16[16,16] add(b, ones) x_scale = f16[] parameter(3) y_scale = f16[] parameter(4) z_scale = f16[] parameter(5) x_scale_bcast = f16[16,32] broadcast(x_scale), dimensions={} y_scale_bcast = f16[32,16] broadcast(y_scale), dimensions={} z_scale_bcast = f16[16,16] broadcast(z_scale), dimensions={} x_unscaled = f16[16,32] multiply(x_f16, x_scale_bcast) y_unscaled = f16[32,16] multiply(y_f16, y_scale_bcast) dot_a = f16[16,16] dot(x_unscaled, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot_a_bias = f16[16,16] add(dot_a, b_ones) abs_dot_a = f16[16,16] abs(dot_a_bias) c0 = f16[] constant(-inf) amax = f16[] reduce(abs_dot_a, c0), dimensions={0,1}, to_apply=apply dot_a_scaled = f16[16,16] divide(dot_a_bias, z_scale_bcast) c1 = f16[] constant(-<<F8E4M3_AMAX>>) c1_bcast = f16[16,16] broadcast(c1), dimensions={} c2 = f16[] constant(<<F8E4M3_AMAX>>) c2_bcast = f16[16,16] broadcast(c2), dimensions={} dot_a_clamped = f16[16,16] clamp(c1_bcast, dot_a_scaled, c2_bcast) dot_a_f8 = <<F8E4M3>>[16,16] convert(dot_a_clamped) ROOT result = (<<F8E4M3>>[16,16], f16[]) tuple(dot_a_f8, amax) } )"; CheckFp8IfSupported(hlo_text, ErrorSpec{0.1, 0.1}); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[32,16], {{.*}}: f16[16,16], {{.*}}: f16[], {{.*}}: f16[], {{.*}}: f16[]) -> (<<F8E4M3>>[16,16], f16[]) { ; CHECK: [[P0:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK: [[C0:%[^ ]+]] = f16[16,16]{1,0} add({{.*}}) ; CHECK-NEXT: [[P2:%[^ ]+]] = f16[] parameter(3) ; CHECK: [[P3:%[^ ]+]] = f16[] parameter(4) ; CHECK-PTX: [[P4:%[^ ]+]] = f16[] parameter(5) ; CHECK-PTX: [[OUT:%[^ ]+]] = (<<F8E4M3>>[16,16]{1,0}, f32[], s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[C0]], [[DUMMY0:%[^ ]+]], [[DUMMY1:%[^ ]+]], [[DUMMY2:%[^ ]+]]), ; CHECK-NOT: output_to_operand_aliasing ; CHECK-GCN: [[OUT:%[^ ]+]] = (f16[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[C0]], [[DUMMY0:%[^ ]+]], [[DUMMY1:%[^ ]+]], [[DUMMY2:%[^ ]+]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABScaledDVectorBiasF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) x_f16 = f16[16,32] convert(x) y_f16 = f16[32,16] convert(y) b = f16[16] parameter(2) b_bcast = f16[16,16] broadcast(b), dimensions={1} x_scale = f16[] parameter(3) y_scale = f16[] parameter(4) z_scale = f16[] parameter(5) x_scale_bcast = f16[16,32] broadcast(x_scale), dimensions={} y_scale_bcast = f16[32,16] broadcast(y_scale), dimensions={} z_scale_bcast = f16[16,16] broadcast(z_scale), dimensions={} x_unscaled = f16[16,32] multiply(x_f16, x_scale_bcast) y_unscaled = f16[32,16] multiply(y_f16, y_scale_bcast) dot_a = f16[16,16] dot(x_unscaled, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot_a_bias = f16[16,16] add(dot_a, b_bcast) dot_a_scaled = f16[16,16] divide(dot_a_bias, z_scale_bcast) c1 = f16[] constant(-<<F8E4M3_AMAX>>) c1_bcast = f16[16,16] broadcast(c1), dimensions={} c2 = f16[] constant(<<F8E4M3_AMAX>>) c2_bcast = f16[16,16] broadcast(c2), dimensions={} dot_a_clamped = f16[16,16] clamp(c1_bcast, dot_a_scaled, c2_bcast) ROOT dot_a_f8 = <<F8E4M3>>[16,16] convert(dot_a_clamped) } )"; CheckFp8IfSupported(hlo_text, ErrorSpec{0.1, 0.1}); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[32,16], {{.*}}: f16[16], {{.*}}: f16[], {{.*}}: f16[], {{.*}}: f16[]) -> <<F8E4M3>>[16,16] { ; CHECK: [[P0:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK-NEXT: [[P2:%[^ ]+]] = f16[] parameter(3) ; CHECK-NEXT: [[CV:%[^ ]+]] = f32[] convert([[P2]]) ; CHECK-NEXT: [[P3:%[^ ]+]] = f16[] parameter(4) ; CHECK-NEXT: [[CV1:%[^ ]+]] = f32[] convert([[P3]]) ; CHECK-NEXT: [[VB:%[^ ]+]] = f16[16]{0} parameter(2) ; CHECK-PTX-NEXT: [[C2:%[^ ]+]] = f16[] constant(1) ; CHECK-PTX-NEXT: [[P4:%[^ ]+]] = f16[] parameter(5) ; CHECK-PTX-NEXT: [[DV:%[^ ]+]] = f16[] divide([[C2]], [[P4]]) ; CHECK-PTX-NEXT: [[CV2:%[^ ]+]] = f32[] convert([[DV]]) ; CHECK-PTX: [[OUT:%[^ ]+]] = (<<F8E4M3>>[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[CV]], [[CV1]], [[VB]], [[CV2]]), ; CHECK-GCN: [[C:%[^ ]+]] = f32[] constant(1) ; CHECK-GCN: [[OUT:%[^ ]+]] = (f16[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[CV]], [[CV1]], [[C]], [[C]], [[VB]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"BIAS" ; CHECK: } )"); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABUnscaledDF32VectorBiasF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) x_f32 = f32[16,32] convert(x) y_f32 = f32[32,16] convert(y) b = f32[16] parameter(2) b_bf16 = bf16[16] convert(b) b_f32 = f32[16] convert(b_bf16) b_bcast = f32[16,16] broadcast(b_f32), dimensions={1} x_scale = f32[] parameter(3) y_scale = f32[] parameter(4) x_scale_bcast = f32[16,32] broadcast(x_scale), dimensions={} y_scale_bcast = f32[32,16] broadcast(y_scale), dimensions={} x_unscaled = f32[16,32] multiply(x_f32, x_scale_bcast) y_unscaled = f32[32,16] multiply(y_f32, y_scale_bcast) dot_a = f32[16,16] dot(x_unscaled, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT out = f32[16,16] add(dot_a, b_bcast) } )"; CheckFp8IfSupported(hlo_text); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[32,16], {{.*}}: f32[16], {{.*}}: f32[], {{.*}}: f32[]) -> f32[16,16] { ; CHECK: [[P0:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[] parameter(3) ; CHECK-NEXT: [[P3:%[^ ]+]] = f32[] parameter(4) ; CHECK-NEXT: [[VB:%[^ ]+]] = f32[16]{0} parameter(2) ; CHECK-NEXT: [[VBC:%[^ ]+]] = bf16[16]{0} convert([[VB]]) ; CHECK: [[OUT:%[^ ]+]] = (f32[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[P2]], [[P3]], [[VBC]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"BIAS" ; CHECK: } )"); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABUnscaledDVectorBiasThenReluActivationF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) b = f16[16] parameter(2) b_bcast = f16[16,16] broadcast(b), dimensions={1} x_f32 = f16[16,32] convert(x) y_f32 = f16[32,16] convert(y) x_scale = f16[] parameter(3) y_scale = f16[] parameter(4) x_scale_bcast = f16[16,32] broadcast(x_scale), dimensions={} y_scale_bcast = f16[32,16] broadcast(y_scale), dimensions={} x_unscaled = f16[16,32] multiply(x_f32, x_scale_bcast) y_unscaled = f16[32,16] multiply(y_f32, y_scale_bcast) c = f16[] constant(0) c_bcast = f16[16,16] broadcast(c), dimensions={} dot_a0 = f16[16,16] dot(x_unscaled, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot_a = f16[16,16] add(dot_a0, b_bcast) ROOT out = f16[16,16] maximum(dot_a, c_bcast) } )"; CheckFp8IfSupported(hlo_text, ErrorSpec{2e-3, 0.}); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[32,16], {{.*}}: f16[16], {{.*}}: f16[], {{.*}}: f16[]) -> f16[16,16] { ; CHECK-NEXT: [[P0:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK-NEXT: [[P2:%[^ ]+]] = f16[] parameter(3) ; CHECK-NEXT: [[CV:%[^ ]+]] = f32[] convert([[P2]]) ; CHECK-NEXT: [[P3:%[^ ]+]] = f16[] parameter(4) ; CHECK-NEXT: [[CV1:%[^ ]+]] = f32[] convert([[P3]]) ; CHECK-NEXT: [[VB:%[^ ]+]] = f16[16]{0} parameter(2) ; CHECK : ROOT [[OUT:%[^ ]+]] = f16[16,16]{1,0} custom-call([[P0]], [[P1_TRANSPOSE]], [[CV]], [[CV1]], [[VB]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"BIAS_RELU" ; CHECK: } )"); } TEST_P(ParameterizedFp8GemmRewriteTest, Rank3ScaledABUnscaledDVectorBiasF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[4,16,16] parameter(0) y = <<F8E4M3>>[16,32] parameter(1) b = f32[32] parameter(2) b_f16 = f16[32] convert(b) b_bcast = f16[4,16,32] broadcast(b_f16), dimensions={2} x_f16 = f16[4,16,16] convert(x) y_f16 = f16[16,32] convert(y) x_scale = f16[] parameter(3) y_scale = f16[] parameter(4) x_scale_bcast = f16[4,16,16] broadcast(x_scale), dimensions={} y_scale_bcast = f16[16,32] broadcast(y_scale), dimensions={} x_unscaled = f16[4,16,16] multiply(x_f16, x_scale_bcast) x_unscaled_bitcast = f16[64,16] bitcast(x_unscaled) y_unscaled = f16[16,32] multiply(y_f16, y_scale_bcast) dot_a = f16[64,32] dot(x_unscaled_bitcast, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot_a_bitcast = f16[4,16,32]{2,1,0} bitcast(dot_a) ROOT out = f16[4,16,32] add(dot_a_bitcast, b_bcast) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GemmRewriter pass(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Bitcast(m::GetTupleElement( m::CustomCall({"__cublas$lt$matmul$f8"}), 0) .WithShape(F16, {64, 32})) .WithShape(F16, {4, 16, 32}))); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[4,16,16], {{.*}}: <<F8E4M3>>[16,32], {{.*}}: f32[32], {{.*}}: f16[], {{.*}}: f16[]) -> f16[4,16,32] { ; CHECK-NEXT: [[P0:%[^ ]+]] = <<F8E4M3>>[4,16,16]{2,1,0} parameter(0) ; CHECK-NEXT: [[P0_BITCAST:%[^ ]+]] = <<F8E4M3>>[64,16]{1,0} bitcast([[P0]]) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK-NEXT: [[P2:%[^ ]+]] = f16[] parameter(3) ; CHECK-NEXT: [[P2_CV:%[^ ]+]] = f32[] convert([[P2]]) ; CHECK-NEXT: [[P3:%[^ ]+]] = f16[] parameter(4) ; CHECK-NEXT: [[P3_CV:%[^ ]+]] = f32[] convert([[P3]]) ; CHECK-NEXT: [[B:%[^ ]+]] = f32[32]{0} parameter(2) ; CHECK-NEXT: [[B_F16:%[^ ]+]] = f16[32]{0} convert([[B]]) ; CHECK-NEXT: [[GEMM_TUPLE:%[^ ]+]] = (f16[64,32]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0_BITCAST]], [[P1_TRANSPOSE]], [[P2_CV]], [[P3_CV]], [[B_F16]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"BIAS" ; CHECK: } ; CHECK: [[GEMM:%[^ ]+]] = f16[64,32]{1,0} get-tuple-element([[GEMM_TUPLE]]), index=0 ; CHECK: ROOT [[OUT:%[^ ]+]] = f16[4,16,32]{2,1,0} bitcast([[GEMM]]) )"); } TEST_P(ParameterizedFp8GemmRewriteTest, Rank3ScaledABUnscaledDVectorBiasPaddedF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[4,15,15] parameter(0) y = <<F8E4M3>>[15,31] parameter(1) b = f32[31] parameter(2) b_f16 = f16[31] convert(b) b_bcast = f16[4,15,31] broadcast(b_f16), dimensions={2} x_f16 = f16[4,15,15] convert(x) y_f16 = f16[15,31] convert(y) x_scale = f16[] parameter(3) y_scale = f16[] parameter(4) x_scale_bcast = f16[4,15,15] broadcast(x_scale), dimensions={} y_scale_bcast = f16[15,31] broadcast(y_scale), dimensions={} x_unscaled = f16[4,15,15] multiply(x_f16, x_scale_bcast) x_unscaled_bitcast = f16[60,15] bitcast(x_unscaled) y_unscaled = f16[15,31] multiply(y_f16, y_scale_bcast) dot_a = f16[60,31] dot(x_unscaled_bitcast, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot_a_bitcast = f16[4,15,31]{2,1,0} bitcast(dot_a) ROOT out = f16[4,15,31] add(dot_a_bitcast, b_bcast) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GemmRewriter pass(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch( m::Bitcast(m::Slice(m::GetTupleElement( m::CustomCall({"__cublas$lt$matmul$f8"}), 0) .WithShape(F16, {64, 32})) .WithShape(F16, {60, 31})) .WithShape(F16, {4, 15, 31}))); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[4,15,15], {{.*}}: <<F8E4M3>>[15,31], {{.*}}: f32[31], {{.*}}: f16[], {{.*}}: f16[]) -> f16[4,15,31] { ; CHECK-NEXT: [[P0:%[^ ]+]] = <<F8E4M3>>[4,15,15]{2,1,0} parameter(0) ; CHECK-NEXT: [[P0_BITCAST:%[^ ]+]] = <<F8E4M3>>[60,15]{1,0} bitcast([[P0]]) ; CHECK-NEXT: [[C1:%[^ ]+]] = <<F8E4M3>>[] constant(0) ; CHECK-NEXT: [[P0_PAD:%[^ ]+]] = <<F8E4M3>>[64,16]{1,0} pad([[P0_BITCAST]], [[C1]]), padding=0_4x0_1 ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[15,31]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[31,15]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK-NEXT: [[C2:%[^ ]+]] = <<F8E4M3>>[] constant(0) ; CHECK-NEXT: [[P1_PAD:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} pad([[P1_TRANSPOSE]], [[C2]]), padding=0_1x0_1 ; CHECK-NEXT: [[P2:%[^ ]+]] = f16[] parameter(3) ; CHECK-NEXT: [[P2_CV:%[^ ]+]] = f32[] convert([[P2]]) ; CHECK-NEXT: [[P3:%[^ ]+]] = f16[] parameter(4) ; CHECK-NEXT: [[P3_CV:%[^ ]+]] = f32[] convert([[P3]]) ; CHECK-NEXT: [[B:%[^ ]+]] = f32[31]{0} parameter(2) ; CHECK-NEXT: [[B_F16:%[^ ]+]] = f16[31]{0} convert([[B]]) ; CHECK-NEXT: [[C3:%[^ ]+]] = f16[] constant(0) ; CHECK-NEXT: [[P2_PAD:%[^ ]+]] = f16[32]{0} pad([[B_F16]], [[C3]]), padding=0_1 ; CHECK-NEXT: [[GEMM_TUPLE:%[^ ]+]] = (f16[64,32]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0_PAD]], [[P1_PAD]], [[P2_CV]], [[P3_CV]], [[P2_PAD]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"BIAS" ; CHECK: } ; CHECK: [[GEMM:%[^ ]+]] = f16[64,32]{1,0} get-tuple-element([[GEMM_TUPLE]]), index=0 ; CHECK-NEXT: [[SLICE:%[^ ]+]] = f16[60,31]{1,0} slice([[GEMM]]), slice={[0:60], [0:31]} ; CHECK-NEXT: ROOT [[OUT:%[^ ]+]] = f16[4,15,31]{2,1,0} bitcast([[SLICE]]) )"); } TEST_P(ParameterizedFp8GemmRewriteTest, Rank3ScaledABUnscaledDMatrixBiasF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[4,16,16] parameter(0) y = <<F8E4M3>>[16,32] parameter(1) b = f32[4,16,32] parameter(2) x_f32 = f32[4,16,16] convert(x) y_f32 = f32[16,32] convert(y) x_scale = f32[] parameter(3) y_scale = f32[] parameter(4) x_scale_bcast = f32[4,16,16] broadcast(x_scale), dimensions={} y_scale_bcast = f32[16,32] broadcast(y_scale), dimensions={} x_unscaled = f32[4,16,16] multiply(x_f32, x_scale_bcast) x_unscaled_bitcast = f32[64,16] bitcast(x_unscaled) y_unscaled = f32[16,32] multiply(y_f32, y_scale_bcast) dot_a = f32[64,32] dot(x_unscaled_bitcast, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot_a_bitcast = f32[4,16,32]{2,1,0} bitcast(dot_a) ROOT out = f32[4,16,32] add(dot_a_bitcast, b) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GemmRewriter pass(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Bitcast(m::GetTupleElement( m::CustomCall({"__cublas$lt$matmul$f8"}), 0) .WithShape(F32, {64, 32})) .WithShape(F32, {4, 16, 32}))); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[4,16,16], {{.*}}: <<F8E4M3>>[16,32], {{.*}}: f32[4,16,32], {{.*}}: f32[], {{.*}}: f32[]) -> f32[4,16,32] { ; CHECK-NEXT: [[P0:%[^ ]+]] = <<F8E4M3>>[4,16,16]{2,1,0} parameter(0) ; CHECK-NEXT: [[P0_BITCAST:%[^ ]+]] = <<F8E4M3>>[64,16]{1,0} bitcast([[P0]]) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK-NEXT: [[B:%[^ ]+]] = f32[4,16,32]{2,1,0} parameter(2) ; CHECK-NEXT: [[B_BITCAST:%[^ ]+]] = f32[64,32]{1,0} bitcast([[B]]) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[] parameter(3) ; CHECK-NEXT: [[P3:%[^ ]+]] = f32[] parameter(4) ; CHECK-NEXT: [[GEMM_TUPLE:%[^ ]+]] = (f32[64,32]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0_BITCAST]], [[P1_TRANSPOSE]], [[B_BITCAST]], [[P2]], [[P3]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } ; CHECK: [[GEMM:%[^ ]+]] = f32[64,32]{1,0} get-tuple-element([[GEMM_TUPLE]]), index=0 ; CHECK: ROOT [[OUT:%[^ ]+]] = f32[4,16,32]{2,1,0} bitcast([[GEMM]]) )"); } TEST_P(ParameterizedFp8GemmRewriteTest, Rank3ScaledABUnscaledDMatrixBiasPaddedF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[3,15,15] parameter(0) y = <<F8E4M3>>[15,31] parameter(1) b = f32[3,15,31] parameter(2) x_f32 = f32[3,15,15] convert(x) y_f32 = f32[15,31] convert(y) x_scale = f32[] parameter(3) y_scale = f32[] parameter(4) x_scale_bcast = f32[3,15,15] broadcast(x_scale), dimensions={} y_scale_bcast = f32[15,31] broadcast(y_scale), dimensions={} x_unscaled = f32[3,15,15] multiply(x_f32, x_scale_bcast) x_unscaled_bitcast = f32[45,15] bitcast(x_unscaled) y_unscaled = f32[15,31] multiply(y_f32, y_scale_bcast) dot_a = f32[45,31] dot(x_unscaled_bitcast, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot_a_bitcast = f32[3,15,31]{2,1,0} bitcast(dot_a) ROOT out = f32[3,15,31] add(dot_a_bitcast, b) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GemmRewriter pass(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch( m::Bitcast(m::Slice(m::GetTupleElement( m::CustomCall({"__cublas$lt$matmul$f8"}), 0) .WithShape(F32, {48, 32})) .WithShape(F32, {45, 31})) .WithShape(F32, {3, 15, 31}))); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[3,15,15], {{.*}}: <<F8E4M3>>[15,31], {{.*}}: f32[3,15,31], {{.*}}: f32[], {{.*}}: f32[]) -> f32[3,15,31] { ; CHECK-NEXT: [[P0:%[^ ]+]] = <<F8E4M3>>[3,15,15]{2,1,0} parameter(0) ; CHECK-NEXT: [[P0_BITCAST:%[^ ]+]] = <<F8E4M3>>[45,15]{1,0} bitcast([[P0]]) ; CHECK-NEXT: [[C1:%[^ ]+]] = <<F8E4M3>>[] constant(0) ; CHECK-NEXT: [[P0_PADDED:%[^ ]+]] = <<F8E4M3>>[48,16]{1,0} pad([[P0_BITCAST]], [[C1]]), padding=0_3x0_1 ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[15,31]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[31,15]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK-NEXT: [[C2:%[^ ]+]] = <<F8E4M3>>[] constant(0) ; CHECK-NEXT: [[P1_PADDED:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} pad([[P1_TRANSPOSE]], [[C2]]), padding=0_1x0_1 ; CHECK-NEXT: [[B:%[^ ]+]] = f32[3,15,31]{2,1,0} parameter(2) ; CHECK-NEXT: [[B_BITCAST:%[^ ]+]] = f32[45,31]{1,0} bitcast([[B]]) ; CHECK-NEXT: [[C3:%[^ ]+]] = f32[] constant(0) ; CHECK-NEXT: [[P2_PADDED:%[^ ]+]] = f32[48,32]{1,0} pad([[B_BITCAST]], [[C3]]), padding=0_3x0_1 ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[] parameter(3) ; CHECK-NEXT: [[P3:%[^ ]+]] = f32[] parameter(4) ; CHECK-NEXT: [[GEMM_TUPLE:%[^ ]+]] = (f32[48,32]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0_PADDED]], [[P1_PADDED]], [[P2_PADDED]], [[P2]], [[P3]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } ; CHECK-NEXT: [[GEMM:%[^ ]+]] = f32[48,32]{1,0} get-tuple-element([[GEMM_TUPLE]]), index=0 ; CHECK-NEXT: [[SLICE:%[^ ]+]] = f32[45,31]{1,0} slice([[GEMM]]), slice={[0:45], [0:31]} ; CHECK-NEXT: ROOT [[OUT:%[^ ]+]] = f32[3,15,31]{2,1,0} bitcast([[SLICE]]) )"); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABUnscaledDMatrixBiasWithSliceF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[48,16] parameter(0) y = <<F8E4M3>>[16,32] parameter(1) b = f32[32,16] parameter(2) x_f32 = f32[48,16] convert(x) y_f32 = f32[16,32] convert(y) x_scale = f32[] parameter(3) y_scale = f32[] parameter(4) x_scale_bcast = f32[48,16] broadcast(x_scale), dimensions={} y_scale_bcast = f32[16,32] broadcast(y_scale), dimensions={} x_unscaled = f32[48,16] multiply(x_f32, x_scale_bcast) y_unscaled = f32[16,32] multiply(y_f32, y_scale_bcast) dot_a = f32[48,32] dot(x_unscaled, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot_a_sliced = f32[32,16] slice(dot_a), slice={[16:48], [16:32]} ROOT out = f32[32,16] add(dot_a_sliced, b) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GemmRewriter pass(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_TRUE(changed); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[48,16], {{.*}}: <<F8E4M3>>[16,32], {{.*}}: f32[32,16], {{.*}}: f32[], {{.*}}: f32[]) -> f32[32,16] { ; CHECK-NEXT: [[P0:%[^ ]+]] = <<F8E4M3>>[48,16]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[] parameter(3) ; CHECK-NEXT: [[P3:%[^ ]+]] = f32[] parameter(4) ; CHECK-NEXT: [[GEMM_TUPLE:%[^ ]+]] = (f32[48,32]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[P2]], [[P3]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } ; CHECK: [[GEMM:%[^_]+]] = f32[48,32]{1,0} get-tuple-element([[GEMM_TUPLE]]), index=0 ; CHECK-NEXT: [[SLICE:%[^ ]+]] = f32[32,16]{1,0} slice([[GEMM]]), slice={[16:48], [16:32]} ; CHECK-NEXT: [[B:%[^ ]+]] = f32[32,16]{1,0} parameter(2) ; CHECK-NEXT: ROOT [[OUT:%[^ ]+]] = f32[32,16]{1,0} add([[SLICE]], [[B]]) )"); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABUnscaledDWithAllGatherF8) { absl::string_view hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[16,32] parameter(1) x_f32 = f32[16,32] convert(x) y_f32 = f32[16,32] convert(y) x_scale = f32[] parameter(2) y_scale = f32[] parameter(3) x_scale_bcast = f32[16,32] broadcast(x_scale), dimensions={} y_scale_bcast = f32[16,32] broadcast(y_scale), dimensions={} x_unscaled = f32[16,32] multiply(x_f32, x_scale_bcast) y_unscaled = f32[16,32] multiply(y_f32, y_scale_bcast) all_gather = f32[16,64]{1,0} all-gather(x_unscaled), channel_id=1, replica_groups={{0,1},{2,3},{4,5},{6,7}}, dimensions={1}, use_global_device_ids=true all_gather1 = f32[64,32]{1,0} all-gather(y_unscaled), channel_id=2, replica_groups={{0,2,4,6},{1,3,5,7}}, dimensions={0}, use_global_device_ids=true ROOT dot_a = f32[16,32] dot(all_gather, all_gather1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; HloModuleConfig config = GetModuleConfigForTest(); config.set_use_spmd_partitioning(true); config.set_num_partitions(8); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[16,32], {{.*}}: f32[], {{.*}}: f32[]) -> f32[16,32] { ; CHECK: [[P0:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(0) ; CHECK: [[AG:%[^ ]+]] = <<F8E4M3>>[16,64]{1,0} all-gather([[P0]]), {{[^ ]+}} ; CHECK: [[P1:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(1) ; CHECK: [[AG1:%[^ ]+]] = <<F8E4M3>>[64,32]{1,0} all-gather([[P1]]), {{[^ ]+}} ; CHECK: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[32,64]{1,0} transpose([[AG1]]), dimensions={1,0} ; CHECK: [[P2:%[^ ]+]] = f32[] parameter(2) ; CHECK: [[P3:%[^ ]+]] = f32[] parameter(3) ; CHECK: [[GEMM_TUPLE:%[^ ]+]] = (f32[16,32]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[AG]], [[P1_TRANSPOSE]], [[P2]], [[P3]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } ; CHECK: ROOT [[GEMM:%[^_]+]] = f32[16,32]{1,0} get-tuple-element([[GEMM_TUPLE]]), index=0 )", nullptr, &config); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABUnscaledDWithAllToAllF8) { absl::string_view hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[16,32] parameter(1) x_f32 = f32[16,32] convert(x) y_f32 = f32[16,32] convert(y) x_scale = f32[] parameter(2) y_scale = f32[] parameter(3) x_scale_bcast = f32[16,32] broadcast(x_scale), dimensions={} y_scale_bcast = f32[16,32] broadcast(y_scale), dimensions={} x_unscaled = f32[16,32] multiply(x_f32, x_scale_bcast) y_unscaled = f32[16,32] multiply(y_f32, y_scale_bcast) all_to_all = f32[16,32]{1,0} all-to-all(x_unscaled), channel_id=1, replica_groups={{0,1,2,3},{4,5,6,7}}, dimensions={0} ROOT dot_a = f32[16,16] dot(all_to_all, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={1} } )"; HloModuleConfig config = GetModuleConfigForTest(); config.set_use_spmd_partitioning(true); config.set_num_partitions(8); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[16,32], {{.*}}: f32[], {{.*}}: f32[]) -> f32[16,16] { ; CHECK: [[P0:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(0) ; CHECK: [[AA:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} all-to-all([[P0]]), {{[^ ]+}} ; CHECK: [[P1:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(1) ; CHECK: [[P2:%[^ ]+]] = f32[] parameter(2) ; CHECK: [[P3:%[^ ]+]] = f32[] parameter(3) ; CHECK: [[GEMM:%[^ ]+]] = (f32[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[AA]], [[P1]], [[P2]], [[P3]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )", nullptr, &config); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABUnscaledDWithCollectivePermuteF8) { absl::string_view hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[16,32] parameter(1) x_f32 = f32[16,32] convert(x) y_f32 = f32[16,32] convert(y) x_scale = f32[] parameter(2) y_scale = f32[] parameter(3) x_scale_bcast = f32[16,32] broadcast(x_scale), dimensions={} y_scale_bcast = f32[16,32] broadcast(y_scale), dimensions={} x_unscaled = f32[16,32] multiply(x_f32, x_scale_bcast) y_unscaled = f32[16,32] multiply(y_f32, y_scale_bcast) collective_permute = f32[16,32]{1,0} collective-permute(x_unscaled), source_target_pairs={{0,0}, {1,1}, {2,4}, {3,5}, {4,2}, {5,3}, {6,6}, {7,7}} ROOT dot_a = f32[16,16] dot(collective_permute, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={1} } )"; HloModuleConfig config = GetModuleConfigForTest(); config.set_use_spmd_partitioning(true); config.set_num_partitions(8); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[16,32], {{.*}}: f32[], {{.*}}: f32[]) -> f32[16,16] { ; CHECK: [[P0:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(0) ; CHECK: [[AA:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} collective-permute([[P0]]), {{[^ ]+}} ; CHECK: [[P1:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(1) ; CHECK: [[P2:%[^ ]+]] = f32[] parameter(2) ; CHECK: [[P3:%[^ ]+]] = f32[] parameter(3) ; CHECK: [[GEMM:%[^ ]+]] = (f32[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[AA]], [[P1]], [[P2]], [[P3]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )", nullptr, &config); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABUnscaledDMatrixBiasThenVectorBiasF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) x_f16 = f16[16,32] convert(x) y_f16 = f16[32,16] convert(y) b = f16[16] parameter(2) b_bcast = f16[16,16] broadcast(b), dimensions={1} b2 = f16[16,16] parameter(3) x_scale = f16[] parameter(4) y_scale = f16[] parameter(5) x_scale_bcast = f16[16,32] broadcast(x_scale), dimensions={} y_scale_bcast = f16[32,16] broadcast(y_scale), dimensions={} x_unscaled = f16[16,32] multiply(x_f16, x_scale_bcast) y_unscaled = f16[32,16] multiply(y_f16, y_scale_bcast) dot_a = f16[16,16] dot(x_unscaled, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot_a_bias1 = f16[16,16] add(dot_a, b2) ROOT dot_a_bias = f16[16,16] add(dot_a_bias1, b_bcast) } )"; CheckFp8IfSupported(hlo_text, ErrorSpec{2e-3, 0.}); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[32,16], {{.*}}: f16[16], {{.*}}: f16[16,16], {{.*}}: f16[], {{.*}}: f16[]) -> f16[16,16] { ; CHECK-DAG: [[P0:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} transpose([[P1]]), dimensions={1,0} ; CHECK-NEXT: [[MB:%[^ ]+]] = f16[16,16]{1,0} parameter(3) ; CHECK-NEXT: [[P2:%[^ ]+]] = f16[] parameter(4) ; CHECK-NEXT: [[CV0:%[^ ]+]] = f32[] convert([[P2]]) ; CHECK-NEXT: [[P3:%[^ ]+]] = f16[] parameter(5) ; CHECK-NEXT: [[CV1:%[^ ]+]] = f32[] convert([[P3]]) ; CHECK: [[GEMMOUT_TUPLE:%[^ ]+]] = (f16[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[MB]], [[CV0]], [[CV1]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":1 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } ; CHECK: [[GEMMOUT:%[^ ]+]] = f16[16,16]{1,0} get-tuple-element([[GEMMOUT_TUPLE]]), index=0 ; CHECK: [[VB:%[^ ]+]] = f16[16]{0} parameter(2) ; CHECK: [[VBC:%[^ ]+]] = f16[16,16]{1,0} broadcast([[VB]]), dimensions={1} ; CHECK: ROOT [[OUT:%[^ ]+]] = f16[16,16]{1,0} add([[GEMMOUT]], [[VBC]]) )"); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABScaledDWithDAmaxF8) { const char* hlo_text = R"( HloModule test apply { a = f32[] parameter(0) b = f32[] parameter(1) ROOT c = f32[] maximum(a, b) } ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) x_f32 = f32[16,32] convert(x) y_f32 = f32[32,16] convert(y) x_scale = f32[] parameter(2) y_scale = f32[] parameter(3) z_scale = f32[] parameter(4) x_scale_bcast = f32[16,32] broadcast(x_scale), dimensions={} y_scale_bcast = f32[32,16] broadcast(y_scale), dimensions={} z_scale_bcast = f32[16,16] broadcast(z_scale), dimensions={} x_unscaled = f32[16,32] multiply(x_f32, x_scale_bcast) y_unscaled = f32[32,16] multiply(y_f32, y_scale_bcast) dot_a = f32[16,16] dot(x_unscaled, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} abs_dot_a = f32[16,16] abs(dot_a) c0 = f32[] constant(-inf) amax = f32[] reduce(abs_dot_a, c0), dimensions={0,1}, to_apply=apply dot_a_scaled = f32[16,16] divide(dot_a, z_scale_bcast) c1 = f32[] constant(-<<F8E4M3_AMAX>>) c1_bcast = f32[16,16] broadcast(c1), dimensions={} c2 = f32[] constant(<<F8E4M3_AMAX>>) c2_bcast = f32[16,16] broadcast(c2), dimensions={} dot_a_clamped = f32[16,16] clamp(c1_bcast, dot_a_scaled, c2_bcast) dot_a_f8 = <<F8E4M3>>[16,16] convert(dot_a_clamped) ROOT out = (<<F8E4M3>>[16,16], f32[]) tuple(dot_a_f8, amax) } )"; CheckFp8IfSupported(hlo_text); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[32,16], {{.*}}: f32[], {{.*}}: f32[], {{.*}}: f32[]) -> (<<F8E4M3>>[16,16], f32[]) { ; CHECK: [[P0:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} transpose([[P1]]) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[] parameter(2) ; CHECK-NEXT: [[P3:%[^ ]+]] = f32[] parameter(3) ; CHECK-PTX-NEXT: [[C2:%[^ ]+]] = f32[] constant(1) ; CHECK-PTX-NEXT: [[P4:%[^ ]+]] = f32[] parameter(4) ; CHECK-PTX-NEXT: [[P4_INV:%[^ ]+]] = f32[] divide([[C2]], [[P4]]) ; CHECK-PTX-NEXT: [[OUT:%[^ ]+]] = (<<F8E4M3>>[16,16]{1,0}, f32[], s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[P2]], [[P3]], [[P4_INV]]), ; CHECK-GCN-NEXT: [[C1:%[^ ]+]] = f32[] constant(1) ; CHECK-GCN-NEXT: [[OUT:%[^ ]+]] = (f32[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[P2]], [[P3]], [[C1]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABScaledDWithDAmaxF8WithF16Intermediates) { const char* hlo_text = R"( HloModule test apply { a = f16[] parameter(0) b = f16[] parameter(1) ROOT c = f16[] maximum(a, b) } ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) x_f16 = f16[16,32] convert(x) y_f16 = f16[32,16] convert(y) x_scale = f16[] parameter(2) y_scale = f16[] parameter(3) z_scale = f16[] parameter(4) x_scale_bcast = f16[16,32] broadcast(x_scale), dimensions={} y_scale_bcast = f16[32,16] broadcast(y_scale), dimensions={} z_scale_bcast = f16[16,16] broadcast(z_scale), dimensions={} x_unscaled = f16[16,32] multiply(x_f16, x_scale_bcast) y_unscaled = f16[32,16] multiply(y_f16, y_scale_bcast) dot_a = f16[16,16] dot(x_unscaled, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} abs_dot_a = f16[16,16] abs(dot_a) c0 = f16[] constant(-inf) amax = f16[] reduce(abs_dot_a, c0), dimensions={0,1}, to_apply=apply dot_a_scaled = f16[16,16] divide(dot_a, z_scale_bcast) c1 = f16[] constant(-<<F8E4M3_AMAX>>) c1_bcast = f16[16,16] broadcast(c1), dimensions={} c2 = f16[] constant(<<F8E4M3_AMAX>>) c2_bcast = f16[16,16] broadcast(c2), dimensions={} dot_a_clamped = f16[16,16] clamp(c1_bcast, dot_a_scaled, c2_bcast) dot_a_f8 = <<F8E4M3>>[16,16] convert(dot_a_clamped) ROOT out = (<<F8E4M3>>[16,16], f16[]) tuple(dot_a_f8, amax) } )"; CheckFp8IfSupported(hlo_text); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[32,16], {{.*}}: f16[], {{.*}}: f16[], {{.*}}: f16[]) -> (<<F8E4M3>>[16,16], f16[]) { ; CHECK: [[P0:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} transpose([[P1]]) ; CHECK-NEXT: [[P2:%[^ ]+]] = f16[] parameter(2) ; CHECK-NEXT: [[P2_CONVERT:%[^ ]+]] = f32[] convert([[P2]]) ; CHECK-NEXT: [[P3:%[^ ]+]] = f16[] parameter(3) ; CHECK-NEXT: [[P3_CONVERT:%[^ ]+]] = f32[] convert([[P3]]) ; CHECK-PTX-NEXT: [[C2:%[^ ]+]] = f16[] constant(1) ; CHECK-PTX-NEXT: [[P4:%[^ ]+]] = f16[] parameter(4) ; CHECK-PTX-NEXT: [[P4_INV:%[^ ]+]] = f16[] divide([[C2]], [[P4]]) ; CHECK-PTX-NEXT: [[P4_INV_CONVERT:%[^ ]+]] = f32[] convert([[P4_INV]]) ; CHECK-PTX-NEXT: [[OUT:%[^ ]+]] = (<<F8E4M3>>[16,16]{1,0}, f32[], s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[P2_CONVERT]], [[P3_CONVERT]], [[P4_INV_CONVERT]]), ; CHECK-CGN-NEXT: [[C1:%[^ ]+]] = f32[] constant(1) ; CHECK-GCN-NEXT: [[OUT:%[^ ]+]] = (f16[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[P2_CONVERT]], [[P3_CONVERT]], [[C1]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABScaledDReluActivationWithDAmaxF8) { const char* hlo_text = R"( HloModule test apply { a = f32[] parameter(0) b = f32[] parameter(1) ROOT c = f32[] maximum(a, b) } ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E4M3>>[32,16] parameter(1) x_f32 = f32[16,32] convert(x) y_f32 = f32[32,16] convert(y) x_scale = f32[] parameter(2) y_scale = f32[] parameter(3) z_scale = f32[] parameter(4) x_scale_bcast = f32[16,32] broadcast(x_scale), dimensions={} y_scale_bcast = f32[32,16] broadcast(y_scale), dimensions={} z_scale_bcast = f32[16,16] broadcast(z_scale), dimensions={} x_unscaled = f32[16,32] multiply(x_f32, x_scale_bcast) y_unscaled = f32[32,16] multiply(y_f32, y_scale_bcast) dot_a = f32[16,16] dot(x_unscaled, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} czero = f32[] constant(0) czero_bcast = f32[16,16] broadcast(czero), dimensions={} dot_a_relu = f32[16,16] maximum(dot_a, czero_bcast) c0 = f32[] constant(-inf) amax = f32[] reduce(dot_a_relu, c0), dimensions={0,1}, to_apply=apply dot_a_scaled = f32[16,16] divide(dot_a_relu, z_scale_bcast) c1 = f32[] constant(-<<F8E4M3_AMAX>>) c1_bcast = f32[16,16] broadcast(c1), dimensions={} c2 = f32[] constant(<<F8E4M3_AMAX>>) c2_bcast = f32[16,16] broadcast(c2), dimensions={} dot_a_clamped = f32[16,16] clamp(c1_bcast, dot_a_scaled, c2_bcast) dot_a_f8 = <<F8E4M3>>[16,16] convert(dot_a_clamped) ROOT out = (<<F8E4M3>>[16,16], f32[]) tuple(dot_a_f8, amax) } )"; CheckFp8IfSupported(hlo_text); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: <<F8E4M3>>[16,32], {{.*}}: <<F8E4M3>>[32,16], {{.*}}: f32[], {{.*}}: f32[], {{.*}}: f32[]) -> (<<F8E4M3>>[16,16], f32[]) { ; CHECK: [[P0:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = <<F8E4M3>>[32,16]{1,0} parameter(1) ; CHECK-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} transpose([[P1]]) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[] parameter(2) ; CHECK-NEXT: [[P3:%[^ ]+]] = f32[] parameter(3) ; CHECK-PTX-NEXT: [[C2:%[^ ]+]] = f32[] constant(1) ; CHECK-PTX-NEXT: [[P4:%[^ ]+]] = f32[] parameter(4) ; CHECK-PTX-NEXT: [[P4_INV:%[^ ]+]] = f32[] divide([[C2]], [[P4]]) ; CHECK-PTX-NEXT: [[OUT:%[^ ]+]] = (<<F8E4M3>>[16,16]{1,0}, f32[], s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[P2]], [[P3]], [[P4_INV]]), ; CHECK-CGN-NEXT: [[C1:%[^ ]+]] = f32[] constant(1) ; CHECK-GCN-NEXT: [[OUT:%[^ ]+]] = (f32[16,16]{1,0}, s8[{{[0-9]+}}]{0}) custom-call([[P0]], [[P1_TRANSPOSE]], [[P2]], [[P3]], [[C1]]), ; CHECK: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"RELU" ; CHECK: } )"); } TEST_P(ParameterizedFp8GemmRewriteTest, UnscaledABUnscaledDPrecisionF8) { const char* raw_hlo_template = R"( HloModule test ENTRY test { x = <<F8E4M3>>[1600,3200] parameter(0) y = <<F8E4M3>>[3200,1600] parameter(1) x_f32 = f32[1600,3200] convert(x) y_f32 = f32[3200,1600] convert(y) x_scale = f32[] parameter(2) y_scale = f32[] parameter(3) x_scale_bcast = f32[1600,3200] broadcast(x_scale), dimensions={} y_scale_bcast = f32[3200,1600] broadcast(y_scale), dimensions={} x_unscaled = f32[1600,3200] multiply(x_f32, x_scale_bcast) y_unscaled = f32[3200,1600] multiply(y_f32, y_scale_bcast) ROOT out = f32[1600,1600] dot(x_unscaled, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0}, operand_precision={<<precision>>,<<precision>>} } )"; std::string hlo_template = absl::StrReplaceAll(raw_hlo_template, replacements_); absl::flat_hash_map<absl::string_view, absl::string_view> replacements; replacements["<<precision>>"] = "default"; const auto hlo_text_default = absl::StrReplaceAll(hlo_template, replacements); EXPECT_TRUE(RunAndCompare(hlo_text_default, ErrorSpec{1e-3, 1e-3})); replacements["<<precision>>"] = "highest"; const auto hlo_text_highest = absl::StrReplaceAll(hlo_template, replacements); EXPECT_TRUE(RunAndCompare(hlo_text_highest, ErrorSpec{1e-4, 1e-4})); } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABUnscaledDF8Parameterized) { std::array<std::array<absl::string_view, 7>, 32> combinations; int i = 0; for (bool d_is_col : {false, true}) { for (bool a_is_col : {false, true}) { for (bool b_is_col : {false, true}) { for (int lhs_contracting_dim : {0, 1}) { for (int rhs_contracting_dim : {0, 1}) { const absl::string_view lcd = lhs_contracting_dim == 1 ? "{1}" : "{0}"; const absl::string_view rcd = rhs_contracting_dim == 1 ? "{1}" : "{0}"; const absl::string_view a_shape = lhs_contracting_dim == 1 ? "[64,32]" : "[32,64]"; const absl::string_view b_shape = rhs_contracting_dim == 0 ? "[32,16]" : "[16,32]"; const absl::string_view a_layout = a_is_col ? "{0,1}" : "{1,0}"; const absl::string_view b_layout = b_is_col ? "{0,1}" : "{1,0}"; const absl::string_view output_layout = d_is_col ? "{0,1}" : "{1,0}"; combinations[i++] = std::array{ lcd, rcd, a_shape, b_shape, a_layout, b_layout, output_layout}; } } } } } const char* hlo_template = R"( HloModule test ENTRY test { x = <<F8E4M3>><<Ashape>><<Alayout>> parameter(0) x_f32 = f32<<Ashape>><<Alayout>> convert(x) x_scale = f32[] parameter(2) x_scale_bcast = f32<<Ashape>> broadcast(x_scale), dimensions={} x_unscaled = f32<<Ashape>> multiply(x_f32, x_scale_bcast) y = <<F8E4M3>><<Bshape>><<Blayout>> parameter(1) y_f32 = f32<<Bshape>><<Blayout>> convert(y) y_scale = f32[] parameter(3) y_scale_bcast = f32<<Bshape>> broadcast(y_scale), dimensions={} y_unscaled = f32<<Bshape>> multiply(y_f32, y_scale_bcast) ROOT out = f32[64,16]<<Olayout>> dot(x_unscaled, y_unscaled), lhs_contracting_dims=<<Lcd>>, rhs_contracting_dims=<<Rcd>> } )"; for (const auto& combination : combinations) { absl::flat_hash_map<absl::string_view, absl::string_view> replacements; replacements["<<Lcd>>"] = std::get<0>(combination); replacements["<<Rcd>>"] = std::get<1>(combination); replacements["<<Ashape>>"] = std::get<2>(combination); replacements["<<Bshape>>"] = std::get<3>(combination); replacements["<<Alayout>>"] = std::get<4>(combination); replacements["<<Blayout>>"] = std::get<5>(combination); replacements["<<Olayout>>"] = std::get<6>(combination); const auto hlo_text = absl::StrReplaceAll(hlo_template, replacements); CheckFp8IfSupported(hlo_text); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK: custom_call_target="__cublas$lt$matmul$f8", )"); } } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABUnscaledDF8ParameterizedBatched) { std::array<std::array<std::string, 7>, 32> combinations; std::string lcd, rcd, a_shape, b_shape, a_layout, b_layout, o_layout; int i = 0; for (bool o_is_col : {false, true}) { for (int lhs_contracting_dim : {2, 1}) { for (int rhs_contracting_dim : {2, 1}) { lcd = lhs_contracting_dim == 2 ? "{2}" : "{1}"; rcd = rhs_contracting_dim == 2 ? "{2}" : "{1}"; a_shape = lhs_contracting_dim == 2 ? "[2,64,32]" : "[2,32,64]"; b_shape = rhs_contracting_dim == 1 ? "[2,32,16]" : "[2,16,32]"; o_layout = o_is_col ? "{2, 0, 1}" : "{2, 1, 0}"; for (std::string a_layout : {"{2,1,0}", "{1,2,0}"}) { for (std::string b_layout : {"{2,1,0}", "{1,2,0}"}) { combinations[i++] = std::array{lcd, rcd, a_shape, b_shape, a_layout, b_layout, o_layout}; } } } } } const char* hlo_template = R"( HloModule m ENTRY f { x_q = <<F8E4M3>><<Ashape>><<Alayout>> parameter(0) x_scale = f32[] parameter(2) x_scale_broadcast = f32<<Ashape>><<Alayout>> broadcast(x_scale), dimensions={} x_q_convert = f32<<Ashape>><<Alayout>> convert(x_q) x_qdq = f32<<Ashape>><<Alayout>> multiply(x_q_convert, x_scale_broadcast) y_q = <<F8E4M3>><<Bshape>><<Blayout>> parameter(1) y_scale = f32[] parameter(3) y_scale_broadcast = f32<<Bshape>><<Blayout>> broadcast(y_scale), dimensions={} y_q_convert = f32<<Bshape>><<Blayout>> convert(y_q) y_qdq = f32<<Bshape>><<Blayout>> multiply(y_q_convert, y_scale_broadcast) ROOT out = f32[2,64,16]<<Olayout>> dot(x_qdq, y_qdq), lhs_batch_dims={0}, lhs_contracting_dims=<<Lcd>>, rhs_batch_dims={0}, rhs_contracting_dims=<<Rcd>> } )"; for (const auto& combination : combinations) { absl::flat_hash_map<std::string, std::string> replacements; replacements["<<Lcd>>"] = std::get<0>(combination); replacements["<<Rcd>>"] = std::get<1>(combination); replacements["<<Ashape>>"] = std::get<2>(combination); replacements["<<Bshape>>"] = std::get<3>(combination); replacements["<<Alayout>>"] = std::get<4>(combination); replacements["<<Blayout>>"] = std::get<5>(combination); replacements["<<Olayout>>"] = std::get<6>(combination); const auto hlo_text = absl::StrReplaceAll(hlo_template, replacements); CheckFp8IfSupported(hlo_text); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK: custom_call_target="__cublas$lt$matmul$f8", )"); } } TEST_P(ParameterizedFp8GemmRewriteTest, ScaledABUnscaledDF8TF32E5M2) { const char* hlo_text = R"( HloModule test ENTRY test { x = <<F8E4M3>>[16,32] parameter(0) y = <<F8E5M2>>[32,16] parameter(1) x_f32 = f32[16,32] convert(x) y_f32 = f32[32,16] convert(y) x_scale = f32[] parameter(2) y_scale = f32[] parameter(3) x_scale_bcast = f32[16,32] broadcast(x_scale), dimensions={} y_scale_bcast = f32[32,16] broadcast(y_scale), dimensions={} x_unscaled = f32[16,32] multiply(x_f32, x_scale_bcast) y_unscaled = f32[32,16] multiply(y_f32, y_scale_bcast) ROOT out = f32[16,16] dot(x_unscaled, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; CheckFp8IfSupported(hlo_text); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK: custom_call_target="__cublas$lt$matmul$f8", )"); } TEST_P(ParameterizedFp8GemmRewriteTest, FnuzTypeF8) { const char* hlo_text = R"( HloModule test ENTRY test { x = f8e4m3fnuz[16,32] parameter(0) y = f8e4m3fnuz[32,16] parameter(1) x_f32 = f32[16,32] convert(x) y_f32 = f32[32,16] convert(y) x_scale = f32[] parameter(2) y_scale = f32[] parameter(3) x_scale_bcast = f32[16,32] broadcast(x_scale), dimensions={} y_scale_bcast = f32[32,16] broadcast(y_scale), dimensions={} x_unscaled = f32[16,32] multiply(x_f32, x_scale_bcast) y_unscaled = f32[32,16] multiply(y_f32, y_scale_bcast) ROOT out = f32[16,16] dot(x_unscaled, y_unscaled), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; if (IsCuda()) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); GemmRewriter pass( CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}); TF_ASSERT_OK_AND_ASSIGN(bool changed, this->RunHloPass(&pass, module.get())); EXPECT_FALSE(changed); return; } if (IsRocm()) { EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-2, 1e-2})); RunAndFilecheckHloRewrite( hlo_text, GemmRewriter(CudaHopperOrRocmMI300(), GetToolkitVersion(), GemmRewriterOptions{GemmRewriterOptions::DType::kFp8Only}), R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f8e4m3fnuz[16,32], {{.*}}: f8e4m3fnuz[32,16], {{.*}}: f32[], {{.*}}: f32[]) -> f32[16,16] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f8e4m3fnuz[16,32]{1,0} parameter(0) ; CHECK-PTX-NEXT: [[P0_CV:%[^ ]+]] = f32[16,32]{1,0} convert([[P0]]) ; CHECK-PTX-NEXT: [[P2:%[^ ]+]] = f32[] parameter(2) ; CHECK-PTX-NEXT: [[P2_B:%[^ ]+]] = f32[16,32]{1,0} broadcast([[P2]]), dimensions={} ; CHECK-PTX-NEXT: [[P0_UNSCALED:%[^ ]+]] = f32[16,32]{1,0} multiply([[P0_CV]], [[P2_B]]) ; CHECK-PTX-NEXT: [[P1:%[^ ]+]] = f8e4m3fnuz[32,16]{1,0} parameter(1) ; CHECK-PTX-NEXT: [[P1_CV:%[^ ]+]] = f32[32,16]{1,0} convert([[P1]]) ; CHECK-PTX-NEXT: [[P3:%[^ ]+]] = f32[] parameter(3) ; CHECK-PTX-NEXT: [[P3_B:%[^ ]+]] = f32[32,16]{1,0} broadcast([[P3]]), dimensions={} ; CHECK-PTX-NEXT: [[P1_UNSCALED:%[^ ]+]] = f32[32,16]{1,0} multiply([[P1_CV]], [[P3_B]]) ; CHECK-PTX-NEXT: [[GEMM:%[^ ]+]] = {{.*}} custom-call([[P0_UNSCALED]], [[P1_UNSCALED]]), ; CHECK-GCN-NEXT: [[P1:%[^ ]+]] = f8e4m3fnuz[32,16]{1,0} parameter(1) ; CHECK-GCN-NEXT: [[P1_TRANSPOSE:%[^ ]+]] = <<F8E4M3>>[16,32]{1,0} transpose([[P1]]) ; CHECK-GCN-NEXT: [[P2:%[^ ]+]] = f32[] parameter(2) ; CHECK-GCN-NEXT: [[P3:%[^ ]+]] = f32[] parameter(3) ; CHECK-GCN-NEXT: [[C1:%[^ ]+]] = f32[] constant(1) ; CHECK-PTX: custom_call_target="<<CUBLAS_CUSTOM_CALL_TARGET_PLACEHOLDER>>", ; CHECK-GCN: custom_call_target="__cublas$lt$matmul$f8", ; CHECK: backend_config={ ; CHECK-DAG: "alpha_real":1 ; CHECK-DAG: "alpha_imag":0 ; CHECK-DAG: "beta":0 ; CHECK-DAG: "dot_dimension_numbers":{ ; CHECK-DAG: "lhs_contracting_dimensions":["1"] ; CHECK-PTX-DAG: "rhs_contracting_dimensions":["0"] ; CHECK-GCN-DAG: "rhs_contracting_dimensions":["1"] ; CHECK-DAG: "lhs_batch_dimensions":[] ; CHECK-DAG: "rhs_batch_dimensions":[] ; CHECK-DAG: } ; CHECK-DAG: "precision_config":{ ; CHECK-DAG: "operand_precision":["DEFAULT","DEFAULT"] ; CHECK-DAG: } ; CHECK-DAG: "epilogue":"DEFAULT" ; CHECK: } )"); } } INSTANTIATE_TEST_SUITE_P(Fp8CublasTestsBothLegacyAndLt, ParameterizedFp8GemmRewriteTest, ::testing::Bool()); TEST_F(GemmRewriteTest, NoFuseBiasBroadcast) { const char* hlo = R"( HloModule module ENTRY main.10 { Arg_0.1 = f16[384,128]{1,0} parameter(0) Arg_1.2 = f16[128,256]{1,0} parameter(1) dot.4 = f16[384,256]{1,0} dot(Arg_0.1, Arg_1.2), lhs_contracting_dims={1}, rhs_contracting_dims={0} Arg_2.3 = f16[256]{0} parameter(2) reshape.5 = f16[1,256]{1,0} reshape(Arg_2.3) broadcast.6 = f16[1,256]{1,0} broadcast(reshape.5), dimensions={0,1} reshape.7 = f16[256]{0} reshape(broadcast.6) broadcast.8 = f16[384,256]{1,0} broadcast(reshape.7), dimensions={1} ROOT add.9 = f16[384,256]{1,0} add(dot.4, broadcast.8) })"; MatchOptimizedHlo(hlo, R"( )"); } TEST_F(GemmRewriteTest, ReduceOfBatchDot) { absl::string_view hlo_string = R"( HloModule test region_5.50 { Arg_0.51 = f32[] parameter(0) Arg_1.52 = f32[] parameter(1) ROOT add.53 = f32[] add(Arg_0.51, Arg_1.52) } ENTRY main { p0 = bf16[3,32,3,13]{3,2,1,0} parameter(0) p1 = bf16[3,32,3,64]{3,2,1,0} parameter(1) dot.95 = bf16[3,3,13,64]{3,2,1,0} dot(p0, p1), lhs_batch_dims={0,2}, lhs_contracting_dims={1}, rhs_batch_dims={0,2}, rhs_contracting_dims={1}, operand_precision={highest,highest} transpose.96 = bf16[3,64,3,13]{1,3,2,0} transpose(dot.95), dimensions={0,3,1,2} convert.101 = f32[3,64,3,13]{1,3,2,0} convert(transpose.96) constant.66 = f32[] constant(0.0) ROOT reduce.102 = f32[3,64,13]{2,1,0} reduce(convert.101, constant.66), dimensions={2}, to_apply=region_5.50 } )"; MatchOptimizedHlo(hlo_string, R"( )"); } TEST_F(GemmRewriteTest, DotWithBias) { const char* hlo = R"( HloModule m ENTRY main { p0 = f32[1024,1024] parameter(0) p1 = f32[1024,1024] parameter(1) p2 = f32[1024,1024] parameter(2) p3 = f32[1024,1024] parameter(3) dot0 = f32[1024,1024] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot1 = f32[1024,1024] dot(p2, p3), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT root = f32[1024,1024] add(dot0, dot1) })"; const char* expected = R"() })"; RunAndFilecheckHloRewrite( hlo, GemmRewriter( se::CudaComputeCapability{}, stream_executor::SemanticVersion{0, 0, 0}, GemmRewriterOptions{GemmRewriterOptions::DType::kNonFp8Only}), expected); } TEST_F(GemmRewriteTest, DotWithoutBias) { const char* hlo = R"( HloModule m ENTRY main { p0 = f32[1024,1024] parameter(0) p1 = f32[1024,1024] parameter(1) p2 = f32[1024,1024] parameter(2) p3 = f32[1024,1024] parameter(3) dot0 = f32[1024,1024] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} dot1 = f32[1024,1024] dot(p2, p3), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT root = f32[1024,1024] add(dot0, dot1) })"; const char* expected = R"() })"; RunAndFilecheckHloRewrite( hlo, GemmRewriter( se::CudaComputeCapability{}, stream_executor::SemanticVersion{0, 0, 0}, GemmRewriterOptions{GemmRewriterOptions::DType::kNonFp8Only, GemmRewriterOptions::BiasMode::kNoBias}), expected); } TEST_F(CublasLtGemmRewriteTest, CublasLtSuccessfullyMatchesLargeC64Lhs) { const char* hlo_text = R"( HloModule test ENTRY test { p0 = c64[2000,3000,3]{2,1,0} parameter(0) p1 = c64[3,6]{1,0} parameter(1) ROOT dot = c64[2000,3000,6]{2,1,0} dot(p0, p1), lhs_contracting_dims={2}, rhs_contracting_dims={0} } )"; if (IsCuda()) { MatchOptimizedHlo(hlo_text, R"(; CHECK: custom_call_target="__cublas$lt$matmul")"); } else { MatchOptimizedHlo(hlo_text, R"(; CHECK: custom_call_target="__cublas$gemm")"); } } TEST_F(CublasLtGemmRewriteTest, CublasLtOnlyMatchesLargeC64RhsPostAmpere) { const char* hlo_text = R"( HloModule test ENTRY test { p0 = c64[6,3]{1,0} parameter(0) p1 = c64[3,2000,3000]{2,1,0} parameter(1) ROOT dot = c64[6,2000,3000]{2,1,0} dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; if (HasCudaComputeCapability(se::CudaComputeCapability::Ampere())) { MatchOptimizedHlo(hlo_text, R"(; CHECK: custom_call_target="__cublas$lt$matmul")"); } else { MatchOptimizedHlo( hlo_text, R"(; CHECK-NOT: custom_call_target="__cublas$lt$matmul")"); } } class GemmRewriteAllocationTest : public GpuCodegenTest { public: void CheckNumberOfAllocations(const std::string& hlo, int expected_number_of_allocations) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> optimized_module, GetOptimizedModule(hlo)); if (allocator_ == nullptr) { allocator_ = std::make_unique<se::StreamExecutorMemoryAllocator>( backend().default_stream_executor()); } TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<Executable> executable, backend().compiler()->RunBackend(std::move(optimized_module), backend().default_stream_executor(), allocator_.get())); GpuExecutable* gpu_executable = static_cast<GpuExecutable*>(executable.get()); absl::Span<const BufferAllocation> allocations = gpu_executable->GetAllocations(); ASSERT_EQ(allocations.size(), expected_number_of_allocations); } DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = GpuCodegenTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_gemm_rewrite_size_threshold(0); debug_options.set_xla_gpu_enable_triton_gemm(false); return debug_options; } private: std::unique_ptr<se::DeviceMemoryAllocator> allocator_; }; TEST_F(GemmRewriteAllocationTest, SharedBufferAssignment) { const char* hlo_text = R"( HloModule SharedBufferAssignment ENTRY AddDotsFunc { x = f32[2,2] parameter(0) y = f32[2,2] parameter(1) bias = f32[2,2] add(x, y) dot = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT out = f32[2,2] add(dot, bias) } )"; CheckNumberOfAllocations(hlo_text, 4); EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); } class SmallDotGemmRewriteTest : public GemmRewriteTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = GemmRewriteTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_gemm_rewrite_size_threshold(100); return debug_options; } }; TEST_F(SmallDotGemmRewriteTest, SkipSmallMatrixMultiplicationRewrite) { const char* hlo_text = R"( HloModule SkipSmallMatrixRewrite ENTRY DotFunc { x = f32[3,3] parameter(0) y = f32[3,3] parameter(1) ROOT out = f32[3,3] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %DotFunc ({{.*}}: f32[3,3], {{.*}}: f32[3,3]) -> f32[3,3] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[3,3]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[3,3]{1,0} parameter(1) ; CHECK-NEXT: [[GEMM:%[^ ]+]] = {{.*}} dot([[P0]], [[P1]]), ; CHECK: lhs_contracting_dims={1}, rhs_contracting_dims={0} )"); } TEST_F(SmallDotGemmRewriteTest, LargeMatrixMultiplicationIsRewritten) { const char* hlo_text = R"( HloModule SkipSmallMatrixRewrite ENTRY DotFunc { x = f32[8,8] parameter(0) y = f32[8,8] parameter(1) ROOT out = f32[8,8] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; MatchOptimizedHlo(hlo_text, R"( ; CHECK-LABEL: ENTRY %DotFunc ({{.*}}: f32[8,8], {{.*}}: f32[8,8]) -> f32[8,8] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[8,8]{1,0} parameter(0) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[8,8]{1,0} parameter(1) ; CHECK: {{[^ ]+}} = {{.*}} custom-call([[P0]], [[P1]]) )"); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/gemm_rewriter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/gemm_rewriter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
61bb902e-4e11-4c95-ab9f-f2ec2d85005e
cpp
tensorflow/tensorflow
graph_view_internal
tensorflow/core/grappler/utils/graph_view_internal.h
tensorflow/core/grappler/utils/graph_view_internal_test.cc
#ifndef TENSORFLOW_CORE_GRAPPLER_UTILS_GRAPH_VIEW_INTERNAL_H_ #define TENSORFLOW_CORE_GRAPPLER_UTILS_GRAPH_VIEW_INTERNAL_H_ #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/hash/hash.h" #include "absl/strings/string_view.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/graph/tensor_id.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/gtl/map_util.h" namespace tensorflow { namespace grappler { namespace utils { namespace internal { constexpr int kMissingSlot = -2; constexpr int kMissingIndex = -1; constexpr int kNodeNamePresent = -1; template <typename NodeViewT, typename GraphViewT> class NodeIndexAndPortIndex { public: NodeIndexAndPortIndex() : graph_view_(nullptr), node_index_(kMissingIndex), port_index_(kMissingSlot) {} NodeIndexAndPortIndex(GraphViewT* graph_view, int node_index, int port_index) : graph_view_(graph_view), node_index_(node_index), port_index_(port_index) {} bool operator==(const NodeIndexAndPortIndex& other) const { return port_index_ == other.port_index_ && node_index_ == other.node_index_ && graph_view_ == other.graph_view_; } template <typename Hash> friend Hash AbslHashValue(Hash h, const NodeIndexAndPortIndex& n) { return Hash::combine(std::move(h), n.node_index_, n.port_index_); } NodeViewT* node_view() const { if (graph_view_ == nullptr) { return nullptr; } return graph_view_->GetNode(node_index_); } int node_index() const { return node_index_; } int index() const { return port_index_; } protected: GraphViewT* graph_view_; int node_index_; int port_index_; }; class NodeDefAndPortIndex { public: NodeDefAndPortIndex(const NodeDef* node_def, int port_index) : node_def_(node_def), port_index_(port_index) {} bool operator==(const NodeDefAndPortIndex& other) const { return node_def_ == other.node_def_ && port_index_ == other.port_index_; } template <typename Hash> friend Hash AbslHashValue(Hash h, const NodeDefAndPortIndex& n) { return Hash::combine(std::move(h), n.node_def_, n.port_index_); } private: const NodeDef* node_def_; int port_index_; }; template <typename FaninViewT, typename FanoutViewT, typename GraphViewT, bool IsConst> class NodeViewInternal { private: using NodeDefT = typename std::conditional<IsConst, const NodeDef, NodeDef>::type; public: explicit NodeViewInternal(GraphViewT* graph_view, int node_index) : graph_view_(graph_view), node_index_(node_index), attrs_(AttrSlice(graph_view->graph()->node(node_index))) {} NodeViewInternal() : graph_view_(nullptr), node_index_(kMissingIndex), attrs_(AttrSlice()) {} virtual ~NodeViewInternal() {} NodeViewInternal(NodeViewInternal&&) = default; NodeViewInternal& operator=(NodeViewInternal&&) = default; bool operator==(const NodeViewInternal& other) const { return node_index_ == other.node_index_ && graph_view_ == other.graph_view_; } template <typename Hash> friend Hash AbslHashValue(Hash h, const NodeViewInternal& n) { return Hash::combine(std::move(h), n.node_index_); } virtual NodeDefT* node() const = 0; int node_index() const { return node_index_; } const string& GetName() const { return node()->name(); } const string& GetOp() const { return node()->op(); } const string& GetDevice() const { return node()->device(); } const std::vector<FanoutViewT>& GetRegularFanins() const { return regular_fanins_; } const FanoutViewT& GetRegularFanin(int i) const { int regular_fanins_size = regular_fanins_.size(); if (i < 0 || i >= regular_fanins_size) { return GetMissingFanin(); } return regular_fanins_[i]; } const std::vector<FanoutViewT>& GetControllingFanins() const { return controlling_fanins_; } const std::vector<std::vector<FaninViewT>>& GetRegularFanouts() const { return regular_fanouts_by_port_; } const std::vector<FaninViewT>& GetRegularFanout(int i) const { int regular_fanouts_by_port_size = regular_fanouts_by_port_.size(); if (i < 0 || i >= regular_fanouts_by_port_size) { return GetMissingFanout(); } return regular_fanouts_by_port_[i]; } const std::vector<FaninViewT>& GetControlledFanouts() const { return controlled_fanouts_; } int NumRegularFanins() const { return regular_fanins_.size(); } int NumControllingFanins() const { return controlling_fanins_.size(); } int NumRegularFanouts() const { return num_regular_fanouts_; } int NumControlledFanouts() const { return controlled_fanouts_.size(); } virtual bool HasFanin(const FanoutViewT& fanin) const = 0; virtual bool HasFanout(const FaninViewT& fanout) const = 0; const AttrValue* GetAttr(absl::string_view attr_name) const { return attrs_.Find(attr_name); } const AttrSlice& GetAttrs() const { return attrs_; } int NumAttrs() const { return attrs_.size(); } bool HasAttr(absl::string_view attr_name) const { return attrs_.Find(attr_name) != nullptr; } protected: virtual inline const FanoutViewT& GetMissingFanin() const = 0; virtual inline const std::vector<FaninViewT>& GetMissingFanout() const = 0; std::vector<FanoutViewT> regular_fanins_; std::vector<FanoutViewT> controlling_fanins_; std::vector<std::vector<FaninViewT>> regular_fanouts_by_port_; int num_regular_fanouts_ = 0; std::vector<FaninViewT> controlled_fanouts_; GraphViewT* graph_view_; int node_index_; AttrSlice attrs_; }; template <typename NodeViewT, typename FaninViewT, typename FanoutViewT, bool IsConst> class GraphViewInternal { private: using GraphDefT = typename std::conditional<IsConst, const GraphDef, GraphDef>::type; public: explicit GraphViewInternal(GraphDefT* graph) : graph_(graph) {} virtual ~GraphViewInternal() {} bool operator==(const GraphViewInternal& other) const { return graph_ == other.graph_; } GraphDefT* graph() const { return graph_; } const NodeViewT* GetNode(int node_index) const { int nodes_size = nodes_.size(); if (node_index < 0 || node_index >= nodes_size) { return nullptr; } return &nodes_[node_index]; } NodeViewT* GetNode(int node_index) { int nodes_size = nodes_.size(); if (node_index < 0 || node_index >= nodes_size) { return nullptr; } return &nodes_[node_index]; } const NodeViewT* GetNode(absl::string_view node_name) const { auto it = node_index_by_name_.find(node_name); if (it == node_index_by_name_.end()) { return nullptr; } return &nodes_[it->second]; } NodeViewT* GetNode(absl::string_view node_name) { auto it = node_index_by_name_.find(node_name); if (it == node_index_by_name_.end()) { return nullptr; } return &nodes_[it->second]; } const std::vector<NodeViewT>& GetNodes() const { return nodes_; } bool HasNode(absl::string_view node_name) const { return node_index_by_name_.contains(node_name); } int NumNodes() const { return nodes_.size(); } protected: void Reset() { std::vector<NodeViewT>().swap(nodes_); absl::flat_hash_map<absl::string_view, int>().swap(node_index_by_name_); } std::vector<NodeViewT> nodes_; absl::flat_hash_map<absl::string_view, int> node_index_by_name_; GraphDefT* graph_; const FanoutViewT missing_fanin_; const std::vector<FaninViewT> missing_fanout_; }; inline SafeTensorId EmptyTensorId() { return SafeTensorId("", internal::kMissingSlot); } inline bool IsEmptyTensorId(const TensorId tensor_id) { return tensor_id.node().empty() && tensor_id.index() == internal::kMissingSlot; } template <typename GraphViewT> struct NodeViewDiff { explicit NodeViewDiff(GraphViewT* graph_view, int node_index) : graph_view(graph_view), node_index(node_index) {} GraphViewT* graph_view; int node_index; string name; bool update_name = false; string op; bool update_op = false; string device; bool update_device = false; std::vector<SafeTensorId> regular_inputs_to_add; int num_regular_inputs_to_add = 0; std::map<int, SafeTensorId> regular_inputs_to_update; std::vector<bool> regular_inputs_to_remove; int num_regular_inputs_to_remove = 0; absl::flat_hash_set<string> controlling_inputs_to_add; std::set<int> controlling_inputs_to_remove; absl::flat_hash_map<string, AttrValue> attrs_to_add; absl::flat_hash_set<string> attrs_to_remove; absl::optional<AttrValueMap> processed_attrs; }; template <typename GraphViewT> inline bool UpdateName(NodeViewDiff<GraphViewT>* diff, absl::string_view name) { if (diff->graph_view->GetNode(diff->node_index)->GetName() == name) { diff->name.clear(); diff->update_name = false; } else { diff->name = string(name); diff->update_name = true; } return true; } template <typename GraphViewT> inline bool UpdateOp(NodeViewDiff<GraphViewT>* diff, absl::string_view op) { if (diff->graph_view->GetNode(diff->node_index)->GetOp() == op) { diff->op.clear(); diff->update_op = false; } else { diff->op = string(op); diff->update_op = true; } return true; } template <typename GraphViewT> inline bool UpdateDevice(NodeViewDiff<GraphViewT>* diff, absl::string_view device) { if (diff->graph_view->GetNode(diff->node_index)->GetDevice() == device) { diff->device.clear(); diff->update_device = false; } else { diff->device = string(device); diff->update_device = true; } return true; } template <typename T, typename U> inline bool AddOrUpdateAtIndex(std::vector<T>* v, int i, const U& value, const T& default_value) { int v_size = v->size(); if (i > v_size) { v->reserve(i + 1); v->resize(i, default_value); v->push_back({value}); } else if (i == v_size) { v->push_back({value}); } else { bool updated = (*v)[i] == default_value; (*v)[i] = {value}; return updated; } return true; } template <typename GraphViewT> inline bool CheckNodeNameExists( absl::string_view node_name, const absl::flat_hash_map<absl::string_view, int>& updated_node_names, const GraphViewT* graph_view) { auto it = updated_node_names.find(node_name); if (it != updated_node_names.end()) { return it->second == kNodeNamePresent; } return graph_view->HasNode(node_name); } template <typename GraphViewT> inline bool AddOrUpdateRegularFanin(NodeViewDiff<GraphViewT>* diff, int index, const TensorId& fanin) { if (index < 0) { return false; } auto* node_view = diff->graph_view->GetNode(diff->node_index); const int num_regular_fanins = node_view->NumRegularFanins(); if (index < num_regular_fanins) { const int relative_removal_index = num_regular_fanins - index - 1; int diff_regular_inputs_to_remove_size = diff->regular_inputs_to_remove.size(); if (relative_removal_index < diff_regular_inputs_to_remove_size && diff->regular_inputs_to_remove[relative_removal_index]) { diff->regular_inputs_to_remove[relative_removal_index] = false; --diff->num_regular_inputs_to_remove; } const auto& existing_fanin = node_view->GetRegularFanin(index); if (existing_fanin.index() != fanin.index() || existing_fanin.node_view()->GetName() != fanin.node()) { gtl::InsertOrUpdate(&diff->regular_inputs_to_update, index, SafeTensorId(fanin)); } } else { const int relative_add_index = index - num_regular_fanins; if (AddOrUpdateAtIndex(&diff->regular_inputs_to_add, relative_add_index, fanin, EmptyTensorId())) { ++diff->num_regular_inputs_to_add; } } return true; } template <typename GraphViewT> inline bool RemoveRegularFanin(NodeViewDiff<GraphViewT>* diff, int index) { if (index < 0) { return false; } auto* node_view = diff->graph_view->GetNode(diff->node_index); const int num_regular_fanins = node_view->NumRegularFanins(); if (index < num_regular_fanins) { diff->regular_inputs_to_update.erase(index); const int relative_removal_index = num_regular_fanins - index - 1; if (AddOrUpdateAtIndex(&diff->regular_inputs_to_remove, relative_removal_index, true, false)) { ++diff->num_regular_inputs_to_remove; } } else { const int relative_add_index = index - num_regular_fanins; int diff_regular_inputs_to_add_size = diff->regular_inputs_to_add.size(); if (relative_add_index >= diff_regular_inputs_to_add_size || IsEmptyTensorId(diff->regular_inputs_to_add[relative_add_index])) { return false; } diff->regular_inputs_to_add[relative_add_index] = EmptyTensorId(); --diff->num_regular_inputs_to_add; } return true; } template <typename GraphViewT> inline bool AddControllingFanin(NodeViewDiff<GraphViewT>* diff, int control_index, absl::string_view fanin_node_name) { if (control_index == kMissingIndex) { diff->controlling_inputs_to_add.emplace(fanin_node_name); } else { diff->controlling_inputs_to_remove.erase(control_index); } return true; } template <typename GraphViewT> inline bool RemoveControllingFanin(NodeViewDiff<GraphViewT>* diff, int control_index, absl::string_view fanin_node_name) { if (control_index == kMissingIndex) { diff->controlling_inputs_to_add.erase(fanin_node_name); } else { diff->controlling_inputs_to_remove.emplace(control_index); } return true; } template <typename GraphViewT> inline bool AddOrUpdateAttribute(NodeViewDiff<GraphViewT>* diff, absl::string_view attr_name, const AttrValue& attr_value) { diff->attrs_to_add.empty() ? 0 : diff->attrs_to_remove.erase(attr_name); gtl::InsertOrUpdate(&diff->attrs_to_add, string(attr_name), attr_value); return true; } template <typename GraphViewT> inline bool RemoveAttribute(NodeViewDiff<GraphViewT>* diff, absl::string_view attr_name) { const size_t num_erased = diff->attrs_to_add.empty() ? 0 : diff->attrs_to_add.erase(attr_name); auto* node_view = diff->graph_view->GetNode(diff->node_index); if (node_view->HasAttr(attr_name)) { diff->attrs_to_remove.emplace(attr_name); return true; } return num_erased > 0; } template <typename T> inline void ResizeByTrimmingEndForValue(std::vector<T>* v, const T& value) { int curr_index = v->size(); const int last_index = v->size() - 1; for (int i = last_index; i >= 0; --i) { if ((*v)[i] == value) { curr_index = i; } else { break; } } if (curr_index <= last_index) { v->resize(curr_index); } } template <typename GraphViewT> inline bool IsEmpty(NodeViewDiff<GraphViewT>* diff) { ResizeByTrimmingEndForValue(&diff->regular_inputs_to_remove, false); ResizeByTrimmingEndForValue(&diff->regular_inputs_to_add, EmptyTensorId()); return !diff->update_name && !diff->update_op && !diff->update_device && diff->regular_inputs_to_add.empty() && diff->regular_inputs_to_update.empty() && diff->regular_inputs_to_remove.empty() && diff->controlling_inputs_to_add.empty() && diff->controlling_inputs_to_remove.empty() && diff->attrs_to_add.empty() && diff->attrs_to_remove.empty(); } template <typename GraphViewT> inline void Reset(NodeViewDiff<GraphViewT>* diff) { diff->name.clear(); diff->update_name = false; diff->op.clear(); diff->update_op = false; diff->device.clear(); diff->update_device = false; std::vector<SafeTensorId>().swap(diff->regular_inputs_to_add); diff->num_regular_inputs_to_add = false; std::map<int, SafeTensorId>().swap(diff->regular_inputs_to_update); std::vector<bool>().swap(diff->regular_inputs_to_remove); diff->num_regular_inputs_to_remove = 0; absl::flat_hash_set<string>().swap(diff->controlling_inputs_to_add); std::set<int>().swap(diff->controlling_inputs_to_remove); absl::flat_hash_map<string, AttrValue>().swap(diff->attrs_to_add); absl::flat_hash_set<string>().swap(diff->attrs_to_remove); } template <typename GraphViewT> inline bool IsWellFormed( NodeViewDiff<GraphViewT>* diff, const absl::flat_hash_map<absl::string_view, int>& updated_node_names) { ResizeByTrimmingEndForValue(&diff->regular_inputs_to_remove, false); ResizeByTrimmingEndForValue(&diff->regular_inputs_to_add, EmptyTensorId()); int diff_regular_inputs_to_add_size = diff->regular_inputs_to_add.size(); if (diff_regular_inputs_to_add_size != diff->num_regular_inputs_to_add) { return false; } else if (diff->num_regular_inputs_to_add > 0 && !diff->regular_inputs_to_remove.empty()) { return false; } else if (static_cast<int>(diff->regular_inputs_to_remove.size()) != diff->num_regular_inputs_to_remove) { return false; } auto* node_view = diff->graph_view->GetNode(diff->node_index); const string& node_name = diff->update_name ? diff->name : node_view->GetName(); auto invalid_node_name = [&](absl::string_view fanin_node_name) -> bool { return fanin_node_name == node_name || !CheckNodeNameExists(fanin_node_name, updated_node_names, diff->graph_view); }; if (diff->update_name) { const int last_index = node_view->NumRegularFanins() - diff->num_regular_inputs_to_remove - 1; auto regular_to_update_it = diff->regular_inputs_to_update.begin(); for (int i = 0; i <= last_index; ++i) { if (regular_to_update_it != diff->regular_inputs_to_update.end() && regular_to_update_it->first < i) { ++regular_to_update_it; } if (regular_to_update_it != diff->regular_inputs_to_update.end() && regular_to_update_it->first == i) { if (invalid_node_name(regular_to_update_it->second.node())) { return false; } } else { const string& regular_name = node_view->GetRegularFanin(i).node_view()->GetName(); if (regular_name == node_name) { return false; } } } auto& controls = node_view->GetControllingFanins(); const int num_controls = controls.size(); auto control_to_remove_it = diff->controlling_inputs_to_remove.begin(); for (int i = 0; i < num_controls; ++i) { if (control_to_remove_it != diff->controlling_inputs_to_remove.end() && *control_to_remove_it < i) { ++control_to_remove_it; } if (control_to_remove_it != diff->controlling_inputs_to_remove.end() && *control_to_remove_it == i) { continue; } else if (controls[i].node_view()->GetName() == node_name) { return false; } } } else { for (const auto& updated : diff->regular_inputs_to_update) { const string& fanin_name = updated.second.node(); if (invalid_node_name(fanin_name)) { return false; } } } for (const auto& regular : diff->regular_inputs_to_add) { if (invalid_node_name(regular.node())) { return false; } } for (const auto& control : diff->controlling_inputs_to_add) { if (invalid_node_name(control)) { return false; } } return true; } template <typename GraphViewT> struct NewNode { explicit NewNode(GraphViewT* graph_view, NodeDef&& node) : graph_view(graph_view), node(std::move(node)) {} GraphViewT* graph_view; NodeDef node; std::vector<SafeTensorId> regular_fanins; int num_regular_fanins = 0; absl::flat_hash_set<string> controlling_fanins; }; template <typename GraphViewT> inline void UpdateName(NewNode<GraphViewT>* new_node, absl::string_view name) { if (name.empty()) { new_node->node.clear_name(); } else { new_node->node.set_name(string(name)); } } template <typename GraphViewT> inline void UpdateOp(NewNode<GraphViewT>* new_node, absl::string_view op) { if (op.empty()) { new_node->node.clear_op(); } else { new_node->node.set_op(string(op)); } } template <typename GraphViewT> inline void UpdateDevice(NewNode<GraphViewT>* new_node, absl::string_view device) { if (device.empty()) { new_node->node.clear_device(); } else { new_node->node.set_device(string(device)); } } template <typename GraphViewT> inline void AddOrUpdateRegularFanin(NewNode<GraphViewT>* new_node, int index, const TensorId& fanin) { if (index < 0) { return; } else if (AddOrUpdateAtIndex(&new_node->regular_fanins, index, fanin, EmptyTensorId())) { ++new_node->num_regular_fanins; } } template <typename GraphViewT> inline void RemoveRegularFanin(NewNode<GraphViewT>* new_node, int index) { int new_node_regular_fanins_size = new_node->regular_fanins.size(); if (index < 0 || index >= new_node_regular_fanins_size || IsEmptyTensorId(new_node->regular_fanins[index])) { return; } new_node->regular_fanins[index] = EmptyTensorId(); --new_node->num_regular_fanins; } template <typename GraphViewT> inline void AddControllingFanin(NewNode<GraphViewT>* new_node, absl::string_view fanin_node_name) { new_node->controlling_fanins.emplace(fanin_node_name); } template <typename GraphViewT> inline void RemoveControllingFanin(NewNode<GraphViewT>* new_node, absl::string_view fanin_node_name) { new_node->controlling_fanins.erase(fanin_node_name); } template <typename GraphViewT> inline void AddOrUpdateAttribute(NewNode<GraphViewT>* new_node, absl::string_view attr_name, const AttrValue& attr_value) { gtl::InsertOrUpdate(new_node->node.mutable_attr(), string(attr_name), attr_value); } template <typename GraphViewT> inline void RemoveAttribute(NewNode<GraphViewT>* new_node, absl::string_view attr_name) { new_node->node.mutable_attr()->erase(string(attr_name)); } template <typename GraphViewT> inline bool IsWellFormed( NewNode<GraphViewT>* new_node, const absl::flat_hash_map<absl::string_view, int>& updated_node_names) { ResizeByTrimmingEndForValue(&new_node->regular_fanins, EmptyTensorId()); int new_node_regular_fanins_size = new_node->regular_fanins.size(); if (new_node_regular_fanins_size != new_node->num_regular_fanins) { return false; } const string& node_name = new_node->node.name(); auto invalid_node_name = [new_node, updated_node_names, node_name](absl::string_view fanin_node_name) { return fanin_node_name == node_name || !CheckNodeNameExists(fanin_node_name, updated_node_names, new_node->graph_view); }; for (const auto& regular : new_node->regular_fanins) { if (invalid_node_name(regular.node())) { return false; } } for (const auto& control : new_node->controlling_fanins) { if (invalid_node_name(control)) { return false; } } return true; } } } } } #endif
#include "tensorflow/core/grappler/utils/graph_view_internal.h" #include "absl/container/flat_hash_map.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/grappler/utils/graph_view.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace utils { namespace internal { namespace { using ::tensorflow::test::function::GDef; using ::tensorflow::test::function::NDef; constexpr char kNodeOp[] = "NotImportant"; GraphDef SimpleTestGraphForMutation() { return GDef( {NDef("a", kNodeOp, {}), NDef("b", kNodeOp, {}), NDef("c", kNodeOp, {}), NDef("d", kNodeOp, {"a:2", "b:3", "a:4", "^c", "^b"}, {{"attr_1", "a"}, {"attr_2", 2.0f}}, "device_d")}, {}); } absl::flat_hash_map<absl::string_view, int> GetUpdatedNodeNames( const MutableGraphView* graph_view) { absl::flat_hash_map<absl::string_view, int> updated_node_names; updated_node_names.reserve(graph_view->NumNodes()); for (const auto& node_view : graph_view->GetNodes()) { updated_node_names.emplace(node_view.GetName(), -1); } return updated_node_names; } using MutableNodeViewDiff = NodeViewDiff<MutableGraphView>; TEST(MutableNodeViewDiffTest, UpdateName) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); MutableNodeViewDiff diff(&graph_view, d_node->node_index()); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); UpdateName(&diff, "e"); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); UpdateName(&diff, "d"); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); } TEST(MutableNodeViewDiffTest, UpdateOp) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); MutableNodeViewDiff diff(&graph_view, d_node->node_index()); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); UpdateOp(&diff, "RandomOp"); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); UpdateOp(&diff, kNodeOp); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); } TEST(MutableNodeViewDiffTest, UpdateDevice) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); MutableNodeViewDiff diff(&graph_view, d_node->node_index()); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); UpdateDevice(&diff, "random_device"); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); UpdateDevice(&diff, "device_d"); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); } TEST(MutableNodeViewDiffTest, AddOrUpdateRegularFanin) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); MutableNodeViewDiff diff(&graph_view, d_node->node_index()); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, -1, {"a", 0}); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, 0, {"a", 2}); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, 0, {"a", 3}); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, 4, {"b", 4}); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, 3, {"c", 4}); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, 5, {"c", 5}); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); } TEST(MutableNodeViewDiffTest, AddOrUpdateRegularFaninBetweenRemovedFanins) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); MutableNodeViewDiff diff(&graph_view, d_node->node_index()); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); RemoveRegularFanin(&diff, 0); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); RemoveRegularFanin(&diff, 2); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, 1, {"c", 1}); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, 0, {"c", 0}); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); RemoveRegularFanin(&diff, 0); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, 2, {"c", 2}); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); } TEST(MutableNodeViewDiffTest, RemoveRegularFanin) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); MutableNodeViewDiff diff(&graph_view, d_node->node_index()); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); RemoveRegularFanin(&diff, -1); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); RemoveRegularFanin(&diff, 3); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, 4, {"b", 4}); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); RemoveRegularFanin(&diff, 4); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, 4, {"b", 4}); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, 3, {"c", 4}); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); RemoveRegularFanin(&diff, 3); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); RemoveRegularFanin(&diff, 4); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, 5, {"b", 6}); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, 3, {"c", 4}); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); RemoveRegularFanin(&diff, 4); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); RemoveRegularFanin(&diff, 3); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); RemoveRegularFanin(&diff, 5); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, 1, {"a", 3}); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); RemoveRegularFanin(&diff, 1); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, 1, {"b", 3}); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); } TEST(MutableNodeViewDiffTest, RemoveRegularFaninResize) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); MutableNodeViewDiff diff(&graph_view, d_node->node_index()); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, 3, {"c", 5}); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, 4, {"c", 6}); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, 5, {"c", 7}); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); RemoveRegularFanin(&diff, 4); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); RemoveRegularFanin(&diff, 5); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); } TEST(MutableNodeViewDiffTest, AddControllingFanin) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); MutableNodeViewDiff diff(&graph_view, d_node->node_index()); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddControllingFanin(&diff, 0, "c"); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddControllingFanin(&diff, kMissingIndex, "a"); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); } TEST(MutableNodeViewDiffTest, RemoveControllingFanin) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); MutableNodeViewDiff diff(&graph_view, d_node->node_index()); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddControllingFanin(&diff, kMissingIndex, "a"); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); RemoveControllingFanin(&diff, 0, "c"); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); RemoveControllingFanin(&diff, kMissingIndex, "a"); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddControllingFanin(&diff, 0, "c"); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); } TEST(MutableNodeViewDiffTest, AddOrUpdateAttribute) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); MutableNodeViewDiff diff(&graph_view, d_node->node_index()); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AttrValue attr_1; attr_1.set_b(true); AddOrUpdateAttribute(&diff, "attr_1", attr_1); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AttrValue attr_3; attr_3.set_i(4); AddOrUpdateAttribute(&diff, "attr_1", attr_3); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); } TEST(MutableNodeViewDiffTest, RemoveAttribute) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); MutableNodeViewDiff diff(&graph_view, d_node->node_index()); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AttrValue attr_1; attr_1.set_b(true); AddOrUpdateAttribute(&diff, "attr_1", attr_1); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); RemoveAttribute(&diff, "attr_1"); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); RemoveAttribute(&diff, "attr_3"); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); } TEST(MutableNodeViewDiffTest, Reset) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); MutableNodeViewDiff diff(&graph_view, d_node->node_index()); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); RemoveRegularFanin(&diff, 2); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddControllingFanin(&diff, kMissingIndex, "a"); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AttrValue attr_1; attr_1.set_b(true); AddOrUpdateAttribute(&diff, "attr_1", attr_1); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); Reset(&diff); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); } TEST(MutableNodeViewDiffTest, IsWellFormedWithRemovedAndAppendedFanins) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); MutableNodeViewDiff diff(&graph_view, d_node->node_index()); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); RemoveRegularFanin(&diff, 2); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, 3, {"a", 8}); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); } TEST(MutableNodeViewDiffTest, IsWellFormedSelfLoopRegularUpdate) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); MutableNodeViewDiff diff(&graph_view, d_node->node_index()); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, 0, {"d", 1}); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); } TEST(MutableNodeViewDiffTest, IsWellFormedSelfLoopRegularNew) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); MutableNodeViewDiff diff(&graph_view, d_node->node_index()); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, 3, {"d", 1}); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); } TEST(MutableNodeViewDiffTest, IsWellFormedSelfLoopControl) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); MutableNodeViewDiff diff(&graph_view, d_node->node_index()); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddControllingFanin(&diff, kMissingIndex, "d"); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); } TEST(MutableNodeViewDiffTest, IsWellFormedMissingFaninRegularUpdate) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); MutableNodeViewDiff diff(&graph_view, d_node->node_index()); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, 0, {"e", 1}); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); } TEST(MutableNodeViewDiffTest, IsWellFormedMissingFaninRegularNew) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); MutableNodeViewDiff diff(&graph_view, d_node->node_index()); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, 3, {"e", 1}); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); } TEST(MutableNodeViewDiffTest, IsWellFormedMissingControl) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); MutableNodeViewDiff diff(&graph_view, d_node->node_index()); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddControllingFanin(&diff, kMissingIndex, "e"); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); } TEST(MutableNodeViewDiffTest, IsWellFormedRenamedSelfLoopRegularUpdate) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); MutableNodeViewDiff diff(&graph_view, d_node->node_index()); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); string old_node_name = "d"; string new_node_name = "e"; updated_node_names.erase(old_node_name); updated_node_names.emplace(old_node_name, 3); updated_node_names.emplace(new_node_name, -1); UpdateName(&diff, "e"); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, 0, {"e", 1}); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); } TEST(MutableNodeViewDiffTest, IsWellFormedRenamedSelfLoopRegularNew) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); MutableNodeViewDiff diff(&graph_view, d_node->node_index()); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); string old_node_name = "d"; string new_node_name = "e"; updated_node_names.erase(old_node_name); updated_node_names.emplace(old_node_name, 3); updated_node_names.emplace(new_node_name, -1); UpdateName(&diff, "e"); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, 3, {"e", 1}); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); } TEST(MutableNodeViewDiffTest, IsWellFormedRenamedSelfLoopControl) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); MutableNodeViewDiff diff(&graph_view, d_node->node_index()); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); string old_node_name = "d"; string new_node_name = "e"; updated_node_names.erase(old_node_name); updated_node_names.emplace(old_node_name, 3); updated_node_names.emplace(new_node_name, -1); UpdateName(&diff, "e"); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddControllingFanin(&diff, kMissingIndex, "e"); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); } TEST(MutableNodeViewDiffTest, IsWellFormedRenamedMissingFaninRegularUpdate) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); MutableNodeViewDiff diff(&graph_view, d_node->node_index()); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); string old_node_name = "d"; string new_node_name = "e"; updated_node_names.erase(old_node_name); updated_node_names.emplace(old_node_name, 3); updated_node_names.emplace(new_node_name, -1); UpdateName(&diff, "e"); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, 0, {"f", 1}); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); } TEST(MutableNodeViewDiffTest, IsWellFormedRenamedMissingFaninRegularNew) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); MutableNodeViewDiff diff(&graph_view, d_node->node_index()); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); string old_node_name = "d"; string new_node_name = "e"; updated_node_names.erase(old_node_name); updated_node_names.emplace(old_node_name, 3); updated_node_names.emplace(new_node_name, -1); UpdateName(&diff, "e"); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddOrUpdateRegularFanin(&diff, 3, {"f", 1}); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); } TEST(MutableNodeViewDiffTest, IsWellFormedRenamedMissingFaninControl) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); MutableNodeViewDiff diff(&graph_view, d_node->node_index()); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); string old_node_name = "d"; string new_node_name = "e"; updated_node_names.erase(old_node_name); updated_node_names.emplace(old_node_name, 3); updated_node_names.emplace(new_node_name, -1); UpdateName(&diff, "e"); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); AddControllingFanin(&diff, kMissingIndex, "f"); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); } TEST(MutableNodeViewDiffTest, RenamedAndRemovedFanins) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); MutableNodeViewDiff diff(&graph_view, d_node->node_index()); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); string old_node_name = "d"; string new_node_name = "e"; updated_node_names.erase(old_node_name); updated_node_names.emplace(old_node_name, 3); updated_node_names.emplace(new_node_name, -1); UpdateName(&diff, "e"); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); for (int i = 0; i < 3; ++i) { RemoveRegularFanin(&diff, i); } RemoveControllingFanin(&diff, 0, "c"); RemoveControllingFanin(&diff, 0, "b"); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); } TEST(MutableNodeViewDiffTest, RenamedWithSelfLoopControl) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); MutableNodeViewDiff diff(&graph_view, d_node->node_index()); EXPECT_TRUE(IsEmpty(&diff)); EXPECT_TRUE(IsWellFormed(&diff, updated_node_names)); updated_node_names.erase("d"); UpdateName(&diff, "c"); EXPECT_FALSE(IsEmpty(&diff)); EXPECT_FALSE(IsWellFormed(&diff, updated_node_names)); } using MutationNewNodeForTest = NewNode<MutableGraphView>; TEST(MutationNewNodeTest, UpdateName) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutationNewNodeForTest new_node(&graph_view, {}); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); UpdateName(&new_node, "new"); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); UpdateName(&new_node, ""); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); } TEST(MutationNewNodeTest, UpdateOp) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutationNewNodeForTest new_node(&graph_view, {}); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); UpdateOp(&new_node, "Identity"); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); UpdateOp(&new_node, ""); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); } TEST(MutationNewNodeTest, UpdateDevice) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutationNewNodeForTest new_node(&graph_view, {}); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); UpdateDevice(&new_node, "foo_device"); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); UpdateDevice(&new_node, ""); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); } TEST(MutationNewNodeTest, AddOrUpdateRegularFanin) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutationNewNodeForTest new_node(&graph_view, {}); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); UpdateName(&new_node, "new"); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); AddOrUpdateRegularFanin(&new_node, -1, {"a", 1}); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); AddOrUpdateRegularFanin(&new_node, 1, {"a", 1}); EXPECT_FALSE(IsWellFormed(&new_node, updated_node_names)); AddOrUpdateRegularFanin(&new_node, 0, {"b", 2}); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); AddOrUpdateRegularFanin(&new_node, 2, {"c", 3}); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); AddOrUpdateRegularFanin(&new_node, 1, {"d", 4}); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); AddOrUpdateRegularFanin(&new_node, 1, {"e", 5}); EXPECT_FALSE(IsWellFormed(&new_node, updated_node_names)); AddOrUpdateRegularFanin(&new_node, 1, {"new", 6}); EXPECT_FALSE(IsWellFormed(&new_node, updated_node_names)); AddOrUpdateRegularFanin(&new_node, 1, {"d", 4}); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); } TEST(MutationNewNodeTest, RemoveRegularFanin) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutationNewNodeForTest new_node(&graph_view, {}); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); UpdateName(&new_node, "new"); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); AddOrUpdateRegularFanin(&new_node, 0, {"a", 1}); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); AddOrUpdateRegularFanin(&new_node, 1, {"b", 2}); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); AddOrUpdateRegularFanin(&new_node, 2, {"c", 3}); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); RemoveRegularFanin(&new_node, 3); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); RemoveRegularFanin(&new_node, 2); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); RemoveRegularFanin(&new_node, 0); EXPECT_FALSE(IsWellFormed(&new_node, updated_node_names)); RemoveRegularFanin(&new_node, 1); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); } TEST(MutationNewNodeTest, AddControllingFanin) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutationNewNodeForTest new_node(&graph_view, {}); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); UpdateName(&new_node, "new"); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); AddControllingFanin(&new_node, "a"); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); AddControllingFanin(&new_node, "e"); EXPECT_FALSE(IsWellFormed(&new_node, updated_node_names)); AddControllingFanin(&new_node, "new"); EXPECT_FALSE(IsWellFormed(&new_node, updated_node_names)); RemoveControllingFanin(&new_node, "e"); RemoveControllingFanin(&new_node, "new"); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); } TEST(MutationNewNodeTest, RemoveControllingFanin) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutationNewNodeForTest new_node(&graph_view, {}); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); UpdateName(&new_node, "new"); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); AddControllingFanin(&new_node, "a"); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); RemoveControllingFanin(&new_node, "e"); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); RemoveControllingFanin(&new_node, "new"); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); RemoveControllingFanin(&new_node, "a"); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); } TEST(MutationNewNodeTest, AddOrUpdateAttribute) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutationNewNodeForTest new_node(&graph_view, {}); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); string attr_name = "attr_name"; AttrValue attr_1; attr_1.set_i(8); AddOrUpdateAttribute(&new_node, attr_name, attr_1); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); AttrValue attr_2; attr_2.set_f(2.0f); AddOrUpdateAttribute(&new_node, attr_name, attr_2); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); } TEST(MutationNewNodeTest, RemoveAttribute) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); auto updated_node_names = GetUpdatedNodeNames(&graph_view); MutationNewNodeForTest new_node(&graph_view, {}); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); string attr_name = "attr_name"; AttrValue attr_1; attr_1.set_i(8); AddOrUpdateAttribute(&new_node, attr_name, attr_1); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); RemoveAttribute(&new_node, attr_name); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); RemoveAttribute(&new_node, attr_name); EXPECT_TRUE(IsWellFormed(&new_node, updated_node_names)); } } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/graph_view_internal.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/graph_view_internal_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
13af8cfa-a80f-4abd-b903-d4e5aa058635
cpp
tensorflow/tensorflow
while_loop_trip_count_annotator
third_party/xla/xla/service/while_loop_trip_count_annotator.cc
third_party/xla/xla/service/while_loop_trip_count_annotator_test.cc
#include "xla/service/while_loop_trip_count_annotator.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/while_loop_analysis.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" namespace xla { absl::StatusOr<bool> WhileLoopTripCountAnnotator::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (const HloComputation* comp : module->computations(execution_threads)) { for (HloInstruction* instr : comp->instructions()) { if (instr->opcode() != HloOpcode::kWhile) { continue; } if (auto trip_count = ComputeWhileLoopTripCount(instr)) { WhileLoopBackendConfig config; config.mutable_known_trip_count()->set_n(*trip_count); TF_RETURN_IF_ERROR(instr->set_backend_config(config)); changed = true; } } } return changed; } }
#include "xla/service/while_loop_trip_count_annotator.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class TripCountAnnotatorTest : public HloTestBase {}; TEST_F(TripCountAnnotatorTest, KnownSmallTripCount) { const char* kModuleStr = R"( HloModule test Body { param = (s32[]) parameter(0) i = s32[] get-tuple-element(param), index=0 one = s32[] constant(1) i_plus_one = s32[] add(i, one) ROOT tuple = (s32[]) tuple(i_plus_one) } Cond { param = (s32[]) parameter(0) i = s32[] get-tuple-element(param), index=0 trip_count = s32[] constant(10) ROOT done = pred[] compare(i, trip_count), direction=LT } ENTRY test { i_start = s32[] constant(0) initial_tuple = (s32[]) tuple(i_start) ROOT while = (s32[]) while(initial_tuple), condition=Cond, body=Body })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kModuleStr)); WhileLoopTripCountAnnotator pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, m.get())); ASSERT_TRUE(changed); TF_ASSERT_OK_AND_ASSIGN(auto config, m->entry_computation() ->root_instruction() ->backend_config<WhileLoopBackendConfig>()); EXPECT_EQ(10, config.known_trip_count().n()); } TEST_F(TripCountAnnotatorTest, KnownLargeTripCount) { const char* kModuleStr = R"( HloModule test Body { param = (s32[]) parameter(0) i = s32[] get-tuple-element(param), index=0 one = s32[] constant(1) i_plus_one = s32[] add(i, one) ROOT tuple = (s32[]) tuple(i_plus_one) } Cond { param = (s32[]) parameter(0) i = s32[] get-tuple-element(param), index=0 trip_count = s32[] constant(1000000) ROOT done = pred[] compare(i, trip_count), direction=LT } ENTRY test { i_start = s32[] constant(0) initial_tuple = (s32[]) tuple(i_start) ROOT while = (s32[]) while(initial_tuple), condition=Cond, body=Body })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kModuleStr)); WhileLoopTripCountAnnotator pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, m.get())); ASSERT_TRUE(changed); TF_ASSERT_OK_AND_ASSIGN(auto config, m->entry_computation() ->root_instruction() ->backend_config<WhileLoopBackendConfig>()); EXPECT_EQ(1000000, config.known_trip_count().n()); } TEST_F(TripCountAnnotatorTest, NonzeroStart) { const char* kModuleStr = R"( HloModule test Body { param = (s32[]) parameter(0) i = s32[] get-tuple-element(param), index=0 one = s32[] constant(1) i_plus_one = s32[] add(i, one) ROOT tuple = (s32[]) tuple(i_plus_one) } Cond { param = (s32[]) parameter(0) i = s32[] get-tuple-element(param), index=0 trip_count = s32[] constant(1000000) ROOT done = pred[] compare(i, trip_count), direction=LT } ENTRY test { i_start = s32[] constant(10) initial_tuple = (s32[]) tuple(i_start) ROOT while = (s32[]) while(initial_tuple), condition=Cond, body=Body })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kModuleStr)); WhileLoopTripCountAnnotator pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, m.get())); ASSERT_TRUE(changed); TF_ASSERT_OK_AND_ASSIGN(auto config, m->entry_computation() ->root_instruction() ->backend_config<WhileLoopBackendConfig>()); EXPECT_EQ(999990, config.known_trip_count().n()); } TEST_F(TripCountAnnotatorTest, LessThanOrEqualTo) { const char* kModuleStr = R"( HloModule test Body { param = (s32[]) parameter(0) i = s32[] get-tuple-element(param), index=0 one = s32[] constant(1) i_plus_one = s32[] add(i, one) ROOT tuple = (s32[]) tuple(i_plus_one) } Cond { param = (s32[]) parameter(0) i = s32[] get-tuple-element(param), index=0 trip_count = s32[] constant(1000000) ROOT done = pred[] compare(i, trip_count), direction=LE } ENTRY test { i_start = s32[] constant(10) initial_tuple = (s32[]) tuple(i_start) ROOT while = (s32[]) while(initial_tuple), condition=Cond, body=Body })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kModuleStr)); WhileLoopTripCountAnnotator pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, m.get())); ASSERT_TRUE(changed); TF_ASSERT_OK_AND_ASSIGN(auto config, m->entry_computation() ->root_instruction() ->backend_config<WhileLoopBackendConfig>()); EXPECT_EQ(999991, config.known_trip_count().n()); } TEST_F(TripCountAnnotatorTest, Int64Overflow) { const char* kModuleStr = R"( HloModule test Body { param = (s64[]) parameter(0) i = s64[] get-tuple-element(param), index=0 one = s64[] constant(1) i_plus_one = s64[] add(i, one) ROOT tuple = (s64[]) tuple(i_plus_one) } Cond { param = (s64[]) parameter(0) i = s64[] get-tuple-element(param), index=0 trip_count = s64[] constant(9223372036854775807) ROOT done = pred[] compare(i, trip_count), direction=LE } ENTRY test { i_start = s64[] constant(-9223372036854775808) initial_tuple = (s64[]) tuple(i_start) ROOT while = (s64[]) while(initial_tuple), condition=Cond, body=Body })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kModuleStr)); WhileLoopTripCountAnnotator pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, m.get())); EXPECT_FALSE(changed); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/while_loop_trip_count_annotator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/while_loop_trip_count_annotator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5a10386a-666e-4dfa-b3e2-222f710c08c7
cpp
tensorflow/tensorflow
random_dataset_op
tensorflow/core/kernels/data/experimental/random_dataset_op.cc
tensorflow/core/kernels/data/experimental/random_dataset_op_test.cc
#include "tensorflow/core/kernels/data/experimental/random_dataset_op.h" #include <string> #include <utility> #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/name_utils.h" #include "tensorflow/core/data/split_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/partial_tensor_shape.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/kernels/data/random_seed_ops.h" #include "tensorflow/core/lib/random/philox_random.h" #include "tensorflow/core/lib/random/random.h" #include "tensorflow/core/lib/random/random_distributions.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace data { namespace experimental { constexpr const char* const RandomDatasetOp::kDatasetType; constexpr const char* const RandomDatasetOp::kSeed; constexpr const char* const RandomDatasetOp::kSeed2; constexpr const char* const RandomDatasetOp::kOutputTypes; constexpr const char* const RandomDatasetOp::kOutputShapes; constexpr const char* const RandomDatasetOp::kRerandomizeEachIteration; namespace { constexpr char kRandomDatasetV1[] = "RandomDataset"; constexpr char kRandomDatasetV2[] = "RandomDatasetV2"; constexpr char kSeedGenerator[] = "SeedGenerator"; constexpr char kEpochNumRandomSamples[] = "epoch_num_random_samples"; constexpr char kNumRandomSamples[] = "num_random_samples"; } class RandomDatasetOp::Dataset : public DatasetBase { public: Dataset(OpKernelContext* ctx, RandomSeeds&& seeds, SeedGeneratorManager* manager, ResourceHandle&& resource_handle, bool owns_resource, int op_version) : DatasetBase(DatasetContext(ctx)), seeds_(std::move(seeds)), op_version_(op_version), manager_(manager), resource_handle_(resource_handle), resource_mgr_(ctx->resource_manager()), owns_resource_(owns_resource) {} ~Dataset() override { manager_->Unref(); if (owns_resource_) { Status s = resource_mgr_->Delete<SeedGeneratorManager>( resource_handle_.container(), resource_handle_.name()); if (!s.ok()) { LOG(WARNING) << "Failed to delete RNG resource: " << s; } } } Status MakeSplitProviders(std::vector<std::unique_ptr<SplitProvider>>* split_providers) const override { split_providers->push_back(std::make_unique<IndexSplitProvider>(kint64max)); return absl::OkStatus(); } std::unique_ptr<IteratorBase> MakeIteratorInternal( const string& prefix) const override { return std::make_unique<Iterator>( Iterator::Params{this, strings::StrCat(prefix, "::Random")}, manager_->get().get()); } const DataTypeVector& output_dtypes() const override { static DataTypeVector* dtypes = new DataTypeVector({DT_INT64}); return *dtypes; } const std::vector<PartialTensorShape>& output_shapes() const override { static std::vector<PartialTensorShape>* shapes = new std::vector<PartialTensorShape>({{}}); return *shapes; } string DebugString() const override { name_utils::DatasetDebugStringParams params; params.op_version = op_version_; params.set_args(seeds_.input_seed(), seeds_.input_seed2()); return name_utils::DatasetDebugString(RandomDatasetOp::kDatasetType, params); } int64_t CardinalityInternal(CardinalityOptions options) const override { return kInfiniteCardinality; } Status InputDatasets(std::vector<const DatasetBase*>* inputs) const override { return absl::OkStatus(); } Status CheckExternalState() const override { return absl::OkStatus(); } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** output) const override { Node* seed_node = nullptr; Node* seed2_node = nullptr; TF_RETURN_IF_ERROR(b->AddScalar(seeds_.input_seed(), &seed_node)); TF_RETURN_IF_ERROR(b->AddScalar(seeds_.input_seed2(), &seed2_node)); if (op_version_ == 1) { return b->AddDataset(this, {seed_node, seed2_node}, output); } Node* resource_handle_node = nullptr; Tensor handle(DT_RESOURCE, TensorShape({})); handle.scalar<ResourceHandle>()() = resource_handle_; TF_RETURN_IF_ERROR(b->AddTensor(handle, &resource_handle_node)); AttrValue rerandomize_each_iteration; b->BuildAttrValue(manager_->get()->reshuffle_each_iteration(), &rerandomize_each_iteration); return b->AddDataset( this, {seed_node, seed2_node, resource_handle_node}, {std::make_pair(kRerandomizeEachIteration, rerandomize_each_iteration)}, output); } private: class Iterator : public DatasetIterator<Dataset> { public: Iterator(const Params& params, SeedGenerator* seed_generator) : DatasetIterator<Dataset>(params), seed_generator_(seed_generator), parent_generator_(seed_generator_->seed(), seed_generator_->seed2()), generator_(&parent_generator_) {} bool SymbolicCheckpointCompatible() const override { return true; } Status Initialize(IteratorContext* ctx) override { mutex_lock l(mu_); seed_generator_->GenerateSeeds(&seed_, &seed2_); ResetRngs(); return absl::OkStatus(); } Status GetNextInternal(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) override { out_tensors->reserve(1); mutex_lock l(mu_); out_tensors->emplace_back(ctx->allocator({}), DT_INT64, TensorShape({})); out_tensors->back().scalar<int64_t>()() = Random(); *end_of_sequence = false; return absl::OkStatus(); } std::shared_ptr<model::Node> CreateNode( IteratorContext* ctx, model::Node::Args args) const override { return model::MakeSourceNode(std::move(args)); } Status SaveInternal(SerializationContext* ctx, IteratorStateWriter* writer) override { mutex_lock l(mu_); TF_RETURN_IF_ERROR( writer->WriteScalar(full_name(kEpochNumRandomSamples), seed_generator_->num_random_samples())); TF_RETURN_IF_ERROR(writer->WriteScalar(this->full_name(kNumRandomSamples), num_random_samples_)); TF_RETURN_IF_ERROR(writer->WriteScalar(this->full_name(kSeed), seed_)); TF_RETURN_IF_ERROR(writer->WriteScalar(this->full_name(kSeed2), seed2_)); return absl::OkStatus(); } Status RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override { mutex_lock l(mu_); int64_t num_random_samples; TF_RETURN_IF_ERROR(reader->ReadScalar(full_name(kEpochNumRandomSamples), &num_random_samples)); seed_generator_->set_num_random_samples(num_random_samples); seed_generator_->Reset(); TF_RETURN_IF_ERROR(reader->ReadScalar(this->full_name(kNumRandomSamples), &num_random_samples_)); TF_RETURN_IF_ERROR(reader->ReadScalar(this->full_name(kSeed), &seed_)); TF_RETURN_IF_ERROR(reader->ReadScalar(this->full_name(kSeed2), &seed2_)); ResetRngs(); return absl::OkStatus(); } protected: void ResetRngs() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { parent_generator_ = random::PhiloxRandom(seed_, seed2_); generator_ = random::SingleSampleAdapter<random::PhiloxRandom>(&parent_generator_); generator_.Skip(num_random_samples_); } private: random::SingleSampleAdapter<random::PhiloxRandom>::ResultType Random() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { num_random_samples_++; auto out = generator_(); return out; } mutex mu_; SeedGenerator* const seed_generator_ TF_GUARDED_BY(mu_); random::PhiloxRandom parent_generator_ TF_GUARDED_BY(mu_); random::SingleSampleAdapter<random::PhiloxRandom> generator_ TF_GUARDED_BY(mu_); int64_t num_random_samples_ TF_GUARDED_BY(mu_) = 0; int64_t seed_ TF_GUARDED_BY(mu_) = 0; int64_t seed2_ TF_GUARDED_BY(mu_) = 0; }; private: const RandomSeeds seeds_; const int op_version_; SeedGeneratorManager* const manager_; const ResourceHandle resource_handle_; ResourceMgr* const resource_mgr_; const bool owns_resource_; }; RandomDatasetOp::RandomDatasetOp(OpKernelConstruction* ctx) : DatasetOpKernel(ctx) { auto& op_name = ctx->def().op(); if (op_name == kRandomDatasetV2) { op_version_ = 2; } else if (op_name == kRandomDatasetV1) { op_version_ = 1; } if (ctx->HasAttr(kRerandomizeEachIteration)) { OP_REQUIRES_OK(ctx, ctx->GetAttr(kRerandomizeEachIteration, &rerandomize_each_iteration_)); } } void RandomDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase** output) { int64_t seed; OP_REQUIRES_OK(ctx, ParseScalarArgument<int64_t>(ctx, "seed", &seed)); int64_t seed2; OP_REQUIRES_OK(ctx, ParseScalarArgument<int64_t>(ctx, "seed2", &seed2)); RandomSeeds seeds(seed, seed2); static std::atomic<int64_t> resource_id_counter(0); const string& container = ctx->resource_manager()->default_container(); auto name = strings::StrCat(ctx->op_kernel().name(), "/", kSeedGenerator, "_", resource_id_counter.fetch_add(1)); SeedGeneratorManager* manager = nullptr; ResourceHandle handle; bool owns_resource = true; if (op_version_ == 2) { OP_REQUIRES_OK(ctx, HandleFromInput(ctx, 2, &handle)); Status s = ctx->resource_manager()->Lookup<SeedGeneratorManager>( handle.container(), handle.name(), &manager); owns_resource = false; if (errors::IsNotFound(s)) { owns_resource = true; } else { OP_REQUIRES_OK(ctx, s); } } if (owns_resource) { OP_REQUIRES_OK( ctx, ctx->resource_manager()->LookupOrCreate<SeedGeneratorManager>( container, name, &manager, [rerandomize = rerandomize_each_iteration_, &seeds](SeedGeneratorManager** manager) { if (rerandomize) { *manager = new SeedGeneratorManager(new RandomSeedGenerator(seeds)); } else { *manager = new SeedGeneratorManager(new FixedSeedGenerator(seeds)); } return absl::OkStatus(); })); handle = MakeResourceHandle<SeedGenerator>(ctx, container, name); } *output = new RandomDatasetOp::Dataset(ctx, std::move(seeds), manager, std::move(handle), owns_resource, op_version_); } namespace { REGISTER_KERNEL_BUILDER(Name(kRandomDatasetV1).Device(DEVICE_CPU), RandomDatasetOp); REGISTER_KERNEL_BUILDER(Name(kRandomDatasetV2).Device(DEVICE_CPU), RandomDatasetOp); REGISTER_KERNEL_BUILDER(Name("ExperimentalRandomDataset").Device(DEVICE_CPU), RandomDatasetOp); } } } }
#include "tensorflow/core/kernels/data/experimental/random_dataset_op.h" #include <vector> #include "tensorflow/core/data/dataset_test_base.h" #include "tensorflow/core/kernels/data/random_seed_ops.h" #include "tensorflow/core/lib/random/philox_random.h" #include "tensorflow/core/lib/random/random_distributions.h" namespace tensorflow { namespace data { namespace experimental { namespace { constexpr char kNodeName[] = "random_dataset"; constexpr char kIteratorPrefix[] = "Iterator"; constexpr int kCount = 10; void GenerateExpectedEpochData(int64_t seed, int64_t seed2, int count, std::vector<Tensor>* epoch_data) { auto parent_generator = random::PhiloxRandom(seed, seed2); auto generator = random::SingleSampleAdapter<random::PhiloxRandom>(&parent_generator); for (int i = 0; i < count; ++i) { epoch_data->push_back( CreateTensor<int64_t>(TensorShape({}), {generator()})); } } std::vector<Tensor> GenerateExpectedData(int64_t seed, int64_t seed2, int count, bool rerandomize_each_iteration, int iterations) { RandomSeedGenerator parent_seed_generator(RandomSeeds(seed, seed2)); std::vector<Tensor> ret; for (int j = 0; j < iterations; ++j) { if (rerandomize_each_iteration) { parent_seed_generator.GenerateSeeds(&seed, &seed2); } GenerateExpectedEpochData(seed, seed2, count, &ret); } return ret; } std::vector<Tensor> GenerateExpectedSaveAndRestoreData( int64_t seed, int64_t seed2, int count, bool rerandomize_each_iteration) { RandomSeedGenerator parent_seed_generator(RandomSeeds(seed, seed2)); if (rerandomize_each_iteration) { parent_seed_generator.GenerateSeeds(&seed, &seed2); parent_seed_generator.GenerateSeeds(&seed, &seed2); } std::vector<Tensor> ret; GenerateExpectedEpochData(seed, seed2, count, &ret); return ret; } class RandomDatasetParams : public DatasetParams { public: RandomDatasetParams(int64_t seed, int64_t seed2, int32_t op_version, bool rerandomize_each_iteration, DataTypeVector output_dtypes, std::vector<PartialTensorShape> output_shapes, string node_name) : DatasetParams(std::move(output_dtypes), std::move(output_shapes), std::move(node_name)), seed_(CreateTensor<int64_t>(TensorShape({}), {seed})), seed2_(CreateTensor<int64_t>(TensorShape({}), {seed2})), dummy_resource_handle_(CreateDummyResourceHandle()), seed_generator_resource_(CreateTensor<ResourceHandle>( TensorShape({}), {dummy_resource_handle_})), rerandomize_each_iteration_(rerandomize_each_iteration) { op_version_ = op_version; } ResourceHandle CreateDummyResourceHandle() { return ResourceHandle(); } virtual std::vector<Tensor> GetInputTensors() const override { return {seed_, seed2_, seed_generator_resource_}; } virtual Status GetInputNames( std::vector<string>* input_names) const override { *input_names = {RandomDatasetOp::kSeed, RandomDatasetOp::kSeed2}; if (op_version_ == 2) { input_names->emplace_back("seed_generator"); } return absl::OkStatus(); } virtual Status GetAttributes(AttributeVector* attributes) const override { *attributes = {{"output_types", output_dtypes_}, {"output_shapes", output_shapes_}, {"metadata", ""}}; if (op_version_ == 2) { attributes->emplace_back("rerandomize_each_iteration", rerandomize_each_iteration_); } return absl::OkStatus(); } virtual string dataset_type() const override { return RandomDatasetOp::kDatasetType; } private: Tensor seed_; Tensor seed2_; ResourceHandle dummy_resource_handle_; Tensor seed_generator_resource_; bool rerandomize_each_iteration_; }; class RandomDatasetOpTest : public DatasetOpsTestBase {}; RandomDatasetParams FortyTwo() { return {42, 42, 1, false, {DT_INT64}, {PartialTensorShape({})}, kNodeName}; } RandomDatasetParams ChangeSeed() { return {1000, 42, 1, false, {DT_INT64}, {PartialTensorShape({})}, kNodeName}; } RandomDatasetParams ChangeSeed2() { return {42, 1000, 1, false, {DT_INT64}, {PartialTensorShape({})}, kNodeName}; } RandomDatasetParams FortyTwoV2RerandomizeEachIterationFalse() { return {42, 42, 2, false, {DT_INT64}, {PartialTensorShape({})}, kNodeName}; } RandomDatasetParams ChangeSeedV2RerandomizeEachIterationFalse() { return {1000, 42, 2, false, {DT_INT64}, {PartialTensorShape({})}, kNodeName}; } RandomDatasetParams ChangeSeed2V2RerandomizeEachIterationFalse() { return {42, 1000, 2, false, {DT_INT64}, {PartialTensorShape({})}, kNodeName}; } RandomDatasetParams FortyTwoV2RerandomizeEachIterationTrue() { return {42, 42, 2, true, {DT_INT64}, {PartialTensorShape({})}, kNodeName}; } RandomDatasetParams ChangeSeedV2RerandomizeEachIterationTrue() { return {1000, 42, 2, true, {DT_INT64}, {PartialTensorShape({})}, kNodeName}; } RandomDatasetParams ChangeSeed2V2RerandomizeEachIterationTrue() { return {42, 1000, 2, true, {DT_INT64}, {PartialTensorShape({})}, kNodeName}; } class ParameterizedGetNextTest : public RandomDatasetOpTest, public ::testing::WithParamInterface< GetNextTestCase<RandomDatasetParams>> {}; std::vector<GetNextTestCase<RandomDatasetParams>> GetNextTestCases() { return {{FortyTwo(), GenerateExpectedData( 42, 42, kCount, false, 2)}, {ChangeSeed(), GenerateExpectedData( 1000, 42, kCount, false, 2)}, {ChangeSeed2(), GenerateExpectedData( 42, 1000, kCount, false, 2)}, {FortyTwoV2RerandomizeEachIterationFalse(), GenerateExpectedData( 42, 42, kCount, false, 2)}, {ChangeSeedV2RerandomizeEachIterationFalse(), GenerateExpectedData( 1000, 42, kCount, false, 2)}, {ChangeSeed2V2RerandomizeEachIterationFalse(), GenerateExpectedData( 42, 1000, kCount, false, 2)}, {FortyTwoV2RerandomizeEachIterationTrue(), GenerateExpectedData( 42, 42, kCount, true, 2)}, {ChangeSeedV2RerandomizeEachIterationTrue(), GenerateExpectedData( 1000, 42, kCount, true, 2)}, {ChangeSeed2V2RerandomizeEachIterationTrue(), GenerateExpectedData( 42, 1000, kCount, true, 2)}}; } TEST_P(ParameterizedGetNextTest, GetNext) { auto test_case = GetParam(); TF_ASSERT_OK(Initialize(test_case.dataset_params)); bool end_of_sequence = false; std::vector<Tensor> out_tensors; while (out_tensors.size() < kCount) { std::vector<Tensor> next; TF_ASSERT_OK( iterator_->GetNext(iterator_ctx_.get(), &next, &end_of_sequence)); ASSERT_FALSE(end_of_sequence); out_tensors.insert(out_tensors.end(), next.begin(), next.end()); } TF_ASSERT_OK(dataset_->MakeIterator( iterator_ctx_.get(), nullptr, test_case.dataset_params.iterator_prefix(), &iterator_)); while (out_tensors.size() < 2 * kCount) { std::vector<Tensor> next; TF_ASSERT_OK( iterator_->GetNext(iterator_ctx_.get(), &next, &end_of_sequence)); ASSERT_FALSE(end_of_sequence); out_tensors.insert(out_tensors.end(), next.begin(), next.end()); } TF_ASSERT_OK(ExpectEqual(out_tensors, test_case.expected_outputs, true)); } INSTANTIATE_TEST_SUITE_P( RandomDatasetOpTest, ParameterizedGetNextTest, ::testing::ValuesIn( std::vector<GetNextTestCase<RandomDatasetParams>>(GetNextTestCases()))); std::vector<DatasetNodeNameTestCase<RandomDatasetParams>> DatasetNodeNameTestCases() { return {{FortyTwo(), kNodeName}}; } DATASET_NODE_NAME_TEST_P(RandomDatasetOpTest, RandomDatasetParams, DatasetNodeNameTestCases()); std::vector<DatasetTypeStringTestCase<RandomDatasetParams>> DatasetTypeStringTestCases() { return {{FortyTwo(), name_utils::OpName( RandomDatasetOp::kDatasetType)}}; } DATASET_TYPE_STRING_TEST_P(RandomDatasetOpTest, RandomDatasetParams, DatasetTypeStringTestCases()); std::vector<DatasetOutputDtypesTestCase<RandomDatasetParams>> DatasetOutputDtypesTestCases() { return {{FortyTwo(), {DT_INT64}}}; } DATASET_OUTPUT_DTYPES_TEST_P(RandomDatasetOpTest, RandomDatasetParams, DatasetOutputDtypesTestCases()); std::vector<DatasetOutputShapesTestCase<RandomDatasetParams>> DatasetOutputShapesTestCases() { return {{FortyTwo(), {PartialTensorShape({})}}}; } DATASET_OUTPUT_SHAPES_TEST_P(RandomDatasetOpTest, RandomDatasetParams, DatasetOutputShapesTestCases()); std::vector<CardinalityTestCase<RandomDatasetParams>> CardinalityTestCases() { return {{FortyTwo(), kInfiniteCardinality}}; } DATASET_CARDINALITY_TEST_P(RandomDatasetOpTest, RandomDatasetParams, CardinalityTestCases()); std::vector<IteratorOutputDtypesTestCase<RandomDatasetParams>> IteratorOutputDtypesTestCases() { return {{FortyTwo(), {DT_INT64}}}; } ITERATOR_OUTPUT_DTYPES_TEST_P(RandomDatasetOpTest, RandomDatasetParams, IteratorOutputDtypesTestCases()); std::vector<IteratorOutputShapesTestCase<RandomDatasetParams>> IteratorOutputShapesTestCases() { return {{FortyTwo(), {PartialTensorShape({})}}}; } ITERATOR_OUTPUT_SHAPES_TEST_P(RandomDatasetOpTest, RandomDatasetParams, IteratorOutputShapesTestCases()); std::vector<IteratorPrefixTestCase<RandomDatasetParams>> IteratorOutputPrefixTestCases() { return {{FortyTwo(), name_utils::IteratorPrefix( RandomDatasetOp::kDatasetType, kIteratorPrefix)}}; } ITERATOR_PREFIX_TEST_P(RandomDatasetOpTest, RandomDatasetParams, IteratorOutputPrefixTestCases()); std::vector<IteratorSaveAndRestoreTestCase<RandomDatasetParams>> IteratorSaveAndRestoreTestCases() { return {{FortyTwo(), {2, 5, 8}, GenerateExpectedSaveAndRestoreData( 42, 42, 9 , false)}, {FortyTwoV2RerandomizeEachIterationFalse(), {2, 5, 8}, GenerateExpectedSaveAndRestoreData( 42, 42, 9 , false)}, {FortyTwoV2RerandomizeEachIterationTrue(), {2, 5, 8}, GenerateExpectedSaveAndRestoreData( 42, 42, 9 , true)}}; } ITERATOR_SAVE_AND_RESTORE_TEST_P(RandomDatasetOpTest, RandomDatasetParams, IteratorSaveAndRestoreTestCases()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/experimental/random_dataset_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/experimental/random_dataset_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8a9d037e-3b07-40e2-a833-78cd5a534886
cpp
google/quiche
quic_error_codes
quiche/quic/core/quic_error_codes.cc
quiche/quic/core/quic_error_codes_test.cc
#include "quiche/quic/core/quic_error_codes.h" #include <cstdint> #include <cstring> #include <ostream> #include <string> #include "absl/strings/str_cat.h" #include "openssl/ssl.h" #include "quiche/quic/platform/api/quic_logging.h" namespace quic { #define RETURN_STRING_LITERAL(x) \ case x: \ return #x; const char* QuicRstStreamErrorCodeToString(QuicRstStreamErrorCode error) { switch (error) { RETURN_STRING_LITERAL(QUIC_STREAM_NO_ERROR); RETURN_STRING_LITERAL(QUIC_ERROR_PROCESSING_STREAM); RETURN_STRING_LITERAL(QUIC_MULTIPLE_TERMINATION_OFFSETS); RETURN_STRING_LITERAL(QUIC_BAD_APPLICATION_PAYLOAD); RETURN_STRING_LITERAL(QUIC_STREAM_CONNECTION_ERROR); RETURN_STRING_LITERAL(QUIC_STREAM_PEER_GOING_AWAY); RETURN_STRING_LITERAL(QUIC_STREAM_CANCELLED); RETURN_STRING_LITERAL(QUIC_RST_ACKNOWLEDGEMENT); RETURN_STRING_LITERAL(QUIC_REFUSED_STREAM); RETURN_STRING_LITERAL(QUIC_INVALID_PROMISE_URL); RETURN_STRING_LITERAL(QUIC_UNAUTHORIZED_PROMISE_URL); RETURN_STRING_LITERAL(QUIC_DUPLICATE_PROMISE_URL); RETURN_STRING_LITERAL(QUIC_PROMISE_VARY_MISMATCH); RETURN_STRING_LITERAL(QUIC_INVALID_PROMISE_METHOD); RETURN_STRING_LITERAL(QUIC_PUSH_STREAM_TIMED_OUT); RETURN_STRING_LITERAL(QUIC_HEADERS_TOO_LARGE); RETURN_STRING_LITERAL(QUIC_STREAM_TTL_EXPIRED); RETURN_STRING_LITERAL(QUIC_DATA_AFTER_CLOSE_OFFSET); RETURN_STRING_LITERAL(QUIC_STREAM_GENERAL_PROTOCOL_ERROR); RETURN_STRING_LITERAL(QUIC_STREAM_INTERNAL_ERROR); RETURN_STRING_LITERAL(QUIC_STREAM_STREAM_CREATION_ERROR); RETURN_STRING_LITERAL(QUIC_STREAM_CLOSED_CRITICAL_STREAM); RETURN_STRING_LITERAL(QUIC_STREAM_FRAME_UNEXPECTED); RETURN_STRING_LITERAL(QUIC_STREAM_FRAME_ERROR); RETURN_STRING_LITERAL(QUIC_STREAM_EXCESSIVE_LOAD); RETURN_STRING_LITERAL(QUIC_STREAM_ID_ERROR); RETURN_STRING_LITERAL(QUIC_STREAM_SETTINGS_ERROR); RETURN_STRING_LITERAL(QUIC_STREAM_MISSING_SETTINGS); RETURN_STRING_LITERAL(QUIC_STREAM_REQUEST_REJECTED); RETURN_STRING_LITERAL(QUIC_STREAM_REQUEST_INCOMPLETE); RETURN_STRING_LITERAL(QUIC_STREAM_CONNECT_ERROR); RETURN_STRING_LITERAL(QUIC_STREAM_VERSION_FALLBACK); RETURN_STRING_LITERAL(QUIC_STREAM_DECOMPRESSION_FAILED); RETURN_STRING_LITERAL(QUIC_STREAM_ENCODER_STREAM_ERROR); RETURN_STRING_LITERAL(QUIC_STREAM_DECODER_STREAM_ERROR); RETURN_STRING_LITERAL(QUIC_STREAM_UNKNOWN_APPLICATION_ERROR_CODE); RETURN_STRING_LITERAL(QUIC_STREAM_WEBTRANSPORT_SESSION_GONE); RETURN_STRING_LITERAL( QUIC_STREAM_WEBTRANSPORT_BUFFERED_STREAMS_LIMIT_EXCEEDED); RETURN_STRING_LITERAL(QUIC_APPLICATION_DONE_WITH_STREAM); RETURN_STRING_LITERAL(QUIC_STREAM_LAST_ERROR); } return "INVALID_RST_STREAM_ERROR_CODE"; } const char* QuicErrorCodeToString(QuicErrorCode error) { switch (error) { RETURN_STRING_LITERAL(QUIC_NO_ERROR); RETURN_STRING_LITERAL(QUIC_INTERNAL_ERROR); RETURN_STRING_LITERAL(QUIC_STREAM_DATA_AFTER_TERMINATION); RETURN_STRING_LITERAL(QUIC_INVALID_PACKET_HEADER); RETURN_STRING_LITERAL(QUIC_INVALID_FRAME_DATA); RETURN_STRING_LITERAL(QUIC_MISSING_PAYLOAD); RETURN_STRING_LITERAL(QUIC_INVALID_FEC_DATA); RETURN_STRING_LITERAL(QUIC_INVALID_STREAM_DATA); RETURN_STRING_LITERAL(QUIC_OVERLAPPING_STREAM_DATA); RETURN_STRING_LITERAL(QUIC_UNENCRYPTED_STREAM_DATA); RETURN_STRING_LITERAL(QUIC_INVALID_RST_STREAM_DATA); RETURN_STRING_LITERAL(QUIC_INVALID_CONNECTION_CLOSE_DATA); RETURN_STRING_LITERAL(QUIC_INVALID_GOAWAY_DATA); RETURN_STRING_LITERAL(QUIC_INVALID_WINDOW_UPDATE_DATA); RETURN_STRING_LITERAL(QUIC_INVALID_BLOCKED_DATA); RETURN_STRING_LITERAL(QUIC_INVALID_STOP_WAITING_DATA); RETURN_STRING_LITERAL(QUIC_INVALID_PATH_CLOSE_DATA); RETURN_STRING_LITERAL(QUIC_INVALID_ACK_DATA); RETURN_STRING_LITERAL(QUIC_INVALID_VERSION_NEGOTIATION_PACKET); RETURN_STRING_LITERAL(QUIC_INVALID_PUBLIC_RST_PACKET); RETURN_STRING_LITERAL(QUIC_DECRYPTION_FAILURE); RETURN_STRING_LITERAL(QUIC_ENCRYPTION_FAILURE); RETURN_STRING_LITERAL(QUIC_PACKET_TOO_LARGE); RETURN_STRING_LITERAL(QUIC_PEER_GOING_AWAY); RETURN_STRING_LITERAL(QUIC_HANDSHAKE_FAILED); RETURN_STRING_LITERAL(QUIC_HANDSHAKE_FAILED_PACKETS_BUFFERED_TOO_LONG); RETURN_STRING_LITERAL(QUIC_HANDSHAKE_FAILED_INVALID_HOSTNAME); RETURN_STRING_LITERAL(QUIC_CRYPTO_TAGS_OUT_OF_ORDER); RETURN_STRING_LITERAL(QUIC_CRYPTO_TOO_MANY_ENTRIES); RETURN_STRING_LITERAL(QUIC_CRYPTO_TOO_MANY_REJECTS); RETURN_STRING_LITERAL(QUIC_CRYPTO_INVALID_VALUE_LENGTH) RETURN_STRING_LITERAL(QUIC_CRYPTO_MESSAGE_AFTER_HANDSHAKE_COMPLETE); RETURN_STRING_LITERAL(QUIC_CRYPTO_INTERNAL_ERROR); RETURN_STRING_LITERAL(QUIC_CRYPTO_VERSION_NOT_SUPPORTED); RETURN_STRING_LITERAL(QUIC_CRYPTO_NO_SUPPORT); RETURN_STRING_LITERAL(QUIC_INVALID_CRYPTO_MESSAGE_TYPE); RETURN_STRING_LITERAL(QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER); RETURN_STRING_LITERAL(QUIC_CRYPTO_MESSAGE_PARAMETER_NOT_FOUND); RETURN_STRING_LITERAL(QUIC_CRYPTO_MESSAGE_PARAMETER_NO_OVERLAP); RETURN_STRING_LITERAL(QUIC_CRYPTO_MESSAGE_INDEX_NOT_FOUND); RETURN_STRING_LITERAL(QUIC_UNSUPPORTED_PROOF_DEMAND); RETURN_STRING_LITERAL(QUIC_INVALID_STREAM_ID); RETURN_STRING_LITERAL(QUIC_INVALID_PRIORITY); RETURN_STRING_LITERAL(QUIC_TOO_MANY_OPEN_STREAMS); RETURN_STRING_LITERAL(QUIC_PUBLIC_RESET); RETURN_STRING_LITERAL(QUIC_INVALID_VERSION); RETURN_STRING_LITERAL(QUIC_PACKET_WRONG_VERSION); RETURN_STRING_LITERAL(QUIC_INVALID_0RTT_PACKET_NUMBER_OUT_OF_ORDER); RETURN_STRING_LITERAL(QUIC_INVALID_HEADER_ID); RETURN_STRING_LITERAL(QUIC_INVALID_NEGOTIATED_VALUE); RETURN_STRING_LITERAL(QUIC_DECOMPRESSION_FAILURE); RETURN_STRING_LITERAL(QUIC_NETWORK_IDLE_TIMEOUT); RETURN_STRING_LITERAL(QUIC_HANDSHAKE_TIMEOUT); RETURN_STRING_LITERAL(QUIC_ERROR_MIGRATING_ADDRESS); RETURN_STRING_LITERAL(QUIC_ERROR_MIGRATING_PORT); RETURN_STRING_LITERAL(QUIC_PACKET_WRITE_ERROR); RETURN_STRING_LITERAL(QUIC_PACKET_READ_ERROR); RETURN_STRING_LITERAL(QUIC_EMPTY_STREAM_FRAME_NO_FIN); RETURN_STRING_LITERAL(QUIC_INVALID_HEADERS_STREAM_DATA); RETURN_STRING_LITERAL(QUIC_HEADERS_STREAM_DATA_DECOMPRESS_FAILURE); RETURN_STRING_LITERAL(QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA); RETURN_STRING_LITERAL(QUIC_FLOW_CONTROL_SENT_TOO_MUCH_DATA); RETURN_STRING_LITERAL(QUIC_FLOW_CONTROL_INVALID_WINDOW); RETURN_STRING_LITERAL(QUIC_CONNECTION_IP_POOLED); RETURN_STRING_LITERAL(QUIC_PROOF_INVALID); RETURN_STRING_LITERAL(QUIC_CRYPTO_DUPLICATE_TAG); RETURN_STRING_LITERAL(QUIC_CRYPTO_ENCRYPTION_LEVEL_INCORRECT); RETURN_STRING_LITERAL(QUIC_CRYPTO_SERVER_CONFIG_EXPIRED); RETURN_STRING_LITERAL(QUIC_INVALID_CHANNEL_ID_SIGNATURE); RETURN_STRING_LITERAL(QUIC_CRYPTO_SYMMETRIC_KEY_SETUP_FAILED); RETURN_STRING_LITERAL(QUIC_CRYPTO_MESSAGE_WHILE_VALIDATING_CLIENT_HELLO); RETURN_STRING_LITERAL(QUIC_CRYPTO_UPDATE_BEFORE_HANDSHAKE_COMPLETE); RETURN_STRING_LITERAL(QUIC_VERSION_NEGOTIATION_MISMATCH); RETURN_STRING_LITERAL(QUIC_TOO_MANY_OUTSTANDING_SENT_PACKETS); RETURN_STRING_LITERAL(QUIC_TOO_MANY_OUTSTANDING_RECEIVED_PACKETS); RETURN_STRING_LITERAL(QUIC_CONNECTION_CANCELLED); RETURN_STRING_LITERAL(QUIC_BAD_PACKET_LOSS_RATE); RETURN_STRING_LITERAL(QUIC_PUBLIC_RESETS_POST_HANDSHAKE); RETURN_STRING_LITERAL(QUIC_FAILED_TO_SERIALIZE_PACKET); RETURN_STRING_LITERAL(QUIC_TOO_MANY_AVAILABLE_STREAMS); RETURN_STRING_LITERAL(QUIC_UNENCRYPTED_FEC_DATA); RETURN_STRING_LITERAL(QUIC_BAD_MULTIPATH_FLAG); RETURN_STRING_LITERAL(QUIC_IP_ADDRESS_CHANGED); RETURN_STRING_LITERAL(QUIC_CONNECTION_MIGRATION_NO_MIGRATABLE_STREAMS); RETURN_STRING_LITERAL(QUIC_CONNECTION_MIGRATION_TOO_MANY_CHANGES); RETURN_STRING_LITERAL(QUIC_CONNECTION_MIGRATION_NO_NEW_NETWORK); RETURN_STRING_LITERAL(QUIC_CONNECTION_MIGRATION_NON_MIGRATABLE_STREAM); RETURN_STRING_LITERAL(QUIC_TOO_MANY_RTOS); RETURN_STRING_LITERAL(QUIC_ATTEMPT_TO_SEND_UNENCRYPTED_STREAM_DATA); RETURN_STRING_LITERAL(QUIC_MAYBE_CORRUPTED_MEMORY); RETURN_STRING_LITERAL(QUIC_CRYPTO_CHLO_TOO_LARGE); RETURN_STRING_LITERAL(QUIC_MULTIPATH_PATH_DOES_NOT_EXIST); RETURN_STRING_LITERAL(QUIC_MULTIPATH_PATH_NOT_ACTIVE); RETURN_STRING_LITERAL(QUIC_TOO_MANY_STREAM_DATA_INTERVALS); RETURN_STRING_LITERAL(QUIC_STREAM_SEQUENCER_INVALID_STATE); RETURN_STRING_LITERAL(QUIC_TOO_MANY_SESSIONS_ON_SERVER); RETURN_STRING_LITERAL(QUIC_STREAM_LENGTH_OVERFLOW); RETURN_STRING_LITERAL(QUIC_CONNECTION_MIGRATION_DISABLED_BY_CONFIG); RETURN_STRING_LITERAL(QUIC_CONNECTION_MIGRATION_INTERNAL_ERROR); RETURN_STRING_LITERAL(QUIC_INVALID_MAX_DATA_FRAME_DATA); RETURN_STRING_LITERAL(QUIC_INVALID_MAX_STREAM_DATA_FRAME_DATA); RETURN_STRING_LITERAL(QUIC_INVALID_STREAM_BLOCKED_DATA); RETURN_STRING_LITERAL(QUIC_MAX_STREAMS_DATA); RETURN_STRING_LITERAL(QUIC_STREAMS_BLOCKED_DATA); RETURN_STRING_LITERAL(QUIC_INVALID_NEW_CONNECTION_ID_DATA); RETURN_STRING_LITERAL(QUIC_INVALID_RETIRE_CONNECTION_ID_DATA); RETURN_STRING_LITERAL(QUIC_CONNECTION_ID_LIMIT_ERROR); RETURN_STRING_LITERAL(QUIC_TOO_MANY_CONNECTION_ID_WAITING_TO_RETIRE); RETURN_STRING_LITERAL(QUIC_INVALID_STOP_SENDING_FRAME_DATA); RETURN_STRING_LITERAL(QUIC_INVALID_PATH_CHALLENGE_DATA); RETURN_STRING_LITERAL(QUIC_INVALID_PATH_RESPONSE_DATA); RETURN_STRING_LITERAL(QUIC_CONNECTION_MIGRATION_HANDSHAKE_UNCONFIRMED); RETURN_STRING_LITERAL(QUIC_PEER_PORT_CHANGE_HANDSHAKE_UNCONFIRMED); RETURN_STRING_LITERAL(QUIC_INVALID_MESSAGE_DATA); RETURN_STRING_LITERAL(IETF_QUIC_PROTOCOL_VIOLATION); RETURN_STRING_LITERAL(QUIC_INVALID_NEW_TOKEN); RETURN_STRING_LITERAL(QUIC_DATA_RECEIVED_ON_WRITE_UNIDIRECTIONAL_STREAM); RETURN_STRING_LITERAL(QUIC_TRY_TO_WRITE_DATA_ON_READ_UNIDIRECTIONAL_STREAM); RETURN_STRING_LITERAL(QUIC_STREAMS_BLOCKED_ERROR); RETURN_STRING_LITERAL(QUIC_MAX_STREAMS_ERROR); RETURN_STRING_LITERAL(QUIC_HTTP_DECODER_ERROR); RETURN_STRING_LITERAL(QUIC_STALE_CONNECTION_CANCELLED); RETURN_STRING_LITERAL(QUIC_IETF_GQUIC_ERROR_MISSING); RETURN_STRING_LITERAL( QUIC_WINDOW_UPDATE_RECEIVED_ON_READ_UNIDIRECTIONAL_STREAM); RETURN_STRING_LITERAL(QUIC_TOO_MANY_BUFFERED_CONTROL_FRAMES); RETURN_STRING_LITERAL(QUIC_TRANSPORT_INVALID_CLIENT_INDICATION); RETURN_STRING_LITERAL(QUIC_QPACK_DECOMPRESSION_FAILED); RETURN_STRING_LITERAL(QUIC_QPACK_ENCODER_STREAM_ERROR); RETURN_STRING_LITERAL(QUIC_QPACK_DECODER_STREAM_ERROR); RETURN_STRING_LITERAL(QUIC_QPACK_ENCODER_STREAM_INTEGER_TOO_LARGE); RETURN_STRING_LITERAL(QUIC_QPACK_ENCODER_STREAM_STRING_LITERAL_TOO_LONG); RETURN_STRING_LITERAL(QUIC_QPACK_ENCODER_STREAM_HUFFMAN_ENCODING_ERROR); RETURN_STRING_LITERAL(QUIC_QPACK_ENCODER_STREAM_INVALID_STATIC_ENTRY); RETURN_STRING_LITERAL(QUIC_QPACK_ENCODER_STREAM_ERROR_INSERTING_STATIC); RETURN_STRING_LITERAL( QUIC_QPACK_ENCODER_STREAM_INSERTION_INVALID_RELATIVE_INDEX); RETURN_STRING_LITERAL( QUIC_QPACK_ENCODER_STREAM_INSERTION_DYNAMIC_ENTRY_NOT_FOUND); RETURN_STRING_LITERAL(QUIC_QPACK_ENCODER_STREAM_ERROR_INSERTING_DYNAMIC); RETURN_STRING_LITERAL(QUIC_QPACK_ENCODER_STREAM_ERROR_INSERTING_LITERAL); RETURN_STRING_LITERAL( QUIC_QPACK_ENCODER_STREAM_DUPLICATE_INVALID_RELATIVE_INDEX); RETURN_STRING_LITERAL( QUIC_QPACK_ENCODER_STREAM_DUPLICATE_DYNAMIC_ENTRY_NOT_FOUND); RETURN_STRING_LITERAL(QUIC_QPACK_ENCODER_STREAM_SET_DYNAMIC_TABLE_CAPACITY); RETURN_STRING_LITERAL(QUIC_QPACK_DECODER_STREAM_INTEGER_TOO_LARGE); RETURN_STRING_LITERAL(QUIC_QPACK_DECODER_STREAM_INVALID_ZERO_INCREMENT); RETURN_STRING_LITERAL(QUIC_QPACK_DECODER_STREAM_INCREMENT_OVERFLOW); RETURN_STRING_LITERAL(QUIC_QPACK_DECODER_STREAM_IMPOSSIBLE_INSERT_COUNT); RETURN_STRING_LITERAL(QUIC_QPACK_DECODER_STREAM_INCORRECT_ACKNOWLEDGEMENT); RETURN_STRING_LITERAL(QUIC_STREAM_DATA_BEYOND_CLOSE_OFFSET); RETURN_STRING_LITERAL(QUIC_STREAM_MULTIPLE_OFFSET); RETURN_STRING_LITERAL(QUIC_HTTP_FRAME_TOO_LARGE); RETURN_STRING_LITERAL(QUIC_HTTP_FRAME_ERROR); RETURN_STRING_LITERAL(QUIC_HTTP_FRAME_UNEXPECTED_ON_SPDY_STREAM); RETURN_STRING_LITERAL(QUIC_HTTP_FRAME_UNEXPECTED_ON_CONTROL_STREAM); RETURN_STRING_LITERAL(QUIC_HTTP_INVALID_FRAME_SEQUENCE_ON_SPDY_STREAM); RETURN_STRING_LITERAL(QUIC_HTTP_INVALID_FRAME_SEQUENCE_ON_CONTROL_STREAM); RETURN_STRING_LITERAL(QUIC_HTTP_DUPLICATE_UNIDIRECTIONAL_STREAM); RETURN_STRING_LITERAL(QUIC_HTTP_SERVER_INITIATED_BIDIRECTIONAL_STREAM); RETURN_STRING_LITERAL(QUIC_HTTP_STREAM_WRONG_DIRECTION); RETURN_STRING_LITERAL(QUIC_HTTP_CLOSED_CRITICAL_STREAM); RETURN_STRING_LITERAL(QUIC_HTTP_MISSING_SETTINGS_FRAME); RETURN_STRING_LITERAL(QUIC_HTTP_DUPLICATE_SETTING_IDENTIFIER); RETURN_STRING_LITERAL(QUIC_HTTP_INVALID_MAX_PUSH_ID); RETURN_STRING_LITERAL(QUIC_HTTP_STREAM_LIMIT_TOO_LOW); RETURN_STRING_LITERAL(QUIC_HTTP_ZERO_RTT_RESUMPTION_SETTINGS_MISMATCH); RETURN_STRING_LITERAL(QUIC_HTTP_ZERO_RTT_REJECTION_SETTINGS_MISMATCH); RETURN_STRING_LITERAL(QUIC_HTTP_GOAWAY_INVALID_STREAM_ID); RETURN_STRING_LITERAL(QUIC_HTTP_GOAWAY_ID_LARGER_THAN_PREVIOUS); RETURN_STRING_LITERAL(QUIC_HTTP_RECEIVE_SPDY_SETTING); RETURN_STRING_LITERAL(QUIC_HTTP_RECEIVE_SPDY_FRAME); RETURN_STRING_LITERAL(QUIC_HTTP_RECEIVE_SERVER_PUSH); RETURN_STRING_LITERAL(QUIC_HTTP_INVALID_SETTING_VALUE); RETURN_STRING_LITERAL(QUIC_HPACK_INDEX_VARINT_ERROR); RETURN_STRING_LITERAL(QUIC_HPACK_NAME_LENGTH_VARINT_ERROR); RETURN_STRING_LITERAL(QUIC_HPACK_VALUE_LENGTH_VARINT_ERROR); RETURN_STRING_LITERAL(QUIC_HPACK_NAME_TOO_LONG); RETURN_STRING_LITERAL(QUIC_HPACK_VALUE_TOO_LONG); RETURN_STRING_LITERAL(QUIC_HPACK_NAME_HUFFMAN_ERROR); RETURN_STRING_LITERAL(QUIC_HPACK_VALUE_HUFFMAN_ERROR); RETURN_STRING_LITERAL(QUIC_HPACK_MISSING_DYNAMIC_TABLE_SIZE_UPDATE); RETURN_STRING_LITERAL(QUIC_HPACK_INVALID_INDEX); RETURN_STRING_LITERAL(QUIC_HPACK_INVALID_NAME_INDEX); RETURN_STRING_LITERAL(QUIC_HPACK_DYNAMIC_TABLE_SIZE_UPDATE_NOT_ALLOWED); RETURN_STRING_LITERAL( QUIC_HPACK_INITIAL_TABLE_SIZE_UPDATE_IS_ABOVE_LOW_WATER_MARK); RETURN_STRING_LITERAL( QUIC_HPACK_TABLE_SIZE_UPDATE_IS_ABOVE_ACKNOWLEDGED_SETTING); RETURN_STRING_LITERAL(QUIC_HPACK_TRUNCATED_BLOCK); RETURN_STRING_LITERAL(QUIC_HPACK_FRAGMENT_TOO_LONG); RETURN_STRING_LITERAL(QUIC_HPACK_COMPRESSED_HEADER_SIZE_EXCEEDS_LIMIT); RETURN_STRING_LITERAL(QUIC_ZERO_RTT_UNRETRANSMITTABLE); RETURN_STRING_LITERAL(QUIC_ZERO_RTT_REJECTION_LIMIT_REDUCED); RETURN_STRING_LITERAL(QUIC_ZERO_RTT_RESUMPTION_LIMIT_REDUCED); RETURN_STRING_LITERAL(QUIC_SILENT_IDLE_TIMEOUT); RETURN_STRING_LITERAL(QUIC_MISSING_WRITE_KEYS); RETURN_STRING_LITERAL(QUIC_KEY_UPDATE_ERROR); RETURN_STRING_LITERAL(QUIC_AEAD_LIMIT_REACHED); RETURN_STRING_LITERAL(QUIC_MAX_AGE_TIMEOUT); RETURN_STRING_LITERAL(QUIC_INVALID_PRIORITY_UPDATE); RETURN_STRING_LITERAL(QUIC_TLS_BAD_CERTIFICATE); RETURN_STRING_LITERAL(QUIC_TLS_UNSUPPORTED_CERTIFICATE); RETURN_STRING_LITERAL(QUIC_TLS_CERTIFICATE_REVOKED); RETURN_STRING_LITERAL(QUIC_TLS_CERTIFICATE_EXPIRED); RETURN_STRING_LITERAL(QUIC_TLS_CERTIFICATE_UNKNOWN); RETURN_STRING_LITERAL(QUIC_TLS_INTERNAL_ERROR); RETURN_STRING_LITERAL(QUIC_TLS_UNRECOGNIZED_NAME); RETURN_STRING_LITERAL(QUIC_TLS_CERTIFICATE_REQUIRED); RETURN_STRING_LITERAL(QUIC_INVALID_CHARACTER_IN_FIELD_VALUE); RETURN_STRING_LITERAL(QUIC_TLS_UNEXPECTED_KEYING_MATERIAL_EXPORT_LABEL); RETURN_STRING_LITERAL(QUIC_TLS_KEYING_MATERIAL_EXPORTS_MISMATCH); RETURN_STRING_LITERAL(QUIC_TLS_KEYING_MATERIAL_EXPORT_NOT_AVAILABLE); RETURN_STRING_LITERAL(QUIC_UNEXPECTED_DATA_BEFORE_ENCRYPTION_ESTABLISHED); RETURN_STRING_LITERAL(QUIC_SERVER_UNHEALTHY); RETURN_STRING_LITERAL(QUIC_CLIENT_LOST_NETWORK_ACCESS); RETURN_STRING_LITERAL(QUIC_LAST_ERROR); } return "INVALID_ERROR_CODE"; } std::string QuicIetfTransportErrorCodeString(QuicIetfTransportErrorCodes c) { if (c >= CRYPTO_ERROR_FIRST && c <= CRYPTO_ERROR_LAST) { const int tls_error = static_cast<int>(c - CRYPTO_ERROR_FIRST); const char* tls_error_description = SSL_alert_desc_string_long(tls_error); if (strcmp("unknown", tls_error_description) != 0) { return absl::StrCat("CRYPTO_ERROR(", tls_error_description, ")"); } return absl::StrCat("CRYPTO_ERROR(unknown(", tls_error, "))"); } switch (c) { RETURN_STRING_LITERAL(NO_IETF_QUIC_ERROR); RETURN_STRING_LITERAL(INTERNAL_ERROR); RETURN_STRING_LITERAL(SERVER_BUSY_ERROR); RETURN_STRING_LITERAL(FLOW_CONTROL_ERROR); RETURN_STRING_LITERAL(STREAM_LIMIT_ERROR); RETURN_STRING_LITERAL(STREAM_STATE_ERROR); RETURN_STRING_LITERAL(FINAL_SIZE_ERROR); RETURN_STRING_LITERAL(FRAME_ENCODING_ERROR); RETURN_STRING_LITERAL(TRANSPORT_PARAMETER_ERROR); RETURN_STRING_LITERAL(CONNECTION_ID_LIMIT_ERROR); RETURN_STRING_LITERAL(PROTOCOL_VIOLATION); RETURN_STRING_LITERAL(INVALID_TOKEN); RETURN_STRING_LITERAL(CRYPTO_BUFFER_EXCEEDED); RETURN_STRING_LITERAL(KEY_UPDATE_ERROR); RETURN_STRING_LITERAL(AEAD_LIMIT_REACHED); case CRYPTO_ERROR_FIRST: case CRYPTO_ERROR_LAST: QUICHE_DCHECK(false) << "Unexpected error " << static_cast<uint64_t>(c); break; } return absl::StrCat("Unknown(", static_cast<uint64_t>(c), ")"); } std::ostream& operator<<(std::ostream& os, const QuicIetfTransportErrorCodes& c) { os << QuicIetfTransportErrorCodeString(c); return os; } QuicErrorCodeToIetfMapping QuicErrorCodeToTransportErrorCode( QuicErrorCode error) { switch (error) { case QUIC_NO_ERROR: return {true, static_cast<uint64_t>(NO_IETF_QUIC_ERROR)}; case QUIC_INTERNAL_ERROR: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_STREAM_DATA_AFTER_TERMINATION: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_INVALID_PACKET_HEADER: return {true, static_cast<uint64_t>(FRAME_ENCODING_ERROR)}; case QUIC_INVALID_FRAME_DATA: return {true, static_cast<uint64_t>(FRAME_ENCODING_ERROR)}; case QUIC_MISSING_PAYLOAD: return {true, static_cast<uint64_t>(FRAME_ENCODING_ERROR)}; case QUIC_INVALID_FEC_DATA: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_INVALID_STREAM_DATA: return {true, static_cast<uint64_t>(FRAME_ENCODING_ERROR)}; case QUIC_OVERLAPPING_STREAM_DATA: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_UNENCRYPTED_STREAM_DATA: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_ATTEMPT_TO_SEND_UNENCRYPTED_STREAM_DATA: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_MAYBE_CORRUPTED_MEMORY: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_UNENCRYPTED_FEC_DATA: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_INVALID_RST_STREAM_DATA: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_INVALID_CONNECTION_CLOSE_DATA: return {true, static_cast<uint64_t>(FRAME_ENCODING_ERROR)}; case QUIC_INVALID_GOAWAY_DATA: return {true, static_cast<uint64_t>(FRAME_ENCODING_ERROR)}; case QUIC_INVALID_WINDOW_UPDATE_DATA: return {true, static_cast<uint64_t>(FRAME_ENCODING_ERROR)}; case QUIC_INVALID_BLOCKED_DATA: return {true, static_cast<uint64_t>(FRAME_ENCODING_ERROR)}; case QUIC_INVALID_STOP_WAITING_DATA: return {true, static_cast<uint64_t>(FRAME_ENCODING_ERROR)}; case QUIC_INVALID_PATH_CLOSE_DATA: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_INVALID_ACK_DATA: return {true, static_cast<uint64_t>(FRAME_ENCODING_ERROR)}; case QUIC_INVALID_MESSAGE_DATA: return {true, static_cast<uint64_t>(FRAME_ENCODING_ERROR)}; case QUIC_INVALID_VERSION_NEGOTIATION_PACKET: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_INVALID_PUBLIC_RST_PACKET: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_DECRYPTION_FAILURE: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_ENCRYPTION_FAILURE: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_PACKET_TOO_LARGE: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_PEER_GOING_AWAY: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_INVALID_STREAM_ID: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_INVALID_PRIORITY: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_TOO_MANY_OPEN_STREAMS: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_TOO_MANY_AVAILABLE_STREAMS: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_PUBLIC_RESET: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_INVALID_VERSION: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_PACKET_WRONG_VERSION: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_INVALID_0RTT_PACKET_NUMBER_OUT_OF_ORDER: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_INVALID_HEADER_ID: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_INVALID_NEGOTIATED_VALUE: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_DECOMPRESSION_FAILURE: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_NETWORK_IDLE_TIMEOUT: return {true, static_cast<uint64_t>(NO_IETF_QUIC_ERROR)}; case QUIC_SILENT_IDLE_TIMEOUT: return {true, static_cast<uint64_t>(NO_IETF_QUIC_ERROR)}; case QUIC_HANDSHAKE_TIMEOUT: return {true, static_cast<uint64_t>(NO_IETF_QUIC_ERROR)}; case QUIC_ERROR_MIGRATING_ADDRESS: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_ERROR_MIGRATING_PORT: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_PACKET_WRITE_ERROR: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_PACKET_READ_ERROR: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_EMPTY_STREAM_FRAME_NO_FIN: return {true, static_cast<uint64_t>(FRAME_ENCODING_ERROR)}; case QUIC_INVALID_HEADERS_STREAM_DATA: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_HEADERS_STREAM_DATA_DECOMPRESS_FAILURE: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA: return {true, static_cast<uint64_t>(FLOW_CONTROL_ERROR)}; case QUIC_FLOW_CONTROL_SENT_TOO_MUCH_DATA: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_FLOW_CONTROL_INVALID_WINDOW: return {true, static_cast<uint64_t>(FLOW_CONTROL_ERROR)}; case QUIC_CONNECTION_IP_POOLED: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_TOO_MANY_OUTSTANDING_SENT_PACKETS: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_TOO_MANY_OUTSTANDING_RECEIVED_PACKETS: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_CONNECTION_CANCELLED: return {true, static_cast<uint64_t>(NO_IETF_QUIC_ERROR)}; case QUIC_BAD_PACKET_LOSS_RATE: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_PUBLIC_RESETS_POST_HANDSHAKE: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_FAILED_TO_SERIALIZE_PACKET: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_TOO_MANY_RTOS: return {true, static_cast<uint64_t>(NO_IETF_QUIC_ERROR)}; case QUIC_HANDSHAKE_FAILED: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_CRYPTO_TAGS_OUT_OF_ORDER: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_CRYPTO_TOO_MANY_ENTRIES: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_CRYPTO_INVALID_VALUE_LENGTH: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_CRYPTO_MESSAGE_AFTER_HANDSHAKE_COMPLETE: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_INVALID_CRYPTO_MESSAGE_TYPE: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_INVALID_CHANNEL_ID_SIGNATURE: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_CRYPTO_MESSAGE_PARAMETER_NOT_FOUND: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_CRYPTO_MESSAGE_PARAMETER_NO_OVERLAP: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_CRYPTO_MESSAGE_INDEX_NOT_FOUND: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_UNSUPPORTED_PROOF_DEMAND: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_CRYPTO_INTERNAL_ERROR: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_CRYPTO_VERSION_NOT_SUPPORTED: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_CRYPTO_NO_SUPPORT: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_CRYPTO_TOO_MANY_REJECTS: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_PROOF_INVALID: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_CRYPTO_DUPLICATE_TAG: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_CRYPTO_ENCRYPTION_LEVEL_INCORRECT: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_CRYPTO_SERVER_CONFIG_EXPIRED: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_CRYPTO_SYMMETRIC_KEY_SETUP_FAILED: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_CRYPTO_MESSAGE_WHILE_VALIDATING_CLIENT_HELLO: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_CRYPTO_UPDATE_BEFORE_HANDSHAKE_COMPLETE: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_CRYPTO_CHLO_TOO_LARGE: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_VERSION_NEGOTIATION_MISMATCH: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_BAD_MULTIPATH_FLAG: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_MULTIPATH_PATH_DOES_NOT_EXIST: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_MULTIPATH_PATH_NOT_ACTIVE: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_IP_ADDRESS_CHANGED: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_CONNECTION_MIGRATION_NO_MIGRATABLE_STREAMS: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_CONNECTION_MIGRATION_TOO_MANY_CHANGES: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_CONNECTION_MIGRATION_NO_NEW_NETWORK: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_CONNECTION_MIGRATION_NON_MIGRATABLE_STREAM: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_CONNECTION_MIGRATION_DISABLED_BY_CONFIG: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_CONNECTION_MIGRATION_INTERNAL_ERROR: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_CONNECTION_MIGRATION_HANDSHAKE_UNCONFIRMED: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_PEER_PORT_CHANGE_HANDSHAKE_UNCONFIRMED: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_TOO_MANY_STREAM_DATA_INTERVALS: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_STREAM_SEQUENCER_INVALID_STATE: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_TOO_MANY_SESSIONS_ON_SERVER: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_STREAM_LENGTH_OVERFLOW: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_INVALID_MAX_DATA_FRAME_DATA: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_INVALID_MAX_STREAM_DATA_FRAME_DATA: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_MAX_STREAMS_DATA: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_STREAMS_BLOCKED_DATA: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_INVALID_STREAM_BLOCKED_DATA: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_INVALID_NEW_CONNECTION_ID_DATA: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_INVALID_STOP_SENDING_FRAME_DATA: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_INVALID_PATH_CHALLENGE_DATA: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_INVALID_PATH_RESPONSE_DATA: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case IETF_QUIC_PROTOCOL_VIOLATION: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_INVALID_NEW_TOKEN: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_DATA_RECEIVED_ON_WRITE_UNIDIRECTIONAL_STREAM: return {true, static_cast<uint64_t>(STREAM_STATE_ERROR)}; case QUIC_TRY_TO_WRITE_DATA_ON_READ_UNIDIRECTIONAL_STREAM: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_INVALID_RETIRE_CONNECTION_ID_DATA: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_STREAMS_BLOCKED_ERROR: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_MAX_STREAMS_ERROR: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_HTTP_DECODER_ERROR: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_STALE_CONNECTION_CANCELLED: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_IETF_GQUIC_ERROR_MISSING: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_WINDOW_UPDATE_RECEIVED_ON_READ_UNIDIRECTIONAL_STREAM: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_TOO_MANY_BUFFERED_CONTROL_FRAMES: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_TRANSPORT_INVALID_CLIENT_INDICATION: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_QPACK_DECOMPRESSION_FAILED: return {false, static_cast<uint64_t>( QuicHttpQpackErrorCode::DECOMPRESSION_FAILED)}; case QUIC_QPACK_ENCODER_STREAM_ERROR: return {false, static_cast<uint64_t>( QuicHttpQpackErrorCode::ENCODER_STREAM_ERROR)}; case QUIC_QPACK_DECODER_STREAM_ERROR: return {false, static_cast<uint64_t>( QuicHttpQpackErrorCode::DECODER_STREAM_ERROR)}; case QUIC_QPACK_ENCODER_STREAM_INTEGER_TOO_LARGE: return {false, static_cast<uint64_t>( QuicHttpQpackErrorCode::ENCODER_STREAM_ERROR)}; case QUIC_QPACK_ENCODER_STREAM_STRING_LITERAL_TOO_LONG: return {false, static_cast<uint64_t>( QuicHttpQpackErrorCode::ENCODER_STREAM_ERROR)}; case QUIC_QPACK_ENCODER_STREAM_HUFFMAN_ENCODING_ERROR: return {false, static_cast<uint64_t>( QuicHttpQpackErrorCode::ENCODER_STREAM_ERROR)}; case QUIC_QPACK_ENCODER_STREAM_INVALID_STATIC_ENTRY: return {false, static_cast<uint64_t>( QuicHttpQpackErrorCode::ENCODER_STREAM_ERROR)}; case QUIC_QPACK_ENCODER_STREAM_ERROR_INSERTING_STATIC: return {false, static_cast<uint64_t>( QuicHttpQpackErrorCode::ENCODER_STREAM_ERROR)}; case QUIC_QPACK_ENCODER_STREAM_INSERTION_INVALID_RELATIVE_INDEX: return {false, static_cast<uint64_t>( QuicHttpQpackErrorCode::ENCODER_STREAM_ERROR)}; case QUIC_QPACK_ENCODER_STREAM_INSERTION_DYNAMIC_ENTRY_NOT_FOUND: return {false, static_cast<uint64_t>( QuicHttpQpackErrorCode::ENCODER_STREAM_ERROR)}; case QUIC_QPACK_ENCODER_STREAM_ERROR_INSERTING_DYNAMIC: return {false, static_cast<uint64_t>( QuicHttpQpackErrorCode::ENCODER_STREAM_ERROR)}; case QUIC_QPACK_ENCODER_STREAM_ERROR_INSERTING_LITERAL: return {false, static_cast<uint64_t>( QuicHttpQpackErrorCode::ENCODER_STREAM_ERROR)}; case QUIC_QPACK_ENCODER_STREAM_DUPLICATE_INVALID_RELATIVE_INDEX: return {false, static_cast<uint64_t>( QuicHttpQpackErrorCode::ENCODER_STREAM_ERROR)}; case QUIC_QPACK_ENCODER_STREAM_DUPLICATE_DYNAMIC_ENTRY_NOT_FOUND: return {false, static_cast<uint64_t>( QuicHttpQpackErrorCode::ENCODER_STREAM_ERROR)}; case QUIC_QPACK_ENCODER_STREAM_SET_DYNAMIC_TABLE_CAPACITY: return {false, static_cast<uint64_t>( QuicHttpQpackErrorCode::ENCODER_STREAM_ERROR)}; case QUIC_QPACK_DECODER_STREAM_INTEGER_TOO_LARGE: return {false, static_cast<uint64_t>( QuicHttpQpackErrorCode::DECODER_STREAM_ERROR)}; case QUIC_QPACK_DECODER_STREAM_INVALID_ZERO_INCREMENT: return {false, static_cast<uint64_t>( QuicHttpQpackErrorCode::DECODER_STREAM_ERROR)}; case QUIC_QPACK_DECODER_STREAM_INCREMENT_OVERFLOW: return {false, static_cast<uint64_t>( QuicHttpQpackErrorCode::DECODER_STREAM_ERROR)}; case QUIC_QPACK_DECODER_STREAM_IMPOSSIBLE_INSERT_COUNT: return {false, static_cast<uint64_t>( QuicHttpQpackErrorCode::DECODER_STREAM_ERROR)}; case QUIC_QPACK_DECODER_STREAM_INCORRECT_ACKNOWLEDGEMENT: return {false, static_cast<uint64_t>( QuicHttpQpackErrorCode::DECODER_STREAM_ERROR)}; case QUIC_STREAM_DATA_BEYOND_CLOSE_OFFSET: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_STREAM_MULTIPLE_OFFSET: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_HTTP_FRAME_TOO_LARGE: return {false, static_cast<uint64_t>(QuicHttp3ErrorCode::EXCESSIVE_LOAD)}; case QUIC_HTTP_FRAME_ERROR: return {false, static_cast<uint64_t>(QuicHttp3ErrorCode::FRAME_ERROR)}; case QUIC_HTTP_FRAME_UNEXPECTED_ON_SPDY_STREAM: return {false, static_cast<uint64_t>(QuicHttp3ErrorCode::FRAME_UNEXPECTED)}; case QUIC_HTTP_FRAME_UNEXPECTED_ON_CONTROL_STREAM: return {false, static_cast<uint64_t>(QuicHttp3ErrorCode::FRAME_UNEXPECTED)}; case QUIC_HTTP_INVALID_FRAME_SEQUENCE_ON_SPDY_STREAM: return {false, static_cast<uint64_t>(QuicHttp3ErrorCode::FRAME_UNEXPECTED)}; case QUIC_HTTP_INVALID_FRAME_SEQUENCE_ON_CONTROL_STREAM: return {false, static_cast<uint64_t>(QuicHttp3ErrorCode::FRAME_UNEXPECTED)}; case QUIC_HTTP_DUPLICATE_UNIDIRECTIONAL_STREAM: return {false, static_cast<uint64_t>(QuicHttp3ErrorCode::STREAM_CREATION_ERROR)}; case QUIC_HTTP_SERVER_INITIATED_BIDIRECTIONAL_STREAM: return {false, static_cast<uint64_t>(QuicHttp3ErrorCode::STREAM_CREATION_ERROR)}; case QUIC_HTTP_STREAM_WRONG_DIRECTION: return {true, static_cast<uint64_t>(STREAM_STATE_ERROR)}; case QUIC_HTTP_CLOSED_CRITICAL_STREAM: return {false, static_cast<uint64_t>( QuicHttp3ErrorCode::CLOSED_CRITICAL_STREAM)}; case QUIC_HTTP_MISSING_SETTINGS_FRAME: return {false, static_cast<uint64_t>(QuicHttp3ErrorCode::MISSING_SETTINGS)}; case QUIC_HTTP_DUPLICATE_SETTING_IDENTIFIER: return {false, static_cast<uint64_t>(QuicHttp3ErrorCode::SETTINGS_ERROR)}; case QUIC_HTTP_INVALID_MAX_PUSH_ID: return {false, static_cast<uint64_t>(QuicHttp3ErrorCode::ID_ERROR)}; case QUIC_HTTP_STREAM_LIMIT_TOO_LOW: return {false, static_cast<uint64_t>( QuicHttp3ErrorCode::GENERAL_PROTOCOL_ERROR)}; case QUIC_HTTP_RECEIVE_SERVER_PUSH: return {false, static_cast<uint64_t>( QuicHttp3ErrorCode::GENERAL_PROTOCOL_ERROR)}; case QUIC_HTTP_ZERO_RTT_RESUMPTION_SETTINGS_MISMATCH: return {false, static_cast<uint64_t>(QuicHttp3ErrorCode::SETTINGS_ERROR)}; case QUIC_HTTP_ZERO_RTT_REJECTION_SETTINGS_MISMATCH: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_HTTP_GOAWAY_INVALID_STREAM_ID: return {false, static_cast<uint64_t>(QuicHttp3ErrorCode::ID_ERROR)}; case QUIC_HTTP_GOAWAY_ID_LARGER_THAN_PREVIOUS: return {false, static_cast<uint64_t>(QuicHttp3ErrorCode::ID_ERROR)}; case QUIC_HTTP_RECEIVE_SPDY_SETTING: return {false, static_cast<uint64_t>(QuicHttp3ErrorCode::SETTINGS_ERROR)}; case QUIC_HTTP_INVALID_SETTING_VALUE: return {false, static_cast<uint64_t>(QuicHttp3ErrorCode::SETTINGS_ERROR)}; case QUIC_HTTP_RECEIVE_SPDY_FRAME: return {false, static_cast<uint64_t>(QuicHttp3ErrorCode::FRAME_UNEXPECTED)}; case QUIC_HPACK_INDEX_VARINT_ERROR: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_HPACK_NAME_LENGTH_VARINT_ERROR: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_HPACK_VALUE_LENGTH_VARINT_ERROR: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_HPACK_NAME_TOO_LONG: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_HPACK_VALUE_TOO_LONG: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_HPACK_NAME_HUFFMAN_ERROR: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_HPACK_VALUE_HUFFMAN_ERROR: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_HPACK_MISSING_DYNAMIC_TABLE_SIZE_UPDATE: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_HPACK_INVALID_INDEX: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_HPACK_INVALID_NAME_INDEX: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_HPACK_DYNAMIC_TABLE_SIZE_UPDATE_NOT_ALLOWED: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_HPACK_INITIAL_TABLE_SIZE_UPDATE_IS_ABOVE_LOW_WATER_MARK: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_HPACK_TABLE_SIZE_UPDATE_IS_ABOVE_ACKNOWLEDGED_SETTING: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_HPACK_TRUNCATED_BLOCK: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_HPACK_FRAGMENT_TOO_LONG: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_HPACK_COMPRESSED_HEADER_SIZE_EXCEEDS_LIMIT: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_ZERO_RTT_UNRETRANSMITTABLE: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_ZERO_RTT_REJECTION_LIMIT_REDUCED: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_ZERO_RTT_RESUMPTION_LIMIT_REDUCED: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_MISSING_WRITE_KEYS: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_KEY_UPDATE_ERROR: return {true, static_cast<uint64_t>(KEY_UPDATE_ERROR)}; case QUIC_AEAD_LIMIT_REACHED: return {true, static_cast<uint64_t>(AEAD_LIMIT_REACHED)}; case QUIC_MAX_AGE_TIMEOUT: return {false, static_cast<uint64_t>(QuicHttp3ErrorCode::INTERNAL_ERROR)}; case QUIC_INVALID_PRIORITY_UPDATE: return {false, static_cast<uint64_t>( QuicHttp3ErrorCode::GENERAL_PROTOCOL_ERROR)}; case QUIC_TLS_BAD_CERTIFICATE: return {true, static_cast<uint64_t>(CRYPTO_ERROR_FIRST + SSL_AD_BAD_CERTIFICATE)}; case QUIC_TLS_UNSUPPORTED_CERTIFICATE: return {true, static_cast<uint64_t>(CRYPTO_ERROR_FIRST + SSL_AD_UNSUPPORTED_CERTIFICATE)}; case QUIC_TLS_CERTIFICATE_REVOKED: return {true, static_cast<uint64_t>(CRYPTO_ERROR_FIRST + SSL_AD_CERTIFICATE_REVOKED)}; case QUIC_TLS_CERTIFICATE_EXPIRED: return {true, static_cast<uint64_t>(CRYPTO_ERROR_FIRST + SSL_AD_CERTIFICATE_EXPIRED)}; case QUIC_TLS_CERTIFICATE_UNKNOWN: return {true, static_cast<uint64_t>(CRYPTO_ERROR_FIRST + SSL_AD_CERTIFICATE_UNKNOWN)}; case QUIC_TLS_INTERNAL_ERROR: return {true, static_cast<uint64_t>(CRYPTO_ERROR_FIRST + SSL_AD_INTERNAL_ERROR)}; case QUIC_TLS_UNRECOGNIZED_NAME: return {true, static_cast<uint64_t>(CRYPTO_ERROR_FIRST + SSL_AD_UNRECOGNIZED_NAME)}; case QUIC_TLS_CERTIFICATE_REQUIRED: return {true, static_cast<uint64_t>(CRYPTO_ERROR_FIRST + SSL_AD_CERTIFICATE_REQUIRED)}; case QUIC_CONNECTION_ID_LIMIT_ERROR: return {true, static_cast<uint64_t>(CONNECTION_ID_LIMIT_ERROR)}; case QUIC_TOO_MANY_CONNECTION_ID_WAITING_TO_RETIRE: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_INVALID_CHARACTER_IN_FIELD_VALUE: return {false, static_cast<uint64_t>(QuicHttp3ErrorCode::MESSAGE_ERROR)}; case QUIC_TLS_UNEXPECTED_KEYING_MATERIAL_EXPORT_LABEL: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_TLS_KEYING_MATERIAL_EXPORTS_MISMATCH: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_TLS_KEYING_MATERIAL_EXPORT_NOT_AVAILABLE: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_UNEXPECTED_DATA_BEFORE_ENCRYPTION_ESTABLISHED: return {true, static_cast<uint64_t>(PROTOCOL_VIOLATION)}; case QUIC_SERVER_UNHEALTHY: return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; case QUIC_HANDSHAKE_FAILED_PACKETS_BUFFERED_TOO_LONG: return {true, static_cast<uint64_t>(NO_IETF_QUIC_ERROR)}; case QUIC_CLIENT_LOST_NETWORK_ACCESS: return {true, static_cast<uint64_t>(NO_IETF_QUIC_ERROR)}; case QUIC_HANDSHAKE_FAILED_INVALID_HOSTNAME: return {true, static_cast<uint64_t>(NO_IETF_QUIC_ERROR)}; case QUIC_LAST_ERROR: return {false, static_cast<uint64_t>(QUIC_LAST_ERROR)}; } return {true, static_cast<uint64_t>(INTERNAL_ERROR)}; } QuicErrorCode TlsAlertToQuicErrorCode(uint8_t desc) { switch (desc) { case SSL_AD_BAD_CERTIFICATE: return QUIC_TLS_BAD_CERTIFICATE; case SSL_AD_UNSUPPORTED_CERTIFICATE: return QUIC_TLS_UNSUPPORTED_CERTIFICATE; case SSL_AD_CERTIFICATE_REVOKED: return QUIC_TLS_CERTIFICATE_REVOKED; case SSL_AD_CERTIFICATE_EXPIRED: return QUIC_TLS_CERTIFICATE_EXPIRED; case SSL_AD_CERTIFICATE_UNKNOWN: return QUIC_TLS_CERTIFICATE_UNKNOWN; case SSL_AD_INTERNAL_ERROR: return QUIC_TLS_INTERNAL_ERROR; case SSL_AD_UNRECOGNIZED_NAME: return QUIC_TLS_UNRECOGNIZED_NAME; case SSL_AD_CERTIFICATE_REQUIRED: return QUIC_TLS_CERTIFICATE_REQUIRED; default: return QUIC_HANDSHAKE_FAILED; } } uint64_t RstStreamErrorCodeToIetfResetStreamErrorCode( QuicRstStreamErrorCode rst_stream_error_code) { switch (rst_stream_error_code) { case QUIC_STREAM_NO_ERROR: return static_cast<uint64_t>(QuicHttp3ErrorCode::HTTP3_NO_ERROR); case QUIC_ERROR_PROCESSING_STREAM: return static_cast<uint64_t>(QuicHttp3ErrorCode::GENERAL_PROTOCOL_ERROR); case QUIC_MULTIPLE_TERMINATION_OFFSETS: return static_cast<uint64_t>(QuicHttp3ErrorCode::GENERAL_PROTOCOL_ERROR); case QUIC_BAD_APPLICATION_PAYLOAD: return static_cast<uint64_t>(QuicHttp3ErrorCode::GENERAL_PROTOCOL_ERROR); case QUIC_STREAM_CONNECTION_ERROR: return static_cast<uint64_t>(QuicHttp3ErrorCode::INTERNAL_ERROR); case QUIC_STREAM_PEER_GOING_AWAY: return static_cast<uint64_t>(QuicHttp3ErrorCode::GENERAL_PROTOCOL_ERROR); case QUIC_STREAM_CANCELLED: return static_cast<uint64_t>(QuicHttp3ErrorCode::REQUEST_CANCELLED); case QUIC_RST_ACKNOWLEDGEMENT: return static_cast<uint64_t>(QuicHttp3ErrorCode::HTTP3_NO_ERROR); case QUIC_REFUSED_STREAM: return static_cast<uint64_t>(QuicHttp3ErrorCode::ID_ERROR); case QUIC_INVALID_PROMISE_URL: return static_cast<uint64_t>(QuicHttp3ErrorCode::STREAM_CREATION_ERROR); case QUIC_UNAUTHORIZED_PROMISE_URL: return static_cast<uint64_t>(QuicHttp3ErrorCode::STREAM_CREATION_ERROR); case QUIC_DUPLICATE_PROMISE_URL: return static_cast<uint64_t>(QuicHttp3ErrorCode::STREAM_CREATION_ERROR); case QUIC_PROMISE_VARY_MISMATCH: return static_cast<uint64_t>(QuicHttp3ErrorCode::REQUEST_CANCELLED); case QUIC_INVALID_PROMISE_METHOD: return static_cast<uint64_t>(QuicHttp3ErrorCode::STREAM_CREATION_ERROR); case QUIC_PUSH_STREAM_TIMED_OUT: return static_cast<uint64_t>(QuicHttp3ErrorCode::REQUEST_CANCELLED); case QUIC_HEADERS_TOO_LARGE: return static_cast<uint64_t>(QuicHttp3ErrorCode::EXCESSIVE_LOAD); case QUIC_STREAM_TTL_EXPIRED: return static_cast<uint64_t>(QuicHttp3ErrorCode::REQUEST_CANCELLED); case QUIC_DATA_AFTER_CLOSE_OFFSET: return static_cast<uint64_t>(QuicHttp3ErrorCode::GENERAL_PROTOCOL_ERROR); case QUIC_STREAM_GENERAL_PROTOCOL_ERROR: return static_cast<uint64_t>(QuicHttp3ErrorCode::GENERAL_PROTOCOL_ERROR); case QUIC_STREAM_INTERNAL_ERROR: return static_cast<uint64_t>(QuicHttp3ErrorCode::INTERNAL_ERROR); case QUIC_STREAM_STREAM_CREATION_ERROR: return static_cast<uint64_t>(QuicHttp3ErrorCode::STREAM_CREATION_ERROR); case QUIC_STREAM_CLOSED_CRITICAL_STREAM: return static_cast<uint64_t>(QuicHttp3ErrorCode::CLOSED_CRITICAL_STREAM); case QUIC_STREAM_FRAME_UNEXPECTED: return static_cast<uint64_t>(QuicHttp3ErrorCode::FRAME_UNEXPECTED); case QUIC_STREAM_FRAME_ERROR: return static_cast<uint64_t>(QuicHttp3ErrorCode::FRAME_ERROR); case QUIC_STREAM_EXCESSIVE_LOAD: return static_cast<uint64_t>(QuicHttp3ErrorCode::EXCESSIVE_LOAD); case QUIC_STREAM_ID_ERROR: return static_cast<uint64_t>(QuicHttp3ErrorCode::ID_ERROR); case QUIC_STREAM_SETTINGS_ERROR: return static_cast<uint64_t>(QuicHttp3ErrorCode::SETTINGS_ERROR); case QUIC_STREAM_MISSING_SETTINGS: return static_cast<uint64_t>(QuicHttp3ErrorCode::MISSING_SETTINGS); case QUIC_STREAM_REQUEST_REJECTED: return static_cast<uint64_t>(QuicHttp3ErrorCode::REQUEST_REJECTED); case QUIC_STREAM_REQUEST_INCOMPLETE: return static_cast<uint64_t>(QuicHttp3ErrorCode::REQUEST_INCOMPLETE); case QUIC_STREAM_CONNECT_ERROR: return static_cast<uint64_t>(QuicHttp3ErrorCode::CONNECT_ERROR); case QUIC_STREAM_VERSION_FALLBACK: return static_cast<uint64_t>(QuicHttp3ErrorCode::VERSION_FALLBACK); case QUIC_STREAM_DECOMPRESSION_FAILED: return static_cast<uint64_t>( QuicHttpQpackErrorCode::DECOMPRESSION_FAILED); case QUIC_STREAM_ENCODER_STREAM_ERROR: return static_cast<uint64_t>( QuicHttpQpackErrorCode::ENCODER_STREAM_ERROR); case QUIC_STREAM_DECODER_STREAM_ERROR: return static_cast<uint64_t>( QuicHttpQpackErrorCode::DECODER_STREAM_ERROR); case QUIC_STREAM_UNKNOWN_APPLICATION_ERROR_CODE: return static_cast<uint64_t>(QuicHttp3ErrorCode::INTERNAL_ERROR); case QUIC_STREAM_WEBTRANSPORT_SESSION_GONE: return static_cast<uint64_t>(QuicHttp3ErrorCode::CONNECT_ERROR); case QUIC_STREAM_WEBTRANSPORT_BUFFERED_STREAMS_LIMIT_EXCEEDED: return static_cast<uint64_t>(QuicHttp3ErrorCode::CONNECT_ERROR); case QUIC_APPLICATION_DONE_WITH_STREAM: return static_cast<uint64_t>(QuicHttp3ErrorCode::GENERAL_PROTOCOL_ERROR); case QUIC_STREAM_LAST_ERROR: return static_cast<uint64_t>(QuicHttp3ErrorCode::INTERNAL_ERROR); } return static_cast<uint64_t>(QuicHttp3ErrorCode::INTERNAL_ERROR); } QuicRstStreamErrorCode IetfResetStreamErrorCodeToRstStreamErrorCode( uint64_t ietf_error_code) { switch (ietf_error_code) { case static_cast<uint64_t>(QuicHttp3ErrorCode::HTTP3_NO_ERROR): return QUIC_STREAM_NO_ERROR; case static_cast<uint64_t>(QuicHttp3ErrorCode::GENERAL_PROTOCOL_ERROR): return QUIC_STREAM_GENERAL_PROTOCOL_ERROR; case static_cast<uint64_t>(QuicHttp3ErrorCode::INTERNAL_ERROR): return QUIC_STREAM_INTERNAL_ERROR; case static_cast<uint64_t>(QuicHttp3ErrorCode::STREAM_CREATION_ERROR): return QUIC_STREAM_STREAM_CREATION_ERROR; case static_cast<uint64_t>(QuicHttp3ErrorCode::CLOSED_CRITICAL_STREAM): return QUIC_STREAM_CLOSED_CRITICAL_STREAM; case static_cast<uint64_t>(QuicHttp3ErrorCode::FRAME_UNEXPECTED): return QUIC_STREAM_FRAME_UNEXPECTED; case static_cast<uint64_t>(QuicHttp3ErrorCode::FRAME_ERROR): return QUIC_STREAM_FRAME_ERROR; case static_cast<uint64_t>(QuicHttp3ErrorCode::EXCESSIVE_LOAD): return QUIC_STREAM_EXCESSIVE_LOAD; case static_cast<uint64_t>(QuicHttp3ErrorCode::ID_ERROR): return QUIC_STREAM_ID_ERROR; case static_cast<uint64_t>(QuicHttp3ErrorCode::SETTINGS_ERROR): return QUIC_STREAM_SETTINGS_ERROR; case static_cast<uint64_t>(QuicHttp3ErrorCode::MISSING_SETTINGS): return QUIC_STREAM_MISSING_SETTINGS; case static_cast<uint64_t>(QuicHttp3ErrorCode::REQUEST_REJECTED): return QUIC_STREAM_REQUEST_REJECTED; case static_cast<uint64_t>(QuicHttp3ErrorCode::REQUEST_CANCELLED): return QUIC_STREAM_CANCELLED; case static_cast<uint64_t>(QuicHttp3ErrorCode::REQUEST_INCOMPLETE): return QUIC_STREAM_REQUEST_INCOMPLETE; case static_cast<uint64_t>(QuicHttp3ErrorCode::CONNECT_ERROR): return QUIC_STREAM_CONNECT_ERROR; case static_cast<uint64_t>(QuicHttp3ErrorCode::VERSION_FALLBACK): return QUIC_STREAM_VERSION_FALLBACK; case static_cast<uint64_t>(QuicHttpQpackErrorCode::DECOMPRESSION_FAILED): return QUIC_STREAM_DECOMPRESSION_FAILED; case static_cast<uint64_t>(QuicHttpQpackErrorCode::ENCODER_STREAM_ERROR): return QUIC_STREAM_ENCODER_STREAM_ERROR; case static_cast<uint64_t>(QuicHttpQpackErrorCode::DECODER_STREAM_ERROR): return QUIC_STREAM_DECODER_STREAM_ERROR; } return QUIC_STREAM_UNKNOWN_APPLICATION_ERROR_CODE; } QuicResetStreamError QuicResetStreamError::FromInternal( QuicRstStreamErrorCode code) { return QuicResetStreamError( code, RstStreamErrorCodeToIetfResetStreamErrorCode(code)); } QuicResetStreamError QuicResetStreamError::FromIetf(uint64_t code) { return QuicResetStreamError( IetfResetStreamErrorCodeToRstStreamErrorCode(code), code); } QuicResetStreamError QuicResetStreamError::FromIetf(QuicHttp3ErrorCode code) { return FromIetf(static_cast<uint64_t>(code)); } QuicResetStreamError QuicResetStreamError::FromIetf( QuicHttpQpackErrorCode code) { return FromIetf(static_cast<uint64_t>(code)); } #undef RETURN_STRING_LITERAL }
#include "quiche/quic/core/quic_error_codes.h" #include <cstdint> #include <string> #include "openssl/ssl.h" #include "quiche/quic/platform/api/quic_test.h" namespace quic { namespace test { namespace { using QuicErrorCodesTest = QuicTest; TEST_F(QuicErrorCodesTest, QuicErrorCodeToString) { EXPECT_STREQ("QUIC_NO_ERROR", QuicErrorCodeToString(QUIC_NO_ERROR)); } TEST_F(QuicErrorCodesTest, QuicIetfTransportErrorCodeString) { EXPECT_EQ("CRYPTO_ERROR(missing extension)", QuicIetfTransportErrorCodeString( static_cast<quic::QuicIetfTransportErrorCodes>( CRYPTO_ERROR_FIRST + SSL_AD_MISSING_EXTENSION))); EXPECT_EQ("NO_IETF_QUIC_ERROR", QuicIetfTransportErrorCodeString(NO_IETF_QUIC_ERROR)); EXPECT_EQ("INTERNAL_ERROR", QuicIetfTransportErrorCodeString(INTERNAL_ERROR)); EXPECT_EQ("SERVER_BUSY_ERROR", QuicIetfTransportErrorCodeString(SERVER_BUSY_ERROR)); EXPECT_EQ("FLOW_CONTROL_ERROR", QuicIetfTransportErrorCodeString(FLOW_CONTROL_ERROR)); EXPECT_EQ("STREAM_LIMIT_ERROR", QuicIetfTransportErrorCodeString(STREAM_LIMIT_ERROR)); EXPECT_EQ("STREAM_STATE_ERROR", QuicIetfTransportErrorCodeString(STREAM_STATE_ERROR)); EXPECT_EQ("FINAL_SIZE_ERROR", QuicIetfTransportErrorCodeString(FINAL_SIZE_ERROR)); EXPECT_EQ("FRAME_ENCODING_ERROR", QuicIetfTransportErrorCodeString(FRAME_ENCODING_ERROR)); EXPECT_EQ("TRANSPORT_PARAMETER_ERROR", QuicIetfTransportErrorCodeString(TRANSPORT_PARAMETER_ERROR)); EXPECT_EQ("CONNECTION_ID_LIMIT_ERROR", QuicIetfTransportErrorCodeString(CONNECTION_ID_LIMIT_ERROR)); EXPECT_EQ("PROTOCOL_VIOLATION", QuicIetfTransportErrorCodeString(PROTOCOL_VIOLATION)); EXPECT_EQ("INVALID_TOKEN", QuicIetfTransportErrorCodeString(INVALID_TOKEN)); EXPECT_EQ("CRYPTO_BUFFER_EXCEEDED", QuicIetfTransportErrorCodeString(CRYPTO_BUFFER_EXCEEDED)); EXPECT_EQ("KEY_UPDATE_ERROR", QuicIetfTransportErrorCodeString(KEY_UPDATE_ERROR)); EXPECT_EQ("AEAD_LIMIT_REACHED", QuicIetfTransportErrorCodeString(AEAD_LIMIT_REACHED)); EXPECT_EQ("Unknown(1024)", QuicIetfTransportErrorCodeString( static_cast<quic::QuicIetfTransportErrorCodes>(0x400))); } TEST_F(QuicErrorCodesTest, QuicErrorCodeToTransportErrorCode) { for (uint32_t internal_error_code = 0; internal_error_code < QUIC_LAST_ERROR; ++internal_error_code) { std::string internal_error_code_string = QuicErrorCodeToString(static_cast<QuicErrorCode>(internal_error_code)); if (internal_error_code_string == "INVALID_ERROR_CODE") { continue; } QuicErrorCodeToIetfMapping ietf_error_code = QuicErrorCodeToTransportErrorCode( static_cast<QuicErrorCode>(internal_error_code)); if (ietf_error_code.is_transport_close) { QuicIetfTransportErrorCodes transport_error_code = static_cast<QuicIetfTransportErrorCodes>(ietf_error_code.error_code); bool is_transport_crypto_error_code = transport_error_code >= 0x100 && transport_error_code <= 0x1ff; if (is_transport_crypto_error_code) { EXPECT_EQ( internal_error_code, TlsAlertToQuicErrorCode(transport_error_code - CRYPTO_ERROR_FIRST)); } bool is_valid_transport_error_code = transport_error_code <= 0x0f || is_transport_crypto_error_code; EXPECT_TRUE(is_valid_transport_error_code) << internal_error_code_string; } else { uint64_t application_error_code = ietf_error_code.error_code; bool is_valid_http3_error_code = application_error_code >= 0x100 && application_error_code <= 0x110; bool is_valid_qpack_error_code = application_error_code >= 0x200 && application_error_code <= 0x202; EXPECT_TRUE(is_valid_http3_error_code || is_valid_qpack_error_code) << internal_error_code_string; } } } using QuicRstErrorCodesTest = QuicTest; TEST_F(QuicRstErrorCodesTest, QuicRstStreamErrorCodeToString) { EXPECT_STREQ("QUIC_BAD_APPLICATION_PAYLOAD", QuicRstStreamErrorCodeToString(QUIC_BAD_APPLICATION_PAYLOAD)); } TEST_F(QuicRstErrorCodesTest, IetfResetStreamErrorCodeToRstStreamErrorCodeAndBack) { for (uint64_t wire_code : {static_cast<uint64_t>(QuicHttp3ErrorCode::HTTP3_NO_ERROR), static_cast<uint64_t>(QuicHttp3ErrorCode::GENERAL_PROTOCOL_ERROR), static_cast<uint64_t>(QuicHttp3ErrorCode::INTERNAL_ERROR), static_cast<uint64_t>(QuicHttp3ErrorCode::STREAM_CREATION_ERROR), static_cast<uint64_t>(QuicHttp3ErrorCode::CLOSED_CRITICAL_STREAM), static_cast<uint64_t>(QuicHttp3ErrorCode::FRAME_UNEXPECTED), static_cast<uint64_t>(QuicHttp3ErrorCode::FRAME_ERROR), static_cast<uint64_t>(QuicHttp3ErrorCode::EXCESSIVE_LOAD), static_cast<uint64_t>(QuicHttp3ErrorCode::ID_ERROR), static_cast<uint64_t>(QuicHttp3ErrorCode::SETTINGS_ERROR), static_cast<uint64_t>(QuicHttp3ErrorCode::MISSING_SETTINGS), static_cast<uint64_t>(QuicHttp3ErrorCode::REQUEST_REJECTED), static_cast<uint64_t>(QuicHttp3ErrorCode::REQUEST_CANCELLED), static_cast<uint64_t>(QuicHttp3ErrorCode::REQUEST_INCOMPLETE), static_cast<uint64_t>(QuicHttp3ErrorCode::CONNECT_ERROR), static_cast<uint64_t>(QuicHttp3ErrorCode::VERSION_FALLBACK), static_cast<uint64_t>(QuicHttpQpackErrorCode::DECOMPRESSION_FAILED), static_cast<uint64_t>(QuicHttpQpackErrorCode::ENCODER_STREAM_ERROR), static_cast<uint64_t>(QuicHttpQpackErrorCode::DECODER_STREAM_ERROR)}) { QuicRstStreamErrorCode rst_stream_error_code = IetfResetStreamErrorCodeToRstStreamErrorCode(wire_code); EXPECT_EQ(wire_code, RstStreamErrorCodeToIetfResetStreamErrorCode( rst_stream_error_code)); } } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_error_codes.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_error_codes_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
2f292d6b-3fad-4bd3-9908-3933e5739475
cpp
tensorflow/tensorflow
eigen_support
tensorflow/lite/kernels/eigen_support.cc
tensorflow/lite/kernels/eigen_support_test.cc
#include "tensorflow/lite/kernels/eigen_support.h" #include <functional> #include <memory> #include <utility> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/optimized/eigen_spatial_convolutions.h" #include "tensorflow/lite/kernels/op_macros.h" #ifndef EIGEN_DONT_ALIGN #include "tensorflow/lite/util.h" #endif namespace tflite { namespace eigen_support { namespace { const int kDefaultNumThreadpoolThreads = 4; bool IsValidNumThreads(int num_threads) { return num_threads >= -1; } int GetNumThreads(int num_threads) { return num_threads > -1 ? num_threads : kDefaultNumThreadpoolThreads; } #ifndef EIGEN_DONT_ALIGN static_assert( kDefaultTensorAlignment % EIGEN_MAX_ALIGN_BYTES == 0, "kDefaultTensorAlignment doesn't comply with Eigen alignment requirement."); #endif void SetEigenNbThreads(int threads) { #if defined(EIGEN_HAS_OPENMP) Eigen::setNbThreads(threads); #endif } class EigenThreadPoolWrapper : public Eigen::ThreadPoolInterface { public: explicit EigenThreadPoolWrapper(int num_threads) { if (num_threads > 1) { pool_ = std::make_unique<Eigen::ThreadPool>(num_threads); } } ~EigenThreadPoolWrapper() override {} void Schedule(std::function<void()> fn) override { if (pool_) { pool_->Schedule(std::move(fn)); } else { fn(); } } int NumThreads() const override { return pool_ ? pool_->NumThreads() : 1; } int CurrentThreadId() const override { return pool_ ? pool_->CurrentThreadId() : 0; } private: std::unique_ptr<Eigen::ThreadPool> pool_; }; class LazyEigenThreadPoolHolder { public: explicit LazyEigenThreadPoolHolder(int num_threads) { SetNumThreads(num_threads); } const Eigen::ThreadPoolDevice* GetThreadPoolDevice() { if (!device_) { thread_pool_wrapper_ = std::make_unique<EigenThreadPoolWrapper>(target_num_threads_); device_ = std::make_unique<Eigen::ThreadPoolDevice>( thread_pool_wrapper_.get(), target_num_threads_); } return device_.get(); } void SetNumThreads(int num_threads) { const int target_num_threads = GetNumThreads(num_threads); if (target_num_threads_ != target_num_threads) { target_num_threads_ = target_num_threads; device_.reset(); thread_pool_wrapper_.reset(); } } private: int target_num_threads_ = kDefaultNumThreadpoolThreads; std::unique_ptr<Eigen::ThreadPoolDevice> device_; std::unique_ptr<Eigen::ThreadPoolInterface> thread_pool_wrapper_; }; struct RefCountedEigenContext : public TfLiteExternalContext { std::unique_ptr<LazyEigenThreadPoolHolder> thread_pool_holder; int num_references = 0; }; RefCountedEigenContext* GetEigenContext(TfLiteContext* context) { return reinterpret_cast<RefCountedEigenContext*>( context->GetExternalContext(context, kTfLiteEigenContext)); } TfLiteStatus Refresh(TfLiteContext* context) { if (IsValidNumThreads(context->recommended_num_threads)) { SetEigenNbThreads(GetNumThreads(context->recommended_num_threads)); } auto* ptr = GetEigenContext(context); if (ptr != nullptr) { ptr->thread_pool_holder->SetNumThreads(context->recommended_num_threads); } return kTfLiteOk; } } void IncrementUsageCounter(TfLiteContext* context) { auto* ptr = GetEigenContext(context); if (ptr == nullptr) { if (IsValidNumThreads(context->recommended_num_threads)) { SetEigenNbThreads(context->recommended_num_threads); } ptr = new RefCountedEigenContext; ptr->type = kTfLiteEigenContext; ptr->Refresh = Refresh; ptr->thread_pool_holder = std::make_unique<LazyEigenThreadPoolHolder>( context->recommended_num_threads); ptr->num_references = 0; context->SetExternalContext(context, kTfLiteEigenContext, ptr); } ptr->num_references++; } void DecrementUsageCounter(TfLiteContext* context) { auto* ptr = GetEigenContext(context); if (ptr == nullptr) { TF_LITE_FATAL( "Call to DecrementUsageCounter() not preceded by " "IncrementUsageCounter()"); } if (--ptr->num_references == 0) { delete ptr; context->SetExternalContext(context, kTfLiteEigenContext, nullptr); } } const Eigen::ThreadPoolDevice* GetThreadPoolDevice(TfLiteContext* context) { auto* ptr = GetEigenContext(context); if (ptr == nullptr) { TF_LITE_FATAL( "Call to GetFromContext() not preceded by IncrementUsageCounter()"); } return ptr->thread_pool_holder->GetThreadPoolDevice(); } } }
#include "tensorflow/lite/kernels/eigen_support.h" #include <utility> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/optimized/eigen_spatial_convolutions.h" namespace tflite { namespace eigen_support { struct TestTfLiteContext : public TfLiteContext { TestTfLiteContext() { recommended_num_threads = -1; external_context = nullptr; GetExternalContext = GetExternalContextImpl; SetExternalContext = SetExternalContextImpl; } static void SetExternalContextImpl(TfLiteContext* context, TfLiteExternalContextType type, TfLiteExternalContext* external_context) { static_cast<TestTfLiteContext*>(context)->external_context = external_context; } static TfLiteExternalContext* GetExternalContextImpl( TfLiteContext* context, TfLiteExternalContextType type) { return static_cast<TestTfLiteContext*>(context)->external_context; } TfLiteExternalContext* external_context; }; TEST(EigenSupport, Default) { TestTfLiteContext context; IncrementUsageCounter(&context); ASSERT_NE(context.external_context, nullptr); EXPECT_EQ(context.external_context->type, kTfLiteEigenContext); auto thread_pool_device = GetThreadPoolDevice(&context); ASSERT_NE(thread_pool_device, nullptr); EXPECT_EQ(thread_pool_device->numThreads(), 4); DecrementUsageCounter(&context); } TEST(EigenSupport, SingleThreaded) { TestTfLiteContext context; context.recommended_num_threads = 1; IncrementUsageCounter(&context); auto thread_pool_device = GetThreadPoolDevice(&context); ASSERT_NE(thread_pool_device, nullptr); EXPECT_EQ(thread_pool_device->numThreads(), 1); EXPECT_EQ(thread_pool_device->numThreadsInPool(), 1); bool executed = false; auto notification = thread_pool_device->enqueue([&executed]() { executed = true; }); ASSERT_NE(notification, nullptr); notification->Wait(); delete notification; EXPECT_TRUE(executed); DecrementUsageCounter(&context); } TEST(EigenSupport, MultiThreaded) { TestTfLiteContext context; context.recommended_num_threads = 2; IncrementUsageCounter(&context); auto thread_pool_device = GetThreadPoolDevice(&context); ASSERT_NE(thread_pool_device, nullptr); EXPECT_EQ(thread_pool_device->numThreads(), 2); bool executed = false; auto notification = thread_pool_device->enqueue([&executed]() { executed = true; }); ASSERT_NE(notification, nullptr); notification->Wait(); delete notification; EXPECT_TRUE(executed); DecrementUsageCounter(&context); } TEST(EigenSupport, NumThreadsChanged) { TestTfLiteContext context; context.recommended_num_threads = 1; IncrementUsageCounter(&context); auto thread_pool_device = GetThreadPoolDevice(&context); ASSERT_NE(thread_pool_device, nullptr); EXPECT_EQ(thread_pool_device->numThreads(), 1); context.recommended_num_threads = 3; ASSERT_NE(context.external_context, nullptr); context.external_context->Refresh(&context); thread_pool_device = GetThreadPoolDevice(&context); ASSERT_NE(thread_pool_device, nullptr); EXPECT_EQ(thread_pool_device->numThreads(), 3); context.recommended_num_threads = -1; ASSERT_NE(context.external_context, nullptr); context.external_context->Refresh(&context); thread_pool_device = GetThreadPoolDevice(&context); ASSERT_NE(thread_pool_device, nullptr); EXPECT_EQ(thread_pool_device->numThreads(), 4); context.recommended_num_threads = 0; ASSERT_NE(context.external_context, nullptr); context.external_context->Refresh(&context); thread_pool_device = GetThreadPoolDevice(&context); ASSERT_NE(thread_pool_device, nullptr); EXPECT_EQ(thread_pool_device->numThreads(), 0); context.recommended_num_threads = 3; ASSERT_NE(context.external_context, nullptr); context.external_context->Refresh(&context); thread_pool_device = GetThreadPoolDevice(&context); ASSERT_NE(thread_pool_device, nullptr); EXPECT_EQ(thread_pool_device->numThreads(), 3); context.recommended_num_threads = -5; ASSERT_NE(context.external_context, nullptr); context.external_context->Refresh(&context); thread_pool_device = GetThreadPoolDevice(&context); ASSERT_NE(thread_pool_device, nullptr); EXPECT_EQ(thread_pool_device->numThreads(), 4); DecrementUsageCounter(&context); } TEST(EigenSupport, RefCounting) { TestTfLiteContext context; EXPECT_EQ(context.external_context, nullptr); IncrementUsageCounter(&context); EXPECT_NE(context.external_context, nullptr); IncrementUsageCounter(&context); EXPECT_NE(context.external_context, nullptr); DecrementUsageCounter(&context); EXPECT_NE(context.external_context, nullptr); DecrementUsageCounter(&context); EXPECT_EQ(context.external_context, nullptr); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/eigen_support.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/eigen_support_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6179176a-3ede-48e4-aaad-e68588ded661
cpp
tensorflow/tensorflow
eigen_spatial_convolutions
tensorflow/lite/kernels/internal/optimized/eigen_spatial_convolutions.h
third_party/xla/xla/tsl/framework/convolution/eigen_spatial_convolutions_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_OPTIMIZED_EIGEN_SPATIAL_CONVOLUTIONS_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_OPTIMIZED_EIGEN_SPATIAL_CONVOLUTIONS_H_ #define EIGEN_USE_CUSTOM_THREAD_POOL #define EIGEN_USE_THREADS #define Eigen EigenForTFLite #define TFLITE_REDUCE_INSTANTIATIONS #if defined(TFLITE_REDUCE_INSTANTIATIONS) #define TENSOR_CONTRACTION_DISPATCH(METHOD, ALIGNMENT, ARGS) \ if (this->m_lhs_inner_dim_contiguous && this->m_rhs_inner_dim_contiguous && \ !this->m_rhs_inner_dim_reordered) { \ METHOD<true, true, false, ALIGNMENT> ARGS; \ } else { \ eigen_assert(false && "Unsupported contraction formats"); \ } #endif #include "unsupported/Eigen/CXX11/Tensor" #include "xla/tsl/framework/convolution/eigen_spatial_convolutions-inl.h" #endif
#include "xla/tsl/framework/convolution/eigen_spatial_convolutions.h" #include "absl/strings/str_cat.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" namespace Eigen { #define EigenApprox(a, b) \ { ASSERT_TRUE(std::abs(a - b) <= std::min(std::abs(a), std::abs(b)) * 1e-3); } static int ceil_div(int a, int b) { return (a + b - 1) / b; } TEST(EigenSpatialConvolutionsTest, Simple) { const int input_depth = 7; const int input_rows = 4; const int input_cols = 5; const int output_depth = 10; const int patch_rows = 3; const int patch_cols = 4; const int output_rows = input_rows; const int output_cols = input_cols; Tensor<float, 3> input(input_depth, input_rows, input_cols); Tensor<float, 4> kernel(output_depth, input_depth, patch_rows, patch_cols); Tensor<float, 3> result(output_depth, output_rows, output_cols); input = input.constant(11.0f) + input.random(); kernel = kernel.constant(2.0f) + kernel.random(); result.setRandom(); result = SpatialConvolution(input, kernel); EXPECT_EQ(result.dimension(0), output_depth); EXPECT_EQ(result.dimension(1), output_rows); EXPECT_EQ(result.dimension(2), output_cols); for (int od = 0; od < output_depth; ++od) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int id = 0; id < input_depth; ++id) { if (r - 1 + i >= 0 && c - 1 + j >= 0 && r - 1 + i < output_rows && c - 1 + j < output_cols) { expected += input(id, r - 1 + i, c - 1 + j) * kernel(od, id, r, c); } } } } EigenApprox(result(od, i, j), expected); } } } } TEST(EigenSpatialConvolutionsTest, SimpleRowMajor) { const int input_depth = 7; const int input_rows = 4; const int input_cols = 5; const int output_depth = 10; const int patch_rows = 3; const int patch_cols = 4; const int output_rows = input_rows; const int output_cols = input_cols; Tensor<float, 3, RowMajor> input(input_cols, input_rows, input_depth); Tensor<float, 4, RowMajor> kernel(patch_cols, patch_rows, input_depth, output_depth); Tensor<float, 3, RowMajor> result(output_cols, output_rows, output_depth); input = input.constant(11.0f) + input.random(); kernel = kernel.constant(2.0f) + kernel.random(); result.setRandom(); result = SpatialConvolution(input, kernel); EXPECT_EQ(result.dimension(0), output_cols); EXPECT_EQ(result.dimension(1), output_rows); EXPECT_EQ(result.dimension(2), output_depth); for (int od = 0; od < output_depth; ++od) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int id = 0; id < input_depth; ++id) { if (r - 1 + i >= 0 && c - 1 + j >= 0 && r - 1 + i < output_rows && c - 1 + j < output_cols) { expected += input(c - 1 + j, r - 1 + i, id) * kernel(c, r, id, od); } } } } EigenApprox(result(j, i, od), expected); } } } } TEST(EigenSpatialConvolutionsTest, BatchedSpatialConvolution) { Tensor<float, 4> input(10, 5, 5, 13); Tensor<float, 4> kernel(7, 10, 3, 3); Tensor<float, 4> result(7, 5, 5, 13); input = input.constant(11.0f) + input.random(); kernel = kernel.constant(2.0f) + kernel.random(); result.setRandom(); result = SpatialConvolution(input, kernel); EXPECT_EQ(result.dimension(0), 7); EXPECT_EQ(result.dimension(1), 5); EXPECT_EQ(result.dimension(2), 5); for (int b = 0; b < 13; ++b) { for (int od = 0; od < 7; ++od) { for (int i = 0; i < 5; ++i) { for (int j = 0; j < 5; ++j) { float expected = 0.0f; for (int c = 0; c < 3; ++c) { for (int r = 0; r < 3; ++r) { for (int id = 0; id < 10; ++id) { if (r - 1 + i >= 0 && c - 1 + j >= 0 && r - 1 + i < 5 && c - 1 + j < 5) { expected += input(id, r - 1 + i, c - 1 + j, b) * kernel(od, id, r, c); } } } } EigenApprox(result(od, i, j, b), expected); } } } } } TEST(EigenSpatialConvolutionsTest, BatchedSpatialConvolutionRowMajor) { Tensor<float, 4, RowMajor> input(13, 5, 5, 10); Tensor<float, 4, RowMajor> kernel(3, 3, 10, 7); Tensor<float, 4, RowMajor> result(13, 5, 5, 7); input = input.constant(11.0f) + input.random(); kernel = kernel.constant(2.0f) + kernel.random(); result.setRandom(); result = SpatialConvolution(input, kernel); EXPECT_EQ(result.dimension(1), 5); EXPECT_EQ(result.dimension(2), 5); EXPECT_EQ(result.dimension(3), 7); for (int b = 0; b < 13; ++b) { for (int od = 0; od < 7; ++od) { for (int i = 0; i < 5; ++i) { for (int j = 0; j < 5; ++j) { float expected = 0.0f; for (int c = 0; c < 3; ++c) { for (int r = 0; r < 3; ++r) { for (int id = 0; id < 10; ++id) { if (r - 1 + i >= 0 && c - 1 + j >= 0 && r - 1 + i < 5 && c - 1 + j < 5) { expected += input(b, c - 1 + j, r - 1 + i, id) * kernel(c, r, id, od); } } } } EigenApprox(result(b, j, i, od), expected); } } } } } TEST(EigenSpatialConvolutionsTest, ValidSpatialConvolution) { const int input_depth = 10; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int output_depth = 7; const int patch_rows = 4; const int patch_cols = 4; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; Tensor<float, 4> input(input_depth, input_rows, input_cols, num_batches); Tensor<float, 4> kernel(output_depth, input_depth, patch_rows, patch_cols); Tensor<float, 4> result(output_depth, output_rows, output_cols, num_batches); input = input.constant(11.0f) + input.random(); kernel = kernel.constant(2.0f) + kernel.random(); result.setRandom(); const int stride = 1; result = SpatialConvolution(input, kernel, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(0), output_depth); EXPECT_EQ(result.dimension(1), output_rows); EXPECT_EQ(result.dimension(2), output_cols); EXPECT_EQ(result.dimension(3), num_batches); for (int b = 0; b < num_batches; ++b) { for (int od = 0; od < output_depth; ++od) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int id = 0; id < input_depth; ++id) { expected += input(id, r + i, c + j, b) * kernel(od, id, r, c); } } } if (result(od, i, j, b) != expected) { std::cout << "at od=" << od << " b=" << b << " i=" << i << " j=" << j << " " << result(od, i, j, b) << " vs " << expected << std::endl; } EigenApprox(result(od, i, j, b), expected); } } } } } TEST(EigenSpatialConvolutionsTest, ValidSpatialConvolutionUnequalStrides) { const int input_depth = 10; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int output_depth = 7; const int patch_rows = 4; const int patch_cols = 4; const int row_stride = 1; const int col_stride = 2; const int output_rows = 2; const int output_cols = 1; Tensor<float, 4> input(input_depth, input_rows, input_cols, num_batches); Tensor<float, 4> kernel(output_depth, input_depth, patch_rows, patch_cols); Tensor<float, 4> result(output_depth, output_rows, output_cols, num_batches); input = input.constant(11.0f) + input.random(); kernel = kernel.constant(2.0f) + kernel.random(); result.setRandom(); result = SpatialConvolution(input, kernel, row_stride, col_stride, PADDING_VALID); EXPECT_EQ(result.dimension(0), output_depth); EXPECT_EQ(result.dimension(1), output_rows); EXPECT_EQ(result.dimension(2), output_cols); EXPECT_EQ(result.dimension(3), num_batches); if ( (true)) return; for (int b = 0; b < num_batches; ++b) { for (int od = 0; od < output_depth; ++od) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int id = 0; id < input_depth; ++id) { expected += input(id, r + row_stride * i, c + col_stride * j, b) * kernel(od, id, r, c); } } } if (result(od, i, j, b) != expected) { std::cout << "at od=" << od << " b=" << b << " i=" << i << " j=" << j << " " << result(od, i, j, b) << " vs " << expected << std::endl; } EigenApprox(result(od, i, j, b), expected); } } } } } TEST(EigenSpatialConvolutionsTest, ValidSpatialConvolutionRowMajor) { const int input_depth = 10; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int output_depth = 7; const int patch_rows = 4; const int patch_cols = 4; const int output_rows = input_rows - patch_rows + 1; const int output_cols = input_cols - patch_cols + 1; Tensor<float, 4, RowMajor> input(num_batches, input_cols, input_rows, input_depth); Tensor<float, 4, RowMajor> kernel(patch_cols, patch_rows, input_depth, output_depth); Tensor<float, 4, RowMajor> result(num_batches, output_cols, output_rows, output_depth); input = input.constant(11.0f) + input.random(); kernel = kernel.constant(2.0f) + kernel.random(); result.setRandom(); const int stride = 1; result = SpatialConvolution(input, kernel, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(0), num_batches); EXPECT_EQ(result.dimension(1), output_cols); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(3), output_depth); for (int b = 0; b < num_batches; ++b) { for (int od = 0; od < output_depth; ++od) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_rows; ++c) { for (int r = 0; r < patch_cols; ++r) { for (int id = 0; id < input_depth; ++id) { expected += input(b, c + j, r + i, id) * kernel(c, r, id, od); } } } if (result(b, j, i, od) != expected) { std::cout << "at od=" << od << " b=" << b << " i=" << i << " j=" << j << " " << result(b, j, i, od) << " vs " << expected << std::endl; } EigenApprox(result(b, j, i, od), expected); } } } } } TEST(EigenSpatialConvolutionsTest, StridedSpatialConvolution) { const int input_depth = 10; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int output_depth = 7; const int patch_rows = 3; const int patch_cols = 3; const int output_rows = 2; const int output_cols = 2; Tensor<float, 4> input(input_depth, input_rows, input_cols, num_batches); Tensor<float, 4> kernel(output_depth, input_depth, patch_rows, patch_cols); Tensor<float, 4> result(output_depth, output_rows, output_cols, num_batches); input = input.constant(11.0f) + input.random(); kernel = kernel.constant(2.0f) + kernel.random(); result.setRandom(); int stride = 2; result = SpatialConvolution(input, kernel, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(0), output_depth); EXPECT_EQ(result.dimension(1), output_rows); EXPECT_EQ(result.dimension(2), output_cols); EXPECT_EQ(result.dimension(3), num_batches); for (int b = 0; b < num_batches; ++b) { for (int od = 0; od < output_depth; ++od) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int id = 0; id < input_depth; ++id) { expected += input(id, r + stride * i, c + stride * j, b) * kernel(od, id, r, c); } } } EigenApprox(result(od, i, j, b), expected); } } } } } TEST(EigenSpatialConvolutionsTest, KernelSmallerThanStride) { const int input_depth = 2; const int input_rows = 3; const int input_cols = 3; const int num_batches = 5; const int output_depth = 6; const int patch_rows = 1; const int patch_cols = 1; const int output_rows = 2; const int output_cols = 2; Tensor<float, 4> input(input_depth, input_rows, input_cols, num_batches); Tensor<float, 4> kernel(output_depth, input_depth, patch_rows, patch_cols); Tensor<float, 4> result(output_depth, output_rows, output_cols, num_batches); input = input.constant(11.0f) + input.random(); kernel = kernel.constant(2.0f) + kernel.random(); result.setRandom(); int stride = 2; result = SpatialConvolution(input, kernel, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(0), output_depth); EXPECT_EQ(result.dimension(1), output_rows); EXPECT_EQ(result.dimension(2), output_cols); EXPECT_EQ(result.dimension(3), num_batches); for (int b = 0; b < num_batches; ++b) { for (int od = 0; od < output_depth; ++od) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int id = 0; id < input_depth; ++id) { expected += input(id, r + stride * i, c + stride * j, b) * kernel(od, id, r, c); } } } EigenApprox(result(od, i, j, b), expected); } } } } } TEST(EigenSpatialConvolutionsTest, StridedSpatialConvolutionRowMajor) { const int input_depth = 10; const int input_rows = 5; const int input_cols = 5; const int num_batches = 13; const int output_depth = 7; const int patch_rows = 3; const int patch_cols = 3; const int output_rows = 2; const int output_cols = 2; Tensor<float, 4, RowMajor> input(num_batches, input_cols, input_rows, input_depth); Tensor<float, 4, RowMajor> kernel(patch_cols, patch_rows, input_depth, output_depth); Tensor<float, 4, RowMajor> result(num_batches, output_cols, output_rows, output_depth); input = input.constant(11.0f) + input.random(); kernel = kernel.constant(2.0f) + kernel.random(); result.setRandom(); int stride = 2; result = SpatialConvolution(input, kernel, stride, stride, PADDING_VALID); EXPECT_EQ(result.dimension(0), num_batches); EXPECT_EQ(result.dimension(1), output_cols); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(3), output_depth); for (int b = 0; b < num_batches; ++b) { for (int od = 0; od < output_depth; ++od) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int id = 0; id < input_depth; ++id) { expected += input(b, c + stride * j, r + stride * i, id) * kernel(c, r, id, od); } } } EigenApprox(result(b, j, i, od), expected); } } } } } TEST(EigenSpatialConvolutionsTest, AtrousSpatial) { const int input_depth = 10; const int input_rows = 7; const int input_cols = 7; const int num_batches = 13; const int output_depth = 7; const int patch_rows = 3; const int patch_cols = 3; const int output_rows = 3; const int output_cols = 3; Tensor<float, 4> input(input_depth, input_rows, input_cols, num_batches); Tensor<float, 4> kernel(output_depth, input_depth, patch_rows, patch_cols); Tensor<float, 4> result(output_depth, output_rows, output_cols, num_batches); input = input.constant(11.0f) + input.random(); kernel = kernel.constant(2.0f) + kernel.random(); result.setRandom(); int stride = 1; int in_stride = 2; result = SpatialConvolution(input, kernel, stride, stride, PADDING_VALID, in_stride, in_stride); EXPECT_EQ(result.dimension(0), output_depth); EXPECT_EQ(result.dimension(1), output_rows); EXPECT_EQ(result.dimension(2), output_cols); EXPECT_EQ(result.dimension(3), num_batches); for (int b = 0; b < num_batches; ++b) { for (int od = 0; od < output_depth; ++od) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int id = 0; id < input_depth; ++id) { expected += input(id, in_stride * r + stride * i, in_stride * c + stride * j, b) * kernel(od, id, r, c); } } } EigenApprox(result(od, i, j, b), expected); } } } } } TEST(EigenSpatialConvolutionsTest, AtrousSpatialRowMajor) { const int input_depth = 10; const int input_rows = 7; const int input_cols = 7; const int num_batches = 13; const int output_depth = 7; const int patch_rows = 3; const int patch_cols = 3; const int output_rows = 3; const int output_cols = 3; Tensor<float, 4, RowMajor> input(num_batches, input_cols, input_rows, input_depth); Tensor<float, 4, RowMajor> kernel(patch_cols, patch_rows, input_depth, output_depth); Tensor<float, 4, RowMajor> result(num_batches, output_cols, output_rows, output_depth); input = input.constant(11.0f) + input.random(); kernel = kernel.constant(2.0f) + kernel.random(); result.setRandom(); int stride = 1; int in_stride = 2; result = SpatialConvolution(input, kernel, stride, stride, PADDING_VALID, in_stride, in_stride); EXPECT_EQ(result.dimension(0), num_batches); EXPECT_EQ(result.dimension(1), output_cols); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(3), output_depth); for (int b = 0; b < num_batches; ++b) { for (int od = 0; od < output_depth; ++od) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int id = 0; id < input_depth; ++id) { expected += input(b, in_stride * c + stride * j, in_stride * r + stride * i, id) * kernel(c, r, id, od); } } } EigenApprox(result(b, j, i, od), expected); } } } } } TEST(EigenSpatialConvolutionsTest, AtrousSpatialRowMajorUnequalStrides) { const int input_depth = 10; const int input_rows = 7; const int input_cols = 7; const int num_batches = 13; const int output_depth = 7; const int patch_rows = 3; const int patch_cols = 3; const int output_rows = 1; const int output_cols = 3; Tensor<float, 4, RowMajor> input(num_batches, input_cols, input_rows, input_depth); Tensor<float, 4, RowMajor> kernel(patch_cols, patch_rows, input_depth, output_depth); Tensor<float, 4, RowMajor> result(num_batches, output_cols, output_rows, output_depth); input = input.constant(11.0f) + input.random(); kernel = kernel.constant(2.0f) + kernel.random(); result.setRandom(); int row_stride = 1; int col_stride = 2; int row_in_stride = 3; int col_in_stride = 1; result = SpatialConvolution(input, kernel, row_stride, col_stride, PADDING_VALID, row_in_stride, col_in_stride); EXPECT_EQ(result.dimension(0), num_batches); EXPECT_EQ(result.dimension(1), output_cols); EXPECT_EQ(result.dimension(2), output_rows); EXPECT_EQ(result.dimension(3), output_depth); for (int b = 0; b < num_batches; ++b) { for (int od = 0; od < output_depth; ++od) { for (int i = 0; i < output_rows; ++i) { for (int j = 0; j < output_cols; ++j) { float expected = 0.0f; for (int c = 0; c < patch_cols; ++c) { for (int r = 0; r < patch_rows; ++r) { for (int id = 0; id < input_depth; ++id) { expected += input(b, col_in_stride * c + col_stride * j, row_in_stride * r + row_stride * i, id) * kernel(c, r, id, od); } } } EigenApprox(result(b, j, i, od), expected); } } } } } TEST(EigenSpatialConvolutionsTest, SpatialConvContractionMapper) { typedef Tensor<float, 1>::DimensionPair DimPair; Tensor<float, 4> out(1, 1, 2, 1); Tensor<float, 4> kern(1, 1, 2, 2); for (int i = 0; i < kern.size(); ++i) { kern.coeffRef(i) = static_cast<float>(i) + 1; } for (int i = 0; i < out.size(); ++i) { out.coeffRef(i) = static_cast<float>(i) + 1; } DSizes<ptrdiff_t, 4> strides; strides[0] = 1; strides[1] = 2; strides[2] = 2; strides[3] = 1; array<std::pair<ptrdiff_t, ptrdiff_t>, 4> paddings; paddings[0] = std::make_pair(0, 0); paddings[1] = std::make_pair(1, 2); paddings[2] = std::make_pair(1, 1); paddings[3] = std::make_pair(0, 0); DSizes<ptrdiff_t, 3> out_dim; out_dim[0] = 1; out_dim[1] = 4; out_dim[2] = 12; array<bool, 4> kernel_reverse; kernel_reverse[0] = false; kernel_reverse[1] = false; kernel_reverse[2] = true; kernel_reverse[3] = true; DSizes<ptrdiff_t, 3> k_dims; k_dims[0] = 1; k_dims[1] = 1; k_dims[2] = 4; array<DimPair, 2> contract_dims; contract_dims[0] = DimPair(0, 0); contract_dims[1] = DimPair(2, 1); DSizes<ptrdiff_t, 4> in_dim; in_dim[0] = 1; in_dim[1] = 3; in_dim[2] = 4; in_dim[3] = 1; DSizes<ptrdiff_t, 2> in_dbg_dim; in_dbg_dim[0] = 3; in_dbg_dim[1] = 4; DSizes<ptrdiff_t, 2> out_dbg_dim; out_dbg_dim[0] = 4; out_dbg_dim[1] = 12; Tensor<float, 4> direct = kern.reverse(kernel_reverse) .reshape(k_dims) .contract( out.extract_image_patches(2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 0) .reshape(out_dim), contract_dims) .reshape(in_dim); Tensor<float, 4> indirect = kern.reverse(kernel_reverse) .reshape(k_dims) .contract( out.inflate(strides) .pad(paddings) .extract_image_patches(2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0) .reshape(out_dim), contract_dims) .reshape(in_dim); eigen_assert(dimensions_match(direct.dimensions(), indirect.dimensions())); for (size_t i = 0; i < direct.dimensions().TotalSize(); ++i) { EigenApprox(direct.data()[i], indirect.data()[i]); } EigenApprox(1.0f, direct(0, 0, 0, 0)); EigenApprox(3.0f, direct(0, 0, 1, 0)); EigenApprox(2.0f, direct(0, 0, 2, 0)); EigenApprox(6.0f, direct(0, 0, 3, 0)); EigenApprox(2.0f, direct(0, 1, 0, 0)); EigenApprox(4.0f, direct(0, 1, 1, 0)); EigenApprox(4.0f, direct(0, 1, 2, 0)); EigenApprox(8.0f, direct(0, 1, 3, 0)); } template <typename T> static void PackRhsHelper(::testing::benchmark::State& state, int input_batches, int input_cols, int input_rows, int input_depth, int filter_count, int filter_cols, int filter_rows, Eigen::PaddingType padding, int col_strides, int row_strides, int patch_col_inflate_stride, int patch_row_inflate_stride, Index block_rows, Index block_cols) { srand(12345); using Dimensions = Eigen::DSizes<Eigen::Index, 4>; Dimensions input_dims(input_depth, input_rows, input_cols, input_batches); static const int packet_size = Eigen::internal::packet_traits<T>::size; using NewDimension = Eigen::DSizes<Index, 2>; using nocontract_t = Eigen::array<Eigen::Index, 1>; using contract_t = Eigen::array<Eigen::Index, 1>; using ArgType = TensorMap<Tensor<T, 4>, Eigen::Aligned>; using Evaluator = TensorEvaluator< const TensorReshapingOp< NewDimension, const TensorImagePatchOp<Dynamic, Dynamic, ArgType>>, Eigen::DefaultDevice>; using InputMapper = Eigen::internal::TensorContractionInputMapper< T, Index, Eigen::internal::Rhs, Evaluator, nocontract_t, contract_t, packet_size, true, false, 0>; using SubMapper = Eigen::internal::TensorContractionSubMapper< T, Index, Eigen::internal::Rhs, Evaluator, nocontract_t, contract_t, packet_size, true, false, 0>; #if defined(TENSORFLOW_USE_MKLDNN_CONTRACTION_KERNEL) using PackRhsImpl = Eigen::internal::gemm_pack_colmajor_block<T, Eigen::Index, SubMapper, ColMajor>; #else using Traits = typename Eigen::internal::gebp_traits<T, T>; using PackRhsImpl = Eigen::internal::gemm_pack_rhs<T, Eigen::Index, SubMapper, Traits::nr, ColMajor, false, false>; #endif Eigen::DefaultDevice device; const Eigen::Index not_important = -1234; nocontract_t nocontract_dim = {not_important}; contract_t contract_dim = {not_important}; Tensor<T, 4> packed(input_dims); size_t input_bytes = input_dims.TotalSize() * sizeof(T); size_t mem_size_bytes = 1024 * 1024 * 512; size_t num_inputs = std::max(static_cast<size_t>(1), mem_size_bytes / input_bytes); std::vector<Tensor<T, 4>> inputs; std::vector<Evaluator> evaluators; std::vector<InputMapper> input_mappers; inputs.reserve(num_inputs); evaluators.reserve(num_inputs); input_mappers.reserve(num_inputs); for (int i = 0; i < num_inputs; ++i) { inputs.emplace_back(input_dims); inputs[i].setRandom(); ArgType tensor_map(inputs[i].data(), input_dims); const auto image_patch_op = TensorImagePatchOp<Dynamic, Dynamic, ArgType>( tensor_map, filter_rows, filter_cols, row_strides, col_strides, 1, 1, patch_row_inflate_stride, patch_col_inflate_stride, padding, 0.0); Index input_rows_eff = (input_rows - 1) * patch_row_inflate_stride + 1; Index input_cols_eff = (input_cols - 1) * patch_col_inflate_stride + 1; Index output_rows = 0; Index output_cols = 0; if (padding == Eigen::PADDING_SAME) { output_rows = input_rows_eff / row_strides; output_cols = input_cols_eff / col_strides; } else if (padding == Eigen::PADDING_VALID) { output_rows = numext::ceil((input_rows_eff - filter_rows + 1.f) / row_strides); output_cols = numext::ceil((input_cols_eff - filter_cols + 1.f) / col_strides); } else { eigen_assert(false && "not supported"); } NewDimension reshape_dims; reshape_dims[0] = input_depth * filter_rows * filter_cols; reshape_dims[1] = output_rows * output_cols * input_batches; const auto reshape_op = TensorReshapingOp<NewDimension, decltype(image_patch_op)>( image_patch_op, reshape_dims); evaluators.emplace_back(reshape_op, device); input_mappers.emplace_back(evaluators[i], nocontract_dim, nocontract_dim, contract_dim, contract_dim); } const Index patch_depth = evaluators[0].impl().dimensions()[0]; const Index patch_rows = evaluators[0].impl().dimensions()[1]; const Index patch_cols = evaluators[0].impl().dimensions()[2]; const Index num_patches = evaluators[0].impl().dimensions()[3]; const Index patch_size = patch_depth * patch_rows * patch_cols; PackRhsImpl pack_rhs; const Index packed_total_size = input_dims.TotalSize(); const auto round_up = [](const Index idx) { return (idx / packet_size) * packet_size; }; for (auto s : state) { int input_idx = num_inputs == 1 ? 1 : internal::random<int>(0, num_inputs - 1); Index depth_offset = (patch_size > block_rows) ? round_up(internal::random<Index>(0, patch_size - 10)) : 0; Index col_offset = internal::random<Index>(0, num_patches - 10); Index depth = std::min(block_rows, patch_size - depth_offset); Index cols = std::min(block_cols, num_patches - col_offset); Index packed_size = depth * cols; Index packed_offset = internal::random<Index>(0, packed_total_size - packed_size - 1); SubMapper sub_mapper = input_mappers[input_idx].getSubMapper(depth_offset, col_offset); pack_rhs(packed.data() + packed_offset, sub_mapper, depth, cols); } state.SetLabel( absl::StrCat("patch: ", patch_rows, "x", patch_cols, " D", patch_depth, "; num_patches=", num_patches, " patch_size=", patch_size, " num_inputs=", num_inputs, " padding=", padding)); } template <typename T> static void PackLhsHelper(::testing::benchmark::State& state, int input_depth, int filter_count, int filter_cols, int filter_rows, Index block_rows, Index block_cols) { srand(12345); eigen_assert(block_rows <= filter_count); eigen_assert(block_cols <= input_depth * filter_rows * filter_cols); using Dimensions = Eigen::DSizes<Eigen::Index, 4>; Dimensions filter_dims(filter_count, filter_rows, filter_cols, input_depth); static const int packet_size = Eigen::internal::packet_traits<T>::size; using NewDimension = Eigen::DSizes<Index, 2>; using nocontract_t = Eigen::array<Eigen::Index, 1>; using contract_t = Eigen::array<Eigen::Index, 1>; using ArgType = TensorMap<Tensor<T, 4>, Eigen::Aligned>; using Evaluator = TensorEvaluator<const TensorReshapingOp<NewDimension, ArgType>, Eigen::DefaultDevice>; using InputMapper = Eigen::internal::TensorContractionInputMapper< T, Index, Eigen::internal::Lhs, Evaluator, nocontract_t, contract_t, packet_size, true, false, 0>; using SubMapper = Eigen::internal::TensorContractionSubMapper< T, Index, Eigen::internal::Lhs, Evaluator, nocontract_t, contract_t, packet_size, true, false, 0>; #if defined(TENSORFLOW_USE_MKLDNN_CONTRACTION_KERNEL) using PackLhsImpl = Eigen::internal::gemm_pack_colmajor_block<T, Eigen::Index, SubMapper, ColMajor>; #else using Traits = typename Eigen::internal::gebp_traits<T, T>; using PackLhsImpl = Eigen::internal::gemm_pack_lhs<T, Eigen::Index, SubMapper, Traits::mr, Traits::LhsProgress, typename Traits::LhsPacket4Packing, ColMajor>; #endif Eigen::DefaultDevice device; NewDimension reshape_dims; reshape_dims[0] = filter_count; reshape_dims[1] = input_depth * filter_rows * filter_cols; nocontract_t nocontract_strides = {1}; contract_t contract_strides = {filter_count}; nocontract_t i_strides = {1}; contract_t k_strides = {1}; Tensor<T, 4> packed(filter_dims); size_t input_bytes = filter_dims.TotalSize() * sizeof(T); size_t mem_size_bytes = 1024 * 1024 * 512; size_t num_filters = std::max(static_cast<size_t>(1), mem_size_bytes / input_bytes); std::vector<Tensor<T, 4>> filters; std::vector<Evaluator> evaluators; std::vector<InputMapper> input_mappers; filters.reserve(num_filters); evaluators.reserve(num_filters); input_mappers.reserve(num_filters); for (int i = 0; i < num_filters; ++i) { filters.emplace_back(filter_dims); filters[i].setRandom(); ArgType tensor_map(filters[i].data(), filter_dims); const auto reshape_op = TensorReshapingOp<NewDimension, ArgType>(tensor_map, reshape_dims); evaluators.emplace_back(reshape_op, device); input_mappers.emplace_back(evaluators[i], nocontract_strides, i_strides, contract_strides, k_strides); } PackLhsImpl pack_lhs; const Index packed_total_size = filter_dims.TotalSize(); const auto round_up = [](const Index idx) { return (idx / packet_size) * packet_size; }; const Index max_row = filter_count; const Index max_col = filter_rows * filter_cols * input_depth; for (auto s : state) { int filter_idx = num_filters == 1 ? 1 : internal::random<int>(0, num_filters - 1); Index row_offset = round_up(internal::random<Index>(0, max_row - 10)); Index col_offset = round_up(internal::random<Index>(0, max_col - 10)); Index rows = std::min(block_rows, max_row - row_offset); Index cols = std::min(block_cols, max_col - col_offset); Index packed_offset = round_up( internal::random<Index>(0, packed_total_size - rows * cols - 1)); SubMapper sub_mapper = input_mappers[filter_idx].getSubMapper(row_offset, col_offset); #if defined(TENSORFLOW_USE_MKLDNN_CONTRACTION_KERNEL) pack_lhs(packed.data() + packed_offset, sub_mapper, rows, cols); #else pack_lhs(packed.data() + packed_offset, sub_mapper, cols, rows); #endif } state.SetLabel(absl::StrCat( "filter: count=", filter_count, " dims=", filter_rows, "x", filter_cols, "; input: depth=", input_depth, "; num_filers=", num_filters)); } #define BM_CONCAT(a, b) a##b #define BM_RHS_NAME(prefix, T, N, H, W, C, FC, FH, FW, PAD, SH, SW, ISH, ISW, \ BR, BC) \ BM_CONCAT( \ BM_##prefix##_##T##_##N##_##H##x##W##_IC##C##_FC##FC##_##FH##x##FW, \ _##PAD##_s##SH##x##SW##_is##ISH##x##ISW##_B##BR##x##BC) #define BM_PackRhs(T, N, H, W, C, FC, FH, FW, PAD, SH, SW, ISH, ISW, BR, BC) \ static void BM_RHS_NAME(PackRhs, T, N, H, W, C, FC, FH, FW, PAD, SH, SW, \ ISH, ISW, BR, \ BC)(::testing::benchmark::State & state) { \ PackRhsHelper<T>(state, N, H, W, C, FC, FH, FW, PADDING_##PAD, SH, SW, \ ISH, ISW, BR, BC); \ } \ BENCHMARK(BM_RHS_NAME(PackRhs, T, N, H, W, C, FC, FH, FW, PAD, SH, SW, ISH, \ ISW, BR, BC)) \ ->UseRealTime() BM_PackRhs( float, 32, 64, 64, 32, 64, 5, 5, VALID, 1, 1, 1, 1, 256, 56); BM_PackRhs( float, 32, 64, 64, 32, 64, 5, 5, SAME, 1, 1, 1, 1, 256, 56); BM_PackRhs( float, 32, 64, 64, 32, 64, 5, 5, VALID, 2, 2, 1, 1, 256, 56); BM_PackRhs( float, 32, 64, 64, 32, 64, 5, 5, SAME, 2, 2, 1, 1, 256, 56); BM_PackRhs( float, 32, 64, 64, 30, 64, 5, 5, SAME, 1, 1, 1, 1, 256, 56); BM_PackRhs( float, 32, 64, 64, 30, 64, 5, 5, VALID, 1, 1, 1, 1, 256, 56); BM_PackRhs( float, 32, 64, 64, 30, 64, 5, 5, SAME, 2, 2, 1, 1, 256, 56); BM_PackRhs( float, 32, 64, 64, 30, 64, 5, 5, VALID, 2, 2, 1, 1, 256, 56); BM_PackRhs( float, 32, 256, 256, 4, 16, 8, 8, SAME, 1, 1, 1, 1, 256, 56); BM_PackRhs( float, 32, 256, 256, 4, 16, 8, 8, VALID, 1, 1, 1, 1, 256, 56); BM_PackRhs( float, 32, 256, 256, 4, 16, 8, 8, SAME, 2, 4, 1, 1, 256, 56); BM_PackRhs( float, 32, 256, 256, 4, 16, 8, 8, VALID, 2, 4, 1, 1, 256, 56); BM_PackRhs( float, 32, 64, 64, 4, 16, 3, 3, SAME, 1, 1, 1, 1, 36, 432); BM_PackRhs( float, 32, 64, 64, 4, 16, 3, 3, VALID, 1, 1, 1, 1, 36, 432); BM_PackRhs( float, 32, 64, 64, 4, 16, 3, 3, SAME, 2, 2, 1, 1, 36, 432); BM_PackRhs( float, 32, 64, 64, 4, 16, 3, 3, VALID, 2, 2, 1, 1, 36, 432); BM_PackRhs( float, 32, 32, 32, 96, 96, 5, 5, SAME, 1, 1, 2, 2, 272, 240); BM_PackRhs( float, 32, 32, 32, 96, 96, 5, 5, VALID, 1, 1, 2, 2, 272, 240); #if defined(TENSORFLOW_USE_CUSTOM_CONTRACTION_KERNEL) using qint8 = Eigen::QInt8; BM_PackRhs( qint8, 32, 64, 64, 32, 64, 5, 5, SAME, 1, 1, 1, 1, 256, 56); #endif #define BM_LHS_NAME(prefix, T, C, FC, FH, FW, BR, BC) \ BM_CONCAT(BM_##prefix##_##T##_##C##_FC##FC##_##FH##x##FW, _B##BR##x##BC) #define BM_PackLhs(T, C, FC, FH, FW, BR, BC) \ static void BM_LHS_NAME(PackLhs, T, C, FC, FH, FW, BR, \ BC)(::testing::benchmark::State & state) { \ PackLhsHelper<T>(state, C, FC, FH, FW, BR, BC); \ } \ BENCHMARK(BM_LHS_NAME(PackLhs, T, C, FC, FH, FW, BR, BC))->UseRealTime() BM_PackLhs( float, 128, 1024, 3, 3, 256, 56); BM_PackLhs( float, 128, 1024, 3, 3, 56, 256); BM_PackLhs( float, 30, 64, 3, 3, 256, 56); BM_PackLhs( float, 50, 64, 3, 3, 56, 256); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/internal/optimized/eigen_spatial_convolutions.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/framework/convolution/eigen_spatial_convolutions_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9a7cbd52-50d8-49c8-b25e-0aefde08b0fb
cpp
tensorflow/tensorflow
runtime_fallback_kernels
tensorflow/core/runtime_fallback/runtime/runtime_fallback_kernels.cc
tensorflow/core/runtime_fallback/test/runtime_fallback_kernels_test.cc
#include "tensorflow/core/runtime_fallback/runtime/runtime_fallback_kernels.h" #include <algorithm> #include <string> #include <utility> #include <vector> #include "absl/strings/str_split.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "tensorflow/c/eager/abstract_operation.h" #include "tensorflow/c/eager/abstract_tensor_handle.h" #include "tensorflow/c/tf_datatype.h" #include "tensorflow/c/tf_tensor_internal.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/eager/context.h" #include "tensorflow/core/common_runtime/eager/eager_operation.h" #include "tensorflow/core/common_runtime/eager/tensor_handle.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/profiler/lib/traceme.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/runtime_fallback/kernel/kernel_fallback_compat_request_state.h" #include "tensorflow/core/runtime_fallback/kernel/kernel_fallback_execute_compat.h" #include "tensorflow/core/runtime_fallback/kernel/kernel_fallback_tensor.h" #include "tensorflow/core/runtime_fallback/runtime/kernel_utils.h" #include "tensorflow/core/runtime_fallback/runtime/runtime_fallback_op_handler.h" #include "tensorflow/core/runtime_fallback/runtime/runtime_fallback_tensor.h" #include "tensorflow/core/runtime_fallback/util/attr_util.h" #include "tensorflow/core/runtime_fallback/util/tensor_util.h" #include "tensorflow/core/runtime_fallback/util/type_util.h" #include "tensorflow/core/tfrt/utils/error_util.h" #include "tensorflow/core/tfrt/utils/fallback_tensor.h" #include "tensorflow/core/tfrt/utils/tensor_util.h" #include "tfrt/cpu/core_runtime/cpu_op_handler.h" #include "tfrt/core_runtime/core_runtime.h" #include "tfrt/core_runtime/core_runtime_op.h" #include "tfrt/core_runtime/execute_op_impl.h" #include "tfrt/core_runtime/op_attr_type.h" #include "tfrt/core_runtime/tensor_handle.h" #include "tfrt/host_context/async_value.h" #include "tfrt/host_context/async_value_ref.h" #include "tfrt/host_context/attribute_utils.h" #include "tfrt/host_context/device.h" #include "tfrt/host_context/diagnostic.h" #include "tfrt/host_context/execution_context.h" #include "tfrt/host_context/host_buffer.h" #include "tfrt/host_context/host_context.h" #include "tfrt/host_context/kernel_frame.h" #include "tfrt/host_context/kernel_utils.h" #include "tfrt/host_context/resource_context.h" #include "tfrt/host_context/sync_kernel_frame.h" #include "tfrt/support/error_util.h" #include "tfrt/support/forward_decls.h" #include "tfrt/support/ref_count.h" #include "tfrt/tensor/conversion_registry.h" #include "tfrt/tensor/dense_host_tensor.h" #include "tfrt/tensor/scalar_host_tensor.h" #include "tfrt/tensor/string_host_tensor.h" #include "tfrt/tensor/tensor_serialize_utils.h" namespace tensorflow { namespace tfd { namespace { constexpr char kHostContextPtrAttrName[] = "host_ptr"; constexpr char kDefaultCpuDevice[] = "/job:localhost/replica:0/task:0/device:CPU:0"; } using tfrt::AggregateAttr; using tfrt::Argument; using tfrt::AsyncValue; using tfrt::AsyncValueRef; using tfrt::BEFAttributeType; using tfrt::Chain; using tfrt::DenseAttr; using tfrt::DenseHostTensor; using tfrt::ExecutionContext; using tfrt::Expected; using tfrt::FuncAttr; using tfrt::HostBuffer; using tfrt::HostContext; using tfrt::KernelErrorHandler; using tfrt::OpAttrs; using tfrt::OpAttrsRawEntry; using tfrt::OpAttrsRef; using tfrt::OpAttrType; using tfrt::raw_ostream; using tfrt::RCReference; using tfrt::RemainingArguments; using tfrt::RemainingAttributes; using tfrt::RemainingResults; using tfrt::Result; using tfrt::ShapeAttr; using tfrt::string_view; using tfrt::StringAttr; using tfrt::StringAttribute; using tfrt::Tensor; using tfrt::TensorShape; #define TFD_REPORT_AND_RETURN_IF_ERROR(handler, status) \ if (!status.ok()) { \ handler.ReportError(status.message()); \ return; \ } static AsyncValueRef<RuntimeFallbackTensor> CreateRuntimeFallbackTensor( TensorHandle* handle, HostContext* host) { OwnedTensorHandle th(handle); int rank; tensorflow::Status status = th->NumDims(&rank); if (!status.ok()) return tfrt::MakeErrorAsyncValueRef(tfrt::StrCat( "error getting rank from TF tensor handle: ", status.message())); llvm::SmallVector<tfrt::Index, 4> dims; for (auto i = 0; i < rank; ++i) { int64_t dim; status = th->Dim(i, &dim); if (!status.ok()) return tfrt::MakeErrorAsyncValueRef( tfrt::StrCat("error getting dimension from TFE tensor handle: ", status.message())); dims.push_back(dim); } TensorShape shape{dims}; DataType dtype = th->DataType(); return tfrt::MakeAvailableAsyncValueRef<RuntimeFallbackTensor>( shape, GetTfrtDtype(dtype), std::move(th)); } static std::pair<RuntimeFallbackTensor, Chain> TfdMoveDHTToTFT( Argument<DenseHostTensor> dht, Argument<Chain> in_chain, const ExecutionContext& exec_ctx) { return std::make_pair( MoveDHTToRuntimeFallbackTensor(std::move(dht.get()), exec_ctx.host()), in_chain.get()); } static void TfdConvertTFTToDHT(Argument<RuntimeFallbackTensor> tft, Argument<Chain> in_chain, Result<DenseHostTensor> dht, Result<Chain> out_chain, KernelErrorHandler handler, const ExecutionContext& exec_ctx) { dht.Set(tfrt::ConvertTensorOnHost(exec_ctx, tft.get(), DenseHostTensor::kTensorType) .ReleaseRCRef()); out_chain.Set(in_chain); } static void TfdPrintTFT(Argument<RuntimeFallbackTensor> tft, Argument<Chain> in_chain, Result<Chain> out_chain) { llvm::outs() << tft.get() << "\n"; llvm::outs().flush(); out_chain.Set(in_chain); } static void TfdInitEagerContext(Argument<Chain> in_chain, Result<Chain> out_chain, KernelErrorHandler handler, const ExecutionContext& exec_ctx) { tfrt::ResourceContext* resource_context = exec_ctx.resource_context(); tensorflow::tfd::EagerContextResource* eager_context_resource = resource_context ->GetOrCreateResource<tensorflow::tfd::EagerContextResource>( tensorflow::tfd::kEagerContextResourceName); (void)eager_context_resource; out_chain.Set(in_chain); } OwnedTFTensor MoveDHTToTFTensor(DenseHostTensor&& dht, HostContext* host) { llvm::SmallVector<tfrt::Index, 4> dims; dht.shape().GetDimensions(&dims); HostBuffer* host_buffer = dht.ReleaseBuffer().release(); auto deallocator = [](void* data, size_t len, void* arg) { auto* host_buffer = reinterpret_cast<HostBuffer*>(arg); host_buffer->DropRef(); }; CheckBoolCompatibility(); OwnedTFTensor tf_tensor{ TF_NewTensor(static_cast<TF_DataType>(GetTfDataType(dht.dtype())), dims.data(), dims.size(), host_buffer->data(), host_buffer->size(), deallocator, host_buffer)}; return tf_tensor; } static tensorflow::Status DecodeDenseAttrToTensorInterface( const DenseAttr& dense_attr, HostContext* host, tensorflow::TensorInterface* result) { Expected<DenseHostTensor> dht = tfrt::DeserializeDenseHostTensorFromDenseAttr(dense_attr, host); if (!dht) return tensorflow::errors::Internal(tfrt::StrCat( "cannot create DenseHostTensor in DecodeDenseAttrToTensorInterface:", dht.takeError())); OwnedTFTensor tf_tensor = MoveDHTToTFTensor(std::move(*dht), host); tensorflow::Tensor t; TF_RETURN_IF_ERROR(TF_TensorToTensor(tf_tensor.get(), &t)); *result = tensorflow::TensorInterface(std::move(t)); return absl::OkStatus(); } static tensorflow::Status PrepareAttributes(EagerOperation* eager_op, const OpAttrsRef& attrs, HostContext* host, EagerContext* eager_ctx) { tensorflow::Status status; attrs.IterateEntries([eager_op, eager_ctx, status_ptr = &status, host, &attrs](const OpAttrsRawEntry& entry) { assert(strcmp(entry.name, "device") != 0); if (IsUnusedAttribute(entry.name)) { return; } else if (entry.IsArray()) { if (entry.element_count == 0) { if (entry.type == OpAttrType::CHAR) { std::string empty_str; *status_ptr = eager_op->SetAttrString(entry.name, empty_str.data(), empty_str.size()); } else { AttrValue empty_attr_value; eager_op->MutableAttrs()->Set(entry.name, empty_attr_value); } } else if (entry.type == OpAttrType::CHAR) { string_view attr_value = attrs.GetStringAsserting(entry.name); *status_ptr = eager_op->SetAttrString(entry.name, attr_value.data(), attr_value.size()); } else if (entry.type == OpAttrType::FUNC) { string_view attr_value = attrs.GetFuncNameAsserting(entry.name); *status_ptr = eager_op->SetAttrFunctionName( entry.name, attr_value.data(), attr_value.size()); } else if (entry.type == OpAttrType::I64) { llvm::ArrayRef<int64_t> int_array = attrs.GetArrayAsserting<int64_t>(entry.name); *status_ptr = eager_op->SetAttrIntList(entry.name, int_array.data(), int_array.size()); } else if (entry.type == OpAttrType::F32) { llvm::ArrayRef<float> float_array = attrs.GetArrayAsserting<float>(entry.name); *status_ptr = eager_op->SetAttrFloatList(entry.name, float_array.data(), float_array.size()); } else if (entry.type == OpAttrType::BOOL) { llvm::ArrayRef<bool> bool_array = attrs.GetArrayAsserting<bool>(entry.name); std::vector<unsigned char> bool_char_array(bool_array.begin(), bool_array.end()); *status_ptr = eager_op->SetAttrBoolList( entry.name, bool_char_array.data(), bool_char_array.size()); } else if (entry.type == OpAttrType::DTYPE) { const auto& op_attr = attrs.GetRawAsserting(entry.name); assert(op_attr.IsArray()); auto bef_dtypes = llvm::ArrayRef(static_cast<const tfrt::DType*>(op_attr.GetData()), op_attr.element_count); llvm::SmallVector<tensorflow::DataType, 4> tf_dtypes; tf_dtypes.reserve(bef_dtypes.size()); for (auto bef_dtype : bef_dtypes) { tf_dtypes.push_back(ConvertBefAttrTypeToTfDataType(bef_dtype)); } *status_ptr = eager_op->SetAttrTypeList(entry.name, tf_dtypes.data(), tf_dtypes.size()); } else { *status_ptr = tensorflow::errors::Internal("unsupported array attribute type"); } } else { if (entry.type == OpAttrType::I64) { int64_t attr_value = attrs.GetAsserting<int64_t>(entry.name); *status_ptr = eager_op->SetAttrInt(entry.name, attr_value); } else if (entry.type == OpAttrType::F32) { float attr_value = attrs.GetAsserting<float>(entry.name); *status_ptr = eager_op->SetAttrFloat(entry.name, attr_value); } else if (entry.type == OpAttrType::BOOL) { bool attr_value = attrs.GetAsserting<bool>(entry.name); *status_ptr = eager_op->SetAttrBool(entry.name, attr_value); } else if (entry.type == OpAttrType::DTYPE) { OpAttrType op_attr_type = attrs.GetAsserting<OpAttrType>(entry.name); DataType tf_dtype = ConvertToTfDataType(op_attr_type); *status_ptr = eager_op->SetAttrType(entry.name, tf_dtype); } else if (entry.type == OpAttrType::SHAPE) { tfrt::ShapeAttr shape_attr = attrs.GetAsserting<tfrt::ShapeAttr>(entry.name); if (shape_attr.HasRank()) { *status_ptr = eager_op->SetAttrShape( entry.name, shape_attr.GetShape().data(), shape_attr.GetRank()); } else { *status_ptr = eager_op->SetAttrShape(entry.name, nullptr, -1); } } else if (entry.type == OpAttrType::DENSE) { DenseAttr dense_attr = attrs.GetAsserting<DenseAttr>(entry.name); tensorflow::TensorInterface interface; *status_ptr = DecodeDenseAttrToTensorInterface(dense_attr, host, &interface); if (!status_ptr->ok()) return; *status_ptr = eager_op->SetAttrTensor(entry.name, &interface); } else if (entry.type == OpAttrType::AGGREGATE) { AggregateAttr list_attr = attrs.GetAsserting<AggregateAttr>(entry.name); int num_values = list_attr.GetNumElements(); if (num_values == 0) { std::vector<int> dummy_attr; eager_op->MutableAttrs()->Set( entry.name, gtl::ArraySlice<const int>(dummy_attr.data(), 0)); return; } auto attr_base = list_attr.GetAttribute(0); if (IsDataTypeAttribute(attr_base.type()) && GetDataType(attr_base.type()) == tfrt::DType::String) { llvm::SmallVector<const void*, 8> values; llvm::SmallVector<size_t, 8> lengths; values.reserve(num_values); lengths.reserve(num_values); for (int i = 0; i < num_values; ++i) { auto string_attr = list_attr.GetAttributeOfType<StringAttr>(i); values.push_back(string_attr.GetValue().data()); lengths.push_back(string_attr.GetValue().size()); } *status_ptr = eager_op->SetAttrStringList(entry.name, values.data(), lengths.data(), num_values); } else if (IsFuncAttribute(attr_base.type())) { std::vector<const AbstractOperation*> funcs(num_values); for (int i = 0; i < num_values; ++i) { auto func_attr = list_attr.GetAttributeOfType<FuncAttr>(i); ImmediateExecutionOperation* new_op = eager_ctx->CreateOperation(); auto func_name = func_attr.GetFunctionName(); *status_ptr = new_op->Reset(func_name.str().c_str(), nullptr); funcs[i] = new_op; } *status_ptr = eager_op->SetAttrFunctionList(entry.name, absl::MakeSpan(funcs)); } else if (attr_base.type() == BEFAttributeType::kShape) { llvm::SmallVector<int, 8> ranks; llvm::SmallVector<const int64_t*, 8> dims; ranks.reserve(num_values); dims.reserve(num_values); for (int i = 0; i < num_values; ++i) { auto shape_attr = list_attr.GetAttributeOfType<ShapeAttr>(i); if (shape_attr.HasRank()) { ranks.push_back(shape_attr.GetRank()); dims.push_back(shape_attr.GetShape().data()); } else { ranks.push_back(-1); dims.push_back(nullptr); } } *status_ptr = eager_op->SetAttrShapeList(entry.name, dims.data(), ranks.data(), num_values); } else { *status_ptr = tensorflow::errors::Internal("unsupported list attribute type"); } } else { *status_ptr = tensorflow::errors::Internal("unsupported scalar attribute type"); } } }); return status; } Status CallEagerExecute(const tfrt::ExecutionContext& exec_ctx, EagerContext* eager_ctx, const char* op_name, const char* device_name, llvm::ArrayRef<TensorHandle*> input_tensor_handles, const OpAttrsRef& attrs, llvm::MutableArrayRef<tensorflow::AbstractTensorHandle*> result_tensor_handles) { assert(eager_ctx != nullptr && "EagerContext is NULL"); OwnedEagerOperation eager_op{new EagerOperation(eager_ctx)}; TF_RETURN_IF_ERROR(eager_op->Reset(op_name, device_name)); for (TensorHandle* input_tensor : input_tensor_handles) { TF_RETURN_IF_ERROR(eager_op->AddInput(input_tensor)); } auto* host = exec_ctx.host(); TF_RETURN_IF_ERROR(PrepareAttributes(eager_op.get(), attrs, host, eager_ctx)); int num_retvals = result_tensor_handles.size(); TF_RETURN_IF_ERROR(eager_op->Execute( absl::MakeSpan(result_tensor_handles.data(), num_retvals), &num_retvals)); return absl::OkStatus(); } static bool ShouldAddHostContextAttr(const char* op_name) { return strcmp(op_name, "TFRTMakeIterator") == 0; } AsyncValueRef<Chain> RuntimeFallbackExecute( const tfrt::ExecutionContext& exec_ctx, EagerContext* eager_ctx, const char* op_name, const char* device_name, llvm::ArrayRef<Tensor*> arguments, const OpAttrsRef& attrs, llvm::MutableArrayRef<RCReference<AsyncValue>> results) { auto emit_error = [&exec_ctx, results](const tensorflow::Status& status) { auto error = EmitErrorAsync(exec_ctx, status); std::fill(results.begin(), results.end(), error); return error; }; llvm::SmallVector<TensorHandle*, 4> input_tensor_handles; input_tensor_handles.reserve(arguments.size()); for (Tensor* input_tensor : arguments) { input_tensor_handles.push_back( llvm::cast<RuntimeFallbackTensor>(input_tensor)->GetTensorHandle()); } int num_retvals = results.size(); llvm::SmallVector<tensorflow::AbstractTensorHandle*, 4> result_tensor_handles( num_retvals); Status status; if (!ShouldAddHostContextAttr(op_name)) { status = CallEagerExecute(exec_ctx, eager_ctx, op_name, device_name, input_tensor_handles, attrs, result_tensor_handles); } else { assert(attrs.GetNumEntries() == 1); OpAttrs updated; updated.Set(kHostContextPtrAttrName, reinterpret_cast<int64_t>(exec_ctx.host())); status = CallEagerExecute( exec_ctx, eager_ctx, op_name, device_name, input_tensor_handles, OpAttrsRef(std::move(updated)), result_tensor_handles); } if (!status.ok()) return emit_error(status); auto host = exec_ctx.host(); for (int i = 0; i < num_retvals; ++i) { auto expected_fallback_tensor = CreateRuntimeFallbackTensorFromTfTensorHandle( OwnedTensorHandle{ TensorHandleFromInterface(result_tensor_handles[i])}, host); if (!expected_fallback_tensor) results[i] = EmitErrorAsync( exec_ctx, tfrt::StrCat(expected_fallback_tensor.takeError())); else results[i] = tfrt::MakeAvailableAsyncValueRef<RuntimeFallbackTensor>( std::move(*expected_fallback_tensor)); } return tfrt::GetReadyChain(); } AsyncValueRef<Chain> RuntimeFallbackExecute( const tfrt::ExecutionContext& exec_ctx, const char* op_name, const char* device_name, llvm::ArrayRef<Tensor*> arguments, const OpAttrsRef& attrs, llvm::MutableArrayRef<RCReference<AsyncValue>> results) { auto eager_ctx_expected = GetEagerContext(exec_ctx); if (!eager_ctx_expected) { auto error = EmitErrorAsync(exec_ctx, toString(eager_ctx_expected.takeError())); std::fill(results.begin(), results.end(), error); return std::move(error); } EagerContext* eager_ctx = eager_ctx_expected.get(); return RuntimeFallbackExecute(exec_ctx, eager_ctx, op_name, device_name, arguments, attrs, results); } static void RuntimeFallbackKernel( Argument<Chain> in_chain, RemainingArguments input_tensors, Result<Chain> out_chain, RemainingResults output_tensors, StringAttribute op_name, RemainingAttributes remaining_attributes, KernelErrorHandler handler, const ExecutionContext& exec_ctx) { HostContext* host = exec_ctx.host(); tfrt::ResourceContext* resource_context = exec_ctx.resource_context(); EagerContextResource* eager_context_resource = resource_context->GetOrCreateResource<EagerContextResource>( tensorflow::tfd::kEagerContextResourceName); tfrt::Expected<EagerContext*> eager_ctx_expected = eager_context_resource->GetTFEagerContext(); if (!eager_ctx_expected) { handler.ReportError("eager_ctx_expected.takeError()"); return; } EagerContext* eager_ctx = eager_ctx_expected.get(); std::string op_name_str = [&] { auto view = op_name.get(); view.consume_front("tf."); return view.str(); }(); OwnedEagerOperation eager_op{new EagerOperation(eager_ctx)}; TFD_REPORT_AND_RETURN_IF_ERROR( handler, eager_op->Reset(op_name_str.c_str(), nullptr)); for (AsyncValue* input_tensor_av : input_tensors.values()) { auto input_tensor_handle = input_tensor_av->get<RuntimeFallbackTensor>().GetTensorHandle(); TFD_REPORT_AND_RETURN_IF_ERROR(handler, eager_op->AddInput(input_tensor_handle)); } assert(remaining_attributes.size() % 2 == 0); int num_tf_attrs = remaining_attributes.size() / 2; for (int i = 0; i < num_tf_attrs; ++i) { std::string attr_name = remaining_attributes.GetStringAttribute(i * 2).str(); absl::string_view attr_value = ToAbslStringView( remaining_attributes.GetStringAttribute(i * 2 + 1).get()); std::vector<absl::string_view> value_split = tfd::AttrValueSplit(attr_value); if (value_split[0] == "string") { TFD_REPORT_AND_RETURN_IF_ERROR( handler, eager_op->SetAttrString(attr_name.c_str(), value_split[1].data(), value_split[1].size())); } else if (value_split[0] == "bool") { bool bool_val; TFD_REPORT_AND_RETURN_IF_ERROR( handler, ParseBoolAttrValue(value_split[1], &bool_val)); TFD_REPORT_AND_RETURN_IF_ERROR( handler, eager_op->SetAttrBool(attr_name.c_str(), bool_val)); } else if (value_split[0] == "int") { int64_t int_val; TFD_REPORT_AND_RETURN_IF_ERROR( handler, ParseIntAttrValue(value_split[1], &int_val)); TFD_REPORT_AND_RETURN_IF_ERROR( handler, eager_op->SetAttrInt(attr_name.c_str(), int_val)); } else if (value_split[0] == "tftensor") { tensorflow::Tensor t; TFD_REPORT_AND_RETURN_IF_ERROR(handler, ParseTensorAttrValue(value_split[1], &t)); tensorflow::TensorInterface interface(t); TFD_REPORT_AND_RETURN_IF_ERROR( handler, eager_op->SetAttrTensor(attr_name.c_str(), &interface)); } else if (value_split[0] == "tfdtype") { DataType dtype; TFD_REPORT_AND_RETURN_IF_ERROR(handler, ParseTfDataType(value_split[1], &dtype)); TFD_REPORT_AND_RETURN_IF_ERROR( handler, eager_op->SetAttrType(attr_name.c_str(), dtype)); } else if (value_split[0] == "tfshape") { std::vector<int64_t> dims; TFD_REPORT_AND_RETURN_IF_ERROR( handler, ParseTensorShapeAttrValue(value_split[1], &dims)); TFD_REPORT_AND_RETURN_IF_ERROR( handler, eager_op->SetAttrShape(attr_name.c_str(), dims.data(), dims.size())); } else { handler.ReportError("attribute type not yet supported"); return; } } int num_retvals = output_tensors.size(); llvm::SmallVector<tensorflow::AbstractTensorHandle*, 4> retvals(num_retvals); tensorflow::Status status = eager_op->Execute( absl::MakeSpan(retvals.data(), num_retvals), &num_retvals); TFD_REPORT_AND_RETURN_IF_ERROR(handler, status); if (num_retvals != output_tensors.size()) { handler.ReportError("Incorrect number of output values"); return; } for (int i = 0; i < num_retvals; ++i) { OwnedTensorHandle owned_th{TensorHandleFromInterface(retvals[i])}; if (!owned_th) handler.ReportError("TensorHandleFromInterface failed"); auto fallback_tensor = CreateRuntimeFallbackTensorFromTfTensorHandle( std::move(owned_th), host); if (!fallback_tensor) { output_tensors[i] = tfrt::MakeErrorAsyncValueRef( tfrt::StrCat(fallback_tensor.takeError())); } else { output_tensors[i] = tfrt::MakeAvailableAsyncValueRef<RuntimeFallbackTensor>( std::move(*fallback_tensor)); } } out_chain.Set(in_chain); } static void EmitErrorAndSetInResults( const tfrt::ExecutionContext& exec_ctx, const tfrt::DecodedDiagnostic& error, llvm::MutableArrayRef<tfrt::RCReference<tfrt::AsyncValue>> results) { auto error_av = tfrt::EmitErrorAsync(exec_ctx, error.status); std::fill(results.begin(), results.end(), error_av); } void CoreRTTensorHandleToFallbackTensorInternal( llvm::ArrayRef<tfrt::AsyncValue*> tensorhandle_args, llvm::MutableArrayRef<tfrt::RCReference<tfrt::AsyncValue>> tf_tensor_results, tfrt::string_view device, const tfrt::ExecutionContext& exec_ctx) { assert(tensorhandle_args.size() == tf_tensor_results.size()); auto set_result = [&](tfrt::RCReference<tfrt::AsyncValue>& result, llvm::Expected<tensorflow::Tensor> tf_tensor) { auto result_ref = tfrt::MakeUnconstructedAsyncValueRef< tensorflow::tfrt_stub::FallbackTensor>(); if (!tf_tensor) { result_ref.SetError(tfrt::StrCat(tf_tensor.takeError())); } else { result_ref.emplace(std::move(tf_tensor.get())); } result = std::move(result_ref); }; auto maybe_convert_runtime_fallback_tensor = [&exec_ctx]( tfrt::AsyncValueRef<Tensor> tensor_avref, const tfrt::Device& src_device, const tfrt::Device& dst_device) -> tfrt::AsyncValueRef<tfrt::Tensor> { assert(tensor_avref.IsAvailable()); assert(!tensor_avref.IsError()); auto& tensor = tensor_avref.get(); if (!tensor.IsTensorType(DenseHostTensor::kTensorType) || !src_device.IsDeviceType(tfrt::CpuDevice::kDeviceType) || !dst_device.IsDeviceType(tfrt::CpuDevice::kDeviceType)) { return tfrt::ConvertTensor(exec_ctx, tensor, src_device, dst_device, KernelFallbackTensor::kTensorType); } return tensor_avref; }; auto dst_device = exec_ctx.host()->GetDeviceRef(device); for (int i = 0; i < tensorhandle_args.size(); ++i) { if (!dst_device) { tf_tensor_results[i] = tfrt::MakeErrorAsyncValueRef( tfrt::StrCat("Failed to find device with name ", device)); continue; } auto& tensor_handle = tensorhandle_args[i]->get<tfrt::TensorHandle>(); assert(tensor_handle.IsDeviceAvailable()); assert(!tensor_handle.IsDeviceError()); auto* tensor_av = tensor_handle.GetAsyncTensor(); auto tensor_avref = tfrt::AsyncValueRef<Tensor>(FormRef(tensor_av)); auto& src_device = *tensor_handle.GetAvailableDevice(); AsyncValueRef<Tensor> knfb_tensor; if (!tensor_av->IsAvailable()) { auto ind_av = tfrt::MakeIndirectAsyncValue(); knfb_tensor = AsyncValueRef<Tensor>(ind_av.CopyRef()); tensor_av->AndThen( [tensor_avref = std::move(tensor_avref), ind_av = std::move(ind_av), &src_device, dst_device = dst_device.CopyRef(), maybe_convert_runtime_fallback_tensor, exec_ctx]() mutable { ind_av->ForwardTo(maybe_convert_runtime_fallback_tensor( std::move(tensor_avref), src_device, *dst_device)); }); } else { knfb_tensor = maybe_convert_runtime_fallback_tensor( std::move(tensor_avref), src_device, *dst_device); } if (!knfb_tensor.IsAvailable()) { auto result_ref = tfrt::MakeIndirectAsyncValue(); tf_tensor_results[i] = result_ref; auto knfb_tensor_av = knfb_tensor.GetAsyncValue(); knfb_tensor_av->AndThen([knfb_tensor = std::move(knfb_tensor), result_ref = std::move(result_ref), dst_device = dst_device.CopyRef(), exec_ctx]() mutable { if (knfb_tensor.IsError()) { result_ref->ForwardTo(std::move(knfb_tensor)); return; } auto expected_tf_tensor = tfrt::TFRTTensorToTFTensor(knfb_tensor.get()); if (!expected_tf_tensor) { auto error = tfrt::EmitErrorAsync( exec_ctx, toString(expected_tf_tensor.takeError())); result_ref->ForwardTo(std::move(error)); } else { auto tf_tensor_ref = tfrt::MakeAvailableAsyncValueRef< tensorflow::tfrt_stub::FallbackTensor>( std::move(expected_tf_tensor.get())); result_ref->ForwardTo(std::move(tf_tensor_ref)); } }); } else { set_result(tf_tensor_results[i], tfrt::TFRTTensorToTFTensor(knfb_tensor.get())); } } } void CoreRTTensorHandleToFallbackTensor( RemainingArguments args, RemainingResults results, StringAttr device, const tfrt::ExecutionContext& exec_ctx) { tsl::profiler::TraceMe trace_me("corert_tensorhandle_to_fallback_tensor"); trace_me.AppendMetadata([request_id = exec_ctx.request_ctx()->id()]() { return tsl::profiler::TraceMeEncode({{"id", request_id}}); }); CoreRTTensorHandleToFallbackTensorInternal(args.values(), results.values(), device.GetValue(), exec_ctx); } static void FallbackTensorToCoreRTTensorHandleInternal( llvm::ArrayRef<tfrt::AsyncValue*> tf_tensor_args, llvm::MutableArrayRef<tfrt::RCReference<tfrt::AsyncValue>> tensorhandle_results, tfrt::string_view device, const tfrt::ExecutionContext& exec_ctx) { auto* host = exec_ctx.host(); assert(tf_tensor_args.size() == tensorhandle_results.size()); for (int i = 0; i < tf_tensor_args.size(); ++i) { auto* av = tf_tensor_args[i]; auto& tf_tensor = av->get<tensorflow::tfrt_stub::FallbackTensor>().tensor(); AsyncValueRef<tfrt::Tensor> kernel_fallback_tensor = tfrt::MakeAvailableAsyncValueRef<KernelFallbackTensor>(tf_tensor); auto metadata = kernel_fallback_tensor.get().metadata(); tensorhandle_results[i] = tfrt::MakeAvailableAsyncValueRef<tfrt::TensorHandle>( host->GetDeviceRef(device), metadata, std::move(kernel_fallback_tensor)); } } void FallbackTensorToCoreRTTensorHandle( RemainingArguments args, RemainingResults results, StringAttr device, const tfrt::ExecutionContext& exec_ctx) { tsl::profiler::TraceMe trace_me("fallback_tensor_to_corert_tensorhandle"); trace_me.AppendMetadata([request_id = exec_ctx.request_ctx()->id()]() { return tsl::profiler::TraceMeEncode({{"id", request_id}}); }); FallbackTensorToCoreRTTensorHandleInternal(args.values(), results.values(), device.GetValue(), exec_ctx); } tfrt::Chain PrintFallbackTensor( const tensorflow::tfrt_stub::FallbackTensor& arg, const tfrt::Chain& ch) { std::string message; llvm::raw_string_ostream(message) << arg.tensor().DebugString() << "\n"; printf("%s", message.c_str()); fflush(stdout); return tfrt::Chain(); } static void RuntimeFallbackExecuteOp( RemainingArguments args, RemainingResults results, StringAttr device_attr, AggregateAttr op_attr_array, AggregateAttr op_func_attr_array, StringAttr op_name_attr, tfrt::AsyncValueRef<tfrt::Chain>* op_chain, const ExecutionContext& exec_ctx) { auto set_error = [&exec_ctx, results](tfrt::string_view msg) { auto error_av = EmitErrorAsync(exec_ctx, absl::InternalError(msg)); for (int i = 0, n = results.size(); i < n; ++i) results[i] = error_av; }; auto op_name = op_name_attr.GetValue(); op_name.consume_front("tf."); std::string device_name = device_attr.GetValue().str(); if (!absl::StartsWith(device_name, "/")) device_name = kDefaultCpuDevice; tfrt::OpAttrs op_attrs; tfrt::SetUpOpAttrs(op_attr_array, &op_attrs); tfrt::SetUpOpFuncAttrs(op_func_attr_array, &op_attrs); auto eager_ctx_expected = GetEagerContext(exec_ctx); if (!eager_ctx_expected) { set_error(tfrt::StrCat(eager_ctx_expected.takeError())); return; } EagerContext* eager_ctx = eager_ctx_expected.get(); Device* device = nullptr; Status s = eager_ctx->local_device_mgr()->LookupDevice(device_name, &device); if (!s.ok()) { VLOG(1) << s.message() << " using default CPU device."; } llvm::SmallVector<RuntimeFallbackTensor, 4> tfrt_tensor_args; tfrt_tensor_args.reserve(args.size()); for (int i = 0; i < args.size(); ++i) { auto* av = args[i]; auto tf_tensor = av->get<tensorflow::Tensor>(); tfrt::TensorMetadata md = tfd::GetTensorMetadata(tf_tensor); OwnedTensorHandle tensor_handle{tensorflow::TensorHandle::CreateLocalHandle( std::move(tf_tensor), device, device, eager_ctx)}; tfrt_tensor_args.push_back( RuntimeFallbackTensor(md.shape, md.dtype, std::move(tensor_handle))); } llvm::SmallVector<tfrt::Tensor*, 4> tfrt_tensor_arg_ptrs; tfrt_tensor_arg_ptrs.reserve(args.size()); for (auto& tensor : tfrt_tensor_args) tfrt_tensor_arg_ptrs.push_back(&tensor); llvm::SmallVector<RCReference<tfrt::AsyncValue>, 4> tfrt_tensor_results; tfrt_tensor_results.resize(results.size()); auto chain = RuntimeFallbackExecute( exec_ctx, op_name.str().c_str(), device_name.c_str(), tfrt_tensor_arg_ptrs, tfrt::OpAttrsRef(op_attrs), tfrt_tensor_results); if (op_chain) *op_chain = chain.CopyRef(); DCHECK(chain.IsAvailable()); if (chain.IsError()) { EmitErrorAndSetInResults( exec_ctx, tfrt::DecodedDiagnostic(chain.GetError()), results.values()); return; } for (int i = 0; i < results.size(); ++i) { auto& runtime_fallback_tensor = tfrt_tensor_results[i]->get<RuntimeFallbackTensor>(); const tensorflow::Tensor* tf_tensor = nullptr; tensorflow::Status s = runtime_fallback_tensor.GetTensorHandle()->Tensor(&tf_tensor); DCHECK(s.ok()) << s; results[i] = tfrt::MakeAvailableAsyncValueRef<tensorflow::Tensor>(*tf_tensor); } } Chain AddRuntimeFallbackImplicitConversionKernel( Argument<tfrt::OpHandler*> op_handler, const ExecutionContext& exec_ctx) { assert(op_handler.get()->GetName() == tfrt::CpuOpHandler::kName); tfrt::CpuOpHandler* cpu_op_handler = reinterpret_cast<tfrt::CpuOpHandler*>(op_handler.get()); cpu_op_handler->AddImplicitConversion(RuntimeFallbackTensor::kTensorType, DenseHostTensor::kTensorType); cpu_op_handler->AddImplicitConversion(RuntimeFallbackTensor::kTensorType, tfrt::AnyScalarHostTensor::kTensorType); cpu_op_handler->AddImplicitConversion(RuntimeFallbackTensor::kTensorType, tfrt::StringHostTensor::kTensorType); return {}; } void CreateRuntimeFallbackOpHandlerKernel(Result<tfrt::OpHandler*> op_handler, StringAttribute tf_device_name, const ExecutionContext& exec_ctx) { auto* runtime = tfrt::CoreRuntime::GetFromHostContext(exec_ctx.host()); assert(runtime); auto op_handler_ptr = CreateRuntimeFallbackOpHandler(runtime, tf_device_name.get()); assert(op_handler_ptr); op_handler.Emplace(op_handler_ptr.get()); } static OwnedTensorHandle ConvertTFRTTensorToTFTensorHandle( tfrt::Tensor* tensor) { if (auto* dht = llvm::dyn_cast<tfrt::DenseHostTensor>(tensor)) { tensorflow::Tensor tensor = MoveHostBufferToTfTensor(dht->buffer(), dht->dtype(), dht->shape()); return OwnedTensorHandle{ tensorflow::TensorHandle::CreateLocalHandle(tensor)}; } if (auto* sht = llvm::dyn_cast<tfrt::StringHostTensor>(tensor)) { tensorflow::Tensor tensor = CopyShtToTfTensor(*sht); return OwnedTensorHandle{ tensorflow::TensorHandle::CreateLocalHandle(tensor)}; } llvm_unreachable("unsupported tensor type"); } static llvm::Expected<tfrt::Value> ConvertTFTensorHandleToTFRTTensor( OwnedTensorHandle tensor_handle, HostContext* host) { tensorflow::Status status; OwnedAbstractTensorInterface tensor_interface{ tensor_handle->Resolve(&status)}; if (!status.ok()) { return tfrt::MakeStringError("error resolving TensorHandle: ", status.message()); } auto tf_dtype = tensor_interface->Type(); if (tf_dtype == DT_STRING) { auto string_host_tensor = CopyTfStringTensorToStringHostTensor(tensor_interface.get(), host); if (!string_host_tensor) return tfrt::MakeStringError( "error converting TF string tensor to tfrt::StringHostTensor: ", string_host_tensor.takeError()); return tfrt::Value(std::move(*string_host_tensor)); } tfrt::TensorMetadata metadata(GetTfrtDtype(tf_dtype), GetShape(tensor_interface.get())); CheckBoolCompatibility(); void* data = tensor_interface->Data(); size_t size = tensor_interface->ByteSize(); auto host_buffer = HostBuffer::CreateFromExternal( data, size, [tensor_interface = std::move(tensor_interface)](void*, size_t) {}); tfrt::Value value; value.emplace<DenseHostTensor>(metadata, std::move(host_buffer)); return std::move(value); } void RegisterTfdDelegateKernels(tfrt::KernelRegistry* registry) { registry->AddKernel("tfd.init_eager_context", TFRT_KERNEL(TfdInitEagerContext)); registry->AddKernel("tfd.delegate_kernel", TFRT_KERNEL(RuntimeFallbackKernel)); registry->AddKernel("tfd.move_dht_to_tft", TFRT_KERNEL(TfdMoveDHTToTFT)); registry->AddKernel("tfd.convert_tft_to_dht", TFRT_KERNEL(TfdConvertTFTToDHT)); registry->AddKernel("tfd.print_tft", TFRT_KERNEL(TfdPrintTFT)); registry->AddKernel( "tfrt_fallback_async.corert_tensorhandle_to_fallback_tensor", TFRT_KERNEL(CoreRTTensorHandleToFallbackTensor)); registry->AddKernel( "tfrt_fallback_async.fallback_tensor_to_corert_tensorhandle", TFRT_KERNEL(FallbackTensorToCoreRTTensorHandle)); registry->AddKernel("tfrt_fallback_async.print_tensor", TFRT_KERNEL(PrintFallbackTensor)); registry->AddKernel("corert.create_runtime_fallback_op_handler", TFRT_KERNEL(CreateRuntimeFallbackOpHandlerKernel)); registry->AddKernel("corert.add_runtime_fallback_implicit_conversions", TFRT_KERNEL(AddRuntimeFallbackImplicitConversionKernel)); } } }
#include "tensorflow/core/runtime_fallback/runtime/runtime_fallback_kernels.h" #include <gtest/gtest.h> #include "llvm/ADT/SmallVector.h" #include "tensorflow/c/eager/abstract_tensor_handle.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/runtime_fallback/test/coreruntime_driver.h" #include "tfrt/core_runtime/op_attrs.h" namespace tfrt { namespace { TEST(RuntimeFallbackKernelsTest, CallEagerExecute) { auto driver = CoreRuntimeDriver(); driver.InitializeCpuRuntimeFallbackOpHandler(); auto exec_ctx = driver.CreateExecutionContext(__FILE__, __LINE__); tensorflow::Tensor input(tensorflow::DT_FLOAT, {2, 2}); tensorflow::test::FillValues<float>(&input, {1, 1, 1, 1}); tensorflow::TensorHandle* input_th = tensorflow::TensorHandle::CreateLocalHandle(input); tfrt::OpAttrs matmul_attrs; matmul_attrs.Set<bool>("transpose_a", false); matmul_attrs.Set<bool>("transpose_b", false); tfrt::OpAttrsRef matmul_attrs_ref = matmul_attrs.freeze(); llvm::SmallVector<tensorflow::AbstractTensorHandle*, 1> results; results.resize(1); auto eager_ctx_expected = tensorflow::tfd::GetEagerContext(exec_ctx); ASSERT_FALSE(!eager_ctx_expected); tensorflow::EagerContext* eager_ctx = eager_ctx_expected.get(); TF_EXPECT_OK(tensorflow::tfd::CallEagerExecute( exec_ctx, eager_ctx, "MatMul", "", {input_th, input_th}, matmul_attrs_ref, results)); ASSERT_EQ(results.size(), 1); tensorflow::TensorHandle* res_th = tensorflow::TensorHandleFromInterface(results[0]); const tensorflow::Tensor* res_tensor; TF_EXPECT_OK(res_th->Tensor(&res_tensor)); EXPECT_EQ(res_th->DataType(), tensorflow::DT_FLOAT); int64_t num_elements; TF_EXPECT_OK(res_th->NumElements(&num_elements)); EXPECT_EQ(num_elements, 4); tensorflow::Tensor expected(tensorflow::DT_FLOAT, {2, 2}); tensorflow::test::FillValues<float>(&expected, {2, 2, 2, 2}); tensorflow::test::ExpectTensorEqual<float>(*res_tensor, expected); input_th->Unref(); res_th->Unref(); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/runtime_fallback/runtime/runtime_fallback_kernels.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/runtime_fallback/test/runtime_fallback_kernels_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9a59765c-2c63-495e-b33c-60154ba0061c
cpp
abseil/abseil-cpp
utf8
absl/strings/internal/utf8.cc
absl/strings/internal/utf8_test.cc
#include "absl/strings/internal/utf8.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace strings_internal { size_t EncodeUTF8Char(char *buffer, char32_t utf8_char) { if (utf8_char <= 0x7F) { *buffer = static_cast<char>(utf8_char); return 1; } else if (utf8_char <= 0x7FF) { buffer[1] = static_cast<char>(0x80 | (utf8_char & 0x3F)); utf8_char >>= 6; buffer[0] = static_cast<char>(0xC0 | utf8_char); return 2; } else if (utf8_char <= 0xFFFF) { buffer[2] = static_cast<char>(0x80 | (utf8_char & 0x3F)); utf8_char >>= 6; buffer[1] = static_cast<char>(0x80 | (utf8_char & 0x3F)); utf8_char >>= 6; buffer[0] = static_cast<char>(0xE0 | utf8_char); return 3; } else { buffer[3] = static_cast<char>(0x80 | (utf8_char & 0x3F)); utf8_char >>= 6; buffer[2] = static_cast<char>(0x80 | (utf8_char & 0x3F)); utf8_char >>= 6; buffer[1] = static_cast<char>(0x80 | (utf8_char & 0x3F)); utf8_char >>= 6; buffer[0] = static_cast<char>(0xF0 | utf8_char); return 4; } } } ABSL_NAMESPACE_END }
#include "absl/strings/internal/utf8.h" #include <cstdint> #include <utility> #include "gtest/gtest.h" #include "absl/base/port.h" namespace { #if !defined(__cpp_char8_t) #if defined(__clang__) #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wc++2a-compat" #endif TEST(EncodeUTF8Char, BasicFunction) { std::pair<char32_t, std::string> tests[] = {{0x0030, u8"\u0030"}, {0x00A3, u8"\u00A3"}, {0x00010000, u8"\U00010000"}, {0x0000FFFF, u8"\U0000FFFF"}, {0x0010FFFD, u8"\U0010FFFD"}}; for (auto &test : tests) { char buf0[7] = {'\x00', '\x00', '\x00', '\x00', '\x00', '\x00', '\x00'}; char buf1[7] = {'\xFF', '\xFF', '\xFF', '\xFF', '\xFF', '\xFF', '\xFF'}; char *buf0_written = &buf0[absl::strings_internal::EncodeUTF8Char(buf0, test.first)]; char *buf1_written = &buf1[absl::strings_internal::EncodeUTF8Char(buf1, test.first)]; int apparent_length = 7; while (buf0[apparent_length - 1] == '\x00' && buf1[apparent_length - 1] == '\xFF') { if (--apparent_length == 0) break; } EXPECT_EQ(apparent_length, buf0_written - buf0); EXPECT_EQ(apparent_length, buf1_written - buf1); EXPECT_EQ(apparent_length, test.second.length()); EXPECT_EQ(std::string(buf0, apparent_length), test.second); EXPECT_EQ(std::string(buf1, apparent_length), test.second); } char buf[32] = "Don't Tread On Me"; EXPECT_LE(absl::strings_internal::EncodeUTF8Char(buf, 0x00110000), absl::strings_internal::kMaxEncodedUTF8Size); char buf2[32] = "Negative is invalid but sane"; EXPECT_LE(absl::strings_internal::EncodeUTF8Char(buf2, -1), absl::strings_internal::kMaxEncodedUTF8Size); } #if defined(__clang__) #pragma clang diagnostic pop #endif #endif }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/internal/utf8.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/internal/utf8_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
13a3f2e4-d5ef-4e08-b0cb-49f8f2fdec84
cpp
tensorflow/tensorflow
exec_on_stall
tensorflow/core/util/exec_on_stall.h
tensorflow/core/util/exec_on_stall_test.cc
#ifndef TENSORFLOW_CORE_UTIL_EXEC_ON_STALL_H_ #define TENSORFLOW_CORE_UTIL_EXEC_ON_STALL_H_ #include <functional> #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/mutex.h" namespace tensorflow { class ExecuteOnStall { public: ExecuteOnStall(int delay_secs, std::function<void()> f, int32_t poll_microseconds = 100) : disabled_(false), joined_(false), env_(Env::Default()), f_(f), poll_microseconds_(poll_microseconds) { deadline_ = env_->NowMicros() + 1000000 * delay_secs; env_->SchedClosure([this]() { while (env_->NowMicros() < deadline_) { { mutex_lock l(mu_); if (disabled_) { break; } } env_->SleepForMicroseconds(poll_microseconds_); } { mutex_lock l(mu_); if (!disabled_) { f_(); } joined_ = true; cond_var_.notify_all(); } }); } ~ExecuteOnStall() { mutex_lock l(mu_); disabled_ = true; if (!joined_) { cond_var_.wait(l); } } private: mutex mu_; condition_variable cond_var_; bool disabled_ TF_GUARDED_BY(mu_); bool joined_ TF_GUARDED_BY(mu_); Env* env_; std::function<void()> f_; int64_t deadline_; int32 poll_microseconds_; }; } #endif
#include "tensorflow/core/util/exec_on_stall.h" #include <functional> #include <memory> #include <utility> #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { struct Chunk { std::unique_ptr<ExecuteOnStall> stall_closure; }; Chunk* NewChunk(int stall_seconds, std::function<void()> f) { Chunk* c = new Chunk; c->stall_closure = std::make_unique<ExecuteOnStall>(stall_seconds, std::move(f)); return c; } TEST(ExecuteOnStallTest, BothWays) { mutex mu; bool a_triggered(false); bool b_triggered(false); Chunk* a = NewChunk(1, [&mu, &a_triggered]() { mutex_lock l(mu); a_triggered = true; }); Chunk* b = NewChunk(1, [&mu, &b_triggered]() { mutex_lock l(mu); b_triggered = true; }); delete a; Env::Default()->SleepForMicroseconds(2000000); { mutex_lock l(mu); EXPECT_FALSE(a_triggered); EXPECT_TRUE(b_triggered); } delete b; } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/exec_on_stall.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/exec_on_stall_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1b8bdcc1-21e7-4a3e-8266-111b382e0bdf
cpp
google/quiche
quic_crypto_server_config
quiche/quic/core/crypto/quic_crypto_server_config.cc
quiche/quic/core/crypto/quic_crypto_server_config_test.cc
#include "quiche/quic/core/crypto/quic_crypto_server_config.h" #include <algorithm> #include <cstdlib> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/base/attributes.h" #include "absl/strings/escaping.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "openssl/sha.h" #include "openssl/ssl.h" #include "quiche/quic/core/crypto/aes_128_gcm_12_decrypter.h" #include "quiche/quic/core/crypto/aes_128_gcm_12_encrypter.h" #include "quiche/quic/core/crypto/cert_compressor.h" #include "quiche/quic/core/crypto/certificate_view.h" #include "quiche/quic/core/crypto/chacha20_poly1305_encrypter.h" #include "quiche/quic/core/crypto/channel_id.h" #include "quiche/quic/core/crypto/crypto_framer.h" #include "quiche/quic/core/crypto/crypto_handshake_message.h" #include "quiche/quic/core/crypto/crypto_utils.h" #include "quiche/quic/core/crypto/curve25519_key_exchange.h" #include "quiche/quic/core/crypto/key_exchange.h" #include "quiche/quic/core/crypto/p256_key_exchange.h" #include "quiche/quic/core/crypto/proof_source.h" #include "quiche/quic/core/crypto/quic_decrypter.h" #include "quiche/quic/core/crypto/quic_encrypter.h" #include "quiche/quic/core/crypto/quic_hkdf.h" #include "quiche/quic/core/crypto/quic_random.h" #include "quiche/quic/core/crypto/tls_server_connection.h" #include "quiche/quic/core/proto/crypto_server_config_proto.h" #include "quiche/quic/core/proto/source_address_token_proto.h" #include "quiche/quic/core/quic_clock.h" #include "quiche/quic/core/quic_connection_context.h" #include "quiche/quic/core/quic_packets.h" #include "quiche/quic/core/quic_socket_address_coder.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" #include "quiche/quic/platform/api/quic_flag_utils.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_hostname_utils.h" #include "quiche/quic/platform/api/quic_logging.h" #include "quiche/quic/platform/api/quic_socket_address.h" #include "quiche/quic/platform/api/quic_testvalue.h" #include "quiche/common/platform/api/quiche_reference_counted.h" namespace quic { namespace { const size_t kMultiplier = 3; const int kMaxTokenAddresses = 4; std::string DeriveSourceAddressTokenKey( absl::string_view source_address_token_secret) { QuicHKDF hkdf(source_address_token_secret, absl::string_view() , "QUIC source address token key", CryptoSecretBoxer::GetKeySize(), 0 , 0 ); return std::string(hkdf.server_write_key()); } class DefaultKeyExchangeSource : public KeyExchangeSource { public: DefaultKeyExchangeSource() = default; ~DefaultKeyExchangeSource() override = default; std::unique_ptr<AsynchronousKeyExchange> Create( std::string , bool , QuicTag type, absl::string_view private_key) override { if (private_key.empty()) { QUIC_LOG(WARNING) << "Server config contains key exchange method without " "corresponding private key of type " << QuicTagToString(type); return nullptr; } std::unique_ptr<SynchronousKeyExchange> ka = CreateLocalSynchronousKeyExchange(type, private_key); if (!ka) { QUIC_LOG(WARNING) << "Failed to create key exchange method of type " << QuicTagToString(type); } return ka; } }; bool ClientDemandsX509Proof(const CryptoHandshakeMessage& client_hello) { QuicTagVector their_proof_demands; if (client_hello.GetTaglist(kPDMD, &their_proof_demands) != QUIC_NO_ERROR) { return false; } for (const QuicTag tag : their_proof_demands) { if (tag == kX509) { return true; } } return false; } std::string FormatCryptoHandshakeMessageForTrace( const CryptoHandshakeMessage* message) { if (message == nullptr) { return "<null message>"; } std::string s = QuicTagToString(message->tag()); if (const auto it = message->tag_value_map().find(kRREJ); it != message->tag_value_map().end()) { const std::string& value = it->second; if (value.size() % sizeof(uint32_t) == 0) { absl::StrAppend(&s, " RREJ:["); for (size_t j = 0; j < value.size(); j += sizeof(uint32_t)) { uint32_t reason; memcpy(&reason, value.data() + j, sizeof(reason)); if (j > 0) { absl::StrAppend(&s, ","); } absl::StrAppend(&s, CryptoUtils::HandshakeFailureReasonToString( static_cast<HandshakeFailureReason>(reason))); } absl::StrAppend(&s, "]"); } else { absl::StrAppendFormat(&s, " RREJ:[unexpected length:%u]", value.size()); } } return s; } } std::unique_ptr<KeyExchangeSource> KeyExchangeSource::Default() { return std::make_unique<DefaultKeyExchangeSource>(); } class ValidateClientHelloHelper { public: ValidateClientHelloHelper( quiche::QuicheReferenceCountedPointer< ValidateClientHelloResultCallback::Result> result, std::unique_ptr<ValidateClientHelloResultCallback>* done_cb) : result_(std::move(result)), done_cb_(done_cb) {} ValidateClientHelloHelper(const ValidateClientHelloHelper&) = delete; ValidateClientHelloHelper& operator=(const ValidateClientHelloHelper&) = delete; ~ValidateClientHelloHelper() { QUIC_BUG_IF(quic_bug_12963_1, done_cb_ != nullptr) << "Deleting ValidateClientHelloHelper with a pending callback."; } void ValidationComplete( QuicErrorCode error_code, const char* error_details, std::unique_ptr<ProofSource::Details> proof_source_details) { result_->error_code = error_code; result_->error_details = error_details; (*done_cb_)->Run(std::move(result_), std::move(proof_source_details)); DetachCallback(); } void DetachCallback() { QUIC_BUG_IF(quic_bug_10630_1, done_cb_ == nullptr) << "Callback already detached."; done_cb_ = nullptr; } private: quiche::QuicheReferenceCountedPointer< ValidateClientHelloResultCallback::Result> result_; std::unique_ptr<ValidateClientHelloResultCallback>* done_cb_; }; const char QuicCryptoServerConfig::TESTING[] = "secret string for testing"; ClientHelloInfo::ClientHelloInfo(const QuicIpAddress& in_client_ip, QuicWallTime in_now) : client_ip(in_client_ip), now(in_now), valid_source_address_token(false) {} ClientHelloInfo::ClientHelloInfo(const ClientHelloInfo& other) = default; ClientHelloInfo::~ClientHelloInfo() {} PrimaryConfigChangedCallback::PrimaryConfigChangedCallback() {} PrimaryConfigChangedCallback::~PrimaryConfigChangedCallback() {} ValidateClientHelloResultCallback::Result::Result( const CryptoHandshakeMessage& in_client_hello, QuicIpAddress in_client_ip, QuicWallTime in_now) : client_hello(in_client_hello), info(in_client_ip, in_now), error_code(QUIC_NO_ERROR) {} ValidateClientHelloResultCallback::Result::~Result() {} ValidateClientHelloResultCallback::ValidateClientHelloResultCallback() {} ValidateClientHelloResultCallback::~ValidateClientHelloResultCallback() {} ProcessClientHelloResultCallback::ProcessClientHelloResultCallback() {} ProcessClientHelloResultCallback::~ProcessClientHelloResultCallback() {} QuicCryptoServerConfig::ConfigOptions::ConfigOptions() : expiry_time(QuicWallTime::Zero()), channel_id_enabled(false), p256(false) {} QuicCryptoServerConfig::ConfigOptions::ConfigOptions( const ConfigOptions& other) = default; QuicCryptoServerConfig::ConfigOptions::~ConfigOptions() {} QuicCryptoServerConfig::ProcessClientHelloContext:: ~ProcessClientHelloContext() { if (done_cb_ != nullptr) { QUIC_LOG(WARNING) << "Deleting ProcessClientHelloContext with a pending callback."; } } void QuicCryptoServerConfig::ProcessClientHelloContext::Fail( QuicErrorCode error, const std::string& error_details) { QUIC_TRACEPRINTF("ProcessClientHello failed: error=%s, details=%s", QuicErrorCodeToString(error), error_details); done_cb_->Run(error, error_details, nullptr, nullptr, nullptr); done_cb_ = nullptr; } void QuicCryptoServerConfig::ProcessClientHelloContext::Succeed( std::unique_ptr<CryptoHandshakeMessage> message, std::unique_ptr<DiversificationNonce> diversification_nonce, std::unique_ptr<ProofSource::Details> proof_source_details) { QUIC_TRACEPRINTF("ProcessClientHello succeeded: %s", FormatCryptoHandshakeMessageForTrace(message.get())); done_cb_->Run(QUIC_NO_ERROR, std::string(), std::move(message), std::move(diversification_nonce), std::move(proof_source_details)); done_cb_ = nullptr; } QuicCryptoServerConfig::QuicCryptoServerConfig( absl::string_view source_address_token_secret, QuicRandom* server_nonce_entropy, std::unique_ptr<ProofSource> proof_source, std::unique_ptr<KeyExchangeSource> key_exchange_source) : replay_protection_(true), chlo_multiplier_(kMultiplier), configs_lock_(), primary_config_(nullptr), next_config_promotion_time_(QuicWallTime::Zero()), proof_source_(std::move(proof_source)), key_exchange_source_(std::move(key_exchange_source)), ssl_ctx_(TlsServerConnection::CreateSslCtx(proof_source_.get())), source_address_token_future_secs_(3600), source_address_token_lifetime_secs_(86400), enable_serving_sct_(false), rejection_observer_(nullptr), pad_rej_(true), pad_shlo_(true), validate_chlo_size_(true), validate_source_address_token_(true) { QUICHE_DCHECK(proof_source_.get()); source_address_token_boxer_.SetKeys( {DeriveSourceAddressTokenKey(source_address_token_secret)}); server_nonce_entropy->RandBytes(server_nonce_orbit_, sizeof(server_nonce_orbit_)); const size_t key_size = server_nonce_boxer_.GetKeySize(); std::unique_ptr<uint8_t[]> key_bytes(new uint8_t[key_size]); server_nonce_entropy->RandBytes(key_bytes.get(), key_size); server_nonce_boxer_.SetKeys( {std::string(reinterpret_cast<char*>(key_bytes.get()), key_size)}); } QuicCryptoServerConfig::~QuicCryptoServerConfig() {} QuicServerConfigProtobuf QuicCryptoServerConfig::GenerateConfig( QuicRandom* rand, const QuicClock* clock, const ConfigOptions& options) { CryptoHandshakeMessage msg; const std::string curve25519_private_key = Curve25519KeyExchange::NewPrivateKey(rand); std::unique_ptr<Curve25519KeyExchange> curve25519 = Curve25519KeyExchange::New(curve25519_private_key); absl::string_view curve25519_public_value = curve25519->public_value(); std::string encoded_public_values; QUICHE_DCHECK_LT(curve25519_public_value.size(), (1U << 24)); encoded_public_values.push_back( static_cast<char>(curve25519_public_value.size())); encoded_public_values.push_back( static_cast<char>(curve25519_public_value.size() >> 8)); encoded_public_values.push_back( static_cast<char>(curve25519_public_value.size() >> 16)); encoded_public_values.append(curve25519_public_value.data(), curve25519_public_value.size()); std::string p256_private_key; if (options.p256) { p256_private_key = P256KeyExchange::NewPrivateKey(); std::unique_ptr<P256KeyExchange> p256( P256KeyExchange::New(p256_private_key)); absl::string_view p256_public_value = p256->public_value(); QUICHE_DCHECK_LT(p256_public_value.size(), (1U << 24)); encoded_public_values.push_back( static_cast<char>(p256_public_value.size())); encoded_public_values.push_back( static_cast<char>(p256_public_value.size() >> 8)); encoded_public_values.push_back( static_cast<char>(p256_public_value.size() >> 16)); encoded_public_values.append(p256_public_value.data(), p256_public_value.size()); } msg.set_tag(kSCFG); if (options.p256) { msg.SetVector(kKEXS, QuicTagVector{kC255, kP256}); } else { msg.SetVector(kKEXS, QuicTagVector{kC255}); } msg.SetVector(kAEAD, QuicTagVector{kAESG, kCC20}); msg.SetStringPiece(kPUBS, encoded_public_values); if (options.expiry_time.IsZero()) { const QuicWallTime now = clock->WallNow(); const QuicWallTime expiry = now.Add(QuicTime::Delta::FromSeconds( 60 * 60 * 24 * 180 )); const uint64_t expiry_seconds = expiry.ToUNIXSeconds(); msg.SetValue(kEXPY, expiry_seconds); } else { msg.SetValue(kEXPY, options.expiry_time.ToUNIXSeconds()); } char orbit_bytes[kOrbitSize]; if (options.orbit.size() == sizeof(orbit_bytes)) { memcpy(orbit_bytes, options.orbit.data(), sizeof(orbit_bytes)); } else { QUICHE_DCHECK(options.orbit.empty()); rand->RandBytes(orbit_bytes, sizeof(orbit_bytes)); } msg.SetStringPiece(kORBT, absl::string_view(orbit_bytes, sizeof(orbit_bytes))); if (options.channel_id_enabled) { msg.SetVector(kPDMD, QuicTagVector{kCHID}); } if (options.id.empty()) { std::unique_ptr<QuicData> serialized = CryptoFramer::ConstructHandshakeMessage(msg); uint8_t scid_bytes[SHA256_DIGEST_LENGTH]; SHA256(reinterpret_cast<const uint8_t*>(serialized->data()), serialized->length(), scid_bytes); static_assert(16 <= SHA256_DIGEST_LENGTH, "SCID length too high."); msg.SetStringPiece( kSCID, absl::string_view(reinterpret_cast<const char*>(scid_bytes), 16)); } else { msg.SetStringPiece(kSCID, options.id); } std::unique_ptr<QuicData> serialized = CryptoFramer::ConstructHandshakeMessage(msg); QuicServerConfigProtobuf config; config.set_config(std::string(serialized->AsStringPiece())); QuicServerConfigProtobuf::PrivateKey* curve25519_key = config.add_key(); curve25519_key->set_tag(kC255); curve25519_key->set_private_key(curve25519_private_key); if (options.p256) { QuicServerConfigProtobuf::PrivateKey* p256_key = config.add_key(); p256_key->set_tag(kP256); p256_key->set_private_key(p256_private_key); } return config; } std::unique_ptr<CryptoHandshakeMessage> QuicCryptoServerConfig::AddConfig( const QuicServerConfigProtobuf& protobuf, const QuicWallTime now) { std::unique_ptr<CryptoHandshakeMessage> msg = CryptoFramer::ParseMessage(protobuf.config()); if (!msg) { QUIC_LOG(WARNING) << "Failed to parse server config message"; return nullptr; } quiche::QuicheReferenceCountedPointer<Config> config = ParseConfigProtobuf(protobuf, false); if (!config) { QUIC_LOG(WARNING) << "Failed to parse server config message"; return nullptr; } { quiche::QuicheWriterMutexLock locked(&configs_lock_); if (configs_.find(config->id) != configs_.end()) { QUIC_LOG(WARNING) << "Failed to add config because another with the same " "server config id already exists: " << absl::BytesToHexString(config->id); return nullptr; } configs_[config->id] = config; SelectNewPrimaryConfig(now); QUICHE_DCHECK(primary_config_.get()); QUICHE_DCHECK_EQ(configs_.find(primary_config_->id)->second.get(), primary_config_.get()); } return msg; } std::unique_ptr<CryptoHandshakeMessage> QuicCryptoServerConfig::AddDefaultConfig(QuicRandom* rand, const QuicClock* clock, const ConfigOptions& options) { return AddConfig(GenerateConfig(rand, clock, options), clock->WallNow()); } bool QuicCryptoServerConfig::SetConfigs( const std::vector<QuicServerConfigProtobuf>& protobufs, const QuicServerConfigProtobuf* fallback_protobuf, const QuicWallTime now) { std::vector<quiche::QuicheReferenceCountedPointer<Config>> parsed_configs; for (auto& protobuf : protobufs) { quiche::QuicheReferenceCountedPointer<Config> config = ParseConfigProtobuf(protobuf, false); if (!config) { QUIC_LOG(WARNING) << "Rejecting QUIC configs because of above errors"; return false; } parsed_configs.push_back(config); } quiche::QuicheReferenceCountedPointer<Config> fallback_config; if (fallback_protobuf != nullptr) { fallback_config = ParseConfigProtobuf(*fallback_protobuf, true); if (!fallback_config) { QUIC_LOG(WARNING) << "Rejecting QUIC configs because of above errors"; return false; } QUIC_LOG(INFO) << "Fallback config has scid " << absl::BytesToHexString(fallback_config->id); parsed_configs.push_back(fallback_config); } else { QUIC_LOG(INFO) << "No fallback config provided"; } if (parsed_configs.empty()) { QUIC_LOG(WARNING) << "Rejecting QUIC configs because new config list is empty."; return false; } QUIC_LOG(INFO) << "Updating configs:"; quiche::QuicheWriterMutexLock locked(&configs_lock_); ConfigMap new_configs; for (const quiche::QuicheReferenceCountedPointer<Config>& config : parsed_configs) { auto it = configs_.find(config->id); if (it != configs_.end()) { QUIC_LOG(INFO) << "Keeping scid: " << absl::BytesToHexString(config->id) << " orbit: " << absl::BytesToHexString(absl::string_view( reinterpret_cast<const char*>(config->orbit), kOrbitSize)) << " new primary_time " << config->primary_time.ToUNIXSeconds() << " old primary_time " << it->second->primary_time.ToUNIXSeconds() << " new priority " << config->priority << " old priority " << it->second->priority; it->second->primary_time = config->primary_time; it->second->priority = config->priority; new_configs.insert(*it); } else { QUIC_LOG(INFO) << "Adding scid: " << absl::BytesToHexString(config->id) << " orbit: " << absl::BytesToHexString(absl::string_view( reinterpret_cast<const char*>(config->orbit), kOrbitSize)) << " primary_time " << config->primary_time.ToUNIXSeconds() << " priority " << config->priority; new_configs.emplace(config->id, config); } } configs_ = std::move(new_configs); fallback_config_ = fallback_config; SelectNewPrimaryConfig(now); QUICHE_DCHECK(primary_config_.get()); QUICHE_DCHECK_EQ(configs_.find(primary_config_->id)->second.get(), primary_config_.get()); return true; } void QuicCryptoServerConfig::SetSourceAddressTokenKeys( const std::vector<std::string>& keys) { source_address_token_boxer_.SetKeys(keys); } std::vector<std::string> QuicCryptoServerConfig::GetConfigIds() const { quiche::QuicheReaderMutexLock locked(&configs_lock_); std::vector<std::string> scids; for (auto it = configs_.begin(); it != configs_.end(); ++it) { scids.push_back(it->first); } return scids; } void QuicCryptoServerConfig::ValidateClientHello( const CryptoHandshakeMessage& client_hello, const QuicSocketAddress& client_address, const QuicSocketAddress& server_address, QuicTransportVersion version, const QuicClock* clock, quiche::QuicheReferenceCountedPointer<QuicSignedServerConfig> signed_config, std::unique_ptr<ValidateClientHelloResultCallback> done_cb) const { const QuicWallTime now(clock->WallNow()); quiche::QuicheReferenceCountedPointer< ValidateClientHelloResultCallback::Result> result(new ValidateClientHelloResultCallback::Result( client_hello, client_address.host(), now)); absl::string_view requested_scid; client_hello.GetStringPiece(kSCID, &requested_scid); Configs configs; if (!GetCurrentConfigs(now, requested_scid, nullptr, &configs)) { result->error_code = QUIC_CRYPTO_INTERNAL_ERROR; result->error_details = "No configurations loaded"; } signed_config->config = configs.primary; if (result->error_code == QUIC_NO_ERROR) { signed_config->chain = nullptr; signed_config->proof.signature = ""; signed_config->proof.leaf_cert_scts = ""; EvaluateClientHello(server_address, client_address, version, configs, result, std::move(done_cb)); } else { done_cb->Run(result, nullptr); } } class QuicCryptoServerConfig::ProcessClientHelloCallback : public ProofSource::Callback { public: ProcessClientHelloCallback(const QuicCryptoServerConfig* config, std::unique_ptr<ProcessClientHelloContext> context, const Configs& configs) : config_(config), context_(std::move(context)), configs_(configs) {} void Run( bool ok, const quiche::QuicheReferenceCountedPointer<ProofSource::Chain>& chain, const QuicCryptoProof& proof, std::unique_ptr<ProofSource::Details> details) override { if (ok) { context_->signed_config()->chain = chain; context_->signed_config()->proof = proof; } config_->ProcessClientHelloAfterGetProof(!ok, std::move(details), std::move(context_), configs_); } private: const QuicCryptoServerConfig* config_; std::unique_ptr<ProcessClientHelloContext> context_; const Configs configs_; }; class QuicCryptoServerConfig::ProcessClientHelloAfterGetProofCallback : public AsynchronousKeyExchange::Callback { public: ProcessClientHelloAfterGetProofCallback( const QuicCryptoServerConfig* config, std::unique_ptr<ProofSource::Details> proof_source_details, QuicTag key_exchange_type, std::unique_ptr<CryptoHandshakeMessage> out, absl::string_view public_value, std::unique_ptr<ProcessClientHelloContext> context, const Configs& configs) : config_(config), proof_source_details_(std::move(proof_source_details)), key_exchange_type_(key_exchange_type), out_(std::move(out)), public_value_(public_value), context_(std::move(context)), configs_(configs) {} void Run(bool ok) override { config_->ProcessClientHelloAfterCalculateSharedKeys( !ok, std::move(proof_source_details_), key_exchange_type_, std::move(out_), public_value_, std::move(context_), configs_); } private: const QuicCryptoServerConfig* config_; std::unique_ptr<ProofSource::Details> proof_source_details_; const QuicTag key_exchange_type_; std::unique_ptr<CryptoHandshakeMessage> out_; const std::string public_value_; std::unique_ptr<ProcessClientHelloContext> context_; const Configs configs_; std::unique_ptr<ProcessClientHelloResultCallback> done_cb_; }; class QuicCryptoServerConfig::SendRejectWithFallbackConfigCallback : public ProofSource::Callback { public: SendRejectWithFallbackConfigCallback( const QuicCryptoServerConfig* config, std::unique_ptr<ProcessClientHelloContext> context, quiche::QuicheReferenceCountedPointer<Config> fallback_config) : config_(config), context_(std::move(context)), fallback_config_(fallback_config) {} void Run( bool ok, const quiche::QuicheReferenceCountedPointer<ProofSource::Chain>& chain, const QuicCryptoProof& proof, std::unique_ptr<ProofSource::Details> details) override { if (ok) { context_->signed_config()->chain = chain; context_->signed_config()->proof = proof; } config_->SendRejectWithFallbackConfigAfterGetProof( !ok, std::move(details), std::move(context_), fallback_config_); } private: const QuicCryptoServerConfig* config_; std::unique_ptr<ProcessClientHelloContext> context_; quiche::QuicheReferenceCountedPointer<Config> fallback_config_; }; void QuicCryptoServerConfig::ProcessClientHello( quiche::QuicheReferenceCountedPointer< ValidateClientHelloResultCallback::Result> validate_chlo_result, bool reject_only, QuicConnectionId connection_id, const QuicSocketAddress& server_address, const QuicSocketAddress& client_address, ParsedQuicVersion version, const ParsedQuicVersionVector& supported_versions, const QuicClock* clock, QuicRandom* rand, QuicCompressedCertsCache* compressed_certs_cache, quiche::QuicheReferenceCountedPointer<QuicCryptoNegotiatedParameters> params, quiche::QuicheReferenceCountedPointer<QuicSignedServerConfig> signed_config, QuicByteCount total_framing_overhead, QuicByteCount chlo_packet_size, std::shared_ptr<ProcessClientHelloResultCallback> done_cb) const { QUICHE_DCHECK(done_cb); auto context = std::make_unique<ProcessClientHelloContext>( validate_chlo_result, reject_only, connection_id, server_address, client_address, version, supported_versions, clock, rand, compressed_certs_cache, params, signed_config, total_framing_overhead, chlo_packet_size, std::move(done_cb)); std::string error_details; QuicErrorCode valid = CryptoUtils::ValidateClientHello( context->client_hello(), context->version(), context->supported_versions(), &error_details); if (valid != QUIC_NO_ERROR) { context->Fail(valid, error_details); return; } absl::string_view requested_scid; context->client_hello().GetStringPiece(kSCID, &requested_scid); Configs configs; if (!GetCurrentConfigs(context->clock()->WallNow(), requested_scid, signed_config->config, &configs)) { context->Fail(QUIC_CRYPTO_INTERNAL_ERROR, "No configurations loaded"); return; } if (context->validate_chlo_result()->error_code != QUIC_NO_ERROR) { context->Fail(context->validate_chlo_result()->error_code, context->validate_chlo_result()->error_details); return; } if (!ClientDemandsX509Proof(context->client_hello())) { context->Fail(QUIC_UNSUPPORTED_PROOF_DEMAND, "Missing or invalid PDMD"); return; } if (!context->signed_config()->chain) { const std::string chlo_hash = CryptoUtils::HashHandshakeMessage( context->client_hello(), Perspective::IS_SERVER); const QuicSocketAddress context_server_address = context->server_address(); const std::string sni = std::string(context->info().sni); const QuicTransportVersion transport_version = context->transport_version(); auto cb = std::make_unique<ProcessClientHelloCallback>( this, std::move(context), configs); QUICHE_DCHECK(proof_source_.get()); proof_source_->GetProof(context_server_address, client_address, sni, configs.primary->serialized, transport_version, chlo_hash, std::move(cb)); return; } ProcessClientHelloAfterGetProof( false, nullptr, std::move(context), configs); } void QuicCryptoServerConfig::ProcessClientHelloAfterGetProof( bool found_error, std::unique_ptr<ProofSource::Details> proof_source_details, std::unique_ptr<ProcessClientHelloContext> context, const Configs& configs) const { QUIC_BUG_IF(quic_bug_12963_2, !QuicUtils::IsConnectionIdValidForVersion( context->connection_id(), context->transport_version())) << "ProcessClientHelloAfterGetProof: attempted to use connection ID " << context->connection_id() << " which is invalid with version " << context->version(); if (context->info().reject_reasons.empty()) { if (!context->signed_config() || !context->signed_config()->chain) { context->validate_chlo_result()->info.reject_reasons.push_back( SERVER_CONFIG_UNKNOWN_CONFIG_FAILURE); } else if (!ValidateExpectedLeafCertificate( context->client_hello(), context->signed_config()->chain->certs)) { context->validate_chlo_result()->info.reject_reasons.push_back( INVALID_EXPECTED_LEAF_CERTIFICATE); } } if (found_error) { context->Fail(QUIC_HANDSHAKE_FAILED, "Failed to get proof"); return; } auto out_diversification_nonce = std::make_unique<DiversificationNonce>(); absl::string_view cert_sct; if (context->client_hello().GetStringPiece(kCertificateSCTTag, &cert_sct) && cert_sct.empty()) { context->params()->sct_supported_by_client = true; } auto out = std::make_unique<CryptoHandshakeMessage>(); if (!context->info().reject_reasons.empty() || !configs.requested) { BuildRejectionAndRecordStats(*context, *configs.primary, context->info().reject_reasons, out.get()); context->Succeed(std::move(out), std::move(out_diversification_nonce), std::move(proof_source_details)); return; } if (context->reject_only()) { context->Succeed(std::move(out), std::move(out_diversification_nonce), std::move(proof_source_details)); return; } QuicTagVector their_aeads; QuicTagVector their_key_exchanges; if (context->client_hello().GetTaglist(kAEAD, &their_aeads) != QUIC_NO_ERROR || context->client_hello().GetTaglist(kKEXS, &their_key_exchanges) != QUIC_NO_ERROR || their_aeads.size() != 1 || their_key_exchanges.size() != 1) { context->Fail(QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER, "Missing or invalid AEAD or KEXS"); return; } size_t key_exchange_index; if (!FindMutualQuicTag(configs.requested->aead, their_aeads, &context->params()->aead, nullptr) || !FindMutualQuicTag(configs.requested->kexs, their_key_exchanges, &context->params()->key_exchange, &key_exchange_index)) { context->Fail(QUIC_CRYPTO_NO_SUPPORT, "Unsupported AEAD or KEXS"); return; } absl::string_view public_value; if (!context->client_hello().GetStringPiece(kPUBS, &public_value)) { context->Fail(QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER, "Missing public value"); return; } AdjustTestValue("quic::QuicCryptoServerConfig::public_value_adjust", &public_value); const AsynchronousKeyExchange* key_exchange = configs.requested->key_exchanges[key_exchange_index].get(); std::string* initial_premaster_secret = &context->params()->initial_premaster_secret; auto cb = std::make_unique<ProcessClientHelloAfterGetProofCallback>( this, std::move(proof_source_details), key_exchange->type(), std::move(out), public_value, std::move(context), configs); key_exchange->CalculateSharedKeyAsync(public_value, initial_premaster_secret, std::move(cb)); } void QuicCryptoServerConfig::ProcessClientHelloAfterCalculateSharedKeys( bool found_error, std::unique_ptr<ProofSource::Details> proof_source_details, QuicTag key_exchange_type, std::unique_ptr<CryptoHandshakeMessage> out, absl::string_view public_value, std::unique_ptr<ProcessClientHelloContext> context, const Configs& configs) const { QUIC_BUG_IF(quic_bug_12963_3, !QuicUtils::IsConnectionIdValidForVersion( context->connection_id(), context->transport_version())) << "ProcessClientHelloAfterCalculateSharedKeys:" " attempted to use connection ID " << context->connection_id() << " which is invalid with version " << context->version(); if (found_error) { if (configs.fallback == nullptr || context->signed_config()->config == configs.fallback) { context->Fail(QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER, "Failed to calculate shared key"); } else { SendRejectWithFallbackConfig(std::move(context), configs.fallback); } return; } if (!context->info().sni.empty()) { context->params()->sni = QuicHostnameUtils::NormalizeHostname(context->info().sni); } std::string hkdf_suffix; const QuicData& client_hello_serialized = context->client_hello().GetSerialized(); hkdf_suffix.reserve(context->connection_id().length() + client_hello_serialized.length() + configs.requested->serialized.size()); hkdf_suffix.append(context->connection_id().data(), context->connection_id().length()); hkdf_suffix.append(client_hello_serialized.data(), client_hello_serialized.length()); hkdf_suffix.append(configs.requested->serialized); QUICHE_DCHECK(proof_source_.get()); if (context->signed_config()->chain->certs.empty()) { context->Fail(QUIC_CRYPTO_INTERNAL_ERROR, "Failed to get certs"); return; } hkdf_suffix.append(context->signed_config()->chain->certs[0]); absl::string_view cetv_ciphertext; if (configs.requested->channel_id_enabled && context->client_hello().GetStringPiece(kCETV, &cetv_ciphertext)) { CryptoHandshakeMessage client_hello_copy(context->client_hello()); client_hello_copy.Erase(kCETV); client_hello_copy.Erase(kPAD); const QuicData& client_hello_copy_serialized = client_hello_copy.GetSerialized(); std::string hkdf_input; hkdf_input.append(QuicCryptoConfig::kCETVLabel, strlen(QuicCryptoConfig::kCETVLabel) + 1); hkdf_input.append(context->connection_id().data(), context->connection_id().length()); hkdf_input.append(client_hello_copy_serialized.data(), client_hello_copy_serialized.length()); hkdf_input.append(configs.requested->serialized); CrypterPair crypters; if (!CryptoUtils::DeriveKeys( context->version(), context->params()->initial_premaster_secret, context->params()->aead, context->info().client_nonce, context->info().server_nonce, pre_shared_key_, hkdf_input, Perspective::IS_SERVER, CryptoUtils::Diversification::Never(), &crypters, nullptr )) { context->Fail(QUIC_CRYPTO_SYMMETRIC_KEY_SETUP_FAILED, "Symmetric key setup failed"); return; } char plaintext[kMaxOutgoingPacketSize]; size_t plaintext_length = 0; const bool success = crypters.decrypter->DecryptPacket( 0 , absl::string_view() , cetv_ciphertext, plaintext, &plaintext_length, kMaxOutgoingPacketSize); if (!success) { context->Fail(QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER, "CETV decryption failure"); return; } std::unique_ptr<CryptoHandshakeMessage> cetv(CryptoFramer::ParseMessage( absl::string_view(plaintext, plaintext_length))); if (!cetv) { context->Fail(QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER, "CETV parse error"); return; } absl::string_view key, signature; if (cetv->GetStringPiece(kCIDK, &key) && cetv->GetStringPiece(kCIDS, &signature)) { if (!ChannelIDVerifier::Verify(key, hkdf_input, signature)) { context->Fail(QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER, "ChannelID signature failure"); return; } context->params()->channel_id = std::string(key); } } std::string hkdf_input; size_t label_len = strlen(QuicCryptoConfig::kInitialLabel) + 1; hkdf_input.reserve(label_len + hkdf_suffix.size()); hkdf_input.append(QuicCryptoConfig::kInitialLabel, label_len); hkdf_input.append(hkdf_suffix); auto out_diversification_nonce = std::make_unique<DiversificationNonce>(); context->rand()->RandBytes(out_diversification_nonce->data(), out_diversification_nonce->size()); CryptoUtils::Diversification diversification = CryptoUtils::Diversification::Now(out_diversification_nonce.get()); if (!CryptoUtils::DeriveKeys( context->version(), context->params()->initial_premaster_secret, context->params()->aead, context->info().client_nonce, context->info().server_nonce, pre_shared_key_, hkdf_input, Perspective::IS_SERVER, diversification, &context->params()->initial_crypters, &context->params()->initial_subkey_secret)) { context->Fail(QUIC_CRYPTO_SYMMETRIC_KEY_SETUP_FAILED, "Symmetric key setup failed"); return; } std::string forward_secure_public_value; std::unique_ptr<SynchronousKeyExchange> forward_secure_key_exchange = CreateLocalSynchronousKeyExchange(key_exchange_type, context->rand()); if (!forward_secure_key_exchange) { QUIC_DLOG(WARNING) << "Failed to create keypair"; context->Fail(QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER, "Failed to create keypair"); return; } forward_secure_public_value = std::string(forward_secure_key_exchange->public_value()); if (!forward_secure_key_exchange->CalculateSharedKeySync( public_value, &context->params()->forward_secure_premaster_secret)) { context->Fail(QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER, "Invalid public value"); return; } std::string forward_secure_hkdf_input; label_len = strlen(QuicCryptoConfig::kForwardSecureLabel) + 1; forward_secure_hkdf_input.reserve(label_len + hkdf_suffix.size()); forward_secure_hkdf_input.append(QuicCryptoConfig::kForwardSecureLabel, label_len); forward_secure_hkdf_input.append(hkdf_suffix); std::string shlo_nonce; shlo_nonce = NewServerNonce(context->rand(), context->info().now); out->SetStringPiece(kServerNonceTag, shlo_nonce); if (!CryptoUtils::DeriveKeys( context->version(), context->params()->forward_secure_premaster_secret, context->params()->aead, context->info().client_nonce, shlo_nonce.empty() ? context->info().server_nonce : shlo_nonce, pre_shared_key_, forward_secure_hkdf_input, Perspective::IS_SERVER, CryptoUtils::Diversification::Never(), &context->params()->forward_secure_crypters, &context->params()->subkey_secret)) { context->Fail(QUIC_CRYPTO_SYMMETRIC_KEY_SETUP_FAILED, "Symmetric key setup failed"); return; } out->set_tag(kSHLO); out->SetVersionVector(kVER, context->supported_versions()); out->SetStringPiece( kSourceAddressTokenTag, NewSourceAddressToken(*configs.requested->source_address_token_boxer, context->info().source_address_tokens, context->client_address().host(), context->rand(), context->info().now, nullptr)); QuicSocketAddressCoder address_coder(context->client_address()); out->SetStringPiece(kCADR, address_coder.Encode()); out->SetStringPiece(kPUBS, forward_secure_public_value); context->Succeed(std::move(out), std::move(out_diversification_nonce), std::move(proof_source_details)); } void QuicCryptoServerConfig::SendRejectWithFallbackConfig( std::unique_ptr<ProcessClientHelloContext> context, quiche::QuicheReferenceCountedPointer<Config> fallback_config) const { const std::string chlo_hash = CryptoUtils::HashHandshakeMessage( context->client_hello(), Perspective::IS_SERVER); const QuicSocketAddress server_address = context->server_address(); const std::string sni(context->info().sni); const QuicTransportVersion transport_version = context->transport_version(); const QuicSocketAddress& client_address = context->client_address(); auto cb = std::make_unique<SendRejectWithFallbackConfigCallback>( this, std::move(context), fallback_config); proof_source_->GetProof(server_address, client_address, sni, fallback_config->serialized, transport_version, chlo_hash, std::move(cb)); } void QuicCryptoServerConfig::SendRejectWithFallbackConfigAfterGetProof( bool found_error, std::unique_ptr<ProofSource::Details> proof_source_details, std::unique_ptr<ProcessClientHelloContext> context, quiche::QuicheReferenceCountedPointer<Config> fallback_config) const { if (found_error) { context->Fail(QUIC_HANDSHAKE_FAILED, "Failed to get proof"); return; } auto out = std::make_unique<CryptoHandshakeMessage>(); BuildRejectionAndRecordStats(*context, *fallback_config, {SERVER_CONFIG_UNKNOWN_CONFIG_FAILURE}, out.get()); context->Succeed(std::move(out), std::make_unique<DiversificationNonce>(), std::move(proof_source_details)); } quiche::QuicheReferenceCountedPointer<QuicCryptoServerConfig::Config> QuicCryptoServerConfig::GetConfigWithScid( absl::string_view requested_scid) const { configs_lock_.AssertReaderHeld(); if (!requested_scid.empty()) { auto it = configs_.find((std::string(requested_scid))); if (it != configs_.end()) { return quiche::QuicheReferenceCountedPointer<Config>(it->second); } } return quiche::QuicheReferenceCountedPointer<Config>(); } bool QuicCryptoServerConfig::GetCurrentConfigs( const QuicWallTime& now, absl::string_view requested_scid, quiche::QuicheReferenceCountedPointer<Config> old_primary_config, Configs* configs) const { quiche::QuicheReaderMutexLock locked(&configs_lock_); if (!primary_config_) { return false; } if (IsNextConfigReady(now)) { configs_lock_.ReaderUnlock(); configs_lock_.WriterLock(); SelectNewPrimaryConfig(now); QUICHE_DCHECK(primary_config_.get()); QUICHE_DCHECK_EQ(configs_.find(primary_config_->id)->second.get(), primary_config_.get()); configs_lock_.WriterUnlock(); configs_lock_.ReaderLock(); } if (old_primary_config != nullptr) { configs->primary = old_primary_config; } else { configs->primary = primary_config_; } configs->requested = GetConfigWithScid(requested_scid); configs->fallback = fallback_config_; return true; } bool QuicCryptoServerConfig::ConfigPrimaryTimeLessThan( const quiche::QuicheReferenceCountedPointer<Config>& a, const quiche::QuicheReferenceCountedPointer<Config>& b) { if (a->primary_time.IsBefore(b->primary_time) || b->primary_time.IsBefore(a->primary_time)) { return a->primary_time.IsBefore(b->primary_time); } else if (a->priority != b->priority) { return a->priority < b->priority; } else { return a->id < b->id; } } void QuicCryptoServerConfig::SelectNewPrimaryConfig( const QuicWallTime now) const { std::vector<quiche::QuicheReferenceCountedPointer<Config>> configs; configs.reserve(configs_.size()); for (auto it = configs_.begin(); it != configs_.end(); ++it) { configs.push_back(it->second); } if (configs.empty()) { if (primary_config_ != nullptr) { QUIC_BUG(quic_bug_10630_2) << "No valid QUIC server config. Keeping the current config."; } else { QUIC_BUG(quic_bug_10630_3) << "No valid QUIC server config."; } return; } std::sort(configs.begin(), configs.end(), ConfigPrimaryTimeLessThan); quiche::QuicheReferenceCountedPointer<Config> best_candidate = configs[0]; for (size_t i = 0; i < configs.size(); ++i) { const quiche::QuicheReferenceCountedPointer<Config> config(configs[i]); if (!config->primary_time.IsAfter(now)) { if (config->primary_time.IsAfter(best_candidate->primary_time)) { best_candidate = config; } continue; } quiche::QuicheReferenceCountedPointer<Config> new_primary = best_candidate; if (i == 0) { if (configs.size() > 1) { next_config_promotion_time_ = configs[1]->primary_time; } else { next_config_promotion_time_ = QuicWallTime::Zero(); } } else { next_config_promotion_time_ = config->primary_time; } if (primary_config_) { primary_config_->is_primary = false; } primary_config_ = new_primary; new_primary->is_primary = true; QUIC_DLOG(INFO) << "New primary config. orbit: " << absl::BytesToHexString( absl::string_view(reinterpret_cast<const char*>( primary_config_->orbit), kOrbitSize)); if (primary_config_changed_cb_ != nullptr) { primary_config_changed_cb_->Run(primary_config_->id); } return; } quiche::QuicheReferenceCountedPointer<Config> new_primary = best_candidate; if (primary_config_) { primary_config_->is_primary = false; } primary_config_ = new_primary; new_primary->is_primary = true; QUIC_DLOG(INFO) << "New primary config. orbit: " << absl::BytesToHexString(absl::string_view( reinterpret_cast<const char*>(primary_config_->orbit), kOrbitSize)) << " scid: " << absl::BytesToHexString(primary_config_->id); next_config_promotion_time_ = QuicWallTime::Zero(); if (primary_config_changed_cb_ != nullptr) { primary_config_changed_cb_->Run(primary_config_->id); } } void QuicCryptoServerConfig::EvaluateClientHello( const QuicSocketAddress& , const QuicSocketAddress& , QuicTransportVersion , const Configs& configs, quiche::QuicheReferenceCountedPointer< ValidateClientHelloResultCallback::Result> client_hello_state, std::unique_ptr<ValidateClientHelloResultCallback> done_cb) const { ValidateClientHelloHelper helper(client_hello_state, &done_cb); const CryptoHandshakeMessage& client_hello = client_hello_state->client_hello; ClientHelloInfo* info = &(client_hello_state->info); if (client_hello.GetStringPiece(kSNI, &info->sni) && !QuicHostnameUtils::IsValidSNI(info->sni)) { helper.ValidationComplete(QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER, "Invalid SNI name", nullptr); return; } client_hello.GetStringPiece(kUAID, &info->user_agent_id); HandshakeFailureReason source_address_token_error = MAX_FAILURE_REASON; if (validate_source_address_token_) { absl::string_view srct; if (client_hello.GetStringPiece(kSourceAddressTokenTag, &srct)) { Config& config = configs.requested != nullptr ? *configs.requested : *configs.primary; source_address_token_error = ParseSourceAddressToken(*config.source_address_token_boxer, srct, info->source_address_tokens); if (source_address_token_error == HANDSHAKE_OK) { source_address_token_error = ValidateSourceAddressTokens( info->source_address_tokens, info->client_ip, info->now, &client_hello_state->cached_network_params); } info->valid_source_address_token = (source_address_token_error == HANDSHAKE_OK); } else { source_address_token_error = SOURCE_ADDRESS_TOKEN_INVALID_FAILURE; } } else { source_address_token_error = HANDSHAKE_OK; info->valid_source_address_token = true; } if (!configs.requested) { absl::string_view requested_scid; if (client_hello.GetStringPiece(kSCID, &requested_scid)) { info->reject_reasons.push_back(SERVER_CONFIG_UNKNOWN_CONFIG_FAILURE); } else { info->reject_reasons.push_back(SERVER_CONFIG_INCHOATE_HELLO_FAILURE); } helper.ValidationComplete(QUIC_NO_ERROR, "", nullptr); return; } if (!client_hello.GetStringPiece(kNONC, &info->client_nonce)) { info->reject_reasons.push_back(SERVER_CONFIG_INCHOATE_HELLO_FAILURE); helper.ValidationComplete(QUIC_NO_ERROR, "", nullptr); return; } if (source_address_token_error != HANDSHAKE_OK) { info->reject_reasons.push_back(source_address_token_error); } if (info->client_nonce.size() != kNonceSize) { info->reject_reasons.push_back(CLIENT_NONCE_INVALID_FAILURE); QUIC_LOG_FIRST_N(ERROR, 2) << "Invalid client nonce: " << client_hello.DebugString(); QUIC_DLOG(INFO) << "Invalid client nonce."; } client_hello.GetStringPiece(kServerNonceTag, &info->server_nonce); if (GetQuicReloadableFlag(quic_require_handshake_confirmation) && info->server_nonce.empty()) { QUIC_RELOADABLE_FLAG_COUNT(quic_require_handshake_confirmation); info->reject_reasons.push_back(SERVER_NONCE_REQUIRED_FAILURE); } helper.ValidationComplete(QUIC_NO_ERROR, "", std::unique_ptr<ProofSource::Details>()); } void QuicCryptoServerConfig::BuildServerConfigUpdateMessage( QuicTransportVersion version, absl::string_view chlo_hash, const SourceAddressTokens& previous_source_address_tokens, const QuicSocketAddress& server_address, const QuicSocketAddress& client_address, const QuicClock* clock, QuicRandom* rand, QuicCompressedCertsCache* compressed_certs_cache, const QuicCryptoNegotiatedParameters& params, const CachedNetworkParameters* cached_network_params, std::unique_ptr<BuildServerConfigUpdateMessageResultCallback> cb) const { std::string serialized; std::string source_address_token; { quiche::QuicheReaderMutexLock locked(&configs_lock_); serialized = primary_config_->serialized; source_address_token = NewSourceAddressToken( *primary_config_->source_address_token_boxer, previous_source_address_tokens, client_address.host(), rand, clock->WallNow(), cached_network_params); } CryptoHandshakeMessage message; message.set_tag(kSCUP); message.SetStringPiece(kSCFG, serialized); message.SetStringPiece(kSourceAddressTokenTag, source_address_token); auto proof_source_cb = std::make_unique<BuildServerConfigUpdateMessageProofSourceCallback>( this, compressed_certs_cache, params, std::move(message), std::move(cb)); proof_source_->GetProof(server_address, client_address, params.sni, serialized, version, chlo_hash, std::move(proof_source_cb)); } QuicCryptoServerConfig::BuildServerConfigUpdateMessageProofSourceCallback:: ~BuildServerConfigUpdateMessageProofSourceCallback() {} QuicCryptoServerConfig::BuildServerConfigUpdateMessageProofSourceCallback:: BuildServerConfigUpdateMessageProofSourceCallback( const QuicCryptoServerConfig* config, QuicCompressedCertsCache* compressed_certs_cache, const QuicCryptoNegotiatedParameters& params, CryptoHandshakeMessage message, std::unique_ptr<BuildServerConfigUpdateMessageResultCallback> cb) : config_(config), compressed_certs_cache_(compressed_certs_cache), client_cached_cert_hashes_(params.client_cached_cert_hashes), sct_supported_by_client_(params.sct_supported_by_client), sni_(params.sni), message_(std::move(message)), cb_(std::move(cb)) {} void QuicCryptoServerConfig::BuildServerConfigUpdateMessageProofSourceCallback:: Run(bool ok, const quiche::QuicheReferenceCountedPointer<ProofSource::Chain>& chain, const QuicCryptoProof& proof, std::unique_ptr<ProofSource::Details> details) { config_->FinishBuildServerConfigUpdateMessage( compressed_certs_cache_, client_cached_cert_hashes_, sct_supported_by_client_, sni_, ok, chain, proof.signature, proof.leaf_cert_scts, std::move(details), std::move(message_), std::move(cb_)); } void QuicCryptoServerConfig::FinishBuildServerConfigUpdateMessage( QuicCompressedCertsCache* compressed_certs_cache, const std::string& client_cached_cert_hashes, bool sct_supported_by_client, const std::string& sni, bool ok, const quiche::QuicheReferenceCountedPointer<ProofSource::Chain>& chain, const std::string& signature, const std::string& leaf_cert_sct, std::unique_ptr<ProofSource::Details> , CryptoHandshakeMessage message, std::unique_ptr<BuildServerConfigUpdateMessageResultCallback> cb) const { if (!ok) { cb->Run(false, message); return; } const std::string compressed = CompressChain(compressed_certs_cache, chain, client_cached_cert_hashes); message.SetStringPiece(kCertificateTag, compressed); message.SetStringPiece(kPROF, signature); if (sct_supported_by_client && enable_serving_sct_) { if (leaf_cert_sct.empty()) { QUIC_LOG_EVERY_N_SEC(WARNING, 60) << "SCT is expected but it is empty. SNI: " << sni; } else { message.SetStringPiece(kCertificateSCTTag, leaf_cert_sct); } } cb->Run(true, message); } void QuicCryptoServerConfig::BuildRejectionAndRecordStats( const ProcessClientHelloContext& context, const Config& config, const std::vector<uint32_t>& reject_reasons, CryptoHandshakeMessage* out) const { BuildRejection(context, config, reject_reasons, out); if (rejection_observer_ != nullptr) { rejection_observer_->OnRejectionBuilt(reject_reasons, out); } } void QuicCryptoServerConfig::BuildRejection( const ProcessClientHelloContext& context, const Config& config, const std::vector<uint32_t>& reject_reasons, CryptoHandshakeMessage* out) const { const QuicWallTime now = context.clock()->WallNow(); out->set_tag(kREJ); out->SetStringPiece(kSCFG, config.serialized); out->SetStringPiece( kSourceAddressTokenTag, NewSourceAddressToken( *config.source_address_token_boxer, context.info().source_address_tokens, context.info().client_ip, context.rand(), context.info().now, &context.validate_chlo_result()->cached_network_params)); out->SetValue(kSTTL, config.expiry_time.AbsoluteDifference(now).ToSeconds()); if (replay_protection_) { out->SetStringPiece(kServerNonceTag, NewServerNonce(context.rand(), context.info().now)); } QUICHE_DCHECK_LT(0u, reject_reasons.size()); out->SetVector(kRREJ, reject_reasons); if (!ClientDemandsX509Proof(context.client_hello())) { QUIC_BUG(quic_bug_10630_4) << "x509 certificates not supported in proof demand"; return; } absl::string_view client_cached_cert_hashes; if (context.client_hello().GetStringPiece(kCCRT, &client_cached_cert_hashes)) { context.params()->client_cached_cert_hashes = std::string(client_cached_cert_hashes); } else { context.params()->client_cached_cert_hashes.clear(); } const std::string compressed = CompressChain( context.compressed_certs_cache(), context.signed_config()->chain, context.params()->client_cached_cert_hashes); QUICHE_DCHECK_GT(context.chlo_packet_size(), context.client_hello().size()); const size_t kREJOverheadBytes = 166; const size_t max_unverified_size = chlo_multiplier_ * (context.chlo_packet_size() - context.total_framing_overhead()) - kREJOverheadBytes; static_assert(kClientHelloMinimumSize * kMultiplier >= kREJOverheadBytes, "overhead calculation may underflow"); bool should_return_sct = context.params()->sct_supported_by_client && enable_serving_sct_; const std::string& cert_sct = context.signed_config()->proof.leaf_cert_scts; const size_t sct_size = should_return_sct ? cert_sct.size() : 0; const size_t total_size = context.signed_config()->proof.signature.size() + compressed.size() + sct_size; if (context.info().valid_source_address_token || total_size < max_unverified_size) { out->SetStringPiece(kCertificateTag, compressed); out->SetStringPiece(kPROF, context.signed_config()->proof.signature); if (should_return_sct) { if (cert_sct.empty()) { const std::vector<std::string>& certs = context.signed_config()->chain->certs; std::string ca_subject; if (!certs.empty()) { std::unique_ptr<CertificateView> view = CertificateView::ParseSingleCertificate(certs[0]); if (view != nullptr) { std::optional<std::string> maybe_ca_subject = view->GetHumanReadableSubject(); if (maybe_ca_subject.has_value()) { ca_subject = *maybe_ca_subject; } } } QUIC_LOG_EVERY_N_SEC(WARNING, 60) << "SCT is expected but it is empty. sni: '" << context.params()->sni << "' cert subject: '" << ca_subject << "'"; } else { out->SetStringPiece(kCertificateSCTTag, cert_sct); } } } else { QUIC_LOG_EVERY_N_SEC(WARNING, 60) << "Sending inchoate REJ for hostname: " << context.info().sni << " signature: " << context.signed_config()->proof.signature.size() << " cert: " << compressed.size() << " sct:" << sct_size << " total: " << total_size << " max: " << max_unverified_size; } } std::string QuicCryptoServerConfig::CompressChain( QuicCompressedCertsCache* compressed_certs_cache, const quiche::QuicheReferenceCountedPointer<ProofSource::Chain>& chain, const std::string& client_cached_cert_hashes) { QUICHE_DCHECK(compressed_certs_cache); const std::string* cached_value = compressed_certs_cache->GetCompressedCert( chain, client_cached_cert_hashes); if (cached_value) { return *cached_value; } std::string compressed = CertCompressor::CompressChain(chain->certs, client_cached_cert_hashes); compressed_certs_cache->Insert(chain, client_cached_cert_hashes, compressed); return compressed; } quiche::QuicheReferenceCountedPointer<QuicCryptoServerConfig::Config> QuicCryptoServerConfig::ParseConfigProtobuf( const QuicServerConfigProtobuf& protobuf, bool is_fallback) const { std::unique_ptr<CryptoHandshakeMessage> msg = CryptoFramer::ParseMessage(protobuf.config()); if (!msg) { QUIC_LOG(WARNING) << "Failed to parse server config message"; return nullptr; } if (msg->tag() != kSCFG) { QUIC_LOG(WARNING) << "Server config message has tag " << msg->tag() << ", but expected " << kSCFG; return nullptr; } quiche::QuicheReferenceCountedPointer<Config> config(new Config); config->serialized = protobuf.config(); config->source_address_token_boxer = &source_address_token_boxer_; if (protobuf.has_primary_time()) { config->primary_time = QuicWallTime::FromUNIXSeconds(protobuf.primary_time()); } config->priority = protobuf.priority(); absl::string_view scid; if (!msg->GetStringPiece(kSCID, &scid)) { QUIC_LOG(WARNING) << "Server config message is missing SCID"; return nullptr; } if (scid.empty()) { QUIC_LOG(WARNING) << "Server config message contains an empty SCID"; return nullptr; } config->id = std::string(scid); if (msg->GetTaglist(kAEAD, &config->aead) != QUIC_NO_ERROR) { QUIC_LOG(WARNING) << "Server config message is missing AEAD"; return nullptr; } QuicTagVector kexs_tags; if (msg->GetTaglist(kKEXS, &kexs_tags) != QUIC_NO_ERROR) { QUIC_LOG(WARNING) << "Server config message is missing KEXS"; return nullptr; } absl::string_view orbit; if (!msg->GetStringPiece(kORBT, &orbit)) { QUIC_LOG(WARNING) << "Server config message is missing ORBT"; return nullptr; } if (orbit.size() != kOrbitSize) { QUIC_LOG(WARNING) << "Orbit value in server config is the wrong length." " Got " << orbit.size() << " want " << kOrbitSize; return nullptr; } static_assert(sizeof(config->orbit) == kOrbitSize, "incorrect orbit size"); memcpy(config->orbit, orbit.data(), sizeof(config->orbit)); QuicTagVector proof_demand_tags; if (msg->GetTaglist(kPDMD, &proof_demand_tags) == QUIC_NO_ERROR) { for (QuicTag tag : proof_demand_tags) { if (tag == kCHID) { config->channel_id_enabled = true; break; } } } for (size_t i = 0; i < kexs_tags.size(); i++) { const QuicTag tag = kexs_tags[i]; std::string private_key; config->kexs.push_back(tag); for (int j = 0; j < protobuf.key_size(); j++) { const QuicServerConfigProtobuf::PrivateKey& key = protobuf.key(i); if (key.tag() == tag) { private_key = key.private_key(); break; } } std::unique_ptr<AsynchronousKeyExchange> ka = key_exchange_source_->Create(config->id, is_fallback, tag, private_key); if (!ka) { return nullptr; } for (const auto& key_exchange : config->key_exchanges) { if (key_exchange->type() == tag) { QUIC_LOG(WARNING) << "Duplicate key exchange in config: " << tag; return nullptr; } } config->key_exchanges.push_back(std::move(ka)); } uint64_t expiry_seconds; if (msg->GetUint64(kEXPY, &expiry_seconds) != QUIC_NO_ERROR) { QUIC_LOG(WARNING) << "Server config message is missing EXPY"; return nullptr; } config->expiry_time = QuicWallTime::FromUNIXSeconds(expiry_seconds); return config; } void QuicCryptoServerConfig::set_replay_protection(bool on) { replay_protection_ = on; } void QuicCryptoServerConfig::set_chlo_multiplier(size_t multiplier) { chlo_multiplier_ = multiplier; } void QuicCryptoServerConfig::set_source_address_token_future_secs( uint32_t future_secs) { source_address_token_future_secs_ = future_secs; } void QuicCryptoServerConfig::set_source_address_token_lifetime_secs( uint32_t lifetime_secs) { source_address_token_lifetime_secs_ = lifetime_secs; } void QuicCryptoServerConfig::set_enable_serving_sct(bool enable_serving_sct) { enable_serving_sct_ = enable_serving_sct; } void QuicCryptoServerConfig::AcquirePrimaryConfigChangedCb( std::unique_ptr<PrimaryConfigChangedCallback> cb) { quiche::QuicheWriterMutexLock locked(&configs_lock_); primary_config_changed_cb_ = std::move(cb); } std::string QuicCryptoServerConfig::NewSourceAddressToken( const CryptoSecretBoxer& crypto_secret_boxer, const SourceAddressTokens& previous_tokens, const QuicIpAddress& ip, QuicRandom* rand, QuicWallTime now, const CachedNetworkParameters* cached_network_params) const { SourceAddressTokens source_address_tokens; SourceAddressToken* source_address_token = source_address_tokens.add_tokens(); source_address_token->set_ip(ip.DualStacked().ToPackedString()); source_address_token->set_timestamp(now.ToUNIXSeconds()); if (cached_network_params != nullptr) { *(source_address_token->mutable_cached_network_parameters()) = *cached_network_params; } for (const SourceAddressToken& token : previous_tokens.tokens()) { if (source_address_tokens.tokens_size() > kMaxTokenAddresses) { break; } if (token.ip() == source_address_token->ip()) { continue; } if (ValidateSourceAddressTokenTimestamp(token, now) != HANDSHAKE_OK) { continue; } *(source_address_tokens.add_tokens()) = token; } return crypto_secret_boxer.Box(rand, source_address_tokens.SerializeAsString()); } int QuicCryptoServerConfig::NumberOfConfigs() const { quiche::QuicheReaderMutexLock locked(&configs_lock_); return configs_.size(); } ProofSource* QuicCryptoServerConfig::proof_source() const { return proof_source_.get(); } SSL_CTX* QuicCryptoServerConfig::ssl_ctx() const { return ssl_ctx_.get(); } HandshakeFailureReason QuicCryptoServerConfig::ParseSourceAddressToken( const CryptoSecretBoxer& crypto_secret_boxer, absl::string_view token, SourceAddressTokens& tokens) const { std::string storage; absl::string_view plaintext; if (!crypto_secret_boxer.Unbox(token, &storage, &plaintext)) { return SOURCE_ADDRESS_TOKEN_DECRYPTION_FAILURE; } if (!tokens.ParseFromArray(plaintext.data(), plaintext.size())) { SourceAddressToken old_source_token; if (!old_source_token.ParseFromArray(plaintext.data(), plaintext.size())) { return SOURCE_ADDRESS_TOKEN_PARSE_FAILURE; } *tokens.add_tokens() = old_source_token; } return HANDSHAKE_OK; } HandshakeFailureReason QuicCryptoServerConfig::ValidateSourceAddressTokens( const SourceAddressTokens& source_address_tokens, const QuicIpAddress& ip, QuicWallTime now, CachedNetworkParameters* cached_network_params) const { HandshakeFailureReason reason = SOURCE_ADDRESS_TOKEN_DIFFERENT_IP_ADDRESS_FAILURE; for (const SourceAddressToken& token : source_address_tokens.tokens()) { reason = ValidateSingleSourceAddressToken(token, ip, now); if (reason == HANDSHAKE_OK) { if (cached_network_params != nullptr && token.has_cached_network_parameters()) { *cached_network_params = token.cached_network_parameters(); } break; } } return reason; } HandshakeFailureReason QuicCryptoServerConfig::ValidateSingleSourceAddressToken( const SourceAddressToken& source_address_token, const QuicIpAddress& ip, QuicWallTime now) const { if (source_address_token.ip() != ip.DualStacked().ToPackedString()) { return SOURCE_ADDRESS_TOKEN_DIFFERENT_IP_ADDRESS_FAILURE; } return ValidateSourceAddressTokenTimestamp(source_address_token, now); } HandshakeFailureReason QuicCryptoServerConfig::ValidateSourceAddressTokenTimestamp( const SourceAddressToken& source_address_token, QuicWallTime now) const { const QuicWallTime timestamp( QuicWallTime::FromUNIXSeconds(source_address_token.timestamp())); const QuicTime::Delta delta(now.AbsoluteDifference(timestamp)); if (now.IsBefore(timestamp) && delta.ToSeconds() > source_address_token_future_secs_) { return SOURCE_ADDRESS_TOKEN_CLOCK_SKEW_FAILURE; } if (now.IsAfter(timestamp) && delta.ToSeconds() > source_address_token_lifetime_secs_) { return SOURCE_ADDRESS_TOKEN_EXPIRED_FAILURE; } return HANDSHAKE_OK; } static const size_t kServerNoncePlaintextSize = 4 + 20 ; std::string QuicCryptoServerConfig::NewServerNonce(QuicRandom* rand, QuicWallTime now) const { const uint32_t timestamp = static_cast<uint32_t>(now.ToUNIXSeconds()); uint8_t server_nonce[kServerNoncePlaintextSize]; static_assert(sizeof(server_nonce) > sizeof(timestamp), "nonce too small"); server_nonce[0] = static_cast<uint8_t>(timestamp >> 24); server_nonce[1] = static_cast<uint8_t>(timestamp >> 16); server_nonce[2] = static_cast<uint8_t>(timestamp >> 8); server_nonce[3] = static_cast<uint8_t>(timestamp); rand->RandBytes(&server_nonce[sizeof(timestamp)], sizeof(server_nonce) - sizeof(timestamp)); return server_nonce_boxer_.Box( rand, absl::string_view(reinterpret_cast<char*>(server_nonce), sizeof(server_nonce))); } bool QuicCryptoServerConfig::ValidateExpectedLeafCertificate( const CryptoHandshakeMessage& client_hello, const std::vector<std::string>& certs) const { if (certs.empty()) { return false; } uint64_t hash_from_client; if (client_hello.GetUint64(kXLCT, &hash_from_client) != QUIC_NO_ERROR) { return false; } return CryptoUtils::ComputeLeafCertHash(certs[0]) == hash_from_client; } bool QuicCryptoServerConfig::IsNextConfigReady(QuicWallTime now) const { return !next_config_promotion_time_.IsZero() && !next_config_promotion_time_.IsAfter(now); } QuicCryptoServerConfig::Config::Config() : channel_id_enabled(false), is_primary(false), primary_time(QuicWallTime::Zero()), expiry_time(QuicWallTime::Zero()), priority(0), source_address_token_boxer(nullptr) {} QuicCryptoServerConfig::Config::~Config() {} QuicSignedServerConfig::QuicSignedServerConfig() {} QuicSignedServerConfig::~QuicSignedServerConfig() {} }
#include "quiche/quic/core/crypto/quic_crypto_server_config.h" #include <stdarg.h> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/strings/match.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/crypto/cert_compressor.h" #include "quiche/quic/core/crypto/chacha20_poly1305_encrypter.h" #include "quiche/quic/core/crypto/crypto_handshake_message.h" #include "quiche/quic/core/crypto/crypto_secret_boxer.h" #include "quiche/quic/core/crypto/quic_random.h" #include "quiche/quic/core/proto/crypto_server_config_proto.h" #include "quiche/quic/core/quic_time.h" #include "quiche/quic/core/quic_versions.h" #include "quiche/quic/platform/api/quic_socket_address.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/crypto_test_utils.h" #include "quiche/quic/test_tools/mock_clock.h" #include "quiche/quic/test_tools/quic_crypto_server_config_peer.h" #include "quiche/quic/test_tools/quic_test_utils.h" namespace quic { namespace test { using ::testing::Not; MATCHER_P(SerializedProtoEquals, message, "") { std::string expected_serialized, actual_serialized; message.SerializeToString(&expected_serialized); arg.SerializeToString(&actual_serialized); return expected_serialized == actual_serialized; } class QuicCryptoServerConfigTest : public QuicTest {}; TEST_F(QuicCryptoServerConfigTest, ServerConfig) { QuicRandom* rand = QuicRandom::GetInstance(); QuicCryptoServerConfig server(QuicCryptoServerConfig::TESTING, rand, crypto_test_utils::ProofSourceForTesting(), KeyExchangeSource::Default()); MockClock clock; std::unique_ptr<CryptoHandshakeMessage> message(server.AddDefaultConfig( rand, &clock, QuicCryptoServerConfig::ConfigOptions())); QuicTagVector aead; ASSERT_THAT(message->GetTaglist(kAEAD, &aead), IsQuicNoError()); EXPECT_THAT(aead, ::testing::Contains(kAESG)); EXPECT_LE(1u, aead.size()); } TEST_F(QuicCryptoServerConfigTest, CompressCerts) { QuicCompressedCertsCache compressed_certs_cache( QuicCompressedCertsCache::kQuicCompressedCertsCacheSize); QuicRandom* rand = QuicRandom::GetInstance(); QuicCryptoServerConfig server(QuicCryptoServerConfig::TESTING, rand, crypto_test_utils::ProofSourceForTesting(), KeyExchangeSource::Default()); QuicCryptoServerConfigPeer peer(&server); std::vector<std::string> certs = {"testcert"}; quiche::QuicheReferenceCountedPointer<ProofSource::Chain> chain( new ProofSource::Chain(certs)); std::string compressed = QuicCryptoServerConfigPeer::CompressChain( &compressed_certs_cache, chain, ""); EXPECT_EQ(compressed_certs_cache.Size(), 1u); } TEST_F(QuicCryptoServerConfigTest, CompressSameCertsTwice) { QuicCompressedCertsCache compressed_certs_cache( QuicCompressedCertsCache::kQuicCompressedCertsCacheSize); QuicRandom* rand = QuicRandom::GetInstance(); QuicCryptoServerConfig server(QuicCryptoServerConfig::TESTING, rand, crypto_test_utils::ProofSourceForTesting(), KeyExchangeSource::Default()); QuicCryptoServerConfigPeer peer(&server); std::vector<std::string> certs = {"testcert"}; quiche::QuicheReferenceCountedPointer<ProofSource::Chain> chain( new ProofSource::Chain(certs)); std::string cached_certs = ""; std::string compressed = QuicCryptoServerConfigPeer::CompressChain( &compressed_certs_cache, chain, cached_certs); EXPECT_EQ(compressed_certs_cache.Size(), 1u); std::string compressed2 = QuicCryptoServerConfigPeer::CompressChain( &compressed_certs_cache, chain, cached_certs); EXPECT_EQ(compressed, compressed2); EXPECT_EQ(compressed_certs_cache.Size(), 1u); } TEST_F(QuicCryptoServerConfigTest, CompressDifferentCerts) { QuicCompressedCertsCache compressed_certs_cache( QuicCompressedCertsCache::kQuicCompressedCertsCacheSize); QuicRandom* rand = QuicRandom::GetInstance(); QuicCryptoServerConfig server(QuicCryptoServerConfig::TESTING, rand, crypto_test_utils::ProofSourceForTesting(), KeyExchangeSource::Default()); QuicCryptoServerConfigPeer peer(&server); std::vector<std::string> certs = {"testcert"}; quiche::QuicheReferenceCountedPointer<ProofSource::Chain> chain( new ProofSource::Chain(certs)); std::string cached_certs = ""; std::string compressed = QuicCryptoServerConfigPeer::CompressChain( &compressed_certs_cache, chain, cached_certs); EXPECT_EQ(compressed_certs_cache.Size(), 1u); quiche::QuicheReferenceCountedPointer<ProofSource::Chain> chain2( new ProofSource::Chain(certs)); std::string compressed2 = QuicCryptoServerConfigPeer::CompressChain( &compressed_certs_cache, chain2, cached_certs); EXPECT_EQ(compressed_certs_cache.Size(), 2u); } class SourceAddressTokenTest : public QuicTest { public: SourceAddressTokenTest() : ip4_(QuicIpAddress::Loopback4()), ip4_dual_(ip4_.DualStacked()), ip6_(QuicIpAddress::Loopback6()), original_time_(QuicWallTime::Zero()), rand_(QuicRandom::GetInstance()), server_(QuicCryptoServerConfig::TESTING, rand_, crypto_test_utils::ProofSourceForTesting(), KeyExchangeSource::Default()), peer_(&server_) { clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1000000)); original_time_ = clock_.WallNow(); primary_config_ = server_.AddDefaultConfig( rand_, &clock_, QuicCryptoServerConfig::ConfigOptions()); } std::string NewSourceAddressToken(std::string config_id, const QuicIpAddress& ip) { return NewSourceAddressToken(config_id, ip, nullptr); } std::string NewSourceAddressToken( std::string config_id, const QuicIpAddress& ip, const SourceAddressTokens& previous_tokens) { return peer_.NewSourceAddressToken(config_id, previous_tokens, ip, rand_, clock_.WallNow(), nullptr); } std::string NewSourceAddressToken( std::string config_id, const QuicIpAddress& ip, CachedNetworkParameters* cached_network_params) { SourceAddressTokens previous_tokens; return peer_.NewSourceAddressToken(config_id, previous_tokens, ip, rand_, clock_.WallNow(), cached_network_params); } HandshakeFailureReason ValidateSourceAddressTokens(std::string config_id, absl::string_view srct, const QuicIpAddress& ip) { return ValidateSourceAddressTokens(config_id, srct, ip, nullptr); } HandshakeFailureReason ValidateSourceAddressTokens( std::string config_id, absl::string_view srct, const QuicIpAddress& ip, CachedNetworkParameters* cached_network_params) { return peer_.ValidateSourceAddressTokens( config_id, srct, ip, clock_.WallNow(), cached_network_params); } const std::string kPrimary = "<primary>"; const std::string kOverride = "Config with custom source address token key"; QuicIpAddress ip4_; QuicIpAddress ip4_dual_; QuicIpAddress ip6_; MockClock clock_; QuicWallTime original_time_; QuicRandom* rand_ = QuicRandom::GetInstance(); QuicCryptoServerConfig server_; QuicCryptoServerConfigPeer peer_; std::unique_ptr<CryptoHandshakeMessage> primary_config_; std::unique_ptr<QuicServerConfigProtobuf> override_config_protobuf_; }; TEST_F(SourceAddressTokenTest, SourceAddressToken) { const std::string token4 = NewSourceAddressToken(kPrimary, ip4_); const std::string token4d = NewSourceAddressToken(kPrimary, ip4_dual_); const std::string token6 = NewSourceAddressToken(kPrimary, ip6_); EXPECT_EQ(HANDSHAKE_OK, ValidateSourceAddressTokens(kPrimary, token4, ip4_)); ASSERT_EQ(HANDSHAKE_OK, ValidateSourceAddressTokens(kPrimary, token4, ip4_dual_)); ASSERT_EQ(SOURCE_ADDRESS_TOKEN_DIFFERENT_IP_ADDRESS_FAILURE, ValidateSourceAddressTokens(kPrimary, token4, ip6_)); ASSERT_EQ(HANDSHAKE_OK, ValidateSourceAddressTokens(kPrimary, token4d, ip4_)); ASSERT_EQ(HANDSHAKE_OK, ValidateSourceAddressTokens(kPrimary, token4d, ip4_dual_)); ASSERT_EQ(SOURCE_ADDRESS_TOKEN_DIFFERENT_IP_ADDRESS_FAILURE, ValidateSourceAddressTokens(kPrimary, token4d, ip6_)); ASSERT_EQ(HANDSHAKE_OK, ValidateSourceAddressTokens(kPrimary, token6, ip6_)); } TEST_F(SourceAddressTokenTest, SourceAddressTokenExpiration) { const std::string token = NewSourceAddressToken(kPrimary, ip4_); clock_.AdvanceTime(QuicTime::Delta::FromSeconds(-3600 * 2)); ASSERT_EQ(SOURCE_ADDRESS_TOKEN_CLOCK_SKEW_FAILURE, ValidateSourceAddressTokens(kPrimary, token, ip4_)); clock_.AdvanceTime(QuicTime::Delta::FromSeconds(86400 * 7)); ASSERT_EQ(SOURCE_ADDRESS_TOKEN_EXPIRED_FAILURE, ValidateSourceAddressTokens(kPrimary, token, ip4_)); } TEST_F(SourceAddressTokenTest, SourceAddressTokenWithNetworkParams) { CachedNetworkParameters cached_network_params_input; cached_network_params_input.set_bandwidth_estimate_bytes_per_second(1234); const std::string token4_with_cached_network_params = NewSourceAddressToken(kPrimary, ip4_, &cached_network_params_input); CachedNetworkParameters cached_network_params_output; EXPECT_THAT(cached_network_params_output, Not(SerializedProtoEquals(cached_network_params_input))); ValidateSourceAddressTokens(kPrimary, token4_with_cached_network_params, ip4_, &cached_network_params_output); EXPECT_THAT(cached_network_params_output, SerializedProtoEquals(cached_network_params_input)); } TEST_F(SourceAddressTokenTest, SourceAddressTokenMultipleAddresses) { QuicWallTime now = clock_.WallNow(); SourceAddressToken previous_token; previous_token.set_ip(ip6_.DualStacked().ToPackedString()); previous_token.set_timestamp(now.ToUNIXSeconds()); SourceAddressTokens previous_tokens; (*previous_tokens.add_tokens()) = previous_token; const std::string token4or6 = NewSourceAddressToken(kPrimary, ip4_, previous_tokens); EXPECT_EQ(HANDSHAKE_OK, ValidateSourceAddressTokens(kPrimary, token4or6, ip4_)); ASSERT_EQ(HANDSHAKE_OK, ValidateSourceAddressTokens(kPrimary, token4or6, ip6_)); } class CryptoServerConfigsTest : public QuicTest { public: CryptoServerConfigsTest() : rand_(QuicRandom::GetInstance()), config_(QuicCryptoServerConfig::TESTING, rand_, crypto_test_utils::ProofSourceForTesting(), KeyExchangeSource::Default()), test_peer_(&config_) {} void SetUp() override { clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1000)); } struct ServerConfigIDWithTimeAndPriority { ServerConfigID server_config_id; int primary_time; int priority; }; void SetConfigs(std::vector<ServerConfigIDWithTimeAndPriority> configs) { const char kOrbit[] = "12345678"; bool has_invalid = false; std::vector<QuicServerConfigProtobuf> protobufs; for (const auto& config : configs) { const ServerConfigID& server_config_id = config.server_config_id; const int primary_time = config.primary_time; const int priority = config.priority; QuicCryptoServerConfig::ConfigOptions options; options.id = server_config_id; options.orbit = kOrbit; QuicServerConfigProtobuf protobuf = QuicCryptoServerConfig::GenerateConfig(rand_, &clock_, options); protobuf.set_primary_time(primary_time); protobuf.set_priority(priority); if (absl::StartsWith(std::string(server_config_id), "INVALID")) { protobuf.clear_key(); has_invalid = true; } protobufs.push_back(std::move(protobuf)); } ASSERT_EQ(!has_invalid && !configs.empty(), config_.SetConfigs(protobufs, nullptr, clock_.WallNow())); } protected: QuicRandom* const rand_; MockClock clock_; QuicCryptoServerConfig config_; QuicCryptoServerConfigPeer test_peer_; }; TEST_F(CryptoServerConfigsTest, NoConfigs) { test_peer_.CheckConfigs(std::vector<std::pair<std::string, bool>>()); } TEST_F(CryptoServerConfigsTest, MakePrimaryFirst) { SetConfigs({{"a", 1100, 1}, {"b", 900, 1}}); test_peer_.CheckConfigs({{"a", false}, {"b", true}}); } TEST_F(CryptoServerConfigsTest, MakePrimarySecond) { SetConfigs({{"a", 900, 1}, {"b", 1100, 1}}); test_peer_.CheckConfigs({{"a", true}, {"b", false}}); } TEST_F(CryptoServerConfigsTest, Delete) { SetConfigs({{"a", 800, 1}, {"b", 900, 1}, {"c", 1100, 1}}); test_peer_.CheckConfigs({{"a", false}, {"b", true}, {"c", false}}); SetConfigs({{"b", 900, 1}, {"c", 1100, 1}}); test_peer_.CheckConfigs({{"b", true}, {"c", false}}); } TEST_F(CryptoServerConfigsTest, DeletePrimary) { SetConfigs({{"a", 800, 1}, {"b", 900, 1}, {"c", 1100, 1}}); test_peer_.CheckConfigs({{"a", false}, {"b", true}, {"c", false}}); SetConfigs({{"a", 800, 1}, {"c", 1100, 1}}); test_peer_.CheckConfigs({{"a", true}, {"c", false}}); } TEST_F(CryptoServerConfigsTest, FailIfDeletingAllConfigs) { SetConfigs({{"a", 800, 1}, {"b", 900, 1}}); test_peer_.CheckConfigs({{"a", false}, {"b", true}}); SetConfigs(std::vector<ServerConfigIDWithTimeAndPriority>()); test_peer_.CheckConfigs({{"a", false}, {"b", true}}); } TEST_F(CryptoServerConfigsTest, ChangePrimaryTime) { SetConfigs({{"a", 400, 1}, {"b", 800, 1}, {"c", 1200, 1}}); test_peer_.SelectNewPrimaryConfig(500); test_peer_.CheckConfigs({{"a", true}, {"b", false}, {"c", false}}); SetConfigs({{"a", 1200, 1}, {"b", 800, 1}, {"c", 400, 1}}); test_peer_.SelectNewPrimaryConfig(500); test_peer_.CheckConfigs({{"a", false}, {"b", false}, {"c", true}}); } TEST_F(CryptoServerConfigsTest, AllConfigsInThePast) { SetConfigs({{"a", 400, 1}, {"b", 800, 1}, {"c", 1200, 1}}); test_peer_.SelectNewPrimaryConfig(1500); test_peer_.CheckConfigs({{"a", false}, {"b", false}, {"c", true}}); } TEST_F(CryptoServerConfigsTest, AllConfigsInTheFuture) { SetConfigs({{"a", 400, 1}, {"b", 800, 1}, {"c", 1200, 1}}); test_peer_.SelectNewPrimaryConfig(100); test_peer_.CheckConfigs({{"a", true}, {"b", false}, {"c", false}}); } TEST_F(CryptoServerConfigsTest, SortByPriority) { SetConfigs({{"a", 900, 1}, {"b", 900, 2}, {"c", 900, 3}}); test_peer_.CheckConfigs({{"a", true}, {"b", false}, {"c", false}}); test_peer_.SelectNewPrimaryConfig(800); test_peer_.CheckConfigs({{"a", true}, {"b", false}, {"c", false}}); test_peer_.SelectNewPrimaryConfig(1000); test_peer_.CheckConfigs({{"a", true}, {"b", false}, {"c", false}}); SetConfigs({{"a", 900, 2}, {"b", 900, 1}, {"c", 900, 0}}); test_peer_.CheckConfigs({{"a", false}, {"b", false}, {"c", true}}); test_peer_.SelectNewPrimaryConfig(800); test_peer_.CheckConfigs({{"a", false}, {"b", false}, {"c", true}}); test_peer_.SelectNewPrimaryConfig(1000); test_peer_.CheckConfigs({{"a", false}, {"b", false}, {"c", true}}); } TEST_F(CryptoServerConfigsTest, AdvancePrimary) { SetConfigs({{"a", 900, 1}, {"b", 1100, 1}}); test_peer_.SelectNewPrimaryConfig(1000); test_peer_.CheckConfigs({{"a", true}, {"b", false}}); test_peer_.SelectNewPrimaryConfig(1101); test_peer_.CheckConfigs({{"a", false}, {"b", true}}); } class ValidateCallback : public ValidateClientHelloResultCallback { public: void Run(quiche::QuicheReferenceCountedPointer<Result> , std::unique_ptr<ProofSource::Details> ) override {} }; TEST_F(CryptoServerConfigsTest, AdvancePrimaryViaValidate) { SetConfigs({{"a", 900, 1}, {"b", 1100, 1}}); test_peer_.SelectNewPrimaryConfig(1000); test_peer_.CheckConfigs({{"a", true}, {"b", false}}); CryptoHandshakeMessage client_hello; QuicSocketAddress client_address; QuicSocketAddress server_address; QuicTransportVersion transport_version = QUIC_VERSION_UNSUPPORTED; for (const ParsedQuicVersion& version : AllSupportedVersions()) { if (version.handshake_protocol == PROTOCOL_QUIC_CRYPTO) { transport_version = version.transport_version; break; } } ASSERT_NE(transport_version, QUIC_VERSION_UNSUPPORTED); MockClock clock; quiche::QuicheReferenceCountedPointer<QuicSignedServerConfig> signed_config( new QuicSignedServerConfig); std::unique_ptr<ValidateClientHelloResultCallback> done_cb( new ValidateCallback); clock.AdvanceTime(QuicTime::Delta::FromSeconds(1100)); config_.ValidateClientHello(client_hello, client_address, server_address, transport_version, &clock, signed_config, std::move(done_cb)); test_peer_.CheckConfigs({{"a", false}, {"b", true}}); } TEST_F(CryptoServerConfigsTest, InvalidConfigs) { SetConfigs({{"a", 800, 1}, {"b", 900, 1}, {"c", 1100, 1}}); test_peer_.CheckConfigs({{"a", false}, {"b", true}, {"c", false}}); SetConfigs({{"a", 800, 1}, {"c", 1100, 1}, {"INVALID1", 1000, 1}}); test_peer_.CheckConfigs({{"a", false}, {"b", true}, {"c", false}}); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/quic_crypto_server_config.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/quic_crypto_server_config_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
c64344e6-ea88-492c-9734-1b829227dfc1
cpp
tensorflow/tensorflow
autotune_serialize
tensorflow/core/util/autotune_maps/autotune_serialize.cc
tensorflow/core/util/autotune_maps/autotune_serialize_test.cc
#include "tensorflow/core/util/autotune_maps/autotune_serialize.h" #include <map> #include <string> #include <unordered_map> #include <vector> #include "xla/status_macros.h" #include "xla/stream_executor/dnn.h" #include "xla/stream_executor/gpu/gpu_init.h" #include "xla/stream_executor/platform_manager.h" #include "xla/tsl/lib/strings/proto_serialization.h" #include "xla/tsl/protobuf/dnn.pb.h" #include "tensorflow/core/platform/str_util.h" #include "tensorflow/core/util/activation_mode.h" #include "tensorflow/core/util/autotune_maps/autotune_map.pb.h" #include "tensorflow/core/util/autotune_maps/conv_autotune_maps.h" #include "tensorflow/core/util/autotune_maps/conv_parameters.h" #include "tensorflow/core/util/autotune_maps/conv_parameters.pb.h" namespace tensorflow { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM namespace { using stream_executor::dnn::AlgorithmConfig; using stream_executor::dnn::AlgorithmConfigProto; using stream_executor::dnn::AlgorithmDesc; using stream_executor::dnn::AlgorithmProto; template <typename Op> StatusOr<ConvMapProto> ConvMapToProto( const AutotuneMap<ConvParameters, AutotuneEntry<Op>> &autotune_map) { ConvMapProto proto; std::map<string, ConvMapProto::Entry> sorted_map; for (auto const &p : autotune_map.GetMap()) { const ConvParameters &params = p.first; const ConvParametersProto &params_proto = params.proto(); VLOG(1) << "Reading: " << params.ToString(); ConvMapProto::Entry kv; *kv.mutable_key() = params_proto; if (p.second.is_algorithm_config()) { *kv.mutable_value() = p.second.GetAlgorithmConfig().ToProto(); } else { const auto &runners = p.second.GetOpRunners(); *kv.mutable_value()->mutable_algorithm() = runners.primary->ToAlgorithmDesc().ToProto(); if (runners.no_scratch_fallback) { *kv.mutable_value()->mutable_algorithm_no_scratch() = runners.no_scratch_fallback->ToAlgorithmDesc().ToProto(); } } std::string serialized_params; TF_RET_CHECK( tsl::SerializeToStringDeterministic(params_proto, &serialized_params)); sorted_map.insert(std::make_pair(std::move(serialized_params), kv)); } for (auto const &p : sorted_map) { ConvMapProto::Entry *kv = proto.add_kv_pairs(); *kv = p.second; } return proto; } template <typename Op> Status PopulateConvMap( const ConvMapProto &m, AutotuneMap<ConvParameters, AutotuneEntry<Op>> *autotune_map) { if (m.kv_pairs().size() == 0) { return OkStatus(); } TF_ASSIGN_OR_RETURN( se::Platform * platform, se::PlatformManager::PlatformWithName(se::GpuPlatformName())); std::vector<std::string> device_descs; for (int i = 0; i < platform->VisibleDeviceCount(); i++) { TF_ASSIGN_OR_RETURN(std::unique_ptr<se::DeviceDescription> device_desc, platform->DescriptionForDevice(i)); device_descs.push_back(device_desc->model_str()); } std::set<std::string> unmatched_device_descs; for (const ConvMapProto::Entry &kv : m.kv_pairs()) { const ConvParametersProto &params_proto = kv.key(); if (params_proto.version() != ConvParameters::kVersion) { VLOG(1) << "ConvParametersProto with the incompatible version:" << params_proto.DebugString(); return errors::Aborted( "Aborted because the loaded autotune results for convolution " "operations have a version different " "from runtime's version. Expected version: ", ConvParameters::kVersion, ". Actual version: ", params_proto.version()); } const AlgorithmConfigProto &algorithm_config_proto = kv.value(); const AlgorithmDesc primary(algorithm_config_proto.algorithm()); const absl::optional<AlgorithmDesc> fallback = algorithm_config_proto.has_algorithm_no_scratch() ? absl::optional<AlgorithmDesc>( AlgorithmDesc(algorithm_config_proto.algorithm_no_scratch())) : absl::nullopt; bool devices_matched = false; for (int ordinal = 0; ordinal < device_descs.size(); ordinal++) { const std::string &desc_str = device_descs[ordinal]; if (desc_str != params_proto.device_identifier()) { continue; } devices_matched = true; AutotuneEntry<Op> entry; #if TENSORFLOW_USE_ROCM entry = AutotuneEntry<Op>(AlgorithmConfig(algorithm_config_proto)); #else entry = AutotuneEntry<Op>(primary, fallback); #endif autotune_map->Insert(ConvParameters(ordinal, params_proto), entry); } if (!devices_matched) { unmatched_device_descs.insert(params_proto.device_identifier()); } } if (!unmatched_device_descs.empty()) { LOG(WARNING) << "Unmatched device id's from AoT autotuning data: " << str_util::Join(unmatched_device_descs, ", ") << "; existing devices: " << str_util::Join(device_descs, ", "); } return OkStatus(); } } #endif Status SerializeAutotuneMaps(std::string *output) { AutotuneMapsProto proto; #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM TF_ASSIGN_OR_RETURN(*proto.mutable_conv_map(), ConvMapToProto(*ConvAutotuneMap::GetInstance())); TF_ASSIGN_OR_RETURN(*proto.mutable_fused_conv_map(), ConvMapToProto(*FusedConvAutotuneMap::GetInstance())); #endif TF_RET_CHECK(tsl::SerializeToStringDeterministic(proto, output)); return absl::OkStatus(); } Status LoadSerializedAutotuneMaps(absl::string_view s) { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM AutotuneMapsProto proto; if (!proto.ParseFromString(string(s))) { return errors::InvalidArgument( "Failed to parse the autotune maps from string."); } TF_RETURN_IF_ERROR( PopulateConvMap(proto.conv_map(), ConvAutotuneMap::GetInstance())); TF_RETURN_IF_ERROR(PopulateConvMap(proto.fused_conv_map(), FusedConvAutotuneMap::GetInstance())); #endif return absl::OkStatus(); } void ResetAutotuneMaps() { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM ConvAutotuneMap::GetInstance()->ClearMap(); FusedConvAutotuneMap::GetInstance()->ClearMap(); #endif } }
#include "xla/stream_executor/platform_manager.h" #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #include "xla/stream_executor/gpu/gpu_init.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/util/autotune_maps/autotune_serialize.h" #include "tensorflow/core/util/autotune_maps/conv_autotune_maps.h" #include "tensorflow/core/util/autotune_maps/conv_parameters.h" #include "tensorflow/core/util/autotune_maps/conv_parameters.pb.h" #include "tensorflow/core/util/tensor_format.h" namespace tensorflow { namespace { using stream_executor::dnn::AlgorithmConfig; using stream_executor::dnn::AlgorithmDesc; using ::tensorflow::testing::StatusIs; using ::testing::HasSubstr; se::StreamExecutor* GetStreamExec() { se::Platform* platform = se::PlatformManager::PlatformWithName(se::GpuPlatformName()).value(); CHECK_GT(platform->VisibleDeviceCount(), 0); return platform->ExecutorForDevice(0).value(); } TEST(AutotuneSerializeTest, Empty) { ResetAutotuneMaps(); std::string output; TF_CHECK_OK(SerializeAutotuneMaps(&output)); TF_CHECK_OK(LoadSerializedAutotuneMaps(output)); EXPECT_EQ(ConvAutotuneMap::GetInstance()->GetMap().size(), 0); } TEST(AutotuneSerializeTest, Consistency) { ResetAutotuneMaps(); ConvParameters conv_params_example_a = { GetStreamExec(), 1, 1, {{1, 1}}, TensorFormat::FORMAT_NCHW, 1, {{1, 1}}, {{1, 1}}, {{1, 1}}, {{1, 1}}, DataType::DT_INT8, 1}; ConvParameters fused_params_example_a = { GetStreamExec(), 1, 1, {{1, 1}}, TensorFormat::FORMAT_NCHW, 1, {{1, 1}}, {{1, 1}}, {{1, 1}}, {{1, 1}}, DataType::DT_INT8, 1, ConvParameters::FusionInfo{1.0, 0., 0., se::dnn::ActivationMode::kNone, false}, }; ConvParameters contrib_fused_params_example_a = { GetStreamExec(), 1, 1, {{1, 1}}, TensorFormat::FORMAT_NCHW, 1, {{1, 1}}, {{1, 1}}, {{1, 1}}, {{1, 1}}, DataType::DT_INT8, 1, ConvParameters::FusionInfo{1.0, 0., 0., se::dnn::ActivationMode::kRelu, true}}; AlgorithmDesc algorithm(1, true); AlgorithmDesc algorithm_no_scratch(1, true); AutotuneEntry<se::dnn::ConvOp> example_a(algorithm, algorithm_no_scratch); ConvAutotuneMap::GetInstance()->Insert(conv_params_example_a, example_a); ConvAutotuneMap::GetInstance()->Insert(fused_params_example_a, example_a); ConvAutotuneMap::GetInstance()->Insert(contrib_fused_params_example_a, example_a); std::string serialized_string; TF_CHECK_OK(SerializeAutotuneMaps(&serialized_string)); ResetAutotuneMaps(); TF_CHECK_OK(LoadSerializedAutotuneMaps(serialized_string)); EXPECT_EQ(ConvAutotuneMap::GetInstance()->GetMap().size(), 3); AutotuneEntry<se::dnn::ConvOp> entry; EXPECT_TRUE( ConvAutotuneMap::GetInstance()->Find(conv_params_example_a, &entry)); EXPECT_EQ(entry, example_a); EXPECT_TRUE( ConvAutotuneMap::GetInstance()->Find(fused_params_example_a, &entry)); EXPECT_EQ(entry, example_a); EXPECT_TRUE(ConvAutotuneMap::GetInstance()->Find( contrib_fused_params_example_a, &entry)); EXPECT_EQ(entry, example_a); } TEST(AutotuneSerializeTest, VersionControl) { ResetAutotuneMaps(); ConvParameters fused_params_example_a = { GetStreamExec(), 1, 1, {{1, 1}}, TensorFormat::FORMAT_NCHW, 1, {{1, 1}}, {{1, 1}}, {{1, 1}}, {{1, 1}}, DataType::DT_INT8, 1, ConvParameters::FusionInfo{1.0, 0., 0., se::dnn::ActivationMode::kNone, false}, ConvParameters::kVersion - 1}; AlgorithmDesc algorithm(1, true); AlgorithmDesc algorithm_no_scratch(1, true); AlgorithmConfig algorithm_config_example_a(algorithm, 1, algorithm_no_scratch); ConvAutotuneMap::GetInstance()->Insert( fused_params_example_a, AutotuneEntry<se::dnn::ConvOp>(algorithm_config_example_a)); std::string serialized_string; TF_CHECK_OK(SerializeAutotuneMaps(&serialized_string)); ResetAutotuneMaps(); EXPECT_THAT( LoadSerializedAutotuneMaps(serialized_string), StatusIs(error::ABORTED, HasSubstr("Aborted because the loaded autotune results"))); EXPECT_EQ(ConvAutotuneMap::GetInstance()->GetMap().size(), 0); } } } #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/autotune_maps/autotune_serialize.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/autotune_maps/autotune_serialize_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
51490e3e-50c8-4a6d-a209-b93fee91cf59
cpp
tensorflow/tensorflow
execute_node
tensorflow/core/common_runtime/eager/execute_node.cc
tensorflow/core/common_runtime/eager/execute_node_test.cc
#include "tensorflow/core/common_runtime/eager/execute_node.h" #include "xla/tsl/util/env_var.h" #include "tensorflow/core/common_runtime/eager/context.h" #include "tensorflow/core/lib/core/errors.h" namespace tensorflow { #if !defined(IS_MOBILE_PLATFORM) bool ExecuteNodeArgs::IsRemote(EagerContext* ctx, Device* input_device, TensorHandle* handle) { uint64 context_view_id = ctx->GetContextViewId(); if (handle->Type() == TensorHandle::REMOTE || handle->HasRemoteMirror(input_device, context_view_id)) { if (!has_remote_inputs_) { has_remote_inputs_ = true; } return true; } return false; } #endif Status ExecuteNodeArgs::InitPackedHandle(const int index, EagerContext* ctx, Device* input_device, TensorHandle* packed_handle) { int num_handles = packed_handle->NumPackedHandles(); packed_args_.emplace(index, absl::InlinedVector<TensorValue, 4UL>(num_handles)); TensorValue* packed_arg_flat = &(packed_args_[index][0]); for (int i = 0; i < num_handles; ++i) { TensorHandle* h = nullptr; TF_RETURN_IF_ERROR(packed_handle->ExtractPackedHandle(i, &h)); const Status status = h->TensorValue(h->device(), &packed_arg_flat[i]); if (!status.ok()) { #if !defined(IS_MOBILE_PLATFORM) if (IsRemote(ctx, input_device, h)) { continue; } #endif if (h->Type() == TensorHandle::PACKED) { return errors::InvalidArgument( "Nested packed handles are not supported"); } return status; } } return absl::OkStatus(); } Status ExecuteNodeArgs::Init( EagerContext* ctx, const absl::InlinedVector<TensorHandle*, 4UL>& op_inputs, const core::RefCountPtr<KernelAndDevice>& kernel) { const int n_inputs = op_inputs.size(); if (n_inputs > 0) { TensorHandle* const* op_inputs_flat = &op_inputs[0]; TensorValue* tensor_args_flat = &tensor_args_[0]; for (int i = 0; i < n_inputs; ++i) { TensorHandle* in = op_inputs_flat[i]; Device* d = kernel->InputDevice(i); Status s = in->TensorValue(ctx->CanonicalDevice(d), &tensor_args_flat[i]); if (!s.ok()) { #if !defined(IS_MOBILE_PLATFORM) if (IsRemote(ctx, d, in)) { continue; } #endif if (in->Type() != TensorHandle::PACKED) { return s; } if (!has_packed_inputs_) { has_packed_inputs_ = true; } TF_RETURN_IF_ERROR(InitPackedHandle(i, ctx, d, in)); } } } #if !defined(IS_MOBILE_PLATFORM) if (has_remote_inputs_) { const bool is_function = kernel->IsFunction(); serialize_remote_handle_ = [ctx, &op_inputs, is_function]( const FunctionArgIndex& index, eager::RemoteTensorHandle* handle) -> Status { TensorHandle* h = op_inputs[index.index]; if (op_inputs[index.index]->Type() == TensorHandle::PACKED) { TF_RETURN_IF_ERROR( op_inputs[index.index]->ExtractPackedHandle(index.sub_index, &h)); } Device* device = h->device(); bool wait_until_ready = SkipRemoteHandleWaitReady() ? false : is_function; return ctx->RemoteMgr()->SerializeRemoteTensorHandle(h, wait_until_ready, handle, device); }; } #endif return absl::OkStatus(); } Status ExecuteNodeArgs::GetLocalArg(const FunctionArgIndex& index, Tensor* val) const { Status s = EagerKernelArgs::GetLocalArg(index, val); if (s.ok()) { return absl::OkStatus(); } if (packed_args_.contains(index.index)) { Tensor* arg = packed_args_.at(index.index).at(index.sub_index).tensor; if (arg) { *val = *arg; return absl::OkStatus(); } else { return errors::NotFound("Argument (", index.index, ",", index.sub_index, ") has no local tensor."); } } else { return s; } } }
#include "tensorflow/core/common_runtime/eager/execute_node.h" #include <memory> #include <optional> #include <utility> #include <vector> #include "tensorflow/core/common_runtime/composite_device.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/eager/context.h" #include "tensorflow/core/common_runtime/eager/kernel_and_device.h" #include "tensorflow/core/common_runtime/eager/tensor_handle.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { class TestKernelAndDeviceFunc final : public KernelAndDeviceFunc { public: TestKernelAndDeviceFunc(std::vector<Device*> input_devices, Device* host_cpu_device) : KernelAndDeviceFunc( nullptr, nullptr, {}, {}, {}, nullptr, nullptr, host_cpu_device, "", false, false, false, true, false, std::nullopt, false, Rendezvous::Factory(), nullptr), test_input_devices_(std::move(input_devices)) {} Device* InputDevice(int i) const override { return test_input_devices_[i]; } private: std::vector<Device*> test_input_devices_; }; TEST(ExecuteNodeTest, ExecuteNodeArgs) { StaticDeviceMgr device_mgr( DeviceFactory::NewDevice("CPU", {}, "/job:localhost/replica:0/task:0")); Device* device0 = device_mgr.ListDevices().at(0); auto remote_device_mgr = std::make_unique<DynamicDeviceMgr>(); std::vector<std::unique_ptr<Device>> remote_devices; remote_devices.emplace_back( DeviceFactory::NewDevice("CPU", {}, "/job:localhost/replica:0/task:1")); TF_ASSERT_OK(remote_device_mgr->AddDevices(std::move(remote_devices))); Device* device1 = remote_device_mgr->ListDevices().at(0); Status s; std::unique_ptr<CompositeDevice> composite_device = CompositeDevice::MakeDevice({device0->name(), device1->name()}, 0, device_mgr.HostCPU()->parsed_name(), &s); TF_ASSERT_OK(s); auto ctx = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr, nullptr, true); auto remote_mgr = std::make_unique<eager::RemoteMgr>( true, ctx); TF_ASSERT_OK(ctx->InitializeRemoteMaster( nullptr, nullptr, nullptr, nullptr, std::move(remote_device_mgr), {}, EagerContext::NewContextId(), nullptr, &device_mgr, 600, nullptr, std::move(remote_mgr))); DataType dtype = DT_FLOAT; Tensor t0(dtype, TensorShape({})); t0.scalar<float>()() = {1.0f}; TensorHandle* h0 = TensorHandle::CreateLocalHandle(std::move(t0), device0, device0, ctx); Tensor t1(dtype, TensorShape({})); t1.scalar<float>()() = {2.0f}; TensorHandle* h1 = TensorHandle::CreateLocalHandle(std::move(t1), device0, device0, ctx); TensorHandle* h2 = TensorHandle::CreateLazyRemoteHandle( 1, 0, dtype, device1, true, ctx); TensorHandle* h3 = TensorHandle::CreateLazyRemoteHandle( 2, 1, dtype, device1, true, ctx); TensorHandle* packed_h = nullptr; TF_ASSERT_OK(TensorHandle::CreatePackedHandle({h1, h2}, ctx, &packed_h)); absl::InlinedVector<TensorHandle*, 4> inputs = {h0, packed_h, h3}; std::vector<Device*> input_devices; for (auto* h : inputs) { input_devices.push_back(h->DeviceOrHostCPU(*ctx)); } const core::RefCountPtr<KernelAndDevice> kernel( new TestKernelAndDeviceFunc(std::move(input_devices), device0)); ExecuteNodeArgs args(inputs.size()); TF_EXPECT_OK(args.Init(ctx, inputs, kernel)); EXPECT_TRUE(args.HasRemoteOrPackedInputs()); Tensor local0; TF_EXPECT_OK(args.GetLocalArg(FunctionArgIndex(0), &local0)); EXPECT_EQ(local0.flat<float>().size(), 1); EXPECT_EQ(local0.flat<float>()(0), 1.0); Tensor local1; TF_EXPECT_OK(args.GetLocalArg(FunctionArgIndex(1, 0), &local1)); EXPECT_EQ(local1.flat<float>().size(), 1); EXPECT_EQ(local1.flat<float>()(0), 2.0); eager::RemoteTensorHandle remote0; TF_EXPECT_OK(args.GetRemoteArg(FunctionArgIndex(1, 1), &remote0)); EXPECT_EQ(remote0.op_id(), 1); EXPECT_EQ(remote0.output_num(), 0); eager::RemoteTensorHandle remote1; TF_EXPECT_OK(args.GetRemoteArg(FunctionArgIndex(2), &remote1)); EXPECT_EQ(remote1.op_id(), 2); EXPECT_EQ(remote1.output_num(), 1); h0->Unref(); h1->Unref(); h2->Unref(); h3->Unref(); packed_h->Unref(); ctx->Unref(); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/execute_node.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/execute_node_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
957c48a5-fd83-42db-b8cb-de8f81d5dac2
cpp
tensorflow/tensorflow
compiler
tensorflow/lite/delegates/gpu/gl/compiler.cc
third_party/xla/xla/service/compiler_test.cc
#include "tensorflow/lite/delegates/gpu/gl/compiler.h" #include <algorithm> #include <any> #include <memory> #include <string> #include <unordered_set> #include <utility> #include <variant> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/memory/memory.h" #include "absl/types/any.h" #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include "tensorflow/lite/delegates/gpu/common/gpu_info.h" #include "tensorflow/lite/delegates/gpu/common/model_transformer.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" #include "tensorflow/lite/delegates/gpu/gl/compiler/compiled_node.h" #include "tensorflow/lite/delegates/gpu/gl/compiler/fuse_auto_input.h" #include "tensorflow/lite/delegates/gpu/gl/compiler/fuse_inline.h" #include "tensorflow/lite/delegates/gpu/gl/compiler/fuse_inplace.h" #include "tensorflow/lite/delegates/gpu/gl/compiler/shader_codegen.h" #include "tensorflow/lite/delegates/gpu/gl/float16_conversions.h" #ifdef __ANDROID__ #include <sys/system_properties.h> #endif namespace tflite { namespace gpu { namespace gl { namespace { struct ExceedSizeChecker { bool operator()(uint32_t v) const { return v > max_size.x; } bool operator()(const uint2& v) const { return v.x > max_size.x || v.y > max_size.y; } bool operator()(const uint3& v) const { return v.x > max_size.x || v.y > max_size.y || v.z > max_z_size; } int2 max_size; int max_z_size; }; bool ExceedsMaxSize(const Object& object, const GpuInfo& gpu_info) { ExceedSizeChecker size_checker; size_checker.max_size = int2(gpu_info.GetMaxImage2DWidth(), gpu_info.GetMaxImage2DHeight()); size_checker.max_z_size = gpu_info.GetMaxImage2DArrayLayers(); return std::visit(size_checker, object.size); } ObjectType ChooseFastestObjectType(const GpuInfo& gpu_info) { return gpu_info.IsAdreno() ? ObjectType::TEXTURE : ObjectType::BUFFER; } ObjectType ChooseFastestRefObjectType(const GpuInfo& gpu_info, const CompilationOptions& options) { if (!gpu_info.IsAdreno()) { return ObjectType::BUFFER; } if (gpu_info.adreno_info.adreno_gpu == AdrenoGpu::kAdreno630) { return ObjectType::TEXTURE; } else { return options.allow_precision_loss ? ObjectType::TEXTURE : ObjectType::BUFFER; } } class CompilerImpl : public Compiler { public: CompilerImpl(const NodeShader* node_shader, const GpuInfo* gpu_info, const CompilationOptions& options) : node_shader_(*node_shader), gpu_info_(*gpu_info), options_(options) { if (options_.preferred_obj_type == ObjectType::UNKNOWN) { options_.preferred_obj_type = ChooseFastestObjectType(*gpu_info); } if (options_.ref_obj_type == ObjectType::UNKNOWN) { options_.ref_obj_type = ChooseFastestRefObjectType(*gpu_info, options); } #ifdef __ANDROID__ if (gpu_info_.IsAdreno() && gpu_info_.adreno_info.adreno_gpu == AdrenoGpu::kAdreno660) { char sdk_version[PROP_VALUE_MAX]; __system_property_get("ro.build.version.sdk", sdk_version); if (!strcmp(sdk_version, "30")) options_.allow_precision_loss = false; } #endif } absl::Status Compile( const GraphFloat32& graph, const std::unordered_set<int>& tflite_graph_io, const ShaderCodeCallback& callback) final { RETURN_IF_ERROR(graph.MakeExactCopy(&compiled_graph_)); if (options_.dynamic_batch) { for (auto value : compiled_graph_.values()) { value->tensor.shape.b = 1; } } for (auto node : compiled_graph_.nodes()) { CompiledNodeAttributes attr; attr.node_indices.push_back(node->id); NodeShader::GenerationContext ctx = {&gpu_info_, options_, node->operation.type, node->operation.attributes}; for (const auto& tensor : graph.FindInputs(node->id)) { const auto& shape = tensor->tensor.shape; ctx.input_shapes.push_back({shape.b, shape.h, shape.w, shape.c}); } for (const auto& tensor : graph.FindOutputs(node->id)) { const auto& shape = tensor->tensor.shape; ctx.output_shapes.push_back({shape.b, shape.h, shape.w, shape.c}); } RETURN_IF_ERROR(node_shader_.GenerateCode(ctx, &attr.code)); node->operation.attributes = std::move(attr); } ModelTransformer transformer(&compiled_graph_); if (options_.fuse_operations) { FuseAutoOutputWithInline fuse_inline; if (!transformer.Apply("fuse_auto_with_inline", &fuse_inline)) { return absl::InternalError("fuse_auto_with_inline failed"); } FuseInplaceUpdate fuse_inplace; if (!transformer.Apply("fuse_inplace_update", &fuse_inplace)) { return absl::InternalError("fuse_inplace failed"); } if (options_.auto_input_fusion) { FuseAutoInput fuse_auto_input; if (!transformer.Apply("fuse_auto_input", &fuse_auto_input)) { return absl::InternalError("fuse_auto_input failed"); } } } RemoveUnusedInplaceUpdates remove_inplace_updates; if (!transformer.Apply("remove_inplace_updates", &remove_inplace_updates)) { return absl::InternalError("remove_inplace_updates failed"); } absl::flat_hash_map<ValueId, Object> objects; for (auto value : compiled_graph_.values()) { Object object = MakePHWC4Ref(value->id, value->tensor.shape); object.data_type = value->tensor.type; const bool is_external = graph.IsGraphInput(value->id) || graph.IsGraphOutput(value->id) || tflite_graph_io.find(value->tensor.ref) != tflite_graph_io.end(); if (is_external) { object.object_type = ObjectType::BUFFER; } else if (options_.allow_precision_loss) { MaybeConvertToFloat16(&object); } objects[value->id] = std::move(object); } for (auto node : compiled_graph_.nodes()) { auto& attr = std::any_cast<CompiledNodeAttributes&>(node->operation.attributes); if (attr.code.workload == uint3()) { auto outputs = compiled_graph_.FindOutputs(node->id); auto shape = outputs[0]->tensor.shape; for (auto output : outputs) { if (shape != output->tensor.shape) { return absl::FailedPreconditionError( "Workload uint3() requires all output sizes to match"); } } attr.code.workload = uint3(shape.w, shape.h, DivideRoundUp(shape.c, 4)); } int num_textures = 0; auto set_object_type = [&](Object* object) { if (object->object_type == ObjectType::BUFFER) { return; } bool is_ref = IsRef(*object); if (num_textures < gpu_info_.GetMaxImageArguments() && !ExceedsMaxSize(*object, gpu_info_) && (object->object_type == ObjectType::TEXTURE || (is_ref && options_.ref_obj_type == ObjectType::TEXTURE) || (!is_ref && options_.preferred_obj_type == ObjectType::TEXTURE))) { object->object_type = ObjectType::TEXTURE; num_textures++; } else { object->object_type = ObjectType::BUFFER; } }; for (auto& object : attr.code.objects) { if (options_.allow_precision_loss) { MaybeConvertToFloat16(&object.second); } set_object_type(&object.second); } for (auto ref : compiled_graph_.FindInputs(node->id)) { set_object_type(&objects[ref->id]); } for (auto ref : compiled_graph_.FindOutputs(node->id)) { set_object_type(&objects[ref->id]); } } ShaderCodegen codegen(options_, gpu_info_); for (auto node : compiled_graph_.nodes()) { auto& attr = std::any_cast<CompiledNodeAttributes&>(node->operation.attributes); if (attr.code.source_code.empty()) { continue; } for (auto ref : compiled_graph_.FindInputs(node->id)) { auto object = objects[ref->id]; object.access = AccessType::READ; attr.inputs.push_back(object); } for (auto ref : compiled_graph_.FindOutputs(node->id)) { auto object = objects[ref->id]; object.access = AccessType::WRITE; attr.outputs.push_back(object); } uint32_t binding = 0; auto set_binding = [&](ObjectType type, Object& object) { if (object.object_type == type) { object.binding = binding++; } }; for (auto& object : attr.inputs) { set_binding(ObjectType::TEXTURE, object); } for (auto& object : attr.outputs) { set_binding(ObjectType::TEXTURE, object); } for (auto& object : attr.code.objects) { set_binding(ObjectType::TEXTURE, object.second); } for (auto& object : attr.inputs) { set_binding(ObjectType::BUFFER, object); } for (auto& object : attr.outputs) { set_binding(ObjectType::BUFFER, object); } for (auto& object : attr.code.objects) { set_binding(ObjectType::BUFFER, object.second); } ShaderCode shader_code; RETURN_IF_ERROR(codegen.Build(std::move(attr), &shader_code)); RETURN_IF_ERROR(callback(std::move(shader_code))); } return absl::OkStatus(); } private: const NodeShader& node_shader_; const GpuInfo& gpu_info_; CompilationOptions options_; GraphFloat32 compiled_graph_; }; } std::unique_ptr<Compiler> NewCompiler(const NodeShader* node_shader, const GpuInfo* gpu_info, const CompilationOptions& options) { return std::make_unique<CompilerImpl>(node_shader, gpu_info, options); } } } }
#include "xla/service/compiler.h" #include <gtest/gtest.h> #include "xla/autotune_results.pb.h" #include "xla/stream_executor/device_description.pb.h" #include "xla/stream_executor/gpu/gpu_init.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tests/test_macros.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { TEST(TargetConfigTest, DISABLED_ON_CPU(ExecutorConstructorFillsAllFields)) { TF_ASSERT_OK(stream_executor::ValidateGPUMachineManager()); TF_ASSERT_OK_AND_ASSIGN( stream_executor::StreamExecutor * executor, stream_executor::GPUMachineManager()->ExecutorForDevice(0)); Compiler::TargetConfig config(executor); stream_executor::GpuTargetConfigProto target = config.ToProto(); EXPECT_GT(target.dnn_version_info().major(), 0) << target.DebugString(); EXPECT_GT(target.gpu_device_info().threads_per_block_limit(), 0) << target.DebugString(); EXPECT_NE(target.device_description_str(), "") << target.DebugString(); EXPECT_NE(target.platform_name(), "") << target.DebugString(); EXPECT_EQ(target.autotune_results().version(), 0); EXPECT_EQ(5, stream_executor::GpuTargetConfigProto::descriptor()->field_count()) << "Make sure all the fields in GpuTargetConfigProto are set and " "validated!"; } TEST(TargetConfigTest, ProtoConstructorFillsAllFields) { stream_executor::GpuTargetConfigProto config_proto; config_proto.set_platform_name("platform"); config_proto.mutable_dnn_version_info()->set_major(2); config_proto.mutable_gpu_device_info()->set_threads_per_block_limit(5); config_proto.set_device_description_str("foo"); Compiler::TargetConfig config(config_proto); stream_executor::GpuTargetConfigProto target = config.ToProto(); EXPECT_EQ(target.dnn_version_info().major(), config_proto.dnn_version_info().major()) << target.DebugString(); EXPECT_EQ(target.gpu_device_info().threads_per_block_limit(), 5) << target.DebugString(); EXPECT_EQ(target.device_description_str(), "foo") << target.DebugString(); EXPECT_EQ(target.platform_name(), "platform") << target.DebugString(); EXPECT_EQ(target.autotune_results().version(), 0); EXPECT_EQ(5, stream_executor::GpuTargetConfigProto::descriptor()->field_count()) << "Make sure all the fields in GpuTargetConfigProto are set and " "validated!"; } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/gl/compiler.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/compiler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b804e38d-6c4c-4a92-943d-a3e71a5cf3d9
cpp
google/cel-cpp
number
internal/number.h
internal/number_test.cc
#ifndef THIRD_PARTY_CEL_CPP_INTERNAL_NUMBER_H_ #define THIRD_PARTY_CEL_CPP_INTERNAL_NUMBER_H_ #include <cmath> #include <cstdint> #include <limits> #include "absl/types/variant.h" namespace cel::internal { constexpr int64_t kInt64Max = std::numeric_limits<int64_t>::max(); constexpr int64_t kInt64Min = std::numeric_limits<int64_t>::lowest(); constexpr uint64_t kUint64Max = std::numeric_limits<uint64_t>::max(); constexpr uint64_t kUintToIntMax = static_cast<uint64_t>(kInt64Max); constexpr double kDoubleToIntMax = static_cast<double>(kInt64Max); constexpr double kDoubleToIntMin = static_cast<double>(kInt64Min); constexpr double kDoubleToUintMax = static_cast<double>(kUint64Max); template <typename T> constexpr int RoundingError() { return 1 << (std::numeric_limits<T>::digits - std::numeric_limits<double>::digits - 1); } constexpr double kMaxDoubleRepresentableAsInt = static_cast<double>(kInt64Max - RoundingError<int64_t>()); constexpr double kMaxDoubleRepresentableAsUint = static_cast<double>(kUint64Max - RoundingError<uint64_t>()); #define CEL_ABSL_VISIT_CONSTEXPR using NumberVariant = absl::variant<double, uint64_t, int64_t>; enum class ComparisonResult { kLesser, kEqual, kGreater, kNanInequal }; constexpr ComparisonResult Invert(ComparisonResult result) { switch (result) { case ComparisonResult::kLesser: return ComparisonResult::kGreater; case ComparisonResult::kGreater: return ComparisonResult::kLesser; case ComparisonResult::kEqual: return ComparisonResult::kEqual; case ComparisonResult::kNanInequal: return ComparisonResult::kNanInequal; } } template <typename OutType> struct ConversionVisitor { template <typename InType> constexpr OutType operator()(InType v) { return static_cast<OutType>(v); } }; template <typename T> constexpr ComparisonResult Compare(T a, T b) { return (a > b) ? ComparisonResult::kGreater : (a == b) ? ComparisonResult::kEqual : ComparisonResult::kLesser; } constexpr ComparisonResult DoubleCompare(double a, double b) { if (!(a == a) || !(b == b)) { return ComparisonResult::kNanInequal; } return Compare(a, b); } struct DoubleCompareVisitor { constexpr explicit DoubleCompareVisitor(double v) : v(v) {} constexpr ComparisonResult operator()(double other) const { return DoubleCompare(v, other); } constexpr ComparisonResult operator()(uint64_t other) const { if (v > kDoubleToUintMax) { return ComparisonResult::kGreater; } else if (v < 0) { return ComparisonResult::kLesser; } else { return DoubleCompare(v, static_cast<double>(other)); } } constexpr ComparisonResult operator()(int64_t other) const { if (v > kDoubleToIntMax) { return ComparisonResult::kGreater; } else if (v < kDoubleToIntMin) { return ComparisonResult::kLesser; } else { return DoubleCompare(v, static_cast<double>(other)); } } double v; }; struct UintCompareVisitor { constexpr explicit UintCompareVisitor(uint64_t v) : v(v) {} constexpr ComparisonResult operator()(double other) const { return Invert(DoubleCompareVisitor(other)(v)); } constexpr ComparisonResult operator()(uint64_t other) const { return Compare(v, other); } constexpr ComparisonResult operator()(int64_t other) const { if (v > kUintToIntMax || other < 0) { return ComparisonResult::kGreater; } else { return Compare(v, static_cast<uint64_t>(other)); } } uint64_t v; }; struct IntCompareVisitor { constexpr explicit IntCompareVisitor(int64_t v) : v(v) {} constexpr ComparisonResult operator()(double other) { return Invert(DoubleCompareVisitor(other)(v)); } constexpr ComparisonResult operator()(uint64_t other) { return Invert(UintCompareVisitor(other)(v)); } constexpr ComparisonResult operator()(int64_t other) { return Compare(v, other); } int64_t v; }; struct CompareVisitor { explicit constexpr CompareVisitor(NumberVariant rhs) : rhs(rhs) {} CEL_ABSL_VISIT_CONSTEXPR ComparisonResult operator()(double v) { return absl::visit(DoubleCompareVisitor(v), rhs); } CEL_ABSL_VISIT_CONSTEXPR ComparisonResult operator()(uint64_t v) { return absl::visit(UintCompareVisitor(v), rhs); } CEL_ABSL_VISIT_CONSTEXPR ComparisonResult operator()(int64_t v) { return absl::visit(IntCompareVisitor(v), rhs); } NumberVariant rhs; }; struct LosslessConvertibleToIntVisitor { constexpr bool operator()(double value) const { return value >= kDoubleToIntMin && value <= kMaxDoubleRepresentableAsInt && value == static_cast<double>(static_cast<int64_t>(value)); } constexpr bool operator()(uint64_t value) const { return value <= kUintToIntMax; } constexpr bool operator()(int64_t value) const { return true; } }; struct LosslessConvertibleToUintVisitor { constexpr bool operator()(double value) const { return value >= 0 && value <= kMaxDoubleRepresentableAsUint && value == static_cast<double>(static_cast<uint64_t>(value)); } constexpr bool operator()(uint64_t value) const { return true; } constexpr bool operator()(int64_t value) const { return value >= 0; } }; class Number { public: static constexpr Number FromInt64(int64_t value) { return Number(value); } static constexpr Number FromUint64(uint64_t value) { return Number(value); } static constexpr Number FromDouble(double value) { return Number(value); } constexpr explicit Number(double double_value) : value_(double_value) {} constexpr explicit Number(int64_t int_value) : value_(int_value) {} constexpr explicit Number(uint64_t uint_value) : value_(uint_value) {} CEL_ABSL_VISIT_CONSTEXPR double AsDouble() const { return absl::visit(internal::ConversionVisitor<double>(), value_); } CEL_ABSL_VISIT_CONSTEXPR int64_t AsInt() const { return absl::visit(internal::ConversionVisitor<int64_t>(), value_); } CEL_ABSL_VISIT_CONSTEXPR uint64_t AsUint() const { return absl::visit(internal::ConversionVisitor<uint64_t>(), value_); } CEL_ABSL_VISIT_CONSTEXPR bool LosslessConvertibleToInt() const { return absl::visit(internal::LosslessConvertibleToIntVisitor(), value_); } CEL_ABSL_VISIT_CONSTEXPR bool LosslessConvertibleToUint() const { return absl::visit(internal::LosslessConvertibleToUintVisitor(), value_); } CEL_ABSL_VISIT_CONSTEXPR bool operator<(Number other) const { return Compare(other) == internal::ComparisonResult::kLesser; } CEL_ABSL_VISIT_CONSTEXPR bool operator<=(Number other) const { internal::ComparisonResult cmp = Compare(other); return cmp != internal::ComparisonResult::kGreater && cmp != internal::ComparisonResult::kNanInequal; } CEL_ABSL_VISIT_CONSTEXPR bool operator>(Number other) const { return Compare(other) == internal::ComparisonResult::kGreater; } CEL_ABSL_VISIT_CONSTEXPR bool operator>=(Number other) const { internal::ComparisonResult cmp = Compare(other); return cmp != internal::ComparisonResult::kLesser && cmp != internal::ComparisonResult::kNanInequal; } CEL_ABSL_VISIT_CONSTEXPR bool operator==(Number other) const { return Compare(other) == internal::ComparisonResult::kEqual; } CEL_ABSL_VISIT_CONSTEXPR bool operator!=(Number other) const { return Compare(other) != internal::ComparisonResult::kEqual; } template <typename T, typename Op> T visit(Op&& op) const { return absl::visit(std::forward<Op>(op), value_); } private: internal::NumberVariant value_; CEL_ABSL_VISIT_CONSTEXPR internal::ComparisonResult Compare( Number other) const { return absl::visit(internal::CompareVisitor(other.value_), value_); } }; } #endif
#include "internal/number.h" #include <cstdint> #include <limits> #include "internal/testing.h" namespace cel::internal { namespace { constexpr double kNan = std::numeric_limits<double>::quiet_NaN(); constexpr double kInfinity = std::numeric_limits<double>::infinity(); TEST(Number, Basic) { EXPECT_GT(Number(1.1), Number::FromInt64(1)); EXPECT_LT(Number::FromUint64(1), Number(1.1)); EXPECT_EQ(Number(1.1), Number(1.1)); EXPECT_EQ(Number::FromUint64(1), Number::FromUint64(1)); EXPECT_EQ(Number::FromInt64(1), Number::FromUint64(1)); EXPECT_GT(Number::FromUint64(1), Number::FromInt64(-1)); EXPECT_EQ(Number::FromInt64(-1), Number::FromInt64(-1)); } TEST(Number, Conversions) { EXPECT_TRUE(Number::FromDouble(1.0).LosslessConvertibleToInt()); EXPECT_TRUE(Number::FromDouble(1.0).LosslessConvertibleToUint()); EXPECT_FALSE(Number::FromDouble(1.1).LosslessConvertibleToInt()); EXPECT_FALSE(Number::FromDouble(1.1).LosslessConvertibleToUint()); EXPECT_TRUE(Number::FromDouble(-1.0).LosslessConvertibleToInt()); EXPECT_FALSE(Number::FromDouble(-1.0).LosslessConvertibleToUint()); EXPECT_TRUE(Number::FromDouble(kDoubleToIntMin).LosslessConvertibleToInt()); EXPECT_FALSE(Number::FromDouble(kMaxDoubleRepresentableAsUint + RoundingError<uint64_t>()) .LosslessConvertibleToUint()); EXPECT_FALSE(Number::FromDouble(kMaxDoubleRepresentableAsInt + RoundingError<int64_t>()) .LosslessConvertibleToInt()); EXPECT_FALSE( Number::FromDouble(kDoubleToIntMin - 1025).LosslessConvertibleToInt()); EXPECT_EQ(Number::FromInt64(1).AsUint(), 1u); EXPECT_EQ(Number::FromUint64(1).AsInt(), 1); EXPECT_EQ(Number::FromDouble(1.0).AsUint(), 1); EXPECT_EQ(Number::FromDouble(1.0).AsInt(), 1); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/internal/number.h
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/internal/number_test.cc
4552db5798fb0853b131b783d8875794334fae7f
3b0b5c9a-b9f3-4305-a773-0ced3e5c0dfb
cpp
google/cel-cpp
struct_value
common/values/struct_value.cc
common/values/struct_value_test.cc
#include <cstddef> #include <string> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "absl/types/variant.h" #include "common/casting.h" #include "common/optional_ref.h" #include "common/type.h" #include "common/value.h" #include "internal/status_macros.h" namespace cel { StructType StructValue::GetRuntimeType() const { AssertIsValid(); return absl::visit( [](const auto& alternative) -> StructType { if constexpr (std::is_same_v< absl::monostate, absl::remove_cvref_t<decltype(alternative)>>) { ABSL_UNREACHABLE(); } else { return alternative.GetRuntimeType(); } }, variant_); } absl::string_view StructValue::GetTypeName() const { AssertIsValid(); return absl::visit( [](const auto& alternative) -> absl::string_view { if constexpr (std::is_same_v< absl::monostate, absl::remove_cvref_t<decltype(alternative)>>) { return absl::string_view{}; } else { return alternative.GetTypeName(); } }, variant_); } std::string StructValue::DebugString() const { AssertIsValid(); return absl::visit( [](const auto& alternative) -> std::string { if constexpr (std::is_same_v< absl::monostate, absl::remove_cvref_t<decltype(alternative)>>) { return std::string{}; } else { return alternative.DebugString(); } }, variant_); } absl::Status StructValue::SerializeTo(AnyToJsonConverter& converter, absl::Cord& value) const { AssertIsValid(); return absl::visit( [&converter, &value](const auto& alternative) -> absl::Status { if constexpr (std::is_same_v< absl::monostate, absl::remove_cvref_t<decltype(alternative)>>) { return absl::InternalError("use of invalid StructValue"); } else { return alternative.SerializeTo(converter, value); } }, variant_); } absl::StatusOr<Json> StructValue::ConvertToJson( AnyToJsonConverter& converter) const { AssertIsValid(); return absl::visit( [&converter](const auto& alternative) -> absl::StatusOr<Json> { if constexpr (std::is_same_v< absl::monostate, absl::remove_cvref_t<decltype(alternative)>>) { return absl::InternalError("use of invalid StructValue"); } else { return alternative.ConvertToJson(converter); } }, variant_); } bool StructValue::IsZeroValue() const { AssertIsValid(); return absl::visit( [](const auto& alternative) -> bool { if constexpr (std::is_same_v< absl::monostate, absl::remove_cvref_t<decltype(alternative)>>) { return false; } else { return alternative.IsZeroValue(); } }, variant_); } absl::StatusOr<bool> StructValue::HasFieldByName(absl::string_view name) const { AssertIsValid(); return absl::visit( [name](const auto& alternative) -> absl::StatusOr<bool> { if constexpr (std::is_same_v< absl::monostate, absl::remove_cvref_t<decltype(alternative)>>) { return absl::InternalError("use of invalid StructValue"); } else { return alternative.HasFieldByName(name); } }, variant_); } absl::StatusOr<bool> StructValue::HasFieldByNumber(int64_t number) const { AssertIsValid(); return absl::visit( [number](const auto& alternative) -> absl::StatusOr<bool> { if constexpr (std::is_same_v< absl::monostate, absl::remove_cvref_t<decltype(alternative)>>) { return absl::InternalError("use of invalid StructValue"); } else { return alternative.HasFieldByNumber(number); } }, variant_); } namespace common_internal { absl::Status StructValueEqual(ValueManager& value_manager, const StructValue& lhs, const StructValue& rhs, Value& result) { if (lhs.GetTypeName() != rhs.GetTypeName()) { result = BoolValue{false}; return absl::OkStatus(); } absl::flat_hash_map<std::string, Value> lhs_fields; CEL_RETURN_IF_ERROR(lhs.ForEachField( value_manager, [&lhs_fields](absl::string_view name, const Value& lhs_value) -> absl::StatusOr<bool> { lhs_fields.insert_or_assign(std::string(name), Value(lhs_value)); return true; })); bool equal = true; size_t rhs_fields_count = 0; CEL_RETURN_IF_ERROR(rhs.ForEachField( value_manager, [&value_manager, &result, &lhs_fields, &equal, &rhs_fields_count]( absl::string_view name, const Value& rhs_value) -> absl::StatusOr<bool> { auto lhs_field = lhs_fields.find(name); if (lhs_field == lhs_fields.end()) { equal = false; return false; } CEL_RETURN_IF_ERROR( lhs_field->second.Equal(value_manager, rhs_value, result)); if (auto bool_value = As<BoolValue>(result); bool_value.has_value() && !bool_value->NativeValue()) { equal = false; return false; } ++rhs_fields_count; return true; })); if (!equal || rhs_fields_count != lhs_fields.size()) { result = BoolValue{false}; return absl::OkStatus(); } result = BoolValue{true}; return absl::OkStatus(); } absl::Status StructValueEqual(ValueManager& value_manager, const ParsedStructValueInterface& lhs, const StructValue& rhs, Value& result) { if (lhs.GetTypeName() != rhs.GetTypeName()) { result = BoolValue{false}; return absl::OkStatus(); } absl::flat_hash_map<std::string, Value> lhs_fields; CEL_RETURN_IF_ERROR(lhs.ForEachField( value_manager, [&lhs_fields](absl::string_view name, const Value& lhs_value) -> absl::StatusOr<bool> { lhs_fields.insert_or_assign(std::string(name), Value(lhs_value)); return true; })); bool equal = true; size_t rhs_fields_count = 0; CEL_RETURN_IF_ERROR(rhs.ForEachField( value_manager, [&value_manager, &result, &lhs_fields, &equal, &rhs_fields_count]( absl::string_view name, const Value& rhs_value) -> absl::StatusOr<bool> { auto lhs_field = lhs_fields.find(name); if (lhs_field == lhs_fields.end()) { equal = false; return false; } CEL_RETURN_IF_ERROR( lhs_field->second.Equal(value_manager, rhs_value, result)); if (auto bool_value = As<BoolValue>(result); bool_value.has_value() && !bool_value->NativeValue()) { equal = false; return false; } ++rhs_fields_count; return true; })); if (!equal || rhs_fields_count != lhs_fields.size()) { result = BoolValue{false}; return absl::OkStatus(); } result = BoolValue{true}; return absl::OkStatus(); } } absl::optional<MessageValue> StructValue::AsMessage() & { if (const auto* alternative = absl::get_if<ParsedMessageValue>(&variant_); alternative != nullptr) { return *alternative; } return absl::nullopt; } absl::optional<MessageValue> StructValue::AsMessage() const& { if (const auto* alternative = absl::get_if<ParsedMessageValue>(&variant_); alternative != nullptr) { return *alternative; } return absl::nullopt; } absl::optional<MessageValue> StructValue::AsMessage() && { if (auto* alternative = absl::get_if<ParsedMessageValue>(&variant_); alternative != nullptr) { return std::move(*alternative); } return absl::nullopt; } absl::optional<MessageValue> StructValue::AsMessage() const&& { if (auto* alternative = absl::get_if<ParsedMessageValue>(&variant_); alternative != nullptr) { return std::move(*alternative); } return absl::nullopt; } optional_ref<const ParsedMessageValue> StructValue::AsParsedMessage() & { if (const auto* alternative = absl::get_if<ParsedMessageValue>(&variant_); alternative != nullptr) { return *alternative; } return absl::nullopt; } optional_ref<const ParsedMessageValue> StructValue::AsParsedMessage() const& { if (const auto* alternative = absl::get_if<ParsedMessageValue>(&variant_); alternative != nullptr) { return *alternative; } return absl::nullopt; } absl::optional<ParsedMessageValue> StructValue::AsParsedMessage() && { if (auto* alternative = absl::get_if<ParsedMessageValue>(&variant_); alternative != nullptr) { return std::move(*alternative); } return absl::nullopt; } absl::optional<ParsedMessageValue> StructValue::AsParsedMessage() const&& { if (auto* alternative = absl::get_if<ParsedMessageValue>(&variant_); alternative != nullptr) { return std::move(*alternative); } return absl::nullopt; } StructValue::operator MessageValue() & { ABSL_DCHECK(IsMessage()) << *this; return absl::get<ParsedMessageValue>(variant_); } StructValue::operator MessageValue() const& { ABSL_DCHECK(IsMessage()) << *this; return absl::get<ParsedMessageValue>(variant_); } StructValue::operator MessageValue() && { ABSL_DCHECK(IsMessage()) << *this; return absl::get<ParsedMessageValue>(std::move(variant_)); } StructValue::operator MessageValue() const&& { ABSL_DCHECK(IsMessage()) << *this; return absl::get<ParsedMessageValue>(std::move(variant_)); } StructValue::operator const ParsedMessageValue&() & { ABSL_DCHECK(IsParsedMessage()) << *this; return absl::get<ParsedMessageValue>(variant_); } StructValue::operator const ParsedMessageValue&() const& { ABSL_DCHECK(IsParsedMessage()) << *this; return absl::get<ParsedMessageValue>(variant_); } StructValue::operator ParsedMessageValue() && { ABSL_DCHECK(IsParsedMessage()) << *this; return absl::get<ParsedMessageValue>(std::move(variant_)); } StructValue::operator ParsedMessageValue() const&& { ABSL_DCHECK(IsParsedMessage()) << *this; return absl::get<ParsedMessageValue>(std::move(variant_)); } common_internal::ValueVariant StructValue::ToValueVariant() const& { return absl::visit( [](const auto& alternative) -> common_internal::ValueVariant { return alternative; }, variant_); } common_internal::ValueVariant StructValue::ToValueVariant() && { return absl::visit( [](auto&& alternative) -> common_internal::ValueVariant { return std::move(alternative); }, std::move(variant_)); } }
#include "absl/base/attributes.h" #include "common/value.h" #include "internal/parse_text_proto.h" #include "internal/testing.h" #include "internal/testing_descriptor_pool.h" #include "internal/testing_message_factory.h" #include "proto/test/v1/proto3/test_all_types.pb.h" #include "google/protobuf/arena.h" namespace cel { namespace { using ::cel::internal::DynamicParseTextProto; using ::cel::internal::GetTestingDescriptorPool; using ::cel::internal::GetTestingMessageFactory; using ::testing::An; using ::testing::Optional; using TestAllTypesProto3 = ::google::api::expr::test::v1::proto3::TestAllTypes; TEST(StructValue, Is) { EXPECT_TRUE(StructValue(ParsedMessageValue()).Is<MessageValue>()); EXPECT_TRUE(StructValue(ParsedMessageValue()).Is<ParsedMessageValue>()); } template <typename T> constexpr T& AsLValueRef(T& t ABSL_ATTRIBUTE_LIFETIME_BOUND) { return t; } template <typename T> constexpr const T& AsConstLValueRef(T& t ABSL_ATTRIBUTE_LIFETIME_BOUND) { return t; } template <typename T> constexpr T&& AsRValueRef(T& t ABSL_ATTRIBUTE_LIFETIME_BOUND) { return static_cast<T&&>(t); } template <typename T> constexpr const T&& AsConstRValueRef(T& t ABSL_ATTRIBUTE_LIFETIME_BOUND) { return static_cast<const T&&>(t); } TEST(StructValue, As) { google::protobuf::Arena arena; { StructValue value( ParsedMessageValue{DynamicParseTextProto<TestAllTypesProto3>( &arena, R"pb()pb", GetTestingDescriptorPool(), GetTestingMessageFactory())}); StructValue other_value = value; EXPECT_THAT(AsLValueRef<StructValue>(value).As<MessageValue>(), Optional(An<MessageValue>())); EXPECT_THAT(AsConstLValueRef<StructValue>(value).As<MessageValue>(), Optional(An<MessageValue>())); EXPECT_THAT(AsRValueRef<StructValue>(value).As<MessageValue>(), Optional(An<MessageValue>())); EXPECT_THAT(AsConstRValueRef<StructValue>(other_value).As<MessageValue>(), Optional(An<MessageValue>())); } { StructValue value( ParsedMessageValue{DynamicParseTextProto<TestAllTypesProto3>( &arena, R"pb()pb", GetTestingDescriptorPool(), GetTestingMessageFactory())}); StructValue other_value = value; EXPECT_THAT(AsLValueRef<StructValue>(value).As<ParsedMessageValue>(), Optional(An<ParsedMessageValue>())); EXPECT_THAT(AsConstLValueRef<StructValue>(value).As<ParsedMessageValue>(), Optional(An<ParsedMessageValue>())); EXPECT_THAT(AsRValueRef<StructValue>(value).As<ParsedMessageValue>(), Optional(An<ParsedMessageValue>())); EXPECT_THAT( AsConstRValueRef<StructValue>(other_value).As<ParsedMessageValue>(), Optional(An<ParsedMessageValue>())); } } TEST(StructValue, Cast) { google::protobuf::Arena arena; { StructValue value( ParsedMessageValue{DynamicParseTextProto<TestAllTypesProto3>( &arena, R"pb()pb", GetTestingDescriptorPool(), GetTestingMessageFactory())}); StructValue other_value = value; EXPECT_THAT(static_cast<MessageValue>(AsLValueRef<StructValue>(value)), An<MessageValue>()); EXPECT_THAT(static_cast<MessageValue>(AsConstLValueRef<StructValue>(value)), An<MessageValue>()); EXPECT_THAT(static_cast<MessageValue>(AsRValueRef<StructValue>(value)), An<MessageValue>()); EXPECT_THAT( static_cast<MessageValue>(AsConstRValueRef<StructValue>(other_value)), An<MessageValue>()); } { StructValue value( ParsedMessageValue{DynamicParseTextProto<TestAllTypesProto3>( &arena, R"pb()pb", GetTestingDescriptorPool(), GetTestingMessageFactory())}); StructValue other_value = value; EXPECT_THAT( static_cast<ParsedMessageValue>(AsLValueRef<StructValue>(value)), An<ParsedMessageValue>()); EXPECT_THAT( static_cast<ParsedMessageValue>(AsConstLValueRef<StructValue>(value)), An<ParsedMessageValue>()); EXPECT_THAT( static_cast<ParsedMessageValue>(AsRValueRef<StructValue>(value)), An<ParsedMessageValue>()); EXPECT_THAT(static_cast<ParsedMessageValue>( AsConstRValueRef<StructValue>(other_value)), An<ParsedMessageValue>()); } } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/values/struct_value.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/values/struct_value_test.cc
4552db5798fb0853b131b783d8875794334fae7f
90a3ea44-24b4-466c-848c-48043121493f
cpp
tensorflow/tensorflow
pjrt_executable
third_party/xla/xla/python/pjrt_ifrt/pjrt_executable.cc
third_party/xla/xla/pjrt/pjrt_executable_test.cc
#include "xla/python/pjrt_ifrt/pjrt_executable.h" #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "llvm/Support/Casting.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinOps.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/translate/mhlo_to_hlo/type_to_shape.h" #include "xla/pjrt/host_callback.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/pjrt/pjrt_future.h" #include "xla/primitive_util.h" #include "xla/python/ifrt/array.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/device_list.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/executable.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt/host_callback.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/python/pjrt_ifrt/pjrt_array.h" #include "xla/python/pjrt_ifrt/pjrt_client.h" #include "xla/python/pjrt_ifrt/pjrt_device.h" #include "xla/python/pjrt_ifrt/pjrt_dtype.h" #include "xla/python/pjrt_ifrt/pjrt_host_callback.h" #include "xla/python/pjrt_ifrt/pjrt_memory.h" #include "xla/python/pjrt_ifrt/xla_compiler.h" #include "xla/service/hlo.pb.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/tsl/concurrency/ref_count.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { absl::StatusOr<const xla::HloInstructionProto*> FindRootInstruction( const HloModuleProto& proto) { for (const auto& computation : proto.computations()) { if (computation.id() == proto.entry_computation_id()) { for (const auto& instruction : computation.instructions()) { if (instruction.id() == computation.root_id()) { return &instruction; } } } } return InvalidArgument("Entry computation not found"); } absl::StatusOr<std::vector<xla::PrimitiveType>> GetFirstModuleOutputElementTypes( xla::PjRtLoadedExecutable* pjrt_loaded_executable) { auto element_types = pjrt_loaded_executable->GetOutputElementTypes(); TF_RETURN_IF_ERROR(element_types.status()); if (element_types->empty()) { return FailedPrecondition("No output element types found"); } return element_types->front(); } absl::StatusOr<std::vector<xla::DimensionVector>> GetFirstModuleOutputDimensions( xla::PjRtLoadedExecutable* pjrt_loaded_executable) { auto dimensions = pjrt_loaded_executable->GetOutputDimensions(); TF_RETURN_IF_ERROR(dimensions.status()); if (dimensions->empty()) { return FailedPrecondition("No output dimensions found"); } return dimensions->front(); } absl::StatusOr<std::optional<HloSharding>> GetFirstModuleOutputSharding( xla::PjRtLoadedExecutable* pjrt_loaded_executable, const xla::Shape& shape) { auto output_shardings = pjrt_loaded_executable->GetOutputShardings(); std::optional<xla::HloSharding> result_hlo_sharding; if (output_shardings.has_value()) { std::vector<HloSharding> hlo_shardings; hlo_shardings.reserve(output_shardings->size()); for (const auto& sharding : *output_shardings) { TF_ASSIGN_OR_RETURN(auto hlo_sharding, HloSharding::FromProto(sharding)); hlo_shardings.push_back(hlo_sharding); } if (shape.IsTuple()) { return HloSharding::Tuple(shape, hlo_shardings); } else { return hlo_shardings.front(); } } return std::nullopt; } absl::StatusOr<std::optional<std::vector<absl::string_view>>> GetFirstModuleOutputMemoryKinds( xla::PjRtLoadedExecutable* pjrt_loaded_executable) { auto output_memory_kinds = pjrt_loaded_executable->GetOutputMemoryKinds(); if (absl::IsUnimplemented(output_memory_kinds.status())) { return std::nullopt; } TF_RETURN_IF_ERROR(output_memory_kinds.status()); if (output_memory_kinds->empty()) { return FailedPrecondition("No output memory kinds found"); } return std::move(output_memory_kinds)->front(); } struct ShapePartialInfo { std::vector<xla::PrimitiveType> element_types; std::vector<xla::DimensionVector> dimensions; }; absl::StatusOr<ShapePartialInfo> CreateShapePartialInfo( absl::Span<const xla::Shape> shapes) { ShapePartialInfo partial_info; partial_info.element_types.reserve(shapes.size()); partial_info.dimensions.reserve(shapes.size()); for (const auto& shape : shapes) { if (shape.IsTuple()) { return FailedPrecondition( "Tupled shape is not supported in `CreateShapePartialInfo`."); } partial_info.element_types.push_back(shape.element_type()); partial_info.dimensions.push_back( xla::ShapeUtil::CreateDimensionVectorFromShape(shape)); } return partial_info; } } char PjRtCompatibleExecutable::ID = 0; char PjRtCompatibleLoadedExecutable::ID = 0; char PjRtExecutable::ID = 0; char PjRtLoadedExecutable::ID = 0; absl::StatusOr<std::unique_ptr<Executable>> PjRtExecutable::Create( std::shared_ptr<xla::PjRtExecutable> pjrt_executable, std::unique_ptr<XlaCompileOptions> compile_options) { return std::unique_ptr<Executable>(new PjRtExecutable( std::move(pjrt_executable), std::move(compile_options))); } absl::StatusOr<std::optional<std::string>> PjRtExecutable::Fingerprint() const { DCHECK(this); return pjrt_executable_->FingerprintExecutable(); } absl::StatusOr<std::string> PjRtExecutable::Serialize() const { DCHECK(this); return pjrt_executable_->SerializeExecutable(); } absl::StatusOr<std::unique_ptr<LoadedExecutable>> PjRtLoadedExecutable::Create( PjRtCompatibleClient* client, std::shared_ptr<xla::PjRtLoadedExecutable> pjrt_loaded_executable, std::vector<tsl::RCReference<LoadedHostCallback>> loaded_host_callbacks) { VLOG(3) << "PjRtLoadedExecutable::Create"; VLOG(3) << "Using per-shard shape"; TF_ASSIGN_OR_RETURN( auto result_element_types, GetFirstModuleOutputElementTypes(pjrt_loaded_executable.get())); TF_ASSIGN_OR_RETURN( auto result_dimensions, GetFirstModuleOutputDimensions(pjrt_loaded_executable.get())); TF_ASSIGN_OR_RETURN( auto result_memory_kinds, GetFirstModuleOutputMemoryKinds(pjrt_loaded_executable.get())); return CreateInternal(client, std::move(pjrt_loaded_executable), result_element_types, result_dimensions, std::nullopt, result_memory_kinds, loaded_host_callbacks); } static absl::StatusOr<std::vector<xla::Shape>> ResultShapesOfModule( mlir::ModuleOp module) { auto main = module.lookupSymbol<mlir::func::FuncOp>("main"); if (!main) { return InvalidArgument("MLIR module has no main function"); } auto type = main.getFunctionType(); std::vector<xla::Shape> result_shapes; result_shapes.reserve(type.getNumResults()); for (unsigned i = 0; i < type.getNumResults(); ++i) { auto result_type = type.getResult(i); result_shapes.push_back(xla::TypeToShape(result_type)); } return result_shapes; } absl::StatusOr<std::unique_ptr<LoadedExecutable>> PjRtLoadedExecutable::Create( PjRtCompatibleClient* client, mlir::ModuleOp module, xla::CompileOptions compile_options, std::vector<tsl::RCReference<LoadedHostCallback>> loaded_host_callbacks) { VLOG(3) << "PjRtLoadedExecutable::Create"; if (VLOG_IS_ON(3)) { module.dump(); } VLOG(3) << compile_options.ToProto()->DebugString(); const auto& build_options = compile_options.executable_build_options; const bool auto_spmd_partitioning = build_options.use_spmd_partitioning() && build_options.num_partitions() > 1 && (build_options.use_auto_spmd_partitioning() || build_options.any_allow_spmd_sharding_propagation_to_parameters() || build_options.any_allow_spmd_sharding_propagation_to_output()); TF_ASSIGN_OR_RETURN( auto pjrt_loaded_executable, client->pjrt_client()->Compile(module, std::move(compile_options))); if (auto_spmd_partitioning) { VLOG(3) << "Using per-shard shape"; TF_ASSIGN_OR_RETURN( auto result_element_types, GetFirstModuleOutputElementTypes(pjrt_loaded_executable.get())); TF_ASSIGN_OR_RETURN( auto result_dimensions, GetFirstModuleOutputDimensions(pjrt_loaded_executable.get())); TF_ASSIGN_OR_RETURN( auto result_memory_kinds, GetFirstModuleOutputMemoryKinds(pjrt_loaded_executable.get())); return CreateInternal(client, std::move(pjrt_loaded_executable), result_element_types, result_dimensions, std::nullopt, result_memory_kinds, std::move(loaded_host_callbacks)); } else { VLOG(3) << "Using full shape"; TF_ASSIGN_OR_RETURN(auto result_shapes, ResultShapesOfModule(module)); bool tuple_output = result_shapes.size() != 1; xla::Shape result_shape; std::vector<xla::Shape> output_shapes; if (tuple_output) { result_shape = xla::ShapeUtil::MakeTupleShape(result_shapes); output_shapes = std::move(result_shapes); } else { result_shape = result_shapes.front(); output_shapes = result_shape.IsTuple() ? result_shape.tuple_shapes() : std::vector<xla::Shape>{result_shape}; } TF_ASSIGN_OR_RETURN(auto shape_partial_info, CreateShapePartialInfo(output_shapes)); TF_ASSIGN_OR_RETURN(auto result_hlo_sharding, GetFirstModuleOutputSharding( pjrt_loaded_executable.get(), result_shape)); TF_ASSIGN_OR_RETURN( auto result_memory_kinds, GetFirstModuleOutputMemoryKinds(pjrt_loaded_executable.get())); return CreateInternal(client, std::move(pjrt_loaded_executable), shape_partial_info.element_types, shape_partial_info.dimensions, result_hlo_sharding, result_memory_kinds, std::move(loaded_host_callbacks)); } } absl::StatusOr<std::unique_ptr<LoadedExecutable>> PjRtLoadedExecutable::CreateInternal( PjRtCompatibleClient* client, std::shared_ptr<xla::PjRtLoadedExecutable> pjrt_loaded_executable, absl::Span<const xla::PrimitiveType> result_element_types, absl::Span<const xla::DimensionVector> result_dimensions, const std::optional<xla::HloSharding>& result_hlo_sharding, const std::optional<std::vector<absl::string_view>>& result_memory_kinds, std::vector<tsl::RCReference<LoadedHostCallback>> loaded_host_callbacks) { BasicDeviceList::Devices ds; ds.reserve(pjrt_loaded_executable->addressable_devices().size()); for (xla::PjRtDevice* device : pjrt_loaded_executable->addressable_devices()) { TF_ASSIGN_OR_RETURN(Device * ifrt_device, client->LookupPjRtDevice(device)); ds.push_back(ifrt_device); } tsl::RCReference<DeviceList> devices = BasicDeviceList::Create(std::move(ds)); std::optional<tsl::RCReference<DeviceList>> sharding_devices; if (devices->devices().empty()) { sharding_devices = BasicDeviceList::Create({client->addressable_devices().front()}); } else { sharding_devices = devices; } std::vector<DType> output_dtypes; std::vector<Shape> output_shapes; std::vector<std::shared_ptr<const Sharding>> output_shardings; auto append_arg = [&](const xla::PrimitiveType& element_type, const xla::DimensionVector& dimensions, const xla::HloSharding* sharding, MemoryKind memory_kind) -> absl::Status { TF_ASSIGN_OR_RETURN(auto dtype, ToDType(element_type)); output_dtypes.push_back(dtype); output_shapes.push_back(Shape(dimensions)); CHECK(xla::primitive_util::IsArrayType(element_type)); xla::DimensionVector tile_shape_dimensions = dimensions; if (sharding != nullptr) { CHECK(!sharding->IsTuple()); tile_shape_dimensions = xla::ShapeUtil::CreateDimensionVectorFromShape(sharding->TileShape( xla::ShapeUtil::MakeShape(element_type, dimensions))); } output_shardings.push_back(ifrt::ConcreteEvenSharding::Create( *sharding_devices, memory_kind, ifrt::Shape(dimensions), ifrt::Shape(tile_shape_dimensions))); return absl::OkStatus(); }; auto append_token = [&](MemoryKind memory_kind) { output_dtypes.push_back(DType(DType::kToken)); output_shapes.push_back(Shape({})); output_shardings.push_back( ifrt::ConcreteEvenSharding::Create(*sharding_devices, memory_kind, ifrt::Shape({}), ifrt::Shape({}))); }; auto check_output_sharding_condition = [](absl::Span<const xla::PrimitiveType> element_types, const xla::HloSharding& sharding) { if (sharding.IsTuple()) { return element_types.size() == sharding.tuple_elements().size() || (element_types.empty() && sharding.tuple_elements().size() == 1); } return element_types.size() == 1; }; if (result_memory_kinds.has_value() && result_memory_kinds->size() != result_element_types.size()) { return FailedPrecondition( "Output memory kinds are inconsistent with the output shape"); } if (result_hlo_sharding.has_value() && !check_output_sharding_condition(result_element_types, *result_hlo_sharding)) { return FailedPrecondition( "Output sharding is inconsistent with the output shape"); } CHECK_EQ(result_element_types.size(), result_dimensions.size()); output_dtypes.reserve(result_element_types.size()); output_shapes.reserve(result_element_types.size()); output_shardings.reserve(result_element_types.size()); for (int i = 0; i < result_element_types.size(); ++i) { const auto& element_type = result_element_types[i]; MemoryKind element_memory_kind; if (result_memory_kinds.has_value()) { element_memory_kind = MemoryKind((*result_memory_kinds)[i]); } if (xla::primitive_util::IsArrayType(element_type)) { const xla::HloSharding* element_hlo_sharding = nullptr; if (result_hlo_sharding.has_value()) { element_hlo_sharding = result_hlo_sharding->IsTuple() ? &result_hlo_sharding->tuple_elements()[i] : &*result_hlo_sharding; if (element_hlo_sharding->IsTuple()) { return FailedPrecondition( "Nested-tupled output sharding is not supported"); } } TF_RETURN_IF_ERROR(append_arg(element_type, result_dimensions[i], element_hlo_sharding, element_memory_kind)); } else if (element_type == TOKEN) { append_token(element_memory_kind); } else { return FailedPrecondition( "The element type is not a supported type (array, token)"); } } std::vector<PjRtHostSendAndRecvLoadedHostCallback*> host_send_and_recv_callbacks; host_send_and_recv_callbacks.reserve(loaded_host_callbacks.size()); for (auto& loaded_host_callback : loaded_host_callbacks) { auto* host_send_and_recv_callback = llvm::dyn_cast<PjRtHostSendAndRecvLoadedHostCallback>( loaded_host_callback.get()); if (host_send_and_recv_callback != nullptr) { host_send_and_recv_callbacks.push_back(host_send_and_recv_callback); } } std::vector<Device*> addressable_devices; addressable_devices.reserve( pjrt_loaded_executable->addressable_devices().size()); for (xla::PjRtDevice* device : pjrt_loaded_executable->addressable_devices()) { TF_ASSIGN_OR_RETURN(Device * ifrt_device, client->LookupPjRtDevice(device)); addressable_devices.push_back(ifrt_device); } return std::unique_ptr<LoadedExecutable>(new PjRtLoadedExecutable( client, std::move(pjrt_loaded_executable), std::move(devices), std::move(addressable_devices), std::move(loaded_host_callbacks), std::move(host_send_and_recv_callbacks), std::move(output_dtypes), std::move(output_shapes), std::move(output_shardings))); } PjRtLoadedExecutable::PjRtLoadedExecutable( PjRtCompatibleClient* client, std::shared_ptr<xla::PjRtLoadedExecutable> pjrt_loaded_executable, tsl::RCReference<DeviceList> devices, std::vector<Device*> addressable_devices, std::vector<tsl::RCReference<LoadedHostCallback>> all_loaded_host_callbacks, std::vector<PjRtHostSendAndRecvLoadedHostCallback*> host_send_recv_callbacks, std::vector<DType> output_dtypes, std::vector<Shape> output_shapes, std::vector<std::shared_ptr<const Sharding>> output_shardings) : client_(client), pjrt_loaded_executable_(std::move(pjrt_loaded_executable)), devices_(std::move(devices)), addressable_devices_(std::move(addressable_devices)), all_loaded_host_callbacks_( std::make_shared<std::vector<tsl::RCReference<LoadedHostCallback>>>( std::move(all_loaded_host_callbacks))), host_send_recv_callbacks_(std::move(host_send_recv_callbacks)), output_dtypes_(std::move(output_dtypes)), output_shapes_(std::move(output_shapes)), output_shardings_(std::move(output_shardings)) {} PjRtLoadedExecutable::~PjRtLoadedExecutable() = default; absl::StatusOr<PjRtLoadedExecutable::ExecuteResult> PjRtLoadedExecutable::Execute( absl::Span<tsl::RCReference<Array>> args, const ExecuteOptions& options, std::optional<tsl::RCReference<DeviceList>> devices) { DCHECK(this); std::vector<std::vector<PjRtBuffer*>> argument_handles; std::vector<std::unique_ptr<PjRtBuffer>> owned_buffers; int num_computations; const bool portable_execution = devices.has_value(); PjRtCompatibleDevice* portable_execution_device = nullptr; if (portable_execution) { if ((*devices)->size() != 1) { return InvalidArgument( "Only single-shard portable execution is supported"); } num_computations = 1; portable_execution_device = static_cast<PjRtDevice*>((*devices)->devices().front()); } else { if (devices_->devices().empty()) { return InvalidArgument("No devices provided for portable executable"); } num_computations = devices_->size(); } argument_handles.resize(num_computations); for (int i = 0; i < num_computations; ++i) { argument_handles[i].reserve(args.size()); } for (int i = 0; i < args.size(); ++i) { auto* pjrt_array = llvm::dyn_cast_or_null<PjRtCompatibleArray>(args[i].get()); if (!pjrt_array) { return InvalidArgument( "Only PjRtCompatibleArray is supported, but argument %d is %s", i, pjrt_array->DebugString()); } int j = 0; for (const auto& pjrt_buffer : pjrt_array->pjrt_buffers()) { argument_handles[j].push_back(pjrt_buffer.get()); ++j; } } const bool returned_future_supported = pjrt_loaded_executable_->IsReturnedFutureSupported(); xla::ExecuteOptions opts; opts.untuple_result = true; opts.launch_id = options.launch_id; opts.use_major_to_minor_data_layout_for_callbacks = true; opts.non_donatable_input_indices = options.non_donatable_input_indices; if (!all_loaded_host_callbacks_->empty() && !returned_future_supported) { return Internal( "Host callback not supported without returned future support in " "runtime: %s", client_->runtime_type()); } std::unique_ptr<HostCallbackStates> host_callback_states; if (!host_send_recv_callbacks_.empty()) { host_callback_states = std::make_unique<HostCallbackStates>(); for (int i = 0; i < num_computations; ++i) { auto& contexts = host_callback_states->contexts.emplace_back(); auto& send_callbacks = host_callback_states->send_callbacks.emplace_back(); auto& recv_callbacks = host_callback_states->recv_callbacks.emplace_back(); for (const auto& host_send_recv_callback : host_send_recv_callbacks_) { contexts.push_back(CreateHostCallbackStateAndAppendSendRecvCallbacks( host_send_recv_callback->host_callback(), nullptr, send_callbacks, recv_callbacks, opts.use_major_to_minor_data_layout_for_callbacks)); } } opts.send_callbacks = host_callback_states->send_callbacks; opts.recv_callbacks = host_callback_states->recv_callbacks; } std::vector<std::vector<std::unique_ptr<PjRtBuffer>>> pjrt_outputs; xla::ifrt::Future<> status; if (portable_execution) { std::optional<PjRtFuture<>> returned_pjrt_future; TF_RET_CHECK(portable_execution_device->IsAddressable()); TF_ASSIGN_OR_RETURN( std::vector<std::unique_ptr<PjRtBuffer>> single_device_pjrt_results, pjrt_loaded_executable_->ExecutePortable( argument_handles.front(), portable_execution_device->pjrt_device(), opts, returned_pjrt_future, returned_future_supported)); pjrt_outputs.push_back(std::move(single_device_pjrt_results)); if (returned_future_supported) { status = *std::move(returned_pjrt_future); } else { status = Future<>(absl::OkStatus()); } } else { std::optional<std::vector<PjRtFuture<>>> returned_pjrt_futures; if (returned_future_supported) { returned_pjrt_futures.emplace(); } TF_ASSIGN_OR_RETURN( pjrt_outputs, pjrt_loaded_executable_->Execute(argument_handles, opts, returned_pjrt_futures)); if (returned_future_supported) { status = JoinFutures(absl::MakeSpan(*returned_pjrt_futures)); } else { status = Future<>(absl::OkStatus()); } } if (!all_loaded_host_callbacks_->empty()) { status.OnReady([all_loaded_host_callbacks = all_loaded_host_callbacks_, host_callback_states = std::move(host_callback_states)](absl::Status) mutable { all_loaded_host_callbacks.reset(); }); } std::vector<tsl::RCReference<Array>> outputs; if (pjrt_outputs.size() != num_computations) { return FailedPrecondition( "Unexpected number of computations in outputs: %d vs. %d", pjrt_outputs.size(), num_computations); } const int num_outputs = pjrt_outputs.front().size(); if (num_outputs != output_dtypes_.size()) { return FailedPrecondition("Unexpected number of outputs: %d vs. %d", num_outputs, output_dtypes_.size()); } outputs.reserve(num_outputs); absl::flat_hash_map<MemoryKind, std::shared_ptr<const Sharding>> single_device_shardings; for (int i = 0; i < num_outputs; ++i) { PjRtArray::PjRtBuffers buffers; buffers.reserve(num_computations); const MemoryKind first_memory_kind = MakeMemoryKindFromPjRtBuffer(pjrt_outputs[0][i].get()); const MemoryKind canonical_first_memory_kind = CanonicalizeMemoryKindWithPjRtDevice(first_memory_kind, pjrt_outputs[0][i]->device()); for (int j = 0; j < num_computations; ++j) { if (j > 0) { if (auto memory_kind = MakeMemoryKindFromPjRtBuffer(pjrt_outputs[j][i].get()); canonical_first_memory_kind != CanonicalizeMemoryKindWithPjRtDevice( memory_kind, pjrt_outputs[j][i]->device())) { return FailedPrecondition( "Memory kind mismatch between PjRtBuffers. Got one buffer with " "memory kind '%v' and another with memory_kind '%v'", first_memory_kind, memory_kind); } } buffers.push_back( std::shared_ptr<PjRtBuffer>(pjrt_outputs[j][i].release())); } std::shared_ptr<const Sharding> sharding; if (portable_execution) { if (auto it = single_device_shardings.find(first_memory_kind); it == single_device_shardings.end()) { sharding = single_device_shardings .insert({first_memory_kind, SingleDeviceSharding::Create(portable_execution_device, first_memory_kind)}) .first->second; } else { sharding = it->second; } } else { sharding = output_shardings_[i]; } outputs.push_back(*PjRtArray::Create(client_, output_dtypes_[i], output_shapes_[i], std::move(sharding), std::move(buffers))); } ExecuteResult result; if (options.fill_status) { result.status = status; } result.outputs = std::move(outputs); return result; } absl::StatusOr<std::optional<std::string>> PjRtLoadedExecutable::Fingerprint() const { DCHECK(this); absl::StatusOr<std::string> fingerprint = pjrt_loaded_executable_->FingerprintExecutable(); if (fingerprint.ok()) { return {fingerprint.value()}; } else if (fingerprint.status().code() == absl::StatusCode::kUnimplemented) { return std::nullopt; } else { return fingerprint.status(); } } absl::StatusOr<std::string> PjRtLoadedExecutable::Serialize() const { DCHECK(this); return pjrt_loaded_executable_->SerializeExecutable(); } Future<> PjRtLoadedExecutable::Delete() { DCHECK(this); pjrt_loaded_executable_->Delete(); return Future<>(absl::OkStatus()); } } }
#include "xla/pjrt/pjrt_executable.h" #include <string> #include <utility> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/client/executable_build_options.h" #include "xla/pjrt/compile_options.pb.h" #include "xla/shape_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/status_matchers.h" namespace xla { namespace { using ::tsl::testing::StatusIs; TEST(CompileOptionsTest, Serialization) { CompileOptions src; src.compile_portable_executable = true; src.parameter_is_tupled_arguments = true; src.profile_version = 1; src.argument_layouts = {ShapeUtil::MakeShape(S32, {1})}; ExecutableBuildOptions build_option; build_option.set_device_assignment(DeviceAssignment(1, 1)); src.executable_build_options = build_option; TF_ASSERT_OK_AND_ASSIGN(CompileOptionsProto proto, src.ToProto()); TF_ASSERT_OK_AND_ASSIGN(CompileOptions output, CompileOptions::FromProto(proto)); TF_ASSERT_OK_AND_ASSIGN(CompileOptionsProto output_proto, src.ToProto()); EXPECT_EQ(proto.SerializeAsString(), output_proto.SerializeAsString()); } TEST(CompileOptionsTest, MultiSliceConfigNotSupported) { CompileOptionsProto proto; *proto.mutable_serialized_multi_slice_config() = "multi_size_config"; auto option = CompileOptions::FromProto(proto); EXPECT_THAT( option.status(), StatusIs( absl::StatusCode::kUnimplemented, "multi_slice_config not supported in CompileOptions::FromProto.")); } TEST(ExecuteOptionsTest, Serialization) { ExecuteOptions src; src.arguments_are_tupled = true; src.untuple_result = false; src.launch_id = 1234; src.strict_shape_checking = true; src.execution_mode = ExecuteOptions::ExecutionMode::kAsynchronous; src.non_donatable_input_indices = {2, 3}; TF_ASSERT_OK_AND_ASSIGN(ExecuteOptionsProto proto, src.ToProto()); TF_ASSERT_OK_AND_ASSIGN(ExecuteOptions output, ExecuteOptions::FromProto(proto)); TF_ASSERT_OK_AND_ASSIGN(ExecuteOptionsProto output_proto, src.ToProto()); EXPECT_EQ(proto.SerializeAsString(), output_proto.SerializeAsString()); } TEST(ExecuteOptionsTest, SendRecvNotSupported) { ExecuteOptions options; std::vector<std::vector<SendCallback>> send_callbacks(1); options.send_callbacks = send_callbacks; std::vector<std::vector<RecvCallback>> recv_callbacks(1); options.recv_callbacks = recv_callbacks; EXPECT_THAT( options.ToProto(), StatusIs(absl::StatusCode::kUnimplemented, "ExecuteOptions with send/recv calbacks is not serializable")); } TEST(ExecuteOptionsTest, ApplyOptionsCanParseStringsAndEnums) { using OptionOverride = std::variant<std::string, bool, int64_t, double>; std::vector<std::pair<std::string, OptionOverride>> env_override_options; env_override_options = { {"xla_gpu_use_runtime_fusion", std::string("True")}, {"xla_gpu_graph_min_graph_size", std::string("2")}, {"xla_gpu_disable_async_collectives", std::string("2")}, {"xla_gpu_redzone_scratch_max_megabytes", std::string("3400")}, {"xla_gpu_auto_spmd_partitioning_memory_budget_ratio", 0.9}, {"xla_gpu_pgle_profile_file_or_directory_path", std::string("abc")}}; CompileOptions src; src.env_option_overrides = env_override_options; auto s = src.ApplyAllOptionOverrides(); auto& debug_options = src.executable_build_options.debug_options(); EXPECT_EQ(debug_options.xla_gpu_use_runtime_fusion(), true); EXPECT_EQ(debug_options.xla_gpu_graph_min_graph_size(), 2); EXPECT_EQ(debug_options.xla_gpu_redzone_scratch_max_megabytes(), 3400); EXPECT_FLOAT_EQ( debug_options.xla_gpu_auto_spmd_partitioning_memory_budget_ratio(), 0.9); EXPECT_EQ(debug_options.xla_gpu_pgle_profile_file_or_directory_path(), "abc"); EXPECT_EQ(debug_options.xla_gpu_disable_async_collectives().size(), 1); EXPECT_EQ(debug_options.xla_gpu_disable_async_collectives()[0], 2); } TEST(CompiledMemoryStatsTest, Serialization) { CompiledMemoryStats stats; stats.generated_code_size_in_bytes = 2; stats.argument_size_in_bytes = 3; stats.output_size_in_bytes = 5; stats.alias_size_in_bytes = 7; stats.temp_size_in_bytes = 11; stats.host_generated_code_size_in_bytes = 13; stats.host_argument_size_in_bytes = 17; stats.host_output_size_in_bytes = 19; stats.host_alias_size_in_bytes = 23; stats.host_temp_size_in_bytes = 29; CompiledMemoryStatsProto serialized = stats.ToProto(); CompiledMemoryStats deserialized = CompiledMemoryStats::FromProto(serialized); EXPECT_EQ(serialized.SerializeAsString(), deserialized.ToProto().SerializeAsString()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/pjrt_ifrt/pjrt_executable.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/pjrt_executable_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fa9a5052-ef10-472d-907c-c663fac19c97
cpp
google/leveldb
filename
db/filename.cc
db/filename_test.cc
#include "db/filename.h" #include <cassert> #include <cstdio> #include "db/dbformat.h" #include "leveldb/env.h" #include "util/logging.h" namespace leveldb { Status WriteStringToFileSync(Env* env, const Slice& data, const std::string& fname); static std::string MakeFileName(const std::string& dbname, uint64_t number, const char* suffix) { char buf[100]; std::snprintf(buf, sizeof(buf), "/%06llu.%s", static_cast<unsigned long long>(number), suffix); return dbname + buf; } std::string LogFileName(const std::string& dbname, uint64_t number) { assert(number > 0); return MakeFileName(dbname, number, "log"); } std::string TableFileName(const std::string& dbname, uint64_t number) { assert(number > 0); return MakeFileName(dbname, number, "ldb"); } std::string SSTTableFileName(const std::string& dbname, uint64_t number) { assert(number > 0); return MakeFileName(dbname, number, "sst"); } std::string DescriptorFileName(const std::string& dbname, uint64_t number) { assert(number > 0); char buf[100]; std::snprintf(buf, sizeof(buf), "/MANIFEST-%06llu", static_cast<unsigned long long>(number)); return dbname + buf; } std::string CurrentFileName(const std::string& dbname) { return dbname + "/CURRENT"; } std::string LockFileName(const std::string& dbname) { return dbname + "/LOCK"; } std::string TempFileName(const std::string& dbname, uint64_t number) { assert(number > 0); return MakeFileName(dbname, number, "dbtmp"); } std::string InfoLogFileName(const std::string& dbname) { return dbname + "/LOG"; } std::string OldInfoLogFileName(const std::string& dbname) { return dbname + "/LOG.old"; } bool ParseFileName(const std::string& filename, uint64_t* number, FileType* type) { Slice rest(filename); if (rest == "CURRENT") { *number = 0; *type = kCurrentFile; } else if (rest == "LOCK") { *number = 0; *type = kDBLockFile; } else if (rest == "LOG" || rest == "LOG.old") { *number = 0; *type = kInfoLogFile; } else if (rest.starts_with("MANIFEST-")) { rest.remove_prefix(strlen("MANIFEST-")); uint64_t num; if (!ConsumeDecimalNumber(&rest, &num)) { return false; } if (!rest.empty()) { return false; } *type = kDescriptorFile; *number = num; } else { uint64_t num; if (!ConsumeDecimalNumber(&rest, &num)) { return false; } Slice suffix = rest; if (suffix == Slice(".log")) { *type = kLogFile; } else if (suffix == Slice(".sst") || suffix == Slice(".ldb")) { *type = kTableFile; } else if (suffix == Slice(".dbtmp")) { *type = kTempFile; } else { return false; } *number = num; } return true; } Status SetCurrentFile(Env* env, const std::string& dbname, uint64_t descriptor_number) { std::string manifest = DescriptorFileName(dbname, descriptor_number); Slice contents = manifest; assert(contents.starts_with(dbname + "/")); contents.remove_prefix(dbname.size() + 1); std::string tmp = TempFileName(dbname, descriptor_number); Status s = WriteStringToFileSync(env, contents.ToString() + "\n", tmp); if (s.ok()) { s = env->RenameFile(tmp, CurrentFileName(dbname)); } if (!s.ok()) { env->RemoveFile(tmp); } return s; } }
#include "db/filename.h" #include "gtest/gtest.h" #include "db/dbformat.h" #include "port/port.h" #include "util/logging.h" namespace leveldb { TEST(FileNameTest, Parse) { Slice db; FileType type; uint64_t number; static struct { const char* fname; uint64_t number; FileType type; } cases[] = { {"100.log", 100, kLogFile}, {"0.log", 0, kLogFile}, {"0.sst", 0, kTableFile}, {"0.ldb", 0, kTableFile}, {"CURRENT", 0, kCurrentFile}, {"LOCK", 0, kDBLockFile}, {"MANIFEST-2", 2, kDescriptorFile}, {"MANIFEST-7", 7, kDescriptorFile}, {"LOG", 0, kInfoLogFile}, {"LOG.old", 0, kInfoLogFile}, {"18446744073709551615.log", 18446744073709551615ull, kLogFile}, }; for (int i = 0; i < sizeof(cases) / sizeof(cases[0]); i++) { std::string f = cases[i].fname; ASSERT_TRUE(ParseFileName(f, &number, &type)) << f; ASSERT_EQ(cases[i].type, type) << f; ASSERT_EQ(cases[i].number, number) << f; } static const char* errors[] = {"", "foo", "foo-dx-100.log", ".log", "", "manifest", "CURREN", "CURRENTX", "MANIFES", "MANIFEST", "MANIFEST-", "XMANIFEST-3", "MANIFEST-3x", "LOC", "LOCKx", "LO", "LOGx", "18446744073709551616.log", "184467440737095516150.log", "100", "100.", "100.lop"}; for (int i = 0; i < sizeof(errors) / sizeof(errors[0]); i++) { std::string f = errors[i]; ASSERT_TRUE(!ParseFileName(f, &number, &type)) << f; } } TEST(FileNameTest, Construction) { uint64_t number; FileType type; std::string fname; fname = CurrentFileName("foo"); ASSERT_EQ("foo/", std::string(fname.data(), 4)); ASSERT_TRUE(ParseFileName(fname.c_str() + 4, &number, &type)); ASSERT_EQ(0, number); ASSERT_EQ(kCurrentFile, type); fname = LockFileName("foo"); ASSERT_EQ("foo/", std::string(fname.data(), 4)); ASSERT_TRUE(ParseFileName(fname.c_str() + 4, &number, &type)); ASSERT_EQ(0, number); ASSERT_EQ(kDBLockFile, type); fname = LogFileName("foo", 192); ASSERT_EQ("foo/", std::string(fname.data(), 4)); ASSERT_TRUE(ParseFileName(fname.c_str() + 4, &number, &type)); ASSERT_EQ(192, number); ASSERT_EQ(kLogFile, type); fname = TableFileName("bar", 200); ASSERT_EQ("bar/", std::string(fname.data(), 4)); ASSERT_TRUE(ParseFileName(fname.c_str() + 4, &number, &type)); ASSERT_EQ(200, number); ASSERT_EQ(kTableFile, type); fname = DescriptorFileName("bar", 100); ASSERT_EQ("bar/", std::string(fname.data(), 4)); ASSERT_TRUE(ParseFileName(fname.c_str() + 4, &number, &type)); ASSERT_EQ(100, number); ASSERT_EQ(kDescriptorFile, type); fname = TempFileName("tmp", 999); ASSERT_EQ("tmp/", std::string(fname.data(), 4)); ASSERT_TRUE(ParseFileName(fname.c_str() + 4, &number, &type)); ASSERT_EQ(999, number); ASSERT_EQ(kTempFile, type); fname = InfoLogFileName("foo"); ASSERT_EQ("foo/", std::string(fname.data(), 4)); ASSERT_TRUE(ParseFileName(fname.c_str() + 4, &number, &type)); ASSERT_EQ(0, number); ASSERT_EQ(kInfoLogFile, type); fname = OldInfoLogFileName("foo"); ASSERT_EQ("foo/", std::string(fname.data(), 4)); ASSERT_TRUE(ParseFileName(fname.c_str() + 4, &number, &type)); ASSERT_EQ(0, number); ASSERT_EQ(kInfoLogFile, type); } }
https://github.com/google/leveldb/blob/23e35d792b9154f922b8b575b12596a4d8664c65/db/filename.cc
https://github.com/google/leveldb/blob/23e35d792b9154f922b8b575b12596a4d8664c65/db/filename_test.cc
23e35d792b9154f922b8b575b12596a4d8664c65
75fb6a2c-6f24-4264-bf11-5f6743f5b5fa
cpp
google/quiche
qbone_client
quiche/quic/qbone/qbone_client.cc
quiche/quic/qbone/qbone_client_test.cc
#include "quiche/quic/qbone/qbone_client.h" #include <memory> #include <utility> #include "absl/strings/string_view.h" #include "quiche/quic/core/io/quic_event_loop.h" #include "quiche/quic/core/quic_bandwidth.h" #include "quiche/quic/core/quic_default_connection_helper.h" #include "quiche/quic/platform/api/quic_testvalue.h" #include "quiche/quic/tools/quic_client_default_network_helper.h" namespace quic { namespace { std::unique_ptr<QuicClientBase::NetworkHelper> CreateNetworkHelper( QuicEventLoop* event_loop, QboneClient* client) { std::unique_ptr<QuicClientBase::NetworkHelper> helper = std::make_unique<QuicClientDefaultNetworkHelper>(event_loop, client); quic::AdjustTestValue("QboneClient/network_helper", &helper); return helper; } } QboneClient::QboneClient(QuicSocketAddress server_address, const QuicServerId& server_id, const ParsedQuicVersionVector& supported_versions, QuicSession::Visitor* session_owner, const QuicConfig& config, QuicEventLoop* event_loop, std::unique_ptr<ProofVerifier> proof_verifier, QbonePacketWriter* qbone_writer, QboneClientControlStream::Handler* qbone_handler) : QuicClientBase(server_id, supported_versions, config, new QuicDefaultConnectionHelper(), event_loop->CreateAlarmFactory().release(), CreateNetworkHelper(event_loop, this), std::move(proof_verifier), nullptr), qbone_writer_(qbone_writer), qbone_handler_(qbone_handler), session_owner_(session_owner), max_pacing_rate_(QuicBandwidth::Zero()) { set_server_address(server_address); crypto_config()->set_alpn("qbone"); } QboneClient::~QboneClient() { ResetSession(); } QboneClientSession* QboneClient::qbone_session() { return static_cast<QboneClientSession*>(QuicClientBase::session()); } void QboneClient::ProcessPacketFromNetwork(absl::string_view packet) { qbone_session()->ProcessPacketFromNetwork(packet); } bool QboneClient::EarlyDataAccepted() { return qbone_session()->EarlyDataAccepted(); } bool QboneClient::ReceivedInchoateReject() { return qbone_session()->ReceivedInchoateReject(); } int QboneClient::GetNumSentClientHellosFromSession() { return qbone_session()->GetNumSentClientHellos(); } int QboneClient::GetNumReceivedServerConfigUpdatesFromSession() { return qbone_session()->GetNumReceivedServerConfigUpdates(); } void QboneClient::ResendSavedData() { } void QboneClient::ClearDataToResend() { } bool QboneClient::HasActiveRequests() { return qbone_session()->HasActiveRequests(); } class QboneClientSessionWithConnection : public QboneClientSession { public: using QboneClientSession::QboneClientSession; ~QboneClientSessionWithConnection() override { DeleteConnection(); } }; std::unique_ptr<QuicSession> QboneClient::CreateQuicClientSession( const ParsedQuicVersionVector& supported_versions, QuicConnection* connection) { if (max_pacing_rate() > quic::QuicBandwidth::Zero()) { QUIC_LOG(INFO) << "Setting max pacing rate to " << max_pacing_rate(); connection->SetMaxPacingRate(max_pacing_rate()); } return std::make_unique<QboneClientSessionWithConnection>( connection, crypto_config(), session_owner(), *config(), supported_versions, server_id(), qbone_writer_, qbone_handler_); } bool QboneClient::use_quarantine_mode() const { return use_quarantine_mode_; } void QboneClient::set_use_quarantine_mode(bool use_quarantine_mode) { use_quarantine_mode_ = use_quarantine_mode; } }
#include "quiche/quic/qbone/qbone_client.h" #include <memory> #include <string> #include <utility> #include <vector> #include "absl/strings/string_view.h" #include "quiche/quic/core/io/quic_default_event_loop.h" #include "quiche/quic/core/io/quic_event_loop.h" #include "quiche/quic/core/quic_alarm_factory.h" #include "quiche/quic/core/quic_default_clock.h" #include "quiche/quic/core/quic_default_connection_helper.h" #include "quiche/quic/core/quic_dispatcher.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/quic_versions.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_socket_address.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/platform/api/quic_test_loopback.h" #include "quiche/quic/qbone/qbone_packet_processor_test_tools.h" #include "quiche/quic/qbone/qbone_server_session.h" #include "quiche/quic/test_tools/crypto_test_utils.h" #include "quiche/quic/test_tools/quic_connection_peer.h" #include "quiche/quic/test_tools/quic_dispatcher_peer.h" #include "quiche/quic/test_tools/quic_server_peer.h" #include "quiche/quic/test_tools/server_thread.h" #include "quiche/quic/tools/quic_memory_cache_backend.h" #include "quiche/quic/tools/quic_server.h" namespace quic { namespace test { namespace { using ::testing::ElementsAre; ParsedQuicVersionVector GetTestParams() { ParsedQuicVersionVector test_versions; SetQuicReloadableFlag(quic_disable_version_q046, false); return CurrentSupportedVersionsWithQuicCrypto(); } std::string TestPacketIn(const std::string& body) { return PrependIPv6HeaderForTest(body, 5); } std::string TestPacketOut(const std::string& body) { return PrependIPv6HeaderForTest(body, 4); } class DataSavingQbonePacketWriter : public QbonePacketWriter { public: void WritePacketToNetwork(const char* packet, size_t size) override { quiche::QuicheWriterMutexLock lock(&mu_); data_.push_back(std::string(packet, size)); } std::vector<std::string> data() { quiche::QuicheWriterMutexLock lock(&mu_); return data_; } private: quiche::QuicheMutex mu_; std::vector<std::string> data_; }; class ConnectionOwningQboneServerSession : public QboneServerSession { public: ConnectionOwningQboneServerSession( const ParsedQuicVersionVector& supported_versions, QuicConnection* connection, Visitor* owner, const QuicConfig& config, const QuicCryptoServerConfig* quic_crypto_server_config, QuicCompressedCertsCache* compressed_certs_cache, QbonePacketWriter* writer) : QboneServerSession(supported_versions, connection, owner, config, quic_crypto_server_config, compressed_certs_cache, writer, TestLoopback6(), TestLoopback6(), 64, nullptr), connection_(connection) {} private: std::unique_ptr<QuicConnection> connection_; }; class QuicQboneDispatcher : public QuicDispatcher { public: QuicQboneDispatcher( const QuicConfig* config, const QuicCryptoServerConfig* crypto_config, QuicVersionManager* version_manager, std::unique_ptr<QuicConnectionHelperInterface> helper, std::unique_ptr<QuicCryptoServerStreamBase::Helper> session_helper, std::unique_ptr<QuicAlarmFactory> alarm_factory, QbonePacketWriter* writer, ConnectionIdGeneratorInterface& generator) : QuicDispatcher(config, crypto_config, version_manager, std::move(helper), std::move(session_helper), std::move(alarm_factory), kQuicDefaultConnectionIdLength, generator), writer_(writer) {} std::unique_ptr<QuicSession> CreateQuicSession( QuicConnectionId id, const QuicSocketAddress& self_address, const QuicSocketAddress& peer_address, absl::string_view alpn, const ParsedQuicVersion& version, const ParsedClientHello& , ConnectionIdGeneratorInterface& connection_id_generator) override { QUICHE_CHECK_EQ(alpn, "qbone"); QuicConnection* connection = new QuicConnection( id, self_address, peer_address, helper(), alarm_factory(), writer(), false, Perspective::IS_SERVER, ParsedQuicVersionVector{version}, connection_id_generator); auto session = std::make_unique<ConnectionOwningQboneServerSession>( GetSupportedVersions(), connection, this, config(), crypto_config(), compressed_certs_cache(), writer_); session->Initialize(); return session; } private: QbonePacketWriter* writer_; }; class QboneTestServer : public QuicServer { public: explicit QboneTestServer(std::unique_ptr<ProofSource> proof_source, quic::QuicMemoryCacheBackend* response_cache) : QuicServer(std::move(proof_source), response_cache) {} QuicDispatcher* CreateQuicDispatcher() override { return new QuicQboneDispatcher( &config(), &crypto_config(), version_manager(), std::make_unique<QuicDefaultConnectionHelper>(), std::make_unique<QboneCryptoServerStreamHelper>(), event_loop()->CreateAlarmFactory(), &writer_, connection_id_generator()); } std::vector<std::string> data() { return writer_.data(); } private: DataSavingQbonePacketWriter writer_; }; class QboneTestClient : public QboneClient { public: QboneTestClient(QuicSocketAddress server_address, const QuicServerId& server_id, const ParsedQuicVersionVector& supported_versions, QuicEventLoop* event_loop, std::unique_ptr<ProofVerifier> proof_verifier) : QboneClient(server_address, server_id, supported_versions, nullptr, QuicConfig(), event_loop, std::move(proof_verifier), &qbone_writer_, nullptr) {} ~QboneTestClient() override {} void SendData(const std::string& data) { qbone_session()->ProcessPacketFromNetwork(data); } void WaitForWriteToFlush() { while (connected() && session()->HasDataToWrite()) { WaitForEvents(); } } bool WaitForDataSize(int n, QuicTime::Delta timeout) { const QuicClock* clock = quic::test::QuicConnectionPeer::GetHelper(session()->connection()) ->GetClock(); const QuicTime deadline = clock->Now() + timeout; while (data().size() < n) { if (clock->Now() > deadline) { return false; } WaitForEvents(); } return true; } std::vector<std::string> data() { return qbone_writer_.data(); } private: DataSavingQbonePacketWriter qbone_writer_; }; class QboneClientTest : public QuicTestWithParam<ParsedQuicVersion> {}; INSTANTIATE_TEST_SUITE_P(Tests, QboneClientTest, ::testing::ValuesIn(GetTestParams()), ::testing::PrintToStringParamName()); TEST_P(QboneClientTest, SendDataFromClient) { quic::QuicMemoryCacheBackend server_backend; auto server = std::make_unique<QboneTestServer>( crypto_test_utils::ProofSourceForTesting(), &server_backend); QboneTestServer* server_ptr = server.get(); QuicSocketAddress server_address(TestLoopback(), 0); ServerThread server_thread(std::move(server), server_address); server_thread.Initialize(); server_address = QuicSocketAddress(server_address.host(), server_thread.GetPort()); server_thread.Start(); std::unique_ptr<QuicEventLoop> event_loop = GetDefaultEventLoop()->Create(quic::QuicDefaultClock::Get()); QboneTestClient client( server_address, QuicServerId("test.example.com", server_address.port()), ParsedQuicVersionVector{GetParam()}, event_loop.get(), crypto_test_utils::ProofVerifierForTesting()); ASSERT_TRUE(client.Initialize()); ASSERT_TRUE(client.Connect()); ASSERT_TRUE(client.WaitForOneRttKeysAvailable()); client.SendData(TestPacketIn("hello")); client.SendData(TestPacketIn("world")); client.WaitForWriteToFlush(); ASSERT_TRUE( server_thread.WaitUntil([&] { return server_ptr->data().size() >= 2; }, QuicTime::Delta::FromSeconds(5))); std::string long_data(1000, 'A'); server_thread.Schedule([server_ptr, &long_data]() { EXPECT_THAT(server_ptr->data(), ElementsAre(TestPacketOut("hello"), TestPacketOut("world"))); auto server_session = static_cast<QboneServerSession*>( QuicDispatcherPeer::GetFirstSessionIfAny( QuicServerPeer::GetDispatcher(server_ptr))); server_session->ProcessPacketFromNetwork( TestPacketIn("Somethingsomething")); server_session->ProcessPacketFromNetwork(TestPacketIn(long_data)); server_session->ProcessPacketFromNetwork(TestPacketIn(long_data)); }); EXPECT_TRUE(client.WaitForDataSize(3, QuicTime::Delta::FromSeconds(5))); EXPECT_THAT(client.data(), ElementsAre(TestPacketOut("Somethingsomething"), TestPacketOut(long_data), TestPacketOut(long_data))); client.Disconnect(); server_thread.Quit(); server_thread.Join(); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/qbone/qbone_client.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/qbone/qbone_client_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
d03b60b5-e83c-4edb-98fa-654bafca637a
cpp
tensorflow/tensorflow
compile_tf_graph
tensorflow/compiler/mlir/tf2xla/api/v1/compile_tf_graph.cc
tensorflow/compiler/mlir/tf2xla/api/v1/compile_tf_graph_test.cc
#include "tensorflow/compiler/mlir/tf2xla/api/v1/compile_tf_graph.h" #include <cstdint> #include <memory> #include <string> #include <variant> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/strings/str_cat.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/StringRef.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Pass/PassManager.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/tensorflow/dialect_registration.h" #include "tensorflow/compiler/mlir/tensorflow/transforms/passes.h" #include "tensorflow/compiler/mlir/tensorflow/transforms/set_tpu_infeed_layout.h" #include "tensorflow/compiler/mlir/tensorflow/translate/mlir_roundtrip_flags.h" #include "tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.h" #include "tensorflow/compiler/mlir/tensorflow/utils/error_util.h" #include "tensorflow/compiler/mlir/tensorflow/utils/serialize_mlir_module_utils.h" #include "tensorflow/compiler/mlir/tensorflow/utils/translate_utils.h" #include "tensorflow/compiler/mlir/tf2xla/api/v2/tf_executor_to_graph.h" #include "tensorflow/compiler/mlir/tf2xla/internal/logging_hooks.h" #include "tensorflow/compiler/tf2xla/layout_util.h" #include "tensorflow/compiler/tf2xla/xla_compiler.h" #include "tensorflow/compiler/tf2xla/xla_helpers.h" #include "xla/client/compile_only_client.h" #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include "xla/mlir_hlo/mhlo/IR/register.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/tsl/lib/monitoring/sampler.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/lib/monitoring/counter.h" #include "tensorflow/core/lib/monitoring/sampler.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/profile_utils/cpu_utils.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/tpu/kernels/tpu_compile_op_support.h" #include "tensorflow/core/tpu/tpu_compile.h" #include "tensorflow/core/util/debug_data_dumper.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace tf2xla { namespace v1 { using ::tensorflow::tpu::FunctionToHloArgs; using ::tensorflow::tpu::GuaranteedConsts; using ::tensorflow::tpu::MlirToHloArgs; using ::tensorflow::tpu::ShardingAndIndex; auto* phase2_bridge_compilation_status = tensorflow::monitoring::Counter<1>::New( "/tensorflow/core/tf2xla/api/v1/" "phase2_compilation_status", "Tracks the compilation status of the non-mlir bridge", "status" ); auto* phase2_bridge_compilation_time = tsl::monitoring::Sampler<1>::New( {"/tensorflow/core/tf2xla/api/v1/phase2_compilation_time", "The wall-clock time spent on executing graphs in milliseconds.", "configuration"}, {tsl::monitoring::Buckets::Exponential(1, 1.5, 45)}); constexpr char kOldBridgeNoMlirSuccess[] = "kOldBridgeNoMlirSuccess"; constexpr char kOldBridgeNoMlirFailure[] = "kOldBridgeNoMlirFailure"; namespace { struct CompilationTimer { uint64 start_cycles = profile_utils::CpuUtils::GetCurrentClockCycle(); uint64 ElapsedCycles() { return profile_utils::CpuUtils::GetCurrentClockCycle() - start_cycles; } int64_t ElapsedCyclesInMilliseconds() { std::chrono::duration<double> duration = profile_utils::CpuUtils::ConvertClockCycleToTime(ElapsedCycles()); return std::chrono::duration_cast<std::chrono::milliseconds>(duration) .count(); } }; Status PopulateInputOutputAliasing( mlir::func::FuncOp main_fn, XlaCompiler::CompilationResult* compilation_result, bool use_tuple_args) { constexpr char kAliasingAttr[] = "tf.aliasing_output"; llvm::SmallDenseMap<unsigned, unsigned> output_to_input_alias; unsigned num_arguments = main_fn.getNumArguments(); for (unsigned arg_index = 0; arg_index < num_arguments; ++arg_index) { if (auto aliasing_output = main_fn.getArgAttrOfType<mlir::IntegerAttr>( arg_index, kAliasingAttr)) output_to_input_alias[aliasing_output.getInt()] = arg_index; } if (output_to_input_alias.empty()) return absl::OkStatus(); xla::HloModuleProto* module_proto = compilation_result->computation->mutable_proto(); absl::StatusOr<xla::ProgramShape> program_shape_or_status = compilation_result->computation->GetProgramShape(); TF_RET_CHECK(program_shape_or_status.ok()); xla::ProgramShape& program_shape = program_shape_or_status.value(); if (!program_shape.result().IsTuple()) return errors::Internal("Expect result to have tuple shape"); xla::HloInputOutputAliasConfig config(program_shape.result()); for (auto alias : output_to_input_alias) { if (use_tuple_args) { TF_RETURN_IF_ERROR(config.SetUpAlias( xla::ShapeIndex({alias.first}), 0, xla::ShapeIndex({alias.second}), xla::HloInputOutputAliasConfig::AliasKind::kMayAlias)); } else { TF_RETURN_IF_ERROR(config.SetUpAlias( xla::ShapeIndex({alias.first}), alias.second, xla::ShapeIndex({}), xla::HloInputOutputAliasConfig::AliasKind::kMayAlias)); } } *module_proto->mutable_input_output_alias() = config.ToProto(); return absl::OkStatus(); } bool failed(const absl::Status& status) { return !status.ok(); } Status PrepareAndExportToLibrary(mlir::ModuleOp module, FunctionLibraryDefinition* flib_def) { mlir::PassManager manager(module.getContext()); applyTensorflowAndCLOptions(manager); manager.addPass(mlir::TF::CreatePrepareTpuComputationForTfExportPass()); manager.addPass(mlir::TF::CreateTFRegionControlFlowToFunctional()); manager.addPass(mlir::TF::CreateTFShapeInferencePass()); manager.addNestedPass<mlir::func::FuncOp>( mlir::CreateFunctionalToExecutorDialectConversionPass()); manager.addPass(mlir::CreateBreakUpIslandsPass()); mlir::StatusScopedDiagnosticHandler diag_handler(module.getContext()); if (VLOG_IS_ON(2)) { llvm::StringRef module_name = llvm::StringRef(); constexpr const char* kDebugGroupBridgePhase2 = "v1_prepare_and_export_to_library"; internal::EnablePassIRPrinting(manager, kDebugGroupBridgePhase2, module_name); } auto prepare_status = manager.run(module); auto diag_handler_status = diag_handler.ConsumeStatus(); if (failed(prepare_status) || failed(diag_handler_status)) { return diag_handler_status; } GraphExportConfig config; config.export_entry_func_to_flib = true; absl::flat_hash_set<Node*> control_ret_nodes; return tensorflow::tf2xla::v2::ConvertTfExecutorToGraph( module, config, nullptr, flib_def, &control_ret_nodes); } absl::Status CompileTFFunctionWithoutMlir( FunctionToHloArgs function_computation, const tpu::TPUCompileMetadataProto& metadata, bool use_tuple_args, const XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_funcs, const std::vector<tensorflow::TensorShape>& arg_shapes, std::vector<tpu::ShardingAndIndex>* arg_core_mapping, std::vector<std::vector<xla::Shape>>* per_core_arg_shapes, xla::CompileOnlyClient* client, XlaCompiler::CompilationResult* compilation_result) { Status comp_status = CompileTFFunctionToHlo( *function_computation.flib_def, function_computation.graph_def_version, shape_determination_funcs, arg_shapes, function_computation.guaranteed_constants, *function_computation.function, metadata, client, arg_core_mapping, per_core_arg_shapes, use_tuple_args, compilation_result); if (comp_status.ok()) { phase2_bridge_compilation_status->GetCell(kOldBridgeNoMlirSuccess) ->IncrementBy(1); } else { phase2_bridge_compilation_status->GetCell(kOldBridgeNoMlirFailure) ->IncrementBy(1); } return comp_status; } absl::Status CompileMLIRTFFunction( tpu::MlirToHloArgs mlir_computation, const tpu::TPUCompileMetadataProto& metadata, bool use_tuple_args, const XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_funcs, const std::vector<tensorflow::TensorShape>& arg_shapes, std::vector<tpu::ShardingAndIndex>* arg_core_mapping, std::vector<std::vector<xla::Shape>>* per_core_arg_shapes, xla::CompileOnlyClient* client, XlaCompiler::CompilationResult* compilation_result) { mlir::DialectRegistry registry; mlir::RegisterAllTensorFlowDialects(registry); mlir::mhlo::registerAllMhloDialects(registry); mlir::MLIRContext context(registry); mlir::OwningOpRef<mlir::ModuleOp> mlir_module; TF_RETURN_IF_ERROR(DeserializeMlirModule(mlir_computation.mlir_module, &context, &mlir_module)); if (!mlir::SetTPUInfeedLayout(mlir_module)) return errors::Internal("Failed to set layouts attribute"); if (VLOG_IS_ON(2)) { tensorflow::DumpMlirOpToFile("legalize_with_old_bridge", mlir_module.get()); } constexpr char kEntryFuncName[] = "main"; auto main_fn = mlir_module->lookupSymbol<mlir::func::FuncOp>(kEntryFuncName); if (!main_fn) { return errors::Internal( "TPU compile op requires module with a entry function main"); } auto flib_def = std::make_unique<FunctionLibraryDefinition>( OpRegistry::Global(), FunctionDefLibrary()); TF_RETURN_IF_ERROR(PrepareAndExportToLibrary(*mlir_module, flib_def.get())); if (VLOG_IS_ON(2)) { tensorflow::DumpMlirOpToFile("legalize_with_old_bridge_post_transform", mlir_module.get()); } VersionDef versions; if (mlir::failed(ExtractTfVersions(*mlir_module, &versions))) { return errors::Internal( "module attribute in _TPUCompileMlir op is missing tf versions."); } NameAttrList func; func.set_name(kEntryFuncName); GuaranteedConsts consts; *compilation_result = {}; TF_RETURN_IF_ERROR(CompileTFFunctionToHlo( *flib_def, versions.producer(), shape_determination_funcs, arg_shapes, consts, func, metadata, client, arg_core_mapping, per_core_arg_shapes, use_tuple_args, compilation_result)); return PopulateInputOutputAliasing(main_fn, compilation_result, use_tuple_args); } } absl::Status CompileTensorflowGraphToHlo( const std::variant<tpu::MlirToHloArgs, tpu::FunctionToHloArgs>& computation, const tpu::TPUCompileMetadataProto& metadata, bool use_tuple_args, const XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_funcs, const std::vector<tensorflow::TensorShape>& arg_shapes, std::vector<tpu::ShardingAndIndex>* arg_core_mapping, std::vector<std::vector<xla::Shape>>* per_core_arg_shapes, xla::CompileOnlyClient* client, XlaCompiler::CompilationResult* compilation_result) { LOG_FIRST_N(INFO, 1) << "Compiling MLIR computation to XLA HLO using the " "old (non-MLIR) tf2xla bridge"; CompilationTimer timer; *compilation_result = {}; bool has_mlir = computation.index() == 0; std::string mlir_string = has_mlir ? "has_mlir" : "has_function_to_hlo"; const std::string kBridgePhase2Config = absl::StrCat("graph_old_bridge_", mlir_string); if (has_mlir) { TF_RETURN_IF_ERROR(CompileMLIRTFFunction( std::get<0>(computation), metadata, use_tuple_args, shape_determination_funcs, arg_shapes, arg_core_mapping, per_core_arg_shapes, client, compilation_result)); } else { FunctionToHloArgs function_computation = std::get<1>(computation); TF_RETURN_IF_ERROR(CompileTFFunctionWithoutMlir( function_computation, metadata, use_tuple_args, shape_determination_funcs, arg_shapes, arg_core_mapping, per_core_arg_shapes, client, compilation_result)); } phase2_bridge_compilation_time->GetCell(kBridgePhase2Config) ->Add(timer.ElapsedCyclesInMilliseconds()); return absl::OkStatus(); } }; }; };
#include "tensorflow/compiler/mlir/tf2xla/api/v1/compile_tf_graph.h" #include <string> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/compiler/mlir/tf2xla/internal/test_matchers.h" #include "tensorflow/compiler/mlir/tf2xla/internal/utils/test_metadata_config.h" #include "tensorflow/compiler/tf2xla/layout_util.h" #include "tensorflow/compiler/tf2xla/xla_helpers.h" #include "xla/client/client_library.h" #include "xla/hlo/translate/mhlo_to_hlo/type_to_shape.h" #include "xla/shape.h" #include "xla/stream_executor/platform_manager.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/tsl/lib/monitoring/test_utils.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/lib/monitoring/cell_reader.h" #include "tensorflow/core/protobuf/tpu/compile_metadata.pb.h" #include "tensorflow/core/tpu/kernels/tpu_compile_op_support.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace tf2xla { namespace v1 { namespace { using ::tensorflow::monitoring::testing::CellReader; using ::tensorflow::tpu::FunctionToHloArgs; using ::tensorflow::tpu::MlirToHloArgs; using ::tensorflow::tpu::ShardingAndIndex; using ::tsl::monitoring::testing::Histogram; static constexpr char kCompilationTimeStreamzName[] = "/tensorflow/core/tf2xla/api/v1/phase2_compilation_time"; static constexpr char kCompilationStatusStreamzName[] = "/tensorflow/core/tf2xla/api/v1/phase2_compilation_status"; static constexpr char kPlatformName[] = "Host"; constexpr char kEntryFuncName[] = "main"; static constexpr char kMlirModuleStr[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 268 : i32}} { func.func @main() -> () { func.return } })"; MlirToHloArgs CreateTestMlirToHloArgs(const char* module_str = kMlirModuleStr) { MlirToHloArgs mlir_to_hlo_args; mlir_to_hlo_args.rollout_state = ConfigProto::Experimental::MLIR_BRIDGE_ROLLOUT_DISABLED; mlir_to_hlo_args.mlir_module = module_str; return mlir_to_hlo_args; } class CompileTFGraphTest : public ::testing::Test { public: absl::StatusOr<XlaCompilationResult> CompileWithComputation( const std::variant<tpu::MlirToHloArgs, tpu::FunctionToHloArgs> computation) { XlaCompilationResult compilation_result; se::Platform* platform = se::PlatformManager::PlatformWithName(kPlatformName).value(); auto client = xla::ClientLibrary::GetOrCreateCompileOnlyClient(platform).value(); bool use_tuple_args = true; std::vector<ShardingAndIndex> arg_core_mapping; std::vector<std::vector<xla::Shape>> per_core_arg_shapes; tpu::TPUCompileMetadataProto metadata_proto; std::vector<TensorShape> arg_shapes; if (computation.index() == 0) { TF_RETURN_IF_ERROR(tensorflow::tf2xla::internal::ConfigureMetadata( std::get<0>(computation).mlir_module, arg_shapes, metadata_proto)); } XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_fns; absl::Status compilation_status = tensorflow::tf2xla::v1::CompileTensorflowGraphToHlo( computation, metadata_proto, use_tuple_args, shape_determination_fns, arg_shapes, &arg_core_mapping, &per_core_arg_shapes, client, &compilation_result); if (!compilation_status.ok()) return compilation_status; return compilation_result; } }; TEST_F(CompileTFGraphTest, RecordsStreamzForMlirFallback) { CellReader<Histogram> compilation_time(kCompilationTimeStreamzName); MlirToHloArgs mlir_to_hlo_args = CreateTestMlirToHloArgs(); TF_EXPECT_OK(CompileWithComputation(mlir_to_hlo_args).status()); Histogram histogram = compilation_time.Delta("graph_old_bridge_has_mlir"); EXPECT_EQ(histogram.num(), 1); } TEST_F(CompileTFGraphTest, RecordsStreamzForFunctionToHlo) { CellReader<Histogram> compilation_time(kCompilationTimeStreamzName); CellReader<int64_t> compilation_status(kCompilationStatusStreamzName); FunctionDef empty_function = tensorflow::FunctionDefHelper::Create("empty", {}, {}, {}, {}, {}); tensorflow::FunctionDefLibrary fdef; *(fdef.add_function()) = empty_function; tensorflow::FunctionLibraryDefinition flib_def( tensorflow::OpRegistry::Global(), fdef); OpInputList guaranteed_constants; NameAttrList function; function.set_name("empty"); FunctionToHloArgs function_to_hlo_args = {&function, &flib_def, 0, {&guaranteed_constants}}; TF_EXPECT_OK(CompileWithComputation(function_to_hlo_args).status()); Histogram histogram = compilation_time.Delta("graph_old_bridge_has_function_to_hlo"); EXPECT_EQ(histogram.num(), 1); EXPECT_EQ(compilation_status.Delta("kOldBridgeNoMlirSuccess"), 1); } TEST_F(CompileTFGraphTest, SuccessfullyCompilesWithManualSharding) { constexpr char kSupportedManualSharding[] = R"( module @module___inference_tpu_function_41 attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 1617 : i32}} { func.func @main(%arg0: tensor<2x2xf32>) -> (tensor<2x2xf32> {mhlo.sharding = "\08\03\1A\02\02\01\22\02\00\01"}) { %0 = tf_executor.graph { %outputs, %control = tf_executor.island wraps "tf.XlaSharding"(%arg0) {_XlaSharding = "\08\03\1A\02\02\01\22\02\00\01", sharding = "\08\03\1A\02\02\01\22\02\00\01"} : (tensor<2x2xf32>) -> tensor<2x2xf32> %outputs_0, %control_1 = tf_executor.island wraps "tf.XlaSharding"(%outputs) {_XlaSharding = "\08\03\1A\02\02\01\22\02\00\01", sharding = "\08\03\1A\02\02\01\22\02\00\01", unspecified_dims = []} : (tensor<2x2xf32>) -> tensor<2x2xf32> %outputs_2, %control_3 = tf_executor.island wraps "tf.XlaSpmdFullToShardShape"(%outputs_0) {dim = -1 : i64, manual_sharding = "\08\03\1A\02\02\01\22\02\00\01", unspecified_dims = []} : (tensor<2x2xf32>) -> tensor<1x2xf32> %control_4 = tf_executor.island wraps "tf._XlaHostComputeMlir"(%outputs_2) {host_mlir_module = "", manual_sharding = true, recv_key = "host_compute_channel_0_retvals", send_key = "host_compute_channel_0_args"} : (tensor<1x2xf32>) -> () %outputs_5, %control_6 = tf_executor.island(%control_4) wraps "tf._XlaHostComputeMlir"() {host_mlir_module = "module {\0A func.func @host_func() -> tensor<1x2xf32> {\0A %0 = \22tf.Const\22() {value = dense<0.1> : tensor<1x2xf32>} : () -> tensor<1x2xf32> \0A return %0 : tensor<1x2xf32>}}", manual_sharding = true, recv_key = "host_compute_channel_1_retvals", send_key = "host_compute_channel_1_args"} : () -> tensor<1x2xf32> %outputs_7, %control_8 = tf_executor.island wraps "tf.XlaSpmdShardToFullShape"(%outputs_5) {dim = -1 : i64, full_shape = #tf_type.shape<2x2>, manual_sharding = "\08\03\1A\02\02\01\22\02\00\01", unspecified_dims = []} : (tensor<1x2xf32>) -> tensor<2x2xf32> %outputs_9, %control_10 = tf_executor.island wraps "tf.XlaSharding"(%outputs_7) {_XlaSharding = "\08\03\1A\02\02\01\22\02\00\01", sharding = "\08\03\1A\02\02\01\22\02\00\01", unspecified_dims = []} : (tensor<2x2xf32>) -> tensor<2x2xf32> tf_executor.fetch %outputs_9 : tensor<2x2xf32> } return %0 : tensor<2x2xf32> } } )"; auto mlir_to_hlo_args = CreateTestMlirToHloArgs(kSupportedManualSharding); auto result = CompileWithComputation(mlir_to_hlo_args); EXPECT_TRUE(result.ok()); } TEST_F(CompileTFGraphTest, DoesNotInlineStatelessRandomOps) { static constexpr char kHasReturnValues[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 268 : i32}} { func.func @main() -> (tensor<32x64xf32> {mhlo.sharding = "\08\01\1A\01\01\22\01\00"}) { %cst = "tf.Const"() {value = dense<[524170, 523952]> : tensor<2xi32>} : () -> tensor<2xi32> %cst_0 = "tf.Const"() {value = dense<[32, 64]> : tensor<2xi32>} : () -> tensor<2xi32> %0 = "tf.StatelessRandomNormal"(%cst_0, %cst) : (tensor<2xi32>, tensor<2xi32>) -> tensor<32x64xf32> return %0 : tensor<32x64xf32> } })"; auto compilation_result = CompileWithComputation(CreateTestMlirToHloArgs(kHasReturnValues)); EXPECT_TRUE(compilation_result.ok()); EXPECT_THAT(compilation_result, ComputationProtoContains("tf.StatelessRandomNormal")); } TEST_F(CompileTFGraphTest, TestRunsShapeInference) { static constexpr char kShapeInferenceModule[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 268 : i32}} { func.func @main() -> () { %0 = "tf.Const"() <{value = dense<-1> : tensor<3360x8xi32>}> : () -> tensor<3360x8xi32> %cst_33 = "tf.Const"() <{value = dense<[1120, -1]> : tensor<2xi32>}> : () -> tensor<2xi32> %cst_34 = "tf.Const"() <{value = dense<[3, 1120, -1]> : tensor<3xi32>}> : () -> tensor<3xi32> %cst_63 = "tf.Const"() <{value = dense<0> : tensor<i32>}> : () -> tensor<i32> %1965:4 = "tf._XlaHostComputeMlir"(%0, %cst_34, %cst_63, %cst_33) <{host_mlir_module = "#loc1 = loc(\22Reshape:\22)\0A#loc2 = loc(\22Reshape_4\22)\0A#loc3 = loc(\22Reshape\22)\0A#loc9 = loc(fused[#loc1, #loc2, #loc3])\0Amodule {\0A func.func @host_func(%arg0: tensor<3360x?xi32> loc(fused[#loc1, #loc2, #loc3]), %arg1: tensor<3xi32> loc(fused[#loc1, #loc2, #loc3]), %arg2: tensor<i32> loc(fused[#loc1, #loc2, #loc3]), %arg3: tensor<2xi32> loc(fused[#loc1, #loc2, #loc3])) -> (tensor<1x1120x?xi32>, tensor<1x1120x?xi32>, tensor<1120x?xi32>, tensor<2xi32>) {\0A %0 = \22tf.Reshape\22(%arg0, %arg1) {_xla_outside_compilation = \220\22} : (tensor<3360x?xi32>, tensor<3xi32>) -> tensor<3x1120x?xi32> loc(#loc9)\0A %1:3 = \22tf.Split\22(%arg2, %0) {_xla_outside_compilation = \220\22} : (tensor<i32>, tensor<3x1120x?xi32>) -> (tensor<1x1120x?xi32>, tensor<1x1120x?xi32>, tensor<1x1120x?xi32>) loc(#loc10)\0A %2 = \22tf.Reshape\22(%1#0, %arg3) {_xla_outside_compilation = \220\22} : (tensor<1x1120x?xi32>, tensor<2xi32>) -> tensor<1120x?xi32> loc(#loc11)\0A %3 = \22tf.Shape\22(%2) {_xla_outside_compilation = \220\22} : (tensor<1120x?xi32>) -> tensor<2xi32> loc(#loc12)\0A return %1#1, %1#2, %2, %3 : tensor<1x1120x?xi32>, tensor<1x1120x?xi32>, tensor<1120x?xi32>, tensor<2xi32> loc(#loc9)\0A } loc(#loc9)\0A} loc(#loc)\0A#loc = loc(unknown)\0A#loc4 = loc(\22Split:\22)\0A#loc5 = loc(\22split\22)\0A#loc6 = loc(\22Reshape_5\22)\0A#loc7 = loc(\22Shape:\22)\0A#loc8 = loc(\22Shape_4\22)\0A#loc10 = loc(fused[#loc4, #loc5])\0A#loc11 = loc(fused[#loc1, #loc6])\0A#loc12 = loc(fused[#loc7, #loc8])\0A", recv_key = "host_compute_channel_0_retvals", send_key = "host_compute_channel_0_args"}> : (tensor<3360x8xi32>, tensor<3xi32>, tensor<i32>, tensor<2xi32>) -> (tensor<1x1120x?xi32>, tensor<1x1120x?xi32>, tensor<1120x?xi32>, tensor<2xi32>) return } } )"; auto compilation_result = CompileWithComputation(CreateTestMlirToHloArgs(kShapeInferenceModule)); EXPECT_TRUE(compilation_result.ok()); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/api/v1/compile_tf_graph.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/api/v1/compile_tf_graph_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
73f81048-c2c7-4461-8373-1ea5fef53afb
cpp
google/cel-cpp
legacy_struct_value
common/values/legacy_struct_value.cc
common/values/legacy_struct_value_test.cc
#include <cstddef> #include <cstdint> #include <string> #include "absl/base/attributes.h" #include "absl/base/call_once.h" #include "absl/log/absl_check.h" #include "absl/log/die_if_null.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "absl/types/span.h" #include "absl/types/variant.h" #include "base/internal/message_wrapper.h" #include "common/json.h" #include "common/type.h" #include "common/value.h" #include "internal/dynamic_loader.h" #include "runtime/runtime_options.h" #include "google/protobuf/message.h" #include "google/protobuf/message_lite.h" #if defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wreturn-type-c-linkage" #endif namespace cel::common_internal { namespace { using LegacyStructValue_DebugString = std::string (*)(uintptr_t, uintptr_t); using LegacyStructValue_GetSerializedSize = absl::StatusOr<size_t> (*)(uintptr_t, uintptr_t); using LegacyStructValue_SerializeTo = absl::Status (*)(uintptr_t, uintptr_t, absl::Cord&); using LegacyStructValue_GetType = std::string (*)(uintptr_t, uintptr_t); using LegacyStructValue_GetTypeName = absl::string_view (*)(uintptr_t, uintptr_t); using LegacyStructValue_ConvertToJsonObject = absl::StatusOr<JsonObject> (*)(uintptr_t, uintptr_t); using LegacyStructValue_GetFieldByName = absl::Status (*)(uintptr_t, uintptr_t, ValueManager&, absl::string_view, Value&, ProtoWrapperTypeOptions); using LegacyStructValue_GetFieldByNumber = absl::Status (*)(uintptr_t, uintptr_t, ValueManager&, int64_t, Value&, ProtoWrapperTypeOptions); using LegacyStructValue_HasFieldByName = absl::StatusOr<bool> (*)(uintptr_t, uintptr_t, absl::string_view); using LegacyStructValue_HasFieldByNumber = absl::StatusOr<bool> (*)(uintptr_t, uintptr_t, int64_t); using LegacyStructValue_Equal = absl::Status (*)(uintptr_t, uintptr_t, ValueManager&, const Value&, Value&); using LegacyStructValue_IsZeroValue = bool (*)(uintptr_t, uintptr_t); using LegacyStructValue_ForEachField = absl::Status (*)(uintptr_t, uintptr_t, ValueManager&, LegacyStructValue::ForEachFieldCallback); using LegacyStructValue_Qualify = absl::StatusOr<int> (*)(uintptr_t, uintptr_t, ValueManager&, absl::Span<const SelectQualifier>, bool, Value&); ABSL_CONST_INIT struct { absl::once_flag init_once; LegacyStructValue_DebugString debug_string = nullptr; LegacyStructValue_GetSerializedSize get_serialized_size = nullptr; LegacyStructValue_SerializeTo serialize_to = nullptr; LegacyStructValue_GetType get_type = nullptr; LegacyStructValue_GetTypeName get_type_name = nullptr; LegacyStructValue_ConvertToJsonObject convert_to_json_object = nullptr; LegacyStructValue_GetFieldByName get_field_by_name = nullptr; LegacyStructValue_GetFieldByNumber get_field_by_number = nullptr; LegacyStructValue_HasFieldByName has_field_by_name = nullptr; LegacyStructValue_HasFieldByNumber has_field_by_number = nullptr; LegacyStructValue_Equal equal = nullptr; LegacyStructValue_IsZeroValue is_zero_value = nullptr; LegacyStructValue_ForEachField for_each_field = nullptr; LegacyStructValue_Qualify qualify = nullptr; } legacy_struct_value_vtable; #if ABSL_HAVE_ATTRIBUTE_WEAK extern "C" ABSL_ATTRIBUTE_WEAK std::string cel_common_internal_LegacyStructValue_DebugString(uintptr_t message_ptr, uintptr_t type_info); extern "C" ABSL_ATTRIBUTE_WEAK absl::StatusOr<size_t> cel_common_internal_LegacyStructValue_GetSerializedSize(uintptr_t message_ptr, uintptr_t type_info); extern "C" ABSL_ATTRIBUTE_WEAK absl::Status cel_common_internal_LegacyStructValue_SerializeTo(uintptr_t message_ptr, uintptr_t type_info, absl::Cord& value); extern "C" ABSL_ATTRIBUTE_WEAK std::string cel_common_internal_LegacyStructValue_GetType(uintptr_t message_ptr, uintptr_t type_info); extern "C" ABSL_ATTRIBUTE_WEAK absl::string_view cel_common_internal_LegacyStructValue_GetTypeName(uintptr_t message_ptr, uintptr_t type_info); extern "C" ABSL_ATTRIBUTE_WEAK absl::StatusOr<JsonObject> cel_common_internal_LegacyStructValue_ConvertToJsonObject(uintptr_t message_ptr, uintptr_t type_info); extern "C" ABSL_ATTRIBUTE_WEAK absl::Status cel_common_internal_LegacyStructValue_GetFieldByName( uintptr_t message_ptr, uintptr_t type_info, ValueManager& value_manager, absl::string_view name, Value& result, ProtoWrapperTypeOptions unboxing_options); extern "C" ABSL_ATTRIBUTE_WEAK absl::Status cel_common_internal_LegacyStructValue_GetFieldByNumber(uintptr_t, uintptr_t, ValueManager&, int64_t, Value&, ProtoWrapperTypeOptions); extern "C" ABSL_ATTRIBUTE_WEAK absl::StatusOr<bool> cel_common_internal_LegacyStructValue_HasFieldByName(uintptr_t message_ptr, uintptr_t type_info, absl::string_view name); extern "C" ABSL_ATTRIBUTE_WEAK absl::StatusOr<bool> cel_common_internal_LegacyStructValue_HasFieldByNumber(uintptr_t, uintptr_t, int64_t); extern "C" ABSL_ATTRIBUTE_WEAK absl::Status cel_common_internal_LegacyStructValue_Equal(uintptr_t message_ptr, uintptr_t type_info, ValueManager& value_manager, const Value& other, Value& result); extern "C" ABSL_ATTRIBUTE_WEAK bool cel_common_internal_LegacyStructValue_IsZeroValue(uintptr_t message_ptr, uintptr_t type_info); extern "C" ABSL_ATTRIBUTE_WEAK absl::Status cel_common_internal_LegacyStructValue_ForEachField( uintptr_t message_ptr, uintptr_t type_info, ValueManager& value_manager, StructValue::ForEachFieldCallback callback); extern "C" ABSL_ATTRIBUTE_WEAK absl::StatusOr<int> cel_common_internal_LegacyStructValue_Qualify( uintptr_t message_ptr, uintptr_t type_info, ValueManager& value_manager, absl::Span<const SelectQualifier> qualifiers, bool presence_test, Value& result); #endif void InitializeLegacyStructValue() { absl::call_once(legacy_struct_value_vtable.init_once, []() -> void { #if ABSL_HAVE_ATTRIBUTE_WEAK legacy_struct_value_vtable.debug_string = ABSL_DIE_IF_NULL( cel_common_internal_LegacyStructValue_DebugString); legacy_struct_value_vtable.get_serialized_size = ABSL_DIE_IF_NULL( cel_common_internal_LegacyStructValue_GetSerializedSize); legacy_struct_value_vtable.serialize_to = ABSL_DIE_IF_NULL( cel_common_internal_LegacyStructValue_SerializeTo); legacy_struct_value_vtable.get_type = ABSL_DIE_IF_NULL( cel_common_internal_LegacyStructValue_GetType); legacy_struct_value_vtable.get_type_name = ABSL_DIE_IF_NULL( cel_common_internal_LegacyStructValue_GetTypeName); legacy_struct_value_vtable.convert_to_json_object = ABSL_DIE_IF_NULL( cel_common_internal_LegacyStructValue_ConvertToJsonObject); legacy_struct_value_vtable.get_field_by_name = ABSL_DIE_IF_NULL( cel_common_internal_LegacyStructValue_GetFieldByName); legacy_struct_value_vtable.get_field_by_number = ABSL_DIE_IF_NULL( cel_common_internal_LegacyStructValue_GetFieldByNumber); legacy_struct_value_vtable.has_field_by_name = ABSL_DIE_IF_NULL( cel_common_internal_LegacyStructValue_HasFieldByName); legacy_struct_value_vtable.has_field_by_number = ABSL_DIE_IF_NULL( cel_common_internal_LegacyStructValue_HasFieldByNumber); legacy_struct_value_vtable.equal = ABSL_DIE_IF_NULL( cel_common_internal_LegacyStructValue_Equal); legacy_struct_value_vtable.is_zero_value = ABSL_DIE_IF_NULL( cel_common_internal_LegacyStructValue_IsZeroValue); legacy_struct_value_vtable.for_each_field = ABSL_DIE_IF_NULL( cel_common_internal_LegacyStructValue_ForEachField); legacy_struct_value_vtable.qualify = ABSL_DIE_IF_NULL( cel_common_internal_LegacyStructValue_Qualify); #else internal::DynamicLoader symbol_finder; legacy_struct_value_vtable.debug_string = symbol_finder.FindSymbolOrDie( "cel_common_internal_LegacyStructValue_DebugString"); legacy_struct_value_vtable.get_serialized_size = symbol_finder.FindSymbolOrDie( "cel_common_internal_LegacyStructValue_GetSerializedSize"); legacy_struct_value_vtable.serialize_to = symbol_finder.FindSymbolOrDie( "cel_common_internal_LegacyStructValue_SerializeTo"); legacy_struct_value_vtable.get_type = symbol_finder.FindSymbolOrDie( "cel_common_internal_LegacyStructValue_GetType"); legacy_struct_value_vtable.get_type_name = symbol_finder.FindSymbolOrDie( "cel_common_internal_LegacyStructValue_GetTypeName"); legacy_struct_value_vtable.convert_to_json_object = symbol_finder.FindSymbolOrDie( "cel_common_internal_LegacyStructValue_ConvertToJsonObject"); legacy_struct_value_vtable.get_field_by_name = symbol_finder.FindSymbolOrDie( "cel_common_internal_LegacyStructValue_GetFieldByName"); legacy_struct_value_vtable.get_field_by_number = symbol_finder.FindSymbolOrDie( "cel_common_internal_LegacyStructValue_GetFieldByNumber"); legacy_struct_value_vtable.has_field_by_name = symbol_finder.FindSymbolOrDie( "cel_common_internal_LegacyStructValue_HasFieldByName"); legacy_struct_value_vtable.has_field_by_number = symbol_finder.FindSymbolOrDie( "cel_common_internal_LegacyStructValue_HasFieldByNumber"); legacy_struct_value_vtable.equal = symbol_finder.FindSymbolOrDie( "cel_common_internal_LegacyStructValue_Equal"); legacy_struct_value_vtable.is_zero_value = symbol_finder.FindSymbolOrDie( "cel_common_internal_LegacyStructValue_IsZeroValue"); legacy_struct_value_vtable.for_each_field = symbol_finder.FindSymbolOrDie( "cel_common_internal_LegacyStructValue_ForEachField"); legacy_struct_value_vtable.qualify = symbol_finder.FindSymbolOrDie( "cel_common_internal_LegacyStructValue_Qualify"); #endif }); } } StructType LegacyStructValue::GetRuntimeType() const { InitializeLegacyStructValue(); if ((message_ptr_ & ::cel::base_internal::kMessageWrapperTagMask) == ::cel::base_internal::kMessageWrapperTagMessageValue) { return MessageType( google::protobuf::DownCastMessage<google::protobuf::Message>( reinterpret_cast<const google::protobuf::MessageLite*>( message_ptr_ & ::cel::base_internal::kMessageWrapperPtrMask)) ->GetDescriptor()); } return common_internal::MakeBasicStructType(GetTypeName()); } absl::string_view LegacyStructValue::GetTypeName() const { InitializeLegacyStructValue(); return (*legacy_struct_value_vtable.get_type_name)(message_ptr_, type_info_); } std::string LegacyStructValue::DebugString() const { InitializeLegacyStructValue(); return (*legacy_struct_value_vtable.debug_string)(message_ptr_, type_info_); } absl::Status LegacyStructValue::SerializeTo(AnyToJsonConverter&, absl::Cord& value) const { InitializeLegacyStructValue(); return (*legacy_struct_value_vtable.serialize_to)(message_ptr_, type_info_, value); } absl::StatusOr<Json> LegacyStructValue::ConvertToJson( AnyToJsonConverter& value_manager) const { InitializeLegacyStructValue(); return (*legacy_struct_value_vtable.convert_to_json_object)(message_ptr_, type_info_); } absl::Status LegacyStructValue::Equal(ValueManager& value_manager, const Value& other, Value& result) const { InitializeLegacyStructValue(); return (*legacy_struct_value_vtable.equal)(message_ptr_, type_info_, value_manager, other, result); } bool LegacyStructValue::IsZeroValue() const { InitializeLegacyStructValue(); return (*legacy_struct_value_vtable.is_zero_value)(message_ptr_, type_info_); } absl::Status LegacyStructValue::GetFieldByName( ValueManager& value_manager, absl::string_view name, Value& result, ProtoWrapperTypeOptions unboxing_options) const { InitializeLegacyStructValue(); return (*legacy_struct_value_vtable.get_field_by_name)( message_ptr_, type_info_, value_manager, name, result, unboxing_options); } absl::Status LegacyStructValue::GetFieldByNumber( ValueManager& value_manager, int64_t number, Value& result, ProtoWrapperTypeOptions unboxing_options) const { InitializeLegacyStructValue(); return (*legacy_struct_value_vtable.get_field_by_number)( message_ptr_, type_info_, value_manager, number, result, unboxing_options); } absl::StatusOr<bool> LegacyStructValue::HasFieldByName( absl::string_view name) const { InitializeLegacyStructValue(); return (*legacy_struct_value_vtable.has_field_by_name)(message_ptr_, type_info_, name); } absl::StatusOr<bool> LegacyStructValue::HasFieldByNumber(int64_t number) const { InitializeLegacyStructValue(); return (*legacy_struct_value_vtable.has_field_by_number)(message_ptr_, type_info_, number); } absl::Status LegacyStructValue::ForEachField( ValueManager& value_manager, ForEachFieldCallback callback) const { InitializeLegacyStructValue(); return (*legacy_struct_value_vtable.for_each_field)(message_ptr_, type_info_, value_manager, callback); } absl::StatusOr<int> LegacyStructValue::Qualify( ValueManager& value_manager, absl::Span<const SelectQualifier> qualifiers, bool presence_test, Value& result) const { InitializeLegacyStructValue(); return (*legacy_struct_value_vtable.qualify)(message_ptr_, type_info_, value_manager, qualifiers, presence_test, result); } bool IsLegacyStructValue(const Value& value) { return absl::holds_alternative<LegacyStructValue>(value.variant_); } LegacyStructValue GetLegacyStructValue(const Value& value) { ABSL_DCHECK(IsLegacyStructValue(value)); return absl::get<LegacyStructValue>(value.variant_); } absl::optional<LegacyStructValue> AsLegacyStructValue(const Value& value) { if (IsLegacyStructValue(value)) { return GetLegacyStructValue(value); } return absl::nullopt; } } #if defined(__GNUC__) #pragma GCC diagnostic pop #endif
#include "common/values/legacy_struct_value.h" #include "common/memory.h" #include "common/value_kind.h" #include "common/value_testing.h" #include "internal/testing.h" namespace cel::common_internal { namespace { using ::testing::_; class LegacyStructValueTest : public ThreadCompatibleValueTest<> {}; TEST_P(LegacyStructValueTest, Kind) { EXPECT_EQ(LegacyStructValue(0, 0).kind(), ValueKind::kStruct); } TEST_P(LegacyStructValueTest, GetTypeName) { EXPECT_DEATH(static_cast<void>(LegacyStructValue(0, 0).GetTypeName()), _); } TEST_P(LegacyStructValueTest, DebugString) { EXPECT_DEATH(static_cast<void>(LegacyStructValue(0, 0).DebugString()), _); } TEST_P(LegacyStructValueTest, SerializeTo) { absl::Cord serialize_value; EXPECT_DEATH(static_cast<void>(LegacyStructValue(0, 0).SerializeTo( value_manager(), serialize_value)), _); } TEST_P(LegacyStructValueTest, ConvertToJson) { EXPECT_DEATH( static_cast<void>(LegacyStructValue(0, 0).ConvertToJson(value_manager())), _); } TEST_P(LegacyStructValueTest, GetFieldByName) { Value scratch; EXPECT_DEATH(static_cast<void>(LegacyStructValue(0, 0).GetFieldByName( value_manager(), "", scratch)), _); } TEST_P(LegacyStructValueTest, GetFieldByNumber) { Value scratch; EXPECT_DEATH(static_cast<void>(LegacyStructValue(0, 0).GetFieldByNumber( value_manager(), 0, scratch)), _); } TEST_P(LegacyStructValueTest, HasFieldByName) { EXPECT_DEATH(static_cast<void>(LegacyStructValue(0, 0).HasFieldByName("")), _); } TEST_P(LegacyStructValueTest, HasFieldByNumber) { EXPECT_DEATH(static_cast<void>(LegacyStructValue(0, 0).HasFieldByNumber(0)), _); } INSTANTIATE_TEST_SUITE_P( LegacyStructValueTest, LegacyStructValueTest, ::testing::Combine(::testing::Values(MemoryManagement::kPooling, MemoryManagement::kReferenceCounting)), LegacyStructValueTest::ToString); } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/values/legacy_struct_value.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/values/legacy_struct_value_test.cc
4552db5798fb0853b131b783d8875794334fae7f
e94eef46-9cde-4093-b44d-8e89d991ead3
cpp
tensorflow/tensorflow
gpu_kernel
third_party/xla/xla/stream_executor/gpu/gpu_kernel.h
third_party/xla/xla/stream_executor/gpu/gpu_kernel_test.cc
#ifndef XLA_STREAM_EXECUTOR_GPU_GPU_KERNEL_H_ #define XLA_STREAM_EXECUTOR_GPU_GPU_KERNEL_H_ #include "xla/stream_executor/gpu/gpu_types.h" #include "xla/stream_executor/kernel.h" namespace stream_executor::gpu { class GpuKernel : public Kernel { public: virtual GpuFunctionHandle gpu_function() const = 0; }; inline const GpuKernel* AsGpuKernel(const Kernel* kernel) { return static_cast<const GpuKernel*>(kernel); } inline GpuKernel* AsGpuKernel(Kernel* kernel) { return static_cast<GpuKernel*>(kernel); } } #endif
#include <cstdint> #include <memory> #include <string_view> #include <vector> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/ascii.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/service/platform_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/gpu/gpu_test_kernels.h" #include "xla/stream_executor/gpu/gpu_test_kernels_fatbin.h" #include "xla/stream_executor/kernel_spec.h" #include "xla/stream_executor/launch_dim.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/rocm/rocm_platform_id.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "xla/stream_executor/typed_kernel_factory.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace stream_executor::gpu { namespace { using AddI32Kernel = TypedKernelFactory<DeviceMemory<int32_t>, DeviceMemory<int32_t>, DeviceMemory<int32_t>>; class GpuKernelTest : public ::testing::Test { public: void SetUp() override { auto name = absl::AsciiStrToUpper( xla::PlatformUtil::CanonicalPlatformName("gpu").value()); Platform* platform = PlatformManager::PlatformWithName(name).value(); executor_ = platform->ExecutorForDevice(0).value(); } void RunAddI32Kernel(const MultiKernelLoaderSpec& spec) { TF_ASSERT_OK_AND_ASSIGN(auto stream, executor_->CreateStream()); TF_ASSERT_OK_AND_ASSIGN(auto add, AddI32Kernel::Create(executor_, spec)); int64_t length = 4; int64_t byte_length = sizeof(int32_t) * length; DeviceMemory<int32_t> a = executor_->AllocateArray<int32_t>(length, 0); DeviceMemory<int32_t> b = executor_->AllocateArray<int32_t>(length, 0); DeviceMemory<int32_t> c = executor_->AllocateArray<int32_t>(length, 0); TF_ASSERT_OK(stream->Memset32(&a, 1, byte_length)); TF_ASSERT_OK(stream->Memset32(&b, 2, byte_length)); TF_ASSERT_OK(stream->MemZero(&c, byte_length)); ASSERT_TRUE( stream->ThenLaunch(ThreadDim(), BlockDim(4), add, a, b, c).ok()); std::vector<int32_t> dst(4, 42); TF_ASSERT_OK(stream->Memcpy(dst.data(), c, byte_length)); std::vector<int32_t> expected = {3, 3, 3, 3}; ASSERT_EQ(dst, expected); } StreamExecutor* executor_; }; TEST_F(GpuKernelTest, LoadAndRunKernelFromPtx) { if (executor_->GetPlatform()->id() == stream_executor::rocm::kROCmPlatformId) { GTEST_SKIP() << "There is no PTX or any equivalent abstraction for ROCm."; } MultiKernelLoaderSpec spec(3); spec.AddCudaPtxInMemory(internal::kAddI32KernelPtx, "AddI32"); RunAddI32Kernel(spec); } TEST_F(GpuKernelTest, LoadAndRunKernelFromCubin) { MultiKernelLoaderSpec spec(3); TF_ASSERT_OK_AND_ASSIGN(auto binary, GetGpuTestKernelsFatbin()); spec.AddCudaCubinInMemory(binary, "AddI32"); RunAddI32Kernel(spec); } TEST_F(GpuKernelTest, LoadAndRunKernelFromSymbol) { MultiKernelLoaderSpec spec(3); spec.AddInProcessSymbol(internal::GetAddI32Kernel(), "AddI32"); RunAddI32Kernel(spec); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/gpu/gpu_kernel.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/gpu/gpu_kernel_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d944fc09-2809-4955-8b7e-fb42464a0952
cpp
google/quiche
balsa_headers
quiche/balsa/balsa_headers.cc
quiche/balsa/balsa_headers_test.cc
#include "quiche/balsa/balsa_headers.h" #include <sys/types.h> #include <cstdint> #include <functional> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/strings/ascii.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "quiche/balsa/balsa_enums.h" #include "quiche/balsa/header_properties.h" #include "quiche/common/platform/api/quiche_header_policy.h" #include "quiche/common/platform/api/quiche_logging.h" namespace { constexpr absl::string_view kContentLength("Content-Length"); constexpr absl::string_view kCookie("Cookie"); constexpr absl::string_view kHost("Host"); constexpr absl::string_view kTransferEncoding("Transfer-Encoding"); #define ALL_ENVOY_HEADERS(HEADER_FUNC) \ HEADER_FUNC("Accept") \ HEADER_FUNC("Accept-Encoding") \ HEADER_FUNC("Access-Control-Request-Headers") \ HEADER_FUNC("Access-Control-Request-Method") \ HEADER_FUNC("Access-Control-Allow-Origin") \ HEADER_FUNC("Access-Control-Allow-Headers") \ HEADER_FUNC("Access-Control-Allow-Methods") \ HEADER_FUNC("Access-Control-Allow-Credentials") \ HEADER_FUNC("Access-Control-Expose-Headers") \ HEADER_FUNC("Access-Control-Max-Age") \ HEADER_FUNC("Authorization") \ HEADER_FUNC("Cache-Control") \ HEADER_FUNC("X-Client-Trace-Id") \ HEADER_FUNC("Connection") \ HEADER_FUNC("Content-Encoding") \ HEADER_FUNC("Content-Length") \ HEADER_FUNC("Content-Type") \ \ HEADER_FUNC("Envoy-Attempt-Count") \ HEADER_FUNC("Envoy-Degraded") \ HEADER_FUNC("Envoy-Decorator-Operation") \ HEADER_FUNC("Envoy-Downstream-Service-Cluster") \ HEADER_FUNC("Envoy-Downstream-Service-Node") \ HEADER_FUNC("Envoy-Expected-Request-Timeout-Ms") \ HEADER_FUNC("Envoy-External-Address") \ HEADER_FUNC("Envoy-Force-Trace") \ HEADER_FUNC("Envoy-Hedge-On-Per-Try-Timeout") \ HEADER_FUNC("Envoy-Immediate-Health-Check-Fail") \ HEADER_FUNC("Envoy-Internal-Request") \ HEADER_FUNC("Envoy-Ip-Tags") \ HEADER_FUNC("Envoy-Max-Retries") \ HEADER_FUNC("Envoy-Original-Path") \ HEADER_FUNC("Envoy-Original-Url") \ HEADER_FUNC("Envoy-Overloaded") \ HEADER_FUNC("Envoy-Rate-Limited") \ HEADER_FUNC("Envoy-Retry-On") \ HEADER_FUNC("Envoy-Retry-Grpc-On") \ HEADER_FUNC("Envoy-Retriable-StatusCodes") \ HEADER_FUNC("Envoy-Retriable-HeaderNames") \ HEADER_FUNC("Envoy-Upstream-AltStatName") \ HEADER_FUNC("Envoy-Upstream-Canary") \ HEADER_FUNC("Envoy-Upstream-HealthCheckedCluster") \ HEADER_FUNC("Envoy-Upstream-RequestPerTryTimeoutMs") \ HEADER_FUNC("Envoy-Upstream-RequestTimeoutAltResponse") \ HEADER_FUNC("Envoy-Upstream-RequestTimeoutMs") \ HEADER_FUNC("Envoy-Upstream-ServiceTime") \ HEADER_FUNC("Etag") \ HEADER_FUNC("Expect") \ HEADER_FUNC("X-Forwarded-Client-Cert") \ HEADER_FUNC("X-Forwarded-For") \ HEADER_FUNC("X-Forwarded-Proto") \ HEADER_FUNC("Grpc-Accept-Encoding") \ HEADER_FUNC("Grpc-Message") \ HEADER_FUNC("Grpc-Status") \ HEADER_FUNC("Grpc-Timeout") \ HEADER_FUNC("Host") \ HEADER_FUNC("Keep-Alive") \ \ \ HEADER_FUNC("Method") \ HEADER_FUNC("No-Chunks") \ HEADER_FUNC("Origin") \ HEADER_FUNC("X-Ot-Span-Context") \ HEADER_FUNC("Path") \ HEADER_FUNC("Protocol") \ HEADER_FUNC("Proxy-Connection") \ HEADER_FUNC("Referer") \ HEADER_FUNC("X-Request-Id") \ HEADER_FUNC("Scheme") \ HEADER_FUNC("Server") \ HEADER_FUNC("Status") \ HEADER_FUNC("TE") \ HEADER_FUNC("Transfer-Encoding") \ HEADER_FUNC("Upgrade") \ HEADER_FUNC("User-Agent") \ HEADER_FUNC("Vary") \ HEADER_FUNC("Via") #define MULTIVALUE_ENVOY_HEADER(name) {name}, absl::string_view::difference_type FindIgnoreCase(absl::string_view haystack, absl::string_view needle) { absl::string_view::difference_type pos = 0; while (haystack.size() >= needle.size()) { if (absl::StartsWithIgnoreCase(haystack, needle)) { return pos; } ++pos; haystack.remove_prefix(1); } return absl::string_view::npos; } absl::string_view::difference_type RemoveLeadingWhitespace( absl::string_view* text) { size_t count = 0; const char* ptr = text->data(); while (count < text->size() && absl::ascii_isspace(*ptr)) { count++; ptr++; } text->remove_prefix(count); return count; } absl::string_view::difference_type RemoveTrailingWhitespace( absl::string_view* text) { size_t count = 0; const char* ptr = text->data() + text->size() - 1; while (count < text->size() && absl::ascii_isspace(*ptr)) { ++count; --ptr; } text->remove_suffix(count); return count; } absl::string_view::difference_type RemoveWhitespaceContext( absl::string_view* text) { return RemoveLeadingWhitespace(text) + RemoveTrailingWhitespace(text); } } namespace quiche { const size_t BalsaBuffer::kDefaultBlocksize; const BalsaHeaders::MultivaluedHeadersSet& BalsaHeaders::multivalued_envoy_headers() { static const MultivaluedHeadersSet* multivalued_envoy_headers = new MultivaluedHeadersSet({ALL_ENVOY_HEADERS(MULTIVALUE_ENVOY_HEADER)}); return *multivalued_envoy_headers; } void BalsaHeaders::ParseTokenList(absl::string_view header_value, HeaderTokenList* tokens) { if (header_value.empty()) { return; } const char* start = header_value.data(); const char* end = header_value.data() + header_value.size(); while (true) { while (*start == ',' || static_cast<unsigned char>(*start) <= ' ') { ++start; if (start == end) { return; } } const char* nws = start; while (*start != ',' && static_cast<unsigned char>(*start) > ' ') { ++start; if (start == end) { if (nws != start) { tokens->push_back(absl::string_view(nws, start - nws)); } return; } } tokens->push_back(absl::string_view(nws, start - nws)); } } void BalsaHeaders::Clear() { balsa_buffer_.Clear(); transfer_encoding_is_chunked_ = false; content_length_ = 0; content_length_status_ = BalsaHeadersEnums::NO_CONTENT_LENGTH; parsed_response_code_ = 0; firstline_buffer_base_idx_ = 0; whitespace_1_idx_ = 0; non_whitespace_1_idx_ = 0; whitespace_2_idx_ = 0; non_whitespace_2_idx_ = 0; whitespace_3_idx_ = 0; non_whitespace_3_idx_ = 0; whitespace_4_idx_ = 0; header_lines_.clear(); header_lines_.shrink_to_fit(); } void BalsaHeaders::CopyFrom(const BalsaHeaders& other) { if (this == &other) { return; } balsa_buffer_.CopyFrom(other.balsa_buffer_); transfer_encoding_is_chunked_ = other.transfer_encoding_is_chunked_; content_length_ = other.content_length_; content_length_status_ = other.content_length_status_; parsed_response_code_ = other.parsed_response_code_; firstline_buffer_base_idx_ = other.firstline_buffer_base_idx_; whitespace_1_idx_ = other.whitespace_1_idx_; non_whitespace_1_idx_ = other.non_whitespace_1_idx_; whitespace_2_idx_ = other.whitespace_2_idx_; non_whitespace_2_idx_ = other.non_whitespace_2_idx_; whitespace_3_idx_ = other.whitespace_3_idx_; non_whitespace_3_idx_ = other.non_whitespace_3_idx_; whitespace_4_idx_ = other.whitespace_4_idx_; header_lines_ = other.header_lines_; } void BalsaHeaders::AddAndMakeDescription(absl::string_view key, absl::string_view value, HeaderLineDescription* d) { QUICHE_CHECK(d != nullptr); if (enforce_header_policy_) { QuicheHandleHeaderPolicy(key); } size_t line_size = key.size() + 2 + value.size(); BalsaBuffer::Blocks::size_type block_buffer_idx = 0; char* storage = balsa_buffer_.Reserve(line_size, &block_buffer_idx); size_t base_idx = storage - GetPtr(block_buffer_idx); char* cur_loc = storage; memcpy(cur_loc, key.data(), key.size()); cur_loc += key.size(); *cur_loc = ':'; ++cur_loc; *cur_loc = ' '; ++cur_loc; memcpy(cur_loc, value.data(), value.size()); *d = HeaderLineDescription( base_idx, base_idx + key.size(), base_idx + key.size() + 2, base_idx + key.size() + 2 + value.size(), block_buffer_idx); } void BalsaHeaders::AppendAndMakeDescription(absl::string_view key, absl::string_view value, HeaderLineDescription* d) { size_t old_value_size = d->last_char_idx - d->value_begin_idx; if (old_value_size == 0) { AddAndMakeDescription(key, value, d); return; } absl::string_view old_value(GetPtr(d->buffer_base_idx) + d->value_begin_idx, old_value_size); BalsaBuffer::Blocks::size_type block_buffer_idx = 0; size_t new_size = key.size() + 3 + old_value_size + value.size(); char* storage = balsa_buffer_.Reserve(new_size, &block_buffer_idx); size_t base_idx = storage - GetPtr(block_buffer_idx); absl::string_view first_value = old_value; absl::string_view second_value = value; char* cur_loc = storage; memcpy(cur_loc, key.data(), key.size()); cur_loc += key.size(); *cur_loc = ':'; ++cur_loc; *cur_loc = ' '; ++cur_loc; memcpy(cur_loc, first_value.data(), first_value.size()); cur_loc += first_value.size(); *cur_loc = ','; ++cur_loc; memcpy(cur_loc, second_value.data(), second_value.size()); *d = HeaderLineDescription(base_idx, base_idx + key.size(), base_idx + key.size() + 2, base_idx + new_size, block_buffer_idx); } void BalsaHeaders::MaybeClearSpecialHeaderValues(absl::string_view key) { if (absl::EqualsIgnoreCase(key, kContentLength)) { if (transfer_encoding_is_chunked_) { return; } content_length_status_ = BalsaHeadersEnums::NO_CONTENT_LENGTH; content_length_ = 0; return; } if (absl::EqualsIgnoreCase(key, kTransferEncoding)) { transfer_encoding_is_chunked_ = false; } } void BalsaHeaders::RemoveAllOfHeaderStartingAt(absl::string_view key, HeaderLines::iterator start) { MaybeClearSpecialHeaderValues(key); while (start != header_lines_.end()) { start->skip = true; ++start; start = GetHeaderLinesIterator(key, start); } } void BalsaHeaders::ReplaceOrAppendHeader(absl::string_view key, absl::string_view value) { const HeaderLines::iterator end = header_lines_.end(); const HeaderLines::iterator begin = header_lines_.begin(); HeaderLines::iterator i = GetHeaderLinesIterator(key, begin); if (i != end) { RemoveAllOfHeaderStartingAt(key, i); AddAndMakeDescription(key, value, &(*i)); return; } AppendHeader(key, value); } void BalsaHeaders::AppendHeader(absl::string_view key, absl::string_view value) { HeaderLineDescription hld; AddAndMakeDescription(key, value, &hld); header_lines_.push_back(hld); } void BalsaHeaders::AppendToHeader(absl::string_view key, absl::string_view value) { HeaderLines::iterator i = GetHeaderLinesIterator(key, header_lines_.begin()); if (i == header_lines_.end()) { AppendHeader(key, value); return; } HeaderLineDescription hld = *i; AppendAndMakeDescription(key, value, &hld); i->skip = true; header_lines_.push_back(hld); } void BalsaHeaders::AppendToHeaderWithCommaAndSpace(absl::string_view key, absl::string_view value) { HeaderLines::iterator i = GetHeaderLinesIteratorForLastMultivaluedHeader(key); if (i == header_lines_.end()) { AppendHeader(key, value); return; } std::string space_and_value = absl::StrCat(" ", value); HeaderLineDescription hld = *i; AppendAndMakeDescription(key, space_and_value, &hld); i->skip = true; header_lines_.push_back(hld); } absl::string_view BalsaHeaders::GetValueFromHeaderLineDescription( const HeaderLineDescription& line) const { QUICHE_DCHECK_GE(line.last_char_idx, line.value_begin_idx); return absl::string_view(GetPtr(line.buffer_base_idx) + line.value_begin_idx, line.last_char_idx - line.value_begin_idx); } absl::string_view BalsaHeaders::GetHeader(absl::string_view key) const { QUICHE_DCHECK(!header_properties::IsMultivaluedHeader(key)) << "Header '" << key << "' may consist of multiple lines. Do not " << "use BalsaHeaders::GetHeader() or you may be missing some of its " << "values."; const HeaderLines::const_iterator end = header_lines_.end(); HeaderLines::const_iterator i = GetConstHeaderLinesIterator(key); if (i == end) { return absl::string_view(); } return GetValueFromHeaderLineDescription(*i); } BalsaHeaders::const_header_lines_iterator BalsaHeaders::GetHeaderPosition( absl::string_view key) const { const HeaderLines::const_iterator end = header_lines_.end(); HeaderLines::const_iterator i = GetConstHeaderLinesIterator(key); if (i == end) { return lines().end(); } return const_header_lines_iterator(this, (i - header_lines_.begin())); } BalsaHeaders::const_header_lines_key_iterator BalsaHeaders::GetIteratorForKey( absl::string_view key) const { HeaderLines::const_iterator i = GetConstHeaderLinesIterator(key); if (i == header_lines_.end()) { return header_lines_key_end(); } return const_header_lines_key_iterator(this, (i - header_lines_.begin()), key); } BalsaHeaders::HeaderLines::const_iterator BalsaHeaders::GetConstHeaderLinesIterator(absl::string_view key) const { const HeaderLines::const_iterator end = header_lines_.end(); for (HeaderLines::const_iterator i = header_lines_.begin(); i != end; ++i) { const HeaderLineDescription& line = *i; if (line.skip) { continue; } const absl::string_view current_key( GetPtr(line.buffer_base_idx) + line.first_char_idx, line.key_end_idx - line.first_char_idx); if (absl::EqualsIgnoreCase(current_key, key)) { QUICHE_DCHECK_GE(line.last_char_idx, line.value_begin_idx); return i; } } return end; } BalsaHeaders::HeaderLines::iterator BalsaHeaders::GetHeaderLinesIterator( absl::string_view key, BalsaHeaders::HeaderLines::iterator start) { const HeaderLines::iterator end = header_lines_.end(); for (HeaderLines::iterator i = start; i != end; ++i) { const HeaderLineDescription& line = *i; if (line.skip) { continue; } const absl::string_view current_key( GetPtr(line.buffer_base_idx) + line.first_char_idx, line.key_end_idx - line.first_char_idx); if (absl::EqualsIgnoreCase(current_key, key)) { QUICHE_DCHECK_GE(line.last_char_idx, line.value_begin_idx); return i; } } return end; } BalsaHeaders::HeaderLines::iterator BalsaHeaders::GetHeaderLinesIteratorForLastMultivaluedHeader( absl::string_view key) { const HeaderLines::iterator end = header_lines_.end(); HeaderLines::iterator last_found_match; bool found_a_match = false; for (HeaderLines::iterator i = header_lines_.begin(); i != end; ++i) { const HeaderLineDescription& line = *i; if (line.skip) { continue; } const absl::string_view current_key( GetPtr(line.buffer_base_idx) + line.first_char_idx, line.key_end_idx - line.first_char_idx); if (absl::EqualsIgnoreCase(current_key, key)) { QUICHE_DCHECK_GE(line.last_char_idx, line.value_begin_idx); last_found_match = i; found_a_match = true; } } return (found_a_match ? last_found_match : end); } void BalsaHeaders::GetAllOfHeader(absl::string_view key, std::vector<absl::string_view>* out) const { for (const_header_lines_key_iterator it = GetIteratorForKey(key); it != lines().end(); ++it) { out->push_back(it->second); } } void BalsaHeaders::GetAllOfHeaderIncludeRemoved( absl::string_view key, std::vector<absl::string_view>* out) const { const HeaderLines::const_iterator begin = header_lines_.begin(); const HeaderLines::const_iterator end = header_lines_.end(); for (bool add_removed : {false, true}) { for (HeaderLines::const_iterator i = begin; i != end; ++i) { const HeaderLineDescription& line = *i; if ((!add_removed && line.skip) || (add_removed && !line.skip)) { continue; } const absl::string_view current_key( GetPtr(line.buffer_base_idx) + line.first_char_idx, line.key_end_idx - line.first_char_idx); if (absl::EqualsIgnoreCase(current_key, key)) { QUICHE_DCHECK_GE(line.last_char_idx, line.value_begin_idx); out->push_back(GetValueFromHeaderLineDescription(line)); } } } } namespace { bool SurroundedOnlyBySpacesAndCommas(absl::string_view::difference_type idx, absl::string_view::difference_type end_idx, absl::string_view line) { for (idx = idx - 1; idx >= 0; --idx) { if (line[idx] == ',') { break; } if (line[idx] != ' ') { return false; } } for (; end_idx < static_cast<int64_t>(line.size()); ++end_idx) { if (line[end_idx] == ',') { break; } if (line[end_idx] != ' ') { return false; } } return true; } } bool BalsaHeaders::HeaderHasValueHelper(absl::string_view key, absl::string_view value, bool case_sensitive) const { for (const_header_lines_key_iterator it = GetIteratorForKey(key); it != lines().end(); ++it) { absl::string_view line = it->second; absl::string_view::size_type idx = case_sensitive ? line.find(value, 0) : FindIgnoreCase(line, value); while (idx != absl::string_view::npos) { absl::string_view::difference_type end_idx = idx + value.size(); if (SurroundedOnlyBySpacesAndCommas(idx, end_idx, line)) { return true; } idx = line.find(value, idx + 1); } } return false; } bool BalsaHeaders::HasNonEmptyHeader(absl::string_view key) const { for (const_header_lines_key_iterator it = GetIteratorForKey(key); it != header_lines_key_end(); ++it) { if (!it->second.empty()) { return true; } } return false; } std::string BalsaHeaders::GetAllOfHeaderAsString(absl::string_view key) const { auto formatter = [](std::string* out, std::pair<absl::string_view, absl::string_view> header) { return absl::AlphaNumFormatter()(out, header.second); }; return absl::StrJoin(GetIteratorForKey(key), header_lines_key_end(), ",", formatter); } void BalsaHeaders::RemoveAllOfHeaderInList(const HeaderTokenList& keys) { if (keys.empty()) { return; } absl::flat_hash_set<std::string> lowercase_keys; lowercase_keys.reserve(keys.size()); for (const auto& key : keys) { MaybeClearSpecialHeaderValues(key); lowercase_keys.insert(absl::AsciiStrToLower(key)); } for (HeaderLineDescription& line : header_lines_) { if (line.skip) { continue; } const size_t key_len = line.key_end_idx - line.first_char_idx; absl::string_view key(GetPtr(line.buffer_base_idx) + line.first_char_idx, key_len); std::string lowercase_key = absl::AsciiStrToLower(key); if (lowercase_keys.count(lowercase_key) != 0) { line.skip = true; } } } void BalsaHeaders::RemoveAllOfHeader(absl::string_view key) { HeaderLines::iterator it = GetHeaderLinesIterator(key, header_lines_.begin()); RemoveAllOfHeaderStartingAt(key, it); } void BalsaHeaders::RemoveAllHeadersWithPrefix(absl::string_view prefix) { for (HeaderLines::size_type i = 0; i < header_lines_.size(); ++i) { if (header_lines_[i].skip) { continue; } HeaderLineDescription& line = header_lines_[i]; const size_t key_len = line.key_end_idx - line.first_char_idx; if (key_len < prefix.size()) { continue; } const absl::string_view current_key_prefix( GetPtr(line.buffer_base_idx) + line.first_char_idx, prefix.size()); if (absl::EqualsIgnoreCase(current_key_prefix, prefix)) { const absl::string_view current_key( GetPtr(line.buffer_base_idx) + line.first_char_idx, key_len); MaybeClearSpecialHeaderValues(current_key); line.skip = true; } } } bool BalsaHeaders::HasHeadersWithPrefix(absl::string_view prefix) const { for (HeaderLines::size_type i = 0; i < header_lines_.size(); ++i) { if (header_lines_[i].skip) { continue; } const HeaderLineDescription& line = header_lines_[i]; if (line.key_end_idx - line.first_char_idx < prefix.size()) { continue; } const absl::string_view current_key_prefix( GetPtr(line.buffer_base_idx) + line.first_char_idx, prefix.size()); if (absl::EqualsIgnoreCase(current_key_prefix, prefix)) { return true; } } return false; } void BalsaHeaders::GetAllOfHeaderWithPrefix( absl::string_view prefix, std::vector<std::pair<absl::string_view, absl::string_view>>* out) const { for (HeaderLines::size_type i = 0; i < header_lines_.size(); ++i) { if (header_lines_[i].skip) { continue; } const HeaderLineDescription& line = header_lines_[i]; absl::string_view key(GetPtr(line.buffer_base_idx) + line.first_char_idx, line.key_end_idx - line.first_char_idx); if (absl::StartsWithIgnoreCase(key, prefix)) { out->push_back(std::make_pair( key, absl::string_view(GetPtr(line.buffer_base_idx) + line.value_begin_idx, line.last_char_idx - line.value_begin_idx))); } } } void BalsaHeaders::GetAllHeadersWithLimit( std::vector<std::pair<absl::string_view, absl::string_view>>* out, int limit) const { for (HeaderLines::size_type i = 0; i < header_lines_.size(); ++i) { if (limit >= 0 && out->size() >= static_cast<size_t>(limit)) { return; } if (header_lines_[i].skip) { continue; } const HeaderLineDescription& line = header_lines_[i]; absl::string_view key(GetPtr(line.buffer_base_idx) + line.first_char_idx, line.key_end_idx - line.first_char_idx); out->push_back(std::make_pair( key, absl::string_view(GetPtr(line.buffer_base_idx) + line.value_begin_idx, line.last_char_idx - line.value_begin_idx))); } } size_t BalsaHeaders::RemoveValue(absl::string_view key, absl::string_view search_value) { absl::string_view needle = search_value; RemoveWhitespaceContext(&needle); QUICHE_BUG_IF(bug_22783_2, needle != search_value) << "Search value should not be surrounded by spaces."; if (needle.empty()) { return 0; } size_t removals = 0; for (HeaderLines::iterator it = GetHeaderLinesIterator(key, header_lines_.begin()); it != header_lines_.end(); it = GetHeaderLinesIterator(key, ++it)) { HeaderLineDescription* line = &(*it); if (line->ValuesLength() < needle.size()) { continue; } char* buf = GetPtr(line->buffer_base_idx); char* value_begin = buf + line->value_begin_idx; absl::string_view values(value_begin, line->ValuesLength()); RemoveWhitespaceContext(&values); if (values.size() == needle.size()) { if (values == needle) { line->skip = true; removals++; } continue; } char* insertion = value_begin; while (values.size() >= needle.size()) { ssize_t cur_leading_whitespace = RemoveLeadingWhitespace(&values); bool found = absl::StartsWith(values, needle); const size_t next_comma = values.find(',', (found ? needle.size() : 0)); const bool comma_found = next_comma != absl::string_view::npos; const size_t cur_size = (comma_found ? next_comma + 1 : values.size()); if (found && cur_size != needle.size()) { absl::string_view cur(values.data(), cur_size); if (comma_found) { cur.remove_suffix(1); } RemoveTrailingWhitespace(&cur); found = (cur.size() == needle.size()); } if (found) { removals++; if (!comma_found) { insertion--; } } else { if (insertion + cur_leading_whitespace != values.data()) { memmove(insertion, values.data(), cur_size); insertion += cur_size; } else { insertion += cur_leading_whitespace + cur_size; } } values.remove_prefix(cur_size); } if (!values.empty()) { if (insertion != values.data()) { memmove(insertion, values.data(), values.size()); } insertion += values.size(); } if (insertion <= value_begin) { line->skip = true; } else { line->last_char_idx = insertion - buf; } } return removals; } size_t BalsaHeaders::GetSizeForWriteBuffer() const { size_t write_buf_size = whitespace_4_idx_ - non_whitespace_1_idx_ + 2; const HeaderLines::size_type end = header_lines_.size(); for (HeaderLines::size_type i = 0; i < end; ++i) { const HeaderLineDescription& line = header_lines_[i]; if (!line.skip) { write_buf_size += line.key_end_idx - line.first_char_idx + 2; write_buf_size += line.last_char_idx - line.value_begin_idx + 2; } } return write_buf_size + 2; } void BalsaHeaders::DumpToString(std::string* str) const { DumpToPrefixedString(" ", str); } std::string BalsaHeaders::DebugString() const { std::string s; DumpToString(&s); return s; } bool BalsaHeaders::ForEachHeader( quiche::UnretainedCallback<bool(const absl::string_view key, const absl::string_view value)> fn) const { int s = header_lines_.size(); for (int i = 0; i < s; ++i) { const HeaderLineDescription& desc = header_lines_[i]; if (!desc.skip && desc.KeyLength() > 0) { const char* stream_begin = GetPtr(desc.buffer_base_idx); if (!fn(absl::string_view(stream_begin + desc.first_char_idx, desc.KeyLength()), absl::string_view(stream_begin + desc.value_begin_idx, desc.ValuesLength()))) { return false; } } } return true; } void BalsaHeaders::DumpToPrefixedString(const char* spaces, std::string* str) const { const absl::string_view firstline = first_line(); const int buffer_length = GetReadableBytesFromHeaderStream(); if (firstline.empty() && buffer_length == 0) { absl::StrAppend(str, "\n", spaces, "<empty header>\n"); return; } if (!FramerIsDoneWriting()) { absl::StrAppendFormat(str, "\n%s<incomplete header len: %d>\n%s%.*s\n", spaces, buffer_length, spaces, buffer_length, OriginalHeaderStreamBegin()); return; } str->reserve(str->size() + GetSizeForWriteBuffer()); absl::StrAppend(str, "\n", spaces, firstline, "\n"); for (const auto& line : lines()) { absl::StrAppend(str, spaces, line.first, ": ", line.second, "\n"); } } void BalsaHeaders::SetContentLength(size_t length) { if (content_length_status_ == BalsaHeadersEnums::VALID_CONTENT_LENGTH && content_length_ == length) { return; } if (content_length_status_ != BalsaHeadersEnums::NO_CONTENT_LENGTH) { RemoveAllOfHeader(kContentLength); } else if (transfer_encoding_is_chunked_) { RemoveAllOfHeader(kTransferEncoding); } content_length_status_ = BalsaHeadersEnums::VALID_CONTENT_LENGTH; content_length_ = length; AppendHeader(kContentLength, absl::StrCat(length)); } void BalsaHeaders::SetTransferEncodingToChunkedAndClearContentLength() { if (transfer_encoding_is_chunked_) { return; } if (content_length_status_ != BalsaHeadersEnums::NO_CONTENT_LENGTH) { ClearContentLength(); } ReplaceOrAppendHeader(kTransferEncoding, "chunked"); transfer_encoding_is_chunked_ = true; } void BalsaHeaders::SetNoTransferEncoding() { if (transfer_encoding_is_chunked_) { RemoveAllOfHeader(kTransferEncoding); } } void BalsaHeaders::ClearContentLength() { RemoveAllOfHeader(kContentLength); } bool BalsaHeaders::IsEmpty() const { return balsa_buffer_.GetTotalBytesUsed() == 0; } absl::string_view BalsaHeaders::Authority() const { return GetHeader(kHost); } void BalsaHeaders::ReplaceOrAppendAuthority(absl::string_view value) { ReplaceOrAppendHeader(kHost, value); } void BalsaHeaders::RemoveAuthority() { RemoveAllOfHeader(kHost); } void BalsaHeaders::ApplyToCookie( quiche::UnretainedCallback<void(absl::string_view cookie)> f) const { f(GetHeader(kCookie)); } void BalsaHeaders::SetResponseFirstline(absl::string_view version, size_t parsed_response_code, absl::string_view reason_phrase) { SetFirstlineFromStringPieces(version, absl::StrCat(parsed_response_code), reason_phrase); parsed_response_code_ = parsed_response_code; } void BalsaHeaders::SetFirstlineFromStringPieces(absl::string_view firstline_a, absl::string_view firstline_b, absl::string_view firstline_c) { size_t line_size = (firstline_a.size() + firstline_b.size() + firstline_c.size() + 2); char* storage = balsa_buffer_.Reserve(line_size, &firstline_buffer_base_idx_); char* cur_loc = storage; memcpy(cur_loc, firstline_a.data(), firstline_a.size()); cur_loc += firstline_a.size(); *cur_loc = ' '; ++cur_loc; memcpy(cur_loc, firstline_b.data(), firstline_b.size()); cur_loc += firstline_b.size(); *cur_loc = ' '; ++cur_loc; memcpy(cur_loc, firstline_c.data(), firstline_c.size()); whitespace_1_idx_ = storage - BeginningOfFirstLine(); non_whitespace_1_idx_ = whitespace_1_idx_; whitespace_2_idx_ = non_whitespace_1_idx_ + firstline_a.size(); non_whitespace_2_idx_ = whitespace_2_idx_ + 1; whitespace_3_idx_ = non_whitespace_2_idx_ + firstline_b.size(); non_whitespace_3_idx_ = whitespace_3_idx_ + 1; whitespace_4_idx_ = non_whitespace_3_idx_ + firstline_c.size(); } void BalsaHeaders::SetRequestMethod(absl::string_view method) { if (method.size() <= (whitespace_2_idx_ - non_whitespace_1_idx_)) { non_whitespace_1_idx_ = whitespace_2_idx_ - method.size(); if (!method.empty()) { char* stream_begin = BeginningOfFirstLine(); memcpy(stream_begin + non_whitespace_1_idx_, method.data(), method.size()); } } else { SetRequestFirstlineFromStringPieces(method, request_uri(), request_version()); } } void BalsaHeaders::SetResponseVersion(absl::string_view version) { SetRequestMethod(version); } void BalsaHeaders::SetRequestUri(absl::string_view uri) { SetRequestFirstlineFromStringPieces(request_method(), uri, request_version()); } void BalsaHeaders::SetResponseCode(absl::string_view code) { SetRequestUri(code); } void BalsaHeaders::SetParsedResponseCodeAndUpdateFirstline( size_t parsed_response_code) { parsed_response_code_ = parsed_response_code; SetResponseCode(absl::StrCat(parsed_response_code)); } void BalsaHeaders::SetRequestVersion(absl::string_view version) { bool fits_in_space_allowed = version.size() + 1 <= whitespace_4_idx_ - whitespace_3_idx_; if (!fits_in_space_allowed) { SetRequestFirstlineFromStringPieces(request_method(), request_uri(), version); return; } char* stream_begin = BeginningOfFirstLine(); *(stream_begin + whitespace_3_idx_) = ' '; non_whitespace_3_idx_ = whitespace_3_idx_ + 1; whitespace_4_idx_ = non_whitespace_3_idx_ + version.size(); memcpy(stream_begin + non_whitespace_3_idx_, version.data(), version.size()); } void BalsaHeaders::SetResponseReasonPhrase(absl::string_view reason) { SetRequestVersion(reason); } void BalsaHeaders::RemoveLastTokenFromHeaderValue(absl::string_view key) { BalsaHeaders::HeaderLines::iterator it = GetHeaderLinesIterator(key, header_lines_.begin()); if (it == header_lines_.end()) { QUICHE_DLOG(WARNING) << "Attempting to remove last token from a non-existent " << "header \"" << key << "\""; return; } BalsaHeaders::HeaderLines::iterator header_line; do { header_line = it; it = GetHeaderLinesIterator(key, it + 1); } while (it != header_lines_.end()); BalsaHeaders::HeaderTokenList tokens; absl::string_view value( GetPtr(header_line->buffer_base_idx) + header_line->value_begin_idx, header_line->last_char_idx - header_line->value_begin_idx); ParseTokenList(value, &tokens); if (tokens.empty()) { QUICHE_DLOG(WARNING) << "Attempting to remove a token from an empty header value " << "for header \"" << key << "\""; header_line->skip = true; } else if (tokens.size() == 1) { header_line->skip = true; } else { absl::string_view new_last_token = tokens[tokens.size() - 2]; const char* last_char_address = new_last_token.data() + new_last_token.size() - 1; const char* const stream_begin = GetPtr(header_line->buffer_base_idx); header_line->last_char_idx = last_char_address - stream_begin + 1; } } bool BalsaHeaders::ResponseCanHaveBody(int response_code) { if (response_code >= 100 && response_code < 200) { return false; } return (response_code != 204) && (response_code != 304); } }
#include "quiche/balsa/balsa_headers.h" #include <cstring> #include <limits> #include <memory> #include <sstream> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/base/macros.h" #include "absl/memory/memory.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "quiche/balsa/balsa_enums.h" #include "quiche/balsa/balsa_frame.h" #include "quiche/balsa/simple_buffer.h" #include "quiche/common/platform/api/quiche_expect_bug.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/platform/api/quiche_test.h" using absl::make_unique; using testing::AnyOf; using testing::Combine; using testing::ElementsAre; using testing::Eq; using testing::StrEq; using testing::ValuesIn; namespace quiche { namespace test { class BalsaHeadersTestPeer { public: static void WriteFromFramer(BalsaHeaders* headers, const char* ptr, size_t size) { headers->WriteFromFramer(ptr, size); } }; namespace { class BalsaBufferTest : public QuicheTest { public: void CreateBuffer(size_t blocksize) { buffer_ = std::make_unique<BalsaBuffer>(blocksize); } void CreateBuffer() { buffer_ = std::make_unique<BalsaBuffer>(); } static std::unique_ptr<BalsaBuffer> CreateUnmanagedBuffer(size_t blocksize) { return std::make_unique<BalsaBuffer>(blocksize); } absl::string_view Write(absl::string_view sp, size_t* block_buffer_idx) { if (sp.empty()) { return sp; } char* storage = buffer_->Reserve(sp.size(), block_buffer_idx); memcpy(storage, sp.data(), sp.size()); return absl::string_view(storage, sp.size()); } protected: std::unique_ptr<BalsaBuffer> buffer_; }; using BufferBlock = BalsaBuffer::BufferBlock; BufferBlock MakeBufferBlock(const std::string& s) { BufferBlock block{make_unique<char[]>(s.size()), s.size() * 2, s.size()}; std::memcpy(block.buffer.get(), s.data(), s.size()); return block; } BalsaHeaders CreateHTTPHeaders(bool request, absl::string_view s) { BalsaHeaders headers; BalsaFrame framer; framer.set_is_request(request); framer.set_balsa_headers(&headers); QUICHE_CHECK_EQ(s.size(), framer.ProcessInput(s.data(), s.size())); QUICHE_CHECK(framer.MessageFullyRead()); return headers; } class BufferBlockTest : public QuicheTestWithParam<std::tuple<const char*, const char*>> {}; TEST_P(BufferBlockTest, CopyFrom) { const std::string s1 = std::get<0>(GetParam()); const std::string s2 = std::get<1>(GetParam()); BufferBlock block; block.CopyFrom(MakeBufferBlock(s1)); EXPECT_EQ(s1.size(), block.bytes_free); ASSERT_EQ(2 * s1.size(), block.buffer_size); EXPECT_EQ(0, memcmp(s1.data(), block.buffer.get(), s1.size())); block.CopyFrom(MakeBufferBlock(s2)); EXPECT_EQ(s2.size(), block.bytes_free); ASSERT_EQ(2 * s2.size(), block.buffer_size); EXPECT_EQ(0, memcmp(s2.data(), block.buffer.get(), s2.size())); } const char* block_strings[] = {"short string", "longer than the other string"}; INSTANTIATE_TEST_SUITE_P(VariousSizes, BufferBlockTest, Combine(ValuesIn(block_strings), ValuesIn(block_strings))); TEST_F(BalsaBufferTest, BlocksizeSet) { CreateBuffer(); EXPECT_EQ(BalsaBuffer::kDefaultBlocksize, buffer_->blocksize()); CreateBuffer(1024); EXPECT_EQ(1024u, buffer_->blocksize()); } TEST_F(BalsaBufferTest, GetMemorySize) { CreateBuffer(10); EXPECT_EQ(0u, buffer_->GetTotalBytesUsed()); EXPECT_EQ(0u, buffer_->GetTotalBufferBlockSize()); BalsaBuffer::Blocks::size_type index; buffer_->Reserve(1024, &index); EXPECT_EQ(10u + 1024u, buffer_->GetTotalBufferBlockSize()); EXPECT_EQ(1024u, buffer_->GetTotalBytesUsed()); } TEST_F(BalsaBufferTest, ManyWritesToContiguousBuffer) { CreateBuffer(0); std::string data = "0123456789"; for (int i = 0; i < 120 * 1000; ++i) { buffer_->WriteToContiguousBuffer(data); } } TEST_F(BalsaBufferTest, CopyFrom) { CreateBuffer(10); std::unique_ptr<BalsaBuffer> ptr = CreateUnmanagedBuffer(1024); ASSERT_EQ(1024u, ptr->blocksize()); EXPECT_EQ(0u, ptr->num_blocks()); std::string data1 = "foobarbaz01"; buffer_->WriteToContiguousBuffer(data1); buffer_->NoMoreWriteToContiguousBuffer(); std::string data2 = "12345"; Write(data2, nullptr); std::string data3 = "6789"; Write(data3, nullptr); std::string data4 = "123456789012345"; Write(data3, nullptr); ptr->CopyFrom(*buffer_); EXPECT_EQ(ptr->can_write_to_contiguous_buffer(), buffer_->can_write_to_contiguous_buffer()); ASSERT_EQ(ptr->num_blocks(), buffer_->num_blocks()); for (size_t i = 0; i < buffer_->num_blocks(); ++i) { ASSERT_EQ(ptr->bytes_used(i), buffer_->bytes_used(i)); ASSERT_EQ(ptr->buffer_size(i), buffer_->buffer_size(i)); EXPECT_EQ(0, memcmp(ptr->GetPtr(i), buffer_->GetPtr(i), ptr->bytes_used(i))); } } TEST_F(BalsaBufferTest, ClearWorks) { CreateBuffer(10); std::string data1 = "foobarbaz01"; buffer_->WriteToContiguousBuffer(data1); buffer_->NoMoreWriteToContiguousBuffer(); std::string data2 = "12345"; Write(data2, nullptr); std::string data3 = "6789"; Write(data3, nullptr); std::string data4 = "123456789012345"; Write(data3, nullptr); buffer_->Clear(); EXPECT_TRUE(buffer_->can_write_to_contiguous_buffer()); EXPECT_EQ(10u, buffer_->blocksize()); EXPECT_EQ(0u, buffer_->num_blocks()); } TEST_F(BalsaBufferTest, ClearWorksWhenLargerThanBlocksize) { CreateBuffer(10); std::string data1 = "foobarbaz01lkjasdlkjasdlkjasd"; buffer_->WriteToContiguousBuffer(data1); buffer_->NoMoreWriteToContiguousBuffer(); std::string data2 = "12345"; Write(data2, nullptr); std::string data3 = "6789"; Write(data3, nullptr); std::string data4 = "123456789012345"; Write(data3, nullptr); buffer_->Clear(); EXPECT_TRUE(buffer_->can_write_to_contiguous_buffer()); EXPECT_EQ(10u, buffer_->blocksize()); EXPECT_EQ(0u, buffer_->num_blocks()); } TEST_F(BalsaBufferTest, ContiguousWriteSmallerThanBlocksize) { CreateBuffer(1024); std::string data1 = "foo"; buffer_->WriteToContiguousBuffer(data1); std::string composite = data1; const char* buf_ptr = buffer_->GetPtr(0); ASSERT_LE(composite.size(), buffer_->buffer_size(0)); EXPECT_EQ(0, memcmp(composite.data(), buf_ptr, composite.size())); std::string data2 = "barbaz"; buffer_->WriteToContiguousBuffer(data2); composite += data2; buf_ptr = buffer_->GetPtr(0); ASSERT_LE(composite.size(), buffer_->buffer_size(0)); EXPECT_EQ(0, memcmp(composite.data(), buf_ptr, composite.size())); } TEST_F(BalsaBufferTest, SingleContiguousWriteLargerThanBlocksize) { CreateBuffer(10); std::string data1 = "abracadabrawords"; buffer_->WriteToContiguousBuffer(data1); std::string composite = data1; const char* buf_ptr = buffer_->GetPtr(0); ASSERT_LE(data1.size(), buffer_->buffer_size(0)); EXPECT_EQ(0, memcmp(composite.data(), buf_ptr, composite.size())) << composite << "\n" << absl::string_view(buf_ptr, buffer_->bytes_used(0)); } TEST_F(BalsaBufferTest, ContiguousWriteLargerThanBlocksize) { CreateBuffer(10); std::string data1 = "123456789"; buffer_->WriteToContiguousBuffer(data1); std::string composite = data1; ASSERT_LE(10u, buffer_->buffer_size(0)); std::string data2 = "0123456789"; buffer_->WriteToContiguousBuffer(data2); composite += data2; const char* buf_ptr = buffer_->GetPtr(0); ASSERT_LE(composite.size(), buffer_->buffer_size(0)); EXPECT_EQ(0, memcmp(composite.data(), buf_ptr, composite.size())) << "composite: " << composite << "\n" << " actual: " << absl::string_view(buf_ptr, buffer_->bytes_used(0)); } TEST_F(BalsaBufferTest, TwoContiguousWritesLargerThanBlocksize) { CreateBuffer(5); std::string data1 = "123456"; buffer_->WriteToContiguousBuffer(data1); std::string composite = data1; ASSERT_LE(composite.size(), buffer_->buffer_size(0)); std::string data2 = "7890123"; buffer_->WriteToContiguousBuffer(data2); composite += data2; const char* buf_ptr = buffer_->GetPtr(0); ASSERT_LE(composite.size(), buffer_->buffer_size(0)); EXPECT_EQ(0, memcmp(composite.data(), buf_ptr, composite.size())) << "composite: " << composite << "\n" << " actual: " << absl::string_view(buf_ptr, buffer_->bytes_used(0)); } TEST_F(BalsaBufferTest, WriteSmallerThanBlocksize) { CreateBuffer(5); std::string data1 = "1234"; size_t block_idx = 0; absl::string_view write_result = Write(data1, &block_idx); ASSERT_EQ(1u, block_idx); EXPECT_THAT(write_result, StrEq(data1)); CreateBuffer(5); data1 = "1234"; block_idx = 0; write_result = Write(data1, &block_idx); ASSERT_EQ(1u, block_idx); EXPECT_THAT(write_result, StrEq(data1)); } TEST_F(BalsaBufferTest, TwoWritesSmallerThanBlocksizeThenAnotherWrite) { CreateBuffer(10); std::string data1 = "12345"; size_t block_idx = 0; absl::string_view write_result = Write(data1, &block_idx); ASSERT_EQ(1u, block_idx); EXPECT_THAT(write_result, StrEq(data1)); std::string data2 = "data2"; block_idx = 0; write_result = Write(data2, &block_idx); ASSERT_EQ(1u, block_idx); EXPECT_THAT(write_result, StrEq(data2)); std::string data3 = "data3"; block_idx = 0; write_result = Write(data3, &block_idx); ASSERT_EQ(2u, block_idx); EXPECT_THAT(write_result, StrEq(data3)); CreateBuffer(10); buffer_->NoMoreWriteToContiguousBuffer(); data1 = "12345"; block_idx = 0; write_result = Write(data1, &block_idx); ASSERT_EQ(0u, block_idx); EXPECT_THAT(write_result, StrEq(data1)); data2 = "data2"; block_idx = 0; write_result = Write(data2, &block_idx); ASSERT_EQ(0u, block_idx); EXPECT_THAT(write_result, StrEq(data2)); data3 = "data3"; block_idx = 0; write_result = Write(data3, &block_idx); ASSERT_EQ(1u, block_idx); EXPECT_THAT(write_result, StrEq(data3)); } TEST_F(BalsaBufferTest, WriteLargerThanBlocksize) { CreateBuffer(5); std::string data1 = "123456789"; size_t block_idx = 0; absl::string_view write_result = Write(data1, &block_idx); ASSERT_EQ(1u, block_idx); EXPECT_THAT(write_result, StrEq(data1)); CreateBuffer(5); buffer_->NoMoreWriteToContiguousBuffer(); data1 = "123456789"; block_idx = 0; write_result = Write(data1, &block_idx); ASSERT_EQ(1u, block_idx); EXPECT_THAT(write_result, StrEq(data1)); } TEST_F(BalsaBufferTest, ContiguousThenTwoSmallerThanBlocksize) { CreateBuffer(5); std::string data1 = "1234567890"; buffer_->WriteToContiguousBuffer(data1); size_t block_idx = 0; std::string data2 = "1234"; absl::string_view write_result = Write(data2, &block_idx); ASSERT_EQ(1u, block_idx); std::string data3 = "1234"; write_result = Write(data3, &block_idx); ASSERT_EQ(2u, block_idx); } TEST_F(BalsaBufferTest, AccessFirstBlockUninitialized) { CreateBuffer(5); EXPECT_EQ(0u, buffer_->GetReadableBytesOfFirstBlock()); EXPECT_QUICHE_BUG(buffer_->StartOfFirstBlock(), "First block not allocated yet!"); EXPECT_QUICHE_BUG(buffer_->EndOfFirstBlock(), "First block not allocated yet!"); } TEST_F(BalsaBufferTest, AccessFirstBlockInitialized) { CreateBuffer(5); std::string data1 = "1234567890"; buffer_->WriteToContiguousBuffer(data1); const char* start = buffer_->StartOfFirstBlock(); EXPECT_TRUE(start != nullptr); const char* end = buffer_->EndOfFirstBlock(); EXPECT_TRUE(end != nullptr); EXPECT_EQ(data1.length(), static_cast<size_t>(end - start)); EXPECT_EQ(data1.length(), buffer_->GetReadableBytesOfFirstBlock()); } TEST(BalsaHeaders, CanAssignBeginToIterator) { { BalsaHeaders header; BalsaHeaders::const_header_lines_iterator chli = header.lines().begin(); static_cast<void>(chli); } { const BalsaHeaders header; BalsaHeaders::const_header_lines_iterator chli = header.lines().begin(); static_cast<void>(chli); } } TEST(BalsaHeaders, CanAssignEndToIterator) { { BalsaHeaders header; BalsaHeaders::const_header_lines_iterator chli = header.lines().end(); static_cast<void>(chli); } { const BalsaHeaders header; BalsaHeaders::const_header_lines_iterator chli = header.lines().end(); static_cast<void>(chli); } } TEST(BalsaHeaders, ReplaceOrAppendHeaderTestAppending) { BalsaHeaders header; std::string key_1 = "key_1"; std::string value_1 = "value_1"; header.ReplaceOrAppendHeader(key_1, value_1); BalsaHeaders::const_header_lines_iterator chli = header.lines().begin(); ASSERT_EQ(absl::string_view("key_1"), chli->first); ASSERT_EQ(absl::string_view("value_1"), chli->second); ++chli; ASSERT_NE(header.lines().begin(), chli); ASSERT_EQ(header.lines().end(), chli); } TEST(BalsaHeaders, ReplaceOrAppendHeaderTestReplacing) { BalsaHeaders header; std::string key_1 = "key_1"; std::string value_1 = "value_1"; std::string key_2 = "key_2"; header.ReplaceOrAppendHeader(key_1, value_1); header.ReplaceOrAppendHeader(key_2, value_1); std::string value_2 = "value_2_string"; header.ReplaceOrAppendHeader(key_1, value_2); BalsaHeaders::const_header_lines_iterator chli = header.lines().begin(); ASSERT_EQ(key_1, chli->first); ASSERT_EQ(value_2, chli->second); ++chli; ASSERT_EQ(key_2, chli->first); ASSERT_EQ(value_1, chli->second); ++chli; ASSERT_NE(header.lines().begin(), chli); ASSERT_EQ(header.lines().end(), chli); } TEST(BalsaHeaders, ReplaceOrAppendHeaderTestReplacingMultiple) { BalsaHeaders header; std::string key_1 = "key_1"; std::string key_2 = "key_2"; std::string value_1 = "val_1"; std::string value_2 = "val_2"; std::string value_3 = "value_3_is_longer_than_value_1_and_value_2_and_their_keys"; header.AppendHeader(key_1, value_1); header.AppendHeader(key_1, value_2); header.AppendHeader(key_2, value_1); header.ReplaceOrAppendHeader(key_1, value_3); BalsaHeaders::const_header_lines_iterator chli = header.lines().begin(); ASSERT_EQ(key_1, chli->first); ASSERT_EQ(value_3, chli->second); ++chli; ASSERT_EQ(key_2, chli->first); ASSERT_EQ(value_1, chli->second); ++chli; ASSERT_NE(header.lines().begin(), chli); ASSERT_EQ(header.lines().end(), chli); header.ReplaceOrAppendHeader(key_1, value_1); chli = header.lines().begin(); ASSERT_EQ(key_1, chli->first); ASSERT_EQ(value_1, chli->second); ++chli; ASSERT_EQ(key_2, chli->first); ASSERT_EQ(value_1, chli->second); ++chli; ASSERT_NE(header.lines().begin(), chli); ASSERT_EQ(header.lines().end(), chli); } TEST(BalsaHeaders, AppendHeaderAndIteratorTest1) { BalsaHeaders header; ASSERT_EQ(header.lines().begin(), header.lines().end()); { std::string key_1 = "key_1"; std::string value_1 = "value_1"; header.AppendHeader(key_1, value_1); key_1 = "garbage"; value_1 = "garbage"; } ASSERT_NE(header.lines().begin(), header.lines().end()); BalsaHeaders::const_header_lines_iterator chli = header.lines().begin(); ASSERT_EQ(header.lines().begin(), chli); ASSERT_NE(header.lines().end(), chli); ASSERT_EQ(absl::string_view("key_1"), chli->first); ASSERT_EQ(absl::string_view("value_1"), chli->second); ++chli; ASSERT_NE(header.lines().begin(), chli); ASSERT_EQ(header.lines().end(), chli); } TEST(BalsaHeaders, AppendHeaderAndIteratorTest2) { BalsaHeaders header; ASSERT_EQ(header.lines().begin(), header.lines().end()); { std::string key_1 = "key_1"; std::string value_1 = "value_1"; header.AppendHeader(key_1, value_1); key_1 = "garbage"; value_1 = "garbage"; } { std::string key_2 = "key_2"; std::string value_2 = "value_2"; header.AppendHeader(key_2, value_2); key_2 = "garbage"; value_2 = "garbage"; } ASSERT_NE(header.lines().begin(), header.lines().end()); BalsaHeaders::const_header_lines_iterator chli = header.lines().begin(); ASSERT_EQ(header.lines().begin(), chli); ASSERT_NE(header.lines().end(), chli); ASSERT_EQ(absl::string_view("key_1"), chli->first); ASSERT_EQ(absl::string_view("value_1"), chli->second); ++chli; ASSERT_NE(header.lines().begin(), chli); ASSERT_NE(header.lines().end(), chli); ASSERT_EQ(absl::string_view("key_2"), chli->first); ASSERT_EQ(absl::string_view("value_2"), chli->second); ++chli; ASSERT_NE(header.lines().begin(), chli); ASSERT_EQ(header.lines().end(), chli); } TEST(BalsaHeaders, AppendHeaderAndIteratorTest3) { BalsaHeaders header; ASSERT_EQ(header.lines().begin(), header.lines().end()); { std::string key_1 = "key_1"; std::string value_1 = "value_1"; header.AppendHeader(key_1, value_1); key_1 = "garbage"; value_1 = "garbage"; } { std::string key_2 = "key_2"; std::string value_2 = "value_2"; header.AppendHeader(key_2, value_2); key_2 = "garbage"; value_2 = "garbage"; } { std::string key_3 = "key_3"; std::string value_3 = "value_3"; header.AppendHeader(key_3, value_3); key_3 = "garbage"; value_3 = "garbage"; } ASSERT_NE(header.lines().begin(), header.lines().end()); BalsaHeaders::const_header_lines_iterator chli = header.lines().begin(); ASSERT_EQ(header.lines().begin(), chli); ASSERT_NE(header.lines().end(), chli); ASSERT_EQ(absl::string_view("key_1"), chli->first); ASSERT_EQ(absl::string_view("value_1"), chli->second); ++chli; ASSERT_NE(header.lines().begin(), chli); ASSERT_NE(header.lines().end(), chli); ASSERT_EQ(absl::string_view("key_2"), chli->first); ASSERT_EQ(absl::string_view("value_2"), chli->second); ++chli; ASSERT_NE(header.lines().begin(), chli); ASSERT_NE(header.lines().end(), chli); ASSERT_EQ(absl::string_view("key_3"), chli->first); ASSERT_EQ(absl::string_view("value_3"), chli->second); ++chli; ASSERT_NE(header.lines().begin(), chli); ASSERT_EQ(header.lines().end(), chli); } TEST(BalsaHeaders, AppendHeaderAndTestEraseWithIterator) { BalsaHeaders header; ASSERT_EQ(header.lines().begin(), header.lines().end()); { std::string key_1 = "key_1"; std::string value_1 = "value_1"; header.AppendHeader(key_1, value_1); key_1 = "garbage"; value_1 = "garbage"; } { std::string key_2 = "key_2"; std::string value_2 = "value_2"; header.AppendHeader(key_2, value_2); key_2 = "garbage"; value_2 = "garbage"; } { std::string key_3 = "key_3"; std::string value_3 = "value_3"; header.AppendHeader(key_3, value_3); key_3 = "garbage"; value_3 = "garbage"; } BalsaHeaders::const_header_lines_iterator chli = header.lines().begin(); ++chli; ASSERT_EQ(absl::string_view("key_2"), chli->first); header.erase(chli); chli = header.lines().begin(); ASSERT_NE(header.lines().begin(), header.lines().end()); ASSERT_EQ(header.lines().begin(), chli); ASSERT_NE(header.lines().end(), chli); ASSERT_EQ(absl::string_view("key_1"), chli->first); ASSERT_EQ(absl::string_view("value_1"), chli->second); ++chli; ASSERT_NE(header.lines().begin(), chli); ASSERT_NE(header.lines().end(), chli); ASSERT_EQ(absl::string_view("key_3"), chli->first); ASSERT_EQ(absl::string_view("value_3"), chli->second); ++chli; ASSERT_NE(header.lines().begin(), chli); ASSERT_EQ(header.lines().end(), chli); } TEST(BalsaHeaders, TestSetFirstlineInAdditionalBuffer) { BalsaHeaders headers; headers.SetRequestFirstlineFromStringPieces("GET", "/", "HTTP/1.0"); ASSERT_THAT(headers.first_line(), StrEq("GET / HTTP/1.0")); } TEST(BalsaHeaders, TestSetFirstlineInOriginalBufferAndIsShorterThanOriginal) { BalsaHeaders headers = CreateHTTPHeaders(true, "GET /foobar HTTP/1.0\r\n" "\r\n"); ASSERT_THAT(headers.first_line(), StrEq("GET /foobar HTTP/1.0")); headers.SetRequestFirstlineFromStringPieces("GET", "/", "HTTP/1.0"); ASSERT_THAT(headers.first_line(), StrEq("GET / HTTP/1.0")); } TEST(BalsaHeaders, TestSetFirstlineInOriginalBufferAndIsLongerThanOriginal) { BalsaHeaders headers = CreateHTTPHeaders(true, "GET / HTTP/1.0\r\n" "some_key: some_value\r\n" "another_key: another_value\r\n" "\r\n"); ASSERT_THAT(headers.first_line(), StrEq("GET / HTTP/1.0")); headers.erase(headers.lines().begin()); headers.SetRequestFirstlineFromStringPieces("GET", "/foobar", "HTTP/1.0"); ASSERT_THAT(headers.first_line(), StrEq("GET /foobar HTTP/1.0")); } TEST(BalsaHeaders, TestSetFirstlineInAdditionalDataAndIsShorterThanOriginal) { BalsaHeaders headers; headers.SetRequestFirstlineFromStringPieces("GET", "/foobar", "HTTP/1.0"); ASSERT_THAT(headers.first_line(), StrEq("GET /foobar HTTP/1.0")); headers.SetRequestFirstlineFromStringPieces("GET", "/", "HTTP/1.0"); ASSERT_THAT(headers.first_line(), StrEq("GET / HTTP/1.0")); } TEST(BalsaHeaders, TestSetFirstlineInAdditionalDataAndIsLongerThanOriginal) { BalsaHeaders headers; headers.SetRequestFirstlineFromStringPieces("GET", "/", "HTTP/1.0"); ASSERT_THAT(headers.first_line(), StrEq("GET / HTTP/1.0")); headers.SetRequestFirstlineFromStringPieces("GET", "/foobar", "HTTP/1.0"); ASSERT_THAT(headers.first_line(), StrEq("GET /foobar HTTP/1.0")); } TEST(BalsaHeaders, TestDeletingSubstring) { BalsaHeaders headers; headers.SetRequestFirstlineFromStringPieces("GET", "/", "HTTP/1.0"); headers.AppendHeader("key1", "value1"); headers.AppendHeader("key2", "value2"); headers.AppendHeader("key", "value"); headers.AppendHeader("unrelated", "value"); headers.RemoveAllOfHeader("key"); EXPECT_TRUE(headers.HasHeader("key1")); EXPECT_TRUE(headers.HasHeader("key2")); EXPECT_TRUE(headers.HasHeader("unrelated")); EXPECT_FALSE(headers.HasHeader("key")); EXPECT_TRUE(headers.HasHeadersWithPrefix("key")); EXPECT_TRUE(headers.HasHeadersWithPrefix("KeY")); EXPECT_TRUE(headers.HasHeadersWithPrefix("UNREL")); EXPECT_FALSE(headers.HasHeadersWithPrefix("key3")); EXPECT_FALSE(headers.GetHeader("key1").empty()); EXPECT_FALSE(headers.GetHeader("KEY1").empty()); EXPECT_FALSE(headers.GetHeader("key2").empty()); EXPECT_FALSE(headers.GetHeader("unrelated").empty()); EXPECT_TRUE(headers.GetHeader("key").empty()); headers.AppendHeader("key", ""); EXPECT_TRUE(headers.HasHeader("key")); EXPECT_TRUE(headers.HasHeadersWithPrefix("key")); EXPECT_TRUE(headers.GetHeader("key").empty()); headers.RemoveAllHeadersWithPrefix("key"); EXPECT_FALSE(headers.HasHeader("key1")); EXPECT_FALSE(headers.HasHeader("key2")); EXPECT_TRUE(headers.HasHeader("unrelated")); EXPECT_FALSE(headers.HasHeader("key")); EXPECT_FALSE(headers.HasHeadersWithPrefix("key")); EXPECT_FALSE(headers.HasHeadersWithPrefix("key1")); EXPECT_FALSE(headers.HasHeadersWithPrefix("key2")); EXPECT_FALSE(headers.HasHeadersWithPrefix("kEy")); EXPECT_TRUE(headers.HasHeadersWithPrefix("unrelated")); EXPECT_TRUE(headers.GetHeader("key1").empty()); EXPECT_TRUE(headers.GetHeader("key2").empty()); EXPECT_FALSE(headers.GetHeader("unrelated").empty()); EXPECT_TRUE(headers.GetHeader("key").empty()); } TEST(BalsaHeaders, TestRemovingValues) { { BalsaHeaders headers; headers.SetRequestFirstlineFromStringPieces("GET", "/", "HTTP/1.0"); headers.AppendHeader("hi", "hello"); headers.AppendHeader("key1", "val1"); headers.AppendHeader("key1", "value2"); headers.AppendHeader("key1", "value3"); headers.AppendHeader("key2", "value4"); headers.AppendHeader("unrelated", "value"); EXPECT_EQ(0u, headers.RemoveValue("key1", "")); EXPECT_EQ(1u, headers.RemoveValue("key1", "value2")); std::string key1_vals = headers.GetAllOfHeaderAsString("key1"); EXPECT_THAT(key1_vals, StrEq("val1,value3")); EXPECT_TRUE(headers.HeaderHasValue("key1", "val1")); EXPECT_TRUE(headers.HeaderHasValue("key1", "value3")); EXPECT_EQ("value4", headers.GetHeader("key2")); EXPECT_EQ("hello", headers.GetHeader("hi")); EXPECT_EQ("value", headers.GetHeader("unrelated")); EXPECT_FALSE(headers.HeaderHasValue("key1", "value2")); EXPECT_EQ(1u, headers.RemoveValue("key1", "value3")); key1_vals = headers.GetAllOfHeaderAsString("key1"); EXPECT_THAT(key1_vals, StrEq("val1")); EXPECT_TRUE(headers.HeaderHasValue("key1", "val1")); EXPECT_EQ("value4", headers.GetHeader("key2")); EXPECT_EQ("hello", headers.GetHeader("hi")); EXPECT_EQ("value", headers.GetHeader("unrelated")); EXPECT_FALSE(headers.HeaderHasValue("key1", "value3")); EXPECT_FALSE(headers.HeaderHasValue("key1", "value2")); } { BalsaHeaders headers; headers.SetRequestFirstlineFromStringPieces("GET", "/", "HTTP/1.0"); headers.AppendHeader("key1", "value1"); headers.AppendHeader("key1", "value2, value3,value2"); headers.AppendHeader("key1", "value4 ,value2,value5,val6"); headers.AppendHeader("key1", "value2, value2 , value2"); headers.AppendHeader("key1", " value2 , value2 "); headers.AppendHeader("key1", " value2 a"); headers.AppendHeader("key1", ""); headers.AppendHeader("key1", ", ,,"); headers.AppendHeader("unrelated", "value"); EXPECT_EQ(8u, headers.RemoveValue("key1", "value2")); std::string key1_vals = headers.GetAllOfHeaderAsString("key1"); EXPECT_THAT(key1_vals, StrEq("value1,value3,value4 ,value5,val6,value2 a,,, ,,")); EXPECT_EQ("value", headers.GetHeader("unrelated")); EXPECT_TRUE(headers.HeaderHasValue("key1", "value1")); EXPECT_TRUE(headers.HeaderHasValue("key1", "value3")); EXPECT_TRUE(headers.HeaderHasValue("key1", "value4")); EXPECT_TRUE(headers.HeaderHasValue("key1", "value5")); EXPECT_TRUE(headers.HeaderHasValue("key1", "val6")); EXPECT_FALSE(headers.HeaderHasValue("key1", "value2")); } { const absl::string_view key("key"); const absl::string_view value1("foo\0bar", 7); const absl::string_view value2("value2"); const std::string value = absl::StrCat(value1, ",", value2); { BalsaHeaders headers; headers.AppendHeader(key, value); EXPECT_TRUE(headers.HeaderHasValue(key, value1)); EXPECT_TRUE(headers.HeaderHasValue(key, value2)); EXPECT_EQ(value, headers.GetAllOfHeaderAsString(key)); EXPECT_EQ(1u, headers.RemoveValue(key, value2)); EXPECT_TRUE(headers.HeaderHasValue(key, value1)); EXPECT_FALSE(headers.HeaderHasValue(key, value2)); EXPECT_EQ(value1, headers.GetAllOfHeaderAsString(key)); } { BalsaHeaders headers; headers.AppendHeader(key, value1); headers.AppendHeader(key, value2); EXPECT_TRUE(headers.HeaderHasValue(key, value1)); EXPECT_TRUE(headers.HeaderHasValue(key, value2)); EXPECT_EQ(value, headers.GetAllOfHeaderAsString(key)); EXPECT_EQ(1u, headers.RemoveValue(key, value2)); EXPECT_TRUE(headers.HeaderHasValue(key, value1)); EXPECT_FALSE(headers.HeaderHasValue(key, value2)); EXPECT_EQ(value1, headers.GetAllOfHeaderAsString(key)); } } } TEST(BalsaHeaders, ZeroAppendToHeaderWithCommaAndSpace) { BalsaHeaders headers = CreateHTTPHeaders(true, "GET / HTTP/1.0\r\n" "\r\n"); headers.AppendToHeaderWithCommaAndSpace("X-Forwarded-For", "1.1.1.1"); headers.AppendToHeaderWithCommaAndSpace("X-Forwarded-For", "2.2.2.2"); headers.AppendToHeaderWithCommaAndSpace("X-Forwarded-For", "3.3.3.3"); headers.AppendToHeaderWithCommaAndSpace("X-Forwarded-For", "4.4.4.4"); EXPECT_THAT(headers.GetAllOfHeader("X-Forwarded-For"), ElementsAre("1.1.1.1, 2.2.2.2, 3.3.3.3, 4.4.4.4")); } TEST(BalsaHeaders, SingleAppendToHeaderWithCommaAndSpace) { BalsaHeaders headers = CreateHTTPHeaders(true, "GET / HTTP/1.0\r\n" "X-Forwarded-For: 1.1.1.1\r\n" "\r\n"); headers.AppendToHeaderWithCommaAndSpace("X-Forwarded-For", "2.2.2.2"); headers.AppendToHeaderWithCommaAndSpace("X-Forwarded-For", "3.3.3.3"); headers.AppendToHeaderWithCommaAndSpace("X-Forwarded-For", "4.4.4.4"); headers.AppendToHeaderWithCommaAndSpace("X-Forwarded-For", "5.5.5.5"); EXPECT_THAT(headers.GetAllOfHeader("X-Forwarded-For"), ElementsAre("1.1.1.1, 2.2.2.2, 3.3.3.3, 4.4.4.4, 5.5.5.5")); } TEST(BalsaHeaders, MultipleAppendToHeaderWithCommaAndSpace) { BalsaHeaders headers = CreateHTTPHeaders(true, "GET / HTTP/1.0\r\n" "X-Forwarded-For: 1.1.1.1\r\n" "X-Forwarded-For: 2.2.2.2\r\n" "\r\n"); headers.AppendToHeaderWithCommaAndSpace("X-Forwarded-For", "3.3.3.3"); headers.AppendToHeaderWithCommaAndSpace("X-Forwarded-For", "4.4.4.4"); headers.AppendToHeaderWithCommaAndSpace("X-Forwarded-For", "5.5.5.5"); headers.AppendToHeaderWithCommaAndSpace("X-Forwarded-For", "6.6.6.6"); EXPECT_THAT( headers.GetAllOfHeader("X-Forwarded-For"), ElementsAre("1.1.1.1", "2.2.2.2, 3.3.3.3, 4.4.4.4, 5.5.5.5, 6.6.6.6")); } TEST(BalsaHeaders, HeaderHasValues) { BalsaHeaders headers; headers.SetRequestFirstlineFromStringPieces("GET", "/", "HTTP/1.0"); headers.AppendHeader("key", "val1,val2val2,val2,val3"); headers.AppendHeader("key", "val4val5val6"); headers.AppendHeader("key", "val11 val12"); headers.AppendHeader("key", "v val13"); headers.AppendHeader("key", "val7"); headers.AppendHeader("key", ""); headers.AppendHeader("key", "val8 , val9 , val10"); headers.AppendHeader("key", " val14 "); headers.AppendHeader("key2", "val15"); headers.AppendHeader("key", "Val16"); headers.AppendHeader("key", "foo, Val17, bar"); EXPECT_TRUE(headers.HeaderHasValue("key", "val1")); EXPECT_TRUE(headers.HeaderHasValue("key", "val2")); EXPECT_TRUE(headers.HeaderHasValue("key", "val3")); EXPECT_TRUE(headers.HeaderHasValue("key", "val7")); EXPECT_TRUE(headers.HeaderHasValue("key", "val8")); EXPECT_TRUE(headers.HeaderHasValue("key", "val9")); EXPECT_TRUE(headers.HeaderHasValue("key", "val10")); EXPECT_TRUE(headers.HeaderHasValue("key", "val14")); EXPECT_FALSE(headers.HeaderHasValue("key", "val4")); EXPECT_FALSE(headers.HeaderHasValue("key", "val5")); EXPECT_FALSE(headers.HeaderHasValue("key", "val6")); EXPECT_FALSE(headers.HeaderHasValue("key", "val11")); EXPECT_FALSE(headers.HeaderHasValue("key", "val12")); EXPECT_FALSE(headers.HeaderHasValue("key", "val13")); EXPECT_FALSE(headers.HeaderHasValue("key", "val15")); EXPECT_FALSE(headers.HeaderHasValue("key", "val16")); EXPECT_FALSE(headers.HeaderHasValue("key", "val17")); EXPECT_TRUE(headers.HeaderHasValueIgnoreCase("key", "val1")); EXPECT_TRUE(headers.HeaderHasValueIgnoreCase("key", "val2")); EXPECT_TRUE(headers.HeaderHasValueIgnoreCase("key", "val3")); EXPECT_TRUE(headers.HeaderHasValueIgnoreCase("key", "val7")); EXPECT_TRUE(headers.HeaderHasValueIgnoreCase("key", "val8")); EXPECT_TRUE(headers.HeaderHasValueIgnoreCase("key", "val9")); EXPECT_TRUE(headers.HeaderHasValueIgnoreCase("key", "val10")); EXPECT_TRUE(headers.HeaderHasValueIgnoreCase("key", "val14")); EXPECT_FALSE(headers.HeaderHasValueIgnoreCase("key", "val4")); EXPECT_FALSE(headers.HeaderHasValueIgnoreCase("key", "val5")); EXPECT_FALSE(headers.HeaderHasValueIgnoreCase("key", "val6")); EXPECT_FALSE(headers.HeaderHasValueIgnoreCase("key", "val11")); EXPECT_FALSE(headers.HeaderHasValueIgnoreCase("key", "val12")); EXPECT_FALSE(headers.HeaderHasValueIgnoreCase("key", "val13")); EXPECT_FALSE(headers.HeaderHasValueIgnoreCase("key", "val15")); EXPECT_TRUE(headers.HeaderHasValueIgnoreCase("key", "val16")); EXPECT_TRUE(headers.HeaderHasValueIgnoreCase("key", "val17")); } TEST(BalsaHeaders, TestNotDeletingBeyondString) { BalsaHeaders headers; headers.SetRequestFirstlineFromStringPieces("GET", "/", "HTTP/1.0"); headers.AppendHeader("key1", "value1"); headers.RemoveAllHeadersWithPrefix("key1: value1"); EXPECT_NE(headers.lines().begin(), headers.lines().end()); } TEST(BalsaHeaders, TestIteratingOverErasedHeaders) { BalsaHeaders headers; headers.SetRequestFirstlineFromStringPieces("GET", "/", "HTTP/1.0"); headers.AppendHeader("key1", "value1"); headers.AppendHeader("key2", "value2"); headers.AppendHeader("key3", "value3"); headers.AppendHeader("key4", "value4"); headers.AppendHeader("key5", "value5"); headers.AppendHeader("key6", "value6"); headers.RemoveAllOfHeader("key6"); headers.RemoveAllOfHeader("key5"); headers.RemoveAllOfHeader("key4"); BalsaHeaders::const_header_lines_iterator chli = headers.lines().begin(); EXPECT_NE(headers.lines().end(), chli); EXPECT_EQ(headers.lines().begin(), chli); EXPECT_THAT(chli->first, StrEq("key1")); EXPECT_THAT(chli->second, StrEq("value1")); ++chli; EXPECT_NE(headers.lines().end(), chli); EXPECT_NE(headers.lines().begin(), chli); EXPECT_THAT(chli->first, StrEq("key2")); EXPECT_THAT(chli->second, StrEq("value2")); ++chli; EXPECT_NE(headers.lines().end(), chli); EXPECT_NE(headers.lines().begin(), chli); EXPECT_THAT(chli->first, StrEq("key3")); EXPECT_THAT(chli->second, StrEq("value3")); ++chli; EXPECT_EQ(headers.lines().end(), chli); EXPECT_NE(headers.lines().begin(), chli); headers.RemoveAllOfHeader("key1"); headers.RemoveAllOfHeader("key2"); chli = headers.lines().begin(); EXPECT_THAT(chli->first, StrEq("key3")); EXPECT_THAT(chli->second, StrEq("value3")); EXPECT_NE(headers.lines().end(), chli); EXPECT_EQ(headers.lines().begin(), chli); ++chli; EXPECT_EQ(headers.lines().end(), chli); EXPECT_NE(headers.lines().begin(), chli); } TEST(BalsaHeaders, CanCompareIterators) { BalsaHeaders header; ASSERT_EQ(header.lines().begin(), header.lines().end()); { std::string key_1 = "key_1"; std::string value_1 = "value_1"; header.AppendHeader(key_1, value_1); key_1 = "garbage"; value_1 = "garbage"; } { std::string key_2 = "key_2"; std::string value_2 = "value_2"; header.AppendHeader(key_2, value_2); key_2 = "garbage"; value_2 = "garbage"; } BalsaHeaders::const_header_lines_iterator chli = header.lines().begin(); BalsaHeaders::const_header_lines_iterator chlj = header.lines().begin(); EXPECT_EQ(chli, chlj); ++chlj; EXPECT_NE(chli, chlj); EXPECT_LT(chli, chlj); EXPECT_LE(chli, chlj); EXPECT_LE(chli, chli); EXPECT_GT(chlj, chli); EXPECT_GE(chlj, chli); EXPECT_GE(chlj, chlj); } TEST(BalsaHeaders, AppendHeaderAndTestThatYouCanEraseEverything) { BalsaHeaders header; ASSERT_EQ(header.lines().begin(), header.lines().end()); { std::string key_1 = "key_1"; std::string value_1 = "value_1"; header.AppendHeader(key_1, value_1); key_1 = "garbage"; value_1 = "garbage"; } { std::string key_2 = "key_2"; std::string value_2 = "value_2"; header.AppendHeader(key_2, value_2); key_2 = "garbage"; value_2 = "garbage"; } { std::string key_3 = "key_3"; std::string value_3 = "value_3"; header.AppendHeader(key_3, value_3); key_3 = "garbage"; value_3 = "garbage"; } EXPECT_NE(header.lines().begin(), header.lines().end()); BalsaHeaders::const_header_lines_iterator chli = header.lines().begin(); while (chli != header.lines().end()) { header.erase(chli); chli = header.lines().begin(); } ASSERT_EQ(header.lines().begin(), header.lines().end()); } TEST(BalsaHeaders, GetHeaderPositionWorksAsExpectedWithNoHeaderLines) { BalsaHeaders header; BalsaHeaders::const_header_lines_iterator i = header.GetHeaderPosition("foo"); EXPECT_EQ(i, header.lines().end()); } TEST(BalsaHeaders, GetHeaderPositionWorksAsExpectedWithBalsaFrameProcessInput) { BalsaHeaders headers = CreateHTTPHeaders( true, "GET / HTTP/1.0\r\n" "key1: value_1\r\n" "key1: value_foo\r\n" "key2: value_2\r\n" "key3: value_3\r\n" "a: value_a\r\n" "b: value_b\r\n" "\r\n"); BalsaHeaders::const_header_lines_iterator header_position_b = headers.GetHeaderPosition("b"); ASSERT_NE(header_position_b, headers.lines().end()); absl::string_view header_key_b_value = header_position_b->second; ASSERT_FALSE(header_key_b_value.empty()); EXPECT_EQ(std::string("value_b"), header_key_b_value); BalsaHeaders::const_header_lines_iterator header_position_1 = headers.GetHeaderPosition("key1"); ASSERT_NE(header_position_1, headers.lines().end()); absl::string_view header_key_1_value = header_position_1->second; ASSERT_FALSE(header_key_1_value.empty()); EXPECT_EQ(std::string("value_1"), header_key_1_value); BalsaHeaders::const_header_lines_iterator header_position_3 = headers.GetHeaderPosition("key3"); ASSERT_NE(header_position_3, headers.lines().end()); absl::string_view header_key_3_value = header_position_3->second; ASSERT_FALSE(header_key_3_value.empty()); EXPECT_EQ(std::string("value_3"), header_key_3_value); BalsaHeaders::const_header_lines_iterator header_position_2 = headers.GetHeaderPosition("key2"); ASSERT_NE(header_position_2, headers.lines().end()); absl::string_view header_key_2_value = header_position_2->second; ASSERT_FALSE(header_key_2_value.empty()); EXPECT_EQ(std::string("value_2"), header_key_2_value); BalsaHeaders::const_header_lines_iterator header_position_a = headers.GetHeaderPosition("a"); ASSERT_NE(header_position_a, headers.lines().end()); absl::string_view header_key_a_value = header_position_a->second; ASSERT_FALSE(header_key_a_value.empty()); EXPECT_EQ(std::string("value_a"), header_key_a_value); } TEST(BalsaHeaders, GetHeaderWorksAsExpectedWithNoHeaderLines) { BalsaHeaders header; absl::string_view value = header.GetHeader("foo"); EXPECT_TRUE(value.empty()); value = header.GetHeader(""); EXPECT_TRUE(value.empty()); } TEST(BalsaHeaders, HasHeaderWorksAsExpectedWithNoHeaderLines) { BalsaHeaders header; EXPECT_FALSE(header.HasHeader("foo")); EXPECT_FALSE(header.HasHeader("")); EXPECT_FALSE(header.HasHeadersWithPrefix("foo")); EXPECT_FALSE(header.HasHeadersWithPrefix("")); } TEST(BalsaHeaders, HasHeaderWorksAsExpectedWithBalsaFrameProcessInput) { BalsaHeaders headers = CreateHTTPHeaders(true, "GET / HTTP/1.0\r\n" "key1: value_1\r\n" "key1: value_foo\r\n" "key2:\r\n" "\r\n"); EXPECT_FALSE(headers.HasHeader("foo")); EXPECT_TRUE(headers.HasHeader("key1")); EXPECT_TRUE(headers.HasHeader("key2")); EXPECT_FALSE(headers.HasHeadersWithPrefix("foo")); EXPECT_TRUE(headers.HasHeadersWithPrefix("key")); EXPECT_TRUE(headers.HasHeadersWithPrefix("KEY")); } TEST(BalsaHeaders, GetHeaderWorksAsExpectedWithBalsaFrameProcessInput) { BalsaHeaders headers = CreateHTTPHeaders( true, "GET / HTTP/1.0\r\n" "key1: value_1\r\n" "key1: value_foo\r\n" "key2: value_2\r\n" "key3: value_3\r\n" "key4:\r\n" "a: value_a\r\n" "b: value_b\r\n" "\r\n"); absl::string_view header_key_b_value = headers.GetHeader("b"); ASSERT_FALSE(header_key_b_value.empty()); EXPECT_EQ(std::string("value_b"), header_key_b_value); absl::string_view header_key_1_value = headers.GetHeader("key1"); ASSERT_FALSE(header_key_1_value.empty()); EXPECT_EQ(std::string("value_1"), header_key_1_value); absl::string_view header_key_3_value = headers.GetHeader("key3"); ASSERT_FALSE(header_key_3_value.empty()); EXPECT_EQ(std::string("value_3"), header_key_3_value); absl::string_view header_key_2_value = headers.GetHeader("key2"); ASSERT_FALSE(header_key_2_value.empty()); EXPECT_EQ(std::string("value_2"), header_key_2_value); absl::string_view header_key_a_value = headers.GetHeader("a"); ASSERT_FALSE(header_key_a_value.empty()); EXPECT_EQ(std::string("value_a"), header_key_a_value); EXPECT_TRUE(headers.GetHeader("key4").empty()); } TEST(BalsaHeaders, GetHeaderWorksAsExpectedWithAppendHeader) { BalsaHeaders header; header.AppendHeader("key1", "value_1"); header.AppendHeader("key1", "value_2"); header.AppendHeader("key2", "value_2"); header.AppendHeader("key3", "value_3"); header.AppendHeader("a", "value_a"); header.AppendHeader("b", "value_b"); absl::string_view header_key_b_value = header.GetHeader("b"); absl::string_view header_key_1_value = header.GetHeader("key1"); absl::string_view header_key_3_value = header.GetHeader("key3"); absl::string_view header_key_2_value = header.GetHeader("key2"); absl::string_view header_key_a_value = header.GetHeader("a"); ASSERT_FALSE(header_key_1_value.empty()); ASSERT_FALSE(header_key_2_value.empty()); ASSERT_FALSE(header_key_3_value.empty()); ASSERT_FALSE(header_key_a_value.empty()); ASSERT_FALSE(header_key_b_value.empty()); EXPECT_TRUE(header.HasHeader("key1")); EXPECT_TRUE(header.HasHeader("key2")); EXPECT_TRUE(header.HasHeader("key3")); EXPECT_TRUE(header.HasHeader("a")); EXPECT_TRUE(header.HasHeader("b")); EXPECT_TRUE(header.HasHeadersWithPrefix("key1")); EXPECT_TRUE(header.HasHeadersWithPrefix("key2")); EXPECT_TRUE(header.HasHeadersWithPrefix("key3")); EXPECT_TRUE(header.HasHeadersWithPrefix("a")); EXPECT_TRUE(header.HasHeadersWithPrefix("b")); EXPECT_EQ(std::string("value_1"), header_key_1_value); EXPECT_EQ(std::string("value_2"), header_key_2_value); EXPECT_EQ(std::string("value_3"), header_key_3_value); EXPECT_EQ(std::string("value_a"), header_key_a_value); EXPECT_EQ(std::string("value_b"), header_key_b_value); } TEST(BalsaHeaders, HasHeaderWorksAsExpectedWithAppendHeader) { BalsaHeaders header; ASSERT_FALSE(header.HasHeader("key1")); EXPECT_FALSE(header.HasHeadersWithPrefix("K")); EXPECT_FALSE(header.HasHeadersWithPrefix("ke")); EXPECT_FALSE(header.HasHeadersWithPrefix("key")); EXPECT_FALSE(header.HasHeadersWithPrefix("key1")); EXPECT_FALSE(header.HasHeadersWithPrefix("key2")); header.AppendHeader("key1", "value_1"); EXPECT_TRUE(header.HasHeader("key1")); EXPECT_TRUE(header.HasHeadersWithPrefix("K")); EXPECT_TRUE(header.HasHeadersWithPrefix("ke")); EXPECT_TRUE(header.HasHeadersWithPrefix("key")); EXPECT_TRUE(header.HasHeadersWithPrefix("key1")); EXPECT_FALSE(header.HasHeadersWithPrefix("key2")); header.AppendHeader("key1", "value_2"); EXPECT_TRUE(header.HasHeader("key1")); EXPECT_FALSE(header.HasHeader("key2")); EXPECT_TRUE(header.HasHeadersWithPrefix("k")); EXPECT_TRUE(header.HasHeadersWithPrefix("ke")); EXPECT_TRUE(header.HasHeadersWithPrefix("key")); EXPECT_TRUE(header.HasHeadersWithPrefix("key1")); EXPECT_FALSE(header.HasHeadersWithPrefix("key2")); } TEST(BalsaHeaders, GetHeaderWorksAsExpectedWithHeadersErased) { BalsaHeaders header; header.AppendHeader("key1", "value_1"); header.AppendHeader("key1", "value_2"); header.AppendHeader("key2", "value_2"); header.AppendHeader("key3", "value_3"); header.AppendHeader("a", "value_a"); header.AppendHeader("b", "value_b"); header.erase(header.GetHeaderPosition("key2")); absl::string_view header_key_b_value = header.GetHeader("b"); absl::string_view header_key_1_value = header.GetHeader("key1"); absl::string_view header_key_3_value = header.GetHeader("key3"); absl::string_view header_key_2_value = header.GetHeader("key2"); absl::string_view header_key_a_value = header.GetHeader("a"); ASSERT_FALSE(header_key_1_value.empty()); ASSERT_TRUE(header_key_2_value.empty()); ASSERT_FALSE(header_key_3_value.empty()); ASSERT_FALSE(header_key_a_value.empty()); ASSERT_FALSE(header_key_b_value.empty()); EXPECT_EQ(std::string("value_1"), header_key_1_value); EXPECT_EQ(std::string("value_3"), header_key_3_value); EXPECT_EQ(std::string("value_a"), header_key_a_value); EXPECT_EQ(std::string("value_b"), header_key_b_value); header.erase(header.GetHeaderPosition("key1")); header_key_1_value = header.GetHeader("key1"); ASSERT_FALSE(header_key_1_value.empty()); EXPECT_EQ(std::string("value_2"), header_key_1_value); header.erase(header.GetHeaderPosition("key1")); ASSERT_TRUE(header.GetHeader("key1").empty()); } TEST(BalsaHeaders, HasHeaderWorksAsExpectedWithHeadersErased) { BalsaHeaders header; header.AppendHeader("key1", "value_1"); header.AppendHeader("key2", "value_2a"); header.AppendHeader("key2", "value_2b"); ASSERT_TRUE(header.HasHeader("key1")); ASSERT_TRUE(header.HasHeadersWithPrefix("key1")); ASSERT_TRUE(header.HasHeadersWithPrefix("key2")); ASSERT_TRUE(header.HasHeadersWithPrefix("kEY")); header.erase(header.GetHeaderPosition("key1")); EXPECT_FALSE(header.HasHeader("key1")); EXPECT_FALSE(header.HasHeadersWithPrefix("key1")); EXPECT_TRUE(header.HasHeadersWithPrefix("key2")); EXPECT_TRUE(header.HasHeadersWithPrefix("kEY")); ASSERT_TRUE(header.HasHeader("key2")); header.erase(header.GetHeaderPosition("key2")); ASSERT_TRUE(header.HasHeader("key2")); EXPECT_FALSE(header.HasHeadersWithPrefix("key1")); EXPECT_TRUE(header.HasHeadersWithPrefix("key2")); EXPECT_TRUE(header.HasHeadersWithPrefix("kEY")); header.erase(header.GetHeaderPosition("key2")); EXPECT_FALSE(header.HasHeader("key2")); EXPECT_FALSE(header.HasHeadersWithPrefix("key1")); EXPECT_FALSE(header.HasHeadersWithPrefix("key2")); EXPECT_FALSE(header.HasHeadersWithPrefix("kEY")); } TEST(BalsaHeaders, HasNonEmptyHeaderWorksAsExpectedWithNoHeaderLines) { BalsaHeaders header; EXPECT_FALSE(header.HasNonEmptyHeader("foo")); EXPECT_FALSE(header.HasNonEmptyHeader("")); } TEST(BalsaHeaders, HasNonEmptyHeaderWorksAsExpectedWithAppendHeader) { BalsaHeaders header; EXPECT_FALSE(header.HasNonEmptyHeader("key1")); header.AppendHeader("key1", ""); EXPECT_FALSE(header.HasNonEmptyHeader("key1")); header.AppendHeader("key1", "value_2"); EXPECT_TRUE(header.HasNonEmptyHeader("key1")); EXPECT_FALSE(header.HasNonEmptyHeader("key2")); } TEST(BalsaHeaders, HasNonEmptyHeaderWorksAsExpectedWithHeadersErased) { BalsaHeaders header; header.AppendHeader("key1", "value_1"); header.AppendHeader("key2", "value_2a"); header.AppendHeader("key2", ""); EXPECT_TRUE(header.HasNonEmptyHeader("key1")); header.erase(header.GetHeaderPosition("key1")); EXPECT_FALSE(header.HasNonEmptyHeader("key1")); EXPECT_TRUE(header.HasNonEmptyHeader("key2")); header.erase(header.GetHeaderPosition("key2")); EXPECT_FALSE(header.HasNonEmptyHeader("key2")); header.erase(header.GetHeaderPosition("key2")); EXPECT_FALSE(header.HasNonEmptyHeader("key2")); } TEST(BalsaHeaders, HasNonEmptyHeaderWorksAsExpectedWithBalsaFrameProcessInput) { BalsaHeaders headers = CreateHTTPHeaders(true, "GET / HTTP/1.0\r\n" "key1: value_1\r\n" "key2:\r\n" "key3:\r\n" "key3: value_3\r\n" "key4:\r\n" "key4:\r\n" "key5: value_5\r\n" "key5:\r\n" "\r\n"); EXPECT_FALSE(headers.HasNonEmptyHeader("foo")); EXPECT_TRUE(headers.HasNonEmptyHeader("key1")); EXPECT_FALSE(headers.HasNonEmptyHeader("key2")); EXPECT_TRUE(headers.HasNonEmptyHeader("key3")); EXPECT_FALSE(headers.HasNonEmptyHeader("key4")); EXPECT_TRUE(headers.HasNonEmptyHeader("key5")); headers.erase(headers.GetHeaderPosition("key5")); EXPECT_FALSE(headers.HasNonEmptyHeader("key5")); } TEST(BalsaHeaders, GetAllOfHeader) { BalsaHeaders header; header.AppendHeader("key", "value_1"); header.AppendHeader("Key", "value_2,value_3"); header.AppendHeader("key", ""); header.AppendHeader("KEY", "value_4"); std::vector<absl::string_view> result; header.GetAllOfHeader("key", &result); ASSERT_EQ(4u, result.size()); EXPECT_EQ("value_1", result[0]); EXPECT_EQ("value_2,value_3", result[1]); EXPECT_EQ("", result[2]); EXPECT_EQ("value_4", result[3]); EXPECT_EQ(header.GetAllOfHeader("key"), result); } TEST(BalsaHeaders, GetAllOfHeaderDoesWhatItSays) { BalsaHeaders header; header.AppendHeader("key", "value_1"); header.AppendHeader("key", "value_2"); header.AppendHeader("key", ""); header.AppendHeader("key", "value_1"); ASSERT_NE(header.lines().begin(), header.lines().end()); std::vector<absl::string_view> out; header.GetAllOfHeader("key", &out); ASSERT_EQ(4u, out.size()); EXPECT_EQ("value_1", out[0]); EXPECT_EQ("value_2", out[1]); EXPECT_EQ("", out[2]); EXPECT_EQ("value_1", out[3]); EXPECT_EQ(header.GetAllOfHeader("key"), out); } TEST(BalsaHeaders, GetAllOfHeaderWithPrefix) { BalsaHeaders header; header.AppendHeader("foo-Foo", "value_1"); header.AppendHeader("Foo-bar", "value_2,value_3"); header.AppendHeader("foo-Foo", ""); header.AppendHeader("bar", "value_not"); header.AppendHeader("fOO-fOO", "value_4"); std::vector<std::pair<absl::string_view, absl::string_view>> result; header.GetAllOfHeaderWithPrefix("abc", &result); ASSERT_EQ(0u, result.size()); header.GetAllOfHeaderWithPrefix("foo", &result); ASSERT_EQ(4u, result.size()); EXPECT_EQ("foo-Foo", result[0].first); EXPECT_EQ("value_1", result[0].second); EXPECT_EQ("Foo-bar", result[1].first); EXPECT_EQ("value_2,value_3", result[1].second); EXPECT_EQ("", result[2].second); EXPECT_EQ("value_4", result[3].second); std::vector<std::pair<absl::string_view, absl::string_view>> result2; header.GetAllOfHeaderWithPrefix("FoO", &result2); ASSERT_EQ(4u, result2.size()); } TEST(BalsaHeaders, GetAllHeadersWithLimit) { BalsaHeaders header; header.AppendHeader("foo-Foo", "value_1"); header.AppendHeader("Foo-bar", "value_2,value_3"); header.AppendHeader("foo-Foo", ""); header.AppendHeader("bar", "value_4"); header.AppendHeader("fOO-fOO", "value_5"); std::vector<std::pair<absl::string_view, absl::string_view>> result; header.GetAllHeadersWithLimit(&result, 4); ASSERT_EQ(4u, result.size()); EXPECT_EQ("foo-Foo", result[0].first); EXPECT_EQ("value_1", result[0].second); EXPECT_EQ("Foo-bar", result[1].first); EXPECT_EQ("value_2,value_3", result[1].second); EXPECT_EQ("", result[2].second); EXPECT_EQ("value_4", result[3].second); std::vector<std::pair<absl::string_view, absl::string_view>> result2; header.GetAllHeadersWithLimit(&result2, -1); ASSERT_EQ(5u, result2.size()); } TEST(BalsaHeaders, RangeFor) { BalsaHeaders header; header.AppendHeader("key1", "value_1a"); header.AppendHeader("key1", "value_1b"); header.AppendHeader("key2", ""); header.AppendHeader("key3", "value_3"); std::vector<std::pair<absl::string_view, absl::string_view>> out; for (const auto& line : header.lines()) { out.push_back(line); } const std::vector<std::pair<absl::string_view, absl::string_view>> expected = {{"key1", "value_1a"}, {"key1", "value_1b"}, {"key2", ""}, {"key3", "value_3"}}; EXPECT_EQ(expected, out); } TEST(BalsaHeaders, GetAllOfHeaderWithNonExistentKey) { BalsaHeaders header; header.AppendHeader("key", "value_1"); header.AppendHeader("key", "value_2"); std::vector<absl::string_view> out; header.GetAllOfHeader("key_non_existent", &out); ASSERT_EQ(0u, out.size()); EXPECT_EQ(header.GetAllOfHeader("key_non_existent"), out); } TEST(BalsaHeaders, GetAllOfHeaderEmptyValVariation1) { BalsaHeaders header; header.AppendHeader("key", ""); header.AppendHeader("key", ""); header.AppendHeader("key", "v1"); std::vector<absl::string_view> out; header.GetAllOfHeader("key", &out); ASSERT_EQ(3u, out.size()); EXPECT_EQ("", out[0]); EXPECT_EQ("", out[1]); EXPECT_EQ("v1", out[2]); EXPECT_EQ(header.GetAllOfHeader("key"), out); } TEST(BalsaHeaders, GetAllOfHeaderEmptyValVariation2) { BalsaHeaders header; header.AppendHeader("key", ""); header.AppendHeader("key", "v1"); header.AppendHeader("key", ""); std::vector<absl::string_view> out; header.GetAllOfHeader("key", &out); ASSERT_EQ(3u, out.size()); EXPECT_EQ("", out[0]); EXPECT_EQ("v1", out[1]); EXPECT_EQ("", out[2]); EXPECT_EQ(header.GetAllOfHeader("key"), out); } TEST(BalsaHeaders, GetAllOfHeaderEmptyValVariation3) { BalsaHeaders header; header.AppendHeader("key", ""); header.AppendHeader("key", "v1"); std::vector<absl::string_view> out; header.GetAllOfHeader("key", &out); ASSERT_EQ(2u, out.size()); EXPECT_EQ("", out[0]); EXPECT_EQ("v1", out[1]); EXPECT_EQ(header.GetAllOfHeader("key"), out); } TEST(BalsaHeaders, GetAllOfHeaderEmptyValVariation4) { BalsaHeaders header; header.AppendHeader("key", "v1"); header.AppendHeader("key", ""); std::vector<absl::string_view> out; header.GetAllOfHeader("key", &out); ASSERT_EQ(2u, out.size()); EXPECT_EQ("v1", out[0]); EXPECT_EQ("", out[1]); EXPECT_EQ(header.GetAllOfHeader("key"), out); } TEST(BalsaHeaders, GetAllOfHeaderWithAppendHeaders) { BalsaHeaders header; header.AppendHeader("key", "value_1"); header.AppendHeader("key", "value_2"); std::vector<absl::string_view> out; header.GetAllOfHeader("key_new", &out); ASSERT_EQ(0u, out.size()); EXPECT_EQ(header.GetAllOfHeader("key_new"), out); header.AppendHeader("key_new", "value_3"); header.GetAllOfHeader("key_new", &out); ASSERT_EQ(1u, out.size()); EXPECT_EQ("value_3", out[0]); EXPECT_EQ(header.GetAllOfHeader("key_new"), out); header.GetAllOfHeader("key", &out); ASSERT_EQ(3u, out.size()); EXPECT_EQ("value_1", out[1]); EXPECT_EQ("value_2", out[2]); EXPECT_THAT(header.GetAllOfHeader("key"), ElementsAre("value_1", "value_2")); } TEST(BalsaHeaders, GetAllOfHeaderWithRemoveHeaders) { BalsaHeaders header; header.AppendHeader("key", "value_1"); header.AppendHeader("key", "value_2"); header.AppendHeader("a", "va"); header.RemoveAllOfHeader("key"); std::vector<absl::string_view> out; header.GetAllOfHeader("key", &out); ASSERT_EQ(0u, out.size()); EXPECT_EQ(header.GetAllOfHeader("key"), out); header.GetAllOfHeader("a", &out); ASSERT_EQ(1u, out.size()); EXPECT_EQ(header.GetAllOfHeader("a"), out); out.clear(); header.RemoveAllOfHeader("a"); header.GetAllOfHeader("a", &out); ASSERT_EQ(0u, out.size()); EXPECT_EQ(header.GetAllOfHeader("a"), out); } TEST(BalsaHeaders, GetAllOfHeaderWithRemoveNonExistentHeaders) { BalsaHeaders headers; headers.SetRequestFirstlineFromStringPieces("GET", "/", "HTTP/1.0"); headers.AppendHeader("Accept-Encoding", "deflate,compress"); EXPECT_EQ(0u, headers.RemoveValue("Accept-Encoding", "gzip(gfe)")); std::string accept_encoding_vals = headers.GetAllOfHeaderAsString("Accept-Encoding"); EXPECT_EQ("deflate,compress", accept_encoding_vals); } TEST(BalsaHeaders, GetAllOfHeaderWithEraseHeaders) { BalsaHeaders header; header.AppendHeader("key", "value_1"); header.AppendHeader("key", "value_2"); header.AppendHeader("a", "va"); std::vector<absl::string_view> out; header.erase(header.GetHeaderPosition("key")); header.GetAllOfHeader("key", &out); ASSERT_EQ(1u, out.size()); EXPECT_EQ("value_2", out[0]); EXPECT_EQ(header.GetAllOfHeader("key"), out); out.clear(); header.erase(header.GetHeaderPosition("key")); header.GetAllOfHeader("key", &out); ASSERT_EQ(0u, out.size()); EXPECT_EQ(header.GetAllOfHeader("key"), out); out.clear(); header.GetAllOfHeader("a", &out); ASSERT_EQ(1u, out.size()); EXPECT_EQ(header.GetAllOfHeader("a"), out); out.clear(); header.erase(header.GetHeaderPosition("a")); header.GetAllOfHeader("a", &out); ASSERT_EQ(0u, out.size()); EXPECT_EQ(header.GetAllOfHeader("key"), out); } TEST(BalsaHeaders, GetAllOfHeaderWithNoHeaderLines) { BalsaHeaders header; std::vector<absl::string_view> out; header.GetAllOfHeader("key", &out); EXPECT_EQ(0u, out.size()); EXPECT_EQ(header.GetAllOfHeader("key"), out); } TEST(BalsaHeaders, GetAllOfHeaderDoesWhatItSaysForVariousKeys) { BalsaHeaders header; header.AppendHeader("key1", "value_11"); header.AppendHeader("key2", "value_21"); header.AppendHeader("key1", "value_12"); header.AppendHeader("key2", "value_22"); std::vector<absl::string_view> out; header.GetAllOfHeader("key1", &out); EXPECT_EQ("value_11", out[0]); EXPECT_EQ("value_12", out[1]); EXPECT_EQ(header.GetAllOfHeader("key1"), out); header.GetAllOfHeader("key2", &out); EXPECT_EQ("value_21", out[2]); EXPECT_EQ("value_22", out[3]); EXPECT_THAT(header.GetAllOfHeader("key2"), ElementsAre("value_21", "value_22")); } TEST(BalsaHeaders, GetAllOfHeaderWithBalsaFrameProcessInput) { BalsaHeaders header = CreateHTTPHeaders(true, "GET / HTTP/1.0\r\n" "key1: value_1\r\n" "key1: value_foo\r\n" "key2: value_2\r\n" "a: value_a\r\n" "key2: \r\n" "b: value_b\r\n" "\r\n"); std::vector<absl::string_view> out; int index = 0; header.GetAllOfHeader("key1", &out); EXPECT_EQ("value_1", out[index++]); EXPECT_EQ("value_foo", out[index++]); EXPECT_EQ(header.GetAllOfHeader("key1"), out); header.GetAllOfHeader("key2", &out); EXPECT_EQ("value_2", out[index++]); EXPECT_EQ("", out[index++]); EXPECT_THAT(header.GetAllOfHeader("key2"), ElementsAre("value_2", "")); header.GetAllOfHeader("a", &out); EXPECT_EQ("value_a", out[index++]); EXPECT_THAT(header.GetAllOfHeader("a"), ElementsAre("value_a")); header.GetAllOfHeader("b", &out); EXPECT_EQ("value_b", out[index++]); EXPECT_THAT(header.GetAllOfHeader("b"), ElementsAre("value_b")); } TEST(BalsaHeaders, GetAllOfHeaderIncludeRemovedDoesWhatItSays) { BalsaHeaders header; header.AppendHeader("key1", "value_11"); header.AppendHeader("key2", "value_21"); header.AppendHeader("key1", "value_12"); header.AppendHeader("key2", "value_22"); header.AppendHeader("key1", ""); std::vector<absl::string_view> out; header.GetAllOfHeaderIncludeRemoved("key1", &out); ASSERT_EQ(3u, out.size()); EXPECT_EQ("value_11", out[0]); EXPECT_EQ("value_12", out[1]); EXPECT_EQ("", out[2]); header.GetAllOfHeaderIncludeRemoved("key2", &out); ASSERT_EQ(5u, out.size()); EXPECT_EQ("value_21", out[3]); EXPECT_EQ("value_22", out[4]); header.erase(header.GetHeaderPosition("key1")); out.clear(); header.GetAllOfHeaderIncludeRemoved("key1", &out); ASSERT_EQ(3u, out.size()); EXPECT_EQ("value_12", out[0]); EXPECT_EQ("", out[1]); EXPECT_EQ("value_11", out[2]); header.GetAllOfHeaderIncludeRemoved("key2", &out); ASSERT_EQ(5u, out.size()); EXPECT_EQ("value_21", out[3]); EXPECT_EQ("value_22", out[4]); header.RemoveAllOfHeader("key1"); out.clear(); header.GetAllOfHeaderIncludeRemoved("key1", &out); ASSERT_EQ(3u, out.size()); EXPECT_EQ("value_11", out[0]); EXPECT_EQ("value_12", out[1]); EXPECT_EQ("", out[2]); header.GetAllOfHeaderIncludeRemoved("key2", &out); ASSERT_EQ(5u, out.size()); EXPECT_EQ("value_21", out[3]); EXPECT_EQ("value_22", out[4]); header.Clear(); out.clear(); header.GetAllOfHeaderIncludeRemoved("key1", &out); ASSERT_EQ(0u, out.size()); header.GetAllOfHeaderIncludeRemoved("key2", &out); ASSERT_EQ(0u, out.size()); } TEST(BalsaHeaders, GetAllOfHeaderIncludeRemovedWithNonExistentKey) { BalsaHeaders header; header.AppendHeader("key", "value_1"); header.AppendHeader("key", "value_2"); std::vector<absl::string_view> out; header.GetAllOfHeaderIncludeRemoved("key_non_existent", &out); ASSERT_EQ(0u, out.size()); } TEST(BalsaHeaders, GetIteratorForKeyDoesWhatItSays) { BalsaHeaders header; header.AppendHeader("key", "value_1"); header.AppendHeader("Key", "value_2"); header.AppendHeader("key", ""); header.AppendHeader("KEY", "value_1"); BalsaHeaders::const_header_lines_key_iterator key_it = header.GetIteratorForKey("key"); EXPECT_NE(header.lines().end(), key_it); EXPECT_NE(header.header_lines_key_end(), key_it); EXPECT_EQ("key", key_it->first); EXPECT_EQ("value_1", key_it->second); ++key_it; EXPECT_NE(header.lines().end(), key_it); EXPECT_NE(header.header_lines_key_end(), key_it); EXPECT_EQ("Key", key_it->first); EXPECT_EQ("value_2", key_it->second); ++key_it; EXPECT_NE(header.lines().end(), key_it); EXPECT_NE(header.header_lines_key_end(), key_it); EXPECT_EQ("key", key_it->first); EXPECT_EQ("", key_it->second); ++key_it; EXPECT_NE(header.lines().end(), key_it); EXPECT_NE(header.header_lines_key_end(), key_it); EXPECT_EQ("KEY", key_it->first); EXPECT_EQ("value_1", key_it->second); ++key_it; EXPECT_EQ(header.lines().end(), key_it); EXPECT_EQ(header.header_lines_key_end(), key_it); } TEST(BalsaHeaders, GetIteratorForKeyWithNonExistentKey) { BalsaHeaders header; header.AppendHeader("key", "value_1"); header.AppendHeader("key", "value_2"); BalsaHeaders::const_header_lines_key_iterator key_it = header.GetIteratorForKey("key_non_existent"); EXPECT_EQ(header.lines().end(), key_it); EXPECT_EQ(header.header_lines_key_end(), key_it); const auto lines = header.lines("key_non_existent"); EXPECT_EQ(lines.begin(), header.lines().end()); EXPECT_EQ(lines.end(), header.header_lines_key_end()); } TEST(BalsaHeaders, GetIteratorForKeyWithAppendHeaders) { BalsaHeaders header; header.AppendHeader("key", "value_1"); header.AppendHeader("key", "value_2"); BalsaHeaders::const_header_lines_key_iterator key_it = header.GetIteratorForKey("key_new"); EXPECT_EQ(header.lines().end(), key_it); EXPECT_EQ(header.header_lines_key_end(), key_it); header.AppendHeader("key_new", "value_3"); key_it = header.GetIteratorForKey("key_new"); const auto lines1 = header.lines("key_new"); EXPECT_EQ(lines1.begin(), key_it); EXPECT_EQ(lines1.end(), header.header_lines_key_end()); EXPECT_NE(header.lines().end(), key_it); EXPECT_NE(header.header_lines_key_end(), key_it); EXPECT_EQ("key_new", key_it->first); EXPECT_EQ("value_3", key_it->second); ++key_it; EXPECT_EQ(header.lines().end(), key_it); EXPECT_EQ(header.header_lines_key_end(), key_it); key_it = header.GetIteratorForKey("key"); const auto lines2 = header.lines("key"); EXPECT_EQ(lines2.begin(), key_it); EXPECT_EQ(lines2.end(), header.header_lines_key_end()); EXPECT_NE(header.lines().end(), key_it); EXPECT_NE(header.header_lines_key_end(), key_it); EXPECT_EQ("key", key_it->first); EXPECT_EQ("value_1", key_it->second); ++key_it; EXPECT_NE(header.lines().end(), key_it); EXPECT_NE(header.header_lines_key_end(), key_it); EXPECT_EQ("key", key_it->first); EXPECT_EQ("value_2", key_it->second); ++key_it; EXPECT_EQ(header.lines().end(), key_it); EXPECT_EQ(header.header_lines_key_end(), key_it); } TEST(BalsaHeaders, GetIteratorForKeyWithRemoveHeaders) { BalsaHeaders header; header.AppendHeader("key", "value_1"); header.AppendHeader("key", "value_2"); header.AppendHeader("a", "va"); header.RemoveAllOfHeader("a"); BalsaHeaders::const_header_lines_key_iterator key_it = header.GetIteratorForKey("key"); EXPECT_NE(header.lines().end(), key_it); const auto lines1 = header.lines("key"); EXPECT_EQ(lines1.begin(), key_it); EXPECT_EQ(lines1.end(), header.header_lines_key_end()); EXPECT_EQ("value_1", key_it->second); ++key_it; EXPECT_NE(header.lines().end(), key_it); EXPECT_NE(header.header_lines_key_end(), key_it); EXPECT_EQ("key", key_it->first); EXPECT_EQ("value_2", key_it->second); ++key_it; EXPECT_EQ(header.lines().end(), key_it); EXPECT_EQ(header.header_lines_key_end(), key_it); for (BalsaHeaders::const_header_lines_key_iterator it = header.GetIteratorForKey("key"); it != header.lines().end(); ++it) { EXPECT_EQ("key", it->first); } } TEST(BalsaHeaders, GetIteratorForKeyWithEraseHeaders) { BalsaHeaders header; header.AppendHeader("key", "value_1"); header.AppendHeader("key", "value_2"); header.AppendHeader("a", "va"); header.erase(header.GetHeaderPosition("key")); BalsaHeaders::const_header_lines_key_iterator key_it = header.GetIteratorForKey("key"); EXPECT_NE(header.lines().end(), key_it); const auto lines1 = header.lines("key"); EXPECT_EQ(lines1.begin(), key_it); EXPECT_EQ(lines1.end(), header.header_lines_key_end()); EXPECT_NE(header.header_lines_key_end(), key_it); EXPECT_EQ("key", key_it->first); EXPECT_EQ("value_2", key_it->second); ++key_it; EXPECT_EQ(header.lines().end(), key_it); EXPECT_EQ(header.header_lines_key_end(), key_it); header.erase(header.GetHeaderPosition("key")); key_it = header.GetIteratorForKey("key"); const auto lines2 = header.lines("key"); EXPECT_EQ(lines2.begin(), key_it); EXPECT_EQ(lines2.end(), header.header_lines_key_end()); EXPECT_EQ(header.lines().end(), key_it); EXPECT_EQ(header.header_lines_key_end(), key_it); key_it = header.GetIteratorForKey("a"); const auto lines3 = header.lines("a"); EXPECT_EQ(lines3.begin(), key_it); EXPECT_EQ(lines3.end(), header.header_lines_key_end()); EXPECT_NE(header.lines().end(), key_it); EXPECT_NE(header.header_lines_key_end(), key_it); EXPECT_EQ("a", key_it->first); EXPECT_EQ("va", key_it->second); ++key_it; EXPECT_EQ(header.lines().end(), key_it); EXPECT_EQ(header.header_lines_key_end(), key_it); header.erase(header.GetHeaderPosition("a")); key_it = header.GetIteratorForKey("a"); const auto lines4 = header.lines("a"); EXPECT_EQ(lines4.begin(), key_it); EXPECT_EQ(lines4.end(), header.header_lines_key_end()); EXPECT_EQ(header.lines().end(), key_it); EXPECT_EQ(header.header_lines_key_end(), key_it); } TEST(BalsaHeaders, GetIteratorForKeyWithNoHeaderLines) { BalsaHeaders header; BalsaHeaders::const_header_lines_key_iterator key_it = header.GetIteratorForKey("key"); const auto lines = header.lines("key"); EXPECT_EQ(lines.begin(), key_it); EXPECT_EQ(lines.end(), header.header_lines_key_end()); EXPECT_EQ(header.lines().end(), key_it); EXPECT_EQ(header.header_lines_key_end(), key_it); } TEST(BalsaHeaders, GetIteratorForKeyWithBalsaFrameProcessInput) { BalsaHeaders header = CreateHTTPHeaders(true, "GET / HTTP/1.0\r\n" "key1: value_1\r\n" "Key1: value_foo\r\n" "key2: value_2\r\n" "a: value_a\r\n" "key2: \r\n" "b: value_b\r\n" "\r\n"); BalsaHeaders::const_header_lines_key_iterator key_it = header.GetIteratorForKey("Key1"); const auto lines1 = header.lines("Key1"); EXPECT_EQ(lines1.begin(), key_it); EXPECT_EQ(lines1.end(), header.header_lines_key_end()); EXPECT_NE(header.lines().end(), key_it); EXPECT_NE(header.header_lines_key_end(), key_it); EXPECT_EQ("key1", key_it->first); EXPECT_EQ("value_1", key_it->second); ++key_it; EXPECT_NE(header.lines().end(), key_it); EXPECT_NE(header.header_lines_key_end(), key_it); EXPECT_EQ("Key1", key_it->first); EXPECT_EQ("value_foo", key_it->second); ++key_it; EXPECT_EQ(header.lines().end(), key_it); EXPECT_EQ(header.header_lines_key_end(), key_it); key_it = header.GetIteratorForKey("key2"); EXPECT_NE(header.lines().end(), key_it); const auto lines2 = header.lines("key2"); EXPECT_EQ(lines2.begin(), key_it); EXPECT_EQ(lines2.end(), header.header_lines_key_end()); EXPECT_NE(header.header_lines_key_end(), key_it); EXPECT_EQ("key2", key_it->first); EXPECT_EQ("value_2", key_it->second); ++key_it; EXPECT_NE(header.lines().end(), key_it); EXPECT_NE(header.header_lines_key_end(), key_it); EXPECT_EQ("key2", key_it->first); EXPECT_EQ("", key_it->second); ++key_it; EXPECT_EQ(header.lines().end(), key_it); EXPECT_EQ(header.header_lines_key_end(), key_it); key_it = header.GetIteratorForKey("a"); EXPECT_NE(header.lines().end(), key_it); const auto lines3 = header.lines("a"); EXPECT_EQ(lines3.begin(), key_it); EXPECT_EQ(lines3.end(), header.header_lines_key_end()); EXPECT_NE(header.header_lines_key_end(), key_it); EXPECT_EQ("a", key_it->first); EXPECT_EQ("value_a", key_it->second); ++key_it; EXPECT_EQ(header.lines().end(), key_it); EXPECT_EQ(header.header_lines_key_end(), key_it); key_it = header.GetIteratorForKey("b"); EXPECT_NE(header.lines().end(), key_it); const auto lines4 = header.lines("b"); EXPECT_EQ(lines4.begin(), key_it); EXPECT_EQ(lines4.end(), header.header_lines_key_end()); EXPECT_NE(header.header_lines_key_end(), key_it); EXPECT_EQ("b", key_it->first); EXPECT_EQ("value_b", key_it->second); ++key_it; EXPECT_EQ(header.lines().end(), key_it); EXPECT_EQ(header.header_lines_key_end(), key_it); } TEST(BalsaHeaders, GetAllOfHeaderAsStringDoesWhatItSays) { BalsaHeaders header; header.AppendHeader("key", "value_1"); header.AppendHeader("Key", "value_2"); header.AppendHeader("key", ""); header.AppendHeader("KEY", "value_1"); std::string result = header.GetAllOfHeaderAsString("key"); EXPECT_EQ("value_1,value_2,,value_1", result); } TEST(BalsaHeaders, RemoveAllOfHeaderDoesWhatItSays) { BalsaHeaders header; header.AppendHeader("key", "value_1"); header.AppendHeader("key", "value_2"); ASSERT_NE(header.lines().begin(), header.lines().end()); header.RemoveAllOfHeader("key"); ASSERT_EQ(header.lines().begin(), header.lines().end()); } TEST(BalsaHeaders, RemoveAllOfHeaderDoesWhatItSaysEvenWhenThingsHaveBeenErased) { BalsaHeaders header; header.AppendHeader("key1", "value_1"); header.AppendHeader("key1", "value_2"); header.AppendHeader("key2", "value_3"); header.AppendHeader("key1", "value_4"); header.AppendHeader("key2", "value_5"); header.AppendHeader("key1", "value_6"); ASSERT_NE(header.lines().begin(), header.lines().end()); BalsaHeaders::const_header_lines_iterator chli = header.lines().begin(); ++chli; ++chli; ++chli; header.erase(chli); chli = header.lines().begin(); ++chli; header.erase(chli); header.RemoveAllOfHeader("key1"); for (const auto& line : header.lines()) { EXPECT_NE(std::string("key1"), line.first); } } TEST(BalsaHeaders, RemoveAllOfHeaderDoesNothingWhenNoKeyOfThatNameExists) { BalsaHeaders header; header.AppendHeader("key", "value_1"); header.AppendHeader("key", "value_2"); ASSERT_NE(header.lines().begin(), header.lines().end()); header.RemoveAllOfHeader("foo"); int num_found = 0; for (const auto& line : header.lines()) { ++num_found; EXPECT_EQ(absl::string_view("key"), line.first); } EXPECT_EQ(2, num_found); EXPECT_NE(header.lines().begin(), header.lines().end()); } TEST(BalsaHeaders, WriteHeaderEndingToBuffer) { BalsaHeaders header; SimpleBuffer simple_buffer; header.WriteHeaderEndingToBuffer(&simple_buffer); EXPECT_THAT(simple_buffer.GetReadableRegion(), StrEq("\r\n")); } TEST(BalsaHeaders, WriteToBufferDoesntCrashWithUninitializedHeader) { BalsaHeaders header; SimpleBuffer simple_buffer; header.WriteHeaderAndEndingToBuffer(&simple_buffer); } TEST(BalsaHeaders, WriteToBufferWorksWithBalsaHeadersParsedByFramer) { std::string input = "GET / HTTP/1.0\r\n" "key_with_value: value\r\n" "key_with_continuation_value: \r\n" " with continuation\r\n" "key_with_two_continuation_value: \r\n" " continuation 1\r\n" " continuation 2\r\n" "a: foo \r\n" "b-s:\n" " bar\t\n" "foo: \r\n" "bazzzzzzzleriffic!: snaps\n" "\n"; std::string expected = "GET / HTTP/1.0\r\n" "key_with_value: value\r\n" "key_with_continuation_value: with continuation\r\n" "key_with_two_continuation_value: continuation 1\r\n" " continuation 2\r\n" "a: foo\r\n" "b-s: bar\r\n" "foo: \r\n" "bazzzzzzzleriffic!: snaps\r\n" "\r\n"; BalsaHeaders headers = CreateHTTPHeaders(true, input); SimpleBuffer simple_buffer; size_t expected_write_buffer_size = headers.GetSizeForWriteBuffer(); headers.WriteHeaderAndEndingToBuffer(&simple_buffer); EXPECT_THAT(simple_buffer.GetReadableRegion(), StrEq(expected)); EXPECT_EQ(expected_write_buffer_size, static_cast<size_t>(simple_buffer.ReadableBytes())); } TEST(BalsaHeaders, WriteToBufferWorksWithBalsaHeadersParsedByFramerTabContinuations) { std::string input = "GET / HTTP/1.0\r\n" "key_with_value: value\r\n" "key_with_continuation_value: \r\n" "\twith continuation\r\n" "key_with_two_continuation_value: \r\n" "\tcontinuation 1\r\n" "\tcontinuation 2\r\n" "a: foo \r\n" "b-s:\n" "\tbar\t\n" "foo: \r\n" "bazzzzzzzleriffic!: snaps\n" "\n"; std::string expected = "GET / HTTP/1.0\r\n" "key_with_value: value\r\n" "key_with_continuation_value: with continuation\r\n" "key_with_two_continuation_value: continuation 1\r\n" "\tcontinuation 2\r\n" "a: foo\r\n" "b-s: bar\r\n" "foo: \r\n" "bazzzzzzzleriffic!: snaps\r\n" "\r\n"; BalsaHeaders headers = CreateHTTPHeaders(true, input); SimpleBuffer simple_buffer; size_t expected_write_buffer_size = headers.GetSizeForWriteBuffer(); headers.WriteHeaderAndEndingToBuffer(&simple_buffer); EXPECT_THAT(simple_buffer.GetReadableRegion(), StrEq(expected)); EXPECT_EQ(expected_write_buffer_size, static_cast<size_t>(simple_buffer.ReadableBytes())); } TEST(BalsaHeaders, WriteToBufferWorksWhenFirstlineSetThroughHeaders) { BalsaHeaders headers; headers.SetRequestFirstlineFromStringPieces("GET", "/", "HTTP/1.0"); std::string expected = "GET / HTTP/1.0\r\n" "\r\n"; SimpleBuffer simple_buffer; size_t expected_write_buffer_size = headers.GetSizeForWriteBuffer(); headers.WriteHeaderAndEndingToBuffer(&simple_buffer); EXPECT_THAT(simple_buffer.GetReadableRegion(), StrEq(expected)); EXPECT_EQ(expected_write_buffer_size, static_cast<size_t>(simple_buffer.ReadableBytes())); } TEST(BalsaHeaders, WriteToBufferWorksWhenSetThroughHeaders) { BalsaHeaders headers; headers.SetRequestFirstlineFromStringPieces("GET", "/", "HTTP/1.0"); headers.AppendHeader("key1", "value1"); headers.AppendHeader("key 2", "value\n 2"); headers.AppendHeader("key\n 3", "value3"); std::string expected = "GET / HTTP/1.0\r\n" "key1: value1\r\n" "key 2: value\n" " 2\r\n" "key\n" " 3: value3\r\n" "\r\n"; SimpleBuffer simple_buffer; size_t expected_write_buffer_size = headers.GetSizeForWriteBuffer(); headers.WriteHeaderAndEndingToBuffer(&simple_buffer); EXPECT_THAT(simple_buffer.GetReadableRegion(), StrEq(expected)); EXPECT_EQ(expected_write_buffer_size, static_cast<size_t>(simple_buffer.ReadableBytes())); } TEST(BalsaHeaders, WriteToBufferWorkWhensOnlyLinesSetThroughHeaders) { BalsaHeaders headers; headers.AppendHeader("key1", "value1"); headers.AppendHeader("key 2", "value\n 2"); headers.AppendHeader("key\n 3", "value3"); std::string expected = "\r\n" "key1: value1\r\n" "key 2: value\n" " 2\r\n" "key\n" " 3: value3\r\n" "\r\n"; SimpleBuffer simple_buffer; size_t expected_write_buffer_size = headers.GetSizeForWriteBuffer(); headers.WriteHeaderAndEndingToBuffer(&simple_buffer); EXPECT_THAT(simple_buffer.GetReadableRegion(), StrEq(expected)); EXPECT_EQ(expected_write_buffer_size, static_cast<size_t>(simple_buffer.ReadableBytes())); } TEST(BalsaHeaders, WriteToBufferWorksWhenSetThroughHeadersWithElementsErased) { BalsaHeaders headers; headers.SetRequestFirstlineFromStringPieces("GET", "/", "HTTP/1.0"); headers.AppendHeader("key1", "value1"); headers.AppendHeader("key 2", "value\n 2"); headers.AppendHeader("key\n 3", "value3"); headers.RemoveAllOfHeader("key1"); headers.RemoveAllOfHeader("key\n 3"); std::string expected = "GET / HTTP/1.0\r\n" "key 2: value\n" " 2\r\n" "\r\n"; SimpleBuffer simple_buffer; size_t expected_write_buffer_size = headers.GetSizeForWriteBuffer(); headers.WriteHeaderAndEndingToBuffer(&simple_buffer); EXPECT_THAT(simple_buffer.GetReadableRegion(), StrEq(expected)); EXPECT_EQ(expected_write_buffer_size, static_cast<size_t>(simple_buffer.ReadableBytes())); } TEST(BalsaHeaders, WriteToBufferWithManuallyAppendedHeaderLine) { BalsaHeaders headers; headers.SetRequestFirstlineFromStringPieces("GET", "/", "HTTP/1.0"); headers.AppendHeader("key1", "value1"); headers.AppendHeader("key 2", "value\n 2"); std::string expected = "GET / HTTP/1.0\r\n" "key1: value1\r\n" "key 2: value\n" " 2\r\n" "key 3: value 3\r\n" "\r\n"; SimpleBuffer simple_buffer; size_t expected_write_buffer_size = headers.GetSizeForWriteBuffer(); headers.WriteToBuffer(&simple_buffer); headers.WriteHeaderLineToBuffer(&simple_buffer, "key 3", "value 3", BalsaHeaders::CaseOption::kNoModification); headers.WriteHeaderEndingToBuffer(&simple_buffer); EXPECT_THAT(simple_buffer.GetReadableRegion(), StrEq(expected)); EXPECT_EQ(expected_write_buffer_size + 16, static_cast<size_t>(simple_buffer.ReadableBytes())); } TEST(BalsaHeaders, DumpToStringEmptyHeaders) { BalsaHeaders headers; std::string headers_str; headers.DumpToString(&headers_str); EXPECT_EQ("\n <empty header>\n", headers_str); } TEST(BalsaHeaders, DumpToStringParsedHeaders) { std::string input = "GET / HTTP/1.0\r\n" "Header1: value\r\n" "Header2: value\r\n" "\r\n"; std::string output = "\n" " GET / HTTP/1.0\n" " Header1: value\n" " Header2: value\n"; BalsaHeaders headers = CreateHTTPHeaders(true, input); std::string headers_str; headers.DumpToString(&headers_str); EXPECT_EQ(output, headers_str); EXPECT_TRUE(headers.FramerIsDoneWriting()); } TEST(BalsaHeaders, DumpToStringPartialHeaders) { BalsaHeaders headers; BalsaFrame balsa_frame; balsa_frame.set_is_request(true); balsa_frame.set_balsa_headers(&headers); std::string input = "GET / HTTP/1.0\r\n" "Header1: value\r\n" "Header2: value\r\n"; std::string output = absl::StrFormat("\n <incomplete header len: %d>\n ", static_cast<int>(input.size())); output += input; output += '\n'; ASSERT_EQ(input.size(), balsa_frame.ProcessInput(input.data(), input.size())); ASSERT_FALSE(balsa_frame.MessageFullyRead()); std::string headers_str; headers.DumpToString(&headers_str); EXPECT_EQ(output, headers_str); EXPECT_FALSE(headers.FramerIsDoneWriting()); } TEST(BalsaHeaders, DumpToStringParsingNonHeadersData) { BalsaHeaders headers; BalsaFrame balsa_frame; balsa_frame.set_is_request(true); balsa_frame.set_balsa_headers(&headers); std::string input = "This is not a header. " "Just some random data to simulate mismatch."; std::string output = absl::StrFormat("\n <incomplete header len: %d>\n ", static_cast<int>(input.size())); output += input; output += '\n'; ASSERT_EQ(input.size(), balsa_frame.ProcessInput(input.data(), input.size())); ASSERT_FALSE(balsa_frame.MessageFullyRead()); std::string headers_str; headers.DumpToString(&headers_str); EXPECT_EQ(output, headers_str); } TEST(BalsaHeaders, Clear) { BalsaHeaders headers; headers.SetRequestFirstlineFromStringPieces("GET", "/", "HTTP/1.0"); headers.AppendHeader("key1", "value1"); headers.AppendHeader("key 2", "value\n 2"); headers.AppendHeader("key\n 3", "value3"); headers.RemoveAllOfHeader("key1"); headers.RemoveAllOfHeader("key\n 3"); headers.Clear(); EXPECT_TRUE(headers.first_line().empty()); EXPECT_EQ(headers.lines().begin(), headers.lines().end()); EXPECT_TRUE(headers.IsEmpty()); } TEST(BalsaHeaders, TestSetFromStringPiecesWithInitialFirstlineInHeaderStreamAndNewToo) { BalsaHeaders headers = CreateHTTPHeaders(false, "HTTP/1.1 200 reason phrase\r\n" "content-length: 0\r\n" "\r\n"); EXPECT_THAT(headers.response_version(), StrEq("HTTP/1.1")); EXPECT_THAT(headers.response_code(), StrEq("200")); EXPECT_THAT(headers.response_reason_phrase(), StrEq("reason phrase")); headers.SetResponseFirstline("HTTP/1.0", 404, "a reason"); EXPECT_THAT(headers.response_version(), StrEq("HTTP/1.0")); EXPECT_THAT(headers.response_code(), StrEq("404")); EXPECT_THAT(headers.parsed_response_code(), Eq(404)); EXPECT_THAT(headers.response_reason_phrase(), StrEq("a reason")); EXPECT_THAT(headers.first_line(), StrEq("HTTP/1.0 404 a reason")); } TEST(BalsaHeaders, TestSetFromStringPiecesWithInitialFirstlineInHeaderStreamButNotNew) { BalsaHeaders headers = CreateHTTPHeaders(false, "HTTP/1.1 200 reason phrase\r\n" "content-length: 0\r\n" "\r\n"); EXPECT_THAT(headers.response_version(), StrEq("HTTP/1.1")); EXPECT_THAT(headers.response_code(), StrEq("200")); EXPECT_THAT(headers.response_reason_phrase(), StrEq("reason phrase")); headers.SetResponseFirstline("HTTP/1.000", 404000, "supercalifragilisticexpealidocious"); EXPECT_THAT(headers.response_version(), StrEq("HTTP/1.000")); EXPECT_THAT(headers.response_code(), StrEq("404000")); EXPECT_THAT(headers.parsed_response_code(), Eq(404000)); EXPECT_THAT(headers.response_reason_phrase(), StrEq("supercalifragilisticexpealidocious")); EXPECT_THAT(headers.first_line(), StrEq("HTTP/1.000 404000 supercalifragilisticexpealidocious")); } TEST(BalsaHeaders, TestSetFromStringPiecesWithFirstFirstlineInHeaderStreamButNotNew2) { SCOPED_TRACE( "This test tests the codepath where the new firstline is" " too large to fit within the space used by the original" " firstline, but large enuogh to space in the free space" " available in both firstline plus the space made available" " with deleted header lines (specifically, the first one"); BalsaHeaders headers = CreateHTTPHeaders( false, "HTTP/1.1 200 reason phrase\r\n" "a: 0987123409871234078130948710938471093827401983740198327401982374\r\n" "content-length: 0\r\n" "\r\n"); EXPECT_THAT(headers.response_version(), StrEq("HTTP/1.1")); EXPECT_THAT(headers.response_code(), StrEq("200")); EXPECT_THAT(headers.response_reason_phrase(), StrEq("reason phrase")); headers.erase(headers.lines().begin()); headers.SetResponseFirstline("HTTP/1.000", 404000, "supercalifragilisticexpealidocious"); EXPECT_THAT(headers.response_version(), StrEq("HTTP/1.000")); EXPECT_THAT(headers.response_code(), StrEq("404000")); EXPECT_THAT(headers.parsed_response_code(), Eq(404000)); EXPECT_THAT(headers.response_reason_phrase(), StrEq("supercalifragilisticexpealidocious")); EXPECT_THAT(headers.first_line(), StrEq("HTTP/1.000 404000 supercalifragilisticexpealidocious")); } TEST(BalsaHeaders, TestSetFirstlineFromStringPiecesWithNoInitialFirstline) { BalsaHeaders headers; headers.SetResponseFirstline("HTTP/1.1", 200, "don't need a reason"); EXPECT_THAT(headers.response_version(), StrEq("HTTP/1.1")); EXPECT_THAT(headers.response_code(), StrEq("200")); EXPECT_THAT(headers.parsed_response_code(), Eq(200)); EXPECT_THAT(headers.response_reason_phrase(), StrEq("don't need a reason")); EXPECT_THAT(headers.first_line(), StrEq("HTTP/1.1 200 don't need a reason")); } TEST(BalsaHeaders, TestSettingFirstlineElementsWithOtherElementsMissing) { { BalsaHeaders headers; headers.SetRequestMethod("GET"); headers.SetRequestUri("/"); EXPECT_THAT(headers.first_line(), StrEq("GET / ")); } { BalsaHeaders headers; headers.SetRequestMethod("GET"); headers.SetRequestVersion("HTTP/1.1"); EXPECT_THAT(headers.first_line(), StrEq("GET HTTP/1.1")); } { BalsaHeaders headers; headers.SetRequestUri("/"); headers.SetRequestVersion("HTTP/1.1"); EXPECT_THAT(headers.first_line(), StrEq(" / HTTP/1.1")); } } TEST(BalsaHeaders, TestSettingMissingFirstlineElementsAfterBalsaHeadersParsed) { { BalsaHeaders headers = CreateHTTPHeaders(true, "GET /foo\r\n"); ASSERT_THAT(headers.first_line(), StrEq("GET /foo")); headers.SetRequestVersion("HTTP/1.1"); EXPECT_THAT(headers.first_line(), StrEq("GET /foo HTTP/1.1")); } { BalsaHeaders headers = CreateHTTPHeaders(true, "GET\r\n"); ASSERT_THAT(headers.first_line(), StrEq("GET")); headers.SetRequestUri("/foo"); EXPECT_THAT(headers.first_line(), StrEq("GET /foo ")); } } TEST(BalsaHeaders, SetFirstlineFromStringPiecesFirstInAdditionalDataAndNewLarger) { BalsaHeaders headers; headers.SetResponseFirstline("HTTP/1.1", 200, "don't need a reason"); EXPECT_THAT(headers.response_version(), StrEq("HTTP/1.1")); EXPECT_THAT(headers.response_code(), StrEq("200")); EXPECT_THAT(headers.parsed_response_code(), Eq(200)); EXPECT_THAT(headers.response_reason_phrase(), StrEq("don't need a reason")); EXPECT_THAT(headers.first_line(), StrEq("HTTP/1.1 200 don't need a reason")); headers.SetResponseFirstline("HTTP/1.10", 2000, "REALLY don't need a reason"); EXPECT_THAT(headers.response_version(), StrEq("HTTP/1.10")); EXPECT_THAT(headers.response_code(), StrEq("2000")); EXPECT_THAT(headers.parsed_response_code(), Eq(2000)); EXPECT_THAT(headers.response_reason_phrase(), StrEq("REALLY don't need a reason")); EXPECT_THAT(headers.first_line(), StrEq("HTTP/1.10 2000 REALLY don't need a reason")); } TEST(BalsaHeaders, TestSetFirstlineFromStringPiecesWithPreviousInAdditionalDataNewSmaller) { BalsaHeaders headers; headers.SetResponseFirstline("HTTP/1.10", 2000, "REALLY don't need a reason"); EXPECT_THAT(headers.response_version(), StrEq("HTTP/1.10")); EXPECT_THAT(headers.response_code(), StrEq("2000")); EXPECT_THAT(headers.parsed_response_code(), Eq(2000)); EXPECT_THAT(headers.response_reason_phrase(), StrEq("REALLY don't need a reason")); EXPECT_THAT(headers.first_line(), StrEq("HTTP/1.10 2000 REALLY don't need a reason")); headers.SetResponseFirstline("HTTP/1.0", 200, "a reason"); EXPECT_THAT(headers.response_version(), StrEq("HTTP/1.0")); EXPECT_THAT(headers.response_code(), StrEq("200")); EXPECT_THAT(headers.parsed_response_code(), Eq(200)); EXPECT_THAT(headers.response_reason_phrase(), StrEq("a reason")); EXPECT_THAT(headers.first_line(), StrEq("HTTP/1.0 200 a reason")); } TEST(BalsaHeaders, CopyFrom) { BalsaHeaders headers1, headers2; absl::string_view method("GET"); absl::string_view uri("/foo"); absl::string_view version("HTTP/1.0"); headers1.SetRequestFirstlineFromStringPieces(method, uri, version); headers1.AppendHeader("key1", "value1"); headers1.AppendHeader("key 2", "value\n 2"); headers1.AppendHeader("key\n 3", "value3"); headers2.CopyFrom(headers1); EXPECT_THAT(headers1.first_line(), StrEq("GET /foo HTTP/1.0")); BalsaHeaders::const_header_lines_iterator chli = headers1.lines().begin(); EXPECT_THAT(chli->first, StrEq("key1")); EXPECT_THAT(chli->second, StrEq("value1")); ++chli; EXPECT_THAT(chli->first, StrEq("key 2")); EXPECT_THAT(chli->second, StrEq("value\n 2")); ++chli; EXPECT_THAT(chli->first, StrEq("key\n 3")); EXPECT_THAT(chli->second, StrEq("value3")); ++chli; EXPECT_EQ(headers1.lines().end(), chli); EXPECT_THAT(headers1.request_method(), StrEq((std::string(headers2.request_method())))); EXPECT_THAT(headers1.request_uri(), StrEq((std::string(headers2.request_uri())))); EXPECT_THAT(headers1.request_version(), StrEq((std::string(headers2.request_version())))); EXPECT_THAT(headers2.first_line(), StrEq("GET /foo HTTP/1.0")); chli = headers2.lines().begin(); EXPECT_THAT(chli->first, StrEq("key1")); EXPECT_THAT(chli->second, StrEq("value1")); ++chli; EXPECT_THAT(chli->first, StrEq("key 2")); EXPECT_THAT(chli->second, StrEq("value\n 2")); ++chli; EXPECT_THAT(chli->first, StrEq("key\n 3")); EXPECT_THAT(chli->second, StrEq("value3")); ++chli; EXPECT_EQ(headers2.lines().end(), chli); version = absl::string_view("HTTP/1.1"); int code = 200; absl::string_view reason_phrase("reason phrase asdf"); headers1.RemoveAllOfHeader("key1"); headers1.AppendHeader("key4", "value4"); headers1.SetResponseFirstline(version, code, reason_phrase); headers2.CopyFrom(headers1); EXPECT_THAT(headers1.request_method(), StrEq((std::string(headers2.request_method())))); EXPECT_THAT(headers1.request_uri(), StrEq((std::string(headers2.request_uri())))); EXPECT_THAT(headers1.request_version(), StrEq((std::string(headers2.request_version())))); EXPECT_THAT(headers2.first_line(), StrEq("HTTP/1.1 200 reason phrase asdf")); chli = headers2.lines().begin(); EXPECT_THAT(chli->first, StrEq("key 2")); EXPECT_THAT(chli->second, StrEq("value\n 2")); ++chli; EXPECT_THAT(chli->first, StrEq("key\n 3")); EXPECT_THAT(chli->second, StrEq("value3")); ++chli; EXPECT_THAT(chli->first, StrEq("key4")); EXPECT_THAT(chli->second, StrEq("value4")); ++chli; EXPECT_EQ(headers2.lines().end(), chli); } TEST(BalsaHeaders, Move) { BalsaHeaders headers1, headers3; absl::string_view method("GET"); absl::string_view uri("/foo"); absl::string_view version("HTTP/1.0"); headers1.SetRequestFirstlineFromStringPieces(method, uri, version); headers1.AppendHeader("key1", "value1"); headers1.AppendHeader("key 2", "value\n 2"); headers1.AppendHeader("key\n 3", "value3"); BalsaHeaders headers2 = std::move(headers1); EXPECT_EQ("GET /foo HTTP/1.0", headers2.first_line()); BalsaHeaders::const_header_lines_iterator chli = headers2.lines().begin(); EXPECT_EQ("key1", chli->first); EXPECT_EQ("value1", chli->second); ++chli; EXPECT_EQ("key 2", chli->first); EXPECT_EQ("value\n 2", chli->second); ++chli; EXPECT_EQ("key\n 3", chli->first); EXPECT_EQ("value3", chli->second); ++chli; EXPECT_EQ(headers2.lines().end(), chli); EXPECT_EQ("GET", headers2.request_method()); EXPECT_EQ("/foo", headers2.request_uri()); EXPECT_EQ("HTTP/1.0", headers2.request_version()); headers3 = std::move(headers2); version = absl::string_view("HTTP/1.1"); int code = 200; absl::string_view reason_phrase("reason phrase asdf"); headers3.RemoveAllOfHeader("key1"); headers3.AppendHeader("key4", "value4"); headers3.SetResponseFirstline(version, code, reason_phrase); BalsaHeaders headers4 = std::move(headers3); EXPECT_EQ("200", headers4.response_code()); EXPECT_EQ("reason phrase asdf", headers4.response_reason_phrase()); EXPECT_EQ("HTTP/1.1", headers4.response_version()); EXPECT_EQ("HTTP/1.1 200 reason phrase asdf", headers4.first_line()); chli = headers4.lines().begin(); EXPECT_EQ("key 2", chli->first); EXPECT_EQ("value\n 2", chli->second); ++chli; EXPECT_EQ("key\n 3", chli->first); EXPECT_EQ("value3", chli->second); ++chli; EXPECT_EQ("key4", chli->first); EXPECT_EQ("value4", chli->second); ++chli; EXPECT_EQ(headers4.lines().end(), chli); } TEST(BalsaHeaders, IteratorWorksWithOStreamAsExpected) { { std::stringstream actual; BalsaHeaders::const_header_lines_iterator chli; actual << chli; EXPECT_THAT(actual.str(), AnyOf(StrEq("[0, 0]"), StrEq("[(nil), 0]"), StrEq("[0x0, 0]"))); } { BalsaHeaders headers; std::stringstream actual; BalsaHeaders::const_header_lines_iterator chli = headers.lines().begin(); actual << chli; std::stringstream expected; expected << "[" << &headers << ", 0]"; EXPECT_THAT(expected.str(), StrEq(actual.str())); } } TEST(BalsaHeaders, TestSetResponseReasonPhraseWithNoInitialFirstline) { BalsaHeaders balsa_headers; balsa_headers.SetResponseReasonPhrase("don't need a reason"); EXPECT_THAT(balsa_headers.first_line(), StrEq(" don't need a reason")); EXPECT_TRUE(balsa_headers.response_version().empty()); EXPECT_TRUE(balsa_headers.response_code().empty()); EXPECT_THAT(balsa_headers.response_reason_phrase(), StrEq("don't need a reason")); } TEST(BalsaHeaders, TestSetResponseReasonPhrase) { const char* response_reason_phrases[] = { "qwerty asdfgh", "qwerty", "qwerty asdfghjkl", }; size_t arraysize_squared = (ABSL_ARRAYSIZE(response_reason_phrases) * ABSL_ARRAYSIZE(response_reason_phrases)); for (size_t iteration = 0; iteration < arraysize_squared; ++iteration) { SCOPED_TRACE("Original firstline: \"HTTP/1.0 200 reason phrase\""); BalsaHeaders headers = CreateHTTPHeaders(true, "HTTP/1.0 200 reason phrase\r\n" "content-length: 0\r\n" "\r\n"); ASSERT_THAT(headers.first_line(), StrEq("HTTP/1.0 200 reason phrase")); { int first = iteration / ABSL_ARRAYSIZE(response_reason_phrases); const char* response_reason_phrase_first = response_reason_phrases[first]; std::string expected_new_firstline = absl::StrFormat("HTTP/1.0 200 %s", response_reason_phrase_first); SCOPED_TRACE(absl::StrFormat("Then set response_reason_phrase(\"%s\")", response_reason_phrase_first)); headers.SetResponseReasonPhrase(response_reason_phrase_first); EXPECT_THAT(headers.first_line(), StrEq(absl::StrFormat("HTTP/1.0 200 %s", response_reason_phrase_first))); EXPECT_THAT(headers.response_version(), StrEq("HTTP/1.0")); EXPECT_THAT(headers.response_code(), StrEq("200")); EXPECT_THAT(headers.response_reason_phrase(), StrEq(response_reason_phrase_first)); } { int second = iteration % ABSL_ARRAYSIZE(response_reason_phrases); const char* response_reason_phrase_second = response_reason_phrases[second]; std::string expected_new_firstline = absl::StrFormat("HTTP/1.0 200 %s", response_reason_phrase_second); SCOPED_TRACE(absl::StrFormat("Then set response_reason_phrase(\"%s\")", response_reason_phrase_second)); headers.SetResponseReasonPhrase(response_reason_phrase_second); EXPECT_THAT(headers.first_line(), StrEq(absl::StrFormat("HTTP/1.0 200 %s", response_reason_phrase_second))); EXPECT_THAT(headers.response_version(), StrEq("HTTP/1.0")); EXPECT_THAT(headers.response_code(), StrEq("200")); EXPECT_THAT(headers.response_reason_phrase(), StrEq(response_reason_phrase_second)); } } } TEST(BalsaHeaders, TestSetResponseVersionWithNoInitialFirstline) { BalsaHeaders balsa_headers; balsa_headers.SetResponseVersion("HTTP/1.1"); EXPECT_THAT(balsa_headers.first_line(), StrEq("HTTP/1.1 ")); EXPECT_THAT(balsa_headers.response_version(), StrEq("HTTP/1.1")); EXPECT_TRUE(balsa_headers.response_code().empty()); EXPECT_TRUE(balsa_headers.response_reason_phrase().empty()); } TEST(BalsaHeaders, TestSetResponseVersion) { const char* response_versions[] = { "ABCD/123", "ABCD", "ABCD/123456", }; size_t arraysize_squared = (ABSL_ARRAYSIZE(response_versions) * ABSL_ARRAYSIZE(response_versions)); for (size_t iteration = 0; iteration < arraysize_squared; ++iteration) { SCOPED_TRACE("Original firstline: \"HTTP/1.0 200 reason phrase\""); BalsaHeaders headers = CreateHTTPHeaders(false, "HTTP/1.0 200 reason phrase\r\n" "content-length: 0\r\n" "\r\n"); ASSERT_THAT(headers.first_line(), StrEq("HTTP/1.0 200 reason phrase")); { int first = iteration / ABSL_ARRAYSIZE(response_versions); const char* response_version_first = response_versions[first]; std::string expected_new_firstline = absl::StrFormat("%s 200 reason phrase", response_version_first); SCOPED_TRACE(absl::StrFormat("Then set response_version(\"%s\")", response_version_first)); headers.SetResponseVersion(response_version_first); EXPECT_THAT(headers.first_line(), StrEq(expected_new_firstline)); EXPECT_THAT(headers.response_version(), StrEq(response_version_first)); EXPECT_THAT(headers.response_code(), StrEq("200")); EXPECT_THAT(headers.response_reason_phrase(), StrEq("reason phrase")); } { int second = iteration % ABSL_ARRAYSIZE(response_versions); const char* response_version_second = response_versions[second]; std::string expected_new_firstline = absl::StrFormat("%s 200 reason phrase", response_version_second); SCOPED_TRACE(absl::StrFormat("Then set response_version(\"%s\")", response_version_second)); headers.SetResponseVersion(response_version_second); EXPECT_THAT(headers.first_line(), StrEq(expected_new_firstline)); EXPECT_THAT(headers.response_version(), StrEq(response_version_second)); EXPECT_THAT(headers.response_code(), StrEq("200")); EXPECT_THAT(headers.response_reason_phrase(), StrEq("reason phrase")); } } } TEST(BalsaHeaders, TestSetResponseReasonAndVersionWithNoInitialFirstline) { BalsaHeaders headers; headers.SetResponseVersion("HTTP/1.1"); headers.SetResponseReasonPhrase("don't need a reason"); EXPECT_THAT(headers.first_line(), StrEq("HTTP/1.1 don't need a reason")); EXPECT_THAT(headers.response_version(), StrEq("HTTP/1.1")); EXPECT_TRUE(headers.response_code().empty()); EXPECT_THAT(headers.response_reason_phrase(), StrEq("don't need a reason")); } TEST(BalsaHeaders, TestSetResponseCodeWithNoInitialFirstline) { BalsaHeaders balsa_headers; balsa_headers.SetParsedResponseCodeAndUpdateFirstline(2002); EXPECT_THAT(balsa_headers.first_line(), StrEq(" 2002 ")); EXPECT_TRUE(balsa_headers.response_version().empty()); EXPECT_THAT(balsa_headers.response_code(), StrEq("2002")); EXPECT_TRUE(balsa_headers.response_reason_phrase().empty()); EXPECT_THAT(balsa_headers.parsed_response_code(), Eq(2002)); } TEST(BalsaHeaders, TestSetParsedResponseCode) { BalsaHeaders balsa_headers; balsa_headers.set_parsed_response_code(std::numeric_limits<int>::max()); EXPECT_THAT(balsa_headers.parsed_response_code(), Eq(std::numeric_limits<int>::max())); } TEST(BalsaHeaders, TestSetResponseCode) { const char* response_codes[] = { "200" "23", "200200", }; size_t arraysize_squared = (ABSL_ARRAYSIZE(response_codes) * ABSL_ARRAYSIZE(response_codes)); for (size_t iteration = 0; iteration < arraysize_squared; ++iteration) { SCOPED_TRACE("Original firstline: \"HTTP/1.0 200 reason phrase\""); BalsaHeaders headers = CreateHTTPHeaders(false, "HTTP/1.0 200 reason phrase\r\n" "content-length: 0\r\n" "\r\n"); ASSERT_THAT(headers.first_line(), StrEq("HTTP/1.0 200 reason phrase")); { int first = iteration / ABSL_ARRAYSIZE(response_codes); const char* response_code_first = response_codes[first]; std::string expected_new_firstline = absl::StrFormat("HTTP/1.0 %s reason phrase", response_code_first); SCOPED_TRACE(absl::StrFormat("Then set response_code(\"%s\")", response_code_first)); headers.SetResponseCode(response_code_first); EXPECT_THAT(headers.first_line(), StrEq(expected_new_firstline)); EXPECT_THAT(headers.response_version(), StrEq("HTTP/1.0")); EXPECT_THAT(headers.response_code(), StrEq(response_code_first)); EXPECT_THAT(headers.response_reason_phrase(), StrEq("reason phrase")); } { int second = iteration % ABSL_ARRAYSIZE(response_codes); const char* response_code_second = response_codes[second]; std::string expected_new_secondline = absl::StrFormat("HTTP/1.0 %s reason phrase", response_code_second); SCOPED_TRACE(absl::StrFormat("Then set response_code(\"%s\")", response_code_second)); headers.SetResponseCode(response_code_second); EXPECT_THAT(headers.first_line(), StrEq(expected_new_secondline)); EXPECT_THAT(headers.response_version(), StrEq("HTTP/1.0")); EXPECT_THAT(headers.response_code(), StrEq(response_code_second)); EXPECT_THAT(headers.response_reason_phrase(), StrEq("reason phrase")); } } } TEST(BalsaHeaders, TestAppendToHeader) { BalsaHeaders headers; headers.AppendHeader("foo", "foo_value"); headers.AppendHeader("bar", "bar_value"); headers.AppendToHeader("foo", "foo_value2"); EXPECT_THAT(headers.GetHeader("foo"), StrEq("foo_value,foo_value2")); EXPECT_THAT(headers.GetHeader("bar"), StrEq("bar_value")); } TEST(BalsaHeaders, TestInitialAppend) { BalsaHeaders headers; headers.AppendToHeader("foo", "foo_value"); EXPECT_THAT(headers.GetHeader("foo"), StrEq("foo_value")); headers.AppendToHeader("foo", "foo_value2"); EXPECT_THAT(headers.GetHeader("foo"), StrEq("foo_value,foo_value2")); } TEST(BalsaHeaders, TestAppendAndRemove) { BalsaHeaders headers; headers.AppendToHeader("foo", "foo_value"); EXPECT_THAT(headers.GetHeader("foo"), StrEq("foo_value")); headers.AppendToHeader("foo", "foo_value2"); EXPECT_THAT(headers.GetHeader("foo"), StrEq("foo_value,foo_value2")); headers.RemoveAllOfHeader("foo"); headers.AppendToHeader("foo", "foo_value3"); EXPECT_THAT(headers.GetHeader("foo"), StrEq("foo_value3")); headers.AppendToHeader("foo", "foo_value4"); EXPECT_THAT(headers.GetHeader("foo"), StrEq("foo_value3,foo_value4")); } TEST(BalsaHeaders, TestAppendToHeaderWithCommaAndSpace) { BalsaHeaders headers; headers.AppendHeader("foo", "foo_value"); headers.AppendHeader("bar", "bar_value"); headers.AppendToHeaderWithCommaAndSpace("foo", "foo_value2"); EXPECT_THAT(headers.GetHeader("foo"), StrEq("foo_value, foo_value2")); EXPECT_THAT(headers.GetHeader("bar"), StrEq("bar_value")); } TEST(BalsaHeaders, TestInitialAppendWithCommaAndSpace) { BalsaHeaders headers; headers.AppendToHeaderWithCommaAndSpace("foo", "foo_value"); EXPECT_THAT(headers.GetHeader("foo"), StrEq("foo_value")); headers.AppendToHeaderWithCommaAndSpace("foo", "foo_value2"); EXPECT_THAT(headers.GetHeader("foo"), StrEq("foo_value, foo_value2")); } TEST(BalsaHeaders, TestAppendWithCommaAndSpaceAndRemove) { BalsaHeaders headers; headers.AppendToHeaderWithCommaAndSpace("foo", "foo_value"); EXPECT_THAT(headers.GetHeader("foo"), StrEq("foo_value")); headers.AppendToHeaderWithCommaAndSpace("foo", "foo_value2"); EXPECT_THAT(headers.GetHeader("foo"), StrEq("foo_value, foo_value2")); headers.RemoveAllOfHeader("foo"); headers.AppendToHeaderWithCommaAndSpace("foo", "foo_value3"); EXPECT_THAT(headers.GetHeader("foo"), StrEq("foo_value3")); headers.AppendToHeaderWithCommaAndSpace("foo", "foo_value4"); EXPECT_THAT(headers.GetHeader("foo"), StrEq("foo_value3, foo_value4")); } TEST(BalsaHeaders, SetContentLength) { BalsaHeaders headers; headers.SetContentLength(10); EXPECT_THAT(headers.GetHeader("Content-length"), StrEq("10")); EXPECT_EQ(BalsaHeadersEnums::VALID_CONTENT_LENGTH, headers.content_length_status()); EXPECT_TRUE(headers.content_length_valid()); headers.SetContentLength(0); EXPECT_THAT(headers.GetHeader("Content-length"), StrEq("0")); EXPECT_EQ(BalsaHeadersEnums::VALID_CONTENT_LENGTH, headers.content_length_status()); EXPECT_TRUE(headers.content_length_valid()); BalsaHeaders::const_header_lines_iterator iter = headers.GetHeaderPosition("Content-length"); EXPECT_EQ(headers.lines().begin(), iter); EXPECT_EQ(headers.lines().end(), ++iter); headers.SetContentLength(0); EXPECT_THAT(headers.GetHeader("Content-length"), StrEq("0")); EXPECT_EQ(BalsaHeadersEnums::VALID_CONTENT_LENGTH, headers.content_length_status()); EXPECT_TRUE(headers.content_length_valid()); iter = headers.GetHeaderPosition("Content-length"); EXPECT_EQ(headers.lines().begin(), iter); EXPECT_EQ(headers.lines().end(), ++iter); } TEST(BalsaHeaders, ToggleChunkedEncoding) { BalsaHeaders headers; headers.SetTransferEncodingToChunkedAndClearContentLength(); EXPECT_EQ("chunked", headers.GetAllOfHeaderAsString("Transfer-Encoding")); EXPECT_TRUE(headers.HasHeadersWithPrefix("Transfer-Encoding")); EXPECT_TRUE(headers.HasHeadersWithPrefix("transfer-encoding")); EXPECT_TRUE(headers.HasHeadersWithPrefix("transfer")); EXPECT_TRUE(headers.transfer_encoding_is_chunked()); headers.SetTransferEncodingToChunkedAndClearContentLength(); EXPECT_EQ("chunked", headers.GetAllOfHeaderAsString("Transfer-Encoding")); EXPECT_TRUE(headers.HasHeadersWithPrefix("Transfer-Encoding")); EXPECT_TRUE(headers.HasHeadersWithPrefix("transfer-encoding")); EXPECT_TRUE(headers.HasHeadersWithPrefix("transfer")); EXPECT_TRUE(headers.transfer_encoding_is_chunked()); BalsaHeaders::const_header_lines_iterator iter = headers.GetHeaderPosition("Transfer-Encoding"); EXPECT_EQ(headers.lines().begin(), iter); EXPECT_EQ(headers.lines().end(), ++iter); headers.SetNoTransferEncoding(); EXPECT_FALSE(headers.HasHeader("Transfer-Encoding")); EXPECT_FALSE(headers.HasHeadersWithPrefix("Transfer-Encoding")); EXPECT_FALSE(headers.HasHeadersWithPrefix("transfer-encoding")); EXPECT_FALSE(headers.HasHeadersWithPrefix("transfer")); EXPECT_FALSE(headers.transfer_encoding_is_chunked()); EXPECT_EQ(headers.lines().end(), headers.lines().begin()); headers.SetNoTransferEncoding(); EXPECT_FALSE(headers.HasHeader("Transfer-Encoding")); EXPECT_FALSE(headers.HasHeadersWithPrefix("Transfer-Encoding")); EXPECT_FALSE(headers.HasHeadersWithPrefix("transfer-encoding")); EXPECT_FALSE(headers.HasHeadersWithPrefix("transfer")); EXPECT_FALSE(headers.transfer_encoding_is_chunked()); EXPECT_EQ(headers.lines().end(), headers.lines().begin()); } TEST(BalsaHeaders, SetNoTransferEncodingByRemoveHeader) { BalsaHeaders headers; headers.SetTransferEncodingToChunkedAndClearContentLength(); headers.RemoveAllOfHeader("Transfer-Encoding"); EXPECT_FALSE(headers.transfer_encoding_is_chunked()); headers.SetTransferEncodingToChunkedAndClearContentLength(); std::vector<absl::string_view> headers_to_remove; headers_to_remove.emplace_back("Transfer-Encoding"); headers.RemoveAllOfHeaderInList(headers_to_remove); EXPECT_FALSE(headers.transfer_encoding_is_chunked()); headers.SetTransferEncodingToChunkedAndClearContentLength(); headers.RemoveAllHeadersWithPrefix("Transfer"); EXPECT_FALSE(headers.transfer_encoding_is_chunked()); } TEST(BalsaHeaders, ClearContentLength) { BalsaHeaders headers; headers.SetContentLength(10); headers.ClearContentLength(); EXPECT_FALSE(headers.HasHeader("Content-length")); EXPECT_EQ(BalsaHeadersEnums::NO_CONTENT_LENGTH, headers.content_length_status()); EXPECT_FALSE(headers.content_length_valid()); headers.ClearContentLength(); EXPECT_FALSE(headers.HasHeader("Content-length")); EXPECT_EQ(BalsaHeadersEnums::NO_CONTENT_LENGTH, headers.content_length_status()); EXPECT_FALSE(headers.content_length_valid()); headers.SetTransferEncodingToChunkedAndClearContentLength(); headers.ClearContentLength(); EXPECT_EQ("chunked", headers.GetAllOfHeaderAsString("Transfer-Encoding")); EXPECT_TRUE(headers.transfer_encoding_is_chunked()); BalsaHeaders::const_header_lines_iterator iter = headers.GetHeaderPosition("Transfer-Encoding"); EXPECT_EQ(headers.lines().begin(), iter); EXPECT_EQ(headers.lines().end(), ++iter); headers.SetNoTransferEncoding(); EXPECT_EQ(BalsaHeadersEnums::NO_CONTENT_LENGTH, headers.content_length_status()); EXPECT_FALSE(headers.content_length_valid()); } TEST(BalsaHeaders, ClearContentLengthByRemoveHeader) { BalsaHeaders headers; headers.SetContentLength(10); headers.RemoveAllOfHeader("Content-Length"); EXPECT_EQ(BalsaHeadersEnums::NO_CONTENT_LENGTH, headers.content_length_status()); EXPECT_EQ(0u, headers.content_length()); EXPECT_FALSE(headers.content_length_valid()); headers.SetContentLength(11); std::vector<absl::string_view> headers_to_remove; headers_to_remove.emplace_back("Content-Length"); headers.RemoveAllOfHeaderInList(headers_to_remove); EXPECT_EQ(BalsaHeadersEnums::NO_CONTENT_LENGTH, headers.content_length_status()); EXPECT_EQ(0u, headers.content_length()); EXPECT_FALSE(headers.content_length_valid()); headers.SetContentLength(12); headers.RemoveAllHeadersWithPrefix("Content"); EXPECT_EQ(BalsaHeadersEnums::NO_CONTENT_LENGTH, headers.content_length_status()); EXPECT_EQ(0u, headers.content_length()); EXPECT_FALSE(headers.content_length_valid()); } TEST(BalsaHeaders, IdentityCodingToChunked) { std::string message = "HTTP/1.1 200 OK\r\n" "Transfer-Encoding: identity\r\n\r\n"; BalsaHeaders headers; BalsaFrame balsa_frame; balsa_frame.set_is_request(false); balsa_frame.set_balsa_headers(&headers); EXPECT_EQ(message.size(), balsa_frame.ProcessInput(message.data(), message.size())); EXPECT_TRUE(headers.is_framed_by_connection_close()); EXPECT_FALSE(headers.transfer_encoding_is_chunked()); EXPECT_THAT(headers.GetAllOfHeader("Transfer-Encoding"), ElementsAre("identity")); headers.SetTransferEncodingToChunkedAndClearContentLength(); EXPECT_FALSE(headers.is_framed_by_connection_close()); EXPECT_TRUE(headers.transfer_encoding_is_chunked()); EXPECT_THAT(headers.GetAllOfHeader("Transfer-Encoding"), ElementsAre("chunked")); } TEST(BalsaHeaders, SwitchContentLengthToChunk) { BalsaHeaders headers; headers.SetContentLength(10); EXPECT_THAT(headers.GetHeader("Content-length"), StrEq("10")); EXPECT_EQ(BalsaHeadersEnums::VALID_CONTENT_LENGTH, headers.content_length_status()); EXPECT_TRUE(headers.content_length_valid()); headers.SetTransferEncodingToChunkedAndClearContentLength(); EXPECT_EQ("chunked", headers.GetAllOfHeaderAsString("Transfer-Encoding")); EXPECT_TRUE(headers.transfer_encoding_is_chunked()); EXPECT_FALSE(headers.HasHeader("Content-length")); EXPECT_EQ(BalsaHeadersEnums::NO_CONTENT_LENGTH, headers.content_length_status()); EXPECT_FALSE(headers.content_length_valid()); } TEST(BalsaHeaders, SwitchChunkedToContentLength) { BalsaHeaders headers; headers.SetTransferEncodingToChunkedAndClearContentLength(); EXPECT_EQ("chunked", headers.GetAllOfHeaderAsString("Transfer-Encoding")); EXPECT_TRUE(headers.transfer_encoding_is_chunked()); EXPECT_FALSE(headers.HasHeader("Content-length")); EXPECT_EQ(BalsaHeadersEnums::NO_CONTENT_LENGTH, headers.content_length_status()); EXPECT_FALSE(headers.content_length_valid()); headers.SetContentLength(10); EXPECT_THAT(headers.GetHeader("Content-length"), StrEq("10")); EXPECT_EQ(BalsaHeadersEnums::VALID_CONTENT_LENGTH, headers.content_length_status()); EXPECT_TRUE(headers.content_length_valid()); EXPECT_FALSE(headers.HasHeader("Transfer-Encoding")); EXPECT_FALSE(headers.transfer_encoding_is_chunked()); } TEST(BalsaHeaders, OneHundredResponseMessagesNoFramedByClose) { BalsaHeaders headers; headers.SetResponseFirstline("HTTP/1.1", 100, "Continue"); EXPECT_FALSE(headers.is_framed_by_connection_close()); } TEST(BalsaHeaders, TwoOhFourResponseMessagesNoFramedByClose) { BalsaHeaders headers; headers.SetResponseFirstline("HTTP/1.1", 204, "Continue"); EXPECT_FALSE(headers.is_framed_by_connection_close()); } TEST(BalsaHeaders, ThreeOhFourResponseMessagesNoFramedByClose) { BalsaHeaders headers; headers.SetResponseFirstline("HTTP/1.1", 304, "Continue"); EXPECT_FALSE(headers.is_framed_by_connection_close()); } TEST(BalsaHeaders, InvalidCharInHeaderValue) { std::string message = "GET http: "Host: \x01\x01www.265.com\r\n" "\r\n"; BalsaHeaders headers = CreateHTTPHeaders(true, message); EXPECT_EQ("www.265.com", headers.GetHeader("Host")); SimpleBuffer buffer; headers.WriteHeaderAndEndingToBuffer(&buffer); message.replace(message.find_first_of(0x1), 2, ""); EXPECT_EQ(message, buffer.GetReadableRegion()); } TEST(BalsaHeaders, CarriageReturnAtStartOfLine) { std::string message = "GET /foo HTTP/1.1\r\n" "Host: www.265.com\r\n" "Foo: bar\r\n" "\rX-User-Ip: 1.2.3.4\r\n" "\r\n"; BalsaHeaders headers; BalsaFrame balsa_frame; balsa_frame.set_is_request(true); balsa_frame.set_balsa_headers(&headers); EXPECT_EQ(message.size(), balsa_frame.ProcessInput(message.data(), message.size())); EXPECT_EQ(BalsaFrameEnums::INVALID_HEADER_FORMAT, balsa_frame.ErrorCode()); EXPECT_TRUE(balsa_frame.Error()); } TEST(BalsaHeaders, CheckEmpty) { BalsaHeaders headers; EXPECT_TRUE(headers.IsEmpty()); } TEST(BalsaHeaders, CheckNonEmpty) { BalsaHeaders headers; BalsaHeadersTestPeer::WriteFromFramer(&headers, "a b c", 5); EXPECT_FALSE(headers.IsEmpty()); } TEST(BalsaHeaders, ForEachHeader) { BalsaHeaders headers; headers.AppendHeader(":host", "SomeHost"); headers.AppendHeader("key", "val1,val2val2,val2,val3"); headers.AppendHeader("key", "val4val5val6"); headers.AppendHeader("key", "val11 val12"); headers.AppendHeader("key", "v val13"); headers.AppendHeader("key", "val7"); headers.AppendHeader("key", ""); headers.AppendHeader("key", "val8 , val9 ,, val10"); headers.AppendHeader("key", " val14 "); headers.AppendHeader("key2", "val15"); headers.AppendHeader("key", "Val16"); headers.AppendHeader("key", "foo, Val17, bar"); headers.AppendHeader("date", "2 Jan 1970"); headers.AppendHeader("AcceptEncoding", "MyFavoriteEncoding"); { std::string result; EXPECT_TRUE(headers.ForEachHeader( [&result](const absl::string_view key, absl::string_view value) { result.append("<") .append(key.data(), key.size()) .append("> = <") .append(value.data(), value.size()) .append(">\n"); return true; })); EXPECT_EQ(result, "<:host> = <SomeHost>\n" "<key> = <val1,val2val2,val2,val3>\n" "<key> = <val4val5val6>\n" "<key> = <val11 val12>\n" "<key> = <v val13>\n" "<key> = <val7>\n" "<key> = <>\n" "<key> = <val8 , val9 ,, val10>\n" "<key> = < val14 >\n" "<key2> = <val15>\n" "<key> = <Val16>\n" "<key> = <foo, Val17, bar>\n" "<date> = <2 Jan 1970>\n" "<AcceptEncoding> = <MyFavoriteEncoding>\n"); } { std::string result; EXPECT_FALSE(headers.ForEachHeader( [&result](const absl::string_view key, absl::string_view value) { result.append("<") .append(key.data(), key.size()) .append("> = <") .append(value.data(), value.size()) .append(">\n"); return !value.empty(); })); EXPECT_EQ(result, "<:host> = <SomeHost>\n" "<key> = <val1,val2val2,val2,val3>\n" "<key> = <val4val5val6>\n" "<key> = <val11 val12>\n" "<key> = <v val13>\n" "<key> = <val7>\n" "<key> = <>\n"); } } TEST(BalsaHeaders, WriteToBufferWithLowerCasedHeaderKey) { BalsaHeaders headers; headers.SetRequestFirstlineFromStringPieces("GET", "/", "HTTP/1.0"); headers.AppendHeader("Key1", "value1"); headers.AppendHeader("Key2", "value2"); std::string expected_lower_case = "GET / HTTP/1.0\r\n" "key1: value1\r\n" "key2: value2\r\n"; std::string expected_lower_case_with_end = "GET / HTTP/1.0\r\n" "key1: value1\r\n" "key2: value2\r\n\r\n"; std::string expected_upper_case = "GET / HTTP/1.0\r\n" "Key1: value1\r\n" "Key2: value2\r\n"; std::string expected_upper_case_with_end = "GET / HTTP/1.0\r\n" "Key1: value1\r\n" "Key2: value2\r\n\r\n"; SimpleBuffer simple_buffer; headers.WriteToBuffer(&simple_buffer, BalsaHeaders::CaseOption::kLowercase, BalsaHeaders::CoalesceOption::kNoCoalesce); EXPECT_THAT(simple_buffer.GetReadableRegion(), StrEq(expected_lower_case)); simple_buffer.Clear(); headers.WriteToBuffer(&simple_buffer); EXPECT_THAT(simple_buffer.GetReadableRegion(), StrEq(expected_upper_case)); simple_buffer.Clear(); headers.WriteHeaderAndEndingToBuffer(&simple_buffer); EXPECT_THAT(simple_buffer.GetReadableRegion(), StrEq(expected_upper_case_with_end)); simple_buffer.Clear(); headers.WriteHeaderAndEndingToBuffer( &simple_buffer, BalsaHeaders::CaseOption::kLowercase, BalsaHeaders::CoalesceOption::kNoCoalesce); EXPECT_THAT(simple_buffer.GetReadableRegion(), StrEq(expected_lower_case_with_end)); } TEST(BalsaHeaders, WriteToBufferWithProperCasedHeaderKey) { BalsaHeaders headers; headers.SetRequestFirstlineFromStringPieces("GET", "/", "HTTP/1.0"); headers.AppendHeader("Te", "value1"); headers.AppendHeader("my-Test-header", "value2"); std::string expected_proper_case = "GET / HTTP/1.0\r\n" "TE: value1\r\n" "My-Test-Header: value2\r\n"; std::string expected_proper_case_with_end = "GET / HTTP/1.0\r\n" "TE: value1\r\n" "My-Test-Header: value2\r\n\r\n"; std::string expected_unmodified = "GET / HTTP/1.0\r\n" "Te: value1\r\n" "my-Test-header: value2\r\n"; std::string expected_unmodified_with_end = "GET / HTTP/1.0\r\n" "Te: value1\r\n" "my-Test-header: value2\r\n\r\n"; SimpleBuffer simple_buffer; headers.WriteToBuffer(&simple_buffer, BalsaHeaders::CaseOption::kPropercase, BalsaHeaders::CoalesceOption::kNoCoalesce); EXPECT_EQ(simple_buffer.GetReadableRegion(), expected_proper_case); simple_buffer.Clear(); headers.WriteToBuffer(&simple_buffer, BalsaHeaders::CaseOption::kNoModification, BalsaHeaders::CoalesceOption::kNoCoalesce); EXPECT_EQ(simple_buffer.GetReadableRegion(), expected_unmodified); simple_buffer.Clear(); headers.WriteHeaderAndEndingToBuffer( &simple_buffer, BalsaHeaders::CaseOption::kNoModification, BalsaHeaders::CoalesceOption::kNoCoalesce); EXPECT_EQ(simple_buffer.GetReadableRegion(), expected_unmodified_with_end); simple_buffer.Clear(); headers.WriteHeaderAndEndingToBuffer( &simple_buffer, BalsaHeaders::CaseOption::kPropercase, BalsaHeaders::CoalesceOption::kNoCoalesce); EXPECT_EQ(simple_buffer.GetReadableRegion(), expected_proper_case_with_end); } TEST(BalsaHeadersTest, ToPropercaseTest) { EXPECT_EQ(BalsaHeaders::ToPropercase(""), ""); EXPECT_EQ(BalsaHeaders::ToPropercase("Foo"), "Foo"); EXPECT_EQ(BalsaHeaders::ToPropercase("foO"), "Foo"); EXPECT_EQ(BalsaHeaders::ToPropercase("my-test-header"), "My-Test-Header"); EXPECT_EQ(BalsaHeaders::ToPropercase("my--test-header"), "My--Test-Header"); } TEST(BalsaHeaders, WriteToBufferCoalescingMultivaluedHeaders) { BalsaHeaders::MultivaluedHeadersSet multivalued_headers; multivalued_headers.insert("KeY1"); multivalued_headers.insert("another_KEY"); BalsaHeaders headers; headers.SetRequestFirstlineFromStringPieces("GET", "/", "HTTP/1.0"); headers.AppendHeader("Key1", "value1"); headers.AppendHeader("Key2", "value2"); headers.AppendHeader("Key1", "value11"); headers.AppendHeader("Key2", "value21"); headers.AppendHeader("Key1", "multiples, values, already"); std::string expected_non_coalesced = "GET / HTTP/1.0\r\n" "Key1: value1\r\n" "Key2: value2\r\n" "Key1: value11\r\n" "Key2: value21\r\n" "Key1: multiples, values, already\r\n"; std::string expected_coalesced = "Key1: value1,value11,multiples, values, already\r\n" "Key2: value2\r\n" "Key2: value21\r\n"; SimpleBuffer simple_buffer; headers.WriteToBuffer(&simple_buffer); EXPECT_EQ(simple_buffer.GetReadableRegion(), expected_non_coalesced); simple_buffer.Clear(); headers.WriteToBufferCoalescingMultivaluedHeaders( &simple_buffer, multivalued_headers, BalsaHeaders::CaseOption::kNoModification); EXPECT_EQ(simple_buffer.GetReadableRegion(), expected_coalesced); } TEST(BalsaHeaders, WriteToBufferCoalescingMultivaluedHeadersMultiLine) { BalsaHeaders::MultivaluedHeadersSet multivalued_headers; multivalued_headers.insert("Key 2"); multivalued_headers.insert("key\n 3"); BalsaHeaders headers; headers.AppendHeader("key1", "value1"); headers.AppendHeader("key 2", "value\n 2"); headers.AppendHeader("key\n 3", "value3"); headers.AppendHeader("key 2", "value 21"); headers.AppendHeader("key 3", "value 33"); std::string expected_non_coalesced = "\r\n" "key1: value1\r\n" "key 2: value\n" " 2\r\n" "key\n" " 3: value3\r\n" "key 2: value 21\r\n" "key 3: value 33\r\n"; SimpleBuffer simple_buffer; headers.WriteToBuffer(&simple_buffer); EXPECT_EQ(simple_buffer.GetReadableRegion(), expected_non_coalesced); std::string expected_coalesced = "key1: value1\r\n" "key 2: value\n" " 2,value 21\r\n" "key\n" " 3: value3\r\n" "key 3: value 33\r\n"; simple_buffer.Clear(); headers.WriteToBufferCoalescingMultivaluedHeaders( &simple_buffer, multivalued_headers, BalsaHeaders::CaseOption::kNoModification); EXPECT_EQ(simple_buffer.GetReadableRegion(), expected_coalesced); } TEST(BalsaHeaders, WriteToBufferCoalescingEnvoyHeaders) { BalsaHeaders headers; headers.SetRequestFirstlineFromStringPieces("GET", "/", "HTTP/1.0"); headers.AppendHeader("User-Agent", "UserAgent1"); headers.AppendHeader("Key2", "value2"); headers.AppendHeader("USER-AGENT", "UA2"); headers.AppendHeader("Set-Cookie", "Cookie1=aaa"); headers.AppendHeader("user-agent", "agent3"); headers.AppendHeader("Set-Cookie", "Cookie2=bbb"); std::string expected_non_coalesced = "GET / HTTP/1.0\r\n" "User-Agent: UserAgent1\r\n" "Key2: value2\r\n" "USER-AGENT: UA2\r\n" "Set-Cookie: Cookie1=aaa\r\n" "user-agent: agent3\r\n" "Set-Cookie: Cookie2=bbb\r\n" "\r\n"; std::string expected_coalesced = "GET / HTTP/1.0\r\n" "User-Agent: UserAgent1,UA2,agent3\r\n" "Key2: value2\r\n" "Set-Cookie: Cookie1=aaa\r\n" "Set-Cookie: Cookie2=bbb\r\n" "\r\n"; SimpleBuffer simple_buffer; headers.WriteHeaderAndEndingToBuffer(&simple_buffer); EXPECT_EQ(simple_buffer.GetReadableRegion(), expected_non_coalesced); simple_buffer.Clear(); headers.WriteHeaderAndEndingToBuffer( &simple_buffer, BalsaHeaders::CaseOption::kNoModification, BalsaHeaders::CoalesceOption::kCoalesce); EXPECT_EQ(simple_buffer.GetReadableRegion(), expected_coalesced); } TEST(BalsaHeadersTest, RemoveLastTokenFromOneLineHeader) { BalsaHeaders headers = CreateHTTPHeaders(true, "GET /foo HTTP/1.1\r\n" "Content-Length: 0\r\n" "Content-Encoding: gzip, 3des, tar, prc\r\n\r\n"); BalsaHeaders::const_header_lines_key_iterator it = headers.GetIteratorForKey("Content-Encoding"); ASSERT_EQ("gzip, 3des, tar, prc", it->second); EXPECT_EQ(headers.header_lines_key_end(), ++it); headers.RemoveLastTokenFromHeaderValue("Content-Encoding"); it = headers.GetIteratorForKey("Content-Encoding"); ASSERT_EQ("gzip, 3des, tar", it->second); EXPECT_EQ(headers.header_lines_key_end(), ++it); headers.RemoveLastTokenFromHeaderValue("Content-Encoding"); it = headers.GetIteratorForKey("Content-Encoding"); ASSERT_EQ("gzip, 3des", it->second); EXPECT_EQ(headers.header_lines_key_end(), ++it); headers.RemoveLastTokenFromHeaderValue("Content-Encoding"); it = headers.GetIteratorForKey("Content-Encoding"); ASSERT_EQ("gzip", it->second); EXPECT_EQ(headers.header_lines_key_end(), ++it); headers.RemoveLastTokenFromHeaderValue("Content-Encoding"); EXPECT_FALSE(headers.HasHeader("Content-Encoding")); } TEST(BalsaHeadersTest, RemoveLastTokenFromMultiLineHeader) { BalsaHeaders headers = CreateHTTPHeaders(true, "GET /foo HTTP/1.1\r\n" "Content-Length: 0\r\n" "Content-Encoding: gzip, 3des\r\n" "Content-Encoding: tar, prc\r\n\r\n"); BalsaHeaders::const_header_lines_key_iterator it = headers.GetIteratorForKey("Content-Encoding"); ASSERT_EQ("gzip, 3des", it->second); ASSERT_EQ("tar, prc", (++it)->second); ASSERT_EQ(headers.header_lines_key_end(), ++it); headers.RemoveLastTokenFromHeaderValue("Content-Encoding"); it = headers.GetIteratorForKey("Content-Encoding"); ASSERT_EQ("gzip, 3des", it->second); ASSERT_EQ("tar", (++it)->second); ASSERT_EQ(headers.header_lines_key_end(), ++it); headers.RemoveLastTokenFromHeaderValue("Content-Encoding"); it = headers.GetIteratorForKey("Content-Encoding"); ASSERT_EQ("gzip, 3des", it->second); ASSERT_EQ(headers.header_lines_key_end(), ++it); headers.RemoveLastTokenFromHeaderValue("Content-Encoding"); it = headers.GetIteratorForKey("Content-Encoding"); ASSERT_EQ("gzip", it->second); ASSERT_EQ(headers.header_lines_key_end(), ++it); headers.RemoveLastTokenFromHeaderValue("Content-Encoding"); EXPECT_FALSE(headers.HasHeader("Content-Encoding")); } TEST(BalsaHeadersTest, ResponseCanHaveBody) { EXPECT_FALSE(BalsaHeaders::ResponseCanHaveBody(100)); EXPECT_FALSE(BalsaHeaders::ResponseCanHaveBody(101)); EXPECT_FALSE(BalsaHeaders::ResponseCanHaveBody(102)); EXPECT_FALSE(BalsaHeaders::ResponseCanHaveBody(204)); EXPECT_FALSE(BalsaHeaders::ResponseCanHaveBody(304)); EXPECT_TRUE(BalsaHeaders::ResponseCanHaveBody(200)); EXPECT_TRUE(BalsaHeaders::ResponseCanHaveBody(302)); EXPECT_TRUE(BalsaHeaders::ResponseCanHaveBody(404)); EXPECT_TRUE(BalsaHeaders::ResponseCanHaveBody(502)); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/balsa/balsa_headers.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/balsa/balsa_headers_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
9662c336-34ba-4275-bdd6-126ea9e0e928
cpp
tensorflow/tensorflow
depthwise_conv_hybrid
tensorflow/lite/kernels/internal/optimized/integer_ops/depthwise_conv_hybrid.h
tensorflow/lite/kernels/depthwise_conv_hybrid_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_OPTIMIZED_INTEGER_OPS_DEPTHWISE_CONV_HYBRID_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_OPTIMIZED_INTEGER_OPS_DEPTHWISE_CONV_HYBRID_H_ #include <algorithm> #include <memory> #include "ruy/profiler/instrumentation.h" #include "tensorflow/lite/kernels/cpu_backend_context.h" #include "tensorflow/lite/kernels/cpu_backend_threadpool.h" #include "tensorflow/lite/kernels/internal/optimized/cpu_check.h" #include "tensorflow/lite/kernels/internal/optimized/depthwiseconv_3x3_filter_common.h" #include "tensorflow/lite/kernels/internal/optimized/integer_ops/depthwise_conv.h" #include "tensorflow/lite/kernels/internal/optimized/integer_ops/depthwise_conv_hybrid_3x3_filter.h" #include "tensorflow/lite/kernels/internal/reference/depthwiseconv_uint8.h" #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace optimized_integer_ops { namespace depthwise_conv { inline void DepthwiseConvInitAccBuffer(int num_output_pixels, int output_depth, int32* acc_buffer) { memset(acc_buffer, 0, sizeof(acc_buffer[0]) * output_depth * num_output_pixels); } static void DoDepthwiseConvHybridGeneral( const DepthwiseParams& params, const float* input_scales, const RuntimeShape& input_shape, const int8* input_data, const RuntimeShape& filter_shape, const int8* filter_data, const RuntimeShape& bias_shape, const float* bias_data, const RuntimeShape& output_shape, float* output_data, const float* per_channel_scales, const int32_t* input_offsets, int thread_start, int thread_end, int thread_dim, int32* acc_buffer, int32 acc_buffer_size) { const int stride_width = params.stride_width; const int stride_height = params.stride_height; const int pad_width = params.padding_values.width; const int pad_height = params.padding_values.height; const int depth_multiplier = params.depth_multiplier; const float output_activation_min = params.float_activation_min; const float output_activation_max = params.float_activation_max; const int dilation_width_factor = params.dilation_width_factor; const int dilation_height_factor = params.dilation_height_factor; const int batches = MatchingDim(input_shape, 0, output_shape, 0); const int output_depth = MatchingDim(filter_shape, 3, output_shape, 3); const int input_height = input_shape.Dims(1); const int input_width = input_shape.Dims(2); const int input_depth = input_shape.Dims(3); const int filter_height = filter_shape.Dims(1); const int filter_width = filter_shape.Dims(2); const int output_rows = output_shape.Dims(1); const int output_width = output_shape.Dims(2); TFLITE_DCHECK_GE(acc_buffer_size, output_depth); const int kOutputPixelsInAccBuffer = acc_buffer_size / output_depth; const int kAccBufferActualSize = kOutputPixelsInAccBuffer * output_depth; TFLITE_DCHECK_LE(kOutputPixelsInAccBuffer * output_depth, kAccBufferActualSize); TFLITE_DCHECK_LE(kAccBufferActualSize, acc_buffer_size); TFLITE_DCHECK_GE(kOutputPixelsInAccBuffer, 1); TFLITE_DCHECK(thread_dim == 0 || thread_dim == 1); using row_accum_func_t = decltype(&QuantizedDepthwiseConvAccumRowGeneric); row_accum_func_t row_accum_func = nullptr; #define TFMINI_USE_DEPTHWISECONV_KERNEL(ALLOW_STRIDED, FIXED_INPUT_DEPTH, \ FIXED_DEPTH_MULTIPLIER) \ if (!row_accum_func && (stride_width == 1 || ALLOW_STRIDED) && \ (input_depth == FIXED_INPUT_DEPTH || FIXED_INPUT_DEPTH == 0) && \ depth_multiplier == FIXED_DEPTH_MULTIPLIER) { \ row_accum_func = \ QuantizedDepthwiseConvAccumRow<ALLOW_STRIDED, FIXED_INPUT_DEPTH, \ FIXED_DEPTH_MULTIPLIER>; \ } #ifdef USE_NEON TFMINI_USE_DEPTHWISECONV_KERNEL(false, 1, 2) TFMINI_USE_DEPTHWISECONV_KERNEL(false, 2, 2) TFMINI_USE_DEPTHWISECONV_KERNEL(false, 4, 2) TFMINI_USE_DEPTHWISECONV_KERNEL(false, 1, 4) TFMINI_USE_DEPTHWISECONV_KERNEL(false, 4, 1) TFMINI_USE_DEPTHWISECONV_KERNEL(false, 4, 4) TFMINI_USE_DEPTHWISECONV_KERNEL(false, 8, 1) TFMINI_USE_DEPTHWISECONV_KERNEL(false, 2, 8) TFMINI_USE_DEPTHWISECONV_KERNEL(false, 2, 1) TFMINI_USE_DEPTHWISECONV_KERNEL(false, 12, 1) TFMINI_USE_DEPTHWISECONV_KERNEL(true, 8, 2) TFMINI_USE_DEPTHWISECONV_KERNEL(true, 16, 1) TFMINI_USE_DEPTHWISECONV_KERNEL(true, 1, 16) TFMINI_USE_DEPTHWISECONV_KERNEL(true, 1, 20) TFMINI_USE_DEPTHWISECONV_KERNEL(true, 1, 32) TFMINI_USE_DEPTHWISECONV_KERNEL(true, 1, 8) TFMINI_USE_DEPTHWISECONV_KERNEL(true, 8, 1) TFMINI_USE_DEPTHWISECONV_KERNEL(true, 2, 1) TFMINI_USE_DEPTHWISECONV_KERNEL(true, 4, 1) TFMINI_USE_DEPTHWISECONV_KERNEL(true, 0, 1) TFMINI_USE_DEPTHWISECONV_KERNEL(true, 0, 2) TFMINI_USE_DEPTHWISECONV_KERNEL(true, 0, 3) #endif if (!row_accum_func) { row_accum_func = QuantizedDepthwiseConvAccumRowGeneric; } #undef TFMINI_USE_DEPTHWISECONV_KERNEL const int input_height_stride = input_shape.Dims(3) * input_shape.Dims(2); const int input_batch_stride = input_height_stride * input_shape.Dims(1); const int filter_height_stride = filter_shape.Dims(3) * filter_shape.Dims(2); int batch_start = 0; int batch_end = batches; int row_start = 0; int row_end = output_rows; int output_ptr_offset = 0; switch (thread_dim) { case 0: TFLITE_DCHECK_GE(thread_start, 0); TFLITE_DCHECK_LE(thread_end, batches); batch_start = thread_start; batch_end = thread_end; output_ptr_offset = batch_start * FlatSizeSkipDim(output_shape, 0); break; case 1: TFLITE_DCHECK_GE(thread_start, 0); TFLITE_DCHECK_LE(thread_end, output_rows); row_start = thread_start; row_end = thread_end; output_ptr_offset = row_start * output_width * output_depth; break; } float* output_ptr = output_data + output_ptr_offset; int batch_step = (output_rows + row_start - row_end) * output_width * output_depth; for (int b = batch_start; b < batch_end; ++b) { float input_scale = input_scales[b]; int32_t input_offset = input_offsets[b]; for (int out_y = row_start; out_y < row_end; ++out_y) { const int in_y_origin = (out_y * stride_height) - pad_height; const int filter_y_start = std::max(0, (-in_y_origin + dilation_height_factor - 1) / dilation_height_factor); const int filter_y_end = std::min(filter_height, (input_height - in_y_origin + dilation_height_factor - 1) / dilation_height_factor); for (int out_x_buffer_start = 0; out_x_buffer_start < output_width; out_x_buffer_start += kOutputPixelsInAccBuffer) { const int out_x_buffer_end = std::min( output_width, out_x_buffer_start + kOutputPixelsInAccBuffer); const int num_output_pixels = out_x_buffer_end - out_x_buffer_start; DepthwiseConvInitAccBuffer(num_output_pixels, output_depth, acc_buffer); for (int filter_y = filter_y_start; filter_y < filter_y_end; ++filter_y) { const int in_y = in_y_origin + dilation_height_factor * filter_y; row_accum_func( stride_width, dilation_width_factor, input_depth, input_width, input_data + in_y * input_height_stride + b * input_batch_stride, -input_offset, pad_width, depth_multiplier, filter_width, filter_data + filter_y * filter_height_stride, out_x_buffer_start, out_x_buffer_end, output_depth, acc_buffer); } gemmlowp::ScopedProfilingLabel label("store"); const int num_output_values = output_depth * num_output_pixels; int c = 0; while (c < output_depth) { int target_output_depth = output_depth; #ifdef USE_NEON const float32x4_t output_activation_min_vec = vdupq_n_f32(output_activation_min); const float32x4_t output_activation_max_vec = vdupq_n_f32(output_activation_max); const float32x4_t input_scale_32x4 = vdupq_n_f32(input_scale); for (; c <= output_depth - 4; c += 4) { if ((c + 4) > output_depth) { break; } const float32x4_t channel_scale_32x4 = vld1q_f32(per_channel_scales + c); const float32x4_t bias_32x4 = vld1q_f32(bias_data + c); for (int n = 0; n < num_output_pixels; ++n) { int loc = n * output_depth + c; int32x4_t acc = vld1q_s32(acc_buffer + loc); float32x4_t float_acc = vcvtq_f32_s32(acc); float_acc = vmulq_f32(float_acc, channel_scale_32x4); float_acc = vmulq_f32(float_acc, input_scale_32x4); float_acc = vaddq_f32(float_acc, bias_32x4); float_acc = vmaxq_f32(float_acc, output_activation_min_vec); float_acc = vminq_f32(float_acc, output_activation_max_vec); vst1q_f32(output_ptr + loc, float_acc); } } #endif for (; c < target_output_depth; c++) { for (int n = 0; n < num_output_pixels; ++n) { int loc = n * output_depth + c; int32 acc = acc_buffer[loc]; float float_acc = acc * input_scale * per_channel_scales[c]; float_acc += bias_data[c]; float_acc = std::max(float_acc, output_activation_min); float_acc = std::min(float_acc, output_activation_max); output_ptr[loc] = float_acc; } } } output_ptr += num_output_values; } } output_ptr += batch_step; } } static void DoDepthwiseConvHybridGeneralStatic( const DepthwiseParams& params, const float* input_scales, const RuntimeShape& input_shape, const int8* input_data, const RuntimeShape& filter_shape, const int8* filter_data, const RuntimeShape& bias_shape, const float* bias_data, const RuntimeShape& output_shape, float* output_data, const float* per_channel_scales, const int32_t* input_offsets, int thread_start, int thread_end, int thread_dim) { static const int kStaticAccBufferMaxSize = 2048; int32 stack_acc_buffer[kStaticAccBufferMaxSize]; DoDepthwiseConvHybridGeneral( params, input_scales, input_shape, input_data, filter_shape, filter_data, bias_shape, bias_data, output_shape, output_data, per_channel_scales, input_offsets, thread_start, thread_end, thread_dim, stack_acc_buffer, kStaticAccBufferMaxSize); } inline void DepthwiseConvHybridGeneral( const DepthwiseParams& params, const float* input_scales, const RuntimeShape& input_shape, const int8* input_data, const RuntimeShape& filter_shape, const int8* filter_data, const RuntimeShape& bias_shape, const float* bias_data, const RuntimeShape& output_shape, float* output_data, const float* per_channel_scales, const int32_t* input_offsets, int thread_start, int thread_end, int thread_dim) { #ifndef TF_LITE_STATIC_MEMORY static const int kStaticAccBufferMaxSize = 2048; const int output_depth = MatchingDim(filter_shape, 3, output_shape, 3); if (kStaticAccBufferMaxSize < output_depth) { std::unique_ptr<int32[]> heap_acc_buffer(new int32[output_depth]); DoDepthwiseConvHybridGeneral( params, input_scales, input_shape, input_data, filter_shape, filter_data, bias_shape, bias_data, output_shape, output_data, per_channel_scales, input_offsets, thread_start, thread_end, thread_dim, heap_acc_buffer.get(), output_depth); return; } #endif DoDepthwiseConvHybridGeneralStatic( params, input_scales, input_shape, input_data, filter_shape, filter_data, bias_shape, bias_data, output_shape, output_data, per_channel_scales, input_offsets, thread_start, thread_end, thread_dim); } } template <DepthwiseConvOutputRounding kOutputRounding> inline void DepthwiseConvHybridWithRounding( const DepthwiseParams& params, const float* input_scales, const RuntimeShape& input_shape, const int8* input_data, const RuntimeShape& filter_shape, const int8* filter_data, const RuntimeShape& bias_shape, const float* bias_data, const RuntimeShape& output_shape, float* output_data, const float* per_channel_scales, const int32_t* input_offsets, int thread_start, int thread_end, int thread_dim) { gemmlowp::ScopedProfilingLabel label("DepthwiseConvHybridInt8/8bit"); const int depth_multiplier = params.depth_multiplier; const int dilation_width_factor = params.dilation_width_factor; const int dilation_height_factor = params.dilation_height_factor; TFLITE_DCHECK_GE(dilation_width_factor, 1); TFLITE_DCHECK_GE(dilation_height_factor, 1); TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4); TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); const int output_depth = MatchingDim(filter_shape, 3, output_shape, 3); const int input_depth = input_shape.Dims(3); TFLITE_DCHECK_EQ(output_depth, input_depth * depth_multiplier); TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth); #if defined(__aarch64__) && !defined(GOOGLE_L4T) const int stride_width = params.stride_width; const int stride_height = params.stride_height; const int pad_width = params.padding_values.width; const int pad_height = params.padding_values.height; if (optimized_ops::depthwise_conv::Fast3x3FilterKernelSupported< optimized_ops::depthwise_conv::QuantizationType::kNonPerChannelUint8>( input_shape, filter_shape, stride_width, stride_height, dilation_width_factor, dilation_height_factor, pad_width, pad_height, depth_multiplier, output_shape, 0, nullptr)) { gemmlowp::ScopedProfilingLabel specialized_label( "DepthwiseConvHybridInt8/8bit/3x3"); optimized_ops::depthwise_conv::DepthwiseConvHybrid3x3FilterPerChannel< DepthwiseConvOutputRounding::kUpward>( params, input_scales, input_shape, input_data, filter_shape, filter_data, bias_shape, bias_data, output_shape, output_data, per_channel_scales, input_offsets, thread_start, thread_end, thread_dim); return; } #endif gemmlowp::ScopedProfilingLabel specialized_label( "DepthwiseConvHybridInt8/8bit/General"); depthwise_conv::DepthwiseConvHybridGeneral( params, input_scales, input_shape, input_data, filter_shape, filter_data, bias_shape, bias_data, output_shape, output_data, per_channel_scales, input_offsets, thread_start, thread_end, thread_dim); } inline void DepthwiseConvHybridImpl( const DepthwiseParams& params, const float* input_scales, const RuntimeShape& input_shape, const int8* input_data, const RuntimeShape& filter_shape, const int8* filter_data, const RuntimeShape& bias_shape, const float* bias_data, const RuntimeShape& output_shape, float* output_data, const float* per_channel_scales, const int32_t* input_offsets, int thread_start, int thread_end, int thread_dim) { return DepthwiseConvHybridWithRounding< DepthwiseConvOutputRounding::kAwayFromZero>( params, input_scales, input_shape, input_data, filter_shape, filter_data, bias_shape, bias_data, output_shape, output_data, per_channel_scales, input_offsets, thread_start, thread_end, thread_dim); } template <typename T, typename TS> struct DepthwiseConvHybridWorkerTask : cpu_backend_threadpool::Task { DepthwiseConvHybridWorkerTask(const DepthwiseParams& params, const float* input_scales, const RuntimeShape& input_shape, const T* input_data, const RuntimeShape& filter_shape, const T* filter_data, const RuntimeShape& bias_shape, const TS* bias_data, const RuntimeShape& output_shape, float* output_data, const float* per_channel_scales, const int32_t* input_offsets, int thread_start, int thread_end, int thread_dim) : params(params), input_scales(input_scales), input_shape(input_shape), input_data(input_data), filter_shape(filter_shape), filter_data(filter_data), bias_shape(bias_shape), bias_data(bias_data), output_shape(output_shape), output_data(output_data), per_channel_scales(per_channel_scales), input_offsets(input_offsets), thread_start(thread_start), thread_end(thread_end), thread_dim(thread_dim) {} void Run() override { DepthwiseConvHybridImpl(params, input_scales, input_shape, input_data, filter_shape, filter_data, bias_shape, bias_data, output_shape, output_data, per_channel_scales, input_offsets, thread_start, thread_end, thread_dim); } private: const DepthwiseParams& params; const float* input_scales; const RuntimeShape& input_shape; const T* input_data; const RuntimeShape& filter_shape; const T* filter_data; const RuntimeShape& bias_shape; const TS* bias_data; const RuntimeShape& output_shape; float* output_data; const float* per_channel_scales; const int32_t* input_offsets; int thread_start; int thread_end; int thread_dim; }; inline void DepthwiseConvHybridPerChannel( const DepthwiseParams& params, const float* input_scales, const RuntimeShape& input_shape, const int8* input_data, const RuntimeShape& filter_shape, const int8* filter_data, const RuntimeShape& bias_shape, const float* bias_data, const RuntimeShape& output_shape, float* output_data, const float* per_channel_scales, int32_t* input_offsets, CpuBackendContext* cpu_backend_context) { gemmlowp::ScopedProfilingLabel label("DepthwiseConvHybridInt8"); TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4); TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); const int output_batches = output_shape.Dims(0); const int output_rows = output_shape.Dims(1); int thread_count_batch = HowManyConvThreads(output_shape, filter_shape, 0); int thread_count_row = HowManyConvThreads(output_shape, filter_shape, 1); int thread_dim, thread_count, thread_dim_size; if (thread_count_batch > thread_count_row) { thread_dim = 0; thread_dim_size = output_batches; thread_count = thread_count_batch; } else { thread_dim = 1; thread_dim_size = output_rows; thread_count = thread_count_row; } const int max_threads = cpu_backend_context->max_num_threads(); thread_count = std::max(1, std::min(thread_count, max_threads)); if (thread_count == 1) { DepthwiseConvHybridImpl(params, input_scales, input_shape, input_data, filter_shape, filter_data, bias_shape, bias_data, output_shape, output_data, per_channel_scales, input_offsets, 0, output_rows, 1); } else { std::vector<DepthwiseConvHybridWorkerTask<int8, float>> tasks; tasks.reserve(thread_count); int thread_start = 0; for (int i = 0; i < thread_count; ++i) { int thread_end = thread_start + (thread_dim_size - thread_start) / (thread_count - i); tasks.emplace_back(params, input_scales, input_shape, input_data, filter_shape, filter_data, bias_shape, bias_data, output_shape, output_data, per_channel_scales, input_offsets, thread_start, thread_end, thread_dim); thread_start = thread_end; } cpu_backend_threadpool::Execute(tasks.size(), tasks.data(), cpu_backend_context); } } } } #endif
#include <stddef.h> #include <cstdint> #include <initializer_list> #include <map> #include <memory> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/memory/memory.h" #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/core/api/op_resolver.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/kernels/internal/test_util.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/string_type.h" namespace tflite { namespace ops { namespace builtin { TfLiteRegistration* Register_DEPTHWISE_CONVOLUTION_REF(); TfLiteRegistration* Register_DEPTHWISE_CONVOLUTION_GENERIC_OPT(); TfLiteRegistration* Register_DEPTHWISE_CONVOLUTION_NEON_OPT(); } } namespace { using ::testing::ElementsAreArray; class BaseDepthwiseConvolutionOpModel : public SingleOpModel { public: BaseDepthwiseConvolutionOpModel( TfLiteRegistration* registration, const TensorData& input, const TensorData& filter, const TensorData& output, Padding padding_type, int dilation_factor = 1, int stride_width = 1, int stride_height = 1, ActivationFunctionType fused_activation_function = ActivationFunctionType_NONE) { input_ = AddInput(input); filter_ = AddInput(filter); int bias_size = GetShape(filter_)[3]; if (input.type == TensorType_FLOAT32) { bias_ = AddInput({TensorType_FLOAT32, {bias_size}}); } else { if (filter.per_channel_quantization) { std::vector<float> bias_scale( filter.per_channel_quantization_scales.size()); std::vector<int64_t> bias_zero_points( filter.per_channel_quantization_scales.size()); for (size_t i = 0; i < filter.per_channel_quantization_scales.size(); ++i) { bias_scale[i] = input.scale * filter.per_channel_quantization_scales[i]; bias_zero_points[i] = 0; } TensorData bias{TensorType_INT32, {bias_size}, 0, 0, 0, 0, true, bias_scale, bias_zero_points, 0}; bias_ = AddInput(bias); } else { auto bias_scale = GetScale(input_) * GetScale(filter_); TensorData bias{TensorType_INT32, {bias_size}, 0, 0, bias_scale}; bias_ = AddInput(bias); } } output_ = AddOutput(output); int input_depth = GetShape(input_)[3]; int output_depth = GetShape(filter_)[3]; int depth_mul = output_depth / input_depth; SetBuiltinOp( BuiltinOperator_DEPTHWISE_CONV_2D, BuiltinOptions_DepthwiseConv2DOptions, CreateDepthwiseConv2DOptions( builder_, padding_type, stride_width, stride_height, depth_mul, fused_activation_function, dilation_factor, dilation_factor) .Union()); resolver_ = std::make_unique<SingleOpResolver>( BuiltinOperator_DEPTHWISE_CONV_2D, registration); BuildInterpreter({GetShape(input_), GetShape(filter_), GetShape(bias_)}); } protected: int input_; int filter_; int bias_; int output_; }; class PerChannelHybridDepthwiseConvolutionOpModel : public BaseDepthwiseConvolutionOpModel { public: using BaseDepthwiseConvolutionOpModel::BaseDepthwiseConvolutionOpModel; void SetInput(std::initializer_list<float> data) { PopulateTensor(input_, data); } void SetFilter(std::initializer_list<float> data) { PerChannelSymmetricQuantizeAndPopulate(filter_, data); } void SetBias(std::initializer_list<float> data) { PopulateTensor(bias_, data); } void SetInput(const std::vector<float>& data) { PopulateTensor(input_, data); } void SetFilter(const std::vector<float>& data) { PerChannelSymmetricQuantizeAndPopulate(filter_, data); } void SetBias(const std::vector<float>& data) { PopulateTensor(bias_, data); } std::vector<float> GetOutput() { return ExtractVector<float>(output_); } }; const auto kKernelMap = new std::map<string, TfLiteRegistration*>({ {"Reference", ops::builtin::Register_DEPTHWISE_CONVOLUTION_REF()}, {"GenericOptimized", ops::builtin::Register_DEPTHWISE_CONVOLUTION_GENERIC_OPT()}, {"NeonOptimized", ops::builtin::Register_DEPTHWISE_CONVOLUTION_NEON_OPT()}, }); class PerChannelHybridDepthwiseConvolutionOptimizedOpTest : public SingleOpTest { protected: const std::map<string, TfLiteRegistration*>& GetKernelMap() override { return *kKernelMap; } }; class PerChannelHybridDepthwiseConvolutionOpTest : public SingleOpTest { protected: const std::map<string, TfLiteRegistration*>& GetKernelMap() override { return *kKernelMap; } }; void RandomTest(int b, int h, int w, int c, int fs, bool padding, int sw) { const float element_max = 1.0; const int input_size = b * h * w * c; const int filter_size = 1 * fs * fs * c; const int bias_size = c; std::vector<float> input_data(input_size); std::vector<float> filter_data(filter_size); std::vector<float> bias_data(bias_size); for (int i = 0; i < input_size; ++i) { input_data[i] = UniformRandomFloat(-element_max, element_max); } for (int i = 0; i < filter_size; ++i) { filter_data[i] = UniformRandomFloat(-element_max, element_max); } for (int i = 0; i < bias_size; ++i) { bias_data[i] = UniformRandomFloat(-element_max, element_max); } const TensorData input({TensorType_FLOAT32, {b, h, w, c}}); const TensorData output({TensorType_FLOAT32, {}}); std::vector<float> scales; std::vector<int64_t> offsets; for (int i = 0; i < c; i++) { scales.push_back(1.0 / 127.0); offsets.push_back(0.0); } const TensorData filter({TensorType_INT8, {1, fs, fs, c}, 0, 0, 0, 0, true, scales, offsets, 3}); PerChannelHybridDepthwiseConvolutionOpModel hybrid_generic( ops::builtin::Register_DEPTHWISE_CONVOLUTION_REF(), input, filter, output, padding ? Padding_SAME : Padding_VALID, 1, sw, sw); hybrid_generic.SetInput(input_data); hybrid_generic.SetFilter(filter_data); hybrid_generic.SetBias(bias_data); ASSERT_EQ(hybrid_generic.Invoke(), kTfLiteOk); std::vector<float> hybrid_generic_output = hybrid_generic.GetOutput(); PerChannelHybridDepthwiseConvolutionOpModel hybrid_optimized( ops::builtin::Register_DEPTHWISE_CONVOLUTION_NEON_OPT(), input, filter, output, padding ? Padding_SAME : Padding_VALID, 1, sw, sw); hybrid_optimized.SetInput(input_data); hybrid_optimized.SetFilter(filter_data); hybrid_optimized.SetBias(bias_data); ASSERT_EQ(hybrid_optimized.Invoke(), kTfLiteOk); std::vector<float> hybrid_optimized_output = hybrid_optimized.GetOutput(); EXPECT_THAT(hybrid_generic_output, ElementsAreArray(ArrayFloatNear(hybrid_optimized_output))); } void RandomTest(int b, int w, int h, int c, int fs) { RandomTest(b, w, h, c, fs, false, 1); } TEST_F(PerChannelHybridDepthwiseConvolutionOptimizedOpTest, AccuracyTest32) { RandomTest(1, 10, 10, 8, 3); } TEST_F(PerChannelHybridDepthwiseConvolutionOptimizedOpTest, AccuracyTest64) { RandomTest(1, 112, 112, 64, 3); } TEST_F(PerChannelHybridDepthwiseConvolutionOptimizedOpTest, AccuracyTest128) { RandomTest(1, 56, 56, 128, 3); } TEST_F(PerChannelHybridDepthwiseConvolutionOptimizedOpTest, AccuracyTest256) { RandomTest(1, 28, 28, 256, 3); } TEST_F(PerChannelHybridDepthwiseConvolutionOptimizedOpTest, AccuracyTest512) { RandomTest(1, 14, 14, 512, 3); } TEST_F(PerChannelHybridDepthwiseConvolutionOptimizedOpTest, AccuracyTest1024) { RandomTest(1, 3, 3, 1024, 3); } TEST_F(PerChannelHybridDepthwiseConvolutionOptimizedOpTest, AccuracyPaddingTest32) { RandomTest(1, 112, 112, 32, 3, true, 1); } TEST_F(PerChannelHybridDepthwiseConvolutionOptimizedOpTest, AccuracyPaddingTest64) { RandomTest(1, 112, 112, 64, 3, true, 1); } TEST_F(PerChannelHybridDepthwiseConvolutionOptimizedOpTest, AccuracyPaddingTest128) { RandomTest(1, 56, 56, 128, 3, true, 1); } TEST_F(PerChannelHybridDepthwiseConvolutionOptimizedOpTest, AccuracyPaddingTest256) { RandomTest(1, 28, 28, 256, 3, true, 1); } TEST_F(PerChannelHybridDepthwiseConvolutionOptimizedOpTest, AccuracyPaddingTest512) { RandomTest(1, 14, 14, 512, 3, true, 1); } TEST_F(PerChannelHybridDepthwiseConvolutionOptimizedOpTest, AccuracyPaddingTest1024) { RandomTest(1, 3, 3, 1024, 3, true, 1); } TEST_F(PerChannelHybridDepthwiseConvolutionOptimizedOpTest, AccuracyPaddiacc_buffer_sizengTest4096) { RandomTest(1, 3, 3, 4096, 3, true, 1); } TEST_F(PerChannelHybridDepthwiseConvolutionOptimizedOpTest, Accuracy2x2StrideTest32) { RandomTest(1, 112, 112, 32, 3, false, 2); } TEST_F(PerChannelHybridDepthwiseConvolutionOptimizedOpTest, Accuracy2x2StrideTest64) { RandomTest(1, 112, 112, 64, 3, false, 2); } TEST_F(PerChannelHybridDepthwiseConvolutionOptimizedOpTest, Accuracy2x2StrideTest128) { RandomTest(1, 56, 56, 128, 3, false, 2); } TEST_F(PerChannelHybridDepthwiseConvolutionOptimizedOpTest, Accuracy2x2StrideTest256) { RandomTest(1, 28, 28, 256, 3, false, 2); } TEST_F(PerChannelHybridDepthwiseConvolutionOptimizedOpTest, Accuracy2x2StrideTest512) { RandomTest(1, 14, 14, 512, 3, false, 2); } TEST_F(PerChannelHybridDepthwiseConvolutionOptimizedOpTest, Accuracy2x2StrideTest1024) { RandomTest(1, 3, 3, 1024, 3, false, 1); } TEST_P(PerChannelHybridDepthwiseConvolutionOpTest, SimpleTest) { PerChannelHybridDepthwiseConvolutionOpModel m( GetRegistration(), {TensorType_FLOAT32, {1, 2, 3, 2}}, {TensorType_INT8, {1, 2, 2, 4}, 0, 0, 0, 0, true, {1, 2, 3, 4}, {0, 0, 0, 0}, 3}, {TensorType_FLOAT32, {}}, Padding_VALID); m.SetInput({ 3, 2, 1, -1, -2, -3, 4, 3, 2, -2, -3, -4, }); m.SetFilter( { 1, 2, 3, 4, 3, 4, 5, 6, 7, 8, 5, 6, 3, 4, 1, 2, }); m.SetBias({3, -2, 4, 6}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT( m.GetOutput(), ElementsAreArray(ArrayFloatNear( {42.9373, 47.9451, 22.0706, 22.0627, 3, -4.00784, -29.1294, -54.1098}, 0.16))); } TEST_P(PerChannelHybridDepthwiseConvolutionOpTest, Simple3x3FilterTest) { PerChannelHybridDepthwiseConvolutionOpModel m( GetRegistration(), {TensorType_FLOAT32, {1, 3, 3, 8}}, {TensorType_INT8, {1, 3, 3, 8}, 0, 0, 0, 0, true, {1, 2, 3, 4, 4, 3, 2, 1}, {0, 0, 0, 0, 0, 0, 0, 0}, 3}, {TensorType_FLOAT32, {}}, Padding_VALID); m.SetInput({ 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0}); m.SetFilter( { 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8}); m.SetBias({0, 0, 0, 0, 0, 0, 0, 0}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( {9, 18, 0, 0, 36, 54, 0, 0}, 0.16))); } TEST_P(PerChannelHybridDepthwiseConvolutionOpTest, Simple3x3FilterPaddingSameTest) { PerChannelHybridDepthwiseConvolutionOpModel m( GetRegistration(), {TensorType_FLOAT32, {1, 3, 3, 8}}, {TensorType_INT8, {1, 3, 3, 8}, 0, 0, 0, 0, true, {1, 2, 3, 4, 4, 3, 2, 1}, {0, 0, 0, 0, 0, 0, 0, 0}, 3}, {TensorType_FLOAT32, {}}, Padding_SAME); m.SetInput({ 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0}); m.SetFilter( { 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8}); m.SetBias({0, 0, 0, 0, 0, 0, 0, 0}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( { 4, 8, 0, 0, 16, 24, 0, 0, 6, 12, 0, 0, 24, 36, 0, 0, 4, 8, 0, 0, 16, 24, 0, 0, 6, 12, 0, 0, 24, 36, 0, 0, 9, 18, 0, 0, 36, 54, 0, 0, 6, 12, 0, 0, 24, 36, 0, 0, 4, 8, 0, 0, 16, 24, 0, 0, 6, 12, 0, 0, 24, 36, 0, 0, 4, 8, 0, 0, 16, 24, 0, 0, }, 0.16))); } INSTANTIATE_TEST_SUITE_P( PerChannelHybridDepthwiseConvolutionOpTest, PerChannelHybridDepthwiseConvolutionOpTest, ::testing::ValuesIn(SingleOpTest::GetKernelTags(*kKernelMap))); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/internal/optimized/integer_ops/depthwise_conv_hybrid.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/depthwise_conv_hybrid_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6884867c-9dbe-412d-b6e1-d8bbf28fb1e0
cpp
google/quiche
test_ip_packets
quiche/quic/test_tools/test_ip_packets.cc
quiche/quic/test_tools/test_ip_packets_test.cc
#include "quiche/quic/test_tools/test_ip_packets.h" #include <cstdint> #include <limits> #include <string> #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/internet_checksum.h" #include "quiche/quic/platform/api/quic_socket_address.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/quiche_data_writer.h" #include "quiche/common/quiche_endian.h" #include "quiche/common/quiche_ip_address.h" #include "quiche/common/quiche_ip_address_family.h" #if defined(__linux__) #include <netinet/in.h> #include <netinet/ip.h> #include <netinet/ip6.h> #include <netinet/udp.h> #endif namespace quic::test { namespace { constexpr uint16_t kIpv4HeaderSize = 20; constexpr uint16_t kIpv6HeaderSize = 40; constexpr uint16_t kUdpHeaderSize = 8; constexpr uint8_t kUdpProtocol = 0x11; #if defined(__linux__) static_assert(kIpv4HeaderSize == sizeof(iphdr)); static_assert(kIpv6HeaderSize == sizeof(ip6_hdr)); static_assert(kUdpHeaderSize == sizeof(udphdr)); static_assert(kUdpProtocol == IPPROTO_UDP); #endif std::string CreateIpv4Header(int payload_length, quiche::QuicheIpAddress source_address, quiche::QuicheIpAddress destination_address, uint8_t protocol) { QUICHE_CHECK_GT(payload_length, 0); QUICHE_CHECK_LE(payload_length, std::numeric_limits<uint16_t>::max() - kIpv4HeaderSize); QUICHE_CHECK(source_address.address_family() == quiche::IpAddressFamily::IP_V4); QUICHE_CHECK(destination_address.address_family() == quiche::IpAddressFamily::IP_V4); std::string header(kIpv4HeaderSize, '\0'); quiche::QuicheDataWriter header_writer(header.size(), header.data()); header_writer.WriteUInt8(0x45); header_writer.WriteUInt8(0x00); header_writer.WriteUInt16(kIpv4HeaderSize + payload_length); header_writer.WriteUInt16(0x0000); header_writer.WriteUInt16(0x0000); header_writer.WriteUInt8(64); header_writer.WriteUInt8(protocol); header_writer.WriteUInt16(0x0000); header_writer.WriteStringPiece(source_address.ToPackedString()); header_writer.WriteStringPiece(destination_address.ToPackedString()); QUICHE_CHECK_EQ(header_writer.remaining(), 0u); return header; } std::string CreateIpv6Header(int payload_length, quiche::QuicheIpAddress source_address, quiche::QuicheIpAddress destination_address, uint8_t next_header) { QUICHE_CHECK_GT(payload_length, 0); QUICHE_CHECK_LE(payload_length, std::numeric_limits<uint16_t>::max()); QUICHE_CHECK(source_address.address_family() == quiche::IpAddressFamily::IP_V6); QUICHE_CHECK(destination_address.address_family() == quiche::IpAddressFamily::IP_V6); std::string header(kIpv6HeaderSize, '\0'); quiche::QuicheDataWriter header_writer(header.size(), header.data()); header_writer.WriteUInt32(0x60000000); header_writer.WriteUInt16(payload_length); header_writer.WriteUInt8(next_header); header_writer.WriteUInt8(64); header_writer.WriteStringPiece(source_address.ToPackedString()); header_writer.WriteStringPiece(destination_address.ToPackedString()); QUICHE_CHECK_EQ(header_writer.remaining(), 0u); return header; } } std::string CreateIpPacket(const quiche::QuicheIpAddress& source_address, const quiche::QuicheIpAddress& destination_address, absl::string_view payload, IpPacketPayloadType payload_type) { QUICHE_CHECK(source_address.address_family() == destination_address.address_family()); uint8_t payload_protocol; switch (payload_type) { case IpPacketPayloadType::kUdp: payload_protocol = kUdpProtocol; break; default: QUICHE_NOTREACHED(); return ""; } std::string header; switch (source_address.address_family()) { case quiche::IpAddressFamily::IP_V4: header = CreateIpv4Header(payload.size(), source_address, destination_address, payload_protocol); break; case quiche::IpAddressFamily::IP_V6: header = CreateIpv6Header(payload.size(), source_address, destination_address, payload_protocol); break; default: QUICHE_NOTREACHED(); return ""; } return absl::StrCat(header, payload); } std::string CreateUdpPacket(const QuicSocketAddress& source_address, const QuicSocketAddress& destination_address, absl::string_view payload) { QUICHE_CHECK(source_address.host().address_family() == destination_address.host().address_family()); QUICHE_CHECK(!payload.empty()); QUICHE_CHECK_LE(payload.size(), static_cast<uint16_t>(std::numeric_limits<uint16_t>::max() - kUdpHeaderSize)); std::string header(kUdpHeaderSize, '\0'); quiche::QuicheDataWriter header_writer(header.size(), header.data()); header_writer.WriteUInt16(source_address.port()); header_writer.WriteUInt16(destination_address.port()); header_writer.WriteUInt16(kUdpHeaderSize + payload.size()); InternetChecksum checksum; switch (source_address.host().address_family()) { case quiche::IpAddressFamily::IP_V4: { checksum.Update(source_address.host().ToPackedString()); checksum.Update(destination_address.host().ToPackedString()); uint8_t protocol[] = {0x00, kUdpProtocol}; checksum.Update(protocol, sizeof(protocol)); uint16_t udp_length = quiche::QuicheEndian::HostToNet16(kUdpHeaderSize + payload.size()); checksum.Update(reinterpret_cast<uint8_t*>(&udp_length), sizeof(udp_length)); break; } case quiche::IpAddressFamily::IP_V6: { checksum.Update(source_address.host().ToPackedString()); checksum.Update(destination_address.host().ToPackedString()); uint32_t udp_length = quiche::QuicheEndian::HostToNet32(kUdpHeaderSize + payload.size()); checksum.Update(reinterpret_cast<uint8_t*>(&udp_length), sizeof(udp_length)); uint8_t protocol[] = {0x00, 0x00, 0x00, kUdpProtocol}; checksum.Update(protocol, sizeof(protocol)); break; } default: QUICHE_NOTREACHED(); return ""; } checksum.Update(header.data(), header.size()); checksum.Update(payload.data(), payload.size()); uint16_t checksum_val = checksum.Value(); header_writer.WriteBytes(&checksum_val, sizeof(checksum_val)); QUICHE_CHECK_EQ(header_writer.remaining(), 0u); return absl::StrCat(header, payload); } }
#include "quiche/quic/test_tools/test_ip_packets.h" #include <string> #include "absl/strings/string_view.h" #include "quiche/quic/platform/api/quic_socket_address.h" #include "quiche/common/platform/api/quiche_test.h" #include "quiche/common/quiche_ip_address.h" namespace quic::test { namespace { TEST(TestIpPacketsTest, CreateIpv4Packet) { quiche::QuicheIpAddress source_ip; ASSERT_TRUE(source_ip.FromString("192.0.2.45")); ASSERT_TRUE(source_ip.IsIPv4()); QuicSocketAddress source_address{source_ip, 54131}; quiche::QuicheIpAddress destination_ip; ASSERT_TRUE(destination_ip.FromString("192.0.2.67")); ASSERT_TRUE(destination_ip.IsIPv4()); QuicSocketAddress destination_address(destination_ip, 57542); std::string packet = CreateIpPacket(source_ip, destination_ip, CreateUdpPacket(source_address, destination_address, "foo"), IpPacketPayloadType::kUdp); constexpr static char kExpected[] = "\x45" "\x00" "\x00\x1F" "\x00\x00" "\x00\x00" "\x40" "\x11" "\x00\x00" "\xC0\x00\x02\x2D" "\xC0\x00\x02\x43" "\xD3\x73" "\xE0\xC6" "\x00\x0B" "\xF1\xBC" "foo"; EXPECT_EQ(absl::string_view(packet), absl::string_view(kExpected, sizeof(kExpected) - 1)); } TEST(TestIpPacketsTest, CreateIpv6Packet) { quiche::QuicheIpAddress source_ip; ASSERT_TRUE(source_ip.FromString("2001:db8::45")); ASSERT_TRUE(source_ip.IsIPv6()); QuicSocketAddress source_address{source_ip, 51941}; quiche::QuicheIpAddress destination_ip; ASSERT_TRUE(destination_ip.FromString("2001:db8::67")); ASSERT_TRUE(destination_ip.IsIPv6()); QuicSocketAddress destination_address(destination_ip, 55341); std::string packet = CreateIpPacket(source_ip, destination_ip, CreateUdpPacket(source_address, destination_address, "foo"), IpPacketPayloadType::kUdp); constexpr static char kExpected[] = "\x60\x00\x00\x00" "\x00\x0b" "\x11" "\x40" "\x20\x01\x0D\xB8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x45" "\x20\x01\x0D\xB8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x67" "\xCA\xE5" "\xD8\x2D" "\x00\x0B" "\x2B\x37" "foo"; EXPECT_EQ(absl::string_view(packet), absl::string_view(kExpected, sizeof(kExpected) - 1)); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/test_tools/test_ip_packets.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/test_tools/test_ip_packets_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
b9511aae-495e-4df9-8c02-e84d9e35edec
cpp
google/cel-cpp
sets_functions
extensions/sets_functions.cc
extensions/sets_functions_test.cc
#include "extensions/sets_functions.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "base/function_adapter.h" #include "common/value.h" #include "common/value_manager.h" #include "internal/status_macros.h" #include "runtime/function_registry.h" #include "runtime/runtime_options.h" namespace cel::extensions { namespace { absl::StatusOr<Value> SetsContains(ValueManager& value_factory, const ListValue& list, const ListValue& sublist) { bool any_missing = false; CEL_RETURN_IF_ERROR(sublist.ForEach( value_factory, [&list, &value_factory, &any_missing](const Value& sublist_element) -> absl::StatusOr<bool> { CEL_ASSIGN_OR_RETURN(auto contains, list.Contains(value_factory, sublist_element)); any_missing = !contains->Is<BoolValue>() || !contains.GetBool().NativeValue(); return !any_missing; })); return value_factory.CreateBoolValue(!any_missing); } absl::StatusOr<Value> SetsIntersects(ValueManager& value_factory, const ListValue& list, const ListValue& sublist) { bool exists = false; CEL_RETURN_IF_ERROR(list.ForEach( value_factory, [&value_factory, &sublist, &exists](const Value& list_element) -> absl::StatusOr<bool> { CEL_ASSIGN_OR_RETURN(auto contains, sublist.Contains(value_factory, list_element)); exists = contains->Is<BoolValue>() && contains.GetBool().NativeValue(); return !exists; })); return value_factory.CreateBoolValue(exists); } absl::StatusOr<Value> SetsEquivalent(ValueManager& value_factory, const ListValue& list, const ListValue& sublist) { CEL_ASSIGN_OR_RETURN(auto contains_sublist, SetsContains(value_factory, list, sublist)); if (contains_sublist.Is<BoolValue>() && !contains_sublist.GetBool().NativeValue()) { return contains_sublist; } return SetsContains(value_factory, sublist, list); } absl::Status RegisterSetsContainsFunction(FunctionRegistry& registry) { return registry.Register( BinaryFunctionAdapter< absl::StatusOr<Value>, const ListValue&, const ListValue&>::CreateDescriptor("sets.contains", false), BinaryFunctionAdapter<absl::StatusOr<Value>, const ListValue&, const ListValue&>::WrapFunction(SetsContains)); } absl::Status RegisterSetsIntersectsFunction(FunctionRegistry& registry) { return registry.Register( BinaryFunctionAdapter< absl::StatusOr<Value>, const ListValue&, const ListValue&>::CreateDescriptor("sets.intersects", false), BinaryFunctionAdapter<absl::StatusOr<Value>, const ListValue&, const ListValue&>::WrapFunction(SetsIntersects)); } absl::Status RegisterSetsEquivalentFunction(FunctionRegistry& registry) { return registry.Register( BinaryFunctionAdapter< absl::StatusOr<Value>, const ListValue&, const ListValue&>::CreateDescriptor("sets.equivalent", false), BinaryFunctionAdapter<absl::StatusOr<Value>, const ListValue&, const ListValue&>::WrapFunction(SetsEquivalent)); } } absl::Status RegisterSetsFunctions(FunctionRegistry& registry, const RuntimeOptions& options) { CEL_RETURN_IF_ERROR(RegisterSetsContainsFunction(registry)); CEL_RETURN_IF_ERROR(RegisterSetsIntersectsFunction(registry)); CEL_RETURN_IF_ERROR(RegisterSetsEquivalentFunction(registry)); return absl::OkStatus(); } }
#include "extensions/sets_functions.h" #include <memory> #include <string> #include <vector> #include "google/api/expr/v1alpha1/syntax.pb.h" #include "eval/public/activation.h" #include "eval/public/builtin_func_registrar.h" #include "eval/public/cel_expr_builder_factory.h" #include "eval/public/cel_expression.h" #include "eval/public/cel_function_adapter.h" #include "eval/public/cel_options.h" #include "internal/testing.h" #include "parser/parser.h" #include "runtime/runtime_options.h" #include "google/protobuf/arena.h" namespace cel::extensions { namespace { using ::google::api::expr::v1alpha1::Expr; using ::google::api::expr::v1alpha1::ParsedExpr; using ::google::api::expr::v1alpha1::SourceInfo; using ::google::api::expr::parser::ParseWithMacros; using ::google::api::expr::runtime::Activation; using ::google::api::expr::runtime::CelExpressionBuilder; using ::google::api::expr::runtime::CelValue; using ::google::api::expr::runtime::CreateCelExpressionBuilder; using ::google::api::expr::runtime::FunctionAdapter; using ::google::api::expr::runtime::InterpreterOptions; using ::absl_testing::IsOk; using ::google::protobuf::Arena; struct TestInfo { std::string expr; }; class CelSetsFunctionsTest : public testing::TestWithParam<TestInfo> {}; TEST_P(CelSetsFunctionsTest, EndToEnd) { const TestInfo& test_info = GetParam(); std::vector<Macro> all_macros = Macro::AllMacros(); auto result = ParseWithMacros(test_info.expr, all_macros, "<input>"); EXPECT_THAT(result, IsOk()); ParsedExpr parsed_expr = *result; Expr expr = parsed_expr.expr(); SourceInfo source_info = parsed_expr.source_info(); InterpreterOptions options; options.enable_heterogeneous_equality = true; options.enable_empty_wrapper_null_unboxing = true; options.enable_qualified_identifier_rewrites = true; std::unique_ptr<CelExpressionBuilder> builder = CreateCelExpressionBuilder(options); ASSERT_OK(RegisterSetsFunctions(builder->GetRegistry()->InternalGetRegistry(), cel::RuntimeOptions{})); ASSERT_OK(google::api::expr::runtime::RegisterBuiltinFunctions( builder->GetRegistry(), options)); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder->CreateExpression(&expr, &source_info)); Arena arena; Activation activation; ASSERT_OK_AND_ASSIGN(CelValue out, cel_expr->Evaluate(activation, &arena)); ASSERT_TRUE(out.IsBool()) << test_info.expr << " -> " << out.DebugString(); EXPECT_TRUE(out.BoolOrDie()) << test_info.expr << " -> " << out.DebugString(); } INSTANTIATE_TEST_SUITE_P( CelSetsFunctionsTest, CelSetsFunctionsTest, testing::ValuesIn<TestInfo>({ {"sets.contains([], [])"}, {"sets.contains([1], [])"}, {"sets.contains([1], [1])"}, {"sets.contains([1], [1, 1])"}, {"sets.contains([1, 1], [1])"}, {"sets.contains([2, 1], [1])"}, {"sets.contains([1], [1.0, 1u])"}, {"sets.contains([1, 2], [2u, 2.0])"}, {"sets.contains([1, 2u], [2, 2.0])"}, {"!sets.contains([1], [2])"}, {"!sets.contains([1], [1, 2])"}, {"!sets.contains([1], [\"1\", 1])"}, {"!sets.contains([1], [1.1, 2])"}, {"sets.intersects([1], [1])"}, {"sets.intersects([1], [1, 1])"}, {"sets.intersects([1, 1], [1])"}, {"sets.intersects([2, 1], [1])"}, {"sets.intersects([1], [1, 2])"}, {"sets.intersects([1], [1.0, 2])"}, {"sets.intersects([1, 2], [2u, 2, 2.0])"}, {"sets.intersects([1, 2], [1u, 2, 2.3])"}, {"!sets.intersects([], [])"}, {"!sets.intersects([1], [])"}, {"!sets.intersects([1], [2])"}, {"!sets.intersects([1], [\"1\", 2])"}, {"!sets.intersects([1], [1.1, 2u])"}, {"sets.equivalent([], [])"}, {"sets.equivalent([1], [1])"}, {"sets.equivalent([1], [1, 1])"}, {"sets.equivalent([1, 1, 2], [2, 2, 1])"}, {"sets.equivalent([1, 1], [1])"}, {"sets.equivalent([1], [1u, 1.0])"}, {"sets.equivalent([1], [1u, 1.0])"}, {"sets.equivalent([1, 2, 3], [3u, 2.0, 1])"}, {"!sets.equivalent([2, 1], [1])"}, {"!sets.equivalent([1], [1, 2])"}, {"!sets.equivalent([1, 2], [2u, 2, 2.0])"}, {"!sets.equivalent([1, 2], [1u, 2, 2.3])"}, {"sets.equivalent([false, true], [true, false])"}, {"!sets.equivalent([true], [false])"}, {"sets.equivalent(['foo', 'bar'], ['bar', 'foo'])"}, {"!sets.equivalent(['foo'], ['bar'])"}, {"sets.equivalent([b'foo', b'bar'], [b'bar', b'foo'])"}, {"!sets.equivalent([b'foo'], [b'bar'])"}, {"sets.equivalent([null], [null])"}, {"!sets.equivalent([null], [])"}, {"sets.equivalent([type(1), type(1u)], [type(1u), type(1)])"}, {"!sets.equivalent([type(1)], [type(1u)])"}, {"sets.equivalent([duration('0s'), duration('1s')], [duration('1s'), " "duration('0s')])"}, {"!sets.equivalent([duration('0s')], [duration('1s')])"}, {"sets.equivalent([timestamp('1970-01-01T00:00:00Z'), " "timestamp('1970-01-01T00:00:01Z')], " "[timestamp('1970-01-01T00:00:01Z'), " "timestamp('1970-01-01T00:00:00Z')])"}, {"!sets.equivalent([timestamp('1970-01-01T00:00:00Z')], " "[timestamp('1970-01-01T00:00:01Z')])"}, {"sets.equivalent([[false, true]], [[false, true]])"}, {"!sets.equivalent([[false, true]], [[true, false]])"}, {"sets.equivalent([{'foo': true, 'bar': false}], [{'bar': false, " "'foo': true}])"}, })); } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/extensions/sets_functions.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/extensions/sets_functions_test.cc
4552db5798fb0853b131b783d8875794334fae7f
38258bcd-dd0a-45b3-b9e0-17ede1681162
cpp
google/tensorstore
registry
tensorstore/internal/metrics/registry.cc
tensorstore/internal/metrics/registry_test.cc
#include "tensorstore/internal/metrics/registry.h" #include <cassert> #include <memory> #include <optional> #include <string_view> #include <utility> #include <vector> #include "absl/base/no_destructor.h" #include "absl/container/flat_hash_map.h" #include "absl/log/absl_check.h" #include "absl/strings/match.h" #include "absl/synchronization/mutex.h" #include "tensorstore/internal/metrics/collect.h" namespace tensorstore { namespace internal_metrics { void MetricRegistry::AddInternal(std::string_view metric_name, MetricRegistry::Metric m, std::shared_ptr<void> hook) { ABSL_CHECK(m) << metric_name; absl::MutexLock l(&mu_); ABSL_CHECK( entries_.try_emplace(metric_name, Entry{std::move(m), std::move(hook)}) .second) << metric_name; } std::vector<CollectedMetric> MetricRegistry::CollectWithPrefix( std::string_view prefix) { std::vector<CollectedMetric> all; all.reserve(entries_.size()); absl::MutexLock l(&mu_); for (auto& kv : entries_) { if (prefix.empty() || absl::StartsWith(kv.first, prefix)) { auto opt_metric = kv.second.poly(CollectMetricTag{}); if (opt_metric.has_value()) { all.emplace_back(*std::move(opt_metric)); assert(all.back().metric_name == kv.first); } } } for (auto& hook : collect_hooks_) { hook(prefix, all); } return all; } std::optional<CollectedMetric> MetricRegistry::Collect(std::string_view name) { absl::MutexLock l(&mu_); auto it = entries_.find(name); if (it == entries_.end()) return std::nullopt; auto opt_metric = it->second.poly(CollectMetricTag{}); assert(!opt_metric.has_value() || opt_metric->metric_name == it->first); return opt_metric; } MetricRegistry& GetMetricRegistry() { static absl::NoDestructor<MetricRegistry> registry; return *registry; } void MetricRegistry::Reset() { absl::MutexLock l(&mu_); for (auto& [k, v] : entries_) { v.poly(ResetMetricTag{}); } } } }
#include "tensorstore/internal/metrics/registry.h" #include <string_view> #include <vector> #include <gtest/gtest.h> #include "tensorstore/internal/metrics/collect.h" namespace { using ::tensorstore::internal_metrics::CollectedMetric; using ::tensorstore::internal_metrics::MetricRegistry; TEST(RegistryTest, Arbitrary) { MetricRegistry registry; registry.AddGeneric("/my/metric", [] { CollectedMetric metric; metric.metric_name = "/my/metric"; return metric; }); registry.AddGeneric("/my/metric2", [] { CollectedMetric metric; metric.metric_name = "/my/metric2"; return metric; }); EXPECT_FALSE(registry.Collect("/my/foo").has_value()); auto collected = registry.Collect("/my/metric"); ASSERT_TRUE(collected.has_value()); EXPECT_EQ("/my/metric", collected->metric_name); auto all = registry.CollectWithPrefix("/my"); EXPECT_EQ(2, all.size()); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/metrics/registry.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/metrics/registry_test.cc
4f887a6430414cd6088e1743555015b10f116d50
9a766995-4e5a-4ca3-8824-00f4bbbcc0c9
cpp
tensorflow/tensorflow
gather
tensorflow/compiler/mlir/lite/stablehlo/transforms/legalize_hlo_conversions/gather.cc
tensorflow/lite/delegates/gpu/cl/kernels/gather_test.cc
#include "tensorflow/compiler/mlir/lite/stablehlo/transforms/legalize_hlo_conversions/gather.h" #include <cstdint> #include <optional> #include <vector> #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/IR/BuiltinTypeInterfaces.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/ImplicitLocOpBuilder.h" #include "mlir/IR/PatternMatch.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "mlir/Transforms/DialectConversion.h" #include "tensorflow/compiler/mlir/lite/ir/tfl_ops.h" #include "tensorflow/compiler/mlir/lite/stablehlo/transforms/legalize_hlo_conversions/util.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" namespace mlir::odml { std::optional<bool> IsGatherLegal(mhlo::GatherOp op) { return std::nullopt; } class LegalizeGatherToSlice : public OpConversionPattern<mhlo::GatherOp> { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite( mhlo::GatherOp op, OpAdaptor adaptor, ConversionPatternRewriter& rewriter) const final; }; LogicalResult LegalizeGatherToSlice::matchAndRewrite( mhlo::GatherOp gather_op, OpAdaptor adaptor, ConversionPatternRewriter& rewriter) const { Value operand = gather_op.getOperand(); Value start_indices = gather_op.getStartIndices(); static const int rank_two = 2; static const int max_batch_size = 50; ShapedType operand_type = mlir::cast<ShapedType>(operand.getType()); ShapedType start_indices_type = mlir::cast<ShapedType>(start_indices.getType()); ShapedType result_type = mlir::cast<ShapedType>(gather_op.getResult().getType()); if (!operand_type.hasStaticShape() || !start_indices_type.hasStaticShape() || !result_type.hasStaticShape()) { return rewriter.notifyMatchFailure( gather_op, "Dynamic shaped inputs are not supported when legalizing mhlo.gather " "op to tf.slice."); } auto start_index_map = gather_op.getDimensionNumbers().getStartIndexMap(); auto collapsed_slice_dims = gather_op.getDimensionNumbers().getCollapsedSliceDims(); auto offset_dims = gather_op.getDimensionNumbers().getOffsetDims(); auto slice_sizes = gather_op.getSliceSizes(); llvm::SmallVector<int64_t, 2> slice_sizes_vector; slice_sizes_vector.reserve(slice_sizes.size()); for (int64_t s : slice_sizes.getValues<int64_t>()) { slice_sizes_vector.push_back(s); } llvm::SmallVector<int64_t, 1> batch_dims; int offset_index = 0; for (int64_t i = 0; i < result_type.getRank(); ++i) { if (offset_index >= offset_dims.size() || offset_dims[offset_index] != i) { batch_dims.push_back(i); } else { ++offset_index; } } if (batch_dims.size() != 1 || batch_dims[0] != 0) { return failure(); } int64_t batch_dim = batch_dims[0]; if (operand_type.getDimSize(batch_dim) > max_batch_size || operand_type.getRank() != rank_two || start_indices_type.getRank() != rank_two || operand_type.getDimSize(batch_dim) != start_indices_type.getDimSize(batch_dim) || slice_sizes_vector[batch_dim] != 1) { return failure(); } for (int64_t i = 0; i < start_index_map.size(); i++) { if (start_index_map[i] != i) { return failure(); } } if (collapsed_slice_dims.size() != start_index_map.size() - 1 || collapsed_slice_dims.size() != 1 || collapsed_slice_dims[0] != 0) { return failure(); } int64_t index_vector_dim = gather_op.getDimensionNumbers().getIndexVectorDim(); if (failed(NormalizeIndexVector(gather_op, start_indices, start_indices_type, index_vector_dim, rewriter))) { return failure(); } ImplicitLocOpBuilder builder(gather_op.getLoc(), rewriter); auto max_start_indices = BuildIntArrayConstOp<arith::ConstantOp>( builder, rewriter, llvm::SmallVector<int64_t>( {operand_type.getDimSize(0) - slice_sizes_vector[0], operand_type.getDimSize(1) - slice_sizes_vector[1]}), start_indices_type.getElementType()); auto min_start_indices = BuildIntArrayConstOp<arith::ConstantOp>( builder, rewriter, llvm::SmallVector<int64_t>({0, 0}), start_indices_type.getElementType()); auto start_indices_max_op = rewriter.create<TFL::MaximumOp>( gather_op.getLoc(), start_indices, min_start_indices); auto clamped_start_indices_op = rewriter.create<TFL::MinimumOp>( gather_op.getLoc(), start_indices_max_op, max_start_indices); int64_t batch_size = start_indices_type.getDimSize(batch_dim); auto slice_size = BuildIntArrayConstOp<arith::ConstantOp>( builder, rewriter, slice_sizes_vector, rewriter.getI32Type()); if (batch_size == 1) { auto squeeze_op = rewriter.create<TFL::SqueezeOp>( gather_op.getLoc(), RankedTensorType::get({rank_two}, start_indices_type.getElementType()), clamped_start_indices_op, rewriter.getI64ArrayAttr(llvm::ArrayRef<int64_t>({batch_dim}))); auto slice_op = rewriter.create<TFL::SliceOp>(gather_op.getLoc(), gather_op.getType(), operand, squeeze_op, slice_size); rewriter.replaceOp(gather_op, slice_op); return mlir::success(); } llvm::SmallVector<Value, 1> slices; slices.reserve(batch_size); for (int64_t i = 0; i < batch_size; ++i) { auto zero = BuildIntArrayConstOp<arith::ConstantOp>( builder, rewriter, llvm::SmallVector<int64_t>({i, 0}), rewriter.getI32Type()); auto two = BuildIntArrayConstOp<arith::ConstantOp>( builder, rewriter, llvm::SmallVector<int64_t>({1, 2}), rewriter.getI32Type()); auto begin = rewriter.create<TFL::SliceOp>( gather_op.getLoc(), RankedTensorType::get({1, 2}, start_indices_type.getElementType()), clamped_start_indices_op, zero, two); auto squeeze_op = rewriter.create<TFL::SqueezeOp>( gather_op.getLoc(), RankedTensorType::get({rank_two}, start_indices_type.getElementType()), begin, rewriter.getI64ArrayAttr(llvm::ArrayRef<int64_t>({batch_dim}))); auto slice_op = rewriter.create<TFL::SliceOp>( gather_op.getLoc(), RankedTensorType::get({1, slice_sizes_vector[1]}, operand_type.getElementType()), operand, squeeze_op, slice_size); slices.push_back(slice_op); } auto concat_op = rewriter.create<TFL::ConcatenationOp>( gather_op.getLoc(), result_type, slices, 0, rewriter.getStringAttr("NONE")); rewriter.replaceOp(gather_op, concat_op); return mlir::success(); } struct TransposeParams { std::vector<int64_t> permutation; std::vector<int64_t> canonicalized_output_shape; std::vector<int64_t> canonicalized_offset_dims; }; TransposeParams CanonicalizeOffset(ShapedType result_type, ArrayRef<int64_t> original_offset_dims) { TransposeParams transpose_params; int output_rank = result_type.getRank(); for (int start = output_rank - original_offset_dims.size(); start < output_rank; ++start) { transpose_params.canonicalized_offset_dims.push_back(start); } std::vector<int64_t> batch_dims; int offset_index = 0; for (int64_t i = 0; i < output_rank; ++i) { if (offset_index >= original_offset_dims.size() || original_offset_dims[offset_index] != i) { batch_dims.push_back(i); } else { ++offset_index; } } int batch_idx = 0; int offset_idx = 0; int batch_dim_size = batch_dims.size(); for (int i = 0; i < output_rank; ++i) { if (batch_idx >= batch_dims.size()) { transpose_params.permutation.push_back(batch_dim_size + offset_idx); ++offset_idx; } else if (offset_idx < original_offset_dims.size() && original_offset_dims[offset_idx] < batch_dims[batch_idx]) { transpose_params.permutation.push_back(batch_dim_size + offset_idx); ++offset_idx; } else { transpose_params.permutation.push_back(batch_idx++); } } for (auto dim : batch_dims) { transpose_params.canonicalized_output_shape.push_back( result_type.getDimSize(dim)); } for (auto dim : original_offset_dims) { transpose_params.canonicalized_output_shape.push_back( result_type.getDimSize(dim)); } return transpose_params; } class LegalizeGatherToGatherND : public OpConversionPattern<mhlo::GatherOp> { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite( mhlo::GatherOp op, OpAdaptor adaptor, ConversionPatternRewriter& rewriter) const final; }; LogicalResult LegalizeGatherToGatherND::matchAndRewrite( mhlo::GatherOp gather_op, OpAdaptor adaptor, ConversionPatternRewriter& rewriter) const { Value operand = gather_op.getOperand(); Value start_indices = gather_op.getStartIndices(); ShapedType operand_type = mlir::cast<ShapedType>(operand.getType()); ShapedType start_indices_type = mlir::cast<ShapedType>(start_indices.getType()); ShapedType result_type = mlir::cast<ShapedType>(gather_op.getResult().getType()); if (!operand_type.hasStaticShape()) { gather_op.emitOpError() << "Dynamic shaped operand is not supported."; return failure(); } int64_t index_vector_dim = gather_op.getDimensionNumbers().getIndexVectorDim(); if (failed(NormalizeIndexVector(gather_op, start_indices, start_indices_type, index_vector_dim, rewriter))) { return failure(); } auto start_index_map = gather_op.getDimensionNumbers().getStartIndexMap(); auto collapsed_slice_dims = gather_op.getDimensionNumbers().getCollapsedSliceDims(); if (start_index_map.size() != collapsed_slice_dims.size()) { return rewriter.notifyMatchFailure( gather_op, "different size for start index map and collapsed slice dims"); } for (auto c : collapsed_slice_dims) { if (llvm::count(start_index_map, c) == 0) { return rewriter.notifyMatchFailure( gather_op, "collapsed slice dim isn't present in start index map"); } } auto slice_sizes = gather_op.getSliceSizes(); int64_t index = 0; for (int64_t s : slice_sizes.getValues<int64_t>()) { if (llvm::count(start_index_map, index)) { if (s != 1) { return rewriter.notifyMatchFailure(gather_op, "unsupported slice sizes"); } } else { if (s != operand_type.getShape()[index]) { return rewriter.notifyMatchFailure(gather_op, "unsupported slice sizes"); } } ++index; } auto offset_dims = gather_op.getDimensionNumbers().getOffsetDims(); SmallVector<int64_t, 4> offset_dims_vector(offset_dims.begin(), offset_dims.end()); const TransposeParams& transpose_params = CanonicalizeOffset(result_type, offset_dims_vector); int64_t offset = start_indices_type.getRank() - 1; for (int64_t o : transpose_params.canonicalized_offset_dims) { if (o != offset) { return rewriter.notifyMatchFailure(gather_op, "unsupported offset dims"); } ++offset; } llvm::SmallVector<int64_t, 4> transpose_dimensions; llvm::SmallVector<int64_t, 4> transpose_shape; for (auto s : start_index_map) { transpose_dimensions.push_back(s); transpose_shape.push_back(operand_type.getShape()[s]); } for (int64_t i = 0, e = operand_type.getRank(); i < e; ++i) { if (llvm::count(start_index_map, i) == 0) { transpose_dimensions.push_back(i); transpose_shape.push_back(operand_type.getShape()[i]); } } operand_type = RankedTensorType::get(transpose_shape, operand_type.getElementType()); operand = rewriter.create<mhlo::TransposeOp>( gather_op.getLoc(), operand_type, operand, rewriter.getI64TensorAttr(transpose_dimensions)); bool need_transpose_after = false; for (int i = 0; i < transpose_params.permutation.size(); ++i) { if (i != transpose_params.permutation[i]) { need_transpose_after = true; break; } } auto tf_gather_nd_result_type = RankedTensorType::get(transpose_params.canonicalized_output_shape, result_type.getElementType()); if (start_indices_type.getElementType().isUnsignedInteger(32)) { start_indices = rewriter.create<TFL::CastOp>( gather_op->getLoc(), RankedTensorType::get(start_indices_type.getShape(), rewriter.getI64Type()), start_indices); } auto tf_gather_nd_op = rewriter.create<TFL::GatherNdOp>( gather_op->getLoc(), tf_gather_nd_result_type, operand, start_indices); if (!need_transpose_after) { rewriter.replaceOp(gather_op, tf_gather_nd_op->getOpResults()); return success(); } rewriter.replaceOpWithNewOp<mhlo::TransposeOp>( gather_op, result_type, tf_gather_nd_op, rewriter.getI64TensorAttr(transpose_params.permutation)); return success(); } void PopulateGatherPatterns(MLIRContext* ctx, RewritePatternSet& patterns, ConversionTarget& target) { patterns.add<LegalizeGatherToSlice, LegalizeGatherToGatherND>(ctx); target.addDynamicallyLegalOp<mhlo::GatherOp>(IsGatherLegal); } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/cl/kernels/cl_test.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tasks/gather_test_util.h" namespace tflite { namespace gpu { namespace cl { TEST_F(OpenCLOperationTest, GatherBatch) { auto status = GatherBatchTest(&exec_env_, false); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, GatherBatchConst) { auto status = GatherBatchTest(&exec_env_, true); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, GatherHeight) { auto status = GatherHeightTest(&exec_env_, false); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, GatherHeightConst) { auto status = GatherHeightTest(&exec_env_, true); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, GatherWidth) { auto status = GatherWidthTest(&exec_env_, false); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, GatherWidthConst) { auto status = GatherWidthTest(&exec_env_, true); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, GatherChannels) { auto status = GatherChannelsTest(&exec_env_, false); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, GatherChannelsConst) { auto status = GatherChannelsTest(&exec_env_, true); ASSERT_TRUE(status.ok()) << status.message(); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/lite/stablehlo/transforms/legalize_hlo_conversions/gather.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/cl/kernels/gather_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
bd75d663-745a-42b4-abd8-5e8e7c6c4e3f
cpp
tensorflow/tensorflow
summary_tensor_op
tensorflow/core/kernels/summary_tensor_op.cc
tensorflow/core/kernels/summary_tensor_op_test.cc
#include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/framework/summary.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { template <typename T> class SummaryTensorOpV2 : public OpKernel { public: explicit SummaryTensorOpV2(OpKernelConstruction* context) : OpKernel(context) {} void Compute(OpKernelContext* c) override { const Tensor& tag = c->input(0); OP_REQUIRES(c, TensorShapeUtils::IsScalar(tag.shape()), errors::InvalidArgument("tag must be scalar")); const Tensor& tensor = c->input(1); const Tensor& serialized_summary_metadata_tensor = c->input(2); OP_REQUIRES( c, TensorShapeUtils::IsScalar(serialized_summary_metadata_tensor.shape()), errors::InvalidArgument("serialized_summary_metadata must be scalar")); Summary s; Summary::Value* v = s.add_value(); v->set_tag(string(tag.scalar<tstring>()())); if (tensor.dtype() == DT_STRING) { tensor.AsProtoField(v->mutable_tensor()); } else { tensor.AsProtoTensorContent(v->mutable_tensor()); } ParseFromTString(serialized_summary_metadata_tensor.scalar<tstring>()(), v->mutable_metadata()); Tensor* summary_tensor = nullptr; OP_REQUIRES_OK(c, c->allocate_output(0, TensorShape({}), &summary_tensor)); CHECK(SerializeToTString(s, &summary_tensor->scalar<tstring>()())); } }; #define REGISTER(T) \ REGISTER_KERNEL_BUILDER( \ Name("TensorSummaryV2").Device(DEVICE_CPU).TypeConstraint<T>("T"), \ SummaryTensorOpV2<T>); TF_CALL_ALL_TYPES(REGISTER) #undef REGISTER template <typename T> class SummaryTensorOp : public OpKernel { public: explicit SummaryTensorOp(OpKernelConstruction* context) : OpKernel(context) {} void Compute(OpKernelContext* c) override { const Tensor& tensor = c->input(0); Summary s; Summary::Value* v = s.add_value(); v->set_node_name(c->op_kernel().name()); if (tensor.dtype() == DT_STRING) { tensor.AsProtoField(v->mutable_tensor()); } else { tensor.AsProtoTensorContent(v->mutable_tensor()); } Tensor* summary_tensor = nullptr; OP_REQUIRES_OK(c, c->allocate_output(0, TensorShape({}), &summary_tensor)); CHECK(SerializeToTString(s, &summary_tensor->scalar<tstring>()())); } }; #define REGISTER(T) \ REGISTER_KERNEL_BUILDER( \ Name("TensorSummary").Device(DEVICE_CPU).TypeConstraint<T>("T"), \ SummaryTensorOp<T>); TF_CALL_ALL_TYPES(REGISTER) #undef REGISTER }
#include <functional> #include <memory> #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/summary.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/histogram/histogram.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { static void EXPECT_SummaryMatches(const Summary& actual, const string& expected_str) { Summary expected; CHECK(protobuf::TextFormat::ParseFromString(expected_str, &expected)); EXPECT_EQ(expected.DebugString(), actual.DebugString()); } class SummaryTensorOpV2Test : public OpsTestBase { protected: void MakeOp() { TF_ASSERT_OK(NodeDefBuilder("myop", "TensorSummaryV2") .Input(FakeInput(DT_STRING)) .Input(FakeInput(DT_STRING)) .Input(FakeInput(DT_STRING)) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); } }; TEST_F(SummaryTensorOpV2Test, BasicPluginData) { MakeOp(); AddInputFromArray<tstring>(TensorShape({}), {"tag_foo"}); AddInputFromArray<tstring>(TensorShape({}), {"some string tensor content"}); SummaryMetadata summary_metadata; SummaryMetadata::PluginData* plugin_data = summary_metadata.mutable_plugin_data(); plugin_data->set_plugin_name("foo"); plugin_data->set_content("content_for_plugin_foo"); AddInputFromArray<tstring>(TensorShape({}), {summary_metadata.SerializeAsString()}); TF_ASSERT_OK(RunOpKernel()); Tensor* out_tensor = GetOutput(0); ASSERT_EQ(0, out_tensor->dims()); Summary summary; ParseProtoUnlimited(&summary, out_tensor->scalar<tstring>()()); ASSERT_EQ(1, summary.value_size()); Tensor string_content_tensor; CHECK(string_content_tensor.FromProto(summary.value(0).tensor())); ASSERT_EQ("some string tensor content", string_content_tensor.scalar<tstring>()()); ASSERT_EQ("tag_foo", summary.value(0).tag()); ASSERT_EQ("foo", summary.value(0).metadata().plugin_data().plugin_name()); ASSERT_EQ("content_for_plugin_foo", summary.value(0).metadata().plugin_data().content()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/summary_tensor_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/summary_tensor_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f2aec7d9-511e-42b4-a9ad-4688d7f8d448
cpp
tensorflow/tensorflow
while_loop_analysis
third_party/xla/xla/service/while_loop_analysis.cc
third_party/xla/xla/service/while_loop_analysis_test.cc
#include "xla/service/while_loop_analysis.h" #include <algorithm> #include <cmath> #include <cstdint> #include "absl/base/casts.h" #include "absl/container/flat_hash_map.h" #include "xla/comparison_util.h" #include "xla/hlo/evaluator/hlo_evaluator.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_reachability.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/pattern_matcher.h" #include "xla/shape_util.h" namespace xla { using std::nullopt; using std::optional; namespace m = match; static const HloInstruction* NonConstantOperand(const HloInstruction* instr) { const HloInstruction* result = nullptr; for (const HloInstruction* operand : instr->operands()) { if (!operand->IsConstant()) { if (result != nullptr) { CHECK_EQ(result, operand); } result = operand; } } CHECK_NE(result, nullptr); return result; } static optional<int64_t> GetGTEOperandIndex(const HloInstruction* instr, const HloInstruction* gte_operand) { VLOG(2) << "GetGTEOperandIndex(" << instr->ToString() << ", GTE Operand: " << gte_operand->ToString() << ")"; optional<int64_t> tuple_idx; for (const HloInstruction* operand : instr->operands()) { if (Match(operand, m::Constant())) { continue; } auto possibly_gte_operand = operand; if (operand->opcode() == HloOpcode::kCopy) { possibly_gte_operand = operand->operand(0); } if (possibly_gte_operand->opcode() != HloOpcode::kGetTupleElement) { return nullopt; } if (!Match(possibly_gte_operand, m::GetTupleElement(m::Op().Is(gte_operand))) && !Match(possibly_gte_operand, m::GetTupleElement(m::CustomCall(m::Op().Is(gte_operand))))) { return nullopt; } int64_t operand_tuple_idx = possibly_gte_operand->tuple_index(); if (!tuple_idx.has_value()) { tuple_idx = operand_tuple_idx; } else { if (operand_tuple_idx != tuple_idx) { return nullopt; } } } return tuple_idx; } std::vector<const HloInstruction*> GetAuxiliaryLoopInductionVars( const HloInstruction* while_op) { std::vector<const HloInstruction*> aux_ind_gte; CHECK_EQ(while_op->opcode(), HloOpcode::kWhile); auto* while_body = while_op->while_body(); auto* while_body_param = while_body->parameter_instruction(0); VLOG(2) << "Aux Induction Variables for loop:" << while_op->ToShortString(); VLOG(2) << "the parameter instr:" << while_body_param->ToShortString(); VLOG(2) << "the parameter user count:" << while_body_param->users().size(); if (while_body_param == nullptr) return aux_ind_gte; std::map<int64_t, const HloInstruction*> extractions; for (const HloInstruction* indx_instr : while_body_param->users()) { if (indx_instr->opcode() != HloOpcode::kGetTupleElement) { continue; } auto it = extractions.find(indx_instr->tuple_index()); if (it != extractions.end()) { it->second = nullptr; VLOG(2) << "two extractions at same index:" << indx_instr->ToString(); } else { extractions.insert(std::make_pair(indx_instr->tuple_index(), indx_instr)); VLOG(2) << "inserting extraction :" << indx_instr->ToString(); } } VLOG(2) << "total extractions size:" << extractions.size() << std::endl; if (extractions.empty()) { return aux_ind_gte; } auto* while_body_root = while_body->root_instruction(); if (while_body_root->opcode() != HloOpcode::kTuple) { VLOG(2) << "While body root is not a tuple:" << while_body_root->ToString(); return aux_ind_gte; } int64_t index = -1; std::map<int64_t, const HloInstruction*> insertions; for (const HloInstruction* operand : while_body_root->operands()) { index++; if (!operand->IsConstant()) { auto it = insertions.find(index); if (it != insertions.end()) { it->second = nullptr; VLOG(2) << "two insertions at same index:" << operand->ToString(); } else { insertions.insert(std::make_pair(index, operand)); VLOG(2) << "inserting insertions:" << operand->ToString(); } } } if (insertions.empty()) { return aux_ind_gte; } std::map<int64_t, std::pair<const HloInstruction*, const HloInstruction*>> candidate_pairs; for (; index >= 0; --index) { const HloInstruction *ext, *inst; ext = (extractions.find(index) != extractions.end()) ? extractions.find(index)->second : nullptr; inst = (insertions.find(index) != insertions.end()) ? insertions.find(index)->second : nullptr; if (ext != nullptr && inst != nullptr) { if (ext != inst) { candidate_pairs.insert( std::make_pair(index, std::make_pair(ext, inst))); } } } VLOG(2) << "total candidate pairs:" << candidate_pairs.size() << std::endl; const auto add_dependencies = [](const HloInstruction* hlo, std::vector<HloInstruction*>* inputs) { HloInstruction* non_const_operand = nullptr; int num_non_constants = 0; for (HloInstruction* operand : hlo->operands()) { if (!operand->IsConstant()) { num_non_constants++; non_const_operand = operand; } } if (num_non_constants == 1 && (hlo->opcode() == HloOpcode::kGetTupleElement || hlo->opcode() == HloOpcode::kAdd || hlo->opcode() == HloOpcode::kMultiply || hlo->opcode() == HloOpcode::kDivide || hlo->opcode() == HloOpcode::kSubtract)) { inputs->push_back(non_const_operand); } }; std::unique_ptr<HloReachabilityMap> hrm = HloReachabilityMap::BuildWithRestrictions( while_body, absl::FunctionRef<void(const HloInstruction* hlo, std::vector<HloInstruction*>* inputs)>( add_dependencies)); for (auto candidates : candidate_pairs) { VLOG(2) << "are reachable?:" << (candidates.second.first)->ToString() << "*************" << (candidates.second.second)->ToString() << std::endl; if (hrm->IsReachable(candidates.second.first, candidates.second.second)) { aux_ind_gte.push_back(candidates.second.first); VLOG(2) << "YES"; } else { VLOG(2) << "NO"; } } VLOG(2) << "num auxiliary candidates :" << aux_ind_gte.size(); return aux_ind_gte; } optional<int64_t> GetLoopInductionVarTupleIdx(const HloInstruction* while_op) { CHECK_EQ(while_op->opcode(), HloOpcode::kWhile); VLOG(2) << "Finding induction variable for loop " << while_op->ToShortString(); auto* while_cond = while_op->while_condition(); auto* while_cond_root = while_cond->root_instruction(); auto* while_cond_param = while_cond->parameter_instruction(0); optional<int64_t> indvar_tuple_idx = GetGTEOperandIndex(while_cond_root, while_cond_param); if (!indvar_tuple_idx) { VLOG(2) << "Induction variable not found in loop condition: " << while_cond->root_instruction()->ToString(); return nullopt; } auto* while_body = while_op->while_body(); auto* while_body_root = while_body->root_instruction(); if (while_body_root->opcode() != HloOpcode::kTuple && while_body_root->opcode() != HloOpcode::kCustomCall) { VLOG(2) << "While body's root is not a tuple or custom-call instruction: " << while_body_root->ToString(); return nullopt; } const HloInstruction* while_body_inc; if (while_body_root->opcode() == HloOpcode::kTuple) { while_body_inc = while_body_root->operand(*indvar_tuple_idx); } else { if (while_body_root->operand_count() == 1 && while_body_root->operand(0)->opcode() == HloOpcode::kTuple) { auto* while_body_root_input_tuple = while_body_root->operand(0); if (*indvar_tuple_idx >= while_body_root_input_tuple->operand_count()) { VLOG(2) << "Cannot find the induction variable in the output root " "custom-call " << while_body_root->ToString(); return std::nullopt; } while_body_inc = while_body_root_input_tuple->operand(*indvar_tuple_idx); } else { if (*indvar_tuple_idx >= while_body_root->operand_count()) { VLOG(2) << "Cannot find the induction variable in the output root " "custom-call " << while_body_root->ToString(); return std::nullopt; } while_body_inc = while_body_root->operand(*indvar_tuple_idx); } } auto* while_body_param = while_body->parameter_instruction(0); optional<int64_t> while_body_indvar_tuple_idx = GetGTEOperandIndex(while_body_inc, while_body_param); if (!while_body_indvar_tuple_idx) { VLOG(2) << "Induction variable not found in while body increment instruction: " << while_body_inc->ToString(); return nullopt; } if (while_body_indvar_tuple_idx != indvar_tuple_idx) { VLOG(2) << "Tuple index of induction variable does not match between loop " "condition (" << *indvar_tuple_idx << ") and while body (" << *while_body_indvar_tuple_idx << ")"; return nullopt; } auto* while_init = while_op->operand(0); if (while_init->opcode() != HloOpcode::kTuple) { VLOG(2) << "While init expected to be a tuple: " << while_init->ToString(); return nullopt; } VLOG(2) << "Induction variable's tuple index: " << *indvar_tuple_idx; return indvar_tuple_idx; } optional<int64_t> CheckedAdd(int64_t a, int64_t b) { uint64_t aa = absl::bit_cast<uint64_t>(a); uint64_t bb = absl::bit_cast<uint64_t>(b); int64_t result = absl::bit_cast<int64_t>(aa + bb); if (a >= 0 == b >= 0 && result >= 0 != a >= 0) { return nullopt; } return result; } optional<int64_t> CheckedSubtract(int64_t a, int64_t b) { uint64_t aa = absl::bit_cast<uint64_t>(a); uint64_t bb = absl::bit_cast<uint64_t>(b); int64_t result = absl::bit_cast<int64_t>(aa - bb); if (a >= 0 != b >= 0 && result >= 0 == b >= 0) { return nullopt; } return result; } optional<int64_t> MatchTrivialLoopTripCount(const HloInstruction* while_op, int64_t indvar_tuple_idx, const Literal& indvar_init) { optional<int64_t> indvar_init_val = LiteralUtil::LiteralAsScalarInt64(indvar_init); if (!indvar_init_val) { VLOG(2) << "Pattern-match failed: induction variable init is not a " "constant scalar representable as an int64_t: " << indvar_init.ToString(); return nullopt; } auto* while_body = while_op->while_body(); auto* while_body_root = while_body->root_instruction(); HloInstruction* while_body_indvar_update; if (while_body_root->opcode() == HloOpcode::kCustomCall) { if (while_body_root->operand_count() == 1 && while_body_root->operand(0)->opcode() == HloOpcode::kTuple) { auto* while_body_root_input_tuple = while_body_root->mutable_operand(0); while_body_indvar_update = while_body_root_input_tuple->mutable_operand(indvar_tuple_idx); } else { while_body_indvar_update = while_body_root->mutable_operand(indvar_tuple_idx); } } else { while_body_indvar_update = while_body_root->mutable_operand(indvar_tuple_idx); } auto* while_body_indvar = NonConstantOperand(while_body_indvar_update); HloInstruction* trip_count_increase_step_instr = nullptr; int64_t trip_count_step = 0; if (!Match(while_body_indvar_update, m::AddAnyOrder(m::Op().Is(while_body_indvar), m::Op(&trip_count_increase_step_instr)))) { if (trip_count_increase_step_instr == nullptr) { VLOG(2) << "Pattern-match failed: induction variable is not getting " "updated by an add operation: " << while_body_indvar_update->ToString(); return nullopt; } if (!trip_count_increase_step_instr->IsConstant() || !ShapeUtil::IsEffectiveScalar( trip_count_increase_step_instr->shape())) { VLOG(2) << "Pattern-match failed: induction variable is not getting " "incremented by constant: " << while_body_indvar_update->ToString(); return nullopt; } if (!LiteralUtil::LiteralAsScalarInt64( trip_count_increase_step_instr->literal()) .has_value()) { VLOG(2) << "Pattern-match failed: trip count step is not an integral type: " << trip_count_increase_step_instr->shape().ToString(); return nullopt; } VLOG(2) << "Pattern-match for trip count step failed: " << trip_count_increase_step_instr->ToString(); } trip_count_step = LiteralUtil::LiteralAsScalarInt64( trip_count_increase_step_instr->literal()) .value(); if (trip_count_step <= 0) { VLOG(2) << "Pattern-match failed: trip count step is not a natural number: " << trip_count_step; return nullopt; } auto* while_cond = while_op->while_condition(); auto* while_cond_root = while_cond->root_instruction(); auto* while_cond_indvar = NonConstantOperand(while_cond_root); HloInstruction* while_cond_bound = nullptr; if (!Match(while_cond_root, m::Op().WithBinaryOperandsAnyOrder( m::Op().Is(while_cond_indvar), m::ConstantEffectiveScalar(&while_cond_bound)))) { VLOG(2) << "Pattern-match failed: while condition is not of the form " "op(i, N) or op(N, i)."; return nullopt; } optional<int64_t> while_cond_bound_val = LiteralUtil::LiteralAsScalarInt64(while_cond_bound->literal()); if (!while_cond_bound_val) { VLOG(2) << "Pattern-match failed: while condition induction variable is " "not a constant scalar representable as an int64_t."; return nullopt; } if (Match(while_cond_root, m::Op() .WithComparisonDirection(ComparisonDirection::kLt) .WithOperand(0, m::Op().Is(while_cond_indvar)))) { VLOG(2) << "Pattern-match succeeded: loop condition is i < N: " << while_cond_root->ToString(); optional<int64_t> trips = CheckedSubtract(*while_cond_bound_val, *indvar_init_val); if (trips) { const int64_t remainder = std::remainder(*trips, trip_count_step); const int64_t div = std::floor(*trips / trip_count_step); if (remainder == 0) { return std::max(int64_t{0}, div); } trips = CheckedAdd(div, 1); if (!trips) { VLOG(2) << "Pattern-match failed: Trip count exceeds INT64_MAX."; return nullopt; } if (*trips < *while_cond_bound_val) { return std::max(int64_t{0}, *trips); } return std::max(int64_t{0}, div); } VLOG(2) << "Pattern-match failed: Trip count exceeds INT64_MAX."; return nullopt; } if (Match(while_cond_root, m::Op() .WithComparisonDirection(ComparisonDirection::kLe) .WithOperand(0, m::Op().Is(while_cond_indvar)))) { VLOG(2) << "Pattern-match succeeded: loop condition is i <= N: " << while_cond_root->ToString(); optional<int64_t> trips = CheckedSubtract(*while_cond_bound_val, *indvar_init_val); if (!trips) { VLOG(2) << "Pattern-match failed: Trip count exceeds INT64_MAX"; return nullopt; } trips = CheckedAdd(std::floor(*trips / trip_count_step), 1); if (!trips) { VLOG(2) << "Pattern-match failed: Trip count exceeds INT64_MAX"; return nullopt; } return std::max<int64_t>(0, *trips); } VLOG(2) << "Pattern-match failed: while condition follows unknown pattern: " << while_cond_root->ToString(); return nullopt; } optional<int64_t> ComputeWhileLoopTripCount(const HloInstruction* while_op, int64_t max_brute_force_iters) { VLOG(2) << "Getting trip count for loop " << while_op->ToString(); optional<int64_t> indvar_tuple_idx = GetLoopInductionVarTupleIdx(while_op); if (!indvar_tuple_idx) { return nullopt; } HloEvaluator evaluator(0); auto* while_init = while_op->operand(0); auto* indvar_init = while_init->operand(*indvar_tuple_idx); absl::StatusOr<Literal> indvar_init_result = evaluator.Evaluate(indvar_init); if (!indvar_init_result.ok()) { VLOG(2) << "Couldn't evaluate induction variable init, " << indvar_init_result.status() << ", " << indvar_init->ToString(); return nullopt; } Literal indvar_iter_val = std::move(indvar_init_result).value(); if (auto trip_count = MatchTrivialLoopTripCount(while_op, *indvar_tuple_idx, indvar_iter_val)) { return trip_count; } auto* while_body = while_op->while_body(); auto* while_body_indvar_update = while_body->root_instruction()->operand(*indvar_tuple_idx); auto* while_body_indvar = NonConstantOperand(while_body_indvar_update); auto* while_cond = while_op->while_condition(); auto* while_cond_root = while_cond->root_instruction(); auto* while_cond_indvar = NonConstantOperand(while_cond_root); for (int64_t trip_count = 0; trip_count != max_brute_force_iters + 1; ++trip_count) { absl::StatusOr<Literal> result = evaluator.EvaluateWithSubstitutions( while_cond_root, {{while_cond_indvar, &indvar_iter_val}}); if (!result.ok()) { VLOG(2) << "Couldn't evaluate while cond: " << result.status(); return nullopt; } if (result.value().data<bool>() == absl::Span<const bool>{false}) { VLOG(2) << "Loop has static trip count of " << trip_count; return trip_count; } absl::StatusOr<Literal> indvar_next_result = evaluator.EvaluateWithSubstitutions( while_body_indvar_update, {{while_body_indvar, &indvar_iter_val}}); if (!indvar_next_result.ok()) { VLOG(2) << "Couldn't evaluate induction variable update: " << indvar_next_result.status(); return nullopt; } indvar_iter_val = std::move(indvar_next_result).value(); } VLOG(2) << "Loop has unknown trip count."; return nullopt; } static HloInstruction* GetOnlyGTE(HloInstruction* inst) { if (inst->user_count() != 1) { return nullptr; } HloInstruction* user = inst->users().back(); if (user->opcode() != HloOpcode::kGetTupleElement) { return nullptr; } return user; } optional<int64_t> ComputeWhileLoopTripCountUpperBound( const HloInstruction* while_op) { auto exact_trip_count = ComputeWhileLoopTripCount(while_op); if (exact_trip_count) { VLOG(2) << "Loop has exact trip count."; return exact_trip_count; } auto* while_cond = while_op->while_condition(); auto* while_cond_param = while_cond->parameter_instruction(0); auto* cond_gte = GetOnlyGTE(while_cond_param); if (!cond_gte) { VLOG(2) << "Induction variable not found in loop condition: " << while_cond->root_instruction()->ToString(); return nullopt; } auto* while_body = while_op->while_body(); auto* while_body_root = while_body->root_instruction(); if (while_body_root->opcode() != HloOpcode::kTuple) { VLOG(3) << "While body's root is not a tuple instruction: " << while_body_root->ToString(); return nullopt; } int64_t indvar_index = cond_gte->tuple_index(); auto* while_body_indvar = while_body_root->operand(indvar_index); if (while_body_indvar->opcode() != HloOpcode::kConstant) { VLOG(3) << "While body does not set the IV to a constant: " << while_body_indvar->ToString(); return nullopt; } absl::flat_hash_map<const HloInstruction*, std::unique_ptr<HloInstruction>> replacements; auto new_param = HloInstruction::CreateParameter( 0, ShapeUtil::MakeTupleShape({cond_gte->shape()}), "temp"); replacements[cond_gte] = HloInstruction::CreateGetTupleElement(new_param.get(), 0); replacements[while_cond_param] = std::move(new_param); auto new_module = std::make_unique<HloModule>("temp_mod", HloModuleConfig{}); auto* new_computation = new_module->AddEmbeddedComputation( while_cond->CloneWithReplacements(&replacements)); HloEvaluator evaluator(0); Literal fake_input = Literal::CreateFromShape( new_computation->parameter_instruction(0)->shape()); TF_CHECK_OK(fake_input.CopyFrom(while_body_indvar->literal(), {0}, {})); absl::StatusOr<Literal> eval_result = evaluator.Evaluate(*new_computation, {std::move(fake_input)}); if (!eval_result.ok()) { VLOG(2) << "Couldn't evaluate while loop condition."; return nullopt; } Literal cond_result_pred = std::move(eval_result.value()); CHECK(Shape::Equal().IgnoreLayout()(cond_result_pred.shape(), ShapeUtil::MakeShape(PRED, {}))); bool cond_returns_true = cond_result_pred.GetFirstElement<bool>(); if (!cond_returns_true) { VLOG(2) << "Upper bound on the trip count is 1"; return 1; } VLOG(2) << "Loop has no known upper bound on the trip count."; return nullopt; } }
#include "xla/service/while_loop_analysis.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <vector> #include <gtest/gtest.h> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_replace.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class WhileLoopAnalysisTest : public HloTestBase { protected: [[nodiscard]] absl::StatusOr<int64_t> MakeWhileLoopAndGetTripCount( int init, int limit, int step, ComparisonDirection dir); }; absl::StatusOr<int64_t> WhileLoopAnalysisTest::MakeWhileLoopAndGetTripCount( int init, int limit, int step, ComparisonDirection dir) { std::string hlo_string_template = R"( HloModule ModuleWithWhile body { p_body = (f32[2], s32[]) parameter(0) val = f32[2] get-tuple-element(p_body), index=0 index = s32[] get-tuple-element(p_body), index=1 one = s32[] constant({{STEP}}) inc = s32[] add(index, one) ROOT root = (f32[2], s32[]) tuple(val, inc) } condition { p_cond = (f32[2], s32[]) parameter(0) gte = s32[] get-tuple-element(p_cond), index=1 const = s32[] constant({{LIMIT}}) ROOT result = pred[] compare(gte, const), direction={{COMP_DIR}} } ENTRY entry { param.0 = f32[2] parameter(0) param.1 = s32[] constant({{INIT}}) while_init = (f32[2], s32[]) tuple(param.0, param.1) ROOT while = (f32[2], s32[]) while(while_init), condition=condition, body=body } )"; std::string hlo_string = absl::StrReplaceAll(hlo_string_template, {{"{{INIT}}", absl::StrCat(init)}, {"{{LIMIT}}", absl::StrCat(limit)}, {"{{STEP}}", absl::StrCat(step)}, {"{{COMP_DIR}}", ComparisonDirectionToString(dir)}}); TF_ASSIGN_OR_RETURN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* while_op = module->entry_computation()->root_instruction(); std::optional<int64_t> trip_count = MatchTrivialLoopTripCount( while_op, 1, Cast<HloConstantInstruction>( module->GetComputationWithName("entry")->GetInstructionWithName( "param.1")) ->literal()); CHECK(trip_count.has_value()); return *trip_count; } TEST_F(WhileLoopAnalysisTest, SingleIterationUpperBound) { const char* const kHloModule = R"( HloModule ModuleWithWhile body { p_body = (f32[2], s32[]) parameter(0) val = f32[2] get-tuple-element(p_body), index=0 const = s32[] constant(-1) ROOT root = (f32[2], s32[]) tuple(val, const) } condition { p_cond = (f32[2], s32[]) parameter(0) gte = s32[] get-tuple-element(p_cond), index=1 const = s32[] constant(42) ROOT result = pred[] compare(gte, const), direction=EQ } ENTRY entry { param.0 = f32[2] parameter(0) param.1 = s32[] parameter(1) while_init = (f32[2], s32[]) tuple(param.0, param.1) ROOT while = (f32[2], s32[]) while(while_init), condition=condition, body=body })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = module->entry_computation()->root_instruction(); EXPECT_EQ(*ComputeWhileLoopTripCountUpperBound(while_op), 1); } TEST_F(WhileLoopAnalysisTest, SimpleLoopWithCustomCallNonTuple) { std::string hlo_string = R"( HloModule SimpleLoop SimpleLoop.body { loop_var.1 = (s32[]{:T(128)}, s32[3]{0}) parameter(0) custom-call.1 = (s32[]{:T(128)}, s32[3]{0}) custom-call(loop_var.1), custom_call_target="CustomCallStart" get-tuple-element.1 = s32[]{:T(128)} get-tuple-element(custom-call.1), index=0 constant.1 = s32[]{:T(128)} constant(1) idx = s32[]{:T(128)} add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(custom-call.1), index=1 output = s32[3]{0} add(get-tuple-element.2, get-tuple-element.2) ROOT custom-call.2 = (s32[]{:T(128)}, s32[3]{0}) custom-call(idx, output), custom_call_target="CustomCallEnd" } SimpleLoop.condition { loop_var.2 = (s32[]{:T(128)}, s32[3]{0}) parameter(0) get-tuple-element.5 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[]{:T(128)} constant(5) ROOT less-than = pred[] compare(get-tuple-element.5, constant.2), direction=LT } ENTRY SimpleLoop { constant.3 = s32[]{:T(128)} constant(0) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[]{:T(128)}, s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[]{:T(128)}, s32[3]{0}) while(tuple.1), condition= SimpleLoop.condition, body=SimpleLoop.body } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); HloInstruction* while_op = m->entry_computation()->root_instruction(); EXPECT_EQ(*ComputeWhileLoopTripCountUpperBound(while_op), 5); } TEST_F(WhileLoopAnalysisTest, SimpleLoopWithCustomCall) { std::string hlo_string = R"( HloModule SimpleLoop SimpleLoop.body { loop_var.1 = (s32[]{:T(128)}, s32[3]{0}) parameter(0) custom-call.1 = (s32[]{:T(128)}, s32[3]{0}) custom-call(loop_var.1), custom_call_target="CustomCallStart" get-tuple-element.1 = s32[]{:T(128)} get-tuple-element(custom-call.1), index=0 constant.1 = s32[]{:T(128)} constant(1) idx = s32[]{:T(128)} add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(custom-call.1), index=1 output = s32[3]{0} add(get-tuple-element.2, get-tuple-element.2) tuple = (s32[]{:T(128)}, s32[3]{0}) tuple(idx, output) ROOT custom-call.2 = (s32[]{:T(128)}, s32[3]{0}) custom-call(tuple), custom_call_target="CustomCallEnd" } SimpleLoop.condition { loop_var.2 = (s32[]{:T(128)}, s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[]{:T(128)} constant(5) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY SimpleLoop { constant.3 = s32[]{:T(128)} constant(0) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[]{:T(128)}, s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[]{:T(128)}, s32[3]{0}) while(tuple.1), condition= SimpleLoop.condition, body=SimpleLoop.body } )"; auto m = ParseAndReturnVerifiedModule(hlo_string).value(); HloInstruction* while_op = m->entry_computation()->root_instruction(); EXPECT_EQ(*ComputeWhileLoopTripCountUpperBound(while_op), 5); } TEST_F(WhileLoopAnalysisTest, NoUpperBound) { const char* const kHloModule = R"( HloModule ModuleWithWhile body { p_body = (f32[2], s32[]) parameter(0) val = f32[2] get-tuple-element(p_body), index=0 const = s32[] constant(42) ROOT root = (f32[2], s32[]) tuple(val, const) } condition { p_cond = (f32[2], s32[]) parameter(0) gte = s32[] get-tuple-element(p_cond), index=1 const = s32[] constant(42) ROOT result = pred[] compare(gte, const), direction=EQ } ENTRY entry { param.0 = f32[2] parameter(0) param.1 = s32[] parameter(1) while_init = (f32[2], s32[]) tuple(param.0, param.1) ROOT while = (f32[2], s32[]) while(while_init), condition=condition, body=body })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = module->entry_computation()->root_instruction(); EXPECT_EQ(ComputeWhileLoopTripCountUpperBound(while_op), std::nullopt); } int CalculateTripCount(int init, int limit, int step, ComparisonDirection dir) { int trip_count = 0; if (dir == ComparisonDirection::kLt) { for (int i = init; i < limit; i += step) { trip_count++; } } else if (dir == ComparisonDirection::kLe) { for (int i = init; i <= limit; i += step) { trip_count++; } } else { LOG(FATAL) << "Unknown comparison direction: " << ComparisonDirectionToString(dir); } return trip_count; } TEST_F(WhileLoopAnalysisTest, ExactBoundTrivialTripCount) { EXPECT_EQ( MakeWhileLoopAndGetTripCount(0, 42, 1, ComparisonDirection::kLt).value(), CalculateTripCount(0, 42, 1, ComparisonDirection::kLt)); EXPECT_EQ( MakeWhileLoopAndGetTripCount(0, 42, 2, ComparisonDirection::kLt).value(), CalculateTripCount(0, 42, 2, ComparisonDirection::kLt)); EXPECT_EQ( MakeWhileLoopAndGetTripCount(0, 42, 5, ComparisonDirection::kLt).value(), CalculateTripCount(0, 42, 5, ComparisonDirection::kLt)); EXPECT_EQ( MakeWhileLoopAndGetTripCount(0, 40, 5, ComparisonDirection::kLt).value(), CalculateTripCount(0, 40, 5, ComparisonDirection::kLt)); EXPECT_EQ( MakeWhileLoopAndGetTripCount(0, 42, 1, ComparisonDirection::kLe).value(), CalculateTripCount(0, 42, 1, ComparisonDirection::kLe)); EXPECT_EQ( MakeWhileLoopAndGetTripCount(0, 42, 2, ComparisonDirection::kLe).value(), CalculateTripCount(0, 42, 2, ComparisonDirection::kLe)); EXPECT_EQ( MakeWhileLoopAndGetTripCount(0, 42, 5, ComparisonDirection::kLe).value(), CalculateTripCount(0, 42, 5, ComparisonDirection::kLe)); EXPECT_EQ( MakeWhileLoopAndGetTripCount(0, 40, 5, ComparisonDirection::kLe).value(), CalculateTripCount(0, 40, 5, ComparisonDirection::kLe)); } TEST_F(WhileLoopAnalysisTest, NoAIVNoConstChain) { const char* const kHloModule = R"( HloModule ModuleWithWhile body { p_body = (f32[2], s32[], s32[]) parameter(0) val1 = f32[2] get-tuple-element(p_body), index=0 val2 = s32[] get-tuple-element(p_body), index=1 val3 = s32[] get-tuple-element(p_body), index=2 add = s32[] add(val2, val3) sub = s32[] subtract(add, val3) ROOT root = (f32[2], s32[], s32[]) tuple(val1, add, sub) } condition { p_cond = (f32[2], s32[], s32[]) parameter(0) gte = s32[] get-tuple-element(p_cond), index=1 const = s32[] constant(42) ROOT result = pred[] compare(gte, const), direction=EQ } ENTRY entry { param.0 = f32[2] parameter(0) param.1 = s32[] parameter(1) param.2 = s32[] parameter(2) while_init = (f32[2], s32[], s32[]) tuple(param.0, param.1, param.2) ROOT while = (f32[2], s32[], s32[]) while(while_init), condition=condition, body=body })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = module->entry_computation()->root_instruction(); std::vector<const HloInstruction*> aux_indices = GetAuxiliaryLoopInductionVars(while_op); EXPECT_EQ(aux_indices.size(), 0); } TEST_F(WhileLoopAnalysisTest, AIVMultiChain) { const char* const kHloModule = R"( HloModule ModuleWithWhile body { p_body = (f32[2], s32[]) parameter(0) val1 = f32[2] get-tuple-element(p_body), index=0 val2 = s32[] get-tuple-element(p_body), index=1 const.1 = s32[] constant(42) const.2 = s32[] constant(42) const.3 = s32[] constant(42) add = s32[] add(val2, const.1) sub = s32[] subtract(add, const.2) mul = s32[] multiply(sub, const.3) ROOT root = (f32[2], s32[]) tuple(val1, mul) } condition { p_cond = (f32[2], s32[]) parameter(0) gte = s32[] get-tuple-element(p_cond), index=1 const = s32[] constant(42) ROOT result = pred[] compare(gte, const), direction=EQ } ENTRY entry { param.0 = f32[2] parameter(0) param.1 = s32[] parameter(1) while_init = (f32[2], s32[]) tuple(param.0, param.1) ROOT while = (f32[2], s32[]) while(while_init), condition=condition, body=body })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = module->entry_computation()->root_instruction(); std::vector<const HloInstruction*> aux_indices = GetAuxiliaryLoopInductionVars(while_op); EXPECT_EQ(aux_indices.size(), 1); EXPECT_EQ(aux_indices[0]->opcode(), HloOpcode::kGetTupleElement); EXPECT_EQ(aux_indices[0]->tuple_index(), 1); } TEST_F(WhileLoopAnalysisTest, NoAIV) { const char* const kHloModule = R"( HloModule ModuleWithWhile body { p_body = (f32[2], s32[]) parameter(0) val1 = f32[2] get-tuple-element(p_body), index=0 val2 = s32[] get-tuple-element(p_body), index=1 add = s32[] add(val2, val2) const.1 = s32[] constant(42) mul = s32[] multiply(add, const.1) div = s32[] divide(mul, add) ROOT root = (f32[2], s32[]) tuple(val1, div) } condition { p_cond = (f32[2], s32[]) parameter(0) gte = s32[] get-tuple-element(p_cond), index=1 const = s32[] constant(42) ROOT result = pred[] compare(gte, const), direction=EQ } ENTRY entry { param.0 = f32[2] parameter(0) param.1 = s32[] parameter(1) while_init = (f32[2], s32[]) tuple(param.0, param.1) ROOT while = (f32[2], s32[]) while(while_init), condition=condition, body=body })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = module->entry_computation()->root_instruction(); std::vector<const HloInstruction*> aux_indices = GetAuxiliaryLoopInductionVars(while_op); EXPECT_EQ(aux_indices.size(), 0); } TEST_F(WhileLoopAnalysisTest, AIVNoChain) { const char* const kHloModule = R"( HloModule ModuleWithWhile body { p_body = (f32[2], s32[]) parameter(0) val1 = f32[2] get-tuple-element(p_body), index=0 val2 = s32[] get-tuple-element(p_body), index=1 const = s32[] constant(42) add = s32[] add(val2, const) ROOT root = (f32[2], s32[]) tuple(val1, add) } condition { p_cond = (f32[2], s32[]) parameter(0) gte = s32[] get-tuple-element(p_cond), index=1 const = s32[] constant(42) ROOT result = pred[] compare(gte, const), direction=EQ } ENTRY entry { param.0 = f32[2] parameter(0) param.1 = s32[] parameter(1) while_init = (f32[2], s32[]) tuple(param.0, param.1) ROOT while = (f32[2], s32[]) while(while_init), condition=condition, body=body })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = module->entry_computation()->root_instruction(); std::vector<const HloInstruction*> aux_indices = GetAuxiliaryLoopInductionVars(while_op); EXPECT_EQ(aux_indices.size(), 1); EXPECT_EQ(aux_indices[0]->opcode(), HloOpcode::kGetTupleElement); EXPECT_EQ(aux_indices[0]->tuple_index(), 1); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/while_loop_analysis.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/while_loop_analysis_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a2ee7d71-f029-422d-9d19-69394fa2a722
cpp
google/libaddressinput
json
cpp/src/util/json.cc
cpp/test/util/json_test.cc
#include "json.h" #include <cassert> #include <cstddef> #include <memory> #include <string> #include <vector> #include <rapidjson/document.h> #include <rapidjson/reader.h> namespace i18n { namespace addressinput { using rapidjson::Document; using rapidjson::kParseValidateEncodingFlag; using rapidjson::Value; class Json::JsonImpl { public: JsonImpl(const JsonImpl&) = delete; JsonImpl& operator=(const JsonImpl&) = delete; explicit JsonImpl(const std::string& json) : document_(new Document), value_(document_.get()), dictionaries_(), valid_(false) { document_->Parse<kParseValidateEncodingFlag>(json.c_str()); valid_ = !document_->HasParseError() && document_->IsObject(); } ~JsonImpl() { for (auto ptr : dictionaries_) { delete ptr; } } bool valid() const { return valid_; } const std::vector<const Json*>& GetSubDictionaries() { if (dictionaries_.empty()) { for (Value::ConstMemberIterator member = value_->MemberBegin(); member != value_->MemberEnd(); ++member) { if (member->value.IsObject()) { dictionaries_.push_back(new Json(new JsonImpl(&member->value))); } } } return dictionaries_; } bool GetStringValueForKey(const std::string& key, std::string* value) const { assert(value != nullptr); Value::ConstMemberIterator member = value_->FindMember(key.c_str()); if (member == value_->MemberEnd() || !member->value.IsString()) { return false; } value->assign(member->value.GetString(), member->value.GetStringLength()); return true; } private: explicit JsonImpl(const Value* value) : document_(), value_(value), dictionaries_(), valid_(true) { assert(value_ != nullptr); assert(value_->IsObject()); } const std::unique_ptr<Document> document_; const Value* const value_; std::vector<const Json*> dictionaries_; bool valid_; }; Json::Json() : impl_() {} Json::~Json() = default; bool Json::ParseObject(const std::string& json) { assert(impl_ == nullptr); impl_.reset(new JsonImpl(json)); if (!impl_->valid()) { impl_.reset(); } return impl_ != nullptr; } const std::vector<const Json*>& Json::GetSubDictionaries() const { assert(impl_ != nullptr); return impl_->GetSubDictionaries(); } bool Json::GetStringValueForKey(const std::string& key, std::string* value) const { assert(impl_ != nullptr); return impl_->GetStringValueForKey(key, value); } Json::Json(JsonImpl* impl) : impl_(impl) {} } }
#include "util/json.h" #include <string> #include <gtest/gtest.h> namespace { using i18n::addressinput::Json; TEST(JsonTest, EmptyStringIsNotValid) { Json json; EXPECT_FALSE(json.ParseObject(std::string())); } TEST(JsonTest, EmptyDictionaryContainsNoKeys) { Json json; ASSERT_TRUE(json.ParseObject("{}")); std::string not_checked; EXPECT_FALSE(json.GetStringValueForKey("key", &not_checked)); EXPECT_FALSE(json.GetStringValueForKey(std::string(), &not_checked)); } TEST(JsonTest, InvalidJsonIsNotValid) { Json json; EXPECT_FALSE(json.ParseObject("{")); } TEST(JsonTest, OneKeyIsValid) { Json json; ASSERT_TRUE(json.ParseObject(R"({"key": "value"})")); std::string value; EXPECT_TRUE(json.GetStringValueForKey("key", &value)); EXPECT_EQ("value", value); } TEST(JsonTest, EmptyStringKeyIsNotInObject) { Json json; ASSERT_TRUE(json.ParseObject(R"({"key": "value"})")); std::string not_checked; EXPECT_FALSE(json.GetStringValueForKey(std::string(), &not_checked)); } TEST(JsonTest, EmptyKeyIsValid) { Json json; ASSERT_TRUE(json.ParseObject(R"({"": "value"})")); std::string value; EXPECT_TRUE(json.GetStringValueForKey(std::string(), &value)); EXPECT_EQ("value", value); } TEST(JsonTest, EmptyValueIsValid) { Json json; ASSERT_TRUE(json.ParseObject(R"({"key": ""})")); std::string value; EXPECT_TRUE(json.GetStringValueForKey("key", &value)); EXPECT_TRUE(value.empty()); } TEST(JsonTest, Utf8EncodingIsValid) { Json json; ASSERT_TRUE(json.ParseObject(R"({"key": "Ü"})")); std::string value; EXPECT_TRUE(json.GetStringValueForKey("key", &value)); EXPECT_EQ("Ü", value); } TEST(JsonTest, InvalidUtf8IsNotValid) { Json json; EXPECT_FALSE(json.ParseObject("{\"key\": \"\xC3\x28\"}")); } TEST(JsonTest, NullInMiddleIsNotValid) { Json json; static const char kJson[] = "{\"key\": \"val\0ue\"}"; EXPECT_FALSE(json.ParseObject(std::string(kJson, sizeof kJson - 1))); } TEST(JsonTest, TwoKeysAreValid) { Json json; ASSERT_TRUE(json.ParseObject(R"({"key1": "value1", "key2": "value2"})")); std::string value; EXPECT_TRUE(json.GetStringValueForKey("key1", &value)); EXPECT_EQ("value1", value); EXPECT_TRUE(json.GetStringValueForKey("key2", &value)); EXPECT_EQ("value2", value); } TEST(JsonTest, ListIsNotValid) { Json json; EXPECT_FALSE(json.ParseObject("[]")); } TEST(JsonTest, StringIsNotValid) { Json json; EXPECT_FALSE(json.ParseObject(R"("value")")); } TEST(JsonTest, NumberIsNotValid) { Json json; EXPECT_FALSE(json.ParseObject("3")); } TEST(JsonTest, NoDictionaryFound) { Json json; ASSERT_TRUE(json.ParseObject(R"({"key":"value"})")); EXPECT_TRUE(json.GetSubDictionaries().empty()); } TEST(JsonTest, DictionaryFound) { Json json; ASSERT_TRUE(json.ParseObject(R"({"key":{"inner_key":"value"}})")); const auto& sub_dicts = json.GetSubDictionaries(); ASSERT_EQ(1U, sub_dicts.size()); std::string value; EXPECT_TRUE(sub_dicts.front()->GetStringValueForKey("inner_key", &value)); EXPECT_EQ("value", value); } TEST(JsonTest, DictionariesHaveSubDictionaries) { Json json; ASSERT_TRUE(json.ParseObject( R"({"key":{"inner_key":{"inner_inner_key":"value"}}})")); const auto& sub_dicts = json.GetSubDictionaries(); ASSERT_EQ(1U, sub_dicts.size()); const auto& sub_sub_dicts = sub_dicts.front()->GetSubDictionaries(); ASSERT_EQ(1U, sub_sub_dicts.size()); std::string value; EXPECT_TRUE( sub_sub_dicts.front()->GetStringValueForKey("inner_inner_key", &value)); EXPECT_EQ("value", value); } }
https://github.com/google/libaddressinput/blob/2610f7b1043d6784ada41392fc9392d1ea09ea07/cpp/src/util/json.cc
https://github.com/google/libaddressinput/blob/2610f7b1043d6784ada41392fc9392d1ea09ea07/cpp/test/util/json_test.cc
2610f7b1043d6784ada41392fc9392d1ea09ea07
8933e6bb-c4c3-4af6-9261-521952ef7498
cpp
tensorflow/tensorflow
uniform_quantized_add_op
tensorflow/core/kernels/uniform_quant_ops/uniform_quantized_add_op.cc
tensorflow/core/kernels/uniform_quant_ops/uniform_quantized_add_op_test.cc
#include <algorithm> #include <vector> #include "absl/algorithm/container.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/kernels/uniform_quant_ops/math_utils.h" #include "tensorflow/core/kernels/uniform_quant_ops/tensor_utils.h" namespace tensorflow { namespace { using errors::InvalidArgument; absl::StatusOr<TensorShape> CalculateOutputShape(const TensorShape& lhs_shape, const TensorShape& rhs_shape) { if (lhs_shape.dims() == 0) { return rhs_shape; } else if (rhs_shape.dims() == 0) { return lhs_shape; } std::vector<int64_t> reversed_output_shape; int l_dim = lhs_shape.dims() - 1; int r_dim = rhs_shape.dims() - 1; while (l_dim >= 0 || r_dim >= 0) { const int64_t l_dim_size = l_dim >= 0 ? lhs_shape.dim_size(l_dim) : 1; const int64_t r_dim_size = r_dim >= 0 ? rhs_shape.dim_size(r_dim) : 1; if (l_dim_size != 1 && r_dim_size != 1 && l_dim_size != r_dim_size) { return InvalidArgument("Cannot Add tensors of shapes: ", lhs_shape.DebugString(), rhs_shape.DebugString()); } reversed_output_shape.push_back(l_dim_size == 1 ? r_dim_size : l_dim_size); --l_dim; --r_dim; } absl::c_reverse(reversed_output_shape); TensorShape output_shape; TF_RETURN_IF_ERROR( TensorShape::BuildTensorShape(reversed_output_shape, &output_shape)); return output_shape; } template <typename T> void QuantizedAdd(const Tensor& lhs, const Tensor& rhs, const Tensor& output_zero_points, int output_quantization_min_val, int output_quantization_max_val, int lhs_quantization_axis, int rhs_quantization_axis, int output_quantizaiton_axis, Tensor& output) { const T* lhs_data = lhs.flat<T>().data(); const T* rhs_data = rhs.flat<T>().data(); T* output_data = output.flat<T>().data(); const int32* output_zero_points_data = output_zero_points.flat<int32>().data(); for (int64_t output_idx = 0; output_idx < output.NumElements(); ++output_idx) { int64_t output_idx_remain = output_idx; int64_t lhs_idx = 0; int64_t rhs_idx = 0; int64_t lhs_inner_dim_size = 1; int64_t rhs_inner_dim_size = 1; int64_t output_zero_points_idx_of_quantization_axis = 0; for (int output_dim = output.dims() - 1; output_dim >= 0; --output_dim) { const int64_t output_idx_of_dim = output_idx_remain % output.dim_size(output_dim); output_idx_remain /= output.dim_size(output_dim); if (output_quantizaiton_axis == output_dim) { output_zero_points_idx_of_quantization_axis = output_idx_of_dim; } const int lhs_dim = output_dim - (output.dims() - lhs.dims()); if (lhs_dim >= 0) { const int64_t lhs_idx_of_dim = lhs.dim_size(lhs_dim) == 1 ? 0 : output_idx_of_dim; lhs_idx += lhs_idx_of_dim * lhs_inner_dim_size; lhs_inner_dim_size *= lhs.dim_size(lhs_dim); } const int rhs_dim = output_dim - (output.dims() - rhs.dims()); if (rhs_dim >= 0) { const int64_t rhs_idx_of_dim = rhs.dim_size(rhs_dim) == 1 ? 0 : output_idx_of_dim; rhs_idx += rhs_idx_of_dim * rhs_inner_dim_size; rhs_inner_dim_size *= rhs.dim_size(rhs_dim); } } const int32_t output_zero_point = output_zero_points_data[output_zero_points_idx_of_quantization_axis]; const int32_t unclamped = static_cast<int32_t>(lhs_data[lhs_idx]) + static_cast<int32_t>(rhs_data[rhs_idx]) + output_zero_point; output_data[output_idx] = static_cast<T>(std::clamp( unclamped, output_quantization_min_val, output_quantization_max_val)); } } template <typename T> Status EvalQuantizedAdd(OpKernelContext* context, const Tensor& lhs, const Tensor& rhs, const Tensor& lhs_scales, const Tensor& lhs_zero_points, const Tensor& rhs_scales, const Tensor& rhs_zero_points, const Tensor& output_scales, const Tensor& output_zero_points, int output_quantization_min_val, int output_quantization_max_val, int lhs_quantization_axis, int rhs_quantization_axis, int output_quantization_axis, Tensor& output) { const DataType dtype = DataTypeToEnum<T>::v(); Tensor zeros_of_output_scales_shape; TF_RETURN_IF_ERROR(context->allocate_temp(DT_INT32, output_scales.shape(), &zeros_of_output_scales_shape)); zeros_of_output_scales_shape.flat<int32_t>().setZero(); Tensor lhs_requantized; TF_RETURN_IF_ERROR( context->allocate_temp(dtype, lhs.shape(), &lhs_requantized)); const int lhs_requantize_output_quantization_axis = output_quantization_axis == -1 ? -1 : lhs_quantization_axis; TF_RETURN_IF_ERROR(EvalRequantize<T, T>( context, lhs, lhs_scales, lhs_zero_points, output_scales, zeros_of_output_scales_shape, lhs_quantization_axis, lhs_requantize_output_quantization_axis, std::numeric_limits<T>::min(), std::numeric_limits<T>::max(), lhs_requantized)); Tensor rhs_requantized; TF_RETURN_IF_ERROR( context->allocate_temp(dtype, rhs.shape(), &rhs_requantized)); TF_RETURN_IF_ERROR(EvalRequantize<T, T>( context, rhs, rhs_scales, rhs_zero_points, output_scales, zeros_of_output_scales_shape, rhs_quantization_axis, output_quantization_axis, std::numeric_limits<T>::min(), std::numeric_limits<T>::max(), rhs_requantized)); QuantizedAdd<T>(lhs_requantized, rhs_requantized, output_zero_points, output_quantization_min_val, output_quantization_max_val, lhs_quantization_axis, rhs_quantization_axis, output_quantization_axis, output); return absl::OkStatus(); } } template <typename T> class UniformQuantizedAddOp : public OpKernel { public: explicit UniformQuantizedAddOp(OpKernelConstruction* context) : OpKernel(context) { OP_REQUIRES(context, (std::is_same<T, qint32>()), InvalidArgument("Unsupported operand type.")); OP_REQUIRES_OK(context, context->GetAttr("output_quantization_min_val", &output_quantization_min_val_)); OP_REQUIRES_OK(context, context->GetAttr("output_quantization_max_val", &output_quantization_max_val_)); OP_REQUIRES_OK(context, context->GetAttr("lhs_quantization_axis", &lhs_quantization_axis_)); OP_REQUIRES_OK(context, context->GetAttr("rhs_quantization_axis", &rhs_quantization_axis_)); OP_REQUIRES_OK(context, context->GetAttr("output_quantization_axis", &output_quantization_axis_)); OP_REQUIRES( context, (lhs_quantization_axis_ >= -1 && rhs_quantization_axis_ >= -1 && output_quantization_axis_ >= -1), InvalidArgument("lhs, rhs and output quantization_axis must be -1 or " "within [0, dims)")); } void Compute(OpKernelContext* context) override { const Tensor& lhs = context->input(0); const Tensor& rhs = context->input(1); const Tensor& lhs_scales = context->input(2); const Tensor& lhs_zero_points = context->input(3); const Tensor& rhs_scales = context->input(4); const Tensor& rhs_zero_points = context->input(5); const Tensor& output_scales = context->input(6); const Tensor& output_zero_points = context->input(7); OP_REQUIRES_OK( context, QuantizationAxisAndShapeValid(lhs.shape(), lhs_scales.shape(), lhs_zero_points.shape(), lhs_quantization_axis_)); OP_REQUIRES_OK( context, QuantizationAxisAndShapeValid(rhs.shape(), rhs_scales.shape(), rhs_zero_points.shape(), rhs_quantization_axis_)); auto output_shape_status = CalculateOutputShape(lhs.shape(), rhs.shape()); OP_REQUIRES_OK(context, output_shape_status.status()); const auto& output_shape = output_shape_status.value(); OP_REQUIRES_OK(context, QuantizationAxisAndShapeValid( output_shape, output_scales.shape(), output_zero_points.shape(), output_quantization_axis_)); OP_REQUIRES( context, (!(lhs_quantization_axis_ >= 0 && output_quantization_axis_ >= 0) || (lhs.dims() - lhs_quantization_axis_ == output_shape.dims() - output_quantization_axis_)), InvalidArgument("If lhs and output is both per-axis quantized, the " "quantization axis must match.")); OP_REQUIRES( context, (!(rhs_quantization_axis_ >= 0 && output_quantization_axis_ >= 0) || (rhs.dims() - rhs_quantization_axis_ == output_shape.dims() - output_quantization_axis_)), InvalidArgument("If rhs and output is both per-axis quantized, the " "quantization axis must match.")); OP_REQUIRES(context, (AllElementsPositive<float>(lhs_scales) && AllElementsPositive<float>(rhs_scales) && AllElementsPositive<float>(output_scales)), InvalidArgument( "lhs/rhs/output scales elements must be all positive.")); Tensor* output = nullptr; OP_REQUIRES_OK(context, context->allocate_output(0, output_shape, &output)); OP_REQUIRES_OK( context, EvalQuantizedAdd<T>( context, lhs, rhs, lhs_scales, lhs_zero_points, rhs_scales, rhs_zero_points, output_scales, output_zero_points, output_quantization_min_val_, output_quantization_max_val_, lhs_quantization_axis_, rhs_quantization_axis_, output_quantization_axis_, *output)); } private: int lhs_quantization_axis_; int rhs_quantization_axis_; int output_quantization_axis_; int output_quantization_min_val_; int output_quantization_max_val_; }; REGISTER_KERNEL_BUILDER( Name("UniformQuantizedAdd").Device(DEVICE_CPU).TypeConstraint<qint32>("T"), UniformQuantizedAddOp<qint32>); }
#include <limits> #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" namespace tensorflow { namespace { constexpr int32_t kInt32Min = std::numeric_limits<int32_t>::min(); constexpr int32_t kInt32Max = std::numeric_limits<int32_t>::max(); } class UniformQuantizedAddOpTest : public OpsTestBase { protected: }; TEST_F(UniformQuantizedAddOpTest, InvalidShape) { TF_ASSERT_OK(NodeDefBuilder("test", "UniformQuantizedAdd") .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("T", DT_QINT32) .Attr("lhs_quantization_axis", 1) .Attr("rhs_quantization_axis", 0) .Attr("output_quantization_axis", 1) .Attr("lhs_quantization_min_val", kInt32Min) .Attr("lhs_quantization_max_val", kInt32Max) .Attr("rhs_quantization_min_val", kInt32Min) .Attr("rhs_quantization_max_val", kInt32Max) .Attr("output_quantization_min_val", kInt32Min) .Attr("output_quantization_max_val", kInt32Max) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<qint32>(TensorShape({2, 3}), {-6, -4, -2, 0, 2, 4}); AddInputFromArray<qint32>(TensorShape({2}), {-100, 0}); AddInputFromArray<float>(TensorShape({3}), {2, 3, 4}); AddInputFromArray<int32>(TensorShape({3}), {-20, 0, 20}); AddInputFromArray<float>(TensorShape({2}), {2, 3}); AddInputFromArray<int32>(TensorShape({2}), {0, 0}); AddInputFromArray<float>(TensorShape({3}), {2, 3, 4}); AddInputFromArray<int32>(TensorShape({3}), {-40, 0, 40}); EXPECT_TRUE(absl::IsInvalidArgument(RunOpKernel())); } TEST_F(UniformQuantizedAddOpTest, PerChannelSameScale) { TF_ASSERT_OK(NodeDefBuilder("test", "UniformQuantizedAdd") .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("T", DT_QINT32) .Attr("lhs_quantization_axis", 1) .Attr("rhs_quantization_axis", 0) .Attr("output_quantization_axis", 1) .Attr("lhs_quantization_min_val", kInt32Min) .Attr("lhs_quantization_max_val", kInt32Max) .Attr("rhs_quantization_min_val", kInt32Min) .Attr("rhs_quantization_max_val", kInt32Max) .Attr("output_quantization_min_val", kInt32Min) .Attr("output_quantization_max_val", kInt32Max) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<qint32>(TensorShape({2, 3}), {-6, -4, -2, 0, 2, 4}); AddInputFromArray<qint32>(TensorShape({3}), {-100, 0, 100}); AddInputFromArray<float>(TensorShape({3}), {2, 3, 4}); AddInputFromArray<int32>(TensorShape({3}), {-20, 0, 20}); AddInputFromArray<float>(TensorShape({3}), {2, 3, 4}); AddInputFromArray<int32>(TensorShape({3}), {0, 0, 0}); AddInputFromArray<float>(TensorShape({3}), {2, 3, 4}); AddInputFromArray<int32>(TensorShape({3}), {-40, 0, 40}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QINT32, TensorShape({2, 3})); test::FillValues<qint32>(&expected, {-126, -4, 118, -120, 2, 124}); test::ExpectTensorEqual<qint32>(expected, *GetOutput(0)); } TEST_F(UniformQuantizedAddOpTest, PerTensorSameScaleLhsMultiDims) { TF_ASSERT_OK(NodeDefBuilder("test", "UniformQuantizedAdd") .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("T", DT_QINT32) .Attr("lhs_quantization_axis", -1) .Attr("rhs_quantization_axis", -1) .Attr("output_quantization_axis", -1) .Attr("lhs_quantization_min_val", kInt32Min) .Attr("lhs_quantization_max_val", kInt32Max) .Attr("rhs_quantization_min_val", kInt32Min) .Attr("rhs_quantization_max_val", kInt32Max) .Attr("output_quantization_min_val", kInt32Min) .Attr("output_quantization_max_val", kInt32Max) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<qint32>(TensorShape({2, 3}), {-6, -4, -2, 0, 2, 4}); AddInputFromArray<qint32>(TensorShape({3}), {-100, 0, 100}); AddInputFromArray<float>(TensorShape({}), {2}); AddInputFromArray<int32>(TensorShape({}), {-20}); AddInputFromArray<float>(TensorShape({}), {2}); AddInputFromArray<int32>(TensorShape({}), {0}); AddInputFromArray<float>(TensorShape({}), {2}); AddInputFromArray<int32>(TensorShape({}), {-40}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QINT32, TensorShape({2, 3})); test::FillValues<qint32>(&expected, {-126, -24, 78, -120, -18, 84}); test::ExpectTensorEqual<qint32>(expected, *GetOutput(0)); } TEST_F(UniformQuantizedAddOpTest, PerTensorSameScaleRhsMultiDims) { TF_ASSERT_OK(NodeDefBuilder("test", "UniformQuantizedAdd") .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("T", DT_QINT32) .Attr("lhs_quantization_axis", -1) .Attr("rhs_quantization_axis", -1) .Attr("output_quantization_axis", -1) .Attr("lhs_quantization_min_val", kInt32Min) .Attr("lhs_quantization_max_val", kInt32Max) .Attr("rhs_quantization_min_val", kInt32Min) .Attr("rhs_quantization_max_val", kInt32Max) .Attr("output_quantization_min_val", kInt32Min) .Attr("output_quantization_max_val", kInt32Max) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<qint32>(TensorShape({3}), {-100, 0, 100}); AddInputFromArray<qint32>(TensorShape({2, 3}), {-6, -4, -2, 0, 2, 4}); AddInputFromArray<float>(TensorShape({}), {2}); AddInputFromArray<int32>(TensorShape({}), {0}); AddInputFromArray<float>(TensorShape({}), {2}); AddInputFromArray<int32>(TensorShape({}), {-20}); AddInputFromArray<float>(TensorShape({}), {2}); AddInputFromArray<int32>(TensorShape({}), {-40}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QINT32, TensorShape({2, 3})); test::FillValues<qint32>(&expected, {-126, -24, 78, -120, -18, 84}); test::ExpectTensorEqual<qint32>(expected, *GetOutput(0)); } TEST_F(UniformQuantizedAddOpTest, PerChannelDifferentScale) { TF_ASSERT_OK(NodeDefBuilder("test", "UniformQuantizedAdd") .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("T", DT_QINT32) .Attr("lhs_quantization_axis", 1) .Attr("rhs_quantization_axis", 0) .Attr("output_quantization_axis", 1) .Attr("lhs_quantization_min_val", kInt32Min) .Attr("lhs_quantization_max_val", kInt32Max) .Attr("rhs_quantization_min_val", kInt32Min) .Attr("rhs_quantization_max_val", kInt32Max) .Attr("output_quantization_min_val", kInt32Min) .Attr("output_quantization_max_val", kInt32Max) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<qint32>(TensorShape({2, 3}), {-6, -4, -2, 0, 2, 4}); AddInputFromArray<qint32>(TensorShape({3}), {-100, 0, 100}); AddInputFromArray<float>(TensorShape({3}), {2, 3, 1}); AddInputFromArray<int32>(TensorShape({3}), {-20, 0, 20}); AddInputFromArray<float>(TensorShape({3}), {1, 3, 2}); AddInputFromArray<int32>(TensorShape({3}), {0, 0, 0}); AddInputFromArray<float>(TensorShape({3}), {4, 3, 2}); AddInputFromArray<int32>(TensorShape({3}), {-40, 0, 40}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QINT32, TensorShape({2, 3})); test::FillValues<qint32>(&expected, {-58, -4, 129, -55, 2, 132}); test::ExpectTensorEqual<qint32>(expected, *GetOutput(0)); } TEST_F(UniformQuantizedAddOpTest, PerChannelDifferentScaleBroadcastLhs) { TF_ASSERT_OK(NodeDefBuilder("test", "UniformQuantizedAdd") .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("T", DT_QINT32) .Attr("lhs_quantization_axis", 1) .Attr("rhs_quantization_axis", 1) .Attr("output_quantization_axis", 1) .Attr("lhs_quantization_min_val", kInt32Min) .Attr("lhs_quantization_max_val", kInt32Max) .Attr("rhs_quantization_min_val", kInt32Min) .Attr("rhs_quantization_max_val", kInt32Max) .Attr("output_quantization_min_val", kInt32Min) .Attr("output_quantization_max_val", kInt32Max) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<qint32>(TensorShape({1, 3}), {-100, 0, 100}); AddInputFromArray<qint32>(TensorShape({2, 3}), {-6, -4, -2, 0, 2, 4}); AddInputFromArray<float>(TensorShape({3}), {1, 3, 2}); AddInputFromArray<int32>(TensorShape({3}), {0, 0, 0}); AddInputFromArray<float>(TensorShape({3}), {2, 3, 1}); AddInputFromArray<int32>(TensorShape({3}), {-20, 0, 20}); AddInputFromArray<float>(TensorShape({3}), {4, 3, 2}); AddInputFromArray<int32>(TensorShape({3}), {-40, 0, 40}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QINT32, TensorShape({2, 3})); test::FillValues<qint32>(&expected, {-58, -4, 129, -55, 2, 132}); test::ExpectTensorEqual<qint32>(expected, *GetOutput(0)); } TEST_F(UniformQuantizedAddOpTest, PerTensorDifferentScale) { TF_ASSERT_OK(NodeDefBuilder("test", "UniformQuantizedAdd") .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("T", DT_QINT32) .Attr("lhs_quantization_axis", -1) .Attr("rhs_quantization_axis", -1) .Attr("output_quantization_axis", -1) .Attr("lhs_quantization_min_val", kInt32Min) .Attr("lhs_quantization_max_val", kInt32Max) .Attr("rhs_quantization_min_val", kInt32Min) .Attr("rhs_quantization_max_val", kInt32Max) .Attr("output_quantization_min_val", kInt32Min) .Attr("output_quantization_max_val", kInt32Max) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<qint32>(TensorShape({2, 3}), {-6, -4, -2, 0, 2, 4}); AddInputFromArray<qint32>(TensorShape({3}), {-100, 0, 100}); AddInputFromArray<float>(TensorShape({}), {2}); AddInputFromArray<int32>(TensorShape({}), {-20}); AddInputFromArray<float>(TensorShape({}), {1}); AddInputFromArray<int32>(TensorShape({}), {0}); AddInputFromArray<float>(TensorShape({}), {4}); AddInputFromArray<int32>(TensorShape({}), {-40}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QINT32, TensorShape({2, 3})); test::FillValues<qint32>(&expected, {-58, -32, -6, -55, -29, -3}); test::ExpectTensorEqual<qint32>(expected, *GetOutput(0)); } TEST_F(UniformQuantizedAddOpTest, PerTensorSameScaleTensorAddScalar) { TF_ASSERT_OK(NodeDefBuilder("test", "UniformQuantizedAdd") .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("T", DT_QINT32) .Attr("lhs_quantization_axis", -1) .Attr("rhs_quantization_axis", -1) .Attr("output_quantization_axis", -1) .Attr("lhs_quantization_min_val", kInt32Min) .Attr("lhs_quantization_max_val", kInt32Max) .Attr("rhs_quantization_min_val", kInt32Min) .Attr("rhs_quantization_max_val", kInt32Max) .Attr("output_quantization_min_val", kInt32Min) .Attr("output_quantization_max_val", kInt32Max) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<qint32>(TensorShape({2, 3}), {-6, -4, -2, 0, 2, 4}); AddInputFromArray<qint32>(TensorShape({}), {-100}); AddInputFromArray<float>(TensorShape({}), {2}); AddInputFromArray<int32>(TensorShape({}), {-20}); AddInputFromArray<float>(TensorShape({}), {2}); AddInputFromArray<int32>(TensorShape({}), {0}); AddInputFromArray<float>(TensorShape({}), {2}); AddInputFromArray<int32>(TensorShape({}), {-40}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QINT32, TensorShape({2, 3})); test::FillValues<qint32>(&expected, {-126, -124, -122, -120, -118, -116}); test::ExpectTensorEqual<qint32>(expected, *GetOutput(0)); } TEST_F(UniformQuantizedAddOpTest, PerTensorSameScaleScalarAddTensor) { TF_ASSERT_OK(NodeDefBuilder("test", "UniformQuantizedAdd") .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("T", DT_QINT32) .Attr("lhs_quantization_axis", -1) .Attr("rhs_quantization_axis", -1) .Attr("output_quantization_axis", -1) .Attr("lhs_quantization_min_val", kInt32Min) .Attr("lhs_quantization_max_val", kInt32Max) .Attr("rhs_quantization_min_val", kInt32Min) .Attr("rhs_quantization_max_val", kInt32Max) .Attr("output_quantization_min_val", kInt32Min) .Attr("output_quantization_max_val", kInt32Max) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<qint32>(TensorShape({}), {-100}); AddInputFromArray<qint32>(TensorShape({2, 3}), {-6, -4, -2, 0, 2, 4}); AddInputFromArray<float>(TensorShape({}), {2}); AddInputFromArray<int32>(TensorShape({}), {0}); AddInputFromArray<float>(TensorShape({}), {2}); AddInputFromArray<int32>(TensorShape({}), {-20}); AddInputFromArray<float>(TensorShape({}), {2}); AddInputFromArray<int32>(TensorShape({}), {-40}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QINT32, TensorShape({2, 3})); test::FillValues<qint32>(&expected, {-126, -124, -122, -120, -118, -116}); test::ExpectTensorEqual<qint32>(expected, *GetOutput(0)); } TEST_F(UniformQuantizedAddOpTest, PerTensorSameScaleScalarAddScalar) { TF_ASSERT_OK(NodeDefBuilder("test", "UniformQuantizedAdd") .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("T", DT_QINT32) .Attr("lhs_quantization_axis", -1) .Attr("rhs_quantization_axis", -1) .Attr("output_quantization_axis", -1) .Attr("lhs_quantization_min_val", kInt32Min) .Attr("lhs_quantization_max_val", kInt32Max) .Attr("rhs_quantization_min_val", kInt32Min) .Attr("rhs_quantization_max_val", kInt32Max) .Attr("output_quantization_min_val", kInt32Min) .Attr("output_quantization_max_val", kInt32Max) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<qint32>(TensorShape({}), {-6}); AddInputFromArray<qint32>(TensorShape({}), {-100}); AddInputFromArray<float>(TensorShape({}), {2}); AddInputFromArray<int32>(TensorShape({}), {-20}); AddInputFromArray<float>(TensorShape({}), {2}); AddInputFromArray<int32>(TensorShape({}), {0}); AddInputFromArray<float>(TensorShape({}), {2}); AddInputFromArray<int32>(TensorShape({}), {-40}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QINT32, TensorShape({})); test::FillValues<qint32>(&expected, {-126}); test::ExpectTensorEqual<qint32>(expected, *GetOutput(0)); } TEST_F(UniformQuantizedAddOpTest, TensorAddEmptyTensor) { TF_ASSERT_OK(NodeDefBuilder("test", "UniformQuantizedAdd") .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("T", DT_QINT32) .Attr("lhs_quantization_axis", -1) .Attr("rhs_quantization_axis", -1) .Attr("output_quantization_axis", -1) .Attr("lhs_quantization_min_val", kInt32Min) .Attr("lhs_quantization_max_val", kInt32Max) .Attr("rhs_quantization_min_val", kInt32Min) .Attr("rhs_quantization_max_val", kInt32Max) .Attr("output_quantization_min_val", kInt32Min) .Attr("output_quantization_max_val", kInt32Max) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<qint32>(TensorShape({2, 1, 1}), {-6, -12}); AddInputFromArray<qint32>(TensorShape({2, 0, 1}), {}); AddInputFromArray<float>(TensorShape({}), {2}); AddInputFromArray<int32>(TensorShape({}), {-20}); AddInputFromArray<float>(TensorShape({}), {2}); AddInputFromArray<int32>(TensorShape({}), {0}); AddInputFromArray<float>(TensorShape({}), {2}); AddInputFromArray<int32>(TensorShape({}), {-40}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QINT32, TensorShape({2, 0, 1})); test::FillValues<qint32>(&expected, {}); test::ExpectTensorEqual<qint32>(expected, *GetOutput(0)); } TEST_F(UniformQuantizedAddOpTest, ScalarAddEmptyTensor) { TF_ASSERT_OK(NodeDefBuilder("test", "UniformQuantizedAdd") .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("T", DT_QINT32) .Attr("lhs_quantization_axis", -1) .Attr("rhs_quantization_axis", -1) .Attr("output_quantization_axis", -1) .Attr("lhs_quantization_min_val", kInt32Min) .Attr("lhs_quantization_max_val", kInt32Max) .Attr("rhs_quantization_min_val", kInt32Min) .Attr("rhs_quantization_max_val", kInt32Max) .Attr("output_quantization_min_val", kInt32Min) .Attr("output_quantization_max_val", kInt32Max) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<qint32>(TensorShape({}), {-6}); AddInputFromArray<qint32>(TensorShape({2, 0, 1}), {}); AddInputFromArray<float>(TensorShape({}), {2}); AddInputFromArray<int32>(TensorShape({}), {-20}); AddInputFromArray<float>(TensorShape({}), {2}); AddInputFromArray<int32>(TensorShape({}), {0}); AddInputFromArray<float>(TensorShape({}), {2}); AddInputFromArray<int32>(TensorShape({}), {-40}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QINT32, TensorShape({2, 0, 1})); test::FillValues<qint32>(&expected, {}); test::ExpectTensorEqual<qint32>(expected, *GetOutput(0)); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/uniform_quant_ops/uniform_quantized_add_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/uniform_quant_ops/uniform_quantized_add_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
02af6d36-38bc-425f-b15d-5894c9ee2f50
cpp
tensorflow/tensorflow
resource_variable
tensorflow/lite/experimental/resource/resource_variable.cc
tensorflow/lite/experimental/resource/resource_variable_test.cc
#include "tensorflow/lite/experimental/resource/resource_variable.h" #include <cstdlib> #include <cstring> #include <map> #include <memory> #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/experimental/resource/resource_base.h" namespace tflite { namespace resource { ResourceVariable::ResourceVariable() { memset(&tensor_, 0, sizeof(TfLiteTensor)); } ResourceVariable::ResourceVariable(ResourceVariable&& other) { tensor_ = other.tensor_; is_initialized_ = other.is_initialized_; memset(&other.tensor_, 0, sizeof(TfLiteTensor)); other.is_initialized_ = false; } ResourceVariable::~ResourceVariable() { if (is_initialized_) { free(tensor_.data.raw); if (tensor_.dims) { TfLiteIntArrayFree(tensor_.dims); } } } TfLiteStatus ResourceVariable::AssignFrom(const TfLiteTensor* tensor) { char* old_raw = tensor_.data.raw; size_t old_bytes = tensor_.bytes; TfLiteIntArray* old_dims = tensor_.dims; memset(&tensor_, 0, sizeof(tensor_)); tensor_.name = "ResourceVariable"; tensor_.allocation_type = kTfLiteDynamic; tensor_.type = tensor->type; tensor_.params = tensor->params; tensor_.quantization = tensor->quantization; if (TfLiteIntArrayEqual(old_dims, tensor->dims)) { tensor_.dims = old_dims; } else { TfLiteIntArrayFree(old_dims); tensor_.dims = TfLiteIntArrayCopy(tensor->dims); } tensor_.data.raw = old_raw; if (old_bytes != tensor->bytes) { TfLiteTensorRealloc(tensor->bytes, &tensor_); } else { tensor_.bytes = old_bytes; } memcpy(tensor_.data.raw, tensor->data.raw, tensor_.bytes); is_initialized_ = true; return kTfLiteOk; } void CreateResourceVariableIfNotAvailable(ResourceMap* resources, int resource_id) { if (resources->count(resource_id) != 0) { return; } resources->emplace(resource_id, std::make_unique<ResourceVariable>()); } ResourceVariable* GetResourceVariable(ResourceMap* resources, int resource_id) { auto it = resources->find(resource_id); if (it != resources->end()) { return static_cast<ResourceVariable*>(it->second.get()); } return nullptr; } bool IsBuiltinResource(const TfLiteTensor* tensor) { return tensor && tensor->type == kTfLiteResource && tensor->delegate == nullptr; } } }
#include "tensorflow/lite/experimental/resource/resource_variable.h" #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/util.h" namespace tflite { namespace resource { void InitTensor(const std::vector<int>& shape, TfLiteAllocationType alloc_type, float default_value, TfLiteTensor* tensor) { memset(tensor, 0, sizeof(TfLiteTensor)); int num_elements = 1; for (auto dim : shape) num_elements *= dim; if (shape.empty()) num_elements = 0; float* buf = static_cast<float*>(malloc(sizeof(float) * num_elements)); for (int i = 0; i < num_elements; ++i) buf[i] = default_value; const int bytes = num_elements * sizeof(buf[0]); auto* dims = ConvertArrayToTfLiteIntArray(shape.size(), shape.data()); TfLiteTensorReset(TfLiteType::kTfLiteFloat32, nullptr, dims, {}, reinterpret_cast<char*>(buf), bytes, alloc_type, nullptr, false, tensor); } TEST(ResourceTest, NonDynamicTensorAssign) { ResourceVariable var; EXPECT_FALSE(var.IsInitialized()); TfLiteTensor tensor; std::vector<int> shape = {1}; InitTensor(shape, kTfLiteArenaRw, 1.0f, &tensor); EXPECT_EQ(kTfLiteOk, var.AssignFrom(&tensor)); EXPECT_TRUE(var.IsInitialized()); auto* value = var.GetTensor(); EXPECT_EQ(kTfLiteDynamic, value->allocation_type); EXPECT_EQ(kTfLiteFloat32, value->type); EXPECT_EQ(sizeof(float), value->bytes); ASSERT_THAT(value, DimsAre({1})); EXPECT_EQ(1.0f, value->data.f[0]); free(tensor.data.raw); TfLiteTensorFree(&tensor); } TEST(ResourceTest, DynamicTensorAssign) { ResourceVariable var; EXPECT_FALSE(var.IsInitialized()); TfLiteTensor tensor; std::vector<int> shape = {1}; InitTensor(shape, kTfLiteDynamic, 1.0f, &tensor); EXPECT_EQ(kTfLiteOk, var.AssignFrom(&tensor)); EXPECT_TRUE(var.IsInitialized()); auto* value = var.GetTensor(); EXPECT_EQ(kTfLiteDynamic, value->allocation_type); EXPECT_EQ(kTfLiteFloat32, value->type); EXPECT_EQ(sizeof(float), value->bytes); ASSERT_THAT(value, DimsAre({1})); EXPECT_EQ(1.0f, value->data.f[0]); TfLiteTensorFree(&tensor); } TEST(ResourceTest, AssignSameSizeTensor) { ResourceVariable var; EXPECT_FALSE(var.IsInitialized()); TfLiteTensor tensor_a, tensor_b; std::vector<int> shape_a = {1}; std::vector<int> shape_b = {1}; InitTensor(shape_a, kTfLiteDynamic, 1.0, &tensor_a); InitTensor(shape_b, kTfLiteDynamic, 4.0, &tensor_b); EXPECT_EQ(kTfLiteOk, var.AssignFrom(&tensor_a)); EXPECT_TRUE(var.IsInitialized()); auto* value = var.GetTensor(); EXPECT_EQ(kTfLiteDynamic, value->allocation_type); EXPECT_EQ(kTfLiteFloat32, value->type); EXPECT_EQ(sizeof(float), value->bytes); ASSERT_THAT(value, DimsAre({1})); EXPECT_EQ(1.0f, value->data.f[0]); EXPECT_EQ(kTfLiteOk, var.AssignFrom(&tensor_b)); EXPECT_TRUE(var.IsInitialized()); value = var.GetTensor(); EXPECT_EQ(kTfLiteDynamic, value->allocation_type); EXPECT_EQ(kTfLiteFloat32, value->type); EXPECT_EQ(sizeof(float), value->bytes); ASSERT_THAT(value, DimsAre({1})); EXPECT_EQ(4.0f, value->data.f[0]); TfLiteTensorFree(&tensor_a); TfLiteTensorFree(&tensor_b); } TEST(ResourceTest, AssignDifferentSizeTensor) { ResourceVariable var; EXPECT_FALSE(var.IsInitialized()); TfLiteTensor tensor_a, tensor_b; std::vector<int> shape_a = {1}; std::vector<int> shape_b = {2}; InitTensor(shape_a, kTfLiteDynamic, 1.0, &tensor_a); InitTensor(shape_b, kTfLiteDynamic, 4.0, &tensor_b); EXPECT_EQ(kTfLiteOk, var.AssignFrom(&tensor_a)); EXPECT_TRUE(var.IsInitialized()); auto* value = var.GetTensor(); EXPECT_EQ(kTfLiteDynamic, value->allocation_type); EXPECT_EQ(kTfLiteFloat32, value->type); EXPECT_EQ(sizeof(float), value->bytes); EXPECT_EQ(1, value->dims->size); EXPECT_EQ(1, value->dims->data[0]); EXPECT_EQ(1.0f, value->data.f[0]); EXPECT_EQ(kTfLiteOk, var.AssignFrom(&tensor_b)); EXPECT_TRUE(var.IsInitialized()); value = var.GetTensor(); EXPECT_EQ(kTfLiteDynamic, value->allocation_type); EXPECT_EQ(kTfLiteFloat32, value->type); EXPECT_EQ(sizeof(float) * 2, value->bytes); ASSERT_THAT(value, DimsAre({2})); EXPECT_EQ(4.0f, value->data.f[0]); TfLiteTensorFree(&tensor_a); TfLiteTensorFree(&tensor_b); } TEST(IsBuiltinResource, IsBuiltinResourceTest) { TfLiteTensor tensor; tensor.type = kTfLiteResource; tensor.delegate = nullptr; EXPECT_TRUE(IsBuiltinResource(&tensor)); EXPECT_FALSE(IsBuiltinResource(nullptr)); tensor.type = kTfLiteFloat32; EXPECT_FALSE(IsBuiltinResource(&tensor)); tensor.type = kTfLiteResource; TfLiteDelegate delegate; tensor.delegate = &delegate; EXPECT_FALSE(IsBuiltinResource(&tensor)); } TEST(ResourceTest, GetMemoryUsage) { ResourceVariable var; EXPECT_FALSE(var.IsInitialized()); TfLiteTensor tensor; std::vector<int> shape = {100}; InitTensor(shape, kTfLiteArenaRw, 1.0f, &tensor); EXPECT_EQ(kTfLiteOk, var.AssignFrom(&tensor)); EXPECT_TRUE(var.IsInitialized()); auto* value = var.GetTensor(); EXPECT_EQ(kTfLiteDynamic, value->allocation_type); EXPECT_EQ(kTfLiteFloat32, value->type); EXPECT_EQ(100 * sizeof(float), value->bytes); ASSERT_THAT(value, DimsAre({100})); EXPECT_EQ(1.0f, value->data.f[0]); EXPECT_EQ(100 * sizeof(float), var.GetMemoryUsage()); free(tensor.data.raw); TfLiteTensorFree(&tensor); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/resource/resource_variable.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/resource/resource_variable_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
db9bf754-48fc-47e9-953c-1b2d185fbf79
cpp
tensorflow/tensorflow
generator
tensorflow/lite/schema/builtin_ops_header/generator.cc
tensorflow/lite/schema/builtin_ops_header/generator_test.cc
#include "tensorflow/lite/schema/builtin_ops_header/generator.h" #include <string> #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace builtin_ops_header { namespace { const char* kFileHeader = R"( #ifndef TENSORFLOW_LITE_BUILTIN_OPS_H_ #define TENSORFLOW_LITE_BUILTIN_OPS_H_ #ifdef __cplusplus extern "C" { #endif typedef enum { )"; const char* kFileFooter = R"(} TfLiteBuiltinOperator; #ifdef __cplusplus } #endif #endif )"; } bool IsValidInputEnumName(const std::string& name) { const char* begin = name.c_str(); const char* ch = begin; while (*ch != '\0') { if (ch != begin) { if (*ch != '_') { return false; } ++ch; } bool empty = true; while (isupper(*ch) || isdigit(*ch)) { empty = false; ++ch; } if (empty) { return false; } } return true; } std::string ConstantizeVariableName(const std::string& name) { std::string result = "kTfLiteBuiltin"; bool uppercase = true; for (char input_char : name) { if (input_char == '_') { uppercase = true; } else if (uppercase) { result += toupper(input_char); uppercase = false; } else { result += tolower(input_char); } } return result; } bool GenerateHeader(std::ostream& os) { auto enum_names = tflite::EnumNamesBuiltinOperator(); for (auto enum_value : EnumValuesBuiltinOperator()) { auto enum_name = enum_names[enum_value]; if (!IsValidInputEnumName(enum_name)) { std::cerr << "Invalid input enum name: " << enum_name << std::endl; return false; } } os << kFileHeader; for (auto enum_value : EnumValuesBuiltinOperator()) { auto enum_name = enum_names[enum_value]; os << " "; os << ConstantizeVariableName(enum_name); os << " = "; os << enum_value; os << ",\n"; } os << kFileFooter; return true; } } }
#include "tensorflow/lite/schema/builtin_ops_header/generator.h" #include <fstream> #include <gtest/gtest.h> namespace { using tflite::builtin_ops_header::ConstantizeVariableName; using tflite::builtin_ops_header::IsValidInputEnumName; TEST(TestIsValidInputEnumName, TestWithValidInputNames) { EXPECT_TRUE(IsValidInputEnumName("ADD")); EXPECT_TRUE(IsValidInputEnumName("CONV_2D")); EXPECT_TRUE(IsValidInputEnumName("L2_POOL_2D")); } TEST(TestIsValidInputEnumName, TestWithLeadingUnderscore) { EXPECT_FALSE(IsValidInputEnumName("_ADD")); EXPECT_FALSE(IsValidInputEnumName("_CONV_2D")); } TEST(TestIsValidInputEnumName, TestWithLowerCase) { EXPECT_FALSE(IsValidInputEnumName("_AdD")); EXPECT_FALSE(IsValidInputEnumName("_COnV_2D")); } TEST(TestIsValidInputEnumName, TestWithOtherCharacters) { EXPECT_FALSE(IsValidInputEnumName("_AdD!2D")); EXPECT_FALSE(IsValidInputEnumName("_COnV?2D")); } TEST(TestIsValidInputEnumName, TestWithDoubleUnderscores) { EXPECT_FALSE(IsValidInputEnumName("ADD__2D")); EXPECT_FALSE(IsValidInputEnumName("CONV__2D")); } TEST(TestConstantizeVariableName, TestWithValidInputNames) { EXPECT_EQ(ConstantizeVariableName("ADD"), "kTfLiteBuiltinAdd"); EXPECT_EQ(ConstantizeVariableName("CONV_2D"), "kTfLiteBuiltinConv2d"); EXPECT_EQ(ConstantizeVariableName("L2_POOL_2D"), "kTfLiteBuiltinL2Pool2d"); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/schema/builtin_ops_header/generator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/schema/builtin_ops_header/generator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7f27a8a3-8772-4af9-a79e-dda37cf9c8dc
cpp
tensorflow/tensorflow
graph_info
tensorflow/lite/graph_info.cc
tensorflow/lite/graph_info_test.cc
#include "tensorflow/lite/graph_info.h" #include <algorithm> #include <vector> #include "tensorflow/lite/context_util.h" #include "tensorflow/lite/core/c/common.h" namespace tflite { namespace { template <class T> void Uniquefy(std::vector<T>* items) { std::sort(items->begin(), items->end()); items->erase(std::unique(items->begin(), items->end()), items->end()); } class PartitionGraphIntoIndependentNodeSubsetsImpl { public: PartitionGraphIntoIndependentNodeSubsetsImpl( const GraphInfo* info, const TfLiteIntArray* nodes_to_partition, std::vector<NodeSubset>* node_subsets, bool greedily, const ControlEdges& control_edges) : info_(info), node_subsets_(node_subsets), node_type_(info_->num_total_nodes(), NodeSubset::kTfNonPartition), greedily_(greedily), control_edges_(control_edges), num_incoming_control_edges_(info_->num_execution_nodes(), 0) { for (auto node_index : TfLiteIntArrayView(nodes_to_partition)) { node_type_[node_index] = NodeSubset::kTfPartition; } Uniquefy(&control_edges_); } void Partition() { node_subsets_->clear(); tensor_epochs_.clear(); tensor_epochs_.resize(info_->num_tensors(), kEpochAlwaysReady); node_epochs_.clear(); node_epochs_.resize(info_->num_execution_nodes(), kEpochNotReady); num_incoming_control_edges_.clear(); num_incoming_control_edges_.resize(info_->num_execution_nodes(), 0); for (const auto& edge : control_edges_) { ++num_incoming_control_edges_[edge.second]; } for (int node_index = 0; node_index < info_->num_execution_nodes(); node_index++) { const TfLiteNode& node = info_->node(node_index); for (int output_tensor_index : TfLiteIntArrayView(node.outputs)) { if (output_tensor_index == kTfLiteOptionalTensor) continue; tensor_epochs_[output_tensor_index] = kEpochNotReady; } } while (true) { BuildNodeSubset(); if (node_subsets_->back().nodes.empty()) { node_subsets_->pop_back(); break; } } for (int output_index : info_->outputs()) { int output_epoch = tensor_epochs_[output_index]; if (output_epoch == kEpochAlwaysReady) { continue; } NodeSubset& output_subset = (*node_subsets_)[output_epoch]; output_subset.output_tensors.push_back(output_index); } for (NodeSubset& node_subset : *node_subsets_) { Uniquefy(&node_subset.input_tensors); Uniquefy(&node_subset.output_tensors); } } private: enum { kEpochNotReady = -1, kEpochAlwaysReady = -2 }; bool UpdateNode(int node_index) { const TfLiteNode& node = info_->node(node_index); NodeSubset& current_subset = node_subsets_->back(); int current_epoch = node_subsets_->size() - 1; if (node_epochs_[node_index] != kEpochNotReady) { return false; } for (int input_tensor_index : TfLiteIntArrayView(node.inputs)) { if (input_tensor_index != kTfLiteOptionalTensor && tensor_epochs_[input_tensor_index] == kEpochNotReady) { return false; } } if (num_incoming_control_edges_[node_index] != 0) { return false; } int original_node_idx = info_->node_index(node_index); if (current_subset.type == NodeSubset::kTfUnexplored) { current_subset.type = node_type_[original_node_idx]; } if (current_subset.type == node_type_[original_node_idx]) { node_epochs_[node_index] = current_epoch; current_subset.nodes.push_back(original_node_idx); for (int output_tensor_index : TfLiteIntArrayView(node.outputs)) { if (output_tensor_index == kTfLiteOptionalTensor) continue; tensor_epochs_[output_tensor_index] = current_epoch; } for (int input_tensor_index : TfLiteIntArrayView(node.inputs)) { if (input_tensor_index == kTfLiteOptionalTensor) { continue; } int input_epoch = tensor_epochs_[input_tensor_index]; int node_epoch = current_epoch; if (input_epoch != node_epoch) { current_subset.input_tensors.push_back(input_tensor_index); if (input_epoch >= 0) { NodeSubset& input_subset = (*node_subsets_)[input_epoch]; input_subset.output_tensors.push_back(input_tensor_index); } } } for (auto edge_iter = std::lower_bound(control_edges_.begin(), control_edges_.end(), ControlEdge(node_index, 0)); edge_iter != control_edges_.end() && edge_iter->first == node_index; ++edge_iter) { --num_incoming_control_edges_[edge_iter->second]; } return true; } else { return false; } } void BuildNodeSubset() { node_subsets_->emplace_back(NodeSubset()); while (true) { bool did_something = false; for (int node_index = 0; node_index < info_->num_execution_nodes(); node_index++) { if (UpdateNode(node_index)) { did_something = true; } else { if (did_something && !greedily_) { return; } } } if (!did_something) return; } } const GraphInfo* info_; std::vector<NodeSubset>* node_subsets_; std::vector<NodeSubset::Type> node_type_; std::vector<int> tensor_epochs_; std::vector<int> node_epochs_; const bool greedily_; ControlEdges control_edges_; std::vector<int> num_incoming_control_edges_; }; } TfLiteStatus PartitionGraphIntoIndependentNodeSubsets( const GraphInfo* info, const TfLiteIntArray* nodes_to_partition, std::vector<NodeSubset>* node_subsets, bool greedily, const ControlEdges* control_edges) { ControlEdges my_control_edges; if (control_edges == nullptr) { control_edges = &my_control_edges; if (greedily) { for (int last_op_with_side_effect = -1, node_index = 0; node_index < info->num_execution_nodes(); ++node_index) { const auto& node = info->node(node_index); if (node.might_have_side_effect) { if (last_op_with_side_effect != -1) { my_control_edges.emplace_back(last_op_with_side_effect, node_index); } last_op_with_side_effect = node_index; } } } } PartitionGraphIntoIndependentNodeSubsetsImpl( info, nodes_to_partition, node_subsets, greedily, *control_edges) .Partition(); return kTfLiteOk; } }
#include "tensorflow/lite/graph_info.h" #include <stddef.h> #include <algorithm> #include <memory> #include <tuple> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/common.h" namespace tflite { namespace { using ::testing::Eq; using ::testing::ExplainMatchResult; using ::testing::Pointwise; using NodeSubsets = std::vector<NodeSubset>; TfLiteIntArray* ConvertVector(const std::vector<int>& x) { TfLiteIntArray* lite = TfLiteIntArrayCreate(x.size()); for (size_t i = 0; i < x.size(); i++) lite->data[i] = x[i]; return lite; } class SimpleTestGraph : public GraphInfo { public: SimpleTestGraph( const std::vector<int>& inputs, const std::vector<int>& outputs, const std::vector<std::tuple<std::vector<int>, std::vector<int>, bool>>& nodes, int node_index_offset = 0) : inputs_(inputs), outputs_(outputs), node_index_offset_(node_index_offset) { NeedsTensors(inputs_); NeedsTensors(outputs_); for (int i = 0; i < node_index_offset; ++i) AddNode({}, {}, false); for (const auto& [inputs, outputs, might_have_side_effect] : nodes) { AddNode(inputs, outputs, might_have_side_effect); } registrations_.resize(nodes.size()); } ~SimpleTestGraph() override { for (auto& node : nodes_) { TfLiteIntArrayFree(node.inputs); TfLiteIntArrayFree(node.outputs); } } size_t num_total_nodes() const override { return nodes_.size(); } size_t num_execution_nodes() const override { return nodes_.size() - node_index_offset_; } const TfLiteNode& node(size_t index) const override { return nodes_[index + node_index_offset_]; } size_t node_index(size_t index) const override { return index + node_index_offset_; } size_t num_tensors() const override { return tensors_.size(); } const TfLiteRegistration& registration(size_t index) const override { return registrations_[index + node_index_offset_]; } TfLiteTensor* tensor(size_t index) override { return &tensors_[index]; } TfLiteTensor* tensors() override { return tensors_.data(); } const std::vector<int>& inputs() const override { return inputs_; } const std::vector<int>& outputs() const override { return outputs_; } const std::vector<int>& variables() const override { return variables_; } private: void AddNode(const std::vector<int>& inputs, const std::vector<int>& outputs, bool might_have_side_effect) { NeedsTensors(inputs); NeedsTensors(outputs); nodes_.push_back(TfLiteNode()); TfLiteNode& node = nodes_.back(); node.inputs = ConvertVector(inputs); node.outputs = ConvertVector(outputs); node.might_have_side_effect = might_have_side_effect; } void NeedsTensors(const std::vector<int>& tensors) { for (const int tensor : tensors) tensors_.resize(std::max<int>(tensor + 1, tensors_.size())); } std::vector<TfLiteNode> nodes_; std::vector<TfLiteTensor> tensors_; std::vector<int> inputs_; std::vector<int> outputs_; std::vector<int> variables_; std::vector<TfLiteRegistration> registrations_; size_t node_index_offset_; }; void PartitionGraphOrDie(const SimpleTestGraph& graph, const std::vector<int>& nodes_to_partition, NodeSubsets* subgraphs, const bool greedily, const ControlEdges* control_edges) { TfLiteIntArray* nodes_to_partition_int_array = ConvertVector(nodes_to_partition); ASSERT_EQ(PartitionGraphIntoIndependentNodeSubsets( &graph, nodes_to_partition_int_array, subgraphs, greedily, control_edges), kTfLiteOk); TfLiteIntArrayFree(nodes_to_partition_int_array); } NodeSubsets PartitionGraph(const SimpleTestGraph& graph, const std::vector<int>& nodes_to_partition, const bool greedily = true, const ControlEdges* control_edges = nullptr) { NodeSubsets subgraphs; PartitionGraphOrDie(graph, nodes_to_partition, &subgraphs, greedily, control_edges); return subgraphs; } MATCHER(EqNodeSubset, "") { const NodeSubset& a = std::get<0>(arg); const NodeSubset& b = std::get<1>(arg); if (a.type != b.type) { *result_listener << "mismatched .type "; return ExplainMatchResult(Eq(b.type), a.type, result_listener); } if (a.nodes != b.nodes) { *result_listener << "mismatched .nodes "; return ExplainMatchResult(Pointwise(Eq(), b.nodes), a.nodes, result_listener); } if (a.input_tensors != b.input_tensors) { *result_listener << "mismatched .input_tensors "; return ExplainMatchResult(Pointwise(Eq(), b.input_tensors), a.input_tensors, result_listener); } if (a.output_tensors != b.output_tensors) { *result_listener << "mismatched .output_tensors "; return ExplainMatchResult(Pointwise(Eq(), b.output_tensors), a.output_tensors, result_listener); } return true; } TEST(PartitionTest, Nodes0PartitionNodes0) { EXPECT_THAT(PartitionGraph({ {}, {}, {}, }, {}), Pointwise(EqNodeSubset(), NodeSubsets({}))); } TEST(PartitionTest, Nodes0PartitionNodes0Tensors1) { EXPECT_THAT(PartitionGraph({ {0}, {0}, {}, }, {}), Pointwise(EqNodeSubset(), NodeSubsets({}))); } TEST(PartitionTest, Nodes1PartitionNodes0) { EXPECT_THAT( PartitionGraph({ {0}, {1}, { {{0}, {1}, false}, }, }, {}), Pointwise(EqNodeSubset(), NodeSubsets({ { NodeSubset::kTfNonPartition, {0}, {0}, {1}, }, }))); } TEST(PartitionTest, Nodes1PartitionNodes0_WithOffset) { constexpr int node_index_offset = 17; EXPECT_THAT( PartitionGraph({ {0}, {1}, { {{0}, {1}, false}, }, node_index_offset, }, {}), Pointwise(EqNodeSubset(), NodeSubsets({ { NodeSubset::kTfNonPartition, {node_index_offset}, {0}, {1}, }, }))); } TEST(PartitionTest, Nodes1PartitionNodes0Inputs0) { EXPECT_THAT( PartitionGraph({ {}, {0}, { {{}, {0}, false}, }, }, {0}), Pointwise(EqNodeSubset(), NodeSubsets({ { NodeSubset::kTfPartition, {0}, {}, {0}, }, }))); } TEST(PartitionTest, Nodes1PartitionNodes1) { EXPECT_THAT( PartitionGraph({ {0}, {1}, { {{0}, {1}, false}, }, }, {0}), Pointwise(EqNodeSubset(), NodeSubsets({ { NodeSubset::kTfPartition, {0}, {0}, {1}, }, }))); } TEST(PartitionTest, Nodes2PartitionNodes1) { EXPECT_THAT( PartitionGraph({ {0}, {2}, { {{0}, {1}, false}, {{1}, {2}, false}, }, }, {1}), Pointwise(EqNodeSubset(), NodeSubsets({ { NodeSubset::kTfNonPartition, {0}, {0}, {1}, }, { NodeSubset::kTfPartition, {1}, {1}, {2}, }, }))); } TEST(PartitionTest, Nodes2PartitionNodes1_WithOffset) { constexpr int node_index_offset = 17; EXPECT_THAT( PartitionGraph({{0}, {2}, { {{0}, {1}, false}, {{1}, {2}, false}, }, node_index_offset}, {node_index_offset + 1}), Pointwise(EqNodeSubset(), NodeSubsets({ { NodeSubset::kTfNonPartition, {node_index_offset + 0}, {0}, {1}, }, { NodeSubset::kTfPartition, {node_index_offset + 1}, {1}, {2}, }, }))); } TEST(PartitionTest, Nodes2PartitionNodes2) { EXPECT_THAT( PartitionGraph({ {0}, {2}, { {{0}, {1}, false}, {{1}, {2}, false}, }, }, {0, 1}), Pointwise(EqNodeSubset(), NodeSubsets({ { NodeSubset::kTfPartition, {0, 1}, {0}, {2}, }, }))); } TEST(PartitionTest, Nodes3PartitionNodes2) { EXPECT_THAT( PartitionGraph({ {0}, {3}, { {{0}, {1}, false}, {{1}, {2}, false}, {{1, 2}, {3}, false}, }, }, {0, 2}), Pointwise(EqNodeSubset(), NodeSubsets({ { NodeSubset::kTfPartition, {0}, {0}, {1}, }, { NodeSubset::kTfNonPartition, {1}, {1}, {2}, }, { NodeSubset::kTfPartition, {2}, {1, 2}, {3}, }, }))); } TEST(PartitionTest, Nodes3PartitionNodes2Greedily) { EXPECT_THAT( PartitionGraph({ {0}, {2, 3}, { {{0}, {1}, false}, {{1}, {2}, false}, {{1}, {3}, false}, }, }, {0, 2}), Pointwise(EqNodeSubset(), NodeSubsets({ { NodeSubset::kTfPartition, {0, 2}, {0}, {1, 3}, }, { NodeSubset::kTfNonPartition, {1}, {1}, {2}, }, }))); } TEST(PartitionTest, Nodes3PartitionNodes2ClusteredNonGreedily) { EXPECT_THAT( PartitionGraph({ {0}, {2, 3}, { {{0}, {1}, false}, {{1}, {2}, false}, {{1}, {3}, false}, }, }, {0, 2}, false), Pointwise(EqNodeSubset(), NodeSubsets({ { NodeSubset::kTfPartition, {0}, {0}, {1}, }, { NodeSubset::kTfNonPartition, {1}, {1}, {2}, }, { NodeSubset::kTfPartition, {2}, {1}, {3}, }, }))); } TEST(PartitionTest, Nodes4PartitionNodes3_WithControlDependency) { EXPECT_THAT( PartitionGraph({ {0}, {4}, { {{0}, {1}, true}, {{1}, {2}, true}, {{2}, {3}, false}, {{1, 3}, {}, true}, {{1}, {4}, true}, }, }, {0, 1, 3, 4}), Pointwise(EqNodeSubset(), NodeSubsets({ { NodeSubset::kTfPartition, {0, 1}, {0}, {1, 2}, }, { NodeSubset::kTfNonPartition, {2}, {2}, {3}, }, { NodeSubset::kTfPartition, {3, 4}, {1, 3}, {4}, }, }))); } TEST(PartitionTest, Nodes4PartitionNodes3_WithExternalControlDependency) { const ControlEdges control_edges = { {0, 1}, {1, 3}, {3, 4}, }; EXPECT_THAT( PartitionGraph({ {0}, {4}, { {{0}, {1}, false}, {{1}, {2}, false}, {{2}, {3}, false}, {{1, 3}, {}, false}, {{1}, {4}, false}, }, }, {0, 1, 3, 4}, true, &control_edges), Pointwise(EqNodeSubset(), NodeSubsets({ { NodeSubset::kTfPartition, {0, 1}, {0}, {1, 2}, }, { NodeSubset::kTfNonPartition, {2}, {2}, {3}, }, { NodeSubset::kTfPartition, {3, 4}, {1, 3}, {4}, }, }))); } TEST(PartitionTest, ComplexGreedily) { EXPECT_THAT( PartitionGraph({ {0}, {4, 7}, { {{0}, {1}, false}, {{1}, {2, 5}, false}, {{2}, {3}, false}, {{3}, {4}, false}, {{5}, {6}, false}, {{6}, {7}, false}, }, }, {0, 1, 4, 5}), Pointwise(EqNodeSubset(), NodeSubsets({ { NodeSubset::kTfPartition, {0, 1, 4, 5}, {0}, {2, 7}, }, { NodeSubset::kTfNonPartition, {2, 3}, {2}, {4}, }, }))); } TEST(PartitionTest, ComplexNonGreedily) { EXPECT_THAT( PartitionGraph({ {0}, {4, 7}, { {{0}, {1}, false}, {{1}, {2, 5}, false}, {{2}, {3}, false}, {{3}, {4}, false}, {{5}, {6}, false}, {{6}, {7}, false}, }, }, {0, 1, 4, 5}, false), Pointwise(EqNodeSubset(), NodeSubsets({ { NodeSubset::kTfPartition, {0, 1}, {0}, {2, 5}, }, { NodeSubset::kTfNonPartition, {2, 3}, {2}, {4}, }, { NodeSubset::kTfPartition, {4, 5}, {5}, {7}, }, }))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/graph_info.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/graph_info_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a8c62eca-f2f6-4cb4-a2bd-14bcec19ffd3
cpp
tensorflow/tensorflow
mlir_bridge_pass_util
tensorflow/compiler/mlir/tf2xla/internal/mlir_bridge_pass_util.cc
tensorflow/compiler/mlir/tf2xla/internal/mlir_bridge_pass_util_test.cc
#include "tensorflow/compiler/mlir/tf2xla/internal/mlir_bridge_pass_util.h" #include <functional> #include <memory> #include <optional> #include <string> #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "llvm/ADT/StringRef.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/Operation.h" #include "mlir/IR/Visitors.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" #include "tensorflow/compiler/tf2xla/tf2xla_defs.h" #include "tensorflow/core/common_runtime/function_body.h" #include "tensorflow/core/common_runtime/function_def_utils.h" #include "tensorflow/core/graph/graph.h" #include "tsl/platform/status.h" namespace tensorflow { using ::mlir::failure; using ::mlir::LogicalResult; using ::mlir::success; namespace { constexpr absl::string_view kPartitionedCall = "TPUPartitionedCall"; LogicalResult HasAttr( const Graph& graph, const FunctionLibraryDefinition* function_library, const std::function<bool(const Graph& graph)>& predicate) { if (predicate(graph)) { return success(); } GraphDef graph_def; graph.ToGraphDef(&graph_def); if (!function_library) return failure(); for (const std::string& func_name : function_library->ReachableDefinitions(graph_def).ListFunctionNames()) { const FunctionDef* func_def = function_library->Find(func_name); std::unique_ptr<FunctionBody> func_body; absl::Status status = FunctionDefToBodyHelper( *func_def, AttrSlice(&func_def->attr()), function_library, &func_body); if (!status.ok()) { LOG(ERROR) << "Failed to parse " << func_name << ": " << absl::StatusMessageAsCStr(status); return failure(); } if (predicate(*func_body->graph)) { return success(); } } return failure(); } bool HasPsWithResourceVariable(const Graph& graph) { const std::string jobType = "ps"; const std::string nodeType = "_Arg"; const std::string attrKey = "T"; for (const Node* node : graph.nodes()) { if (node->type_string() == nodeType) { auto device_name = node->assigned_device_name(); DeviceNameUtils::ParsedName device; if (DeviceNameUtils::ParseFullName(device_name, &device) && device.has_job && device.job == jobType) { for (const auto& attr : node->attrs()) { auto attr_key = attr.first; auto attr_value = attr.second; if (attr_key == attrKey && attr_value.value_case() == AttrValue::kType && attr_value.type() == DT_RESOURCE) { return true; break; } } } } } return false; } bool IsNonReplicatedGraph(const Graph& graph, const FunctionLibraryDefinition* function_library) { auto predicate = [](const Graph& graph) { const std::string kStatefulPartitionedCallOp = "StatefulPartitionedCall"; for (const Node* node : graph.nodes()) { auto node_op = node->type_string(); if (node_op == kStatefulPartitionedCallOp) { auto attr = node->attrs().FindByString(std::string(kMustCompileAttr)); if (attr != nullptr && attr->b() == true) { return true; } } } return false; }; return HasAttr(graph, function_library, predicate).succeeded(); } bool IsReplicatedGraph(const Graph& graph, const FunctionLibraryDefinition* function_library) { auto predicate = [](const Graph& graph) { for (const Node* node : graph.nodes()) { if (node->attrs().FindByString(std::string(kTpuReplicateAttr))) { return true; } } return false; }; return HasAttr(graph, function_library, predicate).succeeded(); } bool IsReplicatedGraph(mlir::ModuleOp module) { auto walk_result = module.walk([&](mlir::Operation* op) { const llvm::StringRef tpu_replicate_attr_name(kTpuReplicateAttr.data(), kTpuReplicateAttr.size()); auto replicate_attr = op->getAttrOfType<mlir::StringAttr>(tpu_replicate_attr_name); if (replicate_attr) return mlir::WalkResult::interrupt(); return mlir::WalkResult::advance(); }); return walk_result.wasInterrupted(); } bool DoesGraphContainTPUPartitionedCall(const Graph& graph) { for (const Node* node : graph.nodes()) { if (node->type_string() == kPartitionedCall) return true; } return false; } bool DoReachableFuncsContainTPUPartitionedCall( const GraphDef& graph_def, const FunctionLibraryDefinition& flib_def) { for (const std::string& func_name : flib_def.ReachableDefinitions(graph_def).ListFunctionNames()) { const FunctionDef* func_def = flib_def.Find(func_name); std::unique_ptr<FunctionBody> func_body; if (!FunctionDefToBodyHelper(*func_def, AttrSlice(&func_def->attr()), &flib_def, &func_body) .ok()) return false; if (DoesGraphContainTPUPartitionedCall(*func_body->graph)) return true; } return false; } bool AreFunctionsFromFlibDefInference( const FunctionLibraryDefinition& flib_def) { for (const std::string& func_name : flib_def.ListFunctionNames()) { const FunctionDef* func_def = flib_def.Find(func_name); for (const NodeDef& node_def : func_def->node_def()) { if (node_def.op() == kPartitionedCall) return true; } } return false; } } bool IsSupportedByNonReplicatedBridge( const Graph& graph, const FunctionLibraryDefinition* function_library) { return IsNonReplicatedGraph(graph, function_library) && HasPsWithResourceVariable(graph); } bool IsSupportedByReplicatedBridge( const Graph& graph, const FunctionLibraryDefinition* function_library) { return IsReplicatedGraph(graph, function_library); } bool IsSupportedByReplicatedBridge(mlir::ModuleOp module) { return IsReplicatedGraph(module); } bool HasTPUPartitionedCallOpInModule(mlir::ModuleOp module) { bool has_tpu_partitioned_call = false; for (auto func_op : module.getOps<mlir::func::FuncOp>()) { func_op->walk([&](mlir::TF::TPUPartitionedCallOp op) { has_tpu_partitioned_call = true; }); if (has_tpu_partitioned_call) break; } return has_tpu_partitioned_call; } bool IsInferenceGraph(const Graph& graph, const FunctionLibraryDefinition* function_library) { if (DoesGraphContainTPUPartitionedCall(graph)) return true; GraphDef graph_def; graph.ToGraphDef(&graph_def); if (DoReachableFuncsContainTPUPartitionedCall(graph_def, graph.flib_def())) return true; if (AreFunctionsFromFlibDefInference(graph.flib_def())) return true; if (function_library == nullptr) return false; if (DoReachableFuncsContainTPUPartitionedCall(graph_def, *function_library)) return true; if (AreFunctionsFromFlibDefInference(*function_library)) return true; return false; } }
#include "tensorflow/compiler/mlir/tf2xla/internal/mlir_bridge_pass_util.h" #include <vector> #include <gtest/gtest.h> #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Parser/Parser.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/function_ops.h" #include "tensorflow/cc/ops/tpu_functional_ops.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_dialect.h" #include "tensorflow/compiler/tf2xla/tf2xla_defs.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/platform/enable_tf2_utils.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace { FunctionDef PassThroughResource() { return FunctionDefHelper::Define( "PassThroughResource", {"in: resource"}, {"out: resource"}, {}, {{{"out"}, "Identity", {"in"}, {{"T", DataType::DT_RESOURCE}}}}); } TEST(IsSupportedByNonReplicatedBridge, NonReplicatedGraph) { const FunctionDef& fd = PassThroughResource(); FunctionDefLibrary flib; *flib.add_function() = fd; FunctionLibraryDefinition flib_def(OpRegistry::Global(), flib); Graph graph(flib_def); graph.SetConstructionContext(ConstructionContext::kEagerRuntime); tensorflow::set_tf2_execution(true); ConfigProto config = ConfigProto(); Scope root = Scope::NewRootScope().ExitOnError(); Output a = ops::_Arg(root.WithOpName("A"), DT_RESOURCE, 0); std::vector<NodeBuilder::NodeOut> inputs({NodeBuilder::NodeOut(a.node())}); Node* call; NameAttrList f_name_attr; f_name_attr.set_name(fd.signature().name()); TF_ASSERT_OK( NodeBuilder("B", "StatefulPartitionedCall", &root.graph()->flib_def()) .Input(inputs) .Attr("Tin", {DT_RESOURCE}) .Attr("Tout", {DT_RESOURCE}) .Attr("f", f_name_attr) .Finalize(root.graph(), &call)); call->AddAttr(std::string(kMustCompileAttr), true); TF_ASSERT_OK(root.ToGraph(&graph)); for (Node* node : graph.nodes()) { node->set_assigned_device_name("/job:ps/replica:0/task:0/device:GPU:0"); } EXPECT_TRUE( IsSupportedByNonReplicatedBridge(graph, nullptr)); } TEST(IsSupportedByReplicatedBridge, ReplicatedGraph) { const FunctionDef& fd = test::function::XTimesTwo(); FunctionDefLibrary flib; *flib.add_function() = fd; FunctionLibraryDefinition flib_def(OpRegistry::Global(), flib); Graph graph(flib_def); graph.SetConstructionContext(ConstructionContext::kEagerRuntime); tensorflow::set_tf2_execution(true); ConfigProto config = ConfigProto(); Scope root = Scope::NewRootScope().ExitOnError(); Output a = ops::_Arg(root.WithOpName("A"), DT_FLOAT, 0); std::vector<NodeBuilder::NodeOut> inputs({NodeBuilder::NodeOut(a.node())}); Node* call; NameAttrList f_name_attr; f_name_attr.set_name(fd.signature().name()); TF_ASSERT_OK( NodeBuilder("B", "StatefulPartitionedCall", &root.graph()->flib_def()) .Input(inputs) .Attr("Tin", {DT_FLOAT}) .Attr("Tout", {DT_FLOAT}) .Attr("f", f_name_attr) .Finalize(root.graph(), &call)); call->AddAttr(std::string(kTpuReplicateAttr), "cluster"); TF_ASSERT_OK(root.ToGraph(&graph)); EXPECT_TRUE( IsSupportedByReplicatedBridge(graph, nullptr)); } TEST(IsSupportedByReplicatedBridge, ReplicatedModule) { const char* const code = R"mlir( func.func @entry_func_1(%arg0: tensor<i32>) -> tensor<i32> attributes {tf.entry_function = {}} { %0 = "tf.Identity"(%arg0) {_tpu_replicate = "cluster"} : (tensor<i32>) -> (tensor<i32>) func.return %0 : tensor<i32> } )mlir"; mlir::MLIRContext context; context.loadDialect<mlir::func::FuncDialect, mlir::TF::TensorFlowDialect>(); mlir::OwningOpRef<mlir::ModuleOp> module = mlir::parseSourceString<mlir::ModuleOp>(code, &context); ASSERT_TRUE(module); EXPECT_TRUE(IsSupportedByReplicatedBridge(*module)); } TEST(HasTPUPartitionedCallOpInModule, HasTPUPartitionedCallModule) { const char* const code = R"mlir( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 268 : i32}} { func.func @main() { %outputs_0 = "tf.TPUOrdinalSelector"() {device = ""} : () -> tensor<?xi32> "tf.TPUPartitionedCall"(%outputs_0) {f = @reachable_func} : (tensor<?xi32>) -> () func.return } func.func @reachable_func() { func.return } } )mlir"; mlir::MLIRContext context; context.loadDialect<mlir::func::FuncDialect, mlir::TF::TensorFlowDialect>(); mlir::OwningOpRef<mlir::ModuleOp> module = mlir::parseSourceString<mlir::ModuleOp>(code, &context); ASSERT_TRUE(module); EXPECT_TRUE(HasTPUPartitionedCallOpInModule(*module)); } TEST(HasTPUPartitionedCallOpInModule, HasNotTPUPartitionedCallModule) { const char* const code = R"mlir( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 268 : i32}} { func.func @main() { "tf.StatefulPartitionedCall"() {config = "", config_proto = "", executor_type = "", f = @reachable_func} : () -> () func.return } func.func @reachable_func() { func.return } } )mlir"; mlir::MLIRContext context; context.loadDialect<mlir::func::FuncDialect, mlir::TF::TensorFlowDialect>(); mlir::OwningOpRef<mlir::ModuleOp> module = mlir::parseSourceString<mlir::ModuleOp>(code, &context); ASSERT_TRUE(module); EXPECT_FALSE(HasTPUPartitionedCallOpInModule(*module)); } TEST(IsInferenceGraph, GraphContrainsTPUPartitionedCall) { FunctionDef fd = FunctionDefHelper::Define( "XTimesTwoFloat", {"x: float"}, {"y: float"}, {}, { {{"two"}, "Const", {}, {{"value", test::AsScalar<int32>(2)}, {"dtype", DT_INT64}}}, {{"scale"}, "Cast", {"two"}, {{"SrcT", DT_INT64}, {"DstT", DT_FLOAT}}}, {{"y"}, "Mul", {"x", "scale"}, {{"T", DT_FLOAT}}}, }); tensorflow::set_tf2_execution(true); FunctionDefLibrary flib; *flib.add_function() = fd; FunctionLibraryDefinition flib_def(OpRegistry::Global(), flib); Graph graph(flib_def); graph.SetConstructionContext(ConstructionContext::kDirectSession); Scope root = Scope::NewRootScope().ExitOnError(); Output x = ops::Placeholder(root.WithOpName("x"), DT_FLOAT); NameAttrList f_name_attr; f_name_attr.set_name("XTimesTwoFloat"); ops::TPUPartitionedCall f(root.WithOpName("f"), {x}, 0, {DT_FLOAT}, f_name_attr); TF_ASSERT_OK(root.ToGraph(&graph)); EXPECT_TRUE(IsInferenceGraph(graph, nullptr)); } TEST(IsInferenceGraph, GraphDoesNotContrainTPUPartitionedCall) { FunctionDef fd = FunctionDefHelper::Define( "XTimesTwoFloat", {"x: float"}, {"y: float"}, {}, { {{"two"}, "Const", {}, {{"value", test::AsScalar<int32>(2)}, {"dtype", DT_INT64}}}, {{"scale"}, "Cast", {"two"}, {{"SrcT", DT_INT64}, {"DstT", DT_FLOAT}}}, {{"y"}, "Mul", {"x", "scale"}, {{"T", DT_FLOAT}}}, }); tensorflow::set_tf2_execution(true); FunctionDefLibrary flib; *flib.add_function() = fd; FunctionLibraryDefinition flib_def(OpRegistry::Global(), flib); Graph graph(flib_def); graph.SetConstructionContext(ConstructionContext::kDirectSession); Scope root = Scope::NewRootScope().ExitOnError(); Output x = ops::Placeholder(root.WithOpName("x"), DT_FLOAT); NameAttrList f_name_attr; f_name_attr.set_name("XTimesTwoFloat"); TF_ASSERT_OK(root.ToGraph(&graph)); EXPECT_FALSE(IsInferenceGraph(graph, nullptr)); } TEST(IsInferenceGraph, FlibDefIsNotNullptrAndContainsTPUPartitionedCall) { FunctionDef fd = FunctionDefHelper::Define( "XTimesTwoFloat", {"x: float"}, {"y: float"}, {}, { {{"two"}, "Const", {}, {{"value", test::AsScalar<int32>(2)}, {"dtype", DT_INT64}}}, {{"scale"}, "Cast", {"two"}, {{"SrcT", DT_INT64}, {"DstT", DT_FLOAT}}}, {{"y"}, "Mul", {"x", "scale"}, {{"T", DT_FLOAT}}}, {{"tpu_op"}, "TPUPartitionedCall", {}, {{"Tout", DT_FLOAT}}}, }); tensorflow::set_tf2_execution(true); FunctionDefLibrary flib; *flib.add_function() = fd; FunctionLibraryDefinition flib_def(OpRegistry::Global(), flib); Graph graph(flib_def); graph.SetConstructionContext(ConstructionContext::kDirectSession); Scope root = Scope::NewRootScope().ExitOnError(); Output x = ops::Placeholder(root.WithOpName("x"), DT_FLOAT); NameAttrList f_name_attr; f_name_attr.set_name("XTimesTwoFloat"); TF_ASSERT_OK(root.ToGraph(&graph)); EXPECT_TRUE(IsInferenceGraph(graph, &flib_def)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/internal/mlir_bridge_pass_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/internal/mlir_bridge_pass_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2c1d0483-3721-4fbd-81ae-17a6f8237a77
cpp
google/tensorstore
subprocess
tensorstore/internal/os/subprocess.h
tensorstore/internal/os/subprocess_test.cc
#ifndef TENSORSTORE_INTERNAL_SUBPROCESS_H_ #define TENSORSTORE_INTERNAL_SUBPROCESS_H_ #include <memory> #include <optional> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal { class Subprocess; struct SubprocessOptions { std::string executable; std::vector<std::string> args; std::optional<absl::flat_hash_map<std::string, std::string>> env; struct Inherit {}; struct Ignore {}; struct Redirect { std::string filename; }; std::variant<Ignore, Redirect> stdin_action = Ignore{}; std::variant<Inherit, Ignore, Redirect> stdout_action = Inherit{}; std::variant<Inherit, Ignore, Redirect> stderr_action = Inherit{}; }; Result<Subprocess> SpawnSubprocess(const SubprocessOptions& options); class Subprocess { public: Subprocess(const Subprocess&) = default; Subprocess& operator=(const Subprocess&) = default; Subprocess(Subprocess&&) = default; Subprocess& operator=(Subprocess&&) = default; ~Subprocess(); absl::Status Kill(int signal = 9) const; Result<int> Join(bool block = true) const; private: friend Result<Subprocess> SpawnSubprocess(const SubprocessOptions& options); struct Impl; Subprocess(std::shared_ptr<Subprocess::Impl> impl) : impl_(std::move(impl)) {} std::shared_ptr<Subprocess::Impl> impl_; }; } } #endif
#include "tensorstore/internal/os/subprocess.h" #include <cstdio> #include <string> #include <string_view> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "riegeli/bytes/fd_reader.h" #include "riegeli/bytes/read_all.h" #include "tensorstore/internal/env.h" #include "tensorstore/internal/path.h" #include "tensorstore/internal/testing/scoped_directory.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::internal::JoinPath; using ::tensorstore::internal::SpawnSubprocess; using ::tensorstore::internal::SubprocessOptions; static std::string* program_name = nullptr; const char kSubprocessArg[] = "--is_subprocess"; const char kSleepArg[] = "--sleep"; TEST(SubprocessTest, Join) { SubprocessOptions opts; opts.executable = *program_name; opts.args = {kSubprocessArg}; auto child = SpawnSubprocess(opts); TENSORSTORE_ASSERT_OK(child.status()); int exit_code; TENSORSTORE_ASSERT_OK_AND_ASSIGN(exit_code, child->Join()); EXPECT_EQ(exit_code, 33); } TEST(SubprocessTest, Kill) { SubprocessOptions opts; opts.executable = *program_name; opts.args = {kSleepArg, kSubprocessArg}; auto child = SpawnSubprocess(opts); TENSORSTORE_ASSERT_OK(child.status()); EXPECT_THAT(child->Join(false), tensorstore::MatchesStatus(absl::StatusCode::kUnavailable)); child->Kill().IgnoreError(); int exit_code; TENSORSTORE_ASSERT_OK_AND_ASSIGN(exit_code, child->Join()); EXPECT_NE(exit_code, 33); } TEST(SubprocessTest, DontInherit) { SubprocessOptions opts; opts.executable = *program_name; opts.args = {kSubprocessArg}; opts.stdout_action = SubprocessOptions::Ignore(); opts.stderr_action = SubprocessOptions::Ignore(); auto child = SpawnSubprocess(opts); TENSORSTORE_ASSERT_OK(child.status()); int exit_code; TENSORSTORE_ASSERT_OK_AND_ASSIGN(exit_code, child->Join()); EXPECT_EQ(exit_code, 33); } TEST(SubprocessTest, Redirects) { ::tensorstore::internal_testing::ScopedTemporaryDirectory temp_dir; std::string out_file = JoinPath(temp_dir.path(), "stdout"); SubprocessOptions opts; opts.executable = *program_name; opts.args = {kSubprocessArg}; opts.env.emplace(::tensorstore::internal::GetEnvironmentMap()); opts.env->insert_or_assign("SUBPROCESS_TEST_ENV", "1"); opts.stdout_action = SubprocessOptions::Redirect{out_file}; opts.stderr_action = SubprocessOptions::Redirect{out_file}; auto child = SpawnSubprocess(opts); TENSORSTORE_ASSERT_OK(child.status()); int exit_code; TENSORSTORE_ASSERT_OK_AND_ASSIGN(exit_code, child->Join()); EXPECT_EQ(exit_code, 33); std::string filedata; TENSORSTORE_CHECK_OK(riegeli::ReadAll(riegeli::FdReader(out_file), filedata)); EXPECT_THAT(filedata, ::testing::HasSubstr("PASS")); } TEST(SubprocessTest, Drop) { SubprocessOptions opts; opts.executable = *program_name; opts.args = {kSubprocessArg}; auto child = SpawnSubprocess(opts); TENSORSTORE_ASSERT_OK(child.status()); child->Kill().IgnoreError(); } TEST(SubprocessTest, Env) { SubprocessOptions opts; opts.executable = *program_name; opts.args = {"--env=SUBPROCESS_TEST_ENV"}; opts.env = absl::flat_hash_map<std::string, std::string>({ #ifdef _WIN32 {"PATH", ::tensorstore::internal::GetEnv("PATH").value_or("")}, #endif {"SUBPROCESS_TEST_ENV", "1"}}); auto child = SpawnSubprocess(opts); ASSERT_TRUE(child.ok()); int exit_code; TENSORSTORE_ASSERT_OK_AND_ASSIGN(exit_code, child->Join()); EXPECT_EQ(exit_code, 41); } } int main(int argc, char* argv[]) { program_name = new std::string(argv[0]); ABSL_LOG(INFO) << *program_name; for (int i = 1; i < argc; i++) { std::string_view argv_i(argv[i]); if (argv_i == kSubprocessArg) { printf("PASS\n"); return 33; } if (argv_i == kSleepArg) { absl::SleepFor(absl::Seconds(1)); } if (absl::StartsWith(argv_i, "--env=")) { auto env_str = argv_i.substr(6); if (env_str.empty()) { return 40; } if (tensorstore::internal::GetEnv(env_str.data()).has_value()) { return 41; } return 42; } } ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/os/subprocess.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/os/subprocess_test.cc
4f887a6430414cd6088e1743555015b10f116d50
9973afe3-dec3-41d3-a3be-739f6757b498
cpp
google/tensorstore
uint64_sharded_decoder
tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_decoder.cc
tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_decoder_test.cc
#include "tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_decoder.h" #include <stddef.h> #include <stdint.h> #include <optional> #include <string_view> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/internal/endian.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "tensorstore/internal/compression/zlib.h" #include "tensorstore/internal/cord_util.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace neuroglancer_uint64_sharded { Result<std::vector<MinishardIndexEntry>> DecodeMinishardIndex( const absl::Cord& input, ShardingSpec::DataEncoding encoding) { absl::Cord decoded_input; if (encoding != ShardingSpec::DataEncoding::raw) { TENSORSTORE_ASSIGN_OR_RETURN(decoded_input, DecodeData(input, encoding)); } else { decoded_input = input; } if ((decoded_input.size() % 24) != 0) { return absl::InvalidArgumentError(tensorstore::StrCat( "Invalid minishard index length: ", decoded_input.size())); } std::vector<MinishardIndexEntry> result(decoded_input.size() / 24); static_assert(sizeof(MinishardIndexEntry) == 24); auto decoded_flat = decoded_input.Flatten(); ChunkId chunk_id{0}; uint64_t byte_offset = 0; for (size_t i = 0; i < result.size(); ++i) { auto& entry = result[i]; chunk_id.value += absl::little_endian::Load64(decoded_flat.data() + i * 8); entry.chunk_id = chunk_id; byte_offset += absl::little_endian::Load64(decoded_flat.data() + i * 8 + 8 * result.size()); entry.byte_range.inclusive_min = byte_offset; byte_offset += absl::little_endian::Load64(decoded_flat.data() + i * 8 + 16 * result.size()); entry.byte_range.exclusive_max = byte_offset; if (!entry.byte_range.SatisfiesInvariants()) { return absl::InvalidArgumentError(tensorstore::StrCat( "Invalid byte range in minishard index for chunk ", entry.chunk_id.value, ": ", entry.byte_range)); } } absl::c_sort(result, [](const MinishardIndexEntry& a, const MinishardIndexEntry& b) { return a.chunk_id.value < b.chunk_id.value; }); return result; } std::optional<ByteRange> FindChunkInMinishard( span<const MinishardIndexEntry> minishard_index, ChunkId chunk_id) { auto it = absl::c_lower_bound(minishard_index, chunk_id, [](const MinishardIndexEntry& e, ChunkId chunk_id) { return e.chunk_id.value < chunk_id.value; }); if (it == minishard_index.end() || it->chunk_id.value != chunk_id.value) { return std::nullopt; } return it->byte_range; } Result<absl::Cord> DecodeData(const absl::Cord& input, ShardingSpec::DataEncoding encoding) { if (encoding == ShardingSpec::DataEncoding::raw) { return input; } absl::Cord uncompressed; TENSORSTORE_RETURN_IF_ERROR( zlib::Decode(input, &uncompressed, true)); return uncompressed; } Result<ByteRange> DecodeShardIndexEntry(std::string_view input) { if (input.size() != 16) { return absl::FailedPreconditionError(tensorstore::StrCat( "Expected 16 bytes, but received: ", input.size(), " bytes")); } ByteRange r; r.inclusive_min = absl::little_endian::Load64(input.data()); r.exclusive_max = absl::little_endian::Load64(input.data() + 8); if (!r.SatisfiesInvariants()) { return absl::FailedPreconditionError( tensorstore::StrCat("Shard index specified invalid byte range: ", r)); } return r; } Result<std::vector<MinishardIndexEntry>> DecodeMinishardIndexAndAdjustByteRanges(const absl::Cord& encoded, const ShardingSpec& sharding_spec) { TENSORSTORE_ASSIGN_OR_RETURN( auto minishard_index, DecodeMinishardIndex(encoded, sharding_spec.minishard_index_encoding)); for (auto& entry : minishard_index) { auto result = GetAbsoluteShardByteRange(entry.byte_range, sharding_spec); if (!result.ok()) { return MaybeAnnotateStatus( result.status(), tensorstore::StrCat("Error decoding minishard index entry for chunk ", entry.chunk_id.value)); } entry.byte_range = std::move(result).value(); } return minishard_index; } namespace { absl::Status SplitMinishard(const ShardingSpec& sharding_spec, const absl::Cord& shard_data, uint64_t minishard, span<const MinishardIndexEntry> minishard_index, std::vector<EncodedChunk>& chunks) { std::optional<ChunkId> prev_chunk_id; for (const auto& existing_entry : minishard_index) { if (prev_chunk_id && existing_entry.chunk_id.value == prev_chunk_id->value) { return absl::FailedPreconditionError( tensorstore::StrCat("Chunk ", existing_entry.chunk_id.value, " occurs more than once in the minishard index " "for minishard ", minishard)); } prev_chunk_id = existing_entry.chunk_id; const auto GetChunkByteRange = [&]() -> Result<ByteRange> { TENSORSTORE_RETURN_IF_ERROR( OptionalByteRangeRequest(existing_entry.byte_range) .Validate(shard_data.size())); return existing_entry.byte_range; }; TENSORSTORE_ASSIGN_OR_RETURN( auto chunk_byte_range, GetChunkByteRange(), tensorstore::MaybeAnnotateStatus( _, tensorstore::StrCat("Invalid existing byte range for chunk ", existing_entry.chunk_id.value))); chunks.push_back( EncodedChunk{{minishard, existing_entry.chunk_id}, internal::GetSubCord(shard_data, chunk_byte_range)}); } return absl::OkStatus(); } } Result<std::vector<EncodedChunk>> SplitShard(const ShardingSpec& sharding_spec, const absl::Cord& shard_data) { std::vector<EncodedChunk> chunks; if (shard_data.empty()) return chunks; const uint64_t num_minishards = sharding_spec.num_minishards(); if (shard_data.size() < num_minishards * 16) { return absl::FailedPreconditionError( tensorstore::StrCat("Existing shard has size ", shard_data.size(), ", but expected at least: ", num_minishards * 16)); } std::vector<char> shard_index(16 * num_minishards); internal::CopyCordToSpan(shard_data, shard_index); for (uint64_t minishard = 0; minishard < num_minishards; ++minishard) { const auto GetMinishardIndexByteRange = [&]() -> Result<ByteRange> { TENSORSTORE_ASSIGN_OR_RETURN( auto minishard_index_byte_range, DecodeShardIndexEntry( std::string_view(shard_index.data() + 16 * minishard, 16))); TENSORSTORE_ASSIGN_OR_RETURN( minishard_index_byte_range, GetAbsoluteShardByteRange(minishard_index_byte_range, sharding_spec)); TENSORSTORE_RETURN_IF_ERROR( OptionalByteRangeRequest(minishard_index_byte_range) .Validate(shard_data.size())); return minishard_index_byte_range; }; TENSORSTORE_ASSIGN_OR_RETURN( auto minishard_ibr, GetMinishardIndexByteRange(), tensorstore::MaybeAnnotateStatus( _, tensorstore::StrCat( "Error decoding existing shard index entry for minishard ", minishard))); if (minishard_ibr.size() == 0) continue; TENSORSTORE_ASSIGN_OR_RETURN( auto minishard_index, DecodeMinishardIndexAndAdjustByteRanges( internal::GetSubCord(shard_data, minishard_ibr), sharding_spec), tensorstore::MaybeAnnotateStatus( _, tensorstore::StrCat( "Error decoding existing minishard index for minishard ", minishard))); TENSORSTORE_RETURN_IF_ERROR(SplitMinishard( sharding_spec, shard_data, minishard, minishard_index, chunks)); } return chunks; } } }
#include "tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_decoder.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/internal/compression/zlib.h" #include "tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded.h" #include "tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_encoder.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { namespace zlib = tensorstore::zlib; using ::tensorstore::MatchesStatus; using ::tensorstore::neuroglancer_uint64_sharded::DecodeMinishardIndex; using ::tensorstore::neuroglancer_uint64_sharded::EncodeMinishardIndex; using ::tensorstore::neuroglancer_uint64_sharded::MinishardIndexEntry; using ::tensorstore::neuroglancer_uint64_sharded::ShardIndexEntry; using ::tensorstore::neuroglancer_uint64_sharded::ShardingSpec; void TestEncodeMinishardRoundTrip( std::vector<MinishardIndexEntry> minishard_index) { auto out = EncodeMinishardIndex(minishard_index); absl::Cord compressed; zlib::Options options{9, true}; zlib::Encode(out, &compressed, options); EXPECT_THAT( DecodeMinishardIndex(out, ShardingSpec::DataEncoding::raw), ::testing::Optional(::testing::ElementsAreArray(minishard_index))); EXPECT_THAT( DecodeMinishardIndex(compressed, ShardingSpec::DataEncoding::gzip), ::testing::Optional(::testing::ElementsAreArray(minishard_index))); } TEST(DecodeMinishardIndexTest, Empty) { TestEncodeMinishardRoundTrip({}); } TEST(DecodeMinishardIndexTest, SingleEntry) { TestEncodeMinishardRoundTrip({{{0x0123456789abcdef}, {0x11, 0x23}}}); } TEST(DecodeMinishardIndexTest, MultipleEntries) { TestEncodeMinishardRoundTrip({ {{1}, {3, 10}}, {{7}, {12, 15}}, }); } TEST(DecodeMinishardIndexTest, InvalidGzip) { EXPECT_THAT( DecodeMinishardIndex(absl::Cord("abc"), ShardingSpec::DataEncoding::gzip), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error decoding zlib-compressed data")); } TEST(DecodeMinishardIndexTest, InvalidSizeRaw) { EXPECT_THAT( DecodeMinishardIndex(absl::Cord("abc"), ShardingSpec::DataEncoding::raw), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid minishard index length: 3")); } TEST(DecodeMinishardIndexTest, InvalidSizeGzip) { absl::Cord temp; zlib::Options options{9, true}; zlib::Encode(absl::Cord("abc"), &temp, options); EXPECT_THAT(DecodeMinishardIndex(temp, ShardingSpec::DataEncoding::gzip), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid minishard index length: 3")); } TEST(DecodeMinishardIndexTest, InvalidInterval) { std::vector<MinishardIndexEntry> minishard_index{{{3}, {1, 0}}}; auto encoded = EncodeMinishardIndex(minishard_index); EXPECT_THAT( DecodeMinishardIndex(encoded, ShardingSpec::DataEncoding::raw), MatchesStatus( absl::StatusCode::kInvalidArgument, "Invalid byte range in minishard index for chunk 3: \\[1, 0\\)")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_decoder.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_decoder_test.cc
4f887a6430414cd6088e1743555015b10f116d50
e59be81d-78e8-4178-b423-a8826f3c6fff
cpp
tensorflow/tensorflow
scatter_simplifier
third_party/xla/xla/service/scatter_simplifier.cc
third_party/xla/xla/service/scatter_simplifier_test.cc
#include "xla/service/scatter_simplifier.h" #include <algorithm> #include <cstdint> #include <iterator> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/inlined_vector.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/permutation_util.h" #include "xla/service/call_inliner.h" #include "xla/service/gather_scatter_utils.h" #include "xla/service/hlo_creation_utils.h" #include "xla/shape.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { absl::StatusOr<HloInstruction*> FlattenAndTransposeUpdates( HloInstruction* updates, absl::Span<const int64_t> update_window_dims, absl::Span<const int64_t> inserted_window_dims, int64_t scatter_indices_size) { int64_t updates_rank = updates->shape().rank(); std::vector<int64_t> permutation; const int64_t num_scatter_dims = updates_rank - update_window_dims.size(); permutation.reserve(updates_rank); for (int i = 0; i < updates_rank; ++i) { if (!absl::c_linear_search(update_window_dims, i)) { permutation.push_back(i); } } absl::c_copy(update_window_dims, std::back_inserter(permutation)); TF_ASSIGN_OR_RETURN(updates, MaybeTranspose(updates, permutation)); if (num_scatter_dims > 1) { TF_ASSIGN_OR_RETURN(updates, CollapseFirstNDims(updates, num_scatter_dims)); } else if (num_scatter_dims == 0) { TF_ASSIGN_OR_RETURN(updates, InsertDegenerateDims(updates, {0})); } if (!inserted_window_dims.empty()) { std::vector<int64_t> new_dims; new_dims.reserve(inserted_window_dims.size()); for (int64_t i : inserted_window_dims) { new_dims.push_back(i + 1); } TF_ASSIGN_OR_RETURN(updates, InsertDegenerateDims(updates, new_dims)); } return updates; } std::vector<int64_t> MakeUpdatePermutation( const std::vector<int64_t>& operand_permutation) { std::vector<int64_t> update_permutation; update_permutation.reserve(operand_permutation.size() + 1); update_permutation.push_back(0); for (auto& dim : operand_permutation) { update_permutation.push_back(dim + 1); } return update_permutation; } absl::StatusOr<std::vector<HloInstruction*>> TransformScatterUpdates( HloScatterInstruction* scatter, const std::vector<int64_t>& update_permutation, int64_t scatter_indices_size) { std::vector<HloInstruction*> scatter_updates; const auto& attrs = scatter->scatter_dimension_numbers(); scatter_updates.reserve(scatter->scatter_updates().size()); for (auto* update : scatter->scatter_updates()) { TF_ASSIGN_OR_RETURN( scatter_updates.emplace_back(), FlattenAndTransposeUpdates(update, attrs.update_window_dims(), attrs.inserted_window_dims(), scatter_indices_size)); } return MaybeTranspose(scatter_updates, update_permutation); } ScatterDimensionNumbers MakeScatterDimensionNumbers( int64_t operand_rank, int64_t scatter_indices_vector_size) { ScatterDimensionNumbers dim_numbers; dim_numbers.mutable_update_window_dims()->Reserve( static_cast<int>(operand_rank)); for (int i = 0; i < operand_rank; ++i) { dim_numbers.add_update_window_dims(1 + i); } dim_numbers.mutable_scatter_dims_to_operand_dims()->Reserve( static_cast<int>(scatter_indices_vector_size)); for (int i = 0; i < scatter_indices_vector_size; ++i) { dim_numbers.add_scatter_dims_to_operand_dims(i); } dim_numbers.set_index_vector_dim(1); return dim_numbers; } } absl::StatusOr<HloInstruction*> ScatterSimplifier::ExpandInstruction( HloInstruction* inst) { auto* scatter = Cast<HloScatterInstruction>(inst); if (scatter->called_computations().size() != 1) { return InvalidArgumentStrCat( "Expected scatter->called_computations() to have exactly one element, " "got ", scatter->called_computations().size()); } HloComputation* called_computation = scatter->called_computations().front(); const auto& attrs = scatter->scatter_dimension_numbers(); const int operand_rank = attrs.update_window_dims().size() + attrs.inserted_window_dims().size(); if (operand_rank == 0) { absl::InlinedVector<HloInstruction*, 2> scatter_operands_and_updates; scatter_operands_and_updates.reserve(2 * scatter->operand_count()); absl::c_copy(scatter->scatter_operands(), std::back_inserter(scatter_operands_and_updates)); absl::c_copy(scatter->scatter_updates(), std::back_inserter(scatter_operands_and_updates)); auto* call_op = scatter->AddInstruction(HloInstruction::CreateCall( scatter->shape(), scatter_operands_and_updates, called_computation)); TF_RETURN_IF_ERROR(scatter->ReplaceAllUsesWith(call_op)); TF_ASSIGN_OR_RETURN(auto map, CallInliner::Inline(call_op)); return map[call_op]; } auto [operand_permutation, operand_permutation_inverse] = MakeOperandStartIndexPermutations(attrs.scatter_dims_to_operand_dims(), operand_rank); auto update_permutation = MakeUpdatePermutation(operand_permutation); TF_ASSIGN_OR_RETURN(auto* scatter_indices, TransformStartIndices(scatter->scatter_indices(), attrs.index_vector_dim())); TF_ASSIGN_OR_RETURN( auto scatter_updates, TransformScatterUpdates(scatter, update_permutation, scatter_indices->shape().dimensions(0))); TF_ASSIGN_OR_RETURN( auto scatter_operands, MaybeTranspose(scatter->scatter_operands(), operand_permutation)); auto dim_numbers = MakeScatterDimensionNumbers( operand_rank, attrs.scatter_dims_to_operand_dims().size()); Shape output_shape; if (scatter_operands.size() == 1) { output_shape = scatter_operands.front()->shape(); } else { std::vector<Shape> shapes; shapes.reserve(scatter_operands.size()); for (auto* operand : scatter_operands) { shapes.push_back(operand->shape()); } output_shape = ShapeUtil::MakeTupleShape(shapes); } auto* result = scatter->AddInstruction(HloInstruction::CreateScatter( output_shape, scatter_operands, scatter_indices, scatter_updates, called_computation, dim_numbers, scatter->indices_are_sorted(), scatter->unique_indices())); if (IsIdentityPermutation(operand_permutation)) { return result; } if (scatter->scatter_operands().size() == 1) { return MaybeTranspose(result, operand_permutation_inverse); } std::vector<HloInstruction*> result_items; result_items.reserve(scatter->scatter_operands().size()); for (int i = 0; i < scatter->scatter_operands().size(); ++i) { TF_ASSIGN_OR_RETURN(result_items.emplace_back(), MakeGetTupleElementHlo(result, i)); TF_ASSIGN_OR_RETURN( result_items.back(), MaybeTranspose(result_items.back(), operand_permutation_inverse)); } return MaybeMakeTuple(result_items); } bool ScatterSimplifier::IsSimplifiedScatter( const HloScatterInstruction* scatter) { const auto& dims = scatter->scatter_dimension_numbers(); auto operand_rank = scatter->scatter_operands().front()->shape().rank(); if (operand_rank == 0) return false; bool nonstandard_index_vector_dim = dims.index_vector_dim() != scatter->scatter_indices()->shape().rank() - 1; int64_t num_scatter_dims = scatter->scatter_updates().front()->shape().rank() - dims.update_window_dims().size(); bool scatter_indices_reordered = !IsIdentityPermutation(dims.scatter_dims_to_operand_dims()); bool scatter_dim_not_first = absl::c_linear_search(dims.update_window_dims(), 0); bool update_window_dims_sorted = absl::c_is_sorted(dims.update_window_dims()); return !(nonstandard_index_vector_dim || num_scatter_dims > 1 || scatter_indices_reordered || scatter_dim_not_first || !update_window_dims_sorted || !dims.inserted_window_dims().empty()); } bool ScatterSimplifier::InstructionMatchesPattern(HloInstruction* inst) { auto* scatter = DynCast<HloScatterInstruction>(inst); return scatter && !IsSimplifiedScatter(scatter); } }
#include "xla/service/scatter_simplifier.h" #include <optional> #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/pass/hlo_pass_fix.h" #include "xla/hlo/pass/hlo_pass_pipeline.h" #include "xla/service/hlo_parser.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { class ScatterSimplifierTest : public HloTestBase {}; TEST_F(ScatterSimplifierTest, InsertsIndexVectorAndWindowDims) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { p0 = f32[] parameter(0) p1 = f32[] parameter(1) p2 = f32[] parameter(2) p3 = f32[] parameter(3) ROOT tuple = tuple(p2, p3) } ENTRY kernel_entry { operand0 = f32[3,3] parameter(0) operand1 = f32[3,3] parameter(1) indices = s32[2] parameter(2) update0 = f32[2,3] parameter(3) update1 = f32[2,3] parameter(4) ROOT scatter = (f32[3,3], f32[3,3]) scatter(operand0, operand1, indices, update0, update1), to_apply=scatter_computation, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 })"; RunAndFilecheckHloRewrite(kModuleStr, ScatterSimplifier(), R"( CHECK: %[[SCATTER_DIMS_WITH_VECTOR:.*]] = s32[2,1]{1,0} reshape(%indices) CHECK: %[[RESHAPED_UPDATES0:.*]] = f32[2,1,3]{2,1,0} reshape(%update0) CHECK: %[[RESHAPED_UPDATES1:.*]] = f32[2,1,3]{2,1,0} reshape(%update1) CHECK: ROOT %scatter = (f32[3,3]{1,0}, f32[3,3]{1,0}) scatter( CHECK-SAME: %operand0, %operand1, %[[SCATTER_DIMS_WITH_VECTOR]], CHECK-SAME: %[[RESHAPED_UPDATES0]], %[[RESHAPED_UPDATES1]]), CHECK-SAME: update_window_dims={1,2}, CHECK-SAME: inserted_window_dims={}, CHECK-SAME: scatter_dims_to_operand_dims={0}, CHECK-SAME: index_vector_dim=1, CHECK-SAME: to_apply=%scatter_computation )"); } TEST_F(ScatterSimplifierTest, CollapsesScatterDims) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { %p0 = f32[] parameter(0) ROOT result = f32[] parameter(1) } ENTRY kernel_entry { operand = f32[3,3] parameter(0) indices = s32[2,1,2] parameter(1) update = f32[2,1,1,3] parameter(2) ROOT scatter = f32[3,3] scatter(operand, indices, update), to_apply=scatter_computation, update_window_dims={2, 3}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=2 })"; RunAndFilecheckHloRewrite(kModuleStr, ScatterSimplifier(), R"( CHECK: %[[RESHAPED_INDICES:.*]] = s32[2,2]{1,0} reshape(%indices) CHECK: %[[RESHAPED_UPDATES:.*]] = f32[2,1,3]{2,1,0} reshape(%update) CHECK: scatter( CHECK-SAME: %[[RESHAPED_INDICES]] CHECK-SAME: %[[RESHAPED_UPDATES]] )"); } TEST_F(ScatterSimplifierTest, NoOpForSimpleScatter) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { %p0 = f32[] parameter(0) ROOT result = f32[] parameter(1) } ENTRY kernel_entry { operand = f32[3,3] parameter(0) indices = s32[2,2] parameter(1) update = f32[2,1,3] parameter(2) ROOT scatter = f32[3,3] scatter(operand, indices, update), to_apply=scatter_computation, update_window_dims={1,2}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=1 })"; RunAndFilecheckHloRewrite(kModuleStr, ScatterSimplifier(), std::nullopt); } TEST_F(ScatterSimplifierTest, MovesIndexVectorDim) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { %p0 = f32[] parameter(0) ROOT result = f32[] parameter(1) } ENTRY kernel_entry { operand = f32[3,3] parameter(0) indices = s32[2,1] parameter(1) update = f32[1,3,3] parameter(2) ROOT scatter = f32[3,3] scatter(operand, indices, update), to_apply=scatter_computation, update_window_dims={1, 2}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=0 })"; RunAndFilecheckHloRewrite(kModuleStr, ScatterSimplifier(), R"( CHECK: %[[TRANSPOSED_INDICES:.*]] = s32[1,2]{1,0} CHECK-SAME: transpose(%indices), dimensions={1,0} CHECK: scatter(%operand, %[[TRANSPOSED_INDICES]], %update), CHECK-SAME: index_vector_dim=1 )"); } TEST_F(ScatterSimplifierTest, TransformsUpdatesAndOperandUsingScatterDims) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { %p0 = f32[] parameter(0) ROOT result = f32[] parameter(1) } ENTRY kernel_entry { operand = f32[3,4,5] parameter(0) indices = s32[2,2] parameter(1) update = f32[2,1,1,3] parameter(2) ROOT scatter = f32[3,4,5] scatter(operand, indices, update), to_apply=scatter_computation, update_window_dims={1, 2, 3}, inserted_window_dims={}, scatter_dims_to_operand_dims={2,0}, index_vector_dim=1 })"; RunAndFilecheckHloRewrite(kModuleStr, ScatterSimplifier(), R"( CHECK: %[[T_OPERAND:.*]] = f32[5,3,4]{2,1,0} transpose(%operand), CHECK-SAME: dimensions={2,0,1} CHECK: %[[T_UPDATES:.*]] = f32[2,3,1,1]{3,2,1,0} transpose(%update), CHECK-SAME: dimensions={0,3,1,2} CHECK: %[[SCATTER:.*]] = {{.*}} scatter( CHECK-SAME: %[[T_OPERAND]], %indices, %[[T_UPDATES]]) CHECK-SAME: scatter_dims_to_operand_dims={0,1}, CHECK: ROOT %{{.*}} = f32[3,4,5] CHECK-SAME: transpose(%[[SCATTER]]), dimensions={1,2,0} )"); } TEST_F(ScatterSimplifierTest, MakesScatterDimensionsLeadingInUpdates) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { %p0 = f32[] parameter(0) ROOT result = f32[] parameter(1) } ENTRY kernel_entry { operand = f32[3] parameter(0) indices = s32[1,1] parameter(1) update = f32[2,1] parameter(2) ROOT scatter = f32[3] scatter(operand, indices, update), to_apply=scatter_computation, update_window_dims={0}, inserted_window_dims={}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 })"; RunAndFilecheckHloRewrite(kModuleStr, ScatterSimplifier(), R"( CHECK: %[[TRANSPOSED_UPDATES:.*]] = f32[1,2]{1,0} CHECK-SAME: transpose(%update), dimensions={1,0} CHECK: scatter( CHECK-SAME: %[[TRANSPOSED_UPDATES]] CHECK-SAME: update_window_dims={1}, )"); } TEST_F(ScatterSimplifierTest, ZeroDimScatterIndices) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { %p0 = f32[] parameter(0) ROOT result = f32[] parameter(1) } ENTRY kernel_entry { operand = f32[4,4] parameter(0) indices = s32[2] parameter(1) update = f32[3,3] parameter(2) ROOT scatter = f32[4,4]{1,0} scatter(operand, indices, update), update_window_dims={0,1}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=0, to_apply=scatter_computation })"; RunAndFilecheckHloRewrite(kModuleStr, ScatterSimplifier(), R"( CHECK: scatter( )"); } TEST_F(ScatterSimplifierTest, IsSimplifiedScatterReturnsFalseForUnsortedWindowDims) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { %p0 = f32[] parameter(0) ROOT result = f32[] parameter(1) } ENTRY kernel_entry { operand = f32[3,2] parameter(0) indices = s32[1,1] parameter(1) update = f32[1,2,2] parameter(2) ROOT scatter = f32[3,2] scatter(operand, indices, update), to_apply=scatter_computation, update_window_dims={2,1}, inserted_window_dims={}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 })"; auto module = ParseAndReturnUnverifiedModule(kModuleStr).value(); auto scatter = module->entry_computation()->root_instruction(); EXPECT_FALSE(ScatterSimplifier::IsSimplifiedScatter( Cast<HloScatterInstruction>(scatter))); } TEST_F(ScatterSimplifierTest, ScatterIntoScalar) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY kernel_entry { operand = s32[] parameter(0) indices = s32[0]{0} parameter(1) updates = s32[] parameter(2) ROOT scatter = s32[] scatter(operand, indices, updates), update_window_dims={}, inserted_window_dims={}, scatter_dims_to_operand_dims={}, index_vector_dim=0, to_apply=scatter_computation } )"; auto module = ParseAndReturnUnverifiedModule(kModuleStr).value(); RunAndFilecheckHloRewrite(kModuleStr, ScatterSimplifier(), R"( CHECK: ENTRY CHECK: %[[OPERAND:.*]] = s32[] parameter(0) CHECK: %[[UPDATES:.*]] = s32[] parameter(2) CHECK: ROOT %{{.*}} = s32[] add(%[[OPERAND]], %[[UPDATES]]) )"); } TEST_F(ScatterSimplifierTest, VariadicScatterIntoScalar) { constexpr absl::string_view kModuleStr = R"( HloModule scatter_simplifier scatter_computation { p0 = f32[] parameter(0) p1 = bf16[] parameter(1) p2 = f32[] parameter(2) p3 = bf16[] parameter(3) ROOT tuple = tuple(p2, p3) } ENTRY kernel_entry { operand0 = f32[] parameter(0) operand1 = bf16[] parameter(1) indices = s32[0]{0} parameter(2) updates0 = f32[] parameter(3) updates1 = bf16[] parameter(4) ROOT scatter = (f32[], bf16[]) scatter(operand0, operand1, indices, updates0, updates1), update_window_dims={}, inserted_window_dims={}, scatter_dims_to_operand_dims={}, index_vector_dim=0, to_apply=scatter_computation })"; RunAndFilecheckHloRewrite(kModuleStr, ScatterSimplifier(), R"( CHECK: ENTRY CHECK: %[[UPDATES0:.*]] = f32[] parameter(3) CHECK: %[[UPDATES1:.*]] = bf16[] parameter(4) CHECK: ROOT %{{.*}} = (f32[], bf16[]) tuple(%[[UPDATES0]], %[[UPDATES1]]) )"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/scatter_simplifier.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/scatter_simplifier_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b6e96f8c-48b7-4a54-83c3-09a699070b82
cpp
tensorflow/tensorflow
identity_op
tensorflow/compiler/tf2xla/kernels/identity_op.cc
tensorflow/core/kernels/identity_op_test.cc
#include "absl/log/check.h" #include "tensorflow/compiler/tf2xla/kernels/tensor_list_utils.h" #include "tensorflow/compiler/tf2xla/mlir_xla_op_kernel.h" #include "tensorflow/compiler/tf2xla/xla_op_kernel.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/types.pb.h" namespace tensorflow { namespace { class IdentityOp : public XlaOpKernel { public: explicit IdentityOp(OpKernelConstruction* context) : XlaOpKernel(context) {} void Compile(XlaOpKernelContext* ctx) override { for (int i = 0; i < ctx->num_inputs(); ++i) { if (IsTensorListInput(ctx, i)) { ctx->SetTensorListOutput(i, ctx->Input(i)); } else { DCHECK(ctx->input_type(i) != DT_VARIANT); ctx->op_kernel_context()->set_output( i, ctx->op_kernel_context()->input(i)); } } } private: IdentityOp(const IdentityOp&) = delete; void operator=(const IdentityOp&) = delete; }; REGISTER_XLA_OP( Name("Identity").AllowResourceTypes().AllowVariantTypes().CompilationOnly(), IdentityOp); REGISTER_XLA_OP(Name("IdentityN") .AllowResourceTypes() .AllowVariantTypes() .CompilationOnly(), IdentityOp); REGISTER_XLA_OP(Name("PlaceholderWithDefault"), IdentityOp); REGISTER_XLA_OP(Name("PreventGradient"), MlirXlaOpKernel); REGISTER_XLA_OP(Name("StopGradient").AllowVariantTypes(), IdentityOp); REGISTER_XLA_OP(Name("Snapshot"), IdentityOp); REGISTER_XLA_OP(Name("_EagerConst"), IdentityOp); } }
#include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { class IdentityOpTest : public OpsTestBase { protected: Status Init(DataType input_type) { TF_CHECK_OK(NodeDefBuilder("op", "Identity") .Input(FakeInput(input_type)) .Finalize(node_def())); return InitOp(); } }; TEST_F(IdentityOpTest, Int32Success_6) { TF_ASSERT_OK(Init(DT_INT32)); AddInputFromArray<int32>(TensorShape({6}), {1, 2, 3, 4, 5, 6}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_INT32, TensorShape({6})); test::FillValues<int32>(&expected, {1, 2, 3, 4, 5, 6}); test::ExpectTensorEqual<int32>(expected, *GetOutput(0)); } TEST_F(IdentityOpTest, Int32Success_2_3) { TF_ASSERT_OK(Init(DT_INT32)); AddInputFromArray<int32>(TensorShape({2, 3}), {1, 2, 3, 4, 5, 6}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_INT32, TensorShape({2, 3})); test::FillValues<int32>(&expected, {1, 2, 3, 4, 5, 6}); test::ExpectTensorEqual<int32>(expected, *GetOutput(0)); } TEST_F(IdentityOpTest, StringSuccess) { TF_ASSERT_OK(Init(DT_STRING)); AddInputFromArray<tstring>(TensorShape({6}), {"A", "b", "C", "d", "E", "f"}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_STRING, TensorShape({6})); test::FillValues<tstring>(&expected, {"A", "b", "C", "d", "E", "f"}); test::ExpectTensorEqual<tstring>(expected, *GetOutput(0)); } TEST_F(IdentityOpTest, RefInputError) { TF_ASSERT_OK(Init(DT_INT32_REF)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/kernels/identity_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/identity_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c1927ee1-1ede-4759-a812-191e2251d57c
cpp
tensorflow/tensorflow
dlpack
tensorflow/c/eager/dlpack.cc
tensorflow/c/eager/dlpack_test.cc
#include "tensorflow/c/eager/dlpack.h" #include <string> #include "include/dlpack/dlpack.h" #include "tensorflow/c/eager/c_api.h" #include "tensorflow/c/eager/c_api_experimental.h" #include "tensorflow/c/eager/tfe_tensorhandle_internal.h" #include "tensorflow/c/tf_status_internal.h" #include "tensorflow/core/common_runtime/eager/tensor_handle.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_reference.h" #include "tensorflow/core/platform/logging.h" namespace tensorflow { namespace { struct TfDlManagedTensorCtx { TensorReference reference; std::vector<int64_t> shape; std::vector<int64_t> strides; DLManagedTensor tensor; explicit TfDlManagedTensorCtx(const TensorReference& ref) : reference(ref) {} }; const Tensor* GetTensorFromHandle(TFE_TensorHandle* h, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return nullptr; } tensorflow::TensorHandle* handle = tensorflow::TensorHandleFromInterface(tensorflow::unwrap(h)); if (handle->Type() != TensorHandle::LOCAL) { status->status = tensorflow::errors::InvalidArgument( "DLPack doesn't support ", handle->TypeString(), " tensor"); return nullptr; } const tensorflow::Tensor* tensor; status->status = handle->Tensor(&tensor); if (!status->status.ok()) { return nullptr; } return tensor; } void DLManagedTensorDeleter(DLManagedTensor* arg) { TfDlManagedTensorCtx* owner = static_cast<TfDlManagedTensorCtx*>(arg->manager_ctx); owner->reference.Unref(); delete owner; } DLDataType GetDlDataType(TF_DataType data_type, TF_Status* status) { DLDataType dtype; dtype.lanes = 1; dtype.bits = TF_DataTypeSize(data_type) * 8; switch (data_type) { case TF_DataType::TF_BOOL: dtype.code = DLDataTypeCode::kDLBool; break; case TF_DataType::TF_HALF: case TF_DataType::TF_FLOAT: case TF_DataType::TF_DOUBLE: dtype.code = DLDataTypeCode::kDLFloat; break; case TF_DataType::TF_INT8: case TF_DataType::TF_INT16: case TF_DataType::TF_INT32: case TF_DataType::TF_INT64: dtype.code = DLDataTypeCode::kDLInt; break; case TF_DataType::TF_UINT8: case TF_DataType::TF_UINT16: case TF_DataType::TF_UINT32: case TF_DataType::TF_UINT64: dtype.code = DLDataTypeCode::kDLUInt; break; case TF_DataType::TF_BFLOAT16: dtype.code = DLDataTypeCode::kDLBfloat; break; case TF_DataType::TF_COMPLEX64: case TF_DataType::TF_COMPLEX128: dtype.code = DLDataTypeCode::kDLComplex; break; default: status->status = tensorflow::errors::InvalidArgument( DataType_Name(static_cast<DataType>(data_type)), " is not supported by dlpack"); break; } return dtype; } DLDevice GetDlContext(TFE_TensorHandle* h, TF_Status* status) { DLDevice ctx; const char* device_name = tensorflow::unwrap(h)->BackingDeviceName(&status->status); DeviceNameUtils::ParsedName parsed_name; tensorflow::DeviceNameUtils::ParseFullName(device_name, &parsed_name); std::string device_type = parsed_name.type; int device_id = 0; if (parsed_name.has_id) { device_id = parsed_name.id; } ctx.device_id = device_id; if (device_type == "CPU") { ctx.device_type = DLDeviceType::kDLCPU; } else if (device_type == "GPU") { #if TENSORFLOW_USE_ROCM ctx.device_type = DLDeviceType::kDLROCM; #else ctx.device_type = DLDeviceType::kDLCUDA; #endif } else { status->status = tensorflow::errors::InvalidArgument( "Unsupported Device Type for dlpack"); } return ctx; } absl::optional<std::string> DeviceNameFromDlContext(const DLDevice& ctx, TF_Status* status) { switch (ctx.device_type) { case DLDeviceType::kDLCPU: return "CPU:0"; case DLDeviceType::kDLCUDA: return absl::StrCat("GPU:", ctx.device_id); case DLDeviceType::kDLROCM: return absl::StrCat("GPU:", ctx.device_id); default: return absl::nullopt; } } Status TfDataTypeFormDlDataType(const DLDataType& dtype, TF_DataType* tf_dtype) { switch (dtype.code) { case DLDataTypeCode::kDLBool: if (dtype.bits != 8) { return tensorflow::errors::InvalidArgument( "Only DLPack bools of bitwidth 8 are supported, got: ", dtype.bits); } *tf_dtype = TF_DataType::TF_BOOL; return absl::OkStatus(); case DLDataTypeCode::kDLUInt: switch (dtype.bits) { case 8: *tf_dtype = TF_DataType::TF_UINT8; return absl::OkStatus(); case 16: *tf_dtype = TF_DataType::TF_UINT16; return absl::OkStatus(); case 32: *tf_dtype = TF_DataType::TF_UINT32; return absl::OkStatus(); case 64: *tf_dtype = TF_DataType::TF_UINT64; return absl::OkStatus(); default: return tensorflow::errors::InvalidArgument("Unsupported UInt bits: ", dtype.bits); } return absl::OkStatus(); case DLDataTypeCode::kDLInt: switch (dtype.bits) { case 8: *tf_dtype = TF_DataType::TF_INT8; return absl::OkStatus(); case 16: *tf_dtype = TF_DataType::TF_INT16; return absl::OkStatus(); case 32: *tf_dtype = TF_DataType::TF_INT32; return absl::OkStatus(); case 64: *tf_dtype = TF_DataType::TF_INT64; return absl::OkStatus(); default: return tensorflow::errors::InvalidArgument("Unsupported Int bits: ", dtype.bits); } return absl::OkStatus(); case DLDataTypeCode::kDLFloat: switch (dtype.bits) { case 16: *tf_dtype = TF_DataType::TF_HALF; return absl::OkStatus(); case 32: *tf_dtype = TF_DataType::TF_FLOAT; return absl::OkStatus(); case 64: *tf_dtype = TF_DataType::TF_DOUBLE; return absl::OkStatus(); default: return tensorflow::errors::InvalidArgument("Unsupported Float bits: ", dtype.bits); } break; case DLDataTypeCode::kDLBfloat: switch (dtype.bits) { case 16: *tf_dtype = TF_DataType::TF_BFLOAT16; return absl::OkStatus(); default: return tensorflow::errors::InvalidArgument( "Unsupported BFloat bits: ", dtype.bits); } break; case DLDataTypeCode::kDLComplex: switch (dtype.bits) { case 64: *tf_dtype = TF_DataType::TF_COMPLEX64; return absl::OkStatus(); case 128: *tf_dtype = TF_DataType::TF_COMPLEX128; return absl::OkStatus(); default: return tensorflow::errors::InvalidArgument( "Unsupported Complex bits: ", dtype.bits); } break; default: return tensorflow::errors::InvalidArgument("Unsupported Type Codes: ", dtype.code); } } void DeallocatorWrapperFunc(void* data, size_t len, void* dlmt_vptr) { TFE_CallDLManagedTensorDeleter(dlmt_vptr); } bool IsValidStrideCompactRowMajorData(int64_t* shape_arr, int64_t* stride_arr, int ndim) { bool valid = true; int64_t expected_stride = 1; for (int i = ndim - 1; i >= 0; --i) { if (shape_arr[i] == 0) return true; if (shape_arr[i] != 1 && stride_arr[i] != expected_stride) { valid = false; } expected_stride *= shape_arr[i]; } return valid; } } void TFE_CallDLManagedTensorDeleter(void* dlm_ptr) { DLManagedTensor* dlMTensor = static_cast<DLManagedTensor*>(dlm_ptr); if (dlMTensor->deleter != nullptr) { dlMTensor->deleter(dlMTensor); } } void* TFE_HandleToDLPack(TFE_TensorHandle* h, TF_Status* status) { auto tf_dlm_context = GetDlContext(h, status); if (!status->status.ok()) { return nullptr; } auto* tf_dlm_data = TFE_TensorHandleDevicePointer(h, status); if (!status->status.ok()) { return nullptr; } const Tensor* tensor = GetTensorFromHandle(h, status); TF_DataType data_type = static_cast<TF_DataType>(tensor->dtype()); auto tf_dlm_type = GetDlDataType(data_type, status); if (!status->status.ok()) { return nullptr; } TensorReference tensor_ref(*tensor); auto* tf_dlm_tensor_ctx = new TfDlManagedTensorCtx(tensor_ref); tf_dlm_tensor_ctx->reference = tensor_ref; DLManagedTensor* dlm_tensor = &tf_dlm_tensor_ctx->tensor; dlm_tensor->manager_ctx = tf_dlm_tensor_ctx; dlm_tensor->deleter = &DLManagedTensorDeleter; dlm_tensor->dl_tensor.device = tf_dlm_context; int ndim = tensor->dims(); dlm_tensor->dl_tensor.ndim = ndim; dlm_tensor->dl_tensor.data = tf_dlm_data; dlm_tensor->dl_tensor.dtype = tf_dlm_type; std::vector<int64_t>* shape_arr = &tf_dlm_tensor_ctx->shape; std::vector<int64_t>* stride_arr = &tf_dlm_tensor_ctx->strides; shape_arr->resize(ndim); stride_arr->resize(ndim, 1); for (int i = 0; i < ndim; i++) { (*shape_arr)[i] = tensor->dim_size(i); } for (int i = ndim - 2; i >= 0; --i) { (*stride_arr)[i] = (*shape_arr)[i + 1] * (*stride_arr)[i + 1]; } dlm_tensor->dl_tensor.shape = shape_arr->data(); dlm_tensor->dl_tensor.strides = stride_arr->data(); dlm_tensor->dl_tensor.byte_offset = 0; return static_cast<void*>(dlm_tensor); } TFE_TensorHandle* TFE_HandleFromDLPack(void* dlm, TF_Status* status, TFE_Context* ctx) { DLManagedTensor* dlmt = static_cast<DLManagedTensor*>(dlm); DLTensor* dl_tensor = &dlmt->dl_tensor; absl::optional<std::string> device_name = DeviceNameFromDlContext(dl_tensor->device, status); if (!device_name.has_value()) { status->status = tensorflow::errors::InvalidArgument("Unsupported Device Type"); return nullptr; } TF_DataType dtype; Status s = TfDataTypeFormDlDataType(dl_tensor->dtype, &dtype); if (!s.ok()) { status->status = std::move(s); return nullptr; } int num_dims = dl_tensor->ndim; const int64_t* dims = dl_tensor->shape; void* data = dl_tensor->data; if (dl_tensor->byte_offset != 0) { status->status = tensorflow::errors::InvalidArgument( "Unsupported byte_offset (", dl_tensor->byte_offset, ") from DLPack, must be zero"); return nullptr; } size_t total_bytes = dl_tensor->dtype.bits / 8; for (int i = 0; i < num_dims; i++) { total_bytes *= dims[i]; } if (dl_tensor->strides != nullptr && !IsValidStrideCompactRowMajorData(dl_tensor->shape, dl_tensor->strides, num_dims)) { status->status = tensorflow::errors::InvalidArgument( "Invalid strides array from DLPack"); return nullptr; } TFE_TensorHandle* handle = TFE_NewTensorHandleFromDeviceMemory( ctx, device_name.value().c_str(), dtype, dims, num_dims, data, total_bytes, &DeallocatorWrapperFunc, dlmt, status); return handle; } }
#include "tensorflow/c/eager/dlpack.h" #include <vector> #include "absl/strings/str_join.h" #include "include/dlpack/dlpack.h" #include "tensorflow/c/eager/c_api.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { void TestHandleFromDLPack(TF_Status* status, TFE_Context* ctx, std::vector<int64_t> shape, std::vector<int64_t> strides) { size_t num_elements = 1; for (int i = 0; i < static_cast<int32_t>(shape.size()); ++i) { num_elements *= shape[i]; } std::vector<float> data(num_elements); for (size_t j = 0; j < num_elements; ++j) { data[j] = j; } DLManagedTensor dlm_in = {}; DLTensor* dltensor_in = &dlm_in.dl_tensor; dltensor_in->data = data.data(); dltensor_in->device = {kDLCPU, 0}; dltensor_in->ndim = static_cast<int32_t>(shape.size()); dltensor_in->dtype = {kDLFloat, 32, 1}; dltensor_in->shape = shape.data(); dltensor_in->strides = strides.data(); TFE_TensorHandle* handle = TFE_HandleFromDLPack(&dlm_in, status, ctx); ASSERT_NE(handle, nullptr) << TF_Message(status) << " (shape=[" << absl::StrJoin(shape, ",") << "], strides=[" << absl::StrJoin(strides, ",") << "])"; auto* dlm_out = static_cast<DLManagedTensor*>(TFE_HandleToDLPack(handle, status)); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); const DLTensor* dltensor_out = &dlm_out->dl_tensor; EXPECT_EQ(dltensor_out->device.device_type, dltensor_in->device.device_type); EXPECT_EQ(dltensor_out->device.device_id, dltensor_in->device.device_id); EXPECT_EQ(dltensor_out->ndim, dltensor_in->ndim); EXPECT_EQ(dltensor_out->dtype.code, dltensor_in->dtype.code); EXPECT_EQ(dltensor_out->dtype.bits, dltensor_in->dtype.bits); EXPECT_EQ(dltensor_out->dtype.lanes, dltensor_in->dtype.lanes); for (int i = 0; i < dltensor_in->ndim; ++i) { EXPECT_EQ(dltensor_out->shape[i], dltensor_in->shape[i]); if (dltensor_out->strides) { if (i == dltensor_in->ndim - 1) { EXPECT_EQ(dltensor_out->strides[i], 1); } else { EXPECT_EQ(dltensor_out->strides[i], dltensor_out->shape[i + 1] * dltensor_out->strides[i + 1]); } } } const float* data_in = static_cast<const float*>(dltensor_in->data); const float* data_out = static_cast<const float*>(dltensor_out->data); for (size_t j = 0; j < num_elements; ++j) { EXPECT_EQ(data_out[j], data_in[j]); } TFE_CallDLManagedTensorDeleter(dlm_out); TFE_DeleteTensorHandle(handle); } TEST(DLPack, HandleFromDLPackStrides) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TestHandleFromDLPack(status, ctx, {}, {}); TestHandleFromDLPack(status, ctx, {4}, {}); TestHandleFromDLPack(status, ctx, {4}, {1}); TestHandleFromDLPack(status, ctx, {4, 3, 2}, {}); TestHandleFromDLPack(status, ctx, {4, 3, 2}, {6, 2, 1}); TestHandleFromDLPack(status, ctx, {1}, {1}); TestHandleFromDLPack(status, ctx, {1}, {0}); TestHandleFromDLPack(status, ctx, {4, 1, 2}, {2, 1, 1}); TestHandleFromDLPack(status, ctx, {4, 1, 2}, {2, 0, 1}); TestHandleFromDLPack(status, ctx, {4, 3, 1}, {3, 1, 1}); TestHandleFromDLPack(status, ctx, {4, 3, 1}, {3, 1, 0}); TestHandleFromDLPack(status, ctx, {4, 0, 2}, {0, 2, 1}); TestHandleFromDLPack(status, ctx, {4, 0, 2}, {0, 1, 1}); TestHandleFromDLPack(status, ctx, {4, 0, 2}, {0, 0, 1}); TestHandleFromDLPack(status, ctx, {4, 0, 2}, {0, 2, 0}); TFE_DeleteContext(ctx); TF_DeleteStatus(status); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/eager/dlpack.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/eager/dlpack_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b5213f53-4bff-4a65-a833-0de7b1b67a3f
cpp
google/cel-cpp
source_position
eval/public/source_position.cc
eval/public/source_position_test.cc
#include "eval/public/source_position.h" #include <utility> namespace google { namespace api { namespace expr { namespace runtime { using google::api::expr::v1alpha1::SourceInfo; namespace { std::pair<int, int32_t> GetLineAndLineOffset(const SourceInfo* source_info, int32_t position) { int line = 0; int32_t line_offset = 0; if (source_info != nullptr) { for (const auto& curr_line_offset : source_info->line_offsets()) { if (curr_line_offset > position) { break; } line_offset = curr_line_offset; line++; } } if (line == 0) { line++; } return std::pair<int, int32_t>(line, line_offset); } } int32_t SourcePosition::line() const { return GetLineAndLineOffset(source_info_, character_offset()).first; } int32_t SourcePosition::column() const { int32_t position = character_offset(); std::pair<int, int32_t> line_and_offset = GetLineAndLineOffset(source_info_, position); return 1 + (position - line_and_offset.second); } int32_t SourcePosition::character_offset() const { if (source_info_ == nullptr) { return 0; } auto position_it = source_info_->positions().find(expr_id_); return position_it != source_info_->positions().end() ? position_it->second : 0; } } } } }
#include "eval/public/source_position.h" #include "google/api/expr/v1alpha1/syntax.pb.h" #include "internal/testing.h" namespace google { namespace api { namespace expr { namespace runtime { namespace { using ::testing::Eq; using google::api::expr::v1alpha1::SourceInfo; class SourcePositionTest : public testing::Test { protected: void SetUp() override { source_info_.add_line_offsets(0); source_info_.add_line_offsets(1); source_info_.add_line_offsets(2); (*source_info_.mutable_positions())[1] = 2; source_info_.add_line_offsets(4); (*source_info_.mutable_positions())[2] = 4; (*source_info_.mutable_positions())[3] = 7; source_info_.add_line_offsets(9); source_info_.add_line_offsets(10); (*source_info_.mutable_positions())[4] = 10; (*source_info_.mutable_positions())[5] = 13; } SourceInfo source_info_; }; TEST_F(SourcePositionTest, TestNullSourceInfo) { SourcePosition position(3, nullptr); EXPECT_THAT(position.character_offset(), Eq(0)); EXPECT_THAT(position.line(), Eq(1)); EXPECT_THAT(position.column(), Eq(1)); } TEST_F(SourcePositionTest, TestNoNewlines) { source_info_.clear_line_offsets(); SourcePosition position(3, &source_info_); EXPECT_THAT(position.character_offset(), Eq(7)); EXPECT_THAT(position.line(), Eq(1)); EXPECT_THAT(position.column(), Eq(8)); } TEST_F(SourcePositionTest, TestPosition) { SourcePosition position(3, &source_info_); EXPECT_THAT(position.character_offset(), Eq(7)); } TEST_F(SourcePositionTest, TestLine) { SourcePosition position1(1, &source_info_); EXPECT_THAT(position1.line(), Eq(3)); SourcePosition position2(2, &source_info_); EXPECT_THAT(position2.line(), Eq(4)); SourcePosition position3(3, &source_info_); EXPECT_THAT(position3.line(), Eq(4)); SourcePosition position4(5, &source_info_); EXPECT_THAT(position4.line(), Eq(6)); } TEST_F(SourcePositionTest, TestColumn) { SourcePosition position1(1, &source_info_); EXPECT_THAT(position1.column(), Eq(1)); SourcePosition position2(2, &source_info_); EXPECT_THAT(position2.column(), Eq(1)); SourcePosition position3(3, &source_info_); EXPECT_THAT(position3.column(), Eq(4)); SourcePosition position4(5, &source_info_); EXPECT_THAT(position4.column(), Eq(4)); } } } } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/source_position.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/source_position_test.cc
4552db5798fb0853b131b783d8875794334fae7f
3ffa5816-7f4b-47b4-83f7-108b7e00ea6c
cpp
tensorflow/tensorflow
lower_while_op
tensorflow/core/common_runtime/lower_while_op.cc
tensorflow/core/common_runtime/lower_while_op_test.cc
#include "tensorflow/core/common_runtime/lower_while_op.h" #include "tensorflow/core/common_runtime/inline_function_utils.h" #include "tensorflow/core/config/flag_defs.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/platform/status.h" #include "tsl/platform/errors.h" namespace tensorflow { namespace { using NodeOut = NodeBuilder::NodeOut; constexpr const char* const kLowerAsMultiDeviceFunctionAttr = LowerFunctionalOpsConstants::kLowerAsMultiDeviceFunctionAttr; class LowerWhileHelper { public: static Status Run(Node* while_op, const NameAttrList& cond_fn, const NameAttrList& body_fn, int parallel_iterations, Graph* graph, const FunctionLibraryDefinition* flib_def, bool keep_node_fetchable) { LowerWhileHelper helper(while_op, cond_fn, body_fn, parallel_iterations, graph, flib_def, keep_node_fetchable); return helper.RunInternal(); } private: LowerWhileHelper(Node* while_op, const NameAttrList& cond_fn, const NameAttrList& body_fn, int parallel_iterations, Graph* graph, const FunctionLibraryDefinition* flib_def, bool keep_node_fetchable); Status RunInternal(); void InitializeInputOutputToLoweredNodeMap(); Status CreateEnterNodes(); Status CreateMergeNodes(); Status CreateCondFuncCallNode(); Status CreateSwitchNodes(); Status CreateBodyFuncCallNode(); Status CreateExitNodes(); Status CreateNextIterationNodes(); Status UpdateMergeNodes(); Status UpdateConsumers(); string NewName(const string& infix); bool IsLoopCarriedResource(int index); Node* while_op_; Node* cond_call_node_; Node* loop_cond_node_; Node* body_call_node_; Node* lowered_while_output_; Node* lowered_while_executed_; Graph* graph_; const FunctionLibraryDefinition* flib_def_; string name_; const int parallel_iterations_; bool keep_node_fetchable_; NodeDebugInfo debug_info_; NodeBuilder cond_call_builder_; NodeBuilder body_call_builder_; std::vector<Node*> enter_nodes_; std::vector<Node*> merge_nodes_; std::vector<Node*> switch_nodes_; std::vector<Node*> exit_nodes_; std::vector<Node*> next_iterations_nodes_; std::vector<int> op_input_output_to_lowered_node_; bool propagate_colocation_key_; size_t num_loop_inputs_; }; LowerWhileHelper::LowerWhileHelper(Node* while_op, const NameAttrList& cond_fn, const NameAttrList& body_fn, int parallel_iterations, Graph* graph, const FunctionLibraryDefinition* flib_def, bool keep_node_fetchable) : while_op_(while_op), graph_(graph), flib_def_(flib_def), name_(while_op->name()), parallel_iterations_(parallel_iterations), keep_node_fetchable_(keep_node_fetchable), debug_info_(*while_op_), cond_call_builder_(NewName("cond"), cond_fn.name(), flib_def, &debug_info_), body_call_builder_(NewName("body"), body_fn.name(), flib_def, &debug_info_), num_loop_inputs_(while_op_->num_inputs()) { cond_call_builder_.Attr(kLowerAsMultiDeviceFunctionAttr, true); for (const auto& i : cond_fn.attr()) { cond_call_builder_.Attr(i.first, i.second); } body_call_builder_.Attr(kLowerAsMultiDeviceFunctionAttr, true); for (const auto& i : body_fn.attr()) { body_call_builder_.Attr(i.first, i.second); } enter_nodes_.resize(num_loop_inputs_); merge_nodes_.reserve(num_loop_inputs_); switch_nodes_.reserve(num_loop_inputs_); exit_nodes_.reserve(num_loop_inputs_); next_iterations_nodes_.reserve(num_loop_inputs_); op_input_output_to_lowered_node_.resize(num_loop_inputs_, -1); propagate_colocation_key_ = flags::Global() .enable_colocation_key_propagation_in_while_op_lowering.value(); } Status LowerWhileHelper::RunInternal() { InitializeInputOutputToLoweredNodeMap(); TF_RETURN_IF_ERROR(CreateEnterNodes()); TF_RETURN_IF_ERROR(CreateMergeNodes()); TF_RETURN_IF_ERROR(CreateCondFuncCallNode()); TF_RETURN_IF_ERROR(CreateSwitchNodes()); TF_RETURN_IF_ERROR(CreateBodyFuncCallNode()); TF_RETURN_IF_ERROR(CreateExitNodes()); TF_RETURN_IF_ERROR(CreateNextIterationNodes()); TF_RETURN_IF_ERROR(UpdateMergeNodes()); TF_RETURN_IF_ERROR(UpdateConsumers()); return absl::OkStatus(); } void LowerWhileHelper::InitializeInputOutputToLoweredNodeMap() { int counter = 0; for (int i = 0; i < num_loop_inputs_; i++) { if (!IsLoopCarriedResource(i)) { op_input_output_to_lowered_node_[i] = counter++; } } } Status LowerWhileHelper::CreateEnterNodes() { std::vector<const Edge*> edges; TF_RETURN_IF_ERROR(while_op_->input_edges(&edges)); for (const Edge* edge : edges) { Node* enter_node; NodeBuilder builder = NodeBuilder(NewName("enter"), "Enter", flib_def_, &debug_info_) .Input(NodeOut(edge->src(), edge->src_output())) .Attr("frame_name", name_) .Attr("parallel_iterations", parallel_iterations_) .Device(edge->src()->requested_device()) .AssignedDevice(edge->src()->assigned_device_name()); if (propagate_colocation_key_) { auto colocation_attr = edge->src()->attrs().Find(kColocationAttrName); if (colocation_attr) { builder.Attr(kColocationAttrName, *colocation_attr); } } if (IsLoopCarriedResource(edge->dst_input())) { builder.Attr("is_constant", true); } TF_RETURN_IF_ERROR(builder.Finalize(graph_, &enter_node)); enter_nodes_[edge->dst_input()] = enter_node; } std::vector<Node*> control_inputs; for (const Edge* e : while_op_->in_edges()) { if (e->IsControlEdge()) { control_inputs.push_back(e->src()); } } if (!control_inputs.empty()) { Node* incoming_control_node; NodeBuilder builder = NodeBuilder(NewName("LoopControlInputs"), "NoOp", flib_def_, &debug_info_) .ControlInputs(control_inputs) .Device(while_op_->requested_device()); if (propagate_colocation_key_) { auto colocation_attr = while_op_->attrs().Find(kColocationAttrName); if (colocation_attr) { builder.Attr(kColocationAttrName, *colocation_attr); } } TF_RETURN_IF_ERROR(builder.Finalize(graph_, &incoming_control_node)); for (Node* n : enter_nodes_) { graph_->AddControlEdge(incoming_control_node, n); } } return absl::OkStatus(); } Status LowerWhileHelper::CreateMergeNodes() { for (Node* enter_node : enter_nodes_) { bool is_constant = enter_node->attrs().FindByString("is_constant")->b(); if (is_constant && enter_node->output_type(0) == DT_RESOURCE) { continue; } Node* merge_node; NodeBuilder builder = NodeBuilder(NewName("merge"), "Merge", flib_def_, &debug_info_) .Input({NodeOut(enter_node, 0), NodeOut(enter_node, 0)}) .Device(enter_node->requested_device()) .AssignedDevice(enter_node->assigned_device_name()); if (propagate_colocation_key_) { auto colocation_attr = enter_node->attrs().Find(kColocationAttrName); if (colocation_attr) { builder.Attr(kColocationAttrName, *colocation_attr); } } TF_RETURN_IF_ERROR(builder.Finalize(graph_, &merge_node)); merge_nodes_.emplace_back(merge_node); } return absl::OkStatus(); } Status LowerWhileHelper::CreateCondFuncCallNode() { for (int i = 0; i < num_loop_inputs_; i++) { if (IsLoopCarriedResource(i)) { cond_call_builder_.Input(NodeOut(enter_nodes_[i], 0)); } else { cond_call_builder_.Input( NodeOut(merge_nodes_[op_input_output_to_lowered_node_[i]], 0)); } } cond_call_builder_.Device(while_op_->requested_device()); TF_RETURN_IF_ERROR(cond_call_builder_.Finalize(graph_, &cond_call_node_)); graph_->AddControlEdge(merge_nodes_[0], cond_call_node_); NodeBuilder builder = NodeBuilder(NewName("LoopCond"), "LoopCond", flib_def_, &debug_info_) .Input(NodeOut(cond_call_node_, 0)) .Device(while_op_->requested_device()); if (propagate_colocation_key_) { auto colocation_attr = while_op_->attrs().Find(kColocationAttrName); if (colocation_attr) { builder.Attr(kColocationAttrName, *colocation_attr); } } TF_RETURN_IF_ERROR(builder.Finalize(graph_, &loop_cond_node_)); return absl::OkStatus(); } Status LowerWhileHelper::CreateSwitchNodes() { for (int i = 0; i < num_loop_inputs_; i++) { if (IsLoopCarriedResource(i)) { continue; } string op_name; { const Node* input_node; TF_RETURN_IF_ERROR(while_op_->input_node(i, &input_node)); op_name = strings::StrCat(input_node->name(), "_switch"); } Node* merge_node = merge_nodes_[op_input_output_to_lowered_node_[i]]; Node* switch_node; string op_type = "Switch"; if (IsRefType(merge_node->output_type(0))) { op_type = "RefSwitch"; } NodeBuilder builder = NodeBuilder(NewName(op_name), op_type, flib_def_, &debug_info_) .Input(NodeOut(merge_node, 0)) .Input(NodeOut(loop_cond_node_, 0)) .Device(merge_node->requested_device()) .AssignedDevice(merge_node->assigned_device_name()); if (propagate_colocation_key_) { auto colocation_attr = merge_node->attrs().Find(kColocationAttrName); if (colocation_attr) { builder.Attr(kColocationAttrName, *colocation_attr); } } TF_RETURN_IF_ERROR(builder.Finalize(graph_, &switch_node)); switch_nodes_.emplace_back(switch_node); } return absl::OkStatus(); } Status LowerWhileHelper::CreateBodyFuncCallNode() { for (int i = 0; i < num_loop_inputs_; i++) { if (IsLoopCarriedResource(i)) { body_call_builder_.Input(NodeOut(enter_nodes_[i], 0)); } else { body_call_builder_.Input( NodeOut(switch_nodes_[op_input_output_to_lowered_node_[i]], 1)); } } body_call_builder_.Device(while_op_->requested_device()); TF_RETURN_IF_ERROR(body_call_builder_.Finalize(graph_, &body_call_node_)); Node* body_control_node_; string op_type = "Identity"; if (IsRefType(switch_nodes_[0]->output_type(1))) { op_type = "RefIdentity"; } NodeBuilder builder = NodeBuilder(NewName("loop_body_control"), op_type, flib_def_, &debug_info_) .Input(NodeOut(switch_nodes_[0], 1)) .Device(while_op_->requested_device()); if (propagate_colocation_key_) { auto colocation_attr = while_op_->attrs().Find(kColocationAttrName); if (colocation_attr) { builder.Attr(kColocationAttrName, *colocation_attr); } } TF_RETURN_IF_ERROR(builder.Finalize(graph_, &body_control_node_)); graph_->AddControlEdge(body_control_node_, body_call_node_); return absl::OkStatus(); } Status LowerWhileHelper::CreateExitNodes() { std::vector<NodeOut> outputs; outputs.reserve(num_loop_inputs_); for (int i = 0; i < num_loop_inputs_; i++) { if (IsLoopCarriedResource(i)) { OutputTensor resource_tensor; TF_RETURN_IF_ERROR(enter_nodes_[i]->input_tensor(0, &resource_tensor)); outputs.emplace_back(resource_tensor); } else { Node* exit_node; NodeBuilder builder = NodeBuilder(NewName("exit"), "Exit", flib_def_, &debug_info_) .Input(NodeOut(switch_nodes_[op_input_output_to_lowered_node_[i]], 0)) .Device(switch_nodes_[op_input_output_to_lowered_node_[i]] ->requested_device()) .AssignedDevice(switch_nodes_[op_input_output_to_lowered_node_[i]] ->assigned_device_name()); if (propagate_colocation_key_) { auto colocation_attr = switch_nodes_[op_input_output_to_lowered_node_[i]]->attrs().Find( kColocationAttrName); if (colocation_attr) { builder.Attr(kColocationAttrName, *colocation_attr); } } TF_RETURN_IF_ERROR(builder.Finalize(graph_, &exit_node)); exit_nodes_.emplace_back(exit_node); outputs.emplace_back(NodeOut(exit_node, 0)); } } NodeBuilder builder = NodeBuilder(NewName("LoopExecuted"), "NoOp", OpRegistry::Global(), &debug_info_) .ControlInputs(exit_nodes_) .Device(while_op_->requested_device()); if (propagate_colocation_key_) { auto colocation_attr = while_op_->attrs().Find(kColocationAttrName); if (colocation_attr) { builder.Attr(kColocationAttrName, *colocation_attr); } } TF_RETURN_IF_ERROR(builder.Finalize(graph_, &lowered_while_executed_)); if (keep_node_fetchable_) { TF_RETURN_IF_ERROR( NodeBuilder(name_, "IdentityN", OpRegistry::Global(), &debug_info_) .Input(outputs) .Device(while_op_->requested_device()) .Finalize(graph_, &lowered_while_output_)); } else { TF_RETURN_IF_ERROR( NodeBuilder(name_, "NoOp", OpRegistry::Global(), &debug_info_) .ControlInput(lowered_while_executed_) .Device(while_op_->requested_device()) .Finalize(graph_, &lowered_while_output_)); } return absl::OkStatus(); } Status LowerWhileHelper::CreateNextIterationNodes() { for (int i = 0; i < num_loop_inputs_; i++) { Node* next_iteration; if (IsLoopCarriedResource(i)) { continue; } Node* merge_node = merge_nodes_[op_input_output_to_lowered_node_[i]]; NodeBuilder builder = NodeBuilder(NewName("next_iteration"), "NextIteration", flib_def_, &debug_info_) .Input(NodeOut(body_call_node_, i)) .ControlInput(body_call_node_) .Device(merge_node->requested_device()) .AssignedDevice(merge_node->assigned_device_name()); if (propagate_colocation_key_) { auto colocation_attr = merge_node->attrs().Find(kColocationAttrName); if (colocation_attr) { builder.Attr(kColocationAttrName, *colocation_attr); } } TF_RETURN_IF_ERROR(builder.Finalize(graph_, &next_iteration)); next_iterations_nodes_.emplace_back(next_iteration); } return absl::OkStatus(); } Status LowerWhileHelper::UpdateMergeNodes() { for (int i = 0; i < merge_nodes_.size(); i++) { TF_RETURN_IF_ERROR( graph_->UpdateEdge(next_iterations_nodes_[i], 0, merge_nodes_[i], 1)); } return absl::OkStatus(); } Status LowerWhileHelper::UpdateConsumers() { for (const Edge* e : while_op_->out_edges()) { if (e->IsControlEdge()) { graph_->AddControlEdge(lowered_while_executed_, e->dst()); } else { if (IsLoopCarriedResource(e->src_output())) { OutputTensor resource; TF_RETURN_IF_ERROR( enter_nodes_[e->src_output()]->input_tensor(0, &resource)); graph_->AddEdge(resource.node, resource.index, e->dst(), e->dst_input()); } else { int exit_node_index = op_input_output_to_lowered_node_[e->src_output()]; if (exit_node_index < 0) { return errors::Internal( "Expecting an Exit node for a Resource tensor."); } graph_->AddEdge(exit_nodes_[exit_node_index], 0, e->dst(), e->dst_input()); } } } return absl::OkStatus(); } string LowerWhileHelper::NewName(const string& infix) { return graph_->NewName(strings::StrCat(name_, "/", infix)); } bool LowerWhileHelper::IsLoopCarriedResource(int index) { if (while_op_->input_type(index) != DT_RESOURCE) return false; auto body_func_name = while_op_->attrs().Find("body")->func().name(); auto body_func = flib_def_->Find(body_func_name); auto arg_name = body_func->signature().input_arg(index).name(); for (auto& ret : body_func->ret()) if (ret.second == arg_name) return true; return false; } } Status RewriteWhileNode(Node* n, Graph* g, const FunctionLibraryDefinition* flib_def, bool keep_node_fetchable) { VLOG(2) << "Lower While node (keep_node_fetchable=" << keep_node_fetchable << "): " << SummarizeNode(*n); const AttrValue* cond_attr = n->attrs().Find("cond"); if (cond_attr == nullptr) { return errors::InvalidArgument("While cond function missing"); } const AttrValue* body_attr = n->attrs().Find("body"); if (body_attr == nullptr) { return errors::InvalidArgument("While body function missing"); } const AttrValue* parallel_iterations_attr = n->attrs().Find("parallel_iterations"); if (parallel_iterations_attr == nullptr) { return errors::InvalidArgument("parallel_iterations attr missing"); } if (parallel_iterations_attr->i() < 1) { return errors::InvalidArgument("parallel_iterations must be > 0"); } TF_RETURN_IF_ERROR(LowerWhileHelper::Run( n, cond_attr->func(), body_attr->func(), parallel_iterations_attr->i(), g, flib_def, keep_node_fetchable)); g->RemoveNode(n); return absl::OkStatus(); } }
#include <memory> #include <vector> #include <gtest/gtest.h> #include "absl/strings/match.h" #include "tensorflow/cc/client/client_session.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/control_flow_ops_internal.h" #include "tensorflow/cc/ops/function_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/graph_runner.h" #include "tensorflow/core/common_runtime/lower_functional_ops.h" #include "tensorflow/core/config/flag_defs.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { SessionOptions SessionOptionsWithInlining() { SessionOptions session_options; session_options.config.mutable_graph_options() ->mutable_optimizer_options() ->set_do_function_inlining(true); return session_options; } Status Rewrite(std::unique_ptr<Graph>* graph) { FunctionLibraryDefinition flib_def((*graph)->flib_def()); GraphOptimizationPassOptions opt_options; SessionOptions session_options = SessionOptionsWithInlining(); opt_options.session_options = &session_options; opt_options.graph = graph; opt_options.flib_def = &flib_def; LowerFunctionalOpsPass pass; return pass.Run(opt_options); } TEST(LowerWhileOpTest, Simple) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); FunctionDefLibrary f_lib_proto; *f_lib_proto.add_function() = test::function::XTimesTwo(); *f_lib_proto.add_function() = test::function::LessThanOrEqualToN(8); Scope root = Scope::NewRootScope().ExitOnError(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(f_lib_proto)); auto a = ops::Placeholder(root.WithOpName("A"), DT_INT32); Node* while_node; std::vector<NodeBuilder::NodeOut> inputs({NodeBuilder::NodeOut(a.node())}); AttrValue cond_func; cond_func.mutable_func()->set_name("LessThanOrEqualToN"); AttrValue body_func; body_func.mutable_func()->set_name("XTimesTwo"); TF_ASSERT_OK( NodeBuilder("while", "While", &root.graph()->flib_def()) .Input(inputs) .Attr("T", {DT_INT32}) .Attr("cond", cond_func) .Attr("body", body_func) .Attr("parallel_iterations", 100) .Attr(LowerFunctionalOpsPass::kLowerUsingSwitchMergeAttr, true) .Finalize(root.graph(), &while_node)); auto c = ops::Identity( root.WithOpName("C").WithControlDependencies(Output(while_node)), Output(while_node)); TF_ASSERT_OK(root.DoShapeInference(while_node)); TF_ASSERT_OK(root.ToGraph(graph.get())); int node_called_while_count = 0; for (const auto* op : graph->op_nodes()) { ASSERT_FALSE(op->IsEnter()); ASSERT_FALSE(op->IsExit()); ASSERT_FALSE(op->IsSwitch()); ASSERT_FALSE(op->IsMerge()); ASSERT_FALSE(op->IsNextIteration()); ASSERT_FALSE(op->IsLoopCond()); if (op->name() == "while") { node_called_while_count++; } } ASSERT_EQ(node_called_while_count, 1); TF_ASSERT_OK(Rewrite(&graph)); int enter_count = 0; int exit_count = 0; int switch_count = 0; int merge_count = 0; int next_iteration_count = 0; node_called_while_count = 0; int less_than_or_equan_to_n_count = 0; int x_times_two_count = 0; for (const auto* op : graph->op_nodes()) { if (op->IsEnter()) { ++enter_count; ASSERT_EQ(op->attrs().Find("parallel_iterations")->i(), 100); } if (op->IsExit()) { ++exit_count; } if (op->IsSwitch()) { ++switch_count; } if (op->IsMerge()) { ++merge_count; } if (op->IsNextIteration()) { ++next_iteration_count; } if (op->name() == "while") { node_called_while_count++; } if (op->type_string() == "LessThanOrEqualToN") { less_than_or_equan_to_n_count++; } if (op->type_string() == "XTimesTwo") { x_times_two_count++; } if (op->name() == "C") { ASSERT_EQ(op->in_edges().size(), 2); } ASSERT_NE(op->type_string(), "While"); } ASSERT_EQ(enter_count, 1); ASSERT_EQ(exit_count, 1); ASSERT_EQ(switch_count, 1); ASSERT_EQ(merge_count, 1); ASSERT_EQ(next_iteration_count, 1); ASSERT_EQ(node_called_while_count, 1); ClientSession session(root, SessionOptionsWithInlining()); { ClientSession::FeedType feeds; feeds.emplace(Output(a.node()), Input::Initializer(1)); std::vector<Tensor> out_tensors; TF_ASSERT_OK(session.Run(feeds, {Output(while_node)}, &out_tensors)); ASSERT_EQ(out_tensors.size(), 1); EXPECT_EQ(out_tensors[0].scalar<int>()(), 16); } { ClientSession::FeedType feeds; feeds.emplace(Output(a.node()), Input::Initializer(3)); std::vector<Tensor> out_tensors; TF_ASSERT_OK(session.Run(feeds, {Output(while_node)}, &out_tensors)); ASSERT_EQ(out_tensors.size(), 1); EXPECT_EQ(out_tensors[0].scalar<int>()(), 12); } } static void DanglingNodeTestHelper(int expected_count) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); FunctionDefLibrary f_lib_proto; *f_lib_proto.add_function() = test::function::XTimesTwoWithDanglingFloorDivNode(); *f_lib_proto.add_function() = test::function::LessThanOrEqualToN(8); Scope root = Scope::NewRootScope().ExitOnError(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(f_lib_proto)); auto a = ops::Placeholder(root.WithOpName("A"), DT_INT32); Node* while_node; std::vector<NodeBuilder::NodeOut> inputs({NodeBuilder::NodeOut(a.node())}); AttrValue cond_func; cond_func.mutable_func()->set_name("LessThanOrEqualToN"); AttrValue body_func; body_func.mutable_func()->set_name("XTimesTwoWithDanglingFloorDivNode"); TF_ASSERT_OK( NodeBuilder("while", "While", &root.graph()->flib_def()) .Input(inputs) .Attr("T", {DT_INT32}) .Attr("cond", cond_func) .Attr("body", body_func) .Attr("parallel_iterations", 100) .Attr(LowerFunctionalOpsPass::kLowerUsingSwitchMergeAttr, true) .Finalize(root.graph(), &while_node)); auto c = ops::Identity( root.WithOpName("C").WithControlDependencies(Output(while_node)), Output(while_node)); TF_ASSERT_OK(root.DoShapeInference(while_node)); TF_ASSERT_OK(root.ToGraph(graph.get())); TF_ASSERT_OK(Rewrite(&graph)); int mul_count = 0; int floor_div_count = 0; for (const auto* op : graph->op_nodes()) { if (op->type_string() == "Mul") { mul_count++; } if (op->type_string() == "FloorDiv") { floor_div_count++; } } ASSERT_EQ(mul_count, 1); ASSERT_EQ(floor_div_count, expected_count); } TEST(LowerWhileOpTest, DanglingNode) { DanglingNodeTestHelper(1); } TEST(LowerWhileOpTest, DanglingNodeWithPruning) { flags::Global().enable_function_pruning_before_inlining.reset(true); DanglingNodeTestHelper(0); flags::Global().enable_function_pruning_before_inlining.reset(false); } TEST(LowerWhileOpTest, ForwardAssignedInputDevice) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); FunctionDefLibrary f_lib_proto; *f_lib_proto.add_function() = test::function::XTimesTwo(); *f_lib_proto.add_function() = test::function::LessThanOrEqualToN(8); TF_ASSERT_OK(graph->AddFunctionLibrary(f_lib_proto)); auto type = DT_FLOAT; Node* placeholder; TF_CHECK_OK(NodeBuilder("placed_node", "Placeholder") .Attr("dtype", type) .Finalize(graph.get(), &placeholder)); const string assigned_device_name = "/job:localhost/replica:0/task:0/gpu:0"; placeholder->set_assigned_device_name(assigned_device_name); Node* while_node; std::vector<NodeBuilder::NodeOut> inputs({NodeBuilder::NodeOut(placeholder)}); AttrValue cond_func; cond_func.mutable_func()->set_name("LessThanOrEqualToN"); AttrValue body_func; body_func.mutable_func()->set_name("XTimesTwo"); TF_ASSERT_OK( NodeBuilder("while", "While", &graph->flib_def()) .Input(inputs) .Attr("T", {type}) .Attr("cond", cond_func) .Attr("body", body_func) .Attr("parallel_iterations", 100) .Attr(LowerFunctionalOpsPass::kLowerUsingSwitchMergeAttr, true) .Finalize(graph.get(), &while_node)); TF_ASSERT_OK(Rewrite(&graph)); const Node* placeholder_node = nullptr; for (const auto* op : graph->op_nodes()) { if (op->name() == "placed_node") { placeholder_node = op; } } ASSERT_NE(placeholder_node, nullptr); int enter_consumers = 0; const Node* enter_node = nullptr; for (const Node* consumer : placeholder_node->out_nodes()) { if (consumer->type_string() == "Enter") { enter_consumers += 1; enter_node = consumer; ASSERT_EQ(consumer->assigned_device_name(), assigned_device_name); } } ASSERT_EQ(enter_consumers, 1); int merge_consumers = 0; const Node* merge_node = nullptr; for (const Node* consumer : enter_node->out_nodes()) { if (consumer->type_string() == "Merge") { merge_consumers += 1; merge_node = consumer; ASSERT_EQ(consumer->assigned_device_name(), assigned_device_name); } } ASSERT_EQ(merge_consumers, 1); int next_iteration_consumers = 0; for (const Node* consumer : merge_node->in_nodes()) { if (consumer->type_string() == "NextIteration") { next_iteration_consumers += 1; ASSERT_EQ(consumer->assigned_device_name(), assigned_device_name); } } ASSERT_EQ(next_iteration_consumers, 1); int switch_consumers = 0; const Node* switch_node = nullptr; for (const Node* consumer : merge_node->out_nodes()) { if (consumer->type_string() == "Switch") { switch_consumers += 1; switch_node = consumer; ASSERT_EQ(consumer->assigned_device_name(), assigned_device_name); } } ASSERT_EQ(switch_consumers, 1); int exit_consumers = 0; for (const Node* consumer : switch_node->out_nodes()) { if (consumer->type_string() == "Exit") { exit_consumers += 1; ASSERT_EQ(consumer->assigned_device_name(), assigned_device_name); } } ASSERT_EQ(exit_consumers, 1); } TEST(LowerWhileOpTest, ForwardRequestedInputDevice) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); FunctionDefLibrary f_lib_proto; *f_lib_proto.add_function() = test::function::XTimesTwo(); *f_lib_proto.add_function() = test::function::LessThanOrEqualToN(8); TF_ASSERT_OK(graph->AddFunctionLibrary(f_lib_proto)); auto type = DT_FLOAT; const string gpu_0_device = "/job:localhost/replica:0/task:0/gpu:0"; const string gpu_1_device = "/job:localhost/replica:0/task:0/gpu:1"; const string gpu_2_device = "/job:localhost/replica:0/task:0/gpu:2"; Node* gpu_0_ph; TF_CHECK_OK(NodeBuilder("placed_node", "Placeholder") .Attr("dtype", type) .Device(gpu_0_device) .Finalize(graph.get(), &gpu_0_ph)); Node* control_in; TF_CHECK_OK(NodeBuilder("control_in", "Placeholder") .Attr("dtype", type) .Device(gpu_1_device) .Finalize(graph.get(), &control_in)); Node* while_node; std::vector<NodeBuilder::NodeOut> inputs({NodeBuilder::NodeOut(gpu_0_ph)}); AttrValue cond_func; cond_func.mutable_func()->set_name("LessThanOrEqualToN"); AttrValue body_func; body_func.mutable_func()->set_name("XTimesTwo"); TF_ASSERT_OK( NodeBuilder("while", "While", &graph->flib_def()) .Input(inputs) .ControlInput(control_in) .Device(gpu_2_device) .Attr("T", {type}) .Attr("cond", cond_func) .Attr("body", body_func) .Attr("parallel_iterations", 100) .Attr(LowerFunctionalOpsPass::kLowerUsingSwitchMergeAttr, true) .Finalize(graph.get(), &while_node)); Node* control_out; TensorProto proto; proto.set_dtype(DT_FLOAT); TensorShape empty_shape({0}); empty_shape.AsProto(proto.mutable_tensor_shape()); TF_ASSERT_OK(NodeBuilder("control_out", "Const") .ControlInput(while_node) .Attr("dtype", DT_FLOAT) .Attr("value", proto) .Finalize(graph.get(), &control_out)); TF_ASSERT_OK(Rewrite(&graph)); const Node* placeholder_node = nullptr; for (const auto* op : graph->op_nodes()) { if (op->name() == "placed_node") { placeholder_node = op; } } ASSERT_NE(placeholder_node, nullptr); int enter_consumers = 0; const Node* enter_node = nullptr; for (const Node* consumer : placeholder_node->out_nodes()) { if (consumer->type_string() == "Enter") { enter_consumers += 1; enter_node = consumer; ASSERT_EQ(consumer->requested_device(), gpu_0_device); } } ASSERT_EQ(enter_consumers, 1); int merge_consumers = 0; const Node* merge_node = nullptr; for (const Node* consumer : enter_node->out_nodes()) { if (consumer->type_string() == "Merge") { merge_consumers += 1; merge_node = consumer; ASSERT_EQ(consumer->requested_device(), gpu_0_device); } } ASSERT_EQ(merge_consumers, 1); int next_iteration_consumers = 0; for (const Node* consumer : merge_node->in_nodes()) { if (consumer->type_string() == "NextIteration") { next_iteration_consumers += 1; ASSERT_EQ(consumer->requested_device(), gpu_0_device); } } ASSERT_EQ(next_iteration_consumers, 1); int switch_consumers = 0; const Node* switch_node = nullptr; for (const Node* consumer : merge_node->out_nodes()) { if (consumer->type_string() == "Switch") { switch_consumers += 1; switch_node = consumer; ASSERT_EQ(consumer->requested_device(), gpu_0_device); } } ASSERT_EQ(switch_consumers, 1); int exit_consumers = 0; for (const Node* consumer : switch_node->out_nodes()) { if (consumer->type_string() == "Exit") { exit_consumers += 1; ASSERT_EQ(consumer->requested_device(), gpu_0_device); } } ASSERT_EQ(exit_consumers, 1); const Node* loop_control_inputs_node = nullptr; for (const auto* op : graph->op_nodes()) { if (absl::StrContains(op->name(), "LoopControlInputs")) { loop_control_inputs_node = op; } } ASSERT_NE(loop_control_inputs_node, nullptr); ASSERT_EQ(loop_control_inputs_node->requested_device(), gpu_2_device); const Node* loop_executed_node = nullptr; for (const auto* op : graph->op_nodes()) { if (absl::StrContains(op->name(), "LoopExecuted")) { loop_executed_node = op; } } ASSERT_NE(loop_executed_node, nullptr); ASSERT_EQ(loop_executed_node->requested_device(), gpu_2_device); } TEST(LowerWhileOpTest, ForwardColocationKeyAttribute) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); FunctionDefLibrary f_lib_proto; *f_lib_proto.add_function() = test::function::XTimesTwo(); *f_lib_proto.add_function() = test::function::LessThanOrEqualToN(8); TF_ASSERT_OK(graph->AddFunctionLibrary(f_lib_proto)); auto type = DT_FLOAT; const string gpu_0_device = "/job:localhost/replica:0/task:0/gpu:0"; const string gpu_1_device = "/job:localhost/replica:0/task:0/gpu:1"; const string gpu_2_device = "/job:localhost/replica:0/task:0/gpu:2"; Node* gpu_0_ph; AttrValue gpu_0_colocation_attr; gpu_0_colocation_attr.mutable_list()->add_s("loc@:some_op_on_gpu_0_device"); AttrValue gpu_1_colocation_attr; gpu_1_colocation_attr.mutable_list()->add_s("loc@:some_op_on_gpu_1_device"); AttrValue gpu_2_colocation_attr; gpu_2_colocation_attr.mutable_list()->add_s("loc@:some_op_on_gpu_2_device"); TF_CHECK_OK(NodeBuilder("placed_node", "Placeholder") .Attr("dtype", type) .Attr(kColocationAttrName, gpu_0_colocation_attr) .Finalize(graph.get(), &gpu_0_ph)); Node* control_in; TF_CHECK_OK(NodeBuilder("control_in", "Placeholder") .Attr("dtype", type) .Attr(kColocationAttrName, gpu_1_colocation_attr) .Finalize(graph.get(), &control_in)); Node* while_node; std::vector<NodeBuilder::NodeOut> inputs({NodeBuilder::NodeOut(gpu_0_ph)}); AttrValue cond_func; cond_func.mutable_func()->set_name("LessThanOrEqualToN"); AttrValue body_func; body_func.mutable_func()->set_name("XTimesTwo"); TF_ASSERT_OK( NodeBuilder("while", "While", &graph->flib_def()) .Input(inputs) .ControlInput(control_in) .Attr(kColocationAttrName, gpu_2_colocation_attr) .Attr("T", {type}) .Attr("cond", cond_func) .Attr("body", body_func) .Attr("parallel_iterations", 100) .Attr(LowerFunctionalOpsPass::kLowerUsingSwitchMergeAttr, true) .Finalize(graph.get(), &while_node)); Node* control_out; TensorProto proto; proto.set_dtype(DT_FLOAT); TensorShape empty_shape({0}); empty_shape.AsProto(proto.mutable_tensor_shape()); TF_ASSERT_OK(NodeBuilder("control_out", "Const") .ControlInput(while_node) .Attr("dtype", DT_FLOAT) .Attr("value", proto) .Finalize(graph.get(), &control_out)); TF_ASSERT_OK(Rewrite(&graph)); const Node* placeholder_node = nullptr; for (const auto* op : graph->op_nodes()) { if (op->name() == "placed_node") { placeholder_node = op; } } ASSERT_NE(placeholder_node, nullptr); int enter_consumers = 0; const Node* enter_node = nullptr; for (const Node* consumer : placeholder_node->out_nodes()) { if (consumer->type_string() == "Enter") { enter_consumers += 1; enter_node = consumer; auto* coloc_attr = consumer->attrs().Find(kColocationAttrName); ASSERT_NE(coloc_attr, nullptr); ASSERT_EQ(coloc_attr->list().s_size(), 1); ASSERT_EQ(coloc_attr->list().s(0), "loc@:some_op_on_gpu_0_device"); } } ASSERT_EQ(enter_consumers, 1); int merge_consumers = 0; const Node* merge_node = nullptr; for (const Node* consumer : enter_node->out_nodes()) { if (consumer->type_string() == "Merge") { merge_consumers += 1; merge_node = consumer; auto* coloc_attr = consumer->attrs().Find(kColocationAttrName); ASSERT_NE(coloc_attr, nullptr); ASSERT_EQ(coloc_attr->list().s_size(), 1); ASSERT_EQ(coloc_attr->list().s(0), "loc@:some_op_on_gpu_0_device"); } } ASSERT_EQ(merge_consumers, 1); int next_iteration_consumers = 0; for (const Node* consumer : merge_node->in_nodes()) { if (consumer->type_string() == "NextIteration") { next_iteration_consumers += 1; auto* coloc_attr = consumer->attrs().Find(kColocationAttrName); ASSERT_NE(coloc_attr, nullptr); ASSERT_EQ(coloc_attr->list().s_size(), 1); ASSERT_EQ(coloc_attr->list().s(0), "loc@:some_op_on_gpu_0_device"); } } ASSERT_EQ(next_iteration_consumers, 1); int switch_consumers = 0; const Node* switch_node = nullptr; for (const Node* consumer : merge_node->out_nodes()) { if (consumer->type_string() == "Switch") { switch_consumers += 1; switch_node = consumer; auto* coloc_attr = consumer->attrs().Find(kColocationAttrName); ASSERT_NE(coloc_attr, nullptr); ASSERT_EQ(coloc_attr->list().s_size(), 1); ASSERT_EQ(coloc_attr->list().s(0), "loc@:some_op_on_gpu_0_device"); } } ASSERT_EQ(switch_consumers, 1); int exit_consumers = 0; for (const Node* consumer : switch_node->out_nodes()) { if (consumer->type_string() == "Exit") { exit_consumers += 1; auto* coloc_attr = consumer->attrs().Find(kColocationAttrName); ASSERT_NE(coloc_attr, nullptr); ASSERT_EQ(coloc_attr->list().s_size(), 1); ASSERT_EQ(coloc_attr->list().s(0), "loc@:some_op_on_gpu_0_device"); } } ASSERT_EQ(exit_consumers, 1); const Node* loop_control_inputs_node = nullptr; for (const auto* op : graph->op_nodes()) { if (absl::StrContains(op->name(), "LoopControlInputs")) { loop_control_inputs_node = op; } } ASSERT_NE(loop_control_inputs_node, nullptr); auto* coloc_attr = loop_control_inputs_node->attrs().Find(kColocationAttrName); ASSERT_NE(coloc_attr, nullptr); ASSERT_EQ(coloc_attr->list().s_size(), 1); ASSERT_EQ(coloc_attr->list().s(0), "loc@:some_op_on_gpu_2_device"); const Node* loop_executed_node = nullptr; for (const auto* op : graph->op_nodes()) { if (absl::StrContains(op->name(), "LoopExecuted")) { loop_executed_node = op; } } ASSERT_NE(loop_executed_node, nullptr); coloc_attr = loop_executed_node->attrs().Find(kColocationAttrName); ASSERT_NE(coloc_attr, nullptr); ASSERT_EQ(coloc_attr->list().s_size(), 1); ASSERT_EQ(coloc_attr->list().s(0), "loc@:some_op_on_gpu_2_device"); } TEST(LowerWhileOpTest, MultipleInputs) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); FunctionDefLibrary f_lib_proto; *(f_lib_proto.add_function()) = test::function::XPlusOneXTimesY(); *(f_lib_proto.add_function()) = test::function::XYXLessThanOrEqualToN(4); Scope root = Scope::NewRootScope().ExitOnError(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(f_lib_proto)); auto a = ops::Placeholder(root.WithOpName("A"), DT_INT32); auto b = ops::Placeholder(root.WithOpName("B"), DT_INT32); Node* while_node; std::vector<NodeBuilder::NodeOut> inputs( {NodeBuilder::NodeOut(a.node()), NodeBuilder::NodeOut(b.node())}); AttrValue cond_func; cond_func.mutable_func()->set_name("XYXLessThanOrEqualToN"); AttrValue body_func; body_func.mutable_func()->set_name("XPlusOneXTimesY"); TF_ASSERT_OK( NodeBuilder("while", "While", &root.graph()->flib_def()) .Input(inputs) .Attr("T", {DT_INT32, DT_INT32}) .Attr("cond", cond_func) .Attr("body", body_func) .Attr(LowerFunctionalOpsPass::kLowerUsingSwitchMergeAttr, true) .Finalize(root.graph(), &while_node)); TF_ASSERT_OK(root.DoShapeInference(while_node)); TF_ASSERT_OK(root.ToGraph(graph.get())); for (const auto* op : graph->op_nodes()) { ASSERT_FALSE(op->IsEnter()); ASSERT_FALSE(op->IsExit()); ASSERT_FALSE(op->IsSwitch()); ASSERT_FALSE(op->IsMerge()); ASSERT_FALSE(op->IsNextIteration()); ASSERT_FALSE(op->IsLoopCond()); } TF_ASSERT_OK(Rewrite(&graph)); int enter_count = 0; int exit_count = 0; int switch_count = 0; int merge_count = 0; int next_iteration_count = 0; int x_plus_one_x_times_y_count = 0; int x_y_x_less_than_equal_to_n_count = 0; for (const auto* op : graph->op_nodes()) { if (op->IsEnter()) { ++enter_count; } if (op->IsExit()) { ++exit_count; } if (op->IsSwitch()) { ++switch_count; } if (op->IsMerge()) { ++merge_count; } if (op->IsNextIteration()) { ++next_iteration_count; } if (op->type_string() == "XPlusOneXTimesY") { x_plus_one_x_times_y_count++; } if (op->type_string() == "XYXLessThanOrEqualToN") { x_y_x_less_than_equal_to_n_count++; } ASSERT_NE(op->type_string(), "While"); } ASSERT_EQ(enter_count, 2); ASSERT_EQ(exit_count, 2); ASSERT_EQ(switch_count, 2); ASSERT_EQ(merge_count, 2); ASSERT_EQ(next_iteration_count, 2); ASSERT_EQ(x_plus_one_x_times_y_count, 0); ASSERT_EQ(x_y_x_less_than_equal_to_n_count, 0); ClientSession session(root, SessionOptionsWithInlining()); { ClientSession::FeedType feeds; feeds.emplace(Output(a.node()), Input::Initializer(1)); feeds.emplace(Output(b.node()), Input::Initializer(1)); std::vector<Tensor> out_tensors; TF_ASSERT_OK(session.Run( feeds, {Output(while_node, 0), Output(while_node, 1)}, &out_tensors)); ASSERT_EQ(out_tensors.size(), 2); EXPECT_EQ(out_tensors[0].scalar<int>()(), 5); EXPECT_EQ(out_tensors[1].scalar<int>()(), 24); } { ClientSession::FeedType feeds; feeds.emplace(Output(a.node()), Input::Initializer(3)); feeds.emplace(Output(b.node()), Input::Initializer(5)); std::vector<Tensor> out_tensors; TF_ASSERT_OK(session.Run( feeds, {Output(while_node, 0), Output(while_node, 1)}, &out_tensors)); ASSERT_EQ(out_tensors.size(), 2); EXPECT_EQ(out_tensors[0].scalar<int>()(), 5); EXPECT_EQ(out_tensors[1].scalar<int>()(), 60); } } TEST(LowerWhileOpTest, DoNotInlineLoweredFunctions) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); FunctionDef x_times_two = test::function::XTimesTwo(); FunctionDef less_than_or_eq = test::function::LessThanOrEqualToN(8); (*x_times_two.mutable_attr())["_noinline"].set_b(true); (*less_than_or_eq.mutable_attr())["_noinline"].set_b(true); FunctionDefLibrary f_lib_proto; *f_lib_proto.add_function() = x_times_two; *f_lib_proto.add_function() = less_than_or_eq; Scope root = Scope::NewRootScope().ExitOnError(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(f_lib_proto)); auto a = ops::Placeholder(root.WithOpName("A"), DT_INT32); Node* while_node; std::vector<NodeBuilder::NodeOut> inputs({NodeBuilder::NodeOut(a.node())}); AttrValue cond_func; cond_func.mutable_func()->set_name("LessThanOrEqualToN"); AttrValue body_func; body_func.mutable_func()->set_name("XTimesTwo"); TF_ASSERT_OK( NodeBuilder("while", "While", &root.graph()->flib_def()) .Input(inputs) .Attr("T", {DT_INT32}) .Attr("cond", cond_func) .Attr("body", body_func) .Attr("parallel_iterations", 100) .Attr(LowerFunctionalOpsPass::kLowerUsingSwitchMergeAttr, true) .Finalize(root.graph(), &while_node)); TF_ASSERT_OK(root.DoShapeInference(while_node)); TF_ASSERT_OK(root.ToGraph(graph.get())); TF_ASSERT_OK(Rewrite(&graph)); int x_times_two_count = 0; int less_than_or_eq_count = 0; for (const auto* op : graph->op_nodes()) { if (op->type_string() == x_times_two.signature().name()) { x_times_two_count++; } if (op->type_string() == less_than_or_eq.signature().name()) { less_than_or_eq_count++; } ASSERT_NE(op->type_string(), "While"); } ASSERT_EQ(x_times_two_count, 1); ASSERT_EQ(less_than_or_eq_count, 1); ClientSession session(root, SessionOptionsWithInlining()); { ClientSession::FeedType feeds; feeds.emplace(Output(a.node()), Input::Initializer(1)); std::vector<Tensor> out_tensors; TF_ASSERT_OK(session.Run(feeds, {Output(while_node)}, &out_tensors)); ASSERT_EQ(out_tensors.size(), 1); EXPECT_EQ(out_tensors[0].scalar<int>()(), 16); } { ClientSession::FeedType feeds; feeds.emplace(Output(a.node()), Input::Initializer(3)); std::vector<Tensor> out_tensors; TF_ASSERT_OK(session.Run(feeds, {Output(while_node)}, &out_tensors)); ASSERT_EQ(out_tensors.size(), 1); EXPECT_EQ(out_tensors[0].scalar<int>()(), 12); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/lower_while_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/lower_while_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
96433603-bbb8-48f6-b6cb-ac5eef4b8ec9
cpp
google/arolla
jagged_shape
arolla/jagged_shape/dense_array/jagged_shape.cc
arolla/jagged_shape/jagged_shape_test.cc
#include "arolla/jagged_shape/dense_array/jagged_shape.h" #include <sstream> #include <utility> #include "arolla/jagged_shape/util/repr.h" #include "arolla/util/repr.h" #include "arolla/util/string.h" namespace arolla { ReprToken ReprTraits<JaggedDenseArrayShape>::operator()( const JaggedDenseArrayShape& value) const { std::ostringstream result; result << "JaggedShape("; bool first = true; for (const auto& edge : value.edges()) { result << NonFirstComma(first) << CompactSplitPointsAsSizesRepr(edge.edge_values().values.span(), 3); } result << ")"; return ReprToken{std::move(result).str()}; } }
#include "arolla/jagged_shape/jagged_shape.h" #include <algorithm> #include <cmath> #include <cstdint> #include <optional> #include <string> #include <type_traits> #include <utility> #include <vector> #include "benchmark/benchmark.h" #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "arolla/array/array.h" #include "arolla/array/edge.h" #include "arolla/dense_array/dense_array.h" #include "arolla/dense_array/edge.h" #include "arolla/jagged_shape/array/jagged_shape.h" #include "arolla/jagged_shape/dense_array/jagged_shape.h" #include "arolla/memory/buffer.h" #include "arolla/memory/optional_value.h" #include "arolla/memory/raw_buffer_factory.h" #include "arolla/util/fingerprint.h" #include "arolla/util/repr.h" #include "arolla/util/testing/repr_token_eq.h" using ::absl_testing::StatusIs; using ::arolla::testing::ReprTokenEq; using ::testing::ElementsAre; namespace arolla { namespace { class JaggedArrayShapeHelper { public: using Shape = JaggedArrayShape; using Edge = Shape::Edge; static absl::string_view ReprName() { return "JaggedArrayShape"; } static absl::StatusOr<ArrayEdge> EdgeFromSplitPoints( absl::Span<const OptionalValue<int64_t>> split_points) { return ArrayEdge::FromSplitPoints(CreateArray<int64_t>(split_points)); } static absl::StatusOr<ArrayEdge> EdgeFromMapping( absl::Span<const OptionalValue<int64_t>> mapping, int64_t parent_size) { return ArrayEdge::FromMapping(CreateArray<int64_t>(mapping), parent_size); } static const Buffer<int64_t>& GetSplitPoints(const ArrayEdge& edge) { return edge.edge_values().dense_data().values; } }; class JaggedDenseArrayShapeHelper { public: using Shape = JaggedDenseArrayShape; using Edge = Shape::Edge; static absl::string_view ReprName() { return "JaggedShape"; } static absl::StatusOr<DenseArrayEdge> EdgeFromSplitPoints( absl::Span<const OptionalValue<int64_t>> split_points) { return DenseArrayEdge::FromSplitPoints( CreateDenseArray<int64_t>(split_points)); } static absl::StatusOr<DenseArrayEdge> EdgeFromMapping( absl::Span<const OptionalValue<int64_t>> mapping, int64_t parent_size) { return DenseArrayEdge::FromMapping(CreateDenseArray<int64_t>(mapping), parent_size); } static const Buffer<int64_t>& GetSplitPoints(const DenseArrayEdge& edge) { return edge.edge_values().values; } }; template <typename JaggedShapeHelper> class JaggedShapeTest : public ::testing::Test { public: using Helper = JaggedShapeHelper; using Shape = typename JaggedShapeHelper::Shape; }; using JaggedShapeTestTypes = ::testing::Types<JaggedArrayShapeHelper, JaggedDenseArrayShapeHelper>; TYPED_TEST_SUITE(JaggedShapeTest, JaggedShapeTestTypes); TYPED_TEST(JaggedShapeTest, Empty) { auto shape = TestFixture::Shape::Empty(); EXPECT_EQ(shape.rank(), 0); EXPECT_EQ(shape.size(), 1); EXPECT_TRUE(shape.edges().empty()); } TYPED_TEST(JaggedShapeTest, FromEdges) { using Shape = typename TestFixture::Shape; using Helper = typename TestFixture::Helper; { ASSERT_OK_AND_ASSIGN(auto shape, Shape::FromEdges({})); EXPECT_EQ(shape.rank(), 0); EXPECT_EQ(shape.size(), 1); EXPECT_TRUE(shape.edges().empty()); } { ASSERT_OK_AND_ASSIGN(auto edge, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto shape, Shape::FromEdges({std::move(edge)})); EXPECT_EQ(shape.rank(), 1); EXPECT_EQ(shape.size(), 2); auto edges = shape.edges(); EXPECT_EQ(edges.size(), 1); EXPECT_THAT(Helper::GetSplitPoints(edges[0]), ElementsAre(0, 2)); } { ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromSplitPoints({0, 1, 3})); ASSERT_OK_AND_ASSIGN(auto edge3, Helper::EdgeFromSplitPoints({0, 1, 2, 4})); ASSERT_OK_AND_ASSIGN(auto shape, Shape::FromEdges({std::move(edge1), std::move(edge2), std::move(edge3)})); EXPECT_EQ(shape.rank(), 3); EXPECT_EQ(shape.size(), 4); auto edges = shape.edges(); EXPECT_EQ(edges.size(), 3); EXPECT_THAT(Helper::GetSplitPoints(edges[0]), ElementsAre(0, 2)); EXPECT_THAT(Helper::GetSplitPoints(edges[1]), ElementsAre(0, 1, 3)); EXPECT_THAT(Helper::GetSplitPoints(edges[2]), ElementsAre(0, 1, 2, 4)); } { ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 8})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromMapping({0, 0, 1, 1, 3, 5}, 8)); ASSERT_OK_AND_ASSIGN( auto shape, Shape::FromEdges({std::move(edge1), std::move(edge2)})); EXPECT_EQ(shape.rank(), 2); EXPECT_EQ(shape.size(), 6); auto edges = shape.edges(); EXPECT_EQ(edges.size(), 2); EXPECT_THAT(Helper::GetSplitPoints(edges[0]), ElementsAre(0, 8)); EXPECT_THAT(Helper::GetSplitPoints(edges[1]), ElementsAre(0, 2, 4, 4, 5, 5, 6, 6, 6)); } } TYPED_TEST(JaggedShapeTest, FromEdgesErrors) { using Shape = typename TestFixture::Shape; using Helper = typename TestFixture::Helper; { ASSERT_OK_AND_ASSIGN(auto edge, Helper::EdgeFromSplitPoints({0, 2, 3})); EXPECT_THAT(Shape::FromEdges({std::move(edge)}), StatusIs(absl::StatusCode::kInvalidArgument, "incompatible dimensions - edges[0].parent_size " "!= 1 (prior edge's child_size)")); } { ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromSplitPoints({0, 1, 3})); ASSERT_OK_AND_ASSIGN(auto edge3, Helper::EdgeFromSplitPoints({0, 1, 4})); EXPECT_THAT(Shape::FromEdges( {std::move(edge1), std::move(edge2), std::move(edge3)}), StatusIs(absl::StatusCode::kInvalidArgument, "incompatible dimensions - edges[2].parent_size " "!= 3 (prior edge's child_size)")); } { ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 1})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromMapping({0, std::nullopt}, 1)); EXPECT_THAT(Shape::FromEdges({std::move(edge1), std::move(edge2)}), StatusIs(absl::StatusCode::kInvalidArgument, "expected a full mapping")); } { ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromMapping({1, 0}, 2)); EXPECT_THAT(Shape::FromEdges({std::move(edge1), std::move(edge2)}), StatusIs(absl::StatusCode::kInvalidArgument, "expected a sorted mapping")); } } TYPED_TEST(JaggedShapeTest, FromEdges_BufferFactory) { using Shape = typename TestFixture::Shape; using Helper = typename TestFixture::Helper; { ASSERT_OK_AND_ASSIGN(auto edge, Helper::EdgeFromMapping({0, 0}, 1)); ASSERT_OK_AND_ASSIGN(auto shape, Shape::FromEdges({std::move(edge)})); EXPECT_TRUE(Helper::GetSplitPoints(shape.edges()[0]).is_owner()); } { ASSERT_OK_AND_ASSIGN(auto edge, Helper::EdgeFromMapping({0, 0}, 1)); UnsafeArenaBufferFactory arena{128}; ASSERT_OK_AND_ASSIGN(auto shape, Shape::FromEdges({std::move(edge)}, arena)); EXPECT_FALSE(Helper::GetSplitPoints(shape.edges()[0]).is_owner()); } } TYPED_TEST(JaggedShapeTest, FlatFromSize) { using Shape = typename TestFixture::Shape; using Helper = typename TestFixture::Helper; { auto shape = Shape::FlatFromSize(3); EXPECT_EQ(shape.rank(), 1); EXPECT_EQ(shape.size(), 3); auto edges = shape.edges(); EXPECT_EQ(edges.size(), 1); EXPECT_THAT(Helper::GetSplitPoints(edges[0]), ElementsAre(0, 3)); } { auto shape = Shape::FlatFromSize(3); EXPECT_TRUE(Helper::GetSplitPoints(shape.edges()[0]).is_owner()); } { UnsafeArenaBufferFactory arena{128}; auto shape = Shape::FlatFromSize(3, arena); EXPECT_FALSE(Helper::GetSplitPoints(shape.edges()[0]).is_owner()); } } TYPED_TEST(JaggedShapeTest, AddDims) { using Shape = typename TestFixture::Shape; using Helper = typename TestFixture::Helper; { ASSERT_OK_AND_ASSIGN(auto edge, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto shape, Shape::FromEdges({std::move(edge)})); ASSERT_OK_AND_ASSIGN(shape, shape.AddDims({})); EXPECT_EQ(shape.rank(), 1); EXPECT_EQ(shape.size(), 2); EXPECT_THAT(Helper::GetSplitPoints(shape.edges()[0]), ElementsAre(0, 2)); } { ASSERT_OK_AND_ASSIGN(auto edge, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto shape, Shape::FromEdges({std::move(edge)})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromSplitPoints({0, 1, 3})); ASSERT_OK_AND_ASSIGN(auto edge3, Helper::EdgeFromMapping({0, 1, 2, 2}, 3)); ASSERT_OK_AND_ASSIGN(shape, shape.AddDims({edge2, edge3})); EXPECT_EQ(shape.rank(), 3); EXPECT_EQ(shape.size(), 4); auto edges = shape.edges(); EXPECT_THAT(Helper::GetSplitPoints(edges[0]), ElementsAre(0, 2)); EXPECT_THAT(Helper::GetSplitPoints(edges[1]), ElementsAre(0, 1, 3)); EXPECT_THAT(Helper::GetSplitPoints(edges[2]), ElementsAre(0, 1, 2, 4)); } { ASSERT_OK_AND_ASSIGN(auto shape, Shape::FromEdges({})); ASSERT_OK_AND_ASSIGN(auto edge, Helper::EdgeFromMapping({0, 0}, 1)); ASSERT_OK_AND_ASSIGN(shape, shape.AddDims({edge})); EXPECT_TRUE(Helper::GetSplitPoints(shape.edges()[0]).is_owner()); } { ASSERT_OK_AND_ASSIGN(auto shape, Shape::FromEdges({})); ASSERT_OK_AND_ASSIGN(auto edge, Helper::EdgeFromMapping({0, 0}, 1)); UnsafeArenaBufferFactory arena{128}; ASSERT_OK_AND_ASSIGN(shape, shape.AddDims({edge}, arena)); EXPECT_FALSE(Helper::GetSplitPoints(shape.edges()[0]).is_owner()); } { ASSERT_OK_AND_ASSIGN(auto edge, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto shape, Shape::FromEdges({edge})); EXPECT_THAT(shape.AddDims({edge}), StatusIs(absl::StatusCode::kInvalidArgument, "incompatible dimensions - edges[1].parent_size " "!= 2 (prior edge's child_size)")); } } TYPED_TEST(JaggedShapeTest, RemoveDims) { using Shape = typename TestFixture::Shape; using Helper = typename TestFixture::Helper; { ASSERT_OK_AND_ASSIGN(auto shape, Shape::FromEdges({})); shape = shape.RemoveDims(0); EXPECT_EQ(shape.rank(), 0); } { ASSERT_OK_AND_ASSIGN(auto edge, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto shape, Shape::FromEdges({edge})); shape = shape.RemoveDims(1); EXPECT_EQ(shape.rank(), 1); EXPECT_THAT(Helper::GetSplitPoints(shape.edges()[0]), ElementsAre(0, 2)); } { ASSERT_OK_AND_ASSIGN(auto edge, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromSplitPoints({0, 1, 2})); ASSERT_OK_AND_ASSIGN(auto shape, Shape::FromEdges({edge, edge2})); shape = shape.RemoveDims(0); EXPECT_EQ(shape.rank(), 0); } { ASSERT_OK_AND_ASSIGN(auto edge, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromSplitPoints({0, 1, 3})); ASSERT_OK_AND_ASSIGN(auto edge3, Helper::EdgeFromSplitPoints({0, 1, 2, 4})); ASSERT_OK_AND_ASSIGN(auto shape, Shape::FromEdges({edge, edge2, edge3})); shape = shape.RemoveDims(1); EXPECT_EQ(shape.rank(), 1); EXPECT_THAT(Helper::GetSplitPoints(shape.edges()[0]), ElementsAre(0, 2)); } } TYPED_TEST(JaggedShapeTest, FlattenDims_RankDecrease) { using Shape = typename TestFixture::Shape; using Helper = typename TestFixture::Helper; ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromSplitPoints({0, 1, 3})); ASSERT_OK_AND_ASSIGN(auto edge3, Helper::EdgeFromSplitPoints({0, 1, 2, 4})); ASSERT_OK_AND_ASSIGN(auto edge4, Helper::EdgeFromSplitPoints({0, 3, 4, 11, 12})); ASSERT_OK_AND_ASSIGN(auto shape, Shape::FromEdges({edge1, edge2, edge3, edge4})); { auto new_shape = shape.FlattenDims(0, 1); EXPECT_EQ(new_shape.rank(), 4); auto edges = new_shape.edges(); EXPECT_THAT(Helper::GetSplitPoints(edges[0]), ElementsAre(0, 2)); EXPECT_THAT(Helper::GetSplitPoints(edges[1]), ElementsAre(0, 1, 3)); EXPECT_THAT(Helper::GetSplitPoints(edges[2]), ElementsAre(0, 1, 2, 4)); EXPECT_THAT(Helper::GetSplitPoints(edges[3]), ElementsAre(0, 3, 4, 11, 12)); } { auto new_shape = shape.FlattenDims(0, 4); EXPECT_EQ(new_shape.rank(), 1); auto edges = new_shape.edges(); EXPECT_THAT(Helper::GetSplitPoints(edges[0]), ElementsAre(0, 12)); } { auto new_shape = shape.FlattenDims(1, 3); EXPECT_EQ(new_shape.rank(), 3); auto edges = new_shape.edges(); EXPECT_THAT(Helper::GetSplitPoints(edges[0]), ElementsAre(0, 2)); EXPECT_THAT(Helper::GetSplitPoints(edges[1]), ElementsAre(0, 1, 4)); EXPECT_THAT(Helper::GetSplitPoints(edges[2]), ElementsAre(0, 3, 4, 11, 12)); } { auto new_shape = shape.FlattenDims(0, 4); EXPECT_TRUE(Helper::GetSplitPoints(new_shape.edges()[0]).is_owner()); } { UnsafeArenaBufferFactory arena{128}; auto new_shape = shape.FlattenDims(0, 4, arena); EXPECT_FALSE(Helper::GetSplitPoints(new_shape.edges()[0]).is_owner()); } } TYPED_TEST(JaggedShapeTest, FlattenDims_RankIncrease) { using Shape = typename TestFixture::Shape; using Helper = typename TestFixture::Helper; ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromSplitPoints({0, 1, 3})); ASSERT_OK_AND_ASSIGN(auto edge3, Helper::EdgeFromSplitPoints({0, 1, 2, 4})); ASSERT_OK_AND_ASSIGN(auto edge4, Helper::EdgeFromSplitPoints({0, 3, 4, 11, 12})); ASSERT_OK_AND_ASSIGN(auto shape, Shape::FromEdges({edge1, edge2, edge3, edge4})); { auto new_shape = shape.FlattenDims(0, 0); EXPECT_EQ(new_shape.rank(), 5); auto edges = new_shape.edges(); EXPECT_THAT(Helper::GetSplitPoints(edges[0]), ElementsAre(0, 1)); EXPECT_THAT(Helper::GetSplitPoints(edges[1]), ElementsAre(0, 2)); EXPECT_THAT(Helper::GetSplitPoints(edges[2]), ElementsAre(0, 1, 3)); EXPECT_THAT(Helper::GetSplitPoints(edges[3]), ElementsAre(0, 1, 2, 4)); EXPECT_THAT(Helper::GetSplitPoints(edges[4]), ElementsAre(0, 3, 4, 11, 12)); } { auto new_shape = shape.FlattenDims(2, 2); EXPECT_EQ(new_shape.rank(), 5); auto edges = new_shape.edges(); EXPECT_THAT(Helper::GetSplitPoints(edges[0]), ElementsAre(0, 2)); EXPECT_THAT(Helper::GetSplitPoints(edges[1]), ElementsAre(0, 1, 3)); EXPECT_THAT(Helper::GetSplitPoints(edges[2]), ElementsAre(0, 1, 2, 3)); EXPECT_THAT(Helper::GetSplitPoints(edges[3]), ElementsAre(0, 1, 2, 4)); EXPECT_THAT(Helper::GetSplitPoints(edges[4]), ElementsAre(0, 3, 4, 11, 12)); } { auto new_shape = shape.FlattenDims(4, 4); EXPECT_EQ(new_shape.rank(), 5); auto edges = new_shape.edges(); EXPECT_THAT(Helper::GetSplitPoints(edges[0]), ElementsAre(0, 2)); EXPECT_THAT(Helper::GetSplitPoints(edges[1]), ElementsAre(0, 1, 3)); EXPECT_THAT(Helper::GetSplitPoints(edges[2]), ElementsAre(0, 1, 2, 4)); EXPECT_THAT(Helper::GetSplitPoints(edges[3]), ElementsAre(0, 3, 4, 11, 12)); EXPECT_THAT(Helper::GetSplitPoints(edges[4]), ElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)); } { auto empty_shape = Shape::Empty(); auto new_shape = empty_shape.FlattenDims(0, 0); EXPECT_EQ(new_shape.rank(), 1); auto edges = new_shape.edges(); EXPECT_THAT(Helper::GetSplitPoints(edges[0]), ElementsAre(0, 1)); } { auto new_shape = shape.FlattenDims(0, 0); EXPECT_TRUE(Helper::GetSplitPoints(new_shape.edges()[0]).is_owner()); } { UnsafeArenaBufferFactory arena{128}; auto new_shape = shape.FlattenDims(0, 0, arena); EXPECT_FALSE(Helper::GetSplitPoints(new_shape.edges()[0]).is_owner()); } } TYPED_TEST(JaggedShapeTest, MovableAndCopyableClass) { using Shape = typename TestFixture::Shape; using Helper = typename TestFixture::Helper; static_assert(std::is_copy_constructible_v<Shape> && std::is_copy_assignable_v<Shape>); static_assert(std::is_move_constructible_v<Shape> && std::is_move_assignable_v<Shape>); { ASSERT_OK_AND_ASSIGN(auto edge, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto shape, Shape::FromEdges({std::move(edge)})); auto shape_cpy = shape; EXPECT_EQ(shape_cpy.rank(), 1); EXPECT_EQ(shape_cpy.size(), 2); auto edges = shape_cpy.edges(); EXPECT_EQ(edges.size(), 1); EXPECT_THAT(Helper::GetSplitPoints(edges[0]), ElementsAre(0, 2)); } { ASSERT_OK_AND_ASSIGN(auto edge, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto shape, Shape::FromEdges({std::move(edge)})); auto shape_move = std::move(shape); EXPECT_EQ(shape_move.rank(), 1); EXPECT_EQ(shape_move.size(), 2); auto edges = shape_move.edges(); EXPECT_EQ(edges.size(), 1); EXPECT_THAT(Helper::GetSplitPoints(edges[0]), ElementsAre(0, 2)); } } TYPED_TEST(JaggedShapeTest, Fingerprint) { using Shape = typename TestFixture::Shape; using Helper = typename TestFixture::Helper; ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromSplitPoints({0, 1, 2})); ASSERT_OK_AND_ASSIGN(auto shape1, Shape::FromEdges({edge1, edge2})); ASSERT_OK_AND_ASSIGN(auto shape2, Shape::FromEdges({edge1, edge2})); EXPECT_EQ(FingerprintHasher("salt").Combine(shape1).Finish(), FingerprintHasher("salt").Combine(shape2).Finish()); ASSERT_OK_AND_ASSIGN(auto edge3, Helper::EdgeFromSplitPoints({0, 2, 4})); ASSERT_OK_AND_ASSIGN(auto shape3, Shape::FromEdges({edge1, edge3})); EXPECT_NE(FingerprintHasher("salt").Combine(shape1).Finish(), FingerprintHasher("salt").Combine(shape3).Finish()); ASSERT_OK_AND_ASSIGN(auto shape4, Shape::FromEdges({edge1, edge2, edge3})); EXPECT_NE(FingerprintHasher("salt").Combine(shape1).Finish(), FingerprintHasher("salt").Combine(shape4).Finish()); } TYPED_TEST(JaggedShapeTest, FastEquivalenceCheck) { using Shape = typename TestFixture::Shape; using Helper = typename TestFixture::Helper; JaggedShapeFastEquivalenceResult kEqSizes( JaggedShapeFastEquivalenceResult::kSizesEq); JaggedShapeFastEquivalenceResult kNotEq( JaggedShapeFastEquivalenceResult::kNotEq); JaggedShapeFastEquivalenceResult kEq(JaggedShapeFastEquivalenceResult::kEq); { SCOPED_TRACE("Empty is fully equal."); auto shape = Shape::Empty(); EXPECT_EQ(shape.FastEquivalenceCheck(shape), kEq); } { SCOPED_TRACE("Rank 1 is fully equal."); ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto shape, Shape::FromEdges({edge1})); EXPECT_EQ(shape.FastEquivalenceCheck(shape), kEq); ASSERT_OK_AND_ASSIGN(auto shape2, Shape::FromEdges({edge1})); EXPECT_EQ(shape.FastEquivalenceCheck(shape2), kEq); EXPECT_EQ(shape2.FastEquivalenceCheck(shape), kEq); ASSERT_OK_AND_ASSIGN(auto edge1_new, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto shape2_new, Shape::FromEdges({edge1_new})); EXPECT_EQ(shape.FastEquivalenceCheck(shape2_new), kEq); EXPECT_EQ(shape2_new.FastEquivalenceCheck(shape), kEq); } { SCOPED_TRACE("Equal shapes."); ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromSplitPoints({0, 1, 3})); ASSERT_OK_AND_ASSIGN(auto edge3, Helper::EdgeFromSplitPoints({0, 1, 2, 4})); ASSERT_OK_AND_ASSIGN(auto shape1, Shape::FromEdges({edge1, edge2, edge3})); ASSERT_OK_AND_ASSIGN(auto shape2, Shape::FromEdges({edge1, edge2, edge3})); EXPECT_EQ(shape1.FastEquivalenceCheck(shape1), kEq) << "the same pointer must be exact equal"; EXPECT_EQ(shape1.FastEquivalenceCheck(shape2), kEqSizes); EXPECT_EQ(shape2.FastEquivalenceCheck(shape1), kEqSizes); } { SCOPED_TRACE("Different shapes."); ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto shape1, Shape::FromEdges({edge1})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromSplitPoints({0, 3})); ASSERT_OK_AND_ASSIGN(auto shape2, Shape::FromEdges({edge2})); EXPECT_EQ(shape1.FastEquivalenceCheck(shape2), kNotEq); EXPECT_EQ(shape2.FastEquivalenceCheck(shape1), kNotEq); } { SCOPED_TRACE("Different ranks."); ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromSplitPoints({0, 1, 3})); ASSERT_OK_AND_ASSIGN(auto shape1, Shape::FromEdges({edge1, edge2})); ASSERT_OK_AND_ASSIGN(auto shape2, Shape::FromEdges({edge1})); EXPECT_EQ(shape1.FastEquivalenceCheck(shape2), kNotEq); EXPECT_EQ(shape2.FastEquivalenceCheck(shape1), kNotEq); } { SCOPED_TRACE("False negative."); ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromSplitPoints({0, 1, 3})); ASSERT_OK_AND_ASSIGN(auto shape1, Shape::FromEdges({edge1, edge2})); ASSERT_OK_AND_ASSIGN(auto edge3, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto edge4, Helper::EdgeFromSplitPoints({0, 2, 3})); ASSERT_OK_AND_ASSIGN(auto shape2, Shape::FromEdges({edge3, edge4})); EXPECT_EQ(shape1.FastEquivalenceCheck(shape2), kEqSizes); EXPECT_EQ(shape2.FastEquivalenceCheck(shape1), kEqSizes); } } TYPED_TEST(JaggedShapeTest, EqOp) { using Shape = typename TestFixture::Shape; using Helper = typename TestFixture::Helper; { ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromSplitPoints({0, 1, 3})); ASSERT_OK_AND_ASSIGN(auto edge3, Helper::EdgeFromSplitPoints({0, 1, 2, 4})); ASSERT_OK_AND_ASSIGN(auto shape1, Shape::FromEdges({edge1, edge2, edge3})); ASSERT_OK_AND_ASSIGN(auto shape2, Shape::FromEdges({edge1, edge2, edge3})); EXPECT_TRUE(shape1.IsEquivalentTo(shape2)); EXPECT_TRUE(shape2.IsEquivalentTo(shape1)); EXPECT_TRUE(shape1.IsEquivalentTo(shape1)); } { ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto shape1, Shape::FromEdges({edge1})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromSplitPoints({0, 3})); ASSERT_OK_AND_ASSIGN(auto shape2, Shape::FromEdges({edge2})); EXPECT_FALSE(shape1.IsEquivalentTo(shape2)); EXPECT_FALSE(shape2.IsEquivalentTo(shape1)); } { ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromSplitPoints({0, 1, 3})); ASSERT_OK_AND_ASSIGN(auto shape1, Shape::FromEdges({edge1, edge2})); ASSERT_OK_AND_ASSIGN(auto shape2, Shape::FromEdges({edge1})); EXPECT_FALSE(shape1.IsEquivalentTo(shape2)); EXPECT_FALSE(shape2.IsEquivalentTo(shape1)); } { ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromSplitPoints({0, 1, 3})); ASSERT_OK_AND_ASSIGN(auto shape1, Shape::FromEdges({edge1, edge2})); ASSERT_OK_AND_ASSIGN(auto edge3, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto edge4, Helper::EdgeFromSplitPoints({0, 2, 3})); ASSERT_OK_AND_ASSIGN(auto shape2, Shape::FromEdges({edge3, edge4})); EXPECT_FALSE(shape1.IsEquivalentTo(shape2)); EXPECT_FALSE(shape2.IsEquivalentTo(shape1)); } } TYPED_TEST(JaggedShapeTest, IsBroadcastableTo) { using Shape = typename TestFixture::Shape; using Helper = typename TestFixture::Helper; { ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromSplitPoints({0, 1, 3})); ASSERT_OK_AND_ASSIGN(auto edge3, Helper::EdgeFromSplitPoints({0, 1, 2, 4})); ASSERT_OK_AND_ASSIGN(auto shape1, Shape::FromEdges({edge1, edge2, edge3})); ASSERT_OK_AND_ASSIGN(auto shape2, Shape::FromEdges({edge1, edge2, edge3})); EXPECT_TRUE(shape1.IsBroadcastableTo(shape2)); EXPECT_TRUE(shape2.IsBroadcastableTo(shape1)); EXPECT_TRUE(shape1.IsBroadcastableTo(shape1)); } { ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto shape1, Shape::FromEdges({edge1})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromSplitPoints({0, 3})); ASSERT_OK_AND_ASSIGN(auto shape2, Shape::FromEdges({edge2})); EXPECT_FALSE(shape1.IsBroadcastableTo(shape2)); EXPECT_FALSE(shape2.IsBroadcastableTo(shape1)); } { ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromSplitPoints({0, 2, 3})); ASSERT_OK_AND_ASSIGN(auto edge3, Helper::EdgeFromSplitPoints({0, 2, 4, 6})); ASSERT_OK_AND_ASSIGN(auto shape1, Shape::FromEdges({edge1, edge2})); ASSERT_OK_AND_ASSIGN(auto shape2, Shape::FromEdges({edge1, edge2, edge3})); EXPECT_TRUE(shape1.IsBroadcastableTo(shape2)); EXPECT_FALSE(shape2.IsBroadcastableTo(shape1)); } { ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto edge2_1, Helper::EdgeFromSplitPoints({0, 2, 3})); ASSERT_OK_AND_ASSIGN(auto edge2_2, Helper::EdgeFromSplitPoints({0, 1, 3})); ASSERT_OK_AND_ASSIGN(auto edge3, Helper::EdgeFromSplitPoints({0, 2, 4, 6})); ASSERT_OK_AND_ASSIGN(auto shape1, Shape::FromEdges({edge1, edge2_1})); ASSERT_OK_AND_ASSIGN(auto shape2, Shape::FromEdges({edge1, edge2_2, edge3})); EXPECT_FALSE(shape1.IsBroadcastableTo(shape2)); EXPECT_FALSE(shape2.IsBroadcastableTo(shape1)); } } TYPED_TEST(JaggedShapeTest, GetBroadcastEdge) { using Shape = typename TestFixture::Shape; using Helper = typename TestFixture::Helper; { ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromSplitPoints({0, 1, 3})); ASSERT_OK_AND_ASSIGN(auto edge3, Helper::EdgeFromSplitPoints({0, 1, 2, 4})); ASSERT_OK_AND_ASSIGN(auto shape1, Shape::FromEdges({edge1})); ASSERT_OK_AND_ASSIGN(auto shape2, Shape::FromEdges({edge1, edge2, edge3})); auto edge = shape1.GetBroadcastEdge(shape2); EXPECT_TRUE(edge.IsEquivalentTo(*Helper::EdgeFromSplitPoints({0, 1, 4}))); } { ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromSplitPoints({0, 1, 3})); ASSERT_OK_AND_ASSIGN(auto edge3, Helper::EdgeFromSplitPoints({0, 1, 2, 4})); ASSERT_OK_AND_ASSIGN(auto shape1, Shape::FromEdges({edge1, edge2, edge3})); ASSERT_OK_AND_ASSIGN(auto shape2, Shape::FromEdges({edge1, edge2, edge3})); auto edge = shape1.GetBroadcastEdge(shape2); EXPECT_TRUE( edge.IsEquivalentTo(*Helper::EdgeFromSplitPoints({0, 1, 2, 3, 4}))); } { ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromSplitPoints({0, 1, 3})); ASSERT_OK_AND_ASSIGN(auto edge3, Helper::EdgeFromSplitPoints({0, 1, 2, 4})); ASSERT_OK_AND_ASSIGN(auto shape1, Shape::FromEdges({edge1})); ASSERT_OK_AND_ASSIGN(auto shape2, Shape::FromEdges({edge1, edge2, edge3})); auto edge = shape1.GetBroadcastEdge(shape2); EXPECT_TRUE(Helper::GetSplitPoints(edge).is_owner()); } { ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromSplitPoints({0, 1, 3})); ASSERT_OK_AND_ASSIGN(auto edge3, Helper::EdgeFromSplitPoints({0, 1, 2, 4})); ASSERT_OK_AND_ASSIGN(auto shape1, Shape::FromEdges({edge1})); ASSERT_OK_AND_ASSIGN(auto shape2, Shape::FromEdges({edge1, edge2, edge3})); UnsafeArenaBufferFactory arena{128}; auto edge = shape1.GetBroadcastEdge(shape2, arena); EXPECT_FALSE(Helper::GetSplitPoints(edge).is_owner()); } { ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromSplitPoints({0, 1, 3})); ASSERT_OK_AND_ASSIGN(auto edge3, Helper::EdgeFromSplitPoints({0, 1, 2, 4})); ASSERT_OK_AND_ASSIGN(auto shape1, Shape::FromEdges({edge1, edge2, edge3})); ASSERT_OK_AND_ASSIGN(auto shape2, Shape::FromEdges({edge1, edge2, edge3})); auto edge = shape1.GetBroadcastEdge(shape2); EXPECT_TRUE(Helper::GetSplitPoints(edge).is_owner()); } { ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromSplitPoints({0, 1, 3})); ASSERT_OK_AND_ASSIGN(auto edge3, Helper::EdgeFromSplitPoints({0, 1, 2, 4})); ASSERT_OK_AND_ASSIGN(auto shape1, Shape::FromEdges({edge1, edge2, edge3})); ASSERT_OK_AND_ASSIGN(auto shape2, Shape::FromEdges({edge1, edge2, edge3})); UnsafeArenaBufferFactory arena{128}; auto edge = shape1.GetBroadcastEdge(shape2, arena); EXPECT_FALSE(Helper::GetSplitPoints(edge).is_owner()); } } TYPED_TEST(JaggedShapeTest, EdgeT) { using Edge = typename TestFixture::Shape::Edge; using TestEdge = typename TestFixture::Helper::Edge; static_assert(std::is_same_v<Edge, TestEdge>); } TYPED_TEST(JaggedShapeTest, Repr) { using Shape = typename TestFixture::Shape; using Helper = typename TestFixture::Helper; ASSERT_OK_AND_ASSIGN(auto edge1, Helper::EdgeFromSplitPoints({0, 2})); ASSERT_OK_AND_ASSIGN(auto edge2, Helper::EdgeFromSplitPoints({0, 2, 7})); ASSERT_OK_AND_ASSIGN(auto edge3, Helper::EdgeFromSplitPoints({0, 1, 2, 3, 4, 5, 6, 7})); ASSERT_OK_AND_ASSIGN(auto edge4, Helper::EdgeFromSplitPoints({0, 2, 3, 4, 5, 6, 7, 8})); ASSERT_OK_AND_ASSIGN(auto shape, Shape::FromEdges({edge1, edge2, edge3, edge4})); std::string expected_repr = absl::StrCat( Helper::ReprName(), "(2, [2, 5], 1, [2, 1, 1, ..., 1, 1, 1])"); EXPECT_THAT(GenReprToken(shape), ReprTokenEq(expected_repr)); } template <typename ShapeHelper> typename ShapeHelper::Shape ShapeFromEdgesBM( const typename ShapeHelper::Shape::EdgeVec& edges, benchmark::State& state) { state.PauseTiming(); auto edges_cpy = edges; state.ResumeTiming(); return ShapeHelper::Shape::FromEdges(std::move(edges_cpy)).value(); } template <typename ShapeHelper> typename ShapeHelper::Edge GetSplitPointsEdge(int64_t parent_size, int64_t children) { std::vector<OptionalValue<int64_t>> split_points; split_points.reserve(parent_size + 1); for (int64_t i = 0; i <= parent_size; ++i) { split_points.push_back(i * children); } return ShapeHelper::EdgeFromSplitPoints(std::move(split_points)).value(); } template <typename ShapeHelper> typename ShapeHelper::Edge GetMappingEdge(int64_t parent_size, int64_t children) { std::vector<OptionalValue<int64_t>> mapping; mapping.reserve(parent_size * children); for (int64_t i = 0; i < parent_size; ++i) { for (int64_t j = 0; j < children; ++j) { mapping.push_back(i); } } return ShapeHelper::EdgeFromMapping(std::move(mapping), parent_size).value(); } template <typename ShapeHelper> typename ShapeHelper::Shape GetShape(int64_t rank, int64_t num_children) { typename ShapeHelper::Shape::EdgeVec edges; edges.reserve(rank); for (int i = 0; i < rank; ++i) { edges.push_back(GetSplitPointsEdge<ShapeHelper>(std::pow(num_children, i), num_children)); } return ShapeHelper::Shape::FromEdges(std::move(edges)).value(); } template <typename ShapeHelper> void BM_JaggedShape_EmptyCreation(benchmark::State& state) { for (auto _ : state) { auto shape = ShapeHelper::Shape::Empty(); benchmark::DoNotOptimize(shape); } } BENCHMARK(BM_JaggedShape_EmptyCreation<JaggedArrayShapeHelper>); BENCHMARK(BM_JaggedShape_EmptyCreation<JaggedDenseArrayShapeHelper>); template <typename ShapeHelper> void BM_JaggedShape_FromSplitPointEdges(benchmark::State& state) { const int rank = state.range(0); const int num_children = state.range(1); typename ShapeHelper::Shape::EdgeVec edges; edges.reserve(rank); for (int i = 0; i < rank; ++i) { edges.push_back(GetSplitPointsEdge<ShapeHelper>(std::pow(num_children, i), num_children)); } for (auto _ : state) { benchmark::DoNotOptimize(edges); auto shape = ShapeFromEdgesBM<ShapeHelper>(edges, state); benchmark::DoNotOptimize(shape); } } BENCHMARK(BM_JaggedShape_FromSplitPointEdges<JaggedArrayShapeHelper>) ->ArgPair(1, 1) ->ArgPair(100, 1) ->ArgPair(1, 100) ->ArgPair(4, 100); BENCHMARK(BM_JaggedShape_FromSplitPointEdges<JaggedDenseArrayShapeHelper>) ->ArgPair(1, 1) ->ArgPair(100, 1) ->ArgPair(1, 100) ->ArgPair(4, 100); template <typename ShapeHelper> void BM_JaggedShape_FromMappingEdges(benchmark::State& state) { const int rank = state.range(0); const int num_children = state.range(1); typename ShapeHelper::Shape::EdgeVec edges; edges.reserve(rank); for (int i = 0; i < rank; ++i) { edges.push_back( GetMappingEdge<ShapeHelper>(std::pow(num_children, i), num_children)); } for (auto _ : state) { benchmark::DoNotOptimize(edges); auto shape = ShapeFromEdgesBM<ShapeHelper>(edges, state); benchmark::DoNotOptimize(shape); } } BENCHMARK(BM_JaggedShape_FromMappingEdges<JaggedArrayShapeHelper>) ->ArgPair(1, 1) ->ArgPair(100, 1) ->ArgPair(1, 100) ->ArgPair(4, 100); BENCHMARK(BM_JaggedShape_FromMappingEdges<JaggedDenseArrayShapeHelper>) ->ArgPair(1, 1) ->ArgPair(100, 1) ->ArgPair(1, 100) ->ArgPair(4, 100); template <typename ShapeHelper> void BM_JaggedShape_FastEquivalenceCheck(benchmark::State& state) { const int rank = state.range(0); const int num_children = state.range(1); auto shape1 = GetShape<ShapeHelper>(rank, num_children); auto shape2 = GetShape<ShapeHelper>(rank, num_children); for (auto _ : state) { benchmark::DoNotOptimize(shape1); benchmark::DoNotOptimize(shape2); auto eq = shape1.FastEquivalenceCheck(shape2); benchmark::DoNotOptimize(eq); } } BENCHMARK(BM_JaggedShape_FastEquivalenceCheck<JaggedArrayShapeHelper>) ->ArgPair(1, 1) ->ArgPair(100, 1) ->ArgPair(1, 100) ->ArgPair(4, 100); BENCHMARK(BM_JaggedShape_FastEquivalenceCheck<JaggedDenseArrayShapeHelper>) ->ArgPair(1, 1) ->ArgPair(100, 1) ->ArgPair(1, 100) ->ArgPair(4, 100); template <typename ShapeHelper> void BM_JaggedShape_IsEquivalentTo(benchmark::State& state) { const int rank = state.range(0); const int num_children = state.range(1); auto shape1 = GetShape<ShapeHelper>(rank, num_children); auto shape2 = GetShape<ShapeHelper>(rank, num_children); for (auto _ : state) { benchmark::DoNotOptimize(shape1); benchmark::DoNotOptimize(shape2); auto eq = shape1.IsEquivalentTo(shape2); benchmark::DoNotOptimize(eq); } } BENCHMARK(BM_JaggedShape_IsEquivalentTo<JaggedArrayShapeHelper>) ->ArgPair(1, 1) ->ArgPair(100, 1) ->ArgPair(1, 100) ->ArgPair(4, 100); BENCHMARK(BM_JaggedShape_IsEquivalentTo<JaggedDenseArrayShapeHelper>) ->ArgPair(1, 1) ->ArgPair(100, 1) ->ArgPair(1, 100) ->ArgPair(4, 100); template <typename ShapeHelper> void BM_JaggedShape_IsEquivalentTo_SameObj(benchmark::State& state) { const int rank = state.range(0); const int num_children = state.range(1); auto shape1 = GetShape<ShapeHelper>(rank, num_children); auto shape2 = shape1; for (auto _ : state) { benchmark::DoNotOptimize(shape1); benchmark::DoNotOptimize(shape2); auto eq = shape1.IsEquivalentTo(shape2); benchmark::DoNotOptimize(eq); } } BENCHMARK(BM_JaggedShape_IsEquivalentTo_SameObj<JaggedArrayShapeHelper>) ->ArgPair(1, 1) ->ArgPair(4, 100); BENCHMARK(BM_JaggedShape_IsEquivalentTo_SameObj<JaggedDenseArrayShapeHelper>) ->ArgPair(1, 1) ->ArgPair(4, 100); template <typename ShapeHelper> void BM_JaggedShape_FlattenDims(benchmark::State& state) { const int rank = state.range(0); const int num_children = state.range(1); auto shape = GetShape<ShapeHelper>(rank, num_children); int from = state.range(2); int to = state.range(3); for (auto _ : state) { benchmark::DoNotOptimize(shape); benchmark::DoNotOptimize(from); benchmark::DoNotOptimize(to); auto flattened_shape = shape.FlattenDims(from, to); benchmark::DoNotOptimize(flattened_shape); } } BENCHMARK(BM_JaggedShape_FlattenDims<JaggedArrayShapeHelper>) ->Args({6, 10, 0, 6}) ->Args({6, 10, 0, 2}) ->Args({6, 10, 2, 4}) ->Args({6, 10, 4, 6}) ->Args({6, 10, 5, 6}) ->Args({6, 10, 0, 0}) ->Args({6, 10, 2, 2}) ->Args({6, 10, 4, 4}) ->Args({6, 10, 6, 6}); BENCHMARK(BM_JaggedShape_FlattenDims<JaggedDenseArrayShapeHelper>) ->Args({6, 10, 0, 6}) ->Args({6, 10, 0, 2}) ->Args({6, 10, 2, 4}) ->Args({6, 10, 4, 6}) ->Args({6, 10, 5, 6}) ->Args({6, 10, 0, 0}) ->Args({6, 10, 2, 2}) ->Args({6, 10, 4, 4}) ->Args({6, 10, 6, 6}); template <typename ShapeHelper> void BM_JaggedShape_IsBroadcastableTo(benchmark::State& state) { const int rank_1 = state.range(0); const int rank_2 = state.range(1); const int num_children = state.range(2); auto shape1 = GetShape<ShapeHelper>(rank_1, num_children); auto shape2 = GetShape<ShapeHelper>(rank_2, num_children); for (auto _ : state) { benchmark::DoNotOptimize(shape1); benchmark::DoNotOptimize(shape2); auto is_broadcastable = shape1.IsBroadcastableTo(shape2); benchmark::DoNotOptimize(is_broadcastable); } } BENCHMARK(BM_JaggedShape_IsBroadcastableTo<JaggedArrayShapeHelper>) ->Args({1, 1, 1}) ->Args({1, 5, 5}) ->Args({4, 5, 5}); BENCHMARK(BM_JaggedShape_IsBroadcastableTo<JaggedDenseArrayShapeHelper>) ->Args({1, 1, 1}) ->Args({1, 5, 5}) ->Args({4, 5, 5}); template <typename ShapeHelper> void BM_JaggedShape_IsBroadcastableTo_SameObj(benchmark::State& state) { const int rank_1 = state.range(0); const int num_children = state.range(1); auto shape1 = GetShape<ShapeHelper>(rank_1, num_children); auto shape2 = shape1; for (auto _ : state) { benchmark::DoNotOptimize(shape1); benchmark::DoNotOptimize(shape2); auto is_broadcastable = shape1.IsBroadcastableTo(shape2); benchmark::DoNotOptimize(is_broadcastable); } } BENCHMARK(BM_JaggedShape_IsBroadcastableTo_SameObj<JaggedArrayShapeHelper>) ->Args({1, 1}) ->Args({1, 5}) ->Args({4, 5}); BENCHMARK(BM_JaggedShape_IsBroadcastableTo_SameObj<JaggedDenseArrayShapeHelper>) ->Args({1, 1}) ->Args({1, 5}) ->Args({4, 5}); template <typename ShapeHelper> void BM_JaggedShape_Copying(benchmark::State& state) { const int rank = state.range(0); const int num_children = state.range(1); auto shape = GetShape<ShapeHelper>(rank, num_children); for (auto _ : state) { benchmark::DoNotOptimize(shape); auto shape_copy = shape; benchmark::DoNotOptimize(shape_copy); } } BENCHMARK(BM_JaggedShape_Copying<JaggedArrayShapeHelper>) ->ArgPair(1, 1) ->ArgPair(100, 1) ->ArgPair(1, 100) ->ArgPair(4, 100); BENCHMARK(BM_JaggedShape_Copying<JaggedDenseArrayShapeHelper>) ->ArgPair(1, 1) ->ArgPair(100, 1) ->ArgPair(1, 100) ->ArgPair(4, 100); template <typename ShapeHelper> void BM_JaggedShape_Repr(benchmark::State& state) { const int rank = state.range(0); const int num_children = state.range(1); auto shape = GetShape<ShapeHelper>(rank, num_children); for (auto _ : state) { benchmark::DoNotOptimize(shape); auto repr = Repr(shape); benchmark::DoNotOptimize(repr); } } BENCHMARK(BM_JaggedShape_Repr<JaggedArrayShapeHelper>) ->ArgPair(1, 1) ->ArgPair(100, 1) ->ArgPair(1, 100) ->ArgPair(4, 100); BENCHMARK(BM_JaggedShape_Repr<JaggedDenseArrayShapeHelper>) ->ArgPair(1, 1) ->ArgPair(100, 1) ->ArgPair(1, 100) ->ArgPair(4, 100); } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/jagged_shape/dense_array/jagged_shape.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/jagged_shape/jagged_shape_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
49ddf85c-a7a2-47ba-973b-ea18e73dc05d
cpp
tensorflow/tensorflow
get_options_op
tensorflow/core/kernels/data/get_options_op.cc
tensorflow/core/kernels/data/get_options_op_test.cc
#include "tensorflow/core/kernels/data/get_options_op.h" #include "absl/memory/memory.h" #include "tensorflow/core/data/name_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/dataset_options.pb.h" #include "tensorflow/core/framework/partial_tensor_shape.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/profiler/lib/traceme.h" namespace tensorflow { namespace data { void GetOptionsOp::Compute(OpKernelContext* ctx) { DatasetBase* input; OP_REQUIRES_OK(ctx, GetDatasetFromVariantTensor(ctx->input(0), &input)); if (ctx->status().ok()) { Tensor* string_handle_t; OP_REQUIRES_OK(ctx, ctx->allocate_output(0, TensorShape({}), &string_handle_t)); string_handle_t->scalar<tstring>()() = input->options().SerializeAsString(); } } string GetOptionsOp::TraceString(const OpKernelContext& ctx, bool verbose) const { return tsl::profiler::TraceMeOp(name_view(), type_string_view()); } namespace { REGISTER_KERNEL_BUILDER(Name("GetOptions").Device(DEVICE_CPU).Priority(2), GetOptionsOp); REGISTER_KERNEL_BUILDER(Name("GetOptions") .Device(DEVICE_GPU) .HostMemory("input_dataset") .HostMemory("serialized_options") .Priority(1), GetOptionsOp); } } }
#include "tensorflow/core/kernels/data/get_options_op.h" #include "tensorflow/core/data/dataset_test_base.h" #include "tensorflow/core/kernels/data/options_dataset_op.h" #include "tensorflow/core/kernels/data/range_dataset_op.h" namespace tensorflow { namespace data { namespace { constexpr char kOptions[] = R"proto( deterministic: true slack: true optimization_options { apply_default_optimizations: true autotune: true } distribute_options {} )proto"; class GetOptionsParams : public DatasetParams { public: template <typename T> GetOptionsParams(T input_dataset_params, DataTypeVector output_dtypes, std::vector<PartialTensorShape> output_shapes, string node_name) : DatasetParams(std::move(output_dtypes), std::move(output_shapes), std::move(node_name)) { input_dataset_params_.push_back(std::make_unique<T>(input_dataset_params)); } std::vector<Tensor> GetInputTensors() const override { return {}; } Status GetInputNames(std::vector<string>* input_names) const override { input_names->emplace_back(OptionsDatasetOp::kInputDataset); return absl::OkStatus(); } Status GetAttributes(AttributeVector* attr_vector) const override { return absl::OkStatus(); } string dataset_type() const override { return "GetOptions"; } string op_name() const override { return dataset_type(); } private: string serialized_options_; }; class GetOptionsOpTest : public DatasetOpsTestBase {}; OptionsDatasetParams OptionsDatasetParams0() { Options options; protobuf::TextFormat::ParseFromString(kOptions, &options); return OptionsDatasetParams(RangeDatasetParams(0, 10, 3), options.SerializeAsString(), {DT_INT64}, {PartialTensorShape({})}, "options_dataset_0"); } GetOptionsParams GetOptionsParams0() { return GetOptionsParams(OptionsDatasetParams0(), {DT_INT64}, {PartialTensorShape({})}, "get_options_0"); } TEST_F(GetOptionsOpTest, Compute) { auto test_case_params = GetOptionsParams0(); TF_ASSERT_OK(InitializeRuntime(test_case_params)); std::vector<Tensor> output; TF_ASSERT_OK(RunDatasetOp(test_case_params, &output)); EXPECT_EQ(1, output.size()); Options options; protobuf::TextFormat::ParseFromString(kOptions, &options); Tensor expected_tensor = CreateTensor<tstring>(TensorShape({}), {options.SerializeAsString()}); Tensor result_tensor = output[0]; string serialized_options = result_tensor.scalar<tstring>()(); Options result_options; result_options.ParseFromString(serialized_options); TF_EXPECT_OK(ExpectEqual(expected_tensor, result_tensor)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/get_options_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/get_options_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5c94ebb6-18e0-4adb-b0a7-957d43bac92d
cpp
tensorflow/tensorflow
import_tensorflow
tensorflow/lite/toco/import_tensorflow.cc
tensorflow/lite/toco/import_tensorflow_test.cc
#include "tensorflow/lite/toco/import_tensorflow.h" #include <memory> #include <string> #include <utility> #include <vector> #include "google/protobuf/map.h" #include "google/protobuf/text_format.h" #include "absl/memory/memory.h" #include "absl/strings/match.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_split.h" #include "absl/strings/strip.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/process_function_library_runtime.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/public/version.h" #include "tensorflow/lite/toco/model.h" #include "tensorflow/lite/toco/model_flags.pb.h" #include "tensorflow/lite/toco/tensorflow_graph_matching/resolve_cluster.h" #include "tensorflow/lite/toco/tensorflow_util.h" #include "tensorflow/lite/toco/tooling_util.h" using tensorflow::AttrValue; using tensorflow::DT_BOOL; using tensorflow::DT_COMPLEX64; using tensorflow::DT_FLOAT; using tensorflow::DT_INT16; using tensorflow::DT_INT32; using tensorflow::DT_INT64; using tensorflow::DT_QUINT8; using tensorflow::DT_STRING; using tensorflow::DT_UINT16; using tensorflow::DT_UINT32; using tensorflow::DT_UINT8; using tensorflow::GraphDef; using tensorflow::NodeDef; using tensorflow::TensorProto; using tensorflow::TensorShapeProto; namespace toco { namespace { bool HasAttr(const NodeDef& node, const std::string& attr_name) { return node.attr().count(attr_name) > 0; } bool HasWildcardDimension(const TensorShapeProto& shape) { for (const auto& dim : shape.dim()) { if (dim.size() == -1) return true; } return false; } const std::string& GetStringAttr(const NodeDef& node, const std::string& attr_name) { CHECK(HasAttr(node, attr_name)); const auto& attr = node.attr().at(attr_name); CHECK_EQ(attr.value_case(), AttrValue::kS); return attr.s(); } int64_t GetIntAttr(const NodeDef& node, const std::string& attr_name) { CHECK(HasAttr(node, attr_name)) << attr_name << " not found in:\n" << node.DebugString(); const auto& attr = node.attr().at(attr_name); CHECK_EQ(attr.value_case(), AttrValue::kI); return attr.i(); } float GetFloatAttr(const NodeDef& node, const std::string& attr_name) { CHECK(HasAttr(node, attr_name)); const auto& attr = node.attr().at(attr_name); CHECK_EQ(attr.value_case(), AttrValue::kF); return attr.f(); } bool GetBoolAttr(const NodeDef& node, const std::string& attr_name) { CHECK(HasAttr(node, attr_name)); const auto& attr = node.attr().at(attr_name); CHECK_EQ(attr.value_case(), AttrValue::kB); return attr.b(); } tensorflow::DataType GetDataTypeAttr(const NodeDef& node, const std::string& attr_name) { CHECK(HasAttr(node, attr_name)); const auto& attr = node.attr().at(attr_name); CHECK_EQ(attr.value_case(), AttrValue::kType); return attr.type(); } const TensorShapeProto& GetShapeAttr(const NodeDef& node, const std::string& attr_name) { CHECK(HasAttr(node, attr_name)); const auto& attr = node.attr().at(attr_name); CHECK_EQ(attr.value_case(), AttrValue::kShape); return attr.shape(); } const TensorProto& GetTensorAttr(const NodeDef& node, const std::string& attr_name) { CHECK(HasAttr(node, attr_name)) << "No attr named '" << attr_name << "'"; const auto& attr = node.attr().at(attr_name); CHECK_EQ(attr.value_case(), AttrValue::kTensor); return attr.tensor(); } const AttrValue::ListValue& GetListAttr(const NodeDef& node, const std::string& attr_name) { CHECK(HasAttr(node, attr_name)); const auto& attr = node.attr().at(attr_name); CHECK_EQ(attr.value_case(), AttrValue::kList); return attr.list(); } tensorflow::Status CheckOptionalAttr(const NodeDef& node, const std::string& attr_name, const std::string& expected_value) { if (HasAttr(node, attr_name)) { const std::string& value = GetStringAttr(node, attr_name); if (value != expected_value) { return tensorflow::errors::InvalidArgument( "Unexpected value for attribute '" + attr_name + "'. Expected '" + expected_value + "'"); } } return absl::OkStatus(); } tensorflow::Status CheckOptionalAttr( const NodeDef& node, const std::string& attr_name, const tensorflow::DataType& expected_value) { if (HasAttr(node, attr_name)) { const tensorflow::DataType& value = GetDataTypeAttr(node, attr_name); if (value != expected_value) { return tensorflow::errors::InvalidArgument( "Unexpected value for attribute '" + attr_name + "'. Expected '" + tensorflow::DataType_Name(expected_value) + "'"); } } return absl::OkStatus(); } template <typename T1, typename T2> tensorflow::Status ExpectValue(const T1& v1, const T2& v2, const std::string& description) { if (v1 == v2) return absl::OkStatus(); return tensorflow::errors::InvalidArgument(absl::StrCat( "Unexpected ", description, ": got ", v1, ", expected ", v2)); } ArrayDataType ConvertDataType(tensorflow::DataType dtype) { if (dtype == DT_UINT8) return ArrayDataType::kUint8; else if (dtype == DT_FLOAT) return ArrayDataType::kFloat; else if (dtype == DT_BOOL) return ArrayDataType::kBool; else if (dtype == DT_INT16) return ArrayDataType::kInt16; else if (dtype == DT_UINT16) return ArrayDataType::kUint16; else if (dtype == DT_INT32) return ArrayDataType::kInt32; else if (dtype == DT_UINT32) return ArrayDataType::kUint32; else if (dtype == DT_INT64) return ArrayDataType::kInt64; else if (dtype == DT_STRING) return ArrayDataType::kString; else if (dtype == DT_COMPLEX64) return ArrayDataType::kComplex64; else LOG(INFO) << "Unsupported data type in placeholder op: " << dtype; return ArrayDataType::kNone; } tensorflow::Status ImportShape( const TFLITE_PROTO_NS::RepeatedPtrField<tensorflow::TensorShapeProto_Dim>& input_dims, int* input_flat_size, Shape* shape) { std::vector<int> input_dims_only_sizes; bool zero_sized_shape = false; for (auto& d : input_dims) { if (d.size() > std::numeric_limits<int>::max()) { return tensorflow::errors::InvalidArgument("Shape element overflows"); } if (d.size() == 0) { zero_sized_shape = true; } input_dims_only_sizes.push_back(d.size()); } if (zero_sized_shape) { shape->mutable_dims()->clear(); if (input_flat_size != nullptr) *input_flat_size = 0; return absl::OkStatus(); } *shape->mutable_dims() = input_dims_only_sizes; if (input_flat_size == nullptr) return absl::OkStatus(); return NumElements(input_dims_only_sizes, input_flat_size); } template <typename T> struct TensorTraits; template <> struct TensorTraits<float> { static int size(const TensorProto& p) { return p.float_val_size(); } static float get(const TensorProto& p, int i) { return p.float_val(i); } static std::string accessor_name() { return "float_val"; } static std::string type_name() { return "float"; } static void CopyFromContent(const TensorProto& p, std::vector<float>* data) { toco::port::CopyToBuffer(p.tensor_content(), reinterpret_cast<char*>(data->data())); } }; template <> struct TensorTraits<uint8_t> { static int size(const TensorProto& p) { return p.int_val_size(); } static uint8_t get(const TensorProto& p, int i) { return p.int_val(i); } static std::string accessor_name() { return "int_val"; } static std::string type_name() { return "uint8"; } static void CopyFromContent(const TensorProto& p, std::vector<uint8_t>* data) { toco::port::CopyToBuffer(p.tensor_content(), reinterpret_cast<char*>(data->data())); } }; template <> struct TensorTraits<std::complex<float>> { static int size(const TensorProto& p) { return p.scomplex_val_size() / 2; } static std::complex<float> get(const TensorProto& p, int i) { return std::complex<float>(p.scomplex_val(2 * i), p.scomplex_val(2 * i + 1)); } static std::string accessor_name() { return "scomplex_val"; } static std::string type_name() { return "complex64"; } static void CopyFromContent(const TensorProto& p, std::vector<std::complex<float>>* data) { toco::port::CopyToBuffer(p.tensor_content(), reinterpret_cast<char*>(data->data())); } }; template <> struct TensorTraits<int32> { static int size(const TensorProto& p) { return p.int_val_size(); } static int32 get(const TensorProto& p, int i) { return p.int_val(i); } static std::string accessor_name() { return "int_val"; } static std::string type_name() { return "int32"; } static void CopyFromContent(const TensorProto& p, std::vector<int32>* data) { toco::port::CopyToBuffer(p.tensor_content(), reinterpret_cast<char*>(data->data())); } }; template <> struct TensorTraits<uint32> { static int size(const TensorProto& p) { return p.uint32_val_size(); } static int32 get(const TensorProto& p, int i) { return p.uint32_val(i); } static std::string accessor_name() { return "uint32_val"; } static std::string type_name() { return "uint32"; } static void CopyFromContent(const TensorProto& p, std::vector<uint32>* data) { toco::port::CopyToBuffer(p.tensor_content(), reinterpret_cast<char*>(data->data())); } }; template <> struct TensorTraits<int64_t> { static int size(const TensorProto& p) { return p.int64_val_size(); } static int64_t get(const TensorProto& p, int i) { return p.int64_val(i); } static std::string accessor_name() { return "int64_val"; } static std::string type_name() { return "int64"; } static void CopyFromContent(const TensorProto& p, std::vector<int64_t>* data) { toco::port::CopyToBuffer(p.tensor_content(), reinterpret_cast<char*>(data->data())); } }; template <> struct TensorTraits<bool> { static int size(const TensorProto& p) { return p.bool_val_size(); } static bool get(const TensorProto& p, int i) { return p.bool_val(i); } static std::string accessor_name() { return "bool_val"; } static std::string type_name() { return "bool"; } static void CopyFromContent(const TensorProto& p, std::vector<bool>* data) { std::vector<char> buf(p.tensor_content().size()); toco::port::CopyToBuffer(p.tensor_content(), buf.data()); for (int i = 0; i < p.tensor_content().size(); i++) { (*data)[i] = static_cast<bool>(buf[i]); } } }; template <typename T> tensorflow::Status ImportTensorData(const TensorProto& input_tensor, int input_flat_size, std::vector<T>* output_data) { CHECK_GE(output_data->size(), input_flat_size); int num_elements_in_tensor = TensorTraits<T>::size(input_tensor); if (num_elements_in_tensor == input_flat_size) { for (int i = 0; i < num_elements_in_tensor; i++) { (*output_data)[i] = TensorTraits<T>::get(input_tensor, i); } } else if (input_tensor.tensor_content().size() == input_flat_size * sizeof(T)) { TensorTraits<T>::CopyFromContent(input_tensor, output_data); } else if (num_elements_in_tensor >= 0 && num_elements_in_tensor < input_flat_size) { int i = 0; for (; i < num_elements_in_tensor; ++i) { (*output_data)[i] = TensorTraits<T>::get(input_tensor, i); } auto last = i == 0 ? T(0) : (*output_data)[i - 1]; for (; i < input_flat_size; ++i) { (*output_data)[i] = last; } } else { std::string accessor_name = TensorTraits<T>::accessor_name(); std::string type_name = TensorTraits<T>::type_name(); return tensorflow::errors::InvalidArgument( absl::StrCat("Neither input_content (", input_tensor.tensor_content().size() / sizeof(T), ") nor ", accessor_name, " (", num_elements_in_tensor, ") have the right dimensions (", input_flat_size, ") for this ", type_name, " tensor")); } return absl::OkStatus(); } tensorflow::Status ImportFloatArray(const TensorProto& input_tensor, Array* output_array) { CHECK_EQ(input_tensor.dtype(), DT_FLOAT); const auto& input_shape = input_tensor.tensor_shape(); CHECK_LE(input_shape.dim_size(), 6); int input_flat_size; auto status = ImportShape(input_shape.dim(), &input_flat_size, output_array->mutable_shape()); if (!status.ok()) return status; auto& output_float_data = output_array->GetMutableBuffer<ArrayDataType::kFloat>().data; output_float_data.resize(RequiredBufferSizeForShape(output_array->shape()), 0.f); return ImportTensorData<float>(input_tensor, input_flat_size, &output_float_data); } tensorflow::Status ImportComplex64Array(const TensorProto& input_tensor, Array* output_array) { CHECK_EQ(input_tensor.dtype(), DT_COMPLEX64); const auto& input_shape = input_tensor.tensor_shape(); CHECK_LE(input_shape.dim_size(), 4); int input_flat_size; auto status = ImportShape(input_shape.dim(), &input_flat_size, output_array->mutable_shape()); if (!status.ok()) return status; auto& output_complex_data = output_array->GetMutableBuffer<ArrayDataType::kComplex64>().data; output_complex_data.resize(RequiredBufferSizeForShape(output_array->shape()), std::complex<float>(0.f, 0.f)); return ImportTensorData<std::complex<float>>(input_tensor, input_flat_size, &output_complex_data); } tensorflow::Status ImportQuint8Array(const TensorProto& input_tensor, Array* output_array) { CHECK_EQ(input_tensor.dtype(), DT_QUINT8); const auto& input_shape = input_tensor.tensor_shape(); CHECK_LE(input_shape.dim_size(), 6); int input_flat_size; auto status = ImportShape(input_shape.dim(), &input_flat_size, output_array->mutable_shape()); if (!status.ok()) return status; auto& output_int_data = output_array->GetMutableBuffer<ArrayDataType::kUint8>().data; output_int_data.resize(RequiredBufferSizeForShape(output_array->shape()), 0); return ImportTensorData<uint8_t>(input_tensor, input_flat_size, &output_int_data); } tensorflow::Status ImportInt32Array(const TensorProto& input_tensor, Array* output_array) { CHECK_EQ(input_tensor.dtype(), DT_INT32); const auto& input_shape = input_tensor.tensor_shape(); CHECK_LE(input_shape.dim_size(), 6); int input_flat_size; auto status = ImportShape(input_shape.dim(), &input_flat_size, output_array->mutable_shape()); if (!status.ok()) return status; auto& output_int_data = output_array->GetMutableBuffer<ArrayDataType::kInt32>().data; output_int_data.resize(RequiredBufferSizeForShape(output_array->shape()), 0); return ImportTensorData<int32>(input_tensor, input_flat_size, &output_int_data); } tensorflow::Status ImportUint32Array(const TensorProto& input_tensor, Array* output_array) { CHECK_EQ(input_tensor.dtype(), DT_UINT32); const auto& input_shape = input_tensor.tensor_shape(); CHECK_LE(input_shape.dim_size(), 6); int input_flat_size; auto status = ImportShape(input_shape.dim(), &input_flat_size, output_array->mutable_shape()); if (!status.ok()) return status; auto& output_int_data = output_array->GetMutableBuffer<ArrayDataType::kUint32>().data; output_int_data.resize(RequiredBufferSizeForShape(output_array->shape()), 0); return ImportTensorData<uint32>(input_tensor, input_flat_size, &output_int_data); } tensorflow::Status ImportInt64Array(const TensorProto& input_tensor, Array* output_array) { CHECK_EQ(input_tensor.dtype(), DT_INT64); const auto& input_shape = input_tensor.tensor_shape(); CHECK_LE(input_shape.dim_size(), 6); int input_flat_size; auto status = ImportShape(input_shape.dim(), &input_flat_size, output_array->mutable_shape()); if (!status.ok()) return status; auto& output_int_data = output_array->GetMutableBuffer<ArrayDataType::kInt64>().data; output_int_data.resize(RequiredBufferSizeForShape(output_array->shape()), 0); return ImportTensorData<int64_t>(input_tensor, input_flat_size, &output_int_data); } tensorflow::Status ImportBoolArray(const TensorProto& input_tensor, Array* output_array) { CHECK_EQ(input_tensor.dtype(), DT_BOOL); const auto& input_shape = input_tensor.tensor_shape(); CHECK_LE(input_shape.dim_size(), 6); int input_flat_size; auto status = ImportShape(input_shape.dim(), &input_flat_size, output_array->mutable_shape()); if (!status.ok()) return status; auto& output_bool_data = output_array->GetMutableBuffer<ArrayDataType::kBool>().data; output_bool_data.resize(RequiredBufferSizeForShape(output_array->shape()), false); status = ImportTensorData<bool>(input_tensor, input_flat_size, &output_bool_data); if (!status.ok() && output_bool_data.size() == 1) { output_bool_data[0] = false; return absl::OkStatus(); } return status; } tensorflow::Status ImportStringArray(const TensorProto& input_tensor, Array* output_array) { CHECK_EQ(input_tensor.dtype(), DT_STRING); const auto& input_shape = input_tensor.tensor_shape(); CHECK_LE(input_shape.dim_size(), 6); int input_flat_size; auto status = ImportShape(input_shape.dim(), &input_flat_size, output_array->mutable_shape()); if (!status.ok()) return status; if (input_flat_size != input_tensor.string_val_size()) { return tensorflow::errors::InvalidArgument( "Input_content string_val doesn't have the right dimensions " "for this string tensor"); } auto& output_string_data = output_array->GetMutableBuffer<ArrayDataType::kString>().data; output_string_data.resize(RequiredBufferSizeForShape(output_array->shape())); CHECK_GE(output_string_data.size(), input_flat_size); for (int i = 0; i < input_flat_size; ++i) { output_string_data[i] = input_tensor.string_val(i); } return absl::OkStatus(); } int GetInputsCount(const NodeDef& node, const TensorFlowImportFlags& tf_import_flags) { if (tf_import_flags.drop_control_dependency) { for (size_t i = 0; i < node.input_size(); ++i) { if (node.input(i)[0] == '^') { return i; } } } return node.input_size(); } tensorflow::Status CheckInputsCount( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, int expected_input_count) { if (GetInputsCount(node, tf_import_flags) != expected_input_count) { return tensorflow::errors::FailedPrecondition( node.op(), " node expects ", expected_input_count, " input(s) other than control dependencies: ", node.DebugString()); } return absl::OkStatus(); } template <ArrayDataType T> std::string CreateConstArray( Model* model, std::string const& name, std::vector<typename toco::DataType<T>> const& data) { std::string array_name = toco::AvailableArrayName(*model, name); auto& array = model->GetOrCreateArray(array_name); array.data_type = T; array.mutable_shape()->mutable_dims()->emplace_back( static_cast<int>(data.size())); array.GetMutableBuffer<T>().data = data; return array_name; } void RetainTensorFlowNodeDef(const NodeDef& node, Operator* op) { node.SerializeToString(&op->tensorflow_node_def); } void GetOutputNamesFromNodeDef(const NodeDef& node, const tensorflow::OpDef& op_def, TensorFlowUnsupportedOperator* op) { int next_output = 0; auto add_output = [&node, &next_output, op]() { if (next_output == 0) { op->outputs.push_back(node.name()); } else { op->outputs.push_back(absl::StrCat(node.name(), ":", next_output)); } ++next_output; }; for (int i = 0; i < op_def.output_arg_size(); ++i) { std::string multiples = op_def.output_arg(i).number_attr(); if (!multiples.empty()) { CHECK(HasAttr(node, multiples)) << "No attr named " << multiples; int num_outputs = GetIntAttr(node, multiples); for (int j = 0; j < num_outputs; ++j) { add_output(); } } else { std::string list = op_def.output_arg(i).type_list_attr(); if (!list.empty()) { CHECK(HasAttr(node, list)) << "No attr named " << list; const AttrValue::ListValue& list_value = GetListAttr(node, list); for (int j = 0; j < list_value.type_size(); ++j) { add_output(); } } else { add_output(); } } } } void GetOutputTypesFromNodeDef(const NodeDef& node, const tensorflow::OpDef& op_def, TensorFlowUnsupportedOperator* op) { auto add_type = [&node, op](tensorflow::DataType type) { if (type == tensorflow::DT_INVALID) { LOG(WARNING) << "Op node missing output type attribute: " << node.name(); op->output_data_types.clear(); } else { op->output_data_types.push_back(ConvertDataType(type)); } }; auto get_type = [&node](const tensorflow::OpDef::ArgDef& a) { if (a.type() != tensorflow::DT_INVALID) { return a.type(); } else if (HasAttr(node, a.type_attr())) { return GetDataTypeAttr(node, a.type_attr()); } else { return tensorflow::DT_INVALID; } }; for (int i = 0; i < op_def.output_arg_size(); ++i) { std::string multiples = op_def.output_arg(i).number_attr(); if (!multiples.empty()) { CHECK(HasAttr(node, multiples)) << "No attr named " << multiples; int num_outputs = GetIntAttr(node, multiples); auto type = get_type(op_def.output_arg(i)); for (int j = 0; j < num_outputs; ++j) { add_type(type); } } else { std::string list = op_def.output_arg(i).type_list_attr(); if (!list.empty()) { CHECK(HasAttr(node, list)) << "No attr named " << list; const AttrValue::ListValue& list_value = GetListAttr(node, list); for (int j = 0; j < list_value.type_size(); ++j) { add_type(list_value.type(j)); } } else { add_type(get_type(op_def.output_arg(i))); } } } } tensorflow::Status ConvertUnsupportedOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { static constexpr char kAttrOutputQuantized[] = "_output_quantized"; static constexpr char kAttrOutputTypes[] = "_output_types"; static constexpr char kAttrOutputShapes[] = "_output_shapes"; static constexpr char kAttrSupportOutputTypeFloatInQuantizedOp[] = "_support_output_type_float_in_quantized_op"; LOG(INFO) << "Converting unsupported operation: " << node.op(); auto* op = new TensorFlowUnsupportedOperator; op->tensorflow_op = node.op(); RetainTensorFlowNodeDef(node, op); model->operators.emplace_back(op); const int num_inputs = GetInputsCount(node, tf_import_flags); for (int i = 0; i < num_inputs; ++i) { op->inputs.push_back(node.input(i)); } const tensorflow::OpDef* op_def = nullptr; if (tensorflow::OpRegistry::Global()->LookUpOpDef(node.op(), &op_def).ok()) { GetOutputNamesFromNodeDef(node, *op_def, op); } else { op->outputs.push_back(node.name()); } if (HasAttr(node, kAttrOutputQuantized)) { op->quantized = GetBoolAttr(node, kAttrOutputQuantized); } if (HasAttr(node, kAttrSupportOutputTypeFloatInQuantizedOp)) { op->support_output_type_float_in_quantized_op = GetBoolAttr(node, kAttrSupportOutputTypeFloatInQuantizedOp); } if (HasAttr(node, kAttrOutputTypes)) { const auto& output_types = GetListAttr(node, kAttrOutputTypes); for (int i = 0; i < output_types.type_size(); ++i) { op->output_data_types.push_back(ConvertDataType(output_types.type(i))); } } else if (HasAttr(node, "Tout")) { const auto& output_type = GetDataTypeAttr(node, "Tout"); op->output_data_types.push_back(ConvertDataType(output_type)); } else if (op_def != nullptr) { GetOutputTypesFromNodeDef(node, *op_def, op); } else { LOG(INFO) << "Unable to determine output type for op: " << node.op(); } if (HasAttr(node, kAttrOutputShapes)) { const auto& output_shapes = GetListAttr(node, kAttrOutputShapes); Shape output_shape; for (int i = 0; i < output_shapes.shape_size(); ++i) { const auto& shape = output_shapes.shape(i); if (HasWildcardDimension(shape)) { LOG(INFO) << "Skipping wildcard output shape(s) for node: " << node.name(); op->output_shapes.clear(); break; } const auto status = ImportShape(shape.dim(), nullptr, &output_shape); if (!status.ok()) { return status; } op->output_shapes.push_back(output_shape); } } return absl::OkStatus(); } tensorflow::Status ConvertConstOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "Const"); const auto& tensor = GetTensorAttr(node, "value"); const auto dtype = GetDataTypeAttr(node, "dtype"); tensorflow::Status status = absl::OkStatus(); auto& array = model->GetOrCreateArray(node.name()); switch (dtype) { case DT_FLOAT: array.data_type = ArrayDataType::kFloat; status = ImportFloatArray(tensor, &array); break; case DT_INT32: array.data_type = ArrayDataType::kInt32; status = ImportInt32Array(tensor, &array); break; case DT_UINT32: array.data_type = ArrayDataType::kUint32; status = ImportUint32Array(tensor, &array); break; case DT_QUINT8: array.data_type = ArrayDataType::kUint8; status = ImportQuint8Array(tensor, &array); break; case DT_INT64: array.data_type = ArrayDataType::kInt64; status = ImportInt64Array(tensor, &array); break; case DT_STRING: array.data_type = ArrayDataType::kString; status = ImportStringArray(tensor, &array); break; case DT_BOOL: array.data_type = ArrayDataType::kBool; status = ImportBoolArray(tensor, &array); break; case DT_COMPLEX64: array.data_type = ArrayDataType::kComplex64; status = ImportComplex64Array(tensor, &array); break; default: array.data_type = ArrayDataType::kNone; array.GetMutableBuffer<ArrayDataType::kNone>(); break; } TF_RETURN_WITH_CONTEXT_IF_ERROR( status, " (while processing node '" + node.name() + "')"); return absl::OkStatus(); } tensorflow::Status ConvertConvOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "Conv2D"); TF_RETURN_IF_ERROR(CheckInputsCount(node, tf_import_flags, 2)); TF_RETURN_IF_ERROR(CheckOptionalAttr(node, "data_format", "NHWC")); TF_RETURN_IF_ERROR(CheckOptionalAttr(node, "T", DT_FLOAT)); const auto& input_name = node.input(0); const auto& weights_name = node.input(1); const auto& reordered_weights_name = AvailableArrayName(*model, weights_name + "_reordered"); const Operator* existing_reorder = GetOpWithOutput(*model, reordered_weights_name); if (existing_reorder) { CHECK(existing_reorder->type == OperatorType::kReorderAxes); } else { auto* reorder = new ReorderAxesOperator; reorder->inputs = {weights_name}; reorder->outputs = {reordered_weights_name}; reorder->input_axes_order = AxesOrder::kHWIO; reorder->output_axes_order = AxesOrder::kOHWI; model->operators.emplace_back(reorder); } if (!HasAttr(node, "strides")) { return tensorflow::errors::InvalidArgument("Missing attribute 'strides'"); } const auto& strides = GetListAttr(node, "strides"); TF_RETURN_IF_ERROR(ExpectValue(strides.i_size(), 4, "number of strides")); TF_RETURN_IF_ERROR(ExpectValue(strides.i(0), 1, "strides(0)")); TF_RETURN_IF_ERROR(ExpectValue(strides.i(3), 1, "strides(3)")); int dilation_height_factor; int dilation_width_factor; if (HasAttr(node, "dilations")) { const auto& dilations = GetListAttr(node, "dilations"); TF_RETURN_IF_ERROR( ExpectValue(dilations.i_size(), 4, "number of dilations")); if (dilations.i(0) != 1 || dilations.i(3) != 1) { return tensorflow::errors::InvalidArgument(absl::StrCat( "Can only import Conv ops with dilation along the height " "(1st) or width (2nd) axis. TensorFlow op \"", node.name(), "\" had dilations:[ ", dilations.i(0), ", ", dilations.i(1), ", ", dilations.i(2), ", ", dilations.i(3), "].")); } dilation_height_factor = dilations.i(1); dilation_width_factor = dilations.i(2); } else { dilation_height_factor = 1; dilation_width_factor = 1; } const auto& padding = GetStringAttr(node, "padding"); PaddingType padding_type; if (padding == "SAME") { padding_type = PaddingType::kSame; } else if (padding == "VALID") { padding_type = PaddingType::kValid; } else { return tensorflow::errors::InvalidArgument( "Bad padding (only SAME and VALID are supported)"); } auto* conv = new ConvOperator; conv->inputs = {input_name, reordered_weights_name}; conv->outputs = {node.name()}; conv->stride_height = strides.i(1); conv->stride_width = strides.i(2); conv->dilation_height_factor = dilation_height_factor; conv->dilation_width_factor = dilation_width_factor; conv->padding.type = padding_type; model->operators.emplace_back(conv); return absl::OkStatus(); } tensorflow::Status ConvertDepthwiseConvOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "DepthwiseConv2dNative"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 2)); if (HasAttr(node, "data_format")) { CHECK_EQ(GetStringAttr(node, "data_format"), "NHWC"); } CHECK_EQ(GetDataTypeAttr(node, "T"), DT_FLOAT); const auto& input_name = node.input(0); const auto& weights_name = node.input(1); const auto& reordered_weights_name = weights_name + "_reordered"; const Operator* existing_reorder = GetOpWithOutput(*model, reordered_weights_name); if (existing_reorder) { CHECK(existing_reorder->type == OperatorType::kReorderAxes); } else { auto* reorder = new ReorderAxesOperator; reorder->inputs = {weights_name}; reorder->outputs = {reordered_weights_name}; reorder->input_axes_order = AxesOrder::kHWIM; reorder->output_axes_order = AxesOrder::k1HWO; model->operators.emplace_back(reorder); } const auto& strides = GetListAttr(node, "strides"); TF_RETURN_IF_ERROR(ExpectValue(strides.i_size(), 4, "number of strides")); TF_RETURN_IF_ERROR(ExpectValue(strides.i(0), 1, "strides(0)")); TF_RETURN_IF_ERROR(ExpectValue(strides.i(3), 1, "strides(3)")); int dilation_height_factor; int dilation_width_factor; if (HasAttr(node, "dilations")) { const auto& dilations = GetListAttr(node, "dilations"); TF_RETURN_IF_ERROR( ExpectValue(dilations.i_size(), 4, "number of dilations")); if (dilations.i(0) != 1 || dilations.i(3) != 1) { return tensorflow::errors::InvalidArgument(absl::StrCat( "Can only import Conv ops with dilation along the height " "(1st) or width (2nd) axis. TensorFlow op \"", node.name(), "\" had dilations:[ ", dilations.i(0), ", ", dilations.i(1), ", ", dilations.i(2), ", ", dilations.i(3), "].")); } dilation_height_factor = dilations.i(1); dilation_width_factor = dilations.i(2); } else { dilation_height_factor = 1; dilation_width_factor = 1; } const auto& padding = GetStringAttr(node, "padding"); PaddingType padding_type; if (padding == "SAME") { padding_type = PaddingType::kSame; } else if (padding == "VALID") { padding_type = PaddingType::kValid; } else { return tensorflow::errors::InvalidArgument( "Bad padding (only SAME and VALID are supported)"); } auto* conv = new DepthwiseConvOperator; conv->inputs = {input_name, reordered_weights_name}; conv->outputs = {node.name()}; conv->stride_height = strides.i(1); conv->stride_width = strides.i(2); conv->dilation_height_factor = dilation_height_factor; conv->dilation_width_factor = dilation_width_factor; conv->padding.type = padding_type; model->operators.emplace_back(conv); return absl::OkStatus(); } tensorflow::Status ConvertDepthToSpaceOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "DepthToSpace"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 1)); tensorflow::DataType dtype = GetDataTypeAttr(node, "T"); if (dtype != DT_FLOAT && dtype != DT_UINT8 && dtype != DT_INT32 && dtype != DT_INT64) { const auto* enum_descriptor = tensorflow::DataType_descriptor(); LOG(FATAL) << "TFLite does not support DepthToSpace with type T:" << enum_descriptor->FindValueByNumber(dtype)->name() << ". " << "T must be one of {DT_FLOAT, DT_UINT8, DT_INT32, DT_INT64}."; } auto* op = new DepthToSpaceOperator; op->inputs.push_back(node.input(0)); op->outputs.push_back(node.name()); op->block_size = GetIntAttr(node, "block_size"); QCHECK_GE(op->block_size, 2); model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertSpaceToDepthOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "SpaceToDepth"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 1)); tensorflow::DataType dtype = GetDataTypeAttr(node, "T"); if (dtype != DT_FLOAT && dtype != DT_UINT8 && dtype != DT_INT32 && dtype != DT_INT64) { const auto* enum_descriptor = tensorflow::DataType_descriptor(); LOG(FATAL) << "TFLite does not support SpaceToDepth with type T:" << enum_descriptor->FindValueByNumber(dtype)->name() << ". " << "T must be one of {DT_FLOAT, DT_UINT8, DT_INT32, DT_INT64}."; } auto* op = new SpaceToDepthOperator; op->inputs.push_back(node.input(0)); op->outputs.push_back(node.name()); op->block_size = GetIntAttr(node, "block_size"); QCHECK_GE(op->block_size, 2); model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertBiasAddOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "BiasAdd"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 2)); const auto& input_name = node.input(0); const auto& bias_name = node.input(1); CHECK_EQ(GetDataTypeAttr(node, "T"), DT_FLOAT); auto* biasadd = new AddOperator; biasadd->inputs.push_back(input_name); biasadd->inputs.push_back(bias_name); biasadd->outputs.push_back(node.name()); model->operators.emplace_back(biasadd); return absl::OkStatus(); } tensorflow::Status ConvertRandomUniform( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "RandomUniform"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 1)); CHECK_EQ(GetDataTypeAttr(node, "T"), DT_INT32); auto op = std::make_unique<RandomUniformOperator>(); op->inputs.push_back(node.input(0)); op->outputs.push_back(node.name()); op->dtype = ConvertDataType(GetDataTypeAttr(node, "dtype")); op->seed = GetIntAttr(node, "seed"); op->seed2 = GetIntAttr(node, "seed2"); CHECK(model != nullptr); model->operators.emplace_back(std::move(op)); return absl::OkStatus(); } tensorflow::Status ConvertIdentityOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK(node.op() == "Identity" || node.op() == "CheckNumerics" || node.op() == "PlaceholderWithDefault" || node.op() == "StopGradient" || node.op() == "Snapshot" || node.op() == "EnsureShape"); auto* op = new TensorFlowIdentityOperator; QCHECK_GE(node.input_size(), 1) << node.op() << " node expects at least 1 input other than control dependencies: " << node.DebugString(); const auto& input_name = node.input(0); op->inputs.push_back(input_name); op->outputs.push_back(node.name()); model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertIdentityNOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "IdentityN"); for (int i = 0; i < node.input_size(); ++i) { auto* op = new TensorFlowIdentityOperator; const auto& input_name = node.input(i); std::string output_name = node.name(); if (i > 0) { output_name = output_name + ":" + std::to_string(i); } op->inputs.push_back(input_name); op->outputs.push_back(output_name); model->operators.emplace_back(op); } return absl::OkStatus(); } tensorflow::Status ConvertFakeQuantWithMinMaxArgs( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "FakeQuantWithMinMaxArgs"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 1)); auto* op = new FakeQuantOperator; op->inputs.push_back(node.input(0)); op->minmax = std::make_unique<MinMax>(); auto& minmax = *op->minmax; minmax.min = GetFloatAttr(node, "min"); minmax.max = GetFloatAttr(node, "max"); op->outputs.push_back(node.name()); op->num_bits = HasAttr(node, "num_bits") ? GetIntAttr(node, "num_bits") : 8; if (HasAttr(node, "narrow_range")) { op->narrow_range = GetBoolAttr(node, "narrow_range"); } model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertFakeQuantWithMinMaxVars( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "FakeQuantWithMinMaxVars"); const int num_inputs = GetInputsCount(node, tf_import_flags); QCHECK(num_inputs == 3 || num_inputs == 4) << "FakeQuantWithMinMaxVars node expects 3 or 4 inputs other than " "control dependencies: " << node.DebugString(); auto* op = new FakeQuantOperator; for (int i = 0; i < 3; i++) { op->inputs.push_back(node.input(i)); } op->outputs.push_back(node.name()); op->num_bits = HasAttr(node, "num_bits") ? GetIntAttr(node, "num_bits") : 8; if (HasAttr(node, "narrow_range")) { op->narrow_range = GetBoolAttr(node, "narrow_range"); } model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertSqueezeOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "Squeeze"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 1)); auto* op = new SqueezeOperator; op->inputs.push_back(node.input(0)); op->outputs.push_back(node.name()); if (HasAttr(node, "squeeze_dims")) { const auto& squeeze_dims = GetListAttr(node, "squeeze_dims"); for (int i = 0; i < squeeze_dims.i_size(); ++i) { op->squeeze_dims.push_back(squeeze_dims.i(i)); } } model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertSplitOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "Split"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 2)); auto* op = new TensorFlowSplitOperator; op->inputs.push_back(node.input(0)); op->inputs.push_back(node.input(1)); const int num_split = GetIntAttr(node, "num_split"); op->outputs.push_back(node.name()); for (int i = 1; i < num_split; i++) { op->outputs.push_back(absl::StrCat(node.name(), ":", i)); } op->num_split = num_split; model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertSplitVOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "SplitV"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 3)); auto* op = new TensorFlowSplitVOperator; op->inputs.push_back(node.input(0)); op->inputs.push_back(node.input(1)); op->inputs.push_back(node.input(2)); const int num_split = GetIntAttr(node, "num_split"); op->outputs.push_back(node.name()); for (int i = 1; i < num_split; i++) { op->outputs.push_back(absl::StrCat(node.name(), ":", i)); } op->num_split = num_split; model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertSwitchOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "Switch"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 2)); auto* op = new TensorFlowSwitchOperator; op->inputs.push_back(node.input(0)); op->inputs.push_back(node.input(1)); op->outputs.push_back(node.name()); op->outputs.push_back(node.name() + ":1"); model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertSoftmaxOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "Softmax"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 1)); const auto& input_name = node.input(0); auto* softmax = new SoftmaxOperator; softmax->inputs.push_back(input_name); softmax->outputs.push_back(node.name()); CHECK(!node.attr().count("beta")); if (node.attr().count("_softmax_beta")) { softmax->beta = GetFloatAttr(node, "_softmax_beta"); } else { softmax->beta = 1.f; } model->operators.emplace_back(softmax); return absl::OkStatus(); } tensorflow::Status ConvertLRNOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "LRN"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 1)); const auto& input_name = node.input(0); auto* lrn = new LocalResponseNormalizationOperator; lrn->inputs.push_back(input_name); lrn->outputs.push_back(node.name()); lrn->range = GetIntAttr(node, "depth_radius"); lrn->bias = GetFloatAttr(node, "bias"); lrn->alpha = GetFloatAttr(node, "alpha"); lrn->beta = GetFloatAttr(node, "beta"); model->operators.emplace_back(lrn); return absl::OkStatus(); } tensorflow::Status ConvertMaxPoolOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "MaxPool"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 1)); const auto& input_name = node.input(0); if (node.attr().count("data_format")) { CHECK_EQ(GetStringAttr(node, "data_format"), "NHWC"); } if (HasAttr(node, "T")) { CHECK_EQ(GetDataTypeAttr(node, "T"), DT_FLOAT); } else { LOG(WARNING) << "Found MaxPool operator missing 'T' attribute"; } auto* maxpool = new MaxPoolOperator; maxpool->inputs.push_back(input_name); maxpool->outputs.push_back(node.name()); const auto& strides = GetListAttr(node, "strides"); CHECK_EQ(strides.i_size(), 4); CHECK_EQ(strides.i(0), 1); CHECK_EQ(strides.i(3), 1); maxpool->stride_height = strides.i(1); maxpool->stride_width = strides.i(2); const auto& ksize = GetListAttr(node, "ksize"); CHECK_EQ(ksize.i_size(), 4); CHECK_EQ(ksize.i(0), 1); CHECK_EQ(ksize.i(3), 1); maxpool->kheight = ksize.i(1); maxpool->kwidth = ksize.i(2); const auto& padding = GetStringAttr(node, "padding"); if (padding == "SAME") { maxpool->padding.type = PaddingType::kSame; } else if (padding == "VALID") { maxpool->padding.type = PaddingType::kValid; } else { LOG(FATAL) << "Bad padding (only SAME and VALID are supported)"; } model->operators.emplace_back(maxpool); return absl::OkStatus(); } tensorflow::Status ConvertAvgPoolOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "AvgPool"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 1)); const auto& input_name = node.input(0); if (node.attr().count("data_format")) { CHECK_EQ(GetStringAttr(node, "data_format"), "NHWC"); } CHECK_EQ(GetDataTypeAttr(node, "T"), DT_FLOAT); auto* avgpool = new AveragePoolOperator; avgpool->inputs.push_back(input_name); avgpool->outputs.push_back(node.name()); const auto& strides = GetListAttr(node, "strides"); CHECK_EQ(strides.i_size(), 4); CHECK_EQ(strides.i(0), 1); CHECK_EQ(strides.i(3), 1); avgpool->stride_height = strides.i(1); avgpool->stride_width = strides.i(2); const auto& ksize = GetListAttr(node, "ksize"); CHECK_EQ(ksize.i_size(), 4); CHECK_EQ(ksize.i(0), 1); CHECK_EQ(ksize.i(3), 1); avgpool->kheight = ksize.i(1); avgpool->kwidth = ksize.i(2); const auto& padding = GetStringAttr(node, "padding"); if (padding == "SAME") { avgpool->padding.type = PaddingType::kSame; } else if (padding == "VALID") { avgpool->padding.type = PaddingType::kValid; } else { LOG(FATAL) << "Bad padding (only SAME and VALID are supported)"; } model->operators.emplace_back(avgpool); return absl::OkStatus(); } tensorflow::Status ConvertBatchMatMulOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 2)); auto* batch_matmul = new BatchMatMulOperator; if (HasAttr(node, "adj_x")) { batch_matmul->adj_x = GetBoolAttr(node, "adj_x"); } if (HasAttr(node, "adj_y")) { batch_matmul->adj_y = GetBoolAttr(node, "adj_y"); } batch_matmul->inputs = {node.input(0), node.input(1)}; batch_matmul->outputs = {node.name()}; RetainTensorFlowNodeDef(node, batch_matmul); model->operators.emplace_back(batch_matmul); return absl::OkStatus(); } tensorflow::Status ConvertMatMulOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 2)); CHECK(!HasAttr(node, "adjoint_a") || (GetBoolAttr(node, "adjoint_a") == false)); CHECK(!HasAttr(node, "adjoint_b") || (GetBoolAttr(node, "adjoint_b") == false)); auto* matmul = new TensorFlowMatMulOperator; if (HasAttr(node, "transpose_a")) { matmul->transpose_a = GetBoolAttr(node, "transpose_a"); } if (HasAttr(node, "transpose_b")) { matmul->transpose_b = GetBoolAttr(node, "transpose_b"); } matmul->inputs = {node.input(0), node.input(1)}; matmul->outputs = {node.name()}; model->operators.emplace_back(matmul); return absl::OkStatus(); } tensorflow::Status ConvertConcatOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { Operator* op = nullptr; if (node.op() == "Concat") { op = new TensorFlowConcatOperator; } else if (node.op() == "ConcatV2") { op = new TensorFlowConcatV2Operator; } else { LOG(FATAL) << "Expected Concat or ConcatV2"; } const int num_inputs = GetInputsCount(node, tf_import_flags); QCHECK_GE(num_inputs, 2) << node.op() << " node expects at least 2 inputs other than control dependencies: " << node.DebugString(); CHECK_EQ(num_inputs, 1 + GetIntAttr(node, "N")); for (int i = 0; i < num_inputs; ++i) { op->inputs.push_back(node.input(i)); } op->outputs.push_back(node.name()); model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertMirrorPadOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { if (node.op() != "MirrorPad") { LOG(FATAL) << "Expected MirrorPad."; } const int num_inputs = GetInputsCount(node, tf_import_flags); CHECK_EQ(num_inputs, 2); auto* op = new MirrorPadOperator; for (int i = 0; i < num_inputs; ++i) { op->inputs.push_back(node.input(i)); } op->outputs.push_back(node.name()); const auto mode = GetStringAttr(node, "mode"); if (mode == "REFLECT") { op->mode = toco::MirrorPadMode::kReflect; } else if (mode == "SYMMETRIC") { op->mode = toco::MirrorPadMode::kSymmetric; } model->operators.emplace_back(op); return absl::OkStatus(); } static constexpr int kAnyNumInputs = -1; enum FlexSupport { kFlexOk, kFlexNotOk }; template <typename Op, int NumInputs, int NumOutputs, FlexSupport flex> tensorflow::Status ConvertSimpleOperatorGeneric( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { if (NumInputs != kAnyNumInputs) { TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, NumInputs)); } auto* op = new Op; const int num_inputs = GetInputsCount(node, tf_import_flags); for (int i = 0; i < num_inputs; ++i) { op->inputs.push_back(node.input(i)); } op->outputs.push_back(node.name()); if (NumOutputs > 1) { for (int i = 1; i < NumOutputs; ++i) { op->outputs.push_back(node.name() + ":" + std::to_string(i)); } } if (flex == kFlexOk) { RetainTensorFlowNodeDef(node, op); } model->operators.emplace_back(op); return absl::OkStatus(); } template <typename Op, int NumInputs, int NumOutputs> tensorflow::Status ConvertSimpleOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { return ConvertSimpleOperatorGeneric<Op, NumInputs, NumOutputs, kFlexNotOk>( node, tf_import_flags, model_flags, model); } template <typename Op, int NumInputs, int NumOutputs> tensorflow::Status ConvertSimpleOperatorFlexOk( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { return ConvertSimpleOperatorGeneric<Op, NumInputs, NumOutputs, kFlexOk>( node, tf_import_flags, model_flags, model); } tensorflow::Status ConditionallyConvertConstOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { const auto& tensor = GetTensorAttr(node, "value"); const auto& shape = tensor.tensor_shape(); for (const auto& dim : shape.dim()) { if (dim.size() <= 0) { return ConvertUnsupportedOperator(node, tf_import_flags, model_flags, model); } } switch (GetDataTypeAttr(node, "dtype")) { case DT_FLOAT: case DT_INT32: case DT_QUINT8: case DT_INT64: case DT_STRING: case DT_BOOL: case DT_COMPLEX64: return ConvertConstOperator(node, tf_import_flags, model_flags, model); default: return ConvertUnsupportedOperator(node, tf_import_flags, model_flags, model); } } tensorflow::Status ConvertStridedSliceOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "StridedSlice"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 4)); auto* op = new StridedSliceOperator; for (const auto& input : node.input()) { op->inputs.push_back(input); } op->outputs.push_back(node.name()); op->begin_mask = HasAttr(node, "begin_mask") ? GetIntAttr(node, "begin_mask") : 0; op->ellipsis_mask = HasAttr(node, "ellipsis_mask") ? GetIntAttr(node, "ellipsis_mask") : 0; op->end_mask = HasAttr(node, "end_mask") ? GetIntAttr(node, "end_mask") : 0; op->new_axis_mask = HasAttr(node, "new_axis_mask") ? GetIntAttr(node, "new_axis_mask") : 0; op->shrink_axis_mask = HasAttr(node, "shrink_axis_mask") ? GetIntAttr(node, "shrink_axis_mask") : 0; model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertPlaceholderOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK(node.op() == "Placeholder" || node.op() == "LegacyFedInput"); if (node.op() == "Placeholder") { TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 0)); } bool inside_input_arrays = false; for (const auto& input_array : model_flags.input_arrays()) { if (node.name() == input_array.name()) { inside_input_arrays = true; break; } } if (!inside_input_arrays) { model->AddInvalidInputArray(node.name()); } auto& array = model->GetOrCreateArray(node.name()); if (node.attr().count("dtype")) { array.data_type = ConvertDataType(GetDataTypeAttr(node, "dtype")); } if (node.attr().count("shape")) { const auto& shape = GetShapeAttr(node, "shape"); auto num_dims = shape.dim_size(); if (num_dims > 0 && !HasWildcardDimension(shape)) { auto& dst_array_dims = *array.mutable_shape()->mutable_dims(); dst_array_dims.resize(num_dims); for (std::size_t i = 0; i < num_dims; i++) { dst_array_dims[i] = shape.dim(i).size(); } } } return absl::OkStatus(); } tensorflow::Status ConvertNoOpOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { return absl::OkStatus(); } tensorflow::Status ConvertCastOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "Cast"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 1)); const auto tf_src_dtype = GetDataTypeAttr(node, "SrcT"); const auto tf_dst_dtype = GetDataTypeAttr(node, "DstT"); auto* op = new CastOperator; op->src_data_type = ConvertDataType(tf_src_dtype); op->dst_data_type = ConvertDataType(tf_dst_dtype); op->inputs.push_back(node.input(0)); op->outputs.push_back(node.name()); model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertFloorOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "Floor"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 1)); const auto data_type = GetDataTypeAttr(node, "T"); CHECK(data_type == DT_FLOAT); auto* op = new FloorOperator; op->inputs.push_back(node.input(0)); op->outputs.push_back(node.name()); model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertCeilOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "Ceil"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 1)); const auto data_type = GetDataTypeAttr(node, "T"); CHECK(data_type == DT_FLOAT); auto* op = new CeilOperator; op->inputs.push_back(node.input(0)); op->outputs.push_back(node.name()); model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertRoundOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "Round"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 1)); const auto data_type = GetDataTypeAttr(node, "T"); CHECK(data_type == DT_FLOAT); auto* op = new RoundOperator; op->inputs.push_back(node.input(0)); op->outputs.push_back(node.name()); model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertGatherOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK(node.op() == "Gather" || node.op() == "GatherV2"); if (node.op() == "Gather") TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 2)); if (node.op() == "GatherV2") TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 3)); const auto indices_data_type = GetDataTypeAttr(node, "Tindices"); CHECK(indices_data_type == DT_INT32 || indices_data_type == DT_INT64); auto* op = new GatherOperator; op->inputs.push_back(node.input(0)); op->inputs.push_back(node.input(1)); if (node.input_size() >= 3) { const auto axis_data_type = GetDataTypeAttr(node, "Taxis"); CHECK(axis_data_type == DT_INT32 || axis_data_type == DT_INT64); op->inputs.push_back(node.input(2)); } else { op->axis = {0}; } op->outputs.push_back(node.name()); model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertGatherNdOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "GatherNd"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 2)); const auto indices_data_type = GetDataTypeAttr(node, "Tindices"); CHECK(indices_data_type == DT_INT32 || indices_data_type == DT_INT64); auto* op = new GatherNdOperator; op->inputs.push_back(node.input(0)); op->inputs.push_back(node.input(1)); op->outputs.push_back(node.name()); model->operators.emplace_back(op); return absl::OkStatus(); } template <typename Op> tensorflow::Status ConvertArgMinMaxOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 2)); const auto axis_data_type = HasAttr(node, "Tidx") ? GetDataTypeAttr(node, "Tidx") : DT_INT32; const auto output_type = HasAttr(node, "output_type") ? GetDataTypeAttr(node, "output_type") : DT_INT64; CHECK(axis_data_type == DT_INT64 || axis_data_type == DT_INT32); CHECK(output_type == DT_INT64 || output_type == DT_INT32); auto* op = new Op; op->output_data_type = ConvertDataType(output_type); op->inputs.push_back(node.input(0)); op->inputs.push_back(node.input(1)); op->outputs.push_back(node.name()); model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertArgMaxOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "ArgMax"); return ConvertArgMinMaxOperator<ArgMaxOperator>(node, tf_import_flags, model_flags, model); } tensorflow::Status ConvertArgMinOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "ArgMin"); return ConvertArgMinMaxOperator<ArgMinOperator>(node, tf_import_flags, model_flags, model); } tensorflow::Status ConvertResizeBilinearOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "ResizeBilinear"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 2)); auto* op = new ResizeBilinearOperator; op->align_corners = false; op->half_pixel_centers = false; if (HasAttr(node, "align_corners")) { op->align_corners = GetBoolAttr(node, "align_corners"); } if (HasAttr(node, "half_pixel_centers")) { op->half_pixel_centers = GetBoolAttr(node, "half_pixel_centers"); } op->inputs.push_back(node.input(0)); op->inputs.push_back(node.input(1)); op->outputs.push_back(node.name()); model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertResizeNearestNeighborOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "ResizeNearestNeighbor"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 2)); auto* op = new ResizeNearestNeighborOperator; op->align_corners = false; op->half_pixel_centers = false; if (HasAttr(node, "align_corners")) { op->align_corners = GetBoolAttr(node, "align_corners"); } if (HasAttr(node, "half_pixel_centers")) { op->half_pixel_centers = GetBoolAttr(node, "half_pixel_centers"); } op->inputs.push_back(node.input(0)); op->inputs.push_back(node.input(1)); op->outputs.push_back(node.name()); model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertBatchNormWithGlobalNormalizationOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "BatchNormWithGlobalNormalization"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 5)); std::string multiplier = node.name() + "_mul"; if (GetBoolAttr(node, "scale_after_normalization")) { std::string rsqrt = node.name() + "_rsqrt"; auto* rsqrt_op = new TensorFlowRsqrtOperator; rsqrt_op->inputs.push_back(node.input(2)); rsqrt_op->outputs.push_back(rsqrt); model->operators.emplace_back(rsqrt_op); auto* mul_op = new MulOperator; mul_op->inputs.push_back(rsqrt); mul_op->inputs.push_back(node.input(4)); mul_op->outputs.push_back(multiplier); model->operators.emplace_back(mul_op); } else { auto* rsqrt_op = new TensorFlowRsqrtOperator; rsqrt_op->inputs.push_back(node.input(2)); rsqrt_op->outputs.push_back(multiplier); model->operators.emplace_back(rsqrt_op); } auto* op = new BatchNormalizationOperator; op->global_normalization = true; op->inputs.push_back(node.input(0)); op->inputs.push_back(node.input(1)); op->inputs.push_back(multiplier); op->inputs.push_back(node.input(3)); op->outputs.push_back(node.name()); model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertFusedBatchNormOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK((node.op() == "FusedBatchNorm") || (node.op() == "FusedBatchNormV3")); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 5)); const std::string& gamma_input = node.input(1); const std::string& beta_input = node.input(2); const std::string& moving_mean_input = node.input(3); const std::string& moving_variance_input = node.input(4); const std::string epsilon_array_name = CreateConstArray<ArrayDataType::kFloat>(model, node.name() + "_epsilon_array", {GetFloatAttr(node, "epsilon")}); const std::string epsilon_add_op_name = node.name() + "_epsilon"; auto* epsilon_add_op = new AddOperator; epsilon_add_op->inputs.push_back(moving_variance_input); epsilon_add_op->inputs.push_back(epsilon_array_name); epsilon_add_op->outputs.push_back(epsilon_add_op_name); model->operators.emplace_back(epsilon_add_op); const std::string rsqrt_op_name = node.name() + "_rsqrt"; auto* rsqrt_op = new TensorFlowRsqrtOperator; rsqrt_op->inputs.push_back(epsilon_add_op_name); rsqrt_op->outputs.push_back(rsqrt_op_name); model->operators.emplace_back(rsqrt_op); const std::string multiplier = node.name() + "_mul"; auto* mul_op = new MulOperator; mul_op->inputs.push_back(rsqrt_op_name); mul_op->inputs.push_back(gamma_input); mul_op->outputs.push_back(multiplier); model->operators.emplace_back(mul_op); auto* op = new BatchNormalizationOperator; op->global_normalization = true; op->inputs.push_back(node.input(0)); op->inputs.push_back(moving_mean_input); op->inputs.push_back(multiplier); op->inputs.push_back(beta_input); op->outputs.push_back(node.name()); model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertSpaceToBatchNDOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "SpaceToBatchND"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 3)); CHECK_EQ(GetDataTypeAttr(node, "Tblock_shape"), DT_INT32); CHECK_EQ(GetDataTypeAttr(node, "Tpaddings"), DT_INT32); auto* op = new SpaceToBatchNDOperator; op->inputs.push_back(node.input(0)); op->inputs.push_back(node.input(1)); op->inputs.push_back(node.input(2)); op->outputs.push_back(node.name()); model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertBatchToSpaceNDOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "BatchToSpaceND"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 3)); CHECK_EQ(GetDataTypeAttr(node, "Tblock_shape"), DT_INT32); CHECK_EQ(GetDataTypeAttr(node, "Tcrops"), DT_INT32); auto* op = new BatchToSpaceNDOperator; op->inputs.push_back(node.input(0)); op->inputs.push_back(node.input(1)); op->inputs.push_back(node.input(2)); op->outputs.push_back(node.name()); model->operators.emplace_back(op); return absl::OkStatus(); } template <typename T> tensorflow::Status ConvertReduceOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 2)); auto* op = new T; op->inputs.push_back(node.input(0)); op->inputs.push_back(node.input(1)); op->outputs.push_back(node.name()); model->operators.emplace_back(op); if (HasAttr(node, "keepdims")) { op->keep_dims = GetBoolAttr(node, "keepdims"); } else if (HasAttr(node, "keep_dims")) { op->keep_dims = GetBoolAttr(node, "keep_dims"); } return absl::OkStatus(); } tensorflow::Status ConvertSvdfOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "Svdf"); const int input_size = GetInputsCount(node, tf_import_flags); QCHECK(input_size == 4 || input_size == 5) << "Svdf node expects 3 or 4 inputs other than control dependencies: " << node.DebugString(); bool has_bias = (input_size == 5); auto* op = new SvdfOperator; int index = 0; op->inputs.push_back(node.input(index++)); op->inputs.push_back(node.input(index++)); op->inputs.push_back(node.input(index++)); if (has_bias) { op->inputs.push_back(node.input(index++)); } op->inputs.push_back(node.input(index)); op->outputs.push_back(node.name()); if (node.attr().at("ActivationFunction").s() == "Relu") { op->fused_activation_function = FusedActivationFunctionType::kRelu; } else { op->fused_activation_function = FusedActivationFunctionType::kNone; } op->rank = node.attr().at("Rank").i(); model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertTransposeConvOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "Conv2DBackpropInput"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 3)); auto* op = new TransposeConvOperator; op->inputs.push_back(node.input(0)); op->inputs.push_back(node.input(1)); op->inputs.push_back(node.input(2)); op->outputs.push_back(node.name()); const auto& strides = GetListAttr(node, "strides"); op->stride_height = strides.i(1); op->stride_width = strides.i(2); CHECK_EQ(strides.i_size(), 4) << "Can only import TransposeConv ops with 4D strides. TensorFlow op \"" << node.name() << "\" has " << strides.i_size() << "D strides."; CHECK((strides.i(0) == 1) && (strides.i(3) == 1)) << "Can only import TransposeConv ops with striding along the height " "(1st) or width (2nd) axis. TensorFlow op \"" << node.name() << "\" had strides:[ " << strides.i(0) << ", " << strides.i(1) << ", " << strides.i(2) << ", " << strides.i(3) << "]."; op->stride_height = strides.i(1); op->stride_width = strides.i(2); if (HasAttr(node, "dilations")) { const auto& dilations = GetListAttr(node, "dilations"); CHECK_EQ(dilations.i_size(), 4) << "Dilation unsupported in TransposeConv. TensorFlow op \"" << node.name() << "\" had dilations"; CHECK((dilations.i(0) == 1) && (dilations.i(1) == 1) && (dilations.i(2) == 1) && (dilations.i(3) == 1)) << "Dilation unsupported in TransposeConv. TensorFlow op \"" << node.name() << "\" had dilations:[ " << dilations.i(0) << ", " << dilations.i(1) << ", " << dilations.i(2) << ", " << dilations.i(3) << "]."; } const std::string& weights_name = node.input(TransposeConvOperator::WEIGHTS); const std::string& transposed_weights_name = weights_name + "_transposed"; const Operator* existing_transpose = GetOpWithOutput(*model, transposed_weights_name); if (existing_transpose) { CHECK(existing_transpose->type == OperatorType::kTranspose); } else { TransposeOperator* transpose = new TransposeOperator; std::string perm_array = CreateConstArray<ArrayDataType::kInt32>( model, node.name() + "_transpose_perm", {2, 0, 1, 3}); transpose->inputs = {weights_name, perm_array}; transpose->outputs = {transposed_weights_name}; model->operators.emplace_back(transpose); } op->inputs[1] = transposed_weights_name; auto const& padding = GetStringAttr(node, "padding"); if (padding == "SAME") { op->padding.type = PaddingType::kSame; } else if (padding == "VALID") { op->padding.type = PaddingType::kValid; } else { LOG(FATAL) << "Only SAME and VALID padding supported on " "Conv2DBackpropInput nodes."; } model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertRangeOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "Range"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 3)); auto* op = new RangeOperator; if (HasAttr(node, "Tidx")) { const auto dtype = toco::GetDataTypeAttr(node, "Tidx"); CHECK(dtype == DT_UINT8 || dtype == DT_INT32 || dtype == DT_INT64 || dtype == DT_FLOAT); op->dtype = ConvertDataType(dtype); } op->inputs.push_back(node.input(0)); op->inputs.push_back(node.input(1)); op->inputs.push_back(node.input(2)); op->outputs.push_back(node.name()); model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertPackOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "Pack"); auto op = std::make_unique<PackOperator>(); const int num_inputs = GetInputsCount(node, tf_import_flags); QCHECK_GE(num_inputs, 1) << node.op() << " node expects at least 1 input other than control dependencies: " << node.DebugString(); CHECK_EQ(num_inputs, GetIntAttr(node, "N")); for (int i = 0; i < num_inputs; ++i) { op->inputs.push_back(node.input(i)); } op->values_count = HasAttr(node, "N") ? GetIntAttr(node, "N") : num_inputs; op->axis = HasAttr(node, "axis") ? GetIntAttr(node, "axis") : 0; op->dtype = ConvertDataType(toco::GetDataTypeAttr(node, "T")); op->outputs.push_back(node.name()); model->operators.emplace_back(std::move(op)); return absl::OkStatus(); } tensorflow::Status ConvertUnpackOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "Unpack"); auto op = std::make_unique<UnpackOperator>(); const int num_inputs = GetInputsCount(node, tf_import_flags); QCHECK_EQ(num_inputs, 1); op->inputs.push_back(node.input(0)); op->num = GetIntAttr(node, "num"); op->axis = HasAttr(node, "axis") ? GetIntAttr(node, "axis") : 0; op->dtype = ConvertDataType(toco::GetDataTypeAttr(node, "T")); op->outputs.push_back(node.name()); for (int i = 1; i < op->num; ++i) { op->outputs.push_back(node.name() + ":" + std::to_string(i)); } model->operators.emplace_back(std::move(op)); return absl::OkStatus(); } tensorflow::Status ConvertOperatorSpecialCasedAsRNNBackEdge( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "NextIteration"); CHECK_EQ(node.input_size(), 1); auto* rnn_state = model->flags.add_rnn_states(); rnn_state->set_discardable(true); rnn_state->set_state_array(node.name()); rnn_state->set_back_edge_source_array(node.input(0)); rnn_state->set_size(1); return absl::OkStatus(); } tensorflow::Status ConvertShapeOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "Shape"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 1)); const auto out_type = HasAttr(node, "out_type") ? GetDataTypeAttr(node, "out_type") : DT_INT32; CHECK(out_type == DT_INT64 || out_type == DT_INT32); auto op = std::make_unique<TensorFlowShapeOperator>(); op->output_data_type = ConvertDataType(out_type); op->inputs.push_back(node.input(0)); op->outputs.push_back(node.name()); model->operators.push_back(std::move(op)); return absl::OkStatus(); } tensorflow::Status ConvertReverseSequenceOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "ReverseSequence"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 2)); auto op = std::make_unique<ReverseSequenceOperator>(); if (HasAttr(node, "seq_dim")) { op->seq_dim = GetIntAttr(node, "seq_dim"); } op->batch_dim = HasAttr(node, "batch_dim") ? GetIntAttr(node, "batch_dim") : 0; const int num_inputs = GetInputsCount(node, tf_import_flags); for (int i = 0; i < num_inputs; ++i) { op->inputs.push_back(node.input(i)); } op->outputs.push_back(node.name()); model->operators.push_back(std::move(op)); return absl::OkStatus(); } void StripCaretFromArrayNames(Model* model) { for (auto& op : model->operators) { for (auto& input : op->inputs) { input = std::string(absl::StripPrefix(input, "^")); } for (auto& output : op->outputs) { output = std::string(absl::StripPrefix(output, "^")); } } for (auto& array : model->GetArrayMap()) { if (absl::StartsWith(array.first, "^")) { LOG(FATAL) << "What?"; } } } void StripZeroOutputIndexFromInputs(NodeDef* node) { for (auto& input : *node->mutable_input()) { input = std::string(absl::StripSuffix(input, ":0")); } } void AddExtraOutputs(Model* model) { std::vector<std::string> consumed_arrays; for (const auto& consumer_op : model->operators) { for (const std::string& input : consumer_op->inputs) { consumed_arrays.push_back(input); } } for (const std::string& output_array : model->flags.output_arrays()) { consumed_arrays.push_back(output_array); } for (const auto& rnn_state : model->flags.rnn_states()) { consumed_arrays.push_back(rnn_state.back_edge_source_array()); } for (const std::string& consumed_array : consumed_arrays) { if (GetOpWithOutput(*model, consumed_array)) { continue; } const std::vector<std::string>& split = absl::StrSplit(consumed_array, ':'); if (split.size() != 2) { continue; } int output_index = 0; if (!absl::SimpleAtoi(split[1], &output_index)) { continue; } auto* producer_op = GetOpWithOutput(*model, split[0]); if (!producer_op) { continue; } while (producer_op->outputs.size() <= output_index) { using toco::port::StringF; producer_op->outputs.push_back( StringF("%s:%d", split[0], producer_op->outputs.size())); } } } bool InlineAllFunctions(GraphDef* graphdef) { if (graphdef->library().function().empty()) { VLOG(kLogLevelModelUnchanged) << "No functions to inline."; return false; } GraphDef graphdef_copy(*graphdef); for (auto& function : (*graphdef_copy.mutable_library()->mutable_function())) { auto* attributes = function.mutable_attr(); if (attributes->count(tensorflow::kNoInlineAttr) != 0) { (*attributes)[tensorflow::kNoInlineAttr].set_b(false); } } tensorflow::SessionOptions options; auto* device_count = options.config.mutable_device_count(); device_count->insert({"CPU", 1}); std::vector<std::unique_ptr<tensorflow::Device>> devices; TF_CHECK_OK(tensorflow::DeviceFactory::AddDevices( options, "/job:localhost/replica:0/task:0", &devices)); tensorflow::FunctionLibraryDefinition fld(tensorflow::OpRegistry::Global(), graphdef_copy.library()); tensorflow::StaticDeviceMgr device_mgr(std::move(devices)); tensorflow::ProcessFunctionLibraryRuntime pflr( &device_mgr, tensorflow::Env::Default(), &options.config, TF_GRAPH_DEF_VERSION, &fld, options.config.graph_options().optimizer_options(), nullptr); tensorflow::FunctionLibraryRuntime* flr; flr = pflr.GetFLR("/job:localhost/replica:0/task:0/cpu:0"); tensorflow::Graph graph(fld); tensorflow::ImportGraphDefOptions gc_opts; gc_opts.validate_shape = false; const auto& tf_convert_status = tensorflow::ImportGraphDef( gc_opts, graphdef_copy, &graph, nullptr, nullptr); if (!tf_convert_status.ok()) { LOG(ERROR) << "tensorflow::ImportGraphDef failed with status: " << tf_convert_status.ToString(); return false; } bool graph_modified = false; while (tensorflow::ExpandInlineFunctions(flr, &graph)) { graph_modified = true; } if (graph_modified) { LOG(INFO) << "Found and inlined TensorFlow functions."; graph.ToGraphDef(graphdef); } return graph_modified; } tensorflow::Status ConvertTopKV2Operator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK((node.op() == "TopK") || (node.op() == "TopKV2")); auto op = std::make_unique<TopKV2Operator>(); op->inputs.push_back(node.input(0)); if (HasAttr(node, "k")) { std::string k_array = CreateConstArray<ArrayDataType::kInt32>( model, node.name() + "k", {static_cast<int32>(GetIntAttr(node, "k"))}); op->inputs.push_back(k_array); } else { TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 2)); op->inputs.push_back(node.input(1)); } op->outputs.push_back(node.name()); op->outputs.push_back(node.name() + ":1"); model->operators.emplace_back(op.release()); return absl::OkStatus(); } tensorflow::Status ConvertDynamicPartitionOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { auto op = std::make_unique<DynamicPartitionOperator>(); CHECK(HasAttr(node, "num_partitions")); op->num_partitions = GetIntAttr(node, "num_partitions"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 2)); op->inputs.push_back(node.input(0)); op->inputs.push_back(node.input(1)); CHECK_GT(op->num_partitions, 1); op->outputs.push_back(node.name()); for (int i = 1; i < op->num_partitions; ++i) { op->outputs.push_back(node.name() + ":" + std::to_string(i)); } model->operators.emplace_back(op.release()); return absl::OkStatus(); } tensorflow::Status ConvertDynamicStitchOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK(node.op() == "DynamicStitch" || node.op() == "ParallelDynamicStitch"); auto op = std::make_unique<DynamicStitchOperator>(); CHECK(HasAttr(node, "N")); op->num_partitions = GetIntAttr(node, "N"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, op->num_partitions * 2)); for (int i = 0; i < op->num_partitions * 2; ++i) { op->inputs.push_back(node.input(i)); } op->outputs.push_back(node.name()); model->operators.emplace_back(op.release()); return absl::OkStatus(); } tensorflow::Status ConvertSparseToDenseOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "SparseToDense"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 4)); auto* op = new SparseToDenseOperator; for (const std::string& input : node.input()) { op->inputs.push_back(input); } op->outputs.push_back(node.name()); op->validate_indices = HasAttr(node, "validate_indices") ? GetBoolAttr(node, "validate_indices") : true; model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertOneHotOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "OneHot"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 4)); const auto dtype = GetDataTypeAttr(node, "T"); CHECK(dtype == DT_INT32 || dtype == DT_INT64 || dtype == DT_FLOAT || dtype == DT_BOOL); auto op = std::make_unique<OneHotOperator>(); op->axis = HasAttr(node, "axis") ? GetIntAttr(node, "axis") : -1; for (const std::string& input : node.input()) { op->inputs.push_back(input); } op->outputs.push_back(node.name()); model->operators.emplace_back(op.release()); return absl::OkStatus(); } tensorflow::Status ConvertCTCBeamSearchDecoderOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "CTCBeamSearchDecoder"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 2)); auto* op = new CTCBeamSearchDecoderOperator; for (const std::string& input : node.input()) { op->inputs.push_back(input); } op->beam_width = HasAttr(node, "beam_width") ? GetIntAttr(node, "beam_width") : 1; op->top_paths = HasAttr(node, "top_paths") ? GetIntAttr(node, "top_paths") : 1; op->merge_repeated = HasAttr(node, "merge_repeated") ? GetBoolAttr(node, "merge_repeated") : true; op->outputs.push_back(node.name()); for (int i = 0; i < op->top_paths; ++i) { op->outputs.push_back(node.name() + ":" + std::to_string(i + 1)); } model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertUnidirectionalSequenceLstm( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { DCHECK_EQ(node.op(), "UnidirectionalSequenceLstm"); const auto& indices = GetListAttr(node, "_tflite_input_indices"); auto* op = new UnidirectionalSequenceLstmOperator(); const int kInputsSize = 20; op->inputs.resize(kInputsSize); if (indices.i_size() != node.input().size()) { int count = 0; for (int idx = 0; idx < kInputsSize; ++idx) { if (count < indices.i_size() && indices.i(count) == idx) { op->inputs[idx] = node.input(idx); count++; } else { std::string optional_name = node.name() + "_" + std::to_string(idx); model->CreateOptionalArray(optional_name); op->inputs[idx] = optional_name; } } } else { std::vector<bool> done(kInputsSize); int idx = 0; for (const std::string& input : node.input()) { int real_index = indices.i(idx); op->inputs[real_index] = (input); done[real_index] = true; idx++; } for (int idx = 0; idx < done.size(); idx++) { if (!done[idx]) { std::string optional_name = node.name() + "_" + std::to_string(idx); model->CreateOptionalArray(optional_name); op->inputs[idx] = optional_name; } } } op->outputs.push_back(node.name() + ":2"); model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertLeakyReluOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { CHECK_EQ(node.op(), "LeakyRelu"); TF_QCHECK_OK(CheckInputsCount(node, tf_import_flags, 1)); CHECK_EQ(GetDataTypeAttr(node, "T"), DT_FLOAT); const auto& input_name = node.input(0); auto* op = new LeakyReluOperator; op->inputs.push_back(input_name); op->outputs.push_back(node.name()); op->alpha = GetFloatAttr(node, "alpha"); model->operators.emplace_back(op); return absl::OkStatus(); } tensorflow::Status ConvertUnidirectionalSequenceRnn( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { DCHECK_EQ(node.op(), "UnidirectionalSequenceRnn"); const auto& indices = GetListAttr(node, "_tflite_input_indices"); if (indices.i_size() != node.input().size()) { return tensorflow::errors::InvalidArgument("Input size does not match."); } auto* op = new UnidirectionalSequenceRnnOperator(); for (const std::string& input : node.input()) { op->inputs.push_back(input); } op->outputs.push_back(node.name() + ":1"); model->operators.emplace_back(op); return absl::OkStatus(); } } namespace internal { using ConverterType = tensorflow::Status (*)( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model); using ConverterMapType = std::unordered_map<std::string, ConverterType>; ConverterMapType GetTensorFlowNodeConverterMapForFlex() { return std::unordered_map<std::string, ConverterType>({ {"LegacyFedInput", ConvertPlaceholderOperator}, {"Placeholder", ConvertPlaceholderOperator}, {"Const", ConditionallyConvertConstOperator}, }); } ConverterMapType GetTensorFlowNodeConverterMap() { return std::unordered_map<std::string, ConverterType>({ {"Abs", ConvertSimpleOperator<AbsOperator, kAnyNumInputs, 1>}, {"Add", ConvertSimpleOperator<AddOperator, 2, 1>}, {"AddV2", ConvertSimpleOperator<AddOperator, 2, 1>}, {"AddN", ConvertSimpleOperator<AddNOperator, kAnyNumInputs, 1>}, {"All", ConvertSimpleOperator<TensorFlowAllOperator, kAnyNumInputs, 1>}, {"Any", ConvertReduceOperator<TensorFlowAnyOperator>}, {"ArgMax", ConvertArgMaxOperator}, {"ArgMin", ConvertArgMinOperator}, {"Assert", ConvertSimpleOperator<TensorFlowAssertOperator, kAnyNumInputs, 1>}, {"AvgPool", ConvertAvgPoolOperator}, {"BatchMatMul", ConvertBatchMatMulOperator}, {"BatchMatMulV2", ConvertBatchMatMulOperator}, {"BatchNormWithGlobalNormalization", ConvertBatchNormWithGlobalNormalizationOperator}, {"BatchToSpaceND", ConvertBatchToSpaceNDOperator}, {"BiasAdd", ConvertBiasAddOperator}, {"Cast", ConvertCastOperator}, {"Ceil", ConvertCeilOperator}, {"CheckNumerics", ConvertIdentityOperator}, {"Concat", ConvertConcatOperator}, {"ConcatV2", ConvertConcatOperator}, {"Const", ConvertConstOperator}, {"Conv2D", ConvertConvOperator}, {"Conv2DBackpropInput", ConvertTransposeConvOperator}, {"Cos", ConvertSimpleOperator<CosOperator, 1, 1>}, {"CTCBeamSearchDecoder", ConvertCTCBeamSearchDecoderOperator}, {"DepthToSpace", ConvertDepthToSpaceOperator}, {"DepthwiseConv2dNative", ConvertDepthwiseConvOperator}, {"Div", ConvertSimpleOperator<DivOperator, 2, 1>}, {"DynamicPartition", ConvertDynamicPartitionOperator}, {"DynamicStitch", ConvertDynamicStitchOperator}, {"Elu", ConvertSimpleOperator<EluOperator, 1, 1>}, {"EnsureShape", ConvertIdentityOperator}, {"Equal", ConvertSimpleOperator<TensorFlowEqualOperator, 2, 1>}, {"Exp", ConvertSimpleOperator<ExpOperator, 1, 1>}, {"ExpandDims", ConvertSimpleOperator<ExpandDimsOperator, 2, 1>}, {"FakeQuantWithMinMaxArgs", ConvertFakeQuantWithMinMaxArgs}, {"FakeQuantWithMinMaxVars", ConvertFakeQuantWithMinMaxVars}, {"Fill", ConvertSimpleOperator<FillOperator, 2, 1>}, {"Floor", ConvertFloorOperator}, {"FloorDiv", ConvertSimpleOperator<FloorDivOperator, 2, 1>}, {"FloorMod", ConvertSimpleOperator<FloorModOperator, 2, 1>}, {"FusedBatchNorm", ConvertFusedBatchNormOperator}, {"FusedBatchNormV3", ConvertFusedBatchNormOperator}, {"Gather", ConvertGatherOperator}, {"GatherV2", ConvertGatherOperator}, {"GatherNd", ConvertGatherNdOperator}, {"Greater", ConvertSimpleOperator<TensorFlowGreaterOperator, 2, 1>}, {"GreaterEqual", ConvertSimpleOperator<TensorFlowGreaterEqualOperator, 2, 1>}, {"Identity", ConvertIdentityOperator}, {"IdentityN", ConvertIdentityNOperator}, {"LRN", ConvertLRNOperator}, {"LeakyRelu", ConvertLeakyReluOperator}, {"LegacyFedInput", ConvertPlaceholderOperator}, {"Less", ConvertSimpleOperator<TensorFlowLessOperator, 2, 1>}, {"LessEqual", ConvertSimpleOperator<TensorFlowLessEqualOperator, 2, 1>}, {"Log", ConvertSimpleOperator<LogOperator, 1, 1>}, {"LogicalAnd", ConvertSimpleOperator<LogicalAndOperator, 2, 1>}, {"LogicalOr", ConvertSimpleOperator<LogicalOrOperator, 2, 1>}, {"LogicalNot", ConvertSimpleOperator<LogicalNotOperator, 1, 1>}, {"LogSoftmax", ConvertSimpleOperator<LogSoftmaxOperator, 1, 1>}, {"MatMul", ConvertMatMulOperator}, {"MatrixDiag", ConvertSimpleOperator<MatrixDiagOperator, 1, 1>}, {"MatrixDiagV2", ConvertSimpleOperator<MatrixDiagV2Operator, 5, 1>}, {"MatrixDiagV3", ConvertSimpleOperator<MatrixDiagV3Operator, 5, 1>}, {"MatrixSetDiag", ConvertSimpleOperator<MatrixSetDiagOperator, 2, 1>}, {"MatrixSetDiagV2", ConvertSimpleOperator<MatrixSetDiagV2Operator, 3, 1>}, {"MatrixSetDiagV3", ConvertSimpleOperator<MatrixSetDiagV3Operator, 3, 1>}, {"Max", ConvertReduceOperator<TensorFlowMaxOperator>}, {"MaxPool", ConvertMaxPoolOperator}, {"Maximum", ConvertSimpleOperator<TensorFlowMaximumOperator, 2, 1>}, {"Mean", ConvertReduceOperator<MeanOperator>}, {"Merge", ConvertSimpleOperator<TensorFlowMergeOperator, kAnyNumInputs, 1>}, {"Min", ConvertReduceOperator<TensorFlowMinOperator>}, {"Minimum", ConvertSimpleOperator<TensorFlowMinimumOperator, 2, 1>}, {"Mul", ConvertSimpleOperator<MulOperator, 2, 1>}, {"Neg", ConvertSimpleOperator<NegOperator, 1, 1>}, {"NextIteration", ConvertOperatorSpecialCasedAsRNNBackEdge}, {"NoOp", ConvertNoOpOperator}, {"NotEqual", ConvertSimpleOperator<TensorFlowNotEqualOperator, 2, 1>}, {"OneHot", ConvertOneHotOperator}, {"Pack", ConvertPackOperator}, {"Pad", ConvertSimpleOperator<PadOperator, 2, 1>}, {"PadV2", ConvertSimpleOperator<PadV2Operator, 3, 1>}, {"ParallelDynamicStitch", ConvertDynamicStitchOperator}, {"Placeholder", ConvertPlaceholderOperator}, {"PlaceholderWithDefault", ConvertIdentityOperator}, {"Pow", ConvertSimpleOperator<PowOperator, 2, 1>}, {"Prod", ConvertReduceOperator<TensorFlowProdOperator>}, {"RandomUniform", ConvertRandomUniform}, {"Range", ConvertRangeOperator}, {"Rank", ConvertSimpleOperator<TensorFlowRankOperator, 1, 1>}, {"RealDiv", ConvertSimpleOperator<DivOperator, 2, 1>}, {"Relu", ConvertSimpleOperator<ReluOperator, 1, 1>}, {"Relu6", ConvertSimpleOperator<Relu6Operator, 1, 1>}, {"Reshape", ConvertSimpleOperator<TensorFlowReshapeOperator, 2, 1>}, {"ResizeBilinear", ConvertResizeBilinearOperator}, {"ResizeNearestNeighbor", ConvertResizeNearestNeighborOperator}, {"ReverseSequence", ConvertReverseSequenceOperator}, {"ReverseV2", ConvertSimpleOperator<ReverseV2Operator, 2, 1>}, {"Round", ConvertRoundOperator}, {"Rsqrt", ConvertSimpleOperator<TensorFlowRsqrtOperator, 1, 1>}, {"ScatterNd", ConvertSimpleOperator<ScatterNdOperator, 3, 1>}, {"SegmentSum", ConvertSimpleOperator<SegmentSumOperator, 2, 1>}, {"Select", ConvertSimpleOperator<SelectOperator, 3, 1>}, {"SelectV2", ConvertSimpleOperator<SelectOperator, 3, 1>}, {"Shape", ConvertShapeOperator}, {"Sigmoid", ConvertSimpleOperator<LogisticOperator, 1, 1>}, {"Sin", ConvertSimpleOperator<SinOperator, 1, 1>}, {"Slice", ConvertSimpleOperator<SliceOperator, 3, 1>}, {"Softmax", ConvertSoftmaxOperator}, {"SpaceToBatchND", ConvertSpaceToBatchNDOperator}, {"SpaceToDepth", ConvertSpaceToDepthOperator}, {"SparseToDense", ConvertSparseToDenseOperator}, {"Split", ConvertSplitOperator}, {"SplitV", ConvertSplitVOperator}, {"Sqrt", ConvertSimpleOperator<TensorFlowSqrtOperator, 1, 1>}, {"Square", ConvertSimpleOperator<TensorFlowSquareOperator, 1, 1>}, {"SquaredDifference", ConvertSimpleOperator<SquaredDifferenceOperator, 2, 1>}, {"Snapshot", ConvertIdentityOperator}, {"Squeeze", ConvertSqueezeOperator}, {"StopGradient", ConvertIdentityOperator}, {"StridedSlice", ConvertStridedSliceOperator}, {"Sub", ConvertSimpleOperator<SubOperator, 2, 1>}, {"Sum", ConvertReduceOperator<TensorFlowSumOperator>}, {"Svdf", ConvertSvdfOperator}, {"Switch", ConvertSwitchOperator}, {"Tanh", ConvertSimpleOperator<TanhOperator, 1, 1>}, {"Tile", ConvertSimpleOperator<TensorFlowTileOperator, 2, 1>}, {"TopK", ConvertTopKV2Operator}, {"TopKV2", ConvertTopKV2Operator}, {"Transpose", ConvertSimpleOperator<TransposeOperator, 2, 1>}, {"Unpack", ConvertUnpackOperator}, {"ZerosLike", ConvertSimpleOperator<TensorFlowZerosLikeOperator, 1, 1>}, {"UnidirectionalSequenceLstm", ConvertUnidirectionalSequenceLstm}, {"UnidirectionalSequenceRnn", ConvertUnidirectionalSequenceRnn}, {"MirrorPad", ConvertMirrorPadOperator}, {"Unique", ConvertSimpleOperator<UniqueOperator, 1, 2>}, {"Where", ConvertSimpleOperator<WhereOperator, 1, 1>}, }); } tensorflow::Status ImportTensorFlowNode( const tensorflow::NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model, const ConverterMapType& converter_map) { auto converter = converter_map.find(node.op()); if (converter == converter_map.end()) { return ConvertUnsupportedOperator(node, tf_import_flags, model_flags, model); } else { return converter->second(node, tf_import_flags, model_flags, model); } } } std::unique_ptr<Model> ImportTensorFlowGraphDef( const ModelFlags& model_flags, const TensorFlowImportFlags& tf_import_flags, const GraphDef& tf_graph) { LogDumpGraphDef(kLogLevelModelChanged, "AT IMPORT", tf_graph); GraphDef inlined_graph(tf_graph); if (InlineAllFunctions(&inlined_graph)) { LogDumpGraphDef(kLogLevelModelChanged, "AFTER INLINING", inlined_graph); } for (const auto& specified_input_array : model_flags.input_arrays()) { CHECK(!absl::EndsWith(specified_input_array.name(), ":0")) << "Unsupported explicit zero output index: " << specified_input_array.name(); } for (const std::string& specified_output_array : model_flags.output_arrays()) { CHECK(!absl::EndsWith(specified_output_array, ":0")) << "Unsupported explicit zero output index: " << specified_output_array; } Model* model = new Model; internal::ConverterMapType converter_map; if (!tf_import_flags.import_all_ops_as_unsupported) { converter_map = internal::GetTensorFlowNodeConverterMap(); } else { converter_map = internal::GetTensorFlowNodeConverterMapForFlex(); } for (auto node : inlined_graph.node()) { StripZeroOutputIndexFromInputs(&node); auto status = internal::ImportTensorFlowNode( node, tf_import_flags, model_flags, model, converter_map); CHECK(status.ok()) << status.message(); } ResolveModelFlags(model_flags, model); StripCaretFromArrayNames(model); AddExtraOutputs(model); FixNoMissingArray(model); FixNoOrphanedArray(model); FixOperatorOrdering(model); CheckInvariants(*model); for (const auto& rnn_state : model->flags.rnn_states()) { model->GetArray(rnn_state.state_array()).buffer = nullptr; } return std::unique_ptr<Model>(model); } std::unique_ptr<Model> ImportTensorFlowGraphDef( const ModelFlags& model_flags, const TensorFlowImportFlags& tf_import_flags, const std::string& input_file_contents) { std::unique_ptr<GraphDef> tf_graph(new GraphDef); CHECK(ParseFromStringEitherTextOrBinary(input_file_contents, tf_graph.get())); std::unique_ptr<GraphDef> pruned_graph = MaybeReplaceCompositeSubgraph(*tf_graph); if (pruned_graph) { tf_graph = std::move(pruned_graph); } return ImportTensorFlowGraphDef(model_flags, tf_import_flags, *tf_graph); } }
#include "tensorflow/lite/toco/import_tensorflow.h" #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/lite/testing/util.h" #include "tensorflow/lite/toco/toco_port.h" namespace toco { using tensorflow::AttrValue; using tensorflow::DT_BOOL; using tensorflow::DT_COMPLEX64; using tensorflow::DT_FLOAT; using tensorflow::DT_INT32; using tensorflow::DT_INT64; using tensorflow::DT_INVALID; using tensorflow::DT_QUINT8; using tensorflow::DT_STRING; using tensorflow::DT_UINT16; using tensorflow::DT_UINT32; using tensorflow::NodeDef; using tensorflow::Status; using ::testing::ElementsAre; namespace internal { using ConverterType = tensorflow::Status (*)( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model); using ConverterMapType = std::unordered_map<std::string, ConverterType>; ConverterMapType GetTensorFlowNodeConverterMap(); ConverterMapType GetTensorFlowNodeConverterMapForFlex(); Status ImportTensorFlowNode(const NodeDef&, const TensorFlowImportFlags&, const ModelFlags& model_flags, Model*, const ConverterMapType&); } namespace { Status ImportNode(const NodeDef& node, Model* model) { const auto converter = internal::GetTensorFlowNodeConverterMap(); return internal::ImportTensorFlowNode(node, TensorFlowImportFlags(), ModelFlags(), model, converter); } Status ImportFlexNode(const NodeDef& node, Model* model) { const auto converter = internal::ConverterMapType(); return internal::ImportTensorFlowNode(node, TensorFlowImportFlags(), ModelFlags(), model, converter); } Status ImportNode(const NodeDef& node) { Model model; return ImportNode(node, &model); } NodeDef BuildNode( const std::string& op, const std::vector<std::initializer_list<int>>& output_shapes) { NodeDef node; node.set_op(op); node.set_name("Node1"); node.add_input(); node.set_input(0, "Node0"); AttrValue::ListValue* shapes = (*node.mutable_attr())["_output_shapes"].mutable_list(); for (const auto& output_shape : output_shapes) { tensorflow::TensorShapeProto* shape = shapes->add_shape(); for (int64_t output_shape_dim : output_shape) { auto shape_dim = shape->add_dim(); shape_dim->set_size(output_shape_dim); } } return node; } namespace { void BuildConstNode(std::initializer_list<int64_t> shape, tensorflow::DataType dtype, int64_t num_elements, NodeDef* node) { node->set_op("Const"); node->set_name("Node1"); AttrValue dtype_attr; SetAttrValue(dtype, &dtype_attr); (*node->mutable_attr())["dtype"] = dtype_attr; tensorflow::TensorProto t; t.set_dtype(dtype); auto* s = t.mutable_tensor_shape(); for (auto d : shape) { s->add_dim()->set_size(d); } switch (dtype) { case DT_FLOAT: for (int64_t i = 0; i < num_elements; ++i) { t.add_float_val(i / 10000.0 + 1); } break; case DT_INT32: for (int64_t i = 0; i < num_elements; ++i) { t.add_int_val(i % std::numeric_limits<int>::max() + 1); } break; case DT_UINT32: for (int64_t i = 0; i < num_elements; ++i) { t.add_int_val(i % std::numeric_limits<uint32_t>::max() + 1); } break; case DT_QUINT8: for (int64_t i = 0; i < num_elements; ++i) { t.add_int_val(i % std::numeric_limits<uint8_t>::max() + 1); } break; case DT_INT64: for (int64_t i = 0; i < num_elements; ++i) { t.add_int64_val(i + 1); } break; case DT_UINT16: for (int64_t i = 0; i < num_elements; ++i) { t.add_int_val(i % std::numeric_limits<uint16_t>::max() + 1); } break; case DT_STRING: break; case DT_BOOL: for (int64_t i = 0; i < num_elements; ++i) { t.add_bool_val((i % 2) == 0); } break; case DT_COMPLEX64: for (int64_t i = 0; i < num_elements; ++i) { t.add_scomplex_val(i / 10000.0 + 1); t.add_scomplex_val(-i / 10000.0 - 1); } break; default: break; } AttrValue value_attr; SetAttrValue(t, &value_attr); (*node->mutable_attr())["value"] = value_attr; } } TEST(FlexImportTest, ConditionalConst) { Model model; auto build_and_import_node = [&model](const std::string& name, std::initializer_list<int64_t> shape, tensorflow::DataType dtype, int64_t num_elements) { NodeDef node; BuildConstNode(shape, dtype, num_elements, &node); node.set_name(name); const auto converter = internal::GetTensorFlowNodeConverterMapForFlex(); return internal::ImportTensorFlowNode(node, TensorFlowImportFlags(), ModelFlags(), &model, converter); }; EXPECT_TRUE(build_and_import_node("Known", {1, 2, 3}, DT_INT32, 6).ok()); EXPECT_TRUE(build_and_import_node("BadType", {1, 2, 3}, DT_INVALID, 6).ok()); EXPECT_TRUE(build_and_import_node("Unknown", {1, -2, 3}, DT_INT32, 6).ok()); EXPECT_EQ(model.operators.size(), 2); EXPECT_TRUE(model.HasArray("Known")); EXPECT_FALSE(model.HasArray("Unknown")); EXPECT_FALSE(model.HasArray("BadType")); } TEST(FlexImportTest, SoftmaxWithBeta) { NodeDef node; node.set_op("Softmax"); node.set_name("softmax"); node.add_input(); node.set_input(0, "logits"); AttrValue dtype_attr; SetAttrValue(0.5, &dtype_attr); (*node.mutable_attr())["_softmax_beta"] = dtype_attr; Model model; EXPECT_TRUE(ImportNode(node, &model).ok()); ASSERT_THAT(model.operators.size(), ::testing::Ge(1)); ASSERT_EQ(model.operators[0]->type, OperatorType::kSoftmax); const SoftmaxOperator* op = static_cast<const SoftmaxOperator*>(model.operators[0].get()); EXPECT_EQ(op->beta, 0.5); } TEST(FlexImportTest, SoftmaxWithoutBeta) { NodeDef node; node.set_op("Softmax"); node.set_name("softmax"); node.add_input(); node.set_input(0, "logits"); Model model; EXPECT_TRUE(ImportNode(node, &model).ok()); ASSERT_THAT(model.operators.size(), ::testing::Ge(1)); ASSERT_EQ(model.operators[0]->type, OperatorType::kSoftmax); const SoftmaxOperator* op = static_cast<const SoftmaxOperator*>(model.operators[0].get()); EXPECT_EQ(op->beta, 1.0); } class ShapeImportTest : public ::testing::TestWithParam<tensorflow::DataType> { }; TEST_P(ShapeImportTest, ShapeElementIsNegative) { NodeDef node; BuildConstNode({1, -2, 10}, GetParam(), 0, &node); auto status = ImportNode(node); EXPECT_EQ( status.message(), "Tensor shape should not include negative values\n\t (while processing " "node 'Node1')"); } TEST_P(ShapeImportTest, ShapeElementIsZero) { NodeDef node; BuildConstNode({1, 0, 10}, GetParam(), 0, &node); Model model; EXPECT_TRUE(ImportNode(node, &model).ok()); const auto& array = model.GetArray("Node1"); EXPECT_THAT(array.shape().dims(), ::testing::ElementsAre()); } TEST_P(ShapeImportTest, ShapeIsOneDimZero) { NodeDef node; BuildConstNode({0}, GetParam(), 0, &node); Model model; EXPECT_TRUE(ImportNode(node, &model).ok()); const auto& array = model.GetArray("Node1"); EXPECT_THAT(array.shape().dims(), ::testing::ElementsAre()); } TEST_P(ShapeImportTest, ShapeElementTooLarge) { NodeDef node; BuildConstNode({3000000000}, GetParam(), 0, &node); auto status = ImportNode(node); EXPECT_EQ(status.message(), "Shape element overflows\n\t (while processing node 'Node1')"); } TEST_P(ShapeImportTest, ShapeTooLarge) { NodeDef node; BuildConstNode({1000000, 2000000, 2000000, 2000000}, GetParam(), 0, &node); auto status = ImportNode(node); EXPECT_EQ(status.message(), "Tensor shape is too large\n\t (while processing node 'Node1')"); } std::vector<tensorflow::DataType> TestTypes() { return {DT_FLOAT, DT_INT32, DT_INT64, DT_BOOL, DT_QUINT8, DT_COMPLEX64}; } INSTANTIATE_TEST_SUITE_P(ShapeImportTest, ShapeImportTest, ::testing::ValuesIn(TestTypes())); class ContentImportTest : public ::testing::Test { public: template <ArrayDataType T> std::vector<DataType<T>> ImportAndGetData(const NodeDef& node) { Model model; auto status = ImportNode(node, &model); CHECK(status.ok()) << status.message(); const auto& array = model.GetArray("Node1"); return array.GetBuffer<T>().data; } void RemoveTrailingElements(NodeDef* node, int num) { tensorflow::TensorProto* p = node->mutable_attr()->at("value").mutable_tensor(); for (int i = 0; i < num; ++i) { if (p->int_val_size() > 0) p->mutable_int_val()->RemoveLast(); if (p->int64_val_size() > 0) p->mutable_int64_val()->RemoveLast(); if (p->float_val_size() > 0) p->mutable_float_val()->RemoveLast(); if (p->bool_val_size() > 0) p->mutable_bool_val()->RemoveLast(); if (p->scomplex_val_size() > 0) p->mutable_scomplex_val()->RemoveLast(); if (p->scomplex_val_size() > 0) p->mutable_scomplex_val()->RemoveLast(); } } }; TEST_F(ContentImportTest, Int32) { constexpr ArrayDataType kType = ArrayDataType::kInt32; NodeDef node; BuildConstNode({1, 2, 3}, DT_INT32, 6, &node); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 2, 3, 4, 5, 6)); RemoveTrailingElements(&node, 1); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 2, 3, 4, 5, 5)); RemoveTrailingElements(&node, 4); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 1, 1, 1, 1, 1)); RemoveTrailingElements(&node, 1); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(0, 0, 0, 0, 0, 0)); } TEST_F(ContentImportTest, Int64) { constexpr ArrayDataType kType = ArrayDataType::kInt64; NodeDef node; BuildConstNode({1, 2, 3}, DT_INT64, 6, &node); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 2, 3, 4, 5, 6)); RemoveTrailingElements(&node, 1); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 2, 3, 4, 5, 5)); RemoveTrailingElements(&node, 4); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 1, 1, 1, 1, 1)); RemoveTrailingElements(&node, 1); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(0, 0, 0, 0, 0, 0)); } TEST_F(ContentImportTest, Quint8) { constexpr ArrayDataType kType = ArrayDataType::kUint8; NodeDef node; BuildConstNode({1, 2, 3}, DT_QUINT8, 6, &node); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 2, 3, 4, 5, 6)); RemoveTrailingElements(&node, 1); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 2, 3, 4, 5, 5)); RemoveTrailingElements(&node, 4); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 1, 1, 1, 1, 1)); RemoveTrailingElements(&node, 1); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(0, 0, 0, 0, 0, 0)); } TEST_F(ContentImportTest, Bool) { constexpr ArrayDataType kType = ArrayDataType::kBool; NodeDef node; BuildConstNode({1, 2, 3}, DT_BOOL, 6, &node); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 0, 1, 0, 1, 0)); RemoveTrailingElements(&node, 1); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 0, 1, 0, 1, 1)); RemoveTrailingElements(&node, 4); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 1, 1, 1, 1, 1)); RemoveTrailingElements(&node, 1); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(0, 0, 0, 0, 0, 0)); } TEST_F(ContentImportTest, Float) { constexpr ArrayDataType kType = ArrayDataType::kFloat; NodeDef node; BuildConstNode({1, 2, 3}, DT_FLOAT, 6, &node); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1.0000, 1.0001, 1.0002, 1.0003, 1.0004, 1.0005)); RemoveTrailingElements(&node, 1); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1.0000, 1.0001, 1.0002, 1.0003, 1.0004, 1.0004)); RemoveTrailingElements(&node, 4); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000)); RemoveTrailingElements(&node, 1); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)); } TEST_F(ContentImportTest, Complex64) { constexpr ArrayDataType kType = ArrayDataType::kComplex64; NodeDef node; BuildConstNode({1, 2, 3}, DT_COMPLEX64, 6, &node); using cplx = std::complex<float>; EXPECT_THAT( ImportAndGetData<kType>(node), ElementsAre(std::complex<float>(1.0000, -1.0000), cplx(1.0001, -1.0001), cplx(1.0002, -1.0002), cplx(1.0003, -1.0003), cplx(1.0004, -1.0004), cplx(1.0005, -1.0005))); RemoveTrailingElements(&node, 1); EXPECT_THAT( ImportAndGetData<kType>(node), ElementsAre(std::complex<float>(1.0000, -1.0000), cplx(1.0001, -1.0001), cplx(1.0002, -1.0002), cplx(1.0003, -1.0003), cplx(1.0004, -1.0004), cplx(1.0004, -1.0004))); RemoveTrailingElements(&node, 4); EXPECT_THAT( ImportAndGetData<kType>(node), ElementsAre(std::complex<float>(1.0000, -1.0000), cplx(1.0000, -1.0000), cplx(1.0000, -1.0000), cplx(1.0000, -1.0000), cplx(1.0000, -1.0000), cplx(1.0000, -1.0000))); RemoveTrailingElements(&node, 1); EXPECT_THAT( ImportAndGetData<kType>(node), ElementsAre(std::complex<float>(0.0000, 0.0000), cplx(0.0000, 0.0000), cplx(0.0000, 0.0000), cplx(0.0000, 0.0000), cplx(0.0000, 0.0000), cplx(0.0000, 0.0000))); } std::vector<std::pair<tensorflow::DataType, ArrayDataType>> UnaryTestTypes() { return {{DT_FLOAT, ArrayDataType::kFloat}, {DT_INT32, ArrayDataType::kInt32}, {DT_INT64, ArrayDataType::kInt64}}; } class TensorContentTest : public ::testing::Test { public: template <ArrayDataType T> std::vector<DataType<T>> ImportAndGetData(const NodeDef& node) { Model model; auto status = ImportNode(node, &model); CHECK(status.ok()) << status.message(); const auto& nodearray = model.GetArray("Node1"); return nodearray.GetBuffer<T>().data; } template <class T> void NodeWithTensorContent(std::initializer_list<int64_t> shape, tensorflow::DataType dtype, int64_t num_elements, NodeDef* node) { node->set_op("Const"); node->set_name("Node1"); AttrValue dtype_attr; SetAttrValue(dtype, &dtype_attr); (*node->mutable_attr())["dtype"] = dtype_attr; auto allocated_content = std::make_unique<T[]>(num_elements); tensorflow::TensorProto t; t.set_dtype(dtype); auto* s = t.mutable_tensor_shape(); for (const auto& d : shape) { s->add_dim()->set_size(d); } switch (dtype) { case DT_FLOAT: for (int64_t i = 0; i < num_elements; ++i) { allocated_content[i] = i / 10000.0 + 1; } break; case DT_INT32: for (int64_t i = 0; i < num_elements; ++i) { allocated_content[i] = i % std::numeric_limits<int>::max() + 1; } break; case DT_QUINT8: for (int64_t i = 0; i < num_elements; ++i) { allocated_content[i] = i % std::numeric_limits<uint8_t>::max() + 1; } break; case DT_INT64: for (int64_t i = 0; i < num_elements; ++i) { allocated_content[i] = i + 1; } break; case DT_STRING: break; case DT_BOOL: for (int64_t i = 0; i < num_elements; ++i) { allocated_content[i] = ((i % 2) == 0); } break; default: break; } t.set_tensor_content( std::string(reinterpret_cast<const char*>(allocated_content.get()), num_elements * sizeof(T))); AttrValue value_attr; SetAttrValue(t, &value_attr); (*node->mutable_attr())["value"] = value_attr; allocated_content.reset(); } }; TEST_F(TensorContentTest, Int64) { constexpr ArrayDataType kType = ArrayDataType::kInt64; NodeDef node; NodeWithTensorContent<int64_t>({1, 2, 3}, DT_INT64, 6, &node); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 2, 3, 4, 5, 6)); } TEST_F(TensorContentTest, Int32) { constexpr ArrayDataType kType = ArrayDataType::kInt32; NodeDef node; NodeWithTensorContent<int>({1, 2, 3}, DT_INT32, 6, &node); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 2, 3, 4, 5, 6)); } TEST_F(TensorContentTest, Float) { constexpr ArrayDataType kType = ArrayDataType::kFloat; NodeDef node; NodeWithTensorContent<float>({1, 2, 3}, DT_FLOAT, 6, &node); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1.0000, 1.0001, 1.0002, 1.0003, 1.0004, 1.0005)); } TEST_F(TensorContentTest, Quint8) { constexpr ArrayDataType kType = ArrayDataType::kUint8; NodeDef node; NodeWithTensorContent<uint8_t>({1, 2, 3}, DT_QUINT8, 6, &node); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 2, 3, 4, 5, 6)); } TEST_F(TensorContentTest, Bool) { constexpr ArrayDataType kType = ArrayDataType::kBool; NodeDef node; NodeWithTensorContent<bool>({1, 2, 3}, DT_BOOL, 6, &node); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 0, 1, 0, 1, 0)); } class TypeImportTest : public ::testing::TestWithParam< std::pair<tensorflow::DataType, ArrayDataType>> { protected: TypeImportTest() {} void BuildUnaryNode(const std::string& op_name, tensorflow::DataType dtype, NodeDef* node) { node->set_op(op_name); node->set_name("Node1"); node->add_input(); node->set_input(0, "Node0"); AttrValue dtype_attr; SetAttrValue(dtype, &dtype_attr); (*node->mutable_attr())["T"] = dtype_attr; } }; TEST_P(TypeImportTest, BasicTypeInference) { NodeDef node; BuildUnaryNode("Atan", GetParam().first, &node); Model model; EXPECT_TRUE(ImportNode(node, &model).ok()); ASSERT_THAT(model.operators.size(), ::testing::Ge(1)); ASSERT_EQ(model.operators[0]->type, OperatorType::kUnsupported); const TensorFlowUnsupportedOperator* op = static_cast<const TensorFlowUnsupportedOperator*>( model.operators[0].get()); ASSERT_THAT(op->output_data_types, ::testing::ElementsAre(GetParam().second)); } INSTANTIATE_TEST_SUITE_P(BasicTypeInference, TypeImportTest, ::testing::ValuesIn(UnaryTestTypes())); TEST(ImportTest, TypeInferenceWithFixedOutputType) { Model model; EXPECT_TRUE(ImportNode(BuildNode("IsFinite", {{1, 2}, {2, 3}}), &model).ok()); ASSERT_THAT(model.operators.size(), ::testing::Ge(1)); ASSERT_EQ(model.operators[0]->type, OperatorType::kUnsupported); const TensorFlowUnsupportedOperator* op = static_cast<const TensorFlowUnsupportedOperator*>( model.operators[0].get()); ASSERT_THAT(op->output_data_types, ::testing::ElementsAre(ArrayDataType::kBool)); } TEST(ImportTest, FailedTypeInference) { NodeDef node; node.set_op("Atan"); node.set_name("Node1"); node.add_input(); node.set_input(0, "Node0"); Model model; EXPECT_TRUE(ImportNode(node, &model).ok()); ASSERT_THAT(model.operators.size(), ::testing::Ge(1)); ASSERT_EQ(model.operators[0]->type, OperatorType::kUnsupported); const TensorFlowUnsupportedOperator* op = static_cast<const TensorFlowUnsupportedOperator*>( model.operators[0].get()); ASSERT_TRUE(op->output_data_types.empty()); } TEST(ImportTest, UnsupportedOpWithOutputShapes) { Model model; EXPECT_TRUE(ImportNode(BuildNode("Atan", {{1, 2}, {2, 3}}), &model).ok()); ASSERT_THAT(model.operators.size(), ::testing::Ge(1)); ASSERT_EQ(model.operators[0]->type, OperatorType::kUnsupported); const TensorFlowUnsupportedOperator* op = static_cast<const TensorFlowUnsupportedOperator*>( model.operators[0].get()); ASSERT_EQ(op->output_shapes.size(), 2); ASSERT_THAT(op->output_shapes[0].dims(), ::testing::ElementsAre(1, 2)); ASSERT_THAT(op->output_shapes[1].dims(), ::testing::ElementsAre(2, 3)); } TEST(ImportTest, UnsupportedOpWithWildcardOutputShapes) { Model model; EXPECT_TRUE(ImportNode(BuildNode("Atan", {{-1, 2}}), &model).ok()); ASSERT_THAT(model.operators.size(), ::testing::Ge(1)); ASSERT_EQ(model.operators[0]->type, OperatorType::kUnsupported); const TensorFlowUnsupportedOperator* op = static_cast<const TensorFlowUnsupportedOperator*>( model.operators[0].get()); ASSERT_TRUE(op->output_shapes.empty()); } TEST(ImportTest, UnsupportedOpWithMultipleOutputs) { NodeDef node = BuildNode("ParseExample", {}); { AttrValue value_attr; SetAttrValue(2, &value_attr); (*node.mutable_attr())["Nsparse"] = value_attr; } { AttrValue value_attr; std::vector<tensorflow::DataType> types; types.push_back(tensorflow::DT_FLOAT); types.push_back(tensorflow::DT_STRING); SetAttrValue(types, &value_attr); (*node.mutable_attr())["sparse_types"] = value_attr; } { AttrValue value_attr; std::vector<tensorflow::DataType> types; types.push_back(tensorflow::DT_STRING); types.push_back(tensorflow::DT_FLOAT); types.push_back(tensorflow::DT_INT64); SetAttrValue(types, &value_attr); (*node.mutable_attr())["Tdense"] = value_attr; } Model model; EXPECT_TRUE(ImportFlexNode(node, &model).ok()); ASSERT_THAT(model.operators.size(), ::testing::Ge(1)); ASSERT_EQ(model.operators[0]->type, OperatorType::kUnsupported); const TensorFlowUnsupportedOperator* op = static_cast<const TensorFlowUnsupportedOperator*>( model.operators[0].get()); ASSERT_EQ(op->outputs.size(), 9); ASSERT_EQ(op->output_data_types.size(), 9); ASSERT_EQ(op->outputs[0], "Node1"); ASSERT_EQ(op->outputs[1], "Node1:1"); ASSERT_EQ(op->output_data_types[0], ArrayDataType::kInt64); ASSERT_EQ(op->output_data_types[1], ArrayDataType::kInt64); ASSERT_EQ(op->outputs[2], "Node1:2"); ASSERT_EQ(op->outputs[3], "Node1:3"); ASSERT_EQ(op->output_data_types[2], ArrayDataType::kFloat); ASSERT_EQ(op->output_data_types[3], ArrayDataType::kString); ASSERT_EQ(op->outputs[4], "Node1:4"); ASSERT_EQ(op->outputs[5], "Node1:5"); ASSERT_EQ(op->output_data_types[4], ArrayDataType::kInt64); ASSERT_EQ(op->output_data_types[5], ArrayDataType::kInt64); ASSERT_EQ(op->outputs[6], "Node1:6"); ASSERT_EQ(op->outputs[7], "Node1:7"); ASSERT_EQ(op->outputs[8], "Node1:8"); ASSERT_EQ(op->output_data_types[6], ArrayDataType::kString); ASSERT_EQ(op->output_data_types[7], ArrayDataType::kFloat); ASSERT_EQ(op->output_data_types[8], ArrayDataType::kInt64); } } } int main(int argc, char** argv) { ::tflite::LogToStderr(); ::testing::InitGoogleTest(&argc, argv); ::toco::port::InitGoogleWasDoneElsewhere(); return RUN_ALL_TESTS(); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/toco/import_tensorflow.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/toco/import_tensorflow_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5c2ea959-8528-49ce-afb1-9865a7548db7
cpp
google/quiche
quic_interval_set
quiche/quic/core/quic_interval_set.h
quiche/quic/core/quic_interval_set_test.cc
#ifndef QUICHE_QUIC_CORE_QUIC_INTERVAL_SET_H_ #define QUICHE_QUIC_CORE_QUIC_INTERVAL_SET_H_ #include <stddef.h> #include <algorithm> #include <initializer_list> #include <set> #include <sstream> #include <string> #include <utility> #include <vector> #include "quiche/quic/core/quic_interval.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/common/platform/api/quiche_containers.h" #include "quiche/common/platform/api/quiche_logging.h" namespace quic { template <typename T> class QUICHE_NO_EXPORT QuicIntervalSet { public: using value_type = QuicInterval<T>; private: struct QUICHE_NO_EXPORT IntervalLess { using is_transparent = void; bool operator()(const value_type& a, const value_type& b) const; bool operator()(const value_type& a, const T& point) const; bool operator()(const value_type& a, T&& point) const; bool operator()(const T& point, const value_type& a) const; bool operator()(T&& point, const value_type& a) const; }; using Set = quiche::QuicheSmallOrderedSet<value_type, IntervalLess>; public: using const_iterator = typename Set::const_iterator; using const_reverse_iterator = typename Set::const_reverse_iterator; QuicIntervalSet() = default; explicit QuicIntervalSet(const value_type& interval) { Add(interval); } QuicIntervalSet(const T& min, const T& max) { Add(min, max); } QuicIntervalSet(std::initializer_list<value_type> il) { assign(il); } void Clear() { intervals_.clear(); } size_t Size() const { return intervals_.size(); } value_type SpanningInterval() const; void Add(const value_type& interval); void Add(const T& min, const T& max) { Add(value_type(min, max)); } void AddOptimizedForAppend(const value_type& interval) { if (Empty() || !GetQuicFlag(quic_interval_set_enable_add_optimization)) { Add(interval); return; } const_reverse_iterator last_interval = intervals_.rbegin(); if (interval.min() < last_interval->min() || interval.min() > last_interval->max()) { Add(interval); return; } if (interval.max() <= last_interval->max()) { return; } const_cast<value_type*>(&(*last_interval))->SetMax(interval.max()); } void AddOptimizedForAppend(const T& min, const T& max) { AddOptimizedForAppend(value_type(min, max)); } void PopFront() { QUICHE_DCHECK(!Empty()); intervals_.erase(intervals_.begin()); } bool TrimLessThan(const T& value) { size_t num_intervals_trimmed = 0; while (!intervals_.empty()) { const_iterator first_interval = intervals_.begin(); if (first_interval->min() >= value) { break; } ++num_intervals_trimmed; if (first_interval->max() <= value) { intervals_.erase(first_interval); continue; } const_cast<value_type*>(&(*first_interval))->SetMin(value); break; } return num_intervals_trimmed != 0; } bool Empty() const { return intervals_.empty(); } bool Contains(const T& value) const; bool Contains(const value_type& interval) const; bool Contains(const QuicIntervalSet<T>& other) const; bool Contains(const T& min, const T& max) const { return Contains(value_type(min, max)); } bool Intersects(const QuicIntervalSet& other) const; const_iterator Find(const T& value) const; const_iterator Find(const value_type& interval) const; const_iterator Find(const T& min, const T& max) const { return Find(value_type(min, max)); } const_iterator LowerBound(const T& value) const; const_iterator UpperBound(const T& value) const; bool IsDisjoint(const value_type& interval) const; void Union(const QuicIntervalSet& other); void Intersection(const QuicIntervalSet& other); void Difference(const value_type& interval); void Difference(const T& min, const T& max); void Difference(const QuicIntervalSet& other); void Complement(const T& min, const T& max); const_iterator begin() const { return intervals_.begin(); } const_iterator end() const { return intervals_.end(); } const_reverse_iterator rbegin() const { return intervals_.rbegin(); } const_reverse_iterator rend() const { return intervals_.rend(); } template <typename Iter> void assign(Iter first, Iter last) { Clear(); for (; first != last; ++first) Add(*first); } void assign(std::initializer_list<value_type> il) { assign(il.begin(), il.end()); } std::string ToString() const; QuicIntervalSet& operator=(std::initializer_list<value_type> il) { assign(il.begin(), il.end()); return *this; } friend bool operator==(const QuicIntervalSet& a, const QuicIntervalSet& b) { return a.Size() == b.Size() && std::equal(a.begin(), a.end(), b.begin(), NonemptyIntervalEq()); } friend bool operator!=(const QuicIntervalSet& a, const QuicIntervalSet& b) { return !(a == b); } private: struct QUICHE_NO_EXPORT NonemptyIntervalEq { bool operator()(const value_type& a, const value_type& b) const { return a.min() == b.min() && a.max() == b.max(); } }; bool Valid() const; const_iterator FindIntersectionCandidate(const QuicIntervalSet& other) const; const_iterator FindIntersectionCandidate(const value_type& interval) const; template <typename X, typename Func> static bool FindNextIntersectingPairImpl(X* x, const QuicIntervalSet& y, const_iterator* mine, const_iterator* theirs, Func on_hole); bool FindNextIntersectingPair(const QuicIntervalSet& other, const_iterator* mine, const_iterator* theirs) const { return FindNextIntersectingPairImpl( this, other, mine, theirs, [](const QuicIntervalSet*, const_iterator, const_iterator end) { return end; }); } bool FindNextIntersectingPairAndEraseHoles(const QuicIntervalSet& other, const_iterator* mine, const_iterator* theirs) { return FindNextIntersectingPairImpl( this, other, mine, theirs, [](QuicIntervalSet* x, const_iterator from, const_iterator to) { return x->intervals_.erase(from, to); }); } Set intervals_; }; template <typename T> auto operator<<(std::ostream& out, const QuicIntervalSet<T>& seq) -> decltype(out << *seq.begin()) { out << "{"; for (const auto& interval : seq) { out << " " << interval; } out << " }"; return out; } template <typename T> typename QuicIntervalSet<T>::value_type QuicIntervalSet<T>::SpanningInterval() const { value_type result; if (!intervals_.empty()) { result.SetMin(intervals_.begin()->min()); result.SetMax(intervals_.rbegin()->max()); } return result; } template <typename T> void QuicIntervalSet<T>::Add(const value_type& interval) { if (interval.Empty()) return; const_iterator it = intervals_.lower_bound(interval.min()); value_type the_union = interval; if (it != intervals_.begin()) { --it; if (it->Separated(the_union)) { ++it; } } const_iterator start = it; while (it != intervals_.end() && !it->Separated(the_union)) { the_union.SpanningUnion(*it); ++it; } intervals_.erase(start, it); intervals_.insert(the_union); } template <typename T> bool QuicIntervalSet<T>::Contains(const T& value) const { const_iterator it = intervals_.upper_bound(value); if (it == intervals_.begin()) return false; --it; return it->Contains(value); } template <typename T> bool QuicIntervalSet<T>::Contains(const value_type& interval) const { const_iterator it = intervals_.upper_bound(interval.min()); if (it == intervals_.begin()) return false; --it; return it->Contains(interval); } template <typename T> bool QuicIntervalSet<T>::Contains(const QuicIntervalSet<T>& other) const { if (!SpanningInterval().Contains(other.SpanningInterval())) { return false; } for (const_iterator i = other.begin(); i != other.end(); ++i) { if (!Contains(*i)) { return false; } } return true; } template <typename T> typename QuicIntervalSet<T>::const_iterator QuicIntervalSet<T>::Find( const T& value) const { const_iterator it = intervals_.upper_bound(value); if (it == intervals_.begin()) return intervals_.end(); --it; if (it->Contains(value)) return it; else return intervals_.end(); } template <typename T> typename QuicIntervalSet<T>::const_iterator QuicIntervalSet<T>::Find( const value_type& probe) const { const_iterator it = intervals_.upper_bound(probe.min()); if (it == intervals_.begin()) return intervals_.end(); --it; if (it->Contains(probe)) return it; else return intervals_.end(); } template <typename T> typename QuicIntervalSet<T>::const_iterator QuicIntervalSet<T>::LowerBound( const T& value) const { const_iterator it = intervals_.lower_bound(value); if (it == intervals_.begin()) { return it; } --it; if (it->Contains(value)) { return it; } else { return ++it; } } template <typename T> typename QuicIntervalSet<T>::const_iterator QuicIntervalSet<T>::UpperBound( const T& value) const { return intervals_.upper_bound(value); } template <typename T> bool QuicIntervalSet<T>::IsDisjoint(const value_type& interval) const { if (interval.Empty()) return true; const_iterator it = intervals_.upper_bound(interval.min()); if (it != intervals_.end() && interval.max() > it->min()) return false; if (it == intervals_.begin()) return true; --it; return it->max() <= interval.min(); } template <typename T> void QuicIntervalSet<T>::Union(const QuicIntervalSet& other) { for (const value_type& interval : other.intervals_) { Add(interval); } } template <typename T> typename QuicIntervalSet<T>::const_iterator QuicIntervalSet<T>::FindIntersectionCandidate( const QuicIntervalSet& other) const { return FindIntersectionCandidate(*other.intervals_.begin()); } template <typename T> typename QuicIntervalSet<T>::const_iterator QuicIntervalSet<T>::FindIntersectionCandidate( const value_type& interval) const { const_iterator mine = intervals_.upper_bound(interval.min()); if (mine != intervals_.begin()) { --mine; } return mine; } template <typename T> template <typename X, typename Func> bool QuicIntervalSet<T>::FindNextIntersectingPairImpl(X* x, const QuicIntervalSet& y, const_iterator* mine, const_iterator* theirs, Func on_hole) { QUICHE_CHECK(x != nullptr); if ((*mine == x->intervals_.end()) || (*theirs == y.intervals_.end())) { return false; } while (!(**mine).Intersects(**theirs)) { const_iterator erase_first = *mine; while (*mine != x->intervals_.end() && (**mine).max() <= (**theirs).min()) { ++(*mine); } *mine = on_hole(x, erase_first, *mine); if (*mine == x->intervals_.end()) { return false; } while (*theirs != y.intervals_.end() && (**theirs).max() <= (**mine).min()) { ++(*theirs); } if (*theirs == y.intervals_.end()) { on_hole(x, *mine, x->intervals_.end()); return false; } } return true; } template <typename T> void QuicIntervalSet<T>::Intersection(const QuicIntervalSet& other) { if (!SpanningInterval().Intersects(other.SpanningInterval())) { intervals_.clear(); return; } const_iterator mine = FindIntersectionCandidate(other); mine = intervals_.erase(intervals_.begin(), mine); const_iterator theirs = other.FindIntersectionCandidate(*this); while (FindNextIntersectingPairAndEraseHoles(other, &mine, &theirs)) { value_type i(*mine); intervals_.erase(mine); mine = intervals_.end(); value_type intersection; while (theirs != other.intervals_.end() && i.Intersects(*theirs, &intersection)) { std::pair<const_iterator, bool> ins = intervals_.insert(intersection); QUICHE_DCHECK(ins.second); mine = ins.first; ++theirs; } QUICHE_DCHECK(mine != intervals_.end()); --theirs; ++mine; } QUICHE_DCHECK(Valid()); } template <typename T> bool QuicIntervalSet<T>::Intersects(const QuicIntervalSet& other) const { auto mine = intervals_.begin(); auto theirs = other.intervals_.begin(); while (mine != intervals_.end() && theirs != other.intervals_.end()) { if (mine->Intersects(*theirs)) return true; else if (*mine < *theirs) ++mine; else ++theirs; } return false; } template <typename T> void QuicIntervalSet<T>::Difference(const value_type& interval) { if (!SpanningInterval().Intersects(interval)) { return; } Difference(QuicIntervalSet<T>(interval)); } template <typename T> void QuicIntervalSet<T>::Difference(const T& min, const T& max) { Difference(value_type(min, max)); } template <typename T> void QuicIntervalSet<T>::Difference(const QuicIntervalSet& other) { if (Empty()) return; Set result; const_iterator mine = intervals_.begin(); value_type myinterval = *mine; const_iterator theirs = other.intervals_.begin(); while (mine != intervals_.end()) { QUICHE_DCHECK(!myinterval.Empty()); QUICHE_DCHECK(myinterval.max() == mine->max()); if (theirs == other.intervals_.end() || myinterval.max() <= theirs->min()) { result.insert(result.end(), myinterval); myinterval.Clear(); } else if (theirs->max() <= myinterval.min()) { ++theirs; } else if (myinterval.min() < theirs->min()) { result.insert(result.end(), value_type(myinterval.min(), theirs->min())); myinterval.SetMin(theirs->max()); } else { myinterval.SetMin(theirs->max()); } if (myinterval.Empty()) { ++mine; if (mine != intervals_.end()) { myinterval = *mine; } } } std::swap(result, intervals_); QUICHE_DCHECK(Valid()); } template <typename T> void QuicIntervalSet<T>::Complement(const T& min, const T& max) { QuicIntervalSet<T> span(min, max); span.Difference(*this); intervals_.swap(span.intervals_); } template <typename T> std::string QuicIntervalSet<T>::ToString() const { std::ostringstream os; os << *this; return os.str(); } template <typename T> bool QuicIntervalSet<T>::Valid() const { const_iterator prev = end(); for (const_iterator it = begin(); it != end(); ++it) { if (it->min() >= it->max()) return false; if (prev != end() && prev->max() >= it->min()) return false; prev = it; } return true; } template <typename T> bool QuicIntervalSet<T>::IntervalLess::operator()(const value_type& a, const value_type& b) const { return a.min() < b.min(); } template <typename T> bool QuicIntervalSet<T>::IntervalLess::operator()(const value_type& a, const T& point) const { return a.min() < point; } template <typename T> bool QuicIntervalSet<T>::IntervalLess::operator()(const value_type& a, T&& point) const { return a.min() < point; } template <typename T> bool QuicIntervalSet<T>::IntervalLess::operator()(const T& point, const value_type& a) const { return point < a.min(); } template <typename T> bool QuicIntervalSet<T>::IntervalLess::operator()(T&& point, const value_type& a) const { return point < a.min(); } } #endif
#include "quiche/quic/core/quic_interval_set.h" #include <stdarg.h> #include <algorithm> #include <iostream> #include <iterator> #include <limits> #include <sstream> #include <string> #include <vector> #include "quiche/quic/platform/api/quic_test.h" namespace quic { namespace test { namespace { using ::testing::ElementsAreArray; class QuicIntervalSetTest : public QuicTest { protected: virtual void SetUp() { is.Add(100, 200); is.Add(300, 400); is.Add(500, 600); is.Add(700, 800); is.Add(900, 1000); is.Add(1100, 1200); is.Add(1300, 1400); is.Add(1500, 1600); is.Add(1700, 1800); is.Add(1900, 2000); is.Add(2100, 2200); other.Add(50, 70); other.Add(2250, 2270); other.Add(650, 670); other.Add(350, 360); other.Add(370, 380); other.Add(470, 530); other.Add(770, 830); other.Add(870, 900); other.Add(1200, 1230); other.Add(1270, 1830); } virtual void TearDown() { is.Clear(); EXPECT_TRUE(is.Empty()); other.Clear(); EXPECT_TRUE(other.Empty()); } QuicIntervalSet<int> is; QuicIntervalSet<int> other; }; TEST_F(QuicIntervalSetTest, IsDisjoint) { EXPECT_TRUE(is.IsDisjoint(QuicInterval<int>(0, 99))); EXPECT_TRUE(is.IsDisjoint(QuicInterval<int>(0, 100))); EXPECT_TRUE(is.IsDisjoint(QuicInterval<int>(200, 200))); EXPECT_TRUE(is.IsDisjoint(QuicInterval<int>(200, 299))); EXPECT_TRUE(is.IsDisjoint(QuicInterval<int>(400, 407))); EXPECT_TRUE(is.IsDisjoint(QuicInterval<int>(405, 499))); EXPECT_TRUE(is.IsDisjoint(QuicInterval<int>(2300, 2300))); EXPECT_TRUE( is.IsDisjoint(QuicInterval<int>(2300, std::numeric_limits<int>::max()))); EXPECT_FALSE(is.IsDisjoint(QuicInterval<int>(100, 105))); EXPECT_FALSE(is.IsDisjoint(QuicInterval<int>(199, 300))); EXPECT_FALSE(is.IsDisjoint(QuicInterval<int>(250, 450))); EXPECT_FALSE(is.IsDisjoint(QuicInterval<int>(299, 400))); EXPECT_FALSE(is.IsDisjoint(QuicInterval<int>(250, 2000))); EXPECT_FALSE( is.IsDisjoint(QuicInterval<int>(2199, std::numeric_limits<int>::max()))); EXPECT_TRUE(is.IsDisjoint(QuicInterval<int>(90, 90))); EXPECT_TRUE(is.IsDisjoint(QuicInterval<int>(100, 100))); EXPECT_TRUE(is.IsDisjoint(QuicInterval<int>(100, 90))); EXPECT_TRUE(is.IsDisjoint(QuicInterval<int>(150, 150))); EXPECT_TRUE(is.IsDisjoint(QuicInterval<int>(200, 200))); EXPECT_TRUE(is.IsDisjoint(QuicInterval<int>(400, 300))); } static bool VA_Check(const QuicIntervalSet<int>& is, int count, va_list ap) { std::vector<QuicInterval<int>> intervals(is.begin(), is.end()); if (count != static_cast<int>(intervals.size())) { QUIC_LOG(ERROR) << "Expected " << count << " intervals, got " << intervals.size() << ": " << is; return false; } if (count != static_cast<int>(is.Size())) { QUIC_LOG(ERROR) << "Expected " << count << " intervals, got Size " << is.Size() << ": " << is; return false; } bool result = true; for (int i = 0; i < count; i++) { int min = va_arg(ap, int); int max = va_arg(ap, int); if (min != intervals[i].min() || max != intervals[i].max()) { QUIC_LOG(ERROR) << "Expected: [" << min << ", " << max << ") got " << intervals[i] << " in " << is; result = false; } } return result; } static bool Check(const QuicIntervalSet<int>& is, int count, ...) { va_list ap; va_start(ap, count); const bool result = VA_Check(is, count, ap); va_end(ap); return result; } static void TestContainsAndFind(const QuicIntervalSet<int>& is, int value) { EXPECT_TRUE(is.Contains(value)) << "Set does not contain " << value; auto it = is.Find(value); EXPECT_NE(it, is.end()) << "No iterator to interval containing " << value; EXPECT_TRUE(it->Contains(value)) << "Iterator does not contain " << value; } static void TestContainsAndFind(const QuicIntervalSet<int>& is, int min, int max) { EXPECT_TRUE(is.Contains(min, max)) << "Set does not contain interval with min " << min << "and max " << max; auto it = is.Find(min, max); EXPECT_NE(it, is.end()) << "No iterator to interval with min " << min << "and max " << max; EXPECT_TRUE(it->Contains(QuicInterval<int>(min, max))) << "Iterator does not contain interval with min " << min << "and max " << max; } static void TestNotContainsAndFind(const QuicIntervalSet<int>& is, int value) { EXPECT_FALSE(is.Contains(value)) << "Set contains " << value; auto it = is.Find(value); EXPECT_EQ(it, is.end()) << "There is iterator to interval containing " << value; } static void TestNotContainsAndFind(const QuicIntervalSet<int>& is, int min, int max) { EXPECT_FALSE(is.Contains(min, max)) << "Set contains interval with min " << min << "and max " << max; auto it = is.Find(min, max); EXPECT_EQ(it, is.end()) << "There is iterator to interval with min " << min << "and max " << max; } TEST_F(QuicIntervalSetTest, AddInterval) { QuicIntervalSet<int> s; s.Add(QuicInterval<int>(0, 10)); EXPECT_TRUE(Check(s, 1, 0, 10)); } TEST_F(QuicIntervalSetTest, DecrementIterator) { auto it = is.end(); EXPECT_NE(it, is.begin()); --it; EXPECT_EQ(*it, QuicInterval<int>(2100, 2200)); ++it; EXPECT_EQ(it, is.end()); } TEST_F(QuicIntervalSetTest, AddOptimizedForAppend) { QuicIntervalSet<int> empty_one, empty_two; empty_one.AddOptimizedForAppend(QuicInterval<int>(0, 99)); EXPECT_TRUE(Check(empty_one, 1, 0, 99)); empty_two.AddOptimizedForAppend(1, 50); EXPECT_TRUE(Check(empty_two, 1, 1, 50)); QuicIntervalSet<int> iset; iset.AddOptimizedForAppend(100, 150); iset.AddOptimizedForAppend(200, 250); EXPECT_TRUE(Check(iset, 2, 100, 150, 200, 250)); iset.AddOptimizedForAppend(199, 200); EXPECT_TRUE(Check(iset, 2, 100, 150, 199, 250)); iset.AddOptimizedForAppend(251, 260); EXPECT_TRUE(Check(iset, 3, 100, 150, 199, 250, 251, 260)); iset.AddOptimizedForAppend(252, 260); EXPECT_TRUE(Check(iset, 3, 100, 150, 199, 250, 251, 260)); iset.AddOptimizedForAppend(252, 300); EXPECT_TRUE(Check(iset, 3, 100, 150, 199, 250, 251, 300)); iset.AddOptimizedForAppend(300, 350); EXPECT_TRUE(Check(iset, 3, 100, 150, 199, 250, 251, 350)); } TEST_F(QuicIntervalSetTest, PopFront) { QuicIntervalSet<int> iset{{100, 200}, {400, 500}, {700, 800}}; EXPECT_TRUE(Check(iset, 3, 100, 200, 400, 500, 700, 800)); iset.PopFront(); EXPECT_TRUE(Check(iset, 2, 400, 500, 700, 800)); iset.PopFront(); EXPECT_TRUE(Check(iset, 1, 700, 800)); iset.PopFront(); EXPECT_TRUE(iset.Empty()); } TEST_F(QuicIntervalSetTest, TrimLessThan) { QuicIntervalSet<int> iset{{100, 200}, {400, 500}, {700, 800}}; EXPECT_TRUE(Check(iset, 3, 100, 200, 400, 500, 700, 800)); EXPECT_FALSE(iset.TrimLessThan(99)); EXPECT_FALSE(iset.TrimLessThan(100)); EXPECT_TRUE(Check(iset, 3, 100, 200, 400, 500, 700, 800)); EXPECT_TRUE(iset.TrimLessThan(101)); EXPECT_TRUE(Check(iset, 3, 101, 200, 400, 500, 700, 800)); EXPECT_TRUE(iset.TrimLessThan(199)); EXPECT_TRUE(Check(iset, 3, 199, 200, 400, 500, 700, 800)); EXPECT_TRUE(iset.TrimLessThan(450)); EXPECT_TRUE(Check(iset, 2, 450, 500, 700, 800)); EXPECT_TRUE(iset.TrimLessThan(500)); EXPECT_TRUE(Check(iset, 1, 700, 800)); EXPECT_TRUE(iset.TrimLessThan(801)); EXPECT_TRUE(iset.Empty()); EXPECT_FALSE(iset.TrimLessThan(900)); EXPECT_TRUE(iset.Empty()); } TEST_F(QuicIntervalSetTest, QuicIntervalSetBasic) { QuicIntervalSet<int> iset; EXPECT_TRUE(iset.Empty()); EXPECT_EQ(0u, iset.Size()); iset.Add(100, 200); EXPECT_FALSE(iset.Empty()); EXPECT_EQ(1u, iset.Size()); iset.Add(100, 150); iset.Add(150, 200); iset.Add(130, 170); iset.Add(90, 150); iset.Add(170, 220); iset.Add(300, 400); iset.Add(250, 450); EXPECT_FALSE(iset.Empty()); EXPECT_EQ(2u, iset.Size()); EXPECT_TRUE(Check(iset, 2, 90, 220, 250, 450)); iset.Clear(); iset.Add(100, 200); iset.Add(200, 300); EXPECT_FALSE(iset.Empty()); EXPECT_EQ(1u, iset.Size()); EXPECT_TRUE(Check(iset, 1, 100, 300)); iset.Clear(); QuicIntervalSet<int> iset_add; iset.Add(100, 200); iset.Add(100, 150); iset.Add(150, 200); iset.Add(130, 170); iset_add.Add(90, 150); iset_add.Add(170, 220); iset_add.Add(300, 400); iset_add.Add(250, 450); iset.Union(iset_add); EXPECT_FALSE(iset.Empty()); EXPECT_EQ(2u, iset.Size()); EXPECT_TRUE(Check(iset, 2, 90, 220, 250, 450)); { std::vector<QuicInterval<int>> expected(iset.begin(), iset.end()); std::vector<QuicInterval<int>> actual1; std::copy(iset.begin(), iset.end(), back_inserter(actual1)); ASSERT_EQ(expected.size(), actual1.size()); std::vector<QuicInterval<int>> actual2; std::copy(iset.begin(), iset.end(), back_inserter(actual2)); ASSERT_EQ(expected.size(), actual2.size()); for (size_t i = 0; i < expected.size(); i++) { EXPECT_EQ(expected[i].min(), actual1[i].min()); EXPECT_EQ(expected[i].max(), actual1[i].max()); EXPECT_EQ(expected[i].min(), actual2[i].min()); EXPECT_EQ(expected[i].max(), actual2[i].max()); } EXPECT_THAT(std::vector<QuicInterval<int>>(iset.rbegin(), iset.rend()), ElementsAreArray(expected.rbegin(), expected.rend())); } TestNotContainsAndFind(iset, 89); TestContainsAndFind(iset, 90); TestContainsAndFind(iset, 120); TestContainsAndFind(iset, 219); TestNotContainsAndFind(iset, 220); TestNotContainsAndFind(iset, 235); TestNotContainsAndFind(iset, 249); TestContainsAndFind(iset, 250); TestContainsAndFind(iset, 300); TestContainsAndFind(iset, 449); TestNotContainsAndFind(iset, 450); TestNotContainsAndFind(iset, 451); TestNotContainsAndFind(iset, 50, 60); TestNotContainsAndFind(iset, 50, 90); TestNotContainsAndFind(iset, 50, 200); TestNotContainsAndFind(iset, 90, 90); TestContainsAndFind(iset, 90, 200); TestContainsAndFind(iset, 100, 200); TestContainsAndFind(iset, 100, 220); TestNotContainsAndFind(iset, 100, 221); TestNotContainsAndFind(iset, 220, 220); TestNotContainsAndFind(iset, 240, 300); TestContainsAndFind(iset, 250, 300); TestContainsAndFind(iset, 260, 300); TestContainsAndFind(iset, 300, 450); TestNotContainsAndFind(iset, 300, 451); QuicIntervalSet<int> iset_contains; iset_contains.Add(50, 90); EXPECT_FALSE(iset.Contains(iset_contains)); iset_contains.Clear(); iset_contains.Add(90, 200); EXPECT_TRUE(iset.Contains(iset_contains)); iset_contains.Add(100, 200); EXPECT_TRUE(iset.Contains(iset_contains)); iset_contains.Add(100, 220); EXPECT_TRUE(iset.Contains(iset_contains)); iset_contains.Add(250, 300); EXPECT_TRUE(iset.Contains(iset_contains)); iset_contains.Add(300, 450); EXPECT_TRUE(iset.Contains(iset_contains)); iset_contains.Add(300, 451); EXPECT_FALSE(iset.Contains(iset_contains)); EXPECT_FALSE(iset.Contains(QuicInterval<int>())); EXPECT_FALSE(iset.Contains(QuicIntervalSet<int>())); QuicIntervalSet<int> i2({{220, 230}}); EXPECT_FALSE(iset.Contains(i2)); } TEST_F(QuicIntervalSetTest, QuicIntervalSetContainsEmpty) { const QuicIntervalSet<int> empty; const QuicIntervalSet<int> other_empty; const QuicIntervalSet<int> non_empty({{10, 20}, {40, 50}}); EXPECT_FALSE(empty.Contains(empty)); EXPECT_FALSE(empty.Contains(other_empty)); EXPECT_FALSE(empty.Contains(non_empty)); EXPECT_FALSE(non_empty.Contains(empty)); } TEST_F(QuicIntervalSetTest, Equality) { QuicIntervalSet<int> is_copy = is; EXPECT_EQ(is, is); EXPECT_EQ(is, is_copy); EXPECT_NE(is, other); EXPECT_NE(is, QuicIntervalSet<int>()); EXPECT_EQ(QuicIntervalSet<int>(), QuicIntervalSet<int>()); } TEST_F(QuicIntervalSetTest, LowerAndUpperBound) { QuicIntervalSet<int> intervals; intervals.Add(10, 20); intervals.Add(30, 40); EXPECT_EQ(intervals.LowerBound(5)->min(), 10); EXPECT_EQ(intervals.LowerBound(10)->min(), 10); EXPECT_EQ(intervals.LowerBound(15)->min(), 10); EXPECT_EQ(intervals.LowerBound(20)->min(), 30); EXPECT_EQ(intervals.LowerBound(25)->min(), 30); EXPECT_EQ(intervals.LowerBound(30)->min(), 30); EXPECT_EQ(intervals.LowerBound(35)->min(), 30); EXPECT_EQ(intervals.LowerBound(40), intervals.end()); EXPECT_EQ(intervals.LowerBound(50), intervals.end()); EXPECT_EQ(intervals.UpperBound(5)->min(), 10); EXPECT_EQ(intervals.UpperBound(10)->min(), 30); EXPECT_EQ(intervals.UpperBound(15)->min(), 30); EXPECT_EQ(intervals.UpperBound(20)->min(), 30); EXPECT_EQ(intervals.UpperBound(25)->min(), 30); EXPECT_EQ(intervals.UpperBound(30), intervals.end()); EXPECT_EQ(intervals.UpperBound(35), intervals.end()); EXPECT_EQ(intervals.UpperBound(40), intervals.end()); EXPECT_EQ(intervals.UpperBound(50), intervals.end()); } TEST_F(QuicIntervalSetTest, SpanningInterval) { { QuicIntervalSet<int> iset; const QuicInterval<int>& ival = iset.SpanningInterval(); EXPECT_TRUE(ival.Empty()); } { QuicIntervalSet<int> iset; iset.Add(100, 200); const QuicInterval<int>& ival = iset.SpanningInterval(); EXPECT_EQ(100, ival.min()); EXPECT_EQ(200, ival.max()); } { const QuicInterval<int>& ival = is.SpanningInterval(); EXPECT_EQ(100, ival.min()); EXPECT_EQ(2200, ival.max()); } { const QuicInterval<int>& ival = other.SpanningInterval(); EXPECT_EQ(50, ival.min()); EXPECT_EQ(2270, ival.max()); } } TEST_F(QuicIntervalSetTest, QuicIntervalSetUnion) { is.Union(other); EXPECT_TRUE(Check(is, 12, 50, 70, 100, 200, 300, 400, 470, 600, 650, 670, 700, 830, 870, 1000, 1100, 1230, 1270, 1830, 1900, 2000, 2100, 2200, 2250, 2270)); } TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersection) { EXPECT_TRUE(is.Intersects(other)); EXPECT_TRUE(other.Intersects(is)); is.Intersection(other); EXPECT_TRUE(Check(is, 7, 350, 360, 370, 380, 500, 530, 770, 800, 1300, 1400, 1500, 1600, 1700, 1800)); EXPECT_TRUE(is.Intersects(other)); EXPECT_TRUE(other.Intersects(is)); } TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionBothEmpty) { QuicIntervalSet<std::string> mine, theirs; EXPECT_FALSE(mine.Intersects(theirs)); EXPECT_FALSE(theirs.Intersects(mine)); mine.Intersection(theirs); EXPECT_TRUE(mine.Empty()); EXPECT_FALSE(mine.Intersects(theirs)); EXPECT_FALSE(theirs.Intersects(mine)); } TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionEmptyMine) { QuicIntervalSet<std::string> mine; QuicIntervalSet<std::string> theirs("a", "b"); EXPECT_FALSE(mine.Intersects(theirs)); EXPECT_FALSE(theirs.Intersects(mine)); mine.Intersection(theirs); EXPECT_TRUE(mine.Empty()); EXPECT_FALSE(mine.Intersects(theirs)); EXPECT_FALSE(theirs.Intersects(mine)); } TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionEmptyTheirs) { QuicIntervalSet<std::string> mine("a", "b"); QuicIntervalSet<std::string> theirs; EXPECT_FALSE(mine.Intersects(theirs)); EXPECT_FALSE(theirs.Intersects(mine)); mine.Intersection(theirs); EXPECT_TRUE(mine.Empty()); EXPECT_FALSE(mine.Intersects(theirs)); EXPECT_FALSE(theirs.Intersects(mine)); } TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionTheirsBeforeMine) { QuicIntervalSet<std::string> mine("y", "z"); QuicIntervalSet<std::string> theirs; theirs.Add("a", "b"); theirs.Add("c", "d"); EXPECT_FALSE(mine.Intersects(theirs)); EXPECT_FALSE(theirs.Intersects(mine)); mine.Intersection(theirs); EXPECT_TRUE(mine.Empty()); EXPECT_FALSE(mine.Intersects(theirs)); EXPECT_FALSE(theirs.Intersects(mine)); } TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionMineBeforeTheirs) { QuicIntervalSet<std::string> mine; mine.Add("a", "b"); mine.Add("c", "d"); QuicIntervalSet<std::string> theirs("y", "z"); EXPECT_FALSE(mine.Intersects(theirs)); EXPECT_FALSE(theirs.Intersects(mine)); mine.Intersection(theirs); EXPECT_TRUE(mine.Empty()); EXPECT_FALSE(mine.Intersects(theirs)); EXPECT_FALSE(theirs.Intersects(mine)); } TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionTheirsBeforeMineInt64Singletons) { QuicIntervalSet<int64_t> mine({{10, 15}}); QuicIntervalSet<int64_t> theirs({{-20, -5}}); EXPECT_FALSE(mine.Intersects(theirs)); EXPECT_FALSE(theirs.Intersects(mine)); mine.Intersection(theirs); EXPECT_TRUE(mine.Empty()); EXPECT_FALSE(mine.Intersects(theirs)); EXPECT_FALSE(theirs.Intersects(mine)); } TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionMineBeforeTheirsIntSingletons) { QuicIntervalSet<int> mine({{10, 15}}); QuicIntervalSet<int> theirs({{90, 95}}); EXPECT_FALSE(mine.Intersects(theirs)); EXPECT_FALSE(theirs.Intersects(mine)); mine.Intersection(theirs); EXPECT_TRUE(mine.Empty()); EXPECT_FALSE(mine.Intersects(theirs)); EXPECT_FALSE(theirs.Intersects(mine)); } TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionTheirsBetweenMine) { QuicIntervalSet<int64_t> mine({{0, 5}, {40, 50}}); QuicIntervalSet<int64_t> theirs({{10, 15}}); EXPECT_FALSE(mine.Intersects(theirs)); EXPECT_FALSE(theirs.Intersects(mine)); mine.Intersection(theirs); EXPECT_TRUE(mine.Empty()); EXPECT_FALSE(mine.Intersects(theirs)); EXPECT_FALSE(theirs.Intersects(mine)); } TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionMineBetweenTheirs) { QuicIntervalSet<int> mine({{20, 25}}); QuicIntervalSet<int> theirs({{10, 15}, {30, 32}}); EXPECT_FALSE(mine.Intersects(theirs)); EXPECT_FALSE(theirs.Intersects(mine)); mine.Intersection(theirs); EXPECT_TRUE(mine.Empty()); EXPECT_FALSE(mine.Intersects(theirs)); EXPECT_FALSE(theirs.Intersects(mine)); } TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionAlternatingIntervals) { QuicIntervalSet<int> mine, theirs; mine.Add(10, 20); mine.Add(40, 50); mine.Add(60, 70); theirs.Add(25, 39); theirs.Add(55, 59); theirs.Add(75, 79); EXPECT_FALSE(mine.Intersects(theirs)); EXPECT_FALSE(theirs.Intersects(mine)); mine.Intersection(theirs); EXPECT_TRUE(mine.Empty()); EXPECT_FALSE(mine.Intersects(theirs)); EXPECT_FALSE(theirs.Intersects(mine)); } TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionAdjacentAlternatingNonIntersectingIntervals) { const QuicIntervalSet<int> x1({{0, 10}}); const QuicIntervalSet<int> y1({{-50, 0}, {10, 95}}); QuicIntervalSet<int> result1 = x1; result1.Intersection(y1); EXPECT_TRUE(result1.Empty()) << result1; const QuicIntervalSet<int16_t> x2({{0, 10}, {20, 30}, {40, 90}}); const QuicIntervalSet<int16_t> y2( {{-50, -40}, {-2, 0}, {10, 20}, {32, 40}, {90, 95}}); QuicIntervalSet<int16_t> result2 = x2; result2.Intersection(y2); EXPECT_TRUE(result2.Empty()) << result2; const QuicIntervalSet<int64_t> x3({{-1, 5}, {5, 10}}); const QuicIntervalSet<int64_t> y3({{-10, -1}, {10, 95}}); QuicIntervalSet<int64_t> result3 = x3; result3.Intersection(y3); EXPECT_TRUE(result3.Empty()) << result3; } TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionAlternatingIntersectingIntervals) { const QuicIntervalSet<int> x1({{0, 10}}); const QuicIntervalSet<int> y1({{-50, 1}, {9, 95}}); const QuicIntervalSet<int> expected_result1({{0, 1}, {9, 10}}); QuicIntervalSet<int> result1 = x1; result1.Intersection(y1); EXPECT_EQ(result1, expected_result1); const QuicIntervalSet<int16_t> x2({{0, 10}, {20, 30}, {40, 90}}); const QuicIntervalSet<int16_t> y2( {{-50, -40}, {-2, 2}, {9, 21}, {32, 41}, {85, 95}}); const QuicIntervalSet<int16_t> expected_result2( {{0, 2}, {9, 10}, {20, 21}, {40, 41}, {85, 90}}); QuicIntervalSet<int16_t> result2 = x2; result2.Intersection(y2); EXPECT_EQ(result2, expected_result2); const QuicIntervalSet<int64_t> x3({{-1, 5}, {5, 10}}); const QuicIntervalSet<int64_t> y3({{-10, 3}, {4, 95}}); const QuicIntervalSet<int64_t> expected_result3({{-1, 3}, {4, 10}}); QuicIntervalSet<int64_t> result3 = x3; result3.Intersection(y3); EXPECT_EQ(result3, expected_result3); } TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionIdentical) { QuicIntervalSet<int> copy(is); EXPECT_TRUE(copy.Intersects(is)); EXPECT_TRUE(is.Intersects(copy)); is.Intersection(copy); EXPECT_EQ(copy, is); } TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionSuperset) { QuicIntervalSet<int> mine(-1, 10000); EXPECT_TRUE(mine.Intersects(is)); EXPECT_TRUE(is.Intersects(mine)); mine.Intersection(is); EXPECT_EQ(is, mine); } TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionSubset) { QuicIntervalSet<int> copy(is); QuicIntervalSet<int> theirs(-1, 10000); EXPECT_TRUE(copy.Intersects(theirs)); EXPECT_TRUE(theirs.Intersects(copy)); is.Intersection(theirs); EXPECT_EQ(copy, is); } TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionLargeSet) { QuicIntervalSet<int> mine, theirs; for (int i = 0; i < 1000; i += 10) { mine.Add(i, i + 9); } theirs.Add(500, 520); theirs.Add(535, 545); theirs.Add(801, 809); EXPECT_TRUE(mine.Intersects(theirs)); EXPECT_TRUE(theirs.Intersects(mine)); mine.Intersection(theirs); EXPECT_TRUE(Check(mine, 5, 500, 509, 510, 519, 535, 539, 540, 545, 801, 809)); EXPECT_TRUE(mine.Intersects(theirs)); EXPECT_TRUE(theirs.Intersects(mine)); } TEST_F(QuicIntervalSetTest, QuicIntervalSetDifference) { is.Difference(other); EXPECT_TRUE(Check(is, 10, 100, 200, 300, 350, 360, 370, 380, 400, 530, 600, 700, 770, 900, 1000, 1100, 1200, 1900, 2000, 2100, 2200)); QuicIntervalSet<int> copy = is; is.Difference(copy); EXPECT_TRUE(is.Empty()); } TEST_F(QuicIntervalSetTest, QuicIntervalSetDifferenceSingleBounds) { std::vector<QuicInterval<int>> ivals(other.begin(), other.end()); for (const QuicInterval<int>& ival : ivals) { is.Difference(ival.min(), ival.max()); } EXPECT_TRUE(Check(is, 10, 100, 200, 300, 350, 360, 370, 380, 400, 530, 600, 700, 770, 900, 1000, 1100, 1200, 1900, 2000, 2100, 2200)); } TEST_F(QuicIntervalSetTest, QuicIntervalSetDifferenceSingleInterval) { std::vector<QuicInterval<int>> ivals(other.begin(), other.end()); for (const QuicInterval<int>& ival : ivals) { is.Difference(ival); } EXPECT_TRUE(Check(is, 10, 100, 200, 300, 350, 360, 370, 380, 400, 530, 600, 700, 770, 900, 1000, 1100, 1200, 1900, 2000, 2100, 2200)); } TEST_F(QuicIntervalSetTest, QuicIntervalSetDifferenceAlternatingIntervals) { QuicIntervalSet<int> mine, theirs; mine.Add(10, 20); mine.Add(40, 50); mine.Add(60, 70); theirs.Add(25, 39); theirs.Add(55, 59); theirs.Add(75, 79); mine.Difference(theirs); EXPECT_TRUE(Check(mine, 3, 10, 20, 40, 50, 60, 70)); } TEST_F(QuicIntervalSetTest, QuicIntervalSetDifferenceEmptyMine) { QuicIntervalSet<std::string> mine, theirs; theirs.Add("a", "b"); mine.Difference(theirs); EXPECT_TRUE(mine.Empty()); } TEST_F(QuicIntervalSetTest, QuicIntervalSetDifferenceEmptyTheirs) { QuicIntervalSet<std::string> mine, theirs; mine.Add("a", "b"); mine.Difference(theirs); EXPECT_EQ(1u, mine.Size()); EXPECT_EQ("a", mine.begin()->min()); EXPECT_EQ("b", mine.begin()->max()); } TEST_F(QuicIntervalSetTest, QuicIntervalSetDifferenceTheirsBeforeMine) { QuicIntervalSet<std::string> mine, theirs; mine.Add("y", "z"); theirs.Add("a", "b"); mine.Difference(theirs); EXPECT_EQ(1u, mine.Size()); EXPECT_EQ("y", mine.begin()->min()); EXPECT_EQ("z", mine.begin()->max()); } TEST_F(QuicIntervalSetTest, QuicIntervalSetDifferenceMineBeforeTheirs) { QuicIntervalSet<std::string> mine, theirs; mine.Add("a", "b"); theirs.Add("y", "z"); mine.Difference(theirs); EXPECT_EQ(1u, mine.Size()); EXPECT_EQ("a", mine.begin()->min()); EXPECT_EQ("b", mine.begin()->max()); } TEST_F(QuicIntervalSetTest, QuicIntervalSetDifferenceIdentical) { QuicIntervalSet<std::string> mine; mine.Add("a", "b"); mine.Add("c", "d"); QuicIntervalSet<std::string> theirs(mine); mine.Difference(theirs); EXPECT_TRUE(mine.Empty()); } TEST_F(QuicIntervalSetTest, EmptyComplement) { QuicIntervalSet<int> iset; iset.Complement(100, 200); EXPECT_TRUE(Check(iset, 1, 100, 200)); } TEST(QuicIntervalSetMultipleCompactionTest, OuterCovering) { QuicIntervalSet<int> iset; iset.Add(100, 150); iset.Add(200, 250); iset.Add(300, 350); iset.Add(400, 450); EXPECT_TRUE(Check(iset, 4, 100, 150, 200, 250, 300, 350, 400, 450)); iset.Add(0, 500); EXPECT_TRUE(Check(iset, 1, 0, 500)); } TEST(QuicIntervalSetMultipleCompactionTest, InnerCovering) { QuicIntervalSet<int> iset; iset.Add(100, 150); iset.Add(200, 250); iset.Add(300, 350); iset.Add(400, 450); EXPECT_TRUE(Check(iset, 4, 100, 150, 200, 250, 300, 350, 400, 450)); iset.Add(125, 425); EXPECT_TRUE(Check(iset, 1, 100, 450)); } TEST(QuicIntervalSetMultipleCompactionTest, LeftCovering) { QuicIntervalSet<int> iset; iset.Add(100, 150); iset.Add(200, 250); iset.Add(300, 350); iset.Add(400, 450); EXPECT_TRUE(Check(iset, 4, 100, 150, 200, 250, 300, 350, 400, 450)); iset.Add(125, 500); EXPECT_TRUE(Check(iset, 1, 100, 500)); } TEST(QuicIntervalSetMultipleCompactionTest, RightCovering) { QuicIntervalSet<int> iset; iset.Add(100, 150); iset.Add(200, 250); iset.Add(300, 350); iset.Add(400, 450); EXPECT_TRUE(Check(iset, 4, 100, 150, 200, 250, 300, 350, 400, 450)); iset.Add(0, 425); EXPECT_TRUE(Check(iset, 1, 0, 450)); } static bool CheckOneComplement(int add_min, int add_max, int comp_min, int comp_max, int count, ...) { QuicIntervalSet<int> iset; iset.Add(add_min, add_max); iset.Complement(comp_min, comp_max); bool result = true; va_list ap; va_start(ap, count); if (!VA_Check(iset, count, ap)) { result = false; } va_end(ap); return result; } TEST_F(QuicIntervalSetTest, SingleIntervalComplement) { EXPECT_TRUE(CheckOneComplement(0, 10, 50, 150, 1, 50, 150)); EXPECT_TRUE(CheckOneComplement(50, 150, 0, 100, 1, 0, 50)); EXPECT_TRUE(CheckOneComplement(50, 150, 50, 150, 0)); EXPECT_TRUE(CheckOneComplement(50, 500, 100, 300, 0)); EXPECT_TRUE(CheckOneComplement(50, 500, 0, 800, 2, 0, 50, 500, 800)); EXPECT_TRUE(CheckOneComplement(50, 150, 100, 300, 1, 150, 300)); EXPECT_TRUE(CheckOneComplement(50, 150, 200, 300, 1, 200, 300)); } static bool CheckComplement(const QuicIntervalSet<int>& iset, int comp_min, int comp_max, int count, ...) { QuicIntervalSet<int> iset_copy = iset; iset_copy.Complement(comp_min, comp_max); bool result = true; va_list ap; va_start(ap, count); if (!VA_Check(iset_copy, count, ap)) { result = false; } va_end(ap); return result; } TEST_F(QuicIntervalSetTest, MultiIntervalComplement) { QuicIntervalSet<int> iset; iset.Add(100, 200); iset.Add(300, 400); iset.Add(500, 600); EXPECT_TRUE(CheckComplement(iset, 0, 50, 1, 0, 50)); EXPECT_TRUE(CheckComplement(iset, 0, 200, 1, 0, 100)); EXPECT_TRUE(CheckComplement(iset, 0, 220, 2, 0, 100, 200, 220)); EXPECT_TRUE(CheckComplement(iset, 100, 600, 2, 200, 300, 400, 500)); EXPECT_TRUE(CheckComplement(iset, 300, 400, 0)); EXPECT_TRUE(CheckComplement(iset, 250, 400, 1, 250, 300)); EXPECT_TRUE(CheckComplement(iset, 300, 450, 1, 400, 450)); EXPECT_TRUE(CheckComplement(iset, 250, 450, 2, 250, 300, 400, 450)); EXPECT_TRUE( CheckComplement(iset, 0, 700, 4, 0, 100, 200, 300, 400, 500, 600, 700)); EXPECT_TRUE(CheckComplement(iset, 400, 700, 2, 400, 500, 600, 700)); EXPECT_TRUE(CheckComplement(iset, 350, 700, 2, 400, 500, 600, 700)); EXPECT_TRUE(CheckComplement(iset, 700, 800, 1, 700, 800)); } TEST_F(QuicIntervalSetTest, ToString) { QuicIntervalSet<int> iset; iset.Add(300, 400); iset.Add(100, 200); iset.Add(500, 600); EXPECT_TRUE(!iset.ToString().empty()); QUIC_VLOG(2) << iset; EXPECT_EQ("{ [100, 200) [300, 400) [500, 600) }", iset.ToString()); EXPECT_EQ("{ [1, 2) }", QuicIntervalSet<int>(1, 2).ToString()); EXPECT_EQ("{ }", QuicIntervalSet<int>().ToString()); } TEST_F(QuicIntervalSetTest, ConstructionDiscardsEmptyInterval) { EXPECT_TRUE(QuicIntervalSet<int>(QuicInterval<int>(2, 2)).Empty()); EXPECT_TRUE(QuicIntervalSet<int>(2, 2).Empty()); EXPECT_FALSE(QuicIntervalSet<int>(QuicInterval<int>(2, 3)).Empty()); EXPECT_FALSE(QuicIntervalSet<int>(2, 3).Empty()); } TEST_F(QuicIntervalSetTest, Swap) { QuicIntervalSet<int> a, b; a.Add(300, 400); b.Add(100, 200); b.Add(500, 600); std::swap(a, b); EXPECT_TRUE(Check(a, 2, 100, 200, 500, 600)); EXPECT_TRUE(Check(b, 1, 300, 400)); std::swap(a, b); EXPECT_TRUE(Check(a, 1, 300, 400)); EXPECT_TRUE(Check(b, 2, 100, 200, 500, 600)); } TEST_F(QuicIntervalSetTest, OutputReturnsOstreamRef) { std::stringstream ss; const QuicIntervalSet<int> v(QuicInterval<int>(1, 2)); auto return_type_is_a_ref = [](std::ostream&) {}; return_type_is_a_ref(ss << v); } struct NotOstreamable { bool operator<(const NotOstreamable&) const { return false; } bool operator>(const NotOstreamable&) const { return false; } bool operator!=(const NotOstreamable&) const { return false; } bool operator>=(const NotOstreamable&) const { return true; } bool operator<=(const NotOstreamable&) const { return true; } bool operator==(const NotOstreamable&) const { return true; } }; TEST_F(QuicIntervalSetTest, IntervalOfTypeWithNoOstreamSupport) { const NotOstreamable v; const QuicIntervalSet<NotOstreamable> d(QuicInterval<NotOstreamable>(v, v)); EXPECT_EQ(d, d); } class QuicIntervalSetInitTest : public QuicTest { protected: const std::vector<QuicInterval<int>> intervals_{{0, 1}, {2, 4}}; }; TEST_F(QuicIntervalSetInitTest, DirectInit) { std::initializer_list<QuicInterval<int>> il = {{0, 1}, {2, 3}, {3, 4}}; QuicIntervalSet<int> s(il); EXPECT_THAT(s, ElementsAreArray(intervals_)); } TEST_F(QuicIntervalSetInitTest, CopyInit) { std::initializer_list<QuicInterval<int>> il = {{0, 1}, {2, 3}, {3, 4}}; QuicIntervalSet<int> s = il; EXPECT_THAT(s, ElementsAreArray(intervals_)); } TEST_F(QuicIntervalSetInitTest, AssignIterPair) { QuicIntervalSet<int> s(0, 1000); s.assign(intervals_.begin(), intervals_.end()); EXPECT_THAT(s, ElementsAreArray(intervals_)); } TEST_F(QuicIntervalSetInitTest, AssignInitList) { QuicIntervalSet<int> s(0, 1000); s.assign({{0, 1}, {2, 3}, {3, 4}}); EXPECT_THAT(s, ElementsAreArray(intervals_)); } TEST_F(QuicIntervalSetInitTest, AssignmentInitList) { std::initializer_list<QuicInterval<int>> il = {{0, 1}, {2, 3}, {3, 4}}; QuicIntervalSet<int> s; s = il; EXPECT_THAT(s, ElementsAreArray(intervals_)); } TEST_F(QuicIntervalSetInitTest, BracedInitThenBracedAssign) { QuicIntervalSet<int> s{{0, 1}, {2, 3}, {3, 4}}; s = {{0, 1}, {2, 4}}; EXPECT_THAT(s, ElementsAreArray(intervals_)); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_interval_set.h
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_interval_set_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
57f098d9-da3c-4ce4-a0e2-5b4d75de77da
cpp
google/quiche
quic_hkdf
quiche/quic/core/crypto/quic_hkdf.cc
quiche/quic/core/crypto/quic_hkdf_test.cc
#include "quiche/quic/core/crypto/quic_hkdf.h" #include <memory> #include "absl/strings/string_view.h" #include "openssl/digest.h" #include "openssl/hkdf.h" #include "quiche/quic/platform/api/quic_logging.h" namespace quic { const size_t kSHA256HashLength = 32; const size_t kMaxKeyMaterialSize = kSHA256HashLength * 256; QuicHKDF::QuicHKDF(absl::string_view secret, absl::string_view salt, absl::string_view info, size_t key_bytes_to_generate, size_t iv_bytes_to_generate, size_t subkey_secret_bytes_to_generate) : QuicHKDF(secret, salt, info, key_bytes_to_generate, key_bytes_to_generate, iv_bytes_to_generate, iv_bytes_to_generate, subkey_secret_bytes_to_generate) {} QuicHKDF::QuicHKDF(absl::string_view secret, absl::string_view salt, absl::string_view info, size_t client_key_bytes_to_generate, size_t server_key_bytes_to_generate, size_t client_iv_bytes_to_generate, size_t server_iv_bytes_to_generate, size_t subkey_secret_bytes_to_generate) { const size_t material_length = 2 * client_key_bytes_to_generate + client_iv_bytes_to_generate + 2 * server_key_bytes_to_generate + server_iv_bytes_to_generate + subkey_secret_bytes_to_generate; QUICHE_DCHECK_LT(material_length, kMaxKeyMaterialSize); output_.resize(material_length); if (output_.empty()) { return; } ::HKDF(&output_[0], output_.size(), ::EVP_sha256(), reinterpret_cast<const uint8_t*>(secret.data()), secret.size(), reinterpret_cast<const uint8_t*>(salt.data()), salt.size(), reinterpret_cast<const uint8_t*>(info.data()), info.size()); size_t j = 0; if (client_key_bytes_to_generate) { client_write_key_ = absl::string_view(reinterpret_cast<char*>(&output_[j]), client_key_bytes_to_generate); j += client_key_bytes_to_generate; } if (server_key_bytes_to_generate) { server_write_key_ = absl::string_view(reinterpret_cast<char*>(&output_[j]), server_key_bytes_to_generate); j += server_key_bytes_to_generate; } if (client_iv_bytes_to_generate) { client_write_iv_ = absl::string_view(reinterpret_cast<char*>(&output_[j]), client_iv_bytes_to_generate); j += client_iv_bytes_to_generate; } if (server_iv_bytes_to_generate) { server_write_iv_ = absl::string_view(reinterpret_cast<char*>(&output_[j]), server_iv_bytes_to_generate); j += server_iv_bytes_to_generate; } if (subkey_secret_bytes_to_generate) { subkey_secret_ = absl::string_view(reinterpret_cast<char*>(&output_[j]), subkey_secret_bytes_to_generate); j += subkey_secret_bytes_to_generate; } if (client_key_bytes_to_generate) { client_hp_key_ = absl::string_view(reinterpret_cast<char*>(&output_[j]), client_key_bytes_to_generate); j += client_key_bytes_to_generate; } if (server_key_bytes_to_generate) { server_hp_key_ = absl::string_view(reinterpret_cast<char*>(&output_[j]), server_key_bytes_to_generate); j += server_key_bytes_to_generate; } } QuicHKDF::~QuicHKDF() {} }
#include "quiche/quic/core/crypto/quic_hkdf.h" #include <string> #include "absl/base/macros.h" #include "absl/strings/escaping.h" #include "quiche/quic/platform/api/quic_test.h" namespace quic { namespace test { namespace { struct HKDFInput { const char* key_hex; const char* salt_hex; const char* info_hex; const char* output_hex; }; static const HKDFInput kHKDFInputs[] = { { "0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b", "000102030405060708090a0b0c", "f0f1f2f3f4f5f6f7f8f9", "3cb25f25faacd57a90434f64d0362f2a2d2d0a90cf1a5a4c5db02d56ecc4c5bf340072" "08d5" "b887185865", }, { "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122" "2324" "25262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f4041424344454647" "4849" "4a4b4c4d4e4f", "606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f808182" "8384" "85868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9fa0a1a2a3a4a5a6a7" "a8a9" "aaabacadaeaf", "b0b1b2b3b4b5b6b7b8b9babbbcbdbebfc0c1c2c3c4c5c6c7c8c9cacbcccdcecfd0d1d2" "d3d4" "d5d6d7d8d9dadbdcdddedfe0e1e2e3e4e5e6e7e8e9eaebecedeeeff0f1f2f3f4f5f6f7" "f8f9" "fafbfcfdfeff", "b11e398dc80327a1c8e7f78c596a49344f012eda2d4efad8a050cc4c19afa97c59045a" "99ca" "c7827271cb41c65e590e09da3275600c2f09b8367793a9aca3db71cc30c58179ec3e87" "c14c" "01d5c1f3434f1d87", }, { "0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b", "", "", "8da4e775a563c18f715f802a063c5a31b8a11f5c5ee1879ec3454e5f3c738d2d9d2013" "95fa" "a4b61a96c8", }, }; class QuicHKDFTest : public QuicTest {}; TEST_F(QuicHKDFTest, HKDF) { for (size_t i = 0; i < ABSL_ARRAYSIZE(kHKDFInputs); i++) { const HKDFInput& test(kHKDFInputs[i]); SCOPED_TRACE(i); std::string key; std::string salt; std::string info; std::string expected; ASSERT_TRUE(absl::HexStringToBytes(test.key_hex, &key)); ASSERT_TRUE(absl::HexStringToBytes(test.salt_hex, &salt)); ASSERT_TRUE(absl::HexStringToBytes(test.info_hex, &info)); ASSERT_TRUE(absl::HexStringToBytes(test.output_hex, &expected)); QuicHKDF hkdf(key, salt, info, expected.size(), 0, 0); ASSERT_EQ(expected.size(), hkdf.client_write_key().size()); EXPECT_EQ(0, memcmp(expected.data(), hkdf.client_write_key().data(), expected.size())); } } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/quic_hkdf.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/quic_hkdf_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
71e6de22-7854-442a-a961-5d2995db949f
cpp
abseil/abseil-cpp
periodic_sampler
absl/profiling/internal/periodic_sampler.cc
absl/profiling/internal/periodic_sampler_test.cc
#include "absl/profiling/internal/periodic_sampler.h" #include <atomic> #include "absl/profiling/internal/exponential_biased.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace profiling_internal { int64_t PeriodicSamplerBase::GetExponentialBiased(int period) noexcept { return rng_.GetStride(period); } bool PeriodicSamplerBase::SubtleConfirmSample() noexcept { int current_period = period(); if (ABSL_PREDICT_FALSE(current_period < 2)) { stride_ = 0; return current_period == 1; } if (ABSL_PREDICT_FALSE(stride_ == 1)) { stride_ = static_cast<uint64_t>(-GetExponentialBiased(current_period)); if (static_cast<int64_t>(stride_) < -1) { ++stride_; return false; } } stride_ = static_cast<uint64_t>(-GetExponentialBiased(current_period)); return true; } } ABSL_NAMESPACE_END }
#include "absl/profiling/internal/periodic_sampler.h" #include <thread> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/attributes.h" #include "absl/base/macros.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace profiling_internal { namespace { using testing::Eq; using testing::Return; using testing::StrictMock; class MockPeriodicSampler : public PeriodicSamplerBase { public: virtual ~MockPeriodicSampler() = default; MOCK_METHOD(int, period, (), (const, noexcept)); MOCK_METHOD(int64_t, GetExponentialBiased, (int), (noexcept)); }; TEST(PeriodicSamplerBaseTest, Sample) { StrictMock<MockPeriodicSampler> sampler; EXPECT_CALL(sampler, period()).Times(3).WillRepeatedly(Return(16)); EXPECT_CALL(sampler, GetExponentialBiased(16)) .WillOnce(Return(2)) .WillOnce(Return(3)) .WillOnce(Return(4)); EXPECT_FALSE(sampler.Sample()); EXPECT_TRUE(sampler.Sample()); EXPECT_FALSE(sampler.Sample()); EXPECT_FALSE(sampler.Sample()); EXPECT_TRUE(sampler.Sample()); EXPECT_FALSE(sampler.Sample()); EXPECT_FALSE(sampler.Sample()); EXPECT_FALSE(sampler.Sample()); } TEST(PeriodicSamplerBaseTest, ImmediatelySample) { StrictMock<MockPeriodicSampler> sampler; EXPECT_CALL(sampler, period()).Times(2).WillRepeatedly(Return(16)); EXPECT_CALL(sampler, GetExponentialBiased(16)) .WillOnce(Return(1)) .WillOnce(Return(2)) .WillOnce(Return(3)); EXPECT_TRUE(sampler.Sample()); EXPECT_FALSE(sampler.Sample()); EXPECT_TRUE(sampler.Sample()); EXPECT_FALSE(sampler.Sample()); EXPECT_FALSE(sampler.Sample()); } TEST(PeriodicSamplerBaseTest, Disabled) { StrictMock<MockPeriodicSampler> sampler; EXPECT_CALL(sampler, period()).Times(3).WillRepeatedly(Return(0)); EXPECT_FALSE(sampler.Sample()); EXPECT_FALSE(sampler.Sample()); EXPECT_FALSE(sampler.Sample()); } TEST(PeriodicSamplerBaseTest, AlwaysOn) { StrictMock<MockPeriodicSampler> sampler; EXPECT_CALL(sampler, period()).Times(3).WillRepeatedly(Return(1)); EXPECT_TRUE(sampler.Sample()); EXPECT_TRUE(sampler.Sample()); EXPECT_TRUE(sampler.Sample()); } TEST(PeriodicSamplerBaseTest, Disable) { StrictMock<MockPeriodicSampler> sampler; EXPECT_CALL(sampler, period()).WillOnce(Return(16)); EXPECT_CALL(sampler, GetExponentialBiased(16)).WillOnce(Return(3)); EXPECT_FALSE(sampler.Sample()); EXPECT_FALSE(sampler.Sample()); EXPECT_CALL(sampler, period()).Times(2).WillRepeatedly(Return(0)); EXPECT_FALSE(sampler.Sample()); EXPECT_FALSE(sampler.Sample()); } TEST(PeriodicSamplerBaseTest, Enable) { StrictMock<MockPeriodicSampler> sampler; EXPECT_CALL(sampler, period()).WillOnce(Return(0)); EXPECT_FALSE(sampler.Sample()); EXPECT_CALL(sampler, period()).Times(2).WillRepeatedly(Return(16)); EXPECT_CALL(sampler, GetExponentialBiased(16)) .Times(2) .WillRepeatedly(Return(3)); EXPECT_FALSE(sampler.Sample()); EXPECT_FALSE(sampler.Sample()); EXPECT_TRUE(sampler.Sample()); EXPECT_FALSE(sampler.Sample()); EXPECT_FALSE(sampler.Sample()); } TEST(PeriodicSamplerTest, ConstructConstInit) { struct Tag {}; ABSL_CONST_INIT static PeriodicSampler<Tag> sampler; (void)sampler; } TEST(PeriodicSamplerTest, DefaultPeriod0) { struct Tag {}; PeriodicSampler<Tag> sampler; EXPECT_THAT(sampler.period(), Eq(0)); } TEST(PeriodicSamplerTest, DefaultPeriod) { struct Tag {}; PeriodicSampler<Tag, 100> sampler; EXPECT_THAT(sampler.period(), Eq(100)); } TEST(PeriodicSamplerTest, SetGlobalPeriod) { struct Tag1 {}; struct Tag2 {}; PeriodicSampler<Tag1, 25> sampler1; PeriodicSampler<Tag2, 50> sampler2; EXPECT_THAT(sampler1.period(), Eq(25)); EXPECT_THAT(sampler2.period(), Eq(50)); std::thread thread([] { PeriodicSampler<Tag1, 25> sampler1; PeriodicSampler<Tag2, 50> sampler2; EXPECT_THAT(sampler1.period(), Eq(25)); EXPECT_THAT(sampler2.period(), Eq(50)); sampler1.SetGlobalPeriod(10); sampler2.SetGlobalPeriod(20); }); thread.join(); EXPECT_THAT(sampler1.period(), Eq(10)); EXPECT_THAT(sampler2.period(), Eq(20)); } } } ABSL_NAMESPACE_END }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/profiling/internal/periodic_sampler.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/profiling/internal/periodic_sampler_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
0699d932-314d-46cb-9ab3-3f3a267a4ea0
cpp
tensorflow/tensorflow
quantized_mul_op
tensorflow/core/kernels/quantized_mul_op.cc
tensorflow/core/kernels/quantized_mul_op_test.cc
#define EIGEN_USE_THREADS #if defined(__ARM_NEON__) || defined(__ARM_NEON) #define USE_NEON #include <arm_neon.h> #endif #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/kernels/meta_support.h" #include "tensorflow/core/kernels/quantization_utils.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/util/bcast.h" namespace tensorflow { namespace { template <class T, class Toutput> void ScalarMultiply(OpKernelContext* context, const T* full_input, int32_t full_input_offset, int64_t num_elements, T scalar_input, int32_t scalar_input_offset, Toutput* output) { const int32_t scalar_minus_offset = static_cast<int32>(scalar_input) - scalar_input_offset; for (int i = 0; i < num_elements; ++i) { output[i] = (static_cast<int32>(full_input[i]) - full_input_offset) * scalar_minus_offset; } } #ifdef USE_NEON template <> void ScalarMultiply<quint8, qint32>(OpKernelContext* context, const quint8* full_input, int32 full_input_offset, int64 num_elements, quint8 scalar_input, int32 scalar_input_offset, qint32* output) { const int16 scalar_minus_offset = static_cast<int16>(scalar_input) - scalar_input_offset; const int16x4_t scalar_minus_offset_16x4 = vmov_n_s16(scalar_minus_offset); const uint8x8_t full_input_offset_8x8 = vmov_n_u8(full_input_offset); int i; for (i = 0; i < (num_elements - 15); i += 16) { const uint8* full_input_ptr = &(full_input->value) + i; const uint8x16_t full_input_8x16 = vld1q_u8(full_input_ptr); const uint8x8_t full_input_high_8x8 = vget_high_u8(full_input_8x16); const uint8x8_t full_input_low_8x8 = vget_low_u8(full_input_8x16); const int16x8_t full_input_minus_offset_high_16x8 = vreinterpretq_s16_u16( vsubl_u8(full_input_high_8x8, full_input_offset_8x8)); const int16x8_t full_input_minus_offset_low_16x8 = vreinterpretq_s16_u16( vsubl_u8(full_input_low_8x8, full_input_offset_8x8)); const int16x4_t x_high_high_16x4 = vget_high_s16(full_input_minus_offset_high_16x8); const int16x4_t x_high_low_16x4 = vget_low_s16(full_input_minus_offset_high_16x8); const int16x4_t x_low_high_16x4 = vget_high_s16(full_input_minus_offset_low_16x8); const int16x4_t x_low_low_16x4 = vget_low_s16(full_input_minus_offset_low_16x8); const int32x4_t z_high_high_32x4 = vmull_s16(x_high_high_16x4, scalar_minus_offset_16x4); const int32x4_t z_high_low_32x4 = vmull_s16(x_high_low_16x4, scalar_minus_offset_16x4); const int32x4_t z_low_high_32x4 = vmull_s16(x_low_high_16x4, scalar_minus_offset_16x4); const int32x4_t z_low_low_32x4 = vmull_s16(x_low_low_16x4, scalar_minus_offset_16x4); int32* output_ptr = &(output->value) + i; vst1q_s32(output_ptr + 0, z_low_low_32x4); vst1q_s32(output_ptr + 4, z_low_high_32x4); vst1q_s32(output_ptr + 8, z_high_low_32x4); vst1q_s32(output_ptr + 12, z_high_high_32x4); } for (; i < num_elements; ++i) { output[i] = (static_cast<int32>(full_input[i]) - full_input_offset) * scalar_minus_offset; } } #endif template <class T, class Toutput> void VectorMultiply(OpKernelContext* context, const T* x_data, int32_t offset_x, const T* y_data, int32_t offset_y, int64_t num_elements, Toutput* output) { for (int i = 0; i < num_elements; ++i) { output[i] = (static_cast<int32>(x_data[i]) - offset_x) * (static_cast<int32>(y_data[i]) - offset_y); } } #ifdef USE_NEON template <> void VectorMultiply<quint8, qint32>(OpKernelContext* context, const quint8* x_data, int32 offset_x, const quint8* y_data, int32 offset_y, int64 num_elements, qint32* output) { const uint8x8_t offset_x_8x8 = vmov_n_u8(offset_x); const uint8x8_t offset_y_8x8 = vmov_n_u8(offset_y); int i; for (i = 0; i < (num_elements - 15); i += 16) { const uint8* x_data_ptr = &(x_data->value) + i; const uint8x16_t x_8x16 = vld1q_u8(x_data_ptr); const uint8* y_data_ptr = &(y_data->value) + i; const uint8x16_t y_8x16 = vld1q_u8(y_data_ptr); const uint8x8_t x_high_8x8 = vget_high_u8(x_8x16); const uint8x8_t x_low_8x8 = vget_low_u8(x_8x16); const uint8x8_t y_high_8x8 = vget_high_u8(y_8x16); const uint8x8_t y_low_8x8 = vget_low_u8(y_8x16); const int16x8_t x_minus_offset_high_16x8 = vreinterpretq_s16_u16(vsubl_u8(x_high_8x8, offset_x_8x8)); const int16x8_t x_minus_offset_low_16x8 = vreinterpretq_s16_u16(vsubl_u8(x_low_8x8, offset_x_8x8)); const int16x8_t y_minus_offset_high_16x8 = vreinterpretq_s16_u16(vsubl_u8(y_high_8x8, offset_y_8x8)); const int16x8_t y_minus_offset_low_16x8 = vreinterpretq_s16_u16(vsubl_u8(y_low_8x8, offset_y_8x8)); const int16x4_t x_high_high_16x4 = vget_high_s16(x_minus_offset_high_16x8); const int16x4_t x_high_low_16x4 = vget_low_s16(x_minus_offset_high_16x8); const int16x4_t x_low_high_16x4 = vget_high_s16(x_minus_offset_low_16x8); const int16x4_t x_low_low_16x4 = vget_low_s16(x_minus_offset_low_16x8); const int16x4_t y_high_high_16x4 = vget_high_s16(y_minus_offset_high_16x8); const int16x4_t y_high_low_16x4 = vget_low_s16(y_minus_offset_high_16x8); const int16x4_t y_low_high_16x4 = vget_high_s16(y_minus_offset_low_16x8); const int16x4_t y_low_low_16x4 = vget_low_s16(y_minus_offset_low_16x8); const int32x4_t z_high_high_32x4 = vmull_s16(x_high_high_16x4, y_high_high_16x4); const int32x4_t z_high_low_32x4 = vmull_s16(x_high_low_16x4, y_high_low_16x4); const int32x4_t z_low_high_32x4 = vmull_s16(x_low_high_16x4, y_low_high_16x4); const int32x4_t z_low_low_32x4 = vmull_s16(x_low_low_16x4, y_low_low_16x4); int32* output_ptr = &(output->value) + i; vst1q_s32(output_ptr + 0, z_low_low_32x4); vst1q_s32(output_ptr + 4, z_low_high_32x4); vst1q_s32(output_ptr + 8, z_high_low_32x4); vst1q_s32(output_ptr + 12, z_high_high_32x4); } for (; i < num_elements; ++i) { output[i] = (static_cast<int32>(x_data[i]) - offset_x) * (static_cast<int32>(y_data[i]) - offset_y); } } #endif template <class T, class Toutput> void VectorTensorMultiply(const T* vector_data, int32_t vector_offset, int64_t vector_num_elements, const T* tensor_data, int32_t tensor_offset, int64_t tensor_num_elements, Toutput* output) { for (int i = 0; i < tensor_num_elements; ++i) { const int64_t vector_i = i % vector_num_elements; output[i] = (static_cast<int32>(vector_data[vector_i]) - vector_offset) * (static_cast<int32>(tensor_data[i]) - tensor_offset); } } #ifdef USE_NEON template <> void VectorTensorMultiply<quint8, qint32>( const quint8* vector_data, int32 vector_offset, int64 vector_num_elements, const quint8* tensor_data, int32 tensor_offset, int64 tensor_num_elements, qint32* output) { const uint8x8_t offset_x_8x8 = vmov_n_u8(vector_offset); const uint8x8_t offset_y_8x8 = vmov_n_u8(tensor_offset); CHECK_EQ(0, tensor_num_elements % vector_num_elements); for (int base_i = 0; base_i < tensor_num_elements; base_i += vector_num_elements) { int i = base_i; const int end_i = base_i + vector_num_elements; int vector_i; for (vector_i = 0; vector_i < (vector_num_elements - 15); vector_i += 16, i += 16) { const uint8* x_data_ptr = &(vector_data->value) + vector_i; const uint8x16_t x_8x16 = vld1q_u8(x_data_ptr); const uint8* y_data_ptr = &(tensor_data->value) + i; const uint8x16_t y_8x16 = vld1q_u8(y_data_ptr); const uint8x8_t x_high_8x8 = vget_high_u8(x_8x16); const uint8x8_t x_low_8x8 = vget_low_u8(x_8x16); const uint8x8_t y_high_8x8 = vget_high_u8(y_8x16); const uint8x8_t y_low_8x8 = vget_low_u8(y_8x16); const int16x8_t x_minus_offset_high_16x8 = vreinterpretq_s16_u16(vsubl_u8(x_high_8x8, offset_x_8x8)); const int16x8_t x_minus_offset_low_16x8 = vreinterpretq_s16_u16(vsubl_u8(x_low_8x8, offset_x_8x8)); const int16x8_t y_minus_offset_high_16x8 = vreinterpretq_s16_u16(vsubl_u8(y_high_8x8, offset_y_8x8)); const int16x8_t y_minus_offset_low_16x8 = vreinterpretq_s16_u16(vsubl_u8(y_low_8x8, offset_y_8x8)); const int16x4_t x_high_high_16x4 = vget_high_s16(x_minus_offset_high_16x8); const int16x4_t x_high_low_16x4 = vget_low_s16(x_minus_offset_high_16x8); const int16x4_t x_low_high_16x4 = vget_high_s16(x_minus_offset_low_16x8); const int16x4_t x_low_low_16x4 = vget_low_s16(x_minus_offset_low_16x8); const int16x4_t y_high_high_16x4 = vget_high_s16(y_minus_offset_high_16x8); const int16x4_t y_high_low_16x4 = vget_low_s16(y_minus_offset_high_16x8); const int16x4_t y_low_high_16x4 = vget_high_s16(y_minus_offset_low_16x8); const int16x4_t y_low_low_16x4 = vget_low_s16(y_minus_offset_low_16x8); const int32x4_t z_high_high_32x4 = vmull_s16(x_high_high_16x4, y_high_high_16x4); const int32x4_t z_high_low_32x4 = vmull_s16(x_high_low_16x4, y_high_low_16x4); const int32x4_t z_low_high_32x4 = vmull_s16(x_low_high_16x4, y_low_high_16x4); const int32x4_t z_low_low_32x4 = vmull_s16(x_low_low_16x4, y_low_low_16x4); int32* output_ptr = &(output->value) + i; vst1q_s32(output_ptr + 0, z_low_low_32x4); vst1q_s32(output_ptr + 4, z_low_high_32x4); vst1q_s32(output_ptr + 8, z_high_low_32x4); vst1q_s32(output_ptr + 12, z_high_high_32x4); } for (; i < end_i; ++i, ++vector_i) { output[i] = (static_cast<int32>(vector_data[vector_i]) - vector_offset) * (static_cast<int32>(tensor_data[i]) - tensor_offset); } } } #endif } template <class T, class Toutput> class QuantizedMulOp : public OpKernel { public: explicit QuantizedMulOp(OpKernelConstruction* context) : OpKernel(context) {} void Compute(OpKernelContext* context) override { const Tensor& x = context->input(0); const Tensor& y = context->input(1); auto& min_x_tensor = context->input(2); OP_REQUIRES(context, TensorShapeUtils::IsScalar(min_x_tensor.shape()), errors::InvalidArgument("min_x must be a scalar")); const float min_x = min_x_tensor.flat<float>()(0); auto& max_x_tensor = context->input(3); OP_REQUIRES(context, TensorShapeUtils::IsScalar(max_x_tensor.shape()), errors::InvalidArgument("max_x must be a scalar")); const float max_x = max_x_tensor.flat<float>()(0); auto& min_y_tensor = context->input(4); OP_REQUIRES(context, TensorShapeUtils::IsScalar(min_y_tensor.shape()), errors::InvalidArgument("min_y must be a scalar")); const float min_y = min_y_tensor.flat<float>()(0); auto& max_y_tensor = context->input(5); OP_REQUIRES(context, TensorShapeUtils::IsScalar(max_y_tensor.shape()), errors::InvalidArgument("max_y must be a scalar")); const float max_y = max_y_tensor.flat<float>()(0); BCast bcast(BCast::FromShape(x.shape()), BCast::FromShape(y.shape())); if (!bcast.IsValid()) { context->SetStatus(errors::InvalidArgument( "Incompatible shapes: ", x.shape().DebugString(), " vs. ", y.shape().DebugString())); return; } Tensor* z; OP_REQUIRES_OK(context, context->allocate_output( 0, BCast::ToShape(bcast.output_shape()), &z)); OP_REQUIRES(context, (max_x > min_x), errors::InvalidArgument("max_x must be larger than min_a.")); OP_REQUIRES(context, (max_y > min_y), errors::InvalidArgument("max_x must be larger than min_b.")); const int32_t offset_x = FloatToQuantizedUnclamped<T>(0.0f, min_x, max_x); const int32_t offset_y = FloatToQuantizedUnclamped<T>(0.0f, min_y, max_y); const T* x_data = x.flat<T>().data(); const T* y_data = y.flat<T>().data(); Toutput* z_data = z->flat<Toutput>().data(); const int ndims = bcast.x_reshape().size(); if (ndims <= 1) { if (x.NumElements() == 1) { ScalarMultiply<T, Toutput>(context, y_data, offset_y, y.NumElements(), x_data[0], offset_x, z_data); } else if (y.NumElements() == 1) { ScalarMultiply<T, Toutput>(context, x_data, offset_x, x.NumElements(), y_data[0], offset_y, z_data); } else { VectorMultiply<T, Toutput>(context, x_data, offset_x, y_data, offset_y, x.NumElements(), z_data); } } else if (ndims == 2) { const T* vector_data; int64_t vector_num_elements; int32_t vector_offset; const T* tensor_data; int64_t tensor_num_elements; int32_t tensor_offset; if (x.NumElements() < y.NumElements()) { vector_data = x_data; vector_num_elements = x.NumElements(); vector_offset = offset_x; tensor_data = y_data; tensor_num_elements = y.NumElements(); tensor_offset = offset_y; } else { vector_data = y_data; vector_num_elements = y.NumElements(); vector_offset = offset_y; tensor_data = x_data; tensor_num_elements = x.NumElements(); tensor_offset = offset_x; } if (vector_num_elements == 0) { context->SetStatus( errors::InvalidArgument("vector must have at least 1 element")); return; } VectorTensorMultiply<T, Toutput>( vector_data, vector_offset, vector_num_elements, tensor_data, tensor_offset, tensor_num_elements, z_data); } else { LOG(INFO) << "ndims=" << ndims; LOG(INFO) << "bcast.x_reshape()=" << TensorShape(bcast.x_reshape()).DebugString(); LOG(INFO) << "bcast.y_reshape()=" << TensorShape(bcast.y_reshape()).DebugString(); LOG(INFO) << "bcast.x_bcast()=" << TensorShape(bcast.x_bcast()).DebugString(); LOG(INFO) << "bcast.y_bcast()=" << TensorShape(bcast.y_bcast()).DebugString(); context->SetStatus(errors::Unimplemented( "Broadcast between ", context->input(0).shape().DebugString(), " and ", context->input(1).shape().DebugString(), " is not supported yet.")); return; } float min_z_value; float max_z_value; QuantizationRangeForMultiplication<T, T, Toutput>( min_x, max_x, min_y, max_y, &min_z_value, &max_z_value); Tensor* z_min = nullptr; OP_REQUIRES_OK(context, context->allocate_output(1, {}, &z_min)); z_min->flat<float>()(0) = min_z_value; Tensor* z_max = nullptr; OP_REQUIRES_OK(context, context->allocate_output(2, {}, &z_max)); z_max->flat<float>()(0) = max_z_value; } }; REGISTER_KERNEL_BUILDER(Name("QuantizedMul") .Device(DEVICE_CPU) .TypeConstraint<quint8>("T1") .TypeConstraint<quint8>("T2") .TypeConstraint<qint32>("Toutput"), QuantizedMulOp<quint8, qint32>); }
#define EIGEN_USE_THREADS #include <functional> #include <memory> #include <vector> #include "tensorflow/cc/client/client_session.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/math_ops.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/kernels/quantization_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace ops { namespace { void TestMul(const std::vector<int64_t>& x_shape, const std::vector<float>& x_values, float x_min_value, float x_max_value, const std::vector<int64_t>& y_shape, const std::vector<float>& y_values, float y_min_value, float y_max_value, const std::vector<int64_t>& expected_shape, const std::vector<float>& expected_values, double tolerance) { Scope root = Scope::NewRootScope(); Tensor x_float_tensor(DT_FLOAT, TensorShape(x_shape)); test::FillValues<float>(&x_float_tensor, x_values); Tensor x_quantized_tensor(DT_QUINT8, x_float_tensor.shape()); FloatTensorToQuantizedInPlace<quint8>(x_float_tensor, x_min_value, x_max_value, &x_quantized_tensor); Output x = Const(root.WithOpName("x"), Input::Initializer(x_quantized_tensor)); Output x_min = Const(root.WithOpName("x_min"), x_min_value); Output x_max = Const(root.WithOpName("x_max"), x_max_value); Tensor y_float_tensor(DT_FLOAT, TensorShape(y_shape)); test::FillValues<float>(&y_float_tensor, y_values); Tensor y_quantized_tensor(DT_QUINT8, y_float_tensor.shape()); FloatTensorToQuantizedInPlace<quint8>(y_float_tensor, y_min_value, y_max_value, &y_quantized_tensor); Output y = Const(root.WithOpName("y"), Input::Initializer(y_quantized_tensor)); Output y_min = Const(root.WithOpName("y_min"), y_min_value); Output y_max = Const(root.WithOpName("y_max"), y_max_value); QuantizedMul mul = QuantizedMul(root.WithOpName("mul"), x, y, x_min, x_max, y_min, y_max); TF_EXPECT_OK(root.status()); ClientSession session(root); std::vector<Tensor> outputs; TF_EXPECT_OK(session.Run(ClientSession::FeedType(), {mul.z, mul.min_z, mul.max_z}, &outputs)); const Tensor& z_quantized = outputs[0]; const float z_min = outputs[1].flat<float>()(0); const float z_max = outputs[2].flat<float>()(0); Tensor z_float = QuantizedTensorToFloat<qint32>(z_quantized, z_min, z_max); Tensor expected_z_float(DT_FLOAT, TensorShape(expected_shape)); test::FillValues<float>(&expected_z_float, expected_values); test::ExpectTensorNear<float>(expected_z_float, z_float, tolerance); } void TestMulShape(const std::vector<int64_t>& x_shape, const std::vector<int64_t>& y_shape) { const size_t x_num_elements = TensorShape(x_shape).num_elements(); std::vector<float> x_values(x_num_elements); for (int i = 0; i < x_num_elements; ++i) { x_values[i] = i % 256; } const float x_min_value = 0.0f; const float x_max_value = 256.0f; const size_t y_num_elements = TensorShape(y_shape).num_elements(); std::vector<float> y_values(y_num_elements); for (int i = 0; i < y_num_elements; ++i) { y_values[i] = ((i + 23) % 123) - 50; } const float y_min_value = -150.0f; const float y_max_value = 150.0f; Scope root = Scope::NewRootScope(); Tensor x_float_tensor(DT_FLOAT, TensorShape(x_shape)); test::FillValues<float>(&x_float_tensor, x_values); Output x = Const(root.WithOpName("x"), Input::Initializer(x_float_tensor)); Tensor y_float_tensor(DT_FLOAT, TensorShape(y_shape)); test::FillValues<float>(&y_float_tensor, y_values); Output y = Const(root.WithOpName("y"), Input::Initializer(y_float_tensor)); Mul mul = Mul(root.WithOpName("mul"), x, y); TF_EXPECT_OK(root.status()); ClientSession session(root); std::vector<Tensor> outputs; TF_EXPECT_OK(session.Run(ClientSession::FeedType(), {mul.z}, &outputs)); const Tensor& expected_values_tensor = outputs[0]; const float* expected_values_data = expected_values_tensor.flat<float>().data(); std::vector<float> expected_values( expected_values_data, expected_values_data + expected_values_tensor.NumElements()); std::vector<int64_t> expected_shape; for (const int64_t dim : expected_values_tensor.shape().dim_sizes()) { expected_shape.push_back(dim); } TestMul(x_shape, x_values, x_min_value, x_max_value, y_shape, y_values, y_min_value, y_max_value, expected_shape, expected_values, 256.0); } void TimeMul(const std::vector<int64_t>& x_shape, const std::vector<int64_t>& y_shape, int64_t iterations) { TestMulShape(x_shape, y_shape); Scope root = Scope::NewRootScope(); Tensor x_quantized_tensor(DT_QUINT8, TensorShape(x_shape)); Output placeholder = Placeholder(root.WithOpName("placeholder"), DT_QUINT8); Output x_min = Const(root.WithOpName("x_min"), 0.0f); Output x_max = Const(root.WithOpName("x_max"), 1.0f); Tensor y_quantized_tensor(DT_QUINT8, TensorShape(y_shape)); Output y = Const(root.WithOpName("y"), Input::Initializer(y_quantized_tensor)); Output y_min = Const(root.WithOpName("y_min"), 0.0f); Output y_max = Const(root.WithOpName("y_max"), 1.0f); QuantizedMul mul = QuantizedMul(root.WithOpName("mul"), placeholder, y, x_min, x_max, y_min, y_max); TF_EXPECT_OK(root.status()); ClientSession session(root); std::vector<Tensor> outputs; int64_t total_duration = 0; for (int i = 0; i < iterations; ++i) { const int64_t start_time = Env::Default()->NowMicros(); TF_EXPECT_OK(session.Run({{placeholder, x_quantized_tensor}}, {mul.z, mul.min_z, mul.max_z}, &outputs)); const int64_t end_time = Env::Default()->NowMicros(); total_duration += end_time - start_time; } const int64_t one_run_duration = total_duration / iterations; const int64_t num_ops = outputs[0].NumElements(); const double million_ops_per_second = (iterations * num_ops) / static_cast<double>(total_duration); LOG(INFO) << "TimeMul: " << TensorShape(x_shape).DebugString() << " * " << TensorShape(y_shape).DebugString() << ": iterations=" << iterations << ", MOps/s=" << million_ops_per_second << ", one_run_duration=" << one_run_duration << ", total_duration=" << total_duration; } void TestManualScalar() { TestMul( {10}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f}, 0.0f, 10.0f, {1}, {10.0f}, -100.0f, 100.0f, {10}, {10.0f, 20.0f, 30.0f, 40.0f, 50.0f, 60.0f, 70.0f, 80.0f, 90.0f, 100.0f}, 3.0f); TestMul( {1}, {10.0f}, -100.0f, 100.0f, {10}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f}, 0.0f, 10.0f, {10}, {10.0f, 20.0f, 30.0f, 40.0f, 50.0f, 60.0f, 70.0f, 80.0f, 90.0f, 100.0f}, 3.0f); } void TestScalar() { TestMulShape({100}, {1}); TestMulShape({1}, {100}); } void TestManualVector() { TestMul({10}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f}, 0.0f, 10.0f, {10}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f}, 0.0f, 10.0f, {10}, {1.0f, 4.0f, 9.0f, 16.0f, 25.0f, 36.0f, 49.0f, 64.0f, 81.0f, 100.0f}, 3.0f); } void TestVector() { TestMulShape({100}, {100}); } void TestManualVectorTimesTensor() { TestMul( {10}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f}, 0.0f, 10.0f, {2, 10}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 16.0f, 17.0f, 18.0f, 19.0f, 20.0f}, 0.0f, 20.0f, {2, 10}, {1.0f, 4.0f, 9.0f, 16.0f, 25.0f, 36.0f, 49.0f, 64.0f, 81.0f, 100.0f, 11.0f, 24.0f, 39.0f, 56.0f, 75.0f, 96.0f, 119.0f, 144.0f, 171.0f, 200.0f}, 3.0f); TestMul({2, 10}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 16.0f, 17.0f, 18.0f, 19.0f, 20.0f}, 0.0f, 20.0f, {10}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f}, 0.0f, 10.0f, {2, 10}, {1.0f, 4.0f, 9.0f, 16.0f, 25.0f, 36.0f, 49.0f, 64.0f, 81.0f, 100.0f, 11.0f, 24.0f, 39.0f, 56.0f, 75.0f, 96.0f, 119.0f, 144.0f, 171.0f, 200.0f}, 3.0f); TestMul( {5, 2}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f}, 0.0f, 10.0f, {2, 5, 2}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 16.0f, 17.0f, 18.0f, 19.0f, 20.0f}, 0.0f, 20.0f, {2, 5, 2}, {1.0f, 4.0f, 9.0f, 16.0f, 25.0f, 36.0f, 49.0f, 64.0f, 81.0f, 100.0f, 11.0f, 24.0f, 39.0f, 56.0f, 75.0f, 96.0f, 119.0f, 144.0f, 171.0f, 200.0f}, 3.0f); } void TestVectorTimesTensor() { TestMulShape({100}, {2, 100}); TestMulShape({2, 100}, {100}); TestMulShape({5, 2}, {2, 5, 2}); } void BenchmarkTensorScalar() { TimeMul({200}, {1}, 10000); TimeMul({10000}, {1}, 1000); TimeMul({1000000}, {1}, 100); TimeMul({10000000}, {1}, 100); } void BenchmarkVector() { TimeMul({200}, {200}, 10000); TimeMul({10000}, {10000}, 1000); TimeMul({1000000}, {1000000}, 100); TimeMul({10000000}, {10000000}, 100); } void BenchmarkVectorTimesTensor() { TimeMul({10, 20}, {20}, 10000); TimeMul({10, 1000}, {1000}, 1000); TimeMul({1000, 1000}, {1000}, 100); TimeMul({10000, 1000}, {1000}, 100); TimeMul({100, 100}, {100}, 1000); TimeMul({10000, 100}, {100}, 100); TimeMul({100000, 100}, {100}, 100); } } } } #define RUN_TEST(t) \ TEST(QuantizedAddOpTest, t) { tensorflow::ops::t(); } RUN_TEST(TestManualScalar); RUN_TEST(TestManualVector); RUN_TEST(TestManualVectorTimesTensor); RUN_TEST(TestScalar); RUN_TEST(TestVector); RUN_TEST(TestVectorTimesTensor); #if defined(__ANDROID__) RUN_TEST(BenchmarkTensorScalar); RUN_TEST(BenchmarkVector); RUN_TEST(BenchmarkVectorTimesTensor); #endif int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/quantized_mul_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/quantized_mul_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
df627059-2ef8-47c7-880a-5779a2e8d0a0
cpp
tensorflow/tensorflow
hlo_unstacker
third_party/xla/xla/service/hlo_unstacker.cc
third_party/xla/xla/service/hlo_unstacker_test.cc
#include "xla/service/hlo_unstacker.h" #include <algorithm> #include <cstdint> #include <deque> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/map_util.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/pattern_matcher.h" #include "xla/service/tuple_util.h" #include "xla/service/while_loop_unroller.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { enum class PatternType { DSFusionNoBitcastPattern, DSFusionPattern, NestedDSFusionPattern, Other, }; static std::string PatternTypeToString(PatternType pattern_type) { switch (pattern_type) { case PatternType::DSFusionNoBitcastPattern: return "DSFusionNoBitcastPattern"; case PatternType::DSFusionPattern: return "DSFusionPattern"; case PatternType::NestedDSFusionPattern: return "NestedDSFusionPattern"; case PatternType::Other: return "Other"; } } struct PatternInfo { PatternType type; std::vector<const HloInstruction*> unstacked_instrs; const HloInstruction* instr; Shape unstacked_shape; HloComputation* unstacking_computation; std::string ToString() const { if (unstacking_computation == nullptr) { return absl::StrCat("type: \n\t", PatternTypeToString(type), "\n", "instr: \n\t", instr->name(), "\n", "shape: \n\t", unstacked_shape.ToString(true)); } else { return absl::StrCat("type: \n\t", PatternTypeToString(type), "\n", "instr: \n\t", instr->name(), "\n", "shape: \n\t", unstacked_shape.ToString(true), "\n", "comp: \n", unstacking_computation->name()); } } }; struct UnstackerMetadata { static absl::StatusOr<UnstackerMetadata> Create( HloModule* module, std::function<bool(HloInstruction*)> unfuse_slice) { UnstackerMetadata metadata; TF_ASSIGN_OR_RETURN( bool prepared, WhileLoopUnroller::PrepareModuleForUnrolling(module, {})); if (prepared) { VLOG(3) << "Prepared module: " << module->name() << " for unstacking."; } std::vector<std::pair<HloInstruction*, WhileLoopConfig>> loops = WhileLoopUnroller::GetUnrollableLoops(module, {}, std::nullopt); for (const auto& [instr, while_loop_config] : loops) { metadata.unrollable_loop_bodies[instr->while_body()] = while_loop_config; metadata.bodies[instr->while_body()] = instr; } metadata.unfuse_slice = unfuse_slice; return metadata; } absl::flat_hash_map<HloComputation*, WhileLoopConfig> unrollable_loop_bodies; absl::flat_hash_map<const HloComputation*, HloInstruction*> bodies; std::vector< std::pair<std::function<std::optional<PatternInfo>( const UnstackerMetadata&, const HloInstruction*, int64_t)>, std::function<absl::Status(HloInstruction*, const Shape&)>>> custom_handlers; std::function<bool(HloInstruction*)> unfuse_slice; }; class UnstackerTransformer { public: explicit UnstackerTransformer(const UnstackerMetadata& metadata) : metadata_(metadata) {} std::vector<const HloInstruction*> HandleInstruction( const HloInstruction* instr, int64_t changed_idx) { if (instr->opcode() != HloOpcode::kFusion) { return {}; } VLOG(3) << "HandleInstruction(" << instr->shape().ToString() << instr->name() << ", " << changed_idx << ")"; for (const auto& [custom_pattern, custom_handler] : metadata_.custom_handlers) { std::optional<PatternInfo> stacked_user = custom_pattern(metadata_, instr, changed_idx); if (!stacked_user.has_value()) { continue; } PatternInfo& pattern_info = stacked_user.value(); pattern_type_ = pattern_info.type; VLOG(3) << "PatternInfo:" << "\n" << pattern_info.ToString(); if (pattern_info.unstacking_computation != nullptr && unstacking_computation_ != nullptr) { if (!absl::EqualsIgnoreCase( pattern_info.unstacking_computation->ToString( HloPrintOptions::Fingerprint()), unstacking_computation_->ToString( HloPrintOptions::Fingerprint()))) { VLOG(3) << "Seen multiple unstacking computations, cannot handle: " << "\n previous computations: \n" << unstacking_computation_->ToString( HloPrintOptions::Fingerprint()) << "\n current computations: \n" << pattern_info.unstacking_computation->ToString( HloPrintOptions::Fingerprint()); return {}; } } if (pattern_info.unstacking_computation != nullptr) { unstacking_computation_ = pattern_info.unstacking_computation; } unstacked_shape_ = std::make_unique<Shape>(pattern_info.unstacked_shape); unstacked_instrs_.push_back(instr); std::function<absl::Status()> unstack_wrapper = [&custom_handler = custom_handler, pattern_info]() mutable -> absl::Status { HloInstruction* mutable_dynamic_slicing_fusion = const_cast<HloInstruction*>(pattern_info.instr); return custom_handler(mutable_dynamic_slicing_fusion, pattern_info.unstacked_shape.tuple_shapes(0)); }; body_changes_.push_back(unstack_wrapper); return pattern_info.unstacked_instrs; } return {}; } const UnstackerMetadata& GetMetadata() const { return metadata_; } std::vector<const HloInstruction*>& GetUnstackedInstructions() { return unstacked_instrs_; } const Shape* GetUnstackedShape() const { return unstacked_shape_.get(); } HloComputation* GetUnstackingComputation() const { return unstacking_computation_; } std::vector<std::function<void(const UnstackerTransformer&)>>& GetLoopChanges() { return loop_changes_; } std::vector<std::function<absl::Status()>>& GetBodyChanges() { return body_changes_; } absl::flat_hash_map<HloInstruction*, std::vector<int64_t>>& GetOperandChanges() { return operand_changes_; } void AddOperandChange(HloInstruction* instr, int64_t index) { operand_changes_[instr].push_back(index); } void AddLoopChange( std::function<void(const UnstackerTransformer&)> loop_change) { loop_changes_.push_back(loop_change); } PatternType GetPatternType() const { return pattern_type_; } private: PatternType pattern_type_; const UnstackerMetadata& metadata_; std::unique_ptr<Shape> unstacked_shape_ = nullptr; HloComputation* unstacking_computation_ = nullptr; std::vector<std::function<void(const UnstackerTransformer&)>> loop_changes_; std::vector<std::function<absl::Status()>> body_changes_; absl::flat_hash_map<HloInstruction*, std::vector<int64_t>> operand_changes_; std::vector<const HloInstruction*> unstacked_instrs_; }; bool CanUnstackWhileOperand(const HloInstruction* while_instr, UnstackerTransformer& unstacker, int64_t index); bool UnstackWhileOperandAtIndex( const UnstackerMetadata& metadata, HloInstruction* while_instr, int64_t index, std::vector<const HloInstruction*>& unstacked_instructions); bool PropagateGteShapeChange(HloInstruction* gte, UnstackerTransformer& unstacker) { VLOG(5) << "PropagateGteShapeChange(" << gte->name() << ")"; std::vector<const HloInstruction*> handled_instrs; absl::flat_hash_map<HloInstruction*, int64_t> visited; std::deque<HloInstruction*> worklist; worklist.push_back(gte); visited.insert({gte, gte->tuple_index()}); while (!worklist.empty()) { HloInstruction* changed_instr_to_propagate = worklist.front(); int64_t changed_operand_index = FindOrDie(visited, changed_instr_to_propagate); worklist.pop_front(); for (HloInstruction* user : changed_instr_to_propagate->users()) { if (ContainsKey(visited, user)) { continue; } if (user->opcode() == HloOpcode::kGetTupleElement) { if (user->tuple_index() != changed_operand_index) { continue; } visited.insert({user, changed_operand_index}); worklist.push_back(user); } else if (user->opcode() == HloOpcode::kTuple) { int64_t use_index = user->operand_index(changed_instr_to_propagate); visited.insert({user, {use_index}}); worklist.push_back(user); } else if (user->opcode() == HloOpcode::kWhile) { bool changed_nested_while = CanUnstackWhileOperand(user, unstacker, changed_operand_index); if (!changed_nested_while) { return false; } visited.insert({user, changed_operand_index}); worklist.push_back(user); } else { if (absl::c_find(handled_instrs, user) != handled_instrs.end()) { continue; } if (user->IsCustomCall("DynamicGte") || user->IsCustomCall("DynamicTuple")) { continue; } int64_t use_index = user->operand_index(changed_instr_to_propagate); std::vector<const HloInstruction*> curr_handled_instrs = unstacker.HandleInstruction(user, use_index); if (curr_handled_instrs.empty()) { VLOG(3) << "Custom unstacker not found for " << user->name(); return false; } for (const HloInstruction* instr : curr_handled_instrs) { for (HloInstruction* handled_instr_user : instr->users()) { if (user->shape() == gte->shape()) { visited.insert({handled_instr_user, changed_operand_index}); worklist.push_back(handled_instr_user); } } handled_instrs.push_back(instr); } } } } for (const auto& [instr, index] : visited) { unstacker.AddOperandChange(instr, index); } return true; } bool CanPropagateGteShapeChangesInComputation( const HloComputation* comp, const HloInstruction* operand, UnstackerTransformer& shape_transformer, int64_t idx) { VLOG(3) << "Propagating shape change of index " << idx << " in : " << comp->name(); for (HloInstruction* instr : comp->MakeInstructionPostOrder()) { if (instr->opcode() == HloOpcode::kGetTupleElement && instr->tuple_index() == idx) { if (instr->operand(0) != operand) { continue; } bool can_propagate = PropagateGteShapeChange(instr, shape_transformer); if (!can_propagate) { VLOG(3) << "Failed to propagate shape change for " << instr->name(); return false; } } } VLOG(3) << "Finish propagating shape change of index " << idx << " in: " << comp->name(); return true; } void UnstackWhileInput(const UnstackerTransformer& unstacker, HloInstruction* while_instr, int64_t index) { VLOG(3) << "Unstacking while input: " << while_instr->name() << " at " << index; const Shape* new_shape = unstacker.GetUnstackedShape(); HloComputation* unstacking_computation = unstacker.GetUnstackingComputation(); const Shape& slice_shape = new_shape->tuple_shapes(0); HloInstruction* old_while_input = while_instr->while_init()->mutable_operand(index); if (old_while_input->shape().IsTuple()) { VLOG(3) << "Input is already unstacked: " << old_while_input->name(); return; } std::vector<HloInstruction*> slices; if (old_while_input->IsCustomCall("AllocateBuffer")) { for (int64_t i = 0; i < new_shape->tuple_shapes_size(); ++i) { slices.push_back(while_instr->AddInstruction( HloInstruction::CreateCustomCall(slice_shape, {}, "AllocateBuffer"))); } } else { for (int64_t i = 0; i < new_shape->tuple_shapes_size(); ++i) { HloInstruction* root_instr = unstacking_computation->root_instruction(); HloInstruction* slice = nullptr; if (unstacker.GetPatternType() == PatternType::DSFusionPattern || unstacker.GetPatternType() == PatternType::NestedDSFusionPattern || unstacker.GetPatternType() == PatternType::DSFusionNoBitcastPattern) { HloInstruction* dynamic_slice = nullptr; if (unstacker.GetPatternType() == PatternType::DSFusionPattern || unstacker.GetPatternType() == PatternType::NestedDSFusionPattern) { dynamic_slice = root_instr->mutable_operand(0); } else if (unstacker.GetPatternType() == PatternType::DSFusionNoBitcastPattern) { dynamic_slice = root_instr; } std::vector<int64_t> new_start_indices; new_start_indices.reserve(dynamic_slice->shape().rank()); std::vector<int64_t> new_limit_indices; new_limit_indices.reserve(dynamic_slice->shape().rank()); std::vector<int64_t> new_strides; new_strides.reserve(dynamic_slice->shape().rank()); new_start_indices.push_back(i); new_limit_indices.push_back(i + 1); new_strides.push_back(1); for (int64_t j = 1; j < dynamic_slice->shape().rank(); ++j) { new_start_indices.push_back(0); new_limit_indices.push_back( dynamic_slice->mutable_operand(0)->shape().dimensions(j)); new_strides.push_back(1); } slice = while_instr->AddInstruction(HloInstruction::CreateSlice( dynamic_slice->shape(), old_while_input, new_start_indices, new_limit_indices, new_strides)); } if (slice == nullptr || !unstacker.GetMetadata().unfuse_slice(slice)) { std::vector<HloInstruction*> operands = { old_while_input, while_instr->AddInstruction(MakeScalarConstantWithShape( unstacking_computation->parameter_instruction(1)->shape(), i))}; slice = while_instr->AddInstruction(HloInstruction::CreateFusion( slice_shape, HloInstruction::FusionKind::kLoop, operands, while_instr->GetModule()->AddEmbeddedComputation( unstacking_computation->Clone()), "hoisted")); } slices.push_back(slice); } } HloInstruction* new_operand_element = while_instr->AddInstruction(HloInstruction::CreateTuple(slices)); HloInstruction* new_while_init = TupleUtil::ReplaceTupleWith(new_operand_element, while_instr->while_init(), {index}, false) .value(); CHECK_OK(while_instr->ReplaceOperandWithDifferentShape(0, new_while_init)); } bool CanUnstackWhileOperand(const HloInstruction* while_instr, UnstackerTransformer& unstacker, int64_t index) { VLOG(5) << "ReplaceWhileOperandShape: " << while_instr->name() << " at " << index; bool body_changes_collected = CanPropagateGteShapeChangesInComputation( while_instr->while_body(), while_instr->while_body()->parameter_instruction(0), unstacker, index); if (!body_changes_collected) { return false; } bool condition_changes_collected = CanPropagateGteShapeChangesInComputation( while_instr->while_condition(), while_instr->while_condition()->parameter_instruction(0), unstacker, index); if (!condition_changes_collected) { return false; } bool parent_changes_collected = CanPropagateGteShapeChangesInComputation( while_instr->parent(), while_instr, unstacker, index); if (!parent_changes_collected) { VLOG(3) << "Failed: parent_changes_collected"; return false; } HloInstruction* root_operand = while_instr->while_body()->root_instruction()->mutable_operand(index); if (root_operand == nullptr) { return false; } HloInstruction* gte_operand = nullptr; if (Match(root_operand, match::GetTupleElement(match::Op(&gte_operand)))) { if (Match(gte_operand, match::While())) { VLOG(3) << "Faced a gte originating from loop: " << root_operand->ToString(); bool loop_feeding_root_changes_collected = CanUnstackWhileOperand( root_operand->operand(0), unstacker, root_operand->tuple_index()); if (!loop_feeding_root_changes_collected) { VLOG(3) << "Failed: loop " << root_operand->operand(0)->name() << " output at " << index << " is not unstackable"; return false; } } else if (!Match(gte_operand, match::Parameter().WithParameterNum(0))) { VLOG(3) << "Failed: root operand of while_body at " << index << " is not a parameter"; return false; } } auto loop_change = [=](const UnstackerTransformer& unstacker, HloInstruction* loop, int64_t idx) mutable { Shape old_shape = ShapeUtil::MakeStaticShape( loop->while_body()->parameter_instruction(0)->shape()); ShapeUtil::UpdateTupleShape(*unstacker.GetUnstackedShape(), idx, &old_shape); loop->while_body()->ReplaceParameter( 0, HloInstruction::CreateParameter(0, old_shape, "unstacked")); loop->while_condition()->ReplaceParameter( 0, HloInstruction::CreateParameter(0, old_shape, "unstacked")); CHECK_NE(unstacker.GetUnstackingComputation(), nullptr); UnstackWhileInput(unstacker, loop, idx); *loop->mutable_shape() = old_shape; }; auto loop_change_wrapper = [&loop_change, while_instr, index](const UnstackerTransformer& unstacker) { HloInstruction* mutable_loop = const_cast<HloInstruction*>(while_instr); loop_change(unstacker, mutable_loop, index); }; unstacker.AddLoopChange(loop_change_wrapper); return true; } bool UnstackWhileOperandAtIndex( const UnstackerMetadata& metadata, HloInstruction* while_instr, int64_t index, std::vector<const HloInstruction*>& unstacked_instructions) { UnstackerTransformer unstacker = UnstackerTransformer(metadata); bool can_unstack = CanUnstackWhileOperand(while_instr, unstacker, index); if (!can_unstack) { VLOG(3) << "Unstacking failed for " << while_instr->name() << " at " << index; return false; } if (unstacker.GetUnstackedShape() == nullptr) { VLOG(3) << "Failed: unstacked shape is null"; return false; } if (unstacker.GetUnstackingComputation() == nullptr) { VLOG(3) << "Failed: unstacking computation is null"; return false; } for (auto& [instr, indices] : unstacker.GetOperandChanges()) { switch (instr->opcode()) { case HloOpcode::kGetTupleElement: VLOG(3) << "Changing shape of: " << instr->name(); *instr->mutable_shape() = *unstacker.GetUnstackedShape(); break; case HloOpcode::kTuple: { for (int64_t index : indices) { VLOG(3) << "Changing shape of: " << instr->name() << " at " << index; *instr->mutable_shape()->mutable_tuple_shapes(index) = *unstacker.GetUnstackedShape(); } break; } case HloOpcode::kWhile: for (int64_t index : indices) { VLOG(3) << "Changing shape of: " << instr->name() << " at " << index; ShapeUtil::UpdateTupleShape(*unstacker.GetUnstackedShape(), index, instr->mutable_shape()); } break; default: LOG(FATAL) << "Unsupported opcode: " << instr->name(); } } for (const auto& body_change : unstacker.GetBodyChanges()) { CHECK_OK(body_change()); } for (auto& loop_change : unstacker.GetLoopChanges()) { loop_change(unstacker); } for (const HloInstruction* instr : unstacker.GetUnstackedInstructions()) { unstacked_instructions.push_back(instr); } return true; } Shape MakeUnstackedShapeFromSlice(const Shape& slice_shape, int64_t layers) { std::vector<Shape> shapes; shapes.reserve(layers); for (int64_t i = 0; i < layers; ++i) { shapes.push_back(slice_shape); } return ShapeUtil::MakeTupleShape(shapes); } std::optional<WhileLoopConfig> IsFusionInsideUnrollableLoopWithNumParameter( const UnstackerMetadata& metadata, const HloInstruction* instr, int64_t num_fusion_params) { if (instr->opcode() != HloOpcode::kFusion) { return std::nullopt; } if (instr->fused_parameters().size() != num_fusion_params) { VLOG(3) << "Fusion has different number of parameters"; return std::nullopt; } if (!metadata.unrollable_loop_bodies.contains(instr->parent())) { VLOG(5) << "Fusion not inside unrollable while body, " << instr->name() << " inside " << instr->parent()->name(); return std::nullopt; } return metadata.unrollable_loop_bodies.at(instr->parent()); } HloInstruction* GetMostMajorEffectivelyStaticDynamicSliceInFusion( const UnstackerMetadata& metadata, const HloInstruction* instr, int64_t num_fusion_params, int64_t stacked_operand_idx) { std::optional<WhileLoopConfig> while_instr_config = IsFusionInsideUnrollableLoopWithNumParameter(metadata, instr, num_fusion_params); if (!while_instr_config.has_value()) { return nullptr; } for (HloInstruction* fused_instr : instr->fused_instructions_computation()->MakeInstructionPostOrder()) { std::optional<int64_t> dynamic_index = MatchEffectivelyStaticDynamicSliceInsideLoop( fused_instr, instr->fused_instructions_computation()->parameter_instruction( stacked_operand_idx), while_instr_config.value()); if (dynamic_index.has_value() && dynamic_index.value() == 0) { return fused_instr; } } return nullptr; } HloInstruction* GetMostMajorShapeCoveringDynamicIndexInFusion( const UnstackerMetadata& metadata, const HloInstruction* instr, HloOpcode opcode, int64_t num_fusion_params, int64_t stacked_operand_idx) { std::optional<WhileLoopConfig> while_instr_config = IsFusionInsideUnrollableLoopWithNumParameter(metadata, instr, num_fusion_params); if (!while_instr_config.has_value()) { return nullptr; } for (HloInstruction* fused_instr : instr->fused_instructions_computation()->MakeInstructionPostOrder()) { if (fused_instr->opcode() != opcode) { continue; } std::optional<int64_t> dynamic_index = MatchShapeCoveringDynamicIndexInstruction( fused_instr, instr->fused_instructions_computation()->parameter_instruction( stacked_operand_idx), opcode, while_instr_config.value()); if (dynamic_index.has_value() && dynamic_index.value() == 0) { return fused_instr; } } return nullptr; } std::optional<PatternInfo> GetDSFusionPattern(const UnstackerMetadata& metadata, const HloInstruction* instr, int64_t stacked_operand_idx) { VLOG(3) << "Checking DSFusion"; HloInstruction* shape_covering_instr = GetMostMajorEffectivelyStaticDynamicSliceInFusion(metadata, instr, 2, stacked_operand_idx); if (shape_covering_instr == nullptr) { return std::nullopt; } HloInstruction* bitcast_operand = nullptr; if (Match(instr->fused_instructions_computation()->root_instruction(), match::Bitcast(match::Op(&bitcast_operand)))) { if (bitcast_operand == shape_covering_instr) { PatternInfo pattern_info; pattern_info.type = PatternType::DSFusionPattern; pattern_info.instr = instr; const Shape& slice_shape = shape_covering_instr->shape(); const int64_t num_layers = instr->operand(0)->shape().dimensions(0); pattern_info.unstacked_shape = MakeUnstackedShapeFromSlice(slice_shape, num_layers); pattern_info.unstacking_computation = instr->fused_instructions_computation(); pattern_info.unstacked_instrs.push_back(instr); return pattern_info; } } return std::nullopt; } absl::Status UnstackDSFusionPattern( HloInstruction* mutable_dynamic_slicing_fusion, const Shape& slice_shape) { HloComputation* parent_loop = mutable_dynamic_slicing_fusion->parent(); HloInstruction* stacked = mutable_dynamic_slicing_fusion->mutable_operand(0); HloInstruction* offset = mutable_dynamic_slicing_fusion->mutable_operand(1); HloInstruction* new_operand = parent_loop->AddInstruction(HloInstruction::CreateCustomCall( slice_shape, {stacked, offset}, "DynamicGte")); HloInstruction* bitcast = mutable_dynamic_slicing_fusion->AddInstruction( HloInstruction::CreateBitcast(mutable_dynamic_slicing_fusion->shape(), new_operand)); return mutable_dynamic_slicing_fusion->ReplaceAllUsesWithDifferentShape( bitcast); } std::optional<PatternInfo> GetDSFusionNoBitcastPattern( const UnstackerMetadata& metadata, const HloInstruction* instr, int64_t stacked_operand_idx) { VLOG(3) << "Checking DSFusionNoBitcast"; HloInstruction* shape_covering_instr = GetMostMajorEffectivelyStaticDynamicSliceInFusion(metadata, instr, 2, stacked_operand_idx); if (shape_covering_instr == nullptr) { return std::nullopt; } if (instr->fused_instructions_computation()->root_instruction() != shape_covering_instr) { return std::nullopt; } PatternInfo pattern_info; pattern_info.type = PatternType::DSFusionNoBitcastPattern; pattern_info.instr = instr; const Shape& slice_shape = shape_covering_instr->shape(); const int64_t num_layers = instr->operand(0)->shape().dimensions(0); pattern_info.unstacked_shape = MakeUnstackedShapeFromSlice(slice_shape, num_layers); pattern_info.unstacking_computation = instr->fused_instructions_computation(); pattern_info.unstacked_instrs.push_back(instr); return pattern_info; } absl::Status UnstackDSFusionNoBitcastPattern( HloInstruction* mutable_dynamic_slicing_fusion, const Shape& slice_shape) { HloComputation* parent_loop = mutable_dynamic_slicing_fusion->parent(); HloInstruction* stacked = mutable_dynamic_slicing_fusion->mutable_operand(0); HloInstruction* offset = mutable_dynamic_slicing_fusion->mutable_operand(1); HloInstruction* new_operand = parent_loop->AddInstruction(HloInstruction::CreateCustomCall( slice_shape, {stacked, offset}, "DynamicGte")); return mutable_dynamic_slicing_fusion->ReplaceAllUsesWithDifferentShape( new_operand); } std::optional<PatternInfo> GetDUSFusionPattern( const UnstackerMetadata& metadata, const HloInstruction* instr, int64_t stacked_operand_idx) { VLOG(3) << "Checking DUSFusion"; HloInstruction* shape_covering_instr = GetMostMajorShapeCoveringDynamicIndexInFusion( metadata, instr, HloOpcode::kDynamicUpdateSlice, 3, stacked_operand_idx); if (shape_covering_instr == nullptr) { return std::nullopt; } if (Match(shape_covering_instr->operand(1), match::Bitcast(match::Parameter()))) { if (shape_covering_instr->parent()->root_instruction() == shape_covering_instr) { PatternInfo pattern_info; pattern_info.type = PatternType::Other; pattern_info.instr = instr; pattern_info.unstacked_shape = MakeUnstackedShapeFromSlice( instr->operand(2)->shape(), instr->operand(0)->shape().dimensions(0)); pattern_info.unstacking_computation = nullptr; pattern_info.unstacked_instrs.push_back(instr); return pattern_info; } } return std::nullopt; } absl::Status UnstackDUSFusionPattern( HloInstruction* mutable_dynamic_update_slicing_fusion, const Shape& slice_shape) { HloComputation* parent_loop = mutable_dynamic_update_slicing_fusion->parent(); HloInstruction* stacked = mutable_dynamic_update_slicing_fusion->mutable_operand(0); HloInstruction* offset = mutable_dynamic_update_slicing_fusion->mutable_operand(1); HloInstruction* update = mutable_dynamic_update_slicing_fusion->mutable_operand(2); HloInstruction* new_operand = parent_loop->AddInstruction(HloInstruction::CreateCustomCall( stacked->shape(), {stacked, update, offset}, "DynamicTuple")); for (HloInstruction* user : mutable_dynamic_update_slicing_fusion->users()) { TF_RETURN_IF_ERROR( mutable_dynamic_update_slicing_fusion->ReplaceUseWithDifferentShape( user, new_operand)); } return absl::OkStatus(); } std::optional<PatternInfo> GetDUSFusionWithPadPattern( const UnstackerMetadata& metadata, const HloInstruction* instr, int64_t stacked_operand_idx) { VLOG(3) << "Checking DUSFusionWithPad"; HloInstruction* shape_covering_instr = GetMostMajorShapeCoveringDynamicIndexInFusion( metadata, instr, HloOpcode::kDynamicUpdateSlice, 3, stacked_operand_idx); if (shape_covering_instr == nullptr) { return std::nullopt; } if (Match( shape_covering_instr->operand(1), match::Bitcast(match::Pad(match::Parameter(), match::Constant())))) { if (shape_covering_instr->parent()->root_instruction() == shape_covering_instr) { const HloInstruction* pad_instr = shape_covering_instr->operand(1)->operand(0); PatternInfo pattern_info; pattern_info.type = PatternType::Other; pattern_info.instr = instr; pattern_info.unstacked_shape = MakeUnstackedShapeFromSlice( pad_instr->shape(), shape_covering_instr->operand(0)->shape().dimensions(0)); pattern_info.unstacking_computation = nullptr; pattern_info.unstacked_instrs.push_back(instr); return pattern_info; } } return std::nullopt; } absl::Status UnstackDUSFusionWithPadPattern( HloInstruction* mutable_dynamic_update_slicing_fusion, const Shape& slice_shape) { HloComputation* parent_loop = mutable_dynamic_update_slicing_fusion->parent(); HloComputation* fused_computation = mutable_dynamic_update_slicing_fusion->fused_instructions_computation(); HloInstruction* stacked = mutable_dynamic_update_slicing_fusion->mutable_operand( fused_computation->root_instruction() ->mutable_operand(0) ->parameter_number()); HloInstruction* offset = mutable_dynamic_update_slicing_fusion->mutable_operand( fused_computation->root_instruction() ->mutable_operand(2) ->parameter_number()); HloInstruction* pad_instr = fused_computation->root_instruction() ->mutable_operand(1) ->mutable_operand(0); fused_computation->set_root_instruction(pad_instr, true); *mutable_dynamic_update_slicing_fusion->mutable_shape() = pad_instr->shape(); HloInstruction* new_operand = parent_loop->AddInstruction(HloInstruction::CreateCustomCall( stacked->shape(), {stacked, mutable_dynamic_update_slicing_fusion, offset}, "DynamicTuple")); for (HloInstruction* user : mutable_dynamic_update_slicing_fusion->users()) { if (user != new_operand) { TF_RETURN_IF_ERROR( mutable_dynamic_update_slicing_fusion->ReplaceUseWithDifferentShape( user, new_operand)); } } return absl::OkStatus(); } std::optional<PatternInfo> GetDSFusionWithAddPattern( const UnstackerMetadata& metadata, const HloInstruction* instr, int64_t stacked_operand_idx) { VLOG(3) << "Checking DSFusionWithAdd"; HloInstruction* shape_covering_instr = GetMostMajorShapeCoveringDynamicIndexInFusion( metadata, instr, HloOpcode::kDynamicSlice, 2, stacked_operand_idx); if (shape_covering_instr == nullptr) { return std::nullopt; } HloComputation* fused_computation = instr->fused_instructions_computation(); HloInstruction* fusion_root = fused_computation->root_instruction(); HloInstruction* add_operand; if (Match(fusion_root, match::Reduce(match::Add(match::Op(&add_operand), match::Broadcast(match::Constant())), match::Constant()))) { if (add_operand == shape_covering_instr) { const int64_t num_layers = instr->operand(0)->shape().dimensions(0); PatternInfo pattern_info; pattern_info.type = PatternType::Other; pattern_info.instr = instr; pattern_info.unstacked_shape = MakeUnstackedShapeFromSlice(instr->shape(), num_layers); HloComputation::Builder builder("unstack_add"); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter( 0, fused_computation->parameter_instruction(0)->shape(), "p0")); HloInstruction* p1 = builder.AddInstruction(HloInstruction::CreateParameter( 1, fused_computation->parameter_instruction(1)->shape(), "p1")); HloInstruction* zero = builder.AddInstruction(MakeScalarConstantWithShape(p1->shape(), 0)); std::vector<HloInstruction*> slice_starts; slice_starts.reserve(shape_covering_instr->shape().rank()); slice_starts.push_back(p1); for (int64_t i = 0; i < shape_covering_instr->shape().rank() - 1; i++) { slice_starts.push_back(zero); } HloInstruction* slice = builder.AddInstruction(HloInstruction::CreateDynamicSlice( shape_covering_instr->shape(), p0, slice_starts, shape_covering_instr->dynamic_slice_sizes())); HloInstruction* zero_reduce = builder.AddInstruction(MakeScalarConstantWithShape( ShapeUtil::MakeScalarShape(slice->shape().element_type()), 0)); HloInstruction* reduce = builder.AddInstruction(HloInstruction::CreateReduce( instr->shape(), slice, zero_reduce, fusion_root->dimensions(), fused_computation->root_instruction()->to_apply())); HloComputation* unstack_add = instr->GetModule()->AddEmbeddedComputation(builder.Build()); unstack_add->set_root_instruction(reduce); pattern_info.unstacking_computation = unstack_add; pattern_info.unstacked_instrs.push_back(instr); return pattern_info; } } return std::nullopt; } absl::Status UnstackDSFusionWithAddPattern( HloInstruction* mutable_dynamic_slice_with_add_fusion, const Shape& slice_shape) { HloComputation* parent_loop = mutable_dynamic_slice_with_add_fusion->parent(); HloInstruction* stacked = mutable_dynamic_slice_with_add_fusion->mutable_operand(0); HloInstruction* offset = mutable_dynamic_slice_with_add_fusion->mutable_operand(1); HloInstruction* new_operand = parent_loop->AddInstruction(HloInstruction::CreateCustomCall( slice_shape, {stacked, offset}, "DynamicGte")); HloInstruction* one = parent_loop->AddInstruction(MakeScalarConstantWithShape( ShapeUtil::MakeScalarShape(slice_shape.element_type()), 1)); HloInstruction* broadcast = parent_loop->AddInstruction( HloInstruction::CreateBroadcast(slice_shape, one, {})); HloInstruction* add = mutable_dynamic_slice_with_add_fusion->AddInstruction( HloInstruction::CreateBinary(new_operand->shape(), HloOpcode::kAdd, new_operand, broadcast)); TF_RETURN_IF_ERROR( mutable_dynamic_slice_with_add_fusion->ReplaceAllUsesWith(add)); return absl::OkStatus(); } std::optional<PatternInfo> GetNestedDSFusionPattern( const UnstackerMetadata& metadata, const HloInstruction* instr, int64_t stacked_operand_idx) { if (instr->opcode() != HloOpcode::kFusion) { return std::nullopt; } if (!metadata.unrollable_loop_bodies.contains(instr->parent())) { VLOG(5) << "Instruction not inside unrollable while body, " << instr->name() << " inside " << instr->parent()->name(); return std::nullopt; } WhileLoopConfig while_instr_config = metadata.unrollable_loop_bodies.at(instr->parent()); VLOG(3) << "Checking NestedDSFusionPattern"; HloInstruction* inner_fusion_user = nullptr; for (HloInstruction* fused_instr : instr->fused_instructions_computation()->MakeInstructionPostOrder()) { if (Match(fused_instr, match::Parameter(stacked_operand_idx))) { if (fused_instr->user_count() != 1) { return std::nullopt; } if (Match(fused_instr->users()[0], match::Fusion(match::Op(), match::Op()))) { inner_fusion_user = fused_instr->users()[0]; break; } } } if (inner_fusion_user == nullptr) { return std::nullopt; } for (HloInstruction* inner_fusion_instr : inner_fusion_user->fused_instructions_computation() ->MakeInstructionPostOrder()) { if (!Match(inner_fusion_instr, match::DynamicSlice())) { continue; } std::optional<int64_t> dynamic_index = MatchEffectivelyStaticDynamicSliceInsideLoop( inner_fusion_instr, inner_fusion_user->fused_instructions_computation() ->parameter_instruction(0), while_instr_config); if (dynamic_index.has_value() && dynamic_index.value() == 0) { const int64_t num_layers = inner_fusion_user->operand(0)->shape().dimensions(0); PatternInfo pattern_info; pattern_info.type = PatternType::NestedDSFusionPattern; pattern_info.instr = inner_fusion_user; pattern_info.unstacked_shape = MakeUnstackedShapeFromSlice(inner_fusion_instr->shape(), num_layers); pattern_info.unstacking_computation = inner_fusion_user->fused_instructions_computation(); pattern_info.unstacked_instrs.push_back(inner_fusion_user); return pattern_info; } } return std::nullopt; } absl::Status UnstackNestedDSFusionPattern( HloInstruction* mutable_dynamic_slicing_fusion, const Shape& slice_shape) { HloInstruction* parent_fusion = mutable_dynamic_slicing_fusion->parent()->FusionInstruction(); HloInstruction* stacked_in_ds_fusion = mutable_dynamic_slicing_fusion->mutable_operand(0); CHECK_EQ(stacked_in_ds_fusion->opcode(), HloOpcode::kParameter); int64_t stacked_param_number = stacked_in_ds_fusion->parameter_number(); HloInstruction* stacked = parent_fusion->mutable_operand(stacked_param_number); HloInstruction* offset_in_ds_fusion = mutable_dynamic_slicing_fusion->mutable_operand(1); CHECK_EQ(offset_in_ds_fusion->opcode(), HloOpcode::kParameter); HloInstruction* offset = parent_fusion->mutable_operand(offset_in_ds_fusion->parameter_number()); HloInstruction* sliced_param = parent_fusion->fused_instructions_computation()->ReplaceParameter( stacked_param_number, HloInstruction::CreateParameter(stacked_param_number, slice_shape, "sliced")); HloInstruction* bitcast = mutable_dynamic_slicing_fusion->AddInstruction( HloInstruction::CreateBitcast(mutable_dynamic_slicing_fusion->shape(), sliced_param)); HloInstruction* bitcast_fusion = mutable_dynamic_slicing_fusion->AddInstruction( HloInstruction::CreateFusion(mutable_dynamic_slicing_fusion->shape(), HloInstruction::FusionKind::kLoop, bitcast)); TF_RETURN_IF_ERROR( mutable_dynamic_slicing_fusion->ReplaceAllUsesWith(bitcast_fusion)); HloInstruction* new_operand = parent_fusion->AddInstruction(HloInstruction::CreateCustomCall( slice_shape, {stacked, offset}, "DynamicGte")); return parent_fusion->ReplaceOperandWithDifferentShape( sliced_param->parameter_number(), new_operand); } std::optional<PatternInfo> GetDSAndDUSPattern(const UnstackerMetadata& metadata, const HloInstruction* instr, int64_t stacked_operand_idx) { VLOG(3) << "Checking DSAndDUSPattern"; if (instr->opcode() != HloOpcode::kFusion) { return std::nullopt; } const HloInstruction* stacked = instr->operand(stacked_operand_idx); if (stacked->user_count() != 2) { return std::nullopt; } HloInstruction* shape_covering_ds_instr = GetMostMajorShapeCoveringDynamicIndexInFusion( metadata, instr, HloOpcode::kDynamicSlice, 2, stacked_operand_idx); if (shape_covering_ds_instr == nullptr) { return std::nullopt; } HloInstruction* bitcast_operand = nullptr; if (!Match(instr->fused_instructions_computation()->root_instruction(), match::Bitcast(match::Op(&bitcast_operand)))) { return std::nullopt; } if (bitcast_operand != shape_covering_ds_instr) { return std::nullopt; } if (!GetDUSFusionPattern(metadata, stacked->users()[1], stacked->users()[1]->operand_index(stacked))) { return std::nullopt; } PatternInfo pattern_info; pattern_info.type = PatternType::Other; pattern_info.instr = instr; const Shape& slice_shape = instr->shape(); const int64_t num_layers = instr->operand(0)->shape().dimensions(0); pattern_info.unstacked_shape = MakeUnstackedShapeFromSlice(slice_shape, num_layers); pattern_info.unstacking_computation = instr->fused_instructions_computation(); pattern_info.unstacked_instrs.push_back(instr); pattern_info.unstacked_instrs.push_back(stacked->users()[1]); return pattern_info; } absl::Status UnstackDSAndDUSPattern(HloInstruction* mutable_dynamic_slice, const Shape& slice_shape) { HloInstruction* stacked_gte = mutable_dynamic_slice->mutable_operand(0); int64_t stacked_gte_index = stacked_gte->tuple_index(); HloComputation* parent = stacked_gte->parent(); ShapeUtil::UpdateTupleShape(stacked_gte->shape(), stacked_gte_index, parent->root_instruction()->mutable_shape()); HloComputation* parent_loop = mutable_dynamic_slice->parent(); HloInstruction* stacked = mutable_dynamic_slice->mutable_operand(0); HloInstruction* offset = mutable_dynamic_slice->mutable_operand(1); HloInstruction* new_operand = parent_loop->AddInstruction(HloInstruction::CreateCustomCall( slice_shape, {stacked, offset}, "DynamicGte")); TF_RETURN_IF_ERROR( mutable_dynamic_slice->ReplaceAllUsesWithDifferentShape(new_operand)); HloInstruction* mutable_dynamic_update_slice = stacked_gte->users()[1]; TF_RETURN_IF_ERROR( UnstackDUSFusionPattern(mutable_dynamic_update_slice, slice_shape)); return absl::OkStatus(); } std::optional<PatternInfo> GetReduceFusionPattern( const UnstackerMetadata& metadata, const HloInstruction* instr, int64_t stacked_operand_idx) { VLOG(3) << "Checking ReduceFusion"; HloInstruction* shape_covering_instr = GetMostMajorShapeCoveringDynamicIndexInFusion( metadata, instr, HloOpcode::kDynamicSlice, 2, stacked_operand_idx); if (shape_covering_instr == nullptr) { return std::nullopt; } HloInstruction* reduce_operand = nullptr; HloInstruction* fusion_root = instr->fused_instructions_computation()->root_instruction(); if (Match(fusion_root, match::Reduce(match::Op(&reduce_operand), match::ConstantScalar())) && Match(fusion_root->to_apply()->root_instruction(), match::Add(match::Parameter(), match::Parameter()))) { if (reduce_operand == shape_covering_instr) { PatternInfo pattern_info; pattern_info.type = PatternType::Other; pattern_info.instr = instr; const Shape& slice_shape = instr->shape(); const int64_t num_layers = instr->operand(0)->shape().dimensions(0); pattern_info.unstacked_shape = MakeUnstackedShapeFromSlice(slice_shape, num_layers); pattern_info.unstacking_computation = instr->fused_instructions_computation(); pattern_info.unstacked_instrs.push_back(instr); return pattern_info; } } return std::nullopt; } absl::Status UnstackReduceFusionPattern(HloInstruction* mutable_reduce_fusion, const Shape& slice_shape) { HloComputation* parent_loop = mutable_reduce_fusion->parent(); HloInstruction* stacked = mutable_reduce_fusion->mutable_operand(0); HloInstruction* offset = mutable_reduce_fusion->mutable_operand(1); HloInstruction* new_operand = parent_loop->AddInstruction(HloInstruction::CreateCustomCall( slice_shape, {stacked, offset}, "DynamicGte")); return mutable_reduce_fusion->ReplaceAllUsesWithDifferentShape(new_operand); } }; absl::StatusOr<bool> HloUnstacker::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { TF_ASSIGN_OR_RETURN(auto metadata, UnstackerMetadata::Create(module, unfuse_slice_)); metadata.custom_handlers.push_back( std::make_pair(GetDSAndDUSPattern, UnstackDSAndDUSPattern)); metadata.custom_handlers.push_back( std::make_pair(GetDSFusionPattern, UnstackDSFusionPattern)); metadata.custom_handlers.push_back( std::make_pair(GetDUSFusionPattern, UnstackDUSFusionPattern)); metadata.custom_handlers.push_back(std::make_pair( GetDUSFusionWithPadPattern, UnstackDUSFusionWithPadPattern)); metadata.custom_handlers.push_back( std::make_pair(GetDSFusionWithAddPattern, UnstackDSFusionWithAddPattern)); metadata.custom_handlers.push_back( std::make_pair(GetReduceFusionPattern, UnstackReduceFusionPattern)); metadata.custom_handlers.push_back( std::make_pair(GetNestedDSFusionPattern, UnstackNestedDSFusionPattern)); metadata.custom_handlers.push_back(std::make_pair( GetDSFusionNoBitcastPattern, UnstackDSFusionNoBitcastPattern)); std::vector<HloInstruction*> entry_loops; for (HloInstruction* instr : module->entry_computation()->MakeInstructionPostOrder()) { if (Match(instr, match::While(match::Tuple())) && Match(instr->while_body()->root_instruction(), match::Tuple())) { entry_loops.push_back(instr); } } bool unstacked = false; std::vector<const HloInstruction*> unstacked_instructions; for (HloInstruction* loop : entry_loops) { for (int64_t i = 0; i < loop->shape().tuple_shapes_size(); ++i) { if (loop->while_init()->operand(i)->shape().IsTuple()) { continue; } VLOG(3) << "Attempting to unstack " << loop->name() << " at " << i << " = " << loop->while_init()->operand(i)->shape().ToString(true) << loop->while_init()->operand(i)->ToShortString(); unstacked |= UnstackWhileOperandAtIndex(metadata, loop, i, unstacked_instructions); VLOG(3) << "###################"; } } if (!unstacked) { return false; } TF_RETURN_IF_ERROR(module->RemoveUnusedComputations()); std::vector<HloInstruction*> loops_to_unroll; for (const HloInstruction* instr : unstacked_instructions) { HloInstruction* loop = metadata.bodies[instr->parent()]; if (std::find(loops_to_unroll.begin(), loops_to_unroll.end(), loop) == loops_to_unroll.end()) { loops_to_unroll.push_back(loop); } } for (int64_t i = loops_to_unroll.size() - 1; i >= 0; --i) { HloInstruction* loop = loops_to_unroll[i]; TF_ASSIGN_OR_RETURN(UnrollResult unroll_result, WhileLoopUnroller::UnrollAndReturnReplacement( loop, -1, false, true, false)); bool unrolled = unroll_result.unrolled; CHECK(unrolled); } VLOG(3) << "after unstacking \n" << module->ToString(); return true; } }
#include "xla/service/hlo_unstacker.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using UnstackerTest = HloTestBase; int64_t GetInstrCountWithOpcodeInEntry(HloModule* module, HloOpcode opcode) { int64_t instr_with_opcode_count = 0; for (HloInstruction* instr : module->entry_computation()->MakeInstructionPostOrder()) { if (instr->opcode() == opcode) { instr_with_opcode_count++; } } return instr_with_opcode_count; } TEST_F(UnstackerTest, UnstackDSFusionPattern) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice (param_0.51117: s8[3,128,128], p1: s32[]) -> s8[128,128] { %param_0.51117 = s8[3,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[3,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} ROOT %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %dynamic-slice.22040) } %while.body (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> (s32[], bf16[8,128], s8[3,128,128]) { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 p0 = bf16[8,128] get-tuple-element(wide_p), index=1 p1 = s8[3,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) %fusion.67830 = s8[128,128] fusion(s8[3,128,128] p1, i), kind=kLoop, calls=%fused_computation.slice conv = bf16[8,128] convolution(bf16[8,128] p0, s8[128,128] %fusion.67830), dim_labels=bf_io->bf ROOT out = (s32[], bf16[8,128], s8[3,128,128]) tuple(inc, conv, p1) } %while.cond (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(3) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } ENTRY main { p0 = s8[3,128,128] parameter(0) p1 = bf16[8,128] parameter(1) init = s32[] constant(0) while.input = (s32[], bf16[8,128], s8[3,128,128]) tuple(init, p1, p0) while.out = (s32[], bf16[8,128], s8[3,128,128]) while(while.input), condition=%while.cond , body=%while.body while_use = s8[3,128,128] get-tuple-element(while.out), index=2 ROOT out = bf16[8,128] get-tuple-element(while.out), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kSlice), 3); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kFusion), 0); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } TEST_F(UnstackerTest, NotUnstackDSFusionPattern) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice (param_0.51117: s8[3,128,128], p1: s32[]) -> s8[128,128] { %param_0.51117 = s8[3,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[3,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} ROOT %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %dynamic-slice.22040) } %fused_computation.tuple { %param_0.51117 = s8[3,128,128] parameter(0) mult = multiply(param_0.51117, param_0.51117) ROOT out = tuple(param_0.51117, mult) } %while.body (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> (s32[], bf16[8,128], s8[3,128,128]) { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 p0 = bf16[8,128] get-tuple-element(wide_p), index=1 p1 = s8[3,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) %fusion.67830 = s8[128,128] fusion(s8[3,128,128] p1, i), kind=kLoop, calls=%fused_computation.slice conv = bf16[8,128] convolution(bf16[8,128] p0, s8[128,128] %fusion.67830), dim_labels=bf_io->bf fusion_mult = (s8[3,128,128], s8[3,128,128]) fusion(s8[3,128,128] p1), kind=kLoop, calls=%fused_computation.tuple mult = s8[3,128,128] get-tuple-element(fusion_mult), index=1 ROOT out = (s32[], bf16[8,128], s8[3,128,128]) tuple(inc, conv, mult) } %while.cond (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(3) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } ENTRY main { p0 = s8[3,128,128] parameter(0) p1 = bf16[8,128] parameter(1) init = s32[] constant(0) while.input = (s32[], bf16[8,128], s8[3,128,128]) tuple(init, p1, p0) while.out = (s32[], bf16[8,128], s8[3,128,128]) while(while.input), condition=%while.cond , body=%while.body while_use = s8[3,128,128] get-tuple-element(while.out), index=2 ROOT out = bf16[8,128] get-tuple-element(while.out), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_FALSE(unstacked); } TEST_F(UnstackerTest, UnstackReduceFusionPattern) { std::string hlo_string = R"( HloModule SimpleLoop dynamic-slice.609.reduce_sub_computation { lhs.53 = s8[] parameter(0) rhs.53 = s8[] parameter(1) ROOT add.3090 = s8[] add(lhs.53, rhs.53) } fused_computation.1096.clone { param_0.5572 = s8[3,128,128] parameter(0) param_1.6711 = s32[]{:T(128)} parameter(1) constant.12008 = s32[]{:T(128)} constant(0) dynamic-slice.1545 = s8[1,128,128] dynamic-slice(param_0.5572, param_1.6711, constant.12008, constant.12008), dynamic_slice_sizes={1,128, 128} constant.12009 = s8[] constant(-0) ROOT reduce.919 = s8[128,128] reduce(dynamic-slice.1545, constant.12009), dimensions={0}, to_apply=dynamic-slice.609.reduce_sub_computation } %while.body (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> (s32[], bf16[8,128], s8[3,128,128]) { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 p0 = bf16[8,128] get-tuple-element(wide_p), index=1 p1 = s8[3,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) %fusion.67830 = s8[128,128] fusion(s8[3,128,128] p1, i), kind=kLoop, calls=%fused_computation.1096.clone conv = bf16[8,128] convolution(bf16[8,128] p0, s8[128,128] %fusion.67830), dim_labels=bf_io->bf ROOT out = (s32[], bf16[8,128], s8[3,128,128]) tuple(inc, conv, p1) } %while.cond (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(3) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } ENTRY main { p0 = s8[3,128,128] parameter(0) p1 = bf16[8,128] parameter(1) init = s32[] constant(0) while.input = (s32[], bf16[8,128], s8[3,128,128]) tuple(init, p1, p0) while.out = (s32[], bf16[8,128], s8[3,128,128]) while(while.input), condition=%while.cond , body=%while.body while_use = s8[3,128,128] get-tuple-element(while.out), index=2 ROOT out = bf16[8,128] get-tuple-element(while.out), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } TEST_F(UnstackerTest, UnstackDSFusionPatternNoBitcast) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice (param_0.51117: s8[3,128,128], p1: s32[]) -> s8[1,128,128] { %param_0.51117 = s8[3,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) ROOT %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[3,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} } %while.body (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> (s32[], bf16[8,128], s8[3,128,128]) { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 p0 = bf16[8,128] get-tuple-element(wide_p), index=1 p1 = s8[3,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) %fusion.67830 = s8[1,128,128] fusion(s8[3,128,128] p1, i), kind=kLoop, calls=%fused_computation.slice bitcast.102 = s8[128,128] bitcast(s8[1,128,128] %fusion.67830) conv = bf16[8,128] convolution(bf16[8,128] p0, s8[128,128] bitcast.102), dim_labels=bf_io->bf ROOT out = (s32[], bf16[8,128], s8[3,128,128]) tuple(inc, conv, p1) } %while.cond (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(3) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } ENTRY main { p0 = s8[3,128,128] parameter(0) p1 = bf16[8,128] parameter(1) init = s32[] constant(0) while.input = (s32[], bf16[8,128], s8[3,128,128]) tuple(init, p1, p0) while.out = (s32[], bf16[8,128], s8[3,128,128]) while(while.input), condition=%while.cond , body=%while.body while_use = s8[3,128,128] get-tuple-element(while.out), index=2 ROOT out = bf16[8,128] get-tuple-element(while.out), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kSlice), 3); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kFusion), 0); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } TEST_F(UnstackerTest, UnstackDSFusionPatternNoBitcastKeepFused) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice (param_0.51117: s8[3,128,128], p1: s32[]) -> s8[1,128,128] { %param_0.51117 = s8[3,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) ROOT %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[3,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} } %while.body (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> (s32[], bf16[8,128], s8[3,128,128]) { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 p0 = bf16[8,128] get-tuple-element(wide_p), index=1 p1 = s8[3,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) %fusion.67830 = s8[1,128,128] fusion(s8[3,128,128] p1, i), kind=kLoop, calls=%fused_computation.slice bitcast.102 = s8[128,128] bitcast(s8[1,128,128] %fusion.67830) conv = bf16[8,128] convolution(bf16[8,128] p0, s8[128,128] bitcast.102), dim_labels=bf_io->bf ROOT out = (s32[], bf16[8,128], s8[3,128,128]) tuple(inc, conv, p1) } %while.cond (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(3) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } ENTRY main { p0 = s8[3,128,128] parameter(0) p1 = bf16[8,128] parameter(1) init = s32[] constant(0) while.input = (s32[], bf16[8,128], s8[3,128,128]) tuple(init, p1, p0) while.out = (s32[], bf16[8,128], s8[3,128,128]) while(while.input), condition=%while.cond , body=%while.body while_use = s8[3,128,128] get-tuple-element(while.out), index=2 ROOT out = bf16[8,128] get-tuple-element(while.out), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); auto unfuse = [](HloInstruction* instruction) { return false; }; TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker(unfuse).Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kSlice), 0); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kFusion), 3); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } TEST_F(UnstackerTest, UnstackDSFusionPatternWithDifferentLayout) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.30.clone (param_0.153: bf16[32,4,64,64,3], param_1.123: s32[]) -> bf16[64,4,64,3] { %param_0.153 = bf16[32,4,64,64,3]{2,1,4,3,0} parameter(0) %param_1.123 = s32[]{:T(128)} parameter(1) %constant.227 = s32[]{:T(128)} constant(0) %dynamic-slice.5 = bf16[1,4,64,64,3]{2,1,4,3,0} dynamic-slice(bf16[32,4,64,64,3]{2,1,4,3,0} %param_0.153, s32[]{:T(128)} %param_1.123, s32[]{:T(128)} %constant.227, s32[]{:T(128)} %constant.227, s32[]{:T(128)} %constant.227, s32[]{:T(128)} %constant.227), dynamic_slice_sizes={1,4,64,64,3} ROOT %bitcast.102 = bf16[64,4,64,3]{0,1,3,2} bitcast(bf16[1,4,64,64,3]{2,1,4,3,0} %dynamic-slice.5) } %while.body (wide_param: (s32[], bf16[8,128], bf16[32,4,64,64,3])) -> (s32[], bf16[8,128], bf16[32,4,64,64,3]) { wide_p = (s32[], bf16[8,128], bf16[32,4,64,64,3]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 p0 = bf16[8,128] get-tuple-element(wide_p), index=1 p1 = bf16[32,4,64,64,3]{2,1,4,3,0} get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) %fusion.67830 = bf16[64,4,64,3]{0,1,3,2} fusion(p1, i), kind=kLoop, calls=%fused_computation.30.clone ROOT out = (s32[], bf16[8,128], bf16[32,4,64,64,3]) tuple(inc, p0, p1) } %while.cond (wide_param: (s32[], bf16[8,128], bf16[32,4,64,64,3])) -> pred[] { wide_p = (s32[], bf16[8,128], bf16[32,4,64,64,3]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(32) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } ENTRY main { p0 = bf16[32,4,64,64,3] parameter(0) p1 = bf16[8,128] parameter(1) init = s32[] constant(0) while.input = (s32[], bf16[8,128], bf16[32,4,64,64,3]) tuple(init, p1, p0) while.out = (s32[], bf16[8,128], bf16[32,4,64,64,3]) while(while.input), condition=%while.cond , body=%while.body while_use = bf16[32,4,64,64,3] get-tuple-element(while.out), index=2 ROOT out = bf16[8,128] get-tuple-element(while.out), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kSlice), 32); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kFusion), 0); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt)); } TEST_F(UnstackerTest, UnstackNestedDSFusionPattern) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice (param_0.51117: s8[3,128,128], p1: s32[]) -> s8[128,128] { %param_0.51117 = s8[3,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[3,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} ROOT %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %dynamic-slice.22040) } %fused_computation.inner (param_0.34523: bf16[8,128], param_1.30691: s8[3,128,128], p2: s32[]) -> bf16[8,128] { %param_0.34523 = bf16[8,128] parameter(0) %param_1.30691 = s8[3,128,128] parameter(1) p2 = s32[] parameter(2) %fusion.67830 = s8[128,128] fusion(s8[3,128,128] %param_1.30691, p2), kind=kLoop, calls=%fused_computation.slice ROOT %convolution.3447 = bf16[8,128] convolution(bf16[8,128] %param_0.34523, s8[128,128] %fusion.67830), dim_labels=bf_io->bf } %while.body (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> (s32[], bf16[8,128], s8[3,128,128]) { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 p0 = bf16[8,128] get-tuple-element(wide_p), index=1 p1 = s8[3,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) fusion.conv = bf16[8,128] fusion(p0, p1, i), kind=kOutput, calls=%fused_computation.inner ROOT out = (s32[], bf16[8,128], s8[3,128,128]) tuple(inc, fusion.conv, p1) } %while.cond (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(3) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } ENTRY main { p0 = s8[3,128,128] parameter(0) p1 = bf16[8,128] parameter(1) init = s32[] constant(0) while.input = (s32[], bf16[8,128], s8[3,128,128]) tuple(init, p1, p0) while.out = (s32[], bf16[8,128], s8[3,128,128]) while(while.input), condition=%while.cond , body=%while.body while_use = s8[3,128,128] get-tuple-element(while.out), index=2 ROOT out = bf16[8,128] get-tuple-element(while.out), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kSlice), 3); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } TEST_F(UnstackerTest, UnstackNestedDSFusionPatternWithDynamicIndex) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice (param_0.51117: s8[6,128,128], p1: s32[]) -> s8[128,128] { %param_0.51117 = s8[6,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[6,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} ROOT %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %dynamic-slice.22040) } %fused_computation.inner (param_0.34523: bf16[8,128], param_1.30691: s8[6,128,128], p2: s32[]) -> bf16[8,128] { %param_0.34523 = bf16[8,128] parameter(0) %param_1.30691 = s8[6,128,128] parameter(1) p2 = s32[] parameter(2) %fusion.67830 = s8[128,128] fusion(s8[6,128,128] %param_1.30691, p2), kind=kLoop, calls=%fused_computation.slice ROOT %convolution.3447 = bf16[8,128] convolution(bf16[8,128] %param_0.34523, s8[128,128] %fusion.67830), dim_labels=bf_io->bf } %while.body (wide_param: (s32[], bf16[8,128], s8[6,128,128])) -> (s32[], bf16[8,128], s8[6,128,128]) { wide_p = (s32[], bf16[8,128], s8[6,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 p0 = bf16[8,128] get-tuple-element(wide_p), index=1 p1 = s8[6,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) two = s32[] constant(2) mult = s32[] multiply(i, two) fusion.conv = bf16[8,128] fusion(p0, p1, mult), kind=kOutput, calls=%fused_computation.inner ROOT out = (s32[], bf16[8,128], s8[6,128,128]) tuple(inc, fusion.conv, p1) } %while.cond (wide_param: (s32[], bf16[8,128], s8[6,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[6,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(3) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } ENTRY main { p0 = s8[6,128,128] parameter(0) p1 = bf16[8,128] parameter(1) init = s32[] constant(0) while.input = (s32[], bf16[8,128], s8[6,128,128]) tuple(init, p1, p0) while.out = (s32[], bf16[8,128], s8[6,128,128]) while(while.input), condition=%while.cond , body=%while.body while_use = s8[6,128,128] get-tuple-element(while.out), index=2 ROOT out = bf16[8,128] get-tuple-element(while.out), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } TEST_F(UnstackerTest, UnstackNestedDSFusionPatternWithMultipleIndex) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice.1 (param_0.51117: s8[4,128,128], p1: s32[]) -> s8[128,128] { %param_0.51117 = s8[4,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[4,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} ROOT %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %dynamic-slice.22040) } %fused_computation.slice.2 (param_0.51117: s8[4,128,128], p1: s32[]) -> s8[128,128] { %param_0.51117 = s8[4,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[4,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} ROOT %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %dynamic-slice.22040) } %fused_computation.inner.1 (param_0.34523: bf16[8,128], param_1.30691: s8[4,128,128], p2: s32[]) -> bf16[8,128] { %param_0.34523 = bf16[8,128] parameter(0) %param_1.30691 = s8[4,128,128] parameter(1) p2 = s32[] parameter(2) %fusion.67830 = s8[128,128] fusion(s8[4,128,128] %param_1.30691, p2), kind=kLoop, calls=%fused_computation.slice.1 ROOT %convolution.3447 = bf16[8,128] convolution(bf16[8,128] %param_0.34523, s8[128,128] %fusion.67830), dim_labels=bf_io->bf } %fused_computation.inner.2 (param_0.34523: bf16[8,128], param_1.30691: s8[4,128,128], p2: s32[]) -> bf16[8,128] { %param_0.34523 = bf16[8,128] parameter(0) %param_1.30691 = s8[4,128,128] parameter(1) p2 = s32[] parameter(2) %fusion.67830 = s8[128,128] fusion(s8[4,128,128] %param_1.30691, p2), kind=kLoop, calls=%fused_computation.slice.2 ROOT %convolution.3447 = bf16[8,128] convolution(bf16[8,128] %param_0.34523, s8[128,128] %fusion.67830), dim_labels=bf_io->bf } %while.body (wide_param: (s32[], bf16[8,128], s8[4,128,128], s8[4,128,128])) -> (s32[], bf16[8,128], s8[4,128,128], s8[4,128,128]) { wide_p = (s32[], bf16[8,128], s8[4,128,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 p0 = bf16[8,128] get-tuple-element(wide_p), index=1 p1 = s8[4,128,128] get-tuple-element(wide_p), index=2 p2 = s8[4,128,128] get-tuple-element(wide_p), index=3 one = s32[] constant(1) inc = s32[] add(i, one) fusion.conv.1 = bf16[8,128] fusion(p0, p1, i), kind=kOutput, calls=%fused_computation.inner.1 fusion.conv.2 = bf16[8,128] fusion(p0, p2, i), kind=kOutput, calls=%fused_computation.inner.2 plus = bf16[8,128] add(fusion.conv.1, fusion.conv.2) ROOT out = (s32[], bf16[8,128], s8[4,128,128], s8[4,128,128]) tuple(inc, plus, p1, p2) } %while.cond (wide_param: (s32[], bf16[8,128], s8[4,128,128], s8[4,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[4,128,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(4) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } ENTRY main { p0 = s8[4,128,128] parameter(0) p1 = s8[4,128,128] parameter(1) p2 = bf16[8,128] parameter(2) init = s32[] constant(0) while.input = (s32[], bf16[8,128], s8[4,128,128], s8[4,128,128]) tuple(init, p2, p0, p1) while.out = (s32[], bf16[8,128], s8[4,128,128], s8[4,128,128]) while(while.input), condition=%while.cond , body=%while.body ROOT out = bf16[8,128] get-tuple-element(while.out), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kSlice), 8); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } TEST_F(UnstackerTest, UnstackNestedDSFusionPatternWithDiffereOperandsOrder) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice (param_0.51117: s8[3,128,128], p1: s32[]) -> s8[128,128] { %param_0.51117 = s8[3,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[3,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} ROOT %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %dynamic-slice.22040) } %fused_computation.inner (param_1.30691: s8[3,128,128], p2: s32[], param_0.34523: bf16[8,128]) -> bf16[8,128] { %param_0.34523 = bf16[8,128] parameter(2) %param_1.30691 = s8[3,128,128] parameter(0) p2 = s32[] parameter(1) %fusion.67830 = s8[128,128] fusion(s8[3,128,128] %param_1.30691, p2), kind=kLoop, calls=%fused_computation.slice ROOT %convolution.3447 = bf16[8,128] convolution(bf16[8,128] %param_0.34523, s8[128,128] %fusion.67830), dim_labels=bf_io->bf } %while.body (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> (s32[], bf16[8,128], s8[3,128,128]) { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 p0 = bf16[8,128] get-tuple-element(wide_p), index=1 p1 = s8[3,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) fusion.conv = bf16[8,128] fusion(p1, i, p0), kind=kOutput, calls=%fused_computation.inner ROOT out = (s32[], bf16[8,128], s8[3,128,128]) tuple(inc, fusion.conv, p1) } %while.cond (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(3) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } ENTRY main { p0 = s8[3,128,128] parameter(0) p1 = bf16[8,128] parameter(1) init = s32[] constant(0) while.input = (s32[], bf16[8,128], s8[3,128,128]) tuple(init, p1, p0) while.out = (s32[], bf16[8,128], s8[3,128,128]) while(while.input), condition=%while.cond , body=%while.body while_use = s8[3,128,128] get-tuple-element(while.out), index=2 ROOT out = bf16[8,128] get-tuple-element(while.out), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kSlice), 3); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } TEST_F(UnstackerTest, UnstackNestedDSFusionPatternWithSameUnstackingComps) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice.1 (param_0.51117: s8[3,128,128], p1: s32[]) -> s8[128,128] { %param_0.51117 = s8[3,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[3,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} ROOT %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %dynamic-slice.22040) } %fused_computation.slice.2 (param_0.51117: s8[3,128,128], p1: s32[]) -> s8[128,128] { %param_0.51117 = s8[3,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[3,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} ROOT %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %dynamic-slice.22040) } %fused_computation.inner.1 (param_0.34523: bf16[8,128], param_1.30691: s8[3,128,128], p2: s32[]) -> bf16[8,128] { %param_0.34523 = bf16[8,128] parameter(0) %param_1.30691 = s8[3,128,128] parameter(1) p2 = s32[] parameter(2) %fusion.67830 = s8[128,128] fusion(s8[3,128,128] %param_1.30691, p2), kind=kLoop, calls=%fused_computation.slice.1 ROOT %convolution.3447 = bf16[8,128] convolution(bf16[8,128] %param_0.34523, s8[128,128] %fusion.67830), dim_labels=bf_io->bf } %fused_computation.inner.2 (param_0.34523: bf16[8,128], param_1.30691: s8[3,128,128], p2: s32[]) -> bf16[8,128] { %param_0.34523 = bf16[8,128] parameter(0) %param_1.30691 = s8[3,128,128] parameter(1) p2 = s32[] parameter(2) %fusion.67830 = s8[128,128] fusion(s8[3,128,128] %param_1.30691, p2), kind=kLoop, calls=%fused_computation.slice.2 ROOT %convolution.3447 = bf16[8,128] convolution(bf16[8,128] %param_0.34523, s8[128,128] %fusion.67830), dim_labels=bf_io->bf } %while.body (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> (s32[], bf16[8,128], s8[3,128,128]) { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 p0 = bf16[8,128] get-tuple-element(wide_p), index=1 p1 = s8[3,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) fusion.conv1 = bf16[8,128] fusion(p0, p1, i), kind=kOutput, calls=%fused_computation.inner.1 fusion.conv2 = bf16[8,128] fusion(p0, p1, i), kind=kOutput, calls=%fused_computation.inner.2 add = bf16[8,128] add(fusion.conv1, fusion.conv2) ROOT out = (s32[], bf16[8,128], s8[3,128,128]) tuple(inc, add, p1) } %while.cond (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(3) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } ENTRY main { p0 = s8[3,128,128] parameter(0) p1 = bf16[8,128] parameter(1) init = s32[] constant(0) while.input = (s32[], bf16[8,128], s8[3,128,128]) tuple(init, p1, p0) while.out = (s32[], bf16[8,128], s8[3,128,128]) while(while.input), condition=%while.cond , body=%while.body while_use = s8[3,128,128] get-tuple-element(while.out), index=2 ROOT out = bf16[8,128] get-tuple-element(while.out), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kSlice), 3); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } TEST_F(UnstackerTest, NotUnstackNestedDSFusionPatternWithSameUnstackingComps) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice.1 (param_0.51117: s8[3,128,128], p1: s32[]) -> s8[1,128,128] { %param_0.51117 = s8[3,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) ROOT %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[3,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} } %fused_computation.slice.2 (param_0.51117: s8[3,128,128], p1: s32[]) -> s8[128,128] { %param_0.51117 = s8[3,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[3,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} ROOT %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %dynamic-slice.22040) } %while.body (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> (s32[], bf16[8,128], s8[3,128,128]) { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 p0 = bf16[8,128] get-tuple-element(wide_p), index=1 p1 = s8[3,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) %fusion.67831 = s8[128,128] fusion(p1, i), kind=kLoop, calls=%fused_computation.slice.2 %fusion.67830 = s8[1,128,128] fusion(p1, i), kind=kLoop, calls=%fused_computation.slice.1 %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %fusion.67830) ROOT out = (s32[], bf16[8,128], s8[3,128,128]) tuple(inc, p0, p1) } %while.cond (wide_param: (s32[], bf16[8,128], s8[3,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[3,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(3) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } ENTRY main { p0 = s8[3,128,128] parameter(0) p1 = bf16[8,128] parameter(1) init = s32[] constant(0) while.input = (s32[], bf16[8,128], s8[3,128,128]) tuple(init, p1, p0) while.out = (s32[], bf16[8,128], s8[3,128,128]) while(while.input), condition=%while.cond , body=%while.body while_use = s8[3,128,128] get-tuple-element(while.out), index=2 ROOT out = bf16[8,128] get-tuple-element(while.out), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_FALSE(unstacked); } TEST_F(UnstackerTest, UnstackNestedDSFusionPatternSingleNestedLoop) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice (param_0.51117: s8[4,128,128], p1: s32[]) -> s8[128,128] { %param_0.51117 = s8[4,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[4,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} ROOT %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %dynamic-slice.22040) } %fused_computation.inner (param_0.34523: bf16[8,128], param_1.30691: s8[4,128,128], p2: s32[]) -> bf16[8,128] { %param_0.34523 = bf16[8,128] parameter(0) %param_1.30691 = s8[4,128,128] parameter(1) p2 = s32[] parameter(2) %fusion.67830 = s8[128,128] fusion(s8[4,128,128] %param_1.30691, p2), kind=kLoop, calls=%fused_computation.slice ROOT %convolution.3447 = bf16[8,128] convolution(bf16[8,128] %param_0.34523, s8[128,128] %fusion.67830), dim_labels=bf_io->bf } %while.body.inner (wide_param: (s32[], bf16[8,128], s8[4,128,128])) -> (s32[], bf16[8,128], s8[4,128,128]) { wide_p = (s32[], bf16[8,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 inner_param_0 = bf16[8,128] get-tuple-element(wide_p), index=1 inner_param_1 = s8[4,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) fusion.conv = bf16[8,128] fusion(inner_param_0, inner_param_1, i), kind=kOutput, calls=%fused_computation.inner ROOT out = (s32[], bf16[8,128], s8[4,128,128]) tuple(inc, fusion.conv, inner_param_1) } %while.cond.inner (wide_param: (s32[], bf16[8,128], s8[4,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(4) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } %while.body (wide_param: (s32[], bf16[8,128], s8[4,128,128])) -> (s32[], bf16[8,128], s8[4,128,128]) { wide_p = (s32[], bf16[8,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 param0 = bf16[8,128] get-tuple-element(wide_p), index=1 param1 = s8[4,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(2) zero = s32[] constant(0) mult = s32[] multiply(i, one) inner.in = (s32[], bf16[8,128], s8[4,128,128]) tuple(zero, param0, param1) inner.out = (s32[], bf16[8,128], s8[4,128,128]) while(inner.in), condition=%while.cond.inner, body=%while.body.inner fusion.conv.inner = bf16[8,128] get-tuple-element(inner.out), index=1 ROOT out = (s32[], bf16[8,128], s8[4,128,128]) tuple(mult, fusion.conv.inner, param1) } %while.cond (wide_param: (s32[], bf16[8,128], s8[4,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(20) add = s32[] add(%constant.12857, %constant.12857) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, add), direction=LT } ENTRY main { weight = s8[4,128,128] parameter(0) p1 = bf16[8,128] parameter(1) init = s32[] constant(1) while.input = (s32[], bf16[8,128], s8[4,128,128]) tuple(init, p1, weight) while.out = (s32[], bf16[8,128], s8[4,128,128]) while(while.input), condition=%while.cond , body=%while.body ROOT out = bf16[8,128] get-tuple-element(while.out), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kSlice), 4); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } TEST_F(UnstackerTest, UnstackNestedDSFusionPatternTwoNestedLoops) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice1 (param_0.51117: s8[4,128,128], p1: s32[]) -> s8[128,128] { %param_0.51117 = s8[4,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[4,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} ROOT %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %dynamic-slice.22040) } %fused_computation.inner1 (param_0.34523: bf16[8,128], param_1.30691: s8[4,128,128], p2: s32[]) -> bf16[8,128] { %param_0.34523 = bf16[8,128] parameter(0) %param_1.30691 = s8[4,128,128] parameter(1) p2 = s32[] parameter(2) %fusion.67830 = s8[128,128] fusion(s8[4,128,128] %param_1.30691, p2), kind=kLoop, calls=%fused_computation.slice1 ROOT %convolution.3447 = bf16[8,128] convolution(bf16[8,128] %param_0.34523, s8[128,128] %fusion.67830), dim_labels=bf_io->bf } %while.body.inner1 (wide_param: (s32[], bf16[8,128], s8[4,128,128])) -> (s32[], bf16[8,128], s8[4,128,128]) { wide_p = (s32[], bf16[8,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 inner_param_0 = bf16[8,128] get-tuple-element(wide_p), index=1 inner_param_1 = s8[4,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) fusion.conv = bf16[8,128] fusion(inner_param_0, inner_param_1, i), kind=kOutput, calls=%fused_computation.inner1 ROOT out = (s32[], bf16[8,128], s8[4,128,128]) tuple(inc, fusion.conv, inner_param_1) } %while.cond.inner1 (wide_param: (s32[], bf16[8,128], s8[4,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(4) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } %while.body1 (wide_param: (s32[], bf16[8,128], s8[4,128,128])) -> (s32[], bf16[8,128], s8[4,128,128]) { wide_p = (s32[], bf16[8,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 param0 = bf16[8,128] get-tuple-element(wide_p), index=1 param1 = s8[4,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(2) zero = s32[] constant(0) mult = s32[] multiply(i, one) inner.in.1 = (s32[], bf16[8,128], s8[4,128,128]) tuple(zero, param0, param1) inner.out.1 = (s32[], bf16[8,128], s8[4,128,128]) while(inner.in.1), condition=%while.cond.inner1, body=%while.body.inner1 fusion.conv.inner = bf16[8,128] get-tuple-element(inner.out.1), index=1 ROOT out = (s32[], bf16[8,128], s8[4,128,128]) tuple(mult, fusion.conv.inner, param1) } %while.cond1 (wide_param: (s32[], bf16[8,128], s8[4,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(20) add = s32[] add(%constant.12857, %constant.12857) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, add), direction=LT } %fused_computation.slice2 (param_0.51117: s8[4,128,128], p1: s32[]) -> s8[128,128] { %param_0.51117 = s8[4,128,128] parameter(0) p1 = s32[] parameter(1) %constant.85694 = s32[] constant(0) %dynamic-slice.22040 = s8[1,128,128] dynamic-slice(s8[4,128,128] %param_0.51117, p1, s32[] %constant.85694, s32[] %constant.85694), dynamic_slice_sizes={1,128,128} ROOT %bitcast.31250 = s8[128,128] bitcast(s8[1,128,128] %dynamic-slice.22040) } %fused_computation.inner2 (param_0.34523: bf16[8,128], param_1.30691: s8[4,128,128], p2: s32[]) -> bf16[8,128] { %param_0.34523 = bf16[8,128] parameter(0) %param_1.30691 = s8[4,128,128] parameter(1) p2 = s32[] parameter(2) %fusion.67830 = s8[128,128] fusion(s8[4,128,128] %param_1.30691, p2), kind=kLoop, calls=%fused_computation.slice2 ROOT %convolution.3447 = bf16[8,128] convolution(bf16[8,128] %param_0.34523, s8[128,128] %fusion.67830), dim_labels=bf_io->bf } %while.body.inner2 (wide_param: (s32[], bf16[8,128], s8[4,128,128])) -> (s32[], bf16[8,128], s8[4,128,128]) { wide_p = (s32[], bf16[8,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 inner_param_0 = bf16[8,128] get-tuple-element(wide_p), index=1 inner_param_1 = s8[4,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(1) inc = s32[] add(i, one) fusion.conv = bf16[8,128] fusion(inner_param_0, inner_param_1, i), kind=kOutput, calls=%fused_computation.inner2 ROOT out = (s32[], bf16[8,128], s8[4,128,128]) tuple(inc, fusion.conv, inner_param_1) } %while.cond.inner2 (wide_param: (s32[], bf16[8,128], s8[4,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(4) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, s32[] %constant.12857), direction=LT } %while.body2 (wide_param: (s32[], bf16[8,128], s8[4,128,128])) -> (s32[], bf16[8,128], s8[4,128,128]) { wide_p = (s32[], bf16[8,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 param0 = bf16[8,128] get-tuple-element(wide_p), index=1 param1 = s8[4,128,128] get-tuple-element(wide_p), index=2 one = s32[] constant(2) zero = s32[] constant(0) mult = s32[] multiply(i, one) inner.in.2 = (s32[], bf16[8,128], s8[4,128,128]) tuple(zero, param0, param1) inner.out.2 = (s32[], bf16[8,128], s8[4,128,128]) while(inner.in.2), condition=%while.cond.inner2, body=%while.body.inner2 fusion.conv.inner = bf16[8,128] get-tuple-element(inner.out.2), index=1 ROOT out = (s32[], bf16[8,128], s8[4,128,128]) tuple(mult, fusion.conv.inner, param1) } %while.cond2 (wide_param: (s32[], bf16[8,128], s8[4,128,128])) -> pred[] { wide_p = (s32[], bf16[8,128], s8[4,128,128]) parameter(0) i = s32[] get-tuple-element(wide_p), index=0 %constant.12857 = s32[] constant(20) add = s32[] add(%constant.12857, %constant.12857) ROOT %compare.1921 = pred[]{:T(512)} compare(s32[] i, add), direction=LT } ENTRY main { weight = s8[4,128,128] parameter(0) p1 = bf16[8,128] parameter(1) init = s32[] constant(1) while.input = (s32[], bf16[8,128], s8[4,128,128]) tuple(init, p1, weight) while.out = (s32[], bf16[8,128], s8[4,128,128]) while(while.input), condition=%while.cond1 , body=%while.body1 init2 = s32[] get-tuple-element(while.out), index=0 second.while.input = (s32[], bf16[8,128], s8[4,128,128]) tuple(init2, p1, weight) second.while.out = (s32[], bf16[8,128], s8[4,128,128]) while(second.while.input), condition=%while.cond2 , body=%while.body2 out = bf16[8,128] get-tuple-element(while.out), index=1 second.out = bf16[8,128] get-tuple-element(second.while.out), index=1 ROOT result = bf16[8,128] add(out, second.out) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_EQ(GetInstrCountWithOpcodeInEntry(module.get(), HloOpcode::kSlice), 8); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } TEST_F(UnstackerTest, UnstackDSAndDUSPattern) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice (param_0.51117: s32[4,3], offset: s32[]) -> s32[3] { %param_0.51117 = s32[4,3] parameter(0) offset = s32[] parameter(1) zero = s32[] constant(0) %dynamic-slice.22040 = s32[1,3] dynamic-slice(s32[4,3] %param_0.51117, offset, zero), dynamic_slice_sizes={1,3} ROOT %bitcast.31250 = s32[3] bitcast(s32[1,3] %dynamic-slice.22040) } %fused_computation.update.slice (param_0.51117: s32[4,3], p1: s32[], p2: s32[3]) -> s32[4,3] { %param_0.51117 = s32[4,3] parameter(0) %p1 = s32[] parameter(1) %p2 = s32[3] parameter(2) %zero = s32[] constant(0) %bitcast.31250 = s32[1,3] bitcast(%p2) ROOT output_dus = s32[4,3]{1,0} dynamic-update-slice(%param_0.51117, %bitcast.31250, %p1, zero) } SimpleLoop.body { loop_var.1 = (s32[], s32[4,3]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 get-tuple-element.2 = s32[4,3] get-tuple-element(loop_var.1), index=1 zero = s32[] constant(0) some_const = s32[3] constant({0,1,2}) constant.1 = s32[] constant(1) idx = s32[] add(get-tuple-element.1, constant.1) ds = s32[3]{0} fusion(get-tuple-element.2, get-tuple-element.1), kind=kLoop, calls=%fused_computation.slice update = s32[3] add(ds, ds) dus = s32[3] dynamic-update-slice(ds, update, zero) output = s32[4,3] fusion(get-tuple-element.2, get-tuple-element.1, dus), kind=kLoop, calls=%fused_computation.update.slice ROOT tuple = (s32[], s32[4,3]) tuple(idx, output) } SimpleLoop.condition { loop_var.1 = (s32[], s32[4,3]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.2 = s32[] constant(4) ROOT less-than = pred[] compare(get-tuple-element.1, constant.2), direction=LT } ENTRY SimpleLoop { reference = s32[4,3] parameter(0) zero = s32[] constant(0) zero1 = s32[] constant(0) one = s32[] constant(1) tuple.1 = (s32[], s32[4,3]) tuple(zero, reference) while = (s32[], s32[4,3]) while(tuple.1), condition=SimpleLoop.condition, body=SimpleLoop.body ROOT out = s32[] get-tuple-element(while), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } TEST_F(UnstackerTest, UnstackDSAndDUSPatternNestedLoop) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice (param_0.51117: bf16[4,1,8,257,128], offset: s32[]) -> bf16[1,8,257,128] { %param_0.51117 = bf16[4,1,8,257,128] parameter(0) offset = s32[] parameter(1) zero = s32[] constant(0) %dynamic-slice.22040 = bf16[1,1,8,257,128] dynamic-slice(bf16[4,1,8,257,128] %param_0.51117, offset, zero, zero, zero, zero), dynamic_slice_sizes={1,1,8,257,128} ROOT %bitcast.31250 = bf16[1,8,257,128] bitcast(%dynamic-slice.22040) } %fused_computation.slice.2 (param_0.51117: bf16[4,1,8,257,128], offset: s32[]) -> bf16[1,8,257,128] { %param_0.51117 = bf16[4,1,8,257,128] parameter(0) offset = s32[] parameter(1) zero = s32[] constant(0) %dynamic-slice.22040 = bf16[1,1,8,257,128] dynamic-slice(bf16[4,1,8,257,128] %param_0.51117, offset, zero, zero, zero, zero), dynamic_slice_sizes={1,1,8,257,128} ROOT %bitcast.31250 = bf16[1,8,257,128] bitcast(%dynamic-slice.22040) } inner.body { loop_var.1 = (s32[], bf16[4,1,8,257,128], bf16[4,1,8,257,128]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 get-tuple-element.2 = bf16[4,1,8,257,128] get-tuple-element(loop_var.1), index=1 get-tuple-element.3 = bf16[4,1,8,257,128] get-tuple-element(loop_var.1), index=2 sliced = bf16[1,8,257,128] fusion(get-tuple-element.2, get-tuple-element.1), kind=kLoop, calls=%fused_computation.slice sliced.2 = bf16[1,8,257,128] fusion(get-tuple-element.3, get-tuple-element.1), kind=kLoop,calls=%fused_computation.slice.2 temp = bf16[1,8,257,128] add(sliced, sliced.2) one = s32[] constant(1) idx = s32[] add(get-tuple-element.1, one) ROOT out = tuple(idx, get-tuple-element.2, get-tuple-element.3) } inner.condition { loop_var.1 = (s32[], bf16[4,1,8,257,128], bf16[4,1,8,257,128]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.2 = s32[] constant(4) ROOT less-than = pred[] compare(get-tuple-element.1, constant.2), direction=LT } outer.body { loop_var.1 = (s32[], bf16[4,1,8,257,128], bf16[4,1,8,257,128]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 get-tuple-element.2 = bf16[4,1,8,257,128] get-tuple-element(loop_var.1), index=1 get-tuple-element.3 = bf16[4,1,8,257,128] get-tuple-element(loop_var.1), index=2 zero = s32[] constant(0) buffer = bf16[4,1,8,257,128] custom-call(), custom_call_target="AllocateBuffer" inner.input = tuple(zero, buffer, get-tuple-element.2) inner = while(inner.input), condition=inner.condition, body=inner.body out1 = bf16[4,1,8,257,128] get-tuple-element(inner), index=1 one = s32[] constant(1) idx = s32[] add(get-tuple-element.1, one) ROOT tuple = (s32[], bf16[4,1,8,257,128], bf16[4,1,8,257,128]) tuple(idx, out1, get-tuple-element.3) } outer.condition { loop_var.1 = (s32[], bf16[4,1,8,257,128], bf16[4,1,8,257,128]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.2 = s32[] constant(4) mul = s32[] multiply(get-tuple-element.1, constant.2) ROOT less-than = pred[] compare(get-tuple-element.1, mul), direction=LT } ENTRY SimpleLoop { param1 = bf16[4,1,8,257,128] parameter(0) param2 = bf16[4,1,8,257,128] parameter(1) zero = s32[] constant(0) zero1 = s32[] constant(0) one = s32[] constant(1) tuple.1 = tuple(zero, param1, param2) while = while(tuple.1), condition=outer.condition, body=outer.body ROOT out = s32[] get-tuple-element(while), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } TEST_F(UnstackerTest, UnstackDSAndDUSPatternLoopFeedingLoop) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.update.slice (param_0.51117: bf16[4,1,8,257,128], p1: s32[], param_0.51118: bf16[1,8,257,128]) -> bf16[4,1,8,257,128] { %param_0.51117 = bf16[4,1,8,257,128] parameter(0) p1 = s32[] parameter(1) %param_0.51118 = bf16[1,8,257,128] parameter(2) bitcast = bf16[1,1,8,257,128] bitcast(param_0.51118) %constant.85694 = s32[] constant(0) ROOT %dynamic-update-slice.22040 = bf16[4,1,8,257,128] dynamic-update-slice(bf16[4,1,8,257,128] %param_0.51117, bitcast, p1, s32[] %constant.85694, s32[] %constant.85694, s32[] %constant.85694, s32[] %constant.85694) } %fused_computation.slice (param_0.51117: bf16[4,1,8,257,128], offset:s32[]) -> bf16[1,8,257,128] { %param_0.51117 = bf16[4,1,8,257,128] parameter(0) offset = s32[] parameter(1) zero = s32[] constant(0) %dynamic-slice.22040 = bf16[1,1,8,257,128] dynamic-slice(bf16[4,1,8,257,128] %param_0.51117, offset, zero, zero, zero, zero), dynamic_slice_sizes={1,1,8,257,128} ROOT %bitcast.31250 = bf16[1,8,257,128] bitcast(%dynamic-slice.22040) } first.body { loop_var.1 = (s32[], bf16[4,1,8,257,128]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1),index=0 get-tuple-element.2 = bf16[4,1,8,257,128] get-tuple-element(loop_var.1), index=1 constant = bf16[1,8,257,128] constant({...}) sliced = bf16[1,8,257,128] fusion(get-tuple-element.2, get-tuple-element.1), kind=kLoop, calls=%fused_computation.slice tmp = bf16[1,8,257,128] add(sliced, sliced) one = s32[] constant(1) idx = s32[] add(get-tuple-element.1, one) ROOT out = tuple(idx, get-tuple-element.2) } first.condition { loop_var.1 = (s32[], bf16[4,1,8,257,128]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.2 = s32[] constant(4) ROOT less-than = pred[] compare(get-tuple-element.1, constant.2), direction=LT } next.body { loop_var.1 = (s32[], bf16[4,1,8,257,128]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1),index=0 get-tuple-element.2 = bf16[4,1,8,257,128] get-tuple-element(loop_var.1), index=1 constant = bf16[1,8,257,128] constant({...}) update.sliced = bf16[4,1,8,257,128] fusion(get-tuple-element.2, get-tuple-element.1, constant), kind=kLoop, calls=%fused_computation.update.slice one = s32[] constant(1) idx = s32[] add(get-tuple-element.1, one) ROOT out = tuple(idx, update.sliced) } next.condition { loop_var.1 = (s32[], bf16[4,1,8,257,128]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.2 = s32[] constant(4) ROOT less-than = pred[] compare(get-tuple-element.1, constant.2), direction=LT } ENTRY SimpleLoop { param1 = bf16[4,1,8,257,128] parameter(0) param2 = bf16[4,1,8,257,128] parameter(1) zero = s32[] constant(0) zero1 = s32[] constant(0) one = s32[] constant(1) tuple.1 = tuple(zero, param1) while = while(tuple.1), condition=first.condition, body=first.body while.out = bf16[4,1,8,257,128] get-tuple-element(while), index=1 next.input = tuple(zero, while.out) next = while(next.input), condition=next.condition, body=next.body ROOT out = s32[] get-tuple-element(next), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); } TEST_F(UnstackerTest, UnstackDUSFusionWithPadPatternLoopFeedingLoop) { std::string hlo_string = R"( HloModule SimpleLoop fused_computation.75.clone { param_0.5713 = bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)} parameter(0) param_2.4396 = bf16[1,8,257,128]{3,2,1,0:T(8,128)(2,1)} parameter(2) constant.12166 = bf16[]{:T(256)} constant(0) pad.496 = bf16[1,8,513,128]{3,2,1,0:T(8,128)(2,1)} pad(param_2.4396, constant.12166), padding=0_0x0_0x0_256x0_0 bitcast.1262 = bf16[1,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)} bitcast(pad.496) param_1.6823 = s32[]{:T(128)} parameter(1) constant.12165 = s32[]{:T(128)} constant(0) ROOT dynamic-update-slice.193 = bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)} dynamic-update-slice(param_0.5713, bitcast.1262, param_1.6823, constant.12165, constant.12165, constant.12165, constant.12165) } fused_computation.1 { param_0.5712 = bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)}parameter(0) param_1.6822 = s32[]{:T(128)} parameter(1) constant.12164 = s32[]{:T(128)} constant(0) dynamic-slice.1597 = bf16[1,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)} dynamic-slice(param_0.5712, param_1.6822, constant.12164, constant.12164, constant.12164, constant.12164), dynamic_slice_sizes={1,1,8,513,128} ROOT bitcast.1261 = bf16[1,8,513,128]{3,2,1,0:T(8,128)(2,1)} bitcast(dynamic-slice.1597) } first.body { wide.param.29 = (s32[]{:T(128)}, bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)}) parameter(0) get-tuple-element.12177 = s32[]{:T(128)} get-tuple-element(wide.param.29), index=0 constant.12144..sunk.2 = s32[]{:T(128)} constant(1) add.4517 = s32[]{:T(128)} add(get-tuple-element.12177, constant.12144..sunk.2) get-tuple-element.12178 = bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)} get-tuple-element(wide.param.29), index=1 fusion.2381 = bf16[1,8,513,128]{3,2,1,0:T(8,128)(2,1)} fusion(get-tuple-element.12178, get-tuple-element.12177), kind=kLoop, calls=fused_computation.1 tmp = bf16[1,8,513,128]{3,2,1,0:T(8,128)(2,1)} add(fusion.2381, fusion.2381) ROOT tuple.949 = (s32[]{:T(128)}, bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)}) tuple(add.4517, get-tuple-element.12178) } first.cond { wide.param.28 = (s32[]{:T(128)}, bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)}) parameter(0) get-tuple-element.12167 = s32[]{:T(128)} get-tuple-element(wide.param.28), index=0 constant.12162 = s32[]{:T(128)} constant(2) ROOT compare.1815 = pred[]{:T(512)} compare(get-tuple-element.12167, constant.12162), direction=LT } wide.region_54.2652.clone_spmd { wide.param.29 = (s32[]{:T(128)}, bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)}) parameter(0) get-tuple-element.12177 = s32[]{:T(128)} get-tuple-element(wide.param.29), index=0 constant.12144..sunk.2 = s32[]{:T(128)} constant(1) add.4517 = s32[]{:T(128)} add(get-tuple-element.12177, constant.12144..sunk.2) get-tuple-element.12178 = bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)} get-tuple-element(wide.param.29), index=1 update = bf16[1,8,257,128]{3,2,1,0:T(8,128)(2,1)} constant({...}) fusion.2382 = bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)} fusion(get-tuple-element.12178, get-tuple-element.12177, update), kind=kLoop, calls=fused_computation.75.clone ROOT tuple.949 = (s32[]{:T(128)}, bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)}) tuple(add.4517, fusion.2382) } wide.region_55.2732.clone_spmd { wide.param.28 = (s32[]{:T(128)}, bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)}) parameter(0) get-tuple-element.12167 = s32[]{:T(128)} get-tuple-element(wide.param.28), index=0 constant.12162 = s32[]{:T(128)} constant(2) ROOT compare.1815 = pred[]{:T(512)} compare(get-tuple-element.12167, constant.12162), direction=LT } ENTRY main { p0 = bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)} parameter(0) init = s32[]{:T(128)} constant(0) first.input = tuple(init, p0) first.out = while(first.input), condition=first.cond , body=first.body o1 = bf16[2,1,8,513,128]{4,3,2,1,0:T(8,128)(2,1)} get-tuple-element(first.out), index=1 input = tuple(init, o1) out = while(input), condition=wide.region_55.2732.clone_spmd , body=wide.region_54.2652.clone_spmd ROOT res = s32[]{:T(128)} get-tuple-element(out), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); } TEST_F(UnstackerTest, UnstackDUSFusionWithAddPattern) { std::string hlo_string = R"( HloModule SimpleLoop add.2771.reduce_sub_computation { lhs.44 = bf16[] parameter(0) rhs.44 = bf16[] parameter(1) ROOT add.3079 = bf16[] add(lhs.44, rhs.44) } fused_computation.75.clone { param_0.31658 = bf16[2,4096]{1,0:T(8,128)(2,1)} parameter(0) param_1.26202 = s32[]{:T(128)} parameter(1) constant.47557 = s32[]{:T(128)} constant(0) dynamic-slice.12289 = bf16[1,4096]{1,0:T(2,128)(2,1)} dynamic-slice(param_0.31658, param_1.26202, constant.47557), dynamic_slice_sizes={1,4096} constant.47559 = bf16[]{:T(256)} constant(1) broadcast.39214 = bf16[1,4096]{1,0:T(2,128)(2,1)} broadcast(constant.47559), dimensions={} add.13176 = bf16[1,4096]{1,0:T(2,128)(2,1)} add(dynamic-slice.12289, broadcast.39214) constant.47558 = bf16[] constant(-0) ROOT reduce.8210 = bf16[4096]{0:T(1024)(128)(2,1)} reduce(add.13176, constant.47558), dimensions={0}, to_apply=add.2771.reduce_sub_computation } first.body { wide.param.29 = (s32[]{:T(128)}, bf16[2,4096]{1,0:T(8,128)(2,1)}) parameter(0) get-tuple-element.12177 = s32[]{:T(128)} get-tuple-element(wide.param.29), index=0 constant.12144..sunk.2 = s32[]{:T(128)} constant(1) add.4517 = s32[]{:T(128)} add(get-tuple-element.12177, constant.12144..sunk.2) get-tuple-element.12178 = bf16[2,4096]{1,0:T(8,128)(2,1)} get-tuple-element(wide.param.29), index=1 fusion.2381 = bf16[4096]{0:T(1024)(128)(2,1)} fusion(get-tuple-element.12178, get-tuple-element.12177), kind=kLoop, calls=fused_computation.75.clone tmp = bf16[4096]{0:T(1024)(128)(2,1)} add(fusion.2381, fusion.2381) ROOT tuple.949 = (s32[]{:T(128)}, bf16[2,4096]{1,0:T(8,128)(2,1)}) tuple(add.4517, get-tuple-element.12178) } first.cond { wide.param.28 = (s32[]{:T(128)}, bf16[2,4096]{1,0:T(8,128)(2,1)}) parameter(0) get-tuple-element.12167 = s32[]{:T(128)} get-tuple-element(wide.param.28), index=0 constant.12162 = s32[]{:T(128)} constant(2) ROOT compare.1815 = pred[]{:T(512)} compare(get-tuple-element.12167, constant.12162), direction=LT } ENTRY main { p0 = bf16[2,4096]{1,0:T(8,128)(2,1)} parameter(0) init = s32[]{:T(128)} constant(0) first.input = tuple(init, p0) first.out = while(first.input), condition=first.cond , body=first.body ROOT o1 = s32[]{:T(128)} get-tuple-element(first.out), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto original = module->Clone(); TF_ASSERT_OK_AND_ASSIGN(bool unstacked, HloUnstacker().Run(module.get())); EXPECT_TRUE(unstacked); EXPECT_TRUE(RunAndCompareTwoModules(std::move(module), std::move(original), std::nullopt, false)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_unstacker.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_unstacker_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a2e11f9f-5cdd-42c4-8ac0-3ccdbc5b0ec6
cpp
tensorflow/tensorflow
logdet
third_party/xla/xla/hlo/builder/lib/logdet.cc
third_party/xla/xla/hlo/builder/lib/logdet_test.cc
#include "xla/hlo/builder/lib/logdet.h" #include <limits> #include <memory> #include <vector> #include "absl/status/statusor.h" #include "xla/hlo/builder/lib/arithmetic.h" #include "xla/hlo/builder/lib/constants.h" #include "xla/hlo/builder/lib/matrix.h" #include "xla/hlo/builder/lib/qr.h" #include "xla/hlo/builder/lib/slicing.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/statusor.h" namespace xla { SignAndLogDet SLogDet(XlaOp a) { absl::StatusOr<SignAndLogDet> result = [&]() -> absl::StatusOr<SignAndLogDet> { TF_ASSIGN_OR_RETURN(Shape a_shape, a.builder()->GetShape(a)); auto qr = Qr(a); int64_t m = ShapeUtil::GetDimension(a_shape, -2); int64_t n = ShapeUtil::GetDimension(a_shape, -1); if (m != n) { return InvalidArgument( "Arguments to logdet must be (batched) square matrices, got: %s", a_shape.ToString()); } auto log_abs_det = Einsum(Log(Abs(qr.q_and_r)), "...aa->..."); auto sign_diag = Reduce( Sign(Einsum(qr.q_and_r, "...aa->...a")), One(a.builder(), a_shape.element_type()), CreateScalarMultiplyComputation(a_shape.element_type(), a.builder()), {a_shape.rank() - 2}); auto sliced_taus = SliceInMinorDims(qr.taus, {0}, {n - 1}); auto sign_taus = Reduce( Select(Ne(sliced_taus, ZerosLike(sliced_taus)), FullLike(sliced_taus, -1), FullLike(sliced_taus, 1)), One(a.builder(), a_shape.element_type()), CreateScalarMultiplyComputation(a_shape.element_type(), a.builder()), {a_shape.rank() - 2}); return SignAndLogDet{sign_diag * sign_taus, log_abs_det}; }(); if (!result.ok()) { XlaOp error = a.builder()->ReportError(result.status()); return SignAndLogDet{error, error}; } return result.value(); } XlaOp LogDet(XlaOp a) { SignAndLogDet slogdet = SLogDet(a); return Select( Ge(slogdet.sign, ZerosLike(slogdet.sign)), slogdet.logdet, FullLike(slogdet.logdet, std::numeric_limits<float>::quiet_NaN())); } }
#include "xla/hlo/builder/lib/logdet.h" #include <limits> #include "xla/array.h" #include "xla/array2d.h" #include "xla/array3d.h" #include "xla/error_spec.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/test_macros.h" namespace { using LogDetTest = xla::ClientLibraryTestBase; XLA_TEST_F(LogDetTest, Simple) { xla::XlaBuilder builder(TestName()); xla::Array2D<float> a_vals({ {4, 6, 8, 10}, {6, 45, 54, 63}, {8, 54, 146, 166}, {10, 63, 166, 310}, }); xla::XlaOp a; auto a_data = CreateR2Parameter<float>(a_vals, 0, "a", &builder, &a); xla::SignAndLogDet slogdet = xla::SLogDet(a); xla::XlaOp logdet = xla::LogDet(a); xla::Tuple(&builder, {slogdet.sign, slogdet.logdet, logdet}); xla::Literal expected = xla::LiteralUtil::MakeTupleOwned( xla::LiteralUtil::CreateR0<float>(1.f), xla::LiteralUtil::CreateR0<float>(14.1601f), xla::LiteralUtil::CreateR0<float>(14.1601f)); ComputeAndCompareLiteral(&builder, expected, {a_data.get()}, xla::ErrorSpec(1e-4)); } XLA_TEST_F(LogDetTest, SimpleTriangle) { xla::XlaBuilder builder(TestName()); xla::Array2D<float> a_vals({ {4, 6, 8, 10}, {4, -39, 62, 73}, {0, 0, -146, 166}, {4, 6, 8, 320}, }); xla::XlaOp a; auto a_data = CreateR2Parameter<float>(a_vals, 0, "a", &builder, &a); xla::SignAndLogDet slogdet = xla::SLogDet(a); xla::XlaOp logdet = xla::LogDet(a); xla::Tuple(&builder, {slogdet.sign, slogdet.logdet, logdet}); xla::Literal expected = xla::LiteralUtil::MakeTupleOwned( xla::LiteralUtil::CreateR0<float>(1.f), xla::LiteralUtil::CreateR0<float>(15.9131355f), xla::LiteralUtil::CreateR0<float>(15.9131355f)); ComputeAndCompareLiteral(&builder, expected, {a_data.get()}, xla::ErrorSpec(1e-4)); } XLA_TEST_F(LogDetTest, SimpleBatched) { xla::XlaBuilder builder(TestName()); xla::Array3D<float> a_vals({ { {4, 6, 8, 10}, {6, 45, 54, 63}, {8, 54, 146, 166}, {10, 63, 166, 310}, }, { {16, 24, 8, 12}, {24, 61, 82, 48}, {8, 82, 456, 106}, {12, 48, 106, 62}, }, {{2, 2, 3, 4}, {4, 5, 6, 7}, {7, 8, 9, 8}, {10, 11, 12, 13}}, {{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}, }); xla::XlaOp a; auto a_data = CreateR3Parameter<float>(a_vals, 0, "a", &builder, &a); xla::SignAndLogDet slogdet = xla::SLogDet(a); xla::XlaOp logdet = xla::LogDet(a); xla::Tuple(&builder, {slogdet.sign, slogdet.logdet, logdet}); xla::Literal expected = xla::LiteralUtil::MakeTupleOwned( xla::LiteralUtil::CreateR1<float>({1.f, 1.f, -1.f, 0.f}), xla::LiteralUtil::CreateR1<float>( {14.1601f, 14.3092f, 2.4849f, -std::numeric_limits<float>::infinity()}), xla::LiteralUtil::CreateR1<float>( {14.1601f, 14.3092f, std::numeric_limits<float>::quiet_NaN(), -std::numeric_limits<float>::infinity()})); ComputeAndCompareLiteral(&builder, expected, {a_data.get()}, xla::ErrorSpec(1e-4)); } XLA_TEST_F(LogDetTest, LogdetOfLargerMatricesBatched) { xla::XlaBuilder builder(TestName()); xla::Array<float> a_vals = { {{7.2393, 1.1413, 4.1883, -4.8272, 3.2831, -0.0568, -2.4776}, {0.4347, 3.4095, 1.6259, -4.7100, 1.5942, 1.4217, -2.8009}, {3.6964, 0.4882, 6.5276, -1.2128, 1.3851, 0.7417, -3.8515}, {-3.7986, -5.1188, -1.9410, 14.0205, -5.4515, 3.1831, 5.1488}, {1.5621, 3.0426, 1.4819, -4.5938, 10.1397, 4.9312, -2.8351}, {-1.5436, -0.0287, -0.1139, 4.4499, 2.5894, 6.1216, 2.7201}, {-3.7241, -2.7670, -3.8162, 4.5961, -1.7251, -0.4190, 8.6562}}, {{3.3789, -2.3607, -1.2471, 2.1503, 0.6062, -0.6057, 1.7748}, {-1.8670, 11.0947, 0.1229, 0.0599, 3.1714, -4.7941, -4.5442}, {-0.6905, -0.0829, 5.2156, 2.9528, 2.6200, 6.1638, 1.8652}, {3.0521, 2.2174, 0.7444, 10.7268, 0.6443, -2.7732, 1.6840}, {1.8479, 3.0821, 4.5671, 2.9254, 6.1338, 5.2066, 2.3662}, {-0.0360, -5.5341, 5.9687, -0.3297, 2.1174, 13.0016, 4.0118}, {0.4380, -4.6683, 3.1548, 0.0924, 0.7176, 6.4679, 6.1819}}, {{10.0487, 4.0350, -0.8471, -1.2887, -0.8172, -3.3698, 1.3191}, {4.8678, 4.6081, 0.8419, -0.2454, -3.2599, -1.2386, 2.4070}, {1.4877, 0.8362, 2.6077, 1.1782, -0.1116, 1.7130, -1.1883}, {-0.9245, -0.7435, -0.9456, 2.5936, 1.9887, -0.1324, -0.1453}, {0.2918, -0.5301, -0.8775, 1.0478, 8.9262, 2.4731, -0.4393}, {-3.5759, -1.5619, 2.4410, 1.3046, 4.2678, 7.3587, -4.0935}, {-1.1187, 0.9150, -1.8253, 0.0390, -2.5684, -4.0778, 4.1447}}}; xla::XlaOp a; auto a_data = CreateParameter<float>(a_vals, 0, "a", &builder, &a); xla::SignAndLogDet slogdet = xla::SLogDet(a); xla::XlaOp logdet = xla::LogDet(a); xla::Tuple(&builder, {slogdet.sign, slogdet.logdet, logdet}); xla::Literal expected = xla::LiteralUtil::MakeTupleOwned( xla::LiteralUtil::CreateR1<float>({1.f, 1.f, 1.f}), xla::LiteralUtil::CreateR1<float>({8.93788053, 6.77846303, 7.4852403}), xla::LiteralUtil::CreateR1<float>({8.93788053, 6.77846303, 7.4852403})); ComputeAndCompareLiteral(&builder, expected, {a_data.get()}, xla::ErrorSpec(1e-4)); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/builder/lib/logdet.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/builder/lib/logdet_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5b34f93e-e91e-4025-b82e-0a8ba602f71d
cpp
tensorflow/tensorflow
divide
tensorflow/lite/experimental/shlo/ops/divide.cc
tensorflow/lite/experimental/shlo/ops/divide_test.cc
#include "tensorflow/lite/experimental/shlo/ops/divide.h" #include <functional> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct Divide : std::divides<void> {}; DivideOp Create(DivideOp::Attributes) { return {}; } absl::Status Prepare(DivideOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(lhs.shape(), rhs.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR(CheckSupportedTypes(CheckCtx("divide"), lhs, IsIntTensor, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("divide"), lhs, output)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("divide"), rhs, output)); return absl::OkStatus(); } absl::Status Evaluate(DivideOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { Divide divide; if (IsIntTensor(lhs) || IsFloatTensor(lhs)) { DISPATCH_INT_FLOAT(detail::EvaluateNoQuantization, lhs.tensor_element_type(), divide, lhs, rhs, output); } else if (IsQuantizedPerTensorTensor(lhs)) { DISPATCH_QUANTIZED(detail::DequantizeOpQuantizePerTensor, lhs.quantized_per_tensor_element_type().StorageType(), lhs.quantized_per_tensor_element_type().ExpressedType(), divide, lhs, rhs, output) } return absl::FailedPreconditionError( "stablehlo.divide: Unsupported tensor type."); } }
#include "tensorflow/lite/experimental/shlo/ops/divide.h" #include <functional> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise_test_util.h" #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/quantize.h" #include "tensorflow/lite/experimental/shlo/quantized_tensor_element_type.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::FloatEq; using testing::Pointwise; namespace shlo_ref { template <> struct ParamName<DivideOp> { static std::string Get() { return "Divide"; } }; struct Divide : std::divides<void> {}; namespace { INSTANTIATE_TYPED_TEST_SUITE_P(Divide, BinaryElementwiseOpShapePropagationTest, DivideOp, TestParamNames); using MultipyBaselineContraintTypes = BinaryElementwiseBaselineConstraintTypes< DivideOp, ConcatTypes<BaselineConstraintIntTypes, BaselineConstraintFloatTypes, BaselineConstraintQuantizedPerTensorTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P( Divide, BinaryElementwiseSameBaselineElementTypeConstraintTest, MultipyBaselineContraintTypes, TestParamNames); using UnsupportedTypes = WithOpTypes<DivideOp, ConcatTypes<BoolTestType, PerAxisQuantizedTestTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P(Divide, BinaryElementwiseUnsupportedTypeTest, UnsupportedTypes, TestParamNames); using ArithmeticTypes = ConcatTypes<ArithmeticTestTypes>; template <class T> struct DivideTest : ::testing::Test {}; TYPED_TEST_SUITE(DivideTest, ArithmeticTypes, TestParamNames); TYPED_TEST(DivideTest, ArithmeticTestTypesTensorsWork) { using StorageT = typename TypeParam::StorageT; const Shape shape({2, 3, 4}); Vector<StorageT> lhs_data = RandomBuffer<TypeParam::kStorage>(shape, -50, 50); Vector<StorageT> rhs_data = RandomBuffer<TypeParam::kStorage>(shape, 1, 5); Vector<StorageT> output_data(shape.NumElements()); Tensor lhs_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = lhs_data.data()}; Tensor rhs_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = rhs_data.data()}; Tensor output_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(lhs_data, rhs_data, expected_data.begin(), Divide()); auto op = Create(DivideOp::Attributes{}); ASSERT_OK(Prepare(op, lhs_tensor, rhs_tensor, output_tensor)); ASSERT_OK(Evaluate(op, lhs_tensor, rhs_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(FloatEq(), expected_data)); } template <class T> struct QuantizedDivideTest : ::testing::Test {}; TYPED_TEST_SUITE(QuantizedDivideTest, QuantizedTestTypes, TestParamNames); TYPED_TEST(QuantizedDivideTest, PerTensorWorks) { using StorageT = typename TypeParam::StorageT; using ExpressedT = typename TypeParam::ExpressedT; const Shape shape({2, 3, 4}); const ExpressedT scale = static_cast<ExpressedT>(1.5); const StorageT zero_point = static_cast<StorageT>(2); Vector<StorageT> lhs_data = RandomBuffer<TypeParam::kStorage>(shape, -50, 50); Vector<StorageT> rhs_data = RandomBuffer<TypeParam::kStorage>( shape, zero_point + 1, zero_point + 5); Vector<StorageT> output_data(shape.NumElements()); const QuantizedElementTypePerTensor tensor_type = QuantizedElementTypePerTensor(TypeParam::kStorage, zero_point, TypeParam::kExpressed, scale); Tensor lhs_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = lhs_data.data()}; Tensor rhs_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = rhs_data.data()}; Tensor output_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform( lhs_data, rhs_data, expected_data.begin(), [zero_point, scale](auto lhs, auto rhs) { const ExpressedT dequantized_lhs = Dequantize(lhs, zero_point, scale); const ExpressedT dequantized_rhs = Dequantize(rhs, zero_point, scale); const ExpressedT dequantized_res = Divide()(dequantized_lhs, dequantized_rhs); return Quantize<TypeParam::kStorage, TypeParam::kExpressed>( dequantized_res, zero_point, static_cast<ExpressedT>(1.) / scale); }); auto op = Create(DivideOp::Attributes{}); ASSERT_OK(Prepare(op, lhs_tensor, rhs_tensor, output_tensor)); ASSERT_OK(Evaluate(op, lhs_tensor, rhs_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(FloatEq(), expected_data)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/divide.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/divide_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f25e9d48-d814-44db-83e3-84a6b1b9ef2d
cpp
google/arolla
status
arolla/util/status.cc
arolla/util/status_test.cc
#include "absl/status/status.h" #include <cstdint> #include <initializer_list> #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" namespace arolla { absl::Status SizeMismatchError(std::initializer_list<int64_t> sizes) { return absl::InvalidArgumentError(absl::StrCat( "argument sizes mismatch: (", absl::StrJoin(sizes, ", "), ")")); } }
#include "arolla/util/status.h" #include <initializer_list> #include <memory> #include <string> #include <tuple> #include <utility> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "absl/status/statusor.h" #include "absl/types/span.h" namespace arolla { namespace { using ::absl_testing::IsOkAndHolds; using ::testing::AnyOf; using ::testing::Eq; using ::testing::Test; TEST(StatusTest, CheckInputStatus) { EXPECT_OK(CheckInputStatus()); EXPECT_OK(CheckInputStatus(13)); EXPECT_OK(CheckInputStatus(13, "a")); EXPECT_OK(CheckInputStatus(absl::StatusOr<int>(13), "a")); EXPECT_OK(CheckInputStatus(13, absl::StatusOr<std::string>("a"))); EXPECT_OK(CheckInputStatus(absl::StatusOr<int>(13), absl::StatusOr<std::string>("a"))); absl::Status bad_status1{absl::StatusCode::kInvalidArgument, "bad 1"}; absl::Status bad_status2{absl::StatusCode::kDataLoss, "bad 2"}; EXPECT_EQ(CheckInputStatus(absl::StatusOr<int>(bad_status1)), bad_status1); EXPECT_EQ(CheckInputStatus(13, absl::StatusOr<int>(bad_status1)), bad_status1); EXPECT_EQ(CheckInputStatus(absl::StatusOr<int>(13), absl::StatusOr<int>(bad_status1)), bad_status1); EXPECT_EQ(CheckInputStatus(absl::StatusOr<int>(bad_status1), absl::StatusOr<int>(bad_status2)), bad_status1); } TEST(StatusTest, LiftStatusUpSuccess) { std::tuple<> empty = LiftStatusUp().value(); EXPECT_THAT(empty, Eq(std::make_tuple())); std::tuple<int> one = LiftStatusUp(absl::StatusOr<int>(1)).value(); EXPECT_THAT(one, Eq(std::make_tuple(1))); std::tuple<std::string, int> two = LiftStatusUp(absl::StatusOr<std::string>("one"), absl::StatusOr<int>(2)) .value(); EXPECT_THAT(two, Eq(std::make_tuple(std::string("one"), 2))); ASSERT_OK_AND_ASSIGN( std::vector<int> vec, LiftStatusUp(absl::Span<const absl::StatusOr<int>>{1, 2})); EXPECT_THAT(vec, ::testing::ElementsAre(1, 2)); absl::flat_hash_map<int, int> fhm = LiftStatusUp(std::initializer_list<std::pair<int, absl::StatusOr<int>>>{ {1, 2}, {3, 4}}) .value(); EXPECT_THAT(fhm, Eq(absl::flat_hash_map<int, int>{{1, 2}, {3, 4}})); absl::flat_hash_map<int, int> fhm1 = LiftStatusUp(std::initializer_list< std::pair<absl::StatusOr<int>, absl::StatusOr<int>>>{ {1, 2}, {3, 4}}) .value(); EXPECT_THAT(fhm, Eq(absl::flat_hash_map<int, int>{{1, 2}, {3, 4}})); } TEST(StatusTest, LiftStatusUpErrors) { absl::Status bad_status1{absl::StatusCode::kInvalidArgument, "bad 1"}; absl::Status bad_status2{absl::StatusCode::kDataLoss, "bad 2"}; EXPECT_EQ(LiftStatusUp(absl::StatusOr<int>(bad_status1)).status(), bad_status1); EXPECT_EQ(LiftStatusUp(absl::StatusOr<std::string>("one"), absl::StatusOr<int>(bad_status2)) .status(), bad_status2); EXPECT_EQ(LiftStatusUp(absl::StatusOr<std::string>("one"), absl::StatusOr<int>(bad_status1), absl::StatusOr<float>(bad_status2)) .status(), bad_status1); EXPECT_EQ(LiftStatusUp(absl::StatusOr<float>(bad_status2), absl::StatusOr<std::string>("one"), absl::StatusOr<int>(bad_status1)) .status(), bad_status2); EXPECT_THAT(LiftStatusUp(absl::Span<const absl::StatusOr<int>>{bad_status1, bad_status2}) .status(), bad_status1); EXPECT_THAT( LiftStatusUp(std::initializer_list<std::pair<int, absl::StatusOr<int>>>{ {1, bad_status1}, {2, 3}, {4, bad_status2}}) .status(), AnyOf(bad_status1, bad_status2)); EXPECT_THAT( LiftStatusUp(std::initializer_list< std::pair<absl::StatusOr<int>, absl::StatusOr<int>>>{ {bad_status1, 1}, {2, 3}, {4, bad_status2}}) .status(), AnyOf(bad_status1, bad_status2)); EXPECT_THAT( LiftStatusUp(std::initializer_list< std::pair<absl::StatusOr<int>, absl::StatusOr<int>>>{ {1, bad_status1}, {2, 3}, {4, bad_status2}}) .status(), AnyOf(bad_status1, bad_status2)); } TEST(StatusTest, UnStatus) { using T = std::unique_ptr<int>; using StatusOrT = absl::StatusOr<T>; { StatusOrT status_or_t = std::make_unique<int>(1); const T& value = UnStatus(status_or_t); EXPECT_EQ(*value, 1); EXPECT_EQ(value.get(), status_or_t.value().get()); } { StatusOrT status_or_t = std::make_unique<int>(1); T value = UnStatus(std::move(status_or_t)); EXPECT_EQ(*value, 1); } { T original_value = std::make_unique<int>(1); const T& value = UnStatus(original_value); EXPECT_EQ(*value, 1); EXPECT_EQ(value.get(), original_value.get()); } { T original_value = std::make_unique<int>(1); T value = UnStatus(std::move(original_value)); EXPECT_EQ(*value, 1); } } TEST(StatusTest, FirstErrorStatus) { absl::Status ok_status = absl::OkStatus(); absl::Status failed_precondition = absl::FailedPreconditionError("msg1"); absl::Status internal_error = absl::InternalError("msg2"); EXPECT_OK(FirstErrorStatus({})); EXPECT_OK(FirstErrorStatus({ok_status, ok_status})); EXPECT_EQ(FirstErrorStatus({failed_precondition}), failed_precondition); EXPECT_EQ(FirstErrorStatus({ok_status, failed_precondition}), failed_precondition); EXPECT_EQ(FirstErrorStatus({failed_precondition, ok_status}), failed_precondition); EXPECT_EQ(FirstErrorStatus({failed_precondition, internal_error}), failed_precondition); EXPECT_EQ(FirstErrorStatus({internal_error, failed_precondition}), internal_error); } TEST(StatusTest, GetStatusOrOk) { absl::Status ok_status = absl::OkStatus(); EXPECT_OK(GetStatusOrOk(5)); EXPECT_OK(GetStatusOrOk(ok_status)); EXPECT_OK(GetStatusOrOk(absl::StatusOr<int>(5))); absl::Status failed_precondition = absl::FailedPreconditionError("msg1"); EXPECT_EQ(GetStatusOrOk(failed_precondition), failed_precondition); EXPECT_EQ(GetStatusOrOk(absl::StatusOr<int>(failed_precondition)), failed_precondition); } TEST(StatusTest, IsOkStatus) { absl::Status ok_status = absl::OkStatus(); EXPECT_TRUE(IsOkStatus(5)); EXPECT_TRUE(IsOkStatus(ok_status)); EXPECT_TRUE(IsOkStatus(absl::StatusOr<int>(5))); absl::Status failed_precondition = absl::FailedPreconditionError("msg1"); EXPECT_FALSE(IsOkStatus(failed_precondition)); EXPECT_FALSE(IsOkStatus(absl::StatusOr<int>(failed_precondition))); } TEST(StatusTest, UnStatusCaller) { absl::Status failed_precondition = absl::FailedPreconditionError("msg1"); absl::Status failed_precondition2 = absl::FailedPreconditionError("msg2"); auto add_op = [](int a, int b) { return a + b; }; UnStatusCaller<decltype(add_op)> add_op_wrap{add_op}; auto add_op_with_status = [](int a, int b) -> absl::StatusOr<int> { return a + b; }; auto add_op_with_status_wrap = MakeUnStatusCaller(add_op_with_status); auto add_op_always_error = [&](int a, int b) -> absl::StatusOr<int> { return failed_precondition; }; auto add_op_always_error_wrap = MakeUnStatusCaller(add_op_always_error); EXPECT_THAT(add_op_wrap(5, 7), IsOkAndHolds(12)); EXPECT_THAT(add_op_with_status_wrap(5, 7), IsOkAndHolds(12)); EXPECT_EQ(add_op_always_error_wrap(5, 7).status(), failed_precondition); EXPECT_EQ(add_op_wrap(5, absl::StatusOr<int>(failed_precondition)).status(), failed_precondition); EXPECT_EQ(add_op_wrap(absl::StatusOr<int>(failed_precondition), absl::StatusOr<int>(failed_precondition2)) .status(), failed_precondition); EXPECT_EQ( add_op_always_error_wrap(5, absl::StatusOr<int>(failed_precondition2)) .status(), failed_precondition2); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/util/status.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/util/status_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
f9f10a84-8072-4a0b-badf-15411ee7d548
cpp
tensorflow/tensorflow
cost_analysis
tensorflow/compiler/mlir/tfrt/analysis/cost_analysis.cc
third_party/xla/xla/service/memory_space_assignment/cost_analysis_test.cc
#include "tensorflow/compiler/mlir/tfrt/analysis/cost_analysis.h" #include <algorithm> #include <string> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/strings/string_view.h" #include "llvm/Support/Casting.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Block.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Operation.h" #include "mlir/Support/LLVM.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_dialect.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_types.h" #include "tensorflow/compiler/mlir/tfrt/constants.h" #include "tensorflow/core/tfrt/fallback/cost_recorder.h" #include "tfrt/compiler/opdefs/tfrt_op_interfaces.h" namespace tensorflow { namespace tfrt_compiler { namespace { constexpr int64_t kDefaultCheapCost = 1; int64_t GetRankedTensorSize(mlir::TensorType type) { auto shape = type.getShape(); int64_t size = 1; for (int64_t dim : shape) { size *= std::max(kDefaultCheapCost, dim); } return size; } int64_t InferTensorSize(const CostContext& context, mlir::TensorType type) { if (type.hasRank()) return GetRankedTensorSize(type); return context.default_unranked_tensor_size; } int64_t InferLookupTableFindV2Cost(const CostContext& context, mlir::TF::LookupTableFindV2Op op) { constexpr int64_t kLookupTableFindCostScale = 8; constexpr int64_t kLookupTableFindStringKeyCostScale = 16; auto value_type = mlir::cast<mlir::TensorType>(op.getValues().getType()); auto key_type = mlir::cast<mlir::TensorType>(op.getKeys().getType()); int64_t output_size = InferTensorSize(context, value_type); int64_t cost = kLookupTableFindCostScale * output_size; if (mlir::isa<mlir::TF::StringType>(key_type.getElementType())) cost *= kLookupTableFindStringKeyCostScale; return cost; } int64_t InferGatherV2Cost(const CostContext& context, mlir::TF::GatherV2Op op) { return InferTensorSize( context, mlir::cast<mlir::TensorType>(op.getOutput().getType())); } template <typename OpType> int64_t InferSparseSegmentOpCost(const CostContext& context, OpType op) { return InferTensorSize( context, mlir::cast<mlir::TensorType>(op.getOutput().getType())); } using CostFunctionRegistry = absl::flat_hash_map<std::string, CostFunction>; void RegisterCostFunction(CostFunctionRegistry& registry, absl::string_view op_name, CostFunction cost_function) { auto r = registry.try_emplace(op_name, std::move(cost_function)); assert(r.second); (void)r; } template <typename OpType, typename F> void RegisterCostFunction(CostFunctionRegistry& registry, F f) { RegisterCostFunction( registry, OpType::getOperationName().str(), [f = std::move(f)](const CostContext& context, mlir::Operation* op) { return f(context, llvm::cast<OpType>(op)); }); } CostFunctionRegistry& GetCostFunctionRegistry() { static auto* const registry = []() { auto* registry = new CostFunctionRegistry; RegisterCostFunction<mlir::TF::GatherV2Op>(*registry, InferGatherV2Cost); RegisterCostFunction<mlir::TF::SparseSegmentSumOp>( *registry, InferSparseSegmentOpCost<mlir::TF::SparseSegmentSumOp>); RegisterCostFunction<mlir::TF::SparseSegmentMeanOp>( *registry, InferSparseSegmentOpCost<mlir::TF::SparseSegmentMeanOp>); RegisterCostFunction<mlir::TF::SparseSegmentSqrtNOp>( *registry, InferSparseSegmentOpCost<mlir::TF::SparseSegmentSqrtNOp>); RegisterCostFunction<mlir::TF::LookupTableFindV2Op>( *registry, InferLookupTableFindV2Cost); return registry; }(); return *registry; } } void RegisterCostFunction(absl::string_view op_name, CostFunction cost_function) { RegisterCostFunction(GetCostFunctionRegistry(), op_name, std::move(cost_function)); } bool HasCostFunctionRegistered(absl::string_view op_name) { return GetCostFunctionRegistry().contains(op_name); } int64_t CostAnalysis::GetCost(mlir::Operation* op) const { assert(cost_map_.count(op) > 0); return cost_map_.lookup(op); } void CostAnalysis::AnalyzeArguments(mlir::func::FuncOp func_op) { for (auto arg : func_op.getArguments()) { if (!mlir::isa<mlir::TensorType>(arg.getType())) continue; auto type = mlir::cast<mlir::TensorType>(arg.getType()); if (type.hasRank()) { max_arg_size_ = std::max(max_arg_size_, GetRankedTensorSize(type)); } } } void CostAnalysis::AnalyzeBlock(mlir::Block* block) { for (auto& op : *block) { EvaluateCost(&op); } } void CostAnalysis::EvaluateCost(mlir::Operation* op) { if (auto cost_function = mlir::dyn_cast<tfrt::compiler::CostFunctionInterface>(op)) { cost_map_[op] = cost_function.cost(); return; } if (!llvm::isa<mlir::TF::TensorFlowDialect>(op->getDialect())) { cost_map_[op] = max_arg_size_; return; } const auto& registry = GetCostFunctionRegistry(); absl::string_view op_name = op->getName().getStringRef(); auto iter = registry.find(op_name); if (iter != registry.end()) { CostContext context; context.default_unranked_tensor_size = max_arg_size_; cost_map_[op] = iter->second(context, op); return; } if (cost_recorder_ != nullptr) { const auto op_key_attr = op->getAttrOfType<mlir::IntegerAttr>(kOpKeyAttrName); if (op_key_attr) { cost_map_[op] = cost_recorder_->GetCost(op_key_attr.getInt()); return; } } if (llvm::isa<mlir::TF::ShapeOp, mlir::TF::StridedSliceOp, mlir::TF::ReshapeOp, mlir::TF::ExpandDimsOp>(op)) { cost_map_[op] = kDefaultCheapCost; return; } int64_t cost = kDefaultCheapCost; for (auto operand : op->getOperands()) { auto type = mlir::cast<mlir::TensorType>(operand.getType()); if (type.hasRank()) { cost += GetRankedTensorSize(type); } else { cost += max_arg_size_; } } cost_map_[op] = cost; } } }
#include "xla/service/memory_space_assignment/cost_analysis.h" #include <algorithm> #include <cstdint> #include <memory> #include <gtest/gtest.h> #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using memory_space_assignment::CostAnalysis; using memory_space_assignment::CostAnalysisOptions; constexpr int64_t kPointerSize = 8; int64_t ShapeSize(const Shape& shape) { return ShapeUtil::ByteSizeOf(shape, kPointerSize); } class MemorySpaceAssignmentCostAnalysisTest : public HloTestBase { protected: absl::Status Initialize(const HloModule* module, float pipeline_overhead_window_size_mib = 0.0) { HloCostAnalysis::Options options; options_.alternate_mem_bandwidth_bytes_per_second = 128; options_.async_copy_bandwidth_bytes_per_second = 32; options_.pipeline_overhead_window_size_mib = pipeline_overhead_window_size_mib; options.shape_size = ShapeSize; options.set_flops_per_second(8); options.set_bytes_per_second(32); options.set_transcendentals_per_second(16); options.set_flops_min_latency_second(1); hlo_cost_analysis_ = std::make_unique<HloCostAnalysis>(options); TF_RETURN_IF_ERROR( module->entry_computation()->Accept(hlo_cost_analysis_.get())); hlo_cost_analysis_costs_ = std::make_unique<memory_space_assignment::HloCostAnalysisCosts>( *hlo_cost_analysis_); TF_ASSIGN_OR_RETURN( cost_analysis_, CostAnalysis::Create(*hlo_cost_analysis_costs_, options_, *module)); return absl::OkStatus(); } CostAnalysisOptions options_; std::unique_ptr<HloCostAnalysis> hlo_cost_analysis_; std::unique_ptr<memory_space_assignment::HloCostAnalysisCosts> hlo_cost_analysis_costs_; std::unique_ptr<CostAnalysis> cost_analysis_; }; TEST_F(MemorySpaceAssignmentCostAnalysisTest, NoPipelineOverhead) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY Entry { param0 = f32[2,4] parameter(0) param1 = f32[2,4] parameter(1) ROOT add = f32[2,4] add(param0, param1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(Initialize(module.get())); const HloInstruction* add = module->entry_computation()->root_instruction(); const float expected_compute_elapsed = std::max( 8.0f / 8.0f, hlo_cost_analysis_->min_latency_seconds(HloCostAnalysis::kFlopsKey)); LOG(INFO) << "Expected compute elapsed = " << expected_compute_elapsed; EXPECT_EQ(cost_analysis_->GetInstructionElapsedDueToCompute(*add), expected_compute_elapsed); float expected_memory_elapsed = (3 * 4 * 8) / 32.0; LOG(INFO) << "Expected memory elapsed = " << expected_memory_elapsed; EXPECT_EQ(cost_analysis_->GetInstructionElapsedDueToMemory(*add), expected_memory_elapsed); EXPECT_EQ(cost_analysis_->GetInstructionElapsed(*add), expected_memory_elapsed); EXPECT_EQ( cost_analysis_->GetInstructionElapsedInAlternateMemory(*add, {}, {}), expected_memory_elapsed); expected_memory_elapsed = ((2 * 4 * 8) / 32.0) + ((4 * 8) / 128.0); LOG(INFO) << "Expected memory elapsed = " << expected_memory_elapsed; EXPECT_EQ(cost_analysis_->GetInstructionElapsedDueToMemory(*add, {{0, {}}}), expected_memory_elapsed); EXPECT_EQ(cost_analysis_->GetInstructionElapsedInAlternateMemory( *add, {{0, {}}}, {}), expected_memory_elapsed); expected_memory_elapsed = ((4 * 8) / 32.0) + ((2 * 4 * 8) / 128.0); LOG(INFO) << "Expected memory elapsed = " << expected_memory_elapsed; EXPECT_EQ( cost_analysis_->GetInstructionElapsedDueToMemory(*add, {{0, {}}}, {{}}), expected_memory_elapsed); EXPECT_EQ(cost_analysis_->GetInstructionElapsedInAlternateMemory( *add, {{0, {}}}, {{}}), expected_memory_elapsed); expected_memory_elapsed = (3 * 4 * 8) / 128.0; LOG(INFO) << "Expected memory elapsed = " << expected_memory_elapsed; EXPECT_EQ(cost_analysis_->GetInstructionElapsedDueToMemory( *add, {{0, {}}, {1, {}}}, {{}}), expected_memory_elapsed); EXPECT_EQ(cost_analysis_->GetInstructionElapsedInAlternateMemory( *add, {{0, {}}, {1, {}}}, {{}}), expected_compute_elapsed); } TEST_F(MemorySpaceAssignmentCostAnalysisTest, PipelineOverhead) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY Entry { param0 = f32[2,4] parameter(0) param1 = f32[2,4] parameter(1) ROOT add = f32[2,4] add(param0, param1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK( Initialize(module.get(), (64.0 / 1024 / 1024))); const HloInstruction* add = module->entry_computation()->root_instruction(); const float expected_compute_elapsed = std::max( 8.0f / 8.0f, hlo_cost_analysis_->min_latency_seconds(HloCostAnalysis::kFlopsKey)); LOG(INFO) << "Expected compute elapsed = " << expected_compute_elapsed; EXPECT_EQ(cost_analysis_->GetInstructionElapsedDueToCompute(*add), expected_compute_elapsed); float expected_memory_elapsed = (3 * 4 * 8) / 32.0; LOG(INFO) << "Expected memory elapsed = " << expected_memory_elapsed; EXPECT_EQ(cost_analysis_->GetInstructionElapsedDueToMemory(*add), expected_memory_elapsed); float expected_overhead = expected_compute_elapsed * 2 / 3; LOG(INFO) << "Expected overhead = " << expected_overhead; EXPECT_EQ(cost_analysis_->GetDefaultMemoryAccessOverhead(*add), expected_overhead); EXPECT_EQ(cost_analysis_->GetInstructionElapsed(*add), expected_memory_elapsed + expected_overhead); EXPECT_EQ( cost_analysis_->GetInstructionElapsedInAlternateMemory(*add, {}, {}), expected_memory_elapsed + expected_overhead); expected_memory_elapsed = ((2 * 4 * 8) / 32.0) + ((4 * 8) / 128.0); LOG(INFO) << "Expected memory elapsed = " << expected_memory_elapsed; EXPECT_EQ(cost_analysis_->GetDefaultMemoryAccessOverhead(*add, {{0, {}}}), expected_overhead); EXPECT_EQ(cost_analysis_->GetInstructionElapsedDueToMemory(*add, {{0, {}}}), expected_memory_elapsed); EXPECT_EQ(cost_analysis_->GetInstructionElapsedInAlternateMemory( *add, {{0, {}}}, {}), expected_memory_elapsed + expected_overhead); expected_memory_elapsed = ((4 * 8) / 32.0) + ((2 * 4 * 8) / 128.0); LOG(INFO) << "Expected memory elapsed = " << expected_memory_elapsed; expected_overhead = expected_compute_elapsed / 3; LOG(INFO) << "Expected overhead = " << expected_overhead; EXPECT_EQ( cost_analysis_->GetDefaultMemoryAccessOverhead(*add, {{0, {}}}, {{}}), expected_overhead); EXPECT_EQ( cost_analysis_->GetInstructionElapsedDueToMemory(*add, {{0, {}}}, {{}}), expected_memory_elapsed); EXPECT_EQ(cost_analysis_->GetInstructionElapsedInAlternateMemory( *add, {{0, {}}}, {{}}), expected_memory_elapsed + expected_overhead); expected_memory_elapsed = (3 * 4 * 8) / 128.0; LOG(INFO) << "Expected memory elapsed = " << expected_memory_elapsed; expected_overhead = 0; LOG(INFO) << "Expected overhead = " << expected_overhead; EXPECT_EQ(cost_analysis_->GetDefaultMemoryAccessOverhead( *add, {{0, {}}, {1, {}}}, {{}}), expected_overhead); EXPECT_EQ(cost_analysis_->GetInstructionElapsedDueToMemory( *add, {{0, {}}, {1, {}}}, {{}}), expected_memory_elapsed); EXPECT_EQ(cost_analysis_->GetInstructionElapsedInAlternateMemory( *add, {{0, {}}, {1, {}}}, {{}}), expected_compute_elapsed); } TEST_F(MemorySpaceAssignmentCostAnalysisTest, LatencyBoundCompute) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY Entry { param0 = f32[2,2] parameter(0) param1 = f32[2,2] parameter(1) ROOT add = f32[2,2] add(param0, param1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(Initialize(module.get())); const HloInstruction* add = module->entry_computation()->root_instruction(); EXPECT_EQ(cost_analysis_->GetInstructionElapsedDueToCompute(*add), 1.0f); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tfrt/analysis/cost_analysis.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/memory_space_assignment/cost_analysis_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a94ec4bd-38b0-43ce-b94c-ab20abb9e699
cpp
tensorflow/tensorflow
sharding_serdes
third_party/xla/xla/python/ifrt/sharding_serdes.cc
third_party/xla/xla/python/ifrt/sharding_serdes_test.cc
#include <memory> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ExtensibleRTTI.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/device_list.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/serdes.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/python/ifrt/sharding_serdes.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { class SingleDeviceShardingSerDes : public llvm::RTTIExtends<SingleDeviceShardingSerDes, SerDes> { public: absl::string_view type_name() const override { return "xla::ifrt::SingleDeviceSharding"; } absl::StatusOr<std::string> Serialize(Serializable& serializable) override { const SingleDeviceSharding& sharding = llvm::cast<SingleDeviceSharding>(serializable); SingleDeviceShardingProto proto; proto.set_device_id(sharding.devices()->devices().front()->Id().value()); if (sharding.memory_kind().memory_kind().has_value()) { proto.set_memory_kind(std::string(*sharding.memory_kind().memory_kind())); } return proto.SerializeAsString(); } absl::StatusOr<std::unique_ptr<Serializable>> Deserialize( const std::string& serialized, std::unique_ptr<DeserializeOptions> options) override { const auto* deserialize_sharding_options = llvm::cast<DeserializeShardingOptions>(options.get()); SingleDeviceShardingProto proto; if (!proto.ParseFromString(serialized)) { return absl::InvalidArgumentError( "Failed to parse serialized SimpleDeviceSharding"); } TF_ASSIGN_OR_RETURN(Device * device, deserialize_sharding_options->lookup_device( DeviceId(proto.device_id()))); MemoryKind memory_kind; if (proto.has_memory_kind()) { memory_kind = MemoryKind(proto.memory_kind()); } return SingleDeviceSharding::Create(device, memory_kind); } static char ID; }; class OpaqueShardingSerDes : public llvm::RTTIExtends<OpaqueShardingSerDes, SerDes> { public: absl::string_view type_name() const override { return "xla::ifrt::OpaqueSharding"; } absl::StatusOr<std::string> Serialize(Serializable& serializable) override { const OpaqueSharding& sharding = llvm::cast<OpaqueSharding>(serializable); OpaqueShardingProto proto; *proto.mutable_devices() = sharding.devices()->ToProto(); if (sharding.memory_kind().memory_kind().has_value()) { proto.set_memory_kind(std::string(*sharding.memory_kind().memory_kind())); } return proto.SerializeAsString(); } absl::StatusOr<std::unique_ptr<Serializable>> Deserialize( const std::string& serialized, std::unique_ptr<DeserializeOptions> options) override { const auto* deserialize_sharding_options = llvm::cast<DeserializeShardingOptions>(options.get()); OpaqueShardingProto proto; if (!proto.ParseFromString(serialized)) { return absl::InvalidArgumentError( "Failed to parse serialized OpaqueSharding"); } TF_ASSIGN_OR_RETURN( auto devices, DeviceList::FromProto(deserialize_sharding_options->lookup_device, proto.devices())); MemoryKind memory_kind; if (proto.has_memory_kind()) { memory_kind = MemoryKind(proto.memory_kind()); } return OpaqueSharding::Create(std::move(devices), memory_kind); } static char ID; }; class ConcreteShardingSerDes : public llvm::RTTIExtends<ConcreteShardingSerDes, SerDes> { public: absl::string_view type_name() const override { return "xla::ifrt::ConcreteSharding"; } absl::StatusOr<std::string> Serialize(Serializable& serializable) override { const ConcreteSharding& sharding = llvm::cast<ConcreteSharding>(serializable); ConcreteShardingProto proto; *proto.mutable_devices() = sharding.devices()->ToProto(); if (sharding.memory_kind().memory_kind().has_value()) { proto.set_memory_kind(std::string(*sharding.memory_kind().memory_kind())); } if (sharding.has_static_shape()) { *proto.mutable_shape() = sharding.shape().ToProto(); for (const Shape& shape : sharding.shard_shapes()) { *proto.add_shard_shapes() = shape.ToProto(); } } else { *proto.mutable_dynamic_shape() = sharding.dynamic_shape().ToProto(); for (const DynamicShape& dynamic_shape : sharding.shard_dynamic_shapes()) { *proto.add_shard_dynamic_shapes() = dynamic_shape.ToProto(); } } return proto.SerializeAsString(); } absl::StatusOr<std::unique_ptr<Serializable>> Deserialize( const std::string& serialized, std::unique_ptr<DeserializeOptions> options) override { const auto* deserialize_sharding_options = llvm::cast<DeserializeShardingOptions>(options.get()); ConcreteShardingProto proto; if (!proto.ParseFromString(serialized)) { return absl::InvalidArgumentError( "Failed to parse serialized ConcreteSharding"); } TF_ASSIGN_OR_RETURN( auto devices, DeviceList::FromProto(deserialize_sharding_options->lookup_device, proto.devices())); MemoryKind memory_kind; if (proto.has_memory_kind()) { memory_kind = MemoryKind(proto.memory_kind()); } if (proto.has_shape()) { TF_ASSIGN_OR_RETURN(auto shape, Shape::FromProto(proto.shape())); std::vector<Shape> shard_shapes; shard_shapes.reserve(proto.shard_shapes_size()); for (const auto& shard_shape_proto : proto.shard_shapes()) { TF_ASSIGN_OR_RETURN(auto shard_shape, Shape::FromProto(shard_shape_proto)); shard_shapes.push_back(std::move(shard_shape)); } return ConcreteSharding::Create(std::move(devices), memory_kind, std::move(shape), std::move(shard_shapes)); } if (!proto.has_dynamic_shape()) { return absl::InvalidArgumentError( "ConcreteSharding must have Shape or DynamicShape."); } TF_ASSIGN_OR_RETURN(auto dynamic_shape, DynamicShape::FromProto(proto.dynamic_shape())); std::vector<DynamicShape> shard_dynamic_shapes; shard_dynamic_shapes.reserve(proto.shard_dynamic_shapes_size()); for (const auto& shard_dynamic_shape_proto : proto.shard_dynamic_shapes()) { TF_ASSIGN_OR_RETURN(auto dynamic_shape, DynamicShape::FromProto(shard_dynamic_shape_proto)); shard_dynamic_shapes.push_back(std::move(dynamic_shape)); } return ConcreteSharding::Create(std::move(devices), memory_kind, std::move(dynamic_shape), std::move(shard_dynamic_shapes)); } static char ID; }; class ConcreteEvenShardingSerDes : public llvm::RTTIExtends<ConcreteEvenShardingSerDes, SerDes> { public: absl::string_view type_name() const override { return "xla::ifrt::ConcreteEvenSharding"; } absl::StatusOr<std::string> Serialize(Serializable& serializable) override { const ConcreteEvenSharding& sharding = llvm::cast<ConcreteEvenSharding>(serializable); ConcreteEvenShardingProto proto; *proto.mutable_devices() = sharding.devices()->ToProto(); if (sharding.memory_kind().memory_kind().has_value()) { proto.set_memory_kind(std::string(*sharding.memory_kind().memory_kind())); } *proto.mutable_shape() = sharding.shape().ToProto(); *proto.mutable_shard_shape() = sharding.shard_shape().ToProto(); proto.set_is_fully_replicated(sharding.IsFullyReplicated()); return proto.SerializeAsString(); } absl::StatusOr<std::unique_ptr<Serializable>> Deserialize( const std::string& serialized, std::unique_ptr<DeserializeOptions> options) override { const auto* deserialize_sharding_options = llvm::cast<DeserializeShardingOptions>(options.get()); ConcreteEvenShardingProto proto; if (!proto.ParseFromString(serialized)) { return absl::InvalidArgumentError( "Failed to parse serialized ConcreteEvenSharding"); } TF_ASSIGN_OR_RETURN( auto devices, DeviceList::FromProto(deserialize_sharding_options->lookup_device, proto.devices())); MemoryKind memory_kind; if (proto.has_memory_kind()) { memory_kind = MemoryKind(proto.memory_kind()); } TF_ASSIGN_OR_RETURN(auto shape, Shape::FromProto(proto.shape())); TF_ASSIGN_OR_RETURN(auto shard_shape, Shape::FromProto(proto.shard_shape())); return ConcreteEvenSharding::Create( std::move(devices), memory_kind, std::move(shape), std::move(shard_shape), proto.is_fully_replicated()); } static char ID; }; [[maybe_unused]] char SingleDeviceShardingSerDes::ID = 0; [[maybe_unused]] char OpaqueShardingSerDes::ID = 0; [[maybe_unused]] char ConcreteShardingSerDes::ID = 0; [[maybe_unused]] char ConcreteEvenShardingSerDes::ID = 0; bool register_single_device_sharding_serdes = ([]{ RegisterSerDes<SingleDeviceSharding>( std::make_unique<SingleDeviceShardingSerDes>()); }(), true); bool register_opaque_sharding_serdes = ([]{ RegisterSerDes<OpaqueSharding>( std::make_unique<OpaqueShardingSerDes>()); }(), true); bool register_concrete_sharding_serdes = ([]{ RegisterSerDes<ConcreteSharding>( std::make_unique<ConcreteShardingSerDes>()); }(), true); bool register_concrete_even_sharding_serdes = ([]{ RegisterSerDes<ConcreteEvenSharding>( std::make_unique<ConcreteEvenShardingSerDes>()); }(), true); } } }
#include <memory> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/functional/bind_front.h" #include "xla/python/ifrt/client.h" #include "xla/python/ifrt/device_test_util.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/serdes.h" #include "xla/python/ifrt/serdes.pb.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { using ::testing::ElementsAreArray; class ShardingSerDesTest : public test_util::DeviceTest {}; TEST_P(ShardingSerDesTest, SingleDeviceShardingRoundTrip) { auto sharding = SingleDeviceSharding::Create( GetDevices({0})->devices().front(), MemoryKind("abc")); TF_ASSERT_OK_AND_ASSIGN(auto serialized, Serialize(*sharding)); TF_ASSERT_OK_AND_ASSIGN( auto out_sharding, Deserialize<SingleDeviceSharding>( serialized, std::make_unique<DeserializeShardingOptions>( absl::bind_front(&Client::LookupDevice, client())))); EXPECT_THAT(out_sharding->devices()->devices(), ElementsAreArray(sharding->devices()->devices())); } TEST_P(ShardingSerDesTest, OpaqueShardingRoundTrip) { auto sharding = OpaqueSharding::Create(GetDevices({0, 1}), MemoryKind("abc")); TF_ASSERT_OK_AND_ASSIGN(auto serialized, Serialize(*sharding)); TF_ASSERT_OK_AND_ASSIGN( auto out_sharding, Deserialize<OpaqueSharding>( serialized, std::make_unique<DeserializeShardingOptions>( absl::bind_front(&Client::LookupDevice, client())))); EXPECT_THAT(out_sharding->devices()->devices(), ElementsAreArray(sharding->devices()->devices())); } TEST_P(ShardingSerDesTest, ConcreteShardingRoundTrip) { auto sharding = ConcreteSharding::Create( GetDevices({0, 1}), MemoryKind("abc"), Shape({10, 20}), {Shape({3, 20}), Shape({7, 20})}); TF_ASSERT_OK_AND_ASSIGN(auto serialized, Serialize(*sharding)); TF_ASSERT_OK_AND_ASSIGN( auto out_sharding, Deserialize<ConcreteSharding>( serialized, std::make_unique<DeserializeShardingOptions>( absl::bind_front(&Client::LookupDevice, client())))); EXPECT_THAT(out_sharding->devices()->devices(), ElementsAreArray(sharding->devices()->devices())); EXPECT_THAT(out_sharding->shape(), sharding->shape()); EXPECT_THAT(out_sharding->shard_shapes(), ElementsAreArray(sharding->shard_shapes())); } TEST_P(ShardingSerDesTest, ConcreteShardingWithDynamicShapeRoundTrip) { TF_ASSERT_OK_AND_ASSIGN( DynamicShape dynamic_shape, DynamicShape::Create(Shape({10, 20}), BoundedDynamicShapeTag({false, true}))); TF_ASSERT_OK_AND_ASSIGN( DynamicShape shard_dynamic_shape1, DynamicShape::Create(Shape({3, 20}), BoundedDynamicShapeTag({false, true}))); TF_ASSERT_OK_AND_ASSIGN( DynamicShape shard_dynamic_shape2, DynamicShape::Create(Shape({7, 20}), BoundedDynamicShapeTag({false, true}))); auto sharding = ConcreteSharding::Create( GetDevices({0, 1}), MemoryKind("abc"), dynamic_shape, {shard_dynamic_shape1, shard_dynamic_shape2}); TF_ASSERT_OK_AND_ASSIGN(Serialized serialized, Serialize(*sharding)); TF_ASSERT_OK_AND_ASSIGN( auto out_sharding, Deserialize<ConcreteSharding>( serialized, std::make_unique<DeserializeShardingOptions>( absl::bind_front(&Client::LookupDevice, client())))); EXPECT_THAT(out_sharding->devices()->devices(), ElementsAreArray(sharding->devices()->devices())); EXPECT_THAT(out_sharding->dynamic_shape(), sharding->dynamic_shape()); EXPECT_THAT(out_sharding->shard_dynamic_shapes(), ElementsAreArray(sharding->shard_dynamic_shapes())); } TEST_P(ShardingSerDesTest, ConcreteEvenShardingRoundTrip) { auto sharding = ConcreteEvenSharding::Create( GetDevices({0, 1}), MemoryKind("abc"), Shape({10, 20}), Shape({5, 20}), true); TF_ASSERT_OK_AND_ASSIGN(auto serialized, Serialize(*sharding)); TF_ASSERT_OK_AND_ASSIGN( auto out_sharding, Deserialize<ConcreteEvenSharding>( serialized, std::make_unique<DeserializeShardingOptions>( absl::bind_front(&Client::LookupDevice, client())))); EXPECT_THAT(out_sharding->devices()->devices(), ElementsAreArray(sharding->devices()->devices())); EXPECT_THAT(out_sharding->shape(), sharding->shape()); EXPECT_THAT(out_sharding->shard_shape(), sharding->shard_shape()); EXPECT_THAT(out_sharding->IsFullyReplicated(), sharding->IsFullyReplicated()); } INSTANTIATE_TEST_SUITE_P(NumDevices, ShardingSerDesTest, testing::Values(test_util::DeviceTestParam{ 2, 2})); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/sharding_serdes.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/sharding_serdes_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a3462daa-9223-4973-afc8-c1e4444e9482
cpp
tensorflow/tensorflow
queue_runner
tensorflow/cc/training/queue_runner.cc
tensorflow/cc/training/queue_runner_test.cc
#include "tensorflow/cc/training/queue_runner.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "tensorflow/cc/training/coordinator.h" #include "tensorflow/core/framework/cost_graph.pb.h" #include "tensorflow/core/framework/ops_util.h" #include "tensorflow/core/platform/blocking_counter.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/threadpool.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/protobuf/queue_runner.pb.h" #include "tensorflow/core/public/session.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { Status QueueRunner::New(const QueueRunnerDef& queue_runner_def, std::unique_ptr<QueueRunner>* result) { result->reset(new QueueRunner()); return (*result)->Init(queue_runner_def); } Status QueueRunner::New(const QueueRunnerDef& queue_runner_def, Coordinator* coord, std::unique_ptr<QueueRunner>* result) { result->reset(new QueueRunner()); (*result)->coord_ = coord; return (*result)->Init(queue_runner_def); } void QueueRunner::AddErrorCallback(const std::function<void(Status)>& cb) { mutex_lock l(cb_mu_); callbacks_.push_back(cb); } void QueueRunner::ClearErrorCallbacks() { mutex_lock l(cb_mu_); callbacks_.clear(); } Status QueueRunner::Init(const QueueRunnerDef& queue_runner_def) { queue_name_ = queue_runner_def.queue_name(); enqueue_op_names_.clear(); enqueue_op_names_.insert(enqueue_op_names_.end(), queue_runner_def.enqueue_op_name().begin(), queue_runner_def.enqueue_op_name().end()); size_t op_names_size = enqueue_op_names_.size(); if (op_names_size > kint32max) { return Status(absl::StatusCode::kInvalidArgument, "Enqueue ops to run cannot exceed kint32max"); } runs_ = static_cast<int>(op_names_size); if (runs_ == 0) { return Status(absl::StatusCode::kInvalidArgument, "Empty enqueue ops to run."); } close_op_name_ = queue_runner_def.close_op_name(); cancel_op_name_ = queue_runner_def.cancel_op_name(); if (queue_runner_def.queue_closed_exception_types_size() == 0) { queue_closed_exception_types_.insert(error::OUT_OF_RANGE); } else { for (const auto& code : queue_runner_def.queue_closed_exception_types()) { queue_closed_exception_types_.insert(static_cast<int>(code)); } } int nthreads = runs_; if (coord_) { nthreads++; } thread_pool_.reset(new thread::ThreadPool( Env::Default(), SanitizeThreadSuffix(queue_name_), nthreads)); return absl::OkStatus(); } QueueRunner::~QueueRunner() { Join().IgnoreError(); } Status QueueRunner::Start(Session* sess) { return Start(sess, 0); } Status QueueRunner::StartAndCollectCostGraph(Session* sess, const RunOptions& run_options) { SetRunArgumentsAndCostGraph(run_options); return Start(sess, 0); } Status QueueRunner::Start(Session* sess, int wait_for) { counter_.reset(new BlockingCounter(runs_)); for (const string& enqueue_op : enqueue_op_names_) { thread_pool_->Schedule( std::bind(&QueueRunner::Run, this, sess, enqueue_op)); } if (coord_) { thread_pool_->Schedule(std::bind(&QueueRunner::Stop, this, sess)); } if (wait_for > 0) { if (!counter_->WaitFor(std::chrono::milliseconds(wait_for))) { return Status(absl::StatusCode::kDeadlineExceeded, "Queues not fed before the timeout"); } mutex_lock l(mu_); if (!enqueue_status_.ok()) { return enqueue_status_; } else { return status_; } } return absl::OkStatus(); } Status QueueRunner::StartAndCollectCostGraph(Session* session, int wait_for_ms, const RunOptions& run_options) { SetRunArgumentsAndCostGraph(run_options); return Start(session, wait_for_ms); } void QueueRunner::Stop(Session* sess) { if (coord_ != nullptr) { coord_->WaitForStop(); } if (!cancel_op_name_.empty()) { UpdateStatus(RealRun(sess, cancel_op_name_, false)); } stopped_ = true; } Status QueueRunner::Join() { thread_pool_.reset(); mutex_lock l(mu_); return status_; } void QueueRunner::UpdateStatus(const Status& status) { { mutex_lock l(mu_); if (!status_.ok() || status.ok() || IsQueueClosed(status)) { return; } status_ = status; } if (coord_) { coord_->ReportStatus(status); } mutex_lock l(cb_mu_); for (auto& cb : callbacks_) { cb(status); } } void QueueRunner::Run(Session* sess, const string& enqueue_op) { bool first_iteration = true; Status status; while (status.ok()) { if (coord_ && coord_->ShouldStop()) { break; } status = RealRun(sess, enqueue_op, true); if (first_iteration) { if (!status.ok()) { mutex_lock l(mu_); enqueue_status_ = status; } counter_->DecrementCount(); first_iteration = false; } } bool last_run = false; { mutex_lock l(mu_); runs_--; last_run = (runs_ == 0); } if (IsQueueClosed(status) && (!coord_ || !coord_->ShouldStop())) { if (last_run && !close_op_name_.empty()) { UpdateStatus(RealRun(sess, close_op_name_, false)); } } else if (!status.ok()) { LOG(ERROR) << "Queue runner thread got a failure status: " << status; UpdateStatus(status); if (coord_) { coord_->RequestStop().IgnoreError(); } } } Status QueueRunner::GetStatus() { mutex_lock l(mu_); return status_; } Status QueueRunner::ExportCostGraph(CostGraphDef* cost_graph) const { if (!cg_mu_) { return Status(absl::StatusCode::kFailedPrecondition, "This QueueRunner doesn't collect a cost graph."); } mutex_lock l(*cg_mu_); cost_graph->MergeFrom(*cost_graph_); return absl::OkStatus(); } void QueueRunner::SetRunArgumentsAndCostGraph(const RunOptions& run_options) { cg_mu_.reset(new mutex()); { mutex_lock l(*cg_mu_); cost_graph_.reset(new CostGraphDef()); } run_options_ = run_options; } Status QueueRunner::RealRun(Session* sess, const string& op, bool update_costs) { Status s; if (update_costs && cg_mu_) { RunMetadata metadata; s = sess->Run(run_options_, {}, {}, {op}, nullptr, &metadata); mutex_lock l(*cg_mu_); cost_graph_->Swap(metadata.mutable_cost_graph()); } else { s = sess->Run({}, {}, {op}, nullptr); } return s; } }
#include "tensorflow/cc/training/queue_runner.h" #include <string> #include <vector> #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/data_flow_ops.h" #include "tensorflow/cc/ops/math_ops.h" #include "tensorflow/cc/ops/random_ops.h" #include "tensorflow/cc/ops/state_ops.h" #include "tensorflow/cc/training/coordinator.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/cost_graph.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/protobuf/queue_runner.pb.h" #include "tensorflow/core/public/session.h" #include "tensorflow/core/public/session_options.h" #include "tsl/platform/status.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { namespace { using error::Code; using ops::Assign; using ops::Const; using ops::CountUpTo; using ops::FIFOQueue; using ops::QueueClose; using ops::QueueDequeue; using ops::QueueEnqueue; using ops::RandomNormal; using ops::Square; using ops::Variable; constexpr char kAssignOpName[] = "assign"; constexpr char kCancelOp0[] = "cancel0"; constexpr char kCancelOp1[] = "cancel1"; constexpr char kCloseOp0[] = "close0"; constexpr char kCloseOp1[] = "close1"; constexpr char kCountUpToOpName[] = "count"; constexpr char kDequeueOp0[] = "dequeue0"; constexpr char kDequeueOp1[] = "dequeue1"; constexpr char kEnqueueOp0[] = "enqueue0"; constexpr char kEnqueueOp1[] = "enqueue1"; constexpr char kIllegalOpName1[] = "would fail"; constexpr char kIllegalOpName2[] = "fail again"; constexpr char kQueueName[] = "unit_test"; constexpr char kQueueName0[] = "q0"; constexpr char kQueueName1[] = "q1"; constexpr char kSquareOpName[] = "square"; constexpr char kVarOpName[] = "var"; GraphDef BuildSimpleGraph() { Scope root = Scope::NewRootScope(); auto init_value = Const(root, 0); auto var = Variable(root.WithOpName(kVarOpName), TensorShape({}), DataType::DT_INT32); auto assign = Assign(root.WithOpName(kAssignOpName), var, init_value); auto count = CountUpTo(root.WithOpName(kCountUpToOpName), var, 10); Square(root.WithOpName(kSquareOpName), var); GraphDef graph_def; TF_EXPECT_OK(root.ToGraphDef(&graph_def)); return graph_def; } QueueRunnerDef BuildQueueRunnerDef( const std::string& queue_name, const std::vector<std::string>& enqueue_ops, const std::string& close_op, const std::string& cancel_op, const std::vector<Code>& queue_closed_error_codes) { QueueRunnerDef queue_runner_def; *queue_runner_def.mutable_queue_name() = queue_name; for (const std::string& enqueue_op : enqueue_ops) { *queue_runner_def.mutable_enqueue_op_name()->Add() = enqueue_op; } *queue_runner_def.mutable_close_op_name() = close_op; *queue_runner_def.mutable_cancel_op_name() = cancel_op; for (const auto& error_code : queue_closed_error_codes) { *queue_runner_def.mutable_queue_closed_exception_types()->Add() = error_code; } return queue_runner_def; } std::unique_ptr<Session> BuildSessionAndInitVariable( const GraphDef& graph_def) { SessionOptions options; std::unique_ptr<Session> session(NewSession(options)); TF_CHECK_OK(session->Create(graph_def)); TF_CHECK_OK(session->Run({}, {}, {kAssignOpName}, nullptr)); return session; } TEST(QueueRunnerTest, BasicTest) { GraphDef graph_def = BuildSimpleGraph(); auto session = BuildSessionAndInitVariable(graph_def); QueueRunnerDef queue_runner_def = BuildQueueRunnerDef( kQueueName, {kCountUpToOpName}, kSquareOpName, "", {}); std::unique_ptr<QueueRunner> qr; TF_EXPECT_OK(QueueRunner::New(queue_runner_def, &qr)); TF_CHECK_OK(qr->Start(session.get())); TF_EXPECT_OK(qr->Join()); std::vector<Tensor> outputs; TF_EXPECT_OK(session->Run({}, {kSquareOpName}, {}, &outputs)); int square_value = *outputs[0].scalar<int>().data(); EXPECT_EQ(square_value, 100); } TEST(QueueRunnerTest, QueueClosedCode) { GraphDef graph_def = BuildSimpleGraph(); auto session = BuildSessionAndInitVariable(graph_def); QueueRunnerDef queue_runner_def = BuildQueueRunnerDef( kQueueName, {kCountUpToOpName, kCountUpToOpName}, kSquareOpName, "", {Code::OUT_OF_RANGE, Code::CANCELLED}); std::unique_ptr<QueueRunner> qr; TF_EXPECT_OK(QueueRunner::New(queue_runner_def, &qr)); TF_EXPECT_OK(qr->Start(session.get())); TF_EXPECT_OK(qr->Join()); std::vector<Tensor> outputs; TF_EXPECT_OK(session->Run({}, {kSquareOpName}, {}, &outputs)); int square_value = *outputs[0].scalar<int>().data(); EXPECT_EQ(square_value, 100); } TEST(QueueRunnerTest, QueueCloseFails) { GraphDef graph_def = BuildSimpleGraph(); auto session = BuildSessionAndInitVariable(graph_def); QueueRunnerDef queue_runner_def = BuildQueueRunnerDef(kQueueName, {kCountUpToOpName}, kIllegalOpName1, "", {Code::OUT_OF_RANGE}); std::unique_ptr<QueueRunner> qr; TF_EXPECT_OK(QueueRunner::New(queue_runner_def, &qr)); TF_EXPECT_OK(qr->Start(session.get())); auto status = qr->Join(); EXPECT_EQ(status.code(), Code::NOT_FOUND) << status; } TEST(QueueRunnerTest, CatchErrorInJoin) { GraphDef graph_def = BuildSimpleGraph(); auto session = BuildSessionAndInitVariable(graph_def); QueueRunnerDef queue_runner_def = BuildQueueRunnerDef( kQueueName, {kIllegalOpName1, kIllegalOpName2}, kCountUpToOpName, "", {}); std::unique_ptr<QueueRunner> qr; TF_EXPECT_OK(QueueRunner::New(queue_runner_def, &qr)); TF_EXPECT_OK(qr->Start(session.get())); EXPECT_EQ(qr->Join().code(), Code::NOT_FOUND); } GraphDef BuildDoubleQueueGraph() { Scope root = Scope::NewRootScope(); auto q0 = FIFOQueue(root.WithOpName(kQueueName0), {DataType::DT_INT32}); auto ten = Const(root, 10); auto enqueue0 = QueueEnqueue(root.WithOpName(kEnqueueOp0), q0, {ten}); auto close0 = QueueClose(root.WithOpName(kCloseOp0), q0); auto cancel0 = QueueClose(root.WithOpName(kCancelOp0), q0, QueueClose::CancelPendingEnqueues(true)); auto q1 = FIFOQueue(root.WithOpName(kQueueName1), {DataType::DT_INT32}, FIFOQueue::Capacity(3)); auto dequeue0 = QueueDequeue(root.WithOpName(kDequeueOp0), q0, {DataType::DT_INT32}); auto enqueue1 = QueueEnqueue(root.WithOpName(kEnqueueOp1), q1, {dequeue0[0]}); auto dequeue1 = QueueDequeue(root.WithOpName(kDequeueOp1), q1, {DataType::DT_INT32}); auto close1 = QueueClose(root.WithOpName(kCloseOp1), q1); auto cancel1 = QueueClose(root.WithOpName(kCancelOp1), q1, QueueClose::CancelPendingEnqueues(true)); GraphDef graph_def; TF_EXPECT_OK(root.ToGraphDef(&graph_def)); return graph_def; } TEST(QueueRunnerTest, RealEnqueueDequeue) { auto graph_def = BuildDoubleQueueGraph(); SessionOptions options; std::unique_ptr<Session> session(NewSession(options)); TF_CHECK_OK(session->Create(graph_def)); QueueRunnerDef queue_runner_def = BuildQueueRunnerDef(kQueueName, {kEnqueueOp1}, kCloseOp1, "", {}); std::unique_ptr<QueueRunner> qr; TF_EXPECT_OK(QueueRunner::New(queue_runner_def, &qr)); TF_CHECK_OK(qr->Start(session.get())); TF_EXPECT_OK(session->Run({}, {}, {kEnqueueOp0}, nullptr)); TF_EXPECT_OK(session->Run({}, {}, {kEnqueueOp0}, nullptr)); TF_EXPECT_OK(session->Run({}, {}, {kCloseOp0}, nullptr)); TF_EXPECT_OK(qr->Join()); std::vector<Tensor> dq1; TF_EXPECT_OK(session->Run({}, {kDequeueOp1}, {}, &dq1)); EXPECT_EQ(*dq1[0].scalar<int>().data(), 10); std::vector<Tensor> dq2; TF_EXPECT_OK(session->Run({}, {kDequeueOp1}, {}, &dq2)); EXPECT_EQ(*dq2[0].scalar<int>().data(), 10); EXPECT_EQ(session->Run({}, {kDequeueOp1}, {}, nullptr).code(), Code::OUT_OF_RANGE); } void JoinThread(QueueRunner* queue_runner, bool* join_succeeded, Notification* join_done) { EXPECT_EQ(queue_runner->Join().code(), Code::CANCELLED); *join_succeeded = true; join_done->Notify(); } TEST(QueueRunnerTest, SessionCloseCancelPendingEnqueue) { auto graph_def = BuildDoubleQueueGraph(); SessionOptions options; std::unique_ptr<Session> session(NewSession(options)); TF_CHECK_OK(session->Create(graph_def)); QueueRunnerDef queue_runner_def = BuildQueueRunnerDef( kQueueName1, {kEnqueueOp1}, kCloseOp1, kCancelOp1, {}); std::unique_ptr<QueueRunner> qr; TF_EXPECT_OK(QueueRunner::New(queue_runner_def, &qr)); TF_CHECK_OK(qr->Start(session.get())); TF_EXPECT_OK(session->Run({}, {}, {kEnqueueOp0}, nullptr)); std::vector<Tensor> dq1; TF_EXPECT_OK(session->Run({}, {kDequeueOp1}, {}, &dq1)); EXPECT_EQ(*dq1[0].scalar<int>().data(), 10); bool join_succeeded = false; Notification join_done; Env::Default()->SchedClosure( std::bind(&JoinThread, qr.get(), &join_succeeded, &join_done)); Env::Default()->SleepForMicroseconds(10000000); EXPECT_EQ(join_succeeded, false); TF_EXPECT_OK(session->Close()); join_done.WaitForNotification(); EXPECT_EQ(join_succeeded, true); } TEST(QueueRunnerTest, EmptyEnqueueOps) { QueueRunnerDef queue_runner_def = BuildQueueRunnerDef(kQueueName, {}, kCountUpToOpName, "", {}); std::unique_ptr<QueueRunner> qr; EXPECT_EQ(QueueRunner::New(queue_runner_def, &qr).code(), Code::INVALID_ARGUMENT); } TEST(QueueRunnerTest, StartTimeout) { GraphDef graph_def = BuildDoubleQueueGraph(); SessionOptions options; std::unique_ptr<Session> session(NewSession(options)); TF_CHECK_OK(session->Create(graph_def)); QueueRunnerDef queue_runner_def = BuildQueueRunnerDef( kQueueName1, {kEnqueueOp1}, kCloseOp1, kCancelOp1, {}); std::unique_ptr<QueueRunner> qr; TF_EXPECT_OK(QueueRunner::New(queue_runner_def, &qr)); EXPECT_EQ(qr->Start(session.get(), 1).code(), Code::DEADLINE_EXCEEDED); TF_EXPECT_OK(session->Close()); } TEST(QueueRunnerTest, TestCoordinatorStop) { auto graph_def = BuildDoubleQueueGraph(); SessionOptions options; std::unique_ptr<Session> session(NewSession(options)); TF_CHECK_OK(session->Create(graph_def)); QueueRunnerDef queue_runner0 = BuildQueueRunnerDef(kQueueName0, {kEnqueueOp0}, kCloseOp0, kCancelOp0, {Code::OUT_OF_RANGE, Code::CANCELLED}); QueueRunnerDef queue_runner1 = BuildQueueRunnerDef(kQueueName1, {kEnqueueOp1}, kCloseOp1, kCancelOp1, {Code::OUT_OF_RANGE, Code::CANCELLED}); Coordinator coord; std::unique_ptr<QueueRunner> qr0; TF_EXPECT_OK(QueueRunner::New(queue_runner0, &coord, &qr0)); TF_CHECK_OK(qr0->Start(session.get())); std::unique_ptr<QueueRunner> qr1; TF_EXPECT_OK(QueueRunner::New(queue_runner1, &coord, &qr1)); TF_CHECK_OK(qr1->Start(session.get())); TF_EXPECT_OK(coord.RegisterRunner(std::move(qr0))); TF_EXPECT_OK(coord.RegisterRunner(std::move(qr1))); std::vector<Tensor> dq; TF_EXPECT_OK(session->Run({}, {kDequeueOp1}, {}, &dq)); EXPECT_EQ(*dq[0].scalar<int>().data(), 10); TF_EXPECT_OK(coord.RequestStop()); TF_EXPECT_OK(coord.Join()); } TEST(QueueRunnerTest, CallbackCalledOnError) { GraphDef graph_def = BuildSimpleGraph(); auto session = BuildSessionAndInitVariable(graph_def); QueueRunnerDef queue_runner_def = BuildQueueRunnerDef( kQueueName, {kIllegalOpName1, kIllegalOpName2}, kCountUpToOpName, "", {}); std::unique_ptr<QueueRunner> qr; TF_EXPECT_OK(QueueRunner::New(queue_runner_def, &qr)); bool error_caught = false; qr->AddErrorCallback([&error_caught](const Status&) { error_caught = true; }); TF_EXPECT_OK(qr->Start(session.get())); EXPECT_FALSE(qr->Join().ok()); EXPECT_TRUE(error_caught); } TEST(QueueRunnerTest, RunMetaDataTest) { Scope root = Scope::NewRootScope(); auto q0 = FIFOQueue(root.WithOpName(kQueueName), {DataType::DT_FLOAT}); Output rnd = RandomNormal(root.WithOpName("rnd"), {1, 1}, DataType::DT_FLOAT); Output square = Square(root.WithOpName(kSquareOpName), rnd); auto enqueue0 = QueueEnqueue(root.WithOpName(kEnqueueOp0), q0, {square}); auto close0 = QueueClose(root.WithOpName(kCloseOp0), q0); auto cancel0 = QueueClose(root.WithOpName(kCancelOp0), q0, QueueClose::CancelPendingEnqueues(true)); auto dequeue0 = QueueDequeue(root.WithOpName(kDequeueOp0), q0, {DataType::DT_FLOAT}); GraphDef graph_def; TF_EXPECT_OK(root.ToGraphDef(&graph_def)); for (auto& node : *graph_def.mutable_node()) { node.set_device("/cpu:0"); } SessionOptions sess_options; sess_options.config.mutable_graph_options()->set_build_cost_model(1); std::unique_ptr<Session> session(NewSession(sess_options)); TF_CHECK_OK(session->Create(graph_def)); QueueRunnerDef queue_runner_def = BuildQueueRunnerDef(kQueueName, {kEnqueueOp0}, kCloseOp0, kCancelOp0, {}); std::unique_ptr<QueueRunner> qr; TF_EXPECT_OK(QueueRunner::New(queue_runner_def, &qr)); RunOptions run_options; TF_CHECK_OK(qr->StartAndCollectCostGraph(session.get(), run_options)); std::vector<Tensor> dq0; TF_EXPECT_OK(session->Run({}, {kDequeueOp0}, {}, &dq0)); TF_EXPECT_OK(session->Run({}, {kDequeueOp0}, {}, &dq0)); CostGraphDef cost_graph; TF_CHECK_OK(qr->ExportCostGraph(&cost_graph)); EXPECT_TRUE(cost_graph.node_size() > 0); qr->Stop(session.get()); } TEST(QueueRunnerTest, NoRunMetaDataTest) { GraphDef graph_def = BuildSimpleGraph(); auto session = BuildSessionAndInitVariable(graph_def); QueueRunnerDef queue_runner_def = BuildQueueRunnerDef( kQueueName, {kCountUpToOpName}, kSquareOpName, "", {}); std::unique_ptr<QueueRunner> qr; TF_EXPECT_OK(QueueRunner::New(queue_runner_def, &qr)); TF_CHECK_OK(qr->Start(session.get())); TF_EXPECT_OK(qr->Join()); CostGraphDef cost_graph; EXPECT_EQ(qr->ExportCostGraph(&cost_graph).code(), error::FAILED_PRECONDITION); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/cc/training/queue_runner.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/cc/training/queue_runner_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e025328a-7fcb-4e73-a31a-719e9981215e
cpp
google/quiche
quic_socket_address
quiche/quic/platform/api/quic_socket_address.cc
quiche/quic/platform/api/quic_socket_address_test.cc
#include "quiche/quic/platform/api/quic_socket_address.h" #include <cstring> #include <limits> #include <string> #include "absl/strings/str_cat.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" #include "quiche/quic/platform/api/quic_ip_address.h" #include "quiche/quic/platform/api/quic_ip_address_family.h" namespace quic { namespace { uint32_t HashIP(const QuicIpAddress& ip) { if (ip.IsIPv4()) { return ip.GetIPv4().s_addr; } if (ip.IsIPv6()) { auto v6addr = ip.GetIPv6(); const uint32_t* v6_as_ints = reinterpret_cast<const uint32_t*>(&v6addr.s6_addr); return v6_as_ints[0] ^ v6_as_ints[1] ^ v6_as_ints[2] ^ v6_as_ints[3]; } return 0; } } QuicSocketAddress::QuicSocketAddress(QuicIpAddress address, uint16_t port) : host_(address), port_(port) {} QuicSocketAddress::QuicSocketAddress(const struct sockaddr_storage& saddr) { switch (saddr.ss_family) { case AF_INET: { const sockaddr_in* v4 = reinterpret_cast<const sockaddr_in*>(&saddr); host_ = QuicIpAddress(v4->sin_addr); port_ = ntohs(v4->sin_port); break; } case AF_INET6: { const sockaddr_in6* v6 = reinterpret_cast<const sockaddr_in6*>(&saddr); host_ = QuicIpAddress(v6->sin6_addr); port_ = ntohs(v6->sin6_port); break; } default: QUIC_BUG(quic_bug_10075_1) << "Unknown address family passed: " << saddr.ss_family; break; } } QuicSocketAddress::QuicSocketAddress(const sockaddr* saddr, socklen_t len) { sockaddr_storage storage; static_assert(std::numeric_limits<socklen_t>::max() >= sizeof(storage), "Cannot cast sizeof(storage) to socklen_t as it does not fit"); if (len < static_cast<socklen_t>(sizeof(sockaddr)) || (saddr->sa_family == AF_INET && len < static_cast<socklen_t>(sizeof(sockaddr_in))) || (saddr->sa_family == AF_INET6 && len < static_cast<socklen_t>(sizeof(sockaddr_in6))) || len > static_cast<socklen_t>(sizeof(storage))) { QUIC_BUG(quic_bug_10075_2) << "Socket address of invalid length provided"; return; } memcpy(&storage, saddr, len); *this = QuicSocketAddress(storage); } bool operator==(const QuicSocketAddress& lhs, const QuicSocketAddress& rhs) { return lhs.host_ == rhs.host_ && lhs.port_ == rhs.port_; } bool operator!=(const QuicSocketAddress& lhs, const QuicSocketAddress& rhs) { return !(lhs == rhs); } bool QuicSocketAddress::IsInitialized() const { return host_.IsInitialized(); } std::string QuicSocketAddress::ToString() const { switch (host_.address_family()) { case IpAddressFamily::IP_V4: return absl::StrCat(host_.ToString(), ":", port_); case IpAddressFamily::IP_V6: return absl::StrCat("[", host_.ToString(), "]:", port_); default: return ""; } } int QuicSocketAddress::FromSocket(int fd) { sockaddr_storage addr; socklen_t addr_len = sizeof(addr); int result = getsockname(fd, reinterpret_cast<sockaddr*>(&addr), &addr_len); bool success = result == 0 && addr_len > 0 && static_cast<size_t>(addr_len) <= sizeof(addr); if (success) { *this = QuicSocketAddress(addr); return 0; } return -1; } QuicSocketAddress QuicSocketAddress::Normalized() const { return QuicSocketAddress(host_.Normalized(), port_); } QuicIpAddress QuicSocketAddress::host() const { return host_; } uint16_t QuicSocketAddress::port() const { return port_; } sockaddr_storage QuicSocketAddress::generic_address() const { union { sockaddr_storage storage; sockaddr_in v4; sockaddr_in6 v6; } result; memset(&result.storage, 0, sizeof(result.storage)); switch (host_.address_family()) { case IpAddressFamily::IP_V4: result.v4.sin_family = AF_INET; result.v4.sin_addr = host_.GetIPv4(); result.v4.sin_port = htons(port_); break; case IpAddressFamily::IP_V6: result.v6.sin6_family = AF_INET6; result.v6.sin6_addr = host_.GetIPv6(); result.v6.sin6_port = htons(port_); break; default: result.storage.ss_family = AF_UNSPEC; break; } return result.storage; } uint32_t QuicSocketAddress::Hash() const { uint32_t value = 0; value ^= HashIP(host_); value ^= port_ | (port_ << 16); return value; } }
#include "quiche/quic/platform/api/quic_socket_address.h" #include <memory> #include <sstream> #include "quiche/quic/platform/api/quic_ip_address.h" #include "quiche/quic/platform/api/quic_test.h" namespace quic { namespace { TEST(QuicSocketAddress, Uninitialized) { QuicSocketAddress uninitialized; EXPECT_FALSE(uninitialized.IsInitialized()); } TEST(QuicSocketAddress, ExplicitConstruction) { QuicSocketAddress ipv4_address(QuicIpAddress::Loopback4(), 443); QuicSocketAddress ipv6_address(QuicIpAddress::Loopback6(), 443); EXPECT_TRUE(ipv4_address.IsInitialized()); EXPECT_EQ("127.0.0.1:443", ipv4_address.ToString()); EXPECT_EQ("[::1]:443", ipv6_address.ToString()); EXPECT_EQ(QuicIpAddress::Loopback4(), ipv4_address.host()); EXPECT_EQ(QuicIpAddress::Loopback6(), ipv6_address.host()); EXPECT_EQ(443, ipv4_address.port()); } TEST(QuicSocketAddress, OutputToStream) { QuicSocketAddress ipv4_address(QuicIpAddress::Loopback4(), 443); std::stringstream stream; stream << ipv4_address; EXPECT_EQ("127.0.0.1:443", stream.str()); } TEST(QuicSocketAddress, FromSockaddrIPv4) { union { sockaddr_storage storage; sockaddr addr; sockaddr_in v4; } address; memset(&address, 0, sizeof(address)); address.v4.sin_family = AF_INET; address.v4.sin_addr = QuicIpAddress::Loopback4().GetIPv4(); address.v4.sin_port = htons(443); EXPECT_EQ("127.0.0.1:443", QuicSocketAddress(&address.addr, sizeof(address.v4)).ToString()); EXPECT_EQ("127.0.0.1:443", QuicSocketAddress(address.storage).ToString()); } TEST(QuicSocketAddress, FromSockaddrIPv6) { union { sockaddr_storage storage; sockaddr addr; sockaddr_in6 v6; } address; memset(&address, 0, sizeof(address)); address.v6.sin6_family = AF_INET6; address.v6.sin6_addr = QuicIpAddress::Loopback6().GetIPv6(); address.v6.sin6_port = htons(443); EXPECT_EQ("[::1]:443", QuicSocketAddress(&address.addr, sizeof(address.v6)).ToString()); EXPECT_EQ("[::1]:443", QuicSocketAddress(address.storage).ToString()); } TEST(QuicSocketAddres, ToSockaddrIPv4) { union { sockaddr_storage storage; sockaddr_in v4; } address; address.storage = QuicSocketAddress(QuicIpAddress::Loopback4(), 443).generic_address(); ASSERT_EQ(AF_INET, address.v4.sin_family); EXPECT_EQ(QuicIpAddress::Loopback4(), QuicIpAddress(address.v4.sin_addr)); EXPECT_EQ(htons(443), address.v4.sin_port); } TEST(QuicSocketAddress, Normalize) { QuicIpAddress dual_stacked; ASSERT_TRUE(dual_stacked.FromString("::ffff:127.0.0.1")); ASSERT_TRUE(dual_stacked.IsIPv6()); QuicSocketAddress not_normalized(dual_stacked, 443); QuicSocketAddress normalized = not_normalized.Normalized(); EXPECT_EQ("[::ffff:127.0.0.1]:443", not_normalized.ToString()); EXPECT_EQ("127.0.0.1:443", normalized.ToString()); } #if defined(__linux__) && !defined(ANDROID) #include <errno.h> #include <sys/socket.h> #include <sys/types.h> TEST(QuicSocketAddress, FromSocket) { int fd; QuicSocketAddress address; bool bound = false; for (int port = 50000; port < 50400; port++) { fd = socket(AF_INET6, SOCK_DGRAM, IPPROTO_UDP); ASSERT_GT(fd, 0); address = QuicSocketAddress(QuicIpAddress::Loopback6(), port); sockaddr_storage raw_address = address.generic_address(); int bind_result = bind(fd, reinterpret_cast<const sockaddr*>(&raw_address), sizeof(sockaddr_in6)); if (bind_result < 0 && errno == EADDRINUSE) { close(fd); continue; } ASSERT_EQ(0, bind_result); bound = true; break; } ASSERT_TRUE(bound); QuicSocketAddress real_address; ASSERT_EQ(0, real_address.FromSocket(fd)); ASSERT_TRUE(real_address.IsInitialized()); EXPECT_EQ(real_address, address); close(fd); } #endif } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/platform/api/quic_socket_address.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/platform/api/quic_socket_address_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
de101ed3-e456-4c60-85ce-bf326ecce6b6
cpp
google/cel-cpp
parsed_repeated_field_value
common/values/parsed_repeated_field_value.cc
common/values/parsed_repeated_field_value_test.cc
#include "common/values/parsed_repeated_field_value.h" #include <cstddef> #include <memory> #include <string> #include "absl/base/nullability.h" #include "absl/base/optimization.h" #include "absl/log/absl_check.h" #include "absl/log/die_if_null.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "common/json.h" #include "common/value.h" #include "internal/status_macros.h" #include "google/protobuf/message.h" namespace cel { std::string ParsedRepeatedFieldValue::DebugString() const { if (ABSL_PREDICT_FALSE(field_ == nullptr)) { return "INVALID"; } return "VALID"; } absl::Status ParsedRepeatedFieldValue::SerializeTo( AnyToJsonConverter& converter, absl::Cord& value) const { return absl::UnimplementedError("SerializeTo is not yet implemented"); } absl::StatusOr<Json> ParsedRepeatedFieldValue::ConvertToJson( AnyToJsonConverter& converter) const { return absl::UnimplementedError("ConvertToJson is not yet implemented"); } absl::StatusOr<JsonArray> ParsedRepeatedFieldValue::ConvertToJsonArray( AnyToJsonConverter& converter) const { return absl::UnimplementedError("ConvertToJsonArray is not yet implemented"); } absl::Status ParsedRepeatedFieldValue::Equal(ValueManager& value_manager, const Value& other, Value& result) const { return absl::UnimplementedError("Equal is not yet implemented"); } absl::StatusOr<Value> ParsedRepeatedFieldValue::Equal( ValueManager& value_manager, const Value& other) const { Value result; CEL_RETURN_IF_ERROR(Equal(value_manager, other, result)); return result; } bool ParsedRepeatedFieldValue::IsZeroValue() const { return IsEmpty(); } bool ParsedRepeatedFieldValue::IsEmpty() const { return Size() == 0; } size_t ParsedRepeatedFieldValue::Size() const { ABSL_DCHECK(*this); if (ABSL_PREDICT_FALSE(field_ == nullptr)) { return 0; } return static_cast<size_t>( GetReflectionOrDie()->FieldSize(*message_, field_)); } absl::Status ParsedRepeatedFieldValue::Get(ValueManager& value_manager, size_t index, Value& result) const { return absl::UnimplementedError("Get is not yet implemented"); } absl::StatusOr<Value> ParsedRepeatedFieldValue::Get(ValueManager& value_manager, size_t index) const { Value result; CEL_RETURN_IF_ERROR(Get(value_manager, index, result)); return result; } absl::Status ParsedRepeatedFieldValue::ForEach(ValueManager& value_manager, ForEachCallback callback) const { return absl::UnimplementedError("ForEach is not yet implemented"); } absl::Status ParsedRepeatedFieldValue::ForEach( ValueManager& value_manager, ForEachWithIndexCallback callback) const { return absl::UnimplementedError("ForEach is not yet implemented"); } absl::StatusOr<absl::Nonnull<std::unique_ptr<ValueIterator>>> ParsedRepeatedFieldValue::NewIterator(ValueManager& value_manager) const { return absl::UnimplementedError("NewIterator is not yet implemented"); } absl::Status ParsedRepeatedFieldValue::Contains(ValueManager& value_manager, const Value& other, Value& result) const { return absl::UnimplementedError("Contains is not yet implemented"); } absl::StatusOr<Value> ParsedRepeatedFieldValue::Contains( ValueManager& value_manager, const Value& other) const { Value result; CEL_RETURN_IF_ERROR(Contains(value_manager, other, result)); return result; } absl::Nonnull<const google::protobuf::Reflection*> ParsedRepeatedFieldValue::GetReflectionOrDie() const { return ABSL_DIE_IF_NULL(message_->GetReflection()); } }
#include <cstddef> #include "absl/base/nullability.h" #include "absl/log/die_if_null.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/types/optional.h" #include "common/allocator.h" #include "common/memory.h" #include "common/type.h" #include "common/type_reflector.h" #include "common/value.h" #include "common/value_kind.h" #include "common/value_manager.h" #include "internal/parse_text_proto.h" #include "internal/testing.h" #include "internal/testing_descriptor_pool.h" #include "internal/testing_message_factory.h" #include "proto/test/v1/proto3/test_all_types.pb.h" #include "google/protobuf/arena.h" #include "google/protobuf/descriptor.h" #include "google/protobuf/message.h" namespace cel { namespace { using ::absl_testing::StatusIs; using ::cel::internal::DynamicParseTextProto; using ::cel::internal::GetTestingDescriptorPool; using ::cel::internal::GetTestingMessageFactory; using ::testing::_; using ::testing::PrintToStringParamName; using ::testing::TestWithParam; using TestAllTypesProto3 = ::google::api::expr::test::v1::proto3::TestAllTypes; class ParsedRepeatedFieldValueTest : public TestWithParam<AllocatorKind> { public: void SetUp() override { switch (GetParam()) { case AllocatorKind::kArena: arena_.emplace(); value_manager_ = NewThreadCompatibleValueManager( MemoryManager::Pooling(arena()), NewThreadCompatibleTypeReflector(MemoryManager::Pooling(arena()))); break; case AllocatorKind::kNewDelete: value_manager_ = NewThreadCompatibleValueManager( MemoryManager::ReferenceCounting(), NewThreadCompatibleTypeReflector( MemoryManager::ReferenceCounting())); break; } } void TearDown() override { value_manager_.reset(); arena_.reset(); } Allocator<> allocator() { return arena_ ? ArenaAllocator(&*arena_) : NewDeleteAllocator(); } absl::Nullable<google::protobuf::Arena*> arena() { return allocator().arena(); } absl::Nonnull<const google::protobuf::DescriptorPool*> descriptor_pool() { return GetTestingDescriptorPool(); } absl::Nonnull<google::protobuf::MessageFactory*> message_factory() { return GetTestingMessageFactory(); } ValueManager& value_manager() { return **value_manager_; } private: absl::optional<google::protobuf::Arena> arena_; absl::optional<Shared<ValueManager>> value_manager_; }; TEST_P(ParsedRepeatedFieldValueTest, Default) { ParsedRepeatedFieldValue value; EXPECT_FALSE(value); } TEST_P(ParsedRepeatedFieldValueTest, Field) { auto message = DynamicParseTextProto<TestAllTypesProto3>( allocator(), R"pb()pb", descriptor_pool(), message_factory()); ParsedRepeatedFieldValue value( message, ABSL_DIE_IF_NULL(message->GetDescriptor()->FindFieldByName( "repeated_int64"))); EXPECT_TRUE(value); } TEST_P(ParsedRepeatedFieldValueTest, Kind) { ParsedRepeatedFieldValue value; EXPECT_EQ(value.kind(), ParsedRepeatedFieldValue::kKind); EXPECT_EQ(value.kind(), ValueKind::kList); } TEST_P(ParsedRepeatedFieldValueTest, GetTypeName) { ParsedRepeatedFieldValue value; EXPECT_EQ(value.GetTypeName(), ParsedRepeatedFieldValue::kName); EXPECT_EQ(value.GetTypeName(), "list"); } TEST_P(ParsedRepeatedFieldValueTest, GetRuntimeType) { ParsedRepeatedFieldValue value; EXPECT_EQ(value.GetRuntimeType(), ListType()); } TEST_P(ParsedRepeatedFieldValueTest, DebugString) { auto message = DynamicParseTextProto<TestAllTypesProto3>( allocator(), R"pb()pb", descriptor_pool(), message_factory()); ParsedRepeatedFieldValue valid_value( message, ABSL_DIE_IF_NULL(message->GetDescriptor()->FindFieldByName( "repeated_int64"))); EXPECT_THAT(valid_value.DebugString(), _); } TEST_P(ParsedRepeatedFieldValueTest, IsZeroValue) { auto message = DynamicParseTextProto<TestAllTypesProto3>( allocator(), R"pb()pb", descriptor_pool(), message_factory()); ParsedRepeatedFieldValue valid_value( message, ABSL_DIE_IF_NULL(message->GetDescriptor()->FindFieldByName( "repeated_int64"))); EXPECT_TRUE(valid_value.IsZeroValue()); } TEST_P(ParsedRepeatedFieldValueTest, SerializeTo) { auto message = DynamicParseTextProto<TestAllTypesProto3>( allocator(), R"pb()pb", descriptor_pool(), message_factory()); ParsedRepeatedFieldValue valid_value( message, ABSL_DIE_IF_NULL(message->GetDescriptor()->FindFieldByName( "repeated_int64"))); absl::Cord serialized; EXPECT_THAT(valid_value.SerializeTo(value_manager(), serialized), StatusIs(absl::StatusCode::kUnimplemented)); } TEST_P(ParsedRepeatedFieldValueTest, ConvertToJson) { auto message = DynamicParseTextProto<TestAllTypesProto3>( allocator(), R"pb()pb", descriptor_pool(), message_factory()); ParsedRepeatedFieldValue valid_value( message, ABSL_DIE_IF_NULL(message->GetDescriptor()->FindFieldByName( "repeated_int64"))); EXPECT_THAT(valid_value.ConvertToJson(value_manager()), StatusIs(absl::StatusCode::kUnimplemented)); } TEST_P(ParsedRepeatedFieldValueTest, Equal) { auto message = DynamicParseTextProto<TestAllTypesProto3>( allocator(), R"pb()pb", descriptor_pool(), message_factory()); ParsedRepeatedFieldValue valid_value( message, ABSL_DIE_IF_NULL(message->GetDescriptor()->FindFieldByName( "repeated_int64"))); EXPECT_THAT(valid_value.Equal(value_manager(), BoolValue()), StatusIs(absl::StatusCode::kUnimplemented)); } TEST_P(ParsedRepeatedFieldValueTest, Empty) { auto message = DynamicParseTextProto<TestAllTypesProto3>( allocator(), R"pb()pb", descriptor_pool(), message_factory()); ParsedRepeatedFieldValue valid_value( message, ABSL_DIE_IF_NULL(message->GetDescriptor()->FindFieldByName( "repeated_int64"))); EXPECT_TRUE(valid_value.IsEmpty()); } TEST_P(ParsedRepeatedFieldValueTest, Size) { auto message = DynamicParseTextProto<TestAllTypesProto3>( allocator(), R"pb()pb", descriptor_pool(), message_factory()); ParsedRepeatedFieldValue valid_value( message, ABSL_DIE_IF_NULL(message->GetDescriptor()->FindFieldByName( "repeated_int64"))); EXPECT_EQ(valid_value.Size(), 0); } TEST_P(ParsedRepeatedFieldValueTest, Get) { auto message = DynamicParseTextProto<TestAllTypesProto3>( allocator(), R"pb()pb", descriptor_pool(), message_factory()); ParsedRepeatedFieldValue valid_value( message, ABSL_DIE_IF_NULL(message->GetDescriptor()->FindFieldByName( "repeated_int64"))); EXPECT_THAT(valid_value.Get(value_manager(), 0), StatusIs(absl::StatusCode::kUnimplemented)); } TEST_P(ParsedRepeatedFieldValueTest, ForEach) { auto message = DynamicParseTextProto<TestAllTypesProto3>( allocator(), R"pb()pb", descriptor_pool(), message_factory()); ParsedRepeatedFieldValue valid_value( message, ABSL_DIE_IF_NULL(message->GetDescriptor()->FindFieldByName( "repeated_int64"))); EXPECT_THAT(valid_value.ForEach( value_manager(), [](const Value&) -> absl::StatusOr<bool> { return true; }), StatusIs(absl::StatusCode::kUnimplemented)); EXPECT_THAT( valid_value.ForEach( value_manager(), [](size_t, const Value&) -> absl::StatusOr<bool> { return true; }), StatusIs(absl::StatusCode::kUnimplemented)); } TEST_P(ParsedRepeatedFieldValueTest, NewIterator) { auto message = DynamicParseTextProto<TestAllTypesProto3>( allocator(), R"pb()pb", descriptor_pool(), message_factory()); ParsedRepeatedFieldValue valid_value( message, ABSL_DIE_IF_NULL(message->GetDescriptor()->FindFieldByName( "repeated_int64"))); EXPECT_THAT(valid_value.NewIterator(value_manager()), StatusIs(absl::StatusCode::kUnimplemented)); } TEST_P(ParsedRepeatedFieldValueTest, Contains) { auto message = DynamicParseTextProto<TestAllTypesProto3>( allocator(), R"pb()pb", descriptor_pool(), message_factory()); ParsedRepeatedFieldValue valid_value( message, ABSL_DIE_IF_NULL(message->GetDescriptor()->FindFieldByName( "repeated_int64"))); EXPECT_THAT(valid_value.Contains(value_manager(), BoolValue()), StatusIs(absl::StatusCode::kUnimplemented)); } INSTANTIATE_TEST_SUITE_P(ParsedRepeatedFieldValueTest, ParsedRepeatedFieldValueTest, ::testing::Values(AllocatorKind::kArena, AllocatorKind::kNewDelete), PrintToStringParamName()); } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/values/parsed_repeated_field_value.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/values/parsed_repeated_field_value_test.cc
4552db5798fb0853b131b783d8875794334fae7f
440ad401-881b-4038-950a-c4db8e384c34
cpp
tensorflow/tensorflow
latency_benchmark
tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/main/native/latency_benchmark.cc
tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/test/native/latency_benchmark_test.cc
#include "tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/main/native/latency_benchmark.h" #include <errno.h> #include <sys/stat.h> #include <fstream> #include <iterator> #include <sstream> #include <string> #include <utility> #include <vector> #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "tensorflow/core/util/stats_calculator.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/logger.h" #include "tensorflow/lite/minimal_logging.h" #include "tensorflow/lite/profiling/memory_info.h" #include "tensorflow/lite/tools/benchmark/benchmark_model.h" #include "tensorflow/lite/tools/benchmark/benchmark_params.h" #include "tensorflow/lite/tools/benchmark/benchmark_tflite_model.h" #include "tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/proto/delegate_performance.pb.h" namespace tflite { namespace benchmark { namespace latency { namespace { static constexpr char kBenchmarkToolName[] = "(BenchmarkModelAndroid)"; class DelegatePerformanceReportingListener : public BenchmarkListener { public: void OnBenchmarkStart(const BenchmarkParams& unused) override { results_proto_.set_event_type(proto::benchmark::BENCHMARK_EVENT_TYPE_START); } void OnBenchmarkEnd(const BenchmarkResults& results) override { ReportResult(results); } void ReportFailure(TfLiteStatus status) { std::string status_msg = status == kTfLiteError ? "TFLite error" : (status == kTfLiteDelegateError ? "TFLite delegate error" : "unexpected TFLite status"); TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Benchmark failed due to %s with status code %d.", status_msg.c_str(), status); results_proto_.set_event_type(proto::benchmark::BENCHMARK_EVENT_TYPE_ERROR); results_proto_.mutable_error()->mutable_error_code()->set_tflite_error( status); results_proto_.mutable_error()->set_error_message(status_msg); } const proto::benchmark::LatencyResults& GetResults() { return results_proto_; } private: void ReportResult(const BenchmarkResults& results) { tensorflow::Stat<int64_t> warmup_us = results.warmup_time_us(); tensorflow::Stat<int64_t> inference_us = results.inference_time_us(); profiling::memory::MemoryUsage init_mem_usage = results.init_mem_usage(); profiling::memory::MemoryUsage overall_mem_usage = results.overall_mem_usage(); if (results.model_size_mb() > 0) { AddMetric("model_size_megabyte", results.model_size_mb()); } AddMetric("initialization_latency_us", results.startup_latency_us()); AddMetric("warmup_latency_average_us", warmup_us.avg()); AddMetric("warmup_latency_min_us", warmup_us.min()); AddMetric("warmup_latency_max_us", warmup_us.max()); AddMetric("warmup_latency_standard_deviation_us", warmup_us.std_deviation()); AddMetric("inference_latency_average_us", inference_us.avg()); AddMetric("inference_latency_min_us", inference_us.min()); AddMetric("inference_latency_max_us", inference_us.max()); AddMetric("inference_latency_standard_deviation_us", inference_us.std_deviation()); AddMetric("initialization_memory_max_rss_mebibyte", init_mem_usage.mem_footprint_kb / 1024.0); AddMetric("initialization_memory_total_non_mmapped_heap_mebibyte", init_mem_usage.total_allocated_bytes / 1024.0 / 1024.0); AddMetric( "initialization_memory_in_use_heap_mebibyte", init_mem_usage.in_use_allocated_bytes / 1024.0 / 1024.0); AddMetric("overall_memory_max_rss_mebibyte", overall_mem_usage.mem_footprint_kb / 1024.0); AddMetric( "overall_memory_total_non_mmapped_heap_mebibyte", overall_mem_usage.total_allocated_bytes / 1024.0 / 1024.0); AddMetric( "overall_memory_in_use_heap_mebibyte", overall_mem_usage.in_use_allocated_bytes / 1024.0 / 1024.0); results_proto_.set_event_type(proto::benchmark::BENCHMARK_EVENT_TYPE_END); TFLITE_LOG_PROD(TFLITE_LOG_INFO, "Benchmark finished."); } void AddMetric(std::string name, float value) { proto::benchmark::BenchmarkMetric* metric = results_proto_.add_metrics(); metric->set_name(name); metric->set_value(value); } proto::benchmark::LatencyResults results_proto_; }; std::vector<std::string> ParseArgumentsFromTfLiteSettings( const TFLiteSettings& tflite_settings, const std::string& tflite_settings_path) { std::vector<std::string> args; if (tflite_settings_path.empty()) { return args; } if (tflite_settings.stable_delegate_loader_settings()) { args.push_back(absl::StrFormat("--stable_delegate_settings_file=%s", tflite_settings_path)); return args; } switch (tflite_settings.delegate()) { case Delegate_XNNPACK: { args.push_back("--use_xnnpack=true"); if (tflite_settings.xnnpack_settings()) { if (tflite_settings.xnnpack_settings()->num_threads()) { args.push_back(absl::StrFormat( "--num_threads=%d", tflite_settings.xnnpack_settings()->num_threads())); } if (tflite_settings.xnnpack_settings()->flags() == XNNPackFlags_TFLITE_XNNPACK_DELEGATE_FLAG_FORCE_FP16) { args.push_back("--xnnpack_force_fp16=true"); } } return args; } case Delegate_GPU: { args.push_back("--use_gpu=true"); const tflite::GPUSettings* gpu_settings = tflite_settings.gpu_settings(); if (gpu_settings) { if (gpu_settings->is_precision_loss_allowed()) { args.push_back("--gpu_precision_loss_allowed=true"); } if (gpu_settings->enable_quantized_inference()) { args.push_back("--gpu_experimental_enable_quant=true"); } if (gpu_settings->inference_preference() == GPUInferenceUsage_GPU_INFERENCE_PREFERENCE_SUSTAINED_SPEED) { args.push_back("--gpu_inference_for_sustained_speed=true"); } if (gpu_settings->force_backend() == GPUBackend_OPENCL) { args.push_back("--gpu_backend=cl"); } else if (gpu_settings->force_backend() == GPUBackend_OPENGL) { args.push_back("--gpu_backend=gl"); } if (gpu_settings->cache_directory()) { args.push_back( absl::StrFormat("--delegate_serialize_dir=%s", gpu_settings->cache_directory()->c_str())); } if (gpu_settings->model_token()) { args.push_back(absl::StrFormat("--delegate_serialize_token=%s", gpu_settings->model_token()->c_str())); } } break; } case Delegate_EDGETPU: { args.push_back("--use_edgetpu=true"); break; } default: TFLITE_LOG_PROD(TFLITE_LOG_WARNING, "Delegate type %s is not enabled by the latency module.", EnumNameDelegate(tflite_settings.delegate())); break; } if (tflite_settings.disable_default_delegates()) { args.push_back("--use_xnnpack=false"); } return args; } } proto::benchmark::LatencyResults Benchmark( const TFLiteSettings& tflite_settings, const std::string& tflite_settings_path, int model_fd, size_t model_offset, size_t model_size, const std::vector<std::string>& args) { std::vector<char*> argv; argv.push_back(const_cast<char*>(kBenchmarkToolName)); std::string arg_graph = absl::StrCat("--graph=fd:", model_fd, ":", model_offset, ":", model_size); argv.push_back(const_cast<char*>(arg_graph.data())); std::vector<std::string> args_from_tflite_settings = ParseArgumentsFromTfLiteSettings(tflite_settings, tflite_settings_path); for (const std::string& arg : args_from_tflite_settings) { argv.push_back(const_cast<char*>(arg.data())); } for (const std::string& arg : args) { argv.push_back(const_cast<char*>(arg.data())); } BenchmarkTfLiteModel benchmark; DelegatePerformanceReportingListener delegatePerformanceReporting; benchmark.AddListener(&delegatePerformanceReporting); TfLiteStatus status = benchmark.Run(argv.size(), argv.data()); if (status != kTfLiteOk) { delegatePerformanceReporting.ReportFailure(status); } return delegatePerformanceReporting.GetResults(); } } } }
#include "tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/main/native/latency_benchmark.h" #include <fcntl.h> #include <string> #include <vector> #include <gtest/gtest.h> #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/delegates/utils/experimental/stable_delegate/tflite_settings_json_parser.h" #include "tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/proto/delegate_performance.pb.h" namespace tflite { namespace benchmark { namespace latency { namespace { static constexpr char kModelPath[] = "../tflite_mobilenet_float/" "mobilenet_v1_1.0_224.tflite"; static constexpr char kSettingsFilePath[] = "tensorflow/lite/tools/delegates/experimental/stable_delegate/" "test_sample_stable_delegate_settings.json"; class LatencyBenchmarkTest : public ::testing::Test { protected: void SetUp() override { model_fp_ = fopen(kModelPath, "rb"); ASSERT_TRUE(model_fp_ != nullptr); ASSERT_EQ(fseek(model_fp_, 0, SEEK_END), 0); model_size_ = ftell(model_fp_); ASSERT_NE(model_size_, -1); ASSERT_EQ(fseek(model_fp_, 0, SEEK_SET), 0); settings_ = parser_.Parse(kSettingsFilePath); } delegates::utils::TfLiteSettingsJsonParser parser_; const TFLiteSettings* settings_; size_t model_size_; FILE* model_fp_; std::vector<std::string> args_; }; TEST_F(LatencyBenchmarkTest, FailedWithNullFileDescriptor) { EXPECT_TRUE(Benchmark(*settings_, kSettingsFilePath, 0, 0, 0, args_) .has_error()); } TEST_F(LatencyBenchmarkTest, FailedWithInvalidNumThreadsSettings) { flatbuffers::FlatBufferBuilder fbb; flatbuffers::Offset<tflite::XNNPackSettings> xnnpack_settings = CreateXNNPackSettings(fbb, -3); TFLiteSettingsBuilder tflite_settings_builder(fbb); tflite_settings_builder.add_delegate(Delegate_XNNPACK); tflite_settings_builder.add_xnnpack_settings(xnnpack_settings); fbb.Finish(tflite_settings_builder.Finish()); const TFLiteSettings* settings = flatbuffers::GetRoot<TFLiteSettings>(fbb.GetBufferPointer()); EXPECT_TRUE(Benchmark(*settings, "example_path", fileno(model_fp_), 0, model_size_, args_) .has_error()); } TEST_F(LatencyBenchmarkTest, SucceedWithEmptyTfLiteSettings) { flatbuffers::FlatBufferBuilder fbb; TFLiteSettingsBuilder tflite_settings_builder(fbb); fbb.Finish(tflite_settings_builder.Finish()); const TFLiteSettings* settings = flatbuffers::GetRoot<TFLiteSettings>(fbb.GetBufferPointer()); EXPECT_EQ(Benchmark(*settings, "example_path", fileno(model_fp_), 0, model_size_, args_) .event_type(), proto::benchmark::BENCHMARK_EVENT_TYPE_END); } TEST_F(LatencyBenchmarkTest, SucceedWithCpuTfLiteSettings) { flatbuffers::FlatBufferBuilder fbb; TFLiteSettingsBuilder tflite_settings_builder(fbb); tflite_settings_builder.add_disable_default_delegates(true); fbb.Finish(tflite_settings_builder.Finish()); const TFLiteSettings* settings = flatbuffers::GetRoot<TFLiteSettings>(fbb.GetBufferPointer()); EXPECT_EQ(Benchmark(*settings, "example_path", fileno(model_fp_), 0, model_size_, args_) .event_type(), proto::benchmark::BENCHMARK_EVENT_TYPE_END); } #ifdef __ANDROID__ TEST_F(LatencyBenchmarkTest, SucceedWithGpuTfLiteSettings) { flatbuffers::FlatBufferBuilder fbb; TFLiteSettingsBuilder tflite_settings_builder(fbb); tflite_settings_builder.add_delegate(Delegate_GPU); fbb.Finish(tflite_settings_builder.Finish()); const TFLiteSettings* settings = flatbuffers::GetRoot<TFLiteSettings>(fbb.GetBufferPointer()); EXPECT_EQ(Benchmark(*settings, "example_path", fileno(model_fp_), 0, model_size_, args_) .event_type(), proto::benchmark::BENCHMARK_EVENT_TYPE_END); } #endif TEST_F(LatencyBenchmarkTest, SucceedWithSampleStableDelegate) { EXPECT_EQ(Benchmark(*settings_, kSettingsFilePath, fileno(model_fp_), 0, model_size_, args_) .event_type(), proto::benchmark::BENCHMARK_EVENT_TYPE_END); } TEST_F(LatencyBenchmarkTest, SucceedWithSampleStableDelegateAndBenchmarkToolArguments) { std::vector<std::string> args = {"--warmup_runs=10"}; EXPECT_EQ(Benchmark(*settings_, kSettingsFilePath, fileno(model_fp_), 0, model_size_, args) .event_type(), proto::benchmark::BENCHMARK_EVENT_TYPE_END); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/main/native/latency_benchmark.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/test/native/latency_benchmark_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
732627c3-ac7c-45b8-b76f-447446958de6
cpp
google/quiche
load_balancer_server_id_map
quiche/quic/load_balancer/load_balancer_server_id_map.h
quiche/quic/load_balancer/load_balancer_server_id_map_test.cc
#ifndef QUICHE_QUIC_LOAD_BALANCER_LOAD_BALANCER_SERVER_ID_MAP_H_ #define QUICHE_QUIC_LOAD_BALANCER_LOAD_BALANCER_SERVER_ID_MAP_H_ #include <cstdint> #include <memory> #include <optional> #include "absl/container/flat_hash_map.h" #include "quiche/quic/load_balancer/load_balancer_server_id.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" namespace quic { template <typename T> class QUIC_EXPORT_PRIVATE LoadBalancerServerIdMap { public: static std::shared_ptr<LoadBalancerServerIdMap> Create(uint8_t server_id_len); std::optional<const T> Lookup(LoadBalancerServerId server_id) const; const T* LookupNoCopy(LoadBalancerServerId server_id) const; void AddOrReplace(LoadBalancerServerId server_id, T value); void Erase(const LoadBalancerServerId server_id) { server_id_table_.erase(server_id); } uint8_t server_id_len() const { return server_id_len_; } private: LoadBalancerServerIdMap(uint8_t server_id_len) : server_id_len_(server_id_len) {} const uint8_t server_id_len_; absl::flat_hash_map<LoadBalancerServerId, T> server_id_table_; }; template <typename T> std::shared_ptr<LoadBalancerServerIdMap<T>> LoadBalancerServerIdMap<T>::Create( const uint8_t server_id_len) { if (server_id_len == 0 || server_id_len > kLoadBalancerMaxServerIdLen) { QUIC_BUG(quic_bug_434893339_01) << "Tried to configure map with server ID length " << static_cast<int>(server_id_len); return nullptr; } return std::make_shared<LoadBalancerServerIdMap<T>>( LoadBalancerServerIdMap(server_id_len)); } template <typename T> std::optional<const T> LoadBalancerServerIdMap<T>::Lookup( const LoadBalancerServerId server_id) const { if (server_id.length() != server_id_len_) { QUIC_BUG(quic_bug_434893339_02) << "Lookup with a " << static_cast<int>(server_id.length()) << " byte server ID, map requires " << static_cast<int>(server_id_len_); return std::optional<T>(); } auto it = server_id_table_.find(server_id); return (it != server_id_table_.end()) ? it->second : std::optional<const T>(); } template <typename T> const T* LoadBalancerServerIdMap<T>::LookupNoCopy( const LoadBalancerServerId server_id) const { if (server_id.length() != server_id_len_) { QUIC_BUG(quic_bug_434893339_02) << "Lookup with a " << static_cast<int>(server_id.length()) << " byte server ID, map requires " << static_cast<int>(server_id_len_); return nullptr; } auto it = server_id_table_.find(server_id); return (it != server_id_table_.end()) ? &it->second : nullptr; } template <typename T> void LoadBalancerServerIdMap<T>::AddOrReplace( const LoadBalancerServerId server_id, T value) { if (server_id.length() == server_id_len_) { server_id_table_[server_id] = value; } else { QUIC_BUG(quic_bug_434893339_03) << "Server ID of " << static_cast<int>(server_id.length()) << " bytes; this map requires " << static_cast<int>(server_id_len_); } } } #endif
#include "quiche/quic/load_balancer/load_balancer_server_id_map.h" #include <cstdint> #include <optional> #include "absl/types/span.h" #include "quiche/quic/load_balancer/load_balancer_server_id.h" #include "quiche/quic/platform/api/quic_expect_bug.h" #include "quiche/quic/platform/api/quic_test.h" namespace quic { namespace test { namespace { constexpr uint8_t kServerId[] = {0xed, 0x79, 0x3a, 0x51}; class LoadBalancerServerIdMapTest : public QuicTest { public: const LoadBalancerServerId valid_server_id_ = LoadBalancerServerId(kServerId); const LoadBalancerServerId invalid_server_id_ = LoadBalancerServerId(absl::Span<const uint8_t>(kServerId, 3)); }; TEST_F(LoadBalancerServerIdMapTest, CreateWithBadServerIdLength) { EXPECT_QUIC_BUG(EXPECT_EQ(LoadBalancerServerIdMap<int>::Create(0), nullptr), "Tried to configure map with server ID length 0"); EXPECT_QUIC_BUG(EXPECT_EQ(LoadBalancerServerIdMap<int>::Create(16), nullptr), "Tried to configure map with server ID length 16"); } TEST_F(LoadBalancerServerIdMapTest, AddOrReplaceWithBadServerIdLength) { int record = 1; auto pool = LoadBalancerServerIdMap<int>::Create(4); EXPECT_NE(pool, nullptr); EXPECT_QUIC_BUG(pool->AddOrReplace(invalid_server_id_, record), "Server ID of 3 bytes; this map requires 4"); } TEST_F(LoadBalancerServerIdMapTest, LookupWithBadServerIdLength) { int record = 1; auto pool = LoadBalancerServerIdMap<int>::Create(4); EXPECT_NE(pool, nullptr); pool->AddOrReplace(valid_server_id_, record); EXPECT_QUIC_BUG(EXPECT_FALSE(pool->Lookup(invalid_server_id_).has_value()), "Lookup with a 3 byte server ID, map requires 4"); EXPECT_QUIC_BUG(EXPECT_EQ(pool->LookupNoCopy(invalid_server_id_), nullptr), "Lookup with a 3 byte server ID, map requires 4"); } TEST_F(LoadBalancerServerIdMapTest, LookupWhenEmpty) { auto pool = LoadBalancerServerIdMap<int>::Create(4); EXPECT_NE(pool, nullptr); EXPECT_EQ(pool->LookupNoCopy(valid_server_id_), nullptr); std::optional<int> result = pool->Lookup(valid_server_id_); EXPECT_FALSE(result.has_value()); } TEST_F(LoadBalancerServerIdMapTest, AddLookup) { int record1 = 1, record2 = 2; auto pool = LoadBalancerServerIdMap<int>::Create(4); EXPECT_NE(pool, nullptr); LoadBalancerServerId other_server_id({0x01, 0x02, 0x03, 0x04}); EXPECT_TRUE(other_server_id.IsValid()); pool->AddOrReplace(valid_server_id_, record1); pool->AddOrReplace(other_server_id, record2); std::optional<int> result = pool->Lookup(valid_server_id_); EXPECT_TRUE(result.has_value()); EXPECT_EQ(*result, record1); auto result_ptr = pool->LookupNoCopy(valid_server_id_); EXPECT_NE(result_ptr, nullptr); EXPECT_EQ(*result_ptr, record1); result = pool->Lookup(other_server_id); EXPECT_TRUE(result.has_value()); EXPECT_EQ(*result, record2); } TEST_F(LoadBalancerServerIdMapTest, AddErase) { int record = 1; auto pool = LoadBalancerServerIdMap<int>::Create(4); EXPECT_NE(pool, nullptr); pool->AddOrReplace(valid_server_id_, record); EXPECT_EQ(*pool->LookupNoCopy(valid_server_id_), record); pool->Erase(valid_server_id_); EXPECT_EQ(pool->LookupNoCopy(valid_server_id_), nullptr); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/load_balancer/load_balancer_server_id_map.h
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/load_balancer/load_balancer_server_id_map_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
4ff22835-9a9a-423f-8510-b19d25979eff
cpp
google/cel-cpp
logical_functions
runtime/standard/logical_functions.cc
runtime/standard/logical_functions_test.cc
#include "runtime/standard/logical_functions.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "base/builtins.h" #include "base/function_adapter.h" #include "common/casting.h" #include "common/value.h" #include "common/value_manager.h" #include "internal/status_macros.h" #include "runtime/function_registry.h" #include "runtime/internal/errors.h" #include "runtime/register_function_helper.h" namespace cel { namespace { using ::cel::runtime_internal::CreateNoMatchingOverloadError; Value NotStrictlyFalseImpl(ValueManager& value_factory, const Value& value) { if (InstanceOf<BoolValue>(value)) { return value; } if (InstanceOf<ErrorValue>(value) || InstanceOf<UnknownValue>(value)) { return value_factory.CreateBoolValue(true); } return value_factory.CreateErrorValue( CreateNoMatchingOverloadError(builtin::kNotStrictlyFalse)); } } absl::Status RegisterLogicalFunctions(FunctionRegistry& registry, const RuntimeOptions& options) { CEL_RETURN_IF_ERROR( (RegisterHelper<UnaryFunctionAdapter<bool, bool>>::RegisterGlobalOverload( builtin::kNot, [](ValueManager&, bool value) -> bool { return !value; }, registry))); using StrictnessHelper = RegisterHelper<UnaryFunctionAdapter<Value, Value>>; CEL_RETURN_IF_ERROR(StrictnessHelper::RegisterNonStrictOverload( builtin::kNotStrictlyFalse, &NotStrictlyFalseImpl, registry)); CEL_RETURN_IF_ERROR(StrictnessHelper::RegisterNonStrictOverload( builtin::kNotStrictlyFalseDeprecated, &NotStrictlyFalseImpl, registry)); return absl::OkStatus(); } }
#include "runtime/standard/logical_functions.h" #include <functional> #include <string> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "base/builtins.h" #include "base/function.h" #include "base/function_descriptor.h" #include "base/kind.h" #include "base/type_provider.h" #include "common/type_factory.h" #include "common/type_manager.h" #include "common/value.h" #include "common/value_manager.h" #include "common/values/legacy_value_manager.h" #include "internal/testing.h" #include "runtime/function_overload_reference.h" #include "runtime/function_registry.h" #include "runtime/runtime_options.h" namespace cel { namespace { using ::testing::ElementsAre; using ::testing::HasSubstr; using ::testing::Matcher; using ::testing::Truly; MATCHER_P3(DescriptorIs, name, arg_kinds, is_receiver, "") { const FunctionOverloadReference& ref = arg; const FunctionDescriptor& descriptor = ref.descriptor; return descriptor.name() == name && descriptor.ShapeMatches(is_receiver, arg_kinds); } MATCHER_P(IsBool, expected, "") { const Value& value = arg; return value->Is<BoolValue>() && value.GetBool().NativeValue() == expected; } absl::StatusOr<Value> TestDispatchToFunction(const FunctionRegistry& registry, absl::string_view simple_name, absl::Span<const Value> args, ValueManager& value_factory) { std::vector<Kind> arg_matcher_; arg_matcher_.reserve(args.size()); for (const auto& value : args) { arg_matcher_.push_back(ValueKindToKind(value->kind())); } std::vector<FunctionOverloadReference> refs = registry.FindStaticOverloads( simple_name, false, arg_matcher_); if (refs.size() != 1) { return absl::InvalidArgumentError("ambiguous overloads"); } Function::InvokeContext ctx(value_factory); return refs[0].implementation.Invoke(ctx, args); } TEST(RegisterLogicalFunctions, NotStrictlyFalseRegistered) { FunctionRegistry registry; RuntimeOptions options; ASSERT_OK(RegisterLogicalFunctions(registry, options)); EXPECT_THAT( registry.FindStaticOverloads(builtin::kNotStrictlyFalse, false, {Kind::kAny}), ElementsAre(DescriptorIs(builtin::kNotStrictlyFalse, std::vector<Kind>{Kind::kBool}, false))); } TEST(RegisterLogicalFunctions, LogicalNotRegistered) { FunctionRegistry registry; RuntimeOptions options; ASSERT_OK(RegisterLogicalFunctions(registry, options)); EXPECT_THAT( registry.FindStaticOverloads(builtin::kNot, false, {Kind::kAny}), ElementsAre( DescriptorIs(builtin::kNot, std::vector<Kind>{Kind::kBool}, false))); } struct TestCase { using ArgumentFactory = std::function<std::vector<Value>(ValueManager&)>; std::string function; ArgumentFactory arguments; absl::StatusOr<Matcher<Value>> result_matcher; }; class LogicalFunctionsTest : public testing::TestWithParam<TestCase> { public: LogicalFunctionsTest() : value_factory_(MemoryManagerRef::ReferenceCounting(), TypeProvider::Builtin()) {} protected: common_internal::LegacyValueManager value_factory_; }; TEST_P(LogicalFunctionsTest, Runner) { const TestCase& test_case = GetParam(); cel::FunctionRegistry registry; ASSERT_OK(RegisterLogicalFunctions(registry, RuntimeOptions())); std::vector<Value> args = test_case.arguments(value_factory_); absl::StatusOr<Value> result = TestDispatchToFunction( registry, test_case.function, args, value_factory_); EXPECT_EQ(result.ok(), test_case.result_matcher.ok()); if (!test_case.result_matcher.ok()) { EXPECT_EQ(result.status().code(), test_case.result_matcher.status().code()); EXPECT_THAT(result.status().message(), HasSubstr(test_case.result_matcher.status().message())); } else { ASSERT_TRUE(result.ok()) << "unexpected error" << result.status(); EXPECT_THAT(*result, *test_case.result_matcher); } } INSTANTIATE_TEST_SUITE_P( Cases, LogicalFunctionsTest, testing::ValuesIn(std::vector<TestCase>{ TestCase{builtin::kNot, [](ValueManager& value_factory) -> std::vector<Value> { return {value_factory.CreateBoolValue(true)}; }, IsBool(false)}, TestCase{builtin::kNot, [](ValueManager& value_factory) -> std::vector<Value> { return {value_factory.CreateBoolValue(false)}; }, IsBool(true)}, TestCase{builtin::kNot, [](ValueManager& value_factory) -> std::vector<Value> { return {value_factory.CreateBoolValue(true), value_factory.CreateBoolValue(false)}; }, absl::InvalidArgumentError("")}, TestCase{builtin::kNotStrictlyFalse, [](ValueManager& value_factory) -> std::vector<Value> { return {value_factory.CreateBoolValue(true)}; }, IsBool(true)}, TestCase{builtin::kNotStrictlyFalse, [](ValueManager& value_factory) -> std::vector<Value> { return {value_factory.CreateBoolValue(false)}; }, IsBool(false)}, TestCase{builtin::kNotStrictlyFalse, [](ValueManager& value_factory) -> std::vector<Value> { return {value_factory.CreateErrorValue( absl::InternalError("test"))}; }, IsBool(true)}, TestCase{builtin::kNotStrictlyFalse, [](ValueManager& value_factory) -> std::vector<Value> { return {value_factory.CreateUnknownValue()}; }, IsBool(true)}, TestCase{builtin::kNotStrictlyFalse, [](ValueManager& value_factory) -> std::vector<Value> { return {value_factory.CreateIntValue(42)}; }, Truly([](const Value& v) { return v->Is<ErrorValue>() && absl::StrContains( v.GetError().NativeValue().message(), "No matching overloads"); })}, })); } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/runtime/standard/logical_functions.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/runtime/standard/logical_functions_test.cc
4552db5798fb0853b131b783d8875794334fae7f
752315be-50a6-4e68-908c-f2f56b92567d
cpp
google/tensorstore
box
tensorstore/box.cc
tensorstore/box_test.cc
#include "tensorstore/box.h" #include <algorithm> #include <ostream> #include "absl/status/status.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/span.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_box { std::string DescribeForCast(DimensionIndex rank) { return tensorstore::StrCat("box with ", StaticCastTraits<DimensionIndex>::Describe(rank)); } std::ostream& PrintToOstream(std::ostream& os, const BoxView<>& view) { return os << "{origin=" << view.origin() << ", shape=" << view.shape() << "}"; } bool AreEqual(const BoxView<>& box_a, const BoxView<>& box_b) { return box_a.rank() == box_b.rank() && std::equal(box_a.shape().begin(), box_a.shape().end(), box_b.shape().begin()) && std::equal(box_a.origin().begin(), box_a.origin().end(), box_b.origin().begin()); } bool IsFinite(BoxView<> box) { for (DimensionIndex i = 0; i < box.rank(); ++i) { if (!IsFinite(box[i])) return false; } return true; } } namespace serialization { namespace internal_serialization { bool EncodeBoxView(EncodeSink& sink, BoxView<> box) { return serialization::EncodeTuple(sink, box.origin(), box.shape()); } bool DecodeBoxView(DecodeSource& source, MutableBoxView<> box) { return serialization::DecodeTuple(source, box.origin(), box.shape()); } } bool RankSerializer::Encode(EncodeSink& sink, DimensionIndex rank) { assert(IsValidRank(rank)); return sink.writer().WriteByte(static_cast<uint8_t>(rank)); } bool RankSerializer::Decode(DecodeSource& source, DimensionIndex& rank) { uint8_t v; if (!source.reader().ReadByte(v)) return false; if (v > kMaxRank) { source.Fail(DecodeError( tensorstore::StrCat("Invalid rank value: ", static_cast<size_t>(v)))); } rank = static_cast<DimensionIndex>(v); return true; } } }
#include "tensorstore/box.h" #include <array> #include <type_traits> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/box.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/rank.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/test_util.h" #include "tensorstore/static_cast.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::Box; using ::tensorstore::BoxView; using ::tensorstore::dynamic_rank; using ::tensorstore::HasBoxDomain; using ::tensorstore::Index; using ::tensorstore::IndexInterval; using ::tensorstore::IsStaticCastConstructible; using ::tensorstore::kInfIndex; using ::tensorstore::kInfSize; using ::tensorstore::MatchesStatus; using ::tensorstore::MutableBoxView; using ::tensorstore::StaticRankCast; using ::tensorstore::SubBoxView; using ::tensorstore::unchecked; using ::tensorstore::serialization::TestSerializationRoundTrip; using ::testing::ElementsAre; using ::testing::ElementsAreArray; static_assert(std::is_convertible_v<BoxView<3>, BoxView<>>); static_assert(!std::is_constructible_v<BoxView<3>, BoxView<>>); static_assert(!std::is_assignable_v<BoxView<3>, BoxView<>>); static_assert(!std::is_assignable_v<Box<3>, Box<>>); static_assert(!std::is_constructible_v<Box<3>, Box<>>); static_assert(!std::is_constructible_v<BoxView<3>, Box<>>); static_assert(!std::is_constructible_v<MutableBoxView<3>, MutableBoxView<>>); static_assert(!std::is_constructible_v<MutableBoxView<3>, Box<>>); static_assert(std::is_constructible_v<MutableBoxView<3>, Box<3>&>); static_assert(IsStaticCastConstructible<BoxView<3>, BoxView<>>); static_assert(IsStaticCastConstructible<Box<3>, BoxView<>>); static_assert(IsStaticCastConstructible<Box<3>, Box<>>); static_assert(IsStaticCastConstructible<BoxView<>, BoxView<3>>); static_assert(IsStaticCastConstructible<MutableBoxView<3>, Box<3>&>); static_assert(!IsStaticCastConstructible<MutableBoxView<>, const Box<3>&>); static_assert(!IsStaticCastConstructible<BoxView<2>, BoxView<3>>); static_assert(!IsStaticCastConstructible<BoxView<2>, Box<3>>); static_assert(!IsStaticCastConstructible<Box<3>, Box<2>>); TEST(BoxTest, DefaultConstructDynamic) { Box<> box; EXPECT_EQ(0, box.rank()); } TEST(BoxTest, DefaultConstructStatic) { Box<3> box; EXPECT_THAT(box.origin(), ElementsAre(-kInfIndex, -kInfIndex, -kInfIndex)); EXPECT_THAT(box.shape(), ElementsAre(kInfSize, kInfSize, kInfSize)); } TEST(BoxTest, RankPointersConstruct) { const Index origin[] = {1, 2, 3}; const Index shape[] = {4, 5, 6}; Box<> box(3, origin, shape); EXPECT_THAT(box.origin(), ElementsAre(1, 2, 3)); EXPECT_THAT(box.shape(), ElementsAre(4, 5, 6)); } TEST(BoxTest, SizeConstruct) { Box<> box(3); EXPECT_THAT(box.origin(), ElementsAre(-kInfIndex, -kInfIndex, -kInfIndex)); EXPECT_THAT(box.shape(), ElementsAre(kInfSize, kInfSize, kInfSize)); } TEST(BoxTest, ShapeArrayConstruct) { std::array<Index, 3> shape{{1, 2, 3}}; Box<> box(shape); EXPECT_THAT(box.origin(), ElementsAre(0, 0, 0)); EXPECT_THAT(box.shape(), ElementsAre(1, 2, 3)); } TEST(BoxTest, DynamicRankSpanConstruct) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; Box<> box{tensorstore::span(origin), tensorstore::span(shape)}; EXPECT_EQ(3, box.rank()); EXPECT_THAT(origin, ElementsAreArray(origin)); EXPECT_THAT(shape, ElementsAreArray(shape)); } TEST(BoxTest, ConstructFromArrays) { Box<> box({1, 2, 3}, {4, 5, 6}); EXPECT_THAT(box.origin(), ElementsAre(1, 2, 3)); EXPECT_THAT(box.shape(), ElementsAre(4, 5, 6)); } TEST(BoxTest, ConstructFromBoxView) { const Index origin[] = {1, 2, 3}; const Index shape[] = {4, 5, 6}; BoxView<> view(origin, shape); Box<> box(view); EXPECT_EQ(3, box.rank()); EXPECT_THAT(box.shape(), ElementsAreArray(shape)); EXPECT_THAT(box.origin(), ElementsAreArray(origin)); } TEST(BoxTest, DeduceFromShapeArray) { const Index shape[] = {3, 4, 5}; auto box = Box(shape); static_assert(std::is_same_v<decltype(box), Box<3>>); EXPECT_THAT(box.origin(), ElementsAre(0, 0, 0)); EXPECT_THAT(box.shape(), ElementsAre(3, 4, 5)); } TEST(BoxTest, DeduceFromShapeSpanStatic) { const Index shape[] = {3, 4, 5}; auto box = Box(tensorstore::span(shape)); static_assert(std::is_same_v<decltype(box), Box<3>>); EXPECT_THAT(box.origin(), ElementsAre(0, 0, 0)); EXPECT_THAT(box.shape(), ElementsAre(3, 4, 5)); } TEST(BoxTest, DeduceFromShapeSpanDynamic) { const Index shape[] = {3, 4, 5}; auto box = Box(tensorstore::span<const Index>(shape)); static_assert(std::is_same_v<decltype(box), Box<>>); EXPECT_THAT(box.origin(), ElementsAre(0, 0, 0)); EXPECT_THAT(box.shape(), ElementsAre(3, 4, 5)); } TEST(BoxTest, DeduceFromOriginAndShapeArrays) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; auto box = Box(origin, shape); static_assert(std::is_same_v<decltype(box), Box<3>>); EXPECT_THAT(box.origin(), ElementsAre(1, 2, 3)); EXPECT_THAT(box.shape(), ElementsAre(3, 4, 5)); } TEST(BoxTest, DeduceFromOriginAndShapeSpansStatic) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; auto box = Box(tensorstore::span(origin), tensorstore::span(shape)); static_assert(std::is_same_v<decltype(box), Box<3>>); EXPECT_THAT(box.origin(), ElementsAre(1, 2, 3)); EXPECT_THAT(box.shape(), ElementsAre(3, 4, 5)); } TEST(BoxTest, DeduceFromOriginAndShapeDynamic) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; auto box = Box(tensorstore::span<const Index>(origin), tensorstore::span<const Index>(shape)); static_assert(std::is_same_v<decltype(box), Box<>>); EXPECT_THAT(box.origin(), ElementsAre(1, 2, 3)); EXPECT_THAT(box.shape(), ElementsAre(3, 4, 5)); } TEST(BoxTest, DeduceFromBoxView) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; BoxView<3> box(origin, shape); auto box2 = Box(box); static_assert(std::is_same_v<decltype(box2), Box<3>>); EXPECT_THAT(box2.shape(), ElementsAreArray(shape)); EXPECT_THAT(box2.origin(), ElementsAreArray(origin)); } TEST(BoxTest, DeduceFromBox) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; Box<3> box(origin, shape); auto box2 = Box(box); static_assert(std::is_same_v<decltype(box2), Box<3>>); EXPECT_THAT(box2.shape(), ElementsAreArray(shape)); EXPECT_THAT(box2.origin(), ElementsAreArray(origin)); } TEST(BoxTest, AssignFromBoxView) { const Index origin[] = {1, 2, 3}; const Index shape[] = {4, 5, 6}; BoxView<> view(origin, shape); Box<> box; box = view; EXPECT_EQ(3, box.rank()); EXPECT_THAT(box.shape(), ElementsAreArray(shape)); EXPECT_THAT(box.origin(), ElementsAreArray(origin)); } TEST(BoxTest, AssignFromBox) { const Index origin[] = {1, 2, 3}; const Index shape[] = {4, 5, 6}; Box<> other(origin, shape); Box<> box; box = other; EXPECT_EQ(3, box.rank()); EXPECT_THAT(box.shape(), ElementsAreArray(shape)); EXPECT_THAT(box.origin(), ElementsAreArray(origin)); } TEST(BoxTest, AssignDynamicBoxFromStaticBox) { const Index origin[] = {1, 2, 3}; const Index shape[] = {4, 5, 6}; Box<3> other(origin, shape); Box<> box; box = other; EXPECT_EQ(3, box.rank()); EXPECT_THAT(box.shape(), ElementsAreArray(shape)); EXPECT_THAT(box.origin(), ElementsAreArray(origin)); box.Fill(); box = BoxView<3>(other); EXPECT_EQ(3, box.rank()); EXPECT_THAT(box.shape(), ElementsAreArray(shape)); EXPECT_THAT(box.origin(), ElementsAreArray(origin)); } TEST(BoxTest, AssignStaticBoxFromDynamic) { const Index origin[] = {1, 2, 3}; const Index shape[] = {4, 5, 6}; Box<> other(origin, shape); Box<3> box; box = StaticRankCast<3, unchecked>(other); EXPECT_EQ(3, box.rank()); EXPECT_THAT(box.shape(), ElementsAreArray(shape)); EXPECT_THAT(box.origin(), ElementsAreArray(origin)); } TEST(BoxTest, SetRank) { Box<> box; box.set_rank(3); EXPECT_EQ(3, box.rank()); EXPECT_THAT(box.origin(), ElementsAre(-kInfIndex, -kInfIndex, -kInfIndex)); EXPECT_THAT(box.shape(), ElementsAre(kInfSize, kInfSize, kInfSize)); } TEST(BoxTest, Accessors) { Box<> box({1, 2, 3}, {4, 5, 6}); EXPECT_EQ(4 * 5 * 6, box.num_elements()); EXPECT_EQ(IndexInterval::UncheckedSized(1, 4), box[0]); EXPECT_EQ(IndexInterval::UncheckedSized(2, 5), box[1]); EXPECT_EQ(IndexInterval::UncheckedSized(3, 6), box[2]); } TEST(BoxTest, ConstAccessors) { const Box<> box({1, 2, 3}, {4, 5, 6}); EXPECT_EQ(4 * 5 * 6, box.num_elements()); EXPECT_EQ(IndexInterval::UncheckedSized(1, 4), box[0]); EXPECT_EQ(IndexInterval::UncheckedSized(2, 5), box[1]); EXPECT_EQ(IndexInterval::UncheckedSized(3, 6), box[2]); } TEST(BoxTest, SubscriptAssignment) { Box<> box(2); box[1] = IndexInterval::UncheckedSized(1, 5); EXPECT_THAT(box.origin(), ElementsAre(-kInfIndex, 1)); EXPECT_THAT(box.shape(), ElementsAre(kInfSize, 5)); } TEST(BoxTest, Fill) { Box<> box(2); box.Fill(IndexInterval::UncheckedSized(1, 5)); EXPECT_THAT(box.origin(), ElementsAre(1, 1)); EXPECT_THAT(box.shape(), ElementsAre(5, 5)); } TEST(BoxTest, IsEmpty) { Box<> box(3); EXPECT_FALSE(box.is_empty()); box.Fill(IndexInterval::UncheckedSized(0, 0)); EXPECT_TRUE(box.is_empty()); } TEST(BoxViewTest, StaticRankDefaultConstruct) { BoxView<3> box; EXPECT_THAT(box.origin(), ElementsAre(-kInfIndex, -kInfIndex, -kInfIndex)); EXPECT_THAT(box.shape(), ElementsAre(kInfSize, kInfSize, kInfSize)); } TEST(BoxViewTest, DynamicRankDefaultConstruct) { BoxView<> box; EXPECT_EQ(0, box.rank()); } TEST(BoxViewTest, DynamicRankSizeConstruct) { BoxView<> box(3); EXPECT_EQ(3, box.rank()); EXPECT_THAT(box.origin(), ElementsAre(-kInfIndex, -kInfIndex, -kInfIndex)); EXPECT_THAT(box.shape(), ElementsAre(kInfSize, kInfSize, kInfSize)); } TEST(BoxViewTest, DynamicRankSpanConstruct) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; BoxView<> box{tensorstore::span(origin), tensorstore::span(shape)}; EXPECT_EQ(3, box.rank()); EXPECT_EQ(&origin[0], box.origin().data()); EXPECT_EQ(&shape[0], box.shape().data()); } TEST(BoxViewTest, DeduceFromShapeArray) { const Index shape[] = {3, 4, 5}; auto box = BoxView(shape); static_assert(std::is_same_v<decltype(box), BoxView<3>>); EXPECT_THAT(box.origin(), ElementsAre(0, 0, 0)); EXPECT_THAT(box.shape(), ElementsAre(3, 4, 5)); } TEST(BoxViewTest, DeduceFromShapeSpanStatic) { const Index shape[] = {3, 4, 5}; auto box = BoxView(tensorstore::span(shape)); static_assert(std::is_same_v<decltype(box), BoxView<3>>); EXPECT_THAT(box.origin(), ElementsAre(0, 0, 0)); EXPECT_THAT(box.shape(), ElementsAre(3, 4, 5)); } TEST(BoxViewTest, DeduceFromShapeSpanDynamic) { const Index shape[] = {3, 4, 5}; auto box = BoxView(tensorstore::span<const Index>(shape)); static_assert(std::is_same_v<decltype(box), BoxView<>>); EXPECT_THAT(box.origin(), ElementsAre(0, 0, 0)); EXPECT_THAT(box.shape(), ElementsAre(3, 4, 5)); } TEST(BoxViewTest, DeduceFromOriginAndShapeArrays) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; auto box = BoxView(origin, shape); static_assert(std::is_same_v<decltype(box), BoxView<3>>); EXPECT_THAT(box.origin(), ElementsAre(1, 2, 3)); EXPECT_THAT(box.shape(), ElementsAre(3, 4, 5)); } TEST(BoxViewTest, DeduceFromOriginAndShapeSpansStatic) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; auto box = BoxView(tensorstore::span(origin), tensorstore::span(shape)); static_assert(std::is_same_v<decltype(box), BoxView<3>>); EXPECT_THAT(box.origin(), ElementsAre(1, 2, 3)); EXPECT_THAT(box.shape(), ElementsAre(3, 4, 5)); } TEST(BoxViewTest, DeduceFromOriginAndShapeDynamic) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; auto box = BoxView(tensorstore::span<const Index>(origin), tensorstore::span<const Index>(shape)); static_assert(std::is_same_v<decltype(box), BoxView<>>); EXPECT_THAT(box.origin(), ElementsAre(1, 2, 3)); EXPECT_THAT(box.shape(), ElementsAre(3, 4, 5)); } TEST(BoxViewTest, DeduceFromBoxView) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; BoxView<3> box(origin, shape); auto box2 = BoxView(box); static_assert(std::is_same_v<decltype(box2), BoxView<3>>); EXPECT_THAT(box2.shape(), ElementsAreArray(shape)); EXPECT_THAT(box2.origin(), ElementsAreArray(origin)); } TEST(BoxViewTest, DeduceFromBox) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; const Box<3> box(origin, shape); auto box2 = BoxView(box); static_assert(std::is_same_v<decltype(box2), BoxView<3>>); EXPECT_THAT(box2.shape(), ElementsAreArray(shape)); EXPECT_THAT(box2.origin(), ElementsAreArray(origin)); } TEST(BoxViewTest, Subscript) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; BoxView<> box(origin, shape); EXPECT_EQ(IndexInterval::UncheckedSized(1, 3), box[0]); EXPECT_EQ(IndexInterval::UncheckedSized(2, 4), box[1]); EXPECT_EQ(IndexInterval::UncheckedSized(3, 5), box[2]); } TEST(BoxViewTest, NumElements) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; BoxView<> box(origin, shape); EXPECT_EQ(3 * 4 * 5, box.num_elements()); } TEST(BoxViewTest, StaticToDynamicConversion) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; BoxView<3> box(origin, shape); BoxView<> dynamic_box = box; EXPECT_EQ(3, dynamic_box.rank()); EXPECT_THAT(dynamic_box.shape(), ElementsAreArray(shape)); EXPECT_THAT(dynamic_box.origin(), ElementsAreArray(origin)); } TEST(BoxViewTest, DefaultAssignment) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; BoxView<3> box(origin, shape); BoxView<3> box2; box2 = box; EXPECT_EQ(3, box2.rank()); EXPECT_THAT(box2.shape(), ElementsAreArray(shape)); EXPECT_THAT(box2.origin(), ElementsAreArray(origin)); } TEST(BoxViewTest, DefaultAssignmentStaticToDynamic) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; BoxView<3> box(origin, shape); BoxView<> box2; box2 = box; EXPECT_EQ(3, box2.rank()); EXPECT_THAT(box2.shape(), ElementsAreArray(shape)); EXPECT_THAT(box2.origin(), ElementsAreArray(origin)); } TEST(BoxViewTest, StaticRankCast) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; BoxView<> box(origin, shape); auto box2 = StaticRankCast<3, unchecked>(box); EXPECT_THAT( StaticRankCast<2>(box), MatchesStatus(absl::StatusCode::kInvalidArgument, "Cannot cast box with rank of 3 to box with rank of 2")); static_assert(std::is_same_v<decltype(box2), BoxView<3>>); EXPECT_THAT(box2.shape(), ElementsAreArray(shape)); EXPECT_THAT(box2.origin(), ElementsAreArray(origin)); } TEST(BoxViewTest, ConstructFromDynamicBox) { Box<> box({1, 2}, {3, 4}); BoxView<> box_view = box; EXPECT_EQ(2, box_view.rank()); EXPECT_EQ(box.shape().data(), box_view.shape().data()); EXPECT_EQ(box.origin().data(), box_view.origin().data()); } TEST(BoxViewTest, ConstructFromStaticBox) { Box<2> box({1, 2}, {3, 4}); BoxView<> box_view = box; EXPECT_EQ(2, box_view.rank()); EXPECT_EQ(box.shape().data(), box_view.shape().data()); EXPECT_EQ(box.origin().data(), box_view.origin().data()); } TEST(MutableBoxViewTest, RankPointersConstruct) { Index origin[] = {1, 2, 3}; Index shape[] = {4, 5, 6}; MutableBoxView<> box(3, origin, shape); EXPECT_EQ(3, box.rank()); EXPECT_EQ(box.origin().data(), origin); EXPECT_EQ(box.shape().data(), shape); } TEST(MutableBoxViewTest, DynamicRankSpanConstruct) { Index origin[] = {1, 2, 3}; Index shape[] = {3, 4, 5}; MutableBoxView<> box{tensorstore::span(origin), tensorstore::span(shape)}; EXPECT_EQ(3, box.rank()); EXPECT_EQ(box.origin().data(), origin); EXPECT_EQ(box.shape().data(), shape); } TEST(MutableBoxViewTest, DeduceFromOriginAndShapeArrays) { Index origin[] = {1, 2, 3}; Index shape[] = {3, 4, 5}; auto box = BoxView(origin, shape); static_assert(std::is_same_v<decltype(box), MutableBoxView<3>>); EXPECT_EQ(3, box.rank()); EXPECT_EQ(box.origin().data(), origin); EXPECT_EQ(box.shape().data(), shape); } TEST(MutableBoxViewTest, DeduceFromOriginAndShapeSpansStatic) { Index origin[] = {1, 2, 3}; Index shape[] = {3, 4, 5}; auto box = BoxView(tensorstore::span(origin), tensorstore::span(shape)); static_assert(std::is_same_v<decltype(box), MutableBoxView<3>>); EXPECT_EQ(3, box.rank()); EXPECT_EQ(box.origin().data(), origin); EXPECT_EQ(box.shape().data(), shape); } TEST(MutableBoxViewTest, DeduceFromOriginAndShapeDynamic) { Index origin[] = {1, 2, 3}; Index shape[] = {3, 4, 5}; auto box = BoxView(tensorstore::span<Index>(origin), tensorstore::span<Index>(shape)); static_assert(std::is_same_v<decltype(box), MutableBoxView<>>); EXPECT_EQ(3, box.rank()); EXPECT_EQ(box.origin().data(), origin); EXPECT_EQ(box.shape().data(), shape); } TEST(MutableBoxViewTest, DeduceFromBox) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; Box<3> box(origin, shape); auto box2 = BoxView(box); static_assert(std::is_same_v<decltype(box2), MutableBoxView<3>>); EXPECT_EQ(box2.shape().data(), box.shape().data()); EXPECT_EQ(box2.origin().data(), box.origin().data()); } TEST(MutableBoxViewTest, DeduceFromMutableBoxView) { Index origin[] = {1, 2, 3}; Index shape[] = {3, 4, 5}; MutableBoxView<3> box(origin, shape); auto box2 = BoxView(box); static_assert(std::is_same_v<decltype(box2), MutableBoxView<3>>); EXPECT_EQ(box2.shape().data(), box.shape().data()); EXPECT_EQ(box2.origin().data(), box.origin().data()); } TEST(MutableBoxViewTest, AssignFromBoxView) { Index origin1[] = {1, 2, 3}; Index shape1[] = {4, 5, 6}; const Index origin2[] = {10, 20, 30}; const Index shape2[] = {40, 50, 60}; MutableBoxView<> box(origin1, shape1); box.DeepAssign(BoxView(origin2, shape2)); EXPECT_EQ(3, box.rank()); EXPECT_THAT(origin1, ElementsAreArray(origin2)); EXPECT_THAT(shape1, ElementsAreArray(shape2)); } TEST(MutableBoxViewTest, AssignFromBox) { Index origin1[] = {1, 2, 3}; Index shape1[] = {4, 5, 6}; const Index origin2[] = {10, 20, 30}; const Index shape2[] = {40, 50, 60}; MutableBoxView<> box(origin1, shape1); box.DeepAssign(Box(origin2, shape2)); EXPECT_EQ(3, box.rank()); EXPECT_THAT(origin1, ElementsAreArray(origin2)); EXPECT_THAT(shape1, ElementsAreArray(shape2)); } TEST(MutableBoxViewTest, CopyAssign) { Index origin1[] = {1, 2, 3}; Index shape1[] = {4, 5, 6}; Index origin2[] = {10, 20, 30}; Index shape2[] = {40, 50, 60}; MutableBoxView<> box(origin1, shape1); box.DeepAssign(MutableBoxView<>(origin2, shape2)); EXPECT_EQ(3, box.rank()); EXPECT_THAT(origin1, ElementsAreArray(origin2)); EXPECT_THAT(shape1, ElementsAreArray(shape2)); } TEST(MutableBoxViewTest, SubscriptAssignment) { Index origin[] = {1, 2, 3}; Index shape[] = {4, 5, 6}; MutableBoxView<> box(origin, shape); box[1] = IndexInterval::UncheckedSized(1, 7); EXPECT_THAT(origin, ElementsAre(1, 1, 3)); EXPECT_THAT(shape, ElementsAre(4, 7, 6)); } TEST(MutableBoxViewTest, Fill) { Index origin[] = {1, 2, 3}; Index shape[] = {4, 5, 6}; MutableBoxView<> box(origin, shape); box.Fill(IndexInterval::UncheckedSized(1, 5)); EXPECT_THAT(box.origin(), ElementsAre(1, 1, 1)); EXPECT_THAT(box.shape(), ElementsAre(5, 5, 5)); box.Fill(); EXPECT_THAT(box.origin(), ElementsAre(-kInfIndex, -kInfIndex, -kInfIndex)); EXPECT_THAT(box.shape(), ElementsAre(kInfSize, kInfSize, kInfSize)); } TEST(MutableBoxViewTest, StaticRankCast) { Index origin[] = {1, 2, 3}; Index shape[] = {3, 4, 5}; MutableBoxView<> box(origin, shape); auto box2 = StaticRankCast<3, unchecked>(box); static_assert(std::is_same_v<decltype(box2), MutableBoxView<3>>); EXPECT_THAT(box2.shape(), ElementsAreArray(shape)); EXPECT_THAT(box2.origin(), ElementsAreArray(origin)); } TEST(BoxTest, Comparison) { const Index origin1[] = {1, 2, 3}; const Index shape1[] = {4, 5, 6}; const Index origin2[] = {1, 2, 3}; const Index shape2[] = {4, 5, 6}; const Index origin3[] = {1, 2, 4}; const Index shape3[] = {4, 5, 7}; const Index origin4[] = {1, 2}; const Index shape4[] = {4, 5}; BoxView<> view1(origin1, shape1); Box<> box1(view1); BoxView<> view2(origin2, shape2); Box<> box2(view2); BoxView<> view3(origin3, shape3); Box<> box3(view3); BoxView<> view4(origin4, shape4); Box<> box4(view4); EXPECT_EQ(box1, view1); EXPECT_EQ(box2, view2); EXPECT_EQ(box3, view3); EXPECT_EQ(box4, view4); EXPECT_EQ(view1, view2); EXPECT_EQ(view1, box2); EXPECT_EQ(box1, view2); EXPECT_EQ(box1, box2); EXPECT_NE(view1, view3); EXPECT_NE(view1, box3); EXPECT_NE(box1, view3); EXPECT_NE(box1, box3); EXPECT_NE(view1, view4); EXPECT_NE(view1, box4); EXPECT_NE(box1, view4); EXPECT_NE(box1, box4); } TEST(BoxTest, Print) { Index origin[] = {1, 2, 3}; Index shape[] = {3, 4, 5}; EXPECT_EQ("{origin={1, 2, 3}, shape={3, 4, 5}}", tensorstore::StrCat(BoxView<>(origin, shape))); EXPECT_EQ("{origin={1, 2, 3}, shape={3, 4, 5}}", tensorstore::StrCat(Box<>(origin, shape))); EXPECT_EQ("{origin={1, 2, 3}, shape={3, 4, 5}}", tensorstore::StrCat(MutableBoxView<>(origin, shape))); } TEST(BoxTest, Contains) { const Index origin1[] = {1, 2}; const Index shape1[] = {4, 5}; const Index origin2[] = {2, 2}; const Index shape2[] = {3, 5}; const Index origin3[] = {1, 2}; const Index shape3[] = {4, 6}; const Index origin4[] = {1}; const Index shape4[] = {4}; const Index indices1[] = {2, 3}; const Index indices2[] = {0, 3}; const Index indices3[] = {0}; Index indices4[] = {2}; auto span1 = tensorstore::span(indices1); auto span2 = tensorstore::span(indices2); auto span3 = tensorstore::span(indices3); auto span4 = tensorstore::span(indices4); BoxView<> view1(origin1, shape1); BoxView<> view2(origin2, shape2); BoxView<> view3(origin3, shape3); BoxView<> view4(origin4, shape4); Box<> box1(origin1, shape1); Box<> box2(origin2, shape2); Box<> box3(origin3, shape3); Box<> box4(origin4, shape4); EXPECT_TRUE(Contains(view1, indices1)); EXPECT_TRUE(ContainsPartial(view1, indices1)); EXPECT_TRUE(ContainsPartial(view1, indices4)); EXPECT_FALSE(Contains(view1, indices2)); EXPECT_FALSE(Contains(view1, indices3)); EXPECT_FALSE(ContainsPartial(view1, indices2)); EXPECT_FALSE(ContainsPartial(view1, indices3)); EXPECT_TRUE(Contains(view1, span1)); EXPECT_TRUE(ContainsPartial(view1, span1)); EXPECT_FALSE(Contains(view1, span2)); EXPECT_FALSE(ContainsPartial(view1, span2)); EXPECT_FALSE(Contains(view1, span3)); EXPECT_FALSE(ContainsPartial(view1, span3)); EXPECT_TRUE(ContainsPartial(view1, span4)); EXPECT_TRUE(Contains(box1, indices1)); EXPECT_TRUE(ContainsPartial(box1, indices1)); EXPECT_FALSE(Contains(box1, indices2)); EXPECT_FALSE(Contains(box1, indices3)); EXPECT_TRUE(Contains(box1, span1)); EXPECT_FALSE(Contains(box1, span2)); EXPECT_FALSE(Contains(box1, span3)); EXPECT_TRUE(Contains(view1, view2)); EXPECT_FALSE(Contains(view1, view3)); EXPECT_FALSE(Contains(view1, view4)); EXPECT_TRUE(Contains(view1, box2)); EXPECT_FALSE(Contains(view1, box3)); EXPECT_FALSE(Contains(view1, box4)); EXPECT_TRUE(Contains(box1, view2)); EXPECT_FALSE(Contains(box1, view3)); EXPECT_FALSE(Contains(box1, view4)); EXPECT_TRUE(Contains(box1, box2)); EXPECT_FALSE(Contains(box1, box3)); EXPECT_FALSE(Contains(box1, box4)); } TEST(BoxTest, GetBoxDomainOf) { static_assert(!HasBoxDomain<int>); static_assert(HasBoxDomain<BoxView<>>); static_assert(HasBoxDomain<Box<>>); static_assert(HasBoxDomain<MutableBoxView<>>); Box<> box({1, 2}, {3, 4}); BoxView<> view = box; EXPECT_EQ(box, GetBoxDomainOf(box)); EXPECT_EQ(box, GetBoxDomainOf(view)); } TEST(BoxTest, InlineSize) { Box<dynamic_rank(2)> box({1, 2}, {3, 4}); BoxView<dynamic_rank> v = box; EXPECT_EQ(v, box); MutableBoxView<dynamic_rank> v2 = box; EXPECT_EQ(v2, box); } TEST(BoxTest, DeductionGuides) { auto box = Box({1, 2}, {3, 4}); static_assert(std::is_same_v<decltype(box), Box<2>>); static_assert(std::is_same_v<decltype(BoxView({1, 2}, {3, 4})), BoxView<2>>); static_assert(decltype(box)::static_rank == 2); auto box_view = BoxView(box); static_assert(std::is_same_v<decltype(box_view), MutableBoxView<2>>); } TEST(BoxTest, IsFinite) { EXPECT_TRUE(IsFinite(Box<>())); EXPECT_TRUE(IsFinite(BoxView<>())); EXPECT_FALSE(IsFinite(Box<>(1))); EXPECT_FALSE(IsFinite(Box<1>())); EXPECT_FALSE(IsFinite(BoxView<>(1))); EXPECT_FALSE(IsFinite(BoxView<>(2))); EXPECT_FALSE(IsFinite(BoxView<2>())); EXPECT_TRUE(IsFinite(Box<3>({1, 2, 3}, {4, 5, 6}))); EXPECT_TRUE(IsFinite(BoxView<3>({1, 2, 3}, {4, 5, 6}))); EXPECT_TRUE(IsFinite(Box<>({1, 2, 3}, {4, 5, 6}))); EXPECT_TRUE(IsFinite(BoxView<>({1, 2, 3}, {4, 5, 6}))); EXPECT_TRUE(IsFinite(Box<1>({1}, {4}))); EXPECT_FALSE(IsFinite(Box<3>({1, -kInfIndex, 3}, {4, 5, 6}))); EXPECT_FALSE(IsFinite(Box<3>({1, kInfIndex - 5, 3}, {4, 6, 6}))); } TEST(BoxSerializationTest, StaticRank) { TestSerializationRoundTrip(Box<0>()); TestSerializationRoundTrip(Box<3>({1, 2, 3}, {4, 5, 6})); } TEST(BoxSerializationTest, DynamicRank) { TestSerializationRoundTrip(Box<>()); TestSerializationRoundTrip(Box({1, 2, 3}, {4, 5, 6})); } TEST(BoxTest, SubBoxView) { Box<> b({1, 2, 3}, {4, 5, 6}); const Box<>& b_const = b; BoxView<> b_view = b; MutableBoxView<> b_mut_view = b; EXPECT_EQ(Box<>({2, 3}, {5, 6}), SubBoxView(b, 1)); EXPECT_EQ(Box<>({2}, {5}), SubBoxView(b, 1, 2)); static_assert(std::is_same_v<decltype(SubBoxView(b, 1)), MutableBoxView<>>); static_assert(std::is_same_v<decltype(SubBoxView(b_const, 1)), BoxView<>>); static_assert(std::is_same_v<decltype(SubBoxView(b_view, 1)), BoxView<>>); static_assert( std::is_same_v<decltype(SubBoxView(b_mut_view, 1)), MutableBoxView<>>); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/box.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/box_test.cc
4f887a6430414cd6088e1743555015b10f116d50
6a00ebe9-a063-4714-bc93-24ea5bf8ed70
cpp
tensorflow/tensorflow
fusion_constant_sinking
third_party/xla/xla/service/fusion_constant_sinking.cc
third_party/xla/xla/service/fusion_constant_sinking_test.cc
#include "xla/service/fusion_constant_sinking.h" #include <cstdint> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_dce.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/statusor.h" namespace xla { bool CanSink(HloInstruction* fusion, const HloInstruction* operand) { if (!fusion->IsLoopFusion() && !fusion->IsOutputFusion()) { return false; } if (fusion->operand_count() == 1) { return false; } if (!ShapeUtil::IsScalar(operand->shape()) || !operand->IsConstant()) { return false; } int64_t operand_idx = fusion->operand_index(operand); HloInstruction* fused_param = fusion->fused_parameter(operand_idx); for (HloInstruction* user : fused_param->users()) { if (user->opcode() == HloOpcode::kFusion && user->operand_count() == 1) { return false; } } return true; } bool ProcessScalar(HloInstruction* scalar) { if (!ShapeUtil::IsScalar(scalar->shape()) || !scalar->IsConstant()) { return false; } bool processed = false; std::vector<HloInstruction*> sinkable_users; for (HloInstruction* use : scalar->users()) { if (CanSink(use, scalar)) { sinkable_users.push_back(use); } } for (HloInstruction* use : sinkable_users) { HloInstruction* fused_scalar = use->FuseInstruction(scalar); processed = true; ProcessScalar(fused_scalar); } return processed; } absl::StatusOr<bool> FusionConstantSinking::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { VLOG(3) << "HLO module before FusionConstantSinking:"; XLA_VLOG_LINES(3, module->ToString()); bool changed = false; for (HloComputation* c : module->MakeNonfusionComputations()) { for (HloInstruction* i : c->MakeInstructionPostOrder()) { changed |= ProcessScalar(i); } } if (changed) { TF_ASSIGN_OR_RETURN(bool dce, HloDCE{}.Run(module, execution_threads)); changed |= dce; } VLOG(3) << "HLO module after FusionConstantSinking:"; XLA_VLOG_LINES(3, module->ToString()); return changed; } }
#include "xla/service/fusion_constant_sinking.h" #include <memory> #include <string> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using FusionConstantSinkingTest = HloTestBase; TEST_F(FusionConstantSinkingTest, SinkConstant) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.slice (param_0.51117: s8[56,4096,4096], param_1: s32[]) -> s8[1,4096,4096] { %param_0.51117 = s8[56,4096,4096]{2,1,0:T(8,128)(4,1)} parameter(0) p1 = s32[]{:T(128)} parameter(1) %constant.85694 = s32[]{:T(128)} constant(0) ROOT %dynamic-slice.22040 = s8[1,4096,4096]{2,1,0:T(8,128)(4,1)} dynamic-slice(s8[56,4096,4096]{2,1,0:T(8,128)(4,1)} %param_0.51117, s32[]{:T(128)} p1, s32[]{:T(128)} %constant.85694, s32[]{:T(128)} %constant.85694), dynamic_slice_sizes={1,4096,4096} } ENTRY main { p0 = s8[56,4096,4096]{2,1,0:T(8,128)(4,1)} parameter(0) c = s32[]{:T(128)} constant(10) ROOT out = s8[1,4096,4096]{2,1,0:T(8,128)(4,1)} fusion(s8[56,4096,4096]{2,1,0:T(8,128)(4,1)} p0, s32[]{:T(128)} c), kind=kLoop, calls=%fused_computation.slice } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); FusionConstantSinking constant_sinking; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&constant_sinking, module.get())); EXPECT_TRUE(result); EXPECT_THAT( module->GetComputationWithName("fused_computation.slice") ->root_instruction(), GmockMatch(match::DynamicSlice(match::Parameter(0), match::Constant(), match::Constant(), match::Constant()))); } TEST_F(FusionConstantSinkingTest, SingleOperandFusionNoSink) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation (param_1: s8[]) -> s8[1,4096,4096] { param0 = s8[] parameter(0) ROOT out = s8[1,4096,4096]{2,1,0:T(8,128)(4,1)} broadcast(param0), dimensions={} } ENTRY main { c = s8[]{:T(128)} constant(10) ROOT out = s8[1,4096,4096]{2,1,0:T(8,128)(4,1)} fusion(s8[]{:T(128)} c), kind=kLoop, calls=%fused_computation } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); FusionConstantSinking constant_sinking; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&constant_sinking, module.get())); EXPECT_FALSE(result); } TEST_F(FusionConstantSinkingTest, SingleOperandUserNoSink) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.inner (param_1: s32[]) -> s32[] { p1 = s32[]{:T(128)} parameter(0) %constant.85694 = s32[]{:T(128)} constant(10) ROOT out = s32[] add(p1, %constant.85694) } %fused_computation (param_0.51117: s32[4096,4096], param_1: s32[]) -> s32[4096,4096] { %param_0.51117 = s32[4096,4096]{1,0:T(8,128)(4,1)} parameter(0) p1 = s32[]{:T(128)} parameter(1) %inner.fusion = s32[] fusion(s32[]{:T(128)} p1), kind=kLoop, calls=%fused_computation.inner %broadcast = s32[4096,4096]{1,0:T(8,128)(4,1)} broadcast(%inner.fusion), dimensions={} ROOT out = s32[4096,4096] add(%broadcast, %param_0.51117) } ENTRY main { p0 = s32[4096,4096]{1,0:T(8,128)(4,1)} parameter(0) c = s32[]{:T(128)} constant(10) ROOT out = s32[4096,4096]{1,0:T(8,128)(4,1)} fusion(s32[4096,4096]{1,0:T(8,128)(4,1)} p0, s32[]{:T(128)} c), kind=kLoop, calls=%fused_computation } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); FusionConstantSinking constant_sinking; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&constant_sinking, module.get())); EXPECT_FALSE(result); } TEST_F(FusionConstantSinkingTest, NonScalarNoSink) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation (param_1: s8[2], p1: s8[2,4096,4096]) -> s8[2,4096,4096] { param0 = s8[2] parameter(0) param1 = s8[2,4096,4096]{2,1,0:T(8,128)(4,1)} parameter(1) bcast = s8[2,4096,4096]{2,1,0:T(8,128)(4,1)} broadcast(param0), dimensions={0} ROOT out = s8[2,4096,4096]{2,1,0:T(8,128)(4,1)} add(param1, bcast) } ENTRY main { p = s8[2,4096,4096]{2,1,0:T(8,128)(4,1)} parameter(0) c = s8[2]{0:T(128)} constant({10,20}) ROOT out = s8[2,4096,4096]{2,1,0:T(8,128)(4,1)} fusion(s8[2]{0:T(128)} c, p), kind=kLoop, calls=%fused_computation } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); FusionConstantSinking constant_sinking; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&constant_sinking, module.get())); EXPECT_FALSE(result); } TEST_F(FusionConstantSinkingTest, SinkConstantNested) { std::string hlo_string = R"( HloModule SimpleLoop %fused_computation.inner (param_0.51117: s8[56,4096,4096], param_1: s32[]) -> s8[1,4096,4096] { %param_0.51117 = s8[56,4096,4096]{2,1,0:T(8,128)(4,1)} parameter(0) p1 = s32[]{:T(128)} parameter(1) %constant.85694 = s32[]{:T(128)} constant(0) ROOT %dynamic-slice.22040 = s8[1,4096,4096]{2,1,0:T(8,128)(4,1)} dynamic-slice(s8[56,4096,4096]{2,1,0:T(8,128)(4,1)} %param_0.51117, s32[]{:T(128)} p1, s32[]{:T(128)} %constant.85694, s32[]{:T(128)} %constant.85694), dynamic_slice_sizes={1,4096,4096} } %fused_computation (param_0.51117: s8[56,4096,4096], param_1: s32[]) -> s8[4096,4096] { %param_0.51117 = s8[56,4096,4096]{2,1,0:T(8,128)(4,1)} parameter(0) p1 = s32[]{:T(128)} parameter(1) %inner.fusion = s8[1,4096,4096]{2,1,0:T(8,128)(4,1)} fusion(s8[56,4096,4096]{2,1,0:T(8,128)(4,1)} %param_0.51117, s32[]{:T(128)} p1), kind=kLoop, calls=%fused_computation.inner ROOT %bitcast = s8[4096,4096]{1,0:T(8,128)(4,1)} bitcast(s8[1,4096,4096]{2,1,0:T(8,128)(4,1)} %inner.fusion) } ENTRY main { p0 = s8[56,4096,4096]{2,1,0:T(8,128)(4,1)} parameter(0) c = s32[]{:T(128)} constant(10) ROOT out = s8[4096,4096]{1,0:T(8,128)(4,1)} fusion(s8[56,4096,4096]{2,1,0:T(8,128)(4,1)} p0, s32[]{:T(128)} c), kind=kLoop, calls=%fused_computation } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); FusionConstantSinking constant_sinking; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&constant_sinking, module.get())); EXPECT_TRUE(result); EXPECT_THAT( module->GetComputationWithName("fused_computation")->num_parameters(), 1); EXPECT_THAT(module->GetComputationWithName("fused_computation.inner") ->num_parameters(), 1); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/fusion_constant_sinking.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/fusion_constant_sinking_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
912ad902-faee-4d7f-9487-783e291566d2
cpp
tensorflow/tensorflow
const_analysis
tensorflow/compiler/tf2xla/const_analysis.cc
tensorflow/compiler/tf2xla/const_analysis_test.cc
#include "tensorflow/compiler/tf2xla/const_analysis.h" #include <unordered_map> #include <unordered_set> #include "absl/algorithm/container.h" #include "tensorflow/compiler/tf2xla/tf2xla_util.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/status_macros.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/lib/core/errors.h" namespace tensorflow { namespace { Status GetFunctionBody(FunctionLibraryRuntime* flib_runtime, const NodeDef& node, StringPiece func_attr_name, const FunctionBody** fbody) { NameAttrList name_attr_list; TF_RETURN_IF_ERROR(GetNodeAttr(node, func_attr_name, &name_attr_list)); FunctionLibraryRuntime::Handle func_handle; TF_RETURN_IF_ERROR(flib_runtime->Instantiate( name_attr_list.name(), AttrSlice(&name_attr_list.attr()), &func_handle)); *fbody = flib_runtime->GetFunctionBody(func_handle); return absl::OkStatus(); } Status GetFunctionBodies(FunctionLibraryRuntime* flib_runtime, const NodeDef& node, StringPiece func_list_attr_name, std::vector<const FunctionBody*>* fbodies) { std::vector<NameAttrList> name_attr_lists; TF_RETURN_IF_ERROR(GetNodeAttr(node, func_list_attr_name, &name_attr_lists)); for (const NameAttrList& name_attr_list : name_attr_lists) { FunctionLibraryRuntime::Handle func_handle; TF_RETURN_IF_ERROR(flib_runtime->Instantiate( name_attr_list.name(), AttrSlice(&name_attr_list.attr()), &func_handle)); fbodies->push_back(flib_runtime->GetFunctionBody(func_handle)); } return absl::OkStatus(); } Status CondConstInputIndices( absl::Span<const FunctionBody* const> branch_bodies, std::vector<int>* const_input_idxs, FunctionLibraryRuntime* flib_runtime) { TF_RET_CHECK(!branch_bodies.empty()); TF_RET_CHECK(branch_bodies[0] != nullptr); int num_inputs = branch_bodies[0]->record->fdef().signature().input_arg_size(); std::vector<bool> compile_time_const_arg_indices(num_inputs); for (auto fbody : branch_bodies) { TF_RET_CHECK(fbody != nullptr); TF_RETURN_IF_ERROR(BackwardsConstAnalysis( *(fbody->graph), &compile_time_const_arg_indices, nullptr, flib_runtime)); } for (int i = 0, end = compile_time_const_arg_indices.size(); i < end; i++) { if (compile_time_const_arg_indices[i]) { const_input_idxs->push_back(i + 1); } } return absl::OkStatus(); } Status GetCompileTimeConstInputs(const NodeDef& node, const OpKernel* op_kernel, const OpDef* op_def, std::vector<int>* const_input_idxs, FunctionLibraryRuntime* flib_runtime) { DCHECK(op_def != nullptr || op_kernel != nullptr); if (node.op() == "While" || node.op() == "StatelessWhile") { const FunctionBody* fcond = nullptr; const FunctionBody* fbody = nullptr; TF_RETURN_IF_ERROR(GetFunctionBody(flib_runtime, node, "cond", &fcond)); TF_RETURN_IF_ERROR(GetFunctionBody(flib_runtime, node, "body", &fbody)); TF_RET_CHECK(fcond); TF_RET_CHECK(fbody); int num_inputs = fbody->record->fdef().signature().input_arg_size(); std::vector<bool> compile_time_const_arg_indices(num_inputs); TF_RETURN_IF_ERROR(BackwardsConstAnalysis( *(fcond->graph), &compile_time_const_arg_indices, nullptr, flib_runtime)); TF_RETURN_IF_ERROR(BackwardsConstAnalysis( *(fbody->graph), &compile_time_const_arg_indices, nullptr, flib_runtime)); for (int i = 0; i < num_inputs; i++) { if (compile_time_const_arg_indices[i]) { TF_ASSIGN_OR_RETURN( bool is_loop_invariant, IsLoopInvariant(fbody, i, flib_runtime->GetFunctionLibraryDefinition())); if (is_loop_invariant) { const_input_idxs->push_back(i); } else { Node* arg_i = fbody->arg_nodes[i]; Node* ret_i = fbody->ret_nodes[i]; VLOG(1) << "Argument " << i << " to while-loop " << node.name() << " has to be constant, but it's not a loop invariant, " "cluster compilation likely to fail at compile time: " << arg_i->DebugString() << " vs. " << ret_i->DebugString(); VLOG(1) << node.ShortDebugString(); } } } return absl::OkStatus(); } else if (node.op() == "If" || node.op() == "StatelessIf") { const FunctionBody* fthen = nullptr; const FunctionBody* felse = nullptr; TF_RETURN_IF_ERROR( GetFunctionBody(flib_runtime, node, "then_branch", &fthen)); TF_RETURN_IF_ERROR( GetFunctionBody(flib_runtime, node, "else_branch", &felse)); return CondConstInputIndices({fthen, felse}, const_input_idxs, flib_runtime); } else if (node.op() == "Case" || node.op() == "StatelessCase") { std::vector<const FunctionBody*> branch_bodies; TF_RETURN_IF_ERROR( GetFunctionBodies(flib_runtime, node, "branches", &branch_bodies)); return CondConstInputIndices(branch_bodies, const_input_idxs, flib_runtime); } else if (node.op() == "PartitionedCall" || node.op() == "StatefulPartitionedCall") { const FunctionBody* fbody; TF_RETURN_IF_ERROR(GetFunctionBody(flib_runtime, node, "f", &fbody)); int num_inputs = fbody->record->fdef().signature().input_arg_size(); std::vector<bool> compile_time_const_arg_indices(num_inputs); TF_RETURN_IF_ERROR(BackwardsConstAnalysis( *(fbody->graph), &compile_time_const_arg_indices, nullptr, flib_runtime)); for (int i = 0; i < num_inputs; i++) { if (compile_time_const_arg_indices[i]) { const_input_idxs->push_back(i); } } return absl::OkStatus(); } else if (op_def != nullptr) { return XlaOpRegistry::CompileTimeConstantInputs(node, *op_def, const_input_idxs); } else { return XlaOpRegistry::CompileTimeConstantInputs(*op_kernel, const_input_idxs); } } Status GetCompileTimeConstInputs(const Node* node, std::vector<int>* const_input_idxs, FunctionLibraryRuntime* flib_runtime) { return GetCompileTimeConstInputs(node->def(), nullptr, &node->op_def(), const_input_idxs, flib_runtime); } } Status BackwardsConstAnalysis( const Graph& g, std::vector<bool>* compile_time_const_arg_indices, std::vector<bool>* compile_time_const_nodes, FunctionLibraryRuntime* flib_runtime, std::function<bool(const Edge&)> edge_filter_input) { if (!compile_time_const_nodes && g.GetConstArgIndicesCache().has_value() && !edge_filter_input) { VLOG(5) << "Using cached argument indices on graph " << &g; *compile_time_const_arg_indices = g.GetConstArgIndicesCache().value(); return absl::OkStatus(); } auto edge_filter = [&](const Edge& e) { return edge_filter_input ? edge_filter_input(e) : true; }; std::vector<bool> compile_time_const_nodes_impl; if (compile_time_const_nodes) { CHECK_EQ(compile_time_const_nodes->size(), g.num_node_ids()); } else { compile_time_const_nodes_impl.resize(g.num_node_ids()); compile_time_const_nodes = &compile_time_const_nodes_impl; } Status status; auto visit = [&](Node* node) { if (!status.ok()) return; if (XlaOpRegistry::IsMetadataOp(node->type_string())) { VLOG(3) << "must-be-const node is metadata op: " << node->name(); return; } if ((*compile_time_const_nodes)[node->id()]) { VLOG(3) << "marking consts for must-be-const node " << node->name(); if (node->type_string() == "_Arg") { int index; status = GetNodeAttr(node->attrs(), "index", &index); if (!status.ok()) return; if (compile_time_const_arg_indices) { (*compile_time_const_arg_indices)[index] = true; } VLOG(3) << " const _Arg " << index << ": " << node->name(); return; } for (const Edge* pred : node->in_edges()) { if (!pred->IsControlEdge() && edge_filter(*pred)) { while (edge_filter(*pred) && IsConstTraversableOpType(pred->src())) { status = pred->src()->input_edge(pred->src_output(), &pred); if (!status.ok()) return; } if (edge_filter(*pred)) { VLOG(4) << " " << pred->src()->name() << " must be const (is " << pred->src()->type_string() << ")"; (*compile_time_const_nodes)[pred->src()->id()] = true; } } } return; } std::vector<int> const_input_idxs; status = GetCompileTimeConstInputs(node, &const_input_idxs, flib_runtime); if (!status.ok() || const_input_idxs.empty()) { return; } VLOG(3) << "marking consts for must-be-const inputs of " << node->name(); for (Edge const* edge : node->in_edges()) { if (!edge->IsControlEdge() && absl::c_binary_search(const_input_idxs, edge->dst_input()) && edge_filter(*edge)) { while (edge_filter(*edge) && IsConstTraversableOpType(edge->src())) { status = edge->src()->input_edge(edge->src_output(), &edge); if (!status.ok()) return; } if (edge_filter(*edge)) { VLOG(4) << " input " << edge->dst_input() << ": " << edge->src()->name() << " must be const (is " << edge->src()->type_string() << ")"; (*compile_time_const_nodes)[edge->src()->id()] = true; } } } }; DFS(g, {}, visit, NodeComparatorName{}, [](const Edge& edge) { return !edge.src()->IsNextIteration(); }); if (compile_time_const_arg_indices && !edge_filter_input) { VLOG(5) << "Setting the cache on the graph: " << &g; g.GetConstArgIndicesCache() = *compile_time_const_arg_indices; } return status; } Status GetCompileTimeConstInputs(const OpKernel* op_kernel, std::vector<int>* const_input_idxs, FunctionLibraryRuntime* flib_runtime) { return GetCompileTimeConstInputs(op_kernel->def(), op_kernel, nullptr, const_input_idxs, flib_runtime); } }
#include "tensorflow/compiler/tf2xla/const_analysis.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/ops/function_ops.h" #include "tensorflow/cc/ops/functional_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/compiler/jit/flags.h" #include "tensorflow/compiler/jit/xla_cluster_util.h" #include "tensorflow/core/common_runtime/process_function_library_runtime.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/version.h" namespace tensorflow { namespace { TEST(ConstAnalysisTest, Basics) { Scope root = Scope::NewRootScope(); auto arg0 = ops::_Arg(root.WithOpName("Arg0"), DT_INT32, 0); auto arg1 = ops::_Arg(root.WithOpName("Arg1"), DT_INT32, 1); auto arg2 = ops::_Arg(root.WithOpName("Arg2"), DT_INT32, 2); auto arg3 = ops::_Arg(root.WithOpName("Arg3"), DT_INT32, 3); auto a = ops::Shape(root, arg0); auto b = ops::Add(root, a, arg1); auto c = ops::Reshape(root, arg2, b); auto d = ops::Mul(root, c, ops::Sum(root, arg3, arg3)); FixupSourceAndSinkEdges(root.graph()); std::vector<bool> const_args(4, false); std::vector<bool> const_nodes(root.graph()->num_node_ids(), false); TF_ASSERT_OK(BackwardsConstAnalysis(*root.graph(), &const_args, &const_nodes, nullptr)); EXPECT_EQ(const_args, std::vector<bool>({false, true, false, true})); EXPECT_FALSE(const_nodes[arg0.node()->id()]); EXPECT_TRUE(const_nodes[arg1.node()->id()]); EXPECT_FALSE(const_nodes[arg2.node()->id()]); EXPECT_TRUE(const_nodes[arg3.node()->id()]); } TEST(ConstAnalysisTest, TopologicalOrder) { for (bool order : {false, true}) { Scope root = Scope::NewRootScope(); auto arg0 = ops::_Arg(root.WithOpName("Arg0"), DT_INT32, 0); auto arg1 = ops::_Arg(root.WithOpName("Arg1"), DT_INT32, 1); auto arg2 = ops::_Arg(root.WithOpName("Arg2"), DT_INT32, 2); auto a = ops::Reshape(root, arg0, arg1); auto b = ops::Reshape(root, arg2, a); if (order) { std::swap(a, b); } auto c = ops::Add(root, a, b); Graph graph(OpRegistry::Global()); TF_ASSERT_OK(root.ToGraph(&graph)); std::vector<bool> const_args(3, false); TF_ASSERT_OK(BackwardsConstAnalysis(graph, &const_args, nullptr, nullptr)); EXPECT_EQ(const_args, std::vector<bool>({true, true, false})); } } void TestFunctionCall(bool is_stateful_partitioned_call) { FunctionDef callee = FunctionDefHelper::Define( "Callee", {"t:float", "shape:int32"}, {"result:float"}, {}, {{{"result"}, "Reshape", {"t", "shape"}, {{"T", DT_FLOAT}}}}); FunctionDefLibrary flib; *flib.add_function() = callee; FunctionLibraryDefinition flib_def(OpRegistry::Global(), flib); Scope root = Scope::NewRootScope().ExitOnError(); auto arg0 = ops::_Arg(root.WithOpName("tensor"), DT_FLOAT, 0); auto arg1 = ops::_Arg(root.WithOpName("shape"), DT_INT32, 1); NameAttrList call_attrs; call_attrs.set_name("Callee"); if (is_stateful_partitioned_call) { ops::StatefulPartitionedCall b(root.WithOpName("Call"), {Output(arg0), Output(arg1)}, {DT_FLOAT}, call_attrs); } else { ops::PartitionedCall b(root.WithOpName("Call"), {Output(arg0), Output(arg1)}, {DT_FLOAT}, call_attrs); } Graph graph(&flib_def); TF_ASSERT_OK(root.ToGraph(&graph)); OptimizerOptions opts; std::unique_ptr<ProcessFunctionLibraryRuntime> pflr( new ProcessFunctionLibraryRuntime(nullptr, Env::Default(), nullptr, TF_GRAPH_DEF_VERSION, &flib_def, opts)); FunctionLibraryRuntime* lib_runtime = pflr->GetFLR(ProcessFunctionLibraryRuntime::kDefaultFLRDevice); std::vector<bool> const_args(2, false); TF_ASSERT_OK(BackwardsConstAnalysis(graph, &const_args, nullptr, lib_runtime)); EXPECT_EQ(const_args, std::vector<bool>({false, true})); } TEST(ConstAnalysisTest, PartitionedCall) { TestFunctionCall(false); } TEST(ConstAnalysisTest, StatefulPartitionedCall) { TestFunctionCall(true); } TEST(ConstAnalysisTest, DontFollowControlDependencies) { Scope root = Scope::NewRootScope(); Output arg0 = ops::_Arg(root.WithOpName("Arg0"), DT_INT32, 0); Output arg1 = ops::_Arg(root.WithOpName("Arg1"), DT_INT32, 1); Output c1 = ops::Const(root.WithOpName("c1").WithControlDependencies(arg0), 1, {1}); Output add = ops::Add(root, arg1, c1); Output reshape = ops::Reshape(root, arg1, add); Graph graph(OpRegistry::Global()); TF_ASSERT_OK(root.ToGraph(&graph)); std::vector<bool> const_args(2, false); TF_ASSERT_OK(BackwardsConstAnalysis(graph, &const_args, nullptr, nullptr)); EXPECT_EQ(const_args, std::vector<bool>({false, true})); } TEST(ConstAnalysisTest, RespectExplicitAttr_0) { Scope root = Scope::NewRootScope(); Output arg0 = ops::_Arg(root.WithOpName("Arg0"), DT_INT32, 0); Output arg1 = ops::_Arg(root.WithOpName("Arg1"), DT_INT32, 1); Output c1 = ops::Const(root.WithOpName("c1").WithControlDependencies(arg0), 1, {1}); Output add = ops::Add(root, arg1, c1); Output reshape = ops::Reshape(root, arg1, add); reshape.node()->AddAttr(kXlaCompileTimeConstantInputsAttr, std::vector<string>()); Graph graph(OpRegistry::Global()); TF_ASSERT_OK(root.ToGraph(&graph)); std::vector<bool> const_args(2, false); TF_ASSERT_OK(BackwardsConstAnalysis(graph, &const_args, nullptr, nullptr)); EXPECT_EQ(const_args, std::vector<bool>({false, false})); } TEST(ConstAnalysisTest, RespectExplicitAttr_1) { Scope root = Scope::NewRootScope(); Output arg0 = ops::_Arg(root.WithOpName("Arg0"), DT_INT32, 0); Output c1 = ops::Const(root.WithOpName("c1").WithControlDependencies(arg0), 1, {1}); Output add = ops::Add(root, arg0, c1); std::vector<string> add_constant_inputs; add_constant_inputs.push_back("x"); add.node()->AddAttr(kXlaCompileTimeConstantInputsAttr, add_constant_inputs); Graph graph(OpRegistry::Global()); TF_ASSERT_OK(root.ToGraph(&graph)); std::vector<bool> const_args(1, false); TF_ASSERT_OK(BackwardsConstAnalysis(graph, &const_args, nullptr, nullptr)); EXPECT_EQ(const_args, std::vector<bool>({true})); } static bool Initialized = [] { tensorflow::GetXlaDeviceFlags()->tf_xla_enable_xla_devices = true; return true; }(); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/const_analysis.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/const_analysis_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
29b5e76f-177d-4976-9b2a-49a08a665656
cpp
google/tensorstore
byte_range
tensorstore/kvstore/byte_range.cc
tensorstore/kvstore/byte_range_test.cc
#include "tensorstore/kvstore/byte_range.h" #include <cassert> #include <optional> #include <ostream> #include <string> #include "absl/status/status.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/std_optional.h" #include "tensorstore/util/result.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { std::ostream& operator<<(std::ostream& os, const OptionalByteRangeRequest& r) { os << "[" << r.inclusive_min << ", "; if (r.exclusive_max != -1) { os << r.exclusive_max; } else { os << "?"; } os << ")"; return os; } std::ostream& operator<<(std::ostream& os, const ByteRange& r) { return os << "[" << r.inclusive_min << ", " << r.exclusive_max << ")"; } Result<ByteRange> OptionalByteRangeRequest::Validate(int64_t size) const { assert(SatisfiesInvariants()); int64_t inclusive_min = this->inclusive_min; int64_t exclusive_max = this->exclusive_max; if (exclusive_max == -1) exclusive_max = size; if (inclusive_min < 0) { inclusive_min += size; } if (inclusive_min < 0 || exclusive_max > size || inclusive_min > exclusive_max) { return absl::OutOfRangeError( tensorstore::StrCat("Requested byte range ", *this, " is not valid for value of size ", size)); } return ByteRange{inclusive_min, exclusive_max}; } } TENSORSTORE_DEFINE_SERIALIZER_SPECIALIZATION( tensorstore::ByteRange, tensorstore::serialization::ApplyMembersSerializer< tensorstore::ByteRange>()) TENSORSTORE_DEFINE_SERIALIZER_SPECIALIZATION( tensorstore::OptionalByteRangeRequest, tensorstore::serialization::ApplyMembersSerializer< tensorstore::OptionalByteRangeRequest>())
#include "tensorstore/kvstore/byte_range.h" #include <optional> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/test_util.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::ByteRange; using ::tensorstore::MatchesStatus; using ::tensorstore::OptionalByteRangeRequest; using ::tensorstore::StrCat; using ::tensorstore::internal::GetSubCord; using ::tensorstore::serialization::TestSerializationRoundTrip; TEST(ByteRangeTest, SatisfiesInvariants) { EXPECT_TRUE((ByteRange{0, 0}).SatisfiesInvariants()); EXPECT_TRUE((ByteRange{0, 1}).SatisfiesInvariants()); EXPECT_TRUE((ByteRange{0, 100}).SatisfiesInvariants()); EXPECT_TRUE((ByteRange{10, 100}).SatisfiesInvariants()); EXPECT_TRUE((ByteRange{100, 100}).SatisfiesInvariants()); EXPECT_FALSE((ByteRange{100, 99}).SatisfiesInvariants()); EXPECT_FALSE((ByteRange{100, 0}).SatisfiesInvariants()); EXPECT_FALSE((ByteRange{-100, 0}).SatisfiesInvariants()); } TEST(ByteRangeTest, Size) { EXPECT_EQ(5, (ByteRange{2, 7}.size())); EXPECT_EQ(0, (ByteRange{2, 2}.size())); } TEST(ByteRangeTest, Comparison) { ByteRange a{1, 2}; ByteRange b{1, 3}; ByteRange c{2, 3}; EXPECT_TRUE(a == a); EXPECT_TRUE(b == b); EXPECT_TRUE(c == c); EXPECT_FALSE(a != a); EXPECT_FALSE(b != b); EXPECT_FALSE(c != c); EXPECT_FALSE(a == b); EXPECT_TRUE(a != b); EXPECT_NE(a, c); EXPECT_NE(b, c); } TEST(ByteRangeTest, Ostream) { EXPECT_EQ("[1, 10)", tensorstore::StrCat(ByteRange{1, 10})); } TEST(OptionalByteRangeRequestTest, DefaultConstruct) { OptionalByteRangeRequest r; EXPECT_EQ(0, r.inclusive_min); EXPECT_EQ(-1, r.exclusive_max); } TEST(OptionalByteRangeRequestTest, ConstructInclusiveMin) { OptionalByteRangeRequest r(5); EXPECT_EQ(5, r.inclusive_min); EXPECT_EQ(-1, r.exclusive_max); } TEST(OptionalByteRangeRequestTest, ConstructInclusiveMinExclusiveMax) { OptionalByteRangeRequest r(5, 10); EXPECT_EQ(5, r.inclusive_min); EXPECT_EQ(10, r.exclusive_max); } TEST(OptionalByteRangeRequestTest, ConstructByteRange) { OptionalByteRangeRequest r(ByteRange{5, 10}); EXPECT_EQ(5, r.inclusive_min); EXPECT_EQ(10, r.exclusive_max); } TEST(OptionalByteRangeRequestTest, Comparison) { OptionalByteRangeRequest a{1, 2}; OptionalByteRangeRequest b{1, 3}; OptionalByteRangeRequest c{2, 3}; OptionalByteRangeRequest d{1, -1}; EXPECT_TRUE(a == a); EXPECT_TRUE(b == b); EXPECT_TRUE(c == c); EXPECT_TRUE(d == d); EXPECT_FALSE(a != a); EXPECT_FALSE(a == b); EXPECT_TRUE(a != b); EXPECT_TRUE(a != c); EXPECT_TRUE(a != d); EXPECT_TRUE(b != d); EXPECT_TRUE(c != d); } TEST(OptionalByteRangeRequestTest, SatisfiesInvariants) { EXPECT_TRUE(OptionalByteRangeRequest().SatisfiesInvariants()); EXPECT_TRUE(OptionalByteRangeRequest(10).SatisfiesInvariants()); EXPECT_TRUE(OptionalByteRangeRequest(0, 1).SatisfiesInvariants()); EXPECT_TRUE(OptionalByteRangeRequest(0, 0).SatisfiesInvariants()); EXPECT_TRUE(OptionalByteRangeRequest(0, 100).SatisfiesInvariants()); EXPECT_TRUE(OptionalByteRangeRequest(10, 100).SatisfiesInvariants()); EXPECT_TRUE(OptionalByteRangeRequest(100, 100).SatisfiesInvariants()); EXPECT_FALSE(OptionalByteRangeRequest(100, 99).SatisfiesInvariants()); EXPECT_FALSE(OptionalByteRangeRequest(100, 0).SatisfiesInvariants()); EXPECT_FALSE(OptionalByteRangeRequest(-5, 0).SatisfiesInvariants()); EXPECT_FALSE(OptionalByteRangeRequest(-5, 3).SatisfiesInvariants()); EXPECT_FALSE(OptionalByteRangeRequest(3, -2).SatisfiesInvariants()); } TEST(OptionalByteRangeRequestTest, Ostream) { EXPECT_EQ("[5, 10)", StrCat(OptionalByteRangeRequest(5, 10))); EXPECT_EQ("[5, ?)", StrCat(OptionalByteRangeRequest(5))); } TEST(OptionalByteRangeRequestTest, Validate) { EXPECT_THAT(OptionalByteRangeRequest().Validate(0), ::testing::Optional(ByteRange{0, 0})); EXPECT_THAT(OptionalByteRangeRequest().Validate(1), ::testing::Optional(ByteRange{0, 1})); EXPECT_THAT(OptionalByteRangeRequest(5, 10).Validate(20), ::testing::Optional(ByteRange{5, 10})); EXPECT_THAT(OptionalByteRangeRequest(5, 10).Validate(10), ::testing::Optional(ByteRange{5, 10})); EXPECT_THAT(OptionalByteRangeRequest(5).Validate(10), ::testing::Optional(ByteRange{5, 10})); EXPECT_THAT(OptionalByteRangeRequest(-3).Validate(10), ::testing::Optional(ByteRange{7, 10})); EXPECT_THAT(OptionalByteRangeRequest(-10).Validate(10), ::testing::Optional(ByteRange{0, 10})); EXPECT_THAT(OptionalByteRangeRequest(5, 10).Validate(9), MatchesStatus(absl::StatusCode::kOutOfRange, "Requested byte range \\[5, 10\\) is not valid for " "value of size 9")); EXPECT_THAT( OptionalByteRangeRequest(10, 15).Validate(9), MatchesStatus(absl::StatusCode::kOutOfRange, "Requested byte range \\[10, 15\\) is not valid for " "value of size 9")); EXPECT_THAT( OptionalByteRangeRequest(-10).Validate(9), MatchesStatus(absl::StatusCode::kOutOfRange, "Requested byte range \\[-10, \\?\\) is not valid for " "value of size 9")); } TEST(GetSubStringTest, Basic) { EXPECT_EQ("bcd", GetSubCord(absl::Cord("abcde"), {1, 4})); EXPECT_EQ("bcd", GetSubCord(absl::Cord("abcde"), {1, 4})); EXPECT_EQ("abcde", GetSubCord(absl::Cord("abcde"), {0, 5})); } TEST(ByteRangeSerializationTest, Basic) { TestSerializationRoundTrip(ByteRange{1, 5}); } TEST(OptionalByteRangeRequestSerializationTest, Basic) { TestSerializationRoundTrip(OptionalByteRangeRequest{1, 5}); TestSerializationRoundTrip(OptionalByteRangeRequest{1}); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/byte_range.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/byte_range_test.cc
4f887a6430414cd6088e1743555015b10f116d50
74347d5a-f256-4f23-8442-5f6ae96ccda2
cpp
tensorflow/tensorflow
rank
tensorflow/lite/kernels/rank.cc
tensorflow/lite/kernels/rank_test.cc
#include <stdint.h> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace rank { constexpr int kInputTensor = 0; constexpr int kOutputTensor = 0; TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); output->type = kTfLiteInt32; SetTensorToPersistentRo(output); TfLiteIntArray* output_size = TfLiteIntArrayCreate(0); TF_LITE_ENSURE_STATUS(context->ResizeTensor(context, output, output_size)); TF_LITE_ENSURE_EQ(context, NumDimensions(output), 0); if (output->type == kTfLiteInt32) { int32_t* output_data = GetTensorData<int32_t>(output); *output_data = NumDimensions(input); } else { return kTfLiteError; } return kTfLiteOk; } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { return kTfLiteOk; } } TfLiteRegistration* Register_RANK() { static TfLiteRegistration r = {nullptr, nullptr, rank::Prepare, rank::Eval}; return &r; } } } }
#include <stdint.h> #include <initializer_list> #include <memory> #include <vector> #include <gtest/gtest.h> #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { using ::testing::ElementsAreArray; class RankOpModel : public SingleOpModel { public: RankOpModel(std::initializer_list<int> input_shape, TensorType input_type) { TensorType output_type = TensorType_INT32; input_ = AddInput(input_type); output_ = AddOutput(output_type); SetBuiltinOp(BuiltinOperator_RANK, BuiltinOptions_RankOptions, CreateRankOptions(builder_).Union()); BuildInterpreter({input_shape}); } TfLiteStatus InvokeWithResult() { return interpreter_->Invoke(); } int input() { return input_; } std::vector<int32_t> GetOutput() { return ExtractVector<int32_t>(output_); } std::vector<int> GetOutputShape() { return GetTensorShape(output_); } TfLiteAllocationType GetOutputAllocationType() const { return interpreter_->tensor(interpreter_->outputs()[0])->allocation_type; } private: int input_; int output_; }; TEST(RankOpTest, InputTypeFloat) { RankOpModel model({1, 3, 1, 3, 5}, TensorType_FLOAT32); ASSERT_EQ(model.GetOutputAllocationType(), kTfLitePersistentRo); EXPECT_THAT(model.GetOutput(), ElementsAreArray({5})); EXPECT_TRUE(model.GetOutputShape().empty()); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAreArray({5})); EXPECT_TRUE(model.GetOutputShape().empty()); } TEST(RankOpTest, InputTypeInt) { RankOpModel model({1, 3, 1, 3, 5}, TensorType_INT32); EXPECT_THAT(model.GetOutput(), ElementsAreArray({5})); EXPECT_TRUE(model.GetOutputShape().empty()); } TEST(RankOpTest, ScalarTensor) { RankOpModel model({}, TensorType_FLOAT32); EXPECT_THAT(model.GetOutput(), ElementsAreArray({0})); EXPECT_TRUE(model.GetOutputShape().empty()); } TEST(RankOpTest, EmptyTensor) { RankOpModel model({1, 0}, TensorType_FLOAT32); EXPECT_THAT(model.GetOutput(), ElementsAreArray({2})); EXPECT_TRUE(model.GetOutputShape().empty()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/rank.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/rank_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b8e2996a-a6e1-486c-8094-9fb6020f1f32
cpp
abseil/abseil-cpp
pcg_engine
absl/random/internal/pcg_engine.h
absl/random/internal/pcg_engine_test.cc
#ifndef ABSL_RANDOM_INTERNAL_PCG_ENGINE_H_ #define ABSL_RANDOM_INTERNAL_PCG_ENGINE_H_ #include <type_traits> #include "absl/base/config.h" #include "absl/meta/type_traits.h" #include "absl/numeric/bits.h" #include "absl/numeric/int128.h" #include "absl/random/internal/fastmath.h" #include "absl/random/internal/iostream_state_saver.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace random_internal { template <typename Params, typename Mix> class pcg_engine { static_assert(std::is_same<typename Params::state_type, typename Mix::state_type>::value, "Class-template absl::pcg_engine must be parameterized by " "Params and Mix with identical state_type"); static_assert(std::is_unsigned<typename Mix::result_type>::value, "Class-template absl::pcg_engine must be parameterized by " "an unsigned Mix::result_type"); using params_type = Params; using mix_type = Mix; using state_type = typename Mix::state_type; public: using result_type = typename Mix::result_type; static constexpr result_type(min)() { return (std::numeric_limits<result_type>::min)(); } static constexpr result_type(max)() { return (std::numeric_limits<result_type>::max)(); } explicit pcg_engine(uint64_t seed_value = 0) { seed(seed_value); } template <class SeedSequence, typename = typename absl::enable_if_t< !std::is_same<SeedSequence, pcg_engine>::value>> explicit pcg_engine(SeedSequence&& seq) { seed(seq); } pcg_engine(const pcg_engine&) = default; pcg_engine& operator=(const pcg_engine&) = default; pcg_engine(pcg_engine&&) = default; pcg_engine& operator=(pcg_engine&&) = default; result_type operator()() { state_ = lcg(state_); return Mix{}(state_); } void seed(uint64_t seed_value = 0) { state_type tmp = seed_value; state_ = lcg(tmp + Params::increment()); } template <class SeedSequence> typename absl::enable_if_t< !std::is_convertible<SeedSequence, uint64_t>::value, void> seed(SeedSequence&& seq) { reseed(seq); } void discard(uint64_t count) { state_ = advance(state_, count); } bool operator==(const pcg_engine& other) const { return state_ == other.state_; } bool operator!=(const pcg_engine& other) const { return !(*this == other); } template <class CharT, class Traits> friend typename absl::enable_if_t<(sizeof(state_type) == 16), std::basic_ostream<CharT, Traits>&> operator<<( std::basic_ostream<CharT, Traits>& os, const pcg_engine& engine) { auto saver = random_internal::make_ostream_state_saver(os); random_internal::stream_u128_helper<state_type> helper; helper.write(pcg_engine::params_type::multiplier(), os); os << os.fill(); helper.write(pcg_engine::params_type::increment(), os); os << os.fill(); helper.write(engine.state_, os); return os; } template <class CharT, class Traits> friend typename absl::enable_if_t<(sizeof(state_type) <= 8), std::basic_ostream<CharT, Traits>&> operator<<( std::basic_ostream<CharT, Traits>& os, const pcg_engine& engine) { auto saver = random_internal::make_ostream_state_saver(os); os << pcg_engine::params_type::multiplier() << os.fill(); os << pcg_engine::params_type::increment() << os.fill(); os << engine.state_; return os; } template <class CharT, class Traits> friend typename absl::enable_if_t<(sizeof(state_type) == 16), std::basic_istream<CharT, Traits>&> operator>>( std::basic_istream<CharT, Traits>& is, pcg_engine& engine) { random_internal::stream_u128_helper<state_type> helper; auto mult = helper.read(is); auto inc = helper.read(is); auto tmp = helper.read(is); if (mult != pcg_engine::params_type::multiplier() || inc != pcg_engine::params_type::increment()) { is.setstate(is.rdstate() | std::ios_base::failbit); } if (!is.fail()) { engine.state_ = tmp; } return is; } template <class CharT, class Traits> friend typename absl::enable_if_t<(sizeof(state_type) <= 8), std::basic_istream<CharT, Traits>&> operator>>( std::basic_istream<CharT, Traits>& is, pcg_engine& engine) { state_type mult{}, inc{}, tmp{}; is >> mult >> inc >> tmp; if (mult != pcg_engine::params_type::multiplier() || inc != pcg_engine::params_type::increment()) { is.setstate(is.rdstate() | std::ios_base::failbit); } if (!is.fail()) { engine.state_ = tmp; } return is; } private: state_type state_; static inline constexpr state_type lcg(state_type s) { return s * Params::multiplier() + Params::increment(); } inline state_type advance(state_type s, uint64_t n) const { state_type mult = Params::multiplier(); state_type inc = Params::increment(); state_type m = 1; state_type i = 0; while (n > 0) { if (n & 1) { m *= mult; i = i * mult + inc; } inc = (mult + 1) * inc; mult *= mult; n >>= 1; } return m * s + i; } template <class SeedSequence> void reseed(SeedSequence& seq) { using sequence_result_type = typename SeedSequence::result_type; constexpr size_t kBufferSize = sizeof(state_type) / sizeof(sequence_result_type); sequence_result_type buffer[kBufferSize]; seq.generate(std::begin(buffer), std::end(buffer)); state_type tmp = buffer[0]; for (size_t i = 1; i < kBufferSize; i++) { tmp <<= (sizeof(sequence_result_type) * 8); tmp |= buffer[i]; } state_ = lcg(tmp + params_type::increment()); } }; template <uint64_t kMultA, uint64_t kMultB, uint64_t kIncA, uint64_t kIncB> class pcg128_params { public: using state_type = absl::uint128; static inline constexpr state_type multiplier() { return absl::MakeUint128(kMultA, kMultB); } static inline constexpr state_type increment() { return absl::MakeUint128(kIncA, kIncB); } }; struct pcg_xsl_rr_128_64 { using state_type = absl::uint128; using result_type = uint64_t; inline uint64_t operator()(state_type state) { uint64_t rotate = static_cast<uint64_t>(state >> 122u); state ^= state >> 64; uint64_t s = static_cast<uint64_t>(state); return rotr(s, static_cast<int>(rotate)); } }; template <uint64_t kMult, uint64_t kInc> class pcg64_params { public: using state_type = uint64_t; static inline constexpr state_type multiplier() { return kMult; } static inline constexpr state_type increment() { return kInc; } }; struct pcg_xsh_rr_64_32 { using state_type = uint64_t; using result_type = uint32_t; inline uint32_t operator()(uint64_t state) { return rotr(static_cast<uint32_t>(((state >> 18) ^ state) >> 27), state >> 59); } }; using pcg64_2018_engine = pcg_engine< random_internal::pcg128_params<0x2360ed051fc65da4ull, 0x4385df649fccf645ull, 0x5851f42d4c957f2d, 0x14057b7ef767814f>, random_internal::pcg_xsl_rr_128_64>; using pcg32_2018_engine = pcg_engine< random_internal::pcg64_params<0x5851f42d4c957f2dull, 0x14057b7ef767814full>, random_internal::pcg_xsh_rr_64_32>; } ABSL_NAMESPACE_END } #endif
#include "absl/random/internal/pcg_engine.h" #include <algorithm> #include <bitset> #include <random> #include <sstream> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/random/internal/explicit_seed_seq.h" #include "absl/time/clock.h" #define UPDATE_GOLDEN 0 namespace { using absl::random_internal::ExplicitSeedSeq; using absl::random_internal::pcg32_2018_engine; using absl::random_internal::pcg64_2018_engine; template <typename EngineType> class PCGEngineTest : public ::testing::Test {}; using EngineTypes = ::testing::Types<pcg64_2018_engine, pcg32_2018_engine>; TYPED_TEST_SUITE(PCGEngineTest, EngineTypes); TYPED_TEST(PCGEngineTest, VerifyReseedChangesAllValues) { using engine_type = TypeParam; using result_type = typename engine_type::result_type; const size_t kNumOutputs = 16; engine_type engine; { std::seed_seq seq1{1, 2, 3, 4, 5, 6, 7}; engine.seed(seq1); } result_type a[kNumOutputs]; std::generate(std::begin(a), std::end(a), std::ref(engine)); { std::random_device rd; std::seed_seq seq2{rd(), rd(), rd()}; engine.seed(seq2); } result_type b[kNumOutputs]; std::generate(std::begin(b), std::end(b), std::ref(engine)); size_t changed_bits = 0; size_t unchanged_bits = 0; size_t total_set = 0; size_t total_bits = 0; size_t equal_count = 0; for (size_t i = 0; i < kNumOutputs; ++i) { equal_count += (a[i] == b[i]) ? 1 : 0; std::bitset<sizeof(result_type) * 8> bitset(a[i] ^ b[i]); changed_bits += bitset.count(); unchanged_bits += bitset.size() - bitset.count(); std::bitset<sizeof(result_type) * 8> a_set(a[i]); std::bitset<sizeof(result_type) * 8> b_set(b[i]); total_set += a_set.count() + b_set.count(); total_bits += 2 * 8 * sizeof(result_type); } EXPECT_LE(changed_bits, 0.60 * (changed_bits + unchanged_bits)); EXPECT_GE(changed_bits, 0.40 * (changed_bits + unchanged_bits)); EXPECT_NEAR(total_set, total_bits * 0.5, 4 * std::sqrt(total_bits)) << "@" << total_set / static_cast<double>(total_bits); const double kExpected = kNumOutputs / (1.0 * sizeof(result_type) * 8); EXPECT_LE(equal_count, 1.0 + kExpected); } constexpr size_t kTwoBufferValues = 16; TYPED_TEST(PCGEngineTest, VerifyDiscard) { using engine_type = TypeParam; for (size_t num_used = 0; num_used < kTwoBufferValues; ++num_used) { engine_type engine_used; for (size_t i = 0; i < num_used; ++i) { engine_used(); } for (size_t num_discard = 0; num_discard < kTwoBufferValues; ++num_discard) { engine_type engine1 = engine_used; engine_type engine2 = engine_used; for (size_t i = 0; i < num_discard; ++i) { engine1(); } engine2.discard(num_discard); for (size_t i = 0; i < kTwoBufferValues; ++i) { const auto r1 = engine1(); const auto r2 = engine2(); ASSERT_EQ(r1, r2) << "used=" << num_used << " discard=" << num_discard; } } } } TYPED_TEST(PCGEngineTest, StreamOperatorsResult) { using engine_type = TypeParam; std::wostringstream os; std::wistringstream is; engine_type engine; EXPECT_EQ(&(os << engine), &os); EXPECT_EQ(&(is >> engine), &is); } TYPED_TEST(PCGEngineTest, StreamSerialization) { using engine_type = TypeParam; for (size_t discard = 0; discard < kTwoBufferValues; ++discard) { ExplicitSeedSeq seed_sequence{12, 34, 56}; engine_type engine(seed_sequence); engine.discard(discard); std::stringstream stream; stream << engine; engine_type new_engine; stream >> new_engine; for (size_t i = 0; i < 64; ++i) { EXPECT_EQ(engine(), new_engine()) << " " << i; } } } constexpr size_t kNumGoldenOutputs = 127; TYPED_TEST(PCGEngineTest, RandomNumberEngineInterface) { using engine_type = TypeParam; using E = engine_type; using T = typename E::result_type; static_assert(std::is_copy_constructible<E>::value, "engine_type must be copy constructible"); static_assert(absl::is_copy_assignable<E>::value, "engine_type must be copy assignable"); static_assert(std::is_move_constructible<E>::value, "engine_type must be move constructible"); static_assert(absl::is_move_assignable<E>::value, "engine_type must be move assignable"); static_assert(std::is_same<decltype(std::declval<E>()()), T>::value, "return type of operator() must be result_type"); E e, v; const E x, y; T s = 1; std::seed_seq q{1, 2, 3}; unsigned long long z = 1; std::wostringstream os; std::wistringstream is; E{}; E{x}; E{s}; E{q}; e.seed(); EXPECT_TRUE(e == x); e.seed(q); { E tmp(q); EXPECT_TRUE(e == tmp); } e(); { E tmp(q); EXPECT_TRUE(e != tmp); } e.discard(z); static_assert(std::is_same<decltype(x == y), bool>::value, "return type of operator== must be bool"); static_assert(std::is_same<decltype(x != y), bool>::value, "return type of operator== must be bool"); } TYPED_TEST(PCGEngineTest, RandenEngineSFINAETest) { using engine_type = TypeParam; using result_type = typename engine_type::result_type; { engine_type engine(result_type(1)); engine.seed(result_type(1)); } { result_type n = 1; engine_type engine(n); engine.seed(n); } { engine_type engine(1); engine.seed(1); } { int n = 1; engine_type engine(n); engine.seed(n); } { std::seed_seq seed_seq; engine_type engine(seed_seq); engine.seed(seed_seq); } { engine_type engine{std::seed_seq()}; engine.seed(std::seed_seq()); } } TEST(PCG642018EngineTest, VerifyGolden) { constexpr uint64_t kGolden[kNumGoldenOutputs] = { 0x01070196e695f8f1, 0x703ec840c59f4493, 0xe54954914b3a44fa, 0x96130ff204b9285e, 0x7d9fdef535ceb21a, 0x666feed42e1219a0, 0x981f685721c8326f, 0xad80710d6eab4dda, 0xe202c480b037a029, 0x5d3390eaedd907e2, 0x0756befb39c6b8aa, 0x1fb44ba6634d62a3, 0x8d20423662426642, 0x34ea910167a39fb4, 0x93010b43a80d0ab6, 0x663db08a98fc568a, 0x720b0a1335956fae, 0x2c35483e31e1d3ba, 0x429f39776337409d, 0xb46d99e638687344, 0x105370b96aedcaee, 0x3999e92f811cff71, 0xd230f8bcb591cfc9, 0x0dce3db2ba7bdea5, 0xcf2f52c91eec99af, 0x2bc7c24a8b998a39, 0xbd8af1b0d599a19c, 0x56bc45abc66059f5, 0x170a46dc170f7f1e, 0xc25daf5277b85fad, 0xe629c2e0c948eadb, 0x1720a796915542ed, 0x22fb0caa4f909951, 0x7e0c0f4175acd83d, 0xd9fcab37ff2a860c, 0xab2280fb2054bad1, 0x58e8a06f37fa9e99, 0xc3a52a30b06528c7, 0x0175f773a13fc1bd, 0x731cfc584b00e840, 0x404cc7b2648069cb, 0x5bc29153b0b7f783, 0x771310a38cc999d1, 0x766a572f0a71a916, 0x90f450fb4fc48348, 0xf080ea3e1c7b1a0d, 0x15471a4507d66a44, 0x7d58e55a78f3df69, 0x0130a094576ac99c, 0x46669cb2d04b1d87, 0x17ab5bed20191840, 0x95b177d260adff3e, 0x025fb624b6ee4c07, 0xb35de4330154a95f, 0xe8510fff67e24c79, 0x132c3cbcd76ed2d3, 0x35e7cc145a093904, 0x9f5b5b5f81583b79, 0x3ee749a533966233, 0x4af85886cdeda8cd, 0x0ca5380ecb3ef3aa, 0x4f674eb7661d3192, 0x88a29aad00cd7733, 0x70b627ca045ffac6, 0x5912b43ea887623d, 0x95dc9fc6f62cf221, 0x926081a12a5c905b, 0x9c57d4cd7dfce651, 0x85ab2cbf23e3bb5d, 0xc5cd669f63023152, 0x3067be0fad5d898e, 0x12b56f444cb53d05, 0xbc2e5a640c3434fc, 0x9280bff0e4613fe1, 0x98819094c528743e, 0x999d1c98d829df33, 0x9ff82a012dc89242, 0xf99183ed39c8be94, 0xf0f59161cd421c55, 0x3c705730c2f6c48d, 0x66ad85c6e9278a61, 0x2a3428e4a428d5d0, 0x79207d68fd04940d, 0xea7f2b402edc8430, 0xa06b419ac857f63b, 0xcb1dd0e6fbc47e1c, 0x4f55229200ada6a4, 0x9647b5e6359c927f, 0x30bf8f9197c7efe5, 0xa79519529cc384d0, 0xbb22c4f339ad6497, 0xd7b9782f59d14175, 0x0dff12fff2ec0118, 0xa331ad8305343a7c, 0x48dad7e3f17e0862, 0x324c6fb3fd3c9665, 0xf0e4350e7933dfc4, 0x7ccda2f30b8b03b6, 0xa0afc6179005de40, 0xee65da6d063b3a30, 0xb9506f42f2bfe87a, 0xc9a2e26b0ef5baa0, 0x39fa9d4f495011d6, 0xbecc21a45d023948, 0x6bf484c6593f737f, 0x8065e0070cadc3b7, 0x9ef617ed8d419799, 0xac692cf8c233dd15, 0xd2ed87583c4ebb98, 0xad95ba1bebfedc62, 0x9b60b160a8264e43, 0x0bc8c45f71fcf25b, 0x4a78035cdf1c9931, 0x4602dc106667e029, 0xb335a3c250498ac8, 0x0256ebc4df20cab8, 0x0c61efd153f0c8d9, 0xe5d0150a4f806f88, 0x99d6521d351e7d87, 0x8d4888c9f80f4325, 0x106c5735c1ba868d, 0x73414881b880a878, 0x808a9a58a3064751, 0x339a29f3746de3d5, 0x5410d7fa4f873896, 0xd84623c81d7b8a03, 0x1f7c7e7a7f47f462, }; pcg64_2018_engine engine(0); #if UPDATE_GOLDEN (void)kGolden; for (size_t i = 0; i < kNumGoldenOutputs; ++i) { printf("0x%016lx, ", engine()); if (i % 3 == 2) { printf("\n"); } } printf("\n\n\n"); #else for (const auto& elem : kGolden) { EXPECT_EQ(elem, engine()); } engine.seed(); for (const auto& elem : kGolden) { EXPECT_EQ(elem, engine()); } #endif } TEST(PCG642018EngineTest, VerifyGoldenSeeded) { constexpr uint64_t kGolden[kNumGoldenOutputs] = { 0xb03988f1e39691ee, 0xbd2a1eb5ac31e97a, 0x8f00d6d433634d02, 0x1823c28d483d5776, 0x000c3ee3e1aeb74a, 0xfa82ef27a4f3df9c, 0xc6f382308654e454, 0x414afb1a238996c2, 0x4703a4bc252eb411, 0x99d64f62c8f7f654, 0xbb07ebe11a34fa44, 0x79eb06a363c06131, 0xf66ad3756f1c6b21, 0x130c01d5e869f457, 0x5ca2b9963aecbc81, 0xfef7bebc1de27e6c, 0x1d174faa5ed2cdbf, 0xd75b7a773f2bb889, 0xc35c872327a170a5, 0x46da6d88646a42fe, 0x4622985e0442dae2, 0xbe3cbd67297f1f9b, 0xe7c37b4a4798bfd1, 0x173d5dfad15a25c3, 0x0eb6849ba2961522, 0xb0ff7246e6700d73, 0x88cb9c42d3afa577, 0xb609731dbd94d917, 0xd3941cda04b40081, 0x28d140f7409bea3a, 0x3c96699a920a124a, 0xdb28be521958b2fd, 0x0a3f44db3d4c5124, 0x7ac8e60ba13b70d2, 0x75f03a41ded5195a, 0xaed10ac7c4e4825d, 0xb92a3b18aadb7adc, 0xda45e0081f2bca46, 0x74d39ab3753143fc, 0xb686038018fac9ca, 0x4cc309fe99542dbb, 0xf3e1a4fcb311097c, 0x58763d6fa698d69d, 0xd11c365dbecd8d60, 0x2c15d55725b1dee7, 0x89805f254d85658c, 0x2374c44dfc62158b, 0x9a8350fa7995328d, 0x198f838970cf91da, 0x96aff569562c0e53, 0xd76c8c52b7ec6e3f, 0x23a01cd9ae4baa81, 0x3adb366b6d02a893, 0xb3313e2a4c5b333f, 0x04c11230b96a5425, 0x1f7f7af04787d571, 0xaddb019365275ec7, 0x5c960468ccb09f42, 0x8438db698c69a44a, 0x492be1e46111637e, 0x9c6c01e18100c610, 0xbfe48e75b7d0aceb, 0xb5e0b89ec1ce6a00, 0x9d280ecbc2fe8997, 0x290d9e991ba5fcab, 0xeec5bec7d9d2a4f0, 0x726e81488f19150e, 0x1a6df7955a7e462c, 0x37a12d174ba46bb5, 0x3cdcdffd96b1b5c5, 0x2c5d5ac10661a26e, 0xa742ed18f22e50c4, 0x00e0ed88ff0d8a35, 0x3d3c1718cb1efc0b, 0x1d70c51ffbccbf11, 0xfbbb895132a4092f, 0x619d27f2fb095f24, 0x69af68200985e5c4, 0xbee4885f57373f8d, 0x10b7a6bfe0587e40, 0xa885e6cf2f7e5f0a, 0x59f879464f767550, 0x24e805d69056990d, 0x860970b911095891, 0xca3189954f84170d, 0x6652a5edd4590134, 0x5e1008cef76174bf, 0xcbd417881f2bcfe5, 0xfd49fc9d706ecd17, 0xeebf540221ebd066, 0x46af7679464504cb, 0xd4028486946956f1, 0xd4f41864b86c2103, 0x7af090e751583372, 0x98cdaa09278cb642, 0xffd42b921215602f, 0x1d05bec8466b1740, 0xf036fa78a0132044, 0x787880589d1ecc78, 0x5644552cfef33230, 0x0a97e275fe06884b, 0x96d1b13333d470b5, 0xc8b3cdad52d3b034, 0x091357b9db7376fd, 0xa5fe4232555edf8c, 0x3371bc3b6ada76b5, 0x7deeb2300477c995, 0x6fc6d4244f2849c1, 0x750e8cc797ca340a, 0x81728613cd79899f, 0x3467f4ee6f9aeb93, 0x5ef0a905f58c640f, 0x432db85e5101c98a, 0x6488e96f46ac80c2, 0x22fddb282625048c, 0x15b287a0bc2d4c5d, 0xa7e2343ef1f28bce, 0xc87ee1aa89bed09e, 0x220610107812c5e9, 0xcbdab6fcd640f586, 0x8d41047970928784, 0x1aa431509ec1ade0, 0xac3f0be53f518ddc, 0x16f4428ad81d0cbb, 0x675b13c2736fc4bb, 0x6db073afdd87e32d, 0x572f3ca2f1a078c6, }; ExplicitSeedSeq seed_sequence{12, 34, 56}; pcg64_2018_engine engine(seed_sequence); #if UPDATE_GOLDEN (void)kGolden; for (size_t i = 0; i < kNumGoldenOutputs; ++i) { printf("0x%016lx, ", engine()); if (i % 3 == 2) { printf("\n"); } } printf("\n\n\n"); #else for (const auto& elem : kGolden) { EXPECT_EQ(elem, engine()); } engine.seed(seed_sequence); for (const auto& elem : kGolden) { EXPECT_EQ(elem, engine()); } #endif } TEST(PCG642018EngineTest, VerifyGoldenFromDeserializedEngine) { constexpr uint64_t kGolden[kNumGoldenOutputs] = { 0xdd425b47b4113dea, 0x1b07176479d444b0, 0x6b391027586f2e42, 0xa166f2b15f4a2143, 0xffb6dbd7a179ee97, 0xb2c00035365bf0b1, 0x8fbb518b45855521, 0xfc789a55ddf87c3b, 0x429531f0f17ff355, 0xbe708560d603d283, 0x5bff415175c5cb6b, 0xe813491f4ad45394, 0xa853f4506d55880d, 0x7e538453e568172e, 0xe101f1e098ddd0ec, 0x6ee31266ee4c766d, 0xa8786d92d66b39d7, 0xfee622a2acf5e5b0, 0x5fe8e82c102fa7b3, 0x01f10be4cdb53c9d, 0xbe0545366f857022, 0x12e74f010a339bca, 0xb10d85ca40d5ce34, 0xe80d6feba5054875, 0x2b7c1ee6d567d4ee, 0x2a9cd043bfd03b66, 0x5cfc531bd239f3f1, 0x1c4734e4647d70f5, 0x85a8f60f006b5760, 0x6a4239ce76dca387, 0x8da0f86d7339335c, 0xf055b0468551374d, 0x486e8567e9bea9a0, 0x4cb531b8405192dd, 0xf813b1ee3157110b, 0x214c2a664a875d8e, 0x74531237b29b35f7, 0xa6f0267bb77a771e, 0x64b552bff54184a4, 0xa2d6f7af2d75b6fc, 0x460a10018e03b5ab, 0x76fd1fdcb81d0800, 0x76f5f81805070d9d, 0x1fb75cb1a70b289a, 0x9dfd25a022c4b27f, 0x9a31a14a80528e9e, 0x910dc565ddc25820, 0xd6aef8e2b0936c10, 0xe1773c507fe70225, 0xe027fd7aadd632bc, 0xc1fecb427089c8b8, 0xb5c74c69fa9dbf26, 0x71bf9b0e4670227d, 0x25f48fad205dcfdd, 0x905248ec4d689c56, 0x5c2b7631b0de5c9d, 0x9f2ee0f8f485036c, 0xfd6ce4ebb90bf7ea, 0xd435d20046085574, 0x6b7eadcb0625f986, 0x679d7d44b48be89e, 0x49683b8e1cdc49de, 0x4366cf76e9a2f4ca, 0x54026ec1cdad7bed, 0xa9a04385207f28d3, 0xc8e66de4eba074b2, 0x40b08c42de0f4cc0, 0x1d4c5e0e93c5bbc0, 0x19b80792e470ae2d, 0x6fcaaeaa4c2a5bd9, 0xa92cb07c4238438e, 0x8bb5c918a007e298, 0x7cd671e944874cf4, 0x88166470b1ba3cac, 0xd013d476eaeeade6, 0xcee416947189b3c3, 0x5d7c16ab0dce6088, 0xd3578a5c32b13d27, 0x3875db5adc9cc973, 0xfbdaba01c5b5dc56, 0xffc4fdd391b231c3, 0x2334520ecb164fec, 0x361c115e7b6de1fa, 0xeee58106cc3563d7, 0x8b7f35a8db25ebb8, 0xb29d00211e2cafa6, 0x22a39fe4614b646b, 0x92ca6de8b998506d, 0x40922fe3d388d1db, 0x9da47f1e540f802a, 0x811dceebf16a25db, 0xf6524ae22e0e53a9, 0x52d9e780a16eb99d, 0x4f504286bb830207, 0xf6654d4786bd5cc3, 0x00bd98316003a7e1, 0xefda054a6ab8f5f3, 0x46cfb0f4c1872827, 0xc22b316965c0f3b2, 0xd1a28087c7e7562a, 0xaa4f6a094b7f5cff, 0xfe2bc853a041f7da, 0xe9d531402a83c3ba, 0xe545d8663d3ce4dd, 0xfa2dcd7d91a13fa8, 0xda1a080e52a127b8, 0x19c98f1f809c3d84, 0x2cef109af4678c88, 0x53462accab3b9132, 0x176b13a80415394e, 0xea70047ef6bc178b, 0x57bca80506d6dcdf, 0xd853ba09ff09f5c4, 0x75f4df3a7ddd4775, 0x209c367ade62f4fe, 0xa9a0bbc74d5f4682, 0x5dfe34bada86c21a, 0xc2c05bbcd38566d1, 0x6de8088e348c916a, 0x6a7001c6000c2196, 0xd9fb51865fc4a367, 0x12f320e444ece8ff, 0x6d56f7f793d65035, 0x138f31b7a865f8aa, 0x58fc68b4026b9adf, 0xcd48954b79fb6436, 0x27dfce4a0232af87, }; #if UPDATE_GOLDEN (void)kGolden; std::seed_seq seed_sequence{1, 2, 3}; pcg64_2018_engine engine(seed_sequence); std::ostringstream stream; stream << engine; auto str = stream.str(); printf("%s\n\n", str.c_str()); for (size_t i = 0; i < kNumGoldenOutputs; ++i) { printf("0x%016lx, ", engine()); if (i % 3 == 2) { printf("\n"); } } printf("\n\n\n"); #else pcg64_2018_engine engine; std::istringstream stream( "2549297995355413924 4865540595714422341 6364136223846793005 " "1442695040888963407 18088519957565336995 4845369368158826708"); stream >> engine; for (const auto& elem : kGolden) { EXPECT_EQ(elem, engine()); } #endif } TEST(PCG322018EngineTest, VerifyGolden) { constexpr uint32_t kGolden[kNumGoldenOutputs] = { 0x7a7ecbd9, 0x89fd6c06, 0xae646aa8, 0xcd3cf945, 0x6204b303, 0x198c8585, 0x49fce611, 0xd1e9297a, 0x142d9440, 0xee75f56b, 0x473a9117, 0xe3a45903, 0xbce807a1, 0xe54e5f4d, 0x497d6c51, 0x61829166, 0xa740474b, 0x031912a8, 0x9de3defa, 0xd266dbf1, 0x0f38bebb, 0xec3c4f65, 0x07c5057d, 0xbbce03c8, 0xfd2ac7a8, 0xffcf4773, 0x5b10affb, 0xede1c842, 0xe22b01b7, 0xda133c8c, 0xaf89b0f4, 0x25d1b8bc, 0x9f625482, 0x7bfd6882, 0x2e2210c0, 0x2c8fb9a6, 0x42cb3b83, 0x40ce0dab, 0x644a3510, 0x36230ef2, 0xe2cb6d43, 0x1012b343, 0x746c6c9f, 0x36714cf8, 0xed1f5026, 0x8bbbf83e, 0xe98710f4, 0x8a2afa36, 0x09035349, 0x6dc1a487, 0x682b634b, 0xc106794f, 0x7dd78beb, 0x628c262b, 0x852fb232, 0xb153ac4c, 0x4f169d1b, 0xa69ab774, 0x4bd4b6f2, 0xdc351dd3, 0x93ff3c8c, 0xa30819ab, 0xff07758c, 0x5ab13c62, 0xd16d7fb5, 0xc4950ffa, 0xd309ae49, 0xb9677a87, 0x4464e317, 0x90dc44f1, 0xc694c1d4, 0x1d5e1168, 0xadf37a2d, 0xda38990d, 0x1ec4bd33, 0x36ca25ce, 0xfa0dc76a, 0x968a9d43, 0x6950ac39, 0xdd3276bc, 0x06d5a71e, 0x1f6f282d, 0x5c626c62, 0xdde3fc31, 0x152194ce, 0xc35ed14c, 0xb1f7224e, 0x47f76bb8, 0xb34fdd08, 0x7011395e, 0x162d2a49, 0x0d1bf09f, 0x9428a952, 0x03c5c344, 0xd3525616, 0x7816fff3, 0x6bceb8a8, 0x8345a081, 0x366420fd, 0x182abeda, 0x70f82745, 0xaf15ded8, 0xc7f52ca2, 0xa98db9c5, 0x919d99ba, 0x9c376c1c, 0xed8d34c2, 0x716ae9f5, 0xef062fa5, 0xee3b6c56, 0x52325658, 0x61afa9c3, 0xfdaf02f0, 0x961cf3ab, 0x9f291565, 0x4fbf3045, 0x0590c899, 0xde901385, 0x45005ffb, 0x509db162, 0x262fa941, 0x4c421653, 0x4b17c21e, 0xea0d1530, 0xde803845, 0x61bfd515, 0x438523ef, }; pcg32_2018_engine engine(0); #if UPDATE_GOLDEN (void)kGolden; for (size_t i = 0; i < kNumGoldenOutputs; ++i) { printf("0x%08x, ", engine()); if (i % 6 == 5) { printf("\n"); } } printf("\n\n\n"); #else for (const auto& elem : kGolden) { EXPECT_EQ(elem, engine()); } engine.seed(); for (const auto& elem : kGolden) { EXPECT_EQ(elem, engine()); } #endif } TEST(PCG322018EngineTest, VerifyGoldenSeeded) { constexpr uint32_t kGolden[kNumGoldenOutputs] = { 0x60b5a64c, 0x978502f9, 0x80a75f60, 0x241f1158, 0xa4cd1dbb, 0xe7284017, 0x3b678da5, 0x5223ec99, 0xe4bdd5d9, 0x72190e6d, 0xe6e702c9, 0xff80c768, 0xcf126ed3, 0x1fbd20ab, 0x60980489, 0xbc72bf89, 0x407ac6c0, 0x00bf3c51, 0xf9087897, 0x172e4eb6, 0xe9e4f443, 0x1a6098bf, 0xbf44f8c2, 0xdd84a0e5, 0xd9a52364, 0xc0e2e786, 0x061ae2ba, 0x9facb8e3, 0x6109432d, 0xd4e0a013, 0xbd8eb9a6, 0x7e86c3b6, 0x629c0e68, 0x05337430, 0xb495b9f4, 0x11ccd65d, 0xb578db25, 0x66f1246d, 0x6ef20a7f, 0x5e429812, 0x11772130, 0xb944b5c2, 0x01624128, 0xa2385ab7, 0xd3e10d35, 0xbe570ec3, 0xc951656f, 0xbe8944a0, 0x7be41062, 0x5709f919, 0xd745feda, 0x9870b9ae, 0xb44b8168, 0x19e7683b, 0xded8017f, 0xc6e4d544, 0x91ae4225, 0xd6745fba, 0xb992f284, 0x65b12b33, 0xa9d5fdb4, 0xf105ce1a, 0x35ca1a6e, 0x2ff70dd0, 0xd8335e49, 0xfb71ddf2, 0xcaeabb89, 0x5c6f5f84, 0x9a811a7d, 0xbcecbbd1, 0x0f661ba0, 0x9ad93b9d, 0xedd23e0b, 0x42062f48, 0xd38dd7e4, 0x6cd63c9c, 0x640b98ae, 0x4bff5653, 0x12626371, 0x13266017, 0xe7a698d8, 0x39c74667, 0xe8fdf2e3, 0x52803bf8, 0x2af6895b, 0x91335b7b, 0x699e4961, 0x00a40fff, 0x253ff2b6, 0x4a6cf672, 0x9584e85f, 0xf2a5000c, 0x4d58aba8, 0xb8513e6a, 0x767fad65, 0x8e326f9e, 0x182f15a1, 0x163dab52, 0xdf99c780, 0x047282a1, 0xee4f90dd, 0xd50394ae, 0x6c9fd5f0, 0xb06a9194, 0x387e3840, 0x04a9487b, 0xf678a4c2, 0xd0a78810, 0xd502c97e, 0xd6a9b12a, 0x4accc5dc, 0x416ed53e, 0x50411536, 0xeeb89c24, 0x813a7902, 0x034ebca6, 0xffa52e7c, 0x7ecd3d0e, 0xfa37a0d2, 0xb1fbe2c1, 0xb7efc6d1, 0xefa4ccee, 0xf6f80424, 0x2283f3d9, 0x68732284, 0x94f3b5c8, 0xbbdeceb9, }; ExplicitSeedSeq seed_sequence{12, 34, 56}; pcg32_2018_engine engine(seed_sequence); #if UPDATE_GOLDEN (void)kGolden; for (size_t i = 0; i < kNumGoldenOutputs; ++i) { printf("0x%08x, ", engine()); if (i % 6 == 5) { printf("\n"); } } printf("\n\n\n"); #else for (const auto& elem : kGolden) { EXPECT_EQ(elem, engine()); } engine.seed(seed_sequence); for (const auto& elem : kGolden) { EXPECT_EQ(elem, engine()); } #endif } TEST(PCG322018EngineTest, VerifyGoldenFromDeserializedEngine) { constexpr uint64_t kGolden[kNumGoldenOutputs] = { 0x780f7042, 0xba137215, 0x43ab6f22, 0x0cb55f46, 0x44b2627d, 0x835597af, 0xea973ea1, 0x0d2abd35, 0x4fdd601c, 0xac4342fe, 0x7db7e93c, 0xe56ebcaf, 0x3596470a, 0x7770a9ad, 0x9b893320, 0x57db3415, 0xb432de54, 0xa02baf71, 0xa256aadb, 0x88921fc7, 0xa35fa6b3, 0xde3eca46, 0x605739a7, 0xa890b82b, 0xe457b7ad, 0x335fb903, 0xeb06790c, 0xb3c54bf6, 0x6141e442, 0xa599a482, 0xb78987cc, 0xc61dfe9d, 0x0f1d6ace, 0x17460594, 0x8f6a5061, 0x083dc354, 0xe9c337fb, 0xcfd105f7, 0x926764b6, 0x638d24dc, 0xeaac650a, 0x67d2cb9c, 0xd807733c, 0x205fc52e, 0xf5399e2e, 0x6c46ddcc, 0xb603e875, 0xce113a25, 0x3c8d4813, 0xfb584db8, 0xf6d255ff, 0xea80954f, 0x42e8be85, 0xb2feee72, 0x62bd8d16, 0x1be4a142, 0x97dca1a4, 0xdd6e7333, 0xb2caa20e, 0xa12b1588, 0xeb3a5a1a, 0x6fa5ba89, 0x077ea931, 0x8ddb1713, 0x0dd03079, 0x2c2ba965, 0xa77fac17, 0xc8325742, 0x8bb893bf, 0xc2315741, 0xeaceee92, 0x81dd2ee2, 0xe5214216, 0x1b9b8fb2, 0x01646d03, 0x24facc25, 0xd8c0e0bb, 0xa33fe106, 0xf34fe976, 0xb3b4b44e, 0x65618fed, 0x032c6192, 0xa9dd72ce, 0xf391887b, 0xf41c6a6e, 0x05c4bd6d, 0x37fa260e, 0x46b05659, 0xb5f6348a, 0x62d26d89, 0x39f6452d, 0xb17b30a2, 0xbdd82743, 0x38ecae3b, 0xfe90f0a2, 0xcb2d226d, 0xcf8a0b1c, 0x0eed3d4d, 0xa1f69cfc, 0xd7ac3ba5, 0xce9d9a6b, 0x121deb4c, 0x4a0d03f3, 0xc1821ed1, 0x59c249ac, 0xc0abb474, 0x28149985, 0xfd9a82ba, 0x5960c3b2, 0xeff00cba, 0x6073aa17, 0x25dc0919, 0x9976626e, 0xdd2ccc33, 0x39ecb6ec, 0xc6e15d13, 0xfac94cfd, 0x28cfd34f, 0xf2d2c32d, 0x51c23d08, 0x4fdb2f48, 0x97baa807, 0xf2c1004c, 0xc4ae8136, 0x71f31c94, 0x8c92d601, 0x36caf5cd, }; #if UPDATE_GOLDEN (void)kGolden; std::seed_seq seed_sequence{1, 2, 3}; pcg32_2018_engine engine(seed_sequence); std::ostringstream stream; stream << engine; auto str = stream.str(); printf("%s\n\n", str.c_str()); for (size_t i = 0; i < kNumGoldenOutputs; ++i) { printf("0x%08x, ", engine()); if (i % 6 == 5) { printf("\n"); } } printf("\n\n\n"); EXPECT_FALSE(true); #else pcg32_2018_engine engine; std::istringstream stream( "6364136223846793005 1442695040888963407 6537028157270659894"); stream >> engine; for (const auto& elem : kGolden) { EXPECT_EQ(elem, engine()); } #endif } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/random/internal/pcg_engine.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/random/internal/pcg_engine_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
885df65a-587e-4769-8329-7922bd1595c9
cpp
tensorflow/tensorflow
verify_no_outside_compilation_markers_pass
tensorflow/compiler/mlir/tensorflow/transforms/verify_no_outside_compilation_markers_pass.cc
tensorflow/compiler/mlir/tensorflow/transforms/verify_no_outside_compilation_markers_pass_test.cc
#include <memory> #include <string> #include "mlir/Pass/Pass.h" #include "absl/log/log.h" #include "absl/strings/str_cat.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/Diagnostics.h" #include "mlir/IR/Visitors.h" #include "mlir/Support/LLVM.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_device.h" namespace mlir { namespace TFDevice { namespace { constexpr char kXlaOutsideCompilationAttr[] = "_xla_outside_compilation"; #define GEN_PASS_DEF_VERIFYNOOUTSIDECOMPILATIONMARKERSPASS #include "tensorflow/compiler/mlir/tensorflow/transforms/tf_device_passes.h.inc" class VerifyNoOutsideCompilationMarkersPass : public impl::VerifyNoOutsideCompilationMarkersPassBase< VerifyNoOutsideCompilationMarkersPass> { public: void runOnOperation() override; }; bool IsLaunchOp(Operation& op) { return dyn_cast<tf_device::LaunchOp>(op) != nullptr; } bool IsDeviceClusterOp(Operation& op) { return dyn_cast<tf_device::ClusterOp>(op) != nullptr; } bool HasChildLaunchDeviceOp(Operation& op) { auto cluster_op = dyn_cast<tf_device::ClusterOp>(op); if (cluster_op == nullptr) return false; auto walk_result = cluster_op->walk([&](Operation* op) { if (IsLaunchOp(*op)) return WalkResult::interrupt(); return WalkResult::advance(); }); return walk_result.wasInterrupted(); } bool HasXlaOutsideCompilationMarker(Operation& op) { return op.getAttrOfType<StringAttr>(kXlaOutsideCompilationAttr) != nullptr; } void VerifyNoOutsideCompilationMarkersPass::runOnOperation() { Operation* func_op = getOperation(); auto walk_result = func_op->walk([&](Operation* op) { if (IsDeviceClusterOp(*op) && HasChildLaunchDeviceOp(*op)) { std::string launch_error = absl::StrCat("Node `", op->getName().getStringRef().str(), "` ", "is a launch op which should have been removed by " "outside compilation"); op->emitError() << launch_error; LOG(ERROR) << launch_error; return WalkResult::interrupt(); } if (HasXlaOutsideCompilationMarker(*op)) { std::string outside_compilation_error = absl::StrCat( "Node `", op->getName().getStringRef().str(), "` ", "has _xla_outside_compilation set which should have been removed by " "outside compilation"); op->emitError() << outside_compilation_error; LOG(ERROR) << outside_compilation_error; return WalkResult::interrupt(); } return WalkResult::advance(); }); if (walk_result.wasInterrupted()) { signalPassFailure(); } } } std::unique_ptr<mlir::OperationPass<func::FuncOp>> CreateVerifyNoOutsideCompilationMarkersPass() { return std::make_unique<VerifyNoOutsideCompilationMarkersPass>(); } } }
#include <memory> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/Pass/PassManager.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/tensorflow/transforms/passes.h" #include "tensorflow/compiler/mlir/tf2xla/transforms/test_utils.h" #include "tsl/platform/statusor.h" namespace mlir { namespace TFDevice { using ::mlir::MLIRContext; using ::mlir::ModuleOp; using ::mlir::OwningOpRef; using ::mlir::mhlo::test::GetMlirModuleFromString; class VerifyNoOutsideCompilationMarkersPassTest : public ::testing::Test { protected: void CreateModule(const char* module_string) { TF_ASSERT_OK_AND_ASSIGN(module_, GetMlirModuleFromString(module_string, &context_)); pm_ = std::make_unique<mlir::PassManager>(&context_); pm_->addNestedPass<func::FuncOp>( CreateVerifyNoOutsideCompilationMarkersPass()); } mlir::LogicalResult Run() { return pm_->run(module_.get()); } private: MLIRContext context_; OwningOpRef<ModuleOp> module_; std::unique_ptr<mlir::PassManager> pm_; }; TEST_F(VerifyNoOutsideCompilationMarkersPassTest, PassesValidOps) { static constexpr char kMlirModuleStr[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 268 : i32}} { func.func @main() -> tensor<1xi32> { %0 = "tf.Const"() {value = dense<1000> : tensor<1xi32>} : () -> tensor<1xi32> func.return %0 : tensor<1xi32> } })"; CreateModule(kMlirModuleStr); auto result = Run(); EXPECT_TRUE(result.succeeded()); } TEST_F(VerifyNoOutsideCompilationMarkersPassTest, FailsXlaOutsideCompilationMarkers) { static constexpr char kMlirModuleStr[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 268 : i32}} { func.func @main() -> () { "tf.B"() {_xla_outside_compilation = "cluster1"} : () -> () func.return } })"; CreateModule(kMlirModuleStr); auto result = Run(); EXPECT_TRUE(result.failed()); } TEST_F(VerifyNoOutsideCompilationMarkersPassTest, FailsWithLaunchOpsInsideCluster) { static constexpr char kMlirModuleStr[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 268 : i32}} { func.func @main() -> () { %0 = "tf_device.cluster"() ({ "tf_device.launch"() ({ "tf.B"() : () -> () tf_device.return }) {device = "/job:worker/replica:0/task:0/device:CPU:0"} : () -> () tf_device.return }) {cluster_attr = "cluster_attr"} : () -> tensor<*xi32> func.return } })"; CreateModule(kMlirModuleStr); auto result = Run(); EXPECT_TRUE(result.failed()); } TEST_F(VerifyNoOutsideCompilationMarkersPassTest, PassesWithLaunchOpsOutsideCluster) { static constexpr char kMlirModuleStr[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 268 : i32}} { func.func @main() -> () { "tf_device.launch"() ({ "tf.B"() : () -> () tf_device.return }) {device = "/job:worker/replica:0/task:0/device:CPU:0"} : () -> () func.return } })"; CreateModule(kMlirModuleStr); auto result = Run(); EXPECT_TRUE(result.succeeded()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tensorflow/transforms/verify_no_outside_compilation_markers_pass.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tensorflow/transforms/verify_no_outside_compilation_markers_pass_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
220965a0-a8d8-4037-8c3b-77ddd8fe7f52
cpp
tensorflow/tensorflow
image_ops
tensorflow/compiler/tf2xla/kernels/image_ops.cc
tensorflow/core/ops/image_ops_test.cc
#include <array> #include <numeric> #include <string> #include <vector> #include "absl/status/statusor.h" #include "absl/types/span.h" #include "tensorflow/compiler/tf2xla/kernels/gather_op_helpers.h" #include "tensorflow/compiler/tf2xla/xla_helpers.h" #include "tensorflow/compiler/tf2xla/xla_op_kernel.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/hlo/builder/lib/arithmetic.h" #include "xla/hlo/builder/lib/comparators.h" #include "xla/hlo/builder/lib/constants.h" #include "xla/hlo/builder/lib/dynamic_shaped_ops.h" #include "xla/hlo/builder/lib/loops.h" #include "xla/hlo/builder/lib/sorting.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/op_requires.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/types.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace { std::array<xla::XlaOp, 3> RGBToHSV(XlaOpKernelContext* ctx, xla::XlaBuilder* b, const std::array<xla::XlaOp, 3>& rgb, DataType dtype, const TensorShape& shape) { auto zero = XlaHelpers::Zero(b, dtype); auto one = XlaHelpers::One(b, dtype); auto red = rgb[0]; auto green = rgb[1]; auto blue = rgb[2]; auto value = xla::Max(xla::Max(red, green), blue); auto minimum = xla::Min(xla::Min(red, green), blue); auto range = xla::Sub(value, minimum); auto zeros = xla::Broadcast(zero, shape.dim_sizes()); auto saturation = xla::Select(xla::Gt(value, zero), xla::Div(range, value), zeros); auto norm = xla::Div(XlaHelpers::FloatLiteral(b, dtype, 1.0 / 6.0), range); auto hue = xla::Select(xla::Eq(green, value), xla::Add(xla::Mul(norm, xla::Sub(blue, red)), XlaHelpers::FloatLiteral(b, dtype, 2.0 / 6.0)), xla::Add(xla::Mul(norm, xla::Sub(red, green)), XlaHelpers::FloatLiteral(b, dtype, 4.0 / 6.0))); hue = xla::Select(xla::Eq(red, value), xla::Mul(norm, xla::Sub(green, blue)), hue); hue = xla::Select(xla::Gt(range, zero), hue, zeros); hue = xla::Select(xla::Lt(hue, zero), xla::Add(hue, one), hue); return {hue, saturation, value}; } std::array<xla::XlaOp, 3> HSVToRGB(xla::XlaBuilder* b, const std::array<xla::XlaOp, 3>& hsv, DataType dtype) { xla::XlaOp hue = hsv[0]; xla::XlaOp saturation = hsv[1]; xla::XlaOp value = hsv[2]; auto zero = XlaHelpers::Zero(b, dtype); auto one = XlaHelpers::FloatLiteral(b, dtype, 1.0); auto two = XlaHelpers::FloatLiteral(b, dtype, 2.0); auto three = XlaHelpers::FloatLiteral(b, dtype, 3.0); auto four = XlaHelpers::FloatLiteral(b, dtype, 4.0); auto six = XlaHelpers::FloatLiteral(b, dtype, 6.0); auto dh = xla::Mul(hue, six); auto dr = xla::Clamp(zero, xla::Sub(xla::Abs(xla::Sub(dh, three)), one), one); auto dg = xla::Clamp(zero, xla::Sub(two, xla::Abs(xla::Sub(dh, two))), one); auto db = xla::Clamp(zero, xla::Sub(two, xla::Abs(xla::Sub(dh, four))), one); auto one_minus_s = xla::Sub(one, saturation); auto red = xla::Mul(xla::Add(one_minus_s, xla::Mul(saturation, dr)), value); auto green = xla::Mul(xla::Add(one_minus_s, xla::Mul(saturation, dg)), value); auto blue = xla::Mul(xla::Add(one_minus_s, xla::Mul(saturation, db)), value); return {red, green, blue}; } class RGBToHSVOp : public XlaOpKernel { public: explicit RGBToHSVOp(OpKernelConstruction* context) : XlaOpKernel(context) {} void Compile(XlaOpKernelContext* context) override { const TensorShape input_shape = context->InputShape(0); OP_REQUIRES(context, input_shape.dims() >= 1, errors::InvalidArgument("input must be at least 1D", input_shape.DebugString())); int channel_dim = input_shape.dims() - 1; int64_t channels = input_shape.dim_size(channel_dim); OP_REQUIRES( context, channels == 3, errors::FailedPrecondition("input must have 3 channels but input has ", channels, " channels.")); xla::XlaBuilder* b = context->builder(); xla::XlaOp input = context->Input(0); xla::XlaOp red = xla::SliceInDim(input, 0, 1, 1, channel_dim); xla::XlaOp green = xla::SliceInDim(input, 1, 2, 1, channel_dim); xla::XlaOp blue = xla::SliceInDim(input, 2, 3, 1, channel_dim); TensorShape channel_shape = input_shape; channel_shape.set_dim(channel_dim, 1); auto hsv = RGBToHSV(context, b, {red, green, blue}, context->input_type(0), channel_shape); context->SetOutput(0, xla::ConcatInDim(b, hsv, channel_dim)); } }; REGISTER_XLA_OP(Name("RGBToHSV"), RGBToHSVOp); class HSVToRGBOp : public XlaOpKernel { public: explicit HSVToRGBOp(OpKernelConstruction* context) : XlaOpKernel(context) {} void Compile(XlaOpKernelContext* context) override { const TensorShape input_shape = context->InputShape(0); OP_REQUIRES(context, input_shape.dims() >= 1, errors::InvalidArgument("input must be at least 1D", input_shape.DebugString())); int channel_dim = input_shape.dims() - 1; int64_t channels = input_shape.dim_size(channel_dim); OP_REQUIRES( context, channels == 3, errors::FailedPrecondition("input must have 3 channels but input has ", channels, " channels.")); xla::XlaBuilder* b = context->builder(); xla::XlaOp input = context->Input(0); xla::XlaOp hue = xla::SliceInDim(input, 0, 1, 1, channel_dim); xla::XlaOp saturation = xla::SliceInDim(input, 1, 2, 1, channel_dim); xla::XlaOp value = xla::SliceInDim(input, 2, 3, 1, channel_dim); auto rgb = HSVToRGB(context->builder(), {hue, saturation, value}, context->input_type(0)); context->SetOutput(0, xla::ConcatInDim(b, rgb, channel_dim)); } }; REGISTER_XLA_OP(Name("HSVToRGB"), HSVToRGBOp); class AdjustContrastOpV2 : public XlaOpKernel { public: explicit AdjustContrastOpV2(OpKernelConstruction* context) : XlaOpKernel(context) {} void Compile(XlaOpKernelContext* context) override { const TensorShape& input_shape = context->InputShape(0); const TensorShape& factor_shape = context->InputShape(1); OP_REQUIRES(context, input_shape.dims() >= 3, errors::InvalidArgument("input must be at least 3-D, got shape", input_shape.DebugString())); int height_dim = input_shape.dims() - 3; int width_dim = input_shape.dims() - 2; int channel_dim = input_shape.dims() - 1; const int64_t height = input_shape.dim_size(height_dim); const int64_t width = input_shape.dim_size(width_dim); OP_REQUIRES(context, TensorShapeUtils::IsScalar(factor_shape), errors::InvalidArgument("contrast_factor must be scalar: ", factor_shape.DebugString())); xla::XlaBuilder* b = context->builder(); DataType type = context->input_type(0); xla::XlaOp input = context->Input(0); xla::XlaOp factor = XlaHelpers::ConvertElementType(context->Input(1), type); const DataType accumulation_type = XlaHelpers::SumAccumulationType(type); auto converted = XlaHelpers::ConvertElementType(input, accumulation_type); auto reduce = xla::Reduce(converted, XlaHelpers::Zero(b, accumulation_type), *context->GetOrCreateAdd(accumulation_type), {height_dim, width_dim}); auto output = xla::Div( reduce, XlaHelpers::FloatLiteral(b, accumulation_type, height * width)); output = XlaHelpers::ConvertElementType(output, type); std::vector<int64_t> broadcast_dims(input_shape.dims() - 2); std::iota(broadcast_dims.begin(), broadcast_dims.end(), 0); broadcast_dims.back() = channel_dim; output = xla::Add(xla::Mul(input, factor), xla::Mul(output, xla::Sub(XlaHelpers::One(b, type), factor)), broadcast_dims); context->SetOutput(0, output); } }; REGISTER_XLA_OP(Name("AdjustContrastv2"), AdjustContrastOpV2); class AdjustSaturationOp : public XlaOpKernel { public: explicit AdjustSaturationOp(OpKernelConstruction* context) : XlaOpKernel(context) {} void Compile(XlaOpKernelContext* context) override { const TensorShape& input_shape = context->InputShape(0); const TensorShape& scale_shape = context->InputShape(1); OP_REQUIRES(context, input_shape.dims() >= 3, errors::InvalidArgument("input must be at least 3-D, got shape", input_shape.DebugString())); OP_REQUIRES(context, TensorShapeUtils::IsScalar(scale_shape), errors::InvalidArgument("scale must be scalar: ", scale_shape.DebugString())); const int channel_dim = input_shape.dims() - 1; const int64_t channels = input_shape.dim_size(channel_dim); OP_REQUIRES( context, channels == 3, errors::InvalidArgument("input must have 3 channels but instead has ", channels, " channels.")); xla::XlaBuilder* b = context->builder(); xla::XlaOp input = XlaHelpers::ConvertElementType(context->Input(0), DT_FLOAT); xla::XlaOp scale = XlaHelpers::ConvertElementType(context->Input(1), DT_FLOAT); DataType type = context->input_type(0); xla::XlaOp red = xla::SliceInDim(input, 0, 1, 1, channel_dim); xla::XlaOp green = xla::SliceInDim(input, 1, 2, 1, channel_dim); xla::XlaOp blue = xla::SliceInDim(input, 2, 3, 1, channel_dim); TensorShape channel_shape = input_shape; channel_shape.set_dim(channel_dim, 1); auto hsv = RGBToHSV(context, b, {red, green, blue}, DT_FLOAT, channel_shape); hsv[1] = xla::Clamp(XlaHelpers::Zero(b, DT_FLOAT), xla::Mul(hsv[1], scale), XlaHelpers::One(b, DT_FLOAT)); auto rgb = HSVToRGB(context->builder(), hsv, DT_FLOAT); auto output = XlaHelpers::ConvertElementType( xla::ConcatInDim(b, rgb, channel_dim), type); context->SetOutput(0, output); } }; REGISTER_XLA_OP(Name("AdjustSaturation"), AdjustSaturationOp); class AdjustHueOp : public XlaOpKernel { public: explicit AdjustHueOp(OpKernelConstruction* context) : XlaOpKernel(context) {} void Compile(XlaOpKernelContext* context) override { const TensorShape& input_shape = context->InputShape(0); const TensorShape& delta_shape = context->InputShape(1); OP_REQUIRES(context, input_shape.dims() >= 3, errors::InvalidArgument("input must be at least 3-D, got shape", input_shape.DebugString())); OP_REQUIRES(context, TensorShapeUtils::IsScalar(delta_shape), errors::InvalidArgument("delta must be scalar: ", delta_shape.DebugString())); const int channel_dim = input_shape.dims() - 1; const int64_t channels = input_shape.dim_size(channel_dim); OP_REQUIRES( context, channels == 3, errors::InvalidArgument("input must have 3 channels but instead has ", channels, " channels.")); xla::XlaBuilder* b = context->builder(); xla::XlaOp input = XlaHelpers::ConvertElementType(context->Input(0), DT_FLOAT); xla::XlaOp delta = XlaHelpers::ConvertElementType(context->Input(1), DT_FLOAT); DataType type = context->input_type(0); xla::XlaOp red = xla::SliceInDim(input, 0, 1, 1, channel_dim); xla::XlaOp green = xla::SliceInDim(input, 1, 2, 1, channel_dim); xla::XlaOp blue = xla::SliceInDim(input, 2, 3, 1, channel_dim); TensorShape channel_shape = input_shape; channel_shape.set_dim(channel_dim, 1); auto hsv = RGBToHSV(context, b, {red, green, blue}, DT_FLOAT, channel_shape); auto zero = XlaHelpers::Zero(b, DT_FLOAT); auto one = XlaHelpers::One(b, DT_FLOAT); auto& hue = hsv[0]; hue = xla::Rem(xla::Add(hsv[0], delta), one); hue = xla::Select(xla::Lt(hue, zero), xla::Rem(xla::Add(one, hue), one), hue); auto rgb = HSVToRGB(context->builder(), hsv, DT_FLOAT); auto output = XlaHelpers::ConvertElementType( xla::ConcatInDim(b, rgb, channel_dim), type); context->SetOutput(0, output); } }; REGISTER_XLA_OP(Name("AdjustHue"), AdjustHueOp); struct WhileCondFn { const int64_t num_boxes; const int64_t output_size; explicit WhileCondFn(int64_t num_boxes, int64_t output_size) : num_boxes(num_boxes), output_size(output_size) {} absl::StatusOr<xla::XlaOp> operator()(absl::Span<const xla::XlaOp> values, xla::XlaBuilder* cond_builder) const { xla::XlaOp row_idx = values[0]; xla::XlaOp row_in_bounds = xla::Lt(row_idx, xla::ConstantR0<int32>(cond_builder, num_boxes)); xla::XlaOp num_outputs_so_far = values[1]; xla::XlaOp results_not_full = xla::Lt( num_outputs_so_far, xla::ConstantR0<int32>(cond_builder, output_size)); return xla::And(row_in_bounds, results_not_full); } }; struct SuppressBodyFn { const int64_t num_boxes; explicit SuppressBodyFn(int64_t num_boxes) : num_boxes(num_boxes) {} absl::StatusOr<std::vector<xla::XlaOp>> operator()( absl::Span<const xla::XlaOp> values, xla::XlaBuilder* builder) const { auto row_idx = values[0]; auto num_outputs_so_far = values[1]; auto iou_mask = values[2]; auto included_iou = values[3]; auto zero = xla::ConstantR0<int32>(builder, 0); std::vector<xla::XlaOp> row_idx_vector = {row_idx}; auto active_elem = xla::DynamicSlice(included_iou, row_idx_vector, {1}); active_elem = xla::Reshape(active_elem, {}); num_outputs_so_far = xla::Select( active_elem, num_outputs_so_far + xla::ConstantR0<int32>(builder, 1), num_outputs_so_far); auto row_iou = xla::DynamicSlice(iou_mask, {row_idx, zero}, {1, num_boxes}); TF_ASSIGN_OR_RETURN(auto iou_shape, builder->GetShape(iou_mask)); auto boxes_runtime_size = xla::GetDimensionSize(row_iou, 1); if (iou_shape.is_dynamic_dimension(1)) { row_iou = xla::SetDimensionSize(row_iou, boxes_runtime_size, 1); } row_iou = xla::DynamicUpdateSlice( row_iou, xla::ConstantR2FromArray2D<bool>(builder, {{false}}), {zero, row_idx}); row_iou = xla::Reshape(row_iou, {num_boxes}); auto supp_mask = xla::Not(row_iou); auto cond = xla::Broadcast(active_elem, {num_boxes}); if (iou_shape.is_dynamic_dimension(1)) { cond = xla::SetDimensionSize(cond, boxes_runtime_size, 0); } included_iou = xla::Select(cond, xla::And(included_iou, supp_mask), included_iou); row_idx = row_idx + xla::ConstantR0<int32>(builder, 1); return std::vector<xla::XlaOp>{row_idx, num_outputs_so_far, iou_mask, included_iou}; } }; class NonMaxSuppressionOp : public XlaOpKernel { public: explicit NonMaxSuppressionOp(OpKernelConstruction* context) : XlaOpKernel(context) { OP_REQUIRES_OK(context, context->GetAttr("pad_to_max_output_size", &pad_to_max_output_size_)); } void Compile(XlaOpKernelContext* context) override { OP_REQUIRES(context, pad_to_max_output_size_, errors::Unimplemented( "XLA compilation requires pad_to_max_output_size == True")); xla::XlaOp selected_indices, num_valid; ComputeResult(context, pad_to_max_output_size_); } static void ComputeResult(XlaOpKernelContext* context, bool pad_to_max_output_size = false) { const TensorShape& boxes_shape = context->InputShape("boxes"); OP_REQUIRES( context, TensorShapeUtils::IsMatrix(boxes_shape), errors::InvalidArgument("boxes must be 2-D, currently: [", std::to_string(boxes_shape.dim_size(0)), ",", std::to_string(boxes_shape.dim_size(1)), "]")); const int64_t num_boxes = boxes_shape.dim_size(0); OP_REQUIRES( context, boxes_shape.dim_size(1) == 4, errors::InvalidArgument("boxes must have 4 columns, currently: ", std::to_string(boxes_shape.dim_size(1)))); const TensorShape& scores_shape = context->InputShape("scores"); OP_REQUIRES(context, TensorShapeUtils::IsVector(scores_shape), errors::InvalidArgument("scores must be 1-D, currently: ", scores_shape.DebugString())); OP_REQUIRES(context, scores_shape.dim_size(0) == num_boxes, errors::InvalidArgument( "scores size ", std::to_string(scores_shape.dim_size(0)), " must equal number of boxes ", std::to_string(num_boxes))); OP_REQUIRES(context, num_boxes <= kint32max, errors::InvalidArgument("XLA compilation requires number of " "boxes to be <= kint32max, got ", num_boxes)); xla::PrimitiveType boxes_xla_type = context->InputXlaType("boxes"); xla::PrimitiveType scores_xla_type = context->InputXlaType("scores"); const xla::XlaOp boxes_input = context->Input("boxes"); const xla::XlaOp scores_input = context->Input("scores"); int64_t output_size; OP_REQUIRES( context, TensorShapeUtils::IsScalar(context->InputShape("max_output_size")), errors::InvalidArgument("Max Output Size isn't a scalar")); OP_REQUIRES( context, TensorShapeUtils::IsScalar(context->InputShape("iou_threshold")), errors::InvalidArgument("IOU Threshold isn't a scalar")); OP_REQUIRES_OK(context, context->ConstantInputAsIntScalar(2, &output_size)); OP_REQUIRES( context, output_size >= 0, errors::InvalidArgument("Need output_size >= 0, got ", output_size)); OP_REQUIRES(context, output_size <= kint32max, errors::InvalidArgument("Need output_size <= kint32Max, got ", output_size)); const xla::XlaOp score_thresh = context->Input("score_threshold"); const xla::XlaOp iou_thresh = context->Input("iou_threshold"); xla::XlaBuilder* const builder = context->builder(); const xla::XlaOp boxes = xla::Transpose(boxes_input, {1, 0}); const xla::XlaOp boxes_sorted = xla::GetTupleElement( xla::Sort({xla::Broadcast(scores_input, {4}), boxes}, xla::CreateScalarGtComputation( {scores_xla_type, boxes_xla_type}, builder), 1), 1); const xla::XlaOp iota_indices = xla::Iota(builder, xla::S32, num_boxes); const xla::XlaOp indices_sort = xla::Sort( {scores_input, iota_indices}, xla::CreateScalarGtComputation({scores_xla_type, xla::S32}, builder)); const xla::XlaOp indices_sorted = xla::GetTupleElement(indices_sort, 1); const xla::XlaOp scores = xla::GetTupleElement(indices_sort, 0); const xla::XlaOp c_y0 = xla::Reshape(xla::SliceInDim(boxes_sorted, 0, 1, 1, 0), {num_boxes}); const xla::XlaOp c_x0 = xla::Reshape(xla::SliceInDim(boxes_sorted, 1, 2, 1, 0), {num_boxes}); const xla::XlaOp c_y1 = xla::Reshape(xla::SliceInDim(boxes_sorted, 2, 3, 1, 0), {num_boxes}); const xla::XlaOp c_x1 = xla::Reshape(xla::SliceInDim(boxes_sorted, 3, 4, 1, 0), {num_boxes}); xla::XlaOp y1 = xla::Select(xla::Le(c_y0, c_y1), c_y0, c_y1); xla::XlaOp y2 = xla::Select(xla::Le(c_y0, c_y1), c_y1, c_y0); xla::XlaOp x1 = xla::Select(xla::Le(c_x0, c_x1), c_x0, c_x1); xla::XlaOp x2 = xla::Select(xla::Le(c_x0, c_x1), c_x1, c_x0); xla::XlaOp area = (y2 - y1) * (x2 - x1); y1 = xla::Broadcast(y1, {1}); y2 = xla::Broadcast(y2, {1}); x1 = xla::Broadcast(x1, {1}); x2 = xla::Broadcast(x2, {1}); area = xla::Broadcast(area, {1}); xla::XlaOp i_xmin = xla::Max(x1, xla::Transpose(x1, {1, 0})); xla::XlaOp i_ymin = xla::Max(y1, xla::Transpose(y1, {1, 0})); xla::XlaOp i_xmax = xla::Min(x2, xla::Transpose(x2, {1, 0})); xla::XlaOp i_ymax = xla::Min(y2, xla::Transpose(y2, {1, 0})); auto square_zero = xla::ZerosLike(i_xmin); xla::XlaOp i_area = xla::Max(i_xmax - i_xmin, square_zero) * xla::Max(i_ymax - i_ymin, square_zero); xla::XlaOp u_area = area + xla::Transpose(area, {1, 0}) - i_area; xla::XlaOp iou = i_area / u_area; xla::XlaOp iou_thresh_mask = xla::Gt(iou, iou_thresh + square_zero); xla::XlaOp included_iou = xla::Broadcast(xla::ConstantR0<bool>(builder, true), {num_boxes}); auto iou_shape_or = builder->GetShape(iou_thresh_mask); OP_REQUIRES_OK(context, iou_shape_or.status()); auto boxes_runtime_size = xla::GetDimensionSize(iou_thresh_mask, 1); if (iou_shape_or.value().is_dynamic_dimension(1)) { included_iou = xla::SetDimensionSize(included_iou, boxes_runtime_size, 0); } std::vector<xla::XlaOp> init_values; init_values.reserve(4); init_values.push_back(xla::ConstantR0<int32>(builder, 0)); init_values.push_back(xla::ConstantR0<int32>(builder, 0)); init_values.push_back(iou_thresh_mask); init_values.push_back(included_iou); auto suppress_loop_result = xla::WhileLoopHelper(WhileCondFn(num_boxes, output_size), SuppressBodyFn(num_boxes), init_values, "suppress_loop", builder) .value(); xla::XlaOp included_score = xla::Gt(scores, xla::Broadcast(score_thresh, {num_boxes})); xla::XlaOp included = xla::And(included_score, suppress_loop_result[3]); auto valid_elem = xla::Lt( iota_indices, xla::Broadcast(suppress_loop_result[0], {num_boxes})); included = xla::And(included, valid_elem); xla::XlaOp neg_inf = xla::Broadcast(xla::MinValue(builder, boxes_xla_type), {num_boxes}); xla::XlaOp scores_included = xla::Select(included, scores, neg_inf); xla::XlaOp output_tuple = TopK(scores_included, output_size); xla::XlaOp selected_indices_sorted = xla::GetTupleElement(output_tuple, 1); xla::XlaOp ones_included = xla::Select( included, xla::Broadcast(xla::ConstantR0<int32>(builder, 1), {num_boxes}), xla::Broadcast(xla::ConstantR0<int32>(builder, 0), {num_boxes})); xla::XlaOp num_valid_total = xla::Reduce( ones_included, xla::ConstantR0<int>(builder, 0), CreateScalarAddComputation(xla::S32, builder), {0}); xla::XlaOp num_valid = xla::Min(num_valid_total, xla::ConstantR0<int32>(builder, output_size)); xla::XlaOp selected_indices; DataType gather_type = context->expected_output_dtype(0); OP_REQUIRES_OK( context, XlaGather(indices_sorted, scores_shape, selected_indices_sorted, TensorShape({output_size}), 0, false, gather_type, DT_INT32, builder, &selected_indices)); if (!pad_to_max_output_size) { absl::StatusOr<xla::XlaOp> rebounded_result = xla::SetDimensionSizeWithRebound(&context->value_inference(), selected_indices, num_valid, 0); if (rebounded_result.ok()) { selected_indices = *rebounded_result; } else { selected_indices = xla::SetDimensionSize(selected_indices, num_valid, 0); } } context->SetOutput(0, selected_indices); if (pad_to_max_output_size) context->SetOutput(1, num_valid); } private: bool pad_to_max_output_size_; }; REGISTER_XLA_OP( Name("NonMaxSuppressionV4").CompileTimeConstantInput("max_output_size"), NonMaxSuppressionOp); class NonMaxSuppressionV3Op : public XlaOpKernel { public: explicit NonMaxSuppressionV3Op(OpKernelConstruction* context) : XlaOpKernel(context) {} void Compile(XlaOpKernelContext* context) override { xla::XlaOp selected_indices, num_valid; NonMaxSuppressionOp::ComputeResult(context); } }; REGISTER_XLA_OP( Name("NonMaxSuppressionV3").CompileTimeConstantInput("max_output_size"), NonMaxSuppressionV3Op); } }
#include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { TEST(ImageOpsTest, SampleDistortedBoundingBox_ShapeFn) { ShapeInferenceTestOp op("SampleDistortedBoundingBox"); INFER_OK(op, "?;?", "[3];[3];[1,1,4]"); } TEST(ImageOpsTest, Resize_ShapeFn) { for (const char* op_name : {"ResizeArea", "ResizeBicubic", "ResizeBilinear", "ResizeNearestNeighbor"}) { ShapeInferenceTestOp op(op_name); op.input_tensors.resize(2); INFER_ERROR("Shape must be rank 4 but is rank 5", op, "[1,2,3,4,5];?"); INFER_ERROR("Shape must be rank 4 but is rank 3", op, "[1,2,3];?"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "?;[]"); INFER_ERROR("Dimension must be 2 but is 3", op, "?;[3]"); INFER_OK(op, "[1,?,3,?];[2]", "[d0_0,?,?,d0_3]"); Tensor size_tensor = test::AsTensor<int32>({20, 30}); op.input_tensors[1] = &size_tensor; INFER_OK(op, "[1,?,3,?];[2]", "[d0_0,20,30,d0_3]"); } } TEST(ImageOpsTest, DecodeGif) { ShapeInferenceTestOp op("DecodeGif"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[1]"); INFER_OK(op, "?", "[?,?,?,3]"); INFER_OK(op, "[]", "[?,?,?,3]"); } TEST(ImageOpTest, DecodeImage) { ShapeInferenceTestOp op("DecodeImage"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[1]"); TF_ASSERT_OK(NodeDefBuilder("test", "DecodeImage") .Input({"img", 0, DT_STRING}) .Attr("expand_animations", false) .Finalize(&op.node_def)); INFER_OK(op, "[]", "[?,?,?]"); TF_ASSERT_OK(NodeDefBuilder("test", "DecodeImage") .Input({"img", 0, DT_STRING}) .Attr("expand_animations", true) .Finalize(&op.node_def)); INFER_OK(op, "[]", "?"); TF_ASSERT_OK(NodeDefBuilder("test", "DecodeImage") .Input({"img", 0, DT_STRING}) .Attr("channels", -1) .Finalize(&op.node_def)); INFER_ERROR("channels must be non-negative, got -1", op, "[]"); } TEST(ImageOpsTest, DecodeImage_ShapeFn) { for (const char* op_name : {"DecodeJpeg", "DecodePng"}) { ShapeInferenceTestOp op(op_name); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[1]"); TF_ASSERT_OK(NodeDefBuilder("test", op_name) .Input({"a", 0, DT_STRING}) .Finalize(&op.node_def)); INFER_OK(op, "[]", "[?,?,?]"); TF_ASSERT_OK(NodeDefBuilder("test", op_name) .Input({"a", 0, DT_STRING}) .Attr("channels", 4) .Finalize(&op.node_def)); INFER_OK(op, "[]", "[?,?,4]"); TF_ASSERT_OK(NodeDefBuilder("test", op_name) .Input({"a", 0, DT_STRING}) .Attr("channels", -1) .Finalize(&op.node_def)); INFER_ERROR("channels must be non-negative, got -1", op, "[]"); } } TEST(ImageOpsTest, DecodeAndCropJpeg_ShapeFn) { const char* op_name = "DecodeAndCropJpeg"; ShapeInferenceTestOp op(op_name); INFER_ERROR("Wrong number of inputs passed: 1 while 2 expected", op, "[1]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[1];?"); TF_ASSERT_OK(NodeDefBuilder("test", op_name) .Input({"img", 0, DT_STRING}) .Input({"crop_window", 1, DT_INT32}) .Finalize(&op.node_def)); INFER_OK(op, "[];[?]", "[?,?,?]"); TF_ASSERT_OK(NodeDefBuilder("test", op_name) .Input({"img", 0, DT_STRING}) .Input({"crop_window", 1, DT_INT32}) .Attr("channels", 4) .Finalize(&op.node_def)); INFER_OK(op, "[];[?]", "[?,?,4]"); TF_ASSERT_OK(NodeDefBuilder("test", op_name) .Input({"img", 0, DT_STRING}) .Input({"crop_window", 1, DT_INT32}) .Attr("channels", -1) .Finalize(&op.node_def)); INFER_ERROR("channels must be non-negative, got -1", op, "[];[]"); } TEST(ImageOpsTest, DecodeAndCropJpeg_InvalidCropWindow) { const char* op_name = "DecodeAndCropJpeg"; ShapeInferenceTestOp op(op_name); INFER_ERROR("Wrong number of inputs passed: 1 while 2 expected", op, "[1]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[1];?"); TF_ASSERT_OK(NodeDefBuilder("test", op_name) .Input({"img", 0, DT_STRING}) .Input({"crop_window", 1, DT_INT32}) .Finalize(&op.node_def)); INFER_OK(op, "[];[?]", "[?,?,?]"); } TEST(ImageOpsTest, EncodeImage_ShapeFn) { for (const char* op_name : {"EncodeJpeg"}) { ShapeInferenceTestOp op(op_name); INFER_ERROR("Shape must be rank 3 but is rank 2", op, "[1,2]"); INFER_OK(op, "[1,?,3]", "[]"); } } TEST(ImageOpsTest, BatchedEncodeImage_ShapeFn) { for (const char* op_name : {"EncodePng"}) { ShapeInferenceTestOp op(op_name); INFER_ERROR("Shape must be at least rank 3 but is rank 2", op, "[1,2]"); INFER_OK(op, "[1,?,3]", "[]"); INFER_OK(op, "[?,1,?,3]", "[d0_0]"); INFER_OK(op, "[4,5,1,?,3]", "[d0_0,d0_1]"); } } TEST(ImageOpsTest, ExtractJpegShape_ShapeFn) { ShapeInferenceTestOp op("ExtractJpegShape"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[1]"); INFER_OK(op, "?", "[3]"); } TEST(ImageOpsTest, Colorspace_ShapeFn) { for (const char* op_name : {"HSVToRGB", "RGBToHSV"}) { ShapeInferenceTestOp op(op_name); INFER_ERROR("Shape must be at least rank 1 but is rank 0", op, "[]"); INFER_ERROR("Dimension must be 3 but is 4", op, "[1,2,4]"); INFER_OK(op, "[1,2,3]", "[d0_0,d0_1,d0_2]"); INFER_OK(op, "[1,2,?]", "[d0_0,d0_1,3]"); INFER_OK(op, "?", "?"); } } TEST(ImageOpsTest, ExtractGlimpse_ShapeFn) { ShapeInferenceTestOp op("ExtractGlimpse"); op.input_tensors.resize(2); TF_ASSERT_OK(NodeDefBuilder("test", "ExtractGlimpse") .Input({"input", 0, DT_FLOAT}) .Input({"size", 1, DT_INT32}) .Input({"offsets", 2, DT_FLOAT}) .Attr("uniform_noise", true) .Attr("noise", "") .Finalize(&op.node_def)); INFER_ERROR("Shape must be rank 4 but is rank 5", op, "[1,2,3,4,5];?;?"); INFER_ERROR("Shape must be rank 4 but is rank 3", op, "[1,2,3];?;?"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "?;[];?"); INFER_ERROR("Dimension must be 2 but is 3", op, "?;[3];?"); INFER_ERROR("Shape must be rank 2 but is rank 3", op, "?;?;[1,2,3]"); INFER_OK(op, "[1,?,3,?];[2];?", "[d0_0,?,?,d0_3]"); Tensor size_tensor = test::AsTensor<int32>({20, 30}); op.input_tensors[1] = &size_tensor; INFER_OK(op, "[1,?,3,?];[2];?", "[d0_0,20,30,d0_3]"); INFER_OK(op, "[?,?,3,?];[2];[1,?]", "[d2_0,20,30,d0_3]"); INFER_OK(op, "[1,?,3,?];[2];[1,?]", "[d0_0|d2_0,20,30,d_0|d0_3]"); INFER_ERROR("Dimensions must be equal, but are 10 and 1", op, "[10,?,?,?];?;[1,2]"); } TEST(ImageOpsTest, CropAndResize_ShapeFn) { ShapeInferenceTestOp op("CropAndResize"); op.input_tensors.resize(4); INFER_ERROR("Shape must be rank 4 but is rank 5", op, "[1,2,3,4,5];?;?;?"); INFER_ERROR("Shape must be rank 4 but is rank 3", op, "[1,2,3];?;?;?"); INFER_ERROR("Shape must be rank 2 but is rank 3", op, "?;[1,2,3];?;?"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "?;?;[1,2];?"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "?;?;?;[1,2]"); INFER_ERROR("Dimension must be 2 but is 1", op, "?;?;?;[1]"); INFER_OK(op, "[1,?,3,?];?;?;[2]", "[?,?,?,d0_3]"); Tensor size_tensor = test::AsTensor<int32>({20, 30}); op.input_tensors[3] = &size_tensor; INFER_OK(op, "[1,?,3,?];?;?;[2]", "[?,20,30,d0_3]"); INFER_OK(op, "[1,?,3,?];[2,4];?;[2]", "[d1_0,20,30,d0_3]"); INFER_OK(op, "[1,?,3,?];?;[2];[2]", "[d2_0,20,30,d0_3]"); INFER_OK(op, "[1,?,3,?];[?,4];[?];[2]", "[d1_0|d3_0,20,30,d0_3]"); INFER_ERROR("Dimensions must be equal, but are 2 and 1", op, "?;[2,?];[1];?"); INFER_ERROR("Dimension must be 4 but is 3", op, "?;[?,3];?;?"); } TEST(ImageOpsTest, ResizeNearestNeighborGrad_ShapeFn) { ShapeInferenceTestOp op("ResizeNearestNeighborGrad"); op.input_tensors.resize(2); INFER_ERROR("Shape must be rank 4 but is rank 3", op, "[1,2,3];?"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "?;[1,2]") INFER_ERROR("Dimension must be 2 but is 1", op, "?;[1]"); INFER_OK(op, "[1,?,3,?];[2]", "[d0_0,?,?,d0_3]"); Tensor size_tensor = test::AsTensor<int32>({20, 30}); op.input_tensors[1] = &size_tensor; INFER_OK(op, "[1,?,3,?];[2]", "[d0_0,20,30,d0_3]"); } TEST(ImageOpsTest, CropAndResizeGradImage_ShapeFn) { ShapeInferenceTestOp op("CropAndResizeGradImage"); op.input_tensors.resize(4); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "?;?;?;[1,2]"); INFER_OK(op, "?;?;?;?", "[?,?,?,?]"); Tensor image_size = test::AsTensor<int32>({10, 20, 30, 40}); op.input_tensors[3] = &image_size; INFER_OK(op, "?;?;?;[1]", "[10, 20, 30, 40]"); } TEST(ImageOpsTest, RandomCrop_ShapeFn) { ShapeInferenceTestOp op("RandomCrop"); op.input_tensors.resize(2); INFER_ERROR("must be rank 3", op, "[1,2];?"); INFER_ERROR("must be equal", op, "?;[3]"); INFER_ERROR("must be equal", op, "?;[1,2]"); INFER_OK(op, "[?,?,?];[2]", "[?,?,d0_2]"); Tensor size = test::AsTensor<int64_t>({10, 20}); op.input_tensors[1] = &size; INFER_OK(op, "[?,?,?];[2]", "[10,20,d0_2]"); } TEST(ImageOpsTest, QuantizedResizeBilinear_ShapeFn) { ShapeInferenceTestOp op("QuantizedResizeBilinear"); op.input_tensors.resize(4); NodeDefBuilder builder = NodeDefBuilder("test", "QuantizedResizeBilinear") .Input(NodeDefBuilder::NodeOut{"images", 0, DT_QINT32}) .Input(NodeDefBuilder::NodeOut{"size", 0, DT_INT32}) .Input(NodeDefBuilder::NodeOut{"min", 0, DT_FLOAT}) .Input(NodeDefBuilder::NodeOut{"max", 0, DT_FLOAT}) .Attr("T", DT_QINT32) .Attr("Toutput", DT_QINT32); TF_ASSERT_OK(builder.Finalize(&op.node_def)); INFER_OK(op, "[1,?,3,?];[2];[];[]", "[d0_0,?,?,d0_3];[];[]"); INFER_ERROR("must be rank 0", op, "[1,?,3,?];[2];[?];[]"); INFER_ERROR("must be rank 0", op, "[1,?,3,?];[2];[];[?]"); const Tensor size_tensor = test::AsTensor<int32>({20, 30}); op.input_tensors.at(1) = &size_tensor; INFER_OK(op, "[1,?,3,?];[2];[];[]", "[d0_0,20,30,d0_3];[];[]"); } TEST(ImageOpsTest, DrawBoundingBoxes_ShapeFn) { ShapeInferenceTestOp op("DrawBoundingBoxes"); op.input_tensors.resize(2); INFER_ERROR("must be rank 4", op, "[1,?,3];?"); INFER_ERROR("should be either 1 (GRY), 3 (RGB), or 4 (RGBA)", op, "[1,?,?,5];?"); INFER_ERROR("must be rank 3", op, "[1,?,?,4];[1,4]"); INFER_ERROR("Dimension must be 4", op, "[1,?,?,4];[1,2,2]"); INFER_OK(op, "[4,?,?,4];?", "in0"); INFER_OK(op, "[?,?,?,?];[?,?,?]", "in0"); INFER_OK(op, "[4,?,?,4];[?,?,?]", "in0"); INFER_OK(op, "[4,?,?,4];[?,?,4]", "in0"); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/kernels/image_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/image_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
850ceba7-2580-4f7f-8fe5-1dbc2dc1582c
cpp
google/tensorstore
util
tensorstore/kvstore/file/util.cc
tensorstore/kvstore/file/util_test.cc
#include "tensorstore/kvstore/file/util.h" #include <stddef.h> #include <string_view> #include "absl/strings/match.h" #include "absl/strings/str_split.h" #include "tensorstore/kvstore/key_range.h" namespace tensorstore { namespace internal_file_util { bool IsKeyValid(std::string_view key, std::string_view lock_suffix) { if (absl::StrContains(key, '\0')) return false; if (key.empty()) return false; if (key.back() == '/' || key.back() == '\\') { return false; } if (key.front() == '/' || key.front() == '\\') { key = key.substr(1); } for (std::string_view component : absl::StrSplit(key, absl::ByAnyChar("/\\"))) { if (component.empty()) return false; if (component == ".") return false; if (component == "..") return false; if (!lock_suffix.empty() && component.size() >= lock_suffix.size() && absl::EndsWith(component, lock_suffix)) { return false; } } return true; } std::string_view LongestDirectoryPrefix(const KeyRange& range) { std::string_view prefix = tensorstore::LongestPrefix(range); const size_t i = prefix.rfind('/'); if (i == std::string_view::npos) return {}; return prefix.substr(0, i); } } }
#include "tensorstore/kvstore/file/util.h" #include <string_view> #include <gtest/gtest.h> #include "tensorstore/kvstore/key_range.h" namespace { using ::tensorstore::KeyRange; using ::tensorstore::internal_file_util::IsKeyValid; using ::tensorstore::internal_file_util::LongestDirectoryPrefix; TEST(IsKeyValid, Basic) { EXPECT_TRUE(IsKeyValid("tmp/root", "")); EXPECT_TRUE(IsKeyValid("a", "")); EXPECT_TRUE(IsKeyValid("a/b", "")); EXPECT_TRUE(IsKeyValid("/tmp/root", "")); EXPECT_TRUE(IsKeyValid("a\\b", "")); EXPECT_FALSE(IsKeyValid("", "")); EXPECT_FALSE(IsKeyValid("/", "")); EXPECT_FALSE(IsKeyValid(" EXPECT_FALSE(IsKeyValid(" EXPECT_FALSE(IsKeyValid("/tmp/root/", "")); EXPECT_FALSE(IsKeyValid("tmp EXPECT_FALSE(IsKeyValid("tmp/./root", "")); EXPECT_FALSE(IsKeyValid("tmp/../root", "")); EXPECT_FALSE(IsKeyValid("tmp/root/", "")); EXPECT_FALSE(IsKeyValid("tmp/.lock/a", ".lock")); EXPECT_FALSE(IsKeyValid("tmp/foo.lock/a", ".lock")); EXPECT_FALSE(IsKeyValid("\\", "")); EXPECT_FALSE(IsKeyValid("tmp\\..\\root", "")); EXPECT_FALSE(IsKeyValid("tmp\\root\\", "")); EXPECT_FALSE(IsKeyValid(std::string_view("tmp/\0bar", 8), "")); } TEST(LongestDirectoryPrefix, Basic) { EXPECT_EQ("", LongestDirectoryPrefix(KeyRange{"a", "b"})); EXPECT_EQ("", LongestDirectoryPrefix(KeyRange{"/a", "/b"})); EXPECT_EQ("/a", LongestDirectoryPrefix(KeyRange{"/a/a", "/a/b"})); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/file/util.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/file/util_test.cc
4f887a6430414cd6088e1743555015b10f116d50
c9708396-efe5-4491-9f3f-40517e42f7ee
cpp
tensorflow/tensorflow
port
tensorflow/core/util/port.cc
third_party/xla/third_party/tsl/tsl/platform/port_test.cc
#include "tensorflow/core/util/port.h" #include "absl/base/call_once.h" #include "tensorflow/core/platform/cpu_info.h" #include "tensorflow/core/util/env_var.h" namespace tensorflow { bool IsGoogleCudaEnabled() { #if GOOGLE_CUDA return true; #else return false; #endif } bool IsBuiltWithROCm() { #if TENSORFLOW_USE_ROCM return true; #else return false; #endif } bool IsBuiltWithXLA() { #if TENSORFLOW_USE_XLA return true; #else return false; #endif } bool IsBuiltWithNvcc() { #if TENSORFLOW_USE_NVCC return true; #else return false; #endif } bool IsAArch32Available() { #if TF_LLVM_AARCH32_AVAILABLE return true; #else return false; #endif } bool IsAArch64Available() { #if TF_LLVM_AARCH64_AVAILABLE return true; #else return false; #endif } bool IsPowerPCAvailable() { #if TF_LLVM_POWERPC_AVAILABLE return true; #else return false; #endif } bool IsSystemZAvailable() { #if TF_LLVM_S390X_AVAILABLE return true; #else return false; #endif } bool IsX86Available() { #if TF_LLVM_X86_AVAILABLE return true; #else return false; #endif } bool GpuSupportsHalfMatMulAndConv() { #if (defined(GOOGLE_CUDA) && GOOGLE_CUDA) || \ (defined(TENSORFLOW_USE_ROCM) && TENSORFLOW_USE_ROCM) return true; #else return false; #endif } inline bool DefaultOneDnnPolicy() { #if !defined(INTEL_MKL) return false; #elif defined(PLATFORM_GOOGLE) return true; #elif defined(PLATFORM_WINDOWS) && defined(PLATFORM_IS_X86) return true; #elif defined(__linux__) return port::TestCPUFeature(port::CPUFeature::AVX512_VNNI) || port::TestCPUFeature(port::CPUFeature::AVX512_BF16) || port::TestCPUFeature(port::CPUFeature::AVX_VNNI) || port::TestCPUFeature(port::CPUFeature::AMX_TILE) || port::TestCPUFeature(port::CPUFeature::AMX_INT8) || port::TestCPUFeature(port::CPUFeature::AMX_BF16) || port::TestAarch64CPU( port::Aarch64CPU::ARM_NEOVERSE_V1); #else return false; #endif } bool IsMklEnabled() { #ifndef INTEL_MKL return false; #endif static absl::once_flag once; #ifdef ENABLE_MKL static bool oneDNN_disabled = false; absl::call_once(once, [&] { TF_CHECK_OK(ReadBoolFromEnvVar("TF_DISABLE_MKL", false, &oneDNN_disabled)); if (oneDNN_disabled) VLOG(2) << "TF-MKL: Disabling oneDNN"; }); return (!oneDNN_disabled); #else static bool oneDNN_enabled = DefaultOneDnnPolicy(); absl::call_once(once, [&] { auto status = ReadBoolFromEnvVar("TF_ENABLE_ONEDNN_OPTS", oneDNN_enabled, &oneDNN_enabled); if (!status.ok()) { LOG(WARNING) << "TF_ENABLE_ONEDNN_OPTS is not set to either '0', 'false'," << " '1', or 'true'. Using the default setting: " << oneDNN_enabled; } if (oneDNN_enabled) { LOG(INFO) << "oneDNN custom operations are on. " << "You may see slightly different numerical results due to " << "floating-point round-off errors from different computation " << "orders. To turn them off, set the environment variable " << "`TF_ENABLE_ONEDNN_OPTS=0`."; } }); return oneDNN_enabled; #endif } bool IsZenDnnEnabled() { #ifndef AMD_ZENDNN return false; #else static absl::once_flag once; static bool ZenDNN_enabled = false; absl::call_once(once, [&] { auto status = ReadBoolFromEnvVar("TF_ENABLE_ZENDNN_OPTS", ZenDNN_enabled, &ZenDNN_enabled); if (!status.ok()) { LOG(WARNING) << "TF_ENABLE_ZENDNN_OPTS is not set to either '0', 'false'," << " '1', or 'true'. Using the default setting: " << ZenDNN_enabled; } if (ZenDNN_enabled) { LOG(INFO) << "ZenDNN custom operations are on. " << "You may see slightly different numerical results due to " << "floating-point round-off errors from different computation " << "orders. To turn them off, set the environment variable " << "`TF_ENABLE_ZENDNN_OPTS=0`."; } }); return ZenDNN_enabled; #endif } }
#include <condition_variable> #include "tsl/platform/cpu_info.h" #include "tsl/platform/env_time.h" #include "tsl/platform/mem.h" #include "tsl/platform/mutex.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" namespace tsl { namespace port { TEST(Port, AlignedMalloc) { for (size_t alignment = 1; alignment <= 1 << 20; alignment <<= 1) { void* p = AlignedMalloc(1, alignment); ASSERT_TRUE(p != nullptr) << "AlignedMalloc(1, " << alignment << ")"; uintptr_t pval = reinterpret_cast<uintptr_t>(p); EXPECT_EQ(pval % alignment, 0); AlignedFree(p); } } TEST(Port, GetCurrentCPU) { const int cpu = GetCurrentCPU(); #if !defined(__APPLE__) EXPECT_GE(cpu, 0); EXPECT_LT(cpu, NumTotalCPUs()); #endif } TEST(ConditionVariable, WaitForMilliseconds_Timeout) { mutex m; mutex_lock l(m); condition_variable cv; ConditionResult result = tsl::kCond_MaybeNotified; time_t start = time(nullptr); while (result == tsl::kCond_MaybeNotified) { result = WaitForMilliseconds(&l, &cv, 3000); } EXPECT_EQ(result, tsl::kCond_Timeout); time_t finish = time(nullptr); EXPECT_GE(finish - start, 3); } TEST(ConditionVariable, WaitForMilliseconds_Signalled) { thread::ThreadPool pool(Env::Default(), "test", 1); mutex m; mutex_lock l(m); condition_variable cv; time_t start = time(nullptr); pool.Schedule([&m, &cv]() { Env::Default()->SleepForMicroseconds(1 * 1000 * 1000); mutex_lock l(m); cv.notify_all(); }); EXPECT_EQ(WaitForMilliseconds(&l, &cv, 3000), tsl::kCond_MaybeNotified); time_t finish = time(nullptr); EXPECT_LT(finish - start, 3); } TEST(ConditionalCriticalSections, AwaitWithDeadline_Timeout) { bool always_false = false; mutex m; m.lock(); time_t start = time(nullptr); bool result = m.AwaitWithDeadline(Condition(&always_false), EnvTime::NowNanos() + 3 * EnvTime::kSecondsToNanos); time_t finish = time(nullptr); m.unlock(); EXPECT_EQ(result, false); EXPECT_GE(finish - start, 3); } TEST(ConditionalCriticalSections, AwaitWithDeadline_Woken) { thread::ThreadPool pool(Env::Default(), "test", 1); bool woken = false; mutex m; m.lock(); time_t start = time(nullptr); pool.Schedule([&m, &woken]() { Env::Default()->SleepForMicroseconds(1 * 1000 * 1000); m.lock(); woken = true; m.unlock(); }); bool result = m.AwaitWithDeadline( Condition(&woken), EnvTime::NowNanos() + 3 * EnvTime::kSecondsToNanos); time_t finish = time(nullptr); m.unlock(); EXPECT_EQ(result, true); EXPECT_LT(finish - start, 3); } static bool Invert(bool* b) { return !*b; } class InvertClass { public: explicit InvertClass(bool* value) : value_(value) {} bool Value() { return !*this->value_; } private: InvertClass(); bool* value_; }; TEST(ConditionalCriticalSections, Await_PingPong) { thread::ThreadPool pool(Env::Default(), "test", 1); bool ping_pong = false; bool done = false; mutex m; pool.Schedule([&m, &ping_pong, &done]() { m.lock(); for (int i = 0; i != 1000; i++) { m.Await(Condition(&ping_pong)); ping_pong = false; } done = true; m.unlock(); }); m.lock(); InvertClass invert(&ping_pong); for (int i = 0; i != 1000; i++) { m.Await(Condition(&Invert, &ping_pong)); ping_pong = true; } m.Await(Condition(&done)); m.unlock(); } TEST(ConditionalCriticalSections, Await_PingPongMethod) { thread::ThreadPool pool(Env::Default(), "test", 1); bool ping_pong = false; bool done = false; mutex m; pool.Schedule([&m, &ping_pong, &done]() { m.lock(); for (int i = 0; i != 1000; i++) { m.Await(Condition(&ping_pong)); ping_pong = false; } done = true; m.unlock(); }); m.lock(); InvertClass invert(&ping_pong); for (int i = 0; i != 1000; i++) { m.Await(Condition(&invert, &InvertClass::Value)); ping_pong = true; } m.Await(Condition(&done)); m.unlock(); } TEST(TestCPUFeature, TestFeature) { const bool has_avx = TestCPUFeature(CPUFeature::AVX); LOG(INFO) << "has_avx = " << has_avx; const bool has_avx2 = TestCPUFeature(CPUFeature::AVX2); LOG(INFO) << "has_avx2 = " << has_avx2; } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/port.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/port_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
65156ca6-0b0f-4ed2-aba1-0ec9220c7da4
cpp
tensorflow/tensorflow
array_ops
tensorflow/c/experimental/ops/array_ops.cc
tensorflow/core/ops/array_ops_test.cc
#include "tensorflow/c/experimental/ops/array_ops.h" #include "absl/types/span.h" #include "tensorflow/c/eager/abstract_context.h" #include "tensorflow/c/eager/abstract_operation.h" #include "tensorflow/c/eager/abstract_tensor_handle.h" #include "tensorflow/c/eager/tracing_utils.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/status.h" #include "tsl/platform/errors.h" using tensorflow::tracing::MaybeSetOpName; namespace tensorflow { namespace ops { Status Identity(AbstractContext* ctx, AbstractTensorHandle* const input, AbstractTensorHandle** output, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("Identity", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(input)); int num_retvals = 1; return op_ptr->Execute(absl::MakeSpan(output, 1), &num_retvals); } Status IdentityN(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> input, absl::Span<AbstractTensorHandle*> output, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("IdentityN", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInputList(input)); int num_retvals = output.size(); return op_ptr->Execute(output, &num_retvals); } Status ZerosLike(AbstractContext* ctx, AbstractTensorHandle* const x, AbstractTensorHandle** y, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("ZerosLike", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(x)); int num_retvals = 1; return op_ptr->Execute(absl::MakeSpan(y, 1), &num_retvals); } Status Shape(AbstractContext* ctx, AbstractTensorHandle* const input, AbstractTensorHandle** output, DataType out_type, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("Shape", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(input)); TF_RETURN_IF_ERROR(op_ptr->SetAttrType("out_type", out_type)); int num_retvals = 1; return op_ptr->Execute(absl::MakeSpan(output, 1), &num_retvals); } Status ExpandDims(AbstractContext* ctx, AbstractTensorHandle* const input, AbstractTensorHandle* const dim, AbstractTensorHandle** output, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("ExpandDims", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(input)); TF_RETURN_IF_ERROR(op_ptr->AddInput(dim)); int num_retvals = 1; return op_ptr->Execute(absl::MakeSpan(output, 1), &num_retvals); } Status OnesLike(AbstractContext* ctx, AbstractTensorHandle* const x, AbstractTensorHandle** y, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("OnesLike", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(x)); int num_retvals = 1; return op_ptr->Execute(absl::MakeSpan(y, 1), &num_retvals); } } }
#include "tensorflow/core/common_runtime/type_inference.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/version.h" namespace tensorflow { TEST(ArrayOpsTest, TensorScatterUpdate_ShapeFn) { ShapeInferenceTestOp op("TensorScatterUpdate"); INFER_OK(op, "[4,3];[8,2];[8]", "in0"); INFER_OK(op, "[?,?];[?,2];[?]", "in0"); INFER_OK(op, "[?];[?];[?]", "in0"); INFER_ERROR("Shape must be at least rank 1 but is rank 0", op, "[];[?,2];[?]"); INFER_ERROR("Indices and updates specified for empty input", op, "[0,2,2];[8,2];[8]"); INFER_ERROR( "Dimensions [0,1) of indices[shape=[8,2]] = [8] must match " "dimensions [0,1) of updates[shape=[9]] = [9]", op, "[?,?];[8,2];[9]"); INFER_ERROR( "Dimensions [2,2) of input[shape=[?,?]] = [] must match " "dimensions [1,2) of updates[shape=[?,1]] = [1]", op, "[?,?];[?,2];[?,1]"); } TEST(ArrayOpsTest, ScatterNd_ShapeFn) { ShapeInferenceTestOp op("ScatterNd"); INFER_OK(op, "[8,2];[8];[2]", "[?,?]"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[?,2];[?];[]"); INFER_ERROR( "Dimensions [0,1) of indices[shape=[8,2]] = [8] must match " "dimensions [0,1) of updates[shape=[9]] = [9]", op, "[8,2];[9];[?]"); } TEST(ArrayOpsTest, UnravelIndex_ShapeFn) { ShapeInferenceTestOp op("UnravelIndex"); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[];[?]", "[d1_0]"); INFER_OK(op, "[4,5];[?]", "[d1_0,20]"); INFER_OK(op, "[2,3,4];[?]", "[d1_0,24]"); INFER_OK(op, "?;[?]", "?"); INFER_OK(op, "[?];[?]", "[d1_0,?]"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "?;[1,1]"); } TEST(ArrayOpsTest, Pack_ShapeFn) { ShapeInferenceTestOp op("Pack"); auto set_axis = [&op](int axis) { int n = 3; std::vector<NodeDefBuilder::NodeOut> src_list; src_list.reserve(n); for (int i = 0; i < n; ++i) src_list.emplace_back("a", 0, DT_FLOAT); TF_ASSERT_OK(NodeDefBuilder("test", "Pack") .Input(src_list) .Attr("N", n) .Attr("axis", axis) .Finalize(&op.node_def)); }; set_axis(0); INFER_OK(op, "?;?;?", "?"); for (int axis : {0, -3}) { set_axis(axis); INFER_OK(op, "?;?;?", "?"); INFER_OK(op, "[1,3];[1,3];?", "[3,d0_0|d1_0,d0_1|d1_1]"); INFER_OK(op, "[?,3];[1,3];?", "[3,d1_0,d0_1|d1_1]"); INFER_OK(op, "[?,?];[1,3];?", "[3,d1_0,d1_1]"); } for (int axis : {1, -2}) { set_axis(axis); INFER_OK(op, "?;?;?", "?"); INFER_OK(op, "[1,3];[1,3];?", "[d0_0|d1_0,3,d0_1|d1_1]"); INFER_OK(op, "[?,3];[1,3];?", "[d1_0,3,d0_1|d1_1]"); INFER_OK(op, "[?,?];[1,3];?", "[d1_0,3,d1_1]"); } for (int axis : {2, -1}) { set_axis(axis); INFER_OK(op, "?;?;?", "?"); INFER_OK(op, "[1,3];[1,3];?", "[d0_0|d1_0,d0_1|d1_1,3]"); INFER_OK(op, "[?,3];[1,3];?", "[d1_0,d0_1|d1_1,3]"); INFER_OK(op, "[?,?];[1,3];?", "[d1_0,d1_1,3]"); } set_axis(-4); INFER_ERROR("Invalid axis: -4; must be in [-3,3)", op, "[1,3];[1,3];?"); set_axis(3); INFER_ERROR("Invalid axis: 3; must be in [-3,3)", op, "[1,3];[1,3];?"); set_axis(0); INFER_ERROR("Shapes must be equal rank, but are 3 and 2", op, "[1,2,3];?;[1,4]"); INFER_ERROR("From merging shape 0 with other shapes.", op, "[1,2,3];?;[1,4]"); } TEST(ArrayOpsTest, UnPack_ShapeFn) { ShapeInferenceTestOp op("Unpack"); auto set_axis_and_num = [&op](int axis, int num) { TF_ASSERT_OK(NodeDefBuilder("test", "Unpack") .Input("a", 0, DT_FLOAT) .Attr("axis", axis) .Attr("num", num) .Finalize(&op.node_def)); }; set_axis_and_num(0, 1); INFER_OK(op, "?", "?"); for (int axis : {0, -3}) { set_axis_and_num(axis, 1); INFER_OK(op, "?", "?"); INFER_OK(op, "[1,2,3]", "[d0_1,d0_2]"); INFER_OK(op, "[?,?,?]", "[d0_1,d0_2]"); } for (int axis : {1, -2}) { set_axis_and_num(axis, 2); INFER_OK(op, "[1,2,3]", "[d0_0,d0_2];[d0_0,d0_2]"); INFER_OK(op, "[?,?,?]", "[d0_0,d0_2];[d0_0,d0_2]"); } for (int axis : {2, -1}) { set_axis_and_num(axis, 3); INFER_OK(op, "[1,2,3]", "[d0_0,d0_1];[d0_0,d0_1];[d0_0,d0_1]"); INFER_OK(op, "[?,?,?]", "[d0_0,d0_1];[d0_0,d0_1];[d0_0,d0_1]"); } set_axis_and_num(2, 2); INFER_ERROR("Dimension must be 2 but is 3", op, "[1,2,3]"); set_axis_and_num(-4, 3); INFER_ERROR("Invalid axis: -4; must be in [-3,3)", op, "[1,2,3]"); set_axis_and_num(3, 3); INFER_ERROR("Invalid axis: 3; must be in [-3,3)", op, "[1,2,3]"); } TEST(ArrayOpsTest, Const_ShapeFn) { ShapeInferenceTestOp op("Const"); TensorProto tensor_proto; auto* shape_proto = tensor_proto.mutable_tensor_shape(); auto rebuild_node_def = [&op, &tensor_proto]() { TF_ASSERT_OK(NodeDefBuilder("test", "Const") .Attr("value", tensor_proto) .Finalize(&op.node_def)); }; TensorShape{}.AsProto(shape_proto); rebuild_node_def(); INFER_OK(op, "", "[]"); TensorShape{1, 2, 3, 4}.AsProto(shape_proto); rebuild_node_def(); INFER_OK(op, "", "[1,2,3,4]"); shape_proto->add_dim()->set_size(-1); rebuild_node_def(); INFER_ERROR("Shape [1,2,3,4,?] is not fully defined", op, ""); } TEST(ArrayOpsTest, UnchangedShapes_ShapeFn) { for (const char* op_name : { "CheckNumerics", "Identity", "RefIdentity", "QuantizeAndDequantize", "StopGradient", "ZerosLike", "OnesLike", }) { ShapeInferenceTestOp op(op_name); INFER_OK(op, "?", "in0"); INFER_OK(op, "[]", "in0"); INFER_OK(op, "[1,2,?,4,5]", "in0"); } ShapeInferenceTestOp op("MatrixBandPart"); INFER_OK(op, "?;?;?", "in0"); INFER_OK(op, "[];?;?", "in0"); INFER_OK(op, "[1,2,?,4,5];?;?", "in0"); } TEST(ArrayOpsTest, GuaranteeConst_ShapeFn) { ShapeInferenceTestOp op("GuaranteeConst"); INFER_OK(op, "?", "in0"); INFER_OK(op, "[]", "in0"); INFER_OK(op, "[1,2,?,4,5]", "in0"); } TEST(ArrayOpsTest, Identity_ShapeFnHandles) { const char* op_name = "Identity"; ShapeInferenceTestOp op(op_name); const OpRegistrationData* op_reg_data; TF_ASSERT_OK(OpRegistry::Global()->LookUp(op.name, &op_reg_data)); std::vector< std::unique_ptr<std::vector<std::pair<PartialTensorShape, DataType>>>> handle_data; handle_data.emplace_back( new std::vector<std::pair<PartialTensorShape, DataType>>( {{PartialTensorShape(), DT_BOOL}})); shape_inference::InferenceContext c( TF_GRAPH_DEF_VERSION, op.node_def, op_reg_data->op_def, {PartialTensorShape()}, {}, {}, handle_data); TF_ASSERT_OK(c.construction_status()); ASSERT_TRUE(op_reg_data->shape_inference_fn != nullptr); TF_ASSERT_OK(c.Run(op_reg_data->shape_inference_fn)); const auto* shapes_and_types = c.output_handle_shapes_and_types(0); ASSERT_TRUE(shapes_and_types != nullptr); ASSERT_EQ(1, shapes_and_types->size()); EXPECT_EQ((*shapes_and_types)[0].dtype, DT_BOOL); } TEST(ArrayOpsTest, Diag_ShapeFn) { ShapeInferenceTestOp op("Diag"); INFER_OK(op, "?", "?"); INFER_OK(op, "[1,?,3]", "[d0_0,d0_1,d0_2,d0_0,d0_1,d0_2]"); INFER_OK(op, "[?,1,2,3]", "[d0_0,d0_1,d0_2,d0_3,d0_0,d0_1,d0_2,d0_3]"); INFER_ERROR("Shape must be at least rank 1 but is rank 0", op, "[]"); } TEST(ArrayOpsTest, DiagPart_ShapeFn) { ShapeInferenceTestOp op("DiagPart"); INFER_OK(op, "?", "?"); INFER_OK(op, "[1,?,?,4]", "[d0_0,d0_3]"); INFER_OK(op, "[1,?,3,?,4,3]", "[d0_0,d0_4,d0_2|d0_5]"); INFER_OK(op, "[1,2,3,?,?,?,?,4]", "[d0_0,d0_1,d0_2,d0_7]"); INFER_ERROR("Input must have even and non-zero rank", op, "[]"); INFER_ERROR("Input must have even and non-zero rank", op, "[?]"); INFER_ERROR("Input must have even and non-zero rank", op, "[1,2,3]"); INFER_ERROR("Dimensions must be equal, but are 2 and 10", op, "[1,2,?,10]"); } TEST(ArrayOpsTest, MatrixDiag_ShapeFn) { ShapeInferenceTestOp op("MatrixDiag"); INFER_OK(op, "?", "?"); INFER_ERROR("Shape must be at least rank 1 but is rank 0", op, "[]"); INFER_OK(op, "[?]", "[d0_0,d0_0]"); INFER_OK(op, "[1,?,?,4]", "[d0_0,d0_1,d0_2,d0_3,d0_3]"); } TEST(ArrayOpsTest, MatrixDiagPart_ShapeFn) { ShapeInferenceTestOp op("MatrixDiagPart"); INFER_OK(op, "?", "?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[?]"); INFER_OK(op, "[?,1,2,2]", "[d0_0,d0_1,d0_2|d0_3]"); INFER_OK(op, "[?,1,2,3]", "[d0_0,d0_1,d0_2]"); INFER_OK(op, "[?,1,3,2]", "[d0_0,d0_1,d0_3]"); } TEST(ArrayOpsTest, Reverse_ShapeFn) { ShapeInferenceTestOp op("Reverse"); INFER_OK(op, "?;?", "in0"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "?;[]"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "?;[?,2]"); INFER_ERROR("Shape must be rank 4 but is rank 3", op, "[1,2,3];[4]"); INFER_ERROR("reverse does not work on tensors with more than 8 dimensions", op, "[1,2,3,4,5,6,7,8,9];[9]"); INFER_OK(op, "[1,2,3,?];[4]", "in0"); INFER_OK(op, "[1,2,3,?,5,6,7,8];[8]", "in0"); } TEST(ArrayOpsTest, ReverseV2_ShapeFn) { ShapeInferenceTestOp op("ReverseV2"); INFER_OK(op, "?;?", "in0"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "?;[]"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "?;[?,2]"); INFER_OK(op, "[1,2,3];[2]", "in0"); INFER_ERROR("reverse does not work on tensors with more than 8 dimensions", op, "[1,2,3,4,5,6,7,8,9];[9]"); INFER_OK(op, "[1,2,3,?];[4]", "in0"); INFER_OK(op, "[1,2,3,?,5,6,7,8];[8]", "in0"); } TEST(ArrayOpsTest, Fill_ShapeFn) { ShapeInferenceTestOp op("Fill"); AddNodeAttr("index_type", DT_INT32, &op.node_def); op.input_tensors.resize(2); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[?];?", "?"); INFER_OK(op, "[4];?", "[?,?,?,?]"); Tensor in_t = test::AsTensor<int32>({1, 2, 3, 4}); op.input_tensors[0] = &in_t; INFER_OK(op, "[4];?", "[1,2,3,4]"); } TEST(ArrayOpsTest, Gather_ShapeFn) { ShapeInferenceTestOp op("Gather"); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[1,?,2];[3]", "[d1_0,d0_1,d0_2]"); INFER_ERROR("Shape must be at least rank 1 but is rank 0", op, "[];[1,2,3]"); } TEST(ArrayOpsTest, GatherV2_ShapeFn) { ShapeInferenceTestOp op("GatherV2"); AddNodeAttr("batch_dims", 0, &op.node_def); INFER_OK(op, "?;?;?", "?"); INFER_OK(op, "[1,2,3];[3];[]", "[?,?,?]"); INFER_ERROR("Shape must be at least rank 1 but is rank 0", op, "[];[1,2,3];[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[1];[1,2,3];[1]"); Tensor axis_dim_t; op.input_tensors.resize(3); op.input_tensors[2] = &axis_dim_t; axis_dim_t = test::AsScalar(1); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1];[1,2];[]"); axis_dim_t = test::AsScalar(0); INFER_OK(op, "[1,2,3];[];[]", "[d0_1,d0_2]"); axis_dim_t = test::AsScalar(1); INFER_OK(op, "[1,2,3];[];[]", "[d0_0,d0_2]"); axis_dim_t = test::AsScalar(2); INFER_OK(op, "[1,2,3];[];[]", "[d0_0,d0_1]"); axis_dim_t = test::AsScalar(0); INFER_OK(op, "[1,2,3];[5];[]", "[d1_0,d0_1,d0_2]"); axis_dim_t = test::AsScalar(1); INFER_OK(op, "[1,2,3];[5];[]", "[d0_0,d1_0,d0_2]"); axis_dim_t = test::AsScalar(2); INFER_OK(op, "[1,2,3];[5];[]", "[d0_0,d0_1,d1_0]"); axis_dim_t = test::AsScalar(0); INFER_OK(op, "[1,2,3];[5,6];[]", "[d1_0,d1_1,d0_1,d0_2]"); axis_dim_t = test::AsScalar(1); INFER_OK(op, "[1,2,3];[5,6];[]", "[d0_0,d1_0,d1_1,d0_2]"); axis_dim_t = test::AsScalar(2); INFER_OK(op, "[1,2,3];[5,6];[]", "[d0_0,d0_1,d1_0,d1_1]"); axis_dim_t = test::AsScalar(-3); INFER_OK(op, "[1,2,3];[5,6];[]", "[d1_0,d1_1,d0_1,d0_2]"); axis_dim_t = test::AsScalar(-2); INFER_OK(op, "[1,2,3];[5,6];[]", "[d0_0,d1_0,d1_1,d0_2]"); axis_dim_t = test::AsScalar(-1); INFER_OK(op, "[1,2,3];[5,6];[]", "[d0_0,d0_1,d1_0,d1_1]"); ShapeInferenceTestOp batch_op("GatherV2"); AddNodeAttr("batch_dims", 1, &batch_op.node_def); INFER_OK(batch_op, "[1,4800,8];[1,28400];[]", "[?,?,?]"); ShapeInferenceTestOp batch_op_2("GatherV2"); AddNodeAttr("batch_dims", 2, &batch_op_2.node_def); INFER_OK(batch_op_2, "[1,2,3,4,5];[1,2,3];[]", "[?,?,?,?,?]"); } TEST(ArrayOpsTest, GatherNd_ShapeFn) { ShapeInferenceTestOp op("GatherNd"); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[1,?,3,?];[?,0]", "[d1_0,d0_0,d0_1,d0_2,d0_3]"); INFER_OK(op, "[1,?,3,?];[?,4]", "[d1_0]"); INFER_ERROR("indices.shape[-1] must be <= params.rank", op, "[1,2,3];[4]"); } TEST(ArrayOpsTest, Shape_ShapeFn) { ShapeInferenceTestOp op("Shape"); AddNodeAttr("out_type", DT_INT32, &op.node_def); INFER_OK(op, "?", "[?]"); INFER_OK(op, "[?]", "[1]"); INFER_OK(op, "[?,2,3,4,5]", "[5]"); } static Status type_inference(Graph& graph) { GraphOptimizationPassOptions opt_options; std::unique_ptr<Graph> graph_ptr(new Graph(OpRegistry::Global())); graph_ptr->Copy(graph); opt_options.graph = &graph_ptr; opt_options.flib_def = graph.mutable_flib_def(); TypeInferencePass pass; return pass.Run(opt_options); } REGISTER_OP("ArrayOpsTest>ConstTypeCtor") .Output("output: dtype") .Attr("value: tensor") .Attr("dtype: type") .SetTypeConstructor(full_type::Unary(TFT_TENSOR, "dtype")) .SetShapeFn(shape_inference::UnknownShape); TEST(ArrayOpsTest, Shape_TypeCtor) { Graph graph(OpRegistry::Global()); Node* input_tensor_op; TensorProto tensor_proto; TF_EXPECT_OK(NodeBuilder("input_tensor_op", "ArrayOpsTest>ConstTypeCtor") .Attr("value", tensor_proto) .Attr("dtype", DT_FLOAT) .Finalize(&graph, &input_tensor_op)); Node* shape_op; TF_EXPECT_OK(NodeBuilder("shape_op", "Shape") .Input(input_tensor_op) .Attr("T", DT_FLOAT) .Attr("out_type", DT_INT32) .Finalize(&graph, &shape_op)); TF_EXPECT_OK(type_inference(graph)); FullTypeDef expected_shape_op_t; protobuf::TextFormat::Parser parser; CHECK(parser.ParseFromString( R"pb(type_id: TFT_PRODUCT args { type_id: TFT_SHAPE_TENSOR args { type_id: TFT_INT32 } })pb", &expected_shape_op_t)); EXPECT_TRUE(full_type::IsEqual(shape_op->def().experimental_type(), expected_shape_op_t)) << "fulltype is\n" << shape_op->def().experimental_type().DebugString() << "\nexpected\n" << expected_shape_op_t.DebugString(); } TEST(ArrayOpsTest, ShapeN_ShapeFn) { ShapeInferenceTestOp op("ShapeN"); int n = 3; std::vector<NodeDefBuilder::NodeOut> src_list; src_list.reserve(n); for (int i = 0; i < n; ++i) src_list.emplace_back("a", 0, DT_FLOAT); TF_ASSERT_OK(NodeDefBuilder("test", "ShapeN") .Input(src_list) .Attr("N", n) .Finalize(&op.node_def)); INFER_OK(op, "?;?;?", "[?];[?];[?]"); INFER_OK(op, "[?];[?];[?]", "[1];[1];[1]"); INFER_OK(op, "[?,2,3,4,5];?;[1,?,3]", "[5];[?];[3]"); } TEST(ArrayOpsTest, Unique_ShapeFn) { ShapeInferenceTestOp op("Unique"); INFER_OK(op, "?", "[?];in0"); INFER_OK(op, "[5]", "[?];in0"); INFER_ERROR("Shape must be rank 1 but is rank 5", op, "[1,2,3,?,5]"); } TEST(ArrayOpsTest, UniqueWithCounts_ShapeFn) { ShapeInferenceTestOp op("UniqueWithCounts"); INFER_OK(op, "?", "[?];in0;[?]"); INFER_OK(op, "[1,2,3,?,5]", "[?];in0;[?]"); } TEST(ArrayOpsTest, InvertPermutation_ShapeFn) { ShapeInferenceTestOp op("InvertPermutation"); INFER_OK(op, "?", "[?]"); INFER_OK(op, "[1]", "in0"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[]"); } TEST(ArrayOpsTest, PadD_ShapeFn) { for (const char* op_name : {"Pad", "MirrorPad"}) { ShapeInferenceTestOp op(op_name); op.input_tensors.resize(2); INFER_OK(op, "?;?", "?"); INFER_ERROR("Shape must be rank 2 but is rank 3", op, "?;[1,2,3]"); INFER_ERROR("Dimension must be 2 but is 4", op, "?;[1,4]"); INFER_ERROR("Shape must be rank 4 but is rank 3", op, "[1,2,3];[4,2]"); INFER_OK(op, "[1,2,3];?", "[?,?,?]"); INFER_OK(op, "?;[3,2]", "[?,?,?]"); Tensor paddings_t(DT_INT64, TensorShape{3, 2}); test::FillValues<int64_t>(&paddings_t, {1, 10, 2, 20, 3, 30}); op.input_tensors[1] = &paddings_t; INFER_OK(op, "[100,200,300];[3,2]", "[111,222,333]"); INFER_OK(op, "[100,?,300];[3,2]", "[111,?,333]"); INFER_OK(op, "?;[3,2]", "[?,?,?]"); INFER_OK(op, "?;?", "[?,?,?]"); } } TEST(ArrayOpsTest, PadV2_ShapeFn) { ShapeInferenceTestOp op("PadV2"); op.input_tensors.resize(3); INFER_OK(op, "?;?;?", "?"); INFER_ERROR("Shape must be rank 2 but is rank 3", op, "?;[1,2,3];?"); INFER_ERROR("Dimension must be 2 but is 4", op, "?;[1,4];?"); INFER_ERROR("Shape must be rank 4 but is rank 3", op, "[1,2,3];[4,2];[]"); INFER_OK(op, "[1,2,3];?;[]", "[?,?,?]"); INFER_OK(op, "?;[3,2];[]", "[?,?,?]"); Tensor paddings_t(DT_INT64, TensorShape{3, 2}); test::FillValues<int64_t>(&paddings_t, {1, 10, 2, 20, 3, 30}); op.input_tensors[1] = &paddings_t; INFER_OK(op, "[100,200,300];[3,2];[]", "[111,222,333]"); INFER_OK(op, "[100,?,300];[3,2];[]", "[111,?,333]"); INFER_OK(op, "?;[3,2];[]", "[?,?,?]"); INFER_OK(op, "?;?;[]", "[?,?,?]"); } TEST(ArrayOpsTest, MirrorPadGrad_ShapeFn) { ShapeInferenceTestOp op("MirrorPadGrad"); op.input_tensors.resize(2); INFER_OK(op, "?;?", "?"); INFER_OK(op, "?;[?,4]", "?"); INFER_ERROR("must be rank 3 but is rank 2", op, "[?,?];[3,2]"); INFER_ERROR("Dimension 1 in both shapes must be equal, but are 3 and 2", op, "[?,?,?];[3,3]"); INFER_OK(op, "[?,?,?];[3,2]", "[?,?,?]"); Tensor paddings_t(DT_INT64, TensorShape{3, 2}); test::FillValues<int64_t>(&paddings_t, {1, 10, 2, 20, 3, 30}); op.input_tensors[1] = &paddings_t; INFER_OK(op, "[111,222,333];[3,2]", "[100,200,300]"); INFER_OK(op, "[111,?,333];[3,2]", "[100,?,300]"); } TEST(ArrayOpsTest, BroadcastArgs_ShapeFn) { ShapeInferenceTestOp op("BroadcastArgs"); INFER_OK(op, "?;?", "[?]"); INFER_OK(op, "[123];[1]", "[123]"); INFER_OK(op, "[1];[123]", "[123]"); INFER_OK(op, "[123];[121]", "[123]"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[];?"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "?;[]"); } TEST(ArrayOpsTest, BroadcastTo_ShapeFn) { ShapeInferenceTestOp op("BroadcastTo"); op.input_tensors.resize(2); INFER_OK(op, "?;[?]", "?"); INFER_OK(op, "[];[1]", "[?]"); INFER_OK(op, "[1];[1]", "[?]"); INFER_OK(op, "[1];[2]", "[?,?]"); INFER_OK(op, "[2,2];[3]", "[?,d0_0,d0_1]"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "?;[?,?]"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[2];[]"); INFER_ERROR("Shape must be at most rank 1 but is rank 2", op, "[2,2];[1]"); Tensor shape_t(DT_INT64, TensorShape{3}); test::FillValues<int64_t>(&shape_t, {2, 10, 3}); op.input_tensors[1] = &shape_t; INFER_OK(op, "[1,?,1];[3]", "[2,10,3]"); INFER_OK(op, "[1,1,1];[3]", "[2,10,3]"); INFER_OK(op, "[10,1];[3]", "[2,d0_0,3]"); INFER_ERROR("Dimensions must be equal, but are 3 and 2 for", op, "[3,1,1];[3]"); INFER_ERROR("Dimensions must be equal, but are 2 and 10 for", op, "[2,2,1];[3]"); } TEST(ArrayOpsTest, BroadcastGradientArgs_ShapeFn) { ShapeInferenceTestOp op("BroadcastGradientArgs"); INFER_OK(op, "?;?", "[?];[?]"); INFER_OK(op, "[123];[456]", "[?];[?]"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[];?"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "?;[]"); } TEST(ArrayOpsTest, ListDiff_ShapeFn) { ShapeInferenceTestOp op("BroadcastGradientArgs"); INFER_OK(op, "?;?", "[?];[?]"); INFER_OK(op, "[123];[456]", "[?];[?]"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[];?"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "?;[]"); } TEST(ArrayOpsTest, MatrixSetDiag_ShapeFn) { ShapeInferenceTestOp op("MatrixSetDiag"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1];?"); INFER_ERROR("Shape must be at least rank 1 but is rank 0", op, "?;[]"); INFER_ERROR("Shape must be at least rank 1 but is rank 0", op, "[2,2];[]"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "[2,2];[2,2]"); INFER_ERROR("Dimensions must be equal, but are 2 and 3", op, "[2,3];[3]"); INFER_OK(op, "?;?", "in0"); INFER_OK(op, "[1,2,2];[1,2]", "in0"); INFER_OK(op, "[1,2,3];?", "in0"); INFER_OK(op, "[1,3,2];?", "in0"); INFER_OK(op, "[1,?,2];[?,?]", "in0"); INFER_OK(op, "[1,?,?];[?,2]", "in0"); INFER_OK(op, "?;[1,2]", "[d1_0,?,?]"); INFER_OK(op, "[?,?,3];[1,2]", "[d1_0,d0_1,d0_2]"); INFER_OK(op, "[?,3,?];[1,2]", "[d1_0,d0_1,d0_2]"); INFER_OK(op, "[?,3,2];[1,2]", "[d1_0,d0_1,d0_2]"); } TEST(ArrayOpsTest, ExpandDims_ShapeFn) { ShapeInferenceTestOp op("ExpandDims"); op.input_tensors.resize(2); INFER_OK(op, "?;?", "?"); Tensor dim_t; op.input_tensors[1] = &dim_t; for (int32_t idx : {0, -4}) { dim_t = test::AsScalar<int32>(idx); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[5,?,7];?", "[1,d0_0,d0_1,d0_2]"); } for (int32_t idx : {1, -3}) { dim_t = test::AsScalar<int32>(idx); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[5,?,7];?", "[d0_0,1,d0_1,d0_2]"); dim_t = test::AsScalar<int64_t>(idx); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[5,?,7];?", "[d0_0,1,d0_1,d0_2]"); } for (int32_t idx : {2, -2}) { dim_t = test::AsScalar<int32>(idx); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[5,?,7];?", "[d0_0,d0_1,1,d0_2]"); dim_t = test::AsScalar<int64_t>(idx); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[5,?,7];?", "[d0_0,d0_1,1,d0_2]"); } for (int32_t idx : {3, -1}) { dim_t = test::AsScalar<int32>(idx); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[5,?,7];?", "[d0_0,d0_1,d0_2,1]"); dim_t = test::AsScalar<int64_t>(idx); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[5,?,7];?", "[d0_0,d0_1,d0_2,1]"); } for (int32_t idx : {4, -5}) { dim_t = test::AsScalar<int32>(idx); INFER_ERROR("not in the interval [-4, 3]", op, "[5,?,7];?"); dim_t = test::AsScalar<int64_t>(idx); INFER_ERROR("not in the interval [-4, 3]", op, "[5,?,7];?"); } std::vector<int32> dims; dims.push_back(0); dim_t = test::AsTensor<int32>(dims); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[5,?,7];?", "[1,d0_0,d0_1,d0_2]"); dims.push_back(1); dim_t = test::AsTensor<int32>(dims); INFER_ERROR("'dim' input must be a tensor with a single", op, "?;?"); INFER_ERROR("'dim' input must be a tensor with a single", op, "[5,6,7];?"); dim_t = test::AsScalar<int32>(0); INFER_OK(op, "[2];[]", "[1,d0_0]"); dim_t = test::AsScalar<int32>(1); INFER_OK(op, "[2];[]", "[d0_0,1]"); dim_t = test::AsScalar<int32>(-1); INFER_OK(op, "[2];[]", "[d0_0,1]"); } TEST(ArrayOpsTest, ImmutableConst_ShapeFn) { ShapeInferenceTestOp op("ImmutableConst"); TF_ASSERT_OK(NodeDefBuilder("test", "ImmutableConst") .Attr("dtype", DT_FLOAT) .Attr("shape", TensorShape({1, 2, 3})) .Attr("memory_region_name", "test_region") .Finalize(&op.node_def)); INFER_OK(op, "", "[1,2,3]"); TF_ASSERT_OK(NodeDefBuilder("test", "ImmutableConst") .Attr("dtype", DT_FLOAT) .Attr("shape", TensorShape({})) .Attr("memory_region_name", "test_region") .Finalize(&op.node_def)); INFER_OK(op, "", "[]"); TF_ASSERT_OK(NodeDefBuilder("test", "ImmutableConst") .Attr("dtype", DT_FLOAT) .Attr("shape", "invalid") .Attr("memory_region_name", "test_region") .Finalize(&op.node_def)); INFER_ERROR("AttrValue had value with type 'string' when 'shape' expected", op, ""); } TEST(ArrayOpsTest, Concat_ShapeFn) { ShapeInferenceTestOp op("Concat"); auto set_n = [&op](int n) { std::vector<NodeDefBuilder::NodeOut> src_list; src_list.reserve(n); for (int i = 0; i < n; ++i) src_list.emplace_back("a", 0, DT_FLOAT); TF_ASSERT_OK(NodeDefBuilder("test", "Concat") .Input({"concat_dim", 0, DT_INT32}) .Input(src_list) .Attr("n", n) .Finalize(&op.node_def)); }; set_n(2); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[1];?;?"); set_n(7); INFER_OK(op, "?;?;?;?;[1,2,3];?;[3,2,1];?", "[?,?,?]"); set_n(4); INFER_OK(op, "?;?;?;[1,2,3,4];[4,3,2,1]", "[?,?,?,?]"); INFER_OK(op, "?;?;?;?;?", "?"); INFER_ERROR("Can't concatenate scalars (use tf.stack instead)", op, "?;?;?;[];[]"); INFER_ERROR("Shape must be rank 2 but is rank 3", op, "?;?;?;[1,2];[1,2,3]"); Tensor concat_dim_t; op.input_tensors.push_back(&concat_dim_t); set_n(2); for (int concat_dim : {0, -3}) { concat_dim_t = test::AsScalar(concat_dim); INFER_OK(op, "[];[100,2,?];[10,?,3]", "[110,d1_1,d2_2]"); INFER_ERROR("Dimension 1 in both shapes must be equal, but are 5 and 3", op, "[];[100,2,5];[10,?,3]"); INFER_OK(op, "[];[100,2,?];[?,?,3]", "[?,d1_1,d2_2]"); INFER_OK(op, "[];[?,2,?];[10,?,3]", "[?,d1_1,d2_2]"); } for (bool use_negative : {false, true}) { concat_dim_t = test::AsScalar(use_negative ? -2 : 1); INFER_OK(op, "[];[1,100,?];[?,10,3]", "[d1_0,110,d2_2]"); concat_dim_t = test::AsScalar(use_negative ? -1 : 1); INFER_OK(op, "[];[1,100];[?,10]", "[d1_0,110]"); INFER_OK(op, "[];[?,100];[1,10]", "[d2_0,110]"); concat_dim_t = test::AsScalar(use_negative ? -2 : 1); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[];[100];[10,?]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[];[100,5];[10]"); } concat_dim_t = test::AsScalar(-2); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[];[100];[10,?]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[];[100,5];[10]"); set_n(5); concat_dim_t = test::AsScalar(1); INFER_OK(op, "[];?;[1,100,?];[?,?,?];[?,10,3];?", "[d2_0,?,d4_2]"); } TEST(ArrayOpsTest, ConcatV2_ShapeFn) { ShapeInferenceTestOp op("ConcatV2"); auto set_n = [&op](int n) { std::vector<NodeDefBuilder::NodeOut> src_list; src_list.reserve(n); for (int i = 0; i < n; ++i) src_list.emplace_back("a", 0, DT_FLOAT); TF_ASSERT_OK(NodeDefBuilder("test", "ConcatV2") .Input(src_list) .Input({"axis", 0, DT_INT32}) .Attr("n", n) .Finalize(&op.node_def)); }; set_n(2); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "?;?;[1]"); set_n(7); INFER_OK(op, "?;?;?;?;[1,2,3];?;[3,2,1];?", "[?,?,?]"); set_n(4); INFER_OK(op, "?;?;[1,2,3,4];[4,3,2,1];?", "[?,?,?,?]"); INFER_OK(op, "?;?;?;?;?", "?"); INFER_ERROR("Can't concatenate scalars (use tf.stack instead)", op, "?;?;[];[];?"); INFER_ERROR("Shape must be rank 2 but is rank 3", op, "?;?;[1,2];[1,2,3];?"); Tensor concat_dim_t; op.input_tensors.resize(3); op.input_tensors[2] = &concat_dim_t; set_n(2); concat_dim_t = test::AsScalar(0); INFER_OK(op, "[100,2,?];[10,?,3];[]", "[110,d0_1,d1_2]"); INFER_ERROR("Dimension 1 in both shapes must be equal, but are 5 and 3", op, "[100,2,5];[10,?,3];[]"); INFER_OK(op, "[100,2,?];[?,?,3];[]", "[?,d0_1,d1_2]"); INFER_OK(op, "[?,2,?];[10,?,3];[]", "[?,d0_1,d1_2]"); concat_dim_t = test::AsScalar(1); INFER_OK(op, "[1,100,?];[?,10,3];[]", "[d0_0,110,d1_2]"); INFER_OK(op, "[1,100];[?,10];[]", "[d0_0,110]"); INFER_OK(op, "[?,100];[1,10];[]", "[d1_0,110]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[100];[10,?];[]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[100,5];[10];[]"); concat_dim_t = test::AsScalar(-2); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[100];[10,?];[]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[100,5];[10];[]"); op.input_tensors.resize(6); op.input_tensors[3] = nullptr; op.input_tensors[5] = &concat_dim_t; concat_dim_t = test::AsScalar(1); set_n(5); INFER_OK(op, "?;[1,100,?];[?,?,?];[?,10,3];?;[]", "[d1_0,?,d3_2]"); } TEST(ArrayOpsTest, ConcatOffset_ShapeFn) { ShapeInferenceTestOp op("ConcatOffset"); const int n = 4; std::vector<NodeDefBuilder::NodeOut> src_list; src_list.reserve(n); for (int i = 0; i < n; ++i) src_list.emplace_back("a", 0, DT_INT32); TF_ASSERT_OK(NodeDefBuilder("test", "ConcatOffset") .Input({"concat_dim", 0, DT_INT32}) .Input(src_list) .Attr("n", n) .Finalize(&op.node_def)); INFER_OK(op, "?;?;?;?;?", "in1;in2;in3;in4"); } TEST(ArrayOpsTest, Reshape_ShapeFn) { ShapeInferenceTestOp op("Reshape"); op.input_tensors.resize(2); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[?];?", "?"); INFER_OK(op, "?;[?]", "?"); INFER_OK(op, "[?];[?]", "?"); INFER_OK(op, "[4];[?]", "?"); Tensor new_shape = test::AsTensor<int32>({1, 2, 3}); op.input_tensors[1] = &new_shape; INFER_OK(op, "?;[3]", "[1,2,3]"); INFER_OK(op, "[?];[3]", "[1,2,3]"); INFER_OK(op, "[6];[3]", "[1,2,3]"); INFER_ERROR( "Cannot reshape a tensor with 12 elements to shape [1,2,3] (6 elements)", op, "[3,4];[3]"); new_shape = test::AsTensor<int32>({-1}); INFER_OK(op, "?;[1]", "[?]"); INFER_OK(op, "[?];[1]", "[d0_0]"); INFER_OK(op, "[2,2];[1]", "[4]"); new_shape = test::AsTensor<int32>({2, -1}); INFER_OK(op, "[3,4];[2]", "[2,6]"); INFER_ERROR("Dimension size must be evenly divisible by 2 but is 7", op, "[7];[2]"); new_shape = test::AsTensor<int32>({-1, -1, 2}); INFER_OK(op, "[8];[3]", "[?,?,2]"); INFER_OK(op, "?;[3]", "[?,?,2]"); new_shape = test::AsTensor<int32>({-1, 2, 3}); INFER_OK(op, "[?,2,3];[3]", "[d0_0,2,3]"); new_shape = test::AsTensor<int32>({}); INFER_OK(op, "[1];[0]", "[]"); INFER_ERROR( "Cannot reshape a tensor with 2 elements to shape [] (1 elements)", op, "[1,2];[0]"); new_shape = test::AsTensor<int32>({-1}); INFER_OK(op, "[0];[1]", "[0]"); new_shape = test::AsTensor<int32>({-1, 6}); INFER_OK(op, "[0,2];[1]", "[0,6]"); new_shape = test::AsTensor<int32>({0, -1}); INFER_OK(op, "[0,2];[1]", "[0,?]"); } TEST(ArrayOpsTest, QuantizedReshape_ShapeFn) { ShapeInferenceTestOp op("QuantizedReshape"); op.input_tensors.resize(2); INFER_OK(op, "?;?;?;?", "?;[];[]"); INFER_OK(op, "[?];?;?;?", "?;[];[]"); INFER_OK(op, "[?];[?];?;?", "?;[];[]"); INFER_OK(op, "[4];[?];?;?", "?;[];[]"); Tensor new_shape = test::AsTensor<int32>({1, 2, 3}); op.input_tensors[1] = &new_shape; INFER_OK(op, "[?];[3];?;?", "[1,2,3];[];[]"); INFER_OK(op, "[6];[3];?;?", "[1,2,3];[];[]"); INFER_ERROR( "Cannot reshape a tensor with 12 elements to shape [1,2,3] (6 elements)", op, "[3,4];[3];?;?"); INFER_ERROR("must be rank 0", op, "?;?;[1];?"); INFER_ERROR("must be rank 0", op, "?;?;?;[1]"); } TEST(ArrayOpsTest, Placeholder_ShapeFn) { { ShapeInferenceTestOp op("Placeholder"); TensorShape shape({1, 2}); TF_ASSERT_OK(NodeDefBuilder("test", "Placeholder") .Attr("shape", shape) .Attr("dtype", DT_FLOAT) .Finalize(&op.node_def)); INFER_OK(op, "", "[1,2]"); } { ShapeInferenceTestOp op("Placeholder"); TensorShape shape({}); TF_ASSERT_OK(NodeDefBuilder("test", "Placeholder") .Attr("shape", shape) .Attr("dtype", DT_FLOAT) .Finalize(&op.node_def)); INFER_OK(op, "", "[]"); } { ShapeInferenceTestOp op("Placeholder"); const int64_t dims[2] = {1, -1}; PartialTensorShape shape; TF_ASSERT_OK(PartialTensorShape::MakePartialShape(dims, 2, &shape)); TF_ASSERT_OK(NodeDefBuilder("test", "Placeholder") .Attr("shape", shape) .Attr("dtype", DT_FLOAT) .Finalize(&op.node_def)); INFER_OK(op, "", "[1,?]"); } { ShapeInferenceTestOp op("Placeholder"); PartialTensorShape shape; TF_ASSERT_OK(NodeDefBuilder("test", "Placeholder") .Attr("shape", shape) .Attr("dtype", DT_FLOAT) .Finalize(&op.node_def)); INFER_OK(op, "", "?"); } } TEST(ArrayOpsTest, Transpose_ShapeFn) { ShapeInferenceTestOp op("Transpose"); op.input_tensors.resize(2); INFER_OK(op, "?;?", "?"); INFER_OK(op, "?;[?]", "?"); INFER_OK(op, "?;[2]", "[?,?]"); INFER_OK(op, "[?];?", "[?]"); INFER_OK(op, "[?,?];[2]", "[?,?]"); INFER_ERROR("Dimension must be 3 but is 2", op, "[1,2,3];[2]"); Tensor perm = test::AsTensor<int32>({0}); op.input_tensors[1] = &perm; INFER_OK(op, "[?];[?]", "[d0_0]"); perm = test::AsTensor<int32>({1, 0}); INFER_OK(op, "?;[2]", "[?,?]"); INFER_OK(op, "[?,?];[2]", "[d0_1,d0_0]"); INFER_OK(op, "[1,?];[2]", "[d0_1,d0_0]"); INFER_OK(op, "?;[0]", "in0"); perm = test::AsTensor<int32>({1, 2}); INFER_ERROR("perm dim 2 is out of range of input rank 2", op, "[1,2];[2]"); perm = test::AsTensor<int32>({0}); INFER_ERROR("Dimension must be 2 but is 1", op, "[1,2];[1]"); perm = test::AsTensor<int32>({1, 0, 3, 4, 2}); INFER_OK(op, "[0,1,2,3,4];[5]", "[d0_1,d0_0,d0_3,d0_4,d0_2]"); INFER_OK(op, "[0,?,2,3,4];[5]", "[d0_1,d0_0,d0_3,d0_4,d0_2]"); } TEST(ArrayOpsTest, Bitcast_ShapeFn) { ShapeInferenceTestOp op("Bitcast"); auto rebuild_node_def = [&op](DataType input_type, DataType output_type) { TF_ASSERT_OK(NodeDefBuilder("test", "Bitcast") .Input("input", 0, input_type) .Attr("type", output_type) .Finalize(&op.node_def)); }; rebuild_node_def(DT_FLOAT, DT_INT32); INFER_OK(op, "?", "?"); INFER_OK(op, "[1,2]", "in0"); rebuild_node_def(DT_INT32, DT_INT64); INFER_OK(op, "[1,2]", "[d0_0]"); INFER_OK(op, "[1,?]", "[d0_0]"); INFER_ERROR("does not match", op, "[1,4]"); INFER_ERROR("does not match", op, "[1,3]"); rebuild_node_def(DT_INT64, DT_INT32); INFER_OK(op, "[4,5]", "[d0_0,d0_1,2]"); rebuild_node_def(DT_COMPLEX128, DT_INT32); INFER_OK(op, "[4,5]", "[d0_0,d0_1,4]"); rebuild_node_def(DT_COMPLEX128, DT_HALF); INFER_OK(op, "[4,5]", "[d0_0,d0_1,8]"); rebuild_node_def(DT_COMPLEX128, DT_INT8); INFER_OK(op, "[4,5]", "[d0_0,d0_1,16]"); rebuild_node_def(DT_STRING, DT_INT32); INFER_ERROR("one of the type sizes is zero", op, "[1,2,3]"); rebuild_node_def(DT_INT32, DT_STRING); INFER_ERROR("one of the type sizes is zero", op, "[1,2,3]"); } TEST(ArrayOpsTest, Squeeze_ShapeFn) { ShapeInferenceTestOp op("Squeeze"); auto rebuild_node_def = [&op](const std::vector<int32>& squeeze_dims) { TF_ASSERT_OK(NodeDefBuilder("test", "Squeeze") .Input("input", 0, DT_FLOAT) .Attr("squeeze_dims", squeeze_dims) .Finalize(&op.node_def)); }; rebuild_node_def({}); INFER_OK(op, "?", "?"); INFER_OK(op, "[1,4,1,5,1]", "[d0_1,d0_3]"); INFER_OK(op, "[1,?,1,?,1]", "?"); rebuild_node_def({1}); INFER_OK(op, "[4,1,5]", "[d0_0,d0_2]"); INFER_OK(op, "[4,?,5]", "[d0_0,d0_2]"); INFER_ERROR("Can not squeeze dim[1]", op, "[4,6,5]"); rebuild_node_def({1, 2}); INFER_OK(op, "[4,1,1,5]", "[d0_0,d0_3]"); rebuild_node_def({1, -2}); INFER_OK(op, "[4,1,1,5]", "[d0_0,d0_3]"); rebuild_node_def({-2}); INFER_OK(op, "[4,1,5]", "[d0_0,d0_2]"); rebuild_node_def({-4}); INFER_ERROR("not in [-3,3)", op, "[1,2,3]"); rebuild_node_def({3}); INFER_ERROR("not in [-3,3)", op, "[1,2,3]"); } TEST(ArrayOpsTest, ReverseSequence_ShapeFn) { ShapeInferenceTestOp op("ReverseSequence"); auto rebuild_node_def = [&op](const int32_t seq_dim, const int32_t batch_dim) { TF_ASSERT_OK(NodeDefBuilder("test", "ReverseSequence") .Input("input", 0, DT_FLOAT) .Input("seq_lengths", 1, DT_INT64) .Attr("seq_dim", seq_dim) .Attr("batch_dim", batch_dim) .Finalize(&op.node_def)); }; rebuild_node_def(1, 2); INFER_OK(op, "?;[10]", "?"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "?;[10,10]"); rebuild_node_def(1, 4); INFER_ERROR("batch_dim must be < input rank", op, "[1,2,3];[3]"); rebuild_node_def(4, 1); INFER_ERROR("seq_dim must be < input rank", op, "[1,2,3];[3]"); rebuild_node_def(1, 2); INFER_OK(op, "[1,2,3];[3]", "[d0_0,d0_1,d0_2]"); INFER_OK(op, "[1,2,?];[3]", "[d0_0,d0_1,d1_0]"); INFER_OK(op, "[1,2,3];[?]", "[d0_0,d0_1,d0_2]"); } TEST(ArrayOpsTest, Split_ShapeFn) { ShapeInferenceTestOp op("Split"); op.input_tensors.resize(2); TF_ASSERT_OK(NodeDefBuilder("test", "Split") .Input("split_dim", 0, DT_INT32) .Input("value", 1, DT_FLOAT) .Attr("num_split", 2) .Finalize(&op.node_def)); INFER_OK(op, "?;?", "?;?"); INFER_OK(op, "?;[?,?]", "[?,?];[?,?]"); INFER_OK(op, "?;[1,4]", "[?,?];[?,?]"); Tensor split_dim = test::AsTensor<int32>({1, 2}); op.input_tensors[0] = &split_dim; INFER_ERROR("Input must be scalar but has rank 1", op, "[?];[?,?]"); split_dim = test::AsScalar<int32>(1); INFER_OK(op, "?;?", "?;?"); INFER_OK(op, "?;[?,?]", "[d1_0,?];[d1_0,?]"); INFER_OK(op, "?;[1,4]", "[d1_0,2];[d1_0,2]"); INFER_OK(op, "?;[1,?]", "[d1_0,?];[d1_0,?]"); INFER_ERROR("Dimension size must be evenly divisible by 2 but is 5", op, "?;[1,5]"); split_dim = test::AsScalar<int32>(3); INFER_ERROR( "Dimension size, given by scalar input 3 must be in range [-3, 3)", op, "?;[1,4,8]"); split_dim = test::AsScalar<int32>(-1); INFER_OK(op, "?;?", "?;?"); INFER_OK(op, "?;[?,?]", "[d1_0,?];[d1_0,?]"); INFER_OK(op, "?;[1,?]", "[d1_0,?];[d1_0,?]"); INFER_OK(op, "?;[1,4]", "[d1_0,2];[d1_0,2]"); INFER_OK(op, "?;[1,4,8]", "[d1_0,d1_1,4];[d1_0,d1_1,4]"); split_dim = test::AsScalar<int32>(-2); INFER_OK(op, "?;[1,4,8]", "[d1_0,2,d1_2];[d1_0,2,d1_2]"); split_dim = test::AsScalar<int32>(-4); INFER_ERROR( "Dimension size, given by scalar input -4 must be in range [-3, 3)", op, "?;[1,4,8]"); } TEST(ArrayOpsTest, Tile_ShapeFn) { ShapeInferenceTestOp op("Tile"); op.input_tensors.resize(2); TF_ASSERT_OK(NodeDefBuilder("test", "Tile") .Input("input", 0, DT_FLOAT) .Input("multiples", 1, DT_INT32) .Finalize(&op.node_def)); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[2,3,1,4];?", "[?,?,?,?]"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "[2,3,1,4];[4,1]"); INFER_OK(op, "?;[4]", "[?,?,?,?]"); Tensor multiples = test::AsTensor<int32>({2, 3, 4, 5}); op.input_tensors[1] = &multiples; INFER_OK(op, "[2,3,1,4];[4]", "[4,9,4,20]"); multiples = test::AsTensor<int64_t>({2, 3, 4, 5}); INFER_OK(op, "[2,3,1,4];[4]", "[4,9,4,20]"); } TEST(ArrayOpsTest, EditDistance_ShapeFn) { ShapeInferenceTestOp op("EditDistance"); op.input_tensors.resize(6); INFER_OK(op, "[?,?];[?];[4];[?,?];[?];[4]", "?"); Tensor hypothesis_shape = test::AsTensor<int64_t>({2, 30, 4, 50}); op.input_tensors[2] = &hypothesis_shape; Tensor truth_shape = test::AsTensor<int64_t>({20, 3, 40, 5}); op.input_tensors[5] = &truth_shape; INFER_OK(op, "[?,?];[?];[4];[?,?];[?];[4]", "[20,30,40]"); hypothesis_shape = test::AsTensor<int64_t>({2}); op.input_tensors[2] = &hypothesis_shape; INFER_ERROR("Num elements of hypothesis_shape does not match truth_shape", op, "[?,?];[?];[1];[?,?];[?];[4]"); } TEST(ArrayOpsTest, OneHot_ShapeFn) { ShapeInferenceTestOp op("OneHot"); op.input_tensors.resize(4); auto set_axis = [&op](int axis) { TF_ASSERT_OK(NodeDefBuilder("test", "OneHot") .Input("indices", 0, DT_FLOAT) .Input("depth", 1, DT_INT32) .Input("on_value", 2, DT_FLOAT) .Input("off_value", 3, DT_FLOAT) .Attr("axis", axis) .Finalize(&op.node_def)); }; set_axis(-2); INFER_ERROR("axis must be >= -1", op, "?;?;?;?"); set_axis(1); INFER_OK(op, "?;[];?;?", "?"); Tensor depth = test::AsTensor<int32>({1, 2}); op.input_tensors[1] = &depth; INFER_ERROR("Input must be scalar but has rank 1", op, "?;[2];?;?"); depth = test::AsScalar<int32>(2); INFER_OK(op, "[1,3,4];[];?;?", "[d0_0,2,d0_1,d0_2]"); set_axis(-1); INFER_OK(op, "[1,3,4];[];?;?", "[d0_0,d0_1,d0_2,2]"); } TEST(ArrayOpsTest, ExtractImagePatchesShapeTest) { ShapeInferenceTestOp op("ExtractImagePatches"); auto set_op = [&op](const std::vector<int32>& ksizes, const std::vector<int32>& strides, const std::vector<int32>& rates, const string& padding) { TF_ASSERT_OK(NodeDefBuilder("test", "ExtractImagePatches") .Input("input", 0, DT_FLOAT) .Attr("ksizes", ksizes) .Attr("strides", strides) .Attr("rates", rates) .Attr("padding", padding) .Finalize(&op.node_def)); }; set_op({1, 2, 2, 1}, {1, 1, 1, 1}, {1, 2, 2, 1}, "VALID"); INFER_OK(op, "[1,7,7,2]", "[d0_0,5,5,8]"); set_op({1, 1, 1, 1}, {1, 1, 1, 1}, {1, 2, 2, 1}, "VALID"); INFER_OK(op, "[1,7,7,2]", "[d0_0,7,7,d0_3]"); set_op({1, 2, 2, 1, 1}, {1, 1, 1, 1}, {1, 2, 2, 1}, "VALID"); INFER_ERROR( "ExtractImagePatches requires the ksizes attribute to contain 4 values, " "but got: 5", op, "[1,7,7,2]"); } TEST(ArrayOpsTest, QuantizeAndDequantizeV2_ShapeFn) { ShapeInferenceTestOp op("QuantizeAndDequantizeV2"); op.input_tensors.resize(3); TF_ASSERT_OK(NodeDefBuilder("test", "QuantizeAndDequantizeV2") .Input("input", 0, DT_FLOAT) .Input("input_min", 1, DT_FLOAT) .Input("input_max", 2, DT_FLOAT) .Attr("signed_input", true) .Attr("num_bits", 8) .Attr("range_given", false) .Attr("narrow_range", false) .Attr("axis", -1) .Finalize(&op.node_def)); INFER_OK(op, "?;?;?", "in0"); INFER_OK(op, "[];?;?", "in0"); INFER_OK(op, "[1,2,?,4,5];?;?", "in0"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[1,2,?,4,5];[1];[]"); INFER_ERROR("Shapes must be equal rank, but are 1 and 0", op, "[1,2,?,4,5];[];[1]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[1,2,?,4,5];[1];[1]"); (*op.node_def.mutable_attr())["axis"].set_i(-2); INFER_ERROR("axis should be at least -1, got -2", op, "?;?;?"); } TEST(ArrayOpsTest, SpaceToBatch_ShapeFn) { ShapeInferenceTestOp op("SpaceToBatch"); op.input_tensors.resize(2); TF_ASSERT_OK(NodeDefBuilder("test", "SpaceToBatch") .Input("input", 0, DT_FLOAT) .Input("paddings", 1, DT_INT32) .Attr("block_size", 2) .Finalize(&op.node_def)); INFER_OK(op, "[1,10,10,3];[2,2]", "[4,?,?,d0_3]"); INFER_OK(op, "[1,10,10,3];?", "[4,?,?,d0_3]"); INFER_ERROR("rank", op, "[1,10,10,3];[4]"); INFER_ERROR("3 and 2", op, "[1,10,10,3];[2,3]"); Tensor paddings = test::AsTensor<int32>({4, 2, 2, 4}, {{2, 2}}); op.input_tensors[1] = &paddings; INFER_OK(op, "[1,10,10,3];[2,2]", "[4,8,8,d0_3]"); paddings = test::AsTensor<int64_t>({4, 2, 2, 4}, {{2, 2}}); INFER_OK(op, "[1,10,10,3];[2,2]", "[4,8,8,d0_3]"); paddings = test::AsTensor<int32>({1, 2, 3, 4}, {{2, 2}}); op.input_tensors[1] = &paddings; INFER_ERROR("Dimension size must be evenly divisible by 2 but is 13", op, "[1,10,10,3];[2,2]"); paddings = test::AsTensor<int32>({1, -2, 3, 4}, {{2, 2}}); op.input_tensors[1] = &paddings; INFER_ERROR("cannot be negative", op, "[1,10,10,3];[2,2]"); } TEST(ArrayOpsTest, SpaceToBatchND_ShapeFn) { ShapeInferenceTestOp op("SpaceToBatchND"); op.input_tensors.resize(3); TF_ASSERT_OK(NodeDefBuilder("test", "SpaceToBatchND") .Input("input", 0, DT_FLOAT) .Input("block_shape", 1, DT_INT32) .Input("paddings", 2, DT_INT32) .Finalize(&op.node_def)); INFER_OK(op, "?;[2];?", "?"); INFER_OK(op, "[?,?,?,?];[2];?", "[?,?,?,d0_3]"); INFER_OK(op, "[?,?,?,2];[2];?", "[?,?,?,d0_3]"); { Tensor block_shape = test::AsTensor<int32>({2, 3}); op.input_tensors[1] = &block_shape; INFER_OK(op, "[3,?,?,2];[2];?", "[18,?,?,d0_3]"); { Tensor paddings = test::AsTensor<int32>({1, 1, 0, 1}, {{2, 2}}); op.input_tensors[2] = &paddings; INFER_OK(op, "[3,?,2,2];[2];[2,2]", "[18,?,1,d0_3]"); op.input_tensors[2] = nullptr; } { Tensor paddings = test::AsTensor<int32>({1, 1, 0, 0}, {{2, 2}}); op.input_tensors[2] = &paddings; INFER_OK(op, "[3,2,3,2];[2];[2,2]", "[18,2,1,d0_3]"); op.input_tensors[2] = nullptr; } op.input_tensors[1] = nullptr; } INFER_ERROR("block_shape must have rank 1", op, "?;[1,1];?"); INFER_ERROR("block_shape must have known size", op, "?;[?];?"); { Tensor block_shape = test::AsTensor<int32>({0, 2}); op.input_tensors[1] = &block_shape; INFER_ERROR("block_shape must be positive", op, "[1,2,2];[2];[2,2]"); op.input_tensors[1] = nullptr; } { Tensor block_shape = test::AsTensor<int32>({1, 1}); op.input_tensors[1] = &block_shape; Tensor paddings = test::AsTensor<int32>({0, -1, 0, 0}, {{2, 2}}); op.input_tensors[2] = &paddings; INFER_ERROR("paddings cannot be negative", op, "[1,2,2];[2];[2,2]"); op.input_tensors[1] = nullptr; op.input_tensors[2] = nullptr; } { Tensor block_shape = test::AsTensor<int32>({3, 3}); op.input_tensors[1] = &block_shape; Tensor paddings = test::AsTensor<int32>({0, 0, 0, 0}, {{2, 2}}); op.input_tensors[2] = &paddings; INFER_ERROR("divisible", op, "[1,2,3,1];[2];[2,2]"); op.input_tensors[1] = nullptr; op.input_tensors[2] = nullptr; } { Tensor block_shape = test::AsTensor<int32>({}); op.input_tensors[1] = &block_shape; Tensor paddings = test::AsTensor<int32>({}); op.input_tensors[2] = &paddings; INFER_OK(op, "?;[0];[0,2]", "?"); op.input_tensors[1] = nullptr; op.input_tensors[2] = nullptr; } INFER_ERROR("rank", op, "[1,3,3,1];[2];[1]"); INFER_ERROR("shape", op, "[1,3,3,1];[2];[1,2]"); } TEST(ArrayOpsTest, BatchToSpace_ShapeFn) { ShapeInferenceTestOp op("BatchToSpace"); op.input_tensors.resize(2); TF_ASSERT_OK(NodeDefBuilder("test", "BatchToSpace") .Input("input", 0, DT_FLOAT) .Input("crops", 1, DT_INT32) .Attr("block_size", 2) .Finalize(&op.node_def)); INFER_OK(op, "[4,8,8,3];[2,2]", "[1,?,?,d0_3]"); INFER_ERROR("Dimension size must be evenly divisible by", op, "[5,8,8,3];[2,2]"); INFER_OK(op, "[4,8,8,3];?", "[1,?,?,d0_3]"); INFER_ERROR("rank", op, "[4,8,8,3];[4]"); INFER_ERROR("3 and 2", op, "[4,8,8,3];[2,3]"); Tensor croppings = test::AsTensor<int64_t>({4, 2, 2, 4}, {{2, 2}}); op.input_tensors[1] = &croppings; INFER_OK(op, "[4,8,8,3];[2,2]", "[1,10,10,d0_3]"); croppings = test::AsTensor<int32>({100, 2, 3, 4}, {{2, 2}}); op.input_tensors[1] = &croppings; INFER_ERROR("Negative dimension size caused by subtracting", op, "[4,8,8,3];[2,2]"); croppings = test::AsTensor<int32>({1, 2, 3, 400}, {{2, 2}}); op.input_tensors[1] = &croppings; INFER_ERROR("Negative dimension size caused by subtracting", op, "[4,8,8,3];[2,2]"); croppings = test::AsTensor<int32>({1, -2, 3, 4}, {{2, 2}}); op.input_tensors[1] = &croppings; INFER_ERROR("cannot be negative", op, "[4,8,8,3];[2,2]"); } TEST(ArrayOpsTest, BatchToSpaceND_ShapeFn) { ShapeInferenceTestOp op("BatchToSpaceND"); op.input_tensors.resize(3); TF_ASSERT_OK(NodeDefBuilder("test", "BatchToSpaceND") .Input("input", 0, DT_FLOAT) .Input("block_shape", 1, DT_INT32) .Input("crops", 2, DT_INT32) .Finalize(&op.node_def)); INFER_OK(op, "?;[2];?", "?"); INFER_OK(op, "[?,?,?,?];[2];?", "[?,?,?,d0_3]"); { Tensor block_shape = test::AsTensor<int32>({2, 3}); op.input_tensors[1] = &block_shape; INFER_OK(op, "[?,?,?,2];[2];?", "[?,?,?,d0_3]"); INFER_OK(op, "[18,?,?,2];[2];?", "[3,?,?,d0_3]"); { Tensor crops = test::AsTensor<int32>({1, 1, 0, 1}, {{2, 2}}); op.input_tensors[2] = &crops; INFER_OK(op, "[18,?,2,2];[2];[2,2]", "[3,?,5,d0_3]"); op.input_tensors[2] = nullptr; } { Tensor crops = test::AsTensor<int32>({1, 1, 0, 0}, {{2, 2}}); op.input_tensors[2] = &crops; INFER_OK(op, "[18,2,1,2];[2];[2,2]", "[3,2,3,d0_3]"); op.input_tensors[2] = nullptr; } op.input_tensors[1] = nullptr; } INFER_ERROR("block_shape must have rank 1", op, "?;[1,1];?"); INFER_ERROR("block_shape must have known size", op, "?;[?];?"); INFER_ERROR("rank", op, "[2,2];[2];[2,2]"); INFER_ERROR("rank", op, "[2,2,3];[3];[3,2]"); { Tensor block_shape = test::AsTensor<int32>({0, 2}); op.input_tensors[1] = &block_shape; INFER_ERROR("block_shape must be positive", op, "[1,2,2];[2];[2,2]"); op.input_tensors[1] = nullptr; } { Tensor block_shape = test::AsTensor<int32>({1, 1}); op.input_tensors[1] = &block_shape; Tensor paddings = test::AsTensor<int32>({0, -1, 0, 0}, {{2, 2}}); op.input_tensors[2] = &paddings; INFER_ERROR("crops cannot be negative", op, "[1,2,2];[2];[2,2]"); op.input_tensors[1] = nullptr; op.input_tensors[2] = nullptr; } { Tensor block_shape = test::AsTensor<int32>({2, 2}); op.input_tensors[1] = &block_shape; Tensor crops = test::AsTensor<int32>({3, 2, 0, 0}, {{2, 2}}); op.input_tensors[2] = &crops; INFER_ERROR("Negative", op, "[4,2,3,1];[2];[2,2]"); op.input_tensors[1] = nullptr; op.input_tensors[2] = nullptr; } { Tensor block_shape = test::AsTensor<int32>({2, 3}); op.input_tensors[1] = &block_shape; INFER_ERROR("divisible", op, "[3,1,1,1];[2];[2,2]"); op.input_tensors[1] = nullptr; } } TEST(ArrayOpsTest, SpaceToDepth_ShapeFn) { ShapeInferenceTestOp op("SpaceToDepth"); TF_ASSERT_OK(NodeDefBuilder("test", "SpaceToDepth") .Input("input", 0, DT_FLOAT) .Attr("block_size", 2) .Finalize(&op.node_def)); INFER_OK(op, "[1,2,4,4]", "[d0_0,1,2,16]"); INFER_ERROR("Dimension size must be evenly divisible by 2 but is 3", op, "[1,3,8,4]"); INFER_ERROR("Dimension size must be evenly divisible by 2 but is 5", op, "[1,2,5,4]"); INFER_OK(op, "[1,2,4,?]", "[d0_0,1,2,?]"); } TEST(ArrayOpsTest, DepthToSpace_ShapeFn) { ShapeInferenceTestOp op("DepthToSpace"); TF_ASSERT_OK(NodeDefBuilder("test", "DepthToSpace") .Input("input", 0, DT_FLOAT) .Attr("block_size", 2) .Finalize(&op.node_def)); INFER_OK(op, "[1,1,2,16]", "[d0_0,2,4,4]"); INFER_ERROR("Dimension size must be evenly divisible by 4 but is 15", op, "[1,1,2,15]"); INFER_OK(op, "[1,2,4,?]", "[d0_0,4,8,?]"); TF_ASSERT_OK(NodeDefBuilder("test", "DepthToSpace") .Input("input", 0, DT_FLOAT) .Attr("block_size", 10) .Finalize(&op.node_def)); INFER_OK(op, "[1,1,2,200]", "[d0_0,10,20,2]"); } TEST(ArrayOpsTest, Slice_ShapeFn) { ShapeInferenceTestOp op("Slice"); TF_ASSERT_OK(NodeDefBuilder("test", "Slice") .Input("input", 0, DT_FLOAT) .Input("begin", 1, DT_INT64) .Input("sizes", 2, DT_INT64) .Finalize(&op.node_def)); INFER_OK(op, "[2,3,4,5];[4];[4]", "[?,?,?,?]"); INFER_OK(op, "[2,3,4,5];[?];[?]", "[?,?,?,?]"); INFER_OK(op, "?;[?];[?]", "?"); INFER_OK(op, "?;[4];[?]", "[?,?,?,?]"); INFER_ERROR("must be rank 1", op, "[2,3,4,5];[2,3];[3]"); INFER_ERROR("must be rank 1", op, "[2,3,4,5];[2];[3,4]"); INFER_ERROR("must be rank 2", op, "[2,3,4,5];[2];[2]"); op.input_tensors.resize(3); Tensor begin = test::AsTensor<int32>({0, 1, 2, 1}); Tensor sizes = test::AsTensor<int32>({1, 2, 1, 3}); op.input_tensors[1] = &begin; op.input_tensors[2] = &sizes; INFER_OK(op, "[2,3,4,5];[4];[4]", "[1,2,1,3]"); sizes = test::AsTensor<int32>({-1, -1, 1, -1}); INFER_OK(op, "[2,3,4,5];[4];[4]", "[d0_0,2,1,4]"); begin = test::AsTensor<int32>({0, 1, 2, 6}); sizes = test::AsTensor<int32>({-1, -1, -1, -1}); INFER_ERROR("Negative dimension size", op, "[2,3,4,5];[4];[4]"); begin = test::AsTensor<int32>({0, 1, 2, 5}); sizes = test::AsTensor<int32>({-1, -1, -1, -2}); INFER_ERROR("cannot be < -1", op, "[2,3,4,5];[4];[4]"); } TEST(ArrayOpsTest, StridedSlice_ShapeFn) { ShapeInferenceTestOp op("StridedSlice"); TF_ASSERT_OK(NodeDefBuilder("test", "StridedSlice") .Input("input", 0, DT_FLOAT) .Input("begin", 1, DT_INT32) .Input("end", 2, DT_INT32) .Input("strides", 3, DT_INT32) .Attr("shrink_axis_mask", 1) .Finalize(&op.node_def)); op.input_tensors.resize(4); Tensor strides = test::AsTensor<int32>({1}); op.input_tensors[3] = &strides; INFER_OK(op, "[2,3,4,5];[1];[1];[1]", "[3,4,5]"); INFER_OK(op, "[2,0,3,4];[1];[1];[1]", "[0,3,4]"); } TEST(ArrayOpsTest, StridedSliceGrad_ShapeFn) { ShapeInferenceTestOp op("StridedSliceGrad"); op.input_tensors.resize(5); INFER_OK(op, "?;?;?;?;?", "?"); INFER_OK(op, "[?];?;?;?;?", "?"); INFER_OK(op, "[4];?;?;?;?", "[?,?,?,?]"); Tensor in_t = test::AsTensor<int32>({1, 2, 3, 4}); op.input_tensors[0] = &in_t; INFER_OK(op, "[4];?;?;?;?", "[1,2,3,4]"); } TEST(ArrayOpsTest, UnchangedWithQuantizationScalars_ShapeFn) { for (const char* op_name : {"Dequantize", "FakeQuantWithMinMaxVars"}) { ShapeInferenceTestOp op(op_name); if (op_name[0] == 'D') { TF_ASSERT_OK(NodeDefBuilder("test", "Dequantize") .Input("input", 0, DT_QINT8) .Input("input_min", 1, DT_FLOAT) .Input("input_max", 2, DT_FLOAT) .Attr("T", DataTypeToEnum<qint8>::v()) .Attr("mode", "SCALED") .Attr("axis", -1) .Finalize(&op.node_def)); } INFER_OK(op, "?;?;?", "in0"); INFER_OK(op, "[1,?,3];[];[]", "in0"); INFER_ERROR("be rank 0", op, "[1,?,3];[1];[]"); INFER_ERROR("be rank 0", op, "[1,?,3];[];[1]"); } } TEST(ArrayOpsTest, FakeQuantWithMinMaxVarsPerChannel) { ShapeInferenceTestOp op("FakeQuantWithMinMaxVarsPerChannel"); INFER_OK(op, "?;?;?", "in0"); INFER_OK(op, "[?];?;?", "in0"); INFER_OK(op, "[1,?,3];[3];[3]", "in0"); INFER_OK(op, "[3];[3];[3]", "in0"); INFER_ERROR("be rank 1", op, "[1,?,3];[1];[]"); INFER_ERROR("be rank 1", op, "[1,?,3];[];[1]"); INFER_ERROR("must be equal", op, "[1,?,3];[2];[?]"); INFER_ERROR("must be equal", op, "[1,?,3];[?];[2]"); INFER_ERROR("must be equal", op, "[1,?,?];[1];[2]"); INFER_ERROR("must be equal", op, "[5];[4];[?]"); } TEST(ArrayOpsTest, FakeQuantWithMinMaxVarsPerChannelGradient) { ShapeInferenceTestOp op("FakeQuantWithMinMaxVarsPerChannelGradient"); INFER_OK(op, "?;?;?;?", "in0;[?];[?]"); INFER_OK(op, "[3];[3];[3];[3]", "in0;in3;in3"); INFER_OK(op, "[1,3];[1,3];[3];[3]", "in0;in3;in3"); INFER_OK(op, "[1,2,3,4];[1,2,3,4];[4];[4]", "in0;in3;in3"); INFER_ERROR("be equal rank", op, "[1,?,3];[1,?,3];[3];[]"); INFER_ERROR("be rank 1", op, "[1,?,3];[1,?,3];[];[3]"); INFER_ERROR("be at least rank 1", op, "[];[];[1];[1]"); INFER_ERROR("be at most rank 4", op, "[1,2,3,4,5];[1,2,3,4,5];[1];[1]"); INFER_ERROR("must be equal", op, "[1,3];[1,3];[2];[3]"); INFER_ERROR("must be equal", op, "[1,3];[1,3];[3];[2]"); } TEST(ArrayOpsTest, QuantizedConcat_ShapeFn) { ShapeInferenceTestOp op("QuantizedConcat"); auto set_n = [&op](int n) { std::vector<NodeDefBuilder::NodeOut> src_list; std::vector<NodeDefBuilder::NodeOut> limit_list; for (int i = 0; i < n; ++i) { src_list.emplace_back("a", 0, DT_QUINT8); limit_list.emplace_back("b", 0, DT_FLOAT); } TF_ASSERT_OK(NodeDefBuilder("test", "QuantizedConcat") .Input({"concat_dim", 0, DT_INT32}) .Input(src_list) .Input(limit_list) .Input(limit_list) .Attr("N", n) .Finalize(&op.node_def)); }; set_n(1); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[1];?;?;?"); set_n(2); INFER_ERROR("must be rank 0", op, "[];?;?;?;?;?;[1]"); INFER_ERROR("must be rank 0", op, "[];?;?;?;?;[1];?"); INFER_ERROR("must be rank 0", op, "[];?;?;?;[1];?;?"); INFER_ERROR("must be rank 0", op, "[];?;?;[1];?;?;?"); set_n(2); INFER_ERROR("must be rank 2", op, "[];[1,2];[1,2,3];?;?;?;?"); INFER_OK(op, "[];[1,2];[1,3];?;?;?;?", "[?,?];[];[]"); Tensor concat_dim_t; op.input_tensors.push_back(&concat_dim_t); set_n(2); concat_dim_t = test::AsScalar(0); INFER_OK(op, "[];[100,2,?];[10,?,3];?;?;?;?", "[110,d1_1,d2_2];[];[]"); INFER_ERROR("Dimension 1 in both shapes must be equal, but are 5 and 3", op, "[];[100,2,5];[10,?,3];?;?;?;?"); } TEST(StateOpsTest, _ParallelConcatStart_ShapeFn) { ShapeInferenceTestOp op("_ParallelConcatStart"); TensorShape shape({1, 2, 3}); TensorShapeProto shape_proto; shape.AsProto(&shape_proto); TF_ASSERT_OK(NodeDefBuilder("test", "_ParallelConcatStart") .Attr("shape", shape_proto) .Attr("dtype", DT_FLOAT) .Finalize(&op.node_def)); INFER_OK(op, "", "[1,2,3]"); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/ops/array_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/array_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
34ccf62e-4ef7-427f-ac2d-6abf3f4c45d8
cpp
google/tensorstore
data_type_conversion
tensorstore/data_type_conversion.h
tensorstore/data_type_conversion_test.cc
#ifndef TENSORSTORE_DATA_TYPE_CONVERSION_H_ #define TENSORSTORE_DATA_TYPE_CONVERSION_H_ #include <array> #include <complex> #include <limits> #include <type_traits> #include "tensorstore/data_type.h" #include "tensorstore/internal/elementwise_function.h" #include "tensorstore/util/result.h" namespace tensorstore { template <typename From, typename To> struct ConvertDataType { void operator()(const From* from, To* to, void* arg) const { *to = static_cast<To>(*from); } }; template <typename From, typename To> struct DataTypeConversionTraits { constexpr static DataTypeConversionFlags flags = DataTypeConversionFlags{}; }; template <typename From, typename To, DataTypeConversionFlags AdditionalFlags = DataTypeConversionFlags{}> constexpr inline bool IsDataTypeConversionSupported = ((DataTypeConversionTraits<From, To>::flags & (DataTypeConversionFlags::kSupported | AdditionalFlags)) == (DataTypeConversionFlags::kSupported | AdditionalFlags)); template <typename From, DataTypeConversionFlags AdditionalFlags> constexpr inline bool IsDataTypeConversionSupported<From, void, AdditionalFlags> = true; template <typename To, DataTypeConversionFlags AdditionalFlags> constexpr inline bool IsDataTypeConversionSupported<void, To, AdditionalFlags> = true; template <typename T, DataTypeConversionFlags AdditionalFlags> constexpr inline bool IsDataTypeConversionSupported<T, T, AdditionalFlags> = true; template <DataTypeConversionFlags AdditionalFlags> constexpr inline bool IsDataTypeConversionSupported<void, void, AdditionalFlags> = true; namespace internal { extern const std::array<DataTypeOperations::CanonicalConversionOperations, kNumDataTypeIds> canonical_data_type_conversions; DataTypeConversionLookupResult GetDataTypeConverter(DataType from, DataType to); Result<DataTypeConversionLookupResult> GetDataTypeConverterOrError( DataType from, DataType to, DataTypeConversionFlags required_flags = {}); } namespace internal_data_type { template <typename From, typename To> std::enable_if_t<((DataTypeConversionTraits<From, To>::flags & (DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kCanReinterpretCast)) == DataTypeConversionFlags::kSupported && !std::is_same_v<From, To>), internal::ElementwiseFunction<2, void*>> GetConvertFunction() { return internal::SimpleElementwiseFunction< ConvertDataType<From, To>(From, const To), void*>(); } template <typename From, typename To> std::enable_if_t<((DataTypeConversionTraits<From, To>::flags & (DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kCanReinterpretCast)) != DataTypeConversionFlags::kSupported || std::is_same_v<From, To>), internal::ElementwiseFunction<2, void*>> GetConvertFunction() { return {}; } template <typename From> constexpr internal::DataTypeOperations::CanonicalConversionOperations GetConvertToCanonicalOperations() { return { MapCanonicalDataTypes([](auto dtype) { using X = typename decltype(dtype)::Element; return GetConvertFunction<From, X>(); }), MapCanonicalDataTypes([](auto dtype) { using X = typename decltype(dtype)::Element; return DataTypeConversionTraits<From, X>::flags; }), }; } } namespace internal_data_type { template <typename From, typename To> struct IntegerIntegerDataTypeConversionTraits { constexpr static DataTypeConversionFlags flags = DataTypeConversionFlags::kSupported | ((std::numeric_limits<From>::digits <= std::numeric_limits<To>::digits && std::numeric_limits<From>::is_signed <= std::numeric_limits<To>::is_signed) ? DataTypeConversionFlags::kSafeAndImplicit : DataTypeConversionFlags{}) | ((std::numeric_limits<From>::digits + std::numeric_limits<From>::is_signed == std::numeric_limits<To>::digits + std::numeric_limits<To>::is_signed) ? DataTypeConversionFlags::kCanReinterpretCast : DataTypeConversionFlags{}); }; template <typename From, typename To> struct IntegerFloatDataTypeConversionTraits { constexpr static DataTypeConversionFlags flags = DataTypeConversionFlags::kSupported | ((std::numeric_limits<From>::digits <= std::numeric_limits<To>::digits) ? DataTypeConversionFlags::kSafeAndImplicit : DataTypeConversionFlags{}); }; template <typename From, typename To> struct FloatFloatDataTypeConversionTraits { constexpr static DataTypeConversionFlags flags = DataTypeConversionFlags::kSupported | ((std::numeric_limits<From>::digits <= std::numeric_limits<To>::digits && std::numeric_limits<From>::min_exponent >= std::numeric_limits<To>::min_exponent && std::numeric_limits<From>::max_exponent <= std::numeric_limits<To>::max_exponent) ? DataTypeConversionFlags::kSafeAndImplicit : DataTypeConversionFlags{}); }; template <typename From, typename To> struct NumericComplexDataTypeConversionTraits { constexpr static DataTypeConversionFlags flags = DataTypeConversionTraits<From, typename To::value_type>::flags & (DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit); }; template <typename From, typename To> struct ComplexComplexDataTypeConversionTraits : public DataTypeConversionTraits<typename From::value_type, typename To::value_type> {}; template <typename From, typename To> struct IntegerJsonDataTypeConversionTraits { constexpr static DataTypeConversionFlags flags = DataTypeConversionFlags::kSupported | ((std::numeric_limits<From>::digits <= 64) ? DataTypeConversionFlags::kSafeAndImplicit : DataTypeConversionFlags{}); }; template <typename From, typename To> struct FloatJsonDataTypeConversionTraits { constexpr static DataTypeConversionFlags flags = DataTypeConversionTraits<From, double>::flags & (DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit); }; } template <typename T> struct DataTypeConversionTraits<std::complex<T>, ::tensorstore::dtypes::json_t> : public DataTypeConversionTraits<T, ::tensorstore::dtypes::json_t> {}; #define TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS(FROM, TO, ...) \ template <> \ struct DataTypeConversionTraits<FROM, TO> { \ using From = FROM; \ using To = TO; \ constexpr static DataTypeConversionFlags flags = __VA_ARGS__; \ }; \ #define TENSORSTORE_INTERNAL_INHERITED_CONVERT(FROM, TO, PARENT) \ template <> \ struct DataTypeConversionTraits<FROM, TO> : public PARENT<FROM, TO> {}; \ TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::char_t, ::tensorstore::dtypes::byte_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit | DataTypeConversionFlags::kCanReinterpretCast) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::ustring_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit | DataTypeConversionFlags::kCanReinterpretCast) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::int4_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::int8_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::uint8_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::int16_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::uint16_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::int32_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::uint32_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::int64_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::uint64_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::float8_e4m3fn_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::float8_e5m2_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::float16_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::bfloat16_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::float32_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::float64_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::complex64_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::complex128_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::json_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::byte_t, ::tensorstore::dtypes::char_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::ustring_t, ::tensorstore::dtypes::json_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::int4_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::int8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::uint8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::int16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::uint16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::int32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::uint32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::int64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::uint64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::int4_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::int8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::uint8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::int16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::uint16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::int32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::uint32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::int64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::uint64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::int4_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::int8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::uint8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::int16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::uint16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::int32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::uint32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::int64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::uint64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::int4_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::int8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::uint8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::int16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::uint16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::int32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::uint32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::int64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::uint64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::int4_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::int8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::uint8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::int16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::uint16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::int32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::uint32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::int64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::uint64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::int4_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::int8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::uint8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::int16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::uint16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::int32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::uint32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::int64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::uint64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::int4_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::int8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::uint8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::int16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::uint16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::int32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::uint32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::int64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::uint64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::int4_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::int8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::uint8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::int16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::uint16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::int32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::uint32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::int64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::uint64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::int4_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::int8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::uint8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::int16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::uint16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::int32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::uint32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::int64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::uint64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::int4_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::int8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::uint8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::int16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::uint16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::int32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::uint32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::int64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::uint64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::float8_e4m3fn_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::float8_e5m2_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::float16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::bfloat16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::float32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::float64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::int4_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::int8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::uint8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::int16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::uint16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::int32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::uint32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::int64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::uint64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::float8_e4m3fn_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::float8_e5m2_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::float16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::bfloat16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::float32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::float64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::int4_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::int8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::uint8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::int16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::uint16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::int32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::uint32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::int64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::uint64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::float8_e4m3fn_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::float8_e5m2_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::float16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::bfloat16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::float32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::float64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::string_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::string_t, ::tensorstore::dtypes::json_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::int4_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::int8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::uint8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::int16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::uint16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::int32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::uint32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::int64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::uint64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::int4_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::int8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::uint8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::int16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::uint16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::int32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::uint32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::int64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::uint64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::int4_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::int8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::uint8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::int16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::uint16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::int32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::uint32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::int64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::uint64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::int4_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::int8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::uint8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::int16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::uint16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::int32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::uint32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::int64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::uint64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::int4_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::int8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::uint8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::int16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::uint16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::int32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::uint32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::int64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::uint64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::int4_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::int8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::uint8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::int16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::uint16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::int32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::uint32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::int64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::uint64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::int4_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::int8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::uint8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::int16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::uint16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::int32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::uint32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::int64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::uint64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::int4_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::int8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::uint8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::int16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::uint16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::int32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::uint32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::int64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::uint64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::int4_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::int8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::uint8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::int16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::uint16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::int32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::uint32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::int64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::uint64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::float16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::float32_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::float64_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::float16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::float32_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::float64_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::float16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::float32_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::float64_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::float16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::float32_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::float64_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::float16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::float32_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::float64_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::float16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::float32_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::float64_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::float16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::float32_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::float64_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::float16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::float32_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::float64_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::float16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::float32_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::float64_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::json_t, internal_data_type::IntegerJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::json_t, internal_data_type::IntegerJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::json_t, internal_data_type::IntegerJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::json_t, internal_data_type::IntegerJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::json_t, internal_data_type::IntegerJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::json_t, internal_data_type::IntegerJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::json_t, internal_data_type::IntegerJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::json_t, internal_data_type::IntegerJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::json_t, internal_data_type::IntegerJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::float16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::float32_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::float64_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::float16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::float32_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::float64_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::float16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::float32_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::float64_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::float16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::float32_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::float64_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::float16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::float32_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::float64_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::float16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::float32_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::float64_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::float16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::float32_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::float64_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::float16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::float32_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::float64_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::float16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::float32_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::float64_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::json_t, internal_data_type::FloatJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::json_t, internal_data_type::FloatJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::json_t, internal_data_type::FloatJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::json_t, internal_data_type::FloatJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::json_t, internal_data_type::FloatJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::json_t, internal_data_type::FloatJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::json_t, internal_data_type::FloatJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::json_t, internal_data_type::FloatJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::json_t, internal_data_type::FloatJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::complex64_t, internal_data_type::ComplexComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::complex128_t, internal_data_type::ComplexComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::complex64_t, internal_data_type::ComplexComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::complex128_t, internal_data_type::ComplexComplexDataTypeConversionTraits) #undef TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS #undef TENSORSTORE_INTERNAL_INHERITED_CONVERT } #endif
#include "tensorstore/data_type_conversion.h" #include <type_traits> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include <nlohmann/json.hpp> #include "tensorstore/data_type.h" #include "tensorstore/index.h" #include "tensorstore/internal/element_copy_function.h" #include "tensorstore/internal/elementwise_function.h" #include "tensorstore/internal/half_gtest.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::DataTypeConversionFlags; using ::tensorstore::DataTypeConversionTraits; using ::tensorstore::dtype_v; using ::tensorstore::Index; using ::tensorstore::IsDataTypeConversionSupported; using ::tensorstore::MatchesStatus; using ::tensorstore::Result; using ::tensorstore::StrCat; using ::tensorstore::internal::GetDataTypeConverter; using ::tensorstore::internal::GetDataTypeConverterOrError; using ::tensorstore::internal::GetElementCopyErrorStatus; using ::tensorstore::internal::IterationBufferKind; using ::tensorstore::internal::IterationBufferPointer; #define X(T, ...) \ using ::tensorstore::dtypes::T; \ TENSORSTORE_FOR_EACH_DATA_TYPE(X) #undef X constexpr DataTypeConversionFlags kSupported = DataTypeConversionFlags::kSupported; constexpr DataTypeConversionFlags kIdentity = DataTypeConversionFlags::kIdentity; constexpr DataTypeConversionFlags kSafeAndImplicit = DataTypeConversionFlags::kSafeAndImplicit; constexpr DataTypeConversionFlags kCanReinterpretCast = DataTypeConversionFlags::kCanReinterpretCast; template <typename From, typename To> void TestUnsupported() { static_assert(DataTypeConversionTraits<From, To>::flags == DataTypeConversionFlags{}); static_assert(!IsDataTypeConversionSupported<From, To>); auto r = GetDataTypeConverter(dtype_v<From>, dtype_v<To>); EXPECT_EQ(DataTypeConversionFlags{}, r.flags); } template <typename To, typename From> Result<To> TestConversion( From from, DataTypeConversionFlags flags = DataTypeConversionFlags{}) { SCOPED_TRACE( StrCat("TestConversion<To=", dtype_v<To>, ", From=", dtype_v<From>, ">") .c_str()); flags = flags | kSupported; if constexpr (!std::is_same_v<To, From>) { EXPECT_EQ(flags, (DataTypeConversionTraits<From, To>::flags)); } EXPECT_EQ(!!(flags & kSafeAndImplicit), (IsDataTypeConversionSupported<From, To, kSafeAndImplicit>)); EXPECT_TRUE((IsDataTypeConversionSupported<From, To>)); auto r = GetDataTypeConverter(dtype_v<From>, dtype_v<To>); EXPECT_EQ(flags, r.flags); To value; absl::Status status; if ((*r.closure.function)[IterationBufferKind::kContiguous]( r.closure.context, {1, 1}, IterationBufferPointer(&from, Index(0), Index(0)), IterationBufferPointer(&value, Index(0), Index(0)), &status) != 1) { return GetElementCopyErrorStatus(std::move(status)); } return value; } TEST(DataTypeConversionTest, Bool) { EXPECT_EQ(false, TestConversion<bool_t>(false, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(true, TestConversion<bool_t>(true, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(0, TestConversion<int4_t>(false, kSafeAndImplicit)); EXPECT_EQ(1, TestConversion<int4_t>(true, kSafeAndImplicit)); EXPECT_EQ(0, TestConversion<int8_t>(false, kSafeAndImplicit)); EXPECT_EQ(1, TestConversion<int8_t>(true, kSafeAndImplicit)); EXPECT_EQ(0, TestConversion<int16_t>(false, kSafeAndImplicit)); EXPECT_EQ(1, TestConversion<int16_t>(true, kSafeAndImplicit)); EXPECT_EQ(0, TestConversion<int32_t>(false, kSafeAndImplicit)); EXPECT_EQ(1, TestConversion<int32_t>(true, kSafeAndImplicit)); EXPECT_EQ(0, TestConversion<int64_t>(false, kSafeAndImplicit)); EXPECT_EQ(1, TestConversion<int64_t>(true, kSafeAndImplicit)); EXPECT_EQ(0u, TestConversion<uint8_t>(false, kSafeAndImplicit)); EXPECT_EQ(1u, TestConversion<uint8_t>(true, kSafeAndImplicit)); EXPECT_EQ(0u, TestConversion<uint16_t>(false, kSafeAndImplicit)); EXPECT_EQ(1u, TestConversion<uint16_t>(true, kSafeAndImplicit)); EXPECT_EQ(0u, TestConversion<uint32_t>(false, kSafeAndImplicit)); EXPECT_EQ(1u, TestConversion<uint32_t>(true, kSafeAndImplicit)); EXPECT_EQ(0u, TestConversion<uint64_t>(false, kSafeAndImplicit)); EXPECT_EQ(1u, TestConversion<uint64_t>(true, kSafeAndImplicit)); EXPECT_EQ(0, TestConversion<float16_t>(false, kSafeAndImplicit)); EXPECT_EQ(1, TestConversion<float16_t>(true, kSafeAndImplicit)); EXPECT_EQ(0, TestConversion<bfloat16_t>(false, kSafeAndImplicit)); EXPECT_EQ(1, TestConversion<bfloat16_t>(true, kSafeAndImplicit)); EXPECT_EQ(0, TestConversion<float32_t>(false, kSafeAndImplicit)); EXPECT_EQ(1, TestConversion<float32_t>(true, kSafeAndImplicit)); EXPECT_EQ(0, TestConversion<float64_t>(false, kSafeAndImplicit)); EXPECT_EQ(1, TestConversion<float64_t>(true, kSafeAndImplicit)); EXPECT_EQ(complex64_t(0), TestConversion<complex64_t>(false, kSafeAndImplicit)); EXPECT_EQ(complex64_t(1), TestConversion<complex64_t>(true, kSafeAndImplicit)); EXPECT_EQ(complex128_t(0), TestConversion<complex128_t>(false, kSafeAndImplicit)); EXPECT_EQ(complex128_t(1), TestConversion<complex128_t>(true, kSafeAndImplicit)); EXPECT_EQ(json_t(false), TestConversion<json_t>(false, kSafeAndImplicit)); EXPECT_EQ(json_t(true), TestConversion<json_t>(true, kSafeAndImplicit)); TestUnsupported<bool, string_t>(); TestUnsupported<bool, ustring_t>(); } TEST(DataTypeConversionTest, Int4) { using T = int4_t; constexpr T pos{7}; constexpr T neg{-8}; EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(true, TestConversion<bool_t>(neg)); EXPECT_EQ(static_cast<int8_t>(neg), TestConversion<int8_t>(neg, kSafeAndImplicit)); EXPECT_EQ(static_cast<int8_t>(pos), TestConversion<int8_t>(pos, kSafeAndImplicit)); EXPECT_EQ(static_cast<int16_t>(neg), TestConversion<int16_t>(neg, kSafeAndImplicit)); EXPECT_EQ(static_cast<int32_t>(neg), TestConversion<int32_t>(neg, kSafeAndImplicit)); EXPECT_EQ(static_cast<int64_t>(neg), TestConversion<int64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(static_cast<uint8_t>(neg), TestConversion<uint8_t>(neg)); EXPECT_EQ(static_cast<uint8_t>(pos), TestConversion<uint8_t>(pos)); EXPECT_EQ(static_cast<uint16_t>(neg), TestConversion<uint16_t>(neg)); EXPECT_EQ(static_cast<uint16_t>(pos), TestConversion<uint16_t>(pos)); EXPECT_EQ(static_cast<uint32_t>(neg), TestConversion<uint32_t>(neg)); EXPECT_EQ(static_cast<uint32_t>(pos), TestConversion<uint32_t>(pos)); EXPECT_EQ(static_cast<uint64_t>(neg), TestConversion<uint64_t>(neg)); EXPECT_EQ(static_cast<uint64_t>(pos), TestConversion<uint64_t>(pos)); EXPECT_EQ(float16_t(neg), TestConversion<float16_t>(neg, kSafeAndImplicit)); EXPECT_EQ(bfloat16_t(neg), TestConversion<bfloat16_t>(neg, kSafeAndImplicit)); EXPECT_EQ(float32_t(neg), TestConversion<float32_t>(neg, kSafeAndImplicit)); EXPECT_EQ(float64_t(neg), TestConversion<float64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(complex64_t(float32_t(neg)), TestConversion<complex64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(complex128_t(float64_t(neg)), TestConversion<complex128_t>(neg, kSafeAndImplicit)); EXPECT_EQ("-8", TestConversion<string_t>(neg)); EXPECT_EQ(ustring_t{"-8"}, TestConversion<ustring_t>(neg)); EXPECT_EQ(json_t(neg), TestConversion<json_t>(neg, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Int8) { using T = int8_t; constexpr T pos = 42; constexpr T neg = -42; EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(true, TestConversion<bool_t>(neg)); EXPECT_EQ(int4_t(neg), TestConversion<int4_t>(neg)); EXPECT_EQ(int4_t(pos), TestConversion<int4_t>(pos)); EXPECT_EQ(int8_t(neg), TestConversion<int8_t>( neg, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(int8_t(pos), TestConversion<int8_t>( pos, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(int16_t(neg), TestConversion<int16_t>(neg, kSafeAndImplicit)); EXPECT_EQ(int32_t(neg), TestConversion<int32_t>(neg, kSafeAndImplicit)); EXPECT_EQ(int64_t(neg), TestConversion<int64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(uint8_t(neg), TestConversion<uint8_t>(neg, kCanReinterpretCast)); EXPECT_EQ(uint8_t(pos), TestConversion<uint8_t>(pos, kCanReinterpretCast)); EXPECT_EQ(uint16_t(neg), TestConversion<uint16_t>(neg)); EXPECT_EQ(uint16_t(pos), TestConversion<uint16_t>(pos)); EXPECT_EQ(uint32_t(neg), TestConversion<uint32_t>(neg)); EXPECT_EQ(uint32_t(pos), TestConversion<uint32_t>(pos)); EXPECT_EQ(uint64_t(neg), TestConversion<uint64_t>(neg)); EXPECT_EQ(uint64_t(pos), TestConversion<uint64_t>(pos)); EXPECT_EQ(float16_t(neg), TestConversion<float16_t>(neg, kSafeAndImplicit)); EXPECT_EQ(bfloat16_t(neg), TestConversion<bfloat16_t>(neg, kSafeAndImplicit)); EXPECT_EQ(float32_t(neg), TestConversion<float32_t>(neg, kSafeAndImplicit)); EXPECT_EQ(float64_t(neg), TestConversion<float64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(complex64_t(float32_t(neg)), TestConversion<complex64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(complex128_t(float64_t(neg)), TestConversion<complex128_t>(neg, kSafeAndImplicit)); EXPECT_EQ("-42", TestConversion<string_t>(neg)); EXPECT_EQ(ustring_t{"-42"}, TestConversion<ustring_t>(neg)); EXPECT_EQ(json_t(neg), TestConversion<json_t>(neg, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Uint8) { using T = uint8_t; constexpr T pos = 42; constexpr T neg = -42; EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(true, TestConversion<bool_t>(neg)); EXPECT_EQ(int4_t(neg), TestConversion<int4_t>(neg)); EXPECT_EQ(int4_t(pos), TestConversion<int4_t>(pos)); EXPECT_EQ(int8_t(neg), TestConversion<int8_t>(neg, kCanReinterpretCast)); EXPECT_EQ(int8_t(pos), TestConversion<int8_t>(pos, kCanReinterpretCast)); EXPECT_EQ(int16_t(neg), TestConversion<int16_t>(neg, kSafeAndImplicit)); EXPECT_EQ(int32_t(neg), TestConversion<int32_t>(neg, kSafeAndImplicit)); EXPECT_EQ(int64_t(neg), TestConversion<int64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(uint8_t(neg), TestConversion<uint8_t>( neg, kCanReinterpretCast | kSafeAndImplicit | kIdentity)); EXPECT_EQ(uint8_t(pos), TestConversion<uint8_t>( pos, kCanReinterpretCast | kSafeAndImplicit | kIdentity)); EXPECT_EQ(uint16_t(neg), TestConversion<uint16_t>(neg, kSafeAndImplicit)); EXPECT_EQ(uint16_t(pos), TestConversion<uint16_t>(pos, kSafeAndImplicit)); EXPECT_EQ(uint32_t(neg), TestConversion<uint32_t>(neg, kSafeAndImplicit)); EXPECT_EQ(uint32_t(pos), TestConversion<uint32_t>(pos, kSafeAndImplicit)); EXPECT_EQ(uint64_t(neg), TestConversion<uint64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(uint64_t(pos), TestConversion<uint64_t>(pos, kSafeAndImplicit)); EXPECT_EQ(float16_t(neg), TestConversion<float16_t>(neg, kSafeAndImplicit)); EXPECT_EQ(bfloat16_t(neg), TestConversion<bfloat16_t>(neg, kSafeAndImplicit)); EXPECT_EQ(float32_t(neg), TestConversion<float32_t>(neg, kSafeAndImplicit)); EXPECT_EQ(float64_t(neg), TestConversion<float64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(complex64_t(float32_t(neg)), TestConversion<complex64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(complex128_t(float64_t(neg)), TestConversion<complex128_t>(neg, kSafeAndImplicit)); EXPECT_EQ("214", TestConversion<string_t>(neg)); EXPECT_EQ(ustring_t{"214"}, TestConversion<ustring_t>(neg)); EXPECT_EQ(json_t(neg), TestConversion<json_t>(neg, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Int16) { using T = int16_t; constexpr T pos = 12345; constexpr T neg = -12345; EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(true, TestConversion<bool_t>(neg)); EXPECT_EQ(int4_t(neg), TestConversion<int4_t>(neg)); EXPECT_EQ(int4_t(pos), TestConversion<int4_t>(pos)); EXPECT_EQ(int8_t(neg), TestConversion<int8_t>(neg)); EXPECT_EQ(int8_t(pos), TestConversion<int8_t>(pos)); EXPECT_EQ(int16_t(neg), TestConversion<int16_t>( neg, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(int32_t(neg), TestConversion<int32_t>(neg, kSafeAndImplicit)); EXPECT_EQ(int64_t(neg), TestConversion<int64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(uint8_t(neg), TestConversion<uint8_t>(neg)); EXPECT_EQ(uint8_t(pos), TestConversion<uint8_t>(pos)); EXPECT_EQ(uint16_t(neg), TestConversion<uint16_t>(neg, kCanReinterpretCast)); EXPECT_EQ(uint16_t(pos), TestConversion<uint16_t>(pos, kCanReinterpretCast)); EXPECT_EQ(uint32_t(neg), TestConversion<uint32_t>(neg)); EXPECT_EQ(uint32_t(pos), TestConversion<uint32_t>(pos)); EXPECT_EQ(uint64_t(neg), TestConversion<uint64_t>(neg)); EXPECT_EQ(uint64_t(pos), TestConversion<uint64_t>(pos)); EXPECT_EQ(float16_t(neg), TestConversion<float16_t>(neg)); EXPECT_EQ(bfloat16_t(neg), TestConversion<bfloat16_t>(neg)); EXPECT_EQ(float32_t(neg), TestConversion<float32_t>(neg, kSafeAndImplicit)); EXPECT_EQ(float64_t(neg), TestConversion<float64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(complex64_t(float32_t(neg)), TestConversion<complex64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(complex128_t(float64_t(neg)), TestConversion<complex128_t>(neg, kSafeAndImplicit)); EXPECT_EQ("-12345", TestConversion<string_t>(neg)); EXPECT_EQ(ustring_t{"-12345"}, TestConversion<ustring_t>(neg)); EXPECT_EQ(json_t(neg), TestConversion<json_t>(neg, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Uint16) { using T = uint16_t; constexpr T pos = 12345; constexpr T neg = -12345; EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(true, TestConversion<bool_t>(neg)); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(true, TestConversion<bool_t>(neg)); EXPECT_EQ(int4_t(neg), TestConversion<int4_t>(neg)); EXPECT_EQ(int4_t(pos), TestConversion<int4_t>(pos)); EXPECT_EQ(int8_t(neg), TestConversion<int8_t>(neg)); EXPECT_EQ(int8_t(pos), TestConversion<int8_t>(pos)); EXPECT_EQ(int16_t(neg), TestConversion<int16_t>(neg, kCanReinterpretCast)); EXPECT_EQ(int32_t(neg), TestConversion<int32_t>(neg, kSafeAndImplicit)); EXPECT_EQ(int64_t(neg), TestConversion<int64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(uint8_t(neg), TestConversion<uint8_t>(neg)); EXPECT_EQ(uint8_t(pos), TestConversion<uint8_t>(pos)); EXPECT_EQ(uint16_t(neg), TestConversion<uint16_t>( neg, kCanReinterpretCast | kIdentity | kSafeAndImplicit)); EXPECT_EQ(uint16_t(pos), TestConversion<uint16_t>( pos, kCanReinterpretCast | kIdentity | kSafeAndImplicit)); EXPECT_EQ(uint32_t(neg), TestConversion<uint32_t>(neg, kSafeAndImplicit)); EXPECT_EQ(uint32_t(pos), TestConversion<uint32_t>(pos, kSafeAndImplicit)); EXPECT_EQ(uint64_t(neg), TestConversion<uint64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(uint64_t(pos), TestConversion<uint64_t>(pos, kSafeAndImplicit)); EXPECT_EQ(float16_t(neg), TestConversion<float16_t>(neg)); EXPECT_EQ(bfloat16_t(neg), TestConversion<bfloat16_t>(neg)); EXPECT_EQ(float32_t(neg), TestConversion<float32_t>(neg, kSafeAndImplicit)); EXPECT_EQ(float64_t(neg), TestConversion<float64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(complex64_t(float32_t(neg)), TestConversion<complex64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(complex128_t(float64_t(neg)), TestConversion<complex128_t>(neg, kSafeAndImplicit)); EXPECT_EQ("53191", TestConversion<string_t>(neg)); EXPECT_EQ(ustring_t{"53191"}, TestConversion<ustring_t>(neg)); EXPECT_EQ(json_t(neg), TestConversion<json_t>(neg, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Int32) { using T = int32_t; constexpr T pos = 123456789; constexpr T neg = -123456789; EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(true, TestConversion<bool_t>(neg)); EXPECT_EQ(int4_t(neg), TestConversion<int4_t>(neg)); EXPECT_EQ(int4_t(pos), TestConversion<int4_t>(pos)); EXPECT_EQ(int8_t(neg), TestConversion<int8_t>(neg)); EXPECT_EQ(int8_t(pos), TestConversion<int8_t>(pos)); EXPECT_EQ(int16_t(neg), TestConversion<int16_t>(neg)); EXPECT_EQ(int32_t(neg), TestConversion<int32_t>( neg, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(int64_t(neg), TestConversion<int64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(uint8_t(neg), TestConversion<uint8_t>(neg)); EXPECT_EQ(uint8_t(pos), TestConversion<uint8_t>(pos)); EXPECT_EQ(uint16_t(neg), TestConversion<uint16_t>(neg)); EXPECT_EQ(uint16_t(pos), TestConversion<uint16_t>(pos)); EXPECT_EQ(uint32_t(neg), TestConversion<uint32_t>(neg, kCanReinterpretCast)); EXPECT_EQ(uint32_t(pos), TestConversion<uint32_t>(pos, kCanReinterpretCast)); EXPECT_EQ(uint64_t(neg), TestConversion<uint64_t>(neg)); EXPECT_EQ(uint64_t(pos), TestConversion<uint64_t>(pos)); EXPECT_EQ(float16_t(static_cast<float>(neg)), TestConversion<float16_t>(neg)); EXPECT_EQ(bfloat16_t(static_cast<float>(neg)), TestConversion<bfloat16_t>(neg)); EXPECT_EQ(float32_t(neg), TestConversion<float32_t>(neg)); EXPECT_EQ(float64_t(neg), TestConversion<float64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(complex64_t(float32_t(neg)), TestConversion<complex64_t>(neg)); EXPECT_EQ(complex128_t(float64_t(neg)), TestConversion<complex128_t>(neg, kSafeAndImplicit)); EXPECT_EQ("-123456789", TestConversion<string_t>(neg)); EXPECT_EQ(ustring_t{"-123456789"}, TestConversion<ustring_t>(neg)); EXPECT_EQ(json_t(neg), TestConversion<json_t>(neg, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Uint32) { using T = uint32_t; constexpr T pos = 123456789; constexpr T neg = -123456789; EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(true, TestConversion<bool_t>(neg)); EXPECT_EQ(int4_t(neg), TestConversion<int4_t>(neg)); EXPECT_EQ(int4_t(pos), TestConversion<int4_t>(pos)); EXPECT_EQ(int8_t(neg), TestConversion<int8_t>(neg)); EXPECT_EQ(int8_t(pos), TestConversion<int8_t>(pos)); EXPECT_EQ(int16_t(neg), TestConversion<int16_t>(neg)); EXPECT_EQ(int32_t(neg), TestConversion<int32_t>(neg, kCanReinterpretCast)); EXPECT_EQ(int64_t(neg), TestConversion<int64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(uint8_t(neg), TestConversion<uint8_t>(neg)); EXPECT_EQ(uint8_t(pos), TestConversion<uint8_t>(pos)); EXPECT_EQ(uint16_t(neg), TestConversion<uint16_t>(neg)); EXPECT_EQ(uint16_t(pos), TestConversion<uint16_t>(pos)); EXPECT_EQ(uint32_t(neg), TestConversion<uint32_t>( neg, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(uint32_t(pos), TestConversion<uint32_t>( pos, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(uint64_t(neg), TestConversion<uint64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(uint64_t(pos), TestConversion<uint64_t>(pos, kSafeAndImplicit)); EXPECT_EQ(float16_t(static_cast<float>(neg)), TestConversion<float16_t>(neg)); EXPECT_EQ(bfloat16_t(static_cast<float>(neg)), TestConversion<bfloat16_t>(neg)); EXPECT_EQ(float32_t(neg), TestConversion<float32_t>(neg)); EXPECT_EQ(float64_t(neg), TestConversion<float64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(complex64_t(float32_t(neg)), TestConversion<complex64_t>(neg)); EXPECT_EQ(complex128_t(float64_t(neg)), TestConversion<complex128_t>(neg, kSafeAndImplicit)); EXPECT_EQ("4171510507", TestConversion<string_t>(neg)); EXPECT_EQ(ustring_t{"4171510507"}, TestConversion<ustring_t>(neg)); EXPECT_EQ(json_t(neg), TestConversion<json_t>(neg, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Int64) { using T = int64_t; constexpr T pos = 123456789012345; constexpr T neg = -123456789012345; EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(true, TestConversion<bool_t>(neg)); EXPECT_EQ(int4_t(neg), TestConversion<int4_t>(neg)); EXPECT_EQ(int4_t(pos), TestConversion<int4_t>(pos)); EXPECT_EQ(int8_t(neg), TestConversion<int8_t>(neg)); EXPECT_EQ(int8_t(pos), TestConversion<int8_t>(pos)); EXPECT_EQ(int16_t(neg), TestConversion<int16_t>(neg)); EXPECT_EQ(int32_t(neg), TestConversion<int32_t>(neg)); EXPECT_EQ(int64_t(neg), TestConversion<int64_t>( neg, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(uint8_t(neg), TestConversion<uint8_t>(neg)); EXPECT_EQ(uint8_t(pos), TestConversion<uint8_t>(pos)); EXPECT_EQ(uint16_t(neg), TestConversion<uint16_t>(neg)); EXPECT_EQ(uint16_t(pos), TestConversion<uint16_t>(pos)); EXPECT_EQ(uint32_t(neg), TestConversion<uint32_t>(neg)); EXPECT_EQ(uint32_t(pos), TestConversion<uint32_t>(pos)); EXPECT_EQ(uint64_t(neg), TestConversion<uint64_t>(neg, kCanReinterpretCast)); EXPECT_EQ(uint64_t(pos), TestConversion<uint64_t>(pos, kCanReinterpretCast)); EXPECT_EQ(float16_t(static_cast<float>(neg)), TestConversion<float16_t>(neg)); EXPECT_EQ(bfloat16_t(static_cast<float>(neg)), TestConversion<bfloat16_t>(neg)); EXPECT_EQ(float32_t(neg), TestConversion<float32_t>(neg)); EXPECT_EQ(float64_t(neg), TestConversion<float64_t>(neg)); EXPECT_EQ(complex64_t(float32_t(neg)), TestConversion<complex64_t>(neg)); EXPECT_EQ(complex128_t(float64_t(neg)), TestConversion<complex128_t>(neg)); EXPECT_EQ("-123456789012345", TestConversion<string_t>(neg)); EXPECT_EQ(ustring_t{"-123456789012345"}, TestConversion<ustring_t>(neg)); EXPECT_EQ(json_t(neg), TestConversion<json_t>(neg, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Uint64) { using T = uint64_t; constexpr T pos = 123456789012345; constexpr T neg = -123456789012345; EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(true, TestConversion<bool_t>(neg)); EXPECT_EQ(int4_t(neg), TestConversion<int4_t>(neg)); EXPECT_EQ(int4_t(pos), TestConversion<int4_t>(pos)); EXPECT_EQ(int8_t(neg), TestConversion<int8_t>(neg)); EXPECT_EQ(int8_t(pos), TestConversion<int8_t>(pos)); EXPECT_EQ(int16_t(neg), TestConversion<int16_t>(neg)); EXPECT_EQ(int32_t(neg), TestConversion<int32_t>(neg)); EXPECT_EQ(int64_t(neg), TestConversion<int64_t>(neg, kCanReinterpretCast)); EXPECT_EQ(uint8_t(neg), TestConversion<uint8_t>(neg)); EXPECT_EQ(uint8_t(pos), TestConversion<uint8_t>(pos)); EXPECT_EQ(uint16_t(neg), TestConversion<uint16_t>(neg)); EXPECT_EQ(uint16_t(pos), TestConversion<uint16_t>(pos)); EXPECT_EQ(uint32_t(neg), TestConversion<uint32_t>(neg)); EXPECT_EQ(uint32_t(pos), TestConversion<uint32_t>(pos)); EXPECT_EQ(uint64_t(neg), TestConversion<uint64_t>( neg, kCanReinterpretCast | kSafeAndImplicit | kIdentity)); EXPECT_EQ(uint64_t(pos), TestConversion<uint64_t>( pos, kCanReinterpretCast | kSafeAndImplicit | kIdentity)); EXPECT_EQ(float16_t(static_cast<float>(neg)), TestConversion<float16_t>(neg)); EXPECT_EQ(bfloat16_t(static_cast<float>(neg)), TestConversion<bfloat16_t>(neg)); EXPECT_EQ(float32_t(neg), TestConversion<float32_t>(neg)); EXPECT_EQ(float64_t(neg), TestConversion<float64_t>(neg)); EXPECT_EQ(complex64_t(float32_t(neg)), TestConversion<complex64_t>(neg)); EXPECT_EQ(complex128_t(float64_t(neg)), TestConversion<complex128_t>(neg)); EXPECT_EQ("18446620616920539271", TestConversion<string_t>(neg)); EXPECT_EQ(ustring_t{"18446620616920539271"}, TestConversion<ustring_t>(neg)); EXPECT_EQ(json_t(neg), TestConversion<json_t>(neg, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Float16) { using T = float16_t; const T pos(42.5); EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(static_cast<int4_t>(pos), TestConversion<int4_t>(pos)); EXPECT_EQ(static_cast<int8_t>(pos), TestConversion<int8_t>(pos)); EXPECT_EQ(static_cast<int16_t>(pos), TestConversion<int16_t>(pos)); EXPECT_EQ(static_cast<int32_t>(pos), TestConversion<int32_t>(pos)); EXPECT_EQ(static_cast<int64_t>(pos), TestConversion<int64_t>(pos)); EXPECT_EQ(static_cast<uint8_t>(pos), TestConversion<uint8_t>(pos)); EXPECT_EQ(static_cast<uint16_t>(pos), TestConversion<uint16_t>(pos)); EXPECT_EQ(static_cast<uint32_t>(pos), TestConversion<uint32_t>(pos)); EXPECT_EQ(static_cast<uint64_t>(pos), TestConversion<uint64_t>(pos)); EXPECT_EQ(static_cast<float16_t>(pos), TestConversion<float16_t>( pos, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(static_cast<bfloat16_t>(pos), TestConversion<bfloat16_t>(pos)); EXPECT_EQ(static_cast<float32_t>(pos), TestConversion<float32_t>(pos, kSafeAndImplicit)); EXPECT_EQ(static_cast<float64_t>(pos), TestConversion<float64_t>(pos, kSafeAndImplicit)); EXPECT_EQ(complex64_t(float32_t(pos)), TestConversion<complex64_t>(pos, kSafeAndImplicit)); EXPECT_EQ(complex128_t(float64_t(pos)), TestConversion<complex128_t>(pos, kSafeAndImplicit)); EXPECT_EQ("42.5", TestConversion<string_t>(pos)); EXPECT_EQ(ustring_t{"42.5"}, TestConversion<ustring_t>(pos)); EXPECT_EQ(json_t(42.5), TestConversion<json_t>(pos, kSafeAndImplicit)); } template <typename InternalFloat> class InternalFloat8Test : public ::testing::Test {}; using InternalFloat8Types = ::testing::Types<float8_e4m3fn_t, float8_e4m3fnuz_t, float8_e4m3b11fnuz_t, float8_e5m2_t, float8_e5m2fnuz_t>; TYPED_TEST_SUITE(InternalFloat8Test, InternalFloat8Types); TYPED_TEST(InternalFloat8Test, DataTypeConversionTest_InternalFloat8Types) { using T = TypeParam; const T pos(3.5); EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(int4_t(pos), TestConversion<int4_t>(pos)); EXPECT_EQ(int8_t(pos), TestConversion<int8_t>(pos)); EXPECT_EQ(int16_t(pos), TestConversion<int16_t>(pos)); EXPECT_EQ(int32_t(pos), TestConversion<int32_t>(pos)); EXPECT_EQ(int64_t(pos), TestConversion<int64_t>(pos)); EXPECT_EQ(uint8_t(pos), TestConversion<uint8_t>(pos)); EXPECT_EQ(uint16_t(pos), TestConversion<uint16_t>(pos)); EXPECT_EQ(uint32_t(pos), TestConversion<uint32_t>(pos)); EXPECT_EQ(uint64_t(pos), TestConversion<uint64_t>(pos)); EXPECT_EQ(T(pos), TestConversion<T>(pos, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); if (!std::is_same_v<T, float8_e4m3fn_t>) { EXPECT_EQ(float8_e4m3fn_t(pos), TestConversion<float8_e4m3fn_t>(pos)); } if (!std::is_same_v<T, float8_e4m3fnuz_t>) { EXPECT_EQ(float8_e4m3fnuz_t(pos), TestConversion<float8_e4m3fnuz_t>(pos)); } if (!std::is_same_v<T, float8_e4m3b11fnuz_t>) { EXPECT_EQ(float8_e4m3b11fnuz_t(pos), TestConversion<float8_e4m3b11fnuz_t>(pos)); } if (!std::is_same_v<T, float8_e5m2fnuz_t>) { if (std::is_same_v<T, float8_e5m2_t>) { EXPECT_EQ(float8_e5m2fnuz_t(pos), TestConversion<float8_e5m2fnuz_t>(pos, kSafeAndImplicit)); } else { EXPECT_EQ(float8_e5m2fnuz_t(pos), TestConversion<float8_e5m2fnuz_t>(pos)); } } if (!std::is_same_v<T, float8_e5m2_t>) { EXPECT_EQ(float8_e5m2_t(pos), TestConversion<float8_e5m2_t>(pos)); } if (std::is_same_v<T, float8_e5m2fnuz_t>) { EXPECT_EQ(float16_t(pos), TestConversion<float16_t>(pos)); } else { EXPECT_EQ(float16_t(pos), TestConversion<float16_t>(pos, kSafeAndImplicit)); } EXPECT_EQ(bfloat16_t(pos), TestConversion<bfloat16_t>(pos, kSafeAndImplicit)); EXPECT_EQ(float32_t(pos), TestConversion<float32_t>(pos, kSafeAndImplicit)); EXPECT_EQ(float64_t(pos), TestConversion<float64_t>(pos, kSafeAndImplicit)); EXPECT_EQ(complex64_t(float32_t(pos)), TestConversion<complex64_t>(pos, kSafeAndImplicit)); EXPECT_EQ(complex128_t(float64_t(pos)), TestConversion<complex128_t>(pos, kSafeAndImplicit)); EXPECT_EQ("3.5", TestConversion<string_t>(pos)); EXPECT_EQ(ustring_t{"3.5"}, TestConversion<ustring_t>(pos)); EXPECT_EQ(json_t(3.5), TestConversion<json_t>(pos, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Bfloat16) { using T = bfloat16_t; const T pos(42.5); EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(int4_t(pos), TestConversion<int4_t>(pos)); EXPECT_EQ(int8_t(pos), TestConversion<int8_t>(pos)); EXPECT_EQ(int16_t(pos), TestConversion<int16_t>(pos)); EXPECT_EQ(int32_t(pos), TestConversion<int32_t>(pos)); EXPECT_EQ(int64_t(pos), TestConversion<int64_t>(pos)); EXPECT_EQ(uint8_t(pos), TestConversion<uint8_t>(pos)); EXPECT_EQ(uint16_t(pos), TestConversion<uint16_t>(pos)); EXPECT_EQ(uint32_t(pos), TestConversion<uint32_t>(pos)); EXPECT_EQ(uint64_t(pos), TestConversion<uint64_t>(pos)); EXPECT_EQ(float16_t(pos), TestConversion<float16_t>(pos)); EXPECT_EQ(bfloat16_t(pos), TestConversion<bfloat16_t>( pos, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(float32_t(pos), TestConversion<float32_t>(pos, kSafeAndImplicit)); EXPECT_EQ(float64_t(pos), TestConversion<float64_t>(pos, kSafeAndImplicit)); EXPECT_EQ(complex64_t(float32_t(pos)), TestConversion<complex64_t>(pos, kSafeAndImplicit)); EXPECT_EQ(complex128_t(float64_t(pos)), TestConversion<complex128_t>(pos, kSafeAndImplicit)); EXPECT_EQ("42.5", TestConversion<string_t>(pos)); EXPECT_EQ(ustring_t{"42.5"}, TestConversion<ustring_t>(pos)); EXPECT_EQ(json_t(42.5), TestConversion<json_t>(pos, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Float32) { using T = float32_t; constexpr T pos = 42.5; EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(int4_t(pos), TestConversion<int4_t>(pos)); EXPECT_EQ(int8_t(pos), TestConversion<int8_t>(pos)); EXPECT_EQ(int16_t(pos), TestConversion<int16_t>(pos)); EXPECT_EQ(int32_t(pos), TestConversion<int32_t>(pos)); EXPECT_EQ(int64_t(pos), TestConversion<int64_t>(pos)); EXPECT_EQ(uint8_t(pos), TestConversion<uint8_t>(pos)); EXPECT_EQ(uint16_t(pos), TestConversion<uint16_t>(pos)); EXPECT_EQ(uint32_t(pos), TestConversion<uint32_t>(pos)); EXPECT_EQ(uint64_t(pos), TestConversion<uint64_t>(pos)); EXPECT_EQ(uint64_t(pos), TestConversion<uint64_t>(pos)); EXPECT_EQ(float16_t(pos), TestConversion<float16_t>(pos)); EXPECT_EQ(bfloat16_t(pos), TestConversion<bfloat16_t>(pos)); EXPECT_EQ(float32_t(pos), TestConversion<float32_t>( pos, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(float64_t(pos), TestConversion<float64_t>(pos, kSafeAndImplicit)); EXPECT_EQ(complex64_t(float32_t(pos)), TestConversion<complex64_t>(pos, kSafeAndImplicit)); EXPECT_EQ(complex128_t(float64_t(pos)), TestConversion<complex128_t>(pos, kSafeAndImplicit)); EXPECT_EQ("42.5", TestConversion<string_t>(pos)); EXPECT_EQ(ustring_t{"42.5"}, TestConversion<ustring_t>(pos)); EXPECT_EQ(json_t(pos), TestConversion<json_t>(pos, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Float64) { using T = float64_t; constexpr T pos = 42.5; EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(int4_t(pos), TestConversion<int4_t>(pos)); EXPECT_EQ(int8_t(pos), TestConversion<int8_t>(pos)); EXPECT_EQ(int16_t(pos), TestConversion<int16_t>(pos)); EXPECT_EQ(int32_t(pos), TestConversion<int32_t>(pos)); EXPECT_EQ(int64_t(pos), TestConversion<int64_t>(pos)); EXPECT_EQ(uint8_t(pos), TestConversion<uint8_t>(pos)); EXPECT_EQ(uint16_t(pos), TestConversion<uint16_t>(pos)); EXPECT_EQ(uint32_t(pos), TestConversion<uint32_t>(pos)); EXPECT_EQ(uint64_t(pos), TestConversion<uint64_t>(pos)); EXPECT_EQ(float16_t(pos), TestConversion<float16_t>(pos)); EXPECT_EQ(bfloat16_t(pos), TestConversion<bfloat16_t>(pos)); EXPECT_EQ(float32_t(pos), TestConversion<float32_t>(pos)); EXPECT_EQ(float64_t(pos), TestConversion<float64_t>( pos, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(complex64_t(float32_t(pos)), TestConversion<complex64_t>(pos)); EXPECT_EQ(complex128_t(float64_t(pos)), TestConversion<complex128_t>(pos, kSafeAndImplicit)); EXPECT_EQ("42.5", TestConversion<string_t>(pos)); EXPECT_EQ(ustring_t{"42.5"}, TestConversion<ustring_t>(pos)); EXPECT_EQ(json_t(pos), TestConversion<json_t>(pos, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Complex64) { using T = complex64_t; constexpr T value(42.5, 43.5); EXPECT_EQ(int4_t(value.real()), TestConversion<int4_t>(value)); EXPECT_EQ(int8_t(value.real()), TestConversion<int8_t>(value)); EXPECT_EQ(int16_t(value.real()), TestConversion<int16_t>(value)); EXPECT_EQ(int32_t(value.real()), TestConversion<int32_t>(value)); EXPECT_EQ(int64_t(value.real()), TestConversion<int64_t>(value)); EXPECT_EQ(uint8_t(value.real()), TestConversion<uint8_t>(value)); EXPECT_EQ(uint8_t(value.real()), TestConversion<uint8_t>(value)); EXPECT_EQ(uint16_t(value.real()), TestConversion<uint16_t>(value)); EXPECT_EQ(uint16_t(value.real()), TestConversion<uint16_t>(value)); EXPECT_EQ(uint32_t(value.real()), TestConversion<uint32_t>(value)); EXPECT_EQ(uint32_t(value.real()), TestConversion<uint32_t>(value)); EXPECT_EQ(uint64_t(value.real()), TestConversion<uint64_t>(value)); EXPECT_EQ(uint64_t(value.real()), TestConversion<uint64_t>(value)); EXPECT_EQ(float16_t(value.real()), TestConversion<float16_t>(value)); EXPECT_EQ(bfloat16_t(value.real()), TestConversion<bfloat16_t>(value)); EXPECT_EQ(float32_t(value.real()), TestConversion<float32_t>(value)); EXPECT_EQ(float64_t(value.real()), TestConversion<float64_t>(value)); EXPECT_EQ(complex64_t(value), TestConversion<complex64_t>( value, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(complex128_t(value), TestConversion<complex128_t>(value, kSafeAndImplicit)); EXPECT_EQ("(42.5,43.5)", TestConversion<string_t>(value)); EXPECT_EQ(ustring_t{"(42.5,43.5)"}, TestConversion<ustring_t>(value)); EXPECT_EQ(json_t(json_t::array_t{value.real(), value.imag()}), TestConversion<json_t>(value, kSafeAndImplicit)); TestUnsupported<T, bool>(); } TEST(DataTypeConversionTest, Complex128) { using T = complex128_t; constexpr T value(42.5, 43.5); EXPECT_EQ(int4_t(value.real()), TestConversion<int4_t>(value)); EXPECT_EQ(int8_t(value.real()), TestConversion<int8_t>(value)); EXPECT_EQ(int16_t(value.real()), TestConversion<int16_t>(value)); EXPECT_EQ(int32_t(value.real()), TestConversion<int32_t>(value)); EXPECT_EQ(int64_t(value.real()), TestConversion<int64_t>(value)); EXPECT_EQ(uint8_t(value.real()), TestConversion<uint8_t>(value)); EXPECT_EQ(uint16_t(value.real()), TestConversion<uint16_t>(value)); EXPECT_EQ(uint32_t(value.real()), TestConversion<uint32_t>(value)); EXPECT_EQ(uint64_t(value.real()), TestConversion<uint64_t>(value)); EXPECT_EQ(float16_t(value.real()), TestConversion<float16_t>(value)); EXPECT_EQ(bfloat16_t(value.real()), TestConversion<bfloat16_t>(value)); EXPECT_EQ(float32_t(value.real()), TestConversion<float32_t>(value)); EXPECT_EQ(float64_t(value.real()), TestConversion<float64_t>(value)); EXPECT_EQ(complex64_t(value), TestConversion<complex64_t>(value)); EXPECT_EQ(complex128_t(value), TestConversion<complex128_t>( value, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ("(42.5,43.5)", TestConversion<string_t>(value)); EXPECT_EQ(ustring_t{"(42.5,43.5)"}, TestConversion<ustring_t>(value)); EXPECT_EQ(json_t(json_t::array_t{value.real(), value.imag()}), TestConversion<json_t>(value, kSafeAndImplicit)); TestUnsupported<T, bool>(); } TEST(DataTypeConversionTest, String) { using T = string_t; T value = "test"; T invalid_utf8 = "test\xa0"; TestUnsupported<T, bool>(); TestUnsupported<T, int4_t>(); TestUnsupported<T, int8_t>(); TestUnsupported<T, uint8_t>(); TestUnsupported<T, int16_t>(); TestUnsupported<T, uint16_t>(); TestUnsupported<T, int32_t>(); TestUnsupported<T, uint32_t>(); TestUnsupported<T, int64_t>(); TestUnsupported<T, uint64_t>(); TestUnsupported<T, float16_t>(); TestUnsupported<T, bfloat16_t>(); TestUnsupported<T, float32_t>(); TestUnsupported<T, float64_t>(); TestUnsupported<T, complex64_t>(); TestUnsupported<T, complex128_t>(); EXPECT_EQ(value, TestConversion<string_t>( value, kSafeAndImplicit | kCanReinterpretCast | kIdentity)); EXPECT_EQ(ustring_t{value}, TestConversion<ustring_t>(value)); EXPECT_THAT(TestConversion<ustring_t>(invalid_utf8), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid UTF-8 sequence encountered")); EXPECT_EQ(json_t("test"), TestConversion<json_t>(value)); EXPECT_THAT(TestConversion<json_t>(invalid_utf8), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid UTF-8 sequence encountered")); } TEST(DataTypeConversionTest, Ustring) { using T = ustring_t; T value{"test"}; TestUnsupported<T, bool>(); TestUnsupported<T, int4_t>(); TestUnsupported<T, int8_t>(); TestUnsupported<T, uint8_t>(); TestUnsupported<T, int16_t>(); TestUnsupported<T, uint16_t>(); TestUnsupported<T, int32_t>(); TestUnsupported<T, uint32_t>(); TestUnsupported<T, int64_t>(); TestUnsupported<T, uint64_t>(); TestUnsupported<T, float16_t>(); TestUnsupported<T, bfloat16_t>(); TestUnsupported<T, float32_t>(); TestUnsupported<T, float64_t>(); TestUnsupported<T, complex64_t>(); TestUnsupported<T, complex128_t>(); EXPECT_EQ(value.utf8, TestConversion<string_t>( value, kSafeAndImplicit | kCanReinterpretCast)); EXPECT_EQ(value, TestConversion<ustring_t>( value, kSafeAndImplicit | kCanReinterpretCast | kIdentity)); EXPECT_EQ(json_t("test"), TestConversion<json_t>(value, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Json) { EXPECT_THAT(TestConversion<bool_t>(json_t("hello")), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<bool_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<int4_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<int8_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<int16_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<int32_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<int64_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<uint8_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<uint16_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<uint32_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<uint64_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<float16_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<bfloat16_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<float32_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<float64_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<string_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<ustring_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<string_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_EQ(false, TestConversion<bool_t>(json_t(false))); EXPECT_EQ(false, TestConversion<bool_t>(json_t("false"))); EXPECT_EQ(true, TestConversion<bool_t>(json_t(true))); EXPECT_EQ(true, TestConversion<bool_t>(json_t("true"))); EXPECT_EQ(int4_t(-8), TestConversion<int4_t>(json_t(-8))); EXPECT_EQ(int8_t(58), TestConversion<int8_t>(json_t(58))); EXPECT_EQ(int16_t(1234), TestConversion<int16_t>(json_t(1234))); EXPECT_EQ(int16_t(1234), TestConversion<int16_t>(json_t("1234"))); EXPECT_EQ(int32_t(123456789), TestConversion<int32_t>(json_t(123456789))); EXPECT_EQ(int64_t(1234567890123), TestConversion<int64_t>(json_t(1234567890123))); EXPECT_EQ(uint8_t(254), TestConversion<uint8_t>(json_t(254u))); EXPECT_EQ(uint16_t(45123), TestConversion<uint16_t>(json_t(45123u))); EXPECT_EQ(uint32_t(4012356789), TestConversion<uint32_t>(json_t(4012356789u))); EXPECT_EQ(uint64_t(40123567891234), TestConversion<uint64_t>(json_t(40123567891234))); EXPECT_EQ(float16_t(42.5), TestConversion<float16_t>(json_t(42.5))); EXPECT_EQ(float16_t(42.5), TestConversion<float16_t>(json_t("42.5"))); EXPECT_EQ(bfloat16_t(42.5), TestConversion<bfloat16_t>(json_t(42.5))); EXPECT_EQ(bfloat16_t(42.5), TestConversion<bfloat16_t>(json_t("42.5"))); EXPECT_EQ(float32_t(42.5), TestConversion<float32_t>(json_t(42.5))); EXPECT_EQ(float64_t(42.5), TestConversion<float64_t>(json_t(42.5))); EXPECT_EQ(float64_t(42.5), TestConversion<float64_t>(json_t("42.5"))); TestUnsupported<json_t, complex64_t>(); TestUnsupported<json_t, complex128_t>(); EXPECT_EQ("hello", TestConversion<string_t>(json_t("hello"))); EXPECT_THAT(TestConversion<string_t>(json_t(7)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<string_t>(json_t(true)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<string_t>(json_t(1.5)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<string_t>(json_t::array({2, 3})), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_EQ(ustring_t{"hello"}, TestConversion<ustring_t>(json_t("hello"))); EXPECT_EQ(json_t("hello"), TestConversion<json_t>( json_t("hello"), kSafeAndImplicit | kIdentity | kCanReinterpretCast)); } TEST(GetDataTypeConverterOrErrorTest, Basic) { TENSORSTORE_EXPECT_OK( GetDataTypeConverterOrError(dtype_v<int32_t>, dtype_v<int32_t>)); TENSORSTORE_EXPECT_OK(GetDataTypeConverterOrError( dtype_v<int32_t>, dtype_v<int32_t>, kIdentity)); TENSORSTORE_EXPECT_OK(GetDataTypeConverterOrError( dtype_v<int32_t>, dtype_v<int64_t>, kSafeAndImplicit)); TENSORSTORE_EXPECT_OK(GetDataTypeConverterOrError( dtype_v<int32_t>, dtype_v<uint32_t>, kCanReinterpretCast)); EXPECT_THAT( GetDataTypeConverterOrError(dtype_v<json_t>, dtype_v<complex64_t>), MatchesStatus(absl::StatusCode::kInvalidArgument, "Cannot convert json -> complex64")); EXPECT_THAT( GetDataTypeConverterOrError(dtype_v<uint32_t>, dtype_v<int32_t>, kSafeAndImplicit), MatchesStatus( absl::StatusCode::kInvalidArgument, "Explicit data type conversion required to convert uint32 -> int32")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/data_type_conversion.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/data_type_conversion_test.cc
4f887a6430414cd6088e1743555015b10f116d50
19fab0f1-fdbb-4a45-9421-72aa1b6cb629
cpp
tensorflow/tensorflow
optimization_registry
tensorflow/core/common_runtime/optimization_registry.cc
tensorflow/core/common_runtime/optimization_registry_test.cc
#include "tensorflow/core/common_runtime/optimization_registry.h" #include <string> #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/util/debug_data_dumper.h" #include "tensorflow/core/util/dump_graph.h" namespace tensorflow { OptimizationPassRegistry* OptimizationPassRegistry::Global() { static OptimizationPassRegistry* global_optimization_registry = new OptimizationPassRegistry; return global_optimization_registry; } void OptimizationPassRegistry::Register( Grouping grouping, int phase, std::unique_ptr<GraphOptimizationPass> pass) { groups_[grouping][phase].push_back(std::move(pass)); } Status OptimizationPassRegistry::RunGrouping( Grouping grouping, const GraphOptimizationPassOptions& options) { const char* grouping_name = GetGroupingName(grouping); auto dump_graph = [&](std::string func_name, const std::string& group, const std::string& tag, bool bypass_filter) { if (func_name.empty()) func_name = "unknown_graph"; if (options.graph) { DEBUG_DATA_DUMPER()->DumpGraph(func_name, group, tag, options.graph->get(), options.flib_def, bypass_filter); } if (options.partition_graphs) { for (auto& part : *options.partition_graphs) { DEBUG_DATA_DUMPER()->DumpGraph(func_name + "_partition_" + part.first, group, tag, part.second.get(), options.flib_def, bypass_filter); } } }; dump_graph(options.debug_filename_prefix, kDebugGroupMain, strings::StrCat("before_opt_group_", grouping_name), VLOG_IS_ON(3)); auto group = groups_.find(grouping); if (group != groups_.end()) { static const char* kGraphOptimizationCategory = "GraphOptimizationPass"; tensorflow::metrics::ScopedCounter<2> group_timings( tensorflow::metrics::GetGraphOptimizationCounter(), {kGraphOptimizationCategory, "*"}); for (auto& phase : group->second) { VLOG(1) << "Running optimization phase " << phase.first; for (auto& pass : phase.second) { VLOG(1) << "Running optimization pass: " << pass->name(); if (options.graph) { VLOG(1) << "Graph #nodes " << (*options.graph)->num_nodes() << " #edges " << (*options.graph)->num_edges(); } tensorflow::metrics::ScopedCounter<2> pass_timings( tensorflow::metrics::GetGraphOptimizationCounter(), {kGraphOptimizationCategory, pass->name()}); Status s = pass->Run(options); if (!s.ok()) return s; pass_timings.ReportAndStop(); dump_graph(options.debug_filename_prefix, kDebugGroupGraphOptPass, strings::StrCat("after_opt_group_", grouping_name, "_phase_", phase.first, "_", pass->name()), VLOG_IS_ON(5)); } } group_timings.ReportAndStop(); } VLOG(1) << "Finished optimization of a group " << grouping; if (options.graph && group != groups_.end()) { VLOG(1) << "Graph #nodes " << (*options.graph)->num_nodes() << " #edges " << (*options.graph)->num_edges(); } dump_graph(options.debug_filename_prefix, kDebugGroupMain, strings::StrCat("after_opt_group_", grouping_name), VLOG_IS_ON(3) || (VLOG_IS_ON(2) && grouping == Grouping::POST_REWRITE_FOR_EXEC)); return absl::OkStatus(); } void OptimizationPassRegistry::LogGrouping(Grouping grouping, int vlog_level) { auto group = groups_.find(grouping); if (group != groups_.end()) { for (auto& phase : group->second) { for (auto& pass : phase.second) { VLOG(vlog_level) << "Registered optimization pass grouping " << grouping << " phase " << phase.first << ": " << pass->name(); } } } } void OptimizationPassRegistry::LogAllGroupings(int vlog_level) { for (auto group = groups_.begin(); group != groups_.end(); ++group) { LogGrouping(group->first, vlog_level); } } }
#include "tensorflow/core/common_runtime/optimization_registry.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { class TestOptimization : public GraphOptimizationPass { public: static int count_; Status Run(const GraphOptimizationPassOptions& options) override { ++count_; return absl::OkStatus(); } }; int TestOptimization::count_ = 0; REGISTER_OPTIMIZATION(OptimizationPassRegistry::PRE_PLACEMENT, 1, TestOptimization); TEST(OptimizationRegistry, OptimizationPass) { EXPECT_EQ(0, TestOptimization::count_); GraphOptimizationPassOptions options; std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); options.graph = &graph; std::unique_ptr<FunctionLibraryDefinition> flib_def( new FunctionLibraryDefinition(OpRegistry::Global(), FunctionDefLibrary())); options.flib_def = flib_def.get(); EXPECT_EQ(absl::OkStatus(), OptimizationPassRegistry::Global()->RunGrouping( OptimizationPassRegistry::PRE_PLACEMENT, options)); EXPECT_EQ(1, TestOptimization::count_); } class UpdateFuncLibPass : public GraphOptimizationPass { public: Status Run(const GraphOptimizationPassOptions& options) override { return options.flib_def->AddFunctionDef(test::function::WXPlusB()); } }; REGISTER_OPTIMIZATION(OptimizationPassRegistry::POST_REWRITE_FOR_EXEC, 1, UpdateFuncLibPass); class OptimizationPassTest : public ::testing::Test { public: OptimizationPassTest() { FunctionDefLibrary func_def_lib; *func_def_lib.add_function() = test::function::XTimesTwo(); flib_def_.reset( new FunctionLibraryDefinition(OpRegistry::Global(), func_def_lib)); } void RunPass() { GraphOptimizationPassOptions options; options.flib_def = flib_def_.get(); EXPECT_EQ(absl::OkStatus(), OptimizationPassRegistry::Global()->RunGrouping( OptimizationPassRegistry::POST_REWRITE_FOR_EXEC, options)); } const FunctionDef* GetFunctionDef(const string& func) const { return flib_def_->Find(func); } private: std::unique_ptr<FunctionLibraryDefinition> flib_def_; }; TEST_F(OptimizationPassTest, UpdateFuncLibPass) { RunPass(); auto f1 = GetFunctionDef("XTimesTwo"); ASSERT_NE(f1, nullptr); EXPECT_EQ(test::function::XTimesTwo().DebugString(), f1->DebugString()); auto f2 = GetFunctionDef("WXPlusB"); ASSERT_NE(f2, nullptr); EXPECT_EQ(test::function::WXPlusB().DebugString(), f2->DebugString()); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/optimization_registry.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/optimization_registry_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ea00a1a5-d830-4939-b4a6-4a3529b5083a
cpp
tensorflow/tensorflow
freeze_requantization_ranges
tensorflow/tools/graph_transforms/freeze_requantization_ranges.cc
tensorflow/tools/graph_transforms/freeze_requantization_ranges_test.cc
#include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { struct MinMaxRecord { string name; float min; float max; }; Status ExtractMinMaxRecords(const string& log_file_name, std::vector<MinMaxRecord>* records) { string file_data; TF_RETURN_IF_ERROR( ReadFileToString(Env::Default(), log_file_name, &file_data)); const string print_suffix("__print__"); const string requant_prefix("__requant_min_max:"); std::vector<string> file_lines = str_util::Split(file_data, '\n'); for (const string& file_line : file_lines) { if (!absl::StrContains(file_line, print_suffix + ";" + requant_prefix)) { continue; } std::vector<string> line_parts = str_util::Split(file_line, ';'); if (line_parts.size() < 2) { continue; } bool min_max_found = false; int min_max_index; for (int i = 1; i < line_parts.size(); ++i) { if (absl::StartsWith(line_parts[i], requant_prefix)) { min_max_found = true; min_max_index = i; } } if (!min_max_found) { continue; } string min_max_string = line_parts[min_max_index]; std::vector<string> min_max_parts = str_util::Split(min_max_string, '['); if ((min_max_parts.size() != 3) || (min_max_parts[0] != requant_prefix)) { continue; } string min_string = min_max_parts[1]; std::vector<string> min_string_parts = str_util::Split(min_string, ']'); if (min_string_parts.size() != 2) { continue; } string min_number_string = min_string_parts[0]; float min; if (!strings::safe_strtof(min_number_string.c_str(), &min)) { continue; } string max_string = min_max_parts[2]; std::vector<string> max_string_parts = str_util::Split(max_string, ']'); if (max_string_parts.size() != 2) { continue; } string max_number_string = max_string_parts[0]; float max; if (!strings::safe_strtof(max_number_string.c_str(), &max)) { continue; } StringPiece name_string = line_parts[min_max_index - 1]; if (!str_util::EndsWith(name_string, print_suffix)) { continue; } string name( name_string.substr(0, name_string.size() - print_suffix.size())); records->push_back({name, min, max}); } return OkStatus(); } Status FreezeRequantizationRanges(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def) { string min_max_log_file; TF_RETURN_IF_ERROR( context.GetOneStringParameter("min_max_log_file", "", &min_max_log_file)); if (min_max_log_file.empty()) { return errors::InvalidArgument( "You must pass a file name to min_max_log_file"); } float min_percentile; TF_RETURN_IF_ERROR( context.GetOneFloatParameter("min_percentile", 5.0f, &min_percentile)); float max_percentile; TF_RETURN_IF_ERROR( context.GetOneFloatParameter("max_percentile", 5.0f, &max_percentile)); std::vector<MinMaxRecord> records; TF_RETURN_IF_ERROR(ExtractMinMaxRecords(min_max_log_file, &records)); if (records.empty()) { return errors::InvalidArgument( "No min/max range logs were found in the log file"); } std::map<string, const NodeDef*> node_map; MapNamesToNodes(input_graph_def, &node_map); bool any_missing_nodes = false; std::map<string, std::vector<MinMaxRecord>> records_by_node; for (const MinMaxRecord& record : records) { records_by_node[record.name].push_back(record); if (!node_map.count(record.name)) { any_missing_nodes = true; LOG(WARNING) << "Node from log not found in graph: " << record.name; } } if (any_missing_nodes) { return errors::InvalidArgument( "Nodes were found in the log file that aren't present in the graph"); } std::map<string, std::pair<float, float>> range_for_nodes; for (const auto& record_info : records_by_node) { const string& name = record_info.first; const std::vector<MinMaxRecord> records = record_info.second; std::vector<float> mins; std::vector<float> maxs; for (const MinMaxRecord& record : records) { mins.push_back(record.min); maxs.push_back(record.max); } std::sort(mins.begin(), mins.end()); std::sort(maxs.begin(), maxs.end()); int min_index = std::round(mins.size() * (min_percentile / 100.0f)); if (min_index < 0) { min_index = 0; } int max_index = std::round(maxs.size() * (1.0f - (max_percentile / 100.0f))); if (max_index > (maxs.size() - 1)) { max_index = maxs.size() - 1; } const float min = mins[min_index]; const float max = maxs[max_index]; range_for_nodes[name] = {min, max}; } std::map<string, string> inputs_to_rename; GraphDef frozen_graph_def; for (const NodeDef& node : input_graph_def.node()) { if (range_for_nodes.count(node.name())) { if (node.op() != "RequantizationRange") { return errors::InvalidArgument( "Node is expected to be a RequantizationRange op: ", node.name(), ", but is: ", node.op()); } const float min_value = range_for_nodes.at(node.name()).first; NodeDef* min_node = frozen_graph_def.mutable_node()->Add(); min_node->set_op("Const"); min_node->set_name(node.name() + "/frozen_min"); SetNodeAttr("dtype", DT_FLOAT, min_node); Tensor min_tensor(DT_FLOAT, {}); min_tensor.flat<float>()(0) = min_value; SetNodeTensorAttr<float>("value", min_tensor, min_node); inputs_to_rename[node.name() + ":0"] = min_node->name() + ":0"; const float max_value = range_for_nodes.at(node.name()).second; NodeDef* max_node = frozen_graph_def.mutable_node()->Add(); max_node->set_op("Const"); max_node->set_name(node.name() + "/frozen_max"); SetNodeAttr("dtype", DT_FLOAT, max_node); Tensor max_tensor(DT_FLOAT, {}); max_tensor.flat<float>()(0) = max_value; SetNodeTensorAttr<float>("value", max_tensor, max_node); inputs_to_rename[node.name() + ":1"] = max_node->name() + ":0"; } else { NodeDef* new_node = frozen_graph_def.mutable_node()->Add(); *new_node = node; } } return RenameNodeInputs(frozen_graph_def, inputs_to_rename, std::unordered_set<string>(), output_graph_def); } REGISTER_GRAPH_TRANSFORM("freeze_requantization_ranges", FreezeRequantizationRanges); } }
#include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/image_ops.h" #include "tensorflow/cc/ops/nn_ops.h" #include "tensorflow/cc/ops/sendrecv_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/public/session.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { Status FreezeRequantizationRanges(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def); struct MinMaxRecord { string name; float min; float max; }; Status ExtractMinMaxRecords(const string& log_file_name, std::vector<MinMaxRecord>* records); class FreezeRequantizationRangesTest : public ::testing::Test { protected: void TestFreezeRequantizationRanges() { auto root = tensorflow::Scope::NewRootScope(); using namespace ::tensorflow::ops; Tensor quantized_tensor(DT_QUINT8, TensorShape({1, 6})); test::FillValues<quint8>(&quantized_tensor, {0, 0, 0, 0, 0, 0}); Output quantized_op = Const(root.WithOpName("quantized_op"), Input::Initializer(quantized_tensor)); Tensor quantized_min_tensor(DT_FLOAT, TensorShape({})); test::FillValues<float>(&quantized_min_tensor, {2.0f}); Output quantized_min_op = Const(root.WithOpName("quantized_min_op"), Input::Initializer(quantized_min_tensor)); Tensor quantized_max_tensor(DT_FLOAT, TensorShape({})); test::FillValues<float>(&quantized_max_tensor, {2.0f}); Output quantized_max_op = Const(root.WithOpName("quantized_max_op"), Input::Initializer(quantized_min_tensor)); Tensor offset_tensor(DT_QUINT8, TensorShape({6})); test::FillValues<quint8>(&offset_tensor, {1, 2, 3, 4, 5, 6}); Output offset_op = Const(root.WithOpName("offset_op"), Input::Initializer(offset_tensor)); Tensor offset_min_tensor(DT_FLOAT, TensorShape({})); test::FillValues<float>(&offset_min_tensor, {0.0f}); Output offset_min_op = Const(root.WithOpName("offset_min_op"), Input::Initializer(offset_min_tensor)); Tensor offset_max_tensor(DT_FLOAT, TensorShape({})); test::FillValues<float>(&offset_max_tensor, {255.0f}); Output offset_max_op = Const(root.WithOpName("offset_max_op"), Input::Initializer(offset_max_tensor)); QuantizedBiasAdd quantized_bias_add_op( root.WithOpName("bias_add_op"), quantized_op, offset_op, quantized_min_op, quantized_max_op, offset_min_op, offset_max_op, DT_QINT32); RequantizationRange requantization_range_op( root.WithOpName("requantization_range_op"), quantized_bias_add_op.output, quantized_bias_add_op.min_out, quantized_bias_add_op.max_out); Requantize requantize_op( root.WithOpName("requantize_op"), quantized_bias_add_op.output, quantized_bias_add_op.min_out, quantized_bias_add_op.max_out, requantization_range_op.output_min, requantization_range_op.output_max, DT_QUINT8); Output dequantize_op = Dequantize(root.WithOpName("dequantize_op"), requantize_op.output, requantize_op.output_min, requantize_op.output_max); GraphDef graph_def; TF_ASSERT_OK(root.ToGraphDef(&graph_def)); const string min_max_log_file_name = io::JoinPath(testing::TmpDir(), "min_max_log_file.txt"); { std::unique_ptr<WritableFile> file; TF_ASSERT_OK( Env::Default()->NewWritableFile(min_max_log_file_name, &file)); TF_ASSERT_OK(file->Append("Something irrelevant\n")); TF_ASSERT_OK( file->Append("[SomePrefix] " ";requantization_range_op__print__;__requant_min_max:" "[-2.4313571][10.584145]\n")); TF_ASSERT_OK(file->Append("Something else irrelevant\n")); } TransformFuncContext context; context.input_names = {}; context.output_names = {"dequantize_op"}; context.params = {{"min_max_log_file", {min_max_log_file_name}}}; GraphDef frozen_graph_def; TF_EXPECT_OK( FreezeRequantizationRanges(graph_def, context, &frozen_graph_def)); std::map<string, const NodeDef*> node_map; MapNamesToNodes(frozen_graph_def, &node_map); EXPECT_EQ(0, node_map.count("requantization_range_op")); EXPECT_EQ(1, node_map.count("requantize_op")); const string& min_input = NodeNameFromInput(node_map.at("requantize_op")->input(3)); ASSERT_EQ(1, node_map.count(min_input)); EXPECT_EQ("Const", node_map.at(min_input)->op()); const string& max_input = NodeNameFromInput(node_map.at("requantize_op")->input(4)); ASSERT_EQ(1, node_map.count(max_input)); EXPECT_EQ("Const", node_map.at(max_input)->op()); std::unique_ptr<Session> original_session(NewSession(SessionOptions())); TF_ASSERT_OK(original_session->Create(graph_def)); std::vector<Tensor> original_outputs; TF_ASSERT_OK( original_session->Run({}, {"dequantize_op"}, {}, &original_outputs)); std::unique_ptr<Session> frozen_session(NewSession(SessionOptions())); TF_ASSERT_OK(frozen_session->Create(frozen_graph_def)); std::vector<Tensor> frozen_outputs; TF_ASSERT_OK( frozen_session->Run({}, {"dequantize_op"}, {}, &frozen_outputs)); ASSERT_EQ(original_outputs.size(), frozen_outputs.size()); ASSERT_EQ(1, frozen_outputs.size()); test::ExpectTensorNear<float>(original_outputs[0], frozen_outputs[0], 0.5); } void TestExtractMinMaxRecords() { const string min_max_log_file_name = io::JoinPath(testing::TmpDir(), "min_max_log_file2.txt"); { std::unique_ptr<WritableFile> file; TF_ASSERT_OK( Env::Default()->NewWritableFile(min_max_log_file_name, &file)); TF_ASSERT_OK(file->Append("Something irrelevant\n")); TF_ASSERT_OK( file->Append("[SomePrefix] " ";requantization_range_op__print__;__requant_min_max:" "[-2.4313571][10.584145]\n")); TF_ASSERT_OK(file->Append("Something else irrelevant\n")); TF_ASSERT_OK(file->Append( "[SomeOtherPrefix] " ";other_requantization_range_op__print__;__requant_min_max:" "[-1.0][2.0]\n")); TF_ASSERT_OK(file->Append("Something else irrelevant\n")); TF_ASSERT_OK( file->Append("[SomePrefix] " ";requantization_range_op__print__;__requant_min_max:" "[-1.bad][2.0]\n")); } std::vector<MinMaxRecord> records; TF_ASSERT_OK(ExtractMinMaxRecords(min_max_log_file_name, &records)); ASSERT_EQ(2, records.size()); EXPECT_EQ("requantization_range_op", records[0].name); EXPECT_NEAR(-2.4313571f, records[0].min, 1e-5f); EXPECT_NEAR(10.584145f, records[0].max, 1e-5f); EXPECT_EQ("other_requantization_range_op", records[1].name); EXPECT_NEAR(-1.0f, records[1].min, 1e-5f); EXPECT_NEAR(2.0f, records[1].max, 1e-5f); } }; TEST_F(FreezeRequantizationRangesTest, TestFreezeRequantizationRanges) { TestFreezeRequantizationRanges(); } TEST_F(FreezeRequantizationRangesTest, TestExtractMinMaxRecords) { TestExtractMinMaxRecords(); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/graph_transforms/freeze_requantization_ranges.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/graph_transforms/freeze_requantization_ranges_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2d33973b-0f6d-4d9e-933b-378a9e121c71
cpp
tensorflow/tensorflow
partition_assignment
third_party/xla/xla/service/spmd/partition_assignment.cc
third_party/xla/xla/service/spmd/partition_assignment_test.cc
#include "xla/service/spmd/partition_assignment.h" #include <cstdint> #include <memory> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/xla.pb.h" namespace xla { PartitioningAlgorithm::PartitioningAlgorithm(AlgorithmKind kind, int64_t num_partitions) { kind_ = kind; CHECK_GT(num_partitions, 1) << "Number of partitions must be at least two."; num_partitions_ = num_partitions; } absl::string_view PartitioningAlgorithm::name() const { switch (kind_) { case AlgorithmKind::kNoop: default: return "Noop"; } } const PartitioningAlgorithm::AlgorithmKind& PartitioningAlgorithm::kind() const { return kind_; } int64_t PartitioningAlgorithm::num_partitions() const { return num_partitions_; } std::unique_ptr<PartitioningAlgorithm> PartitioningAlgorithm::CreateNoopPartitioning(int64_t num_partitions) { return std::make_unique<NoopPartitioning>(num_partitions); } NoopPartitioning::NoopPartitioning(int64_t num_partitions) : PartitioningAlgorithm(AlgorithmKind::kNoop, num_partitions) { VLOG(2) << "Created a no-op algorithm with the number of partitions: " << num_partitions; } absl::StatusOr<bool> NoopPartitioning::Run(HloModule* module) const { VLOG(2) << "No-op algorithm was called to partition module: " << module->name(); return false; } PartitionAssignment::PartitionAssignment(int64_t num_partitions) { CHECK_GT(num_partitions, 1) << "Number of partitions must be at least two."; num_partitions_ = num_partitions; } absl::string_view PartitionAssignment::name() const { return "partitioning-assignment"; } const PartitioningAlgorithm* PartitionAssignment::algorithm() { return algorithm_.get(); } int64_t PartitionAssignment::num_partitions() const { return num_partitions_; } std::unique_ptr<PartitioningAlgorithm> PartitionAssignment::ChoosePartitioningAlgorithm( const HloModule& module) const { auto algo = module.config().debug_options().xla_partitioning_algorithm(); CHECK_EQ(algo, DebugOptions::PARTITIONING_ALGORITHM_NOOP); return PartitioningAlgorithm::CreateNoopPartitioning(num_partitions()); } absl::StatusOr<bool> PartitionAssignment::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { VLOG(2) << "Running partition assignment on module " << module->name(); algorithm_ = ChoosePartitioningAlgorithm(*module); return algorithm()->Run(module); } }
#include "xla/service/spmd/partition_assignment.h" #include <memory> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using PartitionAssignmentTest = HloTestBase; TEST_F(PartitionAssignmentTest, NoopAlg) { absl::string_view hlo_string = R"( HloModule module ENTRY %elementwise { %param0 = f32[16,16]{1,0} parameter(0) ROOT %copy = f32[16,16]{1,0} copy(%param0) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); DebugOptions debug_options = GetDebugOptionsForTest(); debug_options.set_xla_partitioning_algorithm( DebugOptions::PARTITIONING_ALGORITHM_NOOP); PartitionAssignment partition_assignment(16); EXPECT_EQ(partition_assignment.algorithm(), nullptr); TF_ASSERT_OK_AND_ASSIGN(bool changed, partition_assignment.Run(module.get())); EXPECT_FALSE(changed); EXPECT_NE(partition_assignment.algorithm(), nullptr); EXPECT_EQ(partition_assignment.algorithm()->kind(), PartitioningAlgorithm::AlgorithmKind::kNoop); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/spmd/partition_assignment.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/spmd/partition_assignment_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d27c1299-07dc-48ba-9a98-b5439509c8ea
cpp
abseil/abseil-cpp
randen_hwaes
absl/random/internal/randen_hwaes.cc
absl/random/internal/randen_hwaes_test.cc
#include "absl/random/internal/randen_hwaes.h" #include <cstdint> #include <cstring> #include "absl/base/attributes.h" #include "absl/numeric/int128.h" #include "absl/random/internal/platform.h" #include "absl/random/internal/randen_traits.h" #if ABSL_HAVE_ACCELERATED_AES #if defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32) || \ defined(ABSL_ARCH_PPC) || defined(ABSL_ARCH_ARM) || \ defined(ABSL_ARCH_AARCH64) #define ABSL_RANDEN_HWAES_IMPL 1 #endif #endif #if !defined(ABSL_RANDEN_HWAES_IMPL) #include <cstdio> #include <cstdlib> namespace absl { ABSL_NAMESPACE_BEGIN namespace random_internal { bool HasRandenHwAesImplementation() { return false; } const void* RandenHwAes::GetKeys() { const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH; fprintf(stderr, "AES Hardware detection failed (%d).\n", d); exit(1); return nullptr; } void RandenHwAes::Absorb(const void*, void*) { const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH; fprintf(stderr, "AES Hardware detection failed (%d).\n", d); exit(1); } void RandenHwAes::Generate(const void*, void*) { const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH; fprintf(stderr, "AES Hardware detection failed (%d).\n", d); exit(1); } } ABSL_NAMESPACE_END } #else namespace { using absl::random_internal::RandenTraits; } #if (defined(__clang__) || defined(__GNUC__)) #if defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32) #define ABSL_TARGET_CRYPTO __attribute__((target("aes"))) #elif defined(ABSL_ARCH_PPC) #define ABSL_TARGET_CRYPTO __attribute__((target("crypto"))) #else #define ABSL_TARGET_CRYPTO #endif #else #define ABSL_TARGET_CRYPTO #endif #if defined(ABSL_ARCH_PPC) #include <altivec.h> #undef vector #undef bool using Vector128 = __vector unsigned long long; namespace { inline ABSL_TARGET_CRYPTO Vector128 ReverseBytes(const Vector128& v) { const __vector unsigned char perm = {15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}; return vec_perm(v, v, perm); } inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) { return vec_vsx_ld(0, reinterpret_cast<const Vector128*>(from)); } inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) { vec_vsx_st(v, 0, reinterpret_cast<Vector128*>(to)); } inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state, const Vector128& round_key) { return Vector128(__builtin_crypto_vcipher(state, round_key)); } inline ABSL_TARGET_CRYPTO void SwapEndian(absl::uint128* state) { for (uint32_t block = 0; block < RandenTraits::kFeistelBlocks; ++block) { Vector128Store(ReverseBytes(Vector128Load(state + block)), state + block); } } } #elif defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64) #include <arm_neon.h> using Vector128 = uint8x16_t; namespace { inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) { return vld1q_u8(reinterpret_cast<const uint8_t*>(from)); } inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) { vst1q_u8(reinterpret_cast<uint8_t*>(to), v); } inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state, const Vector128& round_key) { return vaesmcq_u8(vaeseq_u8(state, uint8x16_t{})) ^ round_key; } inline ABSL_TARGET_CRYPTO void SwapEndian(void*) {} } #elif defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32) #include <immintrin.h> namespace { class Vector128 { public: inline explicit Vector128(const __m128i& v) : data_(v) {} inline __m128i data() const { return data_; } inline Vector128& operator^=(const Vector128& other) { data_ = _mm_xor_si128(data_, other.data()); return *this; } private: __m128i data_; }; inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) { return Vector128(_mm_load_si128(reinterpret_cast<const __m128i*>(from))); } inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) { _mm_store_si128(reinterpret_cast<__m128i*>(to), v.data()); } inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state, const Vector128& round_key) { return Vector128(_mm_aesenc_si128(state.data(), round_key.data())); } inline ABSL_TARGET_CRYPTO void SwapEndian(void*) {} } #endif #ifdef __clang__ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wunknown-pragmas" #endif namespace { inline ABSL_TARGET_CRYPTO void BlockShuffle(absl::uint128* state) { static_assert(RandenTraits::kFeistelBlocks == 16, "Expecting 16 FeistelBlocks."); constexpr size_t shuffle[RandenTraits::kFeistelBlocks] = { 7, 2, 13, 4, 11, 8, 3, 6, 15, 0, 9, 10, 1, 14, 5, 12}; const Vector128 v0 = Vector128Load(state + shuffle[0]); const Vector128 v1 = Vector128Load(state + shuffle[1]); const Vector128 v2 = Vector128Load(state + shuffle[2]); const Vector128 v3 = Vector128Load(state + shuffle[3]); const Vector128 v4 = Vector128Load(state + shuffle[4]); const Vector128 v5 = Vector128Load(state + shuffle[5]); const Vector128 v6 = Vector128Load(state + shuffle[6]); const Vector128 v7 = Vector128Load(state + shuffle[7]); const Vector128 w0 = Vector128Load(state + shuffle[8]); const Vector128 w1 = Vector128Load(state + shuffle[9]); const Vector128 w2 = Vector128Load(state + shuffle[10]); const Vector128 w3 = Vector128Load(state + shuffle[11]); const Vector128 w4 = Vector128Load(state + shuffle[12]); const Vector128 w5 = Vector128Load(state + shuffle[13]); const Vector128 w6 = Vector128Load(state + shuffle[14]); const Vector128 w7 = Vector128Load(state + shuffle[15]); Vector128Store(v0, state + 0); Vector128Store(v1, state + 1); Vector128Store(v2, state + 2); Vector128Store(v3, state + 3); Vector128Store(v4, state + 4); Vector128Store(v5, state + 5); Vector128Store(v6, state + 6); Vector128Store(v7, state + 7); Vector128Store(w0, state + 8); Vector128Store(w1, state + 9); Vector128Store(w2, state + 10); Vector128Store(w3, state + 11); Vector128Store(w4, state + 12); Vector128Store(w5, state + 13); Vector128Store(w6, state + 14); Vector128Store(w7, state + 15); } inline ABSL_TARGET_CRYPTO const absl::uint128* FeistelRound( absl::uint128* state, const absl::uint128* ABSL_RANDOM_INTERNAL_RESTRICT keys) { static_assert(RandenTraits::kFeistelBlocks == 16, "Expecting 16 FeistelBlocks."); const Vector128 s0 = Vector128Load(state + 0); const Vector128 s1 = Vector128Load(state + 1); const Vector128 s2 = Vector128Load(state + 2); const Vector128 s3 = Vector128Load(state + 3); const Vector128 s4 = Vector128Load(state + 4); const Vector128 s5 = Vector128Load(state + 5); const Vector128 s6 = Vector128Load(state + 6); const Vector128 s7 = Vector128Load(state + 7); const Vector128 s8 = Vector128Load(state + 8); const Vector128 s9 = Vector128Load(state + 9); const Vector128 s10 = Vector128Load(state + 10); const Vector128 s11 = Vector128Load(state + 11); const Vector128 s12 = Vector128Load(state + 12); const Vector128 s13 = Vector128Load(state + 13); const Vector128 s14 = Vector128Load(state + 14); const Vector128 s15 = Vector128Load(state + 15); const Vector128 e0 = AesRound(s0, Vector128Load(keys + 0)); const Vector128 e2 = AesRound(s2, Vector128Load(keys + 1)); const Vector128 e4 = AesRound(s4, Vector128Load(keys + 2)); const Vector128 e6 = AesRound(s6, Vector128Load(keys + 3)); const Vector128 e8 = AesRound(s8, Vector128Load(keys + 4)); const Vector128 e10 = AesRound(s10, Vector128Load(keys + 5)); const Vector128 e12 = AesRound(s12, Vector128Load(keys + 6)); const Vector128 e14 = AesRound(s14, Vector128Load(keys + 7)); const Vector128 o1 = AesRound(e0, s1); const Vector128 o3 = AesRound(e2, s3); const Vector128 o5 = AesRound(e4, s5); const Vector128 o7 = AesRound(e6, s7); const Vector128 o9 = AesRound(e8, s9); const Vector128 o11 = AesRound(e10, s11); const Vector128 o13 = AesRound(e12, s13); const Vector128 o15 = AesRound(e14, s15); Vector128Store(o1, state + 1); Vector128Store(o3, state + 3); Vector128Store(o5, state + 5); Vector128Store(o7, state + 7); Vector128Store(o9, state + 9); Vector128Store(o11, state + 11); Vector128Store(o13, state + 13); Vector128Store(o15, state + 15); return keys + 8; } inline ABSL_TARGET_CRYPTO void Permute( absl::uint128* state, const absl::uint128* ABSL_RANDOM_INTERNAL_RESTRICT keys) { #ifdef __clang__ #pragma clang loop unroll_count(2) #endif for (size_t round = 0; round < RandenTraits::kFeistelRounds; ++round) { keys = FeistelRound(state, keys); BlockShuffle(state); } } } namespace absl { ABSL_NAMESPACE_BEGIN namespace random_internal { bool HasRandenHwAesImplementation() { return true; } const void* ABSL_TARGET_CRYPTO RandenHwAes::GetKeys() { #if defined(ABSL_ARCH_PPC) return kRandenRoundKeysBE; #else return kRandenRoundKeys; #endif } void ABSL_TARGET_CRYPTO RandenHwAes::Absorb(const void* seed_void, void* state_void) { static_assert(RandenTraits::kCapacityBytes / sizeof(Vector128) == 1, "Unexpected Randen kCapacityBlocks"); static_assert(RandenTraits::kStateBytes / sizeof(Vector128) == 16, "Unexpected Randen kStateBlocks"); auto* state = reinterpret_cast<absl::uint128 * ABSL_RANDOM_INTERNAL_RESTRICT>( state_void); const auto* seed = reinterpret_cast<const absl::uint128 * ABSL_RANDOM_INTERNAL_RESTRICT>( seed_void); Vector128 b1 = Vector128Load(state + 1); b1 ^= Vector128Load(seed + 0); Vector128Store(b1, state + 1); Vector128 b2 = Vector128Load(state + 2); b2 ^= Vector128Load(seed + 1); Vector128Store(b2, state + 2); Vector128 b3 = Vector128Load(state + 3); b3 ^= Vector128Load(seed + 2); Vector128Store(b3, state + 3); Vector128 b4 = Vector128Load(state + 4); b4 ^= Vector128Load(seed + 3); Vector128Store(b4, state + 4); Vector128 b5 = Vector128Load(state + 5); b5 ^= Vector128Load(seed + 4); Vector128Store(b5, state + 5); Vector128 b6 = Vector128Load(state + 6); b6 ^= Vector128Load(seed + 5); Vector128Store(b6, state + 6); Vector128 b7 = Vector128Load(state + 7); b7 ^= Vector128Load(seed + 6); Vector128Store(b7, state + 7); Vector128 b8 = Vector128Load(state + 8); b8 ^= Vector128Load(seed + 7); Vector128Store(b8, state + 8); Vector128 b9 = Vector128Load(state + 9); b9 ^= Vector128Load(seed + 8); Vector128Store(b9, state + 9); Vector128 b10 = Vector128Load(state + 10); b10 ^= Vector128Load(seed + 9); Vector128Store(b10, state + 10); Vector128 b11 = Vector128Load(state + 11); b11 ^= Vector128Load(seed + 10); Vector128Store(b11, state + 11); Vector128 b12 = Vector128Load(state + 12); b12 ^= Vector128Load(seed + 11); Vector128Store(b12, state + 12); Vector128 b13 = Vector128Load(state + 13); b13 ^= Vector128Load(seed + 12); Vector128Store(b13, state + 13); Vector128 b14 = Vector128Load(state + 14); b14 ^= Vector128Load(seed + 13); Vector128Store(b14, state + 14); Vector128 b15 = Vector128Load(state + 15); b15 ^= Vector128Load(seed + 14); Vector128Store(b15, state + 15); } void ABSL_TARGET_CRYPTO RandenHwAes::Generate(const void* keys_void, void* state_void) { static_assert(RandenTraits::kCapacityBytes == sizeof(Vector128), "Capacity mismatch"); auto* state = reinterpret_cast<absl::uint128*>(state_void); const auto* keys = reinterpret_cast<const absl::uint128*>(keys_void); const Vector128 prev_inner = Vector128Load(state); SwapEndian(state); Permute(state, keys); SwapEndian(state); Vector128 inner = Vector128Load(state); inner ^= prev_inner; Vector128Store(inner, state); } #ifdef __clang__ #pragma clang diagnostic pop #endif } ABSL_NAMESPACE_END } #endif
#include "absl/random/internal/randen_hwaes.h" #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/log/log.h" #include "absl/random/internal/platform.h" #include "absl/random/internal/randen_detect.h" #include "absl/random/internal/randen_traits.h" #include "absl/strings/str_format.h" namespace { using absl::random_internal::RandenHwAes; using absl::random_internal::RandenTraits; TEST(RandenHwAesTest, Default) { EXPECT_TRUE(absl::random_internal::CPUSupportsRandenHwAes()); constexpr uint8_t kGolden[] = { 0xee, 0xd3, 0xe6, 0x0e, 0x09, 0x34, 0x65, 0x6c, 0xc6, 0x33, 0x53, 0x9d, 0x9b, 0x2b, 0x4e, 0x04, 0x77, 0x39, 0x43, 0x4e, 0x13, 0x4f, 0xc1, 0xc3, 0xee, 0x10, 0x04, 0xd9, 0x7c, 0xf4, 0xa9, 0xdd, 0x10, 0xca, 0xd8, 0x7f, 0x08, 0xf3, 0x7b, 0x88, 0x12, 0x29, 0xc7, 0x45, 0xf5, 0x80, 0xb7, 0xf0, 0x9f, 0x59, 0x96, 0x76, 0xd3, 0xb1, 0xdb, 0x15, 0x59, 0x6d, 0x3c, 0xff, 0xba, 0x63, 0xec, 0x30, 0xa6, 0x20, 0x7f, 0x6f, 0x60, 0x73, 0x9f, 0xb2, 0x4c, 0xa5, 0x49, 0x6f, 0x31, 0x8a, 0x80, 0x02, 0x0e, 0xe5, 0xc8, 0xd5, 0xf9, 0xea, 0x8f, 0x3b, 0x8a, 0xde, 0xd9, 0x3f, 0x5e, 0x60, 0xbf, 0x9c, 0xbb, 0x3b, 0x18, 0x78, 0x1a, 0xae, 0x70, 0xc9, 0xd5, 0x1e, 0x30, 0x56, 0xd3, 0xff, 0xb2, 0xd8, 0x37, 0x3c, 0xc7, 0x0f, 0xfe, 0x27, 0xb3, 0xf4, 0x19, 0x9a, 0x8f, 0xeb, 0x76, 0x8d, 0xfd, 0xcd, 0x9d, 0x0c, 0x42, 0x91, 0xeb, 0x06, 0xa5, 0xc3, 0x56, 0x95, 0xff, 0x3e, 0xdd, 0x05, 0xaf, 0xd5, 0xa1, 0xc4, 0x83, 0x8f, 0xb7, 0x1b, 0xdb, 0x48, 0x8c, 0xfe, 0x6b, 0x0d, 0x0e, 0x92, 0x23, 0x70, 0x42, 0x6d, 0x95, 0x34, 0x58, 0x57, 0xd3, 0x58, 0x40, 0xb8, 0x87, 0x6b, 0xc2, 0xf4, 0x1e, 0xed, 0xf3, 0x2d, 0x0b, 0x3e, 0xa2, 0x32, 0xef, 0x8e, 0xfc, 0x54, 0x11, 0x43, 0xf3, 0xab, 0x7c, 0x49, 0x8b, 0x9a, 0x02, 0x70, 0x05, 0x37, 0x24, 0x4e, 0xea, 0xe5, 0x90, 0xf0, 0x49, 0x57, 0x8b, 0xd8, 0x2f, 0x69, 0x70, 0xa9, 0x82, 0xa5, 0x51, 0xc6, 0xf5, 0x42, 0x63, 0xbb, 0x2c, 0xec, 0xfc, 0x78, 0xdb, 0x55, 0x2f, 0x61, 0x45, 0xb7, 0x3c, 0x46, 0xe3, 0xaf, 0x16, 0x18, 0xad, 0xe4, 0x2e, 0x35, 0x7e, 0xda, 0x01, 0xc1, 0x74, 0xf3, 0x6f, 0x02, 0x51, 0xe8, 0x3d, 0x1c, 0x82, 0xf0, 0x1e, 0x81, }; alignas(16) uint8_t state[RandenTraits::kStateBytes]; std::memset(state, 0, sizeof(state)); RandenHwAes::Generate(RandenHwAes::GetKeys(), state); EXPECT_EQ(0, std::memcmp(state, kGolden, sizeof(state))); } } int main(int argc, char* argv[]) { testing::InitGoogleTest(&argc, argv); LOG(INFO) << "ABSL_HAVE_ACCELERATED_AES=" << ABSL_HAVE_ACCELERATED_AES; LOG(INFO) << "ABSL_RANDOM_INTERNAL_AES_DISPATCH=" << ABSL_RANDOM_INTERNAL_AES_DISPATCH; #if defined(ABSL_ARCH_X86_64) LOG(INFO) << "ABSL_ARCH_X86_64"; #elif defined(ABSL_ARCH_X86_32) LOG(INFO) << "ABSL_ARCH_X86_32"; #elif defined(ABSL_ARCH_AARCH64) LOG(INFO) << "ABSL_ARCH_AARCH64"; #elif defined(ABSL_ARCH_ARM) LOG(INFO) << "ABSL_ARCH_ARM"; #elif defined(ABSL_ARCH_PPC) LOG(INFO) << "ABSL_ARCH_PPC"; #else LOG(INFO) << "ARCH Unknown"; #endif int x = absl::random_internal::HasRandenHwAesImplementation(); LOG(INFO) << "HasRandenHwAesImplementation = " << x; int y = absl::random_internal::CPUSupportsRandenHwAes(); LOG(INFO) << "CPUSupportsRandenHwAes = " << x; if (!x || !y) { LOG(INFO) << "Skipping Randen HWAES tests."; return 0; } return RUN_ALL_TESTS(); }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/random/internal/randen_hwaes.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/random/internal/randen_hwaes_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
64487d51-1c0d-4732-87e3-c169ab23ba5d
cpp
google/cel-cpp
ident_step
eval/eval/ident_step.cc
eval/eval/ident_step_test.cc
#include "eval/eval/ident_step.h" #include <cstddef> #include <cstdint> #include <memory> #include <string> #include <utility> #include "absl/base/nullability.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "base/ast_internal/expr.h" #include "common/value.h" #include "eval/eval/attribute_trail.h" #include "eval/eval/comprehension_slots.h" #include "eval/eval/direct_expression_step.h" #include "eval/eval/evaluator_core.h" #include "eval/eval/expression_step_base.h" #include "eval/internal/errors.h" #include "internal/status_macros.h" namespace google::api::expr::runtime { namespace { using ::cel::Value; using ::cel::runtime_internal::CreateError; class IdentStep : public ExpressionStepBase { public: IdentStep(absl::string_view name, int64_t expr_id) : ExpressionStepBase(expr_id), name_(name) {} absl::Status Evaluate(ExecutionFrame* frame) const override; private: std::string name_; }; absl::Status LookupIdent(const std::string& name, ExecutionFrameBase& frame, Value& result, AttributeTrail& attribute) { if (frame.attribute_tracking_enabled()) { attribute = AttributeTrail(name); if (frame.missing_attribute_errors_enabled() && frame.attribute_utility().CheckForMissingAttribute(attribute)) { CEL_ASSIGN_OR_RETURN( result, frame.attribute_utility().CreateMissingAttributeError( attribute.attribute())); return absl::OkStatus(); } if (frame.unknown_processing_enabled() && frame.attribute_utility().CheckForUnknownExact(attribute)) { result = frame.attribute_utility().CreateUnknownSet(attribute.attribute()); return absl::OkStatus(); } } CEL_ASSIGN_OR_RETURN(auto found, frame.activation().FindVariable( frame.value_manager(), name, result)); if (found) { return absl::OkStatus(); } result = frame.value_manager().CreateErrorValue(CreateError( absl::StrCat("No value with name \"", name, "\" found in Activation"))); return absl::OkStatus(); } absl::Status IdentStep::Evaluate(ExecutionFrame* frame) const { Value value; AttributeTrail attribute; CEL_RETURN_IF_ERROR(LookupIdent(name_, *frame, value, attribute)); frame->value_stack().Push(std::move(value), std::move(attribute)); return absl::OkStatus(); } absl::StatusOr<absl::Nonnull<const ComprehensionSlots::Slot*>> LookupSlot( absl::string_view name, size_t slot_index, ExecutionFrameBase& frame) { const ComprehensionSlots::Slot* slot = frame.comprehension_slots().Get(slot_index); if (slot == nullptr) { return absl::InternalError( absl::StrCat("Comprehension variable accessed out of scope: ", name)); } return slot; } class SlotStep : public ExpressionStepBase { public: SlotStep(absl::string_view name, size_t slot_index, int64_t expr_id) : ExpressionStepBase(expr_id), name_(name), slot_index_(slot_index) {} absl::Status Evaluate(ExecutionFrame* frame) const override { CEL_ASSIGN_OR_RETURN(const ComprehensionSlots::Slot* slot, LookupSlot(name_, slot_index_, *frame)); frame->value_stack().Push(slot->value, slot->attribute); return absl::OkStatus(); } private: std::string name_; size_t slot_index_; }; class DirectIdentStep : public DirectExpressionStep { public: DirectIdentStep(absl::string_view name, int64_t expr_id) : DirectExpressionStep(expr_id), name_(name) {} absl::Status Evaluate(ExecutionFrameBase& frame, Value& result, AttributeTrail& attribute) const override { return LookupIdent(name_, frame, result, attribute); } private: std::string name_; }; class DirectSlotStep : public DirectExpressionStep { public: DirectSlotStep(std::string name, size_t slot_index, int64_t expr_id) : DirectExpressionStep(expr_id), name_(std::move(name)), slot_index_(slot_index) {} absl::Status Evaluate(ExecutionFrameBase& frame, Value& result, AttributeTrail& attribute) const override { CEL_ASSIGN_OR_RETURN(const ComprehensionSlots::Slot* slot, LookupSlot(name_, slot_index_, frame)); if (frame.attribute_tracking_enabled()) { attribute = slot->attribute; } result = slot->value; return absl::OkStatus(); } private: std::string name_; size_t slot_index_; }; } std::unique_ptr<DirectExpressionStep> CreateDirectIdentStep( absl::string_view identifier, int64_t expr_id) { return std::make_unique<DirectIdentStep>(identifier, expr_id); } std::unique_ptr<DirectExpressionStep> CreateDirectSlotIdentStep( absl::string_view identifier, size_t slot_index, int64_t expr_id) { return std::make_unique<DirectSlotStep>(std::string(identifier), slot_index, expr_id); } absl::StatusOr<std::unique_ptr<ExpressionStep>> CreateIdentStep( const cel::ast_internal::Ident& ident_expr, int64_t expr_id) { return std::make_unique<IdentStep>(ident_expr.name(), expr_id); } absl::StatusOr<std::unique_ptr<ExpressionStep>> CreateIdentStepForSlot( const cel::ast_internal::Ident& ident_expr, size_t slot_index, int64_t expr_id) { return std::make_unique<SlotStep>(ident_expr.name(), slot_index, expr_id); } }
#include "eval/eval/ident_step.h" #include <memory> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "base/type_provider.h" #include "common/casting.h" #include "common/memory.h" #include "common/value.h" #include "eval/eval/attribute_trail.h" #include "eval/eval/cel_expression_flat_impl.h" #include "eval/eval/evaluator_core.h" #include "eval/public/activation.h" #include "eval/public/cel_attribute.h" #include "internal/testing.h" #include "runtime/activation.h" #include "runtime/managed_value_factory.h" #include "runtime/runtime_options.h" namespace google::api::expr::runtime { namespace { using ::absl_testing::StatusIs; using ::cel::Cast; using ::cel::ErrorValue; using ::cel::InstanceOf; using ::cel::IntValue; using ::cel::ManagedValueFactory; using ::cel::MemoryManagerRef; using ::cel::RuntimeOptions; using ::cel::TypeProvider; using ::cel::UnknownValue; using ::cel::Value; using ::cel::ast_internal::Expr; using ::google::protobuf::Arena; using ::testing::Eq; using ::testing::HasSubstr; using ::testing::SizeIs; TEST(IdentStepTest, TestIdentStep) { Expr expr; auto& ident_expr = expr.mutable_ident_expr(); ident_expr.set_name("name0"); ASSERT_OK_AND_ASSIGN(auto step, CreateIdentStep(ident_expr, expr.id())); ExecutionPath path; path.push_back(std::move(step)); CelExpressionFlatImpl impl( FlatExpression(std::move(path), 0, TypeProvider::Builtin(), cel::RuntimeOptions{})); Activation activation; Arena arena; std::string value("test"); activation.InsertValue("name0", CelValue::CreateString(&value)); auto status0 = impl.Evaluate(activation, &arena); ASSERT_OK(status0); CelValue result = status0.value(); ASSERT_TRUE(result.IsString()); EXPECT_THAT(result.StringOrDie().value(), Eq("test")); } TEST(IdentStepTest, TestIdentStepNameNotFound) { Expr expr; auto& ident_expr = expr.mutable_ident_expr(); ident_expr.set_name("name0"); ASSERT_OK_AND_ASSIGN(auto step, CreateIdentStep(ident_expr, expr.id())); ExecutionPath path; path.push_back(std::move(step)); CelExpressionFlatImpl impl( FlatExpression(std::move(path), 0, TypeProvider::Builtin(), cel::RuntimeOptions{})); Activation activation; Arena arena; std::string value("test"); auto status0 = impl.Evaluate(activation, &arena); ASSERT_OK(status0); CelValue result = status0.value(); ASSERT_TRUE(result.IsError()); } TEST(IdentStepTest, DisableMissingAttributeErrorsOK) { Expr expr; auto& ident_expr = expr.mutable_ident_expr(); ident_expr.set_name("name0"); ASSERT_OK_AND_ASSIGN(auto step, CreateIdentStep(ident_expr, expr.id())); ExecutionPath path; path.push_back(std::move(step)); cel::RuntimeOptions options; options.unknown_processing = cel::UnknownProcessingOptions::kDisabled; CelExpressionFlatImpl impl(FlatExpression(std::move(path), 0, TypeProvider::Builtin(), options)); Activation activation; Arena arena; std::string value("test"); activation.InsertValue("name0", CelValue::CreateString(&value)); auto status0 = impl.Evaluate(activation, &arena); ASSERT_OK(status0); CelValue result = status0.value(); ASSERT_TRUE(result.IsString()); EXPECT_THAT(result.StringOrDie().value(), Eq("test")); const CelAttributePattern pattern("name0", {}); activation.set_missing_attribute_patterns({pattern}); status0 = impl.Evaluate(activation, &arena); ASSERT_OK(status0); EXPECT_THAT(status0->StringOrDie().value(), Eq("test")); } TEST(IdentStepTest, TestIdentStepMissingAttributeErrors) { Expr expr; auto& ident_expr = expr.mutable_ident_expr(); ident_expr.set_name("name0"); ASSERT_OK_AND_ASSIGN(auto step, CreateIdentStep(ident_expr, expr.id())); ExecutionPath path; path.push_back(std::move(step)); cel::RuntimeOptions options; options.unknown_processing = cel::UnknownProcessingOptions::kDisabled; options.enable_missing_attribute_errors = true; CelExpressionFlatImpl impl(FlatExpression(std::move(path), 0, TypeProvider::Builtin(), options)); Activation activation; Arena arena; std::string value("test"); activation.InsertValue("name0", CelValue::CreateString(&value)); auto status0 = impl.Evaluate(activation, &arena); ASSERT_OK(status0); CelValue result = status0.value(); ASSERT_TRUE(result.IsString()); EXPECT_THAT(result.StringOrDie().value(), Eq("test")); CelAttributePattern pattern("name0", {}); activation.set_missing_attribute_patterns({pattern}); status0 = impl.Evaluate(activation, &arena); ASSERT_OK(status0); EXPECT_EQ(status0->ErrorOrDie()->code(), absl::StatusCode::kInvalidArgument); EXPECT_EQ(status0->ErrorOrDie()->message(), "MissingAttributeError: name0"); } TEST(IdentStepTest, TestIdentStepUnknownAttribute) { Expr expr; auto& ident_expr = expr.mutable_ident_expr(); ident_expr.set_name("name0"); ASSERT_OK_AND_ASSIGN(auto step, CreateIdentStep(ident_expr, expr.id())); ExecutionPath path; path.push_back(std::move(step)); cel::RuntimeOptions options; options.unknown_processing = cel::UnknownProcessingOptions::kAttributeOnly; CelExpressionFlatImpl impl(FlatExpression(std::move(path), 0, TypeProvider::Builtin(), options)); Activation activation; Arena arena; std::string value("test"); activation.InsertValue("name0", CelValue::CreateString(&value)); std::vector<CelAttributePattern> unknown_patterns; unknown_patterns.push_back(CelAttributePattern("name_bad", {})); activation.set_unknown_attribute_patterns(unknown_patterns); auto status0 = impl.Evaluate(activation, &arena); ASSERT_OK(status0); CelValue result = status0.value(); ASSERT_TRUE(result.IsString()); EXPECT_THAT(result.StringOrDie().value(), Eq("test")); unknown_patterns.push_back(CelAttributePattern("name0", {})); activation.set_unknown_attribute_patterns(unknown_patterns); status0 = impl.Evaluate(activation, &arena); ASSERT_OK(status0); result = status0.value(); ASSERT_TRUE(result.IsUnknownSet()); } TEST(DirectIdentStepTest, Basic) { ManagedValueFactory value_factory(TypeProvider::Builtin(), MemoryManagerRef::ReferenceCounting()); cel::Activation activation; RuntimeOptions options; activation.InsertOrAssignValue("var1", IntValue(42)); ExecutionFrameBase frame(activation, options, value_factory.get()); Value result; AttributeTrail trail; auto step = CreateDirectIdentStep("var1", -1); ASSERT_OK(step->Evaluate(frame, result, trail)); ASSERT_TRUE(InstanceOf<IntValue>(result)); EXPECT_THAT(Cast<IntValue>(result).NativeValue(), Eq(42)); } TEST(DirectIdentStepTest, UnknownAttribute) { ManagedValueFactory value_factory(TypeProvider::Builtin(), MemoryManagerRef::ReferenceCounting()); cel::Activation activation; RuntimeOptions options; options.unknown_processing = cel::UnknownProcessingOptions::kAttributeOnly; activation.InsertOrAssignValue("var1", IntValue(42)); activation.SetUnknownPatterns({CreateCelAttributePattern("var1", {})}); ExecutionFrameBase frame(activation, options, value_factory.get()); Value result; AttributeTrail trail; auto step = CreateDirectIdentStep("var1", -1); ASSERT_OK(step->Evaluate(frame, result, trail)); ASSERT_TRUE(InstanceOf<UnknownValue>(result)); EXPECT_THAT(Cast<UnknownValue>(result).attribute_set(), SizeIs(1)); } TEST(DirectIdentStepTest, MissingAttribute) { ManagedValueFactory value_factory(TypeProvider::Builtin(), MemoryManagerRef::ReferenceCounting()); cel::Activation activation; RuntimeOptions options; options.enable_missing_attribute_errors = true; activation.InsertOrAssignValue("var1", IntValue(42)); activation.SetMissingPatterns({CreateCelAttributePattern("var1", {})}); ExecutionFrameBase frame(activation, options, value_factory.get()); Value result; AttributeTrail trail; auto step = CreateDirectIdentStep("var1", -1); ASSERT_OK(step->Evaluate(frame, result, trail)); ASSERT_TRUE(InstanceOf<ErrorValue>(result)); EXPECT_THAT(Cast<ErrorValue>(result).NativeValue(), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("var1"))); } TEST(DirectIdentStepTest, NotFound) { ManagedValueFactory value_factory(TypeProvider::Builtin(), MemoryManagerRef::ReferenceCounting()); cel::Activation activation; RuntimeOptions options; ExecutionFrameBase frame(activation, options, value_factory.get()); Value result; AttributeTrail trail; auto step = CreateDirectIdentStep("var1", -1); ASSERT_OK(step->Evaluate(frame, result, trail)); ASSERT_TRUE(InstanceOf<ErrorValue>(result)); EXPECT_THAT(Cast<ErrorValue>(result).NativeValue(), StatusIs(absl::StatusCode::kUnknown, HasSubstr("\"var1\" found in Activation"))); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/eval/ident_step.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/eval/ident_step_test.cc
4552db5798fb0853b131b783d8875794334fae7f
b6c1594a-127c-43ef-a7fd-eb27fc8713a4
cpp
google/quiche
hpack_decoder_tables
quiche/http2/hpack/decoder/hpack_decoder_tables.cc
quiche/http2/hpack/decoder/hpack_decoder_tables_test.cc
#include "quiche/http2/hpack/decoder/hpack_decoder_tables.h" #include <ostream> #include <string> #include <utility> #include <vector> #include "absl/strings/str_cat.h" #include "quiche/http2/hpack/http2_hpack_constants.h" #include "quiche/common/platform/api/quiche_logging.h" namespace http2 { namespace { std::vector<HpackStringPair>* MakeStaticTable() { auto* ptr = new std::vector<HpackStringPair>(); ptr->reserve(kFirstDynamicTableIndex); ptr->emplace_back("", ""); #define STATIC_TABLE_ENTRY(name, value, index) \ QUICHE_DCHECK_EQ(ptr->size(), static_cast<size_t>(index)); \ ptr->emplace_back(name, value) #include "quiche/http2/hpack/hpack_static_table_entries.inc" #undef STATIC_TABLE_ENTRY return ptr; } const std::vector<HpackStringPair>* GetStaticTable() { static const std::vector<HpackStringPair>* const g_static_table = MakeStaticTable(); return g_static_table; } } HpackStringPair::HpackStringPair(std::string name, std::string value) : name(std::move(name)), value(std::move(value)) { QUICHE_DVLOG(3) << DebugString() << " ctor"; } HpackStringPair::~HpackStringPair() { QUICHE_DVLOG(3) << DebugString() << " dtor"; } std::string HpackStringPair::DebugString() const { return absl::StrCat("HpackStringPair(name=", name, ", value=", value, ")"); } std::ostream& operator<<(std::ostream& os, const HpackStringPair& p) { os << p.DebugString(); return os; } HpackDecoderStaticTable::HpackDecoderStaticTable( const std::vector<HpackStringPair>* table) : table_(table) {} HpackDecoderStaticTable::HpackDecoderStaticTable() : table_(GetStaticTable()) {} const HpackStringPair* HpackDecoderStaticTable::Lookup(size_t index) const { if (0 < index && index < kFirstDynamicTableIndex) { return &((*table_)[index]); } return nullptr; } HpackDecoderDynamicTable::HpackDecoderDynamicTable() : insert_count_(kFirstDynamicTableIndex - 1) {} HpackDecoderDynamicTable::~HpackDecoderDynamicTable() = default; void HpackDecoderDynamicTable::DynamicTableSizeUpdate(size_t size_limit) { QUICHE_DVLOG(3) << "HpackDecoderDynamicTable::DynamicTableSizeUpdate " << size_limit; EnsureSizeNoMoreThan(size_limit); QUICHE_DCHECK_LE(current_size_, size_limit); size_limit_ = size_limit; } void HpackDecoderDynamicTable::Insert(std::string name, std::string value) { HpackStringPair entry(std::move(name), std::move(value)); size_t entry_size = entry.size(); QUICHE_DVLOG(2) << "InsertEntry of size=" << entry_size << "\n name: " << entry.name << "\n value: " << entry.value; if (entry_size > size_limit_) { QUICHE_DVLOG(2) << "InsertEntry: entry larger than table, removing " << table_.size() << " entries, of total size " << current_size_ << " bytes."; table_.clear(); current_size_ = 0; return; } ++insert_count_; size_t insert_limit = size_limit_ - entry_size; EnsureSizeNoMoreThan(insert_limit); table_.push_front(std::move(entry)); current_size_ += entry_size; QUICHE_DVLOG(2) << "InsertEntry: current_size_=" << current_size_; QUICHE_DCHECK_GE(current_size_, entry_size); QUICHE_DCHECK_LE(current_size_, size_limit_); } const HpackStringPair* HpackDecoderDynamicTable::Lookup(size_t index) const { if (index < table_.size()) { return &table_[index]; } return nullptr; } void HpackDecoderDynamicTable::EnsureSizeNoMoreThan(size_t limit) { QUICHE_DVLOG(2) << "EnsureSizeNoMoreThan limit=" << limit << ", current_size_=" << current_size_; while (current_size_ > limit) { RemoveLastEntry(); } QUICHE_DCHECK_LE(current_size_, limit); } void HpackDecoderDynamicTable::RemoveLastEntry() { QUICHE_DCHECK(!table_.empty()); if (!table_.empty()) { QUICHE_DVLOG(2) << "RemoveLastEntry current_size_=" << current_size_ << ", last entry size=" << table_.back().size(); QUICHE_DCHECK_GE(current_size_, table_.back().size()); current_size_ -= table_.back().size(); table_.pop_back(); QUICHE_DCHECK_EQ(table_.empty(), current_size_ == 0); } } HpackDecoderTables::HpackDecoderTables() = default; HpackDecoderTables::~HpackDecoderTables() = default; const HpackStringPair* HpackDecoderTables::Lookup(size_t index) const { if (index < kFirstDynamicTableIndex) { return static_table_.Lookup(index); } else { return dynamic_table_.Lookup(index - kFirstDynamicTableIndex); } } }
#include "quiche/http2/hpack/decoder/hpack_decoder_tables.h" #include <algorithm> #include <string> #include <tuple> #include <vector> #include "quiche/http2/hpack/http2_hpack_constants.h" #include "quiche/http2/test_tools/http2_random.h" #include "quiche/http2/test_tools/random_util.h" #include "quiche/http2/test_tools/verify_macros.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/platform/api/quiche_test.h" using ::testing::AssertionResult; using ::testing::AssertionSuccess; namespace http2 { namespace test { class HpackDecoderTablesPeer { public: static size_t num_dynamic_entries(const HpackDecoderTables& tables) { return tables.dynamic_table_.table_.size(); } }; namespace { struct StaticEntry { const char* name; const char* value; size_t index; }; std::vector<StaticEntry> MakeSpecStaticEntries() { std::vector<StaticEntry> static_entries; #define STATIC_TABLE_ENTRY(name, value, index) \ QUICHE_DCHECK_EQ(static_entries.size() + 1, static_cast<size_t>(index)); \ static_entries.push_back({name, value, index}); #include "quiche/http2/hpack/hpack_static_table_entries.inc" #undef STATIC_TABLE_ENTRY return static_entries; } template <class C> void ShuffleCollection(C* collection, Http2Random* r) { std::shuffle(collection->begin(), collection->end(), *r); } class HpackDecoderStaticTableTest : public quiche::test::QuicheTest { protected: HpackDecoderStaticTableTest() = default; std::vector<StaticEntry> shuffled_static_entries() { std::vector<StaticEntry> entries = MakeSpecStaticEntries(); ShuffleCollection(&entries, &random_); return entries; } AssertionResult VerifyStaticTableContents() { for (const auto& expected : shuffled_static_entries()) { const HpackStringPair* found = Lookup(expected.index); HTTP2_VERIFY_NE(found, nullptr); HTTP2_VERIFY_EQ(expected.name, found->name) << expected.index; HTTP2_VERIFY_EQ(expected.value, found->value) << expected.index; } HTTP2_VERIFY_EQ(nullptr, Lookup(0)); return AssertionSuccess(); } virtual const HpackStringPair* Lookup(size_t index) { return static_table_.Lookup(index); } Http2Random* RandomPtr() { return &random_; } Http2Random random_; private: HpackDecoderStaticTable static_table_; }; TEST_F(HpackDecoderStaticTableTest, StaticTableContents) { EXPECT_TRUE(VerifyStaticTableContents()); } size_t Size(const std::string& name, const std::string& value) { return name.size() + value.size() + 32; } typedef std::tuple<std::string, std::string, size_t> FakeHpackEntry; const std::string& Name(const FakeHpackEntry& entry) { return std::get<0>(entry); } const std::string& Value(const FakeHpackEntry& entry) { return std::get<1>(entry); } size_t Size(const FakeHpackEntry& entry) { return std::get<2>(entry); } class HpackDecoderTablesTest : public HpackDecoderStaticTableTest { protected: const HpackStringPair* Lookup(size_t index) override { return tables_.Lookup(index); } size_t dynamic_size_limit() const { return tables_.header_table_size_limit(); } size_t current_dynamic_size() const { return tables_.current_header_table_size(); } size_t num_dynamic_entries() const { return HpackDecoderTablesPeer::num_dynamic_entries(tables_); } void FakeInsert(const std::string& name, const std::string& value) { FakeHpackEntry entry(name, value, Size(name, value)); fake_dynamic_table_.insert(fake_dynamic_table_.begin(), entry); } size_t FakeSize() { size_t sz = 0; for (const auto& entry : fake_dynamic_table_) { sz += Size(entry); } return sz; } size_t FakeTrim(size_t limit) { size_t original_size = FakeSize(); size_t total_size = 0; for (size_t ndx = 0; ndx < fake_dynamic_table_.size(); ++ndx) { total_size += Size(fake_dynamic_table_[ndx]); if (total_size > limit) { fake_dynamic_table_.erase(fake_dynamic_table_.begin() + ndx, fake_dynamic_table_.end()); return original_size - FakeSize(); } } return 0; } AssertionResult VerifyDynamicTableContents() { HTTP2_VERIFY_EQ(current_dynamic_size(), FakeSize()); HTTP2_VERIFY_EQ(num_dynamic_entries(), fake_dynamic_table_.size()); for (size_t ndx = 0; ndx < fake_dynamic_table_.size(); ++ndx) { const HpackStringPair* found = Lookup(ndx + kFirstDynamicTableIndex); HTTP2_VERIFY_NE(found, nullptr); const auto& expected = fake_dynamic_table_[ndx]; HTTP2_VERIFY_EQ(Name(expected), found->name); HTTP2_VERIFY_EQ(Value(expected), found->value); } HTTP2_VERIFY_EQ( nullptr, Lookup(fake_dynamic_table_.size() + kFirstDynamicTableIndex)); return AssertionSuccess(); } AssertionResult DynamicTableSizeUpdate(size_t size_limit) { HTTP2_VERIFY_EQ(current_dynamic_size(), FakeSize()); if (size_limit < current_dynamic_size()) { tables_.DynamicTableSizeUpdate(size_limit); FakeTrim(size_limit); return VerifyDynamicTableContents(); } tables_.DynamicTableSizeUpdate(size_limit); return VerifyDynamicTableContents(); } AssertionResult Insert(const std::string& name, const std::string& value) { size_t old_count = num_dynamic_entries(); tables_.Insert(name, value); FakeInsert(name, value); HTTP2_VERIFY_EQ(old_count + 1, fake_dynamic_table_.size()); FakeTrim(dynamic_size_limit()); HTTP2_VERIFY_EQ(current_dynamic_size(), FakeSize()); HTTP2_VERIFY_EQ(num_dynamic_entries(), fake_dynamic_table_.size()); return VerifyDynamicTableContents(); } private: HpackDecoderTables tables_; std::vector<FakeHpackEntry> fake_dynamic_table_; }; TEST_F(HpackDecoderTablesTest, StaticTableContents) { EXPECT_TRUE(VerifyStaticTableContents()); } TEST_F(HpackDecoderTablesTest, RandomDynamicTable) { EXPECT_EQ(0u, current_dynamic_size()); EXPECT_TRUE(VerifyStaticTableContents()); EXPECT_TRUE(VerifyDynamicTableContents()); std::vector<size_t> table_sizes; table_sizes.push_back(dynamic_size_limit()); table_sizes.push_back(0); table_sizes.push_back(dynamic_size_limit() / 2); table_sizes.push_back(dynamic_size_limit()); table_sizes.push_back(dynamic_size_limit() / 2); table_sizes.push_back(0); table_sizes.push_back(dynamic_size_limit()); for (size_t limit : table_sizes) { ASSERT_TRUE(DynamicTableSizeUpdate(limit)); for (int insert_count = 0; insert_count < 100; ++insert_count) { std::string name = GenerateHttp2HeaderName(random_.UniformInRange(2, 40), RandomPtr()); std::string value = GenerateWebSafeString(random_.UniformInRange(2, 600), RandomPtr()); ASSERT_TRUE(Insert(name, value)); } EXPECT_TRUE(VerifyStaticTableContents()); } } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/hpack/decoder/hpack_decoder_tables.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/hpack/decoder/hpack_decoder_tables_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
04433fb2-7496-4b2a-81ed-6816e4136e92
cpp
tensorflow/tensorflow
grpc_server
third_party/xla/xla/python/ifrt_proxy/server/grpc_server.cc
third_party/xla/xla/python/ifrt_proxy/server/grpc_server_test.cc
#include "xla/python/ifrt_proxy/server/grpc_server.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include "absl/functional/any_invocable.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "grpc/grpc.h" #include "grpcpp/completion_queue.h" #include "grpcpp/grpcpp.h" #include "grpcpp/server_builder.h" #include "xla/python/ifrt/client.h" #include "xla/python/ifrt_proxy/common/grpc_credentials.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.grpc.pb.h" #include "xla/python/ifrt_proxy/common/ifrt_service.pb.h" #include "xla/python/ifrt_proxy/server/grpc_service_impl.h" #include "xla/python/ifrt_proxy/server/host_buffer.h" #include "xla/python/ifrt_proxy/server/ifrt_backend.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace proxy { GrpcServer::~GrpcServer() { server_->Shutdown(); server_->Wait(); } absl::StatusOr<std::unique_ptr<GrpcServer>> GrpcServer::Create( absl::string_view address, std::unique_ptr<grpc::GrpcIfrtService::Service> impl) { if (impl == nullptr) { return absl::InvalidArgumentError( "Service implementation cannot be a nullptr."); } ::grpc::ServerBuilder builder; builder.AddChannelArgument(GRPC_ARG_MAX_SEND_MESSAGE_LENGTH, -1); builder.AddChannelArgument(GRPC_ARG_MAX_RECEIVE_MESSAGE_LENGTH, -1); builder.RegisterService(impl.get()); builder.AddListeningPort(std::string(address), GetServerCredentials()); auto server = builder.BuildAndStart(); if (server == nullptr) { return absl::UnavailableError( absl::StrCat("Failed to initialize gRPC server at address:", address)); } return absl::WrapUnique<GrpcServer>( new GrpcServer(address, std::move(impl), std::move(server))); } absl::StatusOr<std::unique_ptr<GrpcServer>> GrpcServer::CreateFromIfrtClientFactory( absl::string_view address, absl::AnyInvocable<absl::StatusOr<std::shared_ptr<xla::ifrt::Client>>()> backend_ifrt_client_factory) { if (backend_ifrt_client_factory == nullptr) { return absl::InvalidArgumentError( "backend_ifrt_client_factory cannot be nullptr."); } auto service = std::make_unique<GrpcServiceImpl>( [ifrt_client_factory = std::move(backend_ifrt_client_factory)]( IfrtProxyVersion version, uint64_t session_id, std::shared_ptr<HostBufferStore> host_buffer_store) mutable -> absl::StatusOr<std::unique_ptr<BackendInterface>> { TF_ASSIGN_OR_RETURN(auto ifrt_client, ifrt_client_factory()); return IfrtBackend::Create(version, session_id, std::move(ifrt_client), std::move(host_buffer_store)); }); return Create(address, std::move(service)); } } } }
#include "xla/python/ifrt_proxy/server/grpc_server.h" #include <memory> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.grpc.pb.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace ifrt { namespace proxy { namespace { using ::testing::Not; using ::tsl::testing::IsOk; using ::tsl::testing::StatusIs; class FakeIfrtService : public grpc::GrpcIfrtService::Service {}; TEST(GrpcServerTest, CreationTest) { auto addr = absl::StrCat("[::1]:", tsl::testing::PickUnusedPortOrDie()); auto grpc_service_impl = std::make_unique<FakeIfrtService>(); ASSERT_THAT(GrpcServer::Create(addr, std::move(grpc_service_impl)), IsOk()); } TEST(GrpcServerTest, CreationFailsIfImplIsNullptr) { auto addr = absl::StrCat("[::1]:", tsl::testing::PickUnusedPortOrDie()); EXPECT_THAT(GrpcServer::Create(addr, nullptr), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(GrpcServerTest, CreationFailsWithInvalidAddress) { auto grpc_service_impl = std::make_unique<FakeIfrtService>(); EXPECT_THAT(GrpcServer::Create("invalid-address", std::move(grpc_service_impl)), Not(IsOk())); } TEST(GrpcServerTest, RetrievingServerAddressWorks) { auto addr = absl::StrCat("[::1]:", tsl::testing::PickUnusedPortOrDie()); auto grpc_service_impl = std::make_unique<FakeIfrtService>(); TF_ASSERT_OK_AND_ASSIGN( auto grpc_server, GrpcServer::Create(addr, std::move(grpc_service_impl))); EXPECT_EQ(grpc_server->address(), addr); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt_proxy/server/grpc_server.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt_proxy/server/grpc_server_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1a315438-fcc1-4394-b61d-58b16b12b0a4
cpp
google/libaddressinput
validation_task
cpp/src/validation_task.cc
cpp/test/validation_task_test.cc
#include "validation_task.h" #include <libaddressinput/address_data.h> #include <libaddressinput/address_field.h> #include <libaddressinput/address_metadata.h> #include <libaddressinput/address_problem.h> #include <libaddressinput/address_validator.h> #include <libaddressinput/callback.h> #include <libaddressinput/supplier.h> #include <algorithm> #include <cassert> #include <cstddef> #include <string> #include <re2/re2.h> #include "lookup_key.h" #include "post_box_matchers.h" #include "rule.h" #include "util/re2ptr.h" #include "util/size.h" namespace i18n { namespace addressinput { ValidationTask::ValidationTask(const AddressData& address, bool allow_postal, bool require_name, const FieldProblemMap* filter, FieldProblemMap* problems, const AddressValidator::Callback& validated) : address_(address), allow_postal_(allow_postal), require_name_(require_name), filter_(filter), problems_(problems), validated_(validated), supplied_(BuildCallback(this, &ValidationTask::Validate)), lookup_key_(new LookupKey), max_depth_(size(LookupKey::kHierarchy)) { assert(problems_ != nullptr); assert(supplied_ != nullptr); assert(lookup_key_ != nullptr); } ValidationTask::~ValidationTask() = default; void ValidationTask::Run(Supplier* supplier) { assert(supplier != nullptr); problems_->clear(); lookup_key_->FromAddress(address_); max_depth_ = supplier->GetLoadedRuleDepth(lookup_key_->ToKeyString(0)); supplier->SupplyGlobally(*lookup_key_, *supplied_); } void ValidationTask::Validate(bool success, const LookupKey& lookup_key, const Supplier::RuleHierarchy& hierarchy) { assert(&lookup_key == lookup_key_.get()); if (success) { if (address_.IsFieldEmpty(COUNTRY)) { ReportProblemMaybe(COUNTRY, MISSING_REQUIRED_FIELD); } else if (hierarchy.rule[0] == nullptr) { ReportProblemMaybe(COUNTRY, UNKNOWN_VALUE); } else { const std::string& region_code = address_.region_code; CheckUnexpectedField(region_code); CheckMissingRequiredField(region_code); CheckUnknownValue(hierarchy); CheckPostalCodeFormatAndValue(hierarchy); CheckUsesPoBox(hierarchy); CheckUnsupportedField(); } } validated_(success, address_, *problems_); delete this; } void ValidationTask::CheckUnexpectedField( const std::string& region_code) const { static const AddressField kFields[] = { ADMIN_AREA, LOCALITY, DEPENDENT_LOCALITY, SORTING_CODE, POSTAL_CODE, STREET_ADDRESS, ORGANIZATION, RECIPIENT, }; for (AddressField field : kFields) { if (!address_.IsFieldEmpty(field) && !IsFieldUsed(field, region_code)) { ReportProblemMaybe(field, UNEXPECTED_FIELD); } } } void ValidationTask::CheckMissingRequiredField( const std::string& region_code) const { static const AddressField kFields[] = { ADMIN_AREA, LOCALITY, DEPENDENT_LOCALITY, SORTING_CODE, POSTAL_CODE, STREET_ADDRESS, }; for (AddressField field : kFields) { if (address_.IsFieldEmpty(field) && IsFieldRequired(field, region_code)) { ReportProblemMaybe(field, MISSING_REQUIRED_FIELD); } } if (require_name_ && address_.IsFieldEmpty(RECIPIENT)) { ReportProblemMaybe(RECIPIENT, MISSING_REQUIRED_FIELD); } } void ValidationTask::CheckUnknownValue( const Supplier::RuleHierarchy& hierarchy) const { for (size_t depth = 1; depth < size(LookupKey::kHierarchy); ++depth) { AddressField field = LookupKey::kHierarchy[depth]; if (!(address_.IsFieldEmpty(field) || hierarchy.rule[depth - 1] == nullptr || hierarchy.rule[depth - 1]->GetSubKeys().empty() || hierarchy.rule[depth] != nullptr)) { ReportProblemMaybe(field, UNKNOWN_VALUE); } } } void ValidationTask::CheckUnsupportedField() const { for (size_t depth = max_depth_; depth < size(LookupKey::kHierarchy); ++depth) { ReportProblemMaybe(LookupKey::kHierarchy[depth], UNSUPPORTED_FIELD); } } void ValidationTask::CheckPostalCodeFormatAndValue( const Supplier::RuleHierarchy& hierarchy) const { assert(hierarchy.rule[0] != nullptr); const Rule& country_rule = *hierarchy.rule[0]; if (!(ShouldReport(POSTAL_CODE, INVALID_FORMAT) || ShouldReport(POSTAL_CODE, MISMATCHING_VALUE))) { return; } if (address_.IsFieldEmpty(POSTAL_CODE)) { return; } else if (std::find(problems_->begin(), problems_->end(), FieldProblemMap::value_type(POSTAL_CODE, UNEXPECTED_FIELD)) != problems_->end()) { return; } const RE2ptr* format_ptr = country_rule.GetPostalCodeMatcher(); if (format_ptr != nullptr && !RE2::FullMatch(address_.postal_code, *format_ptr->ptr) && ShouldReport(POSTAL_CODE, INVALID_FORMAT)) { ReportProblem(POSTAL_CODE, INVALID_FORMAT); return; } if (!ShouldReport(POSTAL_CODE, MISMATCHING_VALUE)) { return; } for (size_t depth = size(LookupKey::kHierarchy) - 1; depth > 0; --depth) { if (hierarchy.rule[depth] != nullptr) { const RE2ptr* prefix_ptr = hierarchy.rule[depth]->GetPostalCodeMatcher(); if (prefix_ptr != nullptr) { if (!RE2::PartialMatch(address_.postal_code, *prefix_ptr->ptr)) { ReportProblem(POSTAL_CODE, MISMATCHING_VALUE); } return; } } } } void ValidationTask::CheckUsesPoBox( const Supplier::RuleHierarchy& hierarchy) const { assert(hierarchy.rule[0] != nullptr); const Rule& country_rule = *hierarchy.rule[0]; if (allow_postal_ || !ShouldReport(STREET_ADDRESS, USES_P_O_BOX) || address_.IsFieldEmpty(STREET_ADDRESS)) { return; } const auto matchers = PostBoxMatchers::GetMatchers(country_rule); for (const auto& line : address_.address_line) { for (auto ptr : matchers) { assert(ptr != nullptr); if (RE2::PartialMatch(line, *ptr->ptr)) { ReportProblem(STREET_ADDRESS, USES_P_O_BOX); return; } } } } void ValidationTask::ReportProblem(AddressField field, AddressProblem problem) const { problems_->emplace(field, problem); } void ValidationTask::ReportProblemMaybe(AddressField field, AddressProblem problem) const { if (ShouldReport(field, problem)) { ReportProblem(field, problem); } } bool ValidationTask::ShouldReport(AddressField field, AddressProblem problem) const { return filter_ == nullptr || filter_->empty() || std::find(filter_->begin(), filter_->end(), FieldProblemMap::value_type(field, problem)) != filter_->end(); } } }
#include "validation_task.h" #include <libaddressinput/address_data.h> #include <libaddressinput/address_field.h> #include <libaddressinput/address_problem.h> #include <libaddressinput/address_validator.h> #include <libaddressinput/callback.h> #include <libaddressinput/supplier.h> #include <cstddef> #include <memory> #include <gtest/gtest.h> #include "lookup_key.h" #include "rule.h" #include "util/size.h" namespace i18n { namespace addressinput { class ValidationTaskTest : public testing::Test { public: ValidationTaskTest(const ValidationTaskTest&) = delete; ValidationTaskTest& operator=(const ValidationTaskTest&) = delete; protected: ValidationTaskTest() : json_(), success_(true), address_(), allow_postal_(false), require_name_(false), filter_{ {COUNTRY, UNEXPECTED_FIELD}, {COUNTRY, MISSING_REQUIRED_FIELD}, {RECIPIENT, UNEXPECTED_FIELD}, {RECIPIENT, MISSING_REQUIRED_FIELD}, }, problems_(), expected_(), called_(false), validated_(BuildCallback(this, &ValidationTaskTest::Validated)) { static const AddressField kFields[] = { COUNTRY, ADMIN_AREA, LOCALITY, DEPENDENT_LOCALITY, SORTING_CODE, POSTAL_CODE, STREET_ADDRESS, ORGANIZATION, RECIPIENT, }; static const AddressProblem kProblems[] = { UNKNOWN_VALUE, INVALID_FORMAT, MISMATCHING_VALUE, USES_P_O_BOX, }; for (AddressField field : kFields) { for (AddressProblem problem : kProblems) { filter_.emplace(field, problem); } } } void Validate() { Rule rule[size(LookupKey::kHierarchy)]; auto* task = new ValidationTask( address_, allow_postal_, require_name_, &filter_, &problems_, *validated_); Supplier::RuleHierarchy hierarchy; for (size_t i = 0; i < size(LookupKey::kHierarchy) && json_[i] != nullptr; ++i) { ASSERT_TRUE(rule[i].ParseSerializedRule(json_[i])); hierarchy.rule[i] = &rule[i]; } (*task->supplied_)(success_, *task->lookup_key_, hierarchy); } const char* json_[size(LookupKey::kHierarchy)]; bool success_; AddressData address_; bool allow_postal_; bool require_name_; FieldProblemMap filter_; FieldProblemMap problems_; FieldProblemMap expected_; bool called_; private: void Validated(bool success, const AddressData& address, const FieldProblemMap& problems) { ASSERT_EQ(success_, success); ASSERT_EQ(&address_, &address); ASSERT_EQ(&problems_, &problems); called_ = true; } const std::unique_ptr<const AddressValidator::Callback> validated_; }; namespace { TEST_F(ValidationTaskTest, FailureCountryRuleNull) { success_ = false; ASSERT_NO_FATAL_FAILURE(Validate()); ASSERT_TRUE(called_); EXPECT_EQ(expected_, problems_); } TEST_F(ValidationTaskTest, FailureCountryRuleEmpty) { json_[0] = "{}"; success_ = false; ASSERT_NO_FATAL_FAILURE(Validate()); ASSERT_TRUE(called_); EXPECT_EQ(expected_, problems_); } TEST_F(ValidationTaskTest, SuccessCountryRuleNullNameEmpty) { expected_ = {{COUNTRY, MISSING_REQUIRED_FIELD}}; ASSERT_NO_FATAL_FAILURE(Validate()); ASSERT_TRUE(called_); EXPECT_EQ(expected_, problems_); } TEST_F(ValidationTaskTest, SuccessCountryRuleNullNameNotEmpty) { address_ = {.region_code = "rrr"}; expected_ = {{COUNTRY, UNKNOWN_VALUE}}; ASSERT_NO_FATAL_FAILURE(Validate()); ASSERT_TRUE(called_); EXPECT_EQ(expected_, problems_); } TEST_F(ValidationTaskTest, SuccessCountryRuleEmptyNameEmpty) { json_[0] = "{}"; expected_ = {{COUNTRY, MISSING_REQUIRED_FIELD}}; ASSERT_NO_FATAL_FAILURE(Validate()); ASSERT_TRUE(called_); EXPECT_EQ(expected_, problems_); } TEST_F(ValidationTaskTest, SuccessCountryRuleEmptyNameNotEmpty) { json_[0] = "{}"; address_ = {.region_code = "rrr"}; ASSERT_NO_FATAL_FAILURE(Validate()); ASSERT_TRUE(called_); EXPECT_EQ(expected_, problems_); } TEST_F(ValidationTaskTest, MissingRequiredFieldsUS) { json_[0] = "{}"; address_ = {.region_code = "US"}; filter_ = { {ADMIN_AREA, MISSING_REQUIRED_FIELD}, {LOCALITY, MISSING_REQUIRED_FIELD}, {POSTAL_CODE, MISSING_REQUIRED_FIELD}, {STREET_ADDRESS, MISSING_REQUIRED_FIELD}, }; expected_ = { {ADMIN_AREA, MISSING_REQUIRED_FIELD}, {LOCALITY, MISSING_REQUIRED_FIELD}, {POSTAL_CODE, MISSING_REQUIRED_FIELD}, {STREET_ADDRESS, MISSING_REQUIRED_FIELD}, }; ASSERT_NO_FATAL_FAILURE(Validate()); ASSERT_TRUE(called_); EXPECT_EQ(expected_, problems_); } TEST_F(ValidationTaskTest, MissingNoRequiredFieldsUS) { json_[0] = "{}"; address_ = { .region_code = "US", .address_line{"aaa"}, .administrative_area = "sss", .locality = "ccc", .postal_code = "zzz", .organization = "ooo", .recipient = "nnn", }; filter_ = { {ADMIN_AREA, MISSING_REQUIRED_FIELD}, {LOCALITY, MISSING_REQUIRED_FIELD}, {POSTAL_CODE, MISSING_REQUIRED_FIELD}, {STREET_ADDRESS, MISSING_REQUIRED_FIELD}, {ORGANIZATION, MISSING_REQUIRED_FIELD}, }; ASSERT_NO_FATAL_FAILURE(Validate()); ASSERT_TRUE(called_); EXPECT_EQ(expected_, problems_); } TEST_F(ValidationTaskTest, UnexpectedFieldUS) { json_[0] = "{}"; address_ = { .region_code = "US", .dependent_locality = "ddd", }; filter_ = {{DEPENDENT_LOCALITY, UNEXPECTED_FIELD}}; expected_ = {{DEPENDENT_LOCALITY, UNEXPECTED_FIELD}}; ASSERT_NO_FATAL_FAILURE(Validate()); ASSERT_TRUE(called_); EXPECT_EQ(expected_, problems_); } TEST_F(ValidationTaskTest, MissingRequiredFieldRequireName) { json_[0] = "{}"; address_ = {.region_code = "rrr"}; require_name_ = true; expected_ = {{RECIPIENT, MISSING_REQUIRED_FIELD}}; ASSERT_NO_FATAL_FAILURE(Validate()); ASSERT_TRUE(called_); EXPECT_EQ(expected_, problems_); } TEST_F(ValidationTaskTest, UnknownValueRuleNull) { json_[0] = R"({"fmt":"%R%S","require":"RS","sub_keys":"aa~bb"})"; address_ = { .region_code = "rrr", .administrative_area = "sss", }; expected_ = {{ADMIN_AREA, UNKNOWN_VALUE}}; ASSERT_NO_FATAL_FAILURE(Validate()); ASSERT_TRUE(called_); EXPECT_EQ(expected_, problems_); } TEST_F(ValidationTaskTest, NoUnknownValueRuleNotNull) { json_[0] = R"({"fmt":"%R%S","require":"RS","sub_keys":"aa~bb"})"; json_[1] = "{}"; address_ = { .region_code = "rrr", .administrative_area = "sss", }; ASSERT_NO_FATAL_FAILURE(Validate()); ASSERT_TRUE(called_); EXPECT_EQ(expected_, problems_); } TEST_F(ValidationTaskTest, PostalCodeUnrecognizedFormatTooShort) { json_[0] = R"({"fmt":"%Z","zip":"\\d{3}"})"; address_ = { .region_code = "rrr", .postal_code = "12", }; expected_ = {{POSTAL_CODE, INVALID_FORMAT}}; ASSERT_NO_FATAL_FAILURE(Validate()); ASSERT_TRUE(called_); EXPECT_EQ(expected_, problems_); } TEST_F(ValidationTaskTest, PostalCodeUnrecognizedFormatTooLong) { json_[0] = R"({"fmt":"%Z","zip":"\\d{3}"})"; address_ = { .region_code = "rrr", .postal_code = "1234", }; expected_ = {{POSTAL_CODE, INVALID_FORMAT}}; ASSERT_NO_FATAL_FAILURE(Validate()); ASSERT_TRUE(called_); EXPECT_EQ(expected_, problems_); } TEST_F(ValidationTaskTest, PostalCodeRecognizedFormat) { json_[0] = R"({"fmt":"%Z","zip":"\\d{3}"})"; address_ = { .region_code = "rrr", .postal_code = "123", }; ASSERT_NO_FATAL_FAILURE(Validate()); ASSERT_TRUE(called_); EXPECT_EQ(expected_, problems_); } TEST_F(ValidationTaskTest, PostalCodeMismatchingValue1) { json_[0] = R"({"fmt":"%Z","zip":"\\d{3}"})"; json_[1] = R"({"zip":"1"})"; address_ = { .region_code = "rrr", .postal_code = "000", }; expected_ = {{POSTAL_CODE, MISMATCHING_VALUE}}; ASSERT_NO_FATAL_FAILURE(Validate()); ASSERT_TRUE(called_); EXPECT_EQ(expected_, problems_); } TEST_F(ValidationTaskTest, PostalCodeMismatchingValue2) { json_[0] = R"({"fmt":"%Z","zip":"\\d{3}"})"; json_[1] = R"({"zip":"1"})"; json_[2] = R"({"zip":"12"})"; address_ = { .region_code = "rrr", .postal_code = "100", }; expected_ = {{POSTAL_CODE, MISMATCHING_VALUE}}; ASSERT_NO_FATAL_FAILURE(Validate()); ASSERT_TRUE(called_); EXPECT_EQ(expected_, problems_); } TEST_F(ValidationTaskTest, PostalCodeMismatchingValue3) { json_[0] = R"({"fmt":"%Z","zip":"\\d{3}"})"; json_[1] = R"({"zip":"1"})"; json_[2] = R"({"zip":"12"})"; json_[3] = R"({"zip":"123"})"; address_ = { .region_code = "rrr", .postal_code = "120", }; expected_ = {{POSTAL_CODE, MISMATCHING_VALUE}}; ASSERT_NO_FATAL_FAILURE(Validate()); ASSERT_TRUE(called_); EXPECT_EQ(expected_, problems_); } TEST_F(ValidationTaskTest, PostalCodeMatchingValue) { json_[0] = R"({"fmt":"%Z","zip":"\\d{3}"})"; json_[1] = R"({"zip":"1"})"; json_[2] = R"({"zip":"12"})"; json_[3] = R"({"zip":"123"})"; address_ = { .region_code = "rrr", .postal_code = "123", }; ASSERT_NO_FATAL_FAILURE(Validate()); ASSERT_TRUE(called_); EXPECT_EQ(expected_, problems_); } TEST_F(ValidationTaskTest, PostalCodePrefixMismatchingValue) { json_[0] = R"({"fmt":"%Z","zip":"\\d{5}"})"; json_[1] = R"({"zip":"9[0-5]|96[01]"})"; address_ = { .region_code = "rrr", .postal_code = "10960", }; expected_ = {{POSTAL_CODE, MISMATCHING_VALUE}}; ASSERT_NO_FATAL_FAILURE(Validate()); ASSERT_TRUE(called_); EXPECT_EQ(expected_, problems_); } TEST_F(ValidationTaskTest, PostalCodeFilterIgnoresMismatching) { json_[0] = R"({"zip":"\\d{3}"})"; json_[1] = R"({"zip":"1"})"; address_ = { .region_code = "rrr", .postal_code = "000", }; filter_ = {{POSTAL_CODE, INVALID_FORMAT}}; ASSERT_NO_FATAL_FAILURE(Validate()); ASSERT_TRUE(called_); EXPECT_EQ(expected_, problems_); } TEST_F(ValidationTaskTest, UsesPoBoxLanguageUnd) { json_[0] = R"({"fmt":"%A"})"; address_ = { .region_code = "rrr", .address_line{ "aaa", "P.O. Box", "aaa", }, }; expected_ = {{STREET_ADDRESS, USES_P_O_BOX}}; ASSERT_NO_FATAL_FAILURE(Validate()); ASSERT_TRUE(called_); EXPECT_EQ(expected_, problems_); } TEST_F(ValidationTaskTest, UsesPoBoxLanguageDa) { json_[0] = R"({"fmt":"%A","languages":"da"})"; address_ = { .region_code = "rrr", .address_line{ "aaa", "Postboks", "aaa", }, }; expected_ = {{STREET_ADDRESS, USES_P_O_BOX}}; ASSERT_NO_FATAL_FAILURE(Validate()); ASSERT_TRUE(called_); EXPECT_EQ(expected_, problems_); } TEST_F(ValidationTaskTest, UsesPoBoxLanguageDaNotMatchDe) { json_[0] = R"({"fmt":"%A","languages":"da"})"; address_ = { .region_code = "rrr", .address_line{ "aaa", "Postfach", "aaa", }, }; ASSERT_NO_FATAL_FAILURE(Validate()); ASSERT_TRUE(called_); EXPECT_EQ(expected_, problems_); } TEST_F(ValidationTaskTest, UsesPoBoxAllowPostal) { json_[0] = R"({"fmt":"%A"})"; address_ = { .region_code = "rrr", .address_line{ "aaa", "P.O. Box", "aaa", }, }; allow_postal_ = true; ASSERT_NO_FATAL_FAILURE(Validate()); ASSERT_TRUE(called_); EXPECT_EQ(expected_, problems_); } } } }
https://github.com/google/libaddressinput/blob/2610f7b1043d6784ada41392fc9392d1ea09ea07/cpp/src/validation_task.cc
https://github.com/google/libaddressinput/blob/2610f7b1043d6784ada41392fc9392d1ea09ea07/cpp/test/validation_task_test.cc
2610f7b1043d6784ada41392fc9392d1ea09ea07
af364550-5955-4c94-a193-5b2803f102e2
cpp
google/cel-cpp
parsed_json_map_value
common/values/parsed_json_map_value.cc
common/values/parsed_json_map_value_test.cc
#include "common/values/parsed_json_map_value.h" #include <cstddef> #include <memory> #include <string> #include <utility> #include "google/protobuf/struct.pb.h" #include "absl/base/nullability.h" #include "absl/base/optimization.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "common/json.h" #include "common/memory.h" #include "common/native_type.h" #include "common/value.h" #include "common/value_manager.h" #include "common/values/parsed_json_value.h" #include "internal/json.h" #include "internal/status_macros.h" #include "internal/strings.h" #include "internal/well_known_types.h" #include "google/protobuf/arena.h" #include "google/protobuf/map.h" #include "google/protobuf/map_field.h" #include "google/protobuf/message.h" #include "google/protobuf/message_lite.h" namespace cel { namespace common_internal { absl::Status CheckWellKnownStructMessage(const google::protobuf::Message& message) { return internal::CheckJsonMap(message); } } std::string ParsedJsonMapValue::DebugString() const { if (value_ == nullptr) { return "{}"; } return internal::JsonMapDebugString(*value_); } absl::Status ParsedJsonMapValue::SerializeTo(AnyToJsonConverter& converter, absl::Cord& value) const { if (value_ == nullptr) { value.Clear(); return absl::OkStatus(); } if (!value_->SerializePartialToCord(&value)) { return absl::UnknownError("failed to serialize protocol buffer message"); } return absl::OkStatus(); } absl::StatusOr<Json> ParsedJsonMapValue::ConvertToJson( AnyToJsonConverter& converter) const { if (value_ == nullptr) { return JsonObject(); } return internal::ProtoJsonMapToNativeJsonMap(*value_); } absl::Status ParsedJsonMapValue::Equal(ValueManager& value_manager, const Value& other, Value& result) const { if (auto other_value = other.AsParsedJsonMap(); other_value) { result = BoolValue(*this == *other_value); return absl::OkStatus(); } if (auto other_value = other.AsMap(); other_value) { return common_internal::MapValueEqual(value_manager, MapValue(*this), *other_value, result); } result = BoolValue(false); return absl::OkStatus(); } absl::StatusOr<Value> ParsedJsonMapValue::Equal(ValueManager& value_manager, const Value& other) const { Value result; CEL_RETURN_IF_ERROR(Equal(value_manager, other, result)); return result; } size_t ParsedJsonMapValue::Size() const { if (value_ == nullptr) { return 0; } return static_cast<size_t>( well_known_types::GetStructReflectionOrDie(value_->GetDescriptor()) .FieldsSize(*value_)); } absl::Status ParsedJsonMapValue::Get(ValueManager& value_manager, const Value& key, Value& result) const { CEL_ASSIGN_OR_RETURN(bool ok, Find(value_manager, key, result)); if (ABSL_PREDICT_FALSE(!ok) && !(result.IsError() || result.IsUnknown())) { return absl::NotFoundError( absl::StrCat("Key not found in map : ", key.DebugString())); } return absl::OkStatus(); } absl::StatusOr<Value> ParsedJsonMapValue::Get(ValueManager& value_manager, const Value& key) const { Value result; CEL_RETURN_IF_ERROR(Get(value_manager, key, result)); return result; } absl::StatusOr<bool> ParsedJsonMapValue::Find(ValueManager& value_manager, const Value& key, Value& result) const { if (key.IsError() || key.IsUnknown()) { result = key; return false; } if (value_ != nullptr) { if (auto string_key = key.AsString(); string_key) { if (ABSL_PREDICT_FALSE(value_ == nullptr)) { result = NullValue(); return false; } std::string key_scratch; if (const auto* value = well_known_types::GetStructReflectionOrDie( value_->GetDescriptor()) .FindField(*value_, string_key->NativeString(key_scratch)); value != nullptr) { result = common_internal::ParsedJsonValue( value_manager.GetMemoryManager().arena(), Borrowed(value_, value)); return true; } result = NullValue(); return false; } } result = NullValue(); return false; } absl::StatusOr<std::pair<Value, bool>> ParsedJsonMapValue::Find( ValueManager& value_manager, const Value& key) const { Value result; CEL_ASSIGN_OR_RETURN(auto found, Find(value_manager, key, result)); if (found) { return std::pair{std::move(result), found}; } return std::pair{NullValue(), found}; } absl::Status ParsedJsonMapValue::Has(ValueManager& value_manager, const Value& key, Value& result) const { if (key.IsError() || key.IsUnknown()) { result = key; return absl::OkStatus(); } if (value_ != nullptr) { if (auto string_key = key.AsString(); string_key) { if (ABSL_PREDICT_FALSE(value_ == nullptr)) { result = BoolValue(false); return absl::OkStatus(); } std::string key_scratch; if (const auto* value = well_known_types::GetStructReflectionOrDie( value_->GetDescriptor()) .FindField(*value_, string_key->NativeString(key_scratch)); value != nullptr) { result = BoolValue(true); } else { result = BoolValue(false); } return absl::OkStatus(); } } result = BoolValue(false); return absl::OkStatus(); } absl::StatusOr<Value> ParsedJsonMapValue::Has(ValueManager& value_manager, const Value& key) const { Value result; CEL_RETURN_IF_ERROR(Has(value_manager, key, result)); return result; } namespace { class ParsedJsonMapValueKeysList final : public ParsedListValueInterface, public EnableSharedFromThis<ParsedJsonMapValueKeysList> { public: ParsedJsonMapValueKeysList(Owned<const google::protobuf::MessageLite> message, absl::Nullable<google::protobuf::Arena*> keys_arena, std::string* keys, size_t keys_size) : message_(std::move(message)), keys_arena_(keys_arena), keys_(keys), keys_size_(keys_size) {} ~ParsedJsonMapValueKeysList() override { if (keys_arena_ == nullptr) { delete[] keys_; } } std::string DebugString() const override { std::string result; result.push_back('['); for (size_t i = 0; i < keys_size_; ++i) { if (i > 0) { result.append(", "); } result.append(internal::FormatStringLiteral(keys_[i])); } result.push_back(']'); return result; } size_t Size() const override { return keys_size_; } absl::Status Contains(ValueManager& value_manager, const Value& other, Value& result) const override { if (ABSL_PREDICT_FALSE(other.IsError() || other.IsUnknown())) { result = other; return absl::OkStatus(); } if (const auto other_string = other.AsString(); other_string) { for (size_t i = 0; i < keys_size_; ++i) { if (keys_[i] == *other_string) { result = BoolValue(true); return absl::OkStatus(); } } } result = BoolValue(false); return absl::OkStatus(); } absl::StatusOr<JsonArray> ConvertToJsonArray( AnyToJsonConverter&) const override { JsonArrayBuilder builder; builder.reserve(keys_size_); for (size_t i = 0; i < keys_size_; ++i) { builder.push_back(JsonString(keys_[i])); } return std::move(builder).Build(); } protected: absl::Status GetImpl(ValueManager& value_manager, size_t index, Value& result) const override { result = StringValue(value_manager.GetMemoryManager().arena(), keys_[index]); return absl::OkStatus(); } private: friend struct cel::NativeTypeTraits<ParsedJsonMapValueKeysList>; NativeTypeId GetNativeTypeId() const noexcept override { return NativeTypeId::For<ParsedJsonMapValueKeysList>(); } const Owned<const google::protobuf::MessageLite> message_; const absl::Nullable<google::protobuf::Arena*> keys_arena_; std::string* const keys_; const size_t keys_size_; }; struct ArenaStringArray { absl::Nullable<std::string*> data; size_t size; }; void DestroyArenaStringArray(void* strings) { std::destroy_n(reinterpret_cast<ArenaStringArray*>(strings)->data, reinterpret_cast<ArenaStringArray*>(strings)->size); } } template <> struct NativeTypeTraits<ParsedJsonMapValueKeysList> final { static NativeTypeId Id(const ParsedJsonMapValueKeysList& type) { return type.GetNativeTypeId(); } static bool SkipDestructor(const ParsedJsonMapValueKeysList& type) { return NativeType::SkipDestructor(type.message_) && type.keys_arena_ != nullptr; } }; absl::Status ParsedJsonMapValue::ListKeys(ValueManager& value_manager, ListValue& result) const { if (value_ == nullptr) { result = ListValue(); return absl::OkStatus(); } google::protobuf::Arena* arena = value_manager.GetMemoryManager().arena(); size_t keys_size; std::string* keys; const auto reflection = well_known_types::GetStructReflectionOrDie(value_->GetDescriptor()); keys_size = static_cast<size_t>(reflection.FieldsSize(*value_)); auto keys_it = reflection.BeginFields(*value_); if (arena != nullptr) { keys = reinterpret_cast<std::string*>(arena->AllocateAligned( keys_size * sizeof(std::string), alignof(std::string))); for (size_t i = 0; i < keys_size; ++i, ++keys_it) { ::new (static_cast<void*>(keys + i)) std::string(keys_it.GetKey().GetStringValue()); } } else { keys = new std::string[keys_size]; for (size_t i = 0; i < keys_size; ++i, ++keys_it) { const auto& key = keys_it.GetKey().GetStringValue(); (keys + i)->assign(key.data(), key.size()); } } if (arena != nullptr) { ArenaStringArray* array = google::protobuf::Arena::Create<ArenaStringArray>(arena); array->data = keys; array->size = keys_size; arena->OwnCustomDestructor(array, &DestroyArenaStringArray); } result = ParsedListValue( value_manager.GetMemoryManager().MakeShared<ParsedJsonMapValueKeysList>( value_, arena, keys, keys_size)); return absl::OkStatus(); } absl::StatusOr<ListValue> ParsedJsonMapValue::ListKeys( ValueManager& value_manager) const { ListValue result; CEL_RETURN_IF_ERROR(ListKeys(value_manager, result)); return result; } absl::Status ParsedJsonMapValue::ForEach(ValueManager& value_manager, ForEachCallback callback) const { if (value_ == nullptr) { return absl::OkStatus(); } const auto reflection = well_known_types::GetStructReflectionOrDie(value_->GetDescriptor()); Value key_scratch; Value value_scratch; auto map_begin = reflection.BeginFields(*value_); const auto map_end = reflection.EndFields(*value_); for (; map_begin != map_end; ++map_begin) { key_scratch = StringValue(value_manager.GetMemoryManager().arena(), map_begin.GetKey().GetStringValue()); value_scratch = common_internal::ParsedJsonValue( value_manager.GetMemoryManager().arena(), Borrowed(value_, &map_begin.GetValueRef().GetMessageValue())); CEL_ASSIGN_OR_RETURN(auto ok, callback(key_scratch, value_scratch)); if (!ok) { break; } } return absl::OkStatus(); } namespace { class ParsedJsonMapValueIterator final : public ValueIterator { public: explicit ParsedJsonMapValueIterator(Owned<const google::protobuf::Message> message) : message_(std::move(message)), reflection_(well_known_types::GetStructReflectionOrDie( message_->GetDescriptor())), begin_(reflection_.BeginFields(*message_)), end_(reflection_.EndFields(*message_)) {} bool HasNext() override { return begin_ != end_; } absl::Status Next(ValueManager& value_manager, Value& result) override { if (ABSL_PREDICT_FALSE(begin_ == end_)) { return absl::FailedPreconditionError( "`ValueIterator::Next` called after `ValueIterator::HasNext` " "returned false"); } std::string scratch = static_cast<std::string>(begin_.GetKey().GetStringValue()); result = StringValue(value_manager.GetMemoryManager().arena(), std::move(scratch)); ++begin_; return absl::OkStatus(); } private: const Owned<const google::protobuf::Message> message_; const well_known_types::StructReflection reflection_; google::protobuf::MapIterator begin_; const google::protobuf::MapIterator end_; std::string scratch_; }; } absl::StatusOr<absl::Nonnull<std::unique_ptr<ValueIterator>>> ParsedJsonMapValue::NewIterator(ValueManager& value_manager) const { if (value_ == nullptr) { return NewEmptyValueIterator(); } return std::make_unique<ParsedJsonMapValueIterator>(value_); } bool operator==(const ParsedJsonMapValue& lhs, const ParsedJsonMapValue& rhs) { if (cel::to_address(lhs.value_) == cel::to_address(rhs.value_)) { return true; } if (cel::to_address(lhs.value_) == nullptr) { return rhs.IsEmpty(); } if (cel::to_address(rhs.value_) == nullptr) { return lhs.IsEmpty(); } return internal::JsonMapEquals(*lhs.value_, *rhs.value_); } }
#include <utility> #include <vector> #include "google/protobuf/struct.pb.h" #include "absl/base/nullability.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "common/allocator.h" #include "common/json.h" #include "common/memory.h" #include "common/type.h" #include "common/type_reflector.h" #include "common/value.h" #include "common/value_kind.h" #include "common/value_manager.h" #include "common/value_testing.h" #include "internal/parse_text_proto.h" #include "internal/testing.h" #include "internal/testing_descriptor_pool.h" #include "internal/testing_message_factory.h" #include "proto/test/v1/proto3/test_all_types.pb.h" #include "google/protobuf/arena.h" #include "google/protobuf/descriptor.h" #include "google/protobuf/message.h" namespace cel { namespace { using ::absl_testing::IsOk; using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::cel::internal::GetTestingDescriptorPool; using ::cel::internal::GetTestingMessageFactory; using ::cel::test::BoolValueIs; using ::cel::test::IsNullValue; using ::cel::test::StringValueIs; using ::testing::AnyOf; using ::testing::IsEmpty; using ::testing::IsFalse; using ::testing::IsTrue; using ::testing::Pair; using ::testing::PrintToStringParamName; using ::testing::TestWithParam; using ::testing::UnorderedElementsAre; using ::testing::VariantWith; using TestAllTypesProto3 = ::google::api::expr::test::v1::proto3::TestAllTypes; class ParsedJsonMapValueTest : public TestWithParam<AllocatorKind> { public: void SetUp() override { switch (GetParam()) { case AllocatorKind::kArena: arena_.emplace(); value_manager_ = NewThreadCompatibleValueManager( MemoryManager::Pooling(arena()), NewThreadCompatibleTypeReflector(MemoryManager::Pooling(arena()))); break; case AllocatorKind::kNewDelete: value_manager_ = NewThreadCompatibleValueManager( MemoryManager::ReferenceCounting(), NewThreadCompatibleTypeReflector( MemoryManager::ReferenceCounting())); break; } } void TearDown() override { value_manager_.reset(); arena_.reset(); } Allocator<> allocator() { return arena_ ? ArenaAllocator(&*arena_) : NewDeleteAllocator(); } absl::Nullable<google::protobuf::Arena*> arena() { return allocator().arena(); } absl::Nonnull<const google::protobuf::DescriptorPool*> descriptor_pool() { return GetTestingDescriptorPool(); } absl::Nonnull<google::protobuf::MessageFactory*> message_factory() { return GetTestingMessageFactory(); } ValueManager& value_manager() { return **value_manager_; } template <typename T> auto GeneratedParseTextProto(absl::string_view text) { return ::cel::internal::GeneratedParseTextProto<T>( allocator(), text, descriptor_pool(), message_factory()); } template <typename T> auto DynamicParseTextProto(absl::string_view text) { return ::cel::internal::DynamicParseTextProto<T>( allocator(), text, descriptor_pool(), message_factory()); } private: absl::optional<google::protobuf::Arena> arena_; absl::optional<Shared<ValueManager>> value_manager_; }; TEST_P(ParsedJsonMapValueTest, Kind) { EXPECT_EQ(ParsedJsonMapValue::kind(), ParsedJsonMapValue::kKind); EXPECT_EQ(ParsedJsonMapValue::kind(), ValueKind::kMap); } TEST_P(ParsedJsonMapValueTest, GetTypeName) { EXPECT_EQ(ParsedJsonMapValue::GetTypeName(), ParsedJsonMapValue::kName); EXPECT_EQ(ParsedJsonMapValue::GetTypeName(), "google.protobuf.Struct"); } TEST_P(ParsedJsonMapValueTest, GetRuntimeType) { ParsedJsonMapValue value; EXPECT_EQ(ParsedJsonMapValue::GetRuntimeType(), JsonMapType()); } TEST_P(ParsedJsonMapValueTest, DebugString_Dynamic) { ParsedJsonMapValue valid_value( DynamicParseTextProto<google::protobuf::Struct>(R"pb()pb")); EXPECT_EQ(valid_value.DebugString(), "{}"); } TEST_P(ParsedJsonMapValueTest, IsZeroValue_Dynamic) { ParsedJsonMapValue valid_value( DynamicParseTextProto<google::protobuf::Struct>(R"pb()pb")); EXPECT_TRUE(valid_value.IsZeroValue()); } TEST_P(ParsedJsonMapValueTest, SerializeTo_Dynamic) { ParsedJsonMapValue valid_value( DynamicParseTextProto<google::protobuf::Struct>(R"pb()pb")); absl::Cord serialized; EXPECT_THAT(valid_value.SerializeTo(value_manager(), serialized), IsOk()); EXPECT_THAT(serialized, IsEmpty()); } TEST_P(ParsedJsonMapValueTest, ConvertToJson_Dynamic) { ParsedJsonMapValue valid_value( DynamicParseTextProto<google::protobuf::Struct>(R"pb()pb")); EXPECT_THAT(valid_value.ConvertToJson(value_manager()), IsOkAndHolds(VariantWith<JsonObject>(JsonObject()))); } TEST_P(ParsedJsonMapValueTest, Equal_Dynamic) { ParsedJsonMapValue valid_value( DynamicParseTextProto<google::protobuf::Struct>(R"pb()pb")); EXPECT_THAT(valid_value.Equal(value_manager(), BoolValue()), IsOkAndHolds(BoolValueIs(false))); EXPECT_THAT( valid_value.Equal( value_manager(), ParsedJsonMapValue( DynamicParseTextProto<google::protobuf::Struct>(R"pb()pb"))), IsOkAndHolds(BoolValueIs(true))); EXPECT_THAT(valid_value.Equal(value_manager(), MapValue()), IsOkAndHolds(BoolValueIs(true))); } TEST_P(ParsedJsonMapValueTest, Empty_Dynamic) { ParsedJsonMapValue valid_value( DynamicParseTextProto<google::protobuf::Struct>(R"pb()pb")); EXPECT_TRUE(valid_value.IsEmpty()); } TEST_P(ParsedJsonMapValueTest, Size_Dynamic) { ParsedJsonMapValue valid_value( DynamicParseTextProto<google::protobuf::Struct>(R"pb()pb")); EXPECT_EQ(valid_value.Size(), 0); } TEST_P(ParsedJsonMapValueTest, Get_Dynamic) { ParsedJsonMapValue valid_value( DynamicParseTextProto<google::protobuf::Struct>( R"pb(fields { key: "foo" value: {} } fields { key: "bar" value: { bool_value: true } })pb")); EXPECT_THAT(valid_value.Get(value_manager(), BoolValue()), StatusIs(absl::StatusCode::kNotFound)); EXPECT_THAT(valid_value.Get(value_manager(), StringValue("foo")), IsOkAndHolds(IsNullValue())); EXPECT_THAT(valid_value.Get(value_manager(), StringValue("bar")), IsOkAndHolds(BoolValueIs(true))); EXPECT_THAT(valid_value.Get(value_manager(), StringValue("baz")), StatusIs(absl::StatusCode::kNotFound)); } TEST_P(ParsedJsonMapValueTest, Find_Dynamic) { ParsedJsonMapValue valid_value( DynamicParseTextProto<google::protobuf::Struct>( R"pb(fields { key: "foo" value: {} } fields { key: "bar" value: { bool_value: true } })pb")); EXPECT_THAT(valid_value.Find(value_manager(), BoolValue()), IsOkAndHolds(Pair(IsNullValue(), IsFalse()))); EXPECT_THAT(valid_value.Find(value_manager(), StringValue("foo")), IsOkAndHolds(Pair(IsNullValue(), IsTrue()))); EXPECT_THAT(valid_value.Find(value_manager(), StringValue("bar")), IsOkAndHolds(Pair(BoolValueIs(true), IsTrue()))); EXPECT_THAT(valid_value.Find(value_manager(), StringValue("baz")), IsOkAndHolds(Pair(IsNullValue(), IsFalse()))); } TEST_P(ParsedJsonMapValueTest, Has_Dynamic) { ParsedJsonMapValue valid_value( DynamicParseTextProto<google::protobuf::Struct>( R"pb(fields { key: "foo" value: {} } fields { key: "bar" value: { bool_value: true } })pb")); EXPECT_THAT(valid_value.Has(value_manager(), BoolValue()), IsOkAndHolds(BoolValueIs(false))); EXPECT_THAT(valid_value.Has(value_manager(), StringValue("foo")), IsOkAndHolds(BoolValueIs(true))); EXPECT_THAT(valid_value.Has(value_manager(), StringValue("bar")), IsOkAndHolds(BoolValueIs(true))); EXPECT_THAT(valid_value.Has(value_manager(), StringValue("baz")), IsOkAndHolds(BoolValueIs(false))); } TEST_P(ParsedJsonMapValueTest, ListKeys_Dynamic) { ParsedJsonMapValue valid_value( DynamicParseTextProto<google::protobuf::Struct>( R"pb(fields { key: "foo" value: {} } fields { key: "bar" value: { bool_value: true } })pb")); ASSERT_OK_AND_ASSIGN(auto keys, valid_value.ListKeys(value_manager())); EXPECT_THAT(keys.Size(), IsOkAndHolds(2)); EXPECT_THAT(keys.DebugString(), AnyOf("[\"foo\", \"bar\"]", "[\"bar\", \"foo\"]")); EXPECT_THAT(keys.Contains(value_manager(), BoolValue()), IsOkAndHolds(BoolValueIs(false))); EXPECT_THAT(keys.Contains(value_manager(), StringValue("bar")), IsOkAndHolds(BoolValueIs(true))); EXPECT_THAT(keys.Get(value_manager(), 0), IsOkAndHolds(AnyOf(StringValueIs("foo"), StringValueIs("bar")))); EXPECT_THAT(keys.Get(value_manager(), 1), IsOkAndHolds(AnyOf(StringValueIs("foo"), StringValueIs("bar")))); EXPECT_THAT( keys.ConvertToJson(value_manager()), IsOkAndHolds(AnyOf(VariantWith<JsonArray>(MakeJsonArray( {JsonString("foo"), JsonString("bar")})), VariantWith<JsonArray>(MakeJsonArray( {JsonString("bar"), JsonString("foo")}))))); } TEST_P(ParsedJsonMapValueTest, ForEach_Dynamic) { ParsedJsonMapValue valid_value( DynamicParseTextProto<google::protobuf::Struct>( R"pb(fields { key: "foo" value: {} } fields { key: "bar" value: { bool_value: true } })pb")); std::vector<std::pair<Value, Value>> entries; EXPECT_THAT( valid_value.ForEach( value_manager(), [&](const Value& key, const Value& value) -> absl::StatusOr<bool> { entries.push_back(std::pair{std::move(key), std::move(value)}); return true; }), IsOk()); EXPECT_THAT(entries, UnorderedElementsAre( Pair(StringValueIs("foo"), IsNullValue()), Pair(StringValueIs("bar"), BoolValueIs(true)))); } TEST_P(ParsedJsonMapValueTest, NewIterator_Dynamic) { ParsedJsonMapValue valid_value( DynamicParseTextProto<google::protobuf::Struct>( R"pb(fields { key: "foo" value: {} } fields { key: "bar" value: { bool_value: true } })pb")); ASSERT_OK_AND_ASSIGN(auto iterator, valid_value.NewIterator(value_manager())); ASSERT_TRUE(iterator->HasNext()); EXPECT_THAT(iterator->Next(value_manager()), IsOkAndHolds(AnyOf(StringValueIs("foo"), StringValueIs("bar")))); ASSERT_TRUE(iterator->HasNext()); EXPECT_THAT(iterator->Next(value_manager()), IsOkAndHolds(AnyOf(StringValueIs("foo"), StringValueIs("bar")))); ASSERT_FALSE(iterator->HasNext()); EXPECT_THAT(iterator->Next(value_manager()), StatusIs(absl::StatusCode::kFailedPrecondition)); } INSTANTIATE_TEST_SUITE_P(ParsedJsonMapValueTest, ParsedJsonMapValueTest, ::testing::Values(AllocatorKind::kArena, AllocatorKind::kNewDelete), PrintToStringParamName()); } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/values/parsed_json_map_value.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/values/parsed_json_map_value_test.cc
4552db5798fb0853b131b783d8875794334fae7f
8dd52495-17d6-4d03-9b40-62c146124490
cpp
tensorflow/tensorflow
binary_elementwise
tensorflow/lite/experimental/shlo/ops/binary_elementwise.h
tensorflow/lite/experimental/shlo/ops/binary_elementwise_test.cc
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_SHLO_OPS_BINARY_ELEMENTWISE_H_ #define TENSORFLOW_LITE_EXPERIMENTAL_SHLO_OPS_BINARY_ELEMENTWISE_H_ #include "tensorflow/lite/experimental/shlo/data_type.h" #include "tensorflow/lite/experimental/shlo/quantize.h" #include "tensorflow/lite/experimental/shlo/quantized_tensor_element_type.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { namespace detail { template <DataType storage_type, DataType expressed_type, typename F> void DequantizeOpQuantizePerTensor(F&& func, const Tensor& lhs, const Tensor& rhs, Tensor& output) { using StorageT = StorageType<storage_type>; using ExpressedT = StorageType<expressed_type>; const DimensionSize num_elements = lhs.NumElements(); const StorageT lhs_zero_point = lhs.quantized_per_tensor_element_type().ZeroPointAs<storage_type>(); const ExpressedT lhs_scale = lhs.quantized_per_tensor_element_type().ScaleAs<expressed_type>(); const StorageT rhs_zero_point = rhs.quantized_per_tensor_element_type().ZeroPointAs<storage_type>(); const ExpressedT rhs_scale = rhs.quantized_per_tensor_element_type().ScaleAs<expressed_type>(); const StorageT output_zero_point = output.quantized_per_tensor_element_type().ZeroPointAs<storage_type>(); const ExpressedT output_scale = output.quantized_per_tensor_element_type().ScaleAs<expressed_type>(); const StorageT* lhs_data = lhs.GetDataAs<storage_type>(); const StorageT* rhs_data = rhs.GetDataAs<storage_type>(); StorageT* output_data = output.GetDataAs<storage_type>(); const ExpressedT inv_scale = static_cast<ExpressedT>(1) / output_scale; for (DimensionSize i = 0; i < num_elements; ++i, ++lhs_data, ++rhs_data, ++output_data) { const ExpressedT dequantized_lhs = Dequantize(*lhs_data, lhs_zero_point, lhs_scale); const ExpressedT dequantized_rhs = Dequantize(*rhs_data, rhs_zero_point, rhs_scale); const ExpressedT dequantized_res = func(dequantized_lhs, dequantized_rhs); *output_data = Quantize<storage_type, expressed_type>( dequantized_res, output_zero_point, inv_scale); } } template <DataType data_type, class F> void EvaluateNoQuantization(F&& func, const Tensor& lhs, const Tensor& rhs, Tensor& output) { using T = StorageType<data_type>; const T* lhs_data = lhs.GetDataAs<data_type>(); const T* rhs_data = rhs.GetDataAs<data_type>(); T* output_data = output.GetDataAs<data_type>(); const DimensionSize num_elements = lhs.NumElements(); for (DimensionSize i = 0; i < num_elements; ++i, ++output_data, ++lhs_data, ++rhs_data) { *output_data = static_cast<T>(func(*lhs_data, *rhs_data)); } } } } #endif
#include "tensorflow/lite/experimental/shlo/ops/binary_elementwise.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/quantized_tensor_element_type.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::ElementsAreArray; namespace shlo_ref { namespace { struct TestOp { template <typename T> T operator()(const T& lhs, const T& rhs) { return lhs + rhs; } }; template <class T> struct EvaluateNoQuantizationTest : ::testing::Test {}; TYPED_TEST_SUITE(EvaluateNoQuantizationTest, ArithmeticTestTypes, TestParamNames); TYPED_TEST(EvaluateNoQuantizationTest, ArithmeticTensorsWithTestOp) { using StorageT = typename TypeParam::StorageT; const Shape shape({2, 3, 4}); Vector<StorageT> lhs_data = RandomBuffer<TypeParam::kStorage>(shape, -5, 5); Vector<StorageT> rhs_data = RandomBuffer<TypeParam::kStorage>(shape, -5, 5); Vector<StorageT> output_data(shape.NumElements()); Tensor lhs_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = lhs_data.data()}; Tensor rhs_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = rhs_data.data()}; Tensor output_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(lhs_data, rhs_data, expected_data.begin(), TestOp()); detail::EvaluateNoQuantization<TypeParam::kStorage>( TestOp(), lhs_tensor, rhs_tensor, output_tensor); EXPECT_THAT(output_data, ElementsAreArray(expected_data)); } template <class T> struct DequantizeOpQuantizePerTensor : ::testing::Test {}; TYPED_TEST_SUITE(DequantizeOpQuantizePerTensor, QuantizedTestTypes, TestParamNames); TYPED_TEST(DequantizeOpQuantizePerTensor, QuantizedPerTensorWithTestOp) { using StorageT = typename TypeParam::StorageT; using ExpressedT = typename TypeParam::ExpressedT; const Shape shape({2, 3, 4}); Vector<StorageT> lhs_data = RandomBuffer<TypeParam::kStorage>(shape, -5, 5); Vector<StorageT> rhs_data = RandomBuffer<TypeParam::kStorage>(shape, -5, 5); Vector<StorageT> output_data(shape.NumElements()); const ExpressedT lhs_scale = static_cast<ExpressedT>(1.3); const StorageT lhs_zero_point = static_cast<StorageT>(4); const ExpressedT rhs_scale = static_cast<ExpressedT>(1.2); const StorageT rhs_zero_point = static_cast<StorageT>(5); const ExpressedT output_scale = static_cast<ExpressedT>(1.5); const StorageT output_zero_point = static_cast<StorageT>(3); Tensor lhs_tensor{.type = QuantizedPerTensorTensorType{ .shape = shape, .element_type = QuantizedElementTypePerTensor( TypeParam::kStorage, lhs_zero_point, TypeParam::kExpressed, lhs_scale)}, .data = lhs_data.data()}; Tensor rhs_tensor{.type = QuantizedPerTensorTensorType{ .shape = shape, .element_type = QuantizedElementTypePerTensor( TypeParam::kStorage, rhs_zero_point, TypeParam::kExpressed, rhs_scale)}, .data = rhs_data.data()}; Tensor output_tensor{.type = QuantizedPerTensorTensorType{ .shape = shape, .element_type = QuantizedElementTypePerTensor( TypeParam::kStorage, output_zero_point, TypeParam::kExpressed, output_scale)}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform( lhs_data, rhs_data, expected_data.begin(), [lhs_zero_point, lhs_scale, rhs_zero_point, rhs_scale, output_zero_point, output_scale](auto lhs, auto rhs) { const ExpressedT dequantized_lhs = Dequantize(lhs, lhs_zero_point, lhs_scale); const ExpressedT dequantized_rhs = Dequantize(rhs, rhs_zero_point, rhs_scale); const ExpressedT dequantized_res = TestOp()(dequantized_lhs, dequantized_rhs); return Quantize<TypeParam::kStorage, TypeParam::kExpressed>( dequantized_res, output_zero_point, static_cast<ExpressedT>(1.) / output_scale); }); detail::DequantizeOpQuantizePerTensor<TypeParam::kStorage, TypeParam::kExpressed>( TestOp(), lhs_tensor, rhs_tensor, output_tensor); EXPECT_THAT(output_data, ElementsAreArray(expected_data)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/binary_elementwise.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/binary_elementwise_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
76550dac-69ef-42d5-8854-311eb683d6cd
cpp
google/cel-cpp
null_type
common/types/null_type.h
common/types/null_type_test.cc
#ifndef THIRD_PARTY_CEL_CPP_COMMON_TYPES_NULL_TYPE_H_ #define THIRD_PARTY_CEL_CPP_COMMON_TYPES_NULL_TYPE_H_ #include <ostream> #include <string> #include <utility> #include "absl/strings/string_view.h" #include "common/type_kind.h" namespace cel { class Type; class TypeParameters; class NullType final { public: static constexpr TypeKind kKind = TypeKind::kNull; static constexpr absl::string_view kName = "null_type"; NullType() = default; NullType(const NullType&) = default; NullType(NullType&&) = default; NullType& operator=(const NullType&) = default; NullType& operator=(NullType&&) = default; static TypeKind kind() { return kKind; } static absl::string_view name() { return kName; } static TypeParameters GetParameters(); static std::string DebugString() { return std::string(name()); } constexpr void swap(NullType&) noexcept {} }; inline constexpr void swap(NullType& lhs, NullType& rhs) noexcept { lhs.swap(rhs); } inline constexpr bool operator==(NullType, NullType) { return true; } inline constexpr bool operator!=(NullType lhs, NullType rhs) { return !operator==(lhs, rhs); } template <typename H> H AbslHashValue(H state, NullType) { return std::move(state); } inline std::ostream& operator<<(std::ostream& out, const NullType& type) { return out << type.DebugString(); } } #endif
#include <sstream> #include "absl/hash/hash.h" #include "common/type.h" #include "internal/testing.h" namespace cel { namespace { TEST(NullType, Kind) { EXPECT_EQ(NullType().kind(), NullType::kKind); EXPECT_EQ(Type(NullType()).kind(), NullType::kKind); } TEST(NullType, Name) { EXPECT_EQ(NullType().name(), NullType::kName); EXPECT_EQ(Type(NullType()).name(), NullType::kName); } TEST(NullType, DebugString) { { std::ostringstream out; out << NullType(); EXPECT_EQ(out.str(), NullType::kName); } { std::ostringstream out; out << Type(NullType()); EXPECT_EQ(out.str(), NullType::kName); } } TEST(NullType, Hash) { EXPECT_EQ(absl::HashOf(NullType()), absl::HashOf(NullType())); } TEST(NullType, Equal) { EXPECT_EQ(NullType(), NullType()); EXPECT_EQ(Type(NullType()), NullType()); EXPECT_EQ(NullType(), Type(NullType())); EXPECT_EQ(Type(NullType()), Type(NullType())); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/types/null_type.h
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/types/null_type_test.cc
4552db5798fb0853b131b783d8875794334fae7f
d2d45273-35c5-4952-a6d7-b819d01e7583
cpp
google/tensorstore
data_type_endian_conversion
tensorstore/internal/data_type_endian_conversion.cc
tensorstore/internal/data_type_endian_conversion_test.cc
#include "tensorstore/internal/data_type_endian_conversion.h" #include <cassert> #include <complex> #include "absl/algorithm/container.h" #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/data_type.h" #include "tensorstore/internal/elementwise_function.h" #include "tensorstore/internal/unaligned_data_type_functions.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/element_pointer.h" #include "tensorstore/util/endian.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" namespace tensorstore { namespace internal { void EncodeArray(ArrayView<const void> source, ArrayView<void> target, endian target_endian) { const DataType dtype = source.dtype(); assert(absl::c_equal(source.shape(), target.shape())); assert(dtype == target.dtype()); const auto& functions = kUnalignedDataTypeFunctions[static_cast<size_t>(dtype.id())]; assert(functions.copy != nullptr); internal::IterateOverStridedLayouts<2>( {(target_endian == endian::native) ? functions.copy : functions.swap_endian, nullptr}, nullptr, source.shape(), {{const_cast<void*>(source.data()), target.data()}}, {{source.byte_strides().data(), target.byte_strides().data()}}, skip_repeated_elements, {{dtype.size(), dtype.size()}}); } namespace { static_assert(sizeof(bool) == 1); struct DecodeBoolArray { void operator()(unsigned char* source, bool* output, void*) const { *output = static_cast<bool>(*source); } }; struct DecodeBoolArrayInplace { void operator()(unsigned char* source, void*) const { *source = static_cast<bool>(*source); } }; } void DecodeArray(ArrayView<const void> source, endian source_endian, ArrayView<void> target) { const DataType dtype = source.dtype(); assert(absl::c_equal(source.shape(), target.shape())); assert(dtype == target.dtype()); if (dtype.id() != DataTypeId::bool_t) { EncodeArray(source, target, source_endian); return; } internal::IterateOverStridedLayouts<2>( {SimpleElementwiseFunction< DecodeBoolArray(unsigned char, bool), void*>(), nullptr}, nullptr, source.shape(), {{const_cast<void*>(source.data()), target.data()}}, {{source.byte_strides().data(), target.byte_strides().data()}}, skip_repeated_elements, {{1, 1}}); } void DecodeArray(SharedArrayView<void>* source, endian source_endian, StridedLayoutView<> decoded_layout) { assert(source != nullptr); assert(absl::c_equal(source->shape(), decoded_layout.shape())); const DataType dtype = source->dtype(); const auto& functions = kUnalignedDataTypeFunctions[static_cast<size_t>(dtype.id())]; assert(functions.copy != nullptr); if ((reinterpret_cast<std::uintptr_t>(source->data()) % dtype->alignment) == 0 && std::all_of(source->byte_strides().begin(), source->byte_strides().end(), [&](Index byte_stride) { return (byte_stride % dtype->alignment) == 0; })) { const ElementwiseFunction<1, void*>* convert_func = nullptr; if (dtype.id() == DataTypeId::bool_t) { convert_func = SimpleElementwiseFunction<DecodeBoolArrayInplace(unsigned char), void*>(); } else if (source_endian != endian::native && functions.swap_endian_inplace) { convert_func = functions.swap_endian_inplace; } if (convert_func) { internal::IterateOverStridedLayouts<1>( {convert_func, nullptr}, nullptr, source->shape(), {{source->data()}}, {{source->byte_strides().data()}}, skip_repeated_elements, {{dtype.size()}}); } } else { *source = CopyAndDecodeArray(*source, source_endian, decoded_layout); } } SharedArrayView<void> CopyAndDecodeArray(ArrayView<const void> source, endian source_endian, StridedLayoutView<> decoded_layout) { SharedArrayView<void> target( internal::AllocateAndConstructSharedElements( decoded_layout.num_elements(), default_init, source.dtype()), decoded_layout); DecodeArray(source, source_endian, target); return target; } SharedArrayView<const void> TryViewCordAsArray(const absl::Cord& source, Index offset, DataType dtype, endian source_endian, StridedLayoutView<> layout) { const auto& functions = kUnalignedDataTypeFunctions[static_cast<size_t>(dtype.id())]; assert(functions.copy != nullptr); if (source_endian != endian::native && functions.swap_endian_inplace) { return {}; } auto maybe_flat = source.TryFlat(); if (!maybe_flat) { return {}; } ByteStridedPointer<const void> ptr = maybe_flat->data(); ptr += offset; if ((reinterpret_cast<std::uintptr_t>(ptr.get()) % dtype->alignment) != 0 || !std::all_of(layout.byte_strides().begin(), layout.byte_strides().end(), [&](Index byte_stride) { return (byte_stride % dtype->alignment) == 0; })) { return {}; } auto shared_cord = std::make_shared<absl::Cord>(source); if (auto shared_flat = shared_cord->TryFlat(); !shared_flat || shared_flat->data() != maybe_flat->data()) { return {}; } return SharedArrayView<const void>( SharedElementPointer<const void>( std::shared_ptr<const void>(std::move(shared_cord), ptr.get()), dtype), layout); } } }
#include "tensorstore/internal/data_type_endian_conversion.h" #include <stddef.h> #include <stdint.h> #include <string> #include <string_view> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/cord.h" #include "absl/strings/cord_test_helpers.h" #include "tensorstore/array.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/index.h" #include "tensorstore/internal/flat_cord_builder.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/endian.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::Array; using ::tensorstore::c_order; using ::tensorstore::ContiguousLayoutOrder; using ::tensorstore::DataType; using ::tensorstore::dtype_v; using ::tensorstore::endian; using ::tensorstore::fortran_order; using ::tensorstore::Index; using ::tensorstore::MakeArray; using ::tensorstore::SharedArrayView; using ::tensorstore::StridedLayout; using ::tensorstore::internal::DecodeArray; using ::tensorstore::internal::EncodeArray; using ::tensorstore::internal::TryViewCordAsArray; TEST(EncodeDecodeArrayTest, Uint8) { uint8_t source[6] = {1, 2, 3, 4, 5, 6}; uint8_t dest1[6]; uint8_t dest2[6]; uint8_t dest3[6]; uint8_t dest4[6]; EncodeArray(Array(source, {2, 3}, c_order), Array(dest1, {2, 3}, fortran_order), endian::little); EXPECT_THAT(dest1, ::testing::ElementsAre(1, 4, 2, 5, 3, 6)); EncodeArray(Array(source, {2, 3}, c_order), Array(dest2, {2, 3}, fortran_order), endian::big); EXPECT_THAT(dest2, ::testing::ElementsAre(1, 4, 2, 5, 3, 6)); DecodeArray(Array(source, {2, 3}, c_order), endian::little, Array(dest3, {2, 3}, fortran_order)); EXPECT_THAT(dest3, ::testing::ElementsAre(1, 4, 2, 5, 3, 6)); DecodeArray(Array(source, {2, 3}, c_order), endian::big, Array(dest4, {2, 3}, fortran_order)); EXPECT_THAT(dest4, ::testing::ElementsAre(1, 4, 2, 5, 3, 6)); } TEST(EncodeDecodeArrayTest, Uint16) { uint16_t source[6] = {0x1234, 0x5678, 0x9012, 0x3456, 0x7890, 0x3344}; alignas(2) unsigned char dest1[13] = {}; alignas(2) unsigned char dest2[13] = {}; EncodeArray( Array(source, {2, 3}, c_order), Array(reinterpret_cast<uint16_t*>(dest1 + 1), {2, 3}, fortran_order), endian::little); EXPECT_THAT(dest1, ::testing::ElementsAreArray({0x0, 0x34, 0x12, 0x56, 0x34, 0x78, 0x56, 0x90, 0x78, 0x12, 0x90, 0x44, 0x33})); EncodeArray( Array(source, {2, 3}, c_order), Array(reinterpret_cast<uint16_t*>(dest2 + 1), {2, 3}, fortran_order), endian::big); EXPECT_THAT(dest2, ::testing::ElementsAreArray({0x0, 0x12, 0x34, 0x34, 0x56, 0x56, 0x78, 0x78, 0x90, 0x90, 0x12, 0x33, 0x44})); } TEST(EncodeDecodeArrayTest, Float16) { using ::tensorstore::dtypes::float16_t; float16_t source[6] = {float16_t(1.0), float16_t(2.0), float16_t(3.0), float16_t(4.0), float16_t(5.0), float16_t(6.0)}; alignas(2) unsigned char dest1[13] = {}; alignas(2) unsigned char dest2[13] = {}; EncodeArray( Array(source, {2, 3}, c_order), Array(reinterpret_cast<float16_t*>(dest1 + 1), {2, 3}, fortran_order), endian::little); EXPECT_THAT(dest1, ::testing::ElementsAreArray({0x0, 0x00, 0x3c, 0x00, 0x44, 0x00, 0x40, 0x00, 0x45, 0x00, 0x42, 0x00, 0x46})); EncodeArray( Array(source, {2, 3}, c_order), Array(reinterpret_cast<float16_t*>(dest2 + 1), {2, 3}, fortran_order), endian::big); EXPECT_THAT(dest2, ::testing::ElementsAreArray({ 0x0, 0x3c, 0x00, 0x44, 0x00, 0x40, 0x00, 0x45, 0x00, 0x42, 0x00, 0x46, 0x00, })); } TEST(EncodeDecodeArrayTest, Bfloat16) { using ::tensorstore::dtypes::bfloat16_t; bfloat16_t source[6] = {bfloat16_t(1.0), bfloat16_t(2.0), bfloat16_t(3.0), bfloat16_t(4.0), bfloat16_t(5.0), bfloat16_t(6.0)}; alignas(2) unsigned char dest1[13] = {}; alignas(2) unsigned char dest2[13] = {}; EncodeArray( Array(source, {2, 3}, c_order), Array(reinterpret_cast<bfloat16_t*>(dest1 + 1), {2, 3}, fortran_order), endian::little); EXPECT_THAT(dest1, ::testing::ElementsAreArray({ 0x0, 0x80, 0x3f, 0x80, 0x40, 0x00, 0x40, 0xa0, 0x40, 0x40, 0x40, 0xc0, 0x40, })); EncodeArray( Array(source, {2, 3}, c_order), Array(reinterpret_cast<bfloat16_t*>(dest2 + 1), {2, 3}, fortran_order), endian::big); EXPECT_THAT(dest2, ::testing::ElementsAreArray({ 0x0, 0x3f, 0x80, 0x40, 0x80, 0x40, 0x00, 0x40, 0xa0, 0x40, 0x40, 0x40, 0xc0, })); } TEST(DecodeArrayTest, Bool) { unsigned char source[6] = {0x12, 0x00, 0x34, 0x1, 0x78, 0x00}; unsigned char dest[6]; DecodeArray(Array(reinterpret_cast<bool*>(source), {2, 3}, c_order), endian::little, Array(reinterpret_cast<bool*>(dest), {2, 3}, fortran_order)); EXPECT_THAT(dest, ::testing::ElementsAre(1, 1, 0, 1, 1, 0)); } TEST(DecodeArrayTest, Uint16InPlaceLittleEndian) { alignas(2) unsigned char source[12] = {0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56, 0x78, 0x90, 0x33, 0x44}; auto source_array = UnownedToShared( Array(reinterpret_cast<uint16_t*>(source), {2, 3}, c_order)); SharedArrayView<void> source_array_view = source_array; auto alt_layout = StridedLayout(fortran_order, 2, {2, 3}); DecodeArray(&source_array_view, endian::little, alt_layout); EXPECT_EQ(source_array_view.data(), source); EXPECT_EQ(source_array_view.layout(), source_array.layout()); EXPECT_EQ(source_array_view, MakeArray<uint16_t>({{0x3412, 0x7856, 0x1290}, {0x5634, 0x9078, 0x4433}})); } TEST(DecodeArrayTest, Uint16InPlaceBigEndian) { alignas(2) unsigned char source[12] = {0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56, 0x78, 0x90, 0x33, 0x44}; auto source_array = UnownedToShared( Array(reinterpret_cast<uint16_t*>(source), {2, 3}, c_order)); SharedArrayView<void> source_array_view = source_array; auto alt_layout = StridedLayout(fortran_order, 2, {2, 3}); DecodeArray(&source_array_view, endian::big, alt_layout); EXPECT_EQ(source_array_view.data(), source); EXPECT_EQ(source_array_view.layout(), source_array.layout()); EXPECT_EQ(source_array_view, MakeArray<uint16_t>({{0x1234, 0x5678, 0x9012}, {0x3456, 0x7890, 0x3344}})); } TEST(DecodeArrayTest, Uint16InPlaceLittleEndianUnaligned) { alignas(2) unsigned char source[13] = {0x00, 0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56, 0x78, 0x90, 0x33, 0x44}; auto source_array = UnownedToShared( Array(reinterpret_cast<uint16_t*>(source + 1), {2, 3}, c_order)); SharedArrayView<void> source_array_view = source_array; auto alt_layout = StridedLayout(fortran_order, 2, {2, 3}); DecodeArray(&source_array_view, endian::little, alt_layout); EXPECT_NE(source_array_view.data(), source); EXPECT_EQ(source_array_view.layout(), alt_layout); EXPECT_EQ(source_array_view, MakeArray<uint16_t>({{0x3412, 0x7856, 0x1290}, {0x5634, 0x9078, 0x4433}})); } void TestConvertCordInplace(DataType dtype, endian endian_value, ContiguousLayoutOrder order, bool expected_inplace) { SCOPED_TRACE(tensorstore::StrCat("dtype=", dtype, ", order=", order, ", endian=", endian_value)); auto orig_array = tensorstore::AllocateArray( {4, 5, 6}, order, tensorstore::default_init, dtype); EXPECT_EQ(1, orig_array.pointer().use_count()); auto cord = absl::MakeCordFromExternal( std::string_view(reinterpret_cast<const char*>(orig_array.data()), dtype.size() * orig_array.num_elements()), [owner = orig_array.pointer()](std::string_view s) {}); auto cord_array = TryViewCordAsArray(cord, 0, dtype, endian_value, orig_array.layout()); if (expected_inplace) { EXPECT_EQ(orig_array.data(), cord_array.data()); EXPECT_EQ(2, orig_array.pointer().use_count()); cord.Clear(); EXPECT_EQ(2, orig_array.pointer().use_count()); } else { EXPECT_FALSE(cord_array.valid()); } } TEST(TryViewCordAsArrayTest, Inplace) { const DataType data_types[] = {dtype_v<uint8_t>, dtype_v<uint16_t>, dtype_v<uint32_t>, dtype_v<uint64_t>}; for (auto dtype : data_types) { for (auto order : {tensorstore::c_order, tensorstore::fortran_order}) { TestConvertCordInplace(dtype, endian::native, order, true); } } constexpr endian non_native = endian::native == endian::little ? endian::big : endian::little; TestConvertCordInplace(dtype_v<uint8_t>, non_native, tensorstore::c_order, true); TestConvertCordInplace(dtype_v<bool>, non_native, tensorstore::c_order, true); TestConvertCordInplace(dtype_v<uint32_t>, non_native, tensorstore::c_order, false); } TEST(TryViewCordAsArrayTest, FlatCordBuilder) { constexpr size_t kExtraBytes = 8; tensorstore::internal::FlatCordBuilder builder(sizeof(uint32_t) * 3 * 4 * 5 + kExtraBytes); StridedLayout<> layout(tensorstore::c_order, sizeof(uint32_t), {3, 4, 5}); char* data_ptr = builder.data(); auto cord = std::move(builder).Build(); for (size_t offset = 0; offset < kExtraBytes; ++offset) { auto array = TryViewCordAsArray(cord, offset, dtype_v<uint32_t>, endian::native, layout); if ((offset % alignof(uint32_t)) == 0) { EXPECT_EQ(static_cast<void*>(data_ptr + offset), array.data()); EXPECT_EQ(layout, array.layout()); } else { EXPECT_FALSE(array.valid()); } } } TEST(TryViewCordAsArrayTest, Fragmented) { std::vector<std::string> parts{ std::string(sizeof(uint32_t) * 3 * 3 * 5, '\0'), std::string(sizeof(uint32_t) * 3 * 1 * 5, '\0')}; StridedLayout<> layout(tensorstore::c_order, sizeof(uint32_t), {3, 4, 5}); absl::Cord cord = absl::MakeFragmentedCord(parts); auto array = TryViewCordAsArray(cord, 0, dtype_v<uint32_t>, endian::native, layout); EXPECT_FALSE(array.valid()); } TEST(TryViewCordAsArrayTest, SmallBuffer) { StridedLayout<> layout(tensorstore::c_order, sizeof(uint8_t), {4}); absl::Cord cord("abcd"); auto array = TryViewCordAsArray(cord, 0, dtype_v<uint8_t>, endian::native, layout); EXPECT_FALSE(array.valid()); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/data_type_endian_conversion.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/data_type_endian_conversion_test.cc
4f887a6430414cd6088e1743555015b10f116d50
a521486a-75e5-4dda-8e18-e58c91d51eb9
cpp
tensorflow/tensorflow
inference_profiler_stage
tensorflow/lite/tools/evaluation/stages/inference_profiler_stage.cc
tensorflow/lite/tools/evaluation/stages/inference_profiler_stage_test.cc
#include "tensorflow/lite/tools/evaluation/stages/inference_profiler_stage.h" #include <cmath> #include <cstdint> #include <limits> #include <memory> #include <random> #include "fp16.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/tools/evaluation/evaluation_delegate_provider.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" #include "tensorflow/lite/tools/evaluation/stages/tflite_inference_stage.h" namespace tflite { namespace evaluation { namespace { constexpr float kGaussianFloatMean = 0.5; constexpr float kGaussianStdDev = 1.0 / 3; template <typename T> void GenerateRandomGaussianData(int64_t num_elements, float min, float max, std::vector<T>* data) { data->clear(); data->reserve(num_elements); static std::normal_distribution<double> distribution(kGaussianFloatMean, kGaussianStdDev); static std::default_random_engine generator; for (int i = 0; i < num_elements; ++i) { auto rand_n = distribution(generator); while (rand_n < 0 || rand_n >= 1) { rand_n = distribution(generator); } auto rand_float = min + (max - min) * static_cast<float>(rand_n); data->push_back(static_cast<T>(rand_float)); } } template <typename T> float CalculateAverageError(T* reference, T* test, int64_t num_elements) { float error = 0; for (int i = 0; i < num_elements; i++) { float test_value = static_cast<float>(test[i]); float reference_value = static_cast<float>(reference[i]); error += std::abs(test_value - reference_value); } error /= num_elements; return error; } } TfLiteStatus InferenceProfilerStage::Init( const DelegateProviders* delegate_providers) { test_stage_ = std::make_unique<TfliteInferenceStage>(config_); if (test_stage_->Init(delegate_providers) != kTfLiteOk) return kTfLiteError; LOG(INFO) << "Test interpreter has been initialized."; EvaluationStageConfig reference_config; reference_config.set_name("reference_inference"); auto* params = reference_config.mutable_specification() ->mutable_tflite_inference_params(); params->set_model_file_path( config_.specification().tflite_inference_params().model_file_path()); params->set_invocations_per_run( config_.specification().tflite_inference_params().invocations_per_run()); reference_stage_ = std::make_unique<TfliteInferenceStage>(reference_config); if (reference_stage_->Init() != kTfLiteOk) return kTfLiteError; LOG(INFO) << "Reference interpreter (1 thread on CPU) has been initialized."; model_info_ = reference_stage_->GetModelInfo(); for (int i = 0; i < model_info_->inputs.size(); ++i) { const TfLiteType model_input_type = model_info_->inputs[i]->type; if (model_input_type == kTfLiteUInt8 || model_input_type == kTfLiteInt8 || model_input_type == kTfLiteInt32 || model_input_type == kTfLiteInt64 || model_input_type == kTfLiteBool || model_input_type == kTfLiteFloat32 || model_input_type == kTfLiteFloat16) { } else { LOG(ERROR) << "InferenceProfilerStage only supports " "float16/float32/int8/uint8/int32/int64/bool " "input types"; return kTfLiteError; } auto* input_shape = model_info_->inputs[i]->dims; int64_t total_num_elements = 1; for (int i = 0; i < input_shape->size; i++) { total_num_elements *= input_shape->data[i]; } input_num_elements_.push_back(total_num_elements); float_tensors_.emplace_back(); uint8_tensors_.emplace_back(); int8_tensors_.emplace_back(); float16_tensors_.emplace_back(); int64_tensors_.emplace_back(); int32_tensors_.emplace_back(); bool_tensors_.emplace_back(); } for (int i = 0; i < model_info_->outputs.size(); ++i) { const TfLiteType model_output_type = model_info_->outputs[i]->type; if (model_output_type == kTfLiteUInt8 || model_output_type == kTfLiteInt8 || model_output_type == kTfLiteInt32 || model_output_type == kTfLiteBool || model_output_type == kTfLiteFloat32) { } else { LOG(ERROR) << "InferenceProfilerStage only supports " "float32/int8/uint8/int32/bool " "output types"; return kTfLiteError; } auto* output_shape = model_info_->outputs[i]->dims; int64_t total_num_elements = 1; for (int i = 0; i < output_shape->size; i++) { total_num_elements *= output_shape->data[i]; } output_num_elements_.push_back(total_num_elements); error_stats_.emplace_back(); } return kTfLiteOk; } TfLiteStatus InferenceProfilerStage::Run() { std::vector<void*> input_ptrs; for (int i = 0; i < model_info_->inputs.size(); ++i) { const TfLiteType model_input_type = model_info_->inputs[i]->type; if (model_input_type == kTfLiteUInt8) { GenerateRandomGaussianData( input_num_elements_[i], std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max(), &uint8_tensors_[i]); input_ptrs.push_back(uint8_tensors_[i].data()); } else if (model_input_type == kTfLiteInt8) { GenerateRandomGaussianData( input_num_elements_[i], std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max(), &int8_tensors_[i]); input_ptrs.push_back(int8_tensors_[i].data()); } else if (model_input_type == kTfLiteInt32) { GenerateRandomGaussianData( input_num_elements_[i], std::numeric_limits<int32_t>::min(), std::numeric_limits<int32_t>::max(), &int32_tensors_[i]); input_ptrs.push_back(int32_tensors_[i].data()); } else if (model_input_type == kTfLiteInt64) { GenerateRandomGaussianData( input_num_elements_[i], std::numeric_limits<int64_t>::min(), std::numeric_limits<int64_t>::max(), &int64_tensors_[i]); input_ptrs.push_back(int64_tensors_[i].data()); } else if (model_input_type == kTfLiteBool) { GenerateRandomGaussianData(input_num_elements_[i], 0, 1, &bool_tensors_[i]); input_ptrs.push_back(bool_tensors_[i].data()); } else if (model_input_type == kTfLiteFloat32) { GenerateRandomGaussianData(input_num_elements_[i], -1, 1, &(float_tensors_[i])); input_ptrs.push_back(float_tensors_[i].data()); } else if (model_input_type == kTfLiteFloat16) { GenerateRandomGaussianData(input_num_elements_[i], -1, 1, &(float_tensors_[i])); for (size_t j = 0; j < float_tensors_[i].size(); j++) { float16_tensors_[i][j] = fp16_ieee_from_fp32_value(float_tensors_[i][j]); } input_ptrs.push_back(float16_tensors_[i].data()); } else { LOG(ERROR) << "InferenceProfilerStage only supports " "float16/float32/int8/uint8/int32/int64/bool " "input types"; return kTfLiteError; } } test_stage_->SetInputs(input_ptrs); reference_stage_->SetInputs(input_ptrs); if (test_stage_->Run() != kTfLiteOk) return kTfLiteError; if (reference_stage_->Run() != kTfLiteOk) return kTfLiteError; for (int i = 0; i < model_info_->outputs.size(); ++i) { const TfLiteType model_output_type = model_info_->outputs[i]->type; void* reference_ptr = reference_stage_->GetOutputs()->at(i); void* test_ptr = test_stage_->GetOutputs()->at(i); float output_diff = 0; if (model_output_type == kTfLiteUInt8) { output_diff = CalculateAverageError(static_cast<uint8_t*>(reference_ptr), static_cast<uint8_t*>(test_ptr), output_num_elements_[i]); } else if (model_output_type == kTfLiteInt8) { output_diff = CalculateAverageError(static_cast<int8_t*>(reference_ptr), static_cast<int8_t*>(test_ptr), output_num_elements_[i]); } else if (model_output_type == kTfLiteInt32) { output_diff = CalculateAverageError(static_cast<int32_t*>(reference_ptr), static_cast<int32_t*>(test_ptr), output_num_elements_[i]); } else if (model_output_type == kTfLiteBool) { output_diff = CalculateAverageError(static_cast<int8_t*>(reference_ptr), static_cast<int8_t*>(test_ptr), output_num_elements_[i]); } else if (model_output_type == kTfLiteFloat32) { output_diff = CalculateAverageError(static_cast<float*>(reference_ptr), static_cast<float*>(test_ptr), output_num_elements_[i]); } error_stats_[i].UpdateStat(output_diff); } return kTfLiteOk; } EvaluationStageMetrics InferenceProfilerStage::LatestMetrics() { EvaluationStageMetrics metrics; const auto& reference_metrics = reference_stage_->LatestMetrics(); metrics.set_num_runs(reference_metrics.num_runs()); auto* inference_profiler_metrics = metrics.mutable_process_metrics()->mutable_inference_profiler_metrics(); *inference_profiler_metrics->mutable_reference_latency() = reference_metrics.process_metrics().total_latency(); *inference_profiler_metrics->mutable_test_latency() = test_stage_->LatestMetrics().process_metrics().total_latency(); for (int i = 0; i < error_stats_.size(); ++i) { AccuracyMetrics* diff = inference_profiler_metrics->add_output_errors(); diff->set_avg_value(error_stats_[i].avg()); diff->set_std_deviation(error_stats_[i].std_deviation()); diff->set_min_value(error_stats_[i].min()); if (error_stats_[i].avg() != 0) { diff->set_max_value(error_stats_[i].max()); } else { diff->set_max_value(0); } } return metrics; } } }
#include "tensorflow/lite/tools/evaluation/stages/inference_profiler_stage.h" #include <stdint.h> #include <string> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" namespace tflite { namespace evaluation { namespace { constexpr char kInferenceProfilerStageName[] = "inference_profiler_stage"; constexpr char kModelPath[] = "tensorflow/lite/testdata/add_quantized.bin"; EvaluationStageConfig GetInferenceProfilerStageConfig(int num_threads = 1) { EvaluationStageConfig config; config.set_name(kInferenceProfilerStageName); auto* params = config.mutable_specification()->mutable_tflite_inference_params(); params->set_model_file_path(kModelPath); params->set_invocations_per_run(2); params->set_num_threads(num_threads); return config; } TEST(InferenceProfilerStage, NoParams) { EvaluationStageConfig config = GetInferenceProfilerStageConfig(); config.mutable_specification()->clear_tflite_inference_params(); InferenceProfilerStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteError); } TEST(InferenceProfilerStage, NoModelPath) { EvaluationStageConfig config = GetInferenceProfilerStageConfig(); config.mutable_specification() ->mutable_tflite_inference_params() ->clear_model_file_path(); InferenceProfilerStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteError); } TEST(InferenceProfilerStage, NoOutputDiffForDefaultConfig) { EvaluationStageConfig config = GetInferenceProfilerStageConfig(); InferenceProfilerStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteOk); for (int i = 0; i < 5; ++i) { EXPECT_EQ(stage.Run(), kTfLiteOk); } EvaluationStageMetrics metrics = stage.LatestMetrics(); EXPECT_TRUE(metrics.process_metrics().has_inference_profiler_metrics()); auto profiler_metrics = metrics.process_metrics().inference_profiler_metrics(); EXPECT_TRUE(profiler_metrics.has_reference_latency()); EXPECT_TRUE(profiler_metrics.has_test_latency()); EXPECT_EQ(profiler_metrics.output_errors_size(), 1); EXPECT_EQ(profiler_metrics.output_errors(0).avg_value(), 0); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/evaluation/stages/inference_profiler_stage.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/evaluation/stages/inference_profiler_stage_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9b79f15a-5ad8-4f05-b7e9-569a601d059c
cpp
tensorflow/tensorflow
profile_summary_formatter
tensorflow/lite/profiling/profile_summary_formatter.cc
tensorflow/lite/profiling/profile_summary_formatter_test.cc
#include "tensorflow/lite/profiling/profile_summary_formatter.h" #include <fstream> #include <iomanip> #include <ios> #include <map> #include <memory> #include <ostream> #include <queue> #include <sstream> #include <string> #include <utility> #include <vector> #include "tensorflow/core/util/stat_summarizer_options.h" #include "tensorflow/core/util/stats_calculator.h" #include "tensorflow/lite/profiling/proto/profiling_info.pb.h" #include "tensorflow/lite/tools/logging.h" namespace tflite { namespace profiling { std::string ProfileSummaryDefaultFormatter::GetOutputString( const std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>>& stats_calculator_map, const tensorflow::StatsCalculator& delegate_stats_calculator, const std::map<uint32_t, std::string>& subgraph_name_map) const { return GenerateReport("profile", true, stats_calculator_map, delegate_stats_calculator, subgraph_name_map); } std::string ProfileSummaryDefaultFormatter::GetShortSummary( const std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>>& stats_calculator_map, const tensorflow::StatsCalculator& delegate_stats_calculator, const std::map<uint32_t, std::string>& subgraph_name_map) const { return GenerateReport("summary", false, stats_calculator_map, delegate_stats_calculator, subgraph_name_map); } std::string ProfileSummaryDefaultFormatter::GenerateReport( const std::string& tag, bool include_output_string, const std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>>& stats_calculator_map, const tensorflow::StatsCalculator& delegate_stats_calculator, const std::map<uint32_t, std::string>& subgraph_name_map) const { std::stringstream stream; bool has_non_primary_graph = (stats_calculator_map.size() - stats_calculator_map.count(0)) > 0; for (const auto& stats_calc : stats_calculator_map) { auto subgraph_index = stats_calc.first; auto subgraph_stats = stats_calc.second.get(); std::string subgraph_name = ""; if (subgraph_name_map.find(subgraph_index) != subgraph_name_map.end()) { subgraph_name = subgraph_name_map.at(subgraph_index); } if (has_non_primary_graph) { if (subgraph_index == 0) { stream << "Primary graph (name: " << subgraph_name << ") " << tag << ":" << std::endl; } else { stream << "Subgraph (index: " << subgraph_index << ", name: " << subgraph_name << ") " << tag << ":" << std::endl; } } if (include_output_string) { stream << subgraph_stats->GetOutputString(); } if (subgraph_index != 0) { stream << "Subgraph (index: " << subgraph_index << ", name: " << subgraph_name << ") "; } stream << subgraph_stats->GetShortSummary() << std::endl; } if (delegate_stats_calculator.num_runs() > 0) { stream << "Delegate internal: " << std::endl; if (include_output_string) { stream << delegate_stats_calculator.GetOutputString(); } stream << delegate_stats_calculator.GetShortSummary() << std::endl; } return stream.str(); } void ProfileSummaryDefaultFormatter::HandleOutput( const std::string& init_output, const std::string& run_output, std::string output_file_path) const { std::ofstream output_file(output_file_path); std::ostream* output_stream = nullptr; if (output_file.good()) { output_stream = &output_file; } if (!init_output.empty()) { WriteOutput("Profiling Info for Benchmark Initialization:", init_output, output_stream == nullptr ? &TFLITE_LOG(INFO) : output_stream); } if (!run_output.empty()) { WriteOutput( "Operator-wise Profiling Info for Regular Benchmark Runs:", run_output, output_stream == nullptr ? &TFLITE_LOG(INFO) : output_stream); } } tensorflow::StatSummarizerOptions ProfileSummaryDefaultFormatter::GetStatSummarizerOptions() const { auto options = tensorflow::StatSummarizerOptions(); options.show_summary = false; options.show_memory = false; return options; } tensorflow::StatSummarizerOptions ProfileSummaryCSVFormatter::GetStatSummarizerOptions() const { auto options = ProfileSummaryDefaultFormatter::GetStatSummarizerOptions(); options.format_as_csv = true; return options; } std::vector<tensorflow::StatsCalculator::Detail> ProfileSummaryProtoFormatter::GetDetailsSortedByRunOrder( const tensorflow::StatsCalculator* stats_calculator) const { std::vector<tensorflow::StatsCalculator::Detail> details; std::map<std::string, tensorflow::StatsCalculator::Detail> unsorted_details = stats_calculator->GetDetails(); std::priority_queue< std::pair<std::string, const tensorflow::StatsCalculator::Detail*>> sorted_list; const int num_nodes = unsorted_details.size(); for (const auto& det : unsorted_details) { const tensorflow::StatsCalculator::Detail* detail = &(det.second); std::stringstream stream_for_sort; stream_for_sort << std::setw(20) << std::right << std::setprecision(10) << std::fixed; stream_for_sort << num_nodes - detail->run_order; sorted_list.emplace(stream_for_sort.str(), detail); } while (!sorted_list.empty()) { auto entry = sorted_list.top(); sorted_list.pop(); details.push_back(*entry.second); } return details; } void ProfileSummaryProtoFormatter::GenerateOpProfileDataFromDetail( const tensorflow::StatsCalculator::Detail* detail, const tensorflow::StatsCalculator* stats_calculator, OpProfileData* const op_profile_data) const { if (detail == nullptr) { return; } op_profile_data->set_node_type(detail->type); OpProfilingStat* inference_stat = op_profile_data->mutable_inference_microseconds(); inference_stat->set_first(detail->elapsed_time.first()); inference_stat->set_last(detail->elapsed_time.newest()); inference_stat->set_avg(detail->elapsed_time.avg()); inference_stat->set_stddev(detail->elapsed_time.std_deviation()); inference_stat->set_variance(detail->elapsed_time.variance()); inference_stat->set_min(detail->elapsed_time.min()); inference_stat->set_max(detail->elapsed_time.max()); inference_stat->set_sum(detail->elapsed_time.sum()); inference_stat->set_count(detail->elapsed_time.count()); OpProfilingStat* memory_stat = op_profile_data->mutable_mem_kb(); memory_stat->set_first(detail->mem_used.first() / 1000.0); memory_stat->set_last(detail->mem_used.newest() / 1000.0); memory_stat->set_avg(detail->mem_used.avg() / 1000.0); memory_stat->set_stddev(detail->mem_used.std_deviation() / 1000.0); memory_stat->set_variance(detail->mem_used.variance() / 1000000.0); memory_stat->set_min(detail->mem_used.min() / 1000.0); memory_stat->set_max(detail->mem_used.max() / 1000.0); memory_stat->set_sum(detail->mem_used.sum() / 1000.0); memory_stat->set_count(detail->mem_used.count()); op_profile_data->set_times_called(detail->times_called / stats_calculator->num_runs()); op_profile_data->set_name(detail->name); op_profile_data->set_run_order(detail->run_order); } void ProfileSummaryProtoFormatter::GenerateSubGraphProfilingData( const tensorflow::StatsCalculator* stats_calculator, int subgraph_index, const std::map<uint32_t, std::string>& subgraph_name_map, SubGraphProfilingData* const sub_graph_profiling_data) const { sub_graph_profiling_data->set_subgraph_index(subgraph_index); std::string subgraph_name = ""; if (subgraph_name_map.find(subgraph_index) != subgraph_name_map.end()) { subgraph_name = subgraph_name_map.at(subgraph_index); } sub_graph_profiling_data->set_subgraph_name(subgraph_name); for (tensorflow::StatsCalculator::Detail& detail : GetDetailsSortedByRunOrder(stats_calculator)) { OpProfileData* const op_profile_data = sub_graph_profiling_data->add_per_op_profiles(); GenerateOpProfileDataFromDetail(&detail, stats_calculator, op_profile_data); } } void ProfileSummaryProtoFormatter::GenerateDelegateProfilingData( const tensorflow::StatsCalculator* stats_calculator, DelegateProfilingData* const delegate_profiling_data) const { for (const tensorflow::StatsCalculator::Detail& detail : GetDetailsSortedByRunOrder(stats_calculator)) { OpProfileData* const op_profile_data = delegate_profiling_data->add_per_op_profiles(); GenerateOpProfileDataFromDetail(&detail, stats_calculator, op_profile_data); } } std::string ProfileSummaryProtoFormatter::GetShortSummary( const std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>>& stats_calculator_map, const tensorflow::StatsCalculator& delegate_stats_calculator, const std::map<uint32_t, std::string>& subgraph_name_map) const { TFLITE_LOG(ERROR) << "GetShortSummary is not supported for proto formatter."; return ""; } std::string ProfileSummaryProtoFormatter::GetOutputString( const std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>>& stats_calculator_map, const tensorflow::StatsCalculator& delegate_stats_calculator, const std::map<uint32_t, std::string>& subgraph_name_map) const { ModelProfilingData model_profiling_data; for (const auto& stats_calc : stats_calculator_map) { auto subgraph_index = stats_calc.first; tensorflow::StatsCalculator* subgraph_stats = stats_calc.second.get(); SubGraphProfilingData* const sub_graph_profiling_data = model_profiling_data.add_subgraph_profiles(); GenerateSubGraphProfilingData(subgraph_stats, subgraph_index, subgraph_name_map, sub_graph_profiling_data); } if (delegate_stats_calculator.num_runs() > 0) { DelegateProfilingData* const delegate_profiling_data = model_profiling_data.add_delegate_profiles(); GenerateDelegateProfilingData(&delegate_stats_calculator, delegate_profiling_data); } return model_profiling_data.SerializeAsString(); } tensorflow::StatSummarizerOptions ProfileSummaryProtoFormatter::GetStatSummarizerOptions() const { auto options = tensorflow::StatSummarizerOptions(); options.show_summary = false; options.show_memory = false; return options; } void ProfileSummaryProtoFormatter::HandleOutput( const std::string& init_output, const std::string& run_output, std::string output_file_path) const { std::ofstream output_file(output_file_path, std::ios_base::binary); std::ostream* output_stream = nullptr; if (output_file.good()) { output_stream = &output_file; } BenchmarkProfilingData benchmark_profiling_data; if (!init_output.empty()) { benchmark_profiling_data.mutable_init_profile()->ParseFromString( init_output); } if (!run_output.empty()) { benchmark_profiling_data.mutable_runtime_profile()->ParseFromString( run_output); } if (output_stream == nullptr) { TFLITE_LOG(INFO) << benchmark_profiling_data.DebugString(); } else { benchmark_profiling_data.SerializeToOstream(output_stream); } } } }
#include "tensorflow/lite/profiling/profile_summary_formatter.h" #include <cstddef> #include <fstream> #include <ios> #include <map> #include <memory> #include <string> #include <tuple> #include <gtest/gtest.h> #include "absl/strings/match.h" #include "tensorflow/core/util/stat_summarizer_options.h" #include "tensorflow/core/util/stats_calculator.h" #include "tensorflow/lite/profiling/proto/profiling_info.pb.h" namespace tflite { namespace profiling { namespace { bool AreOpProfilingStatEqual(const OpProfilingStat& op_profiling_stat_1, const OpProfilingStat& op_profiling_stat_2) { auto proto_to_tuple = [](const OpProfilingStat& op_profiling_stat) { return std::make_tuple(op_profiling_stat.first(), op_profiling_stat.last(), op_profiling_stat.avg(), op_profiling_stat.stddev(), op_profiling_stat.variance(), op_profiling_stat.min(), op_profiling_stat.max(), op_profiling_stat.sum(), op_profiling_stat.count()); }; return proto_to_tuple(op_profiling_stat_1) == proto_to_tuple(op_profiling_stat_2); } bool AreOpProfileDataEqual(const OpProfileData& op_profile_data_1, const OpProfileData& op_profile_data_2) { auto proto_to_tuple = [](const OpProfileData& op_profile_data) { return std::make_tuple(op_profile_data.node_type(), op_profile_data.times_called(), op_profile_data.name(), op_profile_data.run_order()); }; return (proto_to_tuple(op_profile_data_1) == proto_to_tuple(op_profile_data_2)) && AreOpProfilingStatEqual(op_profile_data_1.inference_microseconds(), op_profile_data_2.inference_microseconds()) && (AreOpProfilingStatEqual(op_profile_data_1.mem_kb(), op_profile_data_2.mem_kb())); } bool AreSubGraphProfilingDataEqual( const SubGraphProfilingData& subgraph_profiling_data_1, const SubGraphProfilingData& subgraph_profiling_data_2) { auto proto_to_tuple = [](const SubGraphProfilingData& subgraph_profiling_data) { return std::make_tuple( subgraph_profiling_data.subgraph_name(), subgraph_profiling_data.per_op_profiles().size()); }; if (proto_to_tuple(subgraph_profiling_data_1) == proto_to_tuple(subgraph_profiling_data_2)) { for (size_t i = 0; i < subgraph_profiling_data_1.per_op_profiles().size(); ++i) { auto op_profile_data_1 = subgraph_profiling_data_1.per_op_profiles(i); auto op_profile_data_2 = subgraph_profiling_data_2.per_op_profiles(i); if (!AreOpProfileDataEqual(op_profile_data_1, op_profile_data_2)) { return false; } } return true; } return false; } bool AreDelegateProfilingDataEqual( const DelegateProfilingData& delegate_profiling_data_1, const DelegateProfilingData& delegate_profiling_data_2) { auto proto_to_tuple = [](const DelegateProfilingData& delegate_profiling_data) { return std::make_tuple( delegate_profiling_data.delegate_name(), delegate_profiling_data.per_op_profiles().size()); }; if (proto_to_tuple(delegate_profiling_data_1) == proto_to_tuple(delegate_profiling_data_2)) { for (size_t i = 0; i < delegate_profiling_data_1.per_op_profiles().size(); ++i) { auto op_profile_data_1 = delegate_profiling_data_1.per_op_profiles(i); auto op_profile_data_2 = delegate_profiling_data_2.per_op_profiles(i); if (!AreOpProfileDataEqual(op_profile_data_1, op_profile_data_2)) { return false; } } return true; } return false; } bool AreModelProfilingDataEqual( const ModelProfilingData& model_profiling_data_1, const ModelProfilingData& model_profiling_data_2) { if (model_profiling_data_1.subgraph_profiles().size() != model_profiling_data_2.subgraph_profiles().size()) { return false; } for (size_t i = 0; i < model_profiling_data_1.subgraph_profiles().size(); ++i) { auto subgraph_profile_1 = model_profiling_data_1.subgraph_profiles(i); auto subgraph_profile_2 = model_profiling_data_2.subgraph_profiles(i); if (!AreSubGraphProfilingDataEqual(subgraph_profile_1, subgraph_profile_2)) { return false; } } if (model_profiling_data_1.delegate_profiles().size() != model_profiling_data_2.delegate_profiles().size()) { return false; } for (size_t i = 0; i < model_profiling_data_1.delegate_profiles().size(); ++i) { auto delegate_profile_1 = model_profiling_data_1.delegate_profiles(i); auto delegate_profile_2 = model_profiling_data_2.delegate_profiles(i); if (!AreDelegateProfilingDataEqual(delegate_profile_1, delegate_profile_2)) { return false; } } return true; } TEST(SummaryWriterTest, SummaryOptionStdOut) { ProfileSummaryDefaultFormatter writer; tensorflow::StatSummarizerOptions options = writer.GetStatSummarizerOptions(); EXPECT_EQ(options.show_summary, false); EXPECT_EQ(options.show_memory, false); EXPECT_EQ(options.format_as_csv, false); } TEST(SummaryWriterTest, SummaryOptionCSV) { ProfileSummaryCSVFormatter writer; tensorflow::StatSummarizerOptions options = writer.GetStatSummarizerOptions(); EXPECT_EQ(options.show_summary, false); EXPECT_EQ(options.show_memory, false); EXPECT_EQ(options.format_as_csv, true); } TEST(SummaryWriterTest, EmptyOutputString) { ProfileSummaryDefaultFormatter writer; std::string output = writer.GetOutputString( std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>>(), tensorflow::StatsCalculator(writer.GetStatSummarizerOptions()), {}); EXPECT_EQ(output.size(), 0); } TEST(SummaryWriterTest, EmptyShortSummary) { ProfileSummaryDefaultFormatter writer; std::string output = writer.GetShortSummary( std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>>(), tensorflow::StatsCalculator(writer.GetStatSummarizerOptions()), {}); EXPECT_EQ(output.size(), 0); } TEST(SummaryWriterTest, SingleSubgraphOutputString) { ProfileSummaryDefaultFormatter writer; std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>> stats_calculator_map; stats_calculator_map[0] = std::make_unique<tensorflow::StatsCalculator>( writer.GetStatSummarizerOptions()); std::string output = writer.GetOutputString( stats_calculator_map, tensorflow::StatsCalculator(writer.GetStatSummarizerOptions()), {}); ASSERT_TRUE(absl::StrContains(output, "Run Order")); ASSERT_TRUE(absl::StrContains(output, "Top by Computation Time")); ASSERT_TRUE(!absl::StrContains(output, "Top by Memory Use")); ASSERT_TRUE(absl::StrContains(output, "Summary by node type")); ASSERT_TRUE(absl::StrContains(output, "nodes observed")); ASSERT_TRUE(!absl::StrContains(output, "Primary graph")); ASSERT_TRUE(!absl::StrContains(output, "Subgraph")); ASSERT_TRUE(!absl::StrContains(output, "Delegate internal")); } TEST(SummaryWriterTest, SingleSubgraphShortSummary) { ProfileSummaryDefaultFormatter writer; std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>> stats_calculator_map; stats_calculator_map[0] = std::make_unique<tensorflow::StatsCalculator>( writer.GetStatSummarizerOptions()); std::string output = writer.GetShortSummary( stats_calculator_map, tensorflow::StatsCalculator(writer.GetStatSummarizerOptions()), {{0, "Primary graph"}}); ASSERT_TRUE(!absl::StrContains(output, "Run Order")); ASSERT_TRUE(!absl::StrContains(output, "Top by Computation Time")); ASSERT_TRUE(!absl::StrContains(output, "Top by Memory Use")); ASSERT_TRUE(!absl::StrContains(output, "Summary by node type")); ASSERT_TRUE(absl::StrContains(output, "nodes observed")); ASSERT_TRUE(!absl::StrContains(output, "Primary graph")); ASSERT_TRUE(!absl::StrContains(output, "Subgraph")); ASSERT_TRUE(!absl::StrContains(output, "Delegate internal")); } TEST(SummaryWriterTest, MultiSubgraphOutputString) { ProfileSummaryDefaultFormatter writer; std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>> stats_calculator_map; stats_calculator_map[0] = std::make_unique<tensorflow::StatsCalculator>( writer.GetStatSummarizerOptions()); stats_calculator_map[1] = std::make_unique<tensorflow::StatsCalculator>( writer.GetStatSummarizerOptions()); std::string output = writer.GetOutputString( stats_calculator_map, tensorflow::StatsCalculator(writer.GetStatSummarizerOptions()), {{0, "Primary graph"}, {1, "Subgraph 1"}}); ASSERT_TRUE(absl::StrContains(output, "Primary graph")); ASSERT_TRUE(absl::StrContains(output, "Subgraph")); ASSERT_TRUE(!absl::StrContains(output, "Delegate internal")); } TEST(SummaryWriterTest, MultiSubgraphOutputStringForProto) { ProfileSummaryProtoFormatter writer; std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>> stats_calculator_map; stats_calculator_map[0] = std::make_unique<tensorflow::StatsCalculator>( writer.GetStatSummarizerOptions()); std::string kernel_name_1 = "Kernel 1"; std::string kernel_name_2 = "Kernel 2"; std::string kernel_name_3 = "Kernel 3"; std::string op_name_1 = "Convolution"; std::string op_name_2 = "Reshape"; std::string op_name_3 = "Convolution"; stats_calculator_map[0]->AddNodeStats(kernel_name_1, op_name_1, 1, 10, 10000); stats_calculator_map[0]->AddNodeStats(kernel_name_1, op_name_1, 1, 20, 20000); stats_calculator_map[0]->AddNodeStats(kernel_name_2, op_name_2, 2, 15, 10000); stats_calculator_map[0]->UpdateRunTotalUs(25); stats_calculator_map[1] = std::make_unique<tensorflow::StatsCalculator>( writer.GetStatSummarizerOptions()); stats_calculator_map[1]->AddNodeStats(kernel_name_3, op_name_3, 3, 10, 10000); stats_calculator_map[1]->UpdateRunTotalUs(10); std::string output = writer.GetOutputString( stats_calculator_map, tensorflow::StatsCalculator(writer.GetStatSummarizerOptions()), {{0, "Primary graph"}, {1, "Subgraph 1"}}); ModelProfilingData model_profiling_data; model_profiling_data.ParseFromString(output); ASSERT_TRUE(absl::StrContains(output, "Primary graph")); ASSERT_TRUE(absl::StrContains(output, "Subgraph")); ASSERT_TRUE(!absl::StrContains(output, "Delegate internal")); ASSERT_EQ(model_profiling_data.subgraph_profiles().size(), 2); ASSERT_EQ(model_profiling_data.subgraph_profiles(0).subgraph_name(), "Primary graph"); ASSERT_EQ(model_profiling_data.subgraph_profiles(0).per_op_profiles().size(), 2); OpProfileData op_profile_data_1; op_profile_data_1.set_node_type(op_name_1); OpProfilingStat* inference_microseconds_stat_1 = op_profile_data_1.mutable_inference_microseconds(); inference_microseconds_stat_1->set_first(10); inference_microseconds_stat_1->set_last(20); inference_microseconds_stat_1->set_max(20); inference_microseconds_stat_1->set_min(10); inference_microseconds_stat_1->set_avg(15); inference_microseconds_stat_1->set_stddev(5); inference_microseconds_stat_1->set_variance(25); inference_microseconds_stat_1->set_sum(30); inference_microseconds_stat_1->set_count(2); OpProfilingStat* memory_stat_1 = op_profile_data_1.mutable_mem_kb(); memory_stat_1->set_first(10); memory_stat_1->set_last(20); memory_stat_1->set_max(20); memory_stat_1->set_min(10); memory_stat_1->set_avg(15); memory_stat_1->set_stddev(5); memory_stat_1->set_variance(25); memory_stat_1->set_sum(30); memory_stat_1->set_count(2); op_profile_data_1.set_name(kernel_name_1); op_profile_data_1.set_run_order(1); op_profile_data_1.set_times_called(2); EXPECT_TRUE(AreOpProfileDataEqual( model_profiling_data.subgraph_profiles(0).per_op_profiles(0), op_profile_data_1)); OpProfileData op_profile_data_2; op_profile_data_2.set_node_type(op_name_2); OpProfilingStat* inference_microseconds_stat_2 = op_profile_data_2.mutable_inference_microseconds(); inference_microseconds_stat_2->set_first(15); inference_microseconds_stat_2->set_last(15); inference_microseconds_stat_2->set_max(15); inference_microseconds_stat_2->set_min(15); inference_microseconds_stat_2->set_avg(15); inference_microseconds_stat_2->set_stddev(0); inference_microseconds_stat_2->set_variance(0); inference_microseconds_stat_2->set_sum(15); inference_microseconds_stat_2->set_count(1); OpProfilingStat* memory_stat_2 = op_profile_data_2.mutable_mem_kb(); memory_stat_2->set_first(10); memory_stat_2->set_last(10); memory_stat_2->set_max(10); memory_stat_2->set_min(10); memory_stat_2->set_avg(10); memory_stat_2->set_stddev(0); memory_stat_2->set_variance(0); memory_stat_2->set_sum(10); memory_stat_2->set_count(1); op_profile_data_2.set_times_called(1); op_profile_data_2.set_name(kernel_name_2); op_profile_data_2.set_run_order(2); EXPECT_TRUE(AreOpProfileDataEqual( model_profiling_data.subgraph_profiles(0).per_op_profiles(1), op_profile_data_2)); ASSERT_EQ(model_profiling_data.subgraph_profiles(1).subgraph_name(), "Subgraph 1"); ASSERT_EQ(model_profiling_data.subgraph_profiles(1).per_op_profiles().size(), 1); OpProfileData op_profile_data_3; op_profile_data_3.set_node_type(op_name_3); OpProfilingStat* inference_microseconds_stat_3 = op_profile_data_3.mutable_inference_microseconds(); inference_microseconds_stat_3->set_first(10); inference_microseconds_stat_3->set_last(10); inference_microseconds_stat_3->set_max(10); inference_microseconds_stat_3->set_min(10); inference_microseconds_stat_3->set_avg(10); inference_microseconds_stat_3->set_stddev(0); inference_microseconds_stat_3->set_variance(0); inference_microseconds_stat_3->set_sum(10); inference_microseconds_stat_3->set_count(1); OpProfilingStat* memory_stat_3 = op_profile_data_3.mutable_mem_kb(); memory_stat_3->set_first(10); memory_stat_3->set_last(10); memory_stat_3->set_max(10); memory_stat_3->set_min(10); memory_stat_3->set_avg(10); memory_stat_3->set_stddev(0); memory_stat_3->set_variance(0); memory_stat_3->set_sum(10); memory_stat_3->set_count(1); op_profile_data_3.set_times_called(1); op_profile_data_3.set_name(kernel_name_3); op_profile_data_3.set_run_order(3); EXPECT_TRUE(AreOpProfileDataEqual( model_profiling_data.subgraph_profiles(1).per_op_profiles(0), op_profile_data_3)); } TEST(SummaryWriterTest, MultiSubgraphHandleOutputForProto) { ProfileSummaryProtoFormatter writer; ModelProfilingData model_profiling_data_run; SubGraphProfilingData* subgraph_profiling_data = model_profiling_data_run.add_subgraph_profiles(); subgraph_profiling_data->set_subgraph_name("Primary graph"); OpProfileData* op_profile_data_1 = subgraph_profiling_data->add_per_op_profiles(); op_profile_data_1->set_node_type("Convolution"); OpProfilingStat* inference_stat_1 = op_profile_data_1->mutable_inference_microseconds(); inference_stat_1->set_first(10); inference_stat_1->set_avg(10); OpProfilingStat* mem_stat_1 = op_profile_data_1->mutable_mem_kb(); mem_stat_1->set_first(10); mem_stat_1->set_avg(10); op_profile_data_1->set_times_called(1); op_profile_data_1->set_name("Kernel 1"); op_profile_data_1->set_run_order(1); OpProfileData* op_profile_data_2 = subgraph_profiling_data->add_per_op_profiles(); op_profile_data_2->set_node_type("Reshape"); OpProfilingStat* inference_stat_2 = op_profile_data_2->mutable_inference_microseconds(); inference_stat_2->set_first(15); inference_stat_2->set_avg(15); OpProfilingStat* mem_stat_2 = op_profile_data_2->mutable_mem_kb(); mem_stat_2->set_first(10); mem_stat_2->set_avg(10); op_profile_data_2->set_times_called(1); op_profile_data_2->set_name("Kernel 2"); op_profile_data_2->set_run_order(2); SubGraphProfilingData* subgraph_profiling_data_1 = model_profiling_data_run.add_subgraph_profiles(); subgraph_profiling_data_1->set_subgraph_name("Subgraph 1"); OpProfileData* op_profile_data_3 = subgraph_profiling_data_1->add_per_op_profiles(); op_profile_data_3->set_node_type("Convolution"); OpProfilingStat* inference_stat_3 = op_profile_data_3->mutable_inference_microseconds(); inference_stat_3->set_first(10); inference_stat_3->set_avg(10); OpProfilingStat* mem_stat_3 = op_profile_data_3->mutable_mem_kb(); mem_stat_3->set_first(10); mem_stat_3->set_avg(10); op_profile_data_3->set_times_called(1); op_profile_data_3->set_name("Kernel 3"); op_profile_data_3->set_run_order(3); DelegateProfilingData* delegate_profiling_data = model_profiling_data_run.add_delegate_profiles(); OpProfileData* op_profile_data_4 = delegate_profiling_data->add_per_op_profiles(); op_profile_data_4->set_node_type("Convolution"); OpProfilingStat* inference_stat_4 = op_profile_data_4->mutable_inference_microseconds(); inference_stat_4->set_first(10); inference_stat_4->set_avg(10); OpProfilingStat* mem_stat_4 = op_profile_data_4->mutable_mem_kb(); mem_stat_4->set_first(10); mem_stat_4->set_avg(10); op_profile_data_4->set_times_called(1); op_profile_data_4->set_name("Kernel 4"); op_profile_data_4->set_run_order(4); ModelProfilingData model_profiling_data_init; SubGraphProfilingData* subgraph_profiling_data_init = model_profiling_data_init.add_subgraph_profiles(); subgraph_profiling_data_init->set_subgraph_name("Primary graph"); OpProfileData* op_profile_data_init_1 = subgraph_profiling_data_init->add_per_op_profiles(); op_profile_data_init_1->set_node_type("Convolution"); OpProfilingStat* inference_stat_init_1 = op_profile_data_init_1->mutable_inference_microseconds(); inference_stat_init_1->set_first(10); inference_stat_init_1->set_avg(10); op_profile_data_init_1->set_times_called(1); OpProfilingStat* mem_stat_init_1 = op_profile_data_init_1->mutable_mem_kb(); mem_stat_init_1->set_first(10); mem_stat_init_1->set_avg(10); op_profile_data_init_1->set_name("ModifyGraphWithDelegate"); op_profile_data_init_1->set_run_order(1); #ifdef __ANDROID__ std::string file_name = "/data/local/tmp/test_file.proto"; #else std::string file_name = "/tmp/test_file.proto"; #endif writer.HandleOutput(model_profiling_data_init.SerializeAsString(), model_profiling_data_run.SerializeAsString(), file_name); std::ifstream file(file_name, std::ios::binary); ASSERT_TRUE(file.good()); BenchmarkProfilingData benchmark_profiling_data; benchmark_profiling_data.ParseFromIstream(&file); file.close(); ASSERT_TRUE(benchmark_profiling_data.model_name().empty()); EXPECT_TRUE(AreModelProfilingDataEqual( benchmark_profiling_data.init_profile(), model_profiling_data_init)); EXPECT_TRUE(AreModelProfilingDataEqual( benchmark_profiling_data.runtime_profile(), model_profiling_data_run)); } TEST(SummaryWriterTest, MultiSubgraphShortSummary) { ProfileSummaryDefaultFormatter writer; std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>> stats_calculator_map; stats_calculator_map[0] = std::make_unique<tensorflow::StatsCalculator>( writer.GetStatSummarizerOptions()); stats_calculator_map[1] = std::make_unique<tensorflow::StatsCalculator>( writer.GetStatSummarizerOptions()); std::string output = writer.GetShortSummary( stats_calculator_map, tensorflow::StatsCalculator(writer.GetStatSummarizerOptions()), {{0, "Primary graph"}, {1, "Subgraph 1"}}); ASSERT_TRUE(absl::StrContains(output, "Primary graph")); ASSERT_TRUE(absl::StrContains(output, "Subgraph")); ASSERT_TRUE(!absl::StrContains(output, "Delegate internal")); } TEST(SummaryWriterTest, DelegationOutputString) { ProfileSummaryDefaultFormatter writer; auto delegate_stats_calculator = tensorflow::StatsCalculator(writer.GetStatSummarizerOptions()); delegate_stats_calculator.UpdateRunTotalUs(1); std::string output = writer.GetOutputString( std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>>(), delegate_stats_calculator, {}); ASSERT_TRUE(!absl::StrContains(output, "Primary graph")); ASSERT_TRUE(!absl::StrContains(output, "Subgraph")); ASSERT_TRUE(absl::StrContains(output, "Delegate internal")); } TEST(SummaryWriterTest, DelegationShortSummary) { ProfileSummaryDefaultFormatter writer; auto delegate_stats_calculator = tensorflow::StatsCalculator(writer.GetStatSummarizerOptions()); delegate_stats_calculator.UpdateRunTotalUs(1); std::string output = writer.GetShortSummary( std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>>(), delegate_stats_calculator, {}); ASSERT_TRUE(!absl::StrContains(output, "Primary graph")); ASSERT_TRUE(!absl::StrContains(output, "Subgraph")); ASSERT_TRUE(absl::StrContains(output, "Delegate internal")); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/profiling/profile_summary_formatter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/profiling/profile_summary_formatter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea